
Virtual and Consistent Hyperbolic Tree: A New
Structure for Distributed Database Management

Telesphore Tiendrebeogo1 and Damien Magoni2(B)

1 Polytechnic University of Bobo-Dioulasso, Bobo-Dioulasso, Burkina Faso
tetiendreb@gmail.com

2 LaBRI, University of Bordeaux, Talence, France
magoni@labri.fr

Abstract. We describe a new structure called Virtual and Consistent
Hyperbolic tree (VCH-tree) for implementing a distributed database sys-
tem. This structure is based on the hyperbolic geometry and can sup-
port queries over large spatial data sets, distributed over interconnected
servers. The VCH-tree is comparable to the well-known R-tree struc-
ture, but it leverages the hyperbolic geometry properties of the Poincaré
disk model. It maintains a balanced Q-degree spatial tree that scales
with insertions of data objects into a large number of servers, reach-
able through hyperbolic coordinates. A user application manipulates
the structure from a client node. The client can connect to the system
through one of the servers that is already in the VCH-tree. Messages
are then routed towards the proper server by a greedy algorithm which
uses the hyperbolic coordinates attributed to each server. We have per-
formed simulations to assess the efficiency and reliability of the VCH-
tree. Results show that our VCH-tree exhibits expected performances for
being used by distributed database applications.

1 Introduction

In order to build spatial databases, we promote a distributed indexing system
relying on the hyperbolic geometry [1]. We aim at indexing large data sets of
spatial objects, each uniquely identified by an object identifier (OID) and stored
in a scalable and reliable index called a VCH-tree, that generalizes the R-tree
structure commonly used as a distributed data structure [16]. A VCH-tree allows
the redundancy of object references, like the R-tree [5] or the R*-tree [9]. The
fundamental principle of our system is to map a large OID space onto a set of
servers in a deterministic and distributed way. Roughly, given an object key,
the system is able to obtain the location of several servers where are stored the
corresponding values.

To be able to route queries in other systems, each server usually maintains
the status of its connections to all the other servers, which increases drastically
the number of messages exchanged, and this may constitute a severe scaling
limitation. The same applies to the number of routing hops that must not grow
too fast with the number of servers in the system [7]. Moreover, most distributed
c© Springer International Publishing Switzerland 2015
A. Bouajjani and H. Fauconnier (Eds.): NETYS 2015, LNCS 9466, pp. 411–425, 2015.
DOI: 10.1007/978-3-319-26850-7 28

412 T. Tiendrebeogo and D. Magoni

database systems suffer from a lack of flexibility concerning storage queries (i.e.,
where the values are stored) involving consequently a heavy lookup traffic load
on the paths of the underlying servers.

Our VCH-tree can address all the aforementioned issues while maintaining
a good trade-off between robustness, efficiency and system complexity. In this
paper, we make the following contributions:

– We define a new structure for indexation in a distributed database system
without any constraints. The database servers can connect arbitrarily to each
other, the data objects can be inserted, updated or deleted without the cost
of maintaining any global knowledge of the servers’ topology.

– We define a method for mapping database OIDs to the addresses of the servers
in the hyperbolic plane. This mapping enables OIDs to be forwarded to their
storing server by using a greedy routing algorithm. Values are stored in order
to avoid overloading a particular zone of the distributed system. Furthermore,
storing and retrieving queries can be solved within O(logN) hops.

– To improve database object availability and access performance, our system
embeds a redundancy and caching mechanism that can be adjusted to obtain
a good trade-off between reliability and storage consumption.

– We have carried out simulations to evaluate the performances of the VCH-tree
and have shown that they match the theoretical properties.

The VCH-tree structure presented in this paper, derives from our Distributed
Hash Table (DHT) system defined in our previous work [17]. The key difference
is that data objects which are spatially close, are attributed nearby hyperbolic
addresses in a VCH-tree.

The remainder of this paper is organized as follows. Section 2 gives a brief
overview of the related previous work. Section 3 highlights some properties of the
hyperbolic plane when represented by the Poincaré disk model. Section 4 defines
the local addressing and greedy routing algorithms of the VCH-tree. Section 5
defines the binding algorithm of the VCH-tree. Section 6 presents the results of
our evaluation obtained by simulations and we conclude in Sect. 7.

2 Related Work

Until recently, most of the spatial indexing design efforts have been devoted to
centralized systems [4] although, for non-spatial data, research devoted to an
efficient distribution of large data sets is well-established [2,3]. Many Scalable
Distributed Data Structure (SDDS) schemes are hash-based, e.g., variants of
LH* [8], or use a Distributed Hash Table [2,13]. Some SDDSs are range parti-
tioned, from RP* based systems [10] up to BATON [4] most recently.

There were also proposals for k-d partitioning, e.g., k-RP [14] using dis-
tributed kd-trees for data points, or hQT* [10] using quad-trees for the same
purpose. Hambrusch and Khokhar [6] present a distributed data structure based
on orthogonal bisection trees (2-d KD trees). Kriakov et al. [12] describe an

Virtual and Consistent Hyperbolic Tree 413

adaptive index method which offers dynamic load balancing of servers and dis-
tributed collaboration. The structure requires a coordinator which maintains the
load of each server.

3 Hyperbolic Geometry

The model that we use in our system to represent the hyperbolic plane is called
the Poincaré disk model. In the Poincaré disk model, the hyperbolic plane is
represented by the open unit disk of radius 1 centered at the origin. In this
specific model:

– Points are represented by points within this open unit disk.
– Lines are represented by arcs of circles intersecting the disk and meeting its

boundaries at right angles.

In this model, we refer to points by using complex coordinates.
An important property is that we can tile the hyperbolic plane with polygons

of any sizes, called p-gons. Each tessellation is represented by a notation of the
form {p, q} where each polygon has p sides with q of them at each vertex. There
exists a hyperbolic tessellation {p, q} for every couple {p, q} obeying (p − 2) ∗
(q − 2) > 4. In a tiling, p is the number of sides of the polygons of the primal
(the black edges and green vertices in Fig. 1) and q is the number of sides of the
polygons of the dual (the red triangles in Fig. 1).

Our purpose is to partition the plane and address each node uniquely. We
set p to infinity, thus transforming the primal into a regular tree of degree q.
The dual is then tessellated with an infinite number of q-gons. This particular
tiling splits the hyperbolic plane in distinct spaces and constructs an embedded
tree that we use to assign unique addresses to the nodes. An example of such a
hyperbolic tree with q = 3 is shown in Fig. 1.

In the Poincaré disk model, the distances between any two points z and w
are given by curves minimizing the distance between these two points and are
called geodesics of the hyperbolic plane. To compute the length of a geodesic
between two points z and w and thus obtain their hyperbolic distance dH, we
use the Poincaré metric which is an isometric invariant given by the formula:

dH(z, w) = arcosh
(

1 + 2 × |z − w|2
(1 − |z|2)(1 − |w|2)

)
(1)

This formula is used by the greedy routing algorithm shown in the next section.

4 Topology of the Servers

We now explain in this section how we create the hyperbolic addressing tree
for database servers interconnections and how queries can be routed in our dis-
tributed database system. The first step in the creation of a VCH-tree of servers

414 T. Tiendrebeogo and D. Magoni

n1 [0.5;0]

n2 [-0.25;0.433]

n3 [-0.25;-0.433]

n0 [0;0]

n5

n4

n6

n7

n8

n9

Fig. 1. 3-regular tree in the hyperbolic plane

nodes is to start the first database server and to choose the degree of the address-
ing tree.

We recall that the hyperbolic coordinates (i.e., a complex number) of a server
node of the addressing tree are used as the address of the corresponding database
server in the distributed data base system. A server node of the tree can give the
addresses corresponding to its children in the VCH-tree. The degree determines
how many addresses each database server will be able to give for news nodes
servers connections. The degree of the VCH-tree is defined at the beginning for
all the lifetime of the distributed database system. The distributed database
system is then built incrementally, with each new data server joining one or
more existing data servers. Over time, the data servers will leave the overlay until
there is no server left which is the end of the distributed database system. So, for
every data object that must be stored in the system, an OID is associated with
him and map then in key-value pair. The key will allow to determine in which

Virtual and Consistent Hyperbolic Tree 415

data servers the object will be stored (as explained in the following section).
Furthermore when a data object is deleted, the system must be able to update
this operation in all the system by forwarding query. This method is scalable
because unlike Kleinberg [11], we do not have to make a two-pass algorithm over
the whole distributed system to find its highest degree. Also in our system, a
server can connect to any other server at any time in order to obtain an address.

The first step is thus to define the degree of the tree because it allows building
the dual, namely the regular q − gon. We nail the root of the tree at the origin
of the primal and we begin the tiling at the origin of the disk in function of q.
Each splitting of the space in order to create disjoint subspaces is ensured once
the half spaces are tangent; hence the primal is an infinite q-regular tree. We
use the theoretical infinite q-regular tree to construct the greedy embedding of
our q-regular tree. So, the regular degree of the tree is the number of sides of the
polygon used to build the dual (see Fig. 1). In other words, the space is allocated
for q child database servers. Each database server repeats the computation for
its own half space. In half space, the space is again allocated for q − 1 children.
Each child can distribute its addresses in its half space. Algorithm 1 shows how
to compute the addresses that can be given to the children of a database server.
The first database server takes the hyperbolic address (0;0) and is the root of
the tree. The root can assign q addresses.

Algorithm 1. Calculating the Coordinates of a Server’s Children
1: procedure CalcChildrenCoords(server, q)

2: step ← arcosh

⎛
⎝ 1

sin
(

π
q

)
⎞
⎠

3: angle ← 2π

q
4: childCoords ← server.Coords
5: for i ← 1, q do
6: ChildCoords.rotationLeft(angle)
7: ChildCoords.translation(step)
8: ChildCoords.rotationRight(π)
9: if ChildCoords �= server.ParentCoords then

10: StoreChildCoords(ChildCoords)
11: end if
12: end for
13: end procedure

This distributed algorithm ensures that the database servers are contained
in distinct spaces and have unique coordinates. All the steps of the presented
algorithm are suitable for distributed and asynchronous computation. This algo-
rithm allows the assignment of addresses as coordinates in dynamic topologies.
As the global knowledge of the distributed database system is not necessary, a
new server can obtain coordinates simply by asking an existing server to be its

416 T. Tiendrebeogo and D. Magoni

parent and to give it an address for itself. If the asked server has already given
all its addresses, the new server must ask an address to another existing data-
base server. When a new server obtains an address, it computes the addresses
(i.e., hyperbolic coordinates) of its addresses that will be given to its potential
children. Those are new database servers that will connect to the distributed
database system. The addressing VCH-tree is thus incrementally built at the
same time than the distributed database system.

When a new database server has connected to database servers already inside
the distributed database system and has obtained an address from one of those
database servers, it can start sending requests to store or lookup database object
in the distributed database system. The routing process is done on each database
server on the path (starting from the sender) by using Algorithm2, a greedy
algorithm based on the hyperbolic distances between the servers. When a query
is received by a database server, the database server computes the distance from
each of its neighbors to the destination and forwards the query to its neighbor
which is the closest to the destination (destination database server computing is
given in Sect. 5).

Algorithm 2. Routing a Query in the Distributed Database System
1: function getNextHop(server, query) return server
2: w = query.destinationServerCoords
3: m = server.Coords

4: dmin = arcosh

(
1 + 2 × |m − w|2

(1 − |m|2)(1 − |w|2)
)

5: pmin = server
6: for all neighbor ∈ server.Neighbors do
7: n = neighbor.Coords

8: d = arcosh

(
1 + 2 × |n − w|2

(1 − |n|2)(1 − |w|2)
)

9: if d < dmin then
10: dmin = d
11: pmin = neighbor
12: end if
13: end for
14: return pmin

15: end function

In a real network environment, link and server failures are expected to happen
often. If the addressing VCH-tree is broken by the failure of a database server
or link, we flush the addresses attributed to the servers beyond the failed server
or link and reassign new addresses to those servers (some servers may have first
to reconnect to other servers in order to restore connectivity). But this solution
is not developed in this paper.

Virtual and Consistent Hyperbolic Tree 417

5 Storage and Retrieval of Data Objects

In this section we explain how our distributed database system computes the
destination database servers addresses for storing and retrieving queries. Indeed,
the first server contacted by a client (prime server) for sending a query in the
system consider the latter as a data object that can be stored or looked up.
Thus this server generates an OID associated to the data object and the latter is
mapped onto hyperbolic addresses corresponding to destination database servers’
addresses in the VCH-tree.

On startup, each new client query is associated with the data object with
OID corresponding to the name of the query and that identifies the query it
runs on. This name will be kept by data object during all the lifetime of the
distributed database system.

When the prime database server computes some specific addresses of data-
base servers, when it is about a storage query, it stores the name (OID) and
value of query in these specific addresses of distributed database servers, thus
the data object in the DHT, when it is about a retrieving query, it contacts
database servers which addresses has been computed. In our distributed system,
the name is used as a key by a mathematical transformation. If the same name
is already stored in the distributed database system, an error message is sent
back to the prime server (Server by whom the client is directly bound) in order
to generate another name. Thus the distributed database system structure itself
ensures that OIDs are unique.

An (OID, value) pair, with the OID acting as a key is called a binding.
Figure 2 shows how and where a given binding is stored in the distributed data-
base system. A binder is any database server that stores these pairs. The depth
of a server in the addressing VCH-tree is defined as the number of parent servers
to go through for reaching the root of the VCH-tree (including the root itself).
When the distributed database system is created, a maximum depth for the
potential binders is chosen. This value is defined as the binding VCH-tree depth.
To ensure a load balancing of the system, the depth d is chosen such that d
minimizes the inequality 2, where d is the depth, q is the degree and N is the
number of servers:

1 + q ×
(

1 − (q − 1)d

2 − q

)
≥ N (2)

When a new database server joins the distributed database system by con-
necting to other servers, it obtains an address from one of these servers. Next,
the server stores its own binding in the system. So, during his life, each database
server tries to join others by sending a join query. Each server cannot accept
that a limited number of join queries independently of the degree of the VCH-
tree. The new connections serve as shortcuts during the phases of storage and
retrieving of data objects. We call these connections, shortcut links as indicated
in Fig. 2.

418 T. Tiendrebeogo and D. Magoni

HASHED
KEY

FARTHEST
BINDER

BINDER

BINDER

SHORTCUT

Fig. 2. Storage in the VCH-tree

5.1 Storage Query Processing

When a client wants to send a storage query (i.e., insertion), the first server with
whom it is connected consider a query as an object (thus generating an OID)
and creates a key by hashing its name with the SHA-512 algorithm. It divides
the 512-bit key into 16 equally sized 32-bit subkeys (for redundant storage). The
server selects the first subkey and maps it to an angle by a linear transformation.

The angle is given by:

α = 2π × 32-bit subkey

0xFFFFFFFF
(3)

The database server then computes a virtual point v on the unit circle by using
this angle:

v(x, y) with
{

x = cos(α)
y = sin(α) (4)

Virtual and Consistent Hyperbolic Tree 419

Next the database server determines the coordinates of the closest binder to
the computed virtual point above by using the given binding tree depth.

In the figure we set the binding VCH-tree depth to three to avoid cluttering
the figure. It’s important to note that this closest binder may not really exist if
no database server is currently owning this address. The database server then
sends a storage query to this closest database server. This query is routed inside
the distributed database system by using the greedy algorithm of Sect. 4. If the
query fails because the binder does not exist or because of database server/link
failures, it is redirected to the next closest binder which is the father of the
computed binder.

The path from the computed closest binder to the farthest binder is defined
as the binding radius. This process ensures that the queries are always stored
first in the binders closer to the unit circle and last in the binders closer to the
disk center. However to avoid overloading the farthest binder particularly and
to ensure load balancing, we limit the number of stored pairs S as shown by the
inequality 5, where N is equal to the number of servers and q is equal to the
degree of the VCH-tree:

S ≤
⌊

1
2

× log(N)
log(q)

⌋
(5)

Furthermore the previous solution, any binder will be able to set a maximum
number of stored queries and any new database server to store will be refused
and the query redirected as above. Besides, to provide redundancy and so ensure
the availability and reduce the latency period in the lookup process, the database
server does the storage process described above for each of the other 15 subkeys.
Thus 16 different binding radii will be used at the most and this will improve
the even distribution of the pairs (key-value).

In addition to this and still for redundancy purposes, a pair key-value of
the data object may be stored in more than one database server of the binding
radius. A binder could store a data object and still redirect its query for storage
it in other ancestor binders. The number of stored copies of a key-value pair
along the binding radius may be an arbitrary value set at the distributed system
creation. Similarly the division of the key in 16 subkeys is arbitrary and could
be increased or reduced depending on the redundancy needed. To conclude we
can define two redundancy mechanisms for storage copies of a given binding:

1. We can use more than one binding radius by creating several uniformly dis-
tributed subkeys.

2. We can store the data object key-value pair in more than one binder in the
same binding radius.

These mechanisms enable our distributed database system to cope with a
non-uniform growth of the database servers and they ensure that a data object
will be stored in a redundant way that will maximize the success rate of its
retrieval. The numbers of subkeys and the numbers of copies in a radius are
parameters that can be set at the creation of the distributed database system.
Increasing them leads to a tradeoff between improved reliability and lost storage

420 T. Tiendrebeogo and D. Magoni

space in binders. Besides our solution has the property of consistent hashing:
if one database server fails, only its keys are lost but the other binders are not
impacted and the whole system remains coherent. Algorithm 3 illustrates the
previous mechanism.

Algorithm 3. Storage Algorithm
1: function Store(Query)
2: OID ← Query.GetOID()
3: Key ← Hash(OID)
4: for all red ∈ RCircular do
5: depth ← PMax

6: i ← 1

7: while i ≤
⌊

1

2
× log(N)

log(q)

⌋
&& depth ≥ 0 do

8: SubKey[red][depth] ← ComputeSubkey(Key)[red][depth]
9: TargetServerAddr[red][depth] ← ComputeAddr(SubKey[red][depth])

10: TargetServer ← GetTarget(TargetServerAddr[red][depth])
11: if route(Query, TargetServer) then
12: i + +
13: put(OID, Query)
14: end if
15: depth − −
16: end while
17: end for
18: end function

5.2 Lookup Query Processing

Now, if the client wants to lookup a data object in the distributed database sys-
tem, a prime server is contacted and generates an OID for the client query. Here
again, the OID is mapped into a key by the SHA-512 algorithm, thus the 512 bits
key is divided into 16 subkeys. Each subkey, by the process described in Sect. 5.1,
will be transformed into an address that represents the address of the database
server where the data object is stored. The latter is contacted by the prime
database server for updating, deleting or retrieving the associated value. When
the redundancy mechanism has been used to store the data object, the lookup
repeats the latter process of lookup for any subkey, thus the operation will be
performed on all database servers that contain the data object. Our distributed
system ensures the coherence of data objects of the distributed database. This
mechanism is illustrated by Algorithm 4.

6 Evaluation

We performed experiments for evaluating the behavior of a VCH-tree over large
datasets. Furthermore, we consider that the system is static so there are no

Virtual and Consistent Hyperbolic Tree 421

Algorithm 4. Lookup and Update Algorithm
1: function Lookup(Query) return V alue
2: QueryOID ← Target.GetQueryOID()
3: Key ← Hash(QueryOID)
4: for all red ∈ RCircular do
5: depth ← PMax

6: i ← 1

7: while i ≤
⌊

1

2
× log(N)

log(q)

⌋
&& depth ≥ 0 do

8: TargetServerAddr[red][depth] ← GetV alue(Key)
9: V alue ← GetV alue(TargetServerAddr[red][depth], QueryOID)

10: if V alue ! = null then
11: if Query == delete then
12: delete(OID)
13: end if
14: if (Query == update) then
15: update(OID)
16: end if
17: if Query == select then
18: return V alue
19: end if
20: i + +
21: end if
22: depth − −
23: end while
24: end for
25: end function

join or leave of database servers during the simulation. We use the Peersim [15]
simulator for running event-driven simulations. The study involved the following
parameters of the VCH-tree:

– The number of database servers connected and used to store the data objects.
Here we have considered 10000 database servers;

– Each run lasts 2 h of simulated time;
– We try to store 6 millions of data objects in our distributed database system

following an exponential distribution with a median equal to 10 min;
– The maximum capacity for each server is set to 6000 objects.

We studied the behavior of our structure for both data objects’ storage and
retrieval in the system. We are interested in observing the scalability of our
system, the shape of the hyperbolic tree, the storage load balancing and the
length of the paths of the queries.

6.1 Spatial Shape of the VCH-tree

Figure 3 shows an experimental distribution of points corresponding to the scat-
ter plot of the distribution of the database servers in our system. We can see

422 T. Tiendrebeogo and D. Magoni

-1

-0.5

 0

 0.5

 1

-1 -0.5 0 0.5 1

O
rd

in
at

e

Abscissa

Fig. 3. Scatter plot of the spatial posi-
tions of the database servers.

-1

-0.998

-0.996

-0.994

-0.992

-0.99
-0.01 -0.005 0 0.005 0.01

O
rd

in
at

e

Abscissa

Fig. 4. Scatter plot of the positions of
the servers in the neighborhood of the
unit circle.

that our VCH-tree is balanced. Indeed, we can notice by part and others around
the unit circle which we have database servers. This has an almost uniform dis-
tribution around the root, which implies that our system builds a well-balanced
tree that will more easily allow to reach a proper load balancing for the storage.

Figure 4 shows correspondingly Poincaré disk model that no address of data-
base server belongs on the edge of the unit circle. Indeed, the addresses of data-
base server were obtained by projection of the tree of the hyperbolic plane in a
circle of the Euclidian plane of radius 1 and of center with coordinates (0; 0).

This result shows that our distributed database system can grow towards
infinity in theory. In practice, other parameters such as real number precision
do bring limitations.

6.2 Load Balancing in the VCH-tree

Figure 5 shows a plot of the average number of objects stored by the database
servers over time. So this figure shows a regular growth of this number of data
objects stored in function of time. Indeed, 293.27 data objects on average are
stored by database server after 10 min vs 620.4 after 2 h. It is interesting to notice
that the standard deviation remains low, approximately at 10 % of the average.
This indicates a low dispersal of the number of objects stored on the servers
during the simulation.

Indeed, if we use our results to build the confidence interval, we can say that
after 10 min of simulation, 68.2 % of the database servers store between 263.69
and 322.71 data objects and 95 % store between 234.18 and 352.22 against 68.2 %
of the database servers which store between 560.18 and 681.58 data objects after
2 h and 95 % of the database servers who store between 497.95 and 742.84 data
objects after 2 h. In view of these results, we can say that our system maintains
a proper load balancing between database servers which ensures the stability of
our distributed database system.

Virtual and Consistent Hyperbolic Tree 423

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450
 500
 550
 600
 650
 700

 10 20 30 40 50 60 70 80 90 100 110 120

A
ve

ra
g

e
n

u
m

b
er

 o
f

d
at

a
o

b
je

ct
s

st
o

re
d

 p
er

 s
er

ve
r

Time (minutes)

Fig. 5. Average load on the database servers over time

6.3 Storage and Retrieval Efficiency in the VCH-tree

Figures 6 and 7 show that during the simulation, queries in both cases can be
answered within O(log N) where N is equal to the number of database servers in
the system. As the standard deviation is very low (less than 5 % of the average
for storage and retrieval), we did not represent it on the figures. In the worst
case, queries need to travel less than 4 database servers in the system for either
storing, or retrieving a data object. Besides, what is also interesting to note
is that the plot decreases slowly to become stationary after around 100 min in
both cases. It can be explained because during the simulation, the database

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 10 20 30 40 50 60 70 80 90 100 110 120

Q
u

er
ie

s
av

er
ag

e
n

u
m

b
er

 o
f

h
o

p
s

Time (minutes)

Fig. 6. Path length of storage queries

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 10 20 30 40 50 60 70 80 90 100 110 120

Q
u

er
ie

s
av

er
ag

e
n

u
m

b
er

 o
f

h
o

p
s

Time (minutes)

Fig. 7. Path length of retrieval queries

424 T. Tiendrebeogo and D. Magoni

servers create shortcuts as indicated in Sect. 5. These shortcuts allow to reach
their target in fewer hops. The stationary situation is understandable by the fact
that after a while, all the database servers reached their maximum number of
shortcuts created and the most part of the queries is processed on average in
less than 3.75 hops in both cases.

7 Conclusion

In this paper, we have presented a new structure called VCH-tree. This hyper-
bolic tree presents some properties that allow us to propose a consistent system
of distributed database servers using virtual addresses made from hyperbolic
coordinates. We have evaluated the performances of our system by simulation.
We have shown that our system is scalable in terms of the number of database
servers that can be interconnected as well as in terms of the number of hops
to route the queries. We have also shown that the placement of the different
database servers allows us to keep a well-balanced tree. Furthermore, we have
shown that our system maintains a load balancing for the storage of data objects.
For future work, we plan to study our solution comparatively to the other ones
described in the state of the art in order to assess its benefits relatively to those
existing solutions.

References

1. Anderson, J.W.: Hyperbolic Geometry. Springer undergraduate mathematics
series, 2nd edn. Springer, Berlin (2005)

2. Crainiceanu, A., Linga, P., Gehrke, J., Shanmugasundaram, J.: Querying peer-to-
peer networks using p-trees. In: Proceedings of the 7th International Workshop
on the Web and Databases: Colocated with ACM SIGMOD/PODS 2004, WebDB
2004, pp. 25–30. ACM, New York (2004). http://doi.acm.org/10.1145/1017074.
1017082

3. Devine, R.: Design and implementation of DDH: a distributed dynamic hashing
algorithm. In: Lomet, D.B. (ed.) FODO 1993, vol. 730, pp. 101–114. Springer,
Heidelberg (1993)

4. Gaede, V., Günther, O.: Multidimensional access methods. ACM Comput. Surv.
30(2), 170–231 (1998). http://doi.acm.org/10.1145/280277.280279

5. Guttman, A.: R-trees: a dynamic index structure for spatial searching. SIGMOD
Rec. 14(2), 47–57 (1984). http://doi.acm.org/10.1145/971697.602266

6. Hambrusch, S.E., Khokhar, A.A.: Maintaining spatial data sets in distributed-
memory machines, pp. 702–707. IEEE Computer Society (1997)

7. Idowu, S.A., Maitanmi, S.O.: Transactions- distributed database systems: issues
and challenges. IJACSCE 2(1), 24–26 (2014)

8. Jajodia, S., Litwin, W., Schwarz, T.J.E.: LH*RE: a scalable distributed data struc-
ture with recoverable encryption, pp. 354–361. IEEE (2010)

9. Jansson, J., Sung, W.-K.: Constructing the R* consensus tree of two trees in sub-
cubic time. In: de Berg, M., Meyer, U. (eds.) ESA 2010, Part I. LNCS, vol. 6346,
pp. 573–584. Springer, Heidelberg (2010)

http://doi.acm.org/10.1145/1017074.1017082
http://doi.acm.org/10.1145/1017074.1017082
http://doi.acm.org/10.1145/280277.280279
http://doi.acm.org/10.1145/971697.602266

Virtual and Consistent Hyperbolic Tree 425

10. Karlsson, J.S.: hQT*: a scalable distributed data structure for high-performance
spatial accesses, pp. 37–46 (1998)

11. Kleinberg, R.: Geographic routing using hyperbolic space. In: 26th IEEE Interna-
tional Conference on Computer Communications, INFOCOM 2007, pp. 1902–1909.
IEEE, May 2007

12. Kriakov, V., Delis, A., Kollios, G.: Management of highly dynamic multidimen-
sional data in a cluster of workstations. In: Bertino, E., Christodoulakis, S.,
Plexousakis, D., Christophides, V., Koubarakis, M., Böhm, K. (eds.) EDBT 2004.
LNCS, vol. 2992, pp. 748–764. Springer, Heidelberg (2004)

13. Lakshman, A., Malik, P.: Cassandra: a decentralized structured storage sys-
tem. SIGOPS Oper. Syst. Rev. 44(2), 35–40 (2010). http://doi.acm.org/10.1145/
1773912.1773922

14. Litwin, W., Neimat, M.A.: k-RP*s: a scalable distributed data structure for high-
performance multi-attribute access, pp. 120–131. IEEE Computer Society (1996)

15. Montresor, A., Jelasity, M.: PeerSim: a scalable P2P simulator. In: Proceedings of
the 9th International Conference on Peer-to-Peer (P2P 2009), pp. 99–100, Seattle,
WA (2009)

16. Silberschatz, A., Korth, H., Sudarshan, S.: Database Systems Concepts, 5th edn.
McGraw-Hill, Inc., New York (2006)

17. Tiendrebeogo, T., Ahmat, D., Magoni, D.: Reliable and scalable distributed hash
tables harnessing hyperbolic coordinates. In: 2012 5th International Conference on
New Technologies, Mobility and Security (NTMS), pp. 1–6, May 2012

http://doi.acm.org/10.1145/1773912.1773922
http://doi.acm.org/10.1145/1773912.1773922

	Virtual and Consistent Hyperbolic Tree: A New Structure for Distributed Database Management
	1 Introduction
	2 Related Work
	3 Hyperbolic Geometry
	4 Topology of the Servers
	5 Storage and Retrieval of Data Objects
	5.1 Storage Query Processing
	5.2 Lookup Query Processing

	6 Evaluation
	6.1 Spatial Shape of the VCH-tree
	6.2 Load Balancing in the VCH-tree
	6.3 Storage and Retrieval Efficiency in the VCH-tree

	7 Conclusion
	References

