
Ahmed Bouajjani
Hugues Fauconnier (Eds.)

 123

LN
CS

 9
46

6

Third International Conference, NETYS 2015
Agadir, Morocco, May 13–15, 2015
Revised Selected Papers

Networked Systems

Lecture Notes in Computer Science 9466

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zürich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7411

http://www.springer.com/series/7411

Ahmed Bouajjani • Hugues Fauconnier (Eds.)

Networked Systems
Third International Conference, NETYS 2015
Agadir, Morocco, May 13–15, 2015
Revised Selected Papers

123

Editors
Ahmed Bouajjani
Université Paris Diderot
Paris Cedex 13
France

Hugues Fauconnier
Université Paris Diderot
Paris Cedex 13
France

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-26849-1 ISBN 978-3-319-26850-7 (eBook)
DOI 10.1007/978-3-319-26850-7

Library of Congress Control Number: 2015954980

LNCS Sublibrary: SL5 – Computer Communication Networks and Telecommunications

Springer Cham Heidelberg New York Dordrecht London
© Springer International Publishing Switzerland 2015
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

Springer International Publishing AG Switzerland is part of Springer Science+Business Media
(www.springer.com)

Message from the Program Chairs

NETYS 2015 received 133 submissions from 25 countries from all over the world. The
reviewing process was undertaken by a Program Committee of 31 international experts
in the areas of networking, distributed computing, security, formal methods, and ver-
ification. This process led to the definition of a strong scientific program. The Program
Committee accepted 29 regular papers and 12 short papers. In addition, 22 papers were
selected for poster presentations. Besides these high-quality contributions, the program
of Netys 2015 included keynotes talks by three world-renowned researchers: Javier
Esparza (Technische Universität München), Christoph Kirsch (University of Salzburg),
and Madan Musuvathi (Microsoft Research).

We warmly thank all the authors for their great contributions, all the Program
Committee members for their hard work and their commitment, all the external
reviewers for their valuable help, and the three keynote speakers to whom we are
deeply grateful for their support. Special thanks to the two conference general chairs,
Mohammed Erradi (ENSIAS, Rabat), and Rachid Guerraoui (EPFL, Lausanne), for
their invaluable guidance and tremendous help.

Ahmed Bouajjani
Hugues Fauconnier

Message from the General Chairs

The recent developments in the Internet as well as mobile networks, together with the
progress of cloud computing technology, have changed the way people perceive
computers, communicate, and do business. Today’s Internet carries huge volumes of
personal, business, and financial data, much of which are accessed wirelessly through
mobile devices. In addition, cloud computing technology is providing a shared pool of
configurable computing resources (hardware and software: e.g., networks, servers,
storage, applications, and services) that are delivered as services over a diversity of
network technologies. Advances in Web technologies, social networking, and mid-
dleware platforms have raised new opportunities for the implementation of novel
applications and the provision of high-quality services over connected devices. This
allows participatory information sharing, interoperability, and collaboration on the
World Wide Web. All these technologies can be gathered under the umbrella of net-
worked systems.

After the great success of the previous editions of the International Conference on
Networked Systems (NETYS 2013 and NETYS 2014), this year’s edition, NETYS
2015, took place in the sunny city Agadir, Morocco, during May 11–15, 2015. It
provided a forum to report on the best practices and novel algorithms, results, and
techniques in networked systems. To face the challenge of building robust distributed
systems and to protect such networked systems and data from attack and abuse, this
edition gathered researchers and experts from both the community of distributed sys-
tems and the community of formal verification; it also addressed the challenging issues
related to networked systems such as multi-core architectures, concurrent and dis-
tributed algorithms, middleware environments, storage clusters, social networks,
peer-to-peer networks, sensor networks, wireless and mobile networks, as well as
privacy and security measures.

We would like to express our cordial thanks to our partners and sponsors for their
permanent trust and support. A special thanks goes to Springer, who have ensured that
the proceedings, since the first edition of NETYS, reach a wide readership around the
world. We are grateful to the Program Committee co-chairs, the session chairs, and the
Program Committee members for their excellent work and we wish to take this
opportunity to congratulate all the authors for the high quality displayed in their papers
and to thank all the participants for their support and interest. Finally, no conference
can be a success without the valuable contribution of the Organizing Committee, whom
we thank for their dedication and hard work in making this conference a success.

Mohammed Erradi
Rachid Guerraoui

Organization

Program Committee

Parosh Aziz Abdulla Uppsala University, Sweden
Joffroy Beauquier LRI, Paris 11, France
Gregor Bochmann University of Ottawa, Canada
Ahmed Bouajjani LIAFA, University Paris Diderot, France
Carole Delporte-Gallet University Paris Diderot, France
Amr El Abbadi University of California at Santa Barbara, USA
Mohamed El Kamili LiM, FSDM, USMBA, Fès, Morocco
Mohammed El Koutbi ENSIAS, Morocco
Hugues Fauconnier LIAFA, University Paris Diderot, France
Bernd Freisleben Philipps-Universitaet Marburg, Germany
Mohamed Gouda The University of Texas at Austin, USA
Vincent Gramoli The University of Sydney, Australia
Seif Haridi SICS, Sweden
Maurice Herlihy Brown University, USA
Claude Jard University of Nantes, France
Zahi Jarir Cadi Ayyad University, Marrakech, Morocco
Anne-Marie Kermarrec Inria, France
Rupak Majumdar MPI-SWS, Germany
Stephan Merz Inria Nancy, France
Louise Moser University of California at Santa Barbara, USA
Hassan Mountassir FEMTO-ST Institute, France
Guevara Noubir Northeastern University, USA
Andreas Podelski Universität Freiburg, Germany
Shaz Qadeer Microsoft Research, USA
Vivien Quema INPG, France
Sergio Rajsbaum Instituto de Matematicas, UNAM, Mexico
Ganesan Ramalingam Microsoft Research, India
Michel Raynal IRISA, Rennes, France
Alexander Shvartsman University of Connecticut, USA
Sebastien Tixeuil LIP6, Univ Pierre et Marie Curie – Paris 6, France
Martin Vechev ETH Zurich, Switzerland

Additional Reviewers

Ali, Muqeet
Arora, Vaibhav
Bielik, Pavol
Burckhardt, Sebastian
Burman, Janna
Dan, Andrei
Dimitrov, Dimitar
Dubois, Swan
Erradi, Mohammed
Fernandez, Antonio
Frey, Davide
Georgiou, Theodore

Godard, Emmanuel
Golan-Gueta, Guy
Hadjistasi, Theophanos
Hendler, Danny
Koulali,

Mohammed-Amine
Leonardsson, Carl
Melliar-Smith,

Peter Michael
Nawab, Faisal
Ngo, Tuan Phong
Pothapu, Kranti

Raychev, Veselin
Reaz, Rezwana
Reinhold, Gregory
Rezine, Othmane
Sahin, Cetin
Shrestha, Amendra
Singh, Gagandeep
Stenman, Jari
Trinh, Cong Quy
Xu, Chuan
Zakhary, Victor
Zhu, Yunyun

X Organization

Abstracts of Posters

Evaluation of MCR Protocol for WSNs

Bahae Abidi1, Abdelillah Jilbab2, and Mohamed El Haziti3

1 LRIT Associated Unit with CNRST, University Mohammed V-Rabat, Morocco
2 ENSET, University Mohammed V-Rabat, Morocco
3 EST Salé, University Mohammed V-Rabat, Morocco

Abstract. The networking techniques now allow the easily deployment of sensor net-
works, even in places with difficult access. The evolution of wireless communication has
extended the application of sensor network. The application in a medical context requires
operation at a low consumption of energy. Another constraint is related to the quality of
information sent by the network. And in order to respond to these criteria, different methods
of wireless communication area used. In this work, we evaluate a multi-hop clustering
routing protocol to resolve our constraint by comparing his concept with HEED protocol,
who is a single hope clustering routing protocol, who reduce the communication overhead
by selecting a cluster head to forward data to base station via one hop. Comparing the
concept of the MCRwith that of HEED, we notice that it offers best performance in terms of
network lifetime and consumption of energy and this is due to the concept of the gateway
node that is used to transmit data from cluster head to BS. With that the CHs can keep the
energy in data transmission and the gateway node by not participating in clustering. In
addition CHs rotation is adopted to balance the consumption of energy.

Keywords: WSN · Gateway node · MCR · Clustering · Single hop clustering routing

The First Step Towards Securing a Distributed
Collaborative System

Meryeme Ayache1, Mohammed Erradi1, and Ahmed Khoumsi2

1 Networking and Distributed Systems Research Group, TIES, SIME Lab,
Ensias, Mohammed V University, Rabat, Morocco

{meryemeayache,mohamed.erradi}@gmail.com
2 Department of Electrical and Conputer Engineering,

University of Sherbrooke, Sherbrooke, Canada
ahmed.khoumsi@usherbrooke.ca

Abstract. In a distributed collaborative system dedicated to remote diagnosis in eHealth,
one fundamental requirement is to secure the data exchange and the interactions among the
collaborative users. To tackle this problem, we need first to provide a formal model
describing the involved entities and their interactions during a collaborative session. As a
formal description of the distributed eHealth system, we propose an emergency medical
system containing three organizations (hospitals, university hospitals and emergency
medical services). Each organization is composed of subjects (human resources) and
objects (medical files, scans …). The collaborative interactions are considered as a
sequence of accesses. Each access is modeled by an automaton with four states linked by
labeled transitions, and represented by a graph whose nodes and arcs are the states and the
transitions of the automaton respectively. The final states of each automaton are associated
to a specific action (e.g. read). The proposed model can be used to verify whether the
collaborative session answers the security requirements of the involved organizations.

Minimum Interference in Wireless Mesh Networks

Asma Benmohammed and Merniz Salah

Laboratoire LIRE, Université Abdelhamid Mehri-Constantine 2,
25000 Constantine, Algérie

aben_asma123@yahoo.fr, s_merniz@hotmail.com

Abstract. In this paper, we consider a multi-channel multi-radio wireless mesh network.
Most of the work on channel allocation propose to allocate orthogonal channels which will
reduce the flow in high-density networks. In our work, we address the problem of channel
assignment by using a new metric MICE that uses metric uses partially overlapping channels
POC and considers the channel separation and the distance between the nodes to allocate the
best channels to the network in order to minimize the overall interference. Compared to
metrics asWCETT andMIC, our metric considers both: inter-flow and intra-flow interference,
and both the distance between nodes and channel separation which will allow us to choose the
best set of channels that will reduce the network overall interference. It has been shown that
considering different factors that affects the interference will positively affects the overall
interference problem in a mesh network. In our future work, we plan to extend the interference
metric for multicast routing in multi-radio/multi-channel mesh networks.

Keywords: Multi-channel · Multi-radio · Mesh · Interference · Channel assign-
ment

A Routing Algorithm for Wireless Sensor Networks
Based on Ant Colony Optimization
and Multi-criteria Decision Aid

Amine Kada and Mohammed Ouzzif

RITM Laboratory, Ecole Nationale Supérieure D’électricité et de Mécanique,
Hassan II University of Casablanca, Morocco

a.kada@outlook.com, ouzzif@gmail.com

Abstract. Wireless Sensor Networks (WSN) are becoming a key building block of our
communication infrastructure; as they find applications in several military as well as civilian
domains. Examples range from target tracking to monitoring and environmental scenarios.
Due to their use and design, WSN are facing many problems, which can be categorized as
optimization problems such as energy consumption, routing and quality of service. Many
researchers have done research to solve these problems and recently new class of routing
algorithms came up which is based on Swarm Intelligence. In this poster, we propose a
routing algorithm for WSN based on Ant Colony Optimization (ACO) heuristic and
Multi-criteria Decision Aid (MCDA) methods. Allying ACO heuristic to MCDA methods
result in an approach that facilitate tackling complex decision problems that are charac-
terized by a great number of possible choices as in routing inWSN. The basic idea would be
to perform the search through the solution space in a more directed manner, already taking
valuable information into account. This will result in an improved routing protocol for
WSN; designed to optimize the node power consumption and increase network lifetime as
long as possible, while data transmission is attained efficiently.

Keywords: Ad-hoc networks · Wireless sensor networks · Ant colony optimization ·
Multi-criteria decision aid · Routing · Swarm intelligence

Hybrid Intrusion Detection System in Cloud Computing (Hy-CIDS)

Ali Azougaghe1, Hicham Boukhriss2, Mustapha Hedabou2,
and Mostafa Belkasmi1

1 SIME Lab, National School of Computer Science and Systems Analysis
Mohammed V University, Rabat, Morocco

azaling@gmail.com
2 MTI Lab. ENSA School, Cadi Ayyad University, Safi, Morocco

Abstract. Actually, Cloud Computing is an exciting field, but security and privacy is a
major obstacle to its success because of its open and distributed architecture that is
vulnerable to intruders. In this context, Intrusion Detection System (IDS) is the most
common mechanism used to detect attacks in the cloud environment. This article gives an
overview of different intrusions, IDS types and techniques, as we proposed a hybrid IDS
architecture (Hy-CIDS) that uses three techniques to know the artificial neural networks,
Bayesian networks and genetic algorithms. This architecture aims to increase the detection
accuracy with low false positive rate.

Keywords: Cloud computing · Security · Attacks · Intrusion detection system

An Overview of VANET: Architectures, Challenges
and Routing Protocols

Bayad Kanza, Rziza Mohammed, and Oumsis Mohammed

LRIT Associated Unit with CNRST,
Mohammed V-Agdal University, B.P 1014, Rabat, Morocco
bayadkanza17@gmail.com, rziza@fsr.ac.ma,

oumsis@yahoo.com

Abstract. Vehicular ad hoc networking (VANET) is relatively a new environment
compared to other wireless networks. In the last years, it has gained in popularity because
of its practice in a wide range of applications, mainly in transferring information between
auto-mobiles. Therefore the network topology changes rapidly and has a special mobility
pattern. The features of vehicular ad hoc routing protocols are crucial and represent an
important issue for the intelligent transportation system (ITS). As a condition to com-
munication, the VANET routing protocols must adjust efficiently to the varying route
between network nodes and the rapidity of moving vehicles. In this paper, we describe the
principal characteristics and discuss the research challenges of routing in this type of
networks. We also discuss routing protocols in VANETs. In addition, the advantages and
disadvantages of the current protocols in this field are presented.

Keywords: VANET · ITS · V2V · V2I · Routing protocols

Performance Evaluation of Routing Protocols in VANET

El Houssine Bourhim and Mohammed Oumsis

LRIT Associated Unit with CNRST,
Mohammed V University, Faculty of Sciences Rabat, Morocco

Abstract. Vehicular Ad Hoc Network (VANET) is an instance of MANETs that
establishes wireless connections between vehicles and vehicle to road side equipments to
provide scalable and cost-effective solutions for the applications of the Intelligent Trans-
portation System (ITS) such as traffic safety, dynamic route planning, and context-aware
advertisement using short range wireless communication. to function properly, these
applications require efficient routing protocols adapted to vehicular specific characteristics
and requirements. the routing performance in VANET is dependent to the availability and
stability of wireless links, which makes it a crucial parameter in order to obtain accurate
performance measurements. In this paper, we evaluate AODV and DSDV performance
under varying metrics such as node mobility and traffic load in realistic urban environment.

Keywords: Urban environment · VANET · Routing protocols · Simulation · Perfor-
mance

Architecture of Remote Virtual Labs as a Service
in the Cloud Computing

Naoual Boukil1 and Abdelali Ibriz2

1 University Sidi Mohamed Ben Abdellah, Faculty of Science and Technology,
Fez, Morocco

Naoual.boukil@gmail.com
2 University Sidi Mohamed Ben Abdellah, High school of Technology,

Fez, Morocco
a.ibriz@gmail.com

Abstract. Today, Cloud Computing is becoming an attractive technology used in vir-
tualization of resources even in education filed. In fact, it’s used in e-learning scenarios
due to dynamic scalability offered by the different services of Cloud Computing. we
propose an architecture of using Cloud computing to delivering labs as a solution of
limited availability of resources in classical labs, it can be viewed as a service in the cloud
computing, This architecture fits very well to remote virtual labs requirement like using
remote services to provide on-demand access to lab’s documentations, lab’s resources or
lab’s realization; we show in this paper that how and why the development of a platform of
labs and integrate it into the “cloud computing” is essential.

Keywords: Cloud computing · E-learning · Remote virtual labs · Remote services

Dynamic Integration of Security Requirements in Web
Service Composition

Ilyass El Kassmi and Zahi Jarir

Laboratory LISI, Computer Science Department, Faculty of Sciences,
Cadi Ayyad University, BP 2390, Marrakech, Morocco

Ilyass.elkassmi@ced.uca.ma, jarir@uca.ma

Abstract. Most of the current researches in the web service composition domain are
mainly focused on issues about how to ensure desired functional requirements and how to
fulfill them. However, it’s highly recommended to provide, in addition to functional needs
satisfaction, more support for security requirements especially for web services exchanging
sensitive information. In this work we propose an approach that generates automatically a
composite web service according to user’s functional requirements and security constraints.
This generation is based on our previous developed DIVISE Framework (DIscovery and
Visual Interactive web Service Engine). This framework has the capability to generate a
BPEL code of the needed composite web services according to expressed functional
requirements. However, to secure the generated composite web services and especially the
selected sensitive web services, the current contribution consists on enhancing our DIVISE
framework by adding a security layer. This layer has the faculty to inject specific security
tags into the generated BPEL code. These tags are related to security requirements in term
of web services such as Authentication, Authorization, etc.

Keywords: Web service composition · Security requirements · DIVISE framework

Modeling Wireless Sensor Networks

Younes Driouch1,2, Abdellah Boulouz1,*, Mohamed Ben Salah1,
and Congduc Pham3

1 LabSIV, Faculty of Science, Ibn ZOHR University Agadir
abdellah.boulouz@gmail.com

2 Faculty of Science and Techniques, Hassan Premier University Settat
3 LIUPPA, UFR Sciences et Techniques, PAU, France

Abstract. Wireless Sensor Network (WSN) is a network made of autonomous nodes
(sensors) that collect information about its environment and send it back to a central point
(base station, or a sink), WSN has so much potentials and possibilities in automation
especially data collection. RFID is a technology that allows a verity of items to be
automatically identified through small microchips attached to them. Petri Net is a
sophisticated graphical modeling technique that relies on three components (places,
transitions and tokens) to model complex systems on different levels of abstraction. This
poster try to present the main challenges facing the process of modeling WSN using Petri
Nets and the integration of RFID technology to form a hybrid network which would lead
the ground for the Internet of Things (IoT).

Keywords: Wireless sensor network · Modeling · Petri net · IoT · RFID · QoS

Geographical Query Reformulation Based on Spatial Taxonomies
Constructed Using the Apriori Algorithm

Omar El Midaoui1, Abderrahim El Qadi2, Moulay Driss Rahmani1,
and Driss Aboutajdine1

1 LRIT Associated Unit to the CNRST - URAC n°29 Faculty of Science
Mohammed V-Agdal University Rabat, Morocco

omarelmidaoui@gmail.com, {mrahmani, aboutaj}@fsr.ac.ma
2 TIM, High School of Technology Moulay Ismaïl University

Meknes, Morocco
elqadi_a@yahoo.com

Abstract. Geographical queries needs a special treatment by Information Retrieval sys-
tems (IRS) due to their specificities. Most of search engines are ignoring this fact. In this
paper, we propose an approach for building a geographical taxonomy of adjacency auto-
matically in order to use it for reformulating the spatial part of the query. This approach
exploit the best-ranked documents retrieved when submitting the spatial entities, which are
composed of the spatial relation and a noun of a city. Then, we construct a database of
transactions, considering each document extracted as a transaction containing the nouns
of the cities sharing the same country of the query’s city. The association rules algorithm
Apriori is applied to this database in order to extract rules that will form the country’s
taxonomy. Experiments shows that query reformulation using the taxonomy resulted from
our proposed approach improves the effectiveness and the precision of the IRS.

Counting Spanning Trees in Bipartite and Reduced
Pseudofractal Scale-Free Network

Raihana Mokhlissi, Mohamed El Marraki, and Dounia Lotfi

LRIT, Associated Unit to CNRST (URAC No 29)
Mohammed V-Rabat University, B.P.1014 RP, Agdal, Morocco

mokhlissiraihana@gmail.com, marraki@fsr.ac.ma,

doun.lotfi@gmail.com

Abstract. The number of spanning trees is an important measure of the reliability of a
wireless sensor network (WSN) in order to reduce energy consumption and improve
network capacity. In this paper, we are interested by the pseudo fractal scale-free network.
This type of fractal is considered as a self-similar pattern, it has found applications in many
areas of science and engineering... We propose two very important combinatorial
approaches facilitating the enumeration of spanning trees of a network containing a large
number of nodes and links such as the bipartition and reduction. These techniques allow
changing the topological nature of a network, by multiplying the number of nodes in the
case of the bipartion approach, or by multiplying the number of links in the case of the
reduction approach. The aim of these approaches is the evaluation of the complexity of an
infinite network which cannot be find by using the existing methods.

Keywords: WSN · Spanning trees · Pseudofractal scale-free · Bipartition · Reduction

Prosumers Integration and the Hybrid
Communication in Smart Grid Context

Youssef Hamdaoui

Departement of Computer Science, Mohamed 5 University, Rabat, Morocco
hamdaouiyoussef@gmail.com

Abstract. The success of the smart grid depends on the integration of the prosumers into
the grid and his Reactivity, Many stakeholders are involved in, but the role of consumes is
neglected, recently the prosumers has been became a very important entity to migrate to
Smart Grids because he can consume, produce and powering the electrical grid. In this
context, Smart grids, smart meters, demand side management and smart appliances play a
crucial role, Inefficient use of these appliances causes a waste of energy and bad man-
agement of the electricity, leading to a reduction of this energy wasting behavior.
The DSM helps to reduce peak demand and energy consumption while still allowing for
the same level of comfort within the household. The challenge is to ensure the interop-
erability of the PLC, WSN and RFID into an hybrid communication using a mix of
technologies, collection data from a heterogeneous platform, analysis of data, save for
statistic and offer the information to the end user like a service appliances. This makes it
possible to understand the origin of its electricity consumption, identify energy savings,
reduce consummation, real-time eco-feedback displays in the home, help to make decision
to turn on/off the electrical machine in the peak hours and the most important is to estimate
the electrical energy demand.

Keywords: Smart grid · Smart meter · Smart appliances · NIALM · Prosumers ·
Communications · WSN · Demand management

Integrating Communication-Centric Programming
in the Design of Distributed Systems

Karam Younes Kharraz and Mohammed Erradi

Networking and Distributed Systems Research Group,
TIES, SIME Lab, ENSIAS,

Mohammed V University, Rabat, Morocco
kkharraz@acm.org, erradi@ensias.ma

Abstract. Distributed Systems are mainly built to provide services; this is why the design
is often focused on Service Oriented Architecture. Thus, after the design process, devel-
opers find themselves dealing with complex and discrete problems like live locks, race
conditions, and deadlocks. Distributed Systems are concurrent by definition, and
neglecting concurrency can lead to a complete system re-engineering. In this poster, we
will discuss the importance of handling the process view during the design of Distributed
Systems. Communication-Centric Programming techniques describe the communication
behavior of systems components using formal calculi. Using it during the modeling phase
can help to detect problems and then address the right local or global solutions; the final
goal of the proposed approach is to achieve a derivation of design components from a
distributed system global specification before starting the development phase. In order to
illustrate this, we will show step by step, an example of how to integrate Communication
Centric Programming while using a Service oriented approach for the design.

Keywords: Distributed systems design · Communication centric programming · Soft-
ware architecture · Service oriented architecture

Mobility Models Impact on the Throughput
in MANET

Nisrine Ibadah1, Mohammed Rziza1, Khalid Minaoui1,
and Mohammed Oumsis2

1 LRIT Associated Unit with CNRST (URAC 29)
nisrine.ibadah@gmail.com,

{rziza, khalid.minaoui}@fsr.ac.ma
2 Superior School of Technology – Salé

Mohammed V University, B.P.1014 RP, Agdal, Morocco
oumsis@yahoo.com

Abstract. Mobile ad hoc network (MANET) has become an interesting field of the Next
Generation Network. It includes several interconnected nodes in charge of delivering infor-
mation from a given node to another. Routing allows, using routing protocols, choosing the
suitable path to reach the destination with the minimum delay. Therefore, it is important to
have knowledge about the appropriate protocol for the studied scenarios. The current study is
dedicated to performance analysis of the Throughput using five protocols and four mobility
models under two different sizes of area. Simulation results demonstrate that, in all mobility
models used the throughput works better in the small area than it does in the large one because
the number of the received packets is important. Each one of the proposed routing protocol
provides high performance for different strategies for a given network scenario. This study has
proven that, in the case of throughput, the reactive routing protocols outperform the proactive
and hybrid protocols in small and large areas. Moreover, it can be noted that the AODV is the
most suitable protocol for throughput in all used mobility models.

Keywords: MANET · Routing protocols · Mobility models · NS2 · BoonMotion

Performance Analysis of ARQ and FEC in WBANs

Nabila Samouni1, Abdelilah Jilbab2, and Driss Aboutajdine1

1 LRIT Associated Unit with CNRST, Mohammed V-Agdal University,
Rabat, Morocco

2 ENSET, University Mohamed V-Rabat, Morocco

Abstract. Recent developments in wireless sensor network and integrated circuits has
enabled physiological, intelligent and micro-components sensors nodes strategically are
attached on clothing of human body or even implanted under the skin. This exciting new area
of research is calledWireless Body Area Networks (WBANs). One of the major challenges in
this network is to prolong the lifetime of network. In addition, the data transmitted from the
sensors are vulnerable to corruption by noisy channels and others. To deal with these two
problems of instability of the radio channel and the energy consumption, several solutions
have been proposed in literature, and that they can be grouped into two majors error control
modes: ARQ (Automatic Repeat reQuest) and FEC (Forward Error correction). In this con-
text, we evaluated the performances in terms of energy consumption provided by ARQ and
FEC in WBAN to show who performs the best. We consider the fountain codes that derives
from the FEC, due to its low encoding/decoding complexity and its adaptation with all
channels. Our result show that the use of the fountain code in wireless body area networks can
significantly increase the node and network lifetime, compared to ARQ.

Keywords: WBAN · ARQ · FEC · Fountain code · Energy consumption

A Generic Natural Language Interface for Database
Interface Based on Machine Learning Approach

Hanane Bais, Mustapha Machkour, and Lahcen Koutti

Information Systems and Vision Laboratory, Department Computer Sciences,
Faculty of Sciences, Ibn Zohr University, Agadir, Morocco

baishanan@gmail.com, machkour@hotmail.com,

lkoutti@yahoo.fr

Abstract. In the world of modern computing, one of the main sources of information is
the database. For extracting information from a database system, it is necessary to for-
mulate a query using database query languages such as SQL (Structured Query Language).
However casual users who don’t understand SQL can’t write such queries. So, asking
questions to databases in natural language is a very important method. But without any
help, computers cannot understand this language; that is why it is essential to develop an
interface that can be able to translate user’s query given in natural language to an
equivalent one in database query language.

In this paper we present the Architecture and the implementation of a generic natural
language query interface for relational database based on machine learning approach. The
interface functions independently of the database domain and automatically improves
through experience its knowledge base. These properties will certainly provide an interface
respecting the qualities of software such as genericity, adaptability and extensibility.

Keywords: Databases · Natural language · XML · Machine learning

Impact of Malicious Behavior on AODV Routing
Protocol

Houda Moudni1, Mohamed Er-rouidi1, Hicham Mouncif2,
and Benachir El Hadadi2

1 Computer Science Department, Faculty of Sciences and Technology,
Sultan Moulay Slimane University, Beni Mellal, Morocco

{h.moudni, m.errouidi}@usms.ma
2 Faculty Polydisciplinary, Sultan Moulay Slimane University,

Beni Mellal, Morocco
{hmouncif, benachirelhadadi}@yahoo.fr

Abstract. Mobile Ad-Hoc Networks (MANETs) is a collection of autonomous nodes that are
self-managed without any existing infrastructure and centralized administration. However, the
lack of centralized monitoring and the dynamic topology makes the routing protocol more
vulnerable and defenseless to different security attacks. In this paper, we focus on the behavior
of the Ad hoc Ondemand Distance Vector (AODV) routing protocol under attacks which are
mainly Black Hole attack, Flooding attack and Rushing attack in the network layer. Also, we
simulate these routing attacks to analyze their impact on AODV protocol using various per-
formance parameters like throughput, packet delivery ratio and end to end delay using different
simulation parameters with the NS-2 network simulator. The simulation results show that the
black hole and flooding attacks have a severe impact on the network performance while the
rushing attack have a less significant effect on the network performance.

Keywords: MANETs · AODV · Black hole attack · Flooding attack · Rushing attack

An Access Control Model for Collaborative
Cloud Environment

Mohamed Amine Madani and Mohammed Erradi

Networking and Distributed Systems Research Group, SIME Lab, ENSIAS,
University Mohammed V of Rabat, Morocco

madani.medamin@gmail.com, erradi@ensias.ma

Abstract. Nowadays, collaborative applications are among services that can be provided by
the cloud computing. They enable collaboration among users from the same or different tenants
of a given cloud provider. During collaborations, the participants need to access and use
resources held by other collaborating users. These resources often contain sensitive data. They
are meant to be shared only during specific collaboration sessions. In this context, the security
of the shared resources in collaborative session becomes an important issue that must be
addressed. After analyzing the access control approaches related to the collaboration in the cloud
environment, we noticed that the existing access control models do not provide concepts to
secure resources shared among users in collaborative sessions. Moreover, the problem becomes
more complex when the shared resources reside in different tenants within the cloud environ-
ment. In our work, we propose an approach that ensures access control to the shared resources in
a collaborative session in multi-tenants environments. We suggest CBAC, the
Collaboration-based Access Control. CBAC consists of an extended version of the OrBAC
model. CBAC defines new entities to support access control in collaborative sessions. The
suggested model has been implemented within Swift component in the open source
cloud-computing platform OpenStack. Currently, we are enforcing CBAC by adding new
entities and trust relationships in order to support access control when the collaboration involves
resources of multiples tenants.

Keywords: Cloud computing · Multi-tenancy · Trust · Collaborative session · Access
control · OpenStack

Social Networks: For Increase More Interactions
and Feedbacks

Mohcine Kodad1, El Miloud Jaara1, and Mohammed Erramdani2

1 Research in Computer Science Laboratory (LARI),
University Mohammed 1st (UMP), Oujda, 60000, Morocco

2 High School of Technology (ESTO), University Mohammed 1st (UMP),
Oujda, 60000, Morocco

Abstract. This paper tackles the social networks. It actually gives an analysis about the
reliability of Facebook pages according to fans’ feedback, to figure out Facebook users’
needs and recognize their satisfactions according to their posts. In order to check this
strategy we felt the need to create an online survey, which was conducted from November
17th, 2014 to November 21st, 2014 by Computer Science Research Laboratory (LARI) at
the Mohammed first University-Oujda. The paper presents all results of this survey and
also presents an experimentation that we have achieved, so as to know the most attractive
types of posts by which we set a strategy to increase the feedback rate.

Keywords: Social networks · Increase of feedbacks · Facebook · Reach rate

Clustering Algorithm in Vehicular Networks

Bouchra Marzak1, Hicham Toumi1, Elhabib Benlahmar2,
and Mohamed Talea1

1 Laboratory of Information Processing, University Hassan II, Cdt Driss El Harti,
BP 7955 Sidi Othman Casablanca, 20702, Morocco
{marzak8bouchra, toumi.doc}@gmail.com

taleamohamed@yahoo.fr
2 Information Technology and Modeling Laboratory, University Hassan II,
Cdt Driss El Harti, BP 7955 Sidi Othman Casablanca, 20702, Morocco

h.benlahmer@gmail.com

Abstract. Vehicular networks have moved from simple curiosity to become today an
interest both from the point of view of the automotive industry as networks and service
operators. These networks are indeed an emerging class of wireless networks for the
exchange of data between vehicles and between vehicles and infrastructure. VANETs will
enhance driver safety and will enable the dissemination of traffic and road condition.
VANETs suffer from high mobility, high node density and the hidden nodes problem.
VANETs have a highlymobile environment with a rapidly changing network topology. In
cluster-based routing, a virtual network infrastructure must be created through the clus-
tering of nodes in order to provide scalability [1]. Cluster-based approaches have been
applied in VANETs, because the clusters reduce the overhead, delay, and minimize col-
lisions, providing load balance in large scale networks. Clusters are formed by a clustering
algorithm. In a high mobility environment the clusters usually are unstable. Cluster stability
is an important goal that clustering algorithms try to achieve and is considered as a measure
of performance of a clustering algorithm. Cluster stability can be defined in different ways.
In this paper, we propose a model which seeks to determine the value of stability of nodes
from the average speed, density of the nodes, and the difference in distance parameters. The
proposed model possesses a better cluster stability, where stability is defined by long
cluster-head duration, long cluster member duration, and low rate of cluster-head change.

Keywords: VANET · Vehicular ad hoc networks · Clustering · Stability

Evaluation of Association Rules Extraction
Algorithms

Ait-Mlouk Addi2, Gharnati Fatima1, and Agouti Tarik2

1 Department of Physics, Faculty of Science Semlalia, Cadi Ayyad University
gharnati@uca.ma

2 Department of Computer Science, Faculty of Science Semlalia,
Cadi Ayyad University, Marrakech, Morocco

addi.aitmlouk@edu.uca.ma, t.agouti@uca.ma

Abstract. Association rules Extraction is a leading task, which attracted the attention of
researchers, it generally spend two important steps, in the first is the extraction of frequent
items, and the second is extracting association rules from this frequent items. This
extraction is a difficult task, costly in terms of response time and memory space as the
number of frequent items is exponential to the number of items in database. Many algo-
rithms have been designed to answer these problems. Nevertheless, the high number of
algorithms is itself an obstacle to the ability of expert choice. In this context we propose an
approach to make a good choice of extraction algorithm based on multiple criteria analysis.

Keywords: Algorithms · Data mining · Knowledge discovery in database

Contents

Scal: A Benchmarking Suite for Concurrent Data Structures 1
Andreas Haas, Thomas Hütter, Christoph M. Kirsch, Michael Lippautz,
Mario Preishuber, and Ana Sokolova

Verification of Buffered Dynamic Register Automata 15
Parosh Aziz Abdulla, Mohamed Faouzi Atig, Ahmet Kara,
and Othmane Rezine

Precise and Sound Automatic Fence Insertion Procedure under PSO 32
Parosh Aziz Abdulla, Mohamed Faouzi Atig, Magnus Lång,
and Tuan Phong Ngo

Model Checking Dynamic Distributed Systems. 48
C. Aiswarya

Efficient State-Based CRDTs by Delta-Mutation . 62
Paulo Sérgio Almeida, Ali Shoker, and Carlos Baquero

Concurrency in Snap-Stabilizing Local Resource Allocation 77
Karine Altisen, Stéphane Devismes, and Anaïs Durand

Distributed Privacy-Preserving Data Aggregation via Anonymization. 94
Yahya Benkaouz, Mohammed Erradi, and Bernd Freisleben

Gracefully Degrading Consensus and k-Set Agreement in Directed
Dynamic Networks . 109

Martin Biely, Peter Robinson, Ulrich Schmid, Manfred Schwarz,
and Kyrill Winkler

Homonym Population Protocols . 125
Olivier Bournez, Johanne Cohen, and Mikaël Rabie

Aspect-Based Realization of Non-functional Concerns in Business
Processes . 140

Anis Charfi and Haolin Zhi

Verifying Concurrent Data Structures Using Data-Expansion 155
Tong Che

Improving Cognitive Radio Wireless Network Performances
Using Clustering Schemes and Coalitional Games . 170

Imane Daha Belghiti, Ismail Berrada, and Mohamed El Kamili

http://dx.doi.org/10.1007/978-3-319-26850-7_1
http://dx.doi.org/10.1007/978-3-319-26850-7_2
http://dx.doi.org/10.1007/978-3-319-26850-7_3
http://dx.doi.org/10.1007/978-3-319-26850-7_4
http://dx.doi.org/10.1007/978-3-319-26850-7_5
http://dx.doi.org/10.1007/978-3-319-26850-7_6
http://dx.doi.org/10.1007/978-3-319-26850-7_7
http://dx.doi.org/10.1007/978-3-319-26850-7_8
http://dx.doi.org/10.1007/978-3-319-26850-7_8
http://dx.doi.org/10.1007/978-3-319-26850-7_9
http://dx.doi.org/10.1007/978-3-319-26850-7_10
http://dx.doi.org/10.1007/978-3-319-26850-7_10
http://dx.doi.org/10.1007/978-3-319-26850-7_11
http://dx.doi.org/10.1007/978-3-319-26850-7_12
http://dx.doi.org/10.1007/978-3-319-26850-7_12

Optimal Torus Exploration by Oblivious Robots . 183
Stéphane Devismes, Anissa Lamani, Franck Petit, and Sébastien Tixeuil

Source Routing in Time-Varing Lossy Networks. 200
Dacfey Dzung, Rachid Guerraoui, David Kozhaya,
and Yvonne-Anne Pignolet

A Fully Distributed Learning Algorithm for Power Allocation
in Heterogeneous Networks . 216

Hajar Elhammouti, Loubna Echabbi, and Rachid Elazouzi

Packet Scheduling over a Wireless Channel: AQT-Based
Constrained Jamming . 230

Antonio Fernández Anta, Chryssis Georgiou, and Elli Zavou

Fisheye Consistency: Keeping Data in Synch in a Georeplicated World 246
Roy Friedman, Michel Raynal, and Francois Taïani

Peer-to-Peer Full-Text Keyword Search of the Web. 263
Sonia Gaied Fantar and Habib Youssef

Profiling Transactional Applications . 278
Vincent Gramoli, Rachid Guerraoui, and Anne-Marie Kermarrec

Disaster-Tolerant Storage with SDN . 293
Vincent Gramoli, Guillaume Jourjon, and Olivier Mehani

On the Complexity of Linearizability. 308
Jad Hamza

Antichains for the Verification of Recursive Programs 322
Lukáš Holík and Roland Meyer

BAPU: Efficient and Practical Bunching of Access Point Uplinks. 337
Tao Jin, Triet D. Vo-Huu, Erik-Oliver Blass, and Guevara Noubir

Memory Efficient Self-stabilizing Distance-k Independent Dominating
Set Construction . 354

Colette Johnen

Optimizing Diffusion Time of the Content Through the Social Networks:
Stochastic Learning Game . 367

Soufiana Mekouar, Sihame El-Hammani, Khalil Ibrahimi,
and El-Houssine Bouyakhf

Tracking Causal Dependencies in Web Services Orchestrations Defined
in ORC . 382

Matthieu Perrin, Claude Jard, and Achour Mostéfaoui

XXVI Contents

http://dx.doi.org/10.1007/978-3-319-26850-7_13
http://dx.doi.org/10.1007/978-3-319-26850-7_14
http://dx.doi.org/10.1007/978-3-319-26850-7_15
http://dx.doi.org/10.1007/978-3-319-26850-7_15
http://dx.doi.org/10.1007/978-3-319-26850-7_16
http://dx.doi.org/10.1007/978-3-319-26850-7_16
http://dx.doi.org/10.1007/978-3-319-26850-7_17
http://dx.doi.org/10.1007/978-3-319-26850-7_18
http://dx.doi.org/10.1007/978-3-319-26850-7_19
http://dx.doi.org/10.1007/978-3-319-26850-7_20
http://dx.doi.org/10.1007/978-3-319-26850-7_21
http://dx.doi.org/10.1007/978-3-319-26850-7_22
http://dx.doi.org/10.1007/978-3-319-26850-7_23
http://dx.doi.org/10.1007/978-3-319-26850-7_24
http://dx.doi.org/10.1007/978-3-319-26850-7_24
http://dx.doi.org/10.1007/978-3-319-26850-7_25
http://dx.doi.org/10.1007/978-3-319-26850-7_25
http://dx.doi.org/10.1007/978-3-319-26850-7_26
http://dx.doi.org/10.1007/978-3-319-26850-7_26

Web Services Trust Assessment Based on Probabilistic Databases. 397
Zohra Saoud, Noura Faci, Zakaria Maamar, and Djamal Benslimane

Virtual and Consistent Hyperbolic Tree: A New Structure for Distributed
Database Management . 411

Telesphore Tiendrebeogo and Damien Magoni

EPiC: Efficient Privacy-Preserving Counting for MapReduce 426
Triet D. Vo-Huu, Erik-Oliver Blass, and Guevara Noubir

A Thrifty Universal Construction . 444
Wang Cheng and Rachid Guerraoui

Knowledgeable Chunking . 456
Bertil Chapuis and Benoît Garbinato

Enhancing Readers-Writers Exclusion with Upgrade/Downgrade Primitives 461
Michael Diamond, Prasad Jayanti, and Jake Leichtling

Context-Based Query Expansion Method for Short Queries Using Latent
Semantic Analyses . 468

Btihal El Ghali, Abderrahim El Qadi, Mohamed Ouadou,
and Driss Aboutajdine

Towards a Formal Semantics and Analysis of BPMN Gateways 474
Outman El Hichami, Mohamed Naoum, Mohammed Al Achhab,
Ismail Berrada, and Badr Eddine El Mohajir

A User Centered Design Approach for Transactional Service Adaptation in
Context Aware Environment. 479

Widad Ettazi, Hatim Hafiddi, and Mahmoud Nassar

A Self-stabilizing PIF Algorithm for Educated Unique Process Selection 485
Oday Jubran and Oliver Theel

Coalitional Game Theory for Cooperative Transmission in VANET:
Internet Access via Fixed and Mobile Gateways . 490

Abdelfettah Mabrouk, Abdellatif Kobbane, Essaid Sabir,
and Mohammed El Koutbi

Performance Evaluation for Ad hoc Routing Protocols in Realistic
Physical Layer . 496

Hassan Faouzi, Hicham Mouncif, and Mohamed Lamsaadi

Understanding Cloud Storage Services Usage: A Practical Case Study. 501
Daniela Oliveira, Paulo Carvalho, and Solange Rito Lima

Contents XXVII

http://dx.doi.org/10.1007/978-3-319-26850-7_27
http://dx.doi.org/10.1007/978-3-319-26850-7_28
http://dx.doi.org/10.1007/978-3-319-26850-7_28
http://dx.doi.org/10.1007/978-3-319-26850-7_29
http://dx.doi.org/10.1007/978-3-319-26850-7_30
http://dx.doi.org/10.1007/978-3-319-26850-7_31
http://dx.doi.org/10.1007/978-3-319-26850-7_32
http://dx.doi.org/10.1007/978-3-319-26850-7_33
http://dx.doi.org/10.1007/978-3-319-26850-7_33
http://dx.doi.org/10.1007/978-3-319-26850-7_34
http://dx.doi.org/10.1007/978-3-319-26850-7_35
http://dx.doi.org/10.1007/978-3-319-26850-7_35
http://dx.doi.org/10.1007/978-3-319-26850-7_36
http://dx.doi.org/10.1007/978-3-319-26850-7_37
http://dx.doi.org/10.1007/978-3-319-26850-7_37
http://dx.doi.org/10.1007/978-3-319-26850-7_38
http://dx.doi.org/10.1007/978-3-319-26850-7_38
http://dx.doi.org/10.1007/978-3-319-26850-7_39

Towards an Optimal Pricing for Mobile Virtual Network Operators. 507
Mohammed Raiss-El-Fenni, Mohamed El Kamili, Sidi Ahmed Ezzahidi,
Ismail Berrada, and El Houssine Bouyakhf

Modeling and Implementation Approach to Evaluate the Intrusion
Detection System . 513

Mohammed Saber, Sara Chadli, Mohamed Emharraf,
and Ilhame El Farissi

Trust Based Energy Preserving Routing Protocol in Multi-hop WSN 518
Saima Raza, Waleej Haider, Nouman M. Durrani, Nadeem Kafi Khan,
and Mohammad Asad Abbasi

Author Index . 525

XXVIII Contents

http://dx.doi.org/10.1007/978-3-319-26850-7_40
http://dx.doi.org/10.1007/978-3-319-26850-7_41
http://dx.doi.org/10.1007/978-3-319-26850-7_41
http://dx.doi.org/10.1007/978-3-319-26850-7_42

Scal: A Benchmarking Suite
for Concurrent Data Structures

Andreas Haas, Thomas Hütter, Christoph M. Kirsch(B), Michael Lippautz,
Mario Preishuber, and Ana Sokolova

University of Salzburg, Salzburg, Austria
{andreas.haas,thomas.hutter,ck,michael.lippautz,
mario.preishuber,ana.sokolova}@cs.uni-salzburg.at

Abstract. Concurrent data structures such as concurrent queues,
stacks, and pools are widely used for concurrent programming of shared-
memory multiprocessor and multicore machines. The key challenge is to
develop data structures that are not only fast on a given machine but
whose performance scales, ideally linearly, with the number of threads,
cores, and processors on even bigger machines. Part of that challenge is
to provide a common ground for systematically evaluating the perfor-
mance and scalability of new concurrent data structures and comparing
the results with the performance and scalability of existing solutions. For
this purpose, we have developed Scal which is an open-source benchmark-
ing framework that provides (1) software infrastructure for executing
concurrent data structure algorithms, (2) workloads for benchmarking
their performance and scalability, and (3) implementations of a large set
of concurrent data structures. We discuss the Scal infrastructure, work-
loads, and implementations, and encourage further use and development
of Scal in the design and implementation of ever faster concurrent data
structures.

1 Introduction

We describe Scal1, an open-source benchmarking framework for evaluating per-
formance and multicore scalability of concurrent data structures such as con-
current queues, stacks, and pools. With (multicore) scalability we mean that
performance grows (ideally linearly) with the number of threads increasing.

Scal provides:

1. Infrastructural software for scalable memory allocation and computational
load generation, as well as tagging for atomicity and operation logging. Here,
by scalable memory allocation and computational load generation we mean
constant overhead independent of the number of threads.

2. Workloads for benchmarking concurrent data structures such as, for example,
producer-consumer scenarios.

1 The Scal homepage is at http://scal.cs.uni-salzburg.at, the Scal code is publicly
available at http://github.com/cksystemsgroup/scal.

c© Springer International Publishing Switzerland 2015
A. Bouajjani and H. Fauconnier (Eds.): NETYS 2015, LNCS 9466, pp. 1–14, 2015.
DOI: 10.1007/978-3-319-26850-7 1

http://scal.cs.uni-salzburg.at
http://github.com/cksystemsgroup/scal

2 A. Haas et al.

3. Concurrent data structure implementations, like (relaxed) queues, stacks, and
pools, listed in Table 1.

Each pair of a workload and a concurrent data structure defines a configuration.
Hence, Scal provides infrastructure and configurations, as shown in Fig. 1.

Infrastructure
Computational Load

Generator
Memory Allocator

Operation LoggingTagging for Atomicity

Configuration

WorkloadData Structure

Fig. 1. Architecture of Scal

Scal requires an x86 machine and Posix threads. It has been successfully run
on Intel and AMD machines with Linux Ubuntu 12.04 and 14.04. Porting Scal
to other architectures and operating systems should be easily possible.

Scal reports temporal performance by measuring total execution time and
calculating throughput. Time is measured (using standard OS primitives) from
the moment that all threads are created and configured, until the moment that
the last thread terminates. Creation and configuration is done sequentially by
a single initialization thread. All other threads wait on a barrier after they
have been created. As soon as the configuration is complete, the initialization
thread records the (start) time and releases the barrier. The last thread that
terminates records the (end) time again right before terminating. Total exe-
cution time is then reported as the difference between the end time and the
start time. Throughput is the total execution time divided by the total num-
ber of data-structure operations performed by all threads. All Scal workloads
determine (configure) the total number of operations to be performed, which
enables throughput calculation. Obtaining meaningful temporal performance
results requires disabling CPU frequency scaling (in addition to using scalable
memory allocation and load generation).

The Scal benchmarking framework was originally designed for the evalua-
tion of concurrent (relaxed) data structures [3,7–9,12,15,16]. Note that Scal not
only contains our newly developed data structure algorithms, but also many
other state-of-the-art concurrent data structure implementations (cf. Table 1).
We are aware of two other recently developed benchmarking frameworks for a
similar purpose. The sim-universal-construction framework has been designed to
develop and evaluate wait-free algorithms [4]. It has also been used to evaluate

Scal: A Benchmarking Suite for Concurrent Data Structures 3

thread1

limit

bump pointer

thread2

limit

bump pointer

thread3

limit

bump pointer

thread4

limit

bump pointer

not-yet-allocated memory
memory allocated in current cycle
memory allocated in previous cycle

Fig. 2. Memory allocation in Scal

lock-free data structures [23]. The framework provides a subset of Scal’s capabil-
ities such as portable abstractions for atomic operations like fetch-and-inc or
compare-and-swap (covered by tagging for atomicity in Scal) and implements
lock-free queues such as the Michael-Scott queue [21]. However, there is no scal-
able memory allocation, computational load generation, and predefined work-
loads. The SynchroBench [5] framework has been designed with the same goals
as Scal. It provides a broad spectrum of concurrent data structure implemen-
tations such as linked lists, skiplists, trees, and hash tables. SynchroBench uses
transactional memory libraries and does not provide scalable memory allocation,
which makes the framework less suitable for high-performance benchmarking.
SynchroBench also does not provide predefined workloads.

2 Scal Infrastructure

Next we describe the Scal infrastructure, in particular memory allocation, com-
putational load generation, tagging for atomicity, and operation logging.

All experiments reported here ran on a unified memory architecture (UMA)
machine with four 10-core 2 GHz Intel Xeon E7-4850 processors supporting two
hardware threads (hyperthreads) per core, 128 GB of main memory, and Linux
kernel version 3.8.0. All measurements are averaged over ten runs and reported
as arithmetic mean including the 95 % confidence interval (based on corrected
sample standard deviation).

To this end, let us note that Scal is open-source and publicly available, and
hence also open to improvement and extensions. New utilities may be developed
as the demand grows.

2.1 Memory Allocator

The memory allocator of Scal is a special purpose concurrent allocator that
performs cyclic allocation [24].

4 A. Haas et al.

Ideally, in a benchmarking framework, memory management operations take
zero time and do not depend on the number of threads. In Scal, memory alloca-
tion is done thread-locally with negligible overhead (that does not depend on the
number of threads). Figure 2 shows the memory layout in Scal. Each thread in
Scal gets its own heap for thread-local allocation. The heaps are initialized upon
thread startup with preallocated fixed-size memory chunks that are optionally
accessed (by reading single words) to warm up operating system pages. Each
heap consists of a bump pointer, as well as a start and an end indicating the
beginning and the end of the memory chunk.

Upon memory allocation, the bump pointer is incremented by the required
size and the bump pointer value at the start of the allocation operation is
returned as memory address2. Upon reaching the limit the bump pointer is
reset to the beginning of the memory chunk.

Cyclic allocation is sound as long as no allocated and still live memory gets
reallocated, i.e., the bump pointer returns addresses to dead memory. For any
benchmark that terminates in finite time, there is a heap size such that cyclic
allocation with that heap size is sound. In order to determine the heap size
sufficient for sound cyclic allocation, Scal provides a configuration mode in which,
instead of resetting the bump pointer (cyclic allocation), the heap expands by
obtaining another memory chunk from the OS. This configuration mode is not
scalable because of the overhead involved in obtaining memory chunks.

Cyclic allocation does not require explicit deallocation. Nevertheless, for sav-
ing memory, Scal provides a limited form of explicit deallocation: A free call
(without arguments) rolls back the bump pointer to the value before the last
allocation. Consecutive free calls without allocation in between have no effect.
This form of explicit deallocation provides the benefit of keeping the size of
the needed heap for sound cyclic allocation small, in particular with algorithms
where many threads allocate memory within concurrent operations of which
only one succeeds. The failing threads can then roll back, i.e., deallocate the
most recently allocated memory.

In order to demonstrate the scalability of the allocator in Scal we designed
a benchmark where each thread executes ten million allocation operations of
the size required to accommodate a node of a Michael-Scott queue [21]. After
each allocation operation, a computation is performed that simulates application
activity and reduces the load on the allocator. Note that for many allocators,
there is a computational load that renders them scalable. However, the smaller
that load is, the more load can be put on the benchmarked concurrent data
structure without introducing performance artifacts of the allocator. The com-
putational load for which Scal’s memory allocator is scalable is small. Figure 3a
illustrates the scalability (constant overhead) of the allocator. We discuss com-
putational load generation and the computational load used in Fig. 3a in the
next section.

2 This is standard bump pointer allocation.

Scal: A Benchmarking Suite for Concurrent Data Structures 5

0

0.2

0.4

0.6

0.8

1

1 20 40 60 80

ex
ec

u
ti

o
n

ti
m

e
p
er

o
p
er

a
ti

o
n

in
se

co
n
d
s

number of threads

(a) Memory allocation:
Scalability for an increasing
number of threads

0
0.2
0.4
0.6
0.8

1
1.2
1.4

250 1250 2500

d
el

ay
in

u
s

computational load

(b) Computational load:
Delay for varying computa-
tional load

0
0.2
0.4
0.6
0.8

1
1.2
1.4

1 20 40 60 80

d
el

ay
in

u
s

number of threads

(c) Computational load:
Scalability for an increasing
number of threads

Fig. 3. Evaluation of Scal’s infrastructure

2.2 Computational Load

Scal provides a primitive that simulates computational load resulting in a time
delay. This enables exercising the concurrent data structures in different con-
tention scenarios: In between any two data structure operations, the computa-
tional load imitates application behavior, i.e., a real computation. The higher
the load, the lower the contention on the data structure.

The computational load primitive has a unit-less input that translates to a
time delay that is close to linear in the input, as shown in Fig. 3b. Moreover,
the linear relationship remains the same independent of the number of threads
concurrently using the primitive as shown in Fig. 3c, even on hyper-threaded
machines. In the figure we present many (pretty straight) curves, one for each
data point of Fig. 3b. Each curve shows the time delay for a given unit-less
input value of the computational load for an increasing number of threads. The
linearity is demonstrated as the curves are close to equally distant for equally
distant inputs. The scalability is demonstrated by the fact that each curve is
close to a constant line.

Our computational load primitive uses the x86 CPU instruction (RDTSC)
that reads the time stamp counter (TSC) from the corresponding register of the
processor. The counter represents the number of cycles since the last processor
reset. Note that TSC only relates linearly to actual time for a constant clock
speed. This is one of the reasons for disabling CPU frequency scaling in Scal.

The computational load primitive implements a busy wait on the value of
TSC obtained from RDTSC. Additionally, the processor is informed that it cur-
rently executes a busy wait, potentially reducing CPU resources needed to exe-
cute the code fragment, making the computational load primitive scalable for
hyper-threaded machines.

2.3 Pointer Tagging

Concurrent programs may be subject to the ABA problem: Finitely many names
(memory addresses) for an infinite state space which requires eventual reuse of

6 A. Haas et al.

names for different states. Ideally, this is prevented (by hazard pointers [20]) or,
less ideally but more practically, it is made less likely through versioning.

Hazard pointers solve the problem by only allowing name reuse when there
is proof that the name is not in use any more. Versioning makes the occurrence
of ABA less likely by increasing the set of names via adding version numbers. As
implementing hazard pointers is costly, i.e., it requires significant bookkeeping,
versioning is the common approach to fighting ABA.

Most concurrent data-structure algorithms, in particular the lock-free ones,
use versioning to address ABA [19]. To ease the programming of algorithms that
require versioning, Scal provides a versioning utility, that we refer to as pointer
tagging, as part of its infrastructure.

In particular, Scal provides 16-bit version tags for values with up to 48 bits,
assembling value and tag in a single 64-bit word so that all standard atomic
operations still work atomically on the pair of a value and a version tag. Note
that this indeed enlarges the set of names, as current 64-bit operating systems
limit address spaces to 48 bits.

Note that taking care of versioning by hand in concurrent algorithms is a
common source of bugs. The pointer tagging of Scal relieves the programmer
from such a burden, and the careful handling of version tags is implicitly done
by Scal itself.

2.4 Operation Logging

In order to investigate the detailed behavior of a single run, and even individual
operations, Scal provides the utility of operation logging.

For each concurrent data-structure operation, Scal provides functions for
thread-locally logging the type of an operation, e.g., insert or remove, the invo-
cation time, the response time, a linearization point. Some of these functions
are added automatically as soon as operation logging is enabled, e.g., logging of
invocation and response time. For others, the programmer can use the Scal func-
tions to annotate the code of a concurrent algorithm, e.g., if linearization points
are known within the code. Operation logging only incurs negligible overhead,
since all data is stored in pre-allocated memory at runtime and only output into
a file upon termination.

Operation logging allows to experimentally validate different metrics on con-
current executions. See [9] for definitions and experimental evaluation of such
metrics. Last but not least, operation logging may be useful to the programmer
(and has been useful to some of us) when debugging concurrent algorithms.

3 Scal Workloads

There are two generic configurable workloads in Scal, a classical producer-
consumer workload, and a sequential alternating workload. We describe both
below.

Scal: A Benchmarking Suite for Concurrent Data Structures 7

0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

2 10 20 30 40 50 60 70 80

m
il
li
o
n

o
p
er

a
ti

o
n
s

p
er

se
co

n
d

(m
o
re

is
b
et

te
r)

number of threads

MS
LCRQ
k-FIFO

1-RR DQ

2-RR DQ
1-RA DQ

static LL DQ
dynamic LL DQ

Fig. 4. Performance and scalability in a producer-consumer benchmark for a number
of queue and queue-like data structures, for an increasing number of threads

3.1 Producer-Consumer

In the producer-consumer workload, as usual, some threads are producers and
some consumers. Scal allows configuring the number of producers, consumers, the
computational load, and the number of elements to be produced per producer
thread. Each producer then inserts its produced elements into the concurrent
data structure. Each consumer retrieves its fair share of elements (equal to the
total number of elements produced divided by the number of consumers). Resid-
ual elements are discarded, i.e., they are left in the data structure. The configured
computational load is executed in between any two operations performed. Addi-
tionally, the producer-consumer benchmark allows to insert a barrier between
producing and consuming threads, for measuring either producing or consuming
(or both) of elements separately.

Figure 4 shows the results of an exemplary scalability measurement of the
producer-consumer benchmark for an increasing number of threads of which
half are producers and half consumers, for a computational load of 1000, and 1
million elements inserted per producer thread.

In this benchmark, Scal reports the total number of performed operations
divided by the total execution time. To this end, we note that changing Scal to

8 A. Haas et al.

0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

32

34

36

38

2 10 20 30 40 50 60 70 80

m
il
li
o
n

o
p
er

a
ti

o
n
s

p
er

se
co

n
d

(m
o
re

is
b
et

te
r)

number of threads

MS
LCRQ
k-FIFO

1-RR DQ

2-RR DQ
1-RA DQ

static LL DQ
dynamic LL DQ

Fig. 5. Performance and scalability in a sequential alternating benchmark for a number
of queue and queue-like data structures, for an increasing number of threads

report other data, e.g. (average) number of operations per thread per unit of
time, is a matter of changing one line of code.

3.2 Sequential Alternating

The sequential alternating workload is designed so that each thread alternates
between an insert operation and a remove operation.

For sequential alternating, similar to the producer-consumer workload, Scal
allows configuring the number of threads, the computational load, and the num-
ber of operations (pairs of consecutive insert and remove operation) per thread.
Additionally, the sequential alternating workload allows the data structure to
be prefilled with a specified amount of elements. Such an option could easily be
added to the producer-consumer benchmark as well, it was just never needed
for our experimental purposes. The computational load is again computed in
between any two operations.

Figure 5 shows the results of an exemplary scalability measurement of the
sequential alternating benchmark for an increasing number of threads, com-
putational load of 1000, and 1 million pairs of consecutive insert and remove
operations per thread.

Scal: A Benchmarking Suite for Concurrent Data Structures 9

Table 1. Concurrent data structures in Scal

Name Semantics Year Ref.

Lock-based Singly-linked List
Queue

strict queue 1968 [17]

Michael Scott (MS) Queue strict queue 1996 [21]

Flat Combining Queue strict queue 2010 [10]

Wait-free Queue strict queue 2012 [18]

Linked Cyclic Ring Queue
(LCRQ)

strict queue 2013 [23]

Timestamped (TS) Queue strict queue 2015 [3]

Cooperative TS Queue strict queue 2015 [6]

Segment Queue k-relaxed queue [1,12] 2010 [1]

Random Dequeue (RD) Queue k-relaxed queue [1,12] 2010 [1]

Bounded Size k-FIFO Queue k-relaxed queue [1,12], pool 2013 [15]

Unbounded Size k-FIFO Queue k-relaxed queue [1,12], pool 2013 [15]

b-RR Distributed Queue (DQ) k-relaxed queue [12], pool 2013 [8]

Least-Recently-Used (LRU) DQ k-relaxed queue [12], pool 2013 [8]

Locally Linearizable DQ (static,
dynamic)

locally linearizable queue [7], pool 2015 [7]

Locally Linearizable k-FIFO
Queue

locally linearizable queue [7], 2015 [7]

k-relaxed queue [12], pool

Relaxed TS Queue quiescently consistent 2015 [6]

queue (conjectured)

Lock-based Singly-linked List
Stack

strict stack 1968 [17]

Treiber Stack strict stack 1986 [26]

Elimination-backoff Stack strict stack 2004 [11]

Timestamped (TS) Stack strict stack 2015 [3]

k-Stack k-relaxed stack [12] 2013 [12]

b-RR Distributed Stack (DS) k-relaxed stack [12], pool 2013 [8]

Least-Recently-Used (LRU) DS k-relaxed stack [12], pool 2013 [8]

Locally Linearizable DS (static,
dynamic)

locally linearizable stack [7], pool 2015 [7]

Locally Linearizable k-Stack locally linearizable stack [7], 2015 [7]

k-relaxed queue [12], pool

Timestamped (TS) Deque strict deque (conjectured) 2015 [6]

d-RA DQ and DS strict pool 2013 [8]

10 A. Haas et al.

4 Concurrent Data Structure Implementations in Scal

All Scal implementations of concurrent data structures are listed in Table 1. We
distinguish between strict queues, relaxed queues, strict stacks, relaxed stacks,
a strict deque (conjectured), and strict pools. By strict we mean data structures
that are linearizable [14] with respect to a sequential specification of a queue,
stack, deque, or pool, respectively. Strict concurrent data structures often lack
performance and scalability [25] as they require significant synchronization [2].
A common trend in the design of concurrent data structures chooses to relax the
semantics for gain in performance and scalability. The relaxations could affect
the sequential specification [1,12,22] or the consistency condition [7,13]. Note
that most data structures in Scal are lock free [13]. In the sequel, we discuss all
implemented data structures in some detail. The table shows references for each
data structure, which we omit in the text below.

4.1 Strict Queues

As baseline for queues, there is a standard lock-based implementation of a queue
based on a singly-linked list. As lock-free baseline for queues, we have imple-
mented the Michael-Scott queue. The flat combining queue is another well-known
strict queue. The wait-free queue is a strict queue based on the Michael-Scott
queue whose wait freedom is achieved by faster threads helping slower ones to
complete their operations. The linked list cyclic ring queue is a fast lock-free
queue that operates on very large cyclic buffers and uses fetch-and-add as basic
synchronization primitive. The (cooperative) timestamped queue is a fast lock-
free queue that uses timestamps to achieve queue order.

4.2 Relaxed Queues

There are several variants of relaxed queues in Scal:

– A number of k-relaxed queues that are linearizable with respect to the k-
out-of-order relaxation of the sequential specification of a queue [12]. In a
k-relaxed queue, one of the k + 1-oldest elements is returned upon a dequeue
operation.

– Several queues that are locally linearizable with respect to the sequential spec-
ification of a queue, and a relaxed queue that is conjectured to be quiescently
consistent.

The segment queue and the random dequeue queue are k-relaxed but do not
provide a linearizable emptiness check and hence are not linearizable pools. All
other relaxed queues in Scal are linearizable pools.

The bounded and unbounded size k-FIFO queues are lock-free k-relaxed
queues related to the segment queue. They implement a Michael-Scott queue of
segments of size k.

The b-RR distributed queue and the least-recently-used distributed queue are
members of the distributed queues (DQ) family. All data structures in the DQ

Scal: A Benchmarking Suite for Concurrent Data Structures 11

family implement an array of Michael-Scott queues which are accessed using var-
ious load balancers. For these particular DQs, the load balancers enable proving
a bound k for a k-relaxation.

The locally linearizable queues are variants of DQ and the k-FIFO queue.
The locally linearizable DQ comes in two variants: with a static or dynamic array
size (number of Michael-Scott queues). It is the load balancer(s) that make them
locally linearizable. Finally, the relaxed TS queue is a relaxed timestamped queue
that is conjectured to provide quiescent consistency.

4.3 Strict Stacks

As baseline for stacks, we have implemented a lock-based stack based on a
singly linked list. As lock-free baseline for stacks, there is the Treiber stack. The
elimination-backoff stack is a fast stack that utilizes the possibility of elimination,
i.e., popping any element that is being concurrently pushed. The timestamped
stack is a fast lock-free stack that uses timestamps to achieve stack order and
also benefits from elimination.

4.4 Relaxed Stacks

Just like relaxed queues, also relaxed stacks come in two flavors:

– k-Relaxed stacks that relax the sequential specification to a k-out-of-order
stack that allows for removing one of the k + 1-youngest elements in the
stack.

– Locally linearizable stacks.

All relaxed stacks in Scal are linearizable pools, in particular they provide lin-
earizable emptiness checks.

The k-Stack is a typical k-relaxed stack implemented as a Treiber stack of
segments of size k. The k-Stack has a linearizable emptiness check and is hence
a linearizable pool. Just like for queues, there is a family of distributed stacks
(DS) implemented as an array of Treiber stacks with different load balancers
of which b-RR DS and least-recently-used DS are proven to be k-relaxed for a
particular bound k depending on the parameters of the data structure.

Also here we have the same locally linearizable variants of stacks, namely
the locally linearizable DQ with static and dynamic array size, and the locally
linearizable k-Stack.

4.5 Strict Deque

The implementation of a strict deque in Scal is a timestamped implementation,
combining the timestamped stack and timestamped queue. Proving the correct-
ness (linearizability with respect to the data structure) was a highly nontrivial
task for the timestamped stack, leading to a new theorem that provides suffi-
cient conditions for stack linearizability. We conjecture that this combined deque
implementation is linearizable with respect to a deque. The proof still remains
to be done.

12 A. Haas et al.

4.6 Strict Pools

All other variants of DQ and DS are very much relaxed queue-like or stack-like
data structures, i.e., they can only be proven to be linearizable with respect to
a pool. Currently d-RA DQ and DS are implemented in Scal. We have experi-
mented with other implementations of pools as well. Their code is currently not
part of Scal but will be added in the future.

5 Conclusions

We have presented Scal, an open-source benchmarking framework for evaluat-
ing the performance and scalability of concurrent data structures. Scal provides
implementations of many concurrent data structures as well as the necessary
infrastructure and relevant workloads for executing and benchmarking them.
The framework has already enabled research that has lead to some of the con-
current data structures mentioned here. Scal is nevertheless only the starting
point of a comprehensive benchmarking suite for concurrent data structures.
The code is open source and may easily be extended with implementations of
other concurrent data structures and enhanced with more infrastructure and
workloads.

Acknowledgements. This work has been supported by a Google PhD Fellowship
and the National Research Network RiSE on Rigorous Systems Engineering (Austrian
Science Fund (FWF): S11404-N23 and S11411-N23).

References

1. Afek, Y., Korland, G., Yanovsky, E.: Quasi-linearizability: relaxed consistency for
improved concurrency. In: Lu, C., Masuzawa, T., Mosbah, M. (eds.) OPODIS 2010.
LNCS, vol. 6490, pp. 395–410. Springer, Heidelberg (2010)

2. Attiya, H., Guerraoui, R., Hendler, D., Kuznetsov, P., Michael, M.M., Vechev,
M.: Laws of order: expensive synchronization in concurrent algorithms cannot be
eliminated. In: Proceedings of Principles of Programming Languages (POPL), pp.
487–498. ACM (2011)

3. Dodds, M., Haas, A., Kirsch, C.M.: A scalable, correct time-stamped stack. In:
Proceedings of Symposium on Principles of Programming Languages (POPL), pp.
233–246. ACM (2015)

4. Fatourou, P., Kallimanis, N.D.: A highly-efficient wait-free universal construction.
In: Proceedings of Symposium on Parallelism in Algorithms and Architectures
(SPAA), pp. 325–334. ACM (2011)

5. Gramoli, V.: More than you ever wanted to know about synchronization: syn-
chrobench, measuring the impact of the synchronization on concurrent algorithms.
In: Proceedings of Symposium on Principles and Practice of Parallel Programming
(PPoPP), pp. 1–10. ACM (2015)

6. Haas, A.: Fast Concurrent Data Structures Through Timestamping. Ph.D. thesis,
University of Salzburg, Salzburg, Austria (2015)

Scal: A Benchmarking Suite for Concurrent Data Structures 13

7. Haas, A., Henzinger, T.A., Holzer, A., Kirsch, C.M., Lippautz, M., Payer, H.,
Sezgin, A., Sokolova, A., Veith, H.: Local linearizability. CoRR, abs/1502.07118
(2015)

8. Haas, A., Henzinger, T.A., Kirsch, C.M., Lippautz, M., Payer, H., Sezgin, A.,
Sokolova, A.: Distributed queues in shared memory–multicore performance and
scalability through quantitative relaxation. In: Proceedings of International Con-
ference on Computing Frontiers (CF). ACM (2013)

9. Haas, A., Kirsch, C.M., Lippautz, M., Payer, H.: How FIFO is your concurrent
FIFO queue? In: Proceedings of Workshop on Relaxing Synchronization for Mul-
ticore and Manycore Scalability (RACES), pp. 1–8. ACM (2012)

10. Hendler, D., Incze, I., Shavit, N., Tzafrir, M.: Flat combining and the
synchronization-parallelism tradeoff. In: Proceedings of Symposium on Parallelism
in Algorithms and Architectures (SPAA), pp. 355–364. ACM (2010)

11. Hendler, D., Shavit, N., Yerushalmi, L.: A scalable lock-free stack algorithm.
In: Proceedings of Symposium on Parallelism in Algorithms and Architectures
(SPAA), pp. 206–215. ACM (2004)

12. Henzinger, T.A., Kirsch, C.M., Payer, H., Sezgin, A., Sokolova, A.: Quantitative
relaxation of concurrent data structures. In: Proceedings of Symposium on Princi-
ples of Programming Languages (POPL), pp. 317–328. ACM (2013)

13. Herlihy, M., Shavit, N.: The Art of Multiprocessor Programming. Morgan Kauf-
mann Publishers Inc., San Francisco (2008)

14. Herlihy, M., Wing, J.M.: Linearizability: a correctness condition for concurrent
objects. ACM Trans. Program. Lang. Syst. 12(3), 463–492 (1990)

15. Kirsch, C.M., Lippautz, M., Payer, H.: Fast and scalable, lock-free k-FIFO queues.
In: Malyshkin, V. (ed.) PaCT 2013. LNCS, vol. 7979, pp. 208–223. Springer,
Heidelberg (2013)

16. Kirsch, C.M., Payer, H., Röck, H., Sokolova, A.: Performance, scalability, and
semantics of concurrent FIFO queues. In: Xiang, Y., Stojmenovic, I., Apduhan,
B.O., Wang, G., Nakano, K., Zomaya, A. (eds.) ICA3PP 2012, Part I. LNCS, vol.
7439, pp. 273–287. Springer, Heidelberg (2012)

17. Knuth, D.E.: The Art of Computer Programming. Fundamental Algorithms, vol.
1, 3rd edn. Addison Wesley, Redwood City (1997)

18. Kogan, A., Petrank, E.: A methodology for creating fast wait-free data structures.
In: Proceedings of Symposium on Principles and Practice of Parallel Programming
(PPoPP), pp. 141–150. ACM (2012)

19. Michael, M.M.: ABA prevention using single-word instructions. Technical report
RC 23089, IBM Research Center (2004)

20. Michael, M.M.: Hazard pointers: safe memory reclamation for lock-free objects.
IEEE Trans. Parallel Distrib. Syst. 15(6), 491–504 (2004)

21. Michael, M.M., Scott, M.L.: Simple, fast, and practical non-blocking and block-
ing concurrent queue algorithms. In: Proceedings of Symposium on Principles of
Distributed Computing (PODC), pp. 267–275. ACM (1996)

22. Michael, M.M., Vechev, M.T., Saraswat, V.A.: Idempotent work stealing. In:
Proceedings of Symposium on Principles and Practice of Parallel Programming
(PPoPP), pp. 45–54. ACM (2009)

23. Morrison, A., Afek, Y.: Fast concurrent queues for x86 processors. In: Proceedings
of Symposium on Principles and Practice of Parallel Programming (PPoPP), pp.
103–112. ACM (2013)

14 A. Haas et al.

24. Nguyen, H.H., Rinard, M.: Detecting and eliminating memory leaks using cyclic
memory allocation. In: Proceedings of International Symposium on Memory Man-
agement (ISMM), pp. 15–30. ACM (2007)

25. Shavit, N.: Data structures in the multicore age. Commun. ACM 54(3), 76–84
(2011)

26. Treiber, R.K.: Systems programming: Coping with parallelism. Technical report
RJ-5118, IBM Research Center (1986)

Verification of Buffered Dynamic
Register Automata

Parosh Aziz Abdulla1, Mohamed Faouzi Atig1, Ahmet Kara2,
and Othmane Rezine1(B)

1 Uppsala University, Uppsala, Sweden
{parosh,mohamed faouzi.atig,othmane.rezine}@it.uu.se

2 TU Dortmund University, Dortmund, Germany
ahmet.kara@cs.tu-dortmund.de

Abstract. We consider the verification problem for Communicating
Register Automata (BDRA) which extend classical register automata
by process creation. In this setting, each process is equipped with a
mailbox (i.e., a channel) in which received messages can be stored. More-
over, each process has a finite number of registers in which IDs of other
processes can be stored. A process can send messages to the mailbox of
the processes whose IDs are stored in its registers and can send them
the content of its registers. The state reachability problem asks whether
a BDRA reaches a configuration where at least one process is in an error
state. In this paper, we study the decidability of the reachability problem
for different kind of channels and we provide a complete characterisation
of the (un)decidable subclasses in this generalised setting.

Keywords: Formal verification · Distributed systems

1 Introduction

Register automata [14] were introduced as a reasonable extension of finite
automata to deal with languages over infinite alphabets. The expressiveness
and computational properties of different versions of this model are intensively
studied (see e.g. [4,12,17–19]). A register automaton is a finite state automaton
equipped with a finite number of registers in which symbols from an infinite
domain can be stored for later comparison. There are many papers investigating
the strong relationship between logics on structures over infinite alphabets and
register automata [8,10,13,15].

In [5,6] register automata with process creation are proposed to describe the
behavior of parallel processes. In this approach registers are used to store the
IDs of other processes in the network. Every process can spawn new processes
and communicate asynchronously with processes whose IDs are stored in its

Supported by the Uppsala Programming for Multicore Architectures Research Cen-
ter (UPMARC) and the Programming Platform for Future Wireless Sensor Net-
works Project (PROFUN). The third author acknowledges the financial support by
the German DFG under grant SCHW 678/4-2.

c© Springer International Publishing Switzerland 2015
A. Bouajjani and H. Fauconnier (Eds.): NETYS 2015, LNCS 9466, pp. 15–31, 2015.
DOI: 10.1007/978-3-319-26850-7 2

16 P.A. Abdulla et al.

registers through unbounded channels. This extended register automata model is
used as an (implementation) model for ad-hoc networks [6] and dynamic message
sequence charts [5].

In [3], we studied the state reachability problem for Dynamic Register
Automata (DRA) which is basically the automata model in [5,6] adapted to
rendezvous-based communication and equipped with a reset transition for delet-
ing register contents. Given a DRA and an (error) state qerr the sate reachability
problem asks whether the network induced by the DRA reaches a configuration
where at least one process is in state qerr. The reachability problem for DRA
is in general not decidable. Searching for decidable sub-classes and inspired by
recent investigations on ad-hoc networks [1,7], we set several restrictions on the
configuration graphs induced by DRA and considered degenerative DRA, i.e.
DRA which are able to reset registers nondeterministically.

In this paperwe considerBufferedDynamicRegisterAutomata (BDRA)which,
compared to the model we studied in [3], is closer to the original model in [5,6] in
terms of communication.Besides finitelymany registers, aBDRA is equippedwith
an (un)bounded FIFO buffer. A process described by a BDRA can create new
processes and send messages to the buffers of other processes whose IDs are stored
in its registers. An exchanged message can contain a symbol from a finite alphabet
along with a process ID (from one of the process registers for instance). Moreover,
the process can read messages from its own buffer and store incoming IDs in its
own registers. Thus, the number of processes involved in the network induced by a
BDRA and the communication topology of the network are not fixed a priori but
change dynamically during the run of the system. Note also, that message sending
and message receiving occur asynchronously. Finally, processes may execute a dis-
connect action, which will detach them from the whole network. As a result of this
action, the content of the process registers and the process buffer are deleted.

We investigate the decidability borders of the state reachability problem for
both BDRA and lossy BDRA, a sub-class of BDRA in which any process in
the network can non deterministically disconnect itself. We show first that, in
terms of reachable states, every BDRA is equivalent to its lossy counterpart.

Note that in order to simulate rendezvous communication through buffered
systems, acknowledgement messages from receiver to sender are needed. This
requires the existence of communication cycles in the graph of the network,
which in turn makes the state reachability problem undecidable. In fact, we
show that the reachability problem for (lossy) BDRA is undecidable even in the
case where only configurations of which the graph of the network contains at
most one edge are allowed.

We consider therefor a new restriction on (lossy) BDRA that would diminish
the power of the model coming from the buffer: bounding the process buffers.
We show that the problem remains undecidable for this case, even if the buffer
is set to contain at most one message. The undecidability result still holds when
only acyclic configurations are allowed and even if we bound the simple paths of
the communication graph.

Finally, we concentrate on strongly bounded BDRA with bounded buffers.
A BDRA is called strongly bounded if the only configurations allowed are those

Verification of Buffered Dynamic Register Automata 17

in which the simple paths of the underlying undirected graph of the network is
bounded by some constant. While the reachability problem for strongly bounded
BDRA with bounded buffer is still undecidable, we get decidability when we
consider lossy BDRA. The proof comes from a non-trivial instantiation of the
well-structured transition system framework. It is worth mentioning here that,
due to the channel semantics we considered in our model (non-lossy FIFO),
messages with IDs can not be dropped. Therefor, there is no trivial reduction
from strongly bounded lossy BDRA with bounded buffers to strongly bounded
degenerative DRA considered in [3]. Furthermore, the definitions of the graph
encoding of configurations and the well-quasi ordering needed in order to instan-
tiate the framework of well-structured transition systems to show decidability
for strongly bounded lossy BDRA with bounded buffer are different from the
ones used to prove the decidability of strongly bounded degenerative DRA in
[3] and more involved.

Related Work. For related work concerning register automata and wireless
Ad-Hoc networks, we refer the reader to the related work section in [3]. In the
following, we mainly compare our work with [3].

The main difference between the two works is the communication modality.
In [3], the communication is done via rendezvous, while in our work, we consider
asynchronous communication through the use of buffers. Both models are Turing
powerful. Also, as it is not obvious how reset transitions can be simulated by dis-
connect transitions, there is no simple reduction of the reachability problem from
one model to the other. Moreover, our model allows a more fine-grained analysis
since we can reason about the acyclicity of the communication graph while the ren-
dezvous communication requires the synchronisation of sender and receiver and
consequently the creation of an implicit cycle in the communication graph.

We show that our general undecidability result and the undecidability result
for BDRA with bounded buffer hold even in the case where the communication
graph is acyclic and all its simple paths are bounded. Our undecidability proofs
are more involved and complicated than in the case of DRA [3] due to the
acyclicity restriction of the communication graph. We show also the decidability
of the reachability problem for strongly bounded BDRA when the underlying
undirected graphs of the network are acyclic. This case was not considered in
[3]. Finally, the graph encoding used for the configurations and the well-quasi
ordering for strongly bounded lossy BDRA are different and more involved than
the ones used in the case of strongly bounded degenerative DRA in [3].

2 Preliminaries

Let A and B be two sets. We use |A| to denote the cardinality of A (|A| = ω if A
is infinite). Let N be the set of natural numbers. For a partial function g : A ⇀ B
and a ∈ A, we write g (a) = ⊥ if g is undefined on a. We use ⊥A to denote the
partial function which is undefined on all elements of A, i.e. ⊥A (a) = ⊥ for all
a ∈ A. Given a (partial) function f : A ⇀ B, a ∈ A and b ∈ B, we denote by

18 P.A. Abdulla et al.

f [a ← b] the function f ′ defined by f ′ (a) = b and f ′ (a′) = f (a′) for all a′ ∈ A
with a �= a′.

Let Σ be an alphabet. We denote by Σ∗ (resp. Σ+) the set of all finite words
(resp. finite non-empty words) over Σ, and by ε the empty word. Let w be a
word over Σ. The length of w is denoted by |w|; we assume that | ε | = 0. For
every j : 1 ≤ j ≤ |w|, we use w(j) to denote the jth letter of w. For every letter
a ∈ Σ, we use a ∈ w to denote that there is an index j such that 1 ≤ j ≤ |w| and
w(j) = a. Let A =

〈
QA, q0A, δA, FA

〉
be a finite state automaton over the alphabet

Σ, with QA being the set of control states, q0A the initial state, δA ⊆ QA×Σ×QA

the transition relation, and FA the set of accepting states. We use L (A) to denote
the regular language accepted by A.

A transducer T over the alphabet Σ is a tuple
〈
QT , q0T , δT , FT

〉
where QT is

the set of control states, q0T is the initial state, δT ⊆ Q×(Σ ∪ {ε})×(Σ ∪ {ε})×Q
is the transition relation and FT is the set of accepting states. A transducer
T induces a binary relation RelT over Σ∗ where two words w1, w2 ∈ Σ∗ are
in relation (w1 RelT w2) if T outputs w2 when accepting w1. If (w1 RelT w2)
we say that w2 is a transduction of w1 by T . Given a word w ∈ Σ∗, we use
T (w) := {w′ ∈ Σ∗| w RelT w′} to denote the set of all possible transductions of
the word w by T . We define the transduction of a language L ⊆ Σ∗ as T (L) :=
{w′ ∈ Σ∗| ∃w ∈ L,w RelT w′}. By induction, we define the ith transduction of L
as follows: T 0 (L) := L and T i+1 (L) := T

(
T i (L)

)
.

Given two finite state automaton A and B and a transducer T , all over the
same alphabet Σ, the transduction problem Transd consists in checking whether
there exits i ∈ N such that T i (L (A)) ∩ L (B) �= ∅.

We define a directed labeled graph (or simply graph) G as a tuple
〈V,Lv, Le, l, E〉 composed of a finite set of vertices V , a set of vertex labels
Lv, a set of edge labels Le, the vertex labeling function l : V → Lv and the set
of labeled edges E ⊆ V × Le × V . A path in G is a finite sequence of vertices
π = v1v2 . . . vk, k ≥ 1, where, for every i : 1 ≤ i < k, there is an a ∈ Le such
that 〈vi, a, vi+1〉 ∈ E. The path is a cycle if v1 = vk and k ≥ 2. The path π is
simple if all vertices in π are distinct, i.e. vi �= vj for all i, j : 1 ≤ i < j ≤ k. We
define length (π) := k − 1. The largest k such that there is a simple path π in
G with length (π) = k is called the diameter of G, and is denoted by ∅(G).

We define a transition system T as a triple 〈C,Cinit,−→〉, where C is a set
of configurations, Cinit ⊆ C is a set of initial configurations, and −→⊆ C × C
is a transition relation. We write c1 −→ c2 if 〈c1, c2〉 ∈−→ and −→∗ to denote
the reflexive transitive closure of −→. A configuration c ∈ C is reachable in T if
there is some cinit ∈ Cinit such that cinit −→∗ c.

3 Buffered Dynamic Register Automata

A network induced by a Buffered Dynamic Register Automaton (BDRA or
buffered DRA) consists of a set of processes. Each process has a unique ID
and is modelled as a finite-state system equipped with a mailbox and a finite
number of registers. The mailbox is the recipient of all messages addressed to that

Verification of Buffered Dynamic Register Automata 19

process. In this paper, we assume that the mailbox is described by a (bounded)
perfect FIFO buffer. The finitely many registers of a process are used to store
the IDs of other processes in the network. A process is allowed to send a mes-
sage (together with a possible content of one of its registers) to the mailbox of
another process only if the ID of the receiver is stored in one of its registers.
A process can receive a message from its mailbox and store a received ID in
one of its registers. Finally, a process can also create (or spawn) a new process,
allowing the number of processes in the network to increase over time.

In the following, we describe the syntax and semantics of BDRA. We intro-
duce its subclass of Lossy BDRA where any process can be disconnected from
the network in a non-deterministic way. Finally, we define the state reachability
problem

Syntax. A BDRA D is a tuple 〈Q, q0,M,X, δ〉 where Q is a finite set of control
states, q0 ∈ Q is the initial state, M is a finite set of messages, X = {x1, . . . , xn}
is a finite set of registers, and δ is a set of transitions, each of the form
〈q1, action, q2〉 where q1, q2 ∈ Q are control states and action is of one of
the following forms:

(i) τ which corresponds to a local action,
(ii) x � create(q) where x ∈ X and q ∈ Q, which creates a new process with a

fresh ID in state q, and stores this fresh ID in the register x of the creating
process,

(iii) m(v) ! y where m ∈ M , v ∈ X∪{⊥, self}, and y ∈ X. This transition sends
the message m together with the value pointed by v to the mailbox of the
process whose ID is stored in register y. Observe that the value pointed by v
is either the content of register v if v ∈ X and v is assigned to a process ID,
the ID of the sending process if v = self or the null value otherwise. This
transition can not be performed if the register y is undefined (i.e. containing
the value ⊥).

(iv) m?x where m ∈ M and x ∈ X, receives a message of the form m(id) and
stores id in its register x if id is a process ID or deletes the content of x
otherwise.

(v) disconnect which disconnects the process from the network by disabling
any possible future communication with any other process. This is done
by (1) reseting (to ⊥) all registers belonging to the disconnecting process
or containing its ID, (2) emptying the buffer of the process, and (3) reset-
ting the ID field in all the messages containing the ID of the process to
undefined.

A BDRA D is said to be lossy if for every state q ∈ Q the transi-
tion 〈q, disconnect 〈x〉 , q〉 is contained in δ (i.e. any process can be discon-
nected from the network at any time). Given a BDRA D = 〈Q, q0,M,X, δ〉,
we define its lossy counterpart Lossy (D) as the tuple 〈Q, q0,M,X, δ′〉 with
δ
′ = δ ∪{〈q, disconnect, q〉 | q ∈ Q}.

Configuration. We use P to denote the domain of all possible process IDs. In
the following, we sometimes refer to a process by its ID. We define a configuration

20 P.A. Abdulla et al.

c of a BDRA D = 〈Q, q0,M,X, δ〉 as a tuple 〈procs, s, r, ch〉, where procs ⊆ P
is a finite set of processes, s : P ⇀ Q is a partial function that associates
each process p ∈ procs with its current state, r : P ⇀ {X ⇀ procs} is a
partial function that maps every process p ∈ procs to its register contents and
ch : P ⇀ (M × (P ∪ {⊥}))∗ maps each process p ∈ procs to the content of
its channel. We use msg (m (id)) = m (respectively Id (m (id)) = id) to denote
the message part (respectively the ID part) of a message tuple m (id). For two
processes p1, p2 ∈ procs and x ∈ X, r (p1) (x) = p2 means that register x of p1
contains the ID of p2. If r (p1) (x) is not defined then register x of p1 is empty.
We use q ∈ c to denote that there is a process p ∈ procs such that s (p) = q.
The set of all possible configurations of D is denoted by C(D). A configuration
c = 〈procs, s, r, ch〉 ∈ C(D) is said to be initial if it contains exactly one process
(i.e., procs = {p} for some p ∈ P) in the initial state (s (p) = q0), whose registers
are empty (r (p) (x) = ⊥,∀x ∈ X) and whose mailbox is empty (ch (p) = ε). The
set of initial configurations is denoted by Cinit(D).

Graph Representation. Let c = 〈procs, s, r, ch〉 be a configuration. We pro-
pose a graph encoding for c in order to show the communication possibilities
between processes. In this encoding, every process is represented by a vertex
labeled with its state. Moreover, if register x ∈ X of a process p1 contains
the ID of another process p2, then there is an edge from the vertex represent-
ing p1 to the vertex representing p2 and the edge is labeled with x. Further-
more, we add edges that represent the potential connectivity between processes
that comes from the message-ID tuples contained in the process mailboxes,
and we label them with the symbol −. Formally, the encoding of the config-
uration c is defined as the graph enc (c) := 〈procs, Q,X ∪ {−} , s, E〉 with
E = {〈p, x, p′〉| r (p) (x) = p′ �= ⊥} ∪ {〈p,−, p′〉| m(p′) ∈ ch (p) and p′ �= ⊥}.

Operational Semantics. We define a transition relation −→D on the set of
configurations C (D) of D. Let c = 〈procs, s, r, ch〉 , c′ = 〈procs′, s′, r′, ch′〉 ∈
C (D) be two configurations. We have c −→D c′ if one of the following conditions
holds:

Local: There is a transition 〈q1, τ, q2〉 ∈ δ and a process p ∈ procs such that
(i) s (p) = q1, (ii) s′ = s[p ← q2], and (iii) procs′ = procs, r′ = r and
ch′ = ch, i.e. processes, registers and mailboxes are left unchanged. A local
transition changes the state of at most one process.

Process Creation: There is a transition 〈q1, x � create(q), q2〉 ∈ δ and a
process p ∈ procs such that: (i) s (p) = q1, (ii) procs′ = procs ∪ {p′}
for some process p′ /∈ procs, i.e. a new process p′ is created, (iii) s′ = s[p ←
q2][p′ ← q], i.e. process p′ is spawned in state q, while the new state of process
p is q2, (iv) r′ = r[p ← r(p)[x ← p′]], i.e. register x of process p is assigned
the ID of the new process p′, and (v) ch′[p′ ← ε], i.e. the new process p′ gets
an empty buffer.

Message Sending: There are two distinct processes p, p′ ∈ procs and a transi-
tion 〈q1,m(v) ! y, q2〉 ∈ δ such that: (i) s (p) = q1 and s′ = s[p ← q2], (ii)
r (p) (y) = p′, i.e. register y of p contains the ID of p′, (iii) procs′ = procs

Verification of Buffered Dynamic Register Automata 21

and r′ = r, and (iv) ch′ = ch[p′ ← ch (p′) · m(id)], where id = r (p) (v) if
v ∈ X, id = p if v = self and id = ⊥ otherwise. Observe that this tran-
sition can not be performed when y is undefined since there is no process
p′ ∈ procs such that r (p) (y) = p′.

Message Receiving: There is a process p ∈ procs and a transition
〈q1,m?x, q2〉 ∈ δ such that: (i) s (p) = q1 and s′ = s[p ← q2], (ii)
ch = ch′[p ← m(id) · ch′ (p)], i.e. channel ch (p) of process p in config-
uration c contains a message of the form m(id) that will be read, (iii)
r′ = r[p ← r(p)[x ← id]], and (iv) procs′ = procs.
Note that id can be empty (id = ⊥) or contain the ID of another process
p′′ ∈ procs.

Process Disconnection: There is a transition 〈q1, disconnect, q2〉 ∈ δ and
a process p ∈ procs such that: (i) s (p) = q1 and s′ = s[p ← q2], (ii)
procs′ = procs, (iii) r′ (p) = ⊥X i.e. all registers of process p are reset,
(iv) for every other process p′ ∈ procs we have, for every register x ∈ X,
either r (p′) (x) �= p and the value of the register is preserved (r′ (p′) (x) =
r (p′) (x)), or r′ (p′) (x) = p and the register is reset (r′ (p′) (x) = ⊥), (v)
ch′(p) = ε, i.e. the channel of process p is emptied, and (vi) for every other
process p′ ∈ procs, every message of the form m(p) in ch (p′) is replaced by
m(⊥).

For c, c′ ∈ C (D), we use c
action−−−−−−→ c′ to denote that c′ can be obtained from

c by the execution of a transition 〈q1, action, q2〉 ∈ δD.

State Reachability. We use T (D) to denote the transition system defined by
the triple 〈C (D) , Cinit (D) ,−→D〉. We say that a state target ∈ Q is reachable
in T (D) if there exists a reachable configuration c = 〈procs, s, r, ch〉 with p ∈
procs and s (p) = target. The problem of checking whether the state target
is reachable or not is the state reachability problem. We use Reach (D, target)
to denote the state reachability of target in D.

Any lossy BDRA is an over-approximation of its non-lossy counterparts in
terms of reachable states. Lemma 1 states that this approximation is exact.

Lemma 1. Let D be a BDRA. Then, D and Lossy (D) reach the same set of
control states.

The idea of the proof is that a buffered BDRA D can simulate any run of
its lossy counterpart Lossy (D) by ignoring any of its disconnecting processes.
More precisely, the simulation is done by letting the network of D follow each
step of the run of the Lossy (D) besides the process disconnecting transitions
that are not present in D.

4 BDRA State Reachability is Undecidable

We give in this section a proof to the following theorem:

Theorem 1. Given a (lossy) BDRA D = 〈Q, q0,M,X, δ〉 and a control state
target ∈ Q, the problem Reach (D, target) is undecidable.

22 P.A. Abdulla et al.

Observe that the reduction used in this proof generates configurations of
which graph encodings contain at most one edge.

Proof Sketch. The proof is carried out by a reduction from the Transd prob-
lem introduced in Sect. 2 which has been proven to be undecidable in [1]. Given
two finite state automata A and B and a transducer T , we first define a BDRA
D that we use in order to build a transduction chain. A transduction chain is
a chain of processes p0, p1, . . . , pm, m ≥ 1, where the first process p0 simulates
automaton A, the last process pm simulates automaton B and all processes in
between (i.e. p2, . . . , pm−1) simulate transducer T . Note that the length of the
chain should be as big as desired. We show in the rest of this section how to
reduce Transd problem to Reach (D, target) for some control state target
that we will define. Note that the graph representations of the configurations
generated by D contain no cycles and that their simple paths are bounded by 1
(Fig. 1 shows the configurations used during the simulation).

Fig. 1. Transd encoding into BDRA.

Reduction. Let A =〈
QA, q0A, δA, FA

〉
and B =〈

QB , q0B , δB , FB

〉
be two

finite state automaton and
T =

〈
QT , q0T , δT , FT

〉
be

a transducer, all over the
same alphabet Σ. We con-
struct the BDRA D =
〈Q, q0,M,X, δ〉 as follows.
Process p0 of the ini-
tial configuration (c0 in
Fig. 1) is in the initial
state q0. Process p0 starts
the simulation by creat-
ing a new process p1 and
moves to a state q0A. The
new process p1 is spawned
in state q0temp and its ID
is saved into register x of
p0 (c1 in Fig. 1). Simula-
tion of automaton A by process p0 can now start: p0 sends all letters generated
by the traversal of automaton A to the channel of the created process p1 (c2 in
Fig. 1). If p0 reaches an accepting state of A, it chooses non-deterministically to
either send an accepting symbol to p1 or to keep traversing A. If p0 decides to
send the accepting symbol, then it stops traversing A and disconnects itself from
the rest of the network (c3 and then c4 in Fig. 1). In state q0temp, the spawned
process p1 makes the non-deterministic choice of either simulating automaton B
or simulating transducer T . It does so by moving either to state q0B or to state q0T .
If it moves to state q0B (c5 in Fig. 1), it will simulate automaton B by reading
from its channel the word sent by p0 and simultaneously traversing automa-
ton B. When reading the acceptance symbol, process p1 checks if it reached an

Verification of Buffered Dynamic Register Automata 23

accepting state of B. If it is the case, the process moves to state target. If not,
it moves to an error state qerror. If instead process p1 made the initial choice of
simulating transducer T (c4 in Fig. 1), then it creates a new process p2 and moves
to state q0T . From state q0T , process p1 will simulate transducer T by reading the
input letters from its channel, traversing T and sending the output letters to the
channel of the next process, here p2. When reading the acceptance symbol from
its channel, process p1 checks if it reached an accepting state in T . If it is the
case, it sends the acceptance symbol to the next process p2, stops simulating T
and disconnects itself from the rest of the network. If not, it moves to an error
state qerror. The newly created process p2 is spawned in state q0temp from which,
again, the choice between simulating B or T will be non-deterministically made.

5 Bounded Buffer BDRA

We saw in the previous section that the undecidability result holds for config-
urations of which the graph encodings contain at most one single edge. This
means that bounding the simple paths in the graph representation of the con-
figurations or not allowing cycles will not bring decidability to the reachability
problem. We consider therefor a rather different direction: bounding the chan-
nels, i.e. we only consider runs of the BDRA where the communication buffers
are under a certain bound l ∈ N. In the following, we first formally define the
state reachability problem with this new restriction. Then we show that the
problem is still undecidable even if buffers are bounded by 1.

Bounded Buffer State Reachability. Let l ≥ 1, D be a BDRA and T (D) =
〈C (D) , Cinit (D) ,−→D〉 be its corresponding transition system. We define the
l-bounded buffer transition system associated with D as the tuple T buf≤l (D) =〈
Cbuf≤l (D) , Cbuf≤l

init (D) ,−→buf≤l
D

〉
where (i) Cbuf≤l (D) ⊆ C (D) is the set of all

possible configurations c = 〈procs, s, r, ch〉 of which channels are bounded by l

(i.e. |ch (p) | ≤ l for every p ∈ procs), (ii) Cbuf≤l
init (D) = Cinit (D) is the set of ini-

tial configurations, and finally (iii) −→buf≤l
D ⊆−→D ∩

(
Cbuf≤l (D) × Cbuf≤l (D)

)

is the transition relation. We say that a state target ∈ Q is reachable in
T buf≤l (D) if there is a reachable configuration c = 〈procs, s, r, ch〉 in T buf≤l (D)
and a process p ∈ procs with s (p) = target. Checking whether target is reach-
able or not in T buf≤l (D) is the l-bounded buffer state reachability problem that
we denote hereafter by BufReach (D, target, l).

Theorem 2. Given a BDRA D and a state target ∈ Q, the 1-bounded buffer
state reachability problem BufReach (D, target, 1) is undecidable.

This result holds even if we forbid cycles and if we impose a bound on the
length of the simple paths in the graph encoding of the configurations.

Proof sketch. The proof is carried out by a reduction from the Transd prob-
lem. More precisely, given two finite state automata A and B and a transducer
T , we define a 1-bounded buffer BDRA D that we use in order to build a

24 P.A. Abdulla et al.

transduction chain p0, p1, . . . , pm of arbitrary length m + 1. Since we dispose of
channels of bounded size, we cannot transmit a word in one chunk and then
transmit its transduction. Instead, we adopt a continuous communication flow,
i.e. words are transmitted symbol by symbol and the transduction operates at
the level of a symbol. One simple way to build the transduction chain consists
in letting process p0 of the initial configuration create a new process p1, then
letting p1 create the next process p2, and so on until some process pm decides
non deterministically to stop the chain construction. We obtain then a chain of
length m + 1. Although this approach fulfils our goal of building a transduction
chain, configurations corresponding to these chains do not have a bound on the
simple paths of their graph encoding. We consider therefor a more intricate chain
building method that generates configurations for which the simple paths of their
graph encoding is bounded (by two). The shape of the generated chain is shown
in Fig. 2. Building such a transduction chain represents the first part of the proof.

Fig. 2. Transduction chain (p0, p1, p2, . . .).

The second part of the
proof consists in show-
ing how the communica-
tion is carried through
the chain. The idea here
is to let processes pir, 0 ≤
i ≤ m, play the role of
relays between each pair
of consecutive processes
(pi, pi+1) of the chain.

They do so by by making use of the boundedness of the buffer and ensuring
that messages they receive from pi and pi+1 match.

6 Strongly Bounded BDRA with Bounded Buffer

Attempts to get decidability for the state reachability problem by bounding the
size of the channels or by bounding the simple paths of the graph encoding
of the configurations were vain. We consider therefor another direction, which
consists, together with bounding the channels, in bounding the simple paths
of the underlying undirected graph of the encoding of the configurations. By
underlying undirected graph, we mean the undirected graph that we obtain
after removing the direction and the labels from the edges. Formally, we define
an undirected graph as a tuple 〈V,Lv, l, E〉, where V is a finite set of vertices,
Lv is a set of vertex labels, l : V �→ Lv is a vertex labeling function and E ⊆
{{v, u}| v, u ∈ V } is a set of edges. Let G = 〈V,Lv, Le, l, E〉 be a labeled directed
graph. We use closure (G) := 〈V,Lv, l, F 〉 to denote its underlying undirected
graph with F := {{u, v}| 〈u, e, v〉 ∈ E}. We extend in a straightforward manner
the definition of diameter to undirected graphs.

In the following, we first define the transition system where only configura-
tions that are bounded in their buffer size and in their undirected graph are
allowed. Then, we give the undecidability result for this subclass.

Verification of Buffered Dynamic Register Automata 25

Strongly Bounded State Reachability with Bounded Buffer. Let k ≥ 1
and l ≥ 1, D=

〈
Qb, q

0
b , δb, Fb

〉
eaBDRAandD T (D) =〈C, (D), Cinit(D),→D

its corresponding transition system. We define the l-bounded buffer,
k-strongly bounded (l, k-strong) transition system associated to D as the tuple
T (l,k) (D) =

〈
C(l,k) (D) , C

(l,k)
init (D) ,−→(l,k)

D

〉
composed of the set of (l, k)-strong

configurations C(l,k) (D) := Cbuf≤l (D)∩{c ∈ C (D)| ∅(closure (enc (c))) ≤ k},
the set of initial configurations C

(l,k)
init (D) := Cinit (D) and the transition relation

−→(l,k)
D :=−→D ∩

(
C(l,k) (D) × C(l,k) (D)

)
. Given a control state target ∈ QD,

checking whether there is a reachable configuration c = 〈procs, s, r, ch〉 in
the transition system T (l,k) (D) such that there is a process p ∈ procs with
s (p) = target is the (l, k)-strong state reachability problem and is denoted by
StrongReach (D, target, k, l).

Theorem 3. Given l ≥ 1, k ≥ 4, a BDRA D =
〈
QD, q0D, δD, FD

〉
and a control

state target ∈ QD, StrongReach (D, target, l, k) is undecidable.

Proof Idea. The proof proceeds by a reduction from Minsky’s two counter
machines to the (1, 4)-strong state reachability problem. A counter is simulated
by a process to which a set of processes are attached. The value of the counter
is defined by the number of such processes. In order to test if a counter is
equal to zero, we make use of the fact that configurations are strongly bounded,
i.e. transition to a configuration for which a simple path is over the bound is
forbidden.

7 Lossy Strongly Bounded BDRA with Bounded Buffer

In this section, we show that the bounded buffer, strongly bounded state reach-
ability problem becomes decidable if we consider lossy BDRA. To that purpose,
we start by providing a more precise graph encoding of configurations where
mailboxes are bounded by some l ∈ N. Then, we state our result and dedicate
the rest of this section to prove it.

Graph Representations for Bounded Buffered Configurations. Let l ≥ 1
be natural number and c = 〈procs, s, r, ch〉 be a configuration with l-bounded
buffers, i.e. |ch (p) | ≤ l for every process p ∈ procs. We propose a new graph
encoding extenc (c) of configuration c in the form of an extension of the pre-
vious encoding enc (p). The new encoding takes into account the presence (and
absence) of every message contained in the mailboxes. Besides representing
processes as vertices and register contents as edges, we encode mailboxes as
follows. Let p ∈ procs be a process. Each message m(id) ∈ ch (p) of index
j, 1 ≤ j ≤ |ch (p) | ≤ l, is encoded with (i) a vertex vjp labeled with (m, j),
(ii) an edge going from the vertex representing p to vj

p and (iii) an edge going
from vj

p to the vertex representing process p′, if id = p′ �= ⊥. Furthermore,
we encode every empty message place holder of index j, |ch (p) | < j ≤ l with

26 P.A. Abdulla et al.

(i) a vertex vj
p labeled by (ε, j) and (ii) an edge going from the vertex rep-

resenting p to vj
p. Formally, the extended encoding is defined by extenc (c) :=

〈procs∪
{
vjp| p ∈ procs, 1 ≤ j ≤ l

}
, Q∪{(m, j)| m ∈ (M ∪ {ε}) , 1 ≤ j ≤ l} ,X∪

{−} , Lc, Ec〉 where the vertex labeling function is given by, Lc(p) = s (p)
for every process p ∈ procs, Lc(vjp) = (msg (ch (p) (j)) , j) for every j :
1 ≤ j ≤ |ch (p) | and Lc(vjp) = (ε, j) for every j : |ch (p) | < j ≤ l, and
the set of edges is given by Ec = {〈p, x, p′〉| r (p) (x) = p′} ∪

{〈
p,−, vjp

〉}
∪{〈

vj
p,−, p′〉| ∃m ∈ M, ch (p) (j) = m (p′)

}
.

Observe that if the diameter of the closure of the graph encoding of some
bounded buffer configuration is bounded by k, i.e. ∅(closure (enc (c))) ≤ k,
then the diameter of the closure of the extended graph encoding of the same
configuration is bounded by at most 2 ∗ k, i.e. ∅(closure (extenc (c))) ≤ 2 ∗ k.

The rest of this section is devoted to the proof of the following theorem.

Theorem 4. The strongly bounded state reachability problem for lossy BDRA
with bounded buffers is decidable.

We show the decidability of the strongly bounded state reachability problem
for lossy BDRA with bounded buffers by a non-trivial instantiation of the frame-
work of Well-Structured Transition Systems (Wsts) [2,11]. We proceed to that
end in several steps. First, we list the three main ingredients required in order to
instantiate the Wsts framework on any transition system T = 〈C,Cinit,−→〉.
Then, we introduce the notion of coverability and show how to reduce the state
reachability problem to it. Finally, we show the applicability of the main ingre-
dients to our problem.

Ordering, Predecessors and Monotonicity. We present in this paragraph
the three main components required for the instantiation of the Wsts frame-
work.

Well-Quasi Ordering: First, we need to define a Well-Quasi Ordering (Wqo)
over the set of configurations C, i.e. a reflexive and transitive binary relation
� over C such that, for every infinite sequence of configurations (ck)k≥0,
there exist i, j ∈ N such that i < j and ci � cj . Let U ⊆ C be a set of
configurations. Using the notion of well-quasi ordering, we can define the
following notions:
• The upward closure of U is the set U↑:= {c ∈ C| ∃c′ ∈ U with c′ � c}.
• U is upward closed if U = U↑.
It has been shown that every upward closed set U can be characterised by
a finite minor set M ⊆ U such that (i) for every c′ ∈ U there is c ∈ M with
c � c′, and (ii) if c, c′ ∈ M and c � c′ then c = c′. We use min to denote the
function which for a given upward closed set U returns one minor set of U .

Computing the minpre: We use Pre (U) := {c| ∃c1 ∈ U, c −→ c1} to denote the
set of predecessors of U . Given a configuration c, we denote by minpre (c) the
set min (Pre ({c}↑) ∪ {c}↑). Providing an algorithm that computes a finite
minpre (c) represents the second ingredient.

Verification of Buffered Dynamic Register Automata 27

Monotonicity: The third ingredient consists in showing that the transition rela-
tion −→ is monotonic with regard to the ordering �, i.e. for every three
configurations c1, c2, c3 ∈ C such that c1 � c2 and c1 −→ c3 there should be
a configuration c4 ∈ C such that c3 � c4 and c2 −→ c4.

Coverability. Given a configuration ctarget ∈ C, the coverability problem asks
whether there is a configuration c′ � ctarget reachable in T . Given that the
three ingredients are provided, the following conditions are sufficient for the
decidability of this problem: (i) For every c ∈ C, we can check whether {c}↑
∩ Cinit �= ∅, and (ii) for every two configurations c1 and c2, it is decidable
whether c1 � c2. The solution for the coverability problem of Wsts suggested
in [2,11] is based on a backward analysis approach. It is shown that starting
from U0 := {ctarget}, the sequence (Ui)i≥0 with Ui+1 := min (Pre (Ui)↑ ∪ Ui↑),
for i ≥ 0 reaches a fix-point and is computable.

In the following, we instantiate the framework of Wsts to show the decid-
ability of the state reachability problem for strongly bounded lossy BDRA with
bounded buffer, but first we need to introduce some notations.

Let l and k be two natural numbers, D = 〈Q, q0,M,X, δ〉 a lossy BDRA,
target ∈ Q a target state and C = C(l,k) (D). We introduce the disconnect
prefix transition relation ���:= disconnect−−−−−−−→

∗
D ◦ −→(l,k)

D . Note that the reflexive
transitive closures of ��� and −→(l,k)

D are identical. Thus, the state reachability

of target in
〈
C,Cinit,−→(l,k)

D

〉
is equivalent to its corresponding problem in

〈C,Cinit, ���〉. Next, we will prove the decidability of the latter problem.
We will show that 〈C,Cinit, ���〉 is a well-structured transition system. Let

Ctarget denote the set of all configurations of the form 〈{p} , s, r, ch〉, composed
of a single process in state target (s (p) = target), whose registers are empty,
and whose channel contains any (finitely many) possible word w ∈ (M ×{⊥})∗ of
length |w| ≤ l. We will define the well-quasi ordering on C in such a way that the
upward closure of Ctarget consists of all configurations c ∈ C with target ∈ c.
It becomes then clear that the coverability of any configuration c ∈ Ctarget in
〈C,Cinit, ���〉 is equivalent to the reachability of target in the same transition
system. We define in the next paragraph an ordering on the set of configurations
C and show that it is a well-quasi ordering.

A Well-Quasi Order on Configurations. We define in this paragraph a
well-quasi ordering on the set of configurations C. The ordering is defined by
using the notion of induced sub-graph embedding �ind on directed graphs defined
as follows. Let G1 = 〈V1, Lv, Le, l1, E1〉 and G2 = 〈V2, Lv, Le, l2, E2〉 be two
directed graphs. We say that G1 is an induced sub-graph of G2, and we write
G1 �ind G2, if there is an injective mapping t : V1 → V2 such that (i) for all
v ∈ V1 we have l1 (v) = l2 (t (v)), and (ii) for all v, u ∈ V1 and a ∈ Le we
have 〈v, a, u〉 ∈ E1 ⇔ 〈t (v) , a, t (u)〉 ∈ E2. The induced sub graph relation on
undirected graphs is defined in a similar manner.

Let c1 = 〈procs1, s1, r1, ch1〉 and c2 = 〈procs2, s2, r2, ch2〉 be two config-
urations from C. We define the ordering � on configurations by c1 � c2 if
extenc (c1) �ind extenc (c2). We can show that, if c1 � c2, then there should

28 P.A. Abdulla et al.

be an injective mapping t : procs1 �→ procs2 such that (i) s2 (t (p)) = s1 (p)
for every p ∈ procs1, (ii) r2 (t (p)) (x) = t (p′) ⇔ r1 (p) (x) = p′ for every
p, p′ ∈ procs1 and every x ∈ X, and (iii) for every p ∈ procs1 with ch1(p) =
m1(id1) . . . mn(idn) for some n we have ch2(t (p)) = m1(id′

1) . . . mn(id′
n) and

for every i : 1 ≤ i ≤ n, if idi = pi ∈ procs1 then id′
i = t (pi), otherwise

idi = id′
i = ⊥.

Based on a result by Ding in [9] and using the fact that the underlying
undirected graph of the configuration encoding is bounded, we can show the
following lemma:

Lemma 2. The relation � is a well-quasi ordering on C.

Monotonicity. Let c1, c2, c3 ∈ C be three configurations such that: c1 � c2
and c1 ��� c3. The goal here is to find a fourth configuration c4 ∈ C such that
c3 � c4 and c2 ��� c4. This can be achieved by disconnecting as many processes
as necessary in c2 in order to obtain a configuration csub equal to c1 modulo
disconnected processes. From there, we let csub take the same transition as the
one taken by c1 to get to c3 and we obtain a configuration c4 such that c3 � c4,
c2

disconnect−−−−−−−→
∗
D csub and csub ��� c4, thus c2 ��� c4.

Lemma 3. The transition relation ��� is monotonic w.r.t. �.

Summary of the Wsts Instantiation. The first sufficient condition for the
decidability of the coverability problem, namely checking whether the upward
closed set {c}↑ of some configuration c contains an initial configuration, is trivial
(we check that c contains one process only, that the process is in state qinit and
that its registers and channels are empty). The second sufficient condition is also
trivial (checking whether c1 � c2 amount to checking graph embedding, which
is decidable). The first ingredient needed in order to use the Wsts transition
system has been provided with Lemma 2, which states that the induced sub-
graph relation on the extended graph encoding of the configurations is a well-
quasi ordering. The second ingredient, i.e. computability of the minpre, is given
by the following lemma.

Lemma 4. Given a configuration c ∈ C, we can effectively compute minpre (c).

The third ingredient, i.e. the monotonicity of the ordering wrt. the transition
relation, is given by lemma 3.

Thus, Lemmas 2, 3 and 4 show that the coverability of the finite set Ctarget

is decidable. Hence, the state reachability problem for strongly bounded lossy
BDRA with bounded buffers is decidable. ��

8 Acyclic Strongly Bounded BDRA with Bounded Buffer

In the following we show the decidability of the reachability problem for strongly
bounded BDRA when the underlying undirected graph of configurations is
acyclic.

Verification of Buffered Dynamic Register Automata 29

Acyclic Strongly Bounded State Reachability with Bounded Buffer.
Let k, l ≥ 1, D=

〈
QD, q0D, δD, FD

〉
be a BDRA and T (D) =〈C, (D), Cinit

(D),→D〉 its corresponding transition system. We define the l-bounded
buffer, k-strongly bounded acyclic ((l, k)-strong acyclic) transition system
associated to D as the tuple T a(l,k) (D) =

〈
Ca(l,k) (D) , C

a(l,k)
init (D) ,−→a(l,k)

D

〉

composed of the set of (l, k)-strong acyclic configurations Ca(l,k) (D) :={
c ∈ C(l,k)| closure (enc (c)) is acyclic

}
, the set of initial configurations

C
a(l,k)
init (D) := Cinit (D) and the transition relation −→a(l,k)

D :=−→D ∩(
Ca(l,k) (D) × Ca(l,k) (D)

)
. Let target ∈ QD be a control state. Checking

whether there is reachable configuration c = 〈procs, s, r, ch〉 in the transi-
tion system T a(l,k) (D) such that there is a process p ∈ procs with s (p) =
target is the (l, k)-strong acyclic state reachability problem and is denoted by
AStrongReach (D, target, l, k).

Theorem 5. Given l ≥ 1, k ≥ 1, a buffered DRA D =
〈
QD, q0D, δD, FD

〉
and

a control state target ∈ QD, AStrongReach (D, target, l, k) is decidable.

Proof Sketch. The proof of Theorem 5 is based on the simple observation that
the processes cannot exchange IDs, otherwise there will be a creation of a cycle
in the underlying undirected graph configuration encodings. Hence, each process
can only receive plain messages (without an ID) from its creator. Furthermore,
at any time each process can send plain messages to a finite number of other
processes (i.e. bounded by the number of registers). Since simple paths are also
bounded, we have that the graph representation of any reachable configuration
is a disjoint union of finite trees. Furthermore, any two processes in two different
disjoint trees can never communicate with each other. This implies that the
acyclic strongly bounded state reachability problem with bounded buffer can
be reduced to the standard reachability problem for finite-state systems. Such a
finite-state system keeps track of at most one tree in which each node corresponds
to a process and its channel. When a tree is split into a finite number of subtrees
due to the creation of new processes or disconnect operations, the finite-state
system can decide in non-deterministic manner, to follow one of these sub-trees.

9 Conclusion

In this paper, we studied the state reachability problem for the class of buffered
DRA. This work is a continuation of [3] where the analysis was carried for DRA
with rendez-vous communication. The problem is undecidable even if we bound
the simple paths and even if we forbid cycles in the communication graph of
the network. Our goal was to investigate sub-classes where state reachability
becomes decidable. To that end, we considered different directions including
bounding the size of the buffers, bounding the simple paths of the underlying
(un)directed communication graph of the network and / or disallowing cycles
in the network. It turned out that many of these restrictions, even combined,
were not sufficient. However, we proved that the problem becomes decidable in

30 P.A. Abdulla et al.

two particular and interesting cases. In the first one, we considered the class of
lossy buffered DRA, in which processes are allowed to disconnect themselves
from the network in a non-deterministic fashion, where we bounded both the
size of the buffers and the simple paths of the undirected communication graph.
The proof was obtained through a non-trivial instantiation of well-structured
transition systems. In the second case, we showed that the number of possible
shapes of the network is finite if we bound the size of the buffers, disallow cycles
and bound the simple paths in the communication graph. As future work, we
think that it is worth checking whether decidability boundary can be lowered by
considering other channel semantics, such as the unordered and the lossy ones.
As future work, we think that it is worth checking whether decidability can be
obtained for more general classes by considering other channel semantics, such
as the unordered and the lossy ones. We also think that an important line of
work would be to study the link between register automata and π-calculus and
to study the relation between our results using the DRA formalism and the work
of Meyer [16] in which π-calculus has been used.

References

1. Abdulla, P.A., Atig, M.F., Rezine, O.: Verification of directed acyclic ad hoc net-
works. In: Beyer, D., Boreale, M. (eds.) FORTE 2013 and FMOODS 2013. LNCS,
vol. 7892, pp. 193–208. Springer, Heidelberg (2013)

2. Abdulla, P., Cerans, K., Jonsson, B., Tsay, Y.: General decidability theorems for
infinite-state systems. In: LICS 1996, pp. 313–321. IEEE Computer Society (1996)

3. Abdulla, P.A., Atig, M.F., Kara, A., Rezine, O.: Verification of dynamic register
automata. In: FSTTCS 2014, pp. 653–665 (2014)

4. Benedikt, M., Ley, C., Puppis, G.: Automata vs. logics on data words. In: Dawar,
A., Veith, H. (eds.) CSL 2010. LNCS, vol. 6247, pp. 110–124. Springer, Heidelberg
(2010)

5. Bollig, B., Cyriac, A., Hélouët, L., Kara, A., Schwentick, T.: Dynamic communicat-
ing automata and branching high-level MSCs. In: Dediu, A.-H., Mart́ın-Vide, C.,
Truthe, B. (eds.) LATA 2013. LNCS, vol. 7810, pp. 177–189. Springer, Heidelberg
(2013)

6. Bollig, B., Hélouët, L.: Realizability of dynamic MSC languages. In: Ablayev, F.,
Mayr, E.W. (eds.) CSR 2010. LNCS, vol. 6072, pp. 48–59. Springer, Heidelberg
(2010)

7. Delzanno, G., Sangnier, A., Zavattaro, G.: Parameterized verification of ad hoc
networks. In: Gastin, P., Laroussinie, F. (eds.) CONCUR 2010. LNCS, vol. 6269,
pp. 313–327. Springer, Heidelberg (2010)

8. Demri, S., Lazic, R.: LTL with the freeze quantifier and register automata. In:
LICS, pp. 17–26. IEEE Computer Society (2006)

9. Ding, G.: Subgraphs and well quasi ordering. J. Graph Theory 16(5), 489–502
(1992)

10. Figueira, D.: Alternating register automata on finite words and trees. Logical Meth-
ods in Computer Science 8(1), 22 (2012)

11. Finkel, A., Schnoebelen, P.: Well-structured transition systems everywhere!. Theor.
Comput. Sci. 256(1–2), 63–92 (2001)

Verification of Buffered Dynamic Register Automata 31

12. Grigore, R., Distefano, D., Petersen, R.L., Tzevelekos, N.: Runtime verification
based on register automata. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013
(ETAPS 2013). LNCS, vol. 7795, pp. 260–276. Springer, Heidelberg (2013)

13. Jurdzinski, M., Lazic, R.: Alternation-free modal mu-calculus for data trees. In:
LICS, pp. 131–140. IEEE Computer Society (2007)

14. Kaminski, M., Francez, N.: Finite-memory automata. Theor. Comput. Sci. 134(2),
329–363 (1994)

15. Lazić, R.S.: Safely freezing LTL. In: Arun-Kumar, S., Garg, N. (eds.) FSTTCS
2006. LNCS, vol. 4337, pp. 381–392. Springer, Heidelberg (2006)

16. Meyer, R.: On boundedness in depth in the pi-calculus. In: IFIP TCS, pp. 477–489
(2008)

17. Neven, F., Schwentick, T., Vianu, V.: Finite state machines for strings over infinite
alphabets. ACM Trans. Comput. Log. 5(3), 403–435 (2004)

18. Sakamoto, H., Ikeda, D.: Intractability of decision problems for finite-memory
automata. Theor. Comput. Sci. 231(2), 297–308 (2000)

19. Tzevelekos, N.: Fresh-register automata. In: POPL. ACM (2011)

Precise and Sound Automatic Fence Insertion
Procedure under PSO

Parosh Aziz Abdulla(B), Mohamed Faouzi Atig, Magnus L̊ang,
and Tuan Phong Ngo

Department of Information Technology, Uppsala University, Uppsala, Sweden
{parosh,mohamed faouzi.atig,magnus.lang.7837,tuan-phong.ngo}@it.uu.se

Abstract. We give a sound and complete procedure for fence insertion
for concurrent finite-state programs running under the PSO memory
model. This model allows “write to read” and “write-to-write” relax-
ations corresponding to the addition of an unbounded store buffers
between processors and the main memory. We introduce a novel machine
model, called the Hierarchical Single-Buffer (HSB) semantics, and show
that the reachability problem for a program under PSO can be reduced to
the reachability problem under HSB. We present a simple and effective
backward reachability analysis algorithm for the latter, and propose a
counter-example guided fence insertion procedure. The procedure infers
automatically a minimal set of fences that ensures correctness of the pro-
gram. We have implemented a prototype and run it successfully on all
standard benchmarks, together with several challenging examples.

1 Introduction

For performance reasons, most of the modern architectures implement weak
memory models [5,16]. Such models allows the reordering of memory instruc-
tions issued by the set of processes. For instance, the most common reordering
is “write to read” which allows that writes to shared memory may be delayed
past subsequent reads from memory. The “write to read” reordering leads to the
Total Store Order (TSO) memory model that is adopted by Sun’s SPARC and
x86 architectures [22,23]. Adding the “write to write” reordering to TSO leads
to the Partial Store Order (PSO) memory model (described in the Sun’s SPARC
architecture [24]). The “write to write” reordering may swap the order between
two writes of the same process if they concern different variables.

The gain in the performance through the use of weak memory models comes
with a price since reasoning about the behavior of even very small programs
running under weak memory models is more difficult and counter-intuitive than
under the usual Sequentially Consistent (SC) memory model. In fact, the SC
memory model is the one that is usually assumed by the programmers where

This work was supported in part by the Swedish Research Council and carried
out within the Linnaeus centre of excellence UPMARC, Uppsala Programming for
Multicore Architectures Research Center.

c© Springer International Publishing Switzerland 2015
A. Bouajjani and H. Fauconnier (Eds.): NETYS 2015, LNCS 9466, pp. 32–47, 2015.
DOI: 10.1007/978-3-319-26850-7 3

Precise and Sound Automatic Fence Insertion Procedure under PSO 33

the program instructions of different processes should appear as if these instruc-
tions are interleaved in a consistent global order. This means that a program
under weak memory models can deviate from its intended behaviour (under the
SC model) and hence violates its specifications. For example, several mutual
exclusion algorithms and produce-consumer protocols become incorrect when
executed under weak memory models. To avoid such undesired behaviours, pro-
grammers can use special memory fence instructions that prevent some reorder-
ing of instructions issued before and after the fence. Then, an important problem
is to find the set of fences that ensures the correctness of programs when run
under a weak memory model without compromising the performance. In fact,
inserting too many fences would result in a degradation of program performance.

In this paper, we present the first precise and sound method for automatic
fence insertion for concurrent finite-state programs running under the PSO mem-
ory model. To this end, we make the following contribution:

• We propose a new model, called the Hierarchical Single-Buffer (HSB), that is
equivalent to the PSO memory model and allows the application of efficient
infinite state model-checking techniques.

• A simple and effective algorithm to solve the reachability problem under HSB,
using a backward analysis algorithm.

• A fence insertion procedure that infers a minimal fence set in order to correct
programs under PSO.

• A prototype that is integrated to Memorax [1–3]. We evaluate our prototype
on a wide range of benchmarks. The download link can be seen in Sect. 6.

Related Work. Weak memory models are an active research area today. Many
techniques have been developed to help programmers, in the form of precise
model-checking algorithms (e.g., [9,10,12]), monitoring and testing tools (e.g.,
[13,14,21]), explicit state-space exploration (e.g., [19,20]), bounded model check-
ing (e.g., [8,17,25]) and program transformations (e.g., [7,11,12]). Most of these
works have focused on different memory models than PSO and thus are not
directly comparable. Almost all the existed works on the PSO memory model are
either (i) based on under-approximation techniques and which leads to sound but
potentially imprecise analysis (e.g., [14,20]), or (ii) based on over-approximations
techniques and which leads to potentially unsound analysis (e.g., [6,15,19]).
Finally, checking safety property for finite-state programs running under TSO
and PSO memory models has been shown to be decidable with a non-primitive
recursive complexity [9,10]. A tool implementing an exact procedure for check-
ing safety properties for programs running under TSO was presented in [1–3].
Our reachability algorithms can be seen as an efficient instance of the work [10]
to the PSO memory model. Moreover, [10] does not discuss fence insertion.

2 Preliminaries

In this section, we introduce some notations and definitions that we use later.

34 P.A. Abdulla et al.

Notation. We use N to denote the set of natural numbers. For sets A and B, we
use [A �→ B] to denote the set of all total functions from A to B and f : A �→ B
to denote that f is a total function that maps A to B. For a ∈ A and b ∈ B,
we use f [a ←↩ b] to denote the function f ′ defined as follows: f ′(a) = b and
f ′(a′) = f(a′) for all a′ �= a.

Let Σ be a finite alphabet. We denote by Σ∗ (resp. Σ+) the set of all words
(resp. non-empty words) over Σ, and by ε the empty word. The length of a word
w ∈ Σ∗ is denoted by |w|; we assume that |ε| = 0. For every i : 1 ≤ i ≤ |w|, let
w(i) be the symbol at position i in w. For a ∈ Σ, we write a ∈ w if a appears
in w, i.e., a = w(i) for some i : 1 ≤ i ≤ |w|. For words w1, w2, we use w1 · w2 to
denote the concatenation of w1 and w2. For a word w �= ε and i : 0 ≤ i ≤ |w|,
we define w � i to be the suffix of w that we get by deleting the prefix of length
i, i.e., the unique w2 such that w = w1 · w2 and |w1| = i.

Set Ordering. Given an ordering 	 on C, we say that 	 is a well-quasi ordering
if for every (infinite) sequence c0, c1, . . . in C, there are i < j with ci 	 cj . The
upward closure of a set C wrt. 	 is defined as C↑:= {c′| ∃c ∈ C, c 	 c′}. A set C
is upward closed if C = C↑. We use Min (C) to denote the minor set of a given
set C wrt. 	, that satisfies the following conditions: (i) for all c ∈ C there is a
c′ ∈ Min (C) such that c′ 	 c, and (ii) for all c, c′ ∈ Min (C), c �= c′ implies c �	 c′.

Transition System. A transition system T is a triple (C, Init,→) where C is a
(infinite) set of configurations, Init ⊆ C is a set of initial configurations, and
→⊆ C × C is a reflexive transition relation. We write c → c′ to denote that
(c, c′) ∈→, and ∗−→ to denote the reflexive transitive closure of →. A run π of T
is of the form c0 → · · · → cn, where ci → ci+1 for all i : 0 ≤ i < n. Then, we
write c0

π−→ cn. We use target (π) to denote cn. Notice that, for configurations
c, c′, we have that c

∗−→ c′ iff c → πc′ for some run π. The run π is said to be a
computation if c0 ∈ Init. A configuration c is said to be reachable if there is a
computation π such that c = target (π). Two runs π1 = c0 → c1 → · · · → cm and
π2 = cm+1 → cm+2 → · · · → cn are said to be compatible if cm = cm+1. Then, we
write π1 • π2 to denote the run π1 = c0 → c1 → · · · → cm → cm+2 → · · · → cn.
Given an ordering 	 on C, we say that → is monotonic wrt. 	 if whenever
c1 → c′

1 and c1 	 c2, there exists a c′
2 such that c2

∗−→ c′
2 and c′

1 	 c′
2. We

say that → is effectively monotonic wrt. 	 if, given the configurations c1, c
′
1, c2

described above, we can compute c′
2 and a run π such that c2

π−→ c′
2.

3 Concurrent Programs under PSO

A concurrent program P has a finite number of finite-state processes, each with its
own program code. Communication between processes is performed by reading
and writing through a shared-memory with finite number of shared variables
and finite domains. First, we introduce the PSO semantics (similar to the one
described in [20]) and its reachability problem. Then we propose a new model,
the HSB model, that we use to analyse programs under the PSO model.

Precise and Sound Automatic Fence Insertion Procedure under PSO 35

3.1 Syntax

We assume a finite set X of variables ranging over a finite data domain V .
A concurrent program is a pair P = (P,A) where P is a finite set of processes
and A = {Ap| p ∈ P} is a set of extended finite-state automata (one automaton
Ap for each process p ∈ P). The automaton Ap is a triple

(
Qp, q

init
p ,Δp

)
where

Qp is a finite set of local states, qinit
p ∈ Qp is the initial local state, and Δp is a

finite set of transitions. Each transition is a triple (q, op, ,′) where q,′ ∈ Qp and
op is an operation. An operation is of one of the following six forms: (i) the “no
operation” nop, (ii) the read operation r(x, v), (iii) the write operation w(x, v), (iv)
the full fence operation mfence, (v) the write-write fence operation sfence, and
(vi) the atomic read-write operation arw(x, v, v′), where x ∈ X, and v, v′ ∈ V .
For a transition t = (q, op,′), we use source (t), operation (t), and target (t) to
denote q, op, and q′ respectively. We define Q := ∪p∈P Qp and Δ := ∪p∈P Δp. A
local state definition q is a mapping P �→ Q such that q(p) ∈ Qp for each p ∈ P .

3.2 PSO Semantics

Transition System. We define the transition system induced by a program run-
ning under the PSO semantics. To do that, we define the set of configurations
and transition relation. A PSO-configuration c is a triple

(
q, b,mem

)
where q is

a local state definition, b : P �→
[
X �→ (V ∪ {�})∗], and mem : X �→ V . Intu-

itively, q(p) gives the local state of process p. The value of b(p)(x) is the content
of the buffer belonging to variable x of p. This buffer associates a sequence of
values from V to the variable x, where each value v represents a write operation
that assigns v to the variable x. The buffer may also contain the write-write
fence symbol � that restricts the ordering of writes. In our model, writes will be
appended to the tail of buffer (the right most one), and fetched from the head
of buffer (the left most one). The head of buffer b(p)(x) is at the index 1, and
the tail of buffer is at the index |b(p)(x)|. Finally, mem defines the state of the
memory (defines the value of each variable in the memory). We use CPSO to
denote the set of PSO-configurations.

We define the transition relation → PSO on CPSO . The relation is induced
by (i) members of Δ; (ii) a set Δ′ :=

{
updatep,x| p ∈ P, x ∈ X

}
where updatep,x

is an operation that updates the memory using the message at the head of the
buffer for variable x of process p; and (iii) a set Δ′′ :=

{
updatep,�| p ∈ P

}
where

updatep,� removes the write-write fence symbol from the head of all the buffers
of process p. For configurations c =

(
q, b,mem

)
, c′ =

(
q′, b′,mem ′), a process

p ∈ P , and t ∈ Δp ∪
{
updatep,x, updatep,�

}
, we write c → tPSOc′ to denote that

one of the following conditions is satisfied.

• Nop: t = (q, nop, q′), q(p) = q, q′ = q [p ←↩ q′], b′ = b, and mem ′ = mem. The
process changes its state while the buffer contents and the memory remain
unchanged.

• Write to store: t = (q,w(x, v), q′), q(p) = q, q′ = q [p ←↩ q′], b′ =
b [p ←↩ b(p) [x ←↩ b(p)(x) · v]], and mem ′ = mem. The write operation is
appended to the tail of the buffer for variable x of process p.

36 P.A. Abdulla et al.

• Memory update: t = updatep,x, q′ = q, b = b′ [p ←↩ b′(p)
[
x ←↩ v · b′(p)(x)

]]
,

and mem ′ = mem [x ←↩ v]. The write at the head of the buffer for x of p is
removed and the memory is updated accordingly.

• Write-write fence update: t = updatep,�, q′ = q, ∀x ∈ X : b = b′ [p ←↩ b′(p)
]

[
x ←↩ � · b′(p)(x)

]
, and mem ′ = mem. The write-write fence symbol � is

removed from the head of all buffers of process p.
• Read: t = (q, r(x, v), q′), q(p) = q, q′ = q [p ←↩ q′], b′ = b, mem ′ = mem, and

one of the following conditions is satisfied. (i) Read own write: There is an
i : 1 ≤ i ≤ |b(p)(x)| such that b(p)(x)(i) = v, and v′ �∈ (b(p)(x) � i) for all
v′ ∈ V . If there is a write in the buffer for x of p then we consider the write at
the tail of the buffer (the right most one of the buffer). This operation should
assign v to x. (ii) Read memory: v′ �∈ b(p)(x) for all v′ ∈ V and mem(x) = v.
If there is no write operation in the buffer for x of p then the value v of x is
fetched from the memory.

• Full fence: t = (q,mfence, q′), q(p) = q, q′ = q [p ←↩ q′], ∀x ∈ X : b(p)(x) = ε,
b′ = b, and mem ′ = mem. A full fence operation may be performed by a
process only if all its buffers are empty.

• Write-write fence: t = (q, sfence, q′), q(p) = q, q′ = q [p ←↩ q′], ∀x ∈ X : b′ =
b [p ←↩ b(p) [x ←↩ b(p)(x) · �]], and mem ′ = mem. A write-write fence operation
adds the symbol � to the tail of all buffers of process p.

• ARW: t = (q, arw(x, v, v′), q′), q(p) = q, q′ = q [p ←↩ q′], b(p)(x) = ε, b′ =
b, mem(x) = v, and mem ′ = mem [x ←↩ v′]. The operation arw(x, v, v′) is
performed atomically. It may be performed by a process only if its buffer for
x is empty. The operation checks whether the value of variable x is v. In
such a case, it changes its value to v′. Note this operation permits to model
instructions like compare-and-swap (or test-and-set) under SPARC [24].

We use c → PSOc′ to denote the reflexive closure of c → tPSOc′ for some
t ∈ Δ ∪ Δ′ ∪ Δ′′. The set InitPSO of initial PSO-configurations contains all
configurations of the form

(
qinit , binit ,mem init

)
where, for all p ∈ P , we have that

qinit(p) = qinitp and binit(p)(x) = ε for all x ∈ X. In other words, each process is in
its initial local state and all the buffers are empty. On the other hand, the memory
may have any initial value. The transition system induced by a concurrent system
under the PSO semantics is then given by (CPSO , InitPSO ,→ PSO).

The PSO Reachability Problem. Given a set Target of local state definitions, we
use Reachable(PSO) (P) (Target) to be a predicate that indicates the reachabil-
ity of one of the following configurations

{(
q, b,mem

)
| q ∈ Target

}
, i.e., whether

a configuration c, where the local state definition of c belongs to Target, is reach-
able. The reachability problem for PSO is to check, for a given Target, whether
Reachable(PSO) (P) (Target) holds or not. We use Target to denote “bad con-
figurations” that we do not want to occur during the execution of the system.
Therefore, we often say that the “program is correct (or safe)” to indicate that
Target is not reachable.

Precise and Sound Automatic Fence Insertion Procedure under PSO 37

3.3 Hierarchical Single-Buffer Semantics

The PSO semantics make use of unbounded perfect FIFO buffers that induces an
infinite transition system. However, the reachability problem under PSO is still
decidable as shown in [9,10]. In fact, it can be solved using the framework of well-
structured transition systems [4]. For the case of TSO, the paper [2] proposes
an ordering partly based on the sub-word relations of the configuration’s buffer
contents. However, because PSO configurations can contain the � symbol (which
can not be lost), a similar ordering is not monotonic wrt. the PSO semantics.
Therefore, our goal is to derive a new semantical model, called the Hierarchi-
cal Single-Buffer model (HSB), that is both equivalent to PSO wrt. reachability
problems and monotonic wrt. some ordering. The buffer contents of HSB con-
figurations will not contain � symbol.

Formal Semantics. A HSB-configuration c is a quadruple
(
q, b,m, z

)
where q is

(as in the case of the PSO semantics) a local state definition, b : P �→ [X �→ V ∗],
m ∈ ([X �→ V] × P × X)+, and z : P �→ N. Intuitively, b(p)(x) is a per process
and variable buffer, the channel m contains messages as triples of the form
(mem, p, x) where mem defines the values of the variables (encoding a memory
snapshot), x is the latest variable that has been written by the process p. Fur-
thermore, z represents a set of pointers (one for each process) where, from the
point of view of p, the word m � z(p) is the sequence of write operations that
have not yet been used for memory updates and the first element of the triple
m(z(p)) represents the memory content. We use CHSB to denote the set of HSB-
configurations. As we shall see below, the channel will never be empty, since it
is not empty in an initial configuration, and since no messages are ever removed
from it during a run of the system (in HSB semantics, the update operation
moves a pointer to the right instead of removing a message in the channel). This
implies (among other things) that the invariant z(p) > 0 is always maintained.
Messages are appended to the tail of the channel (the right most one) that has
index |m|. The bottom of channel, index 1, is the initial message.

Let c =
(
q, b,m, z

)
be a HSB-configuration. For every p ∈ P and x ∈ X,

we use LastWrite (c, p, x) to denote the index of the most recent channel
message where p writes to x or the message with the current memory of p
if the aforementioned type of message does not exist in the channel. For-
mally, LastWrite (c, p, x) is the largest index i : z(p) ≤ i ≤ |m|, such that
m(i) = (mem, p, x) for some mem, or i = z(p) if such m(i) does not exist.

We define the transition relation → HSB on the set of HSB-configurations
as follows. For configurations c =

(
q, b,m, z

)
, c′ =

(
q′, b′,m′, z′), and t ∈ Δp ∪{

updatep, serializep,x

}
where updatep is an operation that updates memory from

the view point of p by increasing z(p) by one, and serializep,x is an operation
that serialises the write (the left most one) at the head of the buffer b(p)(x) into
a new message at the tail of m, we write c → tHSBc′ to denote that one of the
following conditions is satisfied:

• Nop: t = (q, nop, q′), q(p) = q, q′ = q [p ←↩ q′], b′ = b, m′ = m, and z′ = z.
The operation changes only local states.

38 P.A. Abdulla et al.

• Write to store: t=(q,w(x, v), q′), q(p)=q, q′=q [p ←↩ q′], b′ = b [p ←↩ b(p) [x ←↩ b(p)(x) · v]],
m′ = m, and z′ = z. The write operation is added to the tail of b(p)(x).

• Serialize: t=serializep,x, q′ = q, b = b′ [p ←↩ b′(p)
[
x ←↩ v · b′(p)(x)

]]
, m(|m|) is

of the form (mem1, p1, x1), m′ = m · (mem1 [x ←↩ v] , p, x), and z′ = z. A new
message is serialised to the head of the channel. The values of the variables
in the new message are identical to those in the previous last message except
that the value of x has been updated to v. Moreover, we include the updating
process p and the updated variable x.

• Update: t = updatep, q′ = q, b′ = b, m′ = m, z(p) < |m| and z′ =
z [p ←↩ z(p) + 1]. An update operation performed by a process p is simulated
by moving the pointer of p one step to the right. This means that we remove
the oldest write operation that is yet to be used for a memory update. The
removed element will now represent the memory contents from the point of
view of p.

• Read: t = (q, r(x, v), q′), q(p) = q, q′ = q [p ←↩ q′], b′ = b, m′ = m,
z′ = z, and one of the following conditions is satisfied: (i) Read own write:
b(p)(x)(|b(p)(x)|) = v. If there is a write on x in the buffer for x of p then we
consider the most recent of such write operations (the right most one in the
buffer). (ii) Read memory: m(LastWrite (c, p, x)) = (mem1, p1, x1) for some
mem1, p1, x1 with mem1(x) = v, b(p)(x) = ε. If there is no write operation in
the buffer for x of p then the value v of x is fetched from the memory. Note
that b(p)(x) always does not contain the symbol �.

• Full fence: t = (q,mfence, q′), q(p) = q, q′ = q [p ←↩ q′], b′ = b, ∀x ∈ X :
b(p)(x) = ε, b′ = b, m′ = m, z′ = z, and z(p) = |m|. A full fence operation
may be performed by a process p only if all its buffers are empty, and process
p is observing the most recent message.

• Write-write fence: t = (q, sfence, q′), q(p) = q, q′ = q [p ←↩ q′], b′ = b, ∀x ∈
X : b(p)(x) = ε, m′ = m, and z′ = z. A write-write fence operation requires
all previous writes of p to be serialised before continuing, hence a write of p
cannot reorder past a sfence.

• ARW: t = (q, arw(x, v, v′), q′), q(p) = q, q′ = q [p ←↩ q′], b′ = b, b(p)(x) = ε,
z(p) = |m|, m(|m|) is of the form (mem1, p1, x1), mem1(x) = v, m′ = m ·
(mem1 [x ←↩ v′] , p, x), and z′ = z [p ←↩ z(p) + 1]. The fact that the buffer is
empty from the point of view of p is encoded by the equality z(p) = |m|. The
content of the memory can then be fetched from the right most element m(|m|)
in the channel. To encode that the buffer is still empty after the operation
(from the point of view of p) the pointer of p is moved one step to the right.

We define the sets update := ∪p∈P updatep, serializex := ∪p∈P serializep,x, and
serialize := ∪x∈Xserializex. We use c → HSBc′ to denote that c → tHSBc′ for some
t ∈ Δ ∪ {update, serialize}. The set InitHSB of initial HSB-configurations of the
form

(
qinit , binit ,minit , zinit

)
where |minit | = 1, and for all p ∈ P , we have that

qinit(p) = qinitp , binit(p)(x) = ε, and zinit(p) = 1. In other words, each process is
in its initial local state. The channel contains a single message, say of the form
(meminit , pinit , xinit), where mem init represents the initial value of the memory.
The memory may have any initial value. Also, the values of pinit and xinit are

Precise and Sound Automatic Fence Insertion Procedure under PSO 39

not relevant since they will not be used in the computations of the system. The
pointers of all processes point to the first position in the channel. Moreover, all
buffers are all empty. The transition system induced by a concurrent system
under the HSB semantics is then given by (CHSB , InitHSB ,→ HSB).

The HSB Reachability Problem. In a similar manner to the case of PSO, we
define the predicate Reachable(HSB) (P) (Target), and define the reachability
problem for the HSB semantics. The following theorem states equivalence of the
reachability problems under the PSO and HSB semantics.

Theorem 1. For a finite-state program P and a local state definition Target,
the reachability problems are equivalent under the PSO and HSB semantics.

4 The HSB Reachability Algorithm

We present an algorithm to check HSB reachability problem for a given set
Target. Then according to Theorem 1, we can solve the PSO reachability prob-
lem. First, we define an ordering 	 on the set of HSB-configurations. We then
show that it satisfies two properties: (i) it is well-quasi ordering (wqo), and (ii)
the HSB relation → HSB is effectively monotonic wrt. 	. Recall that the term
well-quasi ordering and effectively monotonic are defined in Sect. 2.

4.1 Ordering

We define Active (c) := min {z(p)| p ∈ P} for a HSB-configuration c =(
q, b,m, z

)
. In other words, the part of m to the right of (and including)

Active (c) is “active”, while the left part is “dead” in the sense that it is not
needed for computations starting from c.

Given two HSB configurations c =
(
q, b,m, z

)
and c′ =

(
q′, b′,m′, z′).

Define j := Active (c) and j′ := Active (c′). We write c 	 c′ to denote
that: • (i) q = q′; • (ii) for every p ∈ P and x ∈ X, there is a mapping
gp,x : {1, 2, . . . , |b(p)(x)|} �→

{
1, 2, . . . , |b′(p)(x)|

}
such that the following condi-

tions are satisfied: for every i, i1, i2 ∈ {1, 2, . . . , |b(p)(x)|}, (1) i1 < i2 implies
gp,x(i1) < gp,x(i2), and (2) b(p)(x)(i) = b′(p)(x)(gp,x(i)); • (iii) there is a map-
ping h : {j, j + 1, . . . , |m|} �→ {j′, j′ + 1, |m′|} such that the following conditions
are satisfied: for every i, i1, i2 ∈ {j, j + 1, . . . , |m|}, (1) i1 < i2 implies h(i1) <
h(i2), (2) m(i) = m′(h(i)), (3) LastWrite (c′, p, x) = h(LastWrite (c, p, x)) for
all p ∈ P and x ∈ X, (4) z′(p) = h(z(p)) for all p ∈ P ; • (iv) For every p ∈ P
and x ∈ X, one of the following condition holds: (1) if b(p)(x)(|b(p)(x)|) = v
then b′(p)(x)(|b′(p)(x)|) = v, or (2) if b(p)(x) = ε then b′(p)(x) = ε.

The conditions (ii-1) and (iii-1) mean that g and h are strictly monotonic.
The condition (ii) indicates that b(p)(x) is a sub-word of b′(p)(x). The conditions
(iii-1,2) present the active part of m is a sub-word of the active part of m′. The
conditions (iii-2,3) ensure the last write indices wrt. all processes and variables
are consistent. The conditions (iii-2,4) ensure each process points to identical

40 P.A. Abdulla et al.

elements in m and m′. The last condition (iv) shows that the two buffer are
empty or contains the same element at the tail of buffers (the right most ones).

We get the following lemma about the ordering on HSB-configurations.

Lemma 1. The relation 	 is a well-quasi ordering on HSB-configurations.

Proof. The lemma is an immediate consequence of the fact that: (1) the subse-
quence relations (ii) and (iii) are well-quasi orderings on finite words [18], and
(2) the number of states (i), pointers (iii-4), observed memory states (iii-2), and
last writes (iii-3) and (ii) that should be equal, is finite.

The following lemma shows the effectively monotonicity of HSB-transition
relation wrt. 	.

Lemma 2. → HSB is effectively monotonic wrt. 	.

Proof. We show that give HSB-configurations c1, c′
1, and c2 such that c1 →

HSBc′
1 and c1 	 c2, there exists an HSB-configuration c′

2 and a run π satisfying:
c2 → πHSBc′

2 and c′
1 	 c′

2. Let h and gp,x be the mappings defined by c1 	 c2.
We will consider each transition t ∈ Δp ∪

{
updatep, serializep

}
for some p ∈ P

such that c1 → tHSBc′
1, and show that c2 → πHSBc′

2 for some c′
2 and π. Then

because a run is a concatenation of some transitions, we have the proof.

• Nop: t = (q, nop, q′), select c′
2 such that c2 → tHSBc′

2. Because nop operation
only change the local state of c1 to c′

1 and of c2 to c′
2, and c1 	 c2, we have

c′
1 	 c′

2.
• Write to store: t = (q,w(x, v), q′), select c′

2 such that c2 → tHSBc′
2. We add

a value to b(p)(x) of c1, and we add the same value to b(p)(x) of c2. Hence
the condition (ii) and (iv) hold. Because in this transition we only change the
buffers and local states, and c1 	 c2, we have c′

1 	 c′
2.

• Read: t = (q, r(x, v), q′), select c′
2 such that c2 → tHSBc′

2. We do not change the
buffers and channel, and require process p to observe x with value v. Because
conditions (iii-3) and (iv), c′

2 exists. Because of c1 	 c2, we have c′
1 	 c′

2.
• Serialize: t=serializep,x. This transition takes an element from buffer for x of p

and send a message to channel. The same element exists in c2 and will make
the same message when serialised. However, there might be more elements
in buffer for x of p of c2 that must be serialised before that element can be
reached. Select a run π as a sequence of serialised transitions of p on x will do

this work. Formally, select π = c2
serializep,x−−−−−−→ · · · serializep,x−−−−−−→︸ ︷︷ ︸ c′

2. In other words, π

will serialise all p’s writes to x up to and including the one that corresponds to
the one that is being serialised in c1. Because π only removes the element from
buffer for x of p, the same message is created at the end of channels of both
c1 and c2. Since neither t nor π change the local states or pointers, and the
serialised operation changes the LastWrite (c1, p, x) and LastWrite (c2, p, x)
in both two configurations to a new consistent message, we have c′

1 	 c′
2.

Precise and Sound Automatic Fence Insertion Procedure under PSO 41

• Update: t = updatep. This transition advances the pointer of p to a more recent
message. However, the corresponding message in c2 might not be immedi-
ately following the message currently pointed by p. But by performing several
updates, the pointer in c2 can be advanced to the message corresponding to

the more recent message in c1. Formally, select π = c2
updatep−−−−→ · · ·

updatep−−−−→︸ ︷︷ ︸ c′
2.

Since the pointer of p in c1 has been forwarded from z(p) to z(p) + 1, and the
pointer of p in c2 has moved from h(z(p)) to h(z(p) + 1), (iii-4) holds. Also
(iii-3) holds between c′

1 and c′
2 because of (iii-3,4) and c1 	 c2. Then we have

c′
1 	 c′

2.
• ARW: t = (q, arw(x, v, v′), q′), select c′

2 such that c2 → tHSBc′
2. This transition

performs all read, write, serialise, and update as a single operation. Above we
show that any operation of read, write, serialise, and update operations is an
effectively monotonic operation. The arw requires p’s buffer of x to be empty
in c2. This requirement holds because the p’s buffer of x is empty in c1 and
because of (ii). The arw also requires the p’s pointer to be on the last message,
but it must be the case in c2 if it is in c1. Suppose that this requirement does
not hold. Then because the pointer of p points to the last message in channel
in c1 (the one at the tail of channel), (1) the last message in channel of c2
(the one at the tail of channel) does not have a corresponding message in
channel of c1. But (2) the last message of c2 must be the LastWrite (c2, p′, y)
for some p′ ∈ P, y ∈ X (because some process must add more messages after
the position LastWrite (c2, p, x)). (1) and (2) make (iii-3) not hold. This is a
contradiction. Thus c′

2 exists, and c′
1 	 c′

2.
• Full fence and write-write fence cases are trivial, because we do not change

anything for buffers and channels.

4.2 Reachability Algorithm

Recall that the terms upward closure, upward closed set, and minor set are
defined in Sect. 2. We define the pre-set Pre (C) of a set C as Pre (C) := {c′|

Algorithm 1:
input Target of local state definitions.
output: “u” if ¬Reachable(HSB) (P) (Target), “r” otherwise.

1 W ← Min
({(

q, b,mem
)

| q ∈ Target
})

;

2 F ← ∅;
3 while W �= ∅ do
4

5 O ← Min
(
Pre
({

c′}↑) ∪ {c′});
6 foreach c ∈ O do
7 if ∃c0 ∈ InitHSB : c � c0 then return “r”;
8 if ∃f ∈ F : f � c then discard c;
9 else

10 W ← W \ {w ∈ W| c � w} ∪ {c};
11 F ← F ∪ {c};
12 return “u”;

42 P.A. Abdulla et al.

∃c ∈ C, t ∈ Δ∪{update, serialize} , c′ → tHSBc}. Bellow we present our algorithm
to check the HSB reachability problem using the ordering 	 that is well-quasi and
monotonic wrt. → HSB . The algorithm performs backward reachability analysis
from the set of configurations that are defined by Target. It inputs a finite set
Target, and checks the predicate Reachable(HSB) (P) (Target). If the predicate
does not hold then Algorithm 1 returns “u” (unreachable), otherwise it returns
“r” (reachable). It maintains a working set W that contains detected configura-
tions that need to be checked. If one of configuration in W can be reached by
a configuration c smaller than the initial configurations (in the sense that there
exists a computation c0 from InitHSB such that c 	 c0), the finite set Target
also can be reachable (line 7). The set F is a set of all analysed configurations.

Initially, W has all elements from a minor set of Target, and F is an empty
set. At the beginning of each iteration, the algorithm picks and removes a con-
figuration c′ from the set W. Then it computes the set O that is a minor set of
c′ and all configurations that can reach a configuration in {c′}↑ in one transi-
tion t, t ∈ Δ ∪ {update, serialize}. For each minor element c, it checks whether
the element is smaller than an initial configuration. If yes, it returns “r”. If
not, it checks whether c is presented in F (in the sense that F already has a
configuration f such that f 	 c). If yes then c can be discarded. Otherwise
the algorithm performs the following operations: (i) discards all elements w of
W that c 	 w, (ii) adds to W the configuration c, and (iii) adds c to F . The
algorithm terminates when W is empty and return “u’’.

Theorem 2. The reachability algorithm always terminates.

Proof. An immediate consequence of the framework of well-structured transi-
tion systems from [4] and the fact that it is possible to compute the finite sets
Min

({(
q, b,mem

)
| q ∈ Target

})
and Min (Pre ({c′}↑) ∪ {c′}) for a configuration

c′ in the same manner as done in [2].

We can modify the Alg. 1 to return a trace (if exists) from a configuration
in InitHSB to a configuration in Bad =

{(
q, b,mem

)
| q ∈ Target

}
in the form

t0 · t1 . . . tn−1 such that there is a computation: π = c0
t0−→ c1

t1−→ · · · tn−1−−−→ cn

with c0 ∈ InitHSB and cn ∈ Bad. Indeed, in the algorithm for each configuration
c we keep the trace from this configuration to one configuration in Bad. Initially,
all configurations in W have empty traces (line 1). There are two more positions
in the algorithm we need to modify. At line 5, when we calculate the list of
configurations Pre ({c′}↑), we add the corresponding transition to the current
trace of c′. We do the similar modification in line 10.

5 Fence Insertion

In this section we describe our fence insertion procedure that given a set of bad
configurations, we can find a minimal set of fences to avoid these configurations
under PSO. A minimal fence set is the one sufficient for correctness; and if we
remove any fences from this set, we violate the correctness. There are cases when

Precise and Sound Automatic Fence Insertion Procedure under PSO 43

these fence sets do not exist because the program can reach to bad configurations
even under SC semantics. In this case we return an empty set. Bellow we fix a
configuration ci =

(
q

i
, bi,mi, zi

)
with 0 ≤ i ≤ n.

Fence Inference. We will identify the set of points along a trace returned
by Algorithm 1, π = c0

t0−→ c1
t1−→ · · · tn−1−−−→ cn with c0 ∈ InitHSB and

cn ∈ Bad with Bad =
{(

q, b,mem
)
| q ∈ Target

}
, in which (i) read opera-

tions overtake write operations, or (ii) write operations overtake write oper-
ations, and derive the set of fences such that any one of them forbids an
overtaking, NewFences(π) := NewFencesmfence(π) ∪ NewFencessfence(π). The set
NewFencesmfence(π) (or NewFencessfence(π)) can prevent write-read overtaking (or
write-write overtaking) in π.

First, we show how to find the set of NewFencesmfence(π) for π. Define ni :=
|mi|+Σp∈P,x∈Xbi(p)(x). We define a sequence of functions α0, α1, . . . , αn where
αi(j) (with 1 ≤ j ≤ ni) associates to each element in the channel mi or buffers
bi the position in π of the corresponding write transition. Note that the lowest
index element (index 1) is the initial message in the channel, and the highest
index element (index ni) is the newest element added to buffers. We define
α0, α1, . . . , αn in a recursive way. (i) At the beginning, c0 contains only initial
values in the channel, and all buffers are empty, α0(j) is undefined for all 1 ≤
j ≤ n0. (ii) The first element in buffers and channel is the initial message in
channel, therefore αi(1) is undefined also. (iii) If ti+1 is not a write operation
then the number of elements in buffers and channel are not changed, define
αi+1 := αi. (iv) Otherwise, we define αi+1(j) := αi(j) if 2 ≤ j ≤ ni, and define
αi+1(ni + 1) := i + 1. The definition (iv) means that a new write operation will
add a new element to the tail of one buffer, and for this element we associate i+1.
Next, we find the write transitions that have been overtaken by read operations.
We define a function OverRead such that if ti (with 1 ≤ i ≤ n) is a read transition
then OverRead(π)(i) gives the positions of write transitions in π that have been
overtaken by ti. Formally, if ti is not a read then define OverRead(π)(i) := ∅.
Otherwise, ti = (q, r(x, v), q′) ∈ Δp for some p ∈ P , define OverRead(π)(i) :={
αi(j)| LastWrite (ci, p, x) < j ≤ ni ∧ tαi(j) ∈ Δp

}
. In other words, we consider

the process p that performed ti and the variable x that is read by p in ti.
We search for pending write operations are issued by p and associated with
elements in buffers and channel that are not updated to the memory. Now define
NewFencesmfence(π) :=

{
q

k
(p)| ∃i, j : 1 ≤ i ≤ n, j ∈ OverRead(π)(i), j ≤ k < i

}
.

In other words, it is necessary to insert a mfence fence at least one position
between a pair (j, i) for each i : 1 ≤ i ≤ n and each j ∈ OverRead(π)(i) in order
to eliminate at least one of write-read overtaking.

Second, we show how to find the set of NewFencessfence(π) for π in a sim-
ilar way. Define n′

i := |mi|. We define a sequence of function γ0, γ1, . . . , γn

where γi(j) (with 1 ≤ j ≤ n′
i) associates to each element in the channel mi

the position in π of the write transition that is correspond to the element. We
define γ0, γ1, . . . , γn in a recursive way. (i) γ0(j) is undefined for all 1 ≤ j ≤ n′

i.
(ii) γi(1) is undefined also. (iii) If ti+1 is not a serialised operation then define

44 P.A. Abdulla et al.

γi+1 := γi. (iv) Otherwise, we define γi+1(j) := γi(j) if 2 ≤ j ≤ n′
i, and define

γi+1(n′
i + 1) := i + 1. Next, we find the write transitions that have been over-

taken by write operations. We define a function OverWrite such that if ti (with
1 ≤ i ≤ n) is a write transition then OverWrite(π)(i) gives the positions of
write transitions in π that have been overtaken by ti. Formally, if ti is not a
write then define OverWrite(π)(i) := ∅. Otherwise, ti = (q,w(x, v), q′) ∈ Δp

for some p ∈ P , define OverWrite(π)(i) := {αi(j)‖LastWrite (ci, p, x) < j ≤
ni, tαi(j) ∈ Δp,∃1 ≤ k1 < k2 ≤ n′

n : γn(k1) = ti ∧γn(k2) = tαi(j)}. Now define

NewFencessfence(π) :=
{

q
k
(p)| ∃1 ≤ i ≤ n, j ∈ OverWrite(π)(i), j ≤ k < i

}
.

Algorithm 2: Fence Insertion.

input Target of local state definitions.

1 W ← {∅};
2 while true do
3

4 if Reachable(HSB) (P⊕ F) (Target) then
5 N ← NewFences(π);
6 if N = ∅ then return ∅;
7 foreach f ∈ N do
8 F ′ ← F ∪ {f};
9 if ∃F ′′ ∈ W : F ′′ ⊆ F ′ then discard F ′;

10 else W ← W ∪ {F ′};
11 else
12 return F ;

Algorithm. We present our fence insertion algorithm (Algorithm 2). The algo-
rithm takes a concurrent finite-state program P, a finite set Target, and returns
a minimal set of fences that is sufficient to make the program safe wrt. Target.
If this set is empty then we conclude that the program cannot be corrected by
placing fences. It means that the program is not safe (i.e. can reach to Target)
even under SC semantics. The algorithm uses a set, namely W, for sets of fences
that have been partially constructed (but not yet large enough to make the pro-
gram correct). During each iteration, a set F is picked and removed from W.
We use the HSB reachability analysis algorithm (Algorithm 1) to check whether
the set F is sufficient to make the program correct. If yes, we return F as a
possible set of minimal fences. If no, we compute the set of fences N such that
inserting a member of N will eliminate one overtaking in the trace generated by
Algorithm 1. We use P ⊕ F to denote the program we get by inserting a set of
fences F to P, and use π for the trace. For each f ∈ N we add F ′ = F ∪ {f} back
to W unless there is already a subset of F ′ in W.

Theorem 3. For a concurrent finite-state program P and a finite set Target,
Algorithm 2 terminates and returns a minimal set of fences wrt. P if the set
exists, or an empty one otherwise.

6 Experimental Results

Tool. We have implemented our techniques from Sects. 3–5 for reachability
analysis and fence insertion of programs under PSO semantics to Memorax1.
1 https://github.com/margnus1/memorax

https://github.com/margnus1/memorax

Precise and Sound Automatic Fence Insertion Procedure under PSO 45

The current version of Memorax only applies for TSO semantics [2]. We compare
our method with state-of-the-art tools: Remmex [20] (a tool based on state-space
verification with acceleration for program analysis wrt. safety properties under
TSO and PSO), and Musketeer [6] (a static analysis tool for correctness analysis
wrt. robustness property under weak memory model). We compare based on
two criteria: number of fences and the running time. We run the experiments
using an Intel x86-32 Core2 2.4 Ghz machine and 4GB of RAM on 16 programs
used as benchmarks in [2,6,19,20]. The results are given in Table 1. For each
experiment, we report the number of processes (#P), the number of detected
fences (#F) (including mfence and sfence if possible), the running time in sec-
onds (#T). Musketeer does not make difference between mfence and sfence, so
we put the total number of fences for it.

Table 1. Analyzed concurrent program.

Program #P Memorax Remmex Musketeer

#F #T # #T #F #T

SimDek 2 2 m,0 s 1.0 2 m,0 s 2.2 6 1.0

Dekker 2 4 m,0 s 2.2 4 m,0 s 4.8 10 1.0

LamBak 2 4 m,2 s 1253.7 4 m,2 s 9.3 8 1.0

Dijkstra 2 2 m,0 s 5.0 2 m,0 s 5.5 8 1.0

LamFast2 2 4 m,2 s 241.6 4 m,2 s 12.9 12 1.0

Peterson 2 2 m,2 s 4.1 2 m,2 s 7.6 6 1.0

Burns 2 2 m,0 s 1.0 2 m,0 s 4.2 6 1.0

IncSeq 2 0 m,0 s 1.0 0 m,0 s 104.3 0 1.0

Szymanski 2 3 m,0 s 3.3 3 m,0 s 5.8 10 1.0

AltBit 2 0 m,0 s 49.4 0 m,0 s 2.2 4 1.0

CLHQLock 2 • OM 0 m,0 s 3.1 • TO

TaskSched 2 0 m,0 s 153.2 0 m,0 s 3.0 0 1.0

Pgsql 2 2 m,1 s 5.4 2 m,1 s 22.82 4 1.0

TickSLock 2 0 m,0 s 24.5 0 m,0 s 5.03 2 1.0

RevBarrier 2 0 m,0 s 2.4 0 m,0 s 1.5 4 1.0

SpinLock 2 0 m,0 s 1.0 0 m,0 s 1.4 1 1.0

For all experiments, we set up the time out to 1800 seconds. If a tool runs
out of time (resp. memory), we put “TO” (resp. “OM”) in the #T column, and
• in #F column. We use “m” for mfence and “s” for sfence. Bellow we summarise
the main observations: (i) Memorax successfully finds the minimal fence sets in
15/16 experiments, and only fails in one test because of running out memory
(CLHQLock). The minimal fence sets of Memorax and Remmex are the same. (ii)
The running time of Memorax and Remmex are compatable (Memorax is better

46 P.A. Abdulla et al.

in 9 examples, and Remmex is better in 7 ones). (iii) Musketter is the fastest
tool, but also fails in CLHQLock test as Memorax does. However, in most cases
(13/15), Musketter returns redundant fences that are not optimal. Especially,
AltBit, TickSLock, RevBarrier, and SpinLock are declared to be safe under PSO
according to Memorax and Remmex, but still need fences using Musketter.

7 Conclusion

We have presented a precise and sound automatic fence insertion method for con-
current finite-state programs under PSO memory model. We have introduced a
new HSB semantics that is equivalent to PSO semantics in the sense of reachabil-
ity problems, we use a backward analysis to solve the HSB reachability problem.
In the case of an unsafe program under PSO but safe under SC, we propose a
counter-example algorithm to find a minimal fence set to correct it. We prove the
efficiency of our approach by running several benchmarks including challenging
ones in existed methods.

References

1. Abdulla, P.A., Atig, M.F., Chen, Y.-F., Leonardsson, C., Rezine, A.: Automatic
fence insertion in integer programs via predicate abstraction. In: Miné, A., Schmidt,
D. (eds.) SAS 2012. LNCS, vol. 7460, pp. 164–180. Springer, Heidelberg (2012)

2. Abdulla, P.A., Atig, M.F., Chen, Y.-F., Leonardsson, C., Rezine, A.: Counter-
example guided fence insertion under TSO. In: Flanagan, C., König, B. (eds.)
TACAS 2012. LNCS, vol. 7214, pp. 204–219. Springer, Heidelberg (2012)

3. Abdulla, P.A., Atig, M.F., Chen, Y.-F., Leonardsson, C., Rezine, A.: Memorax, a
precise and sound tool for automatic fence insertion under TSO. In: Piterman, N.,
Smolka, S.A. (eds.) TACAS 2013 (ETAPS 2013). LNCS, vol. 7795, pp. 530–536.
Springer, Heidelberg (2013)

4. Abdulla, P.A., Cerans, K., Jonsson, B., Tsay, Y.-K.: General decidability theorems
for infinite-state systems. In: LICS, pp. 313–321 (1996)

5. Adve, S., Gharachorloo, K.: Shared memory consistency models: a tutorial. Com-
puter 29(12), 66–76 (1996)

6. Alglave, J., Kroening, D., Nimal, V., Poetzl, D.: Don’t sit on the fence. In: Biere,
A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 508–524. Springer, Heidelberg
(2014)

7. Alglave, J., Kroening, D., Nimal, V., Tautschnig, M.: Software verification for weak
memory via program transformation. In: Felleisen, M., Gardner, P. (eds.) ESOP
2013. LNCS, vol. 7792, pp. 512–532. Springer, Heidelberg (2013)

8. Alglave, J., Kroening, D., Tautschnig, M.: Partial orders for efficient bounded
model checking of concurrent software. In: Sharygina, N., Veith, H. (eds.) CAV
2013. LNCS, vol. 8044, pp. 141–157. Springer, Heidelberg (2013)

9. Atig, M.F., Bouajjani, A., Burckhardt, S., Musuvathi, M.: On the verification
problem for weak memory models. In: POPL, pp. 7–18. ACM (2010)

10. Atig, M.F., Bouajjani, A., Burckhardt, S., Musuvathi, M.: What’s decidable about
weak memory models? In: Seidl, H. (ed.) ESOP 2012. LNCS, vol. 7211, pp. 26–46.
Springer, Heidelberg (2012)

Precise and Sound Automatic Fence Insertion Procedure under PSO 47

11. Atig, M.F., Bouajjani, A., Parlato, G.: Getting rid of store-buffers in TSO analysis.
In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 99–115.
Springer, Heidelberg (2011)

12. Bouajjani, A., Derevenetc, E., Meyer, R.: Checking and enforcing robustness
against TSO. In: Felleisen, M., Gardner, P. (eds.) ESOP 2013. LNCS, vol. 7792,
pp. 533–553. Springer, Heidelberg (2013)

13. Burckhardt, S., Musuvathi, M.: Effective program verification for relaxed memory
models. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 107–120.
Springer, Heidelberg (2008)

14. Burnim, J., Sen, K., Stergiou, C.: Testing concurrent programs on relaxed memory
models. In: ISSTA, pp. 122–132. ACM (2011)

15. Dan, A., Meshman, Y., Vechev, M., Yahav, E.: Effective abstractions for verifica-
tion under relaxed memory models. In: D’Souza, D., Lal, A., Larsen, K.G. (eds.)
VMCAI 2015. LNCS, vol. 8931, pp. 449–466. Springer, Heidelberg (2015)

16. Gharachorloo, K., Gupta, A., Hennessy, J.: Performance evaluation of memory
consistency models for shared-memory multiprocessors. In: ASPLOS 1991, pp. 245–
257 (1991)

17. Gopalakrishnan, G.C., Yang, Y., Sivaraj, H.: QB or not QB: an efficient execution
verification tool for memory orderings. In: Alur, R., Peled, D.A. (eds.) CAV 2004.
LNCS, vol. 3114, pp. 401–413. Springer, Heidelberg (2004)

18. Higman, G.: Ordering by divisibility in abstract algebras. Proc. London Math. Soc.
(3) 2(7), 326–336 (1952)

19. Kuperstein, M., Vechev, M.T., Yahav, E.: Partial-coherence abstractions for
relaxed memory models. In: PLDI, pp. 187–198. ACM (2011)

20. Linden, A., Wolper, P.: A verification-based approach to memory fence insertion in
PSO memory systems. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013 (ETAPS
2013). LNCS, vol. 7795, pp. 339–353. Springer, Heidelberg (2013)

21. Liu, F., Nedev, N., Prisadnikov, N., Vechev, M.T., Yahav, E.: Dynamic synthesis
for relaxed memory models. In: PLDI, pp. 429–440. ACM (2012)

22. Owens, S., Sarkar, S., Sewell, P.: A better x86 memory model: x86-TSO. In:
Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS,
vol. 5674, pp. 391–407. Springer, Heidelberg (2009)

23. Sewell, P., Sarkar, S., Owens, S., Nardelli, F.Z., Myreen, M.O.: X86-TSO: a rigorous
and usable programmer’s model for x86 multiprocessors. Commun. ACM 53(7),
89–97 (2010)

24. SPARC International, Inc., The SPARC Architecture Manual Version 9 (1994)
25. Yang, Y., Gopalakrishnan, G., Lindstrom, G., Slind, K.: Nemos: a framework for

axiomatic and executable specifications of memory consistency models. In: IPDPS.
IEEE Computer Society (2004)

Model Checking Dynamic Distributed Systems

C. Aiswarya(B)

Uppsala University, Uppsala, Sweden
aiswarya.cyriac@it.uu.se

Abstract. We consider distributed systems with dynamic process cre-
ation. We use data words to model behaviors of such systems. Data words
are words where positions also contain some data values from an infinite
domain. The data values are seen as the process identities. We use an
automata with a stack and registers to model a distributed system with
dynamic process creation. The non-emptiness checking of these automata
is NP-Complete. While satisfiability of first order logic over data words is
undecidable, we show that model checking such an automata against full
MSO logic (with data equality and comparison predicates) is decidable.

1 Introduction

Distributed systems with a pre-defined finite set of processes have been stud-
ied extensively. However, verification of distributed systems with unbounded set
of processes or those with dynamic process creation has received relatively little
attention. One reason might be the additional difficulty in modeling and model
checking caused by the unbounded set of processes. Most of the distributed sys-
tems we encounter in our everyday life, like internet, creates processes dynami-
cally. Hence verification of distributed systems with dynamic process creation has
become a necessity, needless to say it is interesting in its own with the scope of
extending the frontiers from bounded number of processes to a dynamic setting.

There has been an increasing interest in the verification of systems with
unbounded number of processes in the recent years. Most of these works describe
the system by describing the local processes in the system. For obtaining decid-
ability in the shared memory setting (1) the processes are assumed to be anony-
mous, and (2) often a bound on the number of context switched per process
is assumed to obtain decidability (cf. [3]). In the message passing setting, such
systems have been considered as parametrised systems (see [1,6,8,9]). In the
parametrized setting, each individual process has a finite control and fixed set
of registers to store the identities of some of the other processes and possibly a
stack to model recursion.

A global description of such systems is interesting, mainly for protocol spec-
ifications. In [14], grammars were used to model global descriptions of systems
with dynamic process creation. It was shown that model checking these gram-
mars against MSO is decidable. In [10] the authors study how to synthesize the
local implementations of processes from a global grammar specification.

c© Springer International Publishing Switzerland 2015
A. Bouajjani and H. Fauconnier (Eds.): NETYS 2015, LNCS 9466, pp. 48–61, 2015.
DOI: 10.1007/978-3-319-26850-7 4

Model Checking Dynamic Distributed Systems 49

Instead of the grammars of [14], a very powerful automata based formalism
was proposed in [7] for global descriptions of systems with dynamic process
creation. The formalism called data-multi-pushdown automata has registers and
multiple stacks which can store (an unbounded number of) process identities.
This model supported dynamic process creation by injecting “fresh” process
identities into the system (values that have not been used in the history). The
main (and surprising) result of [7] states that model checking of these automata
against monadic second order logic (MSO) augmented with predicates for data-
(dis)equality tests is decidable.

This paper is closely related to [7]. We consider a model which is a restric-
tion and at the same time an extension of the data-multi-pushdown system. We
restrict to models with only one stack (instead of multiple stacks). On the other
hand, we extend the transition guards to perform data inequality tests (in addi-
tion to the (dis)equality tests if [7]). We demonstrate the modelling power of
this formalism with several examples. We show that the decidability of model
checking against MSO holds for this model as well, even though the MSO has
predicates for data equality/disequality/inequality tests. We study control state
reachability problem for this model (as opposed to full MSO model checking) in
hope of obtaining better complexity. We show that it is in fact NP complete.

There has been many works on languages of data-words and logics for them
which do not assume freshness (cf. [4,5,11–13]).

2 Data Words to Model Protocols

Notation. The set of natural numbers {1, 2, . . .} is denoted by IN. A ranked
alphabet is a pair (A, arityOf) where A is a set, and arityOf : A �→ IN is a map-
ping. Abusing notations, we sometimes write A to denote the ranked alphabet
(A, arityOf). Given a ranked alphabet (A, arityOf) and a (potentially infinite) set
B, we denote by AB the set {a(b1, . . . , bn) | a ∈ A,n = arityOf(a) and bi ∈ B}.

2.1 Data Words

A (multi-dimensional) data word, over a finite ranked alphabet (A, arityOf) and
an infinite data domain D, is a sequence of elements from ΣD. Consider a data
word w ∈ Σ∗

D. By symAt(i)(w) we denote the letter at position i of w. For k ≤
arityOf(symAt(i)), we denote the kth data value at position i by dataAt(k)(i)(w).
For example, suppose w = a1(d11, . . . , d

1
n1

)a2(d21, . . . , d
2
n2

)a3(d31, . . . , d
3
n3

)
Then symAt(i)(w) = ai and dataAt(k)(i)(w) = di

k if k < ni.

2.2 Dynamic Distributed Systems (DDS)

A Dynamic Distributed Systems (DDS) consists of a collection of processes.
Each process in the system has a unique identifier (called pid). We fix the set of
process identifiers of any DDS to be IN.

50 C. Aiswarya

We consider DDS capable of performing two types of atomic events:
(a) create, and (b) message. Each of these events have two participating
processes. For create, we have the creating process and the created process.
For message, we have the sender and the receiver. The created process will be
a fresh (non existing) process, while the creating process as well as the sender
and the receiver are assumed to be already existing in the system.

We assume the pid of the created process to be bigger (in the natural order)
than that of any existing process. This is in accordance with the pid assigning
conventions in Unix. This convention facilitates determining which process is
more recent by comparing their process ids.

A message can have the message contents, which we denote by a predefined
message type and the set of (existing) process ids appearing in the message. The
number of process ids that appear in a message is determined by the message
type. Let the finite ranked alphabet (Messages = {a, b, . . .}, arityOf) be the pre-
defined message types. For each a ∈ Messages we have arityOf(a) ≥ 2, since two
pids are required to specify the sender and the receiver. In fact arityOf(a) − 2
gives the number of process ids that are transmitted from the sender to the
receiver in a message of type a.

The set of events of DDS is given by finite ranked alphabet (Events =
{create} ∪ Messages, arityOf). We have arityOf(create) = 2, and arityOf(a) for
a ∈ Messages is inherited from the ranked alphabet (Messages, arityOf) defined
before.

An event is an element of EventsIN. The behavior of a DDS is a data word
from Events∗

IN.

Example 1. Consider the following data word over ({create, msg}, arityOf)
where arityOf(create) = arityOf(msg) = 2.

w1 = create(1, 2) create(2, 3) msg(3, 1) create(3, 4)
msg(2, 1) create(4, 5) msg(5, 1) msg(4, 1).

This behaviour can be visualised graphically as depicted in Fig. 1. The
sequence of events taking place on process i is given in the left to right order on
the horizontal line next to i. �	

1

2

3

4

5

Fig. 1. A trace

Model Checking Dynamic Distributed Systems 51

Example 2 (Peer-to-peer protocol). Consider the set of data words of the form
(where m,n ∈ IN and m < n)

wn,m = create(1, 2) create(2, 3) . . . create(n − 1, n)
req(n, n − 1, n) req(n − 1, n − 2, n) . . . req(m − 1,m, n)
msg(m,n)msg(n,m) msg(m,n)msg(n,m) . . . msg(m,n)msg(n,m).

These set of words describe a dynamic peer to peer protocol. The informal
description of the protocol is as follows. There is a creation phase in which the
processes are created in a cascade fashion. After that the last created process
is in search for a peer and requests its parent to be one. It can either accept,
or refuse by passing the request from its child on to its parent. This continues
for a while until one process decided to be the peer, and then peer-peer commu-
nication takes place between these two (by msg events). If the request reached
the process 1, it is forced to be a peer, since it cannot forward the request to its
parent. Note that the messages in the request phase needs to carry the identity
of the requesting process in its contents.

Figure 2 depicts the peer-to-peer protocol with n = 6 and m = 2. The data
word is obtained by writing down the events in the left to right order. �	

Example 3. Consider a DDS which creates processes to form a tree architecture
like in Fig. 3. This word can be represented by a depth-first-search listing of the
create events. For e.g. in Fig. 3 it is given by the dataword tree:

tree = create(1, 2) create(2, 3) create(3, 4) create(3, 5) create(2, 6)

create(1, 7) create(7, 8) create(8, 9) create(8, 10) create(10, 11).

This can be followed by a request propagating from the leftmost leaf to the right
most leaf only through the leafs (i.e. the request message scans the yield of the
tree from left to right). This is similar to the seeking phase in the peer-to-peer
protocol. A data word for this phase in the example is seek:

seek = req(4, 5, 4) req(5, 6, 4) req(6, 9, 4) req(9, 11, 4).

6

5

4

3

2

1

6

6

6

6

Fig. 2. A peer-to-peer protocol.

52 C. Aiswarya

Finally, the rightmost leaf (peer) sends a message directly to the leftmost leaf
(msg(11, 4)). Thus a data word representation of Fig. 3 is tree seek msg(11, 4).

This example can be seen as modeling the search for a distant relative in
a social network. The green part of the tree shows the family tree. The leaves
are the current generation. The leaves know only their closest relatives in the
current generation (their left and right neighbors in the left-to-right ordering
of the leaves). A person in the present generation (process 4) wants to find a
kin peer. The request for such a peer must be propagated along the current
generation. (Older generations are perhaps dead!) �	

Remark 1. The behaviors of DDS are data words over EventsIN. However any
data word over EventsIN need not have an interpretation as the behavior of a
DDS. For example, create(1, 2)create(2, 1) is a valid data word, but it cannot
be seen as the behavior of a DDS since an existing process cannot be created.
The dataword create(2, 1) is also not a valid behavior, since the pid of the newly
created process needs to be bigger than the existing processes.

Remark 2. It might be a bit annoying to see that we have used sequences to
represent the behaviors of a DDS. This looks like it captures only linearzations
of the distributed behavior. However, as we will shortly see, the specification
language we use is powerful enough to recover the concurrency information from
a linearization.

2.3 Monadic Second Order Logic over Data Words

Now we describe a powerful specification language to reason about the properties
of data words. We use an extension of MSO over words to data words. In addition
to the MSO over words, it allows comparison of data values.

We assume countably infinite supplies of first-order and second-order vari-
ables. We let x, y, . . . denote first-order variables, which vary over positions in

1

2

3

4 5

6

7

8

9 10

11

4

4 4

4

Fig. 3. A distant-relative search (Colour figure online).

Model Checking Dynamic Distributed Systems 53

the word, and we use X,Y, . . . to denote second-order variables, which vary over
sets of positions in the word.

Definition 1 (MSO logic over data words). The class MSOd(Events) of
monadic second-order (MSO) formulas over data words is given by the following
grammar, where a ranges over Events, and k, � are at most the maximum rank
of any letter in Events:

ϕ ::= a(x) | d<
k,�(x, y) | d=k,�(x, y) | x ≤ y | x ∈ X | ¬φ | φ ∨ φ | ∃xφ | ∃Xφ

If the free variable x is interpreted as position i of a data word w, then
the formula a(x) holds if symAt(i)(w) = a. If the free variable x and y are
interpreted as positions i and j respectively, then the formula d=k,�(x, y) holds
if dataAt(k)(i)(w) = dataAt(k)(�)(w). Semantics of Formula d<

k,�(x, y) is similar
but requires dataAt(k)(i)(w) < dataAt(k)(�)(w) instead of dataAt(k)(i)(w) =
dataAt(k)(�)(w). Formula x ≤ y, the boolean connectives, and quantifiers are
self-explanatory. We may use the usual abbreviations x < y, ∀xφ, φ → ψ . . .

If φ is a sentence, i.e., it does not have any free variable, then we set L(φ) to
be the set of data words w such that w |= φ.

Example 4. Consider the property that any process which requests for a peer
eventually gets a peer. This can be said by the following formula: ∀x req(x) →
∃y(y > x ∧ msg(y) ∧ d=3,2(x, y)) . That is, if there is a “req” event, then there
is a “msg” event in the future such that the parameter of “req” event and the
receiver of the “msg” event are the same.

Example 5. Consider a property that the participants of any message are always
leaves, i.e., they do not create other processes. This can be said by the formula
∀x¬create(x) → ¬∃y create(y) ∧ (d=1,2(y, x) ∨ d=1,1(y, x))

Example 6. Messages are always sent from younger processes to older processes
can be said by the formula ∀xmsg(x) → d<

2,1(x, x)

Example 7. Every created process eventually sends a message to the “root”
process. This can be said by the formula ∃x (min(x) ∧ ∀y (create(y) →
∃y′ (d=2,1(y, y′)∧d=1,2(x, y′)))). The formula holds in the data word w of Example 1
(Fig. 1).

Example 8. This example demonstrates that the our logic is powerful enough to
express causal dependencies, though it is evaluated on linearizations. The prop-
erty that every two events are causally dependent can be said by the following
formula. ∀x∀y(x � y ∨ y � x) where x � y := (x ≤ y ∧

∨
i,j∈{1,2} d=i,j(x, y))∗. We

do not explicitly give this formula, but transitive closure is definable in MSO.

3 Data Pushdown Automata

A data pushdown automata is a finite state automaton equipped with a stack
and a finite set of registers. It can remember data values by either storing it in
registers or by pushing it to the stack.

54 C. Aiswarya

All registers except one are undefined in the beginning. The undefined reg-
isters hold a special value ⊥. The defined registers hold the pid of the initial
(root) process.

The stack symbols come from a ranked alphabet Z, and the stack contains
words from Z∗

IN. Only the contents of those registers with a proper pid can be
pushed onto the stack. Thus the stack does not contain ⊥. Similarly the registers
can be rewritten by only pids. Thus a register if ever gets to store a pid, it will
never hold ⊥ again.

At any state the automaton may (optionally) pop the topmost letter on the
stack, while storing the associated data-values (pids) to some registers. Then it
can perform an event involving the data values in the registers. Then it may
(optionally) push another letter from ZIN to the stack where the data-values
come from the current register contents. Finally it reassigns the register values,
and updates its state.

The infinite set of transition labels allow a finite abstraction by writing the
register name which contains the data value rather than the actual data value.
Let R be the finite set of register names. The set of such abstract events is
EventsR. That is, EventsR = {a(r1, . . . rn) | a ∈ Events, n = arityOf(a) and
ri is a register name from the set R}. The abstract pop and push actions can
be described using ZR. The letter Z(r1, . . . , rn) ∈ ZR for a pop action means
that, upon popping the letter Z(d1, . . . , dn) ∈ ZIN the data-values d1, . . . , dn are
stored in registers r1, . . . , rn respectively. Similarly, for a push action denoted
by the letter Z(r1, . . . , rn) ∈ ZR means that that the letter Z(d1, . . . , dn) ∈ ZIN
is actually pushed into the stack where d1, . . . , dn are the data-values stored in
registers r1, . . . , rn respectively.

A subtle point in our model is the semantics of create event. If it executes
a create event, the data value in the target register is rewritten by a “fresh”
value which is higher than any of the data values used so for. This freshness is
very crucial for our decidability results.

We define these notions formally.

Definition 2 (Data pushdown automaton). Let k ≥ 0. A k-register
data pushdown automaton (DPA) over Events is a 7-tuple A =
(S,Z, s0, r0, Z0, F,Δ) where S is a finite set of states, Z is a finite ranked alpha-
bet of stack symbols, s0 ∈ S is the initial state, r0 is the initial state, Z0 ∈ Z
is the start symbol with arityOf(Z0) = 0, and F ⊆ S is the set of final states.
Moreover, Δ is a set of transitions of the form τ = (s,A(r1, . . . , rn), α, upd, ρ, s′)
where s, s′ ∈ S are states, A(r1, . . . , rn) ∈ ZR, α ∈ EventsR and upd ∈ Z∗

R
and ρ : [k] �→ [k] is an injective partial functions.

We let ConfA := S × (IN ∪ {⊥})� × IN × Z∗
IN denote the set of configurations

of A. Configuration γ = [s, r, max, w] with r = (d1, . . . , d�) says that the current
state is s, the content of register ri is di, all the data values which have already
been used are at most max, and the stack content is w ∈ Z∗

IN where we assume
that the topmost symbol is written last. If some di is ⊥, then the register ri is
undefined.

Model Checking Dynamic Distributed Systems 55

Now, consider a transition τ = (s,A(ri1 , . . . , rin), α, upd, ρ, s′). It is enabled
at a configuration γ = [s, r, max, w] if the conditions E1 . . . E5 are satisfied.

E1 w = w′ A(d′′
1 , . . . , d′′

n)

Before listing the remaining conditions, we first define an auxiliary register
assignment r′ which represents the effect of the pop on r. Define r′ = (d′

1, . . . , d
′
�
)

where d′
i =

{
d′′

j if i = ij

di otherwise.

E2 If ri ∈ pre-image(ρ), then one of the following must hold:
– d′

i �= ⊥ or
– α = create(-, ri).

E3 If α = create(ri,−), then d′
i �= ⊥.

E4 If α = a(rj1 , rj2 , . . . rj�), then for all k ∈ {1, . . . �}, we have d′
jk �= ⊥.

E5 if B(rk1 , rj2 , . . . rkm) is present in upd then for each i ∈ {k1, . . . , km}, either
d′

i �= ⊥ or α = create(-, ri).

That is, for τ to be enabled at γ (1) the top stack symbol of γ should match
that of the transition, (2) the register assignment should not overwrite a defined
register with ⊥, (3) and (4) the pids executing the event and message contents
must exist (or the corresponding register names must be defined), and (4) the
symbol ⊥ is never written to the stack.

Now, we define the effect of an enabled transition τ at a configuration γ.
Consider a register assignment function σ : R �→ IN. We say that σ is suitable
for γ and τ , if it can represent the effect of a create event (if applicable). That

is σ is suitable for γ and τ if σ(ri) =

{
d > max if α = create(-, ri)
d′

i otherwise.
. That is,

the in the case of a create event, the target register should be assigned a value
larger than max.

For every γ and τ there exists infinitely many suitable register assignment
functions. If α = a(r1, . . . , rn) ∈ EventsR, we let σ(α) be a(σ(r1), . . . , σ(rn)).
We lift this notion to words in Events∗

R as well: σ(uv) = σ(u)σ(v).
If τ is enabled at γ and if σ is a suitable register assignment function, the

automaton A can execute τ under σ generating σ(α). Then it moves into a
new configuration γ′ = [s′, r′, max′, w′′] with max′ = max(max, maxiσ(ri)), w′′ =
w′σ(upd) and r′ = (σ(ρ−1(r1)), . . . , σ(ρ−1(r�))) where we set ρ(ri) = ri if ri /∈
image(ρ). In this case we write γ

σ(α)
=⇒σ,τ γ′.

A configuration of the form [s0, (d,⊥, . . . ,⊥), d, Z] with d ∈ IN is called initial,
and a configuration [s, r, d, w] such that s ∈ F is called final. A run of A on
u ∈ Events∗

IN is a sequence γ0
α1=⇒σ1,τ1 γ1

α2=⇒σ2,τ2 . . .
αn=⇒σn,τn

γn such that
u = α1 · · · αn and γ0 is initial. The run is accepting if γn is final. We let L(A) :=
{u ∈ Events∗

IN | there is an accepting run of A on u} be the language of A.

Example 9. A DPA for the peer-to-peer protocol (cf. Example 2) is given in
Fig. 4. It uses three registers. We need only one extra stack symbol with arityOf
1. Hence we remove this symbol in the figure for readability.

56 C. Aiswarya

1 2 3 4

create(r1, r3)
push(r1), r1 ← r3

r3 ← pop
req(r2, r3, r1)

r2 ← r3
r3 ← pop

req(r1, r3, r1)
r2 ← r3 msg(r2, r1) msg(r1, r2)

msg(r2, r1)

Fig. 4. A DPA for peer-to-peer

1 2 3

6 5 4

create(r1, r2)
push(r1), r1 ← r2 r1 ← pop

create(r1, r2)
push(r1), r1 ← r2

create(r1, r2)
r3 ← r2, r4 ← r2

create(r1, r2)
push(r1), r1 ← r2

create(r1, r2)

msg(r3, r2, r4)
r3 ← r2

r1 ← pop

create(r1, r2)
push(r1), r1 ← r2

msg(r3, r4)

Fig. 5. A DPA for distant-relative search

Example 10. The DPA given in Fig. 5 accepts the distant-relative search example
(cf. Example 3).

The control state reachability problem asks, given a data pushdown automata
A = (S,Z, s0, r0, Z0, F,Δ) and a state target ∈ S, whether there is an initial
run of A of the form γ0

α1=⇒σ1,τ1 γ1
α2=⇒σ2,τ2 . . .

αn=⇒σn,τn
γn where γn is of the

form [target, r, d, w]. The non-emptiness problem asks, given a data pushdown
automata A = (S,Z, s0, r0, Z0, F,Δ), whether the language of A is non-empty
(i.e., L(A) �= ∅). The control state reachability problem and the non-emptiness
problem are inter-reducible.

4 Non-emptiness of DPA

We show the complexity of non-emptiness of DPAs in this section.

Theorem 1. Non-emptiness checking of data pushdown automata is NP-
Complete

Proof. We show the NP hardness by reducing 3-CNF-SAT to the non-emptiness
problem of DPA. The problem 3-CNF-SAT which is given below is a well known
NP-Complete problem. Let V = {v1, . . . vn} be a set of propositional variables.

Model Checking Dynamic Distributed Systems 57

By V , we denote the set {v1, . . . , vn}, the set of negations of propositional vari-
ables. Let Lit = V ∪ V be the set of literals.

Input: ϕ ≡
∧m

i=1 Ci where Ci = �i
1 ∨ �i

2 ∨ �i
3 and �i

j ∈ Lit for 1 ≤ j ≤ 3.
Question: Is there a satisfying truth assignment of the variables V such
that ϕ evaluates to true?

Our reduction is as follows. On the input ϕ, we construct an DPA Aϕ as
given in the Fig. 6. Remember that �i

j is actually some vk or vk. Thus Aϕ uses
2n + 1 registers: R = {x0} ∪ Lit. On going from state si−1 to state si the run
defines one and only one of the two registers vi and vi. Thus on reaching state
sn, the configuration corresponds to a unique truth assignment: The register
vi is defined if and only if the propositional variable vi is set to true by the
truth assignment, and the register vi is defined if and only if the propositional
variable vi is set to false by the truth assignment. Thus there is a run from s0
to sn corresponding to every truth assignment, and there is a truth assignment
corresponding to every run from s0 to sn. The run can be extended to reach
the state s′

1 if and only if the current truth assignment satisfies the clause C1.
Inductively, the run can be extended to reach the state s′

i if and only if all the
clauses C1, . . . Ci are satisfiable by the current truth assignment. Hence there is
an accepting run of the DPA Aϕ if and only if φ is satisfiable. This proves the
NP-hardness. Notice that, non-emptiness is NP hard without using the stack.

We now describe the NP algorithm.
From the DPA A = (S,Z, s0, r0, Z0, F,Δ), we obtain a classical pushdown

automata (over finite alphabet) as follows. The set of states of the pushdown
automata is SR. The set of stack symbols of the pushdown automata is the
unranked alphabet Z (i.e., only the symbols of the ranked alphabet (Z, arityOf)).
Intuitively, a state (s,R) corresponds to a configuration of A where the state is
s and the set of defined registers is precisely R ⊆ R. If the DPA has a transition
τ = (s,A(ri1 , . . . , rin), α, upd, ρ, s′), then the pushdown automata has transition
of the form ((s,R), A, α, symAt(upd), (s′, R′)) where

– symAt(upd) corresponds to the word in Z∗ obtained by projecting to the
symAt() of upd.

– If α is of the form create(ri, rj) then ri ∈ R ∪ {ri1 , . . . , rin}, i.e. ri must be
defined. Further R′ = R ∪ {ri1 , . . . , rin} ∪ {rj}.

– If α is of the form α(rj1 , . . . , rjm) where α �= create, then for each rjk , rjk ∈
R ∪ {ri1 , . . . , rin}, i.e. rik must be defined. Further R′ = R ∪ {ri1 , . . . , rin}.

Since we do not have any guards with data value comparisons in the transitions
of the DPA A, if this pushdown automata has an accepting run, then the DPA
also has an accepting run.

However, since the pushdown automata is exponential sized, the construction
of this pushdown automata is too expensive for an NP algorithm. Hence, instead
of constructing the automata, we will make some clever guesses to remain in NP.

Notice that the set of defined registers is monotonously non decreasing along
any run. Our NP procedure guesses an ordering among the registers and assume

58 C. Aiswarya

that the registers are added into the “defined” set only in this order. Let X1 ⊆
X2 ⊆ . . . ⊆ X� be the sequence of defined registers in this order. That is, Xi be
the set of first i registers that are defined according to this guessed order.

First we translate the given DPA into another one which on each transition
either (a) pops a symbol from the stack but does not push, or (b) push one symbol
to the stack, but does not pop, or (c) does not push or pop. This translation causes
only a linear blowup in the size of the input DPA. Then, for each transition τ , we
pre-compute min(τ) the minimum set of registers needed to be defined in order to
enable τ . We also compute fin(τ), which is the resulting set of defined registers if
τ was executed at min(τ). The pre computation can be done in polynomial time,
since we are associating just two sets to every transition of the DPA A.

Then we have a saturation based reachability algorithm which tries to popu-
late sets Rj

i ⊆ S × S with 1 ≤ i < j ≤ k. Note that, the number of sets Rj
i is

k(k + 1)/2. These sets can be populated simultaneously in polynomial time. The
intended meaning of the set Rj

i is that, if (s, s′) ∈ Rj
i , then if the all registers in Xi

are defined, then the automaton can reach state s′ from s, resulting in a new defined
set of registers which is exactly Xj . We explain the computation of Rj

i below.
The set Rj

i is initiated to the reflexive relation on states. Then for each pair of
complementary transitions τ = (s, ,−, A, , s′) and τ ′ = (t, A,−, ,−, t′), the pair
(s, t′) is added to all sets Rj

i such that there exists i′, j′ with (a) min(τ) ⊆ Xi, (b)
Xi′ ⊆ Xi ∪ fin(τ), (c) (s′, t) ∈ Rj′

i′ , (d) min(τ ′) ⊆ Xj′ and (e)Xj ⊆ Xj′ ∪ fin(τ ′).
After each iteration, if no new pair could be added to any set Rj

i , the procedure
terminates as it has reached the fixed point. The number of iterations needed is
polynomial (|S|2 ×k2) since the maximum size of these sets is bounded. Finally,
the automaton is non-empty if (s0, sf) is present in some Rj

i for some sf ∈ F .
Thus our NP procedure guesses an ordering of the registers in which they

are defined. Once this ordering is guessed, it verifies in polynomial time whether
this guess can indeed lead to an accepting run.

Remark 3. Notice that, our convention of keeping the registers undefined in the
beginning is very crucial for our NP-completeness. We could imagine a different
semantics for DPA where the registers hold arbitrary but distinct values at the
initial configuration. With such a definition, the non-emptiness checking odd
DPA would be in P. We can indeed construct a pushdown automata abstracting
away from pids. The pushdown automata checks whether a transition is enabled
by checking the top symbol of the stack. The register values are irrelevant. Thus
the emptiness checking of this variant of the DPA boils down to the emptiness
checking of a polynomial sized pushdown automata.

5 MSO Model Checking

In fact, not only reachability but also model checking against powerful MSOd

turns out to be decidable for data pushdown automata.

Theorem 2. Given a DPA A and an MSOd formula φ, it decidable to check
whether L(A) ⊆ L(φ).

Model Checking Dynamic Distributed Systems 59

s0 s1 s2 . . . sn

s′
1s′

2
. . .s′

m

c(x0, v1)

c(x0, v1)

c(x0, v2)

c(x0, v2)

c(x0, v3)

c(x0, v3)

c(x0, vn)

c(x0, vn)

c(1
1, x0)c(

1
2, x0) c(1

3, x0)

c(2
1, x0)

c(2
2, x0)

c(2
3, x0)

c(3
1, x0)

c(3
2, x0)

c(3
3, x0)

c(m
1 , x0)

c(m
2 , x0)

c(m
3 , x0)

Fig. 6. Reduction from 3-CNF-SAT to non-emptiness of DPA

Fig. 7. A nested word

We give the proof outline in this section. The proof is essentially by abstract-
ing the runs of a DPA as the runs of a Pushdown automata over a finite alphabet.
Then the formula φ can be translated to an “equivalent” formula over the runs
of PDA. The main challenge in obtaining a translation is to recover the data
value comparisons. The proof is given in enough detail in [7]. However only data
equality is considered in [7]. Hence we revisit the proof technique quickly.

We would like to see the runs of a pushdown automata as Nested Words.
Nested words are words enriched with an additional binary relation (see Fig. 7).
The additional binary relation is used to match a push with the corresponding
pop. We write x � y to denote that there is a push at position x which is
matched by a pop at position y. Indeed, � is the additional binary matching
relation. In order to comply with the last-in-first-out policy of stacks, we require
that the nesting edges do not cross each other. For example, Fig. 8 has a crossing
of the additional edges, and hence it is not a nested word.

The MSO over nested words MSOnw(A) extends the classical MSO over
words to incorporate the nesting edges. Its syntax is given by:

ϕ ::= a(x) | x � y | x ≤ y | x ∈ X | ¬φ | φ ∨ φ | ∃xφ | ∃Xφ

60 C. Aiswarya

Fig. 8. This is not a nested word, since the edges do not represent last-in-first-out
policy of stacks

Here a is a letter of the finite alphabet A. We omit the obvious semantics.
MSO over nested words enjoy a decidable satisfiability problem.

Fact 3. [2] Given a formula φ ∈ MSOnw(A), it is decidable to check whether
there exists a nested word w such that w |= φ.

Any word w ∈ L(A) can be embedded in an accepting run word of A. A
run word contains several consecutive nodes corresponding to a node in w, in
order to carry the information of which transition it has taken. In the next step,
we add the nesting edges to match a push onto the stack of the DPA with its
corresponding pop. We also get rid of the real data values at this point, and
keep only the register names used. This abstraction is in spirit a run of the DPA
without the “register assignment” σ, enriched with the nesting edges.

The translation of the classical MSO part is via standard relativisation tech-
niques. The data comparison is more involved. It is possible to get hold of the
first position where a data value appears. We can do this by backtracking the
way of this data value via registers (moving to the preceding transition via a
linear edge) and stacks (moving to the transition where the value was pushed
via a � edge), and keeping the register name at which it occurred by means of
second order variable. We continue the backtracking until we hit a create action
with the intended register as its second argument.

Thus, we can obtain a MSOnw formula firsti(x,) which uniquely identifies
the position y at which datai(x) was created. Then d=k,�,(x, y) is equivalent to
∃z.firstk(x, z) ∧ first�(y, z). Also d<

k,�,(x, y) is equivalent to ∃z1z2 firstk(x, z1) ∧
first�(y, z2) ∧ z2 < z1.

Thus every MSOd formula φ can be translated to an “equivalent” MSOnw

formula φ′. Indeed the set of all (abstract) valid runs of a DPA as a set of nested
words is expressible in MSOnw. Thus by Fact 3, Theorem 2 follows.

6 Discussions

The MSO model checking result could be extended to a DPA that runs over
arbitrary data words (that is, not necessarily over create and msg alphabet).
Indeed, we need to require the fresh data values to be higher than any of the
previously used values. Perhaps it is also possible, instead of requiring the fresh

Model Checking Dynamic Distributed Systems 61

data value to be higher, to allow guards involving data inequality comparisons
of the register contents and the fresh value for the transitions.

To conclude, we have considered a special case of the Data Multi-pushdown
automata defined in [7]. We have extended this restriction to include data com-
parison, while restricting the application domain to Dynamic Distributed Sys-
tems. This model is powerful enough to model several interesting examples. We
retain all the results of [7], but also show a tight bound on the complexity of
deciding non-emptiness for this particular class of automata.

References

1. Abdulla, P.A., Atig, M.F., Kara, A., Rezine, O.: Verification of dynamic register
automata. In: Raman, V., Suresh, S.P. (eds.) FSTTCS 2014. LIPIcs, vol. 20, pp.
653–665. Leibniz-Zentrum für Informatik (2014)

2. Alur, R., Madhusudan, P.: Adding nesting structure to words. J. ACM 56(3), 1–43
(2009)

3. Atig, M.F., Bouajjani, A., Qadeer, S.: Context-bounded analysis for concurrent
programs with dynamic creation of threads. In: Kowalewski, S., Philippou, A.
(eds.) TACAS 2009. LNCS, vol. 5505, pp. 107–123. Springer, Heidelberg (2009)

4. Bojańczyk, M., David, C., Muscholl, A., Schwentick, T., Segoufin, L.: Two-variable
logic on data words. ACM Trans. Comput. Log. 12(4), 27 (2011)

5. Bollig, B.: An automaton over data words that captures EMSO logic. In: Katoen,
J.-P., König, B. (eds.) CONCUR 2011. LNCS, vol. 6901, pp. 171–186. Springer,
Heidelberg (2011)

6. Bollig, B.: Logic for Communicating Automata with Parameterized Topology. In:
CSL/LICS 2014, chap. 18. ACM Press (2014)

7. Bollig, B., Cyriac, A., Gastin, P., Narayan Kumar, K.: Model checking languages
of data words. In: Birkedal, L. (ed.) FOSSACS 2012. LNCS, vol. 7213, pp. 391–405.
Springer, Heidelberg (2012)

8. Bollig, B., Gastin, P., Kumar, A.: Parameterized communicating automata: com-
plementation and model checking. In: Raman, V., Suresh, S.P. (eds.) FSTTCS
2014. LIPIcs, vol. 20, pp. 625–637. Leibniz-Zentrum für Informatik (2014)

9. Bollig, B., Gastin, P., Schubert, J.: Parameterized verification of communicating
automata under context bounds. In: Ouaknine, J., Potapov, I., Worrell, J. (eds.)
RP 2014. LNCS, vol. 8762, pp. 45–57. Springer, Heidelberg (2014)

10. Bollig, B., Hélouët, L.: Realizability of dynamic MSC languages. In: Ablayev, F.,
Mayr, E.W. (eds.) CSR 2010. LNCS, vol. 6072, pp. 48–59. Springer, Heidelberg
(2010)

11. Demri, S., Lazić, R.: LTL with the freeze quantifier and register automata. ACM
Trans. Comput. Logic 10(3), 16 (2009)

12. Demri, S., Lazić, R.S., Sangnier, A.: Model checking freeze LTL over one-counter
automata. In: Amadio, R.M. (ed.) FOSSACS 2008. LNCS, vol. 4962, pp. 490–504.
Springer, Heidelberg (2008)

13. Demri, S., Sangnier, A.: When model-checking freeze LTL over counter machines
becomes decidable. In: Ong, L. (ed.) FOSSACS 2010. LNCS, vol. 6014, pp. 176–
190. Springer, Heidelberg (2010)

14. Leucker, M., Madhusudan, P., Mukhopadhyay, S.: Dynamic message sequence
charts. In: Agrawal, M., Seth, A.K. (eds.) FSTTCS 2002. LNCS, vol. 2556, pp.
253–264. Springer, Heidelberg (2002)

Efficient State-Based CRDTs by Delta-Mutation

Paulo Sérgio Almeida, Ali Shoker(B), and Carlos Baquero

HASLab/INESC TEC and Universidade Do Minho, Braga, Portugal
{psa,shokerali,cbm}@di.uminho.pt

Abstract. CRDTs are distributed data types that make eventual
consistency of a distributed object possible and non ad-hoc. Specif-
ically, state-based CRDTs ensure convergence through disseminating
the entire state, that may be large, and merging it to other repli-
cas; whereas operation-based CRDTs disseminate operations (i.e., small
states) assuming an exactly-once reliable dissemination layer. We intro-
duce Delta State Conflict-Free Replicated Datatypes (δ-CRDT) that can
achieve the best of both worlds: small messages with an incremental
nature, disseminated over unreliable communication channels. This is
achieved by defining δ-mutators to return a delta-state, typically with a
much smaller size than the full state, that is joined to both: local and
remote states. We introduce the δ-CRDT framework, and we explain it
through establishing a correspondence to current state-based CRDTs.
In addition, we present an anti-entropy algorithm that ensures causal
consistency, and two δ-CRDT specifications of well-known replicated
datatypes.

Keywords: Replicated data types · State-based CRDT · Delta
mutation

1 Introduction

Eventual consistency (EC) is a relaxed consistency model that is often adopted
by large-scale distributed systems [11,13,24] where availability must be main-
tained, despite outages and partitioning, whereas delayed consistency is accept-
able. A typical approach in EC systems is to allow replicas of a distributed object
to temporarily diverge, provided that they can eventually be reconciled into a
common state. To avoid application-specific reconciliation methods, costly and
error-prone, Conflict-Free Replicated Data Types (CRDTs) [22,23] were intro-
duced, allowing the design of self-contained distributed data types that are
always available and eventually converge when all operations are reflected at
all replicas. Though CRDTs are being deployed in practice [11], more work is
still required to improve their design and performance.

This work is co-financed by the North Portugal Regional Operational Programme
(ON.2, O Novo Norte), under the National Strategic Reference Framework (NSRF),
through the European Regional Development Fund (ERDF), within project NORTE-
07-0124-FEDER-000058; and by EU FP7 SyncFree project (609551).

c© Springer International Publishing Switzerland 2015
A. Bouajjani and H. Fauconnier (Eds.): NETYS 2015, LNCS 9466, pp. 62–76, 2015.
DOI: 10.1007/978-3-319-26850-7 5

Efficient State-Based CRDTs by Delta-Mutation 63

CRDTs support two complementary designs: operation-based (or op-based)
and state-based. In op-based designs [17,23], the execution of an operation is
done in two phases: prepare and effect. The former is performed only on the
local replica and looks at the operation and current state to produce a message
that aims to represent the operation, which is then shipped to all replicas. Once
received, the representation of the operation is applied remotely using effect.
On the other hand, in a state-based design [4,23] an operation is only executed
on the local replica state. A replica periodically propagates its local changes to
other replicas through shipping its entire state. A received state is incorporated
with the local state via a merge function (designed as a least upper bound over
a join-semilattice [4,23]) that deterministically reconciles both states.

Op-based CRDTs have more advantages as they can allow for simpler imple-
mentations, concise replica state, and smaller messages; however, they are sub-
ject to some limitations: First, they assume a message dissemination layer that
guarantees reliable exactly-once causal broadcast (required to ensure idempo-
tence); these guarantees are hard to maintain since large logs must be retained
to prevent duplication even if TCP is used [15]. Second, membership manage-
ment is a hard task in op-based systems especially once the number of nodes
gets larger or due to churn problems, since all nodes must be coordinated by the
middleware. Third, the op-based approach requires operations to be executed
individually (even when batched) on all nodes.

The alternative is to use state-based systems which are deprived from these
limitations. However, a major drawback in current state-based CRDTs is the
communication overhead of shipping the entire state, which can get very large in
size. For instance, the state size of a counter CRDT (a vector of integer counters,
one per replica) increases with the number of replicas; whereas in a grow-only
Set, the state size depends on the set size, that grows as more operations are
invoked. This communication overhead limits the use of state-based CRDTs to
data-types with small state size (e.g., counters are reasonable while sets are not).
Recently, there has been a demand for CRDTs with large state sizes (e.g., in
RIAK DT Maps [6] that can compose multiple CRDTs).

In this paper, we rethink the way state-based CRDTs should be designed,
having in mind the problematic shipping of the entire state. Our aim is to ship a
representation of the effect of recent update operations on the state, rather than
the whole state, while preserving the idempotent nature of join. This ensures
convergence over unreliable communication (on the contrary to op-based). To
achieve this, we introduce Delta State-based CRDTs (δ-CRDT): a state is a join-
semilattice that results from the join of multiple fine-grained states, i.e., deltas,
generated by what we call δ-mutators which are new versions of the datatype
mutators that return the effect of these mutators on the state. Thus, deltas can be
temporarily retained in a buffer to be shipped individually (or joined in groups)
instead of shipping the entire object. The local changes are then incorporated
at other replicas by joining the shipped deltas with their own states.

The use of “deltas” (i.e., incremental states) may look intuitive in state dis-
semination; however, this is not the case for state-based CRDTs. The reason is

64 P.S. Almeida et al.

that once a node receives an entire state, merging it locally is simple since there
is no need to care about causality, as both states are self-contained (including
meta-data). The challenge in δ-CRDT is that individual deltas are now “state
fragments” and must be causally merged to maintain the correct semantics. This
raises the following questions: is merging deltas semantically equivalent to merg-
ing entire states in CRDTs? If not, what are the sufficient conditions to make this
true in general? And under what constraints causal consistency is maintained?
This paper answers these questions and presents corresponding solutions.

We address the challenge of designing a new δ-CRDT that conserves the
correctness properties and semantics of an existing CRDT by establishing a
relation between the novel δ-mutators with the original CRDT mutators. We
then show how to ensure causal consistency using deltas through introducing
the concept of delta-interval and the causal delta-merging condition. Based on
these, we then present an anti-entropy algorithm for δ-CRDT, where sending
and then joining delta-intervals into another replica state produces the same
effect as if the entire state had been shipped and joined.

As the area of CRDTs is relatively new, we illustrate our approach by
explaining a simple counter δ-CRDT specification; then we introduce a challeng-
ing non-trivial specification for a widely used datatype: Optimized Add-Wins
Observed-Remove Sets [5]; and finally we present a novel design for an Opti-
mized Multi-Value Register with meta-data reduction. In addition, we make a
basic δ-CRDT C++ library available online [2] for various CRDTs: GSet, 2PSet,
GCounter, PNCounter, AWORSet, RWORSet, MVRegister, LWWSet, etc. Our
experience shows that a δ-CRDT version can be devised for most CRDTs, how-
ever, this requires some design effort that varies with the complexity of different
CRDTs. This is referred to the ad-hoc way CRDTs are designed in general (which
is also required for δ-CRDTs). To the best of our knowledge, no model has been
introduced so far to make designing CRDTs generic rather than type-specific.

2 System Model

Consider a distributed system with nodes containing local memory, with no
shared memory between them. Any node can send messages to any other node.
The network is asynchronous; there is no global clock, no bound on the time
a message takes to arrive, and no bounds are set on relative processing speeds.
The network is unreliable: messages can be lost, duplicated or reordered (but
are not corrupted). Some messages will, however, eventually get through: if a
node sends infinitely many messages to another node, infinitely many of these
will be delivered. In particular, this means that there can be arbitrarily long
partitions, but these will eventually heal. Nodes have access to durable storage;
they can crash but will eventually recover with the content of the durable storage
just before crash the occurred. Durable state is written atomically at each state
transition. Each node has access to its globally unique identifier in a set I.

Efficient State-Based CRDTs by Delta-Mutation 65

3 A Background of State-Based CRDTs

Conflict-Free Replicated Data Types [22,23] (CRDTs) are distributed datatypes
that allow different replicas of a distributed CRDT instance to diverge and
ensures that, eventually, all replicas converge to the same state. State-based
CRDTs achieve this through propagating updates of the local state by dissem-
inating the entire state across replicas. The received states are then merged to
remote states, leading to convergence (i.e., consistent states on all replicas).

A state-based CRDT consists of a triple (S,M,Q), where S is a join-semi-
lattice [12], Q is a set of query functions (which return some result without
modifying the state), and M is a set of mutators that perform updates; a mutator
m ∈ M takes a state X ∈ S as input and returns a new state X ′ = m(X). A
join-semilattice is a set with a partial order � and a binary join operation �
that returns the least upper bound (LUB) of two elements in S; a join is designed
to be commutative, associative, and idempotent. Mutators are defined in such a
way to be inflations, i.e., for any mutator m and state X, the following holds:

X � m(X)

In this way, for each replica there is a monotonic sequence of states, defined under
the lattice partial order, where each subsequent state subsumes the previous state
when joined elsewhere.

Both query and mutator operations are always available since they are per-
formed using the local state without requiring inter-replica communication; how-
ever, as mutators are concurrently applied at distinct replicas, replica states will
likely diverge. Eventual convergence is then obtained using an anti-entropy pro-
tocol that periodically ships the entire local state to other replicas. Each replica
merges the received state with its local state using the join operation in S.
Given the mathematical properties of join, if mutators stop being issued, all
replicas eventually converge to the same state. i.e. the least upper-bound of all
states involved. State-based CRDTs are interesting as they demand little guar-
antees from the dissemination layer, working under message loss, duplication,
reordering, and temporary network partitioning, without impacting availability
and eventual convergence.

Σ = I ↪→ N

σ0
i = {}

inci(m) = m{i �→ m(i) + 1}
valuei(m) =

∑

i∈I

m(i)

m � m′ = {(i,max(m(i), m′(i))) | i ∈ I }

Fig. 1. State-based Counter CRDT;
replica i.

Example. Figure 1 represents a state-
based increment-only counter. The
CRDT state Σ is a map from replica
identifiers to positive integers. Ini-
tially, σ0

i is an empty map (assuming
that unmapped keys implicitly map
to zero, and only non zero mappings
are stored). A single mutator, i.e., inc,
is defined that increments the value
of the local replica i (returning the
updated map). The query operation

66 P.S. Almeida et al.

value returns the counter value by adding the integers in the map entries. The
join of two states is the point-wise maximum of the maps.

Weaknesses. The main weakness of state-based CRDTs is the cost of dissem-
ination of updates, as the full state is sent. In this simple example of counters,
even though increments only update the value corresponding to the local replica
i, the whole map will always be sent in messages though the other map values
remained intact (since no messages have been received and merged).

It would be interesting to only ship the recent modification incurred on
the state. This is, however, not possible with the current model of state-based
CRDTs as mutators always return a full state. Approaches which simply ship
operations (e.g., an “increment n” message), like in operation-based CRDTs,
require reliable communication (e.g., because increment is not idempotent).
In contrast, our approach allows producing and encoding recent mutations in
an incremental way, while keeping the advantages of the state-based approach,
namely the idempotent, associative, and commutative properties of join.

4 Delta-State CRDTs

We introduce Delta-State Conflict-Free Replicated Data Types, or δ-CRDT for
short, as a new kind of state-based CRDTs, in which delta-mutators are defined
to return a delta-state: a value in the same join-semilattice which represents the
updates induced by the mutator on the current state.

Definition 1 (Delta-mutator). A delta-mutator mδ is a function, correspond-
ing to an update operation, which takes a state X in a join-semilattice S as
parameter and returns a delta-mutation mδ(X), also in S.

Definition 2 (Delta-group). A delta-group is inductively defined as either a
delta-mutation or a join of several delta-groups.

Definition 3 (δ-CRDT). A δ-CRDT consists of a triple (S,Mδ, Q), where
S is a join-semilattice, Mδ is a set of delta-mutators, and Q a set of query
functions, where the state transition at each replica is given by either joining the
current state X ∈ S with a delta-mutation:

X ′ = X � mδ(X),

or joining the current state with some received delta-group D:

X ′ = X � D.

In a δ-CRDT, the effect of applying a mutation, represented by a delta-
mutation δ = mδ(X), is decoupled from the resulting state X ′ = X � δ, which
allows shipping this δ rather than the entire resulting state X ′. All state transi-
tions in a δ-CRDT, even upon applying mutations locally, are the result of some
join with the current state. Unlike standard CRDT mutators, delta-mutators do

Efficient State-Based CRDTs by Delta-Mutation 67

not need to be inflations in order to inflate a state; this is however ensured by
joining their output, i.e., deltas, into the current state.

In principle, a delta could be shipped immediately to remote replicas once
applied locally. For efficiency reasons, multiple deltas returned by applying sev-
eral delta-mutators can be joined locally into a delta-group and retained in a
buffer. The delta-group can then be shipped to remote replicas to be joined
with their local states. Received delta-groups can optionally be joined into their
buffered delta-group, allowing transitive propagation of deltas. A full state can
be seen as a special (extreme) case of a delta-group.

If the causal order of operations is not important and the intended aim is
merely eventual convergence of states, then delta-groups can be shipped using
an unreliable dissemination layer that may drop, reorder, or duplicate messages.
Delta-groups can always be re-transmitted and re-joined, possibly out of order,
or can simply be subsumed by a less frequent sending of the full state, e.g. for
performance reasons or when doing state transfers to new members. Due to space
limits, we only address causal consistency in this paper, while information about
state convergence can be found in the associated technical report [1].

4.1 Delta-State Decomposition of Standard CRDTs

A δ-CRDT (S,M δ, Q) is a delta-state decomposition of a state-based CRDT
(S,M,Q), if for every mutator m ∈ M , we have a corresponding mutator mδ ∈
Mδ such that, for every state X ∈ S:

m(X) = X � mδ(X)

This equation states that applying a delta-mutator and joining into the cur-
rent state should produce the same state transition as applying the corresponding
mutator of the standard CRDT.

Given an existing state-based CRDT (which is always a trivial decomposition
of itself, i.e., m(X) = X � m(X), as mutators are inflations), it will be useful
to find a non-trivial decomposition such that delta-states returned by delta-
mutators in Mδ are smaller than the resulting state:

size(mδ(X)) � size(m(X))

4.2 Example: δ-CRDT Counter Σ = I ↪→ N

σ0
i = {}

incδ
i (m) = {i �→ m(i) + 1}

valuei(m) =
∑

i∈I

m(i)

m � m′ = {(i,max(m(i), m′(i))) | i ∈ I }

Fig. 2. A δ-CRDT counter; replica i.

Figure 2 depicts a δ-CRDT specifica-
tion of a counter datatype that is a
delta-state decomposition of the state-
based counter in Fig. 1. The state,
join and value query operation remain
as before. Only the mutator incδ is
newly defined, which increments the
map entry corresponding to the local

68 P.S. Almeida et al.

replica and only returns that entry, instead of the full map as inc in the state-
based CRDT counter does. This maintains the original semantics of the counter
while allowing the smaller deltas returned by the delta-mutator to be sent,
instead of the full map. As before, the received payload (whether one or more
deltas) might not include entries for all keys in I, which are assumed to have zero
values. The decomposition is easy to understand in this example since the equa-
tion inci(X) = X � incδ

i (X) holds as m{i �→ m(i) + 1} = m � {i �→ m(i) + 1}.
In other words, the single value for key i in the delta, corresponding to the
local replica identifier, will overwrite the corresponding one in m since the
former maps to a higher value (i.e., using max). Here it can be noticed that:
(1) a delta is just a state, that can be joined possibly several times without
requiring exactly-once delivery, and without being a representation of the “incre-
ment” operation (as in operation-based CRDTs), which is itself non-idempotent;
(2) joining deltas into a delta-group and disseminating delta-groups at a lower
rate than the operation rate reduces data communication overhead, since multi-
ple increments from a given source can be collapsed into a single state counter.

5 Causal Consistency

Traditional state-based CRDTs converge using joins of the full state, which
implicitly ensures per-object causal consistency [8]: each state of some replica
of an object reflects the causal past of operations on the object (either applied
locally, or applied at other replicas and transitively joined).

Therefore, it is desirable to have δ-CRDTs offer the same causal-consistency
guarantees that standard state-based CRDTs offer. This raises the question
about how can delta propagation and merging of δ-CRDT be constrained (and
expressed in an anti-entropy algorithm) in such a manner to give the same results
as if a standard state-based CRDT was used. Towards this objective, it is useful
to define a particular kind of delta-group, which we call a delta-interval :

Definition 4 (Delta-interval). Given a replica i progressing along the states
X0

i ,X1
i , . . ., by joining delta dk

i (either local delta-mutation or received delta-
group) into Xk

i to obtain Xk+1
i , a delta-interval Δa,b

i is a delta-group resulting
from joining deltas da

i , . . . , db−1
i :

Δa,b
i =

⊔
{dk

i | a ≤ k < b}

The use of delta-intervals in anti-entropy algorithms will be a key ingredient
towards achieving causal consistency. We now define a restricted kind of anti-
entropy algorithm for δ-CRDTs.

Definition 5 (Delta-interval-based anti-entropy algorithm). A given
anti-entropy algorithm for δ-CRDTs is delta-interval-based, if all deltas sent to
other replicas are delta-intervals.

Moreover, to achieve causal consistency the next condition must satisfied:

Efficient State-Based CRDTs by Delta-Mutation 69

Definition 6 (Causal delta-merging condition). A delta-interval based
anti-entropy algorithm is said to satisfy the causal delta-merging condition if the
algorithm only joins Δa,b

j from replica j into state Xi of replica i that satisfy:

Xi 	 Xa
j .

This means that a delta-interval is only joined into states that at least reflect
(i.e., subsume) the state into which the first delta in the interval was previously
joined. The causal delta-merging condition is important since any delta-interval
based anti-entropy algorithm of a δ-CRDT that satisfies it, can be used to obtain
the same outcome of standard CRDTs; this is formally stated in Proposition 1.

Proposition 1. (CRDT and δ-CRDTcorrespondence) Let (S,M,Q) be a stan-
dard state-based CRDT and (S,M δ, Q) a corresponding delta-state decomposi-
tion. Any δ-CRDT state reachable by an execution Eδ over (S,Mδ, Q), by a
delta-interval based anti-entropy algorithm Aδ satisfying the causal delta-merging
condition, is equal to a state resulting from an execution E over (S,M,Q), hav-
ing the corresponding data-type operations, by an anti-entropy algorithm A for
state-based CRDTs.

Proof. Please see the associated technical report [1].

Corollary 1. (δ-CRDT causal consistency) Any δ-CRDT in which states are
propagated and joined using a delta-interval-based anti-entropy algorithm satis-
fying the causal delta-merging condition ensures causal consistency.

Proof. From Proposition 1 and causal consistency of state-based CRDTs.

5.1 Anti-entropy Algorithm for Causal Consistency

Algorithm 1 is a delta-interval based anti-entropy algorithm which enforces the
causal delta-merging condition. It can be used whenever the causal consistency
guarantees of standard state-based CRDTs are needed. For simplicity, it excludes
some optimizations that are important, but easy to derive, in practice. The
algorithm distinguishes neighbor nodes, and only sends them delta-intervals that
are joined at the receiving node, obeying the delta-merging condition.

Each node i keeps a contiguous sequence of deltas dl
i, . . . , d

u
i in a map D from

integers to deltas, with l = min(dom(D)) and u = max(dom(D)). The sequence
numbers of deltas are obtained from the counter ci that is incremented when
a delta (whether a delta-mutation or delta-interval received) is joined with the
current state. Each node i keeps an acknowledgments map A that stores, for
each neighbor j, the largest index b for all delta-intervals Δa,b

i acknowledged by
j (after j receives Δa,b

i from i and joins it into Xj).
Node i sends a delta-interval d = Δa,b

i with a (delta, d, b) message; the receiv-
ing node j, after joining Δa,b

i into its replica state, replies with an acknowledg-
ment message (ack, b); if an ack from j was successfully received by node i, it

70 P.S. Almeida et al.

1 inputs:

2 ni ∈ P(I), set of neighbors

3 durable state:

4 Xi ∈ S, CRDT state; initially Xi = ⊥
5 ci ∈ N, sequence number; initially ci = 0

6 volatile state:

7 Di ∈ N ↪→ S, sequence of deltas; initially

Di = {}
8 Ai ∈ I ↪→ N, acknowledges map; initially

Ai = {}
9 on receivej,i(delta, d, n)

10 if d �� Xi then

11 X′
i = Xi � d

12 D′
i = Di{ci 	→ d}

13 c′
i = ci + 1

14 sendi,j(ack, n)

15 on receivej,i(ack, n)

16 A′
i = Ai{j 	→ max(Ai(j), n)}

17 on operationi(m
δ)

18 d = mδ(Xi)

19 X′
i = Xi � d

20 D′
i = Di{ci 	→ d}

21 c′
i = ci + 1

22 periodically // ship delta-interval or state

23 j = random(ni)

24 if Di = {} ∨ min(dom(Di)) > Ai(j) then

25 d = Xi

26 else

27 d =
⊔{Di(l) | Ai(j) ≤ l < ci}

28 if Ai(j) < ci then

29 sendi,j(delta, d, ci)

30 periodically // garbage collect deltas

31 l = min{n | (, n) ∈ Ai}
32 D′

i = {(n, d) ∈ Di | n ≥ l}

Algorithm 1. Anti-entropy algorithm ensuring causal consistency of δ-CRDT.

updates the entry of j in the acknowledgment map, using the max function. This
handles possible old duplicates and messages arriving out of order.

Like the δ-CRDT state, the counter ci is also kept in a durable storage. This
is essential to avoid conflicts after potential crash and recovery incidents. Other-
wise, there would be the danger of receiving some delayed ack, for a delta-interval
sent before crashing, causing the node to skip sending some deltas generated after
recovery, thus violating the delta-merging condition.

The algorithm for node i periodically picks a random neighbor j. In principle,
i sends the join of all deltas starting from the latest delta acked by j and forward.
Exceptionally, i sends the entire state in two cases: (1) if the sequence of deltas
Di is empty, or (2) if j is expecting from i a delta that was already removed from
Di (e.g., after a crash and recovery, when both deltas and the ack map, being
volatile state, are lost); i tracks this in Ai(j). To garbage collect old deltas, the
algorithm periodically removes the deltas that have been acked by all neighbors.

Proposition 2. Algorithm1 produces the same reachable states as a standard
algorithm over a CRDT for which the δ-CRDT is a decomposition.

Proof. Please see the associated technical report [1].

6 δ-CRDTs for Add-Wins OR-Sets

An Add-wins Observed-Remove Set (OR-set) is a well-known CRDT datatype
that offers the same sequential semantics of a sequential set and adopts a specific
resolution semantics for operations that concurrently add and remove the same
element. Add-wins means that an add prevails over a concurrent remove. Remove
operations, however, only affect elements added by causally preceding adds. The
purpose of these δ-CRDT OR-set versions is to design δ-mutators that return
small deltas to be lightly disseminated, as discussed above, instead of shipping
the entire state as in classical CRDTs [5,22,23].

Efficient State-Based CRDTs by Delta-Mutation 71

Fig. 3. Add-wins observed-remove δ-CRDT set, replica i.

6.1 Add-Wins OR-Set with Tombstones

Figure 3a depicts a simple, but inefficient, δ-CRDT implementation of a state-
based add-wins OR-Set. The state Σ consists of a set of tagged elements and a
set of tags, acting as tombstones. Globally unique tags of the form I×N are used
and ensured by pairing a replica identifier in I with a monotonically increasing
natural counter. Once an element e ∈ E is added to the set, the delta-mutator
addδ creates a globally unique tag by incrementing the highest tag present in
its local state and that was created by replica i itself (max returns 0 if no tag
is present). This tag is paired with value e and stored as a new unique triple in
s. Since an “add” wins any concurrent “remove”, removing an element e should
only be tombstoned if it was preceded by an add operation (i.e., the element is
in s), otherwise it has no effect. Consequently, the delta-mutator rmvδ retains in
the tombstone set all tags associated to element e, being removed from the local
state. This is essential to prevent a removed element to reappear once the local
state is merged with another replica state that still have that element (i.e., it
has not been removed yet remotely as replicas are loosely coupled). The function
elements returns only the elements that are added but not yet tombstoned. Join
� simply unions the respective sets that are, therefore, both grow-only.

6.2 Optimized Add-Wins OR-Set

A more efficient design is presented in Fig. 3b allowing also the set of tagged
elements (i.e., tombstone set above) to shrink as elements are removed. This
design offers the same semantics and have a similar state structure to the former;
however, it has a different behavior. Now, elements returns all the elements in
the tagged set s, without consulting t as before. Added and removed items are
now tagged in the causal context set c. Although, the set c and t look similar
in structure, they have a different behavior (we call it c instead of t to remove
this confusion): a tombstone set t simply stores all removed elements tags, while
c retains only the causal information needed to add/remove an element. For
presentation simplicity, c in Fig. 3b simply retains all removed elements tags;
however, after compression, c will be very concise and look different from t; this
is explained in the next section.

72 P.S. Almeida et al.

Adding an element creates a unique tag by resorting to the causal context c
(instead of s). The tag is paired with the element and added to s (as before).
The difference is that the new tag is also added to the causal context set c.
The delta-mutator rmvδ is the same as before, adding all tags associated to the
element being removed to c. The desired semantics are maintained by the novel
join operation �. To join two states, their causal contexts c are simply unioned;
whereas, the new element set s only preserves: (1) the triples present in both
sets (therefore, not removed in either), and also (2) any triple present in one of
the sets and whose tag is not present in the causal context of the other state.

Causal Context Compression. In practice, the causal context c can be
efficiently compressed without any loss of information. When using an anti-
entropy algorithm that provides causal consistency, e.g., Algorithm 1, then for
each replica state Xi = (si, ci) and replica id j ∈ I, we have a contiguous
sequence:

1 ≤ n ≤ max({k | (j, k) ∈ ci}) ⇒ (j, n) ∈ ci.

Thus, the causal context can always be encoded as a compact version vector [21]
I ↪→ N that keeps the maximum sequence number for each replica. Even under
non-causal anti-entropy, compression is still possible by keeping a version vector
that encodes the offset of the contiguous sequence of tags from each replica,
together with a set for the non-contiguous tags. As anti-entropy proceeds, each
tag is eventually encoded in the vector, and thus the set remains typically small.
Compression is less likely for the causal context of delta-groups in transit or
buffered to be sent, but those contexts are only transient and smaller than those
in the actual replica states. Moreover, the same techniques that encode contigu-
ous sequences of tags can also be used for transient context compression [19].

7 Optimized Multi-value Register δ-CRDT

Multi-Value Registers (MVR) are popular constructions in which a read opera-
tion returns the set of values concurrently written, but not causally overwritten;
these values are then reduced to a single value by applications [13]. Until now,
these types have been implemented by assigning a version vector to each writ-
ten value [8,22]. In Fig. 4, we show that the optimization that was developed
for Sets, can also be used to compactly tag the values in a multi-value register.
On a write operation wr, it is enough to assign a new scalar tag, from I × N,

Fig. 4. Optimized δ-CRDT multi-value register, replica i.

Efficient State-Based CRDTs by Delta-Mutation 73

using a replica id i and counter to uniquely tag the written value v. To ensure
that values overwritten are deleted, the produced causal context c lists all tags
associated to those values. Since those values are absent from the payload set
s they will be deleted in replicas that still have them, applying join definition
� (that is in common with Fig. 3b). The causal context compression techniques
defined earlier also apply here.

8 Message Complexity

Our delta-based framework, δ-CRDT, clearly introduces significant cost improve-
ments on messaging. Despite being a generic framework, δ-CRDT requires delta
mutators to be defined per datatype. This makes the bit-message complexity
datatype-based rather than generic. To give an intuition about this complexity,
we address the three datatypes introduced above: counter, OR-Set, and MVR.

Counters. In classical state-based CRDTs, the entire map of a counter is
shipped. As the map-size grows with the number of replicas, this leads a bit-
message complexity of Õ(|I|)1. In the δ-CRDT case, only recently updated map
entries α are shipped yielding a bit-complexity Õ(α), where α � |I|.

OR-set. Shipping in classical OR-set CRDTs delivers the entire state which
yields a bit-message complexity of O(S), where S is the state-size. In δ-CRDT,
only deltas are shipped, which renders a bit-message complexity O(s) where s
represents the size of the recent updates occurred since the last shipping. Clearly,
s � S since the updates that occur on a state in a period of time are often much
less than the total number of items.

MVR. In classical MVR, the worst case state is composed of |I| concurrently
written values, each associated with a |I| sized version vector. This makes the
bit-message complexity Õ(|I|2). In the novel delta design in Fig. 4, no version
vector is used, whereas the number of possible values remain the same (summing
up the values set s and meta-data in c), this reduces the bit-message complexity
to Õ(|I|) as well as the worst case state complexity.

9 Related Work

Eventually Convergent Data Types. The design of replicated systems that are
always available and eventually converge can be traced back to historical designs
in [16,25], among others. More recently, replicated data types that always eventu-
ally converge, both by reliably broadcasting operations (called operation-based)
or gossiping and merging states (called state-based), have been formalized as
CRDTs [4,17,22,23]. These are also closely related to BloomL [10] and Cloud
Types [7].

1
˜O is a variant of big O ignoring logarithmic factors in the size of integers and ids.

74 P.S. Almeida et al.

Deltas. A key feature of δ-CRDT is message size reduction (not improving
local state lower bounds [8]), by using small-sized deltas, while preserving the
advantages of classical state-based CRDTs. The general old idea of using dif-
ferences between things, called “deltas” in many contexts, can lead to many
designs, depending on how exactly a delta is defined. The state-based deltas
introduced for Computational CRDTs [20] require an extra delta-specific merge
(in addition to the standard join) which does not ensure idempotence. In [14], an
improved synchronization method for non-optimized OR-set CRDT [22] is pre-
sented, where delta information is propagated; in that paper deltas are a collec-
tion of items (related to update events between synchronizations), manipulated
and merged through a protocol, as opposed to normal states in the semilattice.
No generic framework is defined (that could encompass other data types) and
the protocol requires several communication steps to compute the information
to exchange.

Operation-Based CRDTs. These CRDTs [3,22,23] also support small message
sizes, and in particular, pure flavors [3] that restrict messages to the operation
name, and possible arguments. Though pure operation-based CRDTs allow for
compact states and are very fast at the source (since operations are broadcast
without consulting the local state), the model requires more systems guarantees
than δ-CRDT do, e.g., exactly-once reliable delivery and membership informa-
tion, and impose more complex integration of new replicas. The work in [9]
shows a different trade-off among state deltas and pure operations, by tagging
operations and creating a globally stable log of operations while allowing local
transient logs to preserve availability. While having other advantages, the cre-
ation of this global log requires more coordination than our gossip approach for
causally consistent delta dissemination, and can stall dissemination.

Encoding Causal Histories. State-based CRDT are always designed to be
causally consistent [4,23]. Optimized implementations of sets, maps, and multi-
value registers can build on this assumption to keep the meta-data small [8]. In
δ-CRDT, however, deltas and delta-groups are normally not causally consistent,
and thus the design of join, the meta-data state, as well as the anti-entropy algo-
rithm used must ensure this. Without causal consistency, the causal context in
δ-CRDT can not always be summarized with version vectors, and consequently,
techniques that allow for gaps are often used. A well known mechanism that
allows for encoding of gaps is found in Concise Version Vectors [18]. Interval
Version Vectors [19], later on, introduced an encoding that optimizes sequences
and allows gaps, while preserving efficiency when gaps are absent.

10 Conclusion

We introduced the new concept of δ-CRDTs and devised delta-mutators over
state-based datatypes which can detach the changes that an operation induces
on the state. This brings a significant performance gain as it allows only shipping

Efficient State-Based CRDTs by Delta-Mutation 75

small states, i.e., deltas, instead of the entire state. The significant property in
δ-CRDT is that it preserves the crucial properties (idempotence, associativity
and commutativity) of standard state-based CRDT. In the worst case, deltas can
be forgotten and the entire state can always be shipped, allowing scenarios such
as long duration partitions, which would be problematic for op-based CRDTs.

In addition, we have shown how δ-CRDT can achieve causal consistency;
and we presented an anti-entropy algorithm that allows replacing classical state-
based CRDTs by more efficient ones, while preserving their properties. As an
application for our approach, we designed two novel δ-CRDT specifications for
two well-known datatypes: an optimized observed-remove set [5] and an opti-
mized multi-value register [13].

References

1. Almeida, P.S., Shoker, A., Baquero, C.: Efficient state-based crdts by delta-
mutation. CoRR abs/1410.2803 (2014). http://arxiv.org/abs/1410.2803

2. Baquero, C.: Delta-enabled-crdts. http://github.com/CBaquero/delta-enabled-
crdts

3. Baquero, C., Almeida, P.S., Shoker, A.: Making operation-based CRDTs operation-
based. In: Magoutis, K., Pietzuch, P. (eds.) DAIS 2014. LNCS, vol. 8460, pp. 126–
140. Springer, Heidelberg (2014)

4. Baquero, C., Moura, F.: Using structural characteristics for autonomous operation.
Oper. Syst. Rev. 33(4), 90–96 (1999)

5. Bieniusa, A., Zawirski, M., Preguiça, N., Shapiro, M., Baquero, C., Balegas, V.,
Duarte, S.: An optimized conflict-free replicated set. Rapp. Rech. RR-8083, INRIA,
Rocquencourt, France, October 2012. http://hal.inria.fr/hal-00738680

6. Brown, R., Cribbs, S., Meiklejohn, C., Elliott, S.: Riak DT map: a composable,
convergent replicated dictionary. In: Proceedings of the First Workshop on Princi-
ples and Practice of Eventual Consistency, PaPEC 2014, pp. 1:1–1:1. ACM, New
York (2014). http://doi.acm.org/10.1145/2596631.2596633

7. Burckhardt, S., Fähndrich, M., Leijen, D., Wood, B.P.: Cloud types for even-
tual consistency. In: Noble, J. (ed.) ECOOP 2012. LNCS, vol. 7313, pp. 283–307.
Springer, Heidelberg (2012)

8. Burckhardt, S., Gotsman, A., Yang, H., Zawirski, M.: Replicated data types: spec-
ification, verification, optimality. In: Jagannathan, S., Sewell, P. (eds.) POPL, pp.
271–284. ACM (2014)

9. Burckhardt, S., Leijen, D., Fahndrich, M.: Cloud types: Robust abstractions for
replicated shared state. Technical report. MSR-TR-2014-43, March 2014. http://
research.microsoft.com/apps/pubs/default.aspx?id=211340

10. Conway, N., Marczak, W.R., Alvaro, P., Hellerstein, J.M., Maier, D.: Logic and lat-
tices for distributed programming. In: Proceedings of the Third ACM Symposium
on Cloud Computing, p. 1. ACM (2012)

11. Cribbs, S., Brown, R.: Data structures in Riak. In: Riak Conference (RICON), San
Francisco, CA, USA, October 2012

12. Davey, B.A., Priestley, H.A.: Introduction to Lattices and Order, 2nd edn. Cam-
bridge University Press, Cambridge (2002)

http://arxiv.org/abs/1410.2803
http://github.com/CBaquero/delta-enabled-crdts
http://github.com/CBaquero/delta-enabled-crdts
http://hal.inria.fr/hal-00738680
http://doi.acm.org/10.1145/2596631.2596633
http://research.microsoft.com/apps/pubs/default.aspx?id=211340
http://research.microsoft.com/apps/pubs/default.aspx?id=211340

76 P.S. Almeida et al.

13. DeCandia, G., Hastorun, D., Jampani, M., Kakulapati, G., Lakshman, A., Pilchin,
A., Sivasubramanian, S., Vosshall, P., Vogels, W.: Dynamo: amazon’s highly avail-
able key-value store. In: Symposium on Operating Systems Principles (SOSP).
Operating Systems Review, vol. 41, pp. 205–220. Assoc. for Computing Machin-
ery, Stevenson, October 2007

14. Deftu, A., Griebsch, J.: A scalable conflict-free replicated set data type. In: Pro-
ceedings of the 2013 IEEE 33rd International Conference on Distributed Comput-
ing Systems, ICDCS 2013, pp. 186–195. IEEE Computer Society, Washington, DC
(2013). http://dx.doi.org/10.1109/ICDCS.2013.10

15. Helland, P.: Idempotence is not a medical condition. Queue 10(4), 30–46 (2012).
http://doi.acm.org/10.1145/2181796.2187821

16. Johnson, P.R., Thomas, R.H.: The maintenance of duplicate databases. Internet
Request for Comments RFC 677, Information Sciences Institute, January 1976.
http://www.rfc-editor.org/rfc.html

17. Letia, M., Preguiça, N., Shapiro, M.: CRDTs: Consistency without concurrency
control. Rapp. Rech. RR-6956, INRIA, Rocquencourt, France, June 2009. http://
hal.inria.fr/inria-00397981/

18. Malkhi, D., Terry, D.: Concise version vectors in winfs. Distrib. Comput. 20(3),
209–219 (2007)

19. Mukund, M., Shenoy R., G., Suresh, S.P.: Optimized OR-sets without ordering
constraints. In: Chatterjee, M., Cao, J., Kothapalli, K., Rajsbaum, S. (eds.) ICDCN
2014. LNCS, vol. 8314, pp. 227–241. Springer, Heidelberg (2014)

20. Navalho, D., Duarte, S., Preguiça, N., Shapiro, M.: Incremental stream processing
using computational conflict-free replicated data types. In: Proceedings of the 3rd
International Workshop on Cloud Data and Platforms, pp. 31–36. ACM (2013)

21. Parker, D.S., Popek, G.J., Rudisin, G., Stoughton, A., Walker, B.J., Walton,
E., Chow, J.M., Edwards, D., Kiser, S., Kline, C.: Detection of mutual incon-
sistency in distributed systems. IEEE Trans. Softw. Eng. 9(3), 240–247 (1983).
http://dx.doi.org/10.1109/TSE.1983.236733

22. Shapiro, M., Preguiça, N., Baquero, C., Zawirski, M.: A comprehensive study
of Convergent and Commutative Replicated Data Types. Rapp. Rech. 7506,
INRIA, Rocquencourt, France, January 2011. http://hal.archives-ouvertes.fr/
inria-00555588/

23. Shapiro, M., Preguiça, N., Baquero, C., Zawirski, M.: Conflict-free replicated data
types. In: Défago, X., Petit, F., Villain, V. (eds.) SSS 2011. LNCS, vol. 6976, pp.
386–400. Springer, Heidelberg (2011)

24. Terry, D.B., Theimer, M.M., Petersen, K., Demers, A.J., Spreitzer, M.J., Hauser,
C.H.: Managing update conflicts in Bayou, a weakly connected replicated storage
system. In: Symposium on Operating Systems Principles (SOSP), pp. 172–182.
ACM SIGOPS, ACM Press, Copper Mountain, CO, USA, December 1995

25. Wuu, G.T.J., Bernstein, A.J.: Efficient solutions to the replicated log and dictio-
nary problems. In: Symposium on Principles of Distributed Computing (PODC),
Vancouver, BC, Canada, pp. 233–242, August 1984

http://dx.doi.org/10.1109/ICDCS.2013.10
http://doi.acm.org/10.1145/2181796.2187821
http://www.rfc-editor.org/rfc.html
http://hal.inria.fr/inria-00397981/
http://hal.inria.fr/inria-00397981/
http://dx.doi.org/10.1109/TSE.1983.236733
http://hal.archives-ouvertes.fr/inria-00555588/
http://hal.archives-ouvertes.fr/inria-00555588/

Concurrency in Snap-Stabilizing
Local Resource Allocation

Karine Altisen, Stéphane Devismes, and Anäıs Durand(B)

VERIMAG UMR 5104, Université Grenoble Alpes, Grenoble, France
{karine.altisen,stephane.devismes,anais.durand}@imag.fr

Abstract. In distributed systems, resource allocation consists in man-
aging fair access of a large number of processes to a typically small num-
ber of reusable resources. As soon as the number of available resources
is greater than one, the efficiency in concurrent accesses becomes an
important issue, as a crucial goal is to maximize the utilization rate of
resources. In this paper, we tackle the concurrency issue in resource allo-
cation problems. We first characterize the maximal level of concurrency
we can obtain in such problems by proposing the notion of maximal-
concurrency. Then, we focus on Local Resource Allocation problems
(LRA). Our results are both negative and positive. On the negative side,
we show that it is impossible to obtain maximal-concurrency in LRA
without compromising the fairness. On the positive side, we propose a
snap-stabilizing LRA algorithm which achieves a high (but not maximal)
level of concurrency, called here strong partial maximal-concurrency.

1 Introduction

Mutual exclusion [14,25] is a fundamental resource allocation problem, which
consists in managing fair access of all (requesting) processes to a unique non-
shareable reusable resource. This problem is inherently sequential, as no two
processes should access this resource concurrently. There are many other resource
allocation problems which, in contrast, allow several resources to be accessed
simultaneously. In those problems, parallelism on access to resources may be
restricted by some of the following conditions:

1. The maximum number of resources that can be used concurrently, e.g., the
�-exclusion problem [19] is a generalization of the mutual exclusion problem
which allows use of � identical copies of a non-shareable reusable resource
among all processes, instead of only one, as standard mutual exclusion.

2. The maximum number of resources a process can use simultaneously, e.g.,
the k-out-of-�-exclusion problem [27] is a generalization of �-exclusion where
a process can request for up to k resources simultaneously.

3. Some topological constraints, e.g., in the dining philosophers problem [16],
two neighbors cannot use their common resource simultaneously.

This work has been partially supported by the ANR Persyval Project DACRAW.

c© Springer International Publishing Switzerland 2015
A. Bouajjani and H. Fauconnier (Eds.): NETYS 2015, LNCS 9466, pp. 77–93, 2015.
DOI: 10.1007/978-3-319-26850-7 6

78 K. Altisen et al.

For efficiency purposes, algorithms solving such problems must be as par-
allel as possible. As a consequence, these algorithms should be, in particular,
evaluated at the light of the level of concurrency they permit, and this level of
concurrency should be captured by a dedicated property. However, most of the
solutions to resource allocation problems simply do not consider the concurrency
issue, e.g., [5,7,9,20,22,24,26]

Now, as quoted by Fischer et al. [19], specifying resource allocation prob-
lems without including a property of concurrency may lead to degenerated solu-
tions, e.g., any mutual exclusion algorithm realizes the safety and the fairness of
�-exclusion. To address this issue, Fischer et al. [19] proposed an ad hoc property
to capture concurrency in �-exclusion. This property is called avoiding �-deadlock
and is informally defined as follows: “if fewer than � processes are executing their
critical section,1 then it is possible for another process to enter its critical section,
even though no process leaves its critical section in the meantime.” Some other
properties, inspired from the avoiding �-deadlock property, have been proposed
to capture the level of concurrency in other resource allocation problems, e.g.,
k-out-of-�-exclusion [11] and committee coordination [6]. However, until now, all
existing properties of concurrency are specific to a particular problem.

In this paper, we first propose to generalize the definition of avoiding
�-deadlock to any resource allocation problems. We call this new property the
maximal-concurrency. Then, we consider the maximal-concurrency in the con-
text of the Local Resource Allocation (LRA) problem, defined by Cantarell
et al. [9]. LRA is a generalization of resource allocation problems in which
resources are shared among neighboring processes. Dining philosophers, local
reader-writers, local mutual exclusion, and local group mutual exclusion are
particular instances of LRA. In contrast, local �-exclusion and local k-out-of-�-
exclusion cannot be expressed with LRA although they also deal with neighbor-
ing resource sharing.

Now, we show that algorithms for any instance of this important problem can-
not achieve maximal-concurrency. This impossibility result is mainly due to the
fact that fairness of LRA and maximal-concurrency are incompatible properties:
it is impossible to implement an algorithm achieving both properties. As unfair
resource allocation algorithms are clearly unpractical, we propose to weaken
the property of maximal-concurrency. We call partial maximal-concurrency this
weaker version of maximal concurrency. The goal of partial maximal-concurrency
is to capture the maximal level of concurrency that can be obtained in LRA
without compromising fairness.

We propose a LRA algorithm achieving (strong) partial maximal-concurrency
in bidirectional identified networks of arbitrary topology. As additional feature,
this algorithm is snap-stabilizing [8]. Snap-stabilization is a versatile property
which enables a distributed system to efficiently withstand transient faults.
Informally, after transient faults cease, a snap-stabilizing algorithm immediately
resumes correct behavior, without external intervention. More precisely, a snap-

1 The critical section is the code that manages the access of a process to its allocated
resources.

Concurrency in Snap-Stabilizing Local Resource Allocation 79

stabilizing algorithm guarantees that any computation started after the faults
cease will operate correctly. However, we have no guarantees for those executed
all or a part during faults. By definition, snap-stabilization is a strengthened form
of self-stabilization [15]: after transient faults cease, a self-stabilizing algorithm
eventually resume correct behavior, without external intervention.

There exist many algorithms for particular instances of the LRA problem.
Many of these solutions have been proven to be self-stabilizing, e.g., [5,7,9,20,22,
24,26]. In [7], Boulinier et al. propose a self-stabilizing unison algorithm which
allows to solve local mutual exclusion, local group mutual exclusion, and the local
reader-writers problem. There are also many self-stabilizing algorithms for the
local mutual exclusion [5,20,24,26]. In [22], Huang proposes a self-stabilizing
algorithm solving the dining philosophers problem. A self-stabilizing drinking
philosophers algorithm is given in [26]. In [9], Cantarell et al. generalize the above
problems by introducing the LRA problem. They also propose a self-stabilizing
algorithm for that problem. To the best of our knowledge, no other paper deals
with the general instance of LRA and no paper proposes snap-stabilizing solu-
tion for any particular instance of LRA. Finally, none of the aforementioned
papers (especially [9]) consider the concurrency issue. Finally, note that there
exist weaker versions of the LRA problem, such as the (local) conflict managers
proposed in [21] where the fairness is replaced by a progress property.

Roadmap. The next section introduces the computation model and the
specification of the LRA problem. In Sect. 3, we define the property of maximal-
concurrency, show the impossibility result, and then circumvent this impossibil-
ity by introducing the partial maximal-concurrency. Our algorithm is presented
in Sect. 4. We outline the proofs of its correctness and (strong) partial maximal-
concurrency in Subsect. 4.4. A detailed proof is available in the technical
report [3]. We conclude in Sect. 5.

2 Computational Model and Specifications

2.1 Distributed Systems

We consider distributed systems composed of n processes. A process p can
(directly) communicate with a subset Np of other processes, called its
neighbors. These communications are assumed to be bidirectional, i.e., for any
two processes p and q, q ∈ Np if and only if p ∈ Nq. Hence, the topology of the
network can be modeled by a simple undirected graph G = (V,E), where V is
the set of processes and E is the set of edges representing (direct) communica-
tion relations. Moreover, we assume that each process has a unique ID, a natural
integer. By abuse of notation, we identify the process with its own ID, whenever
convenient.

2.2 Locally Shared Memory Model

We consider the locally shared memory model in which processes communicate
using a finite number of locally shared registers, called variables. Each process

80 K. Altisen et al.

can read its own variables and those of its neighbors, but can only write to its
own variables. The state of a process is the vector of values of all its variables. A
configuration γ of the system is the vector of states of all processes. We denote
by γ(p) the state of a process p in a configuration γ.

A distributed algorithm consists of one program per process. The program of
a process p is composed of a finite number of actions, where each action has
the following form: (〈priority〉) 〈label〉 : 〈guard〉 → 〈statement〉. The labels are
used to identify actions. The guard of an action in the program of process p is
a Boolean expression involving the variables of p and its neighbors. Priorities
are used to simplify the guards of the actions. The actual guard of an action
“(j) L : G → S” at p is the conjunction of G and the negation of the
disjunction of all guards of actions at p with priority i < j. An action of priority
i is said to be of higher priority than any action of priority j > i. If the actual
guard of some action evaluates to true, then the action is said to be enabled at
p. By definition, a process p is not enabled to execute any (lower priority) action
if it is enabled to execute an action of higher priority. If at least one action is
enabled at p, p is also said to be enabled. We denote by Enabled(γ) the set of
processes enabled in configuration γ. The statement of an action is a sequence of
assignments on the variables of p. An action can be executed only if it is enabled.
In this case, the execution of the action consists in executing its statement.

The asynchronism of the system is materialized by an adversary, called the
daemon. In a configuration γ, if there is at least one enabled process (i.e.,
Enabled(γ) �= ∅), then the daemon selects a non empty subset S of Enabled(γ)
to perform an (atomic) step: Each process of S atomically executes one of its
enabled action in γ, leading the system to a new configuration γ′. We denote
by �→ the relation between configurations such that γ �→ γ′ if and only if γ′ can
be reached from γ in one (atomic) step. An execution is a maximal sequence
of configurations γ0, γ1, . . . such that ∀i > 0, γi−1 �→ γi. The term “maximal”
means that the execution is either infinite, or ends at a terminal configuration
γ in which Enabled(γ) is empty.

In this paper, we assume a distributed weakly fair daemon. “Distributed”
means that while the configuration is not terminal, the daemon should select at
least one enabled process, maybe more. “Weakly fair” means that there is no
infinite suffix of execution in which a process p is continuously enabled without
ever being selected by the daemon.

2.3 Snap-Stabilizing Local Resource Allocation

In resource allocation problems, a typically small amount of reusable resources
is shared among a large number of processes. A process may spontaneously
request for one or several resources. When granted, the access to the requested
resource(s) is done using a special section of code, called critical section. The
process can only hold resources for a finite time: eventually, it should release these
resources to the system, in order to make them available for other requesting
processes. In particular, this means that the critical section is always assumed

Concurrency in Snap-Stabilizing Local Resource Allocation 81

to be finite. In the following, we denote by Rp the set of resources that can be
accessed by a process p.

Local Resource Allocation. The Local Resource Allocation (LRA) prob-
lem [9] is based on the notion of compatibility: two resources X and Y are
said to be compatible if two neighbors can concurrently access them. Otherwise,
X and Y are said to be conflicting. In the following, we denote by X � Y (resp.
X �� Y) the fact that X and Y are compatible (resp. conflicting). Notice that
� is a symmetric relation.

Using the compatibility relation, the local resource allocation problem consists
in ensuring that every process which requires a resource r eventually accesses r
while no other conflicting resource is currently used by a neighbor. Notice that
the case where there are no conflicting resources is trivial: a process can always
use a resource whatever the state of its neighbors. So, from now on, we will
always assume that there exists at least one conflict, i.e., there are (at least) two
neighbors p, q and two resources X, Y such that X ∈ Rp, Y ∈ Rq and X �� Y .

Specifying the relation �, it is possible to define some classic resource allo-
cation problems in which the resources are shared among neighboring processes.

Example 1: Local Mutual Exclusion. In the local mutual exclusion problem, no
two neighbors can concurrently access the unique resource. So there is only one
resource X common to all processes and X �� X.

Example 2: Local Readers-Writers. In the local readers-writers problem, the
processes can access a file in two different modes: a read access (the process is
said to be a reader) or a write access (the process is said to be a writer). A writer
must access the file in local mutual exclusion, while several reading neighbors
can concurrently access the file. We represent these two access modes by two
resources at every process: R for a “read access” and W for a “write access.”
Then, R � R, but W �� R and W �� W .

Snap-Stabilization. Let A be a distributed algorithm. A specification SP is a
predicate over all executions of A. In [8], snap-stabilization has been defined as
follows: A is snap-stabilizing w.r.t. SP if starting from any arbitrary configura-
tion, all its executions satisfy SP .

Of course, not all specifications — in particular their safety part — can be
satisfied when considering a system which can start from an arbitrary configu-
ration. Actually, snap-stabilization’s notion of safety is user-centric: when the
user initiates a computation, then the computed result should be correct. So,
we express a problem using a guaranteed service specification [2]. Such a speci-
fication consists in specifying three properties related to the computation start,
computation end, and correctness of the delivered result. (In the context of LRA,
this latter property will be referred to as “resource conflict freedom.”)

To formally define the guaranteed service specification of the local resource
allocation problem, we need to introduce the following four predicates, where p
is a process, r is a resource, and e = (γi)i≥0 is an execution:

82 K. Altisen et al.

– Request(γi, p, r) means that an application at p requires r in configuration
γi. We assume that if Request(γi, p, r) holds, it continuously holds until p
accesses r.

– Start(γi, γi+1, p, r) means that p starts a computation to access r in γi �→ γi+1.
– Result(γi . . . γj , p, r) means that p obtains access to r in γi−1 �→ γi and p ends

the computation in γj �→ γj+1. Notably, p released r between γi and γj .
– NoConflict(γi, p) means that, in γi, if a resource is allocated to p, then none

of its neighbors is using a conflicting resource.

These predicates will be instantiated with the variables of the local resource
allocation algorithm. Below, we define the guaranteed service specification of LRA.

Specification 1 (Local Resource Allocation). Let A be an algorithm. An
execution e = (γi)i≥0 of A satisfies the guaranteed service specification of LRA,
noted SPLRA, if the three following properties hold:

Resource Conflict Freedom: If a process p starts a computation to access
a resource, then there is no conflict involving p during the computation:
∀k ≥ 0,∀k′ > k,∀p ∈ V,∀r ∈ Rp,

[
Result(γk . . . γk′ , p, r) ∧

(
∃l < k,

Start(γl, γl+1, p, r)
)]

⇒
[
∀i ∈ {k, . . . , k′}, NoConflict(γi, p)

]

Computation Start: If an application at process p requests resource r, then p
eventually starts a computation to obtain r: ∀k ≥ 0,∀p ∈ V,∀r ∈ Rp,

[
∃l >

k,Request(γl, p, r) ⇒ Start(γl, γl+1, p, r)
]

Computation End: If process p starts a computation to obtain resource r, the
computation eventually ends (in particular, p obtained r during the com-
putation): ∀k ≥ 0,∀p ∈ V,∀r ∈ Rp, Start(γk, γk+1, p, r) ⇒

[
∃l > k,∃l′ >

l,Result(γl . . . γl′ , p, r)
]

Thus, an algorithm A is snap-stabilizing w.r.t. SPLRA (i.e., snap-stabilizing
for LRA) if starting from any arbitrary configuration, all its executions satisfy
SPLRA.2

3 Concurrency

Many existing resource allocation algorithms, especially self-stabilizing ones [5,
7,9,20,22,24,26], do not consider the concurrency issue. In [19], authors pro-
pose a concurrency property ad hoc to �-exclusion. We now define the maximal-
concurrency, which generalizes the definition of [19] to any resource allocation
problem.

3.1 Maximal-Concurrency

Informally, maximal-concurrency can be defined as follows: if there are processes
that can access some resource they are requesting without violating the safety

2 By contrast, a non-stabilizing algorithm achieves LRA if all its executions starting
from predefined initial configurations satisfy SPLRA.

Concurrency in Snap-Stabilizing Local Resource Allocation 83

of the considered resource allocation problem, then at least one of them should
eventually access one of its requested resources, even if no process releases the
resource it holds in the meantime.

Let PCS(γ) be the set of processes that are executing their critical section
in γ, i.e., the set of processes holding resources in γ. Let PReq(γ) be the set of
processes that are requesting in γ. Let PFree(γ) ⊆ Preq(γ) be the set of request-
ing processes that can access their requested resource(s) in γ without violating
the safety of the considered resource allocation problem. We denote by γ(p).req
the resource(s) requested by process p in γ. Let continuousCS(γi . . . γj) ≡ ∀k ∈
{i, . . . , j − 1}, PCS(γk) ⊆ PCS(γk+1)

Definition 1 (Maximal-Concurrency). An algorithm is maximal-concurrent
if and only if ∀e = (γi)i≥0 ∈ E , ∀i ≥ 0, ∃N ∈ N, ∀j > N , continuousCS
(

(γi . . . γi+j) ∧ PFree(γi) �= ∅)⇒ (∃k ∈ {i, . . . , i + j − 1}, ∃p ∈ V, p ∈ PFree(γk) ∩ PCS

(γk+1)
)

.

The two examples below show the versatility of our property: we instantiate
the set PFree according to the considered problem.

Example 1: �-Exclusion Maximal-Concurrency. In the �-exclusion problem, up to
� processes can execute their critical section concurrently. Hence,

PFree(γ) = ∅ if |PCS(γ)| = �; PFree(γ) = PReq(γ) otherwise

Using this latter instantiation, we obtain a definition of maximal concurrency
which is equivalent to the “avoiding �-deadlock” property of Fischer et al. [19].

Example 2: Local Resource Allocation Maximal-Concurrency. In the local
resource allocation problem, a requesting process is allowed to enter its criti-
cal section if all its neighbors in critical section are using resources which are
compatible with its request:

PFree(γ) = {p ∈ PReq(γ) | ∀q ∈ Np, (q ∈ PCS(γ) ⇒ γ(q).req � γ(p).req)}

The maximal-concurrency property can also be defined using the following
alternative definition:

Definition 2 (Maximal Concurrency). An algorithm is maximal concurrent
if and only if ∀e = (γi)i≥0 ∈ E , ∀i ≥ 0, ∃T ∈ N, ∀t ≥ T ,

continuousCS(γi . . . γi+t) ⇒ PFree(γi+t) = ∅

Definitions 1 and 2 are equivalent using induction arguments (see [3]). Using
the latter definition, remark that an algorithm is not maximal concurrent if and
only if ∃e = (γi)i≥0 ∈ E , ∃i ≥ 0, ∀T ∈ N, ∃t ≥ T , continuousCS(γi . . . γi+t) ∧
PFree(γi+t) �= ∅.

84 K. Altisen et al.

3.2 Maximal Concurrency Vs. Fairness

Definition 3 below gives a definition of fairness classically used in resource alloca-
tion problems. Notably, Computation Start and End properties of Specification 1
trivially implies this fairness property. Next, Theorem1 states that no LRA algo-
rithm (stabilizing or not) can achieve maximal-concurrency. Actually, its proof
is based on the incompatibility between fairness and maximal-concurrency.

Definition 3 (Fairness). Each time a process is (continuously) requesting a
resource r, it eventually accesses r.

Theorem 1. It is impossible to design a LRA algorithm for arbitrary networks
that satisfies maximal-concurrency.

Proof. Assume, by contradiction, that there is a local resource allocation algo-
rithm A (stabilizing or not) which satisfies maximal-concurrency. Let con-
sider the following graph: G = (V,E) where V = {p1, p2, p3} and E =
{(p1, p2), (p2, p3)}. Let X and Y be two resources such that X �� Y , X ∈ Rp1 ,
Y ∈ Rp2 , and X ∈ Rp3 (notice that we can have X = Y). We assume that, when
p1 and p3 request a resource, they request X, and, when p2 requests a resource,
it requests Y . Below, we exhibit a possible execution e of A on G where fairness
is violated if maximal-concurrency is achieved. Figure 1 illustrates the proof.

First, assume that p1 continuously requests X while p2 and p3 are idle
(Configuration 1.(a)). As A satisfies the fairness property, p1 eventually exe-
cutes its critical section to access X. This critical section can last an arbitrary
long (yet finite) time (Fig. 1.(b)).

Then, p2 and p3 start continuously requesting (Y for p2 and X for p3). To
satisfy the maximal-concurrency property, p3 must eventually obtain resource
X, even if p1 does not finish its critical section in the meantime. In this case,
the system reaches the configuration given in Fig. 1.(d).

Then, it is possible that p1 ends its critical section and releases resource
X right after Configuration 1.(d). But, in this case, p2 still cannot access Y
because Y is conflicting with the resource X currently used by p3. So, the sys-
tem can reach Configuration 1.(e). If p1 continuously requests X again right
after Configuration 1.(e), we obtain Configuration 1.(f). Now, the execution of
the critical section of p3 may last an arbitrary long (yet finite) time, and p1
should again access X, even if p3 does not finish its critical section in the mean-
time, by maximal-concurrency. So, the system can reach Configuration 1.(g).

Now, if p3 releases its resource and then continuously requests it again, we
retrieve a configuration similar to the one of Fig. 1.(c). We can repeat this scheme
infinitely often so that p2 continuously requests Y but never access it: the fairness
property is violated, a contradiction.

3.3 Partial Maximal-Concurrency

To circumvent the previous impossibility result, we propose a weaker version of
maximal concurrency, called partial maximal-concurrency.

Concurrency in Snap-Stabilizing Local Resource Allocation 85

(a)

p1 p2 p3

X

(b)

X

(c)

X Y X

(d)

X Y X

(e)

Y X

(f)

X Y X

(g)

X Y X

(h)

X Y

fair ness
maximal concurrency

maximal concurrency

Fig. 1. Maximal concurrency vs. fairness. The processes in black are executing their
critical section. The processes in gray are requesting resources. The processes in white
are idle. Requested resources are given in the bubbles next to the nodes.

Definition 4 (Partial Maximal-Concurrency). Analgorithm A is partially
maximal-concurrent if and only if ∀e = (γi)i≥0 ∈ E , ∀i ≥ 0, ∃T ∈ N such that
∀t ≥ T , ∃X ⊆ V such that continuousCS(γi . . . γi+t) ⇒ PFree(γi+t) ⊆ X.

Notice that, by definition, a maximal-concurrent algorithm is also partially
maximal-concurrent.

The proof of Theorem1 reveals that fairness and maximal concurrency are
contradictory in the following situation: some neighbors of a process alternatively
use resources which are conflicting with its own request. So, to achieve fairness,
we must relax the expected level of concurrency in such a way that at least
in that situation p eventually satisfies its request. To ensure this, any LRA
algorithm should then eventually allow p to prevent its requesting neighbors from
entering their critical section, even if p cannot currently satisfies its request (i.e.,
even if one of its neighbor is using a conflicting resource) and even if some of
its requesting neighbors can enter critical section without creating any conflict.
Hence, in the worst case, p has one neighbor holding a conflicting resource and it
should prevent all other neighbors to satisfy their requests, in order to eventually
satisfy its own request (and so to ensure fairness).

We derive the following refinement of partial maximal concurrency based on
this latter observation: this seems to be the finest concurrency we can expect in
LRA algorithm.

Definition 5 (Strong Partial Maximal-Concurrency). An algorithm A
is strongly partially maximal-concurrent if and only if ∀e = (γi)i≥0 ∈ E ,
∀i ≥ 0, ∃T ∈ N such that ∀t ≥ T , ∃p, q ∈ V , q ∈ Np such that
continuousCS(γi . . . γi+t) ⇒ PFree(γi+t) ⊆ Np\{q}.

In the next section, we show that strong partial maximal-concurrency can be
realized by a snap-stabilizing LRA algorithm.

4 Local Resource Allocation Algorithm

We now propose a snap-stabilizing LRA algorithm which achieves the strong
partial maximal concurrency. This algorithm consists of two modules: Algorithm

86 K. Altisen et al.

LRA, which manages local resource allocation, and Algorithm T C which pro-
vides a self-stabilizing token circulation service to LRA, whose goal is to ensure
fairness.

4.1 Composition

These two modules are composed using a fair composition [17], denoted LRA ◦
T C. In such a composition, each process executes a step of each algorithm alter-
nately.

Notice that the purpose of this composition is only to simplify the design
of the algorithm: a composite algorithm written in the locally shared memory
model can be translated into an equivalent non-composite algorithm. Such a
translation can be done using the rewriting rule given in the technical report [3].

4.2 Token Circulation Module

We assume that T C is a self-stabilizing black box which allows LRA to emulate
a self-stabilizing token circulation. T C provides two outputs to each process p in
LRA: the predicate Token(p) and the statement PassToken(p). The predicate
Token(p) expresses whether the process p holds a token or not. The statement
PassToken(p) can be used to pass the token from p to one of its neighbor. Of
course, it should be executed (by LRA) only if Token(p) holds. Precisely, we
assume that T C satisfies the following properties.

Property 1 (Stabilization). T C stabilizes, i.e., reaches and remains in configura-
tions where there is a unique token in the network, independently of any call to
PassToken(p) at any process p.

Property 2. Once T C has stabilized, ∀p ∈ V , if Token(p) holds, then Token(p)
is continuously true until PassToken(p) is invoked.

Property 3 (Fairness). Once T C has stabilized, if ∀p ∈ V , PassToken(p) is
invoked in finite time each time Token(p) holds, then ∀p ∈ V , Token(p) holds
infinitely often.

To design T C we proceed as follows. There exist several self-stabilizing token
circulations for arbitrary rooted networks [10,12,23] that contain a particular
action, T : Token(p) → PassToken(p), to pass the token, and that stabilizes
independently of the activations of action T . Now, the networks we consider are
not rooted, but identified. So, to obtain a self-stabilizing token circulation for
arbitrary identified networks, we can fairly compose any of them with a self-
stabilizing leader election algorithm [1,4,13,18] using the following additional
rule: if a process considers itself as leader it executes the token circulation pro-
gram for a root; otherwise it executes the program for a non-root. Finally, we
obtain T C by removing action T from the resulting algorithm, while keeping
Token(p) and PassToken(p) as outputs, for every process p.

Concurrency in Snap-Stabilizing Local Resource Allocation 87

Algorithm 1. Algorithm LRA for every process p
Variables
p.status ∈ {Out,Wait,Blocked, In}, p.token ∈ B

Inputs
p.req ∈ Rp ∪ {⊥}

Macros
WaitingNeigh(p) ≡ {q ∈ N | q.status = Wait}
LocalMax(p) ≡ WaitingNeigh(p) ∪ {p}}
LocalTokens(p) ≡ {q ∈ Np ∪ {p} | q.token}
TokenMax(p) ≡ (p)}

Predicates
ResourceFree(p) ≡ ∀q ∈ Np,

(
q.status = In ⇒ p.req � q.req

)
IsBlocked(p) ≡ ¬ResourceFree(p) ∨ (∃q ∈ Np, q.status = Blocked ∧ q.token

)
TokenAccess(p) ≡ LocalTokens(p) �= ∅ ∧ p = TokenMax(p)
MaxAccess(p) ≡ LocalTokens(p) = ∅ ∧ p = LocalMax(p)

Guards
Requested(p) ≡ p.status = Out ∧ p.req �= ⊥
Block(p) ≡ p.status = Wait ∧ IsBlocked(p)
Unblock(p) ≡ p.status = Blocked ∧ ¬IsBlocked(p)
Enter(p) ≡ p.status = Wait ∧ ¬IsBlocked(p) ∧ (TokenAccess(p) ∨ MaxAccess(p))
Exit(p) ≡ p.status = In ∧ p.req = ⊥
ResetToken(p) ≡ Token(p) �= p.token
ReleaseToken(p) ≡ Token(p) ∧ p.status ∈ {Out, In} ∧ ¬Requested(p)

Actions
(1) RsT -action :: ResetToken(p) → p.token ← Token(p);
(3) RlT -action :: ReleaseToken(p) → PassToken(p);
(4) R-action :: Requested(p) → p.status ← Wait;
(4) B-action :: Block(p) → p.status ← Blocked;
(4) UB-action :: Unblock(p) → p.status ← Wait;
(4) E-action :: Enter(p) → p.status ← In; if p.token then PassToken(p) fi;
(2) Ex-action :: Exit(p) → p.status ← Out;

4.3 Resource Allocation Module

The code of LRA is given in Algorithm 1. Priorities and guards ensure that
actions of Algorithm 1 are mutually exclusive. We now informally describe
Algorithm 1, and explain how Specification 1 is instantiated with its variables.

First, a process p interacts with its application through two variables: p.req ∈
Rp ∪ {⊥} and p.status ∈ {Out,Wait, In,Blocked}. p.req can be read and written
by the application, but can only be read by p in LRA. Conversely, p.status can
be written by p in LRA, but the application can only read it. Variable p.status
can take the following values:

– Wait, which means that p requests a resource but does not hold it yet;
– Blocked, which means that p requests a resource, but cannot hold it now;
– In, which means that p holds a resource;
– Out, which means that p is currently not involved into an allocation process.

When p.req = ⊥, this means that no resource is requested. Conversely, when
p.req ∈ Rp, the value of p.req informs p about the resource requested by the
application. We assume two properties on p.req. Property 4 ensures that the
application (1) does not request for resource r′ while a computation to access
resource r is running, and (2) does not cancel or modify a request before the
request is satisfied. Property 5 ensures that any critical section is finite.

88 K. Altisen et al.

Property 4. ∀p ∈ V , the updates on p.req (by the application) satisfy the fol-
lowing constraints:

– The value of p.req can change from ⊥ to r ∈ Rp if and only if p.status = Out,
– The value of p.req can change from r ∈ Rp to ⊥ if and only if p.status = In.
– The value of p.req cannot directly change from r ∈ Rp to r′ ∈ Rp with r′ �= r.

Property 5. ∀p ∈ V , if p.status = In and p.req �= ⊥, then eventually p.req
becomes ⊥.

Consequently, the predicate Request(γi, p, r) in Specification 1 is true if and
only if p.req = r in γi; the predicate NoConflict(γi, p) is expressed by p.status =
In ⇒

(
∀q ∈ Np, q.status = In ⇒ (q.req � p.req)

)
in γi. (We set ⊥ compatible

with every resource.)
The predicate Start(γi, γi+1, p, r) becomes true when process p takes the

request for resource r into account in γi �→ γi+1, i.e., when the status of p
switches from Out to Wait in γi �→ γi+1 because p.req = r �= ⊥ in γi.

Assume that γi . . . γj is a computation where Result(γi . . . γj , p, r) holds:
process p accesses resource r, i.e., p switches its status from Wait to In in
γi−1 �→ γi while p.req = r, and later switches its status from In to Out in
γj �→ γj+1.

8

6

2

7

1

5

3

W

W

R

R

R

R

W

(a) Initial configuration.

8

6

2

7

1

5

3

W

W

R

R

R

R

W

(b) 6 executed B-action, 1
executed E-action, and 5 ex-
ecuted R-action.

8

6

2

7

1

5

3

W

W

R

R

R

R

W

(c) 3 executed B-action and
7 executed E-action.

8

6

2

7

1

5

3

W

W

R

R

R

R

W

(d) 2 executed E-action and
5 executed B-action.

8

6

2

7

1

5

3

⊥

W

R

R

R

R

W

(e) The application of 8 does
not need the write access any-
more.

8

6

2

7

1

5

3

⊥

W

R

R

R

R

W

(f) 8 executed Ex-action.

Fig. 2. Example of execution of LRA ◦ T C.

We now illustrate the principles of LRA with the example given in Fig. 2.
In this example, we consider the local reader-writer problem. In the figure, the
numbers inside the nodes represent their IDs. The color of a node represents its
status: white for Out, gray for Wait, black for In, and crossed out for Blocked.
A double circled node holds a token. The bubble next to a node represents its
request. Recall that we have two resources: R for a reading access and W for a
writing access.

Concurrency in Snap-Stabilizing Local Resource Allocation 89

When the process is idle (p.status = Out), its application can request a
resource. In this case, p.req = r �= ⊥ and p sets p.status to Wait by R-action:
p starts the computation to obtain r. For example, 5 starts a computation to
obtain R in (a)�→(b). If one of its neighbors is using a conflicting resource, p
cannot satisfy its request yet. So, p switches p.status from Wait to Blocked
by B-action (see 6 in (a)�→(b)). If there is no more neighbor using conflicting
resources, p gets back to status Wait by UB-action.

When several neighbors request for conflicting resources, we break ties
using a token-based priority: Each process p has an additional Boolean vari-
able p.token which is used to inform neighbors about whether p holds a
token or not. A process p takes priority over any neighbor q if and only if(
p.token ∧ ¬q.token

)
∨

(
p.token = q.token ∧ p > q

)
. More precisely, if there

is no token in the neighborhood of p, the highest priority process is the wait-
ing process with highest ID. Otherwise, the token holders (there may be several
tokens during the stabilization phase of T C) blocked all their requesting neigh-
bors, even if they request for non-conflicting resources, and until the token hold-
ers obtain their requested resources. This mechanism allows to ensure fairness by
slightly decreasing the level of concurrency. (The token circulates to eventually
give priority to blocked processes, e.g., processes with small IDs.)

The highest priority waiting process in the neighborhood gets status In and
can use its requested resource by E-action, e.g., 7 in step (b)�→(c) or 1 in
(a)�→(b). Moreover, if it holds a token, it releases it. Notice that, as a process
is not blocked when one of its neighbors is using a compatible resource, sev-
eral neighbors using compatible resources can concurrently enter and/or execute
their critical section (see 1, 2, and 7 in Configuration (d)). When the application
at process p does not need the resource anymore, i.e., when it sets the value of
p.req to ⊥, p executes Ex-action and switches its status to Out, e.g., 8 during
step(e)�→(f).

RlT -action is used to straight away pass the token to a neighbor when the
process does not need it, i.e., when its status is either Out or In. (Hence, the
token can eventually reach a process of status Wait or Blocked and help it to
satisfy its request.)

The last action, RsT -action, ensures the consistency of variable .token so
that the neighbors realize whether or not a process holds a token.

4.4 Correctness and Partial Maximal-Concurrency

In this subsection, we sketch the proof of snap-stabilization of Algorithm LRA◦
T C. Then, we give the proof outline which shows that LRA ◦ T C is strongly
partially maximal-concurrent. Recall that we assume a distributed weakly fair
daemon.

Theorem 2 (Resource Conflict Freedom). Every execution of LRA ◦ T C
satisfies the resource conflict freedom property.

Proof Outline. Immediate from the guard of E-action. �

90 K. Altisen et al.

In LRA◦T C, the token circulation is used to ensure fairness. Hence, a crucial
point to show that LRA◦T C satisfies the computation start and end properties
(Theorems 3 and 4) consists in showing that no process can keep a token forever.

Lemma 1. No process can keep a token forever.

Proof Outline. Assume, by contradiction, that a process p holds a token forever.
Then, eventually p is the only token holder forever, by Property 1. If p.status ∈
{Out, In} forever, p does not need the token and straightaway releases it by
RlT -action, a contradiction. Otherwise, the token gives priority to p over all
of its neighbors. So, p eventually enters in critical section by E-action and so
releases the token, a contradiction. �

Theorem 3 (Computation End). Every execution of LRA◦T C satisfies the
computation end property.

Proof Outline. Assume a computation starts at process p to obtain resource r.
Assume, by contradiction, that r is never allocated to p. By Property 1, a

unique token eventually exists in the network. Moreover, p eventually gets the
token, by Lemma 1 and Property 3. Again by Lemma 1, p eventually releases the
token. Now, p can only release the token by executing E-action. In this case, p
obtains resource r, a contradiction.

Hence, r is allocated to p in finite time. Now, by Property 5, in finite time,
the application does not need the resource r anymore and sets p.req to ⊥. So p
eventually executes Ex-action and ends its computation. �

We illustrate the previous proof with an example given in Fig. 3. We consider
the local mutual exclusion problem. In this example, we try to delay as much
as possible the critical section of process 2. First, process 2 has two neighbors
(7 and 8) that also request the resource and have greater IDs. So, they will
execute their critical section before 2 (in steps (a) �→(b) and (e)�→(f)). But, the

4

6

1

9

3

7

5

2

8

(a)

4

6

1

9

3

7

5

2

8

(b)

4

6

1

9

3

7

5

2

8

(c)

4

6

1

9

3

7

5

2

8

(d)

4

6

1

9

3

7

5

2

8

(e)

4

6

1

9

3

7

5

2

8

(f)

4

6

1

9

3

7

5

2

8

(g)

4

6

1

9

3

7

5

2

8

(h)

4

6

1

9

3

7

5

2

8

(i)

4

6

1

9

3

7

5

2

8

(j)

4

6

1

9

3

7

5

2

8

(k)

Fig. 3. Example of execution of LRA◦T C on the local mutual exclusion problem. The
bubbles mark the requesting processes.

Concurrency in Snap-Stabilizing Local Resource Allocation 91

token circulates and eventually reaches 2 (see Configuration (g)). Then, 2 has
priority over its neighbors (even though it has a lower ID) and eventually starts
executing its critical section in (j)�→(k)).

Theorem 4 (Computation Start). Every execution of LRA ◦ T C satisfies
the computation start property.

Proof Outline. A process p eventually obtains status Out. Indeed, if p.status �=
Out, p is computing and, by Theorem3, this computation eventually ends. Hence,
if the application of p requests some resource r, i.e., p.req = r �= ⊥, p eventually
executes R-action and a computation for r starts. �

Theorem 5 below is immediate from Theorems 2, 3, and 4.

Theorem 5 (Correctness). Algorithm LRA ◦ T C is snap-stabilizing w.r.t.
SPLRA assuming a distributed weakly fair daemon.

We now show that LRA ◦ T C is strongly partially maximal-concurrent. We
instantiate the sets PCS and PReq as follows: PReq(γ) = {p ∈ V, p.req �= ⊥ ∧
p.status �= In in γ} and PCS(γ) = {p ∈ V, p.status = In ∧ p.req �= ⊥ in γ}.

Theorem 6 (Strong Partial Maximal-Concurrency). Algorithm LRA ◦
T C is a strong partial maximal concurrent local resource allocation algorithm.

Proof Outline. After stabilization of T C, ∃T from which, if continousCS holds
until γT , then every process does not change the values of its variables .req and
.status. After γT (and if continuousCS still holds), if PFree is not empty, every
process in PFree has status Blocked. Indeed, otherwise there is a finite sequence
of processes in PFree with increasing priorities such that the last process is
allowed to execute E-action and change its .status to In, a contradiction with
the definition of T .

A process p is blocked because ¬ResourceFree(p) or
(
∃q ∈ Np, q.status =

Blocked∧ q.token
)
. Now, in the former case, p /∈ PFree. So, p ∈ PFree is blocked

because of the unique token holder, say q. Then, p ∈ Nq and PFree(γT) contains
all the requesting neighbors of q. In the worst case, it contains all the neigh-
borhood of q except one process s that is in critical section, namely, the one
that blocks q. Hence, PFree(γT) ⊆ Nq\{s}, and LRA ◦ T C is strongly partially
maximal-concurrent. �

5 Conclusion

We characterized the maximal level of concurrency we can obtain in resource allo-
cation problems by proposing the notion of maximal-concurrency. This notion is
versatile, e.g., it generalizes the avoiding �-deadlock [19] and (k,�)-liveness [11]
defined for the �-exclusion and k-out-of-�-exclusion, respectively. From [11,19],
we already know that maximal-concurrency can be achieved in some important

92 K. Altisen et al.

global resource allocation problems.3 Now, perhaps surprisingly, our results show
that maximal-concurrency cannot be achieved in problems that can be expressed
with the LRA paradigm. However, we showed that strong partial maximal-
concurrency (an high, but not maximal, level of concurrency) can be achieved
by a snap-stabilizing LRA algorithm. We have to underline that the level of
concurrency we achieve here is similar to the one obtained in the committee
coordination problem [6]. Defining the exact class of resource allocation prob-
lems where maximal-concurrency (resp. strong partial maximal-concurrency) can
be achieved is a challenging perspective.

References

1. Altisen, K., Cournier, A., Devismes, S., Durand, A., Petit, F.: Self-stabilizing leader
election in polynomial steps. In: Felber, P., Garg, V. (eds.) SSS 2014. LNCS, vol.
8756, pp. 106–119. Springer, Heidelberg (2014)

2. Altisen, K., Devismes, S.: On probabilistic snap-stabilization. In: Chatterjee, M.,
Cao, J., Kothapalli, K., Rajsbaum, S. (eds.) ICDCN 2014. LNCS, vol. 8314, pp.
272–286. Springer, Heidelberg (2014)

3. Altisen, K., Devismes, S., Durand, A.: Concurrency in Snap-Stabilizing Local
Resource Allocation. Research report, VERIMAG, December 2014. https://hal.
archives-ouvertes.fr/hal-01099186

4. Arora, A., Gouda, M.G.: Distributed reset. IEEE Trans. Comput. 43(9), 1026–1038
(1994)

5. Beauquier, J., Datta, A.K., Gradinariu, M., Magniette, F.: Self-stabilizing local
mutual exclusion and daemon refinement. Chicago J. Theor. Comput. Sci. 2002,
1–19 (2002)

6. Bonakdarpour, B., Devismes, S., Petit, F.: Snap-stabilizing comittee coordination.
In: IPDPS, pp. 231–242 (2011)

7. Boulinier, C., Petit, F., Villain, V.: When graph theory helps self-stabilization. In:
PODC, pp. 150–159 (2004)

8. Bui, A., Datta, A.K., Petit, F., Villain, V.: Snap-stabilization and PIF in tree
networks. Dist. Comp. 20(1), 3–19 (2007)

9. Cantarell, S., Datta, A.K., Petit, F.: Self-stabilizing atomicity refinement allowing
neighborhood concurrency. In: Huang, S.-T., Herman, T. (eds.) SSS 2003. LNCS,
vol. 2704, pp. 102–112. Springer, Heidelberg (2003)

10. Cournier, A., Devismes, S., Villain, V.: Light enabling snap-stabilization of funda-
mental protocols. ACM TAAS 4(1), 1–27 (2009)

11. Datta, A.K., Hadid, R., Villain, V.: A self-stabilizing token-based k-out-of-l-
exclusion algorithm. Concurrency Comput. Pract. Exp. 15(11–12), 1069–1091
(2003)

12. Datta, A.K., Johnen, C., Petit, F., Villain, V.: Self-stabilizing depth-first token
circulation in arbitrary rooted networks. Dist. Comp. 13(4), 207–218 (2000)

13. Datta, A.K., Larmore, L.L., Vemula, P.: Self-stabilizing leader election in optimal
space under an arbitrary scheduler. Theor. Comput. Sci. 412(40), 5541–5561 (2011)

14. Dijkstra, E.W.: Solution of a problem in concurrent programming control. Com-
mun. ACM 8(9), 569 (1965)

3 By “global” we mean resource allocation problems where a resource can be accessed
by any process.

https://hal.archives-ouvertes.fr/hal-01099186
https://hal.archives-ouvertes.fr/hal-01099186

Concurrency in Snap-Stabilizing Local Resource Allocation 93

15. Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control. Commun.
ACM 17(11), 643–644 (1974)

16. Dijkstra, E.W.: Two Starvation-Free Solutions of a General Exclusion Problem.
Technical report EWD 625, Plataanstraat 5, 5671, AL Nuenen, The Netherlands
(1978)

17. Dolev, S.: Self-Stabilization. MIT Press, Cambridge (2000)
18. Dolev, S., Herman, T.: Superstabilizing protocols for dynamic distributed systems.

Chicago J. Theor. Comput. Sci. 3, 1–40 (1997)
19. Fischer, M.J., Lynch, N.A., Burns, J.E., Borodin, A.: Resource allocation with

immunity to limited process failure (Preliminary Report). In: FOCS, pp. 234–254
(1979)

20. Gouda, M.G., Haddix, F.F.: The alternator. Dist. Comp. 20(1), 21–28 (2007)
21. Gradinariu, M., Tixeuil, S.: Conflict managers for self-stabilization without fairness

assumption. In: ICDCS, p. 46 (2007)
22. Huang, S.: The fuzzy philosophers. In: IPDPS, pp. 130–136 (2000)
23. Huang, S., Chen, N.: Self-stabilizing depth-first token circulation on networks. Dist.

Comp. 7(1), 61–66 (1993)
24. Kakugawa, H., Yamashita, M.: Self-stabilizing local mutual exclusion on networks

in which process identifiers are not distinct. In: SRDS, pp. 202–211 (2002)
25. Lamport, L.: A new solution of dijkstra’s concurrent programming problem. Com-

mun. ACM 17(8), 453–455 (1974)
26. Nesterenko, M., Arora, A.: Stabilization-preserving atomicity refinement. J. Par-

allel Distrib. Comput. 62(5), 766–791 (2002)
27. Raynal, M.: A distributed solution to the k-out of-M resources allocation problem.

In: ICCI 1991, pp. 599–609 (1991)

Distributed Privacy-Preserving Data
Aggregation via Anonymization

Yahya Benkaouz1(B), Mohammed Erradi1, and Bernd Freisleben2

1 Networking and Distributed Systems Research Group,
ENSIAS, Mohammed V University, Rabat, Morocco

y.benkaouz@um5s.net.ma, erradi@ensias.ma
2 Department of Mathematics and Computer Science,

Philipps-Universität Marburg, Marburg, Germany
freisleb@informatik.uni-marburg.de

Abstract. Data aggregation is a key element in many applications that
draw insights from data analytics, such as medical research, smart meter-
ing, recommendation systems and real-time marketing. In general, data
is gathered from several sources, processed, and publicly released for data
analysis. Since the considered data might contain personal and sensitive
information, special handling of private data is required.

In this paper, we present a novel distributed privacy-preserving data
aggregation protocol, called ADiPA. It relies on anonymization tech-
niques for protecting personal data, such as k-anonymity, l-diversity and
t-closeness. Its purpose is to allow a set of entities to derive aggregate
results from data tables that are partitioned across these entities in a
fully decentralized manner while preserving the privacy of their individ-
ual sensitive inputs. ADiPA neither relies on a trusted third party nor
on cryptographic techniques. The protocol performs accurate aggrega-
tion when communication links and nodes do not fail.

Keywords: Data aggregation · Privacy · Anonymization

1 Introduction

During the last decade, the production, collection, processing and storage of
data has expanded at an astonishing pace. Remarkable insights that enable novel
applications and support decision-making processes are expected from the analy-
sis of large volumes and varying types of data. However, this potential comes
with the responsibility to protect the subjects referenced in the data, otherwise
the willingness of stakeholders to contribute their data will probably decrease
significantly. In general, data should be classified and assigned to a level of sensi-
tivity based on who should have access to it and how much harm would be done
if it were disclosed. Sensitive information requires special care, especially when

This work is supported by the BMBF (PMARS Programme) and the DAAD
(German-Arab Transformation Partnership).

c© Springer International Publishing Switzerland 2015
A. Bouajjani and H. Fauconnier (Eds.): NETYS 2015, LNCS 9466, pp. 94–108, 2015.
DOI: 10.1007/978-3-319-26850-7 7

Distributed Privacy-Preserving Data Aggregation via Anonymization 95

inappropriate handling of information could result in a violation of privacy due
to unauthorized access.

Combining data coming from different sources represents an interesting input
to research and decision-making processes. In some scenarios, companies need
to perform computations on data held by a set of other companies in the same
business domain. Typically, these companies are competitors that do not want
to disclose their own data. For instance, assume that there is a set of companies
in the medical and pharmaceutical domains that each have relevant data and
need data of other companies for developing effective treatments for different
diseases. The companies should collaborate with each other by delivering and
aggregating data for their individual analysis tasks, but they are only willing to
cooperate if their sensitive data is adequately protected.

Data aggregation is a straightforward task in the case where a trusted aggre-
gator collects the data and shares the results. The problem is to find such a
trusted entity. In distributed data aggregation, individual entities want to derive
aggregate results from data sets that are partitioned across these entities. While
the individual entities may not want to share their entire data sets, they may
consent to limited information sharing, based on using particular protocols. The
overall effect of such protocols is to maintain privacy for each individual entity,
while deriving aggregate results over the entire data.

The key contribution of this paper is a distributed privacy-preserving data
aggregation protocol that makes use of anonymization techniques. The proposed
protocol is an extension of the DiPA “Distributed Privacy-preserving Aggregation”
protocol [4]. DiPA is a protocol that allows a set of partners to compute a class
of aggregation functions that are derived from an Abelian group without reveal-
ing the partners’ inputs. DiPA has been designed to aggregate numerical inputs.
The new protocol, called ADiPA (“Anonymized Distributed Privacy-preserving
Aggregation”), allows a set of participants to construct a unique aggregated data
table based on their distinct private data. ADiPA is based on an overlay construc-
tion. It has the following advantages: (1) it preserves data privacy such that a
participant’s data is only known to its owner, with a given probability; (2) the
aggregation result is computed by the participants themselves, in a self-organized
and cooperative manner, without interacting with a dedicated aggregator; (3) the
aggregation result is accurate when there is no data loss, and (4) it neither relies
on cryptographic techniques nor on the trustworthiness of a third party.

The remainder of this paper is structured as follows: Sect. 2 describes the
system model. Section 3 briefly summarizes the DiPA protocol. The considered
problem is defined in Sect. 4. Fundamental anonymization techniques are dis-
cussed in Sect. 5. The new distributed data aggregation protocol is presented in
Sect. 6. Finally, Sect. 7 concludes the paper and outlines areas for future work.

2 System Model

The proposed protocol is based on a system model that consists of N partici-
pants. Each participant is represented as a uniquely identified node (in the rest

96 Y. Benkaouz et al.

of this paper, we call a node a participant). Each participant pi has its private
input qi. The global outcome is the aggregated data.

As shown in Fig. 1, the N nodes are clustered into r ordered groups, from g0
to gr−1. All groups virtually form a ring, g0 being the successor of gr−1. Each
group contains Nj nodes (

∑r−1
j=0 Nj = N). Each node in the system maintains

three sets of nodes: Officemates, Proxies and Clients. For a given node pi in a
group gj , these sets are defined as follows:

– The set of officemates (Po) contains all nodes belonging to the same group
(Po = {p} ∈ gj\pi), i.e. the set p of participants in gj except pi.

– The set of proxies (Pp) contains a subset of nodes in the next group (Pp ⊆
). The proxies of each node are selected uniformly at random from

nodes in the successor group. The size of this set, for each node, is chosen
according to a parameter k such that | Pp |= 2k+1 with k ∈ {0, 1, . . . , kmax},
and kmax is a system parameter.

– The set of clients (Pc) contains a subset of nodes in the previous group (Pc ⊆
). A client is defined in such a way that if p is a proxy of q, then q

is one of p’s clients.

Fig. 1. System model

For security reasons, nodes discard every message originating from a node
that does not belong to the set Pc ∪ Po. The distribution of nodes across the
r groups is uniform. Note that the proposed protocol is designed for systems
where N is sufficiently large. For practical usage, the system should consist of
at least 9 participants.

3 The DiPA Protocol

This section gives a brief description of the DiPA “Distributed Privacy-preserving
Aggregation” protocol [4], which enables participants to have the precise aggre-
gate of their numerical inputs while no user should learn anything about the
inputs of other users.

Distributed Privacy-Preserving Data Aggregation via Anonymization 97

DiPA considers numerical inputs and aggregation functions expressed as
Abelian group. Assuming that an aggregation function is a triplet (f, S,G),
where S and G are two arbitrary sets and f is a composition law f : S∗ → G,
DiPA is only suitable for functions where S ⊆ G and (G, f) is an Abelian group.

As shown in Fig. 2, DiPA consists of three steps: Sharing, Counting and
Broadcasting.

Fig. 2. DiPA steps: Sharing, Counting and Broadcasting

Step 1: Sharing. Each node casts its input as 2k + 1 shares where k ∈
{0, 1, . . . , kmax}. The set of 2k + 1 shares is generated as follows: k values are
randomly chosen from the set of possible entries. The other k values represent
the inverses of the first k chosen values with respect to the considered aggre-
gation function, and a single share that represents the real participant’s input.
Thus, aggregating the generated shares outputs the actual initial value. Note
that in the case where k = 0, only one share will be generated representing
the real input. Once a node has generated its 2k + 1 shares, it sends each of
them to a distinct proxy. Therefore, when a proxy receives a message from a
given client node, the proxy could not distinguish if such share was generated
as a single one or it is one among the previously generated 2k + 1 shares with
k ∈ {1, 2, . . . , kmax}. Once every node in the system has received one share from
each of its clients, the sharing round is over (Algorithm 1, Lines 05 – 11).

Step 2: Counting. In the counting step, each proxy within the receiving group
gj aggregates the received shares from its clients in the group gj−1. The resulted
value is designated as the Individual Aggregate (IA). Note that each proxy
will have its own individual aggregate. Once a participant node has received the
expected number of shares from its clients, it broadcasts the computed individual
aggregate to its officemates. Each officemate will compute the aggregation of the
received individual aggregates resulting in a Local Aggregate (LA) of its group.
Then, each officemate will forward the computed local aggregate to a randomly
chosen node from its proxies in the next group (Algorithm 1, Lines 12 – 15).

Step 3: Broadcasting. During this step, once a proxy receives a local aggregate
from a given client, it broadcasts the received local aggregate within its officemates
and send this aggregate to a randomly chosen proxy in the next group gj+1. In the
same way, local aggregates are then forwarded along the ring. Note that when a
node receives a local aggregate from its officemates, this node does not forward the
received aggregate to other participants. Once a participant node in the group gj

98 Y. Benkaouz et al.

Algorithm 1. DiPA protocol: Node p in group gj , j ∈ {0, . . . , r − 1}
Variables:

The set of possible inputs, S
An individual aggregate, ia = null
A local aggregate, la = null
A local aggregate array, T [0, . . . , r − 1]

Input: A private input, v ∈ S
Output: The global aggregate, ga
DiPA Algorithm
01. share(v, k)
02. count(ia)
03. broadcast(la, j,Pp)
04. ga ← f(T [0], . . . , T [r − 1])
Procedure share(v, k) is
05. for i ← 1 to k do
06. si ← rand(S)
07. si+k ← inv(si)
08. end for
09. s2k+1 ← v
10. for i ← 1 to 2k + 1 do
11. send([share, si], proxy)
Upon event < receive|[share, si] > do
12. ia ← f(ia, si)
Procedure count(ia)
13. foreach officemate ∈ Po do
14. send([IndividualAggregate, ia], officemate)
Upon event < receive|[IndividualAggregate, ia] > do
15. la ← f(la, ia)
Procedure broadcast(la, igroup,Pp)
16. proxy ← selectOneRandom(Pp)
17. send([LocalAggregate, igroup, la], proxy)
Upon event < receive|[LocalAggregate, igroup, la] > do
18. if (igroup �= j and lasrc ∈ Pc) then
19. T [igroup] ← la
20. broadcast(la, igroup,Pp)
21. end if

receives back the local aggregate of its group, this local aggregate is no longer for-
warded. Each node, separately, computes the global aggregate (GA), after recep-
tion of local aggregates of all groups. This global aggregate represents the final
outcome of the protocol (Algorithm 1, Lines 16 – 21).

4 Problem Definition

In this work, we consider a set of N participants P = {p1, p2, . . . , pN} involved in
a data aggregation task. Each participant stores its own input locally. The input

Distributed Privacy-Preserving Data Aggregation via Anonymization 99

is assumed to be a data table of rows and columns. Columns represent dis-
tinct attributes. Attributes consist of identifiers, quasi-identifiers and sensitive
attributes. Each row is a tuple that contains relationships among the set of
attributes values. The subjects referenced in different participants’ data tables
are assumed to be different, e.g., records in two distinct data tables of health
information do not refer to the same person.

The aim is to aggregate the entire data tables supplied by the N partici-
pants, while preserving data privacy. We assume that the data tables have the
same structure (i.e., the same attributes and same data types). Furthermore, we
assume that identifiers, quasi-identifiers and sensitive attributes do not intersect.
This means that an attribute cannot be both sensitive and a quasi-identifier.

A data table is defined as D = (〈id〉, 〈qId〉, 〈sensInfo〉), where 〈id〉, 〈qId〉
and 〈sensInfo〉 are lists of identifiers, quasi-identifiers and sensitive attributes,
respectively. Each row of the table is an ordered s + t + n-tuple of values
〈id1, . . . , ids, q1, . . . , qt, s1, . . . , sn〉 where s is the number of identifiers, t is the
number of quasi-identifiers and n is the number of sensitive attributes.

The aggregation consists of the application of a set of operators on data table
attributes (i.e., columns). We define an aggregation vector as a set of operators
av = 〈op1, . . . , opn〉, where n is the number of sensitive attributes. The proposed
approach assumes that operators opi are commutative and associative when the
attribute is numerical. Also, opi will be the union for categorical attributes. The
aggregation vector is only associated with the sensitive attributes.

Since the objective of our work is to support the aggregation of data tables
with different types of data, we have to consider techniques that help protecting
data while allowing operations on the data. In the next section, we present data
anonymization techniques to achieve this goal. Unlike cryptographic techniques
that could also be used for this purpose, data anonymization techniques produce
human-readable outputs that are more convenient for many distributed data
aggregation tasks.

5 Data Anonymization

In order to release data tables to other stakeholders while preserving data pri-
vacy, data holders often de-identify the data. Data de-identification consists of
the process of removing or masking explicit identifiers to prevent a person’s
identity from being connected to sensitive information. Table 1 shows an exam-
ple of a de-identified table in which the SSN (“Social Security Number”) and the
names were deleted. In this example, we consider medical data records where
the available records do not identify the person suffering from a given disease.

Deleting explicit identifiers does not provide any data protection guarantees.
This is due to the fact that the released data might contain information, referred
to as quasi-identifiers, that can be linked to publicly available data (i.e., a so-
called linking attack). Sweeney [17] has shown that he could uniquely identify
the medical records of the governor of Massachusetts in an anonymized med-
ical data set, based on the publicly available Massachusetts voter registration

100 Y. Benkaouz et al.

Table 1. Medical Records

Identifiers Quasi-identifiers Sensitive Info

SSN Name Date of Birth Sex Zip Code Disease

- - 2000/07/05 M 20364 Meningitis

- - 2002/03/23 F 31443 Diabetes

- - 2002/03/05 F 31442 Epilepsy

- - 1990/11/14 M 30079 Influenza

- - 2000/07/10 M 20368 HIV

- - 1990/11/26 M 30077 Stroke

- - 1990/11/30 M 30073 Epilepsy

records. This was possible because both the medical data and the voter records
contain the same set of attributes: gender, zip code and date of birth. In addi-
tion, it has been shown [16] that it was possible to uniquely identify 87 % of the
population in the United States based only on gender, 5-digit zip code and date
of birth (63 % of the population according to a recent study [8]). For this rea-
son, different techniques have been proposed to protect identities while releasing
useful data. In the following, we will focus on three main anonymization tech-
niques: k-anonymity, l-diversity and t-closeness.

5.1 k-Anonymity

The technique of k-anonymity has been defined by Sweeney [17] as follows: Given
a data table T and the set of quasi-identifiers associated with it. The data table
is said to satisfy k-anonymity if and only if each sequence of values of the quasi-
identifiers appears with at least k occurrences in T . In other words, a data
table satisfies the k-anonymity requirement if and only if: i) each tuple in the
released table cannot be related to less than k individuals in the population; and
ii) each individual in the population cannot be related to less than k tuples in
the table [6]. For instance, the data presented in Table 1 is k-anonymous with
k = 1, because each combination of quasi-identifiers refers only to a unique
tuple. Consequently, the aim is to construct a table in which each combination
of the values of quasi-identifiers appears with zero or at least k occurrences with
the largest possible value of k. It is trivial to note that having a larger value
of k improves the anonymity ensured. Note that to verify whether a data table
satisfies the k-anonymity requirement, the data holder should know in advance
any possible external source of information that an observer could exploit for
re-identification.

k-anonymity is mainly based on generalization and suppression [15]. Sup-
pression consists of removing data from the table. It is applied at the tuple level
where a record can be suppressed in its entirety. Generalization consists of mak-
ing some quasi-identifiers less informative by replacing their values with more
general ones. For example, the zip code can be generalized by removing the last

Distributed Privacy-Preserving Data Aggregation via Anonymization 101

digits. Instead of the original value 20054, the new value will be 2005*. The date
of birth can generalized by removing the day.

Table 2. 2-anonymous medical records

SSN Name Date of Birth Sex Zip Code Disease

- - 2000/07/* M 2036* Meningitis

- - 2002/03/* F 3144* Diabetes

- - 2002/03/* F 3144* Epilepsy

- - 1990/11/* M 3007* Influenza

- - 2000/07/* M 2036* HIV

- - 1990/11/* M 3007* Stroke

- - 1990/11/* M 3007* Epilepsy

Table 2 shows an anonymized version of Table 1 with k = 2. Each combination
of the values of quasi-identifiers refers to at least k = 2 rows in the table. This
was achieved by generalizing the values of the zip code and the date of birth. The
“*” denotes a suppressed value, “date of birth = 2002/03/*” means that the day
is not defined. Thus, having external information that a specific combination of
quasi-identifiers values belongs to a given person does not help to link the exact
sensitive information to that person (e.g., knowing that Bob was born on 2000/07
and lives in the 2036* area results in k = 2 diseases: HIV and Meningitis).

In general, different levels of generalization are possible. For example, con-
sidering the date of birth, a first generalization consists of deleting only the date
and a second generalization consists of removing the month and the day. It is
clear that going from one generalization level to another, more information is
lost. In this direction, different algorithms have been proposed to find the best
generalization in which less information is lost while ensuring k-anonymity.

Table 3 presents several k-anonymity algorithms proposed in the literature.
One difference between these algorithms consists of the level (Tuple, Column,
Cell) on which generalization and the suppression can be applied. Generalization
can be applied to the entire column or to a specific cell. Regarding suppression, it is
possible to delete the whole record (tuple), a column, or a cell. Columns Gen. and
Supp. indicate on which level the generalization and the suppression were applied.
A survey of these algorithms has been presented by Ciriani et al. [5].

In different scenarios, k-anonymity can produce tables that are still sensitive
to different attacks: homogeneity attack and background knowledge attack [12].
The homogeneity attack consists of situations where a set of tuples, with the
same quasi-identifiers values, has the same value for the sensitive attribute. For
instance, assume that the k-anonymous table contains 2 tuples with the same
values of {zip code, date of birth, sex} and the same disease. Knowing that Bob’s

102 Y. Benkaouz et al.

Table 3. k-anonymity algorithms [5] (|Qi|: the number quasi-identifiers)

Algorithm Gen. Supp. Type of Algorithm Time Complexity

Samarati [14] column row Exact exponential in |Qi|
Sweeney [18] column row Exact exponential in |Qi|
Bayardo-Agrawal [3] column row Exact exponential in |Qi|
LeFevre et al. [10] column row Exact exponential in |Qi|
Aggarwal et al. [1] - cell O(k)-Approx O(kn2)

Meyerson-Williams [13] - cell O(klogk)-Approx O(n2k)

Aggarwal et al. [2] cell - O(k)-Approx O(kn2)

Iyengar [9] column row Heuristic limited nbr. of iter.

Winkler [19] column row Heuristic limited nbr. of iter.

Fung-Wang-Yu [7] column - Heuristic limited nbr. of iter.

data corresponds to these quasi-identifier values, Bob’s disease becomes easily
identifiable.

The background knowledge attack occurs when the attacker exploits addi-
tional knowledge, in order to reduce her uncertainty about the value of the
sensitive attribute of a given targeted person. Assume that Alice knows that
Bob was born on 2000/07 and is living in 2036*. If Alice also knows that in the
school where she studies with Bob, no one suffers from HIV, then it becomes
clear that Bob has meningitis.

5.2 l-Diversity

As mentioned in the previous section, the data holder should know in advance
any possible external source of information that an observer could exploit for
re-identification. The concept of l-diversity has been proposed by Machanava-
jjhala et al. [12] to provide privacy even when the data publisher does not know
what kind of knowledge is possessed by the adversary. The main idea behind
l-diversity is the requirement that the values of the sensitive attributes are well-
represented in each set of records with the same quasi-identifier values. A given
set of sensitive attributes values are considered as well-represented, if there are
at least l different values. Table 4 is 4-anonymous. However, it suffers from the
homogeneity attack, since all females born in March 2003 and living in the 3144*
area suffer from epilepsy. Considering the l-diversity requirement, the last four
tuples of Table 4 have well-represented values of sensitive attributes (there are
four different values of the disease attribute). An example of a 4-anonymous and
3-diverse Table is shown in Table 5. This table is 3-diverse because in the worst
case, we have three different diseases associated with a given combination of
quasi-identifiers attributes.

L-diversity takes into account the diversity of sensitive values in the group,
but does not take into account the semantical closeness of the values. That makes

Distributed Privacy-Preserving Data Aggregation via Anonymization 103

Table 4. 4-anonymous medical records

SSN Name Date of Birth Sex Zip Code Disease

- - 2000/07/* M 2036* Meningitis

- - 2000/07/* M 2036* Cancer

- - 2000/07/* M 2036* Meningitis

- - 2000/07/* M 2036* HIV

- - 2002/03/* F 3144* Epilepsy

- - 2002/03/* F 3144* Epilepsy

- - 2002/03/* F 3144* Epilepsy

- - 2002/03/* F 3144* Epilepsy

- - 1990/11/* M 3007* Stroke

- - 1990/11/* M 3007* Diabetes

- - 1990/11/* M 3007* Influenza

- - 1990/11/* M 3007* Epilepsy

Table 5. 3-diverse medical records

SSN Name Date of Birth Sex Zip Code Disease

- - 2000/07/* M 2036* Epilepsy

- - 2000/07/* M 2036* Cancer

- - 2000/07/* M 2036* Meningitis

- - 2000/07/* M 2036* HIV

- - 2002/03/* F 3145* Viral infection

- - 2002/03/* F 3145* Epilepsy

- - 2002/03/* F 3145* Stroke

- - 2002/03/* F 3145* Epilepsy

- - 1990/11/* M 3007* Stroke

- - 1990/11/* M 3007* Diabetes

- - 1990/11/* M 3007* Influenza

- - 1990/11/* M 3007* Epilepsy

l-diversity suffer from two attacks: the similarity attack [11] and the skewness
attack [11]. The similarity attack occurs when, in an l-diverse table, the values
of the sensitive attribute associated with the tuples of the same quasi-identifiers
are semantically similar. Also, l-diversity does not care about the global dis-
tribution of sensitive attributes, which leads to the skewness attack [11]. The
skewness attack exploits the possible difference in the frequency distribution of
the sensitive attribute values within an equivalence class, with respect to the
frequency distribution of sensitive attribute values in the population [6]. Con-
sidering Table 5, if an attacker knows that a given female lives in the 3145* area

104 Y. Benkaouz et al.

and was born on 2002/03, then the attacker can infer that the considered person
has an epilepsy with probability 50%, compared to a probability of 25% when
considering the whole table. To counter these attacks, t-closeness was introduced
by Li et al. [11].

5.3 t-Closeness

An equivalence class (set of tuples with the same quasi-identifiers) is said to have
t-closeness if the distance between the distribution of a sensitive attribute in this
class and the distribution of the attribute in the whole table is no more than
a threshold t. A table is said to have t-closeness if all equivalence classes have
t-closeness [11]. t-closeness reduces also the effectiveness of the similarity attack,
because the presence of semantically similar values in an equivalence class can
only be due to the presence, with similar relative frequencies, of the same values
in the original data table. The enforcement of t-closeness requires to evaluate the
distance between the frequency distribution of the sensitive attribute values in
the released table and in each equivalence class. Such distances can be computed
based on different metrics, such as the Earth Mover Distance (EMD) used in
t-closeness [11].

6 ADiPA: Anonymized Distributed Privacy-Preserving
Data Aggregation

In this section, we present ADiPA, a new distributed privacy-preserving data
aggregation protocol that makes use of the discussed anonymization techniques
in order to privately aggregate data held by multiple parties.

In addition to the main steps of Sharing, Counting and Broadcasting (see
Sect. 3), a new Pre-processing step will initially take place in ADiPA. The aim of
the pre-processing step is to produce anonymized data from the raw data of each
participant. The anonymized data tables are then split into a set of shares. These
shares are then sent to the set of proxies of each participant (Sharing). Each proxy
computes the individual aggregate of the received shares. The computed individ-
ual aggregates are then broadcast within officemates (nodes of the same group).
Then, each participant aggregates the received individual aggregates, resulting in
local aggregates (Counting). The computed local aggregates are then forwarded
along the ring. Once a participant receives local aggregates of all groups, she com-
putes the global aggregate which is the outcome of the protocol (Broadcasting).

Pre-processing. Each node prepares locally the data table to be used as input
of the aggregation protocol. Thus, each node separately produces an anonymized
version of its data. By applying a particular anonymization technique, the
resulting data ensures either k-anonymity, l-diversity or t-closeness. Then, the
sensitive values of each equivalence class are aggregated as shown in Fig. 3
(Pre-Processing). In this example, sensitive attributes are: disease and med-
ical cost. Within each equivalence class, diseases are aggregated via the union

Distributed Privacy-Preserving Data Aggregation via Anonymization 105

Fig. 3. Data table pre-processing and construction of shares

operator. The medical cost is a numerical attribute, and we consider the sum
function as the operator of this attribute.

Sharing. Once the anonymized table is prepared, each node casts its input
as 2k + 1 shares. To construct the shares, the quasi-identifier values remain
unchanged, while the values of the sensitive attributes are shared as follows:
the values (si) are split in such a way that the application of the operator opi
on the split values results in the original value of the sensitive attribute (si =
opi(s1i , . . . , s

2k+1
i)). Figure 3 (Sharing) illustrates an example of the generated

shares in the case where k = 1. Thus, 3 shares are created. The sum of medical
costs of the constructed shares equals the initial medical cost. In the same way,
the union of the diseases in the shares results in the initial set of diseases. Once
a node has generated its 2k+1 shares, it sends each of them to a distinct proxy.

106 Y. Benkaouz et al.

Fig. 4. Aggregating data tables

The remaining steps of ADiPA (Counting and Broadcasting) remain
unchanged, except for the aggregation function used to compute the individ-
ual aggregates, the local aggregates and the global aggregate (see Sect. 3). In
ADiPA, given a set of data tables, the aggregation vector will be applied to the
sensitive attribute values, whenever the sequences of the quasi-identifiers val-
ues intersect. Otherwise, the aggregation will be the union of the different data
tables. An example is shown in Fig. 4. Note that these data tables might be:
shares, individual aggregates, or local aggregates. They are gathered to produce
individual aggregates, local aggregates or the global aggregate, respectively.

Discussion. The communication cost of ADiPA is O(r.k + Ni) where r is the
number of groups in the overlay and Ni is the number of participants per group.
No message is exchanged during pre-processing, since it is a local step. Then,
each node sends 2k+1 shares during the sharing step, Ni−1 individual aggregates
during the counting step, and finally forwards r(2k + 1) local aggregates. Given
the set of N participants, by organizing the nodes into r =

√
N groups where

each group contains
√
N nodes, the communication complexity is O(k

√
N).

Assuming that communication links and nodes do not fail, the protocol is
accurate. Since each node maintains the lists of clients, proxies and officemates,
each node knows the number of messages it is supposed to receive. Thus, each
step completes. Since the protocol has a finite number of steps, the protocol
terminates. The local aggregate reflects the aggregation of the data tables of
participants in the previous group (i.e., a local aggregate is the aggregation of
individual aggregates which consists of the aggregation of participants’ shares).
During the last step, each node gathers local aggregates of all groups, so the
global aggregate correctly reflects the aggregation of all participants’ data tables.

The combination of anonymization techniques, sharing, and the overlay
construction helps ADiPA to ensure the privacy of the participants. First,
anonymization techniques help to protect identities while releasing data tables.
Thus, the released records will not be linkable to external information. Then,
the participants split their data tables into shares. A given proxy receives only a

Distributed Privacy-Preserving Data Aggregation via Anonymization 107

unique share from a given participant. Thus, a proxy has access to only a partial
view of the anonymized data table of its client. This makes attacks on anonymiza-
tion techniques inefficient for proxies, unless proxies that receive shares from
the same participant collude. Later, once the individual aggregate is computed,
the association between the participant and the records it supplied is lost,
since the individual aggregate is based on shares coming from different clients.
Following the protocol steps, more aggregations take place. This results in mak-
ing the association of a given record to the participant who supply it a harder
task. Moreover, the global result represents the aggregation of the anonymized
data tables of all participants. Thus, in the worst case, the aggregated data tables
will ensure k-anonymity with k equal to the value of k of the initial anonymized
data table with the lowest k-anonymity.

7 Conclusions

In this paper, we have presented a novel distributed privacy-preserving data
aggregation protocol, called ADiPA, which makes use of anonymization tech-
niques. Its purpose is to allow a set of parties to aggregate their private data
tables in a fully decentralized manner while preserving the privacy of their inputs.
The proposed approach does neither rely on a third party nor on cryptographic
techniques. The communication cost of ADiPA is O(r.k + Ni) where r is the
number of groups in the overlay and Ni is the number of participants per group.
The protocol is accurate when communication links and nodes do not fail.

There are several areas for future research. Currently, we are working on
the implementation of ADiPA and its evaluation based on medical datasets.
An interesting aspect is to study what would be the privacy property of the
aggregated data in the case where the supplied data ensures different privacy
properties (k-anonymity, l-diversity, t-closeness). Also, we plan to compare the
ensured privacy against the privacy level of Secure Multiparty Computation pro-
tocols under different attack scenarios. On the other hand, a natural follow up
of our research consists of the relaxation of the considered assumptions, espe-
cially regarding the intersection of data held by multiple parties. Finally, the
use of ADiPA in different application scenarios should be investigated, such as
sensor network aggregation, smart metering, public health and clinical research,
population monitoring and sensing, and Cloud services.

References

1. Aggarwal, G., Feder, T., Kenthapadi, K., Motwani, R., Panigrahy, R., Thomas, D.,
Zhu, A.: Anonymizing tables. In: Eiter, T., Libkin, L. (eds.) ICDT 2005. LNCS,
vol. 3363, pp. 246–258. Springer, Heidelberg (2005)

2. Aggarwal, G., Feder, T., Kenthapadi, K., Motwani, R., Panigrahy, R., Thomas, D.,
Zhu, A.: Approximation algorithms for k-anonymity. In: Proceedings of the Inter-
national Conference on Database Theory (ICDT 2005), November 2005

108 Y. Benkaouz et al.

3. Bayardo, R.J., Agrawal, R.: Data privacy through optimal k-anonymization. In:
Proceedings of the 21st International Conference on Data Engineering, ICDE 2005,
pp. 217–228. IEEE Computer Society, Washington, DC (2005)

4. Benkaouz, Y., Erradi, M.: A distributed protocol for privacy preserving aggre-
gation. In: Gramoli, V., Guerraoui, R. (eds.) NETYS 2013. LNCS, vol. 7853,
pp. 221–232. Springer, Heidelberg (2013)

5. Ciriani, V., De Capitani di Vimercati, S., Foresti, S., Samarati, P.: k-anonymity.
In: Yu, T., Jajodia, S. (eds.) Secure Data Management in Decentralized Systems.
Advances in Information Security, vol. 33, pp. 323–353. Springer, US (2007)

6. Di Vimercati, S.D.C., Foresti, S., Livraga, G., Samarati, P.: Data privacy: defin-
itions and techniques. Int. J. Uncertainty Fuzziness Knowl. Based Syst. 20(06),
793–817 (2012)

7. Fung, B.C.M., Wang, K., Yu, P.S.: Top-down specialization for information and
privacy preservation. In: Proceedings of the 21st International Conference on Data
Engineering, ICDE 2005, pp. 205–216. IEEE Computer Society, Washington, DC
(2005)

8. Golle, P.: Revisiting the uniqueness of simple demographics in the us population.
In: WPES 2006, Alexandria, Virginia, USA, October 30, 2006

9. Iyengar, V.S.: Transforming data to satisfy privacy constraints. In: Proceedings of
the Eighth ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, KDD 2002, pp. 279–288. ACM, New York (2002)

10. LeFevre, K., DeWitt, D.J., Ramakrishnan, R.: Incognito: Efficient full-domain k-
anonymity. In: Proceedings of the 2005 ACM SIGMOD International Conference
on Management of Data, SIGMOD 2005, pp. 49–60. ACM, New York (2005)

11. Li, N., Li, T., Venkatasubramanian, S.: t-closeness: privacy beyond k-anonymity
and l-diversity. In: ICDE 2007, IEEE 23rd International Conference on Data Engi-
neering, 2007, pp. 106–115, April 2007

12. Machanavajjhala, A., Kifer, D., Gehrke, J., Venkitasubramaniam, M.: L-diversity:
privacy beyond k-anonymity. ACM Trans. Knowl. Discov. Data 1(1), 3 (2007)

13. Meyerson, A., Williams, R.: On the complexity of optimal k-anonymity. In: Pro-
ceedings of the Twenty-Third ACM SIGMOD-SIGACT-SIGART Symposium on
Principles of Database Systems, PODS 2004, pp. 223–228. ACM, New York (2004)

14. Samarati, P.: Protecting respondents’ identities in microdata release. IEEE Trans.
Knowl. Data Eng. 13(6), 1010–1027 (2001)

15. Samarati, P., Sweeney, L.: Protecting privacy when disclosing information: k-
anonymity and its enforcement through generalization and suppression. Technical
report, CMU, SRI (1998)

16. Sweeney, L.: Uniqueness of simple demographics in the U.S. population. Techni-
cal report, Carnegie Mellon University, Laboratory for International Data Privacy
(2000)

17. Sweeney, L.: k-anonymity: a model for protecting privacy. Int. J. Uncertainty Fuzzi-
ness Knowl. Based Syst. 10(05), 557–570 (2002)

18. Sweeney, L.: Guaranteeing anonymity when sharing medical data, the datafly sys-
tem. In: Journal of the American Medical Informatics Association. Hanley and
Belfus Inc, Washington, DC (1997)

19. Winkler, W.E.: Using simulated annealing for k-anonymity. Technical report, Sta-
tistical Research Division, U.S. Bureau of the Census, Washington D.C. (2002)

Gracefully Degrading Consensus and k-Set
Agreement in Directed Dynamic Networks

Martin Biely1, Peter Robinson2, Ulrich Schmid3,
Manfred Schwarz3(B), and Kyrill Winkler3

1 EPFL, Lausanne, Switzerland
martin.biely@epfl.ch

2 National University of Singapore, Singapore, Singapore
robinson@comp.nus.edu.sg

3 ECS Group, TU Wien, Vienna, Austria
{s,mschwarz,kwinkler}@ecs.tuwien.ac.at

Abstract. We present (This work has been supported the Austrian Sci-
ence Fund (FWF) project P26436 (SIC) and S11405 (RiSE).) the first
consensus/k-set agreement algorithm for synchronous dynamic networks
with unidirectional links, controlled by an omniscient message adversary,
which automatically adapts to the actual network properties in a run:
If the network is sufficiently well-connected, it solves consensus, while
it degrades gracefully to general k-set agreement in less well-connected
communication graphs. The actual number k of system-wide decision
values is determined by the number of certain vertex-stable root com-
ponents occurring in a run, which are strongly connected components
without incoming links from outside. Related impossibility results reveal
that our condition is reasonably close to the solvability border for k-set
agreement.

1 Introduction

In sharp contrast to conventional wireline networks, communication in wireless
dynamic networks like sensor networks and mobile ad-hoc networks is adequately
modeled by time-varying directional links only: Fading and interference phe-
nomena such as capture effects and near-far problems are local effects, which
affect the receiver but not the sender of a particular message. Mobility and
duty-cycling for energy saving purposes are additional causes for irregular com-
munication patterns in dynamic networks. Consequently, according to [13], 80 %
of the links in a typical wireless network are sometimes asymmetric. In this
paper, we hence consider synchronous distributed systems consisting of a possi-
bly unknown number of processes that never fail. All communication links are
controlled by an omniscient message adversary RS13:PODC, which effectively
determines the sequence of directed per-round communication graphs occuring
in a run.

c© Springer International Publishing Switzerland 2015
A. Bouajjani and H. Fauconnier (Eds.): NETYS 2015, LNCS 9466, pp. 109–124, 2015.
DOI: 10.1007/978-3-319-26850-7 8

110 M. Biely et al.

A natural approach to build robust services despite the dynamic nature of
such systems is to use consensus to agree system-wide on (fundamental) para-
meters like action schedules. Clearly, such solutions rest on the ability to (effi-
ciently) reach consensus in dynamic systems. Unfortunately, solving consensus
requires well-connected communication graphs: In [5], we provided a consensus
algorithm that works under the assumption that, in every round, the communi-
cation graph is both (i) weakly connected and (ii) contains a single root compo-
nent, i.e., a strongly connected component (SCC) without incoming links (note
that every weakly connected graph has at least one root component). For ter-
mination, the root component must eventually consist of the same members for
a certain number of rounds, even though their interconnection topology may
perpetually change. As these assumptions do not guarantee bidirectional reach-
ability system-wide, the model in BRS12:sirocco falls between the weakest and
second weakest class of models defined in [8].

However, in larger-scale dynamic networks, it is unrealistic to assume that the
above properties can always be guaranteed. In this paper, we therefore provide
a consensus algorithm that gracefully degrades to k-set agreement, for some k
determined by the actual network properties, in case of less favorable conditions.
Recall that, in the k-set agreement problem, processes may decide on one of at
most k different values system-wide; 1-set agreement is equivalent to consensus.

In sharp contrast to classic k-set agreement algorithms, our algorithm is
k-uniform, i.e., the parameter k does not appear in its code, and is even worst-
case k-optimal : The number of system-wide decision values is bounded by the
number k of (certain) vertex-stable root components (VSRC) occurring in the
particular run. If the network partitions into k SCCs, for example,1 each partition
may obtain its own decision value. On the other hand, if the network is well-
connected, the algorithm will guarantee a unique decision value. Viewed from
the applications perspective, our gracefully degrading solution is perfectly fine
if processes that cannot communicate with each other do not need to agree
on a common value, as is the case for agreeing on communication schedules or
frequencies, for example.

Main Contributions. In Sect. 3, we provide a fairly weak natural message
adversary VSRC(k,d) (where k specifies the maximum number of root compo-
nents per round and d is the duration of vertex-stability), which is still too
strong for solving k-set agreement if d of just one VSRC is too small. More-
over, even eventual stability of all VSRCs is not enough for solving k-set agree-
ment, not even when it is guaranteed that (substantially) less than k VSRCs
exist simultaneously. On the other hand, we also provide a message adversary
VSRC(n, d) + MAJINF(k), which combines VSRC(n, d) with some information
flow guarantee MAJINF(k) between certain VSRCs, that is sufficient for solving

1 It is important to note, however, that the network properties required by our
algorithm to reach k decision values need not involve k isolated partitions: Obviously,
k isolated partitions in the communication graph also imply k root components, but
k root components do not imply a partitioning of the communication graph into k
components — it may still be weakly connected.

Gracefully Degrading Consensus and k-Set Agreement 111

k-set agreement: In Sect. 4, we provide a k-uniform, worst-case k-optimal k-set
agreement algorithm that works correctly under VSRC(n, d) + MAJINF(k). To
the best of our knowledge, it is the first gracefully degrading consensus algorithm
proposed so far.

Related Work. Agreement problems in dynamic networks with undirected
communication graphs have been studied in [11]; agreement in directed graphs
has been considered in [1,5,14,15]. Whereas [15] considerably restrict the dynam-
icity of the communication graphs, e.g., by not allowing stabilizing behavior,
which effectively causes them to belong to quite strong classes of network
assumptions in the classification of Casteigts et al. [8], our previous work [5]
allows to solve consensus under very weak network assumptions. Afek and
Gafni [1] introduced message adversaries for relating problems solvable in wait-
free read-write shared memory systems to those solvable in message-passing
systems. Raynal and Stainer [14] used message adversaries for exploring the
relationship between round-based models and failure detectors.

Regarding k-set agreement in dynamic networks, we are not aware of any
previous work except [16], where bidirectional links are assumed, and our previ-
ous paper [4], where we assumed the existence of an underlying static skeleton
graph (a non-empty common intersection of the communication graphs of all
rounds) with at most k static root components. Note that this essentially implies
a directed dynamic network with a static core. By contrast, in this paper, we
allow the directed communication graphs to be fully dynamic.

Albeit we are not aware of related work exploring gracefully degrading con-
sensus, there have been several attempts to weaken the semantics of consensus.
Vaidya and Pradhan introduced the notion of degradable agreement [17], where
processes are allowed to also decide on a (fixed) default value in case of exces-
sive faults. The almost everywhere agreement problem introduced by [9] allows
a small linear fraction of processes to remain undecided. Aguilera et al. [2] con-
sidered quiescent consensus in partitionable systems, which requires processes
outside the majority partition not to terminate.

2 Model

We consider a synchronous distributed system made up of a fixed set of distrib-
uted processes Π = {p1, . . . , pn} with |Π| = n ≥ 2, which have fixed unique ids
and communicate via unreliable message passing. For convenience, we assume
that the unique id of pi ∈ Π is i, and use both pi and i for denoting this process;
“generic” processes will also be denoted by p, q etc.

Processes execute an infinite number of rounds r = 1, 2, . . . (conceptually)
in lock-step. In every round r, processes first broadcast a round r message of
arbitrary content, determined by some message sending function, and then per-
form some deterministic local computation based on the received round r mes-
sages and their current (local) state. The actual communication in the system
is modeled as an infinite sequence of simple directed graphs G1,G2, . . . , which
is determined by an omniscient message adversary [1,14] that has access to the

112 M. Biely et al.

processes’ states. Gr contains a directed edge (p → q) from process p to q iff q
receives p’s round r broadcast in round r. The set N r

p denotes p’s (in-)neighbors
in round r. We emphasize that p does not know (a bound on) n and does not
have any a priori knowledge of its neighbors, i.e., p does not know who receives
its round r broadcast, and does not know who it will receive from in round r
before its round r computation.

Definition 1 (Message adversary). A message adversary Adv (for our sys-
tem Π of n processors) is a set of sequences of communication graphs (Gr)r>0.
A particular sequence of communication graphs (Ar)r>0 is feasible for Adv, if
(Ar)r>0 ∈ Adv.

For our system Π of n processes, this introduces a natural partial order of
message adversaries, where A is weaker than B (denoted A ≤ B) iff A ⊆ B,
i.e., if it can generate at most the communication graph sequences of B. As
a consequence, an algorithm that works correctly under message adversary B
will also work under A. We say that some message adversary Adv guarantees
some property, called a network assumption, if every (Gr)r>0 ∈ Adv satisfies this
property.

To define the k-set agreement problem, we assume some finite set V satisfying
|V| > k and n > k (to rule out trivial solutions). Each process pi starts with an
initial value xi taken from V and must irrevocably decide on some yi, such that
the following properties hold in all runs:

Definition 2 (k-set agreement). Algorithm A solves k-set agreement, if the
following properties hold in every run of A:

(k-Agreement) At most k different decision values are obtained system-wide.
(Validity) If yi = v, then v is some pj’s initial value xj.
(Termination) Every process must eventually decide.

Consensus is the special case of 1-set agreement; set agreement is a short-hand for
n − 1-set agreement. A k-set agreement algorithm is uniform if it does not have
any a priori knowledge of the network (and hence of n); it is called k-uniform if
it does not require a priori knowledge of k.

We will now define the cornerstones of the message adversaries defined in
our paper. They will rest on the pivotal concept of root components, which are
strongly connected components in Gr without incoming edges from processes
outside the component.

Definition 3 (Root Component). A root component Rr, with non-empty
set of vertices R ⊆ Π, is a strongly connected component (SCC) in Gr that has
no incoming edges from other components, formally ∀p ∈ R,∀q ∈ Gr : (q → p) ∈
Gr ⇒ q ∈ R.

By contracting SCCs, it is easy to see that every weakly connected directed sim-
ple graph G has at least one root component. Hence, if G has k root components,

Gracefully Degrading Consensus and k-Set Agreement 113

it has at most k weakly connected components (with disjoint root components,
but possibly overlapping in the remaining processes).

Some root components generated by our message adversaries will be required
to be vertex-stable, i.e., to consist of the same set of nodes (with possibly varying
interconnect) during a sufficiently large number of consecutive rounds.

Definition 4 (Vertex-Stable Root Component). A sequence of consecu-
tive rounds with communication graphs Gx for x ∈ I = [a, b], b ≥ a, contains an
I-vertex-stable root component RI , if, for x ∈ I, every Gx has a root component
Rx with the same set of nodes R (but possibly varying interconnect).

We will abbreviate RI as an I-VSRC or |I|-VSRC if only the length of I matters,
and sometimes denote an I-VSRC RI just by its vertex set R if I is clear from
the context. Note carefully that we assume |I| = b − a + 1 here, since I = [a, b]
ranges from the beginning of round a to the end of round b; hence, I = [r, r] is
not empty but rather represents round r.

The most important property of a VSRC RI is that information is guaranteed
to spread to all its vertices R if the interval I is large enough, c.f. Lemma 1 below.
To express this formally, we need a few basic definitions and lemmas.

Similarly to the classic “happened-before” relation, we say that a process
p causally influences q in round r, denoted by (p r� q), iff either (i) q has an
incoming edge (p → q) from p in Gr, or (ii) if q = p, i.e., we assume that p
always influences itself in a round. Given a sequence of communication graphs
Gr,Gr+1, . . . , we say that there is an causal influence chain of length � ≥ 1

starting from p in round r to q, denoted by (p
r[�]� q), if there exists a sequence

of not necessarily distinct processes p = p0, . . . , p� = q such that pi
r+i� pi+1

for 0 ≤ i < �. If � is irrelevant, we just write (p r� q) or just (p � q) and say
that p (in round r) causally influences q. This allows us to define the notion of
a dynamic causal distance between processes as given in Definition 5.

Definition 5 (Dynamic causal distance). Given a sequence of communica-
tion graphs Gr,Gr+1, . . . , the dynamic causal distance cdr(p, q) from process p
(in round r) to process q is the length of the shortest causal influence chain

starting in p in round r and ending in q, formally cdr(p, q) := min{� : (p
r[�]� q)}.

We define cdr(p, p) = 1 and cdr(p, q) = ∞ if p never influences q after round r.

Note that, in contrast to the similar notion of dynamic distance defined in [11],
the dynamic causal distance in our directed graphs is not necessarily symmetric.
Corresponding to the dynamic diameter defined for undirected communication
graphs in [11], we define the dynamic causal diameter ∅

x(RI) for round x in a
I-VSRC RI as the largest round x dynamic causal distance cdx(p, q) between
any pair of processes p, q ∈ R:

Definition 6 (Dynamic causal diameter). Given a sequence of communica-
tion graphs Gr,Gr+1, . . . , let I = [a, b], r ≤ a ≤ b, be a nonempty interval of
indices in this sequence. Assume that the subsequence of communication graphs

114 M. Biely et al.

Gx for x ∈ I contains an I-VSRC RI with node set R. Then, the dynamic causal
diameter of RI for round x is defined as ∅

x(RI) := maxp,q∈R{cdx(p, q)}.

Obviously, it may be the case that ∅
x(RI) = ∞ in general. However, if |I| is

sufficiently large, the following Lemma1 reveals that

Lemma 1 (Bound on dynamic causal diameter). Given some I = [a, b]
and a VSRC RI with |R| ≥ 2, if b ≥ a + |R| − 2, then ∀x ∈ [a, b − |R| +
2] : ∅

x(RI) ≤ |R| − 1.

Proof. Fix some process p ∈ R and some x where a ≤ x ≤ b − |R| + 2. Let
P0 = {p}, and define for each i > 0 the set Pi = Pi−1 ∪ {q : ∃q′ ∈ Pi−1 : q′ ∈
N x+i−1

q ∩ R}. Pi is hence the set of processes q ∈ R such that (p
x[i]
< q) holds.

Using induction, we will show that |Pk| ≥ min{|R|, k + 1} for k ≥ 0. Induction
base k = 0: |P0| ≥ min{|R|, 1} = 1 follows immediately from P0 = {p}. Induction
step k → k + 1, k ≥ 0: Clearly the result holds if |Pk| = |R|, thus we consider
round x+k and |Pk| < |R|: It follows from strong connectivity of Gx+k ∩R that
there is a set of edges from processes in Pk to some non-empty set Lk ⊆ R \ Pk.
Hence, we have Pk+1 = Pk ∪ Lk, which implies |Pk+1| ≥ |Pk| + 1 ≥ k + 1 + 1 =
k + 2 = min{|R|, k + 2} by the induction hypothesis.

Thus, in order to guarantee R = Pk and thus |R| = |Pk|, choosing k such that
|R| = 1 + k and k ≤ b− x+1 is sufficient. Since b ≥ x+ |R| − 2, both conditions
can be fulfilled by choosing k = |R| − 1. Moreover, due to the definition of Pk,
it follows that cdx(p, q) ≤ |R| − 1 for all q ∈ R. Since this holds for any p and
any x ≤ s − |R| + 2, the statement of Lemma 1 follows. �

Lemma 1 reveals that, in the worst case, |I| must be as large as |R| − 1 to
ensure that messages sent by any process in R reach all members of R within I.
To be able to also model faster information propagation in a VSRC, our message
adversaries will be based on Definition 7. It guarantees a dynamic causal diameter
of D > 0, such that messages sent by any process in R, in any but the last D−1
rounds of I, reach all members of R within I.

Definition 7 (D-bounded I-VSRC). An I-vertex-stable root component RI

with I = [a, b] is D-bounded with dynamic causal diameter D > 0, if either
|I| < D 2 or else ∀x ∈ [a, b − D + 1]: ∅

x(RI) ≤ D.

To formalize information propagation from root components to the entire net-
work, one has to account for the fact that a process q outside any root component
may be reachable from multiple root components in general. Intuitively speaking,
this models dynamic networks that do not “cleanly” partition. Given a sequence
of communication graphs Gr,Gr+1, . . . containing a set SI = {RI

1, . . . , R
I
�} of

� ≥ 1 I-VSRCs, all vertex-stable in the same interval I = [a, b], let the round x
dynamic network causal distance hx be the maximum, taken over all processes
2 That is, by convention, we also call a VSRC D-bounded if its duration is too short

to be interesting.

Gracefully Degrading Consensus and k-Set Agreement 115

q ∈ Π, of the minimal dynamic causal distance cdx(p, q) from some process
p ∈

⋃�
i=1 RI

i in round x, formally hx(SI) := maxq∈Π

{
minp∈∪�

i=1Ri
{cdx(p, q)}

}
.

Definition 8 will be used in the sequel to guarantee that every process in
the network receives a message from some member of at least one VSRC in
SI = {RI

1, . . . , R
I
�} within H rounds provided |I| ≥ H.

Definition 8 (H-network-bounded I-VSRCs). A set SI = {RI
1, . . . , R

I
�}

of � ≥ 1 I-VSRCs with I = [a, b] is H-network-bounded, with dynamic network
causal distance H > 0, if either |I| < H or else ∀x ∈ [a, b−H+1] : hx(SI) ≤ H.

Note that Definition 8 guarantees (p
x[H]� q) for at least one but not for all

p ∈ Ri. Moreover, p (and hence Ri) may be different for different starting rounds
x in I.

Analogous to Lemma 1, it can be shown that H is bounded by n − 1 if
b − a ≥ n − 2 (see [6, Lemma 4] for the proof).

3 A Message Adversary for k-Set Agreement

We first define the generic message adversary VSRCD,H(k, d), which allows at
most k VSRCs per round and guarantees a common window of vertex stability
of duration at least d. Note that it involves both the dynamic causal diameter
D and the dynamic network causal distance H according to Definitions 7 and 8
(that have to be enforced by the message adversary). To keep the notation simple,
however, we will abbreviate VSRCD,H(k, d) by VSRC(k, d) subsequently.

Definition 9 (Message adversary VSRC(k, d)=VSRCD,H(k, d)). The
message adversary VSRC(k, d) is the set of all sequences of communication
graphs (Gr)r>0, where

(i) for every round r, Gr contains at most k root components,
(ii) all vertex-stable root components occurring in any (Gr)r>0 are D-bounded,
(iii) for each (Gr)r>0, there exists some rST > 0 and an interval of rounds

J = [rST , rST + d − 1] where 1 ≤ � ≤ k H-network-bounded vertex-stable
root components RJ

1 , . . . , RJ
� exist simultaneously.

Theorem 1 below shows that it is impossible to solve k-set agreement for
1 ≤ k < n − 1 under the message adversary VSRC(k,min{n − k,H} − 1). Its
proof (which has been omitted due to lack of space but can be found in [6]) uses
the generic impossibility theorem provided in [3, Theorem 1], which exploits the
fact that k-set agreement is impossible if k sufficiently disconnected components
may occur and consensus cannot be solved in some component.

Theorem 1 [6, Theorem 7]. No algorithm can solve k-set agreement with n >
k+1 processes under the message adversary VSRC(k,min{n − k,H} − 1) stated
in Definition 9, for any 1 ≤ k < n − 1, even if there are k − 1 root components
R1, . . . , Rk−1 that are vertex-stable all the time, i.e., in [1,∞] (and only root
component Rk is vertex-stable for at most min{n − k,H} − 1 rounds).

116 M. Biely et al.

In addition, the following Theorem2 reveals that even much less than k
root components per round before stabilization and a single perpetually stable
root component after stabilization are insufficient for solving k-set agreement.
Consult [6] for its proof, which employs a lossy-link consensus impossibility [15].

Theorem 2 [6, Theorem 9]. There is no algorithm that solves k-set agreement
for n ≥ k + 1 processes under the message adversary for every 1 < k < n, even
if Gr = G, r ≥ rST , where G contains only a single root component.

We will now provide a message adversary MAJINF(k) that is sufficiently
weak for solving k-set agreement if combined with VSRC(k, 3D + H) and even
with VSRC(n, 3D + H).

We obtained this combination by adding some additional properties
to the necessary network conditions implied by our impossibility Theorems 1
and 2: To avoid non-terminating (i.e., forever undecided) executions as pre-
dicted by Theorem 1, we require the stable interval constraint guaranteed by the
message adversary VSRC(n, 3D + H) to hold. In order to also circumvent exe-
cutions violating the k-agreement property established by Theorem2, we intro-
duce the majority influence constraint guaranteed by the message adversary
MAJINF(k) given in Definition 12 below. It guarantees some (minimal) infor-
mation flow between sufficiently long-lasting vertex-stable root components that
exist at different times. It implies that the information available in any such
VSRC originates in at most k “initial” VSRCs. Thereby, it enhances the very
limited information propagation that could occur in our model solely under
VSRC(k, 3D + H), which is too strong for solving k-agreement.

Given some run ρ, we denote by Vd the set of all root components that are
vertex-stable for at least d consecutive rounds in ρ. Let Rv ∈ V1 consisting of
processes in Rv be vertex-stable in V = [av, bv] and RW ∈ V1 consisting of
processes in RW be vertex-stable in W = [aW , bW] with aW > bv; note that
Vd ⊆ V1 for every d ≥ 1.

Definition 10 (Causal Influence Sets). Given Rv, RW ∈ V1 with sets of
processes Rv, RW , their causal influence set CS(Rv, RW) consists of those
processes q of RW for which there exists a causal chain from some process
p of Rv starting after V that ends before or at the beginning of W . That is,
CS(Rv, RW) :=

{
q ∈ RW | ∃p ∈ Rv : cdbv+1(p, q) ≤ aW − bv

}
.

The majority influence between Rv and RW guarantees that Rv influences
a set of nodes in RW , which is greater than any set influenced by VSRCs not
already known by the processes in Rv (and greater than or equal to any set
influenced by VSRCs already known by the processes in Rv).

Definition 11 (Majority influence). We say that a VSRC Rv ∈ V2D+1 exer-
cises a majority influence on a VSRC RW ∈ V2D+1, denoted Rv↪→mR

W with
↪→m ⊆ V

2
2D+1, iff ∀RI ∈ VD+1 with CS(RI , Rv) = ∅ we have |CS(Rv, RW)| >

|CS(RI , RW)| and ∀RI ∈ VD+1 with CS(RI , Rv) �= ∅ we have |CS(Rv, RW)| ≥
|CS(RI , RW)|.

We can now specify the message adversary MAJINF(k) given in Definition 12.

Gracefully Degrading Consensus and k-Set Agreement 117

Definition 12 (k-majority influence message adversary). The message
adversary MAJINF(k) is the set of all communication graph sequences (Gr)r>0,
where in every run there is a set K ⊆ V2D+1 of |K| ≤ k VSRCs s.t. ∀RI ∈
V2D+1 \ K ∃RJ ∈ V2D+1 with RJ ↪→mR

I .

Informally speaking, Definition 12 ensures that all but at most k “initial”
VSRCs in V2D+1 are majority-influenced by some earlier VSRC in V2D+1. Note
carefully, though, that Definition 12 neither prohibits partitioning of the system
in more than k simultaneous VSRCs nor directly exhibits a k-quorum property,
cf. the well-known quorum failure detector Σk [7] that is known to be necessary
(but not sufficient!) for solving k-set agreement:3 After all, choosing any Q ⊆
V2D+1 with |Q| = k + 1 does not imply that there exist two VSRCs in Q that
are majority-influenced by a common VSRC. As MAJINF(k) alone is hence too
strong for solving k-set agreement, VSRC(n, 3D + H) + MAJINF(k) is indeed
reasonably close to the k-set agreement solvability border.

We conclude this section with some straightforward stronger assumptions,
which also imply Definition 12 and can hence be handled by the algorithm intro-
duced in Sect. 4:

(i) Replacing majority influence in Definition 11 by majority intersection |Rv ∩
RW | > |RI ∩ RW |, which is obviously the strongest form of influence.

(ii) Requiring |Rv ∩ RW | > |RW |/2, i.e., a majority intersection with respect
to the number of processes in RW . This could be interpreted as a changing
VSRC, in the sense of “RW is the result of changing a minority of processes
in Rv”. Although this restricts the rate of growth of VSRCs in a run, it would
apply, for example, in case of random graphs where the giant component has
formed [10].

4 Gracefully Degrading Consensus/k-Set Agreement

In this section, we provide a k-set agreement algorithm and prove that it works
correctly under the message adversary VSRC(n, 3D + H) + MAJINF(k), i.e.,
the conjunction of Definitions 9 and 12. Note that the algorithm needs to know
D, but neither n, k nor H. It consists of a “generic” k-set agreement algorithm,
which relies on a function InStableRoot(I) that returns the member set of the
VSRC RI (or ∅ if none) provided by a network approximation algorithm, and
a function GetLock that extracts candidate decision values from history infor-
mation. Our implementation of GetLock uses a vector-clock-like mechanism for
maintaining “causally consistent” history information, which can be guaranteed
to lead to proper candidate values thanks to VSRC(n, 3D + H) + MAJINF(k).

Properties. Our algorithm is in fact not only k-uniform but even worst-case
k-optimal, in the sense that (i) it provides at most k decisions system-wide in all
runs that are feasible for VSRC(n, 3D + H)+MAJINF(k), and (ii) that there is
3 Working out the intricacies of relating our message adversaries to failure detectors

(in the spirit of [14]) is part of our current research.

118 M. Biely et al.

at least one feasible run under VSRC(n, 3D + H)+MAJINF(k) where no correct
k-set agreement can guarantee less than k decisions. (i) will be proved below,
and (ii) follows immediately from the fact that a run consisting of k isolated
partitions is also feasible for VSRC(n, 3D + H) + MAJINF(k). Our algorithm
can hence indeed be viewed as a consensus algorithm that degrades gracefully
to k-set agreement, for some k determined by the actual network properties.

Network Approximation. Our k-set agreement algorithm relies on the net-
work approximation algorithm already used in [5]. As detailed in [6, Sec. 5.1], it
maintains network estimate Ap at process p, which holds p’s local knowledge of
every communication graph Gr that occurred so far: Whenever p gets evidence
that some communication link (v → w) was present in round Gr, e.g., by receiv-
ing some other process’s Aq containing this edge, it also adds (v → w) with
label r to Ap. For the joint algorithm, we assume that the complete round r
computing step of the network approximation algorithm is executed just before
the round r computing step of the k-set algorithm, and that the round r message
of the former is piggybacked on the round r message of the latter. This implies
that the round r computing step of the k-set core algorithm, which terminates
round r, can already access the result of the round r computation of the network
approximation algorithm, i.e., its state at the end of round r.

Detailed Description. The general idea of our core k-set agreement algorithm
in Alg. 1 is to generate new decision values only at members of 2D + 1-VSRCs,
and to disseminate those values throughout the remaining network. Using the
local information provided by the network approximation algorithm, our algo-
rithm causes process pi to make a transition from the initially undecided state
to a locked state when it detects some minimal “stability of its surroundings”,
namely, its membership in some D + 1-VSRC D rounds in the past (line 17).
Note that the latency of D rounds is inevitable here, since information propaga-
tion within a D + 1-VSRC may take up to D rounds due to D-boundedness as
guaranteed by item (ii) in Definition 9. If process pi, while in the locked state,
observes some period of stability that is sufficient for locally inferring a consis-
tent view among all VSRC members (which occurs when the D + 1-VSRC has
actually extended to a 2D + 1-VSRC), pi can safely make a transition to the
decided state (line 24). The decision value is then broadcast in all subsequent
rounds, and adopted by any not-yet decided process in the system that receives
it later on (line 9). Note that VSRC(n, 3D + H) (Definition 9) guarantees that
this will eventually happen.

Since locking is done optimistically, however, it may also happen that the
D + 1-VSRC does not extend to a 2D + 1-VSRC (or, even worse, is not recog-
nized to have done so by some members) later on. In this case, pi makes a
transition from the locked state back to the undecided state (line 22). Unfortu-
nately, this possibility has severe consequences: Mechanisms are required that,
despite possibly inconsistently perceived unsuccessful locks, ensure both (a) an
identical decision value among all members of a 2D + 1-VSRC who successfully
detect this 2D+1-VSRC and thus reach the decided state, and (b) no more than
k different decision values originating from different 2D + 1-VSRCs.

Gracefully Degrading Consensus and k-Set Agreement 119

Algorithm 1. k-uniform k-set agreement algorithm, code for process pi

Variables and Initialization:
1: histi[∗][∗] := ∅ /* histi[j][r] holds pi

2: histi[i][0] := {({pi} , xi, 0)} /* virtual first lock (V (R) := {pi} , v := xi, τcreate := 0) at pi */
3: � := ⊥
4: decisioni := ⊥ // pi’s decision, ⊥ if undecided

Emit round r messages:
5: send 〈histi, decisioni〉 to all neighbors

Receive round r messages:
6: for all pj in pi’s neighborhood N r

pi
, receive 〈histj , decisionj〉

Round r computation:
7: if decisioni = ⊥ then
8: if m containing m.decision �= ⊥ then
9: decide m.decision and set decisioni := m.decision

10: else
// update histi with histj

11: for pj ∈ N r
pi

, where pj sent histj do

12: hist′
i := histi

13: for j [x][r
′] of histj , x �= i do

14: histi[x][r
′] := histi[x][r

′] ∪ histj [x][r
′]

′

16: myRoot := InStableRoot([r − 2D, r − D])
17: if � = ⊥ and myRoot �= ∅ then
18: � := r − 2D
19: lock := GetLock(myRoot, �)
20: histi[i][r] := histi[i][r] ∪ lock // create new lock
21: else if � �= ⊥ and myRoot = ∅ then
22: � := ⊥ // release unsuccessful lock
23: else if � �= ⊥ and InStableRoot([�, � + 2D]) �= ∅ then
24: decide lock.v and set decisioni := lock.v

25: function GetLock(R, r′)
26:

27:
28: if |mfrqlatest(S)| = 1 then
29:
30: newLock := (R, v, r)
31: else

33: return newLock

Both goals are accomplished by a particular selection of the decision values
(using function GetLock), which ultimately relies on an intricate utilization the
network properties guaranteed by our message adversary VSRC(n, 3D + H) +
MAJINF(k) (Definitions 9 and 12): Our algorithm uses a suitable lock history
data structure for this purpose, which is continuously exchanged and updated
among all reachable processes. It is used to store sets of locks L = (R, v, τcreate),
which are created by every process that enters the locked state: R is the vertex-
set of the detected D + 1-VSRC, v is a certain proposal value (determined as
explained below), and τcreate is the round when the lock is created.

Maintaining History. In more detail, the lock history at process pi consists
of an array histi[j][r] that holds pi’s (under)approximation of the locks process
pj got to know in round r. It is maintained using the following simple update
rules:

120 M. Biely et al.

(i) Local lock creation: Apart from the single virtual lock ({pi} , xi, 0) created
initially by pi in line 2 (which guarantees a non-empty lock history right
from the beginning), all regular locks created upon pi’s transition from the
undecided to the locked state are computed by the function GetLock in
line 19. Any lock locally created at pi in round r (that is, in the round r
computing step of the core k-set agreement algorithm that terminates round
r) is of course put into histi[i][r].

(ii) Remote lock learning: Since all processes exchange their lock histories, pi

may learn about some lock L created by process px in round r′ from the
lock history histj [x][r′] received from some pj later on. In this case, L is
just added to histi[x][r′] (line 14).

(iii) Local lock learning: In order to ensure that the lock histories of all mem-
bers of a 2D + 1-VSRC are eventually consistent, which will finally ensure
identical decision values, every newly learned remote lock L ∈ histi[x][r′]
obtained in (ii) is also added to histi[i][r].

Note that the update rules (i)+(ii) resemble the ones of vector clocks [12].
Clearly, histi[i][r′] will always be accurate for current and past rounds r′ ≤ r,

while histi[j][r′] may not always be up-to date, i.e., may lack some locks that
are present in histj [j][r′]. Nevertheless, if pi and pj are members of the same
2D + 1-VSRC RI with I = [r − 2D, r], Definition 7 ensures that pi and pj have
consistent histories histi[j][r′] and histj [i][r′] at latest by (the end of) round
r′ + D, for any r′ ∈ [r − 2D, r − D]. Hence, if pi creates a new lock L when it
detects, in its round r computing step, that it was part of a D + 1-VSRC that
was stable from r − 2D to r − D, it is ascertained that any other member pj

will have locally learned the same lock L in the same round r, provided that the
D + 1-VSRC in fact extended to a 2D + 1-VSRC.

Consistent Decisions. The resulting consistency of the histories is finally
exploited by the function GetLock(R, �), which computes (the value of) a new
local lock (line 19) created in round r. As its input parameters, it is provided with
the members R of the detected D + 1-VSRC and its starting round � = r − 2D.
GetLock first determines a multiset S, which contains all locks locally known to
the members pj ∈ R by round r − 2D (line 26). Note that the multiplicity of
some lock L = (R′, v, r′) in S is just the number of members of R who got to
know L by round r−2D, which is just |CS(R′, R)| according to Definition 10. In
order to determine a proper value for the new lock to be computed by GetLock,
we exploit the fact that MAJINF(k) (given in Definition 12) ensures majority
influence according to Definition 11: If the set mfrqlatest(S), containing the most
frequent locks in S with the same maximal lock creation round, contains a single
lock L only, its value L.v is used. Note that the restriction to the maximal lock
creation date automatically filters unwanted, outdated locks that have merely
been disseminated in preceding 2D + 1-VSRCs. Otherwise, i.e., if mfrqlatest(S)
contains multiple candidate locks, a consistent deterministic choice, namely, the
maximum among all lock values in S, is used (line 32). As a consequence, at
most k different decision values will be generated system-wide.

In the remainder of this section, we will prove the following Theorem3:

Gracefully Degrading Consensus and k-Set Agreement 121

Theorem 3. Algorithm1 solves k-uniform k-set agreement in a dynamic net-
work under the message adversary VSRC(n, 3D + H) + MAJINF(k), which is
the conjunction of Definitions 9 and 12.

The proof consists of a sequence of technical lemmas, which will finally allow
us to establish all the properties of k-set agreement given in Sect. 2.

Validity according to Definition 2 is straightforward to see. To establish ter-
mination, we start with Lemmas 2, 3 and 4 (the proofs can again be found in [6])
that are related to setting locks at all members of vertex stable root components.
They all rely on the guarantees provided by the network approximation algo-
rithm, which have already been established in [5]:

Corollary 1 [6, Corollary 1]. If the function InStableRoot(I) evaluates to
R �= ∅ at process p in round r, then ∀x ∈ I where x < r, it holds that p is a
member of Rx, i.e., p ∈ R.

Corollary 2 [6, Corollary 2]. Consider an interval of rounds I = [a, b], with
|I| = b−a+1 > D, such that there is a D-bounded vertex-stable root component
RI . Then, from the end of round b on, a call to InStableRoot([a, b−D]) returns
R at every process in R.

Lemma 2 [6, Lemma 19]. Apart from processes adopting a decision sent by
another process, only processes part of a vertex stable root with interval length
greater than D (resp. 2D) lock (resp. decide).

Lemma 3 [6, Lemma 20]. All processes part of a vertex stable root R[a,b] with
interval length greater than 2D, which did not start already before a, lock, i.e.
set l = a, in round a + 2D.

Lemma 4 [6, Lemma 21]. All processes part of a vertex stable root R[a,b] with
interval length greater than 3D, which did not start already before a, have decided
by round a + 3D.

Lemma 5. The algorithm eventually terminates at all processes.

Proof. Pick any process pj . If pj is part of a root component during the stable
interval guaranteed by Definition 9, Lemma 3 ensures termination by rST + 3D
at the latest. If pj is not part of a root component during the stable interval, it
follows from Definition 8 that there exists a causal chain of length at most H to
pj from some member pi of some terminating VSRC. Therefore, pj must receive
the decide message and decide via line 9 by rST + 3D + H at latest. �

Although we now know that all members of a VSRC that is vertex stable for
at least 3D rounds will decide, we did not prove anything about their decision
values yet. In the sequel, we will prove that they decide on the same value.

Lemma 6. Given some VSRC RI with I = [a, b] and b ≥ a + D, in all rounds
x ∈ [a + D, b] it holds that ∀pi, pj ∈ R :

⋃
r′≤a histi[j][r′] =

⋃
r′≤a histj [j][r′]

122 M. Biely et al.

Proof. By the D-boundedness of RI , a message from round a has reached every
member of R by round a + D. Moreover, no message sent by a process not in
R during I can reach a member of R during I because RI is a root component.
Therefore, since histi is sent by each process pi in every round (line 5) and pi

adds only newly learned entries to histi (lines 15 and 20), all these updates of
histi during I, regarding any round r′ ≤ a, occur at the latest in round a + D.

�

Lemma 7. All processes of a VSRCs RI of V2D+1 with I = [a, b] adopt the
same lock (and hence decide the same).

Proof. Such a lock is created by pi ∈ R in round a + 2D, when it recognizes RI

as having been vertex-stable for D+1 rounds according to Lemma 3. As the lock
(value) is computed based on histi present in round a+2D, which is consistent
among all VSRC members by Lemma 6, the lemma follows. �

Finally, we show that, given that the system satisfies Definition 12, there will
be at most k decision values in any run of Algorithm1, which proves k-agreement:
Since there are at most k VSRCs of V2D+1 that are not majority-influenced by
other VSRCs, it remains to show that any majority-influenced VSRC decides
the same as the VSRC it is majority-influenced by. In order to do so, we will
first establish a key property of our central data structure histi.

Lemma 8. Given Rv, V = [av, bv], and RW , W = [aW , bW], where |v| > 2D
and |W | ≥ 1, let L be a lock known to all members of Rv by bv, i.e., for all
pi ∈ Rv it holds that, by the end of round bv, L ∈

⋃
r′≤bv

histi[i][r′]. For any
process pj ∈ CS(Rv, RW), it holds that L ∈

⋃
r′≤aW

histj [j][r′].

Proof. Assume the contrary, i.e., there exists some pj ∈ CS(Rv, RW) but L /∈⋃
r′≤aW

histj [j][r′]. Definition 10 implies that there exists a causal chain from
some pi ∈ Rv to pj that ends before pj becomes a part of RW . Since processes
send their own history in every round according to line 5, every message in
this causal chain consisted of a hist containing L and thus pj put L into its
histj [j][r] via line 14 if

⋃
r′≤r histj [j][r′] did not already contain L. �

Lemma 9. Given Rv ∈ V2D+1, V = [av, bv], and RW ∈ V2D+1, W = [aW , bW],
assume that the processes of Rv created the (same) lock L when locking. If
Rv↪→mR

W , then the processes in RW will choose a lock L′ where L.v = L′.v
(and hence decide the same as the processes in Rv).

Proof. From the definition of ↪→m (Definition 11), it follows that no VSRC RI of
VD+1 has a larger influence set on RW than Rv. By Lemma 2, this implies that no
lock that was generated by some RI in VD+1 can be known to more members of
RW than the lock L generated by Rv. Since process pi puts only newly learned
locks into histi (line 15 and 20), by Lemma 8, this means that in round aW

no “bad” lock Lb is present in more elements of S =
⋃

pi∈RW ,r′≤aW
histi[i][r′]

than L. We now show that L.τcreate > Lb.τcreate for all Lb occuring in as many

Gracefully Degrading Consensus and k-Set Agreement 123

elements of S as L with Lb �= L. Obviously, the only locks Lb that could occur
in as many elements of S as L are locks that have been in histi of some pi ∈ Rv

at the beginning of round rv already. Since for any such Lb, L was created
after Lb, by line 30 and 32, we have that L.τcreate > Lb.τcreate, as claimed.
Because in round aW + 2D, at all processes pi, pj of RW , Lemma 6 implies
that

⋃
r′≤aW

histi[j][r′] =
⋃

r′≤aW
histj [i][r′], when locking in round aW + 2D

according to Lemma 3, every pi of RW will find L as the unique most common
lock in the elements of S with maximal τcreate. This leads to the evaluation of
the if-statement in line 28 to true and to the creation of a new lock L′, where
L′.v = L.v in line 30, as asserted. �

5 Conclusions

We provided the first consensus algorithm for synchronous dynamic networks,
which degrades gracefully to general k-set agreement in unfavorable runs; k is
related to the number of mutually independent vertex-stable root components
occuring in the run. Related impossibility results show that the network assump-
tions (eventual stability and majority influence) required by our algorithm are
reasonably close to the solvability border.

References

1. Afek, Y., Gafni, E.: Asynchrony from synchrony. In: Frey, D., Raynal, M., Sarkar,
S., Shyamasundar, R.K., Sinha, P. (eds.) ICDCN 2013. LNCS, vol. 7730, pp. 225–
239. Springer, Heidelberg (2013)

2. Aguilera, M.K., Chen, W., Toueg, S.: Using the heartbeat failure detector for
quiescent reliable communication and consensus in partitionable networks. Theor.
Comput. Sci. 220(1), 3–30 (1999)

3. Biely, M., Robinson, P., Schmid, U.: Easy impossibility proofs for k -set agreement
in message passing systems. In: Fernàndez Anta, A., Lipari, G., Roy, M. (eds.)
OPODIS 2011. LNCS, vol. 7109, pp. 299–312. Springer, Heidelberg (2011)

4. Biely, M., Robinson, P., Schmid, U.: Solving k-set agreement with stable skeleton
graphs. In: Proceedings of the IPDPS Workshops, pp. 1488–1495 (2011)

5. Biely, M., Robinson, P., Schmid, U.: Agreement in directed dynamic networks. In:
Even, G., Halldórsson, M.M. (eds.) SIROCCO 2012. LNCS, vol. 7355, pp. 73–84.
Springer, Heidelberg (2012)

6. Biely, M., Robinson, P., Schmid, U., Schwarz, M., Winkler, K.: Gracefully degrad-
ing consensus and k-set agreement in directed dynamic networks, January 2015.
arXiv:1501.02716

7. Bonnet, F., Raynal, M.: On the road to the weakest failure detector for k-set
agreement in message-passing systems. Theor. Comput. Sci. 412(33), 4273–4284
(2011)

8. Casteigts, A., Flocchini, P., Quattrociocchi, W., Santoro, N.: Time-varying graphs
and dynamic networks. IJPEDS 27(5), 387–408 (2012)

9. Dwork, C., Peleg, D., Pippenger, N., Upfal, E.: Fault tolerance in networks of
bounded degree. SIAM J. Comput. 17(5), 975–988 (1988)

http://arxiv.org/abs/1501.02716

124 M. Biely et al.

10. Janson, S., Knuth, D.E., Luczak, T., Pittel, B.: The birth of the giant component.
Random Struct. Algorithms 4, 233–358 (1993)

11. Kuhn, F., Oshman, R., Moses, Y.: Coordinated consensus in dynamic networks.
In: Proceedings of the PODC 2011 (2011)

12. Mattern, F.: Virtual time and global states of distributed systems. In: Parallel and
Distributed Algorithms, pp. 215–226. North-Holland (1989)

13. Newport, C., Kotz, D., Yuan, Y., Gray, R.S., Liu, J., Elliott, C.: Experimental
evaluation of wireless simulation assumptions. SIMULATION: Trans. Soc. Model.
Simul. Int. 83(9), 643–661 (2007)

14. Raynal, M., Stainer, J.: Synchrony weakened by message adversaries vs asynchrony
restricted by failure detectors. In: Proceedings of the PODC 2013, pp. 166–175
(2013)

15. Schmid, U., Weiss, B., Keidar, I.: Impossibility results and lower bounds for con-
sensus under link failures. SIAM J. Comput. 38(5), 1912–1951 (2009)

16. Sealfon, A., Sotiraki, A.A.: Brief announcement: agreement in partitioned dynamic
networks. In: Kuhn, F. (ed.) DISC 2014. LNCS, vol. 8784, pp. 555–556. Springer,
Heidelberg (2014)

17. Vaidya, N.H., Pradhan, D.K.: Degradable agreement in the presence of Byzantine
faults. In: Proceedings of ICDCS 1993, pp. 237–244 (1993)

Homonym Population Protocols

Olivier Bournez1(B), Johanne Cohen2, and Mikaël Rabie1

1 LIX, Ecole Polytechnique, 91128 Palaiseau Cedex, France
{olivier.bournez,mikael.rabie}@lix.polytechnique.fr

2 LRI, Université de Paris-Sud, Bâtiment 425, 91405 Orsay Cedex, France
Johanne.Cohen@lri.fr

Abstract. Angluin et al. introduced Population protocols as a model in
which n passively mobile anonymous finite-state agents stably compute
a predicate on the multiset of their inputs via interactions by pairs. The
model has been extended by Guerraoui and Ruppert to yield the com-
munity protocol models where agents have unique identifiers but may
only store a finite number of the identifiers they already heard about.
The Population protocol model only computes semi-linear predicates,
whereas the community protocol model provides the power of a Turing
machine with a O(n log n) space.

We consider variations on the above models and we obtain a whole
landscape that covers and extends already known results. By consider-
ing the case of homonyms, that is to say the case when several agents
may share the same identifier, we provide a hierarchy that goes from the
case of no identifier (population protocol model) to the case of unique
identifiers (community protocol model).

We obtain in particular that any Turing Machine on space O(logO(1) n)
can be simulated with at least O(logO(1) n) identifiers, a result filling a gap
left open in all previous studies.

Our results also extend and revisit in particular the hierarchy pro-
vided by Chatzigiannakis et al. on population protocols carrying Turing
Machines on limited space, solving the problem of the gap left by this
work between per-agent space o(log log n) (proved to be equivalent to
population protocols) and O(log n) (proved to be equivalent to Turing
machines).

1 Introduction

Angluin et al. [3] proposed a model of distributed computation called population
protocols. It can be seen as a minimal model that aims at modeling large sensor
networks with resource-limited anonymous mobile agents. The mobility of the
agents is assumed to be unpredictable (given by any fair scheduler) and pairs of
agents can exchange state information when they are close together.

The population protocol model can be considered as a computational model,
in particular computing predicates: Given some input configuration, the agents
have to decide whether this input satisfies the predicate. More precisely, the
population of agents has to eventually stabilize to a configuration in which every
c© Springer International Publishing Switzerland 2015
A. Bouajjani and H. Fauconnier (Eds.): NETYS 2015, LNCS 9466, pp. 125–139, 2015.
DOI: 10.1007/978-3-319-26850-7 9

126 O. Bournez et al.

agent is in an accepting state or a rejecting one. This must happen with the same
program for all population sizes, i.e. for any size of input configuration.

The seminal work of Angluin et al. [1,3] proved that predicates computed by
population protocols are precisely those on counts of agents definable by a first-
order formula in Presburger arithmetic (equivalent to a semilinear set). Subsets
definable in this way are rather restricted, as for example multiplication is not
expressible in Presburger arithmetic. Several variants of the original model have
been considered in order to strengthen the population protocol model with extra
realistic and implementable assumptions, in order to gain more computational
power. Variants also include natural restrictions like modifying the assumption
between agent’s interactions (one-way communications [1], particular interaction
graphs [2]). This also includes the Probabilistic Population Protocol model that
makes a random scheduling assumption for interactions [3]. Various kinds of
fault tolerance have been considered for population protocols [10], including the
search for self-stabilizing solutions [4]. We refer to [6,8] for a survey.

Among many variants of population protocols, the passively mobile (logarith-
mic space) machine model introduced by Chatzigiannakis et al. [7] constitutes
a generalization of the population protocol model where finite state agents are
replaced by agents that correspond to arbitrary Turing machines with O(S(n))
space per-agent, where n is the number of agents. An exact characterization [7] of
computable predicates is given: this model can compute all symmetric predicates
in NSPACE(nS(n)) as long as S(n) = Ω(log n). Chatzigiannakis et al. estab-
lish that with a space in agent in S(n) = o(log log n), the model is equivalent to
population protocols, i.e. to the case S(n) = O(1).

In parallel, community protocols introduced by Guerraoui and Ruppert [13]
are closer to the original population protocol model, assuming a priori agents
with individual very restricted computational capabilities. In this model, each
agent has a unique identifier and can only remember O(1) other agent identifiers,
and only identifiers from agents that it met. Guerraoui and Ruppert [13] using
results about the so-called storage modification machines [15], proved that such
protocols simulate Turing machines: Predicates computed by this model with n
agents are precisely the predicates in NSPACE(n log n).

In this paper, we obtain a whole landscape that covers and extends already
known results. We do so by considering that the capabilities of agents is even
more restricted. Indeed, we drop the hypothesis of unique identifiers. That is
to say, we consider that agents may have homonyms. We obtain a hierarchy
that goes from the case of no identifier (i.e. population protocol model) to the
case of unique identifiers (i.e. community protocol model). In what follows, f(n)
denotes the number of distinct available identifiers on a population with n agents.
Notice that the idea of having less identifiers than agents, that is to say of having
“homonyms”, has already been considered in other contexts or with not closely
related problematics [5,9,11,12].

Basically, Tables 1 and 2 summarize our results, where MNSPACE(S(n))
(respectively: SMNSPACE(S(n))) is the set of f -symmetric1 (resp. also stable

1 These classes are defined in Sect. 3.4.

Homonym Population Protocols 127

Table 1. Homonym population protocols with n agents and f(n) identifiers.

f(n) identifiers Computational power

O(1) Presburger’s definable subsets [1,3]

Θ(logr n) with r ∈ R>0

⋃

k∈N
MNSPACE

(

logk n
)

Theorem 5

Θ(nε) with ε > 0 MNSPACE(n log n) Theorem 6

n NSPACE(n log n)[13]

Table 2. Passively mobile machine model [7] with n agents and space S(n) per agent.

Space per agent S(n) Computational power

O(1) Presburger’s definable subsets [1,3]

o(log log n) Presburger’s definable subsets [7]

Θ(log log n)
⋃

k∈N
SNSPACE(logk n) Theorem 7

Ω(logn) SNSPACE(nS(n)) [7]

under the permutation of the input multisets) languages recognized by Non
Deterministic Turing Machines on space O(S(n)).

Our results also extend the passively mobile machine model. In particular,
Chatzigiannakis et al. [7] solved the cases S(n) = o(log log n) (equivalent to
population protocols) and S(n) = O(log n) (equivalent to Turing machines).
We provide a characterization for the case S(n) = O(log log n): the model is
equivalent to

⋃
k∈N

SNSPACE(logk n) (see Table 2).
The document is organized as follows. Section 2 introduces the formal defi-

nitions of the different models and some already known main results. Section 3
is devoted to the case where an order is available on identifiers. The number
of identifiers f(n) is possibly less than the number n of agents (see Table 1).
Section 4 treats the case S(n) = O(log log n) in the passively mobile machine
model [7] (see Table 2). Section 5 is then a summary of our results with some
open questions.

2 Models

Population protocols have been, to date, mostly considered as computing predi-
cates: one considers protocols such that starting from some initial configuration,
any fair sequence of pairwise interactions must eventually yield to a state where
all agents agree and either accept or reject. The corresponding predicate then
corresponds to the inputs that eventually lead to accept. Algorithms are assumed
to be uniform: the protocol descriptions are independent of the number n of the
agents.

The models we consider are variations of the community protocol model [13].
This latter model is in turn considered as an extension of the population pro-
tocols. In all these models, a system is a collection of agents. Each agent has

128 O. Bournez et al.

a finite number of possible states and has an input value, that determines its
initial state. Evolution of states of agents is the product of pairwise interactions
between agents: when two agents meet, they exchange information about their
states and simultaneously update their own states according to a joint transi-
tion function, which corresponds to the algorithm of the protocol. The precise
sequence of agents involved under the pairwise interactions is under the control
of any fair scheduler. The considered notion of fairness for population protocols
states that every system configuration that can be reached infinitely often is
eventually reached.

To avoid multiplication of names, we will write community protocols for
the model of [13], and homonym population protocols for our version, precising
sometimes with f(n) distinct identifiers.

Let U be the infinite set containing the possible identifiers. Compared to [13],
we do not consider that the set is arbitrary: we assume that U ⊂ N. We also
assume these identifiers are not necessarily unique: several agents may have the
same identifier. We only assume that they share f(n) distinct identifiers.

More formally, a community protocol / homonym population protocol algo-
rithm is then specified by:

1. an infinite set U of the possible identifiers. In the Homonym case, U = N.
2. a function f associating to the size of the population the number of identifiers

appearing in this population;
3. a finite set B of possible basic states;
4. an integer d ≥ 0 representing the number of identifiers that can be remem-

bered by an agent;
5. some input alphabet Σ and some output alphabet Y ;
6. an input map ι : Σ → B and an output map ω : B → Y ;
7. a transition function δ : Q2 → Q2, with Q = B × U × (U ∪ { })d.

Remark 1. We assume to simplify writing in the following that δ is a function,
but this could be a relation as in [13], without changing our results.

The state of an agent stores an element of B, the agent’s identifier, together
with up to d identifiers. If any of the d slots is not currently storing an identifier,
it contains the null identifier �∈ U . In other words, Q = B × U × (U ∪ { })d is
the set of possible agent states. The transition relation indicates the result of a
pairwise interaction: when agents in respective state q1 and q2 meet, they move
to respectively state q′

1 and q′
2 whenever δ(q1, q2) = (q′

1, q
′
2).

As in [13], we assume that agents store only identifiers they have learned
from other agents (otherwise, they could be used as an external way of storing
arbitrary information and this could be used as a space for computation in a
non interesting and trivial way): if δ(q1, q2) = (q′

1, q
′
2), and id appears in q′

1, q
′
2

then id must appear in q1 or in q2.
As in [13], we assume that the identifiers of agents are chosen by some adver-

sary, and not under the control of the program.
Weadd ahypothesis to the communitymodel [13]: agents need to knowwhen an

identifier is equal to 0 and when two identifiers are consecutive (i.e. id1 = id2 +1).

Homonym Population Protocols 129

As we want to be minimal, we hence assume that this is the only hypothesis we
make on identifiers in the following section. More formally, whenever δ(q1, q2) =
(q′

1, q
′
2), let u1 < u2 < · · · < uk be the distinct identifiers that appear in any

of the four states q1, q2, q
′
1, q

′
2. Let v1 < v2 < · · · < vk be identifiers such that

u1 = 0 ⇔ v1 = 0 and vi + 1 = vi+1 ⇔ ui + 1 = ui+1. If ρ(q) is the state obtained
from q by replacing all occurrences of each identifier ui by vi, then we require that
δ(ρ(q1), ρ(q2)) = (ρ(q′

1), ρ(q′
2)).

From now on, an agent in state q with initial identifier k and L = k1, . . . , kd

the list storing the d identifiers is denoted by qk,L or qk,k1,...,kd
. If the list L is

not relevant for the rule, we sometimes write qk.

Remark 2. – This weakening of the original model does not change the com-
putational power in the case where all agents have distinct identifiers.

– Our purpose is to establish results with minimal hypothesis. Our results
work when identifiers are consecutive integers, say {0, 1, 2, . . . , f(n) − 1}.
This may be thought as a restriction. This is why we weaken to the above
hypothesis, which seems to be the minimal hypothesis to make our proofs
and constructions correct.
We conjecture that without the possibility to know if an identifier is the
successor of another one, the model is far too weak. Without this asumption,
our first protocol (in Proposition 1) does not work.

– Notice that knowing whether an identifier is equal to 0 is not essential, but
ease the explanation of our counting protocol of Proposition 1.

A configuration of the algorithm then consists of a finite vector of elements
from Q. An input of size n ≥ 2 is f(n) non empty multisets Xi over alphabet
Σ, one for each of the f(n) identifiers. An initial configuration for n agents is a
vector in Qn of the form ((ι(xj), i − 1, , . . . ,))1≤i≤f(n),1≤j≤|Xi| where xj is the
jth element of Xi: in other words, every agent starts in a basic state encoding
ι(xj), its associated identifier and no other identifier stored in its d slots.

If C = (q(1), q(2), . . . , q(n)) and C ′ = (p(1), p(2), . . . , p(n)) are two configura-
tions, then we say that C → C ′ (C ′ is reachable from C in a unique step) if
there are indices i �= j such that δ(q(i), q(j)) = (p(i), p(j)) and p(k) = q(k) for all k
different from i and j. An execution is a sequence of configurations C0, C1, . . . ,
such that C0 is an initial configuration, and Ci → Ci+1 for all i. An execution
is fair if for each configuration C that appears infinitely often and for each C ′

such that C → C ′, C ′ appears infinitely often.

Example 1 (Leader Election). We adapt here a classical example of Population
Protocol. We want a protocol that performs a leader election, with the additional
hypothesis that when the election is terminated, all agents know the identifier
of the leader (for the classical Population Protocol, it is not possible to store
the identifier of the leader). If one prefers, each agent with identifier k starts
with state Lk, , considering that it is a leader, with identifier k. We want that
eventually at some time (i.e. in a finite number of steps), there will be a unique
agent in state Lk0,k0 , where k0 is the identifier of this unique agent, and all the
other agents in state Ni,k0 (where i is its identifier).

130 O. Bournez et al.

A protocol that solves the problem is the following: f(n) = n, B = {L,N},
d = 1 (only the identifier of the current leader is stored), Σ = {L}, Y = True,
ι(L) = L, ω(L) = ω(N) = True, and δ such that the rules are:

Lk, q →Lk,k q ∀k ∈ N,∀q ∈ Q
Lk,k Lk′,k′→Lk,k Nk′,k ∀k, k′

Lk,k Ni,k′ →Lk,k Ni,k ∀k, k′, i
Ni,k′ Lk,k →Ni,k Lk,k ∀k, k′, i
Ni,k Ni′,k′ →Ni,k Ni′,k′ ∀k, k′, i, i′

By the fairness assumption, this protocol will reach a configuration where
there is exactly one agent in state Lk0,k0 for some identifier k0. Then, by fairness
again, this protocol will reach the final configuration Lk0,k0

⋃

i�=k0

Ni,k0 .

A configuration has an Interpretation y ∈ Y if, for each agent in the popu-
lation, its state q is such that ω(q) = y. If there are two agents in state q1 and
q2 such that ω(q1) �= ω(q2), then we say that the configuration has No Interpre-
tation. A protocol is said to compute the output y from an input x if, for each
fair sequence (Ci)i∈N starting from an initial condition C0 representing x, there
exists i such that, for each j ≥ i, Cj has the interpretation y. The protocol is
said to compute function h if it computes y = h(x) for all inputs x. A predicate
is a function h whose range is Y = {0, 1}.

Observe that population protocols [1,3] are the special case of the protocols
considered here where d = 0 and f(n) = 1. The following is known for the
original model [1,3]:

Theorem 1 (Population Protocols [1]). Any predicate over N
k that is first

order definable in Presburger’s arithmetic can be computed by a population pro-
tocol. Conversely, any predicate computed by a population protocol is a subset of
N

k first order definable in Presburger’s arithmetic.

For the community protocols, Guerraoui and Ruppert established in [13] that
computable predicates are exactly those of NSPACE(n log n), i.e. those of the
class of languages recognized in non-deterministic space n log n.

Notice that their convention of input in [13] requires that the input be dis-
tributed on agents ordered by identifiers.

Theorem 2 (Community Protocols [13]). Community protocols can com-
pute any predicate in NSPACE(n log n). Conversely, any predicate computed
by such a community protocol is in the class NSPACE(n log n).

Notice that Guerraoui and Ruppert [13] established that this holds even with
Byzantine agents, under some rather strong conditions. We now determine what
can be computed when the number of identifiers f(n) is smaller than n. This
will be done by first considering some basic protocols.

Homonym Population Protocols 131

3 When Identifiers are Missing

3.1 Computing the Size of the Population

The population has its size in unary: each agent counting itself. However, the
protocol can not use the value of the population size with this encoding. Indeed,
there is always the possibility that an agent was not counted, and it looks not
possible to track that. We introduce here a way to track the size the population
permitting, at some point, to be sure to work on the whole population, not
missing anyone anymore.

We first construct a protocol that computes n, that is to say the size of the
population. Of course, since agents have a finite state, no single agent can store
the whole size. We mean by “that computes n”, the fact that the size of the
population will be encoded by the global population.

Indeed, the protocol will perform a leader election over each identifier. We
will call the set of leaders a chain. The size of the population will be written in
binary on this chain (it will be possible as f(n) ≥ log n in this part).

Clearly, once such a chain has been constructed, it can be used to store numbers
or words, and can be used as the tape of a Turing Machine. We will often implicitly
use in our description this trick inwhat follows.Thiswill be used to simulateTuring
machines in an even trickier way, in order to reduce space or identifiers.

Proposition 1 (Counting Protocol). When we have f(n) identifiers with
f(n) ≥ log n, there exists an homonym population protocol that computes n: At
some point, there are exactly f(n) agents not in a particular state ⊥, all having
distinct identifiers. If we align these agents from the highest identifier to the
lowest one, we get n written in binary.

Remark 3. At that point, no agent knows the value of n (nor that the compu-
tation is over as usual for population protocol models). However, at that point,
the population collectively encodes n.

Proof. Informally, the protocol initializes all agents to a particular state A. In
parallel, it performs a leader election inside subsets of agents with same identifier.
It also counts the number of agents: an agent that has already been counted
is marked in a state different from A, and will not be used in the protocol
anymore. An agent in state 1 (respectively 0, or 2) with identifier k represents
2k (respectively 0, or 2k+1) agents counted. Interactions between agents update
those counts.

More formally, here is the protocol. The rules are as follows:
A0 qk→10 qk ∀q, k 0k 1k →⊥k 1k ∀k
Ak 00→0k 10 ∀k ≥ 1 1k 1k →⊥k 2k ∀k
Ak 10→0k 20 ∀k ≥ 1 2k 0k+1→0k 1k+1 ∀k
0k 0k→⊥k 0k ∀k 2k 1k+1→0k 2k+1 ∀k
This protocol has 3 steps. (i) At the beginning, all agents are in state A.

A state A is transformed into a state 1, by adding 1 to an agent of identifier 0 (the 3
first rules). (ii) Rules 4 to 6 perform a leader election for each identifier, by merging

132 O. Bournez et al.

the counted agents. (iii) The remaining rules correspond to summing together the
counted agents, carrying on to the next identifier the 1.

Let v be the function over the states defined as follows for any k: v(Ak) = 1,
v(0k) = v(⊥k) = 0, v(1k) = 2k, v(2k) = 2k+1. We can notice that the sum (of v
values) over all the agents remains constant over the rules. Thus the sum always
equals the number of agents in the population. By fairness, this protocol reaches
the desired end. ��

Remark 4. – The previous counting protocol also works with f(n) = Ω(log n).
If f(n) ≥ α log n with α < 1, then, using a base e1/α� instead of a base 2
ensures that n can be written on f(n) digits.

– We use here the fact that the population knows if an identifier is equal to
0. We can work with identifiers in [a, a + f(n) − 1]. For this, agents store an
identifier Idm corresponding to the minimal one he saw (called here Idm).
An agent with identifier Id and state i ∈ {0, 1, 2} stores i · 2Id−Idm . When
it meets an identifier equals to Idm − 1, it looks for a leader with identifier
Id − 1 to give it its stored integer.

From now on, when a proof says that the population uses its size, we suppose
that the counting protocol has been performed and the protocol uses the chain to
access to this information. Once again, the value of the size is encoded in the
population (no agent knows it by itself).

3.2 Resetting a Computation

The computation of the value of size n (encoded as above) is crucial for the
following protocols. From now on, we will call the leader the (or an) agent with
identifier 0 not in state ⊥ even if the previous protocol (computing the size of
the population) has not yet finished.

We now provide a Reset protocol. This protocol has the goal to reach a con-
figuration such that (i) the previous protocol is over, (ii) all agents but the leader
are in state R, and (iii) the leader knows when this configuration is reached. This
protocol then permits to launch the computation of some other protocols using
the chain created and the size of the population computed (i.e. encoded globally
in the population).

Proposition 2 (Reset Protocol). There exists a Reset protocol containing
the states F and R such that, once the counting protocol is finished, only one
agent will reach state F at some point. As soon as this agent is in state F , all
the other agents are in state R.

This configuration permits to know for sure that all agents are at the same
step, with a leader being aware of that, being in state F .

Proof. The idea of this protocol is to reset each time the leader sees that the
counting protocol (of the previous proposition) has not finished yet. There are
two possible states for the non-leader agents: S and R. First, the leader turn to
state S other agents, and second turns agents in state S into state R and count

Homonym Population Protocols 133

them (by the same way to counting protocol). When the leader manages to turn
m agents (where m is the computed size with the counting protocol), it knows
that if the counting protocol has finished, the reset protocol is over. It turns its
own state into F . ��

3.3 Counting Agents in a Given State

We use the previous constructions to create a protocol that can write in its
chain2, with the request of an input symbol s ∈ Σ and an identifier Id, the
number of agents that started with this identifier and this input symbol.

Proposition 3. When we have f(n) = Ω(log n) identifiers, if the reset protocol
has finished, for all input s ∈ Σ and for all Id ≤ f(n), there exists a protocol
that encodes the number of agents initialised as sId.

Proof. Recall that sId means input s with identifier Id. We cannot use directly
the counting protocol. We cannot store forever this value if the request is done
for each sId, as agents have a finite memory. Because of that, the protocol will
need to be sure that the computation is over to move forward and clean the
computation. We will use here the fact that the total number of agents is known
(as the computation is reset until this knowledge is reached), by counting the
number of agents in the initial state sk and, at the same time, counting again
the whole population. Once we have reached the right total for the population,
we know that we have counted all the agents in the requested initial state. ��

Remark 5. In other words, if at some moment, the population needs to know
the number of agents which started in the state sId, this is possible.

3.4 Simulating the Reading Tape

With all these ingredients we will now simulate a tape of a Turing machine. First,
we need to define which kind of Turing machines we consider. Basically, we are
only stating that from the definitions of the models, only symmetric predicates
or data can be processed or computed. Our definitions are an adaptation of the
usual models to fit to our inputs.

Definition 1 (f-Symmetry). A Language L ∈ (Σ∪#) is f-symmetric if and
only if:

– #�∈ Σ;
– Words of L are all of the form w = x1#x2#. . .#xf(n), with |x1|+ |x2|+ . . .+

|xf(n)| = n and ∀i, xi ∈ Σ+;
– If, ∀i, x′

i is a permutation of xi, and if x1#x2#. . .#xf(n) ∈ L, then
x′
1#x′

2#. . .#x′
f(n) ∈ L;

Each xi is a non-empty multiset over alphabet Σ.
2 Recall the concept of the chain defined in page 7.

134 O. Bournez et al.

Definition 2 (MNSPACE(S(n))). Let S be a function N → N.
We write MNSPACE(S(n), f(n)), or MNSPACE(S(n)) when f is unam-
biguous, for the set of f−symmetric languages recognized by Non Deterministic
Turing Machines on space O(S(n)).

Definition 3 (SMNSPACE(S(n))). We write SMNSPACE(S(n), f(n)), or
SMNSPACE(S(n)) when f is unambiguous, for the set of f−symmetric lan-
guages recognized by Non Deterministic Turing Machines on space O(S(n)),
where languages are also stable under the permutation of the multisets (i.e. for
any permutation σ, x1#x2#. . .#xg(n) ∈ L ⇔ xσ(1)#xσ(2)#. . .#xσ(g(n)) ∈ L).

Remark 6. We have NSPACE(S(n)) = MNSPACE(S(n), n) and
SNSPACE(S(n)) = MNSPACE(S(n), 1).

Here is a weaker bound than the one we will obtain. The idea of this proof
helps to understand the stronger result.

Proposition 4. Any language in MNSPACE(log n, log n) can be recognized by
an homonym population protocol with log n identifiers.

Proof. The main idea of this proof is to use the chain as a tape for a Turing
Machine. To simulate the tape of the Turing machine, we store the position where
the head of the Turing machine is by memorizing on which multiset the head is
(via the corresponding identifier) and its relative position inside this multiset:
the previous protocol will be used to find out the number of agents with some
input symbol in the current multiset, in order to update all these information
and simulate the evolution of the Turing Machine step by step.

More precisely, let M ∈ MNSPACE(log n, log n). There exists some k ∈ N

such that M uses at most k log n bits for each input of size n. To an input
x1#x2#. . .#xf(n) we associate the input configuration with, for each s ∈ Σ and
for each i ≤ f(n), |xi|s agents in state k with the identifier (i − 1), |xi|s being
the number of s in xi.

The idea is to use the chain as the tape of the Turing Machine. We give k
bits to each agent, so that the protocol has a tape of the good length (the chain
is of size log n). We just need to simulate the reading of the tape. The protocol
starts by counting the population and resetting agents after that.

We assume that symbols on Σ are ordered. Since the language recognized by
M is log n-symmetric, we can reorganize the input by permuting the xis such
that the input symbols are ordered.

Here are the steps to perform the simulation of reading the tape:

0. The chain contains two counters. The leader also stores an identifier Id and
a state s. The first counter stores the total of sId computed at some point
by the protocol of Proposition 3. The second counter c2 is the position the
reading head. The simulated head is on the c2th s of xId+1.

1. At the beginning of the protocol, the population counts the number of S0,
where S0 is the minimal element of Σ. c2 is initialized to 1.

Homonym Population Protocols 135

2. When the machines needs to go right on the reading tape, c2 is incremented.
If c2 equals c1, then the protocol looks for the next state s′ in the order of Σ,
and count the number of s′

Id. If this value is 0, then it takes the next one. If
s was the last one, then the reading tape will consider to be on a #.
If the reading head was on a #, then it looks for the successor identifier of
Id, and counts the number of S0. If Id was maximal, the machine knows it
has reached the end of the input tape.

3. The left movement process is similar to this one.

This protocol can simulate the writing on a tape and the reading of the input.
To simulate the non deterministic part, each time the leader needs to make a
non deterministic choice between two possibilities, it looks for an agent. If the
first agent the leader meets has its identifier equal to 1, then the leader does the
first choice, otherwise it choses the second one.

This protocol simulates M . ��

Corollary 1. Let f such that f(n) = Ω(log n). Any language in MNSPACE
(f(n), f(n)) can be recognized by an homonym population protocol with f(n)
identifiers.

Proof. We use the same protocol (which is possible as the size of the population
can be computed). Since the chain of identifiers has a length of f(n), we have
access to a tape of size f(n). ��

3.5 Recognizing Polylogarithmic Space

Proposition 5. Let f such that f = Ω(log n). Let k be a positive integer.
Any language in MNSPACE

(
logk n, f(n)

)
can be recognized by a protocol

with f(n) identifiers.

Proof. The idea here is that, by combining several identifiers together, we get
much more identifiers available, increasing the chain and space of computation:
if we combine m identifiers together, we get f(n)m possible identifiers.

First the population performs the computation of the size of the population.
Second, it gets a chain of all the identifiers. Third, the leader then creates a
counter of m identifiers, initialized at 0m (seen as the number 0 . . . 0 written
in base f(n)). Four, it looks for a ⊥ agent and gives him its stored m-tuple,
then increases its m-tuple. As soon as it has finished (by giving f(n)m or n
identifiers, depending on what happens first), the protocol can work on a tape
of space f(n)m.

Since f(n) = Ω(log n), there exists some m such that f(n)m ≥ logk n. ��

Theorem 3. Let f such that there exists some real r > 0 such that we have
f(n) = Ω(logr n).

Any language in
⋃

k≥1 MNSPACE(logk n, f(n)) can be recognized by an
homonym population protocol with f(n) identifiers.

136 O. Bournez et al.

Proof. We only need to treat the counting protocol when r < 1 (the case r = 1 is
treated in Proposition 5, the case r > 1 is a direct corollary of this proposition).
Let l = 1

r �. We will use a l-tuple for each agent. When agents realize that f(n)
might be reached and they need more space, they use the tuple, storing the
maximal identifier Id1. If at some point, they realize that a bigger identifier Id2
exists, they just do a translation of the numbers stored in the chain.

With f(n)l = Ω(log n) identifiers and the right basis to write the size, we
can be sure to have enough space to compute the size of the population. We can
then use previous protocols using (k · l)-uples to use the required space. ��

3.6 Only Polylogarithmic Space

Theorem 4. Consider a predicate computed by a protocol with f(n) identifiers.
Assume that f(n) = O(logl n) for some l ≥ 1.

The predicate is in MNSPACE(logk n, f(n)) for some positive integer k.

Proof. We need to prove that there exists a Turing Machine that can compute,
for any given input x, the output of the protocol P .

From definitions, given some input x, P outputs the output y on input x if and
only if there exists a finite sequence (Ci)i∈N, starting from an initial condition
C0 representing x, that reaches at some finite time j some configuration Cj

with interpretation y, and so that any configuration reachable from Cj has also
interpretation y.

This latter property can be expressed as a property on the graph of configu-
rations of the protocol, i.e. on the graph whose nodes are configurations of size
n, and whose edges corresponds to unique step reachability: one must check the
existence of a path from C0 to some Cj with interpretation y so that there is no
path from Cj to some other C ′ with interpretation different from y.

Such a problem can be solved in NSPACE(log N) where N denotes the
number of nodes of this graph. Indeed, guessing a path from C0 to some Cj can
easily be done in NSPACE(log N) by guessing intermediate nodes (configura-
tions) between C0 and Cj . There remains to see that testing if there is no path
from Cj to some other C ′ with interpretation different from y can also be done
in NSPACE(log N) to conclude.

But observe that testing if there is a path from Cj to some other C ′ with inter-
pretation different from y is clearly in NSPACE(log N) by guessing C ′. From
Immerman-Szelepcsnyi’s Theorem [14,16] we know that NSPACE(log N) =
coNSPACE(log N). Hence, testing if there is no path from Cj to some other
C ′ with interpretation different from y is indeed also in NSPACE(log N).

It remains now to evaluate N : For a given identifier i, an agent encodes basically
some basic state b ∈ B, and d identifiers u1, u2, . . . , ud. There are at most n agents
in a given state (i, b, u1, u2, . . . , ud). Hence N = O(n|B|·f(n)d+1

). In other words,
the algorithm above in NSPACE(log N) is hence basically in MNSPACE((|B| ·
f(n)d+1) log n, f(n)) ⊂ MNSPACE(logk n, f(n)) for some k. ��

Homonym Population Protocols 137

Theorem 5. Let f such that for some r, we have f(n) = Ω(logr n). The set
of functions computable by homonym population protocols with f(n) identifiers
corresponds exactly to

⋃
k≥1 MNSPACE(logk n, f(n)).

3.7 When We Have nε Identifiers

One can go from nε (with ε > 0) to a space of computation equivalent to the
case where f(n) = n: We just need to use a k-tuple of identifiers.

Theorem 6 (n1/k Identifiers). Let f such that there exists some k ∈ N such
that f(n) ≥ n1/k. The set of functions computable by homonym population pro-
tocols with f(n) identifiers corresponds exactly to MNSPACE(n log n, f(n)).

Remark 7. This result does not need the two restrictions of knowing if an iden-
tifier is equal to 0 or if two identifiers are consecutive. The result holds when U
is chosen arbitrarily and when the restrictions over the rules are those in [13].

4 Passively Mobile Machines

We now show how previous constructions improve the results about the model
from [7]:

Definition 4 (PMSPACE(S(n))). [7] Let S be a function.
We write PMSPACE(S(n)) for the set of languages recognized by population

protocols where each agent has a Turing Machine with a tape of size at least S(n).

Theorem 7. PMSPACE(log log n) =
⋃

k≥1 SNSPACE(logkn).

Proof. 1.
⋃

k≥1 SNSPACE(logkn) ⊂ PMSPACE(log log n).
The idea of this proof is quite simple: Let M ∈ SNSPACE(logkn). We can

notice that SNSPACE(logkn) ⊂ MNSPACE(logkn, log n). From Theorem 5,
there is a population protocol computing M. We will simulate it. With space
O(log log n), we can simulate a population protocol with O(2log log n) = O(log n)
identifiers.

To create log n identifiers, we adapt a bit the counting protocol. At the begin-
ning, each agent has the identifier 0. When two agents with the same identifier
meet, if each one contains the integer 1, the first switch its integer to 0, the other
increases its own identifier.

We then just need to simulate the behavior of each agent as if they have
started with their created identifier. It requires a space of size |B|+(d+1) log log n
plus some constant, which is enough.

2. PMSPACE(log log n) ⊂
⋃

k≥1 SNSPACE(logkn): The proof is similar
to the one of Theorem 4. ��

With a similar proof, we can get the following result that gives a good clue
for the gap between log log n and log n:

Corollary 2. Let f such that f(n) = Ω(log log n) and f(n) = o(log n).
SNSPACE(2f(n)f(n)) ⊂ PMSPACE(f(n)) ⊂ SNSPACE(2f(n) log n).

138 O. Bournez et al.

5 Summary

From the model given by Guerraoui and Ruppert [13], we introduced a hierarchy
according to the number of accessible identifiers in the population:

– With a constant number of the identifiers, the existence of identifiers is useless.
– With Θ(logr n) identifiers, homonym population protocols can exactly recog-

nize any language in
⋃

k∈N
MNSPACE

(
logk n

)
.

– Homonym population protocols with Θ(nε) identifiers have same power that
homonym population protocols with n identifiers.

It remains an open question: is the knowledge of consecutive values of two
identifiers crucial or not? Our guess is that it is essential to be able to compute
for sure the size of the population. Protocols without this assumption have not
been found yet.

Chatzigiannakis et al. [7] started a hierarchy over protocols depending on how
much space of computation each agent has. The paper left an open question on
the gap between o(log log n) and O(log n). We provided an answer, stating that
with Θ(log log n) space, we compute exactly

⋃
k∈N

SNSPACE
(
logk n

)
.

It remains the gap between O(log log n) and O(log n), where we currently
just have the following bounds:

SNSPACE(2f(n)f(n)) ⊂ PMSPACE(f(n)) ⊂ SNSPACE(2f(n) log n).

References

1. Angluin, D., Aspnes, J., Eisenstat, D., Ruppert, E.: The computational power of
population protocols. Distrib. Comput. 20(4), 279–304 (2007)

2. Angluin, D., Aspnes, J., Chan, M., Fischer, M.J., Jiang, H., Peralta, R.: Sta-
bly computable properties of network graphs. In: Prasanna, V.K., Iyengar, S.S.,
Spirakis, P.G., Welsh, M. (eds.) DCOSS 2005. LNCS, vol. 3560, pp. 63–74. Springer,
Heidelberg (2005)

3. Angluin, D., Aspnes, J., Diamadi, Z., Fischer, M.J., Peralta, R.: Computation in
networks of passively mobile finite-state sensors. In: Twenty-Third ACM Sympo-
sium on Principles of Distributed Computing, pp. 290–299. ACM Press (2004)

4. Angluin, D., Aspnes, J., Fischer, M.J., Jiang, H.: Self-stabilizing population pro-
tocols. In: Anderson, J.H., Prencipe, G., Wattenhofer, R. (eds.) OPODIS 2005.
LNCS, vol. 3974, pp. 103–117. Springer, Heidelberg (2006)

5. Arévalo, S., Fernández Anta, A., Imbs, D., Jiménez, E., Raynal, M.: Failure detec-
tors in homonymous distributed systems (with an application to consensus). In:
2012 IEEE 32nd International Conference on Distributed Computing Systems
(ICDCS), pp. 275–284 (2012)

6. Aspnes, J., Ruppert, E.: An introduction to population protocols. In: Bulletin of
the EATCS, vol. 93, pp. 106–125 (2007)

7. Chatzigiannakis, I., Michail, O., Nikolaou, S., Pavlogiannis, A., Spirakis, P.G.: Pas-
sively mobile communicating machines that use restricted space. Theoret. Comput.
Sci. 412(46), 6469–6483 (2011). please check and confirm inserted volume number
and page range is correct in Ref. [7]

Homonym Population Protocols 139

8. Chatzigiannakis, I., Michail, O., Spirakis, P.G.: Algorithmic verification of popu-
lation protocols. In: Dolev, S., Cobb, J., Fischer, M., Yung, M. (eds.) SSS 2010.
LNCS, vol. 6366, pp. 221–235. Springer, Heidelberg (2010)

9. Delporte-Gallet, C., Fauconnier, H., Guerraoui, R., Kermarrec, A., Ruppert,
E., Tran-The, H.: Byzantine agreement with homonyms. In: 30th Annual ACM
SIGACT-SIGOPS Symposium on Principles of Distributed Computing, PODC
2011, pp. 21–30 (2011)

10. Delporte-Gallet, C., Fauconnier, H., Guerraoui, R., Ruppert, E.: When birds die:
making population protocols fault-tolerant. In: Gibbons, P.B., Abdelzaher, T.,
Aspnes, J., Rao, R. (eds.) DCOSS 2006. LNCS, vol. 4026, pp. 51–66. Springer,
Heidelberg (2006)

11. Delporte-Gallet, C., Fauconnier, H., Tran-The, H.: Homonyms with forgeable iden-
tifiers. In: Even, G., Halldórsson, M.M. (eds.) SIROCCO 2012. LNCS, vol. 7355,
pp. 171–182. Springer, Heidelberg (2012)

12. Di Luna, G.A., Baldoni, R., Bonomi, S., Chatzigiannakis, I.: Counting the number
of homonyms in dynamic networks. In: Higashino, T., Katayama, Y., Masuzawa,
T., Potop-Butucaru, M., Yamashita, M. (eds.) SSS 2013. LNCS, vol. 8255, pp.
311–325. Springer, Heidelberg (2013)

13. Guerraoui, R., Ruppert, E.: Names trump malice: tiny mobile agents can tolerate
byzantine failures. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikolet-
seas, S., Thomas, W. (eds.) ICALP 2009, Part II. LNCS, vol. 5556, pp. 484–495.
Springer, Heidelberg (2009)

14. Immerman, N.: Nondeterministic space is closed under complementation. In: Struc-
ture in Complexity Theory Conference, Third Annual, pp. 112–115. IEEE (1988)

15. Schönhage, A.: Storage modification machines. SIAM J. Comput. 9(3), 490–508
(1980)

16. Szelepcsényi, R.: The method of forced enumeration for nondeterministic
automata. Acta Inf. 26(3), 279–284 (1988)

Aspect-Based Realization of Non-functional
Concerns in Business Processes

Anis Charfi(B) and Haolin Zhi

SAP SE, Bleichstrasse 8, 64283 Darmstadt, Germany
{anis.charfi,haolin.zhi}@sap.com

Abstract. While functional concerns are well supported in current busi-
ness process modeling languages such as the Business Process Model-
ing Notation (BPMN), many important non-functional concerns such as
security and quality of service (QoS) cannot be expressed. Some works
proposed specific extensions to business process modeling languages to
express certain non-functional concerns. However, most related works
focus only on expressing non-functional properties in business process
models without considering their realization on the implementation level.
In this paper, we present a generic approach to non-functional concerns
in business processes and bridge the gap between process modeling and
process implementation by generating AO4BPEL aspects that enforce
and realize the non-functional properties specified in the business process
model. The functional part of the processes is realized by generating
executable WS-BPEL code out of BPMN process models. The approach
is not specific to a particular non-functional concern and the usage of
aspects ensures a modular implementation of the business process.

Keywords: Business process modeling · Non-functional concerns ·
Aspects · BPMN · AO4BPEL · WS-BPEL

1 Introduction

Current business process modeling languages such as the Business Process Mod-
eling Notation (BPMN) [9] provide good support for expressing the functional
concerns in a business process. However, they do not allow expressing important
non-functional concerns such as security and quality of service. To address this
limitation, several works [7,11,13,18] proposed extensions to business process
modeling languages in order to express certain non-functional concerns. How-
ever, these proposals are generally specific to a particular non-functional con-
cern. Further, they mostly focus only on the modeling level and do not consider
the realization of non-functional properties on the implementation level. In most
state of the art approaches the designers enrich the business process model with
additional information about non-functional properties by means of the above
mentioned extensions. Then, the enriched process models are taken as a refer-
ence by the technical developers implementing the business process. The manual

c© Springer International Publishing Switzerland 2015
A. Bouajjani and H. Fauconnier (Eds.): NETYS 2015, LNCS 9466, pp. 140–154, 2015.
DOI: 10.1007/978-3-319-26850-7 10

Aspect-Based Realization of Non-functional Concerns in Business Processes 141

realization of the non-functional properties can result in a different implementa-
tion from what the designers specified. Furthermore, the lack of an appropriate
approach and of tool support for the realization of non-functional properties
makes their implementation difficult and error-prone.

In a previous work of the first author of this paper [16] a generic meta-model
and an approach for expressing non-functional properties in business process
models were presented. In the current paper we focus on the realization of non-
functional concerns in business processes using a model-driven and generative
approach. In particular we generate executable processes in WS-BPEL [8] for
the functional part of the business process model and AO4BPEL [2] aspects for
the non-functional concerns.

Our contributions in this paper are many-fold. First, we define a map-
ping from non-functional properties in BPMN business processes to AO4BPEL
aspects. Second, we present code generators supporting the realization of the
BPMN business processes including a WS-BPEL generator and an aspect gen-
erator. Third, we extend the approach presented in [16] into a holistic approach
supporting both the specification and realization of non-functional concerns in
business processes. Fourth, we present an integrated Eclipse-based tool set sup-
porting our approach and model-driven development of service based business
processes.

The remainder of this paper is organized as follows. Section 2 presents a moti-
vating example. Section 3 presents the proposed approach and gives examples
for illustration. Section 4 presents the toolset supporting our approach. Section 5
reports on related work and Sect. 6 concludes the paper.

2 Motivating Example

In this section we introduce a simple business process for travel booking in a
travel agency to illustrate the modeling of functional and non-functional concerns
in business processes. This process is shown in Fig. 1 using the BPMN notation.
To keep this example simple and clear only the key elements are specified and
error handling is not shown.

This process starts when a customer sends a travel booking request to the
travel agency. The request contains the necessary data for the booking such
as the dates and the destination. After receiving this request, a flight booking
activity and a hotel booking activity are started in parallel. The flight booking
activity calls a web service of airline companies to find a flight that satisfies the
customer criteria. At the same time, the hotel booking activity is started, which
calls a service for finding the accommodation. The created offer is then sent to
the customer for review and approval. Once the customer accepts the offer he
is asked to enter the credit card details for payment and a bank web service is
called to charge the credit card. Once the payment is completed successfully a
confirmation mail is sent to the customer with all booking details.

There are several non-functional requirements in this simple business process.
First, the credit card information has to be handled confidentially to protect it

142 A. Charfi and H. Zhi

Fig. 1. Travel booking process

when the respective messages are sent to the bank over the Internet. Second, once
the customer accepts the offer he should not be able to deny having done this.
Third, since user experience is nowadays a key factor in online transactions the
response time of the booking service should be acceptable. The travel agency is
interested in monitoring the total execution time of the flight and hotel booking
activities to ensure a good quality of service (QoS). If that execution time exceeds
10 seconds an alert message has to be raised and the current process instance
information needs to be logged down.

Existing process modeling languages lack appropriate means for expressing
non-functional concerns such as the ones mentioned above. Several works [11,13,
18] defined extensions of BPMN to express particular non-functional concerns.
With respect to the modeling level, most extensions modify the BPMN meta-
model in a heavy-weight manner. Furthermore, the extensions are not based on
a common meta-model and therefore they cannot be composed with each other.
This means that these extensions cannot be used together in a same business
process model. In addition, most existing extensions are specific to a particular
concern and are not directly applicable to other non-functional concerns. With
respect to process implementation, we observe that most existing works focus
on the modeling level (i.e., on specifying non-functional requirements) without
addressing the realization of those requirements.

3 Proposed Solution

To address the problems explained in the previous sections we propose a model-
driven and generative approach for specifying and realizing non-functional prop-
erties in business process models. Figure 2 gives a high-level overview of that
approach. On the modeling level our approach expects business process models
in BPMN including a specification of non-functional properties based on the
profile concept we presented in [16]. For bridging the gap between modeling and
execution of business processes and at the same time supporting non-functional
concerns we defined two mappings. The first mapping is for the non-functional
part and it maps non-functional requirements to aspect code in AO4BPEL [2,6].
The second mapping is for the functional part and it maps the BPMN process
to a WS-BPEL process. Based on these two mappings we implemented two code
generators as Eclipse plugins using the Xpand1 framework for Model-to-Text
1 http://www.eclipse.org/modeling/m2t/?project=xpand.

http://www.eclipse.org/modeling/m2t/?project=xpand

Aspect-Based Realization of Non-functional Concerns in Business Processes 143

Fig. 2. Approach in a nutshell

transformation. The generated process and aspect code can then be deployed
on the AO4BPEL 2.0 Server2, which is an aspect-oriented extension of the
Apache ODE Server3. This engine supports the dynamic weaving of aspects
and processes and thus executes the WS-BPEL process while realizing the non-
functional requirements. The proposed approach and the respective tool set allow
a modular implementation of service based business processes.

3.1 Expressing Non-functional Requirements

To express non-functional concerns in BPMN business process models we used
non-functional profiles [16], which were proposed in a previous work of the first
author of this paper in analogy to the profile concept of UML.

Non-functional Profiles. The meta-model for non-functional profiles is shown
in Fig. 3. It defines three main concepts:

– NfProfile represents a group of non-functional properties related to one con-
cern, such as security and quality of service (QoS).

2 https://github.com/alook/ao4bpel2.
3 http://ode.apache.org.

https://github.com/alook/ao4bpel2
http://ode.apache.org

144 A. Charfi and H. Zhi

– NfProperty represents a specific non-functional property that belongs to a
non-functional profile (NfProfile) such as authentication and encryption. Each
property can have an icon associated with it.

– Attribute represents a property attribute and it has a name and a value.
An NfProperty has zero or many attributes that define parameters which are
needed for its realization. For example, the NfProperty Encryption may have
the two attributes algorithm and key, which are necessary for performing the
encryption.

Fig. 3. Meta-model for non-functional profiles

Based on this meta-model, non-functional profiles can be defined using an
EMF based editor that we developed. Then the profiles can be imported in an
extended version of the Eclipse STP BPMN Editor4, which provides a graphical
annotation for each property in the profile and which allows editing the prop-
erty attributes using property sheets. The annotations expressing non-functional
properties can be then connected with BPMN elements using associations. In this
approach the meta-model of BPMN is unchanged as we only define an extension
of the artifact text annotation according to BPMN extensibility guidelines.

As examples, we show two simple profiles for expressing quality of service
(QoS) and security. The non-functional properties in each profile and their
attributes are shown respectively in Tables 1 and 2.

Associating Annotations to Process Elements and Execution Order.
The annotations, which represent the non functional properties, can be associ-
ated with a single activity or with a group of activities as shown in Fig. 4. In that
figure the property NF-Property1 is associated with the activities Activity1 and
Activity2, which means that this property applies individually to each of these
two activities. The property NF-Property2 is associated with a group which con-
tains the three activities Activity1, Activity2 and Activity3, which means that
the property NF-Property2 applies around this group of activities.
4 http://wiki.eclipse.org/STP/BPMN Component/STP BPMN Presentation.

http://wiki.eclipse.org/STP/BPMN_Component/STP_BPMN_Presentation

Aspect-Based Realization of Non-functional Concerns in Business Processes 145

Table 1. Monitoring profile

Table 2. Security profile

As it is possible to associate several non-functional properties with the same
BPMN element we need to specify the order of those properties. For that pur-
pose, we use numbers on the associations of non-functional properties to process

146 A. Charfi and H. Zhi

Fig. 4. Association of non-functional properties to BPMN elements

elements. Non-functional properties with lower numbers on their associations
will be executed before the ones with higher numbers.

Revisiting the Motivation Example. In Fig. 5 we use non-functional prop-
erties from the QoS and security profiles to express some non-functional require-
ments of the travel agency business process. We associate the encryption anno-
tation to the payment activity to express that the respective data should be
encrypted according to WS-Security. We also associate the execution time anno-
tation to the group containing the activities book flight and book hotel to express
that both activities should be executed in less than 10 s.

Fig. 5. Travel booking process with non-functional annotations

3.2 Realizing the Non-functional Properties

As shown in Fig. 2, the business process model, which is annotated with non-
functional properties, is realized by generating an executable process in WS-
BPEL [8] for the functional part and generating AO4BPEL aspects [2] for the

Aspect-Based Realization of Non-functional Concerns in Business Processes 147

non-functional part. The choice of this aspect-based realization ensures a mod-
ular implementation, in which the functional and non-functional parts are sepa-
rated. In this way, understanding and maintaining the WS-BPEL code and the
aspect code will be easier. For example, the security expert would just need to
focus on the security aspect and does not need to understand aspects implement-
ing other concerns. Furthermore, when the implementation of a non-functional
property changes, for example, when an encryption module is upgraded or
replaced, then only the respective aspect needs to be regenerated and redeployed.
In all these cases the core business process in WS-BPEL remains unchanged.

AO4BPEL [2] is an aspect-oriented extension of WS-BPEL. Like WS-BPEL
this extension is also based on XML, i.e., aspects are XML documents. An aspect
can contain one or more pointcut and advice elements. Pointcuts are queries
that select one or more join points, i.e., activities defined in one or several WS-
BPEL processes. AO4BPEL supports XPath and recently Prolog also as pointcut
languages. The advice language of AO4BPEL is standard WS-BPEL with some
extensions such as the proceed activity and constructs for accessing the context
of the join point activity. The advice activity can be executed before, after,
or instead of the activities selected by the respective pointcut. To execute the
generated WS-BPEL process and AO4BPEL aspects we use the orchestration
engine AO4BPEL 2.0 Server [6]. This engine is an aspect-aware extension of the
Apache ODE Server, which can weave aspects and processes at runtime.

For the realization of the business process including non-functional prop-
erties we defined two mappings: one from BPMN to WS-BPEL and one from
non-functional properties to AO4BPEL. For each mapping we implemented a
corresponding Xpand-based code generator. Regarding the mapping of BPMN
to WS-BPEL we observe that various works [10,17] addressed that topic from
a conceptual perspective by proposing mapping algorithms. However, the exist-
ing mappings are based on older versions of BPMN and WS-BPEL and there
are no available code generators supporting those mappings. The only available
open source tool is BPMN2BPEL5, which is very limited in its scope and also
based on the old BPMN 1.0 version. This tool is not developed anymore since
five years. Due to space limitations we focus in this paper on the mapping of
non-functional properties to AO4BPEL aspects.

Mapping Non-functional Properties to Aspects. For each non-functional
property in a profile a corresponding AO4BPEL aspect template has to be
defined by the expert in a given non-functional domain. Each aspect template
is responsible for realizing a specific property and consists of two parts: a static
part and a dynamic part. The static part is common among all aspects that
enforce the same type of property. The dynamic part is the variable part of
the aspect, which contains the missing information in the aspect template. It
depends on the concrete association of the non-functional property to an ele-
ment in the business process model and also on the concrete attribute values.

5 http://code.google.com/p/bpmn2bpel.

http://code.google.com/p/bpmn2bpel

148 A. Charfi and H. Zhi

The mapping of a non-functional property to an AO4BPEL aspect consists of
two steps:

Fig. 6. Cases for pointcut mapping

1. The association between the non-functional property modeled as annotation
and the BPMN process elements is transformed to an XPath pointcut expres-
sion in the respective AO4BPEL aspect. Figure 6 depicts different cases of
mapping from the association in BPMN to the corresponding pointcut expres-
sion in AO4BPEL. The non-functional property in the business process model
can be associated with a single activity or with a group of activities. In addi-
tion, each non-functional property can have one or multiple associations with
elements of the process model. As a result, there are three different cases to
be distinguished:
– Association with a single activity: The association with an activity

in BPMN is transformed into an XPath expression selecting the corre-
sponding WS-BPEL activity by its name.

– Association with a group: The group of activities in BPMN is trans-
formed into the structured activity sequence in WS-BPEL. The associa-
tion with this group in BPMN is transformed into an XPath expression
selecting the corresponding sequence in WS-BPEL by its name.

– Association with multiple elements: The association with multiple
elements is translated to multiple XPath expressions that are later com-
bined with the logical operator or.

2. All attribute values of the non-functional property are copied to the corre-
sponding variables and their parts in the respective AO4BPEL aspect. These
variables are then used as container of input data for service calls to middle-
ware web services that enforce the different non-functional properties.

Aspect-Based Realization of Non-functional Concerns in Business Processes 149

Mapping Example. Figure 7 illustrates the mapping of a non-functional prop-
erty to an AO4BPEL aspect using Encryption as an example. The property
encryption is associated with the Payment activity of the travel agency process.
In this figure the dynamic part of the aspect is denoted in boldface. The gener-
ation of the AO4BPEL aspect in this example works as follows:

Fig. 7. Mapping example

1. The association between the non-functional property Encryption and
the activity Payment is transformed to the XPath pointcut expression
//invoke[@name=payment], which selects the invoke activity corresponding
to the payment activity in the WS-BPEL process by its name.

2. The attribute execution order of the pointcut element is set to the value 1 as
specified in the association.

3. The values of the attributes symmetricEncAlgorithm, keyEnc, transportKeyId
and keyIdentifierType of the non-functional property are copied to the corre-
sponding variables and parts in the AO4BPEL aspect.

4 Implementation and Tools

We provide an integrated Eclipse-based tool set that supports our proposed
approach. This tool set includes:

– an EMF-based editor for creating and editing the non-functional profiles as
shown in Fig. 8. In that figure this editor is used to add a new attribute to
the encryption property of the security profile.

150 A. Charfi and H. Zhi

Fig. 8. Screenshot of the editor for non-functional profiles

Fig. 9. Palette of the enhanced BPMN editor after profile import

– an enhanced BPMN editor that extends the STP BPMN editor and can import
the non-functional profiles. Furthermore, this editor provides an additional
group in the palette for each imported non-functional profile. In Fig. 9 we
see the new palette groups after importing the QoS and security profiles.
The editor allows associating elements of the BPMN process models with the
graphical annotations corresponding to the non-functional properties. The
attributes of each property can be edited using the property sheet as shown
in Fig. 10.

– two Xpand-based code generators which respectively output WS-BPEL and
AO4BPEL code. These generators are integrated with the enhanced BPMN
editor and can be started by selecting a diagram and right-clicking the respec-
tive menu entries as shown in Fig. 11.

5 Related Work

This section presents related work on modeling and realizing non-functional
concerns in business processes.

Aspect-Based Realization of Non-functional Concerns in Business Processes 151

Fig. 10. Editing the attribute values of the encryption property

Fig. 11. Starting the code generators from the modeling environment

5.1 Modeling Non-functional Concerns in Business Processes

The work presented in [12] proposes a model-driven approach to specify security
requirements in BPMN business processes. In that work the authors extend the
BPMN meta-model to express requirements such as integrity, privacy, and non-
repudiation. A similar approach is taken in [19], which extends BPMN to specify
access control constraints in business process models such as role-based access
control and separation of duties. Both works [12,19] extend the BPMN meta-
model in a heavy-weight manner, which makes the resulting models no longer
compliant with the BPMN standard. In contrast to those, our proposal is based
on the extensibility mechanisms of BPMN. Furthermore, both works are specific
to security and do not support other non-functional concerns.

SecureBPMN [1] is another work that extends BPMN to express access con-
trol requirements including policies such as separation of duty and binding of
duty. This work also shares the limitations of the other two proposals mentioned
above. However, it goes one step beyond the modeling phase and addresses policy
enforcement by generating XACML policies, which will be enforced at runtime
by policy enforcement points (PEP). In [15] an approach called Sec-MoSC is
presented to address security requirements in web service composition at differ-
ent abstraction levels such as business process specification, composite service
design and development, and business process execution. That approach covers

152 A. Charfi and H. Zhi

both the specification and realization of non-functional concerns but it is not
modular like our approach which is based on aspects.

Another group of related work proposed BPMN extensions to express tem-
poral properties such as [5,14]. The authors of [5] presented an extension to
BPMN called Time-BPMN, which allows expressing temporal properties such
as soon as possible (ASAP), as late as possible (ALAP), start no earlier than
(SNET), finish no earlier than (FNET), etc. A similar work is presented in [14],
which defines BPMN extensions to express time, cost and reliability properties.
Both works are limited to the modeling level and do no address the realization
of the specified properties. In addition, our approach to express non-functional
properties is more generic as it works not only for temporal properties but also
for other properties such as security.

5.2 Realizing Non-functional Concerns in Business Processes

Other works such as [3,4] focused on the realization of non-functional require-
ments such as security within WS-BPEL business processes. In [4] an app-
roach is presented for the specification of security policies in WS-BPEL busi-
ness processes. This approach is based on the analysis of well-defined security
patterns to assess the compliance of the WS-BPEL process with certain types
of security policies such as access control policies. This work is limited to the
analysis of the business process and no policy enforcement is supported.

In [3], the authors use AO4BPEL aspects to realize non-functional con-
cerns in WS-BPEL such as security, reliable messaging, and transactions. In
that work, a declarative XML-based deployment descriptor was used to express
non-functional requirements and aspects are generated from that deployment
descriptor. In all three works the modeling phase is not considered and the focus
in only on realizing the non-functional requirements at the technical implemen-
tation level.

In [20] the authors present a similar work to the one presented in the current
paper. However the mappings and the generators presented in that work target
Java for the functional part of the business process and AspectJ for the non-
functional parts. Both works nicely complement each other by providing two
alternative implementation technology for business processes while covering non-
functional concerns.

6 Conclusion

In this paper, we presented a generic and holistic model-driven approach for the
specification and realization of non-functional concerns in business processes.
The approach is not specific to a particular non-functional concern and we
showed its instantiation in this paper using security and QoS as example. It
is holistic as it covers both functional and non-functional concerns and it also
covers the modeling and the realization levels. Through its generative nature
our approach bridges the gap between the modeling and the implementation

Aspect-Based Realization of Non-functional Concerns in Business Processes 153

of business processes while covering functional and non-functional aspects. Fur-
thermore, our approach is modular as the code that is responsible for enforcing
non-functional properties is separated from the code that realizes the functional
part of the business process. We also presented an integrated Eclipse-based tool
set that supports our approach including an editor for non-functional profiles,
an extended BPMN editor supporting the expression of non-functional concerns,
and two code generators for process and aspect generation.

Acknowledgments. This work was performed in the context of the Software-Cluster
projects EMERGENT and SINNODIUM (www.software-cluster.org). It was partially
funded by the German Federal Ministry of Education and Research (BMBF) under
grant no. “01IC10S01” and “01IC12S01”. The authors assume responsibility for the
content.

References

1. Brucker, A.D., Hang, I., Lückemeyer, G., Ruparel, R.: SecureBPMN: modeling and
enforcing access control requirements in business processes. In: Proceedings of the
17th ACM Symposium on Access Control Models and Technologies (SACMAT),
pp. 123–126. ACM, June 2012

2. Charfi, A.: Aspect-Oriented Workflow Management. VDM Verlag, Saarbrücken
(2008)

3. Charfi, A., Schmeling, B., Heizenreder, A., Mezini M.: Reliable, secure, and trans-
acted web service compositions with AO4BPEL. In: 4th European Conference on
Web Services (ECOWS), pp. 23–34, December 2006

4. Fischer, K.P., Bleimann, U., Fuhrmann, W., Furnell, S.M.: Security policy enforce-
ment in BPEL-defined collaborative business processes. In: Proceedings of the 23rd
International Conference on Data Engineering (ICDE), pp. 685–694. IEEE, April
2007

5. Gagne, D., Trudel, A.: Time-BPMN. In: Proceedings of the 11th IEEE Interna-
tional Conference on Commerce and Enterprise Computing (CEC), pp. 361–367.
IEEE, July 2009

6. Look, A.: Expressive scoping and pointcut mechanisms for aspect-oriented web
service composition. Vorgelegt Diplomarbeit von Alexander Look, Technische Uni-
versitaet Darmstadt, September 2011

7. Menzel, M., Thomas, I., Meinel, C.: Security requirements specification in service-
oriented business process management. In: International Conference on Availabil-
ity, Reliability and Security (ARES), pp. 41–48. IEEE, March 2009

8. OASIS: Web Services Business Process Execution Language Version 2.0, April
2007. http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.pdf

9. OMG: Business Process Model and Notation (BPMN) OASIS Standard 2.0, January
2011. http://www.omg.org/spec/BPMN/2.0/

10. Ouvans, C., Dumas, M., Ter Hofstede, A.H.M., Van Der Aalst, W.M.P.: From
BPMN Process models to BPEL web services. In: Proceedings of the International
Conference on Web Services (ICWS), pp. 285–292. IEEE (2006)

11. Paja, E., Giorgini, P., Paul, S., Meland, P.H.: Security requirements engineering
for secure business processes. In: Niedrite, L., Strazdina, R., Wangler, B. (eds.)
BIR Workshops 2011. LNBIP, vol. 106, pp. 77–89. Springer, Heidelberg (2012)

www.software-cluster.org
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.pdf
http://www.omg.org/spec/BPMN/2.0/

154 A. Charfi and H. Zhi

12. Rodŕıguez, A., Fernández-Medina, E., Piattini, M.: A BPMN extension for the
modeling of security requirements in business processes. IEICE Trans. Inf. Syst.
90(4), 745–752 (2007)

13. Rodŕıguez, A., Fernández-Medina, E., Piattini, M.: A BPMN extension for the
modeling of security requirements in business processes. IEICE - Trans. Inf. Syst.
E90–D(4), 745–752 (2007)

14. Saeedi, K., Zhao, L., Sampaio, P.R.F.: Extending BPMN for supporting customer-
facing service quality requirements. In: Proceedings of the 8th IEEE International
Conference on Web Services (ICWS), pp. 616–623. IEEE, July 2010

15. Souza, A.R.R., Silva, B.L.B., Lins, F.A.A., Damasceno, J.C., Rosa, N.S., Maciel,
P.R.M., Medeiros, R.W.A., Stephenson, B., Motahari-Nezhad, H.R., Li, J.,
Northfleet, C.: Incorporating security requirements into service composition: from
modelling to execution. In: Baresi, L., Chi, C.-H., Suzuki, J. (eds.) ICSOC-
ServiceWave 2009. LNCS, vol. 5900, pp. 373–388. Springer, Heidelberg (2009)

16. Turki, S.H., Bellaaj, F., Charfi, A., Bouaziz, R.: Modeling security requirements in
service based business processes. In: Bider, I., Halpin, T., Krogstie, J., Nurcan, S.,
Proper, E., Schmidt, R., Soffer, P., Wrycza, S. (eds.) EMMSAD 2012 and BPMDS
2012. LNBIP, vol. 113, pp. 76–90. Springer, Heidelberg (2012)

17. Weidlich, M., Decker, G., Großkopf, A., Weske, M.: BPEL to BPMN: the myth of
a straight-forward mapping. In: Tari, Z., Meersman, R. (eds.) OTM 2008, Part I.
LNCS, vol. 5331, pp. 265–282. Springer, Heidelberg (2008)

18. Wolter, C., Menzel, M., Schaad, A., Miseldine, P., Meinel, C.: Model-driven busi-
ness process security requirement specification. J. Syst. Archit. 55(4), 211–223
(2009)

19. Wolter, C., Schaad, A.: Modeling of task-based authorization constraints in BPMN.
In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714, pp.
64–79. Springer, Heidelberg (2007)

20. Yahya, I., Turki, S.H., Charfi, A., Kallel, S., Bouaziz, R.: An aspect-oriented app-
roach to enforce security properties in business processes. In: Ghose, A., Zhu, H.,
Yu, Q., Delis, A., Sheng, Q.Z., Perrin, O., Wang, J., Wang, Y. (eds.) ICSOC 2012.
LNCS, vol. 7759, pp. 344–355. Springer, Heidelberg (2013)

Verifying Concurrent Data Structures Using
Data-Expansion

Tong Che(B)

École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
tong.che@epfl.ch

Abstract. We present the first thread modular proof of a concurrent
binary search tree. This proof tackles the problem of reasoning about
complicated thread interferences using thread modular invariants. The
key tool in this proof is the Data-Expansion Lemma, a novel lemma that
allows us to reason about search operations in any state. We highlight
the power of this lemma when combined with our generalized version
of the Hindsight Lemma, which enables us to prove linearizability by
reasoning about the temporal properties of the operations instead of
reasoning about the linearization points directly.

The Data-Expansion Lemma provides an interesting solution to the
proof blowup problem when reasoning about concurrent data structures
by separating the verification of effectful and effectless operations. We
show that our proof methodology is applicable to several algorithms and
argue that many advanced concurrent data structures can be easy to
verify using thread-modular arguments.

1 Introduction

Highly concurrent algorithms are extremely hard to design and verify. On one
hand, the vast number of interference possibilities makes formal proof imprac-
tical and human proof error-prone. On the other hand, thread modular proofs
are usually impossible dreams, even for very simple algorithms. Hence, the veri-
fication of concurrent algorithms is a major research challenge and an important
step to boost the reliability of concurrent programming.

Sophisticated concurrent objects, such as concurrent binary search trees, are
becoming popular and are promising to replace traditional search structures, for
example, singly linked lists and skip lists. However, because of their complexity,
many of these algorithms are published without rigorous mathematical proofs,
not to mention formal ones. Meanwhile, the verification community spends most
of its efforts on relatively simple data structures, such as linked lists and stacks.

This paper presents a simple proof strategy for the linearizability of advanced
concurrent algorithms, which is purely thread modular. Our proof strategy covers
a number of algorithms, but in this paper, we focus on one simple example for
concreteness — an external binary tree. This algorithm is simple but powerful,
because many concurrent algorithms [5,11] use similar mechanisms.

c© Springer International Publishing Switzerland 2015
A. Bouajjani and H. Fauconnier (Eds.): NETYS 2015, LNCS 9466, pp. 155–169, 2015.
DOI: 10.1007/978-3-319-26850-7 11

156 T. Che

For the verification of highly complicated advanced algorithms, thread mod-
ular proofs which allow us to reason about each thread separately seem to
be the only feasible solution. Because of their complexity, the linearization
points of such algorithms are in many cases non-fixed. In traditional methods
[7,13], reasoning about such linearization points was done by tracking the set of
pending invocations and auxiliary states, which lead to non-local proofs. In such
proofs, one has to construct the set of linearization points before reasoning about
the data abstraction. However, these methods are not adapted to advanced data
structures, because the behavior of the pending calls are highly complicated, and
it is hard, if not impossible, to avoid proof blowup.

A first purely thread modular proof of a simple linked list algorithm with non-
fixed linearization point was presented in [12]. It was shown that for linked lists,
reasoning about invariants of tiny steps of every thread can lead to important
mathematical conclusions, such as the Hindsight Lemma [12], and finally to
proofs. In this work, our main purpose is to argue that this idea is actually widely
applicable to many advanced data structures, some of which were previously
considered too complicated for rigorous or formal proofs.

Our proof strategy proceeds as follows. First, we identify a set of thread local
invariants preserved by every computation step of each thread. Then we prove
that a small subset of these invariants implies our Generalized Hindsight Lemma
as well as a new lemma: the Data-Expansion Lemma. Each lemma captures
a specific aspect of the reason why the tree traversal works in both cases no
matter whether the traversal encounters its target or not. At last, we prove the
operations are linearizable using abstraction functions. The two lemmas give us
direct explanations of the non-fixed linearization points, avoiding thereby the
use of extra auxiliary states.

The Data-Expansion Lemma is the main technical contribution of this work.
It allows us to infer the non-existence of a key in some past state when the tree
traversal failed to encounter it without explicit construction of the linearization
points. Combined with our generalized version of the Hindsight Lemma, Our
Data-Expansion Lemma provides powerful tools to reason about operations with
non-fixed linearization points in advanced concurrent data structures.

The rest of this paper is organized as follows: In Sect. 2, we briefly explain
our verification strategy. In Sect. 3, we present the verification target, a highly
concurrent binary search tree algorithm. In Sect. 4, we introduce our compu-
tation models. In Sect. 5, we present our verification. In Sect. 6, we prove the
generalized version of Hindsight Lemma, and discuss its applications. Due to
space limitations, we put the extension to other algorithms and formal proofs in
the technical report.

2 Verification Strategy

We describe the idea underlying our verification strategy intuitively, using the
example of a concurrent set algorithm implemented with an optimistic external
binary search tree. An external binary search tree is a variant of ordinary BST.

Verifying Concurrent Data Structures Using Data-Expansion 157

Its keys are stored only in leaf nodes, and the internal nodes are used for routing.
We further assume that for all nodes u, v, w, where u is an ancestor of v, w and
v/w is located in the left/right subtree of u, then we have v.key ≤ u.key < w.key.

Fig. 1. Concurrent BST

Heap Representation. The shared data of the threads underlying the set
algorithm is an external binary search tree composed of dynamic allocated nodes
of two types, leaf and internal, which we refer to as heap. Each internal node
contains three fields, two pointer fields child(1), child(2) pointing to its left
and right children, and an integer field key storing the key of this node. Each
leaf node contains only an integer field key. The internal node Root contains
key −∞. For each state, some portion of the heap is reachable by following a
sequence of child pointers from Root. We refer to this portion of the heap as
reachable heap.

We view a computation of the algorithm as a sequence of shared program
states. In each state, each leaf node in the reachable heap corresponds to a key
in the set. The unreachable portion of the heap contains removed nodes.

Set Operations. There are three set operations, add, remove, and contains.
Intuitively, they correspond to operations that add, remove or search for a key
in a sequential set algorithm. All these operations need to traverse the tree first.

Generalized Hindsight Lemma. We use the example of the contains oper-
ation for illustration. We assume several threads are running the set algorithm.
One of them is a contains operation, looking for key k in the binary search
tree. If the operation reaches a leaf node with key k, can the operation return
and claim that the set contains a node with key k at some linearization point?
We can separate two cases here:

158 T. Che

– The leaf node is currently on the tree.
– The leaf node is removed from the tree in current state and is not in the

reachable heap.

The first case is trivial. In the second case, the correctness (linearizability) of
the operation is guaranteed by the Generalized Hindsight Lemma. Basically, this
lemma claims the following:

If add and remove operations preserve certain simple thread modular invari-
ants when modifying the data structure, each pointer link through which the
contains operation has traversed was on the tree in some past state between
the invocation and return.

The above lemma is not enough for our verification. A question remains open:
if the operation reaches a leaf node with key k′ �= k, can the operation return
and claim that the set does not contain a node with key k at some linearization
point? This is the question addressed by the Data-Expansion Lemma.

Static Bound. Given a state σ in a computation of the algorithm, for any node
u on the tree, the range of keys which can be inserted to the subtree rooted at
u is determined by the keys of the ancestors of u. This range is called the static
bound at u in state σ. For example, in Fig. 1(a), the static bound of the internal
node with key 6 is (−∞, 8], because 6 is on the left side of 8.

Data-Expansion Lemma. The intuition behind our Data-Expansion Lemma
is that a tree traversal should not miss the target node on the tree in the presence
of thread interference. We assume a tree traversal targeting at key k arrives at
an internal node u at state σ. If the leaf node with key k is on the tree but not
on the subtree rooted at u, then the traversal would miss it.

Our Data-Expansion Lemma states that this will never happen if certain
thread modular invariants are preserved. Namely, key k lies in the static bound of
node u at state σ if some invariants are preserved by add and remove operations
when they modify the heap. For example, in Fig. 1(b), thread T1 is searching for
node with key 7, while T2 is concurrently removing the node with key 6. If T1

reaches the internal node with key 6 before the removal of T2, the static bound
of the node with key 7 is (6, 8], after the removal the static bound of the node
with key 7 is (−∞, 8]. So the search target 7 is always contained in the static
bound in the presence of thread interference.

Verification of Linearizability. Our verification is a combination of formal
proofs of the thread modular invariants and rigorous mathematical arguments,
such as the Data-Expansion Lemma and Generalized Hindsight Lemma.

We treat two kinds of operations separately. Effectful operations are opera-
tions which successfully modify the heap. Effectless operations are read-only to
the shared heap. Effectless operations do not have fixed linearization points, so
reasoning about their linearization points using auxiliary states in such a com-
plicated logic brings severe proof blowup. We will use our two lemmas to deal
with two aspects of effectless operations, no matter the traversal encounters its
target or not.

Verifying Concurrent Data Structures Using Data-Expansion 159

3 Verification Target

Our verification target is Fig. 2. The algorithm implements a concurrent dic-
tionary using binary search trees. It is essentially similar to [5], but is simpler,
since this algorithm excludes mechanisms in [5] to achieve lock-freedom using
only CAS. This algorithm can be viewed as a “template” implementation of
concurrent binary search trees. In fact, many tree algorithms use similar mecha-
nisms to achieve concurrency. The algorithm is optimistic and highly concurrent,
for its atomic sections access only a very small portion (three nodes) of the data
structure.

Fig. 2. Concurrent set algorithm

We make several remarks of the algorithm in Fig. 2. First, compareTo is a
method to compare keys. The method k1.compareTo(k2) returns 0 if two keys
are equal, or it returns -1 when k1 < k2, or 1 when k1 > k2. Second, the children
choosing function n.getChild(dir) for internal node n returns the left child if
dir == 0 or dir == −1, and the function returns the right child otherwise.

The most surprising part of this algorithm is the search operation. It traverses
the data structure without any synchronization or retry. Many recent tree-based
algorithms such as [2] share this property, and many of these algorithms can be
verified with our method [3].

160 T. Che

Dictionary Operations. The algorithm implements three common operations,
contains, add and remove. Their sequential specifications are listed in the table
below. They all use the helper operation search to locate the position where
the operations take place. add and remove operations modify the heap under the
protection of atomic sections. The atomic sections first check a set of validity
conditions and retry if they are violated. After these validity checks, atomic
sections perform the heap modification safely.

The sequential specification of the concurrent object can be viewed as a set
of operations which operate on an abstract set S of keys.

Precondition operation Postcondition

S = A contains(k) S′ = A ∧ ret = k ∈ A

S = A add(k) S′ = A ∪ {k} ∧ ret = k /∈ A

S = A remove(k) S′ = A \ {k} ∧ ret = k ∈ A

4 Basic Definitions

States and Transitions. Program states are combinations of local stores and
a shared heap. The ith local store si is a map from the local variables of thread
i to values. A shared heap h is a finite map from memory locations L to values.
The heap can be accessed by all threads. A memory state can be written as
σ = (s, h). In our specific setting, h = ha ∪ hb, where ha is the set of memory
locations which can be accessed by following heap pointer links starting from
Root, hb is the locations which cannot be accessed from Root.

Backbone Nodes/Links. For a state σ, a link u →σ v is a pair of nodes such
that for some i ∈ 1, 2, u.getChild(i) = v in state σ. A node/link is called a
backbone node/link in state σ, if and only if in state σ, there is a link path from
Root to the node/link. In any state σ, for two backbone nodes u, v we say that
u <σ v, if and only if there is a link path from v to u. The state may be omitted
if it can be inferred from the context. A node is called a removed node if it was
a backbone node in some past state, but not on the backbone in current state.

Computation Steps and Executions. For any thread t, we define a compu-
tation step s of t as a transition κ from state σ to σ′. We write s = σ →t

κ σ′,
and denote src(s) = σ, trg(s) = σ′. A computation step of thread t is either
an invocation of an operation, a return from an operation, or an atomic action
in an operation invoked by thread t. A heap computation step is defined as an
atomic action in an operation that modifies the shared heap.

An execution Π is an alternating sequence of states and computation steps
σ0, s0, σ1, s1, · · · , where σi = src(si) and σi+1 = trg(si). We define an execu-
tion trace of the execution by omiting all the computation step symbols, namely

Verifying Concurrent Data Structures Using Data-Expansion 161

σ0, σ1, · · · . An execution trace π can be simplified if we consider only heap com-
putation steps, these simplified execution traces are called heap execution traces,
they are simplifications of corresponding full execution traces.

Temporal Node Path, Temporal Backbone. In an execution trace σ0,
σ1, · · · σn, a sequence of consecutive pairs of different nodes (u0, u1), (u1, u2), · · ·
(um−1, um) is called a node path. It is called a temporal node path / backbone,
if there is a sequence of integers 0 ≤ i1 ≤ i2 · · · im ≤ n, such that (uk−1, uk) is
a link / backbone link in state σik

for each 1 ≤ k ≤ m. Sometimes, we also call
the sequence u0, u1, · · · um a temporal node path / backbone going through the
subsequence Ts = {σi1 , · · · σim

}.

Bounds. For every state σ = (s, h), from the state invariants in Fig. 1, we know
that the reachable heap h0 is actually a binary search tree. For every unmarked
node u in heap h0, there is a unique link path (u0 = Root, u1, u2 · · ·um = u)
from Root. We associate to u a real interval Sσ(u) = (a, b], where a =
max{ui.key|ui.key < k, i ∈ [1, k]}, and b = min{ui.key|ui.key ≥ k, i ∈ [1,m]}.
We refer to this interval as Static Bound of u at state σ.

Given a temporal node path P = (v0, · · · , vn) going through states Ts such
that v0 is Root, we define intervals Dl(P) = (c, d] for l ∈ {1, 2 · · · n}, where
c = max{vi.key|vi.key < k, i ∈ [1, l]}, and d = min{vi.key|vi.key ≥ k, i ∈ [1, l]}.
Dn(l) is called the Dynamic Search Bound of Pl.

Linearizability. Linearizability [7] is a widely-used correctness property of con-
current objects. Intuitively, it means each operation can be viewed as taking
effect at some unique point in time between the invocation and response.

Definition 1. A history H is an execution trace containing only invocations and
responses. A sequential history is a history where for each invocation, follows by
a corresponding response. A partial history Ht of thread t w.r.t history H is the
subsequence of H which is invoked by thread t. A history H is called well-formed
when for every thread t, Ht is sequential. A sequential specification Sp is a set
of sequential histories.

Definition 2. Suppose H is a well formed history, it is linearizable with sequen-
tial history HS, if there is a map τ from operations in H to the same operations
in HS that preserves real time order(Namely, if two operations t1, t2 with the
response of t1 is before the invocation of t2, then τ(t1) before τ(t2)), then H is
linearizable w.r.t HS. If every execution of an algorithm is a linearizable history
w.r.t a sequential history in its sequential specification Sp, the algorithm is said
to be linearizable w.r.t. Sp.

5 Verification of the Algorithm

5.1 Thread-Local Invariants Needed for the Proof

Our proof relies on a set of thread modular invariants. Basically, we classify two
main classes of invariants: state invariants and step invariants. State invariants

162 T. Che

are predicates p(σ0) on the state of shared heap σ0, which can be written as
separation logic formulas. Step invariants are predicates on single computation
steps. Step invariants can also be written as separation logic formulas, taking
account in both pre- and post-program states.

These invariants are natural to concurrent binary search tree algorithms, and
most algorithms preserve at least some of these invariants. These invariants can
all be formally verified using separation logic. We list these invariants in Table 1.
State invariants are named using φ, while step invariants are named using δ.

Table 1. Invariants of an external binary search tree.

Shape φR Root node exists

Shape φloop Shared heap does not contain any loop

Shape φc2 Every internal node has two children

Data φ∞ Root node has key −∞
Data φ< Data preserves tree order, for any node u,

the keys on the left subtree ≤ u.key <
the keys on the right subtree

Mark φR A node is marked ⇔ it is a removed node

Shape δe Child fields of removed nodes never change

Shape δo For a computation step (σ1, σ2), if u, v are two backbone nodes in
both σ1, σ2, and u <σ2 v, then u <σ1 v

Shape δR Root never changes

Shape δsn If a computation step removes a backbone node, the successors of
the node remain unchanged in the next state

Shape δRe A marked node can never become backbone again

Data δK Key of any node can never change

5.2 Generalized Hindsight Lemma

Lemma 1. Tree Version Hindsight Lemma
Consider an execution trace satisfying the shape invariants in Table 1,

σ0, σ1, · · · σn. For 0 ≤ i ≤ j ≤ n, if there is a backbone link u →σi
v, and a

link v →σj
w (u, v, w are different nodes), then there is i ≤ k ≤ j, such that

v →σk
w is a backbone link.

Proof. See proof of Lemma 7.

Lemma 2. Tree Version Temporal Backbone Lemma
Given an execution trace T = (σ0, σ1, · · · , σn) satisfying the shape invariants

and a temporal node path N = {(u0 = Root, u1), (u1, u2), · · · (um−1, um)} going
through Ts = {σi1 , · · · σim

}. Then there is another subsequence of execution trace
T ′

s = {σj1 , · · · σjm
} such that for all 1 ≤ k ≤ m − 1, jk−1 ≤ jk ≤ ik, and N is a

temporal backbone going through T ′
s.

Verifying Concurrent Data Structures Using Data-Expansion 163

Proof. Apply the Tree version Hindsight Lemma n times, and the theorem
follows.

For a search operation invoked by any thread t, the operation crosses the
links to reach a leaf node. The search path of thread t is defined as a temporal
node path N = u0, u1, · · · um of all the nodes visited by the search operation.

Corollary 1. Consider an execution trace of the algorithm in Fig. 2 satisfying
shape invariants, T = (σ0, σ1, · · · σn). If this execution trace has an invocation
to the search operation of a thread t, its search path is N = u0, u1, · · · um. Then
there is a subsequence Ts = {σi1 , · · · σim

}, such that N is a temporal backbone
that goes through Ts.

5.3 Data-Expansion Lemma

To state the Data-Expansion Lemma, we reconsider our definition of static bound
Sσ(u) of a backbone node u in a state σ. We want to extend the definition to
removed nodes. Since a removed node v must be on the backbone at some past
state, we denote τ the last state when v was on the backbone. Then we define
Sσ(v) = Sτ (v). Note this static bound will never change after a node is removed.
We can prove the static and temporal versions of Data-Expansion Lemma.

Lemma 3. Static Data-Expansion Lemma
Given an execution trace σ0, σ1, · · · σn satisfying shape, data and mark invari-

ants, then for each 0 ≤ i ≤ j ≤ n, if internal node u exists from state σi, then
we have

Sσi
(u) ⊆ Sσj

(u)

Proof. We only have to prove Sσi
(u) ⊆ Sσi+1(u) for each i. We distinguish 2

cases:

1. If u is a backbone node in both σi and σi+1. Let Ak = {v|v < u in σk}.
Then Ai+1 ⊆ Ai, because from δo, each node such that u <σi+1 v satisfied
u < vσi

.
So Ai+1 ⊆ Ai. Since the static bound is determined by the set Ai, and the
key of u remain the same, so the static bound of u is non-decreasing.

2. If u is not a backbone node in σi+1, then the static bound is obviously the
same in σi and σi+1.

Lemma 4. Data-Expansion Lemma
Let T be an execution trace σ0, σ1, · · · σn satisfying shape, data and mark

invariants. Let P be a temporal node path P = {v0 = Root, v1, · · · vm} that goes
through subsequence Ts = {στ(1), · · · στ(m)}. For simplicity we assume vm is a
leaf node. Then the dynamic search bound Di(P) of the temporal node path is
contained in the static bound Sστ(i)(vi). Namely, we have

Di(P) ⊆ Sστ(i)(vi), 0 ≤ i < m

164 T. Che

Proof. Because v0 = Root, the temporal node path is also a temporal backbone
that goes through subsequence T ′

s = {σγ(1), · · · σγ(m)}, such that γ(k − 1) ≤
γ(k) ≤ τ(k) for each k.

We prove a stronger form of the lemma:

Di(P) ⊆ Sσγ(i)(vi), 0 ≤ i < m

Due to the static Data-Expansion lemma, we have Sσγ(i)(vi) ⊆ Sστ(i)(vi), so this
stronger form implies our lemma.

We prove this lemma by induction on i. For i = 0, the lemma holds trivially,
because D0(P) = Sσγ(0)(v0) = (−∞,+∞).

We assume i = k, Dk(P) ⊆ Sσγ(k)(vk). Because of the static Data-Expansion
Lemma, we have Dk(P) ⊆ Sσγ(k)(vk) ⊆ Sσγ(k+1)(vk).

For i = k+1, in state σγ(k+1), the link l : uk → uk+1 is a backbone link. Cross-
ing the link would put the same constraint on both dynamic search bound and
static bound, for example, if link l is a right child pointer of uk, then Dk+1(P) =
Dk(P) ∩ (uk.key,+∞), and also Sσγ(k+1)(vk) = Sσγ(k+1)(vk+1) ∩ (uk.key,+∞).
So we have Dk+1(P) ⊆ Sσγ(k+1)(vk+1).

So the lemma holds for every 0 ≤ i < m.

Corollary 2. Suppose a search path P = {v0, v1, · · · vm} is visited by a search
operation in an execution trace σ0, σ1, · · · σn satisfying shape, data and mark
invariants. For simplicity we assume the search operation invoked at state σ0

and return at σn. We assume at state σi, the search operation is visiting node
vφ(i) (namely pointer n = vφ(i)), then the dynamic search bound Dφ(i)(P) of
node v is contained in the static bound Sσi

(vφ(i)). Since the search key k always
lies in the dynamic search bound, we have

k ∈ Dφ(i)(P) ⊆ Sσi
(vφ(i))

Proof. A search path is a temporal node path from Root that goes through a
sequence of states Ts = {στ(1), · · · στ(m)}. So we have from above lemma:

Dφ(i)(P) ⊆ Sστ(φ(i))(vφ(i)) ⊆ Sσi
(vφ(i))

This is because obviously we can make φ(τ(k)) = k for k ≤ m.

5.4 Verification of Linearizability

We define an effectless operation as one of three types: contains operations,
remove operations returning false, and add operations returning false. In these
three cases, the linearization points of these operations are non-fixed. Namely,
the linearization point of one thread running an effectless operation is some-
times in another thread. However, the linearizability of effectless operations can
be directly deduced from the thread modular invariants, which simplifies our
verification.

Verifying Concurrent Data Structures Using Data-Expansion 165

Lemma 5. Effectless operations are linearizable with respect to their sequential
specifications.

Proof. All effectless operations invoke the search operation as a sub-procedure.
We assume the search path of one effectless procedure is v0 = Root, v1, · · · vm,
vm is a leaf node. The execution trace is T = (σ0, σ1, · · · σn). According to the
temporal backbone lemma, we know that link Lm = (vm−1, vm) was a backbone
link in some past state. We denote σd the last state when the Lm is on backbone
before the search operation crosses the link. (If it remains a backbone till the
search crosses the link, we take σd to be the last state before the algorithm
decides no further search is needed) We claim that σd is the right linearization
point.

We distinguish two cases: If a search operation actually “finds” a node with
the search key, namely vm.key = k, then in σd, vm was on the backbone. If
search operation finds vm.key �= k, then node with key k is not in the tree on
σd. We can prove this as follows:

Without loss of generality, we assume k > vm−1.key. The “≤” case follows the
same argument. From the Data-Expansion lemma, we know that k ∈ Sσd

(vm−1).
Namely, if a leaf node k is present in the tree, it should be found in the subtree
rooted at node vm−1, namely, on the right subtree of vm−1.

If in σd+1, Lm is still a backbone link, then the computation step s =
(σd, σd+1) is the link crossing of the search operation, the heap hσd

= hσd+1 .
Then since vm.key �= k, so k is not in Abs(σd).

If in σd+1, Lm is not a backbone link. The invariants δsn and δe guarantee
that in σd+1 and subsequent states, the right child of node vm−1 remains the
same as in state σd. If node with key k exists in state σd, it should be on the
right subtree of node vm−1. However, the right child of vm−1 is a leaf node vm

with vm.key �= k. So we know that no leaf node with key k exists in state σd.

The linearizability of effectful operations, which have fixed linearization
points, are not hard to prove.

Lemma 6. The External BST algorithm implemented above is correct with
respect to the sequential specification.

Proof. It is easy to verify the invariants of Table 1 using separation logic [8].
This verification can be done in a purely thread modular way. The rest is to
define the linearization points of each operation. The linearization point of a
effectful operation is the state before the execution of the last atomic section. The
linearization points of effectless operations is defined above. The linearizability of
effectless operations is implied by the thread-modular invariants, which we have
already proved in the lemma above. Now we only have to prove the linearizability
of effectful operations.

We consider the abstract set function on states, Abs(σ). Abs(σ) is the set of
keys of all reachable (unmarked) leaf nodes in the tree. The formal definition of
Abs(σ) is included in [3].

166 T. Che

For effectful add operations, let s = (σa, σ′
a) be the computation step of the

execution of last atomic section. The validation condition ensures l1 : ∗p → n is
a backbone link in σa. Using this validation condition and the state invariants
in Table 1, and the definition of abstraction function, it is obvious to check the
computation step modifies the heap according to its specification: all leaf nodes
reachable from Root in σa remain reachable in σ′

a, and a single new leaf node
with key k become reachable.

The case for effectful remove operations is similar. Let s = (σr, σ
′
r) be the

computation step of the execution of last atomic section. The validation condi-
tion ensures l1 : ∗p → n and l2 : ∗gp → p are backbone links in σr. It is obvious
to check the computation step modifies the heap according to its specification:
all leaf nodes reachable from Root in σa remain reachable in σ′

a, except the leaf
node pointed by n.

6 Generalized Hindsight Lemma

In this section, we generalize Hindsight Lemma to a very general form. The
lemma plays an essential role in the verification of both linked list and trees,
and interestingly, it is still valid on a large class of linked data structures. We
use the concept of search data structure to express the lemma.

Definition 3. A data node is a fixed-size dynamic-allocated heap object consist-
ing of a boolean mark field, a data field and several successor pointers to other
data nodes. A search data structure is a heap object consisting of several data
nodes with a specific node H, called the entry node. A concurrent search structure
is a concurrent object whose shared heap is a search data structure. We assume
that the concurrent object also satisfies the thread-modular invariant that a node
is marked if and only if it is unreachable from H.

For a concurrent search structure T , we assume the object also satisfies the
step invariant that when or after nodes are removed from reachable heap, they
cannot become backbone again and their successor pointers remain unchanged.
We call this assumption “Removed Unchanged Assumption (RUA)”. On a con-
current search structure, we define link, backbone link, temporal backbone, tem-
poral node path as we do in Sects. 4 and 5. We formalize all the conditions
of the Generalized Hindsight Lemma and the Generalized Temporal Backbone
Lemma in [3].

Lemma 7. Generalized Hindsight Lemma
For a concurrent search structure Tg, assume Tg satisfies RUA. Consider

an execution trace σ0, σ1, · · · σn. For 0 ≤ i ≤ j ≤ n, if there is a backbone link
u →σi

v, and a link v →σj
w (u, v, w are different nodes), then there is i ≤ k ≤ j,

such that v →σk
w is a backbone link.

Proof. If in state σj , node v is a backbone node, then choose k = j and we are
done. If not, then v is not a backbone node in σj , let l be the largest index such
that v is a backbone node in σl, so l ≥ i. In σl+1, v is removed from backbone.

Verifying Concurrent Data Structures Using Data-Expansion 167

But the link v →σj
w exists, according to δe and δsn, v → w exists from state σl

to σj . But in state σl, v is a backbone node, so the link v →σk
w is a backbone

link.

7 Remarks

7.1 Related Works

The proof strategy used in this paper is essentially based on the idea of Herlihy
and Wing [6]. In their fundamental paper, a proof of linearizability using data
abstraction function is presented.

Our work is related to the recent advances [1,4,5] in concurrent binary search
tree algorithms. The algorithm we set as our verification target is similar to
[5], except that we use locks or atomic sections instead of non-blocking prim-
itives. We find the idea of our verification may also be applicable to many of
these algorithms. Our work also shares commonalities with the Hindsight Lemma
paper [12]. We go one significant step forward by providing purely thread mod-
ular proofs for advanced concurrent algorithms such as trees. In fact, most tree
algorithms are extremely complicated and hard to prove correct or verify rig-
orously. There are some recent proofs for tree algorithms [5], However, their
proofs are mathematical (not formal) and do not use explicit thread modular
arguments, making their proofs much longer than ours, and it is very hard (if
not impossible) to refine their proofs into formal ones. There are also several
interesting works on automatically verification of linearizability, such as [10,14].
In [10], a novel approach for thread-modular verification of linearizability using
observational refinement is presented. However, it is not clear whether their app-
roach is suitable for dealing with more advanced data structures such as binary
search trees.

As the verification of the lazy linked list algorithm in [12], our verification
of the invariants can also be viewed as taking place in simple Owicki-Gries logic
[13], namely, we do not use complex mechanisms such as these used in rely-
guarantee reasoning [9]. In order to express our verification in a clean way, we
use small atomic sections instead of locks. This technical limitation, however, is
by no means essential. In the price of more complicated proofs, we can actually
allow the verification of lazy counterpart of these algorithms with some extra
complexity.

In [2], a new abstraction to implement concurrent search trees is presented,
together with several mathematical proofs of correctness. Also, in the correctness
proof, the author proved a result similar to the Generalized Hindsight Lemma
in the context of their implementation. However, their correctness results rely
on specialized implementation techniques and do not rely on explicit thread
local invariants. So they cannot be used as a basis for thread modular formal
verification.

168 T. Che

7.2 Conclusions

Formal verification of shared memory concurrent algorithms is a hard but impor-
tant problem in the multicore era. The main difficulty is to prove the correctness
of the algorithms in the presence of complicated thread interferences. Existing
methods such as [13] usually need to introduce many auxiliary states, which
lead to over-complicated proofs. So they cannot be adapted to some advanced
concurrent data structures, such as binary search trees. In [12], O’Hearn etc.
have shown that for a special concurrent linked list algorithm, thread modular
verification can be established. In this paper, we make a surprising observa-
tion that for some advanced concurrent data structures, such as binary search
trees, thread modular proofs are also achievable, thus can greatly simplify formal
verification of concurrent algorithms.

In [13], Owicki and Gries argued that using auxiliary states is sometimes a
must, and many simple concurrent programs cannot admit purely thread modu-
lar proofs without auxiliary states. Although Owicki and Gries’ work limits the
use of thread modular proofs, it is interesting to see that many advanced highly
concurrent data structures do not fall into this limitation. Thanks to the Data-
Expansion lemma and the Generalized Hindsight Lemma, we can see that some
advanced concurrent algorithms can admit purely thread modular formal verifi-
cation. This observation makes the goal of formal verification of many advanced
concurrent objects actually achievable.

On the bright side, the Generalized Hindsight Lemma is proved correct on a
large class of data structures satisfying only the Removed Unchanged Assump-
tion, which is easy to formalize and, hopefully, to automate. On the other side,
the Data-Expansion Lemma is more data structure specific. It is shown in our
running example to hold on the binary search trees. However, the lemma is very
promising for generalization to other data structures.

The Data Expansion Lemma combined with the Generalized Hindsight
Lemma eliminates the needs of constructing linearization points in other threads
before carrying out formal proofs. This is particularly important for advanced
concurrent data structures, such as binary search trees, whose internal logic is
highly complicated. These lemmas give an direct formal explanation of why the
tree traversal can work without any synchronization. They may play an impor-
tant rule in the design and verification of concurrent algorithms.

References

1. Bronson, N.G., Casper, J., Chafi, H., Olukotun, K.: A practical concurrent binary
search tree. ACM Sigplan Not. 45, 257–268 (2010)

2. Brown, T., Ellen, F., Ruppert, E.: A general technique for non-blocking trees. In:
Proceedings of the 19th ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming, PPoPP 2014, pp. 329–342. ACM, New York (2014)

3. Che, T.: Verifying concurrent data structures using data-expansion, Technical
report. EPFL (2014)

Verifying Concurrent Data Structures Using Data-Expansion 169

4. Drachsler, D., Vechev, M., Yahav, E.: Practical concurrent binary search trees
via logical ordering. In: Proceedings of the 19th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, PPoPP 2014, pp. 343–356. ACM,
New York (2014)

5. Ellen, F., Fatourou, P., Ruppert, E., van Breugel, F.: Non-blocking binary search
trees. In: Proceedings of the 29th ACM SIGACT-SIGOPS Symposium on Princi-
ples of Distributed Computing, pp. 131–140. ACM (2010)

6. Herlihy, M.P., Lev, Y., Luchangco, V., Shavit, N.N.: A simple optimistic skiplist
algorithm. In: Prencipe, G., Zaks, S. (eds.) SIROCCO 2007. LNCS, vol. 4474,
pp. 124–138. Springer, Heidelberg (2007)

7. Herlihy, M.P., Wing, J.M.: Linearizability: a correctness condition for concurrent
objects. ACM Trans. Program. Lang. Syst. (TOPLAS) 12(3), 463–492 (1990)

8. Ishtiaq, S.S., O’Hearn, P.W.: Bi as an assertion language for mutable data struc-
tures. ACM SIGPLAN Not. 36, 14–26 (2001)

9. Jones, C.B.: Specification and design of (parallel) programs. In: IFIP Congress,
pp. 321–332 (1983)

10. Liang, H., Feng, X.: Modular verification of linearizability with non-fixed lin-
earization points. In: Proceedings of the 34th ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, PLDI 2013, pp. 459–470. ACM,
New York (2013)

11. Natarajan, A., Mittal, N.: Fast concurrent lockfree binary search trees. In: Pro-
ceedings of the 19th ACM Symposium on Principles and Practice of Parallel
Programming (2014)

12. O’Hearn, P.W., Rinetzky, N., Vechev, M.T., Yahav, E., Yorsh, G.: Verifying lin-
earizability with hindsight. In: Proceedings of the 29th ACM SIGACT-SIGOPS
Symposium on Principles of Distributed Computing, pp. 85–94. ACM (2010)

13. Owicki, S., Gries, D.: An axiomatic proof technique for parallel programs I. Acta
Informatica 6(4), 319–340 (1976)

14. Vafeiadis, V.: Automatically proving linearizability. In: Touili, T., Cook, B.,
Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 450–464. Springer, Heidelberg
(2010)

Improving Cognitive Radio Wireless Network
Performances Using Clustering Schemes

and Coalitional Games

Imane Daha Belghiti(B), Ismail Berrada, and Mohamed El Kamili

LIMS, Faculty of Sciences, Sidi Mohammed Ben Abdellah University,
BP 1796, Fez, Morocco

imanedaha@gmail.com, {ismail.berrada,mohamed.elkamili}@usmba.ac.ma

Abstract. In this paper, we consider the problem of improving the per-
formances of large Cognitive Radio Wireless Networks (CRWN). The lack
of network infrastructure and heterogeneous spectrum availability in cog-
nitive radio wireless networks require the self-organization of secondary
users (SUs) for efficient spectrum assignment. The cluster structure can
be an adequate solution in both guaranteeing system performance and
reducing communication overhead in CRWN. The approach considered
in this paper relays on the use of a coalitional game in every cluster to
preserve energy loss in the sensing phase and to reduce the interference
with primary users (PUs) and between SUs. First, we study the coali-
tional formation process in partition form with non-transferable utility
(NTU). In order to reduce the coalition formation cost, a cluster scheme
is considered. Then, we use a strategic learning algorithm to learn the
Nash equilibrium. At the end, simulation results demonstrate the pref-
erence of our CRWN compared to standard wireless cognitive network.

Keywords: Cluster · Overhead · Spectrum sensing · Cognitive wire-
less network · Energy consumption · Network performance · Coalitional
game · Partition form · Opportunistic access

1 Introduction

Cognitive Radio (CR) has enjoyed a powerful interest by the researchers in recent
years. CR is a flexible, intelligent radio and network technology that can auto-
matically detect unused channels in spectrum band and changes transmission
parameters to enhance radio functioning behavior. In cognitive radio settings,
secondary users (SUs) can operate in the same area with primary users (PUs).
Using spectrum sensing, SUs can detect the spectrum holes and hence can use
the unoccupied licensed channels for communication [1].

A Cognitive radio network is able to search automatically idle channels in
wireless spectrum and use learning and decision making algorithms to adaptively
change the working parameters of the system. In the case of distributed cognitive
radio wireless networks, the system is composed of large number of SUs nodes
c© Springer International Publishing Switzerland 2015
A. Bouajjani and H. Fauconnier (Eds.): NETYS 2015, LNCS 9466, pp. 170–182, 2015.
DOI: 10.1007/978-3-319-26850-7 12

Improving Cognitive Radio Wireless Network Performances 171

and one or multiple base stations. With the absence of the central network control
utilities, CR users have to execute multi-hop communications. The end-to-end
performance is challenged by the distributed multi-hop architecture, the dynamic
network topology, the quality of service QoS requirements and time/location
varying spectrum availability.

Clustering [2] can be a good management methodology in distributed CRWN
for its capacity of guaranteeing system performances in dynamic network envi-
ronments with the benefits of providing virtual backbones, reducing network
sizes and ensuring more stability to each CR node. Grouping physical network
nodes into a small number of logical associations forms clusters. Each cluster
performs a leader election procedure to select a cluster head (CH). In a central-
ized approach, every CR sends its data to the Base Station (BS). Consequently,
the amount of energy of a CR decreases rapidly as the distance from the BS
increases. A clustering scheme can greatly reduce the energy consumption of
nodes and lengthen the network lifetime because data is transmitted to cluster
heads. They, transfer data to the BS through the CH backbone.

Another challenge to be addressed by a distributed CRWN is the spectrum
availability. In fact, the connectivity of the network depends not only on the geo-
graphical locations of nodes but also on the interference with PUs networks from
SUs. Several approaches for sensing the channel exist (for more details, refer to
the survey of [3]). In this paper, we propose a coalitional game approach to pre-
vent unnecessary energy loss in the sensing phase and to reduce the interference
with PUs and between SUs. A coalitional game is when a number of players
cooperate in order to enhance their position in the game. The game is defined
by (M,V), where M is the players set and V is the coalition value (utility). This
value can be in a characteristic or in a partition form. Von Neumann and Mor-
genstern introduced the first definition of the characteristic form. A coalition
game is in characteristic form if the utility of any coalition is independent of
the others outside coalitions. It is in partition form if the utility of the coalition
depends; both on the coalition players as well as on the players of the others
coalitions.

The main contributions of this paper are:

– Improving the system views and performances. By using clusters, we split
wide network into small one and thus reduce the communication overhead in
large CRWN. Also, by using small networks with clusters every nodes location
and available channels is known. From a routing point of view, clusters and
coalition games limit the broadcast storm involved in the route establishment
process.

– Reducing interference between SUs and PUs by using a coalitional game app-
roach (NTU coalitional game in partition form). We studied the users utilities
through a mathematical model.

The remainder of this paper is organized as follows. Section 2 is devoted to
the related works. Section 3 presents the system architecture and assumptions.
Numerical results are presented in Sect. 4. Finally, the paper is concluded in
Sect. 5.

172 I. Daha Belghiti et al.

2 Related Works

In [4], the authors propose a three independent transceiver node physical plat-
form, and introduce a dynamic control channel. The gain of SUs in the cognitive
radio setting is the arrangement between sensing the channel and enhancing
channel access performances. In order to detect the presence of PUs, [5] uses a
central point for exchanging information between SUs and this central. However,
this concept involves an additional overhead.

A non-cooperative game is a game where every user operates independently
of the others. In [6], a Nash equilibrium strategy is a solution of spectrum sensing
and access for multiple SUs. In [7], the players carry out cooperation in a non-
cooperative environment with no information exchange. The authors consider
the minority game (MG), for the sensing phase. In this game, an odd number of
players is considered. Each player must choose one of two choices independently
at each round. The players, who end up on the minority side, win the game. At
each round, SU decides on the action that maximizes its payoff through Linear
Reward Inaction (LRI) updating rule.

Coalitional game is also a central concept for many papers that investigate
the spectrum sensing issue in cognitive radio network. The groups of SUs forming
a coalition collaborate in order to reduce the interference with the PUs through
collaborative sensing. In [8], a new algorithm is proposed wherein each SUs can
autonomously collaborate, while maximizing their detection probability taking
into account the false alarm as cooperation costs. The utilization of cooperative
games for joint sensing and access models is illustrated [9]. In [10], the authors
propose an algorithm for coalition formation to improve system performances,
to avoid interference with the licensed users and to permit a better access by
using the partition form. However, this algorithm suffers from severe scalability,
as it does not take into account large networks.

3 System Architecture and Assumption

The system setup used in this work contains PU transmitters, k channels, M
secondary users in network, and Nl of SUs (transceivers pairs) in each cluster
Ql with l = {1, 2, .., L}. Each primary user uses its licensed channels. The PUs
and SUs are both supposed to use a time slotted manner with exact time syn-
chronization [11,12]. Hence, at the beginning of a time-slot, every secondary user
can make sensing operation in all primary channels. We assume that each SU
always has data to send and no traffic requirement is imposed. In other words,
SU transmits data in a best-effort manner.

Each SU is equipped with two transceivers. The first transceiver, called SDR
transceiver, consists of a Software Defined Radio module that can tune to any k
channels to sense, receive, and transmit signals/packets. The second transceiver,
called control transceiver, is devoted to operate over the control channel. The
SUs use the control transceiver to obtain the information of available channels
and to negotiate with others.

Improving Cognitive Radio Wireless Network Performances 173

A coalition is a subset of SUs and a coalition structure, Gi = {C1, C2, .., Cn}
is a partition of SUs. The partition Gi = {{1}, {2}, .., {Nl}} defines the solo-
coalitions at the beginning of the game.

In each coalition, an elected user for transmission starts negotiations with
other SUs in other coalitions using the CSMA/CA mechanism. After that, only
one winner starts the packets transmission on the channel. The CSMA/CA pro-
tocol consists of RTS/CTS mechanism. Each elected user begins by sensing the
channel. If idle, SU sends RTS packet over the channel. The receiving user detects
RTS and responds with CTS after a SIFS. On the other hand, if the channel is
busy, the receiving node pursues checking until it becomes idle. More details in
CSMA/CA process can be found in [13].

The proposed spectrum aware clustering structure is depicted in the network
and presented under cluster format Q = {Q1, Q2, .., QL}. When a node is unable
to reach base station, the cluster head collect data from all nodes in a cluster and
transmits it to base station (BS) over long distances. It is assumed that each
node has a long range communication and it is able to reach cluster head (CH)
directly and thereafter the BS. PUs occupying different channels are represented.
Neighboring nodes who share common channels form a cluster and one node has
to be selected as cluster head (CH) in each cluster. The network communication
can be categorized into two classes: intra-cluster communication and inter-cluster
communication. During the inter-cluster communication phase, all SUs nodes
send their information to their CH through the local common channel. During
the intra-cluster communication phase, the CH first compress the information,
then transmits it to the upstream neighbor CH using maximal power. Every
node knows its coordinates which are embedded in the interaction message.
Node mobility is assumed to be slow and the channel availability changes at a
relatively low rate such that the topology does not change during the clustering
process.

3.1 Cluster Border Determination

In order to scale up the larger networks, an interesting approach is to split the
network in clusters. However, this approach faces additional challenges regarding
how the clustering should be performed. In order to participate in the cluster
formation, each SU needs to have informations on which other SUs are in its
neighborhood and their local spectrum availability. To get those informations, a
SU broadcast packets in order to solicit packet exchange from all its neighbors.
For neighbor discovery, several works was proposed in the literature [14]. In the
following, we present a distributed algorithm which divides the CRWN network
into clusters, based on local spectrum availability.

Our algorithm is inspired from the [15]. After the neighbor discovery phase,
all distributed SUs run the clustering algorithm independently and inspire their
decisions on the information in the key, defined by a set {Kj ,Dj , IDj}. Where
IDj is the SU identification, Dj is the SUj connectivity. The connectivity is
the available information concerning b-hop neighbors, which are at most b-hop
away from user j (including node j itself). The term Kj defines the minimum

174 I. Daha Belghiti et al.

of common channels that SUj has with each of its neighbors and Vj is SUj

neighbors. We calculate Kj by the formula below:

Kj = min
i∈Vj

|kj ∩ ki| (1)

Based on this information key, each SU calculates a priority value Pj that
will be used during the cluster formation to determine the CH. A SUj is elected
as cluster head if its priority is the maximum of neighbors priority, which mean
that the weighted priority of cluster head is the highest among its neighbors. We
illustrate that by a formula:

Pj = max
i∈Vj

(Pi) (2)

All node whose weighted priority key is the highest among its neighbors
request the creation of a cluster with their ID as cluster ID, nodes that receive the
request join the cluster if their priority is lower. Otherwise, they elect themselves
as cluster heads. If they receive multiple request from different CH, they choose
the CH with the low communication overhead.

After the CH selection, routing paths are established and a protocol of routing
is defined. The users in the same cluster can exchange network setup and main-
tenance messages instead of the first request defined before. Informations about
topological changes (because of dead nodes or node mobility) can be exchanges
during this phase.

3.2 Scenario of Forming Coalition in Clusters

In this paper, we model the coalition formation as a game with complete infor-
mation. At the beginning, we have solo-coalitions. Every user sends a proposal
to neighbors in the same cluster Ql. All players in vicinity respond to the offer.
Recent works investigate different methods for multi-agent system in cognitive
radio [16] (Fig. 1).

At each stage, a player becomes the proposer of forming a coalition. The
others players, who received offers make their response to accept or to decline
the offer. After the approbation of the request, the coalition will be formed.
Every user sends the same proposal that contains a comprehensive offer for all
QoS parameters which are: saving energy, delay and enhancing throughput. After
that, the users start forming coalitions based on a strategic learning algorithm
to learn the best coalition until Nash equilibrium (NE). By using clusters, the
node will easily and quickly decide on a winner and send a confirmation message
to the winning coalition and a cancellation message to all others. Next, the user
j and other members of the coalitions fit contracts such as SLA (Service Level
Agreement).

Improving Cognitive Radio Wireless Network Performances 175

Fig. 1. Cluster formation schema in CRWN

Algorithm 1. Forming coalition Algorithm in clusters
Phase 0

The network starts with solo-coalitions G = {{1}, {2}, .., {M}} and no
clusters Q = ∅.
Phase 1

Clusters formation Q = {Q1, Q2, .., QL}.
Phase 2: Coalition formation process

repeat
Execute Algorithm 2 (see below) with input j and Ql.
until convergence to a Nash-stable partition.

A contract is made between users.
Phase 3: Joint spectrum sensing and access

The sensing and access are joined in the formed coalition.

In this section, a cooperative model is proposed in every cluster to preserve
the energy of every node in the sensing phase and enhance their performances in
the access phase. This layout used a coalitional game in partition form. Indeed,
after forming coalitions within each coalition only one SU senses the channel
according to a discrete distribution probability and broadcast channel occupation
information to every SU in the same coalition. After that, only one SU is elected
according to the discrete distribution probability to transmit its data using the
unoccupied channel. The others SUs will not sense the channel and so preserve
their energy.

176 I. Daha Belghiti et al.

Fig. 2. Cluster formation using coalitional approach in CRWN

The beginning of our Algorithm1, is with solo coalitions and without clusters.
This case corresponds to the non cooperative state of all secondary users and
no cluster is defined. A user in our system decides to join the coalition Ci in the
same cluster, if this coalition improves its utility. The algorithm terminates when
no player wants to join another coalition (Nash Equilibrium). The convergence
of the algorithm, is guaranteed because the set Ci can only increase in size and
is maximally limited to the grand coalition. The grand coalition is the coalition
of all the users in network.

At the end of clusters and coalitions formation, an inter-cluster communica-
tion is started, see Fig. 2. The clusters are in different colors and the communi-
cation between clusters head is presented by dotted lines.

3.3 User’s Utility Function in Clusters

In coalitional game theory, we distinguish between two entities: the value of a
coalition and the payoff received by a player. The value of a coalition represents
the amount of utility that a coalition, as a whole, can obtain. The payoff of
a player represents the amount of utility that a player, member of a certain
coalition and cluster can obtain. Using our model, our main goal consists of
enhancing throughput with reducing energy consumption. For this purpose, we
define our utility based on this two criteria. So, the utility of user j in coalition
Ci, partition Gi and cluster Ql is expressed by:

Uj(Ci, Gi, Ql) = Fj(Ci, Gi, Ql) − γ.(ETj
(Ci, Gi, Ql) + ENj

(Ci, Gi, Ql)
+ESj

(Ci, Gi, Ql) + Efj (Ci, Gi, Ql) + EQ) (3)

Improving Cognitive Radio Wireless Network Performances 177

Where:

– ESj
(Ci, Gi, Ql) and ETj

(Ci, Gi, Ql) are the energy wasted in sensing and
transmitting.

– Fj(Ci, Gi, Ql) is the throughput of user j in coalition Ci and cluster Ql. By
using the symmetric channels this throughput is equal for all users in the same
cluster.

– EQ is the energy wasted in cluster formation.
– Efj (Ci, Gi, Ql) is the energy wasted in coalition formation and it depends on

users numbers. It is clear that in large network this cost will be very high, our
cluster scheme decreases the cost of coalition formation and thus enhance the
users utilities.

– ENj
(Ci, Gi, Ql) is the energy wasted in negotiation between users in various

coalition, same partition and same cluster.
– γ is a constant.

Fj(Ci, Gi, Ql) = (1 − Rj(Ci, Gi, Ql)).(1 − zk(Ci, Gi, Ql)) (4)
rj(Ci, Gi, Ql).tTj

(Ci, Gi, Ql)

Rj(Ci, Gi) is the probability of collision with another coalition in the same
cluster, tTj

(Ci, Gi, Ql) is time spent in transmission. Finally, rj(Ci, Gi, Ql) rep-
resents the transmission rate of the user j to its receiver when the PU is absent
and zk(Ci, Gi, Ql) is the probability of collision with the primary.

3.4 Learning Algorithm in Clusters

In game theory, the term of complete information describes a game in which
knowledge about other players is available to all participants in the cluster Ql.
Every player knows the payoffs and strategies available to other players.

Algorithm 2. Learning coalition of informed players in clusters
Initialization

– For each player j ∈ M and cluster Ql.
• Observe state G0

• Choose coalition C0, in cluster Ql.

Learning patterns

– For each time slot t
• For each informed player.

∗ Observe the current state Gi.

∗ Choose coalition Cit according to the randomized action Aj(Gi, Ci).

∗ Observe the realized vector of utility Uj,t(Ci, Gi, Ql) in all coalitions.

– Update strategy Aj(Gi, Ci) according to Eq. (5).

178 I. Daha Belghiti et al.

In the proposed game, a coalition is a set of distinct, autonomous players
that may cooperate in order to increase their individual gains, noted as selfish
cooperation. We have to use an algorithm that converge to Nash equilibrium
(NE). In the paper in [10], the authors discuss the convergence with mathemat-
ical analysis. They use a strategic learning as solution for coalition formation
when the number of coalition are finite. By using strategic Learning Algorithm,
each SU learns the coalition with best reward until a Nash equilibrium is reached
(Algorithm 2).

The Eq. (5) for the update can be expressed like below:

Aj(Gi, Ci) : xj ,t (Gi, Ci) =
xj,t−1(Gi, Ci)(1 + vj,t(Gi))−yj,t−1(Gi,Ci)

∑
C′

i
xj,t−1(Gi, C ′

i)(1 + vj,t(Gi))−yj,t−1(Gi,C′
i)

(5)

With yj ,t−1 (Gi, Ci) is the invert of the utility received and xj,t(Gi, Ci) is
the probability of choosing the coalition by the user j being in state Gi. Also,
vj,t(Gi) > 0 is the learning rate taking into account how many times the same
action has been chosen.

4 Numerical Results

In this section, we adopt a simulation approach to evaluate the performance of
the proposed clustering algorithm. We consider a CRWN scenario in which SUs
are randomly deployed in a 20 m× 20 m square domain.

We have M = 80, Q = {1, 2, ..., 20}, and each cluster contains N = 4 sec-
ondary users K = {1, 2}. The possible strategies of four users in each cluster

Table 1. Possible coalition strategies for four players in one cluster

G1 = {1, 2, 3, 4} G7 = {{1, 3}, {2}, {4}}
G2 = {{1, 2, 3}, {4}} G8 = {{1, 4}, {2}, {3}}
G3 = {{1, 2, 4}, {3}} G9 = {2, 3}, {1}, {4}}
G4 = {{1, 3, 4}, {2}} G10 = {2, 4}, {1}, {3}}
G5 = {{2, 3, 4}, {1}} G11 = {{3, 4}, {1}, {2}}
G6 = {{1, 2}, {3}, {4}} G12 = {{1}, {2}, {3}, {4}}

Table 2. Parameters used in numerical simulations for one cluster

Initial Battery B = [100, 80, 60, 40]

RTS = 352, z = 0.3

R = [0.3, 0.4, 0.5, 0.6]

r = 112, m = 3

tslot = 3000, ts = 15

Improving Cognitive Radio Wireless Network Performances 179

Fig. 3. Probability to play strategy G1 for N = 4 in one cluster

Fig. 4. Average reward in one cluster using different value of channel utilization,
zk(Ci, Gi, Ql)

is presented in Table 1. All others parameters are presented in Table 2. For the
equal number of players, we used the learning Algorithm 2. Figure 3 shows the
convergence of the algorithm and how all players select the first partition among
the twelve possible partitions as mentioned in Table 1. We notice that our algo-
rithm converges after a number of iterations (<400). All players prefer the grand
coalition (coalition of all users in the system).

180 I. Daha Belghiti et al.

Fig. 5. Average energy consumed for N = 4 and k channels in one cluster

Fig. 6. Communication exchange in CRWN without clusters for M = 100

In Fig. 4, the average reward of secondary users, in each cluster, is plotted.
The non cooperative state is found by strategy (G12). This is the case where
all secondary users are allowed to access all sub-channels. This figure shows
clearly, that the cooperative strategy (G1) gives a very good rewards comparing
to strategy (G12) for all channels utilizations values.

Improving Cognitive Radio Wireless Network Performances 181

Fig. 7. Communication exchange intra-cluster for N = 10, Q = 10

Next, we try to evaluate the energy consumption using a coalitional game
approach. Note that, secondary users seeking to improve their performances have
intention of cooperating.

We plot In Fig. 5, the average energy consumed by coalitions in each cluster
using different strategies. This figure shows the average energy consumption
as a function of coalition structure. The decrease of energy consumption using
strategy G1 is very clear; when SU cooperate they consume three times less
energy than if they use strategy G12 and stay alone.

So, comparing with the energy consumption numerical results, for different
k values, the difference between the coalitional and non cooperative in clusters
is rather important and thus the proposed CRWN using clusters and coalitional
approach achieves a good energy consumption.

Our model reduces communication overhead. Figure 6 gives the amount of
messages exchanged between nodes in CRWN for M = 100 and Q = ∅. Figure 7,
gives the amount of messages exchanged between clusters in CRWN for N = 10
and Q = 10. The simulation clearly shows that the communication exchange
cost in our CRWN is too low by using the clusters (<50) compared to the case
of a classic large CRWN (>180).

5 Conclusion

In this work, we propose a new architecture of CRWN by combining two
approaches: the clustering scheme and the coalitional game model. We design a
distributed coalition algorithm in clusters based on imitative strategic learning.

182 I. Daha Belghiti et al.

The ambition of the algorithm is to group neighboring SUs with similar spec-
trum availability into smaller number of clusters. The coalitional game make
network smaller, so the management will be easy. Simulation results demon-
strate the preference of the proposed algorithm in both reward gain and per-
formance enhancing. The cluster structure is beneficial for multi-hop spectrum
collaboration and our future work will focus on CRWN routing.

References

1. Goldsmith, A., Jafar, S., Maric, I., Srinivasa, S.: Breaking spectrum gridlock with
cognitive radios: an information theoretic perspective. Proc. IEEE 97(5), 894–914
(2009)

2. Zhang, J., Yao, F., Zhao, H.: Distributed clustering in cognitive radio ad hoc
networks using soft-constraint affinity propagation. In: RADIOENGINEERING
(2012)

3. Garhwal, A., Bhattacharya, P.P.: A survey on spectrum sensing techniques in cog-
nitive radio. IJNGN 3(4) (2011)

4. Chen, J., Zhang, C.: Channel allocation strategy based on cognitive radio network.
IRECOS 7(7), 3704–3709 (2012)

5. Ghasemi, A., Sousa, E.: Collaborative spectrum sensing for opportunistic access in
fading environments. In: Proceedings of the IEEE DySPAN, pp. 131–136 (2005)

6. Scutari, G., Pang, J.-S.: Joint sensing and power allocation in non convex cognitive
radio games: nash equilibria and distributed algorithms. IEEE Trans. Inf. Theory
59(7), 4626–4661 (2013)

7. Elmachkour, M., Daha Belghiti, I., Kobbane, A., Sabir, E., Ben-Othman, J.: Green
Opportunistic Access for Cognitive Radio Networks: A Minority Game Approach,
ICC (2013)

8. Yan, L., Zeng, Y.: Collaborative Spectrum Sensing Using Coalitional Games in
Cognitive Radio Networks. IEEE (2008)

9. Saad, W., Han, Z., Zheng, R., Hjorungnes, A., Basar, T., Poor, H.V.: Coalitional
games in partition form for joint spectrum sensing and access in cognitive radio
networks. IEEE J. Sel. Topics Signal Process. 6(2), 195–209 (2012)

10. Daha Belghiti, I., Elmachkour, M., Berrada, I., Omari, L.: Green cognitive radio
networks by using coalitional game approach in partition form. IRECOS, vol. 9(10)
(2014)

11. Zhao, Q., Tong, L., Swami, A., Chen, Y.: Decentralized cognitive mac for oppor-
tunistic spectrum access in ad hoc networks: a pomdp frame- work. IEEE J. Sel.
Areas Commun. 25(3), 589–600 (2007)

12. Fan, R., Jiang, H.: Optimal multi-channel cooperative sensing in cognitive radio
networks. IEEE Trans. Wirel. Commun. 9, 1128–1138 (2010)

13. El Machkour, M., Kobbane, A., Sabir, E., El Koutbi, M.: New insights from a delay
analysis for cognitive radio networks with and without reservation. In: IWCMC
(2012)

14. Arachchige, C., Venkatesan, S., Mittal, N.: An asynchronous neighbor discovery
algorithm for cognitive radio networks. In: Proceedings of IEEE DySPAN, October
2008

15. Lin, C.R., Gerla, M.: Adaptive clustering for mobile wireless networks. IEEE J.
Sel. Areas Commun. 15(7), 1265–1275 (1997)

16. Trigui, E., Esseghir, M., Boulahia, L.M.: On using multi agent systems in cognitive
radio networks: a Survey. Int. J. Wirel. Mob. Netw. (IJWMN) 4(6) (2012)

Optimal Torus Exploration by Oblivious Robots

Stéphane Devismes1(B), Anissa Lamani2, Franck Petit3,4,
and Sébastien Tixeuil3,5

1 VERIMAG, Université Joseph Fourier, Saint-martin-d’hères, France
stephane.devismes@imag.fr

2 Kyushu University, Fukuoka, Japan
3 LIP6, UPMC Sorbonne Universités, Paris, France

4 INRIA, Projet-Team REGAL, Paris, France
5 Institut Universitaire de France, Paris, France

Abstract. We consider autonomous robots that are endowed with
motion actuators and visibility sensors. The robots we consider are weak,
i.e., they are anonymous, uniform, unable to explicitly communicate, and
oblivious (they do not remember any of their past actions). In this paper,
we propose an optimal (w.r.t. the number of robots) solution for the ter-
minating exploration of torus-shaped networks by a team of k such robots
in the SSYNC model.

In more details, we first show that it is impossible to explore any sim-
ple torus of arbitrary size with (strictly) less than four robots, even if the
algorithm is probabilistic. If the algorithm is required to be determinis-
tic, four robots are also insufficient. This negative result implies that the
only way to obtain an optimal algorithm (w.r.t. the number of robots
participating to the algorithm) is to make use of probabilities.

Then, we propose a probabilistic algorithm that uses four robots to
explore all simple tori of size � × L, where 7 ≤ � ≤ L. Hence, in such
tori, four robots are necessary and sufficient to solve the (probabilistic)
terminating exploration. As a torus can be seen as a 2-dimensional ring,
our result shows, perhaps surprisingly, that increasing the number of
possible symmetries in the network (due to increasing dimensions) does
not necessarily come at an extra cost w.r.t. the number of robots that
are necessary to solve the problem.

1 Introduction

We consider autonomous robots that are endowed with motion actuators and
visibility sensors, but that are otherwise unable to communicate. They evolve
in a discrete environment, i.e., the space is partitioned into a finite number of
locations, conveniently represented by a graph, where the nodes represent the
possible locations that a robot can take and the edges the possibility for a robot
to move from one location to another.

Those robots must collaborate to solve a collective task despite being lim-
ited with respect to inputs from the environment, asymmetry, memory, etc.
In particular, the robots we consider are anonymous, uniform, yet they can sense
their environment and take decisions according to their own ego-centered view.
c© Springer International Publishing Switzerland 2015
A. Bouajjani and H. Fauconnier (Eds.): NETYS 2015, LNCS 9466, pp. 183–199, 2015.
DOI: 10.1007/978-3-319-26850-7 13

184 S. Devismes et al.

In addition, they are oblivious, i.e., they do not remember their past actions.
Robots operate in cycles that include three phases: Look, Compute, and Move
(L-C-M, for short). The Look phase consists in taking a snapshot of the other
robots positions using its visibility sensors. During the Compute phase, a robot
computes a target destination based on the previous observation. The Move
phase simply consists in moving toward the computed destination using motion
actuators. Using L-C-M cycles, three models has been introduced in the litera-
ture, capturing the various degrees of synchrony between robots. According to
a recent taxonomy [11], they are denoted FSYNC, SSYNC, and ASYNC, from
the stronger to the weaker. The former stands for fully synchronous. In this
model, all robots execute the L-C-M cycle synchronously and atomically. In the
SSYNC (semi-synchronous) model, robots are asynchronously activated to per-
form cycles, yet at each activation, a robot executes one cycle atomically. With
the weaker model, ASYNC (stands for asynchronous), robots execute L-C-M in
a completely independent manner.

In this context, typical problems are terminating exploration [4,7–10],
exclusive perpetual exploration [1,2,5], exclusive searching [5,6], and gather-
ing [5,12,13]. In this paper, we address the terminating exploration (or simply
exploration) problem, which requires that robots collectively explore the whole
graph and stop upon completion. We focus on the case where the network is
an anonymous unoriented torus (or simply torus, for short). The terms anony-
mous and unoriented mean that no robot has access to any kind external device
(e.g., node identifiers, oracle, local edge labeling) allowing to identify nodes or
to determine any (global or local) direction, such as North-South/East-West.

A question naturally arises: “Why addressing an abstract topology such as
torus?” To answer this question, we must emphasize that robots are unable to
communicate explicitly and have no persistent memory. So, they are unable to
remember the various steps taken before. Therefore, the positions of the other
robots are the only way to distinguish the different stages of the exploration
process. Torus belongs to the class of regular graphs, i.e., graphs where each
vertex has the same number of neighbors. Such graphs are of particular inter-
est because they are topologies for which the symmetry of configurations with
respect to robot positions is the most frequently observed, making the explo-
ration problem hard to solve. So far, ring-shaped network is the only regular
topology that has been studied [8,10,14]. As a result, an immediate question
arises: “Does the increase of the number of possible symmetries in the network
(mainly due to increasing dimensions) make the problem harder to solve?” Ter-
minating exploration has been studied in other topologies than rings, namely
the tree [9] and grid [7]. However, none of them are regular networks. Torus can
be seen as a 2-dimensional ring. Compared to the ring, the main difficulty lies
in the additional axes of symmetry. It appears to be the most natural candidate
among regular graphs to study the impact of strong topological symmetry on
the complexity to solve the problem.

Optimal Torus Exploration by Oblivious Robots 185

Furthermore, as previously stated, the exploration (with stop) process is
intrinsically related to the ability to differentiate consecutive phases of the explo-
ration. More possible symmetries hint that more robots than in rings are required
to complete exploration: As robots have no way to distinguish and agree on some
kind of orientation, e.g., North-South/East-West, somehow the current robot
configuration has to encode consistent information so that robots agree on both
axes. Since numerous symmetric configurations induce a large number of required
robots, minimizing the number of robots turns out to be a difficult problem.

Related Work. With respect to the (terminating) exploration problem, min-
imizing the number of robots for exploring particular classes of graphs led to
contrasted results.

The only result available for exploration in general graphs [4] considers that
edges are labeled in such a way that the network configuration (made of the topol-
ogy, the edge labeling, and the robot positions) is asymmetric. In this extended
model, three robots are not sufficient to explore all asymmetric configurations,
and four robots are sufficient to explore all asymmetric configurations. Note that
exploring the set of asymmetric configurations is strictly weaker than exploring
the complete underlying graph, especially when the graph is highly symmetric.

The rest of the literature is thus dedicated to a weaker model, where edges are
not labeled (or equivalently, the labeling is decided by an adversary anytime a
robot is activated). One extreme case in this weak model is the set of tree-shaped
networks, as in general, Ω(n) robots are necessary and sufficient to explore a tree
network of n nodes deterministically [9]. The other extreme case is the set of grid-
shaped networks [7], where three robots are necessary and sufficient to explore
deterministically any grid of at least three nodes (except for the grids of size 2×2
and 3 × 3, where four – respectively five – robots are necessary and sufficient).
However, this result is mainly due to the fact that grids are not regular graphs:
they contain nodes of degrees 2, 3, and 4. This topological property implies less
symmetries.

In contrast, rings and tori are regular graphs, and consequently more intri-
cate. In ring-shaped networks [10], the fact that the number k of robots and the
ring size n must be coprime yields to the lower bound Ω(log n) on the number
of robots required to explore a n-size ring. Indeed, the smallest non-divisor of
n evolves as log n in the worst case. However, notice that Lamani et al. also
provide in [14] a protocol that allows 5 robots to deterministically explore any
ring whose size is coprime with 5. The large number of robots and the con-
straint on the ratio between the number of robots and the ring size induced
by the deterministic setting in ring-shaped networks hinted at a possible more
efficient solutions when robots can make use of probabilities [8]. As a matter
of fact, four robots are necessary and sufficient to probabilistically explore any
ring of size at least four. While the gain in going probabilistic is only one robot
when n is not divisible by 5, a logarithmic factor is obtained in the general case.
Aforementioned deterministic solutions typically operate in the ASYNC model,

186 S. Devismes et al.

while probabilistic ones can only cope with the weaker SSYNC model. Actually,
an impossibility result [8] explicitly states that randomization does not help in
the ASYNC model (that is, there exists a scheduling such that random choices
are all nullified).

So far, no research explored the feasibility of exploring a torus-shaped net-
work with a team of k robots. The exploration of tori is a step forward toward
exploration of other (maybe more complex) unoriented periodic 2D discrete
spaces, e.g., spheres.

Contribution. We propose an optimal (w.r.t. the number of robots) solution for
the terminating exploration of torus-shaped networks by a team of k such robots.
In more details, we first show that it is impossible to explore any simple torus of
arbitrary size with less than four robots, even if the algorithm is probabilistic.
If the algorithm is required to be deterministic, four robots are also insufficient.
This negative result implies that the only way to obtain an optimal algorithm
(w.r.t. the number of robots participating to the algorithm) is to make use
of probabilities, and thus, within the SSYNC model, due to aforementioned
impossibility [8].

So, we propose a probabilistic algorithm designed for the SSYNC model that
uses four robots to explore all simple tori of size � × L, where 7 ≤ � ≤ L. Hence,
in such tori, four robots are necessary and sufficient to solve the (probabilistic)
terminating exploration. As a torus can be seen as a 2-dimensional ring, our
result shows, perhaps surprisingly, that increasing the number of possible sym-
metries in the network (due to increasing dimensions) does not necessarily bring
an extra cost with respect to the number of robots that are necessary to solve
the problem.

Roadmap. Section 2 presents the system model and the problem to be solved.
Lower bounds are shown in Sect. 3. The general solution using four robots is
given in Sect. 4. Section 5 gives some concluding remarks.

2 Preliminaries

We consider systems of autonomous mobile entities called robots evolving in a
simple unoriented connected graph G = (V,E), where V is a finite set of n nodes
and E a finite set of edges. Nodes represent locations that robots can take and
edges represent the possibility for a robot to move from one location to another.
Two nodes u and v are neighbors in G iff {u, v} ∈ E.

We assume that G is an (�, L)-Torus (or a Torus, for short), where � and L are
two positive integers, i.e., G satisfies the following two conditions: (i) n = � × L
and (ii) there exists an order v1, . . . , vn on the nodes of V such that ∀i ∈ [1..n]:

– If i + � ≤ n, then {i, i + �} ∈ E, else {i, (i + �) mod n} ∈ E.
– If i mod � �= 0, then {i, i + 1} ∈ E, else {i, i − � + 1} ∈ E.

Optimal Torus Exploration by Oblivious Robots 187

Given the previous order v1, . . . , vn, for every j ∈ [0..(L − 1)], the sequence
v1+j×�, v2+j×�, . . . , v�+j×� is called an �-ring. Similarly, for every k ∈ [1..�],
vk, vk+�, vk+2×�, . . . , vk+(L−1)×� is called an L-ring. Note that when � = L, any
�-ring is also an L-ring and conversely. More generally, we use the term ring to
arbitrarily designate an �-ring or an L-ring.

Nodes are anonymous (they have no access to identifiers or other symmetry
breaking capabilities). Moreover, given two neighboring nodes u and v, there
is no explicit or implicit labeling allowing robots to determine whether u is
either on the left, on the right, above, or below v. However, for the purpose of
explanations, we may use indices for nodes or robots.

An isomorphism of graphs G and H is a bijection f between the vertex sets
of G and H such that any two nodes u and v of G are neighbors in G iff f(u) and
f(v) are neighbors in H. When G and H are one and the same graph, f is called
an automorphism of G. An (�, L)-Torus and an (L, �)-Torus are isomorphic.
Hence, as nodes are anonymous, an (�, L)-Torus cannot be distinguished from
an (L, �)-Torus. So, with loss of generality, we will always consider (�, L)-Tori,
where � ≤ L.

Remark 1. As an (�, L)-torus is a simple graph, every node has four distinct
neighbors, and consequently we have: 3 ≤ � ≤ L and n = � × L ≥ 9.

Operating on G are k robots. The robots do not communicate in an explicit
way; however they see the position of all other robots in their ego-centered coor-
dinate system and can acquire knowledge from this information. Each robot
operates according to its (local) program. We call protocol a collection of k pro-
grams, each one operating on a single robot. Robots are uniform and anonymous,
i.e., they all have the same program using no parameter allowing to differenti-
ate them. We assume that robots cannot remember any previous observation or
computation. Such robots are called oblivious. The program of a robot consists
in executing Look-Compute-Move cycles infinitely many times. That is, a robot
R first observes its environment (Look phase). Based on its observation, R then
(probabilistically or deterministically) decides to move or stay idle (Compute
phase). If R decides to move, it moves toward its destination during the Move
phase. During the Compute phase, the decision between moving or staying idle is
either deterministic or probabilistic. In the latter case, the robot decides between
moving and staying idle using some fixed probability p ∈ (0, 1), and we say that
the robot tries to move.

We consider the SSYNC model, where time is represented by an infinite
sequence of instants 0, 1, 2, . . . No robot has access to this global time. At each
instant, a non-empty subset of robots is activated. Every robot that is activated
at instant t atomically executes a full cycle between t and t + 1. Activations are
determined by an adversary. Note that in this model, any robot performing a
Look operation sees all other robots on nodes and not on edges.

We assume that during the Look phase, every robot can perceive whether
several robots are located on the same node. This ability is called (global) mul-
tiplicity detection. We shall indicate by di(t) the multiplicity of robots present

188 S. Devismes et al.

in node vi at instant t. We consider two versions of multiplicity detection: the
strong and weak multiplicity detections. Under the weak multiplicity detection,
for every node vi, di is a function N �→ {◦,⊥,�} defined as follows: di(t) is
equal to either ◦, ⊥, or � according to vi contains none, one or several robots
at instant t. If di(t) = ◦, then we say that vi is free at instant t, otherwise
vi is occupied at instant t. If di(t) = �, then we say that vi contains a tower
at instant t. Under the strong multiplicity detection, for every node vi, di is a
function N �→ N, where di(t) = x indicates that there are x robots in node vi

at instant t. If di(t) = 0, then we say that vi is free at instant t, otherwise vi is
occupied at instant t. If di(t) > 1, then we say that vi contains a tower (of di(t)
robots) at instant t.

To define the notion of configuration (of the system), we use an arbitrary
order ≺ on nodes. The system being anonymous, robots do not know this order.
Let v1, . . . , vn be the list of the nodes in G ordered by ≺. The configuration at
instant t is d1(t), . . . , dn(t). We denote by initial configurations the configura-
tions from which the system can start at instant 0. Every configuration from
which no robot moves or tries to move if activated is said to be terminal. Two
configurations d1, . . . , dn and d′

1, . . . , d
′
n are indistinguishable (resp., distinguish-

able otherwise) iff there exists an automorphism on G, f : V �→ V such that
∀i ∈ {1, . . . , n}, di = d′

j where vj = f(vi).
The view of robot R at instant t is a labeled graph isomorphic to G, where

every node vi is labeled by di(t), except the node where R is currently located,
this latter node vj is labeled by dj(t), ∗. (Indeed, the coordinate system is ego-
centered.) Hence, from its view, a robot can compute the view of each other
robot, and decide whether some other robots have the same view as its own.
The views V and V ′ are identical iff there exists an isomorphism f of V and V ′

such that every node v of V has the same label in V as node f(v) in V ′.
Every decision to move is based on the view obtained during the last Look

action. However, it may happen that some edges incident to a node v currently
occupied by the deciding robot look identical in its view, i.e., v lies on a symmet-
ric axis of its view. In this case, if the robot decides to take one of these edges,
it may take any of them. We assume the worst-case decision in such cases, i.e.,
the actual edge among the identically looking ones is chosen by the adversary.

A scheduling is a list of activation’s choices that can be made by the adversary,
i.e., a scheduling is any infinite list of non-empty subset of robots σ0, σ1, . . .,
where ∀i ≥ 0, σi is the set of robots activated at instant i. An infinite list
of configurations γ0, γ1, . . . can be generated from the scheduling σ0, σ1, . . . iff
∀i ≥ 0, γi+1 can be obtained from γi after each robot in σi is activated at
instant i to atomically perform a cycle (in this case, γiγi+1 is step). We call
execution any infinite list of configurations γ0, γ1, . . . that can be generated from
an arbitrary scheduling and such that γ0 is a possible initial configuration. An
execution e terminates if e contains a terminal configuration.

We restrict the power of the adversary by assuming that schedulings are fair:
a scheduling σ0, σ1, . . . is fair iff for every robot R, for every instant i, there exists
an instant j ≥ i such that R ∈ σj . An execution e is fair iff e can be generated by a

Optimal Torus Exploration by Oblivious Robots 189

fair scheduling. A particular case of fair scheduling is the sequential fair scheduling:
a scheduling σ0, σ1, . . . that is fair and such that ∀i ≥ 0, |σi| = 1. An execution e
is sequential fair if it can be generated from a sequential fair scheduling.

We consider the exploration problem, where k robots, initially placed at dif-
ferent nodes of G, collectively explore G before stopping moving forever. By
“collectively” we mean that every node of G is eventually visited by at least
one robot. More formally, a protocol P deterministically (resp., probabilistically)
solves the exploration problem assuming a fair scheduling iff every fair execution
e of P starting from a towerless configuration satisfies: (1) e reaches a terminal
configuration in finite time (resp., with probability one), and (2) every node is
visited by at least one robot during e. Note that the previous definition implies
that every initial configuration are towerless. Note also that in case of proba-
bilistic exploration, termination is not certain, however the overall probability
of non-terminating executions is 0. Observe that the exploration problem is not
defined for k > n and is straightforward for k = n. (In this latter case, the
exploration is already accomplished in the initial towerless configuration.)

3 Lower Bound

To be as general as possible, in this section we assume the strongest possible
multiplicity. Moreover, we consider any (deterministic or probabilistic) explo-
ration protocol P using a team of k robots in an arbitrary topology G = (V,E)
of n nodes (i.e., n = |V |).

Assume first that n > k. Then, the exploration is not (trivially) accomplished
in an initial configuration. As robots are oblivious, any terminal configuration
of P in that case should be different from any possible initial configuration.
Remark 2 follows from the fact that the set of possible initial configurations is
exactly the set of all towerless configurations:

Remark 2. If n > k, any terminal configuration of P contains at least one tower.

Our approach is based on Theorem 1, which is a generalization to arbitrary
topologies of a theorem from [8] (this latter was given for rings). The intuitive
idea behind this result is that when n > k, the memory of explored nodes can
only be encoded with configurations that (i) contain at least one tower of less
than k robots (Remark 2) and that (ii) are pairwise distinguishable–no robot
can remember any past move or action, but still needs to distinguish between
visited and unvisited nodes. Moreover, assuming a sequentially fair execution, the
actual exploration process (which is, of course, preceded by some setup phase)
starts in such a configuration where one can memorize that at most k nodes
are already visited. Then, as the execution is assumed to be sequential, at least
n−k additional configurations are required to memorize the visit of all remaining
nodes. Hence, overall there should exist at least n − k + 1 configurations that
contain a tower of less than k robots and that are pairwise distinguishable.

190 S. Devismes et al.

Theorem 1. Considering any (probabilistic or deterministic) exploration pro-
tocol for k robots on a graph of n > k nodes working under any fair scheduling,
there exists a set S of at least n − k + 1 configurations such that:

1. Any two different configurations in S are distinguishable, and
2. In every configuration in S, there is a tower of less than k robots.

A tower involving at least 2 robots, Corollary 1 directly follows from
Theorem 1:

Corollary 1. Under fair schedulings, ∀k, 0 ≤ k < 3, no protocol exists to (deter-
ministically or probabilistically) explore any torus of n nodes using k robots.

The previous corollary excludes that P works with k < 3. Now, let
assume that k = 3 and consider any arbitrary (�, L)-torus (remember that by
Remark 1, n = �×L ≥ 9). Then, by Theorem 1, we should be able to exhibit a set
S of n− 2 configurations such that: (1) any two different configurations in S are
distinguishable, and (2) in every configuration in S, there is a tower of 2 robots.
Such configurations differ according to the relative positions of the tower and the
robot which is alone. Two cases are then possible depending on whether � = L or
� < L. In the former case, the size of S is bounded by

∑�L
2 �+1

i=2 i = �L
2 �×(�L

2 �+3)

2 .
In the latter case, the size of S is bounded by (� �

2� + 1)(�L
2 � + 1) − 1.

Two illustrative examples are given in Figs. 1 and 2. In these examples, for
every value i inside a white node, every two configurations where (1) the black
node contains the tower of two robots and (2) any white node of number i
contains the single robot are indistinguishable. In the (5, 5)-torus of Fig. 1, the
size of S is at most 5. In the (5, 6)-torus of Fig. 2, the size of S is at most 11.

Let first study the case where � = L. Then, �L
2 �×(�L

2 �+3)

2 should be greater
or equal to n − 2, i.e., L2 − 2. From this inequality, we have: 7L2 − 6L − 16 ≤ 0.
Δ = 484 > 0, so 7L2 − 6L − 16 = 0 has two solutions: 6−√

484
14 and 6+

√
484

14 ; and
7L2 − 6L − 16 ≤ 0 for L ∈ [6−√

484
14 ; 6+

√
484

14]. By Remark 1, L ≥ 3. Moreover,

5

2

4

1

3

4

0

1

2

1

3

4

2

4

5

4 3 1 3 4

5 4 2 4 5

Fig. 1. A (5, 5)-torus.

10

2

6

1

5

9

0

4

8

1

5

9

2

6

10

6 5 4 5 6

10 9 8 9 10

3

7

11

7

11

Fig. 2. A (5, 6)-torus.

Optimal Torus Exploration by Oblivious Robots 191

6+
√
484

14 = 2. So, we obtain a contradiction: there is neither probabilistic nor
deterministic exploration protocol in that case, even assuming a fair scheduling.

Let now study the case where � < L. Then, (� �
2� + 1)(�L

2 � + 1) − 1 should
be greater or equal to n − 2, i.e., � × L − 2. From this inequality, we have:
2� + 2L + 8 ≥ 3� × L. As 3 ≤ � < L (Remark 1), 2� + 2L + 8 ≥ 3� × L has no
solution: there is neither probabilistic nor deterministic exploration protocol in
that case, even assuming a fair scheduling.

Hence, there is neither probabilistic nor deterministic protocol to explore any
torus with 3 robots and, with Corollary 1, we can conclude:

Theorem 2. Under fair schedulings, ∀k, 0 ≤ k < 4, there is no protocol to
(deterministically or probabilistically) explore any torus of n nodes using k robots.

Consider now the deterministic exploration with k = 4 robots. Assume any
(�, L)-Torus such that � = L and � is even. Then, it is possible to initially place
the four robots in such way that they have all identical views and all their
possible destinations looked identical (just form a square whose adjacent sides
have length �

2). In this case, the adversary can choose to synchronously activate
all robots at each step in such way that the initial symmetry continues: we obtain
a non-terminating fair execution. Hence:

Theorem 3. Under fair schedulings, ∀k, 0 ≤ k ≤ 4, there is no protocol to
deterministically explore all torus of n nodes using k robots.

Notice that the previous impossibility result can be circumvented, for exam-
ple, by making restrictions on possible initial configurations [6].

4 Optimal Algorithm

We propose a probabilistic algorithm to explore with 4 robots any (�, L)-torus
such that 7 ≤ � ≤ L, assuming weak multiplicity detection. Before providing
informal explanations, we first need to define some terms.

Let v1 and v2 be two nodes containing robot r1 and r2, resp. r1 is a neigh-
boring robot of r2, and conversely. A block is a maximal elementary path along
some ring of the torus B = ui, ui+1, . . . , ui+m with m > 0, where each node is
occupied by exactly one robot. A robot that does not belong to a block is said
to be isolated. A hole is any maximal non-empty elementary path of free nodes
H = ui, ui+1, . . . , ui+m that is along some ring of the torus. The size of a block
(resp., a hole) is the number of nodes it contains. A block (resp. a hole) of size
x is said to be an x-block (resp., a x-hole). Given the block B (resp., the hole
H), the nodes ui and ui+m are termed as the extremities of B (resp., H). We
call neighbor of a hole (resp. a block) any node that does not belong to the hole
(resp. the block) but is neighbor of one of its nodes. In this case, we also say
that the hole (resp. the block) is a neighboring hole (resp. neighboring block) of
the node. By extension, any robot that is located at a neighboring node of a
hole (resp. a block) is also referred to as a neighbor of the hole (resp. the block).

192 S. Devismes et al.

A node u is said to be safe if there is at most one robot that is located within
distance one from u. We call Couple any �-ring that contains exactly two robots.

We are now ready to sketch our algorithm. Our algorithm works in three
distinct successive phases, respectively called SetUp, Tower, and Exploration.
Starting from any towerless configuration, the aim of the SetUp Phase is to
arrange the robots in such a way that they eventually form a ♦.Configuration
(see Fig. 3), without creating any tower during the process. This first phase is
probabilistic. A ♦.Configuration is a configuration, where (1) there are two �-
rings of the torus that both contain a 2-block, and (2) there are two robots that
have two robots in their neighborhood.

Fig. 3. ♦.Configuration.

Once a ♦.Configuration is built, Tower Phase
begins. This phase is also probabilistic and consists
in creating a tower using the two neighboring robots
that have exactly two robots in their neighborhood.
Once the tower is created, the location of robots give
an explicit orientation to the torus; and the last phase,
Exploration Phase, begins. This phase is determin-
istic. The two isolated robots collaborate together to
deterministically explore the torus and eventually stop.
We now explain the three successive phases in more
details.

SetUp Phase. Let us begin with some definitions. A configuration is said to
be a Double-Trap1 (refer to Fig. 4) if there exists an �-ring R that contains a
3-block having exactly one extremity with a neighboring robot that is not in
R. A configuration is a Double-Trap2 (Fig. 5) if there is one isolated robot at
some node z and two 2-blocks B1 = u, v and B2 = x, y such that (1) v = x,
(2) B1 is on a �-ring, (3) z and y are on a �-ring parallel to the one containing
B1, and (4) z is at distance 2 of both u and y. A configuration C is said to
be Regular if C contains no tower, C is not a ♦.configuration, and the robots
can be split in two pairs {r1, r2} and {r3, r4} such that the views of r1 and r2
(resp. the views of r3 and r4) are identical. (A particular case of configuration
Regular is a configuration where all robots have identical views.) A configuration
C is said to be Triplet if C is not a Double-Trap1 and there is a �-ring R that
contains exactly 3 robots. When R contains neither a 3-block nor a 2-block, we
define the Wall as the ring perpendicular to R that contains the robot not in R,
see Fig. 6. A configuration C is said to be Twin (Fig. 7) if C contains a couple,
but is neither Double-Trap1, nor Double-Trap2, nor ♦, nor Regular, not Triplet.
A configuration C is said to be Isolated if C is not Regular and there exists
at most one robot on each ring of size �. Finally, a configuration C is said to
be Quadruplet if C is not Regular and there exists an �-ring R that contains 4
robots.

Phase Setup is probabilistic, but as far as possible, robots move determinis-
tically. However, there are symmetric configurations that require robots to move
probabilistically. The main one is the following:

Optimal Torus Exploration by Oblivious Robots 193

Fig. 4. Double-Trap1.

u
u

v=x

yz

Fig. 5. Double-Trap2.

Wall

Fig. 6. A wall in a Triplet.

R3

R1

R2

Fig. 7. Twin.

(a) The configuration is of type Regular. To break this symmetry, each robot
tries to move to a safe node. Doing so, the symmetry is broken without
creating tower after one step with positive probability.

So, with probability one, the system eventually leaves Case (a) to a configuration
that matches one of the following cases:

(b) The configuration is of type Double-Trap2 or Double-Trap1. In the for-
mer case, by moving one robot as shown in Fig. 5, the system reaches a
♦.Configuration. In the latter case, we easily obtain a Double-Trap2 by mov-
ing only one robot as shown in Fig. 4.

(c) The configuration is of type Triplet. In this case, there are three robots in the
same �-ring R and we deterministically build a Double-Trap1 configuration.
There are several cases to consider. (i) Three robots on R already forms a
3-block. Then, the remaining robot moves to the adequate position to build
a Double-Trap1. (ii) R contains a 2-block. Then, the robot in R that is not
part of the 2-block moves to create the 3-block. Otherwise (iii), a Wall is
defined and we use it to create a 2- or 3-block on R as follows: If a node v
that intersects both the Wall and R is occupied by some robot, the two other
robots on R move towards the Wall to create a 2- or a 3-block (depending on

194 S. Devismes et al.

the choices of the scheduler). Otherwise, each robot of R that is not neighbor
of v moves towards v until a 2-block is created on R.

(d) The configuration is of type Twin. In this case, the aim is to reach a Triplet
configuration with positive probability. Assume first that the configuration
contains only one couple. Then, the two robots that are not part of the
couple compete together (using try to move) so that eventually one of them
is closer from the couple than the other. Then, the closest one moves to
create the Triplet configuration.
Otherwise, the configuration may also contain two or three couples, but not
four, otherwise we would be in Case (a). If the configuration contains two
couples, then each robot that is neighbor of a safe node outside any couple
tries to move to that safe node. Then, with a positive probability, only one of
them moves and we retrieve the previous case where there is only one couple.
If the configuration contains three couples, then � = L and two robots belong
to two couples. These robots try to move to a safe neighboring node. With
positive probability, only one of them moves, and we retrieve a previous case:
a Twin configuration with two couples.

In all remaining configurations, the aim is to reach either a Triplet or a Twin
configuration.

(e) The configuration is of type Quadruplet. In such a configuration, the four
robots belong to some �-ring R. We then consider the subgraph GR induced
by the nodes of R. This graph is isomorphic to an elementary cycle. Now,
as not all robots have identical views, we can discriminate either one unique
robot or two robots (using the sizes of the holes in GR). We let those robots
move outside R. Hence, the system reaches either a Twin or a Triplet con-
figuration.

(f) The configuration is of type Isolated. We consider two subcases:
• � < L. In this case, we discriminate L-rings according to the number of

robots on them. When some but not all robots are alone in their L-rings,
they move along their L-ring to eventually form a Triplet or a Twin con-
figuration with the blocked ones.
In the case where there are two L-rings that contain 2 robots, robots
try to move to a neighboring safe node (if any) outside the L-ring they
belong to. Hence, with a positive probability, we retrieve the previous
case.
In the case where every L-ring contains at most one robot. We first make
robots probabilistically move to discriminate a unique smallest rectan-
gle that encloses the 4 robots. When there are several possible smallest
enclosing rectangles (SER), we decrease their number by proceeding as
follows: if a robot r that is neighbor of a safe node u such that if it moves
to u and it is the only one to move, the number of SER decreases, then r
tries to move to u. In this case, with positive probability, only one robot
moves, reducing the number of possible smallest enclosing rectangles or
leading directly the system to a Twin configuration. If we have a unique
smallest rectangle, s, that encloses the 4 robots and the configuration is

Optimal Torus Exploration by Oblivious Robots 195

not Twin, we discriminate the robots according to their place in s: at a
corner, on a side, or inside of s. This allows us to block some of them.
The other ones move (or try to move, in case of possible symmetry) to
create either a Triplet or a Twin configuration.
Finally, in the case where there is a single L-ring R that contains the
four robots, we proceed as in Case (e), but this time we operate on a
L-ring: one or two robots eventually leave the L-ring and we retrieve one
of the previous cases.

• � = L. We probabilistically discriminate, as previously, a unique smallest
rectangle that encloses the 4 robots. Once the system reaches a config-
uration containing a unique smallest enclosing rectangle, we proceed as
in case � < L. However, note that this case is simpler than the previous
one because all rings have the same size (�), while in the previous case
we had to take care that robots gather on a “small” ring.

We have proven the convergence with probability one from any towerless con-
figuration to a ♦.Configuration (without creating any tower during the process)
by showing that the transitions given in Fig. 8 can be made in finite number of
steps and with positive probability. Notice that some of them are made deter-
ministically. Note also that there are many other possible transitions.

Double-Trap1

Triplet

Double-Trap2

Isolated

Twin

Quadruplet

Regular

Fig. 8. Possible transitions during SetUp.

Fig. 9. Initial configura-
tion for the Exploration
phase.

Tower Phase. This phase starts in ♦.Configuration.
Let u1 and u2 be the two occupied neighboring nodes
having themselves two occupied neighboring nodes.
Let r1 and r2 be the two robots located at u1 and u2,
respectively. During this phase, r1 and r2 try to move
towards each other anytime they are activated. By
scheduler fairness, both of them eventually created
a tower T with probability one on either u1 or u2

(Fig. 9) and the phase is finished.

Exploration Phase. We first need some definitions.
Given two nodes u and v, let Ruv be the smallest
enclosing rectangle that includes both u and v. Let αuv (βuv) be the length

196 S. Devismes et al.

Fig. 10. First phase of exploration, The integers show the move order.

in terms of hops of one of the smallest (resp., greatest) side of Ruv, Ruv is
an (αuv, βuv)-rectangle. The (Manhattan) distance between two nodes u and v,
denoted by duv, is equal to αuv + βuv. We define a total order on distances as
follows: given four nodes u, v, u′, and v′, duv ≤ du′v′ iff either duv < du′v′ or
duv = du′v′ and βuv ≤ βu′v′ .

The deterministic exploration starts from the initial configuration built dur-
ing the tower phase. Denote the node holding the tower by T. The two rings
passing through T are called coordinate rings. In the sequel, ‘o’ (respectively,
‘*’) denotes the nearest (respectively, farthest) single node (or robot) from T,
i.e., doT < d∗T . Note that our algorithm ensures that both ‘o’ and ‘*’ remain
the same robots until the end of the exploration. Given a node u, if αTu < βTu

and {αTu, βTu} �= {� �
2�, �L

2 �}, then there exists an orientation of the coordinate
rings such that u = (αTu, βTu). In the following, when it is possible, we build a
coordinate system over RTu by setting the x-axis (the y-axis) as the coordinate
rings that is parallel to the smallest (resp., greatest) side of RT,∗ and by orienting
both axis so that the coordinates of u are positive.

The main idea of Phase Exploration is the following: both robots that are
not part of the tower collaborate together in order to explore the whole torus.
They alternate between two roles: Explorer and Leader. Leader L allows to build
a coordinate system SL over RTL. The explorer is in charge of deterministically
exploring the torus over SL. The exploration works in three phases, executed in
sequence:

Phase 1: Fig. 10 illustrates that phase. Robot * (i.e., the farthest robot of T)
plays the Leader role. Starting from the configuration built by Phase Tower,
Robot * first built a (1, 2)-rectangle with T by moving in the opposite direc-
tion to o, refer to Move #1 in Fig. 10. RT∗ allows to build a coordinate system
S∗, where Robot * occupies Node (1, 2) w.r.t. S∗. Then, Robot o initiates
a spiral-shaped exploration. It visits the nodes that form the first surround-
ing square around T and stops at node (−1,−1)—Move #2. Next, Robot *
moves to node (2, 3) passing through node (1, 3)—Moves #3′ and #3′′ in in

Optimal Torus Exploration by Oblivious Robots 197

Fig. 10. Then, Robot o visits the nodes that form the second surrounding
square around T and stops at (−2,−2)—Move #4. Finally, Robot * moves
back to (1, 3), followed by Robot o that moves back to (−2,−1)—Moves #5
and #6 in Fig. 10.
Note that our method requires that Robot * must be able to move at least
three lines away from the tower. Furthermore, Robot o must be able to visit
the two squares centered on the tower and the orientation built by Robot *
must be unambiguous. These three conditions constrain the torus to be of
size at least 7 × 7.

Phase 2: In this phase, Robot o is the leader. RTo provides a coordinate system
So, where Robot o is located at (1, 2). Robot * now proceeds to the spiral
exploration by visiting surrounding squares around T one after another, see
Figs. 11 and 12. Robot * first explores the third surrounding square around
T, then the fourth, and so forth, until it visits the (� �

2�−1)-th square. Then,
there are two cases depending on the parity of �: If � is odd, then Robot *
visits the whole � �

2�-th square and finish at the negative (w.r.t So) corner
of the square, see Fig. 11. Otherwise (� is even), Robot * visits half of the
� �
2�-th square only and stops at the positive corner (w.r.t. So) of the square,

see Fig. 11. In both cases, if � = L, then the exploration is done.
Phase 3: This last phase is performed only if � �= L. In that case, Robot *

terminates the exploration by going alternatively from the left to the right
and from the right to the left among the nodes forming the remaining of the

Fig. 11. Second and third phase, odd case.

198 S. Devismes et al.

Fig. 12. Second and third phase, even case.

rectangle. If � is odd, then Robot * progresses towards the negative (w.r.t.
So) side of the torus—Fig. 11. Otherwise (� is even), the progression is made
on the positive side—Fig. 12. In both cases, the exploration ends either on
the positive side or the negative side of the L-th line, depending on either L
is odd or even.

5 Concluding Remarks

While the solution we provided for the torus exploration problem is optimal in
terms of number of robots, there remain challenging open questions. First, we
presented an algorithm for all tori of size � × L, where 7 ≤ � ≤ L. In [7], the
authors stated that small grids require more robots. Determining if our results
can be extended to smaller tori is an interesting problem. We expect mechanized
approaches [3] to be valuable for investigating small size tori. Second, dealing
with higher dimension (e.g., from a ring to a torus) does not necessarily increase
the robot number complexity of the exploration problem. The issue of the d-
dimensional tori (with d > 2) remains open.

Acknowledgment. Authors are grateful to François Bonnet for valuable discussions
and suggestions.

Optimal Torus Exploration by Oblivious Robots 199

References

1. Baldoni, R., Bonnet, F., Milani, A., Raynal, M.: Anonymous graph exploration
without collision by mobile robots. Inf. Process. Lett. 109(2), 98–103 (2008)

2. Baldoni, R., Bonnet, F., Milani, A., Raynal, M.: On the solvability of anonymous
partial grids exploration by mobile robots. In: Baker, T.P., Bui, A., Tixeuil, S.
(eds.) OPODIS 2008. LNCS, vol. 5401, pp. 428–445. Springer, Heidelberg (2008)

3. cois Bonnet, F., Défago, X., Petit, F., Potop-Butucaru, M., Tixeuil, S.: Discover-
ing and assessing fine-grained metrics in robot networks protocols. In: 33rd IEEE
SRDS Workshops, Workshop on Self-organization in Swarm of Robots, pp. 50–59
(2014)

4. Chalopin, J., Flocchini, P., Mans, B., Santoro, N.: Network exploration by silent
and oblivious robots. In: WG, pp. 208–219 (2010)

5. D’Angelo, G., Di Stefano, G., Navarra, A., Nisse, N., Suchan, K.: A unified app-
roach for different tasks on rings in robot-based computing systems. In: IPDPS
Workshops, pp. 667–676 (2013)

6. D’Angelo, G., Navarra, A., Nisse, N.: Gathering and exclusive searching on rings
under minimal assumptions. In: Chatterjee, M., Cao, J., Kothapalli, K., Rajs-
baum, S. (eds.) ICDCN 2014. LNCS, vol. 8314, pp. 149–164. Springer, Heidelberg
(2014)

7. Devismes, S., Lamani, A., Petit, F., Raymond, P., Tixeuil, S.: Optimal grid explo-
ration by asynchronous oblivious robots. In: Richa, A.W., Scheideler, C. (eds.)
SSS 2012. LNCS, vol. 7596, pp. 64–76. Springer, Heidelberg (2012)

8. Devismes, S., Petit, F., Tixeuil, S.: Optimal probabilistic ring exploration by
semi-synchronous oblivious robots. Theor. Comput. Sci. 498, 10–27 (2013)

9. Flocchini, P., Ilcinkas, D., Pelc, A., Santoro, N.: Remembering without memory:
tree exploration by asynchronous oblivious robots. Theor. Comput. Sci. 411(14–
15), 1583–1598 (2010)

10. Flocchini, P., Ilcinkas, D., Pelc, A., Santoro, N.: Computing without communi-
cating: Ring exploration by asynchronous oblivious robots. Algorithmica 65(3),
562–583 (2013)

11. Flocchini, P., Prencipe, G., Santoro, N.: Distributed Computing by Oblivious
Mobile Robots. Synthesis Lectures on Distributed Computing Theory. Morgan &
Claypool Publishers (2012)

12. Haba, K., Izumi, T., Katayama, Y., Inuzuka, N., Wada, K.: On gathering problem
in a ring for 2n autonomous mobile robots. In: SSS, p. Poster (2008)

13. Klasing, R., Kosowski, A., Navarra, A.: Taking advantage of symmetries: gather-
ing of many asynchronous oblivious robots on a ring. Theor. Comput. Sci. 411(34–
36), 3235–3246 (2010)

14. Lamani, A., Potop-Butucaru, M.G., Tixeuil, S.: Optimal deterministic ring explo-
ration with oblivious asynchronous robots. In: Patt-Shamir, B., Ekim, T. (eds.)
SIROCCO 2010. LNCS, vol. 6058, pp. 183–196. Springer, Heidelberg (2010)

Source Routing in Time-Varing
Lossy Networks

Dacfey Dzung2, Rachid Guerraoui1, David Kozhaya1(B),
and Yvonne-Anne Pignolet2

1 EPFL IC IIF LPD, INR 315 (Bâtiment INR),
Station 14, 1015 Lausanne, Switzerland

{rachid.guerraoui,david.kozhaya}@epfl.ch,
2 ABB Corporate Research, Raleigh, Switzerland

{dacfey.dzung,yvonne-anne.pignolet}@ch.abb.com

Abstract. This paper addresses the path selection problem arising in
multi-hop sensor networks, e.g., Smart Grids. A set of multi-hop paths, of
varying transmission quality, connect source and destination nodes. The
source must select one path for each message to send without knowing
the state of the hops. It can however use information deduced from earlier
transmissions to decide on a good path for the current message. The goal
is to maximize the discounted number of successfully delivered messages.
We prove that the myopic routing policy, arguably the most appealing
known way to tackle this problem, can permanently ignore good paths.
We also generalize an empirically proven good approach, the Whittle
index, and show its intractability for the problem at hand. We propose a
new tractable metric, Harmonic Discounted Index (HDI), as a measure of
attractiveness of transmitting over a path. We evaluate the performance
of our HDI metric in a variety of simulation scenarios revealing a superior
performance compared to all alternative index policies.

Keywords: Source routing · partially observable Markov decision process ·
Time-varying lossy channels

1 Introduction

Large sensor networks, as for example needed for smart grids, comprise a wide
range of devices, e.g. sensors and actuators, interconnected by communication
links of which some might be very unreliable [19]. Unreliability arises as a con-
sequence of the utilized communication technologies, namely power line and
wireless [3,6,8,14]. In both, wireless and power line, the link quality can vary a
lot, even within short intervals. Due to the transmission ranges and the topolo-
gies of these networks, there are typically several multi-hop paths to select from
when disseminating information.

This paper addresses the path selection problem arising in source routing for
multi-hop sensor networks. Some examples of existing source routing protocols

c© Springer International Publishing Switzerland 2015
A. Bouajjani and H. Fauconnier (Eds.): NETYS 2015, LNCS 9466, pp. 200–215, 2015.
DOI: 10.1007/978-3-319-26850-7 14

Source Routing in Time-Varing Lossy Networks 201

(a) (b)

S D

n-1 nodes

Path K

Path 2

Path 1

Control Unit
(Destination)

Sensor
(Sender)

Forwarding devices

Hop

G B
1- 1-

Fig. 1. (a) A network for automated metering connecting a source S to a destination
D, by K independent n-hop paths. (b) Gilbert-Elliot model of a communication hop.

for such networks are RPL non-storing mode [23] and Dynamic Source Rout-
ing (DSR) [5]. To keep the network load low and avoid collisions, the goal is to
minimize the number of retransmissions through “smart” routing decisions at
the source, under constrained knowledge of the states of the underlying lossy
hops. We consider a network where a sender has access to multiple independent
multi-hop paths (see Fig. 1-(a)), but is restricted to transmitting on one of them
at any given point in time to avoid interference. We study how a sender can
intelligently utilize past observations and the knowledge of the stochastic prop-
erties of individual hops to make routing decisions that maximize the number of
successfully delivered messages favoring low message latency.

We consider individual hops to be lossy time-varying communication links. In
most routing studies, the time-varying behavior of hops is not explicitly modeled.
In this paper however, each hop is modeled as a 2-state discrete Markov chain,
known as the Gilbert-Elliot model (GE) [9,10] (Fig. 1-(b)). The GE channel is a
simple way to capture time-varying channel behavior which is widely used [8,18].
The reliable state, noted G, corresponds to a probability p of successful transmis-
sion such that p = 1. The unreliable state, noted B, corresponds to a transmission
success probability p = 0. The transition probabilities between the reliable and
the unreliable state can accommodate for the relatively slow processes affecting
power line communication quality such as switching of the power grid and acti-
vation of electrical equipment, hence state transitions typically occur only every
few hours [17,20]. In contrast, typical wireless time-varying behavior occurs due
to occasional shadowing, but these effects are typically measured in seconds or
minutes, i.e., the wireless transition probabilities are different from power line.
In practice, these transition probabilities can be well approximated [12].

We model the path selection problem as a sequential decision task, where a
successful message delivery is associated with a unit reward. The performance of
a routing policy, can be thus evaluated from the accumulated rewards. We first
prove that the myopic routing policy, arguably the most appealing known way
to tackle path selection, is optimal under memory-less hops. However, under
positively correlated hops, we uncover, for the first time, an intriguing locking
behavior where good paths can be permanently overlooked for transmission.

202 D. Dzung et al.

We generalize the Whittle index, which showed excellent empirical performance
in single-hop cases [13,16], and show its intractability for multi-hop paths. We
present a new tractable metric, Harmonic Discounted Index (HDI), for measur-
ing the attractiveness of transmitting over a path, based on Whittle indicies1 of
individual hops. We empirically evaluate the performance of our HDI metric in
a variety of simulation scenarios showing that our HDI metric outperforms all
alternative index policies and circumvents the non-optimal myopic locking.

Contributions. Previous path selection work has either focused on single-hop
decisions or simpler hop models with constant transmission success probabilities.
Our main contributions can be thus summarized as:

– A first mathematical definition of the path selection problem in a multi-hop
and a partially observable Markov decision process (POMDP) setting.

– An optimality and tractability analysis of myopic and whittle routing metrics
(indices) for the path selection problem respectively.

– An establishment of a tractable routing metric (HDI) and a relative perfor-
mance evaluation showing a performance beating alternative routing indices.

Road map. The rest of the paper is organized as follows: Sect. 2 discusses the
related work. Section 3 defines the system model. Section 4 presents a mathe-
matical definition of multi-hop path selection. Section 5 shows optimality and
tractability analyses of myopic and whittle index policies respectively. Section 6
presents our new HDI metric. Section 7 details performance evaluations in vari-
ous network scenarios. Finally Sect. 8 concludes the paper. Due to space limita-
tions, proofs and derivations are deferred to a technical report [7].

2 Related Work

Various POMDP formulations and game theory techniques have been broadly
applied to several domains [1,11,13,24]. Multichannel opportunistic access, a
closely related domain, has been studied under different assumptions. In general,
the multichannel opportunistic access problem considers a sender who has to
sense and transmit on one of multiple accessible channels, where each evolves
independently, regardless of being sensed or not. In comparison with the path
selection problem considered in this paper, the sender in our case has access to
n-hop paths, where each hop along a path is an independent Markov process that
evolves at all times whether it was used for transmission or not. The work in [1]
studied the mutlichannel access problem with channels that are independent and
identically distributed (i.i.d.) Markov processes. In fact [1] showed that (a) the
myopic policy under these assumptions admits a simple universal structure, and
(b) guarantees optimality when channels are assumed to be positively correlated,

1 Despite its wide use in the single hop case, the known theoretical guarantees [21]
for the Whittle index are very weak and theoretical analysis remains elusive and
challenging, mainly because of its highly-coupled and complex dynamics [11].

Source Routing in Time-Varing Lossy Networks 203

i.e. 1 − β > α (Sect. 3). The authors in [11] studied the same problem however
without requiring channels to be i.i.d. They formulated the problem as a special
case of POMDP known as the restless bandit problem. The authors studied
the average expected reward and proposed an approximation algorithm with
a performance guarantee of 2. The work in [13] studied a similar formulation
of this problem for non-identically distributed channnels. The authors obtained
Whittle index in closed form for both discounted and average reward criteria
and showed its optimality under certain conditions when the channels are i.i.d.

3 Problem Model

We consider a network where a source node (sender) is connected to a destination
by K independent n-hop paths (Fig. 1), but is restricted to choose only one
of them for transmission. For analytical tractability, we focus on simple non-
trivial networks, i.e., paths are assumed independent and the underlying hops are
modeled as independent Markov chains with only two states. We assume a global
discrete clock represented by t = {0, 1, 2, 3, . . . ,∞}. Every communication hop in
the system is assumed to conform to an independent Gilbert-Elliot (GE) model
(Fig. 1-(b)). At every time unit in t, and only then, every hop may transition
to the other state according to its transition probabilities α and β (assumed to
be known by the source2). If a hop is currently in the reliable state (G), it will
remain at the next time unit in this reliable state with probability (1−β) or will
shift with probability β to the unreliable state (B) (analogously the next state
is determined by α if it currently is in the unreliable state). The state of a hop
remains fixed in the time interval between consecutive time units in t.

We assume that the source sends a message (be it new or a retransmission)
every n time units. This assumption is solely considered for clearer mathematical
derivations avoiding notation complexity. So in this paper, the decision times
to send, denoted by T = {T0, T1, T2, . . . T∞}, are deterministic and occurr at
t = {0, n, 2n, 3n, . . . ,∞}. When sending a message m, none of the current hop
states is known and the source decides on a single path for transmission. Once
a decision is made, m is transmitted along the selected path, going sequentially
through each of the underlying path hops in 1 unit of time, as long as they
are reliable. If m traverses an unreliable hop, it is entirely dropped and all
consecutive hops will not be traversed. In case a message is dropped, a packet-
drop detection mechanism informs the source (before the source decides on a new
message) about the hop which led to the message loss3. This assumption ensures
that in case of message loss the source can rightfully guess state information
about the hops from the source up to and including the lossy hop. Alternatively,
the source knows that m successfully reached the destination, if nothing is heard
from this detection mechanism after n time units of sending m.
2 In practice these probabilities can change and can be well approximated [15].
3 The exact nature of the packet-drop detection mechanism is not of interest in this

work, which is only a first step towards a solution of the general problem. Delayed
and incorrect packet-drop detection are beyond the scope of this work.

204 D. Dzung et al.

The objective of the source is to maximize the discounted expected number
of successfully delivered messages, since low message latency are favored [4,13].

Generalizing Our Model. We illustrate the generality of our work, in a com-
panion technical report [7] showing how our formulation can naturally extend
to some relaxations. We particularly examine: (1) model A: when a message is
lost, the source does not have to wait but can start a new message transmission
directly in the following time step and (2) model B: the available paths have
different number of hops. Our theoretical results (Sect. 5) about myopic locking
and Whittle intractability extend as well to both models.

4 Path Selection: A Mathematical Definition

We denote by S(t) = [S1(t), S2(t), . . . , SK(t)] the set of states of the K available
n-hop paths where: Sk(t) = {sk,1(t), sk,2(t), . . . , sk,n(t)} such that sk,i(t) ∈
{G,B} is the state of ith hop along path k. Let a(Tj) = [a1(Tj), a2(Tj), . . . ,
aK(Tj)] ∈ [0, 1]K be the vector of actions taken at decision time Tj , where
ak(Tj) = 1 (ak(Tj) = 0) means transmitting (not transmitting resp.) over
the kth path at decision time Tj . Thus, ak(Tj) = 1 implies ak,i(t)|t=j·n+i−1 =
1 ∀i ∈ [1, n] subject to

∑n
i=1 ak,i(t)|t=t = 1. In other words, when path k is

selected for transmission at decision time Tj , every hop along path k is used
only once in the time interval [j · n, (j + 1) · n − 1], such that the first hop
along path k is used first, then the second hop, etc. Whereas ak(Tj) = 0 implies
ak,i′(t)|t=j·n+i−1 = 0 ∀i′, i ∈ [1, n], which means that when path k is not selected
for transmission at decision time Tj , none of its hops are used in the time interval
[j ·n, (j +1) ·n− 1]. The action vector a(Tj) corresponds to the routing decision
taken at decision time Tj .

Since the source operates under partial information of the state the hops are
in, and since not all states can be observed, this problem can be transformed
into a partially observable Markov decision process (POMDP) with all past and
current state information contained in a sufficient statistic known as the belief [2].
This hop belief is the conditional probability over the hop state space. In our
problem, we assume independent paths, with stochastically independent hops.
Accordingly, we maintain independently for each hop, a belief, wk,i(t) ∀k ∈
[1,K], i ∈ [1, n] where wk,i(t) is the conditional probability that the relative
hop is in the reliable state, given all previous feedback obtained for that hop.
Initially, the hop belief is set to the stationary probability, wk,i(t)|t=0 = αk,i

αk,i+βk,i

Afterwards, and at every time unit, each belief is updated independently:

wk,i(t + 1) =

⎧
⎨

⎩

1 − βk,i if ak,i(t) = 1, sk,i(t) = G,
αk,i if ak,i(t) = 1, sk,i(t) = B,
τ(wk,i(t)) if ak,i(t) = 0

where τ(wk,i(t)) = (1 − βk,i)wk,i(t) + αk,i(1 − wk,i(t)). The source is the sole
place deciding which path to use for transmission. It should thus account for the

Source Routing in Time-Varing Lossy Networks 205

states of the hops relative to the time that the message might reach them. We
represent this information by a belief vector Ωk:

Ωk(t) = [wk,1(t), wk,2(t + 1), . . . , wk,n(t + n − 1)] = [wk,1(t), τ(wk,2(t)), . . . , τ
n−1

(wk,n(t))]

(1)
where τx(wk,i(t)) = τ(τ(. . . τ(wk,i(t))))︸ ︷︷ ︸

, τ0(wk,i(t)) = wk,i(t). The recursive call

in τ is done relative to the position of the hop along that path, as a message
needs 1 time unit to traverse a hop. The source node thus keeps belief vectors
of all K paths, denoted by P (t) = [Ω1(t), Ω2(t), . . . , ΩK(t)].

We assume that a reward of 1 corresponds to a single successful message
delivery. Our objective is thus represented by the expected discounted reward
which averages the accumulated rewards over time, with a higher coefficient
(discount) for earlier rewards. Denote by π, the routing policy, the set of all
action vectors, i.e., a(T) ∀T . Let Ra(Tj) be the reward obtained relative to the
action vector a(Tj) at decision time Tj . The expected discounted reward over
infinite decision times, given an initial belief vector P is thus expressed by:

Eπ

⎡

⎣
∑

Tj∈T

γ tRa(Tj)|P

⎤

⎦ (2)

subject to
∑K

k=1 ak(Tj) = 1, where γ : 0 < γ < 1 is the discounted factor.
∑K

k=1 ak(Tj) = 1 means that, at any decision time, exactly one path is used for
transmission. Denote by Vγ(P) the value function, i.e. the maximum expected
total discounted reward obtained by the optimal policy under the set of ini-
tial belief vectors P . Then Vγ(P) = max

k∈K
{Vγ(P ; ak = 1)} where Vγ(P ; ak = 1)

denotes the total expected discounted reward from selecting path k for trans-
mission at first followed by the optimal policy in future decision times.

The expression of Vγ(P ; ak = 1) can be obtained according to Bellman’s
equation [8]. To illustrate the underlying idea, we develop this expression for the
case of K = 2 and n = 2, where P = [Ω1, Ω2] is the set of belief vectors such
that Ωk = [wk,0, τ(wk,1)] (derivations of (3) and (4) can be found in [7]).

Vγ(P (t); a1 = 1) = w1,1τ(w1,2) + γ[w1,1τ(w1,2)Vγ(τ(1 − β1,1), τ(1 − β1,2),

τ2(w2,1), τ3(w2,2)) + w1,1(1 − τ(w1,2))Vγ(τ(1 − β1,1), τ(α1,2), τ2(w2,1),

τ3(w2,2)) + (1 − w1,1)Vγ(τ(α1,1), τ3(w1,2), τ2(w2,1), τ3(w2,2))]

(3)

Vγ(P (t); a2 = 1) = w2,1τ(w2,2) + γ[w2,1τ(w2,2)Vγ(τ2(w1,1),

τ3(w1,2), τ(1 − β2,1), τ(1 − β2,2)) + w2,1(1 − τ(w2,2))Vγ(τ2(w1,1), τ3(w1,2),

τ(1 − β2,1), τ(α2,2)) + (1 − w2,1)Vγ(τ2(w1,1), τ3(w1,2), τ(α2,1), τ3(w2,2))]
(4)

Vγ(P ; ak = 1) can be split into two main components: one which repre-
sents the expected immediate reward relative to selecting path k and a second

206 D. Dzung et al.

representing the discounted future reward resulting from to choosing path k at
the first decision. Vγ(P ; ak = 1) = wk,1τ(wk,2)︸ ︷︷ ︸

+ γ[. . .]
︸ ︷︷ ︸

discounted future reward

.

Each term, in the future reward, is a function of a joint set of beliefs each
spanning the set of real values in the interval [0, 1]. The dimensions of these
terms grow with nK and thus the required computations increase immensely as
K and n increase. Solving the Bellman equation pertaining to problem (2), and
hence obtaining the optimal policy, becomes rapidly intractable [16]. Therefore,
efficient near-optimal solution methods are sought.

5 Index-Based Policies: Formulation and Analysis

Index policies are selection protocols that assign an index, to each state of the
K paths and select the path with the highest index for transmission. This index
evaluates how rewarding it is to select a path under a particular state. Some path
indices are strongly decomposable, i.e. can be computed separately for each path,
without regard of the states of other paths. This reduces the complexity of the
problem as compared to a full POMDP solution. We examine two such index
policies for multi-hop paths: (i) Myopic policy and (ii) Whittle index.

5.1 Myopic Performance

The myopic policy is an index-based policy which assigns the immediate expected
reward of selecting a path as an index. It significantly reduces the computation
complexity by disregarding any possible effect of the future discounted reward
on decision making. It has been shown for stochastically identical single hops
(channels), Sect. 2, that such a myopic strategy guarantees an optimal solution
[1]. However, to the best of our knowledge, not much has been said about this
policy for non-identical hops with equal rewards or for multi-hop paths.

Entirely Memory-less Hops. We first show a scenario of multi-hop paths
where future rewards do not contribute to decision making: in this case the
myopic policy is optimal. A communication hop (Fig. 1-(b)) becomes entirely
memory-less when 1 − βk,j = αk,j . The belief, as a result, remains constant at
all times wk,j = 1 − βk,j = αk,j = τ(wk,j).

Lemma 1. In a set of K independent paths each consisting of n entirely memory-
less hops, the myopic policy is optimal.

Furthermore, the optimal policy may, in this case, transmit over one path only at
all decision times, since all hop beliefs remain constant. Due to space limitations
proofs can be found in companion technical report [7].

Positively Correlated Hops. We now study a general case of positively cor-
related hops, i.e. 1 − βk,i > αk,i ∀k ∈ K. We show that the optimality of the
myopic decisions is not guaranteed. We namely identify a condition under which

Source Routing in Time-Varing Lossy Networks 207

the myopic policy gets locked, i.e., permanently stops selecting certain paths
regardless of how reliable they could be. For presentation simplicity, we first
consider one transmission hop per path (the hop notation will be omitted). The
results are generalized later in this section to include n-hop paths. The belief of
a single hop has two important characteristics [13]: (i) αk < τ(wk) < 1−βk and
(ii) τ t(wk) monotonically converges to wk

0 = αk

αk+βk
as t → ∞.

Theorem 1. If a single hop path, k, exists such that for any other path k′ ∈ K,
wk

0 < αk′ , then the myopic policy will never select path k for transmission after
the first time k is observed in the unreliable state.

Corollary 1. If the beliefs are initialized to their stationary probabilities4, then
path k will never be selected by the myopic policy for transmission.

IMPORTANT: Theorem 1, on its own, does not necessarily indicate that the
myopic performance is not good. In fact, Theorem 1 also applies to the entirely
memory-less case (Sect. 5.1) where the myopic policy is indeed optimal. The
significance of Theorem 1 on the quality of the myopic routing decisions is deter-
mined by the stochastic properties of the neglected paths. A simple example of
two single hop paths, illustrates the effects. Consider a source with two paths:
Path1: α1 = 0.6; 1 − β1 = 0.65 (frequently switching resembling wireless hops)
and Path2: α2 = 0.1; 1 − β2 = 0.93 (slow switching resembling power line
hops). A source selecting paths myopically, will never transmit on Path2 after
it observes Path2 in a unreliable state for the first time. Therefore it does not
make use of the fact that Path2 can return to the reliable state at a later time.
Transmitting forever on Path1 which switches more frequently might be less
rewarding than transmitting on Path2 when it is in the reliable state. We sim-
ulate in Sect. 5 such examples, proving the non-optimality of myopic decisions.

We generalize our result to n-hop paths (proofs can be found in [7]).

Theorem 2. If an n-hop path k exists such that for any path k′ ∈ K:

wk,f
0

f−1∏

h=1

τn−1(1 − βk,h)
n∏

l=f+1

τn+l−1(1 − βk,l) <

n∏

r=1

τ r−1(αk′,r)

for any f ∈ [1, n], then path k will never be played by the myopic policy after the
first time its f th hop is observed in an unreliable state.

Theorem 2 establishes conditions where myopic routing decisions can be non-
optimal. The significance of the performance gap between the myopic and opti-
mal solution is determined by the stochastic properties of the available paths.

5.2 Whittle Index: A Path Formulation

In this section, we generalize Whittle index [22] for multi-hop paths. The Whittle
path index depends merely on the properties of that particular path and not of
4 This initialization is assumed in most of the previous literature [1,13,16].

208 D. Dzung et al.

other paths. So, it is enough to consider a single n-hop path. Given a single n-
hop path, at each decision time the source can make one of two possible actions
(i) use that path for transmission or idle that path. An optimal selection policy
would partition the path state space into a passive and an active set where it is
optimal to idle or use the path for transmission respectively. The Whittle index
measures the attractiveness of transmitting over a path under a subsidy, λ. For
this end, we consider a single multi-hop path identical to the multi-hop path just
described except that a constant subsidy5, λ, is obtained whenever the path is
idled. Clearly this subsidy λ affects how the state space is optimally partitioned
between the active and the passive set and states which remain active under a
larger subsidy are thus more attractive to the source. Based on this intuition,
the minimum subsidy required to move a given state from the active set to the
passive set constitutes a measure of how attractive that state is [13].

More precisely, we denote by Vγ,λ(P) the value function corresponding to
the maximum expected total discounted reward that can be obtained from a
single path with subsidy λ and belief vector P (we drop the path index from
the notation). Denote by Vγ,λ(P ; a) the total expected discounted reward from
taking action a at the first decision time followed by the optimal policy in the
future. Thus Vγ,λ(P) = max{Vγ,λ(P ; a = 0), Vγ,λ(P ; a = 1)}. As in Sect. 5.1, we
derive the value functions assuming a 2-hop path under subsidy λ.

Vγ,λ(P ; a = 1) = w1τ(w2) + γ [w1τ(w2)Vγ,λ(τ(1 − β1), τ(1 − β2))

+w1(1 − τ(w2))Vγ,λ(τ(1 − β1), τ(α2)) + (1 − w1)Vγ,λ(τ(α1), τ3(w2))
]
.

Vγ,λ(P ; a = 0) = λ + γVγ,λ(τ2(w1), τ3(w2)).

(5)

Definition 1. The passive set P(λ) is the set of path states for which it is
optimal to make the path passive under subsidy λ.

We define the passive set for the 2-hop path as P(λ) = {[w1, τ(w2] : Vγ,λ

(P ; a = 0) ≥ Vγ,λ(P ; a = 1)} and generalize it for an n-hop path as:

P(λ) = {[w1, τ(w2), . . . , τn−1(wn)] : Vγ,λ(P ; a = 0) ≥ Vγ,λ(P ; a = 1)}. (6)

A meaningful Whittle index definition for a path, requires that a path made
passive under subsidy λ should also be made passive under a subsidy λ′ > λ.
We thus define the indexability of a path:

Definition 2. A path is said to be indexable if its passive set P(λ) increases
from ∅ to the whole state space of [0, 1]n as λ increases from −∞ to +∞. If the
path is indexable, the Whittle index is the infimum subsidy λ which makes the
passive and active actions equally rewarding:

W (P) = inf
λ

{λ : Vγ,λ(P ; a = 0) = Vγ,λ(P ; a = 1)}.

5 The subsidy, λ, can be thought of as a counter reward for idling the path.

Source Routing in Time-Varing Lossy Networks 209

From Definition 2, a larger index indicates that the path is more attractive, in the
sense that it requires a higher subsidy to be made passive. A source can choose
at every decision time the path with the highest Whittle index for transmission.
It is important to notice though, that the dimensions of Vγ,λ in (5) grow with
the number of hops n and the state space hence expands to [0, 1]n. Consequently
solving for Whittle index, as n increases becomes intractable. This implies that
computing the Whittle index efficiently for an n-hop path is not feasible.

6 Harmonic Discounted Index (HDI)

Given the non-optimality of myopic decisions and the intractability of the Whit-
tle index for multi-hop paths, we seek to design an implementable routing path
metric. We advocate the intuition behind our path metric, after which we for-
mally present it. A hop can be correlated with a simple conducting wire. A poorly
conducting wire, which renders a propagating signal undetectable by a receiver,
is equivalent to an unreliable hop which leads to the loss of the message being
transmitted. The attractiveness of a hop can thus be directly correlated with a
conductance measure. Since we assume independent communication hops, every
hop would constitute an independent wire with its own conductance. A multi-
hop path, as a result, becomes a sequence of multiple conducting wires connected
in series. The metric embodying the attractiveness of transmitting over the path
hence translates to the equivalent conductance of the series combination.

6.1 Hop Conductance

We define the hop conductance to be the measure of the attractiveness of trans-
mitting on a communication hop along a path. This conductance is composed
of two factors, which we next explain in details.

Attractiveness of Hop Transmission Medium. We consider each hop on its
own. This effectively transforms a single n-hop path to n separate 1-hop paths.
We assume that the source can transmit on these hops independently, hence
reducing the set of decision times T to t = {0, 1, 2, . . . ,∞}. The set of belief
vectors of an n-hop path Ω = [w1, τ(w2), . . . , τn−1(wn)] transforms under this
decomposition to [Ω1, Ω2, . . . , Ωn] where Ωi = wi ∀i ∈ [1, n] since every path now
has only 1 hop. Given this decomposition, we consider next a single hop under
the subsidy concept and drop the index i from the notation. We measure the
attractiveness of transmitting on this hop by calculating its corresponding Whit-
tle index. The maximum expected total discounted reward that can be obtained
from a hop with subsidy λ is Vγ,λ(w) = max{Vγ,λ(w; a = 0), Vγ,λ(w; a = 1)},
where Vγ,λ(w; a = 1) = w + γ[wVγ,λ(1 − β) + (1 − w)Vγ,λ(α)], and Vγ,λ(w; a =
0) = λ + γ[Vγ,λ(τ(w))]. The passive set P(λ) for a 1-hop path reduces to
P(λ) = {w : Vγ,λ(wi; a = 0) ≥ Vγ,λ(wi; a = 1)}. In comparison with the passive
set in (6) which describes a property for a whole n-hop path, the passive set here
is a per-hop description. In other words, the passive set here is a decomposition
of (6) that follows naturally from the decomposition of the belief vector Ω of the

210 D. Dzung et al.

n-hop path. A hop is said to be indexable if P(λ) increases from ∅ to the state
space of [0, 1] as λ increases from −∞ to +∞. If a hop is indexable, then its cor-
responding Whittle index is W (P) = inf

λ
{λ : Vγ,λ(w; a = 0) = Vγ,λ(w; a = 1)}.

The Whittle index for single hops admits an efficient way of being computed. In
fact, a closed form expression of the Whittle index for single hops is established
in [13,16]. Thus, we obtain n measures of attractiveness Wi ∀i ∈ [1, n] for each
of the n mediums constituting the individual hops with negligible overhead.

Attractiveness of Hop Feedback. The amount of information that the source
has about the states of hops, affects the source’s later decisions. When trans-
mitting over some path, losing a message at any of its underlying hops will
yield the same result of no immediate reward. However the amount of informa-
tion revealed to the source, which affects the future rewards, is not the same.
Information about the states of the hops on a path are obtained up to the hop
leading to message loss (inclusive), refer to Sect. 3. The amount of information
revealed to the source, hence increases as a message traverses more hops of a
path even if it is destined to failure. Although this information is useless for
the current reward, it may be of fundamental value affecting the future rewards
(since the obtained information affects later decisions). Consider an example of
two 3-hop paths, each decomposed into three 1-hop paths with the following
indices: (i) Path1: W1 = 0.2, W2 = 0.6, W3 = 0.94 and (ii) Path2: W1 = 0.94,
W2 = 0.6, W3 = 0.2. Despite the fact that Path1 and Path2 consist of 1-hop
paths with similar indices, the fact that these 1-hop paths correspond to different
hops makes Path1 and Path2 not equivalent. In fact, the amount of information
revealed to the source is expected to be higher if Path2 is favored over Path1

especially that we wait n time slots regardless of the destiny of the transmission6.
The probability of obtaining feedback (hence the attractiveness of feedback)

relative to a given hop gradually decreases as this hop becomes further from the
source (since it is conditioned on the success probability of all previous hops). We
adapt the Wi measures, to embed the feedback attractiveness independently from
other hops. This adaptation accounts for the decreasing feedback attractiveness
of more distant hops through discounted attractiveness index:

Definition 3. The hop conductance index of the ith hop of an n-hop path is
DIi = δi−1Wi, where Wi is the Whittle index of the ith hop and 0 < δ < 1.

We evaluate the impact of δ, in a companion technical report [7], showing a
performance gain of about 5% compared to a hop conductance (DI) without δ.

6.2 Path Conductance

Given an n-hop path associated n independent hop conductances, the metric
measuring the attractiveness of transmitting over a path reduces to the overall
path conductance. The path conductance in an n-hop path is the equivalent
conductance of a series combination of hop conductances.
6 The only inefficiency of selecting Path2 over Path1 may be the extra transmission

energy; however energy is not a focus in this work as devices can be main-powered.

Source Routing in Time-Varing Lossy Networks 211

Definition 4. The path conductance is equivalent to 1
n

th of the harmonic mean
of the n individual hop conductances (DIi) associated with underlying hops.

The harmonic mean of a set of values tends strongly toward the smallest values in
that set. It has a tendency to increase the impact of small values and alleviate the
influence of large outliers. In paths, the smaller the individual hop conductances
(DIi(s)) are, the less attractive they are for transmission. Therefore the harmonic
mean of these individual measures is most influenced by the least attractive hops
along a path. This can be fairly justified by the fact that a single unreliable hop
across the whole path is enough to make the whole path bad (yielding no reward)
regardless of all other hops. We formally define the path metric:

Theorem 3. The Harmonic Discounted Index7 (HDI) is a measure of attrac-
tiveness for transmitting over a path that circumvents the non-optimal myopic
locking and can be computed in O (Kn).

HDI =

[
n∑

i=1

(
1

DIi
)

]−1

(7)

7 Experimental Evaluation

This section describes the experimental setup and illustrates performance eval-
uations of our HDI metric when embedded within an index policy in a variety
of simulation scenarios. We evaluate an index policy where we vary the index
between different alternatives such as the myopic index, HDI index and other
indices based on different ways of combining hop conductances, namely: Mnlog
index: 1

n

∑n
i=1 log (DIi), Min: mini∈[1,n] DIi, Sum:

∑n
i=1 DIi and Prod:∏n

i=1 Wi. In all simulations, the transition probabilities of hops are generated
uniformly at random within given bounds (specified per case). The discounted
factors, γ and δ, are fixed to the values γ = 0.95 and δ = 0.95. For every set
of randomly generated paths, 104 runs are repeated, where in each run the dis-
counted reward representing the successful message transmissions is accumulated
for a horizon of 104 decision times. The reported reward is the mean value of
the accumulated discounted rewards over all runs, scaled by 1 − γ.

Exploring the Transition Space of Hops. We first compare our HDI metric
against flooding, i.e., transmitting every message on all available paths. Flooding
clearly is an upper bound on the optimal solution. We divide the search space
[0, 1] of the transition probabilities into eight categories L1 through H4, ranging
from hops that slowly switch between the reliable and unreliable state to those
that switch very frequently. Our Results, Fig. 2(a), (b), (c) and (d), show that
the performance of our HDI metric is close to that of flooding for the ranges L1
through L4, (indicating a close to optimal performance). For ranges H1 through
H4, the performance gap grows bigger since hops in these ranges tend to switch
7 We provide in [7] the routing algorithm which runs at the source node.

212 D. Dzung et al.

Fig. 2. Performance of HDI index policy over L and H-Intervals.

rapidly between states, spending more time in the reliable state. In these cases
decisions are prone to more randomness. Flooding, in comparison with a policy
which selects one path only, explores all other potentials, who in this case, have a
high probability of being good. We also evaluate the performance of HDI versus
the alternative policies given three available 2-hop paths. We separate the results
between L and H intervals, relative to the hops constituting the paths. It can
be seen (Fig. 2(e,f)) that HDI outperforms all alternatives over all ranges. This
improvement decreases as hops go higher in the H interval (discussed in [7]).

Typical Smart Grid Sensor Network. Typical smart grid sensory networks
contain heterogeneous hops of wireless and power line communication hops
[3,6,8]. We simulate such typical smart grid scenario by combining frequent and
slow switching hops [8,17,20]. We consider a network having K independent 2-
hop paths available for transmission. Hops along a path are generated uniformly
at random as either slow switching (L1 range) or fast switching (ranges H3 and
H4). We illustrate the performance measures for different number of available
paths varying between K = {2, 3, 4, . . . , 10}. Our results, Fig. 3(I)-(a), show that
the HDI selection policy outperforms the myopic policy for all numbers of avail-
able paths. We further strengthen the significance of the improvement obtained
by our HDI metric by limiting the number of available paths to 2 and comparing
all performances with that of flooding for a number of hops per path, spanning
n = {2, 3, 4}. Our results, Fig. 3(I)-(b), show that despite the narrow margin for
improvement, our HDI metric succeeds in showing a positive improvement over
the myopic policy, revealing a close-to-optimal performance.

Source Routing in Time-Varing Lossy Networks 213

Fig. 3. (I) Performance in typical smart grid networks (II) Performance under locking.

Myopic Performance Under Locking. In this section we confirm (i) the
deterioration of myopic performance under locking and (ii) the ability of the HDI
metric to circumvent this performance deterioration. We generate a first set of
K independent n-hop paths where hops are randomly generated satisfying 0.7 <
1 − β < 0.85 and 0.6 < α < 1 − β. Such hops switch frequently between states,
representing a behavior similar to that of wireless channels. A second set of K′

n-hop paths (of the same size as K) are also created. Every path in K′ satisfies
Theorem 2 with some path k ∈ K, i.e. these paths will be neglected by the myopic
policy. Paths in set K′ are chosen to be slow switching, similar to the behavior
of power line communication hops [8]. A source can transmit on any path within
these two sets. Simulations are carried for (|K|+|K′|) = {4, 6, 8, . . . , 20} available
paths and for n = {1, 2, 3, 4} hops/path. Results in Fig. 3(II)(a), (b) and (c) show
a noticeable deterioration in the myopic performance where our HDI metric
manages to reach an improvement of ∼ 20% over myopic.

We slightly modify our simulation to allow paths with different numbers
of hops. In particular, every path is generated with a size of n = {2, 3, 4},
chosen uniformly at random. Our results, Fig. 3(II)(d), show that the myopic
deterioration extends to such cases where our HDI metric benefits from any
available “short” good paths and maintains ∼ 20% improvement over myopic.
We also evaluate our HDI index against a per-hop myopic (greedy) index. Results
show that a per-hop technique performs worse that source routing myopic (this
is expected as per-hop neglects the impact of hops further down a path).

8 Conclusion

This paper studied the path selection problem arising in multi-hop sensor net-
works. In such scenarios, a communication system consisting of multiple

214 D. Dzung et al.

multi-hop paths with time-varying hops connects a source and destination. To
avoid interference and keep energy consumption low, the source can only send
on one path and accrue a reward determined by the state of the traversed hops.
We show that, while the classical myopic routing policy can be easily computed
and is optimal in certain cases it can lead to bad performances. More precisely, it
might avoid transmission on certain paths regardless of how reliable they could
be. We also devise a generalization of the Whittle index for multi-hop paths
and show that such a generalization becomes intractable as the number of hops
increases. We present HDI, a new tractable path selection metric to evaluate
the attractiveness of transmitting over a path at any point in time. We eval-
uate experimentally the performance of our HDI in various simulation scenar-
ios. We illustrate that an index-based HDI policy outperforms other alternative
tractable index policies. Future work may consider more complex versions of the
path selection problem for example those involving delayed or lossy packet-drop
mechanisms.

References

1. Ahmad, S., Liu, M., Javidi, T., Zhao, Q., Krishnamachari, B.: Optimality of myopic
sensing in multichannel opportunistic access. IEEE Trans. Inf. Theor. 55(9), 4040–
4050 (2009)

2. Bertsekas, D.P.: Dynamic Programming and Optimal Control, 2nd edn. Athena
Scientific, Belmont (2000)

3. Bumiller, G., Lampe, L., Hrasnica, H.: Power line communication networks for
large-scale control and automation systems. IEEE Commun. Mag. 48(4), 106–113
(2010)

4. Chatterjee, K., Majumdar, R.: Discounting and averaging in games across time
scales. Int. J. Found. Comput. Sci. 23(3), 609–625 (2012)

5. Johnson, D.M.D., Hu, Y.: The dynamic source routing protocol (DSR) for mobile
Ad hoc networks for IPv4. Technical report, IETF (2007). http://tools.ietf.org/
html/rfc4728

6. DLC+VIT4IP. Scenarios and requirements specification. Technical report, 1010.
http://www.dlc-vit4ip.org/wb/media/Downloads

7. Dzung, D., Guerraoui, R., Kozhaya, D., Pignolet, Y.-A.: Dynamic path selection in
source routing for time-varying lossy networks. Technical report, Extended version
(2014). http://infoscience.epfl.ch/record/206986

8. Dzung, D., Pignolet, Y.-A.: Dynamic selection of wireless/powerline links using
Markov decision processes. In: IEEE SmartGridComm (2013)

9. Elliott, E.O.: Estimates of error rates for codes on burst-noise channels. Bell Syst.
Tech. J 42, 1977–1997 (1963)

10. Gilbert, E.N., et al.: Capacity of a burst-noise channel. Bell Syst. Tech. J 39(9),
1253–1265 (1960)

11. Guha, S., Munagala, K., Shi, P.: Approximation algorithms for restless bandit
problems. J. ACM 58(1), 1–50 (2010)

12. Hasslinger, G., Hohlfeld, O.: The gilbert-elliott model for packet loss in real time
services on the internet. In: MMB, pp. 1–15, March 2008

13. Liu, K., Zhao, Q.: Indexability of restless bandit problems and optimality of whittle
index for dynamic multichannel access. IEEE Trans. Inf. Theor. 56(10), 5547–5567
(2010)

http://tools.ietf.org/html/rfc4728
http://tools.ietf.org/html/rfc4728
http://www.dlc-vit4ip.org/wb/media/Downloads
http://infoscience.epfl.ch/record/206986

Source Routing in Time-Varing Lossy Networks 215

14. Mitton, N., Sericola, B., Tixeuil, S., Fleury, E., Lassous, I.G.: Self-stabilization in
self-organized wireless multihop networks? Ad Hoc Sens. Wireless Netw. 11(1–2),
1–34 (2011)

15. Nayyar, N., Gai, Y., Krishnamachari, B.: On a restless multi-armed bandit problem
with non-identical arms. In: Allerton, pp. 369–376 (2011)

16. Ny, J., Dahleh, M., Feron, E.: Multi-uav dynamic routing with partial observations
using restless bandit allocation indices. In: American Control Conference, pp. 4220–
4225 (2008)

17. Rao, R., Akella, S., Guley, G.: Power line carrier (PLC) signal analysis of smart
meters for outlier detection. In: IEEE SmartGridComm, pp. 291–296 (2011)

18. Tang, C., McKinley, P.K.: Modeling multicast packet losses in wireless lans. In:
MSWIM 2003, pp. 130–133. ACM, New York (2003)

19. Vasseur, J.: Terminology in low power and lossy networks. Technical report, Cisco
Systems Inc. (2013)

20. Vasseur, J.-P., Dunkels, A.: Interconnecting smart objects with IP: the next inter-
net. Morgan Kaufmann Publishers, Inc. (2010)

21. Weber, R.R., Weiss, G.: On an index policy for restless bandits. Journal of Applied
Probability, pp. 637–648 (1990)

22. Whittle, P.: Restless bandits: activity allocation in a changing world. J. Appl.
Probab. 25, 287–298 (1988)

23. Winter, T., Thubert, P., Brandt, A., Hui, J., Kelsey, R., Levis, P., Pister, K., Struik,
R., Vasseur, J., Alexander, R.: RPL: IPv6 routing protocol for low-power and lossy
networks. Technical report, IETF (2012). http://tools.ietf.org/html/rfc6550

24. Zayen, B., Hayar, A., Noubir, G.: Game theory-based resource management strat-
egy for cognitive radio networks. Multimedia Tools Appl. 70(3), 2063–2083 (2014)

http://tools.ietf.org/html/rfc6550

A Fully Distributed Learning Algorithm
for Power Allocation in Heterogeneous Networks

Hajar Elhammouti1(B), Loubna Echabbi1, and Rachid Elazouzi2

1 Department of Telecommunications Systems, Networks and Services, STRS,
National Institute of Posts and Telecommunications, Rabat, Morocco

{elhammouti,echabbi}@inpt.ac.ma
2 Department Laboratory of Informatique of Avignon, LIA,

University of Avignon, Avignon, France
rachid.elazouzi@univ-avignon.fr

Abstract. In this work, we present a Fully distributed Learning Algo-
rithm for Power allocation in HetNetS, referred to as FLAPH algorithm,
that reaches to the global optimum given by the total social welfare.
Using a mix of macro and femto base stations, we discuss opportunities
to maximize users global throughput. We prove the convergence of our
algorithm and compare its performances with the well-established Gibbs
algorithm which ensures convergence to the global optimum.

Keywords: Distributed algorithms · HetNets · Nash equilibrium ·
Global optimum

1 Introduction

One of the reasons to consider heterogeneous networks is that they present better
performance for high data traffic in wireless communications. Indeed, to improve
the network capacity, one should increase node density. When only macro base
stations are deployed, cell splitting by adding other base stations can help to
increase the network efficiency. However, not any node can be deployed, only
those who would not add much interferences and costs could be added. This can
be realized by base stations with lower transmit power. Their transmit power
ranges depend on the category they belong to. They are either pico, femto or
relay nodes and they are intended for outdoor and indoor deployments [1].

LTE Release 10 supports heterogeneous deployment where picocells, femto-
cells and relays coexist with macrocells [3]. In a heterogeneous framework, smart
resource coordination among base stations and optimization of implicit interac-
tions can improve the aggregate throughput of the network. Thus, distributed
approaches are crucial to increase the network performances and allow more
autonomy to the base stations.

The present paper formulates the problem of power allocation for multi-
user downlinks in heterogeneous networks (HetNets). It is important to see that
from an optimization standpoint, optimizing resource allocation is an NP-hard
c© Springer International Publishing Switzerland 2015
A. Bouajjani and H. Fauconnier (Eds.): NETYS 2015, LNCS 9466, pp. 216–229, 2015.
DOI: 10.1007/978-3-319-26850-7 15

A Fully Distributed Learning Algorithm for Power Allocation 217

problem [2]. In this work, we present a Fully distributed Learning Algorithm for
Power allocation in HETNETS, referred to as FLAPH algorithm, that reaches
to the global optimum given by the total social welfare. We show its qualitative
properties and compare it with the well-established Gibbs algorithm in term of
convergence and computational costs.

2 Related Work

Optimization of power allocation is an active area of research that has been
investigated by many studies. Some researchers were interested in distributed
algorithms [10–12]. Yet, these algorithms present a major limit which is the
need of a network controller to share information with the nodes.

B. Kauffmann et al. in [5] introduced the Gibbs Sampler algorithm for opti-
mal channel selection and user association in 802.11 wireless access networks.
In their work, B. Kauffmann et al. aimed to minimize a specific objective func-
tion which is the aggregated transmission delay. Soon after, F. Baccelli et al.
in [6] implemented the same algorithm to optimize the aggregate delay subject
to the transmitted power and users assignment in homogeneous networks. The
Gibbs sampler algorithms, as they were proposed by B. Kauffmann et al. and
F. Baccelli et al., are restricted to a specific utility function which is the aggre-
gate delay, and cannot be applied to arbitrary utility functions. Recently, Sem
borst et al. in [15] tackled this problem. They developed the Gibbs sampler
algorithm for a more generic notion of utility functions and applied it to distrib-
uted optimization of power allocation and user assignment in OFDMA homoge-
neous networks. To accommodate to arbitrary utility functions, they based their
algorithm on Markov Random Fields/Gibbs Measures and apply it to a modi-
fied graph where the global objective function is equal to the sum of potential
energies of the cliques in the new graph. Hence they prove that it is sufficient
to optimize local potential energies on the cliques which are, in fact, related
to neighborhoods. In that sense, only local information is needed and can be
exchanged between neighbors, yet leading to a global optimum.

The Gibbs sampler algorithm is rather called the annealing Gibbs sampler
algorithm since it uses combinatorial approximation technique ‘the simulated
annealing’ [4,9] to achieve convergence to optimality. The convergence is achieved
for a specific cooling schedule {Tt ∝ 1/log(t), t ≥ 2}, where Tt is called the
temperature of the algorithm. This cooling schedule has an extremely slow rate
which can be inappropriate for practical purposes.

In works presented above, authors are interested in optimizing the social
welfare. Thus, agents coordinate to reach optimality. In the literature, other
works involve agents utilities. They consider problems where each agent is selfish
and wants to maximize its own utility’s value. In game theory, this problem has
a well know solution concept called the Nash equilibrium (NE). Actually, Nash
equilibrium is a situation where no player has the incentive to move unilaterally.
Many distributed algorithms that converge to the NE have been proposed in
the literature and have been applied to different kinds of problems: pricing [19],
routing [17], bandwidth sharing [14]...

218 H. Elhammouti et al.

Our approach goes in the same line with [8,20] where authors use a learning
algorithm to reach the Nash Equilibrium, respectively, for a pricing and a power
allocation problem. We rely on an updated version of the algorithm, that, unlike
in [8], drives the whole system to a steady state corresponding to the Nash
Equilibrium of a specific game which is, at the same time, the global optimum.

The rest of the paper is organized as follows. The next section presents the
problem formulation. In Sect. 4 we give an overview on the annealing Gibbs sam-
pler and describe in details the proposed FLAPH algorithm. Section 5 contains
numerical results that compare both algorithms in term of convergence and com-
putational costs. Finally, in the last section, we make some concluding remarks
and discuss various extensions to this work.

3 Problem Formulation

3.1 Main Notations

We consider a network where coexist two classes of base stations (BSs): femtocell
and macrocell. This cellular system consists of a macro base station that typically
transmits at high power level, overlaid with several femto base stations which
transmit at lower power levels.

We consider N users randomly dispersed in space that are supposed fixed
(mobility in not considered in this work). Each user is assigned to one BS, but
can receive signal from other BSs. Each BS decides which power to use.

We denote by Pb the amount of power transmitted by cell b. We suppose that
the power is discretized such that Pb ∈ Pfemto = {δPf , 2δPf , 3δPf , .., nδPf} if
b is a femtocell and for the macro PM ∈ Pmacro = {δP, 2δP, 3δP, .., nδP}. Each
user i has a channel gain with respect to BS b. In this work, we will focus only
on the downlink problem (Tables 1, 2).

In the table below, we summarize these notations:

Table 1. Main notations

Notation Meaning

B Set of base stations, finite

M The macro-cell

U The set of users

N Number of users

K Number of cells including the macrocell

G Gain matrix of N ∗ K dimension, Gib is the

channel gain from BS b to user i

P Power vector of K dimension where Pb is the

amount of power transmitted by BS b

q Assignment matrix, such that qib = 1 iff user i

is assigned to BS b

A Fully Distributed Learning Algorithm for Power Allocation 219

3.2 Game Formulation

We formulate the problem as a non-cooperative game G where the players are
the base stations and strategies are their possible powers. The major goal of this
game is to maximize the social welfare that we define as the general throughput
of the network, subject to power allocation constraints:

maximize F (P) =
∑

b∈B

Rb(P)

subject to ∀b femto Pb ∈ Pfemto, PM ∈ Pmacro

(1)

We define each BS’s utility as the sum of its users throughput which could
be given by the C. Shannon theorem [7]:

Rb(P) ∝
∑

i∈M

log2(1 + Si,b(P)) (2)

Where Si,b(P) is the SINR (Signal to Interference and Noise Ratio) of user i with
respect to the node b that we formulate as: Si,b(P) = GibPb

η+
∑

b′ �=b

Gib′ Pb′ . η describes

the thermal noise.
So let us denote U b

G(P) =
∑

i∈U

qibRi,b(P) the utility of a player b. Thus:

F (P) =
∑

b∈B

U b
G(P) (3)

U b
G(P) can also be seen as the individual utility of each BS.

In the rest of the paper, we will use, in some equations, this notation
U b
G(Pb, P−b) instead of U b

G(P), where Pb is bth component of vector P which
refer to the power state of BS b and P−b is the state of the other BSs.

It is easy to see that a pure Nash Equilibrium is reached when all BSs set their
powers to the maximum. Actually, suppose that all BSs choose their maximum
of power, if a given BS b decides to reduce its power, then its utility will decrease
since the throughput is an increasing function with respect to the power of this
BS. We can use the same reasoning to prove that this NE is unique. Indeed,
regardless of the initial power vector, faced with a fixed power of its opponents,
each BTS will always have incentive to increase its power and thus maximize its
utility.

Let us denote the price of anarchy PoA which is measured as follows:

PoA =
F (PNE)
F (P ∗)

(4)

where F (PNE) (resp. F (P ∗)) is the social welfare at the NE (resp. global opti-
mum). In Sect. 5, we will consider the optimal social welfare and compare it with
the performance achieved at the Nash Equilibrium by using the price of anarchy.
We will see that this ratio may be very important in some scenarios and thus
in distributed learning BSs cannot set their powers independently, they need
additional information from their neighbors in order to coordinate their actions
and thus reach the global optimum.

220 H. Elhammouti et al.

4 Distributed Optimization

4.1 Annealing Gibbs Sampler Algorithm

Distributed methods and learning algorithms aim to have more autonomy in the
networks and improve its performances. Gibbs algorithm is a powerful approach
based on the update of local utilities which achieves convergence to the global
optimum [13,16]. In this subsection, we will present the basic notions related to
the annealing Gibbs sampler algorithm.

As it was explained above, this algorithm is based on two main algorithms
that are ‘the Gibbs Sampler’ for sampling resources and ‘the simulated annealing’
technique as a local search meta-heuristic yet ensuring convergence to the global
optimum. The Gibbs sampler can be replaced by Metropolis-Hastings sampler
whose behavior is very similar to the Gibbs one [18].

As a stochastic algorithm, the annealing Gibbs sampler, updates randomly
its states following a Gibbs measure. Actually, each time the agent randomly
chooses an action from the action space based on the Gibbs distribution which
is given by:

P (xb = y|x−(b,ab)) =

exp[
∑

c∈N+
b

Uc(y, x−(b,ab))/T]

∑

x∈S(x(b,ab)
)

exp[
∑

c∈N+
b

Uc(y, x−(b,ab))/T]
(5)

with

– xb the state of node b
– y is the possible value of power that node b may choose.
– x−(b,ab) the state of nodes other than b
– S(x−(b,ab)) the set of the states of the other nodes than node b
– S(x(b,ab)) the set of the possible states of node b. In our case it defines the

state of powers.
– Nb the set of neighbors of node b
– N+

b the set of neighbors of node b including b
– Uc is the utility of node c
– T the temperature of the algorithm.

The Gibbs algorithm can be structured in 4 main parts:

1. Computing probabilities
Computing Gibbs probability of each possible state of power, for each BS.

2. Sampling powers
Using the computed probabilities, each BS decides whether to keep its power
or to change it.

3. Updating utilities using the chosen powers
Depending on the state the BS has chosen, its individual utility is updated in
order to calculate the global utility which is the social welfare of the network.

A Fully Distributed Learning Algorithm for Power Allocation 221

4. Computing global energy
The global energy, or the global objective function is the sum of the BSs’
utilities at each temperature T .

The convergence of Gibbs algorithm is deduced from the well known ‘sim-
ulated annealing’ that ensures convergence to the optimized solution when T
decreases slowly to 0 following a specific function 1/log(t), t ≥ 2 [4,9]. This cool-
ing schedule may take a very long time before convergence which makes the
annealing Gibbs sampler algorithm not suited for some practical purposes.

4.2 A New Model Description

Let us consider a new game G’ where utilities are modified such that, for
each BS b:

U b
G’(P) = U b

G(P) +
∑

c∈Nb

U c
G(P) (6)

Where Nb is the set of BSs neighbors of b. Two BSs are called ‘neighbors’ if
there is at least one user assigned to one of them and covered by the other:

Nb = {c ∈ B,∃i ∈ U , qibPcGic � 0 or qicPbGib � 0} (7)

Note that, the macrocell is neighbor of all femtocells since it has a high power
which is received by all users.

Therefore, Nb will determine a neighborhood structure. We can represent the
heterogeneous network by an undirected graph G = (ν, ε), where ν is the set of
nodes and ε the set of edges. We assume that nodes are BSs and edges are set
between all neighbors. U b

G’(P) can also be seen as a local utility of BS b driven
by its power state Pb and those of its opponents P−b.

The distributed nature of the FLAPH algorithm we will be studying comes
from the notion of local information. Indeed, each agent needs only to know its
individual utility and the individual utility of its neighbors to reach optimality.
As a result, the exchanged information in the network is limited. We will bring
more clarifications about the information needed to the convergence in the next
subsection.

4.3 The FLAPH Algorithm

The learning algorithm we propose is the one described in [8]. It is shown in
[8] that the distributed algorithm drives the whole system to a steady state
corresponding to the Nash Equilibrium of a non-cooperative game. In the new
problem formulation, the proposed FLAPH algorithm will converge to the pure
Nash Equilbrium of the new game G’ which is exactly the global optimum of
the social welfare.

Theorem 1. Let G’ be the game defined by the utilities UG’. Let P ∗ be the vector
of power strategies which represents the global optimum of the social welfare.
P ∗ is a Nash equilibrium of the game G’.

222 H. Elhammouti et al.

Proof. Let us set some helpful notations:

– Let Ib be the set of users covered by BS b:

Ib = {i ∈ U , PbGib � 0} (8)

– Let Icb be the set of users covered by BSs c and b at the same time:

Icb = {i ∈ U , qicPbGib � 0 and qibPcGic � 0} (9)

– Let Ib\c be the set of users covered by b and not covered by c:

Ib\c = {i ∈ U , PbGib � 0 and PcGic = 0} (10)

Suppose that players are at the global optimum. Notice that the utility of the
Macro base station M in the new game G′ is equal to the social welfare of the
network (because M covers all the users and then it is neighbor of all femto base
stations). Thus, we have:

UM
G’ (P) = F (P) (11)

It is easy to see that at the global optimum P ∗, M cannot improve its utility.
Suppose that a femtocell b can improve its utility U b

G’(P
∗
b , P ∗

−b) by choosing the
strategy P̃b. We have:

U b
G’(P̃b, P

∗
−b) = U b

G(P̃b, P
∗
−b) +

∑

c∈Nb

U c
G(P̃b, P

∗
−b)

=
∑

i∈∪c∈Nb
Ib\c

Ri,b(P̃b, P
∗
−b) +

∑

i∈∪c∈Nb
Ibc

qibRi,b(P̃b, P
∗
−b)

+
∑

i∈∪c∈Nb
Ic\b

Ri,c(P̃b, P
∗
−b) +

∑

i∈∪c∈Nb
Ibc

qicRi,c(P̃b, P
∗
−b)

=
∑

i∈∪c∈Nb
Ib\c

Ri,b(P̃b, P
∗
−b) +

∑

i∈∪c∈Nb
Ibc

(qibRi,b(P̃b, P
∗
−b)

+qicRi,c(P̃b, P
∗
−b)) +

∑

i∈∪c∈Nb
Ic\b

Ri,c(P̃b, P
∗
−b)

(12)

∑

i∈∪c∈Nb
Ib\c

Ri,b(P̃b, P
∗
−b) is the sum of the throughput of users who are assigned to

b and not covered by any other BS,
∑

i∈∪c∈Nb
Ibc

(qibRi,b(P̃b, P
∗
−b)+qicRi,c(P̃b, P

∗
−b))

is the sum of the throughput of users in common between b and one of its
neighbors c and who are assigned whether to b or c, and

∑

i∈∪c∈Nb
Ic\b

Ri,c(P̃b, P
∗
−b)

is the sum of the throughput of users who are assigned to each c neighbor of
b and not covered by b. Let Urelatedb be the set of users related to b as their
throughput is counted in utility of b:

Urelatedb = (∪c∈IbcIb\c) ∪ (∪c∈Nb
Ibc) ∪ (∪c∈Nb

Ic\b) (13)

A Fully Distributed Learning Algorithm for Power Allocation 223

We consider the complementary of Urelatedb in U that we denote Uunrelatedb =
(Urelatedb)C . The utility of the macrocell M could be written as follows:

UM
G’ (P̃b, P

∗
−b) = U b

G’(P̃b, P
∗
−b)︸ ︷︷ ︸

increased

+
∑

c∈B

∑

i∈Uunrelatedb

qicRi,c(P̃b, P
∗
−b)

︸ ︷︷ ︸
unchanged

(14)

• U b
G’(P̃b, P

∗
−b) has increased according to our first hypothesis.

•
∑

c∈B

∑

i∈Uunrelatedb

qicRi,c(P̃b, P
∗
−b) =

∑

c∈B

∑

i∈Uunrelatedb

qicRi,c(P ∗
b , P ∗

−b) because

no throughput in the sum will be impacted by the change of the power of BS
b since the users are not related to b.

Consequently, UM
G’ (P̃b, P

∗
−b) � UM

G’ (P
∗
b , P ∗

−b) which is absurd. As a conclu-
sion, the Nash equilirium of the new game coincides with the global optimum.

If not unique the N.E will either hold the same social welfare or be dominated
by the optimum one. We are just going to state here that the learning algorithm
will find a dominant N.E which will correspond to a global optimum. Due to
symmetry there may exist other state that yields the same social welfare but
they will be equivalent.

Now let us describe how this algorithm works. Since it is a stochastic learning
algorithm, nodes should update their strategies following a probability distrib-
ution in order to learn the global optimum. Stochastic strategies, utilities and
power strategies will be suffixed by t to refer to their values at time step t. We
denote sbk the probability that node b chooses the power Pk. These probabilities
are calculated as follows:

st+1
bk =

{
st

bk − lU t
bs

t
ij if Pk 	= P t

b

st
bk + lU t

b

∑

k′ �=k

st
bk′ otherwise (15)

Where: U t
i is the normalized local utility at the time t, such that:

U t
b =

U b
G’(P

t)
maxt′≤t(U b

G’(P t′))
(16)

And l a parameter in [0, 1], it is the step size of the probability updating rule.
The results of the algorithm are more accurate when l is close to zero (see [8]).

Notice that the probabilities are updated in function of the response of the
environment (in function of the local normalized utility U t

i). Thus the successive
choice of the power depends on the environment response, which is a property
of a learning algorithm.

The proposed FLAPH algorithm achieves many performances. It is, firstly, a
fully distributed algorithm. It can also be implemented on board of each device
in an asynchronous way where each agent updates its state depending on its

224 H. Elhammouti et al.

own clock. Finally, it requires limited computational efforts compared to Gibbs
algorithm as we will see in Sect. 5.

To measure the local utility of a given BS b, the base station should receive
the amount PcGic from all its neighbors with respect to its users i in order
to measure the interference and calculate the sum of its throughput. And each
neighboring BS c should calculate its individual utility in the same way and send
it to b in order to compute its local utility. It is then easy to see that information
is shared only between neighbors and the neighbors of the neighbors.

for each iteration iter do
for each BS b do

if the timer of b is activated then
Randomely choose a power level using current probabilities;
Compute interference and measure the throughput of assigned
users;
Update individual utility;
Request update from neighbors;
Hold;

end
if reception of an update request from a neighbor then

Compute interference and Measure the throughput of assigned
users;
Update individual utility;
Send update to the requester;

end
if reception of an update response from a neighbor then

Accumulate the received individual utility;
if response are still missing from remaining neighbors
then

Hold;
else

% all neighbors has already responded;
Update stochastic strategies;
Reset the timer;

end
end

end
end

Algorithm 1. The FLAPH algorithm

5 Numerical Results

5.1 The FLAPH Algorithm Versus Anarchy

In this section, we present a selection of the most representative numerical exper-
iments that we have conducted in order to validate our approach and show the

A Fully Distributed Learning Algorithm for Power Allocation 225

performance of our FLAPH algorithm. First, we focus on 4 experiments with
different sizes of BSs’ number K users’ number N . We use a regular hexagonal
pattern for the location of the cells.

We deduce the matrix gain G using the COST-231-Hata-Model (which is a
radio propagation model for urban areas, other propagation models can also be
used to generate the channel matrix). We suppose Pfemto = {250mW, 500mW},
and PMacro = {20000mW, 40000mW}. The thermal background noise is sup-
posed equal to 4.0039e − 12mW . We assume that BSs update their power state
in an asynchronous way using an exponential timer with parameter λ = 2 and
we take the step size of the probability updating rule l = 0.008. The Figs. 1 and
2 show the overall throughput and indicate the real number of iterations needed
for each case before convergence. Note that the number of iterations shown in
the horizontal axis is equal to the number of real iterations times the number of

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
x 105

0

5

10

15

20

25

30

35

40

Number ofiterations

G
lo
ba

lE
ne

rg
y

The size of the problem is K=4 and N=8 and l=0.008

0 0.5 1 1.5 2 2.5 3
x 105

0

20

40

60

80

100

120

140

160

180

200

Number ofiterations

G
lo
ba

lE
ne

rg
y

The size of the problem is K=5 and N=30 and l=0.008

Fig. 1. The FLAPH convergence for K = 4 and N = 8, and K = 5 and N = 30.

0 1 2 3 4 5 6 7
x 105

0

50

100

150

200

250

300

Number ofiterations

G
lo
ba

lE
ne

rg
y

The size of the problem is K=6 and N=36 and l=0.008

0 2 4 6 8 10 12 14 16 18
x 105

0

50

100

150

200

250

300

Number ofiterations

G
lo
ba

lE
ne

rg
y

The size of the problem is K=7 and N=42 and l=0.008

Fig. 2. The FLAPH convergence for K = 6 and N = 36, and K = 7 and N = 42.

226 H. Elhammouti et al.

BSs. Actually, the curves show all the states that system gets through, which is
exactly iter ∗ N .

We consider the optimal social welfare as reached by the FLAPH algorithm
and compare it with the performance achieved at Nash Equilibrium of the unco-
ordinated game G where BSs set their powers independently (Table 2).

The table below presents the experiments results:
We emphasize that the price of anarchy worsens with increasing size of the

problem. In a distributed setting BSs cannot just set their powers independently,
they need additional information from their neighbors in order to coordinate
their actions and thus reach the global optimum.

Table 2. The price of anarchy’s values

Size of problem K = 4 N = 8 K = 5 N = 30 K = 6 N = 36 N = 7 K = 42

F (P)NE 33, 07 155, 27 186, 46 169, 30

F (P)OP 37.52 185, 60 254, 56 252, 37

PoA 0, 88 0, 83 0, 73 0, 67

5.2 Comparison with Gibbs

Theoretical analysis proves that Gibbs sampler solves the global optimum prob-
lem. Yet, in practice, its efficiency is more than questionable. The algorithm is
based on the computation of Gibbs measures which are formulated as follows:

P (xb = y|x−(b,ab)) =
exp[

∑
c∈N+

b
Uc(y, x−(b,ab))/T]

∑
x∈S(x(b,ab)

) exp[
∑

c∈N+
b

Uc(y, x−(b,ab))/T]
(17)

The used exponential functions reach very high orders of magnitude especially
when the temperature T comes close to zero. Moreover, as lowering temperature
should go slowly to insure optimality, Gibbs algorithm needs more computation
time before convergence. As a result, Gibbs algorithm shows limited computa-
tional resources which can be summarized as follows:

– Memory space: arithmetic operations and especially the exponential one
need too many digit numbers because of their high order of magnitude. As
an example, when T = 0.03, which is not yet very close to zero, and Ui = 10,
exp(Ui) = 5.818717881447216e+144. Furthermore, since probabilities can be
very close, we need more digit numbers to improve accuracy. As a matter of
fact, these computational efforts may exceeds the nodes capacity especially
for femtocells whose capacity of storage are very limited.

– Computation time: the running time algorithm is an important criterion of
algorithms efficiency. The number of arithmetic operations used by Gibbs is
greater than the learning algorithm we proposed. Actually, at each iteration,
Gibbs needs to compute the utility of the BS for each state of power to have

A Fully Distributed Learning Algorithm for Power Allocation 227

0 1 2 3 4 5 6 7

x 10
6

0

50

100

150

200

250
The size of the problem is K=7 and U=42 and T=1/log(1+iter) and b=0.008

The real iterations number for convergence for b learning is : 91783

The real iterations number for convergence for Gibbs is : 980905

Fig. 3. The FLAPH Vs Gibbs.

the value of
∑

x∈S(x(b,ab)
) exp[

∑
c∈N+

b
Uc(y, x−(b,ab))/T], which is not the case

for the FLAPH algorithm. Therefore, the number of arithmetic operations
used in Gibbs equals the number of arithmetic operations used in our learning
algorithm times the size of the powers’ state. Furthermore, the time needed
for convergence in Gibbs is longer when it comes to use slow cooling schedules
of the temperature as it is shown in the example of the Fig. 3.

6 Conclusion

In this work, we developed a fully distributed algorithm for power allocation in
heterogeneous networks. The algorithm drives the whole system to a steady state
corresponding to the global optimum of the social welfare. The algorithm is based
in only on local exchanges between the nodes and needs limited computational
efforts compared with the annealing Gibbs sampler.

In an ongoing work we investigate better performance of our algorithm by
considering a two level optimisation problem where the Macro as a leader fixes
its power and then other BSs follow by adjusting their power using the same
FLAPH algorithm. The advantage of this version is to exclude The Macro from
FLAPH algorithm reducing drastically message exchanges as this latter belongs
to all neighborhoods.

228 H. Elhammouti et al.

References

1. Damnjanovic, A., Montojo, J., Wei, Y., Ji, T., Luo, T., Vajapeyam, M., Yoo,
T., Song, O., Malladi, D.: QualComm Inc.: A survey on 3GPP heterogeneous
networks. Wirel. Commun. 1(3), 10–21 (2011)

2. Darmann, A., Pferschy, U., Schauer, J.: Resource allocation with time intervals.
Theor. Comput. Sci. 411(49), 4217–4234 (2010)

3. Ghosh, A., Ratasuk, R., Mondal, B., Mangalvedhe, N., Thomas, T.: TE-advanced:
next-generation wireless broadband technology, LTE-advanced: next-generation
wireless broadband technology. Wirel. Commun. 17(3), 10–22 (2010)

4. Hajek, B.: Cooling schedules for optimal annealing. Math. Oper. Res. 13(2), 311–
329 (1988)

5. Kauffmann, B., Baccelli, F., Chaintreau, A., Mhatre, V., Papagiannaki, K., Diot,
C.: Measurement-based self organization of interfering 802.11 wireless access net-
works. In: 26th IEEE International Conference on Computer Communications
INFOCOM 2007, pp 1451–1459, May 2007

6. Chen, C., Baccelli, F.: Self-optimization in mobile cellular networks: power con-
trol and user association. In: IEEE International Conference on Communications
(ICC), pp 1–6, May 2010

7. Shannon, C.E.: Communication in the presence of noise. In: Proceedings of the
Institute of Radio Engineers, pp. 10–21 (1949)

8. Barth, D., Echabbi, L., Hamlaoui, C.: Optimal transit price negotiation: the dis-
tributed learning perspective. J. Univers. Comput. Sci. 14(5), 745–765 (2008)

9. Bertsimas, D., Tsitsiklis, J.: Simulated annealing. Stat. Sci. 8(1), 10–15 (1993)
10. Adeane, J., Rodrigues, M.R.D., Wassell, I.J.: Centralized and distributed power

allocation algorithms in cooperative networks. In: 6th Workshop on Signal
Processing Advances in Wireless Communications, pp. 333–337. IEEE (2005)

11. Li, J., Svensson, T., Botella, C., Eriksson, T., Xu, X., Chen, X.: Joint schedul-
ing and power control in coordinated multi-point clusters. In: IEEE Vehicular
Technology Conference (VTC Fall) 2012, pp. 1–5, November 2012

12. Li, J., Chen, X., Botella, C., Svensson, T., Eriksson, T.: Resource allocation for
OFDMA systems with multi-cell joint transmission. In: IEEE 13th International
Workshop on Signal Processing Advances in Wireless Communications (SPAWC)
2012, pp. 179–183, June 2012

13. Ahmed Khan, M., Tembine, H., Vasilakos, A.V.: Game dynamics and cost of
learning in heterogeneous 4G networks. IEEE J. Sel. Areas Commun. 30(1), 198–
213 (2012)

14. Tuffin, B., Maillé, P.: How many parallel TCP sessions to open: a pricing per-
spective. In: Stiller, B., Reichl, P., Tuffin, B. (eds.) ICQT 2006. LNCS, vol. 4033,
pp. 2–12. Springer, Heidelberg (2006)

15. Borst, S., Markakis, M., Saniee, I.: Distributed power allocation and user assign-
ment in OFDMA cellular networks. In: The Annual Conference on Communica-
tion, Control, and Computing (Allerton), pp. 46–64, September 2011

16. Borst, S., Markakis, M., Saniee, I.: Nonconcave utility maximization in locally
coupled systems, with applications to wireless and wireline networks. IEEE ACM
Trans. Netw. 22(2), 674–687 (2013)

17. Raghunathan, V., Kumar, P.: On delay-adaptive routing in wireless networks. In:
Proceedings of CDC 2004 (2004)

18. Hastings, W.K.: Monte carlo sampling methods msing markov chains and their
applications. Biometrika 57(1), 97–109 (1970)

A Fully Distributed Learning Algorithm for Power Allocation 229

19. Xing, Y., Maille, P., Tuffin, B., Chandramouli, R.: User strategy learning when
pricing a red buffer. Simul. Model. Pract. Theor. 17, 548–557 (2009)

20. Xing, Y., Chandramouli, R.: Stochastic learning solution for distributed discrete
power control game in wireless data networks. IEEE ACM Trans. Netw. 16(4),
932–944 (2008)

Packet Scheduling over a Wireless Channel:
AQT-Based Constrained Jamming

Antonio Fernández Anta1, Chryssis Georgiou2, and Elli Zavou1,3(B)

1 IMDEA Networks Institute, Madrid, Spain
elli.zavou@imdea.org

2 University of Cyprus, Nicosia, Cyprus
3 Universidad Carlos III de Madrid, Madrid, Spain

Abstract. In this paper we consider a two-node setting with a sender
transmitting packets to a receiver over a wireless channel. Unfortunately,
the channel can be jammed, thus corrupting the packet that is being
transmitted at the time. The sender has a specific amount of data that
needs to be sent to the receiver and its objective is to complete the trans-
mission of the data as quickly as possible in the presence of jamming.

We assume that the jamming is controlled by a constrained adversary.
In particular, the adversary’s power is constrained by two parameters, ρ
and σ. Intuitively, ρ represents the rate at which the adversary can jam
the channel, and σ the length of the largest bursts of jams it can cause.
This definition corresponds to the translation of the Adversarial Queu-
ing Theory (AQT) constrains, typically defined for packet injections in
similar settings, to channel jamming.

We propose deterministic scheduling algorithms that decide the
lengths of the packets to be sent by the sender in order to minimize the
transmission time. We first assume all packets being of the same length
(uniform) and characterize the corresponding optimal packet length.
Then, we show that if the packet length can be adapted, for specific
values of ρ and σ the transmission time can be improved.

Keywords: Packet scheduling · Wireless channel · Unreliable commu-
nication · Adversarial jamming · Adversarial Queueing Theory

1 Introduction

1.1 Motivation

The fast transmission of data across wireless channels under different conditions
has been an area of investigation for quite some time now [3,6,10,11,14,18,
21–25]. However, it presents several challenges depending on the model and
applications it focuses on; especially when considering channel jamming.

This work has been supported in part by the Regional Government of Madrid (CM)
grant Cloud4BigData (S2013/ICE-2894, cofunded by FSE & FEDER).
E. Zavou—Partially supported by FPU Grant from MECD.

c© Springer International Publishing Switzerland 2015
A. Bouajjani and H. Fauconnier (Eds.): NETYS 2015, LNCS 9466, pp. 230–245, 2015.
DOI: 10.1007/978-3-319-26850-7 16

Packet Scheduling over a Wireless Channel 231

In our work we look at a wireless channel between a single pair of stations
(sender and receiver), with the sender’s goal to fully transmit a specific amount
of data in the most efficient way. As efficiency measures, we look both at the
transmission time and the goodput ratio (successful transmission rate), which
are intuitively reversely proportional. Nonetheless, the communication between
the sender and the receiver is being “watched” by a malicious entity that spo-
radically introduces noise in the channel, jamming the packet that happens to
be transmitted at that time. More precisely, we model the errors in the channel
to be controlled by an adversary with constrained power; defined by parame-
ters ρ and σ. Parameter ρ represents the rate at which the adversary can jam
the channel and σ the largest size of a burst of jams that can be caused. A
packet that is jammed needs to be retransmitted; hence a feedback mechanism
is assumed that informs the sender when a packet was jammed. The sender must
transmit data of total size P . Each packet sent contains a header of fixed size h
and some payload whose size, l, is algorithm-depended. Note that this payload
counts towards the total size of P to be transmitted. For simplicity and without
loss of generality we assume that h = 1 and the time to transmit a packet is
equal to its length.

The constrained power of the adversary models a jamming entity with limited
resource of energy, e.g., military drones [13,17] or malicious mobile devices [1,2].
For the adversarial jammer in our model, we consider having a battery of capacity
σ units, where each unit can be used to cause one jam. Furthermore, in every
1/ρ time the battery is charged by one unit, e.g. with solar cells. More details
on the model we consider are given in Sect. 2.

In a previous work [4], we studied the impact of adversarial errors on packet
scheduling, focusing on the long term competitive ratio of throughput, termed
relative throughput. We explored the effect of feedback delay and proposed algo-
rithms that achieve close to optimal relative throughput under worst-case errors,
and adversarial or stochastic packet arrivals. One of the main differences with
this work is that the adversary was not constrained. Another difference is the
fact that in the current work the packet sizes are to be chosen by the sender in
order to send the desired amount of data efficiently. Furthermore, in [4], jammed
packets were not retransmitted; the objective was to route packets as fast as
possible and not strive to have each packet transmitted. In the current work,
the choice of the packet size is precisely the most critical part from the side of
the sender. Thus, we focus in devising scheduling algorithms for the decision
of packet length to be used and conduct worst-case analysis for the efficiency
measures.

1.2 Contributions

First, we introduce an AQT-based adversarial jamming model in wireless net-
works. To the best of our knowledge, this is the first work that uses such approach
to restrict the power of adversarial jamming in such networks. AQT has been
widely used for restricting packet arrivals in similar settings (see related work
below). However, no research work has considered the possibility of exploring its

232 A. Fernández Anta et al.

effects in the intent to “damage” a network. As already mentioned, our approach
of constrained adversarial jamming could be used to model battery-operated
malicious devices that have bounded battery capacity and specific recharging
rate. In Sect. 2 we formalize the constrained adversarial jamming model we
consider.

Then, we present the limitations it imposes on the efficiency of scheduling
policies, focusing on the transmission time Tr and the goodput G as our main
performance measures. More precisely, in Sect. 3 we show bounds on both mea-
sures, by focusing on executions with uniform packet lengths. We first compute
the quasi optimal payload size l∗ and show that the optimal transmission time
satisfies Tr ∈ [LB∗, LB∗ + l∗ + 1), where LB∗ = [P+(σ−1)l∗](l∗+1)

l∗(1−ρ(l∗−1)) and the opti-
mal goodput is G ∈ (P

LB∗+l∗+1 , P
LB∗]. We also show, that for uniform packets,

as the total amount of data P grows, G is upper bounded by (1 − √
ρ)2, and in

infinity (P → ∞) the goodput grows to optimal G∗ = (1−√
ρ)2 regardless of σ.

From the above, one might wonder whether scheduling uniform packets is
in fact the overall best strategy. In Sect. 4 we show that this is not the case.
Focusing on σ = 1 we show that the optimal goodput derived from uniform
packet length transmission, G∗, can be exceeded using an adaptive algorithm;
an algorithm that decides the length of the packet to be sent next, based on
the information provided by a feedback mechanism up to that point in time. In
particular, we present the adaptive scheduling algorithm ADP-1 that achieves
goodput G = 1− ρ

2

(
1 +

√
1 + 8

ρ

)
, which is greater than G∗ for ρ < 1

2 (7−3
√

5).
Then, using a parameterized version of ADP-1 and performing case analysis we
show its superiority over the uniform packet strategy for 1/ρ > 4. Specifically,
for 1/ρ > 4 the algorithm achieves greater goodput than G∗.

1.3 Related Work

Adversarial queueing has been used in wireless networks as a methodology
for studying their stability under worst case scenarios, removing the stochas-
tic assumptions usually made for the generation of traffic. It concerns the arrival
process of packets in the system and it has been introduced by Borodin et al. [7]
as a well defined theoretical model since 2001. It has been further studied by
Andrews et al. [3] who emphasized the notion of universal stability in such
adversarial settings. A variety of works has then followed, using AQT in differ-
ent network settings, such as on multiple access channels [10,11] and routing in
communication networks [8,9]. We associate our constrained type of adversarial
channel jams with the AQT model for the arrival process of packets in the fol-
lowing way. Classical AQT considers a window adversary that accounts packets
being injected within a time window w in such a way that they give a total load
of at most wr at each edge of the paths they need to follow, where w ≥ 1 and
r ≤ 1. In our channel jams, for every window of duration 1/ρ, there is exactly
one new error token available for the adversary to use. In a long execution, con-
sidering for example a time interval T > 1/ρ, there will be up to Tρ new error
tokens available to the adversary.

Packet Scheduling over a Wireless Channel 233

As stated already, several studies have been done on throughput maxi-
mization as well as the effects of jamming in wireless channels. For example,
Gummandi et al. [16] consider radio frequency interference on 802.11 networks
and show that such networks are surprisingly vulnerable. As a method to with-
stand these vulnerabilities they propose and analyze a channel hopping design.
Tsibonis et al. [24] studied the case of scheduling transmissions to multiple users
over a wireless channel with time-varying connectivity and proposed an algo-
rithm that focuses on the weighted sum of channel throughputs, considering
saturated packet queues. Thuente et al. [23] studied the effects of different jam-
ming techniques in wireless networks and the trade-off with their energy effi-
ciency. Their study includes from trivial/continuous to periodic and intelligent
jamming (taking into consideration the size of packets being transmitted). On a
different flavor, Awerbuch et al. [5] design a MAC protocol for single-hop wireless
networks that is robust against adaptive adversarial jamming and requires only
limited knowledge about the adversary (an estimate of the number of nodes, n,
and an approximation of a time threshold T). One of the differences with our
work is that the adversary they consider is allowed to jam (1− ε)-fraction of the
time steps. On a later work [21], Richa et al. explored the design of a robust
medium access protocol that takes into consideration the signal to interference
plus noise ratio (SINR) at the receiver end. In [22] they extended their work
to the case of multiple co-existing networks; they proposed a randomized MAC
protocol which guarantees fairness between the different networks and efficient
use of the bandwidth. Gilbert et al. [15] worked on a theoretical analysis of the
damage that can be introduced by a tiny malicious entity having limited power
in the sense that it can only broadcast up to β times. Our model can be viewed
as a generalization of this restriction, by allowing recharging. What is more,
Pelechrinis et al. [18] present a detailed survey of the Denial of Service attacks
in wireless networks. They present the various techniques used to achieve mali-
cious behaviors and describe methodologies for their detection as well as for the
network’s protection from the jamming attacks. Finally, Dolev et al. [12] present
a survey of several existing results in adversarial interference environments in
the unlicensed bands of the radio spectrum, discussing their vulnerability. How-
ever, none of the models studied considers an AQT modeling of the power of the
adversarial entity.

As mentioned in Sect. 1.1, our adversarial jammer has limited sources of
energy and can be used to model, for example, military drones or mobile jam-
mers. Drones or Unmanned Aerial Vehicles (UAV) are at the peak of their
development. As an upcoming technology that is rapidly improving, it has
already attracted the colossi of industry, like Google or Amazon, to invest in
UAV research and development, creating even commercial models. There have
already been a few research works [13,17] but the area is still being studied;
the work in [13] focuses on UAV’s risk analysis and the work in [17] focuses
in analyzing cellular network coverage using UAV’s and software defined radio.
Regarding mobile jammers, in the recent years, many companies have made
available battery-operated 3G/4G, WiFi or GPS mobile jammers (e.g., [1,2]);

234 A. Fernández Anta et al.

this market can only increase, as wireless communication is becoming the dom-
inating communication technology.

2 Model

2.1 Network Setting

We consider a setting of a sending station (sender) that transmits packets to a
receiving station (receiver) over an unreliable wireless channel. The sender has
some initial data of size P to be transmitted, and follows some online schedul-
ing [19,20] in order to decide the lengths of the packets to be sent in the trans-
mission. The decisions need to be made during the course of the execution,
taking into consideration (or not) the channel jams. Each packet p consists of
a header of a fixed predefined size h and a payload of length l chosen by the
algorithm. The payload represents the useful data to be sent across the channel
and is to be chosen by the sender. The total length of the packet is then denoted
by p.len = h + l. Note that the total payload from all the packets received suc-
cessfully by the receiver in the execution must sum up to P . For simplicity and
without loss of generality we use h = 1 throughout our analysis, and hence
p.len = l + 1. (Note that l needs not be an integer.) Furthermore, we consider
constant bit rate for the channel, which means that the transmission time of
each packet is proportional to its length (i.e., a packet of size l + 1 takes l + 1
time units to be transmitted in full).

2.2 Packet Failures

We model the unavailability of the channel to be controlled by the adversary
(σ, ρ)-A, which is defined by its two “restrictive” parameters, ρ ∈ [0, 1] and
σ ≥ 1 as follows. The adversary has a token bucket of size σ where it stores
“error tokens” and is initially full. From the beginning of the execution and
up to a time t, within interval T = [0, t], there will be �ρT 	 such error tokens
created, where ρ is the rate at which they become available to the adversary.
In other words, a new error token becomes available at times 1/ρ, 2/ρ, Note
that the values of the adversary parameters are given to it (are not chosen by
it) and it can only use them in a “smart” way in order to control the packet
jams in the channel. If there is at least one token in the bucket, the adversary
can introduce an error in the channel and jam the current packet, consuming
one token. If the token bucket if full (i.e., there are already σ error tokens in
the bucket) and a new token arrives, then one token is lost (this models the fact
that a fully charged battery cannot be further charged). As a worst case analysis,
we consider that the adversary jams some bit in the header of the packets in
order to ensure their destruction. Therefore, adversary (σ, ρ)-A defines the error
pattern as a collection of jamming events on the channel, jamming the packet
that is being transmitted in that instant.

Packet Scheduling over a Wireless Channel 235

2.3 Efficiency Measure

For the efficiency of a scheduling algorithm, we look at the total transmission
time, Tr ; that is the time from the beginning of an execution to the moment
that the complete payload P has been successfully received. We also look at the
goodput rate, G; that is the ratio of the total amount of payload successfully
transmitted over time, despite the jams in the channel. Note that the goodput
rate will eventually be maximized in the long-run, assuming infinite amount of
data P . Note also, that in most of our analysis we avoid using floors and ceilings
in order to keep the readability of our results as simple as possible for the reader.
Nonetheless, this does not affect the correctness of our results since when being
applied on large enough time intervals and data, the “losses” become negligible.

2.4 Feedback Mechanism

As for the feedback mechanism, instantaneous feedback to the sender about a
packet being received is being considered, as in [4]. We also assume that the noti-
fication packets cannot be jammed by the errors in the channel because of their
relatively small size. In particular, we consider notification/acknowledgement
messages sent for every packet that is received successfully. If such a message is
not received by the sender, then it considers the packet to be jammed.

3 Uniform Packet Length

In this section we explore the case in which all packets are of the same length.
Nonetheless, we first make the following observation, which bounds the error
availability rates used, being such that they permit some data transmission (this
holds also for non-uniform packet lengths).

Observation 1. Let c be the smallest packet size used by an algorithm (i.e.,
∀p, p.len ≥ c). For any error rate ρ ≥ 1/c, no goodput larger than zero can be
achieved.

Proof. If the error rate is ρ ≥ 1/c, a new error token arrives during the trans-
mission of any packet (recall that packets are of size at least c). Hence, there are
error tokens in the bucket at all times for the adversary to corrupt all packets
being transmitted. Using an error token every c time, is sufficient to keep the
goodput at zero. ��

From this observation, it can be derived that algorithms that only use packets
of length p.len ≥ 1/ρ are not interesting. In particular, since in this section we
consider an algorithm that systematically sends packets of the same length, we
assume that the packets used satisfy p.len < 1/ρ.

The main goal for the algorithms to be designed is to minimize the trans-
mission time needed to successfully transmit the total amount of data P to the
receiver. Knowing both adversarial parameters, ρ and σ, and considering uniform

236 A. Fernández Anta et al.

packets of size p.len = l + 1 < 1/ρ, we can find the quasi optimal value for the
length of the payload l in each packet that minimizes the transmission time. For
simplicity, we will assume that the total length of the data to be transmitted P
is a multiple of the payload length l. (For large values of P the error introduced
by this assumption is negligible.) Then, the objective is that P/l packets arrive
successfully at the receiver.

Let us now derive a lower bound on the transmission time that can be achieved
using uniform packets. We denote with Tr(l) the transmission time with packets
of uniform payload l. Let r be the number of packets jammed and retransmitted
by the sender. Then,

Tr(l) = (P/l + r)(l + 1). (1)

Observe that the last packet transmitted was correctly received, since other-
wise the data would have been completely transmitted by time Tr(l) − (l + 1),
which contradicts the fact that Tr(l) is the transmission time. Hence, the number
of packets jammed and retransmitted is upper bounded as

r ≤ (Tr(l) − (l + 1))ρ� − 1 + σ, (2)

where we apply the fact that the last error used by the adversary must have
been available before time Tr(l) − (l + 1). We claim that the number of packets
jammed by the adversary and retransmitted is in fact equal to the bound of
Eq. 2. Otherwise, the adversary could have jammed the last packet sent (at time
Tr(l) − (l + 1)), achieving a longer transmission time. Hence,

r = (Tr(l) − (l + 1))ρ� − 1 + σ. (3)

Moreover, since the adversary could not jam the last packet sent, it must
also hold that r + 1 ≥ Tr(l)ρ + σ = (P/l + r)(l + 1)ρ + σ, from which we can
bound the value of r as

r ≥ Pρ(l + 1) + (σ − 1)l
l − lρ(l + 1)

. (4)

Let us define the lower bound of the transmission time when packets of
uniform payload l are used, as function LB(l). Then,

Lemma 1. Using uniform packets of payload l, the lower bound of the trans-
mission time is

Tr(l) ≥ LB(l) =
P + (σ − 1)l

l(1 − ρ(l + 1))
(l + 1).

Proof. Replacing the lower bound of r (Eq. 4) in Eq. 1 we have

Tr(l) ≥
(

P

l
+

Pρ(l + 1) + (σ − 1)l
l − lρ(l + 1)

)
(l + 1) =

P + (σ − 1)l
l(1 − ρ(l + 1))

(l + 1),

which when combined with the definition of LB(l), completes the proof. ��

Packet Scheduling over a Wireless Channel 237

Using Calculus, we can find the payload length l∗ that minimizes LB(l),
which yields the following theorem.

Theorem 1. Using uniform packets the transmission time is lower bounded as

Tr ≥ LB(l∗) =
P + (σ − 1)l∗

l∗(1 − ρ(l∗ + 1))
(l∗ + 1)

and the goodput is upper bounded as

G ≤ P

LB(l∗)
=

Pl∗(1 − ρ(l∗ + 1))
(P + (σ − 1)l∗)(l∗ + 1)

,

where

l∗ =

√
P (Pρ + (σ − 1)(1 − ρ)) − Pρ

Pρ + σ − 1
.

Obviously, when P tends to ∞, so does the transmission time Tr . However,
we can derive in this case an upper bound on the goodput as follows.

Corollary 1. Using uniform packets, the goodput is upper bounded as G ≤ (1−√
ρ)2, and in the limit as the value of P grows,

G∗ = lim
P→∞

G = (1 − √
ρ)2

Proof. Using Calculus it can be shown that the upper bound of G obtained in
Theorem 1 grows with P . Observe that lim

P→∞
G = l∗(1 − ρ(l∗ + 1))/(l∗ + 1) and

lim
P→∞

l∗ = (
√

ρ − ρ)/ρ = 1/
√

ρ − 1. Replacing the latter in the former the claims

follow. ��

We now show a corresponding upper bound on the transmission time. We
start by combining Eqs. 1 and 3 as follows:

r = (Tr(l) − (l + 1))ρ� − 1 + σ

< (Tr(l) − (l + 1))ρ + σ

= ((P/l + r)(l + 1) − (l + 1))ρ + σ

= (P/l + r)(l + 1)ρ + σ − (l + 1)ρ.

This allows us to find an upper bound of r as

r <
Pρ(l + 1) + (σ − (l + 1)ρ)l

l − lρ(l + 1)
. (5)

Let us now define the upper bound of the transmission time when packets of
payload l are used, as function UB(l). Then,

Lemma 2. Using uniform packets of payload l, the upper bound of the trans-
mission time is

Tr(l) < UB(l) =
P + (σ − (l + 1)ρ)l

l(1 − ρ(l + 1))
(l + 1).

238 A. Fernández Anta et al.

Proof. Replacing the upper bound of r (Eq. 5) in Eq. 1 we have

Tr(l) <

(
P

l
+

Pρ(l + 1) + (σ − (l + 1)ρ)l
l − lρ(l + 1)

)
(l+1) =

P + (σ − (l + 1)ρ)l
l(1 − ρ(l + 1))

(l+1),

which when combined with the definition of UB(l), completes the proof. ��

From Observation 1, ρ < 1/(l+1) must hold. Then, (l+1)ρ < 1 and the bound
obtained in the above lemma is strictly bigger than the lower bound presented
in Lemma 1, as expected. In fact, the gap between bounds can be obtained as
shown in the following lemma.

Lemma 3. Using uniform packets of payload l, the transmission time satisfies
Tr(l) ∈ [LB(l), LB(l) + l + 1).

Proof. Recall that the lower bound LB(l) is obtained in Lemma 1. Subtracting
this expression from the upper bound UB(l) presented in Lemma 2, we have

UB(l) − LB(l) =
P + (σ − (l + 1)ρ)l

l(1 − ρ(l + 1))
(l + 1) − P + (σ − 1)l

l(1 − ρ(l + 1))
(l + 1)

=
l(1 − ρ(l + 1))
l(1 − ρ(l + 1))

(l + 1) = l + 1.

From the above and the fact that Tr(l) < UB(l) the claim follows. ��

Corollary 2. Using uniform packets of payload l, Tr(l) is the only multiple of
l + 1 that falls in the interval [LB(l), LB(l) + l + 1).

Finally, combining Lemma 3 with Theorem 1 we derive the following theorem.

Theorem 2. Consider l∗ as defined in Theorem1. Then

– the transmission time Tr(l∗) observed is less that l∗ + 1 (one packet) longer
that the optimal. I.e., Tr(l∗) < Tr + l∗ + 1.

– the goodput G(l∗) converges to the optimal goodput G as P grows. Additionally,
when P goes to infinity the goodput matches the optimal G∗, i.e. lim

P→∞
G(l∗) =

lim
P→∞

G = (1 − √
ρ)2.

Proof. The first claim follow directly from Lemma 3, since the value of l∗ is the
one that minimizes LB(l). For the second, recall that G(l∗) = P

Tr(l∗) . Hence,
observing again Lemma 3 we get that

G(l∗) >
P

LB(l∗) + l∗ + 1
=

1
LB(l∗)

P + l∗+1
P

.

As P grows l∗+1
P tends to 0, making G(l∗) converge to P/LB(l∗) which is an

upper bound on the optimal goodput. Finally, as shown in Corollary 1, when P
tends to infinity, P/LB(l∗) tends to (1 − √

ρ)2, which completes the proof. ��

Packet Scheduling over a Wireless Channel 239

4 Adaptive Packet Length

As we have shown in the previous section, if all packets have the same size, more
precisely size l∗ + 1, then there is an upper bound on the achievable goodput
G∗ = (1−√

ρ)2. In this section, focusing on the case σ = 1, we lift the restriction
on uniform packet length and consider an algorithm that adapts the packet
length it uses as a function of the observed jams. We show that by using this
approach it is possible to achieve a goodput greater than (1 − √

ρ)2, under the
restriction of ρ < 1/4.

We divide the execution into consecutive periods of length 1/ρ. In particular,
the ith period, i = 1, 2, . . ., spans the time interval Ii =

[
i−1
ρ , i

ρ

)
. Note that since

error tokens arrive at time instants 1/ρ, 2/ρ, . . . and σ = 1, at most one packet
can be jammed by the adversary in each period. For simplicity, and since we
focus on periods of fixed length 1/ρ, we will use the useful payload sent in the
period as one of the goodness metrics used, denoted UP. Observe that UP = G/ρ
and therefore, the upper bound on the useful payload that can be achieved with
uniform packets is UP∗ = (1 − √

ρ)2/ρ.

4.1 Algorithm ADP-1 for ρ < 1
2
(7 − 3

√
5)

We start by proposing the following algorithm, to be used for small values of ρ
(and σ = 1).

Algorithm ADP-1 Description: Each period starts by scheduling packets of
decreasing length pi.len = Z − i for i = 0, 1, 2, 3 If a packet pj is jammed
during the period, this transmission sequence is stopped, and after pj , a
single more packet is scheduled by the algorithm whose length spans the
rest of the period.

We will now show that for ρ small enough, we can specify the parameter Z
such that the useful payload achieved in each period is at least UPu.

Theorem 3. Adaptive algorithm ADP-1, with Z = 1
2

(√
1 + 8

ρ − 1
)
, achieves

goodput G = 1 − ρ
2

(
1 +

√
1 + 8

ρ

)
. This value is larger than the upper bound for

the uniform case if ρ < 1
2 (7 − 3

√
5) ≈ 0.1459.

Proof. There are two cases to be considered in a period:
(a) If the adversary jams a packet pj , the useless data sent in the period adds

to Z + 1. This number comes from the j headers of the packets sent before pj ,
plus the length pj.len = Z − j of the packet jammed, plus the header of the last
packet sent in the period (which cannot be jammed). Hence, in this case, the
useful payload of the period is 1/ρ − (Z + 1).

Otherwise, (b) if no packet is jammed, the useless data sent in the period
correspond only to the headers of the packets sent. Then, if the last packet sent

240 A. Fernández Anta et al.

in the interval is pk, the useless data is k + 1, and the corresponding useful
payload is 1/ρ − (k + 1). The value Z is chosen so that the total length of the
packets sent in this case is equal the length of the interval. From this property,∑k

i=0 pi.len = 1
ρ , the value of Z must satisfy Z(k + 1) − k(k+1)

2 = 1
ρ and hence

Z =
k

2
+

1
ρ(k + 1)

. (6)

In a given period the choice of whether case (a) or (b) occurs is up to the
adversary, since she can decide which packet to jam, if any. This means that the
useful payload achieved will be the minimum of the two cases, UP = min{1/ρ −
(Z + 1), 1/ρ − (k + 1)}. Observe from this Eq. 6 that the length Z of the initial
packet increases if the number of packets k decreases. Additionally, it must
hold that Z ≥ k and therefore UP is maximized when Z = k. Hence, the
optimal k is the suitable solution of the equation k = k

2 + 1
ρ(k+1) , which is

k = 1
2

(√
1 + 8

ρ − 1
)

= Z.

The useful payload achieved is then UP = 1
ρ −

(
1
2

√
1 + 8

ρ − 1
2 + 1

)
= 1

ρ −
1
2

(√
1 + 8

ρ + 1
)
, which is more that UP∗ = (1 − √

ρ)2/ρ for ρ < 1
2 (7 − 3

√
5) ≈

0.1459. The corresponding goodput is G = UP
1/ρ = 1 − ρ

2

(√
1 + 8

ρ + 1
)

. ��

Corollary 3. Adaptive algorithm ADP-1, with Z = 1
2

(√
1 + 8

ρ − 1
)

achieves

transmission time Tr = 2P

2−ρ−
√

ρ(ρ+8)
.

4.2 Exhaustive Case Study for ρ ≥ 1
2
(7 − 3

√
5)

From the above results, we see that in the case of σ = 1, instead of using packets
of uniform length l∗ +1, it is better to use an adaptive algorithm. More precisely,
we have shown that for ρ < 1

2 (7− 3
√

5), ADP-1 achieves a better useful payload
and goodput rate than the optimal uniform packet algorithm (the one that uses
packet length p.len = l∗ + 1). We now explore the case of ρ ≥ 1

2 (7 − 3
√

5). As
before, we look at periods of length 1/ρ, which means that the length of the
period is at most 2

7−3
√
5

≈ 6.85 < 7. Hence, we consider only periods of such
lengths.

In general, we are going to deal with subintervals of the period of length 1/ρ.
We will denote with T = [t, t′) an interval in the execution (subinterval of the
period) such that t is an instant at which the adversary has one error token in
the error bucket, and t′ the time instant at which the next error token becomes
available. Hence, the adversary has one error token (and only one) to be used in
T . We use |T | to denote the length of the interval, and UPT to denote the useful
payload that has been sent and correctly received by the receiver during T .

Let us first make the following observation.

Packet Scheduling over a Wireless Channel 241

Observation 2. If there is at most one packet p of length p.len > 1 sent in an
interval T , then UPT = 0.

Proof. Since the adversary has one error token at the beginning of the interval,
it uses it to jam packet p. The rest of packets (if any) have length 1 and carry
no payload. ��

We consider now different cases depending on the length of the interval, |T |,
to be explored. We use the following algorithm for any interval T .

Algorithm ADP-1T Description: As a base case, if |T | < 2 then ADP-1T

simply sends a packet that spans the whole interval. Otherwise, let i the
integer such that |T | ∈ [i, i + 1). Then ADP-1T sends a packet p whose
length depends on i. If p is jammed, it sends a packet p′ that spans the rest
of the interval T . Otherwise, it applies recursively algorithm ADP-1T ′ to
the interval T ′ = [t + p.len, t′). Observe that |T ′| < i.

Lemma 4. If |T | < 2, then UPT = 0.

Proof. For any packet sent, the header requires 1 unit of length. Since |T | < 2,
it means that only one packet can be sent within T . Hence, UPT = 0 from
Observation 2. ��

Lemma 5. If |T | ∈ [2, 3), Algorithm ADP-1T uses uniform packets with p.len =
|T |/2 and achieves useful payload UPT = |T |

2 − 1. The packets used in such
interval are uniform.

Proof. First observe that the algorithm essentially sends two packets of length
|T |/2. This in fact achieves useful payload UPT = |T |

2 − 1, since the adversary
has only one error token to be used in T , and it jams only one packet. No matter
which one is jammed, the payload of the unjammed packet, whose length is
|T |
2 − 1, is received correctly.

We show now that this is in fact the best possible useful payload that ADP-1T

can achieve for period T . Since |T | < 3 and the header has length one, the
algorithm cannot send more than 2 packets. Consider an algorithm ALG that:

– First sends a packet p of length larger than |T |/2. Then, the adversary jams
p. Since the length of the rest of the interval is |T | − p.len < |T |/2, the useful
payload UPT < |T |

2 − 1.
– First sends a packet p of length smaller than |T |/2 (but at least 1). Then,

the adversary does not jam p. After sending p, until the end of T there is
a subinterval T ′ of length |T ′| = |T | − p.len < 2. From Lemma 4, the useful
payload of T ′ is UPT ′ = 0. Then, the useful payload of T is UPT = p.len −1 <
|T |
2 − 1.

In both cases the useful payload of ALG is smaller than the one achieved by
the algorithm proposed. Hence, the algorithm proposed gives the best possible
useful payload for an interval T , where |T | ∈ [2, 3). ��

242 A. Fernández Anta et al.

Lemma 6. If |T | ∈ [3, 4), Algorithm ADP-1T uses uniform packets with p.len =
|T |/2 and achieves useful payload UPT = |T |

2 − 1. The packets used in such
interval are uniform.

Proof. The proof is similar to that of the previous lemma, with a small difference.
In the case that algorithm ALG sends a packet with length p.len < |T |/2, the
adversary does not jam p and after it is received, there is a subinterval T ′ of
length |T ′| = |T |−p.len < 3 until the end of T . From Lemmas 4 and 5, the useful
payload of T ′ is upper bounded as UPT ′ ≤ |T ′|

2 − 1 = |T |−p.len

2 − 1. Then, the
useful payload of T is UPT ≤ p.len−1+ |T |−p.len

2 −1 = |T |+p.len

2 −2 < |T |+|T |/2
2 −2,

which is smaller than |T |
2 − 1 for |T | < 4. Hence, the algorithm proposed gives

the best possible useful payload for an interval T , where |T | ∈ [3, 4). ��

Lemma 7. If |T | ∈ [4, 5), Algorithm ADP-1T with p.len = (|T | + 2)/3 achieves
useful payload UPT = 2|T |−5

3 . The packets used in the whole interval are not
uniform in this case.

Proof. Let Algorithm ADP-1T send first packet p with p.len = (|T | + 2)/3.
If it is jammed, a packet p′ of length |T | − (|T | + 2)/3 is sent successfully.
Then, in this case the useful payload is UPT = |T | − (|T | + 2)/3 − 1 = 2|T |−5

3 .
Otherwise, observe that |T ′| = |T |−p.len ∈ [2, 4). Then, form Lemmas 5 and 6 the
UPT ′ = |T ′|

2 − 1 = |T |−p.len

2 − 1. Hence, UPT = p.len − 1+ |T |−p.len

2 − 1 = 2|T |−5
3 .

To prove that this is the best approach for the choice of the packet length,
consider an algorithm ALG that

– First sends a packet p of length larger than (|T | + 2)/3. Then, the adversary
jams p. Since the length of the rest of the interval is |T | − p.len < |T | − (|T | +
2)/3, the useful payload UPT < |T | − (|T | + 2)/3 = 2|T |−5

3 .
– First sends a packet p of length smaller than (|T |+2)/3, but at least 1. Then,

the adversary does not jam p. After p there is a subinterval T ′ of length
|T ′| = |T | − p.len < 4. Then, from Lemmas 4, 5, and 6, the useful payload
of T ′ is upper bounded as UPT ′ ≤ |T ′|

2 − 1 = |T |−p.len

2 − 1. Then, the useful
payload of T is UPT = p.len − 1 + |T |−p.len

2 − 1 < 2|T |−5
3 .

In both cases the useful payload is smaller than the ones achieved by the algo-
rithm proposed. Hence, the algorithm proposed with the packet length chosen,
gives the best possible useful payload in an interval T , where |T | ∈ [4, 5). ��

Lemma 8. If |T | ∈ [5, 6), Algorithm ADP-1T with p.len = (|T | + 2)/3 achieves
useful payload UPT = 2|T |−5

3 . The packets used in the whole interval are not
uniform in this case.

Proof. The proof is similar to that of Lemma 7, with some small differences. The
main difference is in the case that algorithm ALG sends a packet with length
p.len < (|T | + 2)/3. As above, the adversary will not jam p and after sending it
successfully, there will be a subinterval T ′ of length |T ′| = |T |−p.len < 5 until the

Packet Scheduling over a Wireless Channel 243

end of T . Then, from Lemmas 4 to 7, the useful payload of T ′ is upper bounded
as UPT ′ ≤ 2|T ′|−5

3 = 2(|T |−p.len)−5
3 . Hence, the useful payload of T becomes

UPT ≤ p.len − 1 + 2(|T |−p.len)−5
3 which is smaller than 2|T |−5

3 for p.len < 3. The
latter holds, since p.len < (|T | + 2)/3 and |T | < 6. Hence again, the algorithm
proposed with the packet length chosen, gives the best possible useful payload
in an interval T , where |T | ∈ [5, 6). ��

Lemma 9. If |T | ∈ [6, 7), Algorithm ADP-1T with p.len = (|T | + 2)/3 achieves
useful payload UPT = 2|T |−5

3 . The packets used in the whole interval are not
uniform in this case either.

Proof. The proof follows the same exact logic as Lemmas 7 and 8. The only
difference is in the case that algorithm ALG sends a packet with length
p.len < (|T | + 2)/3. As above, the adversary will not jam p and after sending it
successfully, the subinterval T ′ that remains is of length |T ′| = |T | − p.len < 6.
Then, from Lemmas 4 to 8, the useful payload of T ′ is upper bounded as
UPT ′ ≤ 2|T ′|−5

3 = 2(|T |−p.len)−5
3 . Hence, the useful payload of T becomes

UPT ≤ p.len − 1 + 2(|T |−p.len)−5
3 which is smaller than 2|T |−5

3 for p.len < 3.
The latter holds, since p.len < (|T | + 2)/3 and |T | < 7. Hence, the algorithm
proposed with the packet length chosen, gives the best possible useful payload
in an interval T , where |T | ∈ [6, 7). ��

Putting all these results together, and fixing |T | = 1/ρ, we get the following
theorem.

Theorem 4. For σ = 1, ρ ≥ 1
2 (7 − 3

√
5) and 1/ρ ∈ [4, 7), adaptive algorithm

ADP-1T has goodput G = 2−5ρ
3 . This is achieved using first packet p with length

p.len = 1
3ρ + 2

3 ; the packets used are not of uniform length.

Note that for 1/ρ > 4, the goodput achieved is bigger than the upper bound of
the uniform packet approach, G > G∗, and for 1/ρ = 4 it is equal to the upper
bound, G = G∗.

5 Conclusions

In this paper we have applied Adversarial Queuing Theory (AQT), a well known
theoretical modeling tool, for the first time to restrict adversarial packet jamming
on wireless networks. We have chosen to study a constrained adversarial entity,
considering a bounded error-token capacity σ and an error-token availability rate
ρ. This model could be applied in various battery-operated malicious devices such
as drones or mobile jammers. We have first shown upper and lower bounds on
transmission time and goodput by exploring the case of uniform packet lengths.
Then, focusing on σ = 1, we have shown that an adaptive algorithm that changes
the packet length based on feedback received for jammed packets, can achieve
better goodput and transmission time. What might seem surprising is that even

244 A. Fernández Anta et al.

for the “simple” case of σ = 1, the analysis of the adaptive algorithm is nontrivial,
and imposes constraints also on ρ.

An intriguing open question is whether it is still possible to obtain better
efficiency than the uniform packet lengths “policy” for adaptive algorithms with
σ > 1. Considering for example σ = 2 seems to already be a challenging task.
Another interesting future direction is to investigate the case where one or both
parameters ρ and σ are not known; here one will need to monitor the history
of the observed jams in an attempt to estimate these parameters. On the other
hand, the adversary will try to “hide” the true value of these parameters, yield-
ing an interesting gameplay between the adversary and an algorithm. Another
direction to follow would be to consider in addition the channel errors due to
congestion and transmission rate.

Acknowledgments. The authors would like to thank Dariusz Kowalski and Joerg
Widmer for many fruitful discussions. We would also like to thank the anonymous
reviewers for their constructive comments and suggestions that helped us improve the
presentation of our work.

References

1. http://alljammer.com/. Accessed 8 April 2015
2. http://www.jammer-store.com/. Accessed 8 April 2015
3. Andrews, M., Awerbuch, B., Fernández, A., Leighton, T., Liu, Z., Kleinberg,

J.: Universal-stability results and performance bounds for greedy contention-
resolution protocols. J. ACM (JACM) 48(1), 39–69 (2001)

4. Fernández Anta, A., Georgiou, C., Kowalski, D.R., Widmer, J., Zavou, E.: Mea-
suring the impact of adversarial errors on packet scheduling strategies. In: Mosci-
broda, T., Rescigno, A.A. (eds.) SIROCCO 2013. LNCS, vol. 8179, pp. 261–273.
Springer, Heidelberg (2013)

5. Awerbuch, B., Richa, A., Scheideler, C.: A jamming-resistant mac protocol for
single-hop wireless networks. In: Proceedings of the Twenty-Seventh ACM Sym-
posium on Principles of Distributed Computing, PODC 2008, pp. 45–54. ACM,
New York (2008)

6. Bhagwat, P., Bhattacharya, P., Krishna, A., Tripathi, S.K.: Enhancing through-
put over wireless lans using channel state dependent packet scheduling. In: Pro-
ceedings of IEEE Fifteenth Annual Joint Conference of the IEEE Computer Soci-
eties. Networking the Next Generation, INFOCOM 1996, vol. 3, pp. 1133–1140.
IEEE (1996)

7. Borodin, A., Kleinberg, J., Raghavan, P., Sudan, M., Williamson, D.P.: Adver-
sarial queuing theory. J. ACM (JACM) 48(1), 13–38 (2001)

8. Chlebus, B.S., Cholvi, V., Kowalski, D.R.: Stability of adversarial routing with
feedback. In: Gramoli, V., Guerraoui, R. (eds.) NETYS 2013. LNCS, vol. 7853,
pp. 206–220. Springer, Heidelberg (2013)

9. Chlebus, B.S., Cholvi, V., Kowalski, D.R.: Universal routing in multi hop radio
networks. In: Proceedings of the 10th ACM International Workshop on Founda-
tions of Mobile Computing, pp. 19–28. ACM (2014)

http://alljammer.com/
http://www.jammer-store.com/

Packet Scheduling over a Wireless Channel 245

10. Chlebus, B.S., Kowalski, D.R., Rokicki, M.A.: Adversarial queuing on the
multiple-access channel. In: Proceedings of the Twenty-Fifth Annual ACM Sym-
posium on Principles of Distributed Computing, pp. 92–101. ACM (2006)

11. Chlebus, B.S., Kowalski, D.R., Rokicki, M.A.: Stability of the multiple-access
channel under maximum broadcast loads. In: Masuzawa, T., Tixeuil, S. (eds.)
SSS 2007. LNCS, vol. 4838, pp. 124–138. Springer, Heidelberg (2007)

12. Dolev, S., Gilbert, S., Guerraoui, R., Kowalski, D.R., Newport, C., Kohn, F.,
Lynch, N.: Reliable distributed computing on unreliable radio channels. In: Pro-
ceedings of the 2009 MobiHoc S 3 Workshop on MobiHoc S 3, pp. 1–4. ACM
(2009)

13. Faughnan, M.S., Hourican, B.J., MacDonald, G.C., Srivastava, M., Wright, J.A.,
Haimes, Y.Y., Andrijcic, E., Guo, Z., White, J.C.: Risk analysis of unmanned
aerial vehicle hijacking and methods of its detection. In: 2013 IEEE Systems and
Information Engineering Design Symposium (SIEDS), pp. 145–150. IEEE (2013)

14. Fu, Z., Zerfos, P., Luo, H., Lu, S., Zhang, L., Gerla, M.: The impact of multihop
wireless channel on TCP throughput and loss. In: Twenty-Second Annual Joint
Conference of the IEEE Computer and Communications, INFOCOM 2003, IEEE
Societies, vol. 3, pp. 1744–1753. IEEE (2003)

15. Gilbert, S., Guerraoui, R., Newport, C.: Of malicious motes and suspicious sen-
sors: on the efficiency of malicious interference in wireless networks. Theor. Com-
put. Sci. 410(6), 546–569 (2009)

16. Gummadi, R., Wetherall, D., Greenstein, B., Seshan, S.: Understanding and miti-
gating the impact of RF Interference on 802.11 networks. ACM SIGCOMM Com-
put. Commun. Rev. 37(4), 385–396 (2007)

17. Jakubiak, M.: Cellular network coverage analysis using UAV and SDR. Master’s
thesis, Tampere University of Technology (2014)

18. Pelechrinis, K., Iliofotou, M., Krishnamurthy, S.V.: Denial of service attacks in
wireless networks: the case of jammers. IEEE Commun. Surv. Tutorials 13(2),
245–257 (2011)

19. Pruhs, K.: Competitive online scheduling for server systems. ACM SIGMETRICS
Perform. Eval. Rev. 34(4), 52–58 (2007)

20. Pruhs, K., Sgall, J., Torng, E.: Online scheduling. In: Handbook of Scheduling:
Algorithms, Models, and Performance Analysis, p. 15-1 (2004)

21. Richa, A., Scheideler, C., Schmid, S., Zhang, J.: Towards jamming-resistant and
competitive medium access in the SINR model. In: Proceedings of the 3rd ACM
Workshop on Wireless of the Students, by the Students, for the Students, pp.
33–36. ACM (2011)

22. Richa, A., Scheideler, C., Schmid, S., Zhang, J.: Competitive and fair throughput
for co-existing networks under adversarial interference. In: Proceedings of the
2012 ACM Symposium on Principles of Distributed Computing, pp. 291–300.
ACM (2012)

23. Thuente, D., Acharya, M.: Intelligent jamming in wireless networks with applica-
tions to 802.11 b and other networks. In: Proceedings of MILCOM, vol. 6 (2006)

24. Tsibonis, V., Georgiadis, L., Tassiulas, L.: Exploiting wireless channel state infor-
mation for throughput maximization. IEEE Trans. Inf. Theory 50(11), 2566–2582
(2004)

25. Uysal-Biyikoglu, E., Prabhakar, B., El Gamal, A.: Energy-efficient packet trans-
mission over a wireless link. IEEE/ACM Trans. Netw. 10(4), 487–499 (2002)

Fisheye Consistency: Keeping Data in Synch
in a Georeplicated World

Roy Friedman1, Michel Raynal2,3, and Francois Täıani3(B)

1 The Technion Haifa, Haifa, Israel
2 Institut Universitaire de France, Paris, France

3 IRISA, Université de Rennes 1, Campus de Beaulieu, 35042 Rennes Cedex, France
francois.taiani@irisa.fr

Abstract. Over the last thirty years, numerous consistency conditions
for replicated data have been proposed and implemented. Popular exam-
ples include linearizability (or atomicity), sequential consistency, causal
consistency, and eventual consistency. These conditions are usually
defined independently from the computing entities (nodes) that manip-
ulate the replicated data; i.e., they do not take into account how comput-
ing entities might be linked to one another, or geographically
distributed. To address this lack, as a first contribution, this paper intro-
duces the notion of proximity graph between computing nodes. If two
nodes are connected in this graph, their operations must satisfy a strong
consistency condition, while the operations invoked by other nodes are
allowed to satisfy a weaker condition. The second contribution exploits
this graph to provide a generic approach to the hybridization of data
consistency conditions within the same system. We illustrate this app-
roach on sequential consistency and causal consistency, and present a
model in which all data operations are causally consistent, while oper-
ations by neighboring processes in the proximity graph are sequentially
consistent. The third contribution of the paper is the design and the
proof of a distributed algorithm based on this proximity graph, which
combines sequential consistency and causal consistency (the resulting
condition is called fisheye consistency). In doing so the paper provides a
generic provably correct solution of direct relevance to modern georepli-
cated systems.

Keywords: Asynchronousmessage-passing systems ·Broadcast ·Causal
consistency · Data replication · Georeplication · Linearizability ·
Sequential consistency

1 Introduction

As distributed computer systems continue to grow in size, they make it increas-
ingly difficult to provide strong consistency guarantees (e.g., linearizability [20]),
prompting the rise of weaker guarantees (e.g., causal consistency [2] or even-
tual consistency [39]). These weaker consistency conditions strike a compromise
c© Springer International Publishing Switzerland 2015
A. Bouajjani and H. Fauconnier (Eds.): NETYS 2015, LNCS 9466, pp. 246–262, 2015.
DOI: 10.1007/978-3-319-26850-7 17

Fisheye Consistency: Keeping Data in Synch in a Georeplicated World 247

between consistency, performance, and availability [5,7,10,13,40]. They try in
general to minimize the violations of strong consistency, as these create anomalies
for programmers and users, and emphasize the low probability of such violations
in their real deployments [15].

Recent Related Works. For brevity, we cannot name all the many weak consis-
tency conditions that have been proposed in the past. We focus instead on the
most recent works in this area. One of the main hurdles in building systems
and applications based on weak consistency models is how to generate an even-
tually consistent and meaningful image of the shared memory or storage [39].
In particular, a paramount sticking point is how to handle conflicting concur-
rent write (or update) operations and merge their result in a way that suits
the target application. To that end, various conditions that enables custom con-
flict resolution and a host of corresponding data-types have been proposed and
implemented [3,4,9,14,26,30,35,36].

Another form of hybrid consistency conditions can be found in the seminal
works on release consistency [18,21] and hybrid consistency [6,16], which dis-
tinguish between strong and weak operations such that strong operations enjoy
stronger consistency guarantees than weak operations. This line of work has
given rise to a number of contributions in the context of large scale and geo-
replicated data centers [38,40].

Motivation and Problem Statement. In spite of their benefits, the above consis-
tency conditions generally ignore the relative “distance” between nodes in the
underlying “infrastructure”, where the notions of “distance” and “infrastruc-
ture” may be logical or physical, depending on the application. This is unfor-
tunate as distributed systems must scale out and geo-replication is becoming
more common. In a geo-replicated system, the network latency and bandwidth
connecting nearby servers is usually at least an order of magnitude better than
what is obtained between remote servers. This means that the cost of maintain-
ing strong consistency among nearby nodes becomes affordable compared to the
overall network costs and latencies in the system.

Some production-grade systems acknowledge the importance of distance when
enforcing consistency, and do propose consistency mechanisms based on node
locations (e.g. whether nodes are located in the same or in different data-centers).
Unfortunately these production-grade systems usually do not distinguish between
semantics and implementation. Rather, their consistency model is defined in oper-
ational terms, whose full implications can be difficult to grasp. In Cassandra [22],
for instance, the application can specify for each operation a consistency guaran-
tee that is dependent on the location of replicas. More precisely, the constraints
LOCAL QUORUM requires a quorum of replicas in the local data center, while
EACH QUORUM requires a quorum in each data center. Yet, although these con-
straints take distance into account, they do not provide the programmer with a
precise image of the consistency they deliver.

The need to consider “distance” when defining consistency models, and the
current lack of any formal underpinning to do so are exactly what motivates the

248 R. Friedman et al.

hybridization of consistency conditions that we propose in this paper (which we
call fisheye consistency). Fisheye consistency conditions provide strong guar-
antees only for operations issued at nearby servers. In particular, there are
many applications where one can expect that concurrent operations on the same
objects are likely to be generated by geographically nearby nodes, e.g., due to
business hours in different time zones, or because these objects represent local-
ized information, etc. In such situations, a fisheye consistency condition would
in fact provide global strong consistency at the cost of maintaining only locally
strong consistency.

Consider for instance a node A that is “close” to a node B, but “far” from
a node C, a causally consistent read/write register will offer the same (weak)
guarantees to A on the operations of B, as on the operations of C. This may be
suboptimal, as many applications could benefit from varying levels of consistency
conditioned on “how far” nodes are from each other. Stated differently: a node
can accept that “remote” changes only reach it with weak guarantees (e.g.,
because information takes time to travel), but it wants changes “close” to it to
come with strong guarantees (as “local” changes might impact it more directly).

In this work, we propose to address this problem by integrating a notion of
node proximity in the definition of data consistency. To that end, we formally
define a new family of hybrid consistency models that links the strength of data
consistency with the proximity of the participating nodes. In our approach, a
particular hybrid model takes as input a proximity graph, and two consistency
conditions (a weaker one and a stronger one), taken from a set of totally ordered
consistency conditions (e.g. linearizability, sequential consistency, causal consis-
tency, and PRAM-consistency [25]).

The philosophy we advocate is related to that of Parallel Snapshot Isolation
(PSI) proposed in [37]. PSI combines strong consistency (Snapshot Isolation) for
transactions started at nodes in the same site of a geo-replicated system, but
only ensures causality among transactions started at different sites.

Although PSI and our work operate at different granularities (fisheye-
consistency is expressed on individual operations, each accessing a single object,
while PSI addresses general transactions), they both show the interest of con-
sistency conditions in which nearby nodes enjoy stronger semantics than remote
ones. In spite of this similitude, however, the family of consistency conditions we
propose distinguishes itself from PSI in a number of key dimensions. First, PSI
is a specific condition while fisheye-consistency offers a general framework for
defining multiple such conditions. PSI only distinguishes between nodes at the
same physical site and remote nodes, whereas fisheye-consistency accepts arbi-
trary proximity graphs, which can be physical or logical. Finally, the definition
of PSI is given in [37] by a reference implementation, whereas fisheye-consistency
is defined in functional terms as restrictions on the ordering of operations that
can be seen by applications, independently of the implementation we propose.
As a result, we believe that our formalism makes it easier for users to express
and understand the semantics of a given consistency condition and to prove the
correctness of a program written w.r.t. such a condition.

Fisheye Consistency: Keeping Data in Synch in a Georeplicated World 249

Roadmap. The next section introduces the system model and the classical sequen-
tial consistency (SC) [24] and causal consistency (CC) [2]. Then, Sect. 3 defines
the notion of proximity graph and the associated fisheye consistency condition,
which considers SC as its strong condition and CC as its weak condition. Section 4
presents a broadcast abstraction, and Sect. 5 proposes an algorithm based on this
broadcast abstraction that implements the fisheye consistency condition that com-
bines SC and CC. These algorithms are generic, where the genericity parameter is
the proximity graph. Interestingly, their two extreme instantiations provide nat-
ural implementations of SC and CC. Section 6 concludes.

2 System Model and Basic Consistency Conditions

The system consists of n processes denoted Π = {p1, . . ., pn}. Each process is
sequential and asynchronous. “Asynchronous” means that each process proceeds
at its own speed, which is arbitrary, may vary with time, and remains always
unknown to the other processes.

Processes communicate by passing messages through bi-directional channels.
Channels are reliable (no loss, duplication, creation, or corruption), and asyn-
chronous (transit times are arbitrary but finite, and remain unknown to the
processes).

2.1 Basic Notions and Definitions Underpinning Consistency
Conditions

This section is a short reminder of the fundamental notions typically used to
define the consistency guarantees of distributed objects [8,19,27,31].

Concurrent Objects with Sequential Specification. A concurrent object is an
object that can be simultaneously accessed by different processes. At the applica-
tion level the processes interact through concurrent objects [19,31]. Each object
is defined by a sequential specification, which is a set including all the correct
sequences of operations and their results that can be applied to and obtained
from the object. These sequences are called legal sequences.

Execution History. The execution of a set of processes interacting through
objects is captured by a history Ĥ = (H,→H), where →H is a partial order
on the set H of the object operations invoked by the processes.

Concurrency and Sequential History. If two operations are not ordered in a
history, they are said to be concurrent. A history is said to be sequential if it
does not include any concurrent operations. In this case, the partial order →H

is a total order.

Equivalent History. Let Ĥ|p represent the projection of Ĥ onto the process p, i.e.,
the restriction of Ĥ to operations occurring at process p. Two histories Ĥ1 and
Ĥ2 are equivalent if no process can distinguish them, i.e., ∀p ∈ Π : Ĥ1|p = Ĥ2|p.

250 R. Friedman et al.

Legal History. Ĥ being a sequential history, let Ĥ|X represent the projection
of Ĥ onto the object X. A history Ĥ is legal if, for any object X, the sequence
Ĥ|X belongs to the specification of X.

Process Order. Notice that since we assumed that processes are sequential, we
restrict the discussion in this paper to execution histories Ĥ for which for every
process p, Ĥ|p is sequential. This total order is also called the process order for p.

2.2 Sequential Consistency

Intuitively, an execution is sequentially consistent if it could have been produced
by executing (with the help of a scheduler) the processes on a monoprocessor.
Formally, a history Ĥ is sequentially consistent (SC) if there exists a history Ŝ
such that:

– Ŝ is sequential,
– Ŝ is legal (the specification of each object is respected),
– Ĥ and Ŝ are equivalent (no process can distinguish Ĥ—what occurred—and

Ŝ—what we would like to see, to be able to reason about).

One can notice that SC does not demand that the sequence Ŝ respects the
real-time occurrence order on the operations. This is the fundamental difference
between linearizability and SC.

Fig. 1. A sequentially consistent execution

Figure 1 shows an history Ĥ that is sequentially consistent. Let us observe
that, although op1

q occurs before op1
p in physical time, op1

p does not see the effect
of the write operation op1

q, and still returns 0. A legal sequential history Ŝ, equiv-
alent to Ĥ, can be easily built, namely, X.read → 0, X.write(2), X.write(3),
X.read → 3.

2.3 Causal Consistency

In a sequentially consistent execution, all processes perceive all operations in
the same order, which is captured by the existence of a sequential and legal
history Ŝ. Causal consistency [2] relaxes this constraint for read-write registers,
and allows different processes to perceive different orders of operations, as long
as causality is preserved.

Formally, a history Ĥ in which processes interact through concurrent read/
write registers is causally consistent (CC) if:

Fisheye Consistency: Keeping Data in Synch in a Georeplicated World 251

– There is a causal order �H on the operations of Ĥ, i.e., a partial order that
links each read to at most one latest write (or otherwise to an initial value
⊥), so that the value returned by the read is the one written by this latest
write and �H respects the process order of all processes.

– For each process pi, there is a sequential and legal history Ŝi that
• is equivalent to Ĥ|(pi + W), where Ĥ|(pi + W) is the sub-history of Ĥ that

contains all operations of pi, plus the writes of all the other processes,
• respects �H (i.e., �H ⊆ →Si

).

Intuitively, this definition means that all processes see causally related writes
in the same order, but can see writes that are not causally related in different
orders.

Fig. 2. An execution that is causally consistent (but not sequentially consistent)

An example of causally consistent execution is given in Fig. 2. The processes
r and s observe the write operations on X by p (op1

p) and q (op1
q) in two different

orders. This is acceptable in a causally consistent history because op1
p and op1

q are
not causally related. This would not be acceptable in a sequentially consistent
history, where the same total order on operations must be observed by all the
processes.

3 The Family of Fisheye Consistency Conditions

This section introduces a hybrid consistency model based on (a) two consistency
conditions and (b) the notion of a proximity graph defined on the computing
nodes (processes). The two consistency conditions must be totally ordered in the
sense that any execution satisfying the stronger one also satisfies the weaker one.

3.1 The Notion of a Proximity Graph

Let us assume that for physical or logical reasons linked to the application, each
process (node) can be considered either close to or remote from other processes.
This notion of “closeness” can be captured trough a proximity graph denoted
G = (Π,EG ⊆ Π × Π), whose vertices are the n processes of the system (Π).
The edges are undirected. NG(pi) denotes the neighbors of pi in G. G captures
the level of consistency imposed on processes: processes connected in G must
respect a stronger data consistency than unconnected processes.

252 R. Friedman et al.

Example. To illustrate the semantic of G, we extend the original scenario that
Ahamad, Niger et al. use to motivate causal consistency in [2]. Consider the
three processes of Fig. 3, paris, berlin, and new -york . Processes paris and berlin
interact closely with one another and behave symmetrically : they concurrently
write the shared variable X, then set the flags R and S respectively to 1, and
finally read X. By contrast, process new -york behaves sequentially w.r.t. paris
and berlin: new -york waits for paris and berlin to write on X, using the flags R
and S, and then writes X.

Fig. 3. new -york does not need to be closely synchronized with paris and berlin, calling
for a hybrid form of consistency

If we assume a model that provides causal consistency at a minimum, the
write of X by new -york is guaranteed to be seen after the writes of paris and
berlin by all processes (because new -york waits on R and S to be set to 1). Causal
consistency however does not impose any consistent order on the writes of paris
and berlin on X. In the execution shown on Fig. 4, this means that although paris
reads 2 in X (and thus sees the write of berlin after its own write), berlin might
still read 1 in b (thus perceiving ‘X.write(1)’ and ‘X.write(2)’ in the opposite
order to that of paris).

Fig. 4. Executing the program of Fig. 3.

Sequential consistency removes this ambiguity: in this case, in Fig. 4, berlin
can only read 2 (the value it wrote) or 3 (written by new -york), but not 1.
Sequential consistency is however too strong here: because the write operation
of new -york is already causally ordered with those of paris and berlin, this
operation does not need any additional synchronization effort. This situation can
be seen as an extension of the write concurrency freedom condition introduced
in [2]: new -york is here free of concurrent write w.r.t. paris and berlin, making

Fisheye Consistency: Keeping Data in Synch in a Georeplicated World 253

causal consistency equivalent to sequential consistency for new -york . paris and
berlin however write to X concurrently, in which case causal consistency is not
enough to ensure strongly consistent results.

Fig. 5. Capturing the synchronization needs of Fig. 3 with a proximity graph G

If we assume paris and berlin execute in the same data center, while new -york
is located on a distant site, this example illustrates a more general case in which,
because of a program’s logic or activity patterns, no operations at one site ever
conflict with those at another. In such a situation, rather than enforce a strong
(and costly) consistency in the whole system, we propose a form of consistency
that is strong for processes within the same site (here paris and berlin), but
weak between sites (here between paris, berlin on one hand and new -york on the
other).

In our model, the synchronization needs of individual processes are captured
by the proximity graph G introduced at the start of this section and shown
in Fig. 5: paris and berlin are connected, meaning the operations they execute
should be perceived as strongly consistent w.r.t. one another; new -york is neither
connected to paris nor berlin, meaning a weaker consistency is allowed between
the operations executed at new -york and those of paris and berlin.

3.2 Fisheye Consistency for the Pair (Sequential Consistency,
Causal Consistency)

When applied to the scenario of Fig. 4, fisheye consistency combines two con-
sistency conditions (a weak and a stronger one, here causal and sequential con-
sistency) and a proximity graph to form an hybrid distance-based consistency
condition, which we call G-fisheye (SC,CC)-consistency.

The intuition in combining SC and CC is to require that write operations be
observed in the same order by all processes if:

– They are causally related (as in causal consistency),
– Or they occur on “close” nodes (as defined by G).

Formal Definition. Formally, we say that a history Ĥ is G-fisheye (SC,CC)-
consistent if:

– There is a causal order �H induced by Ĥ (as in causal consistency); and
– �H can be extended to a subsuming order ��H,G (i.e. �H ⊆ ��H,G) so that

∀(p, q) ∈ EG : (��H,G)|({p, q} ∩ W) is a total order

where (��H,G)|({p, q} ∩ W) is the restriction of ��H,G to the write operations
of p and q; and

254 R. Friedman et al.

– for each process pi there is a history Ŝi that
• (a) is sequential and legal;
• (b) is equivalent to Ĥ|(pi + W); and
• (c) respects ��H,G , i.e., (��H,G)|(pi + W) ⊆ (→Si

).

If we apply this definition to the example of Fig. 4 with the proximity graph
proposed in Fig. 5 we obtain the following: because paris and berlin are connected
in G, X.write(1) by paris and X.write(2) by berlin must be totally ordered in
��H,G (and hence in any sequential history Ŝi perceived by any process pi).
X.write(3) by new -york must be ordered after the writes on X by paris and
berlin because of the causality imposed by �H . As a result, if the system is
G-fisheye (SC,CC)-consistent, b? can be equal to 2 or 3, but not to 1. This
set of possible values is as in sequential consistency, with the difference that
G-fisheye (SC,CC)-consistency does not impose any total order on the operation
of new -york .

Given a system of n processes, let ∅Π = (Π, ∅) denote the graph with no
edges, and KΠ denote the complete graph (Π,Π × Π). It is easy to see that
CC is ∅Π -fisheye (SC,CC)-consistency. Similarly SC is KΠ -fisheye (SC,CC)-
consistency.

A Larger Example. Figure 6 and Table 1 illustrate the semantic of G-fisheye
(SC,CC) consistency on a second, larger, example. In this example, the processes
p and q on one hand, and r and s on the other hand, are neighbors in the prox-
imity graph G (shown on the left). There are two pairs of write operations: op1

p

and op1
q on the register X, and op2

p and op3
r on the register Y . In a sequentially

consistency history, both pairs of writes must be seen in the same order by all
processes. As a consequence, if r sees the value 2 and then 3 for X, s must do
the same, and only 3 can be returned by x?. For the same reason, only 3 can be
returned by y?, as shown in the first line of Table 1.

Fig. 6. Illustrating G-fisheye (SC,CC)-consistency

In a causally consistent history, however, both pairs of writes ({op1
p, op1

q}
and {op2

p, op3
r}) are causally independent. As a result, any two processes can see

Fisheye Consistency: Keeping Data in Synch in a Georeplicated World 255

Table 1. Possible executions for the history of Fig. 6

Consistency x? y?

Sequential Consistency 3 5

Causal Consistency {2,3} {4,5}
G-fisheye (SC,CC)-consistency 3 {4,5}

each pair in different orders. x? may return 2 or 3, and y? 4 or 5 (second line
of Table 1).

G-fisheye (SC,CC)-consistency provides intermediate guarantees: because p
and q are neighbors in G, op1

p and op1
q must be observed in the same order by

all processes. x? must return 3, as in a sequentially consistent history. However,
because p and r are not connected in G, op2

p and op3
r may be seen in different

orders by different processes (as in a causally consistent history), and y? may
return 4 or 5 (last line of Table 1).

4 Construction of an Underlying (SC,CC)-Broadcast
Operation

Our implementation of G-fisheye (SC,CC)-consistency uses a broadcast operation
with hybrid ordering guarantees. We present here this hybrid broadcast, before
moving on to the actual implementation of of G-fisheye (SC,CC)-consistency in
Sect. 5.

4.1 G-fisheye (SC,CC)-Broadcast: Definition

The hybrid broadcast we proposed, denoted G-(SC,CC)-broadcast, is parame-
trized by a proximity graph G which determines which kind of delivery order
should be applied to which messages, according to the position of the sender in
the graph G. Messages (SC,CC)-broadcast by neighbors in G must be delivered
in the same order at all the processes, while the delivery of the other messages
only need to respect causal order.

The (SC,CC)-broadcast abstraction provides the processes with two opera-
tions, denoted TOCO broadcast() and TOCO deliver(). We say that messages are
toco-broadcast and toco-delivered.

Causal Message Order. Let M be the set of messages that are toco-broadcast.
The causal message delivery order, denoted �M , is defined as follows [11,34].
Let m1,m2 ∈ M ; m1 �M m2, iff one of the following conditions holds:

– m1 and m2 have been toco-broadcast by the same process, with m1 first;
– m1 was toco-delivered by a process pi before this process toco-broadcast m2;
– There exists a message m such that (m1 �M m) ∧ (m �M m2).

256 R. Friedman et al.

Definition of the G-fisheye (SC,CC)-broadcast. The (SC,CC)-broadcast abstrac-
tion is defined by the following properties.

Validity. If a process toco-delivers a message m, this message was toco-broadcast
by some process. (No spurious message.)

Integrity. A message is toco-delivered at most once. (No duplication.)
G-delivery order. For all the processes p and q such that (p, q) is an edge of

G, and for all the messages mp and mq such that mp was toco-broadcast by
p and mq was toco-broadcast by q, if a process toco-delivers mp before mq,
no process toco-delivers mq before mp.

Causal order. If m1 �M m2, no process toco-delivers m2 before m1.
Termination. If a process toco-broadcasts a message m, this message is toco-

delivered by all processes.

It is easy to see that if G has no edges, this definition boils down to causal
delivery, and if G is fully connected (clique), this definition specifies total order
delivery respecting causal order. Finally, if G is fully connected and we suppress
the “causal order” property, the definition boils down to total order delivery.

4.2 G-fisheye (SC,CC)-Broadcast: Algorithm

Local Variables. To implement the G-fisheye (SC,CC)-broadcast abstraction,
each process pi manages three local variables.

– causali[1..n] is a local vector clock used to ensure a causal delivery order of
the messages; causali[j] is the sequence number of the next message that pi

will toco-deliver from pj .
– totali[1..n] is a vector of logical clocks such that totali[i] is the local log-

ical clock of pi (Lamport’s clock), and totali[j] is the value of totalj [j] as
known by pi.

– pendingi is a set of messages received but not yet toco-delivered by pi.

Description of the Algorithm. Let us remind that for simplicity, we assume that
the channels are FIFO. Algorithm 1 describes the behavior of a process pi. This
behavior is decomposed into four parts.

The first part (lines 1–6) is the code of the operation TOCO broadcast(m).
Process pi first increases its local clock totali[i] and sends the protocol mes-
sage tocobc(m, 〈causali[·], totali[i], i〉) to each other process. In addition to the
application message m, this protocol message carries the control information
needed to ensure the correct toco-delivery of m, namely, the local causality vec-
tor (causali[1..n]), and the value of the local clock (totali[i]). Then, this protocol
message is added to the set pendingi and causali[i] is increased by 1 (this cap-
tures the fact that the future application messages toco-broadcast by pi will
causally depend on m).

The second part (lines 7–14) is the code executed by pi when it receives a
protocol message tocobc(m, 〈s causm

j [·], s totmj , j〉) from pj . When this occurs

Fisheye Consistency: Keeping Data in Synch in a Georeplicated World 257

Algorithm 1. The G-fisheye (SC,CC)-broadcast algorithm executed by pi

1: operation TOCO broadcast(m)

2: totali[i] ← totali[i] + 1

3: for all pj ∈ Π \ {pi} do send tocobc(m, 〈causali[·], totali[i], i〉) to pj

4: pendingi ← pendingi ∪ 〈m, 〈causali[·], totali[i], i〉〉
5: causali[i] ← causali[i] + 1

6: end operation

7: on receiving tocobc(m, 〈s causm
j [·], s totmj , j〉)

8: pendingi ← pendingi ∪ 〈m, 〈s causm
j [·], s totmj , j〉〉

9: totali[j] ← s totmj
10: if totali[i] ≤ s totmj then

11: totali[i] ← s totmj + 1 � Ensuring global logical clocks

12: for all pk ∈ Π \ {pi} do send catch up(totali[i], i) to pk

13: end if

14: end on receiving

15: on receiving catch up(last datej , j)

16: totali[j] ← last datej

17: end on receiving

18: background task T is

19: loop forever

20: wait until C 	= ∅ where

21: C ≡
{〈

m, 〈s causm
j [·], s totmj , j〉〉 ∈ pendingi

∣∣∣ s causm
j [·] ≤ causali[·]

}

22: wait until T1 	= ∅ where

23: T1 ≡
{〈

m, 〈s causm
j [·], s totmj , j〉〉 ∈ C

∣∣∣ ∀pk ∈ NG(pj) : 〈totali[k], k〉 > 〈s totmj , j〉
}

24: wait until T2 	= ∅ where

25: T2 ≡

⎧
⎪⎪⎨
⎪⎪⎩
〈
m, 〈s causm

j [·], s totmj , j〉〉 ∈ T1

∣∣∣∣∣∣∣∣

∀pk ∈ NG(pj),

∀〈mk, 〈s caus
mk
k [·], s tot

mk
k , k〉〉

∈ pendingi :

〈s tot
mk
k , k〉 > 〈s totmj , j〉

⎫
⎪⎪⎬
⎪⎪⎭

26:
〈
m0, 〈s caus

m0
j0

[·], s tot
m0
j0

, j0〉〉←
〈m,〈s causm

j
[·],s totm

j
,j〉〉∈T2

{〈s tot
m
j , j〉}

27: pendingi ← pendingi \ 〈m0, 〈s caus
m0
j0

[·], s totmj , j0〉〉

28: TOCO deliver(m0) to application layer

29: if j0 	= i then causali[j0] ← causali[j0] + 1 end if � for causali[i] see line 5

30: end loop forever

31: end background task

pi adds first this protocol message to pendingi, and updates its view of the
local clock of pj (totali[j]) to the sending date of the protocol message (namely,
s totmj). Then, if the local clock of pi is late (totali[i] ≤ s totmj), pi catches up
(line 11), and informs the other processes of it (line 12).

The third part (lines 15–17) is the processing of a catch up message from
a process pj . In this case, pi updates its view of pj ’s local clock to the date
carried by the catch up message. Let us notice that, as channels are FIFO, a
view stotali[j] can only increase.

The final part (lines 18–31) is a background task executed by pi, where
the application messages are toco-delivered. The set C contains the protocol
messages that were received, have not yet been toco-delivered, and are “mini-
mal” with respect to the causality relation �M . This minimality is determined
from the vector clock s causm

j [1..n], and the current value of pi’s vector clock

258 R. Friedman et al.

(causali[1..n]). If only causal consistency was considered, the messages in C
could be delivered.

Then, pi extracts from C the messages that can be toco-delivered. Those are
usually called stable messages. The notion of stability refers here to the delivery
constraint imposed by the proximity graph G. More precisely, a set T1 is first
computed, which contains the messages of C that (thanks to the FIFO channels
and the catch up messages) cannot be made unstable (with respect to the total
delivery order defined by G) by messages that pi will receive in the future. Then
the set T2 is computed, which is the subset of T1 such that no message received,
and not yet toco-delivered, could make incorrect – w.r.t. G – the toco-delivery
of a message of T2.

Once a non-empty set T2 has been computed, pi extracts the message m
whose timestamp 〈s totmj [j], j〉 is “minimal” with respect to the timestamp-
based total order (pj is the sender of m). This message is then removed from
pendingi and toco-delivered. Finally, if j �= i, causali[j] is increased to take
into account this toco-delivery (all the messages m′ toco-broadcast by pi in the
future will be such that m � m′, and this is encoded in causali[j]). If j = i, this
causality update was done at line 5.

Theorem 1. Algorithm1 implements a G-fisheye (SC,CC)-broadcast.

The proof relies on the monotonicity of the clocks causali[1..n] and totali[1..n],
and the reliability and FIFO properties of the underlying communication chan-
nels [7,12,23,34].

5 An Algorithm Implementing G-Fisheye
(SC,CC)-Consistency

5.1 The High Level Object Operations Read and Write

Algorithm 2 uses the G-fisheye (SC,CC)-broadcast we have just presented to
realize G-fisheye (SC,CC)-consistency using a fast-read strategy. This algorithm
is derived from the fast-read algorithm for sequential consistency proposed by
Attiya and Welch [7], in which the total order broadcast has been replaced by
our G-fisheye (SC,CC)-broadcast.

The write(X, v) operation uses the G-fisheye (SC,CC)-broadcast to propagate
the new value of the variable X. To insure any other write operations that
must be seen before write(X, v) by pi are properly processed, pi enters a waiting
loop (line 4), which ends after the message write(X, v, i) that has been toco-
broadcast at line 2 is toco-delivered at line 11.

The read(X) operation simply returns the local copy vx of X. These local
copies are updated in the background when write(X, v, j) messages are toco-
delivered.

Theorem 2. Algorithm2 implements G-fisheye (SC,CC)-consistency.

The proof uses the causal order on messages �M provided by the G-fisheye
(SC,CC)-broadcast to construct the causal order on operations �H . It then
gradually extends �H to obtain ��H,G by adapting the technique used in [28,32].

Fisheye Consistency: Keeping Data in Synch in a Georeplicated World 259

Algorithm 2. Implementing G-fisheye (SC,CC)-consistency, executed by pi

1: operation X.write(v)
2: TOCO broadcast(write(X, v, i))
3: deliveredi ← false ;
4: wait until deliveredi = true
5: end operation

6: operation X.read()
7: return vx
8: end operation

9: on toco deliver write(X, v, j)
10: vx ← v ;
11: if (i = j) then deliveredi ← true endif
12: end on toco deliver

6 Conclusion

This work was motivated by the increasing popularity of geographically distrib-
uted systems. We have presented a framework that enables to formally define
and reason about mixed consistency conditions in which the operations invoked
by nearby processes obey stronger consistency requirements than operations
invoked by remote ones. The framework is based on the concept of a proxim-
ity graph, which captures the “closeness” relationship between processes. As an
example, we have formally defined G-fisheye (SC,CC)-consistency, which com-
bines sequential consistency for operations by close processes with causal consis-
tency among all operations. We have also provided a formally proven protocol
for implementing G-fisheye (SC,CC)-consistency.

Another natural example that has been omitted from this paper for brevity
is G-fisheye (LIN,SC)-consistency, which combines linearizability for operations
by nearby nodes with an overall sequential consistency guarantee.

The significance of our approach is that the definitions of consistency con-
ditions are functional rather than operational. That is, they are independent
of a specific implementation, and provide a clear rigorous understanding of the
provided semantics. This formal underpinning comes with improved complexity
and performance, as illustrated in our implementation of G-fisheye (SC,CC)-
consistency, in which operations can terminate without waiting to synchronize
with remote parts of the system.

More generally, we expect the general philosophy we have presented to extend
to Convergent Replicated Datatypes (CRDT) in which not all operations are
commutative [29]. These CRDTs usually require at a minimum causal commu-
nications to implement eventual consistency. The hybridization we have proposed
opens up the path of CRDTs which are globally eventually consistent, and locally
sequentially consistent, a route we plan to explore in future work.

260 R. Friedman et al.

Acknowledgments. This work was partially funded by the French ANR project
SocioPlug (ANR-13-INFR-0003), and by the DeSceNt project (Labex CominLabs excel-
lence laboratory ANR-10-LABX-07-01).

References

1. Adve, S., Gharachorloo, K.: Shared memory consistency models: a tutorial. IEEE
Comp. Mag. 29(12), 66–76 (1996)

2. Ahamad, M., Niger, G., Burns, J.E., Hutto, P.W., Kohl, P.: Causal memory: defi-
nitions, implementation and programming. Dist. Comput. 9, 37–49 (1995)

3. Almeida, S., Leitaõ, J., Rodrigues, L.: ChainReaction: a causal+ consistent datas-
tore based on chain replication. In: 8th ACM European Conference on Computer
Systems (EuroSys 2013), pp. 85–98 (2013)

4. Alvaro, P., Bailis, P., Conway, N., Hellerstein, J.M.: Consistency without borders.
In: 4th ACM Symposium on Cloud Computing (SOCC 2013), p. 23 (2013)

5. Attiya, H., Friedman, R.: A correctness condition for high-performance multi-
processors. SIAM J. Comput. 27(6), 1637–1670 (1998)

6. Attiya, H., Friedman, R.: Limitations of fast consistency conditions for distributed
shared memories. Inf. Process. Lett. 57(5), 243–248 (1996)

7. Attiya, H., Welch, J.L.: Sequential consistency versus linearizability. ACM Trans.
Comp. Sys. 12(2), 91–122 (1994)

8. Attiya, H., Welch, J.L.: Distributed computing: fundamentals, simulations and
advanced topics, 2nd edn., 414 pages. Wiley-Interscience (2004). ISBN 0-471-45324-
2

9. Bailis, P., Ghodsi, A., Hellerstein, J.M., Stoica, I.: Bolt-on causal consistency. In:
2013 ACM SIGMOD International Conference on Management of Data (SIGMOD
2013), pp. 761–772 (2013)

10. Birman, K.P., Friedman, R.: Trading Consistency for Availability in Distributed
Systems. Technical report #TR96-1579, Computer Science Department, Cornell
University, April 2016

11. Birman, K.P., Joseph, T.A.: Reliable communication in presence of failures. ACM
Trans. Comp. Sys. 5(1), 47–76 (1987)

12. Birman, K., Schiper, A., Stephenson, P.: Lightweight causal and atomic group
multicast. ACM Trans. Comput. Syst. 9, 272–314 (1991)

13. Brewer, E.: Towards robust towards robust distributed systems. In: 19th ACM
Symposium on Principles of Distributed Computing (PODC), Invited talk (2000)

14. Burckhardt, S., Gotsman, A., Yang, H., Zawirski, M.: Replicated data types: spec-
ification, verification, optimality. In: 41st ACM Symposium on Principles of Pro-
gramming Languages (POPL), pp. 271–284 (2014)

15. DeCandia, G., Hastorun, D., Jampani, M., Kakulapati, G., Lakshman, A., Pilchin,
A., Sivasubramanian, S., Vosshall, P., Vogels, W.: Dynamo: amazon’s highly avail-
able key-value store. In: 21st ACM Symposium on Operating Systems Principles
(SOSP 2007), pp. 205–220 (2007)

16. Friedman, R.: Implementing hybrid consistency with high-level synchronization
operations. Distrib. Comput. 9(3), 119–129 (1995)

17. Garg, V.K., Raynal, M.: Normality: a consistency condition for concurrent objects.
Parallel Process. Lett. 9(1), 123–134 (1999)

Fisheye Consistency: Keeping Data in Synch in a Georeplicated World 261

18. Gharachorloo, K., Lenoski, D., Laudon, J., Gibbons, P., Gupta, A., Hennessy, J.:
Memory consistency and event ordering in scalable shared-memory multiproces-
sors. In: 17th ACM Annual International Symposium on Computer Architecture
(ISCA), pp. 15–26 (1990)

19. Herlihy, M., Shavit, N.: The Art of Multiprocessor Programming, 508 pages. Mor-
gan Kaufmann Publishers Inc. (2008). ISBN 978-0-12-370591-4

20. Herlihy, M., Wing, J.: Linearizability: a correctness condition for concurrent
objects. ACM Trans. Program. Lang. Syst. 12(3), 463–492 (1990)

21. Keleher, P., Cox, A.L., Zwaenepoel, W.: Lazy release consistency for software dis-
tributed shared memory. In: Proceedings of the 19th ACM International Sympo-
sium on Computer Architecture (ISCA 1992), pp. 13–21 (1992)

22. Lakshman, A., Malik, P.: Cassandra: a decentralized structured storage system.
SIGOPS Oper. Syst. Rev. 44, 35–40 (2010)

23. Lamport, L.: Time, Clocks and the ordering of events in a distributed system.
Comm. ACM 21, 558–565 (1978)

24. Lamport, L.: How to make a multiprocessor computer that correctly executes mul-
tiprocess programs. IEEE Trans. Comp. C28(9), 690–691 (1979)

25. PRAM: A Scalable Shared Memory. Technical Report CS-TR-180-88, Princeton
University, September 1988

26. Lloyd, W., Freedman, M.J., Kaminsky, M., Andersen, D.G.: Don’t settle for even-
tual: scalable causal consistency for wide-area storage with COPS. In: 23rd ACM
Symposium on Operating Systems Principles, pp. 401–416 (2011)

27. Lynch, N.A.: Distributed Algorithms, 872 pages. Morgan Kaufman, San Francisco
(1996)

28. Mizuno, M., Raynal, M., Zhou, J.Z.: Sequential consistency in distributed systems.
In: Birman, K.P., Mattern, F., Schiper, A. (eds.) Theory and Practice in Distrib-
uted Systems. LNCS, vol. 938, pp. 224–241. Springer, Heidelberg (1995)

29. Oster, G., Urso, P., Molli, P., Imine, A.: Data consistency for P2P collaborative
editing. In: 20th Anniversary Conference on Computer Supported Cooperative
Work, pp. 259–268. ACM (2006)

30. Preguiça, N.M., Marquès, J.M., Shapiro, M., Letia, M.: A commutative replicated
data type for cooperative editing. In: Proceedings of the 29th IEEE International
Conference on Distributed Computing Systems (ICDCS 2009), pp. 395–403 (2009)

31. Raynal, M.: Concurrent Programming: Algorithms, Principles, and Foundations,
515 pages. Springer, Heidelberg (2013). ISBN 978-3-642-32026-2

32. Raynal, M.: Distributed Algorirhms for Message-Passing Systems, 500 pages.
Springer (2013). ISBN 978-3-642-38122-5

33. Raynal, M., Schiper, A.: A suite of formal definitions for consistency criteria in
distributed shared memories. In: 9th International IEEE Conference on Parallel
and Distributed Computing Systems (PDCS 1996), pp. 125–131 (1996)

34. Raynal, M., Schiper, A., Toueg, S.: The causal ordering abstraction and a simple
way to implement. Inf. Process. Lett. 39(6), 343–350 (1991)

35. Saito, Y., Shapiro, M.: Optimistic replication. ACM Comput. Surv. 37(1), 42–81
(2005)

36. Shapiro, M., Preguiça, N.M., Baquero, C., Zawirski, M.: Convergent and commu-
tative replicated data types. Bull. EATCS 104, 67–88 (2011)

37. Sovran, Y., Power, R., Aguilera, M.K., Li, J.: Transactional storage for geo-
replicated systems. In: 23rd ACM Symposium on Operating Systems Principles
(SOSP), pp. 385–400 (2011)

262 R. Friedman et al.

38. Terry D.B., Prabhakaran, V., Kotla, R., Balakrishnan, M., Aguilera, M.K., Abu-
Libdeh, H.: Consistency-based service level agreements for cloud storage. In: 24th
ACM Symposium on Operating Systems Principles (SOSP 2013), pp. 309–324
(2013)

39. Terry, D.B., Theimer, M.M., Petersen, K., Demers, A.J., Spreitzer, M.J., Hauser,
C.H.: Managing update conflicts in bayou, a weakly connected replicated storage
system. In: 15th ACM Symposium on Operating Systems Principles (SOSP 1995),
pp. 172–182 (1995)

40. Xie, C., Su, C., Kapritsos, M., Wang, Y., Yaghmazadeh, N., Alvisi, L., Mahajan,
P.: SALT: combining ACID and BASE in a distributed database. In: USENIX
Operating Systems Design & Implementation (OSDI) (2014)

Peer-to-Peer Full-Text Keyword Search
of the Web

Sonia Gaied Fantar1(B) and Habib Youssef2

1 ISIM Gabes, University of Gabes, Gabès, Tunisia
soniagaied3@gmail.com

2 Research Unit Prince, ISITC Hammam Sousse, University of Sousse,
Sousse, Tunisia

habib.youssef@fsm.rnu.tn

Abstract. Full-text keywords search of the Web over structured peer-
to-peer networks shows promise to become an alternative to the state-of-
the-art search engines since P2P overlays propose means for decentralized
search across widely-distributed document collections. However, a disad-
vantage of structured P2P systems is that they consider only the problem
of searching for keys, and thus cannot perform content-based retrieval.
To deal with this problem, in this paper we consider a full-text retrieval
problem in structured P2P networks. Our keyword searching engine BI-
Chord is build on top of DHT-based P2P systems, entirely distributed,
uses bloom filters and inverted index and therefore scales well with the
size of the network. Experimental results show that our mechanism is
efficient, scalable and provides high quality of search results, i.e. the pre-
cision and recall metrics.

1 Introduction

In latest years, a main driver of innovation has been the World Wide Web,
letting publication at the scale of tens of millions of content authors. This explo-
sion of published information would be moot if the information could not be
found, annotated, and analyzed so that each user can quickly locate informa-
tion that is both relevant and comprehensive for their needs. While centralized
search engines work well, peer-to-peer Web search is worth studying. In fact,
Contemporary Web search engines are in essence centralized and require a cen-
tral coordination service, which, even when replicated, has been identified as a
major system bottleneck. Whereas, Web search over P2P overlay networks has
the potential to become an alternative to current Web search engines due to its
decentralized nature and favorable scalability properties.

Peer-to-peer systems supply good platforms for resource sharing. Among the
shared resource, the shared text documents, including scientific papers, legal
documents, inventory patents and etc., are important sources of knowledge. With
more and more documents being shared, we have to solve the problem: how to
locate the documents related to a multi keyword query in P2P systems.

c© Springer International Publishing Switzerland 2015
A. Bouajjani and H. Fauconnier (Eds.): NETYS 2015, LNCS 9466, pp. 263–277, 2015.
DOI: 10.1007/978-3-319-26850-7 18

264 S.G. Fantar and H. Youssef

There are two classes of solutions currently proposed for decentralized peer-
to-peer web retrieval. With full-text retrieval in unstructured P2P networks
[7], queries are processed based on flooding. Unstructured P2P are commonly
believed to be the best candidate for supporting full-text retrieval because the
query evaluation operations can be handled at the nodes that store the relevant
documents. However, search recall is not guaranteed with acceptable communi-
cation cost using a flooding-based scheme.

Another class of protocols based on the Distributed Hash Table (DHT)
abstraction (CAN [21], Chord [24], Pastry [3], and Tapestry [28]) have been
proposed to address scalability. In these protocols, peers organize into a well
defined structure called overlay that is used for routing queries. Although DHTs
are elegant and scalable, their performance under the dynamic conditions com-
mon for peer-to-peer systems is unknown as DHT-based searching engines are
based on distributed indexes that partition a logically global inverted index in a
physically distributed manner. Due to the exact match problem of DHTs, such
schemes provide poor full-text search capacity. To deal with this problem, in this
paper, we are led to build a full-text retrieval engine in structured P2P networks
based on inverted index to accelerate query processing. The full-text retrieval
performance in structured P2P networks engine can be further enhanced using
bloom filter to improve search performance and resources availability. Our Peer-
to-Peer Information Retrieval approach called BI-Chord is built on top of Chord
structured P2P network. To reduce query processing costs in our approach, we
focus on using the inverted index that will be distributed to peers. Thereby, par-
titioning scheme is required. There are two straightforward partitioning schemes
for distributing the index: term also known as global partitioning and docu-
ment or local partitioning. The strategy chosen in BI-Chord is the document
partitioning.

More specifically, in this paper, we propose an efficient DHT-based keyword
searching engine, which use Bloom Filter encoding besides of inverted index
strategy.

We describe both techniques in more detail in Sect. 3. We showed that these
two properties guarantee effectiveness and efficiency, essentially.

In addition, our experimental results prove that the retrieval quality is effec-
tive to improve the retrieval performance in P2P systems and remains compa-
rable to state-of-the-art centralized search engines.

The remainder of the paper is organized as follows: In Sect. 2 we present
the related work. Section 3 describes our peer-to-peer keyword searching engine
BI-Chord in detail. In Sect. 5 we present our performance evaluation and Sect. 6
concludes the paper.

2 Related Work

Peer-to-peer information retrieval has been an active research area for about a
decade. In this section we reveal the main solutions for P2P information retrieval
proposed in the literature over the years.

Peer-to-Peer Full-Text Keyword Search of the Web 265

Publish/subscribe systems are an alternative to query-based systems in cases
where the same information is asked for over and over, and where clients want
to get updated answers for the same query over a period of time. Recent pub-
lish/subscribe systems proposed by Kermarrec et al. in [16] have investigated this
paradigm in the P2P context. These systems are successfully used to decouple
distributed applications. However, their efficiency is closely tied to the topology
of the underlying network, the design of which has been neglected. Peer-to-peer
network topologies can offer inherently bounded delivery depth, load sharing,
and self-organisation.

Li et al. in [17] describe a system that hash each term into an Identifier and
store indices in a DHT using term Identifier as the key. These systems need
to intersect the inverted lists of terms to find documents that contain multiple
query terms. This cost grows proportionally with corpus size. Moreover, the
above systems use simple keyword matching, ignoring the advanced relevance
ranking algorithms devised by the IR community.

PlanetP [10] is a publish-subscribe service for P2P communities, supporting
content ranking search. PlanetP uses a Bloom filter to summarize contents on
each node and floods the summaries to the entire system. The system appears
to be limited to a few thousand peers.

Recent work in [7] propose a replication strategy to support efficient and effec-
tive full-text retrieval. Authors use replicating the optimal number of Bloom Fil-
ters instead of the raw documents. The problem of their replication strategies is
that items are replicated regardless of the popularity of the related queries. For
full-text search, documents and queries are both replicated to some randomly
selected nodes, raising possibly unacceptable storage and communication costs.
Chen et al. [6] designed and optimized Bloom Filter settings in a peer-to-peer mul-
tikeyword searching technique which requires intersection operations across Wide
Area Networks (WANs). Another technical challenge in this regard is sustainable
network connectivity. The mobility of such recommender systems requires effi-
cient, effective and reliable network technologies for sustainability [26].

Other way to reduce the bandwidth cost is effective intersection order opti-
mization strategy in Bloom Filter, implemented in [15]. This method can reduce
the search cost but the major drawback of this approach is, global keyword
information is gathered by using a push-synopsis gossip algorithm.

To deal with bandwidth cost, authors use precomputing the term-set-based
index, implemented in [8]. This proposition can significantly reduce the cost
and is efficient for multi keyword searching. However the disadvantage of this
approach is, exponentially growing index size. Podnar et al. [19] proposed to
index only highly discriminative keyword (HDK) to reduce such index size. But
if those keywords may rarely or never used in queries, causing high consumption
of bandwidth and storage.

Work in [12] shows that content-based query resolution is feasible in DHT sys-
tems if these are using Rendezvous Points (RP). More specifically the framework
proposes the registration of the content (i.e. attribute-value pairs that describe
the content) at RPs. Queries might then be routed, using Chord, to a predefined
set of RPs which consequently resolve the query.

266 S.G. Fantar and H. Youssef

Freenet [9] is another distributed information storage and retrieval system
that uses instead an intelligent Depth-First-Search (DFS) mechanism to locate
the object keys in the system. The advantage of DFS search is that a small set
of peers can be queried quickly and efficiently; however by its nature it can take
a long time if we want to find all the results to a query.

Luu et al. introduce the ALVIS Peers system [18] a distributed global index
approach, with several innovations. During final result fusion each peer that
generated an index entry is contacted and asked to recompute the document
score based on global and local statistics, thereby generating globally comparable
scores. Instead of storing postings for individual terms, the authors use highly
discriminative keys. This introduces the problem of having to store many more
keys than in a conventional term-peer index. To mitigate this, in later work
Skobeltsyn et al. [22,23] they combine their approach with query-driven indexing
storing only popular keys in the index and apply top k result storing.

To solve the above problems, in this paper, we propose an efficient DHT-
based keyword searching engine, which use Bloom Filter encoding besides of
inverted index strategy.

3 Peer-to-peer Keyword Retrieval of the Web

Bloom Filter plays an important role in reducing network traffic in terms of
multi keyword search. It is an efficient data structure to represent a set S, which
can handle well queries such as “is the element x in set S”. By sending a bloom
filter i.e., an encoded document set, rather than raw document sets among each
participating peers helps in reducing the communication cost effectively. In this
section, we explain the theory behind Bloom filters. In Sect. 4, we present our
peer-to-peer keyword searching engine BI-Chord and focus on how to optimize
the communication cost of P2P multi-keyword search using Bloom Filter over
and above inverted index.

3.1 Bloom Filter

Consider an example which shows a simple network with peers PA and PB. The
peer PA contains the set of documents A for a given keyword kA, and peer
PB contains the set of documents B for another keyword kB . A ∩ B is the set
of all documents containing both kA and kB . A Bloom filter is a hash-based
data structure that summarizes membership in a set. By sending a Bloom filter
based on A instead of sending A itself, we reduce the amount of communication
required for PB to determine A∩B. The membership test returns false positives
with a tunable, predictable probability and never returns false negatives. Thus,
the intersection calculated by PB will contain all of the true intersection, as well
as a few hits that contain only kB and not kA. The number of false positives
falls exponentially as the size of the Bloom filter increases.

The Bloom filter is an efficient, lossy way of describing sets. It is a data
structure used for representing a set of elements succinctly. A Bloom filter is a

Peer-to-Peer Full-Text Keyword Search of the Web 267

bit-vector V of length m with a family of independent hash functions, each of
which maps from elements of the represented set to an integer in [0,m). To create
a representation of a set, each set element is hashed, and the bits in the vector
associated with the hash functions’ results are set. To verify whether the set
represented by a Bloom filter contains a given element, that element is hashed
and the corresponding bits in the filter are examined. If any of the bits are not
set, the represented set definitely does not contain the object. If all of the bits
are set, then, the set may contain the object; there is a non-zero probability that
it does not, however. This case is called a false positive, and the false positive
rate of a Bloom filter is a well-defined, linear function of its width, the number
of hash functions and the cardinality of the represented set [5].

Precisely, a filter is first encoded with each element in a set, and then queried
to determine the membership of a particular element. In the following, we briefly
summarize the working flow of the basic Bloom filter.

A Bloom filter includes a m-bit vector V and a group of hash functions. For
a set of n elements, for example X = x1, x2, . . . , xn, the typical operations of a
basic Bloom filter are inserting the elements to the Bloom filter and querying the
Bloom filter for element membership. k hash functions, h1(x), h2(x), . . . , hk(x),
are used to complete both operations.

We continue by describing algorithms explanations.

(1) Inserting an element to a basic Bloom filter.
(i) Initialization the Bloom filter: set V to zero.
(ii) For ∀x ∈ X , compute the hash values of xi by h1(xi), h2(xi), . . . ,

hk(xi).
(iii) Set the corresponding bits in V to “1”, that is, V [h1(xi)] = V [h2(xi)] =

. . . = V [hk(xi)] = 1.
(2) Element membership query

(i) For an element y, compute the hash values of it byh1(y), h2(y), . . . ,
hk(y).

(ii) Check the corresponding bits in array V . Rules for confirmation of
element membership of y in X are as follows.

If V [h1(y)]&V [h2(y)]& . . . &V [hk(y)] = 1, the membership of y in X is con-
firmed.

Else, y is considered being not included in X.
In an element membership query, a positive false may happen when the mem-
bership of y in X is confirmed while it doesnot belong to X [13,27].

4 Peer-to-Peer Keyword Searching Engine

There are basically two ways to organize a text index incited by inverted index
structure in a distributed environment, in particular local (also called document)
index organization and global (or term) index organization. We focus on the case
of a local index organization, and consider a Bloom Filter encoding besides of
replication strategies. In this section, we first address a general review of our
DHT-based keyword searching engine BI-Chord. We then describe in Sect. 4.2
our approach to performing peer-to-peer searches efficiently.

268 S.G. Fantar and H. Youssef

4.1 System Design

Fundamentally, full-text keyword search is the task of associating keywords with
document identifiers and later retrieving document identifiers that match com-
binations of keywords. To do this, our searching systems called BI-Chord use
inverted indices, which map each word found in any document to a list of the
documents in which the word appears. As mentioned above, an inverted index
is a mapping between words and document location sets. It’s main purpose is
to locate documents that contain a specific word. With a word-based location
service available, it is possible to do contents search on shared documents.

In our design BI-Chord, we propose a combination of the distributed lookup
protocol Chord [24] which can efficiently locate the node that stores a partic-
ular data item, and a Bloom Filter used for efficient exact match searches. A
fundamental problem that confronts structured peer-to-peer applications is to
efficiently locate the node that stores a particular data item. The distributed
lookup protocol Chord, employed in our proposition, addresses this problem.
Chord provides support for just one operation: given a key, it maps the key onto
a node. Data location can be easily implemented on top of Chord by associating
a key with each data item, and storing the key/data item pair at the node to
which the key maps. Chord adapts efficiently as nodes join and leave the system,
and can answer queries even if the system is continuously changing.
Each document is identified by a unique document identifier, assigned through
Chord protocol.

The Chord protocol uses SHA-1 as consistent hash function to assign an m-
bit identifier to each peer and each document (each document has a key that
can be a title or abstract).

An inverted index consists of many inverted lists, where each inverted list
contains the identifiers of all documents in the collection that contain the word
w, sorted by document identifier. Likewise, each query consists of a set of words
(query terms). The ranking is achieved by comparing the words found in the
document and in the query. More precisely, a ranking function assigns a score
to each document regarding the current query, based on the frequency of each
query word in the page and in the overall collection.

4.2 Inverted Index

For efficient query processing, our searching engine BI-Chord rely on indexing,
typically on a variation of the inverted index technique. The inverted index
maintains a vocabulary. Specifically, a list of all terms found in the document
collection, and a number of posting lists for all terms from the vocabulary. An
inverted (or posting) list of a term t stores the references to all documents that
contain t together with some auxiliary information. In our case, we opted that
the auxiliary information will be the term frequency. we assign to each term in
a document a weight for that term, that depends on the number of occurrences
of the term in the document. We would like to compute a score between a query
term t and a document d, based on the weight of t in d. The simplest approach

Peer-to-Peer Full-Text Keyword Search of the Web 269

is to assign the weight to be equal to the number of occurrences of term t in
document d.

The query in our DHT-based keyword searching engine can then be processed
by intersecting the inverted lists of all query terms, computing the scores of the
documents in the intersection and returning k documents with the highest scores.

To reduce query processing costs in BI-Chord, the inverted index will be dis-
tributed. Thereby, partitioning scheme is required. There are two straightforward
partitioning schemes for distributing the index: Term also known global parti-
tioning and document or local partitioning. The first partitioning scheme called
term partitioning assigns terms to peers such that each peer maintains complete
posting lists for certain terms. To process a query only the peers responsible for
the query terms have to be contacted.

However indexing is costly and it is hard to balance the load as the term
frequency distribution follows a power law. Intersecting posting lists that are
stored on different servers can be time and bandwidth consuming. Thus, we
have favored document partitioning. The main reason for choosing document
partitioning is that in large P2P networks it is important to restrict the query
processing to a small number of peers instead of broadcasting each query to all
peers as in the case of document partitioning. Also the put/get interface of Chord
can be easily extended to support such a term partitioned index. An example
of our Chord-based keyword searching engine with a local index organization
is shown in Fig. 1. we split the document collection in several sub-collections
and each sub-collection is indexed locally and independently on a different peer.
A query is processed by all peers in parallel and the final result is aggregated
from the top-k local answers supplied by each peer [11]. Important advantages
of document partitioning are the simplicity of the indexing procedure and nearly
even load balancing between the peers. On the other hand, each query has to be
processed by each peer which increases the processing costs.

Fig. 1. Distributing an inverted index across the Chord network

270 S.G. Fantar and H. Youssef

An inverted index is a mapping between words and document location sets. It’s
main purpose is to locate documents that contain a specific word. With a word-
based location service available, it is possible to do contents search on shared doc-
uments. We assume that a search is performed on some global shared index. Since
the system cannot have any centralized structure, this index would have to be dis-
tributed evenly across the peers. To build such an index, each peer is required to
announce its contents, in the form (word, location). The location points to a doc-
ument stored on the peer that contains the given word. The inverted index is made
by collecting all the announcements. Searching for a word on the index returns the
list of all document locations that match that word.

Bloom Filter. In BI-Chord, the data structure Bloom Filter will represent
the set of documents and supports membership test queries. The advantage of a
Bloom Filter is that it uses significantly less space than a dictionary or hash table
of the elements in the set. In contrast, there is a small false-positive rate that can
be traded off against space (i.e., some elements may be reported as being in the
set when they are not), and a Bloom Filter cannot retrieve a list of the elements
in the represented set (we can only test if a given element is in the set). Bloom
Filters are used to efficiently compute the intersection between two sets stored on
different peers. We note that our search engine only return results that contain
all of the query terms. This means that significant savings can be obtained
during query execution under a global index organization, by first sending a
Bloom Filter of the document identifiers in the shortest inverted list, rather
than the complete list, to the next node. In fact, by transmitting the encoded
sets instead of raw sets among peers, the communication cost can be effectively
saved, and therefore network traffic will be conserved. Many of the document
identifiers in the shortest list will not find a match in the other lists, and thus
we only have to send a small subset of the items in the shortest inverted list in a
second round-trip, at which point any false positives can be detected. As shown
later in experiments, a high recall, corresponding to the number of retrieved
relevant documents divided by the number of relevant documents (see Sect. 5.2),
can be obtained by using one or more rounds of Bloom Filter exchanges before
sending the actual index items. In fact, by transmitting the encoded sets instead
of raw sets among peers, the quality of search can be effectively ameliorated. In
a nutshell, Bloom Filer is a simple space-efficient randomized data structure for
representing a set in order to support membership queries.

Top-k Query Processing. We apply in BI-Chord the Top-k query processing
inspired by the algorithms of [11] to combat the problem of extensive bandwidth
consumption. In fact, its main idea is to terminate the processing of a query as
early as possible and at the same time guarantee that the top-k results obtained
so far are correct. While resolving a multi-term query using the inverted index
there is no need to scan complete posting lists if only a top-k fraction of the
intersection is requested. Instead, the lists can be sorted according to the score
values and it is likely that the top-k query results can be found by probing the
documents found in the top-portions of the posting lists only.

Peer-to-Peer Full-Text Keyword Search of the Web 271

Replication Strategy. Structured Peer-to-Peer networks can be a successful
mechanism for full-text keyword search of the Web. However, current P2P pro-
tocols have long worst case query latencies which prevents them from being used
for real time applications. An obvious solution is to employ replication strategies
in order to reduce search and data-access latencies, since it should be efficient
and meanwhile facilitates efficient full-text keyword search.

Many replication methods are proposed for structured P2P networks, with a
specific main goal to achieve. In this paper we present a full-text keyword search
of the Web over structured peer-to-peer networks, that optimally shares sets of
distributed objects in dynamic large scale infrastructures. BI-Chord is based on
the implementation of a DHT (distributed hash table) in which the neighbor
replication method is used.

In the neighbor replication method, each peer maintains a list of neighbors
such as successor-lists and predecessor-lists in Chord or leaf-sets in pastry. In
neighbor replication, the data objects are stored not only in root peer but also
on its successor, or on its predecessor, or on its leaf-sets and or on the nodes
belonging to the same group as it. The root is node that stores the object location
information and it can be different to the owner which is the node that stores
the master copy of the object. Chord employs successors-lists replication. Pastry
and Kademlia DHTs employ leafsets replication [20].

For each data replication algorithm, there is a special maintenance protocol.
The idea is that the maintenance protocols must maintain k copies of each
data objects, stored on the root-peer neighbors, without violating the initial
placement strategy.

5 BI-Chord Performance

In this section, we provide an experimental evaluation of our peer-to-peer key-
word searching engine BI-Chord presented above.

5.1 Simulation Setup

To evaluate the performance of BI-Chord, we implemented it using OverSim
[2,4], the P2P Overlay Simulation Framework for OMNeT++ [1], and the Dis-
crete Event Simulator based on the INET Framework for OMNet++ [25]. We
implemented Chord complete set of functionalities, including the protocols nec-
essary for information retrieval including bloom filters.

We simulate BI-Chord to support a local inverted index. We split the doc-
ument collection in several sub-collections and each sub-collection is indexed
locally and independently on a different peer.

A query is processed by all peers in parallel and the final result is aggregated
from the top − k local answers supplied by each peer. For the experiments we
produce several lookup scenarios.

We conduct some experiments to see its performance on two standard
document collections where queries and relevance judgments were available

272 S.G. Fantar and H. Youssef

Table 1. Document collections used in the experiments and their characteristics

CACM MED

Number of documents 3204 1033

Number of single terms 3029 4315

Average number of words per document 18.4 46.6

Queries number 64 30

Average number of terms per query 9.3 9.5

Average number of relevant documents per query 15.3 23.2

(CACM and MED). The collections used experimentally are characterized by
the statistics of Table 1. To measure BI-Chord recall and precision on the above
collections, we first distribute documents across a set of peers and then runs and
evaluates different search and retrieval algorithms.

5.2 Simulation Results

The two most frequent and basic measures for information retrieval effectiveness
are recall and precision.

– The recall is a main metric used to quantify the quality of search results,
and is defined as the number of retrieved relevant documents divided by the
number of relevant documents.

– The precision is another metric used to quantify the quality of search results,
and is defined as the number of retrieved relevant documents divided by the
number of retrieved documents.

Recall. In this experiment, we evaluate the recall that is the fraction of relevant
documents that are retrieved using the Eq. 1.

Recall =
�(relevant − items − retrieved)

�(relevant − items)
= P (retrieved|relevant) (1)

We first assess the performance of BI-Chord by representing its achieved
recall. Thus, we assume that when posting a query, the user also provides the
parameter k, which is the maximum number of documents that he is willing
to accept in answer to a query. Figure 2(a) and (b) plots Chord-LSI average
precision over all provided queries as functions of for the MED and CACM
collections.

Figure 2(a) and (b) report recall for both the CACM and the MED col-
lections, with respect to the number of documents that should be returned in
response to a query. These recalls are the mean of the recalls obtained after each
k relevant documents retrieved. In the simulation we vary the parameter k from
10 to 50. We find that when the setting of k varies, the recall of the BI-Chord

Peer-to-Peer Full-Text Keyword Search of the Web 273

Fig. 2. (a) Recall for the CACM collection with k increased and (b) recall for the MED
collection with k increased. k: upper limit on the number of documents that should be
returned in response to a query.

increases for both the CACM and the MED collections. When k is increased to
the value of 50, the recall reaches the maximum value which is 91.7 % for CACM
collections and reaches the maximum value 91.34 % for the MED collections.

The observation drawn from these figures is that our proposition recall grows
steadily when the maximum number of documents that peer is willing to accept
in answer to a query, increases. This is because more relevant documents are
retrieved. Hence, the result confirms that our peer-to-peer keyword searching
engine can reduce the computation time.

Results show that BI-Chord achieves an average query recall of 91 %. Basi-
cally, the recall in BI-Chord is relatively high, because all inverted lists are sorted
by Page rank and the answer set of each query is defined as the top-k results.
However, BI-Chord sets a stop condition for the Bloom filter, if too many false-
positive results occur, BI-Chord may not be able to retrieve k results, thus the
recall have not reached 100 %. Overall, BI-Chord provided a high recall.

274 S.G. Fantar and H. Youssef

Fig. 3. Recall-precision curve for the CACM collection.

The Fig. 2 shows that our technique is relatively quite efficient if compared
quantitatively with classic IR systems. In fact, the average recall is about 91 %
of the returned documents will be evaluated by users as really relevant to the
query in BI-Chord.

Precision. Precision is the fraction of retrieved documents that are relevant.
Therefore, the precision in BI-Chord subspace is evaluated as Eq. 2.

Precision =
�(relevant − items − retrieved)

�(retrieved − items)
= P (relevant|retrieved) (2)

Figure 3 depicts the averaged recall-precision curve for all the 64 queries of
the CACM collection, i.e., the precision (averaged over all queries) for different
recall levels. The main observation that can be drawn from this figure, is that
precision is quite good at low recall.

We can observe that a 25 % of the relevant services can be retrieved with
precision higher than 80 %, whereas for retrieving more than 60 % of the relevant
services the precision drops below 50 %.

The results reveal that the quality of the search results and the efficiency of
the system are quite acceptable. However, due to the false positives of Bloom
Filters, the returned results may contain undesired documents with very low
probability. This may lead to a slight decrease of the precision of the final results.
Nevertheless, it is fully comparable to the one obtained with a state-of-the-art
centralized query engine.

5.3 Performance Comparison

More related to BI-Chord information retrieval goals, PlanetP [10] and SWMS
[14] address the problems of Full-text keywords search of the Web.

The PlanetP system explores the construction of a content addressable pub-
lish/subscribe service using gossiping between peers of an unstructured peer-
to-peer community, while authors of [14] propose a Sliding Window improved

Peer-to-Peer Full-Text Keyword Search of the Web 275

Multi-keyword Searching method (SWMS) to index and search full-text for short
queries on DHT.

We assess BI-Chord’s performance by comparing its achieved recall and pre-
cision against these latter.

We use two collections of documents (and associated queries and human rel-
evance ranking) to measure BI-Chord’s performance. Table 1 presents the main
characteristics of these collections. These are among collections that were pre-
viously used to evaluate PlanetP and SWMS. Table 2 shows average “Top-k”
having k = 10 (see Sect. 4.2) performance for both collections : We make several
observations. First, our proposition BI-Chord tracks the performance of SWMS
closely, with an recall almost equal to 95 % for MED collection (respectively 93 %
for MED collection). To each collection the difference is no more than 2 %. Fur-
ther, BI-Chord’s performance is independent of collection, achieving nearly the
same performance for MED and CACM. For CACM collection, BI-Chord’s recall
(respectively precision) is higher 3 % (respectively 4 %) of PlanetP’s. BI-Chord
get the best result. These small differences demonstrate that BI-Chord provides
high quality of search results and remains comparable to state-of-the-art search
engines.

Table 2. “Top-10” precision and recall for CACM and MED collections

BI-Chord

CACM Recall 91 %

Precision 54 %

MED Recall 91 %

Precision 59 %

6 Conclusion

DHT based peer-to-peer networks are well-suited for exact match lookups using
unique identifiers, but do not directly support text search. In this paper, a
multi-keyword searching mechanism based on bloom filter and inverted index
for structured P2P networks is proposed. Our main contribution lies in conduct-
ing a feasibility analysis for P2P Web search. Simulation results show that our
design outperforms existing work. In the future work, we will try to examine the
performance of more solutions by using larger scale data collections.

References

1. Omnet++ community site. http://www.omnetpp.org. Accessed January 2015
2. The oversim p2p simulator. http://www.oversim.org/. Accessed January 2015

http://www.omnetpp.org
http://www.oversim.org/

276 S.G. Fantar and H. Youssef

3. Rowstron, A., Druschel, P.: Pastry: scalable, decentralized object location and
routing for large-scale p2p systems. In: IFIP/ACM Middleware (2001)

4. Baumgart, I., Heep, B., Krause, S.: Oversim: a flexible overlay network simulation
framework. In: Proceedings of 10th IEEE Global Internet Symposium in Conjunc-
tion with IEEE INFOCOM, Anchorage, AK, USA (2007)

5. Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Commun.
ACM 13(7), 422–426 (1970)

6. Chen, H., Jin, H., Chen, L., Liu, Y., Ni, L.M.: Optimizing bloom filter settings
in peer-to-peer multikeyword searching. IEEE Trans. Knowl. Data Eng. 24(4),
692–706 (2012)

7. Chen, H., Jin, H., Luo, X., Liu, Y., Gu, T., Chen, K., Ni, L.M.: Bloomcast: efficient
and effective full-text retrieval in unstructured p2p networks. IEEE Trans. Parallel
Distrib. Syst. 23, 232–241 (2012)

8. Chen, H., Yan, J., Jin, H., Liu, Y., Ni, L.M.: Tss: efficient term set search in large
peer-to-peer textual collections. IEEE Trans. Comput. 59, 969–980 (2010)

9. Clarke, I., Sandberg, O., Wiley, B., Hong, T.W.: Freenet: a distributed anonymous
information storage and retrieval system. In: Federrath, H. (ed.) Designing Privacy
Enhancing Technologies. LNCS, vol. 2009, p. 46. Springer, Heidelberg (2001)

10. Cuenca-Acuna, F.M., Nguyen, T.D.: Text-based content search and retrieval in
ad hoc p2p communities. In: Gregori, E., Cherkasova, L., Cugola, G., Panzieri, F.,
Picco, G.P. (eds.) Web Engineering and Peer-to-Peer Computing. LNCS, vol. 2736,
pp. 220–234. Springer, Heidelberg (2002)

11. Fagin, R., Lotem, A., Naor, M.: Optimal aggregation algorithms for middleware.
J. Comput. Syst. Sci. 66(4), 614–656 (2003)

12. Gao, J., Steenkiste, P.: Design and evaluation of a distributed scalable content
discovery system. IEEE J. Sel. Areas Commun. 22, 54–66 (2004)

13. Guo, D., Liu, Y., Li, X., Yang, P.: False negative problem of counting bloom filter.
IEEE Trans. Knowl. Data Eng. 22(5), 651–664 (2010)

14. Huang, S., Xue, G.-R., Zhu, X., Ge, Y.-F., Yu, Y.: DHT based searching improved
by sliding window. In: Li, Q., Wang, G., Feng, L. (eds.) WAIM 2004. LNCS, vol.
3129, pp. 208–217. Springer, Heidelberg (2004)

15. Jayalakshmi, G., Vijayalakshmi, M.: Effective multi keyword search over p2p net-
work using optimized bloom filter settings. Int. J. Emerg. Technol. Adv. Eng. 3(1),
85–93 (2013). Special Issue

16. Kermarrec, A.-M., Triantafillou, P.: Xl peer-to-peer pub/sub systems. ACM Com-
put. Surv. 46(2), 16:1–16:45 (2013)

17. Li, J., Loo, B.T., Hellerstein, J.M., Kaashoek, M.F., Karger, D.R., Morris, R.: On
the feasibility of peer-to-peer web indexing and search. In: Kaashoek, M.F., Stoica,
I. (eds.) IPTPS 2003. LNCS, vol. 2735, pp. 207–215. Springer, Heidelberg (2003)

18. Luu, T., Klemm, F., Podnar, I., Rajman, M., Aberer, K.: Alvis peers: a scalable
full-text peer-to-peer retrieval engine. In: Workshop on Information Retrieval in
Peer-to-Peer Networks P2P-IR at CIKM 2006 (2006)

19. Podnar, I., Rajman, M., Luu, T., Klemm, F., Aberer, K.: Scalable peer-to-peer web
retrieval with highly discriminative keys. In: Proceedings of the 23rd International
Conference on Data Engineering, ICDE, Istanbul, Turkey, 15–20 April, pp. 1096–
1105 (2007)

20. Rahmani, M., Benchäıba, M.: A comparative study of replication schemes for struc-
tured p2p networks. In: The Ninth International Conference on Internet and Web
Applications and Services, ICIW 2014, pp. 147–158 (2014)

21. Ratnasamy, S., Francis, P., Handley, M., Karp, R., Shenker, S.: A scalable content
addressable network. In: ACM SIGCOMM, August 2001

Peer-to-Peer Full-Text Keyword Search of the Web 277

22. Skobeltsyn, G., Luu, T., Podnar Zarko, I., Rajman, M., Aberer, K.: Query-driven
indexing for peer-to-peer text retrieval. In: 16th International World Wide Web
Conference (WWW 2007). ACM, New York (2007)

23. Skobeltsyn, G., Luu, T., Podnar Zarko, I., Rajman, M., Aberer, K.: Query-driven
indexing for scalable peer-to-peer text retrieval. Future Generat. Comput. Syst.
25, 89–99 (2009)

24. Stoica, I., Morris, R., Karger, D., Kaashoek, M.F., Balakrishnan, H.: Chord: a
scalable peer-to-peer lookup service for internet applications. In: ACM SIGCOMM,
pp. 149–160 (2001)

25. Varga, A.: The omnet++ discrete event simulation system. In: European Simula-
tion Multiconference (ESM 2001), hal-00250235, version 2, 25 February 2008, June
2001

26. Xia, F., Asabere, N.Y., Ahmed, A.M., Li, J., Kong, X.: Mobile multimedia rec-
ommendation in smart communities: a survey. IEEE access, CoRR abs/1312.6565
(2013)

27. Xie, K., Wen, J., Zhang, D., Xie, G.: Bloom filter query algorithm. J. Softw. 20(1),
96–108 (2009)

28. Zhao, B., Huang, L., Stribling, J., Rhea, S., Kubiatowicz, J.: Tapestry: a global-
scale overlay for rapid service deployment. IEEE J-SAC 22(1), 41–53 (2004)

Profiling Transactional Applications

Vincent Gramoli1,2(B), Rachid Guerraoui3, and Anne-Marie Kermarrec4

1 NICTA, Sydney, Australia
vincent.gramoli@sydney.edu.au

2 University of Sydney, Sydney, Australia
3 EPFL, Lausanne, Switzerland
rachid.guerraoui@epfl.ch
4 INRIA, Rennes, France

anne-marie.kermarrec@inria.fr

Abstract. What does it mean for two transactional applications to be
similar? We address this question in this paper by highlighting four dis-
tinctive features of transactional applications: (1) the transaction size,
i.e., the average number of memory accesses of the transactions; (2) the
read-write ratio, i.e., the ratio between the number of accesses that mod-
ify the data and those that do not; (3) the contention, i.e., the number
of concurrent accesses to the same shared data, such that at least one
of these accesses is a write; (4) the uniformity, i.e., the extend to which
transactions access distinct objects. We show that the similarity between
an application A and an application A′ can be derived from these features
and can be used to determine which concurrency control implementation
works best for A based on having tested which worked best for A′. We
convey the accuracy of the profiling and predictions based on a study
with six workloads and ten concurrency control mechanisms.

Keywords: Recommendation system · Performance · Collaborative fil-
tering · Concurrency control

1 Introduction

Profiling applications a priori is key to their effective deployment. The idea
is very simple: given some characteristics of an application computed a priori,
one can choose the best deployment scheme for the application without having
to go through exhaustive testing schemes that might sometimes not even be
possible. Profiling is particularly appealing for concurrent applications. In this
case, deployment includes, among other things, the choice of the underlying
concurrency control mechanism to ensure consistency despite concurrent accesses
to shared data. Adopting the wrong mechanism can hamper scalability and
impact performance by several orders of magnitude [13]. In addition, there are
multiple ways of combining existing mechanisms and going through exhaustive
testing may simply be impossible. Hence the need for profiling.

Yet, profiling concurrent applications is very challenging. This difficulty stems
from the inherent nondeterminism of concurrent applications as well as from the
c© Springer International Publishing Switzerland 2015
A. Bouajjani and H. Fauconnier (Eds.): NETYS 2015, LNCS 9466, pp. 278–292, 2015.
DOI: 10.1007/978-3-319-26850-7 19

Profiling Transactional Applications 279

layout of the architecture where these programs run [8]. Furthermore, man-
ufactured hardware evolves rapidly by, for example, adopting different cache
coherence protocols [20] or multiplying the number of cores.

In this paper, we focus on transactional applications. We highlight four distinc-
tive features: (1) the transaction size, i.e., the average number of memory accesses
of the transactions; (2) the read-write ratio, i.e., the ratio between the number of
accesses that modify the data and those that do not; (3) the contention, i.e., the
number of concurrent accesses to the same shared data, such that at least one of
these accesses is a write; and (4) the uniformity, i.e., the extent to which trans-
actions access distinct objects. We show that these features can be computed for
an application A and are sufficient to determine its distance from an application
A′. In turn, this distance can help predict which concurrency control mechanisms
would best fit A based on results obtained on A′.

In some sense, this is like highlighting distinctive features of a person P
that would help compute similarities with another person P ′ and help predict
which movies P would like most based on those that P ′ enjoyed most. In our
context, we show for instance that if a new application is similar to others,
then the concurrency control mechanism that is known to benefit these latter
applications could intuitively benefit the new one as well. Or we can filter out
inappropriate concurrency controls based on the observed similarities between
applications and their individual performance.

This collaborative filtering technique was initially used to compute the simi-
larities between documents [26] and was more recently applied to measure simi-
larities in large data sets [27]. The key idea is to filter information based on the
collaboration of multiple participants or data sources. This technique is popular
for its effectiveness in recommendation systems: by collecting tastes and pref-
erences of many users regarding multiple items, the system can recommend an
item that one user is likely to prefer. Although similar, the problem we tackle
is not to recommend items based on their similarities but rather to suggest con-
currency control to applications based on application similarities. The benefit
of our approach is that the profile of an application is sufficient to select its
most suitable concurrency control, simply by comparing this profile against pro-
files of existing applications that were previously tested. In particular, it is not
necessary to test the new application to identify the concurrency control.

Using Synchrobench [13], we show experimentally that our approach is benefi-
cial to even a small set of applications by precisely identifying the discriminating
criteria. In particular, we show that the size of operations, the ratio of shared
write accesses over shared read accesses, the contention and the uniformity of
memory regions these applications access are effective criteria to compute sim-
ilarities between applications and to suggest concurrency controls that boost
performance. We evaluate our solution on 6 benchmarks for which workloads
exhibit a wide range of behaviors with respect to these criteria.

In addition, we applied our approach to 10 concurrency control mechanisms.
These mechanisms include various transactional algorithmic designs that are
known to affect performance [11]: concurrency control mechanisms that acquire

280 V. Gramoli et al.

locks eagerly (encounter-time locking), lazily (commit-time locking), that use
invisible writes, or visible (in-place) writes. These mechanisms are further refined
using different policies similar to existing contention managers [16,17,24,25].
These policies include “kill-attacker” that always aborts the transaction that
causes the conflict, the exponential backoff strategy that forces every restart-
ing transaction to wait a period that increases exponentially with its number of
restarts and a delaying contention manager that consists in restarting a transac-
tion, which aborted due to an unsuccessful attempt to acquire a lock, only after
the lock has been released.

Our experimental evaluation compares the performance in terms of through-
put and abort rates of all benchmarks and compute their distance using the
cosine similarity [26] of workloads based on the aforementioned criteria. Our
conclusion is fourfold. First, our results confirm that for a given benchmark and
depending on the concurrency control mechanism used in the benchmark, the
performance significantly varies for the same update ratios, hence motivating
the need for our solution. Second, our results indicate for instance that for data
structures that share similar criteria, like red-black trees and skip lists, the same
concurrency controls can benefit or penalize both corresponding benchmarks.
Third, for benchmarks that have notably different profiles a concurrency control
mechanism benefiting one may be substantially detrimental to the other. Finally,
seemingly identical benchmarks may have different profiles due to the way they
were tuned, performing differently with the same concurrency control.

Section 2 introduces the criteria to draw the profile of each concurrent work-
load, hence allowing us to compute similarities between them. Section 3 describes
the transaction algorithms and contention management mechanisms resulting in
the 10 concurrency control mechanisms we present. Section 4 depicts the perfor-
mance results of our benchmarks as the throughput and abort rates when using
each of the proposed mechanisms. Section 5 discusses how to extend our solution
to implement a fully automated framework that refines application similarities
based on previous runs of the applications. Section 6 presents the related work
and finally Sect. 7 concludes the paper.

2 Workload Profiles

We define the profile of each workload as a set of four values, each representing
its characteristic according to a distinct attribute or dimension.

– Transaction Size: the transaction size captures the number of memory
accesses executed as part of the same transaction between its last (re-)start
and its commit.

– Write/Read Ratio: the mean ratio of the number of transactional write
accesses over the number of transactional read accesses executed by a single
transaction between its last (re-)start and its commit.

– Contention: the chance of conflicts inherent to this workload. Note that the
contention is not related to the write/read ratio as two transactions executing
mostly writes on disjoint data may not contend.

Profiling Transactional Applications 281

– Uniformity: the level of uniformity in the distribution of transactional accesses
over memory locations. A lower value indicates skewness so that the same few
locations are more likely accessed by any transaction than other locations.
Note that the same workload can be skewed and not contended.

As we explain below, these four dimensions allow us to compare statically dif-
ferent workloads based on the distance between the vectors of their profile.

2.1 Workloads

To compare concurrency control, we evaluate six workloads freely available with
Synchrobench [13], a micro-benchmark suite for synchronization techniques. The
first workload is a hash table that maps a key to a value in constant size buckets
implemented as linked lists and where n threads execute the three operations
similarly to the list-based set workload. It features simple transactional opera-
tions put, delete, contains, that consists of adding, removing an element from
a set and checking for the presence of an element in the set, respectively. The
workload consists of spawning n threads that repeatedly execute randomly these
transactional operations with a proportion of put and delete over contains
specified with an update ratio u. These operations execute on a hash table initial-
ized with a given number of elements (indicated by parameter i), each operation
takes a value uniformly at random in a range of r possible values. Other work-
loads include a linked list, a red-black (RB) tree, an AVL speculation-friendly
(AVL SF) tree [5] and a skip list where n threads execute operations with the
same distribution. The last workload is a double-ended queue that consists of
an array where values are always enqueued at the head and dequeued from the
tail, hence implementing a queue abstraction (the update ratio is thus always
100 %).

2.2 Profile-Based Comparisons

To identify the profile of each of these applications, we ran experiments using
Synchrobench [13] and observed the size of transactions, compared the size of
the read-set or the number of shared read accesses within the same committing
transaction to the size of the write-set of the number of shared write accesses per
committing transactions. The profile of each workload namely the hash table,
the list-based set, the red-black tree, the speculation-friendly tree, the skip list
and the double-ended queue are depicted in Table 1. Given this profile, we can
measure the distance between two workloads depending on the offset between
their coordinates. We deduce the profile of each workload by observing the length
of transactions, the proportion of write vs. read accesses to the shared memory,
the frequencies at which two transactions access same shared locations and the
distribution of accessed locations.

Linked list transactions are larger than others as the number of accesses per
transaction is linear in the number of elements and the list contains as many ele-
ments as other structures. Empirically, we observed for 216-sized data structures

282 V. Gramoli et al.

Table 1. Profile of the workloads depending on the transaction size, the proportion of
write over read and the amount of conflicts

Workload Hash table Linked list RB tree AVL SF tree Skip list Deque

Tx size − ++ + + + −
Write/read + − − − − ++

Contention − − + − + ++

Uniformity ++ + − − + −

that the average linked list transaction size was 66K. We also confirmed that
transactions were very small on constant access time data structures: we observed
5 shared accesses per transactions on hash tables and queues. Finally, we found
slightly varying transaction size on logarithmic access time data structures: 61
for the skip list, 40 for the red-black tree and 23 for the speculation-friendly tree.
These differences are reported in the row ‘Tx size’ of Table 1.

No operation in any workload has a number of write accesses linear in the
number of elements, this number is either constant in the linked list, queue,
hash table sizes and is typically logarithmic in the skip list size and it may be
logarithmic in the tree size when restructuring is involved. Experimentally, we
observed that the linked list has a ratio of write over read shared accesses of 1

32K
whereas the hash table experience a ratio that varies from 1

6 with a load factor
of 10 to 4

5 with a load factor of 1. The deque ratio is 2
3 , the skip list ratio is 1

30 ,
the AVL SF tree ratio is 1

20 and the RB tree ratio is 1
7 .

The contention is induced by the probability for two operations to access
the same shared location so that at least one of these accesses is a write. This
is very likely for the deque as all operations write to the same 3 (on average)
locations located either at the head or the tail of the queue (depending whether
they enqueue or deque). Finally, the uniformity indicates the skewness in the
distribution of access locations among all locations. The deque as well as trees
are highly skewed as their head, tail and root are the most accessed locations.
The hash table experiences the highest uniformity because the hash function
tends to balance the accesses among all buckets.

Non-discriminating Criteria. If we represent the six workloads as three-
dimensional vectors by ignoring the fourth criterion (uniformity) (x, y, z) =
(1, 2, 1), (3, 1, 1), (2, 1, 2), (2, 1, 1), (2, 1, 2), (1, 3, 3) in the column order in which
they are listed in Table 1 then the Euclidean distance

√
(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2

is 0 between skip list and red-black tree, the distance between each of these two
and the AVL SF tree is 1. The linked list is closer to the AVL SF tree (with
distance 4) than the skip list or red-black tree (5), the hash table is at distance
3 from the skip list or red-black tree, and at distance 2 from the AVL SF tree
and the two furthest workloads are AVL SF tree and deque with a distance of 9.

Profiling Transactional Applications 283

Table 2. Similarities between workloads in term of the cosine similarity of their profile

Hash table Linked list RB tree AVL SF tree Skip list Deque

Hash table 1 0 -0.41 0 0 -0.29

Linked list 0 1 0.4 0.67 0.58 -0.87

RB tree -0.41 0.4 1 0.81 0.7 0

AVL SF tree 0 0.67 0.81 1 0.58 -0.5

Skip list 0 0.58 0.7 0.58 1 -0.5

Deque -0.29 -0.87 0 -0.5 -0.5 1

This selection of three criteria does not help differentiating the skip list and
the red-black tree. Note that this observation holds regardless of the distance
metric we choose because the skip list and the red-black tree would share exactly
the same profile. To refine our profiles and differentiate these two workloads we
have to take into account the fourth criterion, namely uniformity.

Discriminating Criteria. Picking only three criteria may not be discriminat-
ing enough. If we refine our profiles using the four criteria, we can represent the
six workloads with four-dimensional vectors

⎛

⎜⎜
⎝

w
x
y
z

⎞

⎟⎟
⎠ as

⎛

⎜⎜
⎝

−1
0
−1
1

⎞

⎟⎟
⎠ ,

⎛

⎜⎜
⎝

1
−1
−1
0

⎞

⎟⎟
⎠ ,

⎛

⎜⎜
⎝

0
−1
0
−1

⎞

⎟⎟
⎠ ,

⎛

⎜⎜
⎝

0
−1
−1
−1

⎞

⎟⎟
⎠ ,

⎛

⎜⎜
⎝

0
−1
0
0

⎞

⎟⎟
⎠ and

⎛

⎜⎜
⎝

−1
1
1
−1

⎞

⎟⎟
⎠ .

Cosine Similarity. Given the fourth criteria, we can now refine our notion
of distance by taking the cosine similarity to compare the direction of these
vectors. Note that the cosine similarity is more effective to distinguish between
profiles that do not share a majority of coordinates than existing alternatives
like the Euclidean distance, the Pearson Correlation Coefficient or the Tanimoto
Coefficient [27].

The cosine similarity between two vectors v1 = (w1, x1, y1, z1) and v2 =
(w2, x2, y2, z2) is:

v1 · v2
||v1|| × ||v2|| =

w1 × w2 + x1 × x2 + y1 × y2 + z1 × z2√
w2

1 + x2
1 + y21 + z21 ×

√
w2

2 + x2
2 + y22 + z22

.

The cosine similarities between each pair of profiles is depicted in the sym-
metric Table 2.

3 Algorithms for Concurrency Control

To identify whether a specific concurrency control algorithm can benefit a particu-
lar workload, we choose four different transactional memory (TM) algorithms and
four different contention managers algorithms (CM). The three TM algorithms are
the following:

284 V. Gramoli et al.

– EagerAcq: eager acquirement is a technique that consists of acquiring a
lock on some shared variable immediately. To allow for read sharing, our
transactions simply acquire a lock on the variables they attempt to update.
With eager acquirement, the transaction acquires the lock before deciding to
commit or abort.

– InvWrite: invisible write is the technique of deferring the write to the com-
mit time of the transaction. With this approach a transaction that writes
some shared variables lets concurrent transactions access the same variables
between the time it “speculatively” writes them and the time it commits. This
is the technique used in TL2 [9], it shortens the average protection duration
of transactions by postponing all lock-acquirements to the commit phase.

– WriteInPlace: as opposed to invisible writes, writing in place consists of
effectively updating the memory before reaching the commit. If the transaction
aborts, then some compensating actions must be executed to roll-back the
unsuccessful updates.

We also choose three different contention manager (CM) algorithms:

– KillAttacker: this strategy consists simply of choosing to abort the trans-
action that detects the conflict (the attacker) rather than the other conflict-
ing transaction (the victim). A transaction is restarted immediately after it
aborts.

– ExpBackoff: this strategy forces an aborting transaction to wait a duration
that increases exponentially with the number of aborts before restarting. Once
a transaction at some process commits, the next transaction executed by the
same process starts without any delay.

– Delay: this strategy uses the same KillAttacker strategy without restarting a
transaction immediately after it aborts. If a transaction aborts while trying to
access a locked variable, the transaction waits until the lock is released before
restarting.

– Adaptive: this strategy maintains multiple metadata like the number of
restarts and a priority for each transaction to allow for a more elaborate
CM implementation, upon conflict resolution the transaction with the lowest
priority is aborted and after 4 restarts a transaction increases its priority to
increase its chance of committing.

4 Performance Results

In this section, we show that the similarity between workload profiles helps
choose a concurrency control that boosts performance and discard one that low-
ers performance.

4.1 Experimental Settings

The machine is a 32-way x86-64 Intel Xeon E5-2450 machine with 2 sockets of 8
hyperthreaded cores each running at 2.1 GHz Ubuntu 12.04.4 LTS and gcc 4.6.3.

Profiling Transactional Applications 285

Fig. 1. The throughput of each concurrency control on various workloads when update
rate is 10%

In all our experiments, we used TinySTM v1.0B [11] and Synchrobench v1.1.0-
alpha [13] to average the value over 5 runs of 2 s each for each individual point with
1, 2, 4, 8, 12, 16, 18, 20, 22, 24, 26, 28, 30 and 32 threads and update ratios 10 %
and 50 % effective (except for the double-ended queue whose operations are only
updates). All data structures have expected size of 216 during the experiments. The
reason of our choices is that TinySTM offers contention management and conflict
resolution policies that are common to most TM algorithms and Synchrobench
is the most comprehensive benchmark-suite for evaluating synchronization tech-
niques. The transactional memory (TM) algorithms include invisible write with
eager acquirement or lazy acquirement and visible write with eager acquirement.
The contention manager (CM) algorithms include the delay contention manager
that waits until a lock is released before restarting the transaction that aborted due
to its acquirement attempt, the strategy of killing the (attacker) transaction that
detects the conflicts with another (also called suicide), and the exponential back-
off strategy that consists of waiting before restarting for a duration that increases
exponentially each time the same transaction aborts.

286 V. Gramoli et al.

Fig. 2. The abort rate of each concurrency control on various workloads when update
rate is 10%

4.2 Similar Profiles

Figure 1 gives the throughput as thousands of operations per second for each
workload with 10 % effective updates, meaning that 90 % of the operations never
modify the structure. The two workloads with the closest (most similar) profiles
are the red-black tree and the speculation-friendly AVL tree as they have the
same structure, however, the transactions execute differently on one or the other
because rebalancing is not executed as frequently. The speculation-friendly tree
has also shorter transactions and separate local rotation transactions that involve
a constant number of nodes whereas the global red-black tree rotation is one
unique transaction [5]. Due to this difference, the red-black tree throughput
suffers dramatically more from the use of EagerAcq and adaptive CM than the
speculation-friendly tree. Figure 2 gives thousands of aborted transactions per
second in log scale for each workload with 10 % of updates: the speculation-
friendly tree does not abort as often as the red-black tree but we can see that
WriteInPlace+Delay and EagerAcq+KillAttacker are combinations that trigger
lots of abort on both structures.

Figures 3 and 4 give respectively the throughput and abort rate of each work-
load with 50 % of updates. The skip list and the red-black tree, which have very

Profiling Transactional Applications 287

Fig. 3. The throughput of each concurrency control on various workloads when update
rate is 50%

close profile as well, experience very bad performance in the same scenario with
a TM with eager acquirement and an adaptive CM. This phenomenon is exacer-
bated under higher contention as depicted in Fig. 3. Actually, such a concurrency
control prevents the red-black tree from scaling up to 12 threads (resp. 8 threads)
at 10 % updates (resp. 50 % updates) while it prevents the skip list from scaling
to 26 threads (resp. 10 threads) at 10 % updates (resp. 80 % updates). Note that
this is not necessarily the case for other workloads, as the speculation-friendly
AVL and hash table experience reasonable performance with such a combination
of algorithms. Interestingly, the deque and the linked list experience bad perfor-
mance with the same combination, but it is clear that the drop in performance
is relatively more significant in the case of the red-black tree and the skip list
than the other workloads.

We also observe that the best combination for the skip list and the red-black
tree are similar: they tend to be boosted by the write-in-place and the invisible
write transactional strategies almost irrespective of the contention manager used
in combination. Moreover, besides the EagerAcq+AdaptiveCM combination we
can clearly see that any of the remaining combinations leads to performance
that are close to the peak performance of each of these two workloads, hence

288 V. Gramoli et al.

Fig. 4. The abort rate of each concurrency control on various workloads when update
rate is 50%

indicating that all could be chosen with negligible impact on the performance of
these two workloads.

4.3 Different Profiles

The two workloads with the most different profiles, namely the linked list and the
double-ended queue, experience very different performance results, which con-
firms the matching to their profile dissimilarities. An important remark is that
our transactional algorithms are workload-oblivious, which is the reason why the
linked list performance does not scale (we left the evaluation of more appropriate
transactional algorithms, like Elastic [12] and Polymorphic transactions [15], to
future work).

The first observation is that the overall performance of the linked list and
double-ended queue (deque) is very different: the deque reaches the best peak
performance while the linked list reaches the lowest performance of all workloads,
which translates into a performance difference of up to 4 orders of magnitude
between these two extremes. Note that the linked list implements a set whose
operations may be read-only whereas the deque does not have read-only opera-
tions but the constant complexity of the deque pays off compared to the linear

Profiling Transactional Applications 289

Table 3. Empirical evaluation of the best and worst TM and CM algorithms for each
workload

Workload Hash table Linked list RB tree AVL SF tree Skip list Deque

Best TM EagerAcq WriteInPlace Inv. write none WrInPlace WrInPlace

Worst TM WriteInPlace EagerAcq EagerAcq none EagerAcq InWrite

Best CM ExpBackoff KillAtt Delay ExpBackoff KillAtt ExpBackoff

Worst CM Delay Adaptive Adaptive Delay Adaptive KillAtt

complexity of the linked list. Second, these two workloads do not maximize their
performance with the same algorithm, in particular, the best performance of the
linked list is reached when using the “Kill Attacker” contention manager, which
is actually the one that minimizes the performance of the deque, as summarized
in Table 3. Third, the linked list shows very distinct performance results depend-
ing on the algorithm used whereas the performance of the deque may perform
reasonably well with any concurrency control combination.

Interestingly, the same algorithm (EagerAcq+AdaptiveCM) minimizes the
performance of the linked list, the red-black tree and the skip list workloads,
which are all reasonably close. We can conclude that the workloads with similar
profiles tend to show similar performance when synchronized with the same con-
currency control while it is generally not the case for workloads of substantially
different profiles.

5 Discussion

Our preliminary results rely on static profiles that are computed prior to per-
formance evaluation and allow us to classify the best and worst concurrency
controls as summarized in Table 3. For this technique to be widely adopted, it is
necessary to feed this profile database at runtime with new workloads that run
for some time with randomly chosen concurrency controls. Once the profile of
the application is refined, the concurrency control that benefits workloads with
similar profiles is chosen to run the given workload. This process is restarted as
the database of profile is fed with new workloads.

A dynamic profiling at runtime can help progressively picking the right con-
currency control as the system learns about a growing amount of applications.
While there exist complex applications where a pattern evolves during the appli-
cation execution, we also notice that many applications use a recurrent workload
pattern (e.g., the STAMP vacation application [2] would exclusively use the red-
black tree structure).

An interesting direction to explore is thus to fully integrate our solution within
the applications so that each application could dynamically switch between con-
currency controls depending on its current execution pattern. Our previous work
on transaction polymorphism already proposes compatible concurrency controls

290 V. Gramoli et al.

within a single transactional memory system [14,15]. This compatibility guaran-
tees that transactions that abort can safely restart using a more appropriate con-
currency control mechanism while others are concurrently running with the old
concurrency control. This integration will facilitate the learning phase where infor-
mation regarding performance and workload profile criteria would be collected.
Finally, it would be ideal for our solution to automatically adjusts itself by adapt-
ing the weight of criteria based on past tests and observed performance results.

6 Related Work

Wang et al. exploited machine learning techniques to choose the best algorithms
to execute a particular transactional workload [21]. They characterize the profiles
of various workloads, including three data structure workloads, by approximating
the length of transactional and non-transactional executions in clock ticks. Here
we study six different data structures and we focus on transactional code, hence
using shared accesses rather than clock ticks to measure an execution length.

Castro et al. used machine learning for binding threads to cores to optimize
transactional applications but not to select the most suitable concurrency control
algorithms [4]. Interestingly, they extended their work to adapt thread affinity
at runtime and identified two workload characteristics in common with ours—
transaction size and contention—but to identify the best affinity, not the best
concurrency control algorithm [3].

Rughetti et al. implemented a technique to select the level of concurrency that
maximizes the performance of various applications including STAMP ones [22,23].
Didona et al. [10] determine dynamically the optimal level of parallelismby exploit-
ing online exploration in shared memory transactional applications and machine
learning in distributed transactional applications. One could benefit from our tech-
nique to select the ideal concurrency control before using theirs to select the ideal
level of concurrency.

Existing transactional memory algorithms feature various transaction algo-
rithms one can select statically, including TinySTM [11], RSTM [19], E-STM [12]
to name a few. Our work is motivated by the well-known observation that trans-
actional workloads are known to be highly dependent on the concurrency control
used [2].

Collaborative filtering was initially used to compute the similarity between
documents by Singhal [26] and was then applied to the context of data mining
to compute the similarity within the same cluster by Tan et al. [27] while Boutet
et al. [1] recently applied it to distributed recommendation systems. Lucia and
Ceze similarly exploited statistics in the Aviso framework [18] to predict the
possibilities of bugs and to avoid appropriately the failures in future executions
of the applications. Based on statistical inference Aviso schedules applications
differently. The technique exploits collaboration among applications similarly to
our approach but the goal of avoiding bugs differs from ours. As far we know, our
work is the first to exploit recommendation systems in the context of concurrent
applications.

Profiling Transactional Applications 291

7 Conclusion

Based on the similarities between transactional applications, we built a recom-
mendation system to choose a concurrency control that maximizes performance
depending on application similarities. Using 10 concurrency control mechanisms,
our experiments show that the cosine similarity of 6 transactional workloads can
be used to determine suitable concurrency controls. The similarities between a
skip list and a red-black tree make their performance vulnerable to the same con-
currency control algorithms. Finally, seemingly identical tree structures may have
different profiles depending on their “speculation-friendliness”, leading potentially
to different performance with the same concurrency control.

Future work includes generalizing collaborative filtering on structures that
use different synchronization primitives, including an efficient lock-based binary
search tree [6] and CAS-based skip list [7]. The challenge here will be to propose
the adequate synchronization techniques (e.g., lock, CAS and transaction) for
an application based on its profile and the performance results observed with
other applications.

References

1. Boutet, A., Frey, D., Guerraoui, R., Jégou, A., Kermarrec, A.-M.: WhatsUp decen-
tralized instant news recommender. In: IPDPS (2013)

2. Minh, C.C., Chung, J.W., Kozyrakis, C., Olukotun, K.: STAMP: stanford trans-
actional applications for multi-processing. In: IISWC (2008)

3. Castro, M., Góes, L.F.W., Fernandes, L.G., Méhaut, J.-F.: Dynamic thread
mapping based on machine learning for transactional memory applications. In:
Kaklamanis, C., Papatheodorou, T., Spirakis, P.G. (eds.) Euro-Par 2012. LNCS,
vol. 7484, pp. 465–476. Springer, Heidelberg (2012)

4. Castro, M., Goes, L.F.W., Ribeiro, C.P., Cole, M., Cintra, M., Mehaut, J.-.F.:
A machine learning-based approach for thread mapping on transactional memory
applications. In: HIPC 2011, pp. 1–10 (2011)

5. Crain, T., Gramoli, V., Raynal, M.: A speculation-friendly binary search tree. In:
PPoPP, pp. 161–170 (2012)

6. Crain, T., Gramoli, V., Raynal, M.: A contention-friendly binary search tree. In:
Wolf, F., Mohr, B., an Mey, D. (eds.) Euro-Par 2013. LNCS, vol. 8097, pp. 229–240.
Springer, Heidelberg (2013)

7. Crain, T., Gramoli, V., Raynal, M.: No hot spot non-blocking skip list. In: ICDCS,
July 2013

8. David, T., Guerraoui, R., Trigonakis, V.: Everything you always wanted to know
about synchronization but were afraid to ask. In: SOSP, pp. 33–48 (2013)

9. Dice, D., Shalev, O., Shavit, N.N.: Transactional locking II. In: Dolev, S. (ed.)
DISC 2006. LNCS, vol. 4167, pp. 194–208. Springer, Heidelberg (2006)

10. Didona, D., Felber, P., Harmanci, D., Romano, P., Schenker, J.: Identifying the
optimal level of parallelism in transactional memory applications. In: Gramoli,
V., Guerraoui, R. (eds.) NETYS 2013. LNCS, vol. 7853, pp. 233–247. Springer,
Heidelberg (2013)

11. Felber, P., Fetzer, C., Riegel, T.: Dynamic performance tuning of word-based soft-
ware transactional memory. In: PPoPP, pp. 237–246 (2008)

292 V. Gramoli et al.

12. Felber, P., Gramoli, V., Guerraoui, R.: Elastic transactions. In: Keidar, I. (ed.)
DISC 2009. LNCS, vol. 5805, pp. 93–107. Springer, Heidelberg (2009)

13. Gramoli, V.: More than you ever wanted to know about synchronization: syn-
chrobench, measuring the impact of the synchronization on concurrent algorithms.
In: PPoPP, pp. 1–10 (2015)

14. Gramoli, V., Guerraoui, R.: Democratizing transactional programming. Commun.
ACM 57(1), 86–93 (2014)

15. Gramoli, V., Guerraoui, R.: Reusable concurrent data types. In: Jones, R. (ed.)
ECOOP 2014. LNCS, vol. 8586, pp. 182–206. Springer, Heidelberg (2014)

16. Guerraoui, R., Herlihy, M., Pochon, B.: Toward a theory of transactional contention
managers. In: PODC, pp. 258–264 (2005)

17. Herlihy, M., Luchangco, V., Moir, M., Scherer III, W.N.: Software transactional
memory for dynamic-sized data structures. In: PODC, pp. 92–101 (2003)

18. Lucia, B., Ceze, L.: Cooperative empirical failure avoidance for multithreaded pro-
grams. In: ASPLOS, pp. 39–50 (2013)

19. Marathe, V.J., Spear, M.F., Heriot, C., Acharya, A., Eisenstat, D., Scherer III,
W.N., Scott, M.L.: Lowering the overhead of software transactional memory. Tech-
nical report 893, University of Rochester, March 2006

20. Martin, M.M.K., Hill, M.D., Sorin, D.J.: Why on-chip cache coherence is here to
stay. Commun. ACM 55(7), 78–89 (2012)

21. Wang, Q., Kulkarni, S., Cavazos, J., Spear, M.: A transactional memory with
automatic performance tuning. ACM Trans. Archit. Code Optim. 8(4), 1–23 (2012)

22. Rughetti, D.: Autonomic concurrency regulation in software transactional memo-
ries. Ph.D. thesis, Sapienza University of Rome (2014)

23. Rughetti, D., Di Sanzo, P., Ciciani, B., Quaglia, F.: Machine learning-based self-
adjusting concurrency in software transactional memory systems. In: IEEE MAS-
COTS, pp. 278–285 (2012)

24. Scherer III, W.N., Scott, M.L.: Advanced contention management for dynamic
software transactional memory. In: PODC, pp. 240–248 (2005)

25. Scherer III, W.N., Scott, M.L.: Contention management in dynamic software trans-
actional memory. In: Proceedings of the ACM PODC Workshop on Concurrency
and Synchronization in Java Programs, July 2004

26. Singhal, A.: Modern information retrieval: a brief overview. Bull. IEEE Comput.
Soc. Tech. Committee on Data Eng. 24(4), 35–42 (2001)

27. Tan, P.-N., Steinbach, M., Kumar, V.: Introduction to Data Mining. Pearson Addi-
son Wesley, Boston (2006)

Disaster-Tolerant Storage with SDN

Vincent Gramoli1,2(B), Guillaume Jourjon1, and Olivier Mehani1

1 NICTA, Sydney, Australia
vincent.gramoli@sydney.edu.au,

{guillaume.jourjon,olivier.mehani}@nicta.com.au
2 University of Sydney, Sydney, Australia

Abstract. Cloud services are becoming centralized at several
geo-replicated datacentres. These services replicate data within a sin-
gle datacentre to tolerate isolated failures. Unfortunately, the effects of
a disaster cannot be avoided, as existing approaches migrate a copy of
data to backup datacentres only after data have been stored at a primary
datacentre. Upon disaster, all data not yet migrated can be lost.

In this paper, we propose and implement SDN-KVS, a disaster-
tolerant key-value store, which provides strong disaster resilience by
replicating data before storing. To this end, SDN-KVS features a novel
communication primitive, SDN-cast, that leverages Software Defined
Network (SDN) in two ways: it offers an SDN-multicast primitive to
replicate critical update request flows and an SDN-anycast primitive
to redirect request flows to the closest available datacentre. Our per-
formance evaluation indicates that SDN-KVS ensures no data loss and
that traffic gets redirected across long distance key-value store replicas
within 30 s after a datacentre outage.

1 Introduction

With the advent of cloud services, the computation needed by individuals is
progressively becoming geo-centralised in datacentres. While effective in terms
of management and costs, this centralisation puts services at risk in the face
of disasters, such as earthquakes or nuclear power plant explosions, which can
affect large geographical regions. Few years ago, these risks motivated Wall Street
financial institutions to build datacentres outside the blast radius of a nuclear
attack on New York City, creating a ring of land in New Jersey called the “Dough-
nut”,1 illustrated in Fig. 1. Located within a range of 30 to 70 km from the city
centre, these backup datacentres aim to maintain rapid data transfer with the
CBD to mitigate disasters.

Making services tolerant to disasters can be particularly challenging. Con-
sider a fault-tolerant key-value store, which serves get and put requests from

NICTA is funded by the Australian Government through the Department of Commu-
nications and the Australian Research Council through the ICT Centre of Excellence
Program.

1 http://www.datacentreknowledge.com/archives/2008/03/10/
new-york-donut-boosts-nj-data-centers/.

c© Springer International Publishing Switzerland 2015
A. Bouajjani and H. Fauconnier (Eds.): NETYS 2015, LNCS 9466, pp. 293–307, 2015.
DOI: 10.1007/978-3-319-26850-7 20

http://www.datacentreknowledge.com/archives/2008/03/10/new-york-donut-boosts-nj-data-centers/
http://www.datacentreknowledge.com/archives/2008/03/10/new-york-donut-boosts-nj-data-centers/

294 V. Gramoli et al.

Fig. 1. The New York doughnut represents the locations where financial companies
replicate their datacentres

clients; various possible implementations (e.g., MongoDB, IBM’s Spinnaker,
Amazon’s SimpleDB) are offered by cloud service providers. Despite their sim-
plicity, these applications tolerate isolated failures but not disasters by instantly
replicating the effect of an update, say a successful put request, to multiple
servers in one (not multiple) datacentre. Existing alternatives can mitigate dis-
aster effects with mirroring, replication and logging techniques across datacentres
of distant geographical locations [15,16,19]. Typically, these solutions store the
client data at one of these replicated datacentres before starting the migration to
another datacentre as depicted in Fig. 2a. The challenge is then to minimise the
migration delay as this may translate into some amount of data that can be lost
during a disaster, also known as non-nil Recovery Point Objective (RPO) [17]. In
this scenario, data are vulnerable to disasters between the time they are stored
at the first datacentre and the time they are fully copied or logged at remote
places. If a disaster affects the first datacentre, data stored but not migrated
become unavailable until recovery or can even be definitely lost.

In this paper, we propose SDN-KVS, a consistent SDN-based Key-Value
Store that adopts the opposite approach of replicating before storing. To this
end, we leverage Software Defined Networks (SDN), namely the decoupling of
control functions from the data processing and forwarding functions remotely
controllable. In particular, we replicate the network flows even before data are
actually stored at any datacentre as illustrated in Fig. 2b (this is the multicast
feature of SDN-cast). Once the client issues a request to a particular datacentre,
an SDN-enabled switch located at the edge of the network (outside any data-
centre), duplicates the critical request flow and forwards a copy to two identical
versions of the Key-Value Store service running at the targeted datacentre and

Disaster-Tolerant Storage with SDN 295

Client 1
Client 2

Client 3

2. Replicate

1. Store

Data get lost

(a) Existing fault-tolerant solutions store
data before replicating them through
mirroring or logging: the non yet repli-
cated data get lost upon disaster

Client 1
Client 2

Client 3

1. Replicate

2. Store

2. Store

1. Replicate

(b) SDN-cast replicates data before stor-
ing them: the network duplicates the crit-
ical traffic to remote datacentres

Fig. 2. SDN-cast proactively ensures data persistence as opposed to approaches that
use a best effort recovery of data after disasters

at the backup datacentre. By duplicating the traffic at the network level, the
storage application guarantees that the data is already replicated before it is
stored. This is in contrast with previous solutions that require to first receive
data before the mirroring, the replication or the remote logging of data can start.

Another consequence of disasters is the network outage that prevents remote
clients from accessing the running backup service during a period of time,
referred to as the Recovery Time Objective (RTO) [17]. More specifically, if a
backup server starts rapidly operating using a different IP address, it may not be
instantaneously accessible as refreshing DNS caches at the edge of the network
could take hours or even days. The main problem is that the network itself takes
a long time to recover from a disaster, hence delaying the application recovery.
Our solution detects effectively outage at the network level to minimize RTO.
The key to rapidly redirect the traffic to a backup datacentre is to distribute
the network control that is usually centralized in the network core—typically in
the datacentre network—to the network edge (this redirection is handled by the
anycast feature of SDN-cast).

We evaluate SDN-KVS on top of an emulated wide area network connecting
a client to two geo-replicated datacentres in Australia and Ireland, each running
a copy of our key-value store application. Although not guaranteed to share the
same state, our key-value store instances are strongly consistent and tolerate
isolated failures by exploiting intra-datacentre replication but relies on our SDN-
cast solution to cope with disasters. In this evaluation we demonstrate how SDN-
multicast duplicates the flows between multiple datacentres while SDN-anycast
detects edge failures in Sydney to redirect the traffic to the backup datacentre
in Dublin. Results show that SDN-cast can achieve a nil RPO and a 30 s RTO,
meeting higher disaster recovery objectives than any technique we are aware of.

The remainder of the paper is organised as follows. In Sect. 2, we evaluate the
effects of disasters on data and explain how existing solutions aim at mitigating

296 V. Gramoli et al.

these effects. In Sect. 3 we present SDN-KVS. In Sect. 4 we show empirically
that it ensures 30 s RTO and nil RPO. In Sect. 5, we present the related work.
Finally, Sect. 6 discusses our solution and concludes.

2 On the Impact of Disasters on the Cloud

In this section, we present the problem of making cloud storage services disaster-
tolerant. We first present the impact of disasters on cloud storage services before
explaining why existing approaches may suffer from disasters.

2.1 The Case of Amazon Datacentres

Even common natural disasters can have important consequences on cloud com-
puting services. On June 14th 2012, Amazon’s datacentre in West Virginia (also
known as its US-east-1 region) experienced a power outage of only half an hour.
While the cause may seem negligible (severe storms), the consequences of this
outage were dramatic for all the companies that relied on the Amazon Web
Services running in West Virginia datacentre at that time. More precisely, the
outage affected companies, like Pinterest and Instagram during up to 15 h2,
because the power outage induced a cascade of problems affecting the whole
service infrastructure of these companies. Larger disasters, as the extreme heat
that led to the 2012 India blackout whose power outage affected 9 % of the world
population, could potentially have more important consequences.

In fact, datacentre service outages represent a key challenge of cloud com-
puting. A recent survey indicates that the cumulative datacentre outage in the
US in 2010 was 134 min, translating into a cost of $680,000. Three years later
the datacentre service downtime reduced to 119 min, however, the related cost
increased to $901,500. This cost increase reflects that more critical services are
outsourced to the cloud environment making the financial loss more important
in case of failures.3

Read-only cloud services, like web services, are easy to make tolerant to dis-
asters. As long as the service does not store client-generated content, the service
can simply be copied across geo-replicated datacentres to achieve disaster tol-
erance. In the Amazon US-east-1 region outage scenario, Netflix, which offers
video-on-demand services, minimized service outage by simply redirecting the
traffic towards a secondary Amazon datacentre.4 The problem is more com-
plex for services that store client-generated content: their customer may request
updates at any time but require their requests to be safely stored in real-time.
One popular example of such storage service is the key-value store service.

2 https://gigaom.com/2012/06/29/some-of-amazon-web-services-are-down-again/.
3 http://www.datacentreknowledge.com/archives/2013/12/03/

study-cost-data-center-downtime-rising/.
4 http://www.nytimes.com/2011/04/23/technology/23cloud.html.

https://gigaom.com/2012/06/29/some-of-amazon-web-services-are-down-again/
http://www.datacentreknowledge.com/archives/2013/12/03/study-cost-data-center-downtime-rising/
http://www.datacentreknowledge.com/archives/2013/12/03/study-cost-data-center-downtime-rising/
http://www.nytimes.com/2011/04/23/technology/23cloud.html

Disaster-Tolerant Storage with SDN 297

2.2 Recovering a Storage Service After a Disaster

Key-value stores are cloud services popularized by the NoSQL movement that
favoured simplicity over expressivity of data access. They offer a simple interface
to manipulate key-value pairs, which exports get, put and update functions that
respectively retrieve, insert and modify a pair of key and value. A key-value store
achieves fault-tolerance by making sure that the effects of an update request (put
and update) on a specific key-value pair get replicated at multiple servers.

While appealing, the replication needed for fault-tolerance also raises prob-
lems related to the consistency of data, as communication must occur between
servers to ensure that the new value updated by a client is propagated to multi-
ple servers. There are various forms of consistency provided by key-value stores
ranging essentially from eventual consistency to strong consistency. To ensure
the uniqueness of the value of a data, two concurrent updates of the same key,
say put(k,v) and put(k,v’) requests, should be consistently ordered by all
servers. This can be achieved using timestamps computed based on the unique
IP address of some server and a local counter that together “tag” the version
of a value, indicating for example that v’ is more up-to-date than v. This is
similar to the technique used by multi-writer atomic register implementations in
the message passing model [12].

Another consistency requirement is that a second update, issued after a first
one on the same key has completed, should always have a value tagged with a
later version. This requires that each request, whether it be a read-only, like a
get, or an update, like a put, starts by requesting the current highest version
to a quorum (i.e., a mutually intersecting set) of servers before proceeding with
propagating the most up-to-date value with the largest version. One example,
employed by Dynamo [4] is to propagate any write request on a key to a quorum
of two replicas of this key to guarantee fault tolerance of the data propagated.
Using a quorum system, the read/write requests are strongly consistent. Note
that a quorum system within a datacentre can be reconfigured to tolerate an
unbounded number of isolated failures [3] but cannot tolerate disaster.

3 SDN-KVS: Disaster-Tolerant Key-Value Store

To tolerate failures and disasters our approach is twofold. As for fault-tolerance,
we replicate all data within a datacentre where communication cost is low. This
guarantees that the data persist despite isolated failures. We also replicate criti-
cal traffic (e.g., put requests) to a datacentre towards a second datacentre located
in a different region, similar to the backup datacentre in New Jersey. It is the
responsibility of the client to distinguish normal from critical traffic (e.g., by
establishing separate connections), as cross-regions critical traffic experiences
significant delays compared to non-critical traffic within a local region.

3.1 Correctness and Resilience Across Regions

Our key-value store guarantees the strongest form of consistency we know
of, called linearizability [7]. Within the same datacentre this is ensured using

298 V. Gramoli et al.

quorum systems and global timestamp as previously discussed: fetching a key-
value pair (resp. the highest version of the storage) requires to contact a set of
servers that includes at least one of the servers where the last update of the
corresponding pair (resp. the highest version of the storage) was replicated.

To globally guarantee strong consistency, we need additional requirements.
Provided that remote datacentres share a common initial state, say as given
by some common virtual machine image, replicating critical traffic across dat-
acentres guarantees that critical data is not lost upon geo-localized disaster,
even if an entire datacentre goes down. It is also important to guarantee that
the key-value store services respond identically to write requests despite pos-
sible reordering of requests at distant locations. Our implementation actually
acknowledges identically a put and an update even though the corresponding
request does not succeed in updating the store. This ensures that when two
distant servers receive two update requests in different order, the corresponding
response is identical (simply acknowledged). Note that these requests necessarily
come from distinct clients as our new SDN-cast primitive uses exclusively TCP
as we describe below.

While linearizable, both datacentres may have distinct states because of dis-
tinct ordering of concurrent updates. As each client directly connects to the
closest datacenter before or after a disaster, the only problem arises when a dis-
aster occurs: the same client may read twice the same data item and observe a
different results at the first datacentre right before the disaster and at the backup
datacentre right after the disaster. In this case, we require that the client syn-
chronises with the newly contacted datacentre before issuing requests (this is
made possible as the application receives a RST packet in case of disaster as we
describe later).

client server 1

server 2

server n

(a) SDN-multicast transparently forks
TCP flows to n servers in separate dat-
acentres, allowing for data replication in
real time

client server 1

server 2

server n

(b) SDN-anycast redirects the traffic
from one server in the primary datacen-
tre to the server of a remote available
datacentre upon network outage detec-
tion

Fig. 3. SDN-cast (a) duplicates critical traffic to two datacentres before disasters and
(b) redirects the traffic to the backup datacentre upon disaster

The two components of SDN-cast, namely SDN-multicast and SDN-anycast,
are depicted in Fig. 3. When the client sends a critical (put) request to a datacen-
tre, SDN-multicast forks the TCP connection to multiple datacentres, thereby
replicating the information before storing it (see Sect. 3.2). This is transparent

Disaster-Tolerant Storage with SDN 299

to the client: when it receives an acknowledgement, it has already been safely
replicated at different geographical locations. This guarantees that the sent data
will persist despite a disaster. SDN-multicast hence achieves a nil RPO for all
successful critical requests.

Upon detection of a network disaster, SDN-anycast redirects the traffic to
backup datacentres, thereby guaranteeing that the data can still be accessed.
This is used both for access to the critical data, which was geo-replicated by SDN-
multicast, and to redirect all traffic to the surviving datacentres. As opposed to
other approaches, SDN-anycast uses network-level failure detection to achieve a
RTO of about 30 s (see Sect. 3.3).

The control plane is located at the edge to cope with region-wide disasters.
(Note that the case of a disaster occurring at the network edge is of limited
interest as the client would be affected by the disaster even if the datacentres
were not.)

3.2 SDN-Based Multicast for a Nil RPO

The forking mechanism can be placed anywhere on the path between clients and
servers. When traffic destined to any server under its jurisdiction is received,
it replicates the packets to the whole set of live servers. From the client’s per-
spective, the forking mechanism maintains the end-to-end reliability semantics
of TCP: data is acknowledged only when all live servers have acknowledged it.
This mechanism is illustrated in Fig. 4 in the case of two servers.

In order not to break the TCP session on any side (client or servers) of
the connection, special care must be taken when replicating the packets. The
client sends data from its own sequence space, and so does each server. Sequence
and acknowledgement numbers therefore need to be adjusted depending on the
server before packets are sent. To do so the TCP forking mechanism records
the initial sequence number on the first (SYN) return packet it sees (dc1 seq in
Fig. 4). It then computes and stores an offset from the initial sequence number
of each of the other servers (Offset2 = dc2 seq − dc1 seq in the figure). This
offset is added to the sequence number of return packets, and subtracted from
the acknowledgement number on replicated forward packets. This allows to map
the client’s view of the server’s sequence space to the actual range used by each
server.

Once the connection is properly open at the client and servers, the former
can send any data, such as put instructions for the key–value store. The switch
transparently duplicates the TCP stream to all live servers, and an acknowledge-
ment is sent back to the client only once successfully received by all servers. This
assumes that all servers to which the traffic is replicated reply with exactly the
same message. This is not unreasonable, as all servers are identical, varying only
in their location, and expected to handle the data they receive in the same way.
The connection can finally be closed in a similar fashion, with FINs and ACKs
being transparently replicated (and their sequence/ack numbers adjusted), until
the slowest server closes its side, letting the client finalise its.

300 V. Gramoli et al.

Client Switch Server 1 Server 2

SYN=1, seq=client_seq
SYN=1, seq=client_seq

SYN=0, ack=Offset1+dc1_seq+1,seq=client_seq+1

SYN=1, seq=client_seq

SYN=0, ack=dc1_seq,
seq=client_seq+1

SYN=1, seq=dc1_seq, ack=client_seq+1

SYN=1, seq=dc2_seq,ack=client_seq+1SYN=1, seq=dc1_seq,
ack=client_seq+1

SYN=0, ack=Offset2+dc1_seq+1, seq=client_seq+1

Offset2 = dc2_seq - dc1_seq
Offset1 = 0

 seq=client_seq+2, n bytes data
 seq=client_seq+2, n bytes data

 seq=client_seq+2, n bytes data
seq=dc1_seq+2,
ack=client_seq+n-2

seq=dc2_seq+2,
ack=client_seq+n-2

seq=dc1_seq+2,
ack=client_seq+n-2

Ack_seq = ack
drop pkt

FIN
FIN

FIN

ACK
ACK

ACK

ACK
ACKACK

FIN
FIN

FIN

C
on

ne
ct

io
n

E
st

ab
lis

hm
e

nt

D
at

a
U

pd
at

e
C

on
ne

ct
io

n
C

lo
se

If ack =
Ack_seq

Fig. 4. Mechanism for forking a TCP connection: the client establishes a normal con-
nection to Server 1; the Switch replicates the traffic to Server 2; return traffic from the
servers is only forwarded to the client when both servers have replied; sequence num-
bers and acknowledgements are adjusted by recording and applying offsets between
servers’s sequence numbers as needed

It is important to note that only a few fields are manipulated in the switch.
Sequence, or acknowledgement numbers—depending on the direction of the
traffic—have a static offset applied. SACK options are left untouched, but force-
fully disabled during the initial handshake to force a fallback to cumulative
ACKs. Beyond these changes, the TCP packet is left untouched. This allows to
leverage the TCP stacks of the endpoints (client and servers) to take care of rate
adaptation and loss recovery. As the end-to-end semantics and control of TCP
is preserved, the client and servers will however exchange packets as allowed by
the slowest link.

3.3 SDN-Based Anycast for Minimum RTO

SDN-anycast uses SDN-enabled switches connected to controllers located at
the edge of the network to redirect flows upon network outage. In order to
decide when to start the redirection, we propose a mechanism inside the edge

Disaster-Tolerant Storage with SDN 301

controller. As SDN-anycast can detect network outage using lower level proto-
cols (e.g., LLDP, ICMP or transport timeouts, as used in Algorithm 1), it can
responsively redirect the traffic with minimum delays. This detection algorithm
takes information from the various edge switches while the decision is centrally
taken by the SDN controller responsible for these switches. This centralised algo-
rithm, presented in Algorithm1, aims to minimise the RTO depending on the
number of services currently deployed.

Data: Client flow to service
Result: Possible detection of failure
detection;
if duplicate packet from client then

possibleFailure ++ ;
if possibleFailure ≥ Threshold then

add action to rewrite packets for Service to alternative server ;
for every connections affected by failure do

send RST packet ;
end

end

else
if packet from Service then

possibleFailure = 0;
end

end

Algorithm 1. Detection of server failure through TCP timeouts, and mit-
igation by forcing a new connection

4 Experimental Evaluation

In this section, we show empirically that SDN-anycast recovers the throughput
and latency of the key-value store service within RTO ≤ 30 s and that SDN-
multicast increases the cumulated goodput by forking TCP connections between
a single client and multiple geo-replicated datacentres to achieve nil RPO with no
client or inter-datacentre overhead. We used Mininet [6] and the Python-based
POX controller to evaluate the performance of our geo-replicated key-value store
in the face of disaster.

4.1 Recovering Storage Service with SDN-Anycast

To evaluate the Recovery Time Objective (RTO) SDN-cast achieves, we deployed
our solution over a topology comprising a local datacentre in Sydney, Australia,
and a remote one of in Dublin, Ireland (see Fig. 5). These are the current respec-
tive locations of Amazon’s existing AP-southeast-2 and EU-west-1 regions. Note

302 V. Gramoli et al.

that this represents one of the greatest distance between datacentres worldwide
(∼17,200 km) whereas most backup datacentres are located within only 30–70 km
from the primary datacentre, as we illustrated in Fig. 1. Both datacentres run
the same image of the service in the same initial empty state replicated on a
distributed system of 9 machines with quorums of size 5.

s3

s2

s4

s1

client

RTT = 10ms
C = 100Mbit/s

RTT = 340ms
C = 100Mbit/s

Datacenter operated
controllers

Edge controller

Primary server farm Secondary server farm

Fig. 5. Experimental topology deployed in Mininet to represent a client accessing a
local datacentre in Sydney (left) and a remote datacentre in Dublin, Ireland (right)

The link from switches s2 to s3 has a one-way delay of 5 ms and a capacity of
100 Mbit/s whereas the link from s2 to s4 has a delay of 170 ms and a capacity of
100 Mbit/s (the RTT between the Sydney and Ireland Amazon EC2 datacentres
is about 340 ms). Inside each datacentre, we have configured a key–value store
over a quorum system of nine servers, meaning that a server receiving put,
update or get requests exchanges messages with 8 or 9 other replicas before
acknowledging the client of the success of its request, hence guaranteeing a high
level of intra-datacentre fault tolerance. Both switches s3 and s4 act as load
balancers inside each datacentre.

Our experiment scenario is as follows. At time t = 0, one of the client starts
reading from the local datacentre as fast as possible, filling the pipe between
s2 and s3. At time t = 200, we emulate a disaster by cutting the link between
s2 and s3. Once the connection is cut, the TCP client starts retransmitting
unacknowledged packets. The controller can therefore learn that a possible dis-
aster has occurred in the network. As we fixed the detection threshold described

Disaster-Tolerant Storage with SDN 303

Fig. 6. SDN-anycast allows to achieve fast service recovery (i.e., RTO ≤ 30 s) and no
data loss (i.e., nil RPO) across the globe

in Algorithm 1 to 5 packets, the waiting period varies from 15 to 25 s. After
this inactive period, the controller instructs the switch to redirect traffic to the
secondary datacentre, and to terminate the connections with the now-defunct
primary datacentre. The client then reconnects to the service with the same IP
address but traffic is directed to the second datacentre.

In Fig. 6, we present RTT and throughput measurements extracted from the
captured trace at the client side. Figure 6a shows the RTT computed by the TCP
sender. In particular, we can see that during the first 200 s the flow experienced
an RTT of around 100 ms. During the second 200 s period, the flow experiences
a minimum RTT of 340 ms necessary to reach the remote datacentre. Figure 6b
presents the throughput achieved by the TCP flow. As expected, when the delay
is short, the TCP connection is able to fill the pipe when accessing the local
datacentre. With a larger RTT it however becomes impossible for TCP to fully
utilise the pipe. Nonetheless, the connection was successfully switched over to the
Irish datacentre when the Sydney one failed. Using this technique, we empirically
observed an RTO lower than 30 s.

4.2 Service Goodput of SDN-Multicast

The benefit of SDN-multicast in our scenario is to avoid the need of application-
level replication, as it directly integrates the same service within the network.
This reduces the number of communication between members of a group.

More specifically, a client process sends a message to a group of server
processes by initiating a single TCP connection through which it sends mul-
tiple messages. All messages are reliably delivered in-order to all servers. The
TCP acknowledgements are simply collected at the switch level. Once all servers
have acknowledged a specific sequence, the switch forwards the acknowledgement
to the client.

In order to illustrate this use-case, we deployed our forking solution over
a simple topology similar to the one presented in Fig. 3b where we varied the
number of servers from 1 to 6. In this series of experiments we set identical RTTs
between the set of servers and the client, and links capacity to 100 Mbit/s.

304 V. Gramoli et al.

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 3.5e+06

 0 2 4 6 8 10 12 14 16 18 20

S
D

N
ca

st
 G

oo
dp

ut
 (

B
/s

)

Time (s)

1 Server
2 Servers
4 Servers
6 Servers

Fig. 7. Performance evaluation of SDN-multicast to up to 6 datacenters concurrently

Figure 7 presents the service goodput, defined as the number of bytes trans-
mitted and acknowledged by all servers, as a function of time. As OpenFlow ≤1.3
does not currently offer actions to rewrite TCP sequence or acknowledgement
fields, we had to let the switches forward all packets to the controller, hence
creating a significant overhead and loss of performances: ideally, we would have
expected a linear relation between the number of servers and the gain in goodput.
Nevertheless, we can observe that our solution increases the service goodput. We
envision this increase to become even more significant when OpenFlow switches
support the necessary actions.

5 Related Work

Synchronous Replication. Data persistence in case of disasters was explored
in the context of databases [5] and gained momentum recently with the geo-
centralization of data in cloud datacentres. While asynchronous replication [10,16]
was shown in practice to be effective to limit bandwidth consumption, synchro-
nous replication is needed to prevent data losses [15,19]. Synchronous replication
requires first to store the data then to replicate the data somewhere else before
acknowledging the client, a lengthy process generally suited for relatively short
distances. Our approach is the opposite: first to replicate the traffic to store data
at multiple locations concurrently before acknowledging the client.

Manipulation of Network Flows. Many solutions have been proposed, over the
last fifteen years, to extend network functionalities. They generally vary in terms
of the layer at which they are implemented and the location (e.g., end-host, edge
or core) of their deployment. Table 1 compares the features of various proposals,
presented below, to SDN-cast, in terms of multicast capabilities, geo-localized
disaster recovery and transparency to the client.

Disaster-Tolerant Storage with SDN 305

Table 1. Feature comparison of SDN-cast with related work

NAT TCP
Splice
[13]

Flow
Aggregation [2]

MPTCP
[1]
SCTP

Any-
cast [18]

Dr.
Multi-
cast

SDN-
Cast

Multicast × × × × × � �
Recovery × × × � � × �
Transparency � × × × � × �

Similar to our proposal, solutions based on middle-boxes have been widely
adopted in today’s Internet. In particular, Network Address Translation (NAT)
offers transparent static redirection services to end-user applications, and are
generally deployed at the edge of the networks. TCPSplice [13] is a kernel-land
TCP proxy allowing to intercept and redirect TCP sessions. Unlike applica-
tion proxies, it offers near router speed performance. To mitigate the problems
introduced by wireless communication, and use the links more efficiently, a flow
aggregator inside a TCP proxy was proposed to allow to adapt the protocol
to better use GSM links [2]. thoroughly studied [8,14]. Although they provide
many advantages, it is well-known that they introduce limitations for the evo-
lution of end-to-end protocol such as TCP [8]. Nonetheless, as compared to our
in-network layer-4 switch proposal, none of these solutions support both dynamic
redirection of traffic and flow replication to multiple destinations.

Transport protocols supporting multiple paths such as MPTCP [1] or SCTP
allows the use multiple paths within the same transport session. This is instru-
mental in supporting network fail-over by switching from one interface to another
without connection disruption. However, switching conditions are hard-coded in
the transport, and cannot be adjusted depending on arbitrary parameters. Unlike
SDN-multicast, however, each end-to-end sessions can only be established to a
single host, and cannot be failed-over to different, or multicasted to several,
servers. Moreover, both protocols require support at both end-hosts to be used.

Dr. Multicast [18] provides multicast functionalities by coping with the lim-
ited scalability of IP multicast within one datacentre, however, it is not trans-
parent as it requires the client to catch system calls and converts IP multicast
addresses.

Software Defined Network (SDN). SDN offers inherent fault tolerance capabil-
ities by allowing a controller to use lower layer signals such as LLDP to detect
link failures in a timely fashion, and to adjust the behaviour of the switches it
controls. This technique has therefore been suggested to reconfigure networks
upon failures, especially in the context of datacentre networking [9]. SDN was
recently used to mitigate the effects of disasters [20], similarly to our SDN-
anycast feature. The goal was however to use alternative network paths in case
of path failures, and this solution does not cope with the problem of data loss
that SDN-multicast addresses: it only mitigates the effects of disasters rather

306 V. Gramoli et al.

than avoiding them. The use of multiple controllers was already shown effective
in reducing the fault-tolerance of a particular SDN using NOX controllers and
the Mininet virtualised environment [11]. In SDN-multicast, we leverage these
capabilities to implement layer-4 switching mechanisms to improve RTOs and
RPOs.

6 Discussion and Conclusion

We proposed SDN-KVS, a disaster-tolerant storage that exploits a novel SDN-
cast communication paradigm to avoid losses of critical data. Even at extreme
distances (Australia to Ireland), SDN-KVS achieves a 30 s RTO and guarantees
that storage requests survive region-wide disasters.

As our solution is deployed at the end of the common path towards all servers
(e.g., leaf network edge or local ISP), the forking mechanism saves resources
along that path by removing the need for multiple connection carrying the same
traffic. We envision that as a side effect, it could potentially reduce bufferbloat
issues by only using one TCP stream instead of one per server for the same data.

Our solution allows multicasting of TCP streams transparently to the client
side. Due to its layer 4 orientation, it ignores any payload. While this is desirable
for performance reasons in most cases, this is problematic if some application
parameters need to be negotiated between client and server. This is particularly
the case for SSL sessions, as each servers would try to negotiate a different
session with the client. To provide similar levels of security, IPSec would be a
better candidate for use with our forking mechanism.

The current version of OpenFlow (v.1.4) limits the capabilities of SDN-
multicast. In particular, we were limited, in the forking experiment by the lack
of support for manipulation of the acknowledgement and sequence number fields
in the TCP header. It is also unclear whether arithmetic operations such as
additions or subtractions of offsets are readily available. We believe that such
actions should be considered for addition in future OpenFlow specifications.

For our solution to be widely-adopted, the SDN-anycast information should
be made accessible to ISPs to reconfigure efficiently the network. By proactively
redirecting traffic to live servers upon disaster, our SDN-anycast could simplify
the task of edge ISP forensic departments as it would prevent a large number of
connection establishments failures due to downstream disasters that would have
triggered DDoS investigation procedures.

References

1. Barré, S., Bonaventure, O., Raiciu, O., Handley, M.: Experimenting with multipath
TCP. In: SIGCOMM, pp. 443–444 (2010)

2. Chakravorty, R., Katti, S., Crowcroft, J., Pratt, I.: Flow aggregation for enhanced
TCP over wide-area wireless. In: INFOCOM (2003)

3. Chockler, G., Gilbert, S., Gramoli, V., Musial, P.M., Shvartsman, A.A.: Recon-
figurable distributed storage for dynamic networks. J. Parallel Distrib. Comput.
69(1), 100–116 (2009)

Disaster-Tolerant Storage with SDN 307

4. DeCandia, G., Hastorun, D., Jampani, M., Kakulapati, G., Lakshman, A., Pilchin,
A., Sivasubramanian, S., Vosshall, P., Vogels, W.: Dynamo: amazon’s highly avail-
able key-value store. In: SOSP, pp. 205–220 (2007)

5. Garcia-Molina, H., Polyzois, C.A., Hagmann, R.B.: Two epoch algorithms for dis-
aster recovery. In: VLDB, pp. 222–230 (1990)

6. Handigol, N., Heller, B., Jeyakumar, V., Lantz, B., McKeown, N.: Reproducible
network experiments using container-based emulation. In: CoNEXT, pp. 253–264
(2012)

7. Herlihy, M., Wing, J.: Linearizability: a correctness condition for concurrent
objects. ACM Trans. Program. Lang. Syst. 12(3), 463–492 (1990)

8. Honda, M., Nishida, Y., Raiciu, C., Greenhalgh, A., Handley, M., Tokuda, H.: Is
it still possible to extend TCP? In: IMC (2011)

9. Jain, S., Kumar, A., Mandal, S., Ong, J., Poutievski, L., Singh, A., Venkata, S.,
Wanderer, J., Zhou, J., Zhu, M., Zolla, J., Hölzle, U., Stuart, S., Vahdat, A.: B4:
experience with a globally-deployed software defined WAN. In: SIGCOMM, pp.
3–14 (2013)

10. Ji, M., Veitch, A.C., Wilkes, J.: Seneca: remote mirroring done write. In: ATC, pp.
253–268 (2003)

11. Kim, J., Santos, J.R., Turner, Y., Schlansker, M., Tourrilhes, J., Feamster, N.:
CORONET: fault tolerance for software defined networks. In: ICNP (2012)

12. Lynch, N., Shvartsman, A.: Robust emulation of shared memory using dynamic
quorum-acknowledged broadcasts. In: FTCS, pp. 272–281 (1997)

13. Maltz, D., Bhagwat, P.: TCP splicing for application layer proxy performance, RC
21139. IBM, March 1998

14. Medina, A., Allman, M., Floyd, S.: Measuring interaction between transport pro-
tocols and middleboxes. In: IMC, pp. 336–341 (2004)

15. Oracle: Oracle optimized solution for disaster recovery on oracle supercluster
(2013)

16. Patterson, R.H., Manley, S., Federwisch, M., Hitz, D., Kleiman, S., Owara, S.:
SnapMirror: file-system-based asynchronous mirroring for disaster recovery. In:
FAST, pp. 117–129 (2002)

17. Verma, A., Voruganti, K., Routray, R., Jain, R.: SWEEPER: an efficient disaster
recovery point identification mechanism. In: FAST, pp. 297–312 (2008)

18. Vigfusson, Y., Abu-Libdeh, H., Balakrishnan, M., Birman, K., Burgess, R., Chock-
ler, G., Li, H., Tock, Y.: Dr. multicast: Rx for data center communication scala-
bility. In: EuroSys, pp. 349–362 (2010)

19. Wood, T., Lagar-Cavilla, H.A., Ramakrishnan, K.K., Shenoy, P., Van der Merwe,
J.: PipeCloud: using causality to overcome speed-of-light delays in cloud-based
disaster recovery. In: SoCC, pp. 17:1–17:13 (2011)

20. Xie, A., Wang, X., Wang, W., Lu, S.: Designing a disaster-resilient network with
software defined networking. In: IWQoS, pp. 135–140, May 2014

On the Complexity of Linearizability

Jad Hamza(B)

LIAFA, Université Paris Diderot, Paris, France
jhamza@liafa.univ-paris-diderot.fr

Abstract. It was shown in Alur et al. [1] that the problem of verifying
finite concurrent systems through Linearizability is in EXPSPACE. How-
ever, there was still a complexity gap between the easy to obtain PSPACE
lower bound and the EXPSPACE upper bound. We show in this paper
that Linearizability is EXPSPACE-complete.

1 Introduction

Linearizability [8] is the standard consistency criterion for concurrent data-
structures. Filipovic et al. [5] proved that checking that a library L is linearizable
with respect to a specification S is equivalent to observational refinement. For-
mally, as long as linearizability holds, any multi-threaded program using the
specification S as a library can safely replace it by L, without adding any
unwanted behaviors.

Many practical tools [3,4,11–13] for checking linearizability or detecting lin-
earizability violations exist, and here is a short summary of the work done on
the complexity.

Checking that a single execution is linearizable is already an NP-complete
problem [7]. Moreover, Alur et al. [1] showed that the problem of checking
Linearizability for finite concurrent libraries used by a finite number of threads is
in EXPSPACE when the specification is a regular language. The best known lower
bound is PSPACE-hardness, obtained from a simple reduction of the reachability
problem for finite concurrent programs [1], leaving a large complexity gap.

This result was refined in Bouajjani et al. [2] where it was shown that a
simpler variant of Linearizability – called Static Linearizability, or Linearizabil-
ity with fixed linearization points – is PSPACE-complete for the same class of
libraries.

Furthermore, Linearizability is undecidable when the number of threads is
unbounded [2]. Tools used for detecting linearizability violations often start by
underapproximating the set of executions by bounding the number of threads.
It is thus necessary to develop a better understanding of Linearizability for a
bounded number of threads.

We prove that Linearizability is EXPSPACE-complete, showing that there
is an inherent difficulty to the problem. We introduce for this a new problem
on regular languages, called Letter Insertion. This problem can be reduced in
polynomial time to Linearizability.

c© Springer International Publishing Switzerland 2015
A. Bouajjani and H. Fauconnier (Eds.): NETYS 2015, LNCS 9466, pp. 308–321, 2015.
DOI: 10.1007/978-3-319-26850-7 21

On the Complexity of Linearizability 309

We then show that Letter Insertion is EXPSPACE-hard, closing the complexity
gap for Linearizability. Our proof is similar to the proofs of EXPSPACE- hardness
for the problems of inclusion of extended regular expressions with intersection
operator, or interleaving operator, given in Hunt [9], Fürer [6] and Mayer and
Stockmeyer [10]. They all use a similar encoding of runs of Turing machines as
words, and using the problem at hand, Letter Insertion in this case, to recognize
erroneous runs.

To summarize, our two contributions are:

– finding the Letter Insertion problem, a problem equivalent to Linearizability,
but which has a very simple formulation in terms of regular automata,

– using this problem to show EXPSPACE-hardess of Linearizability.

We recall in Sect. 2 the definition of Linearizability, and we introduce the
Letter Insertion problem. We show in Sect. 3 that Letter Insertion can be reduced
in polynomial time to Linearizability. And finally, we show in Sect. 4, that Letter
Insertion is EXPSPACE-hard, which is the most technical part of the paper. When
combined, Sects. 3 and 4 show that Linearizability is EXPSPACE-hard.

2 Definitions

2.1 Libraries

In the usual sense, a library is a collection of methods that can be called by other
programs. We start by giving our formalism for methods, and define libraries as
sets of methods.

In order to simplify the presentation, and since they do not affect our
EXPSPACE-hardness reduction, we will use a number of restrictions on the meth-
ods. First, we will define the methods without return values and parameters.
Second, each instruction of a method can either read or write to the shared
memory, but we don’t formalize atomic compare and set operations. Finally, we
limit ourselves to a unique shared variable.

Let D be a finite set used as the domain for the shared variable and let d0 ∈ D

be a special value considered as initial.
A method is a tuple (Q, δ, q0, qf) where

– Q is the set of states,
– δ ⊆ Q × {read,write} × D × Q
– q0 ∈ Q is the initial state (in which the method is called)
– qf ∈ Q is the final state (in which the method can return)

One point which might be considered unsual in our formalism is that a read
instruction guesses the value that it is going to read. In usual programming
languages, this can be understood as first reading a variable, and then having
an assume statement to constrain the value of the read variable. This formal-
ism choice is a presentation choice, and has no effect on the complexity of the
problem.

310 J. Hamza

As hinted previously, a library Lib = {M1, . . . ,Mm} is a set of methods. For
every j ∈ {1, . . . ,m}, let (Qj , δj , qj

0, q
j
f) be the tuple corresponding to Mj . We

define Q to be the (disjoint) union of all Qj .
Let k be an integer representing the number of threads using Lib. Threads

run concurrently and call the methods of Lib arbitrarily. The system composed
of k threads calling arbitrarily the methods of Lib is called Libk.

Formally, a configuration of Libk is a pair γ = (d, μ) where d ∈ D is the
current value of the shared variable and μ is a map from {1, . . . , k} to Q � {⊥},
specifying, for each thread i, the state in which the method called by thread i
is. The symbol ⊥ is used for threads which are idle (not calling any method at
the moment).

A step from a configuration γ = (d, μ) to γ′ = (d′, μ′) can be:

– thread i calling method j, denoted by γ
call(i,Mj)−−−−−−−→ γ′, with μ(i) = ⊥, μ′ =

μ[i ← qj
0], and d′ = d,

– thread i returning from method j, denoted by γ
ret(i)−−−→ γ′, with μ(i) = qj

f ,
μ′ = μ[i ← ⊥], and d′ = d,

– thread i doing a read in method j, denoted by γ −→ γ′ (no label) with μ(i) =
q ∈ Mj , μ′ = μ[i ← q′], (q, read, d, q′) ∈ δj , and d′ = d,

– thread i doing a write in method j, denoted by γ −→ γ′ (no label) with μ(i) =
q ∈ Mj , μ′ = μ[i ← q′], (q,write, d′, q′) ∈ δj .

An execution of Libk is a sequence of steps γ0 −→ γ1 . . . −→ γl where γ0 =
(d0, μ0), with μ0(i) = ⊥ for all i, is the initial configuration.

The trace h of an execution is the sequence of labels (call’s and return’s) of
its steps. The set of traces of Libk is denoted by Traces(Libk). Note that in a
trace, a call event may be without a corresponding return event (if the method
has not returned yet). In which case, the call event is said to be open. A trace
with no open calls in called complete.

Given a complete trace h, we define for each pair of matching call and return
events a method event. We say that a method event e1 happens before another
method event e2 if the return event of e1 is before the call event of e2 in h; this
defines a happen-before relation on the method events. The label of a method
event is the method name corresponding to its call event.

2.2 Linearizability

Let h be a trace of Traces(Libk) for some library Lib and integer k. A complete
trace h′ is said to be a completion of h if we can remove some (possibly zero)
open calls from h, as well as close some others open calls (possibly zero) by
adding return events at the end of h in order to obtain h′.

A specification for a library Lib = {M1, . . . ,Mm} is a language of finite words
S over the alphabet {M1, . . . ,Mm}.

Definition 1 (Linearizability). A complete trace h is said to be linearizable
with respect to a specification S if there exists a total order on the method events,

On the Complexity of Linearizability 311

respecting the happen-before order, such that the corresponding sequence of labels
is a word in S. A trace h is said to be linearizable with respect to S if it has a
completion which is linearizable (with respect to S).

Problem 1 (Linearizability). Input: A library Lib = {M1, . . . ,Mm}, a non-
deterministic finite automaton (NFA) S representing the specification, and an
integer k given in unary.

Question: Are all the traces of Traces(Libk) linearizable w.r.t. S?

Note: the size of the input is the size of all the automata appearing in the
input (number of states + number of transitions + size of the alphabet) to which
we add k.

We give in Figs. 1, 2, and 3 some examples to illustrate Linearizability. To
represent executions, we draw a method event as an interval, where the left end
of the interval corresponds to the call event of the method event, and the right
end corresponds to the return event. This way, when two method events overlap,
they can be ordered arbitrarily, but when a method event e1 is completely before
a method event e2, e1 has to be ordered before e2.

Above an interval, we write the name of the method corresponding to the
method event, and below, we write the (unique) name of the method event.

These executions can be seen as being produced by concrete libraries whose
goal is to implement the atomic specification: S = (MAMB)∗. Figure 1 represents
an execution which is linearizable, since its method events can be ordered as the
sequence e1e2e3e4, whose corresponding sequence of labels is MAMBMAMB.
Figure 2 represents an execution which is linearizable, since its method events
can be ordered as the sequence e1e2e3e4e5e6, whose corresponding sequence of
labels is MAMBMAMBMAMB . Figure 3 represents an execution which is similar
to Fig. 1 but is not linearizable. A library producing the execution in Fig. 3 would
thus not be linearizable with respect to S.

MA

e1

MB

e2

MA

e3

MB

e4

Fig. 1. A linearizable execution, which can be ordered as e1e2e3e4

2.3 Letter Insertion

We were able to define a new problem, Letter Insertion, which: (1) can be reduced
to Linearizability, (2) is very easy to state (compared to Linearizability), (3) is
still complex enough to capture the difficult part of Linearizability as we’ll show
it is EXPSPACE-hard.

312 J. Hamza

MA

e1

MB

e2

MA

e3

MB

e4

MA

e5

MB

e6

Fig. 2. A linearizable execution, which can be ordered as e1e2e3e4e5e6

MA

e1

MB

e2

MA

e3

MB

e4

Fig. 3. A non-linearizable execution

Problem 2 (Letter Insertion). Input: A set of insertable letters A = {a1, . . . , al}.
An NFA N over an alphabet Γ � A.

Question: For all words w ∈ Γ ∗, does there exist a decomposition w =
w0 · · ·wl, and a permutation p of {1, . . . , l}, such that w0ap[1]w1 . . . ap[l]wl is
accepted by N?

Said differently, for any word of Γ ∗, can we insert the letters {a1, . . . , al}
(each of them exactly once, in any order, anywhere in the word) to obtain a
word accepted by N?

Note: the size of the input is the size of N, to which we add l.

3 Reduction from Letter Insertion to Linearizability

In this section, we show that Letter Insertion can be reduced in polynomial time
to Linearizability. When we later show that Letter Insertion is EXPSPACE-hard,
we will get that Linearizability is EXPSPACE-hard as well.

Intuitively, the letters A = {a1, . . . , al} of Letter Insertion represent methods
which are all overlapping with every other method, and the word w represents
methods which are in sequence. Letter Insertion asks whether we can insert the
letters in w in order to obtain a sequence of N while linearizability asks whether
there is a way to order all the letters, while preserving the order of w, to obtain
a sequence of N , which is equivalent.

Lemma 1. Letter Insertion can be reduced in polynomial time to Linearizability.

Proof. Let A = {a1, . . . , al} and N an NFA over some alphabet A � Γ .

On the Complexity of Linearizability 313

Define k, the number of threads, to be l + 2.
We will define a library Lib composed of

– methods M1, . . . ,Ml, one for each letter of A
– methods Mγ , one for each letter of Γ
– a method MTick.

and a specification SN , such that (A,N) is a valid instance of Letter Insertion
if and only if Libk is linearizable with respect to SN .

For the domain of the shared variable, we only need three values: D =
{Begin,Run,End} with Begin being the initial value.

The methods Mγ are all identical. They just read the value Run from the
shared variable (see Fig. 4).

The methods M1, . . . ,Ml all read Begin, and then read End (see Fig. 5).
The method MTick writes Run, and then End (see Fig. 6).

Fig. 4. Description of Mγ , γ ∈ Γ

Fig. 5. Description of M1, . . . , Ml

Fig. 6. Description of MTick

The specification SN is defined as the set of words w over the alphabet
{M1, . . . ,Ml} ∪ {MTick} ∪ {Mγ |γ ∈ Γ} such that one the following condition
holds:

– w contains 0 letter MTick, or more than 1, or
– for a letter Mi, i ∈ {1, . . . , l}, w contains 0 such letter, or more than 1, or
– when projecting over the letters Mγ , γ ∈ Γ and Mi, i ∈ {1, . . . , l}, w is in

NM , where NM is N where each letter γ is replaced by the letter Mγ , and
where each letter ai is replaced by the letter Mi.

314 J. Hamza

Since N is an NFA, SN is also an NFA. Moreover, its size is polynomial in
the size of N . We can now show the following equivalence:

1. there exists a word w in Γ ∗, such that there is no way to insert the letters
from A in order to obtain a word accepted by N

2. there exists an execution of Lib with k threads which is not linearizable
w.r.t. SN

(1) =⇒ (2). Let w ∈ Γ ∗ such that there is no way to insert the letters
A in order to obtain a word accepted by N . We construct an execution of Lib
following Fig. 7, which is indeed a valid execution.

Fig. 7. Non-linearizable execution corresponding to a word γ1 . . . γmin which we cannot
insert the letters from A = {a1, . . . , al} to make it accepted by N . The points represent
steps in the automata.

This execution is not linearizable since

– it has exactly one MTick method, and
– for each i ∈ {1, . . . , l}, it has exactly one Mi method, and
– no linearization of this execution can be in NM , since there is no way to insert

the letters A into w to be accepted by N .

Note: The value of the shared variable is initialized to Begin, allowing the
methods Mi (i ∈ {1, . . . , l}) to make their first transition. MTick then sets the
value to Run, thus allowing the methods Mγ , γ ∈ Γ to execute. Finally, MTick

sets the value to End, allowing the methods Mγ , γ ∈ Γ to make their second
transition and return. This tight interaction will enable us to show in the second
part of the proof that all non-linearizable executions of this library have this
very particular form.

(2) =⇒ (1). Let r be an execution which is not linearizable w.r.t. SN . We
first show that this execution should roughly be of the form shown in Fig. 7.

On the Complexity of Linearizability 315

First, since it is not linearizable w.r.t. SN , it must have at least one com-
pleted MTick method event. If it only had open MTick events (or no MTick events
at all), it could be linearized by dropping all the open calls to MTick. More-
over, it cannot have more than MTick method event (completed or open), as it
could also be linearized, since SN accepts all words with more than one MTick

letter.
We can show similarly that for each i ∈ {1, . . . , l}, it has exactly one Mi

method which is completed (and none open).
Moreover, the methods Mi (i ∈ {1, . . . , l}) can only start when the value

of the shared variable is Begin, and they can only return after reading the
value End. Since this value can only be changed (once) by the single MTick

method of our executions, this ensures that the methods Mi (i ∈ {1, . . . , l})
(and MTick itself) all overlap with one another, and with every other completed
method.

This implies that the completed methods Mγ , γ ∈ Γ can only appear in a
single thread t (since M1, . . . ,Ml,MTick already occupy l + 1 threads amongst
the l + 2 available). Thus, we define w ∈ Γ ∗ to be the word corresponding to
the completed methods Mγ , γ ∈ Γ of the execution in the order in which they
appear in thread t.

Since r is not linearizable, we cannot insert Mi (i ∈ {1, . . . , l}) into the com-
pleted methods of thread t in order to be accepted by SN . In particular, this
implies that there is no way to insert the letters A in w in order to be accepted
by N .

4 Letter Insertion is EXPSPACE-hard

We now reduce, in polynomial time, arbitrary exponentially bounded Turing
machines, to the Letter Insertion problem, which shows it is EXPSPACE-hard.
We first give a few notations.

A deterministic Turing machine M is a tuple (Q, δ, q0, qf) where:

– Q is the set of states,
– δ : (Q × {0, 1}) → (Q × {0, 1} × {←,→}) is the transition function
– q0, qf are the initial and final states, respectively.

A computation of M is said to be accepting if it ends in qf .
For the rest of the paper, we fix a Turing machine M and a polynomial P

such that all runs of M starting with an input of size n use at most 2P (n) cells,
and such that the following problem is EXPSPACE-complete.

Problem 3 (Reachability). Input: A finite word t.
Question: Is the computation of M starting in state q0, with the tape ini-

tialized with t, accepting?

Lemma 2 (Letter Insertion). Letter Insertion is EXPSPACE-hard.

Note: the Sublemmas 3, 4, 5, 6 and 7 are all part of the proof of Lemma 2.

316 J. Hamza

Proof. We reduce in polynomial time the Reachability problem for EXPSPACE
Turing machines to the negation of Letter Insertion. This still shows that Letter
Insertion is EXPSPACE-hard, as the EXPSPACE complexity class is closed under
complement.

Let t be a word of size n. Our goal is to define a set of letters A and an NFA
N over an alphabet Γ �A, such that the following two statements are equivalent:

– the run of M starting in state q0 with the tape initialized with t is accepting
(which, by definition of M, uses at most 2P (n) cells),

– there exists a word w in Γ ∗, such that there is no way to insert (see Problem2)
the letters A in order to obtain a word accepted by N .

More specifically, we will encode runs of our Turing machine as words, and
the automaton N , with the additional set of insertable letters A, will be used in
order to detect words which:

– don’t represent well-formed sequences of configurations (defined below),
– or represent a sequence of configurations where the initial configuration is not

initialized with t and state q0, or where the final configuration isn’t in state qf ,
– or contain an error in the computation, according to the transition rules of M.

A configuration of M is an ordered sequence (c0, . . . , (q, ci), . . . , c2P (n)−1)
representing that the content of the tape is c0, . . . , c2P (n)−1 ∈ {0, 1}, the current
control state is q ∈ Q, and the head is on cell i.

We denote by i the binary representation of 0 ≤ i < 2P (n) using P (n) digits.
Given a configuration, we represent cell i by: “i : ci;” if the head of M is not on
cell i, and by “i : qci;” if the head is on cell i and the current state of M is q.
The configuration given above is represented by the word:

$0 : c0;1 : c1; . . . i : qci; . . .2P(n) − 1 : c2P (n)−1;←↩ .

Words which are of this form for some c0, . . . , c2P (n)−1 ∈ {0, 1}, q ∈ Q, are
called well-formed configurations. A sequence of configurations is then encoded
as �cfg1 . . . cfgk� where each cfgi is a well-formed configuration. A word of this
form is called a well-formed sequence of configurations. We now fix Γ to be
{0, 1, �,�, $,←↩, ; , :}.

Lemma 3. There exists an NFA NnotWF of size polynomial in n, which recog-
nizes words which are not well-formed configurations.

Proof. A word is not a well-formed configuration if and only if one of the follow-
ing holds (the + denotes the disjunction or union of regular expressions, and ∗

denotes the Kleene star, 0 or more repetitions):

– it is not of the form $((0 + 1)P (n) : (Q + ε)(0 + 1);)∗ ←↩, or
– it has no symbol from Q, or more than one, or
– it doesn’t start with $0 :, or
– it doesn’t end with 2P(n) − 1 : (Q + ε)(0 + 1);←↩, or
– it contains a pattern i : (Q + ε)(0 + 1); j : where j �= i + 1.

On the Complexity of Linearizability 317

For all violations, we can make an NFA of size polynomial in n recognizing
them, and then take their union. The most difficult one is the last, for which
there are detailed constructions in Fürer [6] and Mayer and Stockmeyer [10].

We here give a sketch of the construction. Remember that i and j are binary
representation using P (n) bits. We want an automaton recognizing the fact that
j �= i + 1. The automaton guesses the least significant bit b (P (n) possible
choices) which makes the equality i + 1 = j fail, as well as the presence or not
of a carry (for the addition i + 1) at that position. We denote by i[b] the bit b
of i and likewise for j. Then, the automaton checks that: (1) there is indeed a
violation at that position (for instance: no carry, i[b] = 0 and j[b] = 1) and (2)
there is carry if and only if all bits less significant than b are set to 1 in i.

Lemma 4. There exists an NFA NNotSeqCfg of size polynomial in n, which recog-
nizes words which:

– are not a well-formed sequence of configurations, or where
– the first configuration is not in state q0, or
– the first configuration is not initialized with t, or
– the last configuration is not in state qf .

Proof. Non-deterministic union between NnotWF and simple automata recogniz-
ing the last three conditions.

The problem is now in making an NFA which detects violations in the com-
putation with respect to the transition rules of M. Indeed, in our encoding, the
length of one configuration is about 2P (n), and thus, violations of the transition
rules from one configuration to the next are going to be separated by about 2P (n)

characters in the word. We conclude that we cannot make directly an automaton
of polynomial size which recognizes such violations.

This is where we use the set of insertable letters A. We are going to define and
use it here, in order to detect words which encode a sequence of configurations
where there is a computation error, according to the transition rules of M.

The set A, containing 2P (n) new letters, is defined as A = {p1, . . . , pP (n),
m1, , . . . ,mP (n)}.

We want to construct an NFA NNotDelta, such that, for a word w which is a
well-formed sequence of configurations, these statements are equivalent:

– w has a computation error according to the transition rules δ of M
– we can insert the letters A in w to obtain a word accepted by NNotDelta.

The idea is to use the letters A in order to identify two places in the word cor-
responding to the same cell of M, but at two successive configurations of the run.

As an example, say we want to detect a violation of the transition δ(q, 0) =
(q′, 1,→), that is, which reads a 0, writes a 1, moves the head to the right, and
changes the state from q to q′.

318 J. Hamza

Assume that w contains a sub-word of the following form:

i : q0; . . . $. . . i : 1; i + 1 : q′′ci+1;

where q′′ is different than q′

The single $ symbol in the middle of the sub-word ensures that we are check-
ing violations in successive configurations. Here, with the current state being q,
the head read 0 on cell i, wrote 1 successfully, and moved to the right. But the
state changed to q′′ instead of q′. Since we assumed that M is deterministic,
this is indeed a violation of the transition rules.

We now have all the ingredients in order to construct NNotDelta. It will be
built as a non-deterministic choice (or union) of Nt for all possible transitions
t ∈ δ (with δ seen as a relation).

As an example, we show how to construct the automaton N
(1)
((q,0),(q′,1,→)),

part of NNotDelta, and recognizing violations of δ(q, 0) = (q′, 1,→), where the
head was indeed moved to right, but the state was changed to some state q′′

instead of q′, like above. Other violations may be recognized similarly.
N

(1)
((q,0),(q′,1,→)) starts by finding a sub-word of the form:

(m10 + p11) . . . (mP (n)0 + pP (n)1) : q0; (1)

meaning the state is q and the head points to a cell containing 0. After that, it
reads arbitrarily many symbols, but exactly one $ symbol, which ensures that
the next letters it reads are from the next configuration. Finally, it looks for a
sub-word of the form

(p10 + m11) . . . (pP (n)0 + mP (n)1) : (0 + 1); (0 + 1)∗ : q′′ (2)

for some q′′ �= q′.
We can now show the following.

Lemma 5. For a well-formed sequence of configurations w, these two state-
ments are equivalent:

1. there is a way to insert the letters A into w to be accepted by N
(1)
((q,0),(q′,1,→))

2. in the sequence of configurations encoded by w, there is a configuration where
the state was q and the head was pointing to a cell containing 0, and in the
next configuration, the head was moved to the right, but the state was not
changed to q′ (computation error).

Proof. (⇐). We insert the letters A in front of the binary representation of the
cell number where the violation occurs. The violation involves two configurations:
in the first, we insert m’s in front of 0’s, and p’s in front of 1’s, and in the second,
it’s the other way around.

This way, we inserted all the letters of A (exactly) once into w, and
N

(1)
((q,0),(q′,1,→)) is now able to recognize the patterns (1) and (2) described above.

On the Complexity of Linearizability 319

(⇒). For the other direction, let w be a well-formed sequence of configurations
such that there exists a way to insert the letters A into w, in order to obtain a
word wA accepted by N

(1)
((q,0),(q′,1,→)).

Since each letter of A can be inserted only once, the sub-word matched by
(m10 + p11) . . . (mP (n)0 + pP (n)1) in pattern (1) in N

(1)
((q,0),(q′,1,→)) has to be the

same as the one matched by (p10 + m11) . . . (pP (n)0 + mP (n)1) in pattern (2),
up to exchanging m’s and p′’s.

Moreover, having exactly one $ symbol in between the two patterns ensures
that they correspond to the same cell, but in two successive configurations.

Finally, the facts that q′′ is different that q′ and that M is deterministic
ensures that the sequence of configurations represented by w indeed contains a
computation error according to the rule δ(q, 0) = (q′, 1,→).

We thus get the following lemma for the automaton NNotDelta.

Lemma 6. For a word w which is a well-formed sequence of configurations,
these statements are equivalent:

– we can insert the letters A in w to obtain a word accepted by NNotDelta,
– w has a computation error according to the transition rules δ of M.

Proof. Construct all the Nt for t ∈ δ (with δ considered as a relation). Construct
similarly an automaton recognizing the violation where a cell changes while the
head was not here. Take the union of all these automata, the proof then follows
from Lemma 5.

By taking the union N = NNotSeqCfg ∪ NNotDelta, we finally get the intended
result, which ends the reduction.

Lemma 7. The following two statements are equivalent.

– the run of M starting in state q0 with the tape initialized with t is accepting,
– there exists a word w in Γ ∗, such that there is no way to insert the letters A

in order to obtain a word accepted by N .

Proof. (⇒) Let w be the well-formed sequence of configurations representing the
sequence of configurations of the accepting run in M, with the tape initialized
with t. Then by Lemmas 4 and 6, there is no way to insert the letters A in order
to obtain a word accepted by NNotSeqCfg or NNotDelta.

(⇐) Let w ∈ Γ ∗ be a word such that there is no way to insert the letters A in
order to obtain a word accepted by N . First, since w is not accepted by NNotSeqCfg,
it represents a well-formed sequence of configurations, starting in state q0 with
the tape initialized with t and ending in state qf (Lemma 4). Moreover, since
there is no way to insert the letters to obtain a word from NNotDelta, w has no
computation error according to the transition rules δ of M (Lemma 6).

This ends the proof of Lemma 2.

Since Letter Insertion is EXPSPACE-hard and, Letter Insertion reduces to
Linearizability, we get the main result of the paper.

320 J. Hamza

Theorem 1 (Linearizability). Linearizability is EXPSPACE-complete.

Proof. It was previously shown that Linearizability is in EXPSPACE [1].
EXPSPACE-hardness follows from Lemmas 1 and 2

5 Conclusion

We define a new problem, Letter Insertion, simpler than Linearizability, but still
hard enough to capture the main difficulties of Linearizability. We showed that
the Letter Insertion problem is EXPSPACE-hard, and could thus deduce that the
Linearizability problem is EXPSPACE-hard.

Our result applies even with all the following restrictions: the number of
threads is given in unary, there is a unique shared variable whose domain size is
3, the library has a constant number of automata “shapes” (3 in our reduction)
using less than 3 states, the methods of the library are deterministic, the methods
of the library have no loop, and the instructions within the methods can only
read or write, but never do both atomically.

For future work, we plan to show that restricting ourselves to deterministic
specifications (using a DFA instead of an NFA in the input of the problem)
does not reduce the complexity. Furthermore, it would be interesting to find
a large class of specifications including the most common ones (stack, queue,
. . .) for which our lower-bound does not apply and where we could reduce the
complexity.

References

1. Alur, R., McMillan, K.L., Peled, D.: Model-checking of correctness conditions for
concurrent objects. Inf. Comput. 160(1–2), 167–188 (2000)

2. Bouajjani, A., Emmi, M., Enea, C., Hamza, J.: Verifying concurrent programs
against sequential specifications. In: Felleisen, M., Gardner, P. (eds.) ESOP 2013.
LNCS, vol. 7792, pp. 290–309. Springer, Heidelberg (2013)

3. Burckhardt, S., Dern, C., Musuvathi, M., Tan, R.: Line-up: a complete and auto-
matic linearizability checker. In: Proceedings of the 2010 ACM SIGPLAN Con-
ference on Programming Language Design and Implementation, PLDI 2010, pp.
330–340. ACM, New York (2010). http://doi.acm.org/10.1145/1806596.1806634

4. Elmas, T., Qadeer, S., Sezgin, A., Subasi, O., Tasiran, S.: Simplifying linearizabil-
ity proofs with reduction and abstraction. In: Esparza, J., Majumdar, R. (eds.)
TACAS 2010. LNCS, vol. 6015, pp. 296–311. Springer, Heidelberg (2010)

5. Filipovic, I., O’Hearn, P.W., Rinetzky, N., Yang, H.: Abstraction for concurrent
objects. Theor. Comput. Sci. 411(51–52), 4379–4398 (2010)

6. Fürer, M.: The complexity of the inequivalence problem for regular expressions
with intersection. In: de Bakker, J., van Leeuwen, J. (eds.) Automata, Lan-
guages and Programming. LNCS, vol. 85, pp. 234–245. Springer, London (1980).
http://dl.acm.org/citation.cfm?id=646234.682559

7. Gibbons, P.B., Korach, E.: Testing shared memories. SIAM J. Comput. 26(4),
1208–1244 (1997)

http://doi.acm.org/10.1145/1806596.1806634
http://dl.acm.org/citation.cfm?id=646234.682559

On the Complexity of Linearizability 321

8. Herlihy, M., Wing, J.M.: Linearizability: a correctness condition for concurrent
objects. ACM Trans. Program. Lang. Syst. 12(3), 463–492 (1990)

9. Hunt, H.: The equivalence problem for regular expressions with intersection is
not polynomial in tape. Department of Computer Science: Technical report,
Cornell University, Department of Computer Science (1973). http://books.google.
fr/books?id=52j6HAAACAAJ

10. Mayer, A.J., Stockmeyer, L.J.: The complexity of word problems - this time with
interleaving. Inf. Comput. 115(2), 293–311 (1994). http://dx.doi.org/10.1006/
inco.1994.1098

11. Rajamani, S.K., Walker, D. (eds.): Proceedings of the 42nd Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL
2015, Mumbai, India, 15–17 January 2015. ACM, New York (2015). http://dl.acm.
org/citation.cfm?id=2676726

12. Vafeiadis, V.: Automatically proving linearizability. In: Touili, T., Cook, B.,
Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 450–464. Springer, Heidelberg
(2010)

13. Vechev, M.T., Yahav, E., Yorsh, G.: Experience with model checking linearizability.
In: Păsăreanu, C.S. (ed.) SPIN 2009. LNCS, vol. 5578, pp. 261–278. Springer,
Heidelberg (2009)

http://books.google.fr/books?id=52j6HAAACAAJ
http://books.google.fr/books?id=52j6HAAACAAJ
http://dx.doi.org/10.1006/inco.1994.1098
http://dx.doi.org/10.1006/inco.1994.1098
http://dl.acm.org/citation.cfm?id=2676726
http://dl.acm.org/citation.cfm?id=2676726

Antichains for the Verification
of Recursive Programs

Lukáš Hoĺık1(B) and Roland Meyer2

1 Brno University of Technology, Brno, Czech Republic
holik@fit.vutbr.cz

2 University of Kaiserslautern, Kaiserslautern, Germany
meyer@cs.uni-kl.de

Abstract. Safety verification of while programs is often phrased in
terms of inclusions L(A) ⊆ L(B) among regular languages. Antichain-
based algorithms have been developed as an efficient method to check
such inclusions. In this paper, we generalize the idea of antichain-based
verification to verifying safety properties of recursive programs. To be
precise, we give an antichain-based algorithm for checking inclusions of
the form L(G) ⊆ L(B), where G is a context-free grammar and B is a
finite automaton. The idea is to phrase the inclusion as a data flow analy-
sis problem over a relational domain. In a second step, we generalize the
approach towards bounded context switching.

1 Introduction

We reconsider a standard task in algorithmic verification: model checking safety
properties of recursive programs. To explain our model, assume we are given a
recursive program P operating on a finite set of Boolean variables V . For this
program, we are asked to check a safety property given by a finite automaton B.
The task amounts to checking the inclusion

L(G(P)) ∩
⋂

v∈V

L(B(v)) ⊆ L(B).

Here, G(P) is a context-free grammar whose language is the set of valid paths in
the recursive program P . A path is valid if procedures are called and return in a
well-nested manner. The context-free grammar only models the flow of control.
It does not ensure the correct use of the Boolean variables. Indeed, there could
be words in L(G(P)) where a write of 1 to variable v is followed by a read of
value 0. To take data into account, we intersect the context-free language with
a regular language L(B(v)) for each variable. The intersection only keeps words
from L(G(P)) that obey the semantics of operations on the data domain. Such
a separation of a program’s semantics into the control and the data aspect is
standard in verification [16].

The only non-regular part in the above inclusion is the control-flow lan-
guage L(G(P)). We move the intersection with the regular languages to the
c© Springer International Publishing Switzerland 2015
A. Bouajjani and H. Fauconnier (Eds.): NETYS 2015, LNCS 9466, pp. 322–336, 2015.
DOI: 10.1007/978-3-319-26850-7 22

Antichains for the Verification of Recursive Programs 323

right-hand side of the inclusion and obtain an equivalent formulation:

L(G(P)) ⊆ L(B) ∪
⋃

v∈V

L(B(v)).

Since regular languages are closed under complement and closed under finite
union, the right-hand side of the new inclusion is again a regular language L(A).

The discussion allows us to define the safety verification problem for recur-
sive programs that is the subject of this paper as follows. Given a context-free
grammar G and a finite automaton A, check the inclusion

L(G) ⊆ L(A).

The classical algorithm for checking the inclusion determinizes A with the
powerset construction, forms the complement, and computes the product with G.
The result is the (context-free) emptiness problem L(G × compl(det(A))) = ∅.
The main bottleneck of this algorithm is the determinization of A. It may cause
an exponential blow-up even in space, and makes the approach impractical.
Actually, deciding the inclusion is PSPACE-complete.

For the simpler problem with finite automata on both sides, L(A1) ⊆ L(A2),
an efficient heuristics has been found. It is based on the so-called antichain
principle [7,25] and prevents the state explosion in many practical cases. The
observation is that the states in A1 × compl(det(A2)) can be equipped with an
ordering. For the emptiness check, it is sufficient to explore transitions from
states that are minimal according to this ordering.

Our contribution is a generalization of the antichain principle to the problem
L(G) ⊆ L(A). The proposed algorithm computes a finite partitioning of Σ∗ such
that each partition contains words that are all accepted or all rejected by A. To
test the inclusion, it is enough to test that G does not accept a word whose
partition is rejected by A. The partitions are represented by sets of relations
over states of the automaton A. Every relation encodes one possibility of how
a word generated by a certain non-terminal of the grammar can influence the
state of the automaton. This is the same concept as the one used in the proof
that Büchi automata are closed under complement [3].

We formulate our algorithm via a reduction of L(G) ⊆ L(A) to a data flow
analysis problem DFA(G,A). Implementing the antichain principle then amounts
to modifying chaotic iteration so that it computes on a lattice of antichains [25]
rather than a full powerset lattice. The reduction is theoretically appealing and
allows for an elegant formulation of the antichain principle. Moreover, it reveals
a close connection between automata theory and data flow analysis that opens
up a possibility of using antichain optimizations in data flow analysis.

As a last step, we add parallelism to the picture. For multi-threaded recursive
programs, safety verification can be formulated as

L(G1) �� . . . �� L(Gm) ⊆ L(A).

The problem is known to be undecidable [21]. For bug hunting, however, under-
approximations have proven useful. The most prominent under-approximation

324 L. Hoĺık and R. Meyer

is bounded context switching [20]. The observation made in practice is that bugs
show up within few interactions among threads. If the threads share the same
processor, this means bugs show up after few context switches — hence the
name. Recall that a context switch occurs if one thread leaves the processor in
order for another thread to be scheduled.

We propose a compositional approach to solving the above context-bounded
inclusion. In a first step, we solve m data flow analysis problems DFA(Gi, A),
one for each grammar. In a second step, we combine the analysis results. The
reduction DFA(Gi, A) generalizes DFA(G,A). We move from (sets of) relations
to an analysis on (sets of) words of relations.

To sum up, the contributions of this paper are threefold:

1. The formulation of L(G) ⊆ L(A) as a data flow analysis problem DFA(G,A).
2. The antichain improvement of chaotic iteration for solving DFA(G,A).
3. The generalization to bounded context switching.

Related Work. Antichain algorithms were first proposed in [7] in the context of
solving games with imperfect information. The antichain principle was subse-
quently used to optimize language inclusion and universality checking of finite
automata [25]. The basic idea of antichain algorithms, subsumption, is older and
was used e.g. already in solving reachability of well-structured systems [1,12].
The antichain algorithms of [25] were further extended and improved in many
ways. In our context, the generalization to the Ramsey-based universality and
language inclusion checking for Büchi automata [13] is central. It introduces
an ordering on what we call relations (in the related literature, the notion is
called e.g. (super)graph, transition profile, or box). The problem of deciding
language inclusion of nested word automata is closely related to the inclusion
of a context-free language in a regular one, and is also similarly motivated. An
extension of the Ramsey-based algorithm for nested word automata has been
published in [14], and an alternative algorithm based on different principles, but
using antichains, appears in [5].

Verification algorithms that use inclusion checking as a central subroutine
have been proposed in [9–11]. These works focus on multi-threaded programs
without recursion and develop complete algorithms (for inclusion). We tackle
recursive programs, instead. In the multi-threaded setting, inclusion checking is
undecidable [21] so that we consider an under-approximation of the problem.
We show how to generalize the antichain principle to bounded context switch-
ing [20]. The approximation of bounded context switching has also been applied
to relaxed memory models [2]. In the present work, however, we limit ourselves
to Sequential Consistency.

In verification, the relational domain that we make use of is generalized to
procedure summaries [22,24]. Summaries characterize the input-output relation
of a procedure. They are not limited to tracking the state changes of a finite
automaton. The language-theoretic view to verification problems is shared with
[4,9–11,15,16,18]. We are not aware of any use of antichains for data flow analy-
sis or of a formulation of regular inclusion as a data flow analysis problem.

Antichains for the Verification of Recursive Programs 325

The domain for bounded context switching seems to be new. Our compositional
analysis is related to the eager approach in [17].

2 Preliminaries

We introduce the three technical concepts used in this paper: regular inclusion,
antichain algorithms, and data flow analysis.

2.1 CFG-REG

Given a finite alphabet Σ, we use Σ∗ for the set of all finite words over Σ and
write ε for the empty word. The concatenation of words u, v ∈ Σ∗ yields the
word u · v ∈ Σ∗. The shuffle of u and v is the set of interleavings of both words,
for example ab �� c = {cab, acb, abc} ⊆ Σ∗.

A context-free grammar is a tuple G = (Σ,X, x0, R) where Σ is a finite
alphabet and X is a finite set of non-terminals with initial symbol x0 ∈ X.
Component R ⊆ X × (Σ � X)∗ is the set of production rules. The language of
G is defined using the derivation relation ⇒G ⊆ (Σ � X)∗ × (Σ � X)∗. Consider
two words α, β ∈ (Σ �X)∗. Then α ⇒G β if there are α1, α2 ∈ (Σ �X)∗, x ∈ X,
and (x, γ) ∈ R so that α = α1 · x · α2 and β = α1 · γ · α2. We write ⇒∗

G for the
reflexive and transitive closure of ⇒G. Moreover, if G is clear from the context
we drop the subscript from ⇒G. The language of a non-terminal x ∈ X is the
set of words derivable from it:

L(x) := {α ∈ Σ∗ | x ⇒∗ α}.

The language of G is L(G) := L(x0).
A context-free grammar is called right-linear if R ⊆ X × ({ε} � (Σ · X)).

Right-linear grammars correspond to finite automata where the non-terminals
are the states, x0 is the initial state, and the x ∈ X with (x, ε) ∈ R are the
accepting states. This correspondence allows us to use the terminology for finite
automata when talking about right-linear grammars. We shall use A,A1, A2

for right-linear grammars and G,G1, G2 for context-free grammars that are not
necessarily right-linear. Throughout the paper, we use G = (Σ,X, x0, R) and
A = (Σ,Y, y0,→). Moreover, we write y1

a−→ y2 for (y1, a, y2) ∈ →. We extend
the notation to words: y1

w−→ y2 means there is a w-labeled path from y1 to y2.
Our contribution is an efficient algorithm for solving the following problem

that we refer to as CFG-REG:

Given: A context-free grammar G and a right-linear grammar A.
Problem: Does L(G) ⊆ L(A) hold?

As a running example, we consider L(Gex) ⊆ L(Aex) where the context-free
grammar Gex and the finite automaton Aex are defined as follows:

Gex : x0 → a · x1 x0 → b · x1 Aex : y0 → a · y1 y0 → b · y2
x1 → c · x2 x1 → d · x2 y1 → c · y3 y2 → d · y4
x2 → ε y3 → ε y4 → ε.

326 L. Hoĺık and R. Meyer

We have L(Gex) = {ac, ad, bc, bd} and L(Aex) = {ac, bd}, so the inclusion fails.
An attentive reader may notice that the context-free grammar Gex is right-linear.
This is only for the sake of simplicity, the algorithm of course works for any CFG,
but Gex allows us to illustrate the main concepts well.

2.2 Antichain Algorithms

To explain the idea behind antichain algorithms, consider a simplified variant of
CFG-REG where we check L(A1) ⊆ L(A2) for given finite automata A1 and A2.
The standard approach is to reformulate the inclusion as

L(A1) ∩ L(A2) = ∅.

Checking this emptiness involves determinizing A2 using the powerset construc-
tion, which results in det(A2), complementing det(A2) by inverting the final
states, giving compl(det(A2)), and computing the product with A1,

A1 × compl(det(A2)).

The resulting automaton A1 × compl(det(A2)) is then checked for emptiness.
Unfortunate in this construction is that det(A2) may be exponential and that
we need another product with the states of A1.

Antichain algorithms check emptiness of A1 × compl(det(A2)) on-the-fly. To
explain the concept, we elaborate on the behavior of the product automaton.
Let Ai = (Σ,Yi, y0,i,→i) for i = 1, 2. States in the product automaton take the
shape (y1, Z1) where y1 ∈ Y1 is a single state of A1 and Z1 ⊆ Y2 is a set of states
of A2. We call (y1, Z1) a product state and Z1 a macro state. Transitions in
the product state (y1, Z1) are derived from transitions in y1, because the macro
state Z1 in the determinized automaton can react to any input. If we have a
transition y1

a−→ y2, then the product state takes a transition

(y1, Z1)
a−→ (y2, Z2).

Here, Z2 is the set of all states z2 ∈ Y2 that are reachable from some z1 ∈ Z1

with an a-labelled transition, z1
a−→ z2.

The goal is to disprove emptiness of A1 × compl(det(A2)). This amounts to
finding a product state (y, Z) where y is accepting in A1 and Z is rejecting in the
sense that it does not contain a final state of A2. The larger the set Z becomes,
the harder it is to avoid the final states of A2. To disprove emptiness, we should
thus only explore states that are minimal according to the following partial order
≤ on product states:

(y, Z) ≤ (y′, Z ′) if y = y′ and Z ⊆ Z ′.

This is the idea of antichain algorithms: only explore states (y, Z) that are min-
imal according to ≤. The name stems from the fact that minimal elements in
partial orders are incomparable, and sets of incomparable elements are also called
antichains.

Antichains for the Verification of Recursive Programs 327

It remains to argue that we can safely discard larger states. We already
discussed that state y1 of A1 determines the transitions of the product state
(y1, Z1). Macro state Z1 is guaranteed to have the successor state defined.
A larger set Z ′

1 will not enable or disable a transition. Moreover, the transi-
tion relation is monotone in the following sense. If (y1, Z1)

a−→ (y2, Z2) and we
have (y1, Z1) ≤ (y1, Z ′

1), then (y1, Z ′
1)

a−→ (y2, Z ′
2) with (y2, Z2) ≤ (y2, Z ′

2). This
means a larger state (y1, Z ′

1) again leads to a larger state (y2, Z ′
2) from which it

is harder to accept than from (y2, Z2). In short, (y, Z) ≤ (y, Z ′) yields

L(y, Z ′) ⊆ L(y, Z)

for the product automaton A1 × compl(det(A2)). So if we focus on minimal
states, we are guaranteed to explore all behaviors.

2.3 Data Flow Analysis

Our presentation of data flow analysis follows standard textbooks [19,23]. A data
flow analysis problem is given as a system of inequalities Δ ≥ Op(Δ) that is
interpreted over a domain of data flow values. The system of inequalities reflects
the control flow in the program under scrutiny. For each location l = 1, . . . , n in
the program there is a variable Δl. Intuitively, variable Δl records the analysis
information obtained at location l. For each command c leading to l there is an
inequality

Δl ≥ opc(Δ1, . . . ,Δn).

Operation opc captures the effect that the command has on the already gathered
analysis information. The inequality states that this effect should contribute to
the analysis information at location l.

The domain that the system is interpreted over defines the actual analysis
information being computed. As is common, we assume the domain to be a
complete lattice (D,≤). A complete lattice is a partially ordered set where every
subset of elements D′ ⊆ D has a least upper bound that we denote by �D′. As a
second condition, the operations opc used in the system of inequalities should be
monotone, which means for all d, d′ ∈ D with d ≤ d′ we have opc(d) ≤ opc(d′).

A solution to the data flow analysis problem is a function sol that assigns
to each variable Δl a value sol(Δl) ∈ D so that the inequalities are satisfied.
We are interested in the least solution lsol wrt. a component-wise comparison
of elements according to ≤. A unique least solution is guaranteed to exist by
Knaster and Tarski’s theorem.

If D is a finite set, the least solution to the system of inequalities can be
computed with a Kleene iteration on Dn. This iteration, however, requires us to
recompute, in every step, the analysis information for all n program locations —
even if the analysis information has not changed. More efficient is the following
algorithm, known as chaotic iteration. It is the algorithm we improve upon in
this article:

328 L. Hoĺık and R. Meyer

sol(Δ1) := ⊥; . . . sol(Δn) := ⊥;
while ∃ inequality with sol(Δl) �≥ opc(sol(Δ1), . . . , sol(Δn)) do

sol(Δl) := sol(Δl) � opc(sol(Δ1), . . . , sol(Δn));

We start with all variables set to the least element in the lattice, denoted by ⊥.
As long as there is a command that can contribute to the value of a variable, we
form the join to add the value.

Lemma 1 ([6]). Consider Δ ≥ Op(Δ) over a complete lattice (D,≤) where D
is finite. Chaotic iteration terminates and gives the least solution lsol .

3 From CFG-REG to Data Flow Analysis

We give a reduction of CFG-REG to a data flow analysis problem. It maps
instance L(G)⊆ L(A) to the instance DFA(G,A). Key to the reduction is an
appropriate domain of data flow values. The idea is to determine the state
changes that a word w ∈ L(x) derived from a non-terminal x ∈ X may induce
on A. Phrased differently, the analysis considers words equivalent that induce
the same state changes. In our running example L(Gex) ⊆ L(Aex), rule (x2, ε)
rewrites non-terminal x2 to the empty word. As data flow information about
x2, we therefore add the relation ρ(ε) = id . Relation ρ(ε) is indeed the identity
as the empty word does not incur a state change. For a letter a, relation ρ(a)
contains precisely the pairs of states (y, y′) so that y does an a-labeled transition
to y′. In the running example, we have ρ(a) = {(y0, y1)}.

For the definition of DFA(G,A), we formalize the mapping from words to
relations over states as

ρ : Σ∗ → P(Y × Y)

w �→ {(y1, y2) | y1
w−→ y2}.

Words are equipped with the operation of concatenation. Function ρ behaves
homomorphically if we endow P(Y ×Y) with relational composition as operation.
Recall that the relational composition of ρ1, ρ2 ∈ P(Y × Y) is defined by

ρ1; ρ2 := {(y1, y2) | ∃y : (y1, y) ∈ ρ1 and (y, y2) ∈ ρ2}.

With a component-wise definition, the operation carries over to sets of relations.
The following lemma states that ρ is a homomorphism.

Lemma 2. For all w1, w2 ∈ Σ∗, we have ρ(w1 · w2) = ρ(w1); ρ(w2).

With this result, we only have to specify the data flow information for single
letters. Relational composition will give us the analysis information for words.

The domain of data flow values is the complete lattice

(P(P(Y × Y)),⊆).

Antichains for the Verification of Recursive Programs 329

The powerset P(P(Y × Y)) contains all sets of relations between states in the
given automaton. The domain is a standard powerset lattice with inclusion as
ordering. It is complete. We operate on sets of relations to distinguish words
that do not induce the same state changes. Consider the rules (x0, a · x1) and
(x0, b · x1) in our running example L(Gex) ⊆ L(Aex). In the automaton, we
have (y0, a · y1) and (y0, b · y2). A derivation of letter a induces the single state
change ρ(a) = {(y0, y1)} and similarly ρ(b) = {(y0, y2)}. There is, however, no
word that admits a transition from y0 to y1 and from y0 to y2. Therefore, we
cannot form the union of the relations ρ(a) and ρ(b) but have to compute on
sets of relations {ρ(a), ρ(b)}. Indeed, for the running example an analysis based
on relations rather than sets of relations gives incorrect results.

In data flow analysis, the current information is modified by operations op.
In our setting, op forms a relational composition. With this in mind, the system
of inequalities DFA(G,A) for L(G) ⊆ L(A) is defined as follows. We associate
with every non-terminal x ∈ X a variable Δx. Moreover, we use Δa for the set
that only contains ρ(a). Similarly, we let Δε := {id}. The system of inequalities
contains one inequality for every rule in the grammar as follows. Let (x,w) ∈ R
with w = w1 . . . wn ∈ (Σ ∪ X)∗. Then we have

Δx ⊇ Δw1 ; . . . ;Δwn
.

The data flow analysis problem DFA(Gex, Aex) for our running example is

Δx0 ⊇ {{(y0, y1)}};Δx1 Δx0 ⊇ {{(y0, y2)}};Δx1

Δx1 ⊇ {{(y1, y3)}};Δx2 Δx1 ⊇ {{(y2, y4)}};Δx2

Δx2 ⊇ {id}.

The least solution lsol to DFA(G,A) has a well-defined meaning. It assigns
to Δx precisely the relations ρ(w) induced by the words w derivable from x.

Lemma 3. lsol(Δx) = ρ(L(x)).

Proof. If x = ε or x = a ∈ Σ then the lemma trivially holds by the definition of
Δx. Now consider x ∈ X. Note that x is not qualified further which means we
reason simultaneously for all x ∈ X.

lsol(Δx) ⊆ ρ(L(x)): Equivalently, for all ρ ∈ lsol(Δx), there is w ∈ L(x)
with ρ(w) = ρ. Assume that relation ρ is added to Δx within the k-th step
of the Kleene iteration. We will proceed by induction on k. If k = 0, then
the claim holds trivially since Δx is initialised as the empty set. Let the claim
hold for k ≥ 0. To show that it holds for k + 1, assume that ρ was added
to Δx with the (k + 1)-st step of the Kleene iteration. It was constructed as
ρ = ρ1; . . . ; ρn due to an equation Δx ⊇ Δy1 ; . . . ;Δyn

where each ρi is either
i. ρ(ε) if yi = ε, or ii. ρ(a) if yi = a ∈ Σ, or iii. is an element of lsol(Δyi

) if
yi ∈ X. In the case iii., ρi was inserted into lsol(Δyi

) within at most the k-th
step of the Kleene iteration. By the induction hypothesis, this means that there
is some wi ∈ L(yi) with ρ(wi) = ρi. This together with Lemma 2 gives that
ρ = ρ1; . . . ; ρn = ρ(w1 · . . . · wn). By the definition of the system of equations,

330 L. Hoĺık and R. Meyer

there is a rule (x, y1 · . . . · yn) ∈ R and hence w1 · . . . ·wn ∈ L(x) by the definition
of L(x).

lsol(Δx) ⊇ ρ(L(x)): Equivalently, for all w ∈ L(x) we have ρ(w) ∈ lsol(Δx).
We proceed by induction on the length 	 of a derivation of w. For 	 = 1, the
derivation uses only one rule, (x, ε) or (x, a) for some a ∈ Σ. Depending on the
case, we have ρ(w) = id , or ρ(w) = ρ(a). Due to the existence of the used rule, Δx

will obtain ρ(w) at the first step of the Kleene iteration. Assume the claim holds
for the length of a derivation 	 > 1. Let the first rule used be (x, y1 · · · yn) where
y1, . . . , yn ∈ Σ ∪X. Then w must be of the form w1 · . . . ·wn where each wi ∈ Σ∗

is i. the empty word, ii. a terminal, or iii. is obtained from yi by a derivation
of length at most 	. In case iii., ρ(wi) ∈ lsol(Δyi

) by the induction hypothesis.
Because of this and the definitions of the system of inequalities and the compo-
sition of sets of relations, lsol(Δx) contains the composition ρ(w1); . . . ; ρ(wn).
By Lemma 2, ρ(Δx) contains ρ(w1 · . . . · wn) = ρ(w). ��

A relation ρ ⊆ Y × Y is said to be rejecting if there is no pair (y0, y) ∈ ρ so
that y is accepting. With Lemma3, there is no accepting run of A on the words
that induced the relation. Hence, the words belong to the complement of the
automaton’s language.

Theorem 1. L(G) ⊆ L(A) holds if and only if lsol(Δx0) does not contain a
rejecting relation.

4 Chaotic Iteration with Antichains

The previous section associates with each instance L(G) ⊆ L(A) of CFG-REG
a data flow analysis problem DFA(G,A). Chaotic iteration as presented in the
preliminaries computes a solution to such an analysis problem. We now improve
upon chaotic iteration using the antichain principle.

When solving DFA(G,A), chaotic iteration computes on sets of relations.
Antichain algorithms compute on sets of incomparable elements. Together, this
means we should replace the powerset domain (P(P(Y ×Y)),⊆) used in our data
flow analysis by a reduced domain of incomparable relations.

We construct the reduced domain in two steps. First, we note that relations
ρ1, ρ2 ∈ P(Y ×Y) are partially ordered wrt. inclusion ρ1 ⊆ ρ2. The goal of chaotic
iteration is to find a rejecting relation. To this end, it will be beneficial to focus
on ⊆-minimal elements. We therefore define the reduced domain to consist of all
antichains of relations — sets of relations that are pairwise ⊆-incomparable:

A(P(Y × Y)) := {Δ ⊆ P(Y × Y) | ∀ρ1, ρ2 ∈ Δ : ρ1 �⊆ ρ2}.

In a second step, we lift the partial ordering ⊆ on the set of relations to a partial
ordering � on the set of antichains A(P(Y × Y)) as follows:

Δ1 � Δ2, if ∀ρ1 ∈ Δ1 ∃ρ2 ∈ Δ2 : ρ1 ⊇ ρ2.

For every relation ρ1 ∈ Δ1 there is a ⊆-smaller relation ρ2 ∈ Δ2. Intuitively, this
means Δ2 is more likely to lead to a rejecting relation. We refer to the resulting

Antichains for the Verification of Recursive Programs 331

partially ordered set as antichain lattice, similar to [25]. The following lemma
justifies the name.

Lemma 4. (A(P(Y × Y)),�) is a complete lattice.

Since the underlying set is finite, it is sufficient to show that joins exist. Let
Δ1,Δ2 ∈ A(P(Y × Y)). The least upper bound is

Δ1 � Δ2 := min(Δ1 ∪ Δ2).

The main result states that chaotic iteration remains complete when we use
the antichain lattice.

Theorem 2. Chaotic iteration on DFA(G,A) is sound and complete when using
the antichain lattice.

When we restrict chaotic iteration to antichains, we consider a smaller domain
of sets of relations. If we find a rejecting relation in this smalller domain, we find
the rejecting relation in the larger domain. In this sense, our analysis is sound.

It remains to show completeness. If there is no rejecting relation with a
chaotic iteration on antichains, then there is none when we iterate on the full
powerset lattice. The following lemma is the key to proving completeness. It
states that ⊆-minimal relations are sufficient for proving rejection and that inclu-
sion is compatible with composition.

Lemma 5. Consider ρ1 ⊆ ρ2. (1) If ρ2 is rejecting, then ρ1 is rejecting (2) For
all ρ ∈ P(Y × Y) we have ρ1; ρ ⊆ ρ2; ρ.

To give an idea of why completeness holds, consider an arbitrary set of relations
Δ ⊆ P(Y × Y) that may contain comparable elements. To obtain an antichain,
we prune the set to the ⊆-minimal relations. If there are rejecting relations in Δ,
by Lemma 5(1) there is a minimal one. Moreover, with Lemma 5(2) continuing
chaotic iteration on the minimal elements does not impair completeness.

5 Bounded Context Switching

We generalize our verification approach to multi-threaded recursive programs.
In this setting, safety verification problems can be formulated as

L(G1) �� . . . ��L(Gm) ⊆ L(A).

Every context-free grammar Gi = (Σi,Xi, x0,i, Ri) represents (cf. Sect. 1)
the valid control paths of a single thread in the multi-threaded program of inter-
est. We can assume the threads to use different commands, which translates to
disjointness of the alphabets, Σi ∩ Σj = ∅ for all i �= j. The shuffle operator ��
models the interleaving of computations from different threads. The task is to
check whether every interleaving is valid wrt. the specification A = (Σ,Y, y0,→)
where Σ =

⊎
Σi. When modelling programs, specification A contains all feasible

332 L. Hoĺık and R. Meyer

paths satisfying the verified property as well as all infeasible paths, where a read
from a Boolean variable follows a write of the opposite value, like in Sect. 1.

The inclusion above, and hence safety verification of multi-threaded recursive
programs, is undecidable [21]. A current trend in the verification community is
to consider under-approximations of the problem that explore only a subset of
the space of all computations. Under-approximations are good for bug hunting.
If a bug is found in the restricted set of computations, it will remain present in
the full semantics of the multi-threaded program. If the under-approximation is
bug-free, however, we cannot conclude correctness of the program.

A prominent approach to under-approximation is bounded context switch-
ing. To explain the idea, assume the threads modeled by G1 to Gm share the
same processor. In this setting, a computation w ∈ L(G1)�� . . . ��L(Gm) of
the multi-threaded program may contain several context switches (a context
switch occurs if one thread leaves the processor and another thread is scheduled).
Phrased differently, the computation consists of several phases, w = w1 · . . . ·wn.
In each phase, only one thread has the processor, without being preempted by
another thread. Bounded context switching now only considers computations
where each thread has at most k phases, for a given k ∈ N. Note that the result-
ing set of computations is still infinite and even searches an infinite state space.
What is limited is the number of interactions among threads. Indeed, the actions
of one thread become visible to the other threads only at a context switch.

In the language-theoretic formulation, a context switch corresponds to an
alphabet change. A phase is thus a maximal subword from a same alphabet.
More formally, we say a word w ∈ L(G1)�� . . . ��L(Gm) is k-bounded, k ∈ N,
if there are subwords w = w1 · . . . · wn so that

(1) for each wi there is an alphabet Σϕ(i) with wi ∈ Σ∗
ϕ(i),

(2) Σϕ(i) �= Σϕ(i+1) for all i ∈ [1, n − 1],
(3) there are at most k subwords from each Σ∗

ϕ(i).

We use Lk(G1, . . . , Gm) to denote the set of all k-bounded words in the shuffle.
The problem BCS-REG that is the subject of this section is defined as follows:

Given: Context-free grammars G1, . . . , Gm, a right-linear grammar A,
and a number k ∈ N.
Problem: Does Lk(G1, . . . , Gm) ⊆ L(A) hold?

We propose a compositional approach to solving BCS-REG. We first approach
the problem from the point of view of each single thread. Then we combine the
obtained partial solutions into a solution for the overall multi-threaded program.
A computation of the i-th thread is divided into k phases by context switches,
which corresponds to a split of a word from L(Gi) into k subwords. During
each phase, the state of A is changed by the computation of the i-th thread.
Between the phases, the environment, i.e., the other threads, change the state of
A regardless of the i-th thread. We first, for every thread, compute a k-tuple of
relations representing how the state of A can change during each of the k phases,
assuming an arbitrary environment. The k-tuples will be obtained as a solution

Antichains for the Verification of Recursive Programs 333

to the data flow analysis problem DFA(Gi, A) in Sect. 3 that is now interpreted
over a different domain.

To represent the behavior of the whole multi-threaded program, we shuffle the
k-tuples of relations computed for the different threads. Such a shuffle represents
an interleaving of the corresponding phases. From the point of view of a single
thread, the shuffle concretizes a state change caused by an arbitrary environment
to a state change caused by a feasible computation of the other threads. Finally,
by composing the state changes caused by subsequent phases in the interleaving,
we obtain a state change that is the overall effect of a computation of the whole
multi-threaded program.

To better explain the idea and illustrate the technical development, consider
the inclusion L2(G1, G2) ⊆ L(A) with

G1 : x0,1 → a1 · x1,1 G2 : x0,2 → a2 · x1,2 A : y0 → a1 · y1 y1 → a2 · y2
x1,1 → b1 x1,2 → b2 y2 → b1 · y3 y3 → b2 · y4

y4 → ε.

Consider the word a1 · a2 · b1 · b2 ∈ L2(G1, G2). It contains the phases a1 and
b1 from L(G1). Phase a1 induces the state change {(y0, y1)} on the automaton
A. Phase b1 leads to {(y2, y3)}. Since we have to keep the state changes for each
phase, the data flow analysis DFA(G1, A) determines (amongst others) the word
of relations {(y0, y1)} · {(y2, y3)} ∈ lsol(Δx0).

Technically, a word of relations is a word σ = ρ1 · . . . · ρn whose letters are
relations from P(Y × Y). We use P(Y × Y)≤k for the set of all such words of
length up to k ∈ N. We again construct a powerset lattice over this domain

(P(P(Y × Y)≤k),⊆).

To re-use the system of inequalities from Sect. 3, we have to generalize the
operation of relational composition to words of relations, σ1;σ2. The idea is to
take a choice. Either we concatenate the words σ1 and σ2 or we compose the
last relation in σ1 with the first relation in σ2. The former case reflects a context
switch, the latter case occurs if there is no context switch (between the subwords
inducing the last relation of σ1 and the first relation of σ2, respectively).

For the definition of this relational composition operator, consider the words
of relations σ1 = ρ1,1 · . . . · ρ1,k1 and σ2 = ρ2,1 · . . . · ρ2,k2 in P(Y × Y)≤k.
The operation of concatenation σ1 · σ2 is defined as σ1 and σ2 are words. The
composition of the last relation in σ1 with the first relation in σ2 is

σ1 ◦ σ2 := ρ1,1 · . . . · ρ1,k1−1 · (ρ1,k1 ; ρ2,1) · ρ2,2 · . . . · ρ2,k2 .

The relational composition σ1;σ2 yields the set of words (of relations) containing
both σ1 · σ2 and σ1 ◦ σ2, provided the length constraint is met:

σ1;σ2 := {σ1 · σ2, σ1 ◦ σ2} ∩ P(Y × Y)≤k.

With a component-wise definition, we lift the relational composition to sets of
words of relations.

334 L. Hoĺık and R. Meyer

In the example, { {(y0, y1)} } and { {(y2, y3)} } are two sets each containing
one word consisting of a single relation. Relational composition yields

lsol(Δx0,1) = { {(y0, y1)} }; { {(y2, y3)} }
= { {(y0, y1)} · {(y2, y3)}, {(y0, y1)} ◦ {(y2, y3)} }
= { {(y0, y1)} · {(y2, y3)}, ∅ }.

The empty set indicates that a1 · b1 is not executable on the automaton A.
We use DFA(Gi, A) for the data flow analysis problem that is derived from

Gi and A using the above powerset lattice and the above relational composition.
The following is the analogue of Lemma 3

Lemma 6. lsol(Δx) contains precisely the words of relations induced by L(x).

Since words σ1, σ2 of relations are ordinary words over a special alphabet, also
the shuffle operation σ1 ��σ2 is defined. With reference to the above reduction,

lsol(Δx0,1) �� . . . �� lsol(Δx0,m)

yields precisely the words of relations that correspond to the k-bounded inter-
leavings among words derivable in the different grammars.

For the desired inclusion Lk(G1, . . . , Gm) ⊆ L(A), we check whether a word
in the shuffle lsol(Δx0,1)�� . . . �� lsol(Δx0,m) corresponds to a rejecting relation.
To this end, we compose the relations in the word. The idea is that each word
of relations in the shuffle corresponds to contiguous words in Lk(G1, . . . , Gm).
Therefore, we no longer have to deal with subwords. We define

eval(ρ1 · . . . · ρn) := ρ1; . . . ; ρn.

Theorem 3. Inclusion Lk(G1, . . . , Gm) ⊆ L(A) holds if and only if there is no
rejecting relation in eval(lsol(Δx0,1) �� . . . �� lsol(Δx0,m)).

To conclude the example, note that lsol(Δx0,2) = { {(y1, y2)} · {(y3, y4)}, ∅ }.
Among other words, we have

σ := {(y0, y1)} · {(y1, y2)} · {(y2, y3)} · {(y3, y4)} ∈ lsol(Δx0,1) �� lsol(Δx0,2).

The evaluation yields eval(σ) = {(y0, y4)}. Still, the inclusion fails since we find
the rejecting relation eval(∅ · ∅) = ∅ ∈ eval(lsol(Δx0,1) �� lsol(Δx0,2)).

6 Conclusions and Future Work

We developed algorithms for the safety verification of recursive programs. This
verification task is often phrased as an inclusion L(G) ⊆ L(A) of a context-free
language modeling the program of interest in a regular language representing
the safety property. Our first contribution is a reformulation of the inclusion
L(G) ⊆ L(A) as a data flow analysis problem DFA(G,A). The data flow analysis
determines the state changes that the words derived in the grammar induce on

Antichains for the Verification of Recursive Programs 335

the given automaton. This means the underlying domain of data flow values
consists of sets of relations among states.

The data flow analysis problem DFA(G,A) can be solved by a standard
algorithm called chaotic iteration. Our second contribution is an improvement of
chaotic iteration. We show that the computation can be restricted to antichains
of relations — while preserving completeness. Antichains are sets of relations that
are pairwise incomparable. Phrased differently, our result reduces the powerset
lattice used in DFA(G,A) to a lattice of antichains [25].

As a last contribution, we show how to generalize the approach to programs
that are multi-threaded and recursive. While in this setting safety verification
is known to be undecidable in general [21], an under-approximate variant of the
problem remains decidable: Restricted to a bounded number of context switches,
we can still check an inclusion L(G1) �� . . . ��L(Gm) ⊆ L(A). Our approach is
compositional in that it combines results from independent data flow analyses
DFA(Gi, A). The reduction generalizes DFA(G,A) from (sets of) relations to
(sets of) words of relations.

As an immediate task for future work, we will implement our antichain-based
chaotic iteration and conduct an experimental evaluation. On the theoretical
side, we plan to check whether a variant of the antichain principle can be used in
related data flow analyses. One can also imagine importing algorithms to speed
up the solution of DFA(G,A). An interesting candidate seems to be Newton
iteration as presented in [8].

Acknowledgement. This work was supported by the DFG project R2M2: Robust-
ness against Relaxed Memory Models, the Czech Science Foundation (projects 14-
11384S and 202/13/37876P), the BUT FIT project FIT-S-14-2486, and the EU/Czech
IT4Innovations Centre of Excellence project CZ.1.05/1.1.00/02.0070.

References

1. Abdulla, P.A., Cerans, K., Jonsson, B., Tsay, Y.-K.: General decidability theorems
for infinite-state systems. In: LICS, pp. 313–321. IEEE (1996)

2. Atig, M.F., Bouajjani, A., Parlato, G.: Getting rid of store-buffers in TSO analysis.
In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 99–115.
Springer, Heidelberg (2011)

3. Büchi, J.R.: On a decision method in restricted second order arithmetic. In:
Lane, S.M., Siefkes, D. (eds.) The Collected Works of J. Richard Büchi. Springer,
New York (1990)

4. Bouajjani, A., Esparza, J., Touili, T.: A generic approach to the static analysis of
concurrent programs with procedures. In: POPL, pp. 62–73. ACM (2003)

5. Bruyère, V., Ducobu, M., Gauwin, O.: Visibly pushdown automata: universality
and inclusion via antichains. In: Dediu, A.-H., Mart́ın-Vide, C., Truthe, B. (eds.)
LATA 2013. LNCS, vol. 7810, pp. 190–201. Springer, Heidelberg (2013)

6. Cousot, P., Cousot, R.: Automatic synthesis of optimal invariant assertions: math-
ematical foundations. In: Artificial Intelligence and Programming Languages,
pp. 1–12. ACM (1977)

336 L. Hoĺık and R. Meyer

7. De Wulf, M., Doyen, L., Raskin, J.-F.: A lattice theory for solving games of imper-
fect information. In: Hespanha, J.P., Tiwari, A. (eds.) HSCC 2006. LNCS, vol. 3927,
pp. 153–168. Springer, Heidelberg (2006)

8. Esparza, J., Kiefer, S., Luttenberger, M.: Newtonian program analysis. JACM
57(6), 33:1–33:47 (2010)

9. Farzan, A., Kincaid, Z., Podelski, A.: Inductive data flow graphs. In: POPL,
pp. 129–142. ACM (2013)

10. Farzan, A., Kincaid, Z., Podelski, A.: Proofs that count. In: POPL, pp. 151–164.
ACM (2014)

11. Farzan, A., Kincaid, Z., Podelski, A.: Proof spaces for unbounded parallelism. In:
POPL, pp. 407–420. ACM (2015)

12. Finkel, A., Schnoebelen, P.: Well-structured transition systems everywhere!. Theor.
Comput. Sci. 256(1–2), 63–92 (2001)

13. Fogarty, S., Vardi, M.Y.: Efficient Büchi universality checking. In: Esparza, J.,
Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 205–220. Springer,
Heidelberg (2010)

14. Friedmann, O., Klaedtke, F., Lange, M.: Ramsey goes visibly pushdown. In: Fomin,
F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013, Part II. LNCS,
vol. 7966, pp. 224–237. Springer, Heidelberg (2013)

15. Heizmann, M., Hoenicke, J., Podelski, A.: Nested interpolants. In: POPL,
pp. 471–482. ACM (2010)

16. Heizmann, M., Hoenicke, J., Podelski, A.: Software model checking for people who
love automata. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044,
pp. 36–52. Springer, Heidelberg (2013)

17. Lal, A., Touili, T., Kidd, N., Reps, T.: Interprocedural analysis of concurrent pro-
grams under a context bound. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS
2008. LNCS, vol. 4963, pp. 282–298. Springer, Heidelberg (2008)

18. Long, Z., Calin, G., Majumdar, R., Meyer, R.: Language-theoretic abstraction
refinement. In: de Lara, J., Zisman, A. (eds.) FASE 2012. LNCS, vol. 7212,
pp. 362–376. Springer, Heidelberg (2012)

19. Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis. Springer,
Heidelberg (1999)

20. Qadeer, S., Rehof, J.: Context-bounded model checking of concurrent software.
In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 93–107.
Springer, Heidelberg (2005)

21. Ramalingam, G.: Context-sensitive synchronization-sensitive analysis is undecid-
able. ACM Trans. Program. Lang. Syst. 22(2), 416–430 (2000)

22. Reps, T., Horwitz, S., Sagiv, M.: Precise interprocedural dataflow analysis via
graph reachability. In: POPL, pp. 49–61. ACM (1995)

23. Seidl, H., Wilhelm, R., Hack, S.: Compiler Design - Analysis and Transformation.
Springer, Heidelberg (2012)

24. Sharir, M., Pnueli, A.: Two approaches to interprocedural data flow analysis. Tech-
nical report 2, New York University (1978)

25. De Wulf, M., Doyen, L., Henzinger, T.A., Raskin, J.-F.: Antichains: a new algo-
rithm for checking universality of finite automata. In: Ball, T., Jones, R.B. (eds.)
CAV 2006. LNCS, vol. 4144, pp. 17–30. Springer, Heidelberg (2006)

BAPU: Efficient and Practical Bunching
of Access Point Uplinks

Tao Jin1, Triet D. Vo-Huu2(B), Erik-Oliver Blass3, and Guevara Noubir2

1 Qualcomm Corporate Research and Development, San Diego, CA, USA
2 Northeastern University, Boston, MA, USA

vohuudtr@ccs.neu.edu
3 Airbus Group Innovations, 81663 Munich, Germany

Abstract. Today’s throttled uplink of residential broadband renders
a broad class of popular applications such as HD video uploading and
large file transfer impractical. Aggregation of WiFi APs is one way to
bypass this limitation. Motivated by this problem, we present BaPu
(Bunching of Access Point Uplinks) to achieve two major goals: (1)
support commodity clients by refraining from client modifications, (2)
support both UDP and TCP based applications. We justify the need for
client transparency and generic transport layer support and present new
challenges. In particular, a naive multiplexing of a single TCP session
through multiple paths results in a significant performance degradation.
We describe BaPu’s mechanisms and design. We developed a prototype
of BaPu with commodity hardware, and our extensive experiments show
that BaPu aggregates up to 95% of the total uplink capacity for UDP
and 88 % for TCP.

1 Introduction

Today, mobile devices are equipped with high-resolution cameras and are quickly
becoming the primary device to generate personal multimedia content. Such fast
growth of User Generated Content (UGC) naturally leads to an ever increas-
ing demand of instant sharing of UGC through online services, e.g., YouTube
and Dailymotion, or in an end-to-end manner. In addition, there is a trend of
instantly backing up personal files in “Cloud Storage” like Dropbox or iCloud.
All these services require sufficient uplink bandwidth for fast data transfer. While
today’s ISPs offer high-speed downlink, uplink bandwidth is usually throttled.
As a result, instant sharing of HD content or fast data backup in the “Cloud” is
still impractical in today’s residential broadband. Consequently, there is a need
to scale backhaul uplinks.

1.1 Aggregating AP to Bypass Broadband Limitations

Given that WiFi capacity typically exceeds the broadband uplink capacity by at
least one order of magnitude, a single client WiFi can communicate with multiple

c© Springer International Publishing Switzerland 2015
A. Bouajjani and H. Fauconnier (Eds.): NETYS 2015, LNCS 9466, pp. 337–353, 2015.
DOI: 10.1007/978-3-319-26850-7 23

338 T. Jin et al.

APs in range and aggregate the idle bandwidth behind them. Several AP aggre-
gation solutions (e.g., FatVAP [17] and THEMIS [12]) have been proposed in the
past few years. Their rationale is to route TCP/UDP sessions through different
APs such that the traffic load splits across multiple broadband links, thereby
achieving a higher aggregated throughput. Yet, a single TCP/UDP connection
is assigned to a single AP, in which case the connection throughput cannot exceed
the single broadband link capacity. Since most uplink hogging applications such
as iCloud establish single transport layer connections for data transfer, cur-
rent AP aggregation solutions are not suitable for single session uplink scaling,
unless the application is redesigned to adapt to the AP aggregation technol-
ogy. Recently, Link-Alike [15] multiplexes single UDP flow across multiple APs.
However, Link-Alike’s design is specific to UDP file transfer, resulting pieces of
files to arrive in out-of-order sequence, which prohibits TCP based applications
(e.g., HD video streaming) that require a strictly in-order delivery and deadline
meeting. Besides, multiplexing single TCP sessions through multiple paths is a
challenging problem (and will be discussed later). Moreover, client modifications
are required to support TCP. In this work, we require a new AP aggregation
solution offering complete transparency on the client with generic support for
either TCP or applications.

1.2 Feasibility of AP Aggregation

While WiFi aggregation allows bypassing broadband limitations, it is yet unclear
whether aggregation is practical in reality. We now present our recent study
on urban WiFi and broadband resources, revealing several interesting insights
regarding the feasibility of AP aggregation in residential broadband.

Mostly Idle Broadband Uplinks: Since Feb. 2011, we have developed and
deployed a WiFi testbed in Boston’s urban area, aiming to monitor the usage
pattern of residential broadband. This testbed consists of 30 home WiFi APs
running customized OpenWRT firmware with two major broadband ISPs, Com-
cast and RCN. During a 18 month period, we have collected over 70 million
records. Figure 1 shows the uplink bandwidth usage during a 24 h time window.
Throughout the day, there is at least 50 % chance that uplink is completely idle.
Even during peak hours, there is over 90 % chance that the uplink bandwidth
usage is below 100 Kbps. Consequently, there exists a considerable amount of
idle uplink bandwidth, making AP aggregation a viable approach.

WiFi Densely Deployed in Residential Area: Our recently conducted
Wardriving measurements in 4 residential areas in Boston identify 22000 APs,
14.2 % of which are unencrypted. As shown in Fig. 2, there are on average 17
APs available at each location, with an average 7 to 12 APs on each channel.
This enormous presence of WiFi justifies the feasibility of AP aggregation in
urban area.

WiFi Becoming Open and Social: Driven by the increasing demand of ubiq-
uitous Internet access, there is a new trend that broadband users share their

BaPu: Efficient and Practical Bunching of Access Point Uplinks 339

0am 4am 8am 12pm 16pm 20pm 0am
40

50

60

70

80

90

100
P

ro
b[

B
W

 b
el

ow
 c

er
ta

in
 v

al
ue

]

idle
< 1Kbps
< 10Kbps
< 100Kbps
< 1Mbps

Fig. 1. Residential uplink bandwidth
usage.

0 20 40 60
0

0.2

0.4

0.6

0.8

1

Available APs

C
D

F
 o

f A
va

ila
bl

e
A

P
s

CH 1
CH 6
CH 11
All Channels

Fig. 2. Available APs in Wardriving.

bandwidth as public WiFi signal to mobile users. Mainstream home WiFi APs,
e.g., LinkSys and D-Link, already offer a standard feature which hosts two SSIDs,
one encrypted for private use, the other unencrypted for public sharing. FON [9],
a leading company in this area, claims to have over 7 million social hotspots
worldwide. Given this trend of WiFi becoming social and cloud-powered, a soft-
ware solution on APs allows much easier progressive adoption of AP aggregation
technologies compared to a few years ago.

Based on this discussion, we present BaPu, a complete software solution
for WiFi APs allowing broadband uplink aggregation. BaPu features complete
transparency to client devices and high aggregated throughput for both TCP
and UDP, even in lossy wireless environment. Our major contributions are sum-
marized as follows:

Transparency to Client: BaPu does not require any modification to clients.
The client device conducts regular 802.11 communications with its home AP
while AP aggregation happens in a “transparent” way. Also, all legacy network
applications benefit from such transparency and seamlessly utilize BaPu.

Efficient Aggregation for Both TCP and UDP: Multiplexing a single TCP
flow through multiple paths raises many technical challenges, making efficient
aggregation non-trivial. We propose a novel mechanism called Proactive-ACK.
Through an in-depth analysis of TCP stack behavior, we show how Proactive-
ACK performs efficient TCP multiplexing. BaPu achieves high aggregated
throughput for both TCP and UDP.

Prototype with Commodity Hardware: We have prototyped our complete
BaPu system on commodity 802.11n WiFi APs with OpenWRT firmware.

Evaluation: We conduct an extensive set of experiments to evaluate BaPu
in various realistic network settings. Our results show that BaPu efficiently
achieves over 95 % and 88 % of total uplink bandwidth for UDP and TCP trans-
missions, respectively.

2 System Overview

For ease of understanding, we first introduce two typical application scenarios
that benefit from BaPu – see Fig. 3.

340 T. Jin et al.

Fig. 3. BaPu system architecture and example application scenarios. Scenario 1 (left):
Sender 1 shares an HD video with a remote end user. Scenario 2 (right): Sender 2 backs
up a large file to iCloud. The uplink aggregation is enabled via BaPu-enabled Home-
AP and Monitor-APs.

Scenario 1. Instant Sharing of HD Video: In order to retain the control
of personal content, Sender 1 streams his HD video in real time directly from
his hard drive to Destination 1. Both users are connected to their own Home-
APs. Sender 1’s uplink is throttled by his ISP to 1 ∼ 3Mbps, preventing him to
handle the 8 Mbps HD video in real time. However with BaPu, the idle uplink of
the neighboring Monitor-APs are exploited to boost uplink throughput. BaPu-
Gateway , the Home-AP of Destination 1, aggregates and forwards multiplexed
traffic to Destination 1.

Scenario 2. Instant Backup of Large File: Sender 2 wishes to backup his
HD video clip to some cloud storage service such as iCloud. With the 3 Mbps
uplink rate, it takes over an hour to upload a 30 min HD video. With BaPu,
uploadingss time is greatly reduced by deloying a BaPu-Gateway in front (or
part) of the cloud storage servers for handling parallel uploads from Home-AP
and neighboring Monitor-APs.

BAPU Protocol Description. In BaPu, Sender is associated with its Home-
AP , and the uploading of data is aggregated via unencrypted wireless link.
The data, however, is protected with some end-to-end security mechanism (e.g.,
SSL/TLS). Home-AP and Monitor-AP are configured to run in both WiFi AP
mode and WiFi monitor mode1. The WiFi link between the Sender and its
Home-AP generally provides high bandwidth, up to hundreds of Mbps with
802.11n. The link between a BaPu-AP and the Destination, however, is throt-
tled by the ISP. At the remote end, we place a BaPu-Gateway immediately
before the Destination. The connection between the BaPu-Gateway and the
Destination is either wired or wireless high-speed link. Note that being in prox-
imity, unicasts between Sender and Home-AP (AP mode) can be overheard by
(some of) the Monitor-APs (monitor mode). At a high level, BaPu is a central-

1 Modern WiFi drivers (e.g., ath9k) support multiple modes for one physical WiFi
interface.

BaPu: Efficient and Practical Bunching of Access Point Uplinks 341

Fig. 4. BaPu Protocol Traffic Flow. The ACKs (red color) are managed for TCP only
(Color figure online).

ized system with the controller residing at BaPu-Gateway , providing an uplink
aggregation carried out as follows (Fig. 4).

1. Sender starts a TCP/UDP upload to Destination through its Home-AP via
WiFi.

2. Home-AP and Monitor-AP overhear WiFi packets and identify “BaPu” ses-
sion by checking the destination IP and port.

3. BaPu-APs register themselves to BaPu-Gateway .
4. Home-AP and Monitor-AP capture Sender ’s packets in monitor mode, and

collaborate to upload data for Sender , following a schedule determined by
BaPu-Gateway .

5. Home-AP and Monitor-AP send reports to BaPu-Gateway for each packet.
6. In an UDP session, BaPu-Gateway determines which BaPu-AP will forward

the captured packet, and broadcast a scheduling message to all BaPu-APs.
7. A TCP session is much more challenging to support than UDP. To properly

multiplex Sender ’s single TCP flow through multiple paths, we devise a new
mechanism called Proactive-ACK : BaPu-Gateway sends spoofed TCP ACKs
to Sender as BaPu session goes on. Proactive-ACK is designed to make
BaPu work efficiently with legacy TCP congestion control.

8. The scheduled AP forwards packets to Destination tunnelled through BaPu-
Gateway .

3 Uplink Aggregation

In this section, we discuss technical challenges and describe our solutions for
BaPu system to achieve an efficient and practical aggregation system. We remark
that BaPu shares some similarities in the high-level architecture with previ-
ous work (e.g., Link-alike [15], FatVAP [17]). However, from pure practicality
aspects, the applicability of those systems is severely limited due to heavy mod-
ification of client devices or support for only specific applications (e.g., large
file transfer, UDP). Contrary, BaPu targets transparency and high-throughput
transmissions for both UDP and TCP applications.

342 T. Jin et al.

3.1 Network Unicast

First, the transparency goal requires that legacy transport protocols must be
usable for data transmission from Sender to Destination. Thus, Sender must
be able to transmit data to Destination via network unicast through its Home-
AP . Second, the network unicast is more reliable, because the MAC layer han-
dles retransmissions in case of 802.11 frame loss. Consequently, network unicast
between Sender and Home-AP is an essential requirement in BaPu, while prior
work [15] chose broadcast for simplicity.

Packet Overhearing: In WiFi networks, network unicast and broadcast differ
in the next-hop physical address in the MAC layer. This complicates the packet
overhearing capability at Monitor-APs, since the Sender uses its Home-AP ’s
physical address as the next-hop address in the 802.11 header, while Monitor-
APs automatically discard the packet due to a mismatched physical address. To
allow Monitor-APs to capture overheard packets, BaPu’s solution is to configure
BaPu-APs to operate simultaneously in two modes: AP mode and monitor
mode. The former mode is used for serving clients in the AP’s own WLAN,
whereas the latter is used for overhearing packets in raw format.

Packet Identification: Each packet sent from the Sender (BaPu protocol’s
step 1) contains the session information in the packet’s IP header such as the pro-
tocol, the source and destination IP addresses and ports. With this information,
Home-AP canuniquely identify theSender (step2). In contrast,Monitor-APsmay
have ambiguity in identifying the Sender , as Senders from different WLANs may
(legally) use the same IP address. To resolve such conflict, we create a frame parser
for the packet’s MAC header to obtain the BSSID that identifies the WLAN the
session belongs to. Therefore, any session in BaPu is now uniquely determined by
the following 6-tuple < BSSID, proto, srcIP, dstIP, srcPort, dstPort >.

Duplicate Elimination: Unicasting a packet may involve a number of (MAC-
layer) retransmissions due to wireless loss between the Sender and its Home-AP .
This increases the transmission reliability. Nevertheless, it is possible that a nearby
Monitor-AP can overhear more than one (re)transmission of the same packet and
eventually forward unnecessary duplicates to Destination, flooding Monitor-AP ’s
uplink. To identify the duplicate packets, we keep records of IPID field of each over-
heard IP packet. Since IPID remains the same value for each MAC-layer retrans-
mission, it allows Monitor-APs to identify and discard the same packet. It is worth
noting that in TCP transmission, the TCP sequence number (SEQ) is not a good
indicator to identify the duplicate packets, as it is unique for TCP retransmission,
but not for MAC-layer retransmissions.

3.2 Tunnel Forwarding

The transparency goals requires that the high-level application be unaware of the
aggregation protocol in BaPu. A seemingly straightforward solution is that
Home-AP and Monitor-APs forward the Sender ’s packets with spoofed IP
addresses. It is, however, impractical for two reasons: (1) many ISPs block spoofed

BaPu: Efficient and Practical Bunching of Access Point Uplinks 343

IP packets; (2) forwarded packets by Monitor-APs are unreliable, because they are
raw packets overheard from the air. Our approach is that each BaPu-AP conveys
the Sender ’s data via a separate TCP tunnel. Since we support a transparency for
aggregation over multiple paths, the techniques for tunnelling and address resolv-
ing in each single path require a careful design at both BaPu-APs and BaPu-
Gateway .

Tunnel Connection:Once aBaPu-AP identifies a new Sender -Destination ses-
sion (step 2) based on the 6-tuple, it establishes a tunnel connection to BaPu-
Gateway . Regardless of the session protocol, a tunnel connection between the
BaPu-AP and BaPu-Gateway is always a TCP connection. The choice of TCP
tunnel is partially motivated by the TCP-friendliness. We desire to aggregate the
idle bandwidth ofBaPu-APswithout overloading the ISPnetworks.Besides, since
TCP tunnel can provide a reliable channel, it helps keep a simple logic for handling
a reliable aggregated transmission.

Forwarding: In the registration (step 3) to BaPu-Gateway , the BaPu-AP
receives an APID as its “contributor” identifier for the new session. The APID is used
inallmessages in theprotocol.Bothcontrolmessages (registration, report, schedul-
ing) and data messages are exchanged via the reliable TCP tunnel. On reception of
a schedulingmessagewithmatching APID, theMonitor-AP encapsulates the corre-
sponding Sender ’s packet in aBaPu data message and sends it toBaPu-Gateway
(step 8), which then extracts the original data packet, delivers to the Destination.
In BaPu, short control messages only introduce small overhead in the backhaul.

NAT: In WLAN, the Sender is behind the Home-AP , typically a NAT box. In
BaPu, theSender ’s data are conveyed to theDestination via separate tunnels from
each participating BaPu-AP , which carries out NAT translation with NAT map-
ping records obtained from BaPu-Gateway in step 3. Besides, since the downlink
capacity is enormous, we allow all reverse (downlink) traffic from Destination to
Sender to traverse along the default downlink path. In addition, as there might be
multiple tiers of NAT boxes in the middle, we must ensure that the NAT mapping
for a session is properly installed on all NAT boxes along the path, and the first few
packets of a new session are not tunnelled.

3.3 Scheduling

The bandwidth aggregation performance depends on the efficiency of multiplex-
ing data among BaPu-APs to best utilize the idle uplink bandwidth. In BaPu,
we adopt a centralized scheduler at BaPu-Gateway . There are two main factors
to select this design. First, it does not only simplify the implementation, but also
allows easy extension of the design with extra logic to further optimize the schedul-
ing strategy. Second, a scheduler usually requires complex processing and mem-
ory capability, which might overload the BaPu-APs with much lower capability
if scheduling decisions are distributedly performed byBaPu-APs. Our scheduling
strategy is based on received reports in steps 6 and 7 of the protocol. Each report
from a BaPu-AP contains a sending buffer size obtained from the Linux kernel

344 T. Jin et al.

(viaioctl).This value specifieshowmuchaBaPu-AP cancontribute to theaggre-
gation. Based on reports, BaPu-Gateway applies First-Come-First-Served strat-
egy to select a forwarder among BaPu-APs who have captured the same packet.
The rationale for choosing this approach are (1)Fairness: Sharing bandwidth takes
into account the available bandwidth of participatingBaPu-APs becauseAPown-
ers have different subscription plans. (2) Protocol independence: Scheduling deci-
sion is made based on the BaPu-APs’ sharing capability, not on the particular
transport protocol.

4 TCP with Proactive-ACK

4.1 TCP Issues with Aggregation

Brief Overview on TCP: TCP ensures successful and in-order data delivery
betweenSender andDestination.TheSender maintains aCWND(congestionwin-
dow)during the on-going session,whichdetermines theTCPthroughput.TheSen-
der ’s CWND size is affected by acknowledgements from the Destination. First,
the growth rate of CWND depends on the rate of receiving acknowledgements,
i.e., the link latency. Second, missing acknowledgement within a RTO (retransmis-
sion timeout) causes the Sender to issue a retransmission. On reception of out-of-
order sequences, the Destination sends a DUPACK (duplicate acknowledgement)
to inform the Sender of missing packets. By default [3], the Sender will issue a fast
retransmission upon receiving 3 consecutive DUPACKs. Both retransmission and
fast retransmission cause the Sender to cut off the CWND accordingly to adapt to
the congested network or slow receiver.

Performance Issues with Aggregation: TCP was designed based on the fact
that the out-of-order sequence is generally a good indicator of lost packets or con-
gested network. However, such assumption no longer holds in BaPu.

Out-of-order Packets: In BaPu, packets belonging to the same TCP session are
intentionally routed through multiple BaPu-APs via diverse backhaul connec-
tions in terms of capacity, latency, traffic load, etc. This results in serious out-of-
order sequence atBaPu-Gateway , which eventually injects the out-of-order pack-
ets to the Destination.

Double RTT: Also, due to the aggregation protocol, data packets in BaPu are
delivered to the Destination with a double round-trip-time (RTT) compared to a
regular link.This causes theSender ’sCWNDtogrowmore slowlyandpeakat lower
values. Consequently, with an unplanned aggregationmethod, theTCPcongestion
control mechanism is falsely triggered, resulting in considerably low throughput.
Aswe show later in Sect. 5, a simplified prototype ofBaPu, which share similarities
with the system in [15], gives poor TCP throughput.

Simple Solution (SIMPLEBUFFER) Does not Work: To address the TCP
performance issue, we investigate a simple approach: data packets forwarded by
BaPu-APs are buffered atBaPu-Gateway until a continuous sequence is received
or a predefined buffering timeout is reached before delivering it to the Destination.

BaPu: Efficient and Practical Bunching of Access Point Uplinks 345

This solution, however, encounters the following issues: (1) Optimality: Due to the
difference in capacity, latency, loss rate among backhaul uplinks, it is unclear how
to determine the optimal buffer size and timeout. (2) Suboptimal RTT: The buffer-
ing mechanism results in double RTT issue. (3) Performance: We implemented the
buffering mechanism atBaPu-Gateway , and verified that it does not help improv-
ing the TCP throughput (Sect. 5.2).

4.2 BAPU’s Solution

We introduce a novel mechanism called Proactive-ACK (step 7) to support TCP
with uplink aggregation. The principle is to actively control the exchange of
acknowledgements insteadof relyingon thedefault behaviour of the end-to-end ses-
sion.ByProactive-ACK,we solve both out-of-order packet and double RTT issues.
In the following paragraphs, we call acknowledgements actively sent by BaPu-
Gateway spoofed, while the ones sent by the Destination are real acknowledge-
ments.

Spoofing Proactive-ACK: In BaPu, most of out-of-order packets are caused
by the aggregation mechanism via multiple BaPu-APs. To avoid delivering out-
of-order packets to the Destination and the resulting cut-off of the CWND at the
Sender , we maintain a sequence map at BaPu-Gateway , indicating reported,
delivered orpending sequence numbers. OnceBaPu-Gateway collects a contin-
uous range of reported sequence numbers, BaPu-Gateway sends a spoofed ACK
back to the Sender . The intuition is that all the packets that are reported by some
BaPu-APs are currently stored in their buffer. Due to the reliability of the TCP
tunnel, the reported packets will be eventually forwarded to BaPu-Gateway in
reliable manner. Therefore, immediately sending a spoofed Proactive-ACK back
to the Sender avoids false DUPACKs and helps maintain a healthy CWND growth
at the Sender . Also, the RTT is not doubled.

Eliminating DUPACKs: Since spoofed ACKs keep theSender ’s CWND contin-
uously grow,BaPu-Gateway can take time andbuffer all out-of-order data packets
forwarded from BaPu-APs, and deliver only in-order packets to the
Destination. Therefore, in BaPu, out-of-order packets and associated DUPACKs
are eliminated from Destination.

Spoofing DUPACKs: It is possible that some packets are actually lost in the air
between the Sender andBaPu-APs. Concretely, if the report for an expected TCP
sequence number is not received within a certain time, it is implied to be lost on all
participating BaPu-APs. Now that BaPu-Gateway sends a spoofed DUPACK
back to the Sender in order to mimic the TCP fast retransmission mechanism for
fast recovery.

Managing Real ACKs and TCP Semantics: Since BaPu-Gateway sends
spoofed ACKs to the Sender , on reception of real ACKs from the Destination,
BaPu-Gateway discards the real ACKs. However, BaPu-Gateway does save the
TCP header fields in the real ACKs, such as advertised receiver window and

346 T. Jin et al.

Fig. 5. BaPu

Table 1. Distance vs. Network RTT.

Regional: 500 - 1,000 mi 32ms [2]

Cross-continent: ∼ 3,000 mi 96ms [2]

Multi-continent: ∼ 6,000 mi 192ms [2]

Inter-AP in greater Boston 20ms ∼ 80ms

timestamp, which maintains the TCP semantics and the state of the TCP connec-
tion. While BaPu-Gateway generates the spoofed ACKs, it uses the
latest header field values extracted from real ACKs to prepare the acknowledge
segment.

We have one important remark on TCP semantics. If an AP which has been
scheduled to forward a selected packet is suddenly offline, such packet lost would
not be recognized by Sender because it has received spoofed ACK. In this case, we
resort to Home-AP which carries out unicast between itself and Sender and should
have a backup copy. Despite the slight difference in TCP semantics, we verify that
Proactive-ACK gives a significantly improved TCP throughput. We present these
results in Sect. 5.

5 Evaluation

In this section, we evaluate the performance ofBaPu for UDP and TCP in various
system settings. Our experiment setup is shown in Fig. 5. Our testbed consists of a
Sender , 7 BaPu-APs, a BaPu-Gateway , a Destination and a traffic shaping box.
All APs are Buffalo WZR-HP-G300NH 802.11n wireless routers. This model has a
400MHz CPU with 32 MBRAM. We reflashed the APs with OpenWRT firmware,
running Linux kernel 2.6.32 and ath9k WiFi driver. In our experiments, we select
one BaPu-AP as a Home-AP which the Sender is always associated to, the other
6 BaPu-APs act as Monitor-APs to capture the traffic in monitor mode. The
BaPu-Gateway runs on a Linux PC, and the Destination runs behind the BaPu-
Gateway . The Sender and the Destination are both laptops with 802.11n WiFi
card, running the standardLinuxTCP/IP stack.To emulate traffic shaping aswith
residential broadband, we use the traffic shaping box between the BaPu-APs and
BaPu-Gateway . We use Linux’ iptables and tc with the htb module to shape
the downlink bandwidth to 20 Mbps and the uplink to 2 Mbps. Also, to emulate
network latency between BaPu-APs and BaPu-Gateway , we use netem to shape
the RTT with different values. The bandwidth and latency parameter are selected
to represent the typical bandwidth capacity and latency in residential cable broad-
band measured in Boston’s urban area (Table 1).

Inour experiments,we issue long-lived30 miniperfflows (bothTCPandUDP)
from Sender to Destination. We choose 1350 Byte as TCP/UDP payload size to
make sure that thewhole client IPpacket canbe encapsulated inone IPpacketwhile
an BaPu-AP sends it through its TCP tunnel. All throughput values reported in

BaPu: Efficient and Practical Bunching of Access Point Uplinks 347

 0

 2

 4

 6

 8

 10

 12

 14

1 2 3 4 5 6 7A
gg

re
ga

te
d

T
hr

ou
gh

pu
t (

M
bp

s)

Number of APs

BaPu UDP
BaPu TCP

(a) UDP and TCP throughput

 40

 50

 60

 70

 80

 90

 100

1 2 3 4 5 6 7

A
gg

re
ga

tio
n

ef
fic

ie
nc

y
(%

)

Number of APs

BaPu UDP / max UDP
BaPu UDP / max BaPu UDP

BaPu TCP / max TCP
BaPu TCP / max BaPu TCP

(b) UDP and TCP aggregation efficiency

Fig. 6. BaPu aggregation for UDP and TCP with 2Mbps 32ms RTT uplinks.

 0

 40

 80

 120

 160

20 40 60 80 100 120

C
W

N
D

 S
iz

e
(K

B
)

Time (sec)

BaPu CWND Regular TCP CWND

Fig. 7. Sender’s TCP CWND growth:
BaPu vs. Regular TCP.

 1

 2

 3

 4

 5

 6

 7

1 2 3 4 5 6 7A
gg

re
ga

te
d

T
hr

ou
gh

pu
t (

M
bp

s)

Number of APs

Basic TCP
SimpleBuffer TCP

Fig. 8. BaPu vs. SimpleBuffer.

our experiment are the iperf throughput, which is the goodput. In the evaluation,
we compare throughput of UDP and TCP in a variety of scenarios: A. BaPu –
BaPu system without any buffering or Proactive-ACK mechanism; B. Simple-
Buffer – BaPu system without Proactive-ACK, but enhanced by buffering at
BaPu-Gateway ; C. BaPu-Pro – this is the full BaPu system.

5.1 BAPU: Efficient UDP, Poor TCP

System Efficiency with UDP Throughput: We now first measure BaPu’s
efficiency by the throughput with UDP, as it provides a light-weight end-to-end
transmissionbetweenSender andDestination. Figure 6a shows the achievedaggre-
gated UDP throughput with numbers of participatingBaPu-APs increasing from
1 to 7. We observe that the aggregated UDP throughput increases proportionally
with the number ofBaPu-APs, and achieves 12.4 Mbps with 7BaPu-APs. To put
this figure into perspective, note that related work by Jakubczak et al. [15] achieves
similar UDP throughput but without support for TCP or client transparency.

Low TCP Throughput: We conduct the same experiments also for TCP trans-
mission. Figure 6a shows that the aggregated TCP throughput does not benefit
much when the number ofBaPu-APs increases. The TCP aggregated throughput
is always lower than the UDP’s in the same setup, and the gap between UDP and
TCP performance increases along with the number of BaPu-APs.

348 T. Jin et al.

 0

 2

 4

 6

 8

 10

 12

 14

1 2 3 4 5 6 7A
gg

re
ga

te
d

T
hr

ou
gh

pu
t (

M
bp

s)

Number of APs

BaPu TCP
BaPu-Pro TCP

(a) Aggregated TCP throughput

 40

 50

 60

 70

 80

 90

 100

1 2 3 4 5 6 7

E
ffi

ci
en

cy
 o

f a
gg

re
ga

tio
n

(%
)

Number of APs

BaPu-Pro TCP / max TCP
BaPu-Pro TCP / max BaPu TCP

BaPu TCP / max TCP
BaPu TCP / max BaPu TCP

(b) Aggregation efficiency

Fig. 9. BaPu-Pro vs. BaPu: comparison with 2Mbps 32ms RTT uplinks.

 0
 50

 100
 150
 200
 250

100 200 300 400 500 600

C
W

N
D

 S
iz

e
(K

B
)

Time (sec)

BaPu CWND BaPu-Pro CWND Regular TCP CWND

Fig. 10. Sender’s TCP CWND growth: BaPu-Pro vs. BaPu vs. Regular TCP.

Aggregation Efficiency: In addition to measuring aggregated throughput, we
evaluate our system based on another metric, aggregation efficiency. We define
aggregation efficiency as the ratio between practical throughput over the maxi-
mum theoretical goodput. Due to the TCP/IP header and BaPu protocol over-
head, the actual goodput is less than the uplink capacity. With all protocol header
overheadaccounted,wederive themaximumtheoretical goodput as the givenback-
haul capacity of 2 Mbps.As shown inFig. 6b,BaPuUDPcanharness close to 100 %
idle bandwidth. Even if we consider the extra overhead incurred by BaPu proto-
col messages, UDP aggregation efficiency is still over 90 % in all cases. In contrast,
the aggregation efficiency for TCP degrades quickly as more BaPu-APs join the
cooperation. With 7BaPu-APs,BaPu transforms only 50 % of idle bandwidth to
effective throughput.

Discussion on BAPU’s Poor TCP Performance: We can observe several
factors in Sect. 4 that decrease the aggregated TCP throughput. In this section, we
carry out an analysis on the Sender ’s CWND size inBaPu. To justify our analysis,
we inspect the TCP behavior by examining the Linux kernel TCP stack variables.
We call getsockopt() to query the TCP INFO data structure containing the system
time stamp,Sender ’sCWND,number of retransmissions, etc.Wealsomodified the
iperf code to log TCP INFO for each call to send application data. Figure 7 shows
theCWNDgrowth in a 120 s iperf testwith 7BaPu-APs (theoretical throughput
is 2Mbps × 7 = 14Mbps) in comparison with standard TCP through a single AP
with 14 Mbps uplink capacity. The Sender ’s CWND remains at a very low level.
Our captured packet trace at the Sender shows that lots of DUPACK packets and
RTO incur a lot of retransmissions, resulting in low TCP throughput.

BaPu: Efficient and Practical Bunching of Access Point Uplinks 349

5.2 Does SIMPLEBUFFER help TCP performance?

As discussed in Sect. 4, a simple buffering mechanism does not solve the TCP per-
formance issuedue todifference inBaPu-AP uplinkcharacteristics (latency,packet
loss). In this section, we experimentally show that a buffering mechanism cannot
help in improving the TCP throughput. Figure 8 depicts the throughput compari-
son between BaPu and SimpleBuffer. Surprisingly, the throughput is even
degraded with SimpleBuffer. Our trace inspection shows a lot of TCP Time-
out Retransmissions due to the packets being buffered at BaPu-Gateway for too
long.

5.3 BAPU-PRO Performance

We now conduct a comprehensive set of experiments to evaluate the performance
of BaPu-Pro. First, we validate our Proactive-ACK mechanism by comparing
BaPu-Pro against BaPu. Second, we measure the performance of BaPu-Pro
under a variety of network settings (network latency, wireless link quality, etc.).
Finally, we demonstrate that BaPu-Pro is feasible for both, streaming and large
file transfer applications.

TCP Throughput – BAPU-PRO vs. BAPU: We carry out the same iperf
test as described in Sect. 5.1 withBaPu-Pro. As shown in Fig. 9a, the aggregated
TCP throughput of BaPu-Pro significantly outperforms the one of BaPu. With
7BaPu-APs,BaPu-Proachieves 11.04 Mbps, i.e., 62 % improvementoverBaPu.
Furthermore,Fig. 9b shows thatBaPu-Proachieves at least 88 %aggregation effi-
ciency in our setup, and it achieves at least 83 % of the upper limit of standard TCP
throughput. These results demonstrate that BaPu-Pro can achieve high aggre-
gated throughput with high aggregation efficiency for TCP in practical settings.

Proactive-ACK Benefit: To justify our Proactive-ACK mechanism, we adopt
the same method as in Sect. 5.1 to examine the TCP CWND growth. Figure 10
shows that BaPu-Pro allows the CWND to grow to very high values, contribut-
ing to the high throughput. For convenience, we also run a regular TCP session
with a throttledbandwidth 11 Mbps (similar to theBaPu-Pro’s resulted through-
put).TheCWNDgrowth forBaPu-Pro and regularTCPshares a similar pattern,
which implies that our design and implementation can efficiently and transparently
aggregate multiple slow uplinks.

Impact of Network Latency: For TCP transmissions, RTT is an important
factor that has impact on the throughput. We measure the performance of BaPu
with different network latency settings listed in Table 1. Besides fixed latency val-
ues for each typical setting, we also assign to each BaPu-AP a random RTT value
between 20 ms and 80 ms. We carry out this test for 10 runs and report the average
throughput. As shown in Fig. 11a,BaPu-Pro throughput slightly declines as net-
work latency increases. In random latency setting, the resulted throughput shows
no significant difference.

Impact of Lossy Wireless Links: The wireless links in a real neighbourhood
can be very lossy for a variety of reasons, such as cross channel interference and

350 T. Jin et al.

 0

 2

 4

 6

 8

 10

 12

1 2 3 4 5 6 7A
gg

re
ga

te
d

T
hr

ou
gh

pu
t (

M
bp

s)

Number of APs

32ms RTT
96ms RTT

192ms RTT
Random RTT

(a) Different RTT

 0

 2

 4

 6

 8

 10

 12

2 3 4 5 6 7A
gg

re
ga

te
d

T
hr

ou
gh

pu
t (

M
bp

s)

Number of APs

P=0%
P=20%
P=40%
P=60%

(b) Different packet loss rate P on Monitor-APs

Fig. 11. BaPu-Pro TCP throughput.

distant neighboringAPs.Besides, sinceMonitor-APs switchbetween transmit and
receive mode, they cannot overhear all transmitted packets. To estimate the poten-
tial ofBaPuhighly lossywireless environments,we emulatepacket loss atMonitor-
APs by dropping received packets with a probability P . No losses were inflicted
on Home-AP , because Sender carries out unicast to Home-AP , and 802.11 MAC
already handles packet loss and retransmissions automatically. We conduct the
experiment with 3 values of P : 20 %, 40 %, and 60 %. As indicated in Fig. 11b, the
throughput reduction on lossy wireless links is very limited in all cases. The good
performance can be explained by the link diversity combined with the centralized
scheduling mechanisms. The probability of some packet not overheard by at least
one Monitor-AP is negligible small, especially in case of high number of partici-
pating APs. This also explains why 7 BaPu-APs achieve higher throughput with
P = 60% than with P = 20%.

Streaming vs. Large File Transfer: One important goal in BaPu’s design is
to support instant sharing of high-bitrate HD videos directly between users using
streaming. The motivation behind is that today the major online streaming ser-
vices (e.g., Netflix) run on TCP based streaming technologies, such as HTTP based
Adaptive Bitrate Streaming. Real time streaming generally requires stable instan-
taneous throughput. In this experiment, we study the potential ofBaPu as a solu-
tion to high-bitrate real-time streaming. To emulate HD streaming, we use nuttcp
to issue a TCP flow with a fixed 11 Mbps sending rate. As shown in Fig. 12, nuttcp
achieves a reasonably stable instantaneous throughput during a 100 second ses-
sion. It implies that BaPu can sustain high-bitrate streaming through aggregated
uplinks. In comparison, the iperf flow with unlimited sending rate shows much
higher fluctuation.

6 Related Work

While BaPu is inspired by design principles of previous work, it addresses unique
constraints and goals and presents a set of novel techniques that achieve high effi-
ciency.Previous researchhasaddressedTCPperformance improvements overwire-
less links by using intermediate nodes that assist in the recovery of lost packets,

BaPu: Efficient and Practical Bunching of Access Point Uplinks 351

 0

 5

 10

 15

 20

 25

 30

 35

 40

0 20 40 60 80 100

T
hr

ou
gh

pu
t (

M
bp

s)

Time (sec)

streaming 11Mbps
iperf unlimited rate

Fig. 12. Instantaneously received throughput: 11Mbps Streaming vs. Unlimited rate.

e.g., SnoopTCP[5], andSplitTCP [18].Multiple radio links for improving through-
put have also been explored from several perspectives including traffic aggrega-
tion [17], multipath forwarding [15], and mitigation of wireless losses [21,22].
In addition to systems that rely on multiple radio interfaces [4], other solutions
and algorithms have been proposed for a single client radio interface that switches
across multiple access points while providing upper layers of the network stack
with a transparent access [8,17,20,28]. Solutions to overcome limited APs back-
haul through aggregation using such a virtualized radio interfaces include the ini-
tial Virtual-WiFi [20] system where two TCP connection are serviced by two dif-
ferent APs, FatVAP [17] and ARBOR [28] that achieve fast switching by smart
AP selection, and Fair WLAN [12] for fairness. These systems require techniques
for fast switching across access points to reduce impact on TCP performance, e.g.,
delay and packet loss as discussed in Juggler [16] and WiSwitcher [11]. An ana-
lytical model [25] is proposed to optimize concurrent AP connections for highly
mobile clients. They also implement Spider, a multi-AP driver using optimal AP
andchannel scheduling to improve the aggregated throughput.Unlike BaPu, these
papers do not focus on aggregating the throughput for single transport layer con-
nection, which is critical for client transparency. Divert [22] and ViFi [6] reduce
path-dependentdownlink loss fromanAPtoa client.However, rather than improv-
ing thewireless linkquality,BaPu targets aggregation of thewired capacitybehind
APs. InBaPu, the sender regularly communicates with its home AP. As discussed,
BaPu borrows ideas from Link-alike [15] where access points coordinate to oppor-
tunistically schedule the traffic over backhaul links. Contrary to Link-alike,BaPu
does not require client devices to use broadcast. Moreover, BaPu transparently
supports protocols like TCP. Being completely transparent to the clients and con-
straining each link AP-Destination flow to be TCP-friendly makes efficient multi-
path transport a key component of our system.We stress that, in contrast toBaPu,
the large body of relatedwork onmultipath transport, cf. [7,10,13,14,19,23,24,26,
27], does not support transparent, unmodified client devices and TCP/IP stacks
while efficiently aggregating AP backhaul.

352 T. Jin et al.

7 Conclusion

In this work, we present the design and implementation of BaPu, a complete soft-
warebased solutiononWiFiAPs for aggregatingmultiplebroadbanduplinks.First,
based on our large scale wardriving data and long term measurement in Boston’s
residential broadband, we show that the high AP density and under utilized broad-
banduplinks suit solutions that harness idle bandwidth to improve uplink through-
put. Contrary to related work, BaPu offers a client transparent design, generic sup-
port for legacy devices, and a large variety of network applications. To this end,
BaPu employs a novel mechanism (Proactive-ACK) to address the challenges of
multiplexing single TCP sessions through multiple paths without degrading per-
formance. To analyze the benefits of BaPu, we have carried out an extensive set of
experiments for both UDP and TCP in a variety of realistic network settings. BaPu
achieves over 95 % aggregation efficiency for UDP and over 88 % for TCP – even
in lossy wireless environment. As a future work, it would be interesting to repro-
duce and compare the results in different neighborhoods and different countries.
Also, incentive mechanisms and support from AP manufacturers and subscription
providers need to be developed in order for BaPu to be useful for both AP owners
and users.

References

1. Open infrastructure: A wireless network research framework for residential net-
works. http://www.ccs.neu.edu/home/noubir/projects/openinfrastructure/

2. Akamai. Akamai HD Network. Technical report (2011). http://bit.ly/1xN2NNB
3. Allman, M., Paxson, V., Blanton, E.: Tcp congestion control (2009)
4. Bahl, P., Adya, A., Padhye, J., Walman, A.: Reconsidering wireless systems with

multiple radios. SIGCOMM Compututer Communication Review 34, 39–46 (2004).
ISSN 0146–4833

5. Balakrishnan, H., Seshan, S., Amir, E., Katz, R.H.: Improving TCP/IP perfor-
mance over wireless networks. In: Proceedings of MobiCom (1995)

6. Balasubramanian, A., Mahajan, R., Venkataramani, A., Levine, B.N., Zahorjan,
J.: Interactive wifi connectivity for moving vehicles. In: Proceedings of SigComm
(2008)

7. Barré, S., Paasch, C., Bonaventure, O.: MultiPath TCP: from theory to practice.
In: Domingo-Pascual, J., Manzoni, P., Palazzo, S., Pont, A., Scoglio, C. (eds.)
NETWORKING 2011, Part I. LNCS, vol. 6640, pp. 444–457. Springer, Heidelberg
(2011)

8. Chandra, R., Bahl, P.: Multinet: connecting to multiple IEEE 802.11 networks
using a single wireless card. In: Proceedings of INFOCOM (2004)

9. FON. FON (2012). http://corp.fon.com/us/
10. Ford, A., Raiciu, C., Handley, M., Bonaventure, O.: TCP Extensions for Multipath

Operation with Multiple Addresses. Internet-Draft (2012)
11. Giustiniano, D., Goma, E. , Lopez, A., Rodriguez. P.: Wiswitcher: an efficient client

for managing multiple aps. In: Proceedings of PRESTO (2009)
12. Giustiniano, D., Goma, E., Toledo, A.L., Dangerfield, I., Morillo, J., Rodriguez,

P.: Fair WLAN backhaul aggregation. In: MobiCom (2010)

http://www.ccs.neu.edu/home/noubir/projects/openinfrastructure/
http://bit.ly/1xN2NNB
http://corp.fon.com/us/

BaPu: Efficient and Practical Bunching of Access Point Uplinks 353

13. Hsieh, H.-Y., Sivakumar, R.: A transport layer approach for achieving aggregate
bandwidths on multi-homed mobile hosts. In: Proceedings of MobiCom (2002)

14. Hsieh, H.-Y., Kim, K.-H., Zhu, Y., Sivakumar, R.: A receiver-centric transport
protocol for mobile hosts with heterogeneous wireless interfaces. In: Proceedings
of MobiCom (2003)

15. Jakubczak, S., Andersen, D.G., Kaminsky, M., Papagiannaki, K., Seshan, S.: Link-
alike: using wireless to share network resources in a neighborhood. SIGMOBILE
Mobile Computing Communications Review (2008)

16. Anthony, J.N., Scott, W., Noble, B.D.: Juggler: virtual networks for fun and profit.
IEEE Trans. Mob. Comput. 9, 31–43 (2010)

17. Kandula, S., Lin, K.C., Badirkhanli, T., Katabi, D.: FatVAP: aggregating AP
backhaul capacity to maximize throughput. In: Proceedings of NSDI (2008)

18. Kopparty, S., Krishnamurthy, S.V., Faloutsos, M., Tripathi, S.K.: Split tcp for
mobile ad hoc networks. In: GLOBECOM (2002)

19. Magalhaes, L., Kravets, R.H.: Transport level mechanisms for bandwidth aggrega-
tion on mobile hosts. In: Proceedings of Conference on Network Protocols (2001)

20. Microsoft Research. Virtual wifi (2012). http://bit.ly/1IjD4iw
21. Miu, A., Balakrishnan, H., Koksal, C.E.: Improving loss resilience with multi-radio

diversity in wireless networks. In: MobiCom, pp. 16–30 (2005)
22. Miu, A.K., Tan, G., Balakrishnan, H., Apostolopoulos, J.: Divert: fine-grained path

selection for wireless lans. In: Proceedings of MobiSys (2004)
23. Radunović, B., Gkantsidis, C., Gunawardena, D., Key, P.: Horizon: balancing TCP

over multiple paths in wireless mesh network. In: MobiCom (2008)
24. Raiciu, C., Barre, S., Pluntke, C., Greenhalgh, A., Wischik, D., Handley, M.:

Improving datacenter performance and robustness with multipath TCP. In: SIG-
COMM 2011 (2011)

25. Soroush, H., Gilbert, P. , Banerjee, N., Levine, B.N., Corner, M., Cox, L.: Concur-
rent Wi-Fi for mobile users: analysis and measurements. In: CoNEXT (2011)

26. Steward, R.: Stream control transmission protocol. IETF RFC 4960 (2007)
27. Wischik, D., Raiciu, C., Greenhalgh, A., Handley, M.: Design, implementation and

evaluation of congestion control for multipath TCP. In: Proceedings of NSDI (2011)
28. Xing, X., Mishra, S., Liu, X.: ARBOR: hang together rather than hang separately

in 802.11 wifi networks. In: Proceedings of INFOCOM (2010)

http://bit.ly/1IjD4iw

Memory Efficient Self-stabilizing Distance-k
Independent Dominating Set Construction

Colette Johnen(B)

University Bordeaux, LaBRI, UMR 5800, 33400 Talence, France
johnen@labri.fr

Abstract. We propose a memory efficient self-stabilizing protocol build-
ing distance-k independent dominating sets. A distance-k independent
dominating set is a distance-k independent set and a distance-k domi-
nating set(The protocol SID was presented in a brief announcement at
SSS’13.).

Our algorithm, named SID, is silent; it converges under the unfair
distributed scheduler (the weakest scheduling assumption).

The protocol SID is memory efficient : it requires only log(2((n +
1)(k + 1))2) bits per node.

The correctness and the termination of the protocol SID is proven.
The computation of the convergence time of the protocol SID is an

opened question.

Keywords: Distributed algorithm · Fault tolerance · Self-stabilization ·
Distance-k dominating set · Distance-k independent set · Distance-k
independent dominating set · Memory efficient

1 Introduction

The clustering of networks consists of partitioning network nodes into non-
overlapping groups called clusters. Each cluster has a single head, called leader,
that acts as local coordinator of the cluster, and eventually a set of standard
nodes. leader. Clustering is found very attractive in infrastructure-less networks,
like ad-hoc networks, since it limits the responsibility of network management
only to leaders, and it allows the use of hierarchical routing.

Silent self-stabilizing protocols building k-hops clustering set are proposed
[1–4]. In k-hop clusters, the distance between a standard node and its leader is
at most k; the set of cluster heads can be not a distance-k independent set. The
protocol of [1] is designed for k = 2. Routing tables are maintained by the cluster
heads to store routing information to nodes both within and outside the cluster.
The goal of the protocol in [2] is to build bounded size clusters (each cluster has
at most Cluster Max nodes). The protocol of [3] is designed for weighted edges

Partially supported by the anr project displexity (anr-11-bs02-014). This study
has been carried out in the frame of “the Investments for the future” Programme
IdEx Bordeaux cpu (anr-10-idex-03-02).

c© Springer International Publishing Switzerland 2015
A. Bouajjani and H. Fauconnier (Eds.): NETYS 2015, LNCS 9466, pp. 354–366, 2015.
DOI: 10.1007/978-3-319-26850-7 24

Memory Efficient Self-stabilizing Distance-k 355

networks; it requires O(log(k4.Δ2.D2.n6)) bits per node, where Δ is a bound on
node degree and D is the network diameter. The protocol of [4] requires at least
log(2.k.n2.nk+1)) bits per node.

In [5,6], Larsson and Tsigas propose self-stabilizing (l,k)-clustering protocols
under various assumptions. These protocols ensure, if possible, that each node
has l cluster-heads at distance at most k.

In [7], a silent self-stabilizing protocol extracting a minimal distance-k domi-
nating set from any distance-k dominating set is proposed. A minimal distance-k
dominating set has no proper subset which also a distance-k dominating set. The
protocol requires at least O(log(nk)) bits per node.

The paper [8] presents a silent self-stabilizing protocol building a small
distance-k dominating set : the obtained dominating set contains at most �n/(k+
1)� nodes. The protocol of [8] requires log(2.n2.(n/k)k) bits per node. The proto-
col of [9] builds competitive distance-k dominating sets : the obtained dominating
set contains at most 1 + �(n − 1)/(k + 1)� nodes. The protocol of [9] requires
O(log(2.k.(Δ + 1)3.n3)) bits per node.

Contribution. In this paper, we consider the problem of computing a distance-
k independent dominating set in a self-stabilizing manner in case where k >
1. A nodes set is distance-k independent dominating set (also called maximal
distance-k independent set) if and only if this set is a distance-k independent
set and a distance-k dominating set. A set of nodes, I is distance-k independent
if the distance between any pair of I’s nodes is at least k + 1. A set of nodes D
is distance-k dominating if every node is within distance k of a node of D.

The protocol SID is simple : no use of the hierachical collateral composition,
no need of leader election process, neither the building of spanning tree. It con-
verges under the unfair distributed scheduler (the weakest scheduling assump-
tion); and it is silent.

According to our knowledge, [10] is the only previous work proposing a silent
self-stabilizing protocol building a maximal distance-k independent set assuming
that k > 1. The protocol of [10] converges in 4n + k rounds; the computation
of the convergence time of the protocol SID is an open question. The protocol
in [10], requires log((n + 1)k+1) bits per node. The protocol SID, requires less
memory space - only log(2.((n + 1).(k + 1))2) bits per node. To achieve this
result, the technique uses is quite different and new; for instance two distincts
total order relations on the same objects are used.

2 Specification of Problem and Computation Model

A distributed system S is an undirected graph G = (V,E) where the vertex set,
V , is the set of nodes and the edge set, E, is the set of communication links.
A link (u, v) ∈ E if and only if u and v can directly communicate (links are
bidirectional); so, the node u and v are neighbors. Nv denotes the set of v’s
neighbors: Nv = {u ∈ V | (u, v) ∈ E}. The distance between the nodes u and v
is denoted by dist(u, v). The set of nodes at distance at most k to a node v is
denoted by k − neigborhood(v) = {u ∈ V | dist(u, v) ∈ [1, k]}.

356 C. Johnen

Definition 1 (distance-k independent dominating set). Let D be a subset
of V ; D is a distance-k dominating set if and only if ∀v ∈ V/D we have
k − neigborhood(v) ∩ D 	= ∅.

Let I be a subset of V ; I is a distance-k independent set if and only if
∀u ∈ I we have k − neigborhood(u) ∩ I = ∅.

A subset of V is a distance-k independent dominating set if this subset is a
distance-k dominating set and a distance-k independent set.

At every node v in the network is assigned an identifier, denoted by idv.
Two distinct nodes have different identifier. It is possible to order the identifier
values.

Each node maintains a set of shared variables. A node can read its own
variables and those of its neighbors, but it can modify only its variables. The
state of a node is defined by the values of its local variables. The cartesian
product of states of all nodes determines the configuration of the system. Let
var be a shared variable, var(v)c denotes the value of var for the node v in the
configuration c. The program of each node is a set of rules. Each rule has the
form: Rulei :< Guardi >−→< Actioni >. The guard of a v’s rule is a boolean
expression involving the state of the node v, and those of its neighbors. The
action of a v’s rule updates v’s state. A rule can be executed by a node v only
if it is enabled, i.e., its guard is satisfied by the node v. A node is said to be
enabled if at least one of its rules is enabled. A configuration is terminal if and
only if no node can execute a rule.

During a computation step from a configuration one or more enabled nodes
simultaneously perform an action to reach another configuration. A computation
e is a sequence of configurations e = c0, c1, ..., ci, ..., where ci+1 is reached from
ci by a single computation step, ∀i � 0. A computation e is maximal if it is
infinite, or if it reaches a terminal configuration.

Definition 2 (Silent Self-stabilization). Let L be a predicate on the config-
uration. A distributed system S is a silent self-stabilizing system to L if and only
if (1) all terminal configurations satisfy L; (2) all computations reach a terminal
configuration.

3 The Protocol SID
In the following subsection, we gives the notation used by the protocol SID.

3.1 k-augmentedID Type

Definition 3. k-augmentedID type An k-augmentedID value, a, is ⊥ or an
n-tuple (d, x) such that d is integer with 0 ≤ d ≤ k, and x is a node identifier.
Let a = (d, x) be k-augmentedID value. We use the following notation a.dist = d
and a.id = x.

Let v be a node of V , id+v is the following k-augmentedID value: (0, idv).

Memory Efficient Self-stabilizing Distance-k 357

Definition 4. The total order relation dom on k-augmentedID

– dom(a, b) = a if b =⊥, a.id < b.id or a.id = b.id ∧ a.dist < b.dist, otherwise
dom(a, b) = b.

– The k-augmentedID value a1 dominates the k-augmentedID value a2 if and
only if dom(a1, a2) = a1.

– Let X be a finite set of k-augmentedID values. dom(X) is the k-augmentedID
value, denoted dX, belonging to X such that any value of X is dominated by
dX (i.e. ∀y ∈ X we have dom(dX, y) = dX).

Definition 5. The total order relation min on k-augmentedID

– min(a, b) = a if b =⊥, a.dist < b.dist or a.dist = b.dist ∧ a.id < b.id
otherwise min(a, b) = b.

– The k-augmentedID value a1 is larger than the k-augmentedID value a2 if and
only if min(a1, a2) = a2.

– Let X be a finite set of k-augmentedID values. min(X) is the k-augmentedID
value, denoted mX, belonging to X such that any value of X is larger than
mX (i.e. ∀y ∈ X we have min(mX, y) = mX).

The node u1 is closer to the node v than the node u2 iff d1 = dist(u1, v)) <
dist(u2, v) = d2 or idu1 < idu2. Notice that (d2, idu2)) is larger than
min((d1, idu1).

Definition 6. The operation +1 on k-augmentedID is defined as follow:
a + 1 = a if a =⊥ or if a.dist = k otherwise a + 1 = (a.dist + 1, a.id)

3.2 Code of the Protocol SID
The variables, the function and procedure specifications, the predicates and the
rules of SID are presented in protocol 1. By lack of space, the code of the
functions and the procedures are omitted in the paper, they can found in the
technical report of LaBRI [11]).

The variable firstH(v) contains the identifier of the closest head to v (with
its distance to v).

The variable secondH(v) contains the identifier of the second closest head to
v (with its distance to v) inside its k − neighborhood. If a node v does not have
two heads in its k − neighborhood then secondH(v) is set to ⊥.

A node v is said to be a head if firstH(v) = id+v = (0, idv); otherwise v is
an ordinary node. We will prove that in any terminal configuration the Head set
built by the protocol SID is a distance-k independent dominating set. We will
also establish that all computations are finite.

In the Fig. 1 is presented a terminal configuration of SID in the case where
k = 4. In each node, it is indicated the value of firstH, denoted by fH, and the
value of secondH denoted by sH. The legitimate configuration has three heads.
On the same network with the same value for k, is presented another terminal
configuration having a single head in the Fig. 2.

358 C. Johnen

90

70

80

fH = (0,80)

fH = (0,70)

fH = (0,90)

fH = (2,80)
sH = (3,70)

sH = (3,80)
fH = (2,90)

sH = (3,80)
fH = (2,70)

fH = (3,80)
sH = (4,70)

83

87

fH = (3,90)
sH = (4,80)

sH = (4,80)
fH = (3,70)

77

fH = (1,90)

89

sH = (4,80)

79

sH = (4,80)

fH = (1,80)

85

sH = (4,70)

fH = (3,70)

78

fH = (4,70) fH = (4,70)
67

fH = (4,90)

76

82 66
fH = (4,70)

fH = (4,80)

86

84

88

69

sH = ⊥ sH = ⊥sH = ⊥

fH = (1,70)

sH = ⊥

sH = ⊥

sH = ⊥

sH = ⊥

sH = ⊥

sH = ⊥

Fig. 1. A legitimate configuration of SID with k = 4

82
fH =(0,82)

sH = ⊥

83

87

77

89

79

85

78 67

76

66

86

84

88

69

sH = ⊥sH = ⊥

sH = ⊥

sH = ⊥

sH = ⊥

sH = ⊥

sH = ⊥

70

sH = ⊥

sH = ⊥ sH = ⊥

sH = ⊥sH = ⊥sH = ⊥

sH = ⊥ sH = ⊥ sH = ⊥

80

90

fH = (1,82)fH = (2,82)

fH = (1,82)fH = (2,82) fH = (2,82)

fH = (1,82)

fH = (1,82)

fH = (2,82)

fH = (2,82)

fH = (2,82)

fH = (2,82) fH = (3,82)

fH = (3,82)fH = (3,82)

fH = (3,82)

fH = (4,82)fH = (4,82)

sH = ⊥

Fig. 2. A terminal configuration of SID having a single head

Memory Efficient Self-stabilizing Distance-k 359

Algorithm 1. code of SID on the node v

Shared variables

• firstH(v) and secondH(v). They take value in k-augmentedID.

Internal variable

• beReal is a boolean variable used by some funtions.

Notation

• FirstS(v) = {a + 1 ∈ k-augmentedID | a = firstH(u) ∨ a = secondH(u)
with u ∈ Nv ∧ a.dist < k ∧ a.id �= idv}

• secondS(v) = {a ∈ FirstS |a.id �= firstH(v).id}

Boolean function specifications

• isDefended(v) returns true iff FirstS(v) �= ∅.

• isDominated(v) returns true iff id+v �= dom(FirstS(v) ∪ id+v).

• correctFirstH(v) returns true iff firstH(v) = min(FirstS(v)).

• correctSecondH(v) returns true iff secondH(v) = min(secondS(v)∪ ⊥).

Procedure specifications

• computingFirstH(v) sets firstH(v) to min(FirstS(v)).

• computingsSecondH(v) sets secondH(v) to min(secondS(v) ∪ ⊥).

Predicates

• Head(v) ≡ firstH(v) = (0, idv)

• toResign(v) ≡ isDominated(v)

• toElect(v) ≡ ¬isDefended(v)
• headToUpdate(v) ≡ secondH(v) �=⊥
• ordinaryToUpdate(v) ≡ ¬correctFirstH(v) ∨ ¬correctSecondH(v)

Rules

RE(v) : ¬Head(v) ∧ toElect(v) −→ firstH(v) := (0, idv); secondH(v) :=⊥
RU(v) : ¬Head(v) ∧ ¬toElect(v) ∧ ordinaryToUpdate(v) −→

computingFirstH(v); computingSecondH(v)

RR(v) : Head(v) ∧ toResign(v) −→
computingFirstH(v); computingSecondH(v)

RC(v) : Head(v) ∧ ¬toResign(v) ∧ headToUpdate(v) −→ secondH(v) :=⊥

The function isDefended(v) returns true if the set FirstS(v) is not empty
otherwise the function returns false.

The function isDominated(v) returns true if a value x of FirstS(v) domi-
nates the value id+v = (0, idv); otherwise the function returns false.

360 C. Johnen

The function correctFirstH(v) returns true if the value of firstH(v) is
min(FirstS(v)); otherwise or if the set FirstS(v) is empty then the function
returns false.

The procedure computingFirstH(v) sets firstH(v) to min(FirstS(v)) if the
set FirstS(v) is not empty; otherwise the value of firstH(v) is ⊥. In the latter
case, v verifies the predicate toElect(v) and it does not verify the predicate
toResign(v). So the procedure computingFirstH(v) is never preformed when
set FirstS(v) is empty.

The function correctSecondH(v) returns true if the value of secondH(v)
is min(secondS(v) ∪ ⊥); otherwise the function returns false. The procedure
computingSecondH(v) sets secondH(v) to min(secondS(v)∪ ⊥).

Once the system is stabilized, the set FirstS(v) contains some heads in
k − neighborhood of v. More precisely, this set contains the closest and second
closest head to v if there are at least one Head in the k − neighborhood of v.

If the k’s neighborhood of a node v does not contain any head then the set
FirstS(v)) is empty. So the predicate toElect(v) is verified. If v is an ordinary
node then v is enabled (the rule RE is enabled). Therefore, the heads set is a
distance-k dominating set, in a terminal configuration.

If one or several Heads have in their k-neighborhood another Head then at
least one of these Heads is enabled. Let us name, v, the Head having the largest
identifier among the Heads that have Heads in their k-neighborhood. Once the
system is stabilized, the FirstS(v) contains a value (d, idu) such that idv > idu
and d < k. The node v is enabled : it verifies the predicate toResign. So, the
set of heads is a distance-k independent set, in any terminal configuration.

3.3 Illustration of SID Behavior

In the Fig. 3, an execution with k = 2 under the synchronous schedule is pre-
sented. During the first computation step, the node having the identifier 8
detectes that its neighbor having the identifier 7 is a Head, so it becomes ordi-
nary by executing the rule RE (it sets its firstH variable to (1, 7)). Also during
the first step, the node at distance 1 of the Head 4 updates its shared variables
(i.e. it executes the rule RU). During the 2th step (starting at the configuration
b), two Heads detect that there are at distance 2 of the Head 4, as their iden-
tifier are larger than 4, they execute the rule RR (i.e. they become ordinary).
During the 3rd step (starting at the configuration c), two ordinary nodes (the
node of identifier 8 and the node of identifier 9) detect that they have no Head
in their 2-neighborhood so they become Head (i.e. they execute the rule RE).
During the 5th step, the node 9 detects that it is at distance 2 of the Head 8;
so it resigns. during the last computations step, the only rule executed is RU to
update the variable secondH. So, no node will change its status (i.e. to become
a Head or Ordinary). The configuration g is terminal and also legitimate.

Memory Efficient Self-stabilizing Distance-k 361

fH = (0,8)

fH = (0,4)

configuration g

fH = (0,6)

fH = (0,9)

fH = (0,7)

configuration b

configuration d

configuration f

fH = (0,8)

fH = (0,4)

configuration a

fH = (0,4)

fH = (0,8)

fH = (0,4)

configuration c

configuration e

fH = (0,7)

fH = (0,6)

fH = (0,9)

fH = (0,4)

fH = (0,8)

fH = (0,4)

fH = (0,4)

fH = (0,8)

sH = ⊥

sH = ⊥

sH = ⊥

sH = ⊥
fH = (1,4)

fH = (2,8)

fH = (2,4)

fH = (1,8)
sH = (2,4)

sH = (2,8)

sH = ⊥

sH = ⊥
fH = (1,7)

sH = ⊥

fH = (2,4)
sH = ⊥

sH = ⊥

sH = ⊥
fH = (2,4)

fH = (2,8)

sH = ⊥

fH = (1,4)
sH = (1,6)

sH = ⊥
fH = (1,4)

fH = (2,4)
sH = (2,6)

fH = (1,8)
sH = (1,9)

fH = (1,4)
sH = (2,8)

sH = ⊥

sH = ⊥

sH = ⊥

sH = ⊥

fH = (1,7)

sH = ⊥

sH = ⊥

sH = ⊥

fH = (1,4)

fH = (2,4)
sH = (2,6)

sH = (1,6)

sH = ⊥
fH = (1,4)

fH = (1,8)
sH = (1,9)

sH = ⊥

sH = ⊥
fH = ⊥

sH = ⊥
fH = (1,7)

sH = ⊥
fH = (2,4)

sH = ⊥

sH = ⊥
fH = (2,4)

sH = ⊥

sH = ⊥

fH = (1,7)

sH = ⊥

sH = ⊥

sH = ⊥

sH = ⊥

sH = ⊥
fH = (1,1)

Fig. 3. An execution of SID with k = 2

362 C. Johnen

4 Correctness of the Protocol SID
In this section, we prove that all terminal configurations of SID protocol are
legitimate: the set of heads is a distance-k independent dominating set.

Definition 7. The property OrdinaryPr(i) defined for all i ∈ [1, k] is verified if
the two following statements are satisfied:

– OrdinaryPrFirst(i): for all ordinary node v, firstH(v) = (i, idu) if and only
if u is the closest head to v and i is the distance between u and v.

– OrdinaryPrSecond(i): for all node v, secondH(v) = (i, idw) if and only if w
is the second closest head to v and i is the distance between w and v.

Observation 1. In a terminal configuration,

1. An ordinary node v does not verify OrdinaryToUpdate(v);
so firstH(v) = min(firstS(v)) and
secondH(v) = min(secondtSet(v) ∪ ⊥).

2. A head u does not verify HeadToUpdate(u);
3. Let w be a node (head or ordinary), firstH(w) 	=⊥;
4. if v is an ordinary node then firstH(v).dist > 0 ;
5. if secondH(v) 	=⊥ then secondH(v).dist > 0 ;
6. if secondH(v) 	=⊥ then secondH(v).dist ≥ firstH(v).dist because

secondS(v) ⊂ firstS(v), firsthead(v) = min(firstS(v))
and secondhead(v) = min(secondS(v))

Lemma 1. In a terminal configuration of protocol SID, the property Ordinary
Pr(1) is verified.

Proof. Let v be an ordinary node, in a terminal configuration of protocol SID,
named c. Assume that (1, x) ∈ firstS(v). So v has a neighbor u such that
firstH(u) = (0, x) or secondH(u) = (0, x).

According to Observation 1.5 secondH(u).dist > 0 or secondH(u) = ⊥. So v
has a neighbor u such that firstH(u) = (0, x). According to Observation 1.4 u
is a head; so x = idu. Notice that ∀a ∈ firstS(v), we have a.dist > 0, in c.

Proof of OrdinaryPrFirst(1). If v has a head at distance 1 then v has a
neighbor u such that firstH(u) = (0, idu). So, we have firstH(v) = (1, idu)
with u being the head in v’s neighborhood having the smallest identifier.

If v has not a head at distance 1 then for any u neighbor, we have firstH(u).
dist > 0. and secondH(u).dist > 0 or secondH(u) =⊥ (according to Observation
1.5). In this case, firstH(v).dist > 1.

Proof of OrdinaryPrSecond(1). If v has several heads at distance 1 then v
has a neighbor w such that firstH(w) = (0, idw) with idw 	= firstH(v).id. So,
secondH(v) = (1, idw) with w being the head in v’s neighborhood having the
second smallest identifier.

If v has at most one head at distance 1 then v has not a neighbor w such that
firstH(w) = (0, idw) with idw 	= firstH(v).id. In this case, secondH(v).dist is
larger than 1 or secondH(v) =⊥. �

Memory Efficient Self-stabilizing Distance-k 363

Lemma 2. Let i be a positive integer smaller than k. In a terminal configuration
of protocol SID, if the properties OrdinaryPr(j) are verified for all j ∈ [1, i]
then the property OrdinaryPr(i + 1) is verified.

Proof. Let us assume that the properties OrdinaryPr(j) are verified for all
j ∈ [1, i] in any terminal configuration of protocol SID.

In a terminal configuration c, (j, x) ∈ firstS(v) iff v has a neighbor u such
that firstH(u) = (j −1, x), or secondH(u) = (j −1, x). If j = 1 then u is a head
in c, according to Observation 1. If 1 < j ≤ i + 1 then x is the identifier of a
head in c at distance j − 1 of u, according to the property OrdinaryPr(j − 1).
So x is the identifier of a head at distance at most j of v, in c.

Proof of OrdinaryPrFirst(i+1). Let v′ be the closest head to v and d′ the
distance from v′ to v in the terminal configuration c. Assume that 0 < d′ ≤ i+1.
v has a neighbor u at distance d′ −1 to v′. In c, the node v′ is the closest head of
u; so firstH(u) = (d′ − 1, idv′), according to the properties OrdinaryPr(d′ − 1).
According to the properties OrdinaryPr(j) ∀ j ∈ [1, i], in c, we have the following
properties,

• if (l, id) ∈ firstS(v) then l ≥ d′; and
• if (d′, id) ∈ firstS(v) then id ≥ idv′ . In c,

We conclude that firstH(v) = (d′, idv′), in c.

Proof of OrdinaryPrSecond(i+1). Assume that the network has several heads. Let
v” be the second closest head to v and d” the distance from v” to v, in a terminal
configuration c. v has a neighbor u at distance d”−1 to v” in c. (we have d” > 0).
v” is the first or second closest head to u, in c. Assume that d” ≤ i+1. According
to the property OrdinaryPr(d” − 1), firstH(u) = (d′′ − 1, idv′′) ∨ secondH(u) =
(d′′ − 1, idv′′), in c. According to the properties OrdinaryPr(j) ∀ j ∈ [1, i), in c,
we have the following properties,

• if (l, id) ∈ secondS(v) then l ≥ d′′;
• if (d′′, id) ∈ secondS(v) then id ≥ idv′′ .

We conclude that secondH(v) = (d′′, idv′′). �

The following corollary is a direct result of lemmas 1 and 2. It establishes that
the set of heads is a distance-k dominating set.

Corollary 1. Let v be a ordinary node, in a terminal configuration of protocol
SID. firstH(v).id is the closest head to v; their distance is firstH(v).dist ≤
k. If secondH(v) =⊥ then v has a single head in its k-neigborhood; otherwise
secondH(v).id is the second closest head to v; their distance is secondH(v).dist.

The following theorem establishes that the set of heads is a distance-k indepen-
dent set in any terminal configuration.

Theorem 1. Let v be a head, in a terminal configuration of protocol SID. v
has not head in its k-neigborhood.

364 C. Johnen

Proof. We will prove that if a head has another head in its k-neigborhood then
the configuration c is not terminal.

Let wrongHeadSet the set of heads having one or several heads in their k-
neigborhood. Assume that wrongHeadSet is not empty. We denote by v1 the
node of wrongHeadSet having the largest identifier. We denote by v2, the closest
head to v1 and by d the distance between v1 and v2. We have 0 < d ≤ k and
idv2 < idv1.

The node v1 has a neighbor u at distance d−1 of v2. The node v2 is the first or
the second closest head to u. According to corollary 1, (d− 1, idv2) = firstH(u)
or (d − 1, idv2) = secondH(u). v1 is enabled because v1 satisfied the predicate
toResign(v1). �

5 Termination of the Protocol SID
In this section, we prove that all maximal computations of protocol SID under
any unfair distributed scheduler are finite by reductio ad absurdam arguments.

Lemma 3. Let e be a maximal computation.
The values taken by firstH and seconHead along e by any node belong to

the same set containing 3nk k-augmentedID values.

Proof. Let e be a maximal computation starting from a configuration, named
c0. In a configuration c reached by e, for any node v, firstH(v)c. id is either
the identifier of an node or this value appears in the initial configuration (i.e.
there is a node u, such that firstH(v)c.id = firstH(u)c0.id ∨ firstH(v)c.id =
secondH(u)c0.id). So, the value taken by a variable firstH in e belongs to a set
having 3nk values. Similary we prove that the value taken by a variable secondH
along e belongs to the same bounded set. �

Observation 2. Along any computation, a node performs at most one time the
rule RC.

Lemma 4. Let e be a maximal computation. e has a suffix in which the only
rule performed is RU.

Proof. Assume that a or several nodes perform infinitely often the action RE or
the action RR along e. Between two consecutive actions RE by a node u, this
node has performed on time the action RR. So a node u that infinitely often
performs the action RE or the action RR changes its status infinitely often. We
name u+ the node having the smallest identifier among the nodes that change
their status infinitely often. e has a suffix e1 where only nodes having a identifier
larger than idu+ changes their status (i.e. they perform the action RE or the
action RR).

As the set of value taken by firstH(u+) is bounded (Lemma 3) along e1, infi-
nitely often after the action RR(u+), firstH(u+) has the same value, denoted
by (l +1, id). Notice that id < idu+ and 0 < l < k. So u+ has a neighbor ul such

Memory Efficient Self-stabilizing Distance-k 365

that, infinitely often before the action RR(u+), ul verifies firstH(ul) = (l, id)
or secondH(ul) = (l, id).

At time, where u+ becomes head, we have firstS(u+) = ∅. So, the values of
ul variables are infinitely often larger than (l, id). Thus, ul gives infinitely often
to one of its variables the value (l, id), but also gives a larger value to the same
variable.

Assume that l > 0. At time where ul gives the value (l, id) to one of its
variable : ul has a neigbor ul−1, having the value (l − 1, id). At time where ul

gives a larger value than (l, id) to the same variable : ul−1 has a larger value
than (l − 1, id). We conclude that there is a series of l + 1 nodes : ul, ul−1, ..u0

such that ui has infinitely often has the value (i, id) and infinitely often does not
have this value along e1.

Along e1, u0 performs infinitely often the action RR and the action RE. We
have id = idu0 < idu+ : there is a contradiction. �

Lemma 5. Let e be a maximal computation. e has a suffix in which no rule is
performed.

Proof. According to Lemma 4, e has a suffix, named e2, in which the only rule
performed is RU. Assume that a node or several nodes changing infinitely often
their value firstH or their value secondH along e2. We named min+ the smallest
value infinitely often allocated to the variable firstH or to the variable secondH
of one of these nodes. Let e3 be the suffix of e2 in which no variable firstH and
no variable secondH gets a value smaller than min+. Along e3, infinitely often,
a node, named u+, performs RU action to set the value min+ to its variable
firstH or its variable secondH; and infinitely often, u+ performs RU action to
set to the same variable a value larger than min+.

Let c → c′ be a computation step of e3 where u+ performs RU action to set
a value larger than min+ to its variable firstH or to its variable secondH. In c,
min+ is smaller than min(firstS(u+)) or min+ is smaller than min(secondS
(u+)) . This property stays verified after this computation step along e3. So u+

never sets the value min+ to its variable firstH (resp. to its variable secondH).
There is a contradiction. �

As no computation can be infinite, any maximal computation reaches a ter-
minal configuration.

Corollary 2. under the unfair distribued scheduler, Any maximal computation
reaches a terminal configuration.

6 Conclusion

A simple and silent self-stabilizing protocol building distance-k independent
dominating sets is presented. The protocol converges under the unfair distrib-
uted scheduler (the weakest scheduling assumption). The computation of the
convergence time of the protocol is an open question. In [10], we establish that

366 C. Johnen

any distance-k independent sets contain at most �(2n)/(k + 2)� nodes, n being
the network size. So the protocol of [10] and the presented protocol have the same
upper bound on the size of built k independent dominating sets : �(2n)/(k +2)�
nodes.

The protocol SID is memory efficient : it requires only log(2.((n+1).(k+1))2)
bits per node.

References

1. Bein, D., Datta, A.K., Jagganagari, C.R., Villain, V.: A self-stabilizing link-cluster
algorithm in mobile Ad Hoc networks. In: International Symposium on Parallel
Architectures, Algorithms and Networks (ISPAN 2005), pp. 436–441 (2005)

2. Bui, A., Clavière, S., Datta, A.K., Larmore, L.L., Sohier, D.: Self-stabilizing hier-
archical construction of bounded size clusters. In: Kosowski, A., Yamashita, M.
(eds.) SIROCCO 2011. LNCS, vol. 6796, pp. 54–65. Springer, Heidelberg (2011)

3. Caron, E., Datta, A.K., Depardon, B., Larmore, L.L.: Self-stabilizing k-clustering
algorithm for weighted graphs. J. Parallel Distrib. Comput. 70, 1159–1173 (2010)

4. Datta, A.K., Larmore, L.L., Vemula, P.: A self-stabilizing O(k)-time k-clustering
algorithm. Comput. J. 53(3), 342–350 (2010)

5. Larsson, A., Tsigas, P.: A self-stabilizing (k, r)-clustering algorithm with multiple
paths for wireless Ad-hoc networks. In: IEEE 31th International Conference on
Distributed Computing Systems, (ICDCS 2011), pp. 353–362. IEEE Computer
Society (2011)

6. Larsson, A., Tsigas, P.: Self-stabilizing (k,r)-clustering in clock rate-limited sys-
tems. In: Even, G., Halldórsson, M.M. (eds.) SIROCCO 2012. LNCS, vol. 7355,
pp. 219–230. Springer, Heidelberg (2012)

7. Datta, A., Devismes, S., Larmore, L.: A self-stabilizing o(n)-round k-clustering
algorithm. In: 28th IEEE Symposium on Reliable Distributed Systems (SRDS
2009), pp. 147–155 (2009)

8. Datta, A.K., Larmore, L.L., Devismes, S., Heurtefeux, K., Rivierre, Y.: Self-
stabilizing small k-dominating sets. Int. J. Networking Comput. 3(1), 116–136
(2013)

9. Datta, A.K., Larmore, L.L., Devismes, S., Heurtefeux, K., Rivierre, Y.: Compet-
itive self-stabilizing k-clustering. In: IEEE 32th International Conference on Dis-
tributed Computing (ICDCS 2012), pp. 476–485 (2012)

10. Johnen, C.: Fast, silent self-stabilizing distance-k independent dominating set con-
struction. Inf. Process. Lett. 114(10), 551–555 (2014)

11. Johnen, C.: Memory efficient self-stabilizing k-independent dominating set con-
struction. Technical report RR-1473-13, Univ. Bordeaux, LaBRI, UMR 3800,
F-33400 Talence, France, June 2013

Optimizing Diffusion Time of the Content
Through the Social Networks: Stochastic

Learning Game

Soufiana Mekouar1(B), Sihame El-Hammani1, Khalil Ibrahimi2,
and El-Houssine Bouyakhf1

1 LIMIARF, FSR, Mohammed-V Agdal University, Rabat, Morocco
{soufiana.mekouar,elhammani.sihame}@gmail.com, bouyakhf@mtds.com

2 LARIT, FSK, IBN-Tofail University, Kenitra, Morocco
khalil.ibrahimi@gmail.com

Abstract. Both customers and companies have a great interest to opti-
mize the diffusion time. The contents generators always try to dissemi-
nate their information in the minimum time in order to benefit the most
of the received reward. In our paper, we suppose that each node in the
social network is interested to diffuse its content with the goal of opti-
mizing its delivery time and selling its information to the receivers. Each
content generator must target its adapted neighbors, who will play the
role of relay and will allow the arrival of the information to its destination
before the expiry of its time. The objective of our work is to disseminate
the content through neighbors characterized by a high connectivity and
a high quality of relationships in terms of being interested to share the
same type of information. We model our problem as a stochastic learning
game, where each player tries to maximize its utility function by select-
ing the optimal action depending on the state of the system and on the
action taken by the competitor.

1 Introduction

The social network is a gathering of individuals of the same interest in a small
group that allows to be connected to the rest of the world by sharing ideas,
experiences, photos and exchange of various contents. It allowed users to produce,
create and consume contents. It gives a wide access to information and plays an
important role in the diffusion of ideas and information between users. It has
become a way of life for the majority of users. Each node tries to share the most
its content in the social network, to gain more profit. This attracted the scientific
community to study the maximization of the content diffusion through the social
network [1,2,9]. We consider in this paper, the competition between two sources
(i.e. seller of contents) that create the content and wish to disseminate it in a
limited time to the receiver (i.e. buyer of content). Each source has its neighbors,
and it is required to find the most appropriate of them that will play the role
of relay and will permit to disseminate the information within a certain delay.
The target neighbors are those who have a high degree and a good sharing
c© Springer International Publishing Switzerland 2015
A. Bouajjani and H. Fauconnier (Eds.): NETYS 2015, LNCS 9466, pp. 367–381, 2015.
DOI: 10.1007/978-3-319-26850-7 25

368 S. Mekouar et al.

quality. We suppose that a source can accelerate the diffusion of its content just
by increasing the sharing probability of the information between its neighbors.
Also, we assume that once the interested user receives the information, he will
be satisfied and will not require any other content. We formulate the problem
as a two player zero-sum stochastic game. We use the minimax Q-Learning
to calculate the equilibrium by employing the linear programming, where each
player tries to maximize its utility and to minimize the one of the competitor.
The principal contributions in this paper are:

– Target the source’s neighbors who have a high connectivity that gives them an
attractive personality, more experience and better reputation of good content’s
diffusion.

– Target neighbors with a good quality of relationship in terms of sharing the
same content type as the source. This will increase the arrival probability of
the information to its destination.

– Suppose that each content has a time constraint which determines the validity
of the content. If this time is expired, it is no need to diffuse the content.

2 Related Work

The selection of influential nodes is widely studied in literature. Authors in
[1,4,5] treated the problem of selection of k nodes to maximize this influence.
Our model differs of these works in the selection of the best neighbors, by which
we disseminate the content to reach the destination.

In [6], the authors facilitated access to streaming content by caching service
of popular content. With the same manner, in [7], the author accelerated the
content diffusion by using some services, such as caching, and recommendation
system by the content distributor that gives a preferential treatment to individ-
uals who pay for advertising. He formulated the competition problem between
several contents generators; each one has a level of popularity (diffusion rate) by
a stochastic game. The solution shows the advertising strategy. This is similar to
our work, but in our model we assume that the message received by the recipient
has a delay defined as a validity time. If this deadline is expired, the node must
not disseminate the information.

Several studies have focused on the selection of the most influential nodes
[3,4,8], with the attention to target these ones, to maximize the diffusion. They
showed that finding these influential nodes sets are NP-hard. They used an
analysis based on sub-modular functions, and they employ heuristic analysis of
social networks such as the centrality to maximize the diffusion.

In [10], the model focuses on the decision taken by individual who creates
content and competes through consumers and their interactions. This, offer to
content generator the opportunity of advertises proposed by the owner of the
social network or other ones to accelerate the diffusion. In [8], they attempted
to trace the propagation path of the content, since the observation of node that
influences another is difficult, based on the infection node time. They identify

Optimizing Diffusion Time of the Content Through the Social Networks 369

the network that show the time of infection node by formalizing the problem and
developing an evolutionary algorithm that infers the network of influence and
diffusion. In the same direction, in [3], they defined the problem of maximizing
the dissemination that seeks to add k connections per user such that the propa-
gation probability of the content is maximized. The goal is to compute the set of
pertinent recommendation as the diffusion is maximized. And, in [9], they for-
mulated the problem of maximizing the dissemination with a probabilistic voter
model where its behavior depends on the initial assignment of f0 that must be
equal to 1 in order to maximize diffusion. The heuristic used is to select the node
with high degree.

For [11], the authors proposed the time-critical influence maximization prob-
lem, in which a user wants to maximize influence spread within a given deadline.
They design two heuristic algorithms; the first one is based on a dynamic pro-
gramming procedure. The second converts the problem to the original IC model
and then applies existing fast heuristics to it. They show that time-critical influ-
ence maximization under the time-delayed IC model maintains desired properties
such as sub-modularity. Also, in [12] the authors considered a game-based model,
where each individual makes a selfish rational choice in terms of its payoff in
adopting the new innovation. They study how diffusion effect can be maximized
by seeding a subset of individual. They design polynomial-time approximation
algorithms for three representative classes, Erdos-Rényi, planted partition and
geometrically structured graph models.

In this paper, we try to combine between the connectivity and the high shar-
ing quality to spread the content to its receiver in an appropriate time in a
competitive environment.

3 Formulation Model

We consider n nodes in the social network as illustrated in Fig. 1. We have two
sources (S1 and S2) from these nodes that generate the same type of contents.
This content can be a commercial service (as example the diffusion of the infor-
mation about the popular tourist spots in a city, hotel categories, promotion in a
market, or travel times). At each step, the node who has the information (either
the source, or a neighbor) tries to disseminate it through one of its best neigh-
bor, in order that the content can be available to the receiver in the appropriate
time.

The sources and receivers are separated by intermediates nodes, represented
by the source’s neighbors, neighbors of neighbors and so on. Each neighbor has
a degree (e.g. x3 its degree is 3) and a sharing probability of the same type of
content (e.g. x3 has two probabilities noted by p3,8 and p3,9).

Each node must choose the neighbor having the highest degree and the high-
est sharing probability of the same type of the source’s content. To realize this,
the node is based on its own information that is the fraction of connections
and the quality of relationships of its neighbors. In the following subsection, we
attempt to give a computational model for computing the fraction of interested

370 S. Mekouar et al.

Fig. 1. Competition between two sources (S1 and S2) to deliver the content to the
receiver on time. The receivers are colored by orange, the neighbors are colored by cyan
and finally the sources are colored by green. The source S1 compares the connectivity of
each one of its neighbors (x4, x5, x6 and x7) to choose the highest. For the relationships
quality it compares the sharing probability (p4,10,p5,11, p5,12,...) at each edge, then it
chooses the neighbor with the highest probability (Color figure online).

users by the sources’ contents, the fraction of node’s neighbor and the sharing
probability of the same content’s type.

The Fraction of Users Interested in the Contents: We consider that we
have n nodes in the social network. We suppose having two sources from these
nodes that can be passive or active by participating in generating and sharing
the content. We define R as the fraction of the population that just might be
interested in the two sources contents, we take R = n − 2. And we denote M
as the fraction of the population that is really interested in getting one of the
contents generated by the two sources, this fraction can be written as follows:

M
′
(t) = βM(t)(R − M(t)) (1)

Let β be the sharing rate of the content, that can be defined as: β = m
n , where

m is the number of nodes that share the same type of content, m ≤ n − 1. The
solution of the differential equation with the initial condition M(0) = ε, where
0 < ε ≤ R, is given by:

M(t) =
R ε exp(βRt)

R − ε + ε exp(βRt)
(2)

The Fraction of Node Neighbors: Each node i in the social network has a
fraction of its neighbors noted by xi(t), which can be calculated by the equation:

x
′
i(t) = βxi(t)(M(t) − xi(t)), (3)

Optimizing Diffusion Time of the Content Through the Social Networks 371

The solution of the Eq. (3) gives the neighbors fraction of a node i, where the
initial condition is x(0) = γ, and 0 ≤ γ ≤ R.

xi(t) =
(R − ε + ε exp(βRt) R γ)

R2 − γ ε + β R γ((R − ε)t + ε
βR exp(βRt))

(4)

We can distinguish two particular cases:

– ε = 0 equivalent to that the source has no neighbor at the instant t = 0.
– ε = R equivalent to that all nodes that may be interested in the contents of

the source are neighbors of the latter.

Sharing Quality of a Neighboring Node: The sources generate the content
and diffuse it through their neighbors. When the information arrives at a node,
this latter has the decision to share it or not. Let pi(t) be the probability of
sharing the content by the node i.

p
′
i(t) = βxi(t)(1 − pi(t)). (5)

We take the initial condition pi(0) = 0, (at time t = 0, the probability that a
neighbor shares the same type of content diffused by the source is zero). Then,
the solution of the Eq. (5), using the Eq. (4) is:

pi(t) = 1 − R2

R2 − γ ε + β R γ((n − ε)t + ε
β R exp(βRt))

. (6)

3.1 Diffusion Policy

We consider that we have n nodes in the social network and two sources from
these nodes that can be passive or active by participating in generating or sharing
the content. We assume that m of these nodes share the same kind of content
as the source. So, the probability that all these shared contents will arrive with
success to the receivers is given by:

pm =
(

n − 1
m

)
pmqn−m−1 (7)

With some abuse of notation, from Eq. (6), and by ignoring the index i, we define
p as the sharing probability of the same content type like the source.

3.2 Formulation of Two Sources Zero-Sum Stochastic Game

We consider in this paper, a two player zero-sum stochastic game. The sources
are the players that try to spread their contents and put it available to the
recipients. Therefore, they choose one of the available actions to ensure that
their contents arrive on time to the destinations.

372 S. Mekouar et al.

In this paper, we formulate the optimization problem of the content delivery
time by a zero-sum stochastic game. We consider the source (the competitor)
and the neighboring nodes that help it to disseminate the information on time as
only one player (as another player). The game is set in pairs between the source
and a neighbor and after between two neighbors till the information arrives to
its destination.

Each player tries to maximize its utility function, with the choice of the
optimal action, basing on the history of states and actions performed previously.
We describe below the components of the stochastic game, which is supposed to
be observable by all nodes:

States: At each time t, each source i knows its neighbors xi and knows the quality
of relationships maintained with its neighbors in terms of sharing the same content
type. We define the state of a node i by si = (nCi, qri). Where nCi denotes the

proportion of neighbors of the source i, nCi =

{

0, low degree.
1, high degree.

, and qri is the

relations quality with those neighbors of i, qri =

{
0, not share the same content type.
1, share the same content type.

The state si of each source/player is defined by one of these main states: s1 =
(0, 1), s2 = (0, 0), s3 = (1, 1), s4 = (1, 0).

Action: Each user has the choice between diffuse or not the content with certain
intensity. This choice depends on several parameters as the competitor action,
the current and past system state, the validity time of the information and the
number of interested users by the content. In this paper, we argue that each user
has the choice between actions according to the content validity time. Then, we
mention the action of the users as follows:

A = {ak0(not diffuse), ak1(diffuse with low intensity), ak2(diffuse with high
intensity)}

Where, Dm is the time limit of the content. And j, k ∈ {k0, k1, k2},
k0 ∈ [5Dth

6 ,Dth], k1 ∈]Dth

2 , 5 Dth

6 [, k2 ∈ [0, Dth

2], an ∈ A, n ∈ {1,,Dm}.

Reward: Each player attempts to maximize the content diffusion with neighbors
characterized by high connectivity and good sharing quality, in order that the
information arrives to its destination before the expiry of its validity time. Once
this content has reached the interested, the transmitter receives a reward from
the recipient. So, the immediate reward of the source is given by:

Ri(s, ak, bj) = us(ak, bj) (−→v1 gi(D) + −→v2 M(t)), (8)

Where:

– us(ak1 , bj): is the reward received by the source when it chooses the action ak1

and the competitor chooses the action bj at state s, where s ∈ S = {s1, s2, s3
and s4},

– −→v1: is the reward vector of diffusing a content, that decreases with the validity
time,

– −→v2: is the reward vector of diffusing a content, that increases with the fraction
of interested users by this content,

Optimizing Diffusion Time of the Content Through the Social Networks 373

– g(D): is a decreasing function with the delay time D. The delay time D is
initialized to 1 and increases at each step of time by 1,

gi(D) =
1

D + 1
.

– M(t): is obtained from Eq. (2). So, we can write Eq. (17) as:

Ri(s, ak, bj) = us(ak, bj) (−→v1
1

D + 1
+ −→v2 M(t)). (9)

Transition Probability: The change of state of a player depends on its inten-
sity of sharing the information with another node.

So, we define δ as the accelerate rate of diffusion with low intensity and
σ as the accelerate rate of diffusion with high intensity. And we consider that
the system is modeled by a Markov chain in discrete time on the state space
S = {s1, s2, ..., sn}, where si = (nCi, qri).

Consequently, a player switches from the state s ∈ S to s′ ∈ S after choosing
the action a, based on the current state of the system, and the estimated action
b taken by the competitor. Then, the transition probability is given by:

P (S
′ |S, ak, bj) =

n∏

i=1

P (s
′
i|si, ak, bj).

This transition probability for our two players zero-sum stochastic game can be
written as:

P (s
′ |s, ak, bj) =

⎧
⎪⎪⎨

⎪⎪⎩

σpm, for S1 and a = ak2 , b �= ak2 ,
1 − σpm, for S2 and a �= ak1 , b = ak2 ,
δpm, for S3 and a = ak1 , b = ak2 ,
1 − δpm, for S4 and a = ak0 , b �= ak0 .

Where, S1 = {s
′

= s3, s = s1 or s
′

= s3, s = s2}, S2 = {s
′

= s1, s = s2
or s

′
= s2, s = s1}, S3 = {s

′
= s1, s = s3 or s

′
= s1, s = s4} and S4 = {s

′
=

s2, s = s3 or s
′
= s2, s = s4}.

4 Optimal Policy of Our Stochastic Game

Each source tries to maximize its utility by spreading the content to one of its
best neighbors, according to certain criteria, with the aim that its content arrives
to the recipient in the opportune time. We are led to consider a two players zero-
sum stochastic game, where the source targets to extract the optimal policy that
maximizes its discount utility. Thus, we express the expected utility as:

Ui(s, ak, bj) = E

[∞∑

t=0

γtR
π
i (s, ak, bj)

]
. (10)

374 S. Mekouar et al.

Where γt ∈ [0, 1] is the discount factor and Rπ
i (s, ak, bj) is the estimated reward

of player i at state s with effectuating the strategy/policy π.
The policy in our game for a player is defined as the distribution proba-

bility over the space of actions A depending on the state of the player, like
πi : S −→ P (A). As example, for a ∈ A and s ∈ S, we have the policy
for a source −→π1(s, ak) = [π1(s, a0), π1(s, a1), π1(s, a2),, π1(s, aDm

)], such that
π1(s, a0) + π1(s, a1) + π1(s, a2) + ... + π1(s, aDm

) = 1. Same for the competitor
that has its proper policy over the space of actions A, so we have: −→π2(s, bj) =
[π2(s, a0), π2(s, a1), π2(s, a2), ..., π2(s, aDm

)], such that π2(s, a0) + π2(s, a1) +
π2(s, a2) + ... + π2(s, aDm

) = 1.
Shapley [13], shows that it exists for the both players, always an optimal

stationary Markov strategy, that depends only on the current state. The strat-
egy/policy is stationary if it is independent of time, i.e., πt+1 = πt. So, we have
to find this optimal strategy.

Since the game is non-cooperative between the two sources, we deduce that
there is an unique equilibrium for each player. To find it, we begin by defining
the value function that gives us the maximum of the expected utility.

V (s,D) = max−→π1(s,ak)
min−→π2(s,bj)

∑

ak∈A

Qs,D(ak, bj)−→π1(s, ak). (11)

Where −→π1(s, ak) is the probability to choose the action ak at the state s. Qs,D(ak,
bj) is the action-value function, that represents the estimated utility, described
as the reward of the game between the two sources in competition. The value
of Qs,D(ak, bj) proves that in a state the selected action is the best. This is a
simple way for an agent to learn how to react with an optimum manner [14].
The update of the action-value function is given by:

Qs,D(ak, bj) = Ri(s, ak, bj) + γ
∑

s′ ∈S

P (s
′ |s, ak, bj)V (s

′
,D). (12)

The source improves its action-value function from its experience in updating
its Q-function [15] as follows:

Qs,D(ak, bj) = (1 − α)Qs,D(ak, bj) + αU, (13)

Where,
U = Ri(s, ak, bj) + γV (s

′
,D). (14)

α is the learning factor and V (s
′
,D) is obtained by Eq. (11). As a result, both

players find the equilibrium using the minimax-Q Learning [15,16]. In Eq. (13)
the value at state s

′
, V (s

′
,D), is used as the estimated future rewards, and its

value increases with iterations. It is proved in [17] that the learning minimax-Q
converges to the limit of the correct Q and V values. The aim of minimax-Q
learning [16,18] for a source is to obtain the optimal policy that maximizes its
reward and minimizes the one of the competitor. So, this allows us to define
the matrix noted by Qs,D(ak, bj). The rows of this matrix are formed by the

Optimizing Diffusion Time of the Content Through the Social Networks 375

source strategies π1(s, ak),∀a ∈ A and the columns are formed by the competitor
strategies π2(s, bj),∀bj ∈ A. Thus, the value of the game is given as:

max−→π1(s,ak)
min−→π2(s,bj)

(−→π2(s, bj))tQs,D(ak, bj)−→π1(s, ak), (15)

We fix the strategy of the source −→π1(s, ak), So, Eq. (15) becomes:

min−→π2(s,bj)
(−→π2(s, bj))tQs,D(ak, bj)−→π1(s, ak) (16)

Where Qs,D(ak, bj)−→π1(s, ak) is a vector and −→π2(s, bj) is a distribution probability
for the action chosen by the competitor.

Let’s note ku as the index of columns elements in the payoff game matrix
Qs,D(ak, bj). Where ku = [π2(s, b0)π2(s, b1)π2(s, b2), ..., π2(s, bDm

)]. The goal is
to find the minimal elements of Qs,D(ak, bj)−→π1(s, ak).Then, the solution of (16)
is to find the min

ku
[Qs,D(ak, bj)−→π1(s, ak)]k. So, Eq. (15) becomes:

max−→π1(s,ak)
min
ku

[Qs,D(ak, bj)−→π1(s, ak)]ku (17)

We note F = min
ku

[Qs,D(ak, bj)−→π1(s, ak)]ku

So, [Qs,D(ak, bj)−→π1(s, ak)]ku ≥ min−→π2(s,bj)
[Qs,D(ak, bj)−→π1(s, ak)]ku = F .

Then, the problem in (15) becomes:

max−→π1

F (18)

S.t
[Qs,D(ak, bj)−→π1(s, ak)]ku ≥ F

∑

ak∈A

π1(s, ak) = 1

−→π1(s, ak) ≥ 0
−→π1(s, ak) ≥ 0 means that each element of the probability vector −→π1(s, ak) is
non-negative.

The problem described in (18) can be written as:

max
v

e1v (19)

S.t
Q

′
v ≤ 0

e2v = 1
−→π1(s, ak) ≥ 0

Where v =
(−→π1(s, a)

F

)
, e1 = [0, 1], e2 = [1, 0], Q

′
= [1,−Qs,D(a, b)].

So, the source can easily calculate the optimal strategy by solving the linear
program (19).

376 S. Mekouar et al.

4.1 Minimax Q-learning Algorithm

In this subsection we give the Minimax Q-learning Algorithm of our game.

Algorithm 1. Minimax Q-learning algorithm for a two-players zero-sum sto-
chastic game.
1: D = 1, 2,, Dm,

Initialization:
2: ak, bj ∈ A X A such as A = {a1, a2, ..., aDm},
3: s = (nCi, qri), nCi = {0, 1}, qri = {0, 1},
4: V (s, D) = 1, Qs,D(ak, bj) = 1.

Action choice:
5: Each source/player (competitor) chooses an action ak ∈ A (bj ∈ A) according to

its distribution probability over the space of action A depending on the state of
the player.
Learn:

6: The source receives the reward Ri(s, ak, bj), when it chooses the action ak at state
s and the competitor takes the action bj .

7: The source updates its function Qs,D(ak, bj) according to (13)
8: The update of the optimal strategy is given by:

π∗
1(s, ak) = arg max−→π1(s,ak)

min−→π2(s,bj)
Qs,D(ak, bj).

9: The update of V (s, D) is calculated by:

V (s, D) = max−→π1(s,ak)
min−→π2(s,bj)

∑

ak∈A

−→π1(s, ak)Qs,D(ak, bj).

10: The Learning factor decay with rate d is computed as:
α = α d, 0 < d < 1

11: Stop if D = Dth, Dth is obtained via the Proposition 5.

Proposition 5. Our stochastic game has a time threshold Dth. If D ≥ Dth

the source should not diffuse the content a = a0. This threshold is given by:
Dth = min{Dth1,Dth2}, where

Proof 1. When the time reaches a threshold D = Dth, it is better to not diffuse
the content, which means:

The user has to not diffuse rather than diffuse with low intensity which give
us:

Optimizing Diffusion Time of the Content Through the Social Networks 377

The user has to not diffuse rather than diffuse with high intensity when the
time validity reach the threshold, which means:

Qak0
, bj(s,Dth) ≥ Qak2

, bj(s,Dth)

This gives:

us(ak0 , bj) (−→v2 M(t) + −→v1 (1/Dth)) + P (s
′
, s, ak0 , bj) V (s, Dth) ≥ us(ak1 , bj) (−→v2 M(t)

+−→v1 (1/1 + Dth) + P (s
′
, s, ak0 , bj) V (s, Dth + 1)

Dth2≤
(us(ak0

, bj) − us(ak2
, bj))

−→v1
us(ak2, bj)−→v2 M(t) + P (s′

, s, ak2
, bj) V (s,Dth + 1) − P (s′

, s, ak0
, bj) V (s,Dth)?us(ak0

, bj)
−→v2M(t)

−1

Dth is the minimum of the two threshold Dth1 and Dth2

5 Numerical Results

We consider in this paper n equals to 100 nodes and we suppose that we have
a source and a competitor from these nodes. The source and competitor can be
for example two telecommunication operators, which advertise the same contents
type. This information can be for instance a list of the available hotels in a city,
destined to the tourists that are equipped with smart phones, and wish reserved.
In this case, the information must arrive on time to the receivers (tourists)
before certain hotels become full. Once the tourist gets the information he will
be satisfied and will not look for other content. We take for the fraction of
interested users ε = 0.25, the rate of diffusion with high intensity is σ = 6 and
the rate of diffusion with low intensity is δ = 2. The validity of the content vary
between 1 and 24 h. The sharing rate of the content is β = 0.3 and the fraction
of the source neighbors is γ = 0.15. We recall that the action space of the source
and the competitor is the same.

In state s1, the user has a low degree and a high sharing quality of the same
content type as the source. So, from Fig. 2, we observe in s1 that most appropriate
action is when the user chooses to diffuse with low intensity and the competitor
with high intensity, because in this case the source gets the higher value of its
utility function. Also, we notice that the user choice to diffuse with high or low
intensity or not diffuse the content has almost the same effect. All curves have
the same behavior compared to the validity time of the content. At the beginning

378 S. Mekouar et al.

Fig. 2. The value-function of the source versus content validity time at state s1.

the three curves have a high utility, after 12 h, the utility becomes less important
and decreases with the time validity. This result is due to the fact that during
the first life time of the content, the user gets a better utility thanks to the
increasing number of interested user by the information and the fact that the
validity time does not achieve the threshold Dth.

From this figure, we can also infer that the source try to target its best
neighbors, but it does not get enough utility. This is due to its low degree of
sharing that does not allow it to find many neighbors. But, thanks to the method
adopted in our paper, the source has managed to disseminate its information
before it expires.

In state s2, the user has a low degree and a bad sharing quality of the same
content type as the source. Then, from Fig. 3, we notice that the utility of the
user when it chooses to not diffuse and the competitor to diffuse with high
intensity is the highest.

We can explain this result by the fact that the source does not try to make an
effort to find the right neighbor. It doesn’t have many neighbors and in addition
it has a bad sharing quality with them, in term of sharing the same content type.
Therefore, and because of this system state that doesn’t allow to disseminate the
source information on time, it can be concluded that the best utility corresponds
to the choice of the action ak0 (not diffuse).

In state s3, the user has a high degree and a good sharing quality of the same
content type as the source. Thus, we perceive from Fig. 4 that when both user
and competitor choose the action diffuse, the utility received is more important
than any other case. This performance is the result of the effort of both user
and its competitor to diffuse with high intensity and good sharing quality, so,
the gain is better. Since, the two sources are in competition to disseminate their
information on time, which makes the information viral due to the effect “word
of mouth”.

We conclude also from this figure, that at state s3, it is better to diffuse with
high intensity when the competitor diffuse on the same rate and not diffuse when

Optimizing Diffusion Time of the Content Through the Social Networks 379

Fig. 3. The value-function of the source versus content validity time at state s2.

Fig. 4. The value-function of the source versus content validity time at state s3.

the competitor diffuse with low intensity. This result can be explained by the
fact that the shared information is not enough popular and there is not much
destination that ask for it.

Indeed, we can infer also from Fig. 4, that the source succeed to put the infor-
mation available to the receiver on time and to target the adequate neighbors
that have the high degree and the high sharing quality. This is thanks to our
adopted methodology that guarantees the best utility in such state.

In state s4, the user has a high degree and a bad sharing quality of the same
content type as the source. So, in this state, from Fig. 5 we detect that the most
suitable action of the source is to diffuse with low intensity when the competitor
diffuses with high intensity. Doubtlessly, the user that has the high degree despite
of its bad sharing quality can disseminate the information on its appropriate time,
with a good utility, but, the diffusion must be performed with low intensity.

This demonstrates that neighbors with high degree have a crucial power on
the diffusion and the influence dissemination. Accordingly, the utility gained by

380 S. Mekouar et al.

Fig. 5. The value-function of the source versus content validity time at state s4.

the source is more important when it follows our proposed method by targeting
nodes with high degree regardless of their sharing quality.

In this section we present the numerical results of our proposed model.
Where, we tried to treat all possible states, and helped the source to choose
the best action in each state.

The found results promotes our proposed model, and allows us to reach our
goal to disseminate the content as soon as possible to the receivers by targeting
the best neighbors.

Consequently, this model can be integrated into any social network, and
can be very useful for content generator, especially for companies who want to
advertise their products and make them available to customers.

6 Conclusion

In this paper, we studied the information diffusion problem within a certain
delay. Where, the generator of content must target neighbors with a high con-
nectivity and a good behavior towards its content type. These neighbors act as
relays and help in transferring the source information on time to its destination.
Thereafter we studied the competition between two sources generating the same
type of content, where each of them maximizes its utility and minimizes that
of the other. We used the minimax Q-learning to find the equilibrium and we
defined a threshold limit of the contents. If the time reaches this threshold, the
sources stop the diffusion process of their contents, because the information will
not going to have any more utility to arrive at its destination. In future work,
we propose to study the multi-player stochastic game on the dissemination of
content including the popularity of the information.

Optimizing Diffusion Time of the Content Through the Social Networks 381

References

1. Kempe, D., Kleinberg, J.M., Tardos, E.: Maximizing the spread of influence
through a social network. In: Proceedings of the Ninth ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining, KDD, pp. 137–146.
ACM (2003)

2. Kempe, D., Kleinberg, J.M., Tardos, E.: Influential nodes in a diffusion model
for social networks. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C.,
Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 1127–1138. Springer, Heidelberg
(2005)

3. Even-Dar, E., Shapira, A.: A note on maximizing the spread of influence in social
networks. In: Deng, X., Graham, F.C. (eds.) WINE 2007. LNCS, vol. 4858, pp.
281–286. Springer, Heidelberg (2007)

4. Kim, H., Yoneki, E.: Influential neighbours selection for information diffusion in
online social networks. In: 21st International Conference on Computer Communi-
cations and Networks (ICCCN), Munich, Germany, pp. 1–7 (2012)

5. Jung, K., Heo, W., Chen, W.: Irie: scalable and robust influence maximization in
social networks. In: Proceedings of 12th International Conference on Data Mining
(ICDM 2012), pp. 918–923. IEEE Computer Society, Washington, DC (2012)

6. Haddad, M., Altman, E.: The interplay between caching and popularity. In: NetG-
COOP: International Conference on NETwork Games, COntrol and OPtimization,
pp. 1–4. IEEE (2011)

7. Altman, E.: A stochastic game approach for competition over popularity in social
networks. Dynamic Games and Applications, Online publication, September 2012

8. Rodriguez, M.G., Leskovec, J., Krause, A.: Inferring networks of diffusion and
influence. In: Proceedings of the 16th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD 2010, pp. 1019–1028. ACM, New
York (2010)

9. Even-Dar, E., Shapira, A.: A note on maximizing the spread of influence in social
networks. Inf. Process. Lett. 111(4), 184–187 (2011)

10. Altman, E.: A semi-dynamic model for competition over popularity and over adver-
tisement space in social networks. In: VALUETOOLS, pp. 273–279. IEEE (2012)

11. Chen, W., Lu, W., Zhang, N.: Time-critical influence maximization in social net-
works with time-delayed diffusion process. arXiv preprint arXiv:1204.3074 (2012)

12. Ok, J., Jin, Y., Shin, J., Yi, Y.: On maximizing diffusion speed in social networks:
impact of random seeding and clustering. In: The 2014 ACM International Confer-
ence on Measurement and Modeling of Computer Systems, SIGMETRICS 2014,
pp. 301–313. ACM, New York (2014)

13. Shapley, L.S.: Stochastic games. Proc. Nat. Acad. Sci. U.S.A. 39(10), 1095 (1953)
14. Watkins, C.J.: Learning from Delayed Rewards. Diss. University of Cambridge

(1989)
15. Bowling, M., Veloso, M.: Rational and convergent learning in stochastic games.

In: Proceedings of the 17th International Joint Conference on Artificial Intelli-
gence - IJCAI 2001, vol. 2, pp. 1021–1026. Morgan Kaufmann Publishers Inc., San
Francisco (2001)

16. Littman, M.L.: Markov games as a framework for multi-agent reinforcement learn-
ing. In: ICML 1994, pp. 157–163 (1994)

17. Littman, M.L., Szepesvári, C., Littman, M.L.: A generalized reinforcement-
learning model: convergence and applications. In: ICML, pp. 310–318 (1996)

18. Bowling, M., Veloso, M.: An analysis of stochastic game theory for multiagent
reinforcement learning. No. CMU-CS-00-165. Carnegie-Mellon Univ. Pittsburgh
PA School of Computer Science (2000)

http://arxiv.org/abs/1204.3074

Tracking Causal Dependencies in Web Services
Orchestrations Defined in ORC

Matthieu Perrin, Claude Jard(B), and Achour Mostéfaoui

LINA, Université de Nantes, 2 rue de la Houssinière, 44322 Nantes, France
{matthieu.perrin,claude.jard,achour.mostefaoui}@univ-nantes.fr

Abstract. This article shows how the operational semantics of a lan-
guage like ORC can be instrumented so that the execution of a program
produces information on the causal dependencies between events. The
concurrent semantics we obtain is based on asymmetric labeled event
structures. The approach is illustrated using a Web service orchestration
instance and the detection of race conditions.

1 Introduction

Several languages have been proposed to program applications based on Web
service orchestrations (BPEL [1] is probably one of the best known). The present
work is based on Orc [2,3], an orchestration language whose definition is based
on a mathematical semantics, which is needed to define precisely the notion of
causality. Orc is designed over the notion of sites, a generalization of functions
that can encapsulate any kind of externally defined web sites or services as well
as Orc expressions. As usual for languages, the operational semantics of Orc was
defined as a labeled transition system. Such semantics produces naturally sets of
sequential traces, which explicitly represent the observable behaviors of an Orc
program [4].

Finding the causal dependencies in a program is very useful for error detec-
tion. In a non-deterministic concurrent context, this analysis cannot be based
solely on the static structure of the program and requires execution. Dependen-
cies are also very difficult to extract from a sequential record without additional
information to unravel the interleaving of events. This is especially true for the
analysis of QoS or of non functional properties, like timing constraints derived
from the critical path of dependencies [5]. We consider any Orc program, which
has been already parsed and expanded into its Orc calculus intermediate form.
In this program, we distinguish the actions, which are the site calls, and the
publications (return values of expressions). An event is the occurrence of an

This work has been partially supported by a French government support granted
to the CominLabs excellence laboratory (Project DeSceNt:Plug-based Decentralized
Social Network) and managed by the French National Agency for Research (ANR) in
the “Investing for the Future” program under reference Nb. ANR-10-LABX-07-01.
It was also partially funded by the French ANR project SocioPlug (ANR-13-INFR-
0003).

c© Springer International Publishing Switzerland 2015
A. Bouajjani and H. Fauconnier (Eds.): NETYS 2015, LNCS 9466, pp. 382–396, 2015.
DOI: 10.1007/978-3-319-26850-7 26

Tracking Causal Dependencies in Web Services 383

action during the execution of the Orc program. The events are linked by causal
dependencies, that force the events to be executed in a certain order. We can
distinguish three kinds of dependencies:

– the dependencies that are imposed by the control flow of the program defined
by the semantics of the Orc combinators and imposed by the binding mecha-
nism of Orc variables;

– the dependencies that are provided by the server executing the site calls.
These external dependencies are not part of the Orc description, but could
be returned by the site. We will consider at least that the possible return of
a site call is directly caused by this call;

– the dependencies induced by preemption (the pruning operator of Orc).

The method used in this article is to extend the standard structural opera-
tional semantics (SOS [6]) to rewrite extended expressions, in which additional
information has been added to compute causal and weakly-causal dependencies.
This information is also made visible by extending the labeling of transitions.
Concurrency is just the complement of the weak-causal relation, and conflicts
are defined by cycles in this relation. Capturing causality and concurrency by
instrumenting the semantics rules is a difficult job. This is mainly due to the
fact that these relationships are global and therefore difficult to locate on the
syntactic forms. The solution is to keep information about the causal past in a
context associated with each rule. We build the necessary links between differ-
ent contexts during the execution of rules. The aim is that such instrumented
semantics reproduces the standard behavior of the program while calculating
the additional information needed to track concurrency, causality and conflicts
between the events produced by the execution.

After this introduction, the article presents the contribution compared to
the existing works. Section 3 presents the Orc language from the perspective
of its core calculus and its operational semantics, illustrated using an example
of orchestration of Web services. Section 4 presents our proposed instrumented
semantics based on the construction of event structures, giving the concurrent
semantics of Orc. This section sets out the formal correctness of the approach
stating that this new semantics produces the same executions as the standard
semantics. Before concluding the paper, Sect. 5 reuses the example of Sect. 3
to show the causal structure obtained from its execution in the instrumented
semantics and how this can be used to find errors.

2 Related Work

The need to dynamically trace the causal dependencies during the execution of
the a program in order to monitor, detect errors or analyze performances is well
recognized for concurrent applications. Causality, seen as a partial order [7], can
be tracked in different ways. Some works are based on an instrumentation of
either the underlying operating system or the source code. For example, vector
clocks have been widely used by the distributed algorithms community in the

384 M. Perrin et al.

context of message-passing systems [8]. The context of Web service orchestra-
tions is more complex as a language like Orc can generate unbounded concur-
rency patterns. To our knowledge, the only instrumentation made on programs
is [9], based on Java byte-code. However, in the considered model, the only source
of causality comes from variable accesses. The second approach is to change the
semantics so that it produces causal information which leads to a concurrent
semantics. The challenge is then to maintain a good form of equivalence with
the original semantics. Several debugging techniques rely on this principle, espe-
cially for performing replay ([10] is a good example for a fragment of the Oz
language). The most successful works in concurrent semantics were conducted
on process algebra (e.g. pi-calculus [11]). Our contribution is in the same vein,
but for the Orc language, in the complex context of wide-area computing. Other
attempts of concurrent semantics for Orc based on event structures have already
been published [12,13]. They use an ad hoc connection of Petri net diagrams or
Join calculus. It is not clear how this semantics can be implemented in practice
at compile-time that transforms the source code into a concurrent model. An
instrumented semantics solves this problem and allows to catch causal depen-
dencies at runtime.

3 The Orc Programming Language

3.1 Core Calculus

Orc is a full programming language, that looks like a functional language with
many non-functional aspects to handle concurrency. The interested reader can
refer to [14] concerning the ability of Orc to design large-scale distributed appli-
cations. The Orc programming language is designed over a process calculus:
the Orc core calculus. All the conveniences offered in the full Orc language are
derived from very few central concepts present in the calculus: sites and opera-
tors. Values such as booleans, numbers and strings, arithmetic and logic oper-
ators, as well as complex data types such as shared registers, are just external
sites. Even choices are implemented through the use of sites ift and iff, that
publish a signal if their argument is true or false respectively. Besides sites, four
operators are provided by the calculus to orchestrate the execution. These oper-
ators describe the sequencing of actions (“f >x> g”), the launching of parallel
threads (“f |g”), an original preemption operator (“pruning: f < x < g”) and
an alternative in case of no response (“otherwise: f ; g”). The full syntax of the
calculus is specified by the grammar given in Fig. 1. From now on, we denote
by Orcs the set of the expressions allowed by this syntax. The expressions of
the calculus that correspond to real Orc programs, denoted by the set Orc, are
those that do not contain ?k and ⊥ expressions. The rules of the operational
semantics are given in Fig. 2.

There are two kinds of sites in Orc: the external ones, denoted V in the
syntax, and the internal ones defined as an Orc expression with the syntax
def y(x) = f#g where f is the body of the site and g is the remaining of
the program in which y can be used as any site. For the sake of clarity, we

Tracking Causal Dependencies in Web Services 385

f, g, h ∈ Expression ::= p‖p(p)‖?k‖f |g‖f >x> g‖f <x< g‖f ; g‖D#f‖⊥
D ∈ Definition ::= def y(x) = f
v ∈ Orc Value ::= V ‖D
p ∈ Parameter ::= v‖stop‖x
w ∈ Response ::= NT (v)‖T (v)‖Neg
n ∈ Hidden Label ::= ?Vk(v)‖?D‖h(ω)‖h(!v)
l ∈ Label ::= !v‖n‖ω

Fig. 1. The syntax of the Orc core calculus.

consider in this work that the sites are curryfied, so they have exactly one argu-
ment. Site definitions are recursive, which allows the same expressivity as any
functional language. Calls to external sites are strict, i.e. their arguments have
to be bound before the site can be called, while an internal site can be called
immediately, and its arguments are evaluated lazily. When an external site is
called, it sends its responses to a placeholder ?k. A response can be either a
non-terminating value NT (v) if further responses are expected, or a terminating
value T (v) if this is the last publication of the site, or Neg if the site termi-
nates without publishing any value. In f |g, the parallel composition expresses
pure concurrency; f and g are run in parallel, their events are interleaved and
the expression stops when both f and g have terminated. Sequentiality can be
expressed by the sequential operator, like in f >x> g, where the variable x can
be used in g. Here, f is started first, and then a new instance of g[v/x], where x
is bound to v, is launched as a consequence of each publication of v. In f <x< g,
the pruning operator is used to express preemption. The variable x can be used
in f . Both f and g are started, but f is paused when it needs to evaluate x. When
g publishes a value, it is bound to x in f , and g is stopped. Other events that
could have been produced by g are preempted by the publication. For example,
if g is supposed to publish two values a and b, only one will be selected and
published in each execution. We say that these two events are in conflict. The
pruning operator is left-associative: in f <x< g <y< h, f , g and h are started
in parallel, the first publication of g is bound to x and the first publication of
h is bound to y. The otherwise operator is used in f ; g. In this expression, f is
first started alone and g is started if and only if f stops without publishing any
value. Finally, the stop symbol can be used by the programmer exactly like a
site or a variable to denote a terminated program. stop still produces an event
ω to notify its parent expression that it has terminated. It then evolves into ⊥,
the inert final expression. ?k and ⊥ cannot be used directly.

3.2 Illustration

We now illustrate the use of Orc in Fig. 3. This program defines the internal site
find best(agencies, destination) that computes the best offers proposed
by the agencies listed in agencies for the destination given as a parameter. It
publishes a unique value that is a pair composed of the best offer augmented with

386 M. Perrin et al.

(Publish)
v

!v−→ stop
v closed

(Stop)
stop

ω−→ ⊥
(StopCall)

stop(p)
ω−→ ⊥

(ExtStop)
V (stop)

ω−→ ⊥
(ExtCall)

V (v)
?Vk(v)−−−−→?k

k fresh

(DefDeclare)
[D/y]f

l−→ f ′

D#f
l−→ f ′

D is def y(x) = g

(IntCall)
D(p)

?D−−→ [D/y][p/x]g
D is def y(x) = g

(ParLeft)
f

l−→ f ′

f |g l−→ f ′|g
l �= ω (ResT)

?k receives T (v)

?k
!v−→ stop

(ParRight)
g

l−→ g′

f |g l−→ f |g′
l �= ω (ResNt)

?k receives NT (v)

?k
!v−→?k

(ParStop)
f

ω−→ ⊥ g
ω−→ ⊥

f |g ω−→ ⊥
(ResNeg)

?k receives Neg

?k
ω−→ ⊥

(OtherV)
f

!v−→ f ′

f ; g
!v−→ f ′

(SeqV)
f

!v−→ f ′

f >x> g
h(!v)−−−→ (f ′ >x> g)|[v/x]g

(OtherN)
f

n−→ f ′

f ; g
n−→ f ′; g

(SeqN)
f

n−→ f ′

f >x> g
n−→ f ′ >x> g

(OtherStop)
f

ω−→ ⊥
f ; g

h(ω)−−−→ g
(SeqStop)

f
ω−→ ⊥

f >x> g
ω−→ ⊥

(PruneV)
g

!v−→ g′

f <x< g
h(!v)−−−→ [v/x]f

(PruneLeft)
f

l−→ f ′

f <x< g
l−→ f ′ <x< g

l �= ω

(PruneN)
g

n−→ g′

f <x< g
n−→ f <x< g′ (PruneStop)

g
ω−→ ⊥

f <x< g
h(ω)−−−→ [stop/x]f

Fig. 2. The rules of the operational semantics.

additional information and the list of other offers sorted by price. The program is
composed of three internal sites. It uses three shared objects, that are created in
lines 15 to 17: the stack offers and the registers best offer and best agency.
At line 16, a new register is created through a call to the site Register() and is
bound to the variable r. It is then initialized to a default value: r.write(null)
that can be seen as a shortcut for r("write")>w>w(null), so the shared register
is a site that can publish its accessors when it is called. As writing in a register
does not publish any value, the otherwise operator is finally used to bound the
value to best offer. At line 11, the site find offers can be started before the
variables are created (left hand side of pruning operators). each publishes in
parallel all the sites contained into the stack agencies, so all known agencies
have to publish their offers. Each time a new offer is found, it is added into
offer and its price is compared to the current best known offer. The test is

Tracking Causal Dependencies in Web Services 387

1 def find best(agencies, destination) =
2 def find offers() =
3 each(agencies) > agency > agency(destination) > offer >
4 (offers.add((offer, agency)) |
5 (best offer.read() > o > compare(o, offer) > b >
6 ift(b) > x > (best agency.write(agency) | best offer.write(offer)))) #
7 def extend best() =
8 best agency.read() > ba > best offer.read() > bo > ba.exists(bo) > b >
9 (ift(b) > x > ba.get info(bo) | iff(b) > x > alarm(”inconsistent”)) #

10 def sort offers(offers, best offer) =
11 offers.sort(); best offer.read() = offers.first() >b>
12 (ift(b) > x > offers | iff(b) > x > alarm(”not best”)) #
13 ((t <t< (find offers() | timer(2000))) > t >
14 ((e b, s o) <e b< extend best() <s o< sort offers()))
15 <offers< Stack()
16 <best offer< (Register() >r> r.write(null); r)
17 <best agency< #)(retsigeR

Fig. 3. Identification of the best offers for a destination proposed by a pool of agencies.

first evaluated and passed as an argument to ift. If true, the program publishes
a signal and the registers can be updated. find offers does not publish any
value. In parallel with its call, we start a timer that publishes after 2 s a signal.
The signal will halt this part of the program thanks to the pruning operator,
and starts the line 14, thanks to the sequential operator. Line 14 calls both
extend best and sort offers and publishes the result when both sites have
published. The two sites call an external site either to sort the offers or to get
extra information about the best offer, and they perform a test that raises an
alarm if something wrong is detected (Fig. 3).

Figure 4 shows a possible trace of the program of Fig. 3. In this example,
both alarms are due to inconsistencies in the shared registers. To avoid the alarm
“inconsistent”, it is necessary to write into best offer and best agency atom-
ically, and to avoid the other alarm, the comparison with the current value of
best offer and its edition should be atomic. The event best offer.write(01)
is a cause for both alarms, but it is impossible to detect it in the sequential trace
without any information about causality.

4 Instrumented Semantics

4.1 Method

SOS specifications take the form of a set of inference rules that define the valid
transitions of a composite piece of syntax in terms of the transitions of its
components. Rewriting transforms terms by executing a rule (it may be a non-
deterministic transition in case of multiple alternatives). The successive transi-
tions represent the program behavior. This may produce a sequence of values,

388 M. Perrin et al.

1. each([A1, A2])
2. timer(2000)
3. new register()
4. new register()
5. A1(D)
6. r.write(null)
7. best offer.read()
8. new stack()
9. offers.add(O1)

10. A2(D)
11. offers.add(O2)

12. compare(null, 01)
13. best offer.read()
14. compare(null, 02)
15. ift(true)
16. ift(true)
17. best offer.write(O2)
18. best offer.write(O1)
19. best agency.write(A1)
20. best agency.write(A2)
21. best agency.read()
22. best offer.read()

23. A2.exists(O1)
24. iff(false)
25. ift(false)
26. alarm(“inconsistent”)
27. offers.sort()
28. best offer.read()
29. offers.first()
30. =(O1, O2)
31. iff(false)
32. ift(false)
33. alarm(“not best”)

Fig. 4. A possible execution for the program in Fig. 3 where agencies = [A1, A2] and
destination = D. Each agency publishes an offer O1 and O2 respectively. For the sake
of space and clarity, we only show site calls in this execution.

that can be brought by the labeling of rules. Our approach is based on an instru-
mentation of the rules, that appends additional information to the labels in order
to track the partial order of events. Actually, a label in the instrumented seman-
tics is a tuple e = (ek, el, ec, ea), where ek is an identifier taken in a countable set
K, that is unique for the execution, el is a label similar to those of the standard
semantics and ec and ea contain the finite sets of the identifiers of the causes
and the weak causes of the event, respectively. Informally, an event e is a cause
of e′ if e always happens before e′, regardless of the scheduling chosen by the
system. Similarly, e is a weak cause of e′ if e′ can never happen after e, either
because e is one of its causes or because e′ preempts e.

In order to record the information concerning the past of an expression, we
enrich the language with a new syntactic construction: 〈f, c, a〉L means that c
and a are the causes of the Orc instrumented expression f . Thus, if f has c and
a as causes and if it can evolve into f ′, this transition should also have c and a
as causes. The index L expresses the kind of events that can activate the rule:
!v matches any publication, l stands for any label and ω means that c and a
are only the causes of the termination of the program. We also consider that
the external sites track causality themselves, as an internally-defined function
would do. It makes sense as some sites (e.g. +) handle their calls independently,
while others (e.g. shared registers, management library) induce more complex
causality patterns between the calls. Hence, the responses we get include this
additional information. The verification of these responses is not the subject
here, and we suppose them to be correct by hypothesis.

Apart from the introduction of the instrumentation construction and the new
information in the responses, the syntax of the instrumented expressions (Fig. 5)
is very similar to the regular one. The set of all the expressions allowed by this
extended syntax is Orci. We can notice that every valid Orc program is also
a valid instrumented expression, which means that the instrumented semantics
can be applied without program transformation.

Tracking Causal Dependencies in Web Services 389

f, g, h ∈ Expression ::= p‖p(p)‖?k‖f |g
‖f >x> g‖f <x< g‖f ; g
‖D#f‖⊥‖〈f, K, K〉L

D ∈ Definition ::= def y(x) = f
v ∈ Orc Value ::= V ‖D
p ∈ Parameter ::= v‖stop‖x‖〈p, K, K〉L

w ∈ Response ::= NT (v, K, K)‖T (v, K, K)
‖Neg(K, K)

n ∈ Hidden Label ::= ?Vk(v)‖?D‖h(ω)‖h(!v)
l ∈ Label ::= !v‖n‖ω

Fig. 5. The extended syntax of the instrumented semantics.

4.2 Labeled Asymmetric Event Structure

Labeled asymmetric event structures (LAES) [15] are natural objects to repre-
sent concurrent executions in a compact way.

Definition 1 (Labelled Asymmetric Event Structure). A labelled asym-
metric event structure (LAES) is a tuple (E,L,≤,↗, Λ).

– E is a set of events,
– L is a set of labels,
– ≤, causality is a partial order on E,
– ↗, weak causality is a binary relation on E,
– Λ : E �→ L is the labelling function,
– each e ∈ E has a finite causal history [e] = {e′ ∈ E|e′ ≤ e},
– for all events e < e′ ∈ E, e ↗ e′, where < is the irreflexive restriction of ≤,
– for all e ∈ E, ↗ ∩[e] × [e], the restriction of weak causality to the causal

history of e, is acyclic.

We also define an induced conflict relation #a as the smallest set of finite
parts of E such that: for E′ ⊂ E and e0, e1, ..., en ∈ E,

– if e0 ↗ e1 ↗ · · · ↗ en ↗ e0 then {e0, e1, · · · , en} ∈ #a,
– if E′ ∪ {e0} ∈ #a and e0 ≤ e1 then E′ ∪ {e1} ∈ #a.

Informally, two events are in conflict if they cannot occur together in the same
execution.

A LAES can be seen as a structure that encodes concisely several sequential
executions; each of them being a linearization of the LAES.

Definition 2 (Linearization). Let E = (E,L,≤,↗, Λ) be a LAES. A finite
linearization of E is a word w = Λ(e0) . . . Λ(en) where the different ei ∈ E are
distinct and such that:

– it is left-closed for causality:

∀e ∈ E,∀e′ ∈ {e0, . . . , en}, e ≤ e′ ⇒ e ∈ {e0, . . . , en},

390 M. Perrin et al.

(CauseYes)
f

k,l,c,a−−−−→i f ′

〈f, c′, a′〉L
k,l,c∪c′,a∪a′∪c′
−−−−−−−−−−→i 〈f ′, c′, a′〉L

l ∈ L

(CauseNo)
f

k,l,c,a−−−−→i f ′

〈f, c′, a′〉L
k,l,c,a−−−−→i 〈f ′, c′, a′〉L

l �∈ L

Fig. 6. The semantics of the new operator 〈f, c, a〉L is defined by two additional rules.

– the weak causality is respected:

∀i, j ∈ {0, . . . , n}, ei ↗ ej ⇒ i < j.

We denote Lin(E) as the set of all finite linearizations of E.

Let (E,L,≤,↗, Λ) be an asymmetric event structure and e, e′ ∈ E two
events. We say that:

– e is a cause of e′, if e happens before e′ in all executions;
– e is a weak cause of e′, if there is no execution in which e happens after e′;
– e and e′ are concurrent, denoted e||e′, if they can occur in either order. For-

mally, e||e′ if neither e ↗ e′ nor e′ ↗ e.
– e is preempted by e′, denoted e � e′, if e′ can occur independently from e,

but after that, e cannot occur anymore. Formally, e � e′ if e ↗ e′ and e �≤ e′.

4.3 Rules

Essentially, the instrumented semantics presented in Fig. 7 decorates the rules of
standard semantics, except that two rules are added (see Fig. 6). The transition
system defined by this instrumented semantics is denoted →i and the sequential
executions starting from a program f are contained in the set �f�i.

Informally, the expression 〈f, c, a〉L evolves exactly like f , but some causes
and weak causes may be added to the event. For example, if L =!v and f
produces an internal event, that is not a publication, only the rule CauseNo
can be applied, so the instrumentation will have no effect. On the other hand,
if f publishes a value, the rule CauseYes applies and c and a are added to the
causes and weak causes of the publication. Note that c is also added to the weak
causes. This is to ensure that causality is always a special case of weak causality.

Let us now comment the most relevant instrumentations of the other rules.
Let us consider rule SeqV. When a value is published, a new instance of the right
hand side expression is created. All the events produced by this new expression
need the former publication to have occurred before them, i.e. they are con-
sequences of this publication. This is why the new expression is instrumented.
Even if PruneV and SeqV are syntaxically very similar in their standard forms,
the fact that both hand sides of the pruning operator are run in parallel makes
them very different in terms of causality. In the expression (1|x) <x< 2, the

Tracking Causal Dependencies in Web Services 391

(Publish)
v

k,!v,∅,∅−−−−−→i 〈stop, {k}, ∅〉l

v closed
k fresh

(Stop)
stop

k,ω,∅,∅−−−−→i ⊥
k fresh (StopCall)

P
k,ω,c,a−−−−→i ⊥

P (p)
k,ω,c,a−−−−→i ⊥

(ExtStop)
P

k,!V,c,a−−−−−→i P ′ p
k′,ω,c′,a′
−−−−−−→i p′

P (p)
k,ω,c∪c′,a∪a′
−−−−−−−−−→i ⊥

(ExtCall)
P

k,!V,c,a−−−−−→i P ′ p
k′,!v,c′,a′
−−−−−−→i p′

P (p)
k,?Vk(v),c∪c′,a∪a′
−−−−−−−−−−−−→i 〈?k, c ∪ c′ ∪ {k}, a ∪ a′〉l

(DefDeclare)
[D/y]f

k,l,c,a−−−−→i f ′

D#f
k,l,c,a−−−−→i f ′

D is def y(x) = g

(IntCall)
P

k,!D,c,a−−−−−→i P ′

P (p)
k,?D,c,a−−−−−→i 〈[D/y][p/x]g, c ∪ {k}, a〉l

D is def y(x) = g

(ResT)
?k receives T (v, c, a)

?k
j,!v,c,a∪c−−−−−−→i 〈stop, c ∪ {j}, a〉ω

j fresh

(ParLeft)
f

k,l,c,a−−−−→i f ′

f |g k,l,c,a−−−−→i f ′|g
l �= ω (ResNt)

?k receives NT (v, c, a)

?k
j,!v,c,a∪c−−−−−−→i?k

j fresh

(ParRight)
g

k,l,c,a−−−−→i g′

f |g k,l,c,a−−−−→i f |g′
l �= ω (ResNeg)

?k receives Neg(c, a)

?k
j,ω,c,a∪c−−−−−−→i ⊥

j fresh

(ParStop)
f

k,ω,c,a−−−−→i f ′ g
k′,ω,c′,a′
−−−−−−→i g′

f |g k,ω,c∪c′,a∪a′
−−−−−−−−−→i ⊥

(SeqV)
f

k,!v,c,a−−−−−→i f ′

f >x> g
k,h(!v),c,a−−−−−−−→i (f ′ >x> g)|〈[v/x]g, c ∪ {k}, a〉l

(OtherV)
f

k,!v,c,a−−−−−→i f ′

f ; g
k,!v,c,a−−−−−→i f ′

(SeqN)
f

k,n,c,a−−−−→i f ′

f >x> g
k,n,c,a−−−−→i f ′ >x> g

(OtherN)
f

k,n,c,a−−−−→i f ′

f ; g
k,n,c,a−−−−→i f ′; g

(SeqStop)
f

k,ω,c,a−−−−→i ⊥
f >x> g

k,ω,c,a−−−−→i ⊥
(OtherStop)

f
k,ω,c,a−−−−→i ⊥

f ; g
k,h(ω),c,a−−−−−−→i 〈g, c ∪ {k}, a〉l

(PruneV)
g

k,!v,c,a−−−−−→i g′

f <x< g
k,h(!v),c,a−−−−−−−→i 〈[〈v, c ∪ {k}, a〉l/x]f, c ∪ {k}, a〉ω

(PruneN)
g

k,n,c,a−−−−→i g′

f <x< g
k,n,c,a−−−−→i f <x< 〈g′, ∅, {k}〉!v

(PruneLeft)
f

k,l,c,a−−−−→i f ′

f <x< g
k,l,c,a−−−−→i f ′ <x< g

l �= ω

(PruneStop)
g

k,ω,c,a−−−−→i ⊥
f <x< g

k,h(ω),c,a−−−−−−→i 〈[〈stop, c ∪ {k}, a〉l/x]f, c ∪ {k}, a〉ω

Fig. 7. The instrumented version of the rules of the operational semantics.

392 M. Perrin et al.

second publication of 2 is a consequence of the first one, but not the publication
of 1. This is why the instrumentation covers the occurrences of the newly bound
variable. However, this is not sufficient. Consider the program (stop <x< 2); 3.
The publication of 3 must wait the end of the left hand side (i.e. the publication
of 2). However, this publication is useless, in the sense that no variable x can
be bound to its value. To handle this case, we add an instrumentation to the
whole expression that is only triggered when the expression stops. Finally, the
rule PruneN is also interesting as it generates weak causality. Indeed, in the
program x <s< ((1+1)|3), the left hand side can call site + and then publish 3,
or publish 3 directly, but can never publish 3 and then call site +, because a
publication preempts any other event. Of course, it could also wait for the answer
of the site and then publish 2, which would preempt the publication of 3. This
preemption relation is operated by an instrumentation that contains k as weak
causes and that is triggered only in case of publication.

4.4 Concurrent Executions

The equivalent of traces in the instrumented semantics are the concurrent exe-
cutions, represented by LAES.

Definition 3 (Concurrent Execution). Let σ = σ1 . . . σn ∈ �f0�i, where for
all i, σi = (σi

k, σ
i
l , σ

i
c, σ

i
a). We define the concurrent execution of σ as the LAES:

σ = ({σ1
k, . . . , σ

n
k }, {σ1

l , . . . , σ
n
l },≤,↗, Λ)

where for all i, j ∈ {1, . . . , n}:

– σi
k ≤ σj

k if σi
k ∈ σj

c or i = j,
– σi

k ↗ σj
k if σi

k ∈ σj
a,

– Λ(σi
k) = σi

l .

As the fields σi
c and σi

a only contain events that happened before σi in the
sequential execution, both ≤ and ↗ are order relations and every event has
a finite causal history. For the same reason, ↗ is acyclic. Moreover, it is easy
to check that weak causality is more general than causality, so this definition
actually corresponds to a real LAES.

We now state the main result: the behavior of a program is preserved by the
instrumented semantics. It is established through two properties. The first one
justifies the name of the instrumented semantics and the second one proves that
the instrumentation is correct, i.e. that it does not define incorrect behaviors.
Note that we do not give a complete proof of the two propositions for lack of
space, but it can be found in [16].

Proposition 1 (Instrumentation). The projections of the executions produced
by the instrumented semantics on their labels correspond exactly to the executions
of the standard semantics:

∀f ∈ Orc, {σ1
l ...σ

n
l |σ ∈ �f�i} = �f�.

Tracking Causal Dependencies in Web Services 393

In other words, it is always possible to instrument a standard execution to get a con-
current execution, and conversely we can get a standard execution from an instru-
mented execution by a simple projection.

The proof of this property is straightforward since both semantics contain sim-
ilar rules. The only difficulty comes from the applications of CauseYes and
CauseNo, that slightly modifie the structure of the derivation trees. All in all,
both executions are similar.

Proposition 2 (Correctness). The linearizations that can be inferred from an
execution in the instrumented semantics are correct with respect to the standard
semantics:

∀f ∈ Orc,∀σ ∈ �f�i, Lin(σ) ⊂ �f�.

This proof is much more complicated. Let us consider a linearization L ∈ Lin(σ).
To prove that L ∈ �f�, we show that it is possible to progressively transform
σ1
l ...σ

n
l into L by applying a series of small steps that correspond either to the

inversion of two consecutive concurrent events, to the preemption of an event by
its successor or to a prefixation of the sequence. As σ1

l ...σ
n
l ∈ �f� and each step

preserves this property, we get that L ∈ �f�. The main difficulty concerns the
proof of the correctness of the two first steps, as it requires a proof for all pairs
of possible consecutive rules.

By introducing concurrency and preemption between events that were arbi-
trarily ordered by the standard semantics, the instrumented semantics gathers
many sequential executions into one concurrent execution, which hugely reduces
the number of different executions. However, all the events contained in a concur-
rent execution are also contained into a single sequential execution. Therefore,
no instrumentation is able to capture conflict, as two conflictual events would
never occur together. This is why completeness cannot be achieved with this
approach.

5 Application

Let us reuse the example presented in Sect. 3 and the execution of Fig. 4. Figure 8
shows the trace augmented with the causal information gained by the instru-
mented semantics.

Figure 9 shows the LAES in its graphical form. Events taht correspond to site
calls are represented in circles and connected by three kinds of arrows. Direct
causality is figured by solid and dashed arrows. Solid arrows represent program
causality, that is specified by the instrumented semantics, while dashed arrows
represent data causes, that are managed by the sites themselves. A call to a
write on a site is a cause of the publications of the next read on this site, so
the write is a cause of all the consequences of the read. Moreover, preemption is
figured by dotted arrows. The call to each() — and all its consequences — is
preempted by the publication made by timer(2000) — and all its consequences.

394 M. Perrin et al.

(1, l1, ∅, ∅)
(2, l2, ∅, ∅)
(3, l3, ∅, ∅)
(4, l4, ∅, ∅)
(5, l5, {1}, {1})
(6, l6, {4}, {4})
(7, l7, {1,4-6}, {1,4-6})
(8, l8, ∅, ∅)
(9, l9, {1,5,8}, {1,5,8})
(10, l10, {1}, {1})
(11, l11, {1,8,10}, {1,8,10})
(12, l12, {1,4-7}, {1,4-7})
(13, l13, {1,4,6,10}, {1,4,6,10})
(14, l14, {1,4,6,10,13}, {1,4,6,10,13})
(15, l15, {1,4-7,12}, {1,4-7,12})
(16, l16, {1,4,6,10,13,14}, {1,4,6,10,13,14})
(17, l17, {1,4,6,10,13,14,16},

{1,4,6,10,13,14,16})
(18, l18, {1,4-7,12,15}, {1,4-7,12,15})
(19, l19, {1,3-7,12,15}, {1,3-7,12,15})
(20, l20, {1,3,4,6,10,13,14,16},

{1,3,4,6,10,13,14,16})

(21, l21, {2}, {2, 1})
(22, l22, {1-7,10,12-16,19-21},

{1-7,10,12-16,19-21})
(23, l23, {1-7,10,12-19,22},

{1-7,10,12-19,22})
(24, l24, {1-7,10,12-19,22,23},

{1-7,10,12-19,22,23})
(25, l25, {1-7,10,12-19,22,23},

{1-7,10,12-19,22,23})
(26, l26, {1-7,10,12-19,22-24},

{1-7,10,12-19,22-24})
(27, l27, {2}, {2, 1})
(28, l28, {1,2,5,9-11,27}, {1,2,5,9-11,27})
(29, l29, {1,2,5,9-11,27}, {1,2,5,9-11,27})
(30, l30, {1,2,4-7,9-18,27-29},

{1,2,4-7,9-18,27-29})
(31, l31, {1,2,4-7,9-18,27-30},

{1,2,4-7,9-18,27-30})
(32, l32, {1,2,4-7,9-18,27-30},

{1,2,4-7,9-18,27-30})
(33, l33, {1,2,4-7,9-18,27-31},

{1,2,4-7,9-18,27-31})

Fig. 8. An execution augmented with causal information. Numbers refer to the events
of Fig. 4.

Fig. 9. Corresponding LAES in a graphical form.

Tracking Causal Dependencies in Web Services 395

Root Causes Analysis. This execution concurrently raises two alarms. Let us
consider their last common causes, i.e. the events that are causes of both alarms,
and that are not causes of another such event. The alarms have two last common
causes: timer(2000) and best offer.write(O1). The timer is not to blame
here, as it has no causes and is just used as a starter for the program. Indeed,
best offer.write(O1) is the root cause for these two alarms. If this event did
not exist, the value published by best offer.read() would be O2 for both calls,
A2.exists(O2) and =(02, O2) would be true and no alarm would be raised.

Detection of Race Conditions. We can see that the events best offer.write(O1)
and best offer.write(O2) are concurrent, as well as best agency.write(O1)
and best agency.write(O2). In this context, these events can interleave so that
best offer and best agency get inconsistent values.

6 Conclusion

We based our work on the Orc core calculus, as it is expressive enough to easily
generate many situations found in distributed systems, such as causality, con-
currency and preemption, and remains simple enough to be tractable in a formal
work. Our contribution consists of an instrumentation of the standard structural
operational semantics of Orc that tracks causality and weak causality at run-
time to build LAES, well suited to represent concurrent executions. We think
LAES are an interesting tool to access important properties of orchestrations.
We illustrate this point on two questions: root cause analysis and detection of
race conditions. Beyond the Orc language, we think that the article presents a
general approach that can be used for other non-deterministic languages with
concurrency operators. Based on this work, we think it is possible to produce
the same information using a source to source transformation. Such a technique
would be easier to implement, as it does not require to modify the execution
engine of the language.

References

1. Andrews, T., Curbera, F., Dholakia, H., Goland, Y., Klein, J., Leymann, F., Liu,
K., Roller, D., Smith, D., Thatte, S., Trickovic, I., Weerawarana, S.: Business
Process Execution Language for Web Services. Version 1.1, 5 May 2003. http://
download.boulder.ibm.com/ibmdl/pub/software/dw/specs/ws-bpel/ws-bpel.pdf

2. Kitchin, D., Quark, A., Cook, W., Misra, J.: ORC language. http://orc.csres.
utexas.edu

3. Kitchin, D., Quark, A., Cook, W., Misra, J.: The orc programming language. In:
Lee, D., Lopes, A., Poetzsch-Heffter, A. (eds.) FMOODS 2009. LNCS, vol. 5522,
pp. 1–25. Springer, Heidelberg (2009)

4. Kitchin, D.E., Cook, W.R., Misra, J.: A language for task orchestration and its
semantic properties. In: Baier, C., Hermanns, H. (eds.) CONCUR 2006. LNCS,
vol. 4137, pp. 477–491. Springer, Heidelberg (2006)

http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/ws-bpel/ws-bpel.pdf
http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/ws-bpel/ws-bpel.pdf
http://orc.csres.utexas.edu
http://orc.csres.utexas.edu

396 M. Perrin et al.

5. Rosario, S., Benveniste, A., Haar, S., Jard, C.: Foundations for web services orches-
trations: functional and QoS aspects. In: ISOLA 2006, 2nd International Sympo-
sium on Leveraging Applications of Formal Methods, Verification and Validation,
Cyprus, 15–19 November 2006 (2006)

6. Plotkin, G.D.: The origins of structural operational semantics. J. Log. Algebr.
Program. 60–61, 3–15 (2004)

7. Lamport, L.: Time, clocks, and the ordering of events in a distributed system.
Commun. ACM 21(7), 558–565 (1978)

8. Fidge, C.J.: Timestamps in message-passing systems that preserve the partial
ordering. In: Proceedings of the 11th Australian Computer Science Conference
(ACSC 1988), pp. 56–66, February 1988

9. Roşu, G., Sen, K.: An instrumentation technique for online analysis of multi-
threaded programs. Concurrency Comput. Pract. Experience 19, 311–325 (2007).
Wiley Online Library

10. Giachino, E., Lanese, I., Mezzina, C.A.: Causal-consistent reversible debugging. In:
Gnesi, S., Rensink, A. (eds.) FASE 2014 (ETAPS). LNCS, vol. 8411, pp. 370–384.
Springer, Heidelberg (2014)

11. Boreale, M., Sangiorgi, D.: A fully abstract semantics for causality in the π-
calculus. Acta Informaticae 35(5), 353–400 (1998)

12. Rosario, S., Kitchin, D.E., Benveniste, A., Cook, W., Haar, S., Jard, C.: Event
Structure semantics of orc. In: Dumas, M., Heckel, R. (eds.) WS-FM 2007. LNCS,
vol. 4937, pp. 154–168. Springer, Heidelberg (2008)

13. Bruni, R., Melgratti, H., Tuosto, E.: Translating orc features into petri nets and
the join calculus. In: Bravetti, M., Núñez, M., Zavattaro, G. (eds.) WS-FM 2006.
LNCS, vol. 4184, pp. 123–137. Springer, Heidelberg (2006)

14. Misra, J., Cook, W.: Computation orchestration: a basis for wide-area computing.
J. Softw. Syst. Model. 6(1), 83–110 (2007)

15. Winskel, G.: Event structures. In: Brauer, W., Reisig, W., Rozenberg, G. (eds.)
Advances in Petri Nets 1986, Part II. LNCS, vol. 255, pp. 325–392. Springer,
Heidelberg (1987)

16. Perrin, M., Jard, C., Mostéfaoui, A.: Building a concurrent operational seman-
tics for the ORC language. Technical report, LINA, Université de Nantes (2014).
https://hal.archives-ouvertes.fr/hal-01101340v2

https://hal.archives-ouvertes.fr/hal-01101340v2

Web Services Trust Assessment Based
on Probabilistic Databases

Zohra Saoud 1(B), Noura Faci1, Zakaria Maamar2, and Djamal Benslimane1

1 Université Lyon 1, Villeurbanne, France
zohra.saoud@univ-lyon1.fr

2 Zayed University, Dubai, UAE

Abstract. This paper discusses the assessment of Web services trust.
This assessment is undermined by the uncertainty that raises due to
end-users’ ratings that can be questioned and variations in Web services
performance at run-time. To tackle the first uncertainty a fuzzy-based
credibility model is suggested so that the gap between end-users (known
as strict) and the current majority is reduced. To deal with the second
uncertainty we propose a probabilistic trust approach. A series of exper-
iments are carried out to validate the probabilistic approach built upon
probabilistic databases and a fuzzy-based credibility model. The results
show that the probabilistic approach improves significantly trust quality.
Future work consists of incorporating several credibility models into one
probabilistic trust model.

Keywords: Web service · Trust · Probability · Credibility · Fuzzy clus-
tering

1 Introduction

It is largely accepted that current Web Services (WSs) selection approaches
rely on non-functional properties (aka Quality of Service (QoS)) that providers
announce publicly or on collecting qualitative/quantitative values that end-users
provide with respect to past experiences of using these Web services. Qualita-
tive/quantitative values permit to establish feedback/ratings that refer to the
satisfaction of end-users with the overall performance of WSs. However a com-
plete reliance on both providers and end-users raises trustworthiness concerns
among future end-users due to biases such as beefing-up a WS’s QoS and/or
undermining a WS performance both done purposely. To address these biases
two types of trust models are reported in the literature. The first uses end-users’
feedback/ratings to compute a trust value (e.g., [13]). The second observes the
behaviors of WSs over a period of time to compute a trust value (e.g., [23]).
We are particularly interested in the first trust model. Indeed end-users with
either limited or non-existent experience of using WSs cannot provide proper
trust values. When establishing trust these end-users “wrestle” with two kinds
of uncertainty : (i) Uncertainty (U1) over feedback/rating. U1 arises from the lack
c© Springer International Publishing Switzerland 2015
A. Bouajjani and H. Fauconnier (Eds.): NETYS 2015, LNCS 9466, pp. 397–410, 2015.
DOI: 10.1007/978-3-319-26850-7 27

398 Z. Saoud et al.

of consistent ratings that end-users provide over time. Credibility should help
tackle U1 when aggregating end-users’ feedback/ratings into a common trust
value (e.g., [13,15]). (ii) Uncertainty (U2) over the capacity of a WS in fulfilling
the QoS that its provider announces and thus, satisfying end-users’ requests. U2
arises from the inconsistency of the assessed QoS values due to a WS’s dynamic
nature and/or malicious behavior. Trust should help tackle U2 (e.g., [10]).

Feedback/ratings concurrently reduce and introduce uncertainty. Uncertainty
arises due to end-user subjectivity, experience mismatch with a particular con-
text, and provider’s reliability. We should assess trust despite these factors.

Credibility-based trust approaches such as RateWeb [13] and Cloud Armor
[15] assume that end-users have good expertise and/or are untrustworthy. When
end-users disagree on a certain feedback/rating for a WS these approaches use
the majority opinion to reach consensus. End-users’ ratings close to the major-
ity opinion are more credible than those with distant ratings. However these
approaches neglect end-users with both good expertise and trustworthy that we
refer to as strictexperts. They usually do not have any interest in aligning them-
selves with the majority. For the sake of achieving consensus fuzzy clustering
technique would reduce the gap between strict experts’ feedback/ratings and
the current majority opinion.

Feedback/rating inconsistencies lead to disagreement amongst end-users’
opinions. Troffaes shows that probabilities can address this disagreement [22].
As stated earlier end-user’s credibility helps tackle uncertainty over feedback/
ratings (U1). Therefore we associate credibility with probabilities. Let assume
three end-users, u1, u2, and u3 who have experienced WSj and let the fol-
lowing statement S: ui has correctly observed that WSj satisfies his
requests. The uncertainty here reflects the probability that S happens. This
probability can be estimated by computing ui’s Credibility (Cri). Let e1, e2,
and e3 denote respectively, the events that u1, u2, and u3 state each that WSj

satisfies their requests. Combining e1, e2, and e3 when computing trust raises
issues like what is the probability that u1, u2, and u3 jointly state that WSj

satisfies their requests, and what is the probability that u1 and u2 only state
that WSj satisfies their requests? Probabilistic databases permit to represent
these kinds of events by associating an occurrence (or existence) probability with
each statement [4]. These databases can also support develop complex queries
that combine various selection criteria (e.g., only end-users who provide at least
n ratings).

Our contributions include: (i) modeling end-user’s credibility based on a
fuzzy clustering technique so that strict end-users’ ratings are taken into account;
(ii) assessing trust under uncertainty using probabilistic databases; (iii) building
a distributed trust assessment framework based on a proposed credibility model;
and (vi) developing a system that measures the quality of trust.

The remainder of this paper is organized as follows. Section 2 presents our lit-
erature review. Section 3 describes how end-user’s credibility is modeled. Section 4
presents the proposed probabilistic model for trust assessment. Section 5 gives
details on the proposed trust assessment framework and discusses experiments.
Finally, concluding remarks and future work are reported in Sect. 6.

Web Services Trust Assessment Based on Probabilistic Databases 399

2 Related Work

Uncertainty like those (i.e., U1 and U2) reported in Sect. 1 impacts the way of
establishing WS trust. In the following we discuss two research streams for tack-
ling U1 and U2, respectively: credibility-based and probabilistic.

In [13] Malik and Bouguettaya discuss trust for WSs selection and composi-
tion. They propose several decentralized trust assessment techniques to ensure a
better accuracy of the feedback collected over time. They advocate that feedback
of highly credible consumers are most trusted than those with low credibility.
To this end, Malik and Bouguettaya examine the feedback based on the distance
from the majority opinion using K-means clustering and group similar feedback
into clusters. The highly populated cluster is the majority cluster whose cen-
troid represents the majority feedback. Along with the majority principle, the
authors’ trust model takes into account other social metrics such as consumers’
feedback history, consumers’ preferences, and temporal sensitivity.

In [15] Noor et al. propose a credibility model that distinguishes credible
from misleading feedback in a cloud context. This model uses factors such as
majority consensus and feedback density. To measure how close a cloud con-
sumer’s feedback is to the majority’s feedback, Noor et al. use the slandered
(i.e., root-mean-square) deviation. Feedback density overcomes the problem of
misleading feedback from consumers. These latter give multiple feedback to a
certain cloud service in a short period of time.

TRAVOS is a trust model used in open Agent systems [21]. An agent trusts
a peer based on previous direct interactions. Interactions’ outcomes are expressed
using a binary rating for successful/unsuccessful interaction. The obtained binary
ratings are then used to form the probability-density function that models the
probability of a successful interaction with an agent. If there is a lack of direct
experiences the model uses other agents’ experiences to compute the trust value.
The model determines the credibility of agents to filter feedback/ratings pro-
vided by agents that are inaccurate due to their limited knowledge or malicious
behaviors.

In [25] Yu and Singh propose a probabilistic trust management scheme that
relies on Dempster-Shaker theory [11]. This theory combines evidence from dif-
ferent sources in order to reach a degree of belief that takes into account all the
available evidences. This scheme extends the probability theory so that uncer-
tainty is modeled. There is no direct relationship between a possible outcome
and its negation. Since the sum of the possible outcomes’ probabilities is not
necessarily equal to 1, the remaining probability is interpreted as a state of
uncertainty.

The above probabilistic approaches overlook uncertainty over feedback/
ratings (U1) and/or uncertainty over the capacity of WSs (U2) and hence, trust
computation becomes irrelevant and inaccurate. Peers’ feedback/ratings reduce
uncertainty, but also introduce additional uncertainty. We address this overlook
in our probabilistic trust approach.

400 Z. Saoud et al.

3 The Credibility Model

This section discusses the appropriateness of using fuzzy clustering for establish-
ing and formalizing end-users’ credibility. Then, it presents how to assess this
credibility.

3.1 Basics

Credibility has two components [2]: expertise and trustworthiness. In this work
we recall that we target strict end-users who are known for their strong expertise
and trustworthiness in a certain community. These end-users stick to their rat-
ings regardless of the majority for reasons listed in [17] including veracity– they
tell the truth, objectivity– their ratings are based on evidences, and accuracy–
they estimate their ratings well. Several studies in social psychology (e.g., [12,19])
evaluate the impact of source credibility on belief and attitude changes. These
studies demonstrate that credible sources are persuasive and can affect existing
beliefs (e.g., ratings) and attitudes more than non-credible sources. Therefore,
strict end-users can “push” the majority to question (even review) their rat-
ings. To study how this happens we rely on Yager’s participatory learning para-
digm [24]. It represents situations where the current ratings are correct, but not
necessarily accurate (resp., wrong) and only require a limited (resp. significant)
tuning by the majority members. Our proposal is to reduce the gap between
strict end-users’ ratings and the current majority’s rating so that a consensus
is reached in a “reasonable” time frame. As strict end-users can be in several
groups they can affect groups’ beliefs in different manners (e.g., strongly and
weakly).

3.2 Credibility Assessment

Strong and weak membership terms are fuzzy because they are not well-defined
(i.e., uncertain) and/or their semantics are dependent on domains and/or user
preferences. To deal with uncertainty in group membership and derive overlap-
ping groups we adopt fuzzy clustering. Consensus clustering algorithms like K-
means [9] and fuzzy C-means [1] generate robust clusters, detect “unusual” ones,
and handle noise and outliers [14]. Existing credibility-based trust approaches
such as [13,15] rely on K-means to compute the Majority (MK) consensus as
a centroid of the most populated cluster. We use Bezdek’s Algorithm discussed
in [1] to reduce the gap between strict end-users’ (ui) ratings and MK consensus.
Each ui provides a set of ratings (Xi) on a set of common WSs.

The algorithm takes as input ME={MEi,j} a membership matrix where
MEi,j represents the membership degree of Xi=1,n in the Cluster Cj and gener-
ates as output a number of clusters (Nbcluster) with fuzzy boundaries. A new
Majority Cluster (CMaj) needs to be identified taking into account that each
end-user’s rating has a degree of membership per cluster. We use three strategies
to decide on CMaj that rely on qualitative values of membership degree in a

Web Services Trust Assessment Based on Probabilistic Databases 401

fuzzy cluster: weak, moderate, and strong. Once Cstrategy∈{weak,moderate,strong}
Maj

is established with a specific strategy, the next step is to compute the credibility
of end-users in this cluster. Equation 1 identifies ui’s credibility as a distance
from his rating to the majority opinion represented by the centroid of CMaj .
This credibility is computed using the normalized euclidean distance ‖∗‖N as
the similarity measure:

CRj
i = 1 −

∥∥∥ Xi − centroid(Cstrategy
Maj)

∥∥∥
N

, (1)

strategy ∈ {weak,moderate, strong}

The next step in our approach is to assess WSs’ trust according to end-users’
credibility values.

4 Trust Model

In this section, we provide a probabilistic database-based trust model. The pro-
posed model consolidates end-users’ ratings taking into account end-user cred-
ibility. To keep the paper self-contained we firstly briefly review probabilistic
databases. Readers are referred to [3] for more details. Furthermore, we dis-
cuss how our probabilistic database is structured by using a tuple-independent
uncertainty-model and how trust is assessed based on query evaluation.

4.1 Probabilistic Databases in Brief

Formally, Probabilistic DataBase ProbDB = (S, T , prob) is a triple consist-
ing of a database Schema (S), a finite set of T uples (T), and a function prob
that assigns a probability value to each tuple t ∈ T . S defines Probabilistic
Relations ProbR represented as ProbR(A1,. . . , Am,p) where A1,. . . , Am denote
a finite set of Attributes and p denotes the probability value attached to t in
a relation instance of ProbR. prob(t) represents the confidence that the tuple
exists in the database, i.e., a higher value of prob(t) means a higher confidence
that t is valid. The Semantics (Sem) of ProbDB is defined through the possible
worlds model [4]. In [3] Cavallo and Pittarelli define Sem(ProbDB) as a discrete
probability space over a finite number (n) of database instances. They refer to the
various alternative states of ProbDB as “possible worlds” (pwdk). ProbDB with
n tuples can include 2n possible worlds, i.e., one for each subset of tuples. Possi-
ble worlds express the following uncertainty: “one of the possible worlds is true,
but we do not know which one, and the probabilities represent degrees of belief
in the various possible worlds” [6]. Formally, Sem(ProbDB)=(PWD,P) where
PWD = {pwd1, . . . , pwdn} and P : PWD → [0, 1] such that

∑
j=1,n Pj = 1.

Different data models exist to handle uncertainty in databases. For instance,
tuple-level uncertainty models (e.g., [5,16]) associate existence probabilities with
tuples. These models are attractive in data integration for multiple reasons [18]:
they typically result in first-normal form relations; they provide simple and intu-
itive querying semantics; and they are easier to store and manipulate compared

402 Z. Saoud et al.

to attribute-level uncertainty-models. The independent tuple-level uncertainty-
model like the one in [4] is commonly used for data integration and information
extraction in probabilistic data management. In this model, ProbDB is an ordi-
nary relational database where each tuple is associated with a probability of
being true regardless of any other tuple.

4.2 Our Probabilistic Data-Model

Our trust approach aims at designing ProbDB in order to assess trust. Let us con-
sider the following tuple t: ui has correctly observed that WSj satisfies
his requests. The uncertainty here reflects the probability (prob(t)) that t
occurs. Therefore, prob(t) means the extent to which this observation is true.
When prob(t) is equal to 1 (resp. 0) t is valid (resp. is not) in all cases. A prob-
ability prob(t) ∈]0, 1[means that t can occur in some cases, only. We model this
uncertainty by CRi.

To design ProbDB we first pre-process a traditional relational database (DB)
that contains on top of collected ratings additional information on service
providers and evaluation periods. To obtain ProbDB we extract from DB rele-
vant views for trust assessment and add extra details such as credibility values
obtained by the credibility model in Sect. 3 to these views. Thus, DB is built
upon an extended schema compared to ProbDB.

For illustration purposes let assume a database that contains one probabilis-
tic relation ProbR(service, end-user, rating, p) where service, end-user, rating
denote service’s identifier, end-user’s name, and satisfaction degree of end-user
in this service (Fig. 1a). ProbR consists of three tuples t1, t2, and t3 with prob-
abilities 0.12, 0.84, and 0.88, respectively. These latter correspond to credibility
values computed by using our credibility model on a random dataset.

Figure 1b shows the possible worlds pwdk for ProbDB and their associated
probabilities (Pk). Each pwdk contains a subset of the tuples present in ProbDB.
Pk is calculated using the independence assumption (multiply together the exis-
tence probabilities of tuples present in pwdk and non-existence probabilities of
tuples not present in pwdk). For example, P2 for pwd2 = {t1, t2} is computed
as 0.12*0.84*(1 − 0.88) = 0.01.

Possible world interpretation is highly intuitive and offers a concise seman-
tics for query evaluation over probabilistic databases. Let Φservice=s1 be a query
that looks for s1 in certain tuples in ProbDB. This query is evaluated against
each pwdk separately (Φ(pwdk)). The probability associated with Φ(pwdk) cor-
responds to Pk. The result is in ∪k=1,8 Φ(pwdk) that contains a set of tuples t′.
Equation 2 assesses Prob(t′):

Prob(t′) =
∑

k, t′∈Φ(pwdk)

Pk (2)

Fig. 2a shows the results of executing Φservice=s1 on pwdk=1,8. Φ(pwd6) and
Φ(pwd8) result in an empty set but with non-zero probabilities. Although the
set is empty, it could be relevant for an end-user. Indeed this indicates that

Web Services Trust Assessment Based on Probabilistic Databases 403

service end-user rating ...

s1 u1 0.2

s2 u1 0.76

s1 u3 0.97

−→ t1
t2
t3

service end-user rating p

s1 u1 0.2 0.12

s2 u1 0.76 0.84

s1 u3 0.97 0.88

(a) DB versus ProbDB
service end-user rating

s1 u1 0.2

s2 u1 0.76

s1 u3 0.97

service end-user rating

s1 u1 0.2

s2 u1 0.76

service end-user rating

s1 u1 0.2

s1 u3 0.97

service end-user rating

s2 u1 0.76

s1 u3 0.97

pwd1, P1 = 0.09 pwd2, P2 = 0.01 pwd3, P3 = 0.02 pwd4, P4 = 0.65

service end-user rating

s1 u1 0.2

service end-user rating

s2 u1 0.76

service end-user rating

s1 u3 0.97

service end-user rating

pwd5, P5 = 0.01 pwd6, P6 = 0.09 pwd7, P7 = 0.12 pwd8, P8 = 0.12

(b) ProbDB’s possible worlds

Fig. 1. Probabilistic database illustration

service end-user rating

s1 u1 0.2

s1 u3 0.97

service end-user rating

s1 u1 0.2

service end-user rating

s1 u1 0.2

s1 u3 0.97

service end-user rating

s1 u3 0.97

Φ(pwd1), P1 = 0.09 Φ(pwd2), P2 = 0.01 Φ(pwd3), P3 = 0.02 Φ(pwd4), P4 = 0.65

service end-user rating

s1 u1 0.2

service end-user rating service end-user rating

s1 u3 0.97

service end-user rating

Φ(pwd5), P5 = 0.01 Φ(pwd6), P6 = 0.09 Φ(pwd7), P7 = 0.12 Φ(pwd8), P8 = 0.12

(a) Resulting possible worlds

service end-user rating

s1 u1 0.2

s1 u3 0.97

Probability
P1+P2+P3+P5=0.13
P1+P3+P4+P7=0.88

P6+P8=0.21

(b) Query result

Fig. 2. Query evaluation in ProbDB

the existing data are not sufficient to infer relevant answers for the end-user.
Figure 2b also shows the final probability computation. Data inaccuracy leads
to a large number of answers with low probabilities and thus, low precision.
End-users would appreciate receiving answers with high probabilities.

We note that ProbR contains tuples linked to end-users who provide rat-
ings for different services. These end-users can be constant (i.e., always cred-
ible or not) or inconsistent (i.e., swing from credible to uncredible and vice
versa) in their evaluations. Indeed some end-users are more credible than others
and provide correct ratings, while others are less credible and do the opposite.

404 Z. Saoud et al.

Let consider two tuples t1 and t2 related to u1. If t1 is false, then it is false
because u1 is wrong. t2 is likely to be false, too. Thus, if one tuple is false,
the probability that the other tuple is false increases as well. Therefore, the
proposed probabilistic data-model does not comply with the independent tuple
model (e.g., [4]); each tuple is associated with a probability that needs to be
independent from the rest of tuples.

It is worth noticing that it is not straightforward to represent probabilistic
databases when all tuples represent independent events. However, more complex
probabilistic databases can sometimes be decomposed into tuple independent
relations and then be “normalized” [20].

Figure 3 shows how we normalize ProbDB (ProbDBN) into two tuple-
independent probabilistic relations PEER and ProbR1. PEER stores all end-
users and their respective credibility values. Since PEER should often be updated
we consider it as a view instead of a table. ui is credible about WSj if his rat-
ings are consistent. Equation 3 assesses ui’s credibility (CRi) over the ratings he
provided in the past.

CRi =
∏

j

CRj
i (3)

From ProbR we compute CR1 as 0.12 ∗ 0.84 = 0.1. As u3 provides only one
rating, CR3 remains the same in PEER. ProbR1 stores all tuples that now are
independent subject to the end-user credibility.

PEER
end-user p

u1 0.1

u3 0.88
ProbR1

service end-user rating p

s1 u1 0.2 0.12

s2 u1 0.76 0.84

s1 u3 0.97 0.88

Fig. 3. ProbDB normalization

4.3 Trust Assessment as a Query Evaluation

To establish WS’s trust from ProbDBN we develop specific queries. An end-user
trusts WSj if it has successfully satisfied a large number of end-users’ requests.
As mentioned earlier WS’s trust establishment consists of aggregating end-users’
ratings into one probabilistic value. This can be expressed using a like SQL query
SELECT AV G to obtain the rating average value from ProbR1. Intuitively,
applying this query on pwdk means that end-users in pwdk jointly observe that
WSj satisfies their requests with probability Pk. Let FAV G(rating)(σservice=WS1)
be the following SQL query:

SELECT AVG(rating) FROM ProbDBN

WHERE service = WS1;

ProbDBN is interpreted as 25 = 32 pwdk. Figure 4a shows pwd1’s content.
Figure 4b shows that FAV G(rating)(σservice=WS1)’s evaluation returns four pos-
sible answers for trust value 0.585, 0.2, 0.97 and empty set ordered by existence

Web Services Trust Assessment Based on Probabilistic Databases 405

end-user
t1 u1

t2 u3

service end-user rating
t′
1 s1 u1 0.2

t′
2 s2 u1 0.76

t′
3 s1 u3 0.97

trust value p

0.970 0.774

0.585 0.106

∅ 0.106

0.20 0.014

(a) pwd1, P1 = 0.008 (b) FAV G(rating)(σservice=s1)’s results

Fig. 4. Query evaluation on ProbDBN

probability. In [8] Jayram et al. represents FAV G()(σ)’s result over probabilistic
databases as a weighted average of possible answers for the trust value.

Despite the simplicity of possible worlds semantics it raises some challenging
computational concerns even for simple query operations like in [4]. Many studies
have shown that the query evaluation problem is �P-hard. Several algorithms
(e.g., [4,8]) are provided to handle complex queries over massive data streams.

5 The Trust Assessment Framework

Our credibility model relies on fuzzy clustering technique to assess end-user’s
credibility. A probabilistic database-based trust model is discussed. In this section
we present the design and development of a trust assessment framework for WSs
built upon these credibility and trust models. We also discuss performance and
robustness studies of this framework so that the quality of trust is established.

5.1 Framework Design

Our framework includes three main components that are feedback collector, cred-
ibility evaluator, and trust evaluator. For performance purposes we suggest host-
ing these components on the client-side. Figure 5 illustrates a Web service-based
environment that supports our distributed trust assessment framework.

Upon subscription to the framework trust managers are deployed on end-
users’ platforms. After each transaction the end-user sends his trust manager
feedback/ratings about the experience with the Web service. These feedback/
ratings are stored in the feedback database. A prospective end-user requests
his trust manager for some specific WS. Upon receipt of the request the feed-
back collector collects a set of feedback/ratings either from end-users in the
same community that stems from different social networks or from other trust
managers. Then, the credibility evaluator computes each end-user’s credibility
based on Eq. 1. The end-users’ credibility values are then used to generate the
probabilistic feedback database. The trust evaluator evaluates trust upon the end-
user’s request based on the feedback/ratings that end-users have shared. Trust is
assessed as a query executed over the feedback probabilistic database built using
end-users feedback/ratings and their associated credibility values generated by
the Credibility evaluator. Finally, the trust manager sends the end-user the most
trusted service. In the rest of this section these components are explained.

406 Z. Saoud et al.

Fig. 5. Trust assessment framework

Feedback collector supports queries from prospective end-users about trust
values in a given context. Brokers are deployed over different social networks to
make these collected information available when needed. These brokers update
dynamically feedback/ratings after each transaction completion. Therefore an
end-user receives the response from the trust manager more quickly compared to
other approaches like [13,15] where feedback/ratings are collected upon request.
Moreover, the end-user is informed about any transaction and/or trust request
involving a certain Web service.

Credibility evaluator checks if all feedback/ratings that are communicated
by either end-users without trust managers or other trust managers are currently
valid. To this end the credibility evaluator screens the feedback repository to look
for feedback/ratings from peers with social links like friendship and supervision
with the prospective end-user. As per Sect. 3.2 three strategies establish the
majority based on fuzzy clusters’ characteristics like the number of end-users
with “low” and/or “high” membership degrees. Therefore, an end-user should

Web Services Trust Assessment Based on Probabilistic Databases 407

specify his own “low” and “high” fuzzy values as membership functions according
to the Web service’s context of use that could be critical.

Trust evaluator is an “editor” that allows end-users to execute trust queries
over the probabilistic feedback database. Certain queries require that the trust
evaluator evaluates trust with constraints such as over some specific evaluation
periods.

5.2 Prototype and Experiments

We implemented the trust assessment framework in JAVA using Eclipse IDE and
PostgreSQL for feedback/ratings and trust storage. First, we developed different
graphical user interfaces to cater for end-users’ requirements like trust level. The
experiments analyze the quality of trust in terms of the framework’s robustness
and performance. Robustness is an important quality attribute when end-users
heavily rely on the framework for executing critical applications. It is defined by
the IEEE standard glossary of software engineering terminology as: “The degree
to which a system or component can function correctly in the presence of invalid
inputs or stressful environmental conditions” [7]. To destabilize the framework
we inject invalid feedback/ratings from malicious end-users.

Nowadays there is a lack of publicly available real datasets of feedback/ratings
on Web services. Therefore we looked for a dataset that encompasses similar infor-
mation and could be suitable for Web services evaluation. MovieLens1 seems to be
a good dataset for our work. This latter contains 100,000 feedback/ratings from
943 users on 1682 movies (or items). Ratings represent the overall amount of sat-
isfaction and range from 1 to 5. Each user rates at least 20 items. We consider an
item as a Web service and normalize the items’ rating values. We also use the open-
source library Apache Mahout for the fuzzy C-means algorithm (Sect. 3.2). We fix
the number of clusters c and termination criterion ε to 3 and 0.05, respectively.

Parameter Setting. The first stage of the experiments consists of altering a
variable ratio of existing end-users’ feedback/ratings in the dataset and preserv-
ing feedback/ratings of the remaining end-users known as normal. The former
become either malicious or strict. Table 1 shows an example of mapping between
rating categories for normal end-users and those for malicious versus strict end-
users. As malicious end-users tell the opposite of what they initially perceive
their satisfaction is reversed. Strict end-users usually expect more from Web
services. This restricts the rating categories upon which Web services are rated.
This permits to disturb the framework for analyzing how it behaves in presence
of altered end-users.

Experimental Results. We provide several experiments that compute trust
values based on two parameters: (i) ratio of altered end-users in the dataset;
and (ii) choice of a credibility model (Mi)(iii) choice of a pre-defined trust
model (T Mj). We use two credibility models: M1 K-means clustering-based

1 http://www.movielens.org.

http://www.movielens.org

408 Z. Saoud et al.

Table 1. Actual versus false/strict rating categories

Actual False Strict

1 5 1

2 5 1

3 1 2

4 1 3

5 1 4

credibility model, M2 C-means clustering-based credibility model. We define a
deterministic trust model (T M1) as follows:
Let Li be the set of end-users (uk) who send ui�=k ratings (X j

k) about WSj

performance. ui estimates a WSj ’s trust (TX j
Li

) according to both X j
k and CRk.

Equation 4 establishes TX j
Li

as a weighted average of X j
k .

TX j
Li

=
1

∑

k∈Li

CRk
×

∑

k∈Li

(CRk × X j
k) (4)

T M2 refers to our proposed trust model as per Sect. 4. Trust is assessed
as a query evaluated on the probabilistic database ProbDBN . Database tuples’
probabilities are assessed using the chosen credibility model.

In the following T MjMi indicates that T Mj uses Mi.

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9
1

0 0,05 0,1 0,15 0,2 0,25 0,3

T
ru

st

% malicious end-users

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9
1

0 0,05 0,1 0,15 0,2 0,25 0,3

T
ru

st

% strict end-users

(a) Robustness (b) Performance

Fig. 6. Quality of trust

The first experiment analyzes the performance of the probabilistic model
T M2M2 in achieving realistic trust values compared to the deterministic trust
models T M1M1 and T M1M2 in the presence of malicious end-users. We
compare the value of trust computed before and after introducing malicious

Web Services Trust Assessment Based on Probabilistic Databases 409

end-users. Figure 6(a) shows that T M2M2 returns more accurate trust values
(i.e., closer to the actual one) than the other models. Therefore, T M2M2 helps
in improving the framework’s robustness. The second experiment compares trust
values obtained with the probabilistic trust models T M2M1 and T M2M2 in
the presence of strict end-users. Figure 6(b) shows that the trust values obtained
with T M2M2 are always lower than those given with T M2M1. This shows that
strict end-users’ ratings are well considered using T M2M2. This also demon-
strates that the C-means clustering-based credibility model maintains high levels
of performance in the probabilistic approach.

6 Conclusion

In this paper we proposed a new probabilistic database-based model for assessing
Web service trust. In this model the focus is on strict end-users who have no inter-
est in aligning themselves with the majority opinion. Fuzzy clustering was used to
determine an end-user’s credibility. A probabilistic trust approach is introduced
for assessing WSs’ trust under uncertainty that raises from the lack of consistent
ratings that end-users provide over time and the inconsistency of the assessed
QoS values. The probabilistic trust approach relies on probabilistic databases
that stem from probability theory coupled with possible worlds semantics. Our
probabilistic database is structured around the tuple-independent uncertainty
model. Trust is assessed by using specific queries applied on the probabilistic
database. A trust assessment framework implements the proposed probabilistic
approach. Finally, several experiments have been conducted to evaluate the trust
results obtained with the probabilistic approach compared to other credibility-
based trust approaches. The experiments demonstrated that trust quality is
substantially improved. As future work we will explore the possibility to incor-
porate several credibility models into one trust model using block-independent
uncertainty model to structure our probabilistic database.

References

1. Bezdek, J.: Pattern Recognition with Fuzzy Objective Function Algorithms.
Kluwer Academic Publishers, New York (1981)

2. Bordens, K., Horowitz, I.: Social Psychology. Psychology Press, Mahwah (2001)
3. Cavallo, R., Pittarelli, M.: The theory of probabilistic databases. In: Very Large

Data Bases Conferences. Brighton, England (1987)
4. Dalvi, N., Suciu, D.: Efficient query evaluation on probabilistic databases. VLDB

J. 16(4), 523–544 (2007)
5. Fuhr, N., Rölleke, T.: A probabilistic relational algebra for the integration of infor-

mation retrieval and database systems. ACM Trans. Inf. Syst. (TOIS) 15(1), 32–66
(1997)

6. Huang, J., Antova, L., Koch, C., Olteanu, D.: Maybms: a probabilistic database
management system. In: SIGMOD Conference, New York, USA (2009)

7. IEEE: Standard glossary of software engineering terminology. Technical report.
IEEE Computer Society Press (1990)

410 Z. Saoud et al.

8. Jayram, T.S., Kale, S., Vee, E.: Efficient aggregation algorithms for probabilistic
data. In: Annual ACM-SIAM Symposium on Discrete Algorithms, New Orleans,
USA (2007)

9. Kanungo, T., Mount, D., Netanyahu, N., Piatko, C., Silverman, R., Wu, A.: An
efficient k-means clustering algorithm: analysis and implementation. IEEE Trans.
Pattern Anal. Mach. Intell. 24(7), 881–892 (2002)

10. Kim, Y., Kim, D.: A study of online transaction self-efficacy, consumer trust, and
uncertainty reduction in electronic commerce transaction. In: Proceedings of the
Annual Hawaii International Conference on System Sciences (HICSS), Hawaii, USA
(2005)

11. Kyburg, H.E.: Bayesian and non-bayesian evidential updating. Artif. Intell. 3(1),
271–294 (1987)

12. Lesko, W.: Readings in Social Psychology: General, Classic and Contemporary
Selections. Allyn & Bacon, Boston (1997)

13. Malik, Z., Bouguettaya, A.: Rateweb: reputation assessment for trust establishment
among web services. Very Large Data Bases (VLDB) J. 18(4), 885–911 (2009)

14. Nguyen, N., Caruana, R.: Consensus clusterings. In: International Conference on
Data Mining, Omaha, USA (2007)

15. Noor, T., Sheng, Q., Ngu, A., Alfazi, A., Law, J.: Cloud armor: a platform for
credibility-based trust management of cloud services. In: The ACM Conference on
Information and Knowledge Management (CIKM) (2013)

16. Sarma, A., Benjelloun, O., Halevy, A., Widom, J.: Working models for uncertain
data. In: International Conference on Data Engineering (ICDE), Atlanta, USA
(2006)

17. Schum, D., Morris, J.: Assessing the competence and credibility of human sources
of intelligence evidence: contributions from law and probability. Law Probab. Risk
6(1), 247–274 (2007)

18. Sen, P., Deshpande, A.: Representing and querying correlated tuples in probabilis-
tic databases. In: International Conference on Data Engineering (ICDE), Istanbul,
Turkey (2007)

19. Sternthal, B., Phillips, L., Dholakia, R.: The persuasive effect of source credibility:
a situational analysis. Pub. Opin. Q. 42(3), 285–314 (1978)

20. Suciu, D., Olteanu, D., Koch, C.: Probabilistic Databases. Synthesis digital library
of engineering and computer science (2011)

21. Teacy, W.T., Patel, J., Jennings, N.R., Luck, M.: Travos: trust and reputation in
the context of inaccurate information sources. Auton. Agents Multi-Agent Syst.
12(2), 183–198 (2006)

22. Troffaes, M.: Generalizing the conjunction rule for aggregating conflicting expert
opinions. Int. J. Intell. Syst. 21(3), 361–380 (2006)

23. Wang, Y., Singh, M.: Formal trust model for multiagent systems. In: Proceedings
of the International Joint Conference on Artifical Intelligence, Hyderabad, India
(2007)

24. Yager, R.R.: Participatory learning: a paradigm for building better digital and
human agents. Law Probab. Risk 3(1), 133–145 (2004)

25. Yu, B., Singh, M.P.: An evidential model of distributed reputation management. In:
International Joint Conference on Autonomous Agents and Multi-Agent Systems,
Bologna, Italy (2002)

Virtual and Consistent Hyperbolic Tree: A New
Structure for Distributed Database Management

Telesphore Tiendrebeogo1 and Damien Magoni2(B)

1 Polytechnic University of Bobo-Dioulasso, Bobo-Dioulasso, Burkina Faso
tetiendreb@gmail.com

2 LaBRI, University of Bordeaux, Talence, France
magoni@labri.fr

Abstract. We describe a new structure called Virtual and Consistent
Hyperbolic tree (VCH-tree) for implementing a distributed database sys-
tem. This structure is based on the hyperbolic geometry and can sup-
port queries over large spatial data sets, distributed over interconnected
servers. The VCH-tree is comparable to the well-known R-tree struc-
ture, but it leverages the hyperbolic geometry properties of the Poincaré
disk model. It maintains a balanced Q-degree spatial tree that scales
with insertions of data objects into a large number of servers, reach-
able through hyperbolic coordinates. A user application manipulates
the structure from a client node. The client can connect to the system
through one of the servers that is already in the VCH-tree. Messages
are then routed towards the proper server by a greedy algorithm which
uses the hyperbolic coordinates attributed to each server. We have per-
formed simulations to assess the efficiency and reliability of the VCH-
tree. Results show that our VCH-tree exhibits expected performances for
being used by distributed database applications.

1 Introduction

In order to build spatial databases, we promote a distributed indexing system
relying on the hyperbolic geometry [1]. We aim at indexing large data sets of
spatial objects, each uniquely identified by an object identifier (OID) and stored
in a scalable and reliable index called a VCH-tree, that generalizes the R-tree
structure commonly used as a distributed data structure [16]. A VCH-tree allows
the redundancy of object references, like the R-tree [5] or the R*-tree [9]. The
fundamental principle of our system is to map a large OID space onto a set of
servers in a deterministic and distributed way. Roughly, given an object key,
the system is able to obtain the location of several servers where are stored the
corresponding values.

To be able to route queries in other systems, each server usually maintains
the status of its connections to all the other servers, which increases drastically
the number of messages exchanged, and this may constitute a severe scaling
limitation. The same applies to the number of routing hops that must not grow
too fast with the number of servers in the system [7]. Moreover, most distributed
c© Springer International Publishing Switzerland 2015
A. Bouajjani and H. Fauconnier (Eds.): NETYS 2015, LNCS 9466, pp. 411–425, 2015.
DOI: 10.1007/978-3-319-26850-7 28

412 T. Tiendrebeogo and D. Magoni

database systems suffer from a lack of flexibility concerning storage queries (i.e.,
where the values are stored) involving consequently a heavy lookup traffic load
on the paths of the underlying servers.

Our VCH-tree can address all the aforementioned issues while maintaining
a good trade-off between robustness, efficiency and system complexity. In this
paper, we make the following contributions:

– We define a new structure for indexation in a distributed database system
without any constraints. The database servers can connect arbitrarily to each
other, the data objects can be inserted, updated or deleted without the cost
of maintaining any global knowledge of the servers’ topology.

– We define a method for mapping database OIDs to the addresses of the servers
in the hyperbolic plane. This mapping enables OIDs to be forwarded to their
storing server by using a greedy routing algorithm. Values are stored in order
to avoid overloading a particular zone of the distributed system. Furthermore,
storing and retrieving queries can be solved within O(logN) hops.

– To improve database object availability and access performance, our system
embeds a redundancy and caching mechanism that can be adjusted to obtain
a good trade-off between reliability and storage consumption.

– We have carried out simulations to evaluate the performances of the VCH-tree
and have shown that they match the theoretical properties.

The VCH-tree structure presented in this paper, derives from our Distributed
Hash Table (DHT) system defined in our previous work [17]. The key difference
is that data objects which are spatially close, are attributed nearby hyperbolic
addresses in a VCH-tree.

The remainder of this paper is organized as follows. Section 2 gives a brief
overview of the related previous work. Section 3 highlights some properties of the
hyperbolic plane when represented by the Poincaré disk model. Section 4 defines
the local addressing and greedy routing algorithms of the VCH-tree. Section 5
defines the binding algorithm of the VCH-tree. Section 6 presents the results of
our evaluation obtained by simulations and we conclude in Sect. 7.

2 Related Work

Until recently, most of the spatial indexing design efforts have been devoted to
centralized systems [4] although, for non-spatial data, research devoted to an
efficient distribution of large data sets is well-established [2,3]. Many Scalable
Distributed Data Structure (SDDS) schemes are hash-based, e.g., variants of
LH* [8], or use a Distributed Hash Table [2,13]. Some SDDSs are range parti-
tioned, from RP* based systems [10] up to BATON [4] most recently.

There were also proposals for k-d partitioning, e.g., k-RP [14] using dis-
tributed kd-trees for data points, or hQT* [10] using quad-trees for the same
purpose. Hambrusch and Khokhar [6] present a distributed data structure based
on orthogonal bisection trees (2-d KD trees). Kriakov et al. [12] describe an

Virtual and Consistent Hyperbolic Tree 413

adaptive index method which offers dynamic load balancing of servers and dis-
tributed collaboration. The structure requires a coordinator which maintains the
load of each server.

3 Hyperbolic Geometry

The model that we use in our system to represent the hyperbolic plane is called
the Poincaré disk model. In the Poincaré disk model, the hyperbolic plane is
represented by the open unit disk of radius 1 centered at the origin. In this
specific model:

– Points are represented by points within this open unit disk.
– Lines are represented by arcs of circles intersecting the disk and meeting its

boundaries at right angles.

In this model, we refer to points by using complex coordinates.
An important property is that we can tile the hyperbolic plane with polygons

of any sizes, called p-gons. Each tessellation is represented by a notation of the
form {p, q} where each polygon has p sides with q of them at each vertex. There
exists a hyperbolic tessellation {p, q} for every couple {p, q} obeying (p − 2) ∗
(q − 2) > 4. In a tiling, p is the number of sides of the polygons of the primal
(the black edges and green vertices in Fig. 1) and q is the number of sides of the
polygons of the dual (the red triangles in Fig. 1).

Our purpose is to partition the plane and address each node uniquely. We
set p to infinity, thus transforming the primal into a regular tree of degree q.
The dual is then tessellated with an infinite number of q-gons. This particular
tiling splits the hyperbolic plane in distinct spaces and constructs an embedded
tree that we use to assign unique addresses to the nodes. An example of such a
hyperbolic tree with q = 3 is shown in Fig. 1.

In the Poincaré disk model, the distances between any two points z and w
are given by curves minimizing the distance between these two points and are
called geodesics of the hyperbolic plane. To compute the length of a geodesic
between two points z and w and thus obtain their hyperbolic distance dH, we
use the Poincaré metric which is an isometric invariant given by the formula:

dH(z, w) = arcosh
(

1 + 2 × |z − w|2
(1 − |z|2)(1 − |w|2)

)
(1)

This formula is used by the greedy routing algorithm shown in the next section.

4 Topology of the Servers

We now explain in this section how we create the hyperbolic addressing tree
for database servers interconnections and how queries can be routed in our dis-
tributed database system. The first step in the creation of a VCH-tree of servers

414 T. Tiendrebeogo and D. Magoni

n1 [0.5;0]

n2 [-0.25;0.433]

n3 [-0.25;-0.433]

n0 [0;0]

n5

n4

n6

n7

n8

n9

Fig. 1. 3-regular tree in the hyperbolic plane

nodes is to start the first database server and to choose the degree of the address-
ing tree.

We recall that the hyperbolic coordinates (i.e., a complex number) of a server
node of the addressing tree are used as the address of the corresponding database
server in the distributed data base system. A server node of the tree can give the
addresses corresponding to its children in the VCH-tree. The degree determines
how many addresses each database server will be able to give for news nodes
servers connections. The degree of the VCH-tree is defined at the beginning for
all the lifetime of the distributed database system. The distributed database
system is then built incrementally, with each new data server joining one or
more existing data servers. Over time, the data servers will leave the overlay until
there is no server left which is the end of the distributed database system. So, for
every data object that must be stored in the system, an OID is associated with
him and map then in key-value pair. The key will allow to determine in which

Virtual and Consistent Hyperbolic Tree 415

data servers the object will be stored (as explained in the following section).
Furthermore when a data object is deleted, the system must be able to update
this operation in all the system by forwarding query. This method is scalable
because unlike Kleinberg [11], we do not have to make a two-pass algorithm over
the whole distributed system to find its highest degree. Also in our system, a
server can connect to any other server at any time in order to obtain an address.

The first step is thus to define the degree of the tree because it allows building
the dual, namely the regular q − gon. We nail the root of the tree at the origin
of the primal and we begin the tiling at the origin of the disk in function of q.
Each splitting of the space in order to create disjoint subspaces is ensured once
the half spaces are tangent; hence the primal is an infinite q-regular tree. We
use the theoretical infinite q-regular tree to construct the greedy embedding of
our q-regular tree. So, the regular degree of the tree is the number of sides of the
polygon used to build the dual (see Fig. 1). In other words, the space is allocated
for q child database servers. Each database server repeats the computation for
its own half space. In half space, the space is again allocated for q − 1 children.
Each child can distribute its addresses in its half space. Algorithm 1 shows how
to compute the addresses that can be given to the children of a database server.
The first database server takes the hyperbolic address (0;0) and is the root of
the tree. The root can assign q addresses.

Algorithm 1. Calculating the Coordinates of a Server’s Children
1: procedure CalcChildrenCoords(server, q)

2: step ← arcosh

⎛

⎝

1

sin
(

π
q

)

⎞

⎠

3: angle ← 2π

q
4: childCoords ← server.Coords
5: for i ← 1, q do
6: ChildCoords.rotationLeft(angle)
7: ChildCoords.translation(step)
8: ChildCoords.rotationRight(π)
9: if ChildCoords �= server.ParentCoords then

10: StoreChildCoords(ChildCoords)
11: end if
12: end for
13: end procedure

This distributed algorithm ensures that the database servers are contained
in distinct spaces and have unique coordinates. All the steps of the presented
algorithm are suitable for distributed and asynchronous computation. This algo-
rithm allows the assignment of addresses as coordinates in dynamic topologies.
As the global knowledge of the distributed database system is not necessary, a
new server can obtain coordinates simply by asking an existing server to be its

416 T. Tiendrebeogo and D. Magoni

parent and to give it an address for itself. If the asked server has already given
all its addresses, the new server must ask an address to another existing data-
base server. When a new server obtains an address, it computes the addresses
(i.e., hyperbolic coordinates) of its addresses that will be given to its potential
children. Those are new database servers that will connect to the distributed
database system. The addressing VCH-tree is thus incrementally built at the
same time than the distributed database system.

When a new database server has connected to database servers already inside
the distributed database system and has obtained an address from one of those
database servers, it can start sending requests to store or lookup database object
in the distributed database system. The routing process is done on each database
server on the path (starting from the sender) by using Algorithm2, a greedy
algorithm based on the hyperbolic distances between the servers. When a query
is received by a database server, the database server computes the distance from
each of its neighbors to the destination and forwards the query to its neighbor
which is the closest to the destination (destination database server computing is
given in Sect. 5).

Algorithm 2. Routing a Query in the Distributed Database System
1: function getNextHop(server, query) return server
2: w = query.destinationServerCoords
3: m = server.Coords

4: dmin = arcosh

(

1 + 2 × |m − w|2
(1 − |m|2)(1 − |w|2)

)

5: pmin = server
6: for all neighbor ∈ server.Neighbors do
7: n = neighbor.Coords

8: d = arcosh

(

1 + 2 × |n − w|2
(1 − |n|2)(1 − |w|2)

)

9: if d < dmin then
10: dmin = d
11: pmin = neighbor
12: end if
13: end for
14: return pmin

15: end function

In a real network environment, link and server failures are expected to happen
often. If the addressing VCH-tree is broken by the failure of a database server
or link, we flush the addresses attributed to the servers beyond the failed server
or link and reassign new addresses to those servers (some servers may have first
to reconnect to other servers in order to restore connectivity). But this solution
is not developed in this paper.

Virtual and Consistent Hyperbolic Tree 417

5 Storage and Retrieval of Data Objects

In this section we explain how our distributed database system computes the
destination database servers addresses for storing and retrieving queries. Indeed,
the first server contacted by a client (prime server) for sending a query in the
system consider the latter as a data object that can be stored or looked up.
Thus this server generates an OID associated to the data object and the latter is
mapped onto hyperbolic addresses corresponding to destination database servers’
addresses in the VCH-tree.

On startup, each new client query is associated with the data object with
OID corresponding to the name of the query and that identifies the query it
runs on. This name will be kept by data object during all the lifetime of the
distributed database system.

When the prime database server computes some specific addresses of data-
base servers, when it is about a storage query, it stores the name (OID) and
value of query in these specific addresses of distributed database servers, thus
the data object in the DHT, when it is about a retrieving query, it contacts
database servers which addresses has been computed. In our distributed system,
the name is used as a key by a mathematical transformation. If the same name
is already stored in the distributed database system, an error message is sent
back to the prime server (Server by whom the client is directly bound) in order
to generate another name. Thus the distributed database system structure itself
ensures that OIDs are unique.

An (OID, value) pair, with the OID acting as a key is called a binding.
Figure 2 shows how and where a given binding is stored in the distributed data-
base system. A binder is any database server that stores these pairs. The depth
of a server in the addressing VCH-tree is defined as the number of parent servers
to go through for reaching the root of the VCH-tree (including the root itself).
When the distributed database system is created, a maximum depth for the
potential binders is chosen. This value is defined as the binding VCH-tree depth.
To ensure a load balancing of the system, the depth d is chosen such that d
minimizes the inequality 2, where d is the depth, q is the degree and N is the
number of servers:

1 + q ×
(

1 − (q − 1)d

2 − q

)
≥ N (2)

When a new database server joins the distributed database system by con-
necting to other servers, it obtains an address from one of these servers. Next,
the server stores its own binding in the system. So, during his life, each database
server tries to join others by sending a join query. Each server cannot accept
that a limited number of join queries independently of the degree of the VCH-
tree. The new connections serve as shortcuts during the phases of storage and
retrieving of data objects. We call these connections, shortcut links as indicated
in Fig. 2.

418 T. Tiendrebeogo and D. Magoni

HASHED
KEY

FARTHEST
BINDER

BINDER

BINDER

SHORTCUT

Fig. 2. Storage in the VCH-tree

5.1 Storage Query Processing

When a client wants to send a storage query (i.e., insertion), the first server with
whom it is connected consider a query as an object (thus generating an OID)
and creates a key by hashing its name with the SHA-512 algorithm. It divides
the 512-bit key into 16 equally sized 32-bit subkeys (for redundant storage). The
server selects the first subkey and maps it to an angle by a linear transformation.

The angle is given by:

α = 2π × 32-bit subkey

0xFFFFFFFF
(3)

The database server then computes a virtual point v on the unit circle by using
this angle:

v(x, y) with
{

x = cos(α)
y = sin(α) (4)

Virtual and Consistent Hyperbolic Tree 419

Next the database server determines the coordinates of the closest binder to
the computed virtual point above by using the given binding tree depth.

In the figure we set the binding VCH-tree depth to three to avoid cluttering
the figure. It’s important to note that this closest binder may not really exist if
no database server is currently owning this address. The database server then
sends a storage query to this closest database server. This query is routed inside
the distributed database system by using the greedy algorithm of Sect. 4. If the
query fails because the binder does not exist or because of database server/link
failures, it is redirected to the next closest binder which is the father of the
computed binder.

The path from the computed closest binder to the farthest binder is defined
as the binding radius. This process ensures that the queries are always stored
first in the binders closer to the unit circle and last in the binders closer to the
disk center. However to avoid overloading the farthest binder particularly and
to ensure load balancing, we limit the number of stored pairs S as shown by the
inequality 5, where N is equal to the number of servers and q is equal to the
degree of the VCH-tree:

S ≤
⌊

1
2

× log(N)
log(q)

⌋
(5)

Furthermore the previous solution, any binder will be able to set a maximum
number of stored queries and any new database server to store will be refused
and the query redirected as above. Besides, to provide redundancy and so ensure
the availability and reduce the latency period in the lookup process, the database
server does the storage process described above for each of the other 15 subkeys.
Thus 16 different binding radii will be used at the most and this will improve
the even distribution of the pairs (key-value).

In addition to this and still for redundancy purposes, a pair key-value of
the data object may be stored in more than one database server of the binding
radius. A binder could store a data object and still redirect its query for storage
it in other ancestor binders. The number of stored copies of a key-value pair
along the binding radius may be an arbitrary value set at the distributed system
creation. Similarly the division of the key in 16 subkeys is arbitrary and could
be increased or reduced depending on the redundancy needed. To conclude we
can define two redundancy mechanisms for storage copies of a given binding:

1. We can use more than one binding radius by creating several uniformly dis-
tributed subkeys.

2. We can store the data object key-value pair in more than one binder in the
same binding radius.

These mechanisms enable our distributed database system to cope with a
non-uniform growth of the database servers and they ensure that a data object
will be stored in a redundant way that will maximize the success rate of its
retrieval. The numbers of subkeys and the numbers of copies in a radius are
parameters that can be set at the creation of the distributed database system.
Increasing them leads to a tradeoff between improved reliability and lost storage

420 T. Tiendrebeogo and D. Magoni

space in binders. Besides our solution has the property of consistent hashing:
if one database server fails, only its keys are lost but the other binders are not
impacted and the whole system remains coherent. Algorithm 3 illustrates the
previous mechanism.

Algorithm 3. Storage Algorithm
1: function Store(Query)
2: OID ← Query.GetOID()
3: Key ← Hash(OID)
4: for all red ∈ RCircular do
5: depth ← PMax

6: i ← 1

7: while i ≤
⌊

1

2
× log(N)

log(q)

⌋

&& depth ≥ 0 do

8: SubKey[red][depth] ← ComputeSubkey(Key)[red][depth]
9: TargetServerAddr[red][depth] ← ComputeAddr(SubKey[red][depth])

10: TargetServer ← GetTarget(TargetServerAddr[red][depth])
11: if route(Query, TargetServer) then
12: i + +
13: put(OID, Query)
14: end if
15: depth − −
16: end while
17: end for
18: end function

5.2 Lookup Query Processing

Now, if the client wants to lookup a data object in the distributed database sys-
tem, a prime server is contacted and generates an OID for the client query. Here
again, the OID is mapped into a key by the SHA-512 algorithm, thus the 512 bits
key is divided into 16 subkeys. Each subkey, by the process described in Sect. 5.1,
will be transformed into an address that represents the address of the database
server where the data object is stored. The latter is contacted by the prime
database server for updating, deleting or retrieving the associated value. When
the redundancy mechanism has been used to store the data object, the lookup
repeats the latter process of lookup for any subkey, thus the operation will be
performed on all database servers that contain the data object. Our distributed
system ensures the coherence of data objects of the distributed database. This
mechanism is illustrated by Algorithm 4.

6 Evaluation

We performed experiments for evaluating the behavior of a VCH-tree over large
datasets. Furthermore, we consider that the system is static so there are no

Virtual and Consistent Hyperbolic Tree 421

Algorithm 4. Lookup and Update Algorithm
1: function Lookup(Query) return V alue
2: QueryOID ← Target.GetQueryOID()
3: Key ← Hash(QueryOID)
4: for all red ∈ RCircular do
5: depth ← PMax

6: i ← 1

7: while i ≤
⌊

1

2
× log(N)

log(q)

⌋

&& depth ≥ 0 do

8: TargetServerAddr[red][depth] ← GetV alue(Key)
9: V alue ← GetV alue(TargetServerAddr[red][depth], QueryOID)

10: if V alue ! = null then
11: if Query == delete then
12: delete(OID)
13: end if
14: if (Query == update) then
15: update(OID)
16: end if
17: if Query == select then
18: return V alue
19: end if
20: i + +
21: end if
22: depth − −
23: end while
24: end for
25: end function

join or leave of database servers during the simulation. We use the Peersim [15]
simulator for running event-driven simulations. The study involved the following
parameters of the VCH-tree:

– The number of database servers connected and used to store the data objects.
Here we have considered 10000 database servers;

– Each run lasts 2 h of simulated time;
– We try to store 6 millions of data objects in our distributed database system

following an exponential distribution with a median equal to 10 min;
– The maximum capacity for each server is set to 6000 objects.

We studied the behavior of our structure for both data objects’ storage and
retrieval in the system. We are interested in observing the scalability of our
system, the shape of the hyperbolic tree, the storage load balancing and the
length of the paths of the queries.

6.1 Spatial Shape of the VCH-tree

Figure 3 shows an experimental distribution of points corresponding to the scat-
ter plot of the distribution of the database servers in our system. We can see

422 T. Tiendrebeogo and D. Magoni

-1

-0.5

 0

 0.5

 1

-1 -0.5 0 0.5 1

O
rd

in
at

e

Abscissa

Fig. 3. Scatter plot of the spatial posi-
tions of the database servers.

-1

-0.998

-0.996

-0.994

-0.992

-0.99
-0.01 -0.005 0 0.005 0.01

O
rd

in
at

e

Abscissa

Fig. 4. Scatter plot of the positions of
the servers in the neighborhood of the
unit circle.

that our VCH-tree is balanced. Indeed, we can notice by part and others around
the unit circle which we have database servers. This has an almost uniform dis-
tribution around the root, which implies that our system builds a well-balanced
tree that will more easily allow to reach a proper load balancing for the storage.

Figure 4 shows correspondingly Poincaré disk model that no address of data-
base server belongs on the edge of the unit circle. Indeed, the addresses of data-
base server were obtained by projection of the tree of the hyperbolic plane in a
circle of the Euclidian plane of radius 1 and of center with coordinates (0; 0).

This result shows that our distributed database system can grow towards
infinity in theory. In practice, other parameters such as real number precision
do bring limitations.

6.2 Load Balancing in the VCH-tree

Figure 5 shows a plot of the average number of objects stored by the database
servers over time. So this figure shows a regular growth of this number of data
objects stored in function of time. Indeed, 293.27 data objects on average are
stored by database server after 10 min vs 620.4 after 2 h. It is interesting to notice
that the standard deviation remains low, approximately at 10 % of the average.
This indicates a low dispersal of the number of objects stored on the servers
during the simulation.

Indeed, if we use our results to build the confidence interval, we can say that
after 10 min of simulation, 68.2 % of the database servers store between 263.69
and 322.71 data objects and 95 % store between 234.18 and 352.22 against 68.2 %
of the database servers which store between 560.18 and 681.58 data objects after
2 h and 95 % of the database servers who store between 497.95 and 742.84 data
objects after 2 h. In view of these results, we can say that our system maintains
a proper load balancing between database servers which ensures the stability of
our distributed database system.

Virtual and Consistent Hyperbolic Tree 423

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450
 500
 550
 600
 650
 700

 10 20 30 40 50 60 70 80 90 100 110 120

A
ve

ra
g

e
n

u
m

b
er

 o
f

d
at

a
o

b
je

ct
s

st
o

re
d

 p
er

 s
er

ve
r

Time (minutes)

Fig. 5. Average load on the database servers over time

6.3 Storage and Retrieval Efficiency in the VCH-tree

Figures 6 and 7 show that during the simulation, queries in both cases can be
answered within O(log N) where N is equal to the number of database servers in
the system. As the standard deviation is very low (less than 5 % of the average
for storage and retrieval), we did not represent it on the figures. In the worst
case, queries need to travel less than 4 database servers in the system for either
storing, or retrieving a data object. Besides, what is also interesting to note
is that the plot decreases slowly to become stationary after around 100 min in
both cases. It can be explained because during the simulation, the database

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 10 20 30 40 50 60 70 80 90 100 110 120

Q
u

er
ie

s
av

er
ag

e
n

u
m

b
er

 o
f

h
o

p
s

Time (minutes)

Fig. 6. Path length of storage queries

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 10 20 30 40 50 60 70 80 90 100 110 120

Q
u

er
ie

s
av

er
ag

e
n

u
m

b
er

 o
f

h
o

p
s

Time (minutes)

Fig. 7. Path length of retrieval queries

424 T. Tiendrebeogo and D. Magoni

servers create shortcuts as indicated in Sect. 5. These shortcuts allow to reach
their target in fewer hops. The stationary situation is understandable by the fact
that after a while, all the database servers reached their maximum number of
shortcuts created and the most part of the queries is processed on average in
less than 3.75 hops in both cases.

7 Conclusion

In this paper, we have presented a new structure called VCH-tree. This hyper-
bolic tree presents some properties that allow us to propose a consistent system
of distributed database servers using virtual addresses made from hyperbolic
coordinates. We have evaluated the performances of our system by simulation.
We have shown that our system is scalable in terms of the number of database
servers that can be interconnected as well as in terms of the number of hops
to route the queries. We have also shown that the placement of the different
database servers allows us to keep a well-balanced tree. Furthermore, we have
shown that our system maintains a load balancing for the storage of data objects.
For future work, we plan to study our solution comparatively to the other ones
described in the state of the art in order to assess its benefits relatively to those
existing solutions.

References

1. Anderson, J.W.: Hyperbolic Geometry. Springer undergraduate mathematics
series, 2nd edn. Springer, Berlin (2005)

2. Crainiceanu, A., Linga, P., Gehrke, J., Shanmugasundaram, J.: Querying peer-to-
peer networks using p-trees. In: Proceedings of the 7th International Workshop
on the Web and Databases: Colocated with ACM SIGMOD/PODS 2004, WebDB
2004, pp. 25–30. ACM, New York (2004). http://doi.acm.org/10.1145/1017074.
1017082

3. Devine, R.: Design and implementation of DDH: a distributed dynamic hashing
algorithm. In: Lomet, D.B. (ed.) FODO 1993, vol. 730, pp. 101–114. Springer,
Heidelberg (1993)

4. Gaede, V., Günther, O.: Multidimensional access methods. ACM Comput. Surv.
30(2), 170–231 (1998). http://doi.acm.org/10.1145/280277.280279

5. Guttman, A.: R-trees: a dynamic index structure for spatial searching. SIGMOD
Rec. 14(2), 47–57 (1984). http://doi.acm.org/10.1145/971697.602266

6. Hambrusch, S.E., Khokhar, A.A.: Maintaining spatial data sets in distributed-
memory machines, pp. 702–707. IEEE Computer Society (1997)

7. Idowu, S.A., Maitanmi, S.O.: Transactions- distributed database systems: issues
and challenges. IJACSCE 2(1), 24–26 (2014)

8. Jajodia, S., Litwin, W., Schwarz, T.J.E.: LH*RE: a scalable distributed data struc-
ture with recoverable encryption, pp. 354–361. IEEE (2010)

9. Jansson, J., Sung, W.-K.: Constructing the R* consensus tree of two trees in sub-
cubic time. In: de Berg, M., Meyer, U. (eds.) ESA 2010, Part I. LNCS, vol. 6346,
pp. 573–584. Springer, Heidelberg (2010)

http://doi.acm.org/10.1145/1017074.1017082
http://doi.acm.org/10.1145/1017074.1017082
http://doi.acm.org/10.1145/280277.280279
http://doi.acm.org/10.1145/971697.602266

Virtual and Consistent Hyperbolic Tree 425

10. Karlsson, J.S.: hQT*: a scalable distributed data structure for high-performance
spatial accesses, pp. 37–46 (1998)

11. Kleinberg, R.: Geographic routing using hyperbolic space. In: 26th IEEE Interna-
tional Conference on Computer Communications, INFOCOM 2007, pp. 1902–1909.
IEEE, May 2007

12. Kriakov, V., Delis, A., Kollios, G.: Management of highly dynamic multidimen-
sional data in a cluster of workstations. In: Bertino, E., Christodoulakis, S.,
Plexousakis, D., Christophides, V., Koubarakis, M., Böhm, K. (eds.) EDBT 2004.
LNCS, vol. 2992, pp. 748–764. Springer, Heidelberg (2004)

13. Lakshman, A., Malik, P.: Cassandra: a decentralized structured storage sys-
tem. SIGOPS Oper. Syst. Rev. 44(2), 35–40 (2010). http://doi.acm.org/10.1145/
1773912.1773922

14. Litwin, W., Neimat, M.A.: k-RP*s: a scalable distributed data structure for high-
performance multi-attribute access, pp. 120–131. IEEE Computer Society (1996)

15. Montresor, A., Jelasity, M.: PeerSim: a scalable P2P simulator. In: Proceedings of
the 9th International Conference on Peer-to-Peer (P2P 2009), pp. 99–100, Seattle,
WA (2009)

16. Silberschatz, A., Korth, H., Sudarshan, S.: Database Systems Concepts, 5th edn.
McGraw-Hill, Inc., New York (2006)

17. Tiendrebeogo, T., Ahmat, D., Magoni, D.: Reliable and scalable distributed hash
tables harnessing hyperbolic coordinates. In: 2012 5th International Conference on
New Technologies, Mobility and Security (NTMS), pp. 1–6, May 2012

http://doi.acm.org/10.1145/1773912.1773922
http://doi.acm.org/10.1145/1773912.1773922

EPiC: Efficient Privacy-Preserving
Counting for MapReduce

Triet D. Vo-Huu1(B), Erik-Oliver Blass2, and Guevara Noubir1

1 Northeastern University, Boston, MA 02115, USA
vohuudtr@ccs.neu.edu

2 Airbus Group Innovations, 81663 Munich, Germany

Abstract. In the face of an untrusted cloud infrastructure, outsourced
data needs to be protected. We present EPiC, a practical protocol for
the privacy-preserving evaluation of a fundamental operation on data
sets: frequency counting. We show how a general pattern, defined by
a Boolean formula, is arithmetized into a multivariate polynomial and
used in EPiC. To increase the performance of the system, we introduce
a new efficient privacy-preserving encoding with “somewhat homomor-
phic” properties based on previous work on the Hidden Modular Group
assumption. Besides a formal analysis where we prove EPiC’s privacy, we
also present implementation and evaluation results. We specifically tar-
get Google’s prominent MapReduce paradigm as offered by major cloud
providers. Our evaluation performed both locally and in Amazon’s public
cloud with up to 1 TB data sets shows only a modest overhead of 20%
compared to non-private counting, attesting to EPiC’s efficiency.

1 Introduction

Cloud computing is a promising technology for large enterprises and even gov-
ernmental organizations. Major cloud computing providers such as Amazon and
Google offer users to outsource their data and computation. While the idea of
moving data and computation to a (public) cloud for cost savings is appealing,
trusting the cloud to store and protect data against adversaries is a serious con-
cern for users. The encryption of data is a viable privacy protection mechanism,
but it renders subsequent operations on encrypted data a challenging problem.
To address this problem, Fully Homomorphic Encryption (FHE) techniques have
been investigated, cf. Gentry [8] or see Vaikuntanathan [15] for an overview. FHE
guarantees that the cloud neither learns details about the stored data nor about
the results. However, today’s FHE schemes are still overly inefficient [5,9,16], and
a deployment in a real-world cloud would outweigh any cost advantage offered
by the cloud. Moreover, any solution for a real-world cloud needs to be tailored
to the specifics of the cloud computing paradigm, e.g., MapReduce [6].

This paper presents EPiC – Efficient PrIvacy-preserving Counting for
MapReduce, an efficient, practical, yet privacy-preserving protocol for a fun-
damental data analysis primitive in MapReduce: counting occurrences of pat-
terns. In an outsourced data set comprising a large number of encrypted data
c© Springer International Publishing Switzerland 2015
A. Bouajjani and H. Fauconnier (Eds.): NETYS 2015, LNCS 9466, pp. 426–443, 2015.
DOI: 10.1007/978-3-319-26850-7 29

EPiC: Efficient Privacy-Preserving Counting for MapReduce 427

records, EPiC allows the cloud user to specify a pattern, and the cloud will
count the number of occurrences of this pattern (and therefore histograms) in
the stored ciphertexts without revealing the pattern and how often it occurs.
A pattern is expressed as a Boolean formula on countable fields of data records
and can specify a specific field value, a value comparison, a range of field values,
and more complex forms of conjunctions/disjunctions among sub-patterns. For
example, in an outsourced data set of patient health records, a pattern could
be age ∈ [50, 70] and (diabetes = 1 or hypertension = 1). The main idea of
EPiC is to transform the problem of privacy-preserving pattern counting into a
summation of polynomial evaluations. Our work is inspired by Lauter et al. [11]
to use somewhat homomorphic encryption to address specific privacy-preserving
operations. In EPiC, we extend a previous work on cPIR protocols [14] to design
a new “encoding” mechanism that exhibits somewhat homomorphic properties.
While we call our encoding encryption in the rest of this paper, we stress that
our encryption does not provide traditional IND-CPA security, but only weaker
properties suited to the context we target in this paper, i.e., the summation of
polynomial evaluations. In return, our “encryption” is particularly efficient in
this context. We also show how a general pattern, defined by a Boolean for-
mula, is arithmetized into a multivariate polynomial over GF (2), optimizing for
efficiency. In conclusion, the contributions of this paper are:

– EPiC, a new protocol to enable privacy-preserving pattern counting in
MapReduce clouds. EPiC reduces the problem of counting occurrences of
a Boolean pattern to the summation of a multivariate polynomial evaluated
on encrypted data.

– A new, practical “somewhat homomorphic” encoding/encryption scheme
specifically addressing secure counting in a highly efficient manner.

– An implementation of EPiC and its encryption mechanism together with an
extensive evaluation in a realistic setting. The source code is available for
download [17].

2 Problem Statement

Overview: We will use an example application to motivate our work. Imag-
ine a hospital scenario where patient records are managed electronically. To
reduce cost and grant access to, e.g., other hospitals and external doctors, the
hospital refrains from investing into an own, local data center, but plans to
outsource patient records to a public cloud. Regulatory matters require the
privacy-protection of sensitive medical information, so outsourced data has to
be encrypted. However, besides uploading, retrieving or editing patient records
performed by multiple entities (hospitals, doctors etc.), one entity eventually
wants to collect some statistics on the outsourced patient records without the
necessity of downloading all of them.

428 T.D. Vo-Huu et al.

2.1 Cloud Counting

More specifically, we assume that each patient record R includes one or more
countable fields R.c containing some patterns. A user (e.g., doctor) U wants
to extract the frequency of occurrence of pattern χ, e.g., how many patients
have R.disease = χ. Due to the large amount of data, downloading each patient
record is prohibitive, and the counting should be performed by the cloud. While
encryption of data, access control, and key management in a multi-user cloud
environment are clearly important topics, we focus on the problem of a-posteriori
extracting information out of the outsourced data in a privacy-preserving man-
ner. The cloud must neither learn details about the stored data, nor any infor-
mation about the counting, what is counted, the count itself, etc. Instead, the
cloud processes U ’s counting queries “obliviously”. We will now first specify the
general setup of counting schemes for public clouds and then formally define pri-
vacy requirements. Note that throughout this paper, we will assume the count-
able fields to be non-negative integer fields. Besides, records may contain non-
countable data, e.g., pictures or doctors’ notes, that can be IND-CPA (AES-
CBC) encrypted – Therewith, it is of no importance for privacy defined below.

Definition 1 (Cloud Counting). Let R denote a sequence of records R :=
{R1, . . . , Rn}. Besides some non-countable data, each record Ri contains m dif-
ferent countable fields. The k-th countable field of the i-th record, denoted as
Ri,k, 1 ≤ k ≤ m, can take values Ri,k ∈ Dk = {0, 1, . . . , |Dk| − 1}, where Dk

denotes the domain of the k-th field with size1 |Dk|. For the “multi-domain” of
m countable fields we write D = D1 × · · · × Dm. A privacy-preserving counting
scheme comprises the following probabilistic polynomial time algorithms:

1. KeyGen(κ): using a security parameter κ, outputs a secret key S.
2. Encrypt(S,R): uses secret key S to encrypt the sequence of records R to

E := {ER1 , . . . , ERn
}, where ERi

denotes the encryption of record Ri.
3. Upload(E): uploads the sequence of encryptions E to the cloud.
4. PrepareQuery(S, χ): generates an encrypted query Q out of secret S and

the multiple-field pattern χ ∈ D.
5. ProcessQuery(Q, E): uses an encrypted query Q, the sequence of cipher-

texts E, and outputs a result EΣ. This algorithm performs the actual count-
ing.

6. Decode(S, EΣ): takes secret S and EΣ to output a final result, the occur-
rences Σ (the “count”) of the specified pattern in R.

According to this definition, cloud user U encrypts the sequence of records
and uploads them into the cloud. If U wants to know the number of occurrences
of χ in the records, he prepares a query Q, which is – as we will see later – simply
a fixed-length sequence of encrypted values. U then sends Q to the cloud, and
the cloud processes Q. Finally, the cloud sends a result EΣ back to U who can
decrypt this result and learn the number Σ of occurrences of pattern χ, i.e., the
count.
1 Domain size |Dk| indicates the number of different values a field can take.

EPiC: Efficient Privacy-Preserving Counting for MapReduce 429

2.2 Privacy

In the face of an untrusted cloud infrastructure, cloud user U wants to perform
counting in a privacy-preserving manner. Informally, we demand (1) storage
privacy, where the cloud does not learn anything about stored data, and (2)
counting privacy, where the cloud does not learn anything about queries and
query results. The cloud, which we now call “adversary” A, should only learn
“trivial” privacy properties like the total size of outsourced data, the total num-
ber of patient records or the number of counting operations performed for U .
We formalize privacy for counting using a game-based setup. In the following,
ε(κ) denotes a negligible function in the security parameter κ.

Definition 2 (Bit Mapping). Let R = {R1, . . . , Rn} be a set of records, and
Ri,k ∈ {0, 1}∗ the k-th field of record Ri. Let χ,Σ ∈ {0, 1}∗ be bit string repre-
sentations of a pattern and a count. For X ∈ {Ri,k, χ,Σ}, bit(j,X) denotes the
j-th bit of X.

Definition 3 (Storage Privacy). A challenger generates two same-size same-
field-types sets of records R,R′ and two patterns χ, χ′ ∈ D. The challenger then
uses Encrypt and PrepareQuery to compute the encrypted sets of records
E , E ′ and two encrypted counting queries Q,Q′ corresponding to two patterns
χ, χ′. Using ProcessQuery, he evaluates E with Q, and E ′ with Q′ to get
encrypted results EΣ , E′

Σ. The challenger sends I := {E , E ′, Q,Q′, EΣ , E′
Σ} to

adversary A. For any patterns χ, χ′, any X,X ′ such that either X ∈ {{Ri,k}}
and X ′ ∈ {{Ri,k}} or X = χ and X ′ = χ′ or X = Σ and X ′ = Σ′, and
for any b = bit(j,X) and b′ = bit(j′,X ′), the adversary A outputs 1, if she
guesses b = b′, and 0 otherwise. A protocol preserves storage privacy, iff for any
probabilistic polynomial time (PPT) algorithm A, the probability of correct output
is not higher than a random guess. That is,

∣∣Pr [A(I) = 1|b = b′] − 1
2

∣∣ ≤ ε(κ) and∣∣Pr [A(I) = 0|b �= b′] − 1
2

∣∣ ≤ ε(κ).

Definition 4 (Counting Privacy). A challenger generates two same-size
same-field-types sets of records R,R′, and two patterns χ, χ′, uses Encrypt,
PrepareQuery, and ProcessQuery, and sends encrypted I := {E , E ′, Q,Q′,
EΣ , E′

Σ}, to A. Now, A outputs 1, if χ = χ′, and 0 otherwise. A protocol pre-
serves counting privacy, iff for any PPT algorithm A the probability of correct
output is not better than a random guess:

∣∣Pr [A(I) = 1|χ = χ′] − 1
2

∣∣ ≤ ε(κ) and∣∣Pr [A(I) = 0|χ �= χ′] − 1
2

∣∣ ≤ ε(κ).

Similar to traditional indistinguishability, storage privacy and counting pri-
vacy captures the intuition that, by storing data and counting, the cloud should
not learn anything about the content it stores. In addition, the cloud should not
learn anything about the counting performed, such as which pattern is counted,
whether a pattern is counted twice or what the resulting count is.

2.3 MapReduce

The efficiency of counting relies on the performance of ProcessQuery which
involves processing huge amounts of data in the cloud. Cloud computing usu-

430 T.D. Vo-Huu et al.

ally processes data in parallel via multiple nodes in the cloud data center based
on some computation paradigm. For efficiency, ProcessQuery has to take the
specifics of that computation into account. One of the most widespread, fre-
quently used framework for distributed computation that is offered by major
cloud providers today is MapReduce [6]. EPiC’s counting “job” runs in two
phases. First, in the “mapping” phase, Mapper nodes scan data through Input-
Splits (data pieces split automatically by MapReduce framework) and evaluate
the counting’s map function on the data. These operations are performed by all
Mappers in parallel. The outputs of each map function are sent to one Reducer
node, which, in the “reducing” phase, aggregates them and produces a final out-
put that is sent back to the user. This setup takes advantage of the parallel
nature of a cloud data center and allows for scalability and elasticity.

3 EPiC Protocol

To motivate the need for a more sophisticated protocol like EPiC, we briefly
discuss why possible straightforward solutions do not work in our particular
application scenario.
Precomputed Counters: One could imagine that the cloud user, in the purpose
of counting a value χk in a single countable field Dk, simply stores encrypted
counters for each possible value of χk in domain Dk in the cloud. Each time
records are added, removed or updated, the cloud user updates the encrypted
counters. However, this approach does not scale very well in our scenario where
multiple cloud users (different “doctors”) perform updates and add or modify
records. An expensive user side locking mechanism would be required to ensure
consistency of the encrypted counters. Moreover, in the case of complex queries
involving multiple fields, all possible combinations of counters need to be updated
by users involving a lot of user side computation.
Per-Record Counters (“Voting”): Alternatively and similar to a naive voting
scheme, each encrypted record stored in the cloud could be augmented with an
encrypted “voting” field containing |Dk| subsets, each of log2 n bits. If a record’s
countable value in field Dk matches the value corresponding to a subset, then the
according subset is set to 1. To find the count, the cloud sums the encrypted vot-
ing fields (using additive homomorphic encryption) for all records. Again, such
an approach requires heavy locking mechanism and recomputation of counters
for each operation of adding, removing, or modifying a record. In conclusion,
these straightforward solutions require heavy user-side computation and do not
provide efficient, practical, and flexible solutions for multi-user, multiple field
data sets.

3.1 EPiC Overview

For ease of understanding, we initially introduce EPiC for the simpler case
of counting on only a single countable field Dk in a multiple countable fields
data set where values are in GF(q). Subsequently, we extend EPiC to support

EPiC: Efficient Privacy-Preserving Counting for MapReduce 431

counting on Boolean combinations of multiple countable fields D1, . . . ,Dm over
GF(q). Finally, for performance improvement, we further optimize our mecha-
nisms by considering conversion of (generic) finite fields GF(q) into binary finite
fields GF(2).

EPiC’s main rationale is to perform the counting in the cloud by evaluating
an indicator polynomial Pχ(·), as query Q, specific to the pattern χ the cloud
user U is interested in. Conceptually, the cloud evaluates Pχ(·) on the countable
fields’ values of each record. The outcome of all individual polynomial evaluations
is a (large) set of values of either “1” or “0”. The cloud now adds these values
and sends the sum back to U , who learns the number of occurrences of χ in the
investigated set of records.

3.2 Counting on a Single Field

Without loss of generality, we assume a user U wishes to count occurrences of χ
in the first field D1 in an oblivious manner. The idea is to prepare a univariate

indicator polynomial Pχ(x) such that Pχ(x) =
{

1, if x = χ
0, otherwise , and scan through

the data set R = {R1, . . . , Rn} of all records to compute the sum
∑n

i=1 Pχ(Ri,1).
The result is the number of occurrences of χ in the first field in the data set.
The idea for generating Pχ(x) is to construct the polynomial in the Lagrange
interpolation form Pχ(x) :=

∑|D1|−1
j=0 aj · xj :=

∏
α∈D1,α�=χ

x−α
χ−α . The polynomial

Pχ(x) is of degree |D1| − 1, and its coefficients aj are uniquely determined.

Encrypted Polynomial: In EPiC, each countable value Ri,k is encrypted
to ERi,k

. The above indicator polynomial based counting method for plain-
text values can be applied in a similar manner. User U prepares the indica-
tor polynomial based on plaintext χ, but U encrypts coefficients aj to Eaj

before sending them to the cloud, which now computes the encrypted sum
EΣ :=

∑n
i=1 Pχ(ERi,1) =

∑n
i=1

∑|D1|−1
j=0 Eaj

· (ERi,1)
j . Note that the polyno-

mial coefficients are encrypted (and potentially large), but the polynomial degree
remains |D1| − 1. In order for the cloud to compute EΣ and user U to decrypt
it later, additively and multiplicatively homomorphic properties are required for
the encryption, which we describe in Sect. 3.5. As a final step, U simply receives
back EΣ and only decrypts the count σ := Dec(EΣ) = Pχ(x). This does not
require high computational costs at the user, suiting the cloud computing para-
digm well.

Cloud Computation Cost: The above technique requires n · |D1| additions,
n · |D1| multiplications, and n · (|D1| − 1) exponentiations. We can improve
efficiency by rearranging the order of computations: EΣ :=

∑n
i=1 Pχ(ERi,1) =

∑n
i=1

∑|D1|−1
j=0 Eaj

· (ERi,1)
j =

∑|D1|−1
j=0 (Eaj

·
∑n

i=1 (ERi,1)
j). Therewith, the

number of multiplications is reduced to |D1|. We also note that in the case
of a binary domain (|D1| = 2), there are no exponentiations. This observation
motivates our optimization described later in Sect. 3.4.

432 T.D. Vo-Huu et al.

Oblivious Counting: First, the query is submitted to the cloud as a sequence
of encrypted coefficients of the indicator polynomial; second, no matter what
query is made, exactly |D1| coefficients (including 0-coefficients) are sent, thus
preventing the cloud to infer query information based on the query size.

3.3 Counting Patterns Defined by a Boolean Formula

We now extend the indicator polynomial based counting technique towards a
general solution for counting patterns defined by any Boolean combination of
multiple fields in the data set. The key technique for defining an indicator poly-
nomial corresponding to an arbitrary Boolean expression among multiple fields
is to transform Boolean operations to arithmetic operations, which is similar to
arithmetization [3,12].

Conjunctive Counting: Assume cloud user U is interested in counting the
number of records that have their m countable fields set to the pattern χ =
(χ1, . . . , χm). Here, χk, 1 ≤ k ≤ m, denotes the queried value in the k-th field.
Let ϕ = (x1 = χ1∧. . .∧xm = χm) be the conjunction among m fields in the data
set. User U can now construct Pϕ(x) =

∏m
k=1 Pχk

(xk), where x = (x1, . . . , xm)
denotes the variables in the multivariate polynomial Pϕ(x), and Pχk

(xk) is the
univariate indicator polynomial (as defined in Sect. 3.2) for counting χk in the
k-th field. Therewith, Pϕ(x) yields 1 only when χ is matched. Note that the
size of the multi-domain D is |D| =

∏m
k=1 |Dk|, and the degree of Pϕ(x) is∑m

k=1 (|Dk| − 1).

Disjunctive Counting: Assume the data set has 2 countable fields, and U ’s
objective is to count the number of records that have value χ1 in D1 or value χ2

in D2. The multivariate indicator polynomial for this disjunction is Pχ1∨χ2(x) =
Pχ1(x1) + Pχ2(x2) − Pχ1∧χ2(x), where Pχ1(x1), Pχ2(x2) are univariate indicator
polynomials for D1,D2, respectively, and Pχ1∧χ2(x) is a multivariate indicator
polynomial for conjunctive counting between D1 and D2. This method can be
easily generalized to design counting query for disjunctions of m fields.

Complement Counting: U can count records that do not satisfy a condition
among fields by “flipping” the satisfying indicator polynomial: P¬ϕ(x) = 1 −
Pϕ(x).

Integer Range Counting: Assume U wants to count records having a field Dk

lying in an integer range [a, b], i.e., ϕ = (xk = a∨xk = a+1∨. . .∨xk = b). Based
on disjunctive constructing method, we have P[a,b](xk) = Pa(xk) + Pa+1(xk) +
. . .+Pb(xk)−Pa∧a+1−. . .; Since (xk = u) and (xk = v) are exclusive disjunctions
for any u �= v ∈ [a, b], P[a,b](xk) reduces to P[a,b](xk) =

∑b
χk=a Pχk

(xk).

EPiC: Efficient Privacy-Preserving Counting for MapReduce 433

Integer Comparison Counting: Integer comparisons can be constructed
based on integer range counting, e.g., Pχk≤a(xk) = P[0,a](xk), or Pχk>a(xk) =
P[a+1,|Dk|−1](xk).

Privacy: Although the user-defined queries are different in construction, the
encrypted queries Q always have exactly |D| =

∏m
k=1 |Dk| encrypted coefficients

as we include zero coefficients also. As mentioned in Sect. 3.2, this prevents the
cloud to differentiate queries based on query sizes.

Efficiency: The user-side computation involving constructing the query’s coef-
ficients is carried on plain-text before encryption, hence it introduces much
lower computation cost compared to the computation burden on the cloud.
To improve the user-side performance, one could apply optimizing techniques
for reducing complex expressions, but this is out of scope of our work. To
improve the cloud’s performance, we rearrange the order of computations for
the sequence of encrypted fields E(Ri) = (ERi,1 , . . . , ERi,m

) and coefficients
aj, j = (j1, . . . , jm) ∈ D to achieve EΣ =

∑n
i=1 Pχ(E(Ri)) =

∑
j∈D(Eaj

·
∑n

i=1

∏m
k=1(ERi,k

)jk).

3.4 Optimization Through Arithmetization in GF (2)

EPiC’s efficiency relies on the computations performed by the cloud. As discussed
in Sect. 3.2, there are no exponentiations required for counting on a binary field.
Consequently, we optimize EPiC by converting generic (non-binary) fields into
multiple binary fields, thereby avoiding costly exponentiations. Note that as the
conversion preserves Boolean expression output, results shown in Sect. 3.3 still
hold, and protocol details discussed later in Sect. 3.6 remain unchanged.

Our idea is to store every generic field Dk as separate binary fields Dk,1,
Dk,2, . . ., Dk,‖Dk‖.2 Therefore, m generic fields D1, . . . ,Dm become

∑m
k=1 ‖Dk‖

binary fields D1,1, . . . ,D1,‖D1‖, . . . ,Dm,1, . . . ,Dm,‖Dm‖. The indicator polyno-
mial for counting χk in field Dk becomes Pχk,1∧...∧χk,‖Dk‖(xk,1, . . . , x1,‖Dk‖) =
∏‖Dk‖

l=1 Pχk,l
(xk,l), where xk,l represents the l-th bit in the generic field Dk, and

χk,l denotes the corresponding queried bit value. Applying arithmetization to
“transform” from Boolean to multivariate polynomials, Boolean expressions of
m generic fields can be converted into equivalent multiple binary fields. For con-
venience in later sections, we call the conversion to binary fields “GF(2) arith-
metized” (shortly “G”), while the original is “Basic” (shortly “B”). We note
that although the number of coefficients of the GF(2) arithmetized multivariate
indicator polynomial corresponding to each query remains the same as in the
generic case, the (multivariate) degree of the GF(2) arithmetized polynomial is
much lower at deg(P (G)) =

∑m
k=1 ‖Dk‖ =

∑m
k=1�log2 |Dk|	

∑m
k=1(|Dk|−1) =

deg(P (B)). This implies a significant improvement for computational costs on the
cloud. We refer to EPiC’s evaluation in Sect. 4 for details.

2 ‖X‖ = �log2 |X|� denotes size in bits of X.

434 T.D. Vo-Huu et al.

3.5 Encryption

Since EPiC’s indicator polynomial based counting technique involves additions
and multiplications on ciphertexts, a homomorphic encryption scheme is needed
as a building block. While there already exist various schemes [5,8,11,16],
their computational complexities are high, rendering their use in current clouds
impractical. Although EPiC can seamlessly integrate related work, we design a
new somewhat homomorphic encryption scheme derived from the computational
Private Information Retrieval (cPIR) technique of Trostle and Parrish [14]. Our
new scheme is a secret key encryption scheme, where the cloud does not have
the secret key to decrypt the data, but instead blindly performs operations on
outsourced data. As we will see, this scheme does not enjoy the same security
properties, i.e., IND-CPA, as related work, but only security with respect to
Definitions 3 and 4 as required in the specific context of EPiC. Due to its weaker
security properties, our scheme is especially practical in the settings we target.

Key Generation – KeyGen(s1, s2, n,D): Parameters s1, s2 ∈ N are security
parameters, n ∈ N is the upper bound for the total number of records in the data
set, and D = D1 × . . .×Dm is the multi-domain of m countable fields. KeyGen
computes a random prime q, a random prime p, and a random (maybe non-
prime) b ∈ Zp. The secret key, the output of KeyGen, is defined as K := {p, b}.

Encryption – Enc(P): Selects a random number r, ‖r‖ ≤ s2, and encrypts the
plaintext P to C = Enc(P) := b · (r · q + P)mod p.

Decryption – Dec(C): Decrypts C to P = Dec(C) := b−1 · C mod pmod q.

Arithmetic: The addition and multiplication operations on ciphertexts take
place in the integers. There is no modulo reduction, as the cloud does not know
p. One can verify that this scheme provides additively and multiplicatively homo-
morphic properties.

Selection of p and q: Since ciphertexts increase for every multiplication and
addition, this scheme requires a careful selection of q and p in advance such that
q > n and ‖p‖ ≥ s1 + ‖n‖ + ‖q‖ +

∑m
k=1(s2 + ‖q‖) · (|Dk| − 1).

Security: The security of our encryption scheme (cf. Sect. 3.7) is based on
the Hidden Modular Group Order hardness assumption and the cPIR protocol
in [14]. The rationale is that, for appropriate security parameters, more than half
of the bits of p are still secret against any PPT adversary; and if a PPT adver-
sary can break the cPIR protocol, the Hidden Group Order p is also revealed,
violating the assumption.

3.6 Detailed Protocol Description

With all ingredients ready, we now describe EPiC using the notation of Sect. 2.1.
KeyGen(κ): Based on security parameter κ, cloud user U chooses s1, s2

for the somewhat homomorphic encryption, determines an upper bound n for

EPiC: Efficient Privacy-Preserving Counting for MapReduce 435

the total number of records that might be stored and the appropriate multi-
domain D for the countable fields. U generates a secret key K from the somewhat
homomorphic encryption KeyGen(s1, s2, n,D) and a symmetric key K ′ for a
block cipher such as AES used for non-countable data. The secret key S :=
{K,K ′} is used throughout EPiC.

Encrypt(S,R): Assume U wants to store n records R = {R1, . . . , Rn}. Each
record Ri is encrypted separating the countable values Ri,k from the rest of the
record. Ri,k is encrypted using the somewhat homomorphic encryption mecha-
nism, i.e., ERi,k

:= Enc({p, b}, Ri,k). For the rest of the record Ri, a random
initialization vector IV is chosen and the record is AESK − CBC encrypted.
In conclusion, a record Ri encrypts to ERi

:= {ERi,1 , . . . , ERi,m
, IV,AESK −

CBC(Ri,rest)}. The output of Encrypt is the sequence of encrypted records.
E := {ER1 , . . . , ERn

}.
Upload(E): Upload simply sends all records as one large file to the MapRe-

duce cloud where the file is automatically split into InputSplits.
PrepareQuery(S, χ): To prepare a query for χ, U computes the |D| coef-

ficients aj, j ∈ D, of the indicator polynomial Pχ(x) as described in Sect. 3.3.
Coefficients aj are encrypted and sent to the cloud. The cloud will be using
these coefficients to perform the evaluation of Pχ(x). Consequently in EPiC, the
output Q of PrepareQuery sent to the cloud is Q := {Eaj

, j ∈ D}.
ProcessQuery(Q, E): Based on the data set size and the cloud configura-

tion, the MapReduce framework selects M Mapper nodes and 1 Reducer node.
Algorithm 1 depicts the specification of EPiC’s map and reduce functions that
will be executed by the cloud. In the mapping phase, for each input record Ri

in their locally stored InputSplits, the Mappers compute in parallel all monomi-
als

∏m
k=1 (ERi,k

)jk of the countable fields and add the same-degree monomials
together. After the Mappers finish scanning over all records, the sums sj of
monomials are output as key-value pairs. These pairs contain the multi-degree
j as key, and the computed sum sj as value. In MapReduce, output of the Map-
pers is then automatically sent (“emitted”) to the Reducer. Based on the sums
received from all Mappers, the Reducer combines them together to obtain the
global sums Sj, i.e., the sums over all records in the data set. In a last step, the
Reducer uses the coefficients Eaj

received from U to evaluate the polynomial by
computing the inner product with the global sums. The result EΣ is sent back
to U and can be decrypted to obtain the count value.

Decode(S, EΣ): U receives EΣ and computes the counting result σ =
Dec(EΣ).

3.7 Privacy Analysis

We now formally prove Storage and Counting privacy for EPiC and its under-
lying encryption. We stress that, below, we neither target nor prove that our
encryption provides traditional IND-CPA security. Instead, we show that, in
combination with other details of our protocol, it provides security according to
Definitions 3 and 4.

436 T.D. Vo-Huu et al.

Algorithm 1. ProcessQuery

For each Mapper M :

init sj := 0, ∀j ∈ D
forall ERi in InputSplit(M) do

read {ERi,1 , . . . , ERi,m}
forall j = (j1, . . . , jk) ∈ D do

sj := sj +
∏m

k=1 (ERi,k)jk

end
end
emit {j, sj}, ∀j ∈ D

Reducer R:

init EΣ := 0, Sj := 0, ∀j ∈ D
forall {j, sj} in MappersOutput do

Sj := Sj + sj
end
forall j in D do

EΣ := EΣ + Eaj · Sj

end
write {EΣ}

Lemma 1 (Storage Privacy). Based on the security of the cPIR scheme by
Trostle and Parrish [14], EPiC preserves storage privacy.

Proof. cPIR-security by Trostle and Parrish [14] can be summarized as follows.
With a u × u bit database, a user wants to retrieve an y-th row and sends an
encrypted PIR request to the cloud: P = {Ev1 , . . . , Evu

}, where Evk
= Enc(vk),

cf. Section 3.5, and vk = 1, if k = y, and vk = 0 otherwise. This cPIR protocol
is secure iff for all PPT adversaries A∗, the probability of finding y is negligi-
ble more than guessing, i.e., Pr [A∗(P) = y] ≤ 1/u + ε∗(κ). We now prove our
lemma by reduction from cPIR security. We show that, for security parameter
κ, any PPT (t(κ), ε(κ))-adversary A breaking EPiC’s storage privacy (Defini-
tion 3) in t(κ) steps with non-negligible advantage ε(κ) can be used to construct
a (t∗(κ), ε∗(κ))-adversary A∗ as a subroutine breaking the cPIR protocol in [14].
We construct A∗ based on the parity of u.
1. u is Odd. First, A∗ receives as input the PIR request P and splits P
into two halves E = {Ev1 , . . . , Ev�u/2�}, E ′ = {Ev�u/2�+1 , . . . , Eu−1}, i.e., treat-
ing the PIR request as two EPiC data sets of the same size (�u/2 records).
Since Evk

are either encryptions of 0 or 1, E and E ′ are now viewed as single-
binary-field data sets, where each record contains only 1 countable binary
field. A∗ randomly selects l1, l2, l

′
1, l

′
2 ∈ [1, u] and creates two EPiC count-

ing queries Q = {Evl1
, Evl2

}, Q′ = {Evl′1
, Evl′2

}. These are two valid queries,
because for single-binary-field data sets E , E ′, any EPiC query contains exactly
2 encrypted coefficients of 0 or 1, cf. Section 3.3. Then A∗ runs ProcessQuery
on E with Q, and E ′ with Q′, thereby obtaining EΣ and E′

Σ . A∗ forwards
I = {E , E ′, Q,Q′, EΣ , E′

Σ} to A. A∗’s output depends on A’s output as follows.
If A outputs 0, A∗ outputs u. The intuition is that, since A “believes” the

two halves E and E ′ are the same, A′ concludes that the requested element must
not belong to either E or E ′, i.e., vu = 1. If A outputs 1, A∗ randomly selects
k ∈ [1, u − 1] and outputs k. The intuition is that “A outputs 1” indicates the
requested row index is between 1 and u − 1, and A∗ simply makes a random
guess for it. The probability for A∗ to output correctly is Pr [A∗(P) = y] =
Pr [A = 0|y = u] · Pr [y = u] + Pr [A = 1, k = y|y < u] · Pr [y < u] =

(
1
2 + ε(κ)

)
·

EPiC: Efficient Privacy-Preserving Counting for MapReduce 437

1
u +

(
1
2 + ε(κ)

)
· 1

u−1 · u−1
u = 1

u + 2ε(κ)
u . Therewith, A∗ has a non-negligible

advantage of ε∗(κ) = 2ε(κ)/u in finding y.
2. u is Even. A∗ makes a new PIR request P ′ by removing the last element
vu from P , that is P ′ = {Ev1 , . . . , Evu−1}. Then A∗ uses the same approach
as above for P ′, i.e., splitting P ′ into 2 halves, feeding both to A. Now, A∗

outputs u − 1, if A outputs 0, or outputs random k ∈ [1, u − 2] otherwise.
It can be observed that A∗ can find y with non-negligible probability, only if
y �= u, i.e., the requested element is not the last element discarded from P .
Otherwise, A∗ cannot find y. More precisely, the probability of correct guess
is Pr [A∗(P) = y] = Pr [A∗(P ′) = y|y < u] · Pr [y < u] + Pr [A∗(P ′) = y|y = u] ·
Pr [y = u] =

(
1

u−1 + 2ε(κ)
u−1

)
· u−1

u + 0 · 1
u = 1

u + 2ε(κ)
u . Therefore, A∗ also has a

non-negligible advantage of 2ε(κ)/u in finding y.
Consequently, in both cases, A∗ has a non-negligible advantage ε∗(κ) =

2ε(κ)/u of breaking the cPIR protocol in t∗(κ) = t(κ) steps, rendering our
reduction tight. ��

Lemma 2 (Counting Privacy). Based on the security of the cPIR scheme by
Trostle and Parrish [14], EPiC preserves counting privacy.

Proof. We prove our lemma by reduction from cPIR security. Recall the cPIR-
security definition as in Lemma 1’s proof. We assume the existence of a PPT
(t(κ), ε(κ))-EPiC-adversary A breaking EPiC’s counting privacy (Definition 4)
in t(κ) steps with non-negligible advantage ε(κ). In the following, we construct
a new (t∗(κ), ε∗(κ))-PIR-adversary A∗ that breaks this cPIR security.

A∗ receives as input the PIR request P = {Ev1 , . . . , Evu
}, where vy = 1 and

vk = 0,∀k �= y. The goal of A∗ is to guess y. First, A∗ sets E = E ′ = P and
randomly picks 4 elements El1 , El2 , El′1 , El′2 from P to make two EPiC queries
Q = {El1 , El2}, Q′ = {El′1 , El′2}. Note that E , E ′ can be viewed as EPiC’s two
identical single-binary-field data sets, and Q,Q′ are valid queries (corresponding
to some patterns χ, χ′) for E , E ′. Then A∗ runs ProcessQuery on E with Q and
on E ′ with Q′ to obtain EΣ , E′

Σ . Now, A∗ forwards I = {E , E ′, Q,Q′, EΣ , E′
Σ}

to A and observes A’s output.
Let U = {1, . . . , u}, L = {l1, l2, l

′
1, l

′
2}. If A returns 1, A∗ concludes that

the two queries Q and Q′ are identical, implying that Evy
/∈ Q ∪ Q′, i.e.,

y /∈ L. Therewith, A∗ makes a guess for y by selecting a random k ∈ U \ L
and outputs k. Otherwise, if A returns 0, A∗ concludes that vy is in either
Q or Q′, thus A∗ outputs a random k ∈ L. The probability of the cor-
rect guess is Pr [A∗(P) = y] = Pr [A(I) = 1, k = y|y ∈ U \ L] · Pr [y ∈ U \ L] +
Pr [A(I) = 0, k = y|y ∈ L] · sPr [y ∈ L] =

(
1
2 + ε(κ)

)
· 1

u−4 · u−4
u +

(
1
2 + ε(κ)

)
·

1
4 · 4

u = 1
u + 2ε(κ)

u . That is A∗ has a non-negligible advantage ε′(κ) = 2ε(κ)/u of
breaking the cPIR protocol in t∗(κ) = t(κ) steps. ��

438 T.D. Vo-Huu et al.

4 Evaluation

To show its real-world applicability, we have implemented EPiC in Hadoop’s
MapReduce framework v1.0.3 [2], and evaluated it on Amazon’s public MapRe-
duce cloud [1]. Our EPiC implementation is written in Java, and all crypto-
graphic operations are unoptimized, relying on Java’s standard BigInteger data
type. Still, exponentiation, e.g. Cj , with j = 15 and |C| ≈ 4000 takes <2 ms on
a 1.8 GHz Intel Core i7 laptop, a single addition is not measurable with <1μs.
Figure 1 shows a benchmark of various operations on the ciphertexts using our
encryption scheme. In our evaluation, we use security parameters s1 = 400 bits as
suggested by Trostle and Parrish [14] for good security, and s2 = |r| = 160 bits.
We have implemented a data generator program to randomly generate patient
records with m countable fields with size between 4 and 10 bits.

We have evaluated the performance of EPiC by comparing our “Basic” and
“GF(2) arithmetized” solutions with a “non-privacy-preserving” solution. Unless
otherwise sta-ted, the single/multi-domain size in both “Basic” and “GF(2)
arithmetized” solutions is always set to the same value |D| for comparison. For
brief presentation, we use subscript “B” for Basic, and “G” for GF(2) arithme-
tized approach, e.g., ‖pB‖, ‖pG‖ indicate the size in bits of p in Basic, GF(2)

 1e-05
 0.0001

 0.001
 0.01

 0.1
 1

 10

 500 1000 1500 2000 2500 3000 3500 4000 4500

O
pe

ra
tio

n
tim

e
(m

s)

Size of p (bits)

Encryption
Decryption

Addition

Multiplication
Exponentiation

Fig. 1. Computation time on cipher-
text.

 500

 1000

 1500

 2000

 2500

 3000

 3500

 2 4 6 8 10 12 14 16

S
iz

e
of

 p
 (

bi
ts

)

Domain size D

Basic
GF(2) arithmetized

Fig. 2. Size of p depends on size of
domain D.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 20 40 60 80 100 120

C
on

su
m

ed
 s

to
ra

ge
 (

K
B

yt
es

)

Domain size D

Basic
GF(2) arithmetized

Fig. 3. Consumed storage for each field.

 0

 2

 4

 6

 8

 10

 12

 14

 2 4 6 8 10 12 14 16

C
om

m
un

ic
at

io
n

co
st

 (
K

B
yt

es
)

Domain size D

Basic
GF(2) arithmetized

Fig. 4. Communication cost

EPiC: Efficient Privacy-Preserving Counting for MapReduce 439

arithmetized approach respectively. We also set u = s1 +‖n‖+‖q‖, v = s2 +‖q‖
as fixed parameters (with respect to |D|).

Size of Prime p. As discussed in Sect. 3.5, prime q depends only on the number
of records n, while prime p also depends on |D|. We show the benefit of the GF(2)
arithmetized approach (m = ‖D‖, |Dk| = 2) by demonstrating that a conversion
to multiple binary fields reduces ‖p‖ significantly to ‖pG‖ = u + ‖D‖ · v, while
the Basic approach (m = 1, |D1| = |D|) requires that ‖pB‖ = u + (|D| − 1) · v.
Figure 2 shows ‖p‖’s logarithmic increase with GF(2) arithmetized and linear
increase with Basic approach.

Storage Cost. The storage cost depends on the size of the data stored on the
cloud, which is determined by the size of p. In Basic approach, a generic field
of domain D requires a storage of SB = ‖pB‖ = u + (|D| − 1) · v bits. In GF(2)
arithmetized approach, the equivalent multiple binary fields requires a storage of
SG = ‖D‖·‖pG‖ = ‖D‖·(u+‖D‖·v) bits. Again, in Fig. 3, we see a linear increase
of storage in Basic, and logarithmic increase in GF(2) arithmetized approach.

User Computation Cost. U prepares the query in plaintext, which incurs
very low computation cost compared to ciphertext operations performed on the
cloud. Encrypting one coefficient takes about 1 ms (Fig. 1), resulting in roughly
|D| ms for encrypting all |D| coefficients of the query, regardless of using Basic
or GF(2) arithmetized.

Communication Cost. Due to oblivious counting, user U prepares and sends
all |D| coefficients corresponding to all monomials to the cloud. The total size
of the encrypted coefficients is |D| · ‖p‖. In Basic approach, the query size is
QB = |D| · ‖pB‖ = |D| · (u + (|D| − 1) · v). In contrast, the GF(2) arithmetized
approach reduces to QG = |D| · ‖pG‖ = |D| · (u+ ‖D‖ · v). For example of a data
set containing n = 106 records with a countable field of domain size |D| = 1024
(i.e., ‖D‖ = 10), the corresponding query size in each approach is QB = 22.5 MB,
and QG = 280 KB, respectively.

The answer size (size in bits of the received ciphertext as final sum) depends
on the maximum size of the multivariate monomial. The monomial size is deter-
mined by the ciphertext size (i.e., ‖p‖) and the number of performed multi-
plications, i.e., its multi-degree. Let d denote the maximum multi-degree of
monomials, then, d = |D| in the Basic approach, and d = ‖D‖ in the GF(2)
arithmetized approach. We have AB = |D| · ‖pB‖ = |D| · (u + (|D| − 1) · v) and
AG = ‖D‖ · ‖pG‖ = ‖D‖ · (u + ‖D‖ · v). For example of a data set of n = 106

records with a countable field of |D| = 1024, the answer size in each approach is
AB = 22.5 MB, and AG = 2.7 KB, respectively.

Total transfer cost: The total communication cost, C = Q + A, as shown in
Fig. 4, is much less in GF(2) arithmetized approach than in Basic approach: CB =
QB +AB = 2 · |D| · (u+(|D|−1) ·v), CG = QG +AG = (|D|+‖D‖) · (u+‖D‖·v).

Cloud Computation. We have evaluated the cloud computation cost for large-
scale data sets on Amazon’s public cloud. As Amazon imposes an (initial) limit

440 T.D. Vo-Huu et al.

of 20 instances per job, we restrict ourselves to 20 Standard Large On-Demand
instances [1]. Each instance comprises 4 2.27 GHz Intel Xeon CPUs and a total
of 7.5 GB RAM.

Variable Data Set Size: First, we fix the size of each record to 1 MB. The
data set size (x-axis) is varied from 100 GB to 1 TB. We query a countable field
of size |D| = 16. Figure 5 shows the average counting time for a MapReduce
job on the whole data set of different sizes. The y-axis shows the total time
for MapReduce to evaluate the user’s query. This is the time that a user has
to pay for to Amazon. To put our results into perspective, we not only show
the time for both Basic and GF(2) arithmetized approaches, but as well the
time a “non-privacy-preserving” counting would take, i.e., the countable field
is not encrypted and directly counted. Moreover, we also show the overhead
ratio between EPiC’s two approaches and non-private counting. The additional
overhead introduced by EPiC over non-private counting is less than 20%. We
conjecture that only 20% overhead/additional cost over non-privacy-preserving
counting is acceptable in many real-world situations, rendering EPiC practical.

Variable Record Size: To also evaluate the effect of the size of the records on
the general performance, we run the system with a fixed data set size of 50 GB.
The record size is changed from 100 KB to 1 MB. Figure 6 shows that, while IO

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 200 400 600 800 1000
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

C
ou

nt
in

g
tim

e
(s

)

R
at

io

Data set size (GB)

Non-private
GF(2) arithmetized

Basic
GF(2) arithmetized ratio

Basic/non-private ratio

Fig. 5. Counting time vs. data set size.
|D| = 16.

 0

 20

 40

 60

 80

 100

 120

 0 200 400 600 800 1000
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

C
ou

nt
in

g
tim

e
(s

)

R
at

io

Record size (KBytes)

GF(2) arithmetized
Non-private

Ratio

Fig. 6. 50GB, varying record size. |D| =
16.

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500

10 x 1 bit 5 x 2 bits 3 bits + 3 bits + 4 bits

C
ou

nt
in

g
tim

e
(s

)

Different combinations of multiple fields

Fig. 7. Effect of different field combi-
nations.

 500
 510
 520
 530
 540
 550
 560
 570
 580

Specific value MSB=0 LSB=0

C
ou

nt
in

g
tim

e
(s

)

Query types

Fig. 8. Different query types on the
same data.

EPiC: Efficient Privacy-Preserving Counting for MapReduce 441

time remains unchanged, a higher number of records increases counting time in
EPiC. However, the overhead of EPiC is still under 20% even for small record
sizes such as 100 KB compared to non-private counting. That is, EPiC is efficient
even for small patient records.

Effect of Multiple Fields: To study the efficiency of transforming a single
countable field D into multiple fields of different size, we conduct an experi-
ment on a data set size of 100 GB. The total domain size is set to |D| = 1024
(10 bits). We compare three cases: (a) transform D into 10 single binary fields;
(b) transform D into 5 quaternary fields each of 2 bits; (c) transform D into 3
fields of 3 bits, 3 bits, and 4 bits, respectively. In Fig. 7, we can see that the GF(2)
arithmetized approach yields the best performance.

Query Types: Finally, to evaluate the effects of different query types on the
performance, we run EPiC with a fixed data set of 100 GB. Total domain size is
|D| = 1024. We make 3 different queries: (a) query for a specific value; (b) query
for the MSB of the field equal to 0; (c) query for the LSB of the field equal to
0. Figure 8 demonstrates that there is no significant difference in counting time
between different queries.

5 Related Work

Protecting privacy of outsourced data and delegated operations in a cloud com-
puting environment is the perfect setting for fully homomorphic encryption.
While there is certainly a lot of ongoing research in fully homomorphic encryp-
tion (see Vaikuntanathan [15] for an overview), current implementations indi-
cate high storage and computational overhead [9], rendering fully homomorphic
encryption impractical for the cloud.

Similar to EPiC, Lauter et al. [11] observe that often weaker “somewhat”
homomorphic encryption might be sufficient. Lauter et al. [11]’s scheme is based
on a protocol for lattice-based cryptography by Brakerski and Vaikuntanathan [5].
However, for the specific application scenario considered in this paper, EPiC’s
somewhat homomorphic encryption scheme allows for much faster exponenti-
ation. Superficially, our work bears similarity with the work of Kamara and
Raykova [10] that protect polynomial evaluation by randomized reduction tech-
niques. With q being the degree of a polynomial, the user splits each data record
into 2 · q + 1 shares, each of size 2 · q + 1. Shares are then uploaded and evalu-
ated in parallel, and results are aggregated. However, storage expansion, even for
modest values of q, the approach quickly becomes impractical. Also, for different
polynomials, the user would need to upload the data multiple times.

Searching on encrypted data has received a lot of attention recently, cf. sem-
inal papers [4,13]. While closely related, it is far from straightforward to adopt
these schemes to perform efficient counting in a highly parallel cloud computing,
e.g., MapReduce environment. Also notice that, e.g., Boneh et al. [4] rely on
the computation of very expensive bilinear pairings for each element of a data
set, rendering this approach impractical in a cloud setting. Much research has
been done to compute statistics in a privacy-preserving manner using differen-
tial privacy, see the seminal paper by Dwork [7]. Contrary to the threat model

442 T.D. Vo-Huu et al.

considered in this paper, the adversary in differential privacy research is not the
cloud infrastructure, but a curious user querying statistics to learn information
about individual entries in a data set. EPiC addresses the opposite problem,
where a user does not trust the cloud infrastructure.

6 Conclusion

In this paper, we present EPiC to address a fundamental problem of statistics
computation on outsourced data: privacy-preserving pattern counting. EPiC’s
main idea is to count occurrences of patterns in outsourced data through a
privacy-preserving summation of the pattern’s indicator-polynomial evaluations
over the encrypted dataset records. Using a “somewhat homomorphic” encryp-
tion mechanism, the cloud neither learns any information about outsourced data
nor about the queries performed. Our implementation and evaluation results for
MapReduce running on Amazon’s cloud with up to 1 TB of data show only mod-
est overhead compared to non-privacy-preserving counting. This makes EPiC
practical in a real-world cloud computing setting today.

Acknowledgement. This work was partially supported by NSF grant 1218197.

References

1. Amazon Elastic MapReduce. http://aws.amazon.com/elasticmapreduce/
2. Apache. Hadoop (2010). http://hadoop.apache.org/
3. Babai, L., Fortnow, L.: Arithmetization: a new method in structural complexity

theory. Comput. Complex. 1(1), 41–66 (1991). ISSN 1016-3328
4. Boneh, D., Di Crescenzo, G., Ostrovsky, R., Persiano, G.: Public key encryption

with keyword search. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 506–522. Springer, Heidelberg (2004)

5. Brakerski, Z., Vaikuntanathan, V.: Fully homomorphic encryption from Ring-LWE
and security for key dependent messages. In: Rogaway, P. (ed.) CRYPTO 2011.
LNCS, vol. 6841, pp. 505–524. Springer, Heidelberg (2011)

6. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters.
In: Proceedings of Symposium on Operating System Design and Implementation,
San Francisco, USA, pp. 137–150 (2004)

7. Dwork, C.: Differential privacy. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener,
I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 1–12. Springer, Heidelberg (2006)

8. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: STOC 2009, pp.
169–178 (2009)

9. Gentry, C., Halevi, S.: Implementing gentry’s fully-homomorphic encryption
scheme. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 129–
148. Springer, Heidelberg (2011)

10. Kamara, S., Raykova, M.: Parallel homomorphic encryption. In: Adams, A.A.,
Brenner, M., Smith, M. (eds.) FC 2013. LNCS, vol. 7862, pp. 213–225. Springer,
Heidelberg (2013)

http://aws.amazon.com/elasticmapreduce/
http://hadoop.apache.org/

EPiC: Efficient Privacy-Preserving Counting for MapReduce 443

11. Lauter, K., Naehrig, N., Vaikuntanathan, V.: Can homomorphic encryption be
practical?. In: Proceedings of ACM Workshop on Cloud Computing Security,
Chicago, USA (2011)

12. Shamir, A.: IP = PSPACE. J. ACM 39(4), 869–877 (1992). ISSN 0004–5411
13. Song, D., Wagner, D., Perrig, A.: Practical techniques for searches on encrypted

data. In: Proceedings of Symposium on Security and Privacy, Berkeley, USA, pp.
44–55 (2000)

14. Trostle, J., Parrish, A.: Efficient computationally private information retrieval from
anonymity or trapdoor groups. In: Burmester, M., Tsudik, G., Magliveras, S., Ilić,
I. (eds.) ISC 2010. LNCS, vol. 6531, pp. 114–128. Springer, Heidelberg (2011)

15. Vaikuntanathan, V.: Computing blindfolded: new developments in fully homomor-
phic encryption. In: FOCS 2011, Washington, DC, USA, pp. 5–16 (2011). ISBN
978-0-7695-4571-4

16. van Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully homomorphic
encryption over the integers. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS,
vol. 6110, pp. 24–43. Springer, Heidelberg (2010)

17. Vo-Huu, T.D., Blass, E.-O., Noubir, G.: EPiC Source Code. http://www.ccs.neu.
edu/home/noubir/projects/epic

http://www.ccs.neu.edu/home/noubir/projects/epic
http://www.ccs.neu.edu/home/noubir/projects/epic

A Thrifty Universal Construction

Wang Cheng(B) and Rachid Guerraoui

École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
{cheng.wang,rachid.guerraoui}@epfl.ch

Abstract. A universal construction is an algorithm which transforms
any sequential implementation of an object into a concurrent implemen-
tation of that same object in a linearizable and wait-free manner. Such
constructions require underlying low-level universal shared objects such
as compare-and-swap and load-linked/store-conditional .

In this paper, we present the first universal construction that (a) uses
exactly one compare-and-swap object and (b) has time complexity (num-
ber of accesses to low-level shared objects) and memory complexity (size
of low-level shared objects) that are both independent of the size of the
high-level object to be implemented.

1 Introduction

Algorithms for implementing data structures shared by multi-processes (also
called concurrent objects) play a fundamental role in concurrent systems. The
traditional approaches to implement shared objects are usually based on locks.
However, lock-based techniques have several drawbacks: they induce the possi-
bility of deadlocks and do not tolerate very slow cores.

To address such issues, a number of non-blocking implementations have
emerged [7,13–15]. In these implementations, the delay of some process could
not prevent other processes from making progress. There are mainly two kinds of
non-blocking implementations: lock-free and wait-free [11]. Lock-freedom guar-
antees system progress: i.e. at least one process can complete any operation in a
finite number of steps, while wait-freedom guarantees process progress: i.e. every
process can complete any operation in a finite number of steps.

The landmark paper of Herlihy [9] showed a generic mechanism to obtain
wait-free objects by introducing the idea of universal construction. Specifically,
a universal construction can implement any shared object automatically from the
corresponding sequential implementation of that very same object. The imple-
mentation is expected to be wait-free and linearizable [12].

Universal constructions require low-level universal objects to be shared by
processes, besides basic read-write atomic objects. Such objects have infinite
consensus number [9]. The very notation of consensus number characterizes
the power of a low-level shared object to implement other high-level objects.
A shared object is of consensus number n if, together with registers, it could
be used to implement any wait-free object in any system of n processes. The
strongest type of shared object, called a universal object , has infinite consensus
c© Springer International Publishing Switzerland 2015
A. Bouajjani and H. Fauconnier (Eds.): NETYS 2015, LNCS 9466, pp. 444–455, 2015.
DOI: 10.1007/978-3-319-26850-7 30

A Thrifty Universal Construction 445

number. It could be used to implement any object in a system of any size. The
most common universal objects used in universal algorithms are CAS (compare-
and-swap) objects and LL/SC (load-linked/store-conditional) objects. Although
these objects are supported in several systems, it is highly desirable to access
them as little as possible for they induce a considerable access time.

Most of existing universal constructions copy the entire state of the high-level
object for applying local operations, and update the high-level object with local
copies. For large shared objects, copying might be problematic. In this paper
we ask whether it is possible to devise a universal construction using a small
number of low-level universal objects and without copying the entire state.

We answer this question in the affirmative. We present a thrifty universal
construction that (a) uses exactly one compare-and-swap object and (b) has
time complexity (number of accesses to low-level shared objects) and memory
complexity (size of low-level shared objects) that are both independent of the size
of the high-level object to be implemented. Our construction maintains a local
copy of the high-level object for every process. It exploits the least number (only
one CAS) of universal shared objects to synchronize all the processes. We assume
practical constraints on the size of shared object, i.e. each underlying shared
object could only hold a small amount of information like names of operations,
arguments of operations plus a sequential number. The size of underlying low-
level objects (registers and one CAS) is independent of the size of the high-level
object.

The rest of the paper is organized as follows. After the model section, a
lock-free algorithm is presented to illustrate the basic ideas in Sect. 3. Then we
present our wait-free construction in Sect. 4 based on the lock-free construction.
In Sect. 5, the complexity of our construction is analyzed.

Related Work. Herlihy’s original approach in [9,10] copies the entire state
of the high-level object. Most universal constructions presented in the past do
so: these include GroupUpdate [1], FlatCombining [8], RedBlue [5] and Sim [6].
These algorithms assume that a low-level object is large enough to store an
entire object. If we rule out this possibility and let the size of the underlying
low-level shared objects be independent of the size of the high-level object, then
the shared-access complexity of such algorithm would depend on the size of the
high-level object. This is not practical if the size of the high-level object is big.

Anderson and Moir [3] suggest to view the high-level object as a number
of blocks. When a process wants to change a block, it only needs to make a
local copy of that block instead of the entire state. Barnes [4] presents another
approach to handle large objects. In the construction of [4], when a process
wants to apply an operation on a high-level object, it only copies the variables
it needs to access into its local memory. The complexity of these algorithms
improves upon the full copy approach, but still depends on the size of the high-
level object. Meanwhile, in order to update blocks and variables linearizably, a
universal object for each block and variable is necessary. Therefore, the number
of universal objects in these algorithms also depends on the size of the high-level
object.

446 W. Cheng and R. Guerraoui

2 Model and Definitions

We consider the standard model of asynchronous shared memory machines
of [10]. We consider an asynchronous system of n processes with identifier
{0, 1, . . . , n − 1} that communicate through accessing shared objects. There are
only two primitive shared objects considered in our system: the atomic register
and the CAS (compare-and-swap) object. An atomic register stores a value and
supports atomic read and write operations. Following the convention in pro-
gramming languages, we use access and assignment to replace read and write
in our pseudo code. A CAS object supports a special atomic operation denoted
CAS.cas in addition to the atomic read . CAS.cas takes two value: vold and vnew.
If the CAS’s current value is equal to vold, it is replaced by vnew; otherwise is
unchanged. The return of the operation CAS.cas(vold, vnew) is a boolean value
indicating whether the value of the CAS is changed or not.

We constraint the size of the underlying shared objects (registers and CAS)
to be independent of the size of the high-level object. Shared objects can only
hold a small amount of information like names and arguments of operations along
with a sequence number. In addition, every process has a private local memory.
We limit the system to have only one CAS object. An implementation of a high-
level object from these primitive objects provides an algorithm for each process
to simulate every operation of the high-level object. In a universal construction,
each process has a function called Apply(invoc) to perform an operation on the
given data structure modeling the high-level object. We assume that any number
of processes may experience crash failures, i.e., they may stop running at any
unpredictable time.

3 Thrifty Lock-Free Construction

We first present in this section a lock-free algorithm (denoted TLC) using only
one CAS. In the algorithm each process has a local copy of the high-level object
and applies the same invocations in the same order as the other processes. The
details are as follows.

3.1 Algorithm Description

Our implementation, called Thrifty Lock-free Construction (TLC), uses a shared
array History to synchronize all the processes. History represents the sequential
order of all the invocations that every process should follow. Initially, each item
of History is ⊥ and each item will be updated to a unique invocation in the
future. The index of every item in this array is called a sequential number .
The latest sequential number is the largest index before which all the items of
History are non-empty. When process p wants to apply an invocation to the
high-level object, p tries to insert the invocation into History with index equal
to the latest sequential number. After this, the invocation could be noticed by
other processes. If this insertion into History is total-ordered, then linearizability

A Thrifty Universal Construction 447

Algorithm 1. Thrifty Lock-free Construction (TLC)
1 Shared Objects :
2 CAS: compare-and-swap object initialized to -1
3 History: an array with all items initialized to ⊥. It is used to contain all

the invocations and the order of items in the array represents the sequential
order of all invocations

4 SubHistory: n arrays with all of the items are initialized to ⊥.
SubHistory[i] contains the history invocations of process i

5 end
6 Local Objects :
7 ProcessId: the unique id of the process (among {0, . . . , n − 1})
8 LocalCopy: local copy of target object
9 SeqLocation: an index in History before which all the invocations have

been executed, initialized to 0

10 end
/* code for process p */

11 Function apply(invoc)
12 while true do

/* run all recent invocations first */

13 currentTime = CAS.read()
14 round, pid, flag = decode(currentTime) /* see Algorithm 2 */

15 for k ∈ [SeqLocation, round) do
16 if History[k] �= Null then
17 output = LocalCopy.run(History[k])
18 if History[k] = invoc then return output

19 end

20 end
21 SeqLocation = round
22

23 if flag = PREPARED then /* help pending process */

24 History[round] = SubHistory[pid][round]
25 CAS.cas(currentTime, currentTime+n) /* change from PREPARED

to FINISHED */

26 else if flag = FINISHED then /* race for next round */

27 round = round + 1
28 nextSeqTime = 2 · round · n + processId
29 SubHistory[ProcessId][round] = invoc
30 if CAS.cas(currentTime, nextSeqTime) then
31 History[round] = SubHistory[ProcessId][round]
32 CAS.cas(nextSeqTime, nextSeqTime+n)

33 end

34 end

35 end

36 end

448 W. Cheng and R. Guerraoui

follows naturally. However such total-ordered insertion could not be acquired
with only atomic registers. In TLC, we exploit the power of a single CAS to
update the items of History atomically.

First, the value of the CAS contains the information of the latest sequential
number. Each process that intends to apply an invocation first should acquire the
next sequential number. This is done by applying a CAS.cas invocation (Line 30).
If the CAS.cas returns true, the process succeeds in acquiring the next sequential
number and would try to insert its invocation into History with respect to the
sequential number (Line 31). However this is not enough for a process p to insert
its invocation into the History linearizably because p may delay between Line 30
and Line 31. To address this problem, a helping mechanism is introduced. Each
time p succeeds in acquiring the next sequential number, it not only updates the
sequential number information of the CAS, it also puts its identifier inside the
CAS so that other processes could know which process to help.

There are two different phases for a process to apply an invocation. The
first phase is called prepare phase. In this phase, the processes first race for
the next sequential number in Line 30. Then the process that has gotten the
next sequential number copies its invocation into array SubHistory in Line 29
so that other processes could read in the second phase. When this first phase
completes, we say that the status of the system is PREPARED. The second
phase, denoted as help phase, is to copy the invocation of the pending process
into array History . This phase may be done by the process which originally
wants to apply the invocation (Line 31), or it could be done by other processes
for helping (Line 24). When this phase completes, we say that the status of the
system is FINISHED. When the system is in FINISHED status, a new invocation
could be applied.

The value of the CAS has three pieces of information: (1) the latest sequential
number, (2) the identifier of the process that owns the sequential number, (3)
the status of the system which can be either PREPARED or FINISHED. All of
this information is encoded into an integer. Suppose the sequential number is k
and the process owning the sequential number is i. If the status is PREPARED,
then the encoded value is 2kn+i. Otherwise if the status is FINISHED, then the
encoded value is (2k + 1)n + i. The decode function is as in Algorithm2. Note
that this encode method and decode function are used in wait-free construction
as well.

Algorithm 2. Decode function
1 Function decode(t)
2 if t = 2kn + i then
3 return (k, i, PREPARED)
4 else if t = (2k + 1)n + i then
5 return (k, i, FINISHED)
6 end

7 end

A Thrifty Universal Construction 449

In TLC, the initial value of CAS is −1, which means the information is
encode with a value of sequential number as −1 and FINISHED status. So all the
processes start to race for round 0 with sequential number 0 at the beginning.
If the sequential number encoded in CAS is k, then we say the system is in
round k.

3.2 Correctness

We prove that the system proceeds as the sequential number in the CAS increases
and there is a unique invocation corresponding to each sequential number.

Lemma 1. The system proceeds round by round and the sequential number in
CAS increases by 1 for each round.

Proof. Suppose the system is in a particular round k, i.e. the sequential number
encoded in CAS is k. We show the system will make progress into round k + 1.
First, for this particular round, there must be a process p that gets the corre-
sponding sequential number round in Line 30 and tries to assign its value to
History[k] in Line 31. This means that the prepare phase will complete eventu-
ally and the system will turn to the help phase. In the help phase, every process
writes an invocation into History[k] and then update the system to FINISHED
status (see Line 24 and its following line). So the help phase will complete eventu-
ally and system will proceed to the next round with sequential number increased
by 1. ��
Lemma 2. The algorithm TLC is lock-free.

Proof. From the lemma above, the system always makes progress. Hence, it is
lock-free. ��
Lemma 3. For each round k, there is one and only one invocation assigned to
History[k].

Proof. Since the system proceeds round by round, for each round k, History[k]
must be updated in Line 24. However, every process may write into History[k] in
Line 30 possibly due to the delay of p. Suppose History[k] is assigned a value v for
the first time for round k. Before this assignment to History[k], SubHistory[p][k]
must already be assigned v and is only assigned for once in the whole execution in
Line 29. In the following steps, every write into History[k] (by p in line B or other
helping processes in line 24) is a copy of SubHistory[p][k]. Since SubHistory[k]
is written only once, the lemma is proved. ��
Lemma 4. All the processes run the invocations in the same order as they
appear in the array History.

Proof. For each round, if p does not get the sequential number, p will load
invocations one by one from History and apply them. If p gets sequential number
in round k, p’s invocation will be written into History[k]. All the processes will
apply this invocation as the k-th invocation. So all the processes’s execution
histories are the same as array History . ��

450 W. Cheng and R. Guerraoui

Lemma 5. Every invocation is assigned at most once into array History.

Proof. Suppose pi has an invocation assigned to array History . Then pi must get
the corresponding sequential number in Line 30. However, in the if-block start-
ing from Line 30, pi executes the invocation and returns the output. After the
function returns, pi will not try to race a sequential number for this invocation
any more. So every invocation is assigned at most once into array History . ��

Lemma 6. The algorithm TLC is linearizable.

Proof. By the above lemmas, every process has the same local execution history.
Hence, linearizability is immediate and the linearizable point for a invocation is
the sequential number acquired for the invocation. ��

4 Thrifty Universal Construction

In this section, we present a universal construction based on the previous lock-
free implementation. The underlying idea is to help any pending process get
a sequential number for its pending invocation, while in the previous section
the processes only help pending processes which have already gained sequential
numbers to announce the corresponding pending invocations.

4.1 Algorithm Description

This universal algorithm denoted TUC has the same framework as TLC in the
previous section. TUC also uses a shared array History to synchronize all the
processes and the index of History is the sequential order of invocations. So in
this section we mainly describe the significant ideas in TUC that are different
from TLC.

In order to achieve wait-freedom, every process should make progress. When
a process p wants to apply an invocation, p first registers its invocation in a
shared register (Line 10,11) so that other processes could notice. These regis-
tered and incomplete invocations are called pending invocations. In each round,
every process tries to apply the pending invocations in the same order as the
process identifier. More specifically, if in one round the invocation of process with
identifier i is executed, then in the next round every process tries to apply the
invocation of process with identifier i+1, then i+2 and so on. Processes search
for pending invocations by looping through the invocations pool (array Invoca-
tionList) for all the processes, which guarantees that every pending invocation
could be applied.

Therefore, the array InvocationList shared as pending invocations pool is
significant to guarantee wait-freedom. In order that other processes could load
correct pending invocations from InvocationList , each process should maintain
an index (PendingIndex in the algorithm) that indicates the location of latest
invocation in array InvocationList . When a process wants to apply an invoca-
tion, it first increases its pending index by 1 and then writes its invocation into
invocationList with the new pending index.

A Thrifty Universal Construction 451

Algorithm 3. Thrifty Universal Construction (TUC)
1 Shared Objects :

2 CAS, History, SubHistory

3 InvocationList: n arrays each of which stores invocations of one process

4

5 end

6 Local Objects :

7 ProcessId, LocalCopy, SeqLocation

8 end

/* code for process p */
9 Function apply(invoc)

10 PendingIndex[ProcessId] = PendingIndex[ProcessId]+1

11 InvocationList[ProcessId][PendingIndex[ProcessId]] = invoc

12 while true do

/* run all recent invocations first */
13

14 /* see Algorithm 2 */
15 for k ∈ [SeqLocation, round) do

16 if History[k] �= Null then

17 output = LocalCopy.run(History[k])

18 if History[k] = invoc then return output

19 end

20 end

21 SeqLocation = round

22

23 if flag = PREPARED then /* help pending process */
24 invocationIndex, History[round] = SubHistory[pid][round]

25 InvocationList[pid][invocationIndex] = Null

26 /* change from PREPARED to FINISHED
*/

27 else if flag = FINISHED then /* race for next round */
28 helpId = pid + 1

29 while true do /* select a process to help */
30 helpIndex = PendingIndex[helpId]

31 if InvocationList[helpId][helpIndex] �= Null then

32 break while

33 else

34

35 end

36 end

37 round = round + 1

38 · n + helpId

39 SubHistory[helpId][round] = (helpIndex, InvocationList[helpId][helpIndex])

40 if CAS.cas(currentTime, nextSeqTime) then

41 invocationIndex, History[round] = SubHistory[helpId][round]

42 InvocationList[helpId][invocationIndex] = Null

43 /* change from PREPARED to
FINISHED */

44 end

45 end

46 end

47 end

452 W. Cheng and R. Guerraoui

4.2 Correctness

The steps of the proofs are similar to those in the previous section. The details
of each proof should however be reconsidered because of the more complicated
helping mechanism.

Lemma 7. The system proceeds round by round and the sequential number
increases by 1 for each round.

Proof. In the beginning of each round i, the processes try to find a process to
help (while loop from Line 29) and assign the latest sequential number to the
process (Line 40). Since every pending process has one pending invocation in
the pool InvocationList , the pool is not empty. There must be a process p that
succeeds in finding one pending invocation and getting the current sequential
number for it. Then the system enters the help phase of round i. In help phase,
every process writes an invocation into History[round] and sets the corresponding
pendingInvocation as empty before the system is updated to FINISHED status
(Line 24 and its following two lines). So the help phase will complete eventually
and system will proceed to the next round with sequential number increased by
1 (Line 40). ��

Lemma 8. For each round k, there is one and only one invocation assigned to
History[k].

Proof. As in Lemma 3, we only need to show that for round k, History[k] is
assigned a unique value. History[k] is updated in Line 41 and Line 24 with
value from SubHistory[helpId][k]. Thus we only need to show the non-empty
value SubHistory[helpId][k] is unique. Again, SubHistory[helpId][k] is determined
by (helpIndex, InvocationList[helpId][helpIndex]). In the algorithm, Invocation-
List[helpId][helpIndex] is only updated to a non-empty value once by process
with identifier helpId in Line 11, so it is unique. The lemma follows. ��

Lemma 9. All the processes run the invocations in the same order as they
appears in array History.

Proof. As we can see from the algorithm, processes only execute an invocation in
Line 18 and the invocation to apply comes exactly from array History . Therefore
this lemma follows. ��

Lemma 10. Every invocation is assigned exactly once into array History.

Proof. As the value of helpId loops among all the processes, every process with
pending invocation will be helped in some round. This means that every invo-
cation will be assigned a sequential number by Line 40 and eventually the invo-
cation will be assigned to array History in Line 41 or Line 24. ��

Lemma 11. The algorithm TUC is linearizable and wait-free.

Proof. Since every process has the same execution history and every invocation
is executed exactly once, the algorithm is linearizable and wait-free. ��

A Thrifty Universal Construction 453

5 Complexity

It is common to consider the shared-access time complexity of shared object
implementations. In the following, we analyze this shared-access time complexity
and show that it is independent of the size of the high-level object.

First we introduce an important notation to measure this complexity. Sup-
pose a process p wants to apply an invocation I in TUC. Let us say the last
invocation p applied has index k1 in History , and the sequential number in the
CAS is k2 when p writes I into array InocationList . The difference between k1
and k2 is the delay between p and the system corresponding to I, denoted by
dI , i.e. dI = k2 − k1.

Lemma 12. For any invocation I of process p, the delay dI is independent of
the size of the high-level object.

Proof. Suppose k1, k2 and dI as above. In our universal construction, all the
processes apply the same invocations from the array History . Hence the progress
of process p depends on how fast p could access these invocations and how many
shared objects p needs to copy. Since we do not copy the entire object, the
progress of process p does not relate to the size of the high-level object. The
number k1 represents the progress of process p, and the number k2 depends on
how fast p could access the shared memory. Hence both k1 and k2 are indepen-
dent of the size of the high-level object. The lemma follows.

Lemma 13. Suppose p wants to apply invocation I. The shared-access time
complexity of our universal construction is O(dI + n), where dI is the delay
between p and the system as defined above.

Proof. Suppose k1, k2 and dI as above. In order to apply invocation I, p first
needs to apply all the invocations in History with index from k1 to k2. This
would cost dI shared-accesses.

In our universal algorithm, every process tries to help other processes in the
same order of the identifier of the processes. In every next round the helping
process identifier is increased by at least one. Therefore within at most n incre-
ments every process will be helped. Suppose I was inserted into History with
index k3, then k3 − k2 ≤ n. Take the race in Line 40 into account, p needs
another at most 2(k3 − k2) ≤ 2n share-access to apply I locally. Therefore the
total share-access is less than dI + 2n, i.e. O(dI + n). ��

The delay for an individual process and system are not the same. Suppose
the fastest process for shared-access is pf . We say a process is fast if its speed
of shared-access is only constant time slower than pf . For a fast process p,
there are O(n) invocations from other processes between p’s every two successive
invocations. So, for every fast process, the shared-access complexity is O(n).

454 W. Cheng and R. Guerraoui

6 Concluding Remarks

6.1 Optimizations

The first optimization is inspired by the following observation: if some processes
are faster in performing their local computation and accessing the shared-objects
then they could announce their invocation outputs so that other processes could
get the outputs even before their own local applications of the invocations. In
order to implement this optimization, we only need to add n shared arrays. Each
array is a pool to store the outputs of all invocations of a particular process.
A slower process could get the output earlier by just checking its corresponding
output pool. This checking could be done in parallel with function application.
The optimization is wait-free because it is just an extension to the algorithms in
Sects. 3 and 4 without any modification of the existing data structure. As this
optimization is easy to implement, we omit it in the pseudo code to keep the
algorithm simple to demonstrate the main idea.

The second optimization is related to garbage collection. It follows from the
following observation. The item of history with small sequential number could
be discarded if all of the processes have large sequential numbers. For example,
if all processes have executed the invocation with sequential number k then all
the items in the arrays History , SubHistory with indexes less than k are not
useful any more. The optimization is to replace arrays with dynamic linked lists
in the construction. And each process has a shared register storing its current
sequential number and other processes can only read the register. By reading
these registers, a process could predict whether an item in array History is read
by all processes. If all processes have read one item in History , then it is safe to
remove that item from the corresponding linked list.

6.2 Lock-Freedom vs Wait-Freedom

In this paper, we present two algorithms: the first one is lock-free whereas
the second one is wait-free. The lock-free construction is much simpler than
the wait-free one. In fact, the lock-free algorithm was presented not only for
pedagogical purposes. It does constitute in itself an appealing practical solu-
tion. Recently, Herlihy and Shavit [11] suggested a surprising property of lock-
free algorithms: in practice, they often behave as if they are wait-free. Specifi-
cally, the impact of worst-case execution is negligible. Later Alistarh, Hillel and
Shavit [2] showed that a general class of lock-free algorithms under a stochastic
scheduler is wait-free with probability 1. Our lock-free construction falls into
the class of algorithms discussed in [2], so it is a wait-free construction with
probability 1.

References

1. Afek, Y., Dauber, D., Touitou, D.: Wait-free made fast. In: Proceedings of the
Twenty-seventh Annual ACM Symposium on Theory of Computing. pp. 538–547.
ACM (1995)

A Thrifty Universal Construction 455

2. Alistarh, D., Censor-Hillel, K., Shavit, N.: Are lock-free concurrent algorithms
practically wait-free? In: Proceedings of the 46th Annual ACM Symposium on
Theory of Computing. pp. 714–723. ACM (2014)

3. Anderson, J.H., Moir, M.: Universal constructions for large objects. IEEE Trans.
Parallel Distrib. Syst. 10(12), 1317–1332 (1999)

4. Barnes, G.: A method for implementing lock-free shared-data structures. In: Pro-
ceedings of the Fifth Annual ACM Symposium on Parallel Algorithms and Archi-
tectures. pp. 261–270. ACM (1993)

5. Fatourou, P., Kallimanis, N.D.: The redblue adaptive universal constructions. In:
Keidar, I. (ed.) DISC 2009. LNCS, vol. 5805, pp. 127–141. Springer, Heidelberg
(2009)

6. Fatourou, P., Kallimanis, N.D.: A highly-efficient wait-free universal construction.
In: Proceedings of the Twenty-third Annual ACM Symposium on Parallelism in
Algorithms and Architectures. pp. 325–334. ACM (2011)

7. Fraser, K.: Practical lock-freedom. Ph.D. thesis, University of Cambridge (2004)
8. Hendler, D., Incze, I., Shavit, N., Tzafrir, M.: Flat combining and the

synchronization-parallelism tradeoff. In: Proceedings of the 22nd ACM Sympo-
sium on Parallelism in Algorithms and Architectures. pp. 355–364. ACM (2010)

9. Herlihy, M.: Wait-free synchronization. ACM Trans. Program. Lang. Syst.
(TOPLAS) 13(1), 124–149 (1991)

10. Herlihy, M.: A methodology for implementing highly concurrent data objects.
ACM Trans. Program. Lang. Syst. (TOPLAS) 15(5), 745–770 (1993)

11. Herlihy, M., Shavit, N.: On the nature of progress. In: Fernàndez Anta, A., Lipari,
G., Roy, M. (eds.) OPODIS 2011. LNCS, vol. 7109, pp. 313–328. Springer, Hei-
delberg (2011)

12. Herlihy, M.P., Wing, J.M.: Axioms for concurrent objects. In: Proceedings of
the 14th ACM SIGACT-SIGPLAN Symposium on Principles of Programming
Languages. pp. 13–26. ACM (1987)

13. Michael, M.M.: High performance dynamic lock-free hash tables and list-based
sets. In: Proceedings of the Fourteenth Annual ACM Symposium on Parallel
Algorithms and Architectures. pp. 73–82. ACM (2002)

14. Moir, M.: Practical implementations of non-blocking synchronization primitives.
In: Proceedings of the Sixteenth Annual ACM Symposium on Principles of Dis-
tributed Computing. pp. 219–228. ACM (1997)

15. Valois, J.D.: Lock-free linked lists using compare-and-swap. In: Proceedings of the
Fourteenth Annual ACM Symposium on Principles of Distributed Computing. pp.
214–222. ACM (1995)

Knowledgeable Chunking

Bertil Chapuis(B) and Benôıt Garbinato

University of Lausanne, Lausanne, Switzerland
{bertil.chapuis,benoit.garbinato}@unil.ch

Abstract. Chunking algorithms are often used by storage solutions
in order to factorize and deduplicate data. Such algorithms make the
assumption that the consecutive versions of a file share a lot of sim-
ilarities. Unfortunately, file formats often use compression algorithms
and minor changes have the potential to completely reorganize the
internal layout of a file. In consequence, chunking algorithms become
less efficient in factorizing data. In this paper, we evaluate content-
defined chunking with file formats that use data compression. We show
how content-defined chunking algorithms can take the file format into
account. Finally, we demonstrate that adding file format knowledge to a
popular chunking algorithm significantly improves its performance.

1 Introduction

When synchronizing data, minimizing the amount of transferred information
is the main challenge. Similarly, when storing data, reducing the amount of
storage is usually the primary objective. If files are versioned, this becomes
even more important, because two successive revisions of the same file are often
sharing most of their content. For these reasons, content-defined chunking algo-
rithms (CDC) became very popular. Such algorithms split long sequences of
bytes into several chunks. Since cryptographic hash functions are assumed to be
good enough to avoid collisions, the hash signatures of the chunks act as unique
identifiers or access keys. Using these signatures, it becomes straightforward to
verify if a chunk has already been stored or transferred in order to reduce storage
requirements or network bandwidth. In contrast to common compression algo-
rithms, which make a space time tradeoff, CDC algorithms factorize data without
sacrificing too much computing time. For example, the popularity of Dropbox
relies on a very basic fixed size chunking algorithm [2]. This chunking algorithm
is not making a space-time tradeoff but the fact that chunks are stored only
once already brings a factorization benefit similar to compression. This paper
starts by reminding the major contributions made in the area of content-defined
chunking. Then, we evaluate two well-known algorithms against the consecutive
versions of a file whose format uses compression. Finally, we show that inserting
file format knowledge in a popular chunking algorithm significantly improves its
performances in term of deduplication.

c© Springer International Publishing Switzerland 2015
A. Bouajjani and H. Fauconnier (Eds.): NETYS 2015, LNCS 9466, pp. 456–460, 2015.
DOI: 10.1007/978-3-319-26850-7 31

Knowledgeable Chunking 457

~23%

~16%

~13%

~14%

Immutable Mutable

C
o

m
p

re
ss

ed
U

n
co

m
p

re
ss

ed

pdf

docx

pptx

xlsx
zip

txt

tif log

mp3

bmp

jpg

png

sqlite

psd

exe

tar

rtf

tar.gz

...

...

...

...

Fig. 1. File format classification

A B

Boundary Boundary Boundary

C D E F

Boundary Boundary

Fig. 2. Fixed size chunking

A B C

Boundary Boundary Boundary Window

Fig. 3. Content-based chunking
Header Header Header Header

Entry Entry Entry Entry Directory

Fig. 4. Zip entries and headers

2 Related Work

Data deduplication can be considered as a special form of data compression:
instead of trading space for time in order to find very fine grained redundancies,
deduplication aims at avoiding redundancies at a coarser scale. In the following,
we first provide an architectural overview of a typical storage solution that use
chunking and then we describe some of the most common chunking algorithms.

A recent study clearly demonstrates the significant effect of deduplication on
storage requirements [4]. At the heart of such storage systems, we find chunking
algorithms, which split files into sub-parts. A common approach for integrating
deduplication in storage systems consists in hashing the content of chunks and
using the resulting hash signatures as unique access keys. This simple scheme
makes it possible to store and transmit data only once: if the same content is
stored elsewhere in the system, it will have the same access key. Venti, from Bell
Labs, was one of the first storage solution that use CDC for reducing storage
requirements [6]. The RSync algorithm [8] and the Low Bandwidth network File
System (LBFS) clearly show the effect of CDC on network bandwidth [5].

Figure 2 illustrates a fixed size chunking (FSC) algorithm that comes with a
major drawback: when bytes are added at the beginning of a file, all the following
chunk boundaries are shifted. To solve this issue, Content-Defined Chunking
(CDC) algorithms heavily rely on rolling hash functions such as Rabin-Karp [7].
As illustrated in Fig. 3, the idea is to create a fixed size sliding window, depicted
here by a black box. The window slides on the byte sequence F to be chunked
(typically a file), one byte after the other. At each step, the hash signature of the
window is computed using the previous sum and the incoming byte. As soon as
the hash of the window matches a boundary pattern, a chunk is created. Now, if
we repeat the same process on some other byte sequence F ′, a modified version
of F , we understand that unlike FSC, CDC can identify chunk boundaries that
resists to modifications anywhere in the byte sequence.

458 B. Chapuis and B. Garbinato

In absence of further refinements, such algorithm is often referred to as Basic
Sliding Window Algorithm (BSW). In [5], Muthitacharoen et al. describe a vari-
ant of the BSW algorithms that introduces two thresholds (TT). Instead of
waiting indefinitely for a boundary match, this algorithm defines a threshold for
the minimal and maximal size of chunks. In [3], Eshghi et al. describe a varia-
tion of the BSW algorithm that use two thresholds and a second backup divisor
(TTTD). This second divisor is used for avoiding arbitrary cuts when the maxi-
mal threshold is reached. Both of these optimizations are positively reducing the
size of the data after deduplication.

3 Dataset

Today, most studies include a limited number of snapshots of data. In this con-
text, as demonstrated in [4], hashing the content of files can capture a large
part of the factorization benefit. However, if snapshots were taken continuously
each time a change occurs in the system, the benefits brought by CDC would
probably be much greater.

To highlight this fact, Fig. 1 displays statistics about the files stored in the
home directories of our faculty. Immutable and compressed files (∼ 16%) as
well as immutable and uncompressed files (∼ 23%) can efficiently be factorized
without chunking algorithms since such content only has few versions. Mutable
and uncompressed files (∼ 13%) are ideally suited for chunking algorithms since
their content is mutating and similarities exit between versions. Compressed and
mutable files (∼ 14%) mutate but differ since the compression algorithm affect
the internal layout of the file, making chunking less efficient. These statistics were
gathered using one snapshot and some files do not have extensions (∼ 6%) or
have extensions we did not categorized (∼ 25%). Assuming a system that archive
all changes that occur on a hard drive, we quickly realize that the mutable data
may grow very quickly, well beyond the aforementioned proportions.

For this reason, snapshots of data do not constitute a suitable dataset for
our experiment. In consequence, we let a robot, let’s call him Andrew, build
our experimental dataset on the basis of its memoirs [1]. The robot tells the
story paragraph after paragraph and makes a backup of the document after
each addition. In order to make the biography more appealing, the robot adds
pictures to the document every 50 paragraphs. The versions are saved in the
docx file format which is actually a zip archive with deflate compression. The
resulting dataset includes 2656 versions of a word document, the latest version
containing 77’847 words and 54 jpeg images.

4 Experiment

Since common chunking algorithms loose their efficiency with compressed and
mutable files, we target this specific category. Most file formats include a form of
object models. As shown in Fig. 4, zip files prefix zip entries, which correspond to
archived files, with a specific header. PDF files also prefix text, paragraphs and

Knowledgeable Chunking 459

images with specific headers. Such headers are not recognized by chunking algo-
rithms, but carry interesting information. For example, if the archive contains
an image, this data could easily be located making it possible to find immutable
data inside mutable documents. Furthermore, in case of minor modifications,
the internal layout of a compressed file may be partially preserved. As a con-
sequence, giving file format knowledge to the chunking algorithm may help in
finding similarities much more efficiently. To confirm our assumptions, we give
file format knowledge to the TTTD algorithms. The resulting algorithm, called
KTTTD, defines chunk boundaries by first looking for object model prefixes and
then for content-defined boundaries. This approach has a minimal impact on the
performances of the algorithm, since files still need to be parsed only once.

5 Results

In order to measure the impact of file format knowledge, we compared KTTTD
with TT and TTTD, using two configurations based on the parameters described
in [3]. The first configuration generates small chunks with an average size of 2 KB,
a minimum threshold of 928 bytes and a maximum threshold of 5’649 bytes. The
second configuration generates larger chunks. In this case, they have an average
size of 32 KB, a minimum threshold of 14’850 bytes and a maximum threshold
of 45’197 bytes. Since the files generated for our experiment remains quite small
(the largest of our file is approximately 260 KB), such a configuration gives the
opportunity to the standard content-based algorithms to compete with the one
that include file format knowledge. A larger average size for chunks would not
gives many opportunities for data deduplication.

0 500 1000 1500 2000 2500

0.
0e

+
00

1.
0e

+
08

2.
0e

+
08

3.
0e

+
08

versions

si
ze

original
tt
tttd
ktttd

Fig. 5. 2 kb average chunk size

0 500 1000 1500 2000 2500

0.
0e

+
00

1.
0e

+
08

2.
0e

+
08

3.
0e

+
08

versions

si
ze

original
tt
tttd
ktttd

Fig. 6. 32 kb average chunk size

Our setup handles the documents of our dataset incrementally and store the
resulting metadata and chunks in a data store. After each addition, we measure
the size of the data store in order to highlight how it evolves. Figure 5 shows the

460 B. Chapuis and B. Garbinato

results obtained with the first configuration. In this context, the three algorithms
have almost similar performances. The deduplication is quite impressive with a
resulting chunk store that weights approximately 16 % of the original data. While
very thigh, the gain of KTTTD over TTTD is approximately 8 %, which is small
but not negligible since it surpasses the gain of TTTD over TT, which is roughly
6 %. Figure 6 presents the results obtained with the second configuration. With
bigger chunks, the gain brought by file format knowledge becomes much more
impressive. TT and TTTD have similar performances, which is not surprising
since the internal layout of the files can potentially changes a lot because of
the compression. It tends to confirm the results obtained with random data
in [3]. However, KTTTD performs much better and seems to successfully extract
immutable data from the docx files. The average gain of KTTTD over TTTD is
approximately 35 %, which is far from being negligible.

6 Conclusions

Given that a significant portion of data is mutable and compressed, systemati-
cally storing every version of files that use compression have an important cost
in term of storage. Unfortunately, content-defined chunking algorithms perform
poorly with such data. To address this problem, we proposed a solution that adds
file format knowledge to CDC algorithms. We demonstrated the gain brought
by this addition in the context of the docx file format, which rely on the zip
specification and use compression. Our work will now consist in validating our
finding against real world datasets and finding ways to detect the object mod-
els introduced by file formats automatically. Some lessons could also be learned
from this study that may help in devising better archival formats that takes the
requirements of modern storage solutions into account.

References

1. Asimov, I., Silverberg, R., Timmerman, H.: The Bicentennial Man. Millennium,
Hyderabad (2000)

2. Drago, I., Mellia, M., Munafo, M.M., Sperotto, A., Sadre, R., Pras, A.: Inside drop-
box: understanding personal cloud storage services. In: Proceedings of the 2012
ACM Conference on Internet Measurement Conference, pp. 481–494. ACM (2012)

3. Eshghi, K., Tang, H.K.: A framework for analyzing and improving content-based
chunking algorithms. Hewlett-Packard Labs Technical report TR vol. 30 (2005)

4. Meyer, D.T., Bolosky, W.J.: A study of practical deduplication. ACM Trans. Storage
(TOS) 7(4), 14 (2012)

5. Muthitacharoen, A., Chen, B., Mazieres, D.: A low-bandwidth network file
system. In: ACM SIGOPS Operating Systems Review, vol. 35, pp. 174–187. ACM
(2001)

6. Quinlan, S., Dorward, S.: Venti: a new approach to archival storage. FAST 2, 89–101
(2002)

7. Rabin, M.O.: Fingerprinting by random polynomials. Center for Research in
Computing Techn., Aiken Computation Laboratory, University (1981)

8. Tridgell, A., Mackerras, P. et al.: The rsync algorithm (1996)

Enhancing Readers-Writers Exclusion
with Upgrade/Downgrade Primitives

Michael Diamond1, Prasad Jayanti2(B), and Jake Leichtling1

1 Google, Mountain View, USA
mdiamond@google.com, jake.leichtling@gmail.com

2 Dartmouth College, Hanover, USA
prasad@cs.dartmouth.edu

Abstract. We design an algorithm for readers-writers exclusion that
allows a writer to downgrade to a reader and a reader to attempt to
upgrade to a writer. The highlights of our algorithm are: (i) the upgrade
and downgrade methods are linearizable and wait-free, and (ii) all prop-
erties deemed desirable, such as concurrent entering, FCFS for writers,
FIFE for readers, are satisfied, and (iii) RMR complexity is constant.

1 Introduction

1.1 The Readers-Writers Exclusion Problem

In the context of a system of asynchronous processes communicating via atomic
shared variables, we study the readers-writers exclusion problem [1]. Three types
of readers-writers exclusion are commonly studied in the literature — one where
readers have priority over writers, another where writers have priority, and a
third version where neither class has priority over the other and no process
starves. In this paper, we study only the reader-priority and the starvation-free
versions of the problem.

Suppose that a process p enters the CS as a writer and, after some reading
and writing of the buffer B, finds that it only has some reading left to perform.
It would be ideal if p can simply downgrade its status from a writer to a reader,
thereby allowing other readers in the try section to also enter the CS. This
scenario motivates the need for supporting a “downgrade” primitive, which a
writer in the CS can execute to bring down its privilege from writing to reading.
If the downgrade primitive were not supported, p would have to quit the CS
and reenter the CS as a reader, which not only involves considerable overhead
but also leaves opportunity for other writers to modify the buffer between p’s
writing and reading.

Similarly, suppose that p enters the CS as reader and, after reading parts of
the buffer B, finds a need to modify the buffer. Instead of quitting the CS and
reentering as a writer, it would be ideal if p can request to upgrade its status
from reader to that of writer. Of course, the request cannot always succeed:
for instance, if another reader q is also in the CS, p’s upgrade request must
c© Springer International Publishing Switzerland 2015
A. Bouajjani and H. Fauconnier (Eds.): NETYS 2015, LNCS 9466, pp. 461–467, 2015.
DOI: 10.1007/978-3-319-26850-7 32

462 M. Diamond et al.

fail, since otherwise the exclusion property would be violated. However, under
suitable conditions — for example, when all other processes are in the remainder
section — p’s upgrade will succeed, giving it the license to modify the buffer.

We stipulate that the upgrade and downgrade primitives be atomic because
a process in the CS can then switch its status (from writer to reader or vice
versa) instantaneously.

We make two contributions. First, we specify upgrade and downgrade in a
clean way that integrates seamlessly with standard properties, such as concurrent
entering, reader-priority etc., identified in the literature for readers-writers syn-
chronization. Second, we design an algorithm that transforms any readers-writers
exclusion algorithm into one that additionally supports upgrade and downgrade
primitives as linearizable and wait-free operations. The highlight is that our
transformation preserves the type of the original readers-writers algorithm: if
the original algorithm satisfies reader priority, so does the new algorithm; and,
if the original algorithm satisfies starvation-freedom, so does the new algorithm
also. Our transformation also preserves RMR complexity on Cache-Coherent
(CC) multiprocessors: if the original algorithm has O(1) RMR complexity, so
does the new algorithm, i.e., execution of any of Try, Exit, Upgrade, or Down-
grade procedures incurs only a constant number of remote memory references
(RMRs), regardless of how many processes are running concurrently.

1.2 Comparison to Previous Work

Upgradeable and Downgradeable reader-writer locks are implemented in the
boost C++ libraries [2], .NET [3], and in Java utilities [4]. There are significant
differences between what these implementations provide and our lock. While
these three implementations are reentrant and interruptible, our lock is not. On
the other hand, the lock in java.util.concurrent.locks supports only the down-
grade feature, so readers cannot attempt to gain write permission. The .NET and
boost implementations are closer to our lock, yet also present significant differ-
ences. In these two implementations, a process attempts to acquire one of three
tiers of the lock: “reader,” “upgradeable reader,” or “writer.” An upgradeable-
reader is a process that is currently a reader, but has the ability to call the
upgrade method anytime it wants. No more than one process can be an upgrade-
able reader at a time, though an upgradeable reader may downgrade to a regular
reader without blocking. Thus, at most one reader can call the upgrade method
at a time. In contrast, our algorithm allows for any reader to call upgrade at any
time. The boost and .net locks offer blocking as well as nonblocking implementa-
tions of upgrade. Our lock offers wait-free upgrade with the additional property
that, if an upgrade fails, at no point during its execution does the upgrade pre-
vent new readers from entering the CS in a bounded number of steps. The boost
lock is starvation-free and the .net lock gives priority to writers. Our lock, on the
other hand, can either be starvation-free or give priority to readers. Finally, our
lock ensures that properties, such as concurrent entering and FIFE, are satisfied
even as processes upgrade or downgrade their status.

Enhancing Readers-Writers Exclusion with Upgrade/Downgrade Primitives 463

2 Problem Specification

The system consists of asynchronous processes communicating via atomic shared
variables. Each process’ program is a loop that consists of two sections of code:
the Try section, followed by Exit section. We say that a process is in the Remain-
der section if its program counter is at the first statement of the Try section;
and we say that a process is in the Critical section (CS) if its program counter
is at the first statement of the Exit section. Initially, all processes are in their
Remainder section.

The Try section, in turn, consists of two code fragments — the doorway,
followed by the waiting room — with the requirement that the doorway is a
bounded “straight line” code [5]. Each time a process executes the Try section,
it nondeterministically selects at the start of the doorway to be either a reader
or a writer. Thus, when it completes the Try section, it enters the CS as either
a reader or a writer.

Each process has access to two atomic primitives — Upgrade and Downgrade;
Upgrade returns true or false, and Downgrade always returns true. A process can
execute Downgrade only if it is a writer and is in the CS; and it can execute
Upgrade only if it is a reader and is in the CS. If a writer in the CS executes the
atomic primitive Downgrade, it instantaneously changes to a reader. If a reader
in the CS executes the atomic primitive Upgrade and Upgrade returns true, it
instantaneously changes to a writer; if Upgrade returns false, the process remains
a reader. A process in the CS may execute Upgrade and Downgrade any number
of times.

We now define two properties. The first stipulates that an upgrade attempt
must succeed if all other processes are in the remainder section. If we wish to
give priority to readers over writers, a reader in the CS should not be able to
upgrade (and become a writer) if another reader is waiting. The second property
rigorously states this condition.

– Upgradeability: If a reader in the CS executes the atomic primitive Upgrade
at a time when no other readers are in the Try, Critical, or Exit sections, then
Upgrade returns true.

– Upgrade respects reader priority: If a reader in the CS executes the atomic
primitive Upgrade at a time when another reader is in the waiting room,
Upgrade returns false.

Because of space constraints, we refer the reader to [6] for the definitions of
the other properties generally deemed desirable for readers-writers lock (namely,
bounded exit, livelock/starvation freedom [7], concurrent entering [8,9], FCFS
for writers, FIFE for readers [10]), and for a reader-priority lock (namely, reader-
priority and unstoppable reader properties).

An algorithm for readers-writers exclusion, also called a readers-writers lock,
specifies four procedures — Try section, Exit section, Upgrade, and Downgrade —
such that

– Upgrade and Downgrade procedures are linearizable [11] and wait-free [12].

464 M. Diamond et al.

– The following properties are satisfied: exclusion, livelock freedom, bounded
exit, concurrent entering, FCFS for writers, and FIFE for readers.

– Reader priority and unstoppable reader properties are satisfied (when imple-
menting a reader-priority lock) and starvation freedom is satisfied (when
implementing a starvation-free lock).

3 The Algorithm

We design the algorithm in two steps. In the first and the difficult step, we show
how to transform any single-writer lock L that does not support upgrade and
downgrade into a single-writer lock L′ that supports upgrade and downgrade.
The highlight of this transformation is that it preserves the type of L: if L is
a starvation-free lock, so is L′; and if L is a reader-priority lock, so too is L′.
In the second (and the easy) step, we transform the single-writer lock into one
that supports any number of concurrent writers. Because of space constraints,
we present only the algorithm for the first step.

Shared Variables

RC ∈ {0} ∪ Z
+, initialized to 0

US ∈ {upgrading,upgraded,null}, initialized to null
Permit ∈ {true, false}, initialized to true
DowngradingWriter ∈ {true, false}, initialized to false

Local Variables

original-status ∈ {R,W}
current-status ∈ {r ,w , ˙ w}
status ≡ (original-status, current-status)

Reader-Try()

1 F&A(RC , 1)
2 CAS(US ,upgrading,null)
3 L.Reader-Doorway()
4 L.Reader-WaitingRoom()
5 if US == upgraded
6 wait until Permit == true
7 wait until DowngradingWriter == false

(R, r)-Exit()

8 F&A(RC ,−1)
9 L.Reader-Exit()

(R, r)/(W, r)-Upgrade()

10 if RC �= 1 return false
11 US = upgrading
12 if RC �= 1 return false
13 Permit = false
14 return CAS(US ,upgrading,upgraded)

(R, ˙ w)/(W, ˙ w)-Re-Downgrade()

15 Permit = true

Writer-Try()

16 L.Writer-Try()

(W, w)-Exit()

17 L.Writer-Exit()

(W, w)-Downgrade()

18 DowngradingWriter = true
19 F&A(RC , 1)
20 L.Writer-Exit()
21 DowngradingWriter = false

(W, r)-Exit()

22 F&A(RC ,−1)

Fig. 1. Algorithm for transforming a single-writer multi-reader lock L into a single-
writer multi-reader lock L′ that supports upgrade and downgrade

Enhancing Readers-Writers Exclusion with Upgrade/Downgrade Primitives 465

3.1 Process Status

For any process p that is not in the Remainder section, its status is (X, y), where

– X ∈ {R,W} is p’s original status: if p entered the Try section as a reader,
then X = R and we call p an original reader; if p entered the Try section as
a writer, then X = W and we call p an original writer. Note that the original
status of a process remains the same from the start of the Try section to the
completion of the Exit section.

– y ∈ {r, w, ẇ} is p’s current status: if y = r, p is currently a reader; if y = ẇ, p
is currently a writer, having upgraded from being a reader; and if y = w, p is
currently a writer and has always been a writer.

For example, when an original writer enters the CS, its status is (W,w). If it
executes Downgrade, its status becomes (W, r). If it then executes Upgrade and
the upgrade succeeds, its status becomes (W, ẇ).

3.2 Procedure Naming Convention

Our algorithm, which transforms a single-writer lock L that does not support
upgrade and downgrade into a single-writer lock L′ that supports upgrade and
downgrade, is presented in Fig. 1, where we use the following convention for
naming procedures. Most procedures’ names begin with a status value (X, y),

Fig. 2. A diagram illustrating how a process’s status changes as it upgrades and down-
grades, and what upgrade and downgrade procedures are available to it given its status.

466 M. Diamond et al.

which means that only a process whose status is (X, y) can execute that proce-
dure. For example, the procedure (W,w)-Downgrade can be executed only by
processes whose status is (W,w). Similarly, (R, ẇ)/(W, ẇ)-Re-downgrade can
be executed only by processes whose status is either (R, ẇ) or (W, ẇ).

Figure 2 describes how a process’ status changes as it upgrades and down-
grades, and what upgrade and downgrade procedures are available to it given
its status. In the figure, only procedures that potentially change the current sta-
tus of a process are shown. Note that an attempt to upgrade is not guaranteed
to succeed, so, if (R, r)/(W, r) − Upgrade() returns false, the process’ current
status continues to be r.

Notice that we have not provided an Exit procedure for a process whose
current status is ẇ. Such a process can exit by first downgrading (to change its
current status to r) and then executing an appropriate Exit procedure.

Acknowledgment. We thank Vibhor Bhatt whose conversations with the second
author sparked off this research. We also thank the reviewers for pointing us to the
earlier work on upgrade and downgrade.

References

1. Courtois, P.J., Heymans, F., Parnas, D.L.: Concurrent control with “readers” and
“writers”. Commun. ACM 14(10), 667–668 (1971)

2. Boost C++ Libraries description. http://www.boost.org/doc/libs/1 5 /doc/
html/thread/synchronization.html#thread.synchronization.mutex concepts.
upgrade lockable.try unlock shared and lock upgrade. Accessed: 8 April 2015d

3. .NET Framework 4.5 Reader-Writer Lock Description, howpublished. https://
msdn.microsoft.com/en-us/library/bz6sth95 note = Accessed: 8 April 2015

4. java.util.concurrent.locks description. http://docs.oracle.com/javase/7/docs/api/
java/util/concurrent/locks/ReentrantReadWriteLock.html. Accessed: 8 April
2015

5. Lamport, L.: A new solution of Dijkstra’s concurrent programming problem.
CACM 17(8), 453–455 (1974)

6. Bhatt, V., Jayanti, P.: Constant RMR solutions to reader writer synchronization.
In: Submitted to the Proceedings of the Twenty-Ninth Annual Symposium on
Principles of Distributed Computing (PODC 2010) (2010)

7. Dijkstra, E.W.: Solution of a problem in concurrent programming control. Com-
mun. ACM 8(9), 569 (1965)

8. Joung, Y.-J.: Asynchronous group mutual exclusion (extended abstract). In: Pro-
ceedings of the Seventeenth Annual ACM Symposium on Principles of Distributed
Computing, PODC 1998, pp. 51–60, New York. ACM (1998)

9. Hadzilacos, V.: A note on group mutual exclusion. In: Proceedings of the Twenti-
eth Annual ACM Symposium on Principles of Distributed Computing, pp. 100–
106, New York. ACM (2001)

http://www.boost.org/doc/libs/1_5_/doc/html/thread/synchronization.html#thread.synchronization.mutex_concepts.upgrade_lockable.try_unlock_shared_and_lock_upgrade
http://www.boost.org/doc/libs/1_5_/doc/html/thread/synchronization.html#thread.synchronization.mutex_concepts.upgrade_lockable.try_unlock_shared_and_lock_upgrade
http://www.boost.org/doc/libs/1_5_/doc/html/thread/synchronization.html#thread.synchronization.mutex_concepts.upgrade_lockable.try_unlock_shared_and_lock_upgrade
https://msdn.microsoft.com/en-us/library/bz6sth95
https://msdn.microsoft.com/en-us/library/bz6sth95
http://docs.oracle.com/javase/7/docs/api/java/util/concurrent/locks/ReentrantReadWriteLock.html
http://docs.oracle.com/javase/7/docs/api/java/util/concurrent/locks/ReentrantReadWriteLock.html

Enhancing Readers-Writers Exclusion with Upgrade/Downgrade Primitives 467

10. Fischer, M.J., Lynch, N.A., Burns, J.E., Borodin, A.: Resource allocation with
immunity to limited process failure. In: Proceedings of the 20th Annual Sympo-
sium on Foundations of Computer Science, SFCS 1979, pp. 234–254, Washington.
IEEE Computer Society (1979)

11. Herlihy, M.P., Wing, J.M.: Linearizability: a correctness condition for concurrent
objects. ACM TOPLAS 12(3), 463–492 (1990)

12. Herlihy, M.P.: Wait-free synchronization. ACM TOPLAS 13(1), 124–149 (1991)

Context-Based Query Expansion Method
for Short Queries Using Latent Semantic

Analyses

Btihal El Ghali1(&), Abderrahim El Qadi2, Mohamed Ouadou1,
and Driss Aboutajdine1

1 LRIT Associated Unit to the CNRST - URAC N°29 Faculty of Science,
Mohammed V- University, Rabat, Morocco

{btihal.elghali,ouadou55}@gmail.com,

aboutaj@fsr.ac.ma
2 TIM, High School of Technology Moulay Ismaïl University,

Meknes, Morocco
elqadi_a@yahoo.com

Abstract. Short queries are the key difficulty in information retrieval (IR).
A plenty of query expansion techniques has been proposed to solve this
problem. In this paper, we propose three different models for query suggestion
using the cosine similarity (CS), the Language Models (LM) or their fusion. The
expansion terms are selected using the Latent Semantic Analyses method based
on the result of the three query suggestion methods. The approaches proposed
improve the precision of the user query by adding additional context to it.
Experimental results show that expanding short queries by our approaches
improves the effectiveness of the IR system by 48,1 % using the CS based
model, 19,2 % using the LM model, and 13,5 % using the fusion model.

Keywords: Query context � Query suggestion � LM � LSA � Query expansion

1 Introduction

Query suggestion is the fact of proposing queries that are almost similar to the user
query, and it can be considered as a method for improving retrieval performance by
extracting the context around the user’s query. Indeed, the query is only a partial and
often ambiguous expression of the user’s information needs, and it was observed that
users usually submit very short queries [1]. Considering the context, the partial
information of the query can be completed and the ambiguity can be resolved to a
certain degree [2].

For a correct interpretation of the user’s query, it has been demonstrated that it
should be placed in its appropriate context [3]. The context is a large notion that
includes the user context (his domains of interest, his preferences and his historic of
research) and the query context, which means the environment of the query (its relevant
documents and its terms…). The first context needs the research to be done using users
profiles, but a single profile can group a large variety of domains and interests, that are

© Springer International Publishing Switzerland 2015
A. Bouajjani and H. Fauconnier (Eds.): NETYS 2015, LNCS 9466, pp. 468–473, 2015.
DOI: 10.1007/978-3-319-26850-7_33

not always relevant for a particular query. Thus, the solution is to use the second
context as an appropriate context to improve the precision of the query.

The main objective of this work is to provide high-level suggestions for the original
user query that we are using later for expanding the query with additional context. We
consider the query context that we build using the top-ranked documents of the initial
query, the most related queries extracted from a log of past queries and their top-ranked
documents. We propose also to apply the Latent Semantic Analyses method to search
for the most similar terms to the new user query terms. Then, these similarities are
merged together with the expression of cohesion weight presented in [4] to order the
candidate terms for expansion according to the whole query to expand.

This paper is structured as follows: The Sect. 2 describes our context-based query
expansion method. Section 3 shows the most important experimental results, while
Sect. 4 summarizes the main conclusions of this work.

2 The Context-Based Query Expansion Method

In this paper, we propose three query suggestion models. These models classified past
queries, which are extracted from a query logs, according to the new user query using
the expression of score:

Score qN; qPð Þ ¼ c ScoreT qN; qPð Þþ ð1� cÞ ScoreD qN; qPð Þ ð1Þ

With c 2 ½0; 1� is a parameter that we used for normalization. In a previous work,
the experimentations done show that the best value of c is 0,2. The ScoreT is calculated
using vectors that represent the presence or not of a term in a query. While, ScoreD is
computed using vectors that represent the presence or not of a document between the
clicked document of a query.

The query suggestion models presented are as follows:

• Model 1: Technique based on the Query Recommendation Algorithm (TQRA):

ScoreM1 qN ; qPð Þ ¼ c ScoreQRA�T qN ; qPð Þþ ð1� cÞ ScoreQRA�D qN ; qPð Þ ð2Þ

• Model 2: Technique based on the Language Models (TLM):

ScoreM2 qN; qPð Þ ¼ c ScoreLM�T qN; qPð Þþ ð1� cÞ ScoreLM�D qN; qPð Þ ð3Þ

• Model 3: Method of suggestion based on Language Models (LM) using the terms
vectors and QRA using the documents vectors:

ScoreM3 qN; qPð Þ ¼ c ScoreLM�T qN; qPð Þþ ð1� cÞ SimQRA�D qN; qPð Þ ð4Þ

2.1 Query Recommendation Algorithm

In this case, we used the Query Recommendation Algorithm (QRA) presented in [5].
We eliminated the steps 1 and 2 of the algorithm that concern the clustering of the past

Context-Based Query Expansion Method for Short Queries 469

queries and the identification of the appropriate cluster of a new query when submitted.
In order to suggest related past queries to an input query, we represent each query with
a term-weight vector and a document-weight vector [6].

2.2 Language Model

In this paper, we used the language models [2, 7, 8], to order the past queries Qp

according to their capacity to generate the new user query Qn. The ranking function
that we used is the typical score function defined by KL-divergence [3, 9]:

ScoreLMðQn;QpÞ ¼
X

t2V Pðt hQP

�� Þ log Pðt hQP

�� Þ � � KLðhQn
hQP

�� Þ ð5Þ

Where hQn is the language model of the new query, hQp the language model created for
a past query, and V the vocabulary of terms.

P tjhQð Þ represent the probability of a term t in the language model of the query and
are measured using the Maximum Likehood Estimation (MLE).

To resolve the main problem that occurs for language models, we used the
Jelinek-Mercer interpolation smoothing [7] method:

P tjh0Qp

� �
¼ 1� kð ÞP tjhQp

� �
þ kP tjhCð Þ ð6Þ

Where c is an interpolation parameter and θc the language model of the collection of
queries extracted from the search engine log.

2.3 Latent Semantic Analyses for Query Expansion

The Latent Semantic Analyses (LSA) [10] is a technique, which projects queries and
documents into a space with “latent” semantic dimensions.

In this work, we propose to apply the LSA as a query expansion method to the
results of the query suggestion techniques proposed.

Finally, By using the common measure of similarity cosine Simc [11] and com-
bining the similarities of each candidate term tj for all the new query terms tj 2 Q we
can calculate the cohesion weight [4] of a candidate term, which represent the rela-
tionship (correlation) between this term and the whole query to expand:

CoWeight Q; tj
� � ¼ lnð

Y

ti2Q
ðSimcðti; tjÞþ 1ÞÞ ð7Þ

3 Experimental Results

As a collection of test, we used the database CISI from the standard collection
SMART. This collection provides 111 queries, 1460 documents.

470 B. El Ghali et al.

We used only the short queries (Queries containing less than five terms), and we
computed the performance of the IR system using the Un-interpolated Average Pre-
cision (UAP) measure. In our experimentations, we searched for relevant documents
until the 20th retrieved document.

In Fig. 1, we present the results of UAP for the three models TQRA, TLM and
LM-QRA using two suggested queries and five terms of expansion, while varying the
number of documents to which the LSA is applied for expanding queries.

We notice in Fig. 1 that the highest values of UAP are given using 9 documents for
the model 1 and 2 (0,77 for TQRA and 0,53 for TLM). We propose to continue our
experimentations using 9 documents for each used query. The figure shows ups and
downs in the value of UAP while adding more documents. We can explain that by the
fact that the top-ranked documents used in the expansion can be relevant or not.

Figure 2 describes the value of UAP while varying the number of expansion terms
from 1 to 10.

Fig. 1. UAP values using the three suggested models while varying the number of documents.

Fig. 2. UAP values using the three proposed models while varying the number of terms.

Context-Based Query Expansion Method for Short Queries 471

Figure 2 is showing that while varying the number of terms used for expanding
short queries, the value of UAP is decreasing continually when using the model
LM-QRA. Thus, the highest value (0,52) is given using one expansion term. Con-
cerning the two other models, they started with high values of UAP (0,75 for TQRA
and 0,52 for TLM) and increased slowly until reaching the highest value when adding 4
or 5 terms of expansion (0,77 for TQRA and 0,53 for TLM).

We propose to compare the value of UAP of the initial queries (before expansion)
with the best values of each case of expansion using the three suggestion models.

Table 1 shows that the case of expansion based on the model TQRA gives the
highest value by improving the UAP of 48,1 %, 19,2 % using the LM model, and
13,5 % using the fusion model compared to the initial user query.

4 Conclusion

In this paper, we have proposed a query expansion method using the Latent Semantic
Analyses technique based on the context around the query. This context is extracted
from the search engine query logs by a three query suggestion methods that we have
proposed. The results show that the best values of Un-interpolated Average Precision
are given by queries expanded by our query expansion method using the first model of
query suggestion (TQRA) which shows an improvement of 48,1% according to the
original short queries.

References

1. Wen, J., Nie, J., Zhang, H.: Clustering user queries of a search engine. In: Proceedings of
WWW10, Hong Kong, May 2001

2. Bouchard, H., Nie, J.Y.: Modèles de langue appliqués à la recherche d’information
contextuelle. In: CORIA 2006, pp. 213–224, Lyon, France (2006)

3. Bai, J., Nie, J-Y. Bouchard, H., Cao, G.: Using query contexts in information retrieval. In:
Proceedings of the 30th Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval, SIGIR 2007, pp. 15–22, New York, USA (2007)

4. Cui, H., Wen, J.R., Nie, J.Y., Ma, W.Y.: Probabilistic query expansion using query logs. In:
WWW2002, Honolulu, Hawaii, USA, May 7–11 (2002)

5. Zahera, H.M., El Hady, G.F., Abd El-Wahed, W.F.: Query recommendation for improving
search engine results. In: Proceedings of the World Congress on Engineering and Computer
Science (WCECS 2010), vol. I, San Francisco USA, October (2010)

Table 1. Comparison of the best values of each expansion method with the initial queries.

Suggestion method – TLM TQRA LM-QRA

UAP 0,52 0,62 0,77 0,59

472 B. El Ghali et al.

6. El Ghali, B., El Qadi, A., El Midaoui, O., Ouadou, M., Aboutajdine, D.: Probabilistic query
expansion method based on a query recommendation algorithm. Int. J. Web Appl. (IJWA). 5
(1), 1–12 (2013)

7. Cao, G., Nie, J., Bai, J.: Integrating word relationships into language models. In:
Proceedings of SIGIR 2005, Salvador Brazil, August 2005

8. Zhai, C.: Statistical language models for information retrieval: a critical review. Found.
Trends Inf. Retrieval 2(3), 137–215 (2008)

9. Asfari, O., Doan, B-L., Bourda, Y., Sansonnet, J-P.: Context-based hybrid method for user
query expansion. In: Proceedings of the Fourth International Conference on Advances in
Semantic Processing, SEMAPRO 2010, pp. 69–74, Italy Florence (2010)

10. Landauer, T.K., Foltz, P.W., Laham, D.: An introduction to latent semantic analysis.
Discourse Process. 25, 259–284 (1998)

11. Slimani, T., Ben Yaghlane, B., Mellouli, K.: Une extension de mesure de similarité entre les
con-cepts d’une ontologie. In: Proceedings of SETIT 2007, 4th International Conference:
Sciences of Electronic, Technologies of Information and Tele-Communications, Tunisia,
March 2007

Context-Based Query Expansion Method for Short Queries 473

Towards a Formal Semantics and Analysis
of BPMN Gateways

Outman El Hichami1(B), Mohamed Naoum1, Mohammed Al Achhab2,
Ismail Berrada3, and Badr Eddine El Mohajir1

1 Faculty of Sciences, UAE, Tetouan, Morocco
el.hichami.outman@taalim.ma, naoum.mohamed@gmail.com, b.elmohajir@ieee.ma

2 National School of Applied Sciences, UAE, Tetouan, Morocco
alachhab@ieee.ma

3 Faculty of Sciences and Technology, USMBA, Fez, Morocco
iberrada@univ-lr.fr

Abstract. This paper deals with formal verification of BPMN models.
The lack of an unambiguous definition of the BPMN notations, and the
mixing of incompatible BPMN patterns may lead to wrong or incomplete
semantics, resulting in some behavioral errors such as deadlocks and
multiple termination problems. As formal verification requires formal
specification models and in order to create a correct business process,
most used approaches consider the formalization of either a subclass of
BPMN patterns or specific forms of these patterns. In this paper, thanks
to Max+ Algebra, we propose to extend existing approaches by including
most of BPMN notations.

Keywords: Business process · BPMN · Formal semantics

1 Introduction

The Business Process Modeling Notation (BPMN) [1] is a standard notation
for business process modeling. It presents an execution semantics of process
instances that defines precisely how models in the BPMN notation should behave.

The BPMN models are composed of a set of activity nodes and a set of
control nodes that can be connected by a flow relation. Other notations exist,
for which we refer to a subset of BPMN related to control flow modelling in
order to define a precise execution semantics of BPMN elements which are the
most used in the modelisation of the service-based business processes.

Several approaches have been proposed to the formal validation of BPMN
[2–5]. All these approaches are based on the mapping of BPMN to a formal
presentation like Petri Nets [6] in order to use the formal analysis tools available
for these models.

A variety of techniques define a formal semantics of BPMN [7,8], which use
Petri nets as the target formal model. However, Petri nets are limited in the
semantics that they can represent. It is difficult to represent the inclusive. Such
c© Springer International Publishing Switzerland 2015
A. Bouajjani and H. Fauconnier (Eds.): NETYS 2015, LNCS 9466, pp. 474–478, 2015.
DOI: 10.1007/978-3-319-26850-7 34

Towards a Formal Semantics and Analysis of BPMN Gateways 475

concepts can be represented in Max+ Algebra equations. Our work supports this
claim by showing that the formalization of this paper is relatively complete.

For illustrative purposes, we develop a complete execution semantics of BPMN
patterns associated with control flow in terms of Max+ Algebra equations, which
is a useful mathematical tool, to specify and evaluate the performance of interac-
tion and interoperability in the processes composition where conflicts appear.

The remainder of this paper is organized as follows. In Sect. 2, a brief overview
of BPMN standard and an abstract syntax of Max+ Algebra system is given.
Analysis of execution semantics for BPMN elements related to control flow mod-
elling are presented in Sect. 3. Section 4 concludes the paper and presents some
perspectives.

2 Preliminaries

2.1 Business Process Modeling Notation (BPMN)

Before elaborating a formal semantics of BPMN, this section provides a gentle
introduction to the BPMN elements related to control flow modelling that define
the behavior of the processes and have an impact on the conflict situation. Hence,
three types of nodes named event, task, and gateway are considered as well as
one type of edges called sequence flow. The main elements of BPMN include the
following:

– An event could be a start or an end event.
– A task describes a type of work that has to be completed within a business

process.
– A sequence flow links two objects in a process diagram.
– A default sequence flow is taken only if all the other outgoing sequence flows

are not valid.
– Gateways are used to control how the sequence flows converge or diverge

within a process.

2.2 Max+ Algebra

In Max+ Algebra, we work with the Max+ semi-ring which is the set Rmax =
{−∞} ∪ R. The operations maximum (implied by the max operator ⊕) and
addition (plus operator ⊗), with; ⊕ admits a neutral element noted as ε = −∞
and ⊗ admits a neutral element noted as e = 0.

476 O.E. Hichami et al.

3 Formal Models for BPMN Using Max+ Algebra

3.1 Cumulative Application and Firing Condition

Before giving the Max+ Algebra model, let us define:

– The firing of a task occurs after the end of a time ti associated to this task.
– To calculate the cumulative total at the firing of the task ai, we define the

following cumulative application that represents the date of kth firing of ai

ai : N∗ → Rmax

k → ai(k), with : i ∈ {0, 1, ..., |T |} (1)

where |T | is the number of all tasks in the BPMN model.

Remark: We note ai = 1, when a task ai will be executed.
A sequence flow that has an exclusive or inclusive gateway as its source

requires a condition to direct the flow. Consequently, we associate to each task
a boolean variable that acts as a firing condition. A sequence flow is fired if this
condition evaluates to true. Formally, we define the following function:

Cond : T → {True, False}
ai → Cond(ai)

(2)

3.2 Parallel Gateway Pattern

The analytical behavior of this graphical model is given in system (3). ∀ k ∈
N

∗,∀ai ∈ •gw,∀bj ∈ gw•, ai(k) 	= ε,

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

b0(k) = t0 ⊗
(n⊕

i=0

ai(k)
)

... =
...

bm(k) = tm ⊗
(n⊕

i=0

ai(k)
)

(3)

Where gw• is the set of all downstream tasks of gw and •gw is the set of all
upstream tasks of gw.

Towards a Formal Semantics and Analysis of BPMN Gateways 477

3.3 Exclusive Gateway Pattern

In this pattern, it is not obvious to formally express the firing of the down-
stream tasks. With the aim to describe this functioning by Max+ Algebra equa-
tions and in order to facilitate the mathematical analysis, we associate to each
task the following function:

f : Rmax → {e, ε}
x → f(x) (4)

When only a task ai is fired for the kth firing (i.e., f
(
ai(k)

)
= e), all other tasks

ax (with ax 	= ai) are not fired (i.e., f
(
ax(k)

)
= ε). The behavior of the modeled

exclusive gateway pattern is represented by the system (5): ∀ k ∈ N
∗,

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

−∀ai ∈ •gw,∀bj ∈ gw•,∃!ai ∈ •gw,∃!bj ∈ gw•; ai(k) 	= ε, f
(
bj(k)

)
= e

⇒ bj,Cond(bj)(k) =
((

tbj ⊗ ai(k)
)

⊗ f
(
bj(k)

))
, bj,¬Cond(bj)(k) = ε

−∀ai ∈ •gw,∀bj ∈ gw•,∃!ai ∈ •gw; ai(k) 	= ε,¬Cond(bj), f
(
d(k)

)
= e

⇒ d(k) =
((

td ⊗ ai(k)
)

⊗ f
(
d(k)

))
, bj(k) = ε

(5)

3.4 Inclusive Gateway Pattern

Using a standard formalization, this pattern may be expressed under the follow-

ing form: ∀ k ∈ N
∗,

478 O.E. Hichami et al.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

−∀ai ∈ •gw,∀bj ∈ gw•,∃ai ∈ •gw,∃bj ∈ gw•; ai(k) 	= ε, f (bj(k)) = e

⇒ bj,Cond(bj)(k) =

(

tbj ⊗
n⊕

i=0,ai=1

ai(k)

)

⊗ f (bj(k)) , bj,¬Cond(bj)(k) = ε

−∀ai ∈ •gw,∀bj ∈ gw•,∃ai ∈ •gw; ai(k) 	= ε,¬Cond(bj), f (d(k)) = e

⇒ d(k) =

(

td ⊗
n⊕

i=0,ai=1

ai(k)

)

⊗ f (d(k)) , bj(k) = ε

(6)

4 Conclusion

This paper deals with the development of a theory and a generic method to
model and analyze business process with conflicts in Max+ Algebra. This method
allows to arbitrate these conflicts by given the corresponding linear equations of
the chosen BPMN patterns which are the most used in the modelisation of the
service-based business processes.

In future work, we plan to adapt the proposed approach with our previous
works [2,5] so that to develop a plug-in which can integrate the formal verification
techniques of business processes in the design phase.

References

1. OMG.: Business Process Modeling Notation (BPMN) Version 2.0. OMG Final
Adopted Specification. Object Management Group (2011)

2. El Hichami, O., Al Achhab, M., Berrada, I., El Mohajir, B.: Short: graphical spec-
ification and automatic verification of business process. In: Noubir, G., Raynal,
M. (eds.) Networked Systems. LNCS, vol. 8593, pp. 341–346. Springer, Heidelberg
(2014)

3. van der Aalst, W.M.P., van Dongen, B.F.: Discovering petri nets from event logs.
In: Jensen, K., Aalst, W.M.P., Balbo, G., Koutny, M., Wolf, K. (eds.) Transactions
on Petri Nets and Other Models of Concurrency VII. LNCS, vol. 7480, pp. 372–422.
Springer, Heidelberg (2013)

4. Fahland, D., Favre, C., Koehler, J., Lohmann, N., Volzer, H., Wolf, K.: Analysis on
demand: instantaneous soundness checking of industrial business process models.
Data Knowl. Eng. 70(5), 448–466 (2011)

5. El Hichami, O., Al Achhab, M., Berrada, I., El Mohajir, B.: Visual specification lan-
guage and automatic checking of business process. In: 8th International Workshop
on Verification and Evaluation of Computer and Communication Systems (VECoS
2014), vol. 1256, pp. 93–101. CEUR Workshop Proceedings, Bejaia, Algeria, 29–30
September (2014)

6. Murata, T., Koh, J.Y.: Petri nets: properties, analysis and applications. an invited
survey paper. Proc. IEEE 77(4), 541–580 (1989)

7. Dijkman, R.M., Dumas, M., Ouyang, C.: Formal semantics and analysis of BPMN
process models using Petri nets. Technical report 7115, Queensland University of
Technology, Brisbane (2007)

8. Dijkman, R.M., Dumas, M., Ouyang, C.: Semantics and analysis of business process
models in BPMN. Inf. Softw. Technol 50(12), 1281–1294 (2008)

A User Centered Design Approach
for Transactional Service Adaptation

in Context Aware Environment

Widad Ettazi1(&), Hatim Hafiddi1,2, and Mahmoud Nassar1

1 IMS Team, SIME Laboratory, ENSIAS,
Mohammed V University, Rabat, Morocco

widad.ettazi@um5s.net.ma, hatim.hafiddi@gmail.com,

nassar@ensias.ma
2 ISL Team, STRS Laboratory, INPT, Rabat, Morocco

Abstract. Today, information systems are radically marked by considerable
progress in the areas of software engineering, telecommunications and ubiqui-
tous computing. This has led to the development of new interaction pattern
where the service oriented architecture is the de facto pattern. In this article, we
are particularly interested in transactional services. We position our approach in
the context of a user-centered model driven engineering (MDE) approach in
order to move from one perspective where models were contemplative artifacts
to a perspective where they become productive artifacts. For this, we first pre-
sent our approach for managing context-aware transactional services (CATS).
Then, we propose a CATS specification and metamodel. The adaptation
mechanism is also detailed in this paper.

Keywords: Context-awareness � Transactional service � Adaptation � Model
driven engineering � Transaction model

1 Introduction

Service-oriented architectures have a number of requirements in a transaction-based
infrastructure; transactions must be able to adjust to systems that are not necessarily in a
perfect environment. These systems will operate in a flexible, dynamic environment,
but less reliable and that presents contextual requirements (e.g., connectivity, battery
level, user’s preferences) that hinder the execution of transactions. Many transactional
models and techniques have been proposed [5, 6], but they have limitations, namely, a
non-consideration of the context information and the conception of advanced models
with transactional properties that differ from one application to another. Several stan-
dards specifications have been proposed, including WS-Transaction specification and
Business Transaction Protocol. However, they don’t take into account the context
information. Let’s consider, for instance, a simple transaction that books a room in a
hotel. Current approaches will simply commit the transaction if the required room is
available in the hotel. They do not take into account the context information such as a
room should be booked in a hotel which is located nearby. Therefore, it is imperative to
take into account the context information in the management of CATS.

© Springer International Publishing Switzerland 2015
A. Bouajjani and H. Fauconnier (Eds.): NETYS 2015, LNCS 9466, pp. 479–484, 2015.
DOI: 10.1007/978-3-319-26850-7_35

Our paper is structured as follows. We discuss in the next section some backgrounds.
Section 3 highlights our CATS specification and metamodel. Section 4 addresses the
adaptation mechanism. Section 5 reviews related research. Finally, we conclude the
paper in Sect. 6.

2 Background

2.1 Context-Awareness

Context-awareness refers to systems capable of perceiving a set of conditions of use in
order to adjust their behavior in terms of providing information and services.
According to Dey et al. [1], “a system is context-aware if it uses context to provide
relevant information and services to the user, where relevance depends on the task
requested by the user”.

2.2 Transactional Service

We use the term Transactional Service (TS) to indicate a sequence of activities per-
formed by a user in order to carry out a specific task or fulfill a specific goal by means
of a service-oriented platform. In a context-aware transactional service, the execution of
operations and the context-awareness are combined. The resulting complexity of CATS
requires them to be designed prior to being implemented. Disregarding the
context-awareness aspect, during the design process of transactional service, results in
systems with low accommodation and inappropriate behaviors.

3 User-Centered Adaptation Approach

3.1 CATS Specification

In our approach, we propose a new model for context-aware transactional service called
Context-Aware Transactional Service Model (CATSM). According to CATSM, a
transactional service (TS) is hierarchical and is based on the transaction model shown in
Fig. 1. The global transaction can be decomposed into a set of sub-transactions TSi. To
cope with the context-awareness aspect, we associate to each transaction an environment
descriptor (ED), which refers to the state, resources, and conditions of service execution
environment (i.e., service, user, device and environment contexts). For more flexibility
and resistance to failures, a sub-transaction may be associated to alternative transactions
(ATS). We note that according to the environment descriptor EDij of each ATSij, only
one alternative will be invoked if the transaction to which it is associated has failed.
A compensation mechanism is also invoked by adding to each sub-transaction TSi and
each alternative ATSi a compensating transaction CTSi.

In CATSM, we associate with each transaction a behavior type, namely, replayable,
replaceable, compensatable and critical. A transaction is said to be replaceable if it may
be replaced by an alternative transaction which will be invoked depending on the

480 W. Ettazi et al.

environment descriptor. It is replayable if it can be retried one or more times after its
failure. A transaction is defined as compensatable if it provides mechanisms to undo its
effects. It is said to be critical if it requires the cancelling of the global transaction after its
failure. The commit of the global transaction is associated with one of the following four
types of atomicity (Strict, Semantic, Relaxed, Classic) depending on the semantic of the
application and its requirements in terms of transactional properties.

3.2 Adaptation Metamodel

Figure 2 illustrates our CATS metamodel. This metamodel is based on the following
specification:

• ContextAwareTransactionalService aggregates a list of Activity. Activities mod-
eled by the transaction model have to be meaningful for the user of the context-
aware application. The semantics associated with the existing properties are tuned to
be user-centered.

• The PropertySet of an Activity is the set of transactional properties that this activity
supports.

• The PropertySet of an Activity defines its ExecutionContract, which reflects the
transaction execution model. Such contracts define additional semantics and
constraints.

• The BehaviorSet of an Activity defines its Profile. This set is a sub-set of {critical,
replayable, replaceable, compensatable}.

• Activity may be associated with Alternative in case the Profile contains the {re-
placeable} parameter.

• Activity may be associated with Compensation in case the Profile contains the
{compensatable} parameter.

• Each Activity is associated with its EnvironmentDescriptor which defines the
required environment conditions of execution.

• An EnvironmentDescriptor aggregates a list of ContextDescriptor.
• A ContextDescriptor aggregates a list of ContextParameter.
• For a given AdaptationPolicy and ContextDescriptor, a set of ContextCondition is

deducted.

Fig. 1. Structure of CATS

A User Centered Design Approach for Transactional Service 481

• For a given AdaptationPolicy and Profile, a set of ProfileCondition is deducted.
• An AdaptationPolicy aggregates a set of AdaptationCondition, Action and Rule.

4 Adaptation Mechanism

This section illustrates the adaptation mechanism. Figure 3 sketches the different
modules that are involved in the execution of a transaction in the CATSM.

• Context Manager: It provides context information and the mechanisms to collect
and update data in case of context changes.

• Adaptation Policy Manager: Is responsible for inspecting the adaptation policy
and converting the policy file into a data format that will be used in the reconfig-
uration module. The adaptation policy is determined by transactional requirements.

Fig. 2. CATS adaptation metamodel

Fig. 3. Adaptation mechanism architecture

482 W. Ettazi et al.

• Reconfiguration Module: Is responsible for evaluating and interpreting the
adaptation policy based on the context state information provided by the context
manager and the inspecting result of the policy manager to trigger the execution of
the appropriate adaptation.

• Transaction Manager: Once the CATSM structure is identified by the reconfigu-
ration manager, the transactional service coordinator (TSC) handles the processing
and the execution of the global transaction. Then, it submits the sub-transactions to
the sub-coordinators TSCi, which are associated with the different services TSi.
Each TSCi is running its TSi and exchanges messages with TSC.

5 Related Work

To meet the variables requirements of transactional services, the need to relax ACID
properties has been proposed in many researches since the early 90s. There was a great
effort on extended transaction models [6]. Reference [4] developed a model for
context-aware transactions in the context of mobile systems. This model provides a new
set of transactional properties called RACCD. Reference [3] presented an approach to
select the most appropriate service for a task in a workflow at runtime. To decide which
service is more appropriate, the transactional property of candidate services is used to
make the best choice. However, the approach simply leads to a process failure when no
suitable service is found. Reference [5] introduced the AMT model which allows pro-
grammers to define transactional alternatives for an application task. Reference [2]
proposed a MDE approach to achieve the context-aware service. However, this adap-
tation work has not focused on the transactional aspects of context-aware services.

6 Conclusion

In this paper, we presented a user-centered design approach for the management of
context-aware transactional services. The proposed approach is based on the require-
ments specification in terms of transactional properties which specifies on one hand, the
desired degree of atomicity, and allows on the other hand, the choice of an adaptation
policy based on the alternative mechanism. In the short term, we intend to design a
context-aware transaction commit protocol for the execution of CATS. In the medium
term, our goal is to propose a framework allowing CATS development.

References

1. Dey, A., Abowd, G., Salber, D.: A conceptual framework and toolkit for supporting the rapid
prototyping of context-aware applications. Hum.-Comput. Inter. 16(2), 97–166 (2001)

2. Hafiddi, H., Baidouri, H., Nassar, M., ElAsri, B., Kriouile, A.: A context-aware service centric
approach for service oriented architectures. In: 13th International Conference on Enterprise
Information Systems, ICEIS 2011, vol. 3, pp. 8–11 (2011)

A User Centered Design Approach for Transactional Service 483

3. El Haddad, J., Manouvrier, M., Ramirez, G., Rukoz, M.: QoS-driven selection of web services
for transactional composition. In: IEEE International Conference on Web Services, ICWS
2008, pp. 653–660 (2008)

4. Younas, M., Awan, I.: Mobility management scheme for context aware transactions in per-
vasive and mobile cyberspace. IEEE Trans. Industr. Electron. 60(3), 1108–1115 (2013)

5. Serrano-Alvarado, P.: defining an adaptable mobile transaction service. In: Chaudhri, A.B.,
Unland, R., Djeraba, C., Lindner, W. (eds.) EDBT 2002. LNCS, vol. 2490, pp. 616–626.
Springer, Heidelberg (2002)

6. Elmagarmid, A.K.: Database Transaction Models for Advanced Applications. Morgan
Kaufmann, San Francisco (1992). ISBN: 1-55860-214-3

484 W. Ettazi et al.

A Self-stabilizing PIF Algorithm for Educated
Unique Process Selection

Oday Jubran(B) and Oliver Theel

Carl von Ossietzky Universität Oldenburg, 26111 Oldenburg, Germany
{jubran,theel}@informatik.uni-oldenburg.de

Abstract. Many applications, methods, and models are based on under-
lying self-stabilizing mutual exclusion algorithms. The efficiency of such
applications is correlated to the efficiency of the algorithms, which reflects
a quick recovery from failures, and a fast service time. In this work, we
focus on a property correlated to this field, namely Educated Selection,
which indicates that the selection of processes to be granted unique privi-
lege is deterministic and based on evaluating the local states of processes,
or the global configuration. We present a self-stabilizing Propagation of
Information with Feedback (PIF) algorithm for trees using the shared
memory model. The algorithm exploits the PIF technique for achieving
fast educated unique process selection.

Keywords: Self-stabilization · Propagation of information with feed-
back (PIF) · Mutual exclusion · Educated selection

1 Introduction

Self-stabilization [1] ensures that a system’s desired behavior is eventually
obtained and never voluntarily violated regardless of the system’s initial behav-
ior. Self-stabilization was considered in distributed systems using the shared
memory model, where a process is enabled to execute an action if a condition
over the registers, visible to the process, is satisfied. Running an action changes
the registers’ values, potentially enabling other processes to run actions.

The mutual exclusion problem was considered in self-stabilization, e.g. [2].
Mutual exclusion comprises: (1) a safety property that at most one process is
granted a privilege in each state, and (2) a liveness property that each process
is privileged infinitely often. The second property is usually referred as fairness.

Mutual exclusion does not necessarily require the process selection for grant-
ing the privilege to be deterministic. However, for some systems, it is useful if the
process selection is based on local or global criteria, e.g. energy measurements or
QoS indicators, towards increasing the performance of the systems. We denote
such deterministic process selection as an educated selection.

This work was partially supported by the German Research Foundation (DFG) as
part of the Transregional Collaborative Research Center “Automatic Verification
and Analysis of Complex Systems” (SFB/TR 14 AVACS, http://www.avacs.org/).

c© Springer International Publishing Switzerland 2015
A. Bouajjani and H. Fauconnier (Eds.): NETYS 2015, LNCS 9466, pp. 485–489, 2015.
DOI: 10.1007/978-3-319-26850-7 36

http://www.avacs.org/

486 O. Jubran and O. Theel

The Propagation of Information with Feedback (PIF) [3] is a useful token-
passing approach for educated selection, in which a process sends a wave of
tokens, and receives a feedback. In this work, we apply a PIF approach for edu-
cated unique process selection by extending an earlier approach [4]. We present
a self-stabilizing PIF algorithm for trees using the shared memory model. The
algorithm performs reasonably fast educated unique process selection based on
local or global criteria in (a)synchronous environments.

Outline. Section 2 gives the basic notation. Section 3 presents our self-stabilizing
PIF algorithm. Section 4 draws a conclusion.

2 Notation

We consider a tree topology using the shared memory model. A tree T = (P,E)
is a set of processes P and edges E ⊆ P ×P . The parent of a process p is denoted
by θp, and the children of p are denoted by Cp. The root is denoted by root , and
the set of leaves (resp. inner processes) in P is denoted by Leaves (resp. Inner).
The number of all processes is n. Each process has variables, constants, and a
unique id in {0, ..., n−1}: A process p of id i is denoted by pi, and a variable v of
pi is referred by pi.v. A state σ is a valuation of the variables of some process
p. A configuration is a vector [σ0, ..., σn−1] of the states of all processes.

3 Algorithm

We present an algorithm, which is based on an extended scheme of the well-
known mutual exclusion algorithm of Dijkstra [2]. Section 3.1 presents the algo-
rithm for educated selection based on local states, and Sect. 3.2 extends the
algorithm for educated selection based on global configurations

3.1 Educated Selection Based on Local States

Algorithm 1 shows the algorithm. Each process owns the following variables: (1)
up ∈ B and x ∈ B. We assert that up = � for the root, and up = ⊥ for each
leaf. (2) � ∈ {0, ..., n−1}: this variable stores a process’s id to direct particular
tokens to selected processes. We say that a process p points to a process pi when
p.� = i. (3) We abstract the local criteria of each process pi by a variable mi ∈ R,
such that pi is selected only if the value of pi.m is the maximum among all other
processes. We assume that the value of pi.m is updated by pi independent of the
algorithm, and is returned by the function updatem().

We define the function choose : 2P ⇒ {0, ..., n−1} as follows: given a subset
P ′ ⊆ P , the function returns the id of a process that has the maximum value of
m among P ′. A process runs critSection(), if it is privileged.

The stable behavior of Algorithm 1 is an infinite repetition of two PIF cycles,
where in each cycle, the root propagates a token to all processes, and receives a
feedback from all processes, yielding four types of tokens.

A Self-stabilizing PIF Algorithm for Educated Unique Process Selection 487

Algorithm 1. Algorithm for a Process p in a Topology T = (P,E)
Constants: id ∈ {0, ..., n−1}
Variables: x ∈ B, up ∈ B, � ∈ {0, ..., n−1}, m ∈ R

Assertions: root .up = � ∧ ∀ q ∈ Leaves • q.up = ⊥
Tokens
token1 : θp.x �= x ∧ ¬x % Search Token
token2 : up ∧ x ∧ ∀ ch ∈ Cp • ch.x = x ∧ ¬ch.up % Feedback Token
token3 : θp.x �= x ∧ x % Execute Token
token4 : up ∧ ¬x ∧ ∀ ch ∈ Cp • ch.x = x ∧ ¬ch.up % Complete Token
Functions
updatem() := {v ∈ R | v is independent of the algorithm}
choose(P ′ ⊆ P) := {i | pi ∈ P ′ ∧ ∀ q ∈ P ′ • pi.m = max(q.m)}
critSection() : Access Critical Section
Guarded Commands (ci : guard −→ action)
Root Sub-Algorithm

1 : token2 −→ � := choose({p} ∪ Cp); m := p�.m; x = ¬x;
2 : token4 ∧ � = id −→ critSection()critSection()critSection(); m := updatem(); x = ¬x; % Privileged
3 : token4 ∧ � �= id −→ m := updatem(); x = ¬x;

Inner Process Sub-Algorithm

4 : token1 −→ m := updatem(); up := �; x := ¬x;
5 : token2 ∧ ¬token3 −→ � := choose({p} ∪ Cp); m = p�.m; up := ⊥;
6 : token3 ∧ θp.� = id ∧ � = id −→ critSection()critSection()critSection(); up := �; x := ¬x; % Privileged

7 : token3 ∧ θp.� = id ∧ ∃ q ∈ Cp • p.� = q.id −→ up := �; x := ¬x;
8 : token3 ∧ ¬(θp.� = id ∨ ∃ q ∈ Cp • q.� = q.id) −→ � := id ; up := �; x := ¬x;
9 : token4 ∧ ¬token1 −→ up := ⊥;

Leaf Sub-Algorithm

10 : token1 −→ m := updatem(); � := id ; x := ¬x;
11 : token3 ∧ θp.� = id −→ critSection()critSection()critSection(); x := ¬x; % Privileged
12 : token3 ∧ θp.� �= id −→ x := ¬x;

Algorithm 2. Extending Algorithm 1
Additional Variables
snapShot = [k0, ..., kn−1], where ki ∈ R for 0 ≤ i ≤ n−1

Extended Functions
updatem([k0, ..., kn−1]) = {v ∈ R | v is dependent of [k0, ..., kn−1]}
Extended Guarded Commands (2, 3, 4, 6, 9, 10, 11)
2′ : ... −→ critSection()critSection()critSection(); snapShot .kid = k; m := updatem(snapShot); x = ¬x;
3′ : ... −→ snapShot = p�.snapShot ; m := updatem(snapShot); x := ¬x;
4′ : ... −→ snapShot = θp.snapShot ; m := updatem(snapShot); up := �; x := ¬x;
6′ : ... −→ critSection()critSection()critSection(); snapShot .kid := k; up := ⊥; x := ¬x;
9′ : ... −→ snapShot := p�.snapShot ; up := ⊥;
10′ : ... −→ snapShot = θp.snapShot ; m := updatem(snapShot); � := id ; x := ¬x;
11′ : ... −→ critSection()critSection()critSection(); snapShot .kid = k; m := updatem(snapShot); x := ¬x;

488 O. Jubran and O. Theel

First PIF Cycle
token1 ↓ : the root sends token1. When a process p receives token1, p updates
m, and forwards the token to its children (c4), until token1 reaches the leaves.
Each leaf li updates li.m, and sends token2 to its parent (c10).
token2 ↑ : when a process p receives token2, p points to a process q, where
q ∈ {p} ∪ Cp and q has the maximum value of m among p and its children (c5).
Then, p copies q.m, and switches the value of p.up(c5). With this action, each
process p eventually points to a path that leads to the process with the original
maximum value of m, after copying it. Eventually, token2 reaches the root, and
the root starts the second PIF cycle (c1).

Second PIF Cycle
token3 ↓ : the root sends token3. If a process p receives token3, one of three
possible cases exists:

– Case (1) represented by commands c6, c11: if θp points to p and p points to
itself, then p has a privilege. p runs critSection() and forwards the token.

– Case (2) represented by c7: if θp points to p and p points to one of its children
q, this implies that the selected process exists in the subtree rooted by q. p
passes token3, while keeping p.� = q.id .

– Case (3) represented by c8, c12: if θp is not pointing to p, or p is neither
pointing to itself nor to one of its children, then there is no selected process in
the maximal subtree rooted by p. p sets � to p.id , to prohibit any child from
running critSection() after forwarding token3.

Note that, if token3 is directed to a subtree T ′, in which there is no selected
process, then c8 is enabled in each process in T ′ in the current PIF cycle.
token4 ↑ : Next, token4 is forwarded to the root (c9). The root receives token4

which involves all its children. If the selected process is the root, then c2 is
enabled, the root runs critSection(), and sends token1 to its children. Otherwise
(c3), the root simply starts a new PIF cycle.

Regarding the time complexity: (1) The algorithm guarantees unique process
selection in d rounds, where d is the tree depth. (2) The algorithm guarantees
that after at most 3d rounds, each PIF cycle lasts 2d rounds, and within any
two subsequent PIF cycles, exactly one process is privileged.

3.2 Educated Selection Based on Global Configurations

We extend Algorithm 1 for educated selection based on configurations. We show
the extension in Algorithm 2. In Algorithm 1, the update value of m, returned by
updatem(), is based on the local state. In Algorithm 2, the value of m is updated
according to the global configuration. This indicates that each process should
know the configuration. We abstract the configuration by the vector snapShot ,
owned by each process, and defined as follows: snapShot = [k0, ..., kn−1], where
ki ∈ R, for 0 ≤ i ≤ n − 1, is the relevant evaluation of the local state of pi. Now,
each process p updates p.m according to the value of p.snapShot .

A Self-stabilizing PIF Algorithm for Educated Unique Process Selection 489

The extended commands from Algorithm 1 are c2-c4, c6, c9-c11. With the
extension, the stable behavior is as follows: in the first PIF cycle, when a process
receives token1, it copies the parent’s snapshot, and updates m according to the
snapshot (c4′ , c10′). With this action, a copy of the snapshot reaches each process.
The remainder of the first PIF cycle continues normally. In the second PIF cycle,
the selected process runs critSection(), and modifies its snapshot based on the
new value of k (c6′ , c11′). Next, the parent of p copies the new snapshot, and
forwards it to the root (c9′). c2′ and c3′ concern extended root commands.

In the above behavior, it is assumed that the snapshot sent by the root
matches the values of k of all processes. If there is an incorrect value of some k,
the snapshot is said to be inconsistent. For inconsistent snapshots: we say that
a snapshot snap is highlighted iff it contains at least one null value of some k.
We also say that snap is empty if it contains only null values.

The snapshot inconsistency is corrected in the first PIF cycle: (1) When the
root propagates token1 with an inconsistent snapShot , there exists a process
pj such that pj .k is not equal to snapShot .kj . Eventually, pj receives token1.
(2) When pj copies the snapshot, pj checks if there is an inconsistency, or if
θp.snapShot is empty. In both cases, pj sets its snapshot empty. (3) Next, all
processes in the maximal subtree rooted by pj set their snapshots empty, anal-
ogous to step 2, since token1 reaches every process. (4) Now, starting from the
leaves, for each process p that receives token2, if p recognizes a highlighted snap-
shot in one of its children or itself, then p creates a new snapshot by merging
the snapshots of its children, and adding its value of k. Now, the snapshot of
p contains correct values of all processes in the subtree rooted by p, and null
values for the processes that are not in the subtree. (5) After the root receives a
feedback token (token2), it merges the new snapshots, yielding a correct one.

4 Conclusion

We presented a self-stabilizing PIF algorithm for educated unique process selec-
tion for trees using the shared memory model. The algorithm ensures that a
process is selected to execute an action only if it is distinguished from other
processes according to some criterion, and the criterion is based on the local
state of the selected process. We denote the criterion as whether or not a partic-
ular number value of a process is maximal among all processes. We extended the
algorithm for selecting processes based on a global configuration by propagating
a snapshot of the local states of all processes.

References

1. Dolev, S.: Self-Stabilization. The MIT Press, Cambridge (2000)
2. Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control. Commun.

ACM 17(11), 643–644 (1974)
3. Segall, A.: Distributed network protocols. IEEE Trans. Inf. Theory 29(1), 23–34

(1983)
4. Jubran, O., Theel, O.: Exploiting synchronicity for immediate feedback in self-

stabilizing PIF algorithms. In: PRDC, pp. 106–115. IEEE (2014)

Coalitional Game Theory for Cooperative
Transmission in VANET: Internet Access

via Fixed and Mobile Gateways

Abdelfettah Mabrouk1(B), Abdellatif Kobbane1, Essaid Sabir2,
and Mohammed EL Koutbi1

1 MIS Team, SIME Lab, ENSIAS, Mohammed V University of Rabat,
Rabat, Morocco

mabroukdes@gmail.com, {kobbane,elkoutbi}@ensias.ma
2 NEST Research Group, ENSEM, Hassan II University of Casablanca,

Casablanca, Morocco
e.sabir@ensem.ac.ma

Abstract. In Vehicular Ad-hoc Networks (VANETs), vehicles need to
cooperate with each other or with a roadside infrastructure to transmit
data. In this work, we study the cooperative transmission for VANETs
using coalitional game theory. Each vehicle has a desire to access Inter-
net via gateways that can be either fixed or mobiles. The gateways can
enhance the vehicles’ transmissions by cooperatively relaying the vehi-
cles’ data. Moreover, due to the mobility of the vehicles, we introduce
the notion of encounter and predicted lifetime to indicate the availability
of forwarding between the vehicle and gateway. We model the problem
as a coalition formation game with non-transferable utility and we pro-
pose an algorithm for forming coalitions among the vehicles. To evaluate
the proposed solution, we present and discuss the numerical results under
two scenarios: fixed gateways scenario and mobile gateways scenario. The
numerical results show that mobile gateways scenario is more effective
than fixed gateways scenario in term of cooperative transmission.

Keywords: VANET · Coalitional game · Cooperative transmission ·
Fixed gateways · Mobile gateways · Coalition formation game

1 Introduction

In order to access Internet services, VANETs must be integrated into the
Internet. This integration is typically achieved by enhancing communication and
routing performances in VANETs. For this reason, several routing algorithms
are proposed. But due to high mobility in VANETs, it is hard to design an
efficient routing algorithm for connecting vehicles to Internet with a reasonable
cost. However, researchers have recently used several mathematical approaches
to enhance the communication in wireless networks. While heuristic methods
can be used to study the performance optimization of wireless networks, coali-
tional game theory is also considered as an interesting approach which provides
c© Springer International Publishing Switzerland 2015
A. Bouajjani and H. Fauconnier (Eds.): NETYS 2015, LNCS 9466, pp. 490–495, 2015.
DOI: 10.1007/978-3-319-26850-7 37

Coalitional Game Theory for Cooperative Transmission in VANET 491

analytical tools to model the behaviors of rational players when they cooperate,
it is a powerful tool for designing robust, practical, efficient, and fair coopera-
tion strategies and has been extensively applied in communication and wireless
networks. For example, in [1], the coalitional game theory is utilized to study the
cooperation between rational wireless users, and the stability of the coalition is
analyzed. The authors in [2] studied the bandwidth sharing by using coalition
formation games in V2R communications. In [3], the coalition formation games
for distributed cooperation among RSUs in vehicular networks were studied. The
authors proposed in [4] an approach based on coalitional game theory to study
how to stimulate message forwarding in VANETs. Therefore, such game can
be a coalitional game with transferable utility (UT), in which the total utility
received by any coalition is a real number can be apportioned in any manner
between the members of this coalition [5]. On the other hand a coalitional game
with non-transferable utility (NUT), in which the coalition value is not a real
number, but is a payoffs’ vector [6], where each element of this vector represents
a payoff that a player can obtain within the coalition.

In this paper, we propose a mathematical model based on coalitional game
theory with non-transferable utility (NTU) to access Internet in VANETs under
two different scenarios: fixed gateways scenario, in which the gateways are
installed along the road and serve as internet access point as depicted in Fig. 1(a);
and mobile gateways scenario, in which the gateways are special vehicles moving
on the road as depicted in Fig. 1(b). In these both scenarios, two kinds of coop-
eration are considered. First, vehicles can form coalitions and cooperate with
each other to avoid interfering transmissions. Second, the gateways can join the
coalitions to cooperate the transmission of the vehicles. But, due to the highly
dynamic topology in VANETs, vehicles and gateways may be very far away from
each other and the cooperative transmission may be impossible. Hence, we pro-
pose the notion of encounter and predicted lifetime between the vehicles and the
gateways. Before a gateway cooperates a vehicle’s transmission, two conditions
should be satisfied: (1) the gateway and vehicle are in the same coalition; (2) the
gateway and vehicle encounter each other with a predicted lifetime of linking.

The rest of the paper is structured as follows. Section 2 present the system
model. The coalitional game approach is proposed in Sect. 3. In Sect. 4, the
numerical results are discussed. Finally, we conclude the paper in Sect. 5.

Fig. 1. Internet access via (a) fixed gateways and (b) mobile gateways

492 A. Mabrouk et al.

2 System Model

Considering vehicular networks depicted in Figs. 1 and 2, which consist of a net-
work operator (NoP), N vehicles, and M gateways. The vehicles can form coali-
tions and the gateways can cooperate the transmissions of the vehicles when
they are in the same coalition. Let V = {1, 2, 3, ..., N} and G = {1, 2, 3, ...,M}
represent the set of the vehicles and gateways, respectively. For both scenarios
proposed above, we assume that:

1. All vehicles are equipped with GPS receivers.
2. Each vehicle can obtain its current location and speed using GPS capabilities.
3. Ordinary vehicle is a vehicle with only WLAN capabilities (WiFi).
4. Gateway is a RSU or a special vehicle acting as a relay with both WLAN and

WWAN capabilities (UMTS); vehicles access Internet through gateways.
5. A link lij can be established between vehicle i ∈ V and gateway j ∈ G only if

i encounters j, i.e. the distance dij between them is inferior to R (dij ≤ R),
where R is the transmission range of the technology WLAN.

6. Any link lij has a predicted lifetime given as: τij = R−|dij |
|Si−Sj | , Si �= Sj , where Si

and Sj represent the speed of vehicle i and gateway j, respectively. If Si=Sj ,
the predicted lifetime is set to a predefined great value.

7. Two or more vehicles can not transmit simultaneously when they encounter
the same gateway, the transmissions will fail due to the signal interference.

3 Coalitional Game Approach

Under both scenarios proposed above, the game applied is a coalitional game
with non-transferable utility (NTU) which is defined by the tuple (N ,F , v),
where N is a set of players, F ⊆ 2N is the set of feasible coalitions and v(S), for
each S ∈ F , is the coalition value. It is a payoffs’ vector, v(S) ∈ R

|S|, where each
component xi of v(S) represents a payoff that player i ∈ S can obtain within
coalition S. For our problem, the model is defined at each time-slot as fellow:

1. The players are the vehicles, i.e., N = V.
2. Each player i is active with a probability pi to transmit data.
3. Each coalition has one and only one gateway as a relay to access Internet.
4. Each gateway can serve one and only one coalition.
5. A coalition S ⊆ N is feasible if: ∀i ∈ S,∃j ∈ G such that dij ≤ R.
6. In each coalition S, one and only one player i is chosen to transmit data to

a gateway j. The choice is based on the basis of the distance dij and the
predicted lifetime τij .

7. In the coalition S, the chosen player must maximize the amount defined as
follow: Gi = α

τij
maxi(τij)

+ β(1 − dij

maxi(dij)
), where i ∈ N , j ∈ G and i, j ∈ S.

8. The payoff received by a player i in a coalition S is computed as follow:
Ui(S) = piGi

∏

k∈S

(1 − pk), where i ∈ S and Gk > Gi.

9. The coalition value v(S) ∈ R
|S| is a payoffs’ vector given by: v(S) =

(Ui(S))i∈S .

Coalitional Game Theory for Cooperative Transmission in VANET 493

Generally, in a coalition formation game, the most important aspect is the
formation of the coalitions in the game. In many applications, the coalition
formation in the game with NTU entails finding a structure with Pareto optimal
payoff distribution for the players. But, it is very difficult to achieve such a goal.
The reason is that, finding an optimal partition requires complete information
on all the players set N . Hence, since the game which is applied in our scenarios
is a coalitional game with NTU, and the players do not have detailed knowledge
of network (incomplete information), we have proposed the following algorithm
to coalition structure formation.

Algorithm. Coalition Structure Formation
At each time-slot t do:
Input: N , G, R, α, β, pi∈N ;
Output: Coalitional structure Π at time-slot t;
Begin:
1. Compute dij and τij for each i ∈ N and j ∈ G;
2. Compute Sj = {i ∈ N , dij ≤ R} for each j ∈ G;
3. For each i ∈ N

For each j ∈ G

If (i ∈ Sj)
Compute Ui(Sj);

End If
End For
Player i chooses ĵ(i) ∈ argmax

Sj ,i∈Sj

Ui(Sj);

End For
4. For each j ∈ G

Compute S∗
j = {i ∈ N , j = ĵ(i)};

End For
5. Return((S∗

j)j∈G);
End.

4 Numerical Results

Two important metrics which were evaluated in this paper are: (1) Average
coalition size; and (2) Average coalition utility.

Figure 2(a) shows that the average coalition size increases when the vehicle
density increases. This can be explained by the fact that increasing the number
of vehicles increases the number of nodes that join a coalition. On the other
hand, Fig. 2(b) shows that the average coalition size decreases when the number
of gateways increases. It is because that increasing the number of gateways
increases the number of coalitions, and this regroups the vehicles in many subsets
with smaller size. In addition, the average coalition size in mobile gateways
scenario remains lower in comparison with that in fixed gateways scenario. The
reason is that gateways mobility helps the vehicles to find many nearby gateways.

494 A. Mabrouk et al.

Figure 2(c) shows that the average coalition utility decreases with the increase
of vehicles density in the road. This is mainly due to the fact that increasing the
number of vehicles increases the size of coalitions, which naturally reduces their
utilities. However, Fig. 2(d) shows that the average coalition utility increases
when the number of gateways increases too. It can be explained by the fact that
increasing the number of gateways in the road increases the number of coalitions,
which reduces their sizes and increases their utilities. Furthermore, the average
coalition utility in the mobile gateways scenario remains much better compared
with that in the fixed gateways scenario. This is due to the fact that the gateways
mobility increases the encounter probability between vehicles and gateways.

20 30 40 50 60 70 80 90 100 110
0

5

10

15

20

25

30

35

Vehicles density
(a)

A
ve

ra
g

e
co

al
it

io
n

 s
iz

e

Fixed gateways
Mobile gateways

6 8 10 12 14 16 18 20 22 24
1

2

3

4

5

6

7

Number of gateways
(b)

A
ve

ra
g

e
co

al
it

io
n

 s
iz

e

Fixed gateways
Mobile gateways

20 30 40 50 60 70 80 90 100 110
0

0.05

0.1

0.15

0.2

0.25

Vehicles density
(c)

A
ve

ra
g

e
co

al
it

io
n

 u
ti

lit
y

Fixed gateways
Mobile gateways

6 8 10 12 14 16 18 20 22 24
0.1

0.2

0.3

0.4

0.5

Number of gateways
(d)

A
ve

ra
g

e
co

al
it

io
n

 u
ti

lit
y

Fixed gateways
Mobile gateways

Fig. 2. Average coalition size and average coalition utility

5 Conclusion

In this paper, we have studied the cooperative transmission among vehicles using
coalitional game theory in order to relay data to the Internet via fixed and mobile
gateways. We have also proposed the notion of encounter in order to regroup the
vehicles around the gateways. An algorithm, based on both the distance and the
predicted lifetime of links established between vehicles and gateways, is proposed
to form a NTU coalition structure. The obtained simulation results show that
the mobile gateways scenario is more effective than the fixed gateways scenario.

References

1. Mathur, S., Sankar, L., Mandayam, N.B.: Coalitions in Cooperative Wireless Net-
works. J. Sel. Areas Commun. 26(7), 1104–1115 (2008)

Coalitional Game Theory for Cooperative Transmission in VANET 495

2. Niyato, D., Wang, P., Saad, W., Hjorungnes, A.: Coalition formation games for
bandwidth sharing in vehicle-to-roadside communications. In: IEEE International
Wireless Communications and Networking Conference, pp. 1–5 (2010)

3. Saad, W., Han, Z., Hjorungnes, A., Niyato, D., Hossain, E.: Coalition formation
games for distributed cooperation among roadside units in vehicular networks. J.
Sel. Areas Commun. 29(1), 48–60 (2011)

4. Chen, T., Zhu, L., Wu, F., Zhong, S.: Stimulating cooperation in vehicular ad hoc
networks: a coalitional game theoretic approach. IEEE Trans. Veh. Technol. 60(2),
566–579 (2011)

5. Li, D., Xu, Y., Wang, X., Guizani, M.: Coalitional game theoretic approach for
secondary spectrum access in cooperative cognitive radio networks. IEEE Trans.
Wirel. Commun. 10(3), 844–856 (2011)

6. Saad, W.: Coalitional game theory for distributed cooperation in next generation
wireless networks. Ph.D. thesis, University of Oslo (2010)

Performance Evaluation for Ad hoc Routing
Protocols in Realistic Physical Layer

Hassan Faouzi1(&), Hicham Mouncif2, and Mohamed Lamsaadi2

1 FST, Sultan Moulay Slimane University, Beni Mellal, Morocco
faouzi.hassan.mi@gmail.com

2 FP, Sultan Moulay Slimane University, Beni Mellal, Morocco
{hmouncif,lamsaadima}@yahoo.fr

Abstract. A mobile ad hoc network or MANET (Mobile Ad hoc NETwork) is
an autonomous system of mobile platforms called nodes that are free to move
about freely. This system can be isolated or have gateways or interfaces con-
necting it to a fixed network. Most performance evaluation models of routing
protocols for ad hoc networks based on the assumption of an ideal radio channel,
implying that the underlying physical phenomena are neglected. We propose to
use a realistic physical layer by integrating the probability of transmission error
characterized by a two-state Markov model in the different radio propagation
modes. We measure the impact of such modeling to evaluate-the performance of
Proactive and Reactive MANET protocols.

Keywords: Mobile ad-hoc network � Routing protocols � NS2(Simulator) �
Radio channel � Throughput � Delay � Packet delivery ratio � Control overhead �
Markov chain � Gilbert-Elliot model

1 Introduction

There is a lot of research studying the performance of routing protocols in ad hoc
networks. However, their performance evaluation is based on an ideal radio channel
hypothesis: no transmission error, no interference.

In this article we try to evaluate and compare the performance of four routing
protocols for mobile ad hoc networks, DSDV [1], AODV [2], DSR [3] and OLSR [4]
using the NS-2 network simulator [5] taking into consideration all the problems related
to the transmission media. Packet Delivery Ratio, Average End-to-End Delay, Nor-
malized Routing Load and Throughput are the four common measures used for the
comparison of the performance of above protocols.

The rest of the paper is organized as follows: Sect. 2 presents the definition of
Routing and protocol classification. Section 3 we study the media transmission error by
using a two-state Markov Model. Section 4 gives an overview of different radio
propagation models. The simulation environment and then the results are presented in
Sect. 5. Finally, Sect. 6 concludes the paper.

© Springer International Publishing Switzerland 2015
A. Bouajjani and H. Fauconnier (Eds.): NETYS 2015, LNCS 9466, pp. 496–500, 2015.
DOI: 10.1007/978-3-319-26850-7_38

2 Routing and Protocol Classification

Routing protocols in ad hoc networks are essential for communication between two
stations that are not in direct contact. Generally the routing protocols can be separated
into two categories, proactive and reactive protocols. Proactive protocols establish
routes in advance based on the periodic exchange of the routing tables, while the
reactive protocols seek routes to the request.

3 Media Transmission Error

A number of researchers have studied the behavior of wireless channels. Among them,
Gilbert and Elliot proposed a Discrete Time Markov Chain (DTMC) model, called the
Gilbert-Elliot model [6, 7], which consists of two states (i.e., a good state and a bad state)
and uses a two-by-two transition matrix to specify the state transition probabilities.

The state transition is described by the probabilities of changing from the Good
state to the bad state pg=b and from the bad state to the good state pb=g. This is illustrated
in Fig. 1.

The matrix transition can be expressed by:

P ¼ pg=g pg=b
pb=g pb=b

� �
¼ 1� p p

q 1� q

� �
ð1Þ

The parameters p and q can be derived from experimental observations. Real
measurements show that q � p. For example, measurements of errors on the wireless
link, given in [8], show pb=g ¼ 0:3820 and pg=b ¼ 0:0060 we obtain:

P ¼ 0:994 0:006
0:382 0:618

� �
ð2Þ

The probability of being in a good state pg or in a bad state pb can be calculated
using a steady state:

pP ¼ P ð3Þ

Fig. 1. Markov chain of errors on a link

Performance Evaluation for Ad hoc Routing Protocols 497

Therefore

pg pb½ � ¼ p g pb½ � 1� p p
q 1� q

� �
ð4Þ

And

X
p ¼ 1 ð5Þ

Than

pg ¼ p
pþ q

ð6Þ

and

pb ¼ q
pþ q

ð7Þ

When a channel is in error-state, any IP packets sent would be either lost or
corrupted. In the error-free state all packets are successfully transmitted over the
wireless link.

4 Radio Propagation Models

Propagation models are used to predict the propagation characteristics such as received
signal power of each packet. At the physical layer of each wireless node, there is a
receiving threshold. When a packet is received, if its signal power is below the
receiving threshold, it is marked as error and dropped by the MAC layer. In general
there are three main propagation models, firstly the Free Space model assumes the
propagation conditions as ideal, and the radius of the radio signal propagation is in the
form of disc, within which the reception is perfect, and that beyond no further com-
munication is possible; secondly the Two-Ray Ground model considers the direct path
propagation in addition to the reflection caused by the ground; and thirdly the Shad-
owing model is more realistic, since several propagation phenomena are considered,
namely, reflection, diffusion and absorption, in addition, the communication radius is
no longer considered a perfect disc.

5 Simulation and Results

5.1 Simulation Environment

There Simulation environment in NS2 consists of 30 mobile nodes which are placed
uniformly and forming a Mobile Ad-hoc Network with nodes max moving speed of
10.0 m/s and the pause between movements is 20 s about over a 1000 × 1000 m area
for 150 s of simulated time.

498 H. Faouzi et al.

5.2 Simulation Results

See Fig. 2.

6 Conclusion

This paper presents the comparative study and performance evaluation of the routing
protocols DSDV, AODV, DSR and OLSR. In the ideal condition of transmission we
note that the protocols give good results but in reality we can’t achieve them because
the wireless links are characterized by high error rates caused by a variety of trans-
mission impairments such as multi-path fading and background noise so it’s normal
that we note the decrease in performance of routing protocols if we take into account
these effects. Make a comparison in ideal conditions don’t always give the real result so
we had to simulate transmission problems in wireless networks in order to get the most
useful and reliable results that’s why we integrated the Markov model in our simula-
tion. Simulation results (Fig. 2(a–h)) show that all types of radio propagation models,
AODV performs optimally because is a reactive protocol, which uses routing table one
route per destination, sequence number to maintain route and when links break AODV
causes the affected set of nodes to be notified so that they are able to invalidate the
routes using the lost link, these are the major reasons for it having a good result in
average Packet Delivery Ratio, End-to-End DeLay and Throughput, but has a higher
Routing load because it generates more control packets. Our future work will include

Fig. 2. Simulation Results

Performance Evaluation for Ad hoc Routing Protocols 499

the modification to the basic AODV routing protocol to reduce the number of the
control packets.

References

1. Perkins, C.E., Bhagwat, P.: Highly dynamic destination sequenced distance-vector routing
(DSDV) for mobile computers. In: ACM SIGCOMM, pp. 234–244, August 1994

2. Perkins, C.E., Belding-Royer, E.M., Das, S.: Ad hoc On-Demand Distance Vector (AODV)
Routing. Internet Request For Comments RFC 3561, Internet Engineering Task Force, July
2003

3. Johnson, D.B., Maltz, D.A., Hu, Y.-C.: The Dynamic Source Routing Protocol for Mobile Ad
Hoc Networks (DSR). Internet Draft – draft-ietf-manet-dsr-09.txt, April 2003

4. Clausen, T., Jacquet, P.: Optimized Link State Routing Protocol (OLSR). Internet Request For
Comments RFC 3626, Internet Engineering Task Force, October 2003

5. http://www.isi.edu/nsnam/ns/
6. Elliott, E.O.: Estimates of error rates for codes on burst-error channels. Bell Syst. Tech. J. 42,

1977–1997 (1963)
7. Gilbert, E.: Capacity of a burst-noise channel. Bell Syst. Tech. J. 39, 1253–1266 (1960)
8. Janevski, T.: Book Traffic Analysis and Design of Wireless IP. Artech House, Boston (2003)

500 H. Faouzi et al.

http://www.isi.edu/nsnam/ns/

Understanding Cloud Storage Services Usage:
A Practical Case Study

Daniela Oliveira, Paulo Carvalho(B), and Solange Rito Lima

Departamento de Informática, Centro Algoritmi,
Universidade do Minho, Braga, Portugal

pmc@di.uminho.pt

Abstract. Cloud Storage services present several characteristics that
turn current classification methods insufficient or too complex to apply,
namely the use of dynamic communication ports and security protocols.
This paper identifies appropriate techniques for cloud traffic classifica-
tion and defines a model for processing cloud services traces, taking the
University of Minho (UMinho) network as a practical case study. The
obtained results, using a classification approach based on Tstat tool,
provide global statistics regarding the most used Cloud Storage services
at UMinho and characterize the corresponding traffic.

1 Introduction

With the emergence of Cloud Services, traffic classification tasks become a deeper
challenge as conventional classification rules fail to succeed. Often the ownership
entity of the service is not responsible for providing it [2], making the classifica-
tion even more complex. The use of dynamic ports and of security protocols for
encrypting data, further stress the need for improving current traffic classifica-
tion techniques.

Attending to the relevance of cloud storage for end users, Internet service
providers and cloud service providers (CSP), the present work is focused on
characterizing the usage of the most popular cloud storage services, studying also
the inner properties of this type of traffic. The work describes a method for traffic
filtering and processing able to identify and quantify the use of cloud services
by the users at UMinho campus network, which is here used as a case study. In
this context, the contributions of this work are threefold: (i) the discussion on
challenges regarding the classification and characterization of encrypted traffic;
(ii) the systematization of a method for recognizing cloud storage services based
on server signatures; and (iii) the identification of useful parameters for a more
comprehensive understanding of cloud services usage, allowing to guide network
administrators in tuning network management and configuration.

2 Related Work

The encapsulation of applications in protocols connoted with distinct services
(e.g., over HTTP), the use of security protocols (e.g., IPSec, TTLS), the grow-
ing of applications allocating communication ports dynamically, turn traditional
c© Springer International Publishing Switzerland 2015
A. Bouajjani and H. Fauconnier (Eds.): NETYS 2015, LNCS 9466, pp. 501–506, 2015.
DOI: 10.1007/978-3-319-26850-7 39

502 D. Oliveira et al.

classification techniques imprecise when based solely on transport protocol and
origin/destination ports. Therefore several alternative methods for traffic clas-
sification are currently used: (i) analysis of payload resorting to, e.g., pattern
matching [8] and numerical analysis [7], which are effective regarding the hit
ratio but heavy and unable to classify encrypted traffic; (ii) analysis of systems
or terminals behavior (host-behavior) [7], where classification is carried out ana-
lyzing the behavior of end systems instead of traffic flows, avoiding payload
processing; and (iii) analysis of flows (flow-behavior), which assumes that each
application presents proper statistical properties. The training phase of AI learn-
ing algorithms is crucial, and proposals exist to obtain an adequate “ground of
truth” [6].

These methods can be combined to increase classification ability, for instance,
in the classification of encrypted traffic [1,5]. An alternative method for classi-
fying encrypted traffic [3] resorts to service server signatures extracted from
the certificates exchanged when establishing a secure session. This classification
method is explored in the present work to allow identifying the cloud service
providers in use.

3 Case Study: Cloud Storage Services at UMinho

UMinho Network Infrastructure - The University of Minho has currently
a population of nearly 18,000 students, 1,200 teachers, and 600 technical and
administrative staff, being one of the biggest Portuguese universities. The acad-
emic and scientific activities at UMinho are developed in two campuses: Gualtar
in Braga and Azurém in Guimarães, interconnected through a 768 Mbps link.
The core of network operation is located in Gualtar, where the main network
services are assured to users inside and outside the campus (e.g., in residences
and libraries), providing a 10 Gbps access to the Internet.

Data Collection Strategy - In a first instance, traffic collection was focused on
gathering secure traffic traversing the main backbone router of the University of
Minho network. The traffic collection was carried out over a typical working week
in May 2013, for periods of low, medium and high network activity, corresponding
to more than a thousand dump files for a total of approximately 300 GB of flows
data.

Data Processing Strategy - Dump files containing secure flow data must
undergo several processing steps before being ready for analysis. The first step
involves a preprocessing phase carried out by Tstat [4], a sniffer tool able to
handle dump files, producing a set of text files (logs) on a per flow basis. Each
line in a log file is related to a flow, reporting multicolumn flow data (a total
of 111) [4], being relevant for the present study the following columns: Client
IP addr (1); Server IP addr (45); Client TCP port (2): Server TCP port (46);
Packets[C2S] (3); Packets[S2C](47); Unique Bytes[C2S] (7); Unique Bytes[S2C]
(51); RTT[C2S] (29); RTT[S2C] (73); Flow duration (89); Server name (110);
Common name (111). The terms C2S and S2C express the flow direction between

Understanding Cloud Storage Services Usage: A Practical Case Study 503

a client (C) and a server (S). A second phase consists in processing traffic logs
using R statistical environment which allows for data manipulation and calcu-
lation. Attending to the aim of the study, two broad traffic flow categories were
created: Cloud Storage Flows (CSF) and other cloud flows. As mentioned above,
this detection process is based on specific flow signatures, coded as an R func-
tion. Each signature aggregates the variables server name and Common Name
(CN), enabling R to forward the flow to the respective category. This R function
compares the current values of server name and CN against the signatures data-
base in order to identify each flow category. The last phase aims to characterize
the use of cloud storage per service provider. For this study, only flows within
Cloud Storage category are used to derive new flow categories (as R objects) for
each CSP to analyze. Once again the values of the variables server name and
CN of each flow determine each new CSP category.

Extracting Server Signatures - Extracting a server signature is accomplished
resorting to Tstat tool, which inspects and filters the SSL handshaking phase
between clients and servers, as shown in Fig. 1. In brief, SSL handshaking involves
the following steps: (1) the client requests the establishment of a secure com-
munication by sending a Client Hello message along with cryptographic data;
(2) the server responses with a Server Hello message along with his digital cer-
tificate and public key, requesting also the client certificate, if applicable; (3) the
client verifies the certificate and, if deemed to be a reliable communication, it
proceeds sending a single session key encrypted with the public key of the server,
allowing the calculation of the keys to encrypt the communication; and (4) if
there is a server-side application for certifying the client, this certificate must
also be validated in order to proceed with a secure communication. During step
(1), Tstat extracts the value of server name parameter sent within the Client
Hello message (see RFC 3546), and during step (2) extracts the CN that matches
a string identifying the name of the server specified in the certificate.

“Client Hello” + Cryptographic Info

1

2
“Server Hello” + Server Certificate

SSL Client SSL Server

+ “Client Certificate Request ”(optional)
3Verify

Certificate

if OK

“Client Key” + Client Certificate (optional)

Verify

Certificate

(optional)

4
“Client Finish”

“Server Finish”

5

Secure
Communication

Tstat

Fig. 1. Tstat filtering during SSL handshaking

504 D. Oliveira et al.

4 Results of Data Analysis

Global Statistics of Secure Traffic - Figure 2 (left) illustrates the most
popular user services across the university campus network, running over SSL.
Currently, it is common that applications in rapid expansion resort to exter-
nal servers in a Content Delivery Network (CDN) to distribute data to end
users/services in a fast and reliable way. Akamai Technologies, Inc. as a CDN
provider, is an intermediary for numerous applications, being therefore in the
top of the list. Akamai signatures are also captured for other services such as
Facebook, which use Akamai servers to store and retrieve users data.

The third most requested service relates to Google. Google Inc. began pro-
viding a search engine but quickly has expanded to a wide range of services,
including email, social networking, productivity software, web browsing, among
others. In this analysis, Google storage service (Google Drive) is grouped with
other CSP traffic in the category Cloud Storage. The fourth most accessed service
is the institutional email service within UMinho. This service still represents a
fundamental means of exchanging information within the academic community,
despite the compulsory use of e-learning platforms to support academic activ-
ities. With 3.1 % of accesses, Cloud Storage is in the fifth category. All other
categories of no cloud flows with less than 3 % of representativeness are included
in the category “Other”, as they are not significative for the present study.

Characterization of Cloud Storage Flows - This section is focused on clas-
sifying and characterizing storage traffic according to each CSP.

CSP Usage - Figure 2 (right) summarizes the accesses made to cloud storage
services within the campus network. According to the traffic collected, Dropbox
is clearly the most popular service with 71.39 % of accesses, followed by Icloud
and Skydrive. The remaining ratio of less than 1.55 % accesses, is shared by Box,
Google Drive, PT Cloud, Idrive, and finally, the Ubuntu One with 0.06 % of hits.
The study on the number of accesses to the more representative CSPs for the
different time periods under analysis is useful for understanding the behavior of
users when using cloud storage services. It was found that the number of accesses
increases along the day with a peak around 7 pm, with a similar behavior for all

(71.39%)

(11.8%)

(11.18%)

(1.55%)
(1.4%)
(1.35%)
(1.26%)
(0.06%)

Dropbox
Icloud
Skydrive
Box
Google Drive
PT Cloud
Idrive
Ubuntu One

Fig. 2. Global flow classification (left); Classification of flows Cloud Storage per CSP
(right)

Understanding Cloud Storage Services Usage: A Practical Case Study 505

Table 1. Synthesis of statistics when accessing CSP

CPS, exhibiting an access profile distinct from the typical network usage trend,
which usually presents peak periods around 11 am and 4 pm.

Traffic Flow Analysis - Regarding the main CSP under analysis, Table 1 summa-
rizes several statistics useful for the understanding of cloud storage traffic flows,
such as the number packets, number of bytes, round-trip time (RTT) and flow
duration. The first column in Table 1, referring to the IP address of the server
with the highest number of accesses, expresses the ratio between the number
of accesses per server and the total number of flows. The table also includes
the indication of CSPs which resort to external servers, for instance, Dropbox
and iCloud resort to Amazon and Akamai, respectively. Regarding the average
flow statistics, Dropbox flows are usually larger on the number of packets and
Bytes exchanged per flow, in opposition to Idrive. On average, RTT and flow
duration are also larger for Dropbox. Accesses to Google Drive and PT cloud
exhibit low RTTs as servers are located in the country. Regarding flow duration,
taking Dropbox as example, with a 92.5 % percentile is obtained a value of 30 s,
with flows spanning a range duration from 0.27 s to 1158.17 s.

5 Conclusions

The present work studied the usage and characteristics of cloud storage ser-
vices within the University of Minho. As a viable alternative, a traffic classifi-
cation approach based on the signatures exchanged between clients and cloud
service providers was adopted, resorting to Tstat for extracting the signatures
of servers during the SSL handshaking phase. The obtained results aimed at
providing (i) new insights regarding the challenges on the classification of secure
cloud traffic; (ii) the systematization of a method for detecting cloud services;
and (iii) the study of useful characterization parameters for assisting network
administrators when configuring networks and services.

Acknowledgements. This work has been supported by FCT - Fundação para a
Ciência e Tecnologia in the scope of the project: PEst-UID/CEC/00319/2013.

506 D. Oliveira et al.

References

1. Aceto, G., Dainotti, A., de Donato, W., Pescapé, A.: Portload: taking the best
of two worlds in traffic classification. In: IEEE INFOCOM Workshops, pp. 1–5
(2010)

2. Bermudez, I.N., Mellia, M., Munafò, M.M., Keralapura, R., Nucci, A.: DNS to
the Rescue: discerning content and services in a tangled web. In: Proceedings of
the 2012 ACM Conference on Internet Measurement Conference, IMC 2012, New
York, USA, pp. 413–426 (2012)

3. Drago, I., Mellia, M., Munafò, M., Sperotto, A., Sadre, R., Pras, A.: Inside drop-
box: understanding personal cloud storage services. In: Proceedings of the 2012
ACM Conference on Internet Measurement Conference, IMC 2012, New York,
USA, pp. 481–494 (2012)

4. Finamore, A., Mellia, M., Meo, M., Munafò, M.M., Torino, P.D., Rossi, D.: Expe-
riences of Internet traffic monitoring with Tstat. IEEE Netw. 25(3), 8–14 (2011)

5. Garćıa-Dorado, J.L., Finamore, A., Mellia, M., Meo, M., Munafò, M.M.: Charac-
terization of ISP traffic: trends, user habits, and access technology impact. IEEE
Trans. Netw. Serv. Manage. 9(2), 142–155 (2012)

6. Gringoli, F., Salgarelli, L., Dusi, M., Cascarano, N., Risso, F., Claffy, K.C.: GT:
picking up the truth from the ground for internet traffic. SIGCOMM Comput.
Commun. Rev. 39(5), 12–18 (2009)

7. Karagiannis, T., Papagiannaki, K., Faloutsos, M.: Blinc: multilevel traffic classi-
fication in the dark. SIGCOMM Comput. Commun. Rev. 35(4), 229–240 (2005)

8. Ramaswamy, R., Kencl, L., Iannaccone, G.: Approximate fingerprinting to accel-
erate pattern matching. In: Proceedings of the 6th ACM Internet Measurement
Conference, IMC 2006, New York, USA, pp. 301–306 (2006)

Towards an Optimal Pricing
for Mobile Virtual Network Operators

Mohammed Raiss-El-Fenni1(B), Mohamed El Kamili2, Sidi Ahmed Ezzahidi3,
Ismail Berrada2, and El Houssine Bouyakhf3

1 PACOMS, INPT, Rabat, Morocco
raiss@inpt.ac.ma

2 LIMS, FSDM, USMBA, Fez, Morocco
{mohamed.elkamili,ismail.berrada}@usmba.ac.ma

3 LIMIARF, UM-V, Rabat, Morocco
{ezzahidiah,bouillac.lhou}@gmail.com

Abstract. Mobile Virtual Network Operators (MVNO) provide their
own subscribers, with mobile voice and data services without owning
the access rights to the spectrum they use. In this paper, we study the
optimal pricing decisions in the context of MVNO, through two perspec-
tives: the user’s view and provider’s view. While a user have to optimally
adjust its transmission parameters in order to reduce the bill to pay, The
MVNO tries to establish an optimal tariff strategy. This paper intro-
duces a mathematical analysis for the two perspectives. The formulas
of optimal parameters in each case are presented and some interesting
properties are investigated.

1 Introduction

Network professionals are constantly looking to optimize network resources and
ensure adequate bandwidth. However, the bandwidth capacity, which is typically
considered as a scarce resource, is limited. In order to provide an acceptable
level of Quality of Service (QoS) to user applications, providers require efficient
bandwidth management techniques.

In this paper, we consider the pricing decisions in the context of a Mobile
Virtual Network Operator (MVNO). A MVNO is defined as a company that
provides mobile services without owning its licensed frequency of radio spectrum.
The frequency bandwidth provided by the MVNO is leased from the spectrum
license after an estimation of the average demand of the secondary unlicensed
users. In the lease contract, the MVNO anticipates future demands and the
heterogeneities of wireless users such as different maximum transmission power
levels and channel gains. Next, we will refer to MVNO simply as “provider” and
secondary users as “users”. A natural question arises here about the tariffs that
the provider shall establish in order to obtain the maximum profit margin. A full
answer to this issue requires from the provider to distinguish between the case
when the average demands exceeds the offered bandwidth or not. In the first
case, the provider can enhance the frequency bandwidth by leasing the extra
c© Springer International Publishing Switzerland 2015
A. Bouajjani and H. Fauconnier (Eds.): NETYS 2015, LNCS 9466, pp. 507–512, 2015.
DOI: 10.1007/978-3-319-26850-7 40

508 M. Raiss-El-Fenni et al.

bandwidth requested by a user. As alternatives, the provider may either look
for a taxation strategy [1] or reduce the leasing cost by sensing and utilizing
spectrum holes in time and space [5]. This situation is most typical in economic
models of Cognitive Radio Networks [2]. From the user’s view, based on the
price decision of the provider, he might try to maximize his utility function (and
thus reduce his bill) by choosing the optimal values for power and bandwidth
matching his need.

Recently, bandwidth management schemes were the subject of several studies
to improve the quality of service. The authors of [3] propose an algorithm to
determine the associations between the user and the access point to achieve
a fair bandwidth allocation. Different bandwidth management techniques, for
WLANs using a hybrid load balancing scheme, are presented and compared
in [4]. The main contributions of this paper are:

– A mathematical analysis of the user strategy for adjusting his transmission
parameters, in order to reduce the bill to pay to the MVNO.

– A mathematical analysis of the pricing management strategy of the provider.
In this analysis, we differentiate between the case when the requested spectrum
belongs to the provider and the case when there is a need to lease band to
complete the lack of bandwidth.

– Simulation results demonstrating the preference of our mathematical analysis

2 User’s View: Frequency and Power Control

Let us consider the following scenario: A user would like to transmit a signal
cheaper without deteriorating its quality of service. The parameter, which allows
him to control the signal (resp. the quality of service) is the power P (resp.
frequency bandwidth W). In this paper, we can consider the Shannon capacity
minus the total payment as the user’s payoff. Now, we define the net utility
as the difference between the Shannon capacity and the total payment of the
power used to transmit signal and the frequency bandwidth demanded from the
provider, i.e.:

vU (P,W) = W ln
(

1 +
P

WN0 + I

)
− CWW − CPP, (1)

where N0 is the background noise, I is the induced noise, CW is the frequency
bandwidth cost and CP is the power cost.

To solve this problem, we should find the derivatives of vU on P and W .
Then we have,

ln(1 + y) = yN0CP + CW . (2)

Note that, the Eq. (2) has either zero root, a unique one, or two roots. Namely,
the following result holds.

Towards an Optimal Pricing for Mobile Virtual Network Operators 509

Theorem 1. From a user’s view:

– If N0CP − 1 < ln(N0CP) + CW then the optimal strategy is (P,W) = (0, 0),
so the user has no benefit to transmit at all.

– If N0CP − 1 ≥ ln(N0CP) + CW then the optimal strategy is given as follows:

P =
Iy∗

1 − N0CP (1 + y∗)
,W =

ICP (1 + y∗)
1 − N0CP (1 + y∗)

(3)

where y∗ represents the SINR and it is the largest root from the two ones of
the equation: ln(1 + y) = yN0CP + CW .
In particular, between the optimal power P and the frequency bandwidth W ,
there is a strong linear correlation: W = CP

(
1 + 1

y∗

)
P.

Also, it is interesting to note that since W is increasing by y∗ then (3) implies
that: W ≥ ICP

1 − N0CP
.

3 Provider’s View: Tariff Control Without Leased Band

Now, we will have a look at the problem from the provider’s point of view. The
provider assigns the tariff CW for the frequency bandwidth and get a profit
CWW . His objective is to maximize its profit. In this section we assume that
all the requested spectrum of bandwidth frequencies belongs to the provider.
Then the payoff to the provider is given as follows: vP (W) = CWW where by
Theorem 1, CW ∈ [0, 1 + N0CP − ln(N0CP)].
Then, (3) implies that vP (W) depends only on y∗ (SINR) and CW as follows:

vP (W) = CW
ICP (1 + y∗)

1 − N0CP (1 + y∗)
. (4)

The optimal W is given in the following theorem by finding the derivative of
vP (W) on CW .

Theorem 2. If the requested spectrum of bandwidth belongs to the provider then
the optimal tariff which the provider assigns to bring the maximal profit is given
as follows: CW = N0CP −1− ln(N0CP). This tariff allows to demand W ∗ where

W ∗ = ICP (1 + y∗)
1 − N0CP (1 + y∗) , and y∗ is the unique root of the equation ln(1 + y) =

(1 + y)N0CP − 1 − ln(N0CP).
Finally, the maximal provider profit is

vP = (N0CP − 1 − ln(N0CP))
ICP (1 + y∗)

1 − N0CP (1 + y∗)
. (5)

510 M. Raiss-El-Fenni et al.

4 Provider’s View: Tariff Control with Leased Band

If the number of users increases or if the users demand more bandwidth to satisfy
their need, the provider may exceed its capacity. In this section we consider that
the requested bandwidth cannot be covered by own service band and a part of
it has to be covered by leasing. It is well known that leasing cost is essential
larger than the bandwidth cost which will be assigned to user. Then the payoff
to the provider is given as follows: vP (W) = CWWp − CS(W − Wp), where
CS is the leasing cost and CS � CW and Wp is the spectrum owned by the
provider. To emphasize the fact that the provider will attempt to squeeze the
users’ consumption to escape leasing, in the payoff we do not take into account
the money obtained from user partly to cover the provider expenses.
Thus, assuming that W > Wp, (3) implies that vP (W) depends only on y∗ and
CW as follows:

vP (W) = CWWp − CS

(
ICP (1 + y∗)

1 − N0CP (1 + y∗)
− Wp

)
. (6)

with
ICP (1 + y∗)

1 − N0CP (1 + y∗)
≥ Wp.

The optimal W is given as follows.

Theorem 3. If the provider has to lease a part of the bandwidth, then the opti-
mal tariff to assign to users to get the maximal profit is: CW = ln(1 + y∗) −
y∗N0CP , where

y∗ =
1

N0CP
− 1

+
(CSI/(Wp.N0))1/3

6N0CP

(
12

√
12CSI/(Wp.N0) + 81 − 108

)1/3

− 2(CSI/(Wp.N0))2/3

N0CP

(
12

√
12CSI/(Wp.N0) + 81 − 108

)1/3

5 Numerical Results

Let us consider the background noise N0 = 1, the induced noise I = 1 and the
power cost Cp ∈ [0, 1]. Figure 1 shows how optimal power and bandwidth change
with increasing user’s power cost. The result is quite normal and it is consistent
with the fact that when a user transmit with high power, he has tendency to
pay more. But greater than a certain threshold Cp = 0.6, we fall in the case
of negative roots (first point of Theorem1), and consequently the user has no
interest to transmit at all P = 0. The curve of optimal bandwidth W has the
same shape as the power because of the linear correlation between both them.

Towards an Optimal Pricing for Mobile Virtual Network Operators 511

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

12

Power Cost (Cp)

O
p

ti
m

al
 S

tr
at

eg
y

Power P
Bandwidth frequencies W

Region I Region II

CW=0.1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

3.5

4

Bandwidth Cost (Cw)

O
p

ti
m

al
 S

tr
at

eg
y

Power P
Bandwidth frequencies W

CP=0.1

Fig. 1. Optimal user’s power and bandwidth for different power and bandwidth prices.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.01

0.02

0.03

0.04

0.05

0.06

Power Cost (CP)

O
p

ti
m

al
 P

ay
o

ff
 (

v p)

CS/CW=6

CS/CW=4

CS/CW=2

Wp/W=0.8

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

Power Cost (CP)

O
p

ti
m

al
 P

ay
o

ff
 (

v p
)

Wp/W=0.95

Wp/W=0.85

Wp/W=0.75

Cs/Cw=4

Fig. 2. Impact of leasing cost and the spectrum owned by the provider on the provider’s
payoff for different values of Cp.

For each power cost, Fig. 1 shows the optimal power and bandwidth that a user
must use to maximize its utility function.

Figure 2 shows the provider’s point of view when he tries to maximize its
payoff. In the case when the provider doesn’t have enough bandwidth frequencies
and needs to lease a part to cover his need, the leasing cost CS is added to the
model. This cost is known to be greater than the bandwidth cost CW . We plot
in Fig. 2(a) the optimal payoff of the provider when the power cost is increasing
for different values of the ratio CS/CW . We note that, more CS is greater than
CW , thes more the provider’s payoff is lower, for a fixed value of W and Wp.
This behavior can be explained by the fact that the difference between what the
provider gets and what he pays goes to zero. Also, the concavity of the function
is due to the power cost. Indeed, the provider can incite users to reduce their
transmission power if it exceeds certain threshold that insure a maximal payoff
to the provider. Figure 2(b) shows the impact of the quantity of spectrum owned
by the provider Wp on its payoff. This payoff increases with increasing Wp,
because Wp is payed by a small price. In the case when the requested spectrum
of bandwidth frequencies belongs to the provider, the only parameter that affect

512 M. Raiss-El-Fenni et al.

his payoff is CW . Thus, the optimal CW is the largest price the user accept to
pay, and this depends on the user’s budget.

6 Conclusion

In this work we have showed how a user can benefit and how can he adjust his
power transmission and bandwidth demand based on the cost of each one of
them, to maximize his utility function. We discussed the decision to transmit or
not, which is related to the behavior of the provider in term of price assignment.
The provider try to obtain the maximal profit. We were interested in the optimal
tariff the provider has to set when there is a need in leasing extra bands to
satisfy the total demand of users and also the case when the own resources of
the provider are sufficient.

References

1. Altman, E., Avrachenkov, K., Garnaev, A.: Taxation for green communication. In:
WiOpt 2010, Avignon, France (2010)

2. Duan, L., Huang, J., Shou, B.: Cognitive mobile virtual network operator: invest-
ment and pricing with supply uncertainty. In: IEEE INFOCOM 2010 (2010)

3. Xiao, Y., Bejerano, Y., Han, S.-J., Li, L.: Fairness and load balancing in wireless
LANs using association control. In: Proceedings of MobiCom, September 2004

4. Prommak, C., Jantaweetip, A.: On the analysis of bandwidth management for
hybrid load balancing scheme in WLANs. In: World Academy of Science, Engi-
neering and Technology, vol. 54 (2009)

5. Zhao, Q., Sadler, B.: A survey of dynamic spectrum access: signal processing, net-
working, and regulatory policy. IEEE Signal Process. 24(3), 78–89 (2007)

Modeling and Implementation Approach
to Evaluate the Intrusion Detection System

Mohammed Saber1, Sara Chadli2(B), Mohamed Emharraf1,
and Ilhame El Farissi1

1 Laboratory LSE2I, National School of Applied Sciences,
First Mohammed University, Oujda, Morocco

{mosaber,m.emharraf,ilhame.elfarissi}@gmail.com
2 Laboratory Electronics and Systems, Sciences Faculty,

First Mohammed University, Oujda, Morocco
chad.saraa@gmail.com

http://wwwensa.ump.ma

Abstract. Intrusions detection systems (IDSs) are systems that try to
detect attacks as they occur or when they were over. Research in this area
had two objectives: first, reducing the impact of attacks; and secondly the
evaluation of the system IDS. Indeed, in one hand the IDSs collect net-
work traffic information from some sources present in the network or the
computer system and then use these data to enhance the systems safety. In
the other hand, the evaluation of IDS is a critical task. In fact, its impor-
tant to note the difference between evaluating the effectiveness of an entire
system and evaluating the characteristics of the system components. In
this paper, we present an approach for IDS evaluating based on measur-
ing the performance of its components. First of all, in order to implement
the IDS SNORT components safely we have proposed a hardware platform
based on embedded systems. Then we have tested it by using a generator of
traffics and attacks based on Linux KALI (Backtrack) and Metasploite 3
Framework. The obtained results show that the IDS performance is closely
related to the characteristics of these components.

Keywords: Evaluation · IDS · Performance · Embedded system · Field-
Programmable Gate Array (FPGA) · Pattern matching · SNORT · Linux
KALI · Metasploite 3 framework · LAN traffic generator

1 Introduction

The evaluation of intrusion detection systems is a challenging task; it requires
a thorough knowledge of techniques relating to different disciplines, especially
intrusion detection, methods of attack, networks and systems, technical testing
and evaluation [1]. What makes the evaluation more difficult is the fact that
different intrusion detection systems have different operational environments and
can use a variety of techniques for producing alerts corresponding to attacks.

Normally, before beginning any experimental test, it is extremely important
to identify clearly the objectives of the evaluation. First of all, it is important
c© Springer International Publishing Switzerland 2015
A. Bouajjani and H. Fauconnier (Eds.): NETYS 2015, LNCS 9466, pp. 513–517, 2015.
DOI: 10.1007/978-3-319-26850-7 41

514 M. Saber et al.

to distinguish between testing the evaluation of the systems effectiveness, and
testing the whole characteristics of IDS [2] (that is to say, testing components of
IDS). In our case, first, we measure the performance of these components, which
allows us subsequently to evaluate the systems characteristics.

In practice, most of IDSs suffer from several problems, taking into considera-
tion the large number of false positives and false negatives, and the evolution of
attacks. All these problems increase the need of implementing an IDSs evaluation
system. In this context, many attempts took place [3–6]. Some of these attempts
are based on classification of attacks, which aims to simplify attacks detection,
or by technology, or detection range, or by the generation of attack scenarios to
understand the behavior of attacks and by other criteria. But the great weakness
of these assessments is their inability to cover all the characteristics of an IDS
as cited in [2].

In this paper, we present an approach for IDS evaluating based on measuring
the performance of its components. In this context, we have proposed a hardware
platform based on embedded systems for the implementation of the IDS compo-
nents (SNORT), and then we tested a system for generating traffics and attacks
based on Linux KALI and Metasploite 3 Framework. The obtained results show
that the IDS performance is linked to the characteristics of these components.

2 Experiment Design and Results

2.1 Network Design

To verify that our system produces the correct results, we compared it with the
standard SNORT software distribution and EIDS. We have created a network
(Fig. 1) in which a computer connected to our platform for the supervision oper-
ations (Test scenarios) and recovery results. The specific metrics for evaluating
used are: Packets captured (PCA), Packets analysed (PAN), Packets dropped
(PDR) and Packets detected (PDE).

Fig. 1. Network Test

Modeling and Implementation Approach 515

2.2 Senario 1: EIDS and SNORT Reactions to High-Speed Network
Traffic

We used LAN Traffic Genarator tools to manage IP traffic in the network and
the packet generator tool to send a number of IP packets in different speeds per
ms. We sent 21000 packets (14000 TCP, and 7000 UDP) at different transmission
time intervals (16 ms, 8 ms, 4 ms), and for each case we calculate the run time
RT (seconds) for packet processing by each system (time of packets analysis).
Table 1 show the EIDS and SNORT output and results of our experiments.

Table 1. Same number of packets but different transmission time intervals

Packets type Metrics SNORT reaction EIDS reaction

16 ms 8ms 4 ms 16ms 8 ms 4 ms

TCP (14000) PCA 14103 14060 14018 14080 14047 14011

PAN 14095 10023 6121 14011 8967 3431

PDR 8 4037 7897 69 5080 10580

RT (s) 209.23 131.24 91.69 225.32 137.21 97.23

UDP (7000) PCA 7097 7051 7007 7047 7011 7003

PAN 7017 5219 4917 7001 4371 2153

PDR 80 1832 2090 46 2640 4850

RT (s) 189.19 101.14 66.97 201.17 117.89 81.75

2.3 Senario 2: EIDS and SNORT Reactions to Heavy-Traffic
Networks

Here, the transmission rate of packets was kept to the same speed (16 ms inter-
vals) to obtain a fair analysis of different numbers of packets (each packet carried
1024). We sent 100, 500 and 1000 packets batches at 16 ms intervals, and for each
case we calculate the run time RT (seconds) for packet processing by each sys-
tem. Table 2 show the SNORT and EIDS results.

Table 2. Same speed limit and different numbers of packets

Metrics SNORT reaction to heavy traffic EIDS reaction to heavy traffic

100 500 1000 100 500 1000

PCA 106 508 1023 109 505 1017

PAN 106 354 317 101 254 271

PDR 0 154 706 8 251 746

RT (s) 5.41 7.12 9.61 7.61 9.24 13.95

516 M. Saber et al.

2.4 Senario 3: EIDS and SNORT Reactions to Large Packets

For this experiment, the number of packets was kept to the same value (18000)
and the same speed (16ms) to obtain a fair analysis of different sizes (lengths)
of packets. We increased the size of each packet sent started from 256 byte, to
512 bytes, and to 1024 bytes. Table 3 show the performance detection results.

Table 3. Same speed and value but different packet size

Metrics SNORT reaction to packet sizes EIDS reaction to packet sizes

256 512 1024 256 512 1024

PCA 18107 18082 18026 18090 18043 18017

PAN 18107 12314 8193 18010 11357 6791

PDR 0 5768 9833 80 6686 11226

RT (s) 269.31 195.32 162.37 317.32 232.21 207.56

2.5 Senario 4: EIDS and SNORT Reactions to Generate the
Number of Alerts (Attack Detection Rate)

During the evaluation, attacks have been generated to evaluate the performance
of both IDSs in a heavy and mixed traffic. The initial test was perfomed with
background traffic only. This was done to confirm that both EIDS and SNORT
are configured to generate the number of alerts. We then went on generating the
same attacks for both EIDS and SNORT in high speeds network. The results
are presented in Table 4.

Table 4. Same number of alerts but different speed

Speed SNORT rate of attacks detection EIDS rate of attacks detection

250Mbps 500Mbps 1.0Gpbs 2.0Gbps 250Mbps 500Mbps 1.0Gpbs 2.0Gbps

PDE 100% 100% 100% 99,3% 100% 89,97% 65.12% 41.28%

2.6 Discussion of results

Critical analyses were done for experiments senario1, senario2, senario3 and
senario4. The obtained results show that both systems performance analysis
throughput is affected by high-speed and heavy traffic, and more packets are
dropped as the number and size of packets and the speed of traffic increases.
Both systems had a limited time to process and analyse any traffic successfully
and if a network’s traffic speed limit is higher than both systems limit. This
problem due to the limited characteristics of the components.

Modeling and Implementation Approach 517

3 Conclusion

For many years attacks made on networks have risen dramatically. The major
reason for this is the unlimited access to and use of software (written and
uploaded to websites by technical experts) by inadequately trained people. How-
ever, an IDS is considered to be one of the best technologies to detect threats
and attacks. IDSs have attracted the interest of many organizations and gov-
ernments, and any Internet user can deploy them. An IDS usually features four
stages to secure a computer system network: scanning, analysing, detecting, and
correcting. In this paper we proposed an approach for evaluating an IDS with
these characteristics. This approach based on tests to measure performance indi-
cators of the components of an IDS. For this we chose a hardware solution based
on embedded systems. Our solution is a hardware platform that gives the hand
to measure the performance indicators of the components of an IDS. As a result
of our approach, systems can be configured such that attacks can be thwarted
more easily.

References

1. Khorkov, D.A.: Methods for testing network-intrusion detection systems. Sci. Tech.
Inf. Proc. 39(2), 120–126 (2012). doi:10.3103/S0147688212020128

2. Mell, P., Hu, V., Lippmann, R., Haines, J., Zissman, M.: An overview of issues in
testing intrusion detection systems. Technical report, National Institute of Standard
and Technology (2003)

3. Akhlaq, M., Alserhani, F., Awan, I., Mellor, J., Cullen, A.J., Al-Dhelaan, A.: Imple-
mentation and evaluation of network intrusion detection systems. In: Kouvatsos, D.D.
(ed.) Next Generation Internet: Performance Evaluation and Applications. LNCS,
vol. 5233, pp. 988–1016. Springer, Heidelberg (2011)

4. Saber, M., Emharref, M., Bouchentouf, T., Benazzi, A.: Platform based on an
embedded system to evaluate the intrusion detection system. In: IEEE Xplore Dig-
ital Library. pp. 894–899 (2012) doi:10.1109/ICMCS.2012.6320253

5. Albin,E.;Rowe,N.C.:A realistic experimental comparison of the suricata andSNORT
intrusion-detection systems. In: 2012 26th International Conference on Advanced
Information Networking and Applications Workshops (WAINA), pp. 122–127, 26–29
March 2012. doi:10.1109/WAINA.2012.29

6. Wang, X., Kordas, A., Hu, L., Gaedke, M., Smith, D.: Administrative evaluation
of intrusion detection system. In: Proceedings of the 2nd Annual Conference on
Research in Information Technology (RIIT 2013) pp. 47–52. ACM, New York, USA
(2013) doi:10.1145/2512209.2512216

http://dx.doi.org/10.3103/S0147688212020128
http://dx.doi.org/10.1109/ICMCS.2012.6320253
http://dx.doi.org/10.1109/WAINA.2012.29
http://dx.doi.org/10.1145/2512209.2512216

Trust Based Energy Preserving Routing
Protocol in Multi-hop WSN

Saima Raza1(&), Waleej Haider1, Nouman M. Durrani2,
Nadeem Kafi Khan2, and Mohammad Asad Abbasi1

1 Sir Syed University of Engineering and Technology, Karachi, Pakistan
saimarzaidi@gmail.com

2 FAST NUCES, Karachi, Pakistan

Abstract. Wireless Sensor Networks (WSN) are widely used in many sensitive
applications, where human deployment is almost impossible. Due to resource
constraints, the network and hence the forwarded information is open for
attacks. Hence, it is desirable to ensure source to sink privacy in order to
maximize the network lifetime. In this paper we studied security threats and
energy constraints while deploying WSN nodes. Moreover, we propose a Trust
Based Secure and Energy Preserving Routing Protocol (TEPP), in multi-hop
WSN. The proposed solution monitors reputation and trust worthiness of nodes
and maintains a history of interaction between nodes to identify secure and trust
worthy path. The effectiveness of our proposed protocol has been experimen-
tally verified against various attacks. At the end future research directions have
been highlighted.

Keywords: WSN � Trust-based � Energy efficient � Secure routing

1 Introduction

Wireless sensor network (WSN) is a network of small and smart computing devices for
establishing reliable, scalable and resilient network of sensing and forwarding nodes.
WSN are mainly deployed in many applications such as industrial power control,
environmental monitoring, medical instrumentation and homeland security, where
human intervention is difficult. In such networks, it is required to maximize network
lifetime and strengthen source to sink privacy, by finding trustworthy, secure and
energy-efficient route discovery and forwarding mechanisms.

As, these networks deal in sensitive data and are opened due to limited resources, it is
important tomake them secure against various types of attacks such as spoofing, selective
forwarding, sinkhole attacks, wormholes, traffic analysis node replication and attacks
against privacy. Moreover, the attackers can easily demolish the whole network by
capturing the network nodes or by attacking the routing protocol. Even few computa-
tional resources are enough to shoot up fake messages, operate routing messages, attack
the routing protocols and disrupt the normal operation of the network. Even more,
arbitrary behavior may be induced by corrupting the intermediate nodes or planting an
internal attacker into the network. Considering all these realities, the deployment of a
secure routing protocol becomes a primary task; however, designing of such secure

© Springer International Publishing Switzerland 2015
A. Bouajjani and H. Fauconnier (Eds.): NETYS 2015, LNCS 9466, pp. 518–523, 2015.
DOI: 10.1007/978-3-319-26850-7_42

routing protocols are not easy. An important factor in this regard is energy-aware trust-
worthy secure routing, which is significant in ensuring smooth operation of WSNs [1].
Careful management of the network is also desired, as processing required for secure
routing and communication is distributed over the nodes itself. Providing security in such
networks is extremely important and challenging.

Generally, WSN system threats fall in three categories with reference to security
considerations: confidentiality, availability and integrity [2]. Many researchers sug-
gested trust management system to help in selection of trust worthy peer of same
behavioral pattern [3–6]. Some of trust metrics depends upon recommendation system
but our proposed algorithm doesn’t support recommendation system as they may suffer
from badmouthing attack. According to Xiong et al. [7] reputation is a key factor which
adds value to trust certificate whereas Sen et al. [8] proposed that reputation and rating
framework has several lacunas due to dishonest parties and great numbers of variables
for assessing trust.

Providing an accredited vocabulary, string of trust and delegated permissions as
designed in by Freudenthal et al. [9] in Role-based access control model. Several
researcher proposed to integrate processing modules with in WSN for observing and
calculating different parameters for selection of optimal path [10, 11]. However these
protocol may magnify traffic in WSN as regular broadcast of message from BS and
sensors nodes require more computing power as two computing components run on
nodes. Considering the limited computational and energy constraints, in this paper we
have presented a trust based routing scheme called “Trust Based Energy Preserving
multihop Routing Protocol (TEPP)” for secure data transmission in WSNs in Sect. 2,
followed by the performance and evaluation of our proposed protocol in Sect. 3.
Afterwards conclusion is drawn with future research directions.

2 Proposed Solution

The protocol called as TEPP comprises of three phases: Neighbor Identifying Phase,
Cluster Head Selection phase and Data Sharing Phase. It provides a secure infor-
mation sharing path and controls malicious nodes by providing a mechanism of
authentication and trust calculation of each node. The network consists nodes, cluster
Heads and the BS. BS has a centralized control and helps to reduce the Bandwidth and
computation requirements of network. Our proposed routing protocol uses Modified
Closest pair-wise keys pre-distribution scheme for secure communication between two
nodes [12]. All server nodes have their master keys provided by setup server and for
every pair of node (IDS, IDR), a pair-wise key KS, R = PRF KR (S) is generated where
PRF is pseudo random function. New sensor node has predefined keys for all sensor
nodes in its transmission range. Hash Message Authentication Code (HMAC) is
applied to provide message integrity and to verify sender authentication. TEPP Phases
are described as under:

Neighbor Identifying Phase: In Neighbor Discovery Phase, node initiates zero mes-
sages using “Modified dynamic, zero-message broadcast encryption scheme based on
Secure Multiparty Computation” [13] to discover its neighbors with in transmission

Trust Based Energy Preserving Routing Protocol in Multi-hop WSN 519

range. This broadcast message has two blocks cipher block and header block. Header
block has message id and list of several receiver nodes where message id is unique.
Cipher block is encrypted using one-time key (OTK) which is calculated:
OTK = Combine t, n (K1, K2, …. Kn) where Ki = H(ID message, ID RNode, Key
RNode, ID SNode) where RNode is recipient node, SNode is source node and ciphers
block is composed of (ID SNode, Nonce SNode) information. Interested Nodes sends
reply message with in time out as follows:

IDRNode ! IDSNode ¼ KR;S½ðNonceRNode k IDRNodeÞ k ðIDSNode k NonceSNodeÞ�

Sender Node decrypts this acceptance message using its private key and adds nodes
in its neighbor list. Sharing of data within a cluster requires minimum level of energy.

Cluster Head Selection Phase: In proposed algorithm Cluster Heads are decided by
applying LEACH (Low-Energy Adaptive Clustering Hierarchy) algorithm [13] under
surveillance of BS. CH behaves as an intermediate channel between sensor nodes and
base station, and maintains communication history table CHT shown in Table 1, of
nodes located in respective cluster and calculates a threshold value of each node using
formula: TTh ¼ f MIð Þ þ TRþ EN þ FP; where, TR is data transmission range of
node, EN indicates energy of node; FP is number of times sensor node participated in
communication, f (MI) function of integrity is calculated on basis of frequency of
errors, link failures, Message verification techniques thus CH and BS help a sensor
node to choose best data transferring node among several alternatives. Initially, nodes
have no information about their respective neighbors. To initiate trust calculation,
flooding mechanism is introduced and CHT is created. During and after neighbor
detection phase all sensor nodes update about malicious nodes to their respective CH,
which share this information to all other nodes within and outside the Clusters.
After CH is decided, it detects its surrounding CH by broadcasting a zero message
encrypted using OTK after getting response message it updates CH neighbor list. BS
after receiving information about CH and their neighbor calculates multipath and share
secret pair keys with all CH.

Data Sharing Phase: When node wants to transmit data, it uses distance vector
algorithm to find all available route towards destination and CH helps sending node in

Table 1. Communication history table (CHT)

Source Destination f (MI) TR (Meters) EN (Volts) FP Threshold value

A B 01.40 60 3.2 4 68.6
B E 01.10 50 2.2 8 61.3
B D 00.75 45 3.5 3 52.25
E F 01.00 56 2.4 7 66.4
D F 01.20 60 2.4 7 70.6
F C 01.35 45 3.1 5 54.4

520 S. Raza et al.

deciding best among multiple route options i.e. When a node “A” wants to send
information to destination node “C”, it finds several alternatives path using modified
distance vector algorithm.

i. A >B > >F >C ii. A D >FE

Than Cluster Head using “CHT” works in reverse order i.e. it will forward the data
on nodes with high threshold (trust value) for the destination node “C” which is node
“F” in this sample case. We can express this path selection and data forwarding on the
following expression:

A��[B : HMAC KA;B;Data; IDA; IDB
� �

¼ H IDA k Ku� opadð Þð Þ k H Ku� ipadð Þ k Data k IDBð Þ½ �½ �

Since only trustworthy nodes are selected in the data forwarding process, hence the
impact of malicious nodes is decreased. Moreover, the energy is conserved as only
trusted nodes are involved in the data forwarding process. In the next section we
discuss performance of our proposed protocol against various types of attacks and their
impact on the packet delivery or packet drop.

3 Performance and Evaluation

The proposed protocol provides a mechanism which keeps track of malicious behavior
within network to combat unfair acts by any node and sensed data is transferred
through node with high threshold value with combination of energy aware mechanism.
OMNeT++ has been used to simulate the performance of our proposed protocol.
Initially a test bed of 100 nodes with an average calculated threshold 54.6 was eval-
uated against 15 % malicious nodes involved in different types of attacks such as
wormhole, selective forwarding, and de-synchronization attacks. The proposed pro-
tocol was evaluated against ATSR, GPSR and TARF routing protocols. Experimen-
tally, it has been found that only 14 % of the packets were dropped. Further, when the
numbers of malicious nodes were increased randomly to 40 % of 2000 nodes, the
packet drop ratio was observed to be stable. As shown in Fig. 1, less than 33 % packets
were unable to reach the destination node. In the same case, major packet drop was
observed for ATSR, GPSR and TARF. It shows that the protocol is exceptionally stable
under large number of attacks. Proposed TEPP compared with TARF, TEESR,
Trusted GPSR protocols and analyzed that it performs better in providing defensive
measures against De-Synchronization, Selective Forwarding, Wormholes attacks.
Table 2 highlights the impact of different attacks on threshold value of individual node
calculated using TEPP. It shows that three to four time occurrence of attack decreases
threshold value of nodes thus degrading trustworthiness of that node. Also, it has been

Trust Based Energy Preserving Routing Protocol in Multi-hop WSN 521

found that for the same network when compared with other routing protocols such as
TARF, ATSR and GPSR protocols also shown Fig. 2.

4 Conclusion

Due to various security challenges in WSNs, we have presented a Trust Based Energy
Preserving multihop Routing Protocol that not only tends to mitigate major security
risks but also provides an energy efficient data forwarding mechanism. Performance in
terms of packet drop and extra-energy consumption was evaluated against various
secure and energy efficient protocols. Processing power required for head nodes to
maintain history and trust calculation of each node and to combat energy exhaustion
required in movement of nodes between clusters is left for future research.

0

50

100

1 2 3 4 5 6

No of Nodes (x 100)
Attack Frequency in %
Average Threshold
Packets Drop in TEPP
ATSR

Fig. 1. Effect of security attacks on packet delivery

Table 2. Impact of different attacks on threshold value of node calculated using TEPP

Nodes De-Synchronization Selective Forwarding Wormholes
AF TH IF AF TH IF AF TH IF

A 5 54.6 Medium 2 58.00 Low 4 53.24 Medium
B 4 51.00 Medium 6 45.23 High 5 50.66 Medium
C 4 45.00 Medium 4 47.80 Medium 7 40.23 High
D 4 45.4 Medium 4 48.50 Medium 3 55.27 Low
E 2 60.6 Low 6 43.24 High 3 52.00 Low
F 7 34.4 High 4 40.23 Medium 8 36.12 High

Fig. 2. Extra energy consumption (in J/×100 nodes) due to packet drop

522 S. Raza et al.

References

1. Stajano, F.: Security issues in ubiquitous computing. In: Nakashima, H., Aghajan, H.,
Augusto, J.C. (eds.) Handbook of Ambient Intelligence and Smart Environments, pp. 281–
314. Springer, Heidelberg (2010)

2. Durrani, N.M., et al.: Secure multi-hop routing protocols in wireless sensor networks:
requirements, challenges and solutions. In: 8th IEEE ICDIM (2013)

3. Carullo, G., et al.: FeelTrust: providing trustworthy communications in Ubiquitous Mobile
environment. In: 2013 IEEE 27th International Conference on Advanced Information
Networking and Applications (AINA). IEEE (2013)

4. Pirzada, A.A., McDonald, C.: Trusted greedy perimeter stateless routing. In: 15th IEEE
International Conference on Networks, ICON 2007. IEEE (2007)

5. Bao, F., et al.: Hierarchical trust management for wireless sensor networks and its
applications to trust-based routing and intrusion detection. IEEE Trans. Netw. Serv. Manag.
9(2), 169–183 (2012)

6. Li, X., Lyu, M.R., Liu, J.: A trust model based routing protocol for secure adhoc networks.
In: IEEE Proceedings on Aerospace Conference, vol. 2 (2004)

7. Xiong, L., Liu, L.: PeerTrust: supporting reputation-based trust for peer-to-peer electronic
communities. IEEE Trans. Knowl. Data Eng. 16(7), 843–857 (2004)

8. Sen, S., Sajja, N.: Robustness of reputation-based trust: boolean case. In: Proceedings of the
First International Joint Conference on Autonomous Agents and Multiagent Systems: Part 1,
Bologna, Italy, 15–19 July 2002

9. Freudenthal, E., Pesin, T., Port, L., Keenan, E., Karamcheti, V.: dRBAC: distributed
role-based access control for dynamic coalition environments. In: Proceedings of the 22nd
ICDCS 2002. IEEE Computer Society, July 2002

10. Zhan, G., Shi, W., Deng, J.: TARF: A trust-aware routing framework for wireless sensor
networks. In: Sá Silva, J., Krishnamachari, B., Boavida, F. (eds.) EWSN 2010. LNCS, vol.
5970, pp. 65–80. Springer, Heidelberg (2010)

11. Marti, S., Giuli, T., Lai, K., Baker, M.: Mitigating routing misbehavior in mobile ad hoc. In:
Proceedings of the Sixth Annual International Conference on Mobile Computing and
Networking (MobiCom). ACM Press, pp. 255–265 (2000)

12. Liu, D., Ning, P.: Location-based pairwise key establishments for static sensor networks. In:
Proceedings of the 1st ACM Workshop on Security of Ad Hoc and Sensor Networks. ACM
(2003)

13. Soodkhah, M., Mohammadi, A., Bafghi, G.: A dynamic, zero-message broadcast encryption
scheme based on secure multiparty computation. In: 9th ISC (2012)

Trust Based Energy Preserving Routing Protocol in Multi-hop WSN 523

Author Index

Abbasi, Mohammad Asad 518
Abdulla, Parosh Aziz 15, 32
Aboutajdine, Driss 468
Aiswarya, C. 48
Al Achhab, Mohammed 474
Almeida, Paulo Sérgio 62
Altisen, Karine 77
Atig, Mohamed Faouzi 15, 32

Baquero, Carlos 62
Benkaouz, Yahya 94
Benslimane, Djamal 397
Berrada, Ismail 170, 474, 507
Biely, Martin 109
Blass, Erik-Oliver 337, 426
Bournez, Olivier 125
Bouyakhf, El-Houssine 367, 507

Carvalho, Paulo 501
Chadli, Sara 513
Chapuis, Bertil 456
Charfi, Anis 140
Che, Tong 155
Cheng, Wang 444
Cohen, Johanne 125

Daha Belghiti, Imane 170
Devismes, Stéphane 77, 183
Diamond, Michael 461
Durand, Anaïs 77
Durrani, Nouman M. 518
Dzung, Dacfey 200

Echabbi, Loubna 216
El Farissi, Ilhame 513
El Ghali, Btihal 468
El Hichami, Outman 474
El Kamili, Mohamed 170, 507
El Koutbi, Mohammed 490
El Mohajir, Badr Eddine 474
El Qadi, Abderrahim 468
Elazouzi, Rachid 216
El-Hammani, Sihame 367
Elhammouti, Hajar 216

Emharraf, Mohamed 513
Erradi, Mohammed 94
Ettazi, Widad 479
Ezzahidi, Sidi Ahmed 507

Faci, Noura 397
Fantar, Sonia Gaied 263
Faouzi, Hassan 496
Fernández Anta, Antonio 230
Freisleben, Bernd 94
Friedman, Roy 246

Garbinato, Benoît 456
Georgiou, Chryssis 230
Gramoli, Vincent 278, 293
Guerraoui, Rachid 200, 278, 444

Haas, Andreas 1
Hafiddi, Hatim 479
Haider, Waleej 518
Hamza, Jad 308
Holík, Lukáš 322
Hütter, Thomas 1

Ibrahimi, Khalil 367

Jard, Claude 382
Jayanti, Prasad 461
Jin, Tao 337
Johnen, Colette 354
Jourjon, Guillaume 293
Jubran, Oday 485

Kara, Ahmet 15
Kermarrec, Anne-Marie 278
Khan, Nadeem Kafi 518
Kirsch, Christoph M. 1
Kobbane, Abdellatif 490
Kozhaya, David 200

Lamani, Anissa 183
Lamsaadi, Mohamed 496

Lång, Magnus 32
Leichtling, Jake 461
Lima, Solange Rito 501
Lippautz, Michael 1

Maamar, Zakaria 397
Mabrouk, Abdelfettah 490
Magoni, Damien 411
Mehani, Olivier 293
Mekouar, Soufiana 367
Meyer, Roland 322
Mostéfaoui, Achour 382
Mouncif, Hicham 496

Naoum, Mohamed 474
Nassar, Mahmoud 479
Ngo, Tuan Phong 32
Noubir, Guevara 337, 426

Oliveira, Daniela 501
Ouadou, Mohamed 468

Perrin, Matthieu 382
Petit, Franck 183
Pignolet, Yvonne-Anne 200
Preishuber, Mario 1

Rabie, Mikaël 125
Raiss-El-Fenni, Mohammed 507
Raynal, Michel 246
Raza, Saima 518
Rezine, Othmane 15
Robinson, Peter 109

Saber, Mohammed 513
Sabir, Essaid 490
Saoud, Zohra 397
Schmid, Ulrich 109
Schwarz, Manfred 109
Shoker, Ali 62
Sokolova, Ana 1

Taïani, Francois 246
Theel, Oliver 485
Tiendrebeogo, Telesphore 411
Tixeuil, Sébastien 183

Vo-Huu, Triet D. 337, 426

Winkler, Kyrill 109

Youssef, Habib 263

Zavou, Elli 230
Zhi, Haolin 140

526 Author Index

	Message from the Program Chairs
	Message from the General Chairs
	Organization
	Abstracts of Posters
	Evaluation of MCR Protocol for WSNs
	The First Step Towards Securing a DistributedCollaborative System
	Minimum Interference in Wireless Mesh Networks
	A Routing Algorithm for Wireless Sensor NetworksBased on Ant Colony Optimizationand Multi-criteria Decision Aid
	Hybrid Intrusion Detection System in Cloud Computing (Hy-CIDS)
	An Overview of VANET: Architectures, Challengesand Routing Protocols
	Performance Evaluation of Routing Protocols in VANET
	Architecture of Remote Virtual Labs as a Servicein the Cloud Computing
	Dynamic Integration of Security Requirements in WebService Composition
	Modeling Wireless Sensor Networks
	Geographical Query Reformulation Based on Spatial TaxonomiesConstructed Using the Apriori Algorithm
	Counting Spanning Trees in Bipartite and ReducedPseudofractal Scale-Free Network
	Prosumers Integration and the HybridCommunication in Smart Grid Context
	Integrating Communication-Centric Programmingin the Design of Distributed Systems
	Mobility Models Impact on the Throughputin MANET
	Performance Analysis of ARQ and FEC in WBANs
	A Generic Natural Language Interface for DatabaseInterface Based on Machine Learning Approach
	Impact of Malicious Behavior on AODV RoutingProtocol
	An Access Control Model for CollaborativeCloud Environment
	Social Networks: For Increase More Interactionsand Feedbacks
	Clustering Algorithm in Vehicular Networks
	Evaluation of Association Rules ExtractionAlgorithms

	Contents
	Scal: A Benchmarking Suite for Concurrent Data Structures
	1 Introduction
	2 Scal Infrastructure
	2.1 Memory Allocator
	2.2 Computational Load
	2.3 Pointer Tagging
	2.4 Operation Logging

	3 Scal Workloads
	3.1 Producer-Consumer
	3.2 Sequential Alternating

	4 Concurrent Data Structure Implementations in Scal
	4.1 Strict Queues
	4.2 Relaxed Queues
	4.3 Strict Stacks
	4.4 Relaxed Stacks
	4.5 Strict Deque
	4.6 Strict Pools

	5 Conclusions
	References

	Verification of Buffered Dynamic Register Automata
	1 Introduction
	2 Preliminaries
	3 Buffered Dynamic Register Automata
	4 BDRA State Reachability is Undecidable
	5 Bounded Buffer BDRA
	6 Strongly Bounded BDRA with Bounded Buffer
	7 Lossy Strongly Bounded BDRA with Bounded Buffer
	8 Acyclic Strongly Bounded BDRA with Bounded Buffer
	9 Conclusion
	References

	Precise and Sound Automatic Fence Insertion Procedure under PSO
	1 Introduction
	2 Preliminaries
	3 Concurrent Programs under PSO
	3.1 Syntax
	3.2 PSO Semantics
	3.3 Hierarchical Single-Buffer Semantics

	4 The HSB Reachability Algorithm
	4.1 Ordering
	4.2 Reachability Algorithm

	5 Fence Insertion
	6 Experimental Results
	7 Conclusion
	References

	Model Checking Dynamic Distributed Systems
	1 Introduction
	2 Data Words to Model Protocols
	2.1 Data Words
	2.2 Dynamic Distributed Systems (DDS)
	2.3 Monadic Second Order Logic over Data Words

	3 Data Pushdown Automata
	4 Non-emptiness of DPA
	5 MSO Model Checking
	6 Discussions
	References

	Efficient State-Based CRDTs by Delta-Mutation
	1 Introduction
	2 System Model
	3 A Background of State-Based CRDTs
	4 Delta-State CRDTs
	4.1 Delta-State Decomposition of Standard CRDTs
	4.2 Example: -CRDT Counter

	5 Causal Consistency
	5.1 Anti-entropy Algorithm for Causal Consistency

	6 -CRDTs for Add-Wins OR-Sets
	6.1 Add-Wins OR-Set with Tombstones
	6.2 Optimized Add-Wins OR-Set

	7 Optimized Multi-value Register -CRDT
	8 Message Complexity
	9 Related Work
	10 Conclusion
	References

	Concurrency in Snap-Stabilizing Local Resource Allocation
	1 Introduction
	2 Computational Model and Specifications
	2.1 Distributed Systems
	2.2 Locally Shared Memory Model
	2.3 Snap-Stabilizing Local Resource Allocation

	3 Concurrency
	3.1 Maximal-Concurrency
	3.2 Maximal Concurrency Vs. Fairness
	3.3 Partial Maximal-Concurrency

	4 Local Resource Allocation Algorithm
	4.1 Composition
	4.2 Token Circulation Module
	4.3 Resource Allocation Module
	4.4 Correctness and Partial Maximal-Concurrency

	5 Conclusion
	References

	Distributed Privacy-Preserving Data Aggregation via Anonymization
	1 Introduction
	2 System Model
	3 The DiPA Protocol
	4 Problem Definition
	5 Data Anonymization
	5.1 k-Anonymity
	5.2 l-Diversity
	5.3 t-Closeness

	6 ADiPA: Anonymized Distributed Privacy-Preserving Data Aggregation
	7 Conclusions
	References

	Gracefully Degrading Consensus and k-Set Agreement in Directed Dynamic Networks
	1 Introduction
	2 Model
	3 A Message Adversary for k-Set Agreement
	4 Gracefully Degrading Consensus/k-Set Agreement
	5 Conclusions
	References

	Homonym Population Protocols
	1 Introduction
	2 Models
	3 When Identifiers are Missing
	3.1 Computing the Size of the Population
	3.2 Resetting a Computation
	3.3 Counting Agents in a Given State
	3.4 Simulating the Reading Tape
	3.5 Recognizing Polylogarithmic Space
	3.6 Only Polylogarithmic Space
	3.7 When We Have n Identifiers

	4 Passively Mobile Machines
	5 Summary
	References

	Aspect-Based Realization of Non-functional Concerns in Business Processes
	1 Introduction
	2 Motivating Example
	3 Proposed Solution
	3.1 Expressing Non-functional Requirements
	3.2 Realizing the Non-functional Properties

	4 Implementation and Tools
	5 Related Work
	5.1 Modeling Non-functional Concerns in Business Processes
	5.2 Realizing Non-functional Concerns in Business Processes

	6 Conclusion
	References

	Verifying Concurrent Data Structures Using Data-Expansion
	1 Introduction
	2 Verification Strategy
	3 Verification Target
	4 Basic Definitions
	5 Verification of the Algorithm
	5.1 Thread-Local Invariants Needed for the Proof
	5.2 Generalized Hindsight Lemma
	5.3 Data-Expansion Lemma
	5.4 Verification of Linearizability

	6 Generalized Hindsight Lemma
	7 Remarks
	7.1 Related Works
	7.2 Conclusions

	References

	Improving Cognitive Radio Wireless Network Performances Using Clustering Schemes and Coalitional Games
	1 Introduction
	2 Related Works
	3 System Architecture and Assumption
	3.1 Cluster Border Determination
	3.2 Scenario of Forming Coalition in Clusters
	3.3 User's Utility Function in Clusters
	3.4 Learning Algorithm in Clusters

	4 Numerical Results
	5 Conclusion
	References

	Optimal Torus Exploration by Oblivious Robots
	1 Introduction
	2 Preliminaries
	3 Lower Bound
	4 Optimal Algorithm
	5 Concluding Remarks
	References

	Source Routing in Time-Varing Lossy Networks
	1 Introduction
	2 Related Work
	3 Problem Model
	4 Path Selection: A Mathematical Definition
	5 Index-Based Policies: Formulation and Analysis
	5.1 Myopic Performance
	5.2 Whittle Index: A Path Formulation

	6 Harmonic Discounted Index (HDI)
	6.1 Hop Conductance
	6.2 Path Conductance

	7 Experimental Evaluation
	8 Conclusion
	References

	A Fully Distributed Learning Algorithm for Power Allocation in Heterogeneous Networks
	1 Introduction
	2 Related Work
	3 Problem Formulation
	3.1 Main Notations
	3.2 Game Formulation

	4 Distributed Optimization
	4.1 Annealing Gibbs Sampler Algorithm
	4.2 A New Model Description
	4.3 The FLAPH Algorithm

	5 Numerical Results
	5.1 The FLAPH Algorithm Versus Anarchy
	5.2 Comparison with Gibbs

	6 Conclusion
	References

	Packet Scheduling over a Wireless Channel: AQT-Based Constrained Jamming
	1 Introduction
	1.1 Motivation
	1.2 Contributions
	1.3 Related Work

	2 Model
	2.1 Network Setting
	2.2 Packet Failures
	2.3 Efficiency Measure
	2.4 Feedback Mechanism

	3 Uniform Packet Length
	4 Adaptive Packet Length
	4.1 Algorithm ADP-1 for < 12(7 - 3 5)
	4.2 Exhaustive Case Study for 12(7-35)

	5 Conclusions
	References

	Fisheye Consistency: Keeping Data in Synch in a Georeplicated World
	1 Introduction
	2 System Model and Basic Consistency Conditions
	2.1 Basic Notions and Definitions Underpinning Consistency Conditions
	2.2 Sequential Consistency
	2.3 Causal Consistency

	3 The Family of Fisheye Consistency Conditions
	3.1 The Notion of a Proximity Graph
	3.2 Fisheye Consistency for the Pair (Sequential Consistency, Causal Consistency)

	4 Construction of an Underlying (SC,CC)-Broadcast Operation
	4.1 G-fisheye (SC,CC)-Broadcast: Definition
	4.2 G-fisheye (SC,CC)-Broadcast: Algorithm

	5 An Algorithm Implementing G-Fisheye (SC,CC)-Consistency
	5.1 The High Level Object Operations Read and Write

	6 Conclusion
	References

	Peer-to-Peer Full-Text Keyword Search of the Web
	1 Introduction
	2 Related Work
	3 Peer-to-peer Keyword Retrieval of the Web
	3.1 Bloom Filter

	4 Peer-to-Peer Keyword Searching Engine
	4.1 System Design
	4.2 Inverted Index

	5 BI-Chord Performance
	5.1 Simulation Setup
	5.2 Simulation Results
	5.3 Performance Comparison

	6 Conclusion
	References

	Profiling Transactional Applications
	1 Introduction
	2 Workload Profiles
	2.1 Workloads
	2.2 Profile-Based Comparisons

	3 Algorithms for Concurrency Control
	4 Performance Results
	4.1 Experimental Settings
	4.2 Similar Profiles
	4.3 Different Profiles

	5 Discussion
	6 Related Work
	7 Conclusion
	References

	Disaster-Tolerant Storage with SDN
	1 Introduction
	2 On the Impact of Disasters on the Cloud
	2.1 The Case of Amazon Datacentres
	2.2 Recovering a Storage Service After a Disaster

	3 SDN-KVS: Disaster-Tolerant Key-Value Store
	3.1 Correctness and Resilience Across Regions
	3.2 SDN-Based Multicast for a Nil RPO
	3.3 SDN-Based Anycast for Minimum RTO

	4 Experimental Evaluation
	4.1 Recovering Storage Service with SDN-Anycast
	4.2 Service Goodput of SDN-Multicast

	5 Related Work
	6 Discussion and Conclusion
	References

	On the Complexity of Linearizability
	1 Introduction
	2 Definitions
	2.1 Libraries
	2.2 Linearizability
	2.3 Letter Insertion

	3 Reduction from Letter Insertion to Linearizability
	4 Letter Insertion is EXPSPACE-hard
	5 Conclusion
	References

	Antichains for the Verification of Recursive Programs
	1 Introduction
	2 Preliminaries
	2.1 CFG-REG
	2.2 Antichain Algorithms
	2.3 Data Flow Analysis

	3 From CFG-REG to Data Flow Analysis
	4 Chaotic Iteration with Antichains
	5 Bounded Context Switching
	6 Conclusions and Future Work
	References

	BAPU: Efficient and Practical Bunching of Access Point Uplinks
	1 Introduction
	1.1 Aggregating AP to Bypass Broadband Limitations
	1.2 Feasibility of AP Aggregation

	2 System Overview
	3 Uplink Aggregation
	3.1 Network Unicast
	3.2 Tunnel Forwarding
	3.3 Scheduling

	4 TCP with Proactive-ACK
	4.1 TCP Issues with Aggregation
	4.2 BAPU's Solution

	5 Evaluation
	5.1 BAPU: Efficient UDP, Poor TCP
	5.2 Does SIMPLEBUFFER help TCP performance?
	5.3 BAPU-PRO Performance

	6 Related Work
	7 Conclusion
	References

	Memory Efficient Self-stabilizing Distance-k Independent Dominating Set Construction
	1 Introduction
	2 Specification of Problem and Computation Model
	3 The Protocol SID
	3.1 k-augmentedID Type
	3.2 Code of the Protocol SID
	3.3 Illustration of SID Behavior

	4 Correctness of the Protocol SID
	5 Termination of the Protocol SID
	6 Conclusion
	References

	Optimizing Diffusion Time of the Content Through the Social Networks: Stochastic Learning Game
	1 Introduction
	2 Related Work
	3 Formulation Model
	3.1 Diffusion Policy
	3.2 Formulation of Two Sources Zero-Sum Stochastic Game

	4 Optimal Policy of Our Stochastic Game
	4.1 Minimax Q-learning Algorithm

	5 Numerical Results
	6 Conclusion
	References

	Tracking Causal Dependencies in Web Services Orchestrations Defined in ORC
	1 Introduction
	2 Related Work
	3 The Orc Programming Language
	3.1 Core Calculus
	3.2 Illustration

	4 Instrumented Semantics
	4.1 Method
	4.2 Labeled Asymmetric Event Structure
	4.3 Rules
	4.4 Concurrent Executions

	5 Application
	6 Conclusion
	References

	Web Services Trust Assessment Based on Probabilistic Databases
	1 Introduction
	2 Related Work
	3 The Credibility Model
	3.1 Basics
	3.2 Credibility Assessment

	4 Trust Model
	4.1 Probabilistic Databases in Brief
	4.2 Our Probabilistic Data-Model
	4.3 Trust Assessment as a Query Evaluation

	5 The Trust Assessment Framework
	5.1 Framework Design
	5.2 Prototype and Experiments

	6 Conclusion
	References

	Virtual and Consistent Hyperbolic Tree: A New Structure for Distributed Database Management
	1 Introduction
	2 Related Work
	3 Hyperbolic Geometry
	4 Topology of the Servers
	5 Storage and Retrieval of Data Objects
	5.1 Storage Query Processing
	5.2 Lookup Query Processing

	6 Evaluation
	6.1 Spatial Shape of the VCH-tree
	6.2 Load Balancing in the VCH-tree
	6.3 Storage and Retrieval Efficiency in the VCH-tree

	7 Conclusion
	References

	EPiC: Efficient Privacy-Preserving Counting for MapReduce
	1 Introduction
	2 Problem Statement
	2.1 Cloud Counting
	2.2 Privacy
	2.3 MapReduce

	3 EPiC Protocol
	3.1 EPiC Overview
	3.2 Counting on a Single Field
	3.3 Counting Patterns Defined by a Boolean Formula
	3.4 Optimization Through Arithmetization in GF(2)
	3.5 Encryption
	3.6 Detailed Protocol Description
	3.7 Privacy Analysis

	4 Evaluation
	5 Related Work
	6 Conclusion
	References

	A Thrifty Universal Construction
	1 Introduction
	2 Model and Definitions
	3 Thrifty Lock-Free Construction
	3.1 Algorithm Description
	3.2 Correctness

	4 Thrifty Universal Construction
	4.1 Algorithm Description
	4.2 Correctness

	5 Complexity
	6 Concluding Remarks
	6.1 Optimizations
	6.2 Lock-Freedom vs Wait-Freedom

	References

	Knowledgeable Chunking
	1 Introduction
	2 Related Work
	3 Dataset
	4 Experiment
	5 Results
	6 Conclusions
	References

	Enhancing Readers-Writers Exclusion with Upgrade/Downgrade Primitives
	1 Introduction
	1.1 The Readers-Writers Exclusion Problem
	1.2 Comparison to Previous Work

	2 Problem Specification
	3 The Algorithm
	3.1 Process Status
	3.2 Procedure Naming Convention

	References

	Context-Based Query Expansion Method for Short Queries Using Latent Semantic Analyses
	Abstract
	1 Introduction
	2 The Context-Based Query Expansion Method
	2.1 Query Recommendation Algorithm
	2.2 Language Model
	2.3 Latent Semantic Analyses for Query Expansion

	3 Experimental Results
	4 Conclusion
	References

	Towards a Formal Semantics and Analysis of BPMN Gateways
	1 Introduction
	2 Preliminaries
	2.1 Business Process Modeling Notation (BPMN)
	2.2 Max+ Algebra

	3 Formal Models for BPMN Using Max+ Algebra
	3.1 Cumulative Application and Firing Condition
	3.2 Parallel Gateway Pattern
	3.3 Exclusive Gateway Pattern
	3.4 Inclusive Gateway Pattern

	4 Conclusion
	References

	A User Centered Design Approach for Transactional Service Adaptation in Context Aware Environment
	Abstract
	1 Introduction
	2 Background
	2.1 Context-Awareness
	2.2 Transactional Service

	3 User-Centered Adaptation Approach
	3.1 CATS Specification
	3.2 Adaptation Metamodel

	4 Adaptation Mechanism
	5 Related Work
	6 Conclusion
	References

	A Self-stabilizing PIF Algorithm for Educated Unique Process Selection
	1 Introduction
	2 Notation
	3 Algorithm
	3.1 Educated Selection Based on Local States
	3.2 Educated Selection Based on Global Configurations

	4 Conclusion
	References

	Coalitional Game Theory for Cooperative Transmission in VANET: Internet Access via Fixed and Mobile Gateways
	1 Introduction
	2 System Model
	3 Coalitional Game Approach
	4 Numerical Results
	5 Conclusion
	References

	Performance Evaluation for Ad hoc Routing Protocols in Realistic Physical Layer
	Abstract
	1 Introduction
	2 Routing and Protocol Classification
	3 Media Transmission Error
	4 Radio Propagation Models
	5 Simulation and Results
	5.1 Simulation Environment
	5.2 Simulation Results

	6 Conclusion
	References

	Understanding Cloud Storage Services Usage: A Practical Case Study
	1 Introduction
	2 Related Work
	3 Case Study: Cloud Storage Services at UMinho
	4 Results of Data Analysis
	5 Conclusions
	References

	Towards an Optimal Pricing for Mobile Virtual Network Operators
	1 Introduction
	2 User's View: Frequency and Power Control
	3 Provider's View: Tariff Control Without Leased Band
	4 Provider's View: Tariff Control with Leased Band
	5 Numerical Results
	6 Conclusion
	References

	Modeling and Implementation Approach to Evaluate the Intrusion Detection System
	1 Introduction
	2 Experiment Design and Results
	2.1 Network Design
	2.2 Senario 1: EIDS and SNORT Reactions to High-Speed Network Traffic
	2.3 Senario 2: EIDS and SNORT Reactions to Heavy-Traffic Networks
	2.4 Senario 3: EIDS and SNORT Reactions to Large Packets
	2.5 Senario 4: EIDS and SNORT Reactions to Generate the Number of Alerts (Attack Detection Rate)
	2.6 Discussion of results

	3 Conclusion
	References

	Trust Based Energy Preserving Routing Protocol in Multi-hop WSN
	Abstract
	1 Introduction
	2 Proposed Solution
	3 Performance and Evaluation
	4 Conclusion
	References

	Author Index

