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Abstract. Fault diagnosis and detection play a crucial role in every
system for its safe operation and long life. Condition monitoring is an
applicable and effective method of maintenance techniques in the fault
diagnosis of rotating machinery. In this paper two outstanding heuristic
classification approaches, namely Artificial Neural Network (ANN) and
Support Vector Machine (SVM) with four different kernel functions are
applied to classify the condition of a real centrifugal pump belonging to
petroleum industry into five different faults through six features which
are: flow, temperature, suction pressure, discharge pressure, velocity and
vibration. To increase the power of our classifiers, they are trained and
tuned by Genetic Algorithm (GA) which is an effective evolutionary
optimisation method. The experiments are done once with normal data
and another time with noisy data in order to examine how robust the
approaches are. Finally, the classification results of ANN-GA, SVM-GA,
pure ANN and SVM (without GA enhancements) along with other two
practical classification algorithms, namely K-Nearest Neighbours (KNN)
and Decisions Tree, are compared together in terms of different aspects.

Keywords: Artificial Neural Network (ANN) · Support Vector Machine
(SVM) · Genetic Algorithm (GA) · Fault diagnosis · Centrifugal pump

1 Introduction

The role of centrifugal pumps is of great importance in many industries. Hence,
condition monitoring of them is absolutely necessary to prevent early failure,
production line breakdown and to improve plant safety, efficiency and reliability.
Furthermore, pumps, compressors and piping are causes of the major equipment
failure in oil and gas plants. Centrifugal pumps are sensitive to: (1) variation
in liquid condition (i.e. viscosity, specific gravity, and temperature), (2) Suction
variation, such as pressure and availability of a continuous volume of fluid, and
(3) variation in demand. Some of failure reasons are induced by captivation,
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hydraulic instability, or other system related problems. Others are the direct
result of improper maintenance, maintenance-related problems, improper lubri-
cation, misalignment, unbalance, seal leakage, and a variety of others in which
machine reliability is periodically affected.

In this research, we use the data of a real centrifugal pump used in a petro-
leum industry located in the south of Iran. The data consists of 7 columns, the
first six are features, i.e. flow, temperature, suction pressure, discharge pressure,
velocity and vibration. The last column i s the fault class related to those fea-
tures ranged from 1 to 5. Table 1 shows an example of the given data and our
problem of fault classification.

Table 1. A row of the given data sheet containing values of the six features and the
related fault type and under that a row of features without the fault type which should
be diagnosed by us.

Flow Temperature Suction pressure Discharge pressure Velocity Vibration Fault type

57 96 20 700 3.5 7.67 3

a b c d e f ?

Considering the above explanations, our problem is to devise precise intelli-
gent approaches which receive a number of data sheet’s rows, learn the pattern
behind the features and given fault types, and finally, are themselves able to
detect faults by giving them only the features’ values afterwards. Obviously,
approaches with less errors or misclassification are more favourable. Due to the
fact that failure diagnosis by human is time consuming and human errors may
happen, using artificial intelligence and machine learning classification methods
has gained popularity to develop a diagnostic scheme. Artificial Neural Net-
works (ANNs), which are inspired from the biological nervous systems, have
been widely used by researchers in the field of classification. Support Vector
Machine (SVM) presented by Vapnik 1995 [15] is a strong classification method
based on the Structural Risk Minimisation (RSM). The application of SVM in
classification is called Support Vector Classification (SVC). Hence, SVM and
SVC mean exactly the same in this paper.

The reminder of this paper is organised as follows: In Sect. 2 a review of the
related literature and different methods used for fault classification of pumps and
similar devices are presented. Our ANN and SVC approaches are described in
Sect. 3. Section 4 contains the results and comparisons of the all methods applied.
Finally, conclusions and a recommendation for future research are covered in
Sect. 5.

2 Related Work

In this section we aim at presenting an overview of the methods applied to
classifying and clustering faults in centrifugal pumps and the likes. Researchers of
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this field have widely used Artificial Intelligence (AI) due to its applicability and
capability in learning complicated patterns and accurate classification. Sun et al.
2012 [13] review Computational Intelligence (CI) approaches for oil-immersed
power transformer maintenance by discussing historical developments and by
presenting state-of-the-art fault diagnosis methods.

ANNs, which are of prominent approaches in AI, have been chosen as classifier
in many papers. As some examples: Unal et al. 2014 [14] propose an ANN based
fault estimation algorithm verified with experimental tests and promising results.
Their ANN model was modified using a genetic algorithm providing an optimal
skilful fast-reacting network architecture with improved classification results.
In Azadeh et al. 2013 [2] a unique flexible algorithm is proposed for condition
monitoring of a centrifugal pump into two different states based on ANN and
SVM with hyper-parameters optimisation.

SVM has gained a considerable popularity among the surveys done in recent
years. In Bacha et al. 2012 [3] an intelligent fault classification with a SVM
approach is applied to power transformer Dissolved Gas Analysis (DGA). An
application of the SVM in multiclass gear-fault diagnosis is studied by Bansal
et al. 2013 [4]. Bordoloi & Tiwari 2014 [5] attempt the multi-fault classification
of gears by SVM learning technique using frequency domain data. Fai & Zhang
2014 [6] applied support vector machine with genetic algorithm to fault diagnosis
of a power transformer in which genetic algorithm is used to select appropriate
free parameters of SVM.

An improved Ant Colony Optimisation (IACO) algorithm is proposed in
Li et al. 2013 [9] to determine the parameters of SVM and then it is applied to
the rolling element bearing fault detection. Gryllias and Antoniadis [7] propose
a hybrid two stage one-against-all SVM approach for the automated diagnosis
of defective rolling element bearings. In Muralidharan et al. 2014 [12] the appli-
cation of SVM algorithm in the field of fault diagnosis and condition monitoring
are discussed. Wang et al. 2014 [16] develop a noise-based intelligent method for
Engine Fault Diagnosis (EFD), so-called HHT–SVM model based on the tech-
niques of Hilbert-Huang Transform (HHT) and Support Vector Machine (SVM).
Zhu et al. 2014 [19] train a multi-class SVM to achieve a prediction model by
using Particle Swarm Optimisation (PSO) to seek the optimal parameters.

Other methods are used in this area as well. For instance: The survey of
Lei et al. 2013 [8] summarises the recent research and development of Empirical
Mode Decomposition (EMD) in fault diagnosis of rotating machinery. Azadeh
et al. 2010 [1] provide a correct and timely diagnosis mechanism of pump failures
by knowledge acquisition through a fuzzy rule-based inference system which
could approximate human reasoning. The study of Muralidharan & Sugumaran
2013 [11] uses vibration signals for fault diagnosis of centrifugal pumps using
wavelet analysis. Zhang and Nadi 2007 [18] propose three Genetic Programming
based approaches for solving multi-class classification problems in roller bearing
fault detection.

At last it is worth mentioning that although rarely but clustering approaches
are used in the field of fault detection. Zogg et al. 2006 [20] is an example
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that simplifies known clustering techniques and introduces new vector clustering
techniques for faults of heat pumps.

3 Description of the Applied Methods

In this section detailed explanations on the structure of our employed ANN and
SVC (SVM) methods are given. Afterwards, we describe how GA is combined
with these two classification approaches and illustrate the overall procedure of
the devised integrated ANN-GA and SVC-GA algorithms.

3.1 The ANN-GA Framework

In machine learning, Artificial Neural Networks are a family of statistical learn-
ing algorithms inspired by biological neural networks. They are mainly used for
function approximation, pattern recognition and classification. ANNs are pre-
sented as systems of interconnected “neurons” which can compute values and
the combination of them leads to a network that can learn a complicated pattern
between inputs and outputs. An ANN consists of nodes as neurons in different
layers. Each node transmits a final value to nodes of the next layer. This value
can be obtained by a function in the node called the activation function. The
first layer has neurons equal to the number of inputs, whereas the last layer
has neurons equal to the outputs. Between these two layers some hidden layers
may exist to boost the ability of the ANN. For our classification problem we
need an ANN that receives the values of six features as inputs and diagnoses
the fault type based on them. Figure 1 depicts the structure of the applied ANN
with nodes and the activation functions to convert a series of features to a fault
type. The Network is fed by the six inputs and send them to all of the 3 neurons
considered for the next layer. In each neuron i of the middle layer the weighted
sum of inputs plus a constant number bi is computed which is called Ti of the
neuron, Ti = wi1x1 +wi2x2 + ...+wi6x6 + bi. The three values resulted from this
layer are sent to the last layer consisted of only one neuron. This last neuron
acts exactly like the neurons of the previous layer and returns the weighted sum

of the received values added by a constant b4, E =
3∑

i=1

liTi + b4. Finally E goes

through a step function, which determines the final output of the network or the
fault class based on the amounts of ci.

We summarise the main parameters of this network, which have a crucial
effect on its performance in matrices:

W =

∣∣∣∣∣∣

w1,1 w1,2 w1,3

w2,1 w2,2 w2,3

w3,1 w3,2 w3,3

∣∣∣∣∣∣

B = [b1, b2, b3, b4] , L = [l1, l2, l3, ], C = [c1, c2, c3, c4].
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Fig. 1. The structure of the applied ANN for fault classification

Choosing the best amounts for the above parameters can improve the classi-
fication performance of the ANN but it is a very difficult task to adjust them on
the best or optimal values. Hence, besides the conventional training methods,
we apply Genetic Algorithm, which is a powerful evolutionary optimisation algo-
rithm and is able to obtain solution of good qualities in real time. For detailed
explanation of GA, readers are referred to M.D.Vose 1999 [10]. Due the fact
that these parameters are continuous, we use the continuous version of GA in
which the values of the parameters are considered as genes and they constitute
a chromosome together. The initial population is generated by producing 200
chromosomes. The fitness of each chromosome is evaluated based on the below
function:

Fitness function = 1 − percentage of correct predicted classes = 1 − Nc

NT

Where Nc is the number of correct predicted faults and NT is the total
number of predictions. The algorithm seeks to minimise the above fit-
ness function iteration by iteration to reach a near optimal solution in
the end. The main characteristics of the applied GA are as follows:
Population size = 200, Crossover percentage = 0.7,Mutation percentage =
0.3,Maximum of Iterations = 100

Figure 2 illustrates the procedure of our combined ANN-GA algorithm.
According to the figure, firstly, the initial amounts of (W,B,L,C) are set. The
data sheet is divided to training data set and testing data set. GA begins to opti-
mise the amount of parameters by its selection, crossover and mutation oper-
ators. The algorithm terminates by reaching the maximum of iterations and
determines the best found values for ANN parameters. Then these values are
used for fault detections afterwards.

3.2 The SVM-GA Framework

In SVM (SVC), we have a set of training input D = {(x1, x2), ..., (xi, yi)}, where
x ∈ Rd and y ∈ {−1, 1} is the class label, i = 1, ..., l. The method seeks to find
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Fig. 2. The procedure of the applied ANN-GA algorithm

a separating hyper plane that maximises the distance to the nearest data points
of each class. This goal is met by minimising the following objective function:

Max
1
2
‖w‖2 + C

l∑

i=1

εi (1)

Subject to yi[WT .Φ(xi)] ≥ 1 − εi (2)

εi ≥ 0, i = 1, ..., l

This model is called soft margin SVM and εi handles misclassification, w is a
weight vector, b is bias and C is the misclassification penalty to trade-off between
the model complicity and training error. In equation (2), Φ(xi) is a non-linear
function and maps the input data to a high dimensional feature space where
data can be separated linearly. Considering necessary condition for optimality,
one can turn the above minimization problem into the following dual form:

Max
l∑

i=1

αi − 1
2

l∑

i=1

l∑

j=1

αiαjK(xi, xj) (3)

Subject to

l∑

i=1

αiyi = 0 (4)

0 ≤ αi ≤ C, i = 1, ..., l,
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where K(xi, xj) is a kernel function representing the inner product of
〈Φ(xi), Φ(xj)〉 and αi is a Lagrangian multiplier. Solving the dual problem leads
to the optimal separating hyper plane as following:

∑

SV

αiyiK(xi, xj) + b = 0. (5)

The optimal classifying rule is:

f = sgn(b + αi[yiK(xi, xj)]), (6)

where SV is the set of support vectors that the corresponding Lagrangian mul-
tipliers are positive for them. Figure 3 shows how a soft margin SVM with linear
separating hyper plane divides the data into two classes.

Fig. 3. Linear seperating hyper planes in soft margin SVM

We used the following kernel functions in our SVC for the fault diagnosis of
the centrifugal pump:

Polynomial : K(xi, xj) = (γ. < xi, xj > +s)d (7)

Gaussian basis function : K(xi, xj) = −γ.‖xi − xj‖2 (8)

Linear : K(xi, xj) =< xi, xj > (9)

Quadratic : K(xi, xj) = (< xi, xj > +1)2 (10)

As the parameters, i.e. C,γ,s, of SVM like those of ANN can strongly affect
its performance, properly adjusting them can considerably improve it. Hence,
other than conventional methods, these parameters are determined with the GA
used for ANN. Considering the fact that SVM can only divide the data into two
groups and there are 5 fault classes in our problem to be classified, we should
implement SVM four times after each other. Each run of SVM classifies one
fault from the remaining ones and has its own training process. Figures 4 and 5
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Fig. 5. The procedure of the applied SVM-GA

illustrate the framework of our SVM-GA algorithm. As it is shown by Fig. 5, the
initial parameters of SVM are set at first. Then the GA searches in the space
of parameter amounts for each of the 4 runs separately and as it terminates for
each, it begins with the parameter setting of the next one. Finally, when the
parameters have been tuned for all the runs, the procedures ends with the best
values found.

Figure 6 illustrates the fitness function values of SVM-GA with Gaussian
kernel function from the first up to the last iteration of GA.
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4 Results and Comparisons

In this section we present a brief overview of the achieved results. We have alto-
gether 100 rows of data. For feeding the algorithms, 70 % of data are randomly
considered for training and 30 % as testing data. To make the data noisy for
testing the robustness of the approaches, 0.1 is added to 30 % of columns 1, 3,
and 6 of the data sheet. Table 2 shows percentage of correct fault diagnosis of
pure GA and SVM methods without GA improvements and Fig. 7 depicts this
amounts visually. SVM-Gaussian has the best performance and a good robust-
ness. SVC-Linear is in the second position but it has the highest robustness
among all. SVC-Quadratic, ANN and SVC-Polynomial are in the next ranks. It
is worth mentioning that ANN has the worst robustness.

Table 2. Correct diagnosis proportion of the pure ANN and SVM

ANN SVM

Linear Quadratic Gaussian Polynomial

Normal 0.8 0.866 0.833 0.933 0.8

Noisy 0.7 0.8333 0.766 0.866 0.733

0,65

0,7

0,75

0,8

0,85

0,9

0,95

1

ANN SVC-Linear SVC-Quadratic SVC-Gaussian SVC-Polynomial

Normal

Noisy

Fig. 7. Correct diagnosis of the pure ANN and SVM with Normal and Noisy Data
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To show the superiority of our ANN-GA and SVM-GA, the diagnosis exper-
iments are also done with K-Nearest Neighbours (KNN) and Decision Tree,
which are of high rated classification methods. Table 3 and Fig. 8 show these
performance comparisons. According to the results, SVM-Gaussian has again
the best performance among all and GA enhancement has enabled it to detect
faults in all cases correctly both in normal and noisy environment. Therefore,
it is the most robust as well, together with SVM-GA-linear. ANN-GA performs
worse than SVM-GA with all the kernels in terms of correctness, and considering
robustness, SVM-GA is superior except for the case of polynomial function which
results almost the same as ANN-GA. Finally, the worst diagnosis performances
belong to KNN and Decision Tree.

Table 3. Correct diagnosis proportion of ANN-GA, SVM-GA, KNN and Decision Tree
with Normal and Noisy Data

ANN-GA SVM-GA KNN Decision Tree

Linear Quadratic Gaussian Polynomial

Normal 0.866 0.9 0.833 0.933 1 0.9 0.666

Noisy 0.733 0.9 0.866 1 0.766 0.533 0.5

Fig. 8. Correct diagnosis proportion of ANN-GA, SVM-GA, KNN and Decision Tree
with Normal and Noisy Data

To show the GA effects on ANN and SVM, the performance improvements
are depicted by Fig. 9. The largest improvement is for SVM-Gaussian in noisy
condition and lowest for SVM-Polynomial in noisy condition.

For Comparisons of the methods in detail, McNemar’s tests are executed
and the results are tabulated as Table 4 to examine which model outperforms
the others significantly. McNemar’s is a nonparametric statistical test for two
related nominal samples with a null hypothesis of marginal homogeneity in 2×2
contingency tables. A detailed explanation on McNemar’s test is provided in
Webb et al. 2011 [17]. If the significance level is set to 10 %, then a p-value
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Fig. 9. The improvement of methods by GA

less than 0.1 shows that models vary significantly. The tests for SVC and SVC-
GA are done with their best kernel function which is Gaussian according to the
accuracy results.

Table 4. MCNemar’s test results (p-values)

ANN-GA SVM ANN Decision Tree KNN

Normal environment

SVC-GA 0.1336 0.4795 0.0412 0.0044 0.0044

ANN-GA 0.6171 0.4795 0.0771 0.0412

SVC 0.1336 0.0133 0.0133

ANN 0.1138 0.0771

Decision Tree 0.7518

Noisy environment

SVC-GA 0.1333 0.1336 0.0077 0.0003 0.0003

ANN-GA 0.2207 1 0.0455 0.0771

SVC 0.1306 0.0026 0.0044

ANN 0.771 0.1824

Decision tree 1

At the end of this section, we perform 10-fold cross-validation to evaluate
the validity of models. For this sake, the data sheet is divided into 10 even
subsets, then each of them is once used as the test dataset and the other 9
as training dataset. Finally, the averages of models’ accuracies (proportion of
correct predicted fault types) are considered for models’ validity evaluation. The
average of models’ accuracies are presented in Table 5.

5 Conclusion

In this paper we presented fault classification algorithms by combination of two
intelligent machine learning methods, namely ANN and SVM, with Genetic
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Table 5. Average of accuracies in 10 fold

Normal environment Noisy environment

SVC-GA 0.95 0.95

SVC 0.9 0.85

ANN-GA 0.85 0.75

ANN 0.85 0.8

KNN 0.6 0.6

Decision tree 0.6 0.5

Algorithm. The results showed that GA can significantly improve the perfor-
mance of the classifiers. The performances of all employed algorithms, i.e. ANN,
ANN-GA, SVC, SVC-GA, KNN and Decision Tree, were compared by different
tests in normal and noisy condition. The comparisons showed that SVM with
Gaussian kernel function had the best accuracy in correct fault diagnosis and an
excellent robustness against noise. It was also observed that SVM is superior to
ANN in most of the cases. For future research in this direction, testing the ability
of other optimisation algorithms to improve ANN, SVM and other classification
methods is recommended.
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