
PUDA – Privacy and Unforgeability
for Data Aggregation

Iraklis Leontiadis(B), Kaoutar Elkhiyaoui, Melek Önen, and Refik Molva

EURECOM, Sophia Antipolis, France
{iraklis.leontiadis,kaoutar.elkhiyaoui,melek.onen,refik.molva}@eurecom.fr

Abstract. Existing work on secure data collection and secure aggrega-
tion is mainly focused on confidentiality issues. That is, ensuring that
the untrusted Aggregator learns only the aggregation result without
divulging individual data inputs. In this paper however we consider a
malicious Aggregator which is not only interested in compromising users’
privacy but also is interested in providing bogus aggregate values. More
concretely, we extend existing security models with the requirement of
aggregate unforgeability. Moreover, we instantiate an efficient protocol
for private and unforgeable data aggregation that allows the Aggregator
to compute the sum of users’ inputs without learning individual values
and constructs a proof of correct computation that can be verified by
any third party. The proposed protocol is provably secure and its com-
munication and computation overhead is minimal.

1 Introduction

With the advent of Big Data, research on privacy preserving data collection and
analysis is culminating as users continuously produce data which once aggre-
gated becomes very valuable. Often scenarios regarding data analysis involve
an Aggregator which collects individual data from multiple (independent) users
to compute useful statistics, these statistics are generally forwarded to Data
Analyzers whose role is to extract insightful information about the entire user
population. Various motivating examples for the aforementioned generic scenario
exist in the real-world:

– The analysis of different user profiles and the derivation of statistics can help
recommendation engines provide targeted advertisements. In such scenarios a
service provider would collect data from each individual user (i.e.: on-line pur-
chases), thus acting as an Aggregator, and compute an on-demand aggregate
value upon receiving a request from the advertisement company. The latter
will further infer some statistics acting as a Data Analyzer, in order to send
the appropriate advertisements to each category of users.

– Data aggregation is a promising tool in the field of healthcare research. Differ-
ent types of data, sensed by body sensors (eg. blood pressure), are collected
on a large scale by Aggregators. Health scientists who act as Data Analyzers

c© Springer International Publishing Switzerland 2015
M. Reiter and D. Naccache (Eds.): CANS 2015, LNCS 9476, pp. 3–18, 2015.
DOI: 10.1007/978-3-319-26823-1 1



4 I. Leontiadis et al.

infer statistical information from these data without accessing the individ-
ual inputs (for privacy reasons). An aggregate value computed over a large
population would give very useful information for deriving statistical models,
evaluating therapeutic performance or learning the likelihood of upcoming
patients’ diseases.

Unfortunately, existing solutions only focus on the problem of data confi-
dentiality and consider the Aggregator to be honest-but-curious: the Aggregator
wants to discover the content of each individual data, but performs the aggre-
gation operation correctly. In this paper we consider a more powerful security
model by assuming a malicious Aggregator: The Aggregator may provide a bogus
aggregate value to the Data Analyzer. In order to protect against such a mali-
cious behavior, we propose that along with the aggregate value, the Aggregator
provides a proof of the correctness of the computation of the aggregate result
to the Data Analyzer. For efficiency reasons, we require that the Data Analyzer
verifies the correctness of the computation without communicating with users in
the system.

The underlying idea of our solution is that each user encrypts its data accord-
ing to Shi et al. [17] scheme using its own secret encryption key, and sends the
resulting ciphertext to the untrusted Aggregator. Users, also homomorphically
tag their data using two layers of randomness with two different keys and forward
the tags to the Aggregator. The latter computes the sum by applying operations
on the ciphertexts and derives a proof of computation correctness from the tags.
The Aggregator finally sends the result and the proof to the Data Analyzer. In
addition to ensuring obliviousness against the Aggregator and the Data Ana-
lyzer (i.e. neither the Data Analyzer nor the Aggregator learns individual data
inputs), the proposed protocol assures public verifiablity : any third party can
verify the correctness of the aggregate value.

To the best of our knowledge we are the first to define a model for Privacy
and Unforgeability for Data Aggregation (PUDA). We also instantiate a PUDA
scheme that supports:

– A multi-user setting where multiple users produce personal sensitive data
without interacting with each other.

– Privacy of users’ individual data.
– Public verifiability of the aggregate value.

2 Problem Statement

We are envisioning a scenario whereby a set of users U = {Ui}n
i=1 are pro-

ducing sensitive data inputs xi,t at each time interval t. These individual data
are first encrypted into ciphertexts ci,t and further forwarded to an untrusted
Aggregator A. Aggregator A aggregates all the received ciphertexts, decrypts the
aggregate and forwards the resulting plaintext to a Data Analyzer DA together
with a cryptographic proof that assures the correctness of the aggregation oper-
ation, which in this paper corresponds to the sum of the users’ individual data.



PUDA – Privacy and Unforgeability for Data Aggregation 5

An important criterion that we aim to fulfill in this paper is to ensure that Data
Analyzer DA verifies the correctness of the Aggregator’s output without com-
promising users’ privacy. Namely, at the end of the verification operation, both
Aggregator A and Data Analyzer DA learn nothing, but the value of the aggre-
gation. While homomorphic signatures proposed in [4,10] seem to answer the
verifiability requirement, authors in those papers only consider scenarios where
a single user generates data.

In the aim of assuring both individual user’s privacy and unforgeable aggrega-
tion, we first come up with a generic model for privacy preserving and unforgeable
aggregation that identifies the algorithms necessary to implement such function-
alities and defines the corresponding privacy and security models. Furthermore,
we propose a concrete solution which combines an already existing privacy pre-
serving aggregation scheme [17] with an additively homomorphic tag designed for
bilinear groups.

Notably, a scheme that allows a malicious Aggregator to compute the sum
of users’ data in privacy preserving manner and to produce a proof of correct
aggregation will start by first running a setup phase. During setup, each user
receives a secret key that will be used to encrypt the user’s private input and
to generate the corresponding authentication tag; the Aggregator A and the
Data Analyzer DA on the other hand, are provided with a secret decryption
key and a public verification key, respectively. After the key distribution, each
user sends its data encrypted and authenticated to Aggregator A, while making
sure that the computed ciphertext and the matching authentication tag leak no
information about its private input. On receiving users’ data, Aggregator A first
aggregates the received ciphertexts and decrypts the sum using its decryption
key, then uses the received authentication tags to produce a proof that demon-
strates the correctness of the decrypted sum. Finally, Data Analyzer DA verifies
the correctness of the aggregation, thanks to the public verification key.

2.1 PUDA Model

A PUDA scheme consists of the following algorithms:

– Setup(1κ) → (P,SKA, {SKi}Ui∈U,VK): It is a randomized algorithm which on
input of a security parameter κ, this algorithm outputs the public parameters
P that will be used by subsequent algorithms, the Aggregator A’s secret key
SKA, the secret keys SKi of users Ui and the public verification key VK.

– EncTag(t,SKi, xi,t) → (ci,t, σi,t): It is a randomized algorithm which on inputs
of time interval t, secret key SKi of user Ui and data xi,t, encrypts xi,t to get
a ciphertext ci,t and computes a tag σi,t that authenticates xi,t.

– Aggregate(SKA, {ci,t}Ui∈U, {σi,t}Ui∈U) → (sumt, σt): It is a deterministic algo-
rithm executed by the Aggregator A. It takes as inputs Aggregator A’s secret
key SKA, ciphertexts {ci,t}Ui∈U and authentication tags {σi,t}Ui∈U, and out-
puts the sum sumt of the values {xi,t}Ui∈U in cleartext and a proof σt of
correctness for sumt.



6 I. Leontiadis et al.

– Verify(VK, t, sumt, σt) → {0, 1}: It is a deterministic algorithm that is exe-
cuted by the Data Analyzer DA. It outputs 1 if Data Analyzer DA is
convinced that proof σt corresponds to the sum sumt =

∑
Ui∈U

{xi,t}, where
xi,t are individual data inputs at time interval t of user Ui; and 0 otherwise.

2.2 Security Model

In this paper, we only focus on the adversarial behavior of Aggregator A. The
rationale behind this, is that Aggregator A is the only party in the protocol
that sees all the messages exchanged during the protocol execution: Namely,
Aggregator A has access to users’ ciphertexts. It follows that by ensuring security
properties against the Aggregator, one by the same token, ensures these security
properties against both Data Analyzer DA and external parties.

In accordance with previous work [11,17], we formalize the property of Aggre-
gator obliviousness, which ensures that at the end of a protocol execution, Aggre-
gator A only learns the sum of users’ inputs and nothing else. Also, we enhance
the security definitions of data aggregation with the notion of aggregate unforge-
ability. As the name implies, aggregate unforgeability guarantees that Aggregator
A cannot forge a valid proof σt for a sum sumt that was not computed correctly
from users’ inputs (i.e. cannot generate a proof for sumt �= ∑

xi,t).

Aggregator Obliviousness. Aggregator Obliviousness ensures that when
users Ui provide Aggregator A with ciphertexts ci,t and authentication tags
σi,t, Aggregator A cannot reveal any information about individual inputs
xi,t, other than the sum value

∑
xi,t. We extend the existing definition of

Aggregator Obliviousness (cf. [11,13,17]) so as to capture the fact that Aggrega-
tor A not only has access to ciphertexts ci,t, but also has access to the authentica-
tion tags σi,t that enable Aggregator A to generate proofs of correct aggregation.

Similarly to the work of [11,17], we formalize Aggregator obliviousness using
an indistinguishability-based game in which Aggregator A accesses the following
oracles:

– OSetup: When called by Aggregator A, this oracle initializes the system para-
meters; it then gives the public parameters P, the Aggregator’s secret key
SKA and public verification key VK to A.

– OCorrupt: When queried by Aggregator A with a user Ui’ s identifier uidi, this
oracle provides Aggregator A with Ui’s secret key denoted SKi.

– OEncTag: When queried with time t, user Ui’s identifier uidi and a data point
xi,t, this oracle outputs the ciphertext ci,t and the authentication tag σi,t of
xi,t.

– OAO: When called with a subset of users S ⊂ U and with two time-series
X 0

t∗ = (Ui, t, x
0
i,t)Ui∈S and X 1

t∗ = (Ui, t, x
1
i,t)Ui∈S such that

∑
x0

i,t =
∑

x1
i,t,

this oracle flips a random coin b ∈ {0, 1} and returns an encryption of the
time-serie (Ui, t, x

b
i,t)Ui∈S (that is the tuple of ciphertexts {cb

i,t}Ui∈S and the
corresponding authentication tags {σb

i,t}Ui∈S.



PUDA – Privacy and Unforgeability for Data Aggregation 7

Aggregator A is accessing the aforementioned oracles during a learning phase
(cf. Algorithm 1) and a challenge phase (cf. Algorithm 2). In the learning phase,
A calls oracle OSetup which in turn returns the public parameters P, the public
verification key VK and the Aggregator’s secret key SKA. It also interacts with
oracle OCorrupt to learn the secret keys SKi of users Ui, and oracle OEncTag to get
a set of ciphertexts ci,t and authentication tags σi,t.

In the challenge phase, Aggregator A chooses a subset S
∗ of users that

were not corrupted in the learning phase, and a challenge time interval t∗ for
which it did not make an encryption query. Oracle OAO then receives two time-
series X 0

t∗ = (Ui, t
∗, x0

i,t∗)Ui∈S∗ and X 1
t∗ = (Ui, t

∗, x1
i,t∗)Ui∈S∗ from A, such that

∑
x0

i,t∗ =
∑

Ui∈S∗ x1
i,t∗ . Then oracle OAO flips a random coin b

$← {0, 1} and
returns to A the ciphertexts {cb

i,t∗}Ui∈S∗ and the matching authentication tags
{σb

i,t∗}Ui∈S∗ .
At the end of the challenge phase, Aggregator A outputs a guess b∗ for the

bit b.
We say that Aggregator A succeeds in the Aggregator obliviousness game, if

its guess b∗ equals b.

Algorithm 1. Learning phase of the obliviousness game
(P,SKA,VK) ← OSetup(1κ);
// A executes the following a polynomial number of times
SKi ← OCorrupt(uidi);
// A is allowed to call OEncTag for all users Ui

(ci,t, σi,t) ← OEncTag(t, uidi, xi,t);

Algorithm 2. Challenge phase of the obliviousness game
A → t∗, S∗;
A → X 0

t∗ , X 1
t∗ ;

(cb
i,t∗ , σb

i,t∗)Ui∈S∗ ← OAO(X 0
t∗ , X 1

t∗);
A → b∗ ;

Definition 1 (Aggregator Obliviousness). Let Pr[AAO] denote the proba-
bility that Aggregator A outputs b∗ = b. Then an aggregation protocol is said to
ensure Aggregator obliviousness if for any polynomially bounded Aggregator A
the probability Pr[AAO] ≤ 1

2 + ε(κ), where ε is a negligible function and κ is the
security parameter.

Aggregate Unforgeability. We augment the security requirements of data
aggregation with the requirement of aggregate unforgeability. More precisely, we
assume that Aggregator A is not only interested in compromising the privacy
of users participating in the data aggregation protocol, but is also interested
in tampering with the sum of users’ inputs. That is, Aggregator A may some-
times have an incentive to feed Data Analyzer DA erroneous sums. Along these



8 I. Leontiadis et al.

Algorithm 3. Learning phase of the aggregate unforgeability game
(P, SKA,VK) ← OSetup(1

κ);
// A executes the following a polynomial number of times
// A is allowed to call OEncTag for all users Ui

(ci,t, σi,t) ← OEncTag(t, uidi, xi,t);

Algorithm 4. Challenge phase of the aggregate unforgeability game
(t∗, sumt∗ , σt∗) ← A

lines, we define aggregate unforgeability as the security feature that ensures that
Aggregator A cannot convince Data Analyzer DA to accept a bogus sum, as
long as users Ui in the system are honest (i.e. they always submit their correct
input and do not collude with the Aggregator A).

In compliance with previous work [7,10] on homomorphic signatures, we
formalize aggregate unforgeability via a game in which Aggregator A accesses
oracles OSetup and OEncTag. Furthermore, given the property that anyone holding
the public verification key VK can execute the algorithm Verify, we assume that
Aggregator A during the unforgeability game runs the algorithm Verify by itself.

As shown in Algorithm 3, Aggregator A enters the aggregate unforgeability
game by querying the oracle OSetup with a security parameter κ. Oracle OSetup

accordingly returns public parameters P, verification key VK and the secret
key SKA of Aggregator A. Moreover, Aggregator A calls oracle OEncTag with
tuples (t, uidi, xi,t) in order to receive the ciphertext ci,t encrypting xi,t and
the matching authenticating tag σi,t, both computed using user Ui’s secret key
SKi. Note that for each time interval t, Aggregator A is allowed to query oracle
OEncTag for user Ui only once. In other words, Aggregator A cannot submit two
distinct queries to oracle OEncTag with the same time interval t and the same user
identifier uidi. Without loss of generality, we suppose that for each time interval
t, Aggregator A invokes oracle OEncTag for all users Ui in the system.

At the end of the aggregate unforgeability game (see Algorithm 4), Aggregator
A outputs a tuple (t∗, sumt∗ , σt∗). We say that Aggregator A wins the aggregate
unforgeability game if one of the following statements holds:

1. Verify(VK, t∗, sumt∗ , σt∗) → 1 and Aggregator A never made a query to oracle
OEncTag that comprises time interval t∗. In the remainder of this paper, we
denote this type of forgery Type I Forgery.

2. Verify(VK, t∗, sumt∗ , σt∗) → 1 and Aggregator A has made a query to oracle
OEncTag for time t∗, however the sum sumt∗ �= ∑

Ui
xi,t∗ . In what follows, we

call this type of forgery Type II Forgery.

Definition 2 (Aggregate Unforgeability). Let Pr[AAU] denote the proba-
bility that Aggregator A wins the aggregate unforgeability game, that is, the
probability that Aggregator A outputs a Type I Forgery or Type II Forgery
that will be accepted by algorithm Verify.



PUDA – Privacy and Unforgeability for Data Aggregation 9

An aggregation protocol is said to ensure aggregate unforgeability if for any
polynomially bounded aggregator A, Pr[AAU] ≤ ε(κ), where ε is a negligible
function in the security parameter κ.

3 Idea of our PUDA Protocol

– A homomorphic encryption algorithm that allows the Aggregator to compute
the sum without divulging individual data.

– A homomorphic tag that allows each user to authenticate the data input xi,t,
in such a way that the Aggregator can use the collected tags to construct
a proof that demonstrates to the Data Analyzer DA the correctness of the
aggregated sum.

Concisely, a set of non-interacting users are connected to personal services
and devices that produce personal data. Without any coordination, each user
chooses a random tag key tki and sends an encoding tki thereof to the key dealer.
After collecting all encoded keys tki, the key dealer publishes the corresponding
public verification key VK. This verification key is computed as a function of the
encodings tki. Later, the key dealer gives to each user in the system an encryption
key eki that will be used to compute the user’s ciphertexts. Accordingly, the
secret key of each user SKi is defined as the pair of tag key tki and encryption
key eki. Finally, the key dealer provides the Aggregator with secret key SKA

computed as the sum of encryption keys eki and goes off-line.
Now at each time interval t, each user employs its secret key SKi to compute

a ciphertext based on the encryption algorithm of Shi et al. [17] and a homomor-
phic tag on its sensitive data input. When the Aggregator collects the ciphertexts
and the tags from all users, it computes the sum sumt of users’ data and a match-
ing proof σt, and forwards the sum and the proof to the Data Analyzer. At the
final step of the protocol, the Data Analyzer verifies with the verification key
VK and proof σt the validity of the result sumt.

Thanks to the homomorphic encryption algorithm of Shi et al. [17] and the
way in which we construct our homomorphic tags, we show that our protocol
ensures Aggregator Obliviousness. Moreover, we show that the Aggregator cannot
forge bogus results. Finally, we note that the Data Analyzer DA does not keep
any state with respect to users’ transcripts be they ciphertexts or tags, but it
only holds the public verification key, the sum sumt and the proof σt.

4 PUDA Instantiation

Let G1,G2,GT be three cyclic groups of large prime order p and g1, g2 be gen-
erators of G1,G2 accordingly. We say that e is a bilinear map, if the following
properties are satisfied:

1. bilinearity : e(ga
1 , gb

2) = e(g1, g2)ab, for all g1, g2 ∈ G1 × G2 and a, b ∈ Zp.
2. Computability : there exists an efficient algorithm that computes e(ga

1 , gb
2) for

all g1, g2 ∈ G1 × G2 and a, b ∈ Zp.



10 I. Leontiadis et al.

3. Non-degeneracy : e(g1, g2) �= 1.

To encrypt users’ data homomorphically, we employ the discrete logarithm
based encryption scheme of Shi et al. [17]:

4.1 Shi-Chan-Rieffel-Chow-Song Scheme

– Setup(1κ): Let G1 be a group of large prime order p. A trusted key dealer
KD selects a hash function H : {0, 1}∗ → G1 . Furthermore, KD selects secret
encryption keys eki ∈ Zp uniformly at random. KD distributes to each user
Ui the secret key eki and sends the corresponding decryption key SKA =
−∑n

i=1 eki to the Aggregator.
– Encrypt(eki, xi,t): Each user Ui encrypts the value xi,t using its secret encryp-

tion key eki and outputs the ciphertext ci,t = H(t)ekigxi,t

1 ∈ G1.
– Aggregate({ci,t}n

i=1, {σi,t}n
i=1,SKA): Upon receiving all the ciphertexts

{ci,t}n
i=1, the Aggregator computes: Vt = (

∏n
i=1 ci,t)H(t)SKA =

H(t)
∑n

i=1 ekig
∑n

i=1 xi,t

1 H(t)−∑n
i=1 eki = g

∑n
i=1 xi,t

1 ∈ G1. Finally A learns the
sum sumt =

∑n
i=1 xi,t ∈ Zp by computing the discrete logarithm of Vt on the

base g1. The sum computation is correct as long as
∑n

i=1 xi,t < p.

The above scheme is efficient as long as the plaintext values remain in a small
range so as to the discrete logarithm computation during Aggregate algorithm
is fast.

4.2 PUDA Scheme

In what follows we describe our PUDA protocol:

– Setup(1κ): KD outputs the parameters (p, g1, g2,G1,G2,GT ) for an efficient
computable bilinear map e : G1 ×G2 → GT , where g1 and g2 are two random
generators for the multiplicative groups G1 and G2 respectively and p is a
prime number that denotes the order of all the groups G1,G2 and GT . More-
over secret keys a, {tki}n

i=1 are selected by KD. KD publishes the verification
key VK = (vk1, vk2) = (g

∑n
i=1 tki

2 , ga
2 ) and distributes to each user Ui ∈ U the

secret key ga
1 ∈ G1, the encryption key eki and the tag key tki through a

secure channel. Thus the secret keys of the scheme are SKi = (eki, tki, g
a
1 ).

After publishing the public parameters P = (H, p, g1, g2,G1,G2,GT ) and the
verification key VK, KD goes off-line and it does not further participate in
any protocol phase.

– EncTag(t,SKi = (eki, tki, g
a
1 ), xi,t): At each time interval t each user Ui

encrypts the data value xi,t with its secret encryption key eki, using the
encryption algorithm, described in Sect. 4.1, which results in a ciphertext

ci,t = H(t)ekigxi,t

1 ∈ G1

Ui also constructs a tag σi,t with its secret tag key (tki, g
a
1 ):

σi,t = H(t)tki(ga
1 )xi,t ∈ G1

Finally Ui sends (ci,t, σi,t) to A.



PUDA – Privacy and Unforgeability for Data Aggregation 11

– Aggregate(SKA, {ci,t}Ui∈U, {σi,t}Ui∈U): Aggregator A computes the sum
sumt =

∑n
i=1 xi,t by using the Aggregate algorithm presented in Sect. 4.1.

Moreover, A aggregates the corresponding tags as follows:

σt =
n∏

i=1

σi,t =
n∏

i=1

H(t)tki(ga
1 )xi,t = H(t)

∑
tki(ga

1 )
∑

xi,t

A finally forwards sumt and σt to data analyzer DA.
– Verify(VK, t, sumt, σt): During the verification phase DA verifies the cor-

rectness of the computation with the verification key VK = (vk1, vk2) =
(g
∑

tki
2 , ga

2 ), by checking the following equality:

e(σt, g2)
?= e(H(t), vk1)e(gsumt

1 , vk2)

Verification correctness follows from bilinear pairing properties:

e(σt, g2) = e(
n∏

i=1

σi,t, g2) = e(
n∏

i=1

H(t)tkigaxi,t

1 , g2)

= e(H(t)
∑n

i=1 tkig
a
∑n

i=1 xi,t

1 , g2)

= e(H(t)
∑n

i=1 tki , g2)e(g
a
∑n

i=1 xi,t

1 , g2)

= e(H(t), g
∑n

i=1 tki
2 )e(g

∑n
i=1 xi,t

1 , ga
2 )

= e(H(t), g
∑n

i=1 tki
2 )e(gsumt

1 , ga
2 )

= e(H(t), vk1)e(gsumt
1 , vk2)

5 Analysis

5.1 Aggregator Obliviousness

Theorem 1. The proposed solution achieves Aggregator Obliviousness in the
random oracle model under the decisional Diffie-Hellman (DDH) assumption
in G1.

Due to space limitations the proof of Theorem 1 can be found in the full
version [14].

5.2 Aggregate Unforgeability

We first introduce a new assumption that is used during the security analysis
of our PUDA instantiation. Our new assumption named hereafter LEOM is a
variant of the LRSW assumption [16] which is proven secure in the generic model
[18] and used in the construction of the CL signatures [5].

The oracle OLEOM first chooses a and ki, 1 ≤ i ≤ n in Z
∗
p. Then it publishes

the tuple (g1, g
∑n

i=1 ki

2 , ga
2 ). Thereafter, the adversary picks ht ∈ G1 and makes



12 I. Leontiadis et al.

queries (ht, i, xi,t) for 1 ≤ i ≤ n to the OLEOM oracle which in turn replies with
hki

t g
axi,t

1 for 1 ≤ i ≤ n.
The adversary is allowed to query the oracle OLEOM for different ht with the

restriction that it cannot issue two queries for the same pair (ht, i).
We say that the adversary breaks the LEOM assumption, if it outputs a

tuple (z, ht, h
∑n

i=1 ki

t gaz
1 ) for a previously queried t and z �= ∑n

i=1 xi,t.

Theorem 2. (LEOM Assumption) Given the security parameter κ, the pub-
lic parameters (p, e,G1,G2, g1, g2), the public key (ga

2 , g
∑n

i=1 ki

2 ) and the oracle
OLEOM, we say that the LEOM assumption holds iff:

For all probabilistic polynomial time adversaries A, the following holds:

Pr[(z, ht, σt) ← AOLEOM(.) : z �=
n∑

i=1

xi,t ∧ σt = h
∑n

i=1 ki

t gaz
1 ] ≤ ε2(κ)

Where ε2 is a negligible function.

We show in our analysis that a Type I Forgery implies breaking the BCDH
assumption and that a Type II Forgery implies breaking the LEOM assump-
tion.

Theorem 3. Our scheme achieves aggregate unforgeability against a Type I
Forgery under BCDH assumption in the random oracle model.

Theorem 4. Our scheme guarantees aggregate unforgeability against a Type
II Forgery under the LEOM assumption in the random oracle model.

Due to space limitations, the security evidence of the LEOM assumption and
proofs for Theorems 3 and 4 are deferred to Appendix A and B.

5.3 Performance Evaluation

In this section we analyze the extra overhead of ensuring the aggregate unforge-
ability property in our PUDA instantiation scheme. First, we consider a theo-
retical evaluation with respect to the mathematical operations a participant of
the protocol be it user, Aggregator or Data Analyzer has to perform to ensure
public verifiablity. That is, the computation of the tag by each user, the proof by
the Aggregator and the verification of the proof by the Data Analyzer. We also
present an experimental evaluation that shows the practicality of our scheme.

To allow the Data analyzer to verify the correctness of computations per-
formed by an untrusted Aggregator, the key dealer distributes to each user
ga
1 , tki ∈ G1 and publishes ga

2 , g
∑n

i=1 tki
2 ∈ G2, which calls for one exponen-

tiation in G1 and 1 + n in G2. At each time interval t each user computes
σi,t = H(t)tki(ga

1 )xi,t ∈ G1, which entails two exponentiations and one mul-
tiplication in G1. To compute the proof σt, the Aggregator carries out n − 1
multiplications in G1. Finally the data analyzer verifies the validity of the aggre-
gate sum by checking the equality: e(σt, g2)

?= e(H(t), vk1)e(gsumt
1 , vk2), which



PUDA – Privacy and Unforgeability for Data Aggregation 13

Table 1. Performance of tag computation, proof construction and verification opera-
tions. l denotes the bit-size of the prime number p.

Participant Computation Communication

User 2EXP + 1MUL 2 · l
Aggregator (n − 1)MUL 2 · l
Data analyzer 3PAIR + 1EXP + 1MUL + 1HASH -

asks for three pairing evaluations, one hash in G1, one exponentiation in G1

and one multiplication in GT (see Table 1). The efficiency of PUDA stems from
the constant time verification with respect to the number of the users. This
is of crucial importance since the Data Analyzer may not be computationally
powerful.

We implemented the verification functionalities of PUDA with the Charm
cryptographic framework [1,2]. For pairing computations, it inherits the PBC [15]
library which is also written in C. All of our benchmarks are executed on Intel�

CoreT M i5 CPU M 560 @ 2.67GHz × 4 with 8GB of memory, running Ubuntu
12.04 32bit. Charm uses 3 types of asymmetric pairings: MNT159, MNT201, MNT224.
We run our benchmarks with these three different types of asymmetric pairings.
The timings for all the underlying mathematical group operations are summa-
rized in Table 3. There is a vast difference on the computation time of operations
between G1 and G2 for all the different curves. The reason is the fact that the
bit-length of elements in G2 is much larger than in G1.

As shown in Table 2, the computation of tags σi,t implies a computation
overhead at a scale of milliseconds with a gradual increase as the bit size of
the underlying elliptic curve increases. The data analyzer is involved in pairing
evaluations and computations at the target group independent of the size of the
data-users.

6 Related Work

In [12] the authors presented a solution for verifiable aggregation in case of
untrustworthy users. The solutions entails signatures on commitments of the

Table 2. Computational cost of PUDA
operations with respect to different
pairings.

Table 3. Average computation overhead
of the underlying mathematical group
operations for different type of curves.



14 I. Leontiadis et al.

secret values with non-interactive zero knowledge proofs, which are verified by
the Aggregator. Hung-Min et al. [19] employed aggregate signatures in order to
verify the integrity of the data, without addressing confidentiality issues for a
malicious Aggregator. In [6], authors proposed a solution which is based on homo-
morphic message authenticators in order to verify the computation of generic
functions on outsourced data. Each data input is authenticated with an authen-
tication tag. A composition of the tags is computed by the cloud in order to verify
the correctness of the output of a program P . Thanks to the homomorphic prop-
erties of the tags the user can verify the correctness of the program. The main
drawback of the solution is that the user in order to verify the correctness of
the computation has to be involved in computations that take exactly the same
time as the computation of the function f . Backes et al. [3] proposed a generic
solution for efficient verification of bounded degree polynomials in time less than
the evaluation of f . The solution is based on closed form efficient pseudorandom
function PRF . Contrary to our solution both solutions do not provide individual
privacy and they are not designed for a multi-user scenario.

Catalano et al. [8] employed a nifty technique to allow single users to verify
computations on encrypted data. The idea is to re-randomize the ciphertext and
sign it with a homomorphic signature. Computations then are performed on the
randomized ciphertext and the original one. However the aggregate value is not
allowed to be learnt in cleartext by the untrusted Aggregator since the protocols
are geared for cloud based scenarios.

In the multi-user setting, Choi et al. [9] proposed a protocol in which multiple
users are outsourcing their inputs to an untrusted server along with the definition
of a functionality f . The server computes the result in a privacy preserving
manner without learning the result and the computation is verified by a user
that has contributed to the function input. The users are forced to operate in a
non-interactive model, whereby they cannot communicate with each other. The
underlying machinery entails a novel proxy based oblivious transfer protocol,
which along with a fully homomorphic scheme and garbled circuits allows for
verifiability and privacy. However, the need of fully homomorphic encryption
and garbled circuits renders the solution impractical for a real world scenario.

7 Concluding Remarks

In this paper, we designed and analyzed a protocol for privacy preserving and
unforgeable data aggregation. The purpose of the protocol is to allow a data ana-
lyzer to verify the correctness of computation performed by a malicious Aggre-
gator, without revealing the underlying data to either the Aggregator or the
data analyzer. In addition to being provably secure and privacy preserving, the
proposed protocol enables public verifiability in constant time.

Acknowledgments. We thank the anonymous reviewers for their suggestions for
improving this paper. The research leading to these results was partially funded by the
FP7-USERCENTRICNETWORKING european ICT project under the grant number
611001.



PUDA – Privacy and Unforgeability for Data Aggregation 15

A Security Evidence for the LEOM Assumption

In this section we provide security evidence for the hardness of the new LEOM
assumption by presenting bounds on the success probabilities of an adversary
A which presumably breaks the assumption. We follow the theoretical generic
group model (GGM) as presented in [18]. Namely under the GGM framework
an adversary A has access to a black box that conceptualizes the underlying
mathematical group G that the assumption takes place. A without knowing any
details about the underlying group apart from its order p is asking for encodings
of its choice and the black box replies through a random encoding function ξc

that maps elements in Gc → {0, 1}�log2 p� to represent element in Gc, c ∈ [1, 2, T ].

Theorem 5. Suppose A is a polynomial probabilistic time adversary that breaks
the LEOM assumption, making at most qG oracle queries for the underlying group
operations on G1,G2,GT and the OLEOM oracle, all counted together. Then the
probability ε2 that A breaks the LEOM assumption is bounded as follows:

ε2 ≤ (qG)2

p
.

Due to space limitations we include the proof in the full version [14].

B Aggregate Unforgeability

Theorem 3. Our scheme achieves Aggregate Unforgeability for a Type I
Forgery under BCDH assumption in the random oracle model.

Proof. We show how to build an adversary B that solves BCDH in (G1,G2,GT ).
Let g1 and g2 be two generators for G1 and G2 respectively. B receives the
challenge (g1, g2, ga

1 , gb
1, g

c
1, g

a
2 , gb

2) from the BCDH oracle OBCDH and is asked to
output e(g1, g2)abc ∈ GT . B simulates the interaction with A in the Learning
phase as follows:
Setup:

– To simulate the OSetup oracle B selects uniformly at random 2n keys {eki}n
i=1,

{tki}n
i=1 ∈ Zp and outputs the public parameters P = (κ, p, g1, g2,G1,G2) the

verification key VK = (vk1, vk2) = (gb
∑n

i=1 tki
2 , ga

2 ) and the secret key of the
Aggregator SKA = −∑n

i=1 eki.

Learning Phase

– A is allowed to query the random oracle H for any time interval . B constructs
a H − list and responds to A query as follows:
1. If query t already appears in a tuple H-tuple〈t : rt, coin(t),H(t)〉 of the

H − list it responds to A with H(t).



16 I. Leontiadis et al.

2. Otherwise it selects a random number rt ∈ Zp and flips a random
coin

$← {0, 1}. With probability π, coin(t) = 0 and B answers with
H(t) = grt

1 . Otherwise if coin(t) = 1 then B responds with H(t) = gcrt
1 and

updates the H − list with the new tuple H-tuple〈t : rt, coin(t),H(t)〉.
– Whenever A submits a query (t, uidi, xi,t) to the OA

EncTag, B responds as
follows:

1. B calls the simulated random oracle, receives the result for H(t) and
appends the tuple H-tuple〈t : rt, coin(t),H(t)〉 to the H − list.

2. If coin(t) = 1 then B stops the simulation.
3. Otherwise it chooses the secret tag key tki where i = uidi to be used

as secret tag key from the set of {tki} keys, chosen by B in the Setup
phase.

4. B sends to A the tag σi,t = grtbtki
1 g

axi,t

1 = H(t)btkig
axi,t

1 , which is a
valid tag for the value xi,t. Notice that B can correctly compute the tag
without knowing a and b from the BCDH problem parameters ga

1 , gb
1.

5 B chooses also a secret encryption key eki ∈ {eki}n
i=1 ∈ Zp and computes

the ciphertext as ci,t = H(t)ekigxi,t

1 . The simulation is correct since A
can check that the sum

∑n
i=1 xi,t corresponds to the ciphertexts given by

B with its decryption key SKA = −∑n
i=1 eki, considering the adversary

has made distinct encryption queries for all the n users in the scheme at
a time interval t.

Now, when B receives the forgery (sumt
∗, σt

∗) at time interval t �= t∗, it
continues if sumt

∗ �= Σt. B first queries the H-tuple for time t∗ in order to fetch
the appropriate tuple.

– If coin(t∗) = 0 then B aborts.
– If coin(t∗) = 1 then since A outputs a valid forged σt

∗ at t∗, it is true that
the following equation should hold:

e(σt
∗, g2) = e(H(t∗), vk1)e(gsumt

∗
1 , vk2)

which is true when A makes n queries for time interval t∗ for distinct users to
the OA

EncTag oracle during the Learning phase. As such σt
∗ = g

crtb
∑

tki
1 gasumt

∗
1 .

Finally B outputs:

e((
σt

∗

gasumt
∗

1

)
1

rt
∑

tki , ga
2 ) = e((

g
crtb

∑
tki

1 gasumt
∗

1

gasumt
∗

1

)
1

rt
∑

tki , ga
2 ) =

e((gcrtb
∑

tki
1 )

1
rt
∑

tki , ga
2 ) = e(gbc

1 , ga
2 ) = e(g1, g2)abc

Let AAU1 be the event when A successfully forges a Type I forgery σt for our
PUDA protocol that happens with some non-negligible probability ε′. event0 is
the event when coin = 0 in the learning phase and event1 is the event when coin =
1 in the challenge phase. Then Pr[BBCDH] = Pr[event0] Pr[event1] Pr[AAU2] =
π(1 − π)qH−1ε′, for qH random oracle queries with the probability Pr[coin(t) = 0]
= π. As such we ended up in a contradiction assuming the hardness of the BCDH
assumption and finally Pr[AAU1] ≤ ε1, where ε1 is a negligible function.



PUDA – Privacy and Unforgeability for Data Aggregation 17

Theorem 4. Our scheme guarantees aggregate unforgeability against a Type
II Forgery under the LEOM assumption.

Proof (Sketch). Here we show how an adversary B breaks the LEOM assump-
tion by using an Aggregator A that provides a Type II Forgery with a non-
negligible probability. Notably, adversary B simulates oracle OSetup as follows: It
first picks secret encryptions keys {eki}n

i=1 and sets the corresponding decryp-
tion key SKA = −∑n

i=1 eki. Then, it forwards to A the public parameters
P = (p, g1, g2,G1,G2), the public key (vk1, vk2) = (g

∑n
i=1 ki

2 , ga
2 ) of the OLEOM

oracle and the secret key SKA = −∑n
i=1 eki.

Afterwards, when adversary B receives a query (t, uidi, xi,t) for oracle OEncTag,
adversary B calls oracle OLEOM with the pair (ht = H(t), i, xi,t). Oracle OLEOM

accordingly returns hki
t g

axi,t

1 and adversary B outputs σi,t = hki
t g

axi,t

1 . Note that
if we define the tag key tki of user Ui as ki, then the tag σi,t = hki

t g
axi,t

1 is
computed correctly.

Eventually with a non-negligible advantage, Aggregator A outputs a Type
II Forgery (t∗, sumt∗ , σt∗) that verifies:

e(σt∗ , g2) = e(H(t∗), vk1)e(g
sumt∗
1 , vk2)

where t∗ is previously queried by Aggregator A and sumt∗ �= ∑n
i=1 x(i,t∗).

It follows that B breaks the LEOM assumption with a non-negligible proba-
bility by outputting the tuple (H(t∗), sumt∗ , σt∗). This leads to a contradiction
under the LEOM assumption. We conclude that our scheme guarantees aggregate
unforgeability for a Type II Forgery under the LEOM assumption.

References

1. Akinyele, J.A., Green, M., Rubin, A.D.: Charm: a tool for rapid cryptographic
prototyping. http://www.charm-crypto.com/Main.html

2. Akinyele, J.A., Green, M., Rubin, A.D.: Charm: a framework for rapidly proto-
typing cryptosystems. IACR Cryptology ePrint Archive, 2011:617 (2011). http://
eprint.iacr.org/2011/617.pdf

3. Backes, M., Fiore, D., Reischuk, R.M.: Verifiable delegation of computation on
outsourced data. In: ACM Conference on Computer and Communications Security,
pp. 863–874 (2013)

4. Boneh, D., Gentry, C., Lynn, B., Shacham, H.: Aggregate and verifiably encrypted
signatures from bilinear maps. In: EUROCRYPT, pp. 416–432 (2003)

5. Camenisch, J.L., Lysyanskaya, A.: Signature schemes and anonymous credentials
from bilinear maps. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp.
56–72. Springer, Heidelberg (2004)

6. Catalano, D., Fiore, D.: Practical homomorphic MACs for arithmetic circuits. In:
Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp.
336–352. Springer, Heidelberg (2013)

7. Catalano, D., Fiore, D., Warinschi, B.: Homomorphic signatures with efficient ver-
ification for polynomial functions. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO
2014, Part I. LNCS, vol. 8616, pp. 371–389. Springer, Heidelberg (2014)

http://www.charm-crypto.com/Main.html
http://eprint.iacr.org/2011/617.pdf
http://eprint.iacr.org/2011/617.pdf


18 I. Leontiadis et al.

8. Catalano, D., Marcedone, A., Puglisi, O.: Authenticating Computation on Groups:
New Homomorphic Primitives and Applications. In: Sarkar, P., Iwata, T. (eds.)
ASIACRYPT 2014, Part II. LNCS, vol. 8874, pp. 193–212. Springer, Heidelberg
(2014)

9. Choi, S.G., Katz, J., Kumaresan, R., Cid, C.: Multi-client non-interactive verifi-
able computation. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 499–518.
Springer, Heidelberg (2013)

10. Freeman, D.M.: Improved security for linearly homomorphic signatures: a generic
framework. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS,
vol. 7293, pp. 697–714. Springer, Heidelberg (2012)

11. Joye, M., Libert, B.: A scalable scheme for privacy-preserving aggregation of time-
series data. In: Sadeghi, A.-R. (ed.) FC 2013. LNCS, vol. 7859, pp. 111–125.
Springer, Heidelberg (2013)

12. Kursawe, K., Danezis, G., Kohlweiss, M.: Privacy-friendly aggregation for the
smart-grid. In: Fischer-Hübner, S., Hopper, N. (eds.) PETS 2011. LNCS, vol. 6794,
pp. 175–191. Springer, Heidelberg (2011)

13. Leontiadis, I., Elkhiyaoui, K., Molva, R.: Private and dynamic time-series data
aggregation with trust relaxation. In: Gritzalis, D., Kiayias, A., Askoxylakis, I.
(eds.) CANS 2014. LNCS, vol. 8813, pp. 305–320. Springer, Heidelberg (2014)

14. Leontiadis, I., Elkhyaoui, K., Önen, M., Molva, R.: Private and unforgeable data
aggregation. IACR Cryptology ePrint Archive (2015). http://eprint.iacr.org/2015/
562.pdf

15. Lynn, B.: The stanford pairing based crypto library. http://crypto.stanford.edu/
pbc

16. Lysyanskaya, A., Rivest, R., Sahai, A., Wolf, S.: Pseudonym systems. In: Heys, H.,
Adams, C. (eds.) Selected Areas in Cryptography. LNCS, vol. 1758, pp. 184–199.
Springer, Berlin Heidelberg (2000)

17. Shi, E., Chan, T.-H.H., Rieffel, E.G., Chow, R., Song, D.: Privacy-preserving aggre-
gation of time-series data. In: NDSS (2011)

18. Shoup, V.: Lower bounds for discrete logarithms and related problems. In: Fumy,
W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 256–266. Springer, Heidelberg
(1997)

19. Sun, H.-M., Lin, Y.-H., Hsiao, Y.-C., Chen, C.-M.: An efficient and verifiable con-
cealed data aggregation scheme in wireless sensor networks. In: International Con-
ference on Embedded Software and Systems, ICESS 2008, pp. 19–26, July 2008

http://eprint.iacr.org/2015/562.pdf
http://eprint.iacr.org/2015/562.pdf
http://crypto.stanford.edu/pbc
http://crypto.stanford.edu/pbc

	PUDA -- Privacy and Unforgeability for Data Aggregation
	1 Introduction
	2 Problem Statement
	2.1 PUDA Model
	2.2 Security Model

	3 Idea of our PUDA Protocol
	4 PUDA Instantiation
	4.1 Shi-Chan-Rieffel-Chow-Song Scheme
	4.2 PUDA Scheme

	5 Analysis
	5.1 Aggregator Obliviousness
	5.2 Aggregate Unforgeability
	5.3 Performance Evaluation

	6 Related Work
	7 Concluding Remarks
	A Security Evidence for the LEOM Assumption
	B Aggregate Unforgeability
	References


