
Michael Reiter
David Naccache (Eds.)

 123

LN
CS

 9
47

6

14th International Conference, CANS 2015
Marrakesh, Morocco, December 10–12, 2015
Proceedings

Cryptology and
Network Security

Lecture Notes in Computer Science 9476

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zürich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7410

http://www.springer.com/series/7410

Michael Reiter • David Naccache (Eds.)

Cryptology and
Network Security
14th International Conference, CANS 2015
Marrakesh, Morocco, December 10–12, 2015
Proceedings

123

Editors
Michael Reiter
Department of Computer Science
UNC Chapel Hill
Chapel Hill, NC
USA

David Naccache
Départment d’Informatique
Ecole Normale Supérieure
Paris
France

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-26822-4 ISBN 978-3-319-26823-1 (eBook)
DOI 10.1007/978-3-319-26823-1

Library of Congress Control Number: 2015954619

LNCS Sublibrary: SL4 – Security and Cryptology

Springer Cham Heidelberg New York Dordrecht London
© Springer International Publishing Switzerland 2015
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

Springer International Publishing AG Switzerland is part of Springer Science+Business Media
(www.springer.com)

Preface

These proceedings contain the papers accepted for presentation at the 14th International
Conference on Cryptology and Network Security, held in Marrakesh, Morocco, during
December 10–12, 2015. A total of 12 full papers and six short papers were accepted by
a Program Committee of 42 experts in the areas of network security and cryptology.
Full papers were accompanied by a 30-minute presentation at the meeting, and short
papers were allowed 20 minutes.

The reviewing period began immediately after the submission deadline of June 19,
2015. Papers received an average of 3.5 reviews each, with a minimum of three and a
maximum of six. After reviews were submitted, the merits of each paper were debated
by the reviewers via the conference reviewing website; no face-to-face Program
Committee meeting was held. Notifications of acceptance or rejection were sent to
authors on August 28, 2015.

In addition to these papers, the conference featured two invited keynote presenta-
tions. Andrew Clark, Visiting Professor at the Information Security Group, Department
of Mathematics, Royal Holloway University of London, delivered a keynote lecture
entitled “Finding Evidence in the Internet of Everything” on the first day of the con-
ference. Gilles Barthe, Research Professor at the IMDEA Software Institute, presented
“Towards High-Assurance Cryptographic Implementations” on the second day of the
conference.

We are grateful to the authors of all papers submitted to the conference; to the
Program Committee members; to other colleagues who assisted the Program Com-
mittee in reviewing for the conference, including Vincenzo Iovino, Jean Lancrenon,
Florian Lugou, Yanjiang Yang, Tsz Hon Yuen, and Yongjun Zhao; to our invited
speakers; and to the Steering Committee and General Chair of the conference.

October 2015 Michael Reiter
David Naccache

Organization

General Chair

Anas Abou El Kalam IGS-IPI, France

Program Committee Chairs

David Naccache École Normale Supérieure, France
Michael K. Reiter University of North Carolina at Chapel Hill, USA

Organizing Chair

Jean Philippe Leroy Institut de Poly-Informatique Groups IGS, France

Program Committee Members

Ludovic Apvrille Télécom ParisTech, France
Feng Bao Hauwei, China
Sasha Boldyreva Georgia Tech, USA
Stephen Checkoway Johns Hopkins University, USA
Hao Chen UC Davis, USA
Liqun Chen HP Labs, UK
Sherman S.M. Chow Chinese University Hong Kong, SAR China
Jean-Sebastien Coron University of Luxembourg, Luxembourg
Manuel Costa Microsoft Research, UK
George Danezis University College London, UK
Eric Diehl Sony Pictures Entertainment, USA
Itai Dinur École Normale Supérieure, France
Tudor Dumitras University of Maryland, College Park, USA
Aggelos Kiayias University of Athens, Greece
Jean Louis Lanet University of Limoges, France
Anja Lehmann IBM Zurich, Switzerland
Tancrède Lepoint CryptoExperts, France
Cristina Nita-Rotaru University of Purdue, USA
Alina Oprea RSA Labs, USA
Victor Patriciu Military Technical Academy, Romania
Rene Peralta NIST, USA
Benny Pinkas Bar Ilan University, Israel
Christina Pöpper Ruhr-Universität Bochum, Germany
Bart Preneel Katholieke University Leuven, Belgium
Reza Reyhanitabar EPFL, Switzerland

Mark Ryan University of Birmingham, UK
Peter Y.A. Ryan University of Luxembourg, Luxembourg
Ahmad-Reza Sadeghi TU Darmstadt, Germany
Rei Safavi-Naini University of Calgary, Canada
Damien Sauveron University of Limoges, France
Emil Simion Polytechnic University Bucharest, Romania
Thomas Souvignet Gendarmerie Nationale, France
Rainer Steinwandt Florida Atlantic University, USA
Willy Susilo University of Wollongong, Australia
Mehdi Tibouchi NTT Secure Platform Laboratories, Japan
Cristian Toma Academic Economic Studies Bucharest, Romania
Ingrid Verbauwhede Katholieke University Leuven, Belgium
Guilin Wang Huawei, China
Ting-Fang Yen DataVisor, USA
Lei Zhang East China Normal University, China

Steering Committee

Yvo Desmedt University of Texas, USA
Juan A. Garay Yahoo! Labs, USA
Amir Herzberg Bar Ilan University, Israel
Yi Mu University of Wollongong, Australia
David Pointcheval CNRS and ENS Paris, France
Huaxiong Wang Nanyang Technical University, Singapore

Local Arrangements Committee

Imane Bouij-Pasquier ENSA Marrakech, Morocco
Youssef Bentaleb CMRPI, Morocco
Jean Philippe Leroy IGS-IPI, France
Hicham Medroumi ENSEM, Morocco
Steeve Augoula Artimia, France
M. Ouabiba de Montfort Artimia, France
Chary Meryem AB Sec, Morocco
Larbi Bessa IGS-IPI, France
Jean Marie Mahé IGS-IPI, France
Benhadou Siham ENSEM, Morocco
Youssef Saoubou ENSEM - IGS-IPI, France
Ismail Rachdaoui ENSEM - IGS-IPI, France
Mounia EL Anbal ENSEM - IGS-IPI, France
Raja Mouachi SFFSM
Abdeljalil Agnaou ENSA, Morocco
Sanaa Ibjaoun ENSA - University Valanciennes, France

VIII Organization

Contents

Internet of Things and Privacy

PUDA – Privacy and Unforgeability for Data Aggregation 3
Iraklis Leontiadis, Kaoutar Elkhiyaoui, Melek Önen, and Refik Molva

A Security Framework for Internet of Things . 19
Imane Bouij-Pasquier, Anas Abou El Kalam, Abdellah Ait Ouahman,
and Mina De Montfort

Privacy-Aware Authentication in the Internet of Things 32
Hannes Gross, Marko Hölbl, Daniel Slamanig, and Raphael Spreitzer

Password-Based Authentication

Security of Linear Secret-Sharing Schemes Against Mass Surveillance. 43
Irene Giacomelli, Ruxandra F. Olimid, and Samuel Ranellucci

Secure Set-Based Policy Checking and Its Application
to Password Registration . 59

Changyu Dong and Franziskus Kiefer

SEPM: Efficient Partial Keyword Search on Encrypted Data 75
Yutaka Kawai, Takato Hirano, Yoshihiro Koseki, and Tatsuji Munaka

Attacks and Malicious Code

Bad Sounds Good Sounds: Attacking and Defending Tap-Based Rhythmic
Passwords Using Acoustic Signals . 95

S. Abhishek Anand, Prakash Shrestha, and Nitesh Saxena

iDeFEND: Intrusion Detection Framework for Encrypted Network Data 111
Fatih Kilic and Claudia Eckert

On the Weaknesses of PBKDF2 . 119
Andrea Visconti, Simone Bossi, Hany Ragab, and Alexandro Calò

Security Modeling and Verification

Verifiable Random Functions from (Leveled) Multilinear Maps 129
Bei Liang, Hongda Li, and Jinyong Chang

http://dx.doi.org/10.1007/978-3-319-26823-1_1
http://dx.doi.org/10.1007/978-3-319-26823-1_2
http://dx.doi.org/10.1007/978-3-319-26823-1_3
http://dx.doi.org/10.1007/978-3-319-26823-1_4
http://dx.doi.org/10.1007/978-3-319-26823-1_5
http://dx.doi.org/10.1007/978-3-319-26823-1_5
http://dx.doi.org/10.1007/978-3-319-26823-1_6
http://dx.doi.org/10.1007/978-3-319-26823-1_7
http://dx.doi.org/10.1007/978-3-319-26823-1_7
http://dx.doi.org/10.1007/978-3-319-26823-1_8
http://dx.doi.org/10.1007/978-3-319-26823-1_9
http://dx.doi.org/10.1007/978-3-319-26823-1_10

A Formal Environment for MANET Organization and Security 144
Aida Ben Chehida Douss, Ryma Abassi, Nihel Ben Youssef,
and Sihem Guemara El Fatmi

Analysis and Implementation of an Efficient Ring-LPN Based
Commitment Scheme. 160

Helger Lipmaa and Kateryna Pavlyk

Secure Multi-party Computation

Practical Password-Based Authentication Protocol for Secret Sharing
Based Multiparty Computation . 179

Ryo Kikuchi, Koji Chida, Dai Ikarashi, and Koki Hamada

Bandwidth-Optimized Secure Two-Party Computation of Minima 197
Jan Henrik Ziegeldorf, Jens Hiller, Martin Henze, Hanno Wirtz,
and Klaus Wehrle

Outsourcing Secure Two-Party Computation as a Black Box 214
Henry Carter, Benjamin Mood, Patrick Traynor, and Kevin Butler

Cryptography and VPNs

What Users Should Know About Full Disk Encryption Based on LUKS 225
Simone Bossi and Andrea Visconti

Q-OpenVPN: A New Extension of OpenVPN Based on a Quantum
Scheme for Authentication and Key Distribution . 238

Aymen Ghilen, Mostafa Azizi, and Ridha Bouallegue

An LTE-Based VPN for Enhancing QoS and Authentication in Smallcell
Enterprise Networks . 248

Maroua Gharam, Meriem Salhi, and Noureddine Boudriga

Author Index . 257

X Contents

http://dx.doi.org/10.1007/978-3-319-26823-1_11
http://dx.doi.org/10.1007/978-3-319-26823-1_12
http://dx.doi.org/10.1007/978-3-319-26823-1_12
http://dx.doi.org/10.1007/978-3-319-26823-1_13
http://dx.doi.org/10.1007/978-3-319-26823-1_13
http://dx.doi.org/10.1007/978-3-319-26823-1_14
http://dx.doi.org/10.1007/978-3-319-26823-1_15
http://dx.doi.org/10.1007/978-3-319-26823-1_16
http://dx.doi.org/10.1007/978-3-319-26823-1_17
http://dx.doi.org/10.1007/978-3-319-26823-1_17
http://dx.doi.org/10.1007/978-3-319-26823-1_18
http://dx.doi.org/10.1007/978-3-319-26823-1_18

Internet of Things and Privacy

PUDA – Privacy and Unforgeability
for Data Aggregation

Iraklis Leontiadis(B), Kaoutar Elkhiyaoui, Melek Önen, and Refik Molva

EURECOM, Sophia Antipolis, France
{iraklis.leontiadis,kaoutar.elkhiyaoui,melek.onen,refik.molva}@eurecom.fr

Abstract. Existing work on secure data collection and secure aggrega-
tion is mainly focused on confidentiality issues. That is, ensuring that
the untrusted Aggregator learns only the aggregation result without
divulging individual data inputs. In this paper however we consider a
malicious Aggregator which is not only interested in compromising users’
privacy but also is interested in providing bogus aggregate values. More
concretely, we extend existing security models with the requirement of
aggregate unforgeability. Moreover, we instantiate an efficient protocol
for private and unforgeable data aggregation that allows the Aggregator
to compute the sum of users’ inputs without learning individual values
and constructs a proof of correct computation that can be verified by
any third party. The proposed protocol is provably secure and its com-
munication and computation overhead is minimal.

1 Introduction

With the advent of Big Data, research on privacy preserving data collection and
analysis is culminating as users continuously produce data which once aggre-
gated becomes very valuable. Often scenarios regarding data analysis involve
an Aggregator which collects individual data from multiple (independent) users
to compute useful statistics, these statistics are generally forwarded to Data
Analyzers whose role is to extract insightful information about the entire user
population. Various motivating examples for the aforementioned generic scenario
exist in the real-world:

– The analysis of different user profiles and the derivation of statistics can help
recommendation engines provide targeted advertisements. In such scenarios a
service provider would collect data from each individual user (i.e.: on-line pur-
chases), thus acting as an Aggregator, and compute an on-demand aggregate
value upon receiving a request from the advertisement company. The latter
will further infer some statistics acting as a Data Analyzer, in order to send
the appropriate advertisements to each category of users.

– Data aggregation is a promising tool in the field of healthcare research. Differ-
ent types of data, sensed by body sensors (eg. blood pressure), are collected
on a large scale by Aggregators. Health scientists who act as Data Analyzers

c© Springer International Publishing Switzerland 2015
M. Reiter and D. Naccache (Eds.): CANS 2015, LNCS 9476, pp. 3–18, 2015.
DOI: 10.1007/978-3-319-26823-1 1

4 I. Leontiadis et al.

infer statistical information from these data without accessing the individ-
ual inputs (for privacy reasons). An aggregate value computed over a large
population would give very useful information for deriving statistical models,
evaluating therapeutic performance or learning the likelihood of upcoming
patients’ diseases.

Unfortunately, existing solutions only focus on the problem of data confi-
dentiality and consider the Aggregator to be honest-but-curious: the Aggregator
wants to discover the content of each individual data, but performs the aggre-
gation operation correctly. In this paper we consider a more powerful security
model by assuming a malicious Aggregator: The Aggregator may provide a bogus
aggregate value to the Data Analyzer. In order to protect against such a mali-
cious behavior, we propose that along with the aggregate value, the Aggregator
provides a proof of the correctness of the computation of the aggregate result
to the Data Analyzer. For efficiency reasons, we require that the Data Analyzer
verifies the correctness of the computation without communicating with users in
the system.

The underlying idea of our solution is that each user encrypts its data accord-
ing to Shi et al. [17] scheme using its own secret encryption key, and sends the
resulting ciphertext to the untrusted Aggregator. Users, also homomorphically
tag their data using two layers of randomness with two different keys and forward
the tags to the Aggregator. The latter computes the sum by applying operations
on the ciphertexts and derives a proof of computation correctness from the tags.
The Aggregator finally sends the result and the proof to the Data Analyzer. In
addition to ensuring obliviousness against the Aggregator and the Data Ana-
lyzer (i.e. neither the Data Analyzer nor the Aggregator learns individual data
inputs), the proposed protocol assures public verifiablity : any third party can
verify the correctness of the aggregate value.

To the best of our knowledge we are the first to define a model for Privacy
and Unforgeability for Data Aggregation (PUDA). We also instantiate a PUDA
scheme that supports:

– A multi-user setting where multiple users produce personal sensitive data
without interacting with each other.

– Privacy of users’ individual data.
– Public verifiability of the aggregate value.

2 Problem Statement

We are envisioning a scenario whereby a set of users U = {Ui}n
i=1 are pro-

ducing sensitive data inputs xi,t at each time interval t. These individual data
are first encrypted into ciphertexts ci,t and further forwarded to an untrusted
Aggregator A. Aggregator A aggregates all the received ciphertexts, decrypts the
aggregate and forwards the resulting plaintext to a Data Analyzer DA together
with a cryptographic proof that assures the correctness of the aggregation oper-
ation, which in this paper corresponds to the sum of the users’ individual data.

PUDA – Privacy and Unforgeability for Data Aggregation 5

An important criterion that we aim to fulfill in this paper is to ensure that Data
Analyzer DA verifies the correctness of the Aggregator’s output without com-
promising users’ privacy. Namely, at the end of the verification operation, both
Aggregator A and Data Analyzer DA learn nothing, but the value of the aggre-
gation. While homomorphic signatures proposed in [4,10] seem to answer the
verifiability requirement, authors in those papers only consider scenarios where
a single user generates data.

In the aim of assuring both individual user’s privacy and unforgeable aggrega-
tion, we first come up with a generic model for privacy preserving and unforgeable
aggregation that identifies the algorithms necessary to implement such function-
alities and defines the corresponding privacy and security models. Furthermore,
we propose a concrete solution which combines an already existing privacy pre-
serving aggregation scheme [17] with an additively homomorphic tag designed for
bilinear groups.

Notably, a scheme that allows a malicious Aggregator to compute the sum
of users’ data in privacy preserving manner and to produce a proof of correct
aggregation will start by first running a setup phase. During setup, each user
receives a secret key that will be used to encrypt the user’s private input and
to generate the corresponding authentication tag; the Aggregator A and the
Data Analyzer DA on the other hand, are provided with a secret decryption
key and a public verification key, respectively. After the key distribution, each
user sends its data encrypted and authenticated to Aggregator A, while making
sure that the computed ciphertext and the matching authentication tag leak no
information about its private input. On receiving users’ data, Aggregator A first
aggregates the received ciphertexts and decrypts the sum using its decryption
key, then uses the received authentication tags to produce a proof that demon-
strates the correctness of the decrypted sum. Finally, Data Analyzer DA verifies
the correctness of the aggregation, thanks to the public verification key.

2.1 PUDA Model

A PUDA scheme consists of the following algorithms:

– Setup(1κ) → (P,SKA, {SKi}Ui∈U,VK): It is a randomized algorithm which on
input of a security parameter κ, this algorithm outputs the public parameters
P that will be used by subsequent algorithms, the Aggregator A’s secret key
SKA, the secret keys SKi of users Ui and the public verification key VK.

– EncTag(t,SKi, xi,t) → (ci,t, σi,t): It is a randomized algorithm which on inputs
of time interval t, secret key SKi of user Ui and data xi,t, encrypts xi,t to get
a ciphertext ci,t and computes a tag σi,t that authenticates xi,t.

– Aggregate(SKA, {ci,t}Ui∈U, {σi,t}Ui∈U) → (sumt, σt): It is a deterministic algo-
rithm executed by the Aggregator A. It takes as inputs Aggregator A’s secret
key SKA, ciphertexts {ci,t}Ui∈U and authentication tags {σi,t}Ui∈U, and out-
puts the sum sumt of the values {xi,t}Ui∈U in cleartext and a proof σt of
correctness for sumt.

6 I. Leontiadis et al.

– Verify(VK, t, sumt, σt) → {0, 1}: It is a deterministic algorithm that is exe-
cuted by the Data Analyzer DA. It outputs 1 if Data Analyzer DA is
convinced that proof σt corresponds to the sum sumt =

∑
Ui∈U

{xi,t}, where
xi,t are individual data inputs at time interval t of user Ui; and 0 otherwise.

2.2 Security Model

In this paper, we only focus on the adversarial behavior of Aggregator A. The
rationale behind this, is that Aggregator A is the only party in the protocol
that sees all the messages exchanged during the protocol execution: Namely,
Aggregator A has access to users’ ciphertexts. It follows that by ensuring security
properties against the Aggregator, one by the same token, ensures these security
properties against both Data Analyzer DA and external parties.

In accordance with previous work [11,17], we formalize the property of Aggre-
gator obliviousness, which ensures that at the end of a protocol execution, Aggre-
gator A only learns the sum of users’ inputs and nothing else. Also, we enhance
the security definitions of data aggregation with the notion of aggregate unforge-
ability. As the name implies, aggregate unforgeability guarantees that Aggregator
A cannot forge a valid proof σt for a sum sumt that was not computed correctly
from users’ inputs (i.e. cannot generate a proof for sumt �= ∑

xi,t).

Aggregator Obliviousness. Aggregator Obliviousness ensures that when
users Ui provide Aggregator A with ciphertexts ci,t and authentication tags
σi,t, Aggregator A cannot reveal any information about individual inputs
xi,t, other than the sum value

∑
xi,t. We extend the existing definition of

Aggregator Obliviousness (cf. [11,13,17]) so as to capture the fact that Aggrega-
tor A not only has access to ciphertexts ci,t, but also has access to the authentica-
tion tags σi,t that enable Aggregator A to generate proofs of correct aggregation.

Similarly to the work of [11,17], we formalize Aggregator obliviousness using
an indistinguishability-based game in which Aggregator A accesses the following
oracles:

– OSetup: When called by Aggregator A, this oracle initializes the system para-
meters; it then gives the public parameters P, the Aggregator’s secret key
SKA and public verification key VK to A.

– OCorrupt: When queried by Aggregator A with a user Ui’ s identifier uidi, this
oracle provides Aggregator A with Ui’s secret key denoted SKi.

– OEncTag: When queried with time t, user Ui’s identifier uidi and a data point
xi,t, this oracle outputs the ciphertext ci,t and the authentication tag σi,t of
xi,t.

– OAO: When called with a subset of users S ⊂ U and with two time-series
X 0

t∗ = (Ui, t, x
0
i,t)Ui∈S and X 1

t∗ = (Ui, t, x
1
i,t)Ui∈S such that

∑
x0

i,t =
∑

x1
i,t,

this oracle flips a random coin b ∈ {0, 1} and returns an encryption of the
time-serie (Ui, t, x

b
i,t)Ui∈S (that is the tuple of ciphertexts {cb

i,t}Ui∈S and the
corresponding authentication tags {σb

i,t}Ui∈S.

PUDA – Privacy and Unforgeability for Data Aggregation 7

Aggregator A is accessing the aforementioned oracles during a learning phase
(cf. Algorithm 1) and a challenge phase (cf. Algorithm 2). In the learning phase,
A calls oracle OSetup which in turn returns the public parameters P, the public
verification key VK and the Aggregator’s secret key SKA. It also interacts with
oracle OCorrupt to learn the secret keys SKi of users Ui, and oracle OEncTag to get
a set of ciphertexts ci,t and authentication tags σi,t.

In the challenge phase, Aggregator A chooses a subset S
∗ of users that

were not corrupted in the learning phase, and a challenge time interval t∗ for
which it did not make an encryption query. Oracle OAO then receives two time-
series X 0

t∗ = (Ui, t
∗, x0

i,t∗)Ui∈S∗ and X 1
t∗ = (Ui, t

∗, x1
i,t∗)Ui∈S∗ from A, such that

∑
x0

i,t∗ =
∑

Ui∈S∗ x1
i,t∗ . Then oracle OAO flips a random coin b

$← {0, 1} and
returns to A the ciphertexts {cb

i,t∗}Ui∈S∗ and the matching authentication tags
{σb

i,t∗}Ui∈S∗ .
At the end of the challenge phase, Aggregator A outputs a guess b∗ for the

bit b.
We say that Aggregator A succeeds in the Aggregator obliviousness game, if

its guess b∗ equals b.

Algorithm 1. Learning phase of the obliviousness game
(P,SKA,VK) ← OSetup(1κ);
// A executes the following a polynomial number of times
SKi ← OCorrupt(uidi);
// A is allowed to call OEncTag for all users Ui

(ci,t, σi,t) ← OEncTag(t, uidi, xi,t);

Algorithm 2. Challenge phase of the obliviousness game
A → t∗, S∗;
A → X 0

t∗ , X 1
t∗ ;

(cb
i,t∗ , σb

i,t∗)Ui∈S∗ ← OAO(X 0
t∗ , X 1

t∗);
A → b∗ ;

Definition 1 (Aggregator Obliviousness). Let Pr[AAO] denote the proba-
bility that Aggregator A outputs b∗ = b. Then an aggregation protocol is said to
ensure Aggregator obliviousness if for any polynomially bounded Aggregator A
the probability Pr[AAO] ≤ 1

2 + ε(κ), where ε is a negligible function and κ is the
security parameter.

Aggregate Unforgeability. We augment the security requirements of data
aggregation with the requirement of aggregate unforgeability. More precisely, we
assume that Aggregator A is not only interested in compromising the privacy
of users participating in the data aggregation protocol, but is also interested
in tampering with the sum of users’ inputs. That is, Aggregator A may some-
times have an incentive to feed Data Analyzer DA erroneous sums. Along these

8 I. Leontiadis et al.

Algorithm 3. Learning phase of the aggregate unforgeability game
(P, SKA,VK) ← OSetup(1

κ);
// A executes the following a polynomial number of times
// A is allowed to call OEncTag for all users Ui

(ci,t, σi,t) ← OEncTag(t, uidi, xi,t);

Algorithm 4. Challenge phase of the aggregate unforgeability game
(t∗, sumt∗ , σt∗) ← A

lines, we define aggregate unforgeability as the security feature that ensures that
Aggregator A cannot convince Data Analyzer DA to accept a bogus sum, as
long as users Ui in the system are honest (i.e. they always submit their correct
input and do not collude with the Aggregator A).

In compliance with previous work [7,10] on homomorphic signatures, we
formalize aggregate unforgeability via a game in which Aggregator A accesses
oracles OSetup and OEncTag. Furthermore, given the property that anyone holding
the public verification key VK can execute the algorithm Verify, we assume that
Aggregator A during the unforgeability game runs the algorithm Verify by itself.

As shown in Algorithm 3, Aggregator A enters the aggregate unforgeability
game by querying the oracle OSetup with a security parameter κ. Oracle OSetup

accordingly returns public parameters P, verification key VK and the secret
key SKA of Aggregator A. Moreover, Aggregator A calls oracle OEncTag with
tuples (t, uidi, xi,t) in order to receive the ciphertext ci,t encrypting xi,t and
the matching authenticating tag σi,t, both computed using user Ui’s secret key
SKi. Note that for each time interval t, Aggregator A is allowed to query oracle
OEncTag for user Ui only once. In other words, Aggregator A cannot submit two
distinct queries to oracle OEncTag with the same time interval t and the same user
identifier uidi. Without loss of generality, we suppose that for each time interval
t, Aggregator A invokes oracle OEncTag for all users Ui in the system.

At the end of the aggregate unforgeability game (see Algorithm 4), Aggregator
A outputs a tuple (t∗, sumt∗ , σt∗). We say that Aggregator A wins the aggregate
unforgeability game if one of the following statements holds:

1. Verify(VK, t∗, sumt∗ , σt∗) → 1 and Aggregator A never made a query to oracle
OEncTag that comprises time interval t∗. In the remainder of this paper, we
denote this type of forgery Type I Forgery.

2. Verify(VK, t∗, sumt∗ , σt∗) → 1 and Aggregator A has made a query to oracle
OEncTag for time t∗, however the sum sumt∗ �= ∑

Ui
xi,t∗ . In what follows, we

call this type of forgery Type II Forgery.

Definition 2 (Aggregate Unforgeability). Let Pr[AAU] denote the proba-
bility that Aggregator A wins the aggregate unforgeability game, that is, the
probability that Aggregator A outputs a Type I Forgery or Type II Forgery
that will be accepted by algorithm Verify.

PUDA – Privacy and Unforgeability for Data Aggregation 9

An aggregation protocol is said to ensure aggregate unforgeability if for any
polynomially bounded aggregator A, Pr[AAU] ≤ ε(κ), where ε is a negligible
function in the security parameter κ.

3 Idea of our PUDA Protocol

– A homomorphic encryption algorithm that allows the Aggregator to compute
the sum without divulging individual data.

– A homomorphic tag that allows each user to authenticate the data input xi,t,
in such a way that the Aggregator can use the collected tags to construct
a proof that demonstrates to the Data Analyzer DA the correctness of the
aggregated sum.

Concisely, a set of non-interacting users are connected to personal services
and devices that produce personal data. Without any coordination, each user
chooses a random tag key tki and sends an encoding tki thereof to the key dealer.
After collecting all encoded keys tki, the key dealer publishes the corresponding
public verification key VK. This verification key is computed as a function of the
encodings tki. Later, the key dealer gives to each user in the system an encryption
key eki that will be used to compute the user’s ciphertexts. Accordingly, the
secret key of each user SKi is defined as the pair of tag key tki and encryption
key eki. Finally, the key dealer provides the Aggregator with secret key SKA

computed as the sum of encryption keys eki and goes off-line.
Now at each time interval t, each user employs its secret key SKi to compute

a ciphertext based on the encryption algorithm of Shi et al. [17] and a homomor-
phic tag on its sensitive data input. When the Aggregator collects the ciphertexts
and the tags from all users, it computes the sum sumt of users’ data and a match-
ing proof σt, and forwards the sum and the proof to the Data Analyzer. At the
final step of the protocol, the Data Analyzer verifies with the verification key
VK and proof σt the validity of the result sumt.

Thanks to the homomorphic encryption algorithm of Shi et al. [17] and the
way in which we construct our homomorphic tags, we show that our protocol
ensures Aggregator Obliviousness. Moreover, we show that the Aggregator cannot
forge bogus results. Finally, we note that the Data Analyzer DA does not keep
any state with respect to users’ transcripts be they ciphertexts or tags, but it
only holds the public verification key, the sum sumt and the proof σt.

4 PUDA Instantiation

Let G1,G2,GT be three cyclic groups of large prime order p and g1, g2 be gen-
erators of G1,G2 accordingly. We say that e is a bilinear map, if the following
properties are satisfied:

1. bilinearity : e(ga
1 , gb

2) = e(g1, g2)ab, for all g1, g2 ∈ G1 × G2 and a, b ∈ Zp.
2. Computability : there exists an efficient algorithm that computes e(ga

1 , gb
2) for

all g1, g2 ∈ G1 × G2 and a, b ∈ Zp.

10 I. Leontiadis et al.

3. Non-degeneracy : e(g1, g2) �= 1.

To encrypt users’ data homomorphically, we employ the discrete logarithm
based encryption scheme of Shi et al. [17]:

4.1 Shi-Chan-Rieffel-Chow-Song Scheme

– Setup(1κ): Let G1 be a group of large prime order p. A trusted key dealer
KD selects a hash function H : {0, 1}∗ → G1 . Furthermore, KD selects secret
encryption keys eki ∈ Zp uniformly at random. KD distributes to each user
Ui the secret key eki and sends the corresponding decryption key SKA =
−∑n

i=1 eki to the Aggregator.
– Encrypt(eki, xi,t): Each user Ui encrypts the value xi,t using its secret encryp-

tion key eki and outputs the ciphertext ci,t = H(t)ekigxi,t

1 ∈ G1.
– Aggregate({ci,t}n

i=1, {σi,t}n
i=1,SKA): Upon receiving all the ciphertexts

{ci,t}n
i=1, the Aggregator computes: Vt = (

∏n
i=1 ci,t)H(t)SKA =

H(t)
∑n

i=1 ekig
∑n

i=1 xi,t

1 H(t)−∑n
i=1 eki = g

∑n
i=1 xi,t

1 ∈ G1. Finally A learns the
sum sumt =

∑n
i=1 xi,t ∈ Zp by computing the discrete logarithm of Vt on the

base g1. The sum computation is correct as long as
∑n

i=1 xi,t < p.

The above scheme is efficient as long as the plaintext values remain in a small
range so as to the discrete logarithm computation during Aggregate algorithm
is fast.

4.2 PUDA Scheme

In what follows we describe our PUDA protocol:

– Setup(1κ): KD outputs the parameters (p, g1, g2,G1,G2,GT) for an efficient
computable bilinear map e : G1 ×G2 → GT , where g1 and g2 are two random
generators for the multiplicative groups G1 and G2 respectively and p is a
prime number that denotes the order of all the groups G1,G2 and GT . More-
over secret keys a, {tki}n

i=1 are selected by KD. KD publishes the verification
key VK = (vk1, vk2) = (g

∑n
i=1 tki

2 , ga
2) and distributes to each user Ui ∈ U the

secret key ga
1 ∈ G1, the encryption key eki and the tag key tki through a

secure channel. Thus the secret keys of the scheme are SKi = (eki, tki, g
a
1).

After publishing the public parameters P = (H, p, g1, g2,G1,G2,GT) and the
verification key VK, KD goes off-line and it does not further participate in
any protocol phase.

– EncTag(t,SKi = (eki, tki, g
a
1), xi,t): At each time interval t each user Ui

encrypts the data value xi,t with its secret encryption key eki, using the
encryption algorithm, described in Sect. 4.1, which results in a ciphertext

ci,t = H(t)ekigxi,t

1 ∈ G1

Ui also constructs a tag σi,t with its secret tag key (tki, g
a
1):

σi,t = H(t)tki(ga
1)xi,t ∈ G1

Finally Ui sends (ci,t, σi,t) to A.

PUDA – Privacy and Unforgeability for Data Aggregation 11

– Aggregate(SKA, {ci,t}Ui∈U, {σi,t}Ui∈U): Aggregator A computes the sum
sumt =

∑n
i=1 xi,t by using the Aggregate algorithm presented in Sect. 4.1.

Moreover, A aggregates the corresponding tags as follows:

σt =
n∏

i=1

σi,t =
n∏

i=1

H(t)tki(ga
1)xi,t = H(t)

∑
tki(ga

1)
∑

xi,t

A finally forwards sumt and σt to data analyzer DA.
– Verify(VK, t, sumt, σt): During the verification phase DA verifies the cor-

rectness of the computation with the verification key VK = (vk1, vk2) =
(g
∑

tki
2 , ga

2), by checking the following equality:

e(σt, g2)
?= e(H(t), vk1)e(gsumt

1 , vk2)

Verification correctness follows from bilinear pairing properties:

e(σt, g2) = e(
n∏

i=1

σi,t, g2) = e(
n∏

i=1

H(t)tkigaxi,t

1 , g2)

= e(H(t)
∑n

i=1 tkig
a
∑n

i=1 xi,t

1 , g2)

= e(H(t)
∑n

i=1 tki , g2)e(g
a
∑n

i=1 xi,t

1 , g2)

= e(H(t), g
∑n

i=1 tki
2)e(g

∑n
i=1 xi,t

1 , ga
2)

= e(H(t), g
∑n

i=1 tki
2)e(gsumt

1 , ga
2)

= e(H(t), vk1)e(gsumt
1 , vk2)

5 Analysis

5.1 Aggregator Obliviousness

Theorem 1. The proposed solution achieves Aggregator Obliviousness in the
random oracle model under the decisional Diffie-Hellman (DDH) assumption
in G1.

Due to space limitations the proof of Theorem 1 can be found in the full
version [14].

5.2 Aggregate Unforgeability

We first introduce a new assumption that is used during the security analysis
of our PUDA instantiation. Our new assumption named hereafter LEOM is a
variant of the LRSW assumption [16] which is proven secure in the generic model
[18] and used in the construction of the CL signatures [5].

The oracle OLEOM first chooses a and ki, 1 ≤ i ≤ n in Z
∗
p. Then it publishes

the tuple (g1, g
∑n

i=1 ki

2 , ga
2). Thereafter, the adversary picks ht ∈ G1 and makes

12 I. Leontiadis et al.

queries (ht, i, xi,t) for 1 ≤ i ≤ n to the OLEOM oracle which in turn replies with
hki

t g
axi,t

1 for 1 ≤ i ≤ n.
The adversary is allowed to query the oracle OLEOM for different ht with the

restriction that it cannot issue two queries for the same pair (ht, i).
We say that the adversary breaks the LEOM assumption, if it outputs a

tuple (z, ht, h
∑n

i=1 ki

t gaz
1) for a previously queried t and z �= ∑n

i=1 xi,t.

Theorem 2. (LEOM Assumption) Given the security parameter κ, the pub-
lic parameters (p, e,G1,G2, g1, g2), the public key (ga

2 , g
∑n

i=1 ki

2) and the oracle
OLEOM, we say that the LEOM assumption holds iff:

For all probabilistic polynomial time adversaries A, the following holds:

Pr[(z, ht, σt) ← AOLEOM(.) : z �=
n∑

i=1

xi,t ∧ σt = h
∑n

i=1 ki

t gaz
1] ≤ ε2(κ)

Where ε2 is a negligible function.

We show in our analysis that a Type I Forgery implies breaking the BCDH
assumption and that a Type II Forgery implies breaking the LEOM assump-
tion.

Theorem 3. Our scheme achieves aggregate unforgeability against a Type I
Forgery under BCDH assumption in the random oracle model.

Theorem 4. Our scheme guarantees aggregate unforgeability against a Type
II Forgery under the LEOM assumption in the random oracle model.

Due to space limitations, the security evidence of the LEOM assumption and
proofs for Theorems 3 and 4 are deferred to Appendix A and B.

5.3 Performance Evaluation

In this section we analyze the extra overhead of ensuring the aggregate unforge-
ability property in our PUDA instantiation scheme. First, we consider a theo-
retical evaluation with respect to the mathematical operations a participant of
the protocol be it user, Aggregator or Data Analyzer has to perform to ensure
public verifiablity. That is, the computation of the tag by each user, the proof by
the Aggregator and the verification of the proof by the Data Analyzer. We also
present an experimental evaluation that shows the practicality of our scheme.

To allow the Data analyzer to verify the correctness of computations per-
formed by an untrusted Aggregator, the key dealer distributes to each user
ga
1 , tki ∈ G1 and publishes ga

2 , g
∑n

i=1 tki
2 ∈ G2, which calls for one exponen-

tiation in G1 and 1 + n in G2. At each time interval t each user computes
σi,t = H(t)tki(ga

1)xi,t ∈ G1, which entails two exponentiations and one mul-
tiplication in G1. To compute the proof σt, the Aggregator carries out n − 1
multiplications in G1. Finally the data analyzer verifies the validity of the aggre-
gate sum by checking the equality: e(σt, g2)

?= e(H(t), vk1)e(gsumt
1 , vk2), which

PUDA – Privacy and Unforgeability for Data Aggregation 13

Table 1. Performance of tag computation, proof construction and verification opera-
tions. l denotes the bit-size of the prime number p.

Participant Computation Communication

User 2EXP + 1MUL 2 · l
Aggregator (n − 1)MUL 2 · l
Data analyzer 3PAIR + 1EXP + 1MUL + 1HASH -

asks for three pairing evaluations, one hash in G1, one exponentiation in G1

and one multiplication in GT (see Table 1). The efficiency of PUDA stems from
the constant time verification with respect to the number of the users. This
is of crucial importance since the Data Analyzer may not be computationally
powerful.

We implemented the verification functionalities of PUDA with the Charm
cryptographic framework [1,2]. For pairing computations, it inherits the PBC [15]
library which is also written in C. All of our benchmarks are executed on Intel�

CoreT M i5 CPU M 560 @ 2.67GHz × 4 with 8GB of memory, running Ubuntu
12.04 32bit. Charm uses 3 types of asymmetric pairings: MNT159, MNT201, MNT224.
We run our benchmarks with these three different types of asymmetric pairings.
The timings for all the underlying mathematical group operations are summa-
rized in Table 3. There is a vast difference on the computation time of operations
between G1 and G2 for all the different curves. The reason is the fact that the
bit-length of elements in G2 is much larger than in G1.

As shown in Table 2, the computation of tags σi,t implies a computation
overhead at a scale of milliseconds with a gradual increase as the bit size of
the underlying elliptic curve increases. The data analyzer is involved in pairing
evaluations and computations at the target group independent of the size of the
data-users.

6 Related Work

In [12] the authors presented a solution for verifiable aggregation in case of
untrustworthy users. The solutions entails signatures on commitments of the

Table 2. Computational cost of PUDA
operations with respect to different
pairings.

Table 3. Average computation overhead
of the underlying mathematical group
operations for different type of curves.

14 I. Leontiadis et al.

secret values with non-interactive zero knowledge proofs, which are verified by
the Aggregator. Hung-Min et al. [19] employed aggregate signatures in order to
verify the integrity of the data, without addressing confidentiality issues for a
malicious Aggregator. In [6], authors proposed a solution which is based on homo-
morphic message authenticators in order to verify the computation of generic
functions on outsourced data. Each data input is authenticated with an authen-
tication tag. A composition of the tags is computed by the cloud in order to verify
the correctness of the output of a program P . Thanks to the homomorphic prop-
erties of the tags the user can verify the correctness of the program. The main
drawback of the solution is that the user in order to verify the correctness of
the computation has to be involved in computations that take exactly the same
time as the computation of the function f . Backes et al. [3] proposed a generic
solution for efficient verification of bounded degree polynomials in time less than
the evaluation of f . The solution is based on closed form efficient pseudorandom
function PRF . Contrary to our solution both solutions do not provide individual
privacy and they are not designed for a multi-user scenario.

Catalano et al. [8] employed a nifty technique to allow single users to verify
computations on encrypted data. The idea is to re-randomize the ciphertext and
sign it with a homomorphic signature. Computations then are performed on the
randomized ciphertext and the original one. However the aggregate value is not
allowed to be learnt in cleartext by the untrusted Aggregator since the protocols
are geared for cloud based scenarios.

In the multi-user setting, Choi et al. [9] proposed a protocol in which multiple
users are outsourcing their inputs to an untrusted server along with the definition
of a functionality f . The server computes the result in a privacy preserving
manner without learning the result and the computation is verified by a user
that has contributed to the function input. The users are forced to operate in a
non-interactive model, whereby they cannot communicate with each other. The
underlying machinery entails a novel proxy based oblivious transfer protocol,
which along with a fully homomorphic scheme and garbled circuits allows for
verifiability and privacy. However, the need of fully homomorphic encryption
and garbled circuits renders the solution impractical for a real world scenario.

7 Concluding Remarks

In this paper, we designed and analyzed a protocol for privacy preserving and
unforgeable data aggregation. The purpose of the protocol is to allow a data ana-
lyzer to verify the correctness of computation performed by a malicious Aggre-
gator, without revealing the underlying data to either the Aggregator or the
data analyzer. In addition to being provably secure and privacy preserving, the
proposed protocol enables public verifiability in constant time.

Acknowledgments. We thank the anonymous reviewers for their suggestions for
improving this paper. The research leading to these results was partially funded by the
FP7-USERCENTRICNETWORKING european ICT project under the grant number
611001.

PUDA – Privacy and Unforgeability for Data Aggregation 15

A Security Evidence for the LEOM Assumption

In this section we provide security evidence for the hardness of the new LEOM
assumption by presenting bounds on the success probabilities of an adversary
A which presumably breaks the assumption. We follow the theoretical generic
group model (GGM) as presented in [18]. Namely under the GGM framework
an adversary A has access to a black box that conceptualizes the underlying
mathematical group G that the assumption takes place. A without knowing any
details about the underlying group apart from its order p is asking for encodings
of its choice and the black box replies through a random encoding function ξc

that maps elements in Gc → {0, 1}�log2 p� to represent element in Gc, c ∈ [1, 2, T].

Theorem 5. Suppose A is a polynomial probabilistic time adversary that breaks
the LEOM assumption, making at most qG oracle queries for the underlying group
operations on G1,G2,GT and the OLEOM oracle, all counted together. Then the
probability ε2 that A breaks the LEOM assumption is bounded as follows:

ε2 ≤ (qG)2

p
.

Due to space limitations we include the proof in the full version [14].

B Aggregate Unforgeability

Theorem 3. Our scheme achieves Aggregate Unforgeability for a Type I
Forgery under BCDH assumption in the random oracle model.

Proof. We show how to build an adversary B that solves BCDH in (G1,G2,GT).
Let g1 and g2 be two generators for G1 and G2 respectively. B receives the
challenge (g1, g2, ga

1 , gb
1, g

c
1, g

a
2 , gb

2) from the BCDH oracle OBCDH and is asked to
output e(g1, g2)abc ∈ GT . B simulates the interaction with A in the Learning
phase as follows:
Setup:

– To simulate the OSetup oracle B selects uniformly at random 2n keys {eki}n
i=1,

{tki}n
i=1 ∈ Zp and outputs the public parameters P = (κ, p, g1, g2,G1,G2) the

verification key VK = (vk1, vk2) = (gb
∑n

i=1 tki
2 , ga

2) and the secret key of the
Aggregator SKA = −∑n

i=1 eki.

Learning Phase

– A is allowed to query the random oracle H for any time interval . B constructs
a H − list and responds to A query as follows:
1. If query t already appears in a tuple H-tuple〈t : rt, coin(t),H(t)〉 of the

H − list it responds to A with H(t).

16 I. Leontiadis et al.

2. Otherwise it selects a random number rt ∈ Zp and flips a random
coin

$← {0, 1}. With probability π, coin(t) = 0 and B answers with
H(t) = grt

1 . Otherwise if coin(t) = 1 then B responds with H(t) = gcrt
1 and

updates the H − list with the new tuple H-tuple〈t : rt, coin(t),H(t)〉.
– Whenever A submits a query (t, uidi, xi,t) to the OA

EncTag, B responds as
follows:

1. B calls the simulated random oracle, receives the result for H(t) and
appends the tuple H-tuple〈t : rt, coin(t),H(t)〉 to the H − list.

2. If coin(t) = 1 then B stops the simulation.
3. Otherwise it chooses the secret tag key tki where i = uidi to be used

as secret tag key from the set of {tki} keys, chosen by B in the Setup
phase.

4. B sends to A the tag σi,t = grtbtki
1 g

axi,t

1 = H(t)btkig
axi,t

1 , which is a
valid tag for the value xi,t. Notice that B can correctly compute the tag
without knowing a and b from the BCDH problem parameters ga

1 , gb
1.

5 B chooses also a secret encryption key eki ∈ {eki}n
i=1 ∈ Zp and computes

the ciphertext as ci,t = H(t)ekigxi,t

1 . The simulation is correct since A
can check that the sum

∑n
i=1 xi,t corresponds to the ciphertexts given by

B with its decryption key SKA = −∑n
i=1 eki, considering the adversary

has made distinct encryption queries for all the n users in the scheme at
a time interval t.

Now, when B receives the forgery (sumt
∗, σt

∗) at time interval t �= t∗, it
continues if sumt

∗ �= Σt. B first queries the H-tuple for time t∗ in order to fetch
the appropriate tuple.

– If coin(t∗) = 0 then B aborts.
– If coin(t∗) = 1 then since A outputs a valid forged σt

∗ at t∗, it is true that
the following equation should hold:

e(σt
∗, g2) = e(H(t∗), vk1)e(gsumt

∗
1 , vk2)

which is true when A makes n queries for time interval t∗ for distinct users to
the OA

EncTag oracle during the Learning phase. As such σt
∗ = g

crtb
∑

tki
1 gasumt

∗
1 .

Finally B outputs:

e((
σt

∗

gasumt
∗

1

)
1

rt
∑

tki , ga
2) = e((

g
crtb

∑
tki

1 gasumt
∗

1

gasumt
∗

1

)
1

rt
∑

tki , ga
2) =

e((gcrtb
∑

tki
1)

1
rt
∑

tki , ga
2) = e(gbc

1 , ga
2) = e(g1, g2)abc

Let AAU1 be the event when A successfully forges a Type I forgery σt for our
PUDA protocol that happens with some non-negligible probability ε′. event0 is
the event when coin = 0 in the learning phase and event1 is the event when coin =
1 in the challenge phase. Then Pr[BBCDH] = Pr[event0] Pr[event1] Pr[AAU2] =
π(1 − π)qH−1ε′, for qH random oracle queries with the probability Pr[coin(t) = 0]
= π. As such we ended up in a contradiction assuming the hardness of the BCDH
assumption and finally Pr[AAU1] ≤ ε1, where ε1 is a negligible function.

PUDA – Privacy and Unforgeability for Data Aggregation 17

Theorem 4. Our scheme guarantees aggregate unforgeability against a Type
II Forgery under the LEOM assumption.

Proof (Sketch). Here we show how an adversary B breaks the LEOM assump-
tion by using an Aggregator A that provides a Type II Forgery with a non-
negligible probability. Notably, adversary B simulates oracle OSetup as follows: It
first picks secret encryptions keys {eki}n

i=1 and sets the corresponding decryp-
tion key SKA = −∑n

i=1 eki. Then, it forwards to A the public parameters
P = (p, g1, g2,G1,G2), the public key (vk1, vk2) = (g

∑n
i=1 ki

2 , ga
2) of the OLEOM

oracle and the secret key SKA = −∑n
i=1 eki.

Afterwards, when adversary B receives a query (t, uidi, xi,t) for oracle OEncTag,
adversary B calls oracle OLEOM with the pair (ht = H(t), i, xi,t). Oracle OLEOM

accordingly returns hki
t g

axi,t

1 and adversary B outputs σi,t = hki
t g

axi,t

1 . Note that
if we define the tag key tki of user Ui as ki, then the tag σi,t = hki

t g
axi,t

1 is
computed correctly.

Eventually with a non-negligible advantage, Aggregator A outputs a Type
II Forgery (t∗, sumt∗ , σt∗) that verifies:

e(σt∗ , g2) = e(H(t∗), vk1)e(g
sumt∗
1 , vk2)

where t∗ is previously queried by Aggregator A and sumt∗ �= ∑n
i=1 x(i,t∗).

It follows that B breaks the LEOM assumption with a non-negligible proba-
bility by outputting the tuple (H(t∗), sumt∗ , σt∗). This leads to a contradiction
under the LEOM assumption. We conclude that our scheme guarantees aggregate
unforgeability for a Type II Forgery under the LEOM assumption.

References

1. Akinyele, J.A., Green, M., Rubin, A.D.: Charm: a tool for rapid cryptographic
prototyping. http://www.charm-crypto.com/Main.html

2. Akinyele, J.A., Green, M., Rubin, A.D.: Charm: a framework for rapidly proto-
typing cryptosystems. IACR Cryptology ePrint Archive, 2011:617 (2011). http://
eprint.iacr.org/2011/617.pdf

3. Backes, M., Fiore, D., Reischuk, R.M.: Verifiable delegation of computation on
outsourced data. In: ACM Conference on Computer and Communications Security,
pp. 863–874 (2013)

4. Boneh, D., Gentry, C., Lynn, B., Shacham, H.: Aggregate and verifiably encrypted
signatures from bilinear maps. In: EUROCRYPT, pp. 416–432 (2003)

5. Camenisch, J.L., Lysyanskaya, A.: Signature schemes and anonymous credentials
from bilinear maps. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp.
56–72. Springer, Heidelberg (2004)

6. Catalano, D., Fiore, D.: Practical homomorphic MACs for arithmetic circuits. In:
Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp.
336–352. Springer, Heidelberg (2013)

7. Catalano, D., Fiore, D., Warinschi, B.: Homomorphic signatures with efficient ver-
ification for polynomial functions. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO
2014, Part I. LNCS, vol. 8616, pp. 371–389. Springer, Heidelberg (2014)

http://www.charm-crypto.com/Main.html
http://eprint.iacr.org/2011/617.pdf
http://eprint.iacr.org/2011/617.pdf

18 I. Leontiadis et al.

8. Catalano, D., Marcedone, A., Puglisi, O.: Authenticating Computation on Groups:
New Homomorphic Primitives and Applications. In: Sarkar, P., Iwata, T. (eds.)
ASIACRYPT 2014, Part II. LNCS, vol. 8874, pp. 193–212. Springer, Heidelberg
(2014)

9. Choi, S.G., Katz, J., Kumaresan, R., Cid, C.: Multi-client non-interactive verifi-
able computation. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 499–518.
Springer, Heidelberg (2013)

10. Freeman, D.M.: Improved security for linearly homomorphic signatures: a generic
framework. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS,
vol. 7293, pp. 697–714. Springer, Heidelberg (2012)

11. Joye, M., Libert, B.: A scalable scheme for privacy-preserving aggregation of time-
series data. In: Sadeghi, A.-R. (ed.) FC 2013. LNCS, vol. 7859, pp. 111–125.
Springer, Heidelberg (2013)

12. Kursawe, K., Danezis, G., Kohlweiss, M.: Privacy-friendly aggregation for the
smart-grid. In: Fischer-Hübner, S., Hopper, N. (eds.) PETS 2011. LNCS, vol. 6794,
pp. 175–191. Springer, Heidelberg (2011)

13. Leontiadis, I., Elkhiyaoui, K., Molva, R.: Private and dynamic time-series data
aggregation with trust relaxation. In: Gritzalis, D., Kiayias, A., Askoxylakis, I.
(eds.) CANS 2014. LNCS, vol. 8813, pp. 305–320. Springer, Heidelberg (2014)

14. Leontiadis, I., Elkhyaoui, K., Önen, M., Molva, R.: Private and unforgeable data
aggregation. IACR Cryptology ePrint Archive (2015). http://eprint.iacr.org/2015/
562.pdf

15. Lynn, B.: The stanford pairing based crypto library. http://crypto.stanford.edu/
pbc

16. Lysyanskaya, A., Rivest, R., Sahai, A., Wolf, S.: Pseudonym systems. In: Heys, H.,
Adams, C. (eds.) Selected Areas in Cryptography. LNCS, vol. 1758, pp. 184–199.
Springer, Berlin Heidelberg (2000)

17. Shi, E., Chan, T.-H.H., Rieffel, E.G., Chow, R., Song, D.: Privacy-preserving aggre-
gation of time-series data. In: NDSS (2011)

18. Shoup, V.: Lower bounds for discrete logarithms and related problems. In: Fumy,
W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 256–266. Springer, Heidelberg
(1997)

19. Sun, H.-M., Lin, Y.-H., Hsiao, Y.-C., Chen, C.-M.: An efficient and verifiable con-
cealed data aggregation scheme in wireless sensor networks. In: International Con-
ference on Embedded Software and Systems, ICESS 2008, pp. 19–26, July 2008

http://eprint.iacr.org/2015/562.pdf
http://eprint.iacr.org/2015/562.pdf
http://crypto.stanford.edu/pbc
http://crypto.stanford.edu/pbc

A Security Framework for Internet of Things

Imane Bouij-Pasquier1(B), Anas Abou El Kalam1, Abdellah Ait Ouahman1,
and Mina De Montfort2

1 UCA - ENSA, Marrakesh, MOROCOO
imane.pasquier@gmail.com

2 Société ARTIMIA, Reims, France

Abstract. As we move towards the Internet of Things (IoT), the num-
ber of sensors deployed around the world is growing at a rapid pace.
There is a huge scope for more streamlined living through an increase of
smart services but this coincides with an increase in security and privacy
concerns, therefore access control has been an important factor in the
development of IoT.

This work proposes an authorization access model called SmartOr-
BAC built around a set of security and performance requirements. This
model enhances the existing OrBAC (Organization-based Access Con-
trol) model and adapts it to IoT environments. SmartOrBAC separates
the problem into different functional layers and then distributes process-
ing costs between constrained devices and less constrained ones and at
the same time addresses the collaborative aspect with a specific solution.
We also apply SmartOrBAC to a real example of IoT and demonstrate
that even though our model is extensive, it does not add additional com-
plexity regarding traditional access control model.

1 Introduction

Today we are seeing a shift in our conception of Internet towards a global network
of “smart objects”, which we can call the Internet of Things (IoT). This shift is
expected to accelerate during the coming years [1,2] due to a fall in hardware
costs, internet’s technological maturity and the swift development of communi-
cation technology. This will lead to a smooth assimilation of these smart objects
into the Internet, which will in turn enable mobile and widespread access. Areas
that are expected to be directly affected include healthcare [3,4], supply chain
management [5], transport systems [6], agriculture and environmental monitor-
ing [7,8], life at home and more, as we move towards “smart homes” [9–11] and
the next generation of “smarter cities” [12].

This extension and proliferation of technology will certainly change our live,
but will also present security and privacy challenges [13–15], since unexpected
information leaks and illegitimate access to data and physical systems could have
a high impact on our lives. Moreover, malicious modifications or denial of service
may also cause damage in the context of IoT. This is why the implementation
of an access control mechanism that respects both the character of and the

c© Springer International Publishing Switzerland 2015
M. Reiter and D. Naccache (Eds.): CANS 2015, LNCS 9476, pp. 19–31, 2015.
DOI: 10.1007/978-3-319-26823-1 2

20 I. Bouij-Pasquier et al.

constraints on, smart objects in the IoT environment, is imperative. In this
paper we address one of the most relevant security issues – authorization and
access control – in the context of distributed, cross-domain systems that consist
of resource constrained devices not directly operated by humans. In particular,
we focus on the problem where a single constrained device is communicating with
several other devices from different organizations or domains. Based on OrBAC
[16] access control model, our “Smart OrBAC” proposal is specifically designed
for IoT environments. It in fact takes the main features of IoT into account and
facilitates a distributed-centralized approach where authorization decisions are
based on local conditions, and in this way offers context-aware access control.

The reminder of the paper is organized as follows. Section 2 gives an overview
of the literature and discusses the important access control models currently
existing in the IoT environment. Afterwards Sect. 3 presents the background
needed to understand our new work. The SmartOrBAC access control model is
then detailed in Sect. 4 followed in Sect. 5 by a brief description of the implemen-
tation. Finally, in Sect. 6, we conclude the paper and present our perspectives.

The main contributions of this work can be outlined as follows:

– Abstraction layers design regarding the specificities of IoT devices.
– SmartOrBAC, our access control model for IoT.
– Collaborative protocol managing in IoT.
– Applying SmartOrBAC to an IoT case study and showing that it does not

present additional complexity.

2 Related Work

Zhang and Gong proposed in [17] the UCON model taking into consideration
flexibility and heterogeneity in an IoT distributed environment. However, UCON
is a conceptual model only, and thus it does not give details on the implemen-
tation of the monitoring process. This approach is still not practical.

The CAPBAC model is implemented in a centralized approach in [18] where
the proposed framework is based on a central Policy Decision Point (PDP) which
handles authorization decisions. Whereas the implementation of capability-based
access control in IoT is considered in [19] with an entirely distributed approach
without intervention of central entities. The limits of both a purely centralized
approach and fully distributed approach will be detailed later on in this paper
(see 3.2 Main architectures for IoT access control).

The Capability-based Context-Aware Access Control (CCAAC) [20] is a del-
egation model based on a federated vision of IoT [21], where a central entity
in each domain is in charge of authorizing a delegation request from a delega-
tor, and making the decision about granting it to the delegate. However, this
vision does not make use of technologies specifically designed for constrained
highly context dependent environments such as IoT. Furthermore, the technical
requirements in the constrained environment of the different actors involved in
the proposed delegation mechanism are missing from this study.

A Security Framework for Internet of Things 21

Seitz et al. present in [22] an authorization framework based on XACML
[23]. Evaluating XACML policies is too heavy-weight for constrained devices;
therefore most of the authorization process is externalized. In order to convey
the authorization decision from the external point to the device, an assertion is
encoded in JSON [24] and is sent to the end-device (i.e., sensor or constrained
device). The end-device takes responsibility for local conditions verification.
However, this study does not give information about the central component
involved neither about its management within the organization. Also, this pro-
posal is bound to the use of XACML, which is not specifically designed for use
in constrained devices.

3 Background

In this section we provide a brief description of some of the core concepts that
make up our scheme. First of all, we give in this section an overview of the OrBAC
access control model and its benefits over other commonly accepted models. We
then propose an overview of the main approaches and trends to provide access
control process in IoT scenarios based on the architecture taxonomy proposed
in [25].

3.1 Organization-Based Access Control Model (OrBAC)

The Organization-Based Access control model (OrBAC) introduces the concept
of organization as a structured group of active entities, in which subjects play
specific roles. An activity is a group of one or more actions, a view is a group of
one or more objects and a context is a specific situation.

Actually, the Role entity is used to structure the link between the Sub-
jects and the Organizations. The Empower (org, r, s) relationship (or predicate)
means that org employs subject s in role r. In the same way, the objects that
satisfy a common property are specified through views, and activities are used
to abstract actions.

In security rules, permissions are expressed as Permission (org, r, v, a, c),
obligations and prohibitions are defined similarly. Such an expression is inter-
preted as: in the context c, organization org grants role r the permission to
perform activity a on a view v.

As rules are expressed only through abstract entities, OrBAC is able to spec-
ify the security policies of several collaborating and heterogeneous organizations.
Moreover, OrBAC takes the context (e.g., specific situations, time and location
constraints) into account. However, despite the several advantages of OrBAC, it
is not completely adapted to IoT. In particular, OrBAC is not able to manage
collaboration-related aspects. In fact, as OrBAC security rules have the Permis-
sion (org, r, v, a, c) form, it is not possible to represent rules that involve several
independent organizations. Furthermore, it is impossible to associate permissions
to entities belonging to other partner-organizations (or to sub-organizations).
As a result, if we can assume that OrBAC provides a framework for expressing

22 I. Bouij-Pasquier et al.

the security policies of several organizations, it is unfortunately only adapted
to centralized structures and does not cover the distribution, collaboration and
interoperability needs when it comes to cross-domain services as it is the case in
IoT scenarios.

In order to overcome the limitations listed above, we suggest, on one hand,
to extend OrBAC to include collaboration-related and context aware concepts,
and on the other hand, we construct an IoT adapted framework with a new
architecture articulated around four functional layers. The resulting framework
is called “SmartOrBAC”.

3.2 Main Architectures for IoT Access Control

This section gives an overview of the most commonly used approaches to provide
access control in IoT scenarios highlighting their main advantages and draw-
backs:

– Centralized Architecture: The access control process is externalized into
a central entity responsible for the authorization processing and thus, the
end-devices (i.e., sensors, actuators) play a limited role and the access control
process is located within a non-constrained entity. It follows that the use
of standard security protocols normally used in the traditional Web is not
restricted. Nonetheless, in IoT scenarios, contextual information is of great
importance, while in a centralized architecture, access control decisions are
not based on such local information related to the end-device.

– Distributed Approach: The access control process is located in the end-
devices. An advantage of this approach is that end-devices act smartly, and are
autonomous. Moreover it allows real time contextual information to become
central to the authorization decision. However, this approach means that each
device must be capable of handling authorization processes and having ade-
quate resources which makes it inappropriate for resource-constrained devices.

– Centralized-distributed Approach: The end-devices participate partially
in the access control decisions. This approach is motivated by the importance
of taking into account the context of the end-device while making the decision.
It allows the use of standard technologies to perform the authorization process.
Nevertheless the transmission of the contextual information to a central entity
may cause delays and the value acquired by the end-device will not be the
same at the time of making the authorization decision.

In our proposal, we choose to design our access control based on the
centralized-distributed approach. But unlike other proposals that use this app-
roach, each separate group of components will have a central authorization
engine (rather than just having one of these engines centrally performing all
the authorization processes). The selection process that determines which entity
will act as this engine depends on the contextual properties of the nodes in its
group. The aim of this is to make the access control mechanism more time effi-
cient by facilitating a smoother exchange of information between the end device

A Security Framework for Internet of Things 23

and the authorization engine (see Fig. 1). This vision is made possible by the
fact that in a constrained environment, not all the devices are at the same level
of constraint [27–31]. In almost every WSN, less constrained nodes exist, and
thus the central authorization server in charge of an area can be implemented
on one of them. For more understanding, the next section gives an overview of
the different actors involved in the proposed architecture and their properties.

4 SmartOrBAC

This section provides a detailed description of the key aspects of our proposal.
We begin with an explanation of the most relevant features of our abstraction
layers design followed by an overview of the main aspects of our collaborative
solution. Then we present our version of the distributed-centralized architecture
and give a structured expression of the context concept. Finally we apply our
proposal on a typical IoT healthcare scenario.

Before going into details, we first identify the following actors [26]:

– Resource Server (RS): an entity which hosts and represents a Resource
that might contain sensor or actuator values or other information;

– Resource Owner (RO): the principal that owns the resource and controls
its access permissions;

– Client (C): an entity which attempts to access a resource on a Resource
Server;

– Client Owner (CO): the principal that owns the Client and controls per-
missions concerning authorized representations of a Resource.

Consequently, in a basic scenario, C wants to access R located on RS. It
follows logically that, C and / or RS are constrained.

4.1 SmartOrBAC Abstraction Layers

The SmartOrBAC architecture proposes, among others, a model based on a
partitioning of the access control process into functional layers depending on
the capabilities offered on each one. This approach is directly inspired by the
fact that each device is constrained to a different level; they are in fact not all
uniformly constrained. Note that the term “constrained node” is used according
to the RFC 7228 [27].

While processing access control related tasks each layer assists the one below
when needed. Note that the authentication process details are out the scope of
this study. Only authorization aspects are treated. Four layers are introduced:

Constrained Layer. One or both of C and RS are presumed to be located in
a constrained node, but despite this, must perform access control related tasks.
We thus consider that either of them may be unable to manage complex tasks
while processing authorization requests. In addition, nodes do not always have

24 I. Bouij-Pasquier et al.

permanent network connectivity. That’s why both of C and RS are considered
to be constrained layer actors.

In order to address the limitations present in this layer, a less constrained
device is associated to each area of constrained devices. This centric entity is
defined by the upper layer called less-constrained layer (see Fig. 1).

Less Constrained Layer. To relieve constrained layer actors from conduct-
ing computationally intensive tasks, another layer is introduced. Each group of
constrained layer actors is bound to a less constrained layer actor that belongs
to the same security domain (see Fig. 1). This link is configured by the entity
in charge of the device (see below Organization layer). We call this central ele-
ment the “Client Authorization Engine” (CAE), on the client side, and Resource
Authorization Engine (RAE) on the resource side.

The CAE belongs to the same security domain as C. It assists C in determin-
ing if RS is an authorized source for R by obtaining authorization information
and supporting C in handling the authorization process.

The RAE belongs to the same security domain as R and RS. It assists RS
in determining the correct permissions of C on the requested resource R. RAE
obtains authorization information and supports RS in handling the authorization
process.

Organization Layer. In the real world, C and R are under the control of some
physical entities. These entities are commonly called ROr “Resource Organi-
zation” and COr “Client Organization” (see Fig. 2). In order to keep close to

Fig. 1. Constrained and less constrained layers defined according to a centralised-
distributed approach

A Security Framework for Internet of Things 25

Fig. 2. Management of cross domain requirement in IoT environment

reality and to the OrBAC environment, we represent this entity by Organiza-
tions. Thus, each organization specifies the security policy for its devices and
structures them in security domains.

The client organization COr is in charge of the entity proceeding to the
resource request and thus, must specify security policies for C, including with
whom C is allowed to communicate. This means that COr has to define autho-
rized sources for a resource R. COr also configures C and CAE in order to make
them belong to the same security domain.

The resource Organization ROr belongs to the same security domain as R
and RS. ROr is in charge of R and RS and thus, must specify the authorization
policies for R and decides with whom RS is allowed to communicate. That means
that ROr has to configure if and how an entity with certain attributes is allowed
to access R. ROr also configures RS and RAE in order to make them belong to
the same security domain.

Subsequently, on the client side, COr defines authorized sources for R, and
on the Resource side, ROr configures if and how an entity can access R. In
orders to do this, ROr and COr must have already agreed on the terms of such
a service and on how to organize and structure this collaboration. An agreement
is passed between the two entities before this interaction takes place (see below
Collaboration layer: a cross domain access control).

Collaboration Layer: A Cross Domain Access Control. As seen
above, the OrBAC access model does not handle the collaborative interaction

26 I. Bouij-Pasquier et al.

aspects. To overcome this limitation, we suggest enhancing OrBAC with new
collaboration related concepts. This issue is addressed at the organization layer,
by making a prior agreement between the involved organizations (as shown in
Fig. 2) where the access rules to a given resource are jointly defined according
to the OrBAC format by organizations that interact.

In order to manage this new agreement, we will use the entity, located in
the Organization layer, called Principal Authorization Manager “PAM”. From
the RS point of view, this agreement, which is interpreted in terms of access
rules, will be treated just like all the other rules concerning local interactions.
The complexity of the external interaction authorization management is hidden
from the end constrained device, which keeps the same authorization processing
no matter the nature of the client. This abstraction is made possible by the
establishment of a fourth layer that manages the cooperation between different
organizations.

Basically, SmartOrBAC begins with the publication and negotiation of col-
laboration rules as well as the corresponding access control rules. First, each
organization determines which resources it will offer to external partners, and
then references them into the PAM. At this point, other organizations can con-
tact it to express their wish to use these specific referenced resources. To do
that, the COr and the ROr negotiate and come to an agreement concerning the
use of the resource R. Then, they establish a contract and jointly define security
rules concerning access to R. The COr’s and ROr’s exchange format and the
contract aspect will be discussed in a future paper. In the rest of this section,
let us focus on access control rules. These rules are registered – according to an
OrBAC format – in the PAM of both organizations. Parallel to this, COr creates
locally a “virtual resource” called R image which represents (the remote) R in
the client organization side. Then COr adds a rule in its OrBAC policy base to
define which entities can invoke R image (see Figs. 2 and 3).

4.2 Enhancing OrBAC for Context Awareness

Unlike traditional services where the concept of context is limited to a finite set
of use cases, in the IoT environment, the concept is getting wider by taking on an
ambient character in order to allow services taking into account the contextual
information collected in real time by the different sensors [20]. The Context
used in defining the SmartOrBAC rule is a set of contexts (CSet) with different
types (CType). The type of context can be a concrete property such as time or
location, but also security related context such as authentication and trust level.
In order to take the context into account in the access control decision, each of
the context types has to be evaluated with a certain constraint (CConst).

The overall context definition in SmartOrBAC can be expressed with the
following notation:

TYPES ∈ {authLevel, trustLevel, time, location . . . } (1)

CSet = {CType(1), CType(2), . . . , CType(n)} (2)

A Security Framework for Internet of Things 27

WhereCType(1), CType(2), . . . , CType(n) in TYPES
CConst =< CType(i) > < OP >< VALUE >

(3)

where OP is a logical operator, i.e., OP ∈ {>,<,≥,≤,=, �=}, and VALUE is a
specific value of CType. Finally, we define C as a set of context constraints CConst

C = {CConst(1), CConst(2), . . . , CConst(n)} (4)

4.3 Scenario

In order to illustrate SmartOrBAC, we apply the different concept detailed above
in a typical healthcare scenario [28,29].

Assume that John, a man with a heart condition, has opted for an assisted
living service that is provided by a medical center. John uses a device that moni-
tors his heart rate and his position; his home is also equipped with multiple sen-
sors and actuators (temperature sensor, humidity sensor, luminosity sensor...).
In case of a cardiac arrest the heart monitor automatically sends an alarm to an
emergency service, transmitting John’s current location.

A doctor, who monitors John’s health remotely from the medical center,
receives an alarm that John has fainted. An ambulance is instructed to go to
assist John. A smart driving application is used by the ambulance to reach John’s
home as quickly as possible.

The situation requires the interaction of the following organizations: “smart
home of John”, “the medical center”, “the ambulance”, and “the police depart-
ment for traffic jams monitoring”.

First of all, each of these organizations determines which device’s re-sources it
will offer to external partners. At this stage, we find in the PAM of John’s smart
home’s organization resources such as the heart monitor resource. The medical
center organization makes an inquiry to the PAM. As soon as the target resource
is found, the negotiation phase begins between the ROr of the smart home and
the COr of the medical center. The resulting contract is then transcript in terms
of authorization rules regarding the OrBAC format for both of the medical center
and smart home of John. More precisely, if the agreement between the two
organizations is: “Assigned doctor from medical center have the permission to
remotely actuate the implanted cardioverter defibrillator from the heart monitor
device in the heart attack emergency context”, the ROr of Smart home should:

– have (or create) a rule that grants the permission to a certain role (e.g.,
Doctor) to actuate the heart monitor: Permission(smart home, Doctor, vital
equipement, Actuating, Cheart attack Emergency). Note that, from John’s
smart home’s point of view, every user playing the “Doctor” role will have
this permission;

– create a “virtual user” noted v user doctor that represents the medical center
for its use of the implanted cardioverter defibrillator (see Fig. 3);

– add the following Empower(smart home, v user doctor, Doctor) association
to its rule base. This rule grants the user medical center’s doctor the right to
play the Doctor role.

28 I. Bouij-Pasquier et al.

Fig. 3. Virtual user and virtual object in SmartOrBAC

In parallel, the COr of the medical center creates locally a “virtual object”
heart monitor image which represents the (remote) implanted device (the
resource made available by John’s Smart Home), and adds a rule in its OrBAC
base to define which of the medical center’s roles can invoke heart monitor image
to use the real heart monitor. Let’s assume that the assisted living dispositive
is a set of different devices (sensors and actuators) with different capabilities.
We also assume that the specific device RS of heart monitoring that the medical
center tries to access is located in the constrained layer, such as the client device
C used by the doctor in the medical center. The link between the RS and its
corresponding RAE located in the less constrained layer has already been con-
figured by the ROr of John’s smart home. The same applies for the CAE and C
that have been already configured by the COr of medical center.

Before the doctor’s device C in the medical center sends an actuating request
to the heart monitoring device RS, it asks the corresponding CAE in the
medical center for assistance in order to determine if the local image of RS
(heart monitor image) is an authorized source.

At this moment, CAE starts evaluating the authorization policy rules, using
as object the heart monitor image. Note that at this level, the external nature
of the heart monitor device is unknown. Then, if information about policy rules
is needed, a request is sent to the PAM of the medical center. Once this process

A Security Framework for Internet of Things 29

is completed, if RS is an allowed source, an actuating request is directly sent to
the heart monitoring device.

Once the request is received, the authorization decision process begins on
the smart home organization side. For that, the device sends an authoriza-
tion process request, with contextual information, to the corresponding RAE
in John’s smart home. The latter evaluates the authorization decision regarding
authorization rules in John smart home’s PAM especially those detailed above
where the subject is v user doctor. The result is sent to RS which, in turn, sends
an access response to the doctor’s device.

5 Implementation

The transmissions between the different entities included in our Framework
(C/RS, C/CAE, RS/RAE) are done via the CoAP [30] protocol (Constrained
Application Protocol), which is a specialized Web transfer protocol that is
intended for use in resource-constrained Internet devices. Like HTTP, CoAP
is based on the wildly successful REST model: servers make resources available
under a URL, and clients access these resources using methods such as GET,
PUT, POST and DELETE.

Since the XML representation is too verbose for efficient transmission over
limited channels, we use JSON-based notation for our authorization requests and
responses. In fact JSON [24] (JavaScript Object Notation) is a lightweight data-
interchange format that efficiently reduces the size of the transmitted messages
between C and RS devices and optimizes the processing time.

The device part of our framework (especially C and RS) was implemented
on an example platform: the Arduino Mega 2560 board3. This board features
a 16 MHz processor, 256 kB of Flash Memory, 8 kB of SRAM, and 4 kB of
EEPROM. We choose this board in order to test our approach on the lowest
performance of the end constrained devices. The board was programmed in Java
using a custom implementation of the CoAP protocol stack and the assertions
were wrapped in JSON format using the standard Java API (javax.json.*).

6 Conclusion

Our SmartOrBAC access model is specifically designed for the IoT environment
and it is conceived through an abstraction layer design that makes use of a deep
understanding of the IoT paradigm as it is used in the real world. For these smart
services, contextual information is a leading element in decision making therefore
only a real-time consideration of this information will achieve smartness. For this
reason, we enhanced the “context” notion (originally present in OrBAC) in order
to fit the IoT requirements.

Understanding that users belonging to an organization need to dynamically
access resources controlled by other organizations we also extended our model
with specific collaborative mechanisms where the same OrBAC security policy
can be used for local as well as external access. In this way, SmartOrBAC

30 I. Bouij-Pasquier et al.

improves the management of the security policy and reduces considerably its
complexity.

In our future work, we will explore how to make the SmartOrBAC model
more effective and we will go deeper in the study of the negotiation process and
the e-contract format. Finally, another relevant research line related to this work
is the consideration for additional privacy enhancement through techniques such
as the use of pseudonyms or anonymous assertions.

References

1. European Commission: Internet of things in 2020 road map for the future. Working
Group RFID of the ETP EPOSS, Technical report (2008)

2. Guillemin, P., Friess, P.: Internet of things strategic research roadmap. The Cluster
of European Research Projects, Technical report (2009)

3. Istepanian, R.S.H., Jara, A., Sungoor, A., Philips, N.: Internet of things for M-
health applications (IoMT). In: Proceedings of the 1st AMA IEEE Medical Tech-
nology Conference on Indi-vidualized Healthcare, IEEE, Washington, USA (2010)

4. Jara, A., Zamora, M., Skarmeta, A.: An internet of things-based personal device
for di-abetes therapy management in ambient assisted living (AAL). Pers. Ubiquit.
Comput. 15(4), 431–440 (2011)

5. Chaves, L.W.F., Decker, C.: A survey on organic smart labels for the internet-of-
things. In: 2010 Seventh International Conference on Networked Sensing Systems
(INSS), pp. 161–164 (2010)

6. Santa, J., Zamora-Izquierdo, M.A., Jara, A.J., Skarmeta, A.F.: Telematic platform
for in-tegral management of agricultural/perishable goods in terrestrial logistics.
Comput. Electron. Agric. 80, 31–40 (2012)

7. Burrell, J., Brooke, T., Beckwith, R.: Vineyard computing: sensor networks in
agricul-tural production. IEEE Pervasive Comput. 3(1), 38–45 (2004)

8. Radu, V.: Stochastic Modeling of Thermal Fatigue Crack Growth. Applied Condi-
tion Monitoring, vol. 1. Springer, Heidelberg (2015)

9. Gungor, V., Sahin, D., Kocak, T., Ergut, S., Buccella, C., Cecati, C., Hancke, G.:
Smart grid and smarthomes: key players and pilot projects. IEEE Ind. Electron.
Mag. 6(4), 18–34 (2012)

10. Kovatsch, M., Weiss, M., Guinard, D.: Embedding internet technology for home
automation. In: 2010 IEEE Conference on Emerging Technologies and Factory
Automation (ETFA), pp. 1–8. Bilbao, Spain, IEEE (2010)

11. Helal, S., Mann, W., El-Zabadani, H., King, J., Kaddoura, Y., Jansen, E.: The
gator tech smart house: a programmable pervasive space. Computer 38(3), 50–60
(2005)

12. Castro, M., Jara, A., Skarmeta, A.: Smart lighting solutions for smart cities. In:
Proceedings of the 27th International Conference on Advanced Information Net-
working and Applications Workshops (WAINA 2013), Barcelona, Spain, pp. 1374–
1379. IEEE (2013)

13. Miorandi, D., Sicari, S., Pellegrini, F., Chlamtac, I.: Internet of things: vision,
applications & research challenges. Ad Hoc Netw. 10(7), 1497–1516 (2012)

14. Sundmaeker, H., Guillemin, P., Friess, P., Woelffle, S.: Vision and challenges for
realising the internet of things. Eur. Comm. Inf. Soc. Media (2010)

15. Atzori, L., Iera, A., Morabito, G.: The internet of things: a survey. Comput. Netw.
54(15), 2787–2805 (2010)

A Security Framework for Internet of Things 31

16. Kalam, A.A.E., Baida, R.E., Balbiani, P., Benferhat, S., Cuppens, F., Deswarte,
Y., Miege, A., Saurel, C., Trouessin, G.: Organization based access control. In: 4th
IEEE Workshop on Policies for Distributed Systems and Networks (pOLICY). pp.
120–134. Italy, 4–6 July 2003

17. Zhang, G., Gong, W.: The research of access control based on UCON in the internet
of things. J. Softw. 6(4), 724–731 (2011)

18. Gusmeroli, S., Piccione, S., Rotondi, D.: A capability-based security approach to
manage access control in the internet of things. Math. Comput. Modell. 58(5–6),
1189–1205 (2013)

19. Hernndez-Ramos, J., Jara, A.J., Marin, L., et al.: Distributed capability-based
access control for the internet of things. J. Internet Serv. Inf. Secur. 3(3/4), 1–16
(2013)

20. Bayu, B., Mahalle, P.N., Prasad, N.R., Prasad, R.: Capability-based access control
delegation model on the federated IoT network. In Proceedings of the 15th Inter-
national Symposium on Wirless Personal Multimedia Communications (WPMC
2012), Taipei, China, pp. 604–608. IEEE (2012)

21. Prasad, R. (ed.): My personal Adaptive Global NET (MAGNET). Signals and
Communication Technology Book. Springer, Netherlands (2010)

22. Seitz, L., Selander, G., Gehrmann, C.: Authorization framework for the internet-
of-things. In: 14th IEEE International Symposium and Workshops on a World of
Wireless, Mobile and Multimedia Networks (WoWMoM 2013), Madrid, Spain, pp.
1–6. IEEE (2013)

23. Moses, T.: Extensible Access Control Markup Language (XACML) Version 2.0
(2005)

24. Crockford, D.: RFC 4627: The application/json media type for javascript object
notation (2006)

25. Roman, R., Zhou, J., Lopez, J.: On the features and challenges of security and
privacy in distributed internet of things. Comput. Netw. 57(10), 2266–2279 (2013)

26. Gerdes, S., Seitz, L., Selander, G., Bormann, C.: An architecture for authorization
in constrained environments. IETF, Draft (2015)

27. Bormann, C., Ersue, M., Keranen, A.: Terminology for constrained-node networks.
IETF RFC 7228 (2014)

28. Memon, M., Wagner, S.R., Pedersen, C., Beevi, F., Hansen, F.O.: Ambient assisted
living healthcare frameworks, platforms, standards, and quality attributes. Sensors
14, 4312–4341 (2014)

29. Dohr, A., Modre-Opsrian, R., Drobics, M., Hayn, D., Schreier, G.: The internet
of things for ambient assisted living. In: 2010 Seventh International Conference on
Information Technology: New Generations (ITNG), pp. 804–809 (2010)

30. Shelby, Z., Hartke, K., Bormann, C.: Constrained application protocol (CoAP)
IETF RFC 7252 (2014)

31. Mainetti, L., Patrono, L., Vilei, A.: Evolution of wireless sensor networks towards
the internet of things: a survey. In: 19th International Conference on Software,
Telecommunications and Computer Networks (SoftCOM), IEEE (2011)

Privacy-Aware Authentication
in the Internet of Things

Hannes Gross1(B), Marko Hölbl2, Daniel Slamanig1, and Raphael Spreitzer1

1 Graz University of Technology, Inffeldgasse 16a, 8010 Graz, Austria
{hannes.gross,daniel.slamanig,raphael.spreitzer}@iaik.tugraz.at

2 University of Maribor, Smetanova Ulica 17, 2000 Maribor, Slovenia
marko.holbl@um.si

Abstract. Besides the opportunities offered by the all-embracing Inter-
net of Things (IoT) technology, it also poses a tremendous threat to
the privacy of the carriers of these devices. In this work, we build upon
the idea of an RFID-based IoT realized by means of standardized and
well-established Internet protocols. In particular, we demonstrate how
the Internet Protocol Security protocol suite (IPsec) can be applied
in a privacy-aware manner. Therefore, we introduce a privacy-aware
mutual authentication protocol compatible with restrictions imposed by
the IPsec standard and analyze its privacy and security properties. With
this work, we show that privacy in the IoT can be achieved without
proprietary protocols and on the basis of existing Internet standards.

Keywords: Internet of Things · Privacy · Privacy-aware authentica-
tion · EPC Gen2 · RFID · IPsec · IKEv2

1 Introduction

The Internet of Things (IoT), in particular the secure and privacy-aware inte-
gration of RFID tags into the Internet, is a demanding area of research. Moti-
vated by the tight integration and interconnection of objects to share information
autonomously via the Internet, research on security and privacy issues has gained
increasing attention. More specifically, if the corresponding information is not
protected properly, it can be misused to track RFID tags. For instance, RFID
tags that respond with their ID to requests from any (malicious) reader easily
allow anyone to track the corresponding carrier. Hence, privacy-aware authenti-
cation aims for the authentication of RFID tags, but only authentic counterparts,
e.g., genuine clients or backends, are able to identify RFID tags.

Thereby privacy-aware authentication is not as strong as anonymous authen-
tication (e.g., [2,5]), which even hides tag identities from genuine readers.
However, while anonymous authentication is only reasonable within specific
applications and often not even desired, privacy-aware authentication should be

The full version of this extended abstract is available in the IACR Cryptology ePrint
Archive.

c© Springer International Publishing Switzerland 2015
M. Reiter and D. Naccache (Eds.): CANS 2015, LNCS 9476, pp. 32–39, 2015.
DOI: 10.1007/978-3-319-26823-1 3

Privacy-Aware Authentication in the Internet of Things 33

considered as absolutely necessary in the IoT in order to prevent malicious read-
ers or other external entities from tracking RFID tags.

Even though privacy aspects of RFID protocols have gained increasing atten-
tion, e.g., proposals of tag-authentication protocols [16,18] and RFID privacy
models [9,10,18] for the theoretical investigation of these protocols, so far
mostly proprietary solutions have been considered. However, proprietary solu-
tions impede the establishment of an RFID-based IoT for the following reasons:
(1) many of these “light-weight” protocols are in fact insecure. (2) a seamless
integration into the existing Internet environment is not possible, since differ-
ent communication protocols between tags, readers, and the actual Internet are
employed.

Contribution. In this paper we evaluate existing Internet security protocols
regarding their suitability for privacy-aware authentication protocols. Based on
this investigation, we advance the idea of an IoT based on IPsec by designing
a privacy-aware mutual authentication protocol which is standard conform.1

Finally, we compare the performance to proprietary protocols.

2 Internet Security Protocols

There are two predominant technologies to secure the communication over the
Internet, namely the Transport Layer Security protocol (TLS) [7] and the Inter-
net Protocol Security protocol suite (IPsec) [13]. While TLS is integrated in the
Transport Layer of the OSI protocol stack and is therefore visible for applica-
tions, IPsec has the advantage of being transparent for application-layer proto-
cols. Consequently, IPsec is closer to the physical layer, which has the advantage
of less overhead in terms of additional headers added by upper-layer proto-
cols. This is especially important, as minimizing the communication overhead
is crucial for RFID tags. Note that multiple RFID tags usually share only one
half-duplex communication channel and the communication speed is limited to a
few kilo bits per second. Thus, IPsec seems to be preferable over TLS. However,
for the sake of completeness, we still investigate the possible implementation of
privacy-aware authentication in IPsec and TLS within the following paragraphs.

Privacy-Aware Authentication in IPsec and TLS. Besides secure and
authenticated communication, one of the major issues of RFID tags is privacy.
Thus, the question is whether or not privacy-aware authentication can be imple-
mented by using the Internet standard protocols IPsec or TLS.

Comparing IPsec—respectively the Internet Key Exchange protocol (IKEv2)
used by IPsec—and TLS, we observe that both protocols support symmetric
authentication by means of a pre-shared secret (PSK) as well as asymmet-
ric authentication via certificates. However, the way both protocols implement
the key agreement and the authentication is different. In case of IKEv2, both
1 In the full version of this paper we adapt the HPVP model [9] to prove the required

properties of mutual authentication protocols following the IPsec standard.

34 H. Gross et al.

communication parties establish a confidential and integrity-protected communi-
cation channel by means of a Diffie-Hellman (DH) key agreement and the authen-
tication is then performed subsequently over the already encrypted channel.
Hence, passive attackers cannot gain any information on eavesdropped authen-
tication procedures. Active attackers, on the other hand, can exploit the fact
that the tags need to claim their identity in order to prove it. Later, in Sect. 4
we demonstrate how to counteract such active attacks.

In contrast, TLS does not encrypt the communication until the authentica-
tion phase is finished. Even considering a passive attacker only, the identity of
the involved parties cannot be protected as the identities are claimed in plaintext
in the PSK setting of TLS. The same argument holds for the certificate-based
authentication method. Hence, we conclude that privacy-aware authentication
cannot be achieved by TLS alone.

Nevertheless, note that both protocols also support completely anonymous DH
communication channels (without authentication). Based on such an anonymous
DH channel, one could implement a privacy-aware authentication mechanism on
the application layer (in a non-standard conform way). We do not consider this
approach as a viable option. These arguments also hold for DTLS [17], which has
been promoted for wireless sensor nodes in the IoT (e.g., [11,14]).

3 RFID Privacy Models

One of the first models for the privacy analysis in RFID systems has been pro-
posed by Vaudenay [18]. Depending on the adversary’s capabilities, Vaudenay
defined different privacy notions (cf. [18]). A follow-up paper of Paise and
Vaudenay [15] extended the model to also cover mutual authentication. However,
Armknecht et al. [3,4] observed some issues of the aforementioned model and
showed that mutual authentication and narrow-forward privacy (resp. narrow-
strong privacy) cannot be achieved if tag corruption reveals both the static and
the temporary/volatile memory (resp. the static memory only). Later on, Her-
mans et al. [9] presented a new model (HPVP) to overcome these issues. In
particular, they claim that their model achieves the strongest notion of privacy
(wide-strong privacy) in case the used public-key encryption scheme is IND-
CCA2 secure.

In the full version of this paper we adapt the HPVP model for (IPsec-
conform) mutual authentication and analyze the required properties (cor-
rectness, privacy, and security) of our privacy-aware authentication protocol
proposed in Sect. 4.3.

4 IPsec-Conform Authentication

IPsec relies on the Internet Key Exchange protocol (IKEv2) for the negotiation
of the security functionality and for the authentication of the involved parties.
Thus, in order for a protocol to be IPsec-compatible it must precisely follow the
message flow and data processing steps of IKEv2, which we sketch below.

Privacy-Aware Authentication in the Internet of Things 35

The basic message flow between an initiator and a responder is as follows [12].

IKE SA INIT REQ ↔ IKE SA INIT RSP : These request/response messages are
used to negotiate the cryptographic algorithms to be used subsequently and
to exchange the initial DH parameters and nonces in order to derive the
required key material. Hence, subsequent to these messages, the communi-
cation is already confidential and integrity protected.

IKE AUTH REQ ↔ IKE AUTH RSP : These request/response messages are used to
authenticate both parties. Therefore, these messages are used to exchange
the claimed identities along with an authentication value (either based on a
PSK or a signature in case of certificate-based authentication).

4.1 IPsec Conformance of Existing Protocols

When looking at existing literature [6,10] we observe that there are only very few
mutual-authentication protocols that have been formally analyzed. To the best
of our knowledge, only the PKC [18] and IBIHOP [16] meet these requirements,
but do not conform to the flow of the messages exchanged in IKEv2. Hence,
a privacy-aware authentication protocol that fits into IKEv2 still needs to be
defined.

4.2 Possible Realizations

In general, privacy-aware authentication in the IKEv2 protocol could be realized
for either a tag-initiated or a backend-initiated authentication scenario. However,
when the tag initiates the IKEv2 protocol, then the IKEv2 message flow requires
the tag to reveal its identity to an unauthenticated communication partner,
which violates the privacy of the tag.

On the other hand, if the backend initiates the communication, a unique
PSK per tag leads to the situation that the backend does not know for which
of the tags to compute the authentication value (AUTH). A straightforward
realization would thus be to use a PSK that is shared among all the tags, but this
has the major drawback that one broken tag results in a broken system. As an
alternative, a backend-first scenario could be realized by using certificates. Again,
in a scenario where the tag starts the communication this would inevitably reveal
the tag’s identity. Nevertheless, if the backend initiates the protocol, the identity
of the backend can be verified by first ensuring the validity of the certificate,
and then checking the AUTH value with the public-key of the backend. Only if
both are valid, the tag continues the protocol execution by sending its response
containing the identity claim, and the AUTH value. The tag authentication can
then either be certificate-based or PSK-based. Because the tag reveals its identity
only after the backend was authenticated and the communication channel in the
second protocol phase is already secured, this ensures that neither active nor
passive attackers can identify specific tags.

However, the validation of certificates on the tag side, i.e., verifying the cer-
tificate chain up to a trusted root certificate, represents an enormous effort for a

36 H. Gross et al.

constrained RFID tag. Even if the tag uses PSK-based authentication and only
a single backend certificate is used—and therefore no certificate chain needs to
be verified—, at least the certificate as well as a signature must be verified on
the tag side. A PSK-based authentication mechanism for both sides is thus the
desired choice in terms of computational overhead.

Furthermore, in a typical IoT scenario, an RFID tag is usually the initiator
of the conversation as the tag updates the backend with the information gath-
ered from its environment. Thus, the resulting requirements for an IPsec-conform
privacy-aware authentication are: (1) a tag-initiated protocol, and (2) the corrup-
tion of one tag should not lead to a broken system regarding the remaining tags.
In the next section, we propose a new privacy-aware authentication protocol,
which we analyze under an adapted HPVP model (cf. full version). In addition,
it is compliant with the IKEv2 protocol, i.e., allows tag-initiated conversations,
and uses PSK-based authentication on both sides.

4.3 IPsec-Conform Privacy-Aware Authentication

Figure 1 shows our IPsec-conform privacy-aware mutual authentication protocol,
which relies on the Diffie-Hellman Integrated Encryption (DHIES) scheme [1].
Subsequently, we use the additive notation as in the elliptic curve setting for the
description of our protocol. We denote by G the description of an additive group
of prime order q with some fixed generator G.

DHIES Excursus. DHIES [1] is a public-key encryption scheme ΠDHIES =
(Gen,Enc,Dec). Here, the Gen algorithm generates a private key k ←R Zq and a
public key K ← k · G. The Enc algorithm takes the public key K and a message
m. It computes an ephemeral public key R ← r · G for r ←R Zq and the secret
DH value P ← r · K. P is then used to derive two symmetric keys via a key-
derivation function as (kmac, kenc) ← KDF(P). These keys are used to obtain
c ← SymEnckenc

(m) using a symmetric encryption algorithm and to generate
a tag as t ← Mackmac

(m) to authenticate the message (MAC-and-encrypt).
Finally, Enc outputs the tuple (R, c, t). The Dec algorithm takes a secret key k
and ciphertext (R, c, t). It computes the DH value P = k · R. Then, the KDF is
computed over P and the two keys kmac and kenc are used to decrypt c and to
verify the tag t. If t is valid, it returns m ← SymDeckenc

(c) and ⊥ otherwise.

Our Protocol. Figure 1 omits the IPsec parameters (see [12] for details) that
are not relevant for the properties of our protocol for brevity reasons. The setup
of the backend generates a DHIES key pair (kB , KB = kB · G). The setup of a
tag generates a unique pre-shared secret key kPSK for the tag, which is shared
between the tag and the backend.

The protocol follows the notion of a tag-initiated challenge-response proto-
col to be compatible with the IPsec’s IKEv2 protocol. Each tag contains the
backend’s public key KB (the static DH parameter), which ensures that only
the genuine backend (in possession of kB) can decrypt the received data. The
tag starts the protocol by generating a nonce NT (of suitable bitsize κ) and the

Privacy-Aware Authentication in the Internet of Things 37

Tag

TID, G, {(BID, KB , kPSK)}
Backend

BID, G, (kB , KB), {(TID, kPSK)}

NT ←R {0, 1}κ

rT ←R Zq R ← rT · G
P ← rT · KB

1© IKE SA INIT REQ
HDR, SAi1, KEi = R, Ni= NT

NB ←R {0, 1}κ

P ← kB · R
kaeT ← KDFT(P,NT , NB)
kaeB ← KDFB(P,NT , NB)

2© IKE SA INIT RSP
HDR, SAr1, KEr = KB, Nr= NB

kaeT ← KDFT(P,NT , NB)
kaeB ← KDFB(P,NT , NB)
a ← MackPSK(1©|NB |TID)

3© IKE AUTH REQ

HDR, SK(...) := ̂EnckaeT (IDi = TID, AUTH = a, SAi2, TSi, TSr)

{TID|a| . . . } ← ̂DeckeaT (SK(...))
Lookup TID → kPSK

If VrfkPSK(1©|NB |TID, a)
a′ ← MackPSK(2©|NT |BID)

Else: ERROR

4© IKE AUTH RSP

HDR, SK(...) := ̂EnckaeB (IDr = BID, AUTH = a’, SAr2, TSi, TSr)

{BID|a′| . . . } ← ̂DeckaeB (SK(...))
If VrfkPSK(2©|NT |BID, a′):

Output OK
Else: Output ERROR

Fig. 1. IPsec-conform privacy-aware mutual authentication protocol

ephemeral DH parameter R ← rT ·G for rT ←R Zq. Based on the resulting shared
secret P = rT · kB · G and the nonces, the tag and the backend derive sym-
metric encryption and authentication keys for both sides by means of a KDF.
In contrast to a single DHIES instance—and to fit into the IKEv2 protocol—,
two separate key derivation functions (KDFT and KDFB) are used to derive the
keys (kmac, kenc) for the tag and the backend, respectively. Instead of referring
directly to the encryption or authentication keys, we use kae∗ for ∗ being T or
B to denote these tuples. Furthermore, we denote by Ênckae∗ that the symmet-
ric encryption SymEnc and the Mac function of the DHIES is implicitly called
such that Ênckae∗ returns the tuple (c, t) under the key set kae∗. The decryption
D̂eckae∗ works analogously.

After the backend decrypted the tag’s ID (TID), the corresponding PSK
(kPSK) is used to verify the tag authentication. Therefore, we use an additional
PSK (kPSK) for the authentication of both sides—by generating a and a′, respec-
tively. Hence, we define a protocol for tag-first authentication with an “implicit”
backend-first authentication. Implicit backend-first authentication is achieved as
only the genuine backend is able to decrypt the message containing the tag’s ID
that is required for the subsequent tag authentication. Note that readers func-
tion as pure routers in our IoT setting and solely bridge the IP packets between
the tags and the backend. Such an IoT scenario has multiple untrusted readers,

38 H. Gross et al.

which are not directly modeled here but instead are only considered as possible
adversaries (see Gross et al. [8] for more details on the scenario).

In the full version we formally analyze the privacy and security properties of
our protocol.

Performance Evaluation and Comparison. As elliptic curve cryptography
(ECC) is the most reasonable setting for public-key cryptography in resource-
constrained environments, we assume an instantiation of DHIES in this setting.
In [8], the standard-conform integration of IPsec into the EPC Gen2 standard is
presented and the requirements regarding the cryptographic primitives and the
implementation overhead are evaluated. They use the NIST P-192 elliptic curve
and the AES algorithm. Both ECC and AES cores were designed for low-power
applications. As these results show, one ECC scalar multiplication consumes
around 700 k cycles, which is significantly more than one AES operation with
only 1 k cycles. Thus, the computational complexity of a protocol mainly depends
on the number of required scalar multiplications if the number of symmetric-key
operations is reasonably low.

Furthermore, PKC [18], IBIHOP [16], and our protocol are the only privacy-
aware authentication protocols that provide mutual authentication. However,
in contrast to our protocol IBIHOP is less efficient and like the PKC it is not
standard conform. More specifically, we only require two scalar multiplications
on the tag’s side compared to the three multiplications required by the IBIHOP
protocol. Therefore, our protocol is the only one that provides standard-conform
mutual authentication.

5 Conclusion

Building on the recent work in [8], that focused on the integration of IPsec
into RFID tags, we proposed an IPsec-conform privacy-aware mutual authenti-
cation mechanism between RFID tags and clients on the Internet. Thereby, we
further paved the way for an IoT that is based on well-established standards.
Our privacy-aware authentication does not reveal sensitive information like IDs
unless the tag is assured to communicate with a genuine backend. Consequently,
we reduce privacy concerns of carriers of RFID tags since undesired disclosure
of sensitive information is prevented.

Acknowledgements. We would like to thank the anonymous reviewers for their valu-
able comments. This work has been supported by the Austrian Science Fund (FWF)
under the grant number TRP251-N23 (Realizing a Secure Internet of Things - ReSIT),
the FFG research program SeCoS (project number 836628) and by EU Horizon 2020
through project Prismacloud (GA No. 644962).

References

1. Abdalla, M., Bellare, M., Rogaway, P.: The oracle Diffie-Hellman assumptions and
an analysis of DHIES. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp.
143–158. Springer, Heidelberg (2001)

Privacy-Aware Authentication in the Internet of Things 39

2. Armknecht, F., Chen, L., Sadeghi, A.-R., Wachsmann, C.: Anonymous authentica-
tion for RFID systems. In: Ors Yalcin, S.B. (ed.) RFIDSec 2010. LNCS, vol. 6370,
pp. 158–175. Springer, Heidelberg (2010)

3. Armknecht, F., Sadeghi, A., Scafuro, A., Visconti, I., Wachsmann, C.: Impossibility
results for RFID privacy notions. Trans. Comput. Sci. 11, 39–63 (2010)

4. Armknecht, F., Sadeghi, A.-R., Visconti, I., Wachsmann, C.: On RFID privacy
with mutual authentication and tag corruption. In: Zhou, J., Yung, M. (eds.) ACNS
2010. LNCS, vol. 6123, pp. 493–510. Springer, Heidelberg (2010)

5. Burmester, M., de Medeiros, B., Motta, R.: Anonymous RFID authentication sup-
porting constant-cost key-lookup against active adversaries. IJACT 1(2), 79–90
(2008)

6. Coisel, I., Martin, T.: Untangling RFID privacy models. J. Comput. Netw. Com-
mun. 2013, 710275:1–710275:26 (2013)

7. Dierks, T., Rescorla, E.: The Transport Layer Security (TLS) Protocol Version 1.2.
RFC 5246 (2008)

8. Gross, H., Wenger, E., Mart́ın, H., Hutter, M.: PIONEER—a prototype for the
internet of things based on an extendable EPC Gen2 RFID tag. In: Sadeghi, A.-R.,
Saxena, N. (eds.) RFIDSec 2014. LNCS, vol. 8651, pp. 54–73. Springer, Heidelberg
(2014)

9. Hermans, J., Pashalidis, A., Vercauteren, F., Preneel, B.: A new RFID privacy
model. In: Atluri, V., Diaz, C. (eds.) ESORICS 2011. LNCS, vol. 6879, pp. 568–
587. Springer, Heidelberg (2011)

10. Hermans, J., Peeters, R., Preneel, B.: Proper RFID privacy: model and protocols.
IEEE Trans. Mob. Comput. 13(12), 2888–2902 (2014)

11. Hummen, R., Shafagh, H., Raza, S., Voigt, T., Wehrle, K.: Delegation-based
authentication and authorization for the IP-based internet of things. In: SECON,
pp. 284–292. IEEE (2014)

12. Kaufman, C., Hoffman, P., Nir, Y., Eronen, P.: Internet Key Exchange Protocol
Version 2 (IKEv2). RFC 5996 (Proposed Standard), Sept. 2010. Obsoleted by RFC
7296, updated by RFCs 5998, 6989

13. Kent, S., Seo, K.: Security Architecture for the Internet Protocol. RFC 4301 (2005)
14. Kothmayr, T., Schmitt, C., Hu, W., Brünig, M., Carle, G.: DTLS based security

and two-way authentication for the internet of things. Ad Hoc Netw. 11(8), 2710–
2723 (2013)

15. Paise, R., Vaudenay, S.: Mutual authentication in RFID: security and privacy. In:
ASIACCS, pp. 292–299. ACM (2008)

16. Peeters, R., Hermans, J., Fan, J.: BIHOP: proper privacy preserving mutual RFID
authentication. In: RFIDSec Asia, pp. 45–56. IOS Press (2013)

17. Rescorla, E., Modadugu, N.: atagram Transport Layer Security Version 1.2. RFC
6347 (Proposed Standard), January 2012

18. Vaudenay, S.: On privacy models for RFID. In: Kurosawa, K. (ed.) ASIACRYPT
2007. LNCS, vol. 4833, pp. 68–87. Springer, Heidelberg (2007)

Password-Based Authentication

Security of Linear Secret-Sharing Schemes
Against Mass Surveillance

Irene Giacomelli1(B), Ruxandra F. Olimid2, and Samuel Ranellucci1

1 Department of Computer Science, Aarhus University, Aarhus, Denmark
giacomelli@cs.au.dk

2 Department of Computer Science, University of Bucharest,
Romania and Applied Cryptography Group, Orange, Bucharest, Romania

Abstract. Following the line of work presented recently by Bellare,
Paterson and Rogaway, we formalize and investigate the resistance of lin-
ear secret-sharing schemes to mass surveillance. This primitive is widely
used to design IT systems in the modern computer world, and often it
is implemented by a proprietary code that the provider (“big brother”)
could manipulate to covertly violate the privacy of the users (by imple-
menting Algorithm-Substitution Attacks or ASAs). First, we formalize
the security notion that expresses the goal of big brother and prove that
for any linear secret-sharing scheme there exists an undetectable sub-
version of it that efficiently allows surveillance. Second, we formalize the
security notion that assures that a sharing scheme is secure against ASAs
and construct the first sharing scheme that meets this notion.

Keywords: Linear secret-sharing ·Algorithm-substitution attack ·Mass
surveillance · Kleptography

1 Introduction

The paper considers the possibility of mass surveillance by algorithm-substitution
attacks (ASAs) against secret sharing. Secret-sharing generally refers to a method
for splitting a secret into pieces (called shares of the secret) so that the secret can
be reconstructed when a qualified set of shares are combined together (recon-
struction property); on the other hand, unqualified sets of shares reveal no infor-
mation about the original secret (privacy property). An ASA replaces the real
sharing algorithm by a subverted version that allows a privileged party (big
brother) to break privacy and reconstruct the secret from an unqualified sets of
shares. Since secret sharing is widely used as building block for distributed proto-
cols and systems, its insecurity against this kind of attack could have significant
consequences. For example, big brother could mount ASA against a key backup
system based on secret sharing, recover the private keys and break confidential-
ity (in order to maintain the same terminology as in the existing literature [1],
we refer to this kind of scenario as mass surveillance).

c© Springer International Publishing Switzerland 2015
M. Reiter and D. Naccache (Eds.): CANS 2015, LNCS 9476, pp. 43–58, 2015.
DOI: 10.1007/978-3-319-26823-1 4

44 I. Giacomelli et al.

Motivation. Applications for access control, key backup and recovery or secure
storage systems sometimes implement proprietary piece of code to perform secret
sharing [2–6]. Often, the security of the entire system relies on the privacy
property of the underlying secret sharing scheme (e.g. access control systems
grant permission only if a set of qualified shares are available for reconstruc-
tion). Therefore, mounting ASAs against such systems might lead to serious
consequences: big brother can ruin access control, disclose private keys or learn
secret data.

To exemplify, we focus on the scenario of long-term secure storage systems
that use secret sharing to assure data confidentiality and availability. A client-
side application runs a sharing algorithm to split data in share that are privately
sent to a set of independent storage nodes, which can be located across different
geographical and network areas, benefit of distinct protection mechanisms and
even belong to various storage providers. To later access the stored data, the
client application requests a qualified set of shares from several storage nodes and
reconstructs. The architecture introduces multiple points of trust: reconstruction
is possible only if the adversary breaks into several storage nodes and obtains a
qualified set of shares; the architecture assumes no trust on individual storage
providers, as no one can access the data using its own shares only. Now, suppose
an undetectable ASA replaces the client-side application code with a subverted
version designed by big brother that allows reconstruction from an unqualified
sets of shares; if big brother is a storage provider, then it can perform surveillance
by breaking the privacy property using the shares stored on its own servers; if
big brother is an outsider, it can perform surveillance by only breaking into a
few storage nodes, independently of the access structure. On the other hand,
the client would like a guarantee that no ASAs will succeed, under the minimal
detectability conditions.

Related Work. Kleptography was introduced by Young and Yung in the 90s to
consider undetectable modifications to cryptosystems that deliberately provide
trapdoor capabilities [7,8], as an extension to the existing notions of sublim-
inal and convert channels [9,10]. Since then, kleptographic attacks have been
designed for a wide range of cryptographic primitives and protocols. Despite the
amount of work that has been done on the field, only recently Bellare, Paterson
and Rogaway formalize the security notions in the settings of modern cryptogra-
phy [1]. They set the terminology for ASAs (Asymmetric Substitution Attacks)
and use a game-based approach to model both negative and positive results, i.e.
when an adversary (big brother) can, respectively cannot perform surveillance
without being detected. Their work focuses on symmetric encryption and high-
lights its impact on real-world systems. We follow their line of work, formalize
and investigate the resistance of linear secret-sharing to mass surveillance. The
security in this framework of other fundamental primitives has already been
studied: see the recent work of Ateniese, Magri and Venturi [11] for a formal
treatment of subversion-resilient signature schemes.

Security of Linear Secret-Sharing Schemes Against Mass Surveillance 45

Table 1. Strong subversion and resilience modeling

Strong subversion (big
brother’s goal)

Strong resilience (users’ goal)

Detection algorithm PK, T ; choose the secret ∅; access Secret oracle

Subverted algorithm PK, T PK, SK, T

Modeling and Results. We assume that big brother subverts the sharing scheme
embedding in it a strategy T and an encryption key. Big brother aims for a
strong form of subversion, that disallows users from detecting ASAs or gain
his abilities to perform surveillance even in case of reverse engineering. So, we
consider asymmetric ASAs, where big brother embeds into the code a public key
PK and keeps the corresponding secret key SK private. In this strong surveillance
model, the subverted algorithm has access to the public key PK and the strategy
T and it remains undetectable by the users even if both PK and T are given
to the detection algorithm (run by the users). We give additional power to the
detection algorithm and allow it to choose the secret to be shared. This models
big brother’s goal to keep subversion hidden for all possible secrets and hence
make the ASA undetectable. Following the strategy T , big brother corrupts a
set of unqualified parties and uses their shares to gain information about the
secret. This is the framework we formalize in Sect. 3, where we also show our
negative result: for any linear secret-sharing scheme there exists an undetectable
subverted version of it that efficiently allows surveillance.

On the other hand, users aim for a strong form of resilience against surveil-
lance, that allows detectability even if they only have black-box access to the
subverted sharing algorithm. In this strong resilience model, the subverted algo-
rithm can also be given access to the private key SK and it is detectable by users
even if the detection algorithm is given nothing (except the inputs and outputs
of the black-box). Symmetric ASAs suffice, as (PK, SK) can be seen a single secret
key K embedded into the code; however, we maintain the asymmetric notation
for continuity. We now disallow the detection algorithm to choose the secret to
be shared and give it access to a Secret oracle, reflecting that users should
detect surveillance for sampled inputs. We formalize this framework in Sect. 4,
where we also give the first construction of a linear secret-sharing scheme that
is resilient against any efficient subversion. To obtain this positive result, we
require that all the users give input to the sharing algorithm.

In contrast to [1], we consider strong forms of subversion and resilience to
model the goals of big brother, respectively users and give the detection and
subverted algorithms distinct capabilities. Similar to [1] (where big brother is
not allowed to select the encryption key), we do not allow big brother to select
the secret (Table 1). However, we discuss in Sect. 4 the settings that allow sur-
veillance resilience when big brother is allowed to select the secret and show that
our proposal remains secure under this settings.

46 I. Giacomelli et al.

2 Preliminaries

Let F be a finite field and v ∈ F
n a vector of n components; we denote by v [i]

its i-th component. We denote sampling uniformly at random a value x from a
set X as x � X and assigning a value Y to a variable y as y ← Y .

2.1 Secret Sharing

Let n be the set of parties (e.g. the different storage nodes) P = {P1, . . . , Pn}.
A secret sharing scheme consists of two algorithms Π = (Sh,Rec) such that:

– the sharing algorithm Sh is a randomized algorithm that receives as input a
secret s and outputs a vector of shares S = (S [1], . . . ,S [n]); We call dealer
the entity that runs the algorithm on input s and that receives the output S .
We assume that the sharing algorithm is connected by a bidirectional secure
channel1 with each players Pi, in such a way that the share S [i] is securely
sent to the player Pi.

For any subset of players A ⊂ {P1, . . . , Pn}, let SA be the vector of shares
held by players in A, i.e. SA = (S [i])Pi∈A. A set A ⊂ {P1, . . . , Pn} is called
unqualified if the distribution of SA is independent from s, while it is called
qualified if the secret s is uniquely determined from SA.

– the reconstruction algorithm Rec is a deterministic algorithm that receives as
input a subset of shares SA and outputs the value s if the set of shares cor-
responds to a qualified set of players; otherwise it outputs the special symbol
⊥. We ask that the entire set of players {P1, . . . , Pn} is always qualified.

The access structure of Π, Γ , is defined as the set of all A ⊂ {P1, . . . , Pn}
that are qualified and Γmin is the set of the minimal qualified subsets, i.e. Γmin =
{B ∈ Γ | � B′ ⊂ B,B′ ∈ Γ}. Let γ be the cardinality of the largest set in Γmin,
i.e. γ = max{|B| | B ∈ Γmin} and let ρ the reconstruction threshold, i.e. the
smallest integer such that every A ⊂ {P1, . . . , Pn} of cardinality ρ is qualified.

Remark 1. In general, γ differs from the reconstruction threshold ρ. For example,
let n = 4 and Γmin = {{P2, P3}, {P2, P4}, {P3, P4}}. Then γ = 2, but ρ = 3.
The inequality γ ≤ ρ always holds.

2.2 Linear Secret Sharing

Informally, a secret sharing scheme is called linear if the secret and the shares are
elements of some vector spaces and the shares are computed as a linear function
of the secret.

More precisely, given M a n×m matrix (m > l) with elements in F, the Linear
Secret-Sharing Scheme (LSSS) associated to M , ΠM = (ShM ,RecM), is defined

1 By secure channel we mean an authenticated and private channel that is also sub-
version resilient, that is big bother can not implement surveillance over it. Using the
results of [1,11] for encryption scheme and digital signature such a channel can be
easily implemented.

Security of Linear Secret-Sharing Schemes Against Mass Surveillance 47

in Construction 1. To share a secret s = (s[1], . . . , s[l]) ∈ F
l, the algorithm first

forms a column vector f ∈ F
m where s appears in the first l entries and with

the last d entries chosen uniformly at random and then computes S = M · f .
We will use πl to denote the projection that outputs the first l coordinates of
a vector, i.e. πl(f) = s. Similarly, let πd(f) be the last d elements of f ; hence,
πd(f) = r , where d = m − l.

ShM (s)
r � F

d

f T ← (s, r)T

S ← M · f
return S

RecM (SB)
if B is qualified then

s ← NB · SB

else
s ← ⊥

return s

Construction 1: LSSS ΠM = (ShM ,RecM)

Let m i be the row i of M and m i be the column i of M . If B ⊆ P, then
MB = (m i)Pi∈B denotes the matrix built from all rows m i such that Pi ∈ B.

It easy to see that a player subset B is qualified if and only if there exists a
l × |B| matrix NB such that for any f ∈ F

d, NB · (MB · f) = πl(f).

Remark 2. The inequality γ > l always holds from the correctness of reconstruc-
tion and the usage of randomness (d > 0).

For the rest of the paper, we fix M and denote ΠM = (ShM ,RecM) by
Π = (Sh,Rec) to simplify notation. See two examples of linear secret-sharing
scheme in the full version of the paper [12].

3 Subverting Secret-Sharing

This section models big brother’s B goal: to subvert the sharing algorithm Sh

to an algorithm S̃h that allows him to perform surveillance, while it remains
undetected under the strong subversion scenario (see Sect. 1).

Surveillance means that B compromises privacy and learns the secret (or
part of it) from corrupting an unqualified set of parties. To do so, B can embed
in the code a key and a strategy. The embedded key is used to favor B over
other entities, by leaking information in encrypted form. In real life, B aims
to keep decryption capabilities to itself even in case of reverse engineering the
algorithm, so our definitions consider asymmetric ASAs (B embeds a public key
PK in the code and keeps the corresponding secret key SK private). The strategy
T defines the unqualified set of parties B must corrupt to break the privacy of
the scheme. We expect that B embeds in the code and hence follows a strategy T
that maximizes its chances to win (e.g. minimum number of parties, if all parties
are equally susceptible to corruption or easy to corrupt parties otherwise).

48 I. Giacomelli et al.

Undetectability means that no efficient detection algorithm U that is not
given the decryption key SK can distinguish between the real and the subverted
sharing algorithm. In the absence of the undetectability condition, subversion
is always possible: S̃h simply distributes the secret (or parts of it) in shares in
accordance to the strategy T .

3.1 Definitions

Let Π = (Sh,Rec) be a secret-sharing scheme and let K be a probabilistic key
generation algorithm that outputs a public-private key pair (PK, SK). A subver-
sion of Π is a pair Π̃ = (S̃h, R̃ec), with the following features: the subverted
sharing algorithm S̃h is a randomized algorithm that maps (s, PK, ID, T) to a
share vector S. The input ID identifies the dealer that runs the sharing algo-
rithm; this information is in general available in the system (e.g. the IP address
or any authentication information of the client application for storage systems).
T is a strategy that outputs the subset T ⊂ {P1, . . . , Pn} used to leak infor-
mation. The subverted reconstruction algorithm R̃ec is an algorithm that maps
(ST , ID, SK) to the shared secret s, where ST is the subset of shares that belongs
to the unqualified set T .

We give next the definitions for detection and surveillance games. In contrast
to the traditional unbounded adversarial power in secret sharing, our model is
defined in the computational settings [13,14]. In the following, we say that a
function ε is negligible in N if for every polynomial function p(N) there exists
a constant c such that ε(N) < 1

p(N) when N > c. With the notation AALG(z)
we mean that the entity A has oracle access to the algorithm ALG with knowl-
edge of z.

Detection Advantage. Let Π = (Sh,Rec) be a secret sharing scheme and Π̃ =
(S̃h, R̃ec) a subversion of it. Let U be a detection algorithm that is not given SK.
The advantage of U to detect the ASA is defined as:

Advdet
Π,Π̃

(U) = 2Pr[DETECTU
Π,Π̃

⇒ true] − 1

A subversion Π̃ is undetectable if Advdet
Π,Π̃

(U) is negligible for any efficient U .
Detectability measures the ability of U to detect an ASA. In the DETECT

game, U must detect if it receives shares produced by the real algorithm Sh or
by its subversion S̃h. To capture the case of reverse engineering, we allow U to
use the encryption key PK and the strategy T that are embedded in the code; of
course, the detection algorithm does not have access to the decryption key SK.

Clearly, B wants a subversion to be undetectable. By allowing U full control
over the secret, the shares and the embedded PK, our definition captures the
strongest form of detectability.

Security of Linear Secret-Sharing Schemes Against Mass Surveillance 49

Game DETECTU
Π,Π̃

b � {0, 1}
(PK, SK) � K
b′ � UShare(PK, T)
return (b = b′)

Share(s)
if b=1 then

S ← Sh(s)
else

S ← S̃h(s, ID, PK, T)
return S

Game 1: DETECT (Detection Game)

Surveillance Advantage. Let Π = (Sh,Rec) be a secret sharing scheme and
Π̃ = (S̃h, R̃ec) a subversion of it. Let B (big brother) be an adversary that
knows SK. The advantage of B to detect the ASA is defined as:

Advsrv
Π,Π̃

(B) = 2Pr[SURVB
Π,Π̃

⇒ true] − 1

A scheme Π is secure against surveillance if Advsrv
Π,Π̃

(B) is negligible for any

efficient B and for any Π̃.
Surveillance advantage measures the ability of a scheme to be secure against

ASAs. Clearly, B wants to break privacy. Our definition models the stronger
property that B cannot even distinguish between the real algorithm Sh and its
subversion S̃h; in particular, the subversion gives B no advantage to restore the
secret by corrupting an unqualified set of parties. SURV game is similar to the
DETECT game, except that the adversary B is given the secret key SK and cannot
select the secret to be shared, but interrogates a Secret oracle to obtain it.

Game SURVB
Π,Π̃

b � {0, 1}
(PK, SK) � K
b′ � BShare(PK, SK, T)
return (b = b′)

Secret()
s � F

l

return s

Share()
s ← Secret()
if b=1 then

S ← Sh(s)
else

S ← S̃h(s, ID, PK, T)
return s,S

Game 2: SURV (Surveillance Game)

50 I. Giacomelli et al.

We can now model a negative result : a scheme Π is susceptible to ASAs if
there exists an undetectable subversion Π̃ of Π that allows an efficient adversary
B to have a non-negligible surveillance advantage (e.g. to break privacy). We call
Π̃ a successful subversion of Π. We show that this is the case for any LSSS in
Sect. 3.3.

3.2 Share-Fixing

Inspired by the existing work on bit-fixing [15,16], we introduce share-fixing
notions that we will later use to construct undetectable subversion of LSSS.

Let Π = (Sh,Rec) be a secret sharing scheme and T ⊂ {P1, . . . , Pn}. ST

is called a share-fixing vector for a secret s if there exists S a valid sharing of
s such that S [i] = ST [i], for all Pi ∈ T . Intuitively, a share-fixing vector is a
subset of ordered shares that can be expanded to a complete set of valid shares.
A randomized algorithm FΠ that generates ST for a given T and any secret s
is called a share-fixing source. We will use FΠ(s, T) to denote that F runs on
input (s, T). Note that it is always possible to construct a share-fixing source by
simply running Sh(s) and restrict its output to T .

For a share-fixing source FΠ and any secret s, a randomized algorithm Ŝh
that maps (s,FΠ(s, T)) to a valid set of shares S such that S [i] = ST [i], for
all Pi ∈ T is called a share-fixing extractor. Intuitively, a share-fixing extractor
expands the output ST of the share-fixing source to a complete set of valid shares
S . Note that it is always possible to construct a share-fixing extractor by simply
running Sh(s) repeatedly until S expands ST (obviously, the construction is
inefficient).

Extractor Detection Advantage. Let Π = (Sh,Rec) be a secret sharing scheme
and T ⊆ {P1, . . . , Pn}. Let FΠ be a share-fixing source for (Π,T) and Ŝh a
share-fixing extractor for (Π,FΠ). Let Π̂ = (Ŝh,Rec) be the secret sharing
scheme obtained from Π by replacing the sharing algorithm Sh with the share-
fixing extractor Ŝh. The advantage of an algorithm U to detect the share-fixing
extractor is defined as:

Adve-det
Π,Π̂

(U) = 2Pr[E-DETECTU
Π,Π̂

⇒ true] − 1

A share-fixing extractor Ŝh is undetectable if Adve-det
Π,Π̂

(U) is negligible for any
efficient U .

Extraction detectability measures the ability of U to distinguish a share-
fixing extractor Ŝh from the real Sh. In the E-DETECT game, U must detect if it
receives shares produced by the real algorithm Sh or by a share-fixing extractor
Ŝh, given a share-fixing source FΠ . Clearly, undetectability is impossible if the
share-fixing source FΠ samples ST from a distribution which can be efficiently
distinguished from the distribution of the shares produced by the original sharing
algorithm. But that is not always the case: in the proof of Theorem1 we show
that for any LSSS it is always possible to find a nonempty set T such that the

Security of Linear Secret-Sharing Schemes Against Mass Surveillance 51

distribution of the shares held by players in T is easy to simulate (i.e. it is the
uniform one).

Game E-DETECTU
Π,Π̂

b � {0, 1}
b′ � UShare

return b = b′

Share(s,FΠ , T)
if b=1 then

S ← Sh(s)
else

ST � FΠ(s, T)
S ← Ŝh(s,ST)

return S

Game 3: E-DETECT (Extraction Detection Game)

Theorem 1. Let Π = (Sh,Rec) be a LSSS. Then, there exists a nonempty
unqualified set of players T of cardinality t such that if FΠ is an algorithm that
maps s ∈ F

l to a uniformly random ST ∈ F
t, it holds that FΠ is a share-fixing

source for (Π,T).

Proof. Let B ∈ Γmin with |B| = b. By definition, we have that rank(MB) = b
and rank(πd(MB)) ≥ b − l > 0 with πd(MB) denoting the last d columns of
MB . Let t = rank(πd(MB)), then there exists T ⊂ B of cardinality t such that
rank(πd(M T)) = t (take as T a set of players that corresponds to nonempty
proper subset of the indices of the rows that are linear independent in πd(MB)).
Notice that T is trivially unqualified. The proof reduces to the existence of r
such that πd(f) = r and M T · f = ST , where both ST and πl(f) = s are fixed.
Let M T = (πl(M T) | πd(M T)). Under this notation, M T · f = ST becomes
πl(M T) · s + πd(M T) · r = ST or equivalently πd(M T) · r = ST − πl(M T) · s,
which always has a solution because the matrix πd(M T) has full row-rank by
construction.

Then, it follows that for any LSSS there exists a share-fixing extractor. More
precisely:

Theorem 2. Let Π = (Sh,Rec) be a LSSS and FΠ be a sharing-fixing source
as defined in Theorem1. Then, the algorithm Ŝh in Construction 2 is an unde-
tectable share-fixing extractor Ŝh for (Π,FΠ).

Proof. Let Ŝh be defined as in Construction 2, where T is as in Theorem 1. Ŝh
computes r as a solution of πd(M T)·r = ST −πl(M T)·s (see Theorem 1). From
the hypothesis, FΠ outputs ST uniformly at random and hence ST −πl(M T) ·s
is uniformly at random. Since πd(M T) has full rank t, r is uniformly random
in F

d. Note that from the definition of LSSS, Sh also chooses r uniformly at
random in F

d. Once r is fixed, Ŝh follows Sh exactly: forms the column vector f
and computes S = M · f . To conclude, the output distribution of Ŝh equals the
output distribution of Sh and the share-fixing extractor Ŝh is undetectable with
Adve-det

Π,Π̂
(U) = 0.

52 I. Giacomelli et al.

̂Sh(s, FΠ , T)
πl(f) ← s
ST ← FΠ(s, T) (T and FΠ as in Theorem 1)

solve πd(M T) · r = ST − πl(M T) · s for r , where πd(M T) and πl(M T)
denote the last d columns, respectively the first l columns of M T

(if t < d, fix r uniformly at random from the set of possible solutions)

f ← (s, r)T

S ← M · f
return S

Construction 2: Share-fixing extractor Ŝh for (Π,FΠ)

In the full version of the paper, the reader can find explicit examples of
share-fixing extraction for (Π,FΠ) [12].

3.3 Shares Replacement Attack

We show that for any LSSS there exists an undetectable subverted version that
efficiently allows surveillance. Let Π = (Sh,Rec) be a LSSS. Then, we construct
a successful subversion Π̃ = (S̃h, R̃ec) of Π such that an efficient adversary B
learns the secret s or parts of it with probability 1.

Let T = {Pi1 , . . . , Pit}, as defined in Theorem 1. The subverted sharing algo-
rithm S̃h implements a share fixing source FΠ to generate a subset of shares
ST that allows B to compute the secret s (or a part of it), then expands ST

to a full set of shares S using the share-fixing extractor Ŝh from Theorem 2. To
hide information about s into ST , S̃h uses a deterministic public key encryption
scheme (K, E ,D) such that if m is sampled uniformly at random from F then
E(m) is uniformly distributed in F and a pseudo-random generator PRG that
maps a seed in F to an element in F

t. It is natural to assume such constructions
exist [17–22]2.

If t ≥ 2, a random seed x is encrypted under the public key PK of B to obtain
ST [i1], the first share in ST . Then, S̃h simply hides in the remaining components
of ST some of the components of s by adding them (using the addition operation
from F) to the pseudo-random values given by the output of the pseudo-random
generator.

The subverted scheme is correct. Since S is a valid vector of shares, recon-
struction and privacy hold by construction.

Theorem 3. Let Π = (Sh,Rec) be a LSSS with γ − l ≥ 2 (this assures t ≥ 2).
Then, its subversion Π̃ = (S̃h,Rec) defined in Construction 3 is successful and
B learns the first t − 1 components of s with probability 1.

2 For [17] see Sect. X. Avoiding Reblocking when Encrypting a Signed Message.

Security of Linear Secret-Sharing Schemes Against Mass Surveillance 53

S̃h(s, ID, PK, T)
T ← T
ST � FΠ(s, T)
S ← Ŝh(s,ST)
return S

FΠ(s, T)
x � F

ST [i1] ← E(PK, x)
S ′ ← PRG(x)
for j = 2 . . . t do

ST [ij] ← s[j − 1] + S ′[j − 1]
return ST

R̃ec(ST , ID, SK)
x ← D(SK,S [i1])
S ′ ← PRG(x)
for j = 2 . . . t do
s[j − 1] ← ST [ij] − S ′[j − 1]

return (s[1], . . . , s[t − 1])

Construction 3: Subverted scheme Π̃ = (S̃h, R̃ec) (t ≥ 2)

Proof. In the subversion game, B extracts ST from S accordingly to the embed-
ded strategy T and then runs R̃ec(S ′

T , ID, SK) to get (s ′[1], . . . , s ′[t − 1]). If
s’ [i] = s[i] for all i = 1, . . . , t − 1, then B outputs 0, otherwise B outputs 1. The
surveillance advantage Advsrv

Π,Π̃
(B) = 2|1 − 1/|F|t| − 1 is clearly non-negligible.

In the detection game, ST is indistinguishable from random in F
t by exploit-

ing encryption and PRG security. Thus, by Theorem 2, FΠ is a share-fixing source
and Ŝh is undetectable with Adve-det

Π,Π̂
(U) = 0. Then, the detection advantage is

Advdet
Π,Π̃

(U) ≤ AdvE(U) + AdvPRG(U), which is negligible because of the security
of the PRG and the assumption on the encryption scheme. We can therefore
conclude that Π̃ is a successful subversion.

The condition γ− l ≥ 2 is satisfied by many commonly used sharing schemes.
For example, it is satisfied by the additive scheme with more than 2 players and
by Shamir’s scheme with at least 2 privacy . See the full paper for a construction
of an undetectable subversion that works when t = 1 [12].

4 Subversion Resilient Secret Sharing

4.1 Multi-input Secret Sharing

We aim to define (linear) secret-sharing schemes that stands against ASAs. To
achieve this, we allow the parties to give input to the sharing algorithm: each
player in P inputs a random element u [i] to Sh, while the dealer inputs, as
always, the secret s.

Let Π = (Sh,Rec) be a multi-input secret sharing scheme that consists of
two algorithms such that:

54 I. Giacomelli et al.

– the sharing algorithm Sh receives as input from the dealer a secret s and as
input from P a vector u = (u [1], . . . ,u [n]), where u [i] is given by Pi and
outputs a set of shares S = (S [1], . . . ,S [n]); note that since we assume the
existence of authenticated, private and subversion resilient channels between
the sharing algorithm and the players, u [i] remains unknown to all parties,
except Pi;

– the reconstruction algorithm Rec remains unchanged; it receives as input a
set of shares S and outputs the secret s if the set of shares corresponds to a
qualified set.

4.2 Definitions

Similar to Sect. 3, we introduce the definitions for detection and surveillance
advantages. Notice that this section models the users’ goal, so what we want is
strong resilience: B can embed in the code the secret key SK, while U is not given
access to the strategy and the public key. Even more, we disallow U to select
the secret or the inputs of the players and give it access to a Secret oracle,
reflecting that U should detect surveillance for any input. To differentiate the
games from the ones in Sect. 3 defined for strong subversion, we prefix them by
R (which stands for resilience).

Detection Advantage. Let Π = (Sh,Rec) be a (multi-input) secret sharing
scheme and Π̃ = (S̃h, R̃ec) a subversion of it. Let U be a detection algorithm
that is not given PK and T . The advantage of U to detect an ASA is defined as:

Advr-det
Π,Π̃

(U) = 2Pr[R-DETECTU
Π,Π̃

⇒ true] − 1

A subversion Π̃ is undetectable if Advr−det

Π,Π̃
(U) is negligible for any efficient U .

Clearly, honest players want all subversions to be easily detectable (even
when they cannot perform reverse engineering). By restricting U from accessing
anything except the interface of the sharing algorithm and allowing B to embed in
the code the secret key SK, our definition captures a strong notion of detectability.

Surveillance Advantage. Let Π = (Sh,Rec) be a (multi-input) secret sharing
scheme and Π̃ = (S̃h, R̃ec) a subversion of it. Let B (big brother) be an adversary
that knows SK. The advantage of B to detect an ASA is defined as:

Advr-srv
Π,Π̃

(B) = 2Pr[R-SURVB
Π,Π̃

⇒ true] − 1

A scheme Π is secure against surveillance if Advr−srv

Π,Π̃
(B) is negligible for any

efficient B and for any Π̃.
SURV game is similar to the DETECT game, except that the adversary B is

given the keys PK, SK and the strategy T .

Security of Linear Secret-Sharing Schemes Against Mass Surveillance 55

Game R-DETECTU
Π,Π̃

b � {0, 1}
(PK, SK) � K
b′ � UShare

return (b = b′)

Secret()
s � F

l

u � F
n

return s,u

Share()
s,u ← Secret()
if b=1 then

S ← Sh(s,u)
else

S ←
S̃h(s,u, ID, PK, SK, T)

return s,u ,S

Game 4: R-DETECT (Detection Game)

Game R-SURVB
Π,Π̃

b � {0, 1}
(PK, SK) � K
b′ � BShare(PK, SK, T)
return (b = b′)

Secret()
s � F

l

u � F
n

return s,u

Share()
s,u ← Secret()
if b=1 then

S ← Sh(s,u)
else

S ←
S̃h(s,u, ID, PK, SK, T)

return S

Game 5: R-SURV (Surveillance Game)

We can now model a positive result : a scheme Π is resilient to ASAs if all
possible subversions Π̃ of Π are detectable. We call Π subversion resilient. We
give a secure construction in this sense in Sect. 4.3.

4.3 Subversion Resilient Multi-input LSSS

Let Π = (Sh,Rec) be a LSSS. We construct Π∗ = (Sh∗,Rec∗) multi-input LSSS
that cannot be subverted without violating detectability. Let PRG be a pseudo-
random generator that maps a seed in F to an element in F

d.

56 I. Giacomelli et al.

Theorem 4. The multi-input LSSS Π∗ = (Sh∗,Rec∗) defined in Construction 4
is subversion resilient.

Proof. First, we note that the shares by Sh∗ are a deterministic function of u
and s. The detection algorithm simply takes the values u [i] produced by each
player and verifies that the shares sent are the ones that would be produced by
Sh∗. Any subversion with advantage δ must produce a different set of shares with
probability greater or equal to δ (if at least one player is honest, u [1]⊕ . . .⊕u [n]
is uniformly random and hence r is uniformly random from the security of PRG).
We can therefore conclude that Advr-det

Π∗,Π̃∗(U) ≥ δ for any possible subversion Π̃∗.

Sh(s,u)
r ← PRG(u [1] ⊕ · · · ⊕ u [n])
fT ← (s, r)T

S ← M · f
return S

Rec(SB)
if B is qualified then

s ← NB · SB

else
s ← ⊥

return s

Construction 4: Subversion Resilient Multi-Input LSSS Π∗ =
(Sh∗,Rec∗)

Discussion. Our modeling does not allow big brother to select the secret. Oth-
erwise, if detection and surveillance games run independently, it is trivial for
big brother to generate an undetectable subversion. Namely, it subverts the
algorithm as follows: if the secret queried is a fixed element (e.g. an element
deterministically computed from the key), then the subverted algorithm out-
puts specific shares, otherwise it generates proper shares. Note that this sub-
version is undetectable since the key is randomly sampled. This reflects the
fact that in practice big brother can always embed hidden pattern which will
allow surveillance when this pattern is matched by a secret. This could be used
to notice unauthorized storage of sensitive documents by embedding a secret
pattern within the documents and then subverting the algorithm to misbehave
under this hidden pattern. The best that a user can therefore hope to do is to
be able to detect whether or not the sharing could have allowed surveillance.
Hence, we could allow big brother to input the secret in the surveillance game,
but require that detection is continuously performed at runtime. In terms of
games, this can be easily modeled by giving the subverted algorithm permis-
sion to select the secret, while detection algorithm runs on all this secrets and
the corresponding outputs. It is immediate that our construction remains secure
under this settings, since any subversion would require different shares than the
ones that would have been produced by Sh with very high probability.

Acknowledgements. Samuel Ranellucci and Irene Giacomelli acknowledge support
from the Danish National Research Foundation and The National Science Foundation

Security of Linear Secret-Sharing Schemes Against Mass Surveillance 57

of China (under the grant 61361136003) for the Sino-Danish Center for the Theory
of Interactive Computation and from the Center for Research in Foundations of Elec-
tronic Markets (CFEM), supported by the Danish Strategic Research Council within
which part of this work was performed. Partially supported by Danish Council for
Independent Research via DFF Starting Grant 10-081612. Partially supported by the
European Research Commission Starting Grant 279447.

Ruxandra F. Olimid was supported by the strategic grant POSDRU/159/1.5/
S/137750, “Project Doctoral and Postdoctoral programs support for increased com-
petitiveness in Exact Sciences research” cofinanced by the European Social Found
within the Sectorial Operational Program Human Resources Development 2007–2013.

References

1. Bellare, M., Paterson, K.G., Rogaway, P.: Security of symmetric encryption against
mass surveillance. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I.
LNCS, vol. 8616, pp. 1–19. Springer, Heidelberg (2014)

2. Subbiah, A., Blough, D.M.: An approach for fault tolerant and secure data storage
in collaborative work environments. In: StorageSS, pp. 84–93 (2005)

3. Storer, M.W., Greenan, K.M., Miller, E.L., Voruganti, K.: Potshards - a secure,
recoverable, long-term archival storage system. TOS 5(2), 5 (2009)

4. Wylie, J.J., Bigrigg, M.W., Strunk, J.D., Ganger, G.R., Kiliççöte, H., Khosla, P.K.:
Survivable information storage systems. Computer 33(8), 61–68 (2000)

5. Cleversafe. http://www.cleversafe.com/ Accessed September 2015
6. Dyadic. https://www.dyadicsec.com/ Accessed September 2015
7. Young, A., Yung, M.: The dark side of “black-box” cryptography, or: should we

trust capstone? In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 89–103.
Springer, Heidelberg (1996)

8. Young, A., Yung, M.: Kleptography: using cryptography against cryptography.
In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 62–74. Springer,
Heidelberg (1997)

9. Lampson, B.W.: A note on the confinement problem. Commun. ACM 16(10), 613–
615 (1973)

10. Simmons, G.J.: The prisoners’ problem and the subliminal channel. In: Advances
in Cryptology, Proceedings of CRYPTO 1983, Santa Barbara, California, USA,
pp. 51–67, 21–24 August 1983

11. Ateniese, G., Magri, B., Venturi, D.: Subversion-resilient signature schemes. In:
Cryptology ePrint Archive, Report 2015/517 (2015). http://eprint.iacr.org/. (to
apper in Proceedings of the 2015 ACM SIGSAC Conference on Computer and
Communications Security)

12. Giacomelli, I., Olimid, R.F., Ranellucci, S.: Security of linear secret-sharing
schemes against mass surveillance. In: Cryptology ePrint Archive, Report 2015/683
(2015). http://eprint.iacr.org/

13. Beimel, A.: Secret-sharing schemes: a survey. In: Chee, Y.M., Guo, Z., Ling, S.,
Shao, F., Tang, Y., Wang, H., Xing, C. (eds.) IWCC 2011. LNCS, vol. 6639, pp.
11–46. Springer, Heidelberg (2011)

14. Rogaway, P., Bellare, M.: Robust computational secret sharing and a unified
account of classical secret-sharing goals. In: Proceedings of the 2007 ACM Confer-
ence on Computer and Communications Security, CCS 2007, Alexandria, Virginia,
USA, pp. 172–184, 28–31 October 2007

http://www.cleversafe.com/
https://www.dyadicsec.com/
http://eprint.iacr.org/
http://eprint.iacr.org/

58 I. Giacomelli et al.

15. Gabizon, A., Raz, R., Shaltiel, R.: Deterministic extractors for bit-fixing sources
by obtaining an independent seed. SIAM J. Comput. 36(4), 1072–1094 (2006)

16. Kamp, J., Zuckerman, D.: Deterministic extractors for bit-fixing sources and
exposure-resilient cryptography. SIAM J. Comput. 36(5), 1231–1247 (2007)

17. Rivest, R.L., Shamir, A., Adleman, L.M.: A method for obtaining digital signatures
and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978)

18. Naccache, D., Stern, J.: A new public-key cryptosystem. In: Fumy, W. (ed.) EURO-
CRYPT 1997. LNCS, vol. 1233, pp. 27–36. Springer, Heidelberg (1997)

19. Chevallier-Mames, B., Naccache, D., Stern, J.: Linear bandwidth naccache-stern
encryption. In: Ostrovsky, R., De Prisco, R., Visconti, I. (eds.) SCN 2008. LNCS,
vol. 5229, pp. 327–339. Springer, Heidelberg (2008)

20. Bogdanov, A., Viola, E.: Pseudorandom bits for polynomials. SIAM J. Comput.
39(6), 2464–2486 (2010)

21. Viola, E.: The sum of D small-bias generators fools polynomials of degree D. Com-
put. Complex. 18(2), 209–217 (2009)

22. Wang, L., Hu, Z.: New sequences of period pn and pn+1 via projective linear groups.
In: Information Security and Cryptology - 8th International Conference, Inscrypt
2012, Beijing, China, Revised Selected Papers, pp. 311–330, 28–30 November 2012

Secure Set-Based Policy Checking and Its
Application to Password Registration

Changyu Dong1 and Franziskus Kiefer2(B)

1 Department of Computer and Information Sciences, University of Strathclyde,
Glasgow, UK

changyu.dong@strath.ac.uk
2 Surrey Centre for Cyber Security, Department of Computer Science,

University of Surrey, Guildford, UK
mail@franziskuskiefer.de

Abstract. Policies are the corner stones of today’s computer systems.
They define secure states and safe operations. A common problem with
policies is that their enforcement is often in conflict with user privacy.
In order to check the satisfiability of a policy, a server usually needs
to collect from a client some information which may be private. In this
work we introduce the notion of secure set-based policy checking (SPC)
that allows the server to verify policies while preserving the client’s pri-
vacy. SPC is a generic protocol that can be applied in many policy-based
systems. As an example, we show how to use SPC to build a password
registration protocol so that a server can check whether a client’s pass-
word is compliant with its password policy without seeing the password.
We also analyse SPC and the password registration protocol and provide
security proofs. To demonstrate the practicality of the proposed prim-
itives, we report performance evaluation results based on a prototype
implementation of the password registration protocol.

1 Introduction

Policies are widely used in the context of computer systems and security. A policy
defines a set of rules, over elements such as resources and participants in a system.
It governs the system’s behaviour with the goal of keeping the system safe. This
allows organisations to ensure that the system is always in a well defined and
secure state. Policies can be used in, for example, access control, authentication,
trust management, firewalls and many other places.

While policies offer security protection, they sometimes raise privacy concerns
[9]. This is especially true in large distributed systems such as the Internet where
there is no pre-established trust relationship between parties interacting with
each other. One typical scenario is that a server wants to restrict access to
certain resources and defines a policy so that only those who satisfy this policy
can access those resources. Often to evaluate this policy, the server needs to
collect some information from a client and check the information against the
policy. This information can be sensitive, e.g. credentials that should be kept
c© Springer International Publishing Switzerland 2015
M. Reiter and D. Naccache (Eds.): CANS 2015, LNCS 9476, pp. 59–74, 2015.
DOI: 10.1007/978-3-319-26823-1 5

60 C. Dong and F. Kiefer

private or other personal information, thus the client may not want to release
it to the server. This privacy problem motivates the notion of secure set-based
policy checks (SPC) we are exploring in this work.

In an SPC protocol, a server holds a public policy based on some set-
theoretical semantics and the client holds a set that represents required informa-
tion. After running the protocol, the server gets only a single bit information, i.e.
whether the client’s set satisfies the policy, but nothing else about the client’s
set. Thus SPC allows the server to securely check the policy while protecting
the client’s privacy. SPC is a general building block that can be applied in many
scenarios to allow privacy preserving policy checking. One particular example
we will show in this paper is how to enforce password policies using SPC in
password registration. We will discuss more applications such as policy checks
for access control, friendship analysis and genome testing in Sect. 7.

Contributions and Organisation. In this paper, we propose secure set-based pol-
icy checking (SPC), a new privacy preserving protocol. SPC uses a generic and
expressive representation of policies based on the notion of sets, thus can be
applied in many policy based systems. We then show an efficient instantiation of
SPC based on linear secret sharing schemes and the Oblivious Bloom Intersec-
tion protocol. These two building blocks rely mostly on arithmetic operations in
small fields and symmetric cryptography. As a consequence, our SPC construc-
tion is very efficient. We believe the high efficiency will make SPC an attractive
choice for applications that require privacy preserving policy checking. While
SPC is interesting on its own, we further show how it can be used to solve real
world problems. We develop a new password registration protocol that uses SPC
so that the server can verify that a password chosen by a client is compliant with
a password policy without seeing the password. We analyse the security and pro-
vide proofs of both the SPC protocol and the password registration protocol. We
have implemented a prototype of the password registration protocol and eval-
uated the performance based on the implementation. The performance figure
shows that our protocol is much more efficient than the password registration
protocol (ZKPPC) from [16]. Furthermore, we sketch a few other application
scenarios in which SPC can be used.

The paper is organised as follows: in Sect. 2, we briefly review related work; in
Sect. 3, we introduce necessary preliminaries and cryptographic building blocks;
in Sect. 4, we show the SPC protocol; in Sect. 5, we show the password regis-
tration protocol; performance evaluation results are given in Sect. 6; in Sect. 7,
further applications of SPC are discussed; in Sect. 8, we conclude the paper and
discuss possible future work. In the appendix we sketch security proofs for the
protocols.

2 Related Work

Policy evaluation involving sensitive information has been a long established
problem. Duma et al. [9] argued that uncontrolled exposure of private informa-
tion is a major risk for Internet users and showed that policy evaluation can

Secure Set-Based Policy Checking and Its Application 61

lead to undesirable information leakage. To counter the risk, one way is to define
additional policies on the client side [25]. Those policies allow the release of
sensitive information only if the server can convince the client that it is trust-
worthy. This approach does not prevent information from flowing out of the
client’s control, but rather provides some assurance that only trusted servers
can see the information. Another approach is to use cryptographic protocols to
allow privacy preserving policy checking. In this approach, information is not
revealed and the server learns only the evaluation result. It is always possible to
implement a protocol for policy checking using generic two party secure compu-
tation techniques such as garbled circuits [26] but the cost would be prohibitive.
Some custom protocols have been built but they either work only for a certain
policy language (e.g. [17]), or they are based on cryptographic primitives such
as Ciphertext Policy Attribute-based Encryption (CP-ABE) that must have a
trusted third party to generate keys for users based on their private information
(e.g. [19]). In contrast, SPC can support a large class of policy languages and
can work without a trusted party.

Password Registration. To ensure high password entropy, servers often have
policies on password complexity, e.g. a valid passwords must be a mixture of
lower case, upper case, numeric characters and at least of a certain minimum
length. Usually the server has to see the client’s password in plaintext in order to
check whether the password is compliant with the policy. However, revealing its
password to the server may not be a desirable option for the client (see Sect. 5 for
a further discussion). Recent work by Kiefer and Manulis [16] proposed the first
protocol that allows blind registration of client passwords at remote servers. In
the protocol the client sends only a cryptographic password verifier during the
registration procedure. Although the server never sees the actual password, it
can still enforce password policies. This protocol provides a feasible solution that
solves the aforementioned problems. However, password policy checking in [16]
relies heavily on zero-knowledge proofs, which is a costly cryptographic primitive
and thus renders the protocol impractical.

3 Preliminaries

3.1 Policies and Linear Secret Sharing

In this paper, we consider a set-theoretical representation of policies, i.e.
monotone access structures [14]. A policy P defines a pair (S, ΓS) where S is a
set and ΓS is an access structure over S. The access structure is a subset of the
powerset 2S , i.e. the access structure contains zero to many subsets of S. We say
an access structure ΓS is monotonic if for each element in ΓS , all its supersets
are also in ΓS . We say a set C satisfies a policy P , written as P (C) = true, if
C ∈ ΓS . A set C that satisfies P is called an authorised set. Access structures
capture many complex access control and authorisation policies. For example, S
can be a set of credentials and ΓS defines a monotone boolean formula of subsets
of credentials that are required for authorisation.

62 C. Dong and F. Kiefer

It has long been known that an access structure can be mapped to a linear
secret sharing scheme (LSSS) [2,14] by choosing a secret and split it into a set
of shares according to a given access structure ΓS defined over S. Each share
is then associated with an element in S. For convenience, we will use si

∼∈ S to
denote that si is a share associated with some element si in a set S. The following
holds for a LSSS: (1) any set of shares can reconstruct the secret if the elements
associated with the shares form an authorised set, and (2) any set of shares does
not reveal any information about the secret if the elements associated with the
shares do not form an authorised set. There are generic mechanisms to generate
shares from access structures and reconstruct secrets from shares, e.g. see [2,14].
Using a LSSS, checking whether a set satisfies a policy is equivalent to checking
whether a set of shares can reconstruct the secret.

3.2 Oblivious Bloom Intersection

The Oblivious Bloom Intersection (OBI) protocol by Dong et al. [8] is executed
between a client and a server on the respective sets C and S. Originally, the
OBI protocol was designed for Private Set Intersection (PSI) such that at the
end of the protocol, the client learns the intersection C ∩S and the server learns
nothing. As observed in [24], OBI can be extended to a Private Set Intersection
with Data Transfer protocol. In this case, the server can associate each element
si ∈ S with a data item di. At the end of the protocol, for each element in the
intersection the client also receives the corresponding data item from the server.
The protocol can be described at a high level as follows: let the server hold a set
S = {si} and a data set Sd = {di}. The two sets are of equal cardinality and
each (si, di) can be viewed as a key-value pair. The server generates a garbled
Bloom filter GS on S and Sd using [24, Algorithm 1]. The garbled Bloom filter
encodes both S and Sd in a way such that querying the key si ∈ S against GS
returns the data item di and querying sj �∈ S returns a random string. Let the
client hold a set C. The client encodes the set into a conventional Bloom filter [5]
BC . The client and the server run an oblivious transfer protocol using the Bloom
filter and the garbled Bloom filter as inputs. As the result, the client receives
a garbled Bloom filter GC∩S that encodes the intersection C ∩ S and the data
items associated with the elements in C ∩ S. Then the client can query GC∩S
with each element ci ∈ C. If ci is in the intersection then there must be some
sj ∈ S such that ci = sj and the query result is dj , the data item associated
with sj , otherwise the client gets a random string.

In this paper we use OBI so that the server can send a set of secret shares
to the client based on the client’s set C without knowing anything about C.
Although in general we can use any PSI with Data Transfer protocol (e.g. [12]),
we choose OBI here because of its efficiency. OBI is very efficient due to the
fact that it relies mostly on hash operations. The performance can be further
improved by the modifications proposed by Pinkas et al. [21]. Note that although
Pinkas et al. also proposed a new PSI protocol based on hashtable + oblivious
transfer in [21] that is more efficient than OBI, the new PSI protocol cannot be
used in our case because it does not support data transfer.

Secure Set-Based Policy Checking and Its Application 63

C (C) S (P = (S, ΓS))

choose a random secret s

P split s into a set of shares S according to P

get shares from GC∩S : {si|si
∼∈ S ∩ C} OBI build a garbled Bloom filter using S and S.

P (C) = true: recover s from the shares

else: abort and output ⊥
ms ← H(s, C, S, trans) ms accept iff ms

?= H(s, C, S, trans)

Fig. 1. Secure set-based policy checking

4 Secure Set-Based Policy Checking (SPC)

In this section we introduce a new protocol called secure set-based policy check-
ing (SPC). In SPC, a server holds a public policy P as defined in Sect. 3 and a
client holds a private set C. The goal is to allow the server to check whether C
satisfies P without learning anything else about C.

Definition 1 (Secure Set-based Policy Checking, SPC). Set-based policy
checking is executed between client C with a private set C and server S with a
public policy P = (S, ΓS). Server and client retrieve P (C) as result. We call a
set-based policy checking protocol secure iff it fulfils the following three notions.

1. Correctness: Honest execution of the protocol with P (C) = true is accepted
by the server with overwhelming probability.

2. Client Privacy: Server S learns nothing about the client set C other than P (C).
3. Soundness: A client C holding C with P (C) �= true has negligible probability

in getting S to accept the SPC execution.

Definition 1 says in particular that an SPC protocol provides both participants
with the result of P (C) while the server learns nothing about C more than it can
infer from the result and public information.

4.1 SPC Instantiation

An overview of the proposed protocol is depicted in Fig. 1, using LSSS and OBI.
Let P = (S, ΓS) be the server’s policy defined over its set S and C be the
client’s set. The two parties want to check P (C), i.e. whether C satisfies P . In
the protocol, the server first chooses a random secret and splits it according
to the policy. Then the server builds a garbled Bloom filter and runs the OBI
protocol with the client. At the end of the protocol, the client receives a set
of shares {si|si

∼∈ S ∩ C}, i.e. each si received is associated with an element in
C ∩ S. If P (C) = true, then the client can recover the secret from the shares
it has received, because C ∩ S must be an authorised set. If P (C) �= true then
the client will not receive enough shares that enable it to reconstruct the secret,

64 C. Dong and F. Kiefer

and it learns nothing about the secret from the shares received. Therefore by
checking whether the client can recover the secret, the server learns whether the
client’s set satisfies the policy. The protocol is defined as follows:

Public input: Both parties get a collision resistant hash function H, a LSSS
scheme description, server policy P = (S, ΓS), and security parameter λ.

1. The server first chooses a secret s which is a random λ-bit string where λ is
the security parameter. Then the server splits the secret into a set of shares
S according to its policy P using the LSSS scheme. Each share si ∈ S is
associated with an element in S.

2. The server builds a garbled Bloom filter using S and S as input such that
each si ∈ S is a key and its associated secret share si is the data value that
is encoded in the garbled Bloom filter. The two parties then run the OBI
protocol and the client using C as its input.

3. At the end of the OBI protocol the client gets a set of shares {si|si
∼∈ S ∩ C}.

If C satisfies policy P , then the shares obtained from the OBI protocol will
allow the client to reconstruct the secret s, otherwise the client learns nothing
about s and aborts.

4. The client proves to the server that it knows s by sending ms ← H(s, C, S,
trans) where s is the secret, C and S are the identities of the two parties,
and trans is the transcript of this execution. The sever checks whether ms

is the same as it computed from its own state, if so then the client convinced
the server that its set is compliant with policy P .

4.2 Security

Due to space limitations we only give lemmata and refer to the full version of
this work for their proofs.

Lemma 1 (Correctness). Let C and S denote sets from some universe and
P = (S, ΓS). Assuming the used OBI and LSSS algorithms are correct, then the
SPC protocol from Fig. 1 is correct, i.e. honest execution of the protocol with
P (C) = true is accepted by the server with overwhelming probability.

Lemma 2 (Privacy). Let C and S denote sets from some universe, P =
(S, ΓS) a policy and fSPC(C,S) = (P (C), P (C)). If the OBI protocol is secure
and the LSSS is correct, the SPC protocol from Fig. 1 securely realises fSPC in
the presence of a malicious server or client.

Lemma 2 proves that our SPC protocol ensures client privacy, i.e. does not leak
any information about the client’s set. We now give a lemma to show soundness
of our SPC protocol that concludes the security analysis of the proposed SPC
protocol.

Lemma 3 (Soundness). Let C and S denote sets from some universe and
P = (S, ΓS) a policy. Assuming the used OBI and LSSS algorithms are secure
and H is collision resistant, then the SPC protocol from Fig. 1 is sound in the
presence of a malicious client, i.e. the server accepts the protocol with negligible
probability if P (C) �= true.

Secure Set-Based Policy Checking and Its Application 65

5 A New Password Registration Protocol

Password-based authentication is the most common authentication mechanism
for humans. Despite increasing attempts of replacing it from https://fidoalliance.
org/ and others, something has yet to be proposed to fully replace password-
based authentication. There are many reasons why it is so difficult to transition
away from passwords, e.g., low-cost, user-experience and scalability. For those
reasons, passwords are likely to remain as a major authentication method in
the foreseeable future. The current approach for remote registration of client
passwords requires the client to send its password in plaintext to the server,
which stores a value derived from the password (e.g., a hash value or a verifier)
in a password database. The problem with this approach is that the server sees
the plaintext password and the client has no control over what the server will
do with it. At first glance, revealing the password to the server seems to be
harmless, but a closer look shows the opposite. Research shows that people tend
to reuse the same password across different websites [7,11,13]. In this case, a
compromised or malicious server can easily break into other accounts belonging
to the same client after seeing the plaintext password. Even if the server is honest,
the client still has to worry about whether its password is protected properly by
the server. Ideally passwords should be stored in a secure form that is hard to
invert such that an attacker gaining access to the password database still has
difficulties to recover the passwords. Currently, password-based authentication
mechanisms in literature assume the server does this, i.e. the server is trusted
to store and protect the password properly and securely. However, increasing
number of successful password leaks [6,20,22] suggests that many servers fail to
do so. It is desirable if the server does not see the plaintext password during
registration. However, this will make it difficult for the server to check whether
the password chosen by the client is complex enough or long enough.

In this section, we present a new password registration protocol as an appli-
cation of SPC. The protocol allows a client to register its password blindly on a
server while still allowing the server to check whether the password is compliant
with a password policy. In the protocol, rather than sending the password in
plaintext to the server, the client sends blinded characters of the password. The
blinded characters enable the server to check policy compliance using an SPC
protocol. If a password is valid, the blinded characters are aggregated into a
verifier that is stored on the server and used in future authentication protocols.
Since the blinded characters are generated with proper randomness, the client
can be assured that the password is secure even if the password database is
compromised (modulo unavoidable offline dictionary attacks).

5.1 Passwords and Password Policies

In this paper, we consider a password to be in the basic format of a finite length
string of printable characters (ASCII, UTF-8, etc.). We do not consider other
forms of passwords such as graphical passwords [23]. It is a common practice to
partition the password alphabet into character classes, e.g., upper case, lower

https://fidoalliance.org/
https://fidoalliance.org/

66 C. Dong and F. Kiefer

case, symbols and digits. These character classes can be seen as disjoint subsets
of the alphabet. A password policy is then defined to impose requirements for
password complexity in terms of the minimum number of characters, minimal
number of classes, and minimal number of characters in each class. For example,
every valid password must have at least one character from each class and eight
characters overall.

The connection between set-based policies from Sect. 3 and password poli-
cies is easy to see. Since password policies are defined in terms of thresholds and
subsets over an alphabet that is a set of characters, they can be easily captured
as access structures. It is also not difficult to see how SPC can be applied in
the password policy checking setting, since a password can be seen as a set of
characters. There is only a small gap: passwords are arbitrary strings and as
such can have repeated characters. So the collection of characters in a password
forms a multiset, not a set. The problem is that some policies might not be eval-
uated correctly using a multiset. For example, if a policy says “a valid password
must have at least two symbols” and the client chooses “pa$$w0rd”, using SPC
directly the password will be considered invalid, even though it does contain two
symbols. This can be solved by pre-processing the characters in the alphabet
and passwords.

The idea of password pre-processing is to convert each character in the pass-
word into a unique symbol by appending an “index” to the character. So if the
character ‘$’ appears twice in a password, the first one becomes “$1” and the
second one becomes “$2”. Since $1 and $2 are two different strings, they are
different elements when putting into a set. Therefore we can always convert a
password into a set rather than into a multiset. The password pre-processing is
performed by the client in the protocol. We define a function ψ for the client to
convert a password (character string) into a set as follows. Let pwd = c1, . . . , cx
denote a password of x characters. Function ψ repeats the following procedure
for i = 1 to x: first create a substring of the password from the first character
to the ith character (inclusive), then count how many times the ith character
appears in this substring, then append the counter to the ith character and
put the result into a set. For example, “pa$$w0rd” will be converted by ψ into
{p1, a1, $1, $2, w1, 01, r1, d1}.

The alphabet pre-processing step is necessary because we use SPC to check
whether a password satisfies a policy. The SPC protocol in Sect. 4.1 is based on
set intersection. So we need to intersect the password set and the alphabet set
in order to check the password policy. The password set now contains indexed
characters like “p1”,“$2” rather than the original characters. The alphabet needs
to be converted into a set with indexed characters as well, otherwise the inter-
section of the password set and alphabet set will always be empty. This step is
done by the server as follows. Let A = A1 ∪ · · · ∪ Am be the alphabet where
Ai is a character class (digits, lower case, etc.). The server transforms it into S
based on the password policy P . For each Ai, in the policy there is a threshold
ti that says at least ti characters from Ai need to appear in the password. If
ti = 0, then the server just skips all characters in this class Ai because they
do not have to be checked. Otherwise, the server creates an empty set Si and

Secure Set-Based Policy Checking and Its Application 67

appends an index (from 1 to ti) to each character in Ai, and puts the ti copies
of indexed characters into Si. For example, if Ai contains lower case characters
and ti = 2, then Si = {a1, a2, b1, b2, . . . , z1, z2}. The server only needs to put ti
copies of indexed characters to the set, regardless how many times the character
may appears in clients’ passwords. The union of Si is the set S to be used later
in password registration. This step only needs to be done once as long as the
policy does not change.

5.2 The Password Registration Protocol

An overview of the proposed password registration protocol is given in Fig. 2. To
simplify the presentation, we assume the protocol is run over a secure channel,
e.g., implemented as a server authenticated TLS channel. The secure channel
will address common network-based attacks such as replay, eavesdropping and
man-in-the-middle. We also assume there is a session mechanism to prevent the
server from learning more information about the client’s password by aborting
the protocol in the last step and reruning the protocol using other policies. The
protocol has two phases, a setup phase and a policy checking phase. In the setup
phase the client commits to its password, and each party blinds its set. The
blinded sets are later used in the policy checking phase where the server checks
the password policy with a secure SPC protocol (cf. Sect. 4) using the blinded
sets. If the password satisfies the policy, the server stores a password verifier for
future authentication purposes.

Public Input. The server publishes a password policy P = (S, ΓS) where S
is a set of size w transformed from alphabet A according to Sect. 5.1 and ΓS is
a threshold access structure defined over S. Other public parameters consist
of a security parameter λ, a pseudorandom function family fk, and three hash
functions H1,H2, and H3.

– Setup Phase
1. The server runs KeyGen(λ): pick two large equal length prime numbers

p and q according to λ, compute N = p · q, choose at uniformly random
e ∈ ZN such that there is an integer d that satisfies e · d = 1 mod φ(N),
and output (e, d,N). Then the server sends (e,N) to the client.

2. The client computes a key k = H1(pwd) where pwd is its password.
The client uses the password pre-processing function ψ to generate
C ← ψ(pwd). The client computes ri = fk(i) using the pseudorandom
function f on key k as well as ui = H2(ci) · rei for each ci ∈ C. The result
(u1, . . . , uv) is sent to the server, where v is the cardinality of C.

3. For each i ∈ [1, v] the server computes u′
i = ud

i and returns (u′
1, . . . , u

′
v)

back to the client.
4. Upon receiving (u′

1, . . . , u
′
v), the client creates an empty set Ĉ and for i ∈

[1, v] puts u′
i ·r−1

i = (H2(ci))d into Ĉ. The server creates an empty set Ŝ and
for i ∈ [1, w] puts (H2(si))d into Ŝ, where si ∈ S and w is the cardinality of
S. The set Ŝ is partitioned into m subsets according to the character classes.
The server also generates P̂ from P by replacing S with Ŝ.

68 C. Dong and F. Kiefer

C (pwd) Setup Phase S (P, S = {s1, . . . , sw})

k ← H1(pwd) (e, N) (e, d,N) ←$ KeyGen(λ)

C = {c1, c2, . . . , cv} ← ψ(pwd)

∀i ∈ [1, v] : ri ← fk(i), ui ← H2(ci) · rei (u1, · · · , uv) abort if v < min

Ĉ = ∅ (u′
1, · · · , u′

v) ∀i ∈ [1, v]: u′
i = ud

i ; Ŝ = ∅
∀i ∈ [1, v] : Ĉ ∪ u′

i · r−1
i ∀i ∈ [1, w]: Ŝ ∪ (H2(si))d

P̂ ← P, Ŝ

Policy Checking Phase

Ĉ → Run SPC← P̂ If SPC execution is successful

store ver ← (H3(
v
i=1 ui), e,N, d,u)

Fig. 2. Password registration using secure SPC

– Policy Checking Phase. This phase is essentially an execution of the SPC
protocol using Ĉ and P̂ as inputs. At the end of the SPC protocol the server
learns whether the client’s password satisfies the policy or not. If the SPC
execution is successful, the server computes the hash of the product of the
client’s ui values h ← H3(

∏v
i=1 ui), and stores the password verifier ver =

(h, e,N, d,u), where (e,N, d) is generated in the first step of the setup phase
and u = {u1, . . . , uv} is the vector of client “commitments”.

Note that in the first step of the setup phase, KeyGen is essentially the RSA key
generation algorithm with e chosen randomly rather than being a fixed small
integer. In the protocol we use e as a salt so the verifiers will be different even if
two users chooses the same password. Salting is also necessary in order to avoid
rainbow table attacks where the attacker uses pre-computed values to speed up
dictionary attacks.

Password Length Hiding (Enhanced Protocol). The protocol in Fig. 2 leaks the
password length to the server. By counting the number of blinded characters
ui, the server learns the password length v. This is intentional because this
peripheral information leakage allows the server to efficiently enforce the minimal
password length in the policy. However, in cases where the password length is
considered sensitive, it can be hidden from the server at small additional cost.

The client generates a set C′ ⊆ C and uses it in the setup phase to generate
Ĉ. C′ contains only necessary characters to fulfil P . That is, the client first takes
characters from C according to character class Ai and threshold ti, and puts
them in C′. If the size of C′ is smaller than the minimal password length min,
the client pads it with other characters in C that are not in C′ yet. In the setup
phase, the client only uses characters in C′ and obtains the corresponding Ĉ. In
this process, the server learns the size of C′ and can check whether this is equal to
the minimal password length required by the policy. The client then uses this Ĉ in
the policy checking phase to convince the server about the password complexity.
If the server accepts, all characters in C \C′ that have not been sent to the server
are put into an additional u∗ = rev+1 · ∏ ui with ri ← fk(i), ui ← H2(ci) · rei for

Secure Set-Based Policy Checking and Its Application 69

ci ∈ C \ C′. This value u∗ is then sent to the server and is multiplied with the
other ui values the server received in the setup phase. This product is then used
to generate the verifier ver, i.e. ver ← (H3(rev+1

∏v
i=1 ui), e,N, d,u). Note that

we require rev+1 as a multiplicand when computing u∗. Without this, the server
could learn the client’s password length when C \C′ = ∅ because the client would
have nothing to send in this case.

5.3 Security Analysis

We now analyse the security of the password registration protocol. Note that
in the password registration protocol, the two parties have different security
requirements. For the server, privacy is not a concern since its input, the policy,
is public. On the other hand, the server cares about the soundness of the protocol
because an unsound protocol would allow a user to register an invalid password.
For the client, privacy is the main concern. Soundness is trivial from the client’s
point of view. Since the policy is public, the client can check the policy by itself
and can detect if the server cheats. We therefore refrain from using an over-
complicated security definition and use the following comprehensible security
model that is simpler. Let ver ← φ(pwd, r) denote a password verifier, computed
from a password pwd and some randomness r, and ψ(pwd) a function to generate
set C from password pwd.

1. Privacy: A malicious server must not be able to retrieve more information
from the protocol than the password verifier and the result of the policy veri-
fication. Furthermore, the verifier must not give a malicious server advantage
in terms of password guessing.

2. Soundness: The server accepts a password verifier ver ← φ(pwd, r) if and only
if (i) the password is compliant with the server’s policy, i.e. P (C) = true for
C ← ψ(pwd), and (ii) the verifier is uniquely defined by the password and
some server known randomness, i.e. there exists no password pwd′ �= pwd such
that φ(pwd′, r) = ver and it is not possible to find randomness r′ �= r in
polynomial time such that φ(pwd, r′) = ver.

Note that the strength of the privacy definition is in terms of dictionary
attack resistance. This is an inherent problem of password-based protocols. All
password-based protocols are susceptible to dictionary attacks if the server is
considered as a potential adversary [18]. The reason is simple: for authentica-
tion purpose, the server holds a verifier derived from the client’s password. An
authentication protocol essentially takes the user’s password as an input and
compares it securely with the verifier. A malicious server can always run the
protocol locally with itself playing the client’s role using passwords enumerated
from a dictionary. Since it is not realistic to assume any particular distribution
of passwords, e.g. uniformly at random chosen passwords, the worst case security
always depends on the hardness of dictionary attack and this is the strongest
privacy notion possible. We will discuss what can be used to counter dictionary
attack later in Sect. 5.4.

70 C. Dong and F. Kiefer

In the following we show that the enhanced version of the previously defined
protocol satisfies those properties. Note that the simple version satisfies the same
properties but in a weaker version, i.e. we would have to replace dictionary DP

in Lemma 4 with DP,|pwd|, where DP,|pwd| denotes the dictionary that contains all
passwords of size |pwd| that are policy compliant with respect to P . Note that
H2 has to be modelled as random oracle here in order to use the one-more RSA
assumption [3]. For the other two hash functions H1 and H3 it is sufficient to
assume collision resistance. Due to space limitations we refer to the full version
for proofs.

Lemma 4 (Privacy). If fk is a secure pseudorandom function family, H1 is
collision resistant, and H2 a random oracle, the enhanced password registration
protocol offers privacy with respect to a malicious server and dictionary DP ,
which contains all valid passwords with regard to the server policy.

Lemma 5 (Soundness). The enhanced password registration protocol is sound
with respect to a malicious client under the one-more RSA assumption if H1 and
H3 are collision resistant hash functions, and H2 a random oracle.

5.4 Password-Authenticated Key Exchange for Our Protocol

In order to use a password registered with our protocol for authentication,
we require an appropriate password-based authentication or authenticated key
exchange (PAKE) protocol. In this section we show how to use the verifier ver
in a common PAKE protocol. The approach we describe here is general and can
be used with any PAKE protocol.

At the beginning of the authentication process, for a given client identifier the
server retrieves the corresponding verifier ver = (h, e,N) from the database and
returns (e,N) to the client. Using (e,N) and the password pwd, the client can
recompute all ui values and thus h′ ← H3(ue

v+1 · ∏v
i=1 ui) as described earlier.

Note that depending on the used PAKE protocol we have to ensure that H3

maps into an algebraic structure, suitable for use with the PAKE protocol. Now
client and server run any PAKE protocol on password hash h. The password
hash h retains information about individual characters as well as the order of
characters in the password. The first is easy to see since h is computed from the
product of blinded characters in the password. To see the second, recall that each
ui = H2(ci) · rei where ri = fk(i), which is a pseudorandom number generated
under a key k. The key k is derived from the password string k ← H1(pwd). To
counter offline dictionary attack, we can use a standard key derivation functions
such as PBKDF2 [15] to compute H1 such that the key k is derived by repeatedly
applying a pseudorandom function with a salt. The verifier generation algorithm
also provides additional protection to offline dictionary attack. The computation
involves a large random e as a salt and requires slow public key operations. The
additional salt and work load make offline dictionary attack even more difficult.

Because of the way the verifier is structured, in the authentication the server
needs to send an additional message, the RSA public key (e,N), to the client.

Secure Set-Based Policy Checking and Its Application 71

Table 1. Protocol performance (Running time in milliseconds)

(P1, 20) (P2, 20) (P3, 20) (P2, 10) (P2, 40)

Total Pol-ck Total Pol-ck Total Pol-ck Total Pol-ck Total Pol-ck

ZKPPC [16] 81,287 81,268 66,944 66,925 38,496 38,477 7,710 7,699 453,574 453,529

Our protocol 140 4 243 8 454 17 223 7 275 8

Improvement 580× 275× 80× 35× 1649×

Often we can piggyback the messages in the PAKE protocol to avoid increasing
communication round. For example, if we use the UC-secure PAKE protocol
from Benhamouda et al. [4], the RSA public key (e,N) can be piggybacked on
the server’s message sent in the PAKE protocol. Thus we do not increase the
round complexity and the protocol remains a one-round protocol.

6 Implementation and Evaluation

We implemented a prototype of our password registration protocol and measured
the performance. To compare, we also implemented the password registration pro-
tocol (ZKPPC) proposed in [16]. Both implementations are in C and use OpenSSL
1.0.0 (https://www.openssl.org) for the underlying cryptographic operations. In
the experiments, we set the security parameter to 80-bit. We used 1024-bit RSA
keys and the SHA-1 hash function in our protocol. In the ZKPPC protocol we
use the NIST P-192 elliptic curve. All experiments were run on a MacPro desktop
with 2 Intel E5645 2.4 GHz CPUs and 32 GB RAM. Note in the experiments our
implemenation only uses one CPU core and less than 1 GB RAM.

The running time of the protocols are shown in Table 1. We measured the
running time with different policies and password lengths. The passwords are
printable ASCII strings. The alphabet is partitioned into 4 classes: digits, lower
case, upper case and symbols. We used three policies P1, P2 and P3 in the
experiments, which require at least one, two and four characters in all character
classes respectively. In the first row of the table, the pairs indicate the policy
and the password length that were used in the experiment, e.g. (P1, 20) means
policy P1 is used and the password was 20 characters long. The table shows the
total running time as well as the time spent on checking the policies (Pol-ck)
in the protocol. As we can see, the performance of our protocol is much better
than the ZKPPC protocol. The main difference comes from policy checking
time. Policy checking in ZKPPC is done by using a zero-knowledge proof of
set membership protocol. The cost of the zero-knowledge proof protocol is 6 ·
n · ∑n

i=1 ωi exponentiations, where n is the password length in the experiments,
and ωi is the size of character class to which the ith character in the password
belongs. In our protocol, policy checking is done by using the SPC protocol and
the cost is mainly the OBI protocol which is based on symmetric cryptography.
The cost of the OBI protocol is 4.32·|Ŝ|·λ hash operations, where λ is the security
parameter. More concretely, in setting (P1, 20), the zero-knowledge proof based

https://www.openssl.org

72 C. Dong and F. Kiefer

Fig. 3. Time breakdown. (P1, 20) means policy P1 is used and the password was 20
characters long. Policies P1, P2, and P3 require at least one, two and four characters
in all classes

policy checking requires around 200,000 exponentiations while our OBI based
SPC requires only less than 33,000 hash operations.

We also show the running time for each step in our protocol (see Fig. 3). As we
can see in the figure, the time for computing ui and u′

i is linear in the password
length, and the time for computing Ŝ and executing SPC is linear in the size
of Ŝ. The most costly step is in the setup phase when the server computes the
encrypted version of the alphabet Ŝ. A possible optimisation is to take this step
offline. Since the computation of Ŝ does not depends on the client’s password, the
server can generate a random RSA key pair and pre-compute Ŝ before engaging
with the client. The keys and pre-computed values can be stored together. Later
when a client sends a registration request, the server can retrieve them and run
the protocol. If this step is taken offline, then the online computation cost is
small, usually no more than 100 ms in a typical setting.

7 SPC Applications

SPC can be used in many different scenarios. In the previous section we gave a
detailed example of using SPC for password-policy checking on password regis-
tration. In this section we describe other use-cases of the primitive.

Policy checks for Access Control. In a role-based access control scenario [10] a
user has to have a certain role in order to access a resource. In complex organ-
isational structures it may be necessary to have a certain combination of roles
in order to access a resource rather than just a single role. SPC can be used in
this case to verify whether a client has necessary roles that allow it to access the
resource. The server set S in this case contains secrets associated with each role
Si and the user’s set C contains the client’s secrets ci. Access should be granted
if and only if the SPC protocol is successful, i.e. the user can convince the server
that he has all necessary roles.

Policies for Friendship Analysis. One popular application of set based protocols
is friendship analysis. This test should determine whether two parties become

Secure Set-Based Policy Checking and Its Application 73

friends or not depending on the number of mutual friends. SPC can be used in
this scenario as a very efficient alternative while increasing privacy. Using SPC
further allows to build subsets in friend sets, such as colleagues, family etc.,
which in turn makes the friendship-test more “accurate” while leaking as little
information about the friendship relations as possible.

Genome Testing. Baldi et al. [1] propose protocols to perform privacy preserving
genome testing, such as paternity tests. The tests can often be reduced to check
a set of SNPs (Single Nucleotide Polymorphism) that are present in a patient’s
genome against some predefined sets of SNPs. Although it is not exactly policy
checking, our SPC protocol can be used in this setting too.

8 Conclusion and Future Work

In this work we introduced a new notion called set-based policy checking (SPC),
a new privacy preserving protocol. SPC allows a server to check whether a set
held by a client is compliant with its policy, which is defined as a monotone
access structure. At the end of the protocol, the server learns only a single bit
of information, i.e. whether the client’s set complies with the policy or not, and
nothing else. We showcase the use of SPC in a new, highly efficient protocol for
password registration that allows the server to impose a password policy on the
client’s password. To underline practicality and facilitate adoption we gave an
efficient implementation of the password registration protocol together with an
analysis. We further sketched other application scenarios of SPC.

Currently SPC is designed for public policies where the server makes its
policy public to the client. Although in most real world policy-based systems,
the policies are not considered private information, there are some scenarios in
which the server may want to keep its policy private. As future work, we will
investigate policy checking with hidden policies.

References

1. Baldi, P., Baronio, R., Cristofaro, E.D., Gasti, P., Tsudik, G.: Countering GAT-
TACA: efficient and secure testing of fully-sequenced human genomes. In: CCS
2011, pp. 691–702. ACM (2011)

2. Beimel, A.: Secure schemes for secret sharing and key distribution. PhD thesis,
Technion-Israel Institute of technology, Faculty of computer science (1996)

3. Bellare, M., Namprempre, C., Pointcheval, D., Semanko, M.: The one-more-rsa-
inversion problems and the security of chaum’s blind signature scheme. J. Cryp-
tology 16(3), 185–215 (2003)

4. Benhamouda, F., Blazy, O., Chevalier, C., Pointcheval, D., Vergnaud, D.: New
techniques for SPHFs and efficient one-round PAKE protocols. In: Canetti, R.,
Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 449–475. Springer,
Heidelberg (2013)

5. Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Commun.
ACM 13(7), 422–426 (1970)

74 C. Dong and F. Kiefer

6. Dan Goodin. Hack of Cupid Media dating website exposes 42 million plaintext
passwords (2014). http://goo.gl/sLcx4Y. Accessed 1 April 2015

7. Das, A., Bonneau, J., Caesar, M., Borisov, N., Wang, X.: The Tangled Web of
Password Reuse. In: NDSS, The Internet Society (2014)

8. Dong, C., Chen, L., Wen, Z.: When private set intersection meets big data: an
efficient and scalable protocol. In: ACM Conference on Computer and Communi-
cations Security, pp. 789–800 (2013)

9. Duma, C., Herzog, A., Shahmehri, N.: Privacy in the semantic web: what pol-
icy languages have to offer. In: 8th IEEE International Workshop on Policies for
Distributed Systems and Networks (POLIC) 2007, pp. 109–118 (2007)

10. Ferraiolo, D.F., Kuhn, D.R.: Role-based access controls. CoRR, abs/0903.2171
(2009)

11. Florêncio, D.A.F., Herley, C.: A large-scale study of web password habits. In: 16th
International Conference on World Wide Web, WWW 2007, pp. 657–666. ACM
(2007)

12. Freedman, M.J., Nissim, K., Pinkas, B.: Efficient private matching and set inter-
section. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol.
3027, pp. 1–19. Springer, Heidelberg (2004)

13. Gaw, S., Felten, E.W.: Password management strategies for online accounts. In:
SOUPS 2006, vol. 149, ACM International Conference Proceeding Series, pp. 44–
55. ACM (2006)

14. Ito, M., Saito, A., Nishizeki, T.: Secret sharing scheme realizing general access
structure. Electronics and Communications in Japan (Part III: Fundamental Elec-
tronic Science) 72(9), 56–64 (1989)

15. Kaliski, B.: PKCS #5: Password-Based Cryptography Specification Version 2.0.
RFC 2898 (Informational), September 2000

16. Kiefer, F., Manulis, M.: Zero-knowledge password policy checks and verifier-based
PAKE. In: Kuty�lowski, M., Vaidya, J. (eds.) ICAIS 2014, Part II. LNCS, vol. 8713,
pp. 295–312. Springer, Heidelberg (2014)

17. Li, J., Li, N., Winsborough, W.H.: Automated trust negotiation using crypto-
graphic credentials. In: CCS 2005, pp. 46–57. ACM (2005)

18. Menezes, A., van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryptog-
raphy. CRC Press, Boca Raton (1996)

19. Nabeel, M., Bertino, E.: Privacy-preserving fine-grained access control in public
clouds. IEEE Data Eng. Bull. 35(4), 21–30 (2012)

20. Cubrilovic, N.: RockYou hack: from bad to worse (2014). http://goo.gl/u91YHV.
Accessed on 1 April 2015

21. Pinkas, B., Schneider, T., Zohner, M.: Faster private set intersection based on OT
extension. In: USENIX 2014, pp. 797–812 (2014)

22. Reuters. Trove of Adobe user data found on Web after breach: security firm (2014).
http://goo.gl/cpZn6B. Accessed 1 April 2015

23. Suo, X., Zhu, Y., Owen, G.S.: Graphical passwords: a survey. In: ACSAC 2005,
pp. 463–472 (2005)

24. Wen, Z., Dong, C.: Efficient protocols for private record linkage. In: SAC 2014, pp.
1688–1694. ACM (2014)

25. Winsborough, W.H., Li, N.: Towards practical automated trust negotiation. In:
3rd International Workshop on Policies for Distributed Systems and Networks
(POLICY 2002), Monterey, CA, USA, pp. 92–103 (June 5–7, 2002)

26. Yao, A.C.: Protocols for secure computations (extended abstract). In: 23rd Annual
Symposium on Foundations of Computer Science, pp. 160–164 (1982)

http://goo.gl/sLcx4Y
http://goo.gl/u91YHV
http://goo.gl/cpZn6B

SEPM: Efficient Partial Keyword Search
on Encrypted Data

Yutaka Kawai1(B), Takato Hirano1, Yoshihiro Koseki1, and Tatsuji Munaka2

1 Mitsubishi Electric Corporation, Kamakura, Japan
Kawai.Yutaka@da.MitsubishiElectric.co.jp,

Hirano.Takato@ay.MitsubishiElectric.co.jp,

Koseki.Yoshihiro@ak.MitsubishiElectric.co.jp
2 Tokai University, Tokyo, Japan

Abstract. Searchable encryption (SE) in the public key setting is that
anyone can encrypt data by using a public key and store this cipher-
text on a server, and a client who has the corresponding secret key
can generate search queries (say, trapdoor) in order to search for the
encrypted data on the server. In this paper, we focus on partial match-
ing in the public key setting in order to enhance usability. We call this
“Searchable Encryption with Partial Matching (SEPM)”. Few previous
works of SEPM employed a strategy that a client generates ciphertexts
or trapdoors on all similar words closely related to a keyword in order
to realize the partial matching functionality. This means that the client
has to generate trapdoors for all partial matching varieties. Therefore,
this approach is inefficient due to its trapdoor size. In order to overcome
this disadvantage, we introduce a new concept of trapdoor conversion.
When a client searches for ciphertexts on the server, he generates only
one trapdoor tk and sends it to the server. Then, the server generates
trapdoors related to tk by using a conversion secret key which is gener-
ated in the setup phase and stored in the server, and searches ciphertexts
from them. Intuitively, this trapdoor generation process is achieved by
moving locations of characters included in a searching keyword. In order
to realize this situation, we introduce a new cryptographic primitive,
inner-product encryption with trapdoor conversion (IPE-TC). We pro-
pose a specific construction of IPE-TC based on generalized inner-product
encryption and basis conversion technique on a dual pairing vector spaces
approach.

1 Introduction

1.1 Background

Searchable Encryption in the Public Key Setting. Recently, it is expected
that cloud services such as storing data on a remote third-party provider give
high data availability and reduce IT infrastructure costs for a company. From
a security point of view, company’s sensitive data should be encrypted. On the
other hand, keyword searching for storing data on the cloud is indispensable
c© Springer International Publishing Switzerland 2015
M. Reiter and D. Naccache (Eds.): CANS 2015, LNCS 9476, pp. 75–91, 2015.
DOI: 10.1007/978-3-319-26823-1 6

76 Y. Kawai et al.

from an availability point of view. However, data encrypting and keyword search-
ing are incompatible in general, since keyword searching for encrypted data is
intractable. A naive approach of “decrypt-and-search” is insufficient because of
disclosure of decryption keys to malicious administrators or softwares on the
cloud. As a solution for these problems, searchable encryption (SE) has been
proposed.

There are two types of searchable encryption, symmetric-key type [7,8,11,21]
and public-key type [1,4,6,19]. In this paper, we discuss and describe searchable
encryption schemes in the public key setting. In the enrollment phase, a regis-
trant encrypts a keyword and generates a ciphertext ct by using the public key.
The ciphertext ct is stored in the server (or database). In the search phase, a
client generates a trapdoor tk by using the secret key in order to retrieve cipher-
texts which contain specific keywords. The server can search ciphertexts from
the trapdoor tk without any loss of keyword confidentiality.

There are many previous works in this research field. Boneh et al. in [4]
formalized searchable encryption in the public key setting and constructed a
specific scheme. Abdalla et al. in [1] pointed out that searchable encryption in
the public key setting is related to anonymous identity based encryption, and
showed a generic construction from it. SE with conjunctive equality matching
has been proposed (e.g. in [6]).

Partial Matching: Naive Methods and These Problems. Many previous
works of SE mainly focus on equality matching functionality. However, in some
practical situation, partial matching functionality is required. For example, we
consider a situation that some client would like to search a family name for a
database whose record contains a ciphertext of all names (i.e. first, middle, and
family names are encrypted simultaneously). Then, the client cannot search for
the database from only family names. In order to overcome this problem, the
following two naive methods have been studied in previous SE.

The first method is to encrypt separately every one character (or word)
included in a keyword. In this paper, we call this naive method Split-then-Enc. In
the enrollment phase, a keyword is divided into a character one by one, and each
character is encrypted and stored in the server. In the search phase, a keyword
is divided as same as the enrollment phase and trapdoors are generated for each
character. The trapdoors are sent to the server, and the server checks whether
the stored ciphertexts and the trapdoors are partially matched by using equality
checking.

However, in this method, the server can obtain some information from the
search process. For example, we consider a situation that the keyword string
“ABC” is encrypted and stored in the server. In Split-then-Enc method, the
server stores ciphertexts of “A”, “B”, and “C”, respectively. If the client search
“BD” for the ciphertexts, he generates trapdoors of “B” and “D”, respectively.
Then, the server does equality checking for each ciphertext and each trapdoor,
and learn that one of two trapdoors is matched (i.e. the ciphertext of “B” and the
trapdoor of “B” are matched). On the other hand, this approach has a security
issue: in addition to “BD”, the server can also search “DB” for the ciphertexts.

SEPM: Efficient Partial Keyword Search on Encrypted Data 77

We call this kind of keyword permutation attacks. This functionality is not
desirable property in SE. Therefore, the first method has a problem of security.

The second method is to use hidden vector encryption (HVE) or inner-
product encryption (IPE). Since HVE and IPE are known as an extension of
(anonymous) identity based encryption, HVE and IPE can be applied to search-
able encryption from the result of [1]. As a nice functionality, SE schemes con-
structed from HVE or IPE can use wild-card “*” which is a special symbol and
matches any character. Although the wild-card searching supports for securely
generating trapdoors for partial matching, the trapdoor size linearly depends on
the number of partial matching patterns. For example, when the client search
“AB” for ciphertexts of four characters, he has to generate trapdoors of “AB∗∗”,
“∗AB∗”, and “∗∗AB”. Therefore, the second method has an efficiency problem
on trapdoor size.

On the other hand, SE schemes with partial matching in the symmetric-
key setting have been proposed [7,11]. Li et al. focused on the same approach
as the second method, and proposed a simple SE scheme with fuzzy matching
including partial matching by enumerating and encrypting all similar words to
a keyword [11]. Chase and Shen proposed an SE scheme with partial matching
from another approach that employs a data structure obtained from a suffix tree
to reduce the ciphertext size [7]. However, the same efficiency problem as the
second method is met in these schemes, that is, the trapdoor sizes of [7,11] are
not small while they are based on very efficient symmetric-key primitives.

Motivation: Secure Trapdoor Conversion by the Server. Our main moti-
vation is to reduce the trapdoor size in the case of partial matching. For that pur-
pose, we introduce a new concept, trapdoor conversion for searchable encryption,
and formalize searchable encryption with partial matching (SEPM). We show
the framework of SEPM in Fig. 1. In our SEPM, trapdoors can be transformed
by the server, in contrast to the previous works. From a security point of view,
the SE system is not secure if the server can transform freely. In our SEPM, we
study a limited transformation that the server can change only the search posi-
tion of trapdoors. That is to say, when partial matching is executed, the client
generates only one trapdoor and the server generates valid trapdoors by shifting
(converting) the trapdoor. While this approach increases server-side comput-
ing cost, this approach is reasonable since the server has huge computational
resource in general and client-side computing cost can be reduced dramatically.

On the other hand, this transformation is a powerful operation, and therefore
should not be execute publicly. Thus, we naturally suppose that the server has
a secret key to convert trapdoors. We call this secret key “conversion secret
key csk”. As a security requirement, the server cannot obtain any information
on keyword from ciphertexts and trapdoors but a partial matching search by
converting valid trapdoors. We note that off-line keyword attacks is still possible
like previous public-key SE schemes, especially when the server can do more than
one guessing with the help of the trapdoor conversion. Yet, being a public-key
scheme, our security definition does not treat off-line keywords guessing attack.
SE with registered off-line keyword guessing attack is proposed in [22].

78 Y. Kawai et al.

Client Server
keyword = “encrypt”

Ciphertext generation

Store

Enrollment Phase

e n c r y p t

Search Phase

Trapdoor generation
Ciphertext:

(Original) Trapdoor: c r y p t

e n c r y p t

Not Match

c r y p t

e n c r y p t

Not Match

c r y p t

e n c r y p t

Match !!

c r y p t

Conversion !! Conversion !!

keyword = “crypt”

Ciphertext:

only one trapdoor

The server can execute partial search on ciphertext by converting original trapdoor.
The server cannot separate/add/forge to original trapdoor.

c r y p t

p t

c r y p td e

q r y p t(Original) Trapdoor

separate:

add:

forge:

Partial Match !!

c r y

ct = Enc(pk, encrypt) ct = Enc(pk, encrypt)

tk = TrapGen(pk,sk,crypt)

Fig. 1. Overview of our searchable encryption with partial matching

1.2 Key Techniques

In order to construct a specific SEPM scheme, we propose a new inner-product
encryption scheme by combining unbounded generalized IPE [16] and basis con-
version technique.

Unbounded Generalized Inner-Product Encryption [16]: The notions of
inner-product encryption (IPE) introduced by Katz, Sahai and Waters [10] con-
stitute an advanced class of encryption, and provide more flexible and fine-
grained functionalities in sharing and distributing sensitive data than traditional
encryption as well as identity-based encryption (IBE) [2,5,6,9,17,18,20,23]. The
parameters for IPE are expressed as vectors �x and �v, where the relation between
�v and �x holds, i.e., a secret key with �v can decrypt a ciphertext with �x, iff
�v · �x = 0. (Here, �v · �x denotes the standard inner-product.)

In some applications of IPE, the parameters for encryption are required to be
hidden from ciphertexts. To capture the security requirement, Katz, Sahai and
Waters [10] introduced attribute-hiding (based on the same notion for hidden
vector encryption by Boneh and Waters [6]), which is a requirement for IPE
stronger than the basic payload-hiding security requirement. Roughly speaking,
attribute-hiding requires that a ciphertext conceals, in addition to its plaintext,
an associated parameter, while payload-hiding only requires that a ciphertext
conceals only its plaintext. Since a keyword can be set as an attribute in IPE,
the attribute-hiding security is an important requirement to construct searchable
encryption.

SEPM: Efficient Partial Keyword Search on Encrypted Data 79

In [16], unbounded generalized IPE was proposed. A predicate vector and an
attribute vector in unbounded generalized IPE are defined as �x := {(t, xt) | t ∈
I�x, xt ∈ Fq,#I�x = n} and �v := {(t, vt) | t ∈ I�v, vt ∈ Fq,#I�v = n′}, respectively.
In the case of I�v ⊆ I�x, a ciphertext of an attribute vector �x can be decrypt by
using a decryption key of a predicate vector �v iff Σt∈I�v

vtxt = 0. That is to say,
the size of decryption (trapdoor) key does not depend on |I�x|. In order to realize
the above properties, indexing method is developed on dual system encryption
and dual pairing vector spaces (DPVS, see Sect. 2.2).

Basis Conversion Technique on DPVS. An unbounded generalized IPE is
very useful for SEPM, since the client generates parameters for only t ∈ I�v that
he wants to search. However, the trapdoor size still depends on the number of
partial matching varieties as same as HVE, since indexes t is embedded to kt and
cannot be changed. In order to transform only indexes t of a predicate vector
�v = {(t, vt)}, we use a trick based on the DPVS framework introduced in [14],
where a ciphertext c�x and a decryption key k�v are encoded on a random basis
B := (bi) and its dual basis B

∗ := (b∗
i).

From the property of DPVS, we can set a new basis Bi+1 := Bi · Wi where
Bi is a basis of DPVS and Wi is a random matrix. By flexibly using random
matrices Wi, a (original) trapdoor generated from a keyword can be transformed
into its related trapdoors that the positions of characters included in the keyword
are different from those of the original trapdoor. In our SEPM, W1, . . . , Wn are
chosen randomly and set {Wi}i=1,...,n to a conversion secret key csk, in setup
algorithm.

1.3 Our Contributions

In order to present efficient SEPM, this paper introduces a new notion of IPE,
inner-product encryption with trapdoor conversion (IPE-TC), which is ordinary
IPE with trapdoor conversion mechanism, TrapConv algorithm. TrapConv takes
a trapdoor, a conversion secret key, and an additional conversion information as
input, and outputs a new trapdoor. In more detail, TrapConv can change only
index t of a predicate vector �v = {(t, vt)|t ∈ I�v}. We formulate such a syntax
and a security definition of IPE-TC, and present a specific construction based
on the unbounded generalized IPE and the basis conversion technique on DPVS
mentioned in the subsection.

We give a comparison among our scheme and the previous SEPM schemes
(Split-then-Enc, HVE in [19] and IPE in [16]) in Table 1. In HVE and IPE, the
trapdoor size linearly depends on the number of partial matching patterns. On
the other hand, the trapdoor size of the proposed scheme depends on only the size
of keywords. However, since in our scheme, a trapdoor should be converted by
using csk in order execute partially search. In our specific scheme, this conversion
is a natural multiplication of a row vector and a matrix in the finite filed (see
Sect. 4.2). Then, the conversion efficiency is sufficiently efficient compared to the
matching efficiency.

80 Y. Kawai et al.

Table 1. Comparison among our SEPM scheme and previous SEPM scheme, where
n, m, l represent the maximum number of characters (or words) for enrolled keywords,
the number of characters (or words) for searched keywords, and the number of partial
matching varieties for keywords, respectively. Usually, l > n > m.

Trapdoor size Security against permutation Search efficiency

Split-then-Enc O(m) no (see Sect. 1.1) O(m)

HVE in [19] O(ml) yes O(n)

IPE in [16] O(ml) yes O(m)

Our SE O(m) yes O(ml)

2 Preliminaries

2.1 Notations

When A is a random variable or distribution, y
R← A denotes that y is randomly

selected from A according to its distribution. When A is a set, y
U← A denotes

that y is uniformly selected from A. We denote the finite field of order q by
Fq, and Fq \ {0} by F

×
q . A vector symbol denotes a vector representation over

Fq, e.g., �x denotes (x1, . . . , xn) ∈ F
n
q . For two vectors �x = (x1, . . . , xn) and

�v = (v1, . . . , vn), �x·�v denotes the inner-product
∑n

i=1 xivi. The vector �0 is abused
as the zero vector in F

n
q for any n. XT denotes the transpose of matrix X. A bold

face letter denotes an element of vector space V, e.g., x ∈ V. When bi ∈ V (i =
1, . . . , n), span〈b1, . . . , bn〉 ⊆ V (resp. span〈�x1, . . . , �xn〉) denotes the subspace
generated by b1, . . . , bn (resp. �x1, . . . , �xn). For bases B := (b1, . . . , bN) and B

∗ :=
(b∗

1, . . . , b
∗
N), (x1, . . . , xN)B :=

∑N
i=1 xibi and (y1, . . . , yN)B∗ :=

∑N
i=1 yib

∗
i . �ej

denotes the canonical basis vector (

j−1
︷ ︸︸ ︷
0 · · · 0, 1,

n−j
︷ ︸︸ ︷
0 · · · 0) ∈ F

n
q . GL(n,Fq) denotes

the general linear group of degree n over Fq.

2.2 Dual Pairing Vector Spaces (DPVS)

Definition 1. “Symmetric bilinear pairing groups” (q,G,GT , G, e) are a tuple
of a prime q, cyclic additive group G and multiplicative group GT of order q,
G �= 0 ∈ G, and a polynomial-time computable non-degenerate bilinear pairing
e : G × G → GT i.e., e(sG, tG) = e(G,G)st and e(G,G) �= 1. Let Gbpg be an
algorithm that takes input 1λ and outputs a description of bilinear pairing groups
(q,G,GT , G, e) with security parameter λ.

In this paper, we concentrate on the symmetric version of dual pairing vector
spaces [12,13], constructed by using symmetric bilinear pairing groups.

Definition 2. “Dual pairing vector spaces (DPVS)” (q,V,GT ,A, e) by a direct
product of symmetric pairing groups (q,G,GT , G, e) are a tuple of prime q,

SEPM: Efficient Partial Keyword Search on Encrypted Data 81

N -dimensional vector space V :=

N
︷ ︸︸ ︷
G × · · · × G over Fq, cyclic group GT of order

q, canonical basis A := (a1, . . . ,aN) of V, where ai := (

i−1
︷ ︸︸ ︷
0, . . . , 0, G,

N−i
︷ ︸︸ ︷
0, . . . , 0), and

pairing e : V×V → GT . The pairing is defined by e(x,y) :=
∏N

i=1 e(Gi,Hi) ∈ GT

where x := (G1, . . . , GN) ∈ V and y := (H1, . . . , HN) ∈ V. This is non-
degenerate bilinear i.e., e(sx, ty) = e(x,y)st and if e(x,y) = 1 for all y ∈ V,
then x = �0. For all i and j, e(ai,aj) = e(G,G)δi,j where δi,j = 1 if i = j, and 0
otherwise, and e(G,G) �= 1 ∈ GT . DPVS generation algorithm Gdpvs takes input
1λ (λ ∈ N) and N ∈ N, and outputs a description of param′

V
:= (q,V,GT ,A, e)

with security parameter V. It can be constructed by using Gbpg.

For a matrix W := (wi,j)i,j=1,...,N ∈ F
N×N
q and element g := (G1, . . . , GN)

in N -dimensional V, gW denotes (
∑N

i=1 Giwi,1, . . . ,
∑N

i=1 Giwi,N) = (
∑N

i=1 wi,1

Gi, . . . ,
∑N

i=1 wi,NGi) by a natural multiplication of a N -dim. row vector and a
N×N matrix. Thus it holds an associative law like (gW)W−1 = g(WW−1) = g.

We describe a random dual orthonormal basis generator Gob, which is used
as subroutine in our IPE scheme.

Gob(1λ, N0, N1): paramG := (q,G,GT , G, e) R← Gbpg(1λ), ψ U← F
×
q , gT :=

e(G,G)ψ,

for t = 0, 1 paramVt
:= (q,Vt,GT ,At, e)

R← Gdpvs(1λ, Nt),

Xt := (χt,i,j)i,j
U← GL(Nt,Fq), (ϑt,i,j)i,j := ψ · (XT

t)−1,

bt.i :=
∑Nt

j=1 χt,i,jat,j , Bt := (bt.1, . . . , bt.Nt
),

b∗
t.i :=

∑Nt

j=1 ϑt,i,jat,j , B
∗
t := (b∗

t.1, . . . , b
∗
t.Nt

),
return (param�n := ({paramVt

}t=0,1, gT), {Bt,B
∗
t }t=0,1).

2.3 Decisional Linear (DLIN) Assumption

Definition 3 (DLIN: Decisional Linear Assumption [3]). The DLIN
problem is to guess β ∈ {0, 1}, given (paramG, G, ξG, κG, δξG, σκG, Yβ) R←
GDLIN

β (1λ), where GDLIN
β (1λ) : paramG := (q,G,GT , G, e) R← Gbpg(1λ), κ, δ, ξ, σ

U←
Fq, Y0 := (δ + σ)G,Y1

U← G, return (paramG, G, ξG, κG, δξG, σκG, Yβ), for

β
U← {0, 1}. For a probabilistic machine E, we define the advantage of E for

the DLIN problem as:
AdvDLIN

E (λ) :=
∣
∣
∣Pr

[
E(1λ,
)→1

∣
∣
∣

R←GDLIN
0 (1λ)

]
−Pr

[
E(1λ,
)→1

∣
∣
∣

R←
GDLIN
1 (1λ)

]∣
∣ .

The DLIN assumption is: For any probabilistic polynomial-time adversary E,
the advantage AdvDLIN

E (λ) is negligible in λ.

3 Inner-Product Encryption with Trapdoor Conversion

In this section, we define a notion of inner-product encryption with trapdoor
conversion, IPE-TC, and its security. In IPE-TC, an attribute and predicate
vector �x and �v are expressed as follows, respectively.

82 Y. Kawai et al.

�x := {(t, xt)|t ∈ I�x, xt ∈ Fq, I�x ⊂ N }\{0}, �v := {(t, vt)|t ∈ I�v, vt ∈ Fq, I�v ⊂ N }\{0}

Next, we define a conversion map ρ in order to consider the trapdoor conversion.
For I�v = {t1, . . . , tn}, ρ is an index permutation denoted by

ρ :=
(

t1, t2, t3, . . . , t|I�v|
ρ(t1) = t̂1, ρ(t2) = t̂2, ρ(t3) = t̂3, . . . , ρ(t|I�v|) = t̂|Î�v|

)

where t̂i �= t̂j for 1 ≤ i, j ≤ |I�v|. Here, we set Î�v = {t̂1, . . . , t̂|I�v|}. Simply, we
denote Î�v = {t̂1, . . . , t̂} and {(ρ(t), vt)} by ρ(I�v) and ρ(�v). Roughly speaking,
an element (t, vt) is moved to (t̂, vt) by ρ. For �x and �v, we define two relations
R(�v, �x) and R̂(�v, �x) as follows

R(�v, �x) = 1 ⇔ I�v ⊆ I�x and
∑

t∈I�v

vtxt = 0, ̂R(�v, �x) = 1 ⇔ ∃ρ where R(ρ(�v), �x) = 1.

Intuitively, the relation R̂ means that, for a plaintext �x and a keyword �v, �x
contains �v as character if and only if R̂(�v, �x) = 1.

3.1 Syntax of IPE-TC

Definition 4 (Inner-Product Encryption with Trapdoor Conversion).
An inner-product encryption with trapdoor conversion scheme consists of the
following five algorithms.

Setup: takes as input a security parameter 1λ. It outputs a public key pk a master
secret key sk, and a conversion secret key csk.

Enc: takes as input the public key pk, an attribute vector �x. It outputs a ciphertext
ct�x.

TrapGen: takes as input the public key pk, the master secret key sk, and a predi-
cate vector �v. It outputs a corresponding original trapdoor key tk�v.

TrapConv: takes as input the public key pk, a conversion secret key csk, the
trapdoor key tk�v, and a conversion map ρ. It outputs a converted trapdoor
key t̂k�v.

Query: takes as input the public key pk, the trapdoor key tk�v, and the ciphertext
ct�x. It outputs 1 iff R(�v, �x) = 1. Otherwise, outputs 0.

The correctness for an IPE-TC scheme is defined as: (1) For any (pk, sk, csk) R←
Setup(1λ), any �v and �x, a trapdoor key tk�v

R← TrapGen(pk, sk, �v), and a
ciphertext ctx

R← Enc(pk, �x), we have 1 = Query(pk, tk�v, ct�x) if R(�v, �x) = 1.
Otherwise, it holds with negligible probability. (2) For any (pk, sk, csk), �v

and �x, a trapdoor key tk�v
R← TrapGen(pk, sk, �v), and a ρ, we have 1 =

Query(pk,TrapConv(pk, csk, tk�v, ρ), ct�x) if R(ρ(�v), �x) = 1. Otherwise, it holds
with negligible probability.

SEPM: Efficient Partial Keyword Search on Encrypted Data 83

3.2 Security Definition

In this subsection, we define the security of IPE-TC. In the public key search-
able encryption setting, we discuss the basic attribute-hiding security against an
adversary. In this security definiton, an attacker tries to distinguish ciphertexts
ct�x(0) and ct�x(0) such that R̂(�v, �x(0)) = R̂(�v, �x(1)) = 0 where �v is any trapdoor
query. That is, challenge vectors �x(0) and �x(1) does not contain �v.

Definition 5 (Attribute-Hiding (AH)). The model for defining the
attribute-hiding security of IPE-TC against adversary A (under chosen plaintext
attacks) is given by the following game. An IPE-TC scheme has attribute-hiding
security if, for all PPT adversaries A, the advantage of A in winning the fol-
lowing game is negligible in the security parameter λ. We define the advantage
of A as AdvAHA (λ) := Pr[b = b′] − 1

2
1.

Setup. The challenger runs the setup algorithm (pk, sk, csk) R← Setup(1λ), and
it gives the security parameter λ, the public key pk and the conversion secret
key csk to the adversary A.

Phase 1. The adversary A is allowed to adaptively issue a polynomial number
of queries as follows.
Trapdoor key query. For a Trapdoor key query �v, the challenger gives

tk�v
R← TrapGen(pk, sk, �v) to A.

Trapdoor key conversion query. For a Trapdoor key conversion query
tk�v and a conversion information ρ, the challenger gives t̂k�v

R←
TrapGen(pk, csk, tk�v, ρ) to A.

Challenge. For a challenge query (�x(0) := {(t, x(0)
t)|t ∈ I�x(0)}, �x(1) :=

{(t, x(1)
t)|t ∈ I�x(1)}) subjected to the following restrictions: (1) I�x(0) = I�x(1) .

(2) Any trapdoor key query �v satisfies R̂(�v, �x(0)) = R̂(�v, �x(1)) = 0.
The challenger flips a random bit b

U← {0, 1} and computes ct�x(b)
R←

Enc(pk, �x(b)). It gives the challenge original ciphertext ct�x(b) to A.
Phase 2. The adversary A may continue to issue trapdoor key queries, subjected

to the restriction in the challenge phase.
Guess. A outputs its guess b′ ∈ {0, 1} for b and wins the game if b = b′.

4 Proposed IPE-TC Scheme

Construction Idea. Our proposed IPE-TC scheme is based on the unbounded
generalized IPE scheme [16]. In [16] of IPE, the trapdoor key tk�v and the cipher-
text ct�x are constructed as

tk�v := (k∗
0 := (−s0, 0, 1, μ0, 0)B∗

0
, k∗

t := (μt(t,−1), δvt, st, 07, ηt, 02)B∗ fort ∈ I�v),

ct�x := (c0 := (ω̃, 0, ζ, 0, ϕ)B0 , ct := (σt(1, t), ωxt, ω̃, 07, 02, ϕt.1, ϕt.2)Bfort ∈ I�x)
1 Also, our attribute-hiding security is known as weak AH [6,10,14]. On the other hand,

in fully AH security [15], the adversary is allowed the challenge query �x(0), �x(1) such
that R̂(�v, �x(0)) = R̂(�v, �x(1)) = 0 or 1.

84 Y. Kawai et al.

Unbounded Generalized IPE

A client can generate many trapdoors.
Trapdoor data size depends on the number
of partial matching varieties.

IPE with Trapdoor Conversion

A client has to generate only one trapdoor.
By using the conversion secret key, the trapdoor

can be changed to relevant trapdoors corresponding
to partial matching varieties.

convert !

ct

tk

tk

tk

tk

ct

tk

convert !

convert !

Fig. 2. Difference between generalized IPE [16] and our IPE-TC

where (B0,B
∗
0) and (B,B∗) are pairs of dual basis on DPVS, st, μ0, μt, δ, ηt,

ω̃, ζ, ϕ, σt, ω, ϕt.1, ϕt.2
U← Fq and s0 = Σst. In the above construction, in order

to meet the decryption condition, this scheme is adopted indexing technique and
n-out-of-n secret sharing trick. Since the first 2-dimension of kt and ct is used
for indexes, all kt and ct can be computed on same dual basis (B,B∗). So, in
this scheme, the dimension of attribute/predicate vector is unbounded.
Our IPE-TC scheme is obtained by modifying the above structures below.

– The first 2-dimensions of kt and ct, μt(t,−1) and σt(1, t), are omitted. Addi-
tionally, Setup generates different dual basis pairs (Bt,B

∗
t) for t = 1, . . . , d,

and kt and ct are generated based on Bt and B
∗
t where d is the maximum

number of index.
– For i = 1, . . . , d, Setup generates a basis Bi with Bi := B1

∏i−1
j=1 Wj where

W1, . . . , Wd−1 are random (conversion) matrices. By the definition of DPVS,
B

∗
i is equivalent to B

∗
1

∏i−1
j=1(W

T
j)−1.

– A conversion secret key csk is set to conversion matrices {WT
i =

W ∗
i }i=1,...,d−1.

An entity who has csk can convert kt into kt+1 with the random matrix Wi.We
show the difference between generalized IPE [16] and our IPE-TC in Fig. 2.

Construction. We describe a specific construction of our IPE-TC scheme based
on DPVS. The random dual basis generator Gob is defined in Sect. 2.2 and we
refer to Sect. 2.1 for notations on DPVS.

Setup(1λ, d): (param, (B0,B
∗
0), (B1,B

∗
1))

R← Gob(1λ, N0 = 5, N1 = 12)
For i = 1, . . . , d − 1
Wi

U← GL(N1,Fq), W ∗
i := (WT

i)−1, Bi+1 := BiWi, B
∗
i+1 := B

∗
i W

∗
i

B̂0 := (b0,1, b0,3, b0,5), B̂i := (bi,1, bi,2, bi,11, b0,12),
B̂

∗
0 := (b∗

0,1, b
∗
0,3, b

∗
0,4), B̂

∗
i := (b∗

i,1, b
∗
i,2, b

∗
i,9, bi,10)

return pk := (param, {B̂i}i=0,...,d), sk := ({B̂∗
i }i=0,...,d), csk :=

({W ∗
i }i=1,...,d−1).

SEPM: Efficient Partial Keyword Search on Encrypted Data 85

Enc(pk, �x = {(t, xt)|t ∈ I�x ⊆ {1, . . . , d}}) :
ω, ω̃, ζ, ϕ0

U← Fq, c0 := (ω̃, 0, ζ, 0, ϕ)B0 , cT := gζ
T

For t ∈ I�x, ϕt,1, ϕt,2
U← Fq, ct := (ωxt, ω̃, 06, 02, ϕt,1, ϕt,2)Bt

return ct�x = (I�x, c0, {ct}t∈I�x
, cT).

TrapGen(pk, sk, �v = {(t, vt)|t ∈ I�v ⊆ {1, . . . , d}}): st, r, δ, η0, ηr.0
U← F

n
q ,

s0 := Σt∈I�v
st, k∗

0 := (− s0, 0, 1, η0, 0)B∗
0

sr.0 := Σt∈I�v
sr.t k∗

r.0 := (− sr.0, 0, 0, ηr.0, 0)B∗
0

For t ∈ I�v, ηt,1, ηt,2, η
′
t,1, η

′
t,2

U← Fq,
k∗

t := (δvt, st, 06, ηt,1, ηt,2, 02)B∗
t
, k∗

r.t := (0, sr.t, 06, η′
t,1, η

′
t,2, 02)B∗

t
,

return tk�v = (I�v,k∗
0,k

∗
r.0, {k∗

t ,k∗
r.t}t∈I�v

).
TrapConv(tk�v, ρ, csk = {W ∗

i }i=1,...,d−1): If |I�v| �= |Î�v|, return ⊥.

For r, r′ U← Fq, i = 1, . . . , tI�v
(ti ∈ I�v, t̂i ∈ Î�v, by using ρ, ti is move to t̂i.)

If ti = t̂i, k∗
t̂i

:= k∗
ti

+ rk∗
r.ti

If ti < t̂i, k∗
t̂i

:= k∗
ti

W ∗
ti

W ∗
ti+1 · · · W ∗

t̂i−1
+ rkr.t̂i

If ti > t̂i, k∗
t̂i

:= k∗
ti

(W ∗
ti−1)

−1(W ∗
ti−2)

−1 · · · (W ∗
t̂i

)−1 + rkr.t̂i

k∗
0 = k∗

0 + rk∗
r.0, k

∗
r.t = r′k∗

r.t, return tk�v′ = (Î�v,k∗
0,k

∗
r.0, {k∗

t̂
,k∗

r.t̂
}t̂∈Î�v

).
Query(pk, ct�x = (I�x, c0, {ct}t∈I�x

, cT), tk�v

If I�x ⊆ I�v, return ⊥. Otherwise K := e(c0,k∗
0) · ∏

t∈I�v
e(ct,k

∗
t).

If cT = K return 1. Otherwise, return 0.

Security and Overview of Proof. We describe the overview of security proof
for our proposed IPE-TC scheme. We will show the full proof in the full version of
this paper. The security proofs of our IPE-TC scheme are similar to the security
proofs of [16].

Theorem 1. The proposed IPE-TC scheme is attribute-hiding against chosen
plaintext attacks under the DLIN assumption.

Proof Outline of Theorem 1: To prove Theorem 1, we employ Game 0 through
Game 4. In Game 0, all the replies to A’s queries are in normal forms. In Game
1, c0 and ct of the challenge ciphertext is changed to semi-functional form in
Eq. (3). Let ν1 be the maximum number of A’s trapdoor key queries and trap-
door key conversion queies. In Game 2-�-1 (� = 1, . . . , ν1), the reply to the
�-th trapdoor key query (or trapdoor key conversion query) is change to pre-
semi-functional form in Eq. (4). In Game 2-�-2 (� = 1, . . . , ν1), the reply to the
�-th trapdoor key query (or trapdoor key conversion query) is change to semi-
functional form in Eq. (5). In Game 3, c0 and ct of the challenge ciphertext is
changed to semi-randomized form in Eq. (6). Finally, in Game 4, ct of the chal-
lenge ciphertext is changed to randomized form in Eq. (7). In final Game 4, the
advantage of the adversary is zero. As usual, we prove that the advantage gaps
between neighboring games are negligible by using Problem 1, 2, and 3 which are
defined in AppendixA. In Game 0, a part framed by a box indicates coefficients
to be changed in a subsequent game. In other games, a part framed by a box
indicates coefficients which were changed in a game from the previous game.

86 Y. Kawai et al.

Game 0: k∗
0 and k∗

t of the reply to a trapdoor key query (or trapdoor key
conversion query) for �v are

k∗
0 := (− s0, 0 , 1 , η0, 0)B∗

0
, k∗

t := (δvt, st, 04, 02 , �ηt, 02)B∗
t

(1)

where t ∈ I�v,η0, δ, st
U← Fq, �ηt

U← F
2
q, and s0 := Σt∈I�v

st.
c0 and ct of the reply to a challenge query for (�x(0), �x(1)) such that I�x :=
I�x(0) = I�x(1) , and

c0 := (ω̃, 0 , ζ , 0, ϕ)B0 , ct := (ωx
(b)
t , ω̃, 02 , 02, 02 , �ϕt)Bt

(2)

where b
U← {0, 1}, t ∈ I�x, ω̃, ζ, ϕ, ω

U← Fq,, and �ϕt
U← F

2
q.

Game 1: Game 1 is the same as Game 0 except that the reply to the challenge
query for (�x(0), �x(1)) is

c0 := (ω̃, τ̃ , ζ, 0, ϕ)B0 , ct := (ωx
(b)
t , ω̃, τx

(b)
t , τ̃ , 02, (τx

(b)
t , τ̃)Zt , �ϕt)Bt

(3)

where t ∈ I�x,τ, τ̃ U← Fq, Zt
U← GL(Fq, 2).

Game 2-�-1 (� = 1, . . . , ν1): Game 2-0-1 is equivalent to Game 1. Game 2-�-1
is the same as Game 2-(� − 1)-1 except that the reply to the �-th trapdoor
query for �v is

k∗
0 := (−s0, −a0 , 1, η0, 0)B∗

0
,k∗

t := (δvt, st, 04, (πv
(b)
t , at)Ut , �ηt, 02)B∗

t
(4)

where t ∈ I�v,π, at
U← Fq, a0 :=

∑
t∈I�v

at, Ut := (Z−1
t)T.

Game 2-�-2 (� = 1, . . . , ν1): Game 2-0-2 is equivalent to Game 2-ν1-1. Game
2-�-2 is the same as Game 2-(� − 1)-2 except that the reply to the �-th
trapdoor query for �v is

k∗
0 := (−s0, r0 , 1, η0, 0)B∗

0
,k∗

t := (δvt, st, 02, 02, �rt , �ηt, 02)B∗
t

(5)

where t ∈ I�v,r0
U← Fq, �rt

U← F
2
q.

Game 3: Game 3 is the same as Game 2-ν1-2 except that the reply to the
challenge query for (�x(0), �x(1)) is

c0 := (ω̃, τ̃ , ζ ′ , 0, ϕ)B0 , ct := (ωx
(b)
t , ω̃, τx

(b)
t , τ̃ , 02, �zt , �ϕt)Bt

(6)

where t ∈ I�x,ζ ′ U← Fq, and �zt
U← F

2
q.

Game 4: Game 4 is the same as Game 3 except that the reply to the challenge
query for (�x(0), �x(1)) is

ct := (0 , ω̃, 0 , τ̃ , 02, �zt, �ϕt)Bt
(7)

where t ∈ I�x.

SEPM: Efficient Partial Keyword Search on Encrypted Data 87

Fig. 3. Example of SEPM using IPE-TC

Let Adv
(0)
A (λ), Adv

(1)
A (λ), Adv

(2-�-1)
A (λ), Adv

(2-�-2)
A (λ), Adv

(3)
A (λ), Adv

(4)
A (λ), be

the advantage of A in Game 0, 1, 2-�-1, 2-�-2, 3 and 4, respectively.
We will show eight lemmas (Lemmas 1–6) that evaluate the gaps between

pairs of Adv(0)A (λ), Adv(1)A (λ), Adv(2-�-1)A (λ), Adv(2-�-2)A (λ), Adv(3)A (λ), Adv(4)A (λ).

Lemma 1. For any adversary A, there exists a probabilistic machine B1 such
that for any security parameter λ, |Adv(0)A (λ) − Adv

(1)
A (λ)| ≤ AdvP1B1

(λ).

Lemma 2. For any adversary A, there exists a probabilistic machine B2

such that for any security parameter λ, |Adv(2-(�−1)-1)
A (λ) − Adv

(2-�-1)
A (λ)| ≤

AdvP2B2-�-1(λ) + 2/q where B2-�-−1(·) := B2(�, ·).

Lemma 3. For any adversary A and security parameter λ, |Adv(2-�-1)A (λ) =
Adv

(2-�-2)
A (λ)|.

Lemma 4. For any adversary A and security parameter λ, |Adv(3)A (λ) −
Adv

(2-ν1−2)
A (λ)| ≤ 1/q.

Lemma 5. For any adversary A, there exists a probabilistic machine B4 such
that for any security parameter λ, |Adv(4)A (λ) − Adv

(3)
A (λ)| ≤ AdvP3B4

(λ) + 3/q,.

Lemma 6. For any adversary A and security parameter λ, Adv(5)A (λ) = 0.

5 Overview of SEPM Using IPE-TC

In this section, we explain SEPM using our IPE-TC scheme. In SEPM, a keyword
corresponds to a predicate/attribute vector. We consider an example that a
ciphertext contains a keyword “ABCD”. In this case, an attribute vector �x is

�x = { (1, σ1(1,H(A))), (2, σ2(1,H(B))), (3, σ3(1,H(C))), (4, σ4(1,H(D))) }
where σ1, . . . , σ4 are random values in Fq and H : {0, 1}∗ → Fq is a
cryptographic hash function. Then the ciphertext on �x is ct�x := (I�x =
{1, . . . , 4}, c0, c1, . . . , c4, cT). If a client search “CD”, a predicate vector �v is
encoded as

88 Y. Kawai et al.

�v = { (1, τ1(H(C),−1)), (2, τ2(H(D),−1)) }
where τ1, τ2 are random values. Then the trapdoor tk�v under �v is (I�v =
{1, 2},k∗

0 ,k
∗
1,k

∗
2). The server who has csk and obtains the trapdoor tk�v into

ciphertexts.
When the server searches tk�v on ct�x, the server checks e(c0,k∗

0).∏
t∈I�v

e(ct,k
∗
t) = cT by moving index of tk�v. As shown in Fig. 3, the server can

confirm matching by shifting to the right twice. In this SEPM, the conversion
procedure is a only multiplication of a row vector and a matrix.

From the above explanation, IPE-TC is very useful tool to achieve SEPM.

A Preliminaries Lemmas

Definition 6 (Problem 1). Problem 1 is to guess β, given (param, B̂0, B̂
∗
0,

{B̂t, B̂
∗
t }t=1,...,d,eβ,0, {eβ,t,i}t=1,...,d,i=1,2)

R← GP1
β (1λ, d) where

GP1
β (1λ, d) : (param, (B0,B

∗
0), (B1,B

∗
1))

R← Gob(1λ, N0 := 5, N1 := 12),
for i = 1, . . . , d − 1,

Wi
U← GL(N1,Fq), W ∗

i := (WT
i)−1, Bi+1 := BiWi, B

∗
i+1 := B

∗
i W

∗
i

B̂0 := (b0,1, b0,3, b0,5), B̂i := (bi,1, bi,2, bi,11, bi,12)

B̂
∗
0 := (b∗

0,1, b
∗
0,3, b

∗
0,4), B̂

∗
i := (b∗

i,1, b
∗
i,2, b

∗
i,9, bi,10)

ϕ0, ω
U← Fq, τ

U← F
×
q , e0,0 := (ω, 0, 0, 0, ϕ0)B0 , e1,0 := (ω, τ, 0, 0, ϕ0)B0 , for

t = 1, . . . , d, i = 1, 2; Zt
U← GL(2,Fq), �e1 := (1, 0), �e2 := (0, 1), �ϕt,i

U← F
2
q

e0,t,i := (ω�ei, 06, 02, �ϕt,i)Bt
, e0,t,i := (ω�ei, τ�ei, 02, τ�eiZt, 02, �ϕt,i)Bt

, return
(param, B̂0, B̂

∗
0, {B̂t, B̂

∗
t }t=1,...,d, eβ,0, {eβ,t,i}t=1,...,d,i=1,2).

for β
U← {0, 1}. For a probabilistic adversary B, the advantage of B for Problem 1

is defined as AdvP1B (λ):=
∣
∣Pr

[
1 ← B(1λ,
)

∣
∣

R← GP1
0 (1λ,�n)

]−Pr
[
1 ← B(1λ,
)

∣
∣

R←
GP1
1 (1λ,�n)

]∣
∣

Lemma 7. Problem 1 is computationally intractable under the DLIN assumption.

The proof of Lemma 7 is similar to the proof of Lemma 3 in [16].

Definition 7 (Problem 2). Problem 2 is to guess β, given (param, B̂0, B̂
∗
0,

{B̂t, B̂
∗
t }t=1,...,d, {h∗

β,t,i,et,i}t=1,...,d,i=1,2)
R← GP2

β (1λ, d) where

GP2
β (1λ, d) : (param, (B0,B

∗
0), (B1,B

∗
1))

R← Gob(1λ, N0 := 5, N1 := 12)

for t = 1, . . . , d − 1, Wi
U← GL(N1,Fq), W ∗

i := (WT
i)−1,

Bi+1 := BiWi, B̂0 := (b0,1, b0,3, b0,5), B̂i := (bi,1, bi,2, bi,11, bi,12)

B
∗
i+1 := B

∗
i W

∗
i B̂

∗
0 := (b∗

0,1, b
∗
0,3, b

∗
0,4), B̂

∗
i := (b∗

i,1, b
∗
i,2, b

∗
i,9, b

∗
i,10)

SEPM: Efficient Partial Keyword Search on Encrypted Data 89

h∗
0,0 := (δ, 0, 0, η0, 0)B∗

0
h∗
1,0 := (δ, ρ, 0, η0, 0)B∗

0

e0 := (ω, τ, 0, 0, ϕ0)B0 , �e1 := (1, 0), �e2 := (0, 1) ∈ F
2
q,

for t = 1, . . . , d, i = 1, 2; Zt
U← GL(2,Fq), Ut

U← (Z−1
t)T, �ηt,i, �ϕt,i

U← F
2
q

h∗
0,t,i := (δ�ei, 06, �ηt, 02)B∗

t
, h∗

1,t,i := (δ�ei, 04, ρ�eiUt �ηt, 02)B∗
t

et,i := (ω�ei, τ�ei, 02, τ�eiZt, 02, �ϕt)Bt

return (param, B̂0, B̂
∗
0, {B̂t, B̂

∗
t }t=1,...,d, {h∗

β,t,i,et,i}t=1,...,d,i=1,2)

for β
U← {0, 1}. For a probabilistic adversary B, the advantage of B for Problem

2 is defined as same as Definition 6.

Lemma 8. Problem 2 is computationally intractable under the DLIN assumption.

The proof of Lemma 8 is similar to the proof of Lemma 4 in [16].

Definition 8 (Problem 3). Problem 3 is to guess β, given (param,B0,B
∗
0, {Bi,

B̂
∗
i }i=1,...,d, {h∗

t ,eβ,t}t=1,...,d)
R← GP3

β (1λ, d) where

GP3
β (1λ, d) : (param, (B0,B

∗
0), (B1,B

∗
1))

R← Gob(1λ, N0 := 5, N1 := 12)
for i = 1, . . . , d − 1

Wi
U← GL(N1,Fq), W ∗

i := (WT
i)−1, Bi+1 := BiWi B

∗
i+1 := B

∗
i W

∗
i

for t = 1, . . . , d B̂
∗
t := (b∗

t,2, b
∗
t,4, . . . , b

∗
t,12), u, ω, τ,

U← Fq, �rt, �zt, �ηt, �ϕt
U← F

2
q

h∗
t := (u, 0, 04, �rt, �ηt, 02)B∗

t

e0,t := (0, 0, 04, �zt, 02, �ϕt)Bt
, e1,t := (ω, 0, τ, 03, �zt, 02, �ϕt)Bt

return (param,B0,B
∗
0, {Bi, B̂

∗
i }i=1,...,d, {h∗

t ,eβ,t}t=1,...,d)

for β
U← {0, 1}. For a probabilistic adversary B, the advantage of B for Problem

3 is defined as same as Definition 6.

Lemma 9. Problem 3 is computationally intractable under the DLIN assumption.

The proof of Lemma 9 is similar to the proof of Lemma 5 in [16].
The full proofs of Lemmas 7, 8 and 9 are shown in the full version of this paper.

References

1. Abdalla, M., Bellare, M., Catalano, D., Kiltz, E., Kohno, T., Lange, T., Malone-
Lee, J., Neven, G., Paillier, P., Shi, H.: Searchable encryption revisited: consis-
tency properties, relation to anonymous IBE, and extensions. In: Shoup, V. (ed.)
CRYPTO 2005. LNCS, vol. 3621, pp. 205–222. Springer, Heidelberg (2005)

2. Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryp-
tion. In: IEEE Symposium on Security and Privacy, pp. 321–334 (2007)

3. Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.)
CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004)

90 Y. Kawai et al.

4. Boneh, D., Di Crescenzo, G., Ostrovsky, R., Persiano, G.: Public key encryption
with keyword search. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 506–522. Springer, Heidelberg (2004)

5. Boneh, D., Hamburg, M.: Generalized identity based and broadcast encryption
schemes. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 455–470.
Springer, Heidelberg (2008)

6. Boneh, D., Waters, B.: Conjunctive, subset, and range queries on encrypted
data. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 535–554. Springer,
Heidelberg (2007)

7. Chase, M., Shen, E.: Substring-searchable symmetric encryption. PETS 2015
2015(2), 263–281 (2015)

8. Curtmola, R., Garay, J.A., Kamara, S., Ostrovsky, R.: Searchable symmetric
encryption: improved definitions and efficient constructions. In: 13th ACMCCS,
pp. 79–88 (2006)

9. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-
grained access control of encrypted data. In: Proceedings of the 13th ACM con-
ference on Computer and Communications Security - ACM CCS 2006, pp. 89–98
(2006)

10. Katz, J., Sahai, A., Waters, B.: Predicate encryption supporting disjunctions, poly-
nomial equations, and inner products. In: Smart, N.P. (ed.) EUROCRYPT 2008.
LNCS, vol. 4965, pp. 146–162. Springer, Heidelberg (2008)

11. Li, J., Wang, Q., Wang, C., Cao, N., Ren, K., Lou, W.: Fuzzy keyword search over
encrypted data in cloud computing. In: IEEE INFOCOM 2010 (Mini-Conference),
pp. 1–5 (2010)

12. Okamoto, T., Takashima, K.: Homomorphic encryption and signatures from vector
decomposition. In: Galbraith, S.D., Paterson, K.G. (eds.) Pairing 2008. LNCS, vol.
5209, pp. 57–74. Springer, Heidelberg (2008)

13. Okamoto, T., Takashima, K.: Hierarchical predicate encryption for inner-products.
In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 214–231. Springer,
Heidelberg (2009)

14. Okamoto, T., Takashima, K.: Fully secure functional encryption with general rela-
tions from the decisional linear assumption. In: Rabin, T. (ed.) CRYPTO 2010.
LNCS, vol. 6223, pp. 191–208. Springer, Heidelberg (2010)

15. Okamoto, T., Takashima, K.: Adaptively attribute-hiding (hierarchical) inner
product encryption. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012.
LNCS, vol. 7237, pp. 591–608. Springer, Heidelberg (2012)

16. Okamoto, T., Takashima, K.: Fully secure unbounded inner-product and attribute-
based encryption. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol.
7658, pp. 349–366. Springer, Heidelberg (2012)

17. Ostrovsky, R., Sahai, A., Waters, B.: Attribute-based encryption with non-
monotonic access structures. In: ACM CCS 2007, pp. 195–203 (2007)

18. Pirretti, M., Traynor, P., McDaniel, P., Waters, B.: Secure attribute-based systems.
In: ACM CCS 2006, pp. 99–112 (2006)

19. Sedghi, S., van Liesdonk, P., Nikova, S., Hartel, P., Jonker, W.: Searching keywords
with wildcards on encrypted data. In: Garay, J.A., De Prisco, R. (eds.) SCN 2010.
LNCS, vol. 6280, pp. 138–153. Springer, Heidelberg (2010)

20. Shi, E., Waters, B.: Delegating capabilities in predicate encryption systems. In:
Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A.,
Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp. 560–578. Springer,
Heidelberg (2008)

SEPM: Efficient Partial Keyword Search on Encrypted Data 91

21. Song, D.X., Wagner, D., Perrig, A.: Practical techniques for searches on encrypted
data. In: Security and Privacy 2000, pp. 44–55. IEEE (2000)

22. Tang, Q., Chen, L.: Public-key encryption with registered keyword search. In:
Martinelli, F., Preneel, B. (eds.) EuroPKI 2009. LNCS, vol. 6391, pp. 163–178.
Springer, Heidelberg (2010)

23. Waters, B.: Ciphertext-policy attribute-based encryption: an expressive, efficient,
and provably secure realization. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi,
A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 53–70. Springer, Heidelberg (2011)

Attacks and Malicious Code

Bad Sounds Good Sounds: Attacking
and Defending Tap-Based Rhythmic Passwords

Using Acoustic Signals

S. Abhishek Anand(B), Prakash Shrestha, and Nitesh Saxena

University of Alabama at Birmingham, Birmingham, AL 35294, USA
{anandab,prakashs,saxena}@cis.uab.edu

Abstract. Tapping-based rhythmic passwords have recently been pro-
posed for the purpose of user authentication and device pairing. They
offer a usability advantage over traditional passwords in that memorizing
and recalling rhythms is believed to be an easier task for human users.
Such passwords might also be harder to guess, thus possibly providing
higher security.

Given these potentially unique advantages, we set out to closely inves-
tigate the security of tapping-based rhythmic passwords. Specifically,
we show that rhythmic passwords are susceptible to observation attacks
based on acoustic side channels – an attacker in close physical proximity
of the user can eavesdrop and extract the password being entered based
on the tapping sounds. We develop and evaluate our attacks employing
human users (human attack) as well as off-the-shelf signal processing
techniques (automated attack), and demonstrate their feasibility. Fur-
ther, we propose a defense based on sound masking aimed to cloak the
acoustic side channels. We evaluate our proposed defense system against
both human attacks and automated attacks, and show that it can be
effective depending upon the type of masking sounds.

1 Introduction

Many online and offline services rely upon user authentication to protect users’
data, credentials and other sensitive information, such as when used to logging
into websites or devices, or to “pair” the devices [11]. Passwords and PINs rep-
resent the most dominant means of authentication deployed today. However,
traditional passwords suffer from a number of well-known security and usabil-
ity problems [1,14,18]. Specifically, passwords are often only weak, low-entropy
secrets due to the user-memorability requirement. As such they can be easy
to guess, enabling online brute-forcing attacks and offline dictionary attacks.
Moreover, authentication and pairing mechanisms on constrained devices (e.g.,
headsets or access points) can be a challenging task due to lack of a proper input
interface. Typing passwords or PINs requires a keyboard (physical or virtual)
to enter the text. However, most of the constrained devices have either only a
button or a microphone for input.

c© Springer International Publishing Switzerland 2015
M. Reiter and D. Naccache (Eds.): CANS 2015, LNCS 9476, pp. 95–110, 2015.
DOI: 10.1007/978-3-319-26823-1 7

96 S.A. Anand et al.

Tap-based rhythmic passwords [12,16] have been proposed as an alternative
to traditional text based passwords as they can be unique to an individual and are
much harder to replicate. Wobbrock’s TapSongs [16] is a tapping-based authen-
tication mechanism for devices having a single binary sensor. In this method,
the user is required to tap a rhythm, for example a song, using the binary sen-
sor, which can be a button or a switch. Matching the tapping pattern entered
by the user with a previously stored pattern achieves the authentication. The
key idea behind this mechanism is the assumption that every individual has a
unique tapping pattern for a given rhythm that can serve the same purpose as
other authentication modalities like signatures, fingerprints or retinal patterns.
They also offer a usability advantage over traditional passwords in that perceiv-
ing, memorizing and performing rhythms is an easier task for human users, as
demonstrated by music psychologists [6,7,17].

Lin et al.’s RhythmLink [12] extends the TapSongs work by using tap inter-
vals extracted from the tapping pattern for “pairing” two devices. The peripheral
device that is to be paired sends the tapping model to the user’s phone that stores
the timing model for authentication. Euclidean distance is used for as a heuristic
for matching the received pattern with the stored pattern. Similar to TapSongs
[16], if the two patterns are within a certain threshold, a successful match is
determined.

Our Contributions: Given the unique security and usability advantages of tap-
based rhythmic passwords, we set out to closely investigate their security. Specif-
ically, we show that these passwords are susceptible to observation attacks based
on acoustic side channels – an attacker in close physical proximity of the user can
eavesdrop and extract the password being entered based on the tapping sounds.
We develop and evaluate our attacks employing human users (human attack) as
well as off-the-shelf signal processing techniques (automated attack), and demon-
strate their feasibility in realistic scenarios. Our results show that the automated
attack is highly successful with an average accuracy of more than 85 %. The human
attack is less successful, but still succeeds with an accuracy of 66 % for short pass-
words (less than 10 taps) and about 21 % for long passwords (greater than 10 taps).

Going further, we propose a simple defense mechanism based on sound mask-
ing aimed to cloak the acoustic side channels. The idea is that the authentication
terminal itself inserts acoustic noise while the user inputs the tap-based rhythmic
password.We evaluate the proposed defense systemagainst both the human attack
and the automated attack. The results show that, depending upon the type of noise
inserted, both automated and human attacks could be undermined effectively.

Our work highlights a practical vulnerability of a potentially attractive form
of authentication and proposes a viable defense that may help mitigate this
vulnerability.

Related Work: Acoustic Side Channel Attacks: Acoustic eavesdropping
was first studied as a side channel attack, applicable to traditional passwords, by
Asonov and Agrawal [2], where they showed that it was possible to distinguish
between different keys pressed on a keyboard by the sound emanated by them.
They used Fast Fourier Transform (FFT) features of press segments of keystrokes
to train a neural network for identification of individual keys. Zhuang et al. [19]

Bad Sounds Good Sounds 97

improved upon the work of Asonov and Agrawal by using Mel Frequency Cepstrum
Coefficient (MFCC) for feature extraction from keystroke emanations that would
yield better accuracy results. Halevi and Saxena [9] further improved upon the
accuracy of such class of attacks using time-frequency decoding of the acoustic
signal.

In another work, Halevi and Saxena [10] extended the acoustic side channel
attacks to device pairing. They demonstrated that it is possible to recover the
exchanged secret during device pairing using acoustic emanations. Recent work
by Shamir and Tromer [8] has shown that it is possible to extract an RSA decryp-
tion key using the sound emitted by the CPU during the decryption phase of some
chosen ciphertexts. Acoustic side channel attacks have also been used against dot
matrix printers by Backes et al. [4] to recognize the text being printed.

Compared to the above prior research, our work investigates the feasibility of
acoustic emanations attacks against tap-based rhythmic passwords unlike tradi-
tional passwords, typed input or cryptographic secrets. In addition to automated
attacks, we investigate and demonstrate the feasibility of human-based acoustic
eavesdropping attacks against rhythmic passwords. It is noteworthy that the
traditional passwords do not seem vulnerable to such human attacks given that
it may be impossible for a human attacker to infer the key pressed based on the
key-press sound (all keys may sound alike).

2 Background

2.1 System Model

The authentication system proposed by TapSongs [16] defines the following con-
ditions to be satisfied for successful authentication of an input tap pattern. Our
implementation of TapSongs, as our target system, therefore uses the exact same
conditions.

– The number of taps should be same in the input pattern and the user’s tap
pattern stored in the system for authentication.

– The total time duration of the input pattern should be within a third of the
time duration of the stored pattern for the user.

– Every time interval between consecutive tap events in the input pattern should
be within three standard deviations from the corresponding time intervals in
the stored tap pattern for the user.

2.2 Threat Model and Attack Phases

The threat model of our attack consists of three distinct phases: Snooping and
Recording, Processing and Password Reconstruction, as described below.

Phase I: Snooping and Recording: This is the initial phase, where the adver-
sary attempts to listen to the users’ tapping. In the user study reported in the
TapSongs work [16], it was found that, for a human attacker eavesdropping from

98 S.A. Anand et al.

a distance of 3 ft, while the victim user inputs the tap pattern, the mean login
success rate is very low (10.7 %). The reason attributed to the low success rate is
the unfamiliarity of the human attacker with the tap rhythm being used. Hence,
while the attacker could infer the correct number of taps with a high probability
(77.4 %), unfamiliarity with the rhythm made it almost impossible to imitate
the tapping pattern in real-time during eavesdropping.

We modify the attack model used by Wobbrock [16] to increase the capability
of the adversary. Our attack model is very similar to the one considered by prior
research on keyboard acoustic emanations [2,19]. We assume that the adversary
has installed a hidden audio listening device very close to the input device or
interface being used for the tap input. A covert wireless “bug”, a PC microphone
(perhaps a compromised microphone belonging to the host device itself) or a
mobile phone microphone are examples of such a listening device. The listening
device can be programmed to record the acoustic emanations as the user taps
in the rhythm, and transmit the recordings to another computer controlled by
the attacker.

Thus, unlike [16], the attacker does not need to reconstruct the tap-based
password in real-time, but rather the attacker can record the typed password for
later offline processing (possibly involving training) and reconstruction. More-
over, given the recording capability, we extend the threat model of [16] to incor-
porate automated attacks besides human attacks.

Phase II: Processing: This phase uses the recorded audio from the earlier
phase to extract the desired spectral features of the tapping pattern. The naive
way to extract this information is to familiarize the attacker with the tap rhythm
(human attack). The attacker can accurately know the number of taps in the
pattern and to some extent, an approximation to the time interval between the
taps. A potentially more accurate method is to use signal processing techniques
in order to extract the relevant features from the recordings (automated attack).

Phase III: Password Reconstruction: Once the adversary has learned the
tapping patterns’ characteristics, it can imitate the tapping pattern to try to
break the authentication functionality provided by tap-based password. If the
adversary has physical access to the machine (e.g., lunch-time access to the
authentication terminal or when working with a stolen terminal), the tap pat-
terns can be entered directly to the input interface either manually or using
a mechanical/robotic finger pre-programmed with the tapping pattern. In con-
trast, if the tap-based password is being used for remote authentication (e.g.,
web site login), the attacker can simply reconstruct the password using its own
machine. In this case, the attacker can install an automated program (e.g., a
Java robot) on its machine that will simply input the reconstructed password to
the web site so as to impersonate the victim user.

3 Attack Overview and Scenarios

We classify our attack into two categories: automated attacks and human attacks.

Bad Sounds Good Sounds 99

Fig. 1. Attack scenarios against rhythmic passwords (the circled device represents the
audio recording device used by the attacker)

3.1 Automated Attacks

The automated attack deploys a recording device to eavesdrop upon the taps
entered by the user. The tapping-based schemes require the user to tap a rhythm
on a binary sensor like a button or any sensor which can be binarized to serve
the purpose, like microphones or touchscreens. An attacker, who is in vicinity
of the victim, records the sound generated from the tapping action and uses the
recorded tapping pattern to reconstruct an approximation to the tapping pattern
of the victim. As discussed in Sect. 2.2, the attack consists of three phases, each
of which can be automated. We begin with the Snooping and Recording phase,
where the attacker is recording the tapping pattern using a recorder. There can
be three most likely cases, described below, based on the positioning of the input
sensor used by the victim to enter the taps, the device used by the attacker and
the environment in which the attack takes place.

S1: Key Tapping; Recording Device on Surface: In this scenario (Fig. 1a),
the user uses a button or a key on her device for tapping a rhythm. This tapping
pattern is matched against the stored pattern and success or failure is determined
during authentication. When a key or button is pressed by the user, it produces
a sound corresponding to key press followed by a softer sound produced due to
key/button release that can be recorded by an adversary during the input. Later,
the adversary can extract relevant features from the victim’s tapping pattern
stored in the recording. The recording itself can be done inconspicuously. Any
device with a microphone, for example a smartphone or a USB recorder, can
be used for recording that makes it hard to distinguish the adversary from non-
malicious entity.

In order for an accurate recording of the clicks, the recording device should
be as near to the victim as possible while the adversary need not be physically
present during the attack. A possible setup could be hiding a microphone under
the table or placing the smartphone or the USB recorder on the table, which are
tuned for recording while giving no clue about their malicious intent.

100 S.A. Anand et al.

S2: Key Tapping; Recording Device Hand-Held: In this scenario (Fig. 1b),
the tapping pattern is being input via a button or a key on the device while
the adversary records the clicks, standing close to the victim. This scenario is
analogous to shoulder surfing where the adversary is recording the sound clicks
while standing behind the victim, who is unaware of her input being recorded.
Since, the adversary is standing behind the victim, the input device and the
recording device are not in proximity of each other. Hence, the recording will be
fainter than the previous scenario, if the recording device remains unchanged.
Also, the air gap between the two devices dampens the audio signal, unlike in
previous scenario, where the table surface allowed the sound to travel unimpeded.

3.2 Human Attacks

In the human attacks against tap-based passwords, unlike the automated attacks,
the adversary himself manually tries to replicate the tapping pattern based on
the recorded audio. Adversary listens to the tapping rhythm and tries to repro-
duce it. There are two possible human attack scenarios. In the first scenario, the
adversary aurally eavesdrops while the victim is tapping the rhythmic password
in real time, memorizes the tapping and tries to replicate it. As mentioned pre-
viously, this is the scenario proposed and studied by Wobbrock [16]. However,
in this scenario, the adversary can not perfectly reproduce the tapping by just
listening it once in real-time, but it may be possible to estimate the tapping
rhythm to a certain degree of accuracy.

In the second human attack scenario, which is what we propose and investi-
gate in this paper, we assume that an adversary installs an audio listening device
near the victim device and records, while the victim is tapping. This enables the
adversary to obtain a recording of tapping and listen to it multiple times. The
adversary can make an estimate of the tap counts more accurately. Moreover,
adversary can now train himself and can possibly replicate the tapping with
better accuracy. The recording scenarios are similar to the scenarios S1 and S2
applicable to the automated attacks.

4 Attack Design and Implementation

4.1 Automated Attack

To extract the relevant features from the eavesdropped signal, we apply signal
processing algorithms using MATLAB software. We begin by detecting the num-
ber of taps in the eavesdropped signal. Previous works [2,5,9,19] each have used
different features to detect keystrokes from acoustic emanations. The commonly
used features in these works have been Fast Fourier Transformation (FFT),
Mel Frequency Cepstrum Coefficients (MFCC), Cross Correlation and Time-
Frequency classifications. Since, there is no need to classify the taps, we can just
use the FFT features to estimate the energy levels in the signal. A significant
peak in the energy level in the frequency spectrum would indicate a possible tap.

Bad Sounds Good Sounds 101

Signal Processing Algorithm: We record the signal with a sampling fre-
quency of 44.1 kHz, which is sufficient for reconstruction of our original signal.
The processing of the recorded signal begins by converting the digital signal
from time domain to frequency domain for identifying the frequency range of
the tapping sound. This is achieved by calculating the Fast Fourier transforma-
tion (FFT) of the signal. We use a window of size 440 which provides a frequency
resolution of roughly 100 Hz. A brief glance at the spectrogram (Fig. 2) of the
signal reveals the taps, which are characterized by the sharp horizontal power
peaks covering the spectrum.

Fig. 2. Spectrogram of a
sample tapping pattern

We use the sum of FFT coefficients to identify the
beginning of a tap. For minimizing the noise interfer-
ence, we only use the samples in the frequency range
of 2.5–7.5 kHz. The sumFFT (sum of FFT coefficients
for the frequency range) graph and sumPower (sum of
Power for the frequency range) graph are depicted in
Appendix Fig. 3).

A threshold is used for discovering the start of a
tap event. Initially, the threshold is set as the maxi-
mum value of the sum of FFT coefficients and decre-
mented by 10 % after every failed authentication for
each such iteration till the signal is authenticated suc-
cessfully (Sect. 2.1) or the threshold reaches the minimum FFT coefficient sum.
Here we assume that the time interval between two consecutive taps will not be
less than 100 ms. Next, we compared the key press as a tap event and the mean
of press and release as a tap event and found out that authentication accuracy
was similar so we proceeded with key press. However, if the tap duration is also
made a part of authentication, the mean of key press and release would be a
better indicator of the tap event.

Once we obtained the number of taps and time interval between each tap
event, we need to authenticate it against the model proposed by Wobbrock’s
TapSongs [16] for verification. In this Password Reconstruction phase, the attack
can occur locally by tapping on the input sensor (local terminal authentication)
or remotely by launching an application that emulates the tap event (remote
authentication).

For an automated attack to be launched locally, we would need a mechanical
device to be programmed such that it taps on the input sensor according to
the features extracted during the Processing phase. Simple “Lego” robots can
be used for this purpose (more sophisticated Lego robots against various touch-
screen gestures have already been developed in prior research [15]). To launch our
attack remotely, we designed a Java code using the Robot class, which simulates
key press events at intervals specified by the extracted features.

4.2 Human Attack

Processing and Password Reconstruction in the human attack are rather straight-
forward. This attack requires no external processing as the attacker trains on
the eavesdropped tap signal by repeatedly listening to it so as to discern the

102 S.A. Anand et al.

number of taps and the time interval between each taps. However, Password
Reconstruction has to be executed soon after training is performed, otherwise
the attacker may forget the tapping pattern and may have to train again.

5 Attack Experiments and Evaluation

5.1 Automated Attack

For evaluating our automated attack, we have to create a user base, who
would authenticate against the tapping based authentication mechanism. They
would later be eavesdropped and have their authentication compromised by
the attacker. For this purpose, we conducted a user study with ten individuals
(ages 24–35, 7 males; 3 females) studying Computer Science at our University,
recruited by word of mouth. The study was approved by our University’s IRB.
The participation in the study was consent-based and strictly voluntary. The
participants were told to tap out a rhythm of their choice on a MacBook Air
keyboard for number of taps not exceeding 20, for creating a timing model of
the expected input. Then, they were asked to authenticate against the system
for a few times so as to get comfortable with the design.

The experiment was performed under two scenarios. In the first scenario
(Fig. 1a), the participants were asked to make an authentication attempt by
tapping out their rhythm on a single key of the keyboard, while a smartphone
(Nokia Lumia 800) placed beside the keyboard, was setup for recording. The
whole setup was placed at an office desk in a quiet lab environment. The record-
ings were taken at different distances not exceeding 1 meter. For the second
setup (Fig. 1b), the smartphone was handheld by an attacker, who was standing
behind the subject while they were tapping. The recording was done using a free
voice recorder application.

Out of the ten participants, six chose a rhythm of less than 10 taps (short
taps) and four chose a rhythm of tap length between 10–20 (long taps). We
observed that the participants preferred to tap short tunes but it also made
easier to discern the tapping pattern. As the tap length increases, the degree of
error in the recording may increase. This may happen due to noise interference
or due to soft taps by the user, which is natural while attempting to tap a
long rhythm. On the other hand, for a longer tapping pattern, the user is more
prone to missing out a few taps at random. Once the recordings were done,
we processed the eavesdropped samples according to our algorithm described in
Sect. 4.1. Once we got the time duration between each tap event and the number
of tap events in the eavesdropped sample, we fed this information to a simple java
application that used the java.awt.Robot class to recreate the tapping pattern
by simulating keypress events at the given time intervals.

The results corresponding to our different testing set-ups are provided in
Table 1. The detection rate for the tapping pattern is quite high, ranging from
87.5–96.3 %, highlighting the vulnerability of tap-based rhythmic passwords. As
conjectured before, the attack accuracy decreases with increase in the number of
taps. Another observation is that shoulder surfing is slightly less accurate than
placing the recording bug on the same surface as the input device.

Bad Sounds Good Sounds 103

Table 1. Performance of the
automated attack

Attack scenarios Length of the

tap pattern

Accuracy

S1 Short 96.3%

S2 Short 92.8%

S1 Long 87.5%

S2 Long 87.5%

Table 2. Performance of the human attack

Length of the

tap pattern

Correct tap

count

Accuracy Avg. number of

attempts for the

first success (out

of 5 attempts)

Short 94.4% 66.0% 1.9

Long 95.3% 21.3% 3.4

5.2 Human Attack

In our human attack user study, we recruited 10 users who served the role of the
attackers. Participants were mostly Computer Science students (ages 25–35, 7
males; 3 females) recruited by word of mouth. Four users could play a musical
instrument. The study was approved by our University’s IRB. The participation
in the study was consent-based and strictly voluntary.

As in the automated attack, we considered two types of tap rhythms – short
tap rhythm and long tap rhythm. We used 5 short taps and 3 long taps. They
were collected during the automated attack experiment by placing an audio
listening device approximately 2 ft from the tapping device.

In the study, the participants’ goal was to replicate the victim’s tap-based
password based on audio clips. Prior to the study, we told the participants that
the purpose of the study was to collect information on how well they can repli-
cate the tapping rhythm based on audio recordings. We purposefully did not
disclose the true (security) purpose of the study so as not to bias the partici-
pants’ behavior in the experiment. We explicitly informed the participants that
the tapping rhythm has to be matched in its entirety for a successful replication.
In real world scenario, most authentication terminals or online services block
the user after 3–5 unsuccessful attempts. To simulate this, the participants in
the study were instructed to replicate each of the rhythm 5 times, and as in a
real world scenario, the participants would be notified of a successful or a failed
attempt immediately. If they failed, they could practice more and retry in the
next trials.

The human attack experiment comprised of two phases: (1) training, and
(2) testing. In the training phase, each participant was asked to listen to each
of the clips through a headset carefully up to a maximum of 15 times, and
practice as per their comfort level by tapping either on a table nearby or keyboard
without using our authentication system. In the testing phase, they were asked
to replicate the tapping rhythm of the original audio clip (challenge) using our
authentication system. After each unsuccessful attempt, they were instructed to
listen to the audio clip carefully and practice again.

We collected 80 samples over 10 sessions with our participants. Each session
involved a participant performing the attack (testing) against 5 short and 3 long
tapping patterns. The experimental results are depicted in Table 2. We can see
that about 94 % of the short tap entries had the correct tap count, and the
average login success rate was 66 %. In contrast, even if 95 % of the long tap
entries had the correct tap count, the average login success rate for long tap was

104 S.A. Anand et al.

only 21.3 %. The average number of attempts to achieve the first successful login
was nearly 2 for short taps and 4 for long taps.

The results show that the login success rate was greater for short taps than
long taps. This is intuitive as greater the length of taps, the harder it is to
replicate the pattern. Although the success rate of our human attack is lower
compared to that of our automated attack, it is still quite high, especially for
short taps, and much higher compared to the success rate of the human attack
reported in [16]. The ability to record and train on previously eavesdropped
samples seems to have significantly improved the human capability to replicate
the tapping pattern in our attack, rather than attempting to replicate the pattern
in real-time as done in [16].

6 Defense: Masking the Audio Channel

6.1 Background

Various defense mechanisms have been proposed to safeguard against acoustic
eavesdropping. Asonov et al. [2] proposed the use of silent keyboards to hide the
acoustic emanations. Acoustic shielding, another defense mechanism, involves
sound proofing the system by reducing the signal to noise ratio. Another app-
roach is to deliberately insert noise within the audio signal that makes identi-
fying the desired features, a hard task. This general idea represents an active
defense mechanism and is the focus of this work in order to defeat the acoustic
eavesdropping attacks explicitly against tap-based passwords. Zhuang et al. [19]
briefly suggested a similar approach, but no practical mechanism was discussed.

There are many challenges that need to be met in realizing the above active
defense based on masking sounds. The main criterion for this defense to be effec-
tive is that the noise spectrum should be similar to the signal spectrum with
sufficient energy so as to completely blanket the acoustic signal being eaves-
dropped.

Another important criterion is the timing of the masking signal when it
is played in parallel with the original acoustic signal. If the masking signal is
continuous in nature having uniform features then the timing is of no concern.
However, if the masking signal consists of discrete sounds, we need to ensure
that these sounds occur at the same time as the actual sounds events in the
signal we are trying to mask so that they overlap thereby hiding the features of
the original sound spectrum. The last criterion is the usability of the masking
signal. It should not be distracting to the user otherwise users may be hesitant
to use it in real-life.

6.2 Our Defense Model

We now present an active sound masking defense mechanism to defeat the
acoustic eavesdropping attacks described in previous sections of this paper. There
is no extra hardware cost associated with this approach as it only requires an
audio transmitter, which most devices are already equipped with.

Bad Sounds Good Sounds 105

The choice of an appropriate masking signal plays a vital role in the efficiency
of the defense system. We experimented with four classes of sounds that could
be used as the masking signal. The first class of masking sounds is the white
noise. White noise has often been used as a soothing sound, hence it would pose
no distraction to the user. The second class of masking sound is music, which
again is user-friendly and pleasing.

The third class of masking sound would be random samples of the tap sound
itself (fake taps). This sound is the natural candidate for being as similar to the
actual audio signal we are trying to hide. In the context of human voices, we can
use human chatter from a busy coffee shop or other public places to hide the
actual conversation. In case of keystrokes, we can use random keystrokes different
from the actual keystrokes for masking. For our purpose, we use the tapping
sounds from the same input interface used for tapping. If the tapping device is
a keyboard, we make use of random keystrokes, and if it is a button, we use
button clicks (fake clicks) as the masking signal. The last class of masking sound
is created by summing up all the above three classes into one signal. This layered
approach combines the different masking capabilities from the three classes of
masking signals discussed above.

In the attacks we have presented in this paper, a valid tap event is detected
by having energy above a certain threshold. If we want our masking signal to be
similar to the taps, we need the energy of the masking signal to be almost equal
or higher than that of the taps.

6.3 Defense Experiments

For our experiment to evaluate our defense mechanism, we chose the tapping
sound from a keyboard as the input device emanations, and audio recordings
of the above-mentioned four classes of noises as the sound masking signals. We
selected few samples of white noise and music from the Internet. To create the
fake taps, we asked one of the users from our study group to randomly generate
keystrokes while we recorded the produced sound that would be used as fake taps.

Next, we performed the authentication step (password entry) repeatedly with
each type of masking signal playing in the background, while the attacker is
eavesdropping. The control condition for this experiment was a similar setting
with no masking sounds, simulating the original tap-based password entry with-
out our defense mechanism.

Evaluation Against Automated Attacks: We evaluated our defense model
against the automated attacks that use signal processing algorithms to detect
tap events by extracting FFT features. We chose one of the users from our user
study, who tapped his tap pattern in presence of each of the above described
masking signals playing in the background. The number of taps present in the
users’ tapping pattern was 5.

Our experiments indicate that while the white noise affects the spectrum
as a whole (Appendix Fig. 4(a)), it does not offer much resistance against the
automated attacks, as depicted by the FFT plot of the eavesdropped signal
shown in Appendix Fig. 5(a). Similarly, music is also insufficient against the

106 S.A. Anand et al.

automated attacks because it is unable to shield the tap sounds completely, as
shown in the spectrogram in Fig. 4(b). The FFT plot in Fig. 5(b) also indicates
that music can be easily excluded from taps based on its frequency distribution.
Since, we summed up the frequencies between 2.5kHz–7.5kHz, any musical notes
that have frequencies outside this range are filtered out.

We next tested the feasibility of sound masking with fake taps, and with a
combination of white noise, music and fake taps. While both fake taps and the
combined signal alone were able to mask the signal, the combined signal emerged
as the preferred choice as it covered a larger area of the spectrum (Fig. 4(d)),
and we believe that it would be less distracting to the users than the fake tap
sounds alone due to music and white noise accompanying the signal. Figure 5(c)
and (d) show the FFT vs Time plot for the user’s taps when the masking signal
is fake taps and the combined signal, respectively. As observed from the figures,
it is hard to chose a threshold value that could accurately detect the tap events
without including any fake taps.

Table 3. Performance of the human attack with and
without our defense

Masking sig-

nal

Correct

tap count

Accuracy Avg. number of

attempts for the

first success (out

of 5 attempts)

Short Taps

none 96.0% 84.0% 1.4

white noise 100.0% 80.0% 1.0

music 96.0% 80.0% 1.4

fake taps 52.0% 16.0% 3.4

combined 4.0% 0.0% Failed in all

attempts

Long Taps

none 100.0% 26.7% 1.3

white noise 100.0% 26.7% 3.0

music 93.3% 33.4% 3.7

fake taps 46.7% 0.0% Failed in all

attempts

combined 6.7% 0.0% Failed in all

attempts

EvaluationAgainstHuman
Attacks: For the evaluation
of our defense against human
attacks, we chose the same
four different types of mask-
ing sounds as in our auto-
mated attack experiment: (1)
white noise, (2) music, (3)
fake taps, and (4) white noise,
music and fake taps com-
bined. We then conducted
our human attack experi-
ment against all the above
“noisy” rhythms with one of
the researcher of our team
playing the role of a well-
trained adversary (thus repre-
senting a potentially powerful
attacker). We tested all the
samples that we used in our original human attack experiment (discussed in
previous section) but in the presence of each of the four class of noises. As in our
original human attack experiment, adversary went through training and test-
ing phases against each of the 8 tapping samples (5 short and 3 long tapping
patterns).

Table 3 summarizes the attacker’s performance replicating the tap rhythms
with and without noises. It shows that the tap rhythm with white noise or
music as the masking signal did not affect the performance by much across
both long and short rhythms. However, the addition of fake taps and combined
signals greatly reduced the attacker’s performance. With addition of fake taps,
the attacker was somehow able to estimate the tap length (around 50 %) in

Bad Sounds Good Sounds 107

both short and long rhythms but was not able to replicate them successfully.
Addition of fake taps on short rhythm greatly reduced the attacker’s accuracy
of replicating the rhythm down to 16 %, while addition of combined signals
completely reduced the accuracy to 0 %. In case of long tap rhythm, addition of
both fake taps and combined signal completely also reduced the accuracy to 0 %.

These results show that the masking sounds consisting of fake taps and com-
bined noises may effectively defeat a human attacker’s capability to replicate a
tapping pattern. Such sounds, especially the combined signal, earlier also proved
effective against the automated attacks, and could therefore be a viable means
to cloak the acoustic side channels underlying rhythmic passwords.

7 Discussion and Future Work

Other Rhythmic Passwords Schemes and Input Mechanisms: Several
other authentication schemes have been proposed, which are based on TapSongs
[16]. Marqueus et al. [13] built upon TapSongs to develop a scheme that pro-
vides inconspicuous authentication to smartphone users. Tap-based rhythmic
passwords also provide an alternative to traditional authentication methods for
the visually impaired mobile device users. Azenkot et al. [3] presented Pass-
chords, a scheme that uses multiple finger taps as an authentication mechanism.
They concluded that using multiple fingers in place of a single finger tap or a
single button increases the entropy of the system.

Both the above schemes may also be vulnerable to acoustic eavesdropping
attacks. Eavesdropping the taps on smartphone touch screen might be harder
due to the low intensity of tapping sounds. The impact of observing taps against
visually-impaired users may be higher given these users may not be able to
detect the presence of should-surfing around them. Further work is necessary to
evaluate these contexts.

In our experiments, we used a keyboard but the attack can be extended to
a button using the same attack principle. Halevi and Saxena [10] have already
showed that button press is also susceptible to similar acoustic eavesdropping
attack though the amplitude of the signal would be considerably lower and some
attack parameters need to be adjusted accordingly.

Comparing with Traditional Passwords: In light of the attacks presented in
our paper, it appears that rhythmic passwords are more vulnerable to acoustic
emanations compared to traditional passwords. This is natural given that eaves-
dropping over traditional passwords requires the attacker to infer “what keys
are being pressed” (a harder task), whereas eavesdropping over rhythmic pass-
words only requires the attacker to learn “when the taps are being made” (an
easier task). The accuracies of detecting traditional passwords based on acoustic
emanations reported in previous work [9] seem lower than the accuracies of our
automated attacks against rhythmic passwords. Traditional passwords do not
seem vulnerable to human attacks as it may be impossible for human users to
distinguish between the sounds of different keys, while rhythmic passwords are
prone to such attacks too as our work demonstrated.

108 S.A. Anand et al.

Usability of Our Defense: Adding the masking signal, which is comparable
to the acoustic leakage in its frequency band, helps hiding the acoustic leakage in
case of rhythmic passwords. We chose our masking signals based on the intuition
that the usability of rhythmic password entry would not be degraded by much.
However, it might not always be the most practical solution and may confuse the
user possibly leading to increase in failure rate of authentication. A future user
study to determine the level of distraction and confidence of the user with the
masking signal may be able to determine a good choice of the masking signal.

8 Conclusion

In this paper, we evaluated the security of tap-based rhythmic authentication
schemes against acoustic side channel attacks. We demonstrated that these
schemes are vulnerable to such attacks and can be effectively compromised espe-
cially using automated off-the-shelf techniques. The automated attack requires
minimal computational power and can be performed inconspicuously. The length
of the rhythmic passwords also constitutes a security vulnerability as shorter taps
are easier to perform and memorize, but are more susceptible to attacks, even
those relying solely on human processing. Since rhythmic passwords provide a
potentially attractive alternative to traditional authentication mechanisms, we
studied how to enhance the security of these passwords against acoustic side
channel attacks. Our proposed defense attempts to cloak the acoustic channel
by deliberately inducing noise, and seems effective against both automated and
human attacks, especially when a combination of multiple noises are used includ-
ing previously recorded tap sounds.

Acknowledgment. This works has been supported in part by an NSF grant
(#1209280).

Appendix: Additional Figures

Fig. 3. Signal characeristics based on FFT

Bad Sounds Good Sounds 109

Fig. 4. Spectrographs (Time vs. Frequency plots) of tapping in presence of each type
of masking sound

Fig. 5. FFT vs Time plot of tapping in presence of each type of masking sound

References

1. Adams, A., Sasse, M.A.: Users are not the enemy. Commun. ACM 42(12), 41–46
(1999)

110 S.A. Anand et al.

2. Asonov, D., Agrawal, R.: Keyboard acoustic emanations. In: Proceedings of the
IEEE Symposium on Security and Privacy (2004)

3. Azenkot, S., Rector, K., Ladner, R., Wobbrock, J.: PassChords: secure multi-touch
authentication for blind people. In: Proceedings of the ASSETS (2012)

4. Backes, M., Durmuth, M., Gerling, S., Pinkal, M., Sporleder, C.: Acoustic side-
channel attacks on printers. In: Proceedings of the USENIX Security (2005)

5. Berger, Y., Wool, A., Yeredor, A.: Dictionary attacks using keyboard acoustic
emanations. In: Proceedings of the CCS (2006)

6. Clarkeh, E.: Rhythm and timing in music. In: Deutsch, D. (ed.) The Psychology
of Music. Academic Press, San Diego (1999)

7. Fraisse, P.: Rhythm and tempo. In: Deutsch, D. (ed.) The Psychology of Music.
Academic Press, New York (1982)

8. Genkin, D., Shamir, A., Tromer, E.: RSA key extraction via low-bandwidth
acoustic cryptanalysis. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I.
LNCS, vol. 8616, pp. 444–461. Springer, Heidelberg (2014)

9. Halevi, T., Saxena, N.: A closer look at keyboard acoustic emanations: random
passwords, typing styles and decoding techniques. In: Proceedings of the AsiaCCS
(2012)

10. Halevi, T., Saxena, N.: Acoustic eavesdropping attacks on constrained wireless
device pairing. TIFS 8(3), 563 (2013)

11. Kumar, A., et al.: Caveat emptor: a comparative study of secure device pairing
methods. In: Proceedings of the PerCom (2009)

12. Lin, F.X., Ashbrook, D., White, S.: RhythmLink: securely pairing I/O-constrained
devices by tapping. In: Proceedings of the UIST (2011)

13. Marques, D., Guerreiro, T., Duarte, L., Carrico, L.: Under the table: tap authen-
tication for smartphones. In: Proceedings of the HCI (2013)

14. Morris, R., Thompson, K.: Password security: a case history. Commun. ACM
22(11), 594–597 (1979)

15. Serwadda, A., Phoha, V.V.: When kids’ toys breach mobile phone security. In:
Proceedings of the CCS 2013 (2013)

16. Wobbrock, J.O.: TapSongs: tapping rhythm-based passwords on a single binary
sensor. In: Proceedings of the UIST (2009)

17. Yalch, R.F.: Memory in a jingle jungle: music as a mnemonic device in communi-
cating advertising slogans. J. Appl. Psychol. 76(2), 268–275 (1991)

18. Yan, J., Blackwell, A., Anderson, R., Grant, A.: Password memorability and secu-
rity: empirical results. IEEE Secur. Priv. 2(5), 25–31 (2004)

19. Zhuang, L., Zhou, F., Tygar, J.D.: Keyboard acoustic emanations revisited. TIS-
SEC 13(1), 1–26 (2009)

iDeFEND: Intrusion Detection Framework
for Encrypted Network Data

Fatih Kilic(B) and Claudia Eckert

Technische Universität München, Munich, Germany
{kilic,eckert}@sec.in.tum.de

Abstract. Network Intrusion Detection Systems have been used for
many years to inspect network data and to detect intruders. Nowadays,
more and more often encryption is used to protect the confidentiality of
network data. When end-to-end encryption is applied, Network Intrusion
Detection Systems are blind and can not protect against attacks. In this
paper we present iDeFEND, a framework for inspecting encrypted net-
work data without breaking the security model of end-to-end encryption.
Our approach does not require any source code of the involved applica-
tions and thereby also protects closed source applications. Our framework
works independently of the utilized encryption key. We present two use
cases how our framework can detect intruders by analysing the network
data and how we can test remote applications with enabled network data
encryption. To achieve this iDeFEND detects the relevant functions in
the target application, extracts and subsequently inspects the data. To
test remote applications iDeFEND intercepts and injects user controlled
data into the application to test remote applications. Finally we have
implemented our framework to show the feasibility of our approach.

Keywords: Network security · Reverse engineering · Intrusion
detection

1 Introduction

There is a vast amount of applications communicating over the network, whose
data is confidential and therefore encrypted. Some applications do not transmit
sensitive data, but even in this case a vulnerability in the application makes it
prone to code execution on the system. From the view of an attacker, every com-
munication channel to the server exposes an attack surface for intrusion. Network
Intrusion Detection System (NIDSs) are used to detect such attacks. However,
today’s systems only protect the application on the server, but not the commu-
nication channel. To protect the transmitted data’s confidentiality, applications
encrypt data. When end-to-end encryption is applied, the NIDS acts blind and
can not protect against attacks, such as Blind Format String Attacks [5]. Beside
this, the encryption layer makes it harder for the security analyst to test the
remote application. Additionally, considering widely used closed source appli-
cations in today’s networks, modifications as applied by other solutions are not
c© Springer International Publishing Switzerland 2015
M. Reiter and D. Naccache (Eds.): CANS 2015, LNCS 9476, pp. 111–118, 2015.
DOI: 10.1007/978-3-319-26823-1 8

112 F. Kilic and C. Eckert

applicable without reverse engineering. By terminating the encryption at another
node (e.g. a proxy server), the NIDS can inspect network data, but this makes
communication more insecure. End-to-end encryption is designed to terminate at
the destination application to fulfil the required security. In general this does not
suffice to inspect data without reverse engineering the encryption algorithm and
the key. Reverse engineering of closed source applications is very time-consuming
and labour-intensive. In this paper, we present iDeFEND, a generic framework
to keep up the end-to-end encryption while still being capable to inspect plain-
text data. We show the features of iDeFEND by describing two use cases for
applications using encrypted network communication. As a first use case we
present how we inspect plaintext network data and how we identify intruders.
As a second use case we present a method to support analysts in testing network
applications and to look for vulnerabilities. Our approach does not require any
source code of the involved applications, nor the encryption key, nor information
about the algorithm. iDeFEND is using a different approach to solve the problem
of encrypted network traffic. Instead of rebuilding the communication channel,
we use the same channel of the application. We extract the information directly
from the memory of the target application. This makes the whole encryption
transparent from our view and we do not need to care about the encryption at
all. We work a layer above the encryption and monitor every traffic in plaintext.
In summary, our contributions are the following. Our framework allows to

– identify network security related functions in applications.
– extract unencrypted network data out of the application without breaking the

security of the encryption.
– remote test applications using encrypted traffic without the need for reverse

engineering of the encryption algorithm and key.

The rest of the paper is structured as follows. First we describe the overall
design of iDeFEND in Sect. 2. We show how we reverse engineer the relevant
functions of the application in Sect. 3. In Sect. 4 we show how we extract the
plaintext network data and use a Monitor module to inspect the data for mali-
cious content. Furthermore, in Sect. 5 we show how we intercept and modify
the network communication before the plaintext data is processed for send or
receive. We describe how we implemented the framework in Sect. 6. Section 7
presents related work. We summarize the paper in Sect. 8.

2 Framework Design

In this section we present the concept and the design of our framework for inspect-
ing plaintext network data. If the whole network communication is encrypted,
the application usually contains two wrapper functions. One is responsible for
encrypting the plaintext and sending the data afterwards over the network. In our
paper we label this function EnCrypt & Send (CaS). The other function is respon-
sible for receiving the network data and decrypting it afterwards to process the

iDeFEND: Intrusion Detection Framework for Encrypted Network Data 113

plaintext data. We label this function as Receive & DeCrypt (RaD). These func-
tions contain the plaintext data that is sent/received over the network. Both
functions represent the core functionality for our framework. These functions
are used in our use cases for extraction, interception and injection.

Fig. 1. iDeFEND design

Figure 1 depicts the design of iDeFEND using the function CaS as an exam-
ple. The case with RaD is analogous. Our framework consists of three parts:
the Detector, the Collector and the Monitor modules. The Detector module is
responsible for reverse engineering the offsets for the functions CaS and RaD.
The application on the left side in Fig. 1 contains the Control Flow Graph (CFG)
with the CaS function in the center. Tracking back the functions crypt(1) and
send(2) using the underlying Debugger inside the Detector module, we have
an intersection at CaS. The detection of the functions is described in detail in
Sect. 3. The Collector module is responsible for gathering the plaintext data
used for network communication from the application. This module requires
the already identified offsets of CaS and RaD. iDeFEND supports two types
of the Collector. One method is using the Debugger in the Detector module
to directly extract or intercept/modify the plaintext data on CaS(3) or RaD
before it is processed by the target application. The other method is placing
the Collector directly into the process space of the application. This is setting a
hook(4) on the function CaS and RaD to capture the information passed to these
functions. Each time the application sends or receives encrypted network data,

114 F. Kilic and C. Eckert

the Collector will gather the plaintext data. We pass the collected data to the
the Monitor module. This module is responsible for handling the plaintext data
and for providing an interface to NIDSs.

3 Function Identification Using the Detector

In this section, we describe the Detector module of iDeFEND. Before extract-
ing information from a process, we need to identify the application’s CaS and
RaD functions. To achieve this, we use the breakpoint features of a debugger.
Since we have to deal with encrypted network traffic, the application has to
provide at least three functions: crypt(1), send(2) and receive. Send and receive
are in general the public library functions of the Operating System (OS), thus
we can retrieve their address easily. The crypt(1) function is responsible for
en-/decrypting the data. Depending on the algorithm it can be one or two func-
tions. If a dynamically linked encryption library is used, we can identify the crypt
offset easily by looking for the API export of the library in the memory. Oth-
erwise we scan the application for static values utilized in common encryption
schemes. In case the signature based algorithm does not detect the encryption
functionality, we use another approach with dynamic binary instrumentation
[1,3]. Having the offsets of crypt(1) and send(2) illustrated in Fig. 1, we set
hardware Breakpoint (BPs) on these functions and start the application. We
are only interested in encrypted network traffic, so we have to make sure we
do not catch too much data. In case of outgoing network data, the important
plaintext is only the plaintext that is encrypted and sent afterwards. False pos-
itives arise, when we collect all the data from the encrypt function, because the
application might use the encryption function internally. Figure 2 illustrates the
possible states of the application depending on the occurrence of the BPs. After
starting the application we wait until the first encryption BP occurs otherwise
we stay in the same state (Wait). At this point, we are in the state C. We save
the application state including all relevant data, such as registers, the memory
content and the application stack. After resuming the application the next BP
is either on crypt(1) or on send(2). At crypt the application is encrypting some
data for sending or internal use. At send(2) the application is going to send some
data and we change to the final state CaS. At this final state, there are only two
possibilities. Either some plaintext data is transmitted over the network and the
encryption was for internal use, or the encrypted data is transmitted over the
network. We evaluate this by comparing the data modified by the encrypt func-
tion with the data accessed by the send function in state C. If we have a match,
we look for the CaS function by comparing the partly reconstructed CFG of
both states with each other and look for an intersection. We retrieve the execu-
tion flow by backtracing the caller functions. We aim for the intersection of both
execution flows. This is most likely the CaS function. In the case of incoming
network data, we have to detect the RaD functionality. This works analogous to
the identification of CaS.

iDeFEND: Intrusion Detection Framework for Encrypted Network Data 115

Fig. 2. Debugger states

4 Information Extraction Using the Collector

In this section, we describe the methods to extract the necessary information
from the detected CaS and RaD functions to pass it to the Monitor module.
This feature is supporting the use case of inspecting plaintext network data to
identify intruders. The method is describing the module Collector in iDeFEND.
Our framework supports two ways for extraction. First we describe the Collector
module using the Debugger illustrated at the bottom in Fig. 1. We place one BP
at the entry of CaS(3) and another one inside the RaD. The plaintext of the
encrypted messages is passed to the function CaSa as function parameter. When
the application halts at CaS(3), we retrieve the data from the parameters. In
the case of RaD the encrypted message is decrypted and parsed afterwards. To
extract this data we set the BP immediately after the decryption is done. When
the application halts at RaD, we extract the plaintext either from the return
value or the modified input parameters. The location of the decrypted data is
already identified by the Detector module. The next step is to pass it to the
Monitor module to analyse it. Our second method uses the Collector module
inside the target application, illustrated on the right side of the application in
Fig. 1. Instead of exits to the debugger we run our own code inside the target
process. For this purpose, we inject our own module into the target application.
Figure 3 shows how we use a trampoline to redirect the detected functions to
a place inside our module. To achieve this, we replace the initial prologue of
the detected functions with a jmp instruction. This redirects the program to
our code. In our additional code we save the input parameters to the original
function. We restore the original prologue of the hooked function, call it with
the original parameters and save the return value. Another thread collects the
extracted data and delivers it to the Monitor module. Our function returns
during this information exchange and the applications resumes as intended.

5 Packet Injection and Interception

In this section we consider the second use case and describe the method for
sending user controlled arbitrary data using the application’s CaS function.

116 F. Kilic and C. Eckert

Fig. 3. Function hooking

To achieve this, we use an equal technique as described for the Collector module
in Sect. 4 to load our own module Injector into the target application. Having
our module inside the target application, we build an Inter Process Communi-
cation (IPC) to exchange data with the module. To send arbitrary data to the
server, we use this channel to pass our plaintext network data to the Injector. As
being part of the application, we call the CaS function directly with our input
as parameter and let the application do all the necessary data modification, like
splitting, encrypting and sending. As IPC channel for communicating with CaS,
we use code injection to place our precompiled calling stub into the application.
This stub will get the objects for sending directly from the new allocated mem-
ory inside the application and call the CaS. The benefit here is, that we do not
have to care about any algorithm or the encryption key. We also do not have to
care about the states the encryption algorithm proposes as in stream ciphers.
iDeFEND is also able to intercept and modify the plaintext data transmitted
over the network. We use the same hooking technique as described for the Collec-
tor module in Sect. 4. Each time a packet is sent or received our hooked function
retrieves the data. We use the IPC to interact with the security analyst using
an external graphical user interface. At this point, the application is halted and
the tester inspects or alters the data for testing purposes.

6 Implementation

We have implemented a prototype of our framework. Our implementation was
running on a machine with an Intel Core i7-4600U CPU 2.10GHz CPU and 8GB
RAM. We used two virtual machines with Windows 7 Professional with Service
Pack 1 and Ubuntu 14.04 LTS as OS. The Detector module uses a self-written
debugger to place and handle hardware BPs inside the target application. We set
two hardware BPs on crypt and send to detect CaS, RaD is detected analogously.
The Collector inside the Detector module places a BP at the entry of CaS(3)
to extract the parameters given to the function and another one inside the RaD
to have access to the already decrypted data. When the application halts at
one BP, we gather the memory pointer directly from the stack and registers.
After dereferencing the pointer we extract the plaintext data out of the memory.

iDeFEND: Intrusion Detection Framework for Encrypted Network Data 117

Since this technique stops the application for all incoming and outgoing network
packets, the application slows down. To avoid this, we implemented another
method to extract the data without incurring performance. We execute our code
directly inside the target process space. The benefit in doing so is, that we sustain
effectiveness and do not delay the target application during the information
extraction. Executing additional code in another process is easily achieved using
module injection. This allows us to provide code fragments or even functions in
the target application. Our framework supports two methods to inject additional
code into the target process. On Windows OS we use the default debugging API
calls to load our Dynamic Link Library (DLL) into the application. The second
method can be used for Windows and Linux OSs. We scan for unused memory
inside the binary, which is called code cave. We use the code cave to insert
the code snippet for loading the module and execute it by manually setting
the instruction pointer (IP) of the application [8]. After the injection of our
module, the hooks to the CaS and RaD functions are placed. Our Collector logs
the parameters and return values of the hooked functions and passes them to the
Monitor module. By default iDeFEND performs this by using a IPC with the
Monitor module running on the same system. The modules do not have to run
together on the same machine. The Collector module of iDeFEND can also be
used separately. We set up a clean test system to use the Detector module and
to generate the relevant offsets for CaS and RaD. This data is written into a
config file and the Collector module loads the offsets to attach to the productive
system and start extracting the plaintext data. iDeFEND also allows to send the
gathered data from the Collector module over the network to run the Monitor
module and a NIDS on a different machine.

7 Related Work

Many NIDSs exist to analyse the network traffic in order to detect exploits. Li
et al. [7] present different concepts for NIDSs, common standards and trends of
development, stating that network-based NIDS do not detect anomalies within
encrypted traffic. Kenkre et al. [4] present a real time NIDS and the applied tech-
niques. The paper states how to combine logging, network based NIDS and pre-
vention system. Koch et al. [6] describe the problems of knowledge-based NIDSs
with encrypted networks and propose a behaviour-based detection architecture
measuring similarities in network traffic to detect intruders. Knowledge-based
NIDSs are only able to inspect the encrypted network data by having the appro-
priate key. Further, the NIDS performs a man-in-the-middle attack by breaking
the confidentiality of the message. Yamada et al. [9] and Goh et al. [2] use a
shared secret between the end-host in private networks and the NIDS to cir-
cumvent this problem. Currently, there is no good solution to inspect encrypted
network data to detect possible attacks. The approach of iDeFEND is different.
We provide an interface to make the encryption transparent for current meth-
ods, reducing the problem of detecting intruders on encrypted network data is
reduced to the problem of detecting intruders on plaintext network data.

118 F. Kilic and C. Eckert

8 Conclusion

We proposed iDeFEND, a framework for intrusion detection in encrypted net-
work communication. We have shown how we inspect the encrypted network
data of closed source applications in a use case. We have also shown how we test
network applications using encrypted network traffic. In this paper, we demon-
strated a method to automatically identify the related functions for encrypted
network communication inside applications. We made use of the identified func-
tions to extract plaintext network data from the application using the Collector
module. We used the collected data for further analysis in our Monitor module
to detect exploits. We also presented a way how closed sourced network based
applications transmitting encrypted data are tested for vulnerabilities without
reverse engineering of the encryption algorithm and key. We used the identified
functions to intercept and modify the current plaintext network data to change
the parameters sent to the target application. We also used the identified func-
tion to inject arbitrary data and enforced a unintended data transmission. We
used the collected data to build a bunch of valid data packets for sending to the
destination application. iDeFEND also acts as an interface for techniques and
tools available for security analysis and intrusion detection.

References

1. Calvet, J., Fernandez, J.M., Marion, J.-Y.: Aligot: cryptographic function iden-
tification in obfuscated binary programs. In: ACM Conference on Computer and
Communications Security, pp. 2–4 (2012)

2. Goh, V.T., Zimmermann, J., Looi, M.: Intrusion detection system for encrypted
networks using secret-sharing schemes. In: 2nd International Cryptology Conference
(Cryptology 2010), Malaysian Society for Cryptology Research, July 2010

3. Gröbert, F., Willems, C., Holz, T.: Automated identification of cryptographic prim-
itives in binary programs. In: Sommer, R., Balzarotti, D., Maier, G. (eds.) RAID
2011. LNCS, vol. 6961, pp. 41–60. Springer, Heidelberg (2011)

4. Kenkre, P.S., Pai, A., Colaco, L.: Real time intrusion detection and prevention
system. In: Satapathy, S.C., Biswal, B.N., Udgata, S.K., Mandal, J.K. (eds.) Proc.
of the 3rd Int. Conf. on Front. of Intell. Comput. (FICTA) 2014- Vol. 1. AISC, vol.
327, pp. 405–411. Springer, Heidelberg (2015)

5. Kilic, F., Kittel, T., Eckert, C.: Blind format string attacks. In: International Work-
shop on Data Protection in Mobile and Pervasive Computing (2014)

6. Koch, R., Golling, M., Rodosek, G.D.: Behavior-based intrusion detection in
encrypted environments. IEEE Commun. Mag. 52(7), 124–131 (2014)

7. Li, X., Meng, J., Zhao, H., Zhao, J.: Overview of intrusion detection systems. J.
Appl. Sci. Eng. Innovation 2(6), 230–232 (2015)

8. Runtime process infection. http://phrack.org/issues/59/8.html. Accessed 09 June
2015

9. Radu, V.: Application. In: Radu, V. (ed.) Stochastic Modeling of Thermal Fatigue
Crack Growth. ACM, vol. 1, pp. 63–70. Springer, Heidelberg (2015)

http://phrack.org/issues/59/8.html

On the Weaknesses of PBKDF2

Andrea Visconti(B), Simone Bossi, Hany Ragab, and Alexandro Calò

Department of Computer Science, Università degli Studi di Milano, Milan, Italy
andrea.visconti@unimi.it,

{simone.bossi2,hany.ragab,alexandro.calo}@studenti.unimi.it

Abstract. Password-based key derivation functions are of particular
interest in cryptography because they (a) input a password/passphrase
(which usually is short and lacks enough entropy) and derive a crypto-
graphic key; (b) slow down brute force and dictionary attacks as much as
possible. In PKCS#5 [17], RSA Laboratories described a password based
key derivation function called PBKDF2 that has been widely adopted in
many security related applications [6,7,11]. In order to slow down brute
force attacks, PBKDF2 introduce CPU-intensive operations based on an
iterated pseudorandom function. Such a pseudorandom function is
HMAC-SHA-1 by default. In this paper we show that, if HMAC-SHA-
1 is computed in a standard mode without following the performance
improvements described in the implementation note of RFC 2104 [13]
and FIPS 198-1 [14], an attacker is able to avoid 50% of PBKDF2’s CPU
intensive operations, by replacing themwith precomputed values.We note
that a number of well-known and widely-used crypto libraries are subject
to this vulnerability.In addition to such a vulnerability, we describe some
other minor optimizations that an attacker can exploit to reduce even
more the key derivation time.

Keywords: Key derivation function · CPU-intensive operations ·
Passwords · PKCS#5 · Optimizations

1 Introduction

Passwords are widely used to protect secret data or to gain access to specific
resources. For sake of security, they should be strong enough to prevent well-
know attacks such as dictionary and brute force attacks. Unfortunately, user-
chosen passwords are generally short and lack enough entropy [9,16,18]. For these
reasons, they cannot be directly used as a key to implement secure cryptographic
systems. A possible solution to this issue is to adopt a key derivation function
(KDF), that is a function which takes a source of initial keying material and
derives from it one or more pseudorandom keys. Such a key material can be
the output of a pseudo-random number generator, a bit sequence obtained by
a statistical sampler, a shared Diffie-Hellman value, a user-chosen password, or
any bit sequence from a source of more or less entropy [12]. KDF that input user
passwords are known as password-based KDF. Such functions are of particular
c© Springer International Publishing Switzerland 2015
M. Reiter and D. Naccache (Eds.): CANS 2015, LNCS 9476, pp. 119–126, 2015.
DOI: 10.1007/978-3-319-26823-1 9

120 A. Visconti et al.

interest in cryptography because they introduce CPU-intensive operations on the
attacker side, increasing the cost of an exhaustive search. By applying a KDF to
a user password, we allow legitimate users to spend a moderate amount of time
on key derivation, while increase the time an attacker takes to test each possible
password. The approach based on KDF not only slows down a brute force attack
as much as possible but also allows to increase the size of a cryptographic key.

In PKCS#5 [17], RSA Laboratories provides a number of recommenda-
tions for the implementation of password-based cryptography. In particular,
they described Password-Based Key Derivation Function version 2 (PBKDF2),
a function widely used to derive keys and implemented in many security-related
systems. For example, PBKDF2 is involved in Android’s full disk encryption
(since version 3.0 Honeycomb to 4.3 Jelly Bean)1, in WPA/WPA2 encryption
process [11], in LUKS [7,10], EncFS [2], FileVault Mac OS X [6,8], GRUB2 [3],
Winrar [5], and many others.

In order to slow down the attackers, PBKDF2 uses a salt to prevent building
universal dictionaries, and an iteration count which specifies the number of times
the underlying pseudorandom function is called to generate a block of keying
material. The number of iterations is a crucial point of the KDF. The choice of
a reasonable value for the iteration count depends on the environment and can
vary from an application to another. In SP 800-132 [15], Turan et al. suggests
that it is a good practice to select the iteration count as large as possible, as
long the time required to generate the key is acceptable for the user. Moreover,
they specify that for very critical keys on very powerful system an iteration
count of 10,000,000 may be appropriate, while a minimum of 1,000 iterations is
recommended for general purpose.

PBKDF2 introduce CPU-intensive operations based on an iterated pseudo-
random function. Such a pseudorandom function is HMAC-SHA-1 by default.

In this paper we show that, if HMAC-SHA-1 is computed in a standard
mode without following the performance improvements described in the imple-
mentation note of RFC 2104 [13] and FIPS 198-1 [14], an attacker is able avoid
50 % of PBKDF2’s CPU intensive operations, by replacing them with precom-
puted values. Readers note that a number of well-known and widely-used crypto
libraries e.g., [1,4], are subject to this vulnerability, therefore an attacker is
able to derive keys significantly faster than a regular user can do. Moreover, we
present some other minor optimizations (based on the hash function used) that
can be exploited by an attacker to reduce even more the key derivation time.

The remainder of the paper is organized as follows. In Sect. 2, we present Pass-
word Based Key Derivation Function version 2 (PBKDF2). In Sect. 3 we briefly
describe HMAC, that is the pseudorandom function adopted in PBKDF2. In
Sect. 4 we present the weaknesses of PBKDF2. Finally, discussion and conclu-
sions are drawn in Sect. 5.

1 At the time of writing this represents 58% of the Android devices market share (see
developer.android.com).

https://developer.android.com/about/dashboards/index.html

On the Weaknesses of PBKDF2 121

2 PBKDF 2

Password Based Key Derivation Function version 2, PBKDF2 for short, is a key
derivation function published by RSA Laboratories in PKCS #5 [17]. In order to
face brute force attacks based on weak user passwords, PBKDF2 introduce CPU-
intensive operations. Such operations are based on an iterated pseudorandom
function (PRF) — e.g. a hash function, cipher, or HMAC — which maps input
values to a derived key. One of the most important properties to assure is that
PBKDF2 is cycle free. If this is not so, a malicious user can avoid the CPU-
intensive operations and get the derived key by executing a set of equivalent,
but less onerous, instructions. Unlike its predecessor (PBKDF version 1) in which
the length of the derived key is bounded by the length of the underlying PRF
output, PBKDF2 can derive keys of arbitrary length. More precisely, PBKDF2
generates as many blocks Ti as needed to cover the desired key length. Each
block Ti is computed iterating the PRF many times as specified by an iteration
count. The length of such blocks is bounded by hLen, which is the length of
the underlying PRF output. In the sequel by PRF we will refer to HMAC with
the SHA-1 hash function, that is the default as per [17]. Note that HMAC can
be used with any other iterated hash functions such as RIPEMD, SHA-256 or
SHA-512.

PBKDF2 inputs a user password/passphrase p, a random salt s, an iteration
counter c, and derived key length dkLen. It outputs a derived key DK.

DK = PBKDF2(p, s, c, dkLen) (1)

The derived key is defined as the concatenation of �dkLen/hLen�-blocks:

DK = T1||T2|| . . . ||T�dkLen/hLen� (2)

where
T1 = Function(p, s, c, 1)

T2 = Function(p, s, c, 2)

· · ·
T�dkLen/hLen� = Function(p, s, c, �dkLen/hLen�).

Each single block Ti is computed as

Ti = U1 ⊕ U2 ⊕ ... ⊕ Uc (3)

where
U1 = PRF (p, s||i)
U2 = PRF (p, U1)

· · ·
Uc = PRF (p, Uc−1)

122 A. Visconti et al.

3 HMAC

Hash-based Message Authentication Code (HMAC) is an algorithm for comput-
ing a message authentication code based on a cryptographic hash function. The
definition of HMAC [13] requires (a) H : any cryptographic hash function, (b)
K : the secret key, and (c) text : the message to be authenticated. As described
in RFC 2104 [13], HMAC can be defined as follows:

HMAC = H(K ⊕ opad,H(K ⊕ ipad, text)) (4)

where H is the chosen hash function, K is the secret key, and ipad, opad are the
constant values (respectively, the byte 0x36 and 0x5C repeated 64 times) XORed
with the password. Equation 4 can be graphically represented as in Fig. 1.

Fig. 1. HMAC-SHA-1

4 Weaknesses

In this section we present some weaknesses of PBKDF2. The major one concerns
the precomputation of specific values that can be reused during the key deriva-
tion process. The others aim to avoid useless operations during the computation
of the hash function. We will describe these weaknesses using as an example the
parameters defined by LUKS format [9,10] — i.e., a salt length of 256 bits, and
HMAC-SHA-1 as PRF.

4.1 Precomputing a Message Block

Looking closely at Fig. 2, note the following: (a) first message block of a keyed
hash function is repeated c times (the dark gray rectangles in Fig. 2), (b) first
message block of a second keyed hash function is repeated c times (the light gray
rectangles in Fig. 2), (c) all dark gray rectangles have the same content and they
can assume only the values SHA1(P⊕ipad), and (d) all light gray rectangles have
the same content and they can assume only the values SHA1(P ⊕ opad). Thus,
it is possible to compute these two blocks in advance — i.e., SHA1(P ⊕ ipad)
and SHA-1(P ⊕ opad)2 — and then use such values for c times. In so doing, an
2 Readers note that the weakness is independent of the hash functions used and
remains valid with any others.

On the Weaknesses of PBKDF2 123

Fig. 2. PBKDF2 schema (HMAC computed in a standard mode)

attacker is able to avoid 50 % of the operations involved in the key derivation
process (although the user can benefit from this optimization as well). Moreover,
in real applications the counter c can be computed by benchmarking the user’s
system [7,9]. If this optimization is not implemented in crypto libraries, the
benchmark fails to deliver the appropriate value for the counter, reducing the
security level of the application.

124 A. Visconti et al.

4.2 Useless XOR Operations

It is easy to observe that each SHA1 message block, performed on a 512-bits
string and formatted as shown in Fig. 3, has a run of several consecutive zeros
(light gray rectangles). More precisely, in the second SHA1 message block there
are 287 zeros in the padding scheme and other 54 zeros in L (i.e., 64-bits mes-
sage length). Readers note that each SHA1 message block is split in sixteen
32-bits words, called W0 . . .W15, and then expanded into eighty words, called
W0 . . .W79, using the following equation:

Wt = ROTL((Wt−3 ⊕ Wt−8 ⊕ Wt−14 ⊕ Wt−16), 1) t ∈ [16 . . . 79] (5)

Because we have a run of several consecutive zeros, a number of Wt are set
to zero. More precisely, in Eq. 5 are carried out 192 XOR, but 27 of them are
involved in zero based operations. Following the idea suggested in [19], these Wt

do not provide any contribution and can be easily omitted by an attacker.

Fig. 3. Zero-padding scheme

Fig. 4. Constant-padding scheme

In addition, an attacker is able to avoid some other useless operations in the
word-expansion. As shown in Fig. 4, the constant 0x36 and 0x5C are used to pad
the first message block up to the hash block size (dark and light gray rectangles).
Since passwords are generally short, a number of Wt in Eq. 5 are set to the same
value. If we XOR the same value twice, we get back the initial value. Again,
these operations do not provide any additional contribution and can be omitted.

On the Weaknesses of PBKDF2 125

4.3 Precomputing a Word-Expansion

The last weakness described is a minor weakness. This provides the possibility
to precompute the word-expansion part of the second message block of a keyed
hash function (light gray rectangle in Fig. 5). Indeed, such a block is password-
independent, and given a salt s (recall that s is a public information) an attacker
is able to compute the expansion W0 . . .W79 in advance. A malicious user can
reused the values precomputed with a dictionary of potential passwords to speed
up a brute force attack.

Fig. 5. Precomputing a specific word-expansion

5 Discussion and Conclusions

Passwords are generally short and lack enough entropy, therefore they cannot
be directly used as a key to implement secure cryptographic systems. A possible
solution to this issue is to adopt password-based key derivation functions.

This paper addressed the security of PBKDF2, one of the most commonly
used function to derive cryptographic keys. We provided a detailed analysis of
PBKDF2 schema and described some weaknesses that affect a number of well-
known and widely-used crypto libraries such as [1,4].

The first one concerns the possibility to precompute the first message block
of a keyed hash function and reuse such a value in all the subsequent HMAC
invocations. This weakness allows an attacker to avoid 50 % of PBKDF2’s CPU
intensive operations, replacing them with constant values. Crypto libreries are
subjected to this vulnerability if they do not implement the performance improve-
ments described in RFC 2104 [13] and FIPS 198-1 [14].

The second one concerns the possibility to avoid useless XOR operations.
Indeed, introducing zero-based operations and XORing the same value twice do
not provide any additional contribution to the word expansion of SHA-1. Note
that the same approach can be also applied to the word expansion of SHA-2
family hash functions.

The third one concerns the possibility to precompute the word-expansion of
a specific 512-bits message block.

126 A. Visconti et al.

Readers note that the weaknesses of PBKDF2 described in this paper can be
easily mitigated by selecting an iteration count c as large as possible and imple-
menting the performance improvements that save the computation of several
message blocks of a keyed hash function.

References

1. ARM mbed TLS, Version: 1.3.11. https://tls.mbed.org/
2. EncFS Encrypted Filesystem. https://sites.google.com/a/arg0.net/www/encfs
3. GNU GRUB Manual, Version: 2.00. http://www.gnu.org/software/grub/manual/

grub.html
4. Libgcrypt, Version: 1.6.3. https://www.gnu.org/software/libgcrypt/
5. RAR Archive Format, Version: 5.0. http://www.rarlab.com/technote.htm
6. Apple Inc.: Best Practices for Deploying FileVault 2. Technical report (2012).

http://training.apple.com/pdf/WP FileVault2.pdf
7. Bossi, S., Visconti, A.: What users should know about full disk encryption based

on LUKS. In: Proceedings of the 14th International Conference on Cryptology and
Network Security (2015)

8. Choudary, O., Grobert, F., Metz, J.: Infiltrate the Vault: Security Analysis and
Decryption of Lion Full Disk Encryption. Cryptology ePrint Archive, Report
2012/374 (2012). https://eprint.iacr.org/2012/374.pdf

9. Fruhwirth, C.: New methods in hard disk encryption (2005). http://clemens.
endorphin.org/nmihde/nmihde-A4-ds.pdf

10. Fruhwirth, C.: LUKS On-Disk Format Specification Version 1.2.1 (2011). http://
wiki.cryptsetup.googlecode.com/git/LUKS-standard/on-disk-format.pdf

11. IEEE 802.11 WG: Part 11: wireless LAN medium access control (MAC) and phys-
ical layer (PHY) specifications. IEEE Std 802.11 i-2004 (2004)

12. Krawczyk, H.: Cryptographic Extraction and Key Derivation: The HKDF Scheme.
Cryptology ePrint Archive, Report 2010/264 (2010)

13. Krawczyk, H., Bellare, M., Canetti, R.: RFC 2104: HMAC: Keyed-hashing for
message authentication (1997)

14. NIST: FIPS PUB 198: The Keyed-Hash Message Authentication Code (HMAC)
(2002)

15. NIST: SP 800–132: Recommendation for password-based key derivation (2010)
16. NIST: SP 800–63-2 Version 2: Electronic authentication guideline (2013)
17. RSA Laboratories: PKCS #5 V2.1: Password Based Cryptography Standard

(2012)
18. Shannon, C.E.: Prediction and entropy of printed English. Bell Syst. Tech. J. 30(1),

50–64 (1951)
19. Steube, J.: Optimizing computation of Hash-Algorithms as an attacker (2013).

http://hashcat.net/events/p13/js-ocohaaaa.pdf

https://tls.mbed.org/
https://sites.google.com/a/arg0.net/www/encfs
http://www.gnu.org/software/grub/manual/grub.html
http://www.gnu.org/software/grub/manual/grub.html
https://www.gnu.org/software/libgcrypt/
http://www.rarlab.com/technote.htm
http://training.apple.com/pdf/WP_FileVault2.pdf
https://eprint.iacr.org/2012/374.pdf
http://clemens.endorphin.org/nmihde/nmihde-A4-ds.pdf
http://clemens.endorphin.org/nmihde/nmihde-A4-ds.pdf
http://wiki.cryptsetup.googlecode.com/git/LUKS-standard/on-disk-format.pdf
http://wiki.cryptsetup.googlecode.com/git/LUKS-standard/on-disk-format.pdf
http://hashcat.net/events/p13/js-ocohaaaa.pdf

Security Modeling and Verification

Verifiable Random Functions from (Leveled)
Multilinear Maps

Bei Liang1,2,3(B), Hongda Li1,2,3, and Jinyong Chang1,3

1 State Key Laboratory of Information Security, Institute of Information Engineering
of Chinese Academy of Sciences, Beijing, China
{liangbei,lihongda,changjinyong}@iie.ac.cn

2 Data Assurance and Communication Security Research Center
of Chinese Academy of Sciences, Beijing, China

3 University of Chinese Academy of Sciences, Beijing, China

Abstract. Verifiable random functions (VRFs), firstly proposed by
Micali, Rabin, and Vadhan (FOCS 99), are pseudorandom functions
with the additional property that the party holding the seed sk can
generate a non-interactive, publicly verifiable proof π for the statements
“Fsk(x) = y”, for any input x. To date only a few VRF schemes are
known and most known constructions either allow only a small input
space, or don’t achieve full adaptive security under a non-interactive com-
plexity assumption. The only known adaptively secure VRF scheme with
exponentially-large input space is based on �-Decisional Diffie-Hellman
Exponent assumption (Hohenberger and Waters, Eurocrypt 2010).

In this work, we present a VRF scheme which is proved adaptively
secure for exponentially-large input spaces under (n, k)-Modified Mul-
tilinear Decisional Diffie-Hellman Exponent assumption. Our construc-
tion is directly derived from the construction of constrained VRFs given
by Fuchsbauer (SCN 14) based on (leveled) multilinear-maps. Since in
Fuchsbauer’s scheme the adaptive security is obtained via complexity
leveraging, which leads to a security loss that is exponential in the input
length. Our core idea is to apply a simulation technique similar to the
VRF analysis of Hohenberger (Eurocrypt 2010), where we partition the
input space into those for which we can provide a proof and those for
which we cannot. We then show that with non-negligible probability, the
adversary will only query us on inputs for which we can provide proofs,
except for the challenge query, for which the proof is unknown.

Keywords: Verifiable Random Functions (VRFs) · Constrained VRFs ·
Multilinear maps

1 Introduction

Verifiable Random Functions (VRFs) were proposed by Micali, Rabin and
Vadhan [15]. Informally, a VRF behaves similar to a pseudorandom function

This research is supported by the Strategy Pilot Project of Chinese Academy of
Sciences (Grant No. Y2W0012203).

c© Springer International Publishing Switzerland 2015
M. Reiter and D. Naccache (Eds.): CANS 2015, LNCS 9476, pp. 129–143, 2015.
DOI: 10.1007/978-3-319-26823-1 10

130 B. Liang et al.

(see Goldreich, Goldwasser and Micali [8]) and also enables a verifier to verify,
given an input x, an output y and a proof π, that the function has been correctly
computed on x. More precisely, a VRF is associated with a secret key sk and a
corresponding public verification key pk. As usual, sk allows the evaluation of
function y = Fsk(x) on any input x and the generation of a proof π = Psk(x).
This proof can be used in conjunction with pk to convince a verifier that y is the
correct output on input x. For security, VRFs must satisfy the provability (or
correctness), uniqueness and pseudorandomness properties. Uniqueness guaran-
tees that the verifier cannot accept two different values for an input x, even if
pk is generated dishonestly; Pseudorandomness states that having only pk and
oracle access to Fsk(·) and Psk(·), the value y = Fsk(x) looks random to any
polynomially bounded adversary who did not query Fsk(x) explicitly.

Due to their strong properties, VRFs are a fascinating primitive that have
several theoretical and practical applications. Abdalla et al. [1] provided a nice
summary of applications, including resettable zero-knowledge proofs [14] and
verifiable transaction escrow schemes [12], to name a few.

Current State of the Art. However, in spite of their popularity, constructing
VRFs seems to be challenging, because only a few schemes are known so far,
e.g., [1,4,5,11,13,15]. Micali, Rabin and Vadhan proposed a construction (in
the plain model) in [15], which is built in two steps. Firstly they constructed
a verifiable unpredictable function (VUF) based on the RSA problem and then
they showed a generic transformation to convert a VUF into a VRF using the
Goldreich-Levin theorem [9] (that extracts one random bit from polynomially-
many unpredictable bits). Lysyanskaya [13] provided a VRF scheme relying on a
strong version of the Diffie-Hellman assumption, which was also constructed as
a transformation from a VUF. Unfortunately, because of several inefficient steps
involved in the transformation, the VRF resulting from this transformation is
very inefficient and, furthermore, it loses a quite large factor in its exact security
reduction.

The subsequent works suggest direct and (more) efficient constructions of
VRFs without relying on the Goldreich-Levin transformation. Dodis [4] pre-
sented a VRF scheme based on a “DDH-like” interactive assumption that is called
sum-free decisional Diffie-Hellman assumption. In [5], Dodis and Yampolskiy
gave a very efficient VRF under a non-interactive, bilinear Diffie-Hellman inver-
sion assumption by applying the Boneh-Boyen signatures scheme [2]. Abdalla,
Catalano and Fiore [1] gave two VRF constructions and showed the relation-
ship between VRFs and Identity-Based Encryption. In particular, they showed
that any IBE scheme with certain properties (e.g., deterministic key generation)
implies VRFs. All the schemes mentioned so far share the limitation of support-
ing only a small domain. Hohenberger and Waters [11] first provided a VRF for
an input space of exponential size with full adaptive security without applying
complexity leveraging or interactive assumption.

Recently, Fuchsbauer [6] defined an extended notion of VRFs which was
called constrained VRFs. Informally, a constrained VRF is a special kind of
VRF that allows one to derive a constrained key skS with respect to some set

Verifiable Random Functions from (Leveled) Multilinear Maps 131

S ⊆ X from the master secret key sk. The constrained key skS allows the com-
putation of Fsk(x) and Psk(x) only for x ∈ S. By adding a level in the group
hierarchy based on the constructions of constrained PRFs given by Boneh and
Waters [3], Fuchsbauer [6] also provided two multilinear-maps-based instanti-
ations of constrained VRFs for “bit-fixing” sets and sets that can be decided
by a polynomial-size circuit. However, they proved that the selective pseudo-
randomness of their VRFs can be reduced to the multilinear DDH assumption
without any security loss. In the proof a reduction algorithm will firstly guess
the attacker’s challenge input. Thus, to obtain adaptive pseudorandomness needs
complexity leveraging, which leads to a security loss that is exponential in the
input length.

The main motivating question of our work is whether we can obtain a
multilinear-maps-based VRF of adaptive pseudorandomness based on standard
complexity assumption without any exponential loss.

Our Contribution. In this work, we aim to realize multilinear-maps-based
VRFs without applying complexity leveraging. We show how to achieve this
result using the artificial abort technique introduced by Waters [16]. More pre-
cisely, we apply a reduction technique where the input space is compressed in
the reduction algorithm’s view to a much smaller space. We can parameterize
this compression such that the reduction algorithm knows the VRF value for
all but a set S of size ≈ 1/Q(λ) of the input, where Q(λ) is the (polynomial)
number of queries made by an attacker and λ is a security parameter. We then
show that with non-negligible probability, the adversary will only query us on
inputs for which we can provide proofs, except for the challenge query landed in
S, for which the proof is unknown.

The VRF scheme is directly derived from the construction of constrained
VRFs given by Fuchsbauer [6]. Let the length of input be �. It is defined over
a leveled multilinear group, which is a sequence of groups G = (G1, . . . ,G�),
each Gi of large prime order p > 2λ and of generator gi, associated with a set of
bilinear maps {ei,j : Gi×Gj → Gi+j |i, j ≥ 1; i+j ≤ �}. The setup algorithm will
choose random α ∈ Zp and 2� random elements (d1,0, d1,1), . . . , (d�,0, d�,1) ∈ Z

2
p.

Let g = g1. The secret key is sk = (α, {di,b}i∈[1,�],b∈{0,1}) and public key is
pk = (A = gα, {Di,b = gdi,b}i∈[1,�],b∈{0,1}). The evaluation of the VRF on input
x = x1‖ . . . ‖x� is y = Fsk(x) = (g�)αΠ�

i=1di,xi , and proof of the VRF is defined as
π = Psk(x) = (g�−1)Π

�
i=1di,xi . The value π can be used to check whether some y ∈

G� equals Fsk(x): we compute D(x) = (g�)Π
�
i=1di,xi by applying the bilinear maps

to D1,x1 ,D2,x2 , . . . , D�,x�
, and then check whether e(g, π) = D(x) ∧ e(A, π) = y.

By using the artificial abort technique, the adaptive pseudorandomness will
hold under a slightly different assumption. We prove the adaptive pseudoran-
domness of VRF scheme under the (n, k)-Modified Multilinear Decisional Diffie-
Hellman Exponent ((n, k)-MMDDHE) assumption for n = O(Q(λ) · �), which
is a decisional version of the (n, k)-Modified Multilinear Computational Diffie-
Hellman Exponent ((n, k)-MMCDHE) assumption introduced by Hohenberger
et al. [10]. This assumption gives the reduction algorithm gaic

1 for i = 1 to n and

132 B. Liang et al.

gaic�

�−1 for i = 1 to 2n except for a “hole” at i = n. In our reduction, we associate

each Di,b value with a value gar̂i,b c for some r̂i,b. The terms are further ran-
domized so as to information-theoretically hide r̂i,b from the outside. We ignore
the randomization terms for this discussion. For any input x, the reduction can
evaluate the function and give a proof if

∑�
i=1 r̂i,xi

= n. For all other inputs
x ∈ S such that

∑�
i=1 r̂i,xi

= n, the reduction algorithm can successfully use an
answer to defeat the (n, k)-MMDDHE assumption.

To achieve a polynomial (in �) reduction we must find a way to put a proper
fraction of the inputs in S and to make the distribution of inputs in S close to
random across the coins of the reduction. For this final goal, we parameterize and
analyze our scheme in a manner similar to the VRF analysis of Hohenberger et al.
[11] and Waters’s Identity-Based Encryption system [16]. In Waters framework,
he gave a technique for partitioning approximately a (hidden) ≈ 1/Q(λ) of the
inputs into what he called a challenge set S and the other 1−1/Q(λ) to be inputs
that a reduction algorithm could evaluate the function and proof. We will apply a
similar partitioning approach, except we must adapt it to the multilinear-maps-
based structure of our VRF.

We finally remark that once we achieve a VRF for large enough input size
�, we can apply collision resistant hash function to get a VRF for the input
domain of {0, 1}∗. Firstly, we could simply let the setup algorithm choose a
collision resistant hash function H : {0, 1}∗ → {0, 1}�. The VRF would hash the
input down to � bits and then apply the core VRF. It is fairly straightforward to
show that an successful attack would imply either finding a collision or attacking
the core VRF.

Organization. The rest of this paper is organized as follows. In Sect. 2 we give
the definition of verifiable random functions and describe the basic tools—leveled
multilinear groups which will be used in our construction. In Sect. 3 we provide
our instantiation of VRF. In Sect. 4 we prove the security of the VRF scheme.
In Sect. 5 we make a conclusion.

2 Preliminaries

2.1 Verifiable Random Function

In this section, we review verifiable random functions (VRFs). Such functions
are similar to pseudorandom functions, but differ in two main aspects: Firstly,
the output of the function is publicly verifiable, i.e., there exists an algorithm
that returns a proof π which shows that y is the output of the function on input
x. Secondly, the output of the function is unique, i.e., there cannot exist two
images (and proofs) that verify under the same preimage. The formal definitions
below is due to Micali et al. [15].

Definition 1 (Verifiable Random Function). A family of functions F =
{fs : {0, 1}in(λ) → {0, 1}out(λ)}s∈{0,1}seed(λ) , where in, out, seed are all polynomials
in the security parameter 1λ, is a family of verifiable random functions if there
exists a tuple of algorithms (Setup, Eval, Prove, Verify) such that:

Verifiable Random Functions from (Leveled) Multilinear Maps 133

– Setup(1λ) is a probabilistic polynomial-time algorithm that on inputs the secu-
rity parameter λ, outputs a pair of keys (pk, sk), and the description of VRF
F (sk, ·) and P (sk, ·).

– Eval(sk, x) is a deterministic polynomial-time algorithm that takes as input
a secret key sk ∈ {0, 1}seed and x ∈ {0, 1}in, and outputs a function value
y ∈ {0, 1}out that evaluates fsk(x).

– Prove(sk, x) is a deterministic polynomial-time algorithm that takes as input a
secret key sk ∈ {0, 1}seed and x ∈ {0, 1}in, and outputs a proof π related to x.

– Verify(pk, x, y, π) is a (possibly) probabilistic polynomial-time algorithm that
takes as input public key pk, x, y, and proof π, and outputs 1 if π is a valid
proof for the statement “fsk(x) = y”. Otherwise it outputs 0.

Formally, we require the tuple (Setup, Eval, Prove, Verify) satisfying the following
properties:

Provability. For all λ ∈ N, all (pk, sk) ← Setup(1λ) and all x ∈ {0, 1}in, if
y = Eval(sk, x) and π = Prove(sk, x), then Verify(pk, x, y, π) = 1.

Uniqueness. For all λ ∈ N, all (pk, sk) ← Setup(1λ), all x ∈ {0, 1}in, there
does not exist a tuple (y0, π0, y1, π1) such that

(1) y0
= y1, (2) Verify(pk, x, y0, π0) = 1, and (3) Verify(pk, x, y1, π1) = 1.

Pseudorandomness. For all PPT adversaries A = (A1,A2), we require that
the probability A succeeds in the experiment ExpPse

A (λ) is at most 1
2 + negl(λ),

where the experiment is defined below.

Experiment ExpPse
A (λ)

1. (pk, sk) ← Setup(1λ);
2. (x∗, state) ← AFunc(sk,·)

1 (pk); //Oracle Func(sk, ·) returns Eval(sk, ·) and
Prove(sk, ·).

3. b
$← {0, 1};

4. y0 ← Eval(sk, x∗); y1
$← {0, 1}out(λ);

5. b′ ← AFunc(sk,·)
2 (state, yb);

6. Output 1 iff b′ = b and x∗ was not asked to the Func(sk, ·) oracle.

2.2 Assumption

Recently, Garg, Gentry, and Halevi [7] proposed candidate constructions for
leveled multilinear forms. We will present some of our constructions using the
abstraction of leveled multilinear groups. The candidate constructions of [7]
implement an abstraction called graded encodings which is similar, but slightly
different from multilinear groups.

134 B. Liang et al.

Leveled Multilinear Groups. We assume the existence of a group generator G,
which takes as input a security parameter 1λ and a positive integer k to indicate
the number of levels. G(1λ, k) outputs a sequence of groups G = (G1, . . . ,Gk)
each of large prime order p > 2λ. In addition, we let gi be a canonical generator
of Gi (and is known from the group’s description). We let g = g1.

We assume the existence of a set of bilinear maps {ei,j : Gi×Gj → Gi+j |i, j ≥
1; i + j ≤ k}. The map ei,j satisfies the following relation:

ei,j(ga
i , gb

j) = gab
i+j : ∀a, b ∈ Zp.

When the context is obvious, we will sometimes drop the subscripts i, j, For
example, we may simply write:

e(ga
i , gb

j) = gab
i+j .

We now give the modified multilinear computational Diffie-Hellman exponent
assumption which is introduced by Hohenberger et al. [10].

Assumption 1 ((n, k)-Modified Multilinear Computational Diffie-
Hellman Exponent [10]). The (n, k)-Modified Multilinear Computational
Diffie-Hellman Exponent ((n, k)-MMCDHE) problem is as follows: A challenger
runs G(1λ, k − 1) to generate groups and generators of order p. Then it picks
random a, b, c ∈ Zp.

The assumption then states that given

g = g1, gb, ∀i ∈ [1, n] gaic, ∀i
= n ∈ [1, 2n] (gk−2)aick−1
,

it is hard to compute (gk−1)anck−1b ∈ Gk−1 with better than negligible advantage
(in security parameter λ).

The decisional version of modified multilinear computational Diffie-Hellman
assumption [10] is the following:

Assumption 2 ((n, k)-Modified Multilinear Decisional Diffie-Hellman
Exponent). The (n, k)-Modified Multilinear Decisional Diffie-Hellman Expo-
nent ((n, k)-MMDDHE) problem is as follows: A challenger runs G(1λ, k − 1) to
generate groups and generators of order p. Then it picks random a, b, c ∈ Zp.

The assumption then states that given

g = g1, gb, ∀i ∈ [1, n] gaic, ∀i
= n ∈ [1, 2n] (gk−2)aick−1
,

it is hard to distinguish the element T = (gk−1)anck−1b ∈ Gk−1 from a ran-
dom group element in Gk−1, with better than negligible advantage (in security
parameter λ).

3 VRF Construction from the (n,K)-MMDDHE
Assumption

Let VRF=(Setup, Eval, Prove, Verify) be the following construction.

Verifiable Random Functions from (Leveled) Multilinear Maps 135

Setup(1λ, 1�). The setup algorithm takes as input the security parameter λ as
well as the input length �. It firstly runs G(1λ; �) and outputs a sequence
of groups G = (G1, . . . ,G�) of prime order p, with canonical generators
g1, . . . , g�, where we let g = g1. It chooses random α ∈ Zp and 2� random
elements (d1,0, d1,1), . . . , (d�,0, d�,1) ∈ Z

2
p, and sets A = gα and Di,b = gdi,b

for i ∈ [1, �] and b ∈ {0, 1}.
The VRF public key pk consists of the group sequence (G1, . . . ,G�) along
with A and Di,b for i ∈ [1, �] and b ∈ {0, 1}. The VRF secret key sk consists
of the group sequence (G1, . . . ,G�) along with α and di,b for i ∈ [1, �] and
b ∈ {0, 1}.

Eval(sk, x). For x ∈ {0, 1}�, the function Fsk(x) evaluates x = x1‖x2‖ . . . ‖x� as:

y = Fsk(x) = (g�)αΠ�
i=1di,xi .

Prove(sk, x). This algorithm outputs a proof π defined as

π = (g�−1)Π
�
i=1di,xi .

Verify(pk, x, y, π). The first step is to verify that all parts of the input are prop-
erly encoded group elements; in particular, that the value y and proof π con-
tain legal encodings of elements in G� and G�−1 respectively. Next, compute
D(x) = e(D1,x1 ,D2,x2 , . . . , D�,x�

) = (g�)Π
�
i=1di,xi and check if the following

equations are satisfied:

e(g, π) = D(x) and e(A, π) = y.

Output 1 if and only if all checks verify.

4 Proof of Security

Theorem 1. The VRF construction in Sect. 3 is secure with respect to
Definition 1 under the (n, k)-MMDDHE assumption.

Proof. The provability property is verifiable in a straightforward manner from
the construction.

The uniqueness property also follows easily from the group structure. In
particular, consider a public key pk =

(
G, A = gα, {Di,b = gdi,b}i∈[n],b∈{0,1}

)
,

with C ∈ G1 and Di,b ∈ G1, a value x ∈ {0, 1}� and values (y0, π0), (y1, π1) ∈
G� × G�−1 that satisfy

e(g, πβ) = (g�)Π
�
i=1di,xi and e(A, πβ) = yβ ,

for β ∈ {0, 1}. It suffices to show that y0 = y1. By the properties of the bilinear
map e the first verification equation yields πβ = (g�−1)Π

�
i=1di,xi , which implies

π0 = π1. The second equation yields y0 = e(C, π0) = e(C, π1) = y1.

136 B. Liang et al.

Showing pseudorandomness will require more work. Intuitively, to show
pseudorandomness we will employ a proof framework introduced by Hohenberger
[10] that allows us to partition the inputs into two sets: those the simulator can
properly answer and those we hope the adversary chooses as a challenge.

We show that if there exists a PPT adversary A which makes Q Fun queries
in the pseudorandomness game and succeeds with probability 1

2 + ε. Then we
show how to use A to create an adversary B which breaks the (n, k)-MMDDHE
assumption with probability 1

2 + 3ε
64Q(�+1) , where n = 4Q(� + 1) and k = � + 1

and � is the bit length of the VRF input.
The simulator B takes as input an MMCDHE instance

(
g, gb,∀ ∈ [1, n] gaic,∀i
= n ∈ [1, 2n] (gk−2)aick−1

, T
)

together with the group descriptions where n = 4Q(� + 1) and k = � + 1.
The simulator’s challenge is to distinguish the element T is (gk−1)anck−1b =
(g�)anc�b ∈ Gk−1 or a random group element in Gk−1. The simulator B plays the
role of the challenger in the game as follows.

Setup. The simulator firstly sets an integer z = 4Q and chooses an integer,
t, uniformly at random between 0 and �. Recall that Q is the number of Fun
queries made by the adversary A and � is the bit length of the VRF input.
It then chooses random integers r1,0, r1,1, . . . , r�,0, r�,1, r

′ between 0 and z − 1.
Additionally, the simulator chooses random values s1,0, s1,1, . . . , s�,0, s�,1 ∈ Z

∗
p.

These values are all kept internal to the simulator.
Let xi denote the ith bit of x. For x ∈ {0, 1}�, define the functions:

C(x) = zt + r′ +
�∑

i=1

ri,xi
, J(x) =

�∏

i=1

si,xi
.

For x ∈ {0, 1}�, define the binary function:

K(x) =
{

0, if r′ +
∑�

i=1 ri,xi
≡ 0 mod z;

1, otherwise.

The simulator sets the public key as D1,0 = (ga(zt+r′+r1,0)c)s1,0 , D1,1 =

(ga(zt+r′+r1,1)c)s1,1 , Di,0 = (gari,0c)si,0 and Di,1 = (gari,1c)si,1 for i = 2 to �, and
A = gb. It outputs the public key as

(
G, A, {Di,b}i∈[1,�],b∈{0,1}

)
, where implic-

itly the secret key contains the values b, d1,0 = ari,0csi,0, d1,1 = ari,1csi,1, di,0 =
ari,0csi,0 and di,1 = ari,1csi,1 for i = 2 to �. It passes the public key to the adver-
sary A. We observe that all parameter terms are simulatable since all powers of
a in the exponent are at most zt+2(z−1) = 4Q�+2(4Q−1) = 4Q(�+2)−2 < n
for any possible choice of r′, ri,b, t. Moreover, the terms {si,b}i∈[1,�],b∈{0,1} values
distribute the parameters uniformly at random.

Oracle Fun(sk, ·) Queries. The adversary A will ask for VRF evaluations and
proofs. On query input x, the simulator firstly checks if C(x) = n and aborts if
this is true. Otherwise, it outputs the value

Verifiable Random Functions from (Leveled) Multilinear Maps 137

F (sk, x) = e
(
gb, (gk−2)aC(x)ck−1)J(x) = (gk−1)baC(x)c�J(x).

It also computes
π = ((gk−2)aC(x)ck−1

)J(x).

Given the above settings, we can verify that for any value of x ∈ {0, 1}�, the
maximum value of C(x) is z�+(�+1)(z−1) < 2z(�+2) = 2n. Thus, if C(x)
= n,
then the simulator can correctly compute the function evaluations and proofs.

Response. Eventually adversary A will provide a challenge input x∗. If C(x∗) =
n, B will return the value T . When A responds with a guess b′, B will also output
b′ as its (n, k)-MMDDHE guess. If C(x∗)
= n, B outputs a random bit as its
(n, k)-MMDDHE guess.

This ends our description of (n, k)-MMDDHE adversary B.

A Series of Games Analysis. We now argue that any successful adversary A
against our scheme will have success in the game presented by B. To do this, we
firstly define a sequence of games, where the first game models the real security
game and the final game is exactly the view of the adversary when interacting
with B. We then show via a series of claims that if A is successful against Game
j, then it will also be successful against Game j + 1.

Game 1: This game is defined to be the same as the VRF pseudorandomness
game in Definition 1.

Game 2: The same as Game 1, with the exception that we keep a record
of each query made by A, which we’ll denote as x = (x(1), . . . , x(Q), x∗),
where x∗ is the challenge input. At the end of the game, we set z = 4Q
and choose a random integer t between 0 and � and random integers r =
(r1,0, r1,1, . . . , r�,0, r�,1, r

′) between 0 and z − 1. We define the regular abort
indicator function:

regabort(x, r, t) =
{

1, if C(x∗)
= n
∨Q

i=1 K(x(i)) = 0;
0, otherwise.

This function regabort(x, r, t) evaluates to 0 if the queries x will not cause
a regular abort for the given choice of simulation values r, t. Consider the
probability over all simulation values for the given set of queries x as ζ(x) =
Prr,t[regabort(x, r, t) = 0].
As in [16], the simulator estimates ζ(x) as ζ ′ by evaluating regabort(x, r, t)
with fresh random r, t values a total of O(ε−2 ln(ε−1)ζ−1

min ln(ζ−1
min)) times,

where ζmin = 1
8Q(�+1) . This does not require running the adversary A again.

A’s success in the game is then determined as follows:
1. Regular Abort. If regabort(x, r, t) = 1, then flip a coin b ∈ {0, 1} and say

that A wins if b = 0 and loses otherwise.
2. Balancing (Artificial) Abort. Let ζmin = 1

8Q(�+1) as derived from Claim.

If ζ ′ ≥ ζmin, B will abort with probability ζ′−ζmin

ζ′ (not abort with proba-
bility ζmin

ζ′). If it aborts, flip a coin b ∈ {0, 1} and say that A wins if b = 0
and loses otherwise.

138 B. Liang et al.

3. Otherwise, A wins if it correctly guessed b′ as in the real security game.
Game 3: The same as Game 2, with the exception that B tests if any abort

conditions are satisfied, with each new query, and if so, follows the abort
procedure immediately (i.e., flips a coin b ∈ {0, 1} and says that A wins if
b = 0.)

Game 3 is exactly the view of A when interacting with B. We will shortly
prove that if A succeeds in Game 1 with probability 1

2 + ε, then it succeeds in
Game 3 with probability 1

2 + 3ε
64Q(�+1) .

Establishing Three Claims about the Probability of Aborting. Before
doing so, we establish one claim which was used above and two claims which
will be needed shortly. Our first claim helps us establish a minimum probability
that a given set of queries do not cause a regular abort. We use this minimum
during our balancing abort in Game 2, to “even out” the probability of an abort
over all possible queries. In the next two claims, we employ Chernoff Bounds to
establish upper and lower bounds for any abort (regular or balancing) for any set
of queries. The latter two claims will be used in the analysis of A’s probability
of success in Game 2.

Lemma 1. Let ζmin = 1
8Q(�+1) . For any query vector x, ζ(x) ≥ ζmin.

Lemma 2. For any set of queries x, the probability that there is an abort (i.e.,
regular or balancing) is ≥ 1 − ζmin − 3

8ζminε.

Lemma 3. For any set of queries x, the probability that there is no abort (i.e.,
regular or balancing) is ≥ ζmin − 1

4ζminε.

Proof of Lemmas 1, 2 and 3 are similar to a related argument in [16] and
appears in Appendix A.

Analyzing A’s Probability of Success in the Games. Define A’s proba-
bility of success in Game x as Pr[A succeed in Game x]. We reason about the
probability of A’s success in the series of games as follows.

Lemma 4. If Pr[A succeed in Game 1] = 1
2 +ε, then Pr[A succeed in Game 2] ≥

1
2 + 3ε

64Q(�+1) .

Proof. We begin by observing that Pr[A succeed in Game 2] is

=Pr[A succeed in Game 2|abort] · Pr[abort]

+ Pr[A succeed in Game 2|abort] · Pr[abort] (1)

=
1
2
Pr[abort] + Pr[A succeed in Game 2|abort] · Pr[abort] (2)

=
1
2
Pr[abort] + Pr[b = b′|abort] · Pr[abort] (3)

=
1
2
Pr[abort] + Pr[abort|b = b′] · Pr[b = b′] (4)

Verifiable Random Functions from (Leveled) Multilinear Maps 139

=
1
2
Pr[abort] + (

1
2

+ ε) · Pr[abort|b = b′] (5)

≥1
2
(1 − ζmin − 3

8
ζminε) + (

1
2

+ ε)(ζmin − 1
4
ζminε) (6)

≥1
2

+
3ζminε

8
(7)

≥1
2

+
3ε

64Q(� + 1)
. (8)

Equation 2 follows from the fact that, in the case of abort, A’s success is deter-
mined by a coin flip. Equation 3 simply states that, when there is no abort, A
wins if and only if it guesses correctly. Equation 4 follows from Bayes’ Theorem.
In Eq. 5, we observe that Pr[b = b′] is exactly A’s success in Game 1. Now, the
purpose of our balancing abort is to even the probability of aborting, for all
queries of A, to be roughly ζmin. This will also get rid of the conditional depen-
dence on b = b′. There will be a small error, which must be taken into account.
We set ζmin = 1

8Q(�+1) from Lemma 1. We know, for all queries/challenge, that
Pr[abort] ≥ 1 − ζmin − 3

8ζminε from Lemma 2 and that Pr[abort] ≥ ζmin − 1
4ζminε

from Lemma 3. Plugging these values into Eqs. 5 and 8 establishes the lemma.

Lemma 5. AdvA[Game 3] = AdvA[Game 2].

Proof. We make the explicit observation that these games are equivalent by
observing that their only difference is the time at which the regular aborts occur.
The artificial abort stage is identical. All public parameters, evaluations and
proofs have the same distribution up to the point of a possible abortion. In Game
2, the simulator receives all the queries x, then checks if regabort(x, r, t) = 1 and
aborts, taking a random guess, if so. In Game 3, the simulator checks with each
new query x if K(x) = 0, which implies that the ending regabort evaluation will
be 1, and aborts, taking a random guess, if so. Therefore, the output distributions
will be the same.

5 Conclusions

Verifiable random functions (VRF) are an interesting and useful cryptographic
primitive. But constructing a VRF with large input space and full adaptive secu-
rity from a non-interactive complexity assumption has proven to be a challenging
task. In this work, we presented a construction which can handle arbitrarily-large
inputs (by firstly applying a collision-resistant hash function) based on the (n, k)-
Modified Multilinear Decisional Diffie-Hellman Exponent assumption. The proof
of adaptive pseurandomness used a partitioning approach similar to the VRF
analysis of Hohenberger [11] and Waters’s Identity-Based Encryption system
[16], which is adapted to the multilinear-maps-based structure of our VRF.

140 B. Liang et al.

A Appendix

A.1 Proof of Lemma 1

Proof. In other words, the probability of the simulation not triggering a general
abort is at least ζmin. This analysis follows that of [16], which we reproduce
here for completeness. Without loss of generality, we can assume the adversary
always makes the maximum number of queries Q (since the probability of not
aborting increases with fewer queries). Fix an arbitrary x = (x(1), . . . , x(Q), x∗) ∈
{0, 1}(Q+1)×�. Then, with the probability over the choice of r, t, we have that
Pr[abort on x] is

=Pr
[
C(x∗) = n ∧

Q∧

i=1

K(x(i)) = 1
]

(9)

=Pr
[Q∧

i=1

K(x(i)) = 1
] · Pr

[
C(x∗) = n|

Q∧

i=1

K(x(i)) = 1
]

(10)

=
(
1 − Pr

[Q∧

i=1

K(x(i)) = 0
]) · Pr

[
C(x∗) = n|

Q∧

i=1

K(x(i)) = 1
]

(11)

≥(
1 −

Q∑

i=1

Pr[K(x(i)) = 0]
) · Pr

[
C(x∗) = n|

Q∧

i=1

K(x(i)) = 1
]

(12)

=
(
1 − Q

z

) · Pr
[
C(x∗) = n|

Q∧

i=1

K(x(i)) = 1
]

(13)

=
(
1 − Q

z

) · Pr
[
zt + r′ +

�∑

i=1

ri,x∗
i

= n|
Q∧

i=1

K(x(i)) = 1
]

(14)

=
1

� + 1
· (

1 − Q

z

) · Pr
[
K(x∗) = 0|

Q∧

i=1

K(x(i)) = 1
]

(15)

=
1

� + 1
· (

1 − Q

z

) · Pr
[
K(x∗) = 0

] · Pr
[∧Q

i=1 K(x(i)) = 1|K(x∗) = 0
]

Pr
[∧Q

i=1 K(x(i)) = 1
] (16)

≥ 1
(� + 1)z

· (
1 − Q

z

) · Pr
[Q∧

i=1

K(x(i)) = 1|K(x∗) = 0
]

(17)

=
1

(� + 1)z
· (

1 − Q

z

) · (
1 − Pr

[Q∨

i=1

K(x(i)) = 0|K(x∗) = 0
])

(18)

≥ 1
(� + 1)z

· (
1 − Q

z

) · (
1 −

Q∑

i=1

Pr
[
K(x(i)) = 0|K(x∗) = 0

])
(19)

=
1

(� + 1)z
· (

1 − Q

z

)2 (20)

Verifiable Random Functions from (Leveled) Multilinear Maps 141

≥ 1
(� + 1)z

· (
1 − 2Q

z

)
(21)

=
1

8Q(� + 1)
(22)

Equations 13 and 17 derive from Pr[K(xi) = 0] = 1
z for any query xi and

Pr[K(x∗) = 0] = 1
z for any challenge x∗. Equation 15 gets a factor of 1

�+1
from the simulator taking a guess of t. Equation 16 follows from Bayes’ The-
orem. Equation 20 follows from the pairwise independence of the probabilities
that K(xi) = 0, K(x∗) = 0 for any pair of queries xi
= x∗, since they will differ
in at least one random rj value. Equation 22 follows from our setting of z = 4Q.

A.2 Proof of Lemma 2

Proof. Let ζx = ζ(x), as defined in Sect. 4, be the probability that a set of queries
x do not cause a regular abort. In Game 2, T = O(ε−2 ln(ε−1)ζ−1

min ln(ζ−1
min))

samples are taken to approximate this value as ζ ′
x. By Chernoff Bounds, we have

that for all x

Pr[Tζ ′
x < Tζx(1 − ε

8
)] < e−[128ε−2 ln((ε/8)−1)ζ−1

min ln(ζ−1
min)(ζmin)(ε/8)2/2],

which reduces to
Pr[ζ ′

x < ζx(1 − ε

8
)] <

ε

8
ζmin.

The probability of not aborting is equal to the probability of not regular aborting
(RA) times the probability of not artificial aborting (AA). Recall that for a mea-
sured ζ ′

x an artificial abort will not happen with probability ζmin

ζ′
x

. The probability
of aborting is therefore

Pr[abort] =1 − Pr[abort] = 1 − Pr[RA]Pr[AA] = 1 − ζxPr[AA]

≥1 − ζx(
ε

8
ζmin +

ζmin

ζx(1 − ε/8)
)

≥1 − (
ε

8
ζmin +

ζmin

1 − ε/8
)

≥1 − (
ε

8
ζmin + ζmin(1 +

2ε

8
))

≥1 − ζmin − 2ε

8
ζmin.

A.3 Proof of Lemma 3

Proof. Let ζx = ζ(x), as defined in Sect. 4, be the probability that a set of queries
x do not cause a regular abort. In Game 2, T = O(ε−2 ln(ε−1)ζ−1

min ln(ζ−1
min))

samples are taken to approximate this value as ζ ′
x. By Chernoff Bounds, we have

that for all x

Pr[Tζ ′
x > Tζx(1 +

ε

8
)] < e−[256ε−2 ln((ε/8)−1)ζ−1

min ln(ζ−1
min)(ζmin)(ε/8)2/4],

142 B. Liang et al.

which reduces to
Pr[ζ ′

x > ζx(1 +
ε

8
)] <

ε

8
ζmin.

The probability of not aborting is equal to the probability of not regular aborting
(RA) times the probability of not artificial aborting (AA). Recall that for a
measured ζ ′

x an artificial abort will not happen with probability ζmin

ζ′
x

. Therefore,

for any x, the Pr[AA] ≥ (1 − ε
8ζmin) ζmin

ζx(1+ε/8) . It follows that

Pr[abort] =Pr[RA]Pr[AA] = ζxPr[AA]

≥ζx(1 − ε

8
ζmin)

ζmin

ζx(1 + ε/8)

≥ζmin(1 − ε

8
)2

≥ζmin(1 − ε

4
).

References

1. Abdalla, M., Catalano, D., Fiore, D.: Verifiable random functions from identity-
based key encapsulation. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479,
pp. 554–571. Springer, Heidelberg (2009)

2. Boneh, D., Boyen, X.: Short signatures without random oracles. In: Cachin, C.,
Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 56–73. Springer,
Heidelberg (2004)

3. Boneh, D., Waters, B.: Constrained pseudorandom functions and their applica-
tions. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part II. LNCS, vol. 8270,
pp. 280–300. Springer, Heidelberg (2013)

4. Dodis, Y.: Efficient construction of (distributed) verifiable random functions. In:
Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 1–17. Springer, Heidelberg
(2002)

5. Dodis, Y., Yampolskiy, A.: A verifiable random function with short proofs and
keys. In: Vaudenay, S. (ed.) PKC 2005. LNCS, vol. 3386, pp. 416–431. Springer,
Heidelberg (2005)

6. Fuchsbauer, G.: Constrained verifiable random functions. In: Abdalla, M., De
Prisco, R. (eds.) SCN 2014. LNCS, vol. 8642, pp. 95–114. Springer, Heidelberg
(2014)

7. Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal lattices.
In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp.
1–17. Springer, Heidelberg (2013)

8. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. J.
ACM 33(4), 792–807 (1986)

9. Goldreich, O., Levin, L.A.: A hard-core predicate for all one-way functions. In:
21st Annual ACM Symposium on Theory of Computing, pp. 25–32. ACM Press,
Seattle, Washington, USA, 15–17 May 1989

10. Hohenberger, S., Sahai, A., Waters, B.: Full domain hash from (leveled) multilinear
maps and identity-based aggregate signatures. In: Canetti, R., Garay, J.A. (eds.)
CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 494–512. Springer, Heidelberg (2013)

Verifiable Random Functions from (Leveled) Multilinear Maps 143

11. Hohenberger, S., Waters, B.: Constructing verifiable random functions with large
input spaces. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 656–
672. Springer, Heidelberg (2010)

12. Jarecki, S.: Handcuffing big brother: an abuse-resilient transaction escrow scheme.
In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp.
590–608. Springer, Heidelberg (2004)

13. Lysyanskaya, A.: Unique signatures and verifiable random functions from the DH-
DDH separation. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, p. 597.
Springer, Heidelberg (2002)

14. Micali, S., Reyzin, L.: Soundness in the public-key model. In: Kilian, J. (ed.)
CRYPTO 2001. LNCS, vol. 2139, pp. 542–565. Springer, Heidelberg (2001)

15. Micali, S., Rabin, M., Vadhan, S.: Verifiable random functions. In: Proceedings of
40th IEEE Symposium on Foundations of Computer Science (FOCS), pp. 120–130.
IEEE Computer Society Press (1999)

16. Waters, B.: Efficient identity-based encryption without random oracles. In: Cramer,
R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer, Heidelberg
(2005)

A Formal Environment for MANET
Organization and Security

Aida Ben Chehida Douss1, Ryma Abassi1(B), Nihel Ben Youssef2,
and Sihem Guemara El Fatmi1

1 Higher School of Communication, Sup’Com, ISI University of Carthage Tunis,
Tunis, Tunisia

{bechehida.aida,ryma.abassi,sihem.guemara}@supcom.rnu.tn
2 Higher Institute of Computer Science, ISI University of Carthage Tunis,

Tunis, Tunisia
nihel.benyoussef@gmail.com

Abstract. A Mobile Ad-hoc Network (MANET) allows the communi-
cation of autonomous nodes without any preexistent network infrastruc-
ture. This main characteristic may introduce several vulnerabilities which
can be exploited by malicious nodes. Thus, one of the basic require-
ments for the well behavior of such network is to detect and isolate
such nodes. Recently, we proposed a reputation based trust manage-
ment scheme detecting and isolating malicious nodes. This scheme was
built upon a specific clustering algorithm baptized MCA (Mobility-based
Clustering Approach) and based on two phases: the setting up and the
maintenance. In the setting up phase, stable clusters are generated with
one-hop members and elected cluster-heads (CHs). In the maintenance
phase, the organization of the clusters is maintained in presence of mobil-
ity using adequate algorithms. The whole proposition was called TMCA
(Trust based MCA) and was also extended with a delegation process
resulting a proposition baptized DTMCA (Delegation process TMCA).
Once DTMCA is defined, we have found important to validate formally
each one of its components in order to avoid any conflict, lack or mis-
behaving situations. This process requires in a first step a formal spec-
ification. This is our main concern in this paper where we propose in a
first part a formal specification using inference systems based on logi-
cal rules. Two inference systems are proposed. The first one handles the
MCA maintenance phase and the second one specifies the TMCA scheme
on which the delegation process is integrated. A formal validation using
these inference systems is proposed in a second step in order to prove
the soundness and the completeness of the various propositions.

Keywords: MANET security · Clustering · Inference system · Formal
validation · Soundness · Completeness

1 Introduction

Due to the lack of centralized administration or fixed network infrastructure,
Mobile Ad hoc NETworks (MANETs) [1] may be unstable and vulnerable.
c© Springer International Publishing Switzerland 2015
M. Reiter and D. Naccache (Eds.): CANS 2015, LNCS 9476, pp. 144–159, 2015.
DOI: 10.1007/978-3-319-26823-1 11

A Formal Environment for MANET Organization and Security 145

Consequently, their security issue has become a prevalent research area over
the last years making available different mechanisms to secure them and more
precisely their routing process.

In recent works, we proposed a reputation-based trust management scheme
securing routing process in MANETs by detecting malicious nodes and isolating
them. This scheme is built upon a recently proposed Mobility-based Clustering
Approach (MCA). MCA is based on two major phases: setting up and main-
tenance. The setting up phase organizes MANETs into clusters with one-hop
members and elected Cluster-heads (CHs). In the MCA maintenance phase,
algorithms are proposed to react to all topology changes that may occur in the
network such as the displacement of a node, the failure of a member node or a
CH, or the arrival of a new node.

The whole reputation-based trust management scheme is baptized TMCA
(Trust management scheme for MCA). To detect malicious routing behavior,
TMCA uses CHs direct observations as well as alerts exchanged between them.
TMCA is based on four modules: (1) the monitoring module to detect mali-
cious behaviors, (2) the reputation module to update reputation values, (3) the
isolation module to isolate misbehaving nodes and (4) the identity recognition
module to assess alerts sources.

Moreover and in order to improve network performance and to maintain
its stability, TMCA scheme is extended with a Delegation process (DTMCA).
DTMCA allows the CH transferring its privileges to a chosen cluster member in
case of displacement or energy dissipation.

The whole proposition performances are then evaluated using simulations.
The obtained results showed a significantly improvement in terms of overhead,
throughput, packets loss ratio, etc.

However, regardless of DTMCA good performances, deploying such scheme is
error prone and it appears necessary to validate it before its real implementation.

According to [2], validation of a model can be done by showing that this model
is mathematically sound and that its specification is complete with respect to
its input space. More precisely, two main properties have to be considered as
proposed in [3]: (1) soundness stating that the proposed model reacts correctly
and (2) completeness stating that the model is complete i.e. no other situation
can be found. However, the first step towards the validation of a given model is
its specification in an automated and generic method [4].

The first concern in this paper is then to propose a formal and automated
method handling the MCA maintenance phase as well as the TMCA scheme
and the delegation process. This method is based on necessary and sufficient
conditions for the simultaneous validation of soundness and completeness. The
conditions are presented using inference systems.

The validation task is for its part performed in the second part of this paper.
Soundness is proved by showing that the proposed scheme reacts correctly. Com-
pleteness is proved by assessing that all potential situations are handled by the
inference system.

The remaining part of this paper is organized as follows. In Sect. 2, the repu-
tation based trust management scheme built upon the MCA approach is recalled.

146 A.B.C. Douss et al.

Section 3 details the proposed inference system handling the MCA maintenance
phase and elaborates the proposed validation procedure proving the soundness
and completeness properties. Section 4 introduces the proposed inference system
handling the TMCA scheme as well as the delegation process and presents vali-
dation procedures proving the soundness and completeness properties of TMCA
and DTMCA schemes. Finally, Sect. 5 concludes this paper.

2 A Reputation-Based Trust Management Scheme

Recently, we proposed a reputation-based trust management scheme enhanc-
ing MANET security by detecting misbehaving behaviors and isolating them
using the Watchdog mechanism as used in [5]. The scheme in question is built
upon a specific clustering approach MCA (Mobility-based Clustering Approach)
handling the network organization. The whole proposition is baptized TMCA
(Trust MCA). TMCA is also extended with a delegation process called DTMCA
(Delegation-based TMCA), allowing the CH’s privileges delegation to a chosen
cluster member in case of displacement or energy dissipation.

MCA organizes nodes into clusters [6] with one-hop member nodes and
elected CHs and maintains also the organization of these clusters in the presence
of mobility. It consists of two phases: Setting up and maintenance.

The setting up phase is based on two components: cluster identification and
cluster-head election.

Cluster identification is used to generate the restricted (one-hop) neighbor-
hood noted RN where each node i generates its RNi: two nodes j and k belong
to the same RNi, if j and k are neighbors. The generated RN represents then
the node’s cluster.

Cluster-head election is used to elect CHs for each cluster: nodes with the
lowest weight among their RN neighbors declare themselves CHs. All RN neigh-
bors of an elected CH join it then as members.

After the setting up phase is performed, stable clusters are generated. A
cluster is stable if it is independent of all other MANET clusters, if all its nodes
only have a unique role (CH or member node) and if it is fully connected i.e. all
nodes belonging to the same cluster are one-hop neighbors.

The maintenance phase maintains the organization of clusters in the pres-
ence of mobility. In this phase, algorithms are proposed to react to all topology
changes that may occur in the network such as the failure of a member node or
a CH, the displacement of a node or the arrival of a new node.

In fact, when a node i detects the failure of a node j belonging to its cluster,
two cases are then conceivable: (1) node i is a CH and node j its cluster member,
in such case, member j is simply dropped from i ’s cluster, (2) node i is a member
node and node j its CH, then node i drops node j from its cluster. If i has the
lowest weight among its cluster members, it declares itself as CH.

However, when a node i detects a new node j (node j is detached from its
cluster or it joined the network for the first time), two cases can be distinguished:
node i is a CH or node i is a member node. If node i is a CH and node j is

A Formal Environment for MANET Organization and Security 147

neighbor with all its cluster members, node j is added as member node into the
i cluster. However, if node j is not neighbor with all i ’s cluster members, CH i
creates a new cluster with j and delegates its functionalities to one of its cluster
member.

If node i is a member node, it first ensures that its CH k is not neighbor
with j. In such case, node i notifies its CH k about the existence of a new node
j and waits for the authorization of its CH to create a new cluster with j. If the
CH k authorizes such action, node i becomes CH and creates a new cluster with
node j. CH k removes then node i from its cluster.

Once the CHs are elected, the TMCA scheme is then triggered. Each CH
tracks the behavior of its cluster members using the monitoring module based on
the Watchdog mechanism. If a forwarding action is detected, the CH registers it
as a positive event. Otherwise, if a rejection or a modification action is detected,
the CH registers a negative event. As soon as a negative or positive event is
detected, the reputation module is triggered to update the reputation value of the
member node. If the reputation module receives a positive event, the reputation
value is incremented by +0.2 until reaching a maximum value equal to +3.
Whereas, if a negative event is received, the reputation value is decremented. Two
different negative events can be distinguished. The first concerns the dropping
of a packet by a member node. In this case, the reputation value is decremented
by -1 until reaching a minimum value equal to -3. The second negative event
concerns the modification of a forwarded packet. In this case, the reputation
value is decremented by -2 until reaching -3. When the reputation value of a
member node falls below -3, the reputation module relays the information to the
isolation module, which isolates the malicious member node.

TMCA implements also a rehabilitation mechanism for malicious nodes well
behaving during a given time. In fact, each CH continues monitoring the behavior
of its malicious member nodes. If a malicious member node behaves well, the
reputation module is triggered to increment the reputation value of this member
node by +0.1 instead of +0.2. Once the reputation value of the malicious member
node reaches the neutral value 0, the rehabilitation mechanism removes the
rehabilitated node from the blacklist.

The DTMCA process is called when the residual energy of the CH falls below
a certain threshold Emin or when the CH is obliged to divide its cluster (in the
MCA maintenance phase). In this case, the CH delegates its functionalities to a
member node having the highest reputation value and the lowest weight value.

Several simulations were conducted in order to evaluate the performances
of the whole proposed DTMCA scheme and have shown satisfying performance
results. However, these results may not be sufficient in order to have a complete
and generic security scheme assuring the protection of a network. Therefore, we
have chosen in this paper to support our simulation work by adding a formal
validation environment based on the two traditional main properties: soundness
and completeness. The first step towards validation process is its formal specifi-
cation. Hence, in the following, we specify our proposal using inference systems.
This system is based on the use of logical rules consisting of a function which
takes premises, analyses their applicability and returns a conclusion. Hence, two

148 A.B.C. Douss et al.

inference systems are proposed, the first one handles the MCA maintenance
phase and the second one is concerned by the TMCA scheme and the delegation
process. Then, the validation task is performed to prove the soundness and the
completeness of the various propositions.

3 MCA Formal Specification and Validation

In this section, we propose first an inference system handling the MCA main-
tenance phase and composed by several rules corresponding to the potential
changes that may occur in MANET. Second, the soundness and completeness
properties of the proposed inference system are proved by checking that clusters
remain stable even after a topology change and by assessing that all situations
are handled by the proposed inference system.

Few works using inference systems have been proposed in the literature
([7,8]). Ben Youssef et al. proposed in [7] a formal and automatic method for
checking whether a firewall reacts correctly with respect to a security policy. The
proposed method was presented in an inference system. A procedure for check-
ing the consistency of a security policy was also proposed which is a necessary
condition for the soundness and completeness verification. In [8], authors pro-
posed to enrich the OrBAC model with an integrity mechanism. The proposition
was called I-OrBAC (Integrity OrBAC). The idea was illustrated by a security
policy example to demonstrate the expressiveness of the model. Role priority
concept as well as an algorithm was also proposed to make the security policies
more flexible. The authors used the inference system to describe the proposed
algorithm.

In the following, we propose a formal and automated expression of the pro-
posed MCA maintenance algorithms using an inference system.

3.1 Preliminaries

The proposed inference system is based on the following assumptions:

– The MCA setting up phase is already made i.e. MANET is organized into
clusters. Each cluster is composed by one-hop members and an elected CH.

– The pre-processing phase is made periodically i.e. each node is always aware
about its one-hop and two-hop neighbors as well as its neighbors’ weights.

– The proposed inference system is triggered in three cases:

1. when a novel node arrives in the MANET,
2. when a node moves from its cluster to another cluster or,
3. when a member node or a CH fails.

– When a new node arrives or detaches from its cluster, it can detect CH nodes
or member nodes or both. The new node always joins the neighbor node
having the smallest weight.

– The inference system stops once all the new nodes and failed nodes are treated.

A Formal Environment for MANET Organization and Security 149

3.2 Formal Specification

In this section, necessary and sufficient conditions handling changes that could
happen in MANET topologies are proposed. The conditions are presented by an
inference system shown in Fig. 1. Used notations are defined in Table 1.

The rules of the system called inference rules apply to triples (N,Cold, Ø)
whose first component N is a set of couples (x, y), where x denotes a new or
a failed node in MANET and y its restricted one hop neighborhood RN(x).
The second component Cold represents the “initial” set of clusters generated
after the MCA setting up phase and the third component Cnew is the set of
new clusters generated by some inference rules to handle specific situations of
MANET topology changes. Initially Cnew is empty.

The inference rules CHfull, CHin and CHout address the case of the arrival
of new nodes or the displacement of existing nodes.

Mfailure and CHfailure are concerned with existing nodes failures.
In the following, the detail of each inference rule is presented.

init
N,Cold, /O

CHfull
({n}, {CH} ∪ M) ∪ N, ({CH},M) ∪ Cold, Cnew

N, ({CH},M ∪ {n}) ∪ Cold, Cnew

CHin
({n}, {CH} ∪ M′) � N, ({CH},M) ∪ Cold, Cnew

N, ({m},M \ {m}) ∪ Cold, ({CH}, {n}) ∪ Cnew
Where

{

M ′ M

weight ({m}) < Min{x}∈M\{m}(weight({x}))

CHout
({n},M′} ∪ N, ({CH},M) ∪ Cold, Cnew

N, ({CH},M \ {m}) ∪ Cold, ({m}, {n}) ∪ Cnew
Where

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

M ′ ⊆ M

M ′ �= /O

{m} ∈ M

weight ({m}) < Min{x}∈M′\{m}(weight({x}))

Mfailure
({m}, {CH} ∪ M′} � N, ({CH},M) ∪ Cold, Cnew

N, ({CH},M′) ∪ Cold, Cnew
Where

{

Failure({m}) ≡ True

M ′ = M \ {m}

CHfailure
({CH},M} ∪ N, ({CH},M) ∪ Cold, Cnew

N, ({m},M \ {m}) ∪ Cold, Cnew
Where

{

Failure({CH}) ≡ True

weight ({m}) < Min{x}∈M\{m}(weight({x}))

stop
/O,Cold, Cnew

stop

Fig. 1. MCA’s inference system

CHfull inference rule. CHfull is triggered when a new or a moving node n
detects a whole cluster in Cold containing a CH and all its member nodes M. In
this case, CH integrates n into its cluster as a member node.

CHin inference rule. CHin deals with a new or a moving node n neighboring a
CH and only a subset M’ of its members M in a Cold’s cluster.

Using this inference rule, a node m, member of M and having the lowest
weight among M, is elected to be the new CH of the Cold’s cluster instead of the
old CH. Moreover, a new cluster in Cnew is built with as CH the new elected
CH and as member the node n.

150 A.B.C. Douss et al.

CHout inference rule. The inference rule CHout applies when the neighborhood
of a new node n includes only a subset not empty M’ of member nodes in an
existing cluster of Cold.

In this case, a node m, member of M’ and having the lowest weight, is
detached from Cold’s cluster to be the CH of a new cluster in Cnew having as
member the node n.

Mfailure inference rule. Mfailure is applied to remove a member node m in an
existing cluster of Cold if it fails (Failure (m) ≡ True).

CHfailure inference rule. CHfailure deals with a failure of a CH. In this case,
one of its member m, having the lowest weight, is elected to recover its role.

The inference system stops when all nodes (new, moving or failed node) are
handled. In the next section, the soundness and the completeness of the proposed
inference system are proved.

3.3 Soundness and Completeness Validation

In this section, the validation of the soundness and completeness of the proposed
inference system handling the MCA maintenance phase is achieved.

Soundness Validation. The goal of this sub section is to check whether the
proposed inference system is sound i.e. MANET clusters remain stable even after
MANET topology changes.

To assess clusters stability, three formal properties have to be considered: (1)
Independence: each node belongs to only one cluster (2) Single role: all nodes
only have a unique role and (3) Fully connection: all nodes belonging to the same
cluster are one-hop neighbors.

In the following, each one of these properties is defined and adequate theo-
rems proving their preservation are proposed.

Property 1 (Independence). Two clusters Ci and Cj are independent iff Ci⋂
Cj =Ø.

Theorem 1 (Clusters independence). Let us assume that initially, all clus-
ters in MANET are independent. If (N,Cold, Ø) |-∗stop then Independence prop-
erty is preserved.

Proof. If (N,Cold, Ø) |-∗ stop then only one inference rule among CHin, CHout,
CHfull, Mfailure or CHfailure applies for each element in N. Hence, we have to
verify whether the application of each inference rule locally keeps this property.

– When a new node n arrives and its neighborhood matches an entire cluster
of Cold, only CHfull will be applied by integrating n only in Cold’s cluster.
Therefore, Clusters remain independent.

– When n detects only a subset of nodes in a cluster of Cold, two cases are
possible:

A Formal Environment for MANET Organization and Security 151

Table 1. Inference systems notations

Notation Meaning

N A set of couples (x,y) where:
- x: a new or a failed node.
- y: RN (x)

Cold The “initial” set of clusters generated after the MCA setting
up phase

Cnew The set of new clusters generated by some inference rules

CH A CH in a given cluster

M The set of member nodes belonging to a given cluster

m A member node belonging to the set of members M

Weight (n) The weight of the node n belonging to N

Failure (n) The status of a node n i.e. true if it fails otherwise false

Energy (n) The node n’s residual energy

E The set of events detected by CHs using the TMCA moni-
toring module. Three types of events can be detected:
- A positive event: Epos

- A dropping packet event: Edrop

- A modification packet event: Emodif

BL The set of blacklists maintained by CHs

RP The set of members’ reputations maintained by CHs

rp value (m) The reputation value of a member node m

1. when n is close to the CH of Cold’s cluster and to a subset M’ of its members,
only the rule CHin is applied by moving CH and n to a new cluster in Cnew

and keeping other nodes in the Cold’s cluster,
2. when n is not approaching the CH of Cold ’s cluster but only a subset M’ of

its members, only CHout is concerned by moving one member m and the node
n in another cluster in Cnew and keeping the other nodes in Cold’s cluster.

Thus, in both situations, Cold

⋂
Cnew = Ø.

– When the set N includes failed member nodes, only Mfailure is applied by
removing it from its cluster. Otherwise i.e. if a CH fails, only CHfailure is
applied by removing CH, and electing another member as a CH. Let us note
that in failure situations, modifications occur within a single cluster without
altering the others.

Therefore, the Independence property is preserved.

Property 2 (Single role). “A node has a single role (CH or member node):
Given a cluster C (CH, M), M

⋂ {CH} = Ø.

Theorem 2 (Single node role). Assuming that initially, all nodes in MANET
have a single role, if (N,Cold, Ø) |-∗stop then single role property is preserved.

152 A.B.C. Douss et al.

Proof. By assuming that, after MCA setting up phase, nodes have a single role,
we should check whether the application of each inference rule locally maintains
this property. If (N,Cold, Ø) |-∗)stop then only one inference rule among CHin,
CHout, CHfull, Mfailure or CHfailure applies for each element in N.

– When a new node n arrives and its neighborhood matches an entire cluster
of Cold, only CHfull will be applied by including n in the set of members M
in Cold’s cluster. Therefore, {CH} and M remain disjoint.

– If n detects only a subset of nodes in Cold, two cases are conceivable: (1) When
n is close to the CH of a Cold’s cluster and to a subset M’ of its members, only
the rule CHin is applied by moving CH and n to a new cluster in Cnew where
{CH} remains a cluster head and n takes the role of member and the rest
of the nodes in Cold’s cluster preserve their roles, except an elected member
node m which henceforth becomes a CH. (2) when n is not approaching the
CH but only a subset M’ of its members, only CHout is concerned by moving
one member m and the node n in another cluster in Cnew where m becomes
a CH and n its member and the other nodes in Cold keep their roles.

Thus, in these two situations, we have M
⋂ {CH} = Ø in both Cold and Cnew.

– For failure situations nodes, for the case of a member node, only Mfailure

is applied by removing it from its cluster and all the roles are maintained.
Otherwise, for the case of CH failure, only CHfailure is applied by removing
CH, and electing another member as a CH, its role as a member is disappeared.

Therefore, the single role property is preserved.

Property 3 (Fully connection). “A cluster C is fully connected iff all nodes
in C are one-hop neighbors.

Theorem 3 (Fully connected clusters). Assuming that initially, all nodes
in MANET are fully connected, if (N,Cold, Ø) |-∗stop then fully connection
property is preserved.

Proof. After MCA setting up phase, all clusters are fully connected. Hence,
we check whether the application of each inference rule locally maintains this
property. If (N,Cold, Ø) |-∗stop then only one inference rule CHin, CHout, CHfull,
Mfailure or CHfailure applies for each element in N.

– CHfull is applied when a new node n arrives and its neighborhood matches an
entire cluster of Cold. In this case, n is included in the cluster which is kept
fully connected intuitively.

– When n approaches only a subset of nodes in Cold, two cases are possible:

1. whenn is close to theCHofCold’s cluster and to a subsetM’ of itsmembers, only
the rule CHin is applied by moving CH and n to a new fully connected cluster
in Cnew and the other nodes in Cold ’s cluster remain linked as originally.

2. when n is not approaching the CH of Cold’s cluster but only a subset M’ of
its members, in this case, only CHout is concerned by moving one member
m and the node n in another fully connected cluster in Cnew and the other
nodes in Cold’s cluster keep remain intact.

A Formal Environment for MANET Organization and Security 153

Thus, after dealing both situations, all nodes in Cold and Cnew clusters are one-
hop neighbors.

– For a failed member node, only Mfailure is applied by removing it from its
cluster. In this case, it is kept fully connected. Besides, CHfailure is applied
when a CH fails by removing it, and electing another member m as a CH.
Since the neighborhood of m is unchanged, the fully connection property is
preserved.

Property 4 (Stability). A cluster is stable iff it is independent from any other
clusters, if all its nodes have a unique role and if it is fully connected.

Corollary (Soundness). Assuming that initially, MANET is stable, if (N,Cold,
Ø) |-∗stop then stability property is preserved.

Proof. Using theorems 1, 2 and 3, if (N,Cold, Ø) |-∗stop then independence, sin-
gle role and fully connection properties are preserved. Hence, MANET remains
stable.

Completeness Validation. Once the soundness of the proposed inference sys-
tem is proved, we proceed to the validation of its completeness. This is achieved
by assessing that all potential situa-tions are handled by the inference system.

Theorem 4 (Completeness). If MANET remains stable after arrival, displace-
ment or failure of nodes then (N,Cold, Ø) |-∗stop.
Proof. Assume that MANET remains stable after arrival, displacement or fail-
ure of a set k of nodes. The stability implies that all clusters are independent,
fully connected and including single node roles.

Two situations can be distinguished:

1. When a node ni arrives or an existent node moves: in this case, we assumed
that it should be close to only one non empty set Cni of nodes. This set Cni

is included or equal to an existent cluster of Coldi (CHi,Mi). If Cni does not
include a CH, then CHout applies, ni will join a new cluster Cnewi+1. If Cni is
equal to Coldi, then CHfull is applied by adding ni in it. If Cni includes a CH
and a subset of its members, CHin is concerned by integrating ni in MANET
specially in the cluster Cnewi + 1.

2. When a node ni fails, its treatment depends on its role: if ni is a CH, CHfailure

is applied, else, Mfailure handles failed member nodes.

In both cases, ni is removed from MANET. It follows that (N,Cold,Ø)
|-(N1, Cold1, Cnew1)|-...(Ø, Coldk, Cnewk)|-∗stop.

4 TMCA and Delegation Process Specification
and Validation

TMCA and DTMCA can misbehave due to conflicts or lacks. In fact, it appears
necessary to specify it with a formal and automated expression and then to val-
idate it before its real implementation. Hence, this section is based on two-folds.

154 A.B.C. Douss et al.

First, the various TMCA modules as well as the delegation process are specified
formally using an inference system. Then the soundness and the completeness
properties of the proposed inference system are validated.

4.1 Formal Specification

In this section, necessary and sufficient conditions handling changes that could
happen in MANET topologies are proposed. The conditions are presented by
an inference system shown in Fig. 2. Used notations in the proposed inference
system are defined in Table 1.

Such as depicted in Fig. 2, the inference rules composing the proposed infer-
ence system apply to quadruple (Cold, E,RP,BL) whose first component Cold is
the initial set of stable clusters generated after the MCA setting up phase. Each
cluster is composed by a CH and a set of members M.

The second component E represents the set of events detected by CHs. In
fact, four types of events can be detected by CHs:

– A positive event Epos: a member node broadcasts the received packet without
altering its content.

– A dropping packet event Edrop: a member node drops the received packet
instead of broadcasting it.

– A modification packet event Emodif : a member node modifies the content of a
received packet before broadcasting it.

– A delegation event Edelg: a CH detects that its residual energy falls below a
given minimum energy Emin.

Initially E is empty.
The third component RP is the set of cluster members’ reputation values

maintained by CHs according to events received from the TMCA monitoring
module. Finally, the last component BL represents the set of blacklists main-
tained by CHs and containing all detected malicious nodes in the network.

Six inference rules compose the proposed inference system. Epos addresses the
case of a positive event detection. The inference rule Blackevent represents a pos-
itive event detection by a CH concerning a blacklisted member node. Rehabevent

is concerned by the rehabilitation mechanism. The inference rule Isolaevent han-
dles the isolation of a malicious member node. Edrop represents the detection of
a dropping packet event and the last inference rule Emodif adresses the case of a
modification packet event detection.

The inference system stops when all detected events are handled. In the
following, each of the proposed inference rule is detailed.

Epos inference rule. Epos deals with a positive event detected by a CH concern-
ing one of its cluster member m ({Epos}

⋃
E) not belonging to the blacklist BL

and having a reputation value between -3 and 3 ({CH},-3<rp value ({m}) <3)⋃
RP).
In this case, the TMCA reputation module increments the reputation value

of the corresponding member node by 0.2 ({CH}, rp value ({m})+0.2)
⋃

RP).

A Formal Environment for MANET Organization and Security 155

Blackevent inference rule. Blackevent applies when a CH detects a positive event
concerning one of its blacklisted cluster member m having a reputation value
between -3 and 0 ({m} ⋃

BL). Using this inference rule, the TMCA reputation
module is triggered to increment the reputation value of this member node m
by +0.1 instead of +0.2 ({CH}, rp value ({m})+0.1)

⋃
RP).

Rehabevent inference rule . Rehabevent is applied to rehabilitate a blacklisted
member node m ({m} ⋃

BL) having a reputation value above the neutral value
0 once a positive event is detected. In this case, the rehabilitation mechanism
removes the rehabilitated node m from the blacklist (BL \ {m}).

Isolaevent inference rule. Isolaevent applies when the reputation value of a given
member node m reaches the minimum value -3 (rp value ({m})<=-3)

⋃
RP),

this latter is considered as malicious and the isolation module is triggered to
blacklist it (BL

⋃ {m}).

Edrop inference rule. When a CH detects the dropping of a packet by a member
node m (({Edrop}

⋃
E)), the Edrop inference rule is applied by triggering the

TMCA reputation module to decrement the node m’s reputation value by -1
({CH}, rp-value({m}) - 1)

⋃
RP).

Emodif inference rule. Emodif deals with a modification packet event detection
by a CH concerning a cluster member m. In this case, the node m’s reputation
value is decremented by 2 ({CH},rp-value({m}) - 2)

⋃
RP).

Edelg inference rule. Edelg deals with the delegation process. This rule is trig-
gered once the residual energy of a CH falls below a given threshold. In this
case, the CH delegates its functionalities to one of its cluster member having the
lowest weight and the highest reputation value.

4.2 Soundness and Completeness Validation

This sub section is concerned by the validation of the soundness and the com-
pleteness of the proposed inference system.

Soundness Validation. Soundness validation checks whether the proposed
inference system is sound by considering one formal property: Logical blacklist.
Maintained CHs’ blacklists are logical if two conditions are satisfied: (1) all
blacklisted nodes have a reputation value between the neutral reputation value 0
and the minimum threshold -3 and (2) all not blacklisted nodes have a reputation
value greater than -3 and lesser than 3. Hence, the soundness property is proved
by showing that maintained CHs’ blacklists remain logical even after members’
reputation values updates.

In the following, the logical blacklist property is defined and an adequate
theorem proving its preservation is proposed.

Property (Logical blacklist). A maintained blacklist is logical iff ({m} ∈ BL
∧ -3<= rp-value ({m}) <0) ∨ ({m} /∈ BL ∧ -3< rp value ({m}) <= 3).

156 A.B.C. Douss et al.

Theorem. Assuming that initially, maintained blacklists are logical. All member
nodes are not blacklisted and have the neutral reputation value equal to 0. If
(Cold, Ø, RP,BL)|-∗stop then logical blacklist property is preserved.

Proof. If (Cold,Ø,RP,BL)|-∗stop then only one inference rule among Epos,
Blackevent, Rehabevent, Isolaevent, Edrop or Emodif applies for each member node
m in Cold. Hence, we have to verify whether the application of each inference
rule locally keeps this property.

– When a positive event is detected by a CH concerning a not blacklisted mem-
ber node m (m /∈ BL), only the inference rule Epos is applied by incrementing
m’s reputation value by 0.2. Having that m is not blacklisted and its reputa-
tion value is between -3 and 3, then the property is preserved.

– When a positive event is detected concerning a blacklisted member m (m ∈
BL), then the Blackevent inference rule is triggered by incrementing the node
m’s reputation value by 0.1. Having that m is blacklisted and has a reputation
value between -3 and 0 then the property is preserved.

– If a CH detects that one of its blacklisted member m has a reputation value
greater than 0, it applies the Rehabevent inference rule to remove m from its
blacklist ({m} \ BL). The property is preserved because m no longer belongs
to the BL and its reputation value is greater than 0.

– The Isolaevent inference rule is used if a member node m’s reputation value
falls below -3 and it is not blacklisted. In this case, m is considered as malicious
and it is blacklisted. Having that m’s reputation value is greater than 0 and
it is added into the blacklist, then the property is preserved.

– When a negative event is detected by a CH concerning a not blacklisted mem-
ber m, two cases are conceivable: if the packet dropping event is detected, m’s
reputation value is decremented by 1 like depicted in Edrop inference rule,
however if the modification packet event is detected (Emodif rule), its reputa-
tion is decremented by 2. In both situations, the property is preserved because
m’s reputation value is between -3 and 3 and it is not blacklisted.

Therefore, the logical blacklist property is preserved.

Completeness Validation. Having that the soundness property of the pro-
posed inference system is proved; we proceed now to the verification of its com-
pleteness.

Theorem (Completeness). If maintained blacklists remain logical even after
members’ reputation values updating, then (Cold, Ø, RP,BL)|-∗stop.
Proof. Assume that maintained blacklists remains logical after updating the
reputation value of a set k of member nodes. Four situations can be distinguished
according to the event detected by the CH:

1. If the positive event is detected concerning a member ni, then two cases can
be distinguish. If the member ni is not blacklisted, then the Epos inference
rule is applied by incrementing the node ni’s reputation by 0.2. However, if ni

A Formal Environment for MANET Organization and Security 157

init
Cold, /O,RP,BL

Epos
({CH}, {m}) ∪ Cold, {Epos} ∪ E, ({CH}, −3<rp−value({m})<3) � RP,BL

Cold, E, ({CH} ,rp−value({m})+0.2) � RP,BL

Blackevent
({CH}, {m}) ∪ Cold, {Epos} ∪ E, ({CH}, −3<=rp−value({m})<0) � RP, {m} ∪ BL

Cold, E, ({CH} ,rp−value({m})+0.1) � RP,BL

Rehabevent
({CH}, {m}) ∪ Cold, E, ({CH}, rp−value({m})>=0) � RP, {m} ∪ BL

Cold, E, ,RP,BL \ {m}

Isolaevent
({CH}, {m}) ∪ Cold, E, ({CH}, rp−value({m})<=−3) � RP,BL

Cold, E, ,RP,BL ∪ {m}

Edrop
({CH}, {m}) ∪ Cold, {Edrop} ∪ E, ({CH}, −3<rp−value({m})<3) � RP,BL

Cold, E, ({CH} ,rp−value({m})−1) � RP,BL

Emodif
({CH}, {m}) ∪ Cold, {Emodif} ∪ E, ({CH}, −3<rp−value({m})<3) � RP,BL

Cold, E, ({CH} ,rp−value({m})−2) � RP,BL

Edelg
({CH},M) ∪ Cold, {Edelg} ∪ E,RP,BL

({m},M \ {m}) ∪ Cold, E,RP,BL

Where

⎧

⎪

⎨

⎪

⎩

Energy ({CH})) <= Emin

weight({m}) < Min(weight({x}))&& rpvalue({m}) < Max(rpvalue({x}))
{x} ∈ M \ {m}

stop Cold, /O,RP,BL
stop

Fig. 2. Inference system of TMCA and delegation process

is blacklisted, its reputation is incremented by 0.1 according to the Blackevent

inference rule.
2. If the negative event is detected concerning a member ni, then the Edrop

inference rule is applied if the member node ni rejects a received packet, and
the Emodif inference rule is triggered if ni modifies the content of a packet.

3. When a CH detects that the reputation value of one of its cluster member ni

reaches the neutral value 0, then the Rehabevent inference rule is triggered to
remove ni from the blacklist.

4. When a CH detects that the reputation value of one of its cluster member ni

falls below the minimum value -3, then the Isolaevent inference rule is applied
to add ni into the blacklist.

It follows that (Cold,Ø,RP,BL)|-(Cold1,Ø,RP,BL)|-...(Coldk, Ø,RP,BL)|-∗stop.

158 A.B.C. Douss et al.

5 Conclusion

Recently, we proposed a reputation-based trust management scheme in order
to counter malicious routing behavior and isolate it in MANET. This scheme
was built upon a Mobility-based Clustering Approach (MCA) as follows: First,
the MCA setting up phase organizes the network into stable clusters with one-
hop members then elects CHs with the minimum weight. Second, the MCA
maintenance phase, maintains the organization of clusters in presence of mobility.

TMCA scheme detects malicious routing behavior based on a reputation
value. It is built upon four modules actives only for CHs: monitoring mod-
ule allowing CH to monitor the cluster members’ behaviors, reputation module
updating reputation values according to received events from the monitoring
module, an isolation module isolating malicious member nodes and an identity
recognition module assessing alerts sources exchanged between CHs. A reha-
bilitation mechanism was also used to rehabilitate malicious nodes if they well
behave after a given timer.

The next goal towards the definition of a security architecture for MANET
was validating DTMCA formally. Hence, we proposed inference systems handling
the MCA maintenance phase as well as the TMCA scheme and the delegation
process. Next, we built a validation process using the proposed inference systems
and proving soundness and completeness of our proposal. Soundness was proved
by showing first that the clusters remain stable even after MANET topology
changes and then by showing that maintained CHs’ blacklists remain logical
even after members’ reputation values updates. Completeness was proved by
assessing that all potential situations are handled by the proposed inference
systems.

In future work, we aim validate our proposal based on real attacks such as
collusion or DDOS (Distributed Denial of Service) attacks.

References

1. Sharma, S.K., Kumar, R., Gangwar, A., Pakhre, K.: Routing protocols and security
issues in MANET: a survey. Int. J. Emerg. Technol. Adv. Eng. (IJETAE) 4(4), April
2014

2. Lindsay, P.A.: “Specification and validation of a network security policy model”,
Technical report. 97–05, Software Verification Research Centre, the University of
Queensland, April 1997

3. IEEE Guide to Software Requirements Specification. ANSI / IEEE Std 830 (1998)
4. Abassi, R., Guemara El Fatmi, S.: A novel validation method for firewall security

policy. J. Inf. Assur. Secur. 4, 329–337 (2009)
5. Kumar, B.P., Sekhar, P.C., Papanna, N., Bhushan, B.B.: A survey on MANET

security challenges and routing protocol. Int. J. Comput. Technol. Appl. (IJCTA)
4, 248–256 (2013)

6. Nassuora, A.B., Hussein, A.R.H.: CBPMD: a new weighted distributed clustering
algorithm for mobile Ad hoc networks (MANETs). Am. J. Sci. Res. 22, 43–56 (2011).
ISSN, 1450–223X

A Formal Environment for MANET Organization and Security 159

7. Youssef, N.B., Bouhoula, A., Jasquemard, F.: Automatic verification of conformance
of firewall configurations to security policies. In: Proceedings of the IEEE Sympo-
sium on Computers and Communications, ISCC 2009, Sousse, Tunisia (2009)

8. El Hassani, A.A., El Kalam, A.A., Bouhoula, A., Abassi, R., Ouahman, A.A.:
Integrity-OrBAC: a new model to preserve critical infrastructures integrity. Int.
J. Inf. Secur. (2014)

Analysis and Implementation of an Efficient
Ring-LPN Based Commitment Scheme

Helger Lipmaa(B) and Kateryna Pavlyk

University of Tartu, Tartu, Estonia
helger.lipmaa@gmail.com

Abstract. We analyze an efficient parallelizable commitment scheme
that is statistically binding and computationally hiding under a variant
of the decisional Ring-LPN assumption, conjectured to be secure against
quantum computers. It works over medium-size binary finite fields, with
both commitment and verification being dominated by 38 finite field mul-
tiplications. Such efficiency is achieved due to a precise analysis (that
takes into account recent attacks against LPN) of underlying parame-
ters. We report an initial parallel implementation by using the standard
OpenCL library on three different platforms. On the AMD Radeon HD
7950 GPU, one can commit to 1024-bit messages in 1 bit per 104.7 cycles.
We consider the analysis (which results in concrete parameters that sub-
sequent work can try to falsify) together with the implementation the
two most important aspects of the current work.

Keywords: Commitment schemes · GPU implementation · Learning
parity with noise · Postquantum

1 Introduction

A commitment scheme allows Alice to send a hidden value to Bob, so that she
can later open the commitment only to the original value (the binding property),
while before the opening the committed value stays hidden from Bob (the hid-
ing property). Being one of the most basic public-key primitives, commitment
schemes play an important role in the design of various cryptographic protocols.
E.g., to achieve security against malicious participants, a participant can first
commit to his inputs, and then present a zero-knowledge proof of correct behav-
ior on the committed data. To not hinder real-life use, apart from being secure,
a commitment scheme should also be highly efficient.

Probably the best known commitment scheme is the Pedersen scheme [15],
computationally binding under the discrete logarithm assumption. However, the
discrete logarithm assumption can be broken by using quantum computers.
It is desirable to design postquantum commitment schemes, i.e., commitment
schemes, secure against quantum computers. Such schemes can be used to design
postquantum cryptographic protocols.

Moreover, one is interested in the design of lightweight postquantum
commitment schemes. Here, by lightweight we mean real efficiency on (readily)
c© Springer International Publishing Switzerland 2015
M. Reiter and D. Naccache (Eds.): CANS 2015, LNCS 9476, pp. 160–175, 2015.
DOI: 10.1007/978-3-319-26823-1 12

An Efficient Ring-LPN Based Commitment Scheme 161

available laptop or desktop computers. Existing commitment schemes are usually
not lightweight. For example, the Pedersen commitment scheme requires a com-
mitter to execute two exponentiations, and is thus not very efficient. Moreover,
to achieve reasonable efficiency, Pedersen commitment scheme has to be imple-
mented over well-chosen elliptic curves, by using far from mundane implementa-
tion techniques. (See, e.g., [7].) This makes implementation (and its verification)
itself a burdensome process.

Currently, more and more computationally intensive tasks are done by
GPU-s (graphics processors) that can solve many parallelizable computational
problems much faster than the CPU-s. Most of the conventional (public-key) cryp-
tographic primitives have not been designed with such architectures in mind.
Thus, it is becoming necessary to design cryptographic primitives that are fast on
SIMD (Single Instruction Multiple Data) architectures, implemented by modern
GPU-s. At the current moment, even relatively cheap laptops have GPU-s that
offer computational power vastly superior to the CPU-s. We expect this trend to
continue in the future. Given quick advances in technology, in a few years such
GPU-s will become available on tablets and smartphones.

Two most promising directions to achieve security against quantum
computers seem to be (closely intertwined) lattice-based and code-based cryp-
tography. Based on lattices, it is known how to implement very many functional-
ities (including, say, fully-homomorphic encryption), though often not efficiently
enough for practice. Using code-based cryptography, it is known how to imple-
ment a somewhat smaller number of functionalities, but often very efficiently.

One of the most interesting code-based assumptions is learning parity with
noise (LPN, [2]). Based on LPN and its variants, it is known how to design
efficiently various symmetric primitives and protocols. Especially promising are
ring-based variants of such protocols, first considered in [10]. However, design
of similarly efficient public-key primitives is seriously lagging, and even recent
approaches, like public-key cryptosystems based on the decisional transposed
ring-LPN (TRLPN) assumption [8], are not yet sufficiently efficient.

We propose a new lightweight statistically binding and quantum-secure com-
putationally hiding commitment scheme. While the new commitment scheme
is a variant of some previous commitment schemes [11], we provide a much
more precise analysis of the security parameters than given in previous work. In
particular, we take into account recent attacks [9]. We also provide a partially
optimized implementation on contemporary GPU-s.

Let R = Z2[X]/(f(X)) be binary finite field, where f(X) is a degree-n
irreducible polynomial. We commit to m ∈ R, by using a randomizer (r, e) ∈ R2

and a public key (M ,R) ∈ R19×2. The commitment is equal to Mm ⊕Rr ⊕ e ,
where the noise e comes from a capped Bernoulli distribution (see Sect. 2) with
parameter τ ≈ 0.128118. (See the analysis in Sect. 4.)

We show that the new commitment scheme is binding if and only if the
additive noise e is sufficiently small (in the sense of the �1-norm). This follows
from a generalization and a careful analysis of the Gilbert-Varshamov bound to
the finite field, where one of the steps in the generalization crucially depends on
the fact that R is a field. On the other hand, if the added noise is too small, then

162 H. Lipmaa and K. Pavlyk

the decisional TRLPN problem of Damg̊ard and Park [8] becomes easy and thus
the commitment scheme is not hiding. (This follows from the existing attacks
against the LPN problem, see [9] and the references therein.) Hence, we have to
choose the underlying parameters carefully, so that the commitment scheme be
both binding and hiding yet efficient.

We recommend parameters (e.g., n = 1024 and τ = 0.128118, that offers 140-
bit security against known attacks, see Sect. 4) under which the new commitment
scheme is statistically binding and computationally hiding. The proposed value
of τ depends on several factors, including the loss of security due to the use of
capped Bernoulli lemma, the preciseness of the Gilbert-Varshamov bound, and
intricate details on the best known attacks against LPN [9].

Interestingly, the new commitment scheme is significantly more efficient than
the most efficient known public-key cryptosystems [8] based on the same assump-
tion. In the case of known public-key cryptosystems [8] the degree n (at least
10 000 bits1 compared to 1 024 bits at the same security level) of the polyno-
mial f is significantly higher than in our case. This can be compared to the
case of discrete logarithm-based schemes, where there is only minimal difference
in the efficiency between commitment schemes (e.g., Pedersen) and public-key
cryptosystems (e.g., Elgamal). We leave it as an open question whether there is
some intrinsic reason behind this.

The new commitment scheme is a ring-LPN based variant of previous LPN-
based commitment schemes [11,13]. However, using a different assumption (ring-
LPN) requires establishing concrete security parameters. As we will see in this
paper, the choice of parameters under which this scheme is both secure under
existing attacks yet efficient is far from being trivial. In comparison, [11] does
not analyze concrete parameters at all and thus can be seen as being rather
theoretical in its approach. Some of their choices (e.g., N = K where N and
K are the two main parameters of the LPN assumption) are applicable also in
our case but they would make the new scheme unnecessarily inefficient. Finally,
in the case where the best known attacks will be improved, one can use our
methodology to increase some of the parameters of the new commitment scheme.

Given our security analysis, both commitment and verification are dominated
by 38 binary finite field multiplications in a medium-size field, with n = 1024.
This can be compared to say Pedersen commitment, where one has to execute
exponentiations in an elliptic curve group defined over a smaller finite field group
(e.g., over Fp, with log2 p ≈ 256). Apart from the obvious efficiency benefits,
implementing of the new scheme from scratch is also much easier, partially since
one can avoid learning the intricacies of elliptic curves.

To emphasize both on the parallelizability and the conceptual simplicity of
the new commitment scheme, we finish the paper with a description of an initial,
very simple, implementation. This implementation is not of industrial strength,
but is mostly just provided to give a rough idea of achievable speed. More pre-
cisely, we implemented both a matrix-to-vector multiplication and a finite field
1 This estimate, given in [8], does not account for the recent attacks [4,9]. According

to [4], the key length of the public-key cryptosystem of [8] should be even larger.

An Efficient Ring-LPN Based Commitment Scheme 163

multiplication over the finite field F21024 . In addition, one can reuse extensive
literature on the fast implementations of finite field multiplications: while we
focused on the simplicity of the implementation, we are sure that up-to-date
algorithms achieve better efficiency. The timings, reported in Table 1, should
then be multiplied by 38 (plus a small epsilon to account for finite field addi-
tions) to obtain the timings of both commitment and verification.

Our implementation uses the OpenCL standard for parallel programming.
We tested this implementation on a rather mediocre2 NVIDIA Quadro 2000M
GPU (available in medium-class laptops), on a modern AMD Radeon HD 7950
GPU, and on the Intel i7-2860QM CPU, the results are summarized in Table 1.

As shown in Sect. 5, since the HD 7950 implementation only utilizes 272 cores
out of 1792, one can implement on average 1792/272 ≈ 6.59 binary finite field
multiplications in parallel. Since one commitment requires 38 multiplications, in
average one can schedule 1792/272/38 ≈ 0.173 commitments of 1024-bit mes-
sages per execution. Thus, one can commit to 1 bit per 18, 488.6/(0.173 ·1024) ≈
104.7 cycles on the AMD GPU. (See Table 1 for the origin of the number
18, 488.6.) We emphasize that this is the peak throughput number, given full
pipelines and optimal scheduling and that at this moment, this is only an esti-
mation. We provide an efficiency comparison with the Pedersen commitment
scheme in Sect. 5.

2 Preliminaries

By default, all vectors are column vectors. For a ∈ Z
n
2 , let a [i] be its ith coordi-

nate. Thus, a = (a [1], . . . ,a [n]). For a vector a ∈ Z
n
2 , let ||a ||1 =

∑
a [i] = �{i :

a [i] �= 0} be its Hamming weight. For a set A, a
r← A means that a is uniformly

picked from A, and for a randomized algorithm A, a
r← A means that a is uni-

formly picked by A. Let κ be the computational security parameter, and let λ
be the information-theoretical security parameter. In practice, one can assume
that κ = 128 and λ = 40. We give κ and λ as unary inputs (denoted by 1κ and
1λ) to some of the algorithms.

A commitment scheme enables a party to commit to a message, and open
it later to the same value. On the one hand, the commitment must hide the
message. On the other hand, the committer should not be able to open the com-
mitment to anything else but the original message. More formally, a commitment
scheme (in the public parameters model) is a tuple of three efficient algorithms,
gen, com and ver. The algorithm gen(1κ, 1λ) generates public parameters gk for
the commitment scheme. After that, the randomized algorithm comgk(m; ·) com-
mits to a message m by picking a uniformly random randomizer r

r← R (here, R
is a randomizer set specified by the commitment scheme and κ) and outputting
(y, z) ← comgk(m; r). Here, y is the commitment to m, while z is the decommit-
ment value. It is usually required that one can efficiently reconstruct m from z.
2 This GPU is more than 35 times slower than the fastest GPU-s in the market, accord-

ing to https://en.bitcoin.it/wiki/Non-specialized hardware comparison (accessed in
June 2015).

https://en.bitcoin.it/wiki/Non-specialized_hardware_comparison

164 H. Lipmaa and K. Pavlyk

The verification algorithm ver verifies that z is the correct decommitment of y,
i.e., vergk(y, z) outputs either 1 or 0. It is required that vergk(comgk(m; r)) = 1
for all valid gk, m and r.

A commitment scheme is statistically binding if with probability 1 − κ−ω(1)

over the choice of gk, for any m1 �= m2, r1 and r2, if (yi, zi) = comgk(mi; ri)
then y1 �= y2. A commitment scheme is computationally hiding if, given y, it
is computationally difficult to infer any information about m. More precisely,
the commitment scheme (gen, com, ver) is computationally hiding, if for any non-
uniform probabilistic polynomial time stateful adversary A, the following value
is negligible in κ:

∣
∣
∣
∣
∣
Pr

[
gk ← gen(1κ, 1λ), (m1,m2) ← A(gk), α r← {1, 2}, r

r← R :
A(comgk(gk,mα; r)) = α

]

− 1
2

∣
∣
∣
∣
∣
.

An [N,K] code C over a finite alphabet Σ is a subset of ΣN . The elements of
C are the codewords of C. If |Σ| = q, C is called a q-ary code. Associated with
a code is an encoding map E that maps the message set ΣK to ΣN . The code
is then the image of the encoding map, and it is said to be of length N and rank
K. An [N,K] code is called linear if any linear combination of its codewords is
also a codeword. A generator matrix R of a linear [N,K] code is a N ×K matrix
whose rows form a basis of the code. The (minimum) distance D of code C is
the minimal Hamming distance between two distinct codewords of C. An [N,K]
code with a minimal distance D is known as an [N,K,D] code. For arbitrary
linear code C, its minimum distance equals the minimum Hamming weight of a
nonzero codeword of C (see Proposition 2.1, [16]). According to the Singleton
bound, N − K + 1 ≥ D. According to the Gilbert-Varshamov bound, a random
[N,K] code has distance that matches the Singleton bound.

The code C has covering radius [6] dC when the distance between C and any
element of ΣN is not more than dC . An [N,K,D]dC covering code is a linear
code with parameters [N,K,D] and covering radius dC . Denote 	 = dC/N . The
best possible covering radius dC satisfies the sphere-covering bound

∑dC

i=0

(
N
i

) ≥
2N−K [6], or alternatively 2K ≥ 2N/|BN (dC)| ≥ 2(1−H2(�))N , where H2(p) =
−p log2 p − (1 − p) log2(1 − p), p ∈ [0, 1], is the binary entropy function.

For N ∈ N
+, let χN be a distribution over Z

N
2 . Let K < N be another

positive integer. The decisional (χN , N,K)-LPN problem [2] is (t, ε)-hard if for
every distinguisher D of size t:

∣
∣
∣
∣ Pr
R,s,e

[D(R,Rs ⊕ e) = 1] − Pr
R,r

[D(R, r) = 1]
∣
∣
∣
∣ ≤ ε,

where R
r← Z

N×K
2 , s r← Z

K
2 , e r← χN , and r

r← Z
N
2 . D also has access to the

description of χN .
In the standard definition of the decisional LPN problem, the error distrib-

ution χN is the Bernoulli distribution with a parameter 0 < τ < 1/2, i.e., every
bit e [i] is chosen independently and identically distributed with Pr[e [i] = 1] = τ .
In this case, we write χN = BerNτ . The decisional (BerNτ , N,K)-LPN problem is

An Efficient Ring-LPN Based Commitment Scheme 165

closely related to the long-standing open problem of efficiently decoding random
linear codes, and — assuming N = Θ(K) like in the current paper — is believed
to be hard even in the presence of quantum computers. Moreover, the search
(given Rs ⊕ e , compute s) and the decision version of the LPN assumption are
known to be polynomially equivalent [12]. The first subexponential algorithm to
solve the (search) LPN was proposed in [3]. The most efficient currently known
attack is by Guo, Johansson, and Löndahl [9].3

Consider a coin that shows heads with probability τ and tails with probability
1 − τ . The Hoeffding inequality states that the probability that N coin tosses
yields heads at least (τ + ε)N times is at most 1− exp(−2ε2N). I.e., if a random
variable comes from the Bernoulli distribution with parameter τ , then by the
Hoeffding inequality it is larger than τ∗N with probability 2−λ, where

τ∗ := τ +

√
λ

2 log2 e · N
. (1)

Thus, when working with the decisional LPN assumption, one can always assume
that ||e ||1 ≤ τ∗N . Following [11], we denote by Ber

N

τ the corresponding capped
Bernoulli distribution, and by (Ber

N

τ , N,K)-LPN the resulting assumption. I.e.,
e

r← Ber
N

τ means that e is first chosen according to BerNτ . If ||e ||1 > τ∗N ,
one resamples e again until its norm becomes not greater than τ∗N . Clearly,
(Ber

N

τ , N,K)-LPN is difficult iff (BerNτ , N,K)-LPN is difficult; see [11].
Heyse et al. [10] proposed a ring variant of the decisional LPN assumption.

A variant of it, TRLPN, was defined by Damg̊ard and Park [8]. Consider the
ring R = Z2[X]/(f(X)), where f is some degree n irreducible polynomial over
Z2[X]. (See [10] for a treatment in the case f is reducible.) The elements of R
are thus degree-n polynomials over Z2[X], with their addition and multiplication
defined modulo f . Define ||m||1 :=

∑n−1
i=0 mi, and for a vector e ∈ Ra for some

a, let ||e ||1 :=
∑a

i=1 ||ei||1 be its �1-norm.
For a polynomial ring R = Z2[X]/(f(X)), let BerRτ denote the distribution

over polynomials from R, where each of the coefficients of the polynomial is
drawn independently from Berτ . For N with n | N , the capped Bernoulli distri-
bution Ber

R,N/n

τ is defined in a natural way: one first chooses a
r← Ber

N

τ , and
then outputs e , where ei ← ∑n−1

j=0 a(i−1)n+j+1X
j for 1 ≤ i ≤ N/n.

Let N > K, and let ψ be a distribution on Z
N×K
2 . The decisional

(χN , N,K;ψ)-LPN problem [8] is defined exactly as the decisional (χN , N,K)-
LPN problem, except that R is drawn from ψ. Now, for a ring element
r =

∑n−1
i=0 riX

i ∈ R, let vec(r) be the natural isomorphic mapping of its coeffi-
cient vector to Z

n
2 , that is, vec(r)[i] = ri−1. For r ∈ R, we define mat(r) ∈ Z

n×n
2

to be the matrix for which mat(r)� · vec(r′) = vec(r · r′) for all r′ ∈ R. The ith
column vector of mat(r) is equal to vec(rXi−1), mat(r)(i) = vec(rXi−1).

3 In a recent eprint, [4] made the complexity analysis of [9] somewhat more precise.
However, since it is currently only an eprint, we will ignore its analysis.

166 H. Lipmaa and K. Pavlyk

Let K = 2n and N > K be such that n | N . Let ΨR,N,K denote the distribu-
tion over ZN×K

2 , whose samples consist of (N/n)×2 square matrices from Z
n×n
2 ,

where each square matrix is individually sampled as mat(r) for uniformly random
r

r← R. As in [8], we call the decisional (χN , N,K;ΨR,N,K)-LPN problem the
decisional transposed ring-LPN (TRLPN) problem. More precisely, in TRLPN,
the adversary has access to (f, τ,R,y), and has to guess whether y = Rx ⊕ e ,
for random x and a small-weight e , or y is random.

The decisional TRLPN problem is motivated by the fact that if A = mat(a)
and b = vec(b), then A�b = mat(a)�vec(b) = vec(a · b) can be computed
by using a single ring multiplication, that depending on the choice of f can
be computationally more efficient than a general matrix-vector product. More
importantly, instead of communicating 2N/n matrices A ∈ Z

n×n
2 as the public

key, it suffices to communicate 2N/n ring elements, and memory requirements
of all relevant algorithms will be reduced by a factor of n. See [10] for more
motivation.

The difficulty of the TRLPN problem is positively correlated with the para-
meters n and τ . Since the efficiency mainly depends on n, one should choose as
small n as possible such that there still exists a τ > 0 so that the constructed
primitive or protocol is secure. For an efficient implementation, it is also desirable
that n is a power of 2.

For a ring R = Z2[X]/(f(X)), let tR× denote the computational complexity
of one ring multiplication (as a function of f and thus also of n).

3 Ring-LPN Based Commitment Scheme

In [11], the authors proposed an LPN-based commitment scheme. We follow a
route that is common both in coding theory (in the context of cyclic codes)
and cryptography (in the context of lattices but also LPN [10]), by embedding
vectors from Z

n
2 to the ring Z2[X]/(f(X)), where f is a well chosen (irreducible)

degree-n polynomial. This enables to replace matrices with ring elements, and
matrix-to-vector multiplications with ring multiplications. The most intricate
part of the construction is its choice of parameters, coupled by a precise analysis
of their correctness. The commitment scheme is given in Fig. 1.

We recall that the distribution ΨR,N,K is defined over N × K matrices. In
particular, the expected value of ||e ||1 is equal to τ · N , and thus by the Hoeffd-
ing inequality, ||e ||1 ≤ D′ with a high probability. For efficiency purposes, one
should choose an irreducible f(X) with a minimal number of non-zero monomi-
als. Clearly, the commitment algorithm computes (M ,R) · (m, r)� ⊕ e .

Before stating Theorem 1 about the security of the commitment scheme, we
first establish some technical lemmas. The first lemma motivates the stated lower
bound β ≥ 	2/(1 − 2τ∗)
. Intuitively, we have an [N,K,D] code for K as in the
definition of the protocol, and D = 2τ∗N + 1 as in Theorem 1. The Singleton
bound gives us the following lower bound on N . This result is also necessary since
there is a mutual dependency between τ∗ (given in Eq. (1)) and N (defined in
the commitment scheme). In an actual implementation, one should set N to be

An Efficient Ring-LPN Based Commitment Scheme 167

Fig. 1. The commitment scheme

equal to the smallest multiplier of n greater or equal than the bound computed
in Lemma 1, and only then compute τ∗ from it according to Eq. (1).

Lemma 1. Consider τ < 1/2, τ∗ < 1/2 as in Eq. (1), K = 2n, and
D = 2τ∗N + 1. Then in any [N,K,D] code, N ≥ 2

1−2τ∗ · n = 2
1−2τ · n −

(
√

4n(1 − 2τ)λ ln 2 + λ2 ln2 2 − λ ln 2)/(1 − 2τ)2. If n | N , then N ≥ 3n.

Proof. By the Singleton bound, N ≥ K + D − 1. Due to the choice of K and
D, this means that N ≥ 2n + 2τ∗N , and thus the minimum choice for N is
N = 2

1−2τ∗ · n. Combining this value of N with τ∗ as in Eq. (1), after solving a
quadratic equation (1−2τ)N

√
2 log2 e−2

√
λN−2n

√
2 log2 e = 0, and taking the

smaller of two solutions,
√

N = (
√

λ ln 2−√
λ ln 2 + 4n(1 − 2τ))/

(√
2(1 − 2τ)

)
,

we get the first claim of the current lemma. The second claim (i.e., that if n | N
then N ≥ 3n) follows, since τ > 0. �

One can take any value of N , n | N , that satisfies this lemma. To improve on
efficiency, we recommend to choose N to be first integer larger than K/(1−2τ∗)
that divides by n. In practice, since we have τ∗ ≤ 1/4, we can always take
N = 2K. However, when τ∗ ≤ 1/6, we only need N ≥ 3·2n

2 = 3n while K = 2n.
Thus, in a paradoxical manner, a smaller τ∗, and thus a smaller τ , may help to
improve the efficiency of this commitment scheme. However, as we will see later,
such a small value of N would collapse the security for other reasons.

We show next that this commitment scheme is binding if the following prob-
ability GVR (the Gilbert-Varshamov bound for finite fields; a variant of the well-
known Gilbert-Varshamov bound) is (say) 1 − 2−λ.

Definition 1. Let f be a degree-n polynomial that is irreducible over Z2.
Assume that R = Z2[X]/(f(X)) and 0 < D ≤ N − K + 1. Let (R2)∗ denote
R2 \ 02, where 0 ∈ R. Define

GVR(N,K,D) := min
x∈(R2)∗

Pr
A

r←R(N/n)×2
[||A · x||1 ≥ D] .

We bound GVR under the assumption that f is irreducible. The following lemma
basically states that a random linear code with a generator matrix, distributed
according to ΨR,N,K , meets the Singleton bound with a very high probability.

168 H. Lipmaa and K. Pavlyk

Lemma 2. Let N = βn for an integer β ≥ 2, K = 2n, and D be as in the
commitment scheme of Sect. 3 such that D < N/3 + 2. Assume that 0 < D ≤
N − K + 1. Then

GVR(N,K,D) ≥ 1 − 2−n(β−β(H2((D−2)/(βn))+2))+1.

Proof. For some x ∈ (R2)∗, denote S := Pr
A

r←Rβ×2 [||A · x ||1 ≤ D − 1]. Since
R is a field, every non-zero element of it is irreducible. (Here we need R to be
a field.) Thus, for any non-zero m ∈ R and any yi ∈ R, i ∈ {1, β}, j ∈ {1, 2},
Pr

Aij
r←R

[Aijm = yi] = Pr
Aij

r←R
[Aij = m−1yi] = 1

2n . Thus, since A is chosen
uniformly, x �= 0 2 and the vector consisting of uniformly chosen coordinates is
uniformly chosen, then also y = Ax is uniformly random.

Now, we estimate S as the number of all y ∈ Rβ with ||y ||1 ≤ D − 1 divided
by the ring size |Rβ |. For y ∈ Rβ , let y∗ ∈ Z

N
2 be its canonical representation

as a bit-vector, i.e., y∗
in+j = yi[j]. Clearly, ||y ||1 = ||y∗||1. Thus, we need to

find S, the number of all y∗ ∈ Z
N
2 with ||y∗||1 ≤ D − 1, which is equal to

∑D−1
j=1 Sj , where Sj = |{y∗ : ||y∗||1 = j}| =

(
N
j

)
is the number of vectors from

Z
N
2 that have exactly j non-zero coefficients. In other words, S = BN (D−2)/2N ,

where BN (D − 2) is the size of the Hamming ball of radius D − 2. Then using
the following well-known bound for the sum of the first k binomial coefficients
for fixed t, 0 ≤ k ≤ t/2, Bt(k) =

∑k
i=0

(
t
i

) ≤ (
t
k

)
(1 + k/(t − 2k + 1)), since

D < N/2 + 2 (this follows from D < N/3 + 2 that we made) we obtain S =
BN (D − 2)/2N ≤ 1

2N · (
N

D−2

) · (1 + (D − 2)/(N − 2D + 5)). Using the Stirling
approximation of the factorial, it is easy to see that for every 0 ≤ α ≤ 1 it
holds that limt→∞ 1

t log2
(

t
αt

)
= H2(α) while log2

(
t

αt

) ≤ tH2(α), where H2(p) =
−p log2 p− (1−p) log2(1−p), p ∈ [0, 1], is the standard binary entropy function.
Thus

(
t
k

) ≤ 2tH2(k/t), and we obtain that

S ≤ 2N ·H2((D−2)/N)

2N
·
(

1 +
D − 2

N − 2D + 5

)

. (2)

Since by assumption D < N/3 + 2, we may replace 1 + D−2
N−D+5 with 2, thus

obtaining S ≤ 2N H2((D−2)/N)−N+1.
Now a union bound over all non-zero x implies that for all messages

x , it holds that PrA[||A · x ||1 ≤ D − 1] ≤ 22n2N H2((D−2)/N)−N+1, and
GVR(N,K,D) ≥ 1 − 2−N(1−H2((D−2)/N))+2n+1. �

We comment that we made only three approximations: the first one to bound
the sum of binomial coefficients, the second one to bound a binomial by using its
Stirling approximation, and then bounding a fraction in Eq. (2) by 2. All three
approximations are very tight in their regions.

Theorem 1. Consider the ring R = Z2[X]/(f(X)) for an irreducible degree-n
polynomial f . Let D = 2D′ +1, where D′ is as in the description of the commit-
ment scheme Γ of the current section. Γ is statistically binding with probability
GVR(N,K,D). If the decisional (Ber

R,N/n

τ , N,K;ΨR,N,K)-LPN problem (i.e., a
TRLPN problem) is (t, ε)-hard, then Γ is (t−Θ(tR×), 2ε)-computationally hiding.

An Efficient Ring-LPN Based Commitment Scheme 169

Proof. Statistical binding: Assume that for (y j , zj) = comgk(mj ; rj , ej)
where j ∈ {1, 2}, y1 = y2. Thus, (M ,R) · (m1 ⊕ m2, r1 ⊕ r2)� = e1 ⊕ e2.
Since (m1, r1) �= (m2, r2), with probability GVR(N,K,D), ||e1 ⊕ e2||1 ≥ D.
However, ||e1 ⊕ e2||1 ≤ ||e1||1 + ||e2||1 ≤ D′ + D′ < D. Contradiction with the
choice of N .

Computational hiding: Assume by contradiction that A = Ahiding is a time
tA adversary that can break the hiding property of the new commitment scheme
with probability 1/2+εA for some εA > 0. We construct the following adversary
B = Blpn that breaks the decisional LPN assumption with the help of A in related
time, with probability 1/2 + εA/2. From this, the claim follows.

1. The challenger first generates the parameters (f, τ). She sets β
r← {1, 2}. If

β = 1, then she sets y ← Rr ⊕ e for R
r← RN/n, r

r← R and e
r← Ber

R,N/n

τ .
Otherwise, she sets R

r← RN/n and y
r← RN/n. She sends (f, τ,R,y) to B.

2. B creates M
r← RN/n. He sends gk ← (f, τ,M ,R) to A.

3. Given input gk, A sends to B a challenge pair (m1,m2).
4. B picks α

r← {1, 2}. He sends Mmα ⊕ y to A. A answers with α′.
5. If α = α′ (A guessed correctly), then B outputs β′ ← 1 (guesses that β = 1),

otherwise B outputs β′ ← 2 (guesses that β = 2).

Clearly, the computation of B is dominated by tA + N/n · tR× , where tR× denotes
the computational complexity of one ring multiplication. Here, N/n · tR× enters
from the computation of the vector-to-scalar-product M · mα.

If β = 1, then Mmα ⊕ y = Mmα ⊕ Rr ⊕ e , which is a valid output of
comgk(mα; r, e), and by assumption on A, A can guess α from this with prob-
ability 1

2 + εA. If β = 2, then M · mα ⊕ y is uniformly random (and thus does
not depend on α), and thus A can guess α from this with probability 1

2 . By a
standard argument, Pr[β′ = β] = Pr[β′ = β|β = 1]Pr[β = 1] + Pr[β′ = β|β =
2]Pr[β = 2] = Pr[β′ = 1|β = 1] · 1

2 + Pr[β′ = 2|β = 2] · 1
2 = Pr[α = α′|β =

1] · 1
2 + Pr[α �= α′|β = 2] · 1

2 =
(
1
2 + εA

) · 1
2 + 1

2 · 1
2 = 1

2 + εA
2 . Thus, B breaks the

decisional LPN assumption with probability 1/2+εA/2 in time that is dominated
by tA + N/n · tR× operations. �

4 Recommended Parameter Choices

To achieve binding, we must assume that the parameters n and τ (and thus also
D) are chosen so that GVR(N,K,D) ≥ 1 − 2−λ. On the other hand, to achieve
computational hiding, n and τ are such that the decisional TRLPN problem
is (κω(1), κ−ω(1))-hard. Since the complexity of the best known attacks [4,9]
depends intimately on the choice of several internal variables, we used the fol-
lowing strategy. We computed for every β from 10 to 25 (where N = βn as
before), the value of D such that Lemma 2 returns an upper bound 2−λ ≤ 2−40.
We then found, for this D, the minimum value of β for which the attack of [9]
has computational complexity of at least 2130 bit operations; this fixes also the
maximum value of τ∗ = D/(2βn) and thus of τ .

170 H. Lipmaa and K. Pavlyk

We now give more details. The most efficient known attack against LPN was
recently published in [9]. This attack uses covering codes. Assume that we have
an [n′′, �]dC covering code, for certain parameters n′′ and �. As in [9], assume that
dC is the smallest integer, such that

∑dC

i=0

(
n′′

i

)
> 2n′′−
. The latter optimistic

estimate comes from the sphere-covering bound (i.e., assuming that there is a
perfect [n′′, �] code with covering radius dC). In reality, for most of the values
n′′ it is not known how to construct such codes; thus, in practice, the attack
from [9] has worse complexity than we estimate in what follows.

In bit operations, the computational complexity of the attack from [9] is
2fn,τ (q,a,t,b,w0,w1,
,n′′), where

fn,τ (q, a, t, b, w0, w1, �, n′′) := Tpre+

aqn + (n + 1)tq + m
∑w0

i=0

(n′−n′′
i

)
i + (n′′ − �)(2m + 2�) + �2�

∑w0
i=0

(n′−n′′
i

)

Pr(w0, n′ − n′′) · Pr(w1, n′′)
.

(3)

Here Tpre is the precomputation time of the Four Russian Matrix Inversion
algorithm [1], the rest is the complexity of five-step LPN solving algorithm using
covering codes [9]. Here (n, τ) are parameters of the LPN instance, q is the
number of queries, m = q − n − t2b, and q satisfies q − t2b > 1/(ε2

t+1 · (ε′)2w1),
where ε = 1 − 2τ , ε′ = 1 − 2dC

n′′ . The lower bound for q is due to the fast Walsh-
Hadamard transform used in the solving phase of the algorithm from [9]. The
probability Pr(w, j) =

∑w
i=0(1−τ)j−iτ i

(
j
i

)
expresses the possibility of having at

most w errors in j positions, therefore the denominator of Eq. (3) is the success
probability in one iteration. See [4,9] for detailed explanation of the parameters.
The only value that directly depends on dC is ε′, and the latter only gives a
lower bound on q − t2b.

We note that [4,9] did not add the term Tpre to the computational complexity.
According to [1] (page 145), Tpre =

∑a−1
i=0 (3 · 2s − 4)(n − is − s) = − 1

2a(3 · 2s −
4)(as − 2n + s) in the case of a n × n matrix, where s is a parameter such that
a = 	n/s
. Assuming a = n/s, Tpre ≈ 1.5 · 2n/a(a − 1)n, and thus for any given
n we can find numerically a value a that results in Tpre ≈ 2128.

In particular, in the most interesting case when n = 1024 (choosing n to be a
power of 2 makes it possible to use a number of optimizations), we are forced to
take β = 19, resulting in τ = 0.128118. In this case, the best parameters for the
attack from [9] that we found are (here we use the notation from [9]; see [9] for
a definition of each parameter) q ≈ 2104.9, a = 9, t = 6, b = 101, w0 = 2, c = 30,
� = 101, and n′′ = 390. With those parameters, the attack from [9] (when using
Eq. (3) for computational complexity) takes approximate time 2131.1. However,
the given complexity formula of this attack assumes the existence of a perfect
[390, 101] covering code. Since there is no such perfect code, the actual attack
will be presumably less efficient.

Since the number of multiplications the new commitment scheme uses is
2β, and each multiplications takes Θ(n2) bit-operations, we can estimate the
computational complexity by measuring the parameter 2βn2. We emphasize that
the actual computational complexity can only be measured by an optimized
implementation, see Sect. 5.

An Efficient Ring-LPN Based Commitment Scheme 171

5 Efficiency Issues and Implementation

Recall that the length of the public key is Θ(n) bits (with the recommended
parameters, N/n = 38 ring elements, and up to n bits to describe f .) The com-
mitment and the verification time are both dominated by 38tR× bit-operations. In
the case where R supports Fast Fourier Transform (e.g., when f(X) = Xn − 1),
then tR× = Θ(n log n). Then, both time complexities are Θ(n log n). In the
case f(X) is irreducible, one cannot implement the usual Fast Fourier Trans-
form. While Cyclotomic Fast Fourier Transform [17] has additive complexity
O(n2/(log n)log2(8/3)), we leave implementing that algorithm as a further work
and — for the sake of simplicity — concentrate instead on quadratic-time algo-
rithms. One reason for that is to emphasize that this commitment scheme is
extremely competitive even in the case of suboptimal implementations.

Importantly, the new commitment scheme is parallelizable. First, all 38 field
multiplications, needed in one commitment or verification, can be performed in
parallel. On top of it, every field multiplication can be parallelized by itself. In
particular, in the field multiplication a(X) = b(X)c(X) every coefficient ai can
be computed in parallel. Since all values ai are independent, this means that
parallelization of factor of n can be achieved. In practice, however it may be
faster to compute some w coefficients at once, where w is either the machine
word length or some other related constant.

Based on such considerations, we implemented a single finite field F21024 mul-
tiplication on several modern data-parallel computational architectures. More
precisely, we used the OpenCL environment that is an open standard for the
general-purpose computation for GPU-s. In addition to GPU-s, one can use
OpenCL to develop parallel implementations on modern multicore CPU-s.

We report implementation results on three different platforms. First,
NVIDIA’s rather old mobile GPU Quadro 2000M4. Second, on AMD’s gam-
ing GPU Radeon HD 7950, and third, on Intel’s Core i7-2860QM CPU. (See
Table 1). We remark that the used CPU supports 256-bit integer operations via
AVX (Advanced Vector Extensions). According to information on Bitcoin min-
ing (see footnote 2), some of the cutting edge GPU-s perform 35 times faster
than the Quadro 2000M (not even talking about CPU-s).

In what follows, we describe a partial implementation of the LPN-based
commitment scheme and of the ring-LPN based commitment scheme.

LPN-Based Commitment Scheme. First, we implemented a partial ver-
sion of the ring-LPN based commitment scheme, by first precomputing (once)
the matrices mat(M i) and mat(Ri), and then implementing only the matrix-to-
vector multiplication. This means that the CPU has to store the whole matrix
mat(x) (n2/8 bytes, i.e., 128 KiB when n = 1024). (In the ring-based implemen-
tation, described later, memory consumption will be obviously smaller.) Here,
we used L-bit (for a parameter L that depends on the concrete GPU/CPU)
4 http://www.nvidia.com/content/PDF/product-comparison/Product-Comparison-

Quadro-mobile-series.pdf, accessed in June 2015.

http://www.nvidia.com/content/PDF/product-comparison/Product-Comparison-Quadro-mobile-series.pdf
http://www.nvidia.com/content/PDF/product-comparison/Product-Comparison-Quadro-mobile-series.pdf

172 H. Lipmaa and K. Pavlyk

operations, this means that an L-bit entry-wise product can be implemented as
a single word-wide AND operation.

Moreover, we implemented both uncoalesced and coalesced field multiplica-
tion. In the coalesced implementation, we parallelized the work so that every
byte of y in the multiplication y = Ax is computed by a different GPU core.
This means that we utilize n/8 cores. (I.e., 128 cores, when n = 1024. If there are
less — say c — cores available, then every core has to execute n/(8c) threads.)
Since each core computes 8 coefficients of a(X), its computation is dominated
asymptotically by 8n/L (word-wide) AND and XOR operations, on top of which
one has to add 8 log2 L bit-operations that are required to compute Hamming
weight, together with some additional operations.

In the uncoalesced implementation, every core computes a single coefficient
of y . This is followed by a short epilogue where the outputs of eight consequent
cores are combined into one output byte. Here, we need n cores (i.e., given c
cores, every core has to execute n/c threads). Every core’s computation is dom-
inated asymptotically by n/L (word-wide) AND and XOR operations, followed
by log2 L bit-operations to compute Hamming weight. However, our uncoalesced
implementation requires 3 synchronized rounds to combine the results of conse-
quent cores into one output byte. Every such round has to start with a synchro-
nization (barrier in OpenCL). Since synchronization is somewhat costly (and
we also need more cores), in some of the cases an coalesced implementation (that
theoretically requires 8 times more computation) is actually faster.

To optimize the throughput, we had to include some hand optimizations. First,
we had to find out the optimal unroll count: if the loops are not unrolled at
all, then the computation time is dominated by the costly branch instructions.
However, if there are too many unrolls, then due to the way OpenCL operates,
there is going to be a large usage of hardware registers, which makes compu-
tation lower. The latter specifically affects the GPU-s of NVIDIA due to the
worse optimization by the compiler. To take this into account, in the case
of the Quadro 2000M, we also used the NVIDIA’s extension (via compiler
flag -cl-nv-maxrregcount) to OpenCL that allows to limit the number of used
registers to some value reg. We again chose the value reg carefully so as to
increase the throughput. (No such extension exists for AMD’s GPU or Intel’s
CPU.)

To summarize, in the case n = 1024 we obtain the results given in Table 1.
We expect that a carefully parallelized implementation of the new commitment
scheme will be much faster on HD 7950 and other top-of-the-line GPU-s. More-
over, we used the OpenCL library for the compatibility with both NVIDIA’s and
AMD’s GPU-s (and with multicore CPU-s). If one is interested in the top perfor-
mance on the NVIDIA’s GPU-s only, one could use the CUDA library (or even
program in the PTX virtual assembly language). Due to the larger dependency
on the hardware, a well-optimized CUDA program is usually significantly faster
than an OpenCL program on the same hardware platform. The same comments
hold also for the implementation ring-LPN based commitment scheme that we
describe in the next subsubsection.

An Efficient Ring-LPN Based Commitment Scheme 173

Table 1. Some values about the used GPU-s and CPU-s as returned by the OpenCL’s
clGetDeviceInfo command, together with our implementation data

GPU 1 GPU 2 CPU 1

clGetDeviceInfo string Return value Return value Return value

DEVICE NAME Tahiti Quadro 2000M Intel(R) Core(TM) i7-2860QM

CPU @ 2.50GHz

DEVICE VENDOR Advanced Micro Devices, Inc. NVIDIA Corporation Intel(R) Corporation

DEVICE VERSION OpenCL 1.2 AMD-APP (1642.5) OpenCL 1.1 CUDA OpenCL 1.2 (Build 57)

DRIVER VERSION 1642.5 (VM) 347.52 5.0.0.57

DEVICE MAX COMPUTE UNITS 28 4 8

DEVICE MAX CLOCK FREQUENCY 960 1100 2500

DEVICE GLOBAL MEM SIZE 3221225472 2147483648 2147352576

Cores 1792 192 8

Optimal parameters and timing (matrix-to-vector)

Implementation Uncoalesced Uncoalesced Coalesced

L ulong2 (128 bits) ulong (64 bits) ulong2 (128 bits)

max reg count N/A 180 N/A

unroll 4 5 11

mult per second (per core) 70 313.60 30 547.41 46 019.33

cycles per core 13 653.1 36 009.6 54 325.0

threads 128 128 1024

cycles x �threads / �cores 975.2 24006.4 6953600

Timing (finite field multiplication)

mult per second (per core) 51923.78 70861.68 35348.18

cycles per core 18488.640 15523.20 70725

Threads 272 272 272

cycles x �threads / �cores 2821.5 21991 2404650

Ring-LPN Based Commitment Scheme. We also implemented a binary
finite field F21024 multiplication. Here, we used a version of the Brauer’s expo-
nentiation algorithm (first used in the context of finite field multiplication by
Lopéz and Dahab [14]). That is, in the computation of a F21024 multiplication
c(X) = a(X)b(X), we first precompute a(X)b′(X) for all degree-(≤ W) poly-
nomials b′(X). After that, we use a parallel variant of the school book multipli-
cation method, where each thread uses W -bit precomputed values to compute
an L-bit intermediate result in an (n/L) × (2n/L) matrix. (Note that there are
(n/L) · (n/L+1) threads, since the rest of the entries of this matrix are equal to
0.) We then sum up in parallel the entries in every column of the intermediate
matrix, obtaining a degree 2n polynomial c′(X), and then reduce c′(X) mod-
ulo f(X). Since we chose f(X) with a small Hamming weight (namely, 5), the
reduction step is almost negligible. In our implementation, L = 64 and W = 4;
those constants were chosen to minimize the execution time. This means that
the maximal number of threads is 272. Similar strategy was outlined in say [5],
but our implementation is independent.

Since the CPU has 8 cores and the HD 7950 GPU has 1792 cores, the 7950
GPU is approximately 850 times faster, see the last row of Table 1. Thus, on the
HD 7950 GPU, one can implement 1792/272 ≈ 6.59 finite field multiplications
in parallel. Since one commitment (and verification) requires 38 multiplications,

174 H. Lipmaa and K. Pavlyk

one can schedule on average 1792/(272 · 38) = 0.173 commitments of 1024-bit
numbers in parallel.

Interestingly, our implementation of the finite field multiplication on the HD
7950 GPU and the Intel CPU is somewhat slower than the matrix-to-vector
multiplication (in cycles per core), while on the Quadro 2000M the opposite is
true. The relative slow-down on the first two processing units is due to the fact
that in our implementation of matrix-to-vector multiplication, we use the ulong2
data type to perform 128-bit operations in parallel, while in our implementation
of finite field multiplications, we did only use the 64-bit ulong data type. The
implementation of finite-field implementations also uses more threads than the
the matrix-to-vector multiplication. This can mean that if the communication
and storage of the public key is not a bottleneck, one might actually want to
implement the (non-ring) LPN based commitment scheme.

Comparison with Pedersen Commitment. In the case of the simplest dis-
crete logarithm-based commitment scheme, the Pedersen commitment, the com-
mitter has (m, r) and then computes y = gmhr. The verifier just recomputes y,
given the same m and r. Assuming that one uses elliptic curves, the committer’s
and the verifier’s computation is dominated by two exponentiations.

Efficiency-wise, the main difference between the described commitment
scheme and the Pedersen scheme is that in the former, one has to execute a
small number of multiplications (over a medium-sized finite field) while in the
Pedersen scheme one has to execute a small number of exponentiations (in ellip-
tic curves defined over a small finite field). Every exponentiation requires at
least κ finite field multiplications in a field of the size ≈ 22κ. Thus, Pedersen
with κ = 128 uses at least 128/38 ≈ 3.4 times more multiplications than the
new commitment scheme. Moreover, Pedersen has additional overhead due to
the use of much more complicated elliptic-curve group multiplications instead of
simpler finite-field multiplications. Finally, Pedersen is not as readily paralleliz-
able as the new commitment scheme, and it only allows to commit to 256-bit
strings instead of 1024-bit strings. For concrete numbers, we refer to say [7] for
a recent highly optimized implementation (that uses a 254-bit base field) of an
elliptic curve exponentiation with ≥ 100 000 cycles. Thus in their implementa-
tion of Pedersen, it takes at least 787 cycles to commit to a bit as compared with
≈ 104.7 cycles to implement the new commitment scheme on the AMD GPU.

Finally, recall that discrete logarithm is not secure against quantum comput-
ers, while LPN is assumed to be. Hence, the described commitment scheme is
not only more efficient, but also presumably more (quantum-)secure. Moreover,
recent attacks have indicated that discrete logarithm might not be as secure
against conventional (non-quantum) computers as thought up to now.

Acknowledgments. The first author was supported by Estonian Research Council
and European Union through the European Regional Development Fund. The sec-
ond author was supported by institutional research funding IUT20-57 of the Estonian
Ministry of Education and Research.

An Efficient Ring-LPN Based Commitment Scheme 175

References

1. Bard, G.V.: Algebraic Cryptanalysis. Springer (2009)
2. Blum, A., Furst, M.L., Kearns, M., Lipton, R.J.: Cryptographic primitives based

on hard learning problems. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773,
pp. 278–291. Springer, Heidelberg (1994)

3. Blum, A., Kalai, A., Wasserman, H.: Noise-Tolerant learning, the parity problem,
and the statistical query model. In: STOC 2000, pp. 435–440 (2000)

4. Bogos, S., Tramèr, F., Vaudenay, S.: On Solving LPN using BKW and Variants.
Technical Report 2015/049, International Association for Cryptologic Research
(2015). http://eprint.iacr.org/2015/049. Accessed 30 January 2015

5. Bose, U., Bhattacharya, A.K., Das, A.: GPU-based implementation of 128-bit
secure eta pairing over a binary field. In: Youssef, A., Nitaj, A., Hassanien, A.E.
(eds.) AFRICACRYPT 2013. LNCS, vol. 7918, pp. 26–42. Springer, Heidelberg
(2013)

6. Cohen, G., Honkala, I., Litsyn, S., Lobstein, A.: Covering Codes. North-Holland
Mathematical Library, vol. 54. North Holland (2005)

7. Costello, C., Hisil, H., Smith, B.: Faster compact diffie–hellman: endomorphisms
on the x -line. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol.
8441, pp. 183–200. Springer, Heidelberg (2014)

8. Damg̊ard, I., Park, S.: Is public-key encryption based on LPN practical? Techni-
cal Report 2012/699, International Association for Cryptologic Research (2012).
http://eprint.iacr.org/2012/699. Accessed 8 October 2013

9. Guo, Q., Johansson, T., Löndahl, C.: Solving LPN using covering codes. In: Sarkar,
P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8873, pp. 1–20. Springer,
Heidelberg (2014)

10. Heyse, S., Kiltz, E., Lyubashevsky, V., Paar, C., Pietrzak, K.: Lapin: an effi-
cient authentication protocol based on ring-LPN. In: Canteaut, A. (ed.) FSE 2012.
LNCS, vol. 7549, pp. 346–365. Springer, Heidelberg (2012)

11. Jain, A., Krenn, S., Pietrzak, K., Tentes, A.: Commitments and efficient zero-
knowledge proofs from learning parity with noise. In: Wang, X., Sako, K. (eds.)
ASIACRYPT 2012. LNCS, vol. 7658, pp. 663–680. Springer, Heidelberg (2012)

12. Katz, J., Shin, J.S.: Parallel and concurrent security of the HB and HB+ protocols.
In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 73–87. Springer,
Heidelberg (2006)

13. Kawachi, A., Tanaka, K., Xagawa, K.: Concurrently secure identification schemes
based on the worst-case hardness of lattice problems. In: Pieprzyk, J. (ed.)
ASIACRYPT 2008. LNCS, vol. 5350, pp. 372–389. Springer, Heidelberg (2008)

14. López, J., Dahab, R.: High-speed software multiplication in F2m. In: Roy, B.,
Okamoto, E. (eds.) INDOCRYPT 2000. LNCS, vol. 1977, pp. 203–212. Springer,
Heidelberg (2000)

15. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret
sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140.
Springer, Heidelberg (1992)

16. Roth, R.: Introduction to Coding Theory. Cambridge University Press (2006)
17. Wu, X., Wang, Y., Yan, Z.: On algorithms and complexities of cyclotomic fast

fourier transforms over arbitrary finite fields. IEEE Transactions on Signal Process-
ing 60(3), 1149–1158 (2012)

http://eprint.iacr.org/2015/049
http://eprint.iacr.org/2012/699

Secure Multi-party Computation

Practical Password-Based Authentication
Protocol for Secret Sharing Based Multiparty

Computation

Ryo Kikuchi(B), Koji Chida, Dai Ikarashi, and Koki Hamada

NTT Corporation, Tokyo, Japan
{kikuchi.ryo,chida.koji,ikarashi.dai,hamada.koki}@lab.ntt.co.jp

Abstract. The speed of secret sharing (SS)-based multiparty computa-
tion (MPC) has recently increased greatly, and several efforts to imple-
ment and use it have been put into practice. Authentication of clients is
one critical mechanism for implementing SS-based MPC successfully in
practice. We propose a password-based authentication protocol for SS-
based MPC. Our protocol is secure in the presence of secure channels,
and it is optimized for practical use with SS-based MPC in the following
ways.
– Threshold security: Our protocol is secure in the honest majority,

which is necessary and sufficient since most practical results on SS-
based MPC are secure in the same environment.

– Establishing distinct channels: After our protocol, a client has distinct
secure and two-way authenticated channels to each server, which is
necessary for SS-based MPC and different from the usual setting.

– Ease of implementation: Our protocol consists of SS and operations
involving SS, which can be reused from an implementation of SS-based
MPC.

Furthermore, we implemented our protocol with an optimization for the
realistic network and confirm that the protocol is practical. A client
received the result within 2 s even when the network delay was 200 ms,
which is almost the delay that occurs between Japan and Europe.

Keywords: Password · Authentication · Secret sharing · Multiparty
computation

1 Introduction

Secret sharing (SS) and SS-based multiparty computation (MPC) are very pop-
ular topics in cryptography. SS is a way to securely share data. Data is divided
into shares by a client and distributed among servers. A qualified coalition of
servers can reconstruct the data from their shares, and no one else can obtain
information about that data. (k, n)-threshold secret-sharing ((k, n)-SS) is a com-
mon class of SS in which there are n servers, and any coalition that includes k
or more servers is qualified. It has a certain collusion resistance such that even

c© Springer International Publishing Switzerland 2015
M. Reiter and D. Naccache (Eds.): CANS 2015, LNCS 9476, pp. 179–196, 2015.
DOI: 10.1007/978-3-319-26823-1 13

180 R. Kikuchi et al.

if k − 1 servers are compromised, shared data are kept secret. SS-based MPC
provides a mechanism in which one can perform a function involving secretly
shared data, while no one else can obtain information about the data.

Much research has been done on SS-based MPC, and many protocols have
been proposed. Constructing these protocols has been a commonly theoretical
aspect of cryptographic study, and a fundamental theory was developed between
the mid-1980s and mid-2000s. (k, n)-SS-based MPC with unconditional security
is one of the most frequently used protocols since it is considered to be the most
efficient protocol. The speed of these protocols has recently increased greatly, and
several efforts to implement and use SS-based MPC have been put into practice
[8,10,12,26]. Authentication of clients is one critical mechanism for implementing
SS-based MPC successfully in practice. It is natural to qualify who uses SS-
based MPC for some reasons, e.g., the outputs of SS-based MPC are somewhat
sensitive, or a service provider wants to charge clients. Therefore, this is the
issue that we address in the paper to use SS-based MPC in practice, we have to
develop a practical authentication protocol for successful implementation.

One of the most popular methods of authentication is using a password.
A password is easy to memorize, and password-based authentication does not
require extra devices such as security tokens, so we focus on password-based
authentication in the paper.

1.1 Requirements for SS-Based MPC’s Authentication

What authentication protocol is required for the practical use of SS-based MPC?
First, the authentication protocol should have collusion resistance. Let us con-
sider a case of SS-based MPC that is secure against t corruptions, for example.
A natural combination of SS-based MPC and ordinary password authentication
should be either a client using n different passwords for each server or using a
unique password for all servers. The former eliminates the benefit of password
authentication since a client must choose passwords independently and remem-
ber all of them. The latter eliminates all the benefits of SS-based MPC. A single
corrupted server can extract a password through an offline dictionary attack
as passwords tend to have small entropy. Then, the corrupted server imper-
sonates the other servers and breaches the security. Most practical results of
SS-based MPC are secure in the honest majority (precisely, t < n/2 or t < n/3)
[8,10,12,20,24,26]. To maintain the security of SS-based MPC, the authentica-
tion protocol should be secure in the honest majority.

Second, a client should establish distinct secure channels to each server after
the authentication. The aim of the authentication itself is to check whether
or not the client is legitimate. However, after the authentication, a client may
send shares to the servers. For secure SS-based MPC, a share must be sent to
only a legitimate server, and any other servers should not be able to obtain
the share. This means that the client should establish distinct secure channels
to each server. This setting differs from the usual ones considered in thresh-
old password-based authenticated key-exchange (TPAKE) [32,34] and password
protected/authenticated SS (PPSS) [2,13].

Practical Password-Based Authentication Protocol 181

Third, constructing the authentication protocol with SS and operations
involving SS is preferable. SS-based MPC consists of SS and operations involv-
ing SS. Therefore, if the authentication protocol can be implemented with these
resources, it will simplify the implementation. If the authentication protocol uses
an original public-key technique, one has to implement it such as by exponenti-
ation over a large group. It is troublesome and sometimes greatly increases the
cost.

1.2 Our Contribution

We formalize a password-based authentication protocol for SS-based MPC
(PASM). PASM supports password setup/update, which is useful depending
on the application. The security definition of PASM can be derived from that of
TPAKE [32,34] and password-based authentication [23]. We propose a PASM
protocol satisfying three conditions: secure in the honest majority, establishing
distinct channels between a client and each server after the authentication, and
consisting of operations involving SS.

PASM assumes two types of channels among participants. The first is secure
channels [15] with two-way authentication among the servers. This means that
any server can interact with another server without leaking information about a
sent message, i.e., secure channel, the sender knows the receiver who can receive
the message, and the receiver knows the sender who sent the message, i.e., two-
way authentication. Such channels can be instantiated (but not restricted) by
sharing pre-shared keys between all pairs of servers. The second is secure channels
with one-way authentication between a client and each server. This means that
any server can interact with the client without leaking information about the
sent message, and the client knows the server who can receive the message,
but the server does not know the client who sent the message, i.e., one-way
authentication. Such channels can be instantiated by TLS server authentication
assuming a public key infrastructure (PKI).

PASM is not key-exchange but authentication. Key-exchange is more general,
but authentication is sufficient since we assume the two types of secure channels.
If a client is accepted in PASM, the servers recognize that the client is a legitimate
user. In other words, secure channels with one-way authentication between a
client and each server become the ones with two-way authentication. Therefore,
the client and servers can communicate with each other securely by using the
channels.

In addition, we implemented our PASM protocol with an optimization for a
realistic network model we call the gateway network model. In this model, there
is a gateway, and all communications are relayed by the gateway. In practice, the
gateway network model may be used with the two reasons. First, communication
channels between a server to another server can be reduced. Second, the gateway
can synchronize the servers in the mutual execution easily, and prevents the
order of shares from being changed even if two clients request the authentication
nearly at the same time. The optimization in the model is sending “accept” to
the client as soon as possible by bringing the gateway into the authentication.

182 R. Kikuchi et al.

As an experimental result, a client received an authentication result within 2 s
even when the network delay was 200 ms, which is almost that between Japan
and Europe.

Bagherzandi et al. [2] proposed password protected SS (PPSS) [2]. In PPSS,
a client obtains legitimate shares if the password is correct. The aim of PPSS
is not to establish a secure channel but to reconstruct the secret. Camenisch
et al. proposed another PPSS [13] that achieves universal composability [14].

1.3 Related Works

Bellovin and Merritt [6] proposed the first protocol for password-based key gen-
eration. Although the protocol of [6] can be attacked and fixed [33], there have
been many following protocols [7,25,36], which have not been proven, and their
security is based on heuristic arguments. Halevi and Krawczyk [23] first gave
a formal definition on password-based authentication and key-exchange. There
have been many studies with provable security, and the main field is in two-party
setting, e.g., [11,21,22,27–30].

Ford and Kaliski [19] first considered a new model where the password is
stored in n > 1 servers. This is called threshold password-based authenticated
key-exchange (TPAKE). In the case of n > 2, there are two provably secure
TPAKEs. MacKenzie et al. [32] proposed a TPAKE that tolerates less than n−1
collusions. Where only the servers use the public key. Raimondo and Gennaro
[34] proposed a TPAKE that tolerates less than n/3 collusions.

Relation to TPAKE. TPAKE has a similar function to PASM. However,
TPAKE and PASM are difficult to be compared with each other because of the
following sense.

– A client has distinct channels to each server after PASM, while the client has
the common key among all servers in TPAKE.

– PASM is an authentication, while TPAKE is a key-exchange.
– PASM assumes two types of channels, while TPAKE does not in general.

We can try to uniform the conditions as follows.

– We assume that the secure channels with two-way authentication are instan-
tiated by an AE with pre-shared keys.

– We assume that the secure channels with one-way authentication are instan-
tiated by the KEM-DEM framework with PKI.

– We regard PASM as key-exchange protocol with PKI that finally outputs the
key used in DEM instead of accept.

If we admit the above, our protocol with Kurosawa-Desmedt [31] in fact costs
fewer number exponentiations and fewer number of communication moves com-
pared to the other provably secure TPAKEs [32,34], while our protocol requires
PKI.

Practical Password-Based Authentication Protocol 183

However, this uniforming is too forceful. It compares authentication with key-
exchange in only the viewpoint of key-exchange, though a role of authentication
may be different from the one of key-exchange. In addition, it is strange that “Key-
exchange” was finished before the authentication ends. Therefore, we believe that
it is appropriate to conclude that PASM and TPAKE are incomparable.

1.4 Protocol Overview

PASM consists of three phases consisting of password setup, authentication, and
password update. The technical key is the authentication, so we describe this
phase here.

We use Shamir’s SS, which is a threshold SS scheme, as a building block. Let
w be a valid password that has already been registered and w′ be a password
used by a (possibly invalid) client. The valid password is stored in the secretly
shared form, i.e., the server has [w], where [·] denotes a share of (k, n)-Shamir. In
the idle state, the servers cooperate with each other to generate a random share
[r] and zero share [[0]], where [[·]] denotes a share of (2k − 1, n)-Shamir. These
shares can be generated by the well-known protocols.

A client sends the shares of the password, [w′], to every server. Then each
server computes [r]([w] − [w′]) + [[0]], reconstructs it, and checks whether or not
the reconstructed value is zero. If the password is invalid, the reconstructed
value is a random number thanks to r, and [r]([w] − [w′]) + [[0]] is a uniformly
distributed share thanks to [[0]]. Therefore, the reconstruction does not leak any
information about the password.

The above is an intuitive flow of the authentication. However, it is not enough
to be secure. The adversary may wait until all other servers have sent their shares
and change the share to bias the reconstructed value. To prevent such attack,
a different [r] and [[0]] are prepared for each server, and each server reconstruct
and check r(w − w′) = 0. If w �= w′, the reconstructed values the adversary can
obtain are independently random, so the adversary cannot obtain information
of w. In addition, even if the adversary sends an invalid share, it is difficult to
change the reconstructed value of an honest server to 0 since r is independently
random.

2 Preliminaries and Models

We introduce the syntax of our password-based authentication protocol for SS-
based MPC and the setting where it works. Here, x ← y means that x is uni-
formly at random if y is a finite set; otherwise, simply substitute y into x. For
probabilistic algorithm A, y ← A(x) means that y is the output of A with input
x and uniformly picked randomness. If T is a set, |T| denotes the number of
elements that belong to T.

184 R. Kikuchi et al.

2.1 Communication Model

The participants of our authentication protocol consist of a client C and servers
Si for 1 ≤ i ≤ n. We assume two types of communication channel among the
participants in the paper.

Communication Channel Among Servers. We assume that communication
channels among Si for 1 ≤ i ≤ n are secure channels [15] with two-way authen-
tication. This means that a channel only leaks the message length, only allows
the adversary to forward or delete messages, and the sender/receiver knows who
is the receiver/sender. The channel is, for example, instantiated by an authen-
ticated1 encryption (AE) with pre-shared keys; distinct keys are shared among
Si for 1 ≤ i ≤ n beforehand. When Si sends a to Sj, Si encrypts a via AE with a
pre-shared key between Si and Sj and sends the ciphertext to Sj. Sj decrypts the
ciphertext with the pre-shared key and obtains a.

Communication Channel Between Client and Servers. We assume that
communication channels between C and each Si for 1 ≤ i ≤ n are secure channels
with one-way authentication. This means that a channel only leaks the mes-
sage length and allows the adversary to forward or delete messages. In addition,
C knows which Si is the receiver, but Si does not. The channel is, for exam-
ple, instantiated by TLS server authentication. A concrete instantiation using
the KEM-DEM [17] framework and PKI is the following. We consider C and Si
establish the channel here. Si generates keys of KEM and publishes a public key
and its certificate. C verifies the certificate, obtains a symmetric key for DEM,
and sends the symmetric key via KEM. Si decrypts the ciphertext and obtains
the symmetric key. After that, all messages interacted with between C and Si are
encrypted via DEM with the symmetric key.

2.2 Shamir’s Secret Sharing

We introduce the definitions and security notion for Shamir’s SS [35], which is
a component of our PASM protocol.

Let F be a finite field. Let [s]i be a share of data s ∈ F in (k, n)-Shamir
for server Si, 〈s〉i be a similar share for (2k − 2, n)-Shamir, and [[s]]i be a similar
share for (2k − 1, n)-Shamir. Let Q be a coalition of parties and [s]Q denote a
set of shares o[s]i | i ∈ Qp. We assume that the number of corrupted parties
is t such that t < k holds. We say ([s]1, . . . , [s]n) is uniformly random if it is
uniformly randomly chosen from the set of shares whose data is s. We say [r],
where r ← F , is a random share and [[0]] is a zero share. (k, n)-Shamir consists
of two algorithms, a share generation algorithm Share and share reconstruction
algorithm Rec described below.

1 This “authentication” means the capability to detect an instance of tampering.

Practical Password-Based Authentication Protocol 185

– Share :For input s ∈ F , choose a random polynomial f(x) over F whose
degree is k − 1 such that f(0) = s holds. Then, set [s]i = f(i) and output
([s]0, . . . , [s]n).

– Rec :For inputk shares ([s]i1 , . . . ,[s]ik
), compute s=

∑
1≤j≤k

∏
1≤�≤k,� �=j i�

∏
1≤�≤k,� �=j i�−ij

[s]ij
.

(2k − 2, n)-Shamir and (2k − 1, n)-Shamir are the same as (k, n)-Shamir except
that the degree of f(x) is 2k − 3 and 2k − 2, respectively.

In addition, we use the following property of (k, n) and (2k − 1, n)-Shamir.
For all |V| = 2k − 1 and V ⊆ {1, . . . , n}, there are public λ

(V)
1 , . . . , λ

(V)
2k−1 such

that s1s2 =
∑

i∈V
λ
(V)
i [s1]i[s2]i and s =

∑
i∈V

λ
(V)
i [[s]]i hold. In other words, λ(V)

denotes the coefficients of Lagrange interpolation in (2k − 1, n)-Shamir.
The security requirement of (k, n)-SS is called privacy. (k, n)-Shamir has

perfect privacy against k − 1 corruptions, which means that the distribution of
k − 1 shares is the same as that of uniformly random k − 1 elements in F .

2.3 Password-Based Authentication Protocol for SS-Based MPC

PASM protocol provides not only authentication but also password setup and
password update protocols.

The formal syntax of PASM is as follows. Each C has its password w, which
is uniformly drawn from a dictionary D. Each Si has a list LSi that logs a (share
of) password and corresponding client pair. The authentication protocol is per-
formed by a coalition of parties Si for i ∈ V where V ⊆ {1, . . . , n}.

PASM consists of the following three protocols.

– Setup: The inputs are a password w for C and LSi for Si, where 1 ≤ i ≤ n.
After the protocol, C outputs success/fail, and Si for 1 ≤ i ≤ n outputs
(renewal) LSi or fail.

– Auth: The inputs are w′ for C and LSi for Si, where i ∈ V. After the protocol,
C and Si for i ∈ V output accept/reject.

– Update: The inputs are the current password w and new password w∗ for C
and LSi for Si, where 1 ≤ i ≤ n. After the protocol, C outputs success/fail,
and Si for 1 ≤ i ≤ n outputs (renewal) LSi or fail.

Security Aspects. We define the security of our protocol as an analogy of
password authentication [5,23] and (threshold) PAKE [1,4,32,34]. The partici-
pants are clients and n servers. It is required that non-legitimate clients cannot
be accepted even if the adversary A adaptively corrupts k − 1 servers.

Now, we give the formal definition of security. Let U = C ∪ S be a set of
all participants. USetup(i), UAuth(i), and UUpdate(i) denote the i-th instances of
Setup, Auth, and Update for U ∈ U, respectively. Note that we separate
the instances of Setup, Auth, and Update to clarify which instance is an
authentication.

We formulate corruptions of the adversary A as follows. We say that U is
corrupted when corruptU = true. This flag, corruptU, is set to true if one of the
following queries has been sent.

186 R. Kikuchi et al.

– Corrupt(Ci): This query models corruption of Ci. The reply of this query is
the password of Ci. We then set corruptCi

← true. (It means that A gets access
to the channels to each Si).

– Corrupt(Si): This query models corruption of Si. The reply of this query is
all the (share of) passwords stored in Si. We then set corruptSi ← true.

All transactions occur only through oracle queries. The queries model the capa-
bilities of A: corrupting some participants, sending a tampered message, etc. There
are six oracles that model a passive/active attack to Setup/Update/Auth,
respectively. The oracle queries are as follows.

– ExecSetup(CSetup(j0)i , SSetup(j1)1 , . . . , SSetup(jn)n): This query models passive
attacks in which A eavesdrops on honest executions on Setup. The reply of
this query is the all of the exchanged messages of corrupted instances during
the honest execution of Setup among CSetup(j0)i and SSetup(j1)1 , . . . , SSetup(jn)n .

– SendSetup(Û ,USetup(i),m): This query models active attacks in which A
chooses the message m and sends it to USetup(i) in the name of Û . The
oracle replies the message that USetup(i) would send upon receipt of m, only
if corruptÛ = true.

– ExecUpdate(CUpdate(j0)
i , SUpdate(j1)

1 , . . . , SUpdate(jn)
n): This query models

passive attacks on Update. The reply of this query is the all of the exchanged
messages of corrupted instances during the honest execution of Update

among CUpdate(j0)
i and SUpdate(j1)

1 , . . . , SUpdate(jn)
n .

– SendUpdate(Û ,UUpdate(i),m): This query models active attacks in which
A chooses the message m and sends it to UUpdate(i) in the name of Û . The
oracle replies the message that USetup(i) would send upon receipt of m, only
if corruptÛ = true.

– ExecAuth(CAuth(j0)
i , SAuth(j1)

�1
, . . . , S

Auth(j|V|)
�|V|

): This query models passive
attacks on Auth. The reply of this query is all of the exchanged messages
of corrupted instances among CAuth(j0)

i and SAuth(j1)
�1

,. . . ,SAuth(j|V|)
�|V|

.

– SendAuth(Û ,UAuth(j),m): This query models active attacks in which A
chooses the message m and sends it to UAuth(j) in the name of Û . The ora-
cle replies the message that UAuth(i) would send upon receipt of m, only if
corruptÛ = true.

The notion of partnering represents which participants are authenticated.
We use this notion as in [1,4], which is based on session identifiers sid and
partner identifiers pid . For all CAuth(j0)

i where corruptCi
�= true, CAuth(j0)

i has
pid = {j1, . . . , j|V|} and sid . Here, sid is the concatenation of all massages sent
and received by CAuth(j0)

i in its communication. For all SAuth(ji)
�i

where corruptS�i
�=

true, SAuth(ji)
�i

also has pid = CAuth(j′
0)

i′ and sid . Here, sid is the concatenation

of all massages sent and received by SAuth(ji)
�i

except the communication among

servers. We say CAuth(j0)
i that has (pid , sid) and corruptCi

�= 0, and SAuth(ji′)
�i′

that

Practical Password-Based Authentication Protocol 187

has (pid ′
S�i′

, sid ′
S�i′

) for i′ ∈ V and corruptS�i′
�= true, are partnered if all �i′ ∈ pid ,

pid ′ = CAuth(j0)
i , and sid and all sid ′

S�i′
are the same.

We say A wins if there is at least one SAuth(j0)
i for i ∈ V and corruptSi �= 0

that outputs accept but has no partner instances. Now, we define the security of
PASM.

Definition 1. Let D be a dictionary, qse be the number of SendAuth queries
and qup be the number of SendUpdate queries. We say PASM = (Setup,
Auth,Update) is ε secure against impersonation if for all A,

AdvPASM
D

(A) = Pr[A wins] ≤ qse + qup
|D| + ε.

The advantage, AdvPASM
D

(A), is not negligible since a password has only low
entropy. The best lower bound is that AdvPASM

D
(A) equals to qse+qup

|D| . Note that

AdvPASM
D

(A) is proportional to the number of not only qse but also qup since
Update inherently includes Auth.

3 Our Basic Protocol

In this section, we propose our PASM protocol and discuss its security.

3.1 General Architecture

We assume that there are secure channels with two-way authentication among
all Si for 1 ≤ i ≤ n and secure channels with one-way authentication between
C and each Si for 1 ≤ i ≤ n. After the protocol, the channels between C and
the others become secure channels with two-way authentication. Therefore, C
and Si for 1 ≤ i ≤ n interact with each other by using the channels after the
authentication.

Our basic protocol succeeds as follows.

1. A client registers its password through Setup.
2. Before authentication, the servers performs RandShareGen and

ZeroShareGen.
3. The client is to be authenticated through Auth.
4. If needed, the client updates its password through Update.

3.2 Details of the Protocol

For clarity of the protocol, we assume that any U immediately outputs reject/fail
and halts when U receives “reject”/“fail” from another U′, and we omit this from
the description of the protocol. In addition, we say “U broadcasts a” when U
sends a to all participants.

188 R. Kikuchi et al.

Protocol 1. Setup
Input: w ∈ D for C, Li for Si where 1 ≤ i ≤ n
Output: success/fail for C, and a (updated) Li or fail for Si where 1 ≤ i ≤ n
1: C computes ([w]1, . . . , [w]n) ← Share(w) and sends (C, [w]i) to Si for 1 ≤ i ≤ n
2: each Si for 1 ≤ i ≤ n do
3: if (C, ∗) ∈ Li then outputs fail, sends “fail” to Ci, and halts
4: Li ← Li ∪ {(C, [w]i)}
5: broadcasts “success” to Ci

6: if C receives n “successes”, then outputs success
7: each Si for 1 ≤ i ≤ n do
8: if receives n “successes”, then outputs Li

Password Setup. We first describe the Setup in Protocol 1. This simply sends
Shamir’s share to Si for 1 ≤ i ≤ n.

Authentication. We next describe Auth, which consists of two steps. The first
step is generating random shares and zero shares, which is performed among Si
for 1 ≤ i ≤ n. The second is authenticating C by using the random shares and
zero shares. The first step is independent of C and the password, so it can be
performed in the idle state. There are several ways to generate random shares and
zero shares, so we give an example here; other ways are shown in AppendixA.

Let {xi,j}j=1,...,n
i=1,...,n−k+1 be an (n−k+1)×n Vandermonde matrix. We describe

(an example of) the first step in Protocols 2 and 3. The random share is generated
through the technique of Damg̊ard and Nielsen [18]. The zero share is generated
by almost the same technique generating a random share whose degree is 2k − 2
and then multiplying the coordinate of Shamir’s SS by the share. These protocols

Protocol 2. RandShareGen
Input: Nothing
Output: [r(j)]i for Si, where 1 ≤ i ≤ n, 1 ≤ j ≤ n − k + 1, and r(j) ← F
1: each Si for 1 ≤ i ≤ n do
2: r′

i ← F
3: ([r′

i]1, . . . , [r
′
i]n) ← Share(r′

i)
4: Send [r′

i]j to Sj for 1 ≤ j ≤ n
5: each Si for 1 ≤ i ≤ n do
6: [r(j)]i =

∑n
�=1 xj,�[r

′
�]i for j ≤ n − k + 1

7: return [r(j)]i for Si, where 1 ≤ i ≤ n and 1 ≤ j ≤ n − k + 1

generate n − k + 1 random/zero shares at once, so all Si for 1 ≤ i ≤ n repeat the
protocols until enough random/zero shares are prepared.

The second step is described in Protocol 4. This step requires 2k − 1 random
shares and 2k − 1 zero shares per one authentication. In this step, 2k − 1 servers
participate in the protocol. Let V ⊆ {1, . . . , n} be the servers that participate in
this step. Intuitively, the protocol attempts to compute w −w′ to check whether

Practical Password-Based Authentication Protocol 189

Protocol 3. ZeroShareGen
Input: Nothing
Output: [[0(j)]]i for Si, where 1 ≤ i ≤ n, 1 ≤ j ≤ n − k + 1
1: each Si for 1 ≤ i ≤ n do
2: r′

i ← F
3: Generate 〈r′

i〉1 , . . . , 〈r′
i〉n via the sharing algorithm of (2k − 2, n)-Shamir with

input r′
i

4: Send 〈r′
i〉j to Sj for 1 ≤ j ≤ n

5: each Si for 1 ≤ i ≤ n do

6:
〈

r(j)
〉

i
=
∑n

�=1 xj,� 〈r′
�〉i for j ≤ n − k + 1

7: [[0(j)]]i = i
〈

r(j)
〉

i

8: return [[0(j)]]i for Si, where 1 ≤ i ≤ n, 1 ≤ j ≤ n − k + 1

Protocol 4. Auth (after generation of 2k − 1 random shares and 2k − 1 zero
shares)

Input: w′ ∈ D for C, Li,
{

[r(Sj)]i
}

j∈V

and
{

[[0(Sj)]]i
}

j∈V

for Si, where i ∈ V

Output: accept/reject for C and Si, where i ∈ V

1: each Si for i ∈ V do
2: sends noncei ← Nnon to C
3: C computes ([w′]1, . . . , [w′]n) ← Share(w′) and sends ([w′]i,noncei) to Si for i ∈ V

4: each Si for i ∈ V do
5: if noncei 	= nonce ′

i or (C, [w]i) /∈ Li, then broadcasts “reject”, outputs reject
and halts

6: Send δ
(Sj)
i = [r(Sj)]i([w]i − [w′]i) + [[0(Sj)]]i to Sj for j ∈ V

7: each Si for i ∈ V do
8: if

∑

j∈V
λ
(V)
j δ

(Si)
j 	= 0, then broadcasts “reject”, outputs reject and halts

9: broadcasts “accept”
10: each C and Si for i ∈ V do
11: if receives 2k − 1 “accepts”, then outputs accept

w′ equals w. However, w−w′ may leak information of the difference, so we mask
it by using the random shares and the zero shares.

Password Update. We finally describe Update in Protocol 5. This simply
performs Auth and substitutes the password shares if C is accepted.

Theorem 1. Let qse be the number of SendAuth queries and qup be the num-
ber of SendUpdate queries. If n ≥ 2k-1 and A statically corrupts at most k − 1
of Si, Then our protocol is

∏qse+qup−1
i=1

(
1 − i

|Nnon|
)

+ qse+qup
|F |k secure against imper-

sonation.

Due to space limitation, we give the sketch of proof here. In Setup, C only
sends the shares via secure channels so it does not compromise the security.
RandShareGen is one of the protocol proposed in [18] and ZeroShareGen

190 R. Kikuchi et al.

Protocol 5. Update

Input: w′, w∗ ∈ D for C, Li,
(

[r(S1)]i, . . . , [r
(Sn)]i
)

and
(

[[0(S1)]]i, . . . , [[0
(Sn)]]i

)

for each

Si
Output: success/fail for C, and a (updated) Li or fail for each Si, 1 ≤ i ≤ n
1: C with input w′ and Si for i ∈ V perform Auth
2: if one of the outputs of Auth is reject, then halts
3: C with input w∗ and Si for 1 ≤ i ≤ n perform Setup, except step 4 is changed as

Li ← Li\{(C, [w′]i)} ∪ {(C, [w∗]i)}.

is the same protocol except each Si computes a local multiplication in the final
step. Update is just a combination of Setup and Auth. Therefore, we focus
on the security of Auth (after generation of random/zero shares).

Without loss of generality, we assume that V = {1, . . . , 2k−1} and S1, . . . , Sk−1

are corrupted. In addition, we assume that nonce is not duplicated by admitting
the security loss

∏qse+qup−1
i=1

(
1 − i

|Nnon|
)
.

The goal of Auth is generating a uniformly random [[r(w − w′)(U)]] that is
revealed by U. If [[r(w − w′)(U)]] is generated correctly, revealed value, r(w−w′),
is 0 if w = w′ and a random value otherwise.

First, we assume that A follows the protocol. In this case, we confirm that
δ
(U)
i = [r(U)]i([w]i − [w′]i) + [[0(U)]]i for i ∈ V plays a role of uniformly random

[[r(w − w′)(U)]]. A simple product of [r(U)]i and ([w]i − [w′]i) is [[r(w − w′)(U)]]i.
However, this share is not uniformly random since [w]i and [w′]i may be common.
In fact, A can extract w from [r1]([w] − [w′]) and [r2]([w] − [w′]) by Chinese
remainder theorem. In contrast, by adding [[0(U)]]i, all aj that satisfies δ

(U)
i =

r(w − w′) +
∑2k−1

j=1 aji
j are uniformly random. Therefore, δ

(U)
i for ı ∈ V is a

uniformly random [[r(w − w′)(U)]].
Second, we consider the case A deviates from the protocol and a legitimate

client C is authenticated. A obtains [w1], . . . , [wk−1] and δ
(Si)
j for 1 ≤ i ≤ k−1 and

k − 1 ≤ j ≤ 2k − 1. [w1], . . . , [wk−1] are uniformly random elements in F since
(k, n)-Shamir is perfectly private against k − 1 corruptions. In addition, δ

(Si)
j for

1 ≤ i ≤ k−1 are uniformly random [[r(w − w′)(Si)]] since δ
(Si)
j is independent of A’s

behavior. Therefore, the reconstructed values are independent of the password
and A cannot obtain information about the password.

Finally, we consider the case A deviates from the protocol and impersonates
C with a guessed password w′. A should make r(w − w′)(Si) = 0 for all Si, where
corruptSi �= true. From the above discussion, A does not know the password w

and randomness r. A can modify δ
(Si)
j for 1 ≤ j ≤ k − 1 and k ≤ i ≤ 2k − 1

into δ̂
(Si)
j . It means that A changes the reconstructed value from r(w − w′)(Si) to

r(w − w′)(Si) + λ
(V)
i (δ̂(Si)j − δ

(Si)
j). However, if w �= w′, r(w − w′)(Si) is uniformly

randomly distributed. Therefore, A cannot make the reconstructed value 0 except
that the probability of w = w′ or r′ + λ

(V)
i (δ̂(Si)j − δ

(Si)
j) = 0, where r′ ← F .

Practical Password-Based Authentication Protocol 191

This probability is qse+qup
|D| + qse+qup

|F | , and the advantage is as the statement since
A have to make the above thing for all Si, where corruptSi �= true. �

4 Optimization for Practical Network Model
and Experiment

4.1 Network Model

SS-based MPC is implemented over certain network. Typical examples are as
follows.

– Gateway network model: There is a gateway G, and all communications are
relayed by G. It includes the case that one of Si additionally acts as G.

– Point-to-point network model: All participants are connected to each other.

In theory, we typically assume the point-to-point network model. However, in
practice, the gateway network model may be used due to the two reasons. The
first is the reduced number of connections. The model reduces the cost of laying
the connections and simplifies managing the connections in parallel. The second
is mutual execution of shared data. Let’s consider a case where many users
access an SS-based MPC system. If the inconsistency occurs, e.g., some shares
are renewed by a client and the other shares are renewed by another client, any
server cannot notice it by itself. Therefore, mutual execution is critical in SS-
based MPC to avoid the above. In the gateway network model, mutual execution
can be done by the gateway managing to write/delete shares.

4.2 Optimization for Gateway Network Model

Although our basic PASM protocol can be used in the gateway network model,
we optimize the Auth of our protocol to improve the response time to a client
as follows.

– Before Auth, the servers additionally prepares [r(G)] and [[0(G)]].
– In step 6, each Si additionally computes δ

(G)
i = [r(G)]i([w]i − [w′]i) + [[0(G)]]i

and sends δ
(G)
i to G.

– Before step 7, G sends “reject” to the client if
∑

j∈V
λ
(V)
j δ

(G)
j �= 0 or sends

“accept” to the client otherwise.

The optimization does not compromise security even if G is additionally cor-
rupted since the authentication step between a client and the servers is main-
tained.

We count the communication rounds between C and G and between G and Si
separately. All moves of the protocol are unchanged. However, C can receive the
(tentative) authentication result before Auth ends. C receives the authentication
result after 3 C-G and 5 G-Si moves in our basic protocol and after 3 C-G and 3

192 R. Kikuchi et al.

G-Si moves in our protocol with optimization. Therefore, from the viewpoint of
a client, our protocol is “faster” than the above protocol.

When we in fact use the authentication protocol, if C receives “accept” from
G, s/he considers that the authentication is accepted and sends a message via
the channels. There is little possibility that G accepts C, but another Si does not
in real systems. If by any chance Si does not accept, C receives, for example, “an
internal error” from Si. Even in this case, this is not a problem C has already
sent a message since the message can be read by only the legitimate server.
Although the number of gaps between the moves of two protocols is a few, the
response time of the protocol can be large since the network delay tends to be
large in SS-based MPC. Each server may be settled in different places such as
different countries to assure their administration independence and ability to
tolerate disaster.

4.3 Experimental Results

We implemented and evaluated the response time of our protocol with optimiza-
tion. In the experiment, we assumed that n = 5 and k = 3 since they are small
in most practical results of SS-based MPC [9,12]. We implemented Auth on the
gateway network model. It is future work to experiment Setup and Update, and
PASM on the point-to-point network model. We measure the time of following
steps that includes the time taken to establish secure channels with RSA-PKCS
#5 and AES by using OpenSSL.

1. A client verifies the certificates of servers’ public keys,
2. the client encrypts distinct symmetric keys with the public keys,
3. the client performs Protocol 4 with the optimization. All communications

between the client and servers are encrypted with the symmetric keys.
4. the client outputs accept.

The steps does not include the time taken to establish secure channels among
Si and the time taken to generate random and zero shares since they can be
performed before the authentication protocol performed.

All the experiments were conducted on two laptop machines. One had the
role of a client. It used MAC OS X 10.8.4 with a 2.9 GHz Intel Core i7 and
8 GB of physical memory. The other’s role was as a gateway and servers. It
used Cent OS 6.4 with a 2.9 GHz Intel Core i7 and 1 GB of physical memory,
and it executed six virtual machines (VMs), one gateway and five servers, and
allocated one core per VM. We implemented the client program with C++ and
the gateway and server program with C++ and Java, where the Share and Rec
algorithms of SS was implemented with C++ and other operations such as mod-
ular addition/multiplication were implemented with Java.

We insisted that our protocol be fast for practical use even when the network
delay is large, so we conducted the experiment under various network delays.
The network delay was simulated by the tc command, which was implemented
on Linux. The network delay means the round-trip delay. The results listed in
Table 1 shows the average of 100 executions.

Practical Password-Based Authentication Protocol 193

Table 1. Experimental result

Network delay (ms) 0 50 100 150 200 250 300

Response time (sec) 0.23 0.64 1.06 1.42 1.80 2.21 2.60

“ms” denotes millisecond and “sec” denotes second. Network
delay means the simulated network delay, which is round
trip. Response time means the time from when a client sends
the request for authentication to when the client receives the
authentication result

As a result, even if there was a 200 ms delay, which is almost that between
Japan and Europe in the Internet, authentication was executed within 2 s.

5 Conclusion

Recently, several efforts to implement and use SS-based MPC have been put into
practice. Authentication of clients is one critical mechanism for implementing
SS-based MPC successfully in practice. Our observation is that the authentica-
tion protocol must have threshold security, establish distinct channels. In addi-
tion, constructing the protocol with SS and operations involving SS is preferable.
We formalized such authentication protocol as PASM and proposed the PASM
protocol. Our protocol is secure assuming the existence of two types of channels,
which are instantiated by the popular cryptographic primitives. Furthermore,
we implement our protocol with an optimization for the realistic network model.
We confirmed that the protocol is practical since a client received the result
within 2 s even when the network delay was 200 ms, which is almost the delay
that occurs between Japan and Europe.

A Other Methods to Generate Random and Zero Shares

We give several methods to generate random shares and zero shares.
The first method is just relying on C, which generates the random and zero

shares in Setup and sends them to all Si at the same time a share of a password
is sent. This does not compromise security since the password, and the random
and zero shares are sent by the same client. If the random or zero shares are
short, Si requests C to generate them after Auth is correctly finished with the
acceptance.

The second method is that Si generates random and zero shares in the idle
state. Damg̊ard and Nielsen [18] and Beerliová-Trub́ıniová and Hirt [3] proposed
a random share generation protocol called “DN-Rand” and “BH-Rand,” respec-
tively. We can prepare random shares by using these protocols straightforwardly.
A zero share is generated in almost the same way to generate random shares.
First, generate random shares whose degree is 2k − 2 and then multiply Si’s
“coordinate” of Shamir’s SS. The zero share generation protocol is as follows.

194 R. Kikuchi et al.

1. Each Si generates a (2k − 2, n)-random share 〈ri〉j .
2. Each Si locally computes [[0]]i = i × 〈rj〉i.

The third method is that Si also generates random and zero shares in the
idle state. This way is more efficient than using DN-Rand and HB-Rand instead
of using pseudo-randomness. Cramer et al. [16] showed that if all Si share seeds
among themselves before the protocol, they can produce replicated random shares
by themselves and locally convert them to Shamir’s random shares. Let B ={
β1, . . . , β|B|

}
be a set of n − k + 1 combinations of Si from n servers where

|B| =
(

n
n−k+1

)
, υβ1 , . . . , υβ|B| be independently and uniformly chosen seeds, fβj

be the function satisfying fβj
(0) = 1, fβj

(�) = 0 for S� /∈ βj, and its degree be
k − 1. In the initial setup, make each Si have υβj

, where Si ∈ βj. To generate
a random share, each Si computes pseudo-randomness Υβj

from υβj
for Si ∈ βj.

Then, each Si computes [r]i =
∑

Si∈βj
fβj

(i)Υβj
. A zero share is generated with the

same technique described in the previous paragraph. First, generate a (2k−2, n)
random share 〈r〉i and multiply Si’s coordinate.

References

1. Abdalla, M., Fouque, P.-A., Pointcheval, D.: Password-based authenticated key
exchange in the three-party setting. In: Vaudenay, S. (ed.) PKC 2005. LNCS, vol.
3386, pp. 65–84. Springer, Heidelberg (2005)

2. Bagherzandi, A., Jarecki, S., Saxena, N., Lu, Y.: Password-protected secret sharing.
In: ACM Conference on Computer and Communications Security, pp. 433–444
(2011)

3. Beerliová-Trub́ıniová, Z., Hirt, M.: Perfectly-secure MPC with linear communica-
tion complexity. In: TCC, pp. 213–230 (2008)

4. Bellare, M., Pointcheval, D., Rogaway, P.: Authenticated key exchange secure
against dictionary attacks. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol.
1807, pp. 139–155. Springer, Heidelberg (2000)

5. Bellare, M., Rogaway, P.: Entity authentication and key distribution. In: Stinson,
D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 232–249. Springer, Heidelberg
(1994)

6. Bellovin, S.M., Merritt, M.: Encrypted key exchange: password-based protocols
secure against dictionary attacks. In: 1992 IEEE Computer Society Symposium on
Research in Security and Privacy, pp. 72–84. Oakland, CA, USA, 4–6 May 1992

7. Bellovin, S.M., Merritt, M.: Augmented encrypted key exchange: a password-based
protocol secure against dictionary attacks and password file compromise. In: Pro-
ceedings of the 1st ACM Conference on Computer and Communications Security,
CCS 1993, pp. 244–250. Fairfax, Virginia, USA, 3–5 November 1993

8. Bogdanov, D., Laur, S., Willemson, J.: Sharemind: a framework for fast privacy-
preserving computations. In: Jajodia, S., Lopez, J. (eds.) ESORICS 2008. LNCS,
vol. 5283, pp. 192–206. Springer, Heidelberg (2008)

9. Bogdanov, D., Niitsoo, M., Toft, T., Willemson, J.: High-performance secure multi-
party computation for data mining applications. Int. J. Inf. Sec. 11(6), 403–418
(2012)

10. Bogdanov, D., Talviste, R., Willemson, J.: Deploying secure multi-party compu-
tation for financial data analysis. In: Keromytis, A.D. (ed.) FC 2012. LNCS, vol.
7397, pp. 57–64. Springer, Heidelberg (2012)

Practical Password-Based Authentication Protocol 195

11. Brainard, J.G., Juels, A., Kaliski, B., Szydlo, M.: A new two-server approach for
authentication with short secrets. In: Proceedings of the 12th USENIX Security
Symposium, Washington, D.C., USA, 4–8 August 2003

12. Burkhart, M., Strasser, M., Many, D., Dimitropoulos, X.A.: SEPIA: privacy-
preserving aggregation of multi-domain network events and statistics. In: USENIX
Security Symposium, pp. 223–240 (2010)

13. Camenisch, J., Lysyanskaya, A., Neven, G.: Practical yet universally composable
two-server password-authenticated secret sharing. In: ACM Conference on Com-
puter and Communications Security, pp. 525–536 (2012)

14. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. In: FOCS, pp. 136–145 (2001)

15. Coretti, S., Maurer, U., Tackmann, B.: Constructing confidential channels from
authenticated channels—public-key encryption revisited. In: Sako, K., Sarkar,
P. (eds.) ASIACRYPT 2013, Part I. LNCS, vol. 8269, pp. 134–153. Springer,
Heidelberg (2013)

16. Cramer, R., Damg̊ard, I.B., Ishai, Y.: Share conversion, pseudorandom secret-
sharing and applications to secure computation. In: Kilian, J. (ed.) TCC 2005.
LNCS, vol. 3378, pp. 342–362. Springer, Heidelberg (2005)

17. Cramer, R., Shoup, V.: Design and analysis of practical public-key encryption
schemes secure against adaptive chosen ciphertext attack. SIAM J. Comput. 33(1),
167–226 (2004)

18. Damg̊ard, I.B., Nielsen, J.B.: Scalable and unconditionally secure multiparty com-
putation. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 572–590.
Springer, Heidelberg (2007)

19. Ford, W., Kaliski Jr., B.S.: Server-assisted generation of a strong secret from a
password. In: WETICE, pp. 176–180 (2000)

20. Genkin, D., Ishai, Y., Prabhakaran, M., Sahai, A., Tromer, E.: Circuits resilient to
additive attacks with applications to secure computation. In: STOC, pp. 495–504
(2014)

21. Gennaro, R.: Faster and shorter password-authenticated key exchange. In: Canetti,
R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 589–606. Springer, Heidelberg (2008)

22. Gennaro, R., Lindell, Y.: A framework for password-based authenticated key
exchange. ACM Trans. Inf. Syst. Secur. 9(2), 181–234 (2006)

23. Halevi, S., Krawczyk, H.: Public-key cryptography and password protocols. ACM
Trans. Inf. Syst. Secur. 2(3), 230–268 (1999)

24. Ikarashi, D., Kikuchi, R., Hamada, K., Chida, K.: Actively private and correct
MPC scheme in t < n/2 from passively secure schemes with small overhead. IACR
Cryptology ePrintArchive, p. 304 (2014)

25. Jablon, D.P.: Strong password-only authenticated key exchange. Comput. Com-
mun. Rev. 26(5), 5–26 (1996)

26. Kamm, L., Bogdanov, D., Laur, S., Vilo, J.: A new way to protect privacy in
large-scale genome-wide association studies. Bioinformatics 29(7), 886–893 (2013)

27. Katz, J., MacKenzie, P.D., Taban, G., Gligor, V.D.: Two-server password-only
authenticated key exchange. In: Ioannidis, J., Keromytis, A.D., Yung, M. (eds.)
ACNS 2005. LNCS, vol. 3531, pp. 1–16. Springer, Heidelberg (2005)

28. Katz, J., Ostrovsky, R., Yung, M.: Efficient password-authenticated key exchange
using human-memorable passwords. In: Pfitzmann, B. (ed.) EUROCRYPT 2001.
LNCS, vol. 2045, pp. 475–494. Springer, Heidelberg (2001)

29. Katz, J., Vaikuntanathan, V.: Round-optimal password-based authenticated key
exchange. J. Cryptol. 26(4), 714–743 (2013)

196 R. Kikuchi et al.

30. Kiefer, F., Manulis, M.: Distributed smooth projective hashing and its application
to two-server password authenticated key exchange. In: Boureanu, I., Owesarski,
P., Vaudenay, S. (eds.) ACNS 2014. LNCS, vol. 8479, pp. 199–216. Springer,
Heidelberg (2014)

31. Kurosawa, K., Desmedt, Y.G.: A new paradigm of hybrid encryption scheme.
In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 426–442. Springer,
Heidelberg (2004)

32. MacKenzie, P.D., Shrimpton, T., Jakobsson, M.: Threshold password-
authenticated key exchange. J. Cryptol. 19(1), 27–66 (2006)

33. Patel, S.: Number theoretic attacks on secure password schemes. In: 1997 IEEE
Symposium on Security and Privacy, Oakland, CA, USA, pp. 236–247, 4–7 May
1997

34. Raimondo, M.D., Gennaro, R.: Provably secure threshold password-authenticated
key exchange. J. Comput. Syst. Sci. 72(6), 978–1001 (2006)

35. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)
36. Steiner, M., Tsudik, G., Waidner, M.: Refinement and extension of encrypted key

exchange. Oper. Syst. Rev. 29(3), 22–30 (1995)

Bandwidth-Optimized Secure Two-Party
Computation of Minima

Jan Henrik Ziegeldorf(B), Jens Hiller, Martin Henze, Hanno Wirtz,
and Klaus Wehrle

Communication and Distributed Systems (COMSYS),
RWTH Aachen University, Aachen, Germany

{ziegeldorf,hiller,henze,wirtz,wehrle}@comsys.rwth-aachen.de

Abstract. Secure Two-Party Computation (STC) allows two mutually
untrusting parties to securely evaluate a function on their private inputs.
While tremendous progress has been made towards reducing processing
overheads, STC still incurs significant communication overhead that is in
fact prohibitive when no high-speed network connection is available, e.g.,
when applications are run over a cellular network. In this paper, we con-
sider the fundamental problem of securely computing a minimum and its
argument, which is a basic building block in a wide range of applications
that have been proposed as STCs, e.g., Nearest Neighbor Search, Auc-
tions, and Biometric Matchings. We first comprehensively analyze and
compare the communication overhead of implementations of the three
major STC concepts, i.e., Yao’s Garbled Circuits, the Goldreich-Micali-
Wigderson protocol, and Homomorphic Encryption. We then propose
an algorithm for securely computing minima in the semi-honest model
that, compared to current state-of-the-art, reduces communication over-
heads by 18 % to 98 %. Lower communication overheads result in faster
runtimes in constrained networks and lower direct costs for users.

1 Introduction

The increasing collection of sensitive user data provided by mobile devices at
cloud services, e.g., in genetic testing [9], gives rise to significant privacy con-
cerns. However, performing all necessary computations exclusively on the mobile
device, to preserve the user’s privacy, is infeasible as this could disclose business
secrets of the service provider. In this scenario, Secure Two-Party Computation
(STC) presents a generic solution to reconcile these conflicting privacy interests.

The performance of STC has been thoroughly investigated in a static setting
with a high-speed LAN connection. In this setting, processing overheads are the
main performance bottleneck and tremendous improvements, both practical and
theoretical, have been made in this regard, mainly focussing on Yao’s Garbled
Circuits approach [35]. STC in more constrained environments, e.g., between
mobile devices that interact spontaneously, has only recently received interest
[4,5,7,9,10,18]. Still, these works assume a network with low latency and high
throughput [5,7,10,18], prior interaction for pre-computations [5,9,18], additional

c© Springer International Publishing Switzerland 2015
M. Reiter and D. Naccache (Eds.): CANS 2015, LNCS 9476, pp. 197–213, 2015.
DOI: 10.1007/978-3-319-26823-1 14

198 J.H. Ziegeldorf et al.

hardware or third parties [5,10], or consider only specialized applications [4,7].
In contrast, we strive to enable STCs in a purely ad-hoc manner between mobile
devices and/or a cloud service over constrained, e.g., cellular, networks. In this
setting, we argue for bandwidth consumption as a primary optimization goal.
First, high-bandwidth STCs may quickly deplete users’ data volume, inducing
capped bandwidths or significant costs for subsequent communication. Second,
less available bandwidth incurs significant transmission overheads which then con-
stitute the main performance bottleneck. We show that this bottleneck eventually
dominates the processing time, as also noted in [4,7,37].

In this work, we hence set out to analyze the bandwidth usage of the three
major STC concepts Yao’s Garbled Circuits (GCs) [35], the Goldreich-Micali-
Wigderson (GMW) Protocol [16], and Homomorphic Encryption (HE). We focus
on the fundamental STC problem of computing a minimum and its argument,
since this problem (i) has widely been considered in all three STC concepts
and (ii) is central to many STC applications, e.g., Nearest Neighbor search [30],
Auctions [22], and Biometric Matching [17]. Our contributions are the following:

Thorough Analysis. We exactly quantify the communication complexity for
state-of-the-art constructions and implementations of the (arg)min problem in
GC, GMW, and HE. In constrained environments, we argue that the induced
communication overheads quickly render mobile STCs infeasible.

Bandwidth-Optimized (arg)min. We propose an HE-based, bandwidth-
optimized (arg)min algorithm that reduces the communication overhead by 18 %
to 98 % compared to state-of-the-art approaches. In constrained networks with
bandwidths ranging from ≤1 MBit/s (e.g., Bluetooth, 3G) to ≤12–50 MBit/s
(e.g., LTE), this translates to lower costs for end-users and even affords faster
runtimes than bandwidth-heavy algorithms. We demonstrate the feasibility and
performance of our protocol along a prototype implementation.

We discuss background on STC concepts and related work in Sect. 2. In
Sect. 3, we analyze the communication complexity of previous (arg)min proto-
cols. We present our improved protocol in Sect. 4 and its evaluation in Sect. 5.
Section 6 concludes this paper. Note that all results also directly apply to the
symmetric (arg)max problem.

2 Background

STC allows two mutually distrusting parties, i.e., a client C with private input x
and a server S with private input y, to compute a known functionality F(x, y)
without anyone learning the private inputs. Three predominant concepts for
STC exist, partly building on Oblivious Transfer: Yao’s Garbled Circuits, the
Goldreich-Micali-Wigderson protocol, and Homomorphic Encryption.

Oblivious Transfer (OT). In the most general form of Oblivious Transfer,
i.e., 1-out-of-n-OTm

l , S holds m distinct n tuples of l-bit strings and C chooses
exactly one string from each n tuple, while S learns nothing about C’s choices.
Formally, S holds (s11, ..., s1n), ..., (sm1, ..., smn) with sij ∈ {0, 1}l and C holds
m choices r1, ..., rm ∈ {1...n} and obtains the strings siri,1≤i≤m while S has

Bandwidth-Optimized Secure Two-Party Computation of Minima 199

no output. 1-out-of-n-OTm
l can be efficiently instantiated by first reducing it to

m log2(n) invocations of 1-out-of-2-OT [27,28] and then reducing the resulting
large number of long l bit OTs to a small number of short t bit Base OTs,
i.e., 1-out-of-2-OTt

t [1,20] (OT Extension). The communication overhead for 1-
out-of-n-OTm

l then amounts to mnl + 3m log(n)t bit, with symmetric security
parameter t (e.g., AES key length). Base OTs can be implemented at the costs of
an additional 2t2+tT bit, where T is the asymmetric security level (e.g., bitlength
of an RSA modulus) [27,28]. The overhead for base OTs is often neglected in
related work as it amortizes over a large number of OT Extensions. To further
increase the communication efficiency of OT, custom OT variants exist. For GCs,
e.g., general 1-out-2-OT can be replaced by correlated 1-out-of-2-OT [11], where
S’s inputs are correlated, reducing communication overhead to m(t + l) bit per
OT [1]. Similarly, in GMW, random 1-out-2-OT [11] obtains inputs randomly
from a correlation-robust one-way function, reducing communication overhead
to mt bits per OT [1].

Garbled Circuits (GC). Yao’s Garbled Circuits [35] require to represent
(automatically with special compilers) the desired functionality F(·) as a
Boolean circuit. After compiling the Boolean circuit, S garbles the circuit by
encrypting and permuting the truth table entries for each circuit gate. Then S
sends the garbled circuit F̃(·) and its own garbled inputs ỹ to C. C obtains its
own garbled inputs x̃ via correlated OT from S, with parameter m = |x|, the
total bitlength of C’s input. Finally, C evaluates F̃(x̃, ỹ) by decrypting the gar-
bled circuit gate by gate to obtain the result. The communication overhead of
GCs is almost completely due to the transmission of the garbled circuit and of
the garbled inputs (via OT). It is thus critical to construct size-efficient circuits
and to minimize inputs. The size of a circuit is usually measured in the number
of Non-XOR gates, since XOR gates cause virtually no overheads due to the
“free-XOR” optimization [24].

Goldreich-Micali-Wigderson (GMW). The GMW protocol [16], similarly to
Yao’s protocol, securely evaluates Boolean circuits. However, instead of garbling
the circuit, it is evaluated jointly by C and S using an XOR-based 2-out-of-2
secret sharing scheme, i.e., Boolean sharings. The GMW protocol allows local
evaluation of XOR gates while AND gates require interaction between C and S,
i.e., an exchange of 2 bit and one random OT per gate. Thus, while Yao’s protocol
has constant round complexity, the round complexity of GMW corresponds to
the multiplicative depth of the circuit, i.e., the maximum number of AND gates
on any path through the boolean circuit. Besides reducing the size of circuits
to reduce the communication overhead, depth-efficient circuits are crucial to
minimize communication rounds.

Homomorphic Encryption (HE). HE-based STC protocols allow to compute
specific arithmetic operations under encryption, e.g., the Paillier cryptosystem
[29] allows addition. Because Fully Homomorphic Encryption schemes currently
still cause prohibitive overheads, multiplication for Paillier or addition for ElGa-
mal is more efficiently realized using interactive protocols where C helps S to

200 J.H. Ziegeldorf et al.

perform the respective operation. Using secure addition and multiplication, C
and S can evaluate a representation of F as an arithmetic circuit. Then, S eval-
uates F on C’s encrypted input [x] and its own input y (square brackets denote
encryption throughout this paper, i.e., [x] is an encryption of x). S performs
some operations locally, e.g., addition and scalar multiplication, while other
operations, e.g., multiplication or comparison on ciphertexts, require interaction
with C. The overhead of HE-based STC is then due to interaction and public
key operations.

2.1 Related Work

Different general purpose frameworks have been proposed, e.g., a port of the
FastGC framework [19] in [18] and a port of the Fairplay framework [26] in
[7], as well as protocols for specialized functionalities [4,9]. While addressing
mobile devices, these mostly assume a high-bandwidth network connection and
consider processing and memory requirements as the main optimization goals:
[25,33] reduce the memory overhead of GC-based STC by more efficient circuit
representations. To reduce processing overheads, [3,36] propose efficient garbling
schemes, [5,6] outsource GC from mobile devices to the cloud, and [10] use a
hardware security token. In this, communication overhead as an optimization
goal has received only passive or analytical attention. Notably, [4,6] only briefly
argue that bandwidth efficiency is critical to minimize direct costs for users,
energy consumption, and overall protocol runtime. Similar, [7,37] observe that
communication overhead can dominate the runtime of mobile STC but do not
propose direct improvements. In this paper, we act on these observations by
considering bandwidth consumption as the primary optimization goal.

3 Analysis of Efficient Secure Argmin Protocols

In this section, we analyze the problem of securely computing the minimum and
its argument. We first introduce our problem definitions, security model, and
parameters before we proceed to analyze the most efficient (arg)min protocols
based on GCs Subsect. 3.1, GMW Subsect. 3.2, and HE Subsect. 3.3.

Problem Definition. Given a set of n arguments X = (x0, ..., xn−1) and n
corresponding function values Y = (y0 = f(x0), ..., yn−1 = f(xn−1)), the task
is to find x∗, resp., f(x∗) s.t. f(x∗) ≤ f(xi) ∀1 ≤ i ≤ n. We refer to x∗ as
argmin and to y∗ = f(x∗) as min. We assume that the inputs X and Y are
already available in garbled (GC), secret-shared (GMW), or encrypted (HE)
form and the output should be protected accordingly. This represents the usual
case where the (arg)min algorithm is used as a building block within another
secure computation, e.g., a nearest neighbor search which requires to derive
certain distances before finding their argmin [17,30]. In AppendixA, we briefly
discuss a second version where C and S each hold half of the inputs and the
(arg)min should be obtained in clear and only by C.

Bandwidth-Optimized Secure Two-Party Computation of Minima 201

Adversary Model. We assume a semi-honest and computationally bounded
adversary. A semi-honest adversary, other than the stronger malicious one, does
not deviate from the protocol but may try to learn (private) information from
the protocol transcript. The semi-honest model, though more restrictive than the
malicious, is widely used as it enables efficient secure computations and often
serves as a stepping stone towards security against malicious adversaries.

Parameter Definitions. We denote the symmetric security level by t and the
asymmetric one by T and set t = {80, 112, 128}, T = {1024, 2048, 3072} for
legacy security until 2010, medium security until 2030, and long-term security
beyond 2030, according to the NIST recommendations [2]. We set the statistical
security parameter σ to 40 bit as, e.g., proposed in [11,14,17]. Finally, we vary
the bitlength of the inputs l ∈ {32, 64, 128} which represents a subset of frequent
choices in the related literature [6,10–12].

Table 1. Communication complexity [bit] and rounds for the argmin problem in related
work and in our improved protocol.

Protocol Communication overhead Rounds

* Kolesnikov’09 [22] (GC) 2l(n − 1)2t + (n + 1)2t O(1)

Huang’11 [17] (GC) 2l(n − 1)2t + nlt + (n − 1)2t O(1)

Demmler’15 [11] (GC) 3l(n − 1)2t O(1)

* Schneider’13 [31] (GMW) (n − 1)(4l − �log2(l)� − 2 + �log2(n)�)(2t + 2) O(log2(n) log2(l))

Demmler’15 [11] (GMW) (n − 1)(5l − �log2(l)� − 2)(2t + 2) O(log2(n) log2(l))

Erkin’09 [12] (HE) (n − 1)(2l + 8 + 10/C)T O(log2(n))

BOMA (HE+OT) (n−1)(4+6/C)T +2nT/C+n(l+σ)+3 log2(n)t O(log2(n))

Overview. In the following, we analyze the most efficient (arg)min protocols
for each of the three major STC concepts. The respective communication and
round complexity is summarized in Table 1. Approaches marked with an asterisk
restrict the argmin to {0, ..., n−1}. This restriction allows for efficiency improve-
ments but does not fully meet our problem definition, as it would require further
computation to realize the full range of applications. E.g., in biometric access
control applications, the argmin is not only the index of a user but her full profile
including access rights [17]. Nevertheless, we include them in our analysis since
they indicate lower bounds. The last row in Table 1 shows the complexity for
our improved protocol which we present and analyze in Sect. 4.

3.1 Garbled Circuits (GC)

The communication complexity of GC-based (arg)min protocols is dominated
by (i) the overhead for the input transfers (via OT), (ii) the size of the gar-
bled circuit, and (iii) the chosen garbling scheme. We neglect all other minor
communication overheads, e.g., for the establishment of a network connection.
The overheads (i) for transferring inputs only occur in the second version of
our problem definition (cf. Appendix A). To quantify the overheads for (ii), we
analyze the most efficient circuit constructions and their respective sizes below.

202 J.H. Ziegeldorf et al.

Regarding (iii), we use the recent “Half Gates” garbling scheme [36] which allows
to garble Non-XOR gates using only two wire keys, i.e., 2t bits. As proven in
[36], “Half Gates” is currently optimal, i.e., its communication overhead of two
keys per Non-XOR gate constitutes a lower bound. The combination of the
most efficient circuit construction with an optimal garbling scheme then yields
state-of-the-art lower bounds on the communication complexity for GC-based
(arg)min protocols.

Kolesnikov et al. present the most widely used (arg)min circuit construction
in [22]. They select the min in a pairwise tournament tree fashion and construct
the argmin while traversing down the tree. The circuit has a size of 2l(M − 1)
gates for finding the min and n + 1 gates for constructing the argmin [22],
resulting in a communication overhead of (2l(n − 1) + (n + 1))2t bit. Notably,
this construction limits the argmin to {0, ..., n − 1}.

Huang et al. [17] propose a different construction to overcome the limitation
of the argmin value space, building on the observation that encoding complex
data structures directly into the circuit is expensive. Hence, while using the
same circuit of size 2l(n− 1) for finding the min as [24], they replace the argmin
functionality with a custom backtracking protocol. This protocol exchanges a
fully encrypted backtracking tree from which exactly one path can be decrypted
using the wire keys obtained during the evaluating of the garbled min circuit. In
[17] C is allowed to recover the argmin in clear. However, to use their construction
as a building block within another secure computation, the argmin must be
garbled. This results in an overhead of nlt for encrypting n l-bit argmin values
in the tree’s leaves and (n − 1)2t bit for the two wire keys in each of the n − 1
inner nodes of the backtracking tree.

Finally, Demmler et al. present the ABY framework for STCs [11] which
implements the min circuit proposed in [22] with 2l(n − 1) gates but does not
supply the argmin. We trivially extend their implementation by adding l MUX
gates per comparison which, analogous to the min, propagates the l bit argmin to
obtain a second construction that fulfills our general problem definition (Sect. 3).
A single 1 bit MUX gate can be realized using one Non-XOR gate, hence trans-
mitting the complete circuit requires 3l(n − 1)2t bit of communication.

3.2 Goldreich-Micali-Wigderson (GMW)

Schneider et al. present depth-optimized circuit constructions for GMW [31].
Their (arg)min circuit is based on the construction by Kolesnikov et al. [22] but
replaces the size-optimized l-bit comparators with depth-optimized comparators
that consists of about two times more gates but allows a logarithmic instead of
linear depth in l. The circuit has (n−1)(4l−�log2(l)�−2+ �log2(n)�) gates and
a depth of O(log2(n) log2(l)) [31]. To evaluate a single gate, C and S exchange 2
bit and engage in one random OT at the costs of 2t bit communication overhead
(Sect. 2, [11]). Since this construction directly bases on Kolesnikov’s [22], it has
the same limitations regarding the argmin value space.

The ABY framework presented by Demmler et al. [11] also implements GMW
together with the depth-optimized minimum circuit presented in [31] but without

Bandwidth-Optimized Secure Two-Party Computation of Minima 203

the argmin logic. Again, we extend the implementation using MUX gates to relay
the argmin along with the computation of the min. In contrast to Schneider’s
proposed circuit, this construction fulfills our problem definition. The circuit has
(n − 1)(5l − �log2(l)� − 2) gates and a depth of O(log2(n) log2(l)).

3.3 Homomorphic Encryption (HE)

Most HE-based (arg)min constructions are based on the well-known DGK com-
parison protocol [8], which allows to compare two Paillier-encrypted integers [a]
and [b] and obtain the result as an encrypted bit [a ≤ b]. It has been used in a vari-
ety of applications, e.g., face recognition [12], recommender systems [14], bioin-
formatics [15], and clustering [13]. The most efficient construction that fulfills our
problem definition has been proposed by Erkin et al. [12]. The authors arrange
comparisons of values in a pairwise tournament fashion and propagate the min
and argmin by multiplying with the encrypted comparison bit, i.e., [min(a, b)] =
[a ≤ b] ∗ [a − b] + [b] and [argmin(a, b)] = [a ≤ b] ∗ [ida − idb] + [idb]. Each DGK
comparison needs to exchange 2l DGK ciphertexts and 3 Paillier ciphertexts. To
propagate the min and argmin through one comparison, two ciphertext multi-
plications are required, causing transmission overheads of 6 Paillier ciphertexts
[23]. This amounts to a communication complexity of (n − 1)(2l + 8 + 10)T bit.
While Erkin et al. [12] do not use ciphertext packing in their original work,
applying packing to the Paillier ciphertexts exchanged from the server to the
client reduces the communication complexity to (n − 1)(2l + 8 + 10/C)T bit.
Here, C = �T/(l +σ +2))	 is the compression rate achieved by packing multiple
ciphertexts into one, as detailed in [14].

4 Bandwidth-Optimized Min and Argmin

To address the significant problems arising from high communication overheads
in mobile STC, we propose BOMA, a bandwidth-optimized protocol for the
secure (arg)min computation on homomorphically encrypted inputs. We empha-
size that by using efficient conversions between encrypted, shared, and garbled
values [11], BOMA can also be used as a building block to improve (mobile)
STC frameworks, e.g., [11,19]. Following, we first present an efficient compari-
son protocol and based on this propose an efficient (arg)min protocol.

Efficient Secure Comparison: As an important building block, we use Ker-
schbaum’s multi-party comparison protocol [21]. The core idea is to compute
the encrypted distance [d] = [a − b] between two encrypted inputs [a] and [b]
and let all participants multiplicatively blind [d] while preserving its sign before
decrypting it and deciding the comparison. We adapt this multi-party protocol
to the two-party setting as follows: S selects two large random numbers r1 and
r2 ∈ {0, 1}l+σ with r1 > r2 and computes [d̃] = [r1 ·(a−b)−r2] under encryption.
Note that the multiplicative blinding preserves the sign, i.e., d̃ ≤ 0 ⇔ a ≤ b.
S then sends the blinded encrypted distance [d̃] to C who decrypts it and sends
back the encrypted comparison bit [a ≤ b] to S. To prevent C from learning
the real outcome of the comparison, S chooses at random to compare a ≤ b or

204 J.H. Ziegeldorf et al.

b ≤ a and flips the received comparison bit [a ≤ b] accordingly by computing
[1 − (a ≤ b)] under encryption. Our two-party version of Kerschbaum’s compar-
ison exchanges only 2 ciphertexts, i.e., 4T bit, between C and S.

Efficient Secure (arg)min: As a first step, we replace the DGK comparison
protocol in Erkin’s (arg)min algorithm [12] with our two-party version of Ker-
schbaum’s comparison protocol. By simply using a more efficient comparison
protocol, we reduce the communication complexity to (M − 1)(6 + 10/C)T bit,
i.e., save (M −1)(2l+2)T bit (cf. Table 1). This represents a significant reduction
by 90 % to 97 % depending on the chosen security level t and bitlength l.

We now improve this construction with respect to both processing and com-
munication overhead. In the first phase, the minimum phase, we determine the
min [y∗] = [f(x∗)] in pairwise comparisons arranged in a tournament fashion as
before in [12]. However, we significantly reduce processing overheads and save
2 log2(n) rounds by interleaving comparison and selection steps, thereby shaving
off the costly ciphertext multiplications. Our second significant improvement is
due to the observation that C learns the position of the min as a byproduct of
this phase. With this information, we construct an efficient OT-based protocol
for the second phase, the minimum argument phase, in which C helps S to obtain
an encryption of the argmin [x∗]. In the following, we describe the two phases
of our BOMA protocol, as depicted in Protocol 1, in detail.

Bandwidth-Optimized Secure Two-Party Computation of Minima 205

Minimum Phase: At the beginning, S holds the encrypted values [y0], ..., [yn−1]
and corresponding arguments [x0], ..., [xn−1] and applies the same permutation
π to both . This permutation prevents C from learning side knowledge, but
has no effect on the outcome of the computation. For reasons of simplicity, we
thus leave π out in the following notation. At the core of are the batched
pairwise comparisons according to our two-party version of Kerschbaum’s com-
parison protocol. In , S computes the distances [di] over the n/2 pairs of
values [yi] and [yi+1], i = 0, 2, .., n − 2, and blinds the distances as well as the
values. S then sends the blinded distances together with the blinded values [yi]
and [yi+1] to C . C decrypts the distances and encrypts the binary result of
the comparison , re-randomizes [ȳi] and [ȳi+1] , and chooses the smaller
element . Finally, C sends back the binary result of this comparison together
with only the smaller element of each comparison to S . Note that S cannot
distinguish which elements were received due to the re-randomization and IND-
CPA property of the cryptosystem. After unblinding the received values in ,
S now holds encryptions of the n/2 smaller values of the previous comparisons
and repeats to �log2(n)−1� times until only the min [y∗] remains . Our
way of interleaving comparison and selection steps not only makes ciphertext
packing more efficient, but significantly reduces processing costs and saves two
communication rounds per level of the comparison tree, i.e., 2 · log2(n) rounds
in total, as compared to the construction of Erkin et al. [12] which implements
selection steps via costly ciphertext multiplication.

Minimum Argument Phase: We further significantly improve the communication
overhead by the observation that during the minimum phase it is easy for C
to keep track of the position of the outcomes of the comparisons and thereby
obtain the position j∗ of the min in the permuted vector Y . This knowledge
is not a security violation since the permuted position does not disclose any
information to C. In the minimum argument phase, C now helps S to obtain an
encryption of the argmin [xj∗]. S first blinds all encrypted arguments [xj], j =
1...M individually by subtracting random values rj ∈ {0, 1}l+σ and a second
time with a single random value r ∈ {0, 1}l+σ . S packs the double blinded
arguments and sends them to C . C and S subsequently engage in 1-out-of-
n-OT1

l+σ after which C obtains rj∗ , the distinct blind of the argmin, without

S learning j∗ . Then, C removes this blind from [x̄j∗] by adding rj∗ (which
automatically re-randomizes the value) and sends the value (still blinded by
r) to S . Finally, S removes the second blind by adding r and obtains an
encryption of the argmin [xj∗] .

Communication Complexity. The minimum phase of BOMA costs only
(n − 1)(4 + 6/C)T bit. By applying bandwidth-efficient OT protocols (Sect. 2),
the minimum argument phase costs n2T/C bit for transferring the blinded argu-
ments and n(l + σ) + 3 log2(n)t bit for the 1-out-of-n-OT1

l+σ of the blind rj∗ .

206 J.H. Ziegeldorf et al.

4.1 Security Discussion

We show that our proposed protocol is secure in the semi-honest adversary
model based on the security of the employed OT and comparison primitives. In
particular, we show that (i) C learns nothing and (ii) S only learns an encryption
of the min and argmin but nothing else.

Security Against C. From the messages received in , C learns nothing about
the values yi from ȳi since they are additively blinded with random numbers
r′
i ∈ {0, 1}l+σ. Furthermore, C learns nothing from d̃i about the distance di

between yi and yi+1 due to the multiplicative and additive blinding. From the
messages received in , C learns nothing since the arguments xj are additively
blinded using rj , r ∈ {0, 1}l+σ. The security of directly follows from the
security proofs of the employed base OT protocol [1,20,27,28]. After the OT
has finished , C learns xj −r which however is still additively blinded. Finally,
C learns the position of the minimum. However, due to the random permutation
π applied by S in this knowledge is useless to C as long as S keeps π secret.

Note that we use statistical blinding, i.e., with low probability ∼ 1/2l+σ C
learns a small amount of information about the magnitude of the blinded values.
We can achieve perfect security against C by choosing σ = T and substituting
Kerschbaum’s statistically secure protocol [21] with a perfectly secure protocol,
e.g., [34]. However, this significantly increases the communication overhead.

Security Against S. From the messages received in , S learns the encrypted
comparison bit and the encrypted smaller element of the comparison. Due to
the IND-CPA property of the employed Paillier cryptosystem and the applied
re-randomization, S can neither decide whether [bi] is an encryption of 0 or 1 nor
distinguish [ȳi] from [ȳi+1]. Again, S learns nothing from the OT in due to
the security of the employed OT primitives [1,20,27,28]. Finally, S receives [x̄j∗]
which it cannot distinguish from the other arguments [x̄i�=j∗] due to the IND-
CPA property of the cryptosystem. Since S can always try to break encryption
to learn the inputs, we can only achieve computational security against S.

5 Evaluation

We first compare the communication overhead of existing circuit and proto-
col constructions against an implementation of our optimized protocol BOMA
in Subsect. 5.1. Since BOMA trades increased local processing for a signifi-
cant reduction in communication overhead, we evaluate processing overheads in
Subsect. 5.2 and show that BOMA achieves superior performance under con-
strained network speeds.

5.1 Quantitative Communication Overhead Analysis

Table 2 shows the communication overhead in MiB of each algorithm over
increasing input lengths of l = 32, 64, 128 bit in each of the three secu-
rity levels. We derive the results for Koleschnikov’09 [22], Huang’11 [17], and

Bandwidth-Optimized Secure Two-Party Computation of Minima 207

Table 2. Communication overhead [MiB] for varying security levels and input sizes.
Gray rows denote theoretical estimates, all other values are measured. Approaches
marked with an asterisk realize only a constrained argmin functionality.

Schneider’13 [31] based on their theoretical complexities (cf. Table 1), since we
could not obtain an actual implementation. Kolesnikov’09 and Schneider’13,
the approaches marked with an asterisk, only realize the constrained argmin
functionality and solely indicate lower bounds. For ABY-YAO’15 and ABY-
GMW’15, we obtain the listed results using the C++ ABY framework [11],
which we extended with the missing argmin circuits (cf. Subsect. 3.2). We imple-
ment a prototype of BOMA (our own protocol), in Python 2.7. Additionally,
we re-implement the (arg)min algorithm by Erkin et al. in our framework, since
the available implementation in SeComLib [32] provides neither network support
nor ciphertext packing.

For all available implementations, we initially compare the measured and
theoretical communication overhead to analyze (i) the accuracy of our theoretical
complexity estimates and (ii) the realization of these complexities in the actual
implementations. We find that the measured overhead exceeds our estimate by
at most 0.5 % for ABY-YAO, 1.5 % for ABY-GMW, 2 % for BOMA (our own
protocol), and by less than 6 % for our re-implementation of Erkin’s protocol.
This deviation stems from the fact that our theoretical complexity estimates do
not consider a decrease in packing efficiency when only few ciphertexts are left
at the last levels of the comparison tree. Our way of interleaving comparison
and selection (Sect. 4) greatly reduces this effect compared to Erkin’s protocol
design.

Table 2 then shows the communication overhead comparison of existing
approaches and our (arg)min protocol (BOMA). We base our evaluation of exist-
ing approaches on the best available, i.e., most efficient, constructions of circuits,
garbling schemes, and oblivious transfer primitives. BOMA achieves a significant
reduction in communication overhead over all settings and even in comparison to

208 J.H. Ziegeldorf et al.

the constrained argmin circuits by Kolesnikov’09 (GC) or Schneider’13 (GMW).
Specifically, BOMA achieves the largest reductions for small security levels and
high bitlengths of the input. With increasing security levels, the relative improve-
ment, in comparison to GC- and GMW-based approaches that rely on symmetric
crypto, decreases while still outperforming said approaches. Conversely, larger
input bitsizes benefit BOMA. While packing efficiency for communication from
S to C only degrades slightly, communication from C to S, which cannot be
packed, remains the same since a single l bit value always fits into one cipher-
text for l ≤ T . In contrast, the communication overhead in GC and GMW scales
linearly with l. Finally, BOMA outperforms Erkin’s HE-based protocol by one
to two orders of magnitude in every setting.

5.2 Performance Evaluation

We measure the runtime for ABY-YAO, ABY-GMW, Erkin’09, and BOMA for
varying bandwidth and latency in a local setup between a desktop client (Intel i7,
8 × 2.93 GHz, 4 GB RAM) and a server (Intel Xeon, 16 × 2.6 GHz, 32 GB RAM)
connected through a middlebox running OpenWRT. We choose a desktop instead
of a mobile client to maintain comparability as no ABY implementation for
Android or iOS exists. While ABY is fully threaded and thus employs all cores on
the client device, we deliberately do not parallelize the client-side functionality in
our BOMA implementation to emulate processing resources comparable to those
of a mobile device, e.g., a smart phone. Since all overheads scale linearly in the
number of elements n, we fix n = 1000. This is sufficiently large to eliminate
small scale effects but also maintains short runtimes allowing for a repeated,
thorough evaluation, i.e., averaging all results over 30 runs.

Network Bandwidth. We first vary the bandwidth between 1 Mbit/s and
10 Mbit/s using netem on the middlebox. Table 3 gives an overview of the result-
ing runtimes. For short-term security and at a bandwidth of 10 Mbit/s, BOMA
performs in the same order of magnitude as ABY-YAO and ABY-GMW. Reduc-
ing to 1 Mbit/s, the runtime of BOMA doubles while the runtimes of ABY-YAO
and ABY-GMW increase by roughly one order of magnitude. Communication
overhead clearly dominates the runtime in these approaches and BOMA hence
outperforms them. As indicated by the theoretical complexity, the approach by
Erkin et al. [12] is by orders of magnitude slower. For l = 32 and short term
security, the algorithm required almost 1 min, even already without bandwidth
constraints. Due to this prohibitive runtime, we waived further measurements.

Increasing the security level to medium impacts BOMA more than ABY-
YAO or ABY-GMW, due to the use of asymmetric crypto. Here, BOMA roughly
matches the runtime of ABY-YAO for l = 32, 64, 128 at bandwidths between
1 Mbit/s and 5 Mbit/s and ABY-GMW between 2 Mbit/s and 10 Mbit/s. Still,
we observe that BOMA outperforms these approaches in constrained networks
(1 Mbit/s to 2 Mbit/s) and/or higher input sizes l = 64, 128.

Increasing to long term security, we observe that processing overheads
begin to dominate the performance of BOMA, i.e., the relative difference of

Bandwidth-Optimized Secure Two-Party Computation of Minima 209

Table 3. Protocol runtimes [s] for varying security levels, input lengths and bandwidths
for state-of-the-art GC-, GMW- and HE-based argmin protocols.

the performance at speeds of 10 Mbit/s and 1 Mbit/s is much smaller than for
shorter security levels. Contrarily, for ABY-GMW and ABY-YAO, which exhibit
very low processing overheads, bandwidth restrictions continue to dominate the
overall protocol runtime. In comparison, BOMA still outperforms ABY-YAO
up to bandwidths of 2 Mbit/s and ABY-GMW up to 5 Mbit/s for l = 128 bit
inputs. For l = 32, 64 and larger bandwidths, BOMA’s performance is slower
but in general lies within the same order of magnitude as ABY-YAO and ABY-
GMW.

Network Latency. Latency has the biggest impact on GMW-based protocols
which have a high round complexity of O(log2(n) log2(l)). Assuming, e.g., a rel-
atively high latency of 200 ms, this adds 10 s to 14 s to the overall runtime for
computing the argmin over n = 1000 and l = 32, 128 bit values, respectively.
Under the same assumptions, BOMA’s runtime increases only by approximately
2 s due to its lower round complexity of O(log2(n)). GC-based protocols experi-
ence nearly no increase in runtime due to their constant round complexity. Hence,
settings with higher network latencies favor BOMA over GMW-based approaches
while the overhead compared to GC-based approaches is almost negligible.

In summary, the evaluation results support our initial design goals of sup-
porting STC in mobile environments where network bandwidths are neither
constant nor comparable to fixed, high-performance settings. Specifically, the
improved performance of BOMA under the reduced network speeds of 3G or
LTE networks, i.e., 1 Mbit/s – 10 Mbit/s as found in typical current urban sce-
narios, highlights the suitability of our protocol for spontaneous interaction and
applications.

210 J.H. Ziegeldorf et al.

6 Conclusion

In this paper, we address the important problem of securely computing the
(arg)min in a mobile ad-hoc setting where protocol participants had no prior
interaction. Our analysis of the most efficient GC-, GMW-, and HE-based solu-
tions reveals significant communication overheads that can be prohibitive in con-
strained, e.g., cellular, networks in terms of direct costs, energy consumption,
and overall protocol runtime. We hence propose BOMA, a novel (arg)min pro-
tocol based on HE and OT that reduces communication overheads by orders of
magnitude compared to related work (by 18 % – 98 %). Specifically, our approach
trades communication overhead for local processing. Our quantitative evaluation
shows a better performance by our protocol in many settings compared to state-
of-the-art GC- and GMW-based solutions, e.g., in constrained networks oper-
ating at speeds below 1 Mbit/s to 10 Mbit/s, depending on the chosen security
level and bitlength of the inputs. Using efficient conversion between encrypted,
shared, and garbled values [11] our protocol can be used as a valuable building
block for efficient mobile STCs in GC or GMW-based frameworks [11,19].

A Min and Argmin with Shared Inputs

In Sect. 3, we define the secure min/argmin problem as a building block within
another secure computation. This definition neglects those parts of the overheads
which are due to sharing inputs between client and server. We thus shortly
discuss a second version of the problem where C and S each hold half of the
inputs and the client obtains the output.

Table 4. Communication complexity [bit] and rounds for the second problem defini-
tion, i.e., min and argmin computation with shared inputs.

Protocol Communication Overhead Rounds

* Kolesnikov’09 [22] (GC) 2l(n − 1)2t + (n + 1)2t + 3/2nlt O(1)

Huang’11 [17] (GC) 2l(n − 1)2t + n · max{l, t} + (n − 1)2t + 3/2nlt O(1)

Demmler’15 [11] (GC) 3l(n − 1)2t + 3nlt O(1)

* Schneider’13 [31] (GMW) (n − 1)(4l − �log2(l)� − 2 + �log2(n)�)(2t + 2) + nl O(log2(n) log2(l))

Demmler’15 [11] (GMW) (n − 1)(5l − �log2(l)� − 2)(2t + 2) + 2nl O(log2(n) log2(l))

Erkin’09 [12] (HE) (n − 1)(2l + 8 + 10/C)T + nT O(log2(n))

BOMA (HE+OT) (n − 1)(4 + 6/C)T +2nT/C + n(l + σ) + 3 log2(n)t + nt O(log2(n))

For GCs, S sends its garbled inputs to C, amounting to nlt bit of commu-
nication. C obtains its own inputs via correlated OT from S at a cost of 2nlt
bit. These overheads are halved for Kolesnikov’09 [22] where the arguments are
implicit and not part of the inputs as well as for Huang’11 where the argu-
ments are encrypted in the backtracking tree. Sharing inputs in GMW-based
approaches requires only 2nl bit, i.e., 1 bit per input bit. Again, this overhead is
halved for the restricted (arg)min circuit of Schneider’13 [31]. For both Erkin’s

Bandwidth-Optimized Secure Two-Party Computation of Minima 211

protocol and ours, only C’s inputs need to be sent to S in encrypted form, requir-
ing 2nT bit of communication. We summarize the overall complexity in Table 4.

Table 5. Communication overhead [MiB] for varying security levels and input sizes.
All numbers are theoretical estimates.

We implement and evaluate this second (arg)min problem. As before, we
observe an implementation overhead of at most 3 % compared to the complexities
in Table 4. Only the measurements for ABY-YAO significantly deviate by 14 %
and 27 % coupled with a large standard deviation in the send traffic. Since this
renders the measurements incomparable, we present only a comparison of the
theoretical communication overhead in Table 5. The results are qualitatively very
similar to the results for our initial problem definition (Table 2 in Subsect. 5.1).
Furthermore, the processing required for sharing the inputs is very low in all
approaches. Thus, for our second problem definition, we expect qualitatively
very similar results to those presented in Subsect. 5.2.

References

1. Asharov, G., Lindell, Y., Schneider, T., Zohner, M.: More efficient oblivious transfer
and extensions for faster secure computation. In: ACM CCS. ACM (2013)

2. Barker, E., Barker, W., Burr, W., Polk, W., Smid, M.: Nist special publication
800–57. NIST Special Publication 800(57), 1–142 (2007)

3. Bellare, M., Hoang, V.T., Keelveedhi, S., Rogaway, P.: Efficient garbling from a
fixed-key blockcipher. In: IEEE SP, pp. 478–492. IEEE (2013)

4. Carter, H., Amrutkar, C., Dacosta, I., Traynor, P.: For your phone only: custom
protocols for efficient secure function evaluation on mobile devices. SCN 7(7),
1165–1176 (2014)

5. Carter, H., Lever, C., Traynor, P.: Whitewash: Outsourcing garbled circuit gener-
ation for mobile devices. In: ACSAC, pp. 266–275. ACM (2014)

212 J.H. Ziegeldorf et al.

6. Carter, H., Mood, B., Traynor, P., Butler, K.: Secure outsourced garbled circuit
evaluation for mobile devices. In: USENIX Security. USENIX (2013)

7. Costantino, G., Martinelli, F., Santi, P., Amoruso, D.: An implementation of secure
two-party computation for smartphones with application to privacy-preserving
interest-cast. In: PST, pp. 9–16 (2012)

8. Damgard, I., Geisler, M., Kroigard, M.: Homomorphic encryption and secure com-
parison. Int. J. Appl. Crypt. 1(1), 22–31 (2008)

9. De Cristofaro, E., Faber, S., Gasti, P., Tsudik, G.: Genodroid: are privacy-
preserving genomic tests ready for prime time? In: ACM WPES. ACM (2012)

10. Demmler, D., Schneider, T., Zohner, M.: Ad-hoc secure two-party computation on
mobile devices using hardware tokens. In: USENIX Security (2014)

11. Demmler, D., Schneider, T., Zohner, M.: ABY - a framework for efficient mixed-
protocol secure two-party computation. In: NDSS (2015)

12. Erkin, Z., Franz, M., Guajardo, J., Katzenbeisser, S., Lagendijk, I., Toft, T.:
Privacy-preserving face recognition. In: Goldberg, I., Atallah, M.J. (eds.) PETS
2009. LNCS, vol. 5672, pp. 235–253. Springer, Heidelberg (2009)

13. Erkin, Z., Veugen, T., Toft, T., Lagendijk, R.L.: Privacy-preserving user clustering
in a social network. In: IEEE WIFS, pp. 96–100. IEEE (2009)

14. Erkin, Z., Veugen, T., Toft, T., Lagendijk, R.L.: Generating private recommenda-
tions efficiently using homomorphic encryption and data packing. IEEE Trans. Inf.
Forensics Secur. 7(3), 1053–1066 (2012)

15. Franz, M., Deiseroth, B., Hamacher, K., Jha, S., Katzenbeisser, S., Schröder, H.:
Towards secure bioinformatics services (Short Paper). In: Danezis, G. (ed.) FC
2011. LNCS, vol. 7035, pp. 276–283. Springer, Heidelberg (2012)

16. Goldreich, O., Micali, S., Wigderson, A.: How to play ANY mental game. In: ACM
STOC, pp. 218–229. ACM (1987)

17. Huang, Y., Evans, D., Katz, J., Malka, L.: Efficient privacy-preserving biometric
identification. In: NDSS (2011)

18. Huang, Y., Chapman, P., Evans, D.: Privacy-preserving applications on smart-
phones. In: USENIX HotSec. USENIX (2011)

19. Huang, Y., Evans, D., Katz, J., Malka, L.: Faster secure two-party computation
using garbled circuits. In: USENIX Security. USENIX (2011)

20. Ishai, Y., Kilian, J., Nissim, K., Petrank, E.: Extending oblivious transfers effi-
ciently. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 145–161. Springer,
Heidelberg (2003)

21. Kerschbaum, F., Biswas, D., de Hoogh, S.: Performance comparison of secure com-
parison protocols. In: DEXA, pp. 133–136. IEEE (2009)

22. Kolesnikov, V., Sadeghi, A.-R., Schneider, T.: Improved garbled circuit building
blocks and applications to auctions and computing minima. In: Garay, J.A., Miyaji,
A., Otsuka, A. (eds.) CANS 2009. LNCS, vol. 5888, pp. 1–20. Springer, Heidelberg
(2009)

23. Kolesnikov, V., Sadeghi, A.R., Schneider, T.: From dust to dawn: practically effi-
cient two-party secure function evaluation protocols and their modular design.
IACR Cryptology ePrint Archive (2010)

24. Kolesnikov, V., Schneider, T.: Improved garbled circuit: free XOR gates and
applications. In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M.,
Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126,
pp. 486–498. Springer, Heidelberg (2008)

25. Kreuter, B., Shelat, A., Mood, B., Butler, K.R.: PCF: a portable circuit format
for scalable two-party secure computation. In: USENIX Security. USENIX (2013)

Bandwidth-Optimized Secure Two-Party Computation of Minima 213

26. Malkhi, D., Nisan, N., Pinkas, B., Sella, Y.: Fairplay - a secure two-party compu-
tation system. In: USENIX Security. USENIX (2004)

27. Naor, M., Pinkas, B.: Efficient oblivious transfer protocols. In: SODA, pp. 448–457.
SIAM (2001)

28. Naor, M., Pinkas, B.: Computationally secure oblivious transfer. J. Cryptology
18(1), 1–35 (2005)

29. Paillier, P.: Public-Key Cryptosystems Based on Composite Degree Residuosity
Classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (1999)

30. Rane, S., Boufounos, P.: Privacy-preserving nearest neighbor methods. IEEE Signal
Process. Mag. 30(2), 18–28 (2013)

31. Schneider, T., Zohner, M.: GMW vs. Yao? efficient secure two-party computation
with low depth circuits. In: Sadeghi, A.-R. (ed.) FC 2013. LNCS, vol. 7859, pp.
275–292. Springer, Heidelberg (2013)

32. Secomlib. http://cybersecurity.tudelft.nl/content/secomlib
33. Songhori, E.M., Hussain, S.U., Sadeghi, A.R., Schneider, T., Koushanfar, F.: Tiny-

Garble: highly compressed and scalable sequential garbled circuits. In: IEEE SP.
IEEE (2015)

34. Veugen, T.: Improving the DGK comparison protocol. In: IEEE WIFS. IEEE
(2012)

35. Yao, A.: How to generate and exchange secrets. In: FOCS, pp. 62–167. IEEE (1986)
36. Zahur, S., Rosulek, M., Evans, D.: Two halves make a whole. In: Oswald, E.,

Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 220–250. Springer,
Heidelberg (2015)

37. Ziegeldorf, J.H., Metzke, J., Henze, M., Wehrle, K.: Choose wisely: a comparison
of secure two-party computation frameworks. In: IEEE SPW. IEEE (2015)

http://cybersecurity.tudelft.nl/content/secomlib

Outsourcing Secure Two-Party Computation
as a Black Box

Henry Carter1(B), Benjamin Mood2, Patrick Traynor2, and Kevin Butler2

1 Georgia Institute of Technology, Atlanta, USA
carterh@gatech.edu

2 University of Florida, Gainesville, USA
bmood@ufl.edu, {traynor,butler}@cise.ufl.edu

Abstract. Secure multiparty computation (SMC) offers a technique to
preserve functionality and data privacy in mobile applications. Current
protocols that make this costly cryptographic construction feasible on
mobile devices securely outsource the bulk of the computation to a
Cloud provider. However, these outsourcing techniques are built on spe-
cific secure computation assumptions and tools, and applying new SMC
ideas to the outsourced setting requires the protocols to be completely
rebuilt and proven secure. In this work, we develop a generic technique
for lifting any secure two-party computation protocol into an outsourced
two-party SMC protocol. By augmenting the function being evaluated
with auxiliary consistency checks, we can create an outsourced protocol
with low overhead cost. Our implementation and evaluation show that in
the best case, our outsourcing additions execute within the confidence
intervals of two servers running the same computation, and incur approx-
imately the same communication cost. In addition, the mobile device
itself requires minimal communication exchanged over a single round.
This work demonstrates that efficient outsourcing is possible with any
underlying SMC scheme, and implements an outsourcing protocol that
is efficient and directly applicable to current and future SMC techniques.

1 Introduction

As the mobile computing market continues to grow, maintaining the privacy
of user data stored on insecure or untrusted application servers is becoming
more challenging. To better preserve privacy and functionality in these appli-
cations, secure multiparty computation (SMC) techniques offer protocols that
allow application servers to process user data while it remains encrypted. Unfor-
tunately, most existing SMC protocols require too much processing power and
device memory to be practical on the mobile platform. Furthermore, the com-
munication and power needed for SMC will always be a limiting requirement for
mobile applications.

To bring SMC to the mobile platform in a more efficient way, recent work
has focused on developing secure techniques for outsourcing the most expensive
computation to an untrusted Cloud. A number of these protocols have been

c© Springer International Publishing Switzerland 2015
M. Reiter and D. Naccache (Eds.): CANS 2015, LNCS 9476, pp. 214–222, 2015.
DOI: 10.1007/978-3-319-26823-1 15

Outsourcing Secure Two-Party Computation as a Black Box 215

specifically developed to outsource garbled circuit protocols [3,4,13], and are
only proven secure for specific SMC constructions. As other constructions for
SMC are developed, it is unclear whether these outsourcing protocols will be
able to take advantage of the new developments.

In this work, we develop a technique for outsourcing secure two-party com-
putation for any two-party SMC technique. To do this, we add a small amount
of overhead to the underlying function being evaluated to ensure that none of
the inputs are modified by malicious participants. This “augmented function”
can then be evaluated using any SMC protocol that meets the standard defini-
tion of security. This protocol enables mobile devices to participate in any secure
two-party SMC protocol with minimal cost to the device and with nominal over-
head to the servers running the computation. Specifically, we make the following
contributions:

– Develop a black box outsourcing protocol: We develop and prove the
security of a novel outsourcing technique for lifting any two-party SMC proto-
col into the two-party outsourced setting. Unlike previous generic outsourcing
approaches [12], this allows for any SMC protocol to be outsourced, not strictly
reactive SMC protocols.

– Implement and evaluate the overhead cost of the outsourcing opera-
tions: Using the garbled circuit protocol of shelat and Shen [20], we implement
our protocol and evaluate the overhead cost of outsourcing. Our results show
that for large circuits, black box outsourcing incurs negligible overhead (i.e.,
the confidence intervals for outsourced and server only execution intersect)
in evaluation time and communication cost when compared to evaluating the
unmodified function. In the full version of this work [5], we demonstrate the
practical use of our protocol with a mobile-specific facial recognition applica-
tion based on the Scifi protocol [19].

2 Related Work

Since it was initially conceived in the early 1980’s [21], secure multiparty com-
putation has grown from a theoretical novelty to a potentially practical cryp-
tographic construction. Since then, SMC protocols have been developed using
homomorphic encryption [6], secret sharing [8], and garbled circuits [21]. While
techniques developed in the semi-honest adversary model are relatively effi-
cient [11], malicious secure SMC protocols [16,20] typically have significant
overhead cost that makes them infeasible to execute without sizable process-
ing, memory, and communication resources.

With smartphone applications retrieving private user data at an increasing
rate, SMC could potentially offer a way to maintain privacy and functionality in
mobile computing. However, the efficiency challenges of SMC are compounded
when considered in the resource-constrained mobile environment. Previous work
has shown that smartphones are generally limited to simple functions in the
semi-honest setting [2,10]. Demmler et al. [7] showed how to incorporate pre-
computation on hardware tokens to improve efficiency on mobile devices, but

216 H. Carter et al.

still in the semi-honest setting. In addition to the cost of evaluating these SMC
protocols, Mood et al. [18] and Kreuter et al. [15] demonstrated that even with
significant optimization, the task of compiling circuits on the mobile device can
also be quite costly.

Given these limitations, evaluating SMC protocols directly on mobile hard-
ware does not seem possible in the immediate future. Because of this, mobile
secure computation research has recently focused on applying techniques from
server-assisted cryptography [1] to move the most costly cryptographic opera-
tions off of the mobile device and onto a more capable Cloud server. The first pro-
tocol to outsource a general SMC protocol was developed by Kamara et al. [13],
which established a definition of security that assumes specific parties in the
computation, while malicious, are not allowed to collude. Following this defin-
ition, several other protocols and efficiency improvements have been developed
for the outsourced setting [3,4,17]. Unfortunately, these protocols are built on
specific SMC constructions. With new techniques for SMC being developed at a
rapid pace, it is unclear how to apply the outsourcing techniques used in these
protocols to new schemes. In this work, we seek to develop a protocol that can
lift any two-party SMC protocol into the outsourced setting with little overhead.

In recent work, Jakobsen et al. [12] develop a framework for outsourcing
secure computation that is similar to our protocol. However, their protocol
requires specific properties in the underlying SMC protocol, where our protocol
is designed to be truly generic. Our implementation and empirical performance
analysis demonstrate that the added circuit overhead required by our protocol
does not significantly affect the execution time for large circuits, and allows for
truly generic SMC outsourcing. We examine the tradeoffs between these two
protocols in the full version of this work [5].

3 Protocol

3.1 Setting

Here we describe the protocol participants. As with the existing protocols in
this setting, we assume that the application server and Cloud do not collude.
We prove security in the full version of our work [5] using the definition set forth
by Kamara et al. [13].

– SERVER: the application or web server participating in a secure computa-
tion with the mobile device. This party provides input to the function being
evaluated.

– MOBILE: the mobile device accessing Server to jointly compute some result.
This party also provides input to the function being evaluated.

– CLOUD: a computation provider that assists Mobile in the expensive oper-
ations of the secure computation. This party executes any two-party SMC
protocol with Server, but does not provide input to the function being
evaluated.

Outsourcing Secure Two-Party Computation as a Black Box 217

3.2 Protocol Description

Common Input: All parties agree on a computational security parameter k, a
message authentication code (MAC) scheme (Gen(),Mac(), V er()), and a mali-
cious secure two-party computation protocol 2PC(). All parties agree on a two-
output function f(x, y) → fm, fs that is to be evaluated.

Private Input: Mobile inputs x while Server inputs y. We denote the bit
length of a value as |x| and concatenation as x||y.
Output: Server receives fs and Mobile receives fm.

1. Input preparation: Mobile generates a one-time pad kfm where |kfm| =
|fm|. Mobile then generates two MAC keys vs = Gen(k) and vc = Gen(k).
Finally, Mobile generates a one-time pad km where |km| = |x| + |kfm|.

2. Input delivery: Mobile encrypts its input as a = (x||kfm) ⊕ km. It then
generates two tags ts = Mac(a||vc, vs) and tc = Mac(km||vs, vc). Mobile
delivers a, vc, and ts to Server and km, vs, and tc to Cloud.

3. Augmenting the target function: All parties agree on the following aug-
mented function g(y, a, vc, ts; km, vs, tc) to be run as a two-party SMC com-
putation:
(a) If V er(a||vc, ts, vs) �= 1 or V er(km||vs, tc, vc) �= 1 output ⊥.
(b) Set x||kfm = a ⊕ km
(c) Run the desired function fs, fm = f(x, y)
(d) Set output values os = fs and om = fm ⊕ kfm
(e) Output os||om to Server and om to Cloud

4. Two-party computation: Server and Cloud execute a secure two-
party computation protocol 2PC(g(); y, a, vc, ts; km, vs, tc) evaluating the
augmented function.

5. Output verification: Cloud delivers its output from the two-party com-
putation, om to Mobile. Server also delivers the second half of its output
o′
m to Mobile. Mobile verifies that om = o′

m.
6. Output recovery: Server receives output fs = os and Mobile receives

output fm = om ⊕ kfm.

Security. Our protocol intuitively provides both correctness and privacy for
the Mobile input and output based on the underlying components. Privacy is
achieved based on the security of the underlying SMC protocol as well as the
input and output one-time pads. Correctness is based on three main points. The
MAC evaluated within the circuit ensures that the Mobile input is correct.
The correctness of the circuit evaluation itself is guaranteed by the underlying
SMC protocol. Finally, the correctness of the output is ensured by the security
model assumption that at least one of the Server and Cloud are behaving
semi-honestly. Thus, any tampering with the Mobile output by the malicious
party will be detected when compared to the output provided by the semi-honest
party. For a formal simulation proof of security, refer to the full version of this
work [5].

218 H. Carter et al.

4 Performance Evaluation

To demonstrate the practical efficiency of our black box outsourcing protocol,
we implemented the protocol and examined the actual overhead incurred by the
augmented circuit. We initially considered comparing our protocol to existing
implementations of outsourcing protocols [3,4,13]. However, existing protocols
are built on fixed underlying SMC techniques. As new protocols for two-party
SMC are developed, the plug-and-play nature of our protocol allows for these new
techniques to be applied, which would provide a different comparison for each
underlying protocol. Instead, we chose to compare the overhead execution costs
of our black box protocol to performing the same computation in the underlying
two-party protocol. Because the Mobile operations requires seconds or less to
execute, we focus our attention on the cost at the two executing servers. This
analysis demonstrates two key benefits of our protocol. First, it gives a rough
overhead cost for outsourcing garbled circuit protocols. Second, it demonstrates
that our outsourcing technique allows a mobile device with restricted computa-
tional capability to participate in a privacy-preserving computation in approx-
imately the same amount of time as the same computation performed between
two servers. Essentially, we show that our protocol provides a mobile version of
any two-party SMC protocol with nominal overhead cost to the servers. This is
a novel evaluation methodology not used to evaluate previous black box SMC
constructions, and provides a baseline estimate for performance when applying
a new underlying SMC construction.

4.1 System Design

Our protocol implementation uses the garbled circuit protocol developed by
shelat and Shen [20] as the underlying two-party SMC protocol. We selected
this protocol because it is among the most recently developed garbled circuit
protocols and it has the most stable public release. We emphasize that it is
possible to implement our outsourcing on any two-party SMC protocol, such
as the recent protocols developed to reduce the cost of cut-&-choose [9,16].
We implement our MAC within the augmented circuit using AES in cipher-
block chaining mode (CBC-MAC), as the AES circuit is well-studied in the
context of garbled circuit execution. This MAC implementation adds an invoca-
tion of AES per 128-bit block of input. Using the compiler developed by Kreuter
et al. [14], the overhead non-XOR gate count in the augmented circuit based on
input size is (|x|15686

128) for input x. We provide exact gate counts with overhead
measurements for each tested application in Table 1.

Testbed. Our experiments were run on a single server equipped with 64 cores
and 1 TB of RAM. For each execution, the application server and cloud were
run as 32 processes communicating via the Message Passing Interface (MPI)
framework. The mobile device was a Samsung Galaxy Nexus with a 1.2 GHz dual-
core ARM Cortex-A9 processor and 1 GB of RAM, running Android version 4.0.

Outsourcing Secure Two-Party Computation as a Black Box 219

Table 1. Comparing the original function size to the augmented outsourcing circuit.
As the size of the circuit grows, the increase in gates incurred by outsourcing becomes
vanishingly small.

Program name SS13 total BB total Increase SS13 Non-XOR BB Non-XOR Increase

Dijkstra10 259,232 456,326 1.8x 118,357 179,641 1.5x

Dijkstra20 1,653,542 1,949,820 1.2x 757,197 849,445 1.1x

Dijkstra50 22,109,732 22,605,018 1.0x 10,170,407 10,324,317 1.0x

MatrixMult3x3 424,748 1,020,196 2.4x 161,237 345,417 2.1x

MatrixMult5x5 1,968,452 3,360,956 1.7x 746,977 1,176,981 1.6x

MatrixMult8x8 8,069,506 11,354,394 1.4x 3,060,802 4,075,082 1.3x

MatrixMult16x16 64,570,969 77,423,481 1.2x 24,494,338 28,458,635 1.2x

RSA128 116,083,727 116,463,648 1.0x 41,082,205 41,208,553 1.0x

The mobile device communicated with the test server over an 802.11n wireless
connection in an isolated network environment. We ran each experiment 10 times
and averaged the results with 95 % confidence intervals.

We selected a representative set of test applications from previous litera-
ture [3,14,15,20] to measure the performance of our protocol over varying circuit
and input sizes. We test multiplication of n × n matrices and 128-bit RSA as
implemented by Kreuter et al. [14] and Dijkstra’s algorithm for n-node graphs
as implemented by Carter et al. [4].

4.2 Execution Time

With the mobile operations minimized to O(|x|+|om|) symmetric key operations,
our experiments showed a diminishing cost of server overhead as the size of the
test application increased. Considering Dijkstra’s algorithm in Fig. 1 shows that
for a graph of 10 nodes, the outsourcing operations incur a 2.1x slowdown from
running the protocol between two servers. However, as the number of graph
nodes increases to 50, the confidence intervals for outsourced and server-only
execution overlap, indicating a virtually non-existent overhead cost. When we
compare these results to the gate counts shown in Table 1, we see that as the
gate count for the underlying protocol increases, the additive cost of running the
input MAC and output duplication amortize over the total execution time. This
is to be expected from our predicted overhead of 15686 non-XOR gates for each
CBC-MAC block in the input. However, since the mobile input for Dijkstra’s
algorithm is of a fixed size, we observe that increasing the application server
input size does not add to the outsourcing overhead, showing the black box
protocol to be more efficient for large circuit sizes with small mobile input.

When we consider a growing mobile input size, we observe the overhead cost
of the MAC operation performed on the mobile input. In the matrix multiplica-
tion test program, we observed a 2.6x slowdown for the smallest input size of a
3 × 3 matrix (Fig. 1). As in the previous experiment, this overhead diminished
to a 1.3x slowdown for the largest input size, but diminished at a slower rate
when compared to the circuit size. This is a result of additional AES invocations
to handle the increasing mobile input size. However, the reduction in overhead

220 H. Carter et al.

 1

 10

 100

 1000

 10000

MM3x3 MM5x5 MM8x8 MM16x16

T
im

e
(s

)

Program

SS13
Black Box

 1

 10

 100

 1000

Dijkstra10 Dijkstra20 Dijkstra50

T
im

e
(s

)

Program

SS13
Black Box

a)Dijkstra's execution time a)Matrix Mult execution time

Fig. 1. Dijkstra and matrix multiplication execution time in seconds for k = 80. Note
that the execution overhead diminishes even as the mobile input size increases.

Table 2. Comparing SS13 and Black Box execution time in seconds (ex) and com-
munication cost in bytes (com). Note that as the circuit size increases, the increase in
execution time and communication cost caused by outsourcing becomes insignificant.

Program name SS13 (ex) BB (ex) Increase (ex) SS13 (com) BB (com) Increase

(com)

Dijkstra10 16 ± 1% 33 ± 1% 2.1x 2.44 × 109 3.87 × 109 1.6x

Dijkstra20 77 ± 1% 100 ± 1% 1.3x 1.52 × 1010 1.73 × 1010 1.1x

Dijkstra50 940 ± 2% 980 ± 2% 1.0x 2.02 × 1011 2.05 × 1011 1.0x

MatrixMult3x3 28.6 ± 0.8% 73.2 ± 0.5% 2.6x 3.43 × 109 7.66 × 109 2.2x

MatrixMult5x5 110 ± 2% 200 ± 2% 1.9x 1.57 × 1010 2.56 × 1010 1.6x

MatrixMult8x8 400 ± 2% 627 ± 0.9% 1.6x 6.43 × 1010 8.73 × 1010 1.4x

MatrixMult16x16 2900 ± 1% 3800 ± 2% 1.3x 5.11 × 1011 6.01 × 1011 1.2x

RSA128 4700 ± 2% 4900 ± 3% 1.0x 8.69 × 1011 8.72 × 1011 1.0x

shows that even as input sizes increase, the circuit size is still the main factor in
execution overhead.

In our final experiment, we considered a massive circuit representing one
of the most complex garbled circuit programs evaluated to date. When com-
paring the outsourced execution to a standard two-party execution, the over-
head incurred by the outsourcing operations is almost non-existent, as shown
in Table 2. This experiment confirms the trends of diminishing overhead cost
observed in the previous two experiments. From this and previous work, we
know that evaluating large circuits from mobile devices is not possible without
outsourcing the bulk of computation. Given that many real-world applications
will require on the order of billions of gates to evaluate, this experiment shows
that our black box outsourcing technique allows mobile devices to participate in
secure two-party computation at roughly the same efficiency as two server-class
machines executing the same computation.

4.3 Communication Cost

Because transmitting data from a mobile device is costly in terms of time and
power usage, we attempted to minimize the communication cost at the mobile

Outsourcing Secure Two-Party Computation as a Black Box 221

device. Our protocol requires only 2(|x| + 2k) + 4(|om|) bits to be transmitted
to and from the mobile, were x is the mobile input, om is the mobile output,
and k is the security parameter. For the RSA circuit, this would amount to 136
bytes of data sent and received. To perform the same computation without out-
sourcing, Carter et al. [4] show that several gigabytes of data would be required
if the mobile device possessed enough memory to perform the computation at
all. Because our mobile communication is nearly minimal and easily calculated
for any program, we focused our evaluation on measuring the communication
overhead incurred between the application server and the Cloud.

As with execution time, Table 2 shows an inverse relation between circuit
size and communication overhead. Theoretically, the communication overhead
should approximately match the overhead in circuit size shown in Table 1. The
experiments confirmed that the actual overhead was equal to or slightly larger
than the overhead in non-XOR gates in the circuit. The reason for this correlation
is twofold. First, the free-XOR technique used in the shelat-Shen protocol allows
XOR gates to be represented without sending any data over the network. Thus,
adding additional XOR gates does not incur communication cost. Second, in
cases where the actual overhead is slightly larger than the circuit size overhead,
we determined that the added cost was a result of additional oblivious transfers
needed for longer inputs. These operations require the transmission of large
algebraic group elements, so the test circuits which incurred increased overhead
from the growth of the mobile input showed a slightly larger communication
overhead as well. Ultimately, as in the case of execution time, our experiments
demonstrate that black box outsourcing incurs minimal communication cost at
the mobile device with diminishing overhead between the application server and
the Cloud.

Acknowledgments. This work is based upon work supported by the U.S. National
Science Foundation under grant numbers CNS-1540217 and CNS-1464088.

References

1. Beaver, D.: Server-assisted cryptography. In: Proceedings of the workshop on New
security paradigms (NSPW) (1998)

2. Carter, H., Amrutkar, C., Dacosta, I., Traynor, P.: For your phone only: custom
protocols for efficient secure function evaluation on mobile devices. J. Secur. Com-
mun. Netw. (SCN) 7(7), 1165–1176 (2014)

3. Carter, H., Lever, C., Traynor, P.: Whitewash: outsourcing garbled circuit gener-
ation for mobile devices. In: Proceedings of the Annual Computer Security Appli-
cations Conference (ACSAC) (2014)

4. Carter, H., Mood, B., Traynor, P., Butler, K.: Secure outsourced garbled circuit
evaluation for mobile devices. In: Proceedings of the USENIX Security Symposium
(2013)

5. Carter, H., Mood, B., Traynor, P., Butler, K.: Outsourcing secure two-party compu-
tation as a black box. Cryptology ePrint Archive, Report 2014/936 (2014). http://
eprint.iacr.org/

http://eprint.iacr.org/
http://eprint.iacr.org/

222 H. Carter et al.

6. Damg̊ard, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation from
somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg (2012)

7. Demmler, D., Schneider, T., Zohner, M.: Ad-hoc secure two-party computation on
mobile devices using hardware tokens. In: Proceedings of the USENIX Security
Symposium (2014)

8. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game. In: Pro-
ceedings of the Annual ACM Symposium on Theory of Computing (1987)

9. Huang, Y., Katz, J., Evans, D.: Efficient secure two-party computation using sym-
metric cut-and-choose. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II.
LNCS, vol. 8043, pp. 18–35. Springer, Heidelberg (2013)

10. Huang, Y., Chapman, P., Evans, D.: Privacy-preserving applications on smart-
phones. In: Proceedings of the USENIX Workshop on Hot Topics in Security (2011)

11. Huang, Y., Evans, D., Katz, J., Malka, L.: Faster secure two-party computation
using garbled circuits. In: Proceedings of the USENIX Security Symposium (2011)

12. Jakobsen, T.P., Nielsen, J.B., Orlandi, C.: A framework for outsourcing of secure
computation. In: Proceedings of the ACM Workshop on Cloud Computing Security
(CCSW) (2014)

13. Kamara, S., Mohassel, P., Riva, B.: Salus: A system for server-aided secure function
evaluation. In: Proceedings of the ACM Conference on Computer and Communi-
cations Security (CCS) (2012)

14. Kreuter, B., Shelat, A., Shen, C.: Billion-gate secure computation with malicious
adversaries. In: Proceedings of the USENIX Security Symposium (2012)

15. Kreuter, B., shelat, A., Mood, B., Butler, K.: PCF: a portable circuit format for
scalable two-party secure computation. In: Proceedings of the USENIX Security
Symposium (2013)

16. Lindell, Y.: Fast cut-and-choose based protocols for malicious and covert adver-
saries. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043,
pp. 1–17. Springer, Heidelberg (2013)

17. Mood, B., Gupta, D., Butler, K., Feigenbaum, J.: Reuse it or lose it: More efficient
secure computation through reuse of encrypted values. In: Proceedings of the ACM
Conference on Computer and Communications Security (CCS) (2014)

18. Mood, B., Letaw, L., Butler, K.: Memory-efficient garbled circuit generation for
mobile devices. In: Proceedings of the IFCA International Conference on Financial
Cryptography and Data Security (FC) (2012)

19. Osadchy, M., Pinkas, B., Jarrous, A., Moskovich, B.: Scifi-a system for secure
face identification. In: Proceedings of the IEEE Symposium on Security & Privacy
(2010)

20. Shelat, A., Shen, C.H.: Fast two-party secure computation with minimal assump-
tions. In: Proceedings of the ACM Conference on Computer and Communications
Security (CCS) (2013)

21. Yao, A.C.: How to generate and exchange secrets. In: Proceedings of the IEEE
Annual Symposium on Foundations of Computer Science (1986)

Cryptography and VPNs

What Users Should Know About Full Disk
Encryption Based on LUKS

Simone Bossi and Andrea Visconti(B)

Department of Computer Science, Università Degli Studi di Milano, Milan, Italy
simone.bossi2@studenti.unimi.it, andrea.visconti@unimi.it

Abstract. Mobile devices, laptops, and USB memory usually store large
amounts of sensitive information frequently unprotected. Unauthorized
access to or release of such information could reveal business secrets,
users habits, non-public data or anything else. Full Disk Encryption
(FDE) solutions might help users to protect sensitive data in the event
that devices are lost or stolen. In this paper we focus on the security
of Linux Unified Key Setup (LUKS) specifications, the most common
FDE solution implemented in Linux based operating systems. In partic-
ular, we analyze the key management process used to compute and store
the encryption key, and the solution adopted to mitigate the problem
of brute force attacks based on weak user passwords. Our testing activi-
ties show that unwitting users can significantly reduce the security of a
LUKS implementation by setting specific hash functions and aggressive
power management options.

Keywords: LUKS · PBKDF2 · Full disk encryption · HMAC · Hash
functions · Power management options

1 Introduction

Nowadays, mobile devices, laptops, USB memory are convenient and easy to
use. They are fast becoming the preferred choice of companies, customers and
employees, especially by those who are on the move. These devices usually store
large amounts of sensitive information frequently unprotected. If such devices
are lost or stolen, the risk of unauthorized disclosure of confidential, sensitive, or
classified information is very high and the impact to the affected companies is
potentially billions of dollars [13]. However computer users are not the only ones
who do not pay attention to security when it comes to protecting sensitive data.
Many operating systems store temporary files/swap partitions on hard drive and
a number of problems arises when these files contain sensitive data [8].

A possible solution is to encrypt the whole hard disk. Full Disk Encryption
(FDE) solutions, also known as “On-Disk Encryption” or “Whole Disk Encryp-
tion”, work by encrypting every single bit of data that resides on a storage

S. Bossi—Part of this work was performed as part of the author’s B.Sc. thesis, under
the supervision of Dr. Andrea Visconti.

c© Springer International Publishing Switzerland 2015
M. Reiter and D. Naccache (Eds.): CANS 2015, LNCS 9476, pp. 225–237, 2015.
DOI: 10.1007/978-3-319-26823-1 16

226 S. Bossi and A. Visconti

device — i.e., operating systems, applications, swap partitions, user’s files, and
so on. FDE solutions aim to provide data security, even in the event that an
encrypted device is lost or stolen. All information is encrypted/decrypted on
the fly, automatically and transparently. Without the encryption key, the data
stored on the disk remains inaccessible to any users (regular or malicious).

One of the main issues facing Full Disk Encryption solutions is the pass-
word management. Indeed, the master key used to encrypt the whole disk is
stored on it. A well-known solution to this problem, is to adopt a two level
key hierarchy [14] but sometimes it is not enough (e.g. two level key hierarchy
adopted by Android 3-4.3 [4]), and a number of questions arise. Could the choice
of specific cryptographic parameters significantly reduce the security of a FDE
solution? How should users choose cryptographic parameters that best meet
security requirements? Could external factors (i.e. power management options)
affect the security of a FDE solution?

In this paper we try to find answers to these questions, evaluating the level
of security provided by Linux Unified Key Setup, the most common Full Disk
Encryption specification implemented in Linux based operating systems. In par-
ticular, we analyze the key management process used to derive the encryption
key, and how the choice of specific hash functions and aggressive power manage-
ment options may affect the security of a FDE solution.

The remainder of the paper is organized as follows. In Sect. 2, we introduce
the problems of managing passwords and the solution adopted. In Sect. 3 we
describe the LUKS design. In Sect. 4 we analyze the key management process
used by LUKS implementations, explaining the possible weaknesses found.
Finally, discussion and conclusions are drawn in Sect. 5.

2 Password Management

An important problem to solve in FDE solutions is the password management.
Users know they need to generate a strong password and change it frequently.
But the process of changing encryption password brings with it a series of prob-
lems, indeed, if a FDE solution has been implemented using a master key which
encrypts/decrypts the whole hard disk — i.e., single key schema — changing the
master key means re-encrypt all the data with the new key. This process can be
very time consuming and cause unacceptable unavailability of data.

A well-known solution to this problem, is to adopt a two level key hierarchy.
A strong master key generated by the system is used to encrypt/decrypt whole
hard disk. Such key have to be split, encrypted with a secret user key — each
user has their own secret key — and stored on the device itself. The master
key is unique but a number of encrypted master key are stored on disk, one for
each user. This approach has a main advantage. If we set a new secret user key,
the encrypted master key stored on disk changes but the master key does not.
Hence, users can change password frequently without re-encrypting all the data.

But, what happens when a device is lost or stolen? Is the two level key
hierarchy method strong enough to protect our sensitive data? When devices are

What Users Should Know About Full Disk Encryption Based on LUKS 227

lost or stolen, it is desirable that the master key cannot be decrypted by anyone.
Unfortunately, master keys are protected with user keys which are usually short
and lack entropy. Hence, an attacker would try to guess them constructing a list
of possible passwords. A solution to this problem is described in [10]. Morris and
Thompson suggest to combine a user password with a salt to generate a key.
This approach allows to compute several possible keys for each user password.
The effect is to discourage an attacker from precomputing a list of possible keys.
Another solution described in literature [14] is to derive the key using a Key
Derivation Function (KDF). This approach tries to slow down the computation
of malicious users to mitigate the problem of brute force attacks. In particular,
the KDF allows legitimate users to spend a moderate amount of time on key
derivation, while inserts CPU-intensive operations on the attacker side.

To face the problems of password management described in this section, it is
possible to adopt a solution based on a two level key hierarchy and protect the
master key using both salt and key derivation function.

2.1 PBKDF2: A Key Derivation Function

PBKDF2 is a Password-Based Key Derivation Function described in PKCS #5
[11,14]. For providing better resistance against brute force attacks, PBKDF2
introduce CPU-intensive operations. These operations are based on an iterated
pseudorandom function (PRF) which maps input values to a derived key. The
most important properties to assure is that the iterated pseudorandom function
is cycle free. If this is not so, a malicious user can avoid the CPU-intensive
operations and, as described in [16], get the derived key by executing a set of
functionally-equivalent instructions.

PBKDF2 inputs a pseudorandom function PRF , the user password p, a
random salt s, an iteration count c, and the desired length len of the derived
key. It outputs a derived key DerKey.

DerKey = PBKDF2(PRF, p, s, c, len) (1)

More precisely, the derived key is computed as follows:

DerKey = T1||T2|| . . . ||Tlen (2)

where
T1 = Function(p, s, c, 1)

T2 = Function(p, s, c, 2)

· · ·
Tlen = Function(p, s, c, len).

Each single block Ti — i.e., Ti = Function(p, s, c, i) — is computed as

Ti = U1 ⊕ U2 ⊕ ... ⊕ Uc (3)

228 S. Bossi and A. Visconti

where
U1 = PRF (p, s||i)
U2 = PRF (p, U1)

· · ·
Uc = PRF (p, Uc−1)

The pseudorandom function applied to derive a key can be a hash function
[12], cipher, or HMAC [1,2,9]. In the sequel, unless otherwise specified, by PRF
we will refer to HMAC with the SHA-1 hash function, which is the default
as per [7,14].

3 Linux Unified Key Setup

The Linux Unified Key Setup (LUKS) is a disk-encryption specification com-
monly implemented in Linux based operating systems. It is a platform-
independent standard on-disk format developed by Clemens Fruhwirth in 2004
[6,7]. LUKS is based on a two level key hierarchy. It protects the master key using
PBKDF2 as key derivation function. To solve the problem of data remanence —
i.e., data continues to exist on hard disk even after it has been deleted — an
anti-forensic splitter (AF-splitter) is adopted. This AF-splitter inflates and splits
the master key before storing it on disk and, furthermore, uses a hash function
as diffusion element.

A LUKS partition has a simple layout (see Fig. 1). It includes the partition
header, the key material (KM1, KM2, . . . , KM8), and the user encrypted data.

Fig. 1. LUKS partition header

The partition header contains information about salt, iteration counts, key slots
(eight), used cipher, cipher mode, key length, hash function, master key check-
sum, start sector of key material, and so on [6]. Among all these parameters,
we look more closely at salt and iteration counts because they allow to mitigate
brute force attacks. In particular, the salt is fetched from a random source [7],
while the iteration counts are automatically computed by making some run-time
tests when the encrypted partition is generated. Salt and iteration counts are
stored in plain text in LUKS partition header.

In addition, the solution adopted by LUKS has as many user key as there are
key slots. Therefore, the same master key can be encrypted with eight different
user keys, and stored in one of the eight key material sections.

What Users Should Know About Full Disk Encryption Based on LUKS 229

3.1 Master Key Recovery

In order to recover the master key, we need a valid LUKS partition header. When
a user key is provided, it unlocks one of the eight key slots. As shown in Fig. 2,
PBKDF2, an anti-forensic splitter, and a cipher are used to compute the master
key. Such a key in turn will unlock the encrypted data.

Fig. 2. Master key recovery process

More precisely, the following algorithm is processed:

Algorithm 1. Master key recovery process
1 Read the user password/passphare p;
2 Read salt s from active key slot;
3 Read iteration count c from active key slot;
4 Use PBKDF2 to compute derived key DerKey;
5 Read the start sector of key material from active key slot;
6 Read the split master key from key material;
7 Decrypt the split master key using derived key DerKey;
8 Merge the split encrypted master key and obtain a candidate master key;
9 Read the iteration count for computing the master key digest;

10 Use PBKDF2 to compute the candidate master key digest;
11 Compare such digest with those stored in the partition header;
12 If equal, the recovery is successful. Otherwise, the candidate is not the

correct master key.

230 S. Bossi and A. Visconti

4 Analysis of a LUKS Implementation

In Linux world, LUKS implementations are based on cryptsetup and dm-crypt.
In order to mitigate the problem of brute force attacks based on weak user
passwords, LUKS combined the ideas of salt and key derivation function (i.e.,
PBKDF2). Because salt parameter is known and user password may be guessed,
we focus on iteration counts and their ability to slow down a brute force attack
as much as possible. In particular, we try to understand where and how the
iteration counts are used, how the choice of specific hash functions may affect the
iteration count computation, and how unwitting users might significantly reduce
the security of a LUKS implementation by setting aggressive power management
options.

4.1 Iteration Counts: Where and How

Two iteration counts are involved in the key management process. The first
iteration count is used to compute derived key (see point 4, Algorithm 1), while
the second one is involved in the master key checksum process (see points 9-10-
11, Algorithm 1).

Table 1. Average iteration counts involved in the key derivation process

CPU OS sha1 sha512 sha256 ripemd160

Intel Atom z520 Debian 7.7 x86 31,035 7,019 18,567 29,491

Intel Core 2 Duo T6670 Kali 1.0 x86 151,772 22,821 67,634 111,791

Intel Pentium 3556U Xubuntu 14.04 x64 126,617 50,082 77,379 103,287

Intel Core i3 2310M Fedora 20 x64 136,375 50,107 77,682 111,536

Intel Pentium T4500 Ubuntu 12.04 x64 147,904 56,380 85,167 119,366

Intel Core i5 3320M Debian 7.7 x64 232,203 88,843 139,985 196,209

Intel Core i7 2860QM Kubuntu 14.04 x64 248,671 90,225 123,904 179,947

Intel Core i7 4710MQ ArchLinux x64 588,761 302,148 392,916 350,378

Table 2. Average iteration counts involved in the master key checksum process

CPU OS sha1 sha512 sha256 ripemd160

Intel Atom z520 Debian 7.7 x86 7,826 1,702 4,668 7,327

Intel Core 2 Duo T6670 Kali 1.0 x86 37,761 5,752 27,498 16,764

Intel Pentium 3556U Xubuntu 14.04 x64 31,419 12,406 19,318 25,659

Intel Core i3 2310M Fedora 20 x64 33,903 12,657 19,307 27,718

Intel Pentium T4500 Ubuntu 12.04 x64 36,913 14,009 21,495 29,951

Intel Core i5 3320M Debian 7.7 x64 58,218 22,026 34,802 49,138

Intel Core i7 2860QM Ubuntu 14.04 x64 54,371 19,353 30,926 44,927

Intel Core i7 4710MQ ArchLinux x64 147,727 75,570 98,929 87,572

What Users Should Know About Full Disk Encryption Based on LUKS 231

Fig. 3. The first 1024 bytes on EXT-family file systems

We experimentally observed that about 75–80% of the computational effort
required to compute a derived key is generated by first iteration count (see
Table 1), while the remaining 20–25% by second one (see Table 2). Unfortunately,
the master key checksum process can be avoided exploiting the well known prob-
lem of file system structure. Indeed, on EXT-family file systems the first 1024
bytes are reserved for the boot sector (see Fig. 3, unencrypted boot partition).
When unused — recall that a hard disk can contain several partitions, each with
their own boot sectors — it is set to zeros (see Fig. 3, user encrypted data).

By decrypting the first bytes of the user encrypted data and checking if such
bytes are zeros, we are able to understand if the candidate key is the correct
master key or not. Hence, we substitute points 9-10-11 of Algorithm 1 with a
decryption operation.

232 S. Bossi and A. Visconti

This means that, for all encrypted LUKS partitions the second iteration count
can be avoided and the computational effort required to compute the master key
can be reduced by about 20–25%.

4.2 Iteration Counts and Hash Functions

To better understand how the iteration counts are handled — recall that they are
automatically computed by making some run-time tests — we experimentally1

collected several partition headers related to a number of encrypted devices. To
be sure that such values are not conditioned by external factors, e.g. running
programs, we collected 3200 partition headers. More precisely, for each processor
(eight) and each hash function (four) listed in Tables 1 and 2, we execute 100
runs for a total of 8 × 4 × 100 = 3200 partition headers collected. Then, we read
salt and iteration counts stored in each partition header. Tables 1 and 2 shown
the average values collected. Notice that the variation across runs is observed to
be less than 0.4%.

As expected, devices with a different hardware configuration generate differ-
ent iteration count values. For example, the values collected for SHA1 run on
average between 588,761 (Intel Core i7 4710MQ) and 31,035 (Intel Atom z520),
with higher values corresponding to a more powerful processor.

Surprisingly, even small changes in software, such as choose a different func-
tion of the SHA family, may considerably decrease the iteration count values.
Notice the differences between 67,634 and 22,821 (Intel Core due duo T6670,
SHA256 vs SHA512), or 18,567 and 7,019 (Intel Atom z520, SHA256 vs SHA512),
or 139,985 and 88,843 (Intel Core i5 3320M, SHA256 vs SHA512). This abnormal
behavior was not found in all cases tested. For example, it is partially mitigated in
i7 4710MQ processor where the average values collected are 392,916 and 302,148
(Intel Core i7 4710MQ, SHA256 vs SHA512).

The approach adopted by LUKS in defining iteration count values does not
always sound good. We found it curious that the iteration counts related to
SHA-256/512 are considerably smaller than those of SHA-1. Although there is
no reason why this should not happen when we talk about the security against
password guessing, from an user’s point of view, SHA-256 and SHA-512 are still
considered more secure than SHA-1, therefore a FDE solution based on SHA-2
is expected to be stronger. We notice that the CPU time spent to compute a
list of master key candidates based on SHA-256/512 costs less than one based
on SHA-1. Hence, it is easier to attack a FDE solution which makes use of a
safer hash function (e.g., SHA256 or SHA512) rather than one which uses a less
secure function (e.g., SHA-1).

Furthermore, the computational time spent to compute a list of master key
candidates does not only depend on the iteration count values. Even the number
of fingerprints required to compute a single iteration affects the total execution
time. Indeed, assuming that the decryption function involved in the master key
1 32-bit or 64-bit operating system and cryptsetup version 1.6.6 (the latest version

available at the time of testing) were installed on our laptops.

What Users Should Know About Full Disk Encryption Based on LUKS 233

recovery process is AES (i.e. the default choice), we need a 256 bits derived key. A
SHA-1 fingerprint is only 160 bits in length and cannot be used as derived key. As
described in Eq. 2, a second fingerprint is necessary — i.e., DerKey = T1||T2.
On the other hand, SHA-256 and SHA-512 generate enough bits to compute
a derived key, hence DerKey = T1. This means that, at equal iteration count
values, a FDE solution based on HMAC-SHA1 slow down the brute force process
better than one based on HMAC-SHA256 or HMAC-SHA512.

To point out this finding, we set the first iteration count to 500,000, and
try to compute a list of 250,000 master key candidates using a number of hash
functions. Figure 4 can help us to visualize the time necessary to execute a brute
force attack on a i7 processor. Note that the gap between SHA-1, SHA-256, and
SHA-512 hash functions is partially mitigated by compensatory mechanisms such
as using a computationally more complex hash function.

Fig. 4. Time spent to compute a list of 250,000 master key candidates

4.3 Iteration Counts and Power Management

Another important feature that users have to take into account during encryption
operations are the power management options. A common way to increase the
battery life of devices is to enable aggressive power saving policies. Such policies
save power, but they also impact performance by lowering CPU clock speed.
Hence, the iteration count values fall down even further.

Table 3. Maximum and minimum CPU frequency of some devices

CPU OS Max Freq (Plugged) Min Freq
(Unplugged)

Intel Atom z520 Debian 7.7 x86 1.33 GHz 0.80 GHz

Intel Pentium 3556U Xubuntu 14.04 x64 1.70 GHz 0.80 GHz

Intel Core i7 4710MQ ArchLinux x64 3.50 GHz 1.20 GHz

234 S. Bossi and A. Visconti

To better understand this behavior, we install a well-known Linux power
management package (i.e., Laptop Mode Tools package version 1.66) and reduce
the CPU frequency as much as possible (see Table 3). Then, we run a number of
tests and experimental results are reported in Table 4.

Table 4. Power saving policies and their impact on the iteration count values

SHA1 SHA512

CPU Plugged Unplugged Plugged Unplugged

Intel Atom z520 31,035 18,693 7,019 4,288

Intel Pentium 3556U 126,617 62,969 50,082 25,161

Intel Core i7 4710MQ 588,761 202,143 302,148 104,216

SHA256 RIPEMD

CPU Plugged Unplugged Plugged Unplugged

Intel Atom z520 18,567 11,094 29,491 17,813

Intel Pentium 3556U 77,379 38,714 103,287 51,603

Intel Core i7 4710MQ 392,916 135,207 350,378 121,483

Note that the reduction of the iteration count values is proportional to the
reduction of the CPU frequency. Indeed, for the i7 Core tested, power save
settings imply a lowering of iterations by about a factor 3. Pentium, instead, has
half the iteration counts, and Atom has about a third less. These results suggest
that power saving policies might have an important impact on the iteration
count values, hence, on the strength of the FDE solution adopted.

4.4 Testing

Our testing activity is not intended to decrypt a FDE solution — PBKDF2
can be parallelized on GPU architecture or specialized hardware (ASIC/FPGA)
and interested readers can find more information about this topic in [3,5], and
[15] — but only to evaluate how the choice of PBKDF2 parameters and power
management options can affect the security of a full disk encryption solution.

We implemented a brute-force attack based on a password-list of 250,000
master keys. Cryptographic hash functions and PBKDF2 have been implemented
using standard OpenSSL library. We run our code on a laptop equipped with
an i7 4710MQ processor. No GPUs have been used. The brute force attack has
been executed six times. For each CPU listed in Table 3, we target two LUKS
partitions collected using the following configuration options:

1. default iteration count values, AES-256 XTS mode, HMAC-SHA1, laptop
plugged in;

2. default iteration count values, AES-256 XTS mode, HMAC-SHA512, laptop
unplugged;

What Users Should Know About Full Disk Encryption Based on LUKS 235

Fig. 5. A toy example: time spent attacking a FDE solution

Figure 5 visualizes the time spent attacking a FDE solution. Although this is
a toy example — 250,00 master keys are an approximation of the size of a
dictionary — we can easily identify the gap between different kinds of approach.
The second approach abruptly reduce the timeframe for brute forcing, showing
how the simple choice of configuration parameters may affect a FDE solution
based on LUKS. Note that such an attack takes into account all the weaknesses
described in Sects. 4.1, 4.2 and 4.3.

5 Discussion and Conclusions

In this paper, we addressed the security of a Full Disk Encryption solution based
on LUKS specification. Such a solution aims to prevent data leakage even in the
event that devices are lost or stolen. We analyzed the key management process
used to compute and store the encryption key and how the problem of brute
force attacks based on weak user passwords has been mitigated.

We identify a number of issues that should be assessed and faced when a full
disk encryption is implemented.

– Firstly, the iteration count values are used to slow down a brute force attack,
therefore, they should not be too small. Experimental results show that some-
times they are.

– Secondly, power management options should not affect the strength of a FDE
solution. Testing results show that aggressive power-saving approaches may
have a relevant impact on the iteration count values, hence, on the strength
of the solution adopted.

– Thirdly, from an user’s point of view a FDE solution based on HMAC-SHA256,
or HMAC-SHA512, is expected to be much stronger than one based on SHA-1,
and be far more resistant to brute-force attacks. Our testing disprove this.

236 S. Bossi and A. Visconti

– Fourthly, the well-known problem of EXT family file system (i.e. the first block
group contains the boot record or is set to zero) allows attackers to substitute
the master key checksum process by a simple decryption operation. The CPU-
intensive operations used to compute a derived key should not be avoided by
executing a set of functionally-equivalent instructions.

– Fifthly, master keys stored on disk are protected with user keys which should
have a minimum length requirement in order to prevent a brute force attack.
We experimentally observed that a number of distribution such as Debian,
Ubuntu, and ArchLinux have no minimum length requirement, while Fedora
has (but only eight characters).

Our testing activities show that unwitting users can significantly reduced the
security of LUKS by setting “stronger” hash function (e.g. HAMC-SHA512 or
HAMC-SHA256) and enabling aggressive power management options. Because
attacks always get better and Moore’s Law will continue to march forward, we
strongly suggest to increase default iteration count values whenever a user key is
defined. Unfortunately, the most common user approach is to leave the default
values unchanged, although a number of parameters can be easily adjusted by
user as desired.

References

1. Bellare, M., Canetti, R., Krawczyk, H.: Keying hash functions for message authen-
tication. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 1–15. Springer,
Heidelberg (1996)

2. Bellare, M., Canetti, R., Krawczyk, H.: Message authentication using hash
functions–the hmac construction. RSA Laboratories CryptoBytes 2(1), 12–15
(1996)

3. Dürmuth, M., Güneysu, T., Kasper, M., Paar, C., Yalcin, T., Zimmermann, R.:
Evaluation of standardized password-based key derivation against parallel process-
ing platforms. In: Foresti, S., Yung, M., Martinelli, F. (eds.) ESORICS 2012. LNCS,
vol. 7459, pp. 716–733. Springer, Heidelberg (2012)

4. Elenkov, N.: Android Security Internals. No Starch Press (2014)
5. Frederiksen, T.K.: Using cuda for exhaustive password recovery (2011). http://

daimi.au.dk/∼jot2re/cuda/resources/report.pdf
6. Fruhwirth, C.: New methods in hard disk encryption (2005). http://clemens.

endorphin.org/nmihde/nmihde-A4-ds.pdf
7. Fruhwirth, C.: LUKS On-Disk Format Specification Version 1.2.1 (2011). http://

wiki.cryptsetup.googlecode.com/git/LUKS-standard/on-disk-format.pdf
8. Gutmann, P.: Secure deletion of data from magnetic and solid-state memory (1996).

https://www.cs.auckland.ac.nz/∼pgut001/pubs/secure del.html
9. Krawczyk, H., Bellare, M., Canetti, R.: Hmac: Keyed-hashing for message authen-

tication. Internet RFC 2104 (1998)
10. Morris, R., Thompson, K.: Password security: A case history. Commun. ACM

22(11), 594–597 (1979)
11. NIST: SP 800–132: Recommendation for password-based key derivation (2010)
12. NIST: FIPS PUB 180–4: Secure Hash Standard, March 2012. http://csrc.nist.gov/

publications/fips/fips180-4/fips-180-4.pdf

http://daimi.au.dk/~jot2re/cuda/resources/report.pdf
http://daimi.au.dk/~jot2re/cuda/resources/report.pdf
http://clemens.endorphin.org/nmihde/nmihde-A4-ds.pdf
http://clemens.endorphin.org/nmihde/nmihde-A4-ds.pdf
http://wiki.cryptsetup.googlecode.com/git/LUKS-standard/on-disk-format.pdf
http://wiki.cryptsetup.googlecode.com/git/LUKS-standard/on-disk-format.pdf
https://www.cs.auckland.ac.nz/~pgut001/pubs/secure_del.html
http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf
http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf

What Users Should Know About Full Disk Encryption Based on LUKS 237

13. Ponemon Institute: The billion dollar lost laptop problem (2010). http://
newsroom.intel.com/servlet/JiveServlet/download/1544-16-3132/The Billion
Dollar Lost Laptop Study.pdf

14. RSA Laboratories: Pkcs #5 v2.1: Password based cryptography standard (2012)
15. Schober, M.: Efficient password and key recovery using graphic cards. Diploma

Thesis, Ruhr-Universität Bochum (2010)
16. Visconti, A., Bossi, S., Ragab, H., Caló, A.: On the weaknesses of PBKDF2. In:

Proceedings of CANS 2015 (2015)

http://newsroom.intel.com/servlet/JiveServlet/download/1544-16-3132/The_Billion_Dollar_Lost_Laptop_Study.pdf
http://newsroom.intel.com/servlet/JiveServlet/download/1544-16-3132/The_Billion_Dollar_Lost_Laptop_Study.pdf
http://newsroom.intel.com/servlet/JiveServlet/download/1544-16-3132/The_Billion_Dollar_Lost_Laptop_Study.pdf

Q-OpenVPN: A New Extension of OpenVPN
Based on a Quantum Scheme for Authentication

and Key Distribution

Aymen Ghilen1(B), Mostafa Azizi2, and Ridha Bouallegue3

1 ENIT, University of Tunis El Manar, Tunis, Tunisia
ghilen06@gmail.com

2 Department of Computer Engineering ESTO,
University Mohamed Ist Oujda, Oujda, Morocco

azizi.mos@gmail.com
3 Innovcom Laboratory, Higher School of Communications, Tunis, Tunisia

ridha.bouallegue@gmail.com

Abstract. Virtual Private Network (VPN) tunnels are cryptographic
solutions that enable sensitive information to be transmitted over an
untrusted environment, and ensure the most imperative security ser-
vices such as confidentiality,integrity, and authentication. OpenVPN is
an open source implementation of VPN. In the present work, we propose
the deployment of a quantum protocol for cryptographic key exchange
and authentication within OpenVPN between both sides of the tunnel.
Our approach is a prominent step towards unconditional security based
on the laws of quantum physics. Despite the huge progress in the quan-
tum research field, quantifying the confidence and secrecy of the proposed
scheme still remains a hard task. In this context, we adopt a probabilistic
approach based on the technique of Model Checking, using the PRISM
tool. We basically focus on two pioneering security properties: the ability
to detect an eavesdropper independently of its computational power and
the minimization of the amount of information gained by the eavesdrop-
per about the secret key.

Keywords: Quantum cryptography · Authentication · Quantum key
distribution · OpenVPN · Entanglement · Model checking · Prism

1 Introduction

Quantum computing [1] is a revolutionary field that combines the principles
of computer science and the laws of quantum physics. The significant advance
brought by the quantum effects consists substantially of protecting the quantum
information from being intercepted, thanks to Heisenbergs Uncertainty Princi-
ple or the Bells inequalities. To guarantee an unconditional secure communica-
tion, any two endpoints are able to establish a secret random key which can be
used for encrypting and decrypting message in a One-Time Pad (OTP) scheme.

c© Springer International Publishing Switzerland 2015
M. Reiter and D. Naccache (Eds.): CANS 2015, LNCS 9476, pp. 238–247, 2015.
DOI: 10.1007/978-3-319-26823-1 17

Q-OpenVPN: A Quantum Extension of OpenVPN 239

This approach is called Quantum Key Distribution (QKD). One serious problem
that all QKD protocols are confronted with is lack of an authentication mecha-
nism. In other words, almost all the QKD algorithms are vulnerable against man-
in-the-middle attacks. To overcome this shortcoming, an authentication must
accompany or precede a QKD protocol, so that each one of the two parties of
communication checks the identity of the other party. Several quantum authen-
tication protocols were proposed [2]. The integration of a quantum algorithm
for key establishment and authentication sounds to be a convenient solution to
replace the whole classical structure of PKI in the existing security protocols.
In particular, to securely transmit private communication data through public
networking environment, VPNs have emerged as an excellent technological solu-
tion. This approach establishes an encrypted tunnel between two network nodes
over an insecure data medium. OpenVPN is an open source VPN solution. Its
core system is the SSL/TLS protocol which involves a mechanism of key gener-
ation/derivation for encryption and data integrity purposes. Our idea is to offer
greater robustness and privacy by integrating a quantum protocol of authen-
tication and key agreement to replace RSA/DiffieHellman exchange which is
only computationally secure. In the new proposal Q-OpenVPN, no certificates
are needed anymore. The authentication is reinforced by quantum means. As
quantum phenomenon has a stochastic behavior, a probabilistic model-checking
such as PRISM tool is a suitable technique for describing random processes and
testing them to construct valuable proofs of correctness. The paper is organized
as follows: in the second section, we introduce the OpenVPN technology. In
Sect. 3, we review various related works and we examine the motivation behind
integrating a quantum cryptography approach into OpenVPN tunnel. Then, a
description of the quantum authentication with key distribution protocol is pre-
sented in Sect. 4. In Sect. 5, we introduce Q-OpenVPN, our quantum version of
OpenVPN. A security analysis is developed in Sect. 6. We conclude in Sect. 7.

2 OpenVPN

The main idea behind VPN is to ensure safety and secrecy for transferred data by
creating an encrypted tunnel over a public network between two hosts. Deploying
a VPN solution in Wireless LAN will provide us a powerful protection against
many threats. That is why VPN security implies many tools such as modern
encryption algorithms, strong authentication techniques and even firewalls to
protect the data traffic. Each VPN solution targets three important goals; firstly,
the privacy of transmitted data must be ensured; secondly, the integrity of infor-
mation between the sender and the receiver must be respected; thirdly, the data
flow must be available when needed. OpenVPN was first published in 2001 as
the most successful VPN implementation [3]. It offers much more pioneering
features than other implementations, especially in terms of security and net-
working. The core cryptosystem of OpenVPN is based on SSL/TLS protocol.
SSL/TLS consists mainly of two sub-protocols that efficiently provide security
and data integrity, the record protocol and the handshake protocol. The first pro-
tocol enables encryption and transmission of data packets. The encryption key

240 A. Ghilen et al.

is derived from the second sub-protocol (handshake protocol). Figure 1 depicts
the full handshake message flow of SSL/TLS handshake protocol. The protocol
starts with exchanging two hello messages for parameters establishment. The
two parties agree on the session ID, the encryption algorithm, the key exchange
method (e.g. RSA/DH) as well as the Message Authentication Code (MAC)
algorithm. Once an agreement is reached on all the cipher-suite elements, the
server sends its certificate and optionally a key exchange message. The server
may also request the client to send its certificate for client authentication. By
Server Hello Done message, the server signals end of hello message. The client
sends its key exchange message, optionally accompanied by a certificate and a
certificate verification. The purpose of Client Key Exchange is to establish a
pre-master secret which will be used later for master key building. Finally, the
client and the server exchange finished messages, in which a hashed MAC value
is calculated at the two endpoints to make sure that both parties acknowledge
that everything was exchanged correctly.

Fig. 1. SSL handshake protocol phases in OpenVPN

3 Related Works and Motivation

Many researches have focused on implementing more secure protocols by apply-
ing the Quantum Key Distribution approach within existing systems especially
critical applications which need an extremely secure key transmission. Hence, by
harnessing the laws of quantum physics, a tangible enhancement is observed on
already existing properties and some features not feasible through classical means

Q-OpenVPN: A Quantum Extension of OpenVPN 241

are provided henceforth. In paper [5], a quantum extension of EAP-TLS which
enables a cryptographic key exchange with the authentication of a remote client
peer, with absolute security, ensured by the laws of quantum physics. Papers
[6,7] present a methodology for incorporation of a QKD scheme to upgrade the
security of IEEE 802.11 networks. Other approaches aim at introducing quan-
tum cryptography into classical protocols such as CHAP, SSL and TLS [8,9].
By combining OTP (One Time Pad) cipher and the key derived from the quan-
tum protocol, the whole algorithm is unconditionally secure. Several quantum
authentication protocols [2] are based on the entanglement property. In Open-
VPN tunnels, the authentication mechanism is mainly based on certificates. The
certificates make use of public cryptography to generate a pair of keys that are
mathematically related to one another. The robustness of these cryptosystems
relies on the difficulty to calculate the inverse of a one-way function or factorize a
large number into prime integers. However, by relying on quantum cryptography,
we make eavesdropping detection physically possible.

4 Quantum Authentication and Key Distribution
Protocol

Many improvements are applied on [4] to enhance its security parameters. The
proposed quantum algorithm exploits an unusual form of entanglement based
on phase incompatibility. Lets consider the two qubits system described by:

Φ =
1
2
(−|00 > +|01 > +|10 > +|11 >) (1)

The four states (|00 >, |01 >, |10 >, |11 >) are entangled. The two parties
Alice and Bob need a unprotected classical channel and an array of N entangled
qubit pairs denoted (q1A, q1B), (q2A, q2B), ..., (qNA, qNB) shared between Alice
and Bob. The entanglement is of the form described by Eq. (1). Alice holds the
first qubits q1A, q2A, ..., qNA of each pair, however, Bob holds the second qubits
q1B , q2B , ..., qNB . Before starting the algorithm, the two parties decide randomly
which party performs measurements first. For instance, if we assume that Alice
performs the first measurement, then for each pair(qiA, qiB), the algorithm runs
as follows:

– If qiA = 0, then Bobs qubit will be qiB = 1√
2
(−|0 > +|1 >). If qiA = 1, Bobs

qubit qiB = 1√
2
(|0 > +|1 >).

– Bob applies the operator M on his qubit and reads the result M(qiB). Table 1
summarizes the correlation between the two readings of Alice and Bob:

Where M = 1√
2

(−1 1
1 1

)

. M is an unitary operator decomposable to

M = X.Z.H where X =
(

0 1
1 0

)

and Z =
(

1 0
0 −1

)

and H = 1√
2

(
1 1
1 −1

)

.

242 A. Ghilen et al.

Table 1. Correlation between measuring results of Alice and Bob

Alices qubit qiA Bob’s qubit qiB M(qiB) Classical state
of M(qiB)

0 qiB = 1√
2
(−|0 > +|1 >) = M(|0 >) |0 > 0

1 qiB = 1√
2
(|0 > +|1 >) = M(|1 >) |1 > 1

Upon applying the operator M , Bob reads exactly the same binary number as
Alice.If Bob performs the first measurement, then Alice applies the operator M
on his particle and likewise he obtains M(qiA) = qiB . After browsing all the set
of the qubit pairs, Alice and Bob obtain two identical binary strings. Alice and
Bob sacrifice 2m qubits from the N qubit pairs array to construct their protected
public keys. Alices public key consists of the first m qubits. Alice publishes her
public key that will be seen by Bob who compares it to his own measured qubits.
If the two binary numbers match, then Bob becomes certain of the identity of
his interlocutor. Hence, Alice is authenticated. Bobs public key is established
by the same procedure using the second m sacrificed qubits. This step perfectly
authenticates Bob. In case of any mismatch throughout the 2m qubits, the two
parties abort the protocol and launch a new session. The secret key consists of
the remaining n = N − 2m qubits. We call it K. Consequently, by processing
the N pairs, and with no interference from any eavesdropper, Alice and Bob
are able to establish their public keys and then authenticate each other. More
interestingly, they will share an authenticated key K that will be used later in
deriving the pre-shared secret as well as the master secret and the rest of the
keys hierarchy.

5 The Quantum Version of OpenVPN: Q-OpenVPN

Instead of certificates, the quantum scheme generates two public keys which
perfectly authenticate their holders as shown in Fig. 2. By comparing them, the
two parties authenticate each other. Furthermore, if we set

pre master secret = K, then the master secret takes the form:

master secret = PRF (K, “mastersecret”, ClientHello.random

+ServerHello.random) (2)

The resulting secret key K is essential to calculate the master secret which
will be used in deriving the encryption keys and the MAC keys. The two finished
messages are a second level of authentication besides the quantum authentication
carried out by the quantum scheme presented in Sect. 4. They are calculated by
the expression:

Finished = PRF (master secret, finished label, hash(handshake messages)) (3)

Q-OpenVPN: A Quantum Extension of OpenVPN 243

According to our new proposal, the classical authentication ensured by Fin-
ished messages depends on the key generated by the quantum algorithm. The two
Hello messages should be used in agreeing on the quantum algorithm parame-
ters such as N , m and n. An unconditional secure pre master secret is generated
through a quantum algorithm. It authenticates perfectly its holders. The Public
Key Infrastructure (PKI) is replaced by a quantum scheme to authenticate the
two parties and agree on a secret. The proposed protocol is more efficient, for
which, the security relies on quantum effects to build a quantum framework that
make the certificates not necessary any more. A second session of authentication
besides the quantum one is performed by exchanging the Finished messages.
If the quantum authentication succeeds, the two endpoints will share the same
secret K which is useful in calculating the Finished messages.

Fig. 2. Q-OpenVPN handshake protocol

6 Security Analysis

6.1 Eavesdropping Capabilities

We basically focus on the man-in-the-middle attack against the quantum algo-
rithm in which Eve sends a classical 0 to Alice and M(|0 >) to Bob. In other
words, qiA = |0 > and qiB = M(|0 >). All the other man-in-the-middle attacks
are equivalent to this one or less advantageous than it. We suppose that the
two endpoints of the quantum channel have the option of selecting randomly
a measurement basis between diagonal basis (|+ >, |− >) and rectilinear basis
(|0 >, |1 >). In Tables 2 and 3, we explain the relation between measuring results
when Alice starts the first measurement and when Bob starts the first measure-
ment. For instance, if we assume that Alice makes the first measurement,and if
both Alice and Bob choose Z basis, then their readings will match, which means
that the eavesdropper is not detected.

In Table 4, we explore the security properties of the quantum algorithm. Eve
is detected only if they obtain different measuring results. For a key K of size
n bits:

Pdet(n) = 1 − (
3
8
)n (4)

244 A. Ghilen et al.

Table 2. Relation between measuring results when Alice is first

Chosen basis qiA M(qiB)

X basis 1√
2
(|+ > +|− >) 1√

2
(|+ > +|− >)

Z basis |0 > |0 >

Table 3. Relation between measuring results when Bob is first

Chosen basis qiB M(qiA)

X basis −|− > −|− >

Z basis 1√
2
(−|0 > +|1 >) 1√

2
(−|0 > +|1 >)

where Pdet expresses the probability of detecting an eavesdropper. As we
can observe, Pdet tends towards 1 when n increases. Although these preliminary
results are promising, an automated security verification must be developed.

6.2 Analysis of MQA Model Using PRISM Model Checker

PRISM is an automated tool to model and formally verify whether the pro-
posed model meets a given specification and computes exactly the corresponding
probability [10]. In PRISM language, to verify whether a model MQA satisfies a
property p, we compute the probability:

Pr{MQA |= p} (5)

where p is a PCTL (Probabilistic Computation Tree Logic) formula and cor-
responds to a security specification. Our model MQA is composed of 3 modules:
Alice (peer), Bob (AP) and a third one for the channel. A module represents a
party involved in the protocol and contains a set of local variables and a series of
actions to be executed. A typical action takes the form of a guarded command:

[action]g → a1 : (x′
1 = val1) + a2 : (x′

2 = val2) + ...

+aN : (x′
N = valN) (6)

x′
i is an updated version of xi that changes to vali with probability ai. We will

focus on reviewing the following security property: the protocol must detect the
presence of any intruder trying to retrieve information about the key.Especially,
our model will evaluate the probabilities:

Table 4. Review of some security properties

Probability of Our quantum scheme

Same readings 37.5

Detecting Eve 5
8

Q-OpenVPN: A Quantum Extension of OpenVPN 245

Pdet(n) = Pr{MQA |= pdet} (7)

6.3 Expression of Pdet and Property Verification

Eve applies a man-in-the-middle attack by sending fake particles to both parties.
She sends qiA = |0 > to Alice and qiB = M(|0 >) to Bob. According to Tables 2
and 3, to detect Eve, the two readings must disagree. The following code line
computes Pdet:

[Bob get]((b st = 3)(b qbit! = a qbit))|((b st = 4)(b qbit! = a qbit)) → (b st′ = 7);
(8)

where b st, b qbit, and a qubit denote respectively Bobs state, Bobs qubit and
Alices qubit. Consequently, the corresponding PCTL formula is:

Pdet = {TRUE
⋃

(b st = 7)}; (9)

Let PZ be the probability to choose the rectilinear basis. If we vary the
key length n, we obtain the curve Pdet(n) which depends on the choice of the
measurement basis. Figure 3 shows a comparison between the probabilities of
detecting Eve for a scheme with a randomly chosen basis (PZ = 0.5) and another
scheme with only Z basis (PZ = 1).

2 3 4 5 6 7 8 9 10 11
0.4

0.5

0.6

0.7

0.8

0.9

1

n

P
ro

ba
bi

lit
y

P
de

t(n
)

Randomly chosen basis (P
Z
 = 0.5)

Only Z basis (P
Z
=1)

Fig. 3. Probabilities of detecting Eve as a function of n if only Z basis is used

According to the results depicted in Fig. 3, we conclude that our protocol
becomes less vulnerable against man-in-the-middle attacks if the legitimate users
choose randomly their measurement bases. The review of Fig. 4 highlights that
the best performance is reached if the rectilinear and the diagonal bases are
equiprobable. Another interesting result is that the security properties of our
proposed scheme are independent of the one who starts the measurement. If n
increases, the probability to detect Eve increases and tends towards 1:

limN→∞Pdet(N) = 1 (10)

246 A. Ghilen et al.

Fig. 4. Probability of detecting Eve for different values of PZ

Moreover, if we increase the length of the key, we systematically improve the
capability to prevent man-in-the-middle attacks. By the same way, we decrease
exponentially the amount of valid information that a spy gains on the secret key.
Consequently, our proposal is unconditionally secure and satisfies the expected
security properties, especially if a sufficiently long key is considered.

7 Conclusion

In this work, we propose to incorporate a quantum algorithm to authenticate
users and establish a secret key within SSL/TLS handshake protocol for Open-
VPN tunnels. Our approach aims at enhancing the security of the VPN tech-
nique and it complies with the explosive growth of wireless networks market. We
focused particularly on OpenVPN because of its compatibility with the most
modern operating systems. A security analysis based on the technique of Model
Checking was developed to check the robustness of our proposed Q-OpenVPN
against man-in-the-middle attack. The results confirm the proof of unconditional
security. Furthermore, if our solution is adopted, we systematically guarantee
both key establishment and users authentication without exchanging certificates
or any PKI. The security of the resulting keys within SSL/TLS handshake for
OpenVPN technique was prominently strengthened.

References

1. Peikert, C.: Lattice cryptography for the internet. In: Mosca, M. (ed.) PQCrypto
2014. LNCS, vol. 8772, pp. 197–219. Springer, Heidelberg (2014)

2. Ghilen, A., Belmabrouk, H., Bouallegue, R.: Classification of quantum authentica-
tion protocols and calculation of their complexity. In: Proceedings of 15th Interna-
tional Conference on Sciences and Techniques of Automatic Control & Computer
Engineering-STA, December 2014

Q-OpenVPN: A Quantum Extension of OpenVPN 247

3. OpenVPN. http://openvpn.net/
4. Nagy, N., Akl, S.G.: Quantum authenticated key distribution. In: Akl, S.G.,

Calude, C.S., Dinneen, M.J., Rozenberg, G., Wareham, H.T. (eds.) UC 2007.
LNCS, vol. 4618, pp. 127–136. Springer, Heidelberg (2007)

5. Ghilen, A., Azizi, M., Belmabrouk, H.: Incorporation and model checking of a
quantum authentication and key distribution scheme in EAP-TLS. In: Proceedings
of Mediterranean Conference on Information & Communication Technologies 2015,
MedICT 2015, May 2015

6. Priyanka, B., Ronak, S.: Framework for Wireless Network Security Using Quantum
Cryptography, (IJCNC), vol. 6(6), pp 45–61, November 2014

7. Premlata, S., Leena, R.: Quantum Cryptography with Key Distribution in Wireless
Network. IJACTE 6(2), 74–79 (2013)

8. Elboukhari, M., Azizi, M., Azizi, A.: Improving the security of CHAP protocol by
quantum cryptography. In: Essaaidi, M., Malgeri, M., Badica, C. (eds.) Intelligent
Distributed Computing IV. SCI, vol. 315, pp. 241–245. Springer, Heidelberg (2010)

9. Faraj, S.T.: Integrating quantum cryptography into SSL. UbiCC Journal, vol. 5,
special Issue of Ubiquitous Computing Security Systems, pp. 1778–1788 (2010)

10. Kwiatkowska, M.: Probabilistic model checking with PRISM. In: POPL 2015 Tuto-
rial, Mumbai, January 2015

http://openvpn.net/

An LTE-Based VPN for Enhancing QoS
and Authentication in Smallcell Enterprise

Networks

Maroua Gharam, Meriem Salhi(B), and Noureddine Boudriga

Communication Networks and Security (CNAS) Research Laboratory,
University of Carthage, Tunis, Tunisia

Mariem.slh@gmail.com

Abstract. In this paper we deal with VPN implementation in Smallcell
enterprise networks. Equipped with USIM cards, these access points rep-
resent the end points of communication tunnels. First, an authentication
scheme is proposed. It reduces the exchanged messages between users and
the LTE core and permits to avoid unnecessary LTE re-authentication.
Also, an aggregation mechanism using LTE features is proposed reducing
the communication costs.

Keywords: VPN · LTE-smallcells · Enterprise network · QoS · Authen-
tication

1 Introduction

Nowadays the enterprise environment is characterized by a multiplication of the
mobile devices in the workplace, a proliferation of real-time multipmedia appli-
cations as well as more stringent requirments in terms of reliability and data
rates. The fourth generation (4G) Smallcells represent an attractive solution for
that since they are able to afford high speed wireless access with high Quality
of Service (QoS) support together with reduced power consumption and oper-
ating costs. In addition to that, a critical necessity for the enterprise consists
in ensuring a secure and reliable communication platform to handle its private
connections between either sites of its wide area network. In this context, Virtual
Private Networks (VPN) represent the best approach ensuring the continuity and
flexibility of business procedures in a secure, reliable and cost-efficient manner.
Its incorporation in 4G-networks increases the supported level of data protection.

There are different types of remote access VPN [1] where each one operates
on different layer of the Open Systems Interconnection (OSI) model, for example
Point to Point Tunneling Protocol (PPTP) and Layer Two Tunneling Protocol
(L2TP) operate over layer 2 whereas Internet Protocol Security (IPsec) and
Multi Protocol Label Switching (MPLS) operate over layer 3, and Secure Socket
Layer (SSL) operates over the higher-layer. The most prominent technique for
deploying VPN across IP networks is the IPsec standard [2], which is able to
c© Springer International Publishing Switzerland 2015
M. Reiter and D. Naccache (Eds.): CANS 2015, LNCS 9476, pp. 248–256, 2015.
DOI: 10.1007/978-3-319-26823-1 18

An LTE-Based VPN for Enhancing QoS and Authentication 249

guarantee the security and privacy of any type of carried services. However, it
presents several limits where the major drawback consists on the lack of QoS
guarantee. In [3], authors studied the effect of IPsec tunneling on the QoS for
video and voice traffics and concluded that latency and packet loss are affected
because of traffic load and encryption process. More importantly, IPsec on itself
makes QoS provisioning very complex since packets are encapsulated inside the
tunnel. To solve this problem, there have been some efforts to propose QoS
enhancements for IPsec such as in [4] where a priority scheduling algorithm, that
takes into account the QoS requirements of traffic flows, is integrated in IPsec.
Another major drawback of IPsec is its limited scalability related to the need
of maintenance of security associations which makes the dynamic adaptation of
mobile VPNs inappropriate. To solve this issue authors in [5] proposed a dis-
tributed VPN auto-configuration. In [6], authors propose a real time scheduling
algorithm with optimization of security service according to network dynamics,
thus reducing the overhead.

Over the last few years Long Term Evolution (LTE) has gained a great
interest as a prominent access technology with great enhancements in the system
architecture as well as the communication features. It can be viewed as a generic
architecture permitting the interconnection of various types of access networks.
The main goal of this paper is to promote the establishment of a QoS-guaranteed
VPN over the fourth generation cellular technology. First, a novel architecture is
considered. It enhances the role of Smallcells for VPN establishment and includes
a local authentication center for security functions. Second, an authentication
mechanism, which is compliant to the standard LTE authentication procedure,
is proposed. Third, a QoS guaranteed tunneling framework employing a smart
aggregation mechanism is build upon the LTE bearer model, in order to ensure
the reliability and cost savings of the VPN connections. The remainder of the
paper is organized as follows. Section 2 gives the VPN network architecture.
Section 3 details the proposed authentication mechanism. Section 4 describes the
proposed smart aggregation mechanism. After that, the performance evaluations
are given in Sect. 5. Finally, Sect. 6 concludes the work.

2 Proposed VPN Architecture

In this work we are concerned with an enterprise with multiple distributed local
networks using the LTE Smallcell as an access technology. The backbone for this
architecture consists of the LTE core network and the public internet (or IMS
system). As depicted in Fig. 1 each local network includes three main entities:

• UE: The User Equipment is a smart device equipped with an Universal Sub-
scriber Identity Module (USIM) to enable users attach to the LTE system. It
allows them to communicate with each other in the local network or through
the backbone for classical LTE communication.

• Smallcell: It is the radio access point in the LTE network system intended to
serve the enterprise users. Furthermore, in our architecture, the Smallcell is
equipped with a set of external USIM cards enabling it to perform additional

250 M. Gharam et al.

functionalities. At least one of those cards is dedicated for coordination tasks
inside the same local network and with distant enterprise local networks, we
refer to it by coordination agent (COR-Agent). The other cards enable VPN
communication and are named communication agents (COM-Agents).

• L-AuC: The Local Authentication Center is a central entity in the enterprise
site. It works together with the Smallcell node to ensure the local adminis-
tration of enterprise’s communications. The main function of L-AuC consists
in the local authentication of UEs when requesting for VPN communication.
To do this, it holds a local security table containing three parameters related
to the UEs who are initially authenticated by the LTE core network, namely:
Mobile Station International Subscriber Directory Number (MSISDN), Glob-
ally Unique Temporary Identity (GUTI) and IP address.

Fig. 1. LTE-VPN architecture

3 Proposed Authentication Mechanism

3.1 Initial User Authentication

According to the 3GPP LTE, when the UE is powered on, it invokes the attach
procedure to access the LTE network by sending the International Mobile Sub-
scriber Identity (IMSI) number as the identity to provide mutual authentication
and key agreement with the evolved packet system (EPS) [7] known as AKA
EPS authentication. After a successful AKA EPS authentication, the local reg-
istration of the UE is performed as shown in Fig. 2. In fact, the Smallcell node
registers the parameters of the authenticated users (GUTI, IP address) in the
local authentication center (L-AuC) in order to be used later for local authenti-
cation procedure as explained in the next paragraph. Then, the L-AuC requests
from the UE the MSISDN corresponding to the registered GUTI. The UE sends
an additional information response to the L-AuC. Finally, the user’s basic infor-
mation are stored in L-AuC. It is noteworthy to mention that the GUTI number
is used for the local re-authentication procedure whereas the MSISDN is used
for the VPN service request procedure as it will be described in the next section.

An LTE-Based VPN for Enhancing QoS and Authentication 251

Fig. 2. LTE authentication procedure

3.2 Local User Authentication

Once the employees of the enterprise are attached to the LTE network, only
the enterprise local network is responsible for the local authentication and the
verification of users based on the temporary identity GUTI which is obtained
during the attach procedure. We mention that when an LTE UE switches to idle
mode its identification parameters (MSISDN, GUTI, IP address) still available
in the core network. Thus, in order to avoid unnecessary re-authentication to
the core network, we propose a local authentication procedure as described in
Fig. 3. Firstly, the UE sends a service request to the Smallcell which forwards
it transparently to the L-AuC in order to verify the existence of GUTI num-
ber. Then, the L-AuC generates a local Key using the GUTI and a random
number (RAND). This local key will be used temporary to secure the wireless
link between the UE and the Smallcell node. This local authentication proce-
dure is advantageous since it reduces the delay of the user’s LTE core network
authentication and avoids the overhead related to LTE re-authentication.

Fig. 3. Local authentication procedure

252 M. Gharam et al.

4 Smart Aggregation Mechanism

The tunnel management procedure includes creating a new tunnel between two
communicating parts as well as aggregating the user’s traffic through an estab-
lished tunnel according to the smart aggregation mechanism described in the next
section. A tunnel is represented by a set of entities which are the COM -Agentsrc
and COM -Agentdest, the set of users connected to COM -Agentsrc and the set of
those connected to COM -Agentdestthese two sets are dynamically updated, fur-
thermore a tunnel is characterized by a specific class of service. Also, before tunnel
creation, we note that a destination discovery function is performed. It consists on
localizing the destination UE at the Smallcell level within an enterprise site. The
description of this function is out of the scope of this paper. Conforming to the LTE
technology, the enterprise user’s traffic is routed along a set of bearers traversing
the backbone part. In fact, a bearer can be either Guaranteed Bit Rate (GBR)
guaranteeing a bit rate level by reserving some capacity along the transmission
path, or Non-Guaranteed Bit Rate (N-GBR). In this work, we consider only GBR
applications (e.g. conversational voice, conversational video and buffered stream-
ing). Also, we assume that only one tunnel can be established per COM-Agent.

According to the LTE 3GPP standard, when a COM-Agent is already attached
to the LTE core, it can request bearer resource modification procedure for an
E-UTRAN [7]. This permits to the agent to request for an increase or decrease
of GBR. Consequently, in addition to the metrics previously defined, a tunnel
is also characterized by three additional parameters, namely: the reserved GBR,
the effective GBR which consists in the bit rate that is actually used, and the
maximum bit rate (MBR) which is the value that the reserved GBR cannot
exceed. We note that the value of the two first parameters may change along
the lifetime of the tunnel, whereas the third remains unchanged. In this work,
we propose to take advantage of the bearer modification procedure in order to
aggregate multiple users’ traffics in the same tunnel. Obviously, traffics aggre-
gated in the same tunnel should have the same QoS class. Each new traffic has
a certain GBR, we call it user GBR. Also we define the effective GBR as the
sum of the user GBRs of all users associated to the same tunnel.

The aggregation process is administrated by the COR-Agents of the com-
municating parts. The COR-Agent in each side is responsible of electing the
COM-Agent that will trigger the bearer resource modification procedure. First,
the COM -Agentsrc informs the COM -Agentdest about the required GBR. Then
the elected COM-Agents launch the GBR modification process simultaneously
by sending a Bearer Resource Modification Request indicating to the PGW the
required GBR value. The bearer modification process is completed only if the
communicating parts receive a confirmation message from each other proving
the acceptance of the request by the LTE Core. In fact, this decision depends
on the PGW capability of carrying the new required GBR. At the initial estab-
lishment of a tunnel the reserved GBR is initiated to a certain value denoted
GBRi depending to the QoS class. Whenever a new traffic is aggregated in the
tunnel, if the sum of the effective GBR and the new user GBR is lower than the
reserved GBR, then the reserved GBR will remain the same, otherwise it will

An LTE-Based VPN for Enhancing QoS and Authentication 253

be augmented following equation (1): GBR(t+1) = GBR(t)+ (1+α)GBRi (1)
In fact, a high augmentation step (i.e. high value of α) leads to a wastage of the
reserved resources since it increases the gap between the reserved GBR and the
effective GBR. On the other hand, a low augmentation step results in higher
overhead, because in that case the bearer modification procedure would be trig-
gered more frequently. As previously mentioned, one of the important objectives
of our VPN tunneling protocol is to minimize the communication costs which is
directly related to the reserved GBR. Subsequently, the higher is the augmenta-
tion step, the higher would be the cost. Thus, an accurate value of α is required
to guarantee a trade off between the two aforementioned constraints. At the
reception of a new VPN service request from an enterprise user, the Smallcell
node performs the tunnel management procedure as detailed in Algorithm 1.

Algorithm 1. Tunnel Management Algorithm
%Inputs: set Ωcof established tunnels of service class c; set Sf of inactive COM.Ag%
%Initialization%
User u Requests a Service of class c �= {}
COR-Ag selects the COM-Ag-A from the set Ωc with the minimun number of asso-
ciated users
if GBRnewuser > GBRreserved - GBReffective then

COR-Ag triggers the COM -Ag-A to launch GBR modification procedure
COM -Ag-A launches the Bearer Resource Modification
if Bearer modification is successful then

Aggregate traffic
Update Tunnel parameters (set of users, effective GBR, reserved GBR)

else Delete from the set Ωc the COM -Ag-A
end if

else Aggregate traffic; Update Tunnel parameters(users, effective GBR);
end if
if Ωc = {} then

if Sf−src �= {} then COR-Agsrc selects a COM -Agsrc from Sf−src randomly
COR-Agsrc informs the COR-Agdest about the selected COM -Agsrc

COR.Agdest selects a COM -Agdest from Sf-dest randomly
COR-Agdest associates the UEdest to COM − Agdest

COR-Agsrc associates the UEsrc to the COM -Agsrc

else%User is blocked;
end if

end if

5 Performance Evaluation

In this section, we give numerical results aiming to study the dimensioning char-
acteristics of the proposed platform in relation to the Smallcell density, the
number of COM-Agents per Smallcell, and different classes of service. The con-
sidered network is composed of two distant enterprise sites each consisting of one

254 M. Gharam et al.

Fig. 4. The blocking rate and overhead in function of number of users

Smallcell node. We consider three classes of service each characterized by two
specific values user GBR and MBR, namely: voice call (GBR, MBR=60 kbps),
conversational video (GBR=120 kbps, MBR=700 kbps), and streaming video
(GBR=180 kbps, MBR=1200 kbps). We note that traffic for conversational video
and voice is bidirectional, whereas for streaming video it is unidirectional (down-
link). The number of users for each class is approximately the same, and the
inter-arrival time is constant; however the sequential arrival events in terms of
the type of service is random. To evaluate the performance of our platform, we
study first the blocking rate in function of the number of users. A user is blocked
when there is no available COM-Agents to be associated with, this is due to the
limited number of COM-Agents in the Smallcell. Figure 4(a) gives the variation
of the experienced blocking rate for different number of COM-Agent with a spe-
cific number of users (30 users). This figure illustrates the resulting blocking rate
showing that it decreases rapidly when the number of COM-Agents increases.
We varied the number of available COM-Agents in the Smallcell from 2 to 7 for a
constant Smallcell load (30 UEs), and we see that for 7 COM-Agents the block-
ing rate is approximately null. In fact, the adding of one COM-Agent reduces the
blocking rate since it permits to serve multiple UEs requiring the same class of
service. Figure 4(b) gives the variation of the overhead when the Smallcell density
increases with 5 COM-Agents per Smallcell. This overhead refers to the num-
ber of messages exchanged between the source and destination enterprise sites
when a new user requires a VPN connection, more precisely: messages exchanged
over the LTE core system for new tunnel establishment or GBR modification.
The overhead increases when the GBR augmentation step α decreases. In fact,
the smaller the augmentation step is the smaller is the difference between the
effective and reserved GBR which results in increasing the number of triggered
GBR updates until reaching the MBR. Figure 5(a) illustrates the ratio between
the effective GBR and the reserved GBR showing that it increases when the
GBR augmentation step α decreases. In fact, when a new user requests a VPN
communication, the COM-Agent tries to associate it to an established tunnel
with the minimum effective GBR in order to avoid GBR update. We conclude

An LTE-Based VPN for Enhancing QoS and Authentication 255

Fig. 5. The GBR rate and communication cost in function of the number of users

that the more α is important and the MBR associated to the tunnel is not yet
reached the more new users can be associated to that tunnel. Figure 5(b) gives
the variation of the communication cost for the proposed method with smart
aggregation and for the method without smart aggregation. We remark that the
first method offers a lower cost compared to the second method. In our scheme
the communication cost is related to the reserved GBR which i adapted to the
communication needs. It is also related to the new establishment of tunnels. On
the other hand, for the method without smart aggregation the communication
cost augments whenever a new tunnel is established. The cost per tunnel in this
method is fixed from the beginning and is related to the MBR of the desired
service.

6 Conclusion

In this paper, we first proposed a local authentication mechanism for LTE-based
VPN platform based on the initial LTE authentication. Our scheme permits to
avoid unnecessary LTE re-authentication, thus reducing the related overhead.
Also, we developed an aggregation mechanism based on the LTE-bearer mod-
ification concept that permits to guarantee QoS of tunneled traffic and at the
same time reduce communication costs.

References

1. Jaha, A.A., Ben Shatwan, F., Ashibani, M.: Proper Virtual Private Network (VPN)
solution In: Proceedings of International Conference on Next Generation Mobile
Applications, Services, and Technologies (2008)

2. Paterson, K.: A cryptographic tour of the IPsec standards. Inf. Secur. Tech. Rep.
11(2), 72–81 (2006)

3. Perez, J.A., Zarate, V., Montes, A., Garcia, C.: Quality of service analysis of IPSec
VPNs for voice and video traffic. In: Proceedings of International Conference on
Internet and Web Applications and Services (2006)

256 M. Gharam et al.

4. Volker, L., Scholler, M., Zitterbart, M.: Introducing QoS mechanisms into the IPsec
packet processing. In: Proceedings of IEEE Conference on Local Computer Net-
works, October 2007

5. Rossberg, M., Schafer, G., Martius, K.: Automatic configuration of complex IPsec-
VPNs and implications to higher layer network management. In: Pohlmann, N.,
Reimer, H., Schneider, W. (eds.) Securing Electronic Business Processes, pp. 334–
342 (2011)

6. Saleh, M., Dong, L.: Real-time scheduling with security enhancement for packet
switched networks. IEEE Trans. Netw. Serv. Manage. 10(3), 271–285 (2013)

7. 3rd Generation Partnership Project, “Technical Specification Group Services and
System Aspects”, 3GPP System Architecture Evolution (SAE), Security architec-
ture (Release 9) 3GPP TS 33.401 V9.4.0 (2009)

Author Index

Abassi, Ryma 144
Anand, S. Abhishek 95
Azizi, Mostafa 238

Bossi, Simone 119, 225
Bouallegue, Ridha 238
Boudriga, Noureddine 248
Bouij-Pasquier, Imane 19
Butler, Kevin 214

Calò, Alexandro 119
Carter, Henry 214
Chang, Jinyong 129
Chida, Koji 179

De Montfort, Mina 19
Dong, Changyu 59
Douss, Aida Ben Chehida 144

Eckert, Claudia 111
Elkhiyaoui, Kaoutar 3

Fatmi, Sihem Guemara El 144

Gharam, Maroua 248
Ghilen, Aymen 238
Giacomelli, Irene 43
Gross, Hannes 32

Hamada, Koki 179
Henze, Martin 197
Hiller, Jens 197
Hirano, Takato 75
Hölbl, Marko 32

Ikarashi, Dai 179

Kalam, Anas Abou El 19
Kawai, Yutaka 75
Kiefer, Franziskus 59

Kikuchi, Ryo 179
Kilic, Fatih 111
Koseki, Yoshihiro 75

Leontiadis, Iraklis 3
Li, Hongda 129
Liang, Bei 129
Lipmaa, Helger 160

Molva, Refik 3
Mood, Benjamin 214
Munaka, Tatsuji 75

Olimid, Ruxandra F. 43
Önen, Melek 3
Ouahman, Abdellah Ait 19

Pavlyk, Kateryna 160

Ragab, Hany 119
Ranellucci, Samuel 43

Salhi, Meriem 248
Saxena, Nitesh 95
Shrestha, Prakash 95
Slamanig, Daniel 32
Spreitzer, Raphael 32

Traynor, Patrick 214

Visconti, Andrea 119, 225

Wehrle, Klaus 197
Wirtz, Hanno 197

Youssef, Nihel Ben 144

Ziegeldorf, Jan Henrik 197

	Preface
	Organization
	Contents
	Internet of Things and Privacy
	PUDA -- Privacy and Unforgeability for Data Aggregation
	1 Introduction
	2 Problem Statement
	2.1 PUDA Model
	2.2 Security Model

	3 Idea of our PUDA Protocol
	4 PUDA Instantiation
	4.1 Shi-Chan-Rieffel-Chow-Song Scheme
	4.2 PUDA Scheme

	5 Analysis
	5.1 Aggregator Obliviousness
	5.2 Aggregate Unforgeability
	5.3 Performance Evaluation

	6 Related Work
	7 Concluding Remarks
	A Security Evidence for the LEOM Assumption
	B Aggregate Unforgeability
	References

	A Security Framework for Internet of Things
	1 Introduction
	2 Related Work
	3 Background
	3.1 Organization-Based Access Control Model (OrBAC)
	3.2 Main Architectures for IoT Access Control

	4 SmartOrBAC
	4.1 SmartOrBAC Abstraction Layers
	4.2 Enhancing OrBAC for Context Awareness
	4.3 Scenario

	5 Implementation
	6 Conclusion
	References

	Privacy-Aware Authentication in the Internet of Things
	1 Introduction
	2 Internet Security Protocols
	3 RFID Privacy Models
	4 IPsec-Conform Authentication
	4.1 IPsec Conformance of Existing Protocols
	4.2 Possible Realizations
	4.3 IPsec-Conform Privacy-Aware Authentication

	5 Conclusion
	References

	Password-Based Authentication
	Security of Linear Secret-Sharing Schemes Against Mass Surveillance
	1 Introduction
	2 Preliminaries
	2.1 Secret Sharing
	2.2 Linear Secret Sharing

	3 Subverting Secret-Sharing
	3.1 Definitions
	3.2 Share-Fixing
	3.3 Shares Replacement Attack

	4 Subversion Resilient Secret Sharing
	4.1 Multi-input Secret Sharing
	4.2 Definitions
	4.3 Subversion Resilient Multi-input LSSS

	References

	Secure Set-Based Policy Checking and Its Application to Password Registration
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Policies and Linear Secret Sharing
	3.2 Oblivious Bloom Intersection

	4 Secure Set-Based Policy Checking (SPC)
	4.1 SPC Instantiation
	4.2 Security

	5 A New Password Registration Protocol
	5.1 Passwords and Password Policies
	5.2 The Password Registration Protocol
	5.3 Security Analysis
	5.4 Password-Authenticated Key Exchange for Our Protocol

	6 Implementation and Evaluation
	7 SPC Applications
	8 Conclusion and Future Work
	References

	SEPM: Efficient Partial Keyword Search on Encrypted Data
	1 Introduction
	1.1 Background
	1.2 Key Techniques
	1.3 Our Contributions

	2 Preliminaries
	2.1 Notations
	2.2 Dual Pairing Vector Spaces (DPVS)
	2.3 Decisional Linear (DLIN) Assumption

	3 Inner-Product Encryption with Trapdoor Conversion
	3.1 Syntax of IPE-TC
	3.2 Security Definition

	4 Proposed IPE-TC Scheme
	5 Overview of SEPM Using IPE-TC
	A Preliminaries Lemmas
	References

	Attacks and Malicious Code
	Bad Sounds Good Sounds: Attacking and Defending Tap-Based Rhythmic Passwords Using Acoustic Signals
	1 Introduction
	2 Background
	2.1 System Model
	2.2 Threat Model and Attack Phases

	3 Attack Overview and Scenarios
	3.1 Automated Attacks
	3.2 Human Attacks

	4 Attack Design and Implementation
	4.1 Automated Attack
	4.2 Human Attack

	5 Attack Experiments and Evaluation
	5.1 Automated Attack
	5.2 Human Attack

	6 Defense: Masking the Audio Channel
	6.1 Background
	6.2 Our Defense Model
	6.3 Defense Experiments

	7 Discussion and Future Work
	8 Conclusion
	References

	iDeFEND: Intrusion Detection Framework for Encrypted Network Data
	1 Introduction
	2 Framework Design
	3 Function Identification Using the Detector
	4 Information Extraction Using the Collector
	5 Packet Injection and Interception
	6 Implementation
	7 Related Work
	8 Conclusion
	References

	On the Weaknesses of PBKDF2
	1 Introduction
	2 PBKDF 2
	3 HMAC
	4 Weaknesses
	4.1 Precomputing a Message Block
	4.2 Useless XOR Operations
	4.3 Precomputing a Word-Expansion

	5 Discussion and Conclusions
	References

	Security Modeling and Verification
	Verifiable Random Functions from (Leveled) Multilinear Maps
	1 Introduction
	2 Preliminaries
	2.1 Verifiable Random Function
	2.2 Assumption

	3 VRF Construction from the (n, K)-MMDDHE Assumption
	4 Proof of Security
	5 Conclusions
	A Appendix
	A.1 Proof of Lemma 1
	A.2 Proof of Lemma 2
	A.3 Proof of Lemma 3

	References

	A Formal Environment for MANET Organization and Security
	1 Introduction
	2 A Reputation-Based Trust Management Scheme
	3 MCA Formal Specification and Validation
	3.1 Preliminaries
	3.2 Formal Specification
	3.3 Soundness and Completeness Validation

	4 TMCA and Delegation Process Specification and Validation
	4.1 Formal Specification
	4.2 Soundness and Completeness Validation

	5 Conclusion
	References

	Analysis and Implementation of an Efficient Ring-LPN Based Commitment Scheme
	1 Introduction
	2 Preliminaries
	3 Ring-LPN Based Commitment Scheme
	4 Recommended Parameter Choices
	5 Efficiency Issues and Implementation
	References

	Secure Multi-party Computation
	Practical Password-Based Authentication Protocol for Secret Sharing Based Multiparty Computation
	1 Introduction
	1.1 Requirements for SS-Based MPC's Authentication
	1.2 Our Contribution
	1.3 Related Works
	1.4 Protocol Overview

	2 Preliminaries and Models
	2.1 Communication Model
	2.2 Shamir's Secret Sharing
	2.3 Password-Based Authentication Protocol for SS-Based MPC

	3 Our Basic Protocol
	3.1 General Architecture
	3.2 Details of the Protocol

	4 Optimization for Practical Network Model and Experiment
	4.1 Network Model
	4.2 Optimization for Gateway Network Model
	4.3 Experimental Results

	5 Conclusion
	A Other Methods to Generate Random and Zero Shares
	References

	Bandwidth-Optimized Secure Two-Party Computation of Minima
	1 Introduction
	2 Background
	2.1 Related Work

	3 Analysis of Efficient Secure Argmin Protocols
	3.1 Garbled Circuits (GC)
	3.2 Goldreich-Micali-Wigderson (GMW)
	3.3 Homomorphic Encryption (HE)

	4 Bandwidth-Optimized Min and Argmin
	4.1 Security Discussion

	5 Evaluation
	5.1 Quantitative Communication Overhead Analysis
	5.2 Performance Evaluation

	6 Conclusion
	A Min and Argmin with Shared Inputs
	References

	Outsourcing Secure Two-Party Computation as a Black Box
	1 Introduction
	2 Related Work
	3 Protocol
	3.1 Setting
	3.2 Protocol Description

	4 Performance Evaluation
	4.1 System Design
	4.2 Execution Time
	4.3 Communication Cost

	References

	Cryptography and VPNs
	What Users Should Know About Full Disk Encryption Based on LUKS
	1 Introduction
	2 Password Management
	2.1 PBKDF2: A Key Derivation Function

	3 Linux Unified Key Setup
	3.1 Master Key Recovery

	4 Analysis of a LUKS Implementation
	4.1 Iteration Counts: Where and How
	4.2 Iteration Counts and Hash Functions
	4.3 Iteration Counts and Power Management
	4.4 Testing

	5 Discussion and Conclusions
	References

	Q-OpenVPN: A New Extension of OpenVPN Based on a Quantum Scheme for Authentication and Key Distribution
	1 Introduction
	2 OpenVPN
	3 Related Works and Motivation
	4 Quantum Authentication and Key Distribution Protocol
	5 The Quantum Version of OpenVPN: Q-OpenVPN
	6 Security Analysis
	6.1 Eavesdropping Capabilities
	6.2 Analysis of MQA Model Using PRISM Model Checker
	6.3 Expression of Pdet and Property Verification

	7 Conclusion
	References

	An LTE-Based VPN for Enhancing QoS and Authentication in Smallcell Enterprise Networks
	1 Introduction
	2 Proposed VPN Architecture
	3 Proposed Authentication Mechanism
	3.1 Initial User Authentication
	3.2 Local User Authentication

	4 Smart Aggregation Mechanism
	5 Performance Evaluation
	6 Conclusion
	References

	Author Index

