Chapter 7
Future Perspectives

David Escors and Grazyna Kochan

Abstract The participation of myeloid cells in tumor progression and metastasis
has been known for a long time. The role of M2 macrophages, tolerogenic DCs, and
N2 neutrophils in tumor immunology has been researched extensively. About
10 years ago, a “re-discovered” new myeloid player named myeloid-derived sup-
pressor cell (MDSC) was put on the spot. However, its precise origin and nature
was a subject of some scientific debate. MDSCs turned out to be highly hetero-
geneous, especially in humans, and exhibiting cancer type-specific properties and
characteristics. And despite all recent advances in MDSC research, many questions
remain unanswered. In this chapter we will summarize the main subjects addressed
in this book and point out the questions that remain unanswered.
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7.1 Myeloid Cells and Cancer

The tumor microenvironment is composed not only by cancerous cells, but also
other associated cell types including fibroblasts, endothelial cells, and infiltrating
immune cells. Within the tumor, there is a balance between cells with antitumor
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capacities and immunosuppressive properties. The outcome is usually favorable for
immunosuppressive cells, which also exert strong pro-angiogenic effects and
accelerate tumor growth and metastasis.

Do MDSCs comprise a distinct myeloid lineage?

As discussed in the first chapter, the infiltration of tumors by myeloid cells was
observed and described before the 70s [1]. In fact, infiltration of tumors with these
cells was a sign of poor prognosis rather than proof of antitumor responses.
However, cells of the myeloid lineage are quite heterogeneous and include dendritic
cells, macrophages, and granulocytes. These cell types can also possess either
stimulatory properties or immunosuppressive capacities. Thus, when MDSCs were
defined according to the expression of CD11b and GR1 (in mice), there was some
opposition in considering them as a lineage apart [2]. Even more, monocytic
MDSCs show a phenotype that closely resembles inflammatory monocytes.
Granulocytic MDSCs are phenotypically closely similar to neutrophils [3, 4].

Therefore, the main question that remains to be answered is whether MDSCs are
truly a lineage apart, they are “alternative” forms of monocytes or granulocytes or
they convert into one another [5—7]. Whether they are considered as a bona fide
myeloid lineage or not, their role in tumor progression is not questioned. Infiltrating
myeloid cells are present within the tumor and protect cancer against both con-
ventional and immunotherapies.

What is the relationship between MDSCs and other regulatory cell lineages?

The tumor environment can be conserved as a complex “organ” under chronic
inflammatory conditions which favor the infiltration of regulatory cells [8]. These
strongly immunosuppressive cells play an important role in tumor biology, as they
suppress antitumor immune responses, favor tumor progression, tissue repair and
neoangiogenesis. These tumor-promoting functions accelerate cancer metastasis.
Immunosuppressive infiltrating cells comprise tumor-associated M2 macrophages,
tumor-associated neutrophils, tolerogenic DCs, and regulatory T and B cells.
Recently, there has been growing experimental evidence that MDSCs do not
function on their own, but cooperate with other tumor-associated regulatory cells.
This includes crosstalk with macrophages, induction of regulatory T cells, and with
regulatory tumor-associated B cells [9, 10]. Interestingly, all these cell types share
many of the suppressive pathways, including TGFp and IL10 production, con-
sumption of essential amino acids, and cell-to-cell contact dependent immuno-
suppression [8]. Thus, not only MDSCs cooperate with other tumor-associated
cells, but they also share common procarcinogenic mechanisms. The identification
of their interactions will surely open new opportunities for therapeutic intervention
by simultaneously targeting several of these cell types within the tumor.
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7.2 Differentiation of Myeloid-Derived Suppressor Cells

As mentioned above, the specific nature and ontogeny of MDSCs are still under
debate, possibly due to their phenotypic plasticity and heterogeneity. Therefore, the
study of the MDSC differentiation pathways will help to understand whether
MDSCs can be considered a lineage of its own right or just a collection of
heterogenous myeloid cells at a various differentiation stages.

Murine MDSC differentiation

Without any doubt, murine systems are usually way ahead of their human coun-
terparts. This is also true for MDSCs, which can be easily obtained from mice by
inducing tumor growth in vivo, or by differentiating MDSCs from bone marrow
cells in vitro. As exposed in various parts of this book, there is a somewhat “strong”
consensus on murine MDSC phenotype [1, 11]. These cells express CD11b and
high levels of GR1. Then, according to their pattern of ly6C-Ly6G expression, they
can be further classified as monocyte (Ly6CMe", Ly6G'*™€) or granulocytic
(Ly6C* Ly6G"e") [12—14]. Unfortunately, these phenotypes are equivalent to those
of inflammatory monocytes and neutrophils, respectively. Thus, at the end only the
immunosuppressive properties define them. Recent data has shown that melanoma
MDSCs present a kinase signature that controls their suppressive activities [15, 16].
Nevertheless, although these kinase signatures explain the nature of MDSCs at least
functionally, all these data does not clarify their ontogeny yet.

In vitro systems have not shed much light on this subject, as it would have been
expected. Each system has its advantages and limitations, but so far the MDSC
differentiation pathway (if there is a single one) is still poorly understood [11].
Therefore, even though some steps have been undertaken toward the development
of efficacious ex vivo MDSC production methods [7, 13-15, 17], the faithful
replication of the MDSC differentiation pathways in vitro and in vivo is a pending
subject.

Human MDSC differentiation

Compared to murine systems, very little is known about human MDSCs. This is
directly caused by the intrinsic difficulties of working with samples from patients
with cancer. Most of the studies are centered on peripheral blood cells, and the
in vitro MDSC systems are highly inefficient as they do not use fully pluripotent
hematopoietic precursors [11]. In addition to these important drawbacks, the human
MDSC phenotype is still largely undefined [18, 19]. Some attempts have been made
at classifying MDSC types in humans according to phenotype, tumor models, and
sources of cells [20]. Thus, in the human system we might have three possibilities.
First, it might be intrinsically heterogenous with several types of co-existing
MDSCs. Second, there might not be MDSCs at all (as we understand from the
murine system) but a collection of myeloid cells at different differentiation stages.
Or third, we are studying mainly circulating MDSCs from peripheral blood rather
than homogeneous cell populations derived from bone marrow.
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Efficient in vitro systems should be developed for human MDSCs, and this will
surely help deciding whether human MDSCs are comparable to their murine
counterparts. This is also a key issue, as most cancer therapies are tested first in
murine systems. Although major advances have been made toward this goal, these
human MDSC differentiation systems are still poorly efficient.

7.3 Targeting MDSC-Specific Pathways for Therapy

While there are still many open questions on MDSC biology, in practical terms their
elimination from a tumor-bearing subject improves anticancer therapies. Thus,
obviating the fact whether these cells comprise a specific myeloid lineage or not,
much is being understood on their immunosuppressive mechanisms. This knowl-
edge uncovers opportunities for therapeutic interventions. From early studies, it was
observed that MDSCs could exert suppressive activities by secreting factors, or by
cell-to-cell contact mechanisms. Apart from the classical secretion of immunosup-
pressive cytokines such as TGFp or IL10, similarly to M2 macrophages the arginine
metabolism was shown to play a very important role in their activities [7, 21].
Arginine is processed in MDSCs by two enzymes, iNOS and arginase-1. Blocking
the activity of both enzymes improves antitumor activities in mouse models [7].

The tumor environment as a target

The tumor environment as a whole is also a therapeutic target. Cancer cells and
tumor-infiltrating cells are under a very strong oxidative stress, and upregulate detox-
ifying enzymes and ROS scavenging proteins. MDSCs have been shown to selectively
upregulate the P450 reductase, and this upregulation explains the anti-MDSC prop-
erties of Paclitaxel [22]. This chemotherapy drug needs to be activated by P450R to
acquire cytotoxic activities. As conventional immunogenic DCs express lower levels of
P450R, these cells are by far less sensitive to Paclitaxel than MDSCs [14]. This is just
but one example on how to exploit these tumor-induced cellular targets.

MDSC signaling pathways as a target

Interestingly, there is a growing field of research on MDSC signaling, as tyrosine
kinase inhibitors and other chemotherapy drugs eliminate MDSCs both in murine
models and human patients. Again, pathways shared by cancer cells and tumor-
associated cells are also present in MDSCs [14—16]. Therefore, and unknowingly,
many of the anticancer drugs that were designed to directly attack cancer cells, also
have anti-MDSC properties. Thus, all these shared pathways are susceptible of
therapeutic intervention in a straightforwardly manner. As already discussed in a
previous chapter, one of those is the STAT3-dependent signaling pathway [23, 24].
This pathway regulates cell growth, survival, and inflammation. It is also activated
by IL6, a cytokine known to contribute to MDSC differentiation [25]. STAT3 is
constitutively activated in cancer cells, tumor cells (which includes cancerous and
associated cells), and in tumor infiltrating cells of the immune system [26].
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Extensive work has been performed on STAT3 in macrophages. IL10 is also a
potent induction of STAT3, and its phosphorylation in macrophages leads to their
polarization toward immunosuppressive subsets [27, 28]. This pathway together
with others such as PI3 K/AKT acts as a safeguard against uncontrolled inflam-
mation. However, cancer can turn on this pathway to inhibit antitumor immune
responses [29, 30]. MDSCs seem to activate the STAT3 pathway in cancer, and
therapeutic strategies devised to act upon tumor-infiltrating macrophages and DCs
will probably be successful in counteracting MDSC-suppressive activities.

Apart from STAT3, the implication of several intracellular pathways on MDSC
biology has also been described [14, 15]. These pathways are linked to cell survival,
anti-inflammatory responses and stress responses against oxidative stress. Thus, other
tumor-associated cells also share them. Moreover, there is a specific kinase profile in
MDSCs that separates them from other conventional myeloid immunogenic cell
types. The PI3 K, AKT, and the SRC family of kinases are highly upregulated in
murine melanoma MDSCs and their expression differentiates them from conven-
tional myeloid DCs [15]. MDSCs obtained from other tumor backgrounds, especially
breast cancer MDSCs, also show increased levels of AKT, and a gene expression
profile characteristic of the activity of SRC family members, particularly HCK and
FYN kinases [15]. AKT and PI3 K are also highly activated in MDSCs. Interestingly,
tumor-infiltrating melanoma MDSCs specifically activate ERK1 and PKC kinases,
which are also known to be activated in tumor cells [8, 15, 31].

There is currently a wide range of small molecules that target these pathways,
activated both in cancer cells and MDSCs. The Ras-Raf-MEK-ERK signaling axis
is probably one of the most studied for the development of anticancer treatments
[32]. MDSC differentiation has been found to be particularly affected by AKT and
MEK inhibitors, while their immunogenic myeloid DC counterparts were largely
unaffected [15]. Moreover, MEK inhibition enhances DC differentiation and acti-
vates DC-mediated antitumor activities [15, 33-35].

Thus, many anti-neoplastic treatments also have “beneficial collateral” effects on
MDSCs. The assessment of these anticancer drugs over MDSCs will surely shed
light on their multiple mechanisms of action over the immune system [11].
Furthermore, the specific kinase signature found in MDSCs will facilitate the
development of efficacious MDSC-targeted therapies that do not affect immuno-
genic cells such as DCs.

Interfering with negative co-stimulation of T cells as a target

Similarly to DCs and other myeloid cells, MDSCs are also antigen-presenting cells.
However, after antigen presentation by MDSCs, T cells get inactivated, suppressed,
or differentiate toward regulatory T cells [13, 36]. There are multiple mechanisms
by which MDSCs can exert T cell inhibitory effects, and those include secretion of
anti-inflammatory cytokines, consumption of essential amino acids, production of
NO and use of negative co-stimulation during antigen presentation to T cells [8].
During antigen presentation, the antigen-presenting cell (APC) presents to T cells
complexed to major histocompatibility molecules on their surface (Fig. 7.1). These
pMHC complexes are recognized and bind to specific T cell receptors (TCRs) present



96 D. Escors and G. Kochan

on the surface of CD4 or CD8 T cells. This recognition sends a signal (signal 1) to the T
cells. However, this signal is not sufficient to activate a T cell and leads to T-cell anergy
instead [37]. Further interactions between these two cells are required within the
immunological synapse. These interactions take place between antigenic peptides
receptors on the T cells and their respective ligands on the APC. Some of these
interactions will lead to T-cell activation while others will dampen T cells. The inte-
gration between all these differing interactions provides a second signal during antigen
presentation. This signal 2 will determine whether T cells get activated or not, and the
extent of T-cell activation. Positive co-stimulation is represented by the classical
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Fig. 7.1 Physiological antigen presentation to T-cells. The scheme represents a DC as an
antigen-presenting cell to a T lymphocyte through the MHC-TCR complex as indicated in the
immunological synapse between the two cell types. Both positive and negative receptor—ligand
interactions take place, as indicated in the picture. These interactions will transmit signals
(activatory and inhibitory signal 2, as shown) that together with antigen recognition (signal 1), will
regulate T-cell activation or its effector functions. In addition, a third signal is provided within the
immunological synapse in the form of secreted cytokines (fop of the figure). The integration of
these three signals within the T cell will determine the level of T-cell activation and its polarization
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interaction between CD80 and CD28, on the surfaces of APCs and T cells, respec-
tively. However, there are a high number of interactions that regulate T-cell activation
by sending inhibitory signals. For example, CD80-CTLA4 or PDL1-PD1 (Fig. 7.1).

Thus, antibodies which block these interactions have been developed to strengthen
T-cell activation by interfering with these interactions. Preventing CTLA4 binding to
CD80 has been one of the first to be applied to human therapy and showing success
[38]. In fact, MDSCs express very high levels of CD80, which seems to be required
for their suppressive functions (Fig. 7.2) [14, 17, 39, 40]. Recently, blocking
PDL1-PD1 interactions with antibodies is demonstrating to be a very successful
immunotherapy anticancer strategy [41, 42]. While it is widely thought that the
mechanism of action takes place at the tumor site by facilitating the attack of the
effector T cell, their efficacy in some PDL1-negative tumors indicates that there are
other mechanisms of action. In fact, PDL1-PD1 interactions play a key role in antigen
presentation. Their interaction following antigen recognition by the T cells facilitates
ligand-induced TCR down-modulation while the T cell gets activated and proliferates
[33, 43, 44]. TCR expression recovers after one week, and this is a safeguard
mechanism that ensures that T cells do not attack their targets until they reach a
critical number [45, 46]. Interfering with this interaction leads to hyperproliferative
TCRM2" polyfunctional effector CD8 T cells with strong antitumor activities [33, 47].
Additionally, interference with PDL1 expression also leads to a low level expansion
of polyclonal CD8 T cells which probably contribute to anticancer activities [13].
Tumor-infiltrating MDSCs express very high levels of PDL1 (Fig. 7.2) [7, 12-14,
17]. Interference with PDL1 expression on MDSCs converts these cells in T-cell
stimulators [48]. It is highly likely that current blocking antibodies used in human
therapy are converting MDSCs to efficient immunstimulatory APCs. As there are an
increasing number of positive and negative co-stimulatory molecules and antibodies
targeting their interaction partners [49, 50], it is highly likely that immunotherapy will
become a first-line treatment for cancer. These immunotherapy approaches directly
target MDSCs by converting them in immunostimulatory myeloid cells.

Conversion of MDSCs to efficient APCs with antitumor properties

While specific targeting and depletion of MDSCs improves antitumor immune
responses [51, 52], an interesting approach that will certainly have a future in
anticancer therapies is the conversion of MDSCs into proinflammatory APCs.
MDSCs have been shown to possess the potential of differentiation toward other
myeloid cell types such as DCs, macrophages, and inflammatory granulocytes.
While several cytokines and factors may drive this differentiation, IL12 is proving
to be quite efficacious in converting MDSCs to immunogenic myeloid APCs. Thus,
direct treatment with IL12 transforms MDSCs into activated antigen-presenting
cells [13, 53, 54]. Within the tumor environment, IL12 production leads to a
collapse of the tumor stroma, which helps regression and improves antitumor
capacities of T cells [55]. It is highly likely that the method of IL12 administration
will likely have an impact in its efficacy. So far, local IL12 production within the
tumor environment is proving the method of choice as it will surely reduce cyto-
toxicity from systemic administration.
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Fig. 7.2 The MDSC as an immunosuppressive antigen-presenting cell. The scheme represents
a MDSC presenting antigen to a T lymphocyte through the MHC-TCR complex as indicated in the
immunological synapse between the two cell types. Negative receptor—ligand interactions take
place primarily when MDSCs present antigen, by upregulating PDL1 binding to PD1 on the T-cell
surface, and expressing high levels of CD80 which binds CTLA4 on the T cell, as shown in the
figure. These interactions together with antigen recognition (signal 1), inhibits either T-cell
activation, or its effector functions. In addition, MDSCs produce high levels of immunosuppres-
sive cytokines, as indicated in the figure. These cytokines will polarize T cells toward tolerogenic
subsets such as inducible regulatory T cells (Tregs)

7.4 Summary and Conclusions

Although the participation of myeloid cells on tumor progression and metastasis has
been known for a long time, only recently another “subset” of myeloid cells has
been added to this picture. This has raised some controversy on their nature and
relationship with other myeloid cell types. Nevertheless, whether they represent a
bona fide myeloid lineage, or another differentiation stage of highly plastic myeloid
cells, they strongly possess procarcinogenic properties.
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From a scientific point of view, their “true” ontogenetic nature needs to be
clarified, especially for human MDSCs. From a practical point of view, tumor-
associated myeloid immunosuppressive cells need to be eliminated.

Apart from controversies, their importance in cancer immunology is undeniable.
Proof of this is the increasingly higher number of publications dealing with them. An
important effort is being devoted to devise efficient differentiation methods for basic
research or for cellular therapies. Obtaining MDSCs that resemble tumor-infiltrating
subsets is still challenging, although encouraging steps have been recently taken
toward this goal in murine systems. The human system is still a pending subject.

Immunotherapy will surely become a first-line anticancer treatment strategy, and
MDSCs will surely occupy a central position in anticancer research.

Finally, a clearer view on MDSC biology is emerging from recent research,
which highlights the metabolic changes and high differentiation plasticity of the
“myeloid cell compartment”. However, this plasticity can be used to devise targeted
therapies that will eliminate the procarcinogenic myeloid cells and shift differen-
tiation toward immunogenic, protective cells.
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