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Abstract This introductory chapter provides a brief (textbook-like) survey of

important facts concerning the conformational and dynamic behavior of polymer

chains in dilute solutions. The effect of polymer–solvent interactions on the behav-

ior of polymer solutions is reviewed. The physical meanings of the terms good, ϑ-,
and poor thermodynamic quality of the solvent are discussed in detail. Basic

assumptions of the Kuhn model, which describes the conformational behavior of

ideal flexible chains, are outlined first. Then, the correction terms due to finite bond

angles and excluded volume of structural units are introduced, and their role is

discussed. Special attention is paid to the conformational behavior of polyelectro-

lytes. The “pearl necklace” model, which predicts the cascade of conformational

transitions of “quenched” polymer chains (i.e., of those with fixed position of

charges on the chain) in solvents with deteriorating solvent quality, is described

and discussed in detail. The incomplete (up-to-date) knowledge of the behavior of

“annealed” (i.e., weak) polyelectrolytes and some characteristics of semiflexible

chains are addressed at the end of the chapter.
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Before the reader (presumably a scientist engaged in fluorescence studies) starts to

read this chapter, he should know the content and purpose of this introductory part

to decide whether he needs to refresh his memory about fundamental facts related to

the behavior of polymer chains or if he can skip this part. This short (textbook-like)

chapter is not aimed at providing an exhausting survey and explanation of the

conformational and dynamic behavior of dilute solutions of polymers, copolymers,

and polyelectrolytes of various chain architectures. There exist numerous chapters

in excellent textbooks explaining the fundamentals of the physical chemistry of

polymer solutions [1–5] and very good reviews on this topic [6, 7]. This chapter has

a different purpose. Here, we would like to emphasize differences in the behavior

of low- and high-molar-mass compounds caused by (i) asymmetry in the sizes

of the polymer species with respect to the other components of the mixture,

(ii) connectivity of the polymer chains, and (iii) their flexibility. We would like to

remind a researcher studying low-molar-mass compounds by fluorescence tech-

niques about what he should be aware of and prepared for when entering the

polymer field. We will focus particularly on the aspects of the conformational

and dynamic behavior that are important for understanding the results of fluores-

cence studies on aqueous polyelectrolyte systems. However, first we will outline the

basic features of the general behavior of flexible chains in simple solvents.

1 Neutral Chains

The behavior of real polymer chains (homopolymers and copolymers, also includ-

ing polyelectrolytes) in dilute solutions is a result of an intricate interplay of a

number of cooperating and competing forces. The dissolution process reflects both

enthalpy and entropy changes in the whole system, i.e., not only those directly

connected with polymer chains but also various solvent effects, e.g., rearrangement

of the solvent molecules in the solvation shell and counterion effects in polyelec-

trolyte solutions. Because the most important differences between the properties of

high- and low-molar-mass compounds follow from the unique properties of long

chains, classical theories of neutral polymer solutions ignore the structure of the

solvent and specific solvation effects, as well as tiny details in the chemical

composition of the polymer chains, etc. They treat polymer solutions at a simple

mean-field level, representing the polymer chain as a sequence of interconnected

(relatively short) linear parts (segments). Depending on the level of accuracy of the

physical description, the segments represent one or more repeating units and are

either freely joined (without any angular limitations) or the arrangement of two or

more successive segments is constrained (bond angles, restricted rotation around

single bonds, etc.). Furthermore, the simplest models assume that the segments are

short lines without excluded volumes and can intersect, while more advanced

models employ self-avoiding segments. In polymer thermodynamics, the segment–

solvent interactions, wPS, are usually compared with segment–segment, wPP, and

solvent–solvent interactions, wSS, which simplifies the description because the
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thermodynamic quality of the solvent can be characterized by a single parameter.

The commonly used Flory–Huggins parameter [8, 9] (proportional to T�1), χFH¼ a/
T¼ (z–2)Δw/(kT), where z is the average number nearest neighbors and k is the

Boltzmann constant, is based on the difference between the cross-interaction and the

arithmetic average of homo-interactions, Δw¼wPS–1/2(wPP +wSS). It serves as a

basis for classification and sorting solvents into two categories: thermodynamically

good and bad (poor) solvents. Solvents of the first class dissolve high-molar-mass

polymers because the segment–solvent interactions are “reasonably good.” The latter

category comprises poor or alternatively called thermodynamically bad solvents,

which, from the practical point of view, are non-solvents (precipitants). The solvents

in a narrow region in between good and bad solvents are often called marginal

solvents. The critical marginal solvent in between the two categories of solvents is

called the “ϑ-solvent.” From a practical point of view, it is necessary to keep in mind

that one particular solvent can be good for some polymers and bad for other polymers

(depending on the polarity, etc.).

Before we start discussing the physical meaning of the “ϑ-solvent” (and its χFH
value), we would like to briefly mention “favorable” and “unfavorable” interac-

tions. In nonpolar systems of low-molar-mass organic molecules A and B, the

cross-term, wAB, can usually be approximated by the geometric average of the

wAA and wBB interactions as wAB¼ √(wAAwBB). This means (see any textbook on

the physical chemistry of simple liquids or polymers) [10–13] that Δw is positive

and the mixing of small nonpolar molecules (without specific interactions) is

always endothermic. In other words, the mixing of two nonpolar liquids is an

unfavorable process from the point of view of the enthalpy. However, it is also

true that an overwhelming number of nonpolar molecules mix spontaneously

because their intermixing is accompanied by a considerable increase in entropy.

The entropy of mixing of polymer chains with a low-molar-mass solvent is signif-

icantly lower than that accompanying the mixing of small mobile molecules. This

general feature of polymer solutions can be easily understood when we compare the

motion of nM small monomer molecules dissolved in a solvent before and after

polymerization. Assume that this reaction leads to nP flexible chains, each

containing on average N monomers (nM¼ nPN ). In the first case, i.e., before

polymerization, each monomer can move independently in the whole volume and

acquires high translational entropy, while, in the latter case, N connected monomer

units always have to be close to each other and have to move together, which

reduces the entropy of the system considerably (especially if N is high).

The popular and widely used F–H interaction parameter was originally intro-

duced in a successful theory developed independently by Flory [14] and Huggins

[8, 15] in the early 1940s to describe the properties of concentrated polymer

solutions. Their simple mean-field theory is based on a lattice (Bragg–Williams)

model of regular solutions [16] and derives the following expression for the Gibbs

energy of mixing a polymer with a solvent:

Conformational and Dynamic Behavior of Polymer and Polyelectrolyte Chains in. . . 3



ΔG ¼ nRT x1lnφ1 þ x2lnφ2 þ x1φ2χð Þ ð1Þ

where ni are the numbers of moles (n¼Σni); xi¼ ni/Σni, the molar fractions; Ni are

the degrees of polymerization (number of structural units in the chain: (1) solvent,

N1¼ 1; (2) polymer, N2>> 1); and φi¼Nini/ΣNini are the volume fractions of the

components. It is obvious that the entropy, i.e., the first two terms in Eq. (1),

promotes the dissolution and the enthalpy (the last term) hinders it, but if χFH is

not very positive, the Gibbs function of mixing can be negative and the polymer

will dissolve in the solvent. As both the volume fractions, which are present in the

two first terms, and the product x1φ2 χ appearing in the third term, depend on the

degree of polymerization, N2, increasing chain length hinders the dissolution and

short chains dissolve in moderately poor solvents while long ones do not dissolve.

Focusing on the behavior of infinitely long polymer chains, the theory yields the

following value of the interaction parameter for the ϑ-solvent: (χFH)ϑ¼½. This

value divides the solvents into the two categories described above. The F–H

interaction parameters of good solvents theoretically range from 0 to ½. Focusing

on nonpolar systems (where the cross-term interaction obeys the geometric average

rule), the best solvents (called “athermal” solvents) are those with χFH¼ 0, but

actual good solvents often have χFH� 0 as a result of specific interactions (some-

times simply because of the high polarity of the components). Poor (bad) solvents

are characterized by FH parameters χFH>½. The values of the F–H parameter

depend on the temperature; the temperature, at which χFH¼ a/T¼½, is often called

the ϑ-temperature, ϑ (or ϑ-state). The simple F–H theory predicts that the solvent

quality for a given polymer will improve with temperature. Above ϑ, chains of any
length dissolve, i.e., also the infinitely long ones. At the ϑ-temperature, chains of

infinite length start to separate into two liquid phases: a concentrated phase (i.e., the

swollen polymer) and a dilute phase (in this case, the pure solvent). The chains of

finite lengths start to separate into two phases at lower critical temperatures Tc,
depending on the number of segments N2:

a=Tc ¼ ½þ 1=√N2 þ 1= 2N2ð Þ ð2Þ

and below Tc, both coexisting phases (i.e., also the dilute one) contain finite

concentrations of the polymer. The coexistence curves are schematically shown

in the lower part of Fig. 1. Because ϑ is the highest critical temperature for a series

of coexistence curves for chains differing in length, it is called the upper critical

solution temperature (UCST), and the region of critical temperatures for chains of

different length is called the UCST region.

The ϑ-temperature has an analogous meaning for polymer–solvent mixtures to

the Boyle temperature for gasses: At this temperature, moderately unfavorable

interactions between polymer segments and solvent molecules compensate the

geometric excluded volume of the segments. The overall excluded volume

(which reduces the volume available for the motion of the molecules) [17] drops

to zero, and small as well as large molecules move as if the entire volume of the
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system were available. Hence, the conformations of the polymer chain at the ϑ-
temperature are not affected by the excluded volume of the segments, and real self-

avoiding chains behave as intersecting random walks.

At the end of this part, we would like to emphasize two important facts: First,

because the F–H theory is a theory of regular polymer solutions and the cross-

interaction term can be expressed as a geometric average of homo-interactions, the

Gibbs function of mixing can be decomposed into parts corresponding to the pure

components and to the entropy of mixing. Consequently, it is possible to predict the

properties of polymer solutions at a semiquantitative level on the basis of the

Fig. 1 The coexistence

curves. Upper part: the
LCST region. Bottom part:
the UCST region. The

curves for infinitely long

chains (M¼1) separate the

homogeneous (one-phase)

region from the

heterogeneous (two-phase)

region
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properties of the pure components alone (see the appropriate chapters on the

solubility parameters in any polymer textbook) [1, 16, 18].

Second, we have seen that the F–H theory predicts an improvement in the

solvent quality with temperature. However, at fairly high temperatures above the

normal boiling point of the pure solvent (ca. 0.7–0.8 Tcrit, where Tcrit is the critical
temperature of the pure solvent), i.e., at elevated pressures, the solvent quality starts

to deteriorate with increasing temperature, and the polymer solution phase sepa-

rates upon heating. The worsening of solvent quality for high-molar-mass polymers

at high temperatures is a general feature of polymer solutions, reflecting the fact

that the thermal expansion of the solvent is significantly greater than that of the

polymer. The solvent expands at high temperatures, and the solvent molecules have

a quite large free volume for their motion; they move rapidly and acquire high

translational entropy. Polymer dissolution requires proper solvation of the seg-

ments, which means that part of mobile solvent molecules has to “condense” on

the chain. The solvating molecules lose their translational entropy, and since

entropy plays an important role at high temperatures, the dissolution of the polymer

chains is no longer favorable, and the solution separates into two phases. The

coexistence curves are the mirror image of those in the UCST region (see the

curves in the upper part of Fig. 1), and the critical temperature for the separation of

infinitely long chains, which in this case is the lowest one, is called (somewhat

paradoxically) the lower critical solution temperature (LCST). The F–H mean-field

theory does not predict LCST and is applicable only in the region of UCST. In some

aqueous solutions of neutral water-soluble polymers, LCST behavior is observed at

relatively low temperatures because it is caused by specific effects reflecting

changes in the water structure in the solvation layer, the formation of hydrogen

bonds, etc. (e.g., phase separation occurs below 40 �C in an aqueous solution of

polyoxypropylene) [19, 20].

The simplest model for predicting the conformational characteristics of isolated

flexible polymer chains was developed by Kuhn and Grün [21] and independently

by James and Guth [22]. The chain is approximated by a sequence of segments of

the same length l that are interconnected without any geometrical constrains, do not

occupy geometrical volume, and do not interact over large distances. The

corresponding interpenetrating chain is called an ideal chain. Mathematical treat-

ment yields the distribution function of probability density that the ends of a chain

composed of a large number N of segments are separated by distance r in the form

(Fig. 2):

P rð Þ ¼ 4π
3

2πNl2

� �3
2

exp
�3r2

2Nl2

� �
r2 ð3Þ

Note that P(r) is the angularly averaged function and does not depend on the

direction of the end-to-end vector. In a narrow region of temperatures close to the

ϑ-temperature, real chains behave as interpenetrating ones, and the model provides

a qualitatively correct picture of the conformational behavior of flexible chains.
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It predicts that (i) the chain adopts a random coil conformation, (ii) it responds to

deformation as an entropic spring, and (iii) both the mean-square average end-to-

end distance
ffiffiffiffiffiffiffiffi
r2h i

p
and the radius of gyration RG of the chain scale with N1/2.

Scaling exponent ½ means that an ideal 3D polymer chain behaves as a nontrivial

fractal object with fractal dimension 2, and its self-similar subunits exhibit the same

conformational and scaling behavior as the whole chain. (iv) The conformational

behavior of the chains is controlled by the entropy, and the characteristics of the coil

depend on the total number of segments N, e.g., the average segment density in the

coil domain is proportional to N–1/2, which means that longer chains are relatively

more expanded (with respect to the unit contour length) and form less dense coils

than the shorter ones and (vi) the density profile decreases with the distance from

the center of gravity according to the Gaussian function. The Gaussian density

profile gave rise to the commonly used name “Gaussian chain.” The Monte Carlo

and molecular dynamics simulations show that the chain shape fluctuates greatly

and that the average ensemble shape is aspherical (the spherical symmetry of the

chain characteristics predicted by the simple Kuhn model is derived from the a

priori symmetry assumptions used in this theory) and corresponds to an elongated

ellipsoid with relative lengths of the axes 1:1.6:3.5 [23].

Various corrections reflecting fixed valence bond angles, hindered rotation

around single bonds, and the excluded volume of segments were developed later

and are described in detail in textbooks [12, 24]. The scaling behavior of self-

avoiding flexible chains was studied by de Gennes [25]. He proposed scaling offfiffiffiffiffiffiffiffi
r2h i

p
and RG with r0.6. Perturbation theories and detailed computer simulations

give a value of the scaling exponent of 0.588 and indicate that the average shape of

the self-avoiding chain is also reminiscent of an elongated ellipsoid, similar to that

representing the interpenetrating coil [26]. The conformational characteristics of

real chains with possible rotation around single C–C bonds can be reasonably

interpreted using the conclusions drawn from a simple analytical formula (3)

without correction terms if we assume that one Kuhn segment represents a short

Fig. 2 The distribution

function of probability

density P(r) that the ends of
an ideal chain are separated

by distance r
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part of the chain. In this case, rotation around several single bonds ensures that the

first and last bonds that connect such an internally flexible segment to the rest of the

chain are oriented quite randomly without almost any limitations. The rescaling, i.e.,

evaluation of the number of Kuhn segments, NK, and their effective length, lK, can
be based on the contour length, LC, and the root-mean-square end-to-end distance,ffiffiffiffiffiffiffiffi

r2h i
p

, because it has to hold that LC¼Nl¼NKlK and
ffiffiffiffiffiffiffiffi
r2h i

p ¼ N1=2l ¼ N
1=2
K lK. If

the experimental values lk and the radius of gyrationRG¼ (1/√6)√hr2i for real chains
in ϑ-solvents are used [18], then the angular restrictions and hindered rotation are

reasonably accounted for.

Another simple, albeit quite popular, model of flexible linear polymer chains is

the rotational isomeric state model (RIS) amply treated by Flory [12, 27]. This

model was in fact developed by three independent groups: Volkenstein et al. [28],

Lifson [29], and Nagai [30]. Analyzing the hindered internal rotation in butane and

in longer alkane chains (�CH2�)n, the authors of this model realized that the “cis”

conformation of four successive bonds (or –CH2– groups) in the polyethylene chain

is very improbable because it is an unstable conformation (characterized by an

energy maximum on the energy vs. dihedral angle diagram—see Fig. 3) and its

energy is very high (it is ca. 15 kJ/mol larger than that of the stable “trans”

conformation characterized by a total energy minimum). Two other low-energy

conformations are “+ gauche” and “–gauche” with energy difference of only

+3.4 kJ/mol (local minimum) with respect to the “trans” conformation. They are

also quite stable because they are separated from the “trans” conformation by high

12.6 kJ/mol barriers. In Fig. 3, which shows the energy diagram of hindered internal

rotation in butane, the individual conformations are characterized by dihedral angle

Φ between the plane formed by the first, second, and third C atoms and that formed

by the second, third, and fourth C atoms in the polyethylene chain: “cis,” Φ¼ 0�;
“+gauche,” Φ¼ 60�; “trans,” Φ¼ 180�; and “–gauche,” Φ¼ 300�. The authors

considered only three conformations and used statistical thermodynamics to eval-

uate the partition function and the average conformational characteristics of the

ensemble. It may seem that the use of only three stable conformations of the part of

Fig. 3 Schematic energy

diagram of hindered

internal rotation in butane
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the chain containing four C atoms instead of a spectral continuum of a number of

conformations depending on the dihedral angle drastically reduces the number of

states in the evaluation of the average values of the ensemble. However, the total

number of all the considered conformations is 3N–1, which for N ca. 103–105 yields

astronomically high values. The number of possible conformations is in fact less

than 3N–1, because the “+g –g” and “–g + g” arrangements of two successive four-

member parts of the chain, i.e., C atoms i to (i+ 4) and (i+ 1) to (i+ 5), yield the

cyclopentane structure and the next C atom (i+ 6) would overlap with atom i.
Therefore, the + g–g and –g + g arrangements are not allowed, and the

corresponding interaction energy is u(+g–g)¼ u(�g + g)¼1.

Inherently stiff chains which contain multiple bonds, bulky pendant groups, etc.,

do not obey the predictions of the models developed for flexible chains. They form

expanded ellipsoidal or rodlike conformations, depending on the conformational

rigidity. The behavior of semiflexible chains can be described by the “wormlike

chain” model (WLC) developed by Kratky and Porod [31]. We will neither describe

this model nor analyze its predictions, but one conformational characteristic of

semiflexible chains based on this model, called the “persistence length,” will be

briefly mentioned at the end of this chapter. Its physical meaning will be explained

and discussed in relation to the behavior of polyelectrolytes, because electrostatic

interactions induce an additional stiffening effect in the chain and the highly

charged flexible chains thus behave as fairly stiff ones.

The Rouse and the Zimm models are two classical models developed for the

description of chain dynamics in the mid-1950s. In addition to dynamic character-

istics, they also provide information on the conformational behavior of flexible

chains. The Rouse model treats the diffusion of the chain as a collective motion of

beads of the same mass connected by elastic springs under the action of randomly

fluctuating thermal forces and drag forces [32]. This model neglects both the

excluded volume effect and hydrodynamic interactions. It provides correct scaling

of size characteristics, but overestimates the decrease in the diffusion coefficient of

the chain center of gravity, D, with the length of the chain (number of beads N )

predicting the dependence D/ 1/N. The Zimm model [33] is more accurate and

assumes both hydrodynamic interactions and excluded volume effects. It predicts

the scaling of the diffusion coefficient, D/ 1/N0.588, which is in good agreement

with experimental data on self-avoiding chains. Both models neglect solvent effects

and the effects of the chemical structure, and hence they predict that the motion of

the whole chain can be described by universal formulas, i.e., it depends only on the

molar mass of the solvent and friction of the continuous medium in which the chain

is immersed (i.e., only on the bulk solvent viscosity). This is a simplification, but

the derived formulas describe the dynamic behavior of dilute solutions of nonpolar

polymers in nonpolar solvents reasonably well.

To summarize the part devoted to the general behavior of nonpolar polymers in

organic solvents, we would like to mention that both linear chains and those with

more complicated molecular architectures (stars, brushes, copolymers, etc.) have

been intensely studied experimentally, theoretically, and by computer simulations,

and their properties are now well understood. The message we would like to convey
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is that the fundamental features of the behavior can mostly be adequately explained

and understood at a semiquantitative level using the arguments of the simple

classical theories outlined above. In the next part, we will concentrate on the

more complex and less well-understood conformational and ionization behavior

of polyelectrolytes in aqueous media, but would first like to add several general

comments on concentrated polymer solutions and polymer melts without going to

details.

2 Comments on the Differences Between Dilute

and Concentrated Solutions

In dilute solutions, individual polymer chains are relatively far apart and form

separated random coils. They move randomly and come into contact from time to

time, but are well separated most of the time. The density of the segments, which is

proportional to N–1/2 in ϑ-solvents, is in fact quite low—it is only several vol.% in

most real systems, i.e., the coils are very loose and fairly expanded fractal objects,

and the domain of the coil contains a high solvent excess. Good solvents interact

favorably with polymer segments, solvate them, and swell the chain—the chain

domain expands, and the density of the segments decreases, while the chain

contracts in poor solvents. Strictly speaking, dilute polymer solutions are

microheterogeneous—they contain separate coil domains immersed in bulk sol-

vent. In a mixture of a good and poor solvents, different interactions (favorable

vs. unfavorable) lead to preferential solvation of the chain by the good solvent

component, and, in this case, the solvent composition in the domain of the coil may

differ from the bulk.

If the concentration increases and the loose coils completely fill the whole

volume, they mutually touch and later start to overlap. The “concentration of the

first overlap,” c*, separates the regions of dilute and semi-dilute solutions. With a

further increase in concentration, the chains interpenetrate, and the viscosity of the

polymer solution increases tremendously. However, this does not mean that the

dimensions of the individual chains change very much. Because the chains are

loose fractal objects, their segments can easily mutually interpenetrate. In concen-

trated solutions and in polymer melts, the chains are, on average, uniformly

intermixed, and, in contrast to dilute solutions, the solution is homogeneous, but

the chains still form random coils. Flory predicted theoretically that the dimensions

of polymer coils in an amorphous bulk polymer (which behaves as a very viscous

“liquid” above the glass transition temperature) are the same as in a dilute solution

of a ϑ-solvent [9]. He explained his hypothesis by the following arguments: In bulk

polymers, there exists only one type of interaction between polymer segments

(which emulates the situation in a good solvent; there is no difference in interac-

tions, and hence χ is theoretically zero), but the trial chain under consideration is

squeezed by neighboring chains. This trial chain fills the space delimited by its coil
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domain partially by its own segments, which affect the conformations of neighbor-

ing chains. The concentration of their segments in this particular place is lower, and

the concentration gradient of their segments (i.e., of their chemical potential)

generates a force (analogous to that which would cause diffusion in an inhomoge-

neous solution) which compresses the trial chain to dimensions corresponding to ϑ-
conditions. This assumption was later demonstrated experimentally by small-angle

X-ray scattering (SAXS) and small-angle neutron scattering (SANS). In the first

case [34], a homogeneous melt containing a significant excess of regular polysty-

rene and a low fraction of its derivative containing one –COOH group at the end of

the chain (converted in the –COO� Ag+ salt) was prepared at a fairly high

temperature—well above the glass transition temperature. Both polymers are com-

patible, i.e., they mix easily ensuring homogeneous intermixing. However, their

scattering power for X-rays differs because the presence of heavy Ag+ ions

increases the scattering power of the minority component. Therefore, the mixture

can be studied by small-angle X-ray scattering (SAXS). From the scattering point of

view, the mixture behaves as a solution of “optically modified” polystyrene in

unmodified polystyrene. Because the so-called contrast, i.e., the difference in the

scattering power of the components, can be estimated independently, the charac-

teristics of the dissolved (minority) polymer, such as its molar mass, radius of

gyration, etc., could be estimated. For a given molar mass of the modified PS, the

measurement yielded a value of the radius of gyration that nicely corresponded to

that in a dilute solution in a ϑ-solvent. When viewed from the perspective of later

discoveries, this study is slightly problematic, because the presence of ions in a

nonpolar polymer matrix can provoke their aggregation and formation of ion

clusters (known from later studies of ionomers), which could have influenced the

data analysis. However, experimental data suggest that the low fraction of modified

polystyrene prevented the formation of ion clusters and the measurement yielded

the characteristics of the individual modified chains. SANS was also later used by

Cotton et al. [35] and by Kriste et al. [36]. Cotton studied deuterized polystyrene in

hydrogenated polystyrene, and Kriste investigated deuterized poly(methyl methac-

rylate) in the hydrogenated polymer. As deuterium and hydrogen atoms differ

strongly in their ability to scatter neutrons and the hydrogenated and deuterized

polymer chains of the same chemical structure are fully compatible, both research

groups obtained good-quality data and provided persuasive proof of the Flory

prediction.

3 Polyelectrolyte Chains

The chains of polyelectrolytes (PEs) contain charged groups. PEs can be divided in

two classes: Those with permanently charged groups, e.g., sulfonated polystyrene,

are called strong or “quenched” polyelectrolytes. The term “quenched” PE reflects

the fact that the positions of the charges are fixed (predetermined by the synthesis).

Weak or “annealed” PEs contain ionizable groups that can dissociate in polar
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solvents, leaving electric charges on the chain and releasing small mobile counter-

ions in the bulk solvent. In contrast to quenched PE, both the ionization (number of

charges on the chain) and the positions of the individual charges are not constant,

but depend on the external conditions (pH, temperature, ionic strength). Discrete

charges appear and disappear at different positions via reversible association/

dissociation processes with a relatively high frequency, and because close approach

of charges of the same sign is energetically unfavorable, the spatial distribution of

charges is correlated with instantaneous chain conformations and fluctuates (it is an

“annealed variable” which gave rise to the term annealed PEs).

Upon dissolution of PEs in polar solvents (most often water), a great majority of

the counterions escape into the bulk solvent, which increases the entropy of the

system and the thermodynamic stability of PE solutions. However, a certain

fraction of them concentrate close to the PE chain and screen (partially neutralize)

the multiple charge of the macro-ion. If the linear charge density along the chain

exceeds a certain critical value, some counterions actually condense on the

chain (Manning condensation) [37–39]. The condition for the onset of the Manning

condensation requires that the dimensionless Coulomb coupling strength Γ¼ λB/lch
be equal to 1. Here, lch is the linear distance between charges in the chain, and λB is

the Bjerrum length (λB¼ e2/(4πkT)� 0.7 nm in water; this is the distance between

the elementary charges at which the Coulomb interaction energy is the same as the

energy of thermal motion), e is the elementary charge, k is the Boltzmann constant,

and T is the temperature. Because charges of the same sign on the chain are never

fully compensated at short distances by counterions, the highly charged chains

adopt stretched conformations. Electric charges on the chain are separated as much

as possible, which lowers the spatial charge density and causes electrostatic repul-

sion. An intrinsically flexible linear PE thus behaves as an effectively stiff chain,

because the effective chain flexibility is affected and strongly reduced by electro-

static forces (depending on the charge density and ionic strength of the bulk

solution). However, in addition to the direct electrostatic effect, there is a second

important reason for stretching the chain. Stretched conformations provide a larger

volume for constrained motion of “bound” counterions (which compensate the

macro-ion charge) along the chain, which does not reduce their translational

entropy (and the overall entropy of the system) as much as in collapsed

conformations.

The behavior of an overwhelming majority of practically important PEs in

aqueous media is significantly affected by the fact that they contain a fairly

hydrophobic backbone (e.g., hydrocarbon chain) and their solubility in aqueous

media is due to the presence of charges, either on the chain or on pendant electrolyte

groups. In many cases, the presence of pendant ionizable groups (which are usually

hydrophilic) weakens the hydrophobicity of the chain, which becomes amphiphilic

at short distances. For example, the poly(methacrylic acid), PMAA, is well soluble

at high pH values, when the carboxylic groups are highly ionized, but is still fairly

well soluble in water at low pH values, where the pendant carboxylic groups are not

dissociated. However, the parent poly(isopropylene) backbone, from which PMMA

can be derived by attaching a pendant –COOH group at each monomer unit, is an
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extremely hydrophobic water-insoluble polymer. In contrast to PMAA, unionized

poly(2-vinylpyridine) is fairly hydrophobic and insoluble in neutral buffers, but it is

well soluble in acidic media (below pH 5) when the nitrogen atom is protonated and

charged. To summarize this paragraph, water is a thermodynamically bad solvent

for most PEs.

Experimental studies of PS in poor solvents began in the early 1950s with the

paper by Katchalski [40]. Early studies employing viscometry and calorimetry were

performed on PMAA and alternating copolymers containing electrolyte and non-

polar hydrophobic monomer units in aqueous buffers [40–43]. The most important

achievements were made by Strauss et al. [44–46], Morawetz et al. [47–50], and

Ghiggino et al. [51]. It was recognized that the behavior of PMAA differs from that

of less hydrophobic PEs, such as poly(acrylic acid), PAA. At that time, PMAA was

usually described as a polyelectrolyte similar to polysoaps. Ghiggino was the first to

propose the “hypercoiling model” specifically for PMAA on the basis of fluores-

cence studies more than 10 years before a similar Dobrynin “necklace of pearls

model” [52] became a widely used scheme for interpreting the conformational

behavior of PEs with hydrophobic backbone in aqueous media.

In the following chapters of this book, we will discuss fluorescence measure-

ments performed mainly on PE solutions in thermodynamically poor solvents.

Therefore, the behavior of PEs in poor solvents is our main sphere of interest, but

we will first mention the classical Kuhn treatment of polyelectrolytes in ϑ-solvents
[53]. The potential energy of a polyelectrolyte chain in a given conformation

(described by a set of ri position vectors of segments) can be written within the

framework of the mean-field Debye–Hückel (DH) theory [54] as a sum of three

contributions: the energy corresponding to (i) the entropic elasticity of harmonic

bonds, U1, with bond lengths l, which connect the monomers in the polymer chain.

This contribution depends on the set of all position vectors, {ri}

U1ðfrigÞ ¼ 3kT

2l2

XN�1

i¼1

ðriþ1 � riÞ2 ð4Þ

(ii) the screened electrostatic Coulomb (Yukawa) interaction potential, U2, between

all monomers bearing charges qi and qj

U2 rif gð Þ ¼ kT
XN
i¼1

X
j<i

λBqiqj
ri � rj
�� �� exp �κ ri � rj

�� ��� � ð5Þ

and (iii) the short-range contribution of dispersion forces, U3, which can be

expressed using, e.g., the Lennard-Jones potential, uLJ(r), which reasonably approx-
imates the short-range interaction between nonpolar spherical molecules by a

power function of their distance r

Conformational and Dynamic Behavior of Polymer and Polyelectrolyte Chains in. . . 13



uLN rð Þ ¼ 4ε
σ

r

� 	12

� σ

r

� 	6

 �

ð6Þ

At the level of the DH approximation, the interaction energy of segment–counterion

interactions and added salt–ion interactions does not appear explicitly in the

formula and enters indirectly via the concentration dependence of the Debye

screening length, r�2
D ¼ κ2 ¼ 4πλB

X
csq

2
s , where cs and qs are the concentrations

of small ions of the s type and their valences, respectively. Kuhn used a model of the

chain without short-range interactions (i.e., without U3) and minimized the expres-

sion for the free energy of the system. The crucial rough approximation which he

used consisted in the fact that he evaluated the conformational part neglecting the

interactions, and the interaction part neglecting the chain connectivity assuming

that (i) the charged monomers are distributed uniformly in the chain volume.

Taking into account the experimental findings, he further assumed that

(ii) electrostatic interactions lead to unidirectional elongation of the chain confor-

mations. He actually postulated that the PE chain adopts the shape of a rotationally

symmetrical elongated ellipsoid with one perturbed (electrostatically affected)

longitudinal size RP
E and two unperturbed perpendicular sizes, RUP

E ¼ lN1=2. For

RP
E, he obtained the relationship

RP
E ¼ lNu1=3f 2=3 ln eN uf 2

� �2=3n oh i1=3
ð7Þ

where u is the “interaction parameter” defined as u¼ λB/l and f denotes the fraction
of charged monomers.

The behavior of PE chains can be analyzed in more detail by the scaling

approach based on the concept of thermal and electrostatic blobs. The blob theory

assumes that, on small length scales shorter than the “correlation length” ξT (called
also the “blob size”), the energy of random thermal motion counterbalances the

excluded volume effect of segments, and short parts of the chain behave as ideal

chains. Therefore, it holds that ξ2T ¼ gTl
2, where gT is the number of segments per

blob and l is the bond (segment) length. At longer lengths, the effect of the excluded

volume dominates the conformational behavior, and the chain behaves as a self-

avoiding walk. Taking into account the balance of forces, the size of the thermal

blob can be related to the Flory–Huggins interaction parameter, ξT¼ l/(1 – 2χ). The
electrostatic blob is an extension of the blob concept. The assumption that the

conformations inside the electrostatic blob are not perturbed by electrostatic inter-

actions with the corresponding balance of forces yields the relationship between the

“interaction parameter” u, the fraction of charged units f, and the parameters that

characterize the blob, i.e., the number of segments, gE¼ (uf2)–2/3, and the electro-

static correlation length (blob size), ξE¼ l(uf2)–1/3. Application of the scaling

approach to the problem of PEs predicts that, on length scales larger than ξE, the
electric charges on the PE chain generate a force which nonuniformly deforms the

chain in one direction. This leads to a roughly uniaxial arrangement of electrostatic
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blobs in a “string of blobs.” The size of the blobs is not constant, but increases

toward both ends of the chain. This result is not surprising, because the central

section of the chain experiences stronger electrostatic repulsion than the ends of the

chain. What is slightly surprising is the finding that the evaluation of the elongated

chain size RP
E yields an identical result to the simple approximate Kuhn model.

Now, we will discuss the behavior of quenched PEs in poor solvents. Experi-

mental studies show that the effective solvent quality depends on a number of

factors, namely, the degree of ionization of PE and the ionic strength. A poor

solvent for a neutral chain can be a good solvent for the same charged polymer.

Sparsely ionized PEs have only low solubility and form compact globular confor-

mations in bad solvents (aqueous buffer), while a polymer of the same chemical

nature dissolves well when its chain is strongly ionized and forms a fairly stretched

conformation. We should recall that the variable ionization of a quenched PE

requires the incorporation of different fractions of permanently charged comono-

mers in different chains during synthesis, and hence the chemical compositions of

chains with different degrees of ionization are not identical. The first attempt to

theoretically treat the behavior of quenched PEs in poor solvents was made by

Khokhlov [55, 56]. He predicted that a spherically symmetrical globular confor-

mation would deform with increasing charge and would form a prolate ellipsoid. A

substantially more detailed description, which is at present generally accepted, was

published by Dobrynin, Rubinstein, and Obukhov in 1996 [52]. They combined the

scaling approach and Monte Carlo simulation and showed that the transition from

the globular to the stretched conformation proceeds as a cascade transition via a

series of “pearl necklace” structures (globules formed by collapsed parts of the

chain interconnected by relatively short stretched parts) with increasing numbers of

pearls of decreasing sizes. The proposed necklace concept was inspired by earlier

theoretical works by Kantor and Kardar [57], who explained the formation of

globules within one chain by the same physical arguments as used by Rayleigh in

1882 when he studied the instability of charged oil droplets [58]. When an oil

droplet is charged, the charge spreads over its surface. Discrete elementary charges

of the same sign aim at expanding the surface, because they try to be as far as

possible from each other. The corresponding electrostatic potential of repulsive

forces is proportional to the square of the total charge and to the reciprocal

(average) distance between the charges hr�1i, which is proportional to the radius

of the droplet, R, i.e., �Q2/(εR), ε is the dielectric permittivity. The surface energy

(proportional to γR2, γ is the surface tension) tries to minimize the surface and

preserve the spherical shape. When the charge increases and exceeds the critical

value, at which both terms are equal, the “mother” droplet splits into two smaller

“daughter” droplets because the Gibbs energy of the two “daughter” droplets is

lower than that of the original “mother” droplet. As both “daughter” droplets

contain electric charges of the same sign, they mutually repel and move away

from each other.

The formation of pearls on the chain can be explained by analogous arguments.

In a poor solvent, minimization of the number of unfavorable interactions between
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non-ionized polymer segments and solvent molecules leads to a compact globular

arrangement with minimum surface-to-volume area. When the charge on the chain

increases, or the solvent quality improves and the effective surface tension

decreases, the condition for Rayleigh instability is reached, and the globular

conformation splits into two smaller globules. The globules cannot separate due

to the chain connectivity and are kept together at a certain distance by a relatively

short, albeit fairly stretched part of the chain. From a practical point of view, study

of a system with “continuously” increasing charge on the chain assumes synthesis

of a series of tailor-made PE samples with increasing numbers of charged groups

incorporated into the chain, which is very demanding. It is much easier to vary the

solvent quality by changing the temperature, but the range of solvent qualities for

temperatures preventing temperature-induced decomposition of the polymer chains

is fairly limited. If the chain charge (or temperature) continues to increase, a series

of conformation transitions (splitting of globules) will gradually occur. Based on

the scaling approach, Dobrynin et al. derived the following formula for the critical

charge fraction fcrit which corresponds to the Rayleigh instability:

f crit ¼
��τ��= N uð Þ� 1=2 ð8Þ

where τ¼ (1–ϑ/T ), ϑ is the theta temperature and N is the total number of segments

(monomer units). Theoretical description of the “pearl necklace” structure is

relatively complicated because it does not reflect only the Rayleigh instability but

also has to take into account other factors. The two charged globules electrostati-

cally repel each other, increasing the energy of the pearl structure. The formation of

a string connecting two globules requires that some monomers that were originally

hidden inside the large “mother” globule now be exposed to the poor solvent, which

is energetically unfavorable. In addition, the string contributes to the overall free

energy of the system by its elastic and electrostatic parts. By minimizing the free

energy, the authors derived the appropriate formulas for all the relevant parameters

that characterize the pearl necklace structure of a chain consisting of nb globules
with size (diameter) Db containing mb monomers each. The globules are connected

by strings, each havingmst monomers, and the total number of monomer units in the

PE chain is N. Here, we reproduce only the formula for the total length of the

necklace conformation, Lnec:

Lnec ¼ Nlf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u

τj j ln
Nuf 2

τj j
� �s

ð9Þ

where τ¼ (1–ϑ/T ).
The above-described hypothesis was confirmed by many Monte Carlo and

molecular dynamics simulations and also by a number of experimental techniques

[59–76]. Because the globules are fairly dynamic structures which “move” along

the chain, the number of persuasive direct experimental proofs is still limited.
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Nevertheless, the above “pearl necklace” scheme is now a generally accepted

scheme for the conformational behavior of PEs in poor solvents.

The behavior of annealed PEs in poor solvents is more complex than that of

quenched PEs. The probability of dissociation of a particular ionizable group

depends, among other factors, on its distances from already ionized neighbor

groups. It should be borne in mind that the simultaneous dissociation of two closely

spaced ionizable groups is unfavorable, which can be documented by the low ratio

of the second-to-first step dissociation constants in oxalic acid, K2/K1 approx. 10
�3.

Hence, the distribution of annealed charges along the chain and its fluctuations are

closely related to the instantaneous chain conformations. Therefore, it is not

surprising that recent theoretical and computer studies predict different conforma-

tional behavior than for quenched PEs.

Conformational transitions in annealed PE solutions have been studied theoret-

ically by Raphael and Joanny [77]. They predicted that annealed PEs should

undergo a sudden first-order transition from a highly charged expanded conforma-

tion to a collapsed and very little ionized one with a pH-controlled change

(decrease) in the degree of ionization. Recent semi-grand canonical Monte Carlo

(MC) simulations performed at a constant chemical potential of the charged species

indicate some ambiguity and do not support a first-order transition. Several authors

observed a first-order transition for annealed PEs only in very poor solvents, while

they observed the formation of pearls in marginal poor solvents (close to ϑ-
conditions) [68]. Other authors claim that pearl necklace structures are also formed

in very poor solvents [63]. At present, the debate concerning the transition from the

expanded to the collapsed state is still ongoing, but most researchers believe

(or incline to the opinion) that a cascade of pearl necklace transitions proceeds in

a broad range of solvent qualities.

4 Comments on Computer Studies of Polymer

Conformations and Dynamics

Computer studies (both Monte Carlo and molecular dynamic simulations) have

become a very powerful tool for studying the conformational and dynamic behavior

of polymer chains. They can be used for testing the predictions of theoretical

models concerning the equilibrium properties and moreover they provide informa-

tion on dynamic characteristics, e.g., on instantaneous fluctuations of chain shapes

which is important because most experimental techniques (e.g., scattering tech-

niques) yield the ensemble-average characteristics only. Large numbers of studies

have been performed on neutral chains—not only on linear ones but also on stars,

combs, etc. [78–85]. The most important advances in understanding the behavior of

polyelectrolytes have been made mainly thanks to computer studies. As already

mentioned, quenched PEs have been studied both by Monte Carlo [86–89] and by

molecular dynamics simulations [59, 63, 71, 73, 87, 90]. Simulation of annealed
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PEs is a very complex and delicate problem, because correct treatment of the

dissociation equilibrium at constant pH assumes constant chemical potential of

the hydrated protons and other small ions.

So far, almost all computer studies of annealed PEs have been performed by

grand canonical Monte Carlo methods (or by reaction ensemble MC), because these

simulation variants can treat variable dissociation relatively easily keeping the

chemical potentials of small charged species constant [59, 63, 68, 69, 91, 92]. Cur-

rent molecular dynamics (MD) studies usually use the degree of ionization as an

input parameter and cannot correctly treat systems with “mobile charges.” How-

ever, an interesting MD attempt for annealed PEs was published by Kosovan

et al. [93]. The authors combined common molecular dynamics and Monte Carlo

methodology. They incorporated a MC exchange of the positions of charges in the

chain (submitted to the Metropolis acceptance criterion) [94] in a MD run which

made it possible to emulate the appearance and disappearance of mobile charges in

different positions on the chain. The authors analyzed the behavior of annealed

chains under the condition of a fixed overall degree of ionization using several

ensemble-averaged functions: the probability of ionization of monomer units P(q,i)
as a function of their position (running number i) in the chain contour and the

average bond cosines, i.e., by riþ1 � rih i= riþ1j j � rij jð Þ, where ri is the bond vector i.
The ensemble average cosine of the angle between two successive bonds i and
(i +1) is a good indicator of the local behavior: It equals zero (or low) in stretched

parts of the chain and can increase up to 0.5 in coiled globular parts of the chain.

Simulation data for a chain with 500 unimer units and three overall degrees of

ionization α¼ 0.1, 0.2, and 0.33 in a bad solvent with the reduced Lennard-Jones

interaction parameter ε ¼ 1.0 are shown in Fig. 4. Figure 5 presents the schematics

Fig. 4 Simulation snapshots of chain conformations in a bad solvent for three degrees of

ionization α. Adapted with kind permission from Collection of Czechoslovak Chemical Commu-

nications 73, 2008, 439–458, figure 4, [93]. Copyright 2011
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explaining the evaluation of bond-angle cosines, Fig. 6 depicts the distribution

functions of bond-angle cosines as functions of the position of monomer units in the

polymer chain for the above overall degree of ionization, and Fig. 7 shows the

probability of ionization of individual beads. Note that ε¼ 0.34 describes the ϑ-
temperature [70]. The data show that the chain forms a pearl necklace structure and

the units inside compact globules are considerably less ionized than those exposed

to the solvent in the stretched part of the chain.

5 The Persistence Length

In the part devoted to neutral polymers, we mentioned that semiflexible and stiff

chains do not obey the behavior predicted by the Kuhn model. Restricted flexibility

of the chain can be caused by the presence of stiff units with multiple bonds or

bulky pendant groups, but it can be a result of external conditions or stimuli. In the

preceding part, it was explained in detail that repulsive interactions together with

entropic forces increase the stiffness of PE chains. Hence, a sudden pH change can

be used as a stimulus affecting the stiffness of annealed PE chains. The properties of

semiflexible polymers are usually treated at the level of the wormlike chain (WLC)

model developed by Kratky and Porod [31]. The “persistence length,” lP, is an

important parameter strongly related to the WLC model and has been used as the

most common characteristic of chain flexibility—in both theoretical and experi-

mental studies. It is used to describe orientational correlations between successive

bond vectors in a polymer chain in terms of the normalized orientation correlation

function, C(s)¼hri.ri+si. For the WRC model, this function decays exponentially:

Fig. 5 Schematic illustration of the possible values of bond-angle cosines. Adapted with kind

permission from Collection of Czechoslovak Chemical Communications 73, 2008, 439–458,

figure 6, [93]. Copyright 2011
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C sð Þ ¼ exp
�s

lP

� �
ð10Þ

and the persistence length lP is related to the bending modulus κ of the chain by

lP¼ κ/kT. The persistent length lP is the length at which the chain “forgets” the

orientation of its first segment, i.e., at distances shorter than lP, short parts of the
chain behave like an elastic rod, while at longer distances, the conformational

properties can be described statistically by a random walk model. Equation (10)

actually describes the rate of decay of the ensemble average cosine of the angle

between the orientations of the first and the s-st segment (generally between the n-st
and (n+ s)-st segment) in the chain. From the geometrical point of view, lP equals
the average projection of the end-to-end vector on the tangent to the chain contour

at chain end at the limit of infinite length. For the freely jointed chain (Kuhn model),

the persistence length is only one half of the segment length, (1/2)l.

Fig. 6 Average bond-angle

cosines as functions of the

position of the monomer

unit in the polymer chain for

the polymer in a bad solvent

for three degrees of

ionization α. Adapted with

kind permission from

Collection of Czechoslovak

Chemical Communications

73, 2008, 439–458, figure

7, [93]. Copyright 2011
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The effect of electrostatics on the persistence length of polyelectrolytes has been

studied by a number of researchers. The first theoretical model was developed

independently by Odijk [95] and by Skolnick and Fixman [96]. They expressed the

total persistence length, lP, as the sum of the natural persistence length, l0, and the

electrostatic persistence length, lE, i.e., lP¼ l0 + lE. For long chains, they obtained

the following formula:

lE ¼ αNð Þ2λBλ2D=4 ð11Þ

where λB is the Bjerrum length, λD is the Debye screening length, N is the number of

monomer units, and α is the normalized linear charge density on the chain. Later,

Khokhlov et al. [97] reformulated the problem for a chain of blobs and also

obtained the scaling of lB on λ2D. However, there is a strong controversy about the

dependence of lB on λD. This problem has been amply studied by computer

Fig. 7 The probability of

charging of individual

monomer units P(q,i) for
the polymer in a bad solvent

as a function of their

position in the chain, i, for
three degrees of ionization

α. Adapted with kind

permission from Collection

of Czechoslovak Chemical

Communications 73, 2008,

439–458, figure

9, [93]. Copyright 2011
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simulations [98–100]. Computer simulations suggest that the correlation function

of the segment orientations in PE chains cannot be expressed as a single exponential

function. The fact that the short-range behavior is dominated by intrinsic stiffness,

while the long-range part of orientational correlations is controlled by electrostat-

ics, and that there exists a crossover between these two regimes were suggested

originally by Barrat and Joanny [101] and later confirmed by simulations

[102]. Gubarev et al. [103] proposed the double-exponential decay of C(s):

C sð Þ ¼ Bexp � s

l1

� �
þ 1� Bð Þexp � s

l2

� �
ð12Þ

where l1 and l2 are two different decay lengths. Manghi and Netz [104], Dobrynin

et al. [103], and others [105] studied the problem in detail and proposed the relation

between li, l0, and lE. They also confirmed that the dependence of lB on λD is more

complex than that proposed by Odijk and Skolnick with Fixman.
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