
Chapter 9
A Learn by Demonstration Approach
for Closed-Loop, Robust, Anthropomorphic
Grasp Planning

Minas V. Liarokapis, Charalampos P. Bechlioulis, George I. Boutselis
and Kostas J. Kyriakopoulos

Abstract This chapter presents a learn by demonstration approach, for closed-loop,
robust, anthropomorphic grasp planning. In this respect, human demonstrations are
used to perform skill transfer between the human and the robot artifacts, mapping
human to robotmotionwith functional anthropomorphism [1]. In thisworkwe extend
the synergistic description adopted in Chaps. 2–6 for human grasping, in Chap.8 for
robotic hand design and, finally, in Chap.15 for hand pose reconstruction systems, to
define a low-dimensional manifold where the extracted anthropomorphic robot arm
hand system kinematics are projected and appropriate Navigation Function (NF)
models are trained. The training of the NF models is performed in a task-specific
manner, for various: (1) subspaces, (2) objects and (3) tasks to be executed with the
corresponding object. A vision system based onRGB-D cameras (Kinect,Microsoft)
provides online feedback, performing object detection, object pose estimation and
triggering the appropriate NFmodels. The NFmodels formulate a closed-loop veloc-
ity control scheme, that ensures humanlikeness of robot motion and guarantees con-
vergence to the desired goals. The aforementioned scheme is also supplemented with
a grasping control methodology, that derives task-specific, force closure grasps, uti-
lizing tactile sensing. This methodology takes into consideration the mechanical and
geometric limitations imposed by the robot hand design and enables stable grasps of
a plethora of everyday life objects, under awide range of uncertainties. The efficiency
of the proposed methods is verified through extensive experimental paradigms, with
the Mitsubishi PA10 – DLR/HIT II 22 DoF robot arm hand system.
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9.1 Introduction

As stated by its title, themain challenge of this book is to bridge the gap between neu-
roscience and robotics with the twofold goal of (i) advancing the design of artificial
systems and (ii) increase comprehension of biological systems. Considering point
(i), one of the most challenging topics is the analysis and exploitation of anthropo-
morphism of robot motion, to improve the effectiveness of Human-Robot Interaction
(HRI) applications. In Chap. 8, the synergistic description of the kinematics of human
hand graspwas exploited to devise design guidelines for the anthropomorphic robotic
Pisa/IIT SoftHand. In this chapter, such an analysis is extended to the arm-hand sys-
tem and considerations on the concept of anthropomorphism are reported.

Over the last decades, we experienced an increasing demand for Human Robot
Interaction (HRI) applications that require anthropomorphism of robot motion, as
also discussed in Chap.8. Anthropomorphism is derived from the greekword anthro-
pos that means human and the greek word morphe that means form. More than
140years ago Charles Darwin suggested anthropomorphism as a necessary tool for
understanding efficiently nonhuman agents [2]. The essence of anthropomorphism
as described in [3], is to imbue the imagined or real behavior of nonhuman agents
with humanlike characteristics, motivations, intentions and emotions.

Anthropomorphism is usefull for two main reasons: (1) it guarantees safety in
HRI applications (see also Chap. 10) and (2) it increases robot likeability, helping
robots establish social “connections” with humans. Regarding safety in HRI, when
humans and robots cooperate advantageously for the execution of certain tasks,
anthropomorphic robot motion can easily be predicted by humans, to comply their
activity/motion and avoid injuries. Regarding robot likeability, the more human-like
a robot is in terms of appearance, motion, expressions and perceived intelligence, the
more likely it is to establish a social connection with humans. More details regarding
the social implications of anthropomorphism, can be found in [4–6].

In [7], the authors discriminated functional and structural anthropomorphism, for
the development of technical devices that assist disabled people. A functional way
of developing such a device is to provide a human function independently of the
structural form, while the structural way is to accurately imitate some part of the
human body. Recently, we proposed a distinction between the different notions of
anthropomorphism [1] and introduced functional anthropomorphism, for mapping
human to robot motion. Functional Anthropomorphism has as priority to guarantee
the execution of a specific functionality in task-space and then—having accomplished
such a prerequisite—to optimize anthropomorphism of robot motion. Functional
anthropomorphism can be used to transform human trajectories to humanlike robot
trajectories, that have similar profiles in task space but different trajectories in joint
space, executing with accuracy the same tasks.

The field of Learn by Demonstration (LbD) or Robot Programming by Demon-
stration (PbD) has also received increased attention over the last 30years. Learn by
demonstration moves from purely preprogrammed robots to very flexible user-based
interfaces according to Billard et al. [8] and it is a well known approach, that has been

http://dx.doi.org/10.1007/978-3-319-26706-7_8
http://dx.doi.org/10.1007/978-3-319-26706-7_8
http://dx.doi.org/10.1007/978-3-319-26706-7_10
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used for various HRI applications. The concept of LbD is based on a very simple
idea: that an appropriate robot controller can be derived from human observations.
Thus, the ultimate scope of LbD is to formulate robot control methodologies that
can be easily adapted to new environments, generalize for new tasks and perform
efficiently without extra programming by the users. Some characteristic studies are
those proposed by Dillman et al. in [9–12], as well as those proposed by Schaal et al.
in [13–15]. All of these studies focus on learning and generalization of motor skills
by robotic artifacts, utilizing human demonstrations.

Nowadays, the majority of HRI applications involve some kind of interaction
with the environment. Grasping and manipulation of everyday life objects are the
most common interactions and some of the most challenging areas in robotics. Thus,
roboticists seek always inspiration for facilitating these interactions, at the nature’s
most versatile and dexterous end-effector, the human hand. When humans grasp
objects through the concept of synergies (see e.g., Chaps. 2–4 and 8), they tend to
adapt their hand posture according to: (1) the object to be grasped and (2) the task to
be executedwith the grasped object. In [16], it was shown that humans adopt postures
thatmaximize the force andvelocity transmission ratios, along the directions imposed
by the desired task. In [17], authors searched for optimal grasps using the branch-
and-bound method, on a required external set. In [18] Teichmann et al. minimized
the number of contact points required, to balance any external force and moment.
Chiu [19] proposed an index, that measures the compatibility of a manipulator to
perform a given task, Li and Sastry [20] introduced the concept of the task ellipsoid,
while Mavrogiannis et al. [21] proposed a task specific grasp selection scheme for
underactuated robotic hands.

Although the aforementioned studies have advanced the field of robot grasping,
most of the analytical approaches, make two unrealistic assumptions: (1) that the
robot hand fingers are able to reach accurately the desired contact points, (2) that the
object geometry and physical parameters are known. However, these assumptions
are often not verified, due to control errors, low encoder resolution and backlash that
lead to contact points deviation. Furthermore, when robots interact with a dynamic
environment, object properties (e.g., material, roughness, shape of the object) may be
roughly estimated by the state of the art of sensing systems. In [22], authors showed
that the existence of such uncertainties can “violate” the force closure property of
the grasp. Thus, such uncertainties should be taken into consideration during the
contact points and contact forces selection procedures. An alternative approach is to
use adaptive synergies in order to achieve successful grasps, for a wide variety of
objects (see Chaps. 8, 12 and 13 for technical and theoretical details).

In [23–25] the concept of Independent Contact Regions (ICR) was introduced
to compensate for such uncertainties. The ICR methodology guarantees that if each
contact point is located inside the corresponding regions, then the force closure
property is preserved. Recently [26, 27], we synthesized a complete human-inspired
optimization framework, for deriving stable, robust grasps under different task spec-
ifications and under a wide range of uncertainties. In these works, we utilized the
concept of Q distance—originally proposed by Zhu et al. [28]—in a novel fashion,
to incorporate the task specificity in the grasp selection algorithm.

http://dx.doi.org/10.1007/978-3-319-26706-7_2
http://dx.doi.org/10.1007/978-3-319-26706-7_4
http://dx.doi.org/10.1007/978-3-319-26706-7_8
http://dx.doi.org/10.1007/978-3-319-26706-7_8
http://dx.doi.org/10.1007/978-3-319-26706-7_12
http://dx.doi.org/10.1007/978-3-319-26706-7_13
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In this chapter we present a learn by demonstration approach for closed-loop,
robust, anthropomoprhic grasp planning. For doing so, we use human data in a
“Learn by Demonstration” manner to perform skill transfer, between the human and
the robot arm hand system. A human to robot motion mapping scheme transforms
human trajectories to anthropomorphic robot trajectories, using a criterion of func-
tional anthropomorphism [1]. The generated anthropomorphic robot trajectories are
projected in low dimensional manifolds exploiting a synergistic reduction of human
arm-hand kinematics, to train appropriate Navigation Function models [29], lever-
aging on a synergistic organization of the human upper limb as observed in [30].
These models formulate a closed-loop control scheme that embeds anthropomor-
phism and guarantees convergence to the desired goals. Regarding generalization,
the NF models are trained in a task-specific fashion, using three different task fea-
tures as described in [31, 32]: (1) the subspace to move towards, (2) the object to be
grasped and (3) the task to be executed with the grasped object. The final scheme
is able to produce adaptive behavior similar to humans by switching to different
grasping primitives based on online feedback from a vision system. The vision sys-
tem used, employs a RGB-D (Kinect, Microsoft) camera in order to perform object
recognition and object pose estimation. Finally, a set of human-inspired optimization
principles are incorporated in the proposed scheme, in order to facilitate the execution
of robust, task-specific grasps under a wide range of uncertainties, utilizing tactile
sensing.

The effectiveness of the proposed methods is experimentally verified using the
15 DoF DLR/HIT II five fingered robot hand attached at the 7 DoF Mitsubishi PA10
robot manipulator. The 4256e Grip System (Tekscan) tactile sensor setup, was used
in order to: (1) measure the forces exerted by the robot fingertips, (2) minimize the
level of uncertainty on the contact points, (3) facilitate the computation of sufficient
contact forces. The proposed approach can be used by a robot arm hand system like
the 22 DoF Mitsubishi PA 10 DLR/HIT II, to reach and grasp anthropomorphically
a wide range of everyday life objects.

The rest of the chapter is organized as follows: Sect. 9.1 describes the apparatus
and the kinematic models, Sect. 9.2 presents a “Learn by Demonstration” approach
for closed loop, anthropomorphic grasp planning based onNavigation Functionmod-
els, Sect. 9.3 presents the optimization schemes formulated to achieve task-specific,
robust grasps under a wide range of uncertainties, Sect. 9.4 validates the efficiency
of the proposed methods through extensive simulated and experimental paradigms,
while Sect. 9.5 concludes the chapter and discusses the results.

9.2 Apparatus and Kinematic Models

9.2.1 Mitsubishi PA 10 DLR/HIT II Robot Arm Hand System

The robot arm hand system used in this work, consists of a Mitsubishi PA10 7 DoF
robot manipulator and a DLR/HIT II five fingered 15 DoF robot hand (Fig. 9.1).



9 Learn by Demonstration for Anthropomorphic Grasp Planning 131

Fig. 9.1 The Mitsubishi
PA10 DLR/HIT II robot arm
hand system

The Mitsubishi PA 10 is a redundant robotic manipulator, which has seven rota-
tional DoF arranged in an anthropomorphic manner: two DoF at the shoulder, two
DoF at the elbow, and three DoF at the wrist. The robot servo controller commu-
nicates via the ARCNET protocol with a dedicated PC running soft real-time linux
(Gentoo). The Planner PC establishes a TCP-based communication with the robot
controller PC, allowing for position, velocity and torque control modes. More details
regarding the Mitsubishi PA10, can be found in [33].

The DLR/HIT II is a five fingered dexterous robotic hand, with 15 DoFwhich was
jointly developed by DLR (German Aerospace Center) and HIT (Harbin Institute of
Technology). DLR/HIT II has five kinematically identical fingers with three DoF
per finger, two for flexion/extension and one for abduction/adduction. The last joint
of each finger (Distal Inter-Phalangeal – DIP joint analogous), is coupled with the
middle one (Proximal Inter-Phalangeal – PIP joint analogous), using a mechanical
coupling based on a steel wire with transmition ratio 1:1. The dimensions of the robot
hand are considered to be human-like and the total weight is 1.6 kg. More details
regarding the kinematics and the control of the DLR/HIT II can be found in [34].

9.2.2 Tactile Sensors

In order to capture the forces exerted by the robot fingertips we use the 4256e Grip
System® (Tekscan), which is depicted in Fig. 9.2. The Grip System is an ultra thin
(0.15mm) tactile sensor that consists of 320 sensing elements (sensels) and which
is able to measure the pressure magnitude of each sensel, using piezo-resistive tech-
nology. The Grip System® tactile arrays are mounted on the robot fingertips using
appropriate rubber tape. The Planner PC establishes a TCP communication with a
PC (Windows OS) that collects the forces from the tekscan system, at the frequency
of 100Hz.
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Fig. 9.2 The Grip System®

tactile sensors (Tekscan)

9.2.3 Motion Capture Systems

In order to record the motion of the human arm hand system, we use a magnetic
position tracking system and a dataglove. The magnetic position tracking system is
the Liberty® (Polhemus Inc.) which is equipped with four position tracking sensors
and a reference system. In order to capture human arm kinematics, three sensors are
placed on: (1) the shoulder, (2) the elbow, (3) the wrist. More details regarding the
computation of the kinematics, are presented in [35]. In order to measure the rest 22
DoF of the human hand and the wrist, we use the Cyberglove II® (Cyberglove Sys-
tems). The Cyberglove II has 22 flex sensors, capturing all twenty DoF of the human
hand and the two DoF of the human wrist. More specifically, the flexion/extension
of all three joints of each finger, the abduction between the fingers, as well as the
abduction/adduction and flexion/extension of thewrist, can bemeasured. Themotion
capture systems are depicted in Fig. 9.3.

The positionmeasurements are provided by the Liberty system at the frequency of
240Hz. The Liberty system provides high accuracy in both position and orientation,
with 0.03 in. and 0.15◦ respectively. The acquisition frequency of the Cyberglove II
dataglove is 90Hz and the nominal accuracy is less than 1◦.

Fig. 9.3 Motion capture systems used to capture human kinematics. a Cyberglove (Cyberglove
Systems). b Liberty (Polhemus)
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9.2.4 Kinematic Model of the Human Arm Hand System

In order to describe the motion of the human upper limb in 3D space, we use three
rotationalDoF tomodel the shoulder joint, one rotationalDoF for the elbow joint, one
rotational DoF for pronation/supination, two rotational DoF for the wrist and finally
twenty rotational DoF for the human fingers. For index, middle, ring and pinky fin-
gers, we use three DoF for flexion/extension and one DoF for abduction/adduction,
while for the thumb we use two DoF for flexion/extension, one DoF for abduc-
tion/adduction and one DoF to model the opposition to other fingers. The proposed
methodology can be used with a more sophisticated human hand model, like the one
proposed [36], in case there is a motion capture system available, that can measure
all DoF variations of such a complex model.

9.3 Learn by Demonstration for Closed Loop,
Anthropomorphic Grasp Planning

In this section we present a learn by demonstration approach for closed-loop, anthro-
pomorphic grasp planning.

9.3.1 Learn by Demonstration Experiments

Experimentswere performed byfive (4male, 1 female) healthy subjects 22, 25, 28, 29
and 41years old. Subjects gave informed consent of the experimental procedure and
the experiments were approved by the Institutional Review Board of the National
Technical University of Athens. All subjects, were instructed to perform multiple
reach to grasp movements towards different positions and objects in 3D space. Each
subject performed all trials, with the dominant upper limb (the right arm hand system
for all subjects). The experiments were performed for 22 positions in 3D space,
marked on 5 different shelves. Four different objects were used for the experiments:
a marker, a rectangular box, a small ball and a bottle. Different grasps were executed
per object (e.g., front, side and top grasps) as described in [31]. For each object and
object position combination 10 reach and graspmovements were executed. Adequate
resting periods were used between the trials in order for the subjects to avoid fatigue.
An image presenting the bookcase used, as well as the positions marked on different
shelves of a bookcase, appears in Fig. 9.4.
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Fig. 9.4 Image depicting the object positions marked on different shelves of a bookcase

9.3.2 Mapping Human to Robot Motion with Functional
Anthropomorphism

A human to robot motion mapping procedure, is used to map human kinematics to
anthropomorphic robot kinematics. Various human to robot motion mapping proce-
dures have been proposed in the past, to guarantee anthropomorphism using specific
metrics of functional anthropomorphism [37], as it is also discussed in Chap.12.
In this chapter we formulate the mapping as a non-linear constrained optimization
problem for the whole arm hand system, considering as end-effectors the robot fin-
gertips.

More specifically, let xRAH = fRAH(qRAH) denote the forward kinematics mapping
from joint to task space for each robot arm hand system’s finger, let m be the number
of the fingers, xRAH , xRAHgoal ∈ R3 the current and desired fingertip positions and
hc = (ac, bc, cc, dc), hg = (ad, bd, cd, dd) ∈ R4 the current and desired fingertip ori-
entations (expressed using quaternions, to avoid singularities). Then the distance in
S
3, between human and robot fingertip orientations is defined as:

d̄RAHo(hc, hd) = cos−1(acad + bcbd + cccd + dcdd) (9.1)

Taking into account the antipodal points [38], we formulate the following distance
metric:

dRAHo(hc, hd) = min{d̄RAHo(hc, hd), d̄RAHo(hc,−hd)}. (9.2)

http://dx.doi.org/10.1007/978-3-319-26706-7_12
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Thus we can define the following objective function under both position and orien-
tation goals:

Fxo
RAH(qRAH) = wRAHx

m∑

i=1

∥∥xRAHi − xRAHgoali

∥∥2 + wRAHo

m∑

i=1

dRAHoi(hci , hdi) (9.3)

where wRAHx and wRAHo are the weights that adjust the relative importance of the
translation and rotation goal for each finger. These weights can be set according to
the specifications of each study.

Moreover, in order to generate anthropomorphic robot motion, we incorporate in
the objective function a criterion of functional anthropomorphism. Let selbow ∈ R3

denote the position of human elbow and sj the vector of the robot joint positions
in 3D space. For n points s1, s2, . . . , sn, the sum of distances between the human
elbow and the robot joints positions (excluding “shoulder” and the end-effector), is
given by:

D =
n∑

j=1

∥∥selbow − sj

∥∥2
(9.4)

The objective function FRAH for the whole arm hand system, can be defined under
position, orientation and anthropomorphism goals, as follows:

FRAH(qRAH) = wRAHx

m∑

i=1

∥∥xRAHi − xRAHgoali

∥∥2

+ wRAHo

m∑

i=1

dRAHoi(hci , hgi) + wDD (9.5)

where wRAHx and wRAHo are weights that adjust the relative importance of the trans-
lation and rotation goals (for each finger) and wD denotes the weight that adjusts the
importance of the anthropomorphism criterion. The aforementioned weights can be
selected according to the specifications of each study.

Thus, the problem of mapping human to robot motion with functional anthropo-
morphism for the case of arm hand systems, can be formulated as:

min FRAH(qRAH) (9.6)

s.t.
q−

RAH < qRAH < q+
RAH (9.7)

where qRAH ∈ Rn is the vector of the joint angles and q−
RAH , q+

RAH are the lower and
upper limits of the joints, respectively.More details, regarding the proposedmapping
scheme, can be found in [37].
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9.3.3 Learning Navigation Function Models
in the Anthropomorphic Robot Low-D Space

In this work, we choose to control a robot arm hand system in a closed-loop fashion,
in order to reach and grasp anthropomorphically a series of everyday life objects.
In this respect, we propose Navigation Function (NF) based controllers that use
“fictitious” obstacle functions (Fig. 9.5). The “fictitious” obstacles are learned in the
low dimensional space of the anthropomorphic robot kinematics and apply repulsive
effects on the robot arm hand system, so as to reach anthropomorphic configurations.
A scheme based onNFmodels, is able to produce humanlike robotmotion guarantee-
ing at the same time convergence to the desired goal [29]. Navigation Functions (NF)
were first proposed by Rimon and Koditschek [39, 40]. Some characteristics of the
NF based models are the following: (1) they provide closed-loop motion planning,
(2) guarantee convergence to the desired goals, (3) have highly nonlinear learning
capability, (4) provide continuous and smooth trajectories, (5) embed anthropomor-
phism (synthesizing appropriate, “fictitious” obstacle functions), (6) can generalize
to similar, neighboring configurations (goal positions).

The initial formulation of the NF is for a priori known sphere worlds, however,
application to geometrically more complicated worlds is achieved using diffeomor-
phisms which map the actual obstacles to spheres. In this work, B-splines are used
to learn the structure of the NF obstacle functions. More precisely, given a desired
configuration qd for the robot arm or hand, the control law is constructed as follows:

u (t) = −Kp
(∇qφ

)
(xt) (9.8)

where φ is the navigation function responsible for: (1) driving the arm or hand to
its final configuration and (2) generating new anthropomorphic robot trajectories,
similar to those used for training. Kp > 0 is a constant gain matrix and x is the
system’s state. The navigation function is given from the following relationship:

φ = γd (x)
(
γ k

d (x) + β
) 1

k

(9.9)

where x is the configuration, γd (x) = ‖x − xd‖2 is the paraboloid attractive effect,
β = ∏

i∈I0
βi is the aggregated obstacle repulsive effects and k ∈ N \ {0, 1} is a

tuning parameter. More precisely, for the training of the NF models we use the
anthropomorphic robot motion that we derived from the human to robot motion
mapping scheme. These data are represented in a lower dimensional manifold using
the Principal Components Analysis (PCA),1 as a standard dimensionality reduction
technique. Such a technique is commonly used to cope with the redundancy of
human hand architecture and to describe its synergistic organization, as discussed in

1The first 3 principal components extracted using the PCA method, describe for both the arm and
the hand case, more than 88% of the total variance.
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Fig. 9.5 The training procedure for the NF based models

Chaps. 2, 3, 5 for the analysis of human hand control, and in Chaps. 8 and 15 to design
under-actuated robotic systems and under-sensed human hand pose reconstruction
devices, respectively. However, synergistic coordination is not only limited to the
hand: coordinated synergistic movements can be observed for the whole arm-hand
system [30] and dimensionality reduction techniques can also be profitably employed
in this case.

The output of the NF models, is then back-projected in the high dimensional
space in order to control the robot arm hand system. In this case, no online human to
robot motion mapping is required and computational effort diminishes. Moreover,
we manage to guarantee anthropomorphism as well as to transfer skills from humans
to the robot arm hand system, using a learn by demonstration approach.

In this work, NF models are trained in a task-specific way. For doing so, we use
the approach described in [31, 32], discriminating the following task features: (1)
subspace to move towards, (2) object to be grasped and (3) task to be executed with
the grasped object. Thus, different NF models are trained offline for different tasks
and then “stored”. Furthermore, different NF models are trained for the robot arm
and the robot hand. All models require as input the “goal” position in the low-d space
of the anthropomorphic robot kinematics. The goal position can be provided by a
vision system. The final scheme is able to produce adaptive robot behavior—similar
to humans—by switching to different grasping primitives, based on online feedback
(from the vision system).

9.3.4 A Vision System Based on RGB-D Cameras

In order for the proposed NF based methodology to be able to update the “goal”
position of the task to be executed (based on online feedback), we have developed
a vision system based on RGB-Depth cameras (Kinect, Microsoft). The developed
vision systemperforms: (1) object recognition and (2) object pose estimation.Ablock
diagram of the NF based scheme with the vision system incorporated, is presented
in Fig. 9.6. For the development of the different vision modules, the Point Cloud
Library has been used [41].

http://dx.doi.org/10.1007/978-3-319-26706-7_2
http://dx.doi.org/10.1007/978-3-319-26706-7_3
http://dx.doi.org/10.1007/978-3-319-26706-7_5
http://dx.doi.org/10.1007/978-3-319-26706-7_8
http://dx.doi.org/10.1007/978-3-319-26706-7_15
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Fig. 9.6 Block diagram of the NF based scheme, with the vision system included

9.4 Task Specific, Robust Grasping with Tactile Sensing

In this section we present a set of optimization schemes capable of deriving task-
specific, robust grasps under a wide range of uncertainties, utilizing tactile sensing.

9.4.1 A Scheme for Deriving Task Specific Grasping Postures

In order to derive task-specific, robust grasps, we propose a grasp selection algorithm
based on the concept of Q distance, originally proposed for curved objects by Zhu
et al. [28]. In this work, instead of just guaranteeing the force closure property as
presented in [28],we obtain configurations that compensate disturbances in particular
task-specific directions, exerting low forces. More details, regarding the utilization
of the Q distance metric for deriving grasps in a task-specific manner, can be found
in [27].

To formulate an optimization problem that derives task-specific grasping postures,
we minimize the Q distance metric, using the joint displacements (q ∈ R

nq ) and the
wrist position/orientation (w ∈ R

6) as decision variables. The optimization problem
becomes:

min dQ(0, co(W )) (9.10)

s.t.
qmin ≤ q ≤ qmax (9.11)
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fkine(q) ∈ ∂O (9.12)

qj
abd/add ≤ qj+1

abd/add (9.13)

p′ /∈ O (9.14)

where 0 is the origin of the wrench space, co(W ) denotes the convex hull of the
primitive wrenches and dQ(0, co(W )) the Q distance metric. Equation (9.11) sets
the inequality constraints of the joint limits (qmin, qmax), Eq. (9.12) ensures that the
fingertips will be in contact with the object surface (∂O) employing appropriate
equality constraints, Eq. (9.13) prevents collisions between the abduction/adduction
DoFof the different robot fingers (qi

abd/add) andEq. (9.14) prevents collisions between
the robot hand and the object, ensuring that no point (belonging to a set p′ of finite
discrete points) lying on the robotic hand will penetrate the object. For the rest of this
chapter, we will refer to these constraints with the abbreviation RHC (Robot Hand
Constraints).

9.4.2 A Scheme that Provides Optimal Force Transmission
and Robustness Against Positioning Inaccuracies

In the previous section, we discussed the task specifications and the kinematic con-
straints that need to be satisfied to derive a task-specific grasp, but in most cases robot
hands are also subjected to joint torque constraints. In this work we employ, the force
transmission ratio rk and compatibility index c introduced in [19], in order to derive
robot hand configurations that exert the required grasping forces with minimal joint
torque effort. The transmission ratio and the grasp compatibility index are defined,
as follows:

rk = [uT
k (JiJ

T
i )uk]−1/2

ci =
l∑

k=1

r2k =
l∑

k=1

[uT
k (JiJ

T
i )u

k]−1

where uk, k = 1, . . . , l, denote the desired directions for the contact forces and Ji

the Jacobian of the ith finger. In this work we use frictional hard contacts, restricting
each force to lie inside the corresponding friction cone. Thus, for each contact point
the unit vectors uk can be chosen to be alignedwith the edges of the linearized friction
cone [42]. The compatibility index for the case of the robot hand, becomes:

c =
np∑

i=1

wfi ci =
np∑

i=1

wfi

ng∑

k=1

[uT
k (JiJ

T
i )uk]−1
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wherewfi areweighting factors for eachfinger. Themaximization of the compatibility
index c yields an optimal posture with respect to the force transmission metric,
however a deviation between the actual and desired joint positions may be inevitable.
Thus, we have to guarantee that the robot hand will be able to perform the given task,
despite the fingertip positioning inaccuracies. For doing so, we utilize the concept
of independent contact regions (ICR), adopting the approach described in [25], to
determine whether a point on the object boundary qualifies to be a member of the
ICR. Finally, we formulate an optimization problem that provides optimal force
transmission and robustness against positioning inaccuracies, as follows:

min
1

c
(9.15)

s.t.
RHC (9.16)

d−
Q (0, co(W )) < 0 (9.17)

pi ∈ ICRi (9.18)

The inequality d−
Q (0, co(W )) < 0 of Eq. (9.17) ensures that the force closure

propertywill hold. Equation (9.18) constraints the deviated contact pointspi to belong
to their corresponding Independent Contact Regions. It must be noted that a task-
specific grasp configuration results in larger ICRs [43], so the grasp configuration
derived in previous sections is ideal to initiate this second optimization algorithm.

9.4.3 A Grasping Force Optimization Scheme Utilizing
Tactile Sensing

In this section, we utilize tactile sensors that are appropriately attached on the robotic
fingertips, in order to relax the magnitude of uncertainties regarding: (1) joint dis-
placements and (2) contact points deviations. Then we use the derived/updated infor-
mation regarding the contact points, in order to perform a grasping force optimiza-
tion. Using this scheme we are able to generate a set of contact forces that balances
external disturbances, preventing object deformations and requesting minimal joint
torque effort. In this work, we use the 4256e Grip System (Tekscan) and the active
region of each fingertip is covered with a 4× 4 tactile array. The sensels’ sensors
allows us to compute the position of force/contact centroid, as follows:
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xcof =

3∑

i=0

xi

3∑

j=0

pij

3∑

i=0

3∑

j=0

pij

, ycof =

3∑

j=0

yj

3∑

i=0

pij

3∑

j=0

3∑

i=0

pij

(9.19)

where pij is the normal force value at each sensel, xi is the x coordinate of ith
column and yj the y coordinate of jth row of the 4× 4 array. In order to map the
centroid coordinates (xcof , ycof ) to 3-D coordinates on the robot fingertip surface,
we exploit the point cloud of the robotic fingertip. All robot fingers have the same
fingertip, so the following procedure applies for all fingers. Initially we match the
4 corner sensels of the tactile array with their actual position pcorn

i , i = 1, . . . , 4, on
the point cloud and we compute the distance between them and all other nodes of
the point cloud. Then, assuming that the sensor firmly covers the fingertips surface
and given a contact centroid (xcof , ycof ), we determine the corresponding coordinates
P(X, Y, Z) on the robot fingertip point cloud, minimizing the following function:

min{
4∑

i=1

(disti(X, Y , Z) − arraydisti(xcof , ycof ))
2} (9.20)

where disti(X, Y , Z) denotes the distance from pcorn
i to P(X, Y, Z) on the point cloud

and arraydisti(xcof , ycof ) the distance between the ith corner sensel and the contact
centroid on the tactile array. Such an approach assumes that the distance between
two points remains invariant both in 2D and 3D coordinates (Fig. 9.7).

Following the grasping notation, we can denote the contact forces, as follows:

fc = −G+wext + Eλ, (9.21)

where wext is the external disturbance, G+ is the pseudoinverse of grasp matrix G
(see also Chaps. 8, 12 and 13), E is a matrix whose columns form a basis for the
nullspace of G and λ is an arbitrary vector. The first term of (9.21) is responsible
for the compensation of the external wrench wext and Eλ denotes the set of internal
forces [44]. The internal forces have a null resultant wrench to the object and are
very significant for grasping, as they can control the robot hand’s ability to squeeze

Fig. 9.7 Distances on the
fingertip and the tactile array
respectively

http://dx.doi.org/10.1007/978-3-319-26706-7_8
http://dx.doi.org/10.1007/978-3-319-26706-7_12
http://dx.doi.org/10.1007/978-3-319-26706-7_13
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arbitrarily tight the object, ensuring stability. Thus,we formulate a linear optimization
problem setting as decision variables the internal forces (vector λ), as follows:

min
∑

fni (9.22)

s.t.
−V ′

i (fci − ni‖fcimax
‖) ≤ 0 (9.23)

|τik | ≤ |τikmax
| − |δτikmax

| (9.24)

fni ≥ 0 (9.25)

where fn are the normal force components of the contact forces fc. Equation (9.22)
sets the friction cone constraints (represented by L-sided convex polyhedral cones
to reduce computational complexity [45]), Eq. (9.23) sets the torque constraints and
Eq. (9.24) constraints the contact forces values to be positive or zero. The presented
algorithm searches for a set of internal forces that minimize the sum of the normal
forces and therefore the grasp effort, satisfying simultaneously both the friction and
torque constraints.

9.5 Results and Experimental Validation

In this sectionwepresent extensive experimental paradigms of the proposedmethods,
focusing on the two different scenarios: (1) reaching and grasping using closed
loop, anthropomorphic grasp planning methodologies, (2) achieving robust, task-
specific grasps under awide range of uncertainties, utilizing bioinspired optimization
principles and tactile sensing.

Using the aforementioned methods, we are now able to synthesize a complete
scheme for closed-loop, robust, anthropomorphic grasp planning. The steps followed
by the proposed scheme, are the following:

1. A vision system, performs object detection and object pose estimation.
2. The object shape andposition information trigger a task-specificNavigationFunc-

tion model (object-specific and subspace-specific).
3. The Navigation Function model produces anthropomorphic trajectories for the

arm hand system to reach and grasp the identified object, ensuring convergence
to the desired pose.

4. The robot fingers stop moving when the fingertips’ tactile sensors detect contact
with the object.

5. The actual joint positions and the contact centroids are obtained from the encoders
and the tactile sensors respectively.

6. The contact centroids are mapped to the corresponding positions on the robot
fingertips.
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Fig. 9.8 Three instances of a reach to grasp motion, are depicted. a Reaching. b Grasping and
lifting. c Performing the task

7. The positions of the contact points on the object are computed, solving the robot
arm hand system’s forward kinematics.

8. A grasping force optimization scheme is employed to compute a set of sufficient
forces, for the robot hand to stably grasp the object.

9.5.1 Closed-Loop, Anthropomorphic Grasp Planning
Scenario

All experiments were performed with the Mitsubishi PA10 DLR/HIT II robot arm
hand system. A vision system based on RGB-D cameras (Kinect, Microsoft) was
used to track everyday life objects, located in arbitrary positions and orientations
in 3D space. In Fig. 9.8, the robot arm hand system is depicted while reaching and
grasping anthropomorphically a rectangular object, in order to execute a specific task
(e.g., to throw the object into the waste basket).

A video of the first experiment, can be found at the following url:
https://www.youtube.com/watch?v=cazfjEKnsxo.

9.5.2 Task-Specific, Robust Grasping Scenario

For the task-specific robust grasping experiments we considered the stable grasp
of a cylindrical object, which is filled with liquid. We showed that the proposed
methodology derives robust grasps that hold the force closure property even when
the object is rotated, facing disturbances caused by the center of mass changes. Four
different poses of the object are depicted in Fig. 9.9. These poses are used to model
the task disturbances. The rotation is implemented about the z axis and the liquid is
hypothesized to be symetrically distributed about this specific axis. In the subfigures
of Fig. 9.9, the black dots denote the center of mass for each pose, while the object

https://www.youtube.com/watch?v=cazfjEKnsxo
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Fig. 9.9 Task description. a Pose I. b Pose II. c Pose III. d Pose IV

coordinate frame is determined by the blue axes. As it can be noticed, the object’s
weight causes external forces along both the x and y axis, as well as external moments
about the z axis of the object coordinate frame.

The bottle used for the experiment, had a radius of 2.25 cm and a height of
13 cm. For the derived configuration we considered an 8-sided linearized friction
cone. The friction coefficient selected was quite conservative with μ = 0.3. The
maximum contact point deviation (on the object) caused by the DLR/HIT II joint
errors, was found to be 4 mm. For the ICRs computation, four deviated contact
points were considered, at a distance of 4 mm from the nominal contact point. The
friction coefficient and object model uncertainties, were considered prior to the ICRs
computation, as discussed in [46]. Finally in order for the robot hand to perform the
specified task, a set of internal forces were computed that satisfy both the friction
and joint torque constraints, as presented in Sect. 9.4.3.

In Table. 9.1 we present the derived angles q and torques τ . For the computation
of internal forces the uncertainty of the contact points δpmax is 1 cm and the center of
mass uncertainty is 3 cm. The robot hand dynamic model was considered to be the
flexible joint model presented in [47] and was utilized in order to exert the derived
forces. Thus, we have:

τ = g(q) − τext = K(θ − q) (9.26)

where q denotes the link position vector, θ denotes the motor position vector in link
coordinates and g(q) the gravity term. Moreover, K is the stiffness matrix and τext

the external torque vector. After contact detection for a given q we may calculate the
motor displacements required to exert the desired internal forces fextd , as:

θ = K−1(g(q) − JT
i fextd ) + q (9.27)

The term g(q) can be computed using the DH parameters and the nominal masses
of the DLR/HIT II robot hand [47]. A video of the second experiment (see Fig. 9.10),
can be found at the following URL:

https://www.youtube.com/watch?v=lkpSgamV0b8.

https://www.youtube.com/watch?v=lkpSgamV0b8
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Fig. 9.10 Three snapshots of the reaching, grasping–lifting and task execution phases. a Reaching.
b Grasping–Lifting. c Performing the task

9.6 Conclusions and Discussion

In this chapter we presented a complete scheme for closed-loop, robust, anthropo-
morphic grasp planning, following a learn by demonstration approach. For doing so,
we captured multiple reach to grasp movements of the human arm hand system and
we used them in order to generate anthropomorphic robot trajectories. Then, task-
specific Navigation Function models were trained in the low-d space of the anthro-
pomorphic robot kinematics, mimicing the synergistic organization of the human
hand-arm system. The NF models were used to formulate a closed loop control
scheme, that ensures humanlikeness of robot motion and guarantees convergence to
the desired goals. Human-inspired optimization principles were proposed in order
to derive task-specific, robust grasp configurations. Tactile sensors mounted on the
robot fingertips were used to confront uncertainties regarding the joint displacements
and the contact points positioning, relaxing also the computation of sufficient contact
forces which result to stable grasps. A vision system based on RGB-D cameras was
used to provide online feedback, perform object detection and object pose estimation
and trigger appropriate task-specific NF models.

The proposed approach can be used by various robot arm hand systems, in order
to reach and grasp anthropomorphically a plethora of everyday life objects, even
under a wide range of uncertainties.
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