
Chapter 11
Incremental Learning of Muscle Synergies:
From Calibration to Interaction

Claudio Castellini

Abstract In the previous chapter it has been shown how sEMG gathered from only
two loci of muscular activity with opposite mechanical actions can be used to control
the synergy-inspired robotic hand described in Chap. 8. Here, the problem of simpli-
fying the control of a multi-DoF, multi-DoAmechatronic system—more specifically
a prosthetic hand—is tackled from the opposite perspective, i.e. by leveraging the
information contained in the sEMG gathered from multiple sources of activity. Nat-
ural, reliable and precise control of a dexterous hand prosthesis is a key ingredient
to the restoration of a missing hand’s functions, to the best extent allowed for by
the current technology. However, this kind of control, based upon machine learning
applied to synergistic muscle activation patterns, is still not reliable enough to be
used in the clinics. In this chapter we propose to use incremental machine learn-
ing to improve the stability and reliability of natural prosthetic control. Incremental
learning enforces a true, endless adaptation of the prosthesis to the subject, the envi-
ronment, the objects to be manipulated; and it allows for the adaptation of the subject
to the prosthesis in the course of time, leading to the exploitation of reciprocal learn-
ing. If proven successful in the large, this idea will prepare the shift from prostheses,
which need to be calibrated, to prostheses that interact with human beings.

11.1 Introduction

One of the simplest ways to characterize the animal kingdom is to consider the
typically animal ability of voluntarily moving [31, 38]. Animals move in the world
to survive, feed, mate, adapt to the environment and adapt the environment to their
needs—basically, for everything they do. Mammals, in particular, move and act by
activating theirmuscles, which are an extremely smart product of evolution. Actually,
from the point of view of the modern engineer, a muscle is an incredibly energy-
efficient, light and versatile actuator.
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Such a marvelous set of actuators requires an equally marvelous control system,
which however does not resemble much any standard control system as found in
Control Theory or on modern robots. Each muscle is in fact composed of up to thou-
sands smaller actuators called Motor Units (MUs), each one producing contractile
force on a joint, each one in principle independently controlled [34, 39]; precisely
this redundancy, coupled with a smart recruitment mechanism, enables mammals
achieve their spectacular performances while running, climbing, swimming, nurtur-
ing their offspring, mating, etc. In fact, essentially every action involves most, if
not all, the MUs in a certain musculoskeletal region. It therefore seems that MUs
are always controlled in large batches altogether at the same time, in a coordinated
fashion. Since the total number of MUs in the musculoskeletal system is too large to
be directly consciously controlledMU byMU [3], a simplifying paradigm is needed.

In parallel to the concept of kinematic synergies widely discussed in the first part
of this book, starting from1998, the idea ofmuscle synergies as a solution to this prob-
lem was introduced [4, 14–16, 53, 54]. Muscle synergies, as traditionally defined,
are basic coordinated muscle activations that can be extracted using, e.g., Principal
Component Analysis (PCA) from kinematic or sEMG data. The strong compression
factors uniformly obtained by PCA on data gathered from human subjects while
performing large sets of everyday-living tasks seem to indicate that only a few syn-
ergies (three or four) are required to perform most such actions (see the discussion
carried out elsewhere in this book, e.g., in Chaps. 2–4, 6, 8 and 15). The situation
becomes less clear when training is involved, for instance when a subject learns to
play the piano (see, e.g., [58]). When additional motion finesse is required, it is likely
that more and more synergies must consciously be controlled. It is quite possible,
anyway, that this paradigm works as a general control schema for the mammalian
motion: maybe grabbing a pen, caressing one’s partner, playing the piano, breaking
an egg, carrying a 50kg. weight, all these actions are performed via muscle synergies
control [25]. But dealing with this problem is not in the scope of this chapter, and as
well, different definitions of this concept exist [16, 32, 52]; in fact, we hereby adopt
the simplest possible definition of a muscle synergy: a coordinated, task-directed
activation of a set of MUs. In this sense, any voluntary action, for instance the act
of flexing one’s index finger to a determined amount of the maximum voluntary
contraction, corresponds to a specific synergy.

Now, any specific synergy corresponds to a signal pattern that can be detected
by employing an adequate array of sensors and a signal processing system—what
we call the Human-Machine Interface or HMI. Such an HMI is the ideal basis of
modern, dexterous prosthetic control. A prosthesis is needed whenever a person has
lost a limb, be it due to a traumatic event, planned surgery or congenital deficiency;
the loss of a limb leads to a severe degradation of the quality of life [37, 44], therefore
it is very desirable to restore the lost body functions to the best extent allowed for
by the technology. The main idea is that of employing the HMI to let the amputee
directly control a robotic prosthesis in the most natural way, that is, “by desiring so”
[19, 28]. Our main object of study is, in particular, hand prostheses, given that the
human hand is one of the most wonderful tools ever evolved by Nature, and the loss
of a hand is a very disabling condition in the modern world.
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In Chap.10, an approach based on minimalistic sEMG mapping has been intro-
duced, showing how such a strategy can be successfully exploited to control the
robotic hand described in Chap.8, under-actuated according to the concept of adap-
tive synergies. On the other hand, to deal with artificial hands with many DoFs and
DoAs, machine learning techniques have been developed and academically tested
in hundreds; still, at the time of writing they are essentially not used in the clinics,1

the main problem being the unreliability of the HMI [5, 8, 18, 19, 44]. In this case
“unreliable” means that the control signals generated by the HMI are not stable with
respect to the user’s intent or, equivalently, that the patterns to be recognized are
too diverse or change in time. All in all, the prosthetic control system needs to be
improved.

We deem necessary a paradigm shift here. In particular, with the advent of
multi-fingered hand prostheses, complete arm/hand prosthetic systems and advanced
surgery methods such as Targeted Muscle Reinnervation [2, 30, 55], the standard
prosthetic control does not suffice anymore. Among the several advancements called
for by the community [26], we push the incrementality of the control system [20, 57].
Incrementality of a machine learning system is the possibility of updating the model
obtained so far whenever required, without recalibrating, without loosing previous
information and without waiting for the calibration time; in the context of using a
prosthesis, this concept directly leads to interaction between the human subject and
the system.We believe that the chance that the subject continually teaches the system
new patterns as they arise in real life is paramount to improve the reliability of the
prosthetic artifact.

The rest of this chapter is a series of recommendations and ideas on how to pursue
this goal. In particular, Sect. 11.2 sets the background, describing the current flaws
and limitations of natural prosthetic control and stating a list of requirements for the
new kind of control system we are advocating; in Sect. 11.3 we describe our own
solution to the problem and show a couple successful applications of a system based
upon the ideas described; and lastly Sects. 11.4 and 11.5 contain final remarks.

11.2 Background

Current prosthetic control systems are in the vast majority based upon machine
learning applied to patterns of synergistic muscle activations voluntarily generated
by the user. We hereby argue that a specific characteristic of the control system that
has been so far neglected might represent a solution to the notorious problem of the
unreliability of such kinds of human-machine interfaces, namely incrementality.

1As of today, the only commercially available machine-learning-based myocontrol system is man-
ufactured by Coapt LLC (www.coaptengineering.com) and no statistics on its effectiveness are
available.

http://dx.doi.org/10.1007/978-3-319-26706-7_10
http://dx.doi.org/10.1007/978-3-319-26706-7_8
www.coaptengineering.com
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11.2.1 Muscle Activations in Prosthetic Control

Let us concentrate on voluntary muscle activations, that is, movements enacted by
a precise, conscious, coordinated muscle contraction—as two typical examples, let
us consider playing a C-major chord on a piano, and carrying an egg from A to B in
one’s kitchen, for example to prepare an omelet. Each action requires an extremely
fine control of the activation of thousands of motor units in the hand, forearm, upper
arm and even, in the case of carrying the egg around, of the whole body. Given the
right level of granularity of an action (more on this point will be said later on), one
can mathematically say that the intent of performing an action generates a dynamic
pattern of muscle activation, a(t), where the vector a denotes the activation level of
each motor unit involved in the action. Without loss of generality one can think of a
being expressed in normalized coordinates, for instance as a fraction of themaximum
possible activation of each motor unit; in this case a(t) ∈ R

M where M is the number
of motor units involved. In the above example of the C-major chord, and considering
the hand and wrist only, simultaneous activation of the wrist, thumb, middle finger
and little finger is required to hit the C, E and G keys at the same time, using the
right amount of force to produce the desired volume2; this would correspond to, say,
a1(t). In the second example, at least the thumb and index finger (and usually much
more) must be activated, again, simultaneously and to the right amount in order to
pick up the egg, and carry it without letting it slip and without crushing it. We could
denote this action as a2(t). And so on, for each required action.

Notice that an exceptionally fine control over a is required along time. The value of
amust remain as stable as possible in time, notwithstanding any disturbance, external
and/or internal to the body. Such disturbances are quintessentially unavoidable, as
they include, e.g., other movements required at the same time; for instance, playing
a bass line with the other hand on the piano, or walking while carrying the egg.
Clearly—and this is the problem of granularity of an action, mentioned above—there
is a particular range of values within which a must remain in order to achieve the
desired goal; for instance, the egg-carrying action can be stably performed across an
interval of time Δt only as long as amin

2 < a2(t) < amax
2 for all t ∈ Δt . This directly

leads to the definition of a muscle activation pattern, which enforces the desired
action. From the point of view of the engineer, such a pattern can be represented, in
the simplest instance, by the average of the values obtained while the subject repeats
the action over and over again: a2. (More complex representations can include, for
instance, a probabilistic description of the distribution of the signal obtained across
these repetitions.) Such a pattern is a time-abstracted simultaneousmuscle activation,
which matches our previous definition of a muscle synergy, precisely the synergy
that enables the subject carry the egg in a stable way. Such synergies are also the
patterns that amachine-learning based prosthetic control systemwill try to recognize:
as long as the subject keeps her/his activation levels close to that pattern (given a
certain distance metric—see also the concept of good variance vs. bad variance in

2At least according to the standard piano-playing technique as told inmostmodernmusicalmethods.
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the synergy definition given in [32]), the system will issue the right commands to the
prosthesis and enforce stable grasping.

On the other hand, failure by the subject tomaintain the synergisticMUactivations
“close enough” to the reference pattern a2, or more likely, failure by the system to
effectively recognize that pattern, will result in the egg being dropped or crushed;
in general, the inability of reliably recognizing a pattern ai will lead to unstable
grasping of type i , which can have dramatic consequences. Intact human subjects
employ a wide array of sensors to close the loop over the MU activations, but this
feedback stream of information is precisely what an amputated subject lacks. It is
then no wonder that the biggest cause of abandonment of upper-limb prostheses is
their unreliability, that is, the inability of the control system to correctly, stably detect
the intent of the patient [5, 8, 18].

11.2.2 Unreliability

Since the 1950s sEMG (surface Electro-Myography), originally a muscle disorder
diagnosis technique, has been used to enforce muscle-activation-based control of
one-DoF hand prostheses [44]: traditionally, two sites of large residual activity (see
also Chap.10) would be identified on the patient’s stump, usually corresponding
to flexion and extension of the wrist; these two sites would be used to determine
the speed of opening and closing the prosthesis. With the advancement of pros-
thetic technology, more sophisticated arrangements of sEMG electrodes have been
used (with higher sensitivity, better noise-rejection properties and/or higher spa-
tial resolution) and novel kinds of signals have been explored as potential replace-
ments/augmentations of sEMG. Among these, tactile [47] and pressure sensors [50,
61] detecting the stump surface deformation corresponding to muscle activations;
ultrasound imaging [22, 57] detecting the displacement of the remnant anatomical
structures in the stump; strain sensors to detect the same kind of deformations; and
computer vision [33] to aid the prosthetic control by putting prior information on
the decision regarding the action to be performed. Moreover, sophisticated statistical
methods belonging to the class of machine learning (ML, also denoted as “pattern
matching” or “pattern recognition” in the rehabilitation community) algorithms have
been applied to these signals.

In general, once an educated guess has been made about a certain type of bodily
signals (sEMG, ultrasound, etc.) to be meaningful of the underlying muscle activity,
a ML method works as follows: given a set of pairs S = {(xi , yi )} in which xi is a
sample of the signal, and yi is an integer (a “label”) abstractly denoting a required
action, or a real position/force value directly denoting the required control signals for
the DoFs of a prosthesis, a map between signals and actions will be created via some
kind of statistical approximation: y = f (x). The approximant f is usually found
by minimization of a cost functional, which makes the operation computationally
costly (as is the case, e.g., of Support Vector Machines [6, 56, 59]) and/or unsafe due
to the presence of local minima (as with artificial neural networks). Anyway, in the

http://dx.doi.org/10.1007/978-3-319-26706-7_10
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machine-learning lingo, S is called training set, since it is the data set used to “train”
the machine to recognize a certain set of patterns in the input signal; similarly, the
creation of the map f using S, which an engineer would call “calibration”, is called
in this case training phase, as opposed to the prediction phase in which f is actually
used to guess y from the signal x.3

Now, the quality of the obtained control function f strictly depends on the “qual-
ity” of S (in machine learning, in general, apart from the choice of the basic functions
used to compose f , e.g., linear or not, there is little more than S to determine what
f looks like); in turn, how to define the quality of a training set is a matter of debate.
If the map f , which represents the prosthetic control system, is supposed to stably
and reliably recognize a set of patterns (muscle synergies) Pi , i = 1, . . . , N corre-
sponding to the required actions ai , then those patterns

1. must appear in S correctly associated to the required output values;
2. must be repeatable; and
3. they must be stable.

Item (1) is not problematic; as opposed to this, items (2) and (3) can be, and usually
are. The gathering of the training set can be long and psychologically challenging
for the subject, mainly since (s)he has no control on what (s)he is doing, due to the
above-mentioned lack of sensory feedback (this issue is also tackled in Chap. 10). A
pattern ai can be very different from a pattern a′

i gathered at some later point in time
but representing the same desired action i , due to a number of competing factors
such as, e.g., electrical external disturbances; slightly different muscle activations
leading to very similar actions; muscular fatigue and sweat, which are well known
to significantly alter the sEMG signal [34, 35]; and so on. On top of that, one must
notice that in order to guarantee stability of prosthetic control, a pattern a contained
in the training set must represent the corresponding action in all possible conditions
subsequently encountered by the subject. This includes all musculoskeletal configu-
rations requiring a different activation for the same action, such as, e.g., all possible
weights one might want to carry, all possible pronation/supination configurations
of the wrist, all possible activation artifacts due to walking, etc. Often, a prosthetic
control system, which was properly trained in the beginning will miserably fail later
on, because the subject is standing instead of sitting, or because she is carrying a
one-kilogram bottle of water, which was the very purpose of grasping it! (See, e.g.,
[9] for a study in slightly less lab-controlled conditions.)

To make the situation worse, most MLmethods enforce what we call “monolithic
learning”: S is gathered at the beginning of the experiment, then f is created (train-
ing/calibration), then the prediction starts; there is no chance of updating f once the
prediction has begun, unless one stops the prediction, updates S to some new (larger)
training set and trains anew. This is unacceptable since S is potentially unlimited in
size; as well, particularly whenever it is required that f be non-linear (as is mostly

3Notice that from the point of view of the clinician, this term represents a bizarre semantic twist,
since normally it is the human subject whichmust be “trained” to use a prosthesis and not vice-versa!

http://dx.doi.org/10.1007/978-3-319-26706-7_10
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the case in hand prosthetics) training takes a long time and depends on the size of S.
This entails that the pattern a must be gathered correctly once and for all during the
training phase.

In other words, the quality of the control strictly depends on S, and S must
be gathered optimally since the start. As one might guess, this is an essentially
impossible task. We claim that it is mainly for this reason that ML-based prosthetic
control is still unreliable nowadays, after 80years of research, and it is essentially
not yet used in the clinics.

11.2.3 Building a More Detailed Model or Learning More?

Let us call the space of all signals that the prosthetic hardware can gather, the input
space I . In practice, only a “useful” subset IU ⊆ I is what we are interested in;
actually, the task outlined above boils down to building a sensible f restricted to IU .
IU can be either defined by the tasks to be correctly carried out, for instance power
grasp, pinch grip and stretched hand, or by the prosthetic hand at our disposal, say
that we want to control each single motor of the prosthesis. As previously mentioned,
this latter idea offers a different perspective to the synergy-inspired simplification
strategy discussed in Chaps. 8, 10 and 13. It represents the starting point of the
research of the author of the current chapter, see [20] for instance, and stems from
the idea of simultaneous and proportional control [27]. Anyway, f should always
work correctly on IU , where “correctly” is defined by the three items in the previous
subsection, and may ignore what is outside it. Since S is all we have at our disposal
to properly build f , it follows that S must somehow contain IU , or at least a relevant
fraction of it, given the generalization power of f .

Now, if IU is too badly structured, or simply too vast to be captured by S, no
proper f can be built, and there are two possibilities at hand to improve the situation:
either we try and map IU onto the space “captured” by S, or we expand S itself.

The first option means that one must have a model of the physical process being
approximated via f . A remarkable example of such an attempt is the psycho-physical
modeling ofmuscular fatigue and its effect on the sEMG signal (see, e.g., [36]) which
has lead to several systems in which fatigue is detected (e.g., [1]) and somehow
“corrected”. We see this as an instance of the first possibility above: given a desired
action a, IU contains necessarily all of its instances under fatigue, say a′, a′′, etc.
Since it is impossible to gather an example of each of these instances in S, some kind
of preprocessingP is applied to I , with the hope that it will project all fatigue-ridden
instances a′, a′′ and so on, onto a itself. In set-theoretic terms, the operatorP projects
IU back onto I ′

U , where I ′
U is the reduced portion of IU , which has originally been

captured by S.
Our opinion is that the results achieved by such methods are in practice never

guaranteed to make the control system really reliable. The size and extent of the
useful input space IU is essentially unpredictable, and one is never guaranteed that
P , which must be evaluated a priori, will correctly project the entire IU onto I ′

U .

http://dx.doi.org/10.1007/978-3-319-26706-7_8
http://dx.doi.org/10.1007/978-3-319-26706-7_10
http://dx.doi.org/10.1007/978-3-319-26706-7_13
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A model always necessarily represents a limited view of the world, and especially in
the case of a prosthesis, in principle actively worn twelve hours a day, the number of
situations in whichP will fail to reduce IU to what f already knows is fundamentally
unlimited. Think of the action required to carry the egg, namely a precision grip, but
performed while the subject is running, doing something else with the other arm or
lifting the arm to place the object of interest in a cupboard. Compressing all this
information in I ′

U would entail having at our disposal a complete dynamic model of
the musculoskeletal system. This is very likely unfeasible.

The second possibility, and in our opinion the only one left, is that of “learning
more”, that is, that of expanding S until it induces a useful subset I ′

U , which virtually
coincides with IU , that is, it contains all possible instances of each action of interest.
This method seems at first as unfeasible as the previous one, for at least two reasons:

1. the size of S is now extremely large—in principle unlimited;
2. again, the initial gathering of S must take into account all possible future situa-

tions.

Item 1 can only be solved by using an approach that is bounded in space and time,
that is, whose time and space complexity do not depend on the number of samples in
S. To solve Item 2 one possibility is that of gathering S piecewise, “on-demand”, only
whenever a new situation arises. We propose that incremental learning represents a
solution to both problems, having the potential to radically advance the state of the
art in prosthetic control.

11.2.4 Incremental/Interactive Learning

Before we move on to describe our own solution to this problem, that is a work-
ing incremental/interactive learning system for hand prosthetics (Sect. 11.3), let us
try and enumerate a few characteristics such a system must enjoy. By incremental
learning it is hereby meant an adaptive system able to update its own model when-
ever required. That the system must be adaptive stems from the observations of the
previous subsection. In particular we speculate that

• the range of possible situations in which the control systemmust be able to reliably
work is too large for a monolithic system;

• a full model of the human arm/handmusculoskeletal systemwould be too complex
to be of any practical usefulness, and anyway unfeasible for miniaturization on a
prosthetic device.

Requirement #1 The system must be adaptive. It must be possible to calibrate it
specifically for each subject. In other words, it must be possible to build a specific
model for each subject.
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We believe that machine learning is the way ahead. Potentially, each subject needs
a different f to be tailored (“calibrated”, “trained”) for her/him; in particular this
is the case, in the literature found so far, for amputees, who present an extremely
wide range of stumps and remnant muscle structures to the outside world [8]. As the
calibration in this case is represented by the gathering of the training set S, we also
require that

Requirement #2 The system must be quickly calibrated. In this case “quickly”
means, fast enough not to distract the subject from the task (s)he is performing,
without imposing too high a cognitive burden, and without forcing her/him into a
potentially distressing or dangerous activity.

Moreover, to take into account the potentially endless range of different situations
the subject might want to have the system work correctly, and since no machine can
feasibly stand an endless flow of data, we require that

Requirement #3 The system must be bounded in space and time. The model gen-
erated by the system must be independent from the size of the training set S and, in
general, it must not depend on the time it has been active.

Lastly, whenever a new situation “worth learning” appears, we need the system
to be able to update its own model, maintaining the three requirements above. This
is our own definition of incrementality:

Requirement #4 The system must be incremental. The model generated by the
system must be updatable on-the-fly, whenever required, whenever new information
is available and whenever the subject deems that the prediction is no longer reliable
(for instance, due to muscular fatigue).

Notice that this last requirement entails the ability to both “correct” previously
learned patterns, which change their appearance in time (e.g., because of muscle
fatigue), and to learn new patterns the subject deems interesting and that the system
has never seen before. Actually, the two cases are completely equivalent from the
machine learning point of view, given that the right target values are assigned to each
new pattern—old ones in the case of pre-existing patterns found in a new situation,
and brand new ones in the case of totally new patterns.

A systemwhich enforced all four requirements above would constitute a newway
of coupling a human subject and a complex robotic artifact. Adequate speed and
easiness of calibration, united with accuracy of the prediction (a requirement that we
assume as already present and do not even list above, of course) and incrementality,
leads to the possibility for the subject to stop the prediction whenever required;
correct the system’s mistakes or show it a new pattern to be learned; and then go
back to prediction.



180 C. Castellini

11.3 A Practical Method of Incremental Learning

In this section a natural prosthetic control system is described, fulfilling the four
requirements set out in Sect. 11.2. The systemwe describe enforces regression rather
than classification, yielding in general approximated values for theactivations of each
DoF of a prosthesis instead of a label denoting a predefined action. Notice the dif-
ference between the two approaches: whereas classification is essentially a decision
system, imposing artificial hard boundaries on regions of the input space, regression
outputs values in real-valued range, enabling control over an infinite manifold of
configurations (of positions, forces and so on).

In each of the following subsections the system is introduced in successive steps.
Firstly a simple, monolithic linear method, then its non-linear extension and then its
incremental variant. Lastly, a few optimizations are introduced, which improve its
practical usability.

11.3.1 Monolithic Learning in the Linear Case

Machine learning is essentially about building a function approximation starting
from a training set S (supervised, non-parametric learning). From this point of view,
one of the simplest ML approaches is represented by Least-Squares Regression,
which we employ in the regularized form called Ridge Regression (RR from now
on, [24]). Given a training set of N (sample, target) pairs, S = {(xi , yi )}N

i=1, RRbuilds
a linear approximation ŷi = wT xi in a numerically stable way, such as to minimize
the Mean-Squared Error between ŷi and yi , for all pairs in S. We hereby assume that
the input space be represented by d-dimensional feature vectors somehow extracted
from the (possibly preprocessed) signals, x ∈ R

d (this implies that w ∈ R
d , too). We

also assume that y ∈ R. Notice that this does not restrict the possibility of having
many RRmachines in parallel, each one yielding a value for a DoF of the prosthesis.

Let X be a matrix representing S, that is, X ∈ R
N×d is the ordered juxtaposition

of all signal samples collected so far; similarly, the vector y ∈ R
N orderly collects

all target values. Then the RR model w is given by

w = (X T X + λI )−1X T y (11.1)

where I is the identity matrix of order d and λ > 0.
RR is a good candidate as a monolithic learning approach, whenever it can be

safely assumed that there exists a linear relationship between the samples and the
target values. Notice that both the time and space complexity of RR, in turn O(d3 +
Nd2) and O(d2 + Nd), depend on the size of the training set N—this is clearly the
case since the matrix X must be stored somewhere and used, e.g., to evaluate X T X .
However, this dependency is only linear; the dominating terms, d3 and d2, only
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depend on the dimension of the input space. For instance the d3 time complexity is
due to the matrix inversion in the expression of w—but the matrix to be inverted,
(X T X + λI ), is only d × d.

Simple as it is, and limited to the linear case, RR already fulfills Requirement
#1 (adaptivity) and partially fulfills Requirement #2 (fast calibration) in the case N
is not exceedingly large, since it only depends linearly on it. As opposed to that, it
does not not fulfill Requirement #3 (boundedness). Lastly, notice that the model w is
calculated directly from S (that is from X and y) without the need of minimizing a
cost functional—actually, the minimum of the regularized Mean-Squared Error cost
functional

argmin
w

N∑

i=1

(yi − wT xi )
2

is found exactly for the above-mentioned value of w. Being able to directly evaluate
w has the non-negligible advantage of getting rid of local minima, guaranteeing that
w is consistently the optimal model (in the sense of the MSE) given the assumption
of linearity and the training set S.

11.3.2 Extension to the Non-linear Case

In case the assumption of linearity must be lifted, the simplest way of extending
RR is that of employing a linear combination of non-linear basis functions to build
the approximant f , in other words ŷi = wT φ(xi ). This is essentially a variant of
the kernel trick. One very convenient method to build such a theoretically solid
extension is given by Random Fourier Features (RFFs, [48, 49]). As opposed to
other, more popular and established kernel methods such as, e.g., Support Vector
Machines [6, 56], using RFFs one is able to directly compute themappingφ, whereas
in most kernel-based approaches only the product of two applications of φ, that is
k(x, y) = φ(x)φ(y) can be evaluated. This is a direct consequence of the fact that
RFFs represent a finite-dimensional approximation to the Gaussian kernel. The num-
ber of RFFs, D > 0, which must be decided a priori, controls the accuracy of this
approximation and, not incidentally, dominates the computational complexity of
RFFs when applied to RR. In the standard case, as D grows the prediction becomes
more accurate but the computational requirement grows, too—one must find a
trade-off.

Another way to describe RFFs is that they represent a non-linear extension to RR,
which can be “plugged into” it.We now give an informal description of the approach,
suggesting that the reader interested in the mathematical details should consult the
seminal papers [48, 49] as well as [20, 21] for some applications. Here, suffice it to
say that according to Bochner’s Theorem (plus some inessential assumptions), any
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shift-invariant kernel is the expected value of the inner product of two applications
of φω,

k(x, y) = E[φω(x)φω(y)] ≈ φω(x)φω(y)

where ω, a d-dimensional vector of real numbers, is drawn randomly from a prob-
ability distribution corresponding to the kernel being approximated. Intuitively, this
means that any kernel can be approximated by a sort-of finite Fourier expansion of its
own probability distribution; in the case of the Gaussian kernel, k(x, y) = e−γ||x−y||2

where γ > 0, ω can be simply drawn from a normal distribution with zero mean
value and covariance 2γ I , getting to a closed-form expression for φω ,

φω(x) = √
2 cos(ωT x + β)

(additionally, β is drawn from a uniform distribution in [0, 2π].) This particular φω

maps an input vector x to a real number, associated to a particular ω; it is however
standard to create D vectors ωi rather than just one, in order to reduce the variance
associatedwith a randomdistribution. In the end (dropping theω subscript to simplify
the notation), the RFF approach works by non-linearly mapping each and every input
sample x ∈ R

d into a D-dimensional vector:

φ(x) = 1√
D

[cos(ωT
1 x + β1) . . . cos(ωT

Dx + βD)]T

The operator φ induces a D-dimensional space called feature space by projecting
x onto a manifold of RD , namely the surface of the 1

D -radius D-dimensional hyper-
sphere. This particular mapping is guaranteed by Bochner’s theorem to converge to
the Gaussian kernel approach as D grows.

Given then φ, as is standard in kernel-based methods, we hope to be able to
linearly solve the originally non-linear problem by pushing all the linear machinery
(RR in our case) in the feature space. In order to compute the model w, which is now
D-dimensional, one simply plugs φ back into Eq.11.1, obtaining

w = (φ(X)T φ(X) + λI )−1φ(X)T y

where, with a slight abuse of notation, we denote by φ(X) the application of φ to
each row of X ; therefore, φ(X) ∈ R

N×D . This method has several useful properties:

1. it only involves drawing the ωs and βs from two random distributions, once and
for all at the beginning. Given a reasonably large value of D, all “runs” of the
approach will yield comparable results;

2. its time and space complexities are O(D3 + ND2) and O(D2 + ND) analogously
to the linear case; thatmeans that the additional computational burdenwith respect
to RR only depends on the choice of D;
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3. as a consequence, the grid search necessary to tune the two additional hyperpa-
rameters D and γ is in practice very fast; usually D is set at a “reasonable” value
around 500, or anyway to the maximum value that can be afforded, given the
computational constraints.

RFFs, coupled with RR, represent a cheap and surprisingly simple non-linear
approximant; the computational machinery required is limited to algebraic matrix
manipulation plus matrix inversion, provided that in the beginning the ωi ,βi are
generated.

11.3.3 Incrementality

The naive way of making such a method incremental is, of course, to store S and
add to it every new (sample, target) pair that is gathered. This is clearly unacceptable
since in the long run S will make any finite memory bank overflow, let alone the
computational burden required to evaluate w every time, a task which depends on
N . An alternative approach is that of limiting the size of S, keeping it fixed at some
predetermined value Nmax entailing a computationally bearable evaluation of w; this
idea has been explored, e.g., in [17, 29, 40]. In our case, a very convenient solution
is that of considering the arrival of a new (sample, target) pair as a perturbation
to the inverse matrix (X T X + λI )−1. Using a rank-1 update method directly on it,
the explicit inversion can be avoided. In practical terms, it is convenient to redefine
Eq.11.1 as the product of a matrix A and a vector b:

w = (X T X + λI )−1X T y := Ab (11.2)

where A is (X T X + λI )−1 and b is X T y—notice that A already is the inverse of a
matrix. Given a new (sample, target) pair (x′, y′), the updated model w′ = A′b′ is
given by applying the Sherman-Morrison formula [23]:

A′ = A − Ax′x′T AT

1 + x′T Ax′ and b′ = b + x′y′

In practice, one starts by setting A = 1
λ

I and b = 0, so that w = 0; as new (x′, y′)
pairs arrive, the updatedmodelw′ is built. It is easy to prove that themodelw obtained
after, say, N such steps is exactly the same that would have been calculated one-shot,
having at our disposal the whole training set S containing N (sample, target) pairs.
Notice that, as no explicit matrix inversion is required by the above formula, the
computational complexity of the update step is only O(d2) both in time and space.
As a matter of fact, in this case X and y need not be explicitly stored anywhere:
as soon as w′ has been evaluated, there is no further need of keeping (x′, y′). The
Sherman-Morrison formula gives us an effective tool to perform RR incrementally
(iRR), without any danger of exhausting the computational resources of the control
system.
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As a last step, consider the application of RFFs to iRR. Again, the non-linear
mapping operator φ can be simply applied to x wherever it appears in the Sherman-
Morrison formula, finally yielding

A′ = A − Aφ′φ′T AT

1 + φ′T Aφ′ and b′ = b + φ′y′

where we denote by φ′ the application φ(x′) in order to keep the notation light.
Again, one can start by setting A = 1

λ
I (this time I is the identity matrix of order D

rather than d) and b = 0. As one can easily guess, the computational complexity of
the model update step is, in this case, O(D2) both in time and space.

11.3.4 Obtaining Ground Truth

Joining RFFs to iRR (call the new approach iRR-RFF) as described in the previous
subsection constitutes a practical tool for natural prosthetic control, in the sense
outlined by the four Requirements of Sect. 11.2. A detailed summary of this match is
given at the end of this section. Before that, as a last remark, let us notice two further
factors that potentially limit its applicability, in particular to amputated subjects:

1. amputated subjects cannot operate any position/force sensor, therefore the exper-
imenter has the problem of gathering sensible ground truth, i.e., the target values
y in S. One partial solution is that of having them use the remaining limb in a
bilateral fashion [10, 41], but one is never sure how much the two limbs match
each other—bottom line, not even the amputee is!

2. In general, an amputation deprives the subject of sensory feedback (including
visual feedback); as a consequence of this, amputated subjects are usually unable
to perform finely graded tasks. The experimenter cannot sensibly expect, e.g.,
that an amputee imagines flexing the middle finger with 50% of the maximum
voluntary contraction.

Additionally, the initial data gathering phase can be tiresome and stressful for the
subject—it must be kept as short as possible. To counter these problems, a couple
simple strategies can easily be put into place.

Firstly, the usage of goal-directed stimuli in order to have the subject generate
sensible ground truth for the system. In practice, rather than relying on data sampled
from sensors, the experimenter puts the subject in a maximally comfortable situation
and then asks for a specific voluntarymuscle contraction. It can either be the activation
of a single DoF of the prosthesis, such as, e.g., flexing the index finger or the wrist,
as well as enacting a specific type of grasp (power, cylindrical, precision grip, etc.).
In order to foster the production of a sensible input signal, a visual stimulus can be
presented to the subject, such as a 3D-generated model of the missing limb assuming
the required posture; or, the experimenter can vocally instruct the subject while
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showing the required posture with her/his own limb; or even, the stimulus can be
delegated to the prosthesis itself, which can be commanded a specificmovement to be
imitated by the subject. In some cases, even looking at some graphical representation
of the input signal itself (for instance, a radial graph showing the voltages recorded
be the sEMG electrodes) can help. As already remarked, there is no assurance that
the subject will be doing what (s)he is required to do; not even the subject her/himself
can be sure of that. The hope is that the input signal, possibly when stable, faithfully
represents the intent of the subject.

Secondly, coherently with the reduction-oriented approach suggested by the
notion of synergies as widely discussed throughout the book, it is convenient to
only gather minimal and maximal activations and then let the regression machines
interpolate the rest. This makes the data gathering phase shorter and more suitable
for an amputated subject. These two strategies have been successfully employed
together for the first time in [57] in the linear case, where they were collectively
termed “realistic approach”. In a further analysis and practical demonstration [20],
the approach has been proved successful in the non-linear case, too.

To sum up, here is how iRR-RFF matches the four Requirements outlined at
the end of the previous section. As all machine learning approaches, it is adaptive
(Requirement #1), meaning that it builds its own model based upon data gathered by
a human subject engaged in a goal-oriented task. The significant differences found
in the human anatomy of different subjects, as well as the fact that each amputation
produces a very different final layout of muscle remnants, suggest that it will be
a very hard, if not impossible task, to build such a universal system. The hope
is therefore that of making the (machine) adaptation, already called calibration or
training phase, as short as possible; possibly, resilient to the daily donning and doffing
of the prosthesis—this seems a much more doable task, as the electrode layout in a
prosthetic socket never changes along time.

Requirements #2 and #3 are matched by the time complexity of iRR-RFF, as
well as by the easiness of the data gathering if one enforces the two last strategies
outlined above; and by the fact that iRR-RFF is also bounded in space, the only space
requirement being the storage of a D × D matrix. Experimental results (see the next
subsection for more details) reveal that iRR-RFF can be implemented in practice in a
mid-level imperative programming language such as, e.g., C, on standard hardware,
achieving a constant update time in the order ofmagnitude of the tens ofmilliseconds.

Finally, Requirement #4 is exactly realized by the usage of a rank-1 matrix update
technique—in the case outlined above, the Sherman-Morrison formula. It is worth
remarking once again that incrementality in this case still yields the theoretically
optimal model that would have been achieved using the same data in a batch fashion.
iRR-RFF can therefore serve as the basis for a theoretically well-founded, fast, incre-
mental intent gathering system. The next subsection describes two of its practical
applications.



186 C. Castellini

11.3.5 Applications

11.3.5.1 The Ultrapiano/Ultraharmonium

Using an instrumented glove and a commercial ultrasound machine, in [12] it was
first proved that first-order spatial averages of the gray levels in ultrasound images
of the human forearm are linearly related to the metacarpo-phalangeal angles, i.e.,
the angles formed by the first phalanx of the fingers with the palm. (A deeper analy-
sis appears in [13].) This unexpected phenomenon was first exploited in [57] to
outline and practically show that the above-mentioned averages could be used as
the input space to a system enforcing iRR. The update times were found to be on
average 16.5ms, while the prediction without update took only 3.7ms; these times
were ascertained to be independent of the number of samples gathered so far, and
compatible with a cinema-quality visualization of a 3D hand model on a screen (30
frames per second). This paved the way to two further applications. The real-time
prediction of finger angles and forces, coupled to the detection of the position of the
wrist obtained via a standard magnetic tracker, was transmitted to a virtual-reality
system showing in turn a piano [51] and a harmonium [11]. The system was tested
on several intact subjects revealing a satisfactory level of immersion in the virtual
world. The usage of ultrasound imaging as a HMI for the disabled is actually gain-
ing momentum and its perspectives have been widely discussed in [7]. Figure11.1
shows, and quickly describes, the setup used in [11].

11.3.5.2 Teleoperated Manipulation with a Prosthesis

In [20] an i-LIMB Ultra hand prosthesis by Touch Bionics4 was used to manipulate,
pick and place and carry a few everyday-life objects in a teleoperated scenario.
Compared to the Pisa/IIT SoftHand described inChap.8 and tele-operated leveraging
strategies discussed in Chap.10, the i-LIMB Ultra has more than one DoA, and this
justifies the synergy-inspired approach to copewith its control through the techniques
described in the current chapter. Teleoperation in this case is used as a proxy for the
real-life application of a prosthesis to an amputee: it constitutes a simpler case since
all problems related to the weights to be carried can be neglected (as they are taken
care of by the slave platform). As in the case outlined above, a magnetic tracker
was used to track the position of the human wrist and control the position of the
slave’s end-effector using a high-stiffness impedance controller [43] on the humanoid
platform TORO. At the same time, 10 standard sEMG electrodes by Ottobock5 were
used to gather the muscle activity of the forearm of the master. Using iRR-RFF, the
sEMG signal was converted into torque (current) commands for the fivemotors of the
prosthesis, enforcing one of four predefined grasp schemes. The offline experiment

4See www.touchbionics.com.
5Namely, MyoBock 13E200, see www.ottobock.com.

http://dx.doi.org/10.1007/978-3-319-26706-7_8
http://dx.doi.org/10.1007/978-3-319-26706-7_10
www.touchbionics.com
www.ottobock.com
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Fig. 11.1 The setup used in [11]. A magnetic tracker and an ultrasound transducer are fixed on the
subject’s forearm; an HMI based upon iRR converts local spatial features of the ultrasound images
to finger forces (screen on the right); lastly, finger forces and wrist position are used in a virtual
setup (screen on the left) to play a piano

performed in the paper clearly showed that non-linear, incremental regression was
required to keep the prediction error at a reasonable level (see Fig. 11.2, reproduced
from [20]).

In the demonstration, a success rate of 75–95%was obtained while grasping, lift-
ing, picking up and placing objects such as a bottle, a ball, a credit card, independent
of wide ranges of hand motion and wrist rotation, and related high speeds.

11.4 Discussion

Introducing incrementality in a machine-learning-based prosthetic control system
represents in our opinion a very beneficial improvement, at least in two senses:

1. it potentially solves the problem of predicting all possible situations in which an
action will be performed by introducing on-demand model update;

2. it realizes a virtuous loop between man and machine, exploiting the phenomenon
of reciprocal learning.
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Fig. 11.2 Performance obtained by RR (“Linear RR”), Kernel Ridge Regression (“KRR”) and
iRR-RFF with D = 1000 (“iRFFRR1000”) while predicting five voluntary muscle contractions
using sEMG. The possibility of updating the models amidst the prediction (trials 9 and 10 of each
session and day) keeps the performance of iRR-RFF well above both RR, which is linear, and KRR,
which is non-linear but also not incremental. Reproduced from [20]

Notice that, while the first claim is being proved in the academic world in these
years, the second is awhole unexplored territory so far. That newmuscle synergies (in
the broad definition used in this chapter) can be learned, retained over the weeks and
then re-used whenever required is the subject of a very exciting line of research (see,
e.g., [25, 46]); aswell, there are hints that the very usage of a prosthesis induces better
signals for its own control [45], which seems to point in the direction of goal-directed
stimuli claimed here in Sect. 11.3.

What the best “reciprocal training” strategy is; how to best help the subject use
the control system; what kind of games to employ; these questions are still open
and indeed fascinating. This research is also motivated by the remarkable fact that
improving the embodiment of a prosthesis seems to diminish phantom-limb pain [42]
and amend abnormal phantom sensations. In any case, interactive learning would
represent a crucial form of help to reach this goal.

11.4.1 On the Capacity of Incremental Learning

There seems to be a paradox in the claim that a good control system (as defined in
the very chapter) must be bounded in space: such a system is limited and it therefore
seems that eventually, as IU (and accordingly, S) grows, the control function f won’t
be able to accommodate all required patterns. This is indeed true and boils down to
the question of how “large” the learningmachine should be; unfortunately, to the best
of our knowledge, so far no machine learning method is known that can change its
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own capacity (in the sense of the Vapnik-Chervonenkis dimension, see [56, 59]) and
there is no substantial way of determining this a priori. To stay with our own example
of iRR-RFF: how large a D is required? This is a crucial question since D cannot be
sensibly altered after it has been chosen. So far the answer to this question can only
be empirical: choose D as large as possible given the hardware at disposal; but a
more sensible way to determine the size of a model is a very desirable achievement,
and a very interesting research question.

11.4.2 Relation to Muscle Synergies as Traditionally Defined

At the time of writing we are not sure whether and how the traditional concept of
task-based muscle synergy can be used in the control of dexterous prostheses. Early
experiments [60] indicate that such a control is indeed possible, but will inevitably
be limited to the combinations of a few synergies. If such a control can be extended
to more complex control manifolds, such as, e.g., those required to play a keyboard,
is unclear; it is as well unclear whether or not even an extended control based upon
muscle synergies would not look quite like the one described in this chapter. All in
all, in order to improve one’s own dexterity, a subject must learn (think of the painful
process required, e.g., to proficiently play tennis!), and that is probably tantamount to
usingmanymore synergies than those required for the classical basic set of everyday-
life tasks. Here too, the question is open and fascinating.

11.5 Conclusions

The ideal (hand) prosthesis is like a pair of glasses: you wear it in the morning,
it works seamlessly all day long, you take it off in the evening, and then wear it
again the morning after.6 Clearly, none of the control systems currently available
in the academy, let alone in the clinics, can even hope to enforce this. One possible
solution is that of simplifying the prosthesis itself: for example, the Pisa/IIT SoftHand
(Chap.8) reduces the complexity of controlling many DoFs through an innovative
designwith only oneDoA—thismotivates theminimalistic tele-impedance approach
described in Chap.10. On the other hand, most of the current prosthetic systems have
several actuators to be controlled, and in this case right now the control system is
the bottleneck. For instance, the i-LIMB Ultra Revolution by Touch Bionics has six
independent motors, as well as Vincent System’sVincent Hand Evolution2; Steeper’s
BeBionics hasfive,while theMichelangelohand/wrist systemhas four; andno system
so far can control these DoFs independently. That means that there is more dexterity

6This inspirational metaphor is due to Peter J. Kyberd in a personal communication with the author
of this chapter.

http://dx.doi.org/10.1007/978-3-319-26706-7_8
http://dx.doi.org/10.1007/978-3-319-26706-7_10
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available than what any patient can hope to use. We also believe that machine-
learning-based control is the way ahead, but its reliability is still very questionable.

In this chapter we have argued that incremental/interactive learning would make
prosthetic control radically more reliable. In one sentence: give the subjects the
chance to teach their own control system what is needed. We claim that this idea
could in the near future represent a leap forward.
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