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Abstract In previous chapters, human hand and arm kinematics have been analyzed
through a synergstic approach and the underlying concepts were used to design
robotic systems and devise simplified control algorithms. On the other hand, it is
well-known that synergies can be studied also at a muscular level as a coordinated
activation of multiple muscles acting as a single unit to generate different movements.
As a result, muscular activations, quantified through Electromyography (EMG) sig-
nals can be then processed and used as direct inputs to external devices with a large
number of DoFs. In this chapter, we present a minimalistic approach based on tele-
impedance control, where EMGs from only one pair of antagonistic muscle pair
are used to map the users postural and stiffness references to the synergy-driven
anthropomorphic robotic hand, described in Chap. 7. In this direction, we first pro-
vide an overview of the teleimpedance control concept which forms the basis for
the development of the hand controller. Eventually, experimental results evaluate the
effectiveness of the teleimpedance control concept in execution of the tasks which
require significant dynamics variation or are executed in remote environments with
dynamic uncertainties.
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10.1 Teleimpedance Control

The need to execute tasks in unstructured or hostile environments has lead to the
development of several Master-Slave teleoperation interfaces, commonly recognized
by two classes: unilateral, position-based and bilateral, force-reflecting teleoperation
systems. The most basic teleoperation interface receives position commands from the
master and replicates them on the slave side in an open-loop fashion. Despite the sta-
bility and simplicity of such systems, generation of high interaction forces between
the rigid manipulator’s end-effector and the uncertain environment has severely lim-
ited their application in real-world scenarios.

Later generations of teleoperation interfaces thus investigated new techniques to
provide the master with information about the interaction forces between the manip-
ulator and the remote environment. Although it has been demonstrated that force-
reflecting teleoperation interfaces outperform the unilateral ones [26, 27], several
drawbacks such as imposed additional costs (due to the need for force measurement
devices), transparency, or even stability issues (due to the latencies in the commu-
nication channel between the master and slave robot) reduce the efficiency of such
systems [18, 31, 41]. In fact, despite the continuous advancement in hardware design
and software architecture of the bilateral teleoperation interfaces, still a large class
of tasks (e.g. drilling and chipping) which are intuitively executed by humans cannot
be effectively performed.

Indeed, humans are able to establish a reliable contact between the limb endpoint
and the object/environment by generating task-efficient restoring forces in response
to the environmental displacements [23, 24]. This behavior arises from effective
modulation of the task impedance which appears to be carried out using different
techniques. One way to achieve this is by the co-contraction of muscle groups acting
on the limb. Alternatively, it is performed through adaptations in the sensitivity of
reflex feedback [5] or selective control of the limb configuration [43].

To realize a similar interaction performance in a teleoperation setup, firstly, rigid
slave robots must be replaced by compliant ones to enable task impedance mod-
ulations. In this direction, drawing inspiration from the compliant structure of the
human limb, the soft robotics design (either by torque control techniques [7, 9] or
using passively adaptive joints [10, 30, 42] has provided the possibility of teleop-
erating compliant slave robots to accomplish a task in an uncertain environment.
However, the second, and probably bigger, issue relates to the planning of the vari-
able impedance slave robot to accomplish the task.

To further address this issue, the concept of teleimpedance control [2], as an alter-
native approach to the force-reflecting teleoperation has been proposed. In teleim-
pedance, a compound reference command which includes the desired motion and
impedance profiles of the operator, is obtained using a suitable Human-Machine
Interface (HMI) and realized by a compliant slave robot in real-time. Therefore,
from one side, the need for an appropriate and real-time modeling/measurement of
the operator’s stiffness and position trajectories is highlighted. On the other hand,
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robust and effective impedance control techniques must be implemented to replicate
the operator’s reference commands on the slave robot in real-time.

Concerning the modeling of the master’s impedance trajectories, in our studies,
electromyography (EMG) signals, which are formed by superimposed patterns of
activations of involved motor units, are considered as the process input. This is due
to the high correlations between the muscle activations, generated muscular forces
and the consequent joint torques. Furthermore, easy accessibility, fast adaptivity and
stability of EMG signals are other advantages which motivated our choice of adopting
EMGs in the real-time control of our teleimpedance system. An alternative approach
to teleimpedance for processing multiple EMG signals through machine learning as
a direct input to external devices with a large numebr of DoFs is presented in the
next chapter (Chap. 11).

EMGs can also be used to provide information on the limb posture, which has
been used e.g. for classification of hand gestures [13, 20] or arm movements [44].
However, since EMGs directly relate to muscle forces and not limb configurations,
their application to extract position references has to be indirect. A classical way to
achieve this is to relate muscle forces to the limb postures using inverse dynamics
methods [17]. The problem becomes even more intricate once the external forces
(e.g. object mass) act on the master’s limb which would affect the position estimation
accuracy. Therefore, we tend to maximize the use of the external tracking systems
to extract the position profile of the master, and use EMGs to estimate the task-
appropriate stiffness profiles (the static component of an impedance profile) in real-
time.

While on the slave side, relying on the task requirements and the slave robot’s
compliant structure, robust Cartesian or joint impedance control techniques can be
implemented to realize the operator’s reference commands. For instance, in [6],
some techniques for the Cartesian impedance control of torque controlled robots are
provided. Additionally, in [3, 8], the role of robot configuration in Cartesian stiffness
control is discussed, particularly for robots with passive elastic joints or the ones in
which not enough degrees of freedom are available to realize a full desired Cartesian
stiffness matrix.

In this chapter, we review some of the work done within The Hand Embodied
(THE) project regarding teleimpedance control of a robotic arm and an anthropomor-
phic robotic hand. In particular, in Sect. 10.2.1, a 3D model of the human arm endpoint
force/stiffness will be introduced. Consequently, a Cartesian stiffness controller is
developed to replicate the estimated stiffness profile and tracked wrist trajectories of
the master by a 7-DoF torque controlled robot in real-time. Experimental results are
provided to evaluate the efficiency of the proposed algorithm in rendering a desired
interaction performance while performing dynamic tasks or the ones executed by the
slave robot in a remote uncertain environment.

Meanwhile, in Sect. 10.2.2, teleimpedance control of the anthropomorphic and
synergy-driven robotic hand, described in Sect. 6, is studied. In this setup, the hand
postural and synergy reference commands (as defined in Chaps. 2, 3 and 5) are
estimated using an antagonistic pair of muscles on the forearm. Two tactile interfaces,
namely mechano- and vibrotactile, are developed to provide the user with some
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information about the grasping forces and the environment/object’s texture. Grasp
robustness and improved interaction performance using teleimpedance control are
evaluated through grasping experiments.1

10.2 Application

10.2.1 Teleimpedance Control of a Robotic Arm

This section reviews some of the work done in [1, 2] aimed at remote impedance
control of a 7-DoF torque controlled robot arm in real-time. Here, the compound
reference command consists of master’s wrist position and stiffness profiles. Corre-
sponding to the high priority given in teleoperation interfaces to position accuracy,
our teleimpedance interface uses accurate measurement of arm position references
through an optical tracking system. Meanwhile, we acquire and process eight EMG
channels to estimate the 3D arm endpoint stiffness2 profile in real-time, as we will
elaborate in the following section.

10.2.1.1 Arm Endpoint Impedance Modeling in 3D

It has been demonstrated that variations in viscoelastic components of the human arm
endpoint strongly correlate with the patterns of activations of the involved muscles
in task execution [19, 36, 40]. While this dependency appears to be highly nonlinear
in general (due to the nonlinear nature of the EMG-to-Force mapping [32] and the
joint-angle dependency of the moment arms), it can be safely and almost accurately
implemented by a linear mapping in a constant configuration of the arm [19, 40].
To that end, the overall mapping between EMG measurements and consequent arm
endpoint force and stiffness variations in Cartesian coordination in a constant joint
configuration of the arm can be described by

[
F
σ

]
=

[
TF

Tσ

]
P +

[
0
σ0

]
, (10.1)

where F, σ ∈ R
3 are the endpoint force and stiffness vectors, respectively, σ0 is the

intrinsic stiffness in relaxed conditions. P ∈ R
n is the vector of muscular activities

of the n considered muscles, as obtained from preprocessing EMG signals which

1Teleimpedance control concept has also been used for assistive control of a knee exoskeleton
device [28, 29]. The proposed controller captures the user’s intent to generate task-related assistive
torques by means of the exoskeleton while performing daily tasks.
2It is important to note here that this model only takes into account the effect of muscular co-
contractions in endpoint stiffness modulations. As regards the role of arm configuration in endpoint
stiffness geometry in teleimpedance control, readers may refer to [3].
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includes high-pass filtering, full-rectification, low-pass filtering and normalization
stages.

In an ideal condition, force (TF ) and stiffness (Tσ ) mappings can be experimen-
tally identified through a rich and varied set of data samples both for force and
stiffness measurements. While the first measurement can be easily and accurately
carried out using 6 axis force/torque sensors, accurate identification of the EMG-to-
stiffness map Tσ is more difficult [36]. The reason for that lies in the difficulty of the
endpoint stiffness measurements which is commonly and traditionally carried out by
perturbing the wrist and probing the restoring forces [35].

To address this problem, we identify a basis for Tσ using straightforward and
accurate force measurements, and acquire a smaller set of the endpoint stiffness data
to calibrate this mapping. This is achieved by taking into account that, in general,
end-point impedance has three components, depending on posture, force, and co-
contraction, respectively. While the first two components may be large and even
dominating [33] in a large enough range of variations, an ample literature reports
the existence and independence of co-contraction contribution to stiffness: e.g.
[5, 16, 34]. In addition, in our experiments, the master will perform the tasks in a
fixed arm configuration with no significant generation of the endpoint force. There-
fore, we consider a decomposition of the space of muscular activations P � P as
the direct sum of a force-generating subspace PF and the force-map null space
Pk = ker{TF }, i.e.

P = PF ⊕ Pk .

By choosing a right-inverse T R
F of TF , i.e. any n × 3 matrix3 such that TF T R

F = I ,
we also affix a system of coordinates to these subspaces. In these coordinates, we can
decompose the vector of muscular activations P in a force-generating component
PF and a null-space component Pk as

P = T R
F TF P + (

I − T R
F TF

)
P

def= PF + Pk .

The null space component Pk contains information on the co-contraction component
of stiffness generation. It is convenient to give an alternative description of Pk as
follows. Let NF denote a basis matrix for the kernel of TF , and let λ = N+

F Pk = Q P

be the coordinates in that basis of Pk , where Q
def= N+

F

(
I − T R

F TF
)
. Hence the model

of cartesian stiffness regulation through co-contraction is written as

σ − σ0 = Mσ Q P (10.2)

where Mσ ∈ R
3×5 is a mapping from the kernel of TF (the set of muscle activations

that do not change endpoint force, in the selected coordinate frame) to stiffness

3The existence of a right inverse is guaranteed by the fact that in nonsingular configurations TF is
full row-rank. Because n > 3, there exist infinite right-inverses: a particular choice is for instance
T +

F = T T
F (TF T T

F )−1, i.e. the pseudoinverse of TF .



156 A. Ajoudani et al.

variations. The map Mσ can then be identified and calibrated once, based on direct
measurements of human arm end point stiffness, at different coactivation levels as
described in the following section.

10.2.1.2 Stiffness Model Calibration-Identification

Identification of Mσ is carried out through two sets of experiments. The first set
concerns the identification of the EMG-to-Force mapping and is performed by the
measurement of endpoint forces and eight channel EMG electrodes (see muscle
names in Table 10.1). In this set, a KUKA LWR was serving only as a support
structure for a 6 axis F/T sensor (ATI Inc.) mounted at endpoint of the arm (see
Fig. 10.1). The subject was asked to apply constant forces of ±5N, ±10N, ±15N
and ±20N, respectively, along 6 directions (±x , ±y and ±z) while holding the handle
(isometric conditions). A graph with three colored bars on the screen was used to
provide the user with the information about the measured force components. Each
trial was 60 s long. Data from the first 10 s were discarded to eliminate transient force
fluctuations. For each direction and force level, 4 trials were executed and recorded
(for an overall number of 4 × 3 × 2 × 3 trials) in EMG-to-force map identification
experiments. Consequently, the mapping (TF ) was identified by means of a least-
squared-error algorithm, and a basis of its nullspace and the projector matrix Q were
computed.

In the second set, with the purpose of off-line calibration of the EMG-to-Stiffness
mapping, the subject’s arm endpoint impedance profile was measured in different
levels of muscular co-contraction. Following Perreault et al. [38], continuous sto-
chastic perturbations with the maximum peak-to-peak value of 20 mm were applied
to the subject’s wrist through the handle in x, y and z directions (see [2] for details).
A KUKA robot with fast research interface [39] was programmed and controlled in
position to apply the desired perturbation profile. Subject’s wrist position and restor-
ing force profiles were synchronously measured using an optical tracking system
(NaturalPoint, Inc.) and a FT sensor, respectively. A rough co-contraction indicator
was graphically shown consisting of a bar of length proportional to the norm |P| of
the vector of muscle activations. Four levels of stiffness reference were provided in

Table 10.1 Muscles used for EMG measurements

Flexors Extensors

Monoarticular Biarticular Monoarticular Biarticular

Deltoid clavicular part
(DELC)

Biceps long head
(BILH)

Deltoid scapular part
(DELS)

Triceps long head
(TRIO)

Pectoralis major
clavicular part (PMJC)

Triceps lateral head
(TRIA)

Brachioradialis
(BRAD)

Triceps medial head
(TRIM)
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Fig. 10.1 Experimental
setup used for the first
calibration experiments.
Subject applies constant
forces in 6 directions while
holding the handle attached
to an idle spherical joint

Position
Markers

EMG
Electrodes

Spherical
Joint

FT Sensor

different trials, where the first level (minimum muscle activity), was aimed at the
identification of the intrinsic stiffness profile σ0.

Identification of the endpoint impedance profiles in different levels |P| consisted
of two non-parametric and parametric identification procedures. Firstly, multiple-
output (MIMO) dynamics of the endpoint impedance was decomposed into the linear
subsystems associating each input to each output. Based on this assumption, and
indicating with Fx ( f ), Fy( f ) and Fz( f ) the Fourier transforms of the endpoint
force along the axes of the Cartesian reference frame, with x( f ), y( f ) and z( f ) the
transforms of the human endpoint displacements, the dynamic relation between the
displacements and force variations can be described by

⎡
⎣Fx ( f )

Fy( f )

Fz( f )

⎤
⎦ =

⎡
⎣Gxx ( f ) Gxy( f ) Gxz( f )

G yx ( f ) G yy( f ) G yz( f )

Gzx ( f ) Gzy( f ) Gzz( f )

⎤
⎦

⎡
⎣x( f )

y( f )

z( f )

⎤
⎦ (10.3)

A non-parametric algorithm was adopted to identify the empirical transfer func-
tion of each of the SISO subsystems described above in frequency domain (MAT-
LAB, The MathWorks Inc.). Consequently, we adopted a parametric, second order,
linear model of each impedance transfer function of the type

Gi j (s) = Ii j s
2 + Bi j s + Ki j , s = 2π f

√−1 (10.4)

where I , B and K denote the endpoint inertia, viscosity and stiffness matrices,
respectively. The parameters of the second order linear model were identified based
on least squares algorithm in frequency range from 0 to 10 Hz.

Eventually, experimental EMG vectors P were mapped in the EMG-to-force map
nullspace through the previously computed projector matrix Q. The elements of the
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Fig. 10.2 Non-parametric (solid lines) and parametric second order (dotted lines) transfer functions
of SISO impedance subsystems obtained from stochastic perturbations

stiffness matrix K were used as estimates for the components of σ , and the map Mσ

was estimated by applying a least-squared-error method to (10.2).
The strength of linear dependency between measured force signals and estimates

via the least-squared-error identification of the components of TF was evaluated by
Pearson’s product-moment correlation coefficient. The coefficient is defined as

Rk =
∑

f̂k fk −
∑

f̂k
∑

fk

N√
(
∑

fk
2 − (

∑
fk )2

N )(
∑

f̂ 2
k − (

∑
f̂k )2

N )

, k = x, y, z (10.5)

where fk and f̂k are measured and estimated values of force in the Cartesian direc-
tions, and N is the number of pairs of data. The fit was consistently good in the three
directions, resulting in average R2 = 81 %.

Figure 10.2 demonstrates the results of non-parametric and second order model
identification of the hand impedance transfer functions in the frequency range from
0 to 10 Hz, according to methods described above. The second order parametric
impedance models presented 69.7 % of the data variance across all directions in
minimum muscular activity trials in the frequency range of 0–10 Hz.

Once the EMG-to-stiffness mapping was calibrated, it was used for the real-
time estimation of the 3D endpoint stiffness matrix of the operator using EMG
measurements of the muscles as illustrated in Table 10.1.
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10.2.1.3 Experiments

The efficiency of the teleimpedance approach in rendering a desired interaction per-
formance while executing tasks with dynamic requirements was evaluated in a ball
reception task. In this experiment, two identical rigid balls (m = 0.92 kg, radius
52.5 mm) were suspended at the same distance above the human and robotic arm
endpoints. The subject was prepared to receive the ball and instructed to hold his
arm in a posture very close to that used during calibration experiments. The slave
arm position, under gravity compensation, was corresponding.

The subject was instructed to receive the ball and stabilize its position in a natural
way. The position of the slave endpoint was controlled along the master’s wrist
trajectory while executing the task, whereas the Cartesian stiffness values were
commanded and controlled in three different approaches: In the first approach, the
Cartesian stiffness of the slave endpoint was set to a relatively high, constant level
(K = [1200, 1200, 1200] N/m) throughout the task. The second one was analogous,
with low constant stiffness values (K = [120, 120, 120] N/m). In the third approach,
variable impedance was implemented in three directions, as estimated from the stiff-
ness model. Damping coefficient in all experiments was set to a constant value of
0.7 N.s/m.

The experimental setup and information flow are shown in Fig. 10.3. A body
marker was attached to the wrist aiming at reference trajectory calculation for robot
motion. The robot base frame was considered as the overall reference frame for other
frames (tracking system and FT sensor). The position path of the human wrist was
measured, low-pass filtered (cutoff 15 Hz) and used for trajectory planning. At the
same time, EMG signals were acquired from the master arm and used to evaluate
its endpoint stiffness based on the model and calibration described in the previous
section. All processing and control algorithms were performed in real-time in C++
environment. KUKA interface was similar to the ones explained in identification
trials.

10.2.1.4 Experimental Results

The measured forces at the endpoint of the slave robotic arm while executing the
task in the three stiffness control modes (constantly high, constantly low, and teleim-
pedance) are reported in Fig. 10.4, while the corresponding deviation errors from
the reference equilibrium position are in Fig. 10.5. The regulation of the human arm
muscle activations and resulting endpoint stiffness modifications during the catching
experiment are shown in Fig. 10.6. Increased stiffness at the time of impact and its
progressive decrease afterward are the results of explicit muscular activity regulation
by the subject.

As expected, the stiffer the arm, the smaller the deviation, as seen in the experimen-
tal results under constant high stiffness (Fig. 10.5, left). The tradeoff for the accuracy
and reduced deviation from equilibrium position with high values of endpoint stiff-
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Fig. 10.3 Experimental setup of the ball-catching experiments. The slave KUKA LWR arm, EMG
electrodes, position tracking markers and F/T sensor are shown
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Fig. 10.4 Measured force values in z direction during the task with the slave robotic arm under
constantly high, constantly low, and teleimpedance stiffness control
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Fig. 10.6 Fully rectified
eight channel raw EMGs
(upper plot) and estimated
and mapped endpoint
stiffness (lower plot) in
real-time for ball-reception
task
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Table 10.2 Performance indexes

Lift off index (LOI)
∫
Δt | fz − fw|dt

Position error index (PEI) maxt∈Δt |ez |(t)
Damping ratio index (DRI) 1√

1+
(

2π
δ

)2
δ = log

(
fz p,1
fz p,2

)

Bouncing time index (BTI) ΣΔtB if fz ≥ 0

ness is the occurrence of bouncing: indeed, the second force peak (at t ≈ 5.26 s) in
the stiff case (Fig. 10.4, left) shows a second impact of the ball (see also Extension 1).

To obtain a more stable contact is to reduce the endpoint stiffness values; however,
using constantly low stiffness directly affects the position deviation, which may grow
to very large, possibly unacceptable values (Fig. 10.5, middle). Another drawback
of such compliant control is the insufficiency of generated torques for repositioning
the ball to its equilibrium even after transient end.

The transient behavior of the system under teleimpedance appears to benefit from
the active control of stiffness, increasing at the very first moment of impact (from
t ≈ 2.3 s to t ≈ 2.4 s), leading to a reduced deviation from reference equilibrium
position. Also, the bouncing phenomenon appears to be avoided due to the subsequent
stiffness reduction phase (between t ≈ 2.4 s to t ≈ 2.7 s, see Fig. 10.6). This behavior
is in accordance with previous studies which have shown the capabilities of the
human body to minimize soft-tissue vibrations and impact transitions by means of
increased damping or decreased stiffness (modified resonance frequency) within
involved tissues (see e.g. [45]). In addition, other behavioral studies demonstrated an
increase of cocontraction levels in human arm while performing tasks which need
quick torque generations and/or to cancel components of torques orthogonal to the
desired direction [25].

A comparative performance analysis of the three control methods was done by
defining different indexes, which are summarized in Table 10.2. LOI is computed as
the integral of the difference between the vertical component of wrist force Fz and its
steady-state value (i.e., the hand plus ball weight Fw), where Δt is the time interval
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duration between the first impact and steady stabilization. A high value of the “lift off
index” LOI indicates a reception with multiple bouncing and/or long underdamped
ball trajectories.

The second index is the maximum deviation from the equilibrium position in z
direction at steady state. As a third index, we consider an estimate of the damping
ratio of the bouncing phenomenon, experimentally estimated (see e.g. [21]) using
the logarithmic decrement between the first and second force peaks. Fourth and
last, the “bouncing time index” BTI was introduced as the duration of the interval
during which contact between the ball and robot’s end effector is completely lost. The
value is calculated by summing the intervals ΔtB along which fz is zero (complete
disconnection) or positive (as result of acceleration of bowl) after the first impact.

Figure 10.7 shows the values obtained in experiments for the four indices in the
three different stiffness regulation modes. Teleimpedance control appears to strike
a good compromise among the two extremes, consistently scoring close to the best
performance obtained by either of the two constant settings, thus enabling the human
ability to to be effectively transferred to the slave arm.

10.2.2 Teleimpedance Control of a Robotic Hand

Following the implementation of teleimpedance control for teleoperation of a robotic
arm described above, we began to explore translating this approach to the control
of a prosthetic hand. Although using a prosthesis is not typically thought of as a
teleoperation scenario, the user is driving a terminal device in real-time often with
only visual feedback as guidance. The control of these devices is suboptimal and
research strategies including incorporating feedback, machine learning, and periph-
eral technology are being investigated. This section reviews the initial steps towards
implementing a teleimpedance prosthetic controller [22] and further refinement [4]
of this technique.
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10.2.2.1 Pisa/IIT SoftHand

The Pisa/IIT SoftHand was developed through a collaboration between the Univer-
sity of Pisa and the Istituto Italiano di Tecnologia. The SoftHand was used in the
experiments presented below and will be described here in brief. For a more detailed
description, please see [14] and Chap. 8.

The goal of the SoftHand was to design and build a robotic hand that is highly
functional yet simple and robust. This was achieved by combining the soft syner-
gies approach [11] with underactuation [12]. The former uses human hand grasping
synergies as a reference position for a virtual hand. The virtual hand position or
stiffness profile connecting the virtual and real hands can thus be varied to control
the interaction forces between the hand and the environment. The latter employs
fewer actuators than available degrees of freedom, thus lowering cost, weight, and
complexity of the device. Underactuation also imparts a degree of adaptability to
the hand, thus the combination of these techniques was termed “adaptive synergies.”
Additionally, to make the hand more robust and safer in human-robot interaction
scenarios, the hand was designed with soft robotics principles in mind: the fingers
can be bent, twisted, struck, etc., and will deform out of the way and then return
to their original conformation, protecting both the hand and the environment from
damage in the event of a collision. The SoftHand is anthropomorphic and contains
a single motor. This motor pulls a tendon that winds through the fingers and thumb
to simultaneously flex and abduct the fingers. To enable testing of the hand with
non-amputee subjects, a forearm adapter was employed, see Fig. 10.8.

Fingertip
Accelerometers

Forearm
Support

Wrist Electronics Boxx

x

Fig. 10.8 SoftHand equipped with the able-bodied adapter (forearm support) and fingertip
accelerometers

http://dx.doi.org/10.1007/978-3-319-26706-7_8
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10.2.2.2 Initial Evaluation

A pilot experiment is presented in [22]. In this study, we implemented a standard pro-
portional and a novel impedance controller with and without vibrotactile feedback
using MATLAB Simulink and the Real-Time Windows Target (Mathworks, Inc.).
The main finger flexor and extensor muscles (the flexor digitorum superficialis (FDS)
and extensor digitorum communis (EDC), respectively) were sampled using surface
electromyography (EMG) electrodes. With both controllers, the reference position
of the hand was proportional to EMG amplitude. With impedance, the stiffness with
which the proportional control was applied was based on the average of the flexor
and extensor EMG signals. Both control modes were also tested with vibrotactile
feedback applied using a small (7 × 2 mm) eccentric mass motor (Precision Micro-
drives Ltd.). The amplitude and frequency of the feedback was proportional to the
grasping force. When an object is grasped, interaction forces occur as the reference
position moves inside the object. In this way, the error between the reference and
measured position can be used to estimate the grasping force.

In testing, each subject attempted to grasp four everyday objects of varied size and
weight (water bottle, screwdriver, spray bottle, and ball; see Table 10.3) with each type
of control mode. In total, four controls modes were tested: standard (proportional),
impedance, vibrotactile (standard with feedback), and vibrotactile-impedance (VI).
Each grasp was attempted three times for each of the objects and control modes,
resulting in 48 grasps per subject. Mode and grasp order was fixed, but subjects were
allowed a brief familiarization period in each condition to minimize learning effects.
After each condition, subjects were also asked to evaluate the amount of physical
and mental exertion required using a 5-point Likert scale. After all conditions were
completed, subjects were also asked whether each feature (impedance and feedback)
made the hand easier to use and whether the combination made the hand easier to use.

While only a pilot experiment, results suggested using teleimpedance in pros-
thetic control could provide an improvement in control of the prosthetic hand and
subsequently the user’s experience. Grasp success rate was above 90 % in all con-
ditions, implying that the SoftHand was generally easy to control with minimal
training and its conformal grasp was effective. Figure 10.9 shows the quantitative
EMG results including duration of EMG activity (left) and cumulative and aver-
age EMG amplitudes (right). Subjects spent the longest time above minimum EMG
thresholds in standard mode, less time with impedance and vibrotactile modes, and
finally the shortest time in VI mode. Cumulative EMG was used as a proxy for phys-
ical exertion. This was highest again in standard mode, lower in vibrotactile, and
lowest in impedance and VI modes. Average EMG amplitudes were similar across

Table 10.3 Dimensions and weights of test objects

Object Water bottle Screwdriver Spray bottle Ball

Dims (mm) 307 × 55 × 55 294 × 25 × 25 275 × 84 × 47 94 × 94 × 94

Weight (g) 250 50 500 500
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(a) (b)

Fig. 10.9 Time spent above threshold averaged across subjects (top). Average FDS EMG amplitude
(bottom, bars) and cumulative EMG (bottom, line). a Duration of EMG activity, b EMG activity

the conditions; the variations showed that subjects had a tendency to contract more
with feedback in either control modality, and less in impedance mode. Because the
motor used to provide feedback had low resolution, it is possible subjects produced
larger contractions to increase their benefit from this feedback. Finally, the qualitative
results from the Likert surveys mirrored the quantitative results: subjects reported
lower mental and physical effort with impedance and vibrotactile modes compared
to standard and lowest with the VI mode. These results suggest that both impedance
control and vibrotactile feedback provide improved prosthetic control and user sat-
isfaction. It is worth noting, however, that grasp success rates were still high without
these features and that order effects had a potential influence on the results.

10.2.2.3 Extension of the Hand Controller

Following the results of the pilot experiment, more advanced versions of the above
proportional and teleimpedance controllers were developed. The goal was to map the
FDS and EDC EMG signals to position and stiffness models to a achieve more accu-
rate control for each subject. Subjects then attempted to grasp everyday objects with
three types of controllers: stiff, using the position model and a fixed, high impedance
value; compliant, using the position model and a fixed, low impedance value; and
teleimpedance, using a varying control gain based on the users’ stiffness profile. A
block diagram of the control scheme employed is presented in Fig. 10.10. Further,
two haptic interfaces were included. In the first, a mechanical version of the force
feedback described above was developed. A mechanical cuff tightened around the
upper arm as grasp force increased so as to provide modality-matched feedback to
the user. In the second, surface texture was measured by placing accelerometers on
the SoftHand fingertips and then replicating the measured vibrations with a bracelet
of eccentric mass motors on the forearm. This setup was used in combination with
the teleimpedance controller for a blind surface discrimination and grasping experi-
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Fig. 10.10 Block diagram of the synergy-driven hand teleimpedance

ment. For further information on these haptic experiments, please see [4]. Below we
describe the modeling, parameter identification, and evaluation.

Muscle force increases with muscular activity, and as individual muscle forces
increase, they affect the torque at the joints they cross. Cocontraction of antagonist
pairs, however, affects the impedance of the joint [37]. To begin, we consider the
forward dynamics of the first grasp synergy and write

τ = aτ δ,

aτ δ = I q̈s + cq̇s + Ks(qs − q0) + τE ,
(10.6)

where τ , aτ and τE denote the torque synergy, its gain, and external torques, respec-
tively; qs and q0 are the position of the hand and the object along the first synergy; δ is a
function of the difference in activation of the antagonistic muscles (F DS − E DC),
and I , c and Ks are the inertia, damping and stiffness of the hand along the first
synergy, respectively. The effects of inertia and external torques can be neglected,
leaving us with

q̇s = −Ks

c
(qs − q0) + aτ

c
δ. (10.7)

Next, we can use T and k to represent the time step and iteration number and
estimate the dynamics in discrete time as follows

qsk+1 = (1 − Ks T

c
)qsk + T aτ

c
δ + Ks T

c
q0. (10.8)

Finally, we use two modified hyperbolic tangents [15] to map the position and
stiffness synergy references:

δ = aq [1 − e−bq (FDS−EDC)]
[1 + e−bq (FDS−EDC)] , (10.9)
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Ks = ak[1 − e−bk (FDS+EDC)]
[1 + e−bk (FDS+EDC)] , (10.10)

where FDS and EDC are the processed EMG signals of the corresponding muscles,
and the gains aq , bq , ak , and bk are identified experimentally. To do so, the subject
was asked to open and close his or her hand while FDS and EDC activity were
recorded; meanwhile, the SoftHand opened and closed as a visual reference. Twenty
natural, self-paced open/close movements were recorded to determine the parameters
of the position synergy model. A further 20 movements were recorded while asking
the subject to maintain various levels of cocontraction. Subjects were given visual
feedback of their cocontraction levels and asked to perform 4 movement cycles at 5
different levels.

Half of each set of trials was used to identify the parameters of the models and
the other half to evaluate the modeling accuracy. Averaged across subjects, we found
normalized root-mean-squared error (NRMSE) values of 17.6 and 13.4 % for the
postural and stiffness test trials, respectively. Ultimately, mental imagery, bilateral
action using a mirror box, or similar techniques could be used to identify these
parameters in persons with amputations.

After parameter identification, subjects attempted to grasp everyday objects with
each type of controller: stiff, compliant, and teleimpedance. A sample grasp of a
rigid object (a mug) with each of the controllers is presented in Fig. 10.11. Subjects
were highly successful with all controllers. However, grasp quality and stability was
highest with teleimpedance. With the stiff controller, subjects would occasionally
apply excessive force and damage deformable objects. In contrast, with the compliant
controller, subjects would occasionally lose the grip on and drop heavier objects. The
teleimpedance controller seemed to mitigate both of these problems. While these
results are preliminary, they suggest teleimpedance control of a prosthetic hand is
both functional and intuitive. Future work will apply this novel controller in a clinical
setting.

Fig. 10.11 Sample results of the SoftHand grasping a hard object (mug), with the controller under
high, fixed stiffness gain (left top pair, K = 40 Nm/rad), low, fixed stiffness gain (left mid pair,
K = 10Nm/rad), and teleimpedance (right four, aqnorm = 1, bq = 5.03, ak = 1.87, and bk = 0.579)
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