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Series Editors’ Foreword

This is the 11th volume of ‘Springer Series on Touch and Haptic Systems’, which is
published as a collaboration between Springer and the EuroHaptics Society.

Human and Robot Hands provides a comprehensive introduction to human hand
sensorimotor synergies and the manner in which this approach is applied to robotic
hands and their manipulation of objects. This book is organized into two parts and
15 chapters. The first part is devoted to neuroscience topics, which are mainly
focused on understanding the neuroanatomical, physiological and behavioural
mechanisms that are related to the sensorimotor control of the human hand. The
second part shows developments and guidelines for the replication of sensory and
motor features of the human hand using robotic and haptic devices.

More than 30 well-known researchers from the field of neuroscience, psychol-
ogy, robotics and computer science have contributed to this book edited by Matteo
Bianchi and Alessandro Moscatelli. Most of the results included in this issue have
been developed within ‘THE Hand Embodied’ project (http://www.
thehandembodied.eu/project; duration: 1 March 2010–28 February 2014) coordi-
nated by Prof. Antonio Bicchi (Università di Pisa), which was funded by the
European Commission under CP grant no. 248587, within the FP7-ICT-2009-4-2-1
programme ‘Cognitive Systems and Robotics’.

September 2015 Manuel Ferre
Marc O. Ernst

Alan Wing
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Chapter 1
Introduction

Matteo Bianchi and Alessandro Moscatelli

Abstract The human hand is our preeminent and most versatile tool to explore and
modify the external environment. It represents both the cognitive organ of the sense
of touch and the most important end effector in object manipulation and grasping.
Our brain can cope efficiently with the high degree of complexity of the hand, which
arises from the huge amount of actuators and sensors. This allows us to perform
a large number of daily life tasks, from the simple ones, such as determining the
ripeness of a fruit or drive a car, to the more complex ones, as for example per-
forming surgical procedures, playing an instrument or painting. Not surprisingly, an
intensive research effort has been devoted to (i) understand the neuroanatomical and
physiological mechanisms underpinning the sensorimotor control of human hands
and (ii) to attempt to reproduce such mechanisms in artificial robotic systems.

This book reports relevant issues in robotics andneuroscience of the hand,whichwere
investigatedwithin the international cooperationproject “THEHandEmbodied”.The
leading idea of THE project was the concept of synergies, intended as “a functional
property of a multi-element system performing an action, whereby many elements
of the system are or can be constrained to act as a unit through a few coordination
patterns to execute a task” [15, 16]. There is extensive evidence in neuroscience for
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2 M. Bianchi and A. Moscatelli

the organization of the sensorimotor system in functional or structural “synergies”,
at different levels, such as neural (e.g. [19]) and muscular (e.g. [20]) (see [15] for an
exhaustive review). Accordingly, recent studies have demonstrated strong covariance
patterns in the control of the hand, in both the kinematics and force domains (see e.g.
[17, 22]). At the same time, the idea has become popular in robotics of exploiting
these reduction mechanisms to better control and design robotic hands and haptic
systems using a reduced number of control inputs, with the goal of pushing their
effectiveness close to the natural performance. Central to this point of view is the
concept that merely mimicking the architecture of the hand is an unfeasible and
daunting task: our belief is that the modelling of the synergistic organization and its
translation into a mathematical language can represent an effective step forward to
advance the state of art of artificial systems [2, 4].

Research in neuroscience can provide the theoretical and experimental founda-
tions to describe the hierarchical organization of the human hand. Then such founda-
tions can be suitably translated into a language understandable by artificial systems
and used to drive the design of more effective robotic devices (see e.g. [5, 8]).
At the same time, robotic and technological systems can represent useful tools to
perform neuroscientific investigations on human hand and to offer new insights to
better understand human grasping and manipulation behavior. With this book, we
propose to bridge the gap between neuroscience and robotics with the twofold goal
of increase the comprehension of functional and neuroanatomical organization of
the human hand and to derive the guidelines for a more effective development of
robotic and haptic devices. This book is organized into two parts to mirror this dual
approach.

Part I of the book deals with the functional and behavioral aspects of the senso-
rimotor control of the hand. In all chapters, the theoretical framework of synergies
provides a coherent solution to reduce the degrees of freedom in motor control and
to organize the rich sensory information provided by cutaneous touch.

Chapter 2 analyzes dexterous manipulation in two-finger grasp. The authors pro-
pose a theoretical framework based on high-level representation of the task that
can be learned in an effector-independent fashion. These results are discussed in
relation to the concept of motor equivalence and sensorimotor integration of grasp
kinematics and kinetics as well as low-level coordination of digit force and position.
Chapter3 analyzes force synergies in unconstrained hand grasping, examining how
humans stabilize an external object in response to external perturbations [14].
Chapters 4 and 5 discuss the possible neural bases of synergies in subcortical and
cortical structures.

Specifically, Chap.4 reviews recent findings from neurophysiology showing the
synergistic organization of the subcortical circuitry [15, 18]. Synergies appear to be
a natural solution due to the diverging organization of the nervous system, where
each neuron is connected to multiple motor units. Chapter 5 proposes a functional
MagneticResonance Imaging (fMRI) study [9], where novel encoding techniques are
employed to determine whether regional brain activity during grasping movements
can be predicted by the kinematic combination of hand synergies. Chapter 6 models
the control of the hand-arm system through building blocks consisting of neuronal

http://dx.doi.org/10.1007/978-3-319-26706-7_2
http://dx.doi.org/10.1007/978-3-319-26706-7_3
http://dx.doi.org/10.1007/978-3-319-26706-7_4
http://dx.doi.org/10.1007/978-3-319-26706-7_5
http://dx.doi.org/10.1007/978-3-319-26706-7_4
http://dx.doi.org/10.1007/978-3-319-26706-7_5
http://dx.doi.org/10.1007/978-3-319-26706-7_6


1 Introduction 3

populations. These blocks can be regarded as neuronal operation amplifiers (opamps)
that implement an efficient adaptive feedback control that could be profitably applied
in robotics for the identification of unknown sensors on-the-fly. Chapter 7 evaluates
the hypothesis that cutaneous touch from the interactionwith external object provides
information on the hand displacement. This cutaneous contact information is fused
with “classical” proprioceptive cues from musculoskeletal system and skin stretch
to produce a robust estimation of the displacement. The correlation between finger
movements and skin deformation suggests the existence of sensorimotor synergies
[4, 13].

Part II of the book focuses on the definition of exploitable guidelines for the
replication of the sensory and motor aspects of the human hand through robotic
and haptic/sensing devices. These guidelines are devised from the neuroscientific
results reported in Part I. Furthermore, Part II describes tools and procedures that can
be used to perform more effective behavioral investigations, even providing novel
inspirations to better understand natural systems. Chapter 8 presents the Pisa/IIT
SoftHand, a novel robot hand prototype designed with only one motor with the
purpose of being robust and easy to control as an industrial gripper, while exhibiting
high grasping versatility. The design is inspired by the synergistic control of human
hand along the first most common actuation pattern [7]. Chapter 9 proposes a learn-
by-demonstration approach to learn anthropomorphic robot motions for reach to
grasp movements towards different positions and objects in 3D space. Exploiting
principal component analysis to extract a lower dimensional manifold for human-
like robot data, Navigation Functions (NF) based models [10] are defined, which
operate in a synergistic manner. A methodology for robust grasping with tactile
sensing is also used to relax uncertainties and increase robustness of the final grasp.
Chapters 10 and 11 deal with electromyography (EMG) based synergistic control of
robotic and prosthetic hands. Chapter 10 presents an overview of the teleimpedance
control concept [1] and provides two application examples. In this teleimpedance
control, the user’s postural and stiffness synergy references are tracked in real-time
by using surface EMG signals acquired from one pair of antagonistic muscles on
the forearm. In the first example, an electromyography based model is developed
to estimate the operator’s arm endpoint stiffness in real-time, while in the second
example the teleimpedance concept is translated to control the Pisa/IIT SoftHand
described in Chap.8. Chapter 11 analyzes synergistic muscle patterns for the control
of a dexterous hand prosthesis [6, 20] and for the restoration of a missing hand
function by introducing the concept of “incremental learning” as the main feature of
modernmachine learning for the amputees.Chapters 12 and13proposemathematical
tools tomodel and analyze the grasp and control of under-actuated synergistic robotic
hands. Chapter 12 identifies amapping strategy [12] to transfer human hand synergies
onto robotic hands with dissimilar kinematics and presents a novel software tool
“SynGrasp”, which includes functions for the definition of hand kinematic structure,
the coupling between joints induced by a synergistic control, compliance at the
contact, joint and actuator levels and graphical functions. Chapter 13 describes new,
general approaches for the analysis of grasps with synergistic underactuated robotic
hands [11]. Two different approaches to the analysis are presented: the first one is

http://dx.doi.org/10.1007/978-3-319-26706-7_7
http://dx.doi.org/10.1007/978-3-319-26706-7_8
http://dx.doi.org/10.1007/978-3-319-26706-7_9
http://dx.doi.org/10.1007/978-3-319-26706-7_10
http://dx.doi.org/10.1007/978-3-319-26706-7_11
http://dx.doi.org/10.1007/978-3-319-26706-7_10
http://dx.doi.org/10.1007/978-3-319-26706-7_8
http://dx.doi.org/10.1007/978-3-319-26706-7_11
http://dx.doi.org/10.1007/978-3-319-26706-7_12
http://dx.doi.org/10.1007/978-3-319-26706-7_13
http://dx.doi.org/10.1007/978-3-319-26706-7_12
http://dx.doi.org/10.1007/978-3-319-26706-7_13


4 M. Bianchi and A. Moscatelli

based on a systematic combination of the quasi-static equations, while the second
one focuses on the strategies to determine the feasibility of the pre-defined tasks,
operating a systematic decomposition of the solution space of the system. Chapter
14 presents a model of the human hand calculated from data obtained from a small
number of sensors, which can be used for movement analysis in object exploration
[21] and contact point analysis.

Finally, Chap. 15 describes how the concept of hand synergies, which has been
used to control and design robotic hands with a reduced number of control inputs
and actuators, can be also exploited to optimize the performance of hand pose recon-
struction systems in terms of estimation accuracy and optimal design [3].

Overall, this book provides a comprehensive overview of the complex topic of
sensorimotor synergies. The outstanding results of the studies described in the book
demonstrate the advantages of our integrated approach in neuroscience and robotics.
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Chapter 2
Dexterous Manipulation: From High-Level
Representation to Low-Level Coordination
of Digit Forces and Positions

Qiushi Fu and Marco Santello

Abstract The ability to perform fine object and tool manipulation, a hallmark of
human dexterity, is not well understood. We have been studying how humans learn
anticipatory control of manipulation tasks to characterize the mechanisms underly-
ing the transformation from multiple sources of sensory feedback to the coordina-
tion of multiple degrees of freedom of the hand. In our approach, we have removed
constraints on digit placement to study how subjects explore and choose relations
between digit forces and positions. It was found that the digit positions were char-
acterized by high trial-to-trial variability, thus challenging the extent to which the
Central Nervous System (CNS) could have relied on sensorimotor memories built
through previous manipulations for anticipatory control of digit forces. Importantly,
subjects could adjust digit forces prior to the onset of manipulation to compensate
for digit placement variability, thus leading to consistent outcome at the task level.
Furthermore, we found that manipulation learned with a set of digits can be trans-
ferred to grips involving a different number of digits, despite the significant change
in digit placement distribution. These results have led us to propose a theoretical
framework based on high-level representation of manipulation tasks can be learned
in an effector-independent fashion and transferred to some, but not all that con-
texts. We discuss these findings in relation to the concept of motor equivalence and
sensorimotor integration of grasp kinematics and kinetics.

2.1 Introduction

Goal-directed dexterous manipulation is accomplished by controlling the distribu-
tion of digit forces among multiple digits that grasp the object to generate or resist
object motions. It should be emphasized that most hand-object interactions humans
encounter in activities of daily living do not constrain where each digit is placed on
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the object, or how many digits are used. Therefore, for a given manipulation a given
object can be grasped in many different ways. Mechanically, both digit positions and
forces contribute to meet the manipulation task requirement. Therefore, studying
grasping kinematics or digit forces in isolation limits the extent to which we can
advance our understanding of how the CNS resolves the classic problem of redun-
dant degrees of freedom in dexterous manipulations [1]. Specifically, focusing on
either grasping kinematics or kinetics overlooks the underlying sensorimotor trans-
formations from multiple sources of sensory feedback to multiple motor commands
necessary to modulate multiple digit forces to positions.

The vast majority of grasping studies over the past 30years has examined either
digit positions or forces. For instance, studies of grasp kinematics have shown that
subjects tend to maximize the end-state comfort by choosing sub-optimal hand loca-
tions for the initial grasp when the object has to be transported to a different location
[2]. Hand shaping can be also changed according to the task goals [3] and learned
object dynamics [4, 5], even though the hand degrees of freedom are controlled
through synergistic motion patterns [16, 17]. However, these studied did not measure
digit forces. In contrast, studies of grasp kinetics have examined the control and coor-
dination of digit forces by using objects that constrained digit contacts, hence remov-
ing the natural digit placement variability that occurswhen subjects can choosewhere
to grasp an object. For constrained grasping studies, subjects are usually required to
grasp force/torque sensors mounted at fixed locations on the object. These studies
have revealed that, similar to what had been reported for reach-to-grasp kinemat-
ics, digit forces are also modulated as a function of object properties and task goals,
such as object weight [6], surface friction [7], and shape [8]. Furthermore, it has been
shown that digit forces can be controlled in the formof synergies, effectively reducing
the number of independent degrees of freedom [9, 10]. Although research of grasp
kinematics and kinetics in isolation has revealed important insights, a major question
remained: how are digit forces and positions synergistically controlled as a unit?

To illustrate the above scenario of grasping at unconstrained contacts, let us con-
sider the task of two-digit grasping, lifting, and balancing an object whose mass
distribution is asymmetrical. This particular object would tilt towards the heavier
side if one does not actively produce a torque to counterbalance the external torque,
i.e., a compensatory torque. In order to prevent the tilt, one has to first position the
digits on the object, then gradually exert forces through the digit-object contacts to
generate a torque at object lift onset in the direction opposite to the torque caused
by object mass distribution (Fig. 2.1a). Whereas the task space in this example is
only three dimensional (i.e., translations and rotation in the x-y plane; Fig. 2.1a), the
actions of the hand lie within a space that consists of the grip forces (normal to the
surface, fx), load forces (tangential to the surface, fy), and positions of the contacts
from at least two digits Ci = (xi, yi). Mathematically, a two-digit planar grasp can be
represented as

F0 = G fc fc ∈ FC (2.1)

where Fo is the task space consisting of net forces exerted in the horizontal and
vertical directions as well as the torque in the x-y plane, G is a 3×4 ‘grasp matrix’
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Fig. 2.1 Redundancy in two-digit dexterous manipulation. a Example of two-digit planar manip-
ulation. b Temporal evolution of a manipulation task. G and G’ denote planned and actual digit
contact distributions, fC denotes planned digit forces, and fC ’ denotes the digit forces required to
attain the manipulation task goal

determined by digit positions (x1, y1) and (x2, y2), fc is a vector consisting of digit
forces [ fx1, fy1, fx2, fy2], and FC is the frictional constraints.

This redundancy poses three major challenges to the CNS. First, without physical
constraints on the objects’ contact locations, the CNS has to determine where to
position the digits among many possible locations. Note that some contact locations
may enable a grasp matrix G that is more suitable (e.g., less force is required) for
the upcoming manipulation than other contact locations. Second, the actual contact
sites may be quite variable from trial to trial due to noise in motor planning and/or
execution [11] (Fig. 2.1b). Variability in digit placement implicitly requires the CNS
to select appropriate digit forces to ensure task completion. This means that simply
reproducing the digit force distribution used in the manipulation performed in the
previous trial (i.e., stored as sensorimotor memory [12]) may not generate the same
outcome at the task level if the current and previous digit contact distribution are
significantly different. In this case, the digit forces required for the manipulation will
not match planned digit forces ( fC and fC ’, respectively; Fig. 2.1b). Lastly, once
the manipulation is successfully learned, are the neural representations of learned
hand-object actions independent from the effectors used during learning? If so, one
would predict that humans should be able to perform the same manipulation task by
using a set of effectors, e.g., digits or hand, that differs from that used to learn the
manipulation.

In this chapter we review our work addressing the above three question and high-
light open questions for future research. Specifically, we investigated the coordina-
tion of digit positions and forces by using a novel apparatus that allows subjects
to choose where they grasp while still providing measurement of digit forces. The
results reviewed here are the first direct evidence about how the CNS exploits the
sensorimotor redundancy in both grasp kinematics and kinetics.

2.2 Materials and Methods

Subjects. Twenty-four right-handed subjects (12 females and 12 males, ages 20–26)
and ten right-handed volunteers (4 males and 6 females, ages 19–24) participated
in the first and second study, respectively. They had normal or corrected-to-normal
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Fig. 2.2 Experimental setup. a The unconstrained (left) and constrained (right) devices used in
Experiments 1 and 2. b The experimental sequence used in Experiment 2. The labels “2d” and “3d”
denote two- and three-digit grip, respectively, whereas LCM and RCM denote left and right center
of mass, respectively

vision, no previous history of orthopedic, neurological trauma, or pathology of the
upper limbs and were naive to the purpose of the study. Subjects gave their informed
consent according to the declaration of Helsinki and the protocols were approved by
the Office of Research Integrity and Assurance at Arizona State University.

Apparatus. We used a custom-made grip device to measure digit forces and their
points of application during manipulation tasks (Fig. 2.2a; see [13] for details).
Forces and torques exerted by the thumb and fingers were recorded by two six-
component force/torque (F/T) transducers (Nano-17, ATI Industrial Automation)
mounted collinearly on each side of the object handle. Force and torque data were
sampled at 1 kHz by 12 bit analog-to-digital converter boards (PCI-6225, National
Instrument). To allow unconstrained placement of the digits, the grip surfaces con-
sisted of two parallel long PVC plates (length and width: 140mm and 22mm, respec-
tively) each mounted vertically on an F/T transducer and were covered with 100-grit
sandpaper. These two plates were replaced by two small circular plates (diameter:
22mm) during constrained grasping experiment (Fig. 2.2a). The distance between
the two grip surfaces (grip width) was always 6.07cm. A Plexiglass box attached
underneath the grip apparatus was used to change the mass distribution to the left,
right or center of the grip device by inserting a mass (400 g) into one of three com-
partments. The total mass of the grip device and load was 790 g. A torque in the
frontal plane of −255 or +255 N/mm is introduced when the load was placed in
the left or right compartment (L and R), respectively. For Experiment 1, we also
placed the mass in the center such that no compensatory torque was required to lift
the object straight. The visual identification of the actual object center of mass (CM)
was blocked from view by a lid.

For Experiment 1, object kinematics was recorded with a magnetic tracker at
120Hz. For Experiment 2, hand and object kinematics were recorded using an active
marker 3D motion capture system at a sampling rate of 480Hz. Subjects were out-
fitted with active markers on the fingernails of thumb, index, and middle fingers.
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Experimental Procedures. Subjects sat comfortably with the hand resting on a table
with the elbows flexed. The apparatus was placed at a distance of 30cm from the
hand start position, and the midpoint of the apparatus was aligned with subjects’
right shoulders. For each trial, after a verbal signal from the experimenter, subjects
reached from this start location, grasped the grip surfaces with the tip of a required
set of digits of the right hand, lifted the grip device at a natural speed to a height
of ∼10cm, held it for ∼1 s, and replaced it. Subjects were instructed to extend the
non-involved fingers throughout the task. At the beginning of each block of trials, we
instructed subjects to minimize object roll during the lift. The between-trial interval
within a block was ∼10s.

Experiment 1. Subjects were assigned to one of two groups (n = 12 for each group):
the unconstrained group used the apparatuswith long graspable surfaces, whereas the
constrained group used the apparatus with small circular graspable surfaces (left and
right object, respectively; Fig. 2.2a). Both subject groups were given the same task
instructions. After three practice trials (with center CM location), subjects performed
three blocks of ten consecutive trials per CM location for a total of 30 experimental
trials. Subjects were informed that CM location would remain the same for the entire
block of trials, but they could not anticipate CM location at the beginning of each
block of trials as changes of object CM across blocks of trials were performed out
of view. The consecutive presentation of a given object CM location was used to
allow subjects to learn implicitly the magnitude and direction of the external torque
caused by the added mass. The order of CM blocks of trials was counterbalanced
across subjects. On average, the time between blocks of trials was 1min, respectively.

Experiment 2. Each subject performed the task the unconstrained grasp surfaces
with two grip types: (1) two-digit grasping (thumb and index finger; 2d) and (2)
three-digit grasping (thumb, index, and middle fingers; 3d). Subjects performed 10
2d trials followed by 10 3d trials ( 2d → 3d) with left CM (LCM). After a short
break (∼ 20 s), subjects performed the 2d → 3d experimental condition with right
CM (RCM). Each subject was tested again two weeks later but on a trial sequence
opposite to that experienced on his/her first experimental session, i.e., 3d → 2d on
the LCM condition followed by 3d → 2d on the RCM condition (Fig. 2.2b). The break
between the two experimental sessions was designed to minimize potential positive
or negative learning transfer effects from one sequence to the next. Prior to the exper-
iment, subjects lifted the object once with each grip type (2d and 3d) with the load
placed in the center compartment to familiarize with the task, texture, and weight of
the grip device. Subjects were informed that the load could be placed either in the
left or right compartment of the Plexiglass box and would remain the same for two
blocks of trials. At the beginning of each block, subjects were told the number of
digits to be used for the upcoming block of trials.

Data Processing. Force and position data were temporally aligned offline and analy-
ses were performed using MATLAB. We analyzed the following variables (see [13,
14] for details): (1) Object lift onset: the time at which the vertical position of the
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grip device crossed and remained above a threshold for 200 ms; (2) Object roll: the
angle between the gravitational vector and the vertical axis of the grip device, and
peak roll is the peak of object roll shortly (∼150 ms) after object lift onset; (3) Digit
forces: force perpendicular (grip force, GF) and parallel (load force, LF) to the grip
surface; (4) Digit center of pressure (CoP): the vertical coordinate of the point of
resultant digit force application, calculated for each digit using the force and torque
output of each sensor (positive and negative values CoP denoted higher and lower
CoPs relative to the center of transducer, respectively). Note that GF, LF, and CoP
recorded on the finger side of the grip device are the resultant net forces and net
center of pressure of both index and middle finger when subjects performed the task
using the 3d grip. To quantify the modulation of individual digit position, we used
the fingertip marker position defined as the vertical position of the marker on the nail
of the thumb, index, and middle fingers.

We then used digit forces and CoP to compute the following performance vari-
ables: (a) the average of the digit grip forces (FGF), (b) the difference between load
forces exerted on the thumb and finger side of the grip device (�FLF), and (c) the ver-
tical distance between the thumb and index finger CoP on the thumb and finger side
of the grip device (dy). How these three variables are coordinated dictates whether the
compensatory torque (Tcom) necessary for minimizing object roll is attained before
the object is lifted to balance the external torque caused by the added mass (see [15]).
We use the following equation to approximate the relationship among these variables

Tcom = FG F × dy + �FL F × w

2
(2.2)

where w is the distance between the graspable surfaces. To further understand how
digit placement changed when there is a change in grip type (Experiment 2), we
also computed the vertical distance between thumb and index finger markers (dtip).
Note that all of these performance variables were computed at object lift onset.
Our analysis focused on object lift onset because this event allows for an unbiased
estimation of anticipatory modulation of digit forces as a function of digit positions,
i.e., prior to experiencing the external torque that occurs as soon as the object is lifted
(for more details on this rationale, see [13]).

2.3 Experiment 1: Digit Force and Position Coordination
in Unconstrained Grasping

In the first experiment, we studied how digit positions and forces are modulated
and coordinated during learning the manipulation as well as throughout stable per-
formance of our manipulation task. We also compared the results obtained using
unconstrained grasps with the same task performed with constrained contacts as this
model has been used by most grasp studies. Overall, subjects learned to generate
compensatory torque equally well and at similar rates in both grasp conditions, even
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though the underlying control mechanisms differed significantly between the two
subject groups.

Learning Constrained Versus Unconstrained Grasping. At the task level, com-
pensatory torque generation (i.e., object roll minimization) was learned within the
first three trials by both constrained and unconstrained subject groups (Fig. 2.2).
Therefore, only data from the unconstrained group is described here. On trial 1, sub-
jects exerted little or no compensatory torque (mean ± SE: −26.6 ± 16.9 N·mm,
−14.1 ± 33.8 N·mm, and 22.5 ± 17.5 N·mm for left, center and right CM, respec-
tively). Unlike the compensatory torques developed after trial 1, the direction and
magnitude of these torques were not correctly scaled to the external torque. On trials
2 and 3, however, the compensatory torque gradually approached the external torque
and settled at a mean value of −188.3 (±13.9) N·mm and 189.7 (±17.0) N·mm
(right and left CM, respectively) from trial 4 through 10 (Fig. 2.3). The compen-
satory torque at lift onset for the center CM condition changed little after trial 1,
reaching a mean value of 11.3 (±13.1) N·mm. Despite the fact that subjects’ per-
formances were different for center vs. left and right CM locations (CM × Trial
interaction p < 0.001), post hoc comparisons between neighboring trials (1 vs. 2, 2
vs. 3, and so forth) revealed that subjects learned to generate anticipatory compen-
satory torque to minimize object roll early in the trial sequence, the only significant

Fig. 2.3 Anticipatory control of compensatory torque as a function of trial. Data in a and b denote
compensatory torque for the constrained and unconstrained grasp conditions, respectively. Dashed
horizontal lines denote the external torque caused by the added mass. For graphical purposes,
the external and compensatory torques are plotted with the same sign. All data are means averaged
across subjects (±S.E.).Asterisks indicate significant differences (p< 0.05) between trials. Adapted
from [13]
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difference in compensatory torque occurring between trial 1 and trial 2 (p < 0.05
for both right and left CM in both groups). The relation between peak object roll
and trials paralleled the relation between compensatory torques and trials shown in
Fig. 2.3.

For digit positions, the centers of pressure (CoP) of thumb and index finger at
object lift onset were modulated as a function of trial and object CM location.
Figure2.4a shows dy averaged across all subjects as a function of trial for each
CM location and subject group. On the first trial, subjects tended to position the dig-
its collinear to each other regardless of CM location. After trial 1, when lifting the
object during the center CM condition, thumb and index finger CoP tended to remain
collinear across all subsequent trials in both groups. In contrast, left and right CM
locations elicited opposite patterns of digit CoP modulation. Specifically, the thumb
CoP tended to be positioned progressively higher and lower relative to the index CoP
for the left and right CM locations, respectively, and for both subject groups (CM ×
Trial interaction, p < 0.001; Group × Trial interaction, p > 0.05). Similar to the
above results on compensatory torque, post hoc comparisons between neighboring
trials revealed that the only significant change in dy occurred between trial 1 and 2
but only for right and left CM in both groups (p < 0.05).

For digit forces, grip forces (FGF) tended to increase as a function of trial for
left and right CM conditions and decrease for center CM in both subject groups
(Fig. 2.4b; CM × Trial interaction, p < 0.001, Group × Trial interaction, p > 0.05).
However, post hoc analyses showed that these trends were significant only for the
left CM condition in both groups (p < 0.001 and p < 0.005 for unconstrained and
constrained groups, respectively). Subjects also used different patterns of load force

Fig. 2.4 Learning of digit placement and forces. All data averaged across subjects (±S.E.). Top and
bottom rows show data from constrained and unconstrained groups, respectively. Adapted from [13]
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distribution across CM locations (Fig. 2.4c). Specifically, thumb and index finger
load forces remained symmetrical across all trials in both subject groups in the center
CM condition. In contrast, the difference between thumb and index finger load forces
(�FLF) tended to bemodulated as a function of trial early in the trial sequence to then
remain relatively constant for left and right CM conditions for both subject groups.
On the first trial, subjects tended to use nearly symmetrical load forces for both CM
and subject groups. After trial 1, load forces applied by the thumb and index finger
were applied asymmetrically to counteract the CM asymmetries. Specifically, the
thumb load force tended to be progressively larger and smaller relative to the index
load force for the left and right CM conditions, respectively, in both subject groups
(CM × Trial interaction, p < 0.001; Group × Trial interaction, p > 0.05). However,
post hoc comparisons between neighboring trials revealed that only the constrained
group modulated �FLF significantly from trial 1–2 for both CM conditions (both p
< 0.05).

Since stable level of task performance was attained within the first 3 trials
(Fig. 2.3), we used trial 3 as the cut-off afterwhich (trial 4 through 10)we defined sub-
jects’ performance as stable, i.e., where further practice with the manipulation task
did not lead to statistically significant improvements in compensatory torque at object
lift onset and object rollminimization. Therefore,we examined themagnitude of digit
forces and CoP during the last seven trials of each block. The two subject groups
exhibited significant differences in their overall strategy. Specifically, constrained
grasp trials relying mostly on modulation of grasp kinetics (force application), and
unconstrained grasp trials relied primarily on modulation of grasp kinematics (digit
placement on the object). Digit positionmodulation in the constrained groupwas sig-
nificantly smaller than that exhibited by the unconstrained group in left and right CM
conditions (Fig. 2.4a; 3-way analysis of variance, ANOVA, on factors Group, CM,
and Trial; CM×Group interaction, p< 0.001; post hoc tests on Group effects within
right CM: p < 0.05; non-significant Group effects within left CM). Furthermore, the
constrained group used larger grip force than the unconstrained group across trial
4–10 (Fig. 2.4b; main effect of CM, p < 0.01; main effect of Group, p < 0.001).
Post hoc tests also revealed that subjects used significantly larger grip force only
for left and right CM conditions (p < 0.05). Lastly, the constrained group showed
larger asymmetry of digit load forces than the constrained group in left and right CM
conditions (Fig. 2.4c; CM × Group interaction p < 0.001; post-hoc tests on Group
effects within left and right CM: both p< 0.05). These results suggested that, despite
inter-subject variability, the subjects had common strategies according to the object
physical properties. We speculate that such strategies were implemented to optimize
the motor output by reducing the total digit force, thus minimizing the energy cost
and motor noise [13]. Note that unlike the result obtained from random perturbation
trials presented in the Chap.3 by Naceri and colleagues, all subjects adapted similar
preferred strategies in an anticipatory fashion in our experiment. This is because the
perturbation induced by the added mass following object lift is predictable.

Covariation of Digit CoPs and Digit Forces. The above analysis revealed that
digit forces and positions at object lift onset were controlled differently depending

http://dx.doi.org/10.1007/978-3-319-26706-7_3
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Fig. 2.5 Relations between digit centers of pressure, grip force, and load force. Data are from
constrained and unconstrained grasp trials 4 through 10 from each subject and CM condition (top
and bottom row, respectively) and are shown in normalized form. Data in a and c are from left and
right CM conditions, whereas data in b are from the center CM condition. The Pearson’s r -value
and corresponding p-value are shown in each panel (n.s. = not significant, p > 0.05). Adapted
from [13]

on whether or not the grip device constrained digit placement. Surprisingly, how-
ever, subjects from the unconstrained and constrained groups learned to generate
compensatory torques with similar consistency (Fig. 2.3). This was confirmed by
a lack of a significant Group effect on the standard deviation of Tcom of the mean
compensatory torque averaged from trial 4–10 (p > 0.05). This result is remarkable
particularly when considering that the variability of digit placement at object lift
onset of the unconstrained group was significantly larger than the constrained group.
With regard to standard deviation of individual digit CoP, we found only a signifi-
cant main effect of Group (p< 0.001). The standard deviation of dy was significantly
different across subject groups and CM (both p < 0.001).

In contrast, therewas no significant difference between the two groupswith regard
to the standard deviation of either digit load forces or grip forces (p> 0.05). As Tcom

is the net result of dy, FGF, and�FLF (Eq.2.2), the large variability in digit placement
in the unconstrained group was effectively compensated by digit force modulation
such that trial-to-trial variability of Tcom was similar to the constrained group. We
therefore examined how subjects modulated, on a trial-to-trial basis, digit forces as a
function of position. Linear regression analyses on data normalized to zero mean and
unit standard deviation (see [13] for details) was performed. We observed significant
negative correlations between dy and �FLF in both the unconstrained group (r =
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−0.615, p < 0.001) and constrained group (r = −0.263, p < 0.001). Furthermore,
the correlation coefficient of the unconstrained group was significantly larger than
that of the constrained group (p< 0.001).We also found that center CMwas different
from left and right CM conditions. Specifically, for the center CM condition, both
subject groups showed negative correlations between dy and �FLF (Fig. 2.5b). This
correlationwas significantly larger in the unconstrained than in the constrained group
(p < 0.05). Interestingly, for left and right CM conditions, the constrained group did
not exhibit a significant correlation. In contrast, negative correlations were still found
for the unconstrained group (Fig. 2.5a). Lastly, the strength of the correlation between
dy and �FLF was significantly larger in the unconstrained than in the constrained
group (p< 0.05).We found no significant correlation between dy and FGF or between
�FLF and FGF in either subject group.

2.4 Experiment 2: Transfer of Learned Manipulation
Between Different Grip Types

Experiment 1 revealed that natural trial-to-trial variability occurs when subjects can
choose where to grasp an object. Remarkably, such variability persists even after the
manipulation has been learned (trials 4–10). An important result was that subjects
actively compensate for digit placement variability by modulating digit forces such
that the required compensatory torque is attained at object lift onset. As this trial-to-
trial variability in digit placement was relatively small, in a second experiment we
introduced a large change in digit position after subjects had learned the manipula-
tion task. This was achieved by asking subjects to use a different grasp configuration
by adding or removing one digit relative to the grasp configuration used to learn the
task. The ability to transfer learned manipulation across grasp types was examined
at both task and digit level. Overall, we found complete transfer of task performance
despite significantly different digit position and force patterns.

Learning and Learning Transfer of Compensatory Torque. Subjects were able
to learn the manipulation task with both two-digit and three-digit grasp, in a similar
fashion to that described for Experiment 1. Specifically, Tcom averaged across all
subjects changed significantly as a function of consecutive practice in the pre-switch
block (main effect of Trial, p < 0.001; Fig. 2.6). On average, all subjects learned to
anticipate the Tcom necessary to minimize object roll within the first 3 trials regard-
less of grip type and CM location, after which Tcom did not change any further on
subsequent trials (all tests on trials 4–10: p > 0.05).

Following a change in grip type, i.e., at the beginning of the second block (trial
11, Fig. 2.6), we performed ANOVA for each CM location to examine the immediate
effect of changing grip type on Tcom. Subjects were able to generate Tcom whose
magnitude was statistically indistinguishable from that generated on the pre-switch
trial (trial 10) for all but one experimental condition (3d → 2d, LCM, p = 0.035).
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Fig. 2.6 Learning curves of compensatory torque: pre- and post-grip type switch. Trials within the
dashed box (11–20) indicate the grip type subjects switched to after learning the manipulation with
a different grip type. Tcom denotes compensatory torque, whereas LCM and RCM denote left and
right center of mass, respectively. Data in a and b are from the 2d→3d condition, whereas data in
c and d are from the 3d→2d condition. “LCM” and “RCM” denote left and right center of mass,
respectively. Data are averages of all subjects (±S.E.). Adapted from [14]

However, no significant differences were found when comparing peak object roll
on trial 10 versus 11 on any of the four experimental conditions. This indicates that
the statistically significant difference for the 3d → 2d LCM condition did not have
significant behavioral consequences on the manipulation, thus suggesting that antic-
ipatory control of Tcom in the pre- and post-switch trials was equally appropriate to
attain the task goal. Furthermore, we examined average differences between 7 trials
pre- versus post-switch in grip type using ANOVA with repeated measures for each
CM location with within-subject factors of Trial (7 levels; 7 pre- and 7 post-switch)
and Grip type (2 levels, pre- and post-switch). We found no significant main effect
of Trial, Grip type, or interaction (p > 0.05 for each experimental condition). This
suggests that no further learning of Tcom occurred before and after the switch in grip
type, the average Tcom being statistically similar for the two grip types. Similarly, no
significant main effect of Trial, Grip type, or interaction were found on peak object
roll as well (p > 0.05 for each experimental condition).

Change of Digit Positions and Forces Following a Change of Grip Type. The
positive learning transfer of Tcom to a different grip type implies that subjects were
able to coordinate, in an anticipatory fashion, the components that generate the Tcom:
dy, �FLF, FGF. Since there are infinite number of combination of these components
(see Eq.2.2), we analyzed each Tcom component separately.

Digit Center of Pressure. Subjects used significantly different vertical separations
between digit center of pressure (dy) after switching grip type on all but one exper-
imental condition (3d → 2d, RCM; Fig. 2.7). For the left CM location, subjects sig-
nificantly increased dy when adding middle finger to the grip and decreased dy when
removing one finger from the grip, whereas an opposite pattern was found for the
right CM location. In addition to the change found in the net center of pressure on
the finger side when adding or removing a finger, we found that the distance between
thumb and index finger marker (dtip)was significantly modulated such that the index
finger was positioned higher when adding the middle finger and lower when remov-
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Fig. 2.7 Immediate learning transfer of digit center of pressure and position from pre- to post-grip
type switch trials. Asterisks denote a statistically significant difference (p < 0.05) between pre- and
post-switch trials. a and b are digit center of pressure measured by F/T sensors. c and d are digit
positionmeasured bymotion tracking. Data are averages of all subjects (± S.E.). Adapted from [14]

ing the middle finger (Fig. 2.7). Therefore, subjects immediately used significantly
different digit placement distribution when changing grip type.

After the immediate adaptation (i.e., trial 11) following a change in grip type, there
were no further significant modulation of dy (no significant Trial effect or Trial ×
Grip interaction, p > 0.05). Specifically, the new digit placement was maintained
for all but one experimental condition (significant Grip effect for three conditions
and non-significant Grip effect for one condition, 3d → 2d, RCM; Fig. 2.8a). With
regard to the relative fingertip positions, dtip was significantly modulated in a similar
fashion to that observed in the immediate adaptation in all conditions (significant
Grip type effect only).

Digit Load Forces. Subjects used significantly different load force sharing (�FLF)
after switching grip type on only one experimental condition (2d → 3d, LCM). How-
ever, unlike the immediate adaptation in the �FLF, three out of four experimental
conditions showed long term modulation of �FLF throughout the first post-switch
trials in response to the modulation of dy (significant Grip effect; p < 0.05). �FLF
remained unchanged only in 3d → 2d, RCM condition in which dy was not modu-
lated significantly (Fig. 2.8b). However, there were no significant Trial effect or Trial
× Grip type interaction on �FLF. In general, subjects tend to use larger load force
difference in 2d than 3d grip.

Digit Grip Force. No significant main effect of Grip type (p > 0.05 for each exper-
imental condition) were found on the immediate post-switch trial, indicating that
subjects exerted similar net grip forces regardless of the number of digits used for
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Fig. 2.8 Learning curves of digit center of pressure and forces: pre- and post-grip type switch.
Each plot shows data from two-digit grip trials followed by three-digit grip trials (squares) and
trials performed in the reverse order (circles). a–c are dy, �FLF, FGF, respectively, across pre- and
post- transfer blocks. Data are averages of all subjects (±S.E.). Adapted from [14]

the grasp. However, whereas grip force is provided by index finger only in 2dgrip on
the finger side, the middle finger may contribute substantially in 3d grip for left CM
condition. In the trials following the switch in grip type, subjects also exerted similar
grip forces to those exerted before the switch (Fig. 2.8c), with lack of significant main
effects of Grip type, Trial, or interaction (p > 0.05 for each experimental condition).

2.5 Discussion

This chapter reviewed recent evidence describing how the CNS addresses the redun-
dancy of available kinematic and kinetic solutions to perform dexterous manipula-
tion. It should be noted that the control of grasp kinematics and kinetics are part of
a continuum, i.e., digit force distribution must take into account digit contact dis-
tribution. Nevertheless, until recently most of the literature on grasping has focused
on either kinematic or kinetic synergies. Specifically, biomechanical analyses of
multi-digit grasping have characterized prehension synergies that emerge from ‘chain
effects’ through which obligatory and non-obligatory relations among digit forces
and torques emerge (for review, see [10]). Similarly, studies of hand shaping during
reach-to-grasp have characterized kinematic synergies, i.e., systematic covariation
patterns of digit joint angles that can be described by a very small number of prin-
cipal components across a wide variety of object shapes and sizes ([16, 17]; for
review see [18]). Both of these approaches have revealed significant insights into
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motor control strategies that result in dimensionality reduction across the available
degrees of freedom (i.e., joints, forces). However, and given the above-mentioned
continuum of grasp kinematic and kinetics, a major gap remains: How does the CNS
control synergies that combine the control of digit positions and forces? Here, the
term ‘synergy’ is used as a broader term that describes the covariation of variables
in a high-dimensional space that consists of both kinematic and kinetic components.
Kinematic or kinetic synergies are throught to originate from biomechanical and
neural constraints. However, the synergy between kinematic and kinetic variables
discussed here denotes the ability of the CNS to integrate sensory information in
the continuum of reaching-grasping-manipulation. This allows the system to make
corrections to accomplish high-level goals that are independent of the configuration
and forces of the hand.

2.5.1 Redundancy of Kinematic and Kinetic Solutions
Through Digit Force-to-Position Modulation

As described in the Results section, learning of dexterous manipulation appears to
occur despite execution and/or planning noise causing trial-to-trial variability in digit
placement [13]. These observations were confirmed using a virtual reality environ-
ment where digit placement variability was induced by changing object width across
trials [19]. Even when differences in digit placement are not accidental, but inten-
tional, i.e., when we grasp an object using a set of digits that was not used to learn a
given manipulation, the sensorimotor system can still re-organize digit force distrib-
ution to a new digit contact distribution [14]. These two scenarios, characterized by
small and large variability in digit placement, respectively, capture a critically impor-
tant sensorimotor ability, digit force-to-position modulation, which we propose as a
hallmark of dexterous manipulation in humans. It should be noted that modulation
of digit forces to positions requires a synergy-based mechanisms, whereby multiple
sources of sensory feedback are integrated and used to generate a set of forces that can
satisfy the task requirements. Remarkably, and despite the large number of degrees
of freedom involved in object manipulation, subjects are able to adjust multiple digit
forces as a function of digit contact distribution within a few 100 ms, i.e., between
contact and onset of manipulation.

Equation2.2 describes the relation between two contacts and their forces for gen-
erating a given torque in two dimensions. As mentioned in the Methods, the desired
compensatory torque can theoretically be attained through a number of infinite digit
force-position relations, i.e., an example of the Bernstein’s problem of redundant
degrees of freedom [1]. However, we found that subjects respond to trial-to-trial
variability in digit placement by (a) exerting similar grip forces, thus reducing a free
variable to a constant, and (b) linearly modulating the difference between thumb
and index finger load forces as a function of the vertical distance between the digits
(Fig. 2.5) [13]. This relatively simple relation describes a family of digit position-
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force relations that ensure the attainment of the same compensatory torque. Further
studies have provided additional supporting evidence on the covariations of digit
positions and forces as a way of synergistic control in other dexterous manipulation
tasks (see Chap.3 for details).

Although the mechanisms responsible for digit force-to-position modulation
remain to be determined, behavioral evidence suggests that humans are particularly
skilled at sensing digit placement during digit force production for large vertical dis-
tances between the fingertips [20]. Yet, how this sensory feedback is used to select the
appropriate digit force distribution is not known. However, a recent study suggests
that feedback-mediated force corrections occur to a greater extent when grasping an
object at unconstrained than constrained contacts [21]. This result is compatible with
the notion that the control of digit forces for constrained grasps benefits from the fact
that the same digit forces can be used across trials, and therefore one would expect a
greater reliance on sensorimotor memory of digit forces used in previous manipula-
tions. In contrast, trial-to-trial variability in digit placement found for unconstrained
grasps demands that forces are distributed in a way that reflects the actual digit
contact distribution. Hence, corrective forces responses occurring between contact
and onset of manipulation in unconstrained grasping may reflect such compensatory
mechanisms triggered by sensing the mismatch between planned and actual digit
placement (Fig. 2.1b).

2.5.2 High-Level Representation of Learned Manipulation

The above-described digit force-to-position modulation has led to the proposition
that the sensorimotor system builds a high-level representation of learned manipula-
tion, which for the above-reviewed studies corresponds to the desired compensatory
torque [13, 14]. This concept, which is a fundamental component of the theoretical
framework underlying motor equivalence [22–25], is based on the notion that the
neural representation of learned motor behavior can be dissociated from the effec-
tors (muscles, joints, limbs, etc.) with which the behavior was learned. Therefore, a
learned motor behavior could be performed at a similar level of performance even
when the effectors engaged in learning the behavior differ from those used to perform
it. For the case of dexterous manipulation at unconstrained contacts, the ability to
transfer a compensatory torque learned with two digits to three digits, or vice versa,
could be interpreted as an example of motor equivalence. It has been pointed out,
however, that effector-independence for motor execution is not routinely observed.
Specifically, a number of notable exceptions have been reported in the literature,
whereby changing the context of a learned manipulation prevents subjects to per-
form the same manipulation. For example, subjects are unable to transfer a learned
compensatory torque after the object is rotated 180◦ ([15, 26]). Failure to generate the
same torque in the opposite direction to that learned through previous manipulations
indicates that manipulation learning transfer is sensitive to the congruency between
the frame of reference of the learned action and the object. Such congruency is

http://dx.doi.org/10.1007/978-3-319-26706-7_3
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maintained when exerting a learned compensatory torque in the same direction
despite a change in grip type [14], but not when rotating the object, in which case
subjects have to perform amental rotation of the action [15, 26]. Additional examples
of failure to transfer learned manipulation to different contexts [27–29] indicate that
there are circumstances that prevent high-level representations of learned manipula-
tion to be transferred.This experimental evidence, combinedwith evidence indicating
successful transfer of learned manipulation [14], indicate that the sensorimotor sys-
tem’s ability to build synergies for coordinating multiple digit positions with forces
and retrieve them is sensitive to several factors, including previous manipulation
history and frames of references associated with the ‘old’ versus ‘new’ manipulation
context.

2.5.3 Open Questions and Future Research

Our understanding of the factors underlying humans’ ability to control multiple posi-
tion or force variables in a synergistic fashion to perform dexterous manipulation has
improved significantly over the past two decades, leading to the characterization of
kinematic and kinetic synergies. The work reviewed in this chapter is the first attempt
at answering the question of how the CNS combines kinematic and kinetic grasp syn-
ergies. Nevertheless, further work is needed to characterize the underlying sensori-
motor mechanisms. Specifically, behavioral data suggest that unconstrained grasp-
ing is mediated by more corrective force responses than constrained grasping [21].
However, it remains to be determined how cortical areas within the so-called ‘grasp
circuit’, which has been characterized in human and non-human primate studies of
grasping and manipulation [30], interact when sensory feedback of digit placement
must be integrated with digit force control. Similarly, to date there is no compre-
hensive theoretical framework describing the key features of manipulation tasks that
allow or prevent learning transfer to different task contexts. Furthermore, we do not
know why a given manipulation task can be transferred to some, but not all contexts.
Lastly, another critical open question is: how does the CNS transition from kine-
matic synergies before contact to kinetic synergies after contact? It remains unclear
whether kinetic synergies are simply a result of kinematic synergies interacting with
the environment or originate from different neural mechanisms. Future work should
combine complementary experimental approaches to study unconstrained grasping
and manipulation, including brain imaging, non-invasive brain stimulation, virtual
reality environments, and sensorized objects and/or gloves, to gain insight into sen-
sorimotor mechanisms responsible for dimensionality reduction in dexterous manip-
ulation.
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Chapter 3
Digit Position and Force Synergies
During Unconstrained Grasping

Abdeldjallil Naceri, Marco Santello, Alessandro Moscatelli
and Marc O. Ernst

Abstract Grasping is a complex motor task which requires a fine control of the
multiple degrees of freedom of the hand, in both the position and the force domain. In
this chapter, we investigated the coordinated control of digit position and force in the
human hand while grasping and holding a moving object. We observed a substantial
variability between participants in the hand posture. Instead, digit placement was
rather stereotyped for repeated grasps of the same participant. The normal forces
applied by the digits co-varied with their placement across trials. Specifically, we
observed an exponential relationship between finger placement and normal force
applied for the thumb and lateral fingers. For the middle and ring fingers, the force
responses co-varied in an approximately linear fashion with digit position. Principal
component analysis revealed that more than 97 % of the finger force variance was
accounted by the first two components (corresponding to the first and the second
force synergy). This is consisted with the framework of motor synergy, since two
components successfully explained most of the variability in the data.
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3.1 Introduction

Grasping is a complex motor task which requires a fine control of the multiple degrees
of freedom of the human hand, in both the position and the force domain. In order to
control digit positions and forces, humans use both anticipatory strategies and sensory
feedback from touch, proprioception and vision (see Chaps. 2, 4 and 5). Results of
previous studies showed the important role of the anticipatory behavior in grasping
[8, 9, 11]. As showed in Chap. 2, anticipatory strategies take into account object
geometry, its estimated mass and material, and the planned action and manipulation
[8, 11, 12]. Prior knowledge of the center of mass of the grasped object determines
the position of the fingers relative to the object and the applied force [16].

Due to the many degrees of freedom of the human hand, a given object can
be grasped with several—virtually infinite—postures. Therefore, the central nervous
system has to efficiently manage this redundancy in degrees of freedom, which deter-
mines the choice of the digit contact point and the hand posture, as well as the forces
and torques to be applied [4, 7]. Two main frameworks have been proposed in order
to explain how the central nervous system solves this redundancy problem: Motor
synergies [18, 19] and task-optimal control [21, 22]. Motor synergies, which are the
main focus of the book, are defined as a correlation between a large set of variables in
the kinematic (postural synergies) or in the force domain (force synergies), oriented
towards a specific motor goal [7, 18, 25]. The co-activation of a specific group of
muscles towards a given action is a well-established example of motor synergy [6].
The synergy approach has received broad interest in both the neuroscience (see [19]
and Chaps. 2, 4 and 5) and robotic communities (see [5] and Chaps. 8, 10, 11–14).
The frameworks of synergies and optimal control are not mutually exclusive; accord-
ingly Latash [10] proposed a combination of these two motor strategies to solve the
redundancy problem.

Several studies investigated force synergies in multi-digit grasping [3, 17, 24].
The experimental paradigms used in these studies constrained the contact points at
fixed locations, to ensure that the participants grasped the manipulandum on the force
sensors. It has been shown that the first two synergies (identified using a Principal
Component Analysis) accounted for more than 90 % of the force variance during con-
strained grasping [15, 25]. Lukos et al. [11] investigated learning and digit placement
in unconstrained grasping, without examining the distribution of forces produced by
individual digits. Fu et al. [8] investigated anticipatory control in both position and
force domain (two-digit grasping; see also Chap. 2). Specifically, the authors inves-
tigated the digit forces and torque modulation in tasks that did not constrain contact
points. They showed that the coordinated control of digit location and force is cru-
cial for successful grasping and manipulation [8]. During unconstrained grasping,
the motor system choose the location of the fingers in order to modulate the control
of grip and load force [8].

In this chapter we reviewed two previous studies [13, 14] requiring unconstrained
grasping of a sensorized object. In order to measure both position and force of by each
of the five digits, we integrated a newly developed force sensor array [20] in an object
of cuboid shape connected with a force feedback devices (PHANToM™ device).

http://dx.doi.org/10.1007/978-3-319-26706-7_2
http://dx.doi.org/10.1007/978-3-319-26706-7_4
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Participant were required to grasp and hold the object, while we applied external
disturbance forces using the two PHANToM™ devices. Owing to the tactile sensitive
object, we estimated the location on the object’s surface and the normal forces of all
five fingers. We evaluated the stability of the grasp and the force distribution across
the fingers.

3.2 Methods

3.2.1 Participants

Five right-handed participants, 29 ± 4 years of age (4 males), took part in the exper-
iment. All participants had no known neurological or sensorimotor deficits and they
gave informed written consent in accordance with the Declaration of Helsinki.

3.2.2 Hardware

For this study we developed a new sensorized object (TACtile Object, referred as
TACO in the manuscript) that is able to record the position and the normal force
exerted by each finger on the object’s surface. This setup allowed the participants to
freely choose the position of the fingers during grasping. The TACO has a rectangular
cuboid shape (length: l = 170 mm, height: h = 85 mm and width w = 55 mm) and
is built using high-speed tactile sensors [20] on each of the two sensorized sides of
the object. Each tactile sensor has a modular architecture with 16 × 16 modules or
tactels. We mounted four sensors on the TACO, providing 64 × 16 tactels. A single
tactel has a spatial resolution of 5 mm and a sampling rate of 1.9 kHz. We recorded
both the position and of the normal force exerted by each of the five fingers. The
TACO was calibrated using a force gauge with a force ranging from 0 to 25 N and
we varied also gauge tip across sections from 10 to 50 mm2 with a step of 20 mm2.

During the experiments, a virtual rectangular cuboid was displayed between the
participants and the TACO so as to remove any visual feedback of their actual finger
position. The visual scene was displayed on a 21 CRT-computer monitor (SONY®
CPD-G520) with a resolution of 1280 × 1024 pixels (refresh rate 100 Hz). Partici-
pants viewed the mirror image of the visual scene via liquid-crystal shutter glasses
(CrystalEyes™) providing binocular disparity (Fig. 3.1a). The TACO was attached
to two PHANToM™ (SensAble® Technologies) forces feedback devices in order to
track its position and to apply force/torques perturbations during grasping and lifting
(Fig. 3.1b). The sampling rate of the PHANToM™ was 1 kHz. The total weight of
TACO attached to the PHANToM™ arms was m = 0.470 kg. Constrained by the
arrangement of the PHANToM™ force feedback devices, TACO has five degrees of
freedom of unconstrained motion (x, y, z, 0 : no pitch rotation, α : yaw, β : roll).
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(a) (b)

Setup Tactile Object (TACO) with its output image

Fig. 3.1 Experimental materials. a Participants binocularly view the mirror image of the visual
scene. b The TACO attached to the PHANToM™ force feedback devices. On the left, the TACO
output image with yellow cross represents digit center of pressures (CoPs)

3.2.3 Procedure

Participants sat on a chair of adjustable height. Before the start of the grasping
movement, participants forearm rested on a plank with the palm of the hand fac-
ing downward. Participants received an auditory “GO” signal prompting them to
grasp the TACO (five-fingers grasp) and lift it from 100 to 150 mm. The color of
the virtual rectangular cuboid changed when the TACO reached the target height.
Thereby, the two PHANTOM arms generated the disturbance forces and the partic-
ipants were instructed to hold the TACO as stable as possible for 20 s. After having
stabilized the TACO for approximately 20 s, participants received another auditory
signal prompting to replace the TACO on the table. Perturbation forces and torques
where applied using the PHANToM™ force feedback devices. We studied 5 con-
ditions of force/torque perturbations: force of Fy = 2.4 N (Fig. 3.2a) was applied
in vertical direction, or torques of 25 N·cm were applied around the y- or z-axis
(Fig. 3.2b, c respectively) causing yaw and roll rotations around TACO’s center of
mass (Ty and Tz). The perturbations were turned on with a duration ranged between
1 to 3.5 s and off with durations ranged between 0.6 to 1 s. Both perturbations were
randomly presented. Both torques perturbation (Tz and Ty) were applied in clock-
wise (CW) and counter-clock-wise (CCW) directions. Thus, there were in total 5
conditions: (Fy , T CCW

y , T CW
y , T CCW

z , T CW
z ). The order of conditions was randomly

presented to the participants. Participants performed twenty trials conducted for each
condition. Each trial lasted approximately 25 s from grasp onset to the end. Before
starting the experiments, subjects performed four trials with Fy perturbation in order
to familiarize them with the task. Participants could rest as much as they needed
between two consecutive trials. The total duration of the experiment was approxi-
mately 2 h per subject with a break in half-way through the experiment.
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Fig. 3.2 Experimental
protocol. a Perturbation
force Fy . b Perturbation
torque Tz CW and CCW.
c Perturbation torque Ty CW
and CCW

(a)

(b)

(c)

X

Y

Z

External torques perturbations

CCW CW

Ty

Tz

3.3 Data Processing and Analysis

The normal forces F of the fingers and the x- and y-position of the center of pressures
(CoPx and CoPy , respectively) were directly read from the force modules of the
TACO. The CoPx and CoPy were defined as the location of the maximally (one
output: global maximum of the activated region) activated tactels for each fingers’
region in the output matrix that was converted to force in Newton using the lookup
table from the calibration. The calibration table was obtained with a resolution ±0.2
N. Digit locations, normal forces, and TACO position were recorded and ran through
a second order Butterworth low pass filter with 1 Hz cutoff frequency (Fig. 3.3).
Digits locations CoPx and CoPy were both extracted during the holding phase. The
positions and rotations of TACO were tracked using PHANToM™ devices.

Fig. 3.3 Digit normal
forces, TACO position and
hand torques for
representative subject. Gray
areas represents intervals
when perturbations “on”.
Legend 1: T thumb, I index,
M middle, R ring, L little.
Legend 2: x, y, z are the
TACO’s coordinates. Legend
3: H Ty , H Tz are the hand
net torque
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Digit peak normal forces were extracted for perturbations “on” within trial and
then averaged. Linear mixed model (LMM; [1]) with repeated measure structure was
used to analyze the data.

3.4 Results

3.4.1 Center of Pressure for Individual Participants

First, we investigated the contact locations of each digit on the TACO during the hold-
ing phase, to quantify the variability across trials (grasps) and participants. Figure 3.4
shows CoP data for individual participants. We found large variability between par-
ticipants in digit location, indicating that participants differed in the initial hand
posture when grasping the TACO. This is also illustrated in Fig. 3.5. Instead, digit
placement was rather stereotyped for repeated grasps within the same participant.

Fig. 3.4 Digit CoP results for individual participants averaged across trials for each condition. The
thumb CoPs were plotted at the same plane with other fingers (T thumb, I index, M middle, R ring,
L little)

Fig. 3.5 Average variability
in digit CoP across
participants for both x and y
coordinates. Error bars
represents the standard
deviations of the mean std (T
thumb, I index, M middle, R
ring, L little)
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3.4.2 Digit Normal Forces Versus CoPs

Next we sought to evaluate the modulation of digit forces as a function of digit
horizontal locations CoPx . LMM was used to fit the data of digit forces as a function
of CoPx . Specifically, four models were tested for each finger: M1, M2, M3 and
M4 where we varied the way of including our main effect CoPx . In the model M1,
CoPx was included as a fixed effect. In the model M2 we included CoPx as a fixed
effect and also as random effect in order to allow the adjustment to the individual
participants CoPx . The models M3 and M4 were similar to the models M1 and M2,
respectively with including CoPx as a non-linear term (exp(CoPx )). Furthermore,
in the above-described four models, participants were included as random effect,
whereas perturbation conditions and trials were included as fixed effects.

For the thumb and index fingers, M4 was selected as best fit based on the obtained
AIC values (the smallest AIC indicating the best model) of the tested models (thumb:
AIC1 = 3066, AIC2 = 3144, AIC3 = 3103, AIC4 = 3019 and index: AIC1 = 2081,
AIC2 = 2075, AIC3 = 2074, AIC4 = 2066). The chosen model M4 revealed that
the normal forces of these two digits decreased exponentially with increasing CoPx

values (Fig. 3.6). For the Middle and ring fingers, the obtained AIC values were
approximately similar, thus, we chose the simplest model, i.e. the model with less
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Fig. 3.6 Force and CoPx relationship for each finger. Gray points represents original data for all
participants in all conditions. Gray lines represents LMM fitting for each perturbation condition.
Red points represents the average of force data across perturbation conditions. Black dashed line
represent the average LMM fitting
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parameters, M1 (middle: AIC1 = 1528, AIC2 = 1532, AIC3 = 1528, AIC4 = 1532
and ring: AIC1 = 1919, AIC2 = 1923, AIC3 = 1927, AIC4 = 1923). The chosen
model M1 revealed a decrease in the middle finger force per centimeter of CoPx

(0.03 ± 0.06 N; Estimate ± SE). This result indicate that the middle finger normal
force was nearly constant within CoPx variation (Fig. 3.6). For the ring finger, M1

revealed that the force increased linearly by (0.21 ± 0.08 N) per centimeter of CoPx .
For the little finger M4 was selected as best fit based on the obtained AIC values
of the tested models (AIC1 = 2097, AIC2 = 2017, AIC3 = 1873, AIC4 = 1866).
The chosen model M4 revealed that the normal force of the little finger increased
exponentially with an increase of CoPx (Fig. 3.6). The selected models for each
digit revealed small decrease of forces per trial (thumb: 4.44 × 10−4 ± 7.26 × 10−3,
index: 0.003 ± 0.003, middle: 0.003 ± 0.002, ring: 0.004 ± 0.003, little: 7.44 ×
10−4 ± 4.49 × 10−3 N). This result indicates that possible fatigue effects that might
have occurred across trials were negligible.

3.4.3 Digit Forces Synergies

Finally, we investigated digit force synergies using principal component analysis
(PCA). PCA was conducted on the mean peak normal forces, averaged across five
perturbations and participants for the four fingers opposing the thumb. The matrix for
PCA analysis was constructed by defining digit forces as variables (four columns) and
perturbation conditions as entries (five rows). The results of the PCA revealed that
the first two PCs accounted for 97 % of the variance of the normal force. Specifically,
PC1 accounted for 71.6 % of the variance while PC2 accounted for 25.8 % of the
variance. Figure 3.6 shows a biplot of the PCA for the index, middle, ring, and little
fingers (I, M, R, L). Each finger force is characterized by 2 loadings, w1 and w2
(Ff inger = w1PC1 + w2PC2) represented by a vector (Fig. 3.7). PC2 loadings were
higher for the index and little fingers compared to the middle and ring (PC2 loading of
middle finger was approximately zero). PC1 loadings were all positive for all fingers,
while the PC2 loading was negative only for the index finger. Figure 3.7 shows that
the middle and ring fingers were more involved in supporting the load task within
the perturbation condition Fy . The index finger was more involved in the rotational
task within the conditions T CW

y , T CCW
z , T CW

z . The little finger was more involved
in the rotational tasks within the conditions T CCW

y , T CW
y , T CCW

z . Finally, the cosine
of the angle between arrows plotted in Fig. 3.7 indicates the correlation between the
fingers’ forces (see also Fig. 3.8 for detailed correlation coefficients of normal force
exerted by pairs of digits). All between-digits correlation coefficients were larger
than 0.6 with the exception of the index finger that showed weak correlations with
normal force exerted by all other fingers. This weak correlation was required to
generate a net torque against the external perturbations when the index finger was
mainly involved (i.e., T CW

y , T CCW
z , T CW

z ). In contrast, little finger normal force was
highly correlated with normal force exerted by the middle fingers, indicating that
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these fingers were more involved with the little when this latter was mainly involved
to compensate external torques (T CCW

y , T CW
y , T CCW

z ; Fig. 3.7).

3.5 Discussion

In this chapter we addressed the question of how multiple digit forces are coordinated
during grasps at self-chosen contacts on an object in response to external force
and torque perturbations. We found a large variability in the contact distributions
across participants. Furthermore, digit force responses systematically varied as a
function of digit horizontal locations CoPx . Specifically, thumb, index, and little
finger forces exhibited an exponential modulation as function of digit displacement
(CoPx ), whereas the normal force exerted by the inner fingers (middle and ring
finger) exhibited linear responses, indicating that most of the across-trial variability
in digit contacts was compensated by normal force modulation by the outer fingers.
Moreover, PCA computed on multi-digit forces revealed that two force synergies
accounted for more than 97 % of the normal force variance.

We observed a large variability between-participants in both horizontal and ver-
tical digit location (CoPx and CoPy). This confirmed the results of a previous study
of unconstrained two-digit grasping [8]. Specifically, in [8] participants modulated
the vertical spacing between the thumb and index fingers at grasping in order to
generate a torque to compensate an external torque whose direction was changed
across blocks of consecutive trials. In contrast to previous studies that investigated
multi-digit prehension could not assess modulation of digit contacts because they
studied constrained grasping. Moreover, it has been reported that for the case of tri-
pod grasping, the thumb exhibited the largest variability in vertical CoPs (CoPy) and
the index and middle fingers were characterized by the largest CoP variability in both
coordinates CoPx,y [2]. Our results showed that the variability between participants
was similar in the x- and y-axis, although slightly larger for CoPx (Fig. 3.5). This
high variability can be a hint of idiosyncratic grasping strategies.

Our results revealed that digit forces co-varied with the horizontal and vertical
digit locations CoPx,y . Specifically, linear and exponential force modulation was
observed across digits as a function of CoPx (Fig. 3.6). Fu et al. [8] reported a linear
relation between the load force and vertical distance between thumb and index finger
CoPy (equivalent to CoPx in our study). Thus, we conclude that the phenomenon of
digit force-to-position modulation is not limited to two-digit grasping, but extends to
cases where a larger number of contacts is involved as the present five-digit grasping
scenario.

PCA revealed that two force synergies accounted for most of the variability in
digit normal force. This result is consistent with findings from previous studies
on multi-digit force synergies [15, 23, 25] using a manipulandum with fixed digit
locations. Despite the large variability in digit CoPx,y , the first two force synergies
accounted for nearly all the variability in fingers forces. These results supports the
above proposition that digit normal forces were modulated to compensate for the
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variability in digit locations. These findings indicate that the central nervous system
solved the redundancy problem by reducing the dimensionality of the force space,
i.e., from five to two dimensions, despite the within- and across-subject variability
in digit locations. The neural mechanisms underlying the observed digit force-to-
position modulation are currently under investigation.
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Chapter 4
The Motor Control of Hand Movements
in the Human Brain: Toward the Definition
of a Cortical Representation of Postural
Synergies

Andrea Leo, Giacomo Handjaras, Hamal Marino, Matteo Bianchi, Pietro
Pietrini and Emiliano Ricciardi

Abstract The control of the many degrees of freedom of the hand through func-
tional modules (hand synergies) has been proposed as a potentially useful model to
describe how the hand can maintain postures while being able to rapidly change its
configuration to accomplish a wide range of tasks. However, whether and to what
extent synergies are actually encoded in motor cortical areas is still debated. A direct
encoding of hand synergies is suggested by electrophysiological studies in nonhu-
man primates, but the evidence in humans resulted, so far, partial and indirect. In this
chapter, we review the organization of the brain network that controls hand posture in
humans and present preliminary results of a functionalMagnetic Resonance Imaging
(fMRI) on the encoding of synergies at a cortical level to control hand posture in
humans.

4.1 Introduction

The human hand shows an extraordinary ability to perform a wide range of voli-
tional movements that are adaptable—changing in response to modifications in the
task demands—and are, in the meantime, characterized by a great precision. As
widely discussed throughout this book, this is made possible only by reducing the
impact of the redundancy of effectors that characterizes the hand from an anatom-
ical, functional and kinematic point of view. Indeed, according to the redundancy
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principle, motor systems have more components (i.e. bones, muscles or joints) than
needed for accomplishing particular tasks, leading to an excess of degrees of free-
dom. The multiple combinations of these degrees of freedoms lead to many possi-
ble strategies for movement execution. For example, all motor tasks (e.g. pinching
or grasping) can be achieved with more than one configuration of hand joints. As
already described in previous chapters, redundant degrees of freedom can be grouped
in weighted combinations called motor synergies. Synergistic control represents one
of the most interesting theoretical approaches that have been attempted to solve this
redundancy problem [1]. Hand muscular and postural synergies may therefore be the
way such optimized hand control is achieved. However, neural functional evidences
of synergistic control of the hand are very scarce, comprising a few electrophysio-
logical studies performed onmonkeys and an evenmore slender number of reports in
humans. Chapter5 analyzes the theoretical and experimental evidences in support of
an encoding of hand synergies at the level of subcortical circuitry. In this chapter, we
will push forward those observations, reviewing the structure of the brain network
that controls hand posture in humans. We will show how the evidences obtained so
far definitely support the idea of synergistic control of human hand at a brain cor-
tical level. We will then discuss the importance that multimodal investigations can
take in studies about hand postures, presenting the preliminary results of a conjoint
kinematic and functional Magnetic Resonance Imaging (fMRI) experiment about
the neural correlates of hand postural synergies in humans.

4.2 Action Processing in the Brain

The ability to grasp or to use objects and tools is one of the most important skills in
humans and primates. Grasping and interacting with surrounding items have been
essential for evolution, allowing even for the development of many meaningful ges-
tures that contributed to shape the relationships between humans and their external
world (see e.g. Chap.2). The investigation of the neural correlates of grasping and
of other hand-mediated movements has been therefore one of the most fascinating
topics of research in neuroscience during the last two centuries. Furthermore, along
the 20th century, with the development of the electrical and functional recording
techniques, the science of grasping has obtained its most striking results, paving the
way to a better understanding of such important and meaningful motor acts [2].

The studies regarding hand actions—and, in more detail, grasping—have tried
to shed light on the many possible ways in which the brain deals with the different
aspects of action processing. They have therefore focused on the neural networks
potentially involved in action perception, recognition and execution. Chapter 5 dis-
cussed the importance of subcortical circuitry in the synergistic organization ofmotor
control in the brain, with a focus on spinal circuitry and add-on capability provided
by the spinocerebellar system for complex synergies.

However, the extent to which these domains of action processing are correlated
and whether such a synergistic organization can be observed also in specific brain
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areas are still fascinating open questions: are our internal representations of actions
necessary to understand actions intended or performed by other individuals? And, to
what extent our ability to recognize the motor acts of others is needed to be able to
perform them on our own? Answering to these questions strongly implies to know
the organization and the internal structure and differences of the cortical networks
engaged by these aspects of action processing.

The commonalities and differences of these networks have been extensively
explored since the earliest years of functional neuroimaging. A highly-cited meta-
analysis [3] evaluated the correlates of action execution, observation, verbalization
and simulation. The four modalities could achieve a high degree of overlap in a
network including the supplementary motor area, dorsal premotor cortex, superior
parietal lobe and supramarginal gyrus. However, some regions were activated only
in a single modality: inferior parietal lobe, for example, was found activated in action
execution and imitation, while it was not recruited by verbalization. The high degree
of overlap has suggested the presence, in the commonly recruited regions, of a core
of shared representations for both performing actions and recognizing the ones being
executed by others [4].However, this hypothesis is highly disputed and further studies
[5] and comprehensive reviews [6] have found differences between the representa-
tions of executed, imagined and observed actions in this networks, concluding that
the consistency of engagement can be apparent and due only to different factors such
as attention or high-level “semantic” processing of the actions.

This chapter will focus on hand action execution, presenting the approaches that
have been attempted for studying hand motor control in monkeys and humans and
the theories about the way motor commands may be encoded in the cerebral cortex
and giving an overview about the possible “languages” used by the brain to control
the hand, including the evidences of a neural coding of muscular and postural hand
synergies.

4.3 A Cortical Network for Hand Posture Control

Evidence from animal neurophysiology suggests indeed that the control of goal-
directed hand motor acts relies only on a network of brain regions. Studies that
applied single neuron recording to monkeys during the execution of grasping tasks
found three specific grasp-related regions in the monkey: area F1 (primary motor
cortex), area F5/PML (premotor cortex) and the anterior intraparietal sulcus (AIP).
Area F1 is the output channel of this network: axons originating from this cortical
region form the corticospinal tract, which reaches the spinal cord and extends into the
peripheral nerves directly connected to hand extrinsic and intrinsic musculature [7].
The other regions of the hand motor control network are related to the processing of
grasp-relevant properties: area F5 and area AIP are directly connected to each other
and process visuomotor features of action planning and control, thus modulating
their activity according to the motor act that is specifically performed (e.g. precision
vs. power grasp). While the area AIP, which is structurally and functionally closer to
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visual areas and to those cortical regions that form the dorsal visual pathway [8], may
be related to the processing of visual features of the hand-target interaction, providing
the information that is required to adapt the motor act to the actual object size [9, 10],
the premotor area F5 may be more related to the motor representation and control,
selecting the most appropriate strategy for accomplishing a task consequently to the
visual properties of objects [11]. Lesion or inactivation studies in monkeys have
substantially confirmed this putative organization of the grasping network [12].

4.4 The Network for Hand Control in Humans: fMRI
Evidences

During the last years, fMRI has become the most used technique for in vivo explo-
ration of brain activity. Themeasurements provided by fMRI are indirect estimations
of brain activity: the increased discharge rate of neurons following—for example—
the presentation of a stimulus, leads to a greater need of blood supply, provided by the
small cortical vessels. Because of the different magnetic properties of hemoglobin,
this event is reflected by a local alteration of magnetic field. This phenomenon, called
neurovascular coupling, is the basis of BOLD (BloodOxygenation Level Dependent)
signal and expresses the way brain activity is measured by fMRI. Every fMRI voxel
samples a portion of brain tissue of some mm3, thus containing a number of neurons
that can reach some thousands [13, 14]. For this reason, BOLD can measure brain
activity in an indirect and coarse way, providing a less accurate measurement with
respect to single neuron recordings.

The signal variations across a functional run (which may include—for example—
the execution of a task) are represented as a time course that expresses the BOLD
signal over time. These time series are sampled at a low temporal frequency (very
often 0.3Hz) and need to undergo some preprocessing steps, in order to correct
motion and acquisition artifacts, and can be later analyzed with an operation called
deconvolution, that implies the computation of a measure of fit between the standard
time pattern of an activated voxel (Hemodynamic Response Function, HRF) and the
time course of the actual voxel. This operation results in a set of scores, usually
defined as Statistical Parametric Map, that is expression of the fMRI activity.

The study of hand movements with functional MRI is potentially interesting yet
very difficult, due to the artifacts resulting from head motion, which often lead to
data loss and hamper the findings. Therefore, functional imaging evidences on the
hand network relied mainly on simple finger tapping paradigms that were quite
inspiring for investigating the organization of primary motor areas [15–17]. Overall,
these studies confirmed the distributed and overlapping maps of fingers inside hand
primary motor cortex.

Functional studieswith complexhandmovements related to hand-tools interaction
started quite lately, with an important report of an experiment during which subjects
had to pantomime the use of imagined objects triggered by an auditory presentation
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of their names [18]. Despite some technical shortcomings, the study identified a
bilateral activation of the intraparietal sulcus (IPS) while no motor regions resulted
activated, probably due to contrast with a moving-hand control condition.

In the years following this first report, the number of studies implying tasks of
real movement execution has been fairly low, even if the interest in the neural basis
of action planning is surely great. Moreover, many of the fMRI studies on grasping
were based on the classic distinction introduced for the first time by Napier [19,
20] that divided grasp gestures into essentially two big classes: power and precision
grips. In the former class, the object is “held in a clamp between the partly flexed
fingers and the palm”, while in the latter the object is “pinched between the fingers
and the opposing thumb” [19].

The studies conducted with these grasp categories helped to a great deal to under-
stand the role of parietal cortex in motor planning: superior and intraparietal cortex
indeedmay be devoted to sensorimotor transformations, gathering information about
the target object (e.g. its size or distance) and using them to correctly preshape the
hand for the upcoming grasping movement. The anterior part of intraparietal sul-
cus may correspond therefore to the putative human homologue of monkey area
AIP [21–23]. Further studies applied classification algorithms on fMRI activation
patterns and demonstrated that different tool-directed movements could be decoded
from brain activity in IPS [10, 24] and that this region is sensitive to the difference
between precision and power grasp acts [9, 25, 26]. These differences in activations
are indeed suggestive of a modulation of activity in hand-related regions induced
by object size: indeed precision grips require a prolonged preparatory phase and are
likely to be associated to specific activation patterns in the regions integrating object
information such as the intraparietal sulcus [27–29].

Due to the low number of studies performed so far, a recent, comprehensive
meta-analysis on grip type identified only 28 original papers focused on grasp type
and grasp execution using gestures that were actually performed inside the MRI
scanner. This meta-analysis [30] identified specific activations for power grip in the
postcentral gyrus and unique activations for precision grip in precentral gyrus and
in SMA. However, most of the activation clusters overlapped in the aforementioned
regions and in frontal and parietal areas, sustaining the idea of a specific network for
hand control, activated with great consistency across subjects. When the attention is
concentrated on the primary motor cortex only, most of the studies have examined
single digit representations, as reported above. Nonetheless, in a recent experiment
[31, 32] single meaningful movements could be successfully decoded from their
evoked BOLD patterns at ultra-high field, only using the voxels in primary motor
cortex.

Functional MRI studies have therefore helped to confirm the organization of
the hand related network that result from electrophysiology and clinical reports:
the primary motor cortex, organized as a distributed and overlapping set of patterns
displaying only moderate preferences for a single digit, is the effector of a prefrontal-
parietal system which plans movements and hand-tool interactions on the basis of
visual and proprioceptive features and of information about target objects which is
conveyed by the occipitoparietal visual pathways.
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Fig. 4.1 Cortical networks involved in action observation (top) and imitation (bottom), according
to the meta-analysis by [6]

Even if the largest part of these studies focused on transitive hand actions, which
contemplate interaction with tools and objects, fMRI studies regarding intransitive
actions—that do not require an interaction with objects—found activations in a sim-
ilar network comprising motor, premotor, inferior parietal and intraparietal regions
[33, 34] (Fig. 4.1).

4.5 Somatotopic Control of Hand Muscles

When aiming at characterizing the brain structural and functional organization of
hand motor control, one of the main questions inevitably focuses on how motor
information is encoded in the primary motor cortex (M1). Actually, some different
theories exist about the possible ‘format’ of how the information on distinct motor
acts is represented at a cortical level and then descends fromM1 to the hand muscles
and joints.

Historically, the first important hypotheses were drawn during the 18th century
by John Hughlings Jackson who observed direct relationships between seizures and
spreading of muscular jerking, with specific patterns that suggested a strict ordering
of body segments in the motor cortex. Later, Clinton Woolsey, Wilder Penfield and
other researchers observed that the cortical stimulation of single neurons in M1
elicited distinct motor responses with the contraction of small groups of muscles
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controlling one or few digits [35, 36]. Those observations introduced the concept
of motor somatotopy: the motor cortical regions are topographically organized into
sub-segments that control a single effector, or a reduced group, of muscles or joints.
The subsequent success of this theory arose from many observations in patients or
animals that brought to similar conclusions. Nonetheless, while a coarse arrangement
of the limbs in the primary motor regions could be demonstrated with few doubts,
leading to the concept of separated—for instance—hand, mouth or face areas [37],
the intrinsic organization of movement information within such motor regions was
harder to assess.

When looking specifically to handmotor control, the almost contemporary reports
by Foerster [38] and Penfield and Boldrey [35] contained completely opposing con-
siderations: Foerster claimed to have detected subregions within the M1 hand area
that controls specifically single digits, and lesions to these clusters could lead to
weakness or deficit in control of single digits [38]. Successively, Penfield himself
applied electrical stimulation to a wide number of sites in the monkey primary motor
area, without finding unique, segregated clusters of neurons that were specific for
single digits [35]. Foerster’s observations were quite isolated and, in the follow-
ing decades, no further claims were made regarding single digit deficits induced by
cortical lesions [39], even if this can be due to the scarcity of lesions that respect
the neuroanatomical boundaries of single digit-related areas. Penfield’s theory was
indeed more successful, providing the basis for the new accounts on topographical
hand representations that still today are regarded as being themost reliable theoretical
framework. The hypothesis of a “distributed and overlapping” hand area, in which
neurons pertaining to different digits are intermingled, is highly supported nowadays.
Additionally, movements of more than a single digit could be evoked stimulating pri-
mary motor areas, thus providing evidence against strict segregation of single finger
clusters [39–41]. Two different theories on complex, coordinated hand movements
can be derived from each of these accounts: if single digits were represented in segre-
gated spatial clusters, descending motor commands are composed by single effector
or single joint elementary movements that should be assembled by a structure in the
Central Nervous System (CNS), such as basal ganglia or spinal cord. Overlapping
representations covering more than a single finger require a hand control that should
occur through complex multidigit commands, projected in a descending way from
the primary motor cortex. The spinal cord, in this framework, may simply act as a
relay station, refining and enhancing the motor instructions.

It is worth noting that brain functional imaging studies in humans, which typi-
cally adopt simple finger tapping tasks to study the representations of single digits in
motor cortex, have essentially confirmed a “distributed” model of finger representa-
tions. Indeed, no evidence was found about an orderly organized set of digit-specific
clusters: hand area is instead more likely to be represented as a patch of partially
overlapping foci of activation, which can be more specific for the control of a single
digit without, however, being exclusively associated with it [15–17]. In conclusion,
somatotopy has been assessed in motor cortical areas at a coarse level (i.e. “hand”
or “head” areas), failing to support strongly a finer level coding (i.e. regions specific
for single digits or muscles), in favor of a distributed representation of digit-specific
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neurons, widespread across the “hand” area, and organized in clusters that overlap
at least partly.

4.6 “Languages” of Hand Control in Primary
Motor Cortex

Despite the evidences supporting somatotopic control of body segments, another
hypothesis has raised regarding the ‘nature’ of motor commands encoded in the
cortical regions involved in motor planning. Such information can be represented in
a somatotopic or topographical way (i.e. as sets of muscles that need to be controlled)
or in a goal-oriented way (i.e. different sets of actions are represented in specific
ways according to their goal).While several studies using electrical microstimulation
elicited movements of well-defined limb segments, new fascinating theories have
emerged in recent years. Among themost significant, the first studies byGraziano and
colleagues [42] and later confirmed by other authors [43, 44] are worth mentioning.
Applying electrical pulses (intracortical microstimulation, ICMS) to primary motor
and premotor areas in monkeys, with the delay associated with motor planning,
could evoke complex and often behaviorally relevant motor acts or postures, such
as self feeding or grips [40, 45]. Moreover, the evoked movements shared stable
end points that were highly specific for the group of neurons that were stimulated.
More interestingly, the movements were directed towards a final posture that was
independent on the starting position of the limb. Therefore, these results suggested
that the stimulation over primary motor and premotor neurons could specifically
evoke final limb positions and that the posture to be achieved affected neural activity
more than the specific recruitment of hand muscles or joints.

Even if these previous findings hinted at an end-point ormovement specific coding
within the primarymotor cortex,Muir andLemon’s following observation of neurons
that were specific for precision grips [7] and the discovery of posture-specific coding
nurtured further investigation on the internal nature of the motor commands encoded
in the cortex. Recently, a study demonstrated the ability in monkeys to discriminate
between a very large number of postures using the neuronal activity in the premotor
and motor areas [46]. Schaffelhofer and colleagues showed that the activity patterns
were highly specific thus allowing for an object-specific decoding: different accu-
racies were obtained for the planning phase (higher role of premotor regions) and
actual motor execution (higher discrimination in primary motor cortex). This speci-
ficity allows for the programming of a robotic device, which was able to achieve the
same postures after being trained on the differences between neural patterns. How-
ever, despite these results, only a fraction of the total variance of M1 activity has
been explained either with end posture or trajectory, suggesting that much has still
to be clarified about the neural mechanisms that underlie hand control in nonhuman
primates and, consequently, in humans.
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4.7 Synergies and Their Brain Correlates

Among the strategies possibly adopted by CNS to deal with motor redundancy, the
presence of linear dimensionality reduction strategies or motor synergies is one of
the most theoretically successful [47, 48], as discussed in Chaps. 2–7. A synergy is a
“collection of relatively independent degrees of freedom that act as a single functional
unit” [48, 49]. Synergies have been described both at a muscle level, as co-occurrent
patterns of contraction (muscle synergies) (Chaps. 10 and 11) or at a postural level
(Chaps. 2, 3, 8 and 12), as groups of degrees of freedom that are controlled together
[50]. These synergistic models offer a great computational advantage, since a few
synergies (from three to five) can explain a great fraction of the variance associated
to posture or muscle activity in a wide range of tasks. However, in order to state that
synergies are not only an advantageous and strategic way for controlling artificial and
robotic devices, as discussed in Chaps. 8 and 9, but can also represent at least one,
or even the main, strategy of motor control in primates, further neurophysiological
and functional evidence is needed.

Synergistic motor control hypotheses have been so far corroborated by a great
amount of observations, regarding gait and stance [51], arm movements [52] or hand
control [53, 54]. In all these reports, a small number of synergies can be extracted
from behavioral data to explain the majority of variance. However, these data can
only confirm that the motor output (i.e. posture or muscle activity) can be described
through synergies, without informing about the possibility that such model has a
neural correlate in the encoding activity of motor regions. For this reason, despite
these behavioral and kinematic descriptions of synergies, the presence of synergies
as a neuronal underpinning for motor commands in the brain has been posited only
indirectly.

In fact, the studies that have been performed, both in monkeys and humans, to
verify the presence of muscle or postural synergies in the brain relied on the use
of integrated, multimodal paradigms: generally, these investigation require both a
technique for recording posture or muscle activity (e.g. postural tracking or Elec-
tromyography -EMG-) and a technique for studying brain activity (e.g. intracortical
potentials, Electroencephalography -EEG- or fMRI.Combining these pieces of infor-
mation, it is possible to verify whether the synergy-based descriptions of behavioral
data are consistent with the brain activity patterns.

Important evidence for synergistic control of the hand was provided by studies
on monkeys in which intracortical microstimulation (ICMS) was used along with
EMG to evoke and record hand movements, extracting a small set of synergies
from the EMG patterns and analyzing the covariation with neuronal activity. In
these experiments [55, 56], it was possible to confirm both that evoked movements
tend to converge towards particular positions and that a low number of synergies
could be extracted from the EMG activity patterns. However, those authors argued
that a cortical coding of synergies is unlikely and that motor primitives could be
instead represented in the spinal cord, as suggested by earlier evidence obtained in
animals [57].
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In humans, the number of reports is even more slender: a pioneering study [58]
applied a quite similar paradigm to that adopted by Overduin by using Transcranial
Magnetic Stimulation (TMS) over M1 to elicit hand movements and optical track-
ing to record the joint angle patterns of the evoked postures. The results showed
that TMS-induced postures have low complexity, with a small set of synergies able
to explain most of the postural variance. Other confirmations were provided by
stroke patients in which the synergies in the affected and unaffected arm were com-
pared [59, 60]. In those patients, the performance in the affected and unaffected
arms differed, but the synergy patterns were highly consistent. As also described in
Chap.5, where the importance of subcortical circuitry in synergistic organization is
pointed out, these data suggest that the spinal cord may actually encode muscle syn-
ergies and that motor cortex with its descending projections could act as a controller
that selects and tunes the synergies encoded downstream. The temporal distance
from stroke onset has a role on the synergy patterns, providing useful hints for
rehabilitation.

So far, a neuroimaging confirmation of a synergistic control of hand posture is
totally lacking: the only results provided so far came froma simple binary comparison
between synergistic/dexterous and non-synergistic hand movements and assessed a
differential recruitment in the well-known premotor and parietal net-work associated
to control of hand posture [61].

Apart from these very partial indications, no studies have so far unveiled whether
and to what extent the cerebral cortex can adopt synergy-based models to control the
hand: a clear, direct evidence of the presence of dimensionality reduction strategies
in motor planning has yet to be achieved.

4.8 Alternative Hypotheses: A Revised Somatotopy?

Despite the growing support to themotor control theories based on synergies, alterna-
tive models of hand motor control have been suggested. In fact, additional hypothe-
ses originating from the models based on somatotopic control imply the presence
of a strictly topographical organization of motor system based on cortical neurons
directly connected to spinal motoneurons with monosynaptic projections. Thus, a
cortical motor neuron would directly control a single joint or muscle [35–37]. This
organization has been assessed at a coarse scale (i.e. “hand” or “leg” areas) and it is
still debated whether a finer level representation for finger or joints is also present.
Actually, the existence of horizontal connections and distributed representation of fin-
gers, along with the end point tuning of hand motor neurons, hint at a coding of hand
movements based on multi-joints and multi-muscles modules. However, recently,
the firing patterns of primary motor neurons were compared both with components
extracted from muscle activity (muscle synergies) and with digit motion patterns,
finding a greater similarity between neuron activity and single digit movements [62].
The conclusions drawn by the authors were that synergistic control of hand muscles
is unlikely and that M1 likely controls single digit kinematics more than the compo-

http://dx.doi.org/10.1007/978-3-319-26706-7_5
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nents of hand motion. For this reason, when discussing the strategies adopted by the
brain to control the hand, somatotopy-based models and their recent revisions need
to be extensively taken into account.

4.9 Techniques for Hand Movement Recordings:
Motion Capture and EMG

Human hand movements have been studied so far with different measurement sys-
tems. These systems, hereinafter referred to as Hand Pose Reconstruction (HPR)
systems (see Chap.15), can be roughly grouped into remote, or optical-based sys-
tems, and wearable, or glove-based, systems [63, 64]. The first type of HPR systems
records the 3d positions of active or passive markers attached to the skin through the
usage of cameras, such as the Phase Space System (by Phase Space LLC), which
uses active infrared markers, that was also adopted for the experiments described in
this chapter. The 3d information on markers is then used to estimate joint angles,
knowing hand geometric parameters [65], as also discussed in Chap.14. Glove-based
systems directly provide the values of joint angles, after a suitable calibration, and
they were used e.g. in [50, 53]. For a review of such systems, the reader is invited
to refer to [66] and Chap.15. It is important to notice that optical-based systems are
usually more accurate than their glove-based counterpart [63, 64].

In literature, synergies have been often computed from a set of measured provided
by HPR, either glove-based or optical-based [50, 53, 54, 65], see e.g. Chaps. 2, 8, 9
and 12. This topic iswidely discussed inChaps. 14 and 15,where tools and techniques
for recording of hand kinematics are described.

Another widely used technique to study hand synergies is EMG: intramuscu-
lar recordings are widely used in animals [55] while surface EMG, as discussed in
Chaps. 10 and 11, is a non-invasive technique with an easy set-up which has been
widely used in studies of gait and locomotion [51] and hand movements [67]. How-
ever, the placement of the self-adhesive electrodes for surface EMG can cover only
a small fraction of the muscles in hand and forearm. For this reason, only a part
of the intrinsic or extrinsic hand muscles can be recorded, making EMG-recorded
postures less accurate than the ones recorded with motion capture systems. The data
are analyzed by extracting a wide number of time-domain features that describe the
EMG signal [68]. Muscle synergies can then be computed applying linear dimen-
sionality reduction methods such as Principal Component Analysis (PCA) [53] or
Non-Negative Matrix Factorization [59, 60], see e.g. Chaps. 3 and 9.
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4.10 Encoding Techniques: Integrating Behavioral
and fMRI Data

In the last years, the advent of machine learning methods has strongly shaped the
world of cognitive neuroscience [69]. Data acquiredwith fMRI or EEG are expressed
as time series, representing the signal variation in a brain region across time. These
data are usually analyzed with univariate approaches and single fMRI voxels or
EEG electrodes are treated as single, mutually independent variables. Multivariate
techniques overcome these limitations and consider instead the complex, multiunit
populations and have a greater power to detect differences between mental states
[70]. In the first report regarding the use of multivariate classifiers on fMRI data
[71], pattern analysis was developed to discriminate among object categories (e.g.
faces, houses, chairs, cats, etc.) in the temporo-occipital extrastriate region that form
the ventral visual stream. That study demonstrated for the first time that cognitive
representations of perceived information can arise from distributed and overlapping
systems which are based on the integration of many anatomically distinct brain areas
instead of relying on a single anatomical region.

The advent of multivariate techniques has therefore moved the explanative power
of neuroimaging far beyond the capabilities of classical inference and univariate
methods (i.e. a region’s function is identified by determining which task activated it
most strongly). Among the most interesting new features introduced, there are their
ability to discriminate and classify mental states [69, 71, 72], to perform discrimina-
tions between classes of stimuli [72, 73] and even to allow for the reconstruction—or
decoding—of perceived information from the brain activity associated to it [74, 75].
The decoding of visual content without an a priori inference [74, 76, 77], together
with similar approaches on different tasks such as games or mathematical operations
[78, 79], have underlined the important putative applications of these techniques to
the programmingofBrainMachine Interfaces (BMIs) thatmaybe able to “read” brain
activity and use that information—for example—to control external devices. These
studies, however, relied on supervised machine learning classifiers that needed to be
trained on part of the stimuli before being applied on the remaining activity patterns.
Important advancements come from later studies in which unsupervised classifiers
were used, creating instead a set of models that were tested on the stimulus-evoked
activity patterns [80, 81]. The ‘successful’ method—i.e. the one with the highest
prediction accuracy—informed in a totally data driven way about the processing
strategy applied by that particular brain region to process perceptual content. The
first study using that approach tested a set of different models based on specific
perceptual properties of the stimuli to reconstruct (encode) the responses evoked by
those stimuli in primary visual areas [80]. Encodingmodels have therefore confirmed
the criteria provided by physiologists and computational neuroscientists to explain
the processing in visual cortex, establishing a strong link between these disciplines
and cognitive neuroimaging. Encoding and decoding do represent therefore comple-
mentary and mutually reinforcing techniques [82] that can be used in association to
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increase the predictive power of neuroimaging and its potential future application
for the development and control of BMIs.

However, even if these techniques are potentially interesting since they test the
consistency ofmanydifferentmodelswith brain activity, they could demonstrate even
more applications when integrating fMRI data with external measurements, such as
behavioral performance data or peripheral biomarkers. The study that introduced
this method for the first time was the seminal paper by Mitchell and colleagues on
the semantic representations of concrete nouns [83]. In this experiment, an encoding
algorithm was developed to predict the functional activity patterns associated to
sixty concrete concepts that were provided to subjects using their associated image
and word (e.g. “dog”, “apple”, “tomato” etc.). A model was created associating
the concept-related words with their co-occurrence with 25 different verbs on the
basis of a large corpus (e.g. “apple” is strongly associated with “eat” or “pick” and
weakly associated with “walk”). Each noun was therefore described as a set of verbal
features, with their associatedweights. Then, after training a classifier to discriminate
between the sixty nouns on the basis of these descriptions, it was possible to “predict”
the functional activity patterns associated with the nouns, measured during an fMRI
experiment in which subjects freely draw associations between the nouns and their
properties.

While these methods are able to integrate external data sources (e.g. semantic
features) and brain functional patterns, they rely on a previously defined “model”
which is used to predict brain activations. This point is crucial: a single model will
not be able to achieve a complete success (i.e. to achieve a full description of activity
patterns), first because of the internal noise of fMRI data, second because the human
brain surely applies multiple processing strategies and it is unlikely that a single
description could totally explain the activity of a specific region or network. Further
studies have therefore tested multiple semantic models on brain activity [84, 85] and
a combined approach testing more than a model would draw more conclusions than
the evaluation of a single description.

4.11 Combining Techniques to “Decode” Hand Posture

The strategies adopted by the brain to control the hand are a theme of extreme
interest for neuroscience as well as engineering and robotics. These strategies allow
achieving flexible and adaptable configurations that can be quickly modified without
losing their stability. Demonstrating the synergistic control of the hand can therefore
be very useful to explain both the neural bases of this effective control—thus adding
significant information to the neuroscience of movement—and to achieve a model
that can be used to design and develop new prosthetic devices based on efficient
control strategies. Additionally, the advent of machine learning techniques applied
to brain imaging allows both to increase its explanatory power—whichwas somehow
limited by the use of univariate methods—and to integrate brain functional data with
behavioral or electrophysiological measurements.
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Within the more general aims of the ‘The Hand Embodied’ program (supported
by the European Commission, under the 7th Framework Programme, call FP7-ICT-
2009-4, website: http://thehandembodied.eu/), a multimodal experimental paradigm
has been adopted to integrate fMRI and kinematic data, in order to study the cortical
encoding of hand movements. This multimodal study was therefore aimed at testing
whether hand posture, expressed through synergies, has a correlate in brain activity
as measured by fMRI. The use of multivariate encoding techniques gave us new
instruments to verify this hypothesis, integrating postural and neural functional data
obtained from two different experimental sessions.

4.12 Description and Preliminary Results

Nine healthy right-handed volunteers were recruited for two different experimental
sessions: session 1 was a kinematic experiment based on an optical tracking of
the hand joints during the execution of grasp-to-use acts towards twenty different
common-use objects [65], and session 2 was a functional MRI acquisition during the
execution of grasping gestures towards the same objects. Twenty target objects were
chosen froman earlier report [53] andwere not physically present during the sessions.
The two sessions were was organized in randomized trials in which participants first
watched a picture of the object then a cue sound—heard after an inter-trial interval—
prompted themovement execution. Participants had to grasp objects as if theywanted
to use them and to hold the resting position once the movement was over. Each trial
was repeated five times, in randomized order.

Hand posture was recorded with an optical motion capture system and optical
markers were placed on selected bones and joints of the fingers, to derive the joint
angles of the hand. In addition, a local frame of reference was obtained adding a
bracelet with two additional markers.

The videos from each of the stereocameras were used for movement reconstruc-
tion, estimating all the joint angles for each end posture. Postural synergies were
then computed using Principal Component Analysis (PCA) [53], see e.g. Chaps. 2,
9 and 11.

In Session 2 the same paradigm was replicated inside the fMRI scanner. Data
underwent standard fMRI preprocessing and the BOLD responses to the twenty pos-
tures were then used in a multiple linear regression procedure [83] using, as encod-
ing model, the matrix of postural coefficients (i.e. principal component coefficients)
which was obtained from the data acquired in Session 1. The analysis resulted in an
accuracy value that describes the goodness of the model performance, i.e. the ratio
of activity patterns that could be predicted on the basis of the principal component
coefficients. Moreover, a map of the voxels whose activity was predictable with the
postural synergy model could be derived for each participant. A probability map was
then computed, to retain voxels in which the encoding procedure was successful in
a greater number of subjects. All the single-subject accuracy values were tested for
significance.

http://thehandembodied.eu/
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Fig. 4.2 Group map representing the regions with the best encoding performance. The single
subject maps of the voxels that effectively predicted neural activity across motor acts were merged,
applying a threshold of p> 0.33, retaining only the voxels used in at least four subjects. M1 Primary
Motor Cortex; SMG Supramarginal Gyrus; SPL Superior Parietal Lobule; IPS Intraparietal Sulcus;
SMA Supplementary Motor Area

The encoding procedure resulted in an above-chance level of accuracy in all sub-
jects. The group probabilitymap,which retained the voxels that achieved a successful
encoding performance across subjects, identified a well-defined network of regions
related to hand control [2, 61]. The network comprised bilateral precentral, sup-
plementary motor and supramarginal areas and left inferior parietal and postcentral
cortex (Fig. 4.2). Interestingly, brain activity in these regions was modulated in a
posture-specific way, consistently across subjects (Fig. 4.2). This network, therefore,
encodes the information for hand motor control relatively to all postures and target
objects.

4.13 Conclusions and Future Directions

These preliminary data show for the first time that the network of brain regions
that are devoted to the control of hand movement may encode specific ‘high-level’
representations of single postures through kinematic synergies. Specifically, these
motor cortical areas are involved in controlling the end-postures of grasping, and
specifically modulate the pattern of hand muscle and joint movements associated to
the target objects. These results complement the observations reported in Chap. 5 on

http://dx.doi.org/10.1007/978-3-319-26706-7_5
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the role of the subcortical circuitry in synergistic organization: the extent to which
such organization is demanded to different areas of CNS still represents an open
challenging issue.

The high accuracy obtained with the encoding approaches described here also
opens innovative in-sights on the ability to decode task-specific patterns of neural
responses from mo-tor control and action representation networks.

Recently, some interesting Brain Computer Interface (BCI) approaches have sur-
faced, using direct recording of electrical cortical signals with electrocorticogra-
phy (ECoG) to extract motor information, obtaining successful control of prosthetic
devices [86] and accurate decoding of grasp type (precision vs. whole-hand) [87].
Additional approaches have been obtained from portable devices such as Near-
Infrared Spectroscopy (NIRS) and EEG, obtaining a reliable classification of exe-
cuted movements and motor imagery [88]. These approaches may benefit to a great
deal from synergistic control, since the regulation of a reduced number of synergies
instead of a full set of joints can increase the reliability of prosthetic devices.

From a theoretical point of view, testing this synergy-based account against al-
ternate hypotheses, such as individual digit control [62] may add some interesting
information regarding the models—synergistic or somatotopic—that fit better the
neural activity in the network that controls hand posture.
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Chapter 5
Synergy Control in Subcortical Circuitry:
Insights from Neurophysiology

Henrik Jörntell

Abstract Synergy control in the brain is likely to a large extent delegated to subcor-
tical circuitry, with a focus on spinal circuitry and add-on capability provided by the
spinocerebellar system for complex synergies. The advantage with this organization
is that there is a tight connection, in the sense of shorter delays, between sensor
feedback and the continuously updated motor command. By involving the sensory
feedback in the motor command, the brain can make sure that the relevant biome-
chanical properties are properly compensated for. A consequence of this arrangement
is that the neocortex, from which all voluntary motor commands originates, needs
to learn the properties of the subcortical circuitry rather than the full details of the
high-dimensional biomechanical plant. As the subcortical circuitry appears to have
primarily linear properties, this arrangement makes it possible for the voluntary sys-
tem to add synergy components linearly.

5.1 Introduction

The link between Neuroscience and Robotics is both natural and logical as widely
discussed in this book. The evolution of the nervous system is driven by the need
to attain more effective ways to move, and robotics is naturally first and foremost
about motor control. Roboticists have also long taken inspiration from humans and
biology (see for example Chap.9) as biological systems for example can combine
tremendous versatility, smooth performance, speed and compliance to interact with
other individuals. These factors to a large extent depend on the capabilities of the
nervous system. But how does the human brain solve these tasks?
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The answer to this question requires a profound insight into the organization and
function of the brain. Such insights can be obtained from the combination of twomain
lines of neuroscience research, external observations of the functions characterizing
motor behaviour and analysis of the infrastructure at the level of the neuronal circuitry
supporting these functions, bymeans of electrophysiologyor imaging techniques (see
also Chap.4). Unfortunately, there has so far been only limited work focusing on the
link between neuronal microcircuitry and high level aspects of motor behavior (i.e.
overt movement), primarily due to difficulties in understanding how neuronal circuits
work. But in this chapter the focus will be on the information that does exist, and
on the additional type of information that need to be gained before the mechanisms
underlying the versatility of the biological motor control have been understood to a
sufficient extent to allow all its advantages to be implemented in robotic systems.

5.2 State-of-the-Art

The concept of synergy-based robots is relatively new, but several cases of synergy
control implementation in robotics, inspired by principles observed from biology
and behaviour, exist [3] (see for e.g. Chaps. 8–10 and 15). There is sufficient amount
of proof-of-concept to show that the concept is useful in terms of simplifying control
and for example making robotic hands more human-like in their movement patterns.
But there is much more to be learnt from biological synergy control than this—the
most striking one being well-trained complex movements performed at high speed.
In order to reach such a goal, we need to learn more about the design of the control in
biological systems.Althoughbehavioural observation is important, and amain reason
the concept of synergies arose, knowledge of the supporting control system (Chap.4)
should lead to deeper insights that could make it possible to reach further towards
biological versatility and simplified control. There is today relatively rudimentary
information about this issue.

The knowledge about the circuitry and its components in the nervous system is
high in the level of detail but poor at the level of the integrated system. However, an
integrated neuroscience-robotics approach,where the target is to produce a functional
system rather than reproducing it at high level of biological detail, can help making
advances in this important field.

5.3 Problem Framing

There are four major issues that need to be understood in order to implement neu-
roscience control principles in robotics. The first is the basic function of the cellular
units, or the neurons, of which the brain is composed. This is a huge subject area
in its own right and will not be considered here. Basically, recent findings indicate
that neurons are basically linear integrators as long as they are operating in the range
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of activity they normally display under behaviour. This means that brain function
per se is largely determined by the pattern of connectivity between the neurons, plus
some delays in information transfer associated with the biological limitations of the
neurons. The second issue to be understood is the early developmental localization
of various structures in the brain. The various structures will be connected to each
other in predetermined, genetically programmed, patterns so this is part of the con-
nectivity issue. The third issue is how the nervous system is wired up against the
biomechanical reality it will be acting in—that is, our bodies. Our bodies contain
thousands ofmuscle fibers and hundred thousands of sensors. It is only by connecting
to these actuators and sensors that the brain will develop into a working system. The
ability to elicit movement, and to receive sensory feedback from that movement, is
what brain development is all about the first years of life and cognitive development,
that start later, cannot work properly unless there is first established a relationship
to our bodies. The fourth issue is the function of the brain in movement control as
approximated by external observations. Can the movements somehow be decom-
posed into basic building blocks, which may be the functions subserved by specific
subcomponents of the brain circuitry?

5.4 Synergy Control in Subcortical Circuitry

An important initial fact to note is that neuronal circuitry of the mammalian brain
is naturally designed for implementing synergy control—in fact, it is hard to see
how the brain could not operate in this fashion. The main reason for this statement
is that the individual neurons, which are the building blocks of brain circuitry, have
widely divergent outputs, in the sense that each neuron issues its output information
to a wide set of receiving neurons [9]. At the level of the final stage of the motor
command, the spinal alpha-motorneurons, which directly innervates the muscle cells
in the periphery, there is a muscle specific innervation. However, the neurons which
activate the alpha-motorneurons, and which thereby mediate the voluntary control of
their output, are all heavily divergent. The individual neurons of the neocortex that
innervates the spinal cord, andwhich thereby project the voluntary aspect of themotor
command, have terminations that are reaching multiple motor nuclei (the definition
of a motor nucleus being that it contains all the alpha-motorneurons that innervate
a particular muscle) [10]. In addition, the vast majority of the terminations of the
corticospinal axons are made outside the motor nuclei but in the midst of the large
population of spinal premotor neurons, or spinal interneurons [2]. The individual
spinal interneurons, in turn, individually also target more than one motor nucleus,
even though the extent of the divergence of the spinal interneurons in some casesmay
be more limited than that of the individual corticospinal axons [6]. Hence, there is
in the mammalian central nervous system possibly not a single case of a neuron that
target the output neurons of a single muscle only, all the neuronal terminations can be
expected to be divergent with respect to the muscles/alpha-motorneurons targeted.
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It follows that brain circuitry is naturally designed to deal with muscle activation in
terms of synergies rather than on a muscle-per-muscle basis.

But what is the structure of themotor controlling circuitry and how can it deal with
the organization of motor control in the face of this naturally divergent connectivity?
A first and perhaps surprising insight in this respect is that the same blueprint for the
central nervous system is used across the vast variety of species in the vertebrate part
of the animal series, ranging from non-limbed mammals like the whale to the highest
limb controlling capacity found in humans [5, 8]. This means that the same types
of basic structures and neuronal subsystems, including the basic pattern of intercon-
nections between these structures, are present in all these species. This is essentially
completely true for subcortical circuitry. For the neocortex and the cerebellum, there
exist in humans, as opposed to lower mammals, a great expansion of the cortical
volumes and additional subsystems are added on top of the hierarchically lower cor-
tical areas that is generally believed to add additional cognitive capacity. However,
for the core motor control capacity, the available structures are essentially identical,
although the total number of neurons per structure may vary between species. This
is an observation that is typically very hard to understand, given the wide differences
in movement repertoire that these species display. The reason that these similari-
ties prevail is that the genetic programs that generate the central nervous system are
extraordinarily complex and the smallest change in the core of these programs would
almost certainly always result in disaster or death of the animal.

The reason that the same basic genetic program for the generation of the central
nervous system can work across such a vast array of species, with very different
anatomical constraints, is likely to be spelt ‘learning’. Learning at the neuronal level
can be subdivided into many different categories, but here we are considering learn-
ing in the sense of fundamental circuitry structuring in the immature circuitry. The
main pathways of connections between different main structures of the brain, and
also between the multitude of sensors in the skin, muscles and other internal compo-
nents and the central nervous system, are generated by genetically preprogrammed
signals. However, the local connectivity, or the connectivity between specific types
of afferents and specific neurons, is subject to extensive modification during devel-
opment, to the point that they can presumably be considered as entirely established
through learning. Hence, the activation profiles of the different specific sensors that
are generated through erratic or organized movements can provide the central ner-
vous system with the signals that are needed for self-organization of the circuitry.
The sensor signals that ‘belong’ to each other, and later also the association between
specific motor commands and sensor signals, in the specific setting defined by the
biomechanics of the animal species, can be found by practice. Since the anatomy
of the periphery and thereby the conditions of movement differs so much between
these species, it follows that there is a lot of adaptation or learning that needs to
take place in these brains before any purposeful movement control can be exerted.
In all mammals including humans, this type of learning appear to first and foremost
occur in spinal circuitry, and it is only after the basic connectivity rules have been
established here that the neocortex can start interact with the subcortical circuitry in
a meaningful manner. It follows that the brain is extremely versatile in terms of range
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Fig. 5.1 Schematic illustrating the tight link between motor command and sensory feedback in the
mammalian nervous system. Corticospinal tract axons target primarily spinal interneurons, which in
turn have divergent connections to multiple alpha-motorneuron nuclei. Whenmuscles are activated,
they inevitably generate a massive sensory feedback from muscle spindles (Ia), from tendons (Ib)
and from various categories of skin sensors (Aβ). This sensory feedback directly or indirectly
(through additional spinal interneurons) is provided back to the spinal interneuron. This results in
that the drive on the spinal interneuron will vary during the course of the movement, regardless of
if there is any variation in the corticospinal tract activity. The sensory feedback can be used by the
central nervous system to find the muscles that are naturally co-activated, as a consequence of the
biomechanical setting of the body, under a given context (motor task). Hence, synergy components
are most effectively built at this level of the neuronal circuitry

of the control it can perform, in a sense that no artificial control system currently
can match. However, the principles could naturally be exploited and implemented
for robotics control as well (Chap.9).

A second and again perhaps surprising observation is that the same parts of the
nervous system are engaged across a variety of movement conditions. This is in
contrast to the classical ideas of functional localization within the brain. But consider
for example the spinal circuitry, through which all motor commands have to pass.
Here it is indisputably the case that the circuitry must either learn to contribute to
all kinds of movements, or at the very least make sure that it will mediate the motor
commands without destroying them. The second case is not very different from the
former, because all motor commands inevitably elicit sensory feedback that in turn
alter the state of the spinal circuitry over time as the movement develops (Fig. 5.1),
so in principle it can be assumed that the spinal circuitry must learn to contribute to
all movements.

But if it is possible in one type of neuronal circuitry, there is nothing that prevents
this from being the case also for the cerebellar neuronal circuitry and the neocortical
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circuitry. Indeed, in all cases where the contribution of a particular type of cerebellar
or neocortical neuron to various movements has been tested, they have been found to
be correlated with all movement types tested [4, 7, 13]. It follows that neuronal and
circuitry functions have to be widely generalizable. In addition, it also follows that
the performance of different types of movements may more be a matter of putting
the neuronal circuitries globally into different states than to generate activation of
specific circuitry components that hypothetically could have driven specific motor
programs.

What would be the basis for this portrayed extreme capacity for generalization in
neurons? One important element could be linearity in the neuronal elements. Linear
properties could make it easier to use the same circuitry set for a vast set of functions,
in particular if at least part of the functions are linear in character. It is at any rate
difficult to see how a particular type of non-linearity could bemade use of in all motor
control functions. In a recent study, the properties of the spike generation in both
cerebellar and spinal neurons were investigated [11]. Across a wide set of stationary
states for each neuron included, it was found that the neurons are almost perfectly
linear, at least in the range of firing frequencies these neurons have been found to
display in vivo under behaviour. Hence, it is likely that, at least subcortically, all
populations of neurons that contribute to movements are linear. This may not have
to mean that the circuitry always behave strictly linearly, but may at least facilitate
an extreme generalization in terms of the array of motor functions that these neurons
can participate in.

Assuming that all neuronal elements are linear, the coordination of activation of
synergy components can be relatively easily explained by subcortical mechanisms,
at least at a superficial level. As recently described, the spinocerebellar systems, i.e.
the connection from last order interneurons to the cerebellum as mossy fibers, play
a crucial role in this view [1, 12]. Synergy control and the coordination of synergy
components over time then basically becomes a function that resides in the spinal
cord and the cerebellum, and the neocortex can learn to utilize the functions that
are resident in this subcortical circuitry. The spinal circuitry, based on movement
statistics as defined by the biomechanical properties of the body, becomes entrained
to the most commonly used muscle combinations, or synergies, and will support
the activation of particular muscle combinations depending on the context given
by the pattern of descending activation from the corticospinal tract. The link of
synergy components over time, as a movement develops, can then be handled by the
cerebellum. The cerebellum receives rapid information about the ongoing synergy
activation pattern by the spinocerebellar neurons and can use cues, both from these
systems and other sources of information providing context, to decide in which
phase of the movement that it becomes time to initiate the activation of new synergy
components. Again, as the neuronal systems are linear, any synergy component can
in principle be added at any time, and it is likely that their summation is primarily
linear, although threshold effects and non-linearities in this step cannot be excluded,
as for example many of the spinal interneurons are inhibitory and would tend to
quench the activation of certain motor nuclei while driving others.
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5.5 Conclusions

While the integrated function of neural control systems has not been extensively
addressed in the neuroscience literature, recent advances suggest that it is possi-
ble to decipher the underlying circuitry structure and its functions. Key factors to
understand the low-level circuitry structure include, first; how the learning of how
sensors and muscles are related works; secondly, how the brain builds the lowest
level models of these relationships. Once obtained, the brain can utilize these mod-
els to combine and recruit synergies in a context-dependent fashion. To understand
the global solution of the brain to synergy control, we then next need to understand
how the neocortex represents and recruits these low level models—this is likely done
again by learning and building models, this time at a higher level of abstraction than
is done subcortically. A related open question is howmany different levels of models
that exist in the brain, where the subcortical circuitry can be expected to constitute the
innermost and most direct models. An integrated neuroscience-robotics approach,
where the target is to produce a functional system rather than reproducing it at high
level of biological detail, can help further advances in this important field. Robotics
has the major advantage that there are clear consequences when the synthetized con-
trol system has flaws, at the same time as it often comes with non-trivial mechanical
properties which needs to be taken care of by the control system. Therefore, inte-
grated neuroscience-robotics approaches not only have the advantage that they can
help improving robotic systems in terms of versatility and ease-of-control, they also
force neuroscience to focus on important outstanding questions for understanding
the organization of the brain at a functional level. In addition, for the growing field
of robotic implementations in human environments, such as assistive devices, the
property of having biologically-driven systems is likely to be advantageous both in
terms of safety and in terms of intuitiveness and ease of use.

References

1. Bengtsson F, Jorntell H (2014) Specific relationship between excitatory inputs and climbing
fiber receptive fields in deep cerebellar nuclear neurons. PLoS ONE 9(1):e84616. doi:10.1371/
journal.pone.0084616

2. Bortoff GA, Strick PL (1993) Corticospinal terminations in two new-world primates: further
evidence that corticomotoneuronal connections provide part of the neural substrate for manual
dexterity. J Neurosci 13(12):5105–5118

3. Catalano MG, Grioli G, Serio A, Farnioli E, Piazza C, Bicchi A (2012) Adaptive synergies
for a humanoid robot hand. In: 2012 12th IEEE-RAS international conference on humanoid
robots (Humanoids), pp 7–14, IEEE

4. Georgopoulos AP, Merchant H, Naselaris T, Amirikian B (2007) Mapping of the preferred
direction in the motor cortex. Proc Natl Acad Sci USA 104(26):11068–11072. doi:10.1073/
pnas.0611597104(0611597104[pii])

5. Grillner S (2003) The motor infrastructure: from ion channels to neuronal networks. Nat Rev
Neurosci 4(7):573–586. doi:10.1038/nrn1137

http://dx.doi.org/10.1371/journal.pone.0084616
http://dx.doi.org/10.1371/journal.pone.0084616
http://dx.doi.org/10.1073/pnas.0611597104 (0611597104 [pii])
http://dx.doi.org/10.1073/pnas.0611597104 (0611597104 [pii])
http://dx.doi.org/10.1038/nrn1137


68 H. Jörntell

6. Jankowska E (1992) Interneuronal relay in spinal pathways from proprioceptors. Prog Neuro-
biol 38(4):335–378

7. Naselaris T, Merchant H, Amirikian B, Georgopoulos AP (2006) Large-scale organization of
preferred directions in the motor cortex. II. Analysis of local distributions. J Neurophysiol
96(6):3237–3247. doi:10.1152/jn.00488.2006(00488.2006[pii])

8. Ocana FM, Suryanarayana SM, Saitoh K, Kardamakis AA, Capantini L, Robertson B, Grillner
S (2015) The lamprey pallium provides a blueprint of the Mammalian motor projections from
cortex. Curr Biol 25(4):413–423. doi:10.1016/j.cub.2014.12.013

9. Santello M, Baud-Bovy G, Jorntell H (2013) Neural bases of hand synergies. Front Comput
Neurosci 7:23. doi:10.3389/fncom.2013.00023

10. Shinoda Y, Yokota J, Futami T (1981) Divergent projection of individual corticospinal axons
to motoneurons of multiple muscles in the monkey. Neurosci Lett 23(1):7–12

11. Spanne A, Geborek P, Bengtsson F, Jorntell H (2014) Spike generation estimated from station-
ary spike trains in a variety of neurons in vivo. Front Cell Neurosci 8:199. doi:10.3389/fncel.
2014.00199

12. Spanne A, Jorntell H (2013) Processing of multi-dimensional sensorimotor information in the
spinal and cerebellar neuronal circuitry: a new hypothesis. PLoS Comput Biol 9(3):e1002979.
doi:10.1371/journal.pcbi.1002979

13. van Kan PL, Horn KM, Gibson AR (1994) The importance of hand use to discharge of inter-
positus neurones of the monkey. J Physiol 480(Pt 1):171–190

http://dx.doi.org/10.1152/jn.00488.2006 (00488.2006 [pii])
http://dx.doi.org/10.1016/j.cub.2014.12.013
http://dx.doi.org/10.3389/fncom.2013.00023
http://dx.doi.org/10.3389/fncel.2014.00199
http://dx.doi.org/10.3389/fncel.2014.00199
http://dx.doi.org/10.1371/journal.pcbi.1002979


Chapter 6
Neuronal “Op-amps” Implement Adaptive
Control in Biology and Robotics

Martin Nilsson

Abstract Animals control their limbs very efficiently using interconnected neuronal
populations. We propose that these populations can be seen as general-purpose neu-
ronal operational amplifiers, or neuronal “op-amps”, forming adaptive feedback
networks. The neuronal op-amp is an interdisciplinary concept offering tentative
explanations of animal behaviour as well as approaches to biologically inspired high-
dimensional robot control. For instance, in biology, the concept indicates the origin
of synergies and saliency in the mammalian central nervous system; in robotics, it
presents a design of simple but robust adaptive controllers that identify unknown
sensors online. Here, we introduce the neuronal op-amp concept and its biological
basis. We explore its biological plausibility, its application, and its performance in
adaptive control both theoretically and experimentally.

6.1 Introduction

As long as several hundred million years ago, evolution developed efficient solu-
tions to many difficult control problems that puzzle today’s biologists and engineers.
Spurred on by curiosity about how biological systems work and whether the same
principles can be applied in robotics, we have focused on two particularly interest-
ing problems: the correspondence (or sensorimotor association) problem and the
adaptive servo (or adaptive reference signal tracking) problem.

6.1.1 Two Central (Nervous System) Problems

The correspondence problem concerns how the brain “knows” which strings to pull
to move a limb (Fig. 6.1). How does the brain associate sensory feedback signals
with the corresponding motor commands? The ability to bootstrap this coupling
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Fig. 6.1 The
correspondence problem:
How does the brain “know”
which sensors and actuators
belong together? (Figure
partially based on [13])

from scratch is perplexing if sensors are unreliable and uncalibrated and if mod-
els are not pre-specified. Nevertheless, biological systems are robust and tolerate
noise and fault. These properties are also highly desirable in modern mechatronic
systems, such as robot arms and prosthetic devices. There are two main putative
approaches to answering the question posed by the correspondence problem. One
possibility is that sensorimotor association is genetically preprogrammed (phyloge-
netic); however, this appears unlikely due to the evolutionary fragility and the large
amount of configuration information that must be processed. The alternative is that
the association is bootstrapped during development (ontogenetic)—but how?

The adaptive servo problem focuses on how a controller can track a time-varying
reference signal, despite continuous changes in system properties. This behaviour
is built into biological systems performing such tasks as reaching and grasping. A
complicating factor for biological systems is their huge numbers of sensors and
actuators/motors, which we will refer to collectively as transducers. For instance, a
single human hand has more than 30 muscles, and its glabrous skin alone contains
approximately 20,000 tactile sensors [16], to which a significant number of muscle
spindles and Golgi tendon organs should be added. How can such high-dimensional
systems be controlled efficiently?

The answers to these questions could help us understand how the mammalian
central nervous system (CNS) operates in addition to helping us build biomimetic or
biologically inspired robots with many degrees of freedom, which allow for efficient,
robust, reliable, and inexpensive movement.
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(a) (b) (c)

Fig. 6.2 a Op-amp, b Neuron, c Neuronal op-amp model of a population, having vector inputs and
outputs

6.1.2 Main Objective

We propose the concept of the neuronal operational amplifier, or “neuronal
op-amp”, which is inspired by the ubiquitous electronic operational amplifier, “op-
amp” (Fig. 6.2). Emphasis is placed on the op-amp as a linear amplifier with non-
inverting and inverting inputs that deliver an output signal proportional to their dif-
ference. By placing an op-amp in a feedback circuit, a wide variety of functions can
be obtained [28]. An electronic op-amp resembles a neuron with its excitatory and
inhibitory inputs. Our main objective is to demonstrate the expressional power of
neuronal op-amps integrated into feedback circuits. We show through theory and
experiments that such control circuits do not require a priori models, but can acquire
internal models in real time; can implement biologically feasible, multi-variable
adaptive feedback control; show stable and robust reference signal tracking; and are
scalable to high dimensions.

6.1.3 Scope and Assumptions

An important consideration in both biological and robotic systems is the type of
transducers involved. Transducers can be tonic or phasic, where “tonic” means that
for an input x , the output y = f (x) is independent of time. This is a special case
of a phasic transducer, in which the output can additionally be a function of time,
y = f (x; t). The primary advantage of tonic models over phasic models is a substan-
tial mathematical simplification. The tonic model is still sufficiently powerful to be
effectively applied in robotics applications. In robotics, sensors are usually tonic, as
are servo motors. Explaining the function of tonic systems is possible using straight-
forward mathematical techniques, and this provides a valuable stepping stone for
clarifying and applying a comprehensive phasic theory. Therefore, we assume that
transducers are tonic, or can be considered tonic as a first approximation. The system
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to be controlled is M × N multiple-input-multiple-output (MIMO), where M is the
number of actuators and N ≥ M (typically N � M) is the number of sensors.

Upper and lower case boldface letters in mathematical notation denote matrices
and vectors, respectively. Unless specified otherwise, noise is assumed to be zero-
mean white Gaussian.

6.1.4 Outline

After this introduction, in Sect. 6.2, we define the concept of a neuronal op-amp,
including its plasticity and use in the internal model control structure, in the next
section. We then describe two experiments illustrating the concept and its perfor-
mance in Sects. 6.3 and 6.4, respectively. We discuss the results, related work, and
conclude the text in Sect. 6.5.

6.2 The Neuronal Op-amp

Neurons are similar to electronic op-amps in the sense that both have excitatory
(non-inverting) and inhibitory (inverting) inputs (Fig. 6.2). In addition, it has been
shown experimentally that the output is a linear function of the inputs for several
types of neurons, including CA1 pyramidal neurons [3], cerebellar Purkinje neurons
[30], and spinal interneurons [27]. Although this suggests a direct analogy between
single neurons and op-amps, neurons in the nervous system of mammals notably
tend to group into populations or ensembles, i.e., homogeneous groups or layers of
cytoarchitectonically similar neurons, all receiving input from and delivering output
(projecting) to the same groups of source and target neurons, respectively. There-
fore, we define a neuronal op-amp as an entire population of neurons having two
vector inputs, an excitatory input x and an inhibitory input y, not necessarily of the
same dimension, and a vector output z = Wx − Vy, where W and V are synap-
tic weight matrices. Furthermore, because primarily excitatory synapses have been
linked to neuronal plasticity [4], we assume that only W is affected by learning.
Without restriction, V can be assumed to be the identity matrix because the choice of
coordinate system is arbitrary. In summary, a neuronal op-amp is a linear mapping
from (x, y) to z such that

z = Wx − y . (6.1)

6.2.1 Plasticity of Neuronal Op-amps

Suppose that during actual operation, x and y are not completely uncorrelated, but
are related by the equation x = Ay + n where A is a fixed non-zero matrix and n
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is a noise vector. By updating W as described below when new inputs x, y arrive,
the output z can be forced to converge to A+x − y, where A+ denotes the Moore-
Penrose matrix pseudoinverse [2]. In a control loop, A+ may represent, for example,
an acquired inverse plant model.

More specifically, in biological systems, we assume that learning operates as fol-
lows: When new inputs arrive and a new output is generated, the synaptic weights W
are updated according to the Hebbian learning rule

W ← W + g (z) h (x)T , (6.2)

where g and h are vector-valued gain functions. The best-known update rule is
perhaps the LMS-rule [14], a linearization where g(z) = z, h(x) = µx and µ is a
suitable scalar constant. However, any gain functions g and h can be used as long as
persistent excitation of the input—sufficient random motion for the system to allow
exploration of the local environment—guarantees convergence of z toA+x−y. Many
such functions are available [22], allowing great flexibility and biological plausibility
in the choice of g and h.

In engineering, we are not limited to biologically plausible update rules of the
form (6.2), but can use any update procedure for which z → A+x − y. We explore
this possibility in Sect. 6.4, where we use Kalman filtering to achieve an optimal
adaptation rate.

6.2.2 Internal Model Control Using Neuronal Op-amps

In the field of automatic control, Internal Model Control (IMC) [12, 20] refers to a
particular class of control structures that continuously compare an internal process
model with the actual process (Fig. 6.3 shows an adaptive version). The difference
between process output and model output is fed back to the input stage as an error
signal. Frank [8] appears to have published the first systematic investigation of IMC
design, including a section on the early history of model feedback (“Modellrückkop-
plung”).

IMC may superficially appear similar to observer schemes, such as Linear-
Quadratic-Gaussian (LQG) control [12], but although IMC does contain an inter-
nal model, it uses neither state representations nor state variable feedback. IMC
controllers have many attractive properties in spite of their simplicity; practice has
shown them to be robust, reliable, and easy to generalize to high dimensions.

Control experience has shown that there is a tradeoff between optimality and
robustness; it is often necessary to detune a nearly-optimal controller to achieve a
better stability margin [7]. In this respect, IMC controllers can be said to prioritize
robustness over optimality [20].

The combination of neurophysiology and control theory was pioneered byWiener
[31], and elaborated by Ito [15], in particular for the cerebellum. The general idea
of internal models in CNS feedback control spread rapidly and has been reviewed
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Fig. 6.3 An adaptive IMC
system, where C is the
controller, P the process to
be controlled (the “plant”),
and M an adjustable model

Fig. 6.4 A neuronal op-amp
in adaptive IMC
configuration (cf. Fig. 6.3),
where the motors are M, the
sensors are S, the neuronal
op-amp is W, the reference
signal is r, the motor control
signal is u, the load
disturbance is n, the sensor
output is d, and the error
signal is e

by Kawato [17]. These internal models are usually viewed as black boxes and their
implementation left open. However, we propose that internal models and IMC con-
trollers can be constructed directly from neuronal op-amps (Fig. 6.4). Motor centra
send a motor command vector r to the motors. On the way, this command combines
with the feedback error vector e into the motor control signal vector u = r − e
which arrives at the motor unit M, potentially also affected by an additive load dis-
turbance vector n. The actions of the motors are sensed by a large number of sensors
S. The sensor output vector d = SM (u + n) excites a neuronal population/op-amp
W, which is simultaneously inhibited by the original motor control signal u. The
output error e = Wd − u is fed back as a correction of the motor command r. Here,
the sensor output d is high-dimensional, whereas the other vectors are relatively
low-dimensional. The matrix W typically has a large number of columns, matching
the dimension of the measurements d, but a smaller number of rows, matching the
dimension of the motor control signal u.

We do assume that S is sufficiently “dense” such that all states of M can be
uniquely observed. Mathematically, this can be expressed by requiring the null space
of SM to equal the null space of M, M⊥ = (SM)⊥. This provides a stronger sense
of observability than the classical concept in control theory, but is perhaps more
appropriate in the context of a large number of sensors, such as in a biological
system.
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To understand the operation of the model, we trace the loop from the reference
signal, first assuming an equilibrium situation in which e = 0 and n = 0. Suppose
that the motor is suddenly affected by a load disturbance n. For readability, we
introduce the abbreviation A for the matrix product SM.

The excitatory input to W becomes d ← Au+An = Ar+An. The error becomes
e = Wd − u = A+An − (

I − A+A
)

r. The term
(
I − A+A

)
r belongs to the null

space of A, and components of u in this space will not affect the motors M because
M⊥ = (SM)⊥ = A⊥, according to our earlier assumption. Once in the null space
of A, these components will remain there after passing into e, so they can safely
be ignored. Consequently, on the next turn of the loop, we have u ← r − A+An.
Incidentally, this operation can be performed by a second neuronal op-amp, forming
a disynaptic loop. The updated sensor output becomes d ← A

(
r − A+An

)+ An =
Ar, demonstrating that the loop now has neutralized the disturbance n. The error is
e ← Ar − (r − A+An) = A+An − (I − A+A)r, showing that the feedback has
stabilized.

In practice, low-pass filtering u is required for stability [20]. A biological neu-
ron always includes an implicit low-pass filter via its membrane capacitance and
resistance.

6.3 Experiment: Neuronal Op-amps in Biology

To explore how biological systems solve the correspondence problem, a simple two-
armmotion apparatuswas built tomimic biological limbs by incorporating viscoelas-
tic transmissions and using a reconstruction of biological adaptive multivariate feed-
back control. The goal of the experiment was for the device to learn how to associate
motor commands from the joystick with proprioceptive sensor feedback produced
by encoders, and then maintain good tracking of the joystick reference signal.

In ordinary engineering applications, such tasks would typically involve Kalman
filtering, calibrated models, and floating-point hardware, even when omitting adap-
tivity. Here, using biological principles, it was possible to implement the adaptive
controller on a tiny 8-bit microprocessor. Below, we recount the experiment in detail,
demonstrating the automatic bootstrapping ability and effective adaptive control of
the system.

6.3.1 Setup

The experimental setup shown in Fig. 6.5 consists of a human-operated reference
input device (J). This input symbolizes a volitional motor command from the brain’s
prefrontal cortex. The signal is fed to a microprocessor board, which represents the
motor centra and the spinal cord. The processed motor command is sent to two servo
motors (M1-2), connected by viscoelastic transmissions (“tendons”, T1-2) to a pair
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Fig. 6.5 Schematic of
experiment, where a 2D
motor command is input via
the joystick J, M1-2 are servo
motors, T1-2 are flexible
transmissions, A1-2 are end
effectors, S1-2 are angular
encoders, and SW is a switch
exchanging S1 and S2

of arms (A1-2). For each arm, an angle sensor (S1-2) feeds its position back to the
CPU board, but which sensor is connected to which motor is not preprogrammed in
the processor. Technically, this is implemented in the setup by connecting the sensor
outputs to the board’s A/D-converter inputs via a double-pole double-throw (DPDT)
switch, which allows exchanging the connections manually.

The input device of the physical apparatus (Fig. 6.6) is a joystick, the CPU board
is an 8-bit-microprocessor Arduino board [1] without floating-point hardware, and
the actuators are standard R/C servo motors. Pieces of PVC tubing constitute the
viscoelastic transmissions, and rotary encoders [19] are angle sensors. The board
has an additional switch for disconnecting feedback, useful for comparing closed-
and open-loop feedback behaviour. Also included is a potentiometer, through which
the learning rate (plasticity) can be varied.

The adaptation algorithm employs the LMS-rule [14] of the IMC controller
described in Sect. 6.2.2.

6.3.2 Execution

The principal experiment shows that the system is able to develop andmaintain stable
feedback control, regardless of sensor connectivity. It was conducted as follows:

1. The internal model was automatically initialized to zero on startup.
2. Arm motion was observed not to compensate well for disturbances. Here, distur-

bances can be internal, such as measurement noise and model error, or external,
such as manual arm pushing.
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Fig. 6.6 Experiment board physically realizing the schematic in Fig. 6.5, where the DPDT switch
is implemented with two banana plugs (the black box between the servo motors is a battery)

3. Gradually, an internal model emerged, although the motion of the system was
still erratic.

4. As the model improved, the system gradually responded better and better to
disturbances, with the DPDT switch/plugs remaining in fixed positions.
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Fig. 6.7 The convergence
rate of model acquisition
depends little on the
motor-sensor connection

5. The sensor connections were changed by switching the plugs, the system was
reset, and the experimental protocol restarted from the beginning.

6. The system bootstrapped and re-learned the new sensor connectivity.

6.3.3 Results

No substantial difference was observed between the runs (Fig. 6.7). This experiment
demonstrates that the ability to bootstrap is independent of sensor configuration.
The figure shows a comparison of the convergence rates of an acquired model for
straight-connected (solid line) versus cross-connected (dashed line) sensors for 90-
second trial runs. The model was acquired automatically during normal feedback
operation, while the system was excited by manual random joystick operation. The
adaptation error is measured as the expression ||W(t) − W(90 s)||F/||W(90 s)||F ,
where W(t) is the acquired model at time t , and || · ||F denotes the Frobenius norm.

6.4 Experiment: Neuronal Op-amps in Engineering

In engineering, we are not limited to biologically plausible methods for acquiring
the pseudoinverse, such as Hebbian learning, but free to use any technically feasible
method. We can take advantage of the fact that the number of transducers is usually
much smaller in non-biological systems than in biological systems. Thus, assuming
a relatively small number of transducers (on the order of 10), the controller can
employ linear Kalman filters (LKF) to achieve optimal noise filtering properties, a
feature unavailable to biological systems. Although we lose scalability due to the
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Fig. 6.8 Neuronal op-amp in a multivariate IMC configuration, Simulink diagram; the internal
structure of the LKF neuronal op-amp block is given in Fig. 6.9

computational complexity of the Kalman filter, we accelerate the adaptation rate
considerably.

Below, we consider another adaptive controller inspired by the mammalian hand-
arm control system. However, this time we do not constrain ourselves to biologi-
cally plausible implementations of the neuronal op-amp. The new controller quickly
determines the optimal use of an unmodelled sensorimotor configuration for adap-
tive feedback control. The experiment is implemented as an executable Simulink [26]
graph (Fig. 6.8).

The goal of this experiment was to maximize the online adaptation rate while
simultaneously compensating for disturbances.
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Fig. 6.9 Neuronal op-amp “cheat” using Kalman filtering for computing the pseudoinverse,
Simulink diagram; the Kalman gain is K, the measurement matrix is H(y), the process noise
covariance is P, and the measurement noise covariance is R

6.4.1 Setup

The setup consists of a number of Simulink modules. Below, details of the controller
are furnished together with brief descriptions of the main constituent modules.

The LKF module: The heart of the controller is the LKF-module (Fig. 6.9), which is
functionally equivalent to a neuronal op-amp but is implemented using linearKalman
filtering rather than Hebbian learning. The Kalman filter is optimal for minimizing
the mean square error (MSE) and therefore converges quickly. This approach works
well because the task of finding the pseudoinverse in this application can be solved
via a linear model.

In addition to the LKFmodule’s two differential inputs, the sensor feedback signal
y and themotor control signal u, there is a third input of amotor-sensormodelmatrix,
only used for performance evaluation in this module. The outputs are the adaptive
performance index E2 (see Sect. 6.4.3) and the error estimate e = Wy − u, where
W is expected to converge to the inverse model A+. The E2 output does not exist
in biological systems, but is provided in this device for debugging and performance
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analysis. Themodule has twoKalman-filter derived tuning parameters: Q, indicating
the process noise covariance, and R, the measurement noise covariance.

Motor-sensor module: This module inputs the control signal u, and outputs the
product Au, where A defines the motor-sensor function, here chosen as a matrix of
random numbers uniformly drawn from [0, 1]. This module also receives the motor
command reference signal as input to compute conventional control performance as
the diagnostics output E1 (see Sect. 6.4.3), together with the motor-sensor matrix A.

Low-pass filter module: Stability of the IMC controller requires a low-pass fil-
ter. The filter has one settable constant, which determines the cut-off frequency.
Rules of thumb for choosing this constant are identical to those for IMC controllers
[12, 20].

Classical control performance measurement module: This module measures the
distance between the sensor outputs and the product Ar of the motor-sensor model
matrix A and the motor command reference r (see Sect. 6.4.3).

Adaptive performance measurement module: This module measures the distance
between the identity matrix and the product WA of the motor-sensor model matrix
A and the inverse model W (see Sect. 6.4.3). If adaptation is successful, this perfor-
mance index approaches zero.

Measurement matrix construction module: As part of generating the internal
model, each component of W is recursively estimated by the Kalman filter. For
this purpose, a measurement matrix H(y) needs to be constructed from the y input.

6.4.2 Execution

The reference signal input is shown in Fig. 6.10 for a six-motor by twelve-sensor
system. The motor command is composed of six sine waves of varying phase and
frequency, one of which is shown in panel a. The corresponding control signal is
shown in panelb. Here, the Q parameter (process noise covariance)was set to 10−8 in
each dimension; all noise sources were assumed to be independent; the R parameter
(measurement noise covariance) was set to 1 in each dimension; the low-pass filter
time constant was approximately 3.3ms; the sampling frequency was 100kHz; the
load disturbance was a pulse of duration 5ms and amplitude 0.2; and the actual
measurement noise was zero-mean white Gaussian noise of standard deviation 0.1.

6.4.3 Results

There are two performance aspects to the controller: first, the steady-state control
performance of the controller as a “classical” IMC controller once the model has
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Fig. 6.10 a Reference signal
r , b control signal u (one of
six)

(a)

(b)

Fig. 6.11 Control
performance E1 for closed
(solid line) and open (dashed
line) loops

converged, and second, the convergence to an inverse model (adaptive performance).
The former aspect has been studied extensively for IMC [12, 20], and can be illus-
trated e.g. by disconnecting the feedback e and watching the actual performance
under load disturbances n (Fig. 6.11). We compute it as E1 = |Ar − z|, where A
is the motor-sensor model matrix, r is the motor command reference, and z are the
sensor outputs.

The importance of feedback for correcting the load disturbance n can be appre-
ciated by comparing the open- and closed-loop traces in Fig. 6.11.

The second aspect is perhaps less intuitive: Does the inversemodel converge at all,
and if so, how quickly? One test is a comparison with the generalized inverse of the
motor-sensor model A: The convergence of the product WA to the identity matrix
I indicated by the Frobenius norm E2 = ||I − WA||F characterizes the adaptive
performance of the neuronal op-amp. The performance index E2 (Fig. 6.12) reveals
stable and rapid adaptation, regardless of whether the loop is closed or open. Since
adaptation is based on Kalman filtering, there is a trade-off between adaptation rate
and smoothness.

Yet another aspect of the controller is its stability. Proving the stability of adaptive
IMC controllers is difficult, even in the single-input-single-output (SISO) case [6].
Here, the controller is multiple-input-multiple-output (MIMO), and in a cascaded
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Fig. 6.12 Adaptive
performance E2 for closed
(solid line) and open (dashed
line) loops

configuration, there are several adaptive processes executing simultaneously. Proving
stability for such systems is formidable, suggesting that testing the stability of this
type of controller is currently limited to simulation.

6.5 Discussion and Conclusions

We have addressed two problems related to adaptive control, both in a biological
and an engineering context. For biology, our interest is analytical, whereas for engi-
neering, we would like to synthesize new solutions based on our understanding of
biological function.

We performed both physical and simulation experiments for the proposed MIMO
control structures. The experiments indicate that the neuronal op-amp concept is
a feasible approach, both for understanding biological function and for using this
knowledge as a basis for new designs in robotics and engineering. However, the best
implementation of neuronal op-amp internals depends on the application. Because
Hebbian learning is scalable, it is suitable for high-dimensional systems. For lower-
dimensional systems, a Kalman filter approach similar to that described in Sect. 6.4
may be more appropriate.

A disadvantage of adaptive controllers in engineering applications is the difficulty
of theoretically guaranteeing stability. It should be noted that persistent excitation
is necessary for stability, as is the case for all adaptive controllers. In biological
systems, this is not a problem due to the large amounts of naturally occurring noise,
but in artificial systems, random perturbations or other provisions may be necessary.

Nonetheless, in our experiments, the neuronal op-amp IMC configuration oper-
ated robustly, both in steady-state operation and identifying (bootstrapping) inverse
process models online. The simplicity of the structure is striking; the loop consists of
only two reciprocally connected neuronal op-amps, a pervasive pattern in the nervous
system [11].
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The simplicity of the neuronal op-amp adaptive IMC model, its robustness, high
performance, and biological “hi-fidelity”, positions it as a biologically plausible can-
didate for CNS motion control. However, the acceptance of this hypothesis is con-
ditional upon the input-output linearity of neurons. Such linearity has been demon-
strated experimentally [3, 27, 30], but a mechanistic explanation [5] has not yet been
reported. Although there is no linearity requirement for the update rule (6.2), the
linearity of the feedforward operation (6.1) is essential.

The proposed controller should be considered only one representative of a family
of controllers; many variations of the IMC scheme are possible (such as the introduc-
tion of a Smith regulator, or transformation to allow stabilization of unstable plants
without risking internal instability) [20].

Neuronal op-amps resemble adaptive filters [14], which have been used to model
the CNS [10, 21]. An important difference between adaptive filters and neuronal
op-amps is that the feedback path for adaptation is external for adaptive filters, and
often used for modifying the system properties. For neuronal op-amps, the feedback
path is strictly internal and cannot be accessed externally.

The neuronal op-amp model helps explaining the appearance of synergies [23]:
In principle, synergies express the fact that the output range dimension is lower
than the output space dimension. Mathematically, synergies have been characterized
as manifolds [25]. Although a human hand has many degrees of freedom, a low-
dimensional manifold in the configuration space dominates the representation [24].
For the neuronal op-amp, the existence of synergies is detected by a low-rank acquired
inverse model W = A+, implying that the original system A must also be low-rank.
From a geometrical perspective, the neuronal op-amp linearity predicts that synergy
manifolds are linear (i.e., linear subspaces).

Another consequence of the neuronal op-amp model is that in a well-adapted
steady state, its output is approximately zero. In other words, its basic functionality
is to remember “normal” situations and to deliver a signal out only when the sit-
uation deviates from the learned (accustomed) situation. The output represents the
innovation as introduced in signal processing [22], reminiscent of concepts previ-
ously discussed in the literature, but at a higher, cognitive level, including novelty
[18], free energy or surprise [9], and saliency [29]. Thus, the neuronal op-amp pro-
vides a potential link between neuronal substrate and cognition in the CNS.
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Chapter 7
Sensorymotor Synergies: Fusion
of Cutaneous Touch and Proprioception
in the Perceived Hand Kinematics

Alessandro Moscatelli, Matteo Bianchi, Alessandro Serio,
Antonio Bicchi and Marc O. Ernst

Abstract According to classical studies in physiology, muscle spindles and other
receptors from joints and tendons provide crucial information on the position of our
body and our limbs. Cutaneous cues also provide an important contribution to our
sense of position. For example, it is possible to induce a vivid sensation of movement
in the anesthetized finger, by stretching the skin around the proximal interphalangeal
joint. However, much of proprioceptive literature did not consider the role of tactile
interaction with external objects as position and motion cues. Whenever we touch an
external, stationary object, the contact forces produce a mechanical deformation of
the skin which changes with the hand posture and movement. Therefore, these cuta-
neous contact cues might also provide proprioceptive information. In this paragraph,
evaluated this hypothesis based on recently published experimental data.
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7.1 Introduction

According to classical studies in physiology [12, 18], muscle spindle, Golgi tendon
organ and receptors from joints provide crucial information on the static position and
movement of our body and our limbs. Edin and colleagues [6, 7] showed that infor-
mation from cutaneous mechanoreceptors also contribute to our sense of position,
that is, to proprioception. Limb and hand movements produces a stereotyped strain
pattern on the skin. Since mechanoreceptors respond consistently to these cutaneous
stimuli, they provide the central nervous system with detailed kinematic informa-
tion [6]. Accordingly, Edin et al. [7] showed that it was possible to induce a vivid
sensation of movement in the anesthetized finger by stretching the skin around the
proximal interphalangeal joint. Whenever we touch a static object, as for example
the surface of a table, the reaction force produces a strain pattern on the skin which
changes in relation to our own movement. Here, we evaluated if these types of tactile
stimuli produced during contact with external objects would also provide a cue for
proprioception.

Hayward et al. [10] classified four fundamental types of cutaneous contact stimuli.
When we first touch the surface of the object, the interaction force produces an area
of high strain on the skin which expands over time [2, 3, 10]. Hayward et al. [10]
defined this stimulus as ‘contact on’. On the contrary, releasing the contact produces
a shrinking in the high-strain area (‘contact off’). Furthermore, the authors defined a
‘slip’ and a ‘roll’ stimulus as the displacement, in somatosensory coordinates, of the
high and low strain area, respectively. These types of stimuli are supposed to be the
fundamental input feature in touch—the same as for example the stimulus orientation
in vision. Accordingly, different neurons the cuneate nuclei respond preferentially
to one of these tactile stimuli [11]. If the external object is stationary, each of these
stimuli maps to a restricted angular displacement of the joints involved in the move-
ment. Consider a scenario as illustrated in Fig. 7.1: The pad of the index finger is
in contact with a stationary, stable object. Different movements of the hand or the
finger would produce one of the four tactile stimuli on the finger’s pad. We used a
transparent plane in the figure to show the change in the skin deformation during hand
movements. For example, (a) the rotation of the wrist joint produces a roll motion
on the skin; (b) the hand displacement tangential to the contact plane produces a
slip motion, the direction of the tactile motion having same orientation and opposite
direction as the hand movement; (c) the flexo-extension of the metacarpophalangeal
or proximal joints, with the finger outstretched, produces a contact-on and contact
off stimuli.

Does the somatosensory system use this contact information to estimate the dis-
placement of our hands and our limbs? In this chapter, Sects. 7.2 and 7.3, we present
the results of two previous studies addressing this question for two types of tac-
tile stimuli, contact on/off [15] and slip motion [16]. The information provided by
cutaneous touch is maximized when (i) the external object is stationary, (ii) the
changes in the mechanical properties of the object (e.g. the stiffness) are negligi-
ble and (iii) motor synergies limit the degrees of freedom of the hand movement.
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(c)

(a)

(b)

Fig. 7.1 Different hand movement maps to one of the four fundamental tactile stimuli: a roll, b
slip, c contact on and contact off

Assumptions underlying sensory fusion between proprioception and touch are dis-
cussed in Sect. 7.4.

7.2 Contact Area

If we push the finger against an external surface and then lift the finger to release
the contact, we produce first an increase and then a decrease in the area of con-
tact. The relation between the area of contact and the angular position of the finger
joint is mostly evident for a compliant contact surface, as illustrated in [15]. If the
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object is stationary and its compliance is not changing, an observer could infer the
displacement of the finger from the change in the contact area, that is, from the
recruitment of the mechanoreceptors in the skin. Along the same line of reasoning,
an unexpected change in the compliance of the surface, and therefore in the area of
contact, should induce an illusory displacement of the finger. Moscatelli et al. [15]
run a psychophysical experiment to test this hypothesis.

7.2.1 Methods

Participants compared the passive displacement of their index finger between a refer-
ence and a comparison stimulus. In each stimulus interval, the apparatus illustrated
in Fig. 7.2a contacted the finger pad and lifted the finger up and down. The com-
pliance of the contacted surface unexpectedly changed between the reference and
the comparison stimulus. Therefore, the area of contact in the comparison stimulus
the was either wider or narrower than in the reference stimulus (wide and narrow
condition, respectively; Fig. 7.2b). In each stimulus, we set the compliance of the
surface by means of the softness display FYD-2 [20], without the participants being
aware of this compliance change. The wide and narrow condition were tested in
two different experimental blocks. The order of the two blocks was counterbalanced
between participants.

If participants used the area of contact as a cue for the displacement of the finger,
they would perceive a larger movement extent for those stimuli having a wider area
of contact, and vice versa. This perceptual bias should induce an opposite shift of the
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Fig. 7.2 a The area of contact between the skin and the sponge (marked in red in the figure)
increases as the finger moves towards the bottom edge of the object. b The setup including the
lift, the FYD-2 device and the angle encoder. c The area of contact changes as a function of the
displacement of the finger and of the compliance of the surface (in red wide condition and in grey
narrow condition; results from a representative participant). Adapted with permission from [15]
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response between the two experimental conditions. To test if this was the case, we
fit the binary responses of each participant with two psychometric functions, one for
each experimental condition. In each condition, the function related the perceived and
the physical width of the passive movement. Each of the two psychometric function
had the form,

Φ−1
[
P(Yj = 1)

] ∼ β0 + β1γj , (7.1)

where P(Yj = 1) is the probability that, in trial j , the participant reported a larger
joint movement in the comparison than in the reference stimulus, Φ−1[·] is the
probit transformation of the response probability (i.e., the inverse function of the
cumulative normal distribution), and γj is the measured rotation of the joint angle in
the comparison stimulus. The point of subjective equality (PSE),

PSE = −β0

β1
, (7.2)

is an indicator of the perceptual bias. If participants used the width of the contact
area as a cue to solve the task, the PSE should be significantly different between the
two experimental conditions, with PSEwide < PSEnarrow. For statistical inference at
the population level, we analyzed the data of all participants (n = 6) toghether using
a Generalized Linear Mixed Model (GLMM) and estimated the PSE and the 95%
confidence interval (CI) as explained in [14].

7.2.2 Results

Figure7.3a, b show the psychometric function in a representative participant and
the PSE estimates in the experimental population, respectively. In all participants,
the PSEwide was significantly smaller than the PSEnarrow (paired t-test; t5 = 4.5;
p = 0.006), in accordance with our predictions. Likewise, the 95% CI of the two
PSEs were not overlapping (Fig. 7.3b). The estimated PSEwide was equal to 10.5◦
(95%CI : 9.9−11.1◦), and the estimated PSEnarrow to 12.8◦ (95%CI : 12.1−13.6◦).
That is, the wider the contact area was in the comparison stimulus, the larger was the
perceived extension of the joint angle. This is in accordance with our hypothesis.

In conclusion, results of the experiment showed that participants took the change
of the area of contact into account to estimate the angular displacement of the finger.
In the next section,we evaluated the contribution of a different type of tactile stimulus,
the slip motion, to the hand displacement.
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Fig. 7.3 a The psychometric functions for a representative participant, in the two experimental
conditions (in red wide condition and in grey narrow condition). The reference finger displacement
(12◦) is indicated with a dashed blue line. b The point-of-subjective-equality (PSE) in the two
experimental conditions (n = 6). Adapted with permission from [15]

7.3 Slip Motion

Whenever we move the hand across the surface of an object, tactile slip provide
information about the relativemotion between the skin and the surface. If the observer
were able to integrate the velocity of tactile slip over time, this would provide him
or her with an estimate of the displacement of the hand relative to the object. In [16],
we investigated whether humans are able to form a reliable representation of hand
displacement from tactile cues only, integrating motion information over time.

7.3.1 Methods

Using the Slip Force Device [8] we rendered the displacement of a surface along dif-
ferent paths. The participant touched themoving surfacewith the tip of the right index
finger. We asked participants to keep their hand world-stationary during the presen-
tation of the stimulus. Therefore proprioceptive inputs were not informative about
the path of motion. The surface moved along a right-angle-triangular path, counter-
clockwise from the x-cathetus to the hypotenuse (Fig. 7.4a). The displacement of
the simulated surface always formed a closed triangular figure, whose perimeter
and angles were unknown to the participant. During the presentation of the stimu-
lus, participants had to imagine the movement of the finger on a stationary surface
(e.g. the plane of a table) that matched the tactile sensation produced by the device
(Fig. 7.4a). After the presentation of the stimulus, participants reproduced the move-
ment of the finger on a squared sheet of paper (21× 21 cm) and then drew it with a
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Fig. 7.4 a During the administration of the stimulus, the participant imagined a movement of
the finger (finger path) that would match with the tactile stimulus produced by the device (object
path). After that, they drew the imagined movement on a squared paper sheet. The home position is
indicated as a black dot. b For the analysis and the plot, we digitized the participants’ drawings by
connecting the vertices of the drawn triangle by straight lines. c The physical path (filled triangles),
and the drawings from the participants (blank triangles). Examples for 6 different participants are
illustrated in different columns. d The polar plot represents the perceived size of the bottom-right
angle (i.e. the right angle of the stimulus, in red in the figure). For each trial, the size of the angle
drawn by participants is represented as a triangle-shaped data point. The two solid lines are for
illustrative purposes and show the 90◦ angle of the stimulus. The red line represents a fit to the
participant’s data and shows the average angle drawn by participants. Adapted with permission
from [16]
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pencil (Fig. 7.4b). We asked participants to accurately reproduce the size, the shape,
and the orientation of the simulated triangular path.

7.3.2 Results

Figure7.4c provides some examples of the stimuli together with the figures drawn
by the participants (the stimuli are represented by grey shapes and the responses of
the participants by the solid lines). We independently analyzed the perceived length
of the displacement, summarized by the perimeter of the triangles, and the perceived
direction of motion, summarized by the first angle. The estimate of the length of
the displacement was very accurate: the average of the extent of the simulated dis-
placement was 22.4cm and the grand mean of the perimeters drawn by participants
was 21.9cm. Thus, the accuracy was 21.9/22.4 = 0.98. This value was confirmed
by fitting the data with a Linear Mixed Model (LMM) which takes both the variabil-
ity between and within participants into account (see [16] for details). The statistical
model confirmed the high accuracy of the response (LMMestimated accuracy: 0.98).

Next, we focused on the direction errors. As explained before, the surface moved
first along the x-cathetus, then along the z-cathetus, and finally along the hypotenuse,
with the right angle always occurring first. Therefore, the perception of the right angle
was not affected by the geometrical constrains of the figure and the drawn angle
provides a fair estimate of the direction error. Figure7.4d shows the angle drawn
by each of the 6 observers for each of the 15 trials. The grand mean of the angle
was 84.7◦. The angle was clearly underestimated in 3 out of 6 participants. There are
two possible explanations for this underestimation of the right angle. The participants
might havemisestimated the direction per se, irrespective of themotion along the first
cathetus. Alternatively, participants might have misperceived the direction of motion
of the second cathetus, due to possibly a motion aftereffect. In order to evaluate the
Aftereffect hypothesis, in a second experiment we reverted the direction of motion
of the surface. This way, the motion path was the mirror image along the sagittal
axis of the stimulus used in the previous experiment. If the Aftereffect hypothesis
were true, the inner angle between the two catheti would be underestimated in a
similar way in the two experiments. Instead, if the angle bias was the consequence
of a direction anisotropy in world- or skin-framed reference, the angle would be
overestimated in the second experiment and not underestimated as in the first one.
However, four out of six participants underestimated the inner angle between the x-
and the z-cathetus in the second experiment. The average angle bias was −5.4 ± 2
degrees (Mean ± SE). These results are only consistent with the Motion Aftereffect
hypothesis. The bias was larger (i.e., the angle was more underestimation) for short
Inter Stimulus Intervals (ISI); the effect was statistically significant (p < 0.05). Note
that the angle bias was negligible (∼3◦) for ISI = 0.8 s, which is a plausible delay
in haptic exploration. The reproduced path length was accurate in 4 participants
and slightly overestimated in 2 of them. The average drawn perimeter was equal to
26.3 ± 2.0 cm (Mean ± SE), corresponding to an accuracy of 22.4/26.3 = 0.85.
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In summary, we showed that participants are able to integrate tactile slip to repro-
duce the displacement of the hand, quite accurately. Tactile slip is only informative
on the relative motion between the skin and the external object. That is, infinite com-
binations of tactile and object motion would correspond to the same hand motion,

vha = vob − vts . (7.3)

where vha, vob, vts are the hand, object and tactile slip velocity, respectively. In the
current experiment, we required participants to match the passive tactile slip with
the active movement on a stationary surface, therefore the experimental procedure
disambiguated whether the tactile movement depended on the object (passive stim-
ulus) or the hand (active reproduction). In a real life scenario the uncertainty might
be much larger as both our limbs and, occasionally, the external object can move. In
order to reduce the uncertainty, the observer may assumes a priori that objects are
world-stationary [9, 17], so that vha = −vts . We will further discuss this assumption
in the next section.

7.4 Discussion

In Sects. 7.2 and 7.3 we showed that the somatosensory system fuses the information
from muskuloskeletal system and cutaneous touch to produce a unified percept of
the finger or hand displacement. Other studies support this hypothesis. For instance,
Bicchi et al. [3] showed that the change in the strain pattern produced during tactile
slip conveys information on self-motion similar to the optic flow in vision. The
authors introduced the term “tactile flow” to stress the analogy in motion encoding
between vision and touch. Roll motion can be also informative on the hand and finger
displacement.Accordingly,Dostmohamed andHayward [5] induced an illusory hand
displacement along a curved object bymodulating the roll stimulus on the finger pad.

In accordance with Eq. (7.3), the velocity of a tactile stimulus would be informa-
tive on the displacement of the finger only if the external object remains stationary.
Most of the inanimate objects around us are either at rest or in slowmotion—at least,
objects in a scale relevant for perception, from millimeters to meters. Therefore,
it might be convenient for the observer assuming a priori that objects are world-
stationary. Previous studies showed that this is indeed the case and observers per-
ceive the movement of the objects consistently with a Bayesian model combining
the sensory measurement with a stationarity prior. This Bayesian model can explain
several motion illusions, both in vision [22, 23] and in touch [9, 17]. The second,
similar assumption is that the mechanical properties of the object—as for exam-
ple its stiffness—do not change over time. As illustrated in Sect. 7.3, violating this
mechanical-constancy assumption produces an illusory displacement of the finger.
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All the examples discussed above involve dynamic stimuli, as in most of daily-life
scenarios, static touch does not provide information on our limb position. However,
if the surface of the object is convex and its distance to the observer is known, the
strain pattern produced by static touch may also provide a cue on the position of
the finger. Due to contact mechanics, the force vector produced by a probe on a
convex object is unique for each point on the surface of the object [1]. Serio et al.
[21] used this principle to localize the contact point on the object from the force
vector. The tactile system might take advantage of this mechanical property in order
to localize the position of the finger with respect to the object. Static touch would
provide the observer with a different ‘snapshot’ for each different point of contact.
To our knowledge, this hypothesis has not been tested yet in human studies.

The discussion above focused on the properties of the external object, which has
to remain stationary and maintain a constant stiffness. We also suggested that, in
specific scenarios, the shape of the object might convey information on the layout of
the finger. Are there assumptions concerning our own body, specifically, the motor
control of our hand and our limbs, which may simplify the sensory fusion between
proprioception and touch? As showed in the Chaps. 2–5 of this book, a specific co-
activation of skeletal muscles occurs when performing a given action. This clustered
activity of differentmuscles in relation to a specificgoal is referred to asmotor synergy
[19] and is supposed to reflect a structural of functional organization of the central
nervous system aiming to reduce the degrees of freedomof the end effector, e.g. of the
hand. The advantages of synergies are not only in simplifying themotor planning, but
also in reducing the number of ambiguous interpretation of the sensory feedback.
Human hand has roughly 30 degrees of freedom [13]. If the motor system could
control independently the angular position of each different joint, several movement
would produce identical tactile stimuli, posing a problem of correspondence between
the joint configuration and the cutaneous strain pattern. Instead, motor synergy limits
the actual number of hand postures, reducing the dimensionality of the system.
This suggest the possibility of a mapping or correspondence between the strain
pattern on the skin and the coordinated muscle activity, peculiar for a given action.
In otherwords, a sensorimotor synergy.As suggested in [4], the sensorimotor synergy
could simplify the interpretation of the complex sensory information from touch. The
strength of the correspondence between hand posture and skin deformation could be
evaluated experimentally.
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Chapter 8
From Soft to Adaptive Synergies:
The Pisa/IIT SoftHand

Manuel G. Catalano, Giorgio Grioli, Edoardo Farnioli, Alessandro Serio,
Manuel Bonilla, Manolo Garabini, Cristina Piazza, Marco Gabiccini
and Antonio Bicchi

Abstract Taking inspiration from the neuroscientific findings on hand synergies dis-
cussed in the first part of the book, in this chapter we present the Pisa/IIT SoftHand,
a novel robot hand prototype. The design moves under the guidelines of making an
hardware robust and easy to control, preserving an high level of grasping capabil-
ities and an aspect as similar as possible to the human counterpart. First, the main
theoretical tools used to enable such simplification are presented, as for example the
notion of soft synergies. A discussion of some possible actuation schemes shows
that a straightforward implementation of the soft synergy idea in an effective design
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is not trivial. The proposed approach, called adaptive synergy, rests on ideas coming
from underactuated hand design, offering a design method to implement the desired
set of soft synergies as demonstrated both with simulations and experiments. As a
particular instance of application of the synthesis method of adaptive synergies, the
Pisa/IIT SoftHand is described in detail. The hand has 19 joints, but only uses one
actuator to activate its adaptive synergy. Of particular relevance in its design is the
very soft and safe, yet powerful and extremely robust structure, obtained through
the use of innovative articulations and ligaments replacing conventional joint design.
Moreover, in this work, summarizing results presented in previous papers, a discus-
sion is presented about how a new set of possibilities is open from paradigm shift in
manipulation approaches, moving from manipulation with rigid to soft hands.

8.1 Introduction

In the first part of the book, the neuroscientific concept of hand synergies, i.e. motor
primitives or common actuation patterns of neuro-muscular activities for the human
hand, has been widely discussed and considered at different levels (neural, muscular,
kinematic and sensory, see Chaps. 2–7).

Recently, different approaches in robotics tried to take advantage from the idea
of synergies, aiming to reproduce a similar “coordinated and ordered ensemble” of
human hand motions. To transfer part of the embodied intelligence, typical of the
human hand, into a robotic counterpart, a promising possibility is the re-creation of
synergy patterns as a feature of the mechatronic hand system. This approach has
already been tried in recent literature (see next section for a short review), although
a purely kinematic model of synergies leads to inconsistent grasp force distribu-
tion models. To solve such problems, the concept of soft synergies was introduced
[1, 2], which provides amodel of how synergiesmay generate and control the internal
forces needed to hold an object.

In this chapter, we summarize the results discussed in [3–5], presenting how soft
synergy idea can be exploited to build robot hands, such as the Pisa/IIT SoftHand, that
can grasp a large variety of objects in a stable way, while remaining very simple and
robust. Moreover, we show that the Pisa/IIT SoftHand can afford grasping capabili-
ties that are comparable to natural one. Through the observation of human-directed
operations of the prototype it appears how fundamental in everyday grasping and
manipulation is the role of hand compliance. Indeed, the Pisa/IIT SoftHand can be
functionally shaped using both the object to grasp and the environmental constraints,
going beyond nominal kinematic limits by suitably exploiting its structural softness.

The approach to the principled simplification of hand design can be summarized
as follows. From statistical observations of human grasping, we derive the hand pos-
tures most often used in the grasp approach phase (aka synergies, see also Chaps. 2–
5) and a mathematical description on the basis of the soft synergy model (see also

http://dx.doi.org/10.1007/978-3-319-26706-7_2
http://dx.doi.org/10.1007/978-3-319-26706-7_7
http://dx.doi.org/10.1007/978-3-319-26706-7_2
http://dx.doi.org/10.1007/978-3-319-26706-7_5
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Fig. 8.1 Skeleton of the
Pisa/IIT SoftHand advanced
anthropomorphic hand
prototype implementing one
adaptive synergy. The
prototype dimensions are
comparable to those of the
hand of an adult human

Chaps. 12 and 13). Indeed, as also discussed in Chap.9, human–like hand move-
ment has great influence in the possibility of successfully achieving a large number
of grasps belonging to the sphere of activities of daily living (ADL). The actual
realization of the hand mechanics is not however a straightforward implementation
of the soft synergy model. Indeed, to achieve a simple and compact design and better
robustness, we recur to the technology of underactuated hands [6], complementing
it with innovative joint and ligament design. A relevant point discussed in this work
regards how the design parameters of an underactuated hand can be chosen so that
its motion replicates a given set of synergies, in a sense allowing the translation of
the concept of soft synergies into adaptive synergies.

The result of our design method is the Pisa/IIT SoftHand (see Fig. 8.1), a 19-joint
hand with anthropomorphic features, which grasps objects of rather general shape
by using only a single actuator, and employing an innovative design of articulations
and ligaments, which provides a high degree of compliance to external solicitations.

The chapter is organized as follows: Sect. 8.2 briefly presents the analytical
model of grasping problem for fully actuated hand and underactuated hands, both
via soft and adaptive synergies. Section8.3 describes in detail the architecture of
the Pisa/IIT SoftHand and Sect. 8.4 presents the grasping results experimentally
obtained. Section8.5 addresses the issue of the change of paradigm in the prob-
lem of grasping with SoftHands, i.e. compliant yet robust robotic hands. Finally,
conclusions are drawn in Sect. 8.6.

http://dx.doi.org/10.1007/978-3-319-26706-7_12
http://dx.doi.org/10.1007/978-3-319-26706-7_13
http://dx.doi.org/10.1007/978-3-319-26706-7_9
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8.2 Hand Actuation, Synergies and Adaptation

8.2.1 Fully Actuated Hands

In this section, we briefly present a description of the principal actuation paradigms
for the design of robotic systems. The nomenclature and notation are synthesized in
Table8.1. Finally, we present a map between the human inspired soft synergy model
(see also Chap.13) and the adaptive synergy design used in the Pisa/IIT SoftHand.
More theoretical details about grasp analysis are presented in Chaps. 12, 13 and in
[7–9].

Starting from fully actuated hands, a quasi-static description of the problem of
object grasping can be formalized through a system of three equations as

δw + Gδ fc = 0, (8.1)

δτ = Qδq + Uδu + J T δ fc, (8.2)

δ fc = Kc(Jδq − GT δu). (8.3)

More specifically, the object equilibrium equation, in (8.1), establishes a relation-
ship between external disturbances acting on the object and contact forces that the
hand exerts on the object; Eq. (8.2) describes the joint torque variation required to

Table 8.1 Notation for grasp analysis

Notation Definition

δx Variation of variable x

x̄ Value of x in the reference configuration

�x Dimension of vector x

w ∈ R
6 External wrench acting on the object

u ∈ R
6 Pose of the object frame

fc ∈ R
c Contact forces exerted by the hand on the object

c Number of contact constraints

τ ∈ R
�q Joint torque

q ∈ R
�q Joint configuration

qr ∈ R
�q Reference joint configuration

σ ∈ R
�σ Soft synergy configuration

ε ∈ R
�σ Soft synergy forces

z ∈ R
�z Adaptive synergy configuration

η ∈ R
�z Adaptive synergy forces

G ∈ R
6×c Grasp matrix in object frame

J ∈ R
c×�q Hand Jacobian matrix in object frame

S ∈ R
�q×�σ Soft synergy matrix

A ∈ R
�z×�q Adaptive synergy matrix

http://dx.doi.org/10.1007/978-3-319-26706-7_13
http://dx.doi.org/10.1007/978-3-319-26706-7_12
http://dx.doi.org/10.1007/978-3-319-26706-7_13
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compensate contact force variation and/or kinematic displacement of the system, and
the contact constitutive equation (8.3) relates contact force variation with the mutual
displacements of the hand and the object contact points.

More in detail, in Eq. (8.1), the symbolw∈R
6 indicates the external wrench acting

on the object, described in a local frame {O}, while fc ∈R
c are the forces that the

hand exerts on the object, described in local contact frames, fixed to the object.
The value of c, for the contact force vector, depends on the number and type of
contact constraints. For example, a hard finger contact, allows the presence of three
components of forces, thus it contributes three. The soft finger contact, with respect
to the hard one, adds the possibility to exert a moment around the normal vector to
the contact surface, thus it contributes four. Through the introduction of the grasp
matrix G ∈ R

6×c, the object equilibrium condition is written as

w + G fc = 0. (8.4)

Because the equation is written in a reference frame attached to the object, the grasp
matrix is constant, hence by differentiating (8.4), (8.1) follows.

The hand equilibrium equation relates contact forces with joint torques, τ ∈ R
�q ,

through the transpose of the hand Jacobian matrix J T ∈ R
�q×c, as

τ = J T fc. (8.5)

It is worth observing that the Jacobian matrix is here a function both of the hand
configuration q and of the object configuration u ∈ R

6. This is a consequence of the
choice to describe the contact interaction in a local frame attached to the grasped
object. From this fact it follows that, differentiating (8.5), (8.2) is obtained, where the
terms Q = ∂ J T fc

∂q ∈ R
�q×�q and U = ∂ J T fc

∂u ∈ R
�q×6 have to be considered in order to

properly take into account the initial contact force preload.
As described in [10], a rigid model of hand/object interaction does not allow the

computation of the contact force distribution. The problem can be simply solved
by introducing a virtual spring at the contact points. One extreme of each virtual
spring is attached to the hand and the other to the object, both in the nominal contact
location. The virtual spring model generates a force variation corresponding to the
local interpenetration of the hand and object parts. Correspondingly, a contact force
variation is described in (8.3) through the introduction of the contact stiffness matrix
Kc ∈R

c×c.
The basic grasp equations (8.1)–(8.3) can be rearranged in matrix form as

⎡

⎣
I 0 G 0 0
0 I −J T −Q −U
0 0 I −Kc J KcGT

⎤

⎦

⎡

⎢⎢⎢⎢
⎣

δw
δτ

δ fc

δq
δu

⎤

⎥⎥⎥⎥
⎦

= 0. (8.6)
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This is a linear homogeneous system of equations in the form Φδϕ = 0, where
Φ ∈ R

rΦ×cΦ is the coefficient matrix, and δϕ ∈ R
cΦ is the vector containing all sys-

tem variables. From (8.6), we easily obtain that Φ is always full row rank, and its
dimensions are

rΦ = �w + �q + � f,
cΦ = 2�w + 2�q + � f.

(8.7)

These facts imply that a basis for the solution space of the system has dimen-
sion cΦ −rΦ =�w + �q. Thus, a perturbed configuration of the system can be com-
pletely described knowing the values of the external wrench variation, δw, and the
displacements of the joint configuration,1 δq. We will refer to these as the inde-
pendent variables of the system. The dependent variables will be indicated as
δϕd = [

δτ T , δ f T
c , δuT

]T
.

Acting on the coefficient matrix of the system, it is possible to obtain a formal
method to get an explicit expression of the dependent variables of the system, as a
function of the independent ones. This result is achievable extending the elementary
Gauss operations, defined for typical linear systems of equations, in order to act on
a block partitioned matrix. A general algorithm to obtain the desired form starting
from (8.6), called GEROME-B, as completely described in Chap. 13. The final result
of the procedure is a set of equations of the type

δϕd = Wd δwc + Rdδq, (8.8)

where Wd and Rd are matrices of suitable dimensions. In the rest, we will mostly
focus on the study of the controllability of grasping with different hand actuation
systems, hence considering a null external wrench variation in (8.8). For the sake of
completeness, we report here on the structure of this matrix, which can be partitioned

as Rd = [
RT

τ RT
f RT

u

]T
, with the following explicit formulae

Rτ = Q + J T Kc J + (U − J T KcGT )
(
G KcGT

)−1
G Kc J,

R f = Kc J − KcGT
(
G KcGT

)−1
G Kc J,

Ru = (
G KcGT

)−1
G Kc J.

(8.9)

8.2.2 Approaches to Simplification

Full independent actuation of the joints, in principle, offers the widest range of
grasping and manipulation possibilities, limited only by the hand kinematics. As a
counterpart, the large number of actuators needed causes complication in the design
and a growth of the costs. Even disregarding the hardware aspects, however, the

1From the previous considerations, it follows that other choices are possible. However, a complete
discussion about these cases is out of the scope of this work.

http://dx.doi.org/10.1007/978-3-319-26706-7_13
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exploitation of the potential of full independent actuation requires sophisticated pro-
gramming and control of the hand. Programming complexity turns often out to rep-
resent a major obstacle to usability and efficiency in real-world applications of robot
hands.

Recently, researchers tried to find a trade off between the full utilization of the hand
capabilities and the simplicity in control. Neuroscience studies, as widely described
in Chaps. 2–6, 10, 11, 15 and e.g. in [11–13], showed that humans control their hand
by organized motion patterns or primitives. Particular muscular activation patterns
produce correlated movements of the hand joints, which form a base set [14]. As
extensively discussed in this book, especially in the first part (e.g. Chap.2), such base
is referred to as the space of the postural synergies, or eigengrasp space [15–17].
What makes the bio–aware synergy basis stand out among other possible choices for
the basis to describe the hand configuration is the fact that most of the hand grasp
posture variance, actually the 80%, is explained just by the first two synergies, and
the 87% by the first three [18]. This renders the synergy space a credible candidate
as a basis for simplification.

In order to transfer this concept in robotics, the synergy matrix S ∈ R
�q×�σ is

introduced, describing the principal components of a dataset of grasping postures,
where �σ ≤ �q is the number of used synergies. With this actuation scheme, a hand
configuration can be represented in the synergy space by the coordinate vector σ ∈
R

�σ as
q = Sσ. (8.10)

A similar approach was used in [15], where software synergies were used to sim-
ulate a correlation pattern between joints of a fully actuated robotic hand. Software
synergies can substantially simplify the design phase of a grasp, by reducing the
number of control variables (see also [19]). However, software synergies clearly do
not impact the simplification of the design of physical hands. The synergy concept
was also applied via hardware, as in the design proposed in [20], where the authors
used a train of pulleys of different radii to simultaneously transmit different motions
to each joint.

Both the aforementioned software and hardware implementation of hand syn-
ergies assumed a model of the hand with a number of independent actuators (or
Degrees of Actuation, DoAs) smaller than the number of joints (or Degrees of Free-
dom, DoFs). This causes the hand to move in a way that does not necessarily comply
with the shape of an object to be grasped, hence resulting in few contacts being
established between the hand and the object. To face this problem, some fixes can
be considered, such as e.g. stopping the motion of each finger when it comes in
contact with the grasped object, while prosecuting motion of others, or introducing a
complementary actuation system for modifying the shape of synergies. While these
techniques can be considered to simplify the grasp approaching phase design, they
do not benefit from synergy concept to control grasping forces.

http://dx.doi.org/10.1007/978-3-319-26706-7_2
http://dx.doi.org/10.1007/978-3-319-26706-7_6
http://dx.doi.org/10.1007/978-3-319-26706-7_10
http://dx.doi.org/10.1007/978-3-319-26706-7_11
http://dx.doi.org/10.1007/978-3-319-26706-7_15
http://dx.doi.org/10.1007/978-3-319-26706-7_2
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8.2.3 Soft Synergies

To fully take advantage of the synergistic approach, avoiding the previously explained
limitations, the idea of soft synergies was introduced and discussed in [2]. In this
model, synergy coordinates define the configuration of a virtual hand, toward which
the real one is attracted by an elastic field. To describe this situation, we introduce a
reference configuration vector qr ∈ R

�q , describing the configuration of the virtual
hand. In thismodel, themotion of the virtual hand is directly controlled in the synergy
space as

δqr = Sδσ. (8.11)

The difference between the real position of the hand and its reference configuration
generates the joint torques, which, at equilibrium, balance the interaction forces
between the real hand and the grasped object. In formulae, defining a joint stiffness
matrix K s

q ∈ R
�q×�q , the joint torques in the soft synergy model are given by

δτ = K s
q(δqr − δq). (8.12)

By kineto-static duality, introducing the generalized force in the synergy space δε ∈
R

�σ , we immediately get that
δε = ST δτ. (8.13)

One important aspect of the soft synergy model, is that it enables to reduce the
number of degrees of actuation, while retaining all the kinematic degrees of freedom
leaving the fine adjustment of the �q − �σ remainingmovements to the hand compli-
ance. A conceptual hardware implementation of this idea is shown in Fig. 8.2b. This
kind of underactuation scheme can be easily modeled by considering (8.11)–(8.13),
along with the grasp equation (8.8). In particular, for zero external wrenches on the
object, for the joint torques it holds

δτ = Rτ δq, (8.14)

where Rτ ∈ R
�q×�q was described in (8.9). Substituting (8.14) in (8.12), taking into

account (8.11), we obtain

δq = (
K s

q + Rτ

)−1
K s

q Sδσ := H s K s
q Sδσ. (8.15)

Although the idea of soft synergy actuation sketched in Fig. 8.2b appears to pro-
vide an elegant solution to the problem of simple hand design, merging the natural
motion inherited from the postural synergy approach with adaptivity due to compli-
ance, its implementation in a mechanical design unfortunately turned out not to be
very easy or practical, at least in our attempts.
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(a)

(b)
(c)

Fig. 8.2 A simple hand grasping an object with different types of (under)actuation. More in detail,
panel a shows a conceptual schematics of a simple bi-dimensional fully actuated hand grasping an
object. Panel b shows the Soft Synergy Actuation scheme applied to the same hand. Panel c shows
two adaptive synergies used for the underactuation mechanism

8.2.4 Adaptive Synergies

A distinct thread of research work has addressed the design of simple robot hands
via the use of a small number of actuators without decreasing the number of DoF.
This approach, authoritatively described in [6], is referred to as underactuation and
has produced a number of interesting hands since the earliest times of robotics. For
further details the reader can refer to [21–23], and also to [24–27].

The basic idea enabling shape adaptation in underactuated hands is that of a
differential transmission, the well-known mechanism used to distribute motion of a
prime mover to two or more DOFs. Differentials can be realized in various forms,
e.g. with gears [28], closed-chain mechanisms [28], or tendons and pulleys [29], and
concatenated so as to distribute motion of a small number of motors to all finger
joints q. Letting the vector z ∈ R

�z , with �z ≤ �q, denote the position of the prime
movers, a general differential mechanism is described by the kinematic equation

Aδq = δz, (8.16)

where A ∈ R
�z×�q is the transmission matrix, whose element Ai j is the transmission

ratio between the i th actuator to the j th joint. By kineto-static duality, the relationship
between the actuation force vector η ∈ R

�z and the joint torques is

δτ = AT δη. (8.17)
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The kinematic model (8.16) highlights the non-uniqueness of the position attained
by an underactuated hand. Indeed, being the transmission matrix A a rectangular fat
matrix, an infinity of possible hand postures δq exist which satisfy (8.16) for a given
actuator position δz, their difference belonging to the kernel of A.

While these kernel motions are exactly those that provide underactuated hands
with the desirable feature of shape adaptivity, in practice these hands associate to
differential mechanisms the usage of passive elements such as mechanical limits,
clutches, and springs [6]. Reasons for adding passive elements are various, including
avoiding tendon slackness and ensuring the uniqueness of the position of the hand
when not in contact with the object.

Let us define the model of an underactuated hand with elastic springs depicted in
Fig. 8.2c as adaptive synergy actuation. Notice that springs are arranged in parallel
with the actuation and transmissionmechanism, as opposed to the soft synergymodel
in Fig. 8.2b where they are in series. Defining a joint stiffness matrix as K a

q ∈ R
�q×�q ,

the balance equation (8.17) is rewritten as

δτ = AT δη − K a
q δq. (8.18)

Considering (8.18) and (8.14), it immediately follows that

δq = (
K a

q + Rτ

)−1
AT δη := H a AT δη. (8.19)

Thus, substituting this in (8.8), we obtain a description of the hand/object equilibria
caused by the application of given actuator forces.

If instead actuators are modelled as position sources, by substituting equation
(8.19) in (8.16) and inverting, we find

δη = (
AH a AT

)−1
δz. (8.20)

Substituting this result in (8.19), we then obtain

δq = H a AT
(

AH a AT
)−1

δz. (8.21)

Finally, a complete system description in the case of actuator position control is given
by substituting (8.21) in (8.8).

8.2.5 From Soft to Adaptive Synergies

Summarizing the discussion so far, we have seen that two design techniques, i.e. soft
and adaptive synergies, for multiarticulated hands with simple mechanics stand out
for different reasons. Soft synergies provide a robust theoretical basis for the design
of anthropomorphic hands butwithout an effective technological implementation.On
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the contrary, under-actuated hands (adaptive synergies) can be developed exploiting
simple elements, such as differential and elastic ones.

For this reason, assuming that a desired soft synergy model is assigned trough
its synergy and stiffness matrices, S and K s

q respectively, our goal is to find a corre-
sponding adaptive synergy model, identified by a transmission matrix A and a joint
stiffness K a

q , which exhibits the same behavior, at least locally, around an equilibrium
configuration.

As shown in the previous sections, the behavior of the hand/object system is
slightly different if the hand is position controlled or force controlled. This holds
true for both soft and adaptive synergy model. Nevertheless, in all of the cases, the
system is described as a linear map from an independent variable δϕi , that can be
δσ or δz, and the joint displacement as δq = Φiδϕi , where Φi is taken from one of
(8.15) or (8.21), respectively. By means of (8.8), the joint displacement describes
the variation of the dependent variables at the hand/object level.

The map can be also defined in the opposite direction, starting from a given
adaptive synergy, to obtain a corresponding soft synergy. The total amount of possible
maps is eight, considering both the case of position and force control.

We will describe now the procedure to find one of such mappings, from a given
position controlled soft synergymodel to the corresponding position controlled adap-
tive synergy hand. All the other maps can be found with similar procedures.

The hand/object behavior for a position controlled soft synergy hand is defined by
(8.15), while the behavior of an adaptive underactuated hand is controlled by (8.21).
To match them means to impose

H s K s
q S δσ = H a AT

(
AH a AT

)−1
δz. (8.22)

Looking at the span of the second term of the previous equation, it is possible to see
that

span
{

H a AT
(

AH a AT
)−1

}
= span

{
H a AT

}
, (8.23)

since the term
(

AH a AT
)−1

is a square full rank matrix. As a consequence, the span
of the two terms in (8.22) can be matched by imposing

H a AT = H s K s
q SM, (8.24)

wherematrix M can be any full rank square matrix of suitable dimensions, which can
be used as design parameter and accounts also for measurement units harmonization.
Given the choice on (8.24), a suitable relationship from δσ to δz can be found in the
form

δz = (
AH a AT

)
M−1δσ, (8.25)

completing the map between the two actuation systems.
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8.3 The Pisa/IIT SoftHand

In this section we apply the adaptive synergy design approach previously described
and depicted in Fig. 8.2c to the design of a humanoid hand. The hand was designed
according to few specifications. On the functional side, the main requirement is the
capability of grasping as wide a variety of objects and tools as possible, among those
commonly used by humans in everyday tasks. The hand should be primarily able to
execute whole hand grasp of tools, properly and strongly enough to operate them
under arm and wrist control, but it should also be able to achieve tip grasps. No in–
hand dexterous manipulation is required for this prototype. The main nonfunctional
requirements are resilience against force, overexertion and impacts, and safety in
interactions with humans. The hand should be lightweight and self-contained, to
avoid encumbering the forearm and wrist with motors, batteries and cabling, along
with cost effectiveness.

In order to meet the first functional requirement, the hand was designed anthro-
pomorphically, with 19 DOFs arranged in four fingers and an opposable thumb
(Fig. 8.3a). To maximize simplicity and usability, however, the hand uses only one
actuator. According to our design approach, the motor actuates the adaptive synergy
as derived from a human postural database, see also Chaps. 2–5 and 15. The mechan-
ical implementation of the first soft synergy through shape–adaptive underactuation
was obtained via the numerical evaluation of the corresponding transmission matrix
R and joint stiffness matrix K a

q appearing in (8.16) and (8.18).
The hand assembly design is shown in Fig. 8.3b. Each finger has four phalanges,

while the thumb has three. The hand palm is connected to a flange, to be fixed at the
forearm, through a compliant wrist allowing for three passively compliant DOFs.

The wrist of the SoftHand is composed by two curved surfaces, able to roll one
on the other. The contact between them is guaranteed by the use of elastic ligaments,

(a) (b)

Fig. 8.3 Panel a shows the kinematics of the Pisa/IIT SoftHand. Revolute joints are in dark gray,
while rolling–contact joints are in light gray. In panel b, a three–dimensional view of the Pisa/IIT
SoftHand. Main components (the motor, the battery pack and the electronic control board), joints
and wrist architecture are highlighted

http://dx.doi.org/10.1007/978-3-319-26706-7_2
http://dx.doi.org/10.1007/978-3-319-26706-7_5
http://dx.doi.org/10.1007/978-3-319-26706-7_15
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arranged along the perimeter of the wrist. When relative motion of the surfaces
arises, for example caused by an external load, a set of elastic forces appears. The
wrist comes back to the original configuration when the external load is removed.

In rest position, with fingers stretched out and at a relative angle of about 15◦ in
the dorsal plane, the hand spans approximately 230mm from thumb to little finger
tip, is 235mm long from the wrist basis to the middle finger tip and has 40mm
maximum thickness at the palm. The weight of the hand is approximately 0.5 kg.
The requirement on power grasp implies that the hand is able to generate a high
enough grasping force, and to distribute it evenly through all contacts, be them at
the fingertips, the inner phalanges, or the palm. These goals are naturally facilitated
by the shape adaptivity of the soft synergy approach, yet they also require strong
enough actuation and, very importantly, low friction in the joints and transmission
mechanisms.

The requirement on resilience and safety was one of the most exacting demands
we set out for our design, as we believe these to be crucial features that robots must
possess to be of real use in interaction with, and assistance to, humans. This is only
more true for hands, the body part primarily devoted to physical interaction with
the environment for exploration and manipulation. To achieve this goal, we adopted
a non-conventional “soft robotics” design of the mechanics of the hand, that fully
exploits the potential of modern material deposition techniques to build a rather
sophisticated design with rolling joints and elastic ligaments at very low cost. A
first departure form conventional design is the use of rolling contact articulations to
replace standard revolute joints. Our design takes inspiration from a class of joints
known as COmpliant Rolling-contact Elements (CORE) [30, 31], aka “Rolamite” or
“XRjoints” joints [32] (see Fig. 8.4a). Among these, Hillberry’s design of a rolling
joint [33] is particularly interesting to our purposes.

A Hillberry joint consists of a pair of cylinders in rolling contact on each other,
held together by metallic bands, which wrap around the cylinders on opposite sides
as schematically shown in Fig. 8.4a. In Hillberry joints (see Fig. 8.4b), the band
arrangement results in a compliant behavior in flexion but rigid in traction. The
joint forms a higher kinematic pair, whose motion is defined by the profile of the
cylinders, and exhibits very low friction and abrasive wear. The joint behaves more
similarly to the human articulation than simple revolute joint, and for this reason
was originally proposed for knee prostheses [33]. Hillberry joints have been used
in few robotic applications before, including robot hands [34]. Figure8.3a shows
how we used CORE joints in the design of the Pisa/IIT SoftHand. In particular,
we adopted CORE joints for all the interphalangeal, flexion/extension articulations.
Conversely, conventional revolute jointswere used formetacarpo-phalangeal, abduc-
tion/adduction articulations. Our design introduces a few important modifications of
existing rolling–contact joints, which are illustrated in Fig. 8.4c, d. Firstly, metal-
lic bands were replaced by elastic ligaments, realized a polyurethane rubber able
to withstand large deformations and fatigue, and are fixed across the joint with an
offset in the dorsal direction. Suitable pretensioning of the ligaments, together with
a carefully designed profile of the two cylinders, introduces a desirable passive sta-
bility behavior, with an attractive equilibrium at the rest configuration with fingers
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Fig. 8.4 Schematic illustration of two examples of COmpliant Rolling–contacts Elements (CORE):
a Rolamite joint (a) and a Hillberry joint (b). Design of the compliant rolling–contact joint used in
the interphalangeal joints of the Pisa/IIT SofHands: c perspective view with rolling cylinders with
matching multi-stable profile; d lateral view, showing the arrangement of ligaments and tendons

stretched. The elastic ligaments are polyurethane rubber segments of 2mm diameter,
characterized by 88 Shore A hardness. The rest length of the ligaments is 10 mm.
Some pre-tensioning is applied with a stretch in the range between 2–5 mm. All the
long fingers proximal flexion joints have lower values of pre-tensioning, with respect
to all the other joints, in order to guarantee a hand motion similar to the first human
postural synergy (see Chaps. 2 and 4), as explained in Sect. 8.2.4 (Fig. 8.5).

The coupled rolling cam profiles are designed on a circular primitive with radius
6.5 mm. The actuation tendon is wrapped around pulleys with radius 3.5 mm. All
the radii are the same for all the rolling profiles and the pulleys, in order to obtain a
modular design. The rolling cam profile is realized on cylinder portions flanked by
lateral walls on both sides, whose slope is about 80◦ (see Figs. 8.4c, d and 8.6). When
two phalanges are assembled, suchwalls are housed in a fitting recess of thematching
phalanx. These features of our design are particularly important for the system to
behave softly and safely at contact, and to recover from force overexertion, due e.g. to
impacts or jamming of the hand, making the hand automatically return to its correct
assembly configuration. Indeed, these joint can withstand severe disarticulations (cfr.
Fig. 8.6) and violent impacts (Fig. 8.7).

The design of interphalangeal joints does not require the use of screws, shafts,
bearings or gears. As it can be seen in Fig. 8.4c, d, a few teeth of an involute gear of

http://dx.doi.org/10.1007/978-3-319-26706-7_2
http://dx.doi.org/10.1007/978-3-319-26706-7_4
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Fig. 8.5 Partially exploded line sketch of the Pisa/IIT SoftHand. The tendon routing distributes the
motion to all joints

Fig. 8.6 The Pisa/IIT SoftHand joints can withstand severe force overexertion in all directions,
automatically returning to the correct assembly configuration. a Finger side bend. b Finger back
bend. c Finger twist. d Finger skew bend. e Side bend. f Back bend. g Twist. h Skew bend

Fig. 8.7 A photo-sequence showing the PISA/IIT SoftHand during a violent impact with a stiff
surface
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vanishing height are indeed integrated in the cam shape, to better support tangential
loads at the joint.

Actuation of the hand is implemented through a single Dyneema tendon routed
through all joints using passive anti-derailment pulleys. The tendon action flexes and
adducts fingers and thumb, counteracting the elastic force of ligaments, and imple-
menting adaptive underactuation without the need for differential gears (Fig. 8.5).

8.4 Experimental Results

The prototype of the Pisa/IIT SoftHand (Fig. 8.1) was built to perform experimentally
tests. The actuator powering the hand is a 6WMaxonmotor RE-max21with a reduc-
tion ratio of 84:1 equipped with a 12 bit magnetic encoder (Austrian Microsystems
AS5045) with a resolution of 0.0875◦.

The embedded electronic unit hosting sensor processing, motor control and com-
munication is located in the hand back, along with the battery pack. The open-
ing/closing of the hand is controlled via a single set point reference, communicated
via one of the available buses (SPI and RS-485).

During experiments the hand worn an off-the-shelf working glove with padded
rubber surfaces, supplying contact compliance and grip.

8.4.1 Force and Torque Measurements

An interface equipped with an ATI nano 17 F/T sensor was used to measure the
holding force and torque of the robotic hand. In the first case, a split cylinders,
represented in Fig. 8.8a, was used to measure the grasp force. The cylinder is 120mm
high and has a diameter of 45 mm. The disk to measure maximum holding torque is
represented in Fig. 8.8b. The disk is 20mm high and has a diameter of 95 mm.

Fig. 8.8 Sensorized object for force measurements (a), sensorized object for torque measurements
(b). a Grasp force test object. b Holding torque test object
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Fig. 8.9 Torques and forces of the robotic hand during grasp task. a Torques. b Forces

In Fig. 8.9b we report force acquisitions while the hand grasped the sensorized
object. It is possible to notice how forces increased when fingers get in contact
with the sensorized cylinder (step behavior of the lines in Fig. 8.9b). We achieved a
maximum holding torque of 2 Nm and maximum holding force of about 20 N along
the z axis. These limits appear to be dictated by the motor size rather than by the
hand construction. Although we did not go through an exhaustive analysis, in an
occasional experiment with a stronger motor, we obtained holding torque of 3.5 Nm
and holding force of 28 N.

8.4.2 Grasp Experiments

To test the adaptiveness of the robotic hand, the grasp of several objects of daily use in
a domestic or lab environment were performed. Grasp experiments were performed
in three different conditions: (1) the hand wrist fixed on a table and the object placed
in the grasp; (2) the object placed on a table and the hand mounted on a robot arm,
and (3) the hand wrist fixed to the forearm of a human operator.

Some examples of grasps achieved in the first condition are reported in Fig. 8.10.
To test usage of the Pisa/IIT SoftHand in a robotic scenario, the handwasmounted

at the end-effector flange of a KUKA Light–Weight robot arm. Figure8.11 shows
some of the grasps tested.Notice that the robotwasmanually programmed to reach an
area were the object was approximately known to lie, and no grasp planning phase
was executed. Rather, the hand was given a closure command by software. The
closure time, as well as the robot trajectory, were preprogrammed in the examples
shown, and were the same for each object lying roughly in the same area.

Finally, to test the capability of the Pisa/IIT SoftHand to acquire complex grasps of
objects randomly placed in the environment, we developed a wearable mechanical
interface (see Fig. 8.12) allowing an operator to use our hand as a substitution of
his/her own. The interface can be strapped on the operator’s forearm and can be
controlled by the operator acting on a lever with his/her real hand (see Fig. 8.12a).
In Fig. 8.13 we report some grasps executed with the human interface (condition
2 above). In summary, a total of 107 objects of different shape was successfully
grasped, with a whole hand or a tip grasp, in all conditions previous considered,
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(a)

(f)

(g)

(h)

(i)

(j)

(b)
(c) (d) (e)

Fig. 8.10 Some experimental grasps performed with the Pisa/IIT SoftHand, with the object placed
in the hand by a human operator

Fig. 8.11 Grasps executed with the Pisa/IIT SoftHand mounted on a Kuka Light Weight Robot:
handbag (a), spray (b), cup (c) and telephone (d)

during our tests: bottle, reel, pincer, stapler, pen, phone handset, plier, teddy bear,
cup, handle, spray, computer mice, hot–glue gun, human hand, cell phone, glass,
screw–driver, hammer, file, book, coin, scotch tape holder, ball, tea bag, ketchup
bottle, hamburger, camera, tripod stand, cutter, trash can, keyboard, torch, battery
container, battery (AA), small cup, measuring tape, caliper, wrench, lighter, eraser,
world map (globe), remote control, hex key, AC adapter, keyring, spoon, fork, knife,
hand tissue box, liquid soap dispenser, corkscrew, rag, candy, calculator, slice of
cake, rubber-stamp, spring, paper, cellphone case, rubber band, bottle top, watch,
umbrella, broom, garbage scoop, scarf, chair, schoolbag, USB cable, glue stick,
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Fig. 8.12 aComponents of the interface for human use of the Pisa/IIT SoftHand. The angle position
of the lever is adopted as reference position to drive the actuator of the hand. b Appearance of the
assembled human interface prototype

Fig. 8.13 Some examples of grasps executed with the robotic hand mounted on a wearable Human
Robot Interface: telephone (a), Teddy Bear (b), book (c), and strawberry (d)

wallet, credit card, sponge, pencil sharpener, straight edge, safety lock, mouse pad,
hard disk, jacket, drill, chalk, notebook, blackboard eraser, door lock, square ruler,
scissors, eyeglasses, deodorant, USB key, hat, headphones, cigarette, helmet, screw
(M8), clamp, fridge magnet, drill bit, table calendar, saw, tape cassette, beauty case,
bubble gum box, bubble gum, tissue pocket, dish, poster.

The more difficult situation is in grasping very thin objects. However, since grasp
limitations of the prototype are also influenced by the operator training, it is not easy
to quantify grasp limitations without resorting to further investigations on operator’s
capabilities, which are out of the scope of this paper.

8.5 A New Set of Possibilities

One of the main lessons learned through these experiments is that, while all grasps
could be easily achieved by the hand when operated by a human, programming the
robot to achieve the same grasps was in some cases rather complex. One of the main
reason for this is, in our understanding, that the human operator quickly learns how to
exploit the intrinsic adaptivity of the hand, including the wrist compliance, to shape
the hand before and during grasp. This is done with the help of object features and/or
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environmental constraints, notably the table top andwalls. This observation hints that
autonomous learning and planning for soft robot grasping might have to be focused
on constraint–based motion rather than on free–space, multi-DoF hand shaping.
This kind of features allow to use these hands in more “daring” interactions with the
objects and the environment, in contrast with the “timid” approach typically adopted
with rigid hands. In fact, Soft Hands can use their full surface for enveloping grasps,
and exploiting objects and environmental constraints, in order to functionally shape
themselves, going beyond their nominal kinematic limits by exploiting structural
softness.

The differences between a rigid and soft approach to manipulation are sketched in
Fig. 8.14. In the classical paradigm (cfr. Fig. 8.14a), the planner searches for suitable
points on the object that generate a nominal grasp of good quality, and for trajectories
that can bring there the fingertips while avoiding contacts of the hand with the
environment. In the example of Fig. 8.14c, to grasp the green cup while avoiding

(a)
(b)

(d)(c)

Fig. 8.14 Paradigm shift in manipulation, from rigid manipulation (left) to soft manipulation
(right). Primary colors identify the scenario main actors: red for the robotic hand, blue for the
environment, green for the target object. Secondary colors codify simple interactions between the
actors: yellow for hand-object, cyan for object-environment and magenta for environment-hand.
Finally, complex interactions, which involve all the three actors at the same time, are white colored.
a Rigid manipulation paradigm. b Soft Manipulation Paradigm. c Rigid Manipulation example. d
Soft Manipulation example
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the wall on the left the planner has to find a path in a narrow passage. However,
soft manipulation subverts this scheme (Fig. 8.14b). In the example of Fig. 8.14d,
hand-object, object-environment and hand-environment contacts are not avoided but
rather sought after and exploited to shape the hand itself around the object.

The set of all possible physical interactions between the hand, the object and the
environment, which define the hand-object functional interaction, will be referred to
as the set ofEnabling Constraints. The analysis of suchpossibilities constitute a rather
new challenge for existing grasping algorithms: adaptation to totally or partially
unknown scenes remains a difficult task, toward which only some approaches have
been investigated so far. Some of them are model-free and propose geometrical
features which indicate good grasps [35, 36], some others evaluate also topological
object properties such as holes [37]. Typically, grasps are ranked on a fixed list of
suitable hypotheses, do not require supervised learning, but do not adapt over time.
Other methods are based on learning the success rate of grasps given some descriptor
extracted from sensor data, either evaluated on a real robotic system [38, 39], or on
simulated sensor data [40, 41].

Moreover, beside vision-based methods, hand compliance offers the real possi-
bility to use tactile exploration for 3D reconstruction of unknown environments and
objects. Indeed, tactile sensing can solve some severe limitations of computer vision,
such as sensitivity to illumination and limited perspective. As an example, a com-
bined procedure based on dynamic potential fields, that aims at reconstructing 3D
object models, which are then used for grasp planning and execution was presented
in [42] and recently extended in [43].

An important observation from the way humans use their real hands is that, in
everyday grasping and manipulation tasks, the role of hand compliance is fundamen-
tal. In the first place it is used to adapt to the shape of the hand surroundings: both
the target object and the rest of the environment. On the other hand, it is important
to notice how the objects and the environment constraints are used, in turn, to func-
tionally shape the hand, going beyond its nominal kinematic limits by exploiting its
structural softness (Fig. 8.15).

Although one could ascribe such levels of dexterity to the high levels of sensory-
motor capabilities of the human hand itself, it is astounding to compare the perfor-
mance of the human naked hand with that of a person using a simple robot hand, as
the Pisa/IIT SoftHand arm-mounted device shown in Fig. 8.16.

Thanks to its under-actuated mechanisms the SoftHand is capable to grasp several
number of objects by matching to their shape. These combination of simplicity,
adaptivity and robustness lets the person experiment in a very natural way with the
robotic hand, and soon achieve a level of performance comparable, often similar, to
that obtained with their true hands. This achievement is obtained despite the presence
of just one degree of actuation on the mechanism and an almost total lack of tactile
feedback, and has encouraged the exploitation of the Pisa/IIT SoftHand as an ideal
platform for the development of a novel hand prosthesis, as described in Chap. 10.
Figure8.15, shows three very different ways to grasp a cup, implemented with both
the bare human hand and the SoftHand.

http://dx.doi.org/10.1007/978-3-319-26706-7_10
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Fig. 8.15 A human hand grasping a cup with three different approaches (top panels) and the same
grasps reproduced with the Pisa/IIT SoftHand (bottom panels)

Fig. 8.16 The Pisa/IIT
SoftHand mounted on an a
human arm

Notice that the SoftHand can substantially match the grasping performance of the
human hand thanks to its possibility of exploring and exploiting the Enabling Con-
straints that define, at a very basal level, the problem of grasping and manipulation.

As a further example, consider Fig. 8.17, where the combined action of adaptabil-
ity and robustness allow the user tomanipulate and interactwith both the environment
and the object at the same time, in a complex way (refer also to Fig. 8.14). Exploiting
all the physical constraints that are external with respect to the hand itself: walls, sur-
faces and edges, force closures of the object between the hand and the environment
can be obtained and used to generate simple and effective manipulation tasks, in this
case sliding and pivoting a book.
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Fig. 8.17 A person with the arm-mounted SoftHand can seamlessly execute also difficult manip-
ulation tasks which involve combined interactions between hand, object and environment

8.6 Conclusion

This chapter presented the design and implementation of the Pisa/IIT SoftHand,
along with the theoretical framework behind that justifies the main design choices.
The important aspect of the hand actuation pattern is considered first, reviewing
various past and recent approaches, and finally considering adaptive synergies as
preferred choice.

The first prototype of the Pisa/IIT SoftHand, a highly integrated robot hand char-
acterized by a humanoid shape and good robustness and compliance, is presented and
discussed. The hand is validated experimentally through extensive grasp cases and
grasp force measurements. Finally considerations on new sets of possibilities were
shown, discussing the possibility of a paradigm shift in manipulation approaches,
from rigid to soft manipulation, with further developments toward prosthetics, as
discussed in Chap. 10.
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Chapter 9
A Learn by Demonstration Approach
for Closed-Loop, Robust, Anthropomorphic
Grasp Planning

Minas V. Liarokapis, Charalampos P. Bechlioulis, George I. Boutselis
and Kostas J. Kyriakopoulos

Abstract This chapter presents a learn by demonstration approach, for closed-loop,
robust, anthropomorphic grasp planning. In this respect, human demonstrations are
used to perform skill transfer between the human and the robot artifacts, mapping
human to robotmotionwith functional anthropomorphism [1]. In thisworkwe extend
the synergistic description adopted in Chaps. 2–6 for human grasping, in Chap.8 for
robotic hand design and, finally, in Chap.15 for hand pose reconstruction systems, to
define a low-dimensional manifold where the extracted anthropomorphic robot arm
hand system kinematics are projected and appropriate Navigation Function (NF)
models are trained. The training of the NF models is performed in a task-specific
manner, for various: (1) subspaces, (2) objects and (3) tasks to be executed with the
corresponding object. A vision system based onRGB-D cameras (Kinect,Microsoft)
provides online feedback, performing object detection, object pose estimation and
triggering the appropriate NFmodels. The NFmodels formulate a closed-loop veloc-
ity control scheme, that ensures humanlikeness of robot motion and guarantees con-
vergence to the desired goals. The aforementioned scheme is also supplemented with
a grasping control methodology, that derives task-specific, force closure grasps, uti-
lizing tactile sensing. This methodology takes into consideration the mechanical and
geometric limitations imposed by the robot hand design and enables stable grasps of
a plethora of everyday life objects, under awide range of uncertainties. The efficiency
of the proposed methods is verified through extensive experimental paradigms, with
the Mitsubishi PA10 – DLR/HIT II 22 DoF robot arm hand system.
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9.1 Introduction

As stated by its title, themain challenge of this book is to bridge the gap between neu-
roscience and robotics with the twofold goal of (i) advancing the design of artificial
systems and (ii) increase comprehension of biological systems. Considering point
(i), one of the most challenging topics is the analysis and exploitation of anthropo-
morphism of robot motion, to improve the effectiveness of Human-Robot Interaction
(HRI) applications. In Chap. 8, the synergistic description of the kinematics of human
hand graspwas exploited to devise design guidelines for the anthropomorphic robotic
Pisa/IIT SoftHand. In this chapter, such an analysis is extended to the arm-hand sys-
tem and considerations on the concept of anthropomorphism are reported.

Over the last decades, we experienced an increasing demand for Human Robot
Interaction (HRI) applications that require anthropomorphism of robot motion, as
also discussed in Chap.8. Anthropomorphism is derived from the greekword anthro-
pos that means human and the greek word morphe that means form. More than
140years ago Charles Darwin suggested anthropomorphism as a necessary tool for
understanding efficiently nonhuman agents [2]. The essence of anthropomorphism
as described in [3], is to imbue the imagined or real behavior of nonhuman agents
with humanlike characteristics, motivations, intentions and emotions.

Anthropomorphism is usefull for two main reasons: (1) it guarantees safety in
HRI applications (see also Chap. 10) and (2) it increases robot likeability, helping
robots establish social “connections” with humans. Regarding safety in HRI, when
humans and robots cooperate advantageously for the execution of certain tasks,
anthropomorphic robot motion can easily be predicted by humans, to comply their
activity/motion and avoid injuries. Regarding robot likeability, the more human-like
a robot is in terms of appearance, motion, expressions and perceived intelligence, the
more likely it is to establish a social connection with humans. More details regarding
the social implications of anthropomorphism, can be found in [4–6].

In [7], the authors discriminated functional and structural anthropomorphism, for
the development of technical devices that assist disabled people. A functional way
of developing such a device is to provide a human function independently of the
structural form, while the structural way is to accurately imitate some part of the
human body. Recently, we proposed a distinction between the different notions of
anthropomorphism [1] and introduced functional anthropomorphism, for mapping
human to robot motion. Functional Anthropomorphism has as priority to guarantee
the execution of a specific functionality in task-space and then—having accomplished
such a prerequisite—to optimize anthropomorphism of robot motion. Functional
anthropomorphism can be used to transform human trajectories to humanlike robot
trajectories, that have similar profiles in task space but different trajectories in joint
space, executing with accuracy the same tasks.

The field of Learn by Demonstration (LbD) or Robot Programming by Demon-
stration (PbD) has also received increased attention over the last 30years. Learn by
demonstration moves from purely preprogrammed robots to very flexible user-based
interfaces according to Billard et al. [8] and it is a well known approach, that has been

http://dx.doi.org/10.1007/978-3-319-26706-7_8
http://dx.doi.org/10.1007/978-3-319-26706-7_8
http://dx.doi.org/10.1007/978-3-319-26706-7_10
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used for various HRI applications. The concept of LbD is based on a very simple
idea: that an appropriate robot controller can be derived from human observations.
Thus, the ultimate scope of LbD is to formulate robot control methodologies that
can be easily adapted to new environments, generalize for new tasks and perform
efficiently without extra programming by the users. Some characteristic studies are
those proposed by Dillman et al. in [9–12], as well as those proposed by Schaal et al.
in [13–15]. All of these studies focus on learning and generalization of motor skills
by robotic artifacts, utilizing human demonstrations.

Nowadays, the majority of HRI applications involve some kind of interaction
with the environment. Grasping and manipulation of everyday life objects are the
most common interactions and some of the most challenging areas in robotics. Thus,
roboticists seek always inspiration for facilitating these interactions, at the nature’s
most versatile and dexterous end-effector, the human hand. When humans grasp
objects through the concept of synergies (see e.g., Chaps. 2–4 and 8), they tend to
adapt their hand posture according to: (1) the object to be grasped and (2) the task to
be executedwith the grasped object. In [16], it was shown that humans adopt postures
thatmaximize the force andvelocity transmission ratios, along the directions imposed
by the desired task. In [17], authors searched for optimal grasps using the branch-
and-bound method, on a required external set. In [18] Teichmann et al. minimized
the number of contact points required, to balance any external force and moment.
Chiu [19] proposed an index, that measures the compatibility of a manipulator to
perform a given task, Li and Sastry [20] introduced the concept of the task ellipsoid,
while Mavrogiannis et al. [21] proposed a task specific grasp selection scheme for
underactuated robotic hands.

Although the aforementioned studies have advanced the field of robot grasping,
most of the analytical approaches, make two unrealistic assumptions: (1) that the
robot hand fingers are able to reach accurately the desired contact points, (2) that the
object geometry and physical parameters are known. However, these assumptions
are often not verified, due to control errors, low encoder resolution and backlash that
lead to contact points deviation. Furthermore, when robots interact with a dynamic
environment, object properties (e.g., material, roughness, shape of the object) may be
roughly estimated by the state of the art of sensing systems. In [22], authors showed
that the existence of such uncertainties can “violate” the force closure property of
the grasp. Thus, such uncertainties should be taken into consideration during the
contact points and contact forces selection procedures. An alternative approach is to
use adaptive synergies in order to achieve successful grasps, for a wide variety of
objects (see Chaps. 8, 12 and 13 for technical and theoretical details).

In [23–25] the concept of Independent Contact Regions (ICR) was introduced
to compensate for such uncertainties. The ICR methodology guarantees that if each
contact point is located inside the corresponding regions, then the force closure
property is preserved. Recently [26, 27], we synthesized a complete human-inspired
optimization framework, for deriving stable, robust grasps under different task spec-
ifications and under a wide range of uncertainties. In these works, we utilized the
concept of Q distance—originally proposed by Zhu et al. [28]—in a novel fashion,
to incorporate the task specificity in the grasp selection algorithm.

http://dx.doi.org/10.1007/978-3-319-26706-7_2
http://dx.doi.org/10.1007/978-3-319-26706-7_4
http://dx.doi.org/10.1007/978-3-319-26706-7_8
http://dx.doi.org/10.1007/978-3-319-26706-7_8
http://dx.doi.org/10.1007/978-3-319-26706-7_12
http://dx.doi.org/10.1007/978-3-319-26706-7_13
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In this chapter we present a learn by demonstration approach for closed-loop,
robust, anthropomoprhic grasp planning. For doing so, we use human data in a
“Learn by Demonstration” manner to perform skill transfer, between the human and
the robot arm hand system. A human to robot motion mapping scheme transforms
human trajectories to anthropomorphic robot trajectories, using a criterion of func-
tional anthropomorphism [1]. The generated anthropomorphic robot trajectories are
projected in low dimensional manifolds exploiting a synergistic reduction of human
arm-hand kinematics, to train appropriate Navigation Function models [29], lever-
aging on a synergistic organization of the human upper limb as observed in [30].
These models formulate a closed-loop control scheme that embeds anthropomor-
phism and guarantees convergence to the desired goals. Regarding generalization,
the NF models are trained in a task-specific fashion, using three different task fea-
tures as described in [31, 32]: (1) the subspace to move towards, (2) the object to be
grasped and (3) the task to be executed with the grasped object. The final scheme
is able to produce adaptive behavior similar to humans by switching to different
grasping primitives based on online feedback from a vision system. The vision sys-
tem used, employs a RGB-D (Kinect, Microsoft) camera in order to perform object
recognition and object pose estimation. Finally, a set of human-inspired optimization
principles are incorporated in the proposed scheme, in order to facilitate the execution
of robust, task-specific grasps under a wide range of uncertainties, utilizing tactile
sensing.

The effectiveness of the proposed methods is experimentally verified using the
15 DoF DLR/HIT II five fingered robot hand attached at the 7 DoF Mitsubishi PA10
robot manipulator. The 4256e Grip System (Tekscan) tactile sensor setup, was used
in order to: (1) measure the forces exerted by the robot fingertips, (2) minimize the
level of uncertainty on the contact points, (3) facilitate the computation of sufficient
contact forces. The proposed approach can be used by a robot arm hand system like
the 22 DoF Mitsubishi PA 10 DLR/HIT II, to reach and grasp anthropomorphically
a wide range of everyday life objects.

The rest of the chapter is organized as follows: Sect. 9.1 describes the apparatus
and the kinematic models, Sect. 9.2 presents a “Learn by Demonstration” approach
for closed loop, anthropomorphic grasp planning based onNavigation Functionmod-
els, Sect. 9.3 presents the optimization schemes formulated to achieve task-specific,
robust grasps under a wide range of uncertainties, Sect. 9.4 validates the efficiency
of the proposed methods through extensive simulated and experimental paradigms,
while Sect. 9.5 concludes the chapter and discusses the results.

9.2 Apparatus and Kinematic Models

9.2.1 Mitsubishi PA 10 DLR/HIT II Robot Arm Hand System

The robot arm hand system used in this work, consists of a Mitsubishi PA10 7 DoF
robot manipulator and a DLR/HIT II five fingered 15 DoF robot hand (Fig. 9.1).
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Fig. 9.1 The Mitsubishi
PA10 DLR/HIT II robot arm
hand system

The Mitsubishi PA 10 is a redundant robotic manipulator, which has seven rota-
tional DoF arranged in an anthropomorphic manner: two DoF at the shoulder, two
DoF at the elbow, and three DoF at the wrist. The robot servo controller commu-
nicates via the ARCNET protocol with a dedicated PC running soft real-time linux
(Gentoo). The Planner PC establishes a TCP-based communication with the robot
controller PC, allowing for position, velocity and torque control modes. More details
regarding the Mitsubishi PA10, can be found in [33].

The DLR/HIT II is a five fingered dexterous robotic hand, with 15 DoFwhich was
jointly developed by DLR (German Aerospace Center) and HIT (Harbin Institute of
Technology). DLR/HIT II has five kinematically identical fingers with three DoF
per finger, two for flexion/extension and one for abduction/adduction. The last joint
of each finger (Distal Inter-Phalangeal – DIP joint analogous), is coupled with the
middle one (Proximal Inter-Phalangeal – PIP joint analogous), using a mechanical
coupling based on a steel wire with transmition ratio 1:1. The dimensions of the robot
hand are considered to be human-like and the total weight is 1.6 kg. More details
regarding the kinematics and the control of the DLR/HIT II can be found in [34].

9.2.2 Tactile Sensors

In order to capture the forces exerted by the robot fingertips we use the 4256e Grip
System® (Tekscan), which is depicted in Fig. 9.2. The Grip System is an ultra thin
(0.15mm) tactile sensor that consists of 320 sensing elements (sensels) and which
is able to measure the pressure magnitude of each sensel, using piezo-resistive tech-
nology. The Grip System® tactile arrays are mounted on the robot fingertips using
appropriate rubber tape. The Planner PC establishes a TCP communication with a
PC (Windows OS) that collects the forces from the tekscan system, at the frequency
of 100Hz.
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Fig. 9.2 The Grip System®

tactile sensors (Tekscan)

9.2.3 Motion Capture Systems

In order to record the motion of the human arm hand system, we use a magnetic
position tracking system and a dataglove. The magnetic position tracking system is
the Liberty® (Polhemus Inc.) which is equipped with four position tracking sensors
and a reference system. In order to capture human arm kinematics, three sensors are
placed on: (1) the shoulder, (2) the elbow, (3) the wrist. More details regarding the
computation of the kinematics, are presented in [35]. In order to measure the rest 22
DoF of the human hand and the wrist, we use the Cyberglove II® (Cyberglove Sys-
tems). The Cyberglove II has 22 flex sensors, capturing all twenty DoF of the human
hand and the two DoF of the human wrist. More specifically, the flexion/extension
of all three joints of each finger, the abduction between the fingers, as well as the
abduction/adduction and flexion/extension of thewrist, can bemeasured. Themotion
capture systems are depicted in Fig. 9.3.

The positionmeasurements are provided by the Liberty system at the frequency of
240Hz. The Liberty system provides high accuracy in both position and orientation,
with 0.03 in. and 0.15◦ respectively. The acquisition frequency of the Cyberglove II
dataglove is 90Hz and the nominal accuracy is less than 1◦.

Fig. 9.3 Motion capture systems used to capture human kinematics. a Cyberglove (Cyberglove
Systems). b Liberty (Polhemus)
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9.2.4 Kinematic Model of the Human Arm Hand System

In order to describe the motion of the human upper limb in 3D space, we use three
rotationalDoF tomodel the shoulder joint, one rotationalDoF for the elbow joint, one
rotational DoF for pronation/supination, two rotational DoF for the wrist and finally
twenty rotational DoF for the human fingers. For index, middle, ring and pinky fin-
gers, we use three DoF for flexion/extension and one DoF for abduction/adduction,
while for the thumb we use two DoF for flexion/extension, one DoF for abduc-
tion/adduction and one DoF to model the opposition to other fingers. The proposed
methodology can be used with a more sophisticated human hand model, like the one
proposed [36], in case there is a motion capture system available, that can measure
all DoF variations of such a complex model.

9.3 Learn by Demonstration for Closed Loop,
Anthropomorphic Grasp Planning

In this section we present a learn by demonstration approach for closed-loop, anthro-
pomorphic grasp planning.

9.3.1 Learn by Demonstration Experiments

Experimentswere performed byfive (4male, 1 female) healthy subjects 22, 25, 28, 29
and 41years old. Subjects gave informed consent of the experimental procedure and
the experiments were approved by the Institutional Review Board of the National
Technical University of Athens. All subjects, were instructed to perform multiple
reach to grasp movements towards different positions and objects in 3D space. Each
subject performed all trials, with the dominant upper limb (the right arm hand system
for all subjects). The experiments were performed for 22 positions in 3D space,
marked on 5 different shelves. Four different objects were used for the experiments:
a marker, a rectangular box, a small ball and a bottle. Different grasps were executed
per object (e.g., front, side and top grasps) as described in [31]. For each object and
object position combination 10 reach and graspmovements were executed. Adequate
resting periods were used between the trials in order for the subjects to avoid fatigue.
An image presenting the bookcase used, as well as the positions marked on different
shelves of a bookcase, appears in Fig. 9.4.
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Fig. 9.4 Image depicting the object positions marked on different shelves of a bookcase

9.3.2 Mapping Human to Robot Motion with Functional
Anthropomorphism

A human to robot motion mapping procedure, is used to map human kinematics to
anthropomorphic robot kinematics. Various human to robot motion mapping proce-
dures have been proposed in the past, to guarantee anthropomorphism using specific
metrics of functional anthropomorphism [37], as it is also discussed in Chap.12.
In this chapter we formulate the mapping as a non-linear constrained optimization
problem for the whole arm hand system, considering as end-effectors the robot fin-
gertips.

More specifically, let xRAH = fRAH(qRAH) denote the forward kinematics mapping
from joint to task space for each robot arm hand system’s finger, let m be the number
of the fingers, xRAH , xRAHgoal ∈ R3 the current and desired fingertip positions and
hc = (ac, bc, cc, dc), hg = (ad, bd, cd, dd) ∈ R4 the current and desired fingertip ori-
entations (expressed using quaternions, to avoid singularities). Then the distance in
S
3, between human and robot fingertip orientations is defined as:

d̄RAHo(hc, hd) = cos−1(acad + bcbd + cccd + dcdd) (9.1)

Taking into account the antipodal points [38], we formulate the following distance
metric:

dRAHo(hc, hd) = min{d̄RAHo(hc, hd), d̄RAHo(hc,−hd)}. (9.2)

http://dx.doi.org/10.1007/978-3-319-26706-7_12
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Thus we can define the following objective function under both position and orien-
tation goals:

Fxo
RAH(qRAH) = wRAHx

m∑

i=1

∥
∥xRAHi − xRAHgoali

∥
∥2 + wRAHo

m∑

i=1

dRAHoi(hci , hdi) (9.3)

where wRAHx and wRAHo are the weights that adjust the relative importance of the
translation and rotation goal for each finger. These weights can be set according to
the specifications of each study.

Moreover, in order to generate anthropomorphic robot motion, we incorporate in
the objective function a criterion of functional anthropomorphism. Let selbow ∈ R3

denote the position of human elbow and sj the vector of the robot joint positions
in 3D space. For n points s1, s2, . . . , sn, the sum of distances between the human
elbow and the robot joints positions (excluding “shoulder” and the end-effector), is
given by:

D =
n∑

j=1

∥∥selbow − sj

∥∥2
(9.4)

The objective function FRAH for the whole arm hand system, can be defined under
position, orientation and anthropomorphism goals, as follows:

FRAH(qRAH) = wRAHx

m∑

i=1

∥∥xRAHi − xRAHgoali

∥∥2

+ wRAHo

m∑

i=1

dRAHoi(hci , hgi) + wDD (9.5)

where wRAHx and wRAHo are weights that adjust the relative importance of the trans-
lation and rotation goals (for each finger) and wD denotes the weight that adjusts the
importance of the anthropomorphism criterion. The aforementioned weights can be
selected according to the specifications of each study.

Thus, the problem of mapping human to robot motion with functional anthropo-
morphism for the case of arm hand systems, can be formulated as:

min FRAH(qRAH) (9.6)

s.t.
q−

RAH < qRAH < q+
RAH (9.7)

where qRAH ∈ Rn is the vector of the joint angles and q−
RAH , q+

RAH are the lower and
upper limits of the joints, respectively.More details, regarding the proposedmapping
scheme, can be found in [37].
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9.3.3 Learning Navigation Function Models
in the Anthropomorphic Robot Low-D Space

In this work, we choose to control a robot arm hand system in a closed-loop fashion,
in order to reach and grasp anthropomorphically a series of everyday life objects.
In this respect, we propose Navigation Function (NF) based controllers that use
“fictitious” obstacle functions (Fig. 9.5). The “fictitious” obstacles are learned in the
low dimensional space of the anthropomorphic robot kinematics and apply repulsive
effects on the robot arm hand system, so as to reach anthropomorphic configurations.
A scheme based onNFmodels, is able to produce humanlike robotmotion guarantee-
ing at the same time convergence to the desired goal [29]. Navigation Functions (NF)
were first proposed by Rimon and Koditschek [39, 40]. Some characteristics of the
NF based models are the following: (1) they provide closed-loop motion planning,
(2) guarantee convergence to the desired goals, (3) have highly nonlinear learning
capability, (4) provide continuous and smooth trajectories, (5) embed anthropomor-
phism (synthesizing appropriate, “fictitious” obstacle functions), (6) can generalize
to similar, neighboring configurations (goal positions).

The initial formulation of the NF is for a priori known sphere worlds, however,
application to geometrically more complicated worlds is achieved using diffeomor-
phisms which map the actual obstacles to spheres. In this work, B-splines are used
to learn the structure of the NF obstacle functions. More precisely, given a desired
configuration qd for the robot arm or hand, the control law is constructed as follows:

u (t) = −Kp
(∇qφ

)
(xt) (9.8)

where φ is the navigation function responsible for: (1) driving the arm or hand to
its final configuration and (2) generating new anthropomorphic robot trajectories,
similar to those used for training. Kp > 0 is a constant gain matrix and x is the
system’s state. The navigation function is given from the following relationship:

φ = γd (x)
(
γ k

d (x) + β
) 1

k

(9.9)

where x is the configuration, γd (x) = ‖x − xd‖2 is the paraboloid attractive effect,
β = ∏

i∈I0
βi is the aggregated obstacle repulsive effects and k ∈ N \ {0, 1} is a

tuning parameter. More precisely, for the training of the NF models we use the
anthropomorphic robot motion that we derived from the human to robot motion
mapping scheme. These data are represented in a lower dimensional manifold using
the Principal Components Analysis (PCA),1 as a standard dimensionality reduction
technique. Such a technique is commonly used to cope with the redundancy of
human hand architecture and to describe its synergistic organization, as discussed in

1The first 3 principal components extracted using the PCA method, describe for both the arm and
the hand case, more than 88% of the total variance.
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Fig. 9.5 The training procedure for the NF based models

Chaps. 2, 3, 5 for the analysis of human hand control, and in Chaps. 8 and 15 to design
under-actuated robotic systems and under-sensed human hand pose reconstruction
devices, respectively. However, synergistic coordination is not only limited to the
hand: coordinated synergistic movements can be observed for the whole arm-hand
system [30] and dimensionality reduction techniques can also be profitably employed
in this case.

The output of the NF models, is then back-projected in the high dimensional
space in order to control the robot arm hand system. In this case, no online human to
robot motion mapping is required and computational effort diminishes. Moreover,
we manage to guarantee anthropomorphism as well as to transfer skills from humans
to the robot arm hand system, using a learn by demonstration approach.

In this work, NF models are trained in a task-specific way. For doing so, we use
the approach described in [31, 32], discriminating the following task features: (1)
subspace to move towards, (2) object to be grasped and (3) task to be executed with
the grasped object. Thus, different NF models are trained offline for different tasks
and then “stored”. Furthermore, different NF models are trained for the robot arm
and the robot hand. All models require as input the “goal” position in the low-d space
of the anthropomorphic robot kinematics. The goal position can be provided by a
vision system. The final scheme is able to produce adaptive robot behavior—similar
to humans—by switching to different grasping primitives, based on online feedback
(from the vision system).

9.3.4 A Vision System Based on RGB-D Cameras

In order for the proposed NF based methodology to be able to update the “goal”
position of the task to be executed (based on online feedback), we have developed
a vision system based on RGB-Depth cameras (Kinect, Microsoft). The developed
vision systemperforms: (1) object recognition and (2) object pose estimation.Ablock
diagram of the NF based scheme with the vision system incorporated, is presented
in Fig. 9.6. For the development of the different vision modules, the Point Cloud
Library has been used [41].

http://dx.doi.org/10.1007/978-3-319-26706-7_2
http://dx.doi.org/10.1007/978-3-319-26706-7_3
http://dx.doi.org/10.1007/978-3-319-26706-7_5
http://dx.doi.org/10.1007/978-3-319-26706-7_8
http://dx.doi.org/10.1007/978-3-319-26706-7_15
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Fig. 9.6 Block diagram of the NF based scheme, with the vision system included

9.4 Task Specific, Robust Grasping with Tactile Sensing

In this section we present a set of optimization schemes capable of deriving task-
specific, robust grasps under a wide range of uncertainties, utilizing tactile sensing.

9.4.1 A Scheme for Deriving Task Specific Grasping Postures

In order to derive task-specific, robust grasps, we propose a grasp selection algorithm
based on the concept of Q distance, originally proposed for curved objects by Zhu
et al. [28]. In this work, instead of just guaranteeing the force closure property as
presented in [28],we obtain configurations that compensate disturbances in particular
task-specific directions, exerting low forces. More details, regarding the utilization
of the Q distance metric for deriving grasps in a task-specific manner, can be found
in [27].

To formulate an optimization problem that derives task-specific grasping postures,
we minimize the Q distance metric, using the joint displacements (q ∈ R

nq ) and the
wrist position/orientation (w ∈ R

6) as decision variables. The optimization problem
becomes:

min dQ(0, co(W )) (9.10)

s.t.
qmin ≤ q ≤ qmax (9.11)
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fkine(q) ∈ ∂O (9.12)

qj
abd/add ≤ qj+1

abd/add (9.13)

p′ /∈ O (9.14)

where 0 is the origin of the wrench space, co(W ) denotes the convex hull of the
primitive wrenches and dQ(0, co(W )) the Q distance metric. Equation (9.11) sets
the inequality constraints of the joint limits (qmin, qmax), Eq. (9.12) ensures that the
fingertips will be in contact with the object surface (∂O) employing appropriate
equality constraints, Eq. (9.13) prevents collisions between the abduction/adduction
DoFof the different robot fingers (qi

abd/add) andEq. (9.14) prevents collisions between
the robot hand and the object, ensuring that no point (belonging to a set p′ of finite
discrete points) lying on the robotic hand will penetrate the object. For the rest of this
chapter, we will refer to these constraints with the abbreviation RHC (Robot Hand
Constraints).

9.4.2 A Scheme that Provides Optimal Force Transmission
and Robustness Against Positioning Inaccuracies

In the previous section, we discussed the task specifications and the kinematic con-
straints that need to be satisfied to derive a task-specific grasp, but in most cases robot
hands are also subjected to joint torque constraints. In this work we employ, the force
transmission ratio rk and compatibility index c introduced in [19], in order to derive
robot hand configurations that exert the required grasping forces with minimal joint
torque effort. The transmission ratio and the grasp compatibility index are defined,
as follows:

rk = [uT
k (JiJ

T
i )uk]−1/2

ci =
l∑

k=1

r2k =
l∑

k=1

[uT
k (JiJ

T
i )u

k]−1

where uk, k = 1, . . . , l, denote the desired directions for the contact forces and Ji

the Jacobian of the ith finger. In this work we use frictional hard contacts, restricting
each force to lie inside the corresponding friction cone. Thus, for each contact point
the unit vectors uk can be chosen to be alignedwith the edges of the linearized friction
cone [42]. The compatibility index for the case of the robot hand, becomes:

c =
np∑

i=1

wfi ci =
np∑

i=1

wfi

ng∑

k=1

[uT
k (JiJ

T
i )uk]−1
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wherewfi areweighting factors for eachfinger. Themaximization of the compatibility
index c yields an optimal posture with respect to the force transmission metric,
however a deviation between the actual and desired joint positions may be inevitable.
Thus, we have to guarantee that the robot hand will be able to perform the given task,
despite the fingertip positioning inaccuracies. For doing so, we utilize the concept
of independent contact regions (ICR), adopting the approach described in [25], to
determine whether a point on the object boundary qualifies to be a member of the
ICR. Finally, we formulate an optimization problem that provides optimal force
transmission and robustness against positioning inaccuracies, as follows:

min
1

c
(9.15)

s.t.
RHC (9.16)

d−
Q (0, co(W )) < 0 (9.17)

pi ∈ ICRi (9.18)

The inequality d−
Q (0, co(W )) < 0 of Eq. (9.17) ensures that the force closure

propertywill hold. Equation (9.18) constraints the deviated contact pointspi to belong
to their corresponding Independent Contact Regions. It must be noted that a task-
specific grasp configuration results in larger ICRs [43], so the grasp configuration
derived in previous sections is ideal to initiate this second optimization algorithm.

9.4.3 A Grasping Force Optimization Scheme Utilizing
Tactile Sensing

In this section, we utilize tactile sensors that are appropriately attached on the robotic
fingertips, in order to relax the magnitude of uncertainties regarding: (1) joint dis-
placements and (2) contact points deviations. Then we use the derived/updated infor-
mation regarding the contact points, in order to perform a grasping force optimiza-
tion. Using this scheme we are able to generate a set of contact forces that balances
external disturbances, preventing object deformations and requesting minimal joint
torque effort. In this work, we use the 4256e Grip System (Tekscan) and the active
region of each fingertip is covered with a 4× 4 tactile array. The sensels’ sensors
allows us to compute the position of force/contact centroid, as follows:
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xcof =

3∑

i=0

xi

3∑

j=0

pij

3∑

i=0

3∑

j=0

pij

, ycof =

3∑

j=0

yj

3∑

i=0

pij

3∑

j=0

3∑

i=0

pij

(9.19)

where pij is the normal force value at each sensel, xi is the x coordinate of ith
column and yj the y coordinate of jth row of the 4× 4 array. In order to map the
centroid coordinates (xcof , ycof ) to 3-D coordinates on the robot fingertip surface,
we exploit the point cloud of the robotic fingertip. All robot fingers have the same
fingertip, so the following procedure applies for all fingers. Initially we match the
4 corner sensels of the tactile array with their actual position pcorn

i , i = 1, . . . , 4, on
the point cloud and we compute the distance between them and all other nodes of
the point cloud. Then, assuming that the sensor firmly covers the fingertips surface
and given a contact centroid (xcof , ycof ), we determine the corresponding coordinates
P(X, Y, Z) on the robot fingertip point cloud, minimizing the following function:

min{
4∑

i=1

(disti(X, Y , Z) − arraydisti(xcof , ycof ))
2} (9.20)

where disti(X, Y , Z) denotes the distance from pcorn
i to P(X, Y, Z) on the point cloud

and arraydisti(xcof , ycof ) the distance between the ith corner sensel and the contact
centroid on the tactile array. Such an approach assumes that the distance between
two points remains invariant both in 2D and 3D coordinates (Fig. 9.7).

Following the grasping notation, we can denote the contact forces, as follows:

fc = −G+wext + Eλ, (9.21)

where wext is the external disturbance, G+ is the pseudoinverse of grasp matrix G
(see also Chaps. 8, 12 and 13), E is a matrix whose columns form a basis for the
nullspace of G and λ is an arbitrary vector. The first term of (9.21) is responsible
for the compensation of the external wrench wext and Eλ denotes the set of internal
forces [44]. The internal forces have a null resultant wrench to the object and are
very significant for grasping, as they can control the robot hand’s ability to squeeze

Fig. 9.7 Distances on the
fingertip and the tactile array
respectively

http://dx.doi.org/10.1007/978-3-319-26706-7_8
http://dx.doi.org/10.1007/978-3-319-26706-7_12
http://dx.doi.org/10.1007/978-3-319-26706-7_13
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arbitrarily tight the object, ensuring stability. Thus,we formulate a linear optimization
problem setting as decision variables the internal forces (vector λ), as follows:

min
∑

fni (9.22)

s.t.
−V ′

i (fci − ni‖fcimax
‖) ≤ 0 (9.23)

|τik | ≤ |τikmax
| − |δτikmax

| (9.24)

fni ≥ 0 (9.25)

where fn are the normal force components of the contact forces fc. Equation (9.22)
sets the friction cone constraints (represented by L-sided convex polyhedral cones
to reduce computational complexity [45]), Eq. (9.23) sets the torque constraints and
Eq. (9.24) constraints the contact forces values to be positive or zero. The presented
algorithm searches for a set of internal forces that minimize the sum of the normal
forces and therefore the grasp effort, satisfying simultaneously both the friction and
torque constraints.

9.5 Results and Experimental Validation

In this sectionwepresent extensive experimental paradigms of the proposedmethods,
focusing on the two different scenarios: (1) reaching and grasping using closed
loop, anthropomorphic grasp planning methodologies, (2) achieving robust, task-
specific grasps under awide range of uncertainties, utilizing bioinspired optimization
principles and tactile sensing.

Using the aforementioned methods, we are now able to synthesize a complete
scheme for closed-loop, robust, anthropomorphic grasp planning. The steps followed
by the proposed scheme, are the following:

1. A vision system, performs object detection and object pose estimation.
2. The object shape andposition information trigger a task-specificNavigationFunc-

tion model (object-specific and subspace-specific).
3. The Navigation Function model produces anthropomorphic trajectories for the

arm hand system to reach and grasp the identified object, ensuring convergence
to the desired pose.

4. The robot fingers stop moving when the fingertips’ tactile sensors detect contact
with the object.

5. The actual joint positions and the contact centroids are obtained from the encoders
and the tactile sensors respectively.

6. The contact centroids are mapped to the corresponding positions on the robot
fingertips.
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Fig. 9.8 Three instances of a reach to grasp motion, are depicted. a Reaching. b Grasping and
lifting. c Performing the task

7. The positions of the contact points on the object are computed, solving the robot
arm hand system’s forward kinematics.

8. A grasping force optimization scheme is employed to compute a set of sufficient
forces, for the robot hand to stably grasp the object.

9.5.1 Closed-Loop, Anthropomorphic Grasp Planning
Scenario

All experiments were performed with the Mitsubishi PA10 DLR/HIT II robot arm
hand system. A vision system based on RGB-D cameras (Kinect, Microsoft) was
used to track everyday life objects, located in arbitrary positions and orientations
in 3D space. In Fig. 9.8, the robot arm hand system is depicted while reaching and
grasping anthropomorphically a rectangular object, in order to execute a specific task
(e.g., to throw the object into the waste basket).

A video of the first experiment, can be found at the following url:
https://www.youtube.com/watch?v=cazfjEKnsxo.

9.5.2 Task-Specific, Robust Grasping Scenario

For the task-specific robust grasping experiments we considered the stable grasp
of a cylindrical object, which is filled with liquid. We showed that the proposed
methodology derives robust grasps that hold the force closure property even when
the object is rotated, facing disturbances caused by the center of mass changes. Four
different poses of the object are depicted in Fig. 9.9. These poses are used to model
the task disturbances. The rotation is implemented about the z axis and the liquid is
hypothesized to be symetrically distributed about this specific axis. In the subfigures
of Fig. 9.9, the black dots denote the center of mass for each pose, while the object

https://www.youtube.com/watch?v=cazfjEKnsxo
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Fig. 9.9 Task description. a Pose I. b Pose II. c Pose III. d Pose IV

coordinate frame is determined by the blue axes. As it can be noticed, the object’s
weight causes external forces along both the x and y axis, as well as external moments
about the z axis of the object coordinate frame.

The bottle used for the experiment, had a radius of 2.25 cm and a height of
13 cm. For the derived configuration we considered an 8-sided linearized friction
cone. The friction coefficient selected was quite conservative with μ = 0.3. The
maximum contact point deviation (on the object) caused by the DLR/HIT II joint
errors, was found to be 4 mm. For the ICRs computation, four deviated contact
points were considered, at a distance of 4 mm from the nominal contact point. The
friction coefficient and object model uncertainties, were considered prior to the ICRs
computation, as discussed in [46]. Finally in order for the robot hand to perform the
specified task, a set of internal forces were computed that satisfy both the friction
and joint torque constraints, as presented in Sect. 9.4.3.

In Table. 9.1 we present the derived angles q and torques τ . For the computation
of internal forces the uncertainty of the contact points δpmax is 1 cm and the center of
mass uncertainty is 3 cm. The robot hand dynamic model was considered to be the
flexible joint model presented in [47] and was utilized in order to exert the derived
forces. Thus, we have:

τ = g(q) − τext = K(θ − q) (9.26)

where q denotes the link position vector, θ denotes the motor position vector in link
coordinates and g(q) the gravity term. Moreover, K is the stiffness matrix and τext

the external torque vector. After contact detection for a given q we may calculate the
motor displacements required to exert the desired internal forces fextd , as:

θ = K−1(g(q) − JT
i fextd ) + q (9.27)

The term g(q) can be computed using the DH parameters and the nominal masses
of the DLR/HIT II robot hand [47]. A video of the second experiment (see Fig. 9.10),
can be found at the following URL:

https://www.youtube.com/watch?v=lkpSgamV0b8.

https://www.youtube.com/watch?v=lkpSgamV0b8
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Fig. 9.10 Three snapshots of the reaching, grasping–lifting and task execution phases. a Reaching.
b Grasping–Lifting. c Performing the task

9.6 Conclusions and Discussion

In this chapter we presented a complete scheme for closed-loop, robust, anthropo-
morphic grasp planning, following a learn by demonstration approach. For doing so,
we captured multiple reach to grasp movements of the human arm hand system and
we used them in order to generate anthropomorphic robot trajectories. Then, task-
specific Navigation Function models were trained in the low-d space of the anthro-
pomorphic robot kinematics, mimicing the synergistic organization of the human
hand-arm system. The NF models were used to formulate a closed loop control
scheme, that ensures humanlikeness of robot motion and guarantees convergence to
the desired goals. Human-inspired optimization principles were proposed in order
to derive task-specific, robust grasp configurations. Tactile sensors mounted on the
robot fingertips were used to confront uncertainties regarding the joint displacements
and the contact points positioning, relaxing also the computation of sufficient contact
forces which result to stable grasps. A vision system based on RGB-D cameras was
used to provide online feedback, perform object detection and object pose estimation
and trigger appropriate task-specific NF models.

The proposed approach can be used by various robot arm hand systems, in order
to reach and grasp anthropomorphically a plethora of everyday life objects, even
under a wide range of uncertainties.
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Chapter 10
Teleimpedance Control: Overview
and Application

Arash Ajoudani, Sasha B. Godfrey, Nikos Tsagarakis
and Antonio Bicchi

Abstract In previous chapters, human hand and arm kinematics have been analyzed
through a synergstic approach and the underlying concepts were used to design
robotic systems and devise simplified control algorithms. On the other hand, it is
well-known that synergies can be studied also at a muscular level as a coordinated
activation of multiple muscles acting as a single unit to generate different movements.
As a result, muscular activations, quantified through Electromyography (EMG) sig-
nals can be then processed and used as direct inputs to external devices with a large
number of DoFs. In this chapter, we present a minimalistic approach based on tele-
impedance control, where EMGs from only one pair of antagonistic muscle pair
are used to map the users postural and stiffness references to the synergy-driven
anthropomorphic robotic hand, described in Chap. 7. In this direction, we first pro-
vide an overview of the teleimpedance control concept which forms the basis for
the development of the hand controller. Eventually, experimental results evaluate the
effectiveness of the teleimpedance control concept in execution of the tasks which
require significant dynamics variation or are executed in remote environments with
dynamic uncertainties.
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10.1 Teleimpedance Control

The need to execute tasks in unstructured or hostile environments has lead to the
development of several Master-Slave teleoperation interfaces, commonly recognized
by two classes: unilateral, position-based and bilateral, force-reflecting teleoperation
systems. The most basic teleoperation interface receives position commands from the
master and replicates them on the slave side in an open-loop fashion. Despite the sta-
bility and simplicity of such systems, generation of high interaction forces between
the rigid manipulator’s end-effector and the uncertain environment has severely lim-
ited their application in real-world scenarios.

Later generations of teleoperation interfaces thus investigated new techniques to
provide the master with information about the interaction forces between the manip-
ulator and the remote environment. Although it has been demonstrated that force-
reflecting teleoperation interfaces outperform the unilateral ones [26, 27], several
drawbacks such as imposed additional costs (due to the need for force measurement
devices), transparency, or even stability issues (due to the latencies in the commu-
nication channel between the master and slave robot) reduce the efficiency of such
systems [18, 31, 41]. In fact, despite the continuous advancement in hardware design
and software architecture of the bilateral teleoperation interfaces, still a large class
of tasks (e.g. drilling and chipping) which are intuitively executed by humans cannot
be effectively performed.

Indeed, humans are able to establish a reliable contact between the limb endpoint
and the object/environment by generating task-efficient restoring forces in response
to the environmental displacements [23, 24]. This behavior arises from effective
modulation of the task impedance which appears to be carried out using different
techniques. One way to achieve this is by the co-contraction of muscle groups acting
on the limb. Alternatively, it is performed through adaptations in the sensitivity of
reflex feedback [5] or selective control of the limb configuration [43].

To realize a similar interaction performance in a teleoperation setup, firstly, rigid
slave robots must be replaced by compliant ones to enable task impedance mod-
ulations. In this direction, drawing inspiration from the compliant structure of the
human limb, the soft robotics design (either by torque control techniques [7, 9] or
using passively adaptive joints [10, 30, 42] has provided the possibility of teleop-
erating compliant slave robots to accomplish a task in an uncertain environment.
However, the second, and probably bigger, issue relates to the planning of the vari-
able impedance slave robot to accomplish the task.

To further address this issue, the concept of teleimpedance control [2], as an alter-
native approach to the force-reflecting teleoperation has been proposed. In teleim-
pedance, a compound reference command which includes the desired motion and
impedance profiles of the operator, is obtained using a suitable Human-Machine
Interface (HMI) and realized by a compliant slave robot in real-time. Therefore,
from one side, the need for an appropriate and real-time modeling/measurement of
the operator’s stiffness and position trajectories is highlighted. On the other hand,
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robust and effective impedance control techniques must be implemented to replicate
the operator’s reference commands on the slave robot in real-time.

Concerning the modeling of the master’s impedance trajectories, in our studies,
electromyography (EMG) signals, which are formed by superimposed patterns of
activations of involved motor units, are considered as the process input. This is due
to the high correlations between the muscle activations, generated muscular forces
and the consequent joint torques. Furthermore, easy accessibility, fast adaptivity and
stability of EMG signals are other advantages which motivated our choice of adopting
EMGs in the real-time control of our teleimpedance system. An alternative approach
to teleimpedance for processing multiple EMG signals through machine learning as
a direct input to external devices with a large numebr of DoFs is presented in the
next chapter (Chap. 11).

EMGs can also be used to provide information on the limb posture, which has
been used e.g. for classification of hand gestures [13, 20] or arm movements [44].
However, since EMGs directly relate to muscle forces and not limb configurations,
their application to extract position references has to be indirect. A classical way to
achieve this is to relate muscle forces to the limb postures using inverse dynamics
methods [17]. The problem becomes even more intricate once the external forces
(e.g. object mass) act on the master’s limb which would affect the position estimation
accuracy. Therefore, we tend to maximize the use of the external tracking systems
to extract the position profile of the master, and use EMGs to estimate the task-
appropriate stiffness profiles (the static component of an impedance profile) in real-
time.

While on the slave side, relying on the task requirements and the slave robot’s
compliant structure, robust Cartesian or joint impedance control techniques can be
implemented to realize the operator’s reference commands. For instance, in [6],
some techniques for the Cartesian impedance control of torque controlled robots are
provided. Additionally, in [3, 8], the role of robot configuration in Cartesian stiffness
control is discussed, particularly for robots with passive elastic joints or the ones in
which not enough degrees of freedom are available to realize a full desired Cartesian
stiffness matrix.

In this chapter, we review some of the work done within The Hand Embodied
(THE) project regarding teleimpedance control of a robotic arm and an anthropomor-
phic robotic hand. In particular, in Sect. 10.2.1, a 3D model of the human arm endpoint
force/stiffness will be introduced. Consequently, a Cartesian stiffness controller is
developed to replicate the estimated stiffness profile and tracked wrist trajectories of
the master by a 7-DoF torque controlled robot in real-time. Experimental results are
provided to evaluate the efficiency of the proposed algorithm in rendering a desired
interaction performance while performing dynamic tasks or the ones executed by the
slave robot in a remote uncertain environment.

Meanwhile, in Sect. 10.2.2, teleimpedance control of the anthropomorphic and
synergy-driven robotic hand, described in Sect. 6, is studied. In this setup, the hand
postural and synergy reference commands (as defined in Chaps. 2, 3 and 5) are
estimated using an antagonistic pair of muscles on the forearm. Two tactile interfaces,
namely mechano- and vibrotactile, are developed to provide the user with some

http://dx.doi.org/10.1007/978-3-319-26706-7_11
http://dx.doi.org/10.1007/978-3-319-26706-7_2
http://dx.doi.org/10.1007/978-3-319-26706-7_3
http://dx.doi.org/10.1007/978-3-319-26706-7_5
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information about the grasping forces and the environment/object’s texture. Grasp
robustness and improved interaction performance using teleimpedance control are
evaluated through grasping experiments.1

10.2 Application

10.2.1 Teleimpedance Control of a Robotic Arm

This section reviews some of the work done in [1, 2] aimed at remote impedance
control of a 7-DoF torque controlled robot arm in real-time. Here, the compound
reference command consists of master’s wrist position and stiffness profiles. Corre-
sponding to the high priority given in teleoperation interfaces to position accuracy,
our teleimpedance interface uses accurate measurement of arm position references
through an optical tracking system. Meanwhile, we acquire and process eight EMG
channels to estimate the 3D arm endpoint stiffness2 profile in real-time, as we will
elaborate in the following section.

10.2.1.1 Arm Endpoint Impedance Modeling in 3D

It has been demonstrated that variations in viscoelastic components of the human arm
endpoint strongly correlate with the patterns of activations of the involved muscles
in task execution [19, 36, 40]. While this dependency appears to be highly nonlinear
in general (due to the nonlinear nature of the EMG-to-Force mapping [32] and the
joint-angle dependency of the moment arms), it can be safely and almost accurately
implemented by a linear mapping in a constant configuration of the arm [19, 40].
To that end, the overall mapping between EMG measurements and consequent arm
endpoint force and stiffness variations in Cartesian coordination in a constant joint
configuration of the arm can be described by

[
F
σ

]
=

[
TF

Tσ

]
P +

[
0
σ0

]
, (10.1)

where F, σ ∈ R
3 are the endpoint force and stiffness vectors, respectively, σ0 is the

intrinsic stiffness in relaxed conditions. P ∈ R
n is the vector of muscular activities

of the n considered muscles, as obtained from preprocessing EMG signals which

1Teleimpedance control concept has also been used for assistive control of a knee exoskeleton
device [28, 29]. The proposed controller captures the user’s intent to generate task-related assistive
torques by means of the exoskeleton while performing daily tasks.
2It is important to note here that this model only takes into account the effect of muscular co-
contractions in endpoint stiffness modulations. As regards the role of arm configuration in endpoint
stiffness geometry in teleimpedance control, readers may refer to [3].
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includes high-pass filtering, full-rectification, low-pass filtering and normalization
stages.

In an ideal condition, force (TF ) and stiffness (Tσ ) mappings can be experimen-
tally identified through a rich and varied set of data samples both for force and
stiffness measurements. While the first measurement can be easily and accurately
carried out using 6 axis force/torque sensors, accurate identification of the EMG-to-
stiffness map Tσ is more difficult [36]. The reason for that lies in the difficulty of the
endpoint stiffness measurements which is commonly and traditionally carried out by
perturbing the wrist and probing the restoring forces [35].

To address this problem, we identify a basis for Tσ using straightforward and
accurate force measurements, and acquire a smaller set of the endpoint stiffness data
to calibrate this mapping. This is achieved by taking into account that, in general,
end-point impedance has three components, depending on posture, force, and co-
contraction, respectively. While the first two components may be large and even
dominating [33] in a large enough range of variations, an ample literature reports
the existence and independence of co-contraction contribution to stiffness: e.g.
[5, 16, 34]. In addition, in our experiments, the master will perform the tasks in a
fixed arm configuration with no significant generation of the endpoint force. There-
fore, we consider a decomposition of the space of muscular activations P � P as
the direct sum of a force-generating subspace PF and the force-map null space
Pk = ker{TF }, i.e.

P = PF ⊕ Pk .

By choosing a right-inverse T R
F of TF , i.e. any n × 3 matrix3 such that TF T R

F = I ,
we also affix a system of coordinates to these subspaces. In these coordinates, we can
decompose the vector of muscular activations P in a force-generating component
PF and a null-space component Pk as

P = T R
F TF P + (

I − T R
F TF

)
P

def= PF + Pk .

The null space component Pk contains information on the co-contraction component
of stiffness generation. It is convenient to give an alternative description of Pk as
follows. Let NF denote a basis matrix for the kernel of TF , and let λ = N+

F Pk = Q P

be the coordinates in that basis of Pk , where Q
def= N+

F

(
I − T R

F TF
)
. Hence the model

of cartesian stiffness regulation through co-contraction is written as

σ − σ0 = Mσ Q P (10.2)

where Mσ ∈ R
3×5 is a mapping from the kernel of TF (the set of muscle activations

that do not change endpoint force, in the selected coordinate frame) to stiffness

3The existence of a right inverse is guaranteed by the fact that in nonsingular configurations TF is
full row-rank. Because n > 3, there exist infinite right-inverses: a particular choice is for instance
T +

F = T T
F (TF T T

F )−1, i.e. the pseudoinverse of TF .



156 A. Ajoudani et al.

variations. The map Mσ can then be identified and calibrated once, based on direct
measurements of human arm end point stiffness, at different coactivation levels as
described in the following section.

10.2.1.2 Stiffness Model Calibration-Identification

Identification of Mσ is carried out through two sets of experiments. The first set
concerns the identification of the EMG-to-Force mapping and is performed by the
measurement of endpoint forces and eight channel EMG electrodes (see muscle
names in Table 10.1). In this set, a KUKA LWR was serving only as a support
structure for a 6 axis F/T sensor (ATI Inc.) mounted at endpoint of the arm (see
Fig. 10.1). The subject was asked to apply constant forces of ±5N, ±10N, ±15N
and ±20N, respectively, along 6 directions (±x , ±y and ±z) while holding the handle
(isometric conditions). A graph with three colored bars on the screen was used to
provide the user with the information about the measured force components. Each
trial was 60 s long. Data from the first 10 s were discarded to eliminate transient force
fluctuations. For each direction and force level, 4 trials were executed and recorded
(for an overall number of 4 × 3 × 2 × 3 trials) in EMG-to-force map identification
experiments. Consequently, the mapping (TF ) was identified by means of a least-
squared-error algorithm, and a basis of its nullspace and the projector matrix Q were
computed.

In the second set, with the purpose of off-line calibration of the EMG-to-Stiffness
mapping, the subject’s arm endpoint impedance profile was measured in different
levels of muscular co-contraction. Following Perreault et al. [38], continuous sto-
chastic perturbations with the maximum peak-to-peak value of 20 mm were applied
to the subject’s wrist through the handle in x, y and z directions (see [2] for details).
A KUKA robot with fast research interface [39] was programmed and controlled in
position to apply the desired perturbation profile. Subject’s wrist position and restor-
ing force profiles were synchronously measured using an optical tracking system
(NaturalPoint, Inc.) and a FT sensor, respectively. A rough co-contraction indicator
was graphically shown consisting of a bar of length proportional to the norm |P| of
the vector of muscle activations. Four levels of stiffness reference were provided in

Table 10.1 Muscles used for EMG measurements

Flexors Extensors

Monoarticular Biarticular Monoarticular Biarticular

Deltoid clavicular part
(DELC)

Biceps long head
(BILH)

Deltoid scapular part
(DELS)

Triceps long head
(TRIO)

Pectoralis major
clavicular part (PMJC)

Triceps lateral head
(TRIA)

Brachioradialis
(BRAD)

Triceps medial head
(TRIM)
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Fig. 10.1 Experimental
setup used for the first
calibration experiments.
Subject applies constant
forces in 6 directions while
holding the handle attached
to an idle spherical joint

Position
Markers

EMG
Electrodes

Spherical
Joint

FT Sensor

different trials, where the first level (minimum muscle activity), was aimed at the
identification of the intrinsic stiffness profile σ0.

Identification of the endpoint impedance profiles in different levels |P| consisted
of two non-parametric and parametric identification procedures. Firstly, multiple-
output (MIMO) dynamics of the endpoint impedance was decomposed into the linear
subsystems associating each input to each output. Based on this assumption, and
indicating with Fx ( f ), Fy( f ) and Fz( f ) the Fourier transforms of the endpoint
force along the axes of the Cartesian reference frame, with x( f ), y( f ) and z( f ) the
transforms of the human endpoint displacements, the dynamic relation between the
displacements and force variations can be described by

⎡

⎣
Fx ( f )

Fy( f )

Fz( f )

⎤

⎦ =
⎡

⎣
Gxx ( f ) Gxy( f ) Gxz( f )

G yx ( f ) G yy( f ) G yz( f )

Gzx ( f ) Gzy( f ) Gzz( f )

⎤

⎦

⎡

⎣
x( f )

y( f )

z( f )

⎤

⎦ (10.3)

A non-parametric algorithm was adopted to identify the empirical transfer func-
tion of each of the SISO subsystems described above in frequency domain (MAT-
LAB, The MathWorks Inc.). Consequently, we adopted a parametric, second order,
linear model of each impedance transfer function of the type

Gi j (s) = Ii j s
2 + Bi j s + Ki j , s = 2π f

√−1 (10.4)

where I , B and K denote the endpoint inertia, viscosity and stiffness matrices,
respectively. The parameters of the second order linear model were identified based
on least squares algorithm in frequency range from 0 to 10 Hz.

Eventually, experimental EMG vectors P were mapped in the EMG-to-force map
nullspace through the previously computed projector matrix Q. The elements of the
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Fig. 10.2 Non-parametric (solid lines) and parametric second order (dotted lines) transfer functions
of SISO impedance subsystems obtained from stochastic perturbations

stiffness matrix K were used as estimates for the components of σ , and the map Mσ

was estimated by applying a least-squared-error method to (10.2).
The strength of linear dependency between measured force signals and estimates

via the least-squared-error identification of the components of TF was evaluated by
Pearson’s product-moment correlation coefficient. The coefficient is defined as

Rk =
∑

f̂k fk −
∑

f̂k
∑

fk

N√
(
∑

fk
2 − (

∑
fk )2

N )(
∑

f̂ 2
k − (

∑
f̂k )2

N )

, k = x, y, z (10.5)

where fk and f̂k are measured and estimated values of force in the Cartesian direc-
tions, and N is the number of pairs of data. The fit was consistently good in the three
directions, resulting in average R2 = 81 %.

Figure 10.2 demonstrates the results of non-parametric and second order model
identification of the hand impedance transfer functions in the frequency range from
0 to 10 Hz, according to methods described above. The second order parametric
impedance models presented 69.7 % of the data variance across all directions in
minimum muscular activity trials in the frequency range of 0–10 Hz.

Once the EMG-to-stiffness mapping was calibrated, it was used for the real-
time estimation of the 3D endpoint stiffness matrix of the operator using EMG
measurements of the muscles as illustrated in Table 10.1.
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10.2.1.3 Experiments

The efficiency of the teleimpedance approach in rendering a desired interaction per-
formance while executing tasks with dynamic requirements was evaluated in a ball
reception task. In this experiment, two identical rigid balls (m = 0.92 kg, radius
52.5 mm) were suspended at the same distance above the human and robotic arm
endpoints. The subject was prepared to receive the ball and instructed to hold his
arm in a posture very close to that used during calibration experiments. The slave
arm position, under gravity compensation, was corresponding.

The subject was instructed to receive the ball and stabilize its position in a natural
way. The position of the slave endpoint was controlled along the master’s wrist
trajectory while executing the task, whereas the Cartesian stiffness values were
commanded and controlled in three different approaches: In the first approach, the
Cartesian stiffness of the slave endpoint was set to a relatively high, constant level
(K = [1200, 1200, 1200] N/m) throughout the task. The second one was analogous,
with low constant stiffness values (K = [120, 120, 120] N/m). In the third approach,
variable impedance was implemented in three directions, as estimated from the stiff-
ness model. Damping coefficient in all experiments was set to a constant value of
0.7 N.s/m.

The experimental setup and information flow are shown in Fig. 10.3. A body
marker was attached to the wrist aiming at reference trajectory calculation for robot
motion. The robot base frame was considered as the overall reference frame for other
frames (tracking system and FT sensor). The position path of the human wrist was
measured, low-pass filtered (cutoff 15 Hz) and used for trajectory planning. At the
same time, EMG signals were acquired from the master arm and used to evaluate
its endpoint stiffness based on the model and calibration described in the previous
section. All processing and control algorithms were performed in real-time in C++
environment. KUKA interface was similar to the ones explained in identification
trials.

10.2.1.4 Experimental Results

The measured forces at the endpoint of the slave robotic arm while executing the
task in the three stiffness control modes (constantly high, constantly low, and teleim-
pedance) are reported in Fig. 10.4, while the corresponding deviation errors from
the reference equilibrium position are in Fig. 10.5. The regulation of the human arm
muscle activations and resulting endpoint stiffness modifications during the catching
experiment are shown in Fig. 10.6. Increased stiffness at the time of impact and its
progressive decrease afterward are the results of explicit muscular activity regulation
by the subject.

As expected, the stiffer the arm, the smaller the deviation, as seen in the experimen-
tal results under constant high stiffness (Fig. 10.5, left). The tradeoff for the accuracy
and reduced deviation from equilibrium position with high values of endpoint stiff-
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ProcessingStiffness Estimation

Motion PlanningFR Interface

Position 
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Electrodes

Bowl shaped 
end effector

FT Sensor

Rigid Balls

Fig. 10.3 Experimental setup of the ball-catching experiments. The slave KUKA LWR arm, EMG
electrodes, position tracking markers and F/T sensor are shown
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Fig. 10.4 Measured force values in z direction during the task with the slave robotic arm under
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Fig. 10.5 Absolute tracking position error in z direction during the task with the slave robotic arm
under constantly high, constantly low, and teleimpedance stiffness control
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Fig. 10.6 Fully rectified
eight channel raw EMGs
(upper plot) and estimated
and mapped endpoint
stiffness (lower plot) in
real-time for ball-reception
task
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Table 10.2 Performance indexes

Lift off index (LOI)
∫
Δt | fz − fw|dt

Position error index (PEI) maxt∈Δt |ez |(t)
Damping ratio index (DRI) 1√

1+
(

2π
δ

)2
δ = log

(
fz p,1
fz p,2

)

Bouncing time index (BTI) ΣΔtB if fz ≥ 0

ness is the occurrence of bouncing: indeed, the second force peak (at t ≈ 5.26 s) in
the stiff case (Fig. 10.4, left) shows a second impact of the ball (see also Extension 1).

To obtain a more stable contact is to reduce the endpoint stiffness values; however,
using constantly low stiffness directly affects the position deviation, which may grow
to very large, possibly unacceptable values (Fig. 10.5, middle). Another drawback
of such compliant control is the insufficiency of generated torques for repositioning
the ball to its equilibrium even after transient end.

The transient behavior of the system under teleimpedance appears to benefit from
the active control of stiffness, increasing at the very first moment of impact (from
t ≈ 2.3 s to t ≈ 2.4 s), leading to a reduced deviation from reference equilibrium
position. Also, the bouncing phenomenon appears to be avoided due to the subsequent
stiffness reduction phase (between t ≈ 2.4 s to t ≈ 2.7 s, see Fig. 10.6). This behavior
is in accordance with previous studies which have shown the capabilities of the
human body to minimize soft-tissue vibrations and impact transitions by means of
increased damping or decreased stiffness (modified resonance frequency) within
involved tissues (see e.g. [45]). In addition, other behavioral studies demonstrated an
increase of cocontraction levels in human arm while performing tasks which need
quick torque generations and/or to cancel components of torques orthogonal to the
desired direction [25].

A comparative performance analysis of the three control methods was done by
defining different indexes, which are summarized in Table 10.2. LOI is computed as
the integral of the difference between the vertical component of wrist force Fz and its
steady-state value (i.e., the hand plus ball weight Fw), where Δt is the time interval



162 A. Ajoudani et al.

S C T
0

0.5

1

1.5

2
L

O
I 

[N
.s

]

S C T
0

10

20

30

40

50

60

PE
I 

[m
m

]

S C T
0

50

100

150

B
T

I 
[m

se
c]

S C T
0.1

0.2

0.3

0.4

0.5

D
R

I

Fig. 10.7 Performance index plots over different elastic endpoint profiles (S Stiff, C Compliant
and T Teleimpedance)

duration between the first impact and steady stabilization. A high value of the “lift off
index” LOI indicates a reception with multiple bouncing and/or long underdamped
ball trajectories.

The second index is the maximum deviation from the equilibrium position in z
direction at steady state. As a third index, we consider an estimate of the damping
ratio of the bouncing phenomenon, experimentally estimated (see e.g. [21]) using
the logarithmic decrement between the first and second force peaks. Fourth and
last, the “bouncing time index” BTI was introduced as the duration of the interval
during which contact between the ball and robot’s end effector is completely lost. The
value is calculated by summing the intervals ΔtB along which fz is zero (complete
disconnection) or positive (as result of acceleration of bowl) after the first impact.

Figure 10.7 shows the values obtained in experiments for the four indices in the
three different stiffness regulation modes. Teleimpedance control appears to strike
a good compromise among the two extremes, consistently scoring close to the best
performance obtained by either of the two constant settings, thus enabling the human
ability to to be effectively transferred to the slave arm.

10.2.2 Teleimpedance Control of a Robotic Hand

Following the implementation of teleimpedance control for teleoperation of a robotic
arm described above, we began to explore translating this approach to the control
of a prosthetic hand. Although using a prosthesis is not typically thought of as a
teleoperation scenario, the user is driving a terminal device in real-time often with
only visual feedback as guidance. The control of these devices is suboptimal and
research strategies including incorporating feedback, machine learning, and periph-
eral technology are being investigated. This section reviews the initial steps towards
implementing a teleimpedance prosthetic controller [22] and further refinement [4]
of this technique.
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10.2.2.1 Pisa/IIT SoftHand

The Pisa/IIT SoftHand was developed through a collaboration between the Univer-
sity of Pisa and the Istituto Italiano di Tecnologia. The SoftHand was used in the
experiments presented below and will be described here in brief. For a more detailed
description, please see [14] and Chap. 8.

The goal of the SoftHand was to design and build a robotic hand that is highly
functional yet simple and robust. This was achieved by combining the soft syner-
gies approach [11] with underactuation [12]. The former uses human hand grasping
synergies as a reference position for a virtual hand. The virtual hand position or
stiffness profile connecting the virtual and real hands can thus be varied to control
the interaction forces between the hand and the environment. The latter employs
fewer actuators than available degrees of freedom, thus lowering cost, weight, and
complexity of the device. Underactuation also imparts a degree of adaptability to
the hand, thus the combination of these techniques was termed “adaptive synergies.”
Additionally, to make the hand more robust and safer in human-robot interaction
scenarios, the hand was designed with soft robotics principles in mind: the fingers
can be bent, twisted, struck, etc., and will deform out of the way and then return
to their original conformation, protecting both the hand and the environment from
damage in the event of a collision. The SoftHand is anthropomorphic and contains
a single motor. This motor pulls a tendon that winds through the fingers and thumb
to simultaneously flex and abduct the fingers. To enable testing of the hand with
non-amputee subjects, a forearm adapter was employed, see Fig. 10.8.

Fingertip
Accelerometers

Forearm
Support

Wrist Electronics Boxx

x

Fig. 10.8 SoftHand equipped with the able-bodied adapter (forearm support) and fingertip
accelerometers

http://dx.doi.org/10.1007/978-3-319-26706-7_8
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10.2.2.2 Initial Evaluation

A pilot experiment is presented in [22]. In this study, we implemented a standard pro-
portional and a novel impedance controller with and without vibrotactile feedback
using MATLAB Simulink and the Real-Time Windows Target (Mathworks, Inc.).
The main finger flexor and extensor muscles (the flexor digitorum superficialis (FDS)
and extensor digitorum communis (EDC), respectively) were sampled using surface
electromyography (EMG) electrodes. With both controllers, the reference position
of the hand was proportional to EMG amplitude. With impedance, the stiffness with
which the proportional control was applied was based on the average of the flexor
and extensor EMG signals. Both control modes were also tested with vibrotactile
feedback applied using a small (7 × 2 mm) eccentric mass motor (Precision Micro-
drives Ltd.). The amplitude and frequency of the feedback was proportional to the
grasping force. When an object is grasped, interaction forces occur as the reference
position moves inside the object. In this way, the error between the reference and
measured position can be used to estimate the grasping force.

In testing, each subject attempted to grasp four everyday objects of varied size and
weight (water bottle, screwdriver, spray bottle, and ball; see Table 10.3) with each type
of control mode. In total, four controls modes were tested: standard (proportional),
impedance, vibrotactile (standard with feedback), and vibrotactile-impedance (VI).
Each grasp was attempted three times for each of the objects and control modes,
resulting in 48 grasps per subject. Mode and grasp order was fixed, but subjects were
allowed a brief familiarization period in each condition to minimize learning effects.
After each condition, subjects were also asked to evaluate the amount of physical
and mental exertion required using a 5-point Likert scale. After all conditions were
completed, subjects were also asked whether each feature (impedance and feedback)
made the hand easier to use and whether the combination made the hand easier to use.

While only a pilot experiment, results suggested using teleimpedance in pros-
thetic control could provide an improvement in control of the prosthetic hand and
subsequently the user’s experience. Grasp success rate was above 90 % in all con-
ditions, implying that the SoftHand was generally easy to control with minimal
training and its conformal grasp was effective. Figure 10.9 shows the quantitative
EMG results including duration of EMG activity (left) and cumulative and aver-
age EMG amplitudes (right). Subjects spent the longest time above minimum EMG
thresholds in standard mode, less time with impedance and vibrotactile modes, and
finally the shortest time in VI mode. Cumulative EMG was used as a proxy for phys-
ical exertion. This was highest again in standard mode, lower in vibrotactile, and
lowest in impedance and VI modes. Average EMG amplitudes were similar across

Table 10.3 Dimensions and weights of test objects

Object Water bottle Screwdriver Spray bottle Ball

Dims (mm) 307 × 55 × 55 294 × 25 × 25 275 × 84 × 47 94 × 94 × 94

Weight (g) 250 50 500 500
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(a) (b)

Fig. 10.9 Time spent above threshold averaged across subjects (top). Average FDS EMG amplitude
(bottom, bars) and cumulative EMG (bottom, line). a Duration of EMG activity, b EMG activity

the conditions; the variations showed that subjects had a tendency to contract more
with feedback in either control modality, and less in impedance mode. Because the
motor used to provide feedback had low resolution, it is possible subjects produced
larger contractions to increase their benefit from this feedback. Finally, the qualitative
results from the Likert surveys mirrored the quantitative results: subjects reported
lower mental and physical effort with impedance and vibrotactile modes compared
to standard and lowest with the VI mode. These results suggest that both impedance
control and vibrotactile feedback provide improved prosthetic control and user sat-
isfaction. It is worth noting, however, that grasp success rates were still high without
these features and that order effects had a potential influence on the results.

10.2.2.3 Extension of the Hand Controller

Following the results of the pilot experiment, more advanced versions of the above
proportional and teleimpedance controllers were developed. The goal was to map the
FDS and EDC EMG signals to position and stiffness models to a achieve more accu-
rate control for each subject. Subjects then attempted to grasp everyday objects with
three types of controllers: stiff, using the position model and a fixed, high impedance
value; compliant, using the position model and a fixed, low impedance value; and
teleimpedance, using a varying control gain based on the users’ stiffness profile. A
block diagram of the control scheme employed is presented in Fig. 10.10. Further,
two haptic interfaces were included. In the first, a mechanical version of the force
feedback described above was developed. A mechanical cuff tightened around the
upper arm as grasp force increased so as to provide modality-matched feedback to
the user. In the second, surface texture was measured by placing accelerometers on
the SoftHand fingertips and then replicating the measured vibrations with a bracelet
of eccentric mass motors on the forearm. This setup was used in combination with
the teleimpedance controller for a blind surface discrimination and grasping experi-
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Fig. 10.10 Block diagram of the synergy-driven hand teleimpedance

ment. For further information on these haptic experiments, please see [4]. Below we
describe the modeling, parameter identification, and evaluation.

Muscle force increases with muscular activity, and as individual muscle forces
increase, they affect the torque at the joints they cross. Cocontraction of antagonist
pairs, however, affects the impedance of the joint [37]. To begin, we consider the
forward dynamics of the first grasp synergy and write

τ = aτ δ,

aτ δ = I q̈s + cq̇s + Ks(qs − q0) + τE ,
(10.6)

where τ , aτ and τE denote the torque synergy, its gain, and external torques, respec-
tively; qs and q0 are the position of the hand and the object along the first synergy; δ is a
function of the difference in activation of the antagonistic muscles (F DS − E DC),
and I , c and Ks are the inertia, damping and stiffness of the hand along the first
synergy, respectively. The effects of inertia and external torques can be neglected,
leaving us with

q̇s = −Ks

c
(qs − q0) + aτ

c
δ. (10.7)

Next, we can use T and k to represent the time step and iteration number and
estimate the dynamics in discrete time as follows

qsk+1 = (1 − Ks T

c
)qsk + T aτ

c
δ + Ks T

c
q0. (10.8)

Finally, we use two modified hyperbolic tangents [15] to map the position and
stiffness synergy references:

δ = aq [1 − e−bq (FDS−EDC)]
[1 + e−bq (FDS−EDC)] , (10.9)
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Ks = ak[1 − e−bk (FDS+EDC)]
[1 + e−bk (FDS+EDC)] , (10.10)

where FDS and EDC are the processed EMG signals of the corresponding muscles,
and the gains aq , bq , ak , and bk are identified experimentally. To do so, the subject
was asked to open and close his or her hand while FDS and EDC activity were
recorded; meanwhile, the SoftHand opened and closed as a visual reference. Twenty
natural, self-paced open/close movements were recorded to determine the parameters
of the position synergy model. A further 20 movements were recorded while asking
the subject to maintain various levels of cocontraction. Subjects were given visual
feedback of their cocontraction levels and asked to perform 4 movement cycles at 5
different levels.

Half of each set of trials was used to identify the parameters of the models and
the other half to evaluate the modeling accuracy. Averaged across subjects, we found
normalized root-mean-squared error (NRMSE) values of 17.6 and 13.4 % for the
postural and stiffness test trials, respectively. Ultimately, mental imagery, bilateral
action using a mirror box, or similar techniques could be used to identify these
parameters in persons with amputations.

After parameter identification, subjects attempted to grasp everyday objects with
each type of controller: stiff, compliant, and teleimpedance. A sample grasp of a
rigid object (a mug) with each of the controllers is presented in Fig. 10.11. Subjects
were highly successful with all controllers. However, grasp quality and stability was
highest with teleimpedance. With the stiff controller, subjects would occasionally
apply excessive force and damage deformable objects. In contrast, with the compliant
controller, subjects would occasionally lose the grip on and drop heavier objects. The
teleimpedance controller seemed to mitigate both of these problems. While these
results are preliminary, they suggest teleimpedance control of a prosthetic hand is
both functional and intuitive. Future work will apply this novel controller in a clinical
setting.

Fig. 10.11 Sample results of the SoftHand grasping a hard object (mug), with the controller under
high, fixed stiffness gain (left top pair, K = 40 Nm/rad), low, fixed stiffness gain (left mid pair,
K = 10Nm/rad), and teleimpedance (right four, aqnorm = 1, bq = 5.03, ak = 1.87, and bk = 0.579)
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Chapter 11
Incremental Learning of Muscle Synergies:
From Calibration to Interaction

Claudio Castellini

Abstract In the previous chapter it has been shown how sEMG gathered from only
two loci of muscular activity with opposite mechanical actions can be used to control
the synergy-inspired robotic hand described in Chap. 8. Here, the problem of simpli-
fying the control of a multi-DoF, multi-DoAmechatronic system—more specifically
a prosthetic hand—is tackled from the opposite perspective, i.e. by leveraging the
information contained in the sEMG gathered from multiple sources of activity. Nat-
ural, reliable and precise control of a dexterous hand prosthesis is a key ingredient
to the restoration of a missing hand’s functions, to the best extent allowed for by
the current technology. However, this kind of control, based upon machine learning
applied to synergistic muscle activation patterns, is still not reliable enough to be
used in the clinics. In this chapter we propose to use incremental machine learn-
ing to improve the stability and reliability of natural prosthetic control. Incremental
learning enforces a true, endless adaptation of the prosthesis to the subject, the envi-
ronment, the objects to be manipulated; and it allows for the adaptation of the subject
to the prosthesis in the course of time, leading to the exploitation of reciprocal learn-
ing. If proven successful in the large, this idea will prepare the shift from prostheses,
which need to be calibrated, to prostheses that interact with human beings.

11.1 Introduction

One of the simplest ways to characterize the animal kingdom is to consider the
typically animal ability of voluntarily moving [31, 38]. Animals move in the world
to survive, feed, mate, adapt to the environment and adapt the environment to their
needs—basically, for everything they do. Mammals, in particular, move and act by
activating theirmuscles, which are an extremely smart product of evolution. Actually,
from the point of view of the modern engineer, a muscle is an incredibly energy-
efficient, light and versatile actuator.
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Such a marvelous set of actuators requires an equally marvelous control system,
which however does not resemble much any standard control system as found in
Control Theory or on modern robots. Each muscle is in fact composed of up to thou-
sands smaller actuators called Motor Units (MUs), each one producing contractile
force on a joint, each one in principle independently controlled [34, 39]; precisely
this redundancy, coupled with a smart recruitment mechanism, enables mammals
achieve their spectacular performances while running, climbing, swimming, nurtur-
ing their offspring, mating, etc. In fact, essentially every action involves most, if
not all, the MUs in a certain musculoskeletal region. It therefore seems that MUs
are always controlled in large batches altogether at the same time, in a coordinated
fashion. Since the total number of MUs in the musculoskeletal system is too large to
be directly consciously controlledMU byMU [3], a simplifying paradigm is needed.

In parallel to the concept of kinematic synergies widely discussed in the first part
of this book, starting from1998, the idea ofmuscle synergies as a solution to this prob-
lem was introduced [4, 14–16, 53, 54]. Muscle synergies, as traditionally defined,
are basic coordinated muscle activations that can be extracted using, e.g., Principal
Component Analysis (PCA) from kinematic or sEMG data. The strong compression
factors uniformly obtained by PCA on data gathered from human subjects while
performing large sets of everyday-living tasks seem to indicate that only a few syn-
ergies (three or four) are required to perform most such actions (see the discussion
carried out elsewhere in this book, e.g., in Chaps. 2–4, 6, 8 and 15). The situation
becomes less clear when training is involved, for instance when a subject learns to
play the piano (see, e.g., [58]). When additional motion finesse is required, it is likely
that more and more synergies must consciously be controlled. It is quite possible,
anyway, that this paradigm works as a general control schema for the mammalian
motion: maybe grabbing a pen, caressing one’s partner, playing the piano, breaking
an egg, carrying a 50kg. weight, all these actions are performed via muscle synergies
control [25]. But dealing with this problem is not in the scope of this chapter, and as
well, different definitions of this concept exist [16, 32, 52]; in fact, we hereby adopt
the simplest possible definition of a muscle synergy: a coordinated, task-directed
activation of a set of MUs. In this sense, any voluntary action, for instance the act
of flexing one’s index finger to a determined amount of the maximum voluntary
contraction, corresponds to a specific synergy.

Now, any specific synergy corresponds to a signal pattern that can be detected
by employing an adequate array of sensors and a signal processing system—what
we call the Human-Machine Interface or HMI. Such an HMI is the ideal basis of
modern, dexterous prosthetic control. A prosthesis is needed whenever a person has
lost a limb, be it due to a traumatic event, planned surgery or congenital deficiency;
the loss of a limb leads to a severe degradation of the quality of life [37, 44], therefore
it is very desirable to restore the lost body functions to the best extent allowed for
by the technology. The main idea is that of employing the HMI to let the amputee
directly control a robotic prosthesis in the most natural way, that is, “by desiring so”
[19, 28]. Our main object of study is, in particular, hand prostheses, given that the
human hand is one of the most wonderful tools ever evolved by Nature, and the loss
of a hand is a very disabling condition in the modern world.

http://dx.doi.org/10.1007/978-3-319-26706-7_2
http://dx.doi.org/10.1007/978-3-319-26706-7_4
http://dx.doi.org/10.1007/978-3-319-26706-7_6
http://dx.doi.org/10.1007/978-3-319-26706-7_8
http://dx.doi.org/10.1007/978-3-319-26706-7_15
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In Chap.10, an approach based on minimalistic sEMG mapping has been intro-
duced, showing how such a strategy can be successfully exploited to control the
robotic hand described in Chap.8, under-actuated according to the concept of adap-
tive synergies. On the other hand, to deal with artificial hands with many DoFs and
DoAs, machine learning techniques have been developed and academically tested
in hundreds; still, at the time of writing they are essentially not used in the clinics,1

the main problem being the unreliability of the HMI [5, 8, 18, 19, 44]. In this case
“unreliable” means that the control signals generated by the HMI are not stable with
respect to the user’s intent or, equivalently, that the patterns to be recognized are
too diverse or change in time. All in all, the prosthetic control system needs to be
improved.

We deem necessary a paradigm shift here. In particular, with the advent of
multi-fingered hand prostheses, complete arm/hand prosthetic systems and advanced
surgery methods such as Targeted Muscle Reinnervation [2, 30, 55], the standard
prosthetic control does not suffice anymore. Among the several advancements called
for by the community [26], we push the incrementality of the control system [20, 57].
Incrementality of a machine learning system is the possibility of updating the model
obtained so far whenever required, without recalibrating, without loosing previous
information and without waiting for the calibration time; in the context of using a
prosthesis, this concept directly leads to interaction between the human subject and
the system.We believe that the chance that the subject continually teaches the system
new patterns as they arise in real life is paramount to improve the reliability of the
prosthetic artifact.

The rest of this chapter is a series of recommendations and ideas on how to pursue
this goal. In particular, Sect. 11.2 sets the background, describing the current flaws
and limitations of natural prosthetic control and stating a list of requirements for the
new kind of control system we are advocating; in Sect. 11.3 we describe our own
solution to the problem and show a couple successful applications of a system based
upon the ideas described; and lastly Sects. 11.4 and 11.5 contain final remarks.

11.2 Background

Current prosthetic control systems are in the vast majority based upon machine
learning applied to patterns of synergistic muscle activations voluntarily generated
by the user. We hereby argue that a specific characteristic of the control system that
has been so far neglected might represent a solution to the notorious problem of the
unreliability of such kinds of human-machine interfaces, namely incrementality.

1As of today, the only commercially available machine-learning-based myocontrol system is man-
ufactured by Coapt LLC (www.coaptengineering.com) and no statistics on its effectiveness are
available.

http://dx.doi.org/10.1007/978-3-319-26706-7_10
http://dx.doi.org/10.1007/978-3-319-26706-7_8
www.coaptengineering.com
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11.2.1 Muscle Activations in Prosthetic Control

Let us concentrate on voluntary muscle activations, that is, movements enacted by
a precise, conscious, coordinated muscle contraction—as two typical examples, let
us consider playing a C-major chord on a piano, and carrying an egg from A to B in
one’s kitchen, for example to prepare an omelet. Each action requires an extremely
fine control of the activation of thousands of motor units in the hand, forearm, upper
arm and even, in the case of carrying the egg around, of the whole body. Given the
right level of granularity of an action (more on this point will be said later on), one
can mathematically say that the intent of performing an action generates a dynamic
pattern of muscle activation, a(t), where the vector a denotes the activation level of
each motor unit involved in the action. Without loss of generality one can think of a
being expressed in normalized coordinates, for instance as a fraction of themaximum
possible activation of each motor unit; in this case a(t) ∈ R

M where M is the number
of motor units involved. In the above example of the C-major chord, and considering
the hand and wrist only, simultaneous activation of the wrist, thumb, middle finger
and little finger is required to hit the C, E and G keys at the same time, using the
right amount of force to produce the desired volume2; this would correspond to, say,
a1(t). In the second example, at least the thumb and index finger (and usually much
more) must be activated, again, simultaneously and to the right amount in order to
pick up the egg, and carry it without letting it slip and without crushing it. We could
denote this action as a2(t). And so on, for each required action.

Notice that an exceptionally fine control over a is required along time. The value of
amust remain as stable as possible in time, notwithstanding any disturbance, external
and/or internal to the body. Such disturbances are quintessentially unavoidable, as
they include, e.g., other movements required at the same time; for instance, playing
a bass line with the other hand on the piano, or walking while carrying the egg.
Clearly—and this is the problem of granularity of an action, mentioned above—there
is a particular range of values within which a must remain in order to achieve the
desired goal; for instance, the egg-carrying action can be stably performed across an
interval of time Δt only as long as amin

2 < a2(t) < amax
2 for all t ∈ Δt . This directly

leads to the definition of a muscle activation pattern, which enforces the desired
action. From the point of view of the engineer, such a pattern can be represented, in
the simplest instance, by the average of the values obtained while the subject repeats
the action over and over again: a2. (More complex representations can include, for
instance, a probabilistic description of the distribution of the signal obtained across
these repetitions.) Such a pattern is a time-abstracted simultaneousmuscle activation,
which matches our previous definition of a muscle synergy, precisely the synergy
that enables the subject carry the egg in a stable way. Such synergies are also the
patterns that amachine-learning based prosthetic control systemwill try to recognize:
as long as the subject keeps her/his activation levels close to that pattern (given a
certain distance metric—see also the concept of good variance vs. bad variance in

2At least according to the standard piano-playing technique as told inmostmodernmusicalmethods.
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the synergy definition given in [32]), the system will issue the right commands to the
prosthesis and enforce stable grasping.

On the other hand, failure by the subject tomaintain the synergisticMUactivations
“close enough” to the reference pattern a2, or more likely, failure by the system to
effectively recognize that pattern, will result in the egg being dropped or crushed;
in general, the inability of reliably recognizing a pattern ai will lead to unstable
grasping of type i , which can have dramatic consequences. Intact human subjects
employ a wide array of sensors to close the loop over the MU activations, but this
feedback stream of information is precisely what an amputated subject lacks. It is
then no wonder that the biggest cause of abandonment of upper-limb prostheses is
their unreliability, that is, the inability of the control system to correctly, stably detect
the intent of the patient [5, 8, 18].

11.2.2 Unreliability

Since the 1950s sEMG (surface Electro-Myography), originally a muscle disorder
diagnosis technique, has been used to enforce muscle-activation-based control of
one-DoF hand prostheses [44]: traditionally, two sites of large residual activity (see
also Chap.10) would be identified on the patient’s stump, usually corresponding
to flexion and extension of the wrist; these two sites would be used to determine
the speed of opening and closing the prosthesis. With the advancement of pros-
thetic technology, more sophisticated arrangements of sEMG electrodes have been
used (with higher sensitivity, better noise-rejection properties and/or higher spa-
tial resolution) and novel kinds of signals have been explored as potential replace-
ments/augmentations of sEMG. Among these, tactile [47] and pressure sensors [50,
61] detecting the stump surface deformation corresponding to muscle activations;
ultrasound imaging [22, 57] detecting the displacement of the remnant anatomical
structures in the stump; strain sensors to detect the same kind of deformations; and
computer vision [33] to aid the prosthetic control by putting prior information on
the decision regarding the action to be performed. Moreover, sophisticated statistical
methods belonging to the class of machine learning (ML, also denoted as “pattern
matching” or “pattern recognition” in the rehabilitation community) algorithms have
been applied to these signals.

In general, once an educated guess has been made about a certain type of bodily
signals (sEMG, ultrasound, etc.) to be meaningful of the underlying muscle activity,
a ML method works as follows: given a set of pairs S = {(xi , yi )} in which xi is a
sample of the signal, and yi is an integer (a “label”) abstractly denoting a required
action, or a real position/force value directly denoting the required control signals for
the DoFs of a prosthesis, a map between signals and actions will be created via some
kind of statistical approximation: y = f (x). The approximant f is usually found
by minimization of a cost functional, which makes the operation computationally
costly (as is the case, e.g., of Support Vector Machines [6, 56, 59]) and/or unsafe due
to the presence of local minima (as with artificial neural networks). Anyway, in the

http://dx.doi.org/10.1007/978-3-319-26706-7_10
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machine-learning lingo, S is called training set, since it is the data set used to “train”
the machine to recognize a certain set of patterns in the input signal; similarly, the
creation of the map f using S, which an engineer would call “calibration”, is called
in this case training phase, as opposed to the prediction phase in which f is actually
used to guess y from the signal x.3

Now, the quality of the obtained control function f strictly depends on the “qual-
ity” of S (in machine learning, in general, apart from the choice of the basic functions
used to compose f , e.g., linear or not, there is little more than S to determine what
f looks like); in turn, how to define the quality of a training set is a matter of debate.
If the map f , which represents the prosthetic control system, is supposed to stably
and reliably recognize a set of patterns (muscle synergies) Pi , i = 1, . . . , N corre-
sponding to the required actions ai , then those patterns

1. must appear in S correctly associated to the required output values;
2. must be repeatable; and
3. they must be stable.

Item (1) is not problematic; as opposed to this, items (2) and (3) can be, and usually
are. The gathering of the training set can be long and psychologically challenging
for the subject, mainly since (s)he has no control on what (s)he is doing, due to the
above-mentioned lack of sensory feedback (this issue is also tackled in Chap. 10). A
pattern ai can be very different from a pattern a′

i gathered at some later point in time
but representing the same desired action i , due to a number of competing factors
such as, e.g., electrical external disturbances; slightly different muscle activations
leading to very similar actions; muscular fatigue and sweat, which are well known
to significantly alter the sEMG signal [34, 35]; and so on. On top of that, one must
notice that in order to guarantee stability of prosthetic control, a pattern a contained
in the training set must represent the corresponding action in all possible conditions
subsequently encountered by the subject. This includes all musculoskeletal configu-
rations requiring a different activation for the same action, such as, e.g., all possible
weights one might want to carry, all possible pronation/supination configurations
of the wrist, all possible activation artifacts due to walking, etc. Often, a prosthetic
control system, which was properly trained in the beginning will miserably fail later
on, because the subject is standing instead of sitting, or because she is carrying a
one-kilogram bottle of water, which was the very purpose of grasping it! (See, e.g.,
[9] for a study in slightly less lab-controlled conditions.)

To make the situation worse, most MLmethods enforce what we call “monolithic
learning”: S is gathered at the beginning of the experiment, then f is created (train-
ing/calibration), then the prediction starts; there is no chance of updating f once the
prediction has begun, unless one stops the prediction, updates S to some new (larger)
training set and trains anew. This is unacceptable since S is potentially unlimited in
size; as well, particularly whenever it is required that f be non-linear (as is mostly

3Notice that from the point of view of the clinician, this term represents a bizarre semantic twist,
since normally it is the human subject whichmust be “trained” to use a prosthesis and not vice-versa!

http://dx.doi.org/10.1007/978-3-319-26706-7_10
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the case in hand prosthetics) training takes a long time and depends on the size of S.
This entails that the pattern a must be gathered correctly once and for all during the
training phase.

In other words, the quality of the control strictly depends on S, and S must
be gathered optimally since the start. As one might guess, this is an essentially
impossible task. We claim that it is mainly for this reason that ML-based prosthetic
control is still unreliable nowadays, after 80years of research, and it is essentially
not yet used in the clinics.

11.2.3 Building a More Detailed Model or Learning More?

Let us call the space of all signals that the prosthetic hardware can gather, the input
space I . In practice, only a “useful” subset IU ⊆ I is what we are interested in;
actually, the task outlined above boils down to building a sensible f restricted to IU .
IU can be either defined by the tasks to be correctly carried out, for instance power
grasp, pinch grip and stretched hand, or by the prosthetic hand at our disposal, say
that we want to control each single motor of the prosthesis. As previously mentioned,
this latter idea offers a different perspective to the synergy-inspired simplification
strategy discussed in Chaps. 8, 10 and 13. It represents the starting point of the
research of the author of the current chapter, see [20] for instance, and stems from
the idea of simultaneous and proportional control [27]. Anyway, f should always
work correctly on IU , where “correctly” is defined by the three items in the previous
subsection, and may ignore what is outside it. Since S is all we have at our disposal
to properly build f , it follows that S must somehow contain IU , or at least a relevant
fraction of it, given the generalization power of f .

Now, if IU is too badly structured, or simply too vast to be captured by S, no
proper f can be built, and there are two possibilities at hand to improve the situation:
either we try and map IU onto the space “captured” by S, or we expand S itself.

The first option means that one must have a model of the physical process being
approximated via f . A remarkable example of such an attempt is the psycho-physical
modeling ofmuscular fatigue and its effect on the sEMG signal (see, e.g., [36]) which
has lead to several systems in which fatigue is detected (e.g., [1]) and somehow
“corrected”. We see this as an instance of the first possibility above: given a desired
action a, IU contains necessarily all of its instances under fatigue, say a′, a′′, etc.
Since it is impossible to gather an example of each of these instances in S, some kind
of preprocessingP is applied to I , with the hope that it will project all fatigue-ridden
instances a′, a′′ and so on, onto a itself. In set-theoretic terms, the operatorP projects
IU back onto I ′

U , where I ′
U is the reduced portion of IU , which has originally been

captured by S.
Our opinion is that the results achieved by such methods are in practice never

guaranteed to make the control system really reliable. The size and extent of the
useful input space IU is essentially unpredictable, and one is never guaranteed that
P , which must be evaluated a priori, will correctly project the entire IU onto I ′

U .

http://dx.doi.org/10.1007/978-3-319-26706-7_8
http://dx.doi.org/10.1007/978-3-319-26706-7_10
http://dx.doi.org/10.1007/978-3-319-26706-7_13
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A model always necessarily represents a limited view of the world, and especially in
the case of a prosthesis, in principle actively worn twelve hours a day, the number of
situations in whichP will fail to reduce IU to what f already knows is fundamentally
unlimited. Think of the action required to carry the egg, namely a precision grip, but
performed while the subject is running, doing something else with the other arm or
lifting the arm to place the object of interest in a cupboard. Compressing all this
information in I ′

U would entail having at our disposal a complete dynamic model of
the musculoskeletal system. This is very likely unfeasible.

The second possibility, and in our opinion the only one left, is that of “learning
more”, that is, that of expanding S until it induces a useful subset I ′

U , which virtually
coincides with IU , that is, it contains all possible instances of each action of interest.
This method seems at first as unfeasible as the previous one, for at least two reasons:

1. the size of S is now extremely large—in principle unlimited;
2. again, the initial gathering of S must take into account all possible future situa-

tions.

Item 1 can only be solved by using an approach that is bounded in space and time,
that is, whose time and space complexity do not depend on the number of samples in
S. To solve Item 2 one possibility is that of gathering S piecewise, “on-demand”, only
whenever a new situation arises. We propose that incremental learning represents a
solution to both problems, having the potential to radically advance the state of the
art in prosthetic control.

11.2.4 Incremental/Interactive Learning

Before we move on to describe our own solution to this problem, that is a work-
ing incremental/interactive learning system for hand prosthetics (Sect. 11.3), let us
try and enumerate a few characteristics such a system must enjoy. By incremental
learning it is hereby meant an adaptive system able to update its own model when-
ever required. That the system must be adaptive stems from the observations of the
previous subsection. In particular we speculate that

• the range of possible situations in which the control systemmust be able to reliably
work is too large for a monolithic system;

• a full model of the human arm/handmusculoskeletal systemwould be too complex
to be of any practical usefulness, and anyway unfeasible for miniaturization on a
prosthetic device.

Requirement #1 The system must be adaptive. It must be possible to calibrate it
specifically for each subject. In other words, it must be possible to build a specific
model for each subject.
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We believe that machine learning is the way ahead. Potentially, each subject needs
a different f to be tailored (“calibrated”, “trained”) for her/him; in particular this
is the case, in the literature found so far, for amputees, who present an extremely
wide range of stumps and remnant muscle structures to the outside world [8]. As the
calibration in this case is represented by the gathering of the training set S, we also
require that

Requirement #2 The system must be quickly calibrated. In this case “quickly”
means, fast enough not to distract the subject from the task (s)he is performing,
without imposing too high a cognitive burden, and without forcing her/him into a
potentially distressing or dangerous activity.

Moreover, to take into account the potentially endless range of different situations
the subject might want to have the system work correctly, and since no machine can
feasibly stand an endless flow of data, we require that

Requirement #3 The system must be bounded in space and time. The model gen-
erated by the system must be independent from the size of the training set S and, in
general, it must not depend on the time it has been active.

Lastly, whenever a new situation “worth learning” appears, we need the system
to be able to update its own model, maintaining the three requirements above. This
is our own definition of incrementality:

Requirement #4 The system must be incremental. The model generated by the
system must be updatable on-the-fly, whenever required, whenever new information
is available and whenever the subject deems that the prediction is no longer reliable
(for instance, due to muscular fatigue).

Notice that this last requirement entails the ability to both “correct” previously
learned patterns, which change their appearance in time (e.g., because of muscle
fatigue), and to learn new patterns the subject deems interesting and that the system
has never seen before. Actually, the two cases are completely equivalent from the
machine learning point of view, given that the right target values are assigned to each
new pattern—old ones in the case of pre-existing patterns found in a new situation,
and brand new ones in the case of totally new patterns.

A systemwhich enforced all four requirements above would constitute a newway
of coupling a human subject and a complex robotic artifact. Adequate speed and
easiness of calibration, united with accuracy of the prediction (a requirement that we
assume as already present and do not even list above, of course) and incrementality,
leads to the possibility for the subject to stop the prediction whenever required;
correct the system’s mistakes or show it a new pattern to be learned; and then go
back to prediction.
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11.3 A Practical Method of Incremental Learning

In this section a natural prosthetic control system is described, fulfilling the four
requirements set out in Sect. 11.2. The systemwe describe enforces regression rather
than classification, yielding in general approximated values for theactivations of each
DoF of a prosthesis instead of a label denoting a predefined action. Notice the dif-
ference between the two approaches: whereas classification is essentially a decision
system, imposing artificial hard boundaries on regions of the input space, regression
outputs values in real-valued range, enabling control over an infinite manifold of
configurations (of positions, forces and so on).

In each of the following subsections the system is introduced in successive steps.
Firstly a simple, monolithic linear method, then its non-linear extension and then its
incremental variant. Lastly, a few optimizations are introduced, which improve its
practical usability.

11.3.1 Monolithic Learning in the Linear Case

Machine learning is essentially about building a function approximation starting
from a training set S (supervised, non-parametric learning). From this point of view,
one of the simplest ML approaches is represented by Least-Squares Regression,
which we employ in the regularized form called Ridge Regression (RR from now
on, [24]). Given a training set of N (sample, target) pairs, S = {(xi , yi )}N

i=1, RRbuilds
a linear approximation ŷi = wT xi in a numerically stable way, such as to minimize
the Mean-Squared Error between ŷi and yi , for all pairs in S. We hereby assume that
the input space be represented by d-dimensional feature vectors somehow extracted
from the (possibly preprocessed) signals, x ∈ R

d (this implies that w ∈ R
d , too). We

also assume that y ∈ R. Notice that this does not restrict the possibility of having
many RRmachines in parallel, each one yielding a value for a DoF of the prosthesis.

Let X be a matrix representing S, that is, X ∈ R
N×d is the ordered juxtaposition

of all signal samples collected so far; similarly, the vector y ∈ R
N orderly collects

all target values. Then the RR model w is given by

w = (X T X + λI )−1X T y (11.1)

where I is the identity matrix of order d and λ > 0.
RR is a good candidate as a monolithic learning approach, whenever it can be

safely assumed that there exists a linear relationship between the samples and the
target values. Notice that both the time and space complexity of RR, in turn O(d3 +
Nd2) and O(d2 + Nd), depend on the size of the training set N—this is clearly the
case since the matrix X must be stored somewhere and used, e.g., to evaluate X T X .
However, this dependency is only linear; the dominating terms, d3 and d2, only
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depend on the dimension of the input space. For instance the d3 time complexity is
due to the matrix inversion in the expression of w—but the matrix to be inverted,
(X T X + λI ), is only d × d.

Simple as it is, and limited to the linear case, RR already fulfills Requirement
#1 (adaptivity) and partially fulfills Requirement #2 (fast calibration) in the case N
is not exceedingly large, since it only depends linearly on it. As opposed to that, it
does not not fulfill Requirement #3 (boundedness). Lastly, notice that the model w is
calculated directly from S (that is from X and y) without the need of minimizing a
cost functional—actually, the minimum of the regularized Mean-Squared Error cost
functional

argmin
w

N∑

i=1

(yi − wT xi )
2

is found exactly for the above-mentioned value of w. Being able to directly evaluate
w has the non-negligible advantage of getting rid of local minima, guaranteeing that
w is consistently the optimal model (in the sense of the MSE) given the assumption
of linearity and the training set S.

11.3.2 Extension to the Non-linear Case

In case the assumption of linearity must be lifted, the simplest way of extending
RR is that of employing a linear combination of non-linear basis functions to build
the approximant f , in other words ŷi = wT φ(xi ). This is essentially a variant of
the kernel trick. One very convenient method to build such a theoretically solid
extension is given by Random Fourier Features (RFFs, [48, 49]). As opposed to
other, more popular and established kernel methods such as, e.g., Support Vector
Machines [6, 56], using RFFs one is able to directly compute themappingφ, whereas
in most kernel-based approaches only the product of two applications of φ, that is
k(x, y) = φ(x)φ(y) can be evaluated. This is a direct consequence of the fact that
RFFs represent a finite-dimensional approximation to the Gaussian kernel. The num-
ber of RFFs, D > 0, which must be decided a priori, controls the accuracy of this
approximation and, not incidentally, dominates the computational complexity of
RFFs when applied to RR. In the standard case, as D grows the prediction becomes
more accurate but the computational requirement grows, too—one must find a
trade-off.

Another way to describe RFFs is that they represent a non-linear extension to RR,
which can be “plugged into” it.We now give an informal description of the approach,
suggesting that the reader interested in the mathematical details should consult the
seminal papers [48, 49] as well as [20, 21] for some applications. Here, suffice it to
say that according to Bochner’s Theorem (plus some inessential assumptions), any
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shift-invariant kernel is the expected value of the inner product of two applications
of φω,

k(x, y) = E[φω(x)φω(y)] ≈ φω(x)φω(y)

where ω, a d-dimensional vector of real numbers, is drawn randomly from a prob-
ability distribution corresponding to the kernel being approximated. Intuitively, this
means that any kernel can be approximated by a sort-of finite Fourier expansion of its
own probability distribution; in the case of the Gaussian kernel, k(x, y) = e−γ||x−y||2

where γ > 0, ω can be simply drawn from a normal distribution with zero mean
value and covariance 2γ I , getting to a closed-form expression for φω ,

φω(x) = √
2 cos(ωT x + β)

(additionally, β is drawn from a uniform distribution in [0, 2π].) This particular φω

maps an input vector x to a real number, associated to a particular ω; it is however
standard to create D vectors ωi rather than just one, in order to reduce the variance
associatedwith a randomdistribution. In the end (dropping theω subscript to simplify
the notation), the RFF approach works by non-linearly mapping each and every input
sample x ∈ R

d into a D-dimensional vector:

φ(x) = 1√
D

[cos(ωT
1 x + β1) . . . cos(ωT

Dx + βD)]T

The operator φ induces a D-dimensional space called feature space by projecting
x onto a manifold of RD , namely the surface of the 1

D -radius D-dimensional hyper-
sphere. This particular mapping is guaranteed by Bochner’s theorem to converge to
the Gaussian kernel approach as D grows.

Given then φ, as is standard in kernel-based methods, we hope to be able to
linearly solve the originally non-linear problem by pushing all the linear machinery
(RR in our case) in the feature space. In order to compute the model w, which is now
D-dimensional, one simply plugs φ back into Eq.11.1, obtaining

w = (φ(X)T φ(X) + λI )−1φ(X)T y

where, with a slight abuse of notation, we denote by φ(X) the application of φ to
each row of X ; therefore, φ(X) ∈ R

N×D . This method has several useful properties:

1. it only involves drawing the ωs and βs from two random distributions, once and
for all at the beginning. Given a reasonably large value of D, all “runs” of the
approach will yield comparable results;

2. its time and space complexities are O(D3 + ND2) and O(D2 + ND) analogously
to the linear case; thatmeans that the additional computational burdenwith respect
to RR only depends on the choice of D;
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3. as a consequence, the grid search necessary to tune the two additional hyperpa-
rameters D and γ is in practice very fast; usually D is set at a “reasonable” value
around 500, or anyway to the maximum value that can be afforded, given the
computational constraints.

RFFs, coupled with RR, represent a cheap and surprisingly simple non-linear
approximant; the computational machinery required is limited to algebraic matrix
manipulation plus matrix inversion, provided that in the beginning the ωi ,βi are
generated.

11.3.3 Incrementality

The naive way of making such a method incremental is, of course, to store S and
add to it every new (sample, target) pair that is gathered. This is clearly unacceptable
since in the long run S will make any finite memory bank overflow, let alone the
computational burden required to evaluate w every time, a task which depends on
N . An alternative approach is that of limiting the size of S, keeping it fixed at some
predetermined value Nmax entailing a computationally bearable evaluation of w; this
idea has been explored, e.g., in [17, 29, 40]. In our case, a very convenient solution
is that of considering the arrival of a new (sample, target) pair as a perturbation
to the inverse matrix (X T X + λI )−1. Using a rank-1 update method directly on it,
the explicit inversion can be avoided. In practical terms, it is convenient to redefine
Eq.11.1 as the product of a matrix A and a vector b:

w = (X T X + λI )−1X T y := Ab (11.2)

where A is (X T X + λI )−1 and b is X T y—notice that A already is the inverse of a
matrix. Given a new (sample, target) pair (x′, y′), the updated model w′ = A′b′ is
given by applying the Sherman-Morrison formula [23]:

A′ = A − Ax′x′T AT

1 + x′T Ax′ and b′ = b + x′y′

In practice, one starts by setting A = 1
λ

I and b = 0, so that w = 0; as new (x′, y′)
pairs arrive, the updatedmodelw′ is built. It is easy to prove that themodelw obtained
after, say, N such steps is exactly the same that would have been calculated one-shot,
having at our disposal the whole training set S containing N (sample, target) pairs.
Notice that, as no explicit matrix inversion is required by the above formula, the
computational complexity of the update step is only O(d2) both in time and space.
As a matter of fact, in this case X and y need not be explicitly stored anywhere:
as soon as w′ has been evaluated, there is no further need of keeping (x′, y′). The
Sherman-Morrison formula gives us an effective tool to perform RR incrementally
(iRR), without any danger of exhausting the computational resources of the control
system.
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As a last step, consider the application of RFFs to iRR. Again, the non-linear
mapping operator φ can be simply applied to x wherever it appears in the Sherman-
Morrison formula, finally yielding

A′ = A − Aφ′φ′T AT

1 + φ′T Aφ′ and b′ = b + φ′y′

where we denote by φ′ the application φ(x′) in order to keep the notation light.
Again, one can start by setting A = 1

λ
I (this time I is the identity matrix of order D

rather than d) and b = 0. As one can easily guess, the computational complexity of
the model update step is, in this case, O(D2) both in time and space.

11.3.4 Obtaining Ground Truth

Joining RFFs to iRR (call the new approach iRR-RFF) as described in the previous
subsection constitutes a practical tool for natural prosthetic control, in the sense
outlined by the four Requirements of Sect. 11.2. A detailed summary of this match is
given at the end of this section. Before that, as a last remark, let us notice two further
factors that potentially limit its applicability, in particular to amputated subjects:

1. amputated subjects cannot operate any position/force sensor, therefore the exper-
imenter has the problem of gathering sensible ground truth, i.e., the target values
y in S. One partial solution is that of having them use the remaining limb in a
bilateral fashion [10, 41], but one is never sure how much the two limbs match
each other—bottom line, not even the amputee is!

2. In general, an amputation deprives the subject of sensory feedback (including
visual feedback); as a consequence of this, amputated subjects are usually unable
to perform finely graded tasks. The experimenter cannot sensibly expect, e.g.,
that an amputee imagines flexing the middle finger with 50% of the maximum
voluntary contraction.

Additionally, the initial data gathering phase can be tiresome and stressful for the
subject—it must be kept as short as possible. To counter these problems, a couple
simple strategies can easily be put into place.

Firstly, the usage of goal-directed stimuli in order to have the subject generate
sensible ground truth for the system. In practice, rather than relying on data sampled
from sensors, the experimenter puts the subject in a maximally comfortable situation
and then asks for a specific voluntarymuscle contraction. It can either be the activation
of a single DoF of the prosthesis, such as, e.g., flexing the index finger or the wrist,
as well as enacting a specific type of grasp (power, cylindrical, precision grip, etc.).
In order to foster the production of a sensible input signal, a visual stimulus can be
presented to the subject, such as a 3D-generated model of the missing limb assuming
the required posture; or, the experimenter can vocally instruct the subject while
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showing the required posture with her/his own limb; or even, the stimulus can be
delegated to the prosthesis itself, which can be commanded a specificmovement to be
imitated by the subject. In some cases, even looking at some graphical representation
of the input signal itself (for instance, a radial graph showing the voltages recorded
be the sEMG electrodes) can help. As already remarked, there is no assurance that
the subject will be doing what (s)he is required to do; not even the subject her/himself
can be sure of that. The hope is that the input signal, possibly when stable, faithfully
represents the intent of the subject.

Secondly, coherently with the reduction-oriented approach suggested by the
notion of synergies as widely discussed throughout the book, it is convenient to
only gather minimal and maximal activations and then let the regression machines
interpolate the rest. This makes the data gathering phase shorter and more suitable
for an amputated subject. These two strategies have been successfully employed
together for the first time in [57] in the linear case, where they were collectively
termed “realistic approach”. In a further analysis and practical demonstration [20],
the approach has been proved successful in the non-linear case, too.

To sum up, here is how iRR-RFF matches the four Requirements outlined at
the end of the previous section. As all machine learning approaches, it is adaptive
(Requirement #1), meaning that it builds its own model based upon data gathered by
a human subject engaged in a goal-oriented task. The significant differences found
in the human anatomy of different subjects, as well as the fact that each amputation
produces a very different final layout of muscle remnants, suggest that it will be
a very hard, if not impossible task, to build such a universal system. The hope
is therefore that of making the (machine) adaptation, already called calibration or
training phase, as short as possible; possibly, resilient to the daily donning and doffing
of the prosthesis—this seems a much more doable task, as the electrode layout in a
prosthetic socket never changes along time.

Requirements #2 and #3 are matched by the time complexity of iRR-RFF, as
well as by the easiness of the data gathering if one enforces the two last strategies
outlined above; and by the fact that iRR-RFF is also bounded in space, the only space
requirement being the storage of a D × D matrix. Experimental results (see the next
subsection for more details) reveal that iRR-RFF can be implemented in practice in a
mid-level imperative programming language such as, e.g., C, on standard hardware,
achieving a constant update time in the order ofmagnitude of the tens ofmilliseconds.

Finally, Requirement #4 is exactly realized by the usage of a rank-1 matrix update
technique—in the case outlined above, the Sherman-Morrison formula. It is worth
remarking once again that incrementality in this case still yields the theoretically
optimal model that would have been achieved using the same data in a batch fashion.
iRR-RFF can therefore serve as the basis for a theoretically well-founded, fast, incre-
mental intent gathering system. The next subsection describes two of its practical
applications.
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11.3.5 Applications

11.3.5.1 The Ultrapiano/Ultraharmonium

Using an instrumented glove and a commercial ultrasound machine, in [12] it was
first proved that first-order spatial averages of the gray levels in ultrasound images
of the human forearm are linearly related to the metacarpo-phalangeal angles, i.e.,
the angles formed by the first phalanx of the fingers with the palm. (A deeper analy-
sis appears in [13].) This unexpected phenomenon was first exploited in [57] to
outline and practically show that the above-mentioned averages could be used as
the input space to a system enforcing iRR. The update times were found to be on
average 16.5ms, while the prediction without update took only 3.7ms; these times
were ascertained to be independent of the number of samples gathered so far, and
compatible with a cinema-quality visualization of a 3D hand model on a screen (30
frames per second). This paved the way to two further applications. The real-time
prediction of finger angles and forces, coupled to the detection of the position of the
wrist obtained via a standard magnetic tracker, was transmitted to a virtual-reality
system showing in turn a piano [51] and a harmonium [11]. The system was tested
on several intact subjects revealing a satisfactory level of immersion in the virtual
world. The usage of ultrasound imaging as a HMI for the disabled is actually gain-
ing momentum and its perspectives have been widely discussed in [7]. Figure11.1
shows, and quickly describes, the setup used in [11].

11.3.5.2 Teleoperated Manipulation with a Prosthesis

In [20] an i-LIMB Ultra hand prosthesis by Touch Bionics4 was used to manipulate,
pick and place and carry a few everyday-life objects in a teleoperated scenario.
Compared to the Pisa/IIT SoftHand described inChap.8 and tele-operated leveraging
strategies discussed in Chap.10, the i-LIMB Ultra has more than one DoA, and this
justifies the synergy-inspired approach to copewith its control through the techniques
described in the current chapter. Teleoperation in this case is used as a proxy for the
real-life application of a prosthesis to an amputee: it constitutes a simpler case since
all problems related to the weights to be carried can be neglected (as they are taken
care of by the slave platform). As in the case outlined above, a magnetic tracker
was used to track the position of the human wrist and control the position of the
slave’s end-effector using a high-stiffness impedance controller [43] on the humanoid
platform TORO. At the same time, 10 standard sEMG electrodes by Ottobock5 were
used to gather the muscle activity of the forearm of the master. Using iRR-RFF, the
sEMG signal was converted into torque (current) commands for the fivemotors of the
prosthesis, enforcing one of four predefined grasp schemes. The offline experiment

4See www.touchbionics.com.
5Namely, MyoBock 13E200, see www.ottobock.com.

http://dx.doi.org/10.1007/978-3-319-26706-7_8
http://dx.doi.org/10.1007/978-3-319-26706-7_10
www.touchbionics.com
www.ottobock.com
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Fig. 11.1 The setup used in [11]. A magnetic tracker and an ultrasound transducer are fixed on the
subject’s forearm; an HMI based upon iRR converts local spatial features of the ultrasound images
to finger forces (screen on the right); lastly, finger forces and wrist position are used in a virtual
setup (screen on the left) to play a piano

performed in the paper clearly showed that non-linear, incremental regression was
required to keep the prediction error at a reasonable level (see Fig. 11.2, reproduced
from [20]).

In the demonstration, a success rate of 75–95%was obtained while grasping, lift-
ing, picking up and placing objects such as a bottle, a ball, a credit card, independent
of wide ranges of hand motion and wrist rotation, and related high speeds.

11.4 Discussion

Introducing incrementality in a machine-learning-based prosthetic control system
represents in our opinion a very beneficial improvement, at least in two senses:

1. it potentially solves the problem of predicting all possible situations in which an
action will be performed by introducing on-demand model update;

2. it realizes a virtuous loop between man and machine, exploiting the phenomenon
of reciprocal learning.
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Fig. 11.2 Performance obtained by RR (“Linear RR”), Kernel Ridge Regression (“KRR”) and
iRR-RFF with D = 1000 (“iRFFRR1000”) while predicting five voluntary muscle contractions
using sEMG. The possibility of updating the models amidst the prediction (trials 9 and 10 of each
session and day) keeps the performance of iRR-RFF well above both RR, which is linear, and KRR,
which is non-linear but also not incremental. Reproduced from [20]

Notice that, while the first claim is being proved in the academic world in these
years, the second is awhole unexplored territory so far. That newmuscle synergies (in
the broad definition used in this chapter) can be learned, retained over the weeks and
then re-used whenever required is the subject of a very exciting line of research (see,
e.g., [25, 46]); aswell, there are hints that the very usage of a prosthesis induces better
signals for its own control [45], which seems to point in the direction of goal-directed
stimuli claimed here in Sect. 11.3.

What the best “reciprocal training” strategy is; how to best help the subject use
the control system; what kind of games to employ; these questions are still open
and indeed fascinating. This research is also motivated by the remarkable fact that
improving the embodiment of a prosthesis seems to diminish phantom-limb pain [42]
and amend abnormal phantom sensations. In any case, interactive learning would
represent a crucial form of help to reach this goal.

11.4.1 On the Capacity of Incremental Learning

There seems to be a paradox in the claim that a good control system (as defined in
the very chapter) must be bounded in space: such a system is limited and it therefore
seems that eventually, as IU (and accordingly, S) grows, the control function f won’t
be able to accommodate all required patterns. This is indeed true and boils down to
the question of how “large” the learningmachine should be; unfortunately, to the best
of our knowledge, so far no machine learning method is known that can change its



11 Incremental Learning of Muscle Synergies: From Calibration to Interaction 189

own capacity (in the sense of the Vapnik-Chervonenkis dimension, see [56, 59]) and
there is no substantial way of determining this a priori. To stay with our own example
of iRR-RFF: how large a D is required? This is a crucial question since D cannot be
sensibly altered after it has been chosen. So far the answer to this question can only
be empirical: choose D as large as possible given the hardware at disposal; but a
more sensible way to determine the size of a model is a very desirable achievement,
and a very interesting research question.

11.4.2 Relation to Muscle Synergies as Traditionally Defined

At the time of writing we are not sure whether and how the traditional concept of
task-based muscle synergy can be used in the control of dexterous prostheses. Early
experiments [60] indicate that such a control is indeed possible, but will inevitably
be limited to the combinations of a few synergies. If such a control can be extended
to more complex control manifolds, such as, e.g., those required to play a keyboard,
is unclear; it is as well unclear whether or not even an extended control based upon
muscle synergies would not look quite like the one described in this chapter. All in
all, in order to improve one’s own dexterity, a subject must learn (think of the painful
process required, e.g., to proficiently play tennis!), and that is probably tantamount to
usingmanymore synergies than those required for the classical basic set of everyday-
life tasks. Here too, the question is open and fascinating.

11.5 Conclusions

The ideal (hand) prosthesis is like a pair of glasses: you wear it in the morning,
it works seamlessly all day long, you take it off in the evening, and then wear it
again the morning after.6 Clearly, none of the control systems currently available
in the academy, let alone in the clinics, can even hope to enforce this. One possible
solution is that of simplifying the prosthesis itself: for example, the Pisa/IIT SoftHand
(Chap.8) reduces the complexity of controlling many DoFs through an innovative
designwith only oneDoA—thismotivates theminimalistic tele-impedance approach
described in Chap.10. On the other hand, most of the current prosthetic systems have
several actuators to be controlled, and in this case right now the control system is
the bottleneck. For instance, the i-LIMB Ultra Revolution by Touch Bionics has six
independent motors, as well as Vincent System’sVincent Hand Evolution2; Steeper’s
BeBionics hasfive,while theMichelangelohand/wrist systemhas four; andno system
so far can control these DoFs independently. That means that there is more dexterity

6This inspirational metaphor is due to Peter J. Kyberd in a personal communication with the author
of this chapter.

http://dx.doi.org/10.1007/978-3-319-26706-7_8
http://dx.doi.org/10.1007/978-3-319-26706-7_10
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available than what any patient can hope to use. We also believe that machine-
learning-based control is the way ahead, but its reliability is still very questionable.

In this chapter we have argued that incremental/interactive learning would make
prosthetic control radically more reliable. In one sentence: give the subjects the
chance to teach their own control system what is needed. We claim that this idea
could in the near future represent a leap forward.
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Chapter 12
How to Map Human Hand Synergies
onto Robotic Hands Using the SynGrasp
Matlab Toolbox

Gionata Salvietti, Guido Gioioso, Monica Malvezzi
and Domenico Prattichizzo

Abstract Throughout this book, we have described how neuroscientific findings
on synergistic organization of human hand can be used to devise guidelines for the
design and control of robotic and prosthetic hands as well as for sensing devices (see
Chaps. 8, 10, 11 and 15). However, the development of novel robotic devices open
issues on how to generalize the outcomes to different architectures. In this chapter,
we describe a mapping strategy to transfer human hand synergies onto robotic hands
with dissimilar kinematics. The algorithm is based on the definition of two virtual
objects that are used to abstract from the specific structures of the hands. The proposed
mapping strategy allows to overcame the problems in defining synergies for robotic
hands computing PCA analysis over a grasp dataset obtained empirically closing
the robot hand upon different objects. The developed mapping framework has been
implemented using the SynGrasp Matlab toolbox. This tool includes functions for
the definition of hand kinematic structure and of the contact points with a grasped
object, the coupling between joints induced by a synergistic control, compliance at
the contact, joint and actuator levels. Its analysis functions can be used to investigate
the main grasp properties: controllable forces and object displacements, manipu-
lability analysis, grasp quality measures. Furthermore, functions for the graphical
representation of the hand, the object and the main analysis results are provided.
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12.1 Introduction

Robotic hands share with the human hand some of the fundamental primitives of
motion, grasping, and manipulation. As described in Chap.8 and in the first part
of the book, a deeper understanding of the human way to move their hands could
suggest an approach to programming hands that allows users to more easily control
the different devices that may be used in a robotic system, by encapsulating the hand
hardware in functional modules, and ignoring the implementation-specific details.
Human hand synergies introduced in [1] can play the role of such functionalmodules.
Synergies capture the concept that, in the sensorimotor system of the human hand,
combined actions are favored over individual component actions, with advantages in
terms of simplification and efficiency of the overall system. This reduced subspace
allows to design more easily and intuitively robotic hand control algorithms, due to
the lower number of DoFs that has to be addressed (see Chaps. 8 and 13). Anyway,
this approach can be pursued only if there exists a mapping method that allows to
replicate the actions defined in the synergistic subspace.

In this chapter, we will propose a way to map human synergies onto robotic
hands by using an object-based method. The target is to reproduce deformations and
movements exerted by the paradigmatic human-like hand on a virtual sphere com-
puted as the minimum sphere containing the hand fingertips. This allows to work
directly on the task space avoiding a specific projection between different kinematics.
Such algorithm has been implemented using the SynGrasp toolbox. Differently from
other simulators like GraspIt! [2] and Opengrasp [3], SynGrasp has been developed
entirely inMATLAB and offers an easy and intuitive Graphical User Interface (GUI)
and script programming. One of the main feature of this programming environment
is the possibility of quickly integrate other specific tools and built-in math func-
tions enabling the exploration of multiple approaches and the integration with other
analysis tools, e.g. statistical elaboration of experimental data, optimization, dynamic
models and simulations etc. Moreover, Matlab is well known also outside the robotic
community. Thismakes our toolbox for grasp analysis also useful in other fields, such
as experiment design and validation in Neuroscience, physiology and haptics. The
SynGrasp toolbox has been developed in the context of the EU Project “THE—The
Hand Embodied”. Together with the theoretical framework described in Chap.13, it
represents a useful analytical tool and it provides several functions for human and
robot grasping evaluation (see Fig. 12.1) including specific functions for human hand
synergies evaluation [4].

The main functions provided within the toolbox can be used for:

• Hand modeling;
• Grasp definition;
• Grasp analysis and optimization;
• Graphics.

The rest of the chapter is organized as it follows. In Sect. 12.2 the main functions
of the toolbox are presented, while in Sect. 12.3 the proposed object-based mapping

http://dx.doi.org/10.1007/978-3-319-26706-7_8
http://dx.doi.org/10.1007/978-3-319-26706-7_8
http://dx.doi.org/10.1007/978-3-319-26706-7_13
http://dx.doi.org/10.1007/978-3-319-26706-7_13
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Fig. 12.1 Visualization of
the SynGrasp model of an
anthropomorphic hand
grasping an object
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together with its implementation in SynGrasp is described. Finally, Sect. 12.4 sum-
marizes the proposed work, draws some conclusions and indicates the directions of
future development of the mapping framework.

12.2 The SynGrasp Toolbox

SynGrasp is a MATLAB toolbox developed for the analysis of grasping, suitable
both for robotic and human hands. It includes functions for the definition of hand
kinematic structure and of the contact points with a grasped object. The coupling
between joints induced by an underactuated control can be modeled. The hand mod-
eling allows to define compliance at the contact, joint and actuator levels. The
provided analysis functions can be used to investigate the main grasp properties:
controllable forces and object displacement, manipulability analysis, grasp quality
measures. Functions for the graphical representation of the hand, the object and the
main analysis results are provided. The toolbox, all the relative documentation, and
some examples can be downloaded from http://SynGrasp.dii.unisi.it and fromHand-
Corpus (www.handcorpus.org), the open access repository created within the THE
Hand Embodied project.

http://SynGrasp.dii.unisi.it
www.handcorpus.org
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12.2.1 How to Use SynGrasp

The SynGrasp toolbox can be used through the provided GUI or developing Matlab
scripts which embed the toolbox specific functions. The GUI allows the user to use
the available hand models and interactively perform hand and grasp analysis. The
interface is reported in Fig. 12.2. It consist of six separated areas. The main plot is
placed in the center of the window. On the left, there are two ares that take care of
loading on the main plot a hand model and an object model, respectively. Together
with the available hand models, it is possible to load a hand model defined by the
user. At the moment, five hands are available in the toolbox. SG3Fingered is a
three finger hand, inspired by the Barrett hand, SGDLRHandII is the DLR-HIT
Hand II [5], SGmodularHand is a three fingered modular hand presented in [6].
There are also two models of the human hand: SGparadigmatic is a 20 DoFs model
of an anthropomorphic hand, referred to as paradigmatic hand in [7], while the
SGhuman24Dof is a human hand model with 24 DoFs. Position and orientation of
the hand models can be set and modified by the user. Concerning the object, at the
moment only spheres, cubes and cylinders are available. Similar to the hand, also
for the object it is possible to set and modify position and orientation and moreover
it is possible to select the size. On the bottom area, there are sliders that can be used
to modify the hand model configuration. A number of sliders equal to that of active
joints in the handmodel can be used to control each joint separately. The user can also
select to use a set of sliders to coordinately move the joints along synergy directions.
Synergies are already defined for the human hand models while for the robotic hands
they can be: (i) defined directly by the user, (ii) derived from the linearization of the
forward kinematic relationships, (iii) obtained from the processing of experimental
data or (iv) mapped from the human hand, as reported in Sect. 12.3. If the joints are

Fig. 12.2 The SynGrasp GUI
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moved so be in contact with the object, a contact-detection algorithm is implemented
and it is used in order to perform grasp analysis. The hand can be also automatically
closed pressing the button placed in the top-right part of the GUI. The arising motion
is a “close all” policy. Finally, on the bottom-right there is the zone devoted to grasp
analysis. Starting from the hand in contact with the object, it is possible to analyse
the quality of the obtained grasp. The desired quality index can be chosen from the
drop-down menu.

Scripting mode solution is preferred if a customization is needed. The user can
include his/her own functions and/or canmodify those already existing. The complete
description of all the toolbox functions and their usage is reported in [8]. Some of the
function can be used to provide a simple graphical representation of the manipulator
and the object. The function SGplotHand() display the hand in the joint configu-
ration specified by the user. The function SGhandFrames() plots a useful scheme
of the hand which highlights the kinematical structure, the joints and links and the
orientation of the local frames for each link. It is also possible to draw some simple
objects to be grasped using the functions SGplotCylinder(), SGplotSphere() and
SGplotCube().

All the functions described in the rest of the section can be used in scripting mode.
Most of them are also embedded on the GUI.

12.2.2 Hand Modelling

This section groups all the functions needed to describe the kinematics of a hand.
The hand structure is defined in terms of fingers, links and joints. A cell named
base, containing as many elements as the number of fingers, collects in each cell
element a 4 × 4matrix representing the homogeneous transformationmatrix between
the wrist reference frame and a reference frame defined at the beginning of each
finger kinematic chain. Denavit-Hartenberg (DH) parameters [9] have been chosen
as default notation. A table containing the DH parameters of each finger has to be
provided to describe a hand. A cell named DHpars, which has as many elements
as the number of fingers, collects in each element a matrix with four columns and
as many rows as the number of joints of each finger. Each row represents the DH
parameters allowing to define the joint with respect to the preceding one or with
respect to the base reference frame. The function SGmakeHand() defines a hand
structure, whose arguments are defined by the function SGmakeFinger().

Hand configuration is defined by the joint variables q = [q1 . . . qnq ]T ∈ �nq . The
user can modify the hand configuration through the function SGmoveHand().

The toolbox can be used to investigate the properties of hands in which the joint
displacements are coupled, mechanically or by means of a suitable control algo-
rithm. In the case of human hand synergies, this coupling has been described as a
synergy matrix associated to hand model [4]. For the 20 DoFs model of the human
hand available in the toolbox, the synergy matrix refers to the data collected by
Santello et al. in [1] and it is provided through the function SGsantelloSynergies.
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The function SGdefineSynergies() associates to a specific hand model the relative
coupling matrix. The function SGactivateSynergies() activates a synergy or a com-
bination of synergies on the hand. The function SGplotSyn() draws the movement
corresponding to the activation of one synergy. It draws on the same plot the hand
in the initial reference configuration and in the configuration obtained activating one
or more synergies.

12.2.3 Grasp Definition

Grasp analysis is based on the definition of the contact between the hand and the
grasped object (for a complete theoretical framework for grasp analysis of under-
actuated synergistic hands, the reader is invited to refer to Chap. 13). We adopted the
common assumption consisting in the approximation of the contacts with discrete
points. Let us denote with nc the number of contact points. Their positions are
identified w.r.t. a base reference frame, that we assume to be inertial, denoted with
{N }. A local reference frame {B} is defined on the object. The configuration (position
and orientation) of {B} framew.r.t. {N } is described by the vector u ∈ �6. Thewrench
imposed by the interaction between the hand and the object at each contact point can
be evaluated once a suitable contact model is defined [10]. For each contact point i ,
the contactmodel selects the contactwrenchλi ∈ �li components that can be applied,
li value depends on the type of contact (e.g., li = 1 for a single point without friction
model, li = 3 for hard finger model, li = 4 for soft finger contact model [10]). The
contact actions λi are collected in a vector λ ∈ �nl , where nl = ∑nc

i=1 li . For each
grasp it is necessary to define a variable structure representing the grasped object
and containing the object center position, the coordinates of the contact points and
the unit vectors normal to the contact surface. This structure can be specified in
SynGrasp using the function SGmakeObject().

In SynGrasp a grasp can be defined in two ways. One way is to start from the
hand, choosing on it the contact points and thus defining an object that fills them.
This solution can be used, for instance, when contact point positions are acquired
through an experimental setup on a robotic or human hand or if an external grasp
planner is used. Alternatively, it is possible to consider a hand and an object and
close the hand on it to define the contact point positions, through the provided grasp
planner.

The contact point coordinates can be either defined by directly assigning the loca-
tion of the contact points anywhere on the hand with the function SGaddContact(),
or using the function SGaddFtipContact() to add contacts on the hand fingertip.
The object center coordinates and the normal unit vectors can be either automati-
cally computed by the software on the basis of the contact point locations ormanually
defined by the user. A convex object defined by the given contact points is drawn by
the function SGplotObject().

The toolbox contains a grasp planner. Given the hand model, an object to grasp,
the number of pre-grasp positions and the metric to be used for grasp evaluation, the

http://dx.doi.org/10.1007/978-3-319-26706-7_13
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grasp planner function SGgraspPlanner() iteratively evaluates the best grasp. The
pregrasp positions are set using the function SGgenerateCloud(), for each trial the
hand moves SGtransl() toward the center of the object with a random orientation of
the palm. From the pregrasp position the function SGcloseHand() closes the fingers
until they reach the object. The procedure is open and fully customizable. The user
can set specific values for several parameters, e.g. which joints are involved in the
grasping action, the size of the step used to close the finger around the object and the
offset between the hand and the object. The functionSGcontactDetection() evaluates
if a link of the hand is contact with the object and eventually stops the relative joint.
Once all the fingers are in contact with the object or have reached their limits, the
grasp quality is evaluated. This procedure is repeated for all the generated pregrasps
and the obtained performance, in terms of the selected grasp quality measure, are
sorted. Figure12.3 shows an example of outcome of the grasp planner.

Grasp definition is the first step of the analysis: once the hand, the object and
their contact points are defined, it is immediately possible to evaluate all the matrices
relevant to grasp analysis. The selection matrix H ∈ �nl×3nc , that extracts from the
contact wrench the components effectively applied, according to the chosen contact
model, is evaluated by the function SGselectionMatrix(). The grasp matrix G ∈
�6×nl , relates the external wrench applied to the object to the contact actions, i.e.

w = Gλ (12.1)

where w ∈ �6 is the object external wrench. G matrix depends on contact point and
object center positions, and on the selected contactmodel. It can be evaluatedwith the

Fig. 12.3 Grasp planner output. In the left hand side the pregrasp position and on the right the
obtained grasp
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SynGrasp function SGgraspMatrix(). The hand Jacobian matrix J ∈ �nl×nq relates
the components of the contact twists constrained by the contact model νhnd

c ∈ �nl to
the joint velocities q̇ ∈ �nq , i.e.

νhnd
c = J q̇. (12.2)

For a given grasp, Jacobianmatrix J can be evaluated bymeans of the function SGja-
cobianMatrix(). More details on the evaluation of grasp matrix and hand Jacobian
matrix can be found in [10, 11].

The role of compliance in grasp is fundamental for the definition of contact force
distribution. In SynGrasp the compliance can be modeled at different levels: at the
contact, at the joints and at the synergies actuation. For each compliance type, a
lumped parameter model is considered [12]. More details on stiffness modeling
and evaluation in grasps with underactuated compliant hands are available in [13].
Contact stiffness model considers the local deformation of the contact surfaces and
relates it to the contact force. Approximately, this relationship can be considered
linear, i.e.

Δλ = Kc(JΔq − GTΔu), (12.3)

where Kc ∈ �nl×nl is the contact compliance matrix symmetric and positive defi-
nite. The elements of Kc matrix depend on material properties and on the contact
surface geometries (curvature radii). Δq is the joint variable variation and Δu rep-
resents a variation on the object reference frame position. The SynGrasp function
SGcontactStiffness() assigns to a grasp the corresponding contact stiffness matrix.

Often the structural stiffness of the hand and the controllable servo stiffness of the
joints have the same order of magnitude of the contact stiffness, so they have to be
considered in grasp modeling [14]. Considering a lumped parameter model in which
the stiffness is concentrated in the joints, the difference between a referenceΔqr and
the actual Δq variations of the joint displacements is proportional to the joint torque
variation Δτ ∈ �nq , i.e. to

Δτ = Kq(Δqr − Δq), (12.4)

where Kq ∈ �nq×nq is the joint stiffness matrix, symmetric and positive definite.
SynGrasp function SGjointStiffness() assigns to a hand the corresponding joint
stiffness matrix.

In [7] a softly underactuated model was introduced to model the joint aggrega-
tion induced by synergy definition (see also Chaps. 8 and 13). A stiff definition of
synergies does not allow the hand to adapt to the actual shape of the grasped objects
and then limits the applicability of this type of underactuation. A stiffness matrix is
then introduced at the synergy level, relating the synergy action variation Δσ ∈ �nz

to the difference between a reference and the actual variation of synergy inputs

Δσ = Kz(Δzr − Δz), (12.5)

http://dx.doi.org/10.1007/978-3-319-26706-7_8
http://dx.doi.org/10.1007/978-3-319-26706-7_13
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where Kz ∈ �nz×nz is a symmetric and positive definite matrix that defines the syn-
ergy stiffness. The SynGrasp function SGsynergyStiffness() assigns the specified
Kz matrix to a given hand.

12.2.4 Grasp Analysis

Grasp analysis tools provided by SynGrasp represent the core of the toolbox. These
tools are the result of different modeling efforts carried out on both fully and under-
actuated hand models. In the following, a synergy-actuated human hand model is
considered for an overview of the SynGrasp functions devoted to grasp analysis.

The quasi-static model adopted to describe a grasp in SynGrasp is the result of a
linear approximation of the kinematic and compliance equations in the neighborhood
of an equilibrium configuration. A detailed description of this model can be found
in [4, 7, 15]. Let us consider an initial equilibrium configuration of the hand/object
system. A small variation of the input synergy references Δzr can be then applied
to the system and, assuming that the system reaches a new equilibrium point, the
following equations can be written

⎡

⎢⎢⎢⎢
⎣

−G 0 0 0 0 0
JT 0 0 −I 0 0
0 0 0 ST −I 0
I KcGT −Kc J 0 0 0
0 0 Kq I 0 −Kq S
0 0 0 0 I Kz

⎤

⎥⎥⎥⎥
⎦

⎡

⎢⎢⎢⎢
⎣

Δλ

Δu
Δq
Δτ

Δσ

Δz

⎤

⎥⎥⎥⎥
⎦

=

⎡

⎢
⎢⎢⎢⎢
⎣

0
0
0
0
0

KzΔzr
0

⎤

⎥
⎥⎥⎥⎥
⎦

. (12.6)

Solving this linear system in (12.6) we can define the transfer matrices V , Q,
Y and P which represent a mapping between the input Δzr of our system and the
output variables as it follows

Δu = V Δzr (12.7)

Δq = X SYΔzr = Qδzr (12.8)

Δz = YΔzr (12.9)

Δλ = PΔzr (12.10)

In SynGrasp the function SGquasistatic() can be used to solve the linear sys-
tem (12.6) for a given grasp and a given Δzr . The corresponding variation of the
output variables can then be computed according to (12.7)–(12.10).

Let us now consider the Eq. (12.10). A basis matrix Es for the subspace of con-
trollable internal forces [4] (i.e. the internal forces that can be produced applying a
synergy reference variation Δzr ), can be computed as
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Es = R (P) . (12.11)

The function SGgraspAnalysis() can be used to analyze a grasp in terms of internal
forces and object motions. The relation between the input variation Δzr and the
resulting object displacement is expressed by (12.7). The objectmotionswhich do not
involve visco-elastic deformations at the contact points are called rigid-body motions.
If underactuation is considered, usually only some of the possible rigid bodymotions
can be controlled acting on the synergy reference values. In order to compute them
let us consider a synergy reference valuesΔzrh ∈ N (P) that modify the hand/object
configuration without changing the contact forces. The corresponding displacements
of the object and the hand can be thus computed, according to (12.7) and (12.8), as
Δuh = V Δzrh andΔqh = QΔzrh , respectively. These rigid displacements of object
and hand can be computed in SynGrasp by SGrbMotions().

The linear relationship between a variation of the wrench applied to the object
and its resulting motion can be seen as the stiffness K ∈ �6×6 of the overall grasp.
The following equation holds

Δw = KΔu. (12.12)

In [13] the expression of K matrix has been evaluated as a function of grasp properties
as

K = G
(
K −1

c + J Kq JT + J SKz ST JT
)−1

GT. (12.13)

The value of K for a given grasp can be evaluated in SynGrasp using SGgraspStiff-
ness().

Finally, we report the grasp quality measures [16] that are implemented in Syn-
Grasp:

• SGminSVG() evaluates theminimum singular value of the graspmatrixG: it gives
ameasure of the distance of the considered grasp from singular joint configurations
[10, 17].

• SGdistSingularConfiguration() considers the distance of the finger configura-
tions from singularities: it evaluates the smallest singular value of the matrix
Ho = G+ J [18].

• SGmanipEllisoidVolume() evaluates the manipulability ellipsoid [19].
• SGunifTransf() takes into account the transformationbetween thevelocity domain
in the joint space and the velocity domain in the task space: it checks if the contri-
bution of each joint is the same in all the components of the object velocity, thus
giving a “uniformity” measure.

• SGgraspIsotropyIndex() gives an additional “uniformity” measure for the grasp:
it tells to the user how much the considered grasp is isotropic w.r.t. a uniform set
of internal forces [20].
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12.3 Object-Based Mapping Using SynGrasp

Hand models in SynGrasp can embed a synergistic joint couplings. The function
SGdefineSynergies() allows to associate a specific S matrix to a given hand model.
Moreover, the human hand synergies presented by Santello et al. in [1] can be loaded
using the function SGsantelloSynergies() and associated to the human hand model
implemented in SynGrasp (i.e. the paradigmatic hand model).

Different approaches must be used to exploit synergies onto robotic hands. New
synergy matrices can be, in fact, defined by the user on the basis of experimental
data or desired behaviors of the device. Another possibility is to map the human
synergies onto the robotic device using the object-based approach presented in
[21, 22] and implemented in the toolbox. In the following, we will describe the algo-
rithm presenting, in parallel, the SynGrasp functions implementing it. Let us consider
the paradigmatic hand model (loaded calling the function SGparadigmatic) and a
three-fingeredhand that canbe loaded inSynGrasp calling the functionSG3Fingered
as the target robotic hand on which the human hand synergies have to be mapped.
Let us define a set of reference points on the two hands. For the sake of simplicity we
will consider, in the following, the fingertips of the two hands as reference points.
Other possible choices of the reference points are possible, (e.g. the intermediate
phalanges) as proposed in [6, 21]. At the beginning of the mapping procedure two
virtual objects must be defined on the two hands as the minimum volume spheres
containing all the reference points of the considered hand. The utility minbound-
sphere() provided in SynGrasp can be used for this purpose. As the paradigmatic
hand moves under the effect of a synergy activation z (SGactivateSynergies()), its
reference points move accordingly, consequently changing position, orientation and
radius of the virtual sphere. We can describe the motion of the hand as:

• a rigid-body motion, defined by linear and angular velocities of the sphere center,
denoted by ȯh and ωh , respectively;

• a non-rigid deformation represented by the sphere radius rate of change ṙh .

The key idea underlying the mapping procedure is to impose the same motion ȯh and
ωh and deformation ṙh read on the human hand to the virtual sphere computed on
the robotic hand, apart from a scaling factor introduced to deal with the possible dif-
ferences on the workspace dimensions (see Fig. 12.4). Inverse kinematic techniques
can be then used to compute the joint values for the robotic hand. This defines a way
of controlling the robotic hand joints starting from the synergy activation vector z
imposed on the human hand. In particular, the output of the mapping procedure are
the velocities q̇r of the robotic hand joints defined as

q̇r = Sr ż, (12.14)

where Sr is the robotic synergy matrix obtained by mapping the human synergy
matrix (denoted in the following by Sh).
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Fig. 12.4 Mapping synergies from the human handmodel to the robotic hand. The reference points
on the paradigmatic hand ph (blue dots) allows to define the virtual sphere. Activating the human
hand synergies, the sphere is moved and strained; its motion and strain can be evaluated from the
velocities of the reference points ṗh . This motion and strain, scaled by a factor depending on the
virtual sphere radii ratio, is then imposed to the virtual sphere relative to the robotic hand, defined
on the basis of the reference points pr (red dots)

In the following how Sr can be computed analytically is reported. We assume that
the twohands are in given starting configurations denoted byq0h andq0r , respectively.
The velocity of the generic reference point of the human hand can be written as

ṗih = ȯh + ωh × (pih − oh) + ṙh (pih − oh) . (12.15)

Grouping all the reference point in a single vector, we obtain

ṗh = Ah

⎡

⎣
ȯh

ωh

ṙh

⎤

⎦ , (12.16)

where matrix Ah ∈ �nch×7 is defined as

Ah =
⎡

⎢
⎣

I −s(p1h − oh) (p1h − oh)

· · · · · · · · ·
I −s(pih − oh) (pih − oh)

· · · · · · · · ·

⎤

⎥
⎦ (12.17)

and s() is the skew operator. The matrix Ah can be easily computed in SynGrasp by
mapping_A.

Now, themotion of the virtual sphere can be expressed as function of the derivative
of the human synergy activation vector ż as

⎡

⎣
ȯh

ωh

ṙh

⎤

⎦ = A#
h ṗh = A#

h Jh Sh ż, (12.18)
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where A#
h denotes the pseudo-inverse of the matrix Ah . Let us denote by ksc the ratio

between the radii of the two spheres (i.e. ksc = rr
rh
). Note that ksc not only depends

on the dimensions of the two hands but also on their configurations. Motions and
deformations of the robotic virtual sphere can be then computed scaling motions and
deformations of the sphere defined on the paradigmatic hand as

⎡

⎣
ȯr

ωr

ṙr

⎤

⎦ = Kc

⎡

⎣
ȯh

ωh

ṙh

⎤

⎦ , (12.19)

where the matrix Kc ∈ �7×7 is defined as

Kc =
⎡

⎣
ksc I3,3 03,3 03,1
03,3 I3,3 03,1
01,3 01,3 1

⎤

⎦ . (12.20)

According to Eq. (12.16), the velocities of the robot reference points ṗr are given by

ṗr = Ar

⎡

⎣
ȯr

ωr

ṙr

⎤

⎦ , (12.21)

where matrix Ar ∈ �ncr ×7 is defined as in Eq. (12.17). At this point, we are able to
express the velocities ṗr of the robotic reference points as a function of the synergy
velocities ż

ṗr = Ar Kc A#
h Jh Sh ż. (12.22)

Considering the robot hand differential kinematics ṗr = Jr q̇r (where Jr ∈ �ncr ×nqr

is its Jacobian matrix), we can compute the robotic hand joint velocities as

q̇r = J #
r Ar Kc A#

h Jh Sh ż. (12.23)

Finally the synergy mapping Sr in (12.14) for the robotic hand can be written as

Sr = J #
r Ar Kc A#

h Jh Sh, (12.24)

where J #
r is the pseudoinverse of the Jacobian of the robotic hand and Jh is the

Jacobian of the human hand model. The obtained synergy matrix can be assigned to
the robotic hand using the function SGdefineSynergies().

The described procedure is implemented in the SGmappingExample script
included in the toolbox.
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12.4 Conclusion

This chapter presented how the SynGrasp toolbox can be used to implement the
object-based mapping algorithm introduced in [21]. The toolbox is entirely open-
source and can be easily customized by the users. It is organized with a modular
structure allowing the evaluation of hand kinematics and dynamics, grasping prop-
erties like force distribution at the contacts and quality measures. Specific functions
based on synergies enable the control of the hand through a reduced number of inputs
according to a synergistic approach. The possible applications of the SynGrasp range
from Neuroscience, where tools for human hand analysis are needed, to the design
and optimization of robotic hands. The mapping algorithm can be used to determine
a synergistic underactuation of robotic hands with very dissimilar kinematics (see
also Chaps. 8 and 13). This allows to envisage a control framework where the motion
of the human hand is reproduced with different robotic hand models using the same
mapping framework [23]. We are currently working in exploiting the mapping algo-
rithm in a real-time scenario enabling teleoperation between different kinematics.
Preliminary results are presented in [24]. However the abstraction brought by the
mapping procedure has to be compensated by the robotic device to guarantee the
stability of the grasp. In [25] a passive controller is used as a first attempt in this
direction.
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Chapter 13
Quasi-Static Analysis of Synergistically
Underactuated Robotic Hands in Grasping
and Manipulation Tasks

Edoardo Farnioli, Marco Gabiccini and Antonio Bicchi

Abstract As described in Chaps. 2–5, neuroscientific studies showed that the con-
trol of the human hand is mainly realized in a synergistic way. Recently, taking
inspiration from this observation, with the aim of facing the complications conse-
quent to the high number of degrees of freedom, similar approaches have been used
for the control of robotic hands. As Chap.12 describes SynGrasp, a useful technical
tool for grasp analysis of synergy-inspired hands, in this chapter recently developed
analysis tools for studying robotic hands equipped with soft synergy underactua-
tion (see Chap.8) are exhaustively described under a theoretical point of view. After
a review of the quasi-static model of the system, the Fundamental Grasp Matrix
(FGM) and its canonical form (cFGM) are presented, from which it is possible to
extract relevant information as, for example, the subspaces of the controllable inter-
nal forces, of the controllable object displacements and the grasp compliance. The
definitions of some relevant types of manipulation tasks (e.g. the pure squeeze, real-
ized maintaining the object configuration fixed but changing contact forces, or the
kinematic grasp displacements, in which the grasped object can be moved without
modifying contact forces) are provided in terms of nullity or non-nullity of the vari-
ables describing the system. The feasibility of such predefined tasks can be verified
thanks to a decomposition method, based on the search of the row reduced eche-
lon form (RREF) of suitable portions of the solution space. Moreover, a geometric
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interpretation of the FGM and the possibility to extend the above mentionedmethods
to the study of robotic hands with different types of underactuation are discussed.
Finally, numerical results are presented for a power grasp example, the analysis of
which is initially performed for the case of fully-actuated hand, and later verifying,
after the introduction of a synergistic underactuation, which capacities of the system
are lost, and which other are still present.

13.1 Introduction

The research in robotic hand design was directed for long time to increase the dex-
terity and the manipulation capabilities. To follow this line, the number of degrees
of freedom, and, more in general, the complexity of the design are increased in the
years. Remarkable examples of such hands are the UTAH/MIT hand [1], the Robo-
naut Hand [2], the Shadow hand [3] and the DLR hand arm system [4], just for citing
a few of them, as discussed in Chap.8.

However, a large number of degrees of freedom, often, bring to enlarge weights
and costs of such prototypes. Moreover, the expected advantages in terms of manip-
ulability are often difficult to exploit in a real scenario. Recently, in order to face the
complexity of such systems, the human hand was considered as a source of inspira-
tion (see Chaps. 2, 8 and 9) not just for the mechanical design, but also in order to
simplify the control strategies.

In recent years, many neuroscientific studies such as, for example, the ones dis-
cussed in [5–11] (see also Chaps. 2–7), despite significant differences in the defin-
itions and in the requirements of the investigated tasks, share a main observation:
simultaneous motion of multiple digits, also called synergies, occurs in a consistent
fashion, even when the task may require a fairly high degree of movement individu-
ation, such as grasping a small object or typing.

As extensively discussed in the previous chapters, one of the main result is that
a large variety of everyday human grasps is well described by just five synergies.
Moreover, the first two human synergies can describe the 80% of the variance in
human grasp postures (see also Chap. 9). This suggested the idea tomove the descrip-
tion base for grasping, from the joint space to the human-inspired postural synergy
space, taking advantage from the underactuation. Between the first approach to this
idea, we find [12, 13], that try to implement a synergistic control via software and via
hardware, respectively. Despite each one is characterized by its own peculiarities,
they share the common characteristics of rigidly controlling the joint movements,
via the synergistic underactuation. As discussed in Chap. 8, in the soft synergies
approach, proposed in [14], a virtual hand is introduced, attracting the real one via
a generalized spring, allowing a certain adaptability of the hand during grasps and
manipulations tasks. The influence of the synergistic underactuation, in terms of
reducing the hand capabilities in object motion and contact force control, is investi-
gated in [15]. Moreover, the contact force optimization problem was faced in [14],
considering the limitations imposed by the underactuation.

http://dx.doi.org/10.1007/978-3-319-26706-7_8
http://dx.doi.org/10.1007/978-3-319-26706-7_2
http://dx.doi.org/10.1007/978-3-319-26706-7_8
http://dx.doi.org/10.1007/978-3-319-26706-7_9
http://dx.doi.org/10.1007/978-3-319-26706-7_2
http://dx.doi.org/10.1007/978-3-319-26706-7_7
http://dx.doi.org/10.1007/978-3-319-26706-7_9
http://dx.doi.org/10.1007/978-3-319-26706-7_8
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The present chapter, mainly based on the results presented in [16–18], describes
and studies the quasi-static model of a synergistic underactuated hand grasping an
object. Considering the results of the above mentioned papers, despite the fact that
the analysis is performed in the neighborhood of an equilibrium configuration, also
some non local considerations can be done under a more general, nonlinear kineto-
static interpretation. More in detail, in Sect. 13.2 the congruence and the equilibrium
equations of the system are presented in quasi-static form. A compliant contact
model is introduced between the hand and the object, in order to cope with the static
indeterminacy of the contact force distribution problem. Finally, a quasi-static model
for the soft synergy underactuation (discussed in Chap. 8) is provided. The treatise is
general enough to consider the presence of hand/object contacts also in the internal
limbs of the hand. Moreover, the derivative terms of the hand Jacobian and of the
grasp matrix are considered, in order to properly take into account the effects of the
contact force preload.

Both the presence of internal contacts and of underactuation can greatly affect
the capabilities of the hand/object system, in terms of controllable system variations,
e.g. limiting the controllability of the forces and/or the object displacements. This
problem is faced in Sect. 13.3 where, after the Fundamental Grasp Matrix (FGM)
has been defined, its canonical form (cFGM) is derived, from which relevant infor-
mation on the system can be easily obtained, despite the difficulties introduced by the
presence of the synergistic underactuation in the model. In fact, as we will discuss in
Sect. 13.3.2, from the cFGM we can obtain information on the controllable internal
forces, on the controllable object displacements, and on the grasp compliance, i.e.
the compliance perceived at the object level. Moreover, from the cFGM, input-output
relationships between the independent variables (i.e. the joint displacements and the
external wrench variation) and the dependent variables of the system can be easily
deduced.

In order to go beyond the information provided by the cFGM, a method to inves-
tigate the solution space of the system is presented in Sect. 13.4. Different types
of system behaviors are defined in terms of nullity or non-nullity of some system
variables, such as, for example, the pure squeeze, where the contact forces are modi-
fied without affecting the object configuration, or the kinematic grasp displacement,
where, on the contrary, an object movement is allowed, without changing the contact
forces. Finally, a decomposition method, based on the row reduced echelon form
(RREF) is presented, in order to find out the feasibility of those predefined solutions.

In Sect. 13.5 a geometrical interpretation of the FGM is given. With a proper
arrangement of the equations, the FGM takes the form of a first-order Taylor series
approximation of the equilibrium manifold (EM) of the whole system, describing the
kineto-static behavior both of the hand and of the object during their interaction. As
explained in [18], some properties of the EM can be exploited, in order to steer the
system, along a trajectory composed by a sequence of equilibrium configurations,
toward a final one, characterized by the desired kineto-static properties.

Many of the observations and methods presented can be applied, with small mod-
ifications, also in case of different types of underactuation, and the Sect. 13.6 is
dedicated to discuss this topic (see also Chap.12).

http://dx.doi.org/10.1007/978-3-319-26706-7_8
http://dx.doi.org/10.1007/978-3-319-26706-7_12
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To conclude, in Sect. 13.7, a numerical example is presented, for a power grasp
case. The example was firstly studied as if the hand was completely actuated, discov-
ering its manipulation capabilities. Then, a synergistic underactuation is introduced,
and the methods presented in the chapter are used to verify which possibilities are
lost and which others are still present.

13.2 System Modeling

In this section, we will present the equations describing the quasi-static behavior
of the hand/object system, schematically represented in Fig. 13.1, and already intro-
duced in Chaps. 8 and 12. For both the hand and the object, the quasi-static equi-
librium equations will be considered, obtained as a first order approximation of the
general, nonlinear, equilibriumequations.Moreover, in connectionwith the previous,
by means of kineto-static duality considerations, the congruence equations will be
introduced, describing the displacement of the contact points, corresponding to the
hand/object displacements. A linear elastic model for the contact is also introduced,
in order to properly describe how the contact forces change, during the execution of
a manipulation tasks. Finally, the underactuation will be introduced in the system
according to the soft synergy pattern.

For the sake of clarity, in the following we will briefly recall some of the notations
already introduced in Chaps. 8 and 12, also summarized in Table13.1.

Fig. 13.1 Reference scheme
for the analysis of compliant
grasp by synergistically
underactuated robotic hand

qr

fc

τ

we

σr

q

{A}

{B}

http://dx.doi.org/10.1007/978-3-319-26706-7_8
http://dx.doi.org/10.1007/978-3-319-26706-7_12
http://dx.doi.org/10.1007/978-3-319-26706-7_8
http://dx.doi.org/10.1007/978-3-319-26706-7_12
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Table 13.1 Notation for grasp analysis

Notation Definition

δx Variation of the variable x

�x Dimensions of the vector x

q ∈ R
�q Joint configuration

qr ∈ R
�q Joint reference

τ ∈ R
�q Joint torque

σ ∈ R
�σ Synergy configuration

σr ∈ R
�σ Synergy reference

η ∈ R
�σ Synergy actuation (generalized) force

c Number of hand/object contact constraints

fc ∈ R
c Contact force/torque vector exerted by the hand on the object

po
h ∈ R

c Pose of the hand contact frame with respect to the object contact frame

w ∈ R
�w (parametrized) External wrench acting on the object; �w = 6 in 3D case, �w = 3 in

planar case

u ∈ R
�w (parametrized) Object frame configuration

J ∈
R

c×�q
Hand Jacobian matrix

S ∈
R

�q×�σ
Synergy matrix

G ∈
R

�w×c
Grasp matrix

Φ� Fundamental Grasp Matrix, the coefficient matrix of the Fundamental Grasp
Equation (13.14)

ϕ Augmented configuration, vector collecting the kineto-static variables of the system

13.2.1 Object Equations

13.2.1.1 Equilibrium Equation of the Object

The grasped object is in equilibrium if the sum of all the contact forces/torques
exerted by the hand, gathered in the contact force vector1 fc ∈ R

c, and of a
possible external wrench2 w ∈ R

�w is null, where the symbol �x indicates the

1The dimension of the contact force vector c is related to the number of contact points and to the
local characteristics of the contacts. More details about this will be provided in Sect. 13.2.3.
2Strictly speaking, the vector w ∈ R

�w, in the present dissertation, represents a parametrization of
an external wrench, abbreviated in the text simply as external wrench. Similarly, the object config-
uration is described by a parametrization vector u ∈ R

�w. As a consequence, the object velocity u̇
in (13.3) is a parametrization of the object twist, and, for this reason, can be expressed as the time
derivative of some physical variables. As an example, in a 3D case, a complete parametrization
can be obtained considering a 6−DoF virtual kinematic chain describing the configuration of the
object frame with respect to a fixed one. In this case, the vectors u̇ and w will contain, respectively,
the joint velocities and the joint torques of the virtual kinematic chain.
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dimension of the vector x . In the present discussion, the contact forces are
considered to be expressed in a local frame attached to the object. Before sum-
ming all the contributions, they have to be all expressed in a same reference
frame, as for example the frame {B} in Fig. 13.1, attached to the object. To this
aim, it is usual in literature to introduce the grasp matrix, indicated as G ∈
R

�w×c. Using the previous symbols, the equilibrium law for the object can be
written as

w + G fc = 0. (13.1)

It is worth observing that, despite the fact that the contact forces are described in a
local frame attached to the object, the parametrization of the external wrench imposes
that the grasp matrix becomes a function of the object configuration, as explained
in [18]. In light of this, by means of a first-order Taylor series approximation, from
(13.1) the quasi-static equilibrium equation for the object can be obtained in the
form

δw + Gδ fc + Ugδu = 0, (13.2)

where the symbol δx expresses the variation of the variable x , the vector2 u ∈ R
�w

describes a parametrization of the object configuration and Ug := ∂Gf c
∂u .

13.2.1.2 Congruence Equation of the Object

From (13.1), by kineto-static duality considerations, it is possible to find that the
transpose of the graspmatrixmaps the object velocity2, indicated as u̇ ∈ R

�w, into the
velocities of the object contact frames, grouped into the vector vo ∈ R

c, as follows3

vo = GTu̇. (13.3)

The congruence equation, describing the displacements of the contact frames as
a consequence of the object frame displacement, can be obtained from (13.3) by
multiplying each member for an infinitesimal amount of time dt , obtaining

δCo = GTδu. (13.4)

3More precisely, the vectors vo and vh contain the terms of the contact frame twists violating the
(rigid) contact constraints between the hand and the object.
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13.2.2 Hand Equations

13.2.2.1 Congruence Equation of the Hand

Let us define the hand Jacobian matrix, J ∈ R
c×�q , as the map between the joint

velocities, clustered in the vector q̇ ∈ R
�q , and the velocities of the hand contact

frames3 vh ∈ R
c, such that

vh = J q̇. (13.5)

The displacement of the contact frames attached to the hand can be obtained by
multiplying each member of (13.5) for an infinitesimal amount of time dt , obtaining

δCh = Jδq, (13.6)

that describes the quasi-static form of the congruence equation of the hand.

13.2.2.2 Equilibrium Equation of the Hand

The equilibrium law for the hand comes from (13.5) by kineto-static duality consid-
erations. As a result, indicating with the symbol τ ∈ R

�q the joint torque vector, the
equilibrium law for the hand can be expressed as

τ = J T fc. (13.7)

The quasi-static equilibrium equation is obtained from (13.7), by means of a first
order Taylor series expansion. To this aim, it is important to note that, since the
fact that the contact forces are described in a local frame attached to the object, the
Jacobian matrix, introduced in (13.5), is a function both of the joint parameters of
the hand q, and of the object configuration parameters u, that is J = J (q, u).

From these considerations, it follows that the quasi-static equilibrium of the hand
can be expressed as

δτ = Q jδq + U jδu + J T δ fc, (13.8)

where Q j := ∂ J Tfc

∂q and U j := ∂ J Tfc

∂u .

13.2.3 Hand/Object Interaction Model

In the contact between the hand and the object, relative displacements of the contact
frames are forbidden in some directions. In these directions, some reaction forces
can arise. The dimension ci of the i th reaction force vector depends by the nature
of the materials involved. As an example, in the case of contact point with friction,
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or hard finger contact model, the force can be transmitted in any direction, but no
moment is allowed, that is ci = 3. Indeed, in the case of soft-finger contact type, also
a moment about the normal to the contact can be transmitted, thus ci = 4.

In most cases of interest, the total number of contact force elements c = ∑
i ci is

greater than the number of the external wrench elements. For this reason, the problem
of determining the contact force distribution is statically indeterminate.

This problem is generally faced in literature by relaxing the contact constraints.
In other words, a relative displacement of the contact frames is allowed also in the
directions nominally forbidden by the (rigid) contact constraint, and this is interpreted
as the cause of the contact force variation. This behavior is modeled introducing a
(virtual) linear spring between the two bodies in contact. Defining Kc ∈ R

c×c as the
contact stiffness matrix, i.e. a matrix collecting the stiffness values of all the contact
springs, the constitutive equation of the contact can be, finally, expressed as

δ fc = Kc(δCh − δCo). (13.9)

13.2.4 Soft Synergy Underactuation Model

As explained in Sect. 13.1, in this chapter we consider the problem of discovering
the capabilities of soft synergy underactuated robotic hands in grasping, as already
discussed in Chap. 8. Inspired by neuroscientific studies, the soft synergy underac-
tuation model, can be seen as composed by two elements: (i) a virtual hand, which
movement is governed by a synergistic correlation of the joints, and (ii) a set of
virtual springs, connecting the virtual hand to the real one.

To mathematically describe this model, in each joint we introduce a compliant
element by means of which the joint reference variables, collected in the vector
qr ∈ R

�q , transmit the motion to the real ones. Afterwards, the synergistic behav-
ior of the hand is obtained imposing a correlation between the joint reference
variables.

13.2.4.1 Elastic Joint Model

The equilibrium condition for the elastic joints requires that joint torques and the
spring deflections, that is the mismatch between the reference joint variables and
the real ones, are related by the joint stiffness. Considering this, by the introduction
of the joint stiffness matrix Kq ∈ R

�q×�q , collecting all the joint stiffness values, it
directly follows that the quasi-static equilibrium law for the elastic joints is described
by the following

δτ = Kq(δqr − δq). (13.10)

http://dx.doi.org/10.1007/978-3-319-26706-7_8
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13.2.4.2 Introducing Synergies

The synergistic underactuation is imposed to the system by means of the synergy
matrix S ∈ R

�q×�σ . In analogy to what seen in (13.6), the joint reference displace-
ments can be expressed as

δqr = Sδσ, (13.11)

where σ ∈ R
�σ is the synergistic actuation vector.

Again, by virtue of the kineto-static duality, indicating with η ∈ R
�σ the general-

ized actuation forces at the synergy level, with considerations similar to those that
have led to (13.8), the quasi-static equilibrium for the synergistic underactuation
level can be written as

δη = ST δτ + Σδσ, (13.12)

where Σ := ∂STτ
∂σ

.
As already seen for the joints, an elastic model can also be introduced for the

synergistic actuation by means of a synergy reference variable σr ∈ R
�σ , and the

synergy stiffness matrix Kσ ∈ R
�σ×�σ . Thus, similarly to what seen in (13.10), the

elastic actuation model for the synergy actuation can be described as

δη = Kσ (δσr − δσ ). (13.13)

13.2.5 The Fundamental Grasp Equation

Grouping together the equations for the object, the hand and the synergistic underac-
tuation, that is considering theEqs. (13.2), (13.4), (13.6) and (13.8)–(13.13), denoting
with I an identity matrix of proper dimensions, we obtain the system

⎡

⎢⎢
⎢⎢⎢⎢
⎣

G 0 0 Ug 0 0 I 0
−J T I 0 −U j −Q j 0 0 0

I 0 0 KcGT −Kc J 0 0 0
0 I 0 0 Kq −Kq S 0 0
0 −ST I 0 0 −Σ 0 0
0 0 I 0 0 Kσ 0 −Kσ

⎤

⎥⎥
⎥⎥⎥⎥
⎦

⎡

⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎣

δ fc

δτ

δη

δu
δq
δσ

δw
δσr

⎤

⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎦

= 0, (13.14)

where the contribution of (13.4) and (13.6) was considered in (13.9), as well as
(13.11) was considered in (13.10).

Equation (13.14), also calledFundamental Grasp Equation (FGE), is a linear and
homogeneous system, that can be written in compact form as Φ�δϕ = 0. The coeffi-
cient matrix of the system, Φ� ∈ R

rΦ×cΦ is the Fundamental Grasp Matrix (FGM),
whichmatrix elements are evaluated in the reference equilibrium configuration of the
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system, and the variable vector δϕ ∈ R
cΦ is the augmented configuration, collecting

the variation of the system variables.
By direct inspection of (13.14), it is easy to verify that for the number of rows

and columns of the FGM, that is for rΦ and cΦ respectively, it holds that

rΦ = � fc + 2�q + 2�σ + �w,

cΦ = � fc + 2�q + 3�σ + 2�w.
(13.15)

In most cases of practical relevance the FGM is full row rank,4 that is rank(Φ�) =
rΦ , and we will assume it in the rest of the dissertation. In these cases, Eq. (13.14)
can be univocally solved when it is known a number of independent variables, or
inputs for the system, equal to cΦ − rΦ = �w + �σ . In continuity with the grasp
analysis literature, we consider to known, or to have a measure of, the external
wrench variation δw. Moreover, the synergy references are supposed to be position-
controlled, thus we consider to know5 the variable δσr . The independent variables
will be jointly indicates in next sections as δϕi ∈ R

cΦ−rΦ . We will refer to the set of
all the other variables as the dependent variables, or output of the system, and they
will be indicated as δϕd ∈ R

rΦ .

13.3 Controllable System Configuration Variations

13.3.1 The Canonical Form of the Fundamental Grasp
Equation

Considering previous definitions, Eq. (13.14) can be also written as

Φ�δϕ = [
Φ�

d Φ�
i

] [
δϕd

δϕi

]
= 0. (13.16)

Assuming the invertibility4 of the matrix Φ�
d , the so called canonical form of the

Fundamental Grasp Equation (cFGE) can be obtained left-multiplying (13.16) for
Φ�−1

d , thus obtaining
[
I Φi

] [
δϕd

δϕi

]
= 0, (13.17)

4Exceptions are analytically possible but they refer to pathological situations of poor practical
interest.
5Other choices are possible, as for example considering to know the object displacement δu, instead
of the external wrench δw, or the actuation force variation δη, instead of the synergistic displacement
variable δσr . Many results of our analysis can be easily adapted to the above mentioned situations
as well.
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where Φi = Φ�−1

d Φ�
i . It is worth observing in passing that, since the matrix Φ�−1

d is
full rank, Eqs. (13.16) and (13.17) have the same solution space. In other words, all
the vectors δϕ satisfying (13.16) are also a solution of (13.17).

The coefficient matrix of (13.17), characterized by the presence of an identity
block corresponding to the dependent variables, is the canonical form of the funda-
mental grasp matrix (cFGM). From (13.17), it is easy to find that, once the variation
of the independent variables is known, the value of the dependent variable variation
can be directly computed as

δϕd = −Φiδϕi , (13.18)

which represents, in compact form, the relationship between the input and the output
variables of the system.

13.3.2 Relevant Properties of the Canonical Form
of the Fundamental Grasp Matrix

The cFGM can be further investigated, in order to find out some relevant information
on the characteristics of the physical system.To this aim, let us consider again (13.17).
More in detail, this can be written also as

⎡

⎢⎢⎢⎢⎢⎢
⎣

I 0 0 0 0 0 Wf R f

0 I 0 0 0 0 Wτ Rτ

0 0 I 0 0 0 Wη Rη

0 0 0 I 0 0 Wu Ru

0 0 0 0 I 0 Wq Rq

0 0 0 0 0 I Wσ Rσ

⎤

⎥⎥⎥⎥⎥⎥
⎦

⎡

⎢⎢
⎢⎢⎢⎢⎢⎢
⎢⎢
⎣

δ fc

δτ

δη

δu
δq
δσ

δw
δσr

⎤

⎥⎥
⎥⎥⎥⎥⎥⎥
⎥⎥
⎦

= 0. (13.19)

13.3.2.1 Controllable Internal Forces

From (13.19), we can extract the expression for the contact force variation, that is

δ fc + Wf δw + R f δσr = 0. (13.20)

In continuity with the literature, we define as internal the solutions of (13.19), or
equivalently of (13.14), not involving the external wrench variation. From this defini-
tion, it immediately follows that the matrix R f spans the subspace of the controllable
internal forces, that is the subset of all the contact force variations that can be gen-
erated controlling the synergistic movement of the hand.
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13.3.2.2 Contact Force Transmission Caused by an External Wrench

Again from (13.20), considering the hand actuation kept constant, the matrix Wf

represents a map between the external wrench and the contact force variation.
In other words, −Wf represents the contact force transmission caused by an

external wrench variation.
Both controllable internal forces and contact force transmission have great rele-

vance in some grasping problems, as e.g. in the force closure evaluation and in the
contact force optimization problem.

13.3.2.3 Controllable Internal Object Displacements

In case of whole-hand grasp and/or of underactuated hands, it could be not easy
to find out which motions can be imposed to the grasped object by the hand. The
problem can be solved considering the fourth equation of (13.19), that provides a
description of the object displacements as

δu + Wu δw + Ruδσr = 0. (13.21)

Similarly to what discussed in Sect. 13.3.2.1, from (13.21) we can easily conclude
that the matrix Ru spans the subspace of the controllable internal object displace-
ments.

13.3.2.4 Grasp Compliance

Again from (13.21), we can find that the matrix −Wu represents the grasp compli-
ance. In other words, the matrix Cg =−Wu is the compliance that a 6D spring should
have in order to imitate the effects of the hand actuation on the object displacements,
when an external wrench is applied.

13.3.3 GEROME-B: A Specialized Gauss Elimination
Method for Block Partitioned Matrices

In Sect. 13.3.1, a numerical method to compute the cFGM was presented. Further-
more, the physical interpretation of someblocks composing the cFGMwas discussed,
providing relevant information on the hand/object system. However, since the rel-
evance of these blocks, it may be helpful to have a symbolic form of the matrices
W j and R j in (13.19), in order to better understand how some basic matrices of
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the system (such as the Jacobian matrix J , the grasp matrix G, the synergy matrix
S, etc.) can affect the properties of the whole system (e.g. the controllable internal
forces or the controllable displacement of the object). Moreover, the knowledge of
such symbolic relationships can be profitably used e.g. in designing robotic hands
or underactuation mechanism. An example can be found in Chap.8, regarding the
design of the underactuation of the Pisa/IIT SoftHand.

To achieve this goal, the typical Gauss Elementary Row Operation Method
(GEROME) for linear and homogeneous systems was adapted to act on block parti-
tioned matrices (GEROME-B), preserving the integrity of the initial blocks (see also
Chap.8).

The GEROME-Bmethod can be applied by means of the following three elemen-
tary operations:

• exchanging the i th row-block with the j th row-block
• multiplying the i th row-block by a full-rank matrix Δ,
• adding the i th row-block with the j th row-block, possibly left-multiplied for a
suitable matrix Λ to accord dimensions.

Each rule can be performed by left-multiplying the FGMfor a suitable full-column
rank matrix, thus without affecting the solution space of the initial system.

Let us consider a proper identity matrix Ip, initially partitioned such that the i th
block on the main diagonal, indicated as Ipi , has the same dimensions of the i th row-
block of the FGM. From this, the three matrices, equivalent to the three elementary
operations previously seen, can be written as

M1
i j = diag(Ip1 , . . . , Ipi−1 , Ip j , Ipi+1 , . . . , Ip j−1 , Ipi , Ip j+1 , . . . , Ipm ),

M2
i i (Δ) = diag(Ip1 , . . . , Ipi−1 ,Δ, Ipi+1 , . . . Ipm ),

M3
i j (Λ) = Ip ⊕ Λi j ,

(13.22)

where the expression Ip ⊕ Λi j indicates the insertion of a suitable matrix Λ on the
block on the i th row and j th column of the default partitioned identity matrix Ip,
and where m is the number of row-blocks of the identity matrix Ip.

Moreover, similarly to the classical elimination method, to apply GEROME-B it
is necessary to define and identify some pivot elements.

Definition 1 A block of the FGM can be a pivot if

• it is a full-rank square block,
• it is the only pivot in its row and column,
• it is not a coefficient of one of the input variables.

Without losing generality, describing the algorithm, we suppose to act on a matrix
Φ̂�, such that all the pivots are on the main diagonal. The matrix Φ̂� can be obtained
from the initial Φ� by properly exchanging some rows and columns and/or using

http://dx.doi.org/10.1007/978-3-319-26706-7_8
http://dx.doi.org/10.1007/978-3-319-26706-7_8
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matrices of the type (13.22). Once the algorithm is completed, if desired, the permu-
tation can be inverted, restoring the initial order. In our case, the desired new form
of the FGM can be written as

Φ̂� =

⎡

⎢
⎢⎢⎢⎢⎢
⎣

I 0 0 KcGT −Kc J 0 0 0
−J T I 0 −U j −Q j 0 0 0
0 −ST I 0 0 −Σ 0 0
0 0 0 Ug−G KcGT G Kc J 0 I 0
0 I 0 0 Kq −Kq S 0 0
0 0 I 0 0 Kσ 0 −Kσ

⎤

⎥
⎥⎥⎥⎥⎥
⎦

. (13.23)

The three matrices seen in (13.22) can be used to describe the GEROME-B algo-
rithm, able to bring to the cFGM acting on the new form of the coefficient matrix
(13.23). TheGEROME-B algorithm essentially operates through the following steps:
(i) the i th block row is left-multiplied for the inverse of the i th pivot, thus the i th pivot
becomes an identity matrix; (ii) the i th pivot is used to cancel out all the elements on
its same column; (iii) the process is iterated for all the pivots. A formal description
of these steps is presented in Algorithm 1.

Algorithm 1 GEROME-B
for h = 1 → m do

Δ = Φ̂�−1

hh

Φ̂� = M2
hh(Δ)Φ̂�

for k = 1 → m do
if h �= k then

Λ = −Φ̂�
kh

Φ̂� = M3
kh(Λ)Φ̂�

end if
end for

end for

13.4 Solution Space Decomposition

Amongall the possible solutions of the system, several are of greater practical interest.
As a simple example, let us consider an object placement task. During the motion
of the object, uncertainties of the model, as well as external disturbances, could
bring one or more contacts close to the slipping condition. In order to increase
the robustness of the grasp without affecting the performances of the positioning
task, it is important to recognize the capability of the hand of redistributing internal
forces, avoiding object movements. From this and other simple examples, it follows
that some interesting behavior of the system can be described by defining proper
(non-)nullity patterns of the system variables. In this way, in this section, some
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particular types of solutions will be defined, together with a method to discover their
feasibility, by means of a numerical procedure acting on the solution space of the
system, that is on the nullspace of the FGM.

13.4.1 Relevant Types of System Solutions

13.4.1.1 Internal System Perturbations

As discussed in Sect. 13.3.2.1, following the grasping literature, we will call internal
the solutions in which an external wrench variation does not appear, that is in the
cases in which δw = 0.

13.4.1.2 Pure Squeeze

We define the pure squeeze as the particular system behavior in which there is a
contact force variation not caused by an external wrench, and do not involving any
object displacements. In other words, a pure squeeze occurs if δw = 0, δ fc �= 0 and
δu = 0.

13.4.1.3 Spurious Squeeze

An internal contact force redistribution associated to a displacement of the object
is defined as spurious squeeze. The definition correspond to a solution of the form
δw = 0, δ fc �= 0 and δu �= 0.

13.4.1.4 Kinematic Grasp Displacement

The internal solutions in which the object is moved without changing the contact
force distribution, that is do not violating the (rigid) kinematic contact constraints,
are called kinematic grasp displacement. Such solutions have to verify the conditions
δw = 0, δ fc = 0 and δu �= 0.

It is worth observing that, considering the elastic model of the contact as descrip-
tive of the deformations of the grasped object, requiring a null variation of contact
forces implies a null variation of the object shape. In this interpretation the definition
of rigid object displacement can be recovered.
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13.4.1.5 External Structural Force

An external action causing a contact force variation without affecting the hand actua-
tion level is defined as external structural force. If such kind of solution is possible, it
is characterized by δw �= 0, δ fc �= 0 and δη = 0, δσr = 0. Considering Eq. (13.13),
above conditions directly imply also that δσ = 0.

13.4.2 Discovering (Non-)Nullity Patterns in the Solution
Space

In previous sections we showed how some relevant types of manipulation tasks can
be defined in terms of nullity or non-nullity of some system variables. The feasibility
of such solutions can be investigate by properly elaborating the solution space of
the FGM. In this section, we briefly present a method to discover if the hand/object
system is able to perform a task corresponding to a solution of (13.14), in the desired
form. To this aim, we firstly recall some results from linear algebra, the details of
which can be found in [19]. For the following discussion, it is useful to recall that
from every matrix C ∈ R

rc×cc , with ρc = rank(C), its corresponding reduced row
echelon form (RREF) can be obtained via a Gauss-Jordan elimination. The same
result can be equivalently obtained by a suitable permutation matrix Π ∈ R

rc×rc ,
such that

ΠC =
[

U
0

]
, (13.24)

where U ∈ R
ρc×cc is a staircase matrix, and the zero block has consequent dimen-

sions. The RREF of a matrix, in (13.24), can be profitably used to discover the
presence of desired (non-)nullity pattern in the nullspace base Γ ∈ R

rγ ×cγ , that is in
the solution space of (13.14). In later discussion, we will make the assumption to
have access to a function rref(X) able to return the reduced row echelon form of
its argument6 X .

For the sake of simplicity, we consider the system variables divided in two groups,
called δϕα and δϕβ , and we will present the investigation method supposing that we
are interested to find the solutions characterized by δϕβ = 0. In this case, all the
solutions of the system can be written as

δϕ =
[
δϕα

δϕβ

]
=

[
Γα

Γβ

]
x, (13.25)

where Γα ∈ R
rα×cγ and Γβ ∈ R

rβ×cγ , the portions of the nullspace relative to the
variables just defined.

6This is a typical situation with the most popular computational platforms, e.g.: rref(X) in MAT-
LAB and RowReduce(X) in Mathematica.
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Considering (13.25), a suitable permutation matrix can be obtained running the

function rref([Γ T
β | I ]), which result is a matrix in the form

[
Uβ

0
Πβ

]
, where

Uβ ∈ R
ρβ×rβ , and ρβ = rank(Γβ). From the properties of the RREF, it is known that

the blockΠβ ∈ R
cγ ×cγ is the permutation matrix such thatΠβΓ T

β = Uβ . Using these
results, it is possible to find a new form 1Γ ∈ R

rγ ×cγ for the solution space matrix
such that

1Γ = Γ ΠT
β =

[ 1Γα

U T
β 0

]
, (13.26)

where 1Γα = ΓαΠ T
β . From direct inspection of (13.26), it is evident that the last

cγ − ρβ columns of Γ1 span all the solutions in which δϕβ = 0, while the first ρβ

columns of Γ1 span all the solutions in which δϕβ �= 0. The method explained can
be easily extended, by a recursive application, to the case of searching (non-)nullity
conditions for more than one variable. The reader can find more details about the
above method in [17, 20].

13.5 Geometrical Interpretation of the Fundamental Grasp
Equation

InSect. 13.2, amodel describing the local behavior of a graspwith a synergistic under-
actuated robotic hand was obtained, starting from both the differential kinematic and
the equilibrium equations of the system. The quasi-static form of such equations was
obtained considering the effects of the differential kinematic equations for an infin-
itesimal amount of time, and by means of a first-order Taylor series approximation
of the equilibrium equations. Moreover, the constitutive equations of the contacts,
as well as the compliance in the actuation (at different levels), were introduced via
linear elastic models. All these equations were used to build the Fundamental Grasp
Equation.

As we saw in (13.14), it is straightforward considering the contribution of the
congruence equations into the other relationships. As a result, Eq. (13.14) can be
seen as the first-order approximations of a suitable system of nonlinear equation.
Without going into the details, we just mention that such system of equations, the
Taylor series approximation of which correspond to Eq. (13.14), can be written as

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

w + G(u) fc = 0
τ − J T(q, u) fc = 0
fc − Kc po

h = 0
τ − Kq(ψ(σ) − q) = 0
η − ST(σ ) τ = 0
η − Kσ (σr − σ) = 0,

(13.27)



228 E. Farnioli et al.

where po
h ∈ R

c is a vector describing the configuration of the hand contact frames
with respect to object ones, and where we introduce the function ψ(σ) := qr , such
that ∂ψ(σ)

∂σ
= S(σ ). We will refer to Eq. (13.27) as the equilibrium manifold7 of the

system. We note in passing that the FGE is the equation of the hyperplane tangent to
the equilibrium manifold in a specific point, representing an equilibrium configura-
tion of the system.

It is worth observing that, given the invertibility of the matrix Φ�
d in (13.16), the

variables δq and δw can be considered a local parametrization of the equilibrium
manifold in the neighborhood of a given equilibrium configuration of the system.
As discussed more in detail in [18], this property can be exploited in order to steer
the system toward a new equilibrium configuration characterized by different kineto-
static properties, with respect to the initial one. Moreover, as explained in [21], the
equilibriummanifold of the system can be used as the exploration space for planning
algorithm for closed kinematic chains as e.g. in bimanual manipulation tasks, taking
advantage of the compliance in the contacts for relaxing the geometric constraints
imposed by the presence of the closed loop. In this case, the above discussed equilib-
riummanifold can be used for random sampling based technique in order to generate
any-time paths for closed-loop robot manipulators.

13.6 Other Types of (Under-)Actuation

Despite the fact that the soft synergy (Chap. 8) is currently one of the most attractive
and interesting underactuation approach, it is worth considering the possibility to
apply the analytical tools presented in this chapter also in other cases. In literature,
other underactuation approaches deserve attention, as e.g. the eigengrasp, presented
in [12], the parallel structure based [22], or the recent adaptive synergies approach,
described in [23] and in Chap. 8. Some parts of the previous discussions were strictly
dedicated to the soft synergy underactuation, especially in Sect. 13.2. However, the
methods presented in Sects. 13.3 and 13.4 can be easily recovered for other types of
underactuation (as also discussed for the methods in Chap. 12). After the kinematic
and static equations were obtained in quasi-static form for the particular underactua-
tion mechanism in exam, the Fundamental Grasp Matrix directly follows. From this,
a proper definition of the dependent and the independent variables bring to obtain the
FGM in canonical form. Moreover, the GEROME-B algorithm can still be applied,
obtaining the symbolic form of the block matrix composing the cFGM. These results
can be used to study how the underactuation affects the main system characteristics.
Many definitions of manipulation tasks by (non-)nullity patterns can be recovered,
regardless of the particular type of underactuation. One remarkable exception is

7More precisely, the equations related to the elasticity do not describe an equilibrium law, and, for
this reason, we should, more properly, talk about a manifold describing the kineto-static behavior
of the whole system. For the sake of compactness, this definition will be left implicit in the rest of
the discussion.

http://dx.doi.org/10.1007/978-3-319-26706-7_8
http://dx.doi.org/10.1007/978-3-319-26706-7_8
http://dx.doi.org/10.1007/978-3-319-26706-7_12
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the subspace of the external structural forces. However, the definition provided in
Sect. 13.4.1.5 can be generalized considering the conditions δw �= 0, δ fc �= 0, and
δτ � = 0, δq� = 0, where δq� and δτ � are the generalized displacement and force
variables at the underactuation level.

In Chap.8, more space is dedicated to the application of some of the discussed
methods to the case of the adaptive synergies undearctuation model.

13.7 Numerical Results

13.7.1 Power Grasp

As a test case, we consider a spider-like hand, composed by two fingers and 8 joints,
grasping a square of side 2L . Figure13.2 shows the initial configuration of the system
and the contact force preload. All the initial force components have unitary value
along the directions depicted.

13.7.1.1 Perturbed Configuration for Fully Actuated Hand

The solution space of the system has dimension equal to �w + �q = 11. Elaborating
the nullspace of the FGM, it is possible to find out that the pure squeeze subspace

Fig. 13.2 Compliant grasp
of a square object by a two
fingered spider-like hand

{ }

{ }

/

/

/

http://dx.doi.org/10.1007/978-3-319-26706-7_8
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δux δuy

δuα

s1 −s1

s2

−s2

s3

−s3

s4

−s4

s5

−s5

(a) (b)

(c) (d)

Fig. 13.3 Plates (a–c) represent the kinematic displacements of the grasped object, and plate (d)
represents a basis for the pure squeeze

has dimension 5, the kinematic grasp subspace has dimension 3 and together they
complete the internal solution subspace.

For the kinematic grasp displacements, simulation results show that it is possible
to have a finite displacement of the object δux = 0.001, as in Fig. 13.3a, with no
torque variations, but with the following joint angle displacements

δq = 10−3
[−1 1 0 0 −1 1 0 0

]T
. (13.28)

For δuy = −0.001, represented in Fig. 13.3b, the corresponding joint torques and
joint angle variations are

δτ = 10−3
[−2 −2 0 0 2 2 0 0

]T
,

δq = 10−3
[
0 1 −1 0 0 −1 1 0

]T
.

(13.29)
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To obtain an object rotation δuα = 0.001, without changing the contact forces,
Fig. 13.3c, the necessary variations in the joint torques and joint angles are

δτ = 10−3
[
3 3 0 0 3 3 0 0

]T
,

δq = 10−3
[−1.511.50−1.511.50

]T
.

(13.30)

A basis for the pure squeeze is sketched in Fig. 13.3d, where the couple of forces si

and −si corresponds to the i th components of the basis. The numerical results for
δτ and δq are omitted here for brevity.

13.7.1.2 A Synergy in the Power Grasp

Introducing in the system an underactuation characterized by a synergy matrix in the
form

S =
[−0.6500 0 −0.3200 −0.4000

0.6500 0 0.3200 0.4000,

]T

(13.31)

in the solution space it remains a pure squeeze subspace of dimension 1.
In the absence of external disturbances, with an unitary synergistic actuation,

δσr = 1, the contact forces and the object displacements become

δ fc =
[

0.5043 0.5043 0.5043 −0.5043
−0.5043 0.5043 −0.5043 −0.5043

]T

, (13.32)

δu = [
0 0 0

]T
, (13.33)

indicating thatwe are squeezing the object alongboth diagonals. It isworth noting that
the above synergy was constructed by considering the contribution of two particular
pure squeeze solutions, represented in Fig. 13.3d, for the fully-actuated system.

13.8 Conclusions

In this chapter, the basic concepts and methods for the quasi-static analysis of syn-
ergistically underactuated robotic hands were described. Moreover, compliance was
integrated in the system at various levels, i.e. in the contacts between the hand and
the object, and in the actuation mechanism, as discussed in Chap. 8. The derivative
terms of the hand Jacobian and of the grasp matrix were also considered in the
model, in order to properly take into account the effects of the contact force preload.
Afterwards, the Fundamental Grasp Matrix (FGM) was defined, and a method for
finding its canonical form (cFGM) was presented, both via a numerical and a sym-
bolic approach. From the cFGM, relevant information on the system behavior can

http://dx.doi.org/10.1007/978-3-319-26706-7_8
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be easily extracted, as e.g. the controllable internal forces, the controllable object
displacements and the grasp compliance.

Moreover, a method to investigate the solution space of the FGM was presented,
able to point out the feasibility of relevant manipulation tasks, defined in terms of
nullity or non-nullity of some system variables.

Despite the fact that the methods proposed provide information about local char-
acteristics of the system around the initial equilibrium configuration, some results
have also non-local relevance. In fact, it is possible to provide a geometrical interpre-
tation of the FGE, for which this represents the tangential plane to the equilibrium
manifold of the whole system. Exploiting the properties of the FGM, a local parame-
trization of the system can be found, which can be profitably used to steer the system
over a continuum set of equilibrium configurations, until the desired kineto-static
characteristics were fulfilled.

The generality of the proposed methods, as well as the technical tools described
in Chap.12, can be applied also in case of different types of underactuation, with
small modifications.

Finally, in order to assess the validity of the proposed methods, an example of a
power grasp has been presented showing the generality of the methods, capable of
treating both the cases of fully actuated and synergistically controlled hands.
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Chapter 14
A Simple Model of the Hand for the Analysis
of Object Exploration

Vonne van Polanen, Wouter M. Bergmann Tiest and Astrid M. L. Kappers

Abstract When hand motions in haptic exploration are investigated, the measure-
ment methods used might actually restrict the movements or the perception. The
perception might be reduced because the skin is covered, e.g. with a data glove.
Also, the range of possible motions might be limited, e.g. by wired sensors. Here,
a model of the hand is proposed that is calculated from data obtained from a small
number of sensors (6). The palmar side of the hand is not covered by sensors or
tape, leaving the skin free for cutaneous perception. The hand is then modeled as 16
rigid 3D segments, with a hand palm and 5 individual fingers with 3 phalanges each.
This model can be used for movement analysis in object exploration and contact
point analysis. A validation experiment of an object manipulation task and a contact
analysis showed good qualitative agreement of the model with the control measure-
ments. The calculations, assumptions and limitations of the model are discussed in
comparison with other methods.

14.1 Introduction

As discussed throughout the book, the investigation of human example can rep-
resent the winning approach to improve the design of artificial systems. The first
step of all the neuroscientific studies on synergies and, consequently of their robotic
applications, is the study of the human hand, and more specifically its kinematics.
This motivates both the development of suitable kinematic models and sensing
devices, like those described in Chap. 15, to investigate how human hands interact
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with or move within the external environment. The analysis of hand motions gives
insights into how humans interact with objects (see e.g. Chaps. 2–8, 13 and 15). One
of the purposes of hand motions might be to gain (haptic) perceptual information.
Haptic perception is inherently an active process. While perception is important for
performing an action, action also generates perceptual input. For the haptic modality,
this consists of kinesthetic inputs from joint sensors, muscle spindles etc., but also
cutaneous information benefits from the movement of an object against the skin. For
instance, the object compresses the skin or rubs against it and this activates different
sensors in the skin or in different ways compared to a static touch of the object. The
hands are generally used to examine an object by touch. Therefore, it is of interest
to see how the hand moves and how it manipulates the objects to perceive their
properties.

Despite its importance for the haptic sense, the investigations of exploratory move-
ments in haptic perception are scarce. Mainly, video analysis has been used to identify
movement categories, as in the classic study of Lederman and Klatzky [15]. They
defined exploratory procedures (EPs) that are optimal for the extraction of certain
object properties. They define an EP as a “stereotyped movement pattern having cer-
tain characteristics that are invariant and others that are highly typical” [15, p. 344].
For instance, global shape can be perceived by the enclosure of an object and pressing
an object is used for determining its hardness. These EPs were classified using video
analysis where observers judge which EP is performed. This method has been used in
the research of haptic exploration in healthy and blind individuals, as well as children
[13, 14, 31].

Disadvantages of this procedure are that it is very time consuming and also subjec-
tive, because the judgement of the observer will depend on his or her interpretation of
the exploratory procedure. In contrast, one study defined movement synergies from
haptic exploratory movements, but did not distinguish between handling different
object properties [26]. Another group of experiments were recently performed to
quantify EPs by tracking the hand of the exploring participant [10, 11]. In those
studies, only the index finger and the back of the hand were tracked. This might
be enough for studying the exploration of large objects, where the hand is used as
a whole. In the exploration of smaller objects, where the objects can be handled
between several fingers or with multiple small objects in the hand, information of
the movements of all fingers is important.

To measure the movements of all parts of the hand, the hand can be tracked by
Data Glove-like systems (e.g. the CyberGlove and HumanGlove). In these systems,
the observer wears a glove with sensors mounted inside. A review of these glove
based systems can be found in [6] and a complete discussion of this topic can also be
found in Chap. 15. The observer manipulates objects with the glove and because the
sensors in the glove monitor the movements or positions of the hand, the exploration
strategies can be studied. In perception research, besides the kind of movements that
are made during exploration, it is also of interest which parts of the hand are used
to extract the appropriate information. Some of these gloves measure the pressure an
object exerts against the skin, so the contact points of the object with the hand can
be determined. The combination of contact and position information would make a

http://dx.doi.org/10.1007/978-3-319-26706-7_2
http://dx.doi.org/10.1007/978-3-319-26706-7_8
http://dx.doi.org/10.1007/978-3-319-26706-7_13
http://dx.doi.org/10.1007/978-3-319-26706-7_15
http://dx.doi.org/10.1007/978-3-319-26706-7_15
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glove-based system ideal to investigate both exploratory procedures and hand contact
information. However, an important limitation is that the glove reduces the cutaneous
information, because it covers the skin. In addition, it might restrict the motions of
participants.

An alternative to a glove would be to track the positions of the hand, where sensors
are placed on the back of the hand. Since the palmar side of the hand is mostly used
for extracting object properties, this leaves the skin free to explore. Such methods
have been used in studies that analyzed grasping and finger movements (e.g. [3, 33]).
They used reflective, passive markers that are captured by a camera. Using such a set
of markers, a detailed model of the hand can be made [9, 24]. For instance, the model
of Sancho-Bru et al. [24] calculates the contact forces and muscle forces that are used
when holding an object. Their collision detection of the fingers on the object is based
on a representation of the fingers as spherical polytopes. The spherical portrayal of
fingers provide a more natural representation of the fingers than rectangular blocks.
In addition, the algorithm assumes a soft contact model in the fingers that can deform
on contact, although to determine contact with an object per se, the deformation of
the fingers is not important.

However, there are also disadvantages in these approaches. In more complex
exploration motions, the markers might suffer from occlusion. If a marker is not
in view of the camera(s), it cannot be tracked. Some occluded markers might be
reconstructed from others [5], but this might be more difficult with multiple occluded
markers. Markers that do not suffer from occlusion, like magnetically instead of
optically tracked sensors, might still limit hand motions due to the number of wires
that are needed for these sensors. Moreover, the large number of markers might
require a detailed calibration. In passive sensors, the sensors might also be confused
with each other, especially if many are used and are placed close together. For these
reasons, a smaller number of sensors might be desirable. Some approaches aim to
ease the usage of all these systems by reducing the number of cumbersome sensors
to be employed for the measurement process, leveraging the notion of synergistic
reduction as discussed in Chap. 15. A balance must be sought between a small number
of sensors and the amount of hand position information. With fewer sensors, the
positions of the hand that are not measured, must be captured by a model (see
Chap. 15 for a synergy-inspired reduction of the number of sensing elements and
Chap. 7 for a more general discussion on sensory-motor synergies).

This chapter presents a way to model the hand in movement tracking analysis,
where the position of all fingers and the hand palm is modeled from just 6 sensors with
6 degrees of freedom (DoFs). This small number of sensors poses few restrictions
on the possible motions of the hand. In addition, the sensors are placed on the dorsal
side of the hand, leaving the skin of the palmar side free to touch the object(s). In
short, the hand model is calculated from positions of the fingertips and the hand
palm. First, the joint positions are calculated for the fingers. Next, the phalanges are
modeled as a series of connected rigid bodies. The hand palm is modeled as one rigid
body. In this way, not only a kinematic chain of joints is made, but a 3D model of
the hand is formed.

http://dx.doi.org/10.1007/978-3-319-26706-7_15
http://dx.doi.org/10.1007/978-3-319-26706-7_15
http://dx.doi.org/10.1007/978-3-319-26706-7_7
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The model is not aimed to represent an actual hand, because a realistic hand is
also very complex. The hand consists of 27 bones (including the wrist) and thus
has many degrees of freedom. This is difficult to model with a few sensors and not
necessary for most global movement descriptions. Therefore, the hand is simplified
to fewer segments in the model. Furthermore, the model does not aim to serve as
input for the control of robotic or artificial hands, although it might be used to extend
the research needed to improve this challenging task (see also [17]). Instead, the
model as presented in this chapter can be used as a tool to analyze the exploration
and in-hand manipulation of objects. It is purposed to represent a hand that holds one
or more objects and moves the fingers to explore and manipulate the object(s) in the
hand. The model can be used to analyze contact points, but also the movements made
by the individual hand parts. This chapter describes the calculation of the model and
evaluates it for some possible applications.

14.2 Model of the Hand

The modeled hand consists of a series of rigid bodies: three for each finger, corre-
sponding to the different phalanges and one for the hand palm (see Fig. 14.1 for an
example). From fingertip to hand, the phalanges of the finger are called the distal,
middle and proximal phalanx. The joints between the phalanges are called the distal
interphalangeal joint, proximal interphalangeal joint and metacarpophalangeal joint
(knuckle joint). The distal joint is the joint between the distal and middle phalanx, the
proximal joint is the joint between the middle and proximal phalanx and the knuckle

Fig. 14.1 An example of the
hand model, the phalanges
and joints are indicated. The
joints were located in the
fingers, but are drawn on top
for illustration purposes

distal
phalanx

middle
phalanx

proximal
phalanx

distal joint

proximal
joint

knuckle
joint
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joint is the joint between the proximal phalanx and the hand palm. The thumb is
modeled similar to the fingers, with 3 phalanges. The knuckle position of the thumb
is then located more proximal in the hand, near the wrist.

In reality, the hand palm consists of a number of metacarpals. Here, the hand palm
is modeled as a single rigid body. However, unless the hand is stretched out, the hand
palm assumes a sort of bowl form where the knuckles lie on a slightly curved line. To
be able to represent this curve, some rotations are applied to the hand palm and the
fingers (see below). As a result, the proximal phalanges of the fingers form a slight
bowl, where the proximal phalanx of the thumb lies on top of the hand palm.

To construct the model, 5 sensors are placed on the finger nails and one on the
back of the hand. Next, the segments for the fingertips (distal phalanges) and the
hand palm can be calculated from the sensor positions and orientations. For the other
phalanges, first the joint positions need to be calculated. In the following sections,
the data acquisition and calibrations that are necessary will be described. After that,
the calculations of the joint positions and the construction of the segments will be
explained step by step.

14.2.1 Sensors

The sensors that are used to measure the hand positions need to have 6 DoFs. This
means that besides x , y, and z coordinates also the rotations azimuth (around z-axis),
elevation (around y-axis) and roll (around x-axis) of the sensors are necessary. This
is needed because not only the position of a sensor, but also its orientation in space
must be known. Instead of 6 DoF sensors, also multiple (small) sensors in a grid
might be used.

Sensors are placed on the nail of each finger, including the thumb. Another sensor
is placed on the back of the hand, approximately in the middle in line with the knuckle
of the middle finger (see Fig. 14.2). The centre of the finger sensors (corresponding
to their measured position) is placed ∼5 mm from the fingertip. Sensors are attached
with tape, but the palmar side of the hand is left free of tape, so the perceptual
capabilities of the skin are not reduced. To further keep the sensors in place, tape is
also placed over the wires on the second phalanx (not shown in Fig. 14.2).

14.2.2 Calibration

To be able to model the hand, some constant dimensions of the hand need to be
determined. An overview can be found in Table 14.1. We propose an easy way to
capture the dimensions of the finger by taking a picture of the hand that is placed on
a grid, as shown in Fig. 14.2. The joint positions are marked on the observer’s hand.
The advantage is that the lengths of the fingers and joint positions can be calculated
after the measurement, which reduces the time spent by the observer. The visible x
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Fig. 14.2 Picture of the hand with the sensors (white dots) on the calibration grid. The joint positions
are marked (black dots). The coordinate system drawn (white) is with respect to the hand, aligned
with the hand sensor and the knuckle of the middle finger

Table 14.1 Overview of constant variables

Hand part Variable Meaning Source

Finger phalanges w The width of the finger
phalanx

Hand photo

l Length of the phalanx Hand photo

t f
a Thickness of the finger Calibration

Roll Initial roll of the distal
phalanx only

Calibration

Finger knuckle �x x-distance hand sensor
to knuckle

Hand photo

�y y-distance hand sensor
to knuckle

Hand photo

Hand th Thickness of the hand Calibration

Roll Initial roll of the hand Calibration
aProximal joint: 1.5 times as measured in calibration

and y grid coordinates of the photo are fitted to the known real-world coordinates
of the grid with a 3rd order polynomial. In this way, the locations in the photo can
be mapped to real-world coordinates. This mapping is then used to determine the
coordinates of the marked joints in the photo. From these joint coordinates the lengths
of the finger segments are calculated. The widths of the finger phalanges are also
measured. For the thumb, the width of the proximal phalanx is chosen to be the same
as the middle phalanx, as this cannot be measured in the photo. So, there are three
lengths and widths for each finger. In addition, the positions of the knuckles with
respect to the sensor on the back on the hand are measured as well. To do this, the
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knuckle of the middle finger and the hand sensor are aligned, so the y-distance of
the hand sensor to the middle finger knuckle is 0.

Besides the finger lengths and widths, the thickness of the fingertips and of the
hand need to be estimated. Therefore, a sensor is placed on a flat surface. The observer
is asked to place each finger sequentially on the sensor, with the nail straight and
horizontal. The z-distance between the sensor on the nail and the sensor on the surface
is taken as the finger or hand thickness. The finger thickness is not assumed to be
the same along the finger, but 1.5 times the measured thickness around the proximal
joint and equal to the hand thickness around the knuckle joint.

In addition, in this calibration the initial roll rotation of each sensor is measured.
To do so, the observer is asked to put his or her finger horizontally on the sensor,
with the nail straight. This roll rotation is subtracted from the one measured in further
analysis, to correct for the initial roll rotation of how the sensor was taped to the finger
and hand. There is no need to correct for azimuth or elevation, because the sensor is
placed in line with the finger on a flat surface (i.e. the nail or back of the hand).

14.2.3 Calculation of a Point from a Sensor

From the measurement of a certain sensor, not only the position, but also the orienta-
tion of the sensor is known. Hence, other points on the same rigid body can be easily
calculated. The position of a point on the same segment as a sensor was calculated
by transferring the relative position of the point with the rotations measured by the
sensor. For example, to calculate the position of the distal joint from the sensor on
the finger nail, the sensor coordinates need to be transferred a certain distance along
the axis of the sensor. In Fig. 14.3, a distal finger phalanx is illustrated. Here, the
coordinate system with respect to the sensor has its x-axis running along the sensor

Fig. 14.3 Illustration of the
phalanx of the finger. As an
example the distal phalanx is
pictured, with a grey nail to
indicate the orientation. The
sensor is placed on the nail,
with the black circle to
indicate the sensor position.
The other phalanges connect
to each other; so plane
GHKL connects to plane
EFIJ of the more proximal
phalanx. The black square
represents the distal joint
position

E

F

G

H

I

J

K
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from proximal to distal, the y-axis from right to left (ulnar to radial) and the z-axis
from below to above the sensor (palmar to dorsal). The position of the distal joint
is positioned in the middle of plane GHKL as a black square. This means that from
the position of the sensor, the coordinates need to be transferred ‘back’ a distance
equal to the length of the finger minus 5 mm (the sensor was placed ∼5 mm from the
fingertip) and ‘down’ half the thickness of the finger. So, with respect to the sensor,
the distal joint is positioned at the coordinates (−l + 5, 0,− 1

2 tf ). The length l and
the thickness t f of the finger are known from the calibrations. Next, a rotation trans-
formation is applied to these coordinates, in which the measured azimuth, elevation
and roll of the sensor are incorporated. Here, the initial calibrated roll rotation is
subtracted from the measured roll. Lastly, the coordinates of the sensor are added
to the result to obtain the coordinates of the distal joint in the original coordinate
system. In short, the position of the distal joint is equal to:

R ∗ (−l + 5, 0,− 1
2 tf ) + (Sx , Sy, Sz) (14.1)

where (Sx , Sy, Sz) are the coordinates of the sensor and R is a rotation matrix,
calculated from the measured azimuth (around the z-axis), elevation (around the y-
axis) and roll (around the x-axis, corrected for the initial roll) of the sensor. Other
positions on the same rigid segment as the sensor can be calculated in a similar way.

As mentioned above, because the hand palm segment was modeled as a rigid block
this does not the reflect the bowl form the hand makes when exploring objects in the
hand. The assumed rigid form of the hand palm also affects the calculation of the
positions of the knuckles, which are calculated from the hand sensor (see below), and
thus the more proximal phalanges. To compensate for this, the hand sensor is extra roll
rotated 40◦ (counterclockwise around the x-axis). The fingers knuckles are calculated
from the hand sensor with an extra roll rotation in steps of 15◦: 0, 15, 30, 45 and 60◦,
from thumb to little finger, respectively. This means that for every transformation of
the hand sensor position, not only is there a correction for the initial roll rotation,
but also the extra roll rotation is used. Pilot measurements verified that with these
rotations, the calculated positions resembled the actual positions of the fingers and
knuckles better than without these rotations.

14.2.4 Joint Positions

A simple illustration of a finger is shown in Fig. 14.4. To be able to construct the
segments for each phalanx, first the joint positions of the fingers are calculated.
Each finger (including the thumb) has three joints, the distal, the proximal and the
knuckle joint. The position of the distal joint can be calculated from the position of
the sensor on the nail with Eq. 14.1. The distal joint is positioned inside the finger,
at half the thickness and width of the finger (point B in Fig. 14.4) and is calculated
from the sensor on the finger, as described above. The knuckle position (A) can be
determined at the relative position (�x,�y,− 1

2 th) from the sensor on the back of
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Hand

z

x

A

B

C

D

a
b

c
d

Fig. 14.4 Side view of the finger and the joints. A, C and B represent the knuckle, proximal and
distal joints, respectively. D is the position in the finger underneath the nail sensor. a, b, c and d are
the vectors between the joints and γ and φ the angles between the vectors that are used to calculate
the proximal joint (C). The nail is colored gray

the hand. �x and �y are the distances to the knuckle as measured from the hand
photo. The knuckle is placed at a depth half of the hand thickness th inside the hand.
D is positioned at a relative position (0, 0,− 1

2 t f ) from the nail sensor.
To calculate the position of C , the proximal joint, a triangle is assumed between

the positions of the three finger joints, as illustrated in Fig. 14.4. The points A, B, C
and D are assumed to lie in a single plane. This seems a valid assumption, since the
distal and proximal joints have only one degree of freedom (flexion and extension).
In Fig. 14.4, the positions of A, B and D are known. The lengths a and b of vectors
a and b are known as the lengths of the finger phalanges that were measured in the
hand photo. The vectors c and d can be calculated by subtracting B from A and B
from D, respectively. γ can be determined by the cosine rule. Next, to calculate C ,
the following equalities must be satisfied:

det([a, b, d]) = 0 (14.2a)

a · b = ab cos(γ ) (14.2b)
√

ax
2 + ay

2 + az
2 = a (14.2c)

√
bx

2 + by
2 + bz

2 = b (14.2d)

The first equality follows from the assumption that the vectors between the points A,
B, C and D lie in a single plane. The other equalities are common vector rules. These
equalities will leave two solutions, where C can lie ‘above’ (as shown in Fig. 14.4) or
‘below’ c. Of these two solutions, the one is chosen with the largest angle between the
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distal and middle joint, φ. This criterion is chosen because the distal finger phalanx
cannot bend to very small angles. φ is defined from the following equality:

d · −a = da cos φ (14.3)

On some occasions, the triangle might not be closed. This is because with the bending
and stretching of the fingers, the lengths between the joints do not remain constant
in reality. In cases were no solution can be found because c is longer than a + b, the
finger is assumed to be fully stretched. In these cases, C is calculated as the adjusted
mean of A and B, positioning it on c but adjusted to the ratio of the lengths a and b:

C = B + a

a + b
c (14.4)

Sometimes, the triangle cannot be closed, because c is smaller than b − a, which can
happen with a fully bent finger. Here, C is positioned on c, and extended with a:

C = B − a

c
c (14.5)

Note that the direction of c is from B to A.

14.2.5 Distal (1st) phalanx

The first phalanx is calculated as a block around the coordinates of the sensor. Con-
sider the phalanx model in Fig. 14.3. Here, the sensor position is illustrated as the
black circle on the nail. Because the orientation of the sensor is known, the positions
of the vertices of the phalanx block can be calculated. This happens in a similar way
as in Eq. 14.1, as described earlier, using the length, width and thickness of the finger.

14.2.6 Middle (2nd) phalanx

The middle phalanx had no sensor on it, so the positions cannot be calculated with
a rotation matrix, because the orientation of the phalanx was unknown. Because the
phalanges are connected, the vertices E , F , I , and J of the middle phalanx are the
same as the vertices H , G, L and K of the distal phalanx (see Fig. 14.3). The other
vertices G, H , K and L of the proximal phalanx are calculated by summing vectors
to the proximal joint as shown in Fig. 14.5. The points B1 and B2 can be calculated
from the nail sensor in a similar way as the distal phalanx vertices. From the cross
product of the vectors from the proximal joint to these points, a vector from the
proximal joint to position M can be obtained (m). Next, the cross product of m and
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Fig. 14.5 Illustration of the
calculation of vertices G, H ,
K and L around the
proximal joint. In the figure,
the proximal phalanx is
shown with the proximal (C)
and the distal (B) joints. See
text for further explanation
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the vector between the two joints gives the vectors perpendicular to m: n and o.
The length of the vectors are adjusted to the thickness and width of the finger. By
summation of these vectors to the proximal joint, vertices G, H , K , and L can be
calculated: ⎡

⎢⎢
⎣

G
H
K
L

⎤

⎥⎥
⎦ =

⎡

⎢⎢
⎣

C + n − m
C + o − m
C + n + m
C + o + m

⎤

⎥⎥
⎦ (14.6)

where C are the coordinates of the proximal joint. Note that the thickness of the
finger that is used in this plane is assumed to be 1.5 times the distal finger thickness.
This means that the length of m is 0.75 times the calibrated finger thickness. The
lengths of n and o are equal to half the width of the middle finger phalanx.

14.2.7 Proximal (3rd) phalanx

The vertices E , F , I and K of the proximal phalanx are the same as the vertices
H , G, L , and K of the middle phalanx. The other vertices are calculated around the
knuckle joint, using the sensor on the hand as reference point. The calculations are
similar as those for the determination of the knuckle joint and use the proximal finger
width and the hand thickness. The rotation matrix that is used includes the shifted
roll rotations for each finger (0, 15, 30, 45 or 60◦).
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14.2.8 Hand

The hand part is a rigid body with eight vertices. The dorsal vertices are located at the
dorsal positions above the little finger, index finger and thumb knuckle. The fourth
dorsal vertex is the position on the ulnar side, at the same x-distance as the thumb
knuckle and y-distance of the little finger. The palmar vertices were similar to the
dorsal ones, but shifted in the z-direction by the thickness of the hand. The rotation
matrix used here includes the extra roll rotation of 40◦. Therefore, the positions of
the hand vertices will not be the same as the knuckle joint positions, since other roll
rotations are used in those calculations.

14.3 Application Example: Contact Analysis

The model can be used for movement analysis. The sensors give, for example, the
speed of the fingertips or their travelled distance. However, the model also offers extra
parameters that can be considered. For instance, the angles of the various phalanges
can be calculated from the joint positions. The angles reflect how much the finger is
bent or stretched. This allows investigation of the closing and opening of the hand.

Another application of the model is an analysis of contact points with an object.
In the following section, a mathematical procedure for determining which part of the
hand comes in contact with a spherical object is explained in more detail.

The hand model consists of different hand parts. In this analysis we calculate
which parts of the hand come into contact with (‘touch’) a specific object during
exploration. Here, the position of the object must be tracked as well. For instance,
a sensor might be placed inside or on the object. The model can then be used to
determine the location of all parts of the hand with respect to the object. In this
example, for each phalanx and for the hand palm we determine whether it contacts
an object. The object is a sphere with a known radius and the position of the centre
of the sphere is known.

To determine where the object touches the hand during the exploration, the dis-
tance from the object to the 6 planes of each segment (five distal phalanges, five
middle phalanges, five proximal phalanges and the hand palm) is calculated. If one
or more of the planes of a segment are touched, this is counted as a contact with
this segment. An example situation of a plane and two spherical objects is shown in
Fig. 14.6.

A plane of a segment can be represented with the equation k1x + k2 y + k3z +
k4 = 0. For coordinates (x, y, z) that lie in this plane, the equation holds. The con-
stants k1, k2 and k3 can be determined by calculating the cross product between two
vectors that lie in the plane. For instance, (V1 − V2) × (V4 − V1) in Fig. 14.6 gives
(k1, k2, k3). Next, k4 is calculated by solving the equation with a point that is known
to be in the plane. For such a point, one of the vertices can be taken. The distance s
from a point (x, y, z) to a plane can be found with the following equation:
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Fig. 14.6 Two examples of
the calculation of the
distance (s) from a sphere to
a plane. The centre of a
sphere is point Ps , which
projects on the plane at point
Pp . The vertices on the plane
are labeled V1...4

Ps1

s1

Pp1

V1 V2

V4 V3

Ps2 s2

s = |k1x + k2 y + k3z + k4|√
k2

1 + k2
2 + k2

3

(14.7)

If the point is the centre of the sphere (sphere sensor position, Ps1) and s1 is smaller or
equal to the radius of the sphere, the sphere touches the plane. However, the equation
holds for an infinitely large plane. Thus, it must also be determined whether Ps1 is
close enough to the actual plane of the segment. s1 is equal to the length of a vector
that is perpendicular to the plane and runs from the plane to the point. This vector is a
cross product of vectors in the plane and can be calculated from vectors on the edges
of the segment plane (the same vector used to calculate k1, k2 and k3 of the plane
equation). Using this vector, the ‘projected’ point (Pp1) of Ps1 on the plane can be
calculated. If Pp1 lies in the plane of the segment, the sum of the angles between the
vectors running from Pp1 to the vertices must be 360◦. The angle of two vectors can
be determined using Eq. (14.2b). So, if Pp1 lies in the segment plane, the following
equality must hold:

360◦ = arccos

(
(V1 − Pp1) · (V2 − Pp1)

|V1 − Pp1||V2 − Pp1|
)

+ arccos

(
(V2 − Pp1) · (V3 − Pp1)

|V2 − Pp1||V3 − Pp1|
)

+ arccos

(
(V3 − Pp1) · (V4 − Pp1)

|V3 − Pp1||V4 − Pp1|
)

+ arccos

(
(V4 − Pp1) · (V1 − Pp1)

|V4 − Pp1||V1 − Pp1|
)

(14.8)

where V1, V2, V3 and V4 are the coordinates of the vertices and Pp1 that of the
projected point.

A problem arrises at the border of a plane, where the projected point falls outside
the plane, but the sphere contacts the side of the plane. This is illustrated in Fig. 14.6
by sphere Ps2. Therefore, the distance to the line segments on the border of the plane
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are calculated as well. For example, the distance s2 of Ps2 to the line segment V1 − V4

is:

s2 = |(Ps2 − V1) × (Ps2 − V4)|
|V4 − V1| (14.9)

When Ps2 is not positioned between V1 and V4, the distance is calculated to the
endpoints (i.e., V1 or V4). If s2 is smaller than the sphere radius, a contact point is
also found. The distances to all four line segments are calculated. To summarize, the
object only touches a part of the hand if (a) the distance s1 is equal to or less than the
sphere radius and Eq. (14.8) holds or, (b) s2 is smaller or equal to the sphere radius.

14.4 Experimental Evaluation of the Model

To see how well the model could determine the finger positions, the model was
evaluated in an object manipulation task. To do this, data from two control sensors
were compared with the model calculations. Since there are two segments (middle
and proximal phalanx) of each finger that are modeled and not tracked by a marker,
two markers were placed on these segments to evaluate the models calculations. The
position of the control sensors and the angle they made was used as a reference
to which the model calculations were compared. Secondly, a contact analysis was
performed on a task where a sphere was held between the thumb and another finger.
This second task was chosen to evaluate the construction of the 3D phalanges. Since
contact between the fingers and objects was known to occur, it should always be
detected by the model.

14.4.1 Participants and Apparatus

Three right-handed participants took part in the experiment (2 females, 30 ± 4 years).
Another participant was excluded due to technical errors. Participants provided writ-
ten informed consent. A 3D Guidance TrakSTAR system (Ascension Technology
Corporation) was used to measure the hand positions and orientations. Sensors were
placed on the nails and hand as described above. The constant hand dimensions were
measured as in the previously described calibration procedure. In addition, two extra
sensors were placed on each finger sequentially. They were placed halfway between
the joints on the middle and proximal phalanx. The objects used in the tasks were
wooden beads, with a radius of 7.5 mm. They had a hole drilled in the center in which
a sensor could be placed.
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14.4.2 Task and Procedure

Two tasks were performed, an object manipulation task and a contact task. In the
object manipulation task, five spheres were suspended from wires and were initially
grasped. Then, the spheres needed to be dropped out of the hand one by one using
the fingers. The two control sensors were placed on the thumb, index, middle, ring
or little finger and participants performed three object manipulation trials. After that,
the control sensors were placed on another finger and the process was repeated. The
order of the control placement on the fingers was randomized.

The second task was a contact control task. Participants held a sphere, with a sensor
placed inside, between the thumb and another finger. The experimenter indicated
which finger was to be used. Three trials were performed for the four fingers, in a
randomized order. While the participant held the sphere, the data was recorded for
about 2 s. No control sensors were used in this task.

14.4.3 Analysis

For the object manipulation task, the positions and joint angles as determined by
the model and the control sensors were compared. All parameters of the model as
described above were computed. In addition, from these parameters, the positions
halfway on the middle and proximal phalanx were calculated. These positions cor-
respond to the locations of the control sensors and were directly compared with
the measured positions from the control sensors. In addition, the angle between the
control sensors was determined (around the proximal joint) and compared with the
same angle as calculated from the model parameters. This angle was calculated from
vectors running superficially on the dorsal side of the finger.

Comparisons were made by subtracting the positions or angles and average them
across participants. In addition, the control and model values were correlated with
each other. For the calculation of the correlation coefficients, one coefficient was
determined for data of participants and trials grouped together. In the contact task,
the contact analysis as described earlier was applied.

14.4.4 Results

The positions of the control sensors could be reproduced well by the model. An
example of the x , y and z-positions of the control sensors and the calculated model
positions is illustrated in Fig. 14.7. The qualitative representation was quite good,
as correlations between the control and model positions were high (>0.95) for all
fingers (Table 14.2). On average, the deviations were low, as shown in Table 14.3.
The maximum absolute deviations could be high, though, up to a few cm.
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Fig. 14.7 An example of the comparison of the model and the control sensors for the x , y and z-
positions. The positions of the middle (mid, left panels) and proximal (prox, right panels) phalanges
of the middle finger are pictured. The black solid line represents the model, the gray line the control
sensor

Table 14.2 Correlation coefficients between the model and control sensor positions for x , y and z
directions and middle and proximal phalanges separately

Phalanx Finger x y z

Middle Thumb 1.0 0.96 0.98

Index 1.0 0.98 1.0

Middle 0.99 0.99 1.0

Ring 1.0 0.99 1.0

Little 1.0 0.99 1.0

Proximal Thumb 1.0 0.98 0.98

Index 1.0 0.95 0.99

Middle 0.99 0.98 0.99

Ring 0.99 0.97 0.99

Little 0.99 0.99 0.99
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Table 14.3 Average deviations between the model and the control sensor positions for x , y and z
directions and middle and proximal phalanges separately

Phalanx Finger x (mm) y (mm) z (mm)

Middle Thumb 5.2 ± 0.7 −1.3 ± 1.8 −2.3 ± 1.6

Index −2.6±0.3 −4.4±1.3 −2.2±0.9

Middle −0.8±0.3 −4.5±0.2 1.3±1.3

Ring −0.1±0.2 −4.3±0.4 −0.2±0.6

Little 1.1±0.1 −2.8±0.3 0.2±0.4

Proximal Thumb 5.1±1.1 4.3±1.7 −6.8±1.5

Index −7.5±0.7 −10.5±2.5 1.4±1.5

Middle 0.2±0.5 −5.8±0.9 5.9±1.8

Ring 3.7±1.5 −2.1±0.9 4.3±1.4

Little 4.8±2.4 1.8±0.7 6.3±0.8

Values are mean±standard error of the mean

The angles around the proximal joint were generally underestimated by the model
compared to the angle as measured from the control sensors. Correlation coefficients
were somewhat variable, but were still 0.85, 0.92, 0.91 and 0.89 for the index, middle,
ring and little finger, respectively. For the thumb, the angles between the control and
model calculations did not correlate (−0.06).

The alternative Eq. 14.4 had to be used in 34 % of the time samples for the thumb
and in 0.4 % for the little finger in the object manipulation task. Equation 14.5 never
had to be used in the present task.

The contact task indicated that contact of the thumb with the sphere was found
on average on 99.6 ± 0.3 % (mean±sem) of the time. A contact was detected for
98.8 ± 1.1, 79.1 ± 19.1, 96.6 ± 3.4 and 100 ± 0 % of the time for the index, middle,
ring and little finger respectively. Because with a light touch the calibrated thickness
might be inaccurate, we also increased the tolerance by adding 1 or 2 mm to the
finger thickness. Then, the percentages increased up to averages above 96 and 99 %,
respectively.

In all trials but one, no other fingers contacted the sphere than the fingers used
to hold the sphere. In one trial, a neighboring finger was also found to contact the
sphere in 26 % of the trial time.

14.5 Discussion

A simple model of the hand was presented that constructs a hand with 16 segments
and can be used as a tool to investigate the manipulation of objects by the hand. The
measurement procedure that is presented requires only 6 sensors that are placed on
the fingernails and the back of the hand. This procedure has two main advantages.
First, the limited number of sensors poses few restrictions on the range of motion



252 V. van Polanen et al.

and allows the observer to move his or her hand in a natural way (see also Chap. 15
for a complete discussion of this topic). Secondly, because the sensors are placed
on the dorsal side of the hand, the palmar side is left free to manipulate and explore
the handheld object. In this way, the cutaneous input is not reduced in any way and
finer object details can be perceived. Hence, the model is particularly suited for the
investigation of the haptic perception and exploration of objects in psychophysical
experiments.

The evaluation tasks indicated that the model represented the hand qualitatively
well. In the contact task, where an object was held between thumb and finger, a
contact with the object was usually well detected. Very light touches might not
always be detected, because the finger thickness might be underestimated by the flat
representation of the finger pad. Furthermore, the object manipulation task indicated
that the model seems less suited for the investigation of angles, perhaps only in a
qualitative way. In this task, the model represented the measured control positions
qualitatively well. There were, however, also some deviations.

The differences between the model and the control measurement might arise from
various sources, which can be roughly categorized into errors from calibration, mea-
surement inaccuracies and model simplification. Calibration errors would include
incorrect estimates of finger lengths and widths. Measurement inaccuracies consist
of apparatus imprecisions and sensor displacements due to skin movements. Here,
it must be noted that the control sensors are also subject to these inaccuracies and
noise. Thus, deviations of the control measures and the model might also arise from
these sources. This makes the validation experiment not a comparison of the model
to correct hand positions, but to another measurement procedure. Nevertheless, this
procedure provides a more direct measure of the validated positions because there
are fewer calculations where errors can accumulate. Overall, the model leads to a
good qualitative representation of the hand motions.

To represent the hand better, the hand model as presented is this chapter can be
extended, but this will also make it more complex. In particular, the hand palm is now
modeled as a single rigid body, whereas it consists of multiple parts in reality. Also
the thumb segments are determined in a similar way as the other fingers, despite
the fact that the thumb has more degrees of freedom than the other fingers and
its ‘proximal phalanx’ is connected to the hand palm. The model could be further
extended with more sensors on the back of the hand, to better measure the bowl
form of the hand. The knuckle positions of the thumb and the index finger might
for example be determined from an extra sensor close to the radial side of the hand,
whereas the other knuckles are calculated from an extra sensor on the ulnar side. This
requires that the hand palm segment consists of multiple parts, or a more complex
form. However, considering the poor representation of the thumb joint angles and the
difference in anatomy of the thumb compared to the other fingers (e.g. the degrees
of freedom of the joints), an extra sensor to measure thumb kinematics might be a
useful extension.

At this point, the model does not pose constraints on the the range of motion of
the joints or in the degrees of freedom for the knuckle joint, as some other models
do [1, 5, 16, 19, 24]. This makes the current model more flexible and it will find

http://dx.doi.org/10.1007/978-3-319-26706-7_15
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a solution more often, although reasonable constraints might provide more natural
results. In the next part, the advantages and limitations of the model are discussed in
comparison with the current state of the art of hand modeling.

14.5.1 Comparison with Other Models

One large advantage of the present model is that it requires a low number of markers.
In contrast to gloves, this reduces restrictions on finger motions, makes the system
easily adjustable to various hand sizes and leaves the skin uncovered to allow for
cutaneous sensations. Many other models require the placement of many markers on
the finger joints [5, 18, 33], but this also has limitations. For example, the wires of
multiple markers might also restrict finger movements. In addition, there is the prob-
lem of occlusion with optically tracked markers. There are methods to reconstruct
occluded markers [5] or ignore their input and rely on previous posture estimations
(e.g. [8, 27]). However, with a lot of occluded markers or with occlusion for an
extended time period, reconstruction might still prove difficult.

However, the disadvantage of few markers is the decreased accuracy, as multiple
markers allow for a better estimation of the center of joint rotation. With just a few
sensors, a small deviation (movement or displacement) of a sensor can have a large
influence on the model calculations. The validation experiments showed a good
qualitative representation of the hand, but the absolute deviations could be large.
There are a few other methods that derive a hand model from a small marker set.
Recently, a method for deriving index finger and thumb kinematics was presented by
Nataraj and Li [19]. Their method for the calculations of the joint positions from two
sensor sets is comparable to the one presented here, although different constraints
are used. They showed that from a marker placed on the nail and on the back of
the hand, similar results as with the measurements of more markers were obtained
in a precision grasp task, which gave some validation for the use of fewer markers.
Their model might be more accurate than ours, partly because they include a more
extended calibration procedure (see below) and have a more realistic representation
of thumb kinematics, especially for the metacarpophalangeal joint.

Most of the mentioned models are evaluated with simple grasping movements,
usually power grasps. The evaluation of more complex movements is therefore still
lacking. The current model is aimed at providing simple analysis of complex move-
ments and information about object contact. It is therefore difficult to compare the
current hand model to other biomechanical models aimed at grasping. Evidently,
models that are based on more input data, such as more markers or calibration data,
are more accurate.

When using few markers, some form of inverse kinematics is needed to calculate
the joint angles of the finger phalanges. As described above, multiple techniques
could be used to obtain these values. In methods that can be applied to a small marker
set, iterative processes [2], geometrical models [19], optimization techniques [16]
and filters [7, 27] are all procedures that can aid to find the unknown parameters. Our
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model uses only a geometrical model without optimal solution fitting. This makes
the calculations simple and fast to perform, but it largely depends on the input values.
As discussed earlier, small deviations will have a large influence on the outcomes.
A problem with solution fitting that is absent in our model is that it can be trapped
in local minima. However, in the present method sometimes a solution cannot be
found, although this mainly occurs with fully extended finger and Eq. (14.4) can be
applied.

To cope with outliers in the data, a model could be partly based on previous
hand estimations. For instance, an extended Kalman filter could be used, where
the current measure is the estimation and the previous posture is used as the prior
[7, 8, 27]. The estimation and prior are then optimally implemented into the final
model. Alternatively, a least median square algorithm could be used to determine
the hand motions [32]. Because these methods to estimate the hand pose are partly
based on the previous time frame, the influence of outliers is diminished.

A completely different procedure is applied by [1]. They use an iterative process
(FABRIK, [2]) to estimate the joint position of a hand model from a minimal set
of markers. Their hand model is constrained by the lengths between the joints and
the possible rotation limits of each joint. Their methods are aimed at real-time hand
tracking, and are mainly focused on limiting computation time. Unfortunately, they
only provide a qualitative validation of their model, so it cannot be compared to ours.

Furthermore, besides occlusion and wearability, markers might not correspond to
a stable skeletal position due to skin artifacts. The movement of the skin changes the
position of the marker with respect to the joint dependent on the posture. This can be
compensated by including skin deformation into a model [8] using measures from
magnetic resonance imaging (MRI) [9]. In our presented procedure, the placement on
the nail prevents sensor movement due to skin deformation. Therefore, inaccuracies
due to skin deformation will be negligible.

Another aspect that will greatly influence the accuracy of the model are the cali-
brated measures. The present model does require some calibrations to be able to be
fitted to the hand size of the observer. Calibration is often a time-consuming process,
so we proposed to measure the lengths and widths of the fingers from a photograph.
The various measurements can thus be calculated after the actual experiment, which
reduces the time spent on calibration procedures. The calibration grid adjust distor-
tions due to the perspective of the photo, but still the lengths depend on the accuracy
of the marked positions of the joints. The hand is photographed in a stretched posi-
tion, but with bending and stretching of the fingers, the distances between joints vary
and this might cause problems with the model calculations. At this point, we think
it is difficult to solve this problem without a more extensive calibration process and
more measurements of joint positions during the exploration. Studies that compare
their model to specific known postures in the calibration procedure require knowl-
edge about all parameters in those postures, which might require extra measurements
as well.

If a more accurate performance is required, there are many possible options to
improve the calibrated measures. For instance, [19] partly resolved the problem of
many markers by only including them in the calibration procedure and once the joint
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rotation centers are calculated, omitting them later in the experiment. Another way is
to use a caliper to measure all finger lengths and thicknesses or even employ detailed
MRI data.

The photo of the hand provides a simple way to scale the model to different hand
sizes as individual measures can be easily acquired and put into the calculations.
Although hand size scaling seems essential, not all models are equally flexible. For
instance, a model might be partly fitted on experimental data. Lien and Huang [16]
use inverse kinematics to calculate all possible solutions of the finger joints and the
best solution is found through a regression search method. Constraints and relations
between the joints are used in the calculations, where these are partly fitted onto
experimental data. This makes this model difficult to apply to different hand sizes.
Also Sancho-Bru et al. [24] base their model on experimental data, but scale it to the
hand length and width of participants.

As hand models are only a representation of the actual hand, all models make
assumptions. Even the more complex and detailed models (e.g. [24]) make assump-
tions that might differ from actual hand anatomy [4]. To gain insight into most hand
movements, these constraints will often be adequate. In our model, the hand is also
simplified, for instance, with a rigid palm and phalanges in the shape of blocks. In
addition, in our model, the hand is assumed to hold one or more objects and thus to
be shaped in a slight bowl form. In situations were the hand is mostly stretched, this
might induce deviations. In such a task, the roll rotation corrections might be omitted.
Currently, the roll rotations increase from the thumb to the little finger in steps of
15◦. Further validation experiments could refine the best rotations for specific tasks.

Finally, another important feature of the current model is that it goes further than
the above models by forming 3D phalanges in addition to the joint positions. Even
if other minimal marker methods would be used to define joint positions, still the
creation of a complete finger is very useful for psychophysical experiments. These 3D
phalanges allow for a contact analysis, which is of high interest in haptic exploration
research. A procedure for such a contact analysis was also described in this chapter.
Whether a finger makes contact with an object determines if properties of that object
could have been processed by that specific finger. In the last part of this chapter, the
possible applications of the model are discussed.

14.5.2 Applications

The model as presented in this chapter is targeted at psychophysical studies where
extensive technological devices, like many markers or data gloves, cannot be used as
such systems would severely impair task performance. It is essential that cutaneous
input is not hindered and movements are not restricted. Moreover, it is of relevance
to have a method that is quick to execute, both in calibration and calculation as many
psychophysical experiments have time restrictions or online updating is desired.
In addition, the simple calculations make the model easy to use. This is a method
that is specifically designed for psychophysical experiments, whereas most models
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are usually optimized to provide hand animations or investigate different grasping
movements to objects, like power or pinch grips. So although our model cannot
compete with other models in terms of accuracy, it will still be the method of choice in
many psychophysical experiments. Of course, further development of the model and
integration with optimal estimation and design techniques as described in Chap. 15
is needed and possible, but its present state provides a good start.

Our model is specifically aimed at the analysis of interaction with objects where
haptic perception is critical and objects are held in the hand. Previous investigations
of haptic perception have only analyzed a part of the exploring hand, and mostly
objects were 2D [11, 20, 21, 25, 28]. However, this would not be enough to describe
the movements where all the fingers are used to explore a 3D object, for instance,
in the manipulation of small objects or multiple objects. Examples of such tasks are
search tasks (e.g. [23, 30]), numerosity tasks (e.g. [22]) or the discrimination of small
objects (e.g. [12]). Until now, the research into the exploration of 3D objects is rarely
studied in a quantitative manner [10, 26]. The use of the model could facilitate this
research. For instance, the object contact analysis is useful to investigate whether in
specific explorations some parts of the hand are used more than others and at which
moment in time.

A first example of the use of this model is the analysis of hand movements made
in a haptic search task [29]. In this study, we varied object properties, like texture
and shape, of the target object that had to be haptically searched for. Participants
performed complex and detailed movements that would have been difficult to capture
directly without restricting the finger motions. The model allowed us to investigate
these unconstrained movements and we found differences in the use of the fingers
and exploration strategies dependent on the specific target object property.

14.5.3 Conclusion

In conclusion, the current model provides a trade-off between the use of a minimal
marker-set and simple calculations with accuracy. Improvements to the calibration
procedure, marker-set and computations can make the hand model more realistic,
but also increase the complexity of the calculations and measurements. For general
purposes, the representation of the model in its current form will be enough. At the
same time, integration with the synergy-inspired optimal estimation techniques and
design of hand-pose reconstruction devices discussed in Chap. 15 can improve the
experimental outcomes described in this chapter. Especially in experiments were
the use of many sensors is undesirable, this model can be used to analyze whole
hand motions even with a small number of sensors. For general movements, the
model provides a basis to analyze these in an objective way. This is an advantage to
procedures that use subjective measures, such as video analysis. The measurement
with few sensors and simple calculations will then be a huge advantage.

http://dx.doi.org/10.1007/978-3-319-26706-7_15
http://dx.doi.org/10.1007/978-3-319-26706-7_15


14 A Simple Model for the Analysis of the Hand 257

Acknowledgments This work was supported by the European Commission with the Collaborative
Project no. 248587, “THE Hand Embodied”, within the FP7-ICT-2009-4-2-1 program “Cognitive
Systems and Robotics”.

References

1. Aristidou A, Lasenby J (2010) Motion capture with constrained inverse kinematics for real-
time hand tracking. In: 4th International symposium on communications, control, and signal
processing, ISCCSP 2010, IEEE, pp 1–5

2. Aristidou A, Lasenby J (2011) FABRIK: A fast, iterative solver for the Inverse Kinematics
problem. Graphical Models 73(5):243–260

3. Braido P, Zhang X (2004) Quantitative analysis of finger motion coordination in hand manip-
ulative and gestic acts. Hum Mov Sci 22(6):661–678

4. Bullock IM, Borras J, Dollar AM (2012) Assessing assumptions in kinematic hand models: A
review. In: Proceedings of the IEEE RAS and EMBS international conference on biomedical
robotics and biomechatronics, IEEE, pp 139–146

5. Cerveri P, De Momi E, Lopomo N, Baud-Bovy G, Barros RML, Ferrigno G (2007) Finger
kinematic modeling and real-time hand motion estimation. Ann Biomed Eng 35(11):1989–
2002

6. Dipietro L, Sabatini AM, Dario P (2008) A survey of glove-based systems and their applications.
IEEE Trans Syst Man Cybern Part C: Appl Rev 38(4):461–482

7. Fu Q, Santello M (2010) Tracking whole hand kinematics using extended Kalman filter. In:
2010 Annual international conference of the IEEE engineering in medicine and biology society,
EMBC’10, pp 4606–4609, doi:10.1109/IEMBS.2010.5626513

8. Gabiccini M, Stillfried G, Marino H, Bianchi M (2013) A data-driven kinematic model of the
human hand with soft-tissue artifact compensation mechanism for grasp synergy analysis. In:
IEEE International conference on intelligent robots and systems, pp 3738–3745, doi:10.1109/
IROS.2013.6696890

9. Gustus A, Stillfried G, Visser J, Jörntell H, van der Smagt P (2012) Human hand modelling:
kinematics, dynamics, applications. Biol Cybernet 106(11–12):741–755

10. Jansen SEM, Bergmann Tiest WM, Kappers AML (2015) Haptic exploratory behavior during
object discrimination: A novel automatic annotation method. Plos One 10(2):e0117,017, doi:10.
1371/journal.pone.0117017

11. Jansen SEM, Bergmann Tiest WM, Kappers AML (2013) Identifying haptic exploratory pro-
cedures by analyzing hand dynamics and contact force. IEEE Trans Haptics 6(4):464–472

12. Kahrimanovic M, Bergmann Tiest WM, Kappers AML (2011) Discrimination thresholds for
haptic perception of volume, surface area, and weight. Atten Percept Psychophys 73(8):2649–
2656

13. Kalagher H, Jones SS (2011) Young children’s haptic exploratory procedures. J Exp Child
Psychol 110(4):592–602

14. Klatzky RL, Lederman SJ, Reed C (1989) Haptic integration of object properties–texture,
hardness, and planar contour. J Exp Psychol Hum Percept Perform 15(1):45–57

15. Lederman SJ, Klatzky RL (1987) Hand movements–a window into haptic object recognition.
Cogn Psychol 19(3):342–368

16. Lien CC, Huang CL (1998) Model-based articulated hand motion tracking for gesture recog-
nition. Image Vision Comput 16(2):121–134

17. Liu H (2011) Exploring human hand capabilities into embedded multifingered object manip-
ulation. IEEE Trans Ind Inform 7(3):389–398

18. Miyata N, Kouchi M, Hurihara T, Mochimaru M (2004) Modeling of human hand link structure
from optical motion capture data. Intell Robots Syst 3:2129–2135

http://dx.doi.org/10.1109/IEMBS.2010.5626513
http://dx.doi.org/10.1109/IROS.2013.6696890
http://dx.doi.org/10.1109/IROS.2013.6696890
http://dx.doi.org/10.1371/journal.pone.0117017
http://dx.doi.org/10.1371/journal.pone.0117017


258 V. van Polanen et al.

19. Nataraj R, Li ZMM (2013) Robust identification of three-dimensional thumb and index finger
kinematics with a minimal set of markers. J Biomech Eng 135(9):91002

20. Overvliet KE, Smeets JBJ, Brenner E (2007) Haptic search with finger movements: using more
fingers does not necessarily reduce search times. Exp Brain Res 182(3):427–434

21. Plaisier MA, Bergmann Tiest WM, Kappers AML (2008) Haptic pop-out in a hand sweep.
Acta Psychol 128(2):368–377

22. Plaisier MA, Bergmann Tiest WM, Kappers AML (2009a) One, two, three, many–Subitizing
in active touch. Acta Psychol 131(2):163–170

23. Plaisier MA, Bergmann Tiest WM, Kappers AML (2009b) Salient features in 3-D haptic shape
perception. Atten Percept Psychophys 71(2):421–430

24. Sancho-Bru JL, Mora MC, León BE, Pérez-González A, Iserte JL, Morales A (2014) Grasp
modelling with a biomechanical model of the hand. Comput Methods Biomech Biomed Eng
17(4):297–310

25. Smith AM, Gosselin G, Houde B (2002) Deployment of fingertip forces in tactile exploration.
Exp Brain Res 147(2):209–218

26. Thakur PH, Bastian AJ, Hsiao SS (2008) Multidigit movement synergies of the human hand
in an unconstrained haptic exploration task. J Neurosci 28(6):1271–1281

27. Todorov E (2007) Probabilistic inference of multijoint movements, skeletal parameters and
marker attachments from diverse motion capture data. IEEE Trans Biomed Eng 54(11):1927–
1939. doi:10.1109/TBME.2007.903521

28. van Polanen V, Bergmann Tiest WM, Kappers AML (2012a) Haptic pop-out of movable stimuli.
Atten Percept Psychophys 74(1):204–215

29. van Polanen V, Bergmann Tiest WM, Kappers AML (2014) Target contact and exploration
strategies in haptic search. Sci Reports 4:6254. doi:10.1038/srep06254

30. van Polanen V, Bergmann Tiest WM, Kappers AML (2012b) Haptic search for hard and soft
spheres. PLOS ONE 7(10):e45298

31. Withagen A, Kappers AML, Vervloed MPJ, Knoors H, Verhoeven L (2013) The use of
exploratory procedures by blind and sighted adults and children. Atten Percept Psychophys
75(7):1451–1464

32. Wu YWY, Huang T (1999) Capturing articulated human hand motion: a divide-and-conquer
approach. Proceedings of the seventh IEEE International conference on computer vision, IEEE
1:606–611

33. Zhang X, Lee SW, Braido P (2003) Determining finger segmental centers of rotation in flexion-
extension based on surface marker measurement. J Biomech 36(8):1097–1102

http://dx.doi.org/10.1109/TBME.2007.903521
http://dx.doi.org/10.1038/srep06254


Chapter 15
Synergy-Based Optimal Sensing Techniques
for Hand Pose Reconstruction

Matteo Bianchi, Paolo Salaris and Antonio Bicchi

Abstract Most of the neuroscientific results on synergies and their technical imple-
mentations in robotic systems, which are widely discussed throughout this book (see
e.g. Chaps. 2, 3, 4, 8, 10, 12 and 13), moved from the analysis of hand kinematics in
free motion or during the interaction with the external environment. This observa-
tion motivates both the need for the development of suitable and manageable models
for kinematic recordings, as described in Chap.14, and the calling for accurate and
economic systems or “gloves” able to provide reliable hand pose reconstructions.
However, this latter aspect, which represents a challenging point also for many
human-machine applications, is hardly achievable in economically and ergonom-
ically viable sensing gloves, which are often imprecise and limited. To overcome
these limitations, in this chapter we propose to exploit the bi-directional relation-
ship between neuroscience and robotic/artificial systems, showing how the findings
achieved in one field can inspire and be used to advance the state of art in the other
one, and vice versa. More specifically, our leading approach is to use the concept of
kinematic synergies to optimally estimate the posture of a human hand using non-
ideal sensing gloves. Our strategy is to collect and organize synergistic information
and to fuse it with insufficient and inaccurate glove measurements in a consistent
manner and with no extra costs. Furthermore, we will push forward such an analysis
to the dual problem of how to design pose sensing devices, i.e. how and where to
place sensors on a glove, to get maximum information about the actual hand posture,
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especially with a limited number of sensors. We will study the optimal design of
gloves of different nature. Conclusions that can be drawn take inspiration from and
might inspire further investigations on the biology of human hand receptors. Exper-
imental evaluations of these techniques are reported and discussed.

15.1 Introduction

The problem to achieve a correct and reliable hand pose estimation through Hand
Pose Reconstruction (HPR) systems or “gloves” [10, 31] has gained an increasing
importance for human-machine interactions in numerous applications such as robot-
ics, rehabilitation, virtual reality and motion analysis. Furthermore, the study of
human hand in psychophysical and neuroscientific studies requires accurate biome-
chanical and postural measurements together with refined kinematic models [15] to
test and analyze theoretical motion control hypotheses [26], as it is widely discussed
e.g. in Chaps. 2, 3, 4 and 14.

Unfortunately, all current HPR methods are limited due to non—idealities, such
as an imperfectly known relationship between the measurements and the complexity
of the mechanical Degrees of Freedom (DoFs) of the human hand as well as consid-
erations that tend to discourage the usage of many sensors. Regarding this last point,
economic motivations are crucial to determine the choice of both the technology
solution in use and the number of sensing elements. Under this regard, a meaningful
example is the CyberGlove (CyberGlove SystemLLC, San Jose, CA–USA), which is
one of the most popular HPR glove-based systems: such a glove can come equipped
with 18 or 22 piezoresistive sensors but its overall cost grows from 12,297 USD to
17,795 USD (2010 quotes). On the other side, the need of enabling mass diffusion
has led to the development of more economic but inaccurate devices: e.g. Mattel’s
PowerGlove (Mattel Inc., El Segundo, CA–USA), which usually met with scarce
acceptance due to their imprecision. Ideally, the goal is to have systems that are
economic but effective.

This chapter, which is based on [1, 2], gives a global vision of the twofold problem
of (i) optimally estimating human hand posture from partial and noisy HPR data—
hence improving their accuracy at no extra costs—and (ii) how to optimally design
pose sensing devices, i.e. how and where to place sensors on the human hand, to get
maximum information about the actual hand pose despite limitations on their number
and capabilities. This last point can be inspired from and offers interesting insights
into biological investigations on human mechanoreceptors, as it will be discussed
later in Sect. 15.2. Such a bi-directional relationship between natural and artificial
side will be deeply analyzed in this chapter, representing the leitmotif of this work
and all this book.

Indeed, the leading idea of our approach is the concept of “human hand synergies”
[26–28] (see also Chaps. 2–6, 8, 10, 12 and 13): i.e. although very complex and
possibly different in size and shape, human hands share many commonalities in
how they are shaped and used in frequent everyday tasks. We will exploit such an
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information on the most frequent and probable hand postures to advance the state of
art of hand sensing systems and robotics and, at the same time, to provide technical
and theoretical tools to improve neuroscientific knowledge on human hand, in a
mutual inspiration between biology and artificial sciences.

15.2 Biology and Artificial Systems: A Mutual Inspiration

As deeply discussed throughout this book, in recent years numerous studies have
inquired in how the brain can organize the huge sensory—motor complexity of
the human hand, with particular reference to grasping. One of the main findings
is that there is a reduced number of coordination patterns, or synergies, related to
both biomechanical [12] and neural factors [19], which correlate both joint motions
and force exertions of multiple fingers [28] (see Chaps. 2–6, 8–13). Multivariate
statistical methods over a grasping data set also revealed that a limited amount of
so-called principal components (or eigenpostures [22]1) can explain a great part of
hand pose kinematic variability [26]. All these results suggest that it is possible to
reduce the number of DoFs to be used according to a desired level of approximation.

Such an idea has been extensively used in robotics from a controllability point
of view to define simplified strategies for the design and control of artificial hands
[6, 7, 14] as it is discussed inChap.8.However, synergy concept canbe also profitably
exploited from the observability point of view, i.e. how to reduce the number of
independent DoFs to be measured in order to obtain reliable hand pose estimations
(cf. [23] for an application in hand avatar animation). Indeed, if the human hand
moves according to patterns of most frequent use, it could be possible to exploit this
information to improve hand pose reconstruction despite measurements, which are in
general noisy and reduced in number. This observation suggests a strong relationship
between sensory andmotor side,which lays the foundations of the conceptwedefined
as sensory-motor synergies, as discussed in Chap.5 and in particular in Chap. 7.

In this chapter we will deal with such an observability problem.More specifically,
in the first part we will provide Minimum Variance Estimation techniques to fuse
synergistic kinematic information with partial and noisy glove measurements. In the
second part, we will push forward such an analysis, wondering: “and if I were the
designer, how could I choose and place the sensors on a glove to maximize hand
postural information?”.

This last question is extremely important since it further reveals deep relationships
between the artificial and natural side. Indeed, that the optimal distribution of sen-
sitivity for HPR is not trivial is strongly suggested by the observation of the human
example. Let us consider the role of cutaneous information and its relationship with
proprioception and kinaesthesia of human hands and fingers, as it was investigated
in [11] where the response to finger movements of cutaneous mechanoreceptors in
the dorsal skin of human hand was studied. Two main classes of mechanoreceptors

1Here in after, in this chapter the terms synergies andprincipal componentswill be used as synonyms.
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Fig. 15.1 Location of cutaneous mechanoreceptive units in the dorsal skin of the human hand.
Adapted from [11], courtesy of the authors. a Slowly adapting (SA) units location. b Fast adapting
(FA) units location. c Mechanoreceptor afferent units responding to ≥1 joint

involved in this response were roughly identified: Fast Adapting afferents of the first
type (FAI), and Slow Adapting afferents, of both the first and second type (SAI and
SAII, respectively). These two classes have non-uniform distributions as it is shown
in Fig. 15.1a, b. Indeed, FA units, which have a more localized response to move-
ments about one or, at most, two nearby joints, are primarily close to joints, while SA
units, which respond to several joints at the same time, can be found more uniformly
distributed (see Fig. 15.1c).

Conclusions that can be drawn suggest that in the human hand sensory system
there are different typologies of proprioceptive sensors on the skin with different
distributions and densities, thus producing a non-uniform map of sensitivities to
joint angles. Nonetheless the functional motivations of these data is still unclear, a
fascinating interpretation might be the different importance of different elementary
percepts in building an overall representation of the hand pose. These biological
results motivate our approach to deal with the problem of searching for a preferential
distribution and density of different typologies of sensors, which optimize the accu-
racy of glove-based HPR systems, especially when restrictions on the production
costs limit both the number and the quality of sensors. As kinematic synergies is the
leading idea for our optimal estimation approach and, together with the observations
on the biology of human mechanoreceptors, the motivation for the optimal design
of hand pose sensing systems, results we have achieved on the artificial side might
further inspire biological investigations, providing theoretical and technical tools to
advance the study of human hand sensory—motor apparatus.



15 Synergy-Based Optimal Sensing for Hand Pose Reconstruction 263

15.3 Performance Enhancement

The approach we propose to improve the reconstruction accuracy of existing sens-
ing gloves can deal with noisy measured data and relies on classic Minimum Vari-
ance Estimation (MVE). To validate this technique, we used a set of grasp postures
acquired with a low cost sensing glove, which provides few noisy measurements,
and an optical tracking system, which represents the accurate ground—truth for pose
reconstruction.

15.3.1 The Hand Posture Estimation Algorithm

Let us consider a set ofmeasures y ∈ R
m given by a sensing glove. By using a n degree

of freedom kinematic hand model, let us assume a linear relationship between joint
variables x ∈ R

n and measurements y given by

y = Hx + ν, (15.1)

whereH ∈ R
m×n (m < n) is a full rankmatrix, which represents the relation between

measures and joint angles, and ν ∈ R
m is a vector ofmeasurement noise. The goal is to

determine the hand posture, i.e. the joint angles x, by using a set of measures y whose
number is lower than the number ofDoFs describing the kinematic handmodel in use.
As a consequence, (15.1) represents a system where there are fewer equations than
unknowns and hence is compatible with an infinite number of solutions, described
e.g. as

x = H†y + Nhξ, (15.2)

whereH† is the pseudo-inverse ofmatrixH,Nh is the null space basis ofmatrixH and
ξ ∈ R

(n−m) is a free vector of parameters. Among these possible solutions, the least-
squared solution resulting from the pseudo-inverse of matrix H for system (15.1)
(hereianfter referred to as Pinv) is a vector of minimum Euclidean norm given by

x̂ = H†y. (15.3)

However, the hand pose reconstruction resulting from (15.3) can be very far from
the real one. The goal is to improve the accuracy of the pose reconstruction, choosing,
among the possible solutions to (15.2), the most likely hand pose, taking into account
the fact that fingermotions in grasping tasks are strongly correlated according to some
coordination patterns, or synergies [26] (cf. Sect. 15.2 and Chaps. 2, 3 and 8).

To achieve this goal, we use as a priori information the synergistic information
obtained by collecting a large number N of grasp postures xi with n DoFs into a
matrix X ∈ R

n×N . This information can be summarized by means of a covariance
matrixPo ∈ R

n×n, which is a symmetricmatrix computed asPo = (X−x̄)(X−x̄)T

N−1 , where
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x̄ is a matrix n × N whose columns contain the mean values for each joint angle
arranged in vectorμo ∈ R

n. We assume that the above described a priori information
is multivariate normal distributed, and hence can be described by the covariance
matrix Po.

15.3.1.1 Minimum Variance Estimation

Minimum Variance Estimation (MVE) technique minimizes a cost functional that
expresses the weighted Euclidean norm of deviations, i.e. cost functional J =∫

X(x̂ − x)T S(x̂ − x)dx, where S is an arbitrary, semidefinite positive matrix. Under
the hypothesis that ν has zeromean andGaussian distribution with covariancematrix
R, the solution for the minimization of J is achieved as x̂ = E[x|y], where E[x|y]
represents the a posteriori probability density function (pdf) expectation value of the
multivariate normal distribution. This function is expressed by [32] as

f (x) = 1√
2π‖Po‖ exp

{
−1

2
(x − μo)

T P−1
o (x − μo)

}
. (15.4)

The estimation x̂ can be obtained as in [16] by

x̂ = (P−1
o + HT R−1H)−1(HT R−1y + P−1

o μo), (15.5)

where matrix Pp = (P−1
o + HT R−1H)−1 is the a posteriori covariance matrix, which

has to be minimized to increase information about the system. This result represents
a very common procedure in applied optimal estimation when there is redundant
sensor information. In under-determined problems, it is only thanks to the a pri-
ori information, represented by Po and μo, that Eq. (15.5) can be applied (indeed,
HT R−1H is not invertible).

When R tends to assume very small values, the solution described in Eq. (15.5)
might encounter numerical problems. However, by using the Sherman-Morrison-
Woodbury formulae,

(P−1
o + HT R−1H)−1 = Po − PoHT (HPoHT + R)−1HPo (15.6)

(P−1
o + HT R−1H)−1HT R−1 = PoHT (HPoHT + R)−1, (15.7)

Equation (15.5) can be rewritten as

x̂ = μo − PoHT (HPoHT + R)−1(Hμo − y), (15.8)

and the a posteriori covariance matrix becomes Pp = Po − PoHT (HPoHT+R)−1

HPo. By placing R = 0 in (15.8), it is possible to obtain equation (15.7) and the
a posteriori covariance matrix becomes

Pp = Po − PoHT (HPoHT )−1HPo (15.9)
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Notice that, (15.8) with R = 0 can also be obtained by maximizing the pdf (15.4),
that is equivalent to solving the following optimal control problem (see [2] for
details): ⎧

⎨

⎩

x̂ = argmin
x̂

1
2 (x − μo)

T P−1
o (x − μo)

Subject to y = Hx.
(15.10)

It is interesting to give a geometrical interpretation of the cost function in (15.10),
which expresses the square of the Mahalanobis distance [21]. The concept of Maha-
lanobis distance, which takes into account data covariance structure, is widely
exploited in statistics, e.g. in Principal Components Analysis, mainly for outlier
detection [18]. Accordingly, to assess if a test point belongs to a known data set,
whose distribution defines an hyper-ellipsoid, its closeness to the centroid of data set
is taken into account as well as the direction of the test point w.r.t. the centroid itself.
In other words, the more samples are distributed along a given direction, the higher
is the probability that the test point belongs to the data set even if it is further from
the center.

15.3.2 Data Acquisition

To assess hand pose reconstruction effectiveness, without loss of generality, we used
a 15 DoF model for the hand,2 which was also considered in [14, 26] and reported
in Fig. 15.2. We collected a large number of static grasp positions using 19 active
markers and an opticalmotion capture system (Phase Space, SanLeandro,CA,USA).
More specifically, all the grasps of the 57 imagined objects described in [26] were
performed twice by subject AT (M,26), in order to define a set of 114 a priori data.
We characterized such an a priori information in terms of Po and μo.

Moreover, 54 grasp poses of a wide range of different imagined objects were exe-
cuted by subject LC (M,26).3 The set of the latter poses will be referred hereinafter as
validation set, since these poses can be assumed to represent accurate reference angu-
lar values for successive comparisons with the obtained hand pose reconstructions.
For this reason, these data were recorded in parallel with the sensing glove, whose
performance we wanted to optimize, as it will be described later in this Section, and
the Phase Space system, in order to achieve also glove calibration. The processed
hand poses acquired with Phase Space can be considered as reliable approximations
of real hand positions, given the high accuracy provided by this optical system to
detect markers (the amount of static marker jitter is inferior than 0.5 mm, usually

2The human hand, considering only fingers andmetacarpal joints, has 23DoFs [10]. Variousmodels
have been proposed in literature, which try to reproduce hand andwrist kinematics at different levels
of approximation, e.g. [13, 15, 30].
3All these data andmore information about hand pose acquisitions are available at http://handcorpus.
org/.

http://handcorpus.org/.
http://handcorpus.org/.
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DoFs Description
TA Thumb Abduction
TR Thumb Rotation
TM Thumb Metacarpal
TI Thumb Interphalangeal
IA Index Abduction
IM Index Metacarpal
IP Index Proximal
MM Middle Metacarpal
MP Middle Proximal
RA Ring Abduction
RM RingMetacarpal
RP Ring Proximal
LA Little abduction
LM Little Metacarpal
LP Little Proximal

Fig. 15.2 Kinematic model of the hand with 15 DoFs. Markers are reported as red spheres

0.1 mm) and assuming a linear correlation (due to skin stretch) between marker
motion around the axes of rotation of the joint and the movement of the joint itself
[37]. Since the sensing glove perfectly adapts to subject hand shape when it is worn,
the latter assumption is still reasonable also in this case, even if departures from real
reference configurations can happen. None of the subjects had physical limitations
that would affect the experimental outcomes. Data collection from subjects in this
study was approved by the University of Pisa Institutional Review Board. For the
markerization protocol and additional details on the acquisition, the reader is invited
to refer to [1].

15.3.3 Experimental Results

The reconstruction procedure was tested using a sensorized glove based on Conduc-
tive Elastomer (CEs) [33]. CE strips are printed on a Lycra®/cotton fabric in order
to follow the contours of the hand, see Fig. 15.3.

Since CE materials present piezo-resistive characteristics, sensor elements corre-
sponding to different segments of the contour of the hand length change as the hand
moves. These movements cause variations in the electrical properties of the material,
which can be revealed by reading the voltage drop across such segments.The sen-
sors are connected in series thus forming a single sensor line while the connections
intersect the sensor line in the appropriate points.
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Fig. 15.3 The sensing glove used in our study (on the left) and the sensing glovewith addedmarkers
(on the right)

In the present study, long finger flexion-extension recognition was obtained by
means of an updated multi-regressive model having the metacarpophalangeal (MCP)
flexion-extension angles of the five long fingers as dependent variables and the out-
puts of CE sensors covering MCP joints as independent ones. According to the hand
kinematic model adopted in this work they are referred to as TM, IM, MM, RM,
LM. The model parameters were identified by measuring the sensor status in two
different position: (1) hand totally closed (90◦), (2) hand totally opened (0◦). For
more information about the design and structure of the here described sensing glove
and the signal processing system employed, the reader is invited to refer to [20, 33,
34].

Although this sensorized glove can be regarded as one of the most recent and
inexpensive envisions in glove device literature, it is limited under several aspects that
can reduce its performance, e.g. cloth support that affects measurement repeatability
as well as hysteresis and non linearities due to piezo-resistive material properties.
Indeed, although this kind of glove is suitable for general opening/closening hand
movement measurement, it is not the best choice for sensing fine hand adjustments.
Moreover, the assumptions done for data processing (the relationship between joint
angles and sensors as well as the linearity between hand aperture and electrical
property changes) and the calibration phase based only on two-points fitting can act
like aditional potential sources of errors. To overcome this last point we performed
a new calibration to estimate the measurement matrix.

15.3.3.1 Results and Discussions

First, we obtained an estimation of the glove measurement matrix Hg, i.e. Ĥg. For
this purpose, a calibration phase was performed by collecting a number of poses N
in parallel with the glove and the optical tracking system. This number has to be
larger or equal than the dimension of the state to estimate, i.e. N ≥ 15. Xc ∈ R

15×15

collects the reference poses, while matrix Zc ∈ R
5×15 organizes the measures from

the glove. These measures represent the values of the signals referred to measured
joints averaged over the last 50 acquired samples (@250 kS/s). Matrix Ĥg can be
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obtained by exploiting the relation Zc = ĤgXc as Ĥg = Zc((XT
c )†)T . Measurement

noise was characterized in terms of fluctuations w.r.t. the aforementioned average
values of the measures, thus obtaining noise covariance matrix R. Noise level is less
than 10% measurement amplitude. However consistent errors in the measurement
matrix estimation might be obtained due to intrinsic non-linearities and hysteresis of
glove sensing elements. Once the measurement matrix Ĥg was obtained, we applied
MVEestimation techniques to themeasurements providedby theglove and compared
the results with those achieved using simple pseudo-inversion (Pinv) (15.2).

Pose estimation errors (i.e. the mean of DoF absolute estimation errors computed
for each pose ei = 1

n

∑n
i=1 |xi − x̂i|), and DoF absolute estimation errors are consid-

ered and averaged over all the number of reconstructed poses.
Results clearly show thatMVEoutperforms Pinv in terms of estimation outcomes.

Indeed, the average absolute pose estimation error with MVE is 10.94 ± 4.24◦,
while it is equal to 19.00 ± 3.66◦ by using Pinv. Statistical difference was observed
between the two techniques (p-value less than 10−4). Notice that MVE exhibits
best pose reconstruction performances also in terms of maximum errors (25.18◦ for
MVE vs. 30.30◦ for Pinv). Absolute average reconstruction errors for each DoF are
reported in Table15.1.MVE produces the best results which are statistically different
w.r.t. Pinv algorithm, see Table15.1, except, respectively, for those DoFs which are
directly measured (i.e. IM, RM and LM), for RA DoF, which exhibits a limited aver-
age estimation error (≈6◦), and finally TA. For TI the smallest average estimation is
observedwith Pinv; a possible explanation for thismight be still related to the difficul-
ties in kinematic modeling thumb phalanx kinematics. IA DoF presents the smallest
absolute average estimation error with Pinv, although p-values from the comparisons
between the two techniques for the estimation of this DoF are close to the significance
threshold. MaximumDoF reconstruction errors for MVE are observed especially for
those measured DoFs with potentially maximum variations in grasping tasks; this
fact may be probably due to the non linearities in sensing glove elements leading to
inaccurate estimation of Hg, and hence to inaccurate measures. Furthermore, MVE
aims at minimizing the error statistics and guarantees that the mean squared norm of
the joint error vector (i.e. the Mean Squared Error, MSE = 1

N

∑N
i=1 ‖x̂ − x‖2, where

N represents the number of predictions) is minimized, but not necessarily the value
of each single component. For this reason, some worst-case sensing results can be
found.

To conclude, except for some singular poses, the best estimation performance is
provided by MVE for which a good robustness to errors in measurement process
modeling is also observed. However, the latter errors are not taken numerically into
account in these analyses. Moreover, as it can been seen in Fig. 15.4, reconstructed
hand configurations obtained byMVEpreserve likelihoodwith real poses, as opposed
to pseudo-inverse based algorithm.
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Table 15.1 Average estimation errors and standard deviations for each DoF [◦], for the sensing
glove acquisitions

DoF
Mean±Std Max Error

p-values
MVE Pinv MVE Pinv

TA 12.12±9.98 14.37±10.78 36.63 34.28 0.28
TR 9.20±7.13 26.46±10.49 26.34 46.43 0

TM∗ 4.36±3.73 6.43±4.44 13.25 18.50 0.0093

TI 14.56±9.96 7.84±5.47 33.25 22.38 0.0008

IA 9.82±6.89 7.10±5.08 29.60 21.18 0.0381

IM∗ 15.27±11.86 16.48±12.62 46.76 43.58 0.58
IP 9.60±7.65 31.47±14.70 27.40 61.11 0

MM∗ 14.40±12.84 19.88±14.58 53.03 51.47 0.0232

MP 6.80±6.49 24.36±9.85 24.74 43.72 0

RA 6.20±4.31 5.69±4.72 15.72 20.90 0.51
RM∗ 19.00±13.44 19.22±11.81 61.98 46.32 0.67
RP 8.98±8.91 31.51±13.98 32.24 60.62 0

LA 11.42±8.50 32.24±6.98 29.59 48.11 0

LM∗ 17.37±12.51 17.98±11.81 58.40 45.05 0.26
LP 8.43±6.36 23.90±12.53 26.07 56.21 0

1←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−0
p-values

∗ indicates a measured DoF.

MVE and Pinv methods are considered. Maximum errors are also reported as well as p-values from
the evaluation of DoF estimation errors between MVE and Pinv. A color map describing p-values
is also added to simplify result visualization. � indicates that standard two-tailed t-test (Teq) is
exploited for the comparison. ‡ indicates a modified two-tailed T-test (Behrens-Fisher problem),
Tneq test. When no symbol appears near the tabulated values, it means that Mann-Whitney U-test
(U-test) is used. Bold value indicates no statistical difference between the two methods under
analysis at 5% significance level. When the difference is significative, values are reported with a
10−4 precision. p-values less than 10−4 are considered equal to zero

15.4 Optimal Design

In this part of the chapter, we extend the analysis to the optimal design of sensing
gloves. The objective is to choose the optimal sensor distribution that maximizes
the information on the actual posture. This information, used with the estimation
method previously discussed, will lead to the minimization of the reconstruction
error statistics.

As explained in Sect. 15.2, there is a strong biological evidence that the optimal
distribution of sensitivity for a sensing glove should not be trivial. However, while
most results in optimal experimental design [4, 8, 17] refer to the case where the
number of measurements is redundant or at least equal to the number of variables
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Fig. 15.4 Hand pose reconstructions with Pinv and MVE algorithms, with measures given by the
sensing glove. In blue the “real” hand posture whereas in white the estimated one

to be estimated, the opposite case that fewer sensors are available than the hand
variables is of main concern in our problem. To circumvent this limit, it is natural to
think of exploiting synergistic a priori knowledge to disambiguate poses from scarce
data.

In previous sections, synergistic prior knowledge on how humans most frequently
use their hands is fusedwith partial andnoisy data providedby anygivenglove device,
to maximize reconstruction accuracy. Here, the goal is to characterize a design that
enables for optimally exploiting—in a Bayesian sense—such an a priori information.

The optimization goals become particularly relevant when restrictions on the
production costs limit both the number and the quality of sensors. In these cases,
a careful design is instrumental to obtain good performance. Furthermore, different
technologies and sensor distributions can be considered to realize the devices. At
the physical level, sensors for gloves can be classified as either lumped (as e.g. a
mechanical angular encoder about a joint orHall-effect sensors, as in theHumanglove
by Humanware s.r.l. (Pisa, Italy) ) or distributed (e.g. a flexible optic fiber running
along a finger from base to tip or conductive elastomeric strips as in the glove used in
our experiments [33]). At the signal level, glove sensors can be coupled (if more than
one hand joint angle influences the reading) or uncoupled. Of course, all distributed
sensors are coupled, but also lumped sensors can exhibit cross-coupling.

Different sensor arrangements generate different measurement matrices H: the
row corresponding to a lumped, uncoupled sensor has a non-zero element only in
correspondence to themeasured joint, hence (up to rescaling) it is a binary “selection”
matrix. We will call such a matrix discrete, i.e. Hij ∈ {0, 1}—a discrete set of values.
Conversely, a coupled sensor with general weights, i.e. a distributed sensor or a
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lumped sensor with not negligible cross-coupling, produces a matrix whose row
elements are real numbers, i.e., up to rescaling, Hij ∈ [−1, 1] ⊂ R—a continuous
set of values. In the following, we will call such a matrix continuous. Finally, a
glove employing both lumped (uncoupled and coupled) and distributed sensors will
generate a hybrid measurement matrix, which consists of a continuous part and a
discrete one.

Lumped, uncoupled sensing devices, which generate a discrete measurement
matrix, are probably the easiest to be implemented, as they require to individu-
ally measure single joints according to the optimal measurement matrix. Common
sensing strategies include Hall-effect or piezoresistive sensors (e.g. CyberGlove,
by CyberGlove System LLC), directly placed on the joints to be measured, hence
obtaining a lumped device. On the other hand, distributed sensors, which generate an
optimal continuous matrix like the sensing glove used in the experiments described
in Sect. 15.3.3, should provide measurements in terms of (optimally) weighted linear
combinations of the contributions of different DoFs, e.g. using, among the different
techniques, resistive ink printed on flexible plastic bends that follow the movement
of hand joints (e.g. PowerGlove by Mattel Inc., El Segundo, CA–USA), or capaci-
tive sensors (as e.g. in the Didjiglove by Dijiglove Pty. Ltd., Melbourne, AUS) [10].
Finally, the above discussed technologies (lumped, uncoupled and distributed) can
be adopted and combined in an efficient manner to optimally realize devices that
can be modeled by a hybrid measurement matrix. Notice that the human hand sens-
ing distribution can be considered to belong to the latter glove class, as it will be
discussed later in this chapter.

15.4.1 Problem Definition

In the ideal case of noiseless measures (R = 0), Pp becomes zero when H is a full
rank n matrix, meaning that the available measures contain a complete information
about the hand posture. In the real case of noisy measures and/or when the number of
measurements m is less than the number of DoFs n, Pp cannot be zero. In these cases,
the following problem becomes very interesting: find the optimal matrix H∗ such
that the hand posture information contained in a reduced number of measurements is
maximized. Without loss of generality, let assume H to be full row rank and consider
the following problem.

Problem 1 Let H be an m × n full row rank matrix with m < n and V1(Po, H, R) :
R

m×n → R be defined as V1(Po, H, R) = ‖Po − PoHT (HPoHT + R)−1HPo‖2F , find

H∗ = argmin
H

V1(Po, H, R)

where ‖ · ‖F denotes the Frobenius normdefined as ‖A‖F = √
tr(A AT ), forA ∈ R

n×n.
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Frobenius norm has been already used in literature for optimization in measurement
problem, e.g. [24]. Here the squared Frobenius norm is adopted to exploit its useful
relation with matrix trace operator in order to simplify the derivation of the matrix
gradient flow later defined. To solve Problem 1 means to minimize the entries of
the a posteriori covariance matrix: the smaller the values of the elements in Pp,
the greater is the predictive efficiency. Next sections will be dedicated to describe
solutions to Problem 1 for different sensor distributions and hence measurement
matrices, i.e. continuous, discrete and hybrid, the latter containing both lumped and
distributed sensors.

Let us introduce some useful notations. IfM is a symmetricmatrixwith dimension
n, let its Singular Value Decomposition (SVD) be M = UMΣMUT

M , where ΣM is the
diagonal matrix containing the singular values σ1(M) ≥ σ2(M) ≥ · · · ≥ σn(M) of
M and UM is an orthogonal matrix whose columns ui(M) are the eigenvectors of M,
known as Principal Components (PCs) of M, associated with σi(M). For example,
the SVD of the a priori covariance matrix is Po = UPoΣPo UT

Po
, with σi(Po) and

ui(Po), i = 1, 2, . . . , n, the singular values and the principal components of matrix
Po, respectively.

15.4.2 Continuous Sensing Design

In this case, each row of matrix H is a vector in R
n and hence can be given as a

linear combination of aRn basis. Without loss of generality, we can use the principal
components of matrix Po, i.e. columns of previously defined matrix UPo , as a basis of
R

n. Consequently, naming Hc such a type of matrix related to a continuous sensing
device, the measurement matrix can be written as Hc = HeUT

Po
, where He ∈ R

m×n

contains the coefficients of the linear combinations. Given that Po = UPoΣPo UT
Po
, the

a posteriori covariance matrix becomes

Pp = U
[
Σo − ΣoHT

e (HeΣoHT
e + R)−1HeΣo

]
UT, (15.11)

where, for simplicity of notation Σo ≡ ΣPo.
We will analyze the optimal continuous sensing design both under a numerical

and analytical point of view. For this purpose, let us introduce the set of m × n (with
m < n) matrices with orthogonal rows, i.e. satisfying the condition HHT = Im×m,
and let denote it as Om×n.

15.4.2.1 Numerical Solution: Gradient Flows on Om×n

A differential equation that solve Problem 1 is proposed. The following proposition
describes an algorithm that minimizes the cost function V1(Po, H, R), providing the
gradient flow which can be used to improve the method of steepest descent.
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Proposition 1 The gradient flow for the function V1(Po, H, R) : Rm×n → R is
given by,

Ḣ = −∇‖Pp‖2F = 4
[
P2

pPoHTΣ(H)
]T

, (15.12)

where Σ(H) = (HPoHT + R)−1.

All the calculation to obtain the gradient can be found in the Appendix of [1].
Let us observe that rows ofmatrixH can be chosen,without loss of generality, such

that HiPoHT
j = 0, i �= j that implies that measures are uncorrelated, i.e. satisfying

the condition HHT = Im. Of course, in case of noise-free sensors, this constraint is
not strictly necessary. On the other hand, in case of noisy sensors, the minimum of
V1(Po, H, R) cannot be obtained since it represents a limit case that can be achieved
whenH becomes very large (i.e. an infimum) and hence increasing the signal-to-noise
ratio in an artificial manner. Therefore, it is possible to use the constraint HHT = Im

to reduce the search space in order to find solutions.
To solve this constrained problem it is possible to use the Rosen’s gradient pro-

jection method for linear constraints [25], which is based on projecting the search
direction into the subspace tangent to the constraint itself.

Having the search direction for the constrained problem, the gradient flow is
given by

Ḣ = −4W
[
P2

pPoHTΣ(H)
]T

(15.13)

whereΣ(H) = (HPoHT + R)−1. The gradient flow (15.12) guarantees that the opti-
mal solution H∗ will satisfy H∗(H∗)T = Im, if H(0) satisfies H(0)H(0)T = Im,
i.e. H ∈ Om×n.4

Notice that bothOm×n and V1(Po, H, R) are not convex, hence the problem could
not have a uniqueminimum. To overcome this common problem in gradientmethods,
amulti-start search represents a classic procedure. The here described gradient-based
technique can be useful to characterize optimal solutions also for discrete sensing
design, in case of large dimension problem. Moreover, they can furnish interesting
suggestions about a possible hybrid approach later discussed.

15.4.2.2 Analytical Solutions

Let us first consider the case of noiselessmeasures, i.e.R = 0. LetA be a non-negative
matrix of order n. It is well known (see [24]) that, for any given matrix B of rank m
with m ≤ n,

min
B

‖A − B‖2F = α2
m+1 + · · · + α2

n, (15.14)

4H(0) indicates the starting point at t = 0 for the gradient flow.
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where αi are the eigenvalues of A, and the minimum is attained when

B = α1w1w1
T + · · · + αmwmwm

T, (15.15)

where wi are the eigenvectors of A associated with αi. In other words, the choice of
B as in (15.15) is the best fitting matrix of given rank m for A. By using this result
we can determine when the minimum of (15.11), and hence of

‖Σo − ΣoHT
e (HeΣoHT

e )−1HeΣo‖2F, (15.16)

can be reached. Let us observe that the row vectors (hi)e ofHe can be chosen, without
loss of generality, to satisfy the condition (hi)e Σo (hj)e = 0, i �= j, which implies
that themeasures are uncorrelated. As previously said,Om×n denotes the set ofm × n
matrices, with m < n, whose rows satisfy the aforementioned condition, i.e. the set
of matrices with orthonormal rows (HeHT

e = I). By using (15.14), the minimum
of (15.16) is obtained when (see [24])

ΣoHT
e (HeΣoHT

e )−1HeΣo = σ1(Σo)u1(Σo)u
T
1 (Σo) + · · · + σm(Σo)um(Σo)u

T
m(Σo).

(15.17)

SinceΣo is a diagonalmatrix, ui(Σo) ≡ ei, where ei is the ith element of the canonical
basis. Hence, it is easy to verify that (15.17) holds for He = [Im | 0m×(n−m)]. As a
consequence, row vectors (hi)c of Hc are the first m principal components of Po,
i.e. (hi)c = ui(Po)

T , for i = 1, . . . , m.
From these results, a principal component can be defined as a linear combination

of optimally-weighted observed variables meaning that the corresponding measures
can account for the maximal amount of variance in the data set. As reported in [24],
every set of m optimal measures can be considered as a representation of points in
the best fitting lower dimensional subspace. Thus the first measure gives the best
one dimensional representation of data set, the first two measures give the best two
dimensional representation, and so on.

In case of noisy measures, (15.15) cannot be verified since it represents a limit
case that can be achieved when H becomes very large and hence increasing the
signal-to-noise ratio. We hence describe an optimal solution for problem 1 in the
setA = {H : HHT = Im}. This problem was discussed and solved in [9], providing
that, for arbitrary noise covariance matrix R,

min
H∈A

V1(H) =
m∑

i=1

σi(Po)

1 + σi(Po)/σm−i+1(R)
+

n∑

i=m+1

σi(Po), (15.18)

and it is attained for H = ∑m
i=1 um−i+1(R)ui(Po).

Hence, if A consists of all matrices with mutually perpendicular, unit length
rows, the first m principal components of Po are always the optimal choice for H
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rows. As shown in [9] this situation changes under the Frobenius norm constraint,
i.e. A = {H : ‖H‖F ≤ 1} (see [9] for details).

Conclusions that can be drawn from this part is that in case of noise-free mea-
sures, the invariance of the cost function w.r.t. changes of basis, i.e. V1(Po, H, 0) =
V1(Po, MH, 0)with M ∈ R

m an invertible full rank matrix, suggests that there might
exist a subspace in R

n where the optimum is achieved. Indeed, gradients become
zero when rows of matrix H are any linear combination of a subset of m principal
components of the a priori covariance matrix, or synergies [26]. Unfortunately, this
does not happen in case of noisy measures and gradients become zero only for a
particular matrix H which depends also on the principal components of the noise
covariance matrix. In other terms, in case of continuous sensing gloves the sensing
elements must be placed on the human hand in order to provide measurements that
are related to the joints according to the first m PC weights.

15.4.3 Discrete Sensing Design

Let us consider now the case that each measure yj, j = 1, . . . , m from the glove
corresponds to a single joint angle xi, i = 1, . . . , n. The problem here is to find the
optimal choice of m joints or DoFs to be measured.

Measurement matrix becomes in this case a full row rank matrix where each row
is a vector of the canonical basis, i.e. matrices which have exactly one nonzero entry
in each row: let Hd be such a type of matrix. The optimal choice H∗

d can be easily
computed, by substituting all the possible sub-sets ofm vectors of the canonical basis
in the cost function V1(Po, H, R). However, a more general approach to compute the
optimal matrix is provided in order to obtain the solution also when a model with a
large number of DoFs is considered, and eventually extended to all human body.

Let Nm×n denote the set of m × n element-wise non-negative matrices, then
Pm×n = Om×n ∩ Nm×n, wherePm×n is the set of m × n permutation matrices (see
lemma 2.5 in [36]). This result implies that if we restrict H to be orthonormal and
element-wise non-negative, we get a permutation matrix. We extend this result in
R

m×n, obtaining matrices which have exactly one nonzero entry in each row and the
problem to solve becomes:

Problem 2 Let H be a m × n matrix with m < n, and V1(Po, H, R) : Rm×n → R

be defined as V1(Po, H, R) = ‖Po − PoHT (HPoHT + R)−1HPo‖2F , find the optimal
measurement matrix

H∗ = argmin
H

V1(Po, H, R)

s.t. H ∈ Pm×n.
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15.4.3.1 Numerical Solution: Gradient Flows on Pm×n

A solution for this problem can be obtained defining a cost function that penalizes
negative entries of H. In [36] authors defined a function V2(P) with P ∈ R

n×n that
forces the entries of P to be as “positive” as possible. In this chapter, we extend this
function to measurement matrices H ∈ R

m×n with m < n and hence, we consider a
function V2 : Om×n → R as

V2(H) = 2

3
tr

[
HT (H − (H ◦ H))

]
, (15.19)

where A ◦ B denotes the Hadamard or elementwise product of the matrices A = (aij)

and B = (bij), i.e. A ◦ B = (aijbij). The gradient flow of V2(H) is given by [36]

Ḣ = −H
[
(H ◦ H)T H − HT (H ◦ H)

]
, (15.20)

which minimizes V2(H) converging to a permutation matrix if H(0) ∈ Om×n.
Up to this point, we have introduced two gradient flows given by (15.13)

and (15.20), both on the space of orthogonal matrices, that respectively minimize
their cost function, while the second one also converges to a permutation matrix. By
combining these two gradient flows a solution for Problem 2 can be achieved. Of
course, we can combine the gradient flows in two different ways: by adding them in a
convex combination or firstly ignoring the non-negativity requirement and switching
to the permutation gradient flow when the objective function has been sufficiently
minimized [36].

Theorem 1 Let H ∈ R
m×n with m < n the measurement process matrix and let us

assume that H(0) ∈ Om×n. Moreover, we suppose that H(t) satisfies the following
matrix differential equation,

Ḣ = 4 (1 − k)W
[
P2

pPoHTΣ(H)
]T + k H

[
(H ◦ H)T H − HT (H ◦ H)

]
, (15.21)

where k ∈ [0, 1] is a positive constant and Σ(H) = (HPoHT + R)−1. For sufficiently
large k (near one), limt→∞ H(t) = H∞ exists and approximates a permutation matrix
that also minimizes the squared Frobenius norm of the a posteriori covariance matrix,
‖Pp‖2F.

A proof for this theorem can be obtained directly by using results from [36] and
further details can be found in [2].

15.4.4 Hybrid Sensing Design

In previous sections, optimal solutions for continuous and discrete sensing cases
have been provided. However, in order to take advantage from both of them (the
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amount of information achievable vs low-cost implementation and feasibility) a
hybrid sensing device which combines continuous and discrete sensors might repre-
sent a valid improvement, as it can be found also in biology. Indeed, human hand can
be regarded—to some extent—as an example of hybrid sensory system. As previ-
ously discussed, among the cutaneous mechanoreceptors in the hand dorsal skin that
were demonstrated to be involved in the responses to finger movements, and hence
that possibly contribute to kinaesthesia, it is possible to find Fast Adapting (FA) type
ones, which mainly respond to movements around one or at most two nearby joints
and that can be regarded as “discrete” sensors, as well as the discharge rate of Slow
Adapting (SA) afferents, which are influenced by several joints and can be regarded
as “continuous” type sensors [11].

Up to re-arranging the sensor numbering, we can write a hybrid measurement
matrix Hc,d ∈ R

m×n as

Hc,d =
[

Hc

Hd

]
,

where Hc ∈ R
mc×n defines the mc rows of the continuous part, whereas Hd ∈ Pmd×n

describes the md single-joint measurements of the discrete part, with mc + md = m.
Neither the closed-form solution valid for the continuous measurement matrix, nor
the exhaustion method used for discrete measurements are applicable in the hybrid
case. Therefore, to optimally determine the hybrid measurement matrix, we will
recur to gradient-based iterative optimization algorithms.

By combining the continuous and discrete gradient flows, previously defined
in (15.12) and (15.20), respectively, and constraining the solution in the sub-set
Hc,d = {Hc,d : Hc,dHT

c,d = Im}, we obtain

Ḣc,d = 4 (1 − k)
[
P2

pPoHT
c,dΣ(Hc,d)

]T
W + k H̄d

[
(H̄d ◦ H̄d)T H̄d − H̄T

d (H̄d ◦ H̄d)
]
,

(15.22)

where k ∈ [0, 1] is a positive constant, Pp = Po − PoHT
c,d(Hc,dPoHT

c,d + R)−1Hc,d

Po, W = In − HT
c,d(Hc,dHT

c,d)
−1Hc,d, Σ(Hc,d) = (Hc,dPoHT

c,d + R)−1, and

H̄d =
[
0mc×n

Hd

]
.

Starting from any initial guess matrix Hc,d ∈ Hc,d , the gradient flow defined
in (15.22) remains in the sub-set Hc,d and, on the basis of Theorem 1, it converges
toward a hybrid measurement matrix, (locally) minimizing the squared Frobenius
norm of the a posteriori covariance matrix. Multi-start strategies have to be used to
circumvent the problem of local minima.

When noise is not negligible, without constraining the solution in Hc,d by W,
the gradient search method of (15.22) would tend to produce measurement matrices
whose continuous parts, Hc, are very large in norm. This is an obvious consequence
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of the fact that, for a fixed noise covariance R, larger measurement matrices H would
produce an apparently higher signal-to-noise ratio in (15.1).

15.4.5 Continuous and Discrete Sensing Optimal
Distribution

Results we have described in the past Sections show that, in case of continuous
sensing design, the optimal choice H∗

c of the measurement matrix H ∈ R
m×n is given

by the first m principal components of the a priori covariance matrix Po. Figure15.5
shows the hand sensor distribution for a number m = 1, 2, 3 of noise-free measures
(for lack of space we have reported only the continuous case).

In case of discrete sensing, H∗
d does not have an incremental behaviour, especially

in case of few measures. In other words, the set of DoFs which have to be chosen in
case of m measures does not necessarily contain all the set of DoFs chosen for m − 1
measures (for further details the reader is invited to refer to [2]).

Figure15.6 shows the values of the squared norm of the a posteriori covariance
matrix for increasing number m of measures. In particular, in Fig. 15.6 values of V1

for matrices H∗
c and H∗

d are reported, for noise-free measures.

Fig. 15.5 Optimal continuous sensing distribution for m = 1, i.e. the first PC of Po, for m = 2,
i.e. the first two PCs of Po and for m = 3, i.e. the first three PCs of Po. The greater is the weight
pwi of the joint angle in the optimal measures, the darker is the color of that joint. We assume the
weight of the ith joint in the optimal measures given as pwi = ∑m

k=1 |hk,i|, where hk,i is the (k, i)th
entry of matrix H , normalized w.r.t. the maximum value of pwi. For example, for m = 3, weight of
LA joint is 0.53, whereas for LM joint is 0.74 and the maximum value is for TA joint
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Fig. 15.6 Squared Frobenius norm of the a posteriori covariance matrix with noise-free measures
in case of H∗

c , H∗
d and H∗

c,d (mc = 1) with an increasing number of noise-free measures. A zoomed
detail of the graph is shown for m = 2, 3, 4, 5 measures

By analyzing how much V1 reduces with the number of measurements w.r.t. the
value it assumes for zero measures (Pp ≡ P0), two types of observations can be done.
First, the observed information quantified through V1 (squared Frobenius norm of
the a posteriori covariance matrix) is greatest for continuous case, while hybrid case
provides better performance than the discrete one. Second, for the continuous case
with noise-free measures, what is noticeable from the observability viewpoint is
that a reduced number of measures coinciding with the first three principal compo-
nents enable for �97% reduction of the squared Frobenius norm of the a posteriori
covariance matrix. An analogous result can be found also under the controllability
point of view. In [26] authors state that three postural synergies are crucial in grasp
pre-shaping since they take into account for �90% of pose variability in grasping
tasks.

15.4.6 Estimation Results with Optimal Discrete Sensing
Devices

In this section, we compare the hand posture reconstruction obtained by Hs (which
measured the joints TM, IM, MM, RM and LM) with the one obtained by using the
optimal matrix H∗

d with the same number of measurements in case of noisy measures
(TA,MM,RP, LA and LM), where an additional random noisewas artificially added on
each measure. A zero-mean, Gaussian noise with standard deviation 0.122 rad ( 7◦)
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Posture estimations by using noisy measures
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Fig. 15.7 Hand pose reconstructions MVE algorithm by using matrix Hs which allows to measure
TM, IM, MM, RM and LM and matrix H∗

d which allows to measure TA, MM, RP, LA and LM (see
Fig. 15.2). In color the real hand posture whereas in white the estimated one

was chosen based on data about common technologies and tools used to measure
hand joint positions [29], thus obtaining a noise covariancematrixR ≈ diag(0.0149).

Measures were provided by grasp data from the validation set, where degrees of
freedom to be measured were chosen on the basis of optimization procedure out-
comes, while the entire pose was recorded to produce an accurate reference posture.
In order to compare reconstruction performance achieved with Hs and H∗

d we used
as evaluation indices the average pose estimation error and average estimation error
for each estimated DoF. Maximum errors are also reported. In Fig. 15.7 a qualita-
tive comparison of four hand pose reconstructions in case of noisy measurements is
reported, with optimal and a non-optimal design.

In case of noise, performance in terms of average absolute estimation pose
errors ([◦]) obtained with H∗

d is better than the one exhibited by Hs (5.96± 1.42
vs. 8.18± 2.70). Moreover, maximum pose error with H∗

d is the smallest (9.30◦
vs. 15.35◦ observed with Hs). Statistical difference between results from Hs and H∗

d
is found (p=0.001). In Table15.2 average absolute estimation error with standard
deviations are reported for each DoF. Also in this case, for the estimated DoFs, per-
formance with H∗

d is always better or not statistically different from the one referred
to Hs. Maximum estimation errors with H∗

d are usually inferior to the ones obtained
with Hs.
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Table 15.2 Average estimation errors and standard deviation for each DoF [◦] for the simulated
acquisition considering Hs and H∗

d both with five noisy measures

DoF
Mean Error [◦] Hs vs. H∗

d Max Error [◦]
Hs H∗

d p-values Hs H∗
d

TA⊗ 6.7±5.62 4.87±3.57 0.19 23.35 15.93

TR 7.65±5.57 7.54±5.00 0.91 � 27.46 22.73

TM◦ 2.81±1.75 2.63±1.90 0.61 � 7.2 8.78

TI 6.08±4.63 5.42±4.74 0.32 19.6 19.10

IA 10.74±5.6 11.52±5.81 0.32 27.31 28.46

IM◦ 4.15±3.17 6.91±5.00 0.003 11.66 21.49

IP 14.61±7.93 6.61±6.01 0 31.85 38.07

MM◦⊗ 4.59±3.08 4.71±3.19 0.77 11.43 15.72

MP⊗ 13.71±8.07 4.08±2.98 0 ‡ 37.61 13.71

RA 3.12±2.37 3.28±2.45 0.71 9.18 9.37

RM◦ 4.03±3.07 6.30±4.72 0.01 ‡ 12.94 12.91

RP 16.78±11.07 6.89±3.82 0 ‡ 50.66 16.34

LA 8.97±5.11 9.86±5.45 0.38 � 20.86 21.48

LM◦⊗ 3.82±3.05 4.82±4.30 0.44 11.33 14.26

LP⊗ 14.64±9.68 3.94±2.95 0 48.61 11.03

1←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−0
p-values

◦ indicates a DoF measured with Hs⊗ indicates a DoF measured with H∗
d

Maximum errors are also reported as well as p-values from the evaluation of DoF estimation errors
between Hs and H∗

d . � indicates Teq test. ‡ indicates Tneq test. When no symbol appears near the
tabulated values, U test is used. Bold value indicates no statistical difference between the two
methods under analysis at 5% significance level. When the difference is significative, values are
reported with a 10−4 precision. p-values less than 10−4 are considered equal to zero. Symbol “–” is
used for those DoFs which are measured by both Hs and H∗

d . For further details on statistical tools,
the reader is invited to refer to Table15.1

15.5 Conclusions and Future Works

In this chapter we have dealt with the problem of achieving reliable hand pose
reconstructions through sensing gloves. More specifically, we have exploited the
synergistic information on how humans use most frequently their hands to optimize
estimation performance and optimally design sensing systems, when constraints on
the number and quality of the sensors can limit measurement outcomes. Results
show that the exploitation of a priori information on kinematic synergies can be
profitably used to advance the state of art of sensing devices, offering new insights
to further investigate the biology of human hand, e.g. in conjunction with the tech-
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niques described in Chap.14, in a bi-directional inspiration and relationship between
neuroscience and robotic/artificial systems.

Futureworkswill aimat physically realizing an optimal sensing glove.Weare con-
sidering different technological solutions, e.g. knitted piezoresistive fabrics (KPF)
textile goniometer technology that was developed by coupling two piezoresistive
layers through an electrically insulating middle layer [35]. Such a technology was
already used to develop an under-sensed glove whosemeasurements were completed
through synergistic information for functional grasp recognition [3].

The driving idea will be the synergy-based strategy described in this chapter and
protected by an Italian Patent [5], with themid long-termof enablingmass production
and commercialization for human-machine applications.
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