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Abstract
Radiative transfer equation (RTE) is the governing equation of radiation propa-
gation in participating media, which plays a central role in the analysis of
radiative transfer in gases, semitransparent liquids and solids, porous materials,
and particulate media, and is important in many scientific and engineering
disciplines. There are different forms of RTEs that are suitable for different

J. M. Zhao (*) · L. H. Liu
School of Energy Science and Engineering, Harbin Institute of Technology, Harbin, China
e-mail: jmzhao@hit.edu.cn; lhliu@hit.edu.cn

# Springer International Publishing AG, part of Springer Nature 2018
F. A. Kulacki (ed.), Handbook of Thermal Science and Engineering,
https://doi.org/10.1007/978-3-319-26695-4_56

933

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-26695-4_56&domain=pdf
mailto:jmzhao@hit.edu.cn
mailto:lhliu@hit.edu.cn
https://doi.org/10.1007/978-3-319-26695-4_56


applications, including the RTE under different coordinate systems, the trans-
formed RTE having good numerical properties, the RTE for refractive media, etc.
This chapter gives a comprehensive overview and introduction of the different
forms of RTEs. Furthermore, several fundamental numerical methods for solving
RTEs are introduced with the focus on the deterministic methods, such as the
spherical harmonics method, discrete-ordinate method, finite volume method,
and finite element method. The understanding of the numerical errors for solving
the RTEs, including their origin and effects on numerical results, and the related
accuracy improvement strategies are reviewed and discussed.

1 Introduction

Radiative transfer equation is the governing equation of radiation propagation in
participating media, which describes the general balance of radiative energy trans-
port in the participating media taking into account the interactions of attenuation and
augmentation by absorption, scattering, and emission processes (Howell et al. 2011;
Modest 2013). The equations of radiative transfer play a central role in the analysis
of radiative transfer in gases, semitransparent liquids and solids, porous materials,
and particulate media, which are important in many scientific and engineering
disciplines, such as combustion systems (Viskanta and Mengüç 1987; Modest and
Haworth 2016), rockets (Simmons 2000), atmospheric radiation (Liou 2002), remote
sensing, astrophysics, noncontact temperature field measurement (Zhou et al. 2005),
optical tomography (Klose et al. 2002), photo-bioreactors (Pilon et al. 2011;
Berberoglu et al. 2007), and solar energy harvesting (Benoit et al. 2016; Agrafiotis
et al. 2007; Mahian et al. 2013).

The classical equation of radiative transfer is a first-order integral-differential
equation describing radiative energy transport in media with uniform refractive
index, i.e., light beam propagates through straight lines in the media. It has been
widely applied to radiative transfer analysis in scientific and engineering problems
and demonstrated to be a reliable theory for engineering applications. There are
many variant forms of radiative transfer equations. For example, in order for
convenience of solution for specific problems, the equations of radiative transfer
are usually formulated under different coordinate systems and shown in different
forms, such as Lagrange form in ray-path coordinate and Eulerian forms in common
orthogonal coordinate systems, Cartesian coordinate system and cylindrical coordi-
nate system, etc. Furthermore, the traditional form of radiative transfer equations,
namely, the first-order integral-differential equation, can be transformed to second-
order forms to improve stability for numerical solution, such as the even-parity
formulation of radiative transfer equation (Song and Park 1992) and the second-
order radiative transfer equations (Zhao et al. 2013; Zhao and Liu 2007a). However,
due to the structural characteristics of a material or a possible temperature/pressure
dependency, the refractive index of a medium may be a function of spatial position.
Some examples of participating media with gradient refractive index distribution are
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earth’s (or other planets’) atmosphere, the ocean water, the hot air/gas of a flame, and
artificial materials, such as graded index lens, graded index optical fiber, etc. In such
cases, the classical equation of radiative transfer has to be extended to take into
account the effect of curved ray path, resulting in the equation of radiative transfer in
refractive media (Liu and Tan 2006). Radiative transfer in graded index media has
attracted the interest of many researchers; some recent works include Refs. Asllanaj
and Fumeron (2010), Wu and Hou (2012), Zhang et al. (2012), Hou et al. (2015),
Chai et al. (2015), and Huang et al. (2016), to name a few.

Numerical simulation is crucial to analyze radiative transfer in real applications,
since analytical solutions exist only for a few simple cases due to the mathematical
complexity of radiative transfer equation and the complex configuration of the
problems. However, numerical simulation of radiative transfer in participating
media is usually time consuming and requires considerable effort due to the com-
plexity and the high dimensionality of radiative transfer process, which contains
additional dimensions of one frequency and two angular dimensions besides the
common three spatial dimensions. Hence efficient and accurate numerical methods
are very important for most practical applications. Many efforts have been devoted
to devise effective methods for the analysis of radiative transfer in participating
media. Until recently, many numerical methods have been developed for the solution
of radiative transfer equation. Generally, the methods can be classified into two
groups, the first group is based on stochastic simulation, which includes various
implementation of Monte Carlo methods (MCM) (Howell 1968; Farmer and Howell
1994; Siegel and Howell 2002) and the DESOR method (Zhou and Cheng 2004),
and the second group is the deterministic methods, such as spherical harmonics
method (or PN approximation) (Mengüç and Viskanta 1985; Larsen et al. 2002),
discrete-ordinate methods (DOM) (Carlson and Lathrop 1965; Fiveland 1988;
Coelho 2002a), finite volume method (FVM) (Raithby and Chui 1990; Chai and
Lee 1994; Murthy and Mathur 1998; Asllanaj and Fumeron 2010), finite element
method (FEM) (Liu et al. 2008), radiation element method (Maruyama 1993),
spectral element method (Zhao and Liu 2006), spectral methods (Li et al. 2008),
and meshless methods (Sadat 2006; Liu and Tan 2007), to name a few. A review of
numerical methods for solving the RTE refers to the textbook by Modest (2013).

As being approximate methods, all numerical methods suffer several kinds of
numerical errors. The MC method suffers from statistic errors. The DOM, FVM, and
FEM suffer from space and angular discretization errors. The significance of numer-
ical errors is problem dependent. It will add unphysical features to the solution to
make the solution difficult to be interpreted and may sometimes totally spoil the
solution. Hence to know the origin and characteristics of numerical errors is impor-
tant, which can help to interpret the results of numerical simulation and to design
strategies to reduce or eliminate the errors. It has been known for decades that DOM
method suffers two kinds of numerical errors, i.e., false scattering and ray effects,
and several strategies have been proposed to reduce these errors (Chai et al. 1993).
Since the FVM can be considered a DOM with a special angular quadrature scheme,
FEM and many other methods are based on the discrete-ordinate equations. Thus the
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false scattering and ray effects are two general kinds of numerical errors, which need
to be thoroughly understood. Recently, Hunter and Guo (2015) gave a comprehen-
sive analysis on the numerical errors on solution of RTE.

In this chapter, the classical radiative transfer equation and several variant forms
of radiative transfer equation, different solution techniques for the radiative transfer
equations, numerical errors on the solution of radiative transfer equation, and the
related improvement strategies are presented and discussed. The chapter is organized
as follows. Firstly, the classical radiative transfer equation and variant forms of
radiative transfer equation are presented in Sect. 2. Then, the different solution
techniques for the radiative transfer equation are introduced in Sect. 3. Finally, the
numerical errors on the solution of radiative transfer equation and the related
improvement strategies are presented in Sect. 4.

2 Radiative Transfer Equation

In this section, the governing equations of radiative transfer, including the classic
radiative transfer equation, the radiative transfer equation in refractive media, and
the different variant forms of the radiative transfer equations, are introduced.

2.1 The Classical Radiative Transfer Equation (RTE)

The classical equation of radiative transfer describes the balance radiative energy
transport in absorbing, emitting, and scattering media with uniform refractive index
distribution. Generally, the radiative power of a light beam in the medium is a function
of wavelength λ (μm), transfer direction Ω, and spatial location r, which is described
using the physical quantity of radiative intensity Iλ(r, Ω). It has unit W/(m2μm sr),
denoting the transferred radiative power per unit cross-section area along the transfer
direction, per wavelength, and per solid angle. The RTE is a governing equation of
radiative intensity Iλ(r, Ω). In the following, the RTE in different coordinate system,
the energy relations, and the numerical property of RTE are presented.

2.1.1 Ray-Path Coordinate System Formulation
Ray-path coordinate is the natural coordinate system for light transfer. Here the RTE
is formulated in the one-dimensional Lagrangian ray-path coordinate at first. The
Lagrangian form of RTE is the physical clearest, in the simplest mathematical form,
and considered to be the most general formulation such that the RTE under other
different coordinate systems can be derived just by expressing the stream operator
under the system.

A control volume in cylinder shape along the ray path between s and s + ds is
considered as shown in Fig. 1. A light beam enters the left surface at s and exits at
s + ds. The end surface of the cylinder is perpendicular to the ray transfer direction
s with an area of dA. The radiative intensity along the ray-path direction can be
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expressed as Iλ(s, s). At the same location, the radiative intensity of any other
direction Ω can be expressed as Iλ(s, Ω). When the light beam (photons) moves
from location s to s + ds, the balance of spectral radiative power Qλ (W) can be
expressed as follows:

ΔQλ ¼ ΔQλ, abs þ ΔQλ, out-scatt
� �|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Attenuation

þ ΔQλ, emit þ ΔQλ, in-scatt
� �|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Augmentation

(1)

where ΔQλ denotes the variation of spectral radiative power along the differential
ray-path ds, which can be calculated by definition as ΔQλ = [Iλ(s + ds, s) � Iλ(s, s)]
dAdΩ, dΩ is a differential solid angle, and the four terms at right-hand side indicate
the contributions of the basic interaction mechanisms in participating media, namely,
absorption (ΔQλ, abs), scattering (ΔQλ, out - scatt and ΔQλ, in - scatt), and emission pro-
cesses (ΔQλ, emit). Absorption process transfers the radiative power to kinetic energy
of heat carriers (e.g., electrons and phonons), which only attenuates the radiative
power. Thermal emission process only augments the radiative power. As for the
scattering process, it can both attenuate and augment the radiative power depending
on whether it is the scattering of the current light beam Iλ(s, s) to other directions,
i.e., the out-scattering process, or the scattering of light beam of other direction
Iλ(s, Ω) to current transfer direction s, i.e., the in-scattering process.

The attenuated radiative power in the control volume is proportional to the
incident radiative power, which for the processes of absorption and out-scattering
can be established respectively as

ΔQλ, abs ¼ �κa, λIλ s, sð ÞdsdAdΩ, ΔQλ, out-scatt ¼ �κs, λIλ s, sð ÞdsdAdΩ (2)

ds

Incident
photons

Transmitted
photons

Scattered
photons

Absorbed
photons

Emitted
photons

I(s,s) I( s+ ds,s)s

Fig. 1 Schematic of light transport in participating medium. The photon beam is attenuated by
absorption and out-scattering and augmented by emission and in-scattering processes

23 Radiative Transfer Equation and Solutions 937



where κa,λ (m
�1) and κs,λ (m

�1) are the spectral absorption coefficient and scattering
coefficient, respectively. The emitted radiative power in the control volume is
established based on the black body radiative intensity as

ΔQλ, abs ¼ κa, λIb, λ T sð Þ½ �dsdAdΩ (3)

in which Kirchhoff’s law of thermal radiation is applied, κa,λds can be viewed as the
emissivity of the layer of medium with thickness ds, and Ib, λ is the black body
spectral radiative intensity. For a black body in a transparent medium with refractive
index nλ, Ib, λ is calculated from (Modest 2013)

Ib, λ ¼ n2λI
0
b, λ ¼

2hc2n2λ
λ5 ehc=λkBT � 1ð Þ (4)

where I0b, λ is the radiative intensity of black body in vacuum, c = 2.998 � 108 (m/s)

is vacuum light speed, h = 6.626 � 10�34 (J s) is the Planck’s constant, and kB =
1.3807 � 10�23 (J/K) is the Boltzmann’s constant. Note that the wavelength λ
denotes vacuum wavelength throughout this text.

The scattering process generally changes the direction of incident photons. This
angular redistribution of incident photons by scattering process is described by the
scattering phase function, which expresses the ratio of radiative power scattered to
each direction per solid angle. By definition, the scattering phase function Φλ(cosΘ)
(sr�1) must satisfy scattering energy conservation, which is often called normaliza-
tion relation and written as

1

4π

ð
4π

Φλ cosΘð ÞdΩ ¼ 1 (5)

where cosΘ = Ω0 � Ω is the cosine of the angle between incident (Ω0) and scattering
direction (Ω). For a light beam with radiative intensity Iλ(Ω0, s) incident on a
differential control volume with volume dV, the total scattered radiative power by
the scatterers in the control volume is κs,λIλ(Ω0, s)dVdΩ0 according to Eq. (2), where
dΩ0 is a differential solid angle related to the incident beam of direction Ω0. Then the
scattered power from an arbitrary incident direction Ω0 to the current transfer
direction s is κs, λIλ s,Ω0ð Þ 1

4πΦλ Ω0 � sð ÞdVdΩ0dΩ . The total in-scattering radiative
power augmentation from all directions can then be calculated by integration as

ΔQλ, in-scatt ¼
κs, λ
4π

ð
4π

Iλ s,Ω0ð ÞΦλ Ω0 � sð ÞdΩ0dsdAdΩ (6)

By substitution of Eqs. (3), (2), and (6) into Eq. (1), the Lagrangian form of RTE
can be obtained as
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dIλ s, sð Þ
ds

þ βλIλ s, sð Þ ¼ κa, λIb, λ T sð Þ½ � þ κs, λ
4π

ð
4π

Iλ s,Ω0ð ÞΦλ Ω0 � sð ÞdΩ0 (7)

where βλ = (κa,λ + κs,λ) is the extinction coefficient. If the ray coordinate is
not moved with beam propagation, namely, Eulerian frame is used. The radiative
intensity will be function of time t, and the fixed ray coordinate s can be
expressed as Iλ(s, t, s). In this case, the Lagrangian stream operator d/ds can be
expanded as

d

ds
¼ @

@s
þ @

@t

dt

ds
¼ @

@s
þ nλ

c

@

@t
(8)

where c is the light speed in vacuum. Using Eq. (8), the RTE can be expressed in
Eulerian form as

nλ
c

@Iλ s, t, sð Þ
@t

þ @Iλ s, t, sð Þ
@s

þ βλIλ s, t, sð Þ

¼ κa, λIb, λ T sð Þ½ � þ κs, λ
4π

ð
4π

Iλ s, t,Ω0ð ÞΦλ Ω0 � sð ÞdΩ0 (9)

Equations (7) and (9) are the basic form of RTEs in uniform refractive index
media. As can be seen, for steady-state radiative transfer, Eqs. (7) and (9) are the
same. Equation (9) is specially useful for transient radiative transfer analysis. The
RTEs in other coordinate systems can be derived by simply expressing the stream
operator in the coordinate system. In the following, only steady-state RTE is
considered unless otherwise mentioned.

2.1.2 Cartesian Coordinate System Formulation
In Cartesian coordinate system, radiative intensity is expressed as Iλ(s(x, y, z), Ω);
hence,

dI

ds
¼ dx

ds

@I

@x
þ dy

ds

@I

@y
þ dz

ds

@I

@z
(10)

Considering ds as the arc length along a curve, the coordinate transformation
coefficients dx/ds, dy/ds, and dz/ds are the direction cosines of the transport direction
Ω = μi + ηj + ξk. As such, Eq. (10) can be written as

dI

ds
¼ μ

@I

@x
þ η

@I

@y
þ ξ

@I

@z
¼ Ω � ∇I (11)

The RTE in Cartesian coordinate system can then be written as
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Ω � ∇Iλ r,Ωð Þ þ βλIλ r,Ωð Þ ¼ κa, λIb, λ T rð Þ½ � þ κs, λ

4π

�
ð
4π

Iλ r,Ω0ð ÞΦλ Ω0 �Ωð ÞdΩ0 (12)

where r = xi + yj + zk is the spatial location vector.
For 1D and 2D cases, the equation can be simplified by employing the symme-

tries of radiative intensity distribution, i.e., the axisymmetric around z-axis for 1D
and mirror symmetry about z-axis for the 2D case as shown in Fig. 2. The 1D RTE
can be written as

ξ
dIλ z, ξð Þ

dz
þ βλIλ z, ξð Þ ¼ κa, λIb, λ T zð Þ½ � þ

ð1
�1

I z, ξ0ð ÞΦ1, λ ξ0, ξð Þdξ0 (13)

where ξ = cos θ, Φ1, λ ξ0, ξð Þ ¼ 1
2π

Ð2π
0

Φ Ω0 �Ωð Þdφ is the 1D scattering phase func-

tion. The scattering phase function can be expanded in Legendre polynomials Pm as

Φ Ω0 �Ωð Þ ¼ Φ cosΘð Þ ¼ 1þ
XM
m¼1

AmPm cosΘð Þ (14)

where Am is the m-th order expansion coefficients. Then the 1D scattering phase
function can be expressed as (Modest 2013)

Φ1, λ ξ0, ξð Þ ¼ 1þ
XM
m¼1

AmPm ξ0ð ÞPm ξð Þ (15)

For the 2D case, the mirror symmetry indicates I Ω, rð Þ ¼ I Ω, r
� �

, where Ωm ¼
μ, η, � ξ½ �; hence, the RTE can be written as (Zhao et al. 2013)

μ
@Iλ
@x

þ η
@Iλ
@y

þ βλIλ ¼ κa, λIb, λ þ κs, λ
4π

ð
2π

Iλ r,Ω0ð ÞΦ2, λ Ω0 �Ωð ÞdΩ0 (16)

O z
O

x

y

z
q

ϕ

q

a
b

Fig. 2 1D and 2D Cartesian
system with variable defined
to formulate the RTE. (a) 1D
and (b) 2D
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whereΦ2, λ Ω0 �Ωð Þ ¼ Φλ Ω0 �Ωð Þ þΦλ Ω0 �Ω
� �

is the 2D scattering phase function,

and the angular quadrature is only over half solid angular space at θ � [0, π/2].

2.1.3 RTE in Other Coordinate Systems
Besides the Cartesian coordinate system, cylindrical and spherical coordinate sys-
tems are the other two commonly used orthogonal coordinate systems. Here the RTE
in these coordinate systems is presented. Currently, two types of cylindrical coordi-
nate system (ρ-Ψ -z-θ-φ) were proposed for radiative transfer analysis in literatures,
whose definitions are shown in Fig. 3. The Type I cylindrical coordinate system is
the traditional one (Modest 2013), and the Type II cylindrical coordinate system is a
relatively new one proposed recently (Zhang et al. 2010). The difference between
these two systems lies in the definition of local angular variables, i.e., the zenith
angle θ and azimuthal angle φ. By definition, the optical plane of reflection or
refraction at the cylindrical interfaces coincides with the iso-surface of azimuthal
angle φ in the Type II system; hence, it facilitates the treatment of reflection/
refraction at the cylindrical interfaces/boundaries.

For the Type I cylindrical coordinate system (Fig. 3a), the stream operator d/ds
can be expanded as (Modest 2013)

d

ds
¼ dρ

ds

@

@ρ
þ dΨ

ds

@

@Ψ
þ dz

ds

@

@z
þ dθ

ds

@

@θ
þ dφ

ds

@

@φ

¼ Ω � ∇I � η

ρ

@

@φ

(17)

whereΩ = μeρ + ηeΨ + ξez is the local direction vector of the beam; μ = sin θ cos φ;
η = sin θ sin φ; ξ = cos θ; eρ, eΨ, and ez are the unit coordinate vector; and
∇I = eρ@/@ρ + eΨρ

�1@/@Ψ + ez@/@z is the gradient operator in the Type I cylindri-
cal coordinate system. Hence the RTE in the Type I cylindrical coordinate system
can be written as

Ω

Ω

z

x

y
y

ρ ρ

r rer er

ez

eΨ eΨ

ze
z

x

q

q

a b

Ψ Ψ

ϕ

ϕ

Fig. 3 Definition of the cylindrical coordinate system. (a) Type I and (b) Type II
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Ω � ∇Iλ � η

ρ

@Iλ
@φ

þ βλIλ ¼ κa, λIb, λ þ κs, λ
4π

ð
4π

Iλ r,Ω0ð ÞΦλ Ω0 �Ωð ÞdΩ0 (18)

This is in nonconservative form, and it can be further rewritten in conservative
form as

Ω � e∇IIλ �
1

ρ

@ηIλ
@φ

þ βλIλ ¼ κa, λIb, λ þ κs, λ
4π

ð
4π

Iλ r,Ω0ð ÞΦλ Ω0 �Ωð ÞdΩ0 (19)

where e∇I �ð Þ ¼ eρρ�1 @ ρ�ð Þ= @ρþ eΨρ�1 @ �ð Þ= @Ψþ ezρ�1 @ �ð Þ= @z is a mod-
ified gradient operator in the Type I cylindrical coordinate system.

For the Type II cylindrical coordinates system (Fig. 3b), the stream operator can
be expanded as (Zhang et al. 2010; Zhao et al. 2012b)

d

ds
¼ Ω � ∇II � μ

cosφ

ρ

@

@θ
þ ξ

sinφ cosφ

ρ

@

@φ
(20)

where Ω = μeΨ + ηez + ξeρ is the local direction vector of the beam and the
gradient operator is given as ∇II = eΨρ

�1@/@Ψ + ez@/@z + eρ@/@ρ. The RTE in the
Type II cylindrical coordinate system can thus be written as

Ω � ∇IIIλ � μ
cosφ

ρ

@Iλ
@θ

þ ξ
sinφ cosφ

ρ

@Iλ
@φ

þ βλIλ

¼ κa, λIb, λ þ κs, λ
4π

ð
4π

Iλ r,Ω0ð ÞΦλ Ω0 �Ωð ÞdΩ0 (21)

This is in nonconservative form, and it can be further rewritten in conservative
form as

Ω � e∇ II
Iλ � 1

ρ sin θ

@

@θ
μ2Iλ
� �þ 1

ρ

@

@φ
ξ sinφ cosφIλ½ � þ βλIλ

¼ κa, λIb, λ þ κs, λ
4π

ð
4π

Iλ r,Ω0ð ÞΦλ Ω0 �Ωð ÞdΩ0 (22)

where e∇II �ð Þ ¼ eΨρ�1 @ �ð Þ= @Ψþ ez @ �ð Þ= @zþ eρρ�1 @ ρ�ð Þ= @ρ is a modified
gradient operator.

For the spherical coordinate system (Θ-Ψ-ρ-θ-φ) defined in Fig. 4, the stream
operator can be expanded as (Liu et al. 2008)

d

ds
¼ dΘ

ds

@

@Θ
þ dΨ

ds

@

@Ψ
þ dρ

ds

@

@ρ
þ dθ

ds

@

@θ
þ dφ

ds

@

@φ

¼ Ω � ∇� sin θ

ρ

@

@θ
� η cotΘ

ρ

@

@φ

(23)
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where Ω = μeΘ + ηeΨ + ξeρ is the local direction vector of the beam and the
gradient operator is defined as ∇ = eΘρ

�1@/@Θ + eΨ(ρ sin Θ)�1@/@Ψ + eρ@/@ρ.
The RTE in the spherical coordinate system can be obtained in the nonconservative
form as

Ω � ∇Iλ � sin θ

ρ

@Iλ
@θ

� η cotΘ
ρ

@Iλ
@φ

þ βλIλ

¼ κa, λIb, λ þ κs, λ
4π

ð
4π

Iλ r,Ω0ð ÞΦλ Ω0 �Ωð ÞdΩ0 (24)

and in the conservative form as

Ω � e∇ Iλ � 1

ρ sin θ

@ 1� ξ2
� �

Iλ

@θ
� cotΘ

ρ

@ηIλ
@φ

þ βλIλ

¼ κa, λIb, λ þ κs, λ
4π

ð
4π

Iλ r,Ω0ð ÞΦλ Ω0 �Ωð ÞdΩ0 (25)

where e∇ �ð Þ ¼ eΘ ρ sinΘð Þ�1 @ sinΘ �ð Þ= @Θþ eΨ ρ sinΘð Þ�1 @ = @Ψþ eρρ�2 @
ρ2�ð Þ= @ρ is a modified gradient operator.

2.1.4 Overall Energy Conservation
If the radiative intensity is known, then any other derived quantities such as radiative
heat flux vector, incident radiation, radiation energy density, volumetric radiation
source term (or divergence of radiative heat flux vector), absorbed radiative power
per unit volume, etc. can be readily calculated. The radiative heat flux vector qλ
(W/(m2μm)) and incident radiation G (W/(m2μm)) are calculated based on radiative
intensity as

eΨ
Ω

z

x

y

r
eΘ

O

q

er

ρΘ

Ψ

ϕ

Fig. 4 Definition of the
spherical coordinate system
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qλ rð Þ ¼
ð
4π
Iλ r,Ωð ÞΩdΩ, Gλ rð Þ ¼

ð
4π
Iλ r,Ωð ÞdΩ (26)

The total radiative heat flux vector q and total incident radiation G can be
calculated by a spectral integration with wavelength to qλ and Gλ, respectively.
The net spectral radiative heat flux onto a surface element qs , λ (W/(m2μm)) can
thus be calculated from qs, λ = qλ � nw. The spectral radiation energy density uλ
(J/(m3μm)) is

uλ rð Þ ¼ nλ
c

ð
4π
Iλ r,Ωð ÞdΩ ¼ nλ

c
Gλ rð Þ (27)

The absorbed spectral radiative power per unit volume wλ (W/(m3μm)) can be
calculated from

wλ rð Þ ¼ κaGλ rð Þ (28)

The balance equation of spectral radiative heat flux can be obtained by integration
of the RTE in Cartesian coordinates in Eq. (12) over entire solid angle, that is,

∇ � qλ ¼ 4πκa, λIb, λ � κa, λGλ (29)

The left-hand side of Eq. (29), namely, ∇ � qλ, stands for the outflow radiation
power per unit volume, which is thus can be understood as a volumetric radiation
source term. The first term and the second term of the right-hand side are the emitted
radiation power and the absorbed radiation power per unit volume, respectively.
Balance equation of total radiative heat flux can be obtained as

∇ � q ¼
ð1
0

κa, λ 4πIb, λ � Gλ

� �
dλ (30)

which can be simplified for gray medium (κa, λ = κa and nλ = n are constant) as

∇ � q ¼ κa 4πIb � Gð Þ ¼ κa 4n2σT4 � G
� �

(31)

where σ = 5.67 � 10�8 (W/(m2K4)) is the Stefan-Boltzmann constant.
If temperature field is to be determined, and only radiation heat transfer is

considered, the equation of overall energy conservation can be written as

ρCv
@T

@t
¼ Q

000
rad ¼ κa G� 4n2σT4

� �
(32)

where Q
000
rad ¼ �∇ � q (W/m3) denotes the equivalent radiative heat source, ρ

(Kg/m3) is the density, and Cv (J/(Kg K)) is the specific heat capacity of the medium.
At equilibrium, the temperature field can be determined as
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T ¼ G

4n2σ

	 
1
4

(33)

If combined mode heat transfer of conduction and radiation is considered, the
governing equation of overall energy conservation can be written as

ρCv
@T

@t
¼ ∇ � k∇Tð Þ þ Q

000
rad

¼ ∇ � k∇Tð Þ þ κa G� 4n2σT4
� � (34)

where k (W/(m K)) is the heat conductivity of medium. If further the convection heat
transfer is also considered, the overall energy conservation equation can be written
as

ρCv
@T

@t
þ u � ∇T

	 

¼ ∇ � k∇Tð Þ þ Q

000
rad þ Q

000
f

¼ ∇ � k∇Tð Þ þ κa G� 4n2σT4
� �þ Q

000
f

(35)

where u (m/s) is the fluid velocity vector and Q
000
f denotes the volumetric heat

source other than thermal radiation, such as from viscous friction, chemical
reaction, etc.

2.1.5 Boundary Conditions for RTE
The inflow radiative intensity at the boundary walls must be set before the solution of
the RTE. Generally speaking, three processes contributed to the emanated radiative
intensity at the boundary walls, namely, the emission, reflection, and transmission.
For a diffuse emitting and reflecting opaque wall, the boundary condition can be
written as

Iλ rw,Ωð Þ ¼ ew, λIb, λ T rwð Þ½ � þ 1� ew, λ
π

ð
nw�Ω0>0

Iλ rw,Ω0ð Þ nw �Ω0j jdΩ0, nw �Ω< 0

(36)

where ew λ is the wall spectral emissivity and nw is the normal vector of the wall
pointing outside the enclosure. The boundary condition for diffuse wall (Eq. (36))
can also be written as (Modest 2013)

Iλ rw,Ωð Þ ¼ Ib, λ T rwð Þ½ � þ 1� ew, λ
πew, λ

q � nw, nw �Ω < 0 (37)

For real opaque rough surfaces, there will be significant part of radiation reflec-
tion at the specular direction. As such, the wall reflection can be separated into a
diffuse reflection part and a specular reflection part. In this case, the boundary
condition can be written as
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Iλ rw,Ωð Þ ¼ ew, λIb, λ T rwð Þ½ � þ ρdw, λ
π

ð
nw�Ω0>0

Iλ rw,Ω0ð Þ nw �Ω0j jdΩ0

þ ρsw, λIλ rw,Ωsð Þ (38)

where ρdw, λ and ρsw, λ are the diffuse and specular reflectivity, respectively, and Ωs is

the corresponding incident direction of specular reflection, which can be determined
as Ωs = Ω � 2(Ω � nw)nw.

If an external radiative source, such as a laser, a lamp, or a solar beam, is
irradiated to a medium with semitransparent walls, the boundary condition can be
written as

Iλ rw,Ωð Þ ¼ ew, λIb, λ T rwð Þ½ � þ ρdw, λ
π

ð
nw�Ω0>0

Iλ rw,Ω0ð Þ nw �Ω0j jdΩ0

þρsw, λIλ rw,Ωsð Þ þ τw, λIext rw,Ωð Þ
(39)

where τw,λ is spectral transmittance of the semitransparent wall and Iext(rw, Ω) is the
radiative intensity of the external source.

2.1.6 Numerical Properties of the Classical RTE
The classical RTE (Eq. (12)) can be written shortly as

Ω � ∇I þ β I ¼ S (40)

where S is the source term accounting for thermal emission and in-scattering
contribution. The wavelength subscript is omitted for brevity. The first term of the
left-hand side of Eq. (40) can be seen as a convection term with a convection velocity
of Ω, namely, μ, η, and ξ, which are taken as the velocity in x-, y-, and z- directions,
respectively. Hence the RTE can be considered as a special kind of convection-
diffusion equation without the diffusion term (Chai et al. 2000b). The convection-
dominated property is a source of numerical instability, which may cause unphysical
numerical results, and shows strong ray effects (Chai et al. 2000a).

In order for illustrating the numerical stability of the first-order RTE, Fig. 5a
shows the example results solved by a finite element method discretization of the
first-order RTE for a 1D case with a Gaussian-shaped emissive source at different
optical thickness excerpted from Ref. Zhao and Liu (2007a). The solved radiative
intensity distribution shows significant unphysical oscillations, which is a good
demonstration of the instability issue caused by the convection-dominated charac-
teristics of the RTE. Following the theoretical framework presented in Ref. Zhao
et al. (2013), the solution error can be predicted in frequency domain as shown in
Fig. 5b. The frequency range of the reduced frequencyϖ ¼ Δsϖ=2π is plotted in [0,
0.5], where ϖ denotes the angular frequency in Fourier analysis and Δs is the grid
spacing. This is based on the fact that the maximum frequency (or shortest
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wavelength) of a harmonic that can propagate on a uniform grid of spacing Δs is π/Δs
(or wavelength 2Δs), namely, ϖ = 0.5. It can be seen that the relative error of
intensity jEIj increases with ϖ for different grid optical thickness and the maximum
relative error occurs at ϖ = 0.5 with a huge relative error greater than 300 for τΔ=
0.01. Hence significant error can be observed at around ϖ = 0.5, interpreting the
observed high-frequency unphysical oscillations in Fig. 5a. The solution errors
(especially at the high frequency) of the results obtained by the RTE reduces
significantly with the increasing of grid optical thickness τΔ, indicating the solution
error will decrease for problem with larger extinction coefficient on a specified grid,
interpreting the observed decreasing of unphysical oscillations with increasing
optical thickness in Fig. 5a.

2.2 The Second-Order Form of RTE

The classical form of the RTE under different coordinate systems has been presented
in the previous section. The convection-dominated characteristics of the RTE may
cause unphysical oscillation in the numerical results as discussed in the previous
section. This type of instability occurs in many numerical methods, such as finite
difference methods, finite element methods, and meshless methods, if no special
stability treatment is taken (Chai et al. 2000b). It has been demonstrated that the
classical RTE can be transformed to a new equation with a naturally introduced
second-order diffusion term to circumvent the stability issue. In this section, several
second-order form of RTEs is presented, including the even-parity formulation of
RTE (EPRTE), the second-order radiative transfer equation (SORTE), and its
variants.

0.0 0.2 0.4 0.6 0.8 1.0

a b

0.00

0.02

0.04
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10

tL= 0.1
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z/L

1.0
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101

103

ϖ

tΔ= 0.01
tΔ= 0.1
tΔ= 1
tΔ= 10

|EI|

Fig. 5 Example results illustrating the numerical stability of the first-order RTE. (a) Intensity distri-
bution solved by finite element method for the Gaussian-shaped emissive source problem, (b) theoretical
frequency domain relative error of the RTE discretized using central difference scheme
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2.2.1 The Even-Parity Formulation
The EPRTE is the first attempt that transforms the classic RTE into an equation with
the second-order diffusion term and hence eliminates the convection-dominated
property. The EPRTE was initially proposed in the field of neutron transport and
has been used for decades. Song and Park (1992) initially applied the EPRTE in heat
transfer field. It has been applied to DOM (Cheong and Song 1997) and FEM
(Fiveland and Jessee 1995) discretization. In this approach, new variables, i.e.,
even- and odd-parity intensities, are defined as function of radiative intensity both
at forward direction and backward direction,

ψE r,Ωð Þ ¼ 1

2
I r,Ωð Þ þ I

�
r,�Ω

�� �
(41)

ψO r,Ωð Þ ¼ 1

2
I r,Ωð Þ � I

�
r,�Ω

�� �
(42)

By adding and subtracting the RTE (Eq. (12)) for forward direction Ω and
backward direction �Ω, respectively, it yields the governing equations of ψE(r, Ω)
and ψO(r, Ω) for isotropic scattering media as

Ω � ∇ψO þ βψE ¼ κaIb þ κs
2π

ð
2π

ψE r,Ω0ð ÞdΩ0 (43)

Ω � ∇ψE þ βψO ¼ 0 (44)

These two equations can be decoupled. From Eq. (44), ψO = � β�1Ω � ∇ψE,
which is substituted into the first term of Eq. (43) to obtain a second-order diffusion-
type equation of ψE, namely, the EPRTE,

�Ω � ∇ β�1Ω � ∇ψE

� �þ βψE ¼ κaIb þ κs
2π

ð
2π

ψE r,Ω0ð ÞdΩ0 (45)

It is noted that the angular integration for the scattering term is only over half
solid angular space. Since this is a second-order partial differential equation,
boundary condition both at the inflow and outflow boundaries should be pre-
scribed. Following similar approach, by adding and subtracting of the boundary
condition (Eq.(36)) for forward direction Ω and backward direction �Ω, the
boundary condition for ψE at inflow (nw � Ω < 0) and outflow (nw � Ω > 0)
boundary is obtained as

ψE rw,Ωð Þ � β�1Ω � ∇ψE

¼ ewIb rwð Þ þ 1� ew
π

ð
nw�Ω0>0

ψE Ω, rwð Þ þ β�1Ω � ∇ψE

� �
nw �Ω0j jdΩ0 (46)

and
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ψE rw,Ωð Þ þ β�1Ω � ∇ψE

¼ ewIb rwð Þ þ 1� ew
π

ð
nw�Ω0>0

ψE Ω, rwð Þ � β�1Ω � ∇ψE

� �
nw �Ω0j jdΩ0 (47)

respectively.

2.2.2 The Second-Order RTEs
The SORTE (Zhao and Liu 2007a) and its variant (Zhao et al. 2013) proposed
recently are diffusion-type equations similar to the heat conduction equation in
anisotropic medium. Its governing variable is the radiative intensity, as compared
to the EPRTE, of which the governing variable is the even parity of radiative
intensity. These two approaches share similar stability due to the same basic under-
lying principle. The using of radiative intensity as solution variable is more conve-
nient and easier to be applied to complex radiative transfer problems for the
SORTEs, such as anisotropic scattering.

The SORTE is rather easy to be derived based on the RTE. From Eq. (7), it is
rearranged to have

I ¼ �β�1 dI

ds
þ 1� ωð ÞIb þ ω

4π

ð
4π
I s,Ω0ð ÞΦ Ω0 �Ωð ÞdΩ0 (48)

where ω = κs/β is the single scattering albedo. Substituting this relation back into
the first term of the RTE, the SORTE is then obtained,

� d

ds
β�1 dI

ds

� �
þ βI ¼ βS� dS

ds
(49)

where S is the source function defined as

S ¼ 1� ωð ÞIb þ ω

4π

ð
4π
I Ω0, sð ÞΦ Ω0 �Ωð ÞdΩ0

Following the approach in Sect. 2.1.2, the SORTE can be written in Cartesian
coordinate as

�Ω � ∇ β�1Ω � ∇I� �þ βI ¼ βS�Ω � ∇S (50)

and rewritten as

∇ � K � ∇I� � ¼ β I � Sð Þ þΩ � ∇S (51)

whereK ¼ β�1ΩΩ, which is similar to the tensorial heat conductivity for anisotropic
medium, and the terms at the right-hand side can be viewed as effective heat source.

Similar to the EPRTE, the boundary condition for the SORTE should be pre-
scribed both at the inflow and outflow boundaries. Since the governing variable is
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radiative intensity, the boundary condition is straightforward, which is given at the
inflow and outflow boundary as (Zhao and Liu 2007a)

I rw,Ωð Þ ¼ ewIb rwð Þ þ 1� ew
π

ð
nw�Ω0>0

I rw,Ω0ð Þ nw �Ω0j jdΩ0, nw �Ω < 0 (52)

Ω � ∇I rw,Ωð Þ þ βI rw,Ωð Þ ¼ βS rw,Ωð Þ, nw �Ω > 0 (53)

Note that the inflow boundary condition for SORTE is the same for that of the
RTE and the outflow boundary condition is just the RTE itself.

Following the similar principle, the modified SORTE (MSORTE) was proposed
(Zhao et al. 2013), in which no β�1 coefficient appears; hence, it is better in dealing
with inhomogeneous media where some locations have very small/zero extinction
coefficient. The MOSRTE is obtained by applying the stream operator d/ds once to
the RTE, which can be written in ray-path coordinate as

d2I

ds2
þ dβI

ds
¼ dβS

ds
(54)

and in Cartesian coordinate system as

Ω � ∇ð Þ2 I þΩ � ∇ βIð Þ ¼ Ω � ∇ βSð Þ (55)

The boundary conditions for the MSORTE are the same as that for the SORTE.

2.2.3 Numerical Properties of the Second-Order RTE
The second-order form of RTE contains a second-order diffusion term, which
circumvents the convection-dominated characteristics of the RTE, and hence is
numerical stable. The numerical properties of the RTE, SORTE, and MSORTE
have been studied theoretically using Fourier analysis (Zhao et al. 2013), which
confirms the stability of the second-order forms of RTE. Figure 6 gives a comparison
of the predicted relative solution error in frequency domain for the first-order and
second-order form of RTEs. As can be seen, at high frequency (ϖcloses to 0.5, which
is the frequency of the unphysical oscillations), the relative error for the central
difference discretization of the second-order form of RTEs is far less than (two
orders of magnitude) that of the RTE, proving the numerical stability of the second-
order form of RTEs.

2.3 The Radiative Transfer Equation in Refractive Media

Due to the structural characteristics of a material or a possible temperature, pressure,
and composition dependency, the refractive index of a media may be a function of
spatial position. In this case, the ray goes along a curved path determined by the
Fermat principle rather than along the straight lines. The formulation of the RTEs
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presented in the previous section implicitly assumed straight-line ray path. The effect
of ray curvature or gradient index refraction has to be taken into account to formulate
the radiative transfer equation in refractive media. Hence the RTE in uniform index
media cannot be applied to gradient index media. The radiative heat transfer in
semitransparent media with graded index is of significant importance in thermo-
optical systems, atmospheric radiation, ocean optics, etc. and has evoked the wide
interest of many researchers (Zhu et al. 2011; Asllanaj and Fumeron 2010; Sun and
Li 2009; Liu 2006; Xia et al. 2002; Ben Abdallah and Le Dez 2000a, b). In this
section, the radiative transfer equation in gradient refractive index media and its
formulation under different coordinate system are presented.

2.3.1 Ray-Path Coordinate System Formulation
When a light beam propagates in gradient index media, its direction will gradually
change due to the effect of gradient of refractive index, besides the attenuation and
augmentation effect caused by absorption, scattering, and emission processes, as
shown in Fig. 7. The governing equation of radiative transfer in gradient index media
can be considered as an extension of the RTE to take into account the effect of
gradient of refractive index.

The variation of radiative intensity along the curved ray path can be attributed to
two mechanisms: the first is due to the variation of refractive index and the second is
from any other processes as discussed in participating media of uniform refractive
index distribution. The total variation of radiative intensity along the curved ray path
can be written as

dIλ s, n sð Þ, sð Þ ¼ @Iλ s, n sð Þ, sð Þ
@s

dsþ @Iλ s, n sð Þ, sð Þ
@n

dn (56)
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Fig. 6 The frequency domain
distribution of solution error
for the central difference
discretization based on the
RTE, the MSORTE, and the
SORTE at different grid
optical thickness (Zhao et al.
2013)
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where the first term on the right-hand side stands for the variation caused by the
common processes of absorption, scattering, and emission, which can be expressed
based on the RTE in uniform refractive index media as

@Iλ s, n sð Þ, sð Þ
@s

¼ �βλIλ s, sð Þ þ κa, λIb, λ T sð Þ½ � þ κs, λ
4π

�
ð
4π

Iλ s,Ω0ð ÞΦλ Ω0 � sð ÞdΩ0 (57)

The second term stands for the variation only caused by variation of refractive
index, which is needed to be explicitly calculated. The Clausius invariant relation for
transparent gradient index media gives d[Iλ/n

2] = 0, from which the second term in
Eq. (56) can be obtained as

@Iλ
@n

dn ¼ 2
Iλ
n
dn (58)

Substituting Eq. (58) into Eq. (56), then the radiative transfer equation in gradient
index medium (GRTE) in Lagrange form along the ray coordinate can be obtained as

n2
d

ds

Iλ s, sð Þ
n2

� �
þ βλIλ s, sð Þ ¼ κa, λIb, λ T sð Þ½ � þ κs, λ

4π

�
ð
4π

Iλ s,Ω0ð ÞΦλ Ω0 � sð ÞdΩ0 (59)

By expanding the Lagrangian stream operator in Eulerian frame (Eq. (8)), the
transient GRTE is obtained,

ds

s

O

s

I(s, s + ds)

Scattered
photons

Absorbed
photons

Emitted
photons

I(s, s)

Fig. 7 Schematic of light transport in gradient index participating medium and variable definition
in ray-path coordinate
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nλ
c

@Iλ s, t, sð Þ
@t

þ n2
@

@s

Iλ s, t, sð Þ
n2

� �
þ βλIλ s, t, sð Þ

¼ κa, λIb, λ T sð Þ½ � þ κs, λ
4π

ð
4π

Iλ s, t,Ω0ð ÞΦλ Ω0 � sð ÞdΩ0 (60)

Note that the GRTE does not contain information about the curved ray path. To
solve the equation, the ray equation (Born and Wolf 1970) must be solved, that is,

d

ds
nsð Þ ¼ ∇n (61)

The wavelength subscript will be omitted without loss of generality. More
detailed derivation of radiative transfer equation in gradient refractive index
media, including light polarization, refers to Ref. Zhao et al. 2012b.

2.3.2 Cartesian Coordinate System Formulation
To formulation the GRTE in Cartesian coordinate system, the stream operator needs
to be explicitly expressed in this system. Assuming the radiative intensity is
expressed as I(r, Ω) = I(x, y, z, θ, φ), then the stream operator can be expanded as

d

ds
¼ dx

ds

@

@x
þ dy

ds

@

@y
þ dz

ds

@

@z
þ dθ

ds

@

@θ
þ dφ

ds

@

@φ

¼ Ω � ∇þ dθ

ds

@

@θ
þ dφ

ds

@

@φ

(62)

To obtain the explicit formulation of the two angular derivatives, i.e., dθ/ds and
dφ/ds, the ray equation (Eq. (61)) must be applied. Following the derivation in (Liu
2006), they can be written as

dφ

ds
¼ 1

sin θ
s1 � ∇n

n

	 

,

dθ

ds
¼ 1

sin θ
ξΩ� kð Þ � ∇n

n

� �
(63)

where s1 is an auxiliary vector defined as s1 = � sin φi + cos φj. Substituting
Eqs. (62) and (63) into the GRTE in ray coordinate (Eq.(59)) and after some
manipulations, the final conservative form of the GRTE in Cartesian coordinate
system can be obtained as

Ω � ∇I r,Ωð Þ þ 1

sin θ

@

@θ
I r,Ωð Þ ξΩ� kð Þ½ � � ∇n

n

þ 1

sin θ

@

@φ
I r,Ωð Þ s1½ � � ∇n

n
þ κa þ κsð ÞI r,Ωð Þ

¼ κaIb rð Þ þ κs
4π

ð
4π
I r,Ω0ð ÞΦ Ω,Ω0ð ÞdΩ0

(64)

23 Radiative Transfer Equation and Solutions 953



The complete derivation refers to the work of Liu (2006). As compared to the RTE
in Cartesian coordinate system (Eq. (12)), it is seen that there are two additional terms
related to the gradient of refractive index (the second and third term) that appears in
Eq. (64), which are also terms about derivatives of angular variable θ and φ and are
usually called angular redistribution terms in literatures. It is angular redistribution
terms that account for the effect of gradient refractive index distribution.

2.3.3 Formulation in Other Coordinate Systems
The formulation of GRTE in cylindrical and spherical coordinate system is presented
here. Two types of the cylindrical coordinates system are considered as shown in
Fig. 3. Following similar procedure outlined in Sect. 2.3.2, the GRTE in the Type I
cylindrical coordinate system (ρ-Ψ -z-θ-φ) can be derived and written in conservative
form as (Liu et al. 2006)

Ω � e∇ II � 1

ρ

@ηI

@φ
þ 1

sin θ

@

@θ
ξΩ� ezð Þ � ∇n

n

	 

I

� �
þ @

@φ
s1 � ∇n

n

	 

I

� �
 �
þ κa þ κsð ÞI r,Ωð Þ

¼ κaIb rð Þ þ κs
4π

ð
4π
I r,Ω0ð ÞΦ Ω,Ω0ð ÞdΩ0 (65)

whereΩ = μeρ + ηeΨ + ξez is the local direction vector of the beam; μ = sin θ cos φ;
η = sin θ sin φ; ξ = cos θ; eρ, eΨ and ez are the unit coordinate vector; e∇I �ð Þ ¼ eρ
ρ�1 @ ρ �ð Þ= @ ρþ eΨρ�1 @ �ð Þ= @ Ψþ ezρ�1 @ �ð Þ= @ z is a modified gradient
operator in the Type I cylindrical coordinate system, and the auxiliary vector is defined
as s1 = � eρ sin φ + eΨ cos φ.

Similarly, the GRTE in the Type II cylindrical coordinate system (Ψ -z-ρ-θ-φ) can
be obtained and written in conservative form as (Zhang et al. 2010; Zhao et al.
2012b)

Ω � e∇ III � 1

ρ sin θ

@

@θ
μ2I
� �þ 1

ρ

@

@φ
ξ sinφ cosφI½ �

þ 1

sin θ

@

@θ
ξΩ� ezð Þ � ∇n

n

	 

I

� �
þ @

@φ
s1 � ∇n

n

	 

I

� �
 �
þ κa þ κsð ÞI r,Ωð Þ

¼ κaIb rð Þ þ κs
4π

ð
4π
I r,Ω0ð ÞΦ Ω,Ω0ð ÞdΩ0 (66)

where Ω = μeΨ + ηez + ξeρ is the local direction vector of the beam, the auxiliary
vector s1 = � sin φeΨ + cos φez, and e∇II �ð Þ ¼ eΨρ�1 @ �ð Þ= @ Ψþ ez @ �ð Þ= @
zþ eρρ�1 @ ρ �ð Þ= @ ρ is a modified gradient operator in the Type II cylindrical
coordinate system.
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The definition of the spherical coordinate system (Θ-Ψ-ρ-θ-φ) is shown in Fig. 4.
Following the procedure outlined in Sect. 2.3.2, the GRTE in the spherical coordi-
nate system can be obtained and written in conservative form as follows (Liu et al.
2006).

Ω � e∇ I � 1

ρ sin θ

@sin 2θI

@θ
� cotΘ

ρ

@ηI

@φ

þ 1

sin θ

@

@θ
ξΩ� eρ
� � � ∇n

n

� �
I


 �
þ @

@φ
s1 � ∇n

n

	 

I

� �
 �
þ κa þ κsð ÞI r,Ωð Þ

¼ κaIb rð Þ þ κs
4π

ð
4π
I r,Ω0ð ÞΦ Ω,Ω0ð ÞdΩ0 (67)

where Ω = μeΘ + ηeΨ + ξeρ is the local direction vector of the beam, s1 = � sin
φeΘ + cos φeΨ is an auxiliary vector the gradient operator, and e∇ is defined as e∇ �ð Þ
¼ eΘ ρ sinΘð Þ�1 @ sinΘ �ð Þ= @ Θþ eΨ ρ sinΘð Þ�1 @ = @ Ψþ eρρ�2 @ ρ2�ð Þ= @ ρ.

3 Solution Techniques of the Radiative Transfer Equation

In this section, four fundamental deterministic methods for radiative transfer in
participating media are introduced, including the spherical harmonics method, the
DOM, FVM, and FEM. The spherical harmonics method is highly efficient for
complex multidimensional problems. The DOM, FVM, and FEM are versatile,
with good accuracy and convenient to be coupled with conduction and convection
solvers. Note that several important aspects of numerical solution of radiative
transfer equation are not covered in this chapter, such as the spectral models for
non-gray media, problems with collimated irradiation, and transient radiative
transfer.

3.1 Spherical Harmonics Method

Spherical harmonics method also known as PN approximation is one basic type of
method to solve radiative transfer. Especially, the lower-order approximations, such
as P1 and P3 approximation, have achieved broad range of applications (Mengüç and
Viskanta 1985; Mengüç and Iyer 1988). It is considered to suffer less from the ray
effects, which can significantly deteriorate the accuracy of discrete-ordinate method.
In the spherical harmonics method, the angular dependence of radiative intensity is
expanded as a series of spherical harmonics, and the expansion coefficients are
finally formulated into a set of partial differential equations to be solved. In this
approach, the radiative intensity is approximated as
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I r,Ωð Þ ¼
X1
l¼0

Iml rð ÞYm
l Ωð Þ (68)

where Ym
l Ωð Þ are spherical harmonics, which are orthogonal functions in solid

angular space, and Iml rð Þ are the corresponding expansion coefficient. The governing
equations for Iml rð Þ can be obtained by substituting Eq. (68) into the RTE (Eq. (12)),
and then do weighted angular integration with different orders of spherical
harmonics.

It is usually very cumbersome to obtain the equations of Iml rð Þ , especially for
higher-order approximation for multidimensional problems. Here, the P1 approxi-
mation is presented. For the P1 approximation, the expansion in Eq. (68) is truncated
for l > 1. Four terms are retained in the series, and the radiative intensity can be
shortly written as

I r,Ωð Þ ¼ a rð Þ þ b rð Þ � Ω (69)

Substitute Eq. (69) into the RTE (Eq. (12)) to obtain

Ω � ∇a rð Þ þ ΩΩð Þ : ∇b rð Þ þ β a rð Þ þ b rð Þ �Ω½ �
¼ κaIb þ κsa rð Þ þ κsgb rð Þ �Ω (70)

Note that the last term is obtained using the following relationð
4π

Ω0Φ Ω0 �Ωð ÞdΩ0 ¼
ð
4π

sin θ cosφ
sin θ sinφ
cos θ

24 35Φ cos θð Þ sin θdθdφ ¼ 4πgΩ (71)

where g is by definition the asymmetry factor of the scattering phase function.
Equation (71) is in general not limited to the linear anisotropic scattering phase
function. Integrate Eq. (70) for the zeroth and first moment to obtain the following
two equations.

∇ � b rð Þ ¼ 3κa Ib � a rð Þ½ � (72)

b rð Þ ¼ � 1

β � κsg
∇a rð Þ (73)

The P1 approximation equation can be obtained by substituting Eq. (73) into
Eq. (72). The physical meaning of a(r) and b(r) can be made clear by substituting
Eq. (69) into the definition formula of radiative heat flux and incident radiation
(Eq. (26)), which yields a rð Þ ¼ G rð Þ

4π and b rð Þ ¼ 3
4π q. Finally, the P1 approximation

equations are summarized below.

G equation : � ∇ � 1

3 β � κsgð Þ∇G
� �

¼ κa 4πIb � Gð Þ (74)
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q equation : q ¼ � 1

3 β � κsgð Þ∇G (75)

I equation : I r,Ωð Þ ¼ 1

4π
G rð Þ þ 3q rð Þ � Ω½ � (76)

By using the I equation, the boundary condition for diffuse emission and reflec-
tion boundary can be determined as

2� e
e

2

3 β � κsgð Þ nw � ∇Gþ G ¼ 4πIbw (77)

At radiative equilibrium, namely, ∇ � q = 0 and G = 4πIb, the q-equation
(Eq. (75)) indicates

q ¼ � 4π

3 β � κsgð Þ∇Ib (78)

This is the same as the Rosseland approximation (or diffusion approximation).
As can be seen, only one equation is needed to be solved (G equation) for

radiative heat transfer; hence, it is highly efficient to be used to analyze engineering
radiative transfer problems. Even though the P1 approximation can give reasonable
results for optically thick media, it may produce significant errors for optically thin
media, in case the approximation Eq. (69) fails. The accuracy of P1 approximation
can be improved by using higher-order spherical harmonics, such as P3 approxima-
tion. There are also a variant of PN approximation, called the simplified PN approx-
imation (SPN) (Larsen et al. 2002), which can generate equations consistent with P1

approximation at low order and can be relatively easy to be extended to higher order.

3.2 Discrete-Ordinate Method

The discrete-ordinate method for the solution of radiative transfer was first proposed
by Chandrasekhar (1960). It was then introduced to solve neutron transport, such as
the work of Carlson and Lathrop (1965). Fiveland (1984) and Truelove (1988)
applied the method to solve general radiative heat transfer problems. A recent review
of the DOM and FVM was given by Coelho (2014). In the following, the basic
principle of the method is presented. The solution of radiative transfer equation
requires discretization of both angular and spatial domains. The idea of DOM is to
represent the angular space by a discretized set of directions, and only radiative
intensity at these discrete directions is solved. Each direction is associated with a
quadrature weight. Both the directions and the weight are chosen carefully to ensure
accuracy of angular integration, which is important for discretizing the in-scattering
term and calculating the radiative heat flux. After the angular discretization is
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finished, the original integral-differential form of RTE becomes a set of coupled
partial differential equations, which can then be discretized and solved by traditional
techniques for solving partial differential equations.

3.2.1 Angular Discretization
The angular space is discretized as a set of discrete directions, Ωm = μmi + ηmj +
ξmk; then the RTE (Eq. (12)) can be written into a set of partial differential
equations, namely, the discrete-ordinate equations, as

Ωm � ∇Im rð Þ þ β Im rð Þ ¼ κaIb rð Þ þ κs
4π

XM
m0¼1

Im0 rð ÞΦ Ωm0 � Ωmð Þwm0 ,

m ¼ 1, . . . ,M

(79)

where wm is the weight of direction Ωm for angular quadrature and M is the total
number of discrete discretions. For the opaque and diffuse boundary, the boundary
conditions for each discrete-ordinate equation are written as

Iw Ωmð Þ ¼ ewIbw þ 1� ew
π

X
nw�Ωm0>0

Iw Ωm0ð Þ nw �Ωm0j jwm0 , Ωm � nw < 0 (80)

By definition, the radiative heat flux and incident radiation are determined as

q rð Þ ¼
XM
m¼1

Im rð ÞΩmwm, G rð Þ ¼
XM
m¼1

Im rð Þwm (81)

The definition of the angular discretization includes the selection of the set
discrete directions (ordinates) and the design of the related angular quadrature,
which is critical about the accuracy of the method. There are several criteria
proposed on the selection of angular discretization and the weights (Fiveland
1984; Carlson and Lathrop 1965): (1) The symmetry criterion, namely, the discrete
set of directions and weights, should be the same after the rotation of π/2 about each
principle axis (x-,y- and z-). (2) The full space moment preserving criterion, i.e., the
angular quadrature defined based on the selected directions, should satisfy the
zeroth, first, and second moments integrated over 4π, namely,

ð
4π

dΩ ¼ 4π ¼
XM
m¼1

wm (82)

ð
4π

ΩdΩ ¼ 0 ¼
XM
m¼1

Ωmwm (83)
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ð
4π

ΩΩdΩ ¼ 4π

3
δ ¼

XM
m¼1

ΩmΩmwm (84)

where 0 denotes the zero vector and δ is the unit tensor. (3) The half space moment
preserving criterion, i.e., the defined angular quadrature, should preserve the first
moment integration over 2π, requiringð

μ>0

μdΩ ¼ π ¼
X
μm>0

μmwmð
η>0

ηdΩ ¼ π ¼
X
ηm>0

ηmwmð
ξ>0

ξdΩ ¼ π ¼
X
ξm>0

ξmwm

(85)

The most well-known family of the discrete-ordinate set is the SN sets, initially
proposed for simulation of neutron transport (Carlson and Lathrop 1965), which are
also tabulated in the classic textbooks (Howell et al. 2011; Modest 2013). The
angular discretization using the SN discrete-ordinate set is usually called SN-approx-
imation. For the SN-approximation, such as S2, S4, or S6, N means the number of
discrete direction cosines used for each principal direction. Total number of direc-
tions for the SN-approximation isM = N(N + 2). Several other discrete-ordinate sets
were also proposed, such as the TN sets by Thurgood et al. (1995). A recent review of
the angular discretization schemes in DOM was given by Koch and Becker (2004).

3.2.2 Spatial Discretization
After angular discretization, the resulting discrete-ordinate equations (Eq. (79)) for
each direction Ωm can then be discretized by common methods for solving partial
differential equations, such as finite difference method and FVM. Note that
upwinding scheme is required to obtain reliable results considering the numerical
property of the RTE discussed in Sect. 2.1.6; an alternative is to use the second-order
form of RTE for discretization.

Here, the FVM is used to discretize Eq. (79) to obtain the final algebraic equation.
The advantage of FVM is that it is easy to be applied to unstructured mesh to solve
problems with complex geometry. Figure 8 shows the 2D grid used to define the
FVM discretization scheme. The unknown radiative intensities are stored at the
center of each grid cell. By integrating Eq. (79) over the control volume P and
using the Gaussian divergence theorem to the first term, it yields

Δx μmIm, e � μmIm, w

� �þΔy ηmIm, n � ηmIm, s

� �þ βPIm,PΔxΔy¼ Sm,PΔxΔy (86)
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where the subscript of capitalized letters denotes the value at cell center (P) and
subscript of small letters (e, w, n and s) denotes values at the center of faces as shown
in Fig. 8; Sm , P is the source term defined as

Sm,P ¼ Sm rPð Þ ¼ κaIb rPð Þ þ κs
4π

XM
m0¼1

Im0 rPð ÞΦ Ωm0 �Ωmð Þwm0 (87)

Since radiative intensities are stored at cell center only, interpolation of radiative
intensity at faces to that at cell center is required to obtain the final algebraic
equations. Using interpolation and supposing uniform grid, the face values can be
interpolated using neighboring cell values as

Im, n ¼ αyIm,P þ 1� αy
� �

Im,N , Im, e ¼ αxIm,P þ 1� αxð ÞIm,E (88a)

Im, s ¼ αyIm, S þ 1� αy
� �

Im,P, Im,w ¼ αxIm,W þ 1� αxð ÞIm,P (88b)

where αx and αy are the interpolation parameters for x and y directions, respectively.
Substituting Eq. (88) into Eq. (86), the final discretization can be written as

aPIm,P ¼ aNIm,N þ aSIm, S þ aWIm,W þ aEIm,E þ b (89)

where the discrete coefficients are determined as

aN ¼ ηmΔy αy � 1
� �

, aE ¼ μmΔx αx � 1ð Þ, aS ¼ ηmΔyαy, aW ¼ μmΔxαx
aP ¼ aN þ aS þ aW þ aE þ βPΔxΔy, b ¼ Sm,PΔxΔy

(90)

PW
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Ee

n
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s

x

y

Δx

Δy
Ωm

Fig. 8 Grid used to define the
FVM discretization
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Different differencing schemes can be obtained by defining different interpolation
parameters, such as (1) step scheme (or first-order upwind scheme), αx = unitstep
(μm) and αy = unitstep(ηm), and (2) diamond scheme (or central difference scheme),
αx = αy = 1/2.

The resulting linear systems in Eq. (89) can be solved element by element until
the convergence, which can also be solved by sparse solvers. Since the source term
contains radiative intensity of other directions, a global iteration is required to
successively update the source terms for problems with scattering media and
reflecting boundary conditions. The discretization presented above can be easily
extended to 3D problems. The extension to unstructured mesh is presented in the
next section.

3.3 Finite Volume Method

Raithby and Chui (Chui and Raithby 1992; Raithby and Chui 1990) firstly formu-
lated FVM for solving radiative heat transfer problems. Chai and coworkers (Chai
and Lee 1994; Chai et al. 1993) developed different variant implementation of FVM.
A comprehensive review of the development of DOM and FVM was given recently
by Coelho (2014). In the FVM method, both the angular domain and the spatial
domain are discretized by using control volume integration. The angular
discretization in FVM is thus different from the DOM. The angular domain
discretization in FVM uses structured mesh as shown in Fig. 9, while the spatial
domain can be structured or unstructured. Though different from DOM, the FVM
can be formulated in a very similar fashion with DOM. As such the major difference
between DOM and FVM lies in the angular discretization.

3.3.1 Angular Discretization
Integrate the RTE (Eq. (12)) over a small control angle of Ωml centered at direction
Ωml (the superscript m and l denotes the index of θ and φ discretization, respec-
tively), and assuming the radiative intensity is constant in Ωml, it leads to

x y

z

ϕ

θ

O

O

Control
angle

Physical
coordinate
system

Reference
coordinate
system

Fig. 9 Schematic of angular grid used in FVM discretization
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ð
Ωml

ΩdΩ � ∇Iml rð Þ þ β ΩmlIml rð Þ ¼ ΩmlSml rð Þ (91)

where Sml(r) is given as

Sml rð Þ ¼ κaIb rð Þ þ κs
4π

XNφ

l0¼1

XNθ

m0¼1

Im
0l0 rð ÞΦ Ωm0l0 �Ωml

� �
Ωm0l0 (92)

in which Φ Ωm0l0 �Ωml
� �

¼ 1

Ωm0 l0Ωml

ð
Ωml

ð
Ωm0 l0

Φ Ωm0l0 �Ωml
� �

dΩ0 dΩ.

Dividing Ωml to both sides of Eq. (91), an equation in the form of discrete-
ordinate equation (Eq. (79)) is obtained, which is written as

Ωml � ∇Iml rð Þ þ β Iml rð Þ ¼ Sml rð Þ (93)

where Ωml
is an averaged direction vector defined as

Ωml ¼ 1

Ωml

ð
Ωml

ΩdΩ (94)

Note that Ωml
can be calculated analytically (Murthy and Mathur 1998). Taking

Ωml
as the equivalent discrete direction in DOM, the quantities, such as heat flux,

incident radiation, etc., can be calculated the same way as in the DOM.

3.3.2 Spatial Discretization
Since mathematical form of Eq. (93) is the same as the discrete-ordinate equation,
the spatial FVM discretization procedure described in the previous section for DOM
can be directly applied. Here only formulation on unstructured mesh is introduced,
which can also be applied to the DOM for spatial discretization instability. Consid-
ering the unknowns are stored in the center of the control volume cell, integrating
Eq. (93) over a spatial control volume and applying the Gaussian divergence
theorem to the first term leads to

XNf

i¼1

Afi I
ml
fi
Ωml � nfi þ βPI

ml
P ΔVP ¼ SmlP ΔVP (95)

where the subscript fi denotes value at the i-th face of control volume centered at P,
the subscript P denotes value at point P, n is the surface normal, A is area of the face,
and ΔVP is the volume of the control volume centered at P. To complete the
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discretization, the intensity defined at surface should be interpolated to nodal values
(volume center), which can be generally written as

Imlfi ¼ αiI
ml
P þ 1� αið ÞImlPi

(96a)

where Pi denotes the center of the neighboring cell of i-th face of the cell P. With this
closure relation, the final FVM discretization can be written as

aPI
ml
P ¼

XNf

i¼1

aPi
ImlPi

þ bml (97)

where the discrete coefficients are given as

aP ¼
XNf

i¼1

AfiαiΩ
ml � nfi þ βPΔVP

aPi
¼ Afi αi � 1ð ÞΩml � nfi

bml ¼ SmlP ΔVP

(98)

If the step scheme (or first-order upwind) is used, then αi ¼ unitstep Ωml � nfi
� �

:

Equation (97) for each control angle can be solved element by element and iterates
until convergence.

3.4 Finite Element Method

Fiveland and Jesse (1994) were the first to apply the FEM to solve radiative heat
transfer problems based on the differential form of RTE. Until recently, many variant
implementations of FEM have been proposed (Liu 2004b; W. An et al. 2005; Zhao
and Liu 2007a; Zhang et al. 2016). After angular discretization, as described in Sects.
3.2 and 3.3, the RTE becomes a set of partial differential equations, i.e., the discrete-
ordinate equations, which can then be solved by common numerical method for
solving partial differential equations. Similar to FVM, FEM is another versatile
method that can be applied to solve a broad range of partial differential equations
that appeared in scientific and engineering problems and hence is very appealing for
multiphysics simulation. The feature of FEM is that it usually owns higher order of
accuracy as compared to the FVM. In the FEM, the unknown radiative intensity is
first approximated as a series of shape functions, which is then combined with the
weighted residual approach to discretize the RTE; finally a sparse linear system is
obtained and solved by general solvers. Here the FEM for solving the RTE is
introduced.
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3.4.1 Function Approximation
The solid angular space discretization is by common the discrete-ordinate approach,
such as the SN sets or the FVM approach described in Sects. 3.2 and 3.3. The
radiative intensity for each discrete direction Ωm can be approximated using the
FEM shape functions ϕi at each solution nodes, namely,

~Im xð Þ ’
XNsol

i¼1

Im, iϕi xð Þ (99)

where Im, i are the expansion coefficients, which are also the values of the radiative
intensity of direction Ωm at node i (namely, Im,i = I(Ωm,xi)) due to the Kronecker
delta property of the FEM shape functions. For example, the global shape function at
node i for the 1D linear element can be written as

ϕi xð Þ ¼
x� xi�1ð Þ=Δx, xi�1 � x < xi
xiþ1 � xð Þ=Δx, xi � x < xiþ1

0, otherwise

8<: , (100)

which is also graphically shown in Fig. 10a for better understanding.
Generally, for multidimensional complex elements, the shape function on an

element can be first defined in a reference space, and then transformed to the physical
space, as shown in Fig. 10b, where a linear triangular element is taken as an example.
For 2D triangular element, the three shape functions defined in reference space (r-t)
can be written as

Γ1 r, sð Þ ¼ 1� r � s, Γ2 r, sð Þ ¼ r, Γ3 r, sð Þ ¼ s (101)

which can be transformed to obtain the shape function in physical space (x-y) as

ϕi x r, sð Þ, y r, sð Þð Þ ¼ Γi r, sð Þ, i ¼ 1, 2, 3 (102)

The coordinate system transformation from reference element Trs:
{(0, 0), (1, 0), (0, 1)} to physical element Txy: x̂1, ŷ1ð Þ, x̂2, ŷ2ð Þ, x̂3, ŷ3ð Þf g is defined as

ii–1 i+1

Δx

x

i(x)φ

(0,0)

s

1 2

3

1

2

3

x
Txy Trs

r

a b

Fig. 10 (a) Schematic of nodal shape function of 1D linear elements in FEM. (b) Transform of
linear elements defined on reference space to physical space
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x ¼
X3
i¼1

x̂iΓi r, sð Þ, y ¼
X3
i¼1

ŷiΓi r, sð Þ (103)

where x̂i, ŷi, i = 1 , 2 , 3 denote the coordinates of the nodes that define the
triangular element.

3.4.2 Weighted Residual Approach
The discrete-ordinate equation (Eq. (79)) can be written as

Ωm � ∇Im rð Þ þ β Im rð Þ ¼ Sm rð Þ (104)

where the source term S(r, Ω) is defined as

Sm rð Þ ¼ κaIb rð Þ þ κs
4π

XM
m0¼1

Im0 rð ÞΦ Ωm0 � Ωmð Þwm0 (105)

Using weighted residual approach, Eq. (104) is weighted by a set of weight
functionsWj(r) and integrated over the solution domain, which leads to (Liu et al. 2008)

Ωm � ∇Im rð Þ,Wj rð Þ� �þ β Im rð Þ,Wj rð Þ� � ¼ Sm rð Þ,Wj rð Þ� �
(106)

where the inner product < � , � > is defined as < f , g >¼
ð
V

fgdV.

By substituting the approximated radiative intensity (Eq. (99)) into weighted
residual approach equation (Eq. (106)) and choosing different set of weight func-
tions, a discrete set of linear equations can be obtained, which can be written in
matrix form as

Kmum ¼ hm (107)

where um ¼ um, i
� �

i¼1,Nsol
¼ Im rið Þ½ �i¼1,Nsol

, Km, and hm are conventionally called

stiff matrix and load vector, respectively, which are different for different FEM
discretization. The selection of the weighted function results in different FEM
discretization schemes, such as for Galerkin scheme (Galerkin FEM), which chooses
Wj = ϕj, and for least-squares scheme (LSFEM) to choose Wj = Ωm � ∇ϕj + βϕj.
Note that the LSFEM formulation can also be derived based on functional minimi-
zation procedure.

For the Galerkin FEM discretization, Km and hm are obtained as (Liu et al. 2008)

Km ¼ Km, ji
� �

j¼1,Nsol;i¼1,Nsol
¼ < Ωm � ∇ϕi,ϕj > þ < βϕi,ϕj > (108a)

hm ¼ hm, j
� �

j¼1,Nsol
¼< Sm,ϕj > (108b)

For the LSFEM discretization, Km and hm are obtained as (Zhao et al. 2012a)
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Km ¼ Km, ji
� �

j¼1,Nsol; i¼1,Nsol

¼< Ωm � ∇ϕi,Ωm � ∇ϕj > þ < βϕi, βϕj >

þ < βϕi,Ωm � ∇ϕj > þ < Ωm � ∇ϕi, βϕj >

(109a)

hm ¼ hm, j
� �

j¼1,Nsol
¼< Sm, βϕj > þ < Sm,Ωm � ∇ϕj > (109b)

It is noted that the stiff matrix produced by LSFEM is symmetric and positive
definite, which is a very good numerical property.

The accuracy in the imposing of this type of boundary condition is very important
for the overall solution accuracy. One accurate method for imposing the Dirichlet-
type boundary condition is operator collocation approach. In this approach, the row
of stiff matrix Km corresponding to the inflow boundary nodes is replaced with the
discrete operator of the related boundary condition. Similar modification is also
applied to the load vector hm. The modification algorithm is formulated as below (the
modification is only conducted for nodes on the inflow boundary, namely,
nw(rj) � Ωm < 0).

Km, ji ¼ δji, (110a)

hm, j ¼ I0 rj,Ωm

� �
(110b)

where I0(rj, Ωm) stands for the radiative intensity at the boundary given by Eq. (80).
The FEM has also been successfully applied to the second-order form of RTEs to

avoid the stability problem caused by the convection-dominated property of the first-
order RTE, and this kind of FEM has been demonstrated to be numerically stable and
accurate (Fiveland and Jessee 1994; Zhao and Liu 2007a; Zhang et al. 2016).

3.5 Solution Methods for RTE in Refractive Media

Many numerical methods have been developed for the solution of radiative transfer
in gradient index media, which include the curved ray-tracing-based methods (Ben
Abdallah and Le Dez 2000b; Ben Abdallah et al. 2001; Huang et al. 2002a, b; Liu
2004a; Wang et al. 2011) and the methods based on discretization of the GRTE. The
ray tracing is usually cumbersome and time consuming in calculation. Lemonier and
Le Dez (Lemonnier and Le Dez 2002) pioneered the discrete-ordinate method for
solving the GRTE. Their work is for one-dimensional problem. Thereafter, Liu
(2006) formulated the discrete-ordinate equation of GRTE for general multi-
dimensional problems, which forms the basis for the solution of radiative transfer
in gradient index media. It is like the role of discrete-ordinate equation of RTE in
uniform index media. Based on the discrete-ordinate equation, the spatial
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discretization techniques, such as FVM and FEM, can be readily applied for
solution. Besides the FEM and FVM, many other numerical methods have been
developed to solve radiative heat transfer in gradient index media based on the
discrete-ordinate equation of GRTE (Zhao and Liu 2007b; Sun and Li 2009; Asllanaj
and Fumeron 2010; Zhang et al. 2015).

In this section, only the solution techniques based on the discretization of the
GRTE is introduced. Generally, the basic principle to solve the GRTE is the same as
that for radiative transfer in uniform index media. As outlined in previous sections,
the first is to discretize the angular space to transform the integral-differential
equation into a set of partial differential equations, namely, the discrete-ordinate
equations. The second step is to spatially discretize the discrete-ordinate equations,
which can be done by common methods such as finite difference, FVM and FEM,
etc. However, the GRTE differs from the RTE in uniform index media for containing
two angular redistribution terms, which have derivatives with respect to angular
variables. The discrete-ordinate equation of GRTE is the key for different solution
methods. However, to determine the discrete-ordinate equations for GRTE is not so
straightforward as that for the RTE (Lemonnier and Le Dez 2002; Liu 2006).

In the following, the discrete-ordinate equations for GRTE are presented. The
detailed derivation refers to Liu (2006) Liu and Tan (2006). Formally, the discrete-
ordinate equations of GRTE can be written as

Ωm, n � ∇I r,Ωm, nð Þ þ 1
sin θ

@
@θ I r,Ωð Þ ξΩ� kð Þf g� �

Ω¼Ωm, n � ∇n
n

þ 1
sin θ

@
@φ I r,Ωð Þ s1ð Þ

h i
Ω¼Ωm, n �

∇n
n

þ κa þ κsð ÞI r,Ωm, nð Þ

¼ κaIb þ κs
4π

XNθ

m0¼1

XNφ

n0¼1

I r,Ωm0, n0
� �

Φ Ωm0, n0 ,Ωm, n
� �

wm0
θ wn0

φ

(111)

where piecewise constant angular quadrature (PCA) is used to discrete the angular
space, in which the total solid angle is divided uniformly in the polar θ and azimuthal
φ directions, defined as

θm ¼ m� 1=2ð ÞΔθ, m ¼ 1, � � �,Nθ (112a)

φn ¼ n� 1=2ð ÞΔφ, n ¼ 1, � � �,Nφ (112b)

where Δθ = π/Nθ and Δφ = 2π/Nφ are steps for the discretization of polar and
azimuthal angles, respectively, and Nθ and Nφ are the corresponding number of
divisions. For each discrete direction (m,n), the corresponding weight is

wm
θ ¼ cos θm�1=2 � cos θmþ1=2, wn

φ ¼ φnþ1=2 � φn�1=2, (113)

where θm + 1/2 = (θm + θm + 1)/2, φn + 1/2 = (φn + φn + 1)/2.
The two angular redistribution terms can be formally discretized as
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1

sin θ

@

@θ
I ξΩ� kð Þf g � ∇n

n

� �
Ω¼Ωm, n

’ χmþ1=2, n
θ Imþ1=2, n � χm�1=2, n

θ Im�1=2, n

wm
θ

,

(114a)

1

sin θ

@

@φ
I r,Ωð Þ s1ð Þ � ∇n

n

� �
Ω¼Ωm, n

’ χm, nþ1=2
φ Im, nþ1=2 � χm, n�1=2

φ Im, n�1=2

wn
φ

:

(114b)

Details on determining the discrete coefficients of χθ and χφ were presented in
Ref. Liu (2006). Substitute Eq. (114) into Eq. (64) and apply necessary closure
relations (Liu 2006). The final discrete-ordinate equation of GRTE can be obtained
and expressed in a form similar to the discrete-ordinate equation of RTE, i.e.,

Ωm, n � ∇Im, n þ ~β
m, n

rð ÞIm, n ¼ ~S
m, n

rð Þ, (115a)

where the modified extinction coefficient ~β
m, n

rð Þ and modified source term ~S
m, n

rð Þ

~β
m, n

rð Þ ¼ 1

wm
θ

max χmþ1=2, n
θ , 0

� �
þ 1

wm
θ

max �χm�1=2, n
θ , 0

� �
þ 1

wn
φ

max χm, nþ1=2
φ , 0

� �
þ 1

wn
φ

max �χm, n�1=2
φ , 0

� �
þ κa þ κsð Þ

(115a)

~S
m, n

rð Þ ¼ n2κaIb þ κs
4π

XNθ

m0¼1

XNφ

n0¼1

Im
0, n0Φm0, n0;m, nwm0

θ wn0
φ

þ 1

wm
θ

max �χmþ1=2, n
θ , 0

� �
Imþ1, n

þ 1

wm
θ

max χm�1=2, n
θ , 0

� �
Im�1, n

þ 1

wn
φ

max �χm, nþ1=2
φ , 0

� �
Im, nþ1

þ 1

wn
φ

max χm, n�1=2
φ , 0

� �
Im, n�1 (115b)

The recursion formula for χmþ1=2, n
θ and χm, nþ1=2

φ is given below.

χmþ1=2, n
θ � χm�1=2, n

θ ¼ wm
θ

sin θm
@ ξΩð Þ
@θ

� ∇n
n

� �
Ω¼Ωm, n

(116a)

χ1=2, nθ ¼ χNθþ1=2, n
θ ¼ 0 (116b)
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χm, nþ1=2
φ � χm, n�1=2

φ ¼ wn
φ

sin θm
@s1
@φ

� ∇n
n

� �
Ω¼Ωm, n

(116c)

χm, 1=2φ ¼ χm,Nφþ1=2
φ ¼ 1

sin θm
j � ∇n

n

	 

(116d)

Similar to the discrete-ordinate equations of RTE, Eq. (115) with boundary
conditions is solved for each discrete direction. Since both ~β

m, n
rð Þ and ~S

m, n
rð Þ

contain part of angular redistribution terms, it is different from the discrete-ordinate
equation of RTE. The source term updating is always needed during the solution
process. The spatial discretization techniques, such as FVM and FEM presented in
the previous sections, can be readily applied to Eq. (115) for solution. Note that the
discretization of the GRTE can also be conducted without relying on the discrete-
ordinate equation. Recently, Zhang et al. (2012) developed a hybrid FEM/FVM
technique to solve the GRTE, in which the angular domain is discretized using FEM
and spatial domain is discretized using FVM, and the radiative intensity at all the
directions is solved simultaneously at each spatial node. The idea of this approach
follows the work of Coelho (2005) for solving the RTE.

4 Numerical Errors and Accuracy Improvement Strategies

All numerical methods suffer from numerical errors. The MC method suffers from
statistic errors, while the DOM, FVM, and FEM suffer from space and angular
discretization errors. Due to the significant importance in real applications, numer-
ical errors for solving RTE have attracted the interest of many researchers (Chai et al.
1993; Ramankutty and Crosbie 1997; Coelho 2002b; Hunter and Guo 2015; Huang
et al. 2011; Tagne Kamdem 2015). In this section, DOM is taken as an example
method, and the numerical errors that appear in DOM and the related improvement
strategies are discussed.

4.1 Origin of Numerical Errors in DOM

The “false scattering” and “ray effects” are terms to describe the characteristics of the
numerical error observed in numerical results of DOM. Literally, “false scattering”
means the effect of the numerical error behave like scattering process, which was
usually considered to be equivalent to numerical diffusion (Chai et al. 1993). The
“ray effects” stand for the unphysical bump that appeared in the numerical results,
which was attributed to using of discrete number of directions to approximate the
continuous angular variation of radiative intensity (Chai et al. 1993).

In order to understand the origin of the error phenomenon, it is necessary to
analyze the source of errors in DOM. By carefully checking the DOM discretization
of RTE and the calculation of heat flux and incident radiation, three major sources of
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errors can be identified: (1) error from differencing scheme, which is related to the
discretization of a differential operator in spatial domain; (2) error from the
discretization of scattering term, which is related to the discretization of an integral
operator in angular domain; and (3) error from the calculation of heat flux or incident
radiation, which is related to the discretization of another integral operator. Note that
the third source is distinctly different from the second source, since it will appear
even if the medium is non-scattering. What is the effect of these three sources of
errors? What is the relation of these three sources of errors with “false scattering” and
“ray effects,” which will be discussed in the following section?

4.2 Error from Differencing Scheme

A differencing scheme is required to discretize the differential operator in the
discrete-ordinate equation of RTE (Eq. (79)). Take step scheme as an example,
which is equivalent to the first-order upwind finite difference scheme. Assuming
μm > 0, it can be discretized for the x-direction as

μm
@Im
@x

’ μm
Im xð Þ � Im x� Δxð Þ

Δx
(117)

Using Taylor expansion, the right-hand side of the above discretization can be
written as

μm
Im xð Þ � Im x� Δxð Þ

Δx
¼ μm

@Im
@x

þ 1

2
μmΔx

� �
@2Im
@x2

þ O Δx2
� �

(118)

As seen, an additional diffusion term appears (the second-order term), which has
a diffusion coefficient of μmΔx/2. Namely, the dominant error for step scheme is a
diffusion process. This numerical diffusion will smooth the radiative intensity
distribution, making additional radiative heat flux transport from high-intensity
region to low-intensity region, similar to the heat conduction process. It is of
significant difference from the scattering process, such as it only smears radiative
flux of one direction, while the scattering process usually transfers energy from one
direction to another direction. As such, this error is preferable to be called numerical
diffusion. Hunter and Guo (2015) derived the expression of numerical diffusion of
several differencing schemes, including the step scheme, diamond scheme, andQUICK
scheme. The numerical diffusion can be significantly reduced if a high-order scheme
is applied. For a low-order scheme like the step scheme, the numerical diffusion will
decrease with mesh refinement.

Figure 11a shows the solved heat flux by DOM with step scheme at coarse grid
(15� 15) and fine grid (125� 125), in which the data are extracted from the work by
Coelho (2002b). The angular discretization is extremely fine; hence, the effect of
angular discretization error can be neglected, and only the effect of numerical diffusion
is observed. At coarse grid, big numerical diffusion appears, and the heat flux value is
always greater than the exact value, which agrees with the analysis presented above.
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4.3 Scattering Term Discretization Error

The DOM approximates the in-scattering term as

ð
4π

I Ω0, rð ÞΦ Ω0 �Ωð ÞdΩ0 ’
XM
m0¼1

Im0 rPð ÞΦm0mwm0 (119)

This approximation will inevitably introduce discretization errors. Since the
scattering phase function and radiative intensity distribution are usually complicated,
this angular quadrature may introduce significant errors for scattering media, e.g.,
the phase function with strong forward peak. The discretization error of this term is
considered to alter the contribution of original scattering phase function. By this
understanding, this error induces unphysical scattering, i.e., false scattering, which
changes the coupling of radiative intensity among different directions unphysically.

To improve the discretization accuracy of scattering phase function, several
techniques have been proposed. The first is to modify the discrete phase function
to ensure the exact energy conservation constraint, i.e.,

XM
m0¼1

Φm0mwm0 ¼ 4π (120)

The most common approach is to modify the phase function as follows (Liu et al.
2002):

eΦm0m ¼ Φm0m 1

4π

XM
m0¼1

Φm0mwm0

 !�1

(121)
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Fig. 11 Incident heat flux along the bottom wall to illustrate numerical diffusion and ray effects. (a)
Step scheme, Nθ = Nφ = 100 per octant, (b) CLAM scheme, S8 approximation is used. Data are
exacted from Coelho (2002b). Insets show the shape of enclosure; the top wall is hot and others are cold
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which will ensure eΦm0m
exactly satisfy the energy conservation relation.

Hunter and Guo (2012a, 2012b) showed that the normalization given in Eq. (121)
is not enough for strongly forward-scattering phase function, e.g., asymmetry factor
greater than 0.9. In this case, another constraint on conservation of asymmetry factor
g should also be satisfied for the modified scattering phase function to get reliable
results, namely,

XM
m0¼1

Φm0mwm0 cos Θm0m
� �

¼ 4πg (122)

They then devised new schemes to normalize the discrete scattering phase
function to ensure both the conservation of energy (Eq. (120)) and the conservation
of asymmetry factor be satisfied (Hunter and Guo 2012a, 2014). Detailed normali-
zation procedure refers to the pioneer work of Hunter and Guo (2012a). A recent
work on comparison of the different normalization schemes for strongly forward-
scattering phase function was given by Granate et al. (2016). The errors that arise
from discretization of the scattering term was also called “angular false scattering” in
Ref. Hunter and Guo (2015).

4.4 Error from Heat Flux Calculation

The phenomenon of ray effects is that the heat flux distribution contains unphysical
bump pattern of errors, as shown in Fig. 11b. It mainly influences the solution
accuracy of DOM when there are sharp gradients or discontinuities in the boundary
conditions, temperature distribution, or radiative properties of the medium. Ray
effects have been demonstrated to mainly rely on angular discretization (Lathrop
1968; Chai et al. 1993). Figure 11b shows the heat flux distribution along the bottom
wall solved by CLAM scheme at a course (15 � 15) and fine (125 � 125) spatial
grid; S8 approximation is used for angular quadrature. It is known that CLAM
scheme is a second-order accurate and bounded non-oscillatory scheme. However,
even for the fine grid that spatial discretization is considered to be sufficiently
accurate, there are still strong unphysical bump patterns in the heat flux distribution.
Hence the numerical error featured with the bump pattern is unrelated with the
spatial discretization. Furthermore, this kind of bump patterns contained in heat flux
distribution still exists for the media without scattering (Coelho 2002b). Hence it
cannot be attributed to the error from the scattering term. It has a distinct origin.

Here the bump pattern of numerical error is attributed to the inaccurate heat flux
calculation. Figure 12a shows a typical configuration that has strong ray effects. In
this case, only a confined load is located at the bottom, and the heat flux distribution
along the top wall is to be calculated. Considering the media is non-scattering, the
incident radiative intensity at the top wall can be traced back to the load. Point O
denotes the center of the top wall and B is a point located with a distance from the
center. The blue and red lines start from O, and B indicates the discrete-ordinate
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directions, which are traced back to determine the intensities exactly. As can be seen,
for point B, there are two directions intercepted with the load. As for the center
point O, only one direction intercepts with the load. If angular quadrature is used to
calculate the heat flux, it is obvious that heat flux at point B will be greater than that
at the center point. This analysis agrees with the numerical results. Besides the
confined boundary load, confined volumetric load (as shown in Fig. 12b) will also
induce ray effects as studied by Coelho (2002b, 2004). The confinement of radiative
intensity in a small solid angle is difficult to be accurately integrated, because only
few discrete-ordinate directions will be located in the small solid angle to do
integration. The ray effects can be mitigated by refining the angular discretization
(Chai et al. 1993; Li et al. 2003); however, this approach requires considerable
computational effort. It can also be effectively mitigated by the modified discrete-
ordinate approach (Ramankutty and Crosbie 1997; Coelho 2002b; Coelho 2004),
which treats the contributions from boundary load and volumetric load to heat flux
separately by solving a different transfer equation. Recently, several new approaches
were proposed to mitigate the ray effects in FVM and DOM. More effective way to
mitigate the ray effects in DOM is still an important subject of research (Huang et al.
2011; Tagne Kamdem 2015).

5 Conclusions

In this chapter, the classical radiative transfer equation and several variant forms of
radiative transfer equation, the different solution techniques for the radiative transfer
equations, and the numerical errors on the solution of radiative transfer equation and
the related improvement strategies are presented and discussed. The classical RTE
implies the light propagates through straight line. To analyze radiative transfer in
gradient index media where light propagates through curved lines, the GRTE should
be applied. Under Cartesian coordinate the GRTE contains two terms of angular

O ΔΩA

Discrete
direc�ons

Exact heat flux 
distribution

unphysical 'bumps'
by ray effect

a b

Fig. 12 Schematics to illustrate ray effects. (a) Boundary confined load, (b) inside (volumetric)
confined load
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derivatives as compared to the RTE, which account for the effect of gradient
refractive index. The classical RTE is in a form of a first-order integral partial
differential equation. It can be considered as a special kind of convection-diffusion
equation with convection-dominated property. This is also true for the GRTE. The
convection-dominated property will induce numerical instability for numerical solu-
tion. The classical RTE can be transformed to second-order forms and avoids the
stability problem.

Numerical methods to solve radiative transfer can be classified into two groups,
(1) methods based on stochastic simulation and (2) the deterministic methods, which
are usually formulated based on the integral or differential form of RTE. The MCM
is a typical method of the first group; it is versatile and reliable, but usually time
consuming since a huge number of photons need to be traced and are inconvenient to
be coupled with conduction and convection solvers; the latter are usually
implemented using deterministic methods such as FVM and FEM. DOM is the
typical method of the second group. The FVM can be considered as a special kind of
DOM that the discrete-ordinate equations are obtained based on the FVM. FEM is
usually more accurate than the FVM; furthermore, it is very versatile and promising
for the simulation of multiphysics processes including radiative heat transfer.

Three major sources of errors for numerical solution of RTE can be identified:
(1) error from differencing scheme, which is related to the discretization of a
differential operator; (2) error from the discretization of scattering term, which is
related to the discretization of an angular integral operator; and (3) error from the
calculation of heat flux or incident radiation, which is related to the discretization of
another angular integral operator. The first will induce numerical diffusion, in which
radiative energy diffuses to the same direction. The second will induce unphysically
altered phase function and hence is the true “false scattering.” The third will induce
unphysical bump pattern of errors in the flux distribution, also known as “ray
effects,” which is attributed to inaccuracy of angular quadrature. But this is
distinctly different from the second source, since it will appear even if the medium
is non-scattering. Besides the errors mentioned above, it should be noted that the
actual solution accuracy of radiative transfer problems also relies closely on the
accuracy of measured material properties, such as absorption coefficient, scattering
coefficient, and scattering phase function, which should be cared for the solution of
real problems.
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