
Genetic Algorithms for the Tree
T-Spanner Problem

Riham Moharam, Ehab Morsy and Ismail A. Ismail

Abstract The tree t-spanner problem is one of the most important spanning tree

optimization problems and has different applications in communication networks

and distributed systems. Let G = (V ,E) be an undirected edge-weighted G = (V ,E)
with vertex set V and edge set E. We consider the problem of constructing a tree
t-spanner T in G in the sense that the distance between every pair of vertices in T
is at most t times the shortest distance between the two vertices in G. The value of

t, called the stretch factor, quantifies the quality of the distance approximation of

the corresponding tree t-spanner. The problem of finding a tree t-spanner with the

smallest possible value of t is known as the Minimum Maximum Stretch Spanning

Tree (MMST) problem. It is well known that, for any t ≥ 1, the problem of deciding

whether G contains a tree t-spanner is NP-complete, thus, the MMST problem is

NP-complete. In this paper, we present a genetic algorithm that returns a high quality

solution for the MMST problem.

Keywords Tree Spanner ⋅ Stretch Factor ⋅ Minimum Maximum Stretch Spanning

Tree ⋅ Genetic Algorithms ⋅ Graph Algorithms

This work is partially supported by Alexander von Humboldt foundation.

R. Moharam (✉) ⋅ E. Morsy

Department of Mathematics, Suez Canal University, Ismailia 41522, Egypt

e-mail: Riham.Sci@gmail.com

E. Morsy

e-mail: ehabmorsy@gmail.com

I.A. Ismail

Faculty of Computer and Information, Department of Computer Sciences,

6 October University, Giza, Egypt

e-mail: amr442-2@hotmail.com

© Springer International Publishing Switzerland 2016

T. Gaber et al. (eds.), The 1st International Conference on Advanced Intelligent
System and Informatics (AISI2015), November 28–30, 2015, Beni Suef, Egypt,
Advances in Intelligent Systems and Computing 407, DOI 10.1007/978-3-319-26690-9_39

437

438 R. Moharam et al.

1 Introduction

Let G = (V ,E) be an undirected edge-weighted graph with vertex set V and edge

set E such that |V| = n and |E| = m. A spanning tree T in G is said to be a tree
t-spanner if the distance between every pair of vertices in T is at most t times the

shortest distance between the two vertices in G. For a given spanning tree T in G, the

goodness of the distance approximation of T is estimated by the value of the stretch

factor t of T [1]. The problem of finding a tree t-spanner with the smallest possible

value of t is known as the Minimum Maximum Stretch Spanning Tree (MMST)

problem [2].

The tree t-spanner problem is widely applied in communication networks and

distributed systems. For example, it is applied to the arrow distributed directory pro-

tocol that supports the mobile object routing [3]. In particular, the MMST is used

to minimize the delay of mobile object routing from the source node to every client

node in case of concurrent requests through a routing tree. The worst case overhead

the ratio of the protocol is proportional to the maximum stretch factor of T (see [4]).

Kuhn and Wattenhofer [5] showed that the arrow protocol is a distributed ordering

algorithm with low maximum stretch factor. Another application of the MMST is in

the analysis of competitive concurrent distributed queuing protocols that intend to

minimize the message transit in a routing tree [6].

For any t ≥ 1, the problem of deciding whether G contains a tree t-spanner is

NP-complete [7]. Consequently, the MMST problem, the problem of finding a tree
t-spanner that minimizes t, is NP-complete. In this paper we present an efficient

genetic algorithm to the MMST problem. Our experimental results show that the

proposed algorithm returns high quality tree t-spanner.
The rest of this paper is organized as follows. Section 2 reviews some results

on the tree t-spanner and related problems. Section 3 presents the proposed genetic

algorithm. Section 4 evaluates our algorithm by applying it to randomly generated

instances of a tree t-spanner problem. Section 5 makes some concluding remarks.

2 Related Work

In this section, we present results on related problems.

For an unweighted graph G, Cai and Corneil [7] produced a linear time algorithm

to find a tree t-spanner in G for any given t ≥ 2. Moreover, they showed that, for

any t ≥ 4, the problem of finding a tree t-spanner in G is NP-complete. Brandstädt

et al. [8, 9] improved the hardness result in [7] by showing that a tree t-spanner
is NP-complete even over chordal graphs which each created a cycle with length 3
whenever t ≥ 4 and chordal bipartite graphs which each created a cycle with length

4 whenever t ≥ 5.

Peleg and Tendler [10] proposed a polynomial time algorithm to determine a min-

imum value for t for the tree t-spanner over outerplanar graphs. In [11], Fekete and

Genetic Algorithms for the Tree T-Spanner Problem 439

Kremer showed that it is NP-hard to determine a minimum value for t for which a

tree t-spanner exists even for planar unweighted graphs. They designed a polyno-

mial time algorithm that decides if the planar unweighted graphs with bounded face

length contains a tree t-spanner for any fixed t. Moreover, they proved that for t = 3,

it can be decided whether the unweighted planar graph has a tree t-spanner in poly-

nomial time. The problem was left open whether a tree t-spanner is polynomial time

solvable in case of t ≥ 4. Afterwards, this open problem is solved by Dragan et al.

[12]. They proved that, for any fixed t, the tree t-spanner problem is linear time solv-

able not only for a planar graphs, but also for the class of sparse graphs which include

graphs of bounded genus. Emek and Peleg [2] presented an O(log n)-approximation

algorithm for finding the tree t-spanner problem in a graph of size n. Moreover, they

established that unless P = NP, the problem cannot be approximated additively by

any o(n) term.

Recently, Dragan and Köhler [13] examined the tree t-spanner on chordal graphs,

generalized chordal graphs and general graphs. For every n-vertex m-edge

unweighted graph G, they proposed a new algorithm constructs a tree (2⌊log2 n⌋)-

spanner in O(m log n) time for chordal graphs, a tree (2𝜌⌊log2 n⌋)-spanner

O(m log2 n) time or a tree (12𝜌⌊log2 n⌋)-spanner in O(m log n) time for graphs that

confess a Robertson-Seymour’s tree-decomposition with bags of radius at most 𝜌 in

G and a tree (2⌈t∕2⌉⌊log2 n⌋)-spanner in O(mn log2 n) time or a tree (6t⌊log2 n⌋)-

spanner in O(m log n) time for graphs that confess a tree t-spanner. They produced

the same approximation ratio as in [2] but in a better running time.

3 Genetic Algorithm

In this section, we propose a genetic algorithm for the MMST problem, the problem

of finding a tree t-spanner in a given edge-weighted graphs that minimizes the stretch

factor t (see Sect. 1).

We first introduce some terminologies that will be used throughout this section.

Let G′
be a subgraph of G. The sets V(G′) and E(G′) denote the set of vertices and

edges of G′
, respectively. The shortest distance between two vertices u and v in G′

is denoted by dG′ (u, v). For two subgraphs G1 and G2 of G, let G1 ∪ G2, G1 ∩ G2,

and G1 − G2 denote the subgraph induced by E(G1) ∪ E(G2), E(G1) ∩ E(G2), and

E(G1) − E(G2), respectively.

3.1 Algorithm Overview

The Genetic Algorithm (GA) is an iterative optimization approach based on the prin-

ciples of genetics and natural selection [14]. We first have to define a suitable data

structure to represent individual solution (chromosomes), and then construct a set of

candidate solutions as an initial population (first generation) of an appropriate cardi-

440 R. Moharam et al.

nality pop − size. The following typical procedure is repeated as long as a predefined

stopping criteria are met. Starting with the current generation, we use a predefined

selection technique to repeatedly choose a pair of individuals (parents) in the current

generation to reproduce, with probability pc, a new set of individuals (offsprings) by

exchanging some parts of between the two parents (crossover operation). To avoid

local minimum, we try to keep an appropriate diversity among different generations

by applying mutation operation, with specific probability pm, to genes of individuals

of the current generation. Finally, based on the values of an appropriate fitness func-

tion, we select a new generation from both the offspring and the current generation

(the more suitable solutions have more chances to reproduce).

Note that, determining representation method, population size, selection tech-

nique, crossover and mutation probabilities, and stopping criteria in genetic algo-

rithms are crucial since they mainly affect the convergence of the algorithm (see

[15–19]).

The rest of this section is devoted to describe steps of the above algorithm in

details.

3.2 Representation

Let G = (V ,E) be a given undirected graph such that each vertex in V is assigned

a distinct label from the space 1, 2,… , n, i.e., V = {1, 2,… , n}. Clearly, each edge

e ∈ E with end points i and j is uniquely defined by the unordered pair i, j. Moreover,

every subgraph of G is uniquely defined by the set of unordered pairs of all its edges.

In particular, every spanning tree T inG is induced by a set of exactly n − 1 unordered

pairs corresponding to its edges since T is a subgraph of G that spans all vertices in V
and has no cycles. Therefore, each chromosome (tree t-spanner) can be represented

as a set of unordered pairs of integers each of which represent a gene (edge) in the

chromosome.

3.3 Initial Population

Constructing an initial generation is the first step in typical genetic algorithms. We

first have to decide the population size pop − size, one of the decisions that affect

the convergence of the genetic algorithm. It is expected that small population size

may lead to weak solutions, while, large population size increases the space and time

complexity of the algorithm. Many literatures studied the influence of the population

size to the performance of genetic algorithms (see [18] and the references therein).

In this paper, we discuss the effect of the population size on the convergence time of

the algorithm (cf. Sect. 4).

Genetic Algorithms for the Tree T-Spanner Problem 441

On of the most common methods is to apply random initialization to get an ini-

tial population. Namely, we compute each chromosome in the initial population by

repeatedly applying the following simple procedure as long as the cardinality of the

set of visited vertices is less than n (or as long as the cardinality of the set of traversed

edges is less than n − 1). Let T denote the tree constructed so far by the procedure

(initially, T consists of a random vertex from V(G)). We first select a random vertex

v ∉ V(T) from the set of the neighbors of all vertices in T , and then add the edge

e = (u, v) to T , where u is the neighbor of v in T . It is easy to verify that the above

procedure returns a tree after exactly n − 1 iterations. The generated tree T is added

to the initial population.

The above algorithm is repeated as long as the number of constructed population

is less than pop − size.

3.4 Fitness Function

Fitness function is a function used to validate each chromosome. Here, the objective

function of the MMST is to minimizes the maximum ratio between all pairs of ver-

tices in the underlying graph G. Formally, the objective function of the MMST is to

minimizes maxu,v∈V
dT (u,v)
dG(u,v)

, where dT (u, v) and dG(u, v) are the distances between u
and v in T and G, respectively.

3.5 Selection Process

In this paper, we present three common selection techniques: roulette wheel selec-

tion, stochastic universal sampling selection, and tournament selection. All these

techniques are called fitness-proportionate selection techniques since they are based

on a predefined fitness function used to evaluate the quality of individual chromo-

somes. Throughout the execution of the proposed algorithm, the reverse of this ratio

is used as the fitness function of the corresponding chromosome. We assume that

the same selection technique is used throughout the whole algorithm. The rest of

this section is devoted to briefly describe these selection techniques.

Roulette Wheel Selection (RWS): [14, 20] Here, the probability of selecting

a chromosome is based on its fitness value. More precisely, each chromosome is

selected with the probability that equals to its normalized fitness value, i.e., the ratio

of its fitness value to the total fitness values of all chromosomes in the set from which

it will be selected.

442 R. Moharam et al.

Stochastic Universal Sampling Selection (SUS): [20, 21] Instead of a single

selection pointer used in roulette wheel approach, SUS uses h equally spaced point-

ers, where h is the number of chromosomes to be selected from the underlying

population. All chromosomes are represented in number line randomly and a sin-

gle pointer ptr ∈ (0, 1
h
] is generated to indicate the first chromosome to be selected.

The remaining h − 1 individuals whose fitness spans the positions of the pointers

ptr + i∕h, i = 1, 2,… , h − 1 are then chosen.

Tournament Selection (TRWS): [14, 21] This is a two stages selection tech-

nique. We first select a set of k < pop − size chromosomes randomly from the current

population. From the selected set, we choose the more fit chromosome by applying

the roulette wheel selection approach. Tournament selection is performed according

to the required number of chromosomes.

3.6 Crossover Process

In each iteration of the algorithm we repeatedly select a pair of chromosomes (par-

ents) from the current generation and then apply crossover operator with probability

pc to the selected chromosomes to get new chromosomes (offsprings). Simulations

and experimental results of the literatures show that a typical crossover probability

lies between 0.75 and 0.95. There are two common crossover techniques: single-

point crossover and multi-point crossover. Many researchers studied the influence of

crossover approach and crossover probability to the efficiency of the whole genetic

algorithm, see for example [17, 19] and the references therein. In this paper, we use

a multi-point crossover approach by exchanging a randomly selected set of edges

between the two parents.

In particular, for each selected pair of chromosomes T1 and T2, we generate a

random number s ∈ (0, 1]. If s < pc holds, we apply crossover operator to T1 and T2
as follows.

Define the two sets E1 = E(T1) − E(T2) and E2 = E(T2) − E(T1) (|E1| = |E2|

holds). Let t = |E1| = |E2|, and generate a random number k from [1, t]. We first

choose a random subset E′
1 of cardinality k from E1, and then add E′

1 to T2 to get a

subgraph T ′
(i.e., T ′ = T2 ∪ E′

1). Clearly, T ′
contains k cycles each of which contains

a distinct edge from E′
1. For every edge e = (u, v) in E′

1, we apply the following pro-

cedure to fix a cycle containing e. Let ̃T be the current subgraph (initially, ̃T = T ′
).

We first find a path P
̃T (u, v) between u and v in ̃T − {e}. We then choose an edge ẽ

in P
̃T (u, v) randomly and delete it from subgraph ̃T .

Similarly, we apply the above crossover technique by interchanging the roles of

T1 and T2 one more offspring. Finally, we add each of the resulting spanning trees to

the set of generated offsprings.

Genetic Algorithms for the Tree T-Spanner Problem 443

3.7 Mutation Process

To maintain the diversity among different generations of the population (and hence

avoid local minimum), we apply a genetic (mutation) operator to chromosomes of the

current generation with predefined (usually small) probability pm. Namely, for each

chromosome T , we generate a random number s ∈ (0, 1], and then mutate T if s < pm
holds by replacing a random edge (gene) in T with a random edge from E(G) − E(T).
Many results analyzed the role of mutation operator in genetic algorithms [15–17].

Formally, a chromosome T is mutated as follows. We first select a random edge

e = (u, v) in the graphG but not in the chromosome T , i.e., e is randomly chosen from

the set E(G) − E(T) of edges, It is easy to see that the subgraph T ∪ {e} contains

exactly one cycle including e. We then select a random edge e′ in the path PT (u, v)
between u and v in T . Let T ′

denote the offspring obtained from T by exchanging the

two edges e and e′, i.e., T ′ = (T − {e}) ∪ {e′}. It is easy to see that T ′
is a spanning

tree in G.

A formal description of the proposed genetic algorithm is described in

Algorithm 1.

Algorithm 1 Genetic Algorithm for the Tree t-Spanner Problem

Input: An edge-weighted graph G, a population size pop − size, a maximum

number of generations maxgen, a crossover probability pc, a mutation probability pm.

Output: A tree t-spanner that minimizes t.
1. Compute an initial population I0 (cf. Sect. 3.3).

2. gen ← 1.

3. While (gen ≤ maxgen) do
4. For i = 1 to pop − size do
5. Select a pair of chromosomes from Igen−1 (Sect. 3.5).

6. Apply crossover operator with probability pc to the selected pair of

chromosomes to get two offsprings (Sect. 3.6).

7. Endfor
8. For each chromosome in Igen−1, apply mutation operator with

probability pm to get an offspring (Sect. 3.7).

9. Extend Igen−1 with valid offsprings output from lines 6 and 8.

10. Find the chromosome Tgen−1 with the best fitness value in Igen−1.

11. If gen ≥ 2 and the fitness values of Tgen−2, Tgen−1, and Tgen are identical, then break.

12. Select pop − size chromosomes from Igen−1 to form Igen (Sect. 3.5).

13. gen ← gen + 1.

14. Endwhile
15. Output Tgen.

444 R. Moharam et al.

4 Experimental Results

In this section, we evaluate the proposed genetic algorithm by applying it to several

random edge-weighted graphs. In particular, we generate a random graph G of n
nodes by applying Erdos and Renyi [22] approach in which an edge is independently

included between each pair of nodes of G with a given probability p. Here, we gener-

ate random graphs with sizes 6, 10, 15, and 20, and a randomly chosen probability p.

Moreover, all edge weights of the generated graphs are set to random integers from

the interval [1, 1000].
For each of the generated graphs, we apply the proposed algorithm with different

selection techniques. We set the population size pop − size = 30, the maximum num-

ber of iterations the genetic algorithm executes maxgen = 300, the crossover proba-

bility pc = 0.9, and the mutation probability pm = 0.2. All previous parameters are

summarized in Table 1. The algorithm terminates if either the number of iterations

exceeds maxgen or the solution does not change for three consecutive iterations. All

obtained solutions are compared with the corresponding optimal solutions obtained

by considering all possibilities of all spanning trees in the underlying graphs.

All results presented in this section were performed in MATLAB R2014b on a

computer powered by a core i7 processor and 16 GB RAM.

The results of applying our genetic algorithm to random graphs with sizes n = 6,

n = 10, n = 15, and n = 20, are shown in Table 2. In particular, Table 2 compare the

values of t returned by the algorithm with the corresponding optimal stretch factor.

It is seen that the proposed algorithm outputs optimal solution to MMST all the

instances the algorithm applies to.

Table 1 Values of algorithm parameters

Parameter Value

n 6, 10, 15, 20

pop − size 30

maxgen 300

pc 0.9

pm 0.2

Table 2 Values of t corresponding to a random graphs with size n
t t-Optimal t-RWS t-SUS t-TRWS

n
6 1.0833 1.0833 1.0833 1.0833

10 1.0964 1.0964 1.0964 1.0964

15 1.1579 1.1579 1.1739 1.1579

20 1.0132 1.0484 1.0132 1.0132

Genetic Algorithms for the Tree T-Spanner Problem 445

Fig. 1 The influence of

pop − size on the running

time of the algorithm (n = 6)

Fig. 2 The influence of

pop − size on the running

time of the algorithm

(n = 10)

We discuss the effect of the population size pop − size on the convergence of the

algorithm. Given a random graph with size n, we apply the algorithm with pop-

ulation sizes n∕3, 2n∕3, n, 4n∕3, 5n∕3, 2n, 7n∕3 and 8n∕3. Figures 1, 2, 3 and 4

illustrate the running time of the algorithm applied to graphs of sizes n = 6, n = 10,

n = 15 and n = 20, respectively. The algorithm attains the least running time when

the population size is set to a constant fraction of the graph size n.

446 R. Moharam et al.

Fig. 3 The influence of

pop − size on the running

time of the algorithm

(n = 15)

Fig. 4 The influence of

pop − size on the running

time of the algorithm

(n = 20)

5 Conclusion

In this paper, we have studied the problem of finding the Minimum Maximum Stretch

Spanning Tree (MMST) that aims to find a spanning tree T in a given graph G such

that the maximum ratio of the distances between every pair of vertices in T to the

shortest distance between the two vertices in G is minimized. We have designed

a genetic algorithm for the MMST problem which have been evaluated by apply-

ing it to random instances of the problem. Experimental results have shown that

the proposed algorithm outputs a high quality solutions to the MMST problem. It

will be interesting to adapt our algorithm to be applied to the subgraph t-spanner

Genetic Algorithms for the Tree T-Spanner Problem 447

problem: the problem of finding a minimum weight subgraph in G such that the

distance between any two vertices in this subgraph is at most a given t ≥ 1 times

the shortest distance between the two vertices in G. See [23–26] and the references

therein.

References

1. Peleg, D., Ulman, J.D.: An optimal sychronizer for the hypercube. SIAM J. Comput. 740–747

(1989)

2. Emek, Y., Peleg, D.: Approximating minimum max-stretch spanning trees on unweighted

graphs. SIAM J. Comput. 1761–1781 (2008)

3. Demmer, M.J., Herlihy, M.P.: The arrow distributed directory protocol. In: Proceeding of

the 12th International Symposium on Distributed Computing (DISC), pp. 119–133. Springer

(1998)

4. Peleg, D., Reshef, E.: Low complexity variants of the arrow distributed directory. J. Comput..

Syst. Sci, pp. 474–485 (2001)

5. Kuhn, F., Wattenhofer, R.: Dynamic analysis of the arrow distributed protocol. Theory Comput.

Syst. pp. 875–901 (2006)

6. Herlihy, M., Tirthapura, S., Wattenhofer, R.: Competitive concurrent distributed queuing. In:

Proceedings of the 20th Annual ACM Symposium on Princibles of Distributed Computing,

pp. 127–133 (2001)

7. Cai. L., Corneil, D., Tree Spanners. SIAM J. Discret. Math. 359–387 (1995)

8. Brandstädt, A., Dragan, F.F., Le, H.-O., Le, V.B.: Tree spanners on chordal graphs: complexity

and algorithms. Theor. Comput. Sci. 329–354 (2004)

9. Brandstädt, A., Dragan, F.F., Le, H.-O., Le, V.B., Uehara, R.: Tree spanners for bipartite graphs

and probe interval graphs. Algorithmica 27–51 (2007)

10. Peleg, D., Tendler, D.: Low stretch spanning trees for planar graphs, Technical Report. MCS01-

14, Weizmann Science Press of Israel (2001)

11. Fekete, S.P., Kremer, J.: Tree spanners in planar graphs, Discret. Appl. Math, pp. 85–103

(2001)

12. Dragan, F.F., Fomin, F.V., Golovach, P.A.: Spanners in sparse graphs. J. Comput. Syst. Sci. pp.

1108–1119 (2010)

13. Dragan, F.F., Köhler, E.: An approximation algorithm for the tree t-spanner problem on

unweighted graphs via generlized chordal graphs. Algorithmica 884–905 (2014)

14. Engelbrecht, A.P.: Computational Intelligence: An Introduction. Wiley, New York (2007)

15. Abdoun, O., Abouchabaka, J., Tajani, C.: Analyzing the Performance of Mutation Operators

to Solve the Travelling Salesman Problem, CoRR abs/1203.3099 (2012)

16. Hesser, J., Manner, R.: Towards an optimal mutation probability for genetic algorithms. In:

Proceedings of 1st Workshop in Parallel Problem Solving From Nature, pp. 2332 (1991)

17. LIN, W-Y., LEE, W-Y., Hong, T-P.: Adapting crossover and mutation rates in genetic algo-

rithms. In: The Sixth Conference on Artificial Intelligence and Applications, Kaohsiung, Tai-

wan (2001)

18. Roeva, O., Fidanova, S., Paprzycki, M.: Influence of the population size on the genetic algo-

rithm performance in case of cultivation process modelling. In: Proceedings of the Federated

Conference on Computer Science and Information Systems, pp. 371–376 (2013)

19. Vekaria, K., Clack, C.: Selective crossover in genetic algorithms: an empirical study.Lecture

Notes in Computer Science, vol. 1498, pp. 438–447 (1998)

20. Chipperfield, A., Fleming, P., Pohlheim, H., Fonseca, C.: The Matlab Genetic Algorithm User’s

Guide, UK SERC (1994)

21. Blickle, T., Thiele, L.: A Comparison of Selection Schemes used in Genetic Algorithms, Zurich

(1995)

448 R. Moharam et al.

22. Erdos, P., Renyi, A.: On random graphs. Publ. Math. 290 (1959)

23. Sigurd, M., Zachariasen, M.: Construction of Minimum-Weight Spanners, pp. 797–808.

Springer, Berlin (2004)

24. Farley, A.M., Zappala, D., Proskurowski, A., Windisch, K.: Spanners and message distribution

in networks. Dicret. Appl. Math. 159–171 (2004)

25. Gudmundsson, J., Levcopoulos, C., Narasimhan, G.: Fast greedy algorithms for constructing

sparse geometric spanners. SIAM J. Comput. pp. 1479–1500 (2002)

26. Navarro, G., Paredes, R., Chavez, E.: t-Spanners as a data structure for metric space searching.

In: International Symposium on String Processing and Information Retrieval, SPIRE, LNCS

2476, pp. 298–309 (2002)

	Genetic Algorithms for the Tree T-Spanner Problem
	1 Introduction
	2 Related Work
	3 Genetic Algorithm
	3.1 Algorithm Overview
	3.2 Representation
	3.3 Initial Population
	3.4 Fitness Function
	3.5 Selection Process
	3.6 Crossover Process
	3.7 Mutation Process

	4 Experimental Results
	5 Conclusion
	References

