
Chapter 8
Predictive Control for Path-Following.
From Trajectory Generation
to the Parametrization of the Discrete
Tracking Sequences

Ionela Prodan, Sorin Olaru, Fernando A.C.C. Fontes, Fernando Lobo Pereira,
João Borges de Sousa, Cristina Stoica Maniu and Silviu-Iulian Niculescu

Abstract This chapter discusses a series of developments on predictive control
for path following via a priori generated trajectory for autonomous aerial vehicles.
The strategy partitions itself into offline and runtime procedures with the assumed
goal of moving the computationally expensive part into the offline phase and of
leaving only tracking decisions to the runtime. First, it will be recalled that differential
flatness represents a well-suited tool for generating feasible reference trajectory.
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Next, an optimization-based control problem which minimizes the tracking error
for the nonholonomic system is formulated and further enhanced via path following
mechanisms. Finally, possible changes of the selection of sampling times along the
path and their impact on the predictive control formulationwill be discussed in detail.

Keywords Model predictive control (MPC) ·Differential flatness ·Trajectory track-
ing · Path following · Autonomous aerial vehicles

8.1 Introduction

There aremany situations in control and coordination of dynamical systems forwhich
a trajectory has to be generated a priori in order to provide a reference for a tracking
control problem, [1, 3, 30]. These control applications are often difficult to handle in
embedded solutions (complex dynamics, difficult real-time constraints, short sam-
pling times, limited computational resources, and the like). For all these reasons, it
is essential to push as many of the reference management and control tasks offline.
Therefore, enforcing the computationally demanding effort of trajectory generation
for an offline stage leaves for the runtime only the relatively straightforward trajec-
tory tracking, [14, 20, 23]. Moreover, having a priori feasible reference trajectory
implies that we may offer guarantees of performance for the overall system, [22, 26,
30].

Another challenging problem frequently used in control is path following which
allows dynamical (nonlinear) systems to follow a predefined path specified by points,
lines, and the like. The clear specification of the difference between the following two
close notions is ofmost importance: trajectory tracking and path following. The latter
provides a desired time-independent route for the vehicle, while for the trajectory
tracking the reference is represented by a function of time. Both problems have their
strengths and weaknesses depending on the general control objectives. For example,
we may consider that the former has the advantage of providing simultaneously both
feasible input and state variables for the corresponding system. However, a disad-
vantage would be its time dependence, which often imposes an additional constraint
on the real-time functioning. This is to be compared with the reference path which
remains time-independent and, as such, provides a certain flexibility for tracking.

There is a wealth of work in the literature on trajectory tracking and path fol-
lowing algorithms. From an optimization-based control viewpoint, a widely used
technique for solving tracking problems is model predictive control (MPC) (see, for
instance, [15, 25] for an overview of MPC, and [12] for MPC of nonholonomic sys-
tems) due to its ability to handle control and state constraints, while offering good
performance specifications. For example, [17] uses a predictive guidance controller
for an autonomous UAV and a fault detection filter for taking into account the dis-
turbances. Mixed-integer programming (MIP) techniques combined with receding
horizon strategy were useful for coordinating the efficient interaction of multiple
UAVs in scenarios with many sequential tasks and tight timing constraints (see, [16,
27]). Furthermore, someworks investigate the capability of nonlinearMPC for track-
ing control. Among these contributions, [18] formulates a nonlinear MPC algorithm
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combined with the gradient descent method for trajectory tracking, and [13] pro-
poses a two-layer control scheme composed by a nonlinear and a linear predictive
controller for a group of nonholonomic vehiclesmoving in formation. Reference [21]
proposes as well a gradient-based optimization algorithm for trajectory generation
for aircraft avoidance maneuvers where concepts like polar sets and gauge function
are used to partition the feasible region in convex partitions. The combination of
MPC and path following has been previously addressed in [4, 11], and [35].

The combination of MPC with flatness represents a challenging combination in
the current state of the art by allowing real-time control, trajectory generation, and
robustness by using set-theoretic methods, [22]. In the present work, we choose to
use one of the few generic tools, those based on differential flatness for constructing
a reference trajectory. Then, we propose a trade-off between trajectory and path
tracking. We pre-compute a feasible trajectory but we use it as a path by considering
the velocity along it as the solution of an optimization problem. By allowing this
degree of freedom on how fast we move along the path, we actually increase the
flexibility and robustness of the problem, while at the same time guaranteeing a
feasible path.

The present chapter is motivated mainly by our previous work [22–24], where a
flat trajectory was generated and further used as a reference in an output tracking
MPC problem. The results were also implemented on real UAVs. This work extends
the optimization-based control approach and the path following versus trajectory
tracking discussions previously presented. More specifically, the original contribu-
tions are the following:

• greater flexibility of trajectory tracking by allowing a variable speed along the path
in order to decrease the sensitivity to disturbances and perturbations;

• discretization and the linearization along the reference trajectory are adapted to
the variable speed profile by using variable sampling intervals; and

• simulations results over a high-order unmanned aerial vehicle (UAV) model are
provided.

The chapter is organized as follows. Section8.2 introduces the prerequisites
needed for trajectory generation: flat trajectory and its parametrization together with
proof of concepts examples. Also, the principles of the key background underlying
optimization-based control are briefly introduced. While Sect. 8.3 details the control
part of the trajectory tracking problem, Sect. 8.4 presents its reconfiguration as a path.
Section8.5 presents illustrative simulation results for an UAV system, and Sect. 8.6
concludes the paper.

Notation

Let x(k + 1) denote the value of x at time instant k + 1, predicted upon the infor-
mation available at time k ∈ N. The length of the prediction horizon is denoted by
Np, and the time step within prediction horizon is denoted by s. We write R � 0 and
R � 0 to denote that R is a positive definite and semidefinite matrix, respectively.
The discretization step is denoted by Te.
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8.2 Prerequisites

This section presents some general details on flat trajectories and the optimization-
based control principles.

8.2.1 Flat Trajectory

Consider the nonlinear continuous time-invariant system:

ẋ(t) = f (x(t), u(t)), (8.1)

where x(t) ∈ R
nx is the state vector and u(t) ∈ R

nu is the input vector.

Definition 8.1 The system (8.1) is called differentially flat if there exists a flat output
z(τ ) ∈ R

nu such that the states and inputs can be algebraically expressed in terms of
z(τ ) and a finite number of its higher order derivatives:

x(τ ) = Φ0(z(τ ), ż(τ ), . . . , z(q)(τ )), (8.2)

u(τ ) = Φ1(z(τ ), ż(τ ), . . . , z(q)(τ )), (8.3)

where z(τ ) = γ(x(τ ), u(τ ), u̇(τ ), · · · , u(q)(τ )) and q ∈ N represents the maximum
order of z(τ ) arising in the problem (see also Fig. 8.1 for a general view on differential
flatness concept). �

Remark 8.1 Note that, in (8.2)–(8.3), τ ∈ R is a scalar parameter which can be
assimilated to t ∈ R in (8.1), but will be used as a decision variable interpreted as
a virtual time when the reference tracking problem is casted into path following
problem. �

Fig. 8.1 Differentially flat
systems

z = γ(x,u, u̇, . . . )

x = Φ0(z, ż, . . . )

u = Φ1(z, ż, . . . )

Input/State space Flat Output space
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Remark 8.2 For any system admitting a flat description, the number of flat out-
puts equals the number of inputs [19]. In the case of linear systems [29], the flat
differentiability (existence and constructive forms) is implied by the controllability
property. �

The most important aspect of flatness is that it reduces the problem of trajectory
generation to finding an adequate flat output solving an algebraic system of equalities
and inequalities. This means choosing z(t) such that, via mappings Φ0(·),Φ1(·),
various constraints on state and inputs are verified. The flat output may be itself
difficult to compute. The usual solution (also followed here) is to parameterize z(t)
by using a set of smooth basis functions Λi (t):

z(t) =
N∑

i=1

ciΛ
i (t), ci ∈ R. (8.4)

The number of basis functions directly depends on the number of constraints imposed
onto the dynamics [33].

There are multiple choices for the basis functions Λi (t) in (8.4). The polynomial
basis λi (t) = t i is a well-known choice but suffers from numerical deficiencies: the
number of functions depends on the trajectory constraints and on the degree of the
derivatives appearing in the state and input parametrizations, [6, 10, 31]. Another
choice is the Bésier basis functions [28], they mitigate the numerical difficulties but
their degree still depends on the order of derivatives that appear, [9, 34]. B-spline
basis functions represent an alternative well suited to flatness parametrization due
to their ease of enforcing continuity. Moreover, their degree depends only up to
which derivative is needed to ensure continuity. This basis will be used in the sim-
ulation results presented in this chapter. For details on B-spline functions and their
applications, the interested reader is referred to recent research works, [7, 31, 32].

8.2.2 Principles of Optimization-Based Control

The optimization-based control refers to the control design that optimizes a given
criterion by using methods that generate optimal control laws whose parameters are
such that a certain desired property, such as stability or robustness, is fulfilled. This is a
broaddefinitionwhich actually can cover the classical optimal control, theLMI-based
techniques, MPC, or interpolation-based techniques. We provide in this chapter, a
trajectory trackingMPCproblem forwhich a control actionu(k) for a given state x(k)

is obtained from the control sequence u � {u(k), u(k + 1), . . . , u(k + Np − 1)} as
the result of the optimization problem:

u∗ = arg
u

min

⎧
⎨

⎩V f (x(k + Np), r(k + Np)) +
Np−1∑

s=1

V (x(k + s), u(k + s), r(k + s))

⎫
⎬

⎭ ,

(8.5)
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subject to:

{
x(k + s + 1) = f (x(k + s), u(k + s)), s = 0 : Np − 1,

h(x(k + s), u(k + s), r(k + s)) ≤ 0, s = 1 : Np − 1,
(8.6)

over a finite horizon Np. Here, V f (·, ·) : Rnx × R
nx → R+ represents the terminal

cost function, V (·, ·, ·) : Rnx × R
nu × R

nx → R, the cost at stage s function, f (·, ·)
describes the evolution of the systems’ trajectory, h(·, ·, ·) the constraints in a general
(input state parameters) form, being r(·) ∈ R

nx a vector of time-varying parameters
which includes the reference trajectory along the prediction horizon.

Therefore, our main objective being the design of a predictive control strategy,
a reference trajectory needs to be available beforehand at least for a finite predic-
tion window. Hereinafter, we use flatness concepts previously presented in order to
provide flat states and inputs of the nonlinear finite-time optimization problem (8.5)
at the pre-design stage (trajectory generation), which can be updated in real-time in
order to allow rescheduling and target moves. Finally, the MPC optimization prob-
lem and the a priori generated reference are linked through an optimization block
which adapts the speed of tracking, being this actually the main contribution of the
paper and thus it will be our main focus in the forthcoming section.

Remark 8.3 Note that, the nonlinear systems used in a wide class of practical appli-
cations are differentially flat. For the cases where the specifications of flat outputs
are not possible, other strategies for trajectory generation can be employed (see, for
example, [1, 5]). �

8.3 Optimization-Based Trajectory Tracking

This section starts by presenting the linearization procedure of the system model
which will be further used in the optimization-based control design for trajectory
tracking.

8.3.1 Linearization

Hereinafter, we choose to discretize and linearize the dynamics (8.1) along the flat
trajectory (for the construction details regarding the discretization method, lineariza-
tion points along the flat trajectory and the like, the reader can consult our previous
work, [22]). For the time discretization via Euler explicit method, we compute a
first-order approximation of the state of the system at a time later. The one at the
current time is as follows:

x(k + 1) = x(k) + Te · f (x(t), u(t))|t=k·Te , (8.7)



8 Predictive Control for Path-Following … 167

where Te is the discretization step. Furthermore, for the discretized model of the
nonlinear system (8.1) defined as:

x(k + 1) = f d(x(k), u(k)), (8.8)

we consider a collection of points along the reference trajectory in which we pre-
compute linear approximations of (8.8):

L � {l j = (x j , u j ), j = 0 : Nl}, (8.9)

with Nl the number of chosen linearization points. For a given point l j ∈ L we
consider the following Taylor decomposition:

f d(x(k), u(k)) = f d(x j , u j ) + A j (x(k) − x j ) + B j (u(k) − u j ) + β j (x(k), u(k)),

(8.10)

where the matrices A j ∈ R
nx ×nx and B j ∈ R

nx ×nu are defined by

A j = ∂ f d

∂x
|(x j ,u j ), B j = ∂ f d

∂u
|(x j ,u j ) (8.11)

and β j (x(k), u(k)) ∈ R
nx represents the terms of the Taylor decomposition of rank

greater than 1 (i.e., the nonlinear residue of the linearization):

β j (x(k), u(k)) = f d(x(k), u(k)) − f d(x j , u j ) − A j (x(k) − x j ) − B j (u(k) − u j ),

(8.12)

for all j = 0, . . . , Nl . Therefore, the system (8.8) is linearized in l j ∈ L as follows:

x(k + 1) = f d
j (x(k), u(k)) � A j x(k) + B j u(k) + d j , (8.13)

where f d
j (x(k), u(k)) = f d(x(k), u(k)) − β j (x(k), u(k)), and the affine constant

terms d j ∈ R
nx are given by

d j = f d(x j , u j ) − A j x j − B j u j , (8.14)

for all j = 0, . . . , Nl .

Remark 8.4 Note that, in general, the linearization and the discretization operations
can be interchanged and even mixed in order to obtain a discrete-time linear system
which best approximates the sampling of the continuum time dynamics. �

Furthermore, for selecting between the predefined linearization points (8.9) for
the current input/state values, we partition the state space into a collection of Voronoi
cells:
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V j = {
(x, u) : ||(x, u) − (x j , u j )|| ≤ ||(x, u) − (xi , ui )||, ∀i 	= j

}
, (8.15)

where each cell consists of all points whose linearization error around point (x j , u j )

is lower than the one with respect to any other point (xi , ui ) from L, with i, j =
0, . . . , Nl . This allows a practical criterion for the selection of the linearization point
during runtime:

if (x(k), u(k)) ∈ V j then x(k + 1) = f d
j (x(k), u(k)), ∀ j = 0, . . . , Nl .

(8.16)

It is worth mentioning that, for a given error norm, the Voronoi decomposition is
unique (by its geometrical properties) and, as such, it offers a generic design tool
for any localization of the linearization points. The drawback is that this criterion
is purely geometric and does not take into account the dynamical properties of the
model. This disadvantage can be mitigated by two practical procedures: increasing
the number of linearization points, and computing the maximal linearization error
(see [8] for a discussion on the accuracy of the linearization and its impact in the
design of stabilizing control laws). Since β j (x, u) = f d(x, u) − f d

j (x, u), it follows
that the linearization error is related to the topology of its corresponding cell, V j : For
all k = 0, 1, . . ., we have

||β j (x(k), u(k))|| ≤ max
(x,u)∈V j

|| f d(x, u) − f d
j (x, u)||. (8.17)

Basically, a Voronoi decomposition with decreasing volume of the cells leads to an
increasing quality of the PWA approximation for the function (8.8).

The following remarks are in order.

Remark 8.5 An a priori computation of the linearization (8.11), (8.12), and (8.14) in
all feasible combinations of inputs and states is difficult to handle. As such, we prefer
to select the linearization points (8.9) along the flat trajectory under the assumption
(to be verified along the system evolution) that the real trajectory will stay in the
correspondingvalidity domain (Voronoi cell), and thus the chosen linearizationpoints
will remain relevant to the problem at hand. �
Remark 8.6 Here, we have chosen the linearization points equidistantly along the
reference trajectory. This choice is acceptable as long as the trajectory tracking error is
contained by similar uncertainty bounds over the associated Voronoi cells. Adaptive
curve sampling can be employed via a different parametrization scheme in order to
select these points. For example, the selection of linearization points can be seen
as an optimization problem where the goal is to position the points in such a way
as to minimize the linearization errors β j (x(k), u(k)) in (8.10). Such an approach
becomes relevant when the control problem is specified in a high-dimensional space
and an automatic implementation of the scheme is required. �
Remark 8.7 Note that, a detailed exposition on the procedure for selecting between
the linearization points can be found in [22]. �
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Next, an optimization problem is formulated in a predictive control framework. It
includes the minimization of the system tracking error since the nominal trajectory is
generated by taking into account the state and input constraints, but the real vehicle
state may not follow exactly the reference flat trajectory. Hence, the system will be
controlled in real time to remain adequately close to the reference trajectory over a
finite-time horizon in the presence of constraints by using the available information.

8.3.2 Real-Time Control

We consider the recursive construction of an optimal open-loop control sequence
u = {u(k), u(k + 1), . . . , u(k + Np − 1)} over a finite constrained receding horizon,
which leads to a feedback control policy by the effective application of the first
control action as system input (see also Fig. 8.2which illustrates the general trajectory
tracking mechanism):

u∗ = argmin
u

Np−1∑

s=0

(||x(k + s) − xre f (k + s)||Q + ||u(k + s) − ure f (k + s)||R
)
,

(8.18)

subject to the set of constraints:

⎧
⎪⎪⎨

⎪⎪⎩

x(k + s + 1) = A j x(k + s) + B j u(k + s) + r j , s = 0 : Np − 1,
x(k + s) ∈ X , s = 1 : Np − 1,
u(k + s) ∈ U , s = 1 : Np − 1,

x(k) = xp(k),

(8.19)

for some j ∈ {1 : Nl}. Here, xp(k) denotes the state of the plantmeasured at instant k,
the matrices Q = QT � 0, R � 0 are weighting matrices and Np denotes the length
of the prediction horizon.

The solutionof the optimizationproblem (8.18)–(8.19) needs to satisfy the dynam-
ical constraints, expressed by the equality constraints in (8.19). At the same time,
other security or performance specifications can be added to the system trajectory.
These physical limitations (velocity and bank control inputs) are stated in terms of
pointwise hard constraints on both the state variables, and input control action as

Trajectory
generation
eq. (2)–(3)

MPC Plant
(x ref (τ ) , uref (τ ))

τ = k · Te

u( k)

xp(k)

a priori given
way-points
in the x space

Fig. 8.2 Trajectory tracking mechanism using MPC
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detailed by the set inclusion constraints in (8.19). Practically, the closed and com-
pact sets X , U denote in a compact formulation the magnitude constraints on states
and inputs, respectively. In the following, all these sets are supposed to be polytopic
(and, thus, bounded) and to contain the reference control process. This means that
xre f (k) ∈ X and ure f (k) ∈ U .

Stability constraints can be considered by adding to problem (8.18)–(8.19) a
terminal set-terminal cost arguments, the particularity being the time-varying nature
of the prediction model.

8.4 Optimization-Based Path Following

This section recalls first the difference between path and trajectory tracking. The
former only provides a desired route which may or may not be feasible when taking
into account the dynamics of the vehicle or the input and state constraints. At each
point in time, the latter provides a pair of reference state and input and thus guar-
antees the feasibility of the problem. While superior to deal with real-time require-
ments, the trajectory tracking problem is more challenging. Besides the increased
difficulty in generating a trajectory rather than a path there is also the issue of time
dependence, whichmay imply the infeasibility of the real-time optimization problem
(8.18)–(8.19).

The synchronization of the absolute time t in (8.1) with the virtual time τ in
(8.2)–(8.3), which parametrizes the flat trajectory, forces a constant “velocity” in the
sense that the state has to track the current values of the reference. If for some reason
(disturbances, unforeseen obstacles), the vehicle “lags”, the tracking controller has
forced the vehicle to remain in a reachable domain around the current values of
the reference trajectory, otherwise the closed-loop control design is compromised.
Conversely, if the vehicle is slightly ahead the reference trajectory, it may perform
“complex” maneuvers (with an inefficient energy use) when trying to be “in sync”
with the reference. This highlights the need for a mechanism which the vehicle can
“decelerate” or “accelerate” as desired along the reference trajectory, by adjusting
the virtual time flow with respect to the real controller time. Specifically, if for
some reason the vehicle remains constantly behind it is not reasonable to follow
the trajectory with a constant or an increasing tracking error which can lead to
infeasibility in predictive control terms. The alternative will be to reconfigure the
trajectory in terms of a path to be followed.

In this section, we propose a formal relaxation of the trajectory tracking scheme.
This is done by choosing the optimal point (in the sense specified above) at each
sampling time on the path to be followed. Subsequently, further enhancement of the
trajectory tracking scheme is provided by varying the speed profile along the path,
thus increasing the flexibility and robustness of the problem while guaranteeing the
path feasibility.
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8.4.1 Selection of the Initial Point of the Reference Trajectory

The basic idea is to find the point and the associated time value τc on the predefined
trajectory, which is the closest one to the current position of the vehicle x(k):

τc = arg min
τ∈[τk−1,t f ]

||xre f (τ ) − x(k)||22. (8.20)

Note that it is assumed implicitly in (8.20) that τk ≥ τk−1 which means that the
only possibility for the vehicle is to advance forward along the path (rather than go
backward).

In order to better explain the proposed strategy, Fig. 8.3 illustrates a reference
trajectory (depicted in blue), which passes through some a priori given waypoints
(denoted by the green dots), and the optimal time obtained by solving (8.20), for
which the current position is the closest one from the reference trajectory. If the
real-time position and the one in virtual time are synchronized, then the vehicle is
forced to track a point which is behind, whereas the optimal choice is to reorient the
vehicle to track the reference using the optimal time τc obtained as in (8.20). Note
that the same figure illustrates where to look for the optimal time by using solid blue
and dashed blue to denote the past and the future, respectively, along the trajectory.

Once the optimal time along the reference is found, an optimization-based control
problem similar to (8.18) is implemented (see also a similar mechanism illustrated
in Fig. 8.2):

u∗ = argmin
u

Np−1∑

s=0

(||x(k + s) − xre f (τc(k) + s · Te)||Q + ||u(k + s)

− ure f (τc(k) + s · Te)||R
)
, (8.21)

Fig. 8.3 Optimal time for
which the current position is
the closest from the
reference trajectory xref(tf)

xref(t0)

xref(τi+1)

xref(τi)

x

y

xref(τc) x(k) current
position

xref(kTe)
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Trajectory
generation
eq. (2)–(3)

Find τc
eq. (14) MPC Plant

(xref(τ ), uref(τ ))
τ = k · Te

u(k)

xp(k)

τca priori given
way-points
in the x space

Fig. 8.4 Conversion to path following mechanism using MPC

Trajectory
generation
eq. (2)–(3)

Find τc
eq. (14) NMPC Plant

(xref(τ ), uref(τ ))
τ = k · Te

u(k), α(k)

xp(k)

τca priori given
way-points
in the x space

Fig. 8.5 Conversion to path following mechanism using NMPC

subject to the set of constraints (8.19), with Te the sampling time as in (8.7) and τc

the optimal time obtained as the result of the optimization (8.20) (Fig. 8.4).
Note that the optimization problem (8.21) retains its linear structure, while (8.20)

is the simplest nonlinear optimization problem that can be formulated since it involves
only one decision variable τ subject to the constraints in (8.2)–(8.3).

8.4.2 Selection of the Speed Profile Along the Path

In the following, we go further in the design of the trajectory tracking scheme by
introducing a scalar term α to adjust the speed along the trajectory. This is equivalent
to a decorrelation of the flow along the virtual time by linear acceleration (α > 1) or
deceleration (α < 1). Therefore, the optimization problem (8.21) is reformulated as
follows

(u∗,α∗) = argmin
u,α

Np−1∑

s=0

(||x(k + s) − xre f (τTe(s; k,α(k)))||Q + ||u(k + s)

−ure f (τTe(s; k,α(k)))||R
)
, (8.22)

subject to the set of constraints (8.19), where τTe(s; k,α(k)) = τc(k) + sα(k)Te,
with Te being the sampling time as in (8.7), τc the optimal time obtained as in (8.20),
and α the time-varying speed profiling factor. Now, the structure of the optimization
problem (8.21) becomes nonlinear, and, thus, more complex, but still simple in the
sense that, it involves only one additional dimension, the decision variable α, which
permits to adjust theway the path is followed. Figure8.5 illustrates the path following
mechanism using a nonlinear model predictive control (NMPC) strategy.
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8.4.3 Linearization with Varying Speed Profile

In Sect. 8.3.1, we introduced a general linearization procedure for the system. Fol-
lowing the previous sections, the goal is to compare the system trajectory with the
reference trajectory in a discrete set of time instances when the reference trajectory is
followed at varying speed. To do that, we consider here non-equidistant consecutive
time instants {tk}k≥0 such that:

tk+1 = tk + α(k)Te, k ∈ N, α(k) ∈ (0, 1], (8.23)

where Te is the nominal sampling period.
As with (8.7), we consider Euler explicit method for the discretization:

x(tk+1) = x(tk) + α(k)Te f (x(tk), u(tk)), k ∈ N. (8.24)

Next, for the linearization procedure, the collection of linearization points along
the reference trajectory is redefined by:

L � {l j = (x j , u j ,α j ), j = 1, 2, . . . , Nl}, (8.25)

with the additional component α j , whose nominal value is chosen to be α j = 1,
corresponding to the reference trajectory at the nominal speed. Furthermore, the
linearization around a point l j ∈ L yields the following dynamics:

f (x(tk), u(tk)) � f (x j , u j ) + fx (x j , u j )(x(tk) − x j ) + fu(x j , u j )(u(tk) − u j )

(8.26)
and

x(tk+1) � x(tk) + α j Te fx (x j , u j )x(tk) + α j Te fu(x j , u j )u(tk)

+ α(k)Te( f (x j , u j ) − fx (x j , u j )x j − fu(x j , u j )u j ), (8.27)

which can be rewritten as:

x(tk+1) � (I + α j Te fx (x j , u j ))x(tk) + α j Te fu(x j , u j )u(tk)

+ α(k)Te( f (x j , u j ) − fx (x j , u j )x j − fu(x j , u j )u j ). (8.28)

Note that (8.27) is a bilinear model and a further approximation (α(k) = α j in
the second and third terms) leads to the linear model (8.28).

As with Sect. 8.3.1, we denote x(k + 1) = f d(x(k), u(k),α(k)), thus, x(tk) and
u(tk) become x(k) and u(k), respectively. The discrete-time linearized model can be
written as:

x(k + 1) = A j x(k) + B1
j u(k) + B2

jα(k), (8.29)
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where

A j = I + α j Te fx (x j , u j ), (8.30)

B1
j = α j Te fu(x j , u j ), (8.31)

B2
j = Te( f (x j , u j ) − fx (x j , u j )x j − fu(x j , u j )u j ). (8.32)

8.4.4 Real-Time Control

The optimization problem (8.22) is now reformulated as follows:

(u∗,α∗) = argmin
u,α

Np−1∑

s=0

(||x(k + s) − xre f (τ (k + s))||Q

+||u(k + s) − ure f (τ (k + s))||R + ||α(k + s) − 1||) ,

(8.33)

subject to the set of constraints:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

x(k + s + 1) = A j x(k + s) + B1
j u(k + s) + B2

j α(k + s), s = 0 : Np − 1,

τ (k + s + 1) = τ (k + s) + α(k)Te, s = 0 : Np − 1,
x(k + s) ∈ X , s = 1 : Np − 1,
u(k + s) ∈ U , s = 1 : Np − 1,

x(k) = xp(k),

τ (k) = τc(k),

(8.34)

for the appropriate index j ∈ {1, . . . , Nl} corresponding to the active Voronoi cell
and τc the optimal time obtained as in (8.20) and α the speed profile factor.

Remark 8.8 Note that adapting the discretization step via a time-varying coefficient
α and a constant prediction horizon Np leads to a time-varying prediction horizon
on the absolute continuous timescale. Indeed, in continuous time the prediction time
will be NpTe

∑Np−1
s=0 α(s). In order to mitigate this phenomenon, theMPC prediction

horizon, Np can be adapted, by choosing

Np(k) = min{n ∈ N : nTe

Np−1∑

s=0

α(s) ≥ Np}. �

Finally, let us wrap-up in Algorithm 1 the mechanism implemented based on the
theoretical elements previously presented.
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Algorithm 8.1 Path following optimization-based control problem
Input: Specify a collection of waypoints

1 -construct the flat trajectory as in (8.2)–(8.3), passing through the waypoints;
2 -choose a collection of linearization points L (8.19);
3 -construct the PWA function as in (8.23);
4 for k = 1 : kmax do
5 -measure the current state of the plant xp(k);
6 -find the optimal time τc by solving (8.20);
7 -select the linearization point l j ∈ L and consequently the pair (A j , B1

j , B2
j ) as in

Remark 8.7;
8 -find the optimal control action u∗ and the speed profile factor α by solving (8.27);
9 -apply to the plant the first value of the control sequence u∗(k) during the time α∗(k)Te;

10 end

8.5 Simulation Example for an UAV System

In this section, we start with the case of a 2D 3-DOF model (8.35) of an Unmanned
Aerial Vehicle (UAV) in which the autopilot forces coordinated turns (zero side-slip)
at a fixed altitude:

ẋ(t) = va(t) cosΨ (t) + dx ,

ẏ(t) = va(t) sinΨ (t) + dy,

Ψ̇ (t) = g tanΦ(t)
va(t)

.

(8.35)

The state variables are represented by the position (x(t), y(t)) and the heading (yaw)
angleΨ (t) ∈ [0, 2π] rad, whichwe denote as x(t) = [xT (t)yT (t)Ψ T (t)]T . The input
signals are the airspeed va(t) and the bank (roll) angle Φ(t), respectively, denoted
as u(t) = [vT

a (t)ΦT (t)]T . Also, the airspeed and the bank angle are regarded as the
autopilot pseudocontrols. Furthermore, we assume a small angle of attack and that
the autopilot provides a higher bandwidth regulator for the bank angle, making its
dynamics negligible when compared to the heading dynamics. Also, in (8.35), dx

and dy represent the wind velocity components on the x and y axes. The dynamical
model of the vehicle corresponds to a nonholonomic system, which is completely
controllable (under the natural assumption that the velocity is different from zero),
but it cannot make instantaneous turns in certain directions.

We take asflat output the position components of the state, z(τ ) = [z1(τ ) z2(τ )]T =
[x(t)y(t)]T , which permits to compute the remaining variables:

xre f (τ ) =
[

z1(τ ) z2(τ ) arctan

(
ż2(τ )

ż1(τ )

)]T

, (8.36)

ure f (τ ) =
⎡

⎣
√

ż21(τ ) + ż22(τ ) arctan

⎛

⎝1

g

z̈2(τ )ż1(τ ) − ż2(τ )z̈1(τ )√
ż21(τ ) + ż22(τ )

⎞

⎠

⎤

⎦
T

, (8.37)
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where τ ∈ [t0, t f ] is a scalar parameter which can be assimilated to t in (8.35), but
will be used as a decision variable interpreted as a virtual time when the reference
tracking problem is recast in a path following problem.

Note that, in the heading component of the state variable appears first-order deriv-
atives of the flat outputs, while in the roll angle input appears the second-order deriv-
atives of the flat outputs. Hence, for obtaining a smooth state and input (i.e., their
derivatives are continuous) it follows that the B-spline parametrization has to have
at least degree 4. Further, the linearized model was used for the control part of the
trajectory tracking problem.

Next, for testing the proposed trajectory tracking method and its reformulation
into a path following problem we use an extended model of (8.35) (for low-level
control of an UAV [2]) with 12 states in a 6-DOF simulation. More precisely, the
12-state model includes the positions (x [m], y [m], z [m]), the velocities (vx [m/s],
vy [m/s], vz [m/s]), the roll, pitch and yaw angles (φ [rad], θ [rad], ψ [rad]), and
the angular rates (p [rad/s], q [rad/s], and r [rad/s]), all measured along body frame
coordinates, X, Y, and Z. The simulations also incorporate perturbations like the
wind with an intensity bounded by some reasonable values (e.g., a maximum speed
of 8m/s).

The objective here is to force the UAV to track 6 given waypoints (denoted as
red dots in the forthcoming simulations). The following data and tuning parameters
were used for the simulations:

• the list ofwaypoints: {(500, 200, 150), (450,−250, 150), (0,−350, 150), (−350,
0, 150), (−350, 300, 150), (−200, 500, 150), (50, 450, 150), (400, 0, 150)}.

• the sampling time is Te = 0.01 s;
• constraints on the input: the velocity va ∈ [18, 25] m/s, the bank angle Φ ∈

[−0.43, 0.43] rad and the wind components dx , dy with || [dx dy]
∣∣ |2 ≤ 8 m/s;

• small variations on the velocity and bank command are admitted: the rate of change
of va is limited to the maximum acceleration the aircraft can produce, i.e., 0.1 ∼
0.2m/s2; the variation of Φ is limited to 0.04 rad/s;

• theweightsmatrices are:Q = [10e1 0 0; 0 10e1 0; 0 0 0.1],R = 10e4 · [10 0; 0 1];
• the prediction horizon is Np = 7.

First, we add the current position of the UAV to the list of waypoints. Next, by
using the theoretical results presented in Sect. 8.2.1 and (8.36)–(8.37), we generate a
flat trajectory starting from the current position of the UAV and passing through the
given waypoints. Figure8.6 illustrates the a priori generated flat trajectory and the
heading angle, whereas Fig. 8.7 depicts the control input signals and their derivatives.
The linearized model is used for the control part of the trajectory tracking problem
with the above-mentioned tuning parameters.

Second, by considering the trajectory tracking mechanism detailed in Fig. 8.2 and
solving (8.18)–(8.19) with no wind conditions we obtain good tracking performance
as illustrated in 3D in Fig. 8.8a. In green dashed line, we represent the UAV actual
motion, and, in magenta dashed line, the path projection on the ground.

However, sometimes it may be the case that, under different wind conditions, the
UAV may track the trajectory with an increasing tracking error as proved by the
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Fig. 8.6 Reference trajectory passing through the waypoints and the corresponding heading angle
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Fig. 8.7 Velocity and roll angle control signals and their derivatives
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Fig. 8.8 Trajectory
tracking: a UAV actual
motion with no wind
conditions. b UAV actual
motion with wind conditions
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(b)

simulation scenario with a wind velocity of 5[m/s] from East depicted in Fig. 8.8b in
blue continuous line.

To deal with these type of situations, the trajectory tracking problem is reformu-
lated via a path following problem. Equation (8.20) is useful in various scenarios. For
instance, we can consider the initial time instant when the real trajectory is far away
from the reference. Also, we can consider it during the runtime whenever we need
to reinitialize the reference time τ : whenever the real trajectory steers too far away
from the reference, we have to recalculate the best time τc as addressed in (8.20). The
scalar α permits to shrink or expand the sampling period and, in this way, to adjust
the speed of the virtual reference vehicle. Note that the use of a speed profile as in
(8.22) shows no discernible difference with respect to the simpler method (8.21).
Starting from a different initial position (−30,−800, 150), Fig. 8.9 illustrates the
performance of the proposed path following mechanism.
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Fig. 8.9 Path following:
UAV actual motion with
wind conditions
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8.6 Conclusions

This chapter presents a predictive control strategy for path following of autonomous
aerial vehicles. The strategy is decomposed in a two-stage procedure, where a ref-
erence trajectory was pre-specified using differential flatness formalism and than an
optimization-based control problem is formulated for minimizing the tracking error
for the vehicle. The discussions provided highlight the advantages of reconfiguring
the generated feasible trajectory in terms of a path along with the structural prop-
erties of the resulting optimization-based control problem. By allowing a variable
speed along the path the control problem sensitivity to disturbances and perturbations
is decreased. Moreover, the discretization and the linearization along the reference
trajectory are adapted to the variable speed profile by using time-varying sampling
intervals. Some simulation examples for the control of autonomous aerial vehicles
are presented in order to illustrate the proposed approach.
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