
Chapter 3
Implications of Inverse Parametric
Optimization in Model Predictive Control

Martin Gulan, Ngoc Anh Nguyen, Sorin Olaru, Pedro Rodriguez-Ayerbe
and Boris Rohal’-Ilkiv

Abstract Recently, inverse parametric linear/quadratic programming problem was
shown to be solvable via convex liftings approach [13]. This technique turns out to be
relevant in explicit model predictive control (MPC) design in terms of reducing the
prediction horizon to at most two steps. In view of practical applications, typically
leading to problems that are not directly invertible, we show how to adapt the inverse
optimality to specific, possibly convexly non-liftable partitions. Case study results
moreover indicate that such an extension leads to controllers of lower complexity
without loss of optimality. Numerical data are also presented for illustration.

3.1 Introduction

Interest in parametric optimization algorithms for linear and quadratic programs
has been resurged during the last 15 years, following the observation that certain
optimal control problems for constrained systems can be solved explicitly offline.
In particular, a lot of attention has been attracted by the fact that solutions to the
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traditional model predictive control problems can be obtained in an explicit formu-
lation by exploiting the concept of parametric convex programming (pCP) [3–5, 19,
22]. This allows to pre-compute the optimal solution to a linear/quadratic program-
ming problem for a range of operating conditions of interest as a piecewise affine
(PWA) function defined over a polyhedral partition of the parameter space. The
implementation effort of these so-called explicit MPC (eMPC) methods [1] hence
reduces to a simple function evaluation, since the controller itself maps into a lookup
table of linear gains. This property naturally circumvents the main implementation
drawback of the standard implicit MPC, which is the need for online optimization in
the receding horizon fashion at each sampling instant. Clearly, within the real-time
requirements, the solutions may become too expensive or simply infeasible, namely
in the case of systems with fast-evolving dynamics. On the other hand, the efficacy
of the offline solution is limited to small-dimensional systems. Therefore the eMPC
algorithms necessarily encounter computational difficulties as the parameter space
dimension or the prediction horizon increases. Moreover, the resulting PWA con-
troller is often too complex; hence, if allowable, its structure may need to be treated
adequately to satisfy the restrictions imposed by the implementation hardware.

In view of handling linear MPC problems often emerging from practical applica-
tions, the parametric convex programming has grown into a mature technique pro-
viding a variety of numerical algorithms available for effective solution. Recently,
the concept of inverse optimality has been shown to provide a new perspective on the
structural link between linearMPCand pCPproblem formulation via the technique of
inverse parametric convex programming (IpCP). As the name suggests, it is defined
as an inverse optimality problem of parametric convex programming. It aims to build
an alternative optimization problem characterized by an appropriate constraint set
and a cost function such that its optimal solution coincideswith the one of the original
problem. More specifically, the goal of inverse parametric linear/quadratic program-
ming is to construct a linear constraint set and a linear/quadratic cost function such
that the optimal solution of this newly formulated problem is equivalent to a given
PWA function defined over a given polyhedral partition. This topic has been recently
investigated in [2, 7, 13], and turned out to be applicable in the complexity reduction
of piecewise affine control law design. This chapter closely follows the results put
forward in [13, 14]. Therein, a constructive procedure based upon convex liftings
is presented, leading to an important implication in MPC design, that can be stated
as follows: every continuous piecewise affine control law can be recovered via an
MPC problem with a control horizon at most equal to two prediction steps. Central
to the approach is the operation of convex lifting, and the related liftability condition,
which plays a crucial role in the existence of an inverse optimal solution.

The main aim of this study is to address the difficulty arising in applications of
IpCP in linear MPC, namely that the explicit solution of a linear MPC problem with
respect to a quadratic cost function is not, in many cases, convexly liftable. With
regard to this issue, in [14] it was shown that, in fact, any parameter space parti-
tion associated with a solution of a pQP can be sub-partitioned such that its convex
liftability will be guaranteed. In control theory, however, such a subdivision neces-
sarily increases the complexity of PWA control laws, which is commonly urged to
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be kept as low as possible for the sake of efficient eMPC implementations. There-
fore, herein we rather aim at devising an alternative, yet convenient approach that
would target pQP-based MPC problems which are typically not directly invertible,
without generating any gain in complexity of the inherited solution. To tackle this
challenge, we recall the open question of minimal complexity of the inverse opti-
mality formulation, discussed in [12]. It is known that the IpL/QP via convex liftings
replaces the constraint set of linear MPC problem based on prediction along a finite
horizon with mixed constraints on the control and state variables over two prediction
stages. Nevertheless, the main advantage of a significant decrease in the dimension
of optimization arguments tends to come at the price of a relatively large set of con-
straints. Since not all the constraints practically contribute to the optimal solution, an
effort is being put into reducing the constraint set towards a minimal representation
necessary for the inverse optimality formulation. We exploit this fact and present
an algorithmic procedure tailored for the class of MPC problems of interest. At
this point the contribution of the proposed extended IpLP approach is twofold as it
simultaneously treats the issue of invertibility, preconditioned by convex liftability,
and eliminates the redundant constraints from the formulation. The procedure, how-
ever, exactly retrieves only a part of the solution. To establish the equivalence of the
remaining portion of controller structure we adopt the concept of clipping strategy
proposed in [10]. This inverse optimality-based procedure is performance lossless,
i.e., the retrieved PWA function inherits all the performance, closed-loop stability
and feasibility guarantees of the pQP-based/online MPC solution.

As outlined earlier, the efficient implementation of eMPC, often using embedded
platforms, is closely associated with the structure of the explicit controller. Since
the PWA control law is defined over a set of polytopic regions, it is clear that if the
number of regions becomes large, the storage capacity of the implementation hard-
ware may be easily exceeded. To overcome these limitations, numerous methods for
complexity reduction via simplifying eMPC optimizers have been proposed. This is
usually achieved by devising less complex equivalent replacement functions of the
original PWA feedback with no implications on optimality, or various sophisticated,
albeit suboptimal, approximations. A brief, yet recent overview can be found, e.g.,
in [9, 11]. We recall this topic with regard to the third feature of the approach. As it
will be evidenced later, the combination of extended IpLP with the use of a simple
clipping filter [10] may find its use in case a low-complexity eMPC controller is
sought. Nevertheless, this ability is not an objective of this study, rather an addi-
tional gain of the approach. Hence, when an online implementation is of interest
and certain assumptions are fulfilled, the less complex, yet performance-wise opti-
mal explicit representation can offer an important advantage. In particular, real-time
implementation complexity is determined not only by the memory needed to store
the controller, but also by the computational time necessary to find and evaluate the
corresponding control law. This is of imminent importance when targeting embed-
ded hardware or controlling fast systems. In this light, extended IpLP with clipping
shows its potential use in practical MPC applications; in comparison with the generic
convex liftings-based IpCP, which as such does not yield any computational benefits
within online eMPC. On the contrary, the obtained explicit solution may in case of
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directly non-invertible problems become too complex and thus intractable. Addi-
tionally, the proposed inverse optimization formulation may be as well cast and
solved as an online MPC problem which would shed more light on the merits of its
cost/constraints rearrangement.

3.2 Notation and Definitions

Throughout this study, R, N>0 are used to denote the set of real numbers, and the
field of positive integers, respectively. For a compact notation, let us define the index
set IN := {i ∈ N>0 | i ≤ N }, for a given N ∈ N>0. For a point x ∈ R

d , by R
nx we

denote the vector space containing the point x , hence in this case Rnx = R
d . Next,

given a finite set S = {x1, x2, . . . , xn} of n points, Card(S) denotes the cardinal
number of the set S. By conv(S) we denote its convex hull. Also, if S is a finite set
of rays, i.e., S = {y1, . . . , yn} then cone(S) represents the cone defined as follows:

cone(S) = {t1y1 + · · · + tn yn : ti ≥ 0, ∀1 ≤ i ≤ n} (3.1)

A polyhedron is defined as a convex intersection of finitely many closed half-spaces.
A polytope is a bounded polyhedron. Given a full-dimensional polyhedron S in Rd ,
then V(S) denotes the set of its vertices; R(S) denotes the set of its rays. Also,
int(S) denotes its interior. Proj

S
S represents the orthogonal projection of the set S

onto a subspace S of Rd . Further, a face of S is the intersection of S and one of
its supporting hyperplanes. A face of dimension d − 1 is called a facet. The set of
all facets of polyhedron S is denoted as F(S). Given a function κ(x), dom(κ(x))

denotes its domain. In addition, given two sets S1,S2 ⊂ R
d , by S1 ⊕ S2 we denote

their Minkowski sum defined as follows:

S1 ⊕ S2 := {
y ∈ R

d | ∃x1 ∈ S1, x2 ∈ S2 s.t. y = x1 + x2
}
.

Next, let us recall some necessary definitions.

Definition 3.1 Acollectionof N ∈N>0 full-dimensional polyhedraXi ⊂R
d , denoted

as X ={Xi }i∈IN
, is called a polyhedral partition of a polyhedron � ⊆ R

d if:

(1) � = ⋃
i∈IN

Xi ,
(2) int(Xi ) ∩ int(X j ) = ∅ with i �= j , (i, j) ∈ I2

N .

In addition, we refer to polyhedra (Xi ,X j ) as neighbours, or adjacent, if (i, j) ∈
I2

N , i �= j and dim(Xi ∩ X j ) = d − 1. If a polyhedral partition is a collection of
polytopes, then it is called a polytopic partition. Xi are referred to as regions of the
partition X .

In this chapter, a cell complex is understood as a polyhedral partition whose facet-
to-facet property [20] is fulfilled, meaning that any two neighbouring regions share
a common facet. Note that a complete, more general definition of cell complex can
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be found in [6]. However, for simplicity, we restrict our attention to the property of
interest.

Definition 3.2 Given a polyhedral partitionX = {Xi }i∈IN
of a polyhedron� ⊆ R

d ,
a convex lifting is described by the function z : � → R with:

z(x) = aT
i x + bi for any x ∈ Xi , (3.2)

and ai ∈ R
d , bi ∈ R, ∀i ∈ IN ; such that the following conditions hold:

(1) z(x) is continuous over �,
(2) for each i ∈ IN , z(x) > aT

j x + b j for all x ∈ Xi \ X j and all j �= i , j ∈ IN .

According to Lemma1 in [15], a polyhedral partition admitting a convex lifting is
required to be a cell complex. Conversely, a cell complex is not necessarily convexly
liftable. The necessary and sufficient conditions for a cell complex to be convexly
liftable1 are referred to [14] and the references therein.

Moreover, a convex lifting can be in fact seen as a convex surface composed of
the convex lower boundary of a polyhedron in an augmented space. This particular
polyhedron can be described by the following definition:

Definition 3.3 A given cell complex X = {Xi }i∈IN of a polyhedron � ⊆ R
d has an

affinely equivalent polyhedron if there exists a polyhedron X̃ ⊂ R
d+1 such that for

each i ∈ IN :

(1) ∃Fi ∈ F(X̃ ) satisfying: Proj
Rd Fi = Xi ,

(2) if z(x) = min
z

z s.t. [xT z]T ∈ X̃ , then [xT z(x)]T ∈ Fi for x ∈ Xi .

The second condition in Definition3.3 implies that the set of facets of X̃ at the lower
values of z is exclusively considered. These lower facets Fi build a convex surface
in R

d+1 known as the previously defined convex lifting, and their image via the
orthogonal projection onto R

d recovers the cell complex X .
We remark that an additional set of definitions is provided within Sect. 3.5 as it

closely relates to the problems treated therein.

3.3 Inverse Parametric Optimization via Convex Liftings

This section aims to recall the constructive solution to the inverse parametric lin-
ear/quadratic programming problem via convex liftings. For ease of presentation,
let us start from a larger perspective—with the definition of a parametric convex2

programming problem, which can be cast as follows:

1Note that the liftability condition does not restrict X to be a partition of a polytope/polyhedron.
This property, however, becomes important in the context of convexity of inverse parametric lin-
ear/quadratic programming problems.
2Convexity of the optimization problem(3.3) is ensured by convexity of f , gi , and h j in θ and x .
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min
θ

f (θ, x)

s.t. gi (θ, x) ≤ 0, ∀i ∈ Ip,

h j (θ, x) = 0, ∀ j ∈ Iq ,

(3.3)

where θ, x denote the decision variable and the parameter, respectively. The terms
gi (θ, x), h j (θ, x) represent the left-hand sides of respective inequality and equality
constraints for the optimization problem(3.3).

In view of parametric linear/quadratic programming, the equality constraints are
omitted for simplicity. Moreover, gi (θ, x), ∀i ∈ Ip define linear constraints on θ
and/or x , from the geometrical point of view representing a polyhedron in the aug-
mented space of

[
θT xT

]T
. Still, f (θ, x) stands for a linear or quadratic cost function,

which has the following description:

f (θ, x) = θT Hθ + (F T x + Y )T θ, (3.4)

with a positive semidefinite matrix H = H T � 0 and appropriately dimensional
matrices F, Y.

It is well known from the works of [4, 19, 22] that the optimal solution to a para-
metric linear/quadratic programming problem is a piecewise affine function defined
over a polyhedral partition. It is shown therein that the optimal solution to a pQP
problem with respect to H � 0 is continuous and unique. Otherwise, the continuity
and the uniqueness propertiesmay not be preserved for the case of a pLP. Fortunately,
it is shown e.g., in [17] that an equivalently continuous optimal solution can always
be selected. Therefore, the IpL/QP can focus on continuous PWA functions.

Given a continuous PWA function defined over a polyhedral partition, IpL/QP
aims to find an appropriate optimization problem, characterized by a linear/quadratic
cost function and a set of linear constraints such that the optimal solution to this
optimization problem is equivalent to the given PWA function. Mathematically,
let fpwa(x) : � ⊆ R

nx → R
nu denote a continuous PWA function to be recovered,

defined as follows:
fpwa(x) = Fi x + Gi for x ∈ Xi . (3.5)

IpL/QP aims to find a cost function J (x, z, u) and a set of four matrices Hx , Hu,

Hz, K such that:

fpwa(x) = Proj
Rnu arg min

[zT uT ]T
J (x, z, u) s.t. Hx x + Hzz + Huu ≤ K , (3.6)

where z represents an auxiliary variable for the recovered optimization problem and
will be shown to be a 1-dimensional variable.

Assumption 3.1 As reported in [13, 15], this inverse optimality problem is valid
under the following standing assumptions:
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A1.1 The polyhedral partition X is the partition of a polyhedron �.
A1.2 The polyhedral partition X is convexly liftable.

Note that AssumptionA1.1 is of help in order to guarantee the convexity of the
recovered optimization problem. On the other hand, AssumptionA1.2 is not restric-
tive due to Theorem2 and Lemma2, also reported in [15]. Accordingly, if the given
polyhedral partition does not satisfy AssumptionA1.2, one can refine it such that the
internal boundaries are maintained and the new partition is convexly liftable. Such
subdivision will be discussed in more detail for the cases often encountered in MPC
in Sect. 3.5.

As outlined in the introductory section, central to the constructive procedure of
[13] is the operation of convex lifting for the given partition, recalled inDefinition3.2.
An algorithm for the construction of convex liftings is referred to [14] and extended
to a cell complex of a polyhedron via Theorem1 in [15]. The following sets are also
defined:

Vx =
⋃

i∈IN

V(Xi ), Rx =
⋃

i∈IN

R(Xi ),

V[xT z uT ]T =
{[

xT z(x) f T
pwa(x)

]T | x ∈ Vx

}
,

R[xT z uT ]T =
{

[
r T ẑ(r) f̂ T (r)

]T | r ∈ Rx ,
ẑ(r) = aT

i r

f̂ (r) = Fir
if r ∈ R(Xi )

}

,

�v = conv(V[xT z uT ]T ), �r = cone(R[xT z uT ]T ),

� = �v ⊕ �r .

(3.7)

Following (3.7), recall that Vx , Rx denote the sets of vertices and rays of the cell
complexX , respectively. Also, V[xT z uT ]T , R[xT z uT ]T stand for the sets of augmented

vertices and rays of X , into Rnx +nu+1. Note, however, that under convex liftings, the
augmented terms for a vertex are different from the one for a ray as shown in (3.7).
More clearly, consider a vertex v and a ray r of region Xi in the cell complex X .
After embedding to the space of convex lifting, the augmented term corresponding
to v is aT

i v + bi . However, under this embedding, the augmented term of r becomes
aT

i r . The resulting constraint set � is computed via the Minkowski sum of �v and
�r . This is basically due to Minkowski-Weyl theorem (see Corollary 7.1b in [18]).

Based on the above notation, we recall here the main result for IpL/QP problem
via the following theorem.

Theorem 3.1 Given a continuous PWA function fpwa(x),defined over a cell complex
X = {Xi }i∈IN

satisfying AssumptionsA1.1, A1.2, then f pwa(x) is the image via the
orthogonal projection of the optimal solution to the following parametric linear
programming problem:

min
[z uT ]T

z subject to
[
xT z uT

]T ∈ �. (3.8)
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For the proof of Theorem3.1 we refer to Sect. 5 of [15]. Note, however, that as dis-
cussed in [12], not all constraints of � are meaningful in (3.8). Many of them con-
tribute to the construction of feasible region instead of building its optimal solution.
Therefore, these constraints may need to be removed to simplify the optimization
problem. Algorithms put forward in [12] can be effectively utilized to carry out this
procedure.

We remark that this theorem is meaningful in the context of implicit MPCwhere it
can help to overcome its computational limitations by implementing this alternative
optimization approach and solving the LP3 (3.8) at each sampling time. In this study
we rather exploit this concept for efficient explicit MPC implementations. This point
is discussed in Sect. 3.5 and clarified via a case study in Sect. 3.6.

3.4 Application to Linear MPC Problems

This section aims to recall an important result of IpL/QP related to the linear model
predictive control. Consider a discrete-time, linear invariant system:

x(k + 1) = Ax(k) + Bu(k), (3.9)

where (A, B) is stabilizable. In MPC problems, a cost function is typically defined
over a finite prediction horizon N ∈ N>0 as follows:

J (U, x(k)) =
N−1∑

i=0

�i (xk+i |k, uk+i |k) + VN (xk+N |k) (3.10)

where xk+i |k ∈ R
nx is the (k + i)-th prediction of the system state at time k, uk+i |k

denotes the control action at time instant k + i , and U = [uT
k|k, . . . , uT

k+N−1|k]T
.

The �i (xk+i |k, uk+i |k) term of the objective represents a stage cost ∀i ∈ IN−1 ∪
{0} and VN (xk+N |k) denotes the terminal penalty. Moreover, the state and control
variables are typically required to satisfy constraints:

xk+i |k ∈ X, uk+i |k ∈ U, ∀i ∈ IN−1 ∪ {0}, xk+N |k ∈ X f (3.11)

with polyhedra X,U containing the origin in their interior. A suitable terminal con-
straint set X f ⊂ X is considered to guarantee closed-loop stability.

A linear MPC problem thus aims to solve the following optimization problem:

min
U

J (U, x(k)) subject to (3.11) (3.12)

where the stage costs and the terminal cost tend to take one of the following forms:

3The inverse optimality problem can be as well cast and solved implicitly/explicitly as a QP/pQP.
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(1) 2-norm: �i (xk+i |k, uk+i |k) = xT
k+i |k Qxk+i |k + uT

k+i |k Ruk+i |k , VN (xk+N |k) =
xT

k+N |k Pxk+N |k , where Q = QT is a positive semidefinite matrix and R, P are
symmetric, positive definite matrices,

(2) 1/∞-norm: �i (xk+i |k, uk+i |k) = ‖Qxk+i |k‖p + ‖Ruk+i |k‖p, VN (xk+N |k) =
‖Pxk+N |k‖p, where p = 1/∞ and Q, R, P are of appropriate dimension.

As shown in [3, 4], the optimal solutions of such linear MPC problems of modest
size can be found explicitly by parametric linear/quadratic programming, as follows:

U ∗ = argmin
U

J (U, x(k)) s.t. GU ≤ W + Ex(k), (3.13)

where the control input sequence U is regarded as the decision variable, the current
state x(k) represents the parameter, and G, W, E are appropriate matrices describing
the constraints (3.11). In the implementation, the receding horizon MPC feedback
becomes uk = Proj

Rnu U ∗. This explicit solution to a linear MPC problem has a
piecewise affine structure, and therefore it inherits also the properties of an inverse
optimality problem recalled earlier. Based on this property, the main result in this
section is summarized via the following theorem.

Theorem 3.2 The continuous explicit solution of a generic linear MPC problem
with respect to a linear/quadratic cost function is equivalently obtained through a
linear MPC problem with a linear cost function and the control horizon at most equal
to two prediction steps.

Interested reader is further referred to [13] for the proof. Therein, numerical exam-
ples can also be found, illustrating the application of the generic inverse optimality
solution to problems that are directly invertible. This allows one to recover the opti-
mal explicit continuous feedback inherited from the linear MPC problem via an
inverse pL/QP problem, while the structure of the PWA control law and the under-
lying parameter partition are maintained. The following section is going further and
focuses on more realistic MPC scenarios where the convex liftability of the state-
space partition is not a priori guaranteed, hence requiring to appropriately revisit the
IpCP procedure in order to find an inverse problem formulation and its solution.

3.5 A Novel Approach for a Class of Primarily
Non-invertible Control Laws Obtained
from MPC Problems

As outlined in the introduction, we aim at recovering linear MPC problems whose
explicit solution obtained by parametric convex programming leads to a convexly
non-liftable parameter partition, which therefore may not be used within the generic
IpCP scheme proposed in [13] where the authors build upon the assumption that the
state-space partition to be recovered is a convexly liftable cell complex (cf. Defini-
tion3.2). Here, we are, however, interested in situations when the partition inherited
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from the solution of an MPC problem is found to be a convexly non-liftable polyhe-
dral partition or cell complex, eventually. As mentioned recently in [14], the para-
meter space partition associated with the optimal solution to a parametric quadratic
programming problem, is in many cases not convexly liftable. We remark that this
tends to be the case for most of practical set-ups involving input constraints, usually
yielding explicit controllers with many saturated regions.4 One may observe that the
larger their number is, the smaller the likelihood of constructing a convex lifting
gets. In such a case, a straightforward scheme to approach this problem would be to
rearrange the possibly disconnected and non-convex union of polyhedra sharing the
same saturated control law, in a way to allow for convex liftability of the entire par-
tition. Despite the existence of several region merging techniques, none of them can
in fact guarantee this property. Even if we manage to remove the saturated regions
completely, as per separation-based complexity reduction of [11], the collection of
unsaturated polyhedra left to be lifted may very often be non-convex, which prevents
us from constructing its affinely equivalent polyhedron while recovering the explicit
controller without giving rise to some additional regions.

This problem may be as well treated by an appropriate sub-partitioning of a given
convexly non-liftable polyhedral partition, as outlined recently in [14]. Therein, it is
shown that any parameter space polyhedral partition associated with a solution of a
pQP problem can be sub-partitioned such that its internal boundaries are preserved
and the new cell complex is convexly liftable. Despite the new hyperplane arrange-
ment allows the convex liftability to be retrieved, it naturally leads to a refining
that can easily increase the complexity of a PWA feedback to a large extent. Imple-
mentation of such an eMPC controller may thus become a costly, if not intractable,
alternative to the original one.

In view of the aforementioned practical aspects, let us now briefly formulate an
extended inverse optimality problem to be tackled henceforth.

Problem 3.1 Given a, possibly, convexly non-liftable polyhedral partition/cell com-
plex5 R = {Ri }i∈IR

of a polyhedron � ⊆ R
nx , associated with a continuous piece-

wise affine functionκ(x) = fpwa(x) : � → R
nu , find a linear cost function J (x, z, u),

and matrices Hx , Hu, Hz, K such that the inverse optimal solution

⎧
⎨

⎩

κ̃(x) = Proj
Rnu arg min

[z uT ]T
J (x, z, u),

s.t. Hx x + Hzz + Huu ≤ K .
(3.14)

returns an equivalent replacement of κ(x) when passed through a suitable filter φ(·).
Assumption 3.2 At this point, some assumptions need to be stated to make the
present approach reasonable from both the construction and practical viewpoint:

4The definition of a un/saturated region is given in Sect. 3.5.1.
5Within this section and henceforth we slightly abuse the notationR to refer to state-space partitions
inherited from MPC problems.
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A2.1 The parametric linear programming (pLP) problems are exclusively consid-
ered as possible candidates for the inverse optimality solutions.

A2.2 R is the partition of a polytope �.
A2.3 κ(x) is the explicit optimal solution to a pQP-based linear MPC problem.
A2.4 κ(x) is partially saturated with the corresponding polytopic regions causing

R to be convexly non-liftable.

AssumptionA2.1 provides amanageable framework for the constructive inverse opti-
mality procedures by imposing linearity of the candidate pCP problems. Although
a quadratic cost function may be used as well, in the scope of this study an IpLP
is of interest for brevity, yet with a straightforward extension towards IpQP. Mean-
while, AssumptionA2.2 merely requires the feasible set to be a polytope, which is
usual in the context of MPC. However, it is not restrictive, and the procedure can
be easily extended to the case where the feasible set is a polyhedron. The other
two assumptions stem from a more practical reasoning outlined at the beginning of
this section. By AssumptionA2.3 we focus our attention rather on explicit solutions
obtained by parametric quadratic programming. Considering pQP in this context
not only relates to the nature of most linear MPC problems, but it is mainly due
to the typically inherent curse of direct non-liftability of the associated solutions,
defined over convexly non-liftable state-space partitions.6 This is in contrast to pLP
problems which are directly invertible without any refinement required [14], and
also for this fact are not of interest here. The last assumption stems from numerous
observations encountered in practical MPC problems where the explicit receding
horizon feedbacks usually contain many regions for which the associated optimal
control action is either constantly on the upper limit or constantly on the lower limit.
This reasonable idea was also central to the works of [10, 11] aiming for complexity
reduction of explicit MPC feedback laws. Recall that, in general,R inherited from a
pQP may be convexly non-liftable since it is mostly a strict polyhedral partition, i.e.,
facet-to-facet property does not hold [20]; however, it may as well be a cell complex
that is not convexly liftable simply due to the nature of its hyperplane arrangement
(see e.g., the example in [15]). The second part of AssumptionA2.4 moreover hints
that the liftability issue is typically induced by the existence and structural properties
of the collections of aforementioned saturated polytopic regions. This becomes more
and more likely as the cardinality of such collections increases, at the price of the
remaining collection of unsaturated regions, which is itself thus in a vast majority
of cases found to be convexly liftable. In fact, as it is evidenced, e.g., in [10, 11], a
typical explicit MPC feedback law contains a significantly smaller number of unsat-
urated regions as compared to the number of saturated ones. In addition, if the convex
liftability of the collection of unsaturated regions, as invoked via AssumptionA2.4,
practically happened not to hold, it is still possible to use sub-partitioning to preserve
it. With the usual structural proportions mentioned above, it would however become
still very cheap compared to a complete partition refining—actually, as a matter of
fact, such a possible slight increase in controller complexity would be most likely

6This structural property is related to the piecewise quadratic cost function. This is to be compared
with the piecewise linear and convex cost function of a pLP-based MPC problem.
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eliminated by a notable complexity reduction indicated by the approach proposed
in the following subsection. Needless to say, no such an issue has been encountered
within tested practical MPC scenarios, neither is it present in the case study put
forward in Sect. 3.6.

To review the objective, by exploiting the procedure of inverse parametric opti-
mization via convex liftings [13], we aim to reconstruct an appropriate linear pro-
gramming problem(3.14) with respect to a given piecewise affine function κ(x)

defined over a given, possibly convexly non-liftable polyhedral partition/cell com-
plex of the parameter space, R, such that the optimal solution of this reconstructed
problem is equivalent to the given PWA function. The equivalence requires that the
boundary between two different regions of the parameter space partition correspond-
ing to two different affine functions is preserved, whereas a proper rearrangement of
the subset of the domain of definition, over which the PWA function is saturated, is
allowable. This property is effectively exploited within this study. An example is the
new convexly liftable cell complex R̃ corresponding to a structurally modified, yet
optimal PWA solution function φ(κ̃(x)), as shown in Sect. 3.5.

The following subsections present the main contribution of this study—the exten-
sion to convex liftings-based inverse parametric convex programming procedure,
namely IpLP, with the main focus on a wide and challenging class of primarily non-
invertible linear MPC problems having the explicit optimal solution in the form as
per Assumption3.2.

3.5.1 Additional Notation and Definitions

Let us now append some necessary notation, related closely to the topic treated in
this section. We first state a set of definitions found to be useful and hence adopted
from [10] to keep the notation compact. To make the further explanation more clear,
we restrict ourselves to single-input systems (cf. Remark3.2).

Definition 3.4 Let κ and κ denote, respectively, the maximum and minimum values
which the PWA function κ(x) := f T

i x + gi attains over dom(κ(x)). Denote by Imax

(Imin) the index set of regions where κ(x) is saturated at the maximum (minimum),
and let Isat = Imax ∪ Imin. We call a region Ri the saturated region if it is either
saturated at the minimum or at the maximum, i.e., if i ∈ Isat. Otherwise the region
is called unsaturated. The index set of unsaturated regions is denoted by Iunsat.
Definition 3.5 Given a continuous PWA function κ(x), defined over the parameter
space partition R={Ri }R

i=1, we call the PWA function κ̃(x) := f̃ T
j x + g̃ j a suitable

augmentation of κ(x) if the following properties hold:

P1: κ̃(x) is defined over partition R̃ = {R̃ j }R̃
j=1 such that

⋃
j∈IR̃

R̃ j = ⋃
i∈IR

Ri ,
i.e., dom(κ̃(x)) = dom(κ(x)).

P2: κ̃(x) = κ(x), ∀x ∈ RIunsat .
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P3: κ̃(x) ≥ κ, ∀x ∈ RImax .
P4: κ̃(x) ≤ κ, ∀x ∈ RImin .

In addition, we introduce several polyhedral operations, which were shown to be
convenient in the context of IpCP complexity analysis [12], and are utilized here to
clarify the algorithmic notation.

Given a full row rank matrix M ∈ R
r×(d+1), by P(M) we denote the polyhedron

P(M) = {x ∈ R
d | M(·, 1 : d)x ≤ M(·, d + 1)},

where M(·, i) denotes the i th column of the matrix M and M(·, i : j) represents the
matrix composed by the i th– j th columns of M . Conversely, given a polyhedron P ,
byP−1(P)we denote the minimal representation (in terms of dimension) of a matrix
M satisfying P = {x ∈ R

d | M(·, 1 : d)x ≤ M(·, d + 1)}. Note that P−1(P) is not
unique due to the following observation: P(M) = P(αM),α > 0.

For ease of presentation let us also define an operator for removal of redun-
dant constraints. Given two sets of constraints corresponding to two polyhedra PM ,
PN , M ∈ P−1(PM) ⊂ R

rM ×(d+1), N ∈ P−1(PN ) ⊂ R
rN ×(d+1), by RmRdd(M, N )

we denote the set of constraints characterizing PM which are not redundant in the
representation of PN . We remark that there exist numerous algorithms for remov-
ing redundant constraints. Herein, we recall the one presented in [16] through a
mathematical description as follows: RmRdd(M, N ) = K ∈ R

rK ×(d+1) s.t.

• K is a sub-block of M ,
• for any i ∈ IrK , max

x |x∈PN

K (i, 1 : d)x > K (i, d + 1).

In addition, for PM ⊆ PN , M ∈ P−1(PM), N ∈ P−1(PN ), RmRdd(N , M) = ∅.

3.5.2 Extended Convex Liftings-Based Inverse
pLP with Clipping

In this subsectionwe showhow to recover solutions to a given class ofMPCproblems
via another reformulated IpLP-basedMPCproblemwith the prediction horizon equal
to two prediction steps while preserving optimality.

Given a convexly non-liftable polyhedral partition/cell complex R = {Ri }i∈IR
,

the proposed procedure exploits the possibly non-convex collection of unsaturated
regions,RIunsat , which is assumed to be convexly liftable (recall AssumptionA2.4 and
related comments). The first step is hence to find the gains (ai , bi ),∀i ∈ Iunsat of its
associated convex lifting. This can be carried out efficiently by using the constructive
procedure (Algorithm 3.1 in [15]) first proposed in [14], yielding z(x) = aT

i x + bi ,
with x ∈ ⋃

i∈Iunsat
Ri . Further, instead of constructing an affinely equivalent polyhe-

dron, we build the vertex set V unsat
[xT z uT ]T and compute its dual, half-space representa-

tion �unsat
[xT z uT ]T = conv(V unsat

[xT z uT ]T ) as per Theorem5.3 in [13], slightly modified for
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our case. This polytope is to be used to construct a constraint set for Problem3.1 by
extending the given convex lifting and control law over the saturated regions.

As outlined in the introduction, for the further course of this study we exploit the
question of minimal complexity of the inverse optimality formulation, discussed in
[12]. In particular, not all the constraints—defining half-spaces of the set �[xT z uT ]T

within the generic IpCP problem formulation are meaningful from the optimization
point of view, in the sense that they are not active at the optimum. Therefore, it
is sufficient to exclusively consider only the active constraints, which are defined
by corresponding supporting hyperplanes containing certain facets of �[xT z uT ]T . We
adopt this idea to preserve the active constraints which are thus not redundant in
the half-space representation of �unsat

[xT z uT ]T . Such a relaxation naturally modifies this
set in both parameter and argument space; hence it needs to be associated with an
appropriate restriction in the parameter space, which bounds the domain of validity
for the optimal solution. This procedure is summarized in Algorithm 3.1.

Algorithm 3.1 Construction of constraint set for the extended IpCP

INPUT: Convexly non-liftable polyhedral partition/cell complex R = {Ri }R
i=1 due to RIsat ,

Munsat
[xT z uT ]T = P−1(�unsat

[xT z uT ]T ),

[
z
u

]

pwa
= argmin

[z uT ]T
z s.t. [xT z uT ]T ∈ �unsat

[xT z uT ]T

OUTPUT: �min, constraint set �̃ associated with R̃ (which is to be obtained from (3.15))
1: Mmin = [ ].
2: for i = 1 : Card(Iunsat)
3: Find the polyhedron P0 described by the active constraints at [xT z uT ]T

for x ∈ RIunsat ,i .

4: M0 = P−1(P0), Mmin =
[

M0
Mmin

]
.

5: end for
6: �min = P(Mmin), �x = Proj

Rnx �min.
7: Mx = P−1(�x ), Mf = P−1(conv(R)).
8: M f = RmRdd(Mf , Mx ).
9: M = [

M f (·, 1 : nx ) 0m×(nu+1) M f (·, nx + 1)
]
. Note: M f ∈ R

m×(nx +1)

10: Mmin =
[

Mmin

M

]
, �̃ = P(Mmin).

Remark 3.1 Note that the explicit solution [z uT ]T
required as input for Algorithm

3.1 is known a prioriwith respect to a given continuous PWAfunction and constructed
convex lifting associated with RIunsat , without the need to solve the minimization
problem. Step 8 is present to avoid the redundancy phenomena while adding supple-
mentary constraints given by M f . In addition, we remark that for the MPC control
laws designed with the feasible set � = conv(R) to be positively invariant, these
constraints (Steps 6-9) can be further omitted as long as the initial state x0 ∈ �. This
may reduce the complexity of the formulation in implicit MPC implementations.

This algorithmic procedure first retrieves theminimal half-space representation of
the set �unsat

[xT z uT ]T , potentially useful for the IpCP problem formulation, and given by
an unbounded polyhedron�min (Steps 1–6). Feasibility of this set is further provided
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through a restriction imposed on its parameter subspace (Step 7). Additional redun-
dant constraints that may emerge at this point are effectively removed via Step 8. The
resulting constraint set is thus given by �̃ (Step 10). Now, recall that, geometrically,
each active constraint corresponds to a hyperplane of dimension nx + nu . Therefore,
we are interested in the constraints corresponding to the supporting hyperplanes
of �̃ which contain the nx -faces whose orthogonal projection onto R

nx retrieves
the parameter space partition R associated with the optimal PWA function κ(x).
This is indeed not quite the case here, since Proj

Rnx +nu �̃ (or Proj
Rnx +1�̃—affinely

equivalent polyhedron to R̃) is formed as a convex extension of Proj
Rnx +nu �

unsat
[xT z uT ]T

(Proj
Rnx +1�unsat

[xT z uT ]T , respectively) over
⋃

i∈Isat
Ri , bounded by the restriction in the

parameter space Rnx imposed by the feasible set � = dom(κ(x)). It follows that the
explicit optimal solution (κ̃(x), R̃) to thusly cast “inverse” problem is not equivalent
anymore, in the sense that κ̃(x) does not coincide with the original PWA feedback
κ(x), namely in its saturated portions defined over RIsat . The cell complex R̃ in
this way inherits a collection of regions with similar (or equivalent, if

⋃
i∈Iunsat

Ri is
convex) partitioning as RIunsat .

The following theorem summarizes the minimal formulation of an extended IpLP
problem resulting directly from Algorithm 3.1.

Theorem 3.3 The image via orthogonal projection onto R
nu of the optimal solution

to the following optimization problem

min
[z uT ]T

z s.t. [xT z uT ]T ∈ �̃ (3.15)

where �̃ is obtained from Algorithm 3.1, is a suitable augmentation of the given
continuous PWA function κ(x) : � → R

nu , denoted as κ̃(x) and associated with a
convexly liftable cell complex R̃ = {R̃ j } j∈IR̃

.

Proof Follows directly from Algorithm 3.1 and from Definition3.5 of κ̃(x). �

As implied by Theorem3.3, solution of LP (3.15) renders a suitable augmentation
κ̃(x) of the original piecewise affine function κ(x). The augmented function, how-
ever, cannot be readily applied as an explicit receding horizon MPC feedback since,
in general, κ̃(x) �= κ(x) for x ∈ RIsat . Therefore, to achieve the equivalence of the
two, we adopt the concept of a simple clipping filter proposed in [10], and recalled
here as follows:

Theorem 3.4 ([10]) Consider a saturated continuous PWA function κ(x) and its
suitable augmentation κ̃(x) obtained per Theorem3.3. Let

φ(κ̃(x)) := max
{
κ,min {κ̃(x),κ}} (3.16)

Then the equivalence φ(κ̃(x)) = κ(x) is established for all x ∈ dom(κ(x)).

Proof Straightforward with respect to Definition3.5; can be found in [10]. �
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Remark 3.2 As outlined in Sect. 3.5.1, the above derived procedure is clearly valid
for single-input systems. However, the dimension of κ(x) in Problem3.1 is not
necessarily equal to 1, in fact, it can be extended for the case when κ(x) is a vector-
valued function with nu > 1. In that case, Definitions3.4, 3.5, and Theorem3.4 need
to be slightlymodified in an adequate manner to account for this fact; for more details
see [10].

Finally, in Algorithm 3.2 we summarize the proposed constructive IpLP-based
procedure towards recovering a suitable augmentation of a given continuous piece-
wise affine function, which when passed through a clipping filter represents the
solution to Problem3.1.

Algorithm 3.2 Extended IpLP with clipping
INPUT: Saturated continuous PWA function κ(x) defined over a, possibly, convexly non-liftable

polyhedral partition/cell complex R = {Ri }i∈IR
of a polytope � ⊂ R

nx .
OUTPUT: Suitable augmentation κ̃(x) and equivalent replacement φ(κ̃(x)), defined over a con-

vexly liftable cell complex R̃ = {R̃ j
}

j∈IR̃
.

1: Obtain the index set Iunsat containing indices of unsaturated regions.
2: Compute the gains of convex lifting for the possibly non-convex, yet convexly liftable, collection

of unsaturated regions RIunsat via Algorithm 3.1 (Steps 1 to 3) in [15].
3: Construct the set �unsat

[xT z uT ]T defined over RIunsat , as stated in Theorem5.3 in [13].

4: Form a new constraint set �̃ associated with R̃, as described in Algorithm 3.1.
5: Formulate and solve an extended IpLP problem with constraints on x, z, u given by the polytope

�̃ to obtain: [
z̃∗
ũ∗

]
= argmin

[z uT ]T
z s.t. [xT z uT ]T ∈ �̃.

6: Extract the appropriate sub-component of the above optimal vector:

ũ∗ = Proj
Rnu

[
z̃∗
ũ∗

]
= κ̃(x)

to obtain a suitable augmentation κ̃(x)of the givenPWAfunctionκ(x), definedover a rearranged,
convexly liftable cell complex R̃.

7: Design a clipping filter φ(·) as per Theorem3.4 to maintain equivalence between κ̃(x) and κ(x).

3.6 A Case Study with Implication in Low-Complexity
eMPC

The main aim of this section is to illustrate the proposed constructive procedure via a
case studyMPC problem. It is shown that by executing all the steps of Algorithm 3.2,
i.e., formulating and solving an extended IpLP problem with clipping, we obtain a
performance-lossless replacement of the receding horizonMPC feedback associated
with the original control problem. In addition, we perform an analysis to assess the
computational complexity of the scheme as well as the structural complexity of the
recovered eMPC controller.
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The example is taken fromanactive vibration control task [21],where the objective
is to attenuate vibrations of a flexible cantilever beam, described by the following
experimentally identified state-space model:

x(k + 1) =
[
0.867 1.119

−0.214 0.870

]
x(k) +

[
9.336e−4
5.309e−4

]
u(k)

y(k) = [−0.553 −0.705
]

x(k)

(3.17)

where the output of the model is the beam tip deflection in mm, and the input is the
direct actuator voltage in V. Control inputs required to steer the system (3.17) into
equilibrium can be computed by solving the following optimization problem:

min
u0,...,uN−1

xT
N PxN +

N−1∑

k=0

[
xT

k Qxk + Ru2
k

]

s.t. x0 = x(k)

xk+1 = Axk + Buk, k = 0, . . . , N − 1

uk ∈ U, k = 0, . . . , N − 1

xN ∈ X f

(3.18)

subject to constraints |uk | ≤ 120V. The MPC problem(3.18) was formulated with
Q = CT C , R = 1e−4, and P and X f designed such that closed-loop stability is
guaranteed, i.e., by setting P to the solution of DARE and using a positive control
invariant terminal set X f . Next, it was recast and solved as a pQP. The explicit MPC
feedback κ(x) for different horizon lengths N was obtained using MPT Toolbox [8].
Each resulting PWA solution u∗

0(x) = κ(x) was subsequently post-processed using
the extended IpLP procedure described by Algorithm 3.2.

Table3.1 reports the results obtained by the proposed extended IpLP procedure,
marked by (·b), compared to the standard explicit solution via parametric quadratic
programming, denoted as (·a), used for the solution of (3.18) for different lengths
of prediction horizon N ∈ {10, 20, 30, 40, 50}. The complexity of the IpLP-based
scheme is expressed in terms of the number of regions of the resulting eMPC con-
troller, and the number of constraints (half-spaces defining the constraint set �̃) in
LP (3.15). As an example, the standard MPC problem needs 90 constraints with
the horizon of length 40 to obtain the PWA control law shown in Fig. 3.1, while the
formulation of IpLPwith clipping requires 641 constraints (551 non-redundant “gen-
eral” constraints and additional 90 constraints to conserve the solution’s structure)
and exactly two prediction steps to yield the same result, see Fig. 3.2. Moreover,
one may also notice the complexity reduction in the number of polytopic regions
of the underlying state-space partition. In this particular case, the recovered parti-
tion consists of 814 regions instead of 3397 regions of the original partition, which
corresponds to the reduction by a factor of more than four.

The total memory footprint of the original function κ for the investigated scenario
with 3397 regions is 408kB. The recovered function κ̃, on the other hand, requires
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Table 3.1 Selected data comparing equivalent (in terms of the resulting feedback law) formulations
of the case study MPC problem for different lengths of prediction horizon N

Formulation # of regions # of constraints†

N R Runsat R̃ ℵ(�) ℵ(A)

(1a) Standard MPC
problem

10 257 75 – 30 – –

(1b) Extended IpLP
w. clipping

2 – – 127 – 118 30

(2a) 20 913 159 – 50 – –

(2b) 2 – – 320 – 232 50

(3a) 30 1955 259 – 70 – –

(3b) 2 – – 557 – 384 70

(4a) 40 3397 367 – 90 – –

(4b) 2 – – 811 – 551 90

(5a) 50 5231 367 – 110 – –

(5b) 2 – – 1063 – 774 110
†ℵ(·) denotes the number of half-spaces defining a polyhedral set. For the case of formulation (·b),
� = �min and A = P(M f ) (see Algorithm 3.1)

Fig. 3.1 Surface plot of the
explicit MPC control law we
aim to recover (3397 regions,
N = 40)
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105kB, with additional 16 bytes to store the clipping filter φ(·). This indicates reduc-
tion of memory consumption by a factor of 3.8. The worst-case computational effort
needed to evaluate κ is 54332 FLOPs, which can be by employing κ̃ reduced, ade-
quately, to 14278 FLOPs (14272 FLOPs to perform point location by sequential
search and 6 FLOPs to evaluate φ(κ̃(x))).

To review the complexity also from another practical point of view, Table3.2
reports the CPU times spent on main algorithmic routines of the proposed extended
IpCP approach and its generic pCP counterpart. The total time of the former may
be split among four consecutive parts, in fact, represented by Steps 2 to 5 of Algo-
rithm3.2. Clearly, the last two steps represent the computationally most demanding
procedures, which also scale more significantly as N increases. However, when
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Fig. 3.2 Surface plot of the recovered eMPC controller (811 regions, N = 2). Result of the clipping
procedure is shown in orange colour (illustration only)

Table 3.2 Remark on computation times of the main algorithmic features for the respective for-
mulation of the case study MPC example

Formulation Task execution time (s)†

N = 10 N = 20 N = 30 N = 40 N = 50

Standard MPC problem pQP 6.27 24.21 91.62 171.87 356.19

Extended IpLP with clipping convex
lifting (Algorithm 3.2, step 2)

0.11 0.28 0.50 0.62 1.75

Facet enumeration (Algorithm 3.2, step 3) 0.05 0.07 0.12 0.17 0.23

Constraint set (Algorithm 3.2, step 4) 2.83 14.98 38.31 74.29 135.31

pLP (Algorithm 3.2, step 5) 1.67 7.33 24.46 90.81 150.48
†All the computations were performed on a 2.2 GHz Core i5 CPU with 4GB of RAM

summed up, the algorithmic features of extended IpCP, including the core pLP itself,
are still shown to require less offline time than the original explicit solution (pQP).

Remark 3.3 Note that the two approachesmay only be compared in terms ofmemory
consumed by storage of the polyhedral partition along with the associated PWA
function, or eventually the time required for online evaluation of the controller—
both reduced here w.r.t. the data in Table3.1. However, this is not the case for the
offline pre-processing time spent on solving the respective pCPs since the entire IpCP
procedure assumes the existence of the original explicit controller. Yet, such a study
can shed more light on computational effort of the proposed approach with respect
to the generic one, and in this way allow to analyse its viability.

Finally, we present a brief illustration of the aforementioned results. In par-
ticular, Fig. 3.1 shows the explicit optimal solution to the receding horizon MPC
problem(3.18) for N = 40. The optimal feedback takes form of a continuous PWA
function κ(x) defined over a state-space partition R. This cell complex is not con-
vexly liftable due to the hyperplane arrangement of the two large collections of
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polytopes representing the controller regions over which κ(x) is saturated at κ or κ.
This solution thus presents a candidate for the extended IpLP scheme. Following the
algorithmic procedure presented in Sect. 3.5.1 we obtain the solution of an extended
inverse MPC problem with N = 2, which is the PWA function κ̃(x) depicted in
Fig. 3.2. It is defined over a similar recovered partition R̃, which is a convexly liftable
cell complex. The optimality of κ̃(x) over its entire domain of validity is achieved
by passing it through a simple clipping filter φ(·).

The resulting low-complexity feedback law can be readily and conveniently used
within online/offline explicit MPC implementations while preserving all the perfor-
mance, closed-loop stability and feasibility properties. We note that the proposed
approach may be analogously exploited in implicit MPC schemes, at each sampling
instant solving the equivalent “horizon 2” problem with the constraint set �min (cf.
Remark3.1); hence revealing the full potential efficiency of the convex liftings-based
inverse optimality approach in practical model predictive control applications.

3.7 Conclusion

The chapter presents an approach exploiting the inverse parametric convex program-
ming based upon the concept of convex lifting. As shown recently, for any continuous
PWA function defined over a polyhedral partition, onemay find an appropriate equiv-
alent function by solving another parametric linear/quadratic programming problem
with a supplementary variable of dimension equal to 1. Applying this idea to the
model predictive control framework allowed to further state that any linear MPC
formulation has an equivalent inverse reformulation with two steps of the prediction
horizon. This study, in particular, deals with the invertibility of the PWA functions
resulting from pQP optimization problems, which is in fact seldom guaranteed due
to its structural properties. Despite being already proven that this issue can always be
treated by a suitable sub-partitioning of the corresponding parameter space partition,
herein the emphasis has been put mainly on devising a technique which would not
increase the controller’s explicit representation in terms of the polytopic regions.
On the contrary, an algorithmic extension to the inverse parametric linear program-
ming is presented, which in addition to the primary objective—to allow to target a
class of common practical problems yielding convexly non-liftable cell complexes
containing saturated regions, emerged to be capable of producing a lesser number
of regions. This implies an expected applicability of the proposed scheme within
implementations of explicit MPC, as compared to the generic convex liftings-based
IpCP. It is evidenced by the presented numerical analysis which suggests that the
inverse optimality concept applied to a complex but computable eMPC may lead
to a lower complexity explicit control law. Subject of ongoing research remains the
investigation of complexity bounds for the inverse optimality formulation. Apart
from a valuable theoretic insight, the clarification of this topic shall yet improve
computational tools necessary to fully exploit the efficacy of this control design
approach.



3 Implications of Inverse Parametric Optimization in Model Predictive Control 69
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21. G. Takács, B. Rohaľ-Ilkiv, Model Predictive Vibration Control: Efficient Constrained MPC
Vibration Control for Lightly Damped Mechanical Structures (Springer, London, 2012)

22. P. Tøndel, T.A. Johansen, A. Bemporad, An algorithm for multi-parametric quadratic program-
ming and explicit MPC solutions. Automatica 39(3), 489–497 (2003)


	3 Implications of Inverse Parametric Optimization in Model Predictive Control
	3.1 Introduction
	3.2 Notation and Definitions
	3.3 Inverse Parametric Optimization via Convex Liftings
	3.4 Application to Linear MPC Problems
	3.5 A Novel Approach for a Class of Primarily Non-invertible Control Laws Obtained  from MPC Problems
	3.5.1 Additional Notation and Definitions
	3.5.2 Extended Convex Liftings-Based Inverse  pLP with Clipping

	3.6 A Case Study with Implication in Low-Complexity eMPC
	3.7 Conclusion
	References


