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Programming Problems via Convex Liftings

Ngoc Anh Nguyen, Sorin Olaru, Pedro Rodriguez-Ayerbe, Morten Hovd
and Ion Necoara

Abstract In this chapter, we present in an unified manner the latest developments
on inverse optimality problem for continuous piecewise affine (PWA) functions. A
particular attention is given to convex liftings as a cornerstone for the constructive
solution we advocate in this framework. Subsequently, an algorithm based on convex
lifting is presented for recovering a continuous PWA function defined over a poly-
hedral partition of a polyhedron. We also prove that any continuous PWA function
can be equivalently obtained by a parametric linear programming problem with at
most one auxiliary one-dimensional variable.
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2.1 Introduction

Piecewise affine (PWA) functions have been studied in Mathematics since many
years. They are useful to fit nonlinear functions which are difficultly obtained via
an analytic expression. In control theory, PWA functions appeared early in [40] as a
new approach for nonlinear control design. Subsequently, this class of functions has
been particularly of use to approximate nonlinear systems [1]. This approximation
is of help to simplify control design and stability analysis for nonlinear systems.
Afterward, many studies exploit PWA functions as a good candidate to approximate
optimal solution of constrained optimization-based control, e.g., [7, 13, 19, 20,
35]. Subsequently, this class of functions is proved to represent an optimal solution
to a minimization problem subject to linear constraints and a linear/quadratic cost
function, leading to a class of hybrid systems called piecewise affine systems. This
class of control laws has received significant attention in control community [8, 33,
39, 43].

However, PWA control law is shown to have two major limitations in terms of
implementation, once the state-space partition includes many regions:

• the memory requirement for storing the regions and the associated control law
gains, is demanding,

• the point-location problem, determining which region the current state belongs to,
becomes more expensive.

Therefore, it is necessary to find other methods of implementing these control laws
to overcome the above limitations. Some studies on the complexity reduction of
PWA control laws are found in [21, 22, 25, 26]. In general, these studies search
for complexity reduction via the simplification of state-space partition by preserving
the stability property but by trading for performance degradation. An alternative
direction for complexity reduction is generated by inverse optimality problem. This
idea is fundamentally different by the fact that the given PWA function will be
embedded into the frame of an optimization problem.

Inverse optimality problems aim at finding suitable optimization problems such
that their optimal solutions are equivalent to those to the associated given functions.
In particular, inverse parametric linear/quadratic programming problem focuses on
recovering a continuous PWA function defined over a polyhedral partition. Some
recent results are found in [6, 17, 27–29, 32]. Two different approaches are distin-
guished therein. The first one [17] relies on the decomposition of each component
of the given continuous PWA function into the difference of two convex functions.
This approach requires 2nu auxiliary variables where nu represents the dimension
of the co-domain space of the given PWA function. The latter one relies on convex
liftings which needs only one auxiliary variable. However, this method is restricted
to continuous PWA functions defined over polytopic partitions (bounded polyhedral
partition). In the same line of the works in [27, 28, 32], the result in this manuscript
is also based on convex liftings. However, this chapter extends to continuous PWA
functions defined over a polyhedral partition of a polyhedron (possibly unbounded).
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2.2 Notation and Definitions

Apart from the common notation of the book, in this chapter we use N>0 to denote
the set of positive integers. Also, for ease of presentation, we use IN to denote the
following index set with respect to a given N ∈ N>0: IN = {i ∈ N>0 | i ≤ N } .

For a given d ∈ N>0,we use 1d to denote a vector inRd whose elements are equal
to 1.

Given two sets P1, P2 ⊂ R
d , theirMinkowski sum, denoted as P1 ⊕ P2, is defined

as follows:

P1 ⊕ P2 := {
y ∈ R

d | ∃x1 ∈ P1, x2 ∈ P2, s.t. y = x1 + x2
}
.

Given a set S, we write by int(S), conv(S) to denote the interior, the convex hull
of the set S, respectively. Also, by dim(S), we denote the dimension of the affine
hull of S. With a space S, being a subspace of Rd , we use Proj

S
S to denote the

orthogonal projection of S ⊆ R
d onto the space S.

A polyhedron is the intersection of finitely many halfspaces. A polytope is a
bounded polyhedron. An unbounded polyhedron is known to obtain rays. An extreme
ray is a ray which cannot be written by a convex combination of any two other rays.
Given a full-dimensional polyhedron S ⊂ R

d , we write V(S),R(S) to denote the
sets of vertices and extreme rays, of polyhedron S, respectively. If S is a full-
dimensional polyhedron, then its number of vertices and extreme rays are known to
be finite. If S is a finite set of rays, i.e., S = {y1, . . . , yn} then cone(S) represents
the cone defined as follows:

cone(S) = {t1y1 + · · · + tn yn : ti ≥ 0, ∀ 1 ≤ i ≤ n} (2.1)

Given two sets S1,S2, we write S1\S2 to denote the points which belong to S1

but do not belong to S2. More precisely, its mathematical description is presented as
follows:

S1\S2 := {x | x ∈ S1, x /∈ S2} .

For two vectors x, u ∈ R
d , 〈x, u〉 = xT u. Given a vector u ∈ R

d and a scalar
α ∈ R, a hyperplane, denoted byH, is defined as follows:

H = {
x ∈ R

d | 〈x, u〉 = α
}
.

Such a hyperplane H is called a supporting hyperplane of a polyhedron/polytope
S if either inf {〈x, u〉 | x ∈ S} = α or sup {〈x, u〉 | x ∈ S} = α. A face of polyhe-
dron/polytopeS is the intersection of this set and one of its supporting hyperplanes. If
S ⊂ R

d denotes a full-dimensional polyhedron/polytope, then a face of dimension
k, 0 ≤ k ≤ d, is briefly denoted by k−face. A (d − 1)−face is called a facet, an
1-face is called an edge, a 0−face is called a vertex. If S denotes a polyhe-
dron/polytope, then by F(S), we denote the set of its facets.
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For ease of presentation, given an ε ∈ R+, we use Bd(ε) to denote a full-
dimensional box in Rd , i.e., Bd(ε) = {

x ∈ R
d | ‖x‖∞ ≤ ε

}
.

Some necessary definitions of help for our development are presented below.

Definition 2.1 A collection of N ∈ N>0 full-dimensional polyhedra Xi ⊂ R
d ,

denoted by {Xi }i∈IN
, is called a polyhedral partition of a polyhedron X ⊆ R

d if

1.
⋃

i∈IN
Xi = X .

2. int(Xi )
⋂

int(X j ) = ∅ with i �= j, (i, j) ∈ I2
N ,

Also, (Xi ,X j ) are called neighbors if (i, j) ∈ I2
N , i �= j and dim(Xi ∩ X j ) = d − 1.

IfXi for every i ∈ IN are polytopes, then the partition {Xi }i∈IN
is alternatively called

polytopic partition. A polyhedral partition is called cell complex, if its facet-to-facet
property [41] is fulfilled,1 namely, any two neighboring regions share a common
facet.

Definition 2.2 For a given polyhedral partition {Xi }i∈IN
of a polyhedron X ⊆ R

d ,

a piecewise affine lifting is described by function z : X → R with

z(x) = aT
i x + bi for any x ∈ Xi , (2.2)

and ai ∈ R
d , bi ∈ R, ∀i ∈ IN .

Definition 2.3 Given a polyhedral partition {Xi }i∈IN
of a polyhedron X , a piece-

wise affine lifting z(x) = aT
i x + bi ∀x ∈ Xi , is called convex lifting if the following

conditions hold true:

• z(x) is continuous over X ,
• for each i ∈ IN , z(x) > aT

j x + b j for all x ∈ Xi\X j and all j �= i, j ∈ IN .

The strict inequality inDefinition2.3 implies the convexity of z(x) and the fact that for
any two neighboring regions (Xi ,X j ), (ai , bi ) �= (a j , b j ). Namely, any two neigh-
boring regions should be lifted onto two distinct hyperplanes. The strict inequality is
of help to guarantee the partition between different regions. Note that there always
exits a piecewise affine lifting for any polyhedral partition. A trivial example is the
one defined as in Definition2.2 with ai = 0, bi = 0. However, it is not the case that
any polyhedral partition admits a convex lifting. It is observed that a polyhedral par-
tition with respect to the existence of a convex lifting should be a cell complex. This
observation is proved via the following lemma.

Lemma 2.1 If a given polyhedral partition {Xi }i∈IN
of a polyhedronX ⊆ R

d admits
a convex lifting, then it is a cell complex.

1Note that a slightly more involved definition of a cell complex exists in the literature [14, 28].
However, for simplicity, we mention only the property of interest in the present context.
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Proof By z(x) = aT
i x + bi , for x ∈ Xi , we denote a convex lifting of the given

partition {Xi }i∈IN
. Consider a pair of neighboring regions (Xi ,X j ), (i, j) ∈ I2

N . As
defined, due to the continuity of z(x) at any point x ∈ Xi ∩ X j , the hyperplane,

H := {
x ∈ R

d | aT
i x + bi = aT

j x + b j
}
,

separates Xi ,X j and contains Xi ∩ X j . Also, by the second property of a convex
lifting, the halfspace,

Ci := {
x ∈ R

d | aT
i x + bi > aT

j x + b j
}
,

contains Xi\(Xi ∩ X j ).

Suppose the facet-to-facet property of Xi ,X j is not fulfilled. Then, there exists
a point x ∈ H, s.t. either x ∈ Xi , x /∈ X j , or x ∈ X j , x /∈ Xi . Without loss of
generality, the former one happens. x ∈ H leads to aT

i x + bi = aT
j x + b j . Also,

x ∈ Xi , x /∈ X j leads to aT
i x + bi > aT

j x + b j . These last two inclusions are clearly
contradictory. The proof is complete. �

Definition 2.4 A cell complex {Xi }i∈IN
of a polyhedron X ⊆ R

d admits an affinely
equivalent polyhedron if there exists a polyhedron X̃ ⊂ R

d+1, such that for each
i ∈ IN :

1. ∃Fi ∈ F(X̃ ) satisfying: Proj
Rd Fi = Xi ,

2. if z(x) = min
z

z s.t.
[
xT z

]T ∈ X̃ , then
[
xT z(x)

]T ∈ Fi for x ∈ Xi .

An illustration can be found in Fig. 2.1 thereby the multicolored segments along the
horizontal axis represent the given polytopic partition including six regions. The pink
polytope above is one of its affinely equivalent polyhedra.

Fig. 2.1 An illustration for
affinely equivalent
polyhedron
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Remark 2.1 Note that the lower boundary of an affinely equivalent polyhedron repre-
sents a convex lifting for a given cell complex as shown in Fig. 2.1. Therefore, starting
from an affinely equivalent polyhedron X̃ of the given cell complex {Xi }i∈IN

, one
of its convex liftings is the optimal cost function of the following parametric linear
programming problem:

min
z

z subject to
[
xT z

]T ∈ X̃ ,

where z denotes the last coordinate of X̃ and x ∈ X . Note also that if a given cell
complex is convexly liftable, the existence of convex lifting is not unique, meaning
that different convex liftings can be defined over a given cell complex. However, for
the practical interest in control theory, the existence is the most important property.

An algorithm for construction of convex liftings will be presented in Sect. 2.4.

2.3 Problem Statement

This section formally presents the definition of inverse optimality problem. As ear-
lier mentioned, the main goal is to recover a continuous PWA function through an
optimization problem (see also [6]). The solution relies on convex liftings.

Given a polyhedral partition {Xi }i∈IN
of a polyhedron X ⊆ R

nx and a continu-
ous PWA function f pwa(·) : X → R

nu , the objective is to find a set of four matri-
ces Hx , Hu, Hz, K , defining linear constraints and a linear/quadratic cost function
J (x, z, u) such that f pwa(x) can be equivalently obtained via the optimal solution to
the following convex optimization problem:

f pwa(x) = Proj
Rnu arg min

[zT uT ]T
J (x, z, u) s.t. Hx x + Hzz + Huu ≤ K . (2.3)

It is well known that optimal solution to a parametric linear/quadratic programming
problem is a PWA function defined over a polyhedral partition (see [8]). Therefore,
we restrict our interest, in this manuscript, to linear constraints. Note also that a given
PWA function is usually not convex/concave, the presence of an auxiliary variable
z is thus of help to reinforce the convexity of the recovered optimization problem. It
will be proved that scalar z ∈ R is sufficient for the recovery.
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2.4 Algorithm for the Construction of a Convex Lifting

2.4.1 Existing Results on Convex Liftings

As shown in Lemma2.1, a polyhedral partition, admitting a convex lifting, should
be a cell complex. However, not every cell complex is convexly liftable. An illus-
tration can be found in Fig. 2.2. This partition is a cell complex but not convexly
liftable. Thus, being a cell complex is a necessary condition for the existence of
convex liftings, but not a sufficient condition. Back to the history, we can find the
trace of a large number of studies on this topic. Some prominent results for convex
liftability of polyhedral partitions in R

2 are found in [9, 10, 24, 38]. Also, some
particular diagrams, e.g., Voronoi diagrams, Delaunay diagrams, and Power dia-
grams in the general dimensional space, are studied in [3, 5, 11, 12, 16]. Necessary
and sufficient conditions for a cell complex to be convexly liftable are referred to
[2, 4, 23, 28, 30, 36].

Note that these results are equivalent as proved in [36]; therefore, if a cell complex
is convexly liftable, then it satisfies all these conditions. Also, due to Lemma2.1, a
polyhedral partition, whose facet-to-facet property does not hold, will not fulfill these
conditions.

From the practical interest, these above conditions are only of help for recognizing
a convexly liftable cell complex. They do not provide any hint for the construction
of such convex liftings. As convex liftings are a tool in our constructive solution of
inverse optimality, an algorithm dedicated to convex liftings will be presented in the
next subsection.

Fig. 2.2 A nonconvexly
liftable cell complex
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2.4.2 An Algorithm for Construction of Convex Liftings

This subsection concentrates on a construction of convex liftings for a given cell
complex. The following algorithm is based on the reinforcement of continuity and
convexity constraints at the vertices of the given cell complex. Clearly, the vertex
representation of this cell complex is of use. Therefore, this algorithm (Algorithm
2.1) restricts the construction to a bounded cell complex {Xi }i∈IN

, e.g., a cell complex
of a polytope X . A simple convexly liftable cell complex is presented in Fig. 2.3.
One of its convex liftings is shown in Fig. 2.4.

Algorithm 2.1 Convex lifting algorithm
Input: A given cell complex {Xi }i∈IN

of a polytope X ⊂ R
nx , a scalar c > 0.

Output: Gains ai , bi of a convex lifting z(x) = aT
i x + bi for x ∈ Xi .

1: Register all pairs of neighboring regions in {Xi }i∈IN
.

2: For each pair (i, j) ∈ I2
N such that (Xi ,X j ) are neighbors:

• Add continuity conditions:

aT
i v + bi = aT

j v + b j , ∀v ∈ V(Xi ∩ X j ). (2.4)

• Add convexity conditions:

aT
i u + bi ≥ aT

j u + b j + c, ∀u ∈ V(Xi ), u /∈ V(Xi ∩ X j ). (2.5)

3: Solve the following convex optimization problem

min
ai ,bi

∑

i∈IN

aT
i ai + bT

i bi subject to (2.4), (2.5). (2.6)

4: Construct an affinely equivalent polyhedron

X̃ = conv

⎧
⎨

⎩

[
v

z(v)

]
∈ R

nx +1 | v ∈
⋃

i∈IN

V(Xi ), z(v) = aT
i v + bi if v ∈ Xi

⎫
⎬

⎭
.

Note that the insertion of c > 0 in (2.5) ensures the strict inequalities called
convexity conditions, as defined in Definition2.3. As for the complexity of Algorithm
2.1, if N denotes the number of regions in {Xi }i∈IN

, then step 1 considers at most
1
2 N (N − 1) cases. For each pair of neighboring regions, the number of imposed
constraints (including equality and inequality constraints) is equal to the number of
vertices of Xi . If vmax denotes the maximal number of vertices among the regions
in {Xi }i∈IN

, then an upper bound for the number of constraints for (2.6) is 1
2 N (N −

1)vmax, thus scales quadratically with the number of regions. Recall that (2.6) is a
quadratic programming problem and is considered to be computationally tractable
with respect to the working-memory capacity of calculator.
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Fig. 2.3 A convexly liftable
cell complex

Fig. 2.4 A convex lifting of
the cell complex in Fig. 2.3

Note also that the requirement thatX is a polytope can be relaxed to compact, (not
necessarily convex) polyhedral sets. As defined, a polyhedral partition is a collection
of several polyhedra/polytopes. If we restrict our attention to a collection of poly-
topes, then their union represents a bounded set. This compact set has the boundary
described by linear constraints, but it is not necessarily a polytope. Algorithm 2.1 can
also construct convex liftings for such convexly liftable cell complexes if feasible.
For illustration, a cell complex of a nonconvex polyhedral set is shown in Fig. 2.5.
This cell complex is clearly convexly liftable.

Notice also that the feasibility of the optimization problem (2.6) is instrumental
to determine whether the given partition is convexly liftable. More clearly, the given
cell complex is convexly liftable if and only if problem (2.6) is feasible. Due to
Lemma2.1, for any polyhedral partition, whose facet-to-facet property does not hold,
the associated optimization problem (2.6) is infeasible.
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Fig. 2.5 A convexly liftable
cell complex of a nonconvex
polyhedral set

For a convexly liftable cell complex of a polyhedron, it can be observed that
Algorithm 2.1 cannot be directly applicable. Let us take a simple example to illustrate
this limitation of Algorithm 2.1. Consider a partition of four quadrants, which covers
the whole R2. It is observed that each quadrant has only one vertex, known to be the
origin 0. Therefore, if (Q1, Q2) are two neighboring quadrants, only one continuity
constraint at the origin will be imposed along Algorithm 2.1. It follows that z(x) = 0
may be resulted from the optimization problem (2.6). However, this real-valued
function is not a convex lifting.

Wewill present an intermediate result related to the construction of convex liftings
for cell complexes of polyhedra.

The following assumption is of help for our development.

Assumption 2.1 For all x ∈ ⋃i∈IN
V(Xi ), x ∈ int(Bnx (ε)) ⊂ R

nx , with some suit-
able ε > 0.

In view of Assumption2.1, the following theorem is of help to construct convex
liftings for cell complexes of a polyhedron.

Theorem 2.1 Given a convexly liftable cell complex {Xi }i∈IN
of a polyhedron X ⊆

R
nx and a box Bnx (ε) satisfying Assumption2.1, f : X ∩ Bnx (ε) → R

f (x) = aT
i x + bi for x ∈ Xi ∩ Bnx (ε),

is a convex lifting of the cell complex
{Xi ∩ Bnx (ε)

}
i∈IN

, if and only if the function
g : X → R defined as follows:

g(x) = aT
i x + bi for x ∈ Xi ,

is also a convex lifting of {Xi }i∈IN
.
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Proof −→ First, due to Assumption2.1, the intersection X ∩ Bnx (ε) does not have
any effect on the internal subdivision ofX , since any vertex of the partition {Xi }i∈IN

lies in the interior of Bnx (ε).
Consider now twoneighboring regions in the partition

{Xi ∩ Bnx (ε)
}

i∈IN
, denoted

as Xi ∩ Bnx (ε),X j ∩ Bnx (ε). As assumed, f (x) is a convex lifting of
{Xi ∩ Bnx

(ε)}i∈IN
, then it can be deduced from its definition that:

aT
i x + bi = aT

j x + b j ∀x ∈ (Xi ∩ Bnx (ε)) ∩ (X j ∩ Bnx (ε))

aT
i x + bi > aT

j x + b j ∀x ∈ (Xi ∩ Bnx (ε))\(X j ∩ Bnx (ε)).

Note also that constraint aT
i x + bi = aT

j x + b j describes the hyperplane, separating
Xi ∩ Bnx (ε) and X j ∩ Bnx (ε), then it separates also Xi and X j . This end leads to

aT
i x + bi = aT

j x + b j ∀x ∈ Xi ∩ X j ,

aT
i x + bi > aT

j x + b j ∀x ∈ Xi\X j .

Applying this inclusion to every pair of neighboring regions, the following inclusion
can be obtained:

aT
i x + bi > aT

j x + b j , ∀x ∈ Xi\X j ,∀ j �= i, j ∈ IN ,

meaning g(x) is a convex lifting of {Xi }i∈IN
.

←− The sufficient condition can be similarly proved. �

This theorem shows that we can construct a convex lifting for a cell complex of a
polyhedron from a convex lifting of an appropriate partition of a bounded set. This
partition is resulted from the intersection of the given cell complex and some suitable
boxes. The remaining problem is to find out one among these boxes. This task can
be easily carried out from Assumption2.1. A simple algorithm is put forward below.

Algorithm 2.2 Determining a Bnx (ε)

Input: A given cell complex {Xi }i∈IN
of a polyhedron X ⊆ R

nx and a scalar c > 0.
Output: A box Bnx (ε) ⊂ R

nx satisfying Assumption2.1.
1: Compute Vx = ⋃

i∈IN
V(Xi ).

2: Solve:
min

ε
ε s.t. − (ε − c)1nx ≤ x ≤ (ε − c)1nx , ∀x ∈ Vx .

Note that a strictly positive scalar c needs to be inserted in Algorithm 2.2 to ensure
that all x ∈ ⋃i∈IN

V(Xi ) lie in the interior of Bnx (ε) via constraint reinforcements.
More precisely, constraints −(ε − c)1nx ≤ x ≤ (ε − c)1nx imply that ε − c > 0,
leading to ‖x‖∞ ≤ ε − c < ε, thus x ∈ int(Bnx (ε)) for all x ∈ ⋃i∈IN

V(Xi ).
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2.4.3 Nonconvexly Liftable Partitions

Taking into account the dichotomy between convexly liftable and nonconvexly
liftable partitions, a natural question is how to deal with PWA functions defined
over nonconvexly liftable partitions. As mentioned before, not every cell complex
is convexly liftable, therefore, solving inverse parametric linear/quadratic program-
ming problems via convex liftings needs an adaptation to deal with such particular
partitions. Note that this issue has already been investigated in [28, 32]. We recall
the main result here for completeness.

Theorem 2.2 Given a nonconvexly liftable polytopic partition {Xi }i∈IN
, there exists

at least one subdivision, preserving the internal boundaries of this partition, such
that the new cell complex is convexly liftable.

We refer to [28, 32] for the details of proof. It is worth emphasizing that this result
states only for polytopic partitions of bounded sets. However, its extension to poly-
hedral partitions of an unbounded set can be performed along the same arguments.
This observation can formally be stated as follows.

Lemma 2.2 For any polyhedral partition of a polyhedron, there always exists one
subdivision such that the internal boundaries of this partition are preserved and the
new partition is convexly liftable.

Proof See the proof of Theorem IV.2 presented in [28].

Note that in practice a complete hyperplane arrangement is not necessary. One can
find a particular case of refinement in [15].

2.5 Solution to Inverse Parametric Linear/Quadratic
Programming Problems

Based on the above results, this section aims to put forward the solution to inverse
optimality problem via convex liftings. This solution is viable with respect to the
following standing assumption.

Assumption 2.2 The given cell complex {Xi }i∈IN
of a polyhedron X is convexly

liftable.

Note that this assumption is not restrictive due to Lemma2.2. Following this lemma,
if a given polyhedral partition does not satisfy Assumption2.2, it can be refined into
a convexly liftable partition such that its internal boundaries are maintained.

We use z(x) to denote a convex lifting of {Xi }i∈IN
, z(x) = aT

i x + bi for x ∈ Xi .

Wewant to recover a continuous PWA function, denoted by f pwa(x), i.e., f pwa(x) =
Hi x + gi for x ∈ Xi . Note that these results can be extended for discontinuous PWA
functions; we refer to [31] for more details.
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For ease of presentation, the following sets are also defined:

Vx =
⋃

i∈IN

V(Xi ), Rx =
⋃

i∈IN

R(Xi ),

V[xT z uT ]T =
{[

xT z(x) f T
pwa(x)

]T | x ∈ Vx

}
,

R[xT z uT ]T =
{
[
r T ẑ(r) f̂ T (r)

]T | r ∈ Rx ,
ẑ(r) = aT

i r

f̂ (r) = Hir
if r ∈ R(Xi )

}

, (2.7)

Πv = conv(V[xT z uT ]T ),Πr = cone(R[xT z uT ]T ),

Π = Πv ⊕ Πr .

The main result of this manuscript is presented via the following theorem which
generalizes the results in [32] to general polyhedra.

Theorem 2.3 Given a continuous PWA function f pwa(x), defined over a cell com-
plex {Xi }i∈IN

satisfying Assumption2.2, then f pwa(x) is the image via the orthogonal
projection of the optimal solution to the following parametric linear programming
problem:

min
[z uT ]T

z subject to
[
xT z uT

]T ∈ Π. (2.8)

Proof Consider x ∈ Xi , due to the Minkowski–Weyl theorem for polyhedra (Corol-
lary 7.1b in [37]), x can be described as follows:

x =
∑

v∈V(Xi )

α(v)v +
∑

r∈R(Xi )

β(r)r,

whereα(v),β(r) ∈ R+ and
∑

v∈V(Xi )
α(v) = 1.As a consequence, the convex lifting

at x , i.e., z(x) can be described by

z(x) = aT
i x + bi = aT

i

⎛

⎝
∑

v∈V(Xi )

α(v)v +
∑

r∈R(Xi )

β(r)r

⎞

⎠+ bi ,

=
∑

v∈V(Xi )

α(v)
(
aT

i v + bi
)+

∑

r∈R(Xi )

β(r)
(
aT

i r
)
.

Similarly,
f pwa(x) =

∑

v∈V(Xi )

α(v)(Hiv + gi ) +
∑

r∈R(Xi )

β(r)(Hir).
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It can be observed that if r is a ray of Xi , then
[
r T aT

i r
]T

is a ray of the affinely
equivalent polyhedron Π[xT z]T of {Xi }i∈IN

, defined as follows:

Π[xT z]T = conv(V[xT z]T ) ⊕ cone(R[xT z]T ),

where

V[xT z]T =
{[

xT z(x)
]T | x ∈ Vx

}
,

R[xT z]T =
{[

r T ẑ(r)
]T | r ∈ Rx , ẑ(r) = aT

i r if r ∈ R(Xi )
}

.

Therefore, for a region Xi , there exists a facet of Π[xT z]T , denoted by F (i)

[xT z]T , such

that

Proj
Rnx F (i)

[xT z]T = Xi ,

∀ [xT z(x)
]T ∈ F (i)

[xT z]T , z(x) = min
z

z s.t.
[
xT z

]T ∈ Π[xT z]T .
(2.9)

According to Proposition 5.1 in [27], every augmented point in V[xT z uT ]T is vertices

ofΠv . Thus, lifting ontoRnx +nu+1 leads to the existence of an nx−face ofΠ , denoted
by F (i)

[xT z uT ]T such that

Proj
Rnx +1 F (i)

[xT z uT ]T = F (i)

[xT z]T . (2.10)

Due to (2.9) and (2.10), the minimal value of z at a point x ∈ Xi happens when[
xT z uT

]T
lies in F (i)

[xT z uT ]T . Therefore, optimal solution to (2.8) at x can be

described by

⎡

⎣
x

z∗(x)

u∗(x)

⎤

⎦ =
∑

v∈V(Xi )

α(v)

⎡

⎣
v

aT
i v + bi

Hiv + gi

⎤

⎦+
∑

r∈R(Xi )

β(r)

⎡

⎣
r

aT
i r

Hir

⎤

⎦ ,

where α(v),β(r) ∈ R+ and
∑

v∈V(Xi )
α(v) = 1. It is clear that

[
z∗(x)

u∗(x)

]
=
[

aT
i x + bi

Hi x + gi

]
=
[

z(x)

f pwa(x)

]
, for x ∈ Xi .

To complete the proof, we now need to show that the optimal solution to (2.8) is
unique. In fact, at a point x ∈ Xi , suppose there exist two different optimal solutions
to (2.8)
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[
z1(x) uT

1 (x)
]T = arg min

[z uT ]T
z

[
z2(x) uT

2 (x)
]T = arg min

[z uT ]T
z

s.t.
[
xT z uT

]T ∈ Π.

It can be observed that z1(x) = z2(x). If u1(x) �= u2(x), then there exist two
different nx−faces, denoted by F1, F2, such that

[
xT z1(x) uT

1 (x)
]T ∈ F1 and

[
xT z2(x) uT

2 (x)
]T ∈ F2. Therefore, z1(x) = z2(x) leads to

Proj
Rnx +1 F1 = Proj

Rnx +1 F2 = F (i)

[xT z]T .

Accordingly, F1, F2 lie in a hyperplane of dimension nx + 1 which is orthogonal to
the space of

[
xT z

]T
. An illustration can be found in Fig. 2.6. This leads to the fact

that f pwa(v) or f̂ (r) in (2.7) is not uniquely defined for some v ∈ V(Xi ) or some
r ∈ R(Xi ). This contradicts with the construction of Π in (2.7). Therefore, F1 = F2

meaning the optimal solution to (2.8) is unique. Further, such an nx−face F1 can be
written in the following form:

F1 = F#
1 ⊕ F#

2

F#
1 = conv

{[
vT z(v) f T

pwa(v)
]T | v ∈ V(Xi )

}

F#
2 = cone

{[
r T aT

i r (Hir)T
]T | r ∈ R(Xi )

}
.

The proof is complete. �

Based on this result, a procedure to construct an inverse optimization problem is
summarized via the following algorithm.

Algorithm 2.3 Linear equivalent optimization problem
Input: A given continuous PWA function defined over a cell complex {Xi }i∈IN

of a polyhedron
X ⊆ R

nx satisfying Assumption2.2.
Output: Π, J (x, z, u).
1: Construct a convex lifting z(x) of the cell complex {Xi }i∈IN

.

2: Define Π as in (2.7).
3: Define J (x, z, u) = z.
4: Solve the following parametric linear programming problem:

[
z∗
u∗
]

= arg min
[z uT ]T

z subject to
[
xT z uT

]T ∈ Π.

5: Project the optimal solution onto R
nu i.e., f pwa(x) = Proj

Rnu

[
z∗
u∗
]

.
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Fig. 2.6 An illustration for
the uniqueness of optimal
solution to (2.8)

z

x

u

1X

2X

3X

z

1F

F

2F

The complexity of Algorithm 2.3 depends almost on the complexity of convex
lifting computation, carried out via Algorithm 2.1. Therefore, if Algorithm 2.1 is
computationally tractable, so is Algorithm 2.3.

To conclude this section, the following theorem presents an important property
of the convex lifting-based method.

Theorem 2.4 Any continuous PWA function, defined over a (not necessarily con-
vexly liftable) polyhedral partition of a polyhedron, can be equivalently obtained via
a parametric linear programming problem with at most one auxiliary 1-dimensional
variable.

Proof If the given polyhedral partition {Xi }i∈IN
is convexly liftable, following

Theorem2.3, the given continuous PWA function f pwa(x), defined over X can be
obtained through a parametric linear programming problem. This optimization prob-
lem is constructed via convex lifting. This convex lifting represents an auxiliary
one-dimensional variable.

If the given polyhedral partition {Xi }i∈IN
is not convexly liftable, Theorem2.2

shows the existence of an equivalent cell complex
{X̃i

}
i∈IÑ

such that
{X̃i

}
i∈IÑ

is convexly liftable and the internal boundaries of {Xi }i∈IN
are maintained. This

refinement also leads to an equivalent PWA function f̃ pwa(x) of f pwa(x) defined
over a convexly liftable cell complex

{X̃i
}

i∈IÑ
of X . Again, due to Theorem2.3,

f̃ pwa(x) can be obtained through a parametric linear programming problem with an
auxiliary one-dimensional variable, this auxiliary variable being a convex lifting of{X̃i

}
i∈IÑ

. �

Note that we can also find a parametric quadratic programming problem which
equivalently recovers the given continuous PWA function defined over a polyhedral
partition of a (possibly unbounded) polyhedron, as shown in [32].

Remark 2.2 It is well known that optimal solution to a parametric linear/quadratic
programming problem is a PWA function defined over a polyhedral partition. For the
parametric quadratic programming case, it is shown in [8] that the optimal solution
is continuous and unique. However, for the parametric linear programming case,
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this continuity of optimal solution may not be guaranteed. Fortunately, a continuous
solution can equivalently be selected, as shown in [34, 42]. Based on the arguments
presented in this chapter, a continuous optimal solution, induced from a parametric
linear/quadratic programming problem, can also be equivalently obtained via an
alternative parametric linear programming problem with at most one auxiliary one-
dimensional variable. This auxiliary variable represents the convex lifting.

2.6 An Illustrative Example

This section aims to illustrate the above results via a numerical example. Suppose
we need to recover the PWA function (2.11), shown in Fig. 2.7. Note that this PWA
function is continuous and is defined over the whole space R. A box B1(3) is known
to satisfy Assumption2.1. The new partition {Xi ∩ B1(3)}i∈I6

shown in Fig. 2.7 rep-
resents the multicolored segments along the x-axis. A convex lifting of the cell
complex {Xi }i∈I6

is analytically presented in (2.12) and is shown in Fig. 2.8. A set
of constraints for the recovered optimization problem shown in (2.13) represents
the pink polyhedron in Fig. 2.9. Therein, the multicolored segments along the x-axis
denote the given partition covering R, whereas the PWA function (2.11) represents
the green curve above this partition. Also, the optimal solution to (2.8) represents the
solid pink curve. It can be observed that the projection of this optimal solution to the
space

[
xT uT

]T
coincides with the given PWA function. It is worth recalling that the

proposed approach requires only one auxiliary one-dimensional variable, denoted
by z, to recover (2.11). Finally, the numerical example in this chapter is carried out
in the environment of MPT 3.0 [18].

Fig. 2.7 The given PWA
function (2.11) to be
recovered

−4 −3 −2 −1 0 1 2 3 4
−0.2

0

0.2

0.4

0.6

0.8

x

fpwa(x)



44 N.A. Nguyen et al.

Fig. 2.8 A convex lifting of
the cell complex {Xi }i∈I6
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Fig. 2.9 Illustration for the
optimal solution to IPL/QP
via convex liftings

f pwa(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

−0.2447x − 0.2838 for x ≤ −2

0.6940x + 1.5936 for − 2 ≤ x ≤ −1

−0.1371x + 0.7626 for − 1 ≤ x ≤ 0

0.1199x + 0.7626 for 0 ≤ x ≤ 1

−0.5975x + 1.4800 for 1 ≤ x ≤ 2

0.3883x − 0.4916 for 2 ≤ x

(2.11)
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z(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

−2.5x − 2 for x ≤ −2

−1.5x for − 2 ≤ x ≤ −1

−0.5x + 1 for − 1 ≤ x ≤ 0

0.5x + 1 for 0 ≤ x ≤ 1

1.5x for 1 ≤ x ≤ 2

2.5x − 2 for 2 ≤ x

(2.12)

Π =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡

⎣
x
z
u

⎤

⎦ ∈ R
3 |

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1.0000 −29.9413 116.5183
1.0000 −18.4965 116.5183
−2.2393 −1.0000 1.0653
−1.0000 −1.7638 13.9320
−1.0000 −1.5039 −1.8097
1.0000 1.7638 −13.9320
1.0000 5.3390 −50.4554
1.0000 −13.0496 −50.4554
2.1061 −1.0000 1.0144
1.0000 −1.4990 −2.0893

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎣
x
z
u

⎤

⎦ ≤

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

58.9139
76.0811
1.6977
10.8883
−2.8839
3.3214
3.6397

−51.5262
1.5013

−3.0923

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.13)

2.7 Conclusions

This chapter presents recent results in inverse optimality and summarizes in a concise
manner a procedure to recover a continuous PWA function defined over a polyhedral
partition of a polyhedron. Based on convex lifting, the study covers the general case
of continuous PWAfunctions, presenting a full construction for the inverse optimality
problem. A numerical example is finally considered to illustrate this result.
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