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Preface

This edited volume emerged from the two workshops dedicated to
Optimisation-based Control and Estimation held in France at CentraleSupélec in
November 2013 and November 2014, with participation of academic partners from
Bulgaria, France, Italy, Norway, Portugal, Romania, Spain, and Slovakia. The aim
of these workshops was to bring together specialists in control theory, applied
mathematics, and from selected application domains, notably bio-reactors/industrial
bioprocesses, robotic vehicle systems, and power systems, to discuss topics related
to the design of advanced model-based strategies relying on optimization for
identification, estimation, and control. The research teams invited for these events
have been involved in several collaborative projects from whose results most of the
contributions presented in this volume were extracted. The authors have been given
the freedom to improve and further complement the results presented at the
workshop, in order to enrich the book and highlight the relevance of the
optimization-based control and estimation. The submitted chapters underwent a
two-stage evaluation process involving detailed reviews and updates of the con-
tributions which converged to the collection of chapters composing the present
volume.

The support of CAMPUS France (the French national agency for the promotion
of higher education, international student services, and international mobility) via
bilateral projects is acknowledged here together with the partner institutions in:

• University of Porto—Pessoa project “Advanced control of a fleet of heteroge-
neous autonomous vehicles” coordinated in Portugal by Prof. Fernando Lobo
Pereira

• Bulgarian Academy of Sciences—RILA project “Robust Distributed Model
Predictive Control of Medium- and Large-Scale Systems” coordinated in
Bulgaria by Assoc. Prof. Alexandra Grancharova

• Norwegian University of Science and Technology, Trondheim—Aurora project
“Connections between constrained control design and the theory of positive
dynamical systems” coordinated in Norway by Prof. Morten Hovd
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• University of Udine—Galileo project “Set theoretic analysis of switched and
time delay systems with application to fault tolerant control systems” coordi-
nated in Italy by Prof. Stefano Miani

• University of Craiova—Brâncusi project “Predictive and adaptive control of
bioprocesses (modeling, identification and control of interconnected
bio-processes)” coordinated in Romania by Prof. Dan Selisteanu

• Slovak University of Technology in Bratislava—Stefanik project “Complexity,
Sensitivity and Robustness of explicit predictive control laws” coordinated in
Slovakia by Assoc. Prof. Michal Kvasnica

• GEPEA Laboratory Saint-Nazaire, France—with Assoc. Prof. Mariana Titica as
principal investigator in the Brâncusi project

• University of Galati, Romania—with Prof. Sergiu Caraman as principal inves-
tigator in the Brâncusi project

• Polytechnic University of Catalonia—with Assoc. Prof. Carlos Ocampo
Martinez as main collaborator in Spain

It is a great pleasure to thank all of the participants of the workshop for their
contributions that have made these events a success. We would like to express our
gratitude to our colleagues Cristina Stoica Maniu, Sihem Tebbani, and Pedro
Rodriguez Ayerbe, who coordinated the research projects in France and participated
skillfully and enthusiastically in the organization of the Workshops. With respect to
the local arrangements, the financial support of Direction de Recherche et Relations
Internationales of CentraleSupélec was an important asset and it is acknowledged
here.

Gif-sur-Yvette Sorin Olaru
Sofia Alexandra Grancharova
Porto Fernando Lobo Pereira
September 2015
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Introduction

Motivation

This book concerns optimization methods as tools for decision making and control
of dynamic systems in the presence of uncertainties and disturbances. By pooling
broad areas of Applied Mathematics and Computation Sciences, this subject has
been building a huge impact on an increasing range of diverse application areas
which encompass fields such as economics, agriculture, environment and other
natural resources management, social sciences, bio-systems, industrial processes,
aeronautics, robotic vehicle systems, transportation power systems, electronics, as
well as other engineering areas. The present volume targets the enhancement of the
specific use of these tools in engineering and, more specifically, in automatic
control design, with emphasis on its key components: analysis of dynamical sys-
tems, estimation, and feedback control design.

The Book Flavor and Main Contributions

This book contains a selected set of recent contributions ranging from novel for-
mulations of model predictive control design, to the set-theoretic characterization of
dynamical systems and including the recent decentralized and cooperative formu-
lations of control laws. Together with these contributions we find eight chapters
dedicated to optimization-based tools for robustness analysis, to decision making in
relationship with feedback mechanisms (including fault detection and recovery, as a
notable example), and to applications to biotechnology or multi-agent systems or
impulsive dynamical systems.
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Book Organization

This book mirrors the spiralling bidirectional interplay between conceptual
optimization-based control frameworks and challenging requirements emerging
from state-of-the-art applications that so fruitfully has been shaping the fast paced
research in this wide area. Given the vast Research & Development network and the
program of the workshops which paved the way for the present volume, we felt
natural to organize the book into five parts, each reflecting a current research trend:

1. Complexity and Structural Properties of Linear Model Predictive Control.
Structural technical issues targeting novel formulations fulfilling more sophis-
ticated real-time specifications and performance requirements related to the
predictive control design for linear systems. In Chap. 1 I. Necoara, A. Patrascu,
and A. Nedić discuss the computational certifications for convex programming
with a direct impact on real-time MPC. In Chaps. 2 and 3, the inverse optimality
of continuous piecewise affine functions is investigated by N.A. Nguyen, M.
Gulan, S. Olaru, P. Rodriguez-Ayerbe, M. Hovd, I. Necoara, and B. Rohal-Ilkiv
with a straightforward interpretation of the explicit linear model predictive
control design and implementation via equivalent real-time optimization
schemes.

2. Distributed-coordinated and Multi-objective Features of Model Predictive
Control. Novel formulations which highlight the interconnections of control and
data sharing among subsystems are presented in this part of the volume with the
ultimate goal of enabling the optimization-based coordination of decentralized
systems. Chapter 4 is dedicated to distributed predictive control of intercon-
nected polytopic systems where A. Grancharova and S. Olaru extend the recent
results on this topic in order to achieve robustness. Chapter 5 by J. Sandoval
Moreno, J.J. Martinez, and G. Besancon discuss a distributed-coordinated
optimal control base on a price-driven approach complying with requirements
arising in power generation systems. Chapter 6 is dedicated to dynamical tuning
of multi-objective control where J. Barreiro-Gomez, C. Ocampo-Martinez, and
N. Quijano point out the advantages of an evolutionary game-based selection of
prioritization weights of predictive control objective function (and the posi-
tioning on the Pareto front of solutions).

3. Collaborative Model Predictive Control. This part of the book consists of a set
of three chapters discussing issues arising in cooperative path following for, a
possibly reconfigurable, formation of robotic vehicles in an optimization-based
control design perspective. In Chap. 7 by A. Rucco, A. Pedro Aguiar, F.A.C.C.
Fontes, F. Lobo Pereira, and J. Borges de Sousa, a model predictive
control-based architecture that enables the decentralized cooperative
path-following of multiple Unmanned Aerial Vehicles is presented. The stability
of the generated trajectories with a prescribed rate of convergence while satis-
fying both state and control constraints are shown. I. Prodan, S. Olaru, C. Stoica
Maniu, F.A.C.C. Fontes, F. Lobo Pereira, and S. Niculescu discuss, in Chap. 8,
a computationally efficient predictive control-based framework for path
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following. Issues concerning the optimal dynamical task assignment formulation
of multi-agent systems, coupled with fault detection and isolation capabilities,
are discussed by M.T. Nguyen, C. Stoica Maniu, S. Olaru, and A. Grancharova
in Chap. 9 addressing MPC-based formation reconfiguration techniques.

4. Applications of Optimization-Based Control and Identification. Selected con-
solidated cases showing the benefits of customized optimization-based control
that encompass applications in bio-processes are presented in this part. While,
S. Tebbani, M. Titica, G. Ifrim, M. Barbu, and S. Caraman present results on the
optimal operation of a lumostatic microalgae cultivation process in Chap. 10, in
the ensuing chapter, heuristic optimization techniques are discussed by
D. Sendrescu, S. Tebbani, and D. Selisteanu to estimate bioprocess parameters.
An implementation of a real-time predictive control for both supervisor and
regulatory levels of a pasteurization plant is provided by A. Rosich, and
C. Ocampo-Martinez in Chap. 12.

5. Optimization-Based Analysis and Design for Particular Classes of Dynamical
Systems. This part concerns contributions that show how optimization-based
control techniques are amenable to take advantage of particular features
exhibited by specific classes of dynamic models. This last part of the volume
collects five chapters promoting pioneering inroads in dynamic optimization.
The reader can find optimization-based control design formulation for impulsive
control systems by F. Lobo Pereira, F.A.C.C. Fontes, A. Pedro Aguiar, and
J. Borges de Sousa in which invariance and stability are the key issues in
Chap. 13, and bilinear systems by M. Vatani, M. Hovd, and S.Olaru in which
linear parameter varying control design is discussed in Chap. 14. A class of
linear parameter varying systems by F. Blanchini, D. Casagrande, G. Giordano,
and S. Miani in which the importance of the parameterization of the stabilizing
control laws is underlined in Chap. 15, and linear systems with state-dependent
bounds on disturbances by S. Olaru and V. Reppa in which robust invariance
sets and ultimate bounds are derived in a set-theoretic context are discussed in
Chap. 16. Finally, Chap. 17 concerns the minimal invariant set characterization
by F. Stoican, C. Oara, and M. Hovd where the zonotopic disturbances are
interpreted in dual terms of optimal control sequences.

It is clear from the flow of ideas throughout the various chapters that cases of the
virtuous cycle of invention-discovery are demonstrated in this book. In the research
areas pertinent to model-based optimization and control, it is illustrated how the
persistent interaction between the dynamic “real-world challenges”-driven con-
ceptual research (leading to new discoveries), and the consistent field trial of
advanced scientific tools (leading to the invention of new scientific tools) play a
fruitful role in scientific and technological progress with a huge potential societal
impact.
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Intended Audience

The book is intended to offer postgraduate students and researchers a perspective on
new control problems involving optimization-based methods. It presents in a
comprehensive manner the structural properties of the manipulated techniques,
unveils the challenges, positions the research trends, and points to application from
emerging fields. In this respect, it can be useful for both academic and industrial
researchers.
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Chapter 1
Complexity Certifications of First-Order
Inexact Lagrangian Methods for General
Convex Programming: Application
to Real-Time MPC

Ion Necoara, Andrei Patrascu and Angelia Nedić

Abstract In this chapter, we derive the computational complexity certifications of
first-order inexact dual methods for solving general smooth constrained convex prob-
lems which can arise in real-time applications, such as model predictive control.
When it is difficult to project on the primal constraint set described by a collection
of general convex functions, we use the Lagrangian relaxation to handle the compli-
cated constraints and then, we apply dual (fast) gradient algorithms based on inexact
dual gradient information for solving the corresponding dual problem. The iteration
complexity analysis is based on two types of approximate primal solutions: the pri-
mal last iterate and an average of primal iterates.We provide sublinear computational
complexity estimates on the primal suboptimality and constraint (feasibility) viola-
tion of the generated approximate primal solutions. In the final part of the chapter,
we present an open-source quadratic optimization solver, referred to as DuQuad, for
convex quadratic programs and for evaluation of its behavior. The solver contains
the C-language implementations of the analyzed algorithms.
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Keywords Convex problems ·Lagrange duality · Inexact dual first-order methods ·
Iteration complexity · Model predictive control

1.1 Introduction

Nowadays, many engineering applications can be posed as general smooth con-
strained convex problems. Several important applications that can be modeled in
this framework have attracted great attention lately, such as model predictive con-
trol for dynamical linear systems and its dual (often referred to as moving horizon
estimation) [8, 11, 17, 18, 20], DC optimal power flow problem for power systems
[22], and network utility maximization problems [23]. Notably, the recent advances
in hardware and numerical optimization made it possible to solve linear model pre-
dictive control problems of nontrivial sizes within microseconds even on hardware
platforms with limited computational power and memory.

In this chapter, we are particularly interested in real-time linear model predictive
control (MPC) problems. For MPC, the corresponding optimal control problem can
be recast as a smooth constrained convex optimization problem. There are numerous
ways in which this problem can be solved. For example, an interior point method
has been proposed in [19] and an active set method was described in [4]. Also,
explicit MPC has been proposed in [2], where the optimization problem is solved
offline for all possible states. In real-time (or online) applications, these methods can
sometimes fail due to their overly complex iterations in the case of interior point
and active set methods, or due to the large dimensions of the problem in the case of
explicit MPCs. Additionally, when embedded systems are employed, computational
complexity need to be kept to a minimum. As a result, second order algorithms (e.g.,
interior point),whichmost often requirematrix inversions, are usually left out. In such
applications, first order algorithms aremore suitable [8, 10, 11, 17, 20] especially for
instances when computation power and memory is limited. For many optimization
problems arising in engineering applications, such as real-timeMPCs, the constraints
are overly complex, making projections on these sets computationally prohibitive.
This is most often the main impediment of applying first-order methods on the
primal optimization problem. To circumvent this, the dual approach is considered
by forming the dual problem, whereby the complex constraints are moved into the
objective function, thus rendering much simpler constraints for the dual variables,
often being only the non-negative orthant. Therefore, we consider dual first order
methods for solving the dual problem. The computational complexity certification
of gradient-based methods for solving the (augmented) Lagrangian dual of a primal
convex problem is studied e.g., in [1, 3, 5, 7–10, 16, 17]. However, these papers
either threat quadratic problems [17] or linearly constrained smooth convex problems
with simple objective function [1, 7], or the approximate primal solution is generated
through averaging [8–10, 16]. On the other hand, in practice usually the last primal
iterate is employed. There are few attempts to derive the computational complexity of
dual gradient based methods using as an approximate primal solution the last iterate
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of the algorithm for particular cases of convex problems [1, 7, 9]. Moreover, from
our practical experience we have observed that usually thesemethods converge faster
in the primal last iterate than in a primal average sequence. These issues motivate
our work here.

Contribution. In this chapter, we analyze the computational complexity of dual first-
order methods for solving general smooth constrained convex problems. Contrary to
most of the results from the literature [1, 7, 9, 16, 17], our approach allows us to use
inexact dual gradient information. Another important feature of our approach is that
we also provide complexity results for the primal latest iterate, while in much of the
previous literature convergence rates in an average of primal iterates are given. This
feature is of practical importance since usually the primal last iterate is employed in
applications. More precisely, the main contributions in this chapter are:

(i) We derive the computational complexity of the dual gradient method in terms
of primal suboptimality and feasibility violation using inexact dual gradients
and two types of approximate primal solutions: O ( 1

ε2
log 1

ε

)
in the primal last

iterate andO ( 1
ε
log 1

ε

)
in an average of primal iterates, where ε is some desired

accuracy.
(ii) We also derive the computational complexity of the dual fast gradient method

in terms of primal suboptimality and feasibility violation using inexact dual
gradients and two types of approximate primal solutions: O ( 1

ε
log 1

ε

)
in the

primal last iterate and O
(

1√
ε
log 1

ε

)
in a primal average sequence.

(iii) Finally, we present an open-source optimization solver, termed DuQuad, con-
sisting of the C-language implementations of the above inexact dual first-order
algorithms for solving convex quadratic problems, and we study its numerical
behavior.

Content. The chapter is organized as follows. In Sect. 1.2 we formulate our problem
of interest and its dual, and we analyze its smoothness property. In Sect. 1.3 we
introduce a general inexact dual first-ordermethod, covering the inexact dual gradient
and fast gradient algorithms, and we derive computational complexity certificates
for these schemes. Finally, in Sect. 1.4 we describe briefly the DuQuad toolbox that
implements the above inexact algorithms for solving convex quadratic programs in
C-language, while in Sect. 1.5 we provide detailed numerical experiments.

Notation. We consider the space Rn composed of column vectors. For x, y ∈ R
n , we

denote the scalar product by 〈x, y〉 = xT y and the Euclidean norm by ‖x‖ = √
xT x.

We denote the nonnegative orthant by R
n+ and we use [u]+ for the projection of u

onto R
n+. The minimal eigenvalue of a symmetric matrix Q ∈ R

n×n is denoted by
λmin(Q) and ‖Q‖F denotes its Frobenius norm.
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1.2 Problem Formulation

In this section, we consider the following general constrained convex optimization
problem:

f ∗ = min
u∈U

f (u) s.t.: g(u) ≤ 0, (1.1)

where U ⊆ R
n is a closed simple convex set (e.g., a box set), 0 ∈ R

p is a vec-
tor of zeros, and the constraint mapping g(·) is given by g(·) = [g1(·), . . . ,gp(·)]T .
(The vector inequality g(u) ≤ 0 is to be understood coordinate-wise.) The objective
function f (·) and the constraint functions g1(·), . . . , gp(·) are convex and differen-
tiable over their domains. Many engineering applications can be posed as the general
convex problem (1.1). For example for linear model predictive control problem in
condensed form [8, 11, 17, 18, 20]: f is convex (quadratic) function, U is box set
describing the input constraints and g is given by convex functions describing the
state constraints; for network utility maximization problem [1]: f is log function,
U = R

n+ and g is linear function describing the link capacities; for DC optimal
power flow problem [22]: f is convex function, U is box set and g describes the DC
nodal power balance constraints.

We are interested in deriving computational complexity estimates of dual first
order methods for solving the optimization problem (1.1). We make the following
assumptions on the objective function and the feasible set of the problem (1.1).

Assumption 1.1 Let U ⊆ dom f ∩ {∩p
i=1dom gi

}
, and assume that:

(a) The Slater condition holds for the feasible set of problem (1.1), i.e., there exists
ū ∈ relint(U ) such that g(ū) < 0.

(b) The function f is strongly convex with constant σ f > 0 and has Lipschitz con-
tinuous gradients with constant L f > 0, i.e.:

σ f

2
‖u − v‖2 ≤ f (u) − ( f (v) + 〈∇ f (v),u − v〉) ≤ L f

2
‖u − v‖2 ∀u, v ∈ U.

(c) The function g has bounded Jacobians on the set U , i.e., there exists cg > 0 such
that ‖∇g(u)‖F ≤ cg for all u ∈ U .

Moreover, we introduce the following definition:

Definition 1.1 Given ε > 0, a primal point uε ∈ U is called ε-optimal if it satisfies:

| f (uε) − f ∗| ≤ ε and
∥
∥∥
[
g(uε)

]
+
∥
∥∥ ≤ ε.

Since U is assumed to be a simple set, i.e., the projection on this set is easy (e.g.,
(rotated) box, ellipsoid, etc.), we denote the associated dual problem of (1.1) as:
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max
x≥0

d(x)
(

= min
u∈U

L(u, x)
)
, (1.2)

where the Lagrangian function is given by:

L(u, x) = f (u) + 〈x, g(u)〉.

Wedenote the dual optimal setwith X∗ = argmax
x≥0

d(x). Note thatAssumption1.1(a)

guarantees that strong duality holds for (1.1). Moreover, since f is a strongly convex
function (seeAssumption1.1(b)), the inner subproblemmin

u∈U
L(u, x) has the objective

function L(·, x) strongly convex for any fixed x ∈ R
p
+. It follows that the optimal

solution u∗ of the original problem (1.1) and u(x) = argminu∈U L(u, x) are unique
and, thus, fromDanskin’s theorem [14]weget that the dual functiond is differentiable
on Rp

+ and its gradient is given by:

∇d(x) = g(u(x)) for all x ∈ R
p
+.

From Assumption1.1(c) it follows immediately, using the mean value theorem, that
the function g is Lipschitz continuous with constant cg , i.e.,

‖g(u) − g(v)‖ ≤ cg‖u − v‖ ∀u, v ∈ U. (1.3)

In the forthcoming lemma, Assumption1.1 (b) and (c) allow us to show that the dual
function d has Lipschitz gradient. Our result is a generalization of a result in [14]
given there for the case of a linear mapping g(·) (see also [10] for a different proof):
Lemma 1.1 Under Assumption1.1, the dual function d(·) corresponding to general
convex problem (1.1) has Lipschitz continuous gradient with constant Ld = c2g/σ f ,
i.e.,

‖∇d(x) − ∇d(x̄)‖ ≤ c2g
σ f

‖x − x̄‖ ∀x, x̄ ∈ R
p
+. (1.4)

Proof Let x, x̄ ∈ R
p
+. Then, by using the optimality conditions for u(x) and u(x̄),

we get:

〈

∇ f (u(x)) +
p∑

i=1

xi∇gi (u(x)),u(x̄) − u(x)

〉

≥ 0,

〈

∇ f (u(x̄)) +
p∑

i=1

x̄i∇gi (u(x̄)),u(x) − u(x̄)

〉

≥ 0.

Adding these two inequalities and using the strong convexity of f , we further obtain
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σ f ‖u(x) − u(x̄)‖2 ≤ 〈∇ f (u(x)) − ∇ f (u(x̄)),u(x) − u(x̄)〉

≤
〈
∑

i

xi∇gi (u(x)) −
∑

i

x̄i∇gi (u(x̄)),u(x̄) − u(x)

〉

=
〈

p∑

i=1

(xi − x̄i )∇gi (u(x))−
p∑

i=1

x̄i (∇gi (u(x̄)) − ∇gi (u(x))),u(x̄) − u(x)

〉

≤
〈

p∑

i=1

(xi −x̄i )∇gi (u(x)),u(x̄)−u(x)

〉

,

where the last inequality follows from the convexity of the function gi and x̄i ≥ 0
for all i . By the Cauchy–Schwarz inequality, we have

σ f ‖u(x) − u(x̄)‖2 ≤
p∑

i=1

|xi −x̄i |‖∇gi (u(x))‖‖u(x)−u(x̄)‖

≤ ‖x − x̄‖‖∇g(u(x))‖F‖u(x) − u(x̄)‖
≤ cg‖x − x̄‖‖u(x) − u(x̄)‖,

where the second inequality follows by Hölder’s inequality and the last inequality
follows by the bounded Jacobian assumption for g (see Assumption1.1(c)). Thus,
we obtain:

‖u(x) − u(x̄)‖ ≤ cg

σ f
‖x − x̄‖.

Combining (1.3) with the preceding relation, we obtain that the gradient of the dual

function is Lipschitz continuous with constant Ld = c2g
σ f
, i.e.,

‖∇d(x) − ∇d(x̄)‖ = ‖g(u(x)) − g(u(x̄))‖ ≤ cg‖u(x) − u(x̄)‖ ≤ c2g
σ f

‖x − x̄‖,

for all x, x̄ ∈ R
p
+. �

Note that in the case of a linear mapping g, i.e., g(u) = Gu + g, we have cg =
‖G‖F ≥ ‖G‖. In conclusion, our estimate on the Lipschitz constant of the gradient
of the dual function for general convex constraints Ld = c2g/σ f can coincide with
the one derived in [14] for the linear case Ld = ‖G‖2/σ f if one takes the linear
structure of g into account in the proof of Lemma1.1 (specifically, where we used
Hölder’s inequality). Based on relation (1.4) of Lemma1.1, the following descent
lemma holds with Ld = c2g/σ f (see for example [14]):

d(x) ≥ d(y) + 〈∇d(y), x − y〉 − Ld

2
‖x − y‖2 ∀x, y ∈ R

p
+. (1.5)
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Using these preliminary results, in a unified manner, we analyze further the compu-
tational complexity of inexact dual first-order methods.

1.3 Inexact Dual First-Order Methods

In this section, we introduce and analyze inexact first-order dual algorithms for
solving the general smooth convex problem (1.1). Since the computation of the
zero-th and the first-order information of the dual problem (1.2) requires the exact
solution of the inner subproblemmin

u∈U
L(u, x) for somefixed x ∈ R

p
+, which generally

cannot be computed in practice, in many practical cases, inexact dual information is
available by solving the inner subproblem with a certain inner accuracy. We denote
with ũ(x) the primal point satisfying the δ-optimality relations:

ũ(x) ∈ U, 0 ≤ L(ũ(x), x) − d(x) ≤ δ ∀x ∈ R
p
+. (1.6)

In relationwith (1.6),we introduce the following approximations for the dual function
and its gradient:

d̃(x) = L(ũ(x), x) and ∇̃d(x) = g(ũ(x)).

Then, the following bounds for the dual function d(x) can be obtained, in terms of
a linear and a quadratic model, which use only approximate information of the dual
function and of its gradient (see [10, Lemma 2.5]):

0 ≤
(

d̃(y) + 〈∇̃d(y), x − y〉
)

− d(x) ≤ Ld‖x − y‖2 + 3δ ∀x, y ∈ R
p
+. (1.7)

Note that if δ = 0, then we recover the exact descent lemma(1.5). Before we intro-
duce our algorithmic scheme, let us observe that one can efficiently solve approxi-
mately the inner subproblem if the constraint functions gi (·) satisfy certain assump-
tions, such as either one of the following conditions:

(1) The operator g(·) is simple, i.e., given v ∈ U and x ∈ R
p
+, the solution of the

following optimization subproblem:

min
u∈U

{
1

2
‖u − v‖2 + 〈x, g(u)〉

}

can be obtained in linear time, i.e.,O(n) operations. An example satisfying this
assumption is the linear operator, i.e., g(u) = Gu + g, whereG ∈ R

p×n, g ∈ R
p

and the set U is simple.
(2) Each function gi (·) has Lipschitz continuous gradients.
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In such cases, based onAssumption1.1(b) (i.e., f has Lipschitz continuous gradient),
it follows that we can solve approximately the inner subproblemmin

u∈U
L(u, x), for any

fixed x ∈ R
p
+, with Nesterov’s optimal method for convex problems with smooth

and strongly convex objective function [15, page 143, Accelerated method]. Without
loss of generality, we assume that the functions gi (·) are simple. When g(·) satisfies
the above condition (2), there are minor modifications in the constants related to the
convergence rate. Given x ∈ R

p
+, the inner approximate optimal point ũ(x) satisfying

L(ũ(x), x) − d(x) ≤ δ is obtained with Nesterov’s optimal method [15] after Nδ

projections on the simple set U and evaluations of ∇ f , where

Nδ =
⌊√

L f

σ f
log

(
L f R2

p(x)

2δ

)⌋

(1.8)

with Rp(x) = ‖v0 − u(x)‖, and v0 being the initial point of Nesterov’s optimal
method. When the simple feasible set U is compact with a diameter Rp (such as
for example in MPC applications), we can bound Rp(x) uniformly, i.e.,

Rp(x) ≤ Rp ∀x ∈ R
p
+.

In the sequel, we always assume that such a bound exists, and we use warm-start
when solving the inner subproblem. Now,we introduce a general algorithmic scheme,
called Inexact Dual First-OrderMethod (IDFOM), and analyze its convergence prop-
erties, computational complexity, and numerical performance.

Algorithm 1.1 IDFOM
Given y0 ∈ R

p
+, δ > 0, for k ≥ 0 compute:

1. Find uk ∈ U such that L(uk , yk) − d(yk) ≤ δ,

2. Update xk =
[
yk + 1

2Ld
∇̃d(yk)

]

+,

3. Update yk+1 = (1 − θk) xk + θk

[

y0 + 1
2Ld

k∑

j=0

j+1
2 ∇̃d(y j )

]

+
.

where uk = ũ(yk), ∇̃d(yk) = g(uk) and the selection of the parameter θk is discussed
next.More precisely, we distinguish two particular well-known schemes of the above
framework:

• IDGM: by setting θk = 0 for all k ≥ 0, we recover the Inexact Dual Gradient
Method since yk+1 = xk . For this scheme, we define the dual average sequence

x̂k = 1
k+1

k∑

j=0
x j .We redefine the dual final point (the dual last iterate xk when some

stopping criterion is satisfied) as xk =
[
x̂k + 1

2Ld
∇̃d(x̂k)

]

+
. Thus, all the results

concerning xk generated by the algorithm IDGM will refer to this definition.
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• IDFGM: by setting θk = 2
k+3 for all k ≥ 0, we recover the Inexact Dual Fast

Gradient Method. This variant has been analyzed in [3, 10, 14].

Note that both dual sequences are dual feasible, i.e., xk, yk ∈ R
p
+ for all k ≥ 0, and

thus the inner subproblem min
u∈U

L(u, yk) has the objective function strongly convex.

Towards estimating the computational complexity of IDFOM, we present an unified
outer convergence rate for both schemes IDGM and IDFGM of algorithm IDFOM
in terms of dual suboptimality. The result has been proved in [3, 10].

Theorem 1.1 [3, 10]Given δ > 0, let {(xk, yk)}k≥0 be the dual sequences generated
by algorithm IDFOM. Under Assumption1.1, the following relation holds:

f ∗ − d(xk) ≤ Ld R2
d

k p(θ)
+ 4k p(θ)−1δ ∀k ≥ 1,

where p(θ) =
{
1, if θk = 0

2, if θk = 2
k+3

and Rd = min
x∗∈X∗ ‖y0 − x∗‖.

Proof Firstly, consider the case θk = 0 (which implies p(θ) = 1). Note that the
approximate convexity and Lipschitz continuity relations (1.7) lead to:

d(xk) ≥ d̃(x̂k) + 〈∇̃d(x̂k), xk − x̂k〉 − Ld‖xk − x̂k‖2 − 3δ

≥ d̃(x̂k) + Ld‖xk − x̂k‖2 − 3δ
(6)≥ d(x̂k) − 3δ, (1.9)

where in the second inequality we have used the optimality conditions of xk =
[x̂k + 1

2Ld
∇̃d(x̂k)]+ ∈ R

p
+. On the other hand, using [3, Theorem2], the following

convergence rate for the dual average point x̂k can be derived:

f ∗ − d(x̂k) ≤ LdR2
d

2k
+ δ ∀k ≥ 1. (1.10)

Combining (1.9) and (1.10) we obtain the first case of the theorem. The second case,
concerning θk = 2

k+3 , has been shown in [3, 10]. �

Our iteration complexity analysis for algorithm IDFOM is based on two types of
approximate primal solutions: the primal last iterate sequence {vk}k≥0 defined by
vk = ũ(xk) or a primal average sequence {ûk}k≥0 of the form:

ûk =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1
k+1

k∑

j=0
u j , if IDGM

2
(k+1)(k+2)

k∑

j=0
( j + 1)u j , if IDFGM.

(1.11)
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Note that for algorithm IDGM we have vk = uk , while for algorithm IDFGM,
vk �= uk . Without loss of generality, for the simplicity of our results, we assume:

y0 = 0, Rd ≥ max

{
1,

1

cg
,

L f

cg

}
, Ld ≥ 1. (1.12)

If any of these conditions do not hold, then all of the results from below are valid
with minor variations in the constants.

1.3.1 Computational Complexity of IDFOM in the Primal
Last Iterate

In this section, we derive the computational complexity for the two main algorithms
within the framework of IDFOM, in terms of primal feasibility violation and primal
suboptimality for the last primal iterate vk = ũ(xk). To obtain these results, only in
this section, we additionally make the following assumption:

Assumption 1.2 The primal set U is compact, i.e., max
u,v∈U

‖u − v‖ = Rp < ∞.

Assumption1.2 implies that the objective function f is Lipschitz continuous with
constant L̄ f , where L̄ f = max

u∈U
‖∇ f (u)‖. Now, we are ready to prove the main result

of this section, given in the following theorem.

Theorem 1.2 Let ε > 0 be some desired accuracy and vk = ũ(xk) be the primal last
iterate generated by algorithm IDFOM. Under Assumptions1.1 and 1.2, by setting:

δ ≤ Ld R2
d

2αp(θ)−1

(
ε

6Ld R2
d

)4−2/p(θ)

, (1.13)

where α = max

{
1,
(

L̄ f

cg Rd

)2/p(θ)
}

, the following assertions hold:

(i) The primal iterate vk is ε-optimal after

⌊
α
(
6Ld R2

d
ε

)2/p(θ)
⌋

outer iterations.

(ii) Assuming that the primal iterate vk is obtained with Nesterov’s optimal method
[15] applied to the subproblem min

u∈U
L(u, xk), then vk is ε-optimal after

⌊√
L f

σ f

(
6Ld R2

d

ε

) 2
p(θ)
[(

4 − 2

p(θ)

)
log

(
6Ld R2

d

ε

)
+ log

(
L f R2

pα
p(θ)−1

Ld R2
d

)]⌋

total number of projections on the primal simple set U and evaluations of ∇ f .
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Proof (i) From Assumption (1.1)(b), the Lagrangian L(u, x) is σ f -strongly convex
in the variable u for any fixed x ∈ R

p
+, which gives the following inequality [13]:

L(u, x) ≥ d(x) + σ f

2
‖u(x) − u‖2 ∀u ∈ U, x ∈ R

p
+. (1.14)

Moreover, under the strong convexity assumption on f (cf. Assumption (1.1)(b)),
the primal problem (1.1) has a unique optimal solution, denoted by u∗. Using the
fact that 〈x, g(u∗)〉 ≤ 0 for any x ≥ 0, we have:

L(u∗, x) − d(x) = f (u∗) + 〈x, g(u∗)〉 − d(x) ≤ f ∗ − d(x) ∀x ∈ R
p
+. (1.15)

Combining (1.15) and (1.14), we obtain the following relation

σ f

2
‖u(x) − u∗‖2 ≤ f ∗ − d(x) ∀x ∈ R

p
+, (1.16)

which provides the distance from u(x) to the unique optimal solution u∗.
On the other hand, taking u = ũ(x) in (1.14) and using (1.6), we have:

‖g(ũ(x)) − g(u(x))‖ ≤ cg‖u(x) − ũ(x)‖ (1.14)≤
√
2Ldδ, (1.17)

wherewe used that Ld = c2g/σ f . From (1.16) and (1.17), we derive a link between the
primal infeasibility violation and dual suboptimality gap. Indeed, using the Lipschitz
continuity property of g, we get:

‖g(ũ(x)) − g(u∗)‖ ≤ ‖g(ũ(x)) − g(u(x))‖ + ‖g(u(x)) − g(u∗)‖
(1.16)& (1.17)≤

√
2Ldδ +√2Ld( f ∗ − d(x)) ∀x ∈ R

p
+.

Combining the above inequality with the property g(u∗) ≤ 0, and the fact that for
any a ∈ R

p and b ∈ R
p
+ we have ‖a + b‖ ≥ ‖[a]+‖, we obtain:

∥∥∥
[
g(ũ(x))

]
+
∥∥∥ ≤

√
2Ldδ +√2Ld( f ∗ − d(x)) ∀x ∈ R

p
+. (1.18)

Secondly, we find a link between the primal and dual suboptimality. Indeed, using
〈x∗, g(u∗)〉 = 0, we have for all x ∈ R

p
+:

f ∗ = 〈x∗, g(u∗)〉 + f (u∗) = min
u∈U

{
f (u) + 〈x∗, g(u)〉} ≤ f (ũ(x)) + 〈x∗, g(ũ(x))〉.

Further, using the Cauchy–Schwarz inequality, we derive:
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f (ũ(x)) − f ∗ ≥ −‖x∗‖‖g(u∗) − g(ũ(x))‖
≥ −Rd

(√
2Ldδ +√2Ld( f ∗ − d(x))

)
∀x ∈ R

p
+. (1.19)

On the other hand, from Assumption1.2, we obtain:

f (ũ(x)) − f ∗ ≤ L̄ f ‖ũ(x) − u∗‖ ≤ L̄ f
(‖ũ(x) − u(x)‖ + ‖u(x) − u∗‖)

(1.16)& (1.17)≤ L̄ f

(√
2δ

σ f
+
√

2

σ f
( f ∗ − d(x))

)

. (1.20)

Taking x = xk in relation (1.18) and combining with the dual convergence rate from
Theorem1.1, we obtain a convergence estimate on primal infeasibility:

∥∥
∥
[
g(vk)

]
+
∥∥
∥ ≤ 2LdRd

k p(θ)/2
+ (8Ldk p(θ)−1δ

)1/2 + (2Ldδ)
1/2.

Lettingx = xk in relations (1.19) and (1.20) and combiningwith the dual convergence
rate from Theorem1.1, we obtain convergence estimates on primal suboptimality:

−2LdR2
d

k p(θ)/2
− (8LdR2

dk p(θ)−1δ
)1/2 − (2LdR2

dδ
)1/2 ≤ f (vk) − f ∗

≤ 2L̄ f cg Rd

σ f k p(θ)/2
+ L̄ f

(
8k p(θ)−1δ

σ f

)1/2

+ L̄ f

(
2δ

σ f

)1/2

.

Enforcing vk to be primal ε-optimal solution in the two preceding primal convergence
rate estimates, we obtain the stated result.
(i i) At each outer iteration k ≥ 0, by combining the bound (1.13) with the inner
complexity (1.8), Nesterov’s optimal method [15] for computing vk requires:

⌊(
4 − 2

p(θ)

)√
L f

σ f
log

(
6LdR2

d

ε

)
+
√

L f

σ f
log

(
L f R2

p

LdR2
d

αp(θ)−1

)⌋

projections on the setU and evaluations of∇ f .Multiplyingwith the outer complexity
given in part (i), we obtain the result. �

Thus, we obtained computational complexity estimates for primal infeasibility and
suboptimality for the last primal iterate vk of orderO( 1

ε2
log 1

ε
) for the scheme IDGM

and of orderO( 1
ε
log 1

ε
) for the scheme IDFGM. Furthermore, the inner subproblem

needs to be solved with the inner accuracy δ of order O(ε2) for IDGM and of order
O(ε3) for IDFGM in order for the last primal iterate vk = ũ(xk) to be an ε-optimal
primal solution.
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1.3.2 Computational Complexity of IDFOM in Primal
Average Iterate

In this section, we analyze the computational complexity of algorithm IDFOM in
the primal average sequence ûk defined by (1.11). Similar derivations were given
in [10]. For completeness, we also briefly review these results. Since the average
sequence is different for the two particular algorithms IDGM and IDFGM, we
provide separate results. First, we analyze the particular scheme IDGM, i.e., in
IDFOM we choose θk = 0 for all k ≥ 0. Then, we have the identity yk+1 = xk and
do not assume anymore the redefinition of the last point xk = [x̂k + 1

2Ld
∇̃d(x̂k)]+,

i.e., algorithm IDGM generates one sequence {xk
k≥0} using the classical gradient

update.

Theorem 1.3 Let ε > 0 and uk = ũ(xk) be the primal sequence generated by the
algorithm IDGM (i.e., θk = 0 for all k ≥ 0). Under Assumption1.1, by setting:

δ ≤ ε

3
(1.21)

the following assertions hold:

(i) The primal average sequence ûk given in (1.11) is ε-optimal after
⌊
8Ld R2

d
ε

⌋
outer

iterations.
(ii) Assuming that the primal iterate uk = ũ(xk) is obtained by applying Nesterov’s

optimal method [15] to the subproblemmin
u∈U

L(u, xk), the primal average iterate

ûk is ε-optimal after:

⌊

8

(
L f

σ f

)1/2 Ld R2
d

ε
log

(
L f R2

p

ε

)⌋

total number of projections on the primal simple set U and evaluations of ∇ f .

Proof (i) Using the definition of xk+1, we have:

x j+1 − x j =
[

x j + 1

2Ld
∇̃ d(x j )

]

+
− x j ∀ j ≥ 0.

Summing up the inequalities for j = 0, . . . , k and dividing by k, implies:

2Ld

k + 1
(xk+1 − x0) = 2Ld

k + 1

⎛

⎝
k∑

j=0

[
x j + 1

2Ld
∇̃d(x j )

]

+
− x j

⎞

⎠

= 2Ld

k + 1

⎡

⎣
k∑

j=0

[
x j + 1

2Ld
∇̃d(x j )

]

+
−
(

x j + 1

2Ld
∇̃d(x j )

)⎤

⎦+ 1

k + 1

k∑

j=0

∇̃d(x j ).
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Using the fact that ∇̃d(x j ) = g(u j ), the convexity of g and denoting z j = [x j +
1

2Ld
∇̃d(x j )

]

+
−
(

x j + 1
2Ld

∇̃d(x j )
)

∈ R
p
+, we get:

g(ûk) + 2Ld

k + 1

k∑

j=0

z j ≤ 2Ld

k + 1
(xk+1 − x0).

satisfies a ≤ b, then [a]+ ≤ [b]+ and ‖[a]+‖ ≤ ‖[b]+‖. Using these relations
and the fact that z j ≥ 0, we obtain the following convergence rate on the feasibility
violation:

∥∥∥
[
g(ûk)

]
+
∥∥∥ ≤

∥
∥∥∥∥∥

⎡

⎣g(ûk) + 2Ld

k + 1

k∑

j=0

z j

⎤

⎦

+

∥
∥∥∥∥∥

≤ 2Ld

k + 1

∥∥∥
[
xk+1 − x0

]
+
∥∥∥

≤ 2Ld‖xk+1 − x0‖
k + 1

. (1.22)

On the other hand, from [10, Theorem3.1], it can be derived that:

‖x j+1−x‖2≤‖x j −x‖2− 1

Ld
〈∇̃d(x j ), x−x j 〉

+ 1

Ld

(
d(x j+1)−d̃(x j )+3δ

)
, (1.23)

for all x ≥ 0 and j ≥ 0. Using (1.7), i.e., d(x) ≤ d̃(x j ) + 〈∇̃d(x j ), x − x j 〉, taking
x = x∗, using d(x j+1) ≤ d(x∗) and summing over j from j = 0 to k, we obtain:

‖xk+1 − x∗‖ ≤ ‖x0 − x∗‖ +
√
3δ(k + 1)

Ld
. (1.24)

Combining the estimate for feasibility violation (1.22) and (1.24), we finally have:

∥∥∥
[
g(ûk)

]
+
∥∥∥≤ 2Ld(‖x0−x∗‖+‖xk+1−x∗‖)

k + 1
≤ 4Ld‖x0−x∗‖

k + 1
+2

√
3Ldδ

k + 1
. (1.25)

In order to obtain a sublinear estimate on the primal suboptimality, we write:

f ∗ = min
u∈U

{ f (u) + 〈x∗, g(u)〉} ≤ f (ûk) + 〈x∗, g(ûk)〉 ≤ f (ûk) + 〈x∗,
[
g(ûk)

]
+〉

≤ f (ûk) + ‖x∗‖
∥∥
∥
[
g(ûk)

]
+
∥∥
∥ ≤ f (ûk) + (Rd + ‖x0‖)

∥∥
∥
[
g(ûk)

]
+
∥∥
∥ . (1.26)

On the other hand, taking x = 0 in (1.23) and using the definition of d̃(x j ), we obtain:
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‖x j+1‖2 ≤ ‖x j‖2+ 1

Ld
〈∇̃d(x j ), x j 〉+ 1

Ld

(
d(x j+1)− f (u j ) − 〈x j , ∇̃d(x j )〉+3δ

)

≤ ‖x j‖2+ 1

Ld

(
f ∗− f (u j )+3δ

)
.

Using an inductive argument, the convexity of f and the definition of ûk , we get:

f (ûk) − f ∗ ≤ Ld‖x0‖2
k + 1

+ 3δ. (1.27)

Using the assumption x0 = 0, from (1.25), (1.26), and (1.27), we get:

−4LdR2
d

k + 1
− 2Rd

√
3Ldδ

k + 1
≤ f (ûk) − f ∗ ≤ 3δ.

From assumptions on the constants Rd , Ld, and δ (see (1.12) and (1.21)), our first
result follows.
(i i) Taking into account the relation (1.21) on δ, the inner number of projections on
the simple set U at each outer iteration is given by:

⌊(
L f

σ f

)1/2

log

(
L f R2

p

ε

)⌋

.

Multiplying with the outer complexity obtained in (i), we get the second result. �

Further, we study the computational complexity of the second particular algorithm
IDFGM, i.e., the scheme IDFOM with θk = 2

k+3 . Note that in the framework
IDFOM both sequences {xk}k≥0 and {yk}k≥0 are dual feasible, i.e., are in R

p
+. Based

on [14, Theorem2] (see also [3, 12]), when θk = 2
k+3 , we have the following inequal-

ity which will help us to establish the convergence properties of the particular algo-
rithm IDFGM:

(k + 1)(k + 2)

4
d(xk) + (k + 1)(k + 2)(k + 3)

4
δ (1.28)

≥ max
x≥0

⎛

⎝−Ld‖x − y0‖2 +
k∑

j=0

j + 1

2

[
d̃(y j ) + 〈∇̃d(y j ), x − y j 〉

]
⎞

⎠ .

We now derive complexity estimates for primal infeasibility and suboptimality of
the average primal sequence {ûk}k≥0 as defined in (1.11) for algorithm IDFGM.

Theorem 1.4 Let ε > 0 and uk = ũ(yk) be the primal sequence generated by algo-
rithm IDFGM (i.e., θk = 2

k+3 for all k ≥ 0). Under Assumption1.1, by setting:
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δ ≤ ε3/2

8L1/2
d Rd

, (1.29)

the following assertions hold:

(i) The primal average iterate ûk given in (1.11) is ε-optimal after

⌊(
32Ld R2

d
ε

)1/2⌋

outer iterations.
(ii) Assuming that the primal iterate uk = ũ(yk) is obtained by applying Nesterov’s

optimal method [15] to the subproblemmin
u∈U

L(u, yk), the average primal iterate

ûk is ε-optimal after:

⌊√
L f

σ f

(
32Ld R2

d

ε

)1/2

log

(
4L1/2

d L f R2
p Rd

ε3/2

)⌋

total number of projections on the primal simple set U and evaluations of ∇ f .

Proof (i) For primal feasibility estimate, we use (1.28) and the convexity of f and g:

max
x≥0

(
− 4Ld

(k + 1)2
‖x − y0‖2 + 〈x, g(ûk)〉

)
≤ d(xk) − f (ûk) + (k + 3)δ. (1.30)

For the right-hand side term, using the strong duality and x∗ ≥ 0, we have:

d(xk) − f (ûk) ≤ d(x∗) − f (ûk) = min
u∈U

{ f (u) + 〈x∗, g(u)〉} − f (ûk)

≤ 〈x∗, g(ûk)〉 ≤ 〈x∗, [g(ûk)]+
〉
. (1.31)

By evaluating the left-hand side term in (1.30) at x = (k+1)2

8Ld
[g(ûk)]+ and observing

that 〈[g(ûk)]+, g(ûk) − [g(ûk)]+〉 = 0, we obtain:

max
x≥0

(
− 4Ld

(k + 1)2
‖x − y0‖2 + 〈x, g(ûk)〉

)
(1.32)

≥ (k + 1)2

16Ld
‖[g(ûk)

]
+‖2− 4Ld‖y0‖2

(k + 1)2
+〈y0,

[
g(ûk)

]
+〉.

Combining (1.31) and (1.32) with (1.30), using the Cauchy–Schwarz inequality and
notation γ = ‖[g(ûk)]+‖, we obtain:

(k + 1)2

16Ld
γ2 − (k + 3)δ − ‖x∗ − y0‖γ − 4Ld‖y0‖2

(k + 1)2
≤ 0.

Thus, γ must be less than the largest root of the second-order equation, from which,
together with the definition of Rd we get:
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‖[g(ûk)
]
+‖ ≤ 16LdRd

(k + 1)2
+ 4

√
3Ldδ

k + 1
. (1.33)

For the left-hand side on primal suboptimality, using x∗ ≥ 0, we have:

f ∗ = min
u∈U

{ f (u) + 〈x∗, g(u)〉} ≤ f (ûk) + 〈x∗, g(ûk)〉
≤ f (ûk) + 〈x∗, [g(ûk)]+〉 ≤ f (ûk) + Rd‖[g(ûk)]+‖.

Using (1.33), we derive an estimate on the left-hand side primal suboptimality:

f (ûk) − f ∗ ≤ 16LdR2
d

(k + 1)2
+ 4Rd

√
3Ldδ

k + 1
. (1.34)

On the other hand, taking x = 0 in (1.30) and recalling that y0 = 0, we get:

f (ûk) − d(xk) ≤ −max
x≥0

(
− 4Ld

(k + 1)2
‖x − y0‖2 + 〈x, g(ûk)〉

)
+ (k + 3)δ

≤ (k + 3)δ. (1.35)

Moreover, taking into account that d(xk) ≤ f ∗, from (1.34) and (1.35), we obtain:

− 16LdR2
d

(k + 1)2
− 4Rd

√
3Ldδ

k + 1
≤ f (ûk) − f ∗ ≤ (k + 3)δ. (1.36)

From the convergence rates (1.33) and (1.36) we obtain our first result.
(i i) Substitution of the bound (1.29) into the inner complexity estimate (1.8) leads
to: ⌊√

L f

σ f
log

(
4LdL f Rd R2

p

ε

)⌋

projections on U and evaluations of ∇ f for each outer iteration. Multiplying with
the outer complexity estimate obtained in part (i), we get our second result. �
Thus, we obtained computational complexity estimates for primal infeasibility and
suboptimality for the average of primal iterates ûk of orderO( 1

ε
log 1

ε
) for the scheme

IDGM and of order O( 1√
ε
log 1

ε
) for the scheme IDFGM. Moreover, the inner sub-

problem needs to be solved with the inner accuracy δ of order O(ε) for IDGM
and of order O(ε

√
ε) for IDFGM so that to have the primal average sequence ûk

as an ε-optimal primal solution. Further, the iteration complexity estimates in the
last primal iterate vk are inferior to those estimates corresponding to an average of
primal iterates ûk . However, in practical applications we have observed that algo-
rithm IDFOM converges faster in the last primal iterate than in the primal average
sequence. Note that this does not mean that our analysis is weak, since we can also
construct problems which show the behavior predicted by the theory.
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1.4 DuQuad Toolbox

In this section, we present the open-source solver DuQuad (see also [6]) based on
C-language implementations of the framework IDFOM for solving quadratic pro-
grams (QP) that appear in many applications. For example, linear MPC problems
are usually formulated as QPs that need to be solved at each time instant for a given
state. Thus, in this toolbox we considered convex quadratic programs of the form:

min
u∈U

f (u)
(

:= 1

2
uT Qu + qT u

)
s.t. : Gu + g ≤ 0, (1.37)

where Q � 0, G ∈ R
p×n and U ⊆ R

n is a simple compact convex set, i.e., a box
U = [lb ub]. Note that our formulation allows to incorporate in the QP either lin-
ear inequality constraints (arising e.g., in sparse formulation of predictive control
and network utility maximization) or linear equality constraints (arising e.g., in con-
densed formulation of predictive control and DC optimal power flow). In fact the
user can define linear constraints of the form: ¯lb ≤ Ḡu + ḡ ≤ ūb and depending
on the values for ¯lb and ūb we have linear inequalities or equalities. Note that the
objective function of (1.37) has Lipschitz gradient with constant L f = λmax(Q) and
its dual has also Lipschitz gradient with constant Ld = ‖G‖2

λmin(Q)
. Based on the scheme

IDFOM, the main iteration in DuQuad consists of two steps:
Step 1: for a given inner accuracy δ > 0 and a multiplier x ∈ R

p
+, we solve approx-

imately the inner problem with accuracy δ to obtain an approximate solution ũ(x)
instead of the exact solution u(x), i.e.:L(ũ(x), x) − d(x) ≤ δ. In DuQuad, we obtain
an approximate solution ũ(x) using Nesterov’s optimal method [15] and warm-start.
Step 2: Once a δ-solution ũ(x) for inner subproblem was found, we update at the
outer stage the Lagrange multipliers using the scheme IDFOM, i.e., for updating the
Lagrange multipliers we use instead of the true value of the dual gradient ∇d(x) =
Gu(x) + g, an approximate value ∇̃d(x) = Gũ(x) + g.

Anoverviewof theworkflow inDuQuad [6] is illustrated inFig. 1.1.AQPproblem
is constructed using a Matlab script called test.m. Then, the function duquad.m is
called with the problem data as input and it is regarded as a preprocessing stage for
the online optimization. The binaryMEXfile is called, with the original problem data
and the extra information as an input. Themain.c file of the C-code includes theMEX
framework and is able to convert the MATLAB data into C format. Furthermore, the
converted data gets bundled into a C “struct” and passed as an input to the algorithm
that solves the problem using the two steps as described above.

In DuQuad, a user can choose either algorithm IDFGM or algorithm IDGM for
solving the dual problem. Moreover, the user can also choose the inner accuracy δ
for solving the inner problem. In the toolbox, the default values for δ are taken as in
Theorems1.2, 1.3 and 1.4. From these theorems, we conclude that the inner QP has
to be solved with higher accuracy in dual fast gradient algorithm IDFGM than in
dual gradient algorithm IDGM. This shows that dual gradient algorithm IDGM is
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C - code

main.mexa64

test.m duquad.m

Construct a QP problem

Do offline computations, e.g.:
Eigenvalues of Hessian
Lipschitz constant
Set default values

Call the MEX-function:
result = main (problem, new
computations)

Return result

Call the function:
duquad (problem)

main.c
Use MEX framework to convert
MATLAB problem into C variables and
vectors
Call the function:

result = DGM (problem)

Use MEX framework to convert result

Solve the problem utilizing the function

Return the result

DGM

back to MATLAB.

Return result

dgm.c

Matlab

Fig. 1.1 DuQuad workflow

robust to inexact information, while dual fast gradient algorithm IDFGM is sensitive
to inexact computations, as we can also see from plots in Fig. 1.2.
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Fig. 1.2 Sensitivity of IDGM (left) and IDFGM (right) in the average of iterates in terms of
primal suboptimality w.r.t. different values of the inner accuracy δ for a QP (n = 50 and p = 75)
with desired accuracy ε = 0.01
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Let us analyze now the computational cost per inner and outer iteration for algo-
rithm IDFOM for solving approximately the original QP problem (1.37):
Inner Iteration: When solving the inner problem with Nesterov’s optimal method
[15], the main computational effort is done in computing the gradient of the
Lagrangian∇L(u, x) = Qu + q + GT x. In DuQuad, thesematrix-vector operations
are implemented efficiently in C (the matrices that do not change along iterations are
computed once and only GT x is computed at each outer iteration). The cost for com-
puting ∇L(u, x) for general QPs isO(n2). However, when the matrices Q and G are
sparse (e.g., network utility maximization problem) the cost O(n2) can be reduced
substantially. The other operations in algorithm IDFOM are just vector operations
and, hence, they are of order O(n). Thus, the dominant operation at the inner stage
is the matrix-vector product.
Outer Iteration: The main computational effort in the outer iteration of IDFOM is
done in computing the inexact gradient of the dual function: ∇̃d(x) = Gũ(x) + g.
The cost for computing ∇̃d(x) for general QPs isO(np). However, when the matrix
G is sparse, this cost can be reduced. The other operations in algorithm IDFOM
are of order O(p). Hence, the dominant operation at the outer stage is also the
matrix-vector product.

Figure1.3 displays the result of profiling the code with gprof. In this simulation, a
standard QP with inequality constraints, and with dimensions n = 150 and p = 225
was solved by algorithm IDFGM. The profiling summary is listed in the order
of the time spent in each file. This figure shows that most of the execution time
of the program is spent on the library module math-functions.c. More exactly, the
dominating function is mtx-vec-mul, which multiplies a matrix with a vector.

In conclusion, in DuQuad the main operations are the matrix-vector products.
Therefore, DuQuad is adequate for solving QP problems on hardware with limited
resources and capabilities, since it does not require any solver for linear systems or

Fig. 1.3 Profiling the code
with gprof
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other complicating operations, while most of the existing solvers for QPs from the
literature (such as those implementing active set or interior point methods) require
the capability of solving linear systems. On the other hand, DuQuad can be also
used for solving large-scale sparse QP problems since, in this case, the iterations are
computationally inexpensive (only sparse matrix-vector products).

1.5 Numerical Simulations with DuQuad

For numerical experiments, using the solver DuQuad [6], we at first consider random
QP problems and then a real-time MPC controller for a self balancing robot.

1.5.1 Random QPs

In this section we analyze the behavior of the dual first-order methods presented in
this chapter and implemented in DuQuad for solving random QPs.

In Fig. 1.4 we plot the practical number of outer iterations on random QPs of
algorithms IDGM and IDFGM for different test cases of the same dimension n = 50
(left) and for different test cases of variable dimension ranging from n = 10 to
n = 500 (right). We have chosen the accuracy ε = 0.01 and the stopping criteria is
the requirement that both quantities

| f (u) − f ∗| and ‖[Gu + g]+‖
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Fig. 1.4 Number of outer iterations on random QPs for IDGM and IDFGM in primal last/average
of iterates for different test cases of the same dimension (left) and of variable dimension (right)
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are less than the accuracy ε, where f ∗ has been computed a priori with Matlab quad-
prog. From this figure we observe that the number of iterations is not varying much
for different test cases and, also, that the number of iterations is mildly dependent on
the problem’s dimension. Finally, we observe that dual first-order methods perform
usually better in the primal last iterate than in the average of primal iterates.

1.5.2 Real-Time MPC for Balancing Robot

In this section we use the dual first-order methods presented in this chapter and
implemented in DuQuad for solving a real-time MPC control problem.

We consider a simplified model for the self-balancing Lego mindstorm NXT
extracted from [21]. The model is linear time invariant and stabilizable. The contin-
uous linear model has the states x ∈ R

4 and inputs u ∈ R. The states for this system
are the horizontal position and speed (h, ḣ), and the angle to the vertical and the
angular velocity of the robot’s body (θ, θ̇). The input for the system represents the
pulse-width modulated voltage applied to both wheel motors in percentages. We
discretize the dynamical system via the zero-order hold method for a sample time of
T = 8ms to obtain the system matrices:

A =

⎡

⎢⎢
⎣

1 0.0054 −2 · 10−4 10−4

0 0.4717 −0.0465 0.0211
0 0.03 1.0049 0.0068
0 6.0742 1.0721 0.7633

⎤

⎥⎥
⎦ , B =

⎡

⎢⎢
⎣

0.0002
0.0448

−0.0025
−0.5147

⎤

⎥⎥
⎦ .
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Fig. 1.5 The MPC trajectories of the state angle (left) and input (right) for N = 10 obtained using
algorithm IDGM from DuQuad in the last iterate with accuracy ε = 10−2
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For this linear dynamical system, we consider the duty-cycle percentage constraints
for the inputs, i.e., −12 ≤ u(t) ≤ 12, and additional constraints for the position,
i.e., −0.5 ≤ h ≤ 0.5, and for the body angle in degrees, i.e., −15 ≤ θ ≤ 15. For the
quadratic stage cost, we consider matrices: Q = diag([1 1 6 · 102 1]) and R = 2.

We consider two condensedMPC formulations:MPC smooth andMPC penalized,
where we impose additionally a penalty term β(u(t) − u(t − 1))2, with β = 0.1, in
order to get a smoother controller. Note that in both formulations, we obtainQPs [18].
Initial state is x = [0 0 0.5 − 0.35]T and we add disturbances (of amplitude 10−2)
to the system at each 20 simulation steps. In Fig. 1.5, we plot the MPC trajectories of
the state angle and input for a prediction horizon N = 10 obtained using algorithm
IDGM in the last iterate with accuracy ε = 10−2. Similar state and input trajectories
are obtained using the other versions of the scheme IDFOM from DuQuad. We
observe a smoother behavior for MPC with the penalty term.
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Chapter 2
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Abstract In this chapter, we present in an unified manner the latest developments
on inverse optimality problem for continuous piecewise affine (PWA) functions. A
particular attention is given to convex liftings as a cornerstone for the constructive
solution we advocate in this framework. Subsequently, an algorithm based on convex
lifting is presented for recovering a continuous PWA function defined over a poly-
hedral partition of a polyhedron. We also prove that any continuous PWA function
can be equivalently obtained by a parametric linear programming problem with at
most one auxiliary one-dimensional variable.
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2.1 Introduction

Piecewise affine (PWA) functions have been studied in Mathematics since many
years. They are useful to fit nonlinear functions which are difficultly obtained via
an analytic expression. In control theory, PWA functions appeared early in [40] as a
new approach for nonlinear control design. Subsequently, this class of functions has
been particularly of use to approximate nonlinear systems [1]. This approximation
is of help to simplify control design and stability analysis for nonlinear systems.
Afterward, many studies exploit PWA functions as a good candidate to approximate
optimal solution of constrained optimization-based control, e.g., [7, 13, 19, 20,
35]. Subsequently, this class of functions is proved to represent an optimal solution
to a minimization problem subject to linear constraints and a linear/quadratic cost
function, leading to a class of hybrid systems called piecewise affine systems. This
class of control laws has received significant attention in control community [8, 33,
39, 43].

However, PWA control law is shown to have two major limitations in terms of
implementation, once the state-space partition includes many regions:

• the memory requirement for storing the regions and the associated control law
gains, is demanding,

• the point-location problem, determining which region the current state belongs to,
becomes more expensive.

Therefore, it is necessary to find other methods of implementing these control laws
to overcome the above limitations. Some studies on the complexity reduction of
PWA control laws are found in [21, 22, 25, 26]. In general, these studies search
for complexity reduction via the simplification of state-space partition by preserving
the stability property but by trading for performance degradation. An alternative
direction for complexity reduction is generated by inverse optimality problem. This
idea is fundamentally different by the fact that the given PWA function will be
embedded into the frame of an optimization problem.

Inverse optimality problems aim at finding suitable optimization problems such
that their optimal solutions are equivalent to those to the associated given functions.
In particular, inverse parametric linear/quadratic programming problem focuses on
recovering a continuous PWA function defined over a polyhedral partition. Some
recent results are found in [6, 17, 27–29, 32]. Two different approaches are distin-
guished therein. The first one [17] relies on the decomposition of each component
of the given continuous PWA function into the difference of two convex functions.
This approach requires 2nu auxiliary variables where nu represents the dimension
of the co-domain space of the given PWA function. The latter one relies on convex
liftings which needs only one auxiliary variable. However, this method is restricted
to continuous PWA functions defined over polytopic partitions (bounded polyhedral
partition). In the same line of the works in [27, 28, 32], the result in this manuscript
is also based on convex liftings. However, this chapter extends to continuous PWA
functions defined over a polyhedral partition of a polyhedron (possibly unbounded).
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2.2 Notation and Definitions

Apart from the common notation of the book, in this chapter we use N>0 to denote
the set of positive integers. Also, for ease of presentation, we use IN to denote the
following index set with respect to a given N ∈ N>0: IN = {i ∈ N>0 | i ≤ N } .

For a given d ∈ N>0,we use 1d to denote a vector inRd whose elements are equal
to 1.

Given two sets P1, P2 ⊂ R
d , theirMinkowski sum, denoted as P1 ⊕ P2, is defined

as follows:

P1 ⊕ P2 := {
y ∈ R

d | ∃x1 ∈ P1, x2 ∈ P2, s.t. y = x1 + x2
}
.

Given a set S, we write by int(S), conv(S) to denote the interior, the convex hull
of the set S, respectively. Also, by dim(S), we denote the dimension of the affine
hull of S. With a space S, being a subspace of Rd , we use Proj

S
S to denote the

orthogonal projection of S ⊆ R
d onto the space S.

A polyhedron is the intersection of finitely many halfspaces. A polytope is a
bounded polyhedron. An unbounded polyhedron is known to obtain rays. An extreme
ray is a ray which cannot be written by a convex combination of any two other rays.
Given a full-dimensional polyhedron S ⊂ R

d , we write V(S),R(S) to denote the
sets of vertices and extreme rays, of polyhedron S, respectively. If S is a full-
dimensional polyhedron, then its number of vertices and extreme rays are known to
be finite. If S is a finite set of rays, i.e., S = {y1, . . . , yn} then cone(S) represents
the cone defined as follows:

cone(S) = {t1y1 + · · · + tn yn : ti ≥ 0, ∀ 1 ≤ i ≤ n} (2.1)

Given two sets S1,S2, we write S1\S2 to denote the points which belong to S1

but do not belong to S2. More precisely, its mathematical description is presented as
follows:

S1\S2 := {x | x ∈ S1, x /∈ S2} .

For two vectors x, u ∈ R
d , 〈x, u〉 = xT u. Given a vector u ∈ R

d and a scalar
α ∈ R, a hyperplane, denoted byH, is defined as follows:

H = {
x ∈ R

d | 〈x, u〉 = α
}
.

Such a hyperplane H is called a supporting hyperplane of a polyhedron/polytope
S if either inf {〈x, u〉 | x ∈ S} = α or sup {〈x, u〉 | x ∈ S} = α. A face of polyhe-
dron/polytopeS is the intersection of this set and one of its supporting hyperplanes. If
S ⊂ R

d denotes a full-dimensional polyhedron/polytope, then a face of dimension
k, 0 ≤ k ≤ d, is briefly denoted by k−face. A (d − 1)−face is called a facet, an
1-face is called an edge, a 0−face is called a vertex. If S denotes a polyhe-
dron/polytope, then by F(S), we denote the set of its facets.
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For ease of presentation, given an ε ∈ R+, we use Bd(ε) to denote a full-
dimensional box in Rd , i.e., Bd(ε) = {

x ∈ R
d | ‖x‖∞ ≤ ε

}
.

Some necessary definitions of help for our development are presented below.

Definition 2.1 A collection of N ∈ N>0 full-dimensional polyhedra Xi ⊂ R
d ,

denoted by {Xi }i∈IN
, is called a polyhedral partition of a polyhedron X ⊆ R

d if

1.
⋃

i∈IN
Xi = X .

2. int(Xi )
⋂

int(X j ) = ∅ with i �= j, (i, j) ∈ I2
N ,

Also, (Xi ,X j ) are called neighbors if (i, j) ∈ I2
N , i �= j and dim(Xi ∩ X j ) = d − 1.

IfXi for every i ∈ IN are polytopes, then the partition {Xi }i∈IN
is alternatively called

polytopic partition. A polyhedral partition is called cell complex, if its facet-to-facet
property [41] is fulfilled,1 namely, any two neighboring regions share a common
facet.

Definition 2.2 For a given polyhedral partition {Xi }i∈IN
of a polyhedron X ⊆ R

d ,

a piecewise affine lifting is described by function z : X → R with

z(x) = aT
i x + bi for any x ∈ Xi , (2.2)

and ai ∈ R
d , bi ∈ R, ∀i ∈ IN .

Definition 2.3 Given a polyhedral partition {Xi }i∈IN
of a polyhedron X , a piece-

wise affine lifting z(x) = aT
i x + bi ∀x ∈ Xi , is called convex lifting if the following

conditions hold true:

• z(x) is continuous over X ,
• for each i ∈ IN , z(x) > aT

j x + b j for all x ∈ Xi\X j and all j �= i, j ∈ IN .

The strict inequality inDefinition2.3 implies the convexity of z(x) and the fact that for
any two neighboring regions (Xi ,X j ), (ai , bi ) �= (a j , b j ). Namely, any two neigh-
boring regions should be lifted onto two distinct hyperplanes. The strict inequality is
of help to guarantee the partition between different regions. Note that there always
exits a piecewise affine lifting for any polyhedral partition. A trivial example is the
one defined as in Definition2.2 with ai = 0, bi = 0. However, it is not the case that
any polyhedral partition admits a convex lifting. It is observed that a polyhedral par-
tition with respect to the existence of a convex lifting should be a cell complex. This
observation is proved via the following lemma.

Lemma 2.1 If a given polyhedral partition {Xi }i∈IN
of a polyhedronX ⊆ R

d admits
a convex lifting, then it is a cell complex.

1Note that a slightly more involved definition of a cell complex exists in the literature [14, 28].
However, for simplicity, we mention only the property of interest in the present context.
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Proof By z(x) = aT
i x + bi , for x ∈ Xi , we denote a convex lifting of the given

partition {Xi }i∈IN
. Consider a pair of neighboring regions (Xi ,X j ), (i, j) ∈ I2

N . As
defined, due to the continuity of z(x) at any point x ∈ Xi ∩ X j , the hyperplane,

H := {
x ∈ R

d | aT
i x + bi = aT

j x + b j
}
,

separates Xi ,X j and contains Xi ∩ X j . Also, by the second property of a convex
lifting, the halfspace,

Ci := {
x ∈ R

d | aT
i x + bi > aT

j x + b j
}
,

contains Xi\(Xi ∩ X j ).

Suppose the facet-to-facet property of Xi ,X j is not fulfilled. Then, there exists
a point x ∈ H, s.t. either x ∈ Xi , x /∈ X j , or x ∈ X j , x /∈ Xi . Without loss of
generality, the former one happens. x ∈ H leads to aT

i x + bi = aT
j x + b j . Also,

x ∈ Xi , x /∈ X j leads to aT
i x + bi > aT

j x + b j . These last two inclusions are clearly
contradictory. The proof is complete. �

Definition 2.4 A cell complex {Xi }i∈IN
of a polyhedron X ⊆ R

d admits an affinely
equivalent polyhedron if there exists a polyhedron X̃ ⊂ R

d+1, such that for each
i ∈ IN :

1. ∃Fi ∈ F(X̃ ) satisfying: Proj
Rd Fi = Xi ,

2. if z(x) = min
z

z s.t.
[
xT z

]T ∈ X̃ , then
[
xT z(x)

]T ∈ Fi for x ∈ Xi .

An illustration can be found in Fig. 2.1 thereby the multicolored segments along the
horizontal axis represent the given polytopic partition including six regions. The pink
polytope above is one of its affinely equivalent polyhedra.

Fig. 2.1 An illustration for
affinely equivalent
polyhedron
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Remark 2.1 Note that the lower boundary of an affinely equivalent polyhedron repre-
sents a convex lifting for a given cell complex as shown in Fig. 2.1. Therefore, starting
from an affinely equivalent polyhedron X̃ of the given cell complex {Xi }i∈IN

, one
of its convex liftings is the optimal cost function of the following parametric linear
programming problem:

min
z

z subject to
[
xT z

]T ∈ X̃ ,

where z denotes the last coordinate of X̃ and x ∈ X . Note also that if a given cell
complex is convexly liftable, the existence of convex lifting is not unique, meaning
that different convex liftings can be defined over a given cell complex. However, for
the practical interest in control theory, the existence is the most important property.

An algorithm for construction of convex liftings will be presented in Sect. 2.4.

2.3 Problem Statement

This section formally presents the definition of inverse optimality problem. As ear-
lier mentioned, the main goal is to recover a continuous PWA function through an
optimization problem (see also [6]). The solution relies on convex liftings.

Given a polyhedral partition {Xi }i∈IN
of a polyhedron X ⊆ R

nx and a continu-
ous PWA function f pwa(·) : X → R

nu , the objective is to find a set of four matri-
ces Hx , Hu, Hz, K , defining linear constraints and a linear/quadratic cost function
J (x, z, u) such that f pwa(x) can be equivalently obtained via the optimal solution to
the following convex optimization problem:

f pwa(x) = Proj
Rnu arg min

[zT uT ]T
J (x, z, u) s.t. Hx x + Hzz + Huu ≤ K . (2.3)

It is well known that optimal solution to a parametric linear/quadratic programming
problem is a PWA function defined over a polyhedral partition (see [8]). Therefore,
we restrict our interest, in this manuscript, to linear constraints. Note also that a given
PWA function is usually not convex/concave, the presence of an auxiliary variable
z is thus of help to reinforce the convexity of the recovered optimization problem. It
will be proved that scalar z ∈ R is sufficient for the recovery.
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2.4 Algorithm for the Construction of a Convex Lifting

2.4.1 Existing Results on Convex Liftings

As shown in Lemma2.1, a polyhedral partition, admitting a convex lifting, should
be a cell complex. However, not every cell complex is convexly liftable. An illus-
tration can be found in Fig. 2.2. This partition is a cell complex but not convexly
liftable. Thus, being a cell complex is a necessary condition for the existence of
convex liftings, but not a sufficient condition. Back to the history, we can find the
trace of a large number of studies on this topic. Some prominent results for convex
liftability of polyhedral partitions in R

2 are found in [9, 10, 24, 38]. Also, some
particular diagrams, e.g., Voronoi diagrams, Delaunay diagrams, and Power dia-
grams in the general dimensional space, are studied in [3, 5, 11, 12, 16]. Necessary
and sufficient conditions for a cell complex to be convexly liftable are referred to
[2, 4, 23, 28, 30, 36].

Note that these results are equivalent as proved in [36]; therefore, if a cell complex
is convexly liftable, then it satisfies all these conditions. Also, due to Lemma2.1, a
polyhedral partition, whose facet-to-facet property does not hold, will not fulfill these
conditions.

From the practical interest, these above conditions are only of help for recognizing
a convexly liftable cell complex. They do not provide any hint for the construction
of such convex liftings. As convex liftings are a tool in our constructive solution of
inverse optimality, an algorithm dedicated to convex liftings will be presented in the
next subsection.

Fig. 2.2 A nonconvexly
liftable cell complex
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2.4.2 An Algorithm for Construction of Convex Liftings

This subsection concentrates on a construction of convex liftings for a given cell
complex. The following algorithm is based on the reinforcement of continuity and
convexity constraints at the vertices of the given cell complex. Clearly, the vertex
representation of this cell complex is of use. Therefore, this algorithm (Algorithm
2.1) restricts the construction to a bounded cell complex {Xi }i∈IN

, e.g., a cell complex
of a polytope X . A simple convexly liftable cell complex is presented in Fig. 2.3.
One of its convex liftings is shown in Fig. 2.4.

Algorithm 2.1 Convex lifting algorithm
Input: A given cell complex {Xi }i∈IN

of a polytope X ⊂ R
nx , a scalar c > 0.

Output: Gains ai , bi of a convex lifting z(x) = aT
i x + bi for x ∈ Xi .

1: Register all pairs of neighboring regions in {Xi }i∈IN
.

2: For each pair (i, j) ∈ I2
N such that (Xi ,X j ) are neighbors:

• Add continuity conditions:

aT
i v + bi = aT

j v + b j , ∀v ∈ V(Xi ∩ X j ). (2.4)

• Add convexity conditions:

aT
i u + bi ≥ aT

j u + b j + c, ∀u ∈ V(Xi ), u /∈ V(Xi ∩ X j ). (2.5)

3: Solve the following convex optimization problem

min
ai ,bi

∑

i∈IN

aT
i ai + bT

i bi subject to (2.4), (2.5). (2.6)

4: Construct an affinely equivalent polyhedron

X̃ = conv

⎧
⎨

⎩

[
v

z(v)

]
∈ R

nx +1 | v ∈
⋃

i∈IN

V(Xi ), z(v) = aT
i v + bi if v ∈ Xi

⎫
⎬

⎭
.

Note that the insertion of c > 0 in (2.5) ensures the strict inequalities called
convexity conditions, as defined in Definition2.3. As for the complexity of Algorithm
2.1, if N denotes the number of regions in {Xi }i∈IN

, then step 1 considers at most
1
2 N (N − 1) cases. For each pair of neighboring regions, the number of imposed
constraints (including equality and inequality constraints) is equal to the number of
vertices of Xi . If vmax denotes the maximal number of vertices among the regions
in {Xi }i∈IN

, then an upper bound for the number of constraints for (2.6) is 1
2 N (N −

1)vmax, thus scales quadratically with the number of regions. Recall that (2.6) is a
quadratic programming problem and is considered to be computationally tractable
with respect to the working-memory capacity of calculator.
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Fig. 2.3 A convexly liftable
cell complex

Fig. 2.4 A convex lifting of
the cell complex in Fig. 2.3

Note also that the requirement thatX is a polytope can be relaxed to compact, (not
necessarily convex) polyhedral sets. As defined, a polyhedral partition is a collection
of several polyhedra/polytopes. If we restrict our attention to a collection of poly-
topes, then their union represents a bounded set. This compact set has the boundary
described by linear constraints, but it is not necessarily a polytope. Algorithm 2.1 can
also construct convex liftings for such convexly liftable cell complexes if feasible.
For illustration, a cell complex of a nonconvex polyhedral set is shown in Fig. 2.5.
This cell complex is clearly convexly liftable.

Notice also that the feasibility of the optimization problem (2.6) is instrumental
to determine whether the given partition is convexly liftable. More clearly, the given
cell complex is convexly liftable if and only if problem (2.6) is feasible. Due to
Lemma2.1, for any polyhedral partition, whose facet-to-facet property does not hold,
the associated optimization problem (2.6) is infeasible.
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Fig. 2.5 A convexly liftable
cell complex of a nonconvex
polyhedral set

For a convexly liftable cell complex of a polyhedron, it can be observed that
Algorithm 2.1 cannot be directly applicable. Let us take a simple example to illustrate
this limitation of Algorithm 2.1. Consider a partition of four quadrants, which covers
the whole R2. It is observed that each quadrant has only one vertex, known to be the
origin 0. Therefore, if (Q1, Q2) are two neighboring quadrants, only one continuity
constraint at the origin will be imposed along Algorithm 2.1. It follows that z(x) = 0
may be resulted from the optimization problem (2.6). However, this real-valued
function is not a convex lifting.

Wewill present an intermediate result related to the construction of convex liftings
for cell complexes of polyhedra.

The following assumption is of help for our development.

Assumption 2.1 For all x ∈ ⋃i∈IN
V(Xi ), x ∈ int(Bnx (ε)) ⊂ R

nx , with some suit-
able ε > 0.

In view of Assumption2.1, the following theorem is of help to construct convex
liftings for cell complexes of a polyhedron.

Theorem 2.1 Given a convexly liftable cell complex {Xi }i∈IN
of a polyhedron X ⊆

R
nx and a box Bnx (ε) satisfying Assumption2.1, f : X ∩ Bnx (ε) → R

f (x) = aT
i x + bi for x ∈ Xi ∩ Bnx (ε),

is a convex lifting of the cell complex
{Xi ∩ Bnx (ε)

}
i∈IN

, if and only if the function
g : X → R defined as follows:

g(x) = aT
i x + bi for x ∈ Xi ,

is also a convex lifting of {Xi }i∈IN
.



2 Fully Inverse Parametric Linear/Quadratic Programming Problems … 37

Proof −→ First, due to Assumption2.1, the intersection X ∩ Bnx (ε) does not have
any effect on the internal subdivision ofX , since any vertex of the partition {Xi }i∈IN

lies in the interior of Bnx (ε).
Consider now twoneighboring regions in the partition

{Xi ∩ Bnx (ε)
}

i∈IN
, denoted

as Xi ∩ Bnx (ε),X j ∩ Bnx (ε). As assumed, f (x) is a convex lifting of
{Xi ∩ Bnx

(ε)}i∈IN
, then it can be deduced from its definition that:

aT
i x + bi = aT

j x + b j ∀x ∈ (Xi ∩ Bnx (ε)) ∩ (X j ∩ Bnx (ε))

aT
i x + bi > aT

j x + b j ∀x ∈ (Xi ∩ Bnx (ε))\(X j ∩ Bnx (ε)).

Note also that constraint aT
i x + bi = aT

j x + b j describes the hyperplane, separating
Xi ∩ Bnx (ε) and X j ∩ Bnx (ε), then it separates also Xi and X j . This end leads to

aT
i x + bi = aT

j x + b j ∀x ∈ Xi ∩ X j ,

aT
i x + bi > aT

j x + b j ∀x ∈ Xi\X j .

Applying this inclusion to every pair of neighboring regions, the following inclusion
can be obtained:

aT
i x + bi > aT

j x + b j , ∀x ∈ Xi\X j ,∀ j �= i, j ∈ IN ,

meaning g(x) is a convex lifting of {Xi }i∈IN
.

←− The sufficient condition can be similarly proved. �

This theorem shows that we can construct a convex lifting for a cell complex of a
polyhedron from a convex lifting of an appropriate partition of a bounded set. This
partition is resulted from the intersection of the given cell complex and some suitable
boxes. The remaining problem is to find out one among these boxes. This task can
be easily carried out from Assumption2.1. A simple algorithm is put forward below.

Algorithm 2.2 Determining a Bnx (ε)

Input: A given cell complex {Xi }i∈IN
of a polyhedron X ⊆ R

nx and a scalar c > 0.
Output: A box Bnx (ε) ⊂ R

nx satisfying Assumption2.1.
1: Compute Vx = ⋃

i∈IN
V(Xi ).

2: Solve:
min

ε
ε s.t. − (ε − c)1nx ≤ x ≤ (ε − c)1nx , ∀x ∈ Vx .

Note that a strictly positive scalar c needs to be inserted in Algorithm 2.2 to ensure
that all x ∈ ⋃i∈IN

V(Xi ) lie in the interior of Bnx (ε) via constraint reinforcements.
More precisely, constraints −(ε − c)1nx ≤ x ≤ (ε − c)1nx imply that ε − c > 0,
leading to ‖x‖∞ ≤ ε − c < ε, thus x ∈ int(Bnx (ε)) for all x ∈ ⋃i∈IN

V(Xi ).
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2.4.3 Nonconvexly Liftable Partitions

Taking into account the dichotomy between convexly liftable and nonconvexly
liftable partitions, a natural question is how to deal with PWA functions defined
over nonconvexly liftable partitions. As mentioned before, not every cell complex
is convexly liftable, therefore, solving inverse parametric linear/quadratic program-
ming problems via convex liftings needs an adaptation to deal with such particular
partitions. Note that this issue has already been investigated in [28, 32]. We recall
the main result here for completeness.

Theorem 2.2 Given a nonconvexly liftable polytopic partition {Xi }i∈IN
, there exists

at least one subdivision, preserving the internal boundaries of this partition, such
that the new cell complex is convexly liftable.

We refer to [28, 32] for the details of proof. It is worth emphasizing that this result
states only for polytopic partitions of bounded sets. However, its extension to poly-
hedral partitions of an unbounded set can be performed along the same arguments.
This observation can formally be stated as follows.

Lemma 2.2 For any polyhedral partition of a polyhedron, there always exists one
subdivision such that the internal boundaries of this partition are preserved and the
new partition is convexly liftable.

Proof See the proof of Theorem IV.2 presented in [28].

Note that in practice a complete hyperplane arrangement is not necessary. One can
find a particular case of refinement in [15].

2.5 Solution to Inverse Parametric Linear/Quadratic
Programming Problems

Based on the above results, this section aims to put forward the solution to inverse
optimality problem via convex liftings. This solution is viable with respect to the
following standing assumption.

Assumption 2.2 The given cell complex {Xi }i∈IN
of a polyhedron X is convexly

liftable.

Note that this assumption is not restrictive due to Lemma2.2. Following this lemma,
if a given polyhedral partition does not satisfy Assumption2.2, it can be refined into
a convexly liftable partition such that its internal boundaries are maintained.

We use z(x) to denote a convex lifting of {Xi }i∈IN
, z(x) = aT

i x + bi for x ∈ Xi .

Wewant to recover a continuous PWA function, denoted by f pwa(x), i.e., f pwa(x) =
Hi x + gi for x ∈ Xi . Note that these results can be extended for discontinuous PWA
functions; we refer to [31] for more details.
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For ease of presentation, the following sets are also defined:

Vx =
⋃

i∈IN

V(Xi ), Rx =
⋃

i∈IN

R(Xi ),

V[xT z uT ]T =
{[

xT z(x) f T
pwa(x)

]T | x ∈ Vx

}
,

R[xT z uT ]T =
{
[
r T ẑ(r) f̂ T (r)

]T | r ∈ Rx ,
ẑ(r) = aT

i r

f̂ (r) = Hir
if r ∈ R(Xi )

}

, (2.7)

Πv = conv(V[xT z uT ]T ),Πr = cone(R[xT z uT ]T ),

Π = Πv ⊕ Πr .

The main result of this manuscript is presented via the following theorem which
generalizes the results in [32] to general polyhedra.

Theorem 2.3 Given a continuous PWA function f pwa(x), defined over a cell com-
plex {Xi }i∈IN

satisfying Assumption2.2, then f pwa(x) is the image via the orthogonal
projection of the optimal solution to the following parametric linear programming
problem:

min
[z uT ]T

z subject to
[
xT z uT

]T ∈ Π. (2.8)

Proof Consider x ∈ Xi , due to the Minkowski–Weyl theorem for polyhedra (Corol-
lary 7.1b in [37]), x can be described as follows:

x =
∑

v∈V(Xi )

α(v)v +
∑

r∈R(Xi )

β(r)r,

whereα(v),β(r) ∈ R+ and
∑

v∈V(Xi )
α(v) = 1.As a consequence, the convex lifting

at x , i.e., z(x) can be described by

z(x) = aT
i x + bi = aT

i

⎛

⎝
∑

v∈V(Xi )

α(v)v +
∑

r∈R(Xi )

β(r)r

⎞

⎠+ bi ,

=
∑

v∈V(Xi )

α(v)
(
aT

i v + bi
)+

∑

r∈R(Xi )

β(r)
(
aT

i r
)
.

Similarly,
f pwa(x) =

∑

v∈V(Xi )

α(v)(Hiv + gi ) +
∑

r∈R(Xi )

β(r)(Hir).
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It can be observed that if r is a ray of Xi , then
[
r T aT

i r
]T

is a ray of the affinely
equivalent polyhedron Π[xT z]T of {Xi }i∈IN

, defined as follows:

Π[xT z]T = conv(V[xT z]T ) ⊕ cone(R[xT z]T ),

where

V[xT z]T =
{[

xT z(x)
]T | x ∈ Vx

}
,

R[xT z]T =
{[

r T ẑ(r)
]T | r ∈ Rx , ẑ(r) = aT

i r if r ∈ R(Xi )
}

.

Therefore, for a region Xi , there exists a facet of Π[xT z]T , denoted by F (i)

[xT z]T , such

that

Proj
Rnx F (i)

[xT z]T = Xi ,

∀ [xT z(x)
]T ∈ F (i)

[xT z]T , z(x) = min
z

z s.t.
[
xT z

]T ∈ Π[xT z]T .
(2.9)

According to Proposition 5.1 in [27], every augmented point in V[xT z uT ]T is vertices

ofΠv . Thus, lifting ontoRnx +nu+1 leads to the existence of an nx−face ofΠ , denoted
by F (i)

[xT z uT ]T such that

Proj
Rnx +1 F (i)

[xT z uT ]T = F (i)

[xT z]T . (2.10)

Due to (2.9) and (2.10), the minimal value of z at a point x ∈ Xi happens when[
xT z uT

]T
lies in F (i)

[xT z uT ]T . Therefore, optimal solution to (2.8) at x can be

described by

⎡

⎣
x

z∗(x)

u∗(x)

⎤

⎦ =
∑

v∈V(Xi )

α(v)

⎡

⎣
v

aT
i v + bi

Hiv + gi

⎤

⎦+
∑

r∈R(Xi )

β(r)

⎡

⎣
r

aT
i r

Hir

⎤

⎦ ,

where α(v),β(r) ∈ R+ and
∑

v∈V(Xi )
α(v) = 1. It is clear that

[
z∗(x)

u∗(x)

]
=
[

aT
i x + bi

Hi x + gi

]
=
[

z(x)

f pwa(x)

]
, for x ∈ Xi .

To complete the proof, we now need to show that the optimal solution to (2.8) is
unique. In fact, at a point x ∈ Xi , suppose there exist two different optimal solutions
to (2.8)
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[
z1(x) uT

1 (x)
]T = arg min

[z uT ]T
z

[
z2(x) uT

2 (x)
]T = arg min

[z uT ]T
z

s.t.
[
xT z uT

]T ∈ Π.

It can be observed that z1(x) = z2(x). If u1(x) �= u2(x), then there exist two
different nx−faces, denoted by F1, F2, such that

[
xT z1(x) uT

1 (x)
]T ∈ F1 and

[
xT z2(x) uT

2 (x)
]T ∈ F2. Therefore, z1(x) = z2(x) leads to

Proj
Rnx +1 F1 = Proj

Rnx +1 F2 = F (i)

[xT z]T .

Accordingly, F1, F2 lie in a hyperplane of dimension nx + 1 which is orthogonal to
the space of

[
xT z

]T
. An illustration can be found in Fig. 2.6. This leads to the fact

that f pwa(v) or f̂ (r) in (2.7) is not uniquely defined for some v ∈ V(Xi ) or some
r ∈ R(Xi ). This contradicts with the construction of Π in (2.7). Therefore, F1 = F2

meaning the optimal solution to (2.8) is unique. Further, such an nx−face F1 can be
written in the following form:

F1 = F#
1 ⊕ F#

2

F#
1 = conv

{[
vT z(v) f T

pwa(v)
]T | v ∈ V(Xi )

}

F#
2 = cone

{[
r T aT

i r (Hir)T
]T | r ∈ R(Xi )

}
.

The proof is complete. �

Based on this result, a procedure to construct an inverse optimization problem is
summarized via the following algorithm.

Algorithm 2.3 Linear equivalent optimization problem
Input: A given continuous PWA function defined over a cell complex {Xi }i∈IN

of a polyhedron
X ⊆ R

nx satisfying Assumption2.2.
Output: Π, J (x, z, u).
1: Construct a convex lifting z(x) of the cell complex {Xi }i∈IN

.

2: Define Π as in (2.7).
3: Define J (x, z, u) = z.
4: Solve the following parametric linear programming problem:

[
z∗
u∗
]

= arg min
[z uT ]T

z subject to
[
xT z uT

]T ∈ Π.

5: Project the optimal solution onto R
nu i.e., f pwa(x) = Proj

Rnu

[
z∗
u∗
]

.
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Fig. 2.6 An illustration for
the uniqueness of optimal
solution to (2.8)
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The complexity of Algorithm 2.3 depends almost on the complexity of convex
lifting computation, carried out via Algorithm 2.1. Therefore, if Algorithm 2.1 is
computationally tractable, so is Algorithm 2.3.

To conclude this section, the following theorem presents an important property
of the convex lifting-based method.

Theorem 2.4 Any continuous PWA function, defined over a (not necessarily con-
vexly liftable) polyhedral partition of a polyhedron, can be equivalently obtained via
a parametric linear programming problem with at most one auxiliary 1-dimensional
variable.

Proof If the given polyhedral partition {Xi }i∈IN
is convexly liftable, following

Theorem2.3, the given continuous PWA function f pwa(x), defined over X can be
obtained through a parametric linear programming problem. This optimization prob-
lem is constructed via convex lifting. This convex lifting represents an auxiliary
one-dimensional variable.

If the given polyhedral partition {Xi }i∈IN
is not convexly liftable, Theorem2.2

shows the existence of an equivalent cell complex
{X̃i

}
i∈IÑ

such that
{X̃i

}
i∈IÑ

is convexly liftable and the internal boundaries of {Xi }i∈IN
are maintained. This

refinement also leads to an equivalent PWA function f̃ pwa(x) of f pwa(x) defined
over a convexly liftable cell complex

{X̃i
}

i∈IÑ
of X . Again, due to Theorem2.3,

f̃ pwa(x) can be obtained through a parametric linear programming problem with an
auxiliary one-dimensional variable, this auxiliary variable being a convex lifting of{X̃i

}
i∈IÑ

. �

Note that we can also find a parametric quadratic programming problem which
equivalently recovers the given continuous PWA function defined over a polyhedral
partition of a (possibly unbounded) polyhedron, as shown in [32].

Remark 2.2 It is well known that optimal solution to a parametric linear/quadratic
programming problem is a PWA function defined over a polyhedral partition. For the
parametric quadratic programming case, it is shown in [8] that the optimal solution
is continuous and unique. However, for the parametric linear programming case,
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this continuity of optimal solution may not be guaranteed. Fortunately, a continuous
solution can equivalently be selected, as shown in [34, 42]. Based on the arguments
presented in this chapter, a continuous optimal solution, induced from a parametric
linear/quadratic programming problem, can also be equivalently obtained via an
alternative parametric linear programming problem with at most one auxiliary one-
dimensional variable. This auxiliary variable represents the convex lifting.

2.6 An Illustrative Example

This section aims to illustrate the above results via a numerical example. Suppose
we need to recover the PWA function (2.11), shown in Fig. 2.7. Note that this PWA
function is continuous and is defined over the whole space R. A box B1(3) is known
to satisfy Assumption2.1. The new partition {Xi ∩ B1(3)}i∈I6

shown in Fig. 2.7 rep-
resents the multicolored segments along the x-axis. A convex lifting of the cell
complex {Xi }i∈I6

is analytically presented in (2.12) and is shown in Fig. 2.8. A set
of constraints for the recovered optimization problem shown in (2.13) represents
the pink polyhedron in Fig. 2.9. Therein, the multicolored segments along the x-axis
denote the given partition covering R, whereas the PWA function (2.11) represents
the green curve above this partition. Also, the optimal solution to (2.8) represents the
solid pink curve. It can be observed that the projection of this optimal solution to the
space

[
xT uT

]T
coincides with the given PWA function. It is worth recalling that the

proposed approach requires only one auxiliary one-dimensional variable, denoted
by z, to recover (2.11). Finally, the numerical example in this chapter is carried out
in the environment of MPT 3.0 [18].

Fig. 2.7 The given PWA
function (2.11) to be
recovered
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Fig. 2.8 A convex lifting of
the cell complex {Xi }i∈I6
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Fig. 2.9 Illustration for the
optimal solution to IPL/QP
via convex liftings

f pwa(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

−0.2447x − 0.2838 for x ≤ −2

0.6940x + 1.5936 for − 2 ≤ x ≤ −1

−0.1371x + 0.7626 for − 1 ≤ x ≤ 0

0.1199x + 0.7626 for 0 ≤ x ≤ 1

−0.5975x + 1.4800 for 1 ≤ x ≤ 2

0.3883x − 0.4916 for 2 ≤ x

(2.11)
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z(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

−2.5x − 2 for x ≤ −2

−1.5x for − 2 ≤ x ≤ −1

−0.5x + 1 for − 1 ≤ x ≤ 0

0.5x + 1 for 0 ≤ x ≤ 1

1.5x for 1 ≤ x ≤ 2

2.5x − 2 for 2 ≤ x

(2.12)

Π =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡

⎣
x
z
u

⎤

⎦ ∈ R
3 |

⎡

⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎢⎢⎢
⎣

1.0000 −29.9413 116.5183
1.0000 −18.4965 116.5183
−2.2393 −1.0000 1.0653
−1.0000 −1.7638 13.9320
−1.0000 −1.5039 −1.8097
1.0000 1.7638 −13.9320
1.0000 5.3390 −50.4554
1.0000 −13.0496 −50.4554
2.1061 −1.0000 1.0144
1.0000 −1.4990 −2.0893

⎤

⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎥⎥⎥
⎦

⎡

⎣
x
z
u

⎤

⎦ ≤

⎡

⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎢⎢⎢
⎣

58.9139
76.0811
1.6977
10.8883
−2.8839
3.3214
3.6397

−51.5262
1.5013

−3.0923

⎤

⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎥⎥⎥
⎦

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.13)

2.7 Conclusions

This chapter presents recent results in inverse optimality and summarizes in a concise
manner a procedure to recover a continuous PWA function defined over a polyhedral
partition of a polyhedron. Based on convex lifting, the study covers the general case
of continuous PWAfunctions, presenting a full construction for the inverse optimality
problem. A numerical example is finally considered to illustrate this result.

Acknowledgments The first author would like to thank Dr. Martin Gulan, Dr. Michal Kvasnica,
Prof. Miroslav Fikar, Dr. Sasa Rakovic, Prof. Franz Aurenhammer, and Prof. Boris Rohal’-Ilkiv for
fruitful discussions and exchanges on topics related to this work.

References

1. G.Z. Angelis, System Analysis, Modelling and Control with Polytopic Linear Models (2001)
2. F. Aurenhammer, Criterion for the affine equivalence of cell complexes in rd and convex

polyhedra in rd+1. Discrete Comput. Geom. 2, 49–64 (1987)
3. F. Aurenhammer, Power diagrams: properties, algorithms and applications. SIAM J. Comput.

16(1), 78–96 (1987)
4. F. Aurenhammer, Recognising polytopical cell complexes and constructing projection polyhe-

dra. J. Symb. Comput. 3, 249–255 (1987)



46 N.A. Nguyen et al.

5. F. Aurenhammer, Voronoi diagrams: a survey of a fundamental data structure. ACM Comput.
Surv. 23, 345–405 (1991)

6. M. Baes, M. Diehl, I. Necoara, Every continuous nonlinear control system can be obtained by
parametric convex programming. IEEE Trans. Autom. Control 53(8), 1963–1967 (2008)

7. A. Bemporad, C. Filippi, An algorithm for approximate multiparametric convex programming.
Comput. Opt. Appl. 35(1), 87–108 (2006)

8. A. Bemporad, M. Morari, V. Dua, E.N. Pistikopoulos, The explicit linear quadratic regulator
for constrained systems. Automatica 38(1), 3–20 (2002)

9. H. Crapo, W. Whiteley, Plane self stresses and projected polyhedra 1: the basic pattern. Struct.
Topol. 19, 55–73 (1993)

10. H. Crapo, W. Whiteley, Spaces of stresses, projections and parallel drawings for spherical
polyhedra. Contrib. Algebra Geom. 35(So. 2), 259–281 (1994)

11. A.J. De Loera, J. Rambau, F. Santos, Triangulations: structures for algorithms and applications,
Algorithms and Computation in Mathematics (Springer, Berlin, 2010)

12. H. Edelsbrunner, R. Seidel, Voronoi diagrams and arrangements. Discrete Comput. Geom. 1,
25–44 (1986)

13. A. Grancharova, T.A. Johansen,Explicit Nonlinear Model Predictive Control (Springer, Berlin,
2012)

14. B. Grünbaum, Convex Polytopes (Wiley Interscience, New York, 1967)
15. M.Gulan,N.A.Nguyen, S.Olaru, P.Rodriguez-Ayerbe,B.Rohal’-Ilkiv, Implications of inverse

parametric optimization in model predictive control, in Developments in Model-Based Opti-
mization and Control, ed. by S. Olaru, A. Grancharova, F.L. Pereira (Springer, Berlin, 2015)

16. D. Hartvigsen, Recognizing voronoi diagrams with linear programming. ORSA J. Comput. 4,
369–374 (1992)

17. A.B. Hempel, P.J. Goulart, J. Lygeros, On inverse parametric optimization with an application
to control of hybrid systems. IEEE Trans. Autom. Control 60(4), 1064–1069 (2015)

18. M.Herceg,M.Kvasnica, C.N. Jones,M.Morari,Multi-Parametric Toolbox 3.0, inProceedings
of the European Control Conference, Zürich, Switzerland, 17–19 July 2013, pp. 502–510, http://
control.ee.ethz.ch/~mpt

19. T.A. Johansen, On multi-parametric nonlinear programming and explicit nonlinear model pre-
dictive control, in Proceedings of the 41st IEEE Conference on Decision and Control, vol. 3
(2002), pp. 2768–2773

20. T.A. Johansen,Approximate explicit recedinghorizon control of constrainednonlinear systems.
Automatica 40(2), 293–300 (2004)

21. M. Kvasnica, M. Fikar, Clipping-based complexity reduction in explicit MPC. IEEE Trans.
Autom. Control 57(7), 1878–1883 (2012)

22. M. Kvasnica, J. Hledík, I. Rauová, M. Fikar, Complexity reduction of explicit model predictive
control via separation. Automatica 49(6), 1776–1781 (2013)

23. C.W. Lee, P.L.-spheres, convex polytopes, and stress. Discrete Comput. Geom. 15, 389–421
(1996)

24. J.C. Maxwell, On reciprocal diagrams and diagrams of forces. Philos. Mag., ser. 4 27, 250–261
(1864)

25. H.N. Nguyen, Constrained Control of Uncertain, Time-Varying Discrete-Time Systems. An
Interpolation-Based Approach, Lecture Notes in Control and Information Sciences (Springer,
Berlin, 2014)

26. H.N. Nguyen, P.-O. Gutman, S. Olaru, M. Hovd, Explicit constraint control based on inter-
polation techniques for time-varying and uncertain linear discrete-time systems, in 18th IFAC
World Congress, vol. 18(1) (2011)

27. N.A. Nguyen, S. Olaru, P. Rodriguez-Ayerbe, M. Hovd, I. Necoara, Inverse parametric convex
programming problems via convex liftings, in 19th IFAC World Congress (Cape Town, South
Africa, 2014)

28. N.A. Nguyen, S. Olaru, P. Rodriguez-Ayerbe,M. Hovd, I. Necoara, On the lifting problems and
their connections with piecewise affine control law design, in European Control Conference
(Strasbourg, France, 2014)

http://control.ee.ethz.ch/~mpt
http://control.ee.ethz.ch/~mpt


2 Fully Inverse Parametric Linear/Quadratic Programming Problems … 47

29. N.A. Nguyen, S. Olaru, P. Rodriguez-Ayerbe, On the complexity of the convex liftings-based
solution to inverse parametric convex programming problems, inEuropean Control Conference
(Linz, Austria, 2015)

30. N.A. Nguyen, S. Olaru, P. Rodriguez-Ayerbe. Recognition of additively weighted voronoi
diagrams and weighted delaunay decompositions, in European Control Conference (Linz,
Austria, 2015)

31. N.A. Nguyen, S. Olaru, P. Rodriguez-Ayerbe, Any discontinuous PWA function is optimal
solution to a parametric linear programming problem, in 54th IEEE Conference on Decision
and Control (Osaka, Japan, 2015)

32. N.A. Nguyen, S. Olaru, P. Rodriguez-Ayerbe, M. Hovd, I. Necoara, Constructive solution
to inverse parametric linear/quadratic programming problems via convex liftings, https://hal-
supelec.archives-ouvertes.fr/hal-01207234/file/IPCP_JOTA.pdf

33. S. Olaru, D. Dumur, A parameterized polyhedra approach for explicit constrained predictive
control, in 43rd IEEE Conference on Decision and Control, vol. 2 (2004), pp. 1580–1585

34. S. Olaru, D. Dumur, On the continuity and complexity of control laws based onmultiparametric
linear programs, in 45th Conference on Decision and Control (IEEE, 2006), pp. 5465–5470

35. E.N. Pistikopoulos, M.C. Georgiadis, V. Dua, Multi-Parametric Programming (Wiley-VCH,
Weinheim, 2007)

36. K. Rybnikov, Polyhedral partitions and stresses, Ph.D. thesis, Queen University, Kingston,
Ontario, Canada (1999)

37. A. Schrijver, Theory of Linear and Integer Programming (Wiley, New York, 1998)
38. A. Schulz, Lifting planar graphs to realize integral 3-polytopes and topics in pseudo-

triangulations, Ph.D. thesis, Fachbereich Mathematik und Informatik der Freien Universitat
Berlin (2008)

39. M.M. Seron, G.C. Goodwin, J.A. Doná, Characterisation of receding horizon control for con-
strained linear systems. Asian J. Control 5(2), 271–286 (2003)

40. E.D. Sontag, Nonlinear regulation: the piecewise linear approach. IEEE Trans. Autom. Control
26(2), 346–358 (1981)

41. J. Spjøtvold, E.C.Kerrigan, C.N. Jones, P. Tøndel, T.A. Johansen,On the facet-to-facet property
of solutions to convex parametric quadratic programs. Automatica 42(12), 2209–2214 (2006)

42. J. Spjøtvold, P. Tøndel, T.A. Johansen, Continuous selection and unique polyhedral repre-
sentation of solutions to convex parametric quadratic programs. J. Opt. Theory Appl. 134(2),
177–189 (2007)

43. P. Tøndel, T.A. Johansen, A. Bemporad, An algorithm for multi-parametric quadratic program-
ming and explicit MPC solutions. Automatica 39(3), 489–497 (2003)

https://hal-supelec.archives-ouvertes.fr/hal-01207234/file/IPCP_JOTA.pdf
https://hal-supelec.archives-ouvertes.fr/hal-01207234/file/IPCP_JOTA.pdf


Chapter 3
Implications of Inverse Parametric
Optimization in Model Predictive Control

Martin Gulan, Ngoc Anh Nguyen, Sorin Olaru, Pedro Rodriguez-Ayerbe
and Boris Rohal’-Ilkiv

Abstract Recently, inverse parametric linear/quadratic programming problem was
shown to be solvable via convex liftings approach [13]. This technique turns out to be
relevant in explicit model predictive control (MPC) design in terms of reducing the
prediction horizon to at most two steps. In view of practical applications, typically
leading to problems that are not directly invertible, we show how to adapt the inverse
optimality to specific, possibly convexly non-liftable partitions. Case study results
moreover indicate that such an extension leads to controllers of lower complexity
without loss of optimality. Numerical data are also presented for illustration.

3.1 Introduction

Interest in parametric optimization algorithms for linear and quadratic programs
has been resurged during the last 15 years, following the observation that certain
optimal control problems for constrained systems can be solved explicitly offline.
In particular, a lot of attention has been attracted by the fact that solutions to the
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traditional model predictive control problems can be obtained in an explicit formu-
lation by exploiting the concept of parametric convex programming (pCP) [3–5, 19,
22]. This allows to pre-compute the optimal solution to a linear/quadratic program-
ming problem for a range of operating conditions of interest as a piecewise affine
(PWA) function defined over a polyhedral partition of the parameter space. The
implementation effort of these so-called explicit MPC (eMPC) methods [1] hence
reduces to a simple function evaluation, since the controller itself maps into a lookup
table of linear gains. This property naturally circumvents the main implementation
drawback of the standard implicit MPC, which is the need for online optimization in
the receding horizon fashion at each sampling instant. Clearly, within the real-time
requirements, the solutions may become too expensive or simply infeasible, namely
in the case of systems with fast-evolving dynamics. On the other hand, the efficacy
of the offline solution is limited to small-dimensional systems. Therefore the eMPC
algorithms necessarily encounter computational difficulties as the parameter space
dimension or the prediction horizon increases. Moreover, the resulting PWA con-
troller is often too complex; hence, if allowable, its structure may need to be treated
adequately to satisfy the restrictions imposed by the implementation hardware.

In view of handling linear MPC problems often emerging from practical applica-
tions, the parametric convex programming has grown into a mature technique pro-
viding a variety of numerical algorithms available for effective solution. Recently,
the concept of inverse optimality has been shown to provide a new perspective on the
structural link between linearMPCand pCPproblem formulation via the technique of
inverse parametric convex programming (IpCP). As the name suggests, it is defined
as an inverse optimality problem of parametric convex programming. It aims to build
an alternative optimization problem characterized by an appropriate constraint set
and a cost function such that its optimal solution coincideswith the one of the original
problem. More specifically, the goal of inverse parametric linear/quadratic program-
ming is to construct a linear constraint set and a linear/quadratic cost function such
that the optimal solution of this newly formulated problem is equivalent to a given
PWA function defined over a given polyhedral partition. This topic has been recently
investigated in [2, 7, 13], and turned out to be applicable in the complexity reduction
of piecewise affine control law design. This chapter closely follows the results put
forward in [13, 14]. Therein, a constructive procedure based upon convex liftings
is presented, leading to an important implication in MPC design, that can be stated
as follows: every continuous piecewise affine control law can be recovered via an
MPC problem with a control horizon at most equal to two prediction steps. Central
to the approach is the operation of convex lifting, and the related liftability condition,
which plays a crucial role in the existence of an inverse optimal solution.

The main aim of this study is to address the difficulty arising in applications of
IpCP in linear MPC, namely that the explicit solution of a linear MPC problem with
respect to a quadratic cost function is not, in many cases, convexly liftable. With
regard to this issue, in [14] it was shown that, in fact, any parameter space parti-
tion associated with a solution of a pQP can be sub-partitioned such that its convex
liftability will be guaranteed. In control theory, however, such a subdivision neces-
sarily increases the complexity of PWA control laws, which is commonly urged to
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be kept as low as possible for the sake of efficient eMPC implementations. There-
fore, herein we rather aim at devising an alternative, yet convenient approach that
would target pQP-based MPC problems which are typically not directly invertible,
without generating any gain in complexity of the inherited solution. To tackle this
challenge, we recall the open question of minimal complexity of the inverse opti-
mality formulation, discussed in [12]. It is known that the IpL/QP via convex liftings
replaces the constraint set of linear MPC problem based on prediction along a finite
horizon with mixed constraints on the control and state variables over two prediction
stages. Nevertheless, the main advantage of a significant decrease in the dimension
of optimization arguments tends to come at the price of a relatively large set of con-
straints. Since not all the constraints practically contribute to the optimal solution, an
effort is being put into reducing the constraint set towards a minimal representation
necessary for the inverse optimality formulation. We exploit this fact and present
an algorithmic procedure tailored for the class of MPC problems of interest. At
this point the contribution of the proposed extended IpLP approach is twofold as it
simultaneously treats the issue of invertibility, preconditioned by convex liftability,
and eliminates the redundant constraints from the formulation. The procedure, how-
ever, exactly retrieves only a part of the solution. To establish the equivalence of the
remaining portion of controller structure we adopt the concept of clipping strategy
proposed in [10]. This inverse optimality-based procedure is performance lossless,
i.e., the retrieved PWA function inherits all the performance, closed-loop stability
and feasibility guarantees of the pQP-based/online MPC solution.

As outlined earlier, the efficient implementation of eMPC, often using embedded
platforms, is closely associated with the structure of the explicit controller. Since
the PWA control law is defined over a set of polytopic regions, it is clear that if the
number of regions becomes large, the storage capacity of the implementation hard-
ware may be easily exceeded. To overcome these limitations, numerous methods for
complexity reduction via simplifying eMPC optimizers have been proposed. This is
usually achieved by devising less complex equivalent replacement functions of the
original PWA feedback with no implications on optimality, or various sophisticated,
albeit suboptimal, approximations. A brief, yet recent overview can be found, e.g.,
in [9, 11]. We recall this topic with regard to the third feature of the approach. As it
will be evidenced later, the combination of extended IpLP with the use of a simple
clipping filter [10] may find its use in case a low-complexity eMPC controller is
sought. Nevertheless, this ability is not an objective of this study, rather an addi-
tional gain of the approach. Hence, when an online implementation is of interest
and certain assumptions are fulfilled, the less complex, yet performance-wise opti-
mal explicit representation can offer an important advantage. In particular, real-time
implementation complexity is determined not only by the memory needed to store
the controller, but also by the computational time necessary to find and evaluate the
corresponding control law. This is of imminent importance when targeting embed-
ded hardware or controlling fast systems. In this light, extended IpLP with clipping
shows its potential use in practical MPC applications; in comparison with the generic
convex liftings-based IpCP, which as such does not yield any computational benefits
within online eMPC. On the contrary, the obtained explicit solution may in case of
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directly non-invertible problems become too complex and thus intractable. Addi-
tionally, the proposed inverse optimization formulation may be as well cast and
solved as an online MPC problem which would shed more light on the merits of its
cost/constraints rearrangement.

3.2 Notation and Definitions

Throughout this study, R, N>0 are used to denote the set of real numbers, and the
field of positive integers, respectively. For a compact notation, let us define the index
set IN := {i ∈ N>0 | i ≤ N }, for a given N ∈ N>0. For a point x ∈ R

d , by R
nx we

denote the vector space containing the point x , hence in this case Rnx = R
d . Next,

given a finite set S = {x1, x2, . . . , xn} of n points, Card(S) denotes the cardinal
number of the set S. By conv(S) we denote its convex hull. Also, if S is a finite set
of rays, i.e., S = {y1, . . . , yn} then cone(S) represents the cone defined as follows:

cone(S) = {t1y1 + · · · + tn yn : ti ≥ 0, ∀1 ≤ i ≤ n} (3.1)

A polyhedron is defined as a convex intersection of finitely many closed half-spaces.
A polytope is a bounded polyhedron. Given a full-dimensional polyhedron S in Rd ,
then V(S) denotes the set of its vertices; R(S) denotes the set of its rays. Also,
int(S) denotes its interior. Proj

S
S represents the orthogonal projection of the set S

onto a subspace S of Rd . Further, a face of S is the intersection of S and one of
its supporting hyperplanes. A face of dimension d − 1 is called a facet. The set of
all facets of polyhedron S is denoted as F(S). Given a function κ(x), dom(κ(x))

denotes its domain. In addition, given two sets S1,S2 ⊂ R
d , by S1 ⊕ S2 we denote

their Minkowski sum defined as follows:

S1 ⊕ S2 := {
y ∈ R

d | ∃x1 ∈ S1, x2 ∈ S2 s.t. y = x1 + x2
}
.

Next, let us recall some necessary definitions.

Definition 3.1 Acollectionof N ∈N>0 full-dimensional polyhedraXi ⊂R
d , denoted

as X ={Xi }i∈IN
, is called a polyhedral partition of a polyhedron � ⊆ R

d if:

(1) � = ⋃
i∈IN

Xi ,
(2) int(Xi ) ∩ int(X j ) = ∅ with i �= j , (i, j) ∈ I2

N .

In addition, we refer to polyhedra (Xi ,X j ) as neighbours, or adjacent, if (i, j) ∈
I2

N , i �= j and dim(Xi ∩ X j ) = d − 1. If a polyhedral partition is a collection of
polytopes, then it is called a polytopic partition. Xi are referred to as regions of the
partition X .

In this chapter, a cell complex is understood as a polyhedral partition whose facet-
to-facet property [20] is fulfilled, meaning that any two neighbouring regions share
a common facet. Note that a complete, more general definition of cell complex can



3 Implications of Inverse Parametric Optimization in Model Predictive Control 53

be found in [6]. However, for simplicity, we restrict our attention to the property of
interest.

Definition 3.2 Given a polyhedral partitionX = {Xi }i∈IN
of a polyhedron� ⊆ R

d ,
a convex lifting is described by the function z : � → R with:

z(x) = aT
i x + bi for any x ∈ Xi , (3.2)

and ai ∈ R
d , bi ∈ R, ∀i ∈ IN ; such that the following conditions hold:

(1) z(x) is continuous over �,
(2) for each i ∈ IN , z(x) > aT

j x + b j for all x ∈ Xi \ X j and all j �= i , j ∈ IN .

According to Lemma1 in [15], a polyhedral partition admitting a convex lifting is
required to be a cell complex. Conversely, a cell complex is not necessarily convexly
liftable. The necessary and sufficient conditions for a cell complex to be convexly
liftable1 are referred to [14] and the references therein.

Moreover, a convex lifting can be in fact seen as a convex surface composed of
the convex lower boundary of a polyhedron in an augmented space. This particular
polyhedron can be described by the following definition:

Definition 3.3 A given cell complex X = {Xi }i∈IN of a polyhedron � ⊆ R
d has an

affinely equivalent polyhedron if there exists a polyhedron X̃ ⊂ R
d+1 such that for

each i ∈ IN :

(1) ∃Fi ∈ F(X̃ ) satisfying: Proj
Rd Fi = Xi ,

(2) if z(x) = min
z

z s.t. [xT z]T ∈ X̃ , then [xT z(x)]T ∈ Fi for x ∈ Xi .

The second condition in Definition3.3 implies that the set of facets of X̃ at the lower
values of z is exclusively considered. These lower facets Fi build a convex surface
in R

d+1 known as the previously defined convex lifting, and their image via the
orthogonal projection onto R

d recovers the cell complex X .
We remark that an additional set of definitions is provided within Sect. 3.5 as it

closely relates to the problems treated therein.

3.3 Inverse Parametric Optimization via Convex Liftings

This section aims to recall the constructive solution to the inverse parametric lin-
ear/quadratic programming problem via convex liftings. For ease of presentation,
let us start from a larger perspective—with the definition of a parametric convex2

programming problem, which can be cast as follows:

1Note that the liftability condition does not restrict X to be a partition of a polytope/polyhedron.
This property, however, becomes important in the context of convexity of inverse parametric lin-
ear/quadratic programming problems.
2Convexity of the optimization problem(3.3) is ensured by convexity of f , gi , and h j in θ and x .
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min
θ

f (θ, x)

s.t. gi (θ, x) ≤ 0, ∀i ∈ Ip,

h j (θ, x) = 0, ∀ j ∈ Iq ,

(3.3)

where θ, x denote the decision variable and the parameter, respectively. The terms
gi (θ, x), h j (θ, x) represent the left-hand sides of respective inequality and equality
constraints for the optimization problem(3.3).

In view of parametric linear/quadratic programming, the equality constraints are
omitted for simplicity. Moreover, gi (θ, x), ∀i ∈ Ip define linear constraints on θ
and/or x , from the geometrical point of view representing a polyhedron in the aug-
mented space of

[
θT xT

]T
. Still, f (θ, x) stands for a linear or quadratic cost function,

which has the following description:

f (θ, x) = θT Hθ + (F T x + Y )T θ, (3.4)

with a positive semidefinite matrix H = H T � 0 and appropriately dimensional
matrices F, Y.

It is well known from the works of [4, 19, 22] that the optimal solution to a para-
metric linear/quadratic programming problem is a piecewise affine function defined
over a polyhedral partition. It is shown therein that the optimal solution to a pQP
problem with respect to H � 0 is continuous and unique. Otherwise, the continuity
and the uniqueness propertiesmay not be preserved for the case of a pLP. Fortunately,
it is shown e.g., in [17] that an equivalently continuous optimal solution can always
be selected. Therefore, the IpL/QP can focus on continuous PWA functions.

Given a continuous PWA function defined over a polyhedral partition, IpL/QP
aims to find an appropriate optimization problem, characterized by a linear/quadratic
cost function and a set of linear constraints such that the optimal solution to this
optimization problem is equivalent to the given PWA function. Mathematically,
let fpwa(x) : � ⊆ R

nx → R
nu denote a continuous PWA function to be recovered,

defined as follows:
fpwa(x) = Fi x + Gi for x ∈ Xi . (3.5)

IpL/QP aims to find a cost function J (x, z, u) and a set of four matrices Hx , Hu,

Hz, K such that:

fpwa(x) = Proj
Rnu arg min

[zT uT ]T
J (x, z, u) s.t. Hx x + Hzz + Huu ≤ K , (3.6)

where z represents an auxiliary variable for the recovered optimization problem and
will be shown to be a 1-dimensional variable.

Assumption 3.1 As reported in [13, 15], this inverse optimality problem is valid
under the following standing assumptions:
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A1.1 The polyhedral partition X is the partition of a polyhedron �.
A1.2 The polyhedral partition X is convexly liftable.

Note that AssumptionA1.1 is of help in order to guarantee the convexity of the
recovered optimization problem. On the other hand, AssumptionA1.2 is not restric-
tive due to Theorem2 and Lemma2, also reported in [15]. Accordingly, if the given
polyhedral partition does not satisfy AssumptionA1.2, one can refine it such that the
internal boundaries are maintained and the new partition is convexly liftable. Such
subdivision will be discussed in more detail for the cases often encountered in MPC
in Sect. 3.5.

As outlined in the introductory section, central to the constructive procedure of
[13] is the operation of convex lifting for the given partition, recalled inDefinition3.2.
An algorithm for the construction of convex liftings is referred to [14] and extended
to a cell complex of a polyhedron via Theorem1 in [15]. The following sets are also
defined:

Vx =
⋃

i∈IN

V(Xi ), Rx =
⋃

i∈IN

R(Xi ),

V[xT z uT ]T =
{[

xT z(x) f T
pwa(x)

]T | x ∈ Vx

}
,

R[xT z uT ]T =
{[

r T ẑ(r) f̂ T (r)
]T | r ∈ Rx ,

ẑ(r) = aT
i r

f̂ (r) = Fir
if r ∈ R(Xi )

}

,

�v = conv(V[xT z uT ]T ), �r = cone(R[xT z uT ]T ),

� = �v ⊕ �r .

(3.7)

Following (3.7), recall that Vx , Rx denote the sets of vertices and rays of the cell
complexX , respectively. Also, V[xT z uT ]T , R[xT z uT ]T stand for the sets of augmented

vertices and rays of X , into Rnx +nu+1. Note, however, that under convex liftings, the
augmented terms for a vertex are different from the one for a ray as shown in (3.7).
More clearly, consider a vertex v and a ray r of region Xi in the cell complex X .
After embedding to the space of convex lifting, the augmented term corresponding
to v is aT

i v + bi . However, under this embedding, the augmented term of r becomes
aT

i r . The resulting constraint set � is computed via the Minkowski sum of �v and
�r . This is basically due to Minkowski-Weyl theorem (see Corollary 7.1b in [18]).

Based on the above notation, we recall here the main result for IpL/QP problem
via the following theorem.

Theorem 3.1 Given a continuous PWA function fpwa(x),defined over a cell complex
X = {Xi }i∈IN

satisfying AssumptionsA1.1, A1.2, then f pwa(x) is the image via the
orthogonal projection of the optimal solution to the following parametric linear
programming problem:

min
[z uT ]T

z subject to
[
xT z uT

]T ∈ �. (3.8)
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For the proof of Theorem3.1 we refer to Sect. 5 of [15]. Note, however, that as dis-
cussed in [12], not all constraints of � are meaningful in (3.8). Many of them con-
tribute to the construction of feasible region instead of building its optimal solution.
Therefore, these constraints may need to be removed to simplify the optimization
problem. Algorithms put forward in [12] can be effectively utilized to carry out this
procedure.

We remark that this theorem is meaningful in the context of implicit MPCwhere it
can help to overcome its computational limitations by implementing this alternative
optimization approach and solving the LP3 (3.8) at each sampling time. In this study
we rather exploit this concept for efficient explicit MPC implementations. This point
is discussed in Sect. 3.5 and clarified via a case study in Sect. 3.6.

3.4 Application to Linear MPC Problems

This section aims to recall an important result of IpL/QP related to the linear model
predictive control. Consider a discrete-time, linear invariant system:

x(k + 1) = Ax(k) + Bu(k), (3.9)

where (A, B) is stabilizable. In MPC problems, a cost function is typically defined
over a finite prediction horizon N ∈ N>0 as follows:

J (U, x(k)) =
N−1∑

i=0

�i (xk+i |k, uk+i |k) + VN (xk+N |k) (3.10)

where xk+i |k ∈ R
nx is the (k + i)-th prediction of the system state at time k, uk+i |k

denotes the control action at time instant k + i , and U = [uT
k|k, . . . , uT

k+N−1|k]T
.

The �i (xk+i |k, uk+i |k) term of the objective represents a stage cost ∀i ∈ IN−1 ∪
{0} and VN (xk+N |k) denotes the terminal penalty. Moreover, the state and control
variables are typically required to satisfy constraints:

xk+i |k ∈ X, uk+i |k ∈ U, ∀i ∈ IN−1 ∪ {0}, xk+N |k ∈ X f (3.11)

with polyhedra X,U containing the origin in their interior. A suitable terminal con-
straint set X f ⊂ X is considered to guarantee closed-loop stability.

A linear MPC problem thus aims to solve the following optimization problem:

min
U

J (U, x(k)) subject to (3.11) (3.12)

where the stage costs and the terminal cost tend to take one of the following forms:

3The inverse optimality problem can be as well cast and solved implicitly/explicitly as a QP/pQP.
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(1) 2-norm: �i (xk+i |k, uk+i |k) = xT
k+i |k Qxk+i |k + uT

k+i |k Ruk+i |k , VN (xk+N |k) =
xT

k+N |k Pxk+N |k , where Q = QT is a positive semidefinite matrix and R, P are
symmetric, positive definite matrices,

(2) 1/∞-norm: �i (xk+i |k, uk+i |k) = ‖Qxk+i |k‖p + ‖Ruk+i |k‖p, VN (xk+N |k) =
‖Pxk+N |k‖p, where p = 1/∞ and Q, R, P are of appropriate dimension.

As shown in [3, 4], the optimal solutions of such linear MPC problems of modest
size can be found explicitly by parametric linear/quadratic programming, as follows:

U ∗ = argmin
U

J (U, x(k)) s.t. GU ≤ W + Ex(k), (3.13)

where the control input sequence U is regarded as the decision variable, the current
state x(k) represents the parameter, and G, W, E are appropriate matrices describing
the constraints (3.11). In the implementation, the receding horizon MPC feedback
becomes uk = Proj

Rnu U ∗. This explicit solution to a linear MPC problem has a
piecewise affine structure, and therefore it inherits also the properties of an inverse
optimality problem recalled earlier. Based on this property, the main result in this
section is summarized via the following theorem.

Theorem 3.2 The continuous explicit solution of a generic linear MPC problem
with respect to a linear/quadratic cost function is equivalently obtained through a
linear MPC problem with a linear cost function and the control horizon at most equal
to two prediction steps.

Interested reader is further referred to [13] for the proof. Therein, numerical exam-
ples can also be found, illustrating the application of the generic inverse optimality
solution to problems that are directly invertible. This allows one to recover the opti-
mal explicit continuous feedback inherited from the linear MPC problem via an
inverse pL/QP problem, while the structure of the PWA control law and the under-
lying parameter partition are maintained. The following section is going further and
focuses on more realistic MPC scenarios where the convex liftability of the state-
space partition is not a priori guaranteed, hence requiring to appropriately revisit the
IpCP procedure in order to find an inverse problem formulation and its solution.

3.5 A Novel Approach for a Class of Primarily
Non-invertible Control Laws Obtained
from MPC Problems

As outlined in the introduction, we aim at recovering linear MPC problems whose
explicit solution obtained by parametric convex programming leads to a convexly
non-liftable parameter partition, which therefore may not be used within the generic
IpCP scheme proposed in [13] where the authors build upon the assumption that the
state-space partition to be recovered is a convexly liftable cell complex (cf. Defini-
tion3.2). Here, we are, however, interested in situations when the partition inherited
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from the solution of an MPC problem is found to be a convexly non-liftable polyhe-
dral partition or cell complex, eventually. As mentioned recently in [14], the para-
meter space partition associated with the optimal solution to a parametric quadratic
programming problem, is in many cases not convexly liftable. We remark that this
tends to be the case for most of practical set-ups involving input constraints, usually
yielding explicit controllers with many saturated regions.4 One may observe that the
larger their number is, the smaller the likelihood of constructing a convex lifting
gets. In such a case, a straightforward scheme to approach this problem would be to
rearrange the possibly disconnected and non-convex union of polyhedra sharing the
same saturated control law, in a way to allow for convex liftability of the entire par-
tition. Despite the existence of several region merging techniques, none of them can
in fact guarantee this property. Even if we manage to remove the saturated regions
completely, as per separation-based complexity reduction of [11], the collection of
unsaturated polyhedra left to be lifted may very often be non-convex, which prevents
us from constructing its affinely equivalent polyhedron while recovering the explicit
controller without giving rise to some additional regions.

This problem may be as well treated by an appropriate sub-partitioning of a given
convexly non-liftable polyhedral partition, as outlined recently in [14]. Therein, it is
shown that any parameter space polyhedral partition associated with a solution of a
pQP problem can be sub-partitioned such that its internal boundaries are preserved
and the new cell complex is convexly liftable. Despite the new hyperplane arrange-
ment allows the convex liftability to be retrieved, it naturally leads to a refining
that can easily increase the complexity of a PWA feedback to a large extent. Imple-
mentation of such an eMPC controller may thus become a costly, if not intractable,
alternative to the original one.

In view of the aforementioned practical aspects, let us now briefly formulate an
extended inverse optimality problem to be tackled henceforth.

Problem 3.1 Given a, possibly, convexly non-liftable polyhedral partition/cell com-
plex5 R = {Ri }i∈IR

of a polyhedron � ⊆ R
nx , associated with a continuous piece-

wise affine functionκ(x) = fpwa(x) : � → R
nu , find a linear cost function J (x, z, u),

and matrices Hx , Hu, Hz, K such that the inverse optimal solution

⎧
⎨

⎩

κ̃(x) = Proj
Rnu arg min

[z uT ]T
J (x, z, u),

s.t. Hx x + Hzz + Huu ≤ K .
(3.14)

returns an equivalent replacement of κ(x) when passed through a suitable filter φ(·).
Assumption 3.2 At this point, some assumptions need to be stated to make the
present approach reasonable from both the construction and practical viewpoint:

4The definition of a un/saturated region is given in Sect. 3.5.1.
5Within this section and henceforth we slightly abuse the notationR to refer to state-space partitions
inherited from MPC problems.
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A2.1 The parametric linear programming (pLP) problems are exclusively consid-
ered as possible candidates for the inverse optimality solutions.

A2.2 R is the partition of a polytope �.
A2.3 κ(x) is the explicit optimal solution to a pQP-based linear MPC problem.
A2.4 κ(x) is partially saturated with the corresponding polytopic regions causing

R to be convexly non-liftable.

AssumptionA2.1 provides amanageable framework for the constructive inverse opti-
mality procedures by imposing linearity of the candidate pCP problems. Although
a quadratic cost function may be used as well, in the scope of this study an IpLP
is of interest for brevity, yet with a straightforward extension towards IpQP. Mean-
while, AssumptionA2.2 merely requires the feasible set to be a polytope, which is
usual in the context of MPC. However, it is not restrictive, and the procedure can
be easily extended to the case where the feasible set is a polyhedron. The other
two assumptions stem from a more practical reasoning outlined at the beginning of
this section. By AssumptionA2.3 we focus our attention rather on explicit solutions
obtained by parametric quadratic programming. Considering pQP in this context
not only relates to the nature of most linear MPC problems, but it is mainly due
to the typically inherent curse of direct non-liftability of the associated solutions,
defined over convexly non-liftable state-space partitions.6 This is in contrast to pLP
problems which are directly invertible without any refinement required [14], and
also for this fact are not of interest here. The last assumption stems from numerous
observations encountered in practical MPC problems where the explicit receding
horizon feedbacks usually contain many regions for which the associated optimal
control action is either constantly on the upper limit or constantly on the lower limit.
This reasonable idea was also central to the works of [10, 11] aiming for complexity
reduction of explicit MPC feedback laws. Recall that, in general,R inherited from a
pQP may be convexly non-liftable since it is mostly a strict polyhedral partition, i.e.,
facet-to-facet property does not hold [20]; however, it may as well be a cell complex
that is not convexly liftable simply due to the nature of its hyperplane arrangement
(see e.g., the example in [15]). The second part of AssumptionA2.4 moreover hints
that the liftability issue is typically induced by the existence and structural properties
of the collections of aforementioned saturated polytopic regions. This becomes more
and more likely as the cardinality of such collections increases, at the price of the
remaining collection of unsaturated regions, which is itself thus in a vast majority
of cases found to be convexly liftable. In fact, as it is evidenced, e.g., in [10, 11], a
typical explicit MPC feedback law contains a significantly smaller number of unsat-
urated regions as compared to the number of saturated ones. In addition, if the convex
liftability of the collection of unsaturated regions, as invoked via AssumptionA2.4,
practically happened not to hold, it is still possible to use sub-partitioning to preserve
it. With the usual structural proportions mentioned above, it would however become
still very cheap compared to a complete partition refining—actually, as a matter of
fact, such a possible slight increase in controller complexity would be most likely

6This structural property is related to the piecewise quadratic cost function. This is to be compared
with the piecewise linear and convex cost function of a pLP-based MPC problem.
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eliminated by a notable complexity reduction indicated by the approach proposed
in the following subsection. Needless to say, no such an issue has been encountered
within tested practical MPC scenarios, neither is it present in the case study put
forward in Sect. 3.6.

To review the objective, by exploiting the procedure of inverse parametric opti-
mization via convex liftings [13], we aim to reconstruct an appropriate linear pro-
gramming problem(3.14) with respect to a given piecewise affine function κ(x)

defined over a given, possibly convexly non-liftable polyhedral partition/cell com-
plex of the parameter space, R, such that the optimal solution of this reconstructed
problem is equivalent to the given PWA function. The equivalence requires that the
boundary between two different regions of the parameter space partition correspond-
ing to two different affine functions is preserved, whereas a proper rearrangement of
the subset of the domain of definition, over which the PWA function is saturated, is
allowable. This property is effectively exploited within this study. An example is the
new convexly liftable cell complex R̃ corresponding to a structurally modified, yet
optimal PWA solution function φ(κ̃(x)), as shown in Sect. 3.5.

The following subsections present the main contribution of this study—the exten-
sion to convex liftings-based inverse parametric convex programming procedure,
namely IpLP, with the main focus on a wide and challenging class of primarily non-
invertible linear MPC problems having the explicit optimal solution in the form as
per Assumption3.2.

3.5.1 Additional Notation and Definitions

Let us now append some necessary notation, related closely to the topic treated in
this section. We first state a set of definitions found to be useful and hence adopted
from [10] to keep the notation compact. To make the further explanation more clear,
we restrict ourselves to single-input systems (cf. Remark3.2).

Definition 3.4 Let κ and κ denote, respectively, the maximum and minimum values
which the PWA function κ(x) := f T

i x + gi attains over dom(κ(x)). Denote by Imax

(Imin) the index set of regions where κ(x) is saturated at the maximum (minimum),
and let Isat = Imax ∪ Imin. We call a region Ri the saturated region if it is either
saturated at the minimum or at the maximum, i.e., if i ∈ Isat. Otherwise the region
is called unsaturated. The index set of unsaturated regions is denoted by Iunsat.
Definition 3.5 Given a continuous PWA function κ(x), defined over the parameter
space partition R={Ri }R

i=1, we call the PWA function κ̃(x) := f̃ T
j x + g̃ j a suitable

augmentation of κ(x) if the following properties hold:

P1: κ̃(x) is defined over partition R̃ = {R̃ j }R̃
j=1 such that

⋃
j∈IR̃

R̃ j = ⋃
i∈IR

Ri ,
i.e., dom(κ̃(x)) = dom(κ(x)).

P2: κ̃(x) = κ(x), ∀x ∈ RIunsat .
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P3: κ̃(x) ≥ κ, ∀x ∈ RImax .
P4: κ̃(x) ≤ κ, ∀x ∈ RImin .

In addition, we introduce several polyhedral operations, which were shown to be
convenient in the context of IpCP complexity analysis [12], and are utilized here to
clarify the algorithmic notation.

Given a full row rank matrix M ∈ R
r×(d+1), by P(M) we denote the polyhedron

P(M) = {x ∈ R
d | M(·, 1 : d)x ≤ M(·, d + 1)},

where M(·, i) denotes the i th column of the matrix M and M(·, i : j) represents the
matrix composed by the i th– j th columns of M . Conversely, given a polyhedron P ,
byP−1(P)we denote the minimal representation (in terms of dimension) of a matrix
M satisfying P = {x ∈ R

d | M(·, 1 : d)x ≤ M(·, d + 1)}. Note that P−1(P) is not
unique due to the following observation: P(M) = P(αM),α > 0.

For ease of presentation let us also define an operator for removal of redun-
dant constraints. Given two sets of constraints corresponding to two polyhedra PM ,
PN , M ∈ P−1(PM) ⊂ R

rM ×(d+1), N ∈ P−1(PN ) ⊂ R
rN ×(d+1), by RmRdd(M, N )

we denote the set of constraints characterizing PM which are not redundant in the
representation of PN . We remark that there exist numerous algorithms for remov-
ing redundant constraints. Herein, we recall the one presented in [16] through a
mathematical description as follows: RmRdd(M, N ) = K ∈ R

rK ×(d+1) s.t.

• K is a sub-block of M ,
• for any i ∈ IrK , max

x |x∈PN

K (i, 1 : d)x > K (i, d + 1).

In addition, for PM ⊆ PN , M ∈ P−1(PM), N ∈ P−1(PN ), RmRdd(N , M) = ∅.

3.5.2 Extended Convex Liftings-Based Inverse
pLP with Clipping

In this subsectionwe showhow to recover solutions to a given class ofMPCproblems
via another reformulated IpLP-basedMPCproblemwith the prediction horizon equal
to two prediction steps while preserving optimality.

Given a convexly non-liftable polyhedral partition/cell complex R = {Ri }i∈IR
,

the proposed procedure exploits the possibly non-convex collection of unsaturated
regions,RIunsat , which is assumed to be convexly liftable (recall AssumptionA2.4 and
related comments). The first step is hence to find the gains (ai , bi ),∀i ∈ Iunsat of its
associated convex lifting. This can be carried out efficiently by using the constructive
procedure (Algorithm 3.1 in [15]) first proposed in [14], yielding z(x) = aT

i x + bi ,
with x ∈ ⋃

i∈Iunsat
Ri . Further, instead of constructing an affinely equivalent polyhe-

dron, we build the vertex set V unsat
[xT z uT ]T and compute its dual, half-space representa-

tion �unsat
[xT z uT ]T = conv(V unsat

[xT z uT ]T ) as per Theorem5.3 in [13], slightly modified for
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our case. This polytope is to be used to construct a constraint set for Problem3.1 by
extending the given convex lifting and control law over the saturated regions.

As outlined in the introduction, for the further course of this study we exploit the
question of minimal complexity of the inverse optimality formulation, discussed in
[12]. In particular, not all the constraints—defining half-spaces of the set �[xT z uT ]T

within the generic IpCP problem formulation are meaningful from the optimization
point of view, in the sense that they are not active at the optimum. Therefore, it
is sufficient to exclusively consider only the active constraints, which are defined
by corresponding supporting hyperplanes containing certain facets of �[xT z uT ]T . We
adopt this idea to preserve the active constraints which are thus not redundant in
the half-space representation of �unsat

[xT z uT ]T . Such a relaxation naturally modifies this
set in both parameter and argument space; hence it needs to be associated with an
appropriate restriction in the parameter space, which bounds the domain of validity
for the optimal solution. This procedure is summarized in Algorithm 3.1.

Algorithm 3.1 Construction of constraint set for the extended IpCP

INPUT: Convexly non-liftable polyhedral partition/cell complex R = {Ri }R
i=1 due to RIsat ,

Munsat
[xT z uT ]T = P−1(�unsat

[xT z uT ]T ),

[
z
u

]

pwa
= argmin

[z uT ]T
z s.t. [xT z uT ]T ∈ �unsat

[xT z uT ]T

OUTPUT: �min, constraint set �̃ associated with R̃ (which is to be obtained from (3.15))
1: Mmin = [ ].
2: for i = 1 : Card(Iunsat)
3: Find the polyhedron P0 described by the active constraints at [xT z uT ]T

for x ∈ RIunsat ,i .

4: M0 = P−1(P0), Mmin =
[

M0
Mmin

]
.

5: end for
6: �min = P(Mmin), �x = Proj

Rnx �min.
7: Mx = P−1(�x ), Mf = P−1(conv(R)).
8: M f = RmRdd(Mf , Mx ).
9: M = [

M f (·, 1 : nx ) 0m×(nu+1) M f (·, nx + 1)
]
. Note: M f ∈ R

m×(nx +1)

10: Mmin =
[

Mmin

M

]
, �̃ = P(Mmin).

Remark 3.1 Note that the explicit solution [z uT ]T
required as input for Algorithm

3.1 is known a prioriwith respect to a given continuous PWAfunction and constructed
convex lifting associated with RIunsat , without the need to solve the minimization
problem. Step 8 is present to avoid the redundancy phenomena while adding supple-
mentary constraints given by M f . In addition, we remark that for the MPC control
laws designed with the feasible set � = conv(R) to be positively invariant, these
constraints (Steps 6-9) can be further omitted as long as the initial state x0 ∈ �. This
may reduce the complexity of the formulation in implicit MPC implementations.

This algorithmic procedure first retrieves theminimal half-space representation of
the set �unsat

[xT z uT ]T , potentially useful for the IpCP problem formulation, and given by
an unbounded polyhedron�min (Steps 1–6). Feasibility of this set is further provided
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through a restriction imposed on its parameter subspace (Step 7). Additional redun-
dant constraints that may emerge at this point are effectively removed via Step 8. The
resulting constraint set is thus given by �̃ (Step 10). Now, recall that, geometrically,
each active constraint corresponds to a hyperplane of dimension nx + nu . Therefore,
we are interested in the constraints corresponding to the supporting hyperplanes
of �̃ which contain the nx -faces whose orthogonal projection onto R

nx retrieves
the parameter space partition R associated with the optimal PWA function κ(x).
This is indeed not quite the case here, since Proj

Rnx +nu �̃ (or Proj
Rnx +1�̃—affinely

equivalent polyhedron to R̃) is formed as a convex extension of Proj
Rnx +nu �

unsat
[xT z uT ]T

(Proj
Rnx +1�unsat

[xT z uT ]T , respectively) over
⋃

i∈Isat
Ri , bounded by the restriction in the

parameter space Rnx imposed by the feasible set � = dom(κ(x)). It follows that the
explicit optimal solution (κ̃(x), R̃) to thusly cast “inverse” problem is not equivalent
anymore, in the sense that κ̃(x) does not coincide with the original PWA feedback
κ(x), namely in its saturated portions defined over RIsat . The cell complex R̃ in
this way inherits a collection of regions with similar (or equivalent, if

⋃
i∈Iunsat

Ri is
convex) partitioning as RIunsat .

The following theorem summarizes the minimal formulation of an extended IpLP
problem resulting directly from Algorithm 3.1.

Theorem 3.3 The image via orthogonal projection onto R
nu of the optimal solution

to the following optimization problem

min
[z uT ]T

z s.t. [xT z uT ]T ∈ �̃ (3.15)

where �̃ is obtained from Algorithm 3.1, is a suitable augmentation of the given
continuous PWA function κ(x) : � → R

nu , denoted as κ̃(x) and associated with a
convexly liftable cell complex R̃ = {R̃ j } j∈IR̃

.

Proof Follows directly from Algorithm 3.1 and from Definition3.5 of κ̃(x). �

As implied by Theorem3.3, solution of LP (3.15) renders a suitable augmentation
κ̃(x) of the original piecewise affine function κ(x). The augmented function, how-
ever, cannot be readily applied as an explicit receding horizon MPC feedback since,
in general, κ̃(x) �= κ(x) for x ∈ RIsat . Therefore, to achieve the equivalence of the
two, we adopt the concept of a simple clipping filter proposed in [10], and recalled
here as follows:

Theorem 3.4 ([10]) Consider a saturated continuous PWA function κ(x) and its
suitable augmentation κ̃(x) obtained per Theorem3.3. Let

φ(κ̃(x)) := max
{
κ,min {κ̃(x),κ}} (3.16)

Then the equivalence φ(κ̃(x)) = κ(x) is established for all x ∈ dom(κ(x)).

Proof Straightforward with respect to Definition3.5; can be found in [10]. �
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Remark 3.2 As outlined in Sect. 3.5.1, the above derived procedure is clearly valid
for single-input systems. However, the dimension of κ(x) in Problem3.1 is not
necessarily equal to 1, in fact, it can be extended for the case when κ(x) is a vector-
valued function with nu > 1. In that case, Definitions3.4, 3.5, and Theorem3.4 need
to be slightlymodified in an adequate manner to account for this fact; for more details
see [10].

Finally, in Algorithm 3.2 we summarize the proposed constructive IpLP-based
procedure towards recovering a suitable augmentation of a given continuous piece-
wise affine function, which when passed through a clipping filter represents the
solution to Problem3.1.

Algorithm 3.2 Extended IpLP with clipping
INPUT: Saturated continuous PWA function κ(x) defined over a, possibly, convexly non-liftable

polyhedral partition/cell complex R = {Ri }i∈IR
of a polytope � ⊂ R

nx .
OUTPUT: Suitable augmentation κ̃(x) and equivalent replacement φ(κ̃(x)), defined over a con-

vexly liftable cell complex R̃ = {R̃ j
}

j∈IR̃
.

1: Obtain the index set Iunsat containing indices of unsaturated regions.
2: Compute the gains of convex lifting for the possibly non-convex, yet convexly liftable, collection

of unsaturated regions RIunsat via Algorithm 3.1 (Steps 1 to 3) in [15].
3: Construct the set �unsat

[xT z uT ]T defined over RIunsat , as stated in Theorem5.3 in [13].

4: Form a new constraint set �̃ associated with R̃, as described in Algorithm 3.1.
5: Formulate and solve an extended IpLP problem with constraints on x, z, u given by the polytope

�̃ to obtain: [
z̃∗
ũ∗

]
= argmin

[z uT ]T
z s.t. [xT z uT ]T ∈ �̃.

6: Extract the appropriate sub-component of the above optimal vector:

ũ∗ = Proj
Rnu

[
z̃∗
ũ∗

]
= κ̃(x)

to obtain a suitable augmentation κ̃(x)of the givenPWAfunctionκ(x), definedover a rearranged,
convexly liftable cell complex R̃.

7: Design a clipping filter φ(·) as per Theorem3.4 to maintain equivalence between κ̃(x) and κ(x).

3.6 A Case Study with Implication in Low-Complexity
eMPC

The main aim of this section is to illustrate the proposed constructive procedure via a
case studyMPC problem. It is shown that by executing all the steps of Algorithm 3.2,
i.e., formulating and solving an extended IpLP problem with clipping, we obtain a
performance-lossless replacement of the receding horizonMPC feedback associated
with the original control problem. In addition, we perform an analysis to assess the
computational complexity of the scheme as well as the structural complexity of the
recovered eMPC controller.
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The example is taken fromanactive vibration control task [21],where the objective
is to attenuate vibrations of a flexible cantilever beam, described by the following
experimentally identified state-space model:

x(k + 1) =
[
0.867 1.119

−0.214 0.870

]
x(k) +

[
9.336e−4
5.309e−4

]
u(k)

y(k) = [−0.553 −0.705
]

x(k)

(3.17)

where the output of the model is the beam tip deflection in mm, and the input is the
direct actuator voltage in V. Control inputs required to steer the system (3.17) into
equilibrium can be computed by solving the following optimization problem:

min
u0,...,uN−1

xT
N PxN +

N−1∑

k=0

[
xT

k Qxk + Ru2
k

]

s.t. x0 = x(k)

xk+1 = Axk + Buk, k = 0, . . . , N − 1

uk ∈ U, k = 0, . . . , N − 1

xN ∈ X f

(3.18)

subject to constraints |uk | ≤ 120V. The MPC problem(3.18) was formulated with
Q = CT C , R = 1e−4, and P and X f designed such that closed-loop stability is
guaranteed, i.e., by setting P to the solution of DARE and using a positive control
invariant terminal set X f . Next, it was recast and solved as a pQP. The explicit MPC
feedback κ(x) for different horizon lengths N was obtained using MPT Toolbox [8].
Each resulting PWA solution u∗

0(x) = κ(x) was subsequently post-processed using
the extended IpLP procedure described by Algorithm 3.2.

Table3.1 reports the results obtained by the proposed extended IpLP procedure,
marked by (·b), compared to the standard explicit solution via parametric quadratic
programming, denoted as (·a), used for the solution of (3.18) for different lengths
of prediction horizon N ∈ {10, 20, 30, 40, 50}. The complexity of the IpLP-based
scheme is expressed in terms of the number of regions of the resulting eMPC con-
troller, and the number of constraints (half-spaces defining the constraint set �̃) in
LP (3.15). As an example, the standard MPC problem needs 90 constraints with
the horizon of length 40 to obtain the PWA control law shown in Fig. 3.1, while the
formulation of IpLPwith clipping requires 641 constraints (551 non-redundant “gen-
eral” constraints and additional 90 constraints to conserve the solution’s structure)
and exactly two prediction steps to yield the same result, see Fig. 3.2. Moreover,
one may also notice the complexity reduction in the number of polytopic regions
of the underlying state-space partition. In this particular case, the recovered parti-
tion consists of 814 regions instead of 3397 regions of the original partition, which
corresponds to the reduction by a factor of more than four.

The total memory footprint of the original function κ for the investigated scenario
with 3397 regions is 408kB. The recovered function κ̃, on the other hand, requires
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Table 3.1 Selected data comparing equivalent (in terms of the resulting feedback law) formulations
of the case study MPC problem for different lengths of prediction horizon N

Formulation # of regions # of constraints†

N R Runsat R̃ ℵ(�) ℵ(A)

(1a) Standard MPC
problem

10 257 75 – 30 – –

(1b) Extended IpLP
w. clipping

2 – – 127 – 118 30

(2a) 20 913 159 – 50 – –

(2b) 2 – – 320 – 232 50

(3a) 30 1955 259 – 70 – –

(3b) 2 – – 557 – 384 70

(4a) 40 3397 367 – 90 – –

(4b) 2 – – 811 – 551 90

(5a) 50 5231 367 – 110 – –

(5b) 2 – – 1063 – 774 110
†ℵ(·) denotes the number of half-spaces defining a polyhedral set. For the case of formulation (·b),
� = �min and A = P(M f ) (see Algorithm 3.1)

Fig. 3.1 Surface plot of the
explicit MPC control law we
aim to recover (3397 regions,
N = 40)
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105kB, with additional 16 bytes to store the clipping filter φ(·). This indicates reduc-
tion of memory consumption by a factor of 3.8. The worst-case computational effort
needed to evaluate κ is 54332 FLOPs, which can be by employing κ̃ reduced, ade-
quately, to 14278 FLOPs (14272 FLOPs to perform point location by sequential
search and 6 FLOPs to evaluate φ(κ̃(x))).

To review the complexity also from another practical point of view, Table3.2
reports the CPU times spent on main algorithmic routines of the proposed extended
IpCP approach and its generic pCP counterpart. The total time of the former may
be split among four consecutive parts, in fact, represented by Steps 2 to 5 of Algo-
rithm3.2. Clearly, the last two steps represent the computationally most demanding
procedures, which also scale more significantly as N increases. However, when
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Fig. 3.2 Surface plot of the recovered eMPC controller (811 regions, N = 2). Result of the clipping
procedure is shown in orange colour (illustration only)

Table 3.2 Remark on computation times of the main algorithmic features for the respective for-
mulation of the case study MPC example

Formulation Task execution time (s)†

N = 10 N = 20 N = 30 N = 40 N = 50

Standard MPC problem pQP 6.27 24.21 91.62 171.87 356.19

Extended IpLP with clipping convex
lifting (Algorithm 3.2, step 2)

0.11 0.28 0.50 0.62 1.75

Facet enumeration (Algorithm 3.2, step 3) 0.05 0.07 0.12 0.17 0.23

Constraint set (Algorithm 3.2, step 4) 2.83 14.98 38.31 74.29 135.31

pLP (Algorithm 3.2, step 5) 1.67 7.33 24.46 90.81 150.48
†All the computations were performed on a 2.2 GHz Core i5 CPU with 4GB of RAM

summed up, the algorithmic features of extended IpCP, including the core pLP itself,
are still shown to require less offline time than the original explicit solution (pQP).

Remark 3.3 Note that the two approachesmay only be compared in terms ofmemory
consumed by storage of the polyhedral partition along with the associated PWA
function, or eventually the time required for online evaluation of the controller—
both reduced here w.r.t. the data in Table3.1. However, this is not the case for the
offline pre-processing time spent on solving the respective pCPs since the entire IpCP
procedure assumes the existence of the original explicit controller. Yet, such a study
can shed more light on computational effort of the proposed approach with respect
to the generic one, and in this way allow to analyse its viability.

Finally, we present a brief illustration of the aforementioned results. In par-
ticular, Fig. 3.1 shows the explicit optimal solution to the receding horizon MPC
problem(3.18) for N = 40. The optimal feedback takes form of a continuous PWA
function κ(x) defined over a state-space partition R. This cell complex is not con-
vexly liftable due to the hyperplane arrangement of the two large collections of
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polytopes representing the controller regions over which κ(x) is saturated at κ or κ.
This solution thus presents a candidate for the extended IpLP scheme. Following the
algorithmic procedure presented in Sect. 3.5.1 we obtain the solution of an extended
inverse MPC problem with N = 2, which is the PWA function κ̃(x) depicted in
Fig. 3.2. It is defined over a similar recovered partition R̃, which is a convexly liftable
cell complex. The optimality of κ̃(x) over its entire domain of validity is achieved
by passing it through a simple clipping filter φ(·).

The resulting low-complexity feedback law can be readily and conveniently used
within online/offline explicit MPC implementations while preserving all the perfor-
mance, closed-loop stability and feasibility properties. We note that the proposed
approach may be analogously exploited in implicit MPC schemes, at each sampling
instant solving the equivalent “horizon 2” problem with the constraint set �min (cf.
Remark3.1); hence revealing the full potential efficiency of the convex liftings-based
inverse optimality approach in practical model predictive control applications.

3.7 Conclusion

The chapter presents an approach exploiting the inverse parametric convex program-
ming based upon the concept of convex lifting. As shown recently, for any continuous
PWA function defined over a polyhedral partition, onemay find an appropriate equiv-
alent function by solving another parametric linear/quadratic programming problem
with a supplementary variable of dimension equal to 1. Applying this idea to the
model predictive control framework allowed to further state that any linear MPC
formulation has an equivalent inverse reformulation with two steps of the prediction
horizon. This study, in particular, deals with the invertibility of the PWA functions
resulting from pQP optimization problems, which is in fact seldom guaranteed due
to its structural properties. Despite being already proven that this issue can always be
treated by a suitable sub-partitioning of the corresponding parameter space partition,
herein the emphasis has been put mainly on devising a technique which would not
increase the controller’s explicit representation in terms of the polytopic regions.
On the contrary, an algorithmic extension to the inverse parametric linear program-
ming is presented, which in addition to the primary objective—to allow to target a
class of common practical problems yielding convexly non-liftable cell complexes
containing saturated regions, emerged to be capable of producing a lesser number
of regions. This implies an expected applicability of the proposed scheme within
implementations of explicit MPC, as compared to the generic convex liftings-based
IpCP. It is evidenced by the presented numerical analysis which suggests that the
inverse optimality concept applied to a complex but computable eMPC may lead
to a lower complexity explicit control law. Subject of ongoing research remains the
investigation of complexity bounds for the inverse optimality formulation. Apart
from a valuable theoretic insight, the clarification of this topic shall yet improve
computational tools necessary to fully exploit the efficacy of this control design
approach.
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Chapter 4
Distributed Robust Model Predictive Control
of Interconnected Polytopic Systems

Alexandra Grancharova and Sorin Olaru

Abstract A suboptimal approach to distributed robust MPC for uncertain systems
consisting of polytopic subsystems with coupled dynamics subject to both state and
input constraints is proposed. The robustness is defined in terms of the optimization
of a cost function accumulated over the uncertainty and satisfying state constraints
for a finite subset of uncertainties. The approach reformulates the original central-
ized robust MPC problem into a quadratic programming problem, which is solved by
distributed iterations of the dual accelerated gradient method. A stopping condition
is used that allows the iterations to stop when the desired performance, stability, and
feasibility can be guaranteed. This allows for the approach to be used in an embed-
ded robust MPC implementation. The developed method is illustrated on a simu-
lation example of an uncertain system consisting of two interconnected polytopic
subsystems.

Keywords Predictive control · Distributed control · Robust control · Distributed
optimization · Accelerated gradient method · Interconnected systems · Polytopic
systems · Constraints

4.1 Introduction

Model predictive control (MPC) involves the resolution at each sampling instant of a
finite horizon optimal control problem subject to the system dynamics, and state and
input constraints. Implementing in a centralized way MPC problem for large-scale
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systems may be impractical due to the topology of the plant, the need for extensive
data communication and the large number of decision variables involved in the opti-
mization. Recently, several approaches for decentralized and parallel implementation
of MPC algorithms have been proposed, [3, 5, 16, 18].

In [1, 8, 10, 19, 20], approaches for distributed/decentralized MPC for systems
consisting of linear interconnected subsystemshave beendeveloped.The approach in
[8] is based on the dual decompositionmethods [4, 6], where large-scale optimization
problems are handled by using Lagrange multipliers to relax the couplings between
the subproblems. In [10], a distributed optimization algorithm based on accelerated
gradient methods using dual decomposition is proposed and its performance is eval-
uated on optimization problems arising in distributed MPC. Also, approaches for
distributed MPC for systems composed of several nonlinear subsystems have been
proposed (e.g., [7, 11, 14, 17]).

There are only a few papers considering the problem of robust distributed MPC
of polytopic uncertain systems. Thus, in [22], a distributed MPC algorithm for poly-
topic systems subject to actuator saturation is discussed, where the distributed MPC
controller is designed by solving a linear matrix inequality optimization problem.
In [2], an online distributed MPC algorithm that deals explicitly with model errors
is proposed. The algorithm requires decomposing the entire system into subsys-
tems, which are coupled through their inputs. Only constraints on the inputs are
considered and the upper bound on the robust performance objective is minimized
by using a time-varying state-feedback controller for each subsystem. In [12], an
approach to distributed robust MPC for uncertain systems consisting of polytopic
subsystems is proposed, which applies the dynamic dual decomposition method [8]
to reformulate the centralized robust MPC problem into a distributed robust MPC
problem. The approach is suboptimal and is based on distributed online optimiza-
tion.

In this chapter, a new approach to distributed robust MPC for uncertain systems
consisting of interconnected polytopic subsystems is proposed that differs from the
one in [12] in two aspects. First, it does not involve an exact online solution of
quadratic programming (QP) subproblems. Instead, a suboptimal solution of the
QP problem resulting from the centralized robust MPC formulation is obtained by
performing distributed iterations of the dual accelerated gradient method developed
for linear MPC without uncertainty [10]. This would lead to reduced complexity of
the online computations and simple software and hardware implementation. Second,
a stopping condition, similar to that in [9], is used that allows the iterations to stop
when the desired performance, stability, and feasibility can be guaranteed.



4 Distributed Robust Model Predictive Control … 75

4.2 Formulation of Robust Model Predictive Control
Problem for Interconnected Polytopic Systems

Consider, a system composed by the interconnection of M linear uncertain subsys-
tems described by the following polytopic discrete-time models:

xi(t + 1) = Ai(t)xi(t) + Bi(t)ui(t) +
M∑

j=1, j �=i

Aijxj(t) +
M∑

j=1,j �=i

Bijuj(t)

[Ai(t), Bi(t)] ∈ Ωi

i = 1, 2, . . . , M (4.1)

where xi(t) ∈ R
ni and ui(t) ∈ R

mi are the state and control input vectors, related
to the ith subsystem, Ai(t) ∈ R

ni×ni and Bi(t) ∈ R
ni×mi are uncertain time-varying

matrices,Aij ∈ R
ni×nj ,Bij ∈ R

ni×mj , j = 1, 2, . . . , M, j �= i are knownconstantmatri-
ces, and t ∈ Z≥0 is the discrete time. For a polytopic uncertainty description, Ωi,
i = 1, 2, . . . , M are polytopes:

Ωi = Co
{[

A1
i , B1

i ], [A2
i , B2

i ], . . . , [ALi
i , BLi

i

]}
, i = 1, 2, . . . , M (4.2)

where Co{·} denotes convex hull and [Ar
i , Br

i ], r = 1, 2, . . . , Li are its vertices.
The following constraints are imposed on the subsystems:

ui(t) ∈ Ui, xi(t) ∈ Xi, i = 1, 2, . . . , M (4.3)

where Ui and Xi are the admissible sets.
The following assumption is made:

Assumption 4.1 The admissible sets Xi and Ui are bounded polyhedral sets, i.e.,
they are defined by:

Xi = {
xi ∈ R

ni | Cx
i xi ≤ dx

i

}
(4.4)

Ui = {
ui ∈ R

mi | Cu
i ui ≤ du

i

}
(4.5)

and they include the origin in their interior. Here, Cx
i ∈ R

nc,xi ×ni , Cu
i ∈ R

nc,ui ×mi , dx
i ∈

R
nc,xi , du

i ∈ R
nc,ui (nc,xi and nc,ui being the number of constraints imposed on xi and

ui, respectively).

The approach in [9] for distributed solution of MPC problems will be followed.
This requires the introduction of the following tightened constraint sets:

(1 − δ)Xi = {
xi ∈ R

ni | Cx
i xi ≤ (1 − δ)dx

i

}
(4.6)

(1 − δ)Ui = {
ui ∈ R

mi | Cu
i ui ≤ (1 − δ)du

i

}
(4.7)

where δ ∈ (0, 1) is the amount of relative constraint tightening.
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Let x(t) and u(t) denote the overall state and the overall control input, i.e.:

x(t) = [x1(t), x2(t), . . . , xM(t)] ∈ R
n, n =

M∑

i=1

ni (4.8)

u(t) = [u1(t), u2(t), . . . , uM(t)] ∈ R
m, m =

M∑

i=1

mi (4.9)

From (4.3) it follows that the admissible sets for the overall state and the overall
control input areX = X1 × X2 × · · · × XM andU = U1 × U2 × · · · × UM . The
description of the overall system dynamics, corresponding to (4.1) is:

x(t + 1) = (A(t) + Ã)x(t) + (B(t) + B̃)u(t), [A(t), B(t)] ∈ Ω (4.10)

where A(t), B(t), Ã, B̃ are block-matrices:

A(t) = diag{A1(t), . . . , AM(t)}, B(t) = diag{B1(t), . . . , BM(t)}
Ã =

{
Aij, i �= j
0, i = j

}
, B̃ =

{
Bij, i �= j
0, i = j

}
, i, j = 1, . . . , M (4.11)

and Ω = Ω1 × Ω2 × · · · × ΩM . Before formulating the robust MPC problem, a
set Ω̃ is introduced, which is a finite subset of Ω . First, let Ωvert = {[Ar, Br],
r = 1, 2, . . . , L} be the set of vertices of Ω and Ω int = {[AL+j, BL+j] ∈ int(Ω),
j = 1, 2, . . . , K} be a finite set which includes interior points of the set Ω . Then,
the finite set Ω̃ ⊂ Ω is defined as Ω̃ = Ωvert⋃Ω int (the reason for imposing a
dichotomywith respect to the elements of the set Ω̃ will become clear inRemark4.1).
The set Ω̃ is compactly represented as:

Ω̃ = {[
As, Bs

]
, s = 1, 2, . . . , S

}

= {[
diag

{
As

1(t), . . . , As
M(t)

}
, diag

{
Bs
1(t), . . . , Bs

M(t)
}]

, s = 1, 2, . . . , S
}

(4.12)

where S = K + L.
Another assumption is made about the rate of variation of parameters, mainly

with respect to the prediction horizon as it will be shown next in the MPC design.

Assumption 4.2 The uncertain pairs [Ai(t), Bi(t)] ∈ Ωi, i = 1, . . . , M have infre-
quent changes in the sense that [Ai(t), Bi(t)] = const, i = 1, . . . , M for periods of
time, which are not less than Ñ (Ñ ∈ N is supposed to be sufficiently large and will
be related to the prediction horizon).

Further, let [Ai(t), Bi(t)] = [An
i , Bn

i ] ∈ Ωi, i = 1, . . . , M be the matrices corre-
sponding to the nominal operation of the system (4.1). It is supposed that a full
measurement x̄ = [x̄1, x̄2, . . . , x̄M] of the overall state is available at the current time
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t. The robust regulation problem is considered where the goal is to steer the overall
state of the system (4.1) to the origin by minimizing an accumulated cost function
over the uncertainty and guaranteeing the robust feasibility of the control action.
Let N be a finite horizon such that N < Ñ . Under Assumption4.2 it follows that
[Ai(t + k), Bi(t + k)] = const = [Ai, Bi], k = 0, 1, . . . , N , i = 1, . . . , M. Then, for
the current x̄, the robust regulation MPC solves the optimization problem:

Problem P1 (Centralized robust MPC):

V ∗(x̄) = min
Xn, X1,...,XS, U

J(Xn, X1, . . . , XS, U, x̄) (4.13)

subject to xn
t|t = x̄, xs

t|t = x̄, s = 1, . . . , S and:

ui, t+k ∈ (1 − δ)Ui, i = 1, . . . , M, k = 0, 1, . . . , N − 1 (4.14)

xn
i, t+k|t ∈ (1 − δ)Xi, i = 1, . . . , M, k = 1, . . . , N (4.15)

xs
i, t+k|t ∈ (1 − δ)Xi, i = 1, . . . , M, k = 1, . . . , N, s = 1, . . . , S (4.16)

xn
i, t+k+1|t = An

i xn
i,t+k|t + Bn

i ui,t+k +
M∑

j=1, j �=i

Aijxn
j,t+k|t +

M∑

j=1, j �=i

Bijuj,t+k

i = 1, . . . , M, k = 0, 1, . . . , N − 1 (4.17)

xs
i, t+k+1|t = As

i x
s
i,t+k|t + Bs

i ui,t+k +
M∑

j=1, j �=i

Aijxs
j,t+k|t +

M∑

j=1, j �=i

Bijuj,t+k

i = 1, . . . , M, k = 0, 1, . . . , N − 1, s = 1, . . . , S (4.18)

xn
t+k|t = [xn

1, t+k|t, xn
2, t+k|t, . . . , xn

M, t+k|t], k = 0, 1, . . . , N (4.19)

xs
t+k|t = [xs

1, t+k|t, xs
2, t+k|t, . . . , xs

M, t+k|t], k = 0, 1, . . . , N (4.20)

ut+k = [u1, t+k, u2, t+k, . . . , uM, t+k], k = 0, 1, . . . , N − 1 (4.21)

with U = [ut, ut+1, . . . , ut+N ], Xn = [xn
t+1|t, xn

t+2|t, . . . , xn
t+N |t], Xs = [xs

t+1|t,
xs

t+2|t, . . . , xs
t+N |t], s = 1, . . . , S, and the cost function given by:

J(Xn, X1, . . . , XS, U, x̄) = 1

2

N∑

k=0

l
(
xn

t+k|t, x1
t+k|t, . . . , xS

t+k|t, ut+k
)

(4.22)

Here, the predicted states xn
t+k|t and xs

t+k|t are determined according to (4.17)–(4.18),
the accumulated cost l(·) over the uncertainty at stage t + k is defined as:

l
(

xnt+k|t, x1t+k|t, . . . , xS
t+k|t, ut+k

)

=
M∑

i=1

[
‖xni,t+k|t‖2Qi

+ ‖ui,t+k‖2Ri

]
+

M∑

i=1

S∑

s=1

‖xs
i, t+k|t‖2Qi

(4.23)

and Qi, Ri 	 0 are weighting matrices. It should be noted that the satisfaction of the
state constraints (4.15)–(4.16) guarantees a robustness of the solution in sense that
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the state constraints in (4.3) will be satisfied for the nominal dynamics of the system
as well as for the worst-case uncertainty realizations in Ω̃ .

The robust MPC problem P1 can be considered as an approximation of the fol-
lowing robust infinite horizon optimal control problem:

Problem P2 (Robust infinite horizon optimal control):

V ∞(x̄) = min
u

[
M∑

i=1

∞∑

t=0

[
‖xi(t)

n‖2Qi
+ ‖ui(t)‖2Ri

]
+

M∑

i=1

S∑

s=1

∞∑

t=0

‖xs
i (t)‖2Qi

]

(4.24)

with initial state x(0) = x̄ and:

ui(t) ∈ (1 − δ)Ui, i = 1, 2, . . . , M for all t (4.25)

xi(t)
n ∈ (1 − δ)Xi, i = 1, 2, . . . , M for all t (4.26)

xi(t)
s ∈ (1 − δ)Xi, i = 1, 2, . . . , M, s = 1, 2, . . . , S for all t (4.27)

In (4.24), (4.26), (4.27), xi(t)n is the state trajectory of the system (4.1) for
[Ai(t), Bi(t)] = [An

i , Bn
i ], and xs

i (t) is the state trajectory obtained with [Ai(t),
Bi(t)] = [As

i , Bs
i ], s = 1, 2, . . . , S.

In Sect. 4.3.2, the infinite horizon performance of the distributed robust MPC is
compared to the optimal infinite horizon cost V ∞(x̄). It is supposed that V ∞(x̄) is
finite which implies the stability of the centralized robust MPC.

Remark 4.1 By assuming that [A(t + k), B(t + k)] = const = [A, B], k = 0,
1, . . . , N , the predicted overall state is:

xt+k|t = (A + Ã)kx +
k−1∑

j=0

(A + Ã)j(B + B̃)ut+k−1−j (4.28)

Then, the state constraints xt+k|t ∈ X , k = 1, 2, . . . , N will be in general nonconvex
with respect to the uncertainmatricesA andB, because the predicted state is nonlinear
with respect to them. Therefore, considering only the vertices of the sets Ω when
requiring robust feasibilitymaynot be sufficient. For this reason, the finite uncertainty
set Ω̃ should include some interior elements in addition to the vertices. The richer
the set of interior points, the more reduced the level of suboptimality with respect to
the optimization problem corresponding to [A, B] ∈ Ω .

Remark 4.2 In the present work, the terminal constraints are dropped with respect
to a classical robust MPC formulation. The main issue we concentrate on is the
reformulation of (4.13)–(4.21) in the form of a distributed optimization. As such,
in the next sections, we will consider that (4.13)–(4.21) represent an acceptable
centralized control in terms of stability, performance, and feasibility.
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4.3 Distributed Optimization Approach to Robust MPC

4.3.1 Representation of the Robust MPC Problem as a
Distributed Optimization Problem

By stacking all decision variables into one vector Y ∈ R
nY (with the dimension given

by nY = ∑M
i=1[N(ni + mi) + SNni]):

Y =[
1st

subsystem

{
xn
1, t+1|t, u1, t, xn

1, t+2|t, u1, t+1, . . . , xn
1, t+N |t, u1, t+N−1,

x1
1, t+1|t, . . . , x1

1, t+N |t, . . . , xS
1, t+1|t, . . . , xS

1, t+N |t,
...

Mth
subsystem

{
xn

M, t+1|t, uM, t, xn
M, t+2|t, uM, t+1, . . . , xn

M, t+N |t, uM, t+N−1,

x1
M, t+1|t, . . . , x1

M, t+N |t, . . . , xS
M, t+1|t, . . . , xS

M, t+N |t

]

(4.29)

the optimization problem (4.13)–(4.21) can be written as the following quadratic
programming (QP) problem:

Problem P3 (QP problem):

V ∗(x̄) = min
Y

1

2
YTH̄Y (4.30)

subject to ĀY = B̄x̄ (4.31)

C̄Y ≤ (1 − δ)d̄ (4.32)

Here, H̄ ∈ R
nY×nY , Ā ∈ R

nĀ×nY , B̄ ∈ R
nĀ×nx̄ , C̄ ∈ R

nC̄×nY , d̄ ∈ R
nC̄ (nĀ = ∑M

i=1

(S + 1)(N − 1)ni,nx̄ = ∑M
i=1 ni,nC̄ = ∑M

i=1(S + 1)N(nc,xi + nc,ui)). In (4.30)–(4.32)
we have:

H̄ = diag{H̄1, H̄2, . . . , H̄M}
Ā = [

Ā1 | Ā2 | . . . | ĀM
]T

, B̄ = [
B̄1 | B̄2 | . . . | B̄M

]T

C̄ = [
C̄1 | C̄2 | . . . | C̄M

]T
, d̄ = [

d̄1 | d̄2 | . . . | d̄M
]T

(4.33)

For the ith subsystem the matrix H̄i ∈ R
nYi ×nYi (nYi = N(ni + mi) + SNni) is defined

as follows:

H̄i = diag{Wi, Wi, . . . , Wi︸ ︷︷ ︸
N elements

,

S elements
︷ ︸︸ ︷
Qi, Qi, . . . , Qi︸ ︷︷ ︸

N elements

, . . . , Qi, Qi, . . . , Qi︸ ︷︷ ︸
N elements

} (4.34)



80 A. Grancharova and S. Olaru

where Wi = [ Qi 0
0 Ri

]
, and the matrices Āi ∈ R

nĀi
×nY , B̄i ∈ R

nĀi
×nx̄ , C̄i ∈ R

nC̄i
×nY and

the vector d̄i ∈ R
nC̄i , (nĀi

= (S + 1)(N − 1)ni, nC̄i
= (S + 1)N(nc,xi + nc,ui)), i =

1, 2, . . . , M are:

Āi =
[
Ā
n
i | Ā

1
i | . . . | Ā

S
i

]T
, B̄i =

[
B̄
n
i | B̄

1
i | . . . | B̄

S
i

]T
, C̄i = diag{C̄n

i , C̄
1
i , . . . , C̄

S
i }

d̄i = [dx,u
i , dx,u

i , . . . , dx,u
i︸ ︷︷ ︸

N elements

,

S elements
︷ ︸︸ ︷
dx,u

i , dx,u
i , . . . , dx,u

i︸ ︷︷ ︸
N elements

, . . . , dx,u
i , dx,u

i , . . . , dx,u
i︸ ︷︷ ︸

N elements

] (4.35)

where dx,u
i = [

dx
i , du

i

]
. In (4.35) we have:

Ā
n
i =

⎡

⎢
⎢
⎢
⎢
⎣

Ā
n
i,1,1 Ā

n
i,1,2 ... Ā

n
i,1,M

Ā
n
i,2,1 Ā

n
i,2,2 ... Ā

n
i,2,M

...
...

. . .
...

Ā
n
i,N−1,1 Ā

n
i,N−1,2 ... Ā

n
i,N−1,M

⎤

⎥
⎥
⎥
⎥
⎦

, B̄
n
i =

⎡

⎢
⎢
⎢
⎣

−Ai1 −Ai2 ... −An
i ... −AiM

0 0 ... 0 ... 0
...

...
. . .

...
. . .

...

0 0 ... 0 ... 0

⎤

⎥
⎥
⎥
⎦

(4.36)

Ā
s
i =

⎡

⎢⎢⎢⎢
⎣

Ā
s
i,1,1 Ā

s
i,1,2 ... Ā

s
i,1,M

Ā
s
i,2,1 Ā

s
i,2,2 ... Ā

s
i,2,M

...
...

. . .
...

Ā
s
i,N−1,1 Ā

s
i,N−1,2 ... Ā

s
i,N−1,M

⎤

⎥⎥⎥⎥
⎦

, B̄
s
i =

⎡

⎢⎢⎢
⎣

−Ai1 −Ai2 ... −As
i ... −AiM

0 0 ... 0 ... 0
...

...
. . .

...
. . .

...

0 0 ... 0 ... 0

⎤

⎥⎥⎥
⎦

i = 1, 2, . . . , M, s = 1, 2, . . . , S (4.37)

C̄
n
i = C̄

1
i = · · · = C̄

S
i = diag{Cx,u

i , Cx,u
i , . . . , Cx,u

i︸ ︷︷ ︸
N elements

} (4.38)

where Cx,u
i =

[
Cx

i 0
0 Cu

i

]
. In (4.36) Ā

n
i,k,j, k = 1, . . . , N − 1, j = 1, . . . , M depend on

the matrices An
i , Bn

i , Aij, Bij, j = 1, . . . , M of the system (4.1) and in (4.37) Ā
s
i,k,j,

k = 1, . . . , N − 1, j = 1, . . . , M, s = 1, . . . , S depend on the matrices As
i , Bs

i , Aij,
Bij, j = 1, . . . , M, s = 1, . . . , S of the system (4.1).

The robust MPC problem (4.13)–(4.21) is solved distributedly by applying the
dual accelerated gradient algorithm in [10]. The distribution is enabled by solving the
dual problem to (4.30)–(4.32),which is created by introducing dual variablesλ ∈ R

nĀ

for the equality constraints (4.31) and dual variables μ ∈ R
nC̄ for the inequality

constraints (4.32). It is shown in [10] that the dual problem can be written as:

max
λ, μ≥0

D(x̄,λ,μ) (4.39)
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where D(x̄,λ,μ) is the dual cost function:

D(x̄, λ, μ) = −1

2
(ĀT

λ + C̄T
μ)TH̄−1

(ĀT
λ + C̄T

μ) − λTB̄x̄ − μTd̄(1 − δ) (4.40)

The distributed algorithm in [10] is applied to solve the QP problem (4.30)–(4.32).
The algorithm is a dual accelerated gradientmethod described by the following global
iterations:

Yr = −H̄
−1

(Ā
T
λr + C̄

T
μr) (4.41)

Ȳ
r = Yr + r − 1

r + 2
(Yr − Yr−1) (4.42)

λr+1 = λr + r − 1

r + 2
(λr − λr−1) + 1

L
(ĀȲ

r − B̄x̄) (4.43)

μr+1 = max

(
0, μr + r − 1

r + 2
(μr − μr−1) + 1

L
(C̄Ȳ

r − d̄(1 − δ))

)
(4.44)

Here, r is the iteration number and L = ‖[ĀT
, C̄

T]TH̄
−1[ĀT

, C̄
T]‖ is the Lipschitz

constant to the gradient of the dual function (4.40). In order to distribute the
dual accelerated gradient iterations (4.41)–(4.44), the following vector Yi ∈ R

nYi

(nYi = N(ni + mi) + SNni) of decision variables, associated to the ith subsystem is
introduced:

Yi =
[

xn
i, t+1|t, ui, t, xn

i, t+2|t, ui, t+1, . . . , xn
i, t+N |t, ui, t+N−1,

x1
i, t+1|t, . . . , x1

i, t+N |t, . . . , xS
i, t+1|t, . . . , xS

i, t+N |t

]
(4.45)

Also, letλi ∈ R
nĀi andμi ∈ R

nC̄i be the dual variables for the equality and the inequal-
ity constraints, related to the ith subsystem. Then, the distributed iterations of the
dual accelerated gradient method are:

Yr
i = −H̄

−1
i

(
Ā

T
i λr + C̄

T
i μr

i

)
(4.46)

Ȳ
r
i = Yr

i + r − 1

r + 2

(
Yr

i − Yr−1
i

)
(4.47)

λr+1
i = λr

i + r − 1

r + 2

(
λr

i − λr−1
i

)+ 1

L

(
ĀiȲ

r − B̄ix̄i

)
(4.48)

μr+1
i = max

(
0, μr

i + r − 1

r + 2

(
μr

i − μr−1
i

)+ 1

L

(
C̄iȲ

r
i − d̄i(1 − δ)

))
(4.49)

i = 1, 2, . . . , M (4.50)

Note that because of the couplings in the dynamics models of the subsystems, in
(4.46) the computation of the decision variables Yr

i for the ith subsystem requires to
dispose of information about the dual variables λ for the whole system. For the same
reason, in (4.48) the update of the dual variables λi associated for the ith subsystem
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uses the information about the decision variables Ȳ
r
for the entire system. Since

there is no couplings in the control input and state constraint of the subsystems (cf.
(4.3)), in (4.49) the update of the dual variables μi for the ith subsystem requires
information only about the decision variables Ȳ

r
i for this subsystem.

4.3.2 Algorithm for Distributed Robust MPC

As pointed out in [9], in distributed MPC it is important to keep the number of
iterations in the solution algorithm, i.e., the amount of communication between sub-
systems, as small as possible. At the same time, the number of iterations must be
large enough to give a feasible solution to the optimization problem and to guarantee
stability of the closed-loop system and the desired performance. In [9], a stopping
condition to the distributed optimization algorithm that guarantees these properties is
presented, based on a novel adaptive constraint tightening approach. Here, the same
approach is applied to solve distributedly the optimization problem (4.30)–(4.32),
which results from the centralized robust MPC problem formulation (4.13)–(4.21).

Let Yr be the vector of decision variables obtained at the rth iteration of update
routine resumed by the steps (4.46)–(4.49). Denote by Ur the control input trajec-
tory for the overall system, corresponding to Yr , i.e., Ur = [ur

t , ur
t+1, . . . , ur

t+N−1].
Then, according to the receding horizon policy the robust MPC law applied at time
t is uMPC(t) = [u1,MPC(t), . . . , uM,MPC(t)] = ur

t and the dynamics of the uncertain
closed-loop system is described by:

xi(t + 1) = Ai(t)xi(t) + Bi(t)ui,MPC(t) +
M∑

j=1, j �=i

Aijxj(t) +
M∑

j=1, j �=i

Bijuj,MPC(t)

[Ai(t), Bi(t)] ∈ Ωi, i = 1, 2, . . . , M (4.51)

Given, the initial state x(0) = x̄ of the system (4.51), the infinite horizon performance
of the robust MPC law is defined as:

V ∞
MPC(x̄) =

M∑

i=1

∞∑

t=0

[‖xi(t)
n‖2Qi

+ ‖ui,MPC(t)‖2Ri

]+
M∑

i=1

S∑

s=1

∞∑

t=0

‖xs
i (t)‖2Qi

(4.52)

Here, xi(t)n is the state trajectory of the system (4.51) corresponding to [Ai, Bi] =
[An

i , Bn
i ], while xs

i (t) is the state trajectory obtained with [Ai, Bi] = [As
i , Bs

i ], s =
1, 2, . . . , S.

The infinite horizon performance of the robust MPC law will be compared to the
optimal infinite horizon cost V ∞(x̄) obtained by solving the robust infinite horizon
optimal control problem P2 (cf. Sect. 4.2). The relation between V ∞

MPC(x̄) and V ∞(x̄)

is obtained by using the results of the relaxed dynamic programming [13]. Based
on such a construction, it can be claimed that for a given performance parameter
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α ∈ (0, 1] a decrease in the optimal cost function (as defined in (4.13)) along the
evolution of the state of system (4.51):

V ∗(x(t)) ≥ V ∗(x(t + 1)) + αl(x(t)n, x(t)1, . . . , x(t)S, uMPC(t))

∀[A(t), B(t)] ∈ Ω (4.53)

for every t ≥ 0, ensure the robust asymptotical stability of the closed-loop system
(4.51) with performances that satisfy:

αV ∞
MPC(x̄) ≤ V ∞(x̄) (4.54)

In order to apply the stopping condition from [9], let us define the minimum of the
stage cost l for given initial state x(0) = x̄ of the system (4.1) as:

l∗(x(t)n, x(t)1, . . . , x(t)S) = min
u∈U

l(x(t)n, x(t)1, . . . , x(t)S, u(t)) (4.55)

where x(t)n = x(t)1 = · · · = x(t)S = x̄.
Let Ur = [ur

t , ur
t+1, . . . , ur

t+N−1] (extracted from Yr), λr and μr be the control
input trajectory and the dual variables obtained at the rth iteration of performing
the steps (4.46)–(4.49). Denote with Ur

q = [ur
t+1, ur

t+2, . . . , ur
t+N−1, 0] the shifted

control input sequence. Further, define the primal cost as follows:

P(x̄, U) =

⎧
⎪⎨

⎪⎩

∑N
k=0 l(xnt+k|t, x1t+k|t, . . . , xS

t+k|t, ut+k), if ut+k ∈ U , k = 0, 1, . . . , N − 1

and xnt+k|t ∈ X , xs
t+k|t ∈ X , k = 1, 2, . . . , N, s = 1, 2, . . . , S

∞ otherwise

(4.56)

In (4.56), xn
t+k|t and xs

t+k|t , s = 1, . . . , S are the predicted states obtained according
to (4.17)–(4.20). Let ε > 0, ε < α be the specified relative optimality tolerance.
The stopping condition in [9] is modified and it consists in adapting the amount of
constraint tightening δ to satisfy:

δd̄
T
μr ≤ εl∗(x(t)n, x(t)1, . . . , x(t)S) (4.57)

and

D(x̄, λr , μr) ≥ P
(

Anx̄ + Bnur
t , Ur

q

)
+ αl

(
x(t)n, x(t)1, . . . , x(t)S, ur

t

)
(4.58)

D(x̄, λr , μr) ≥ P
(

Asx̄ + Bsur
t , Ur

q

)
+ αl

(
x(t)n, x(t)1, . . . , x(t)S, ur

t

)

s = 1, 2, . . . , S (4.59)

Then it will hold that:

V ∗(x̄) ≥ V ∗ (Anx̄ + Bnur
t
)+ (α − ε)l

(
x(t)n, x(t)1, . . . , x(t)S, ur

t

)
(4.60)

V ∗(x̄) ≥ V ∗ (Asx̄ + Bsur
t
)+ (α − ε)l

(
x(t)n, x(t)1, . . . , x(t)S, ur

t

)

s = 1, 2, . . . , S (4.61)
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Then it follows that:

(α − ε)V ∞
MPC(x̄) ≤ V ∞(x̄)

for [A, B] = [An, Bn] or [A, B] = [As, Bs], s ∈ {1, 2 . . . , S} (4.62)

The following algorithm is a slight modification of the algorithm in [9].

Algorithm 4.1 Robust MPC by distributed iterations
1. Given α, δinit and ε. Let t = 0 and Y(0) = 0, λ(0) = 0, μ(0) = 0.
2. Let the state at time t be x(t) = x̄ = [x̄1, . . . , x̄M ].
3. Set r = 0, l = 0, and δ = δinit.
4. Initialize algorithm (4.46)–(4.50) with Y0 = Y−1 = Y(t), λ0 = λ−1 = λ(t),

μ0 = μ−1 = μ(t).
5. Do
6. If D(x̄,λr,μr) ≥ P(x̄, Ur) − ε

l+1 l∗(x(t)n, x(t)1, . . . , x(t)S)

7. or δd̄
T
μr > εl∗(x(t)n, x(t)1, . . . , x(t)S)

8. Let δ := δ/2, l := l + 1, r = 0.
9. end if
10. Run Δr iterations of (4.46)–(4.50).
11. Let r := r + Δr.
12. while D(x̄,λr,μr) ≥ P(Anx̄ + Bnur

t , Ur
q) + αl(x(t)n, x(t)1, . . . , x(t)S, ur

t ),
D(x̄,λr,μr) ≥ P(Asx̄ + Bsur

t , Ur
q) + αl(x(t)n, x(t)1, . . . , x(t)S, ur

t ),
s = 1, 2, . . . , S

and δd̄
T
μr ≤ εl∗(x(t)n, x(t)1, . . . , x(t)S).

13. Apply to the overall system the control input uMPC(t) = ur
t .

14. Let Y(t) = Yr , λ(t) = λr , μ(t) = μr .
15. Let t = t + 1 and go to step 2.

There are several parameters in Algorithm 4.1, which are set according to [9]. The
first is the performance parameter α ∈ (0, 1] which guarantees closed-loop perfor-
mance as specified by (4.54). The larger values of α are associated with better perfor-
mance, but then a longer control horizon N will be needed to guarantee the specified
performance. The initial constraint tightening parameter δinit ∈ (0, 1) (from which
the constraint tightening parameter δ is adapted to satisfy (4.57)) is usually cho-
sen δinit = 0.2. The third parameter is the relative optimality tolerance ε > 0 where
ε < α, which must be chosen to satisfy a technical condition derived in [9].
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4.4 Numerical Example

Consider, the following system composed of two interconnected polytopic subsys-
tems S1 and S2:

S1 : x1(t + 1) = A1(t)x1(t) + B1u1(t) + A12x2(t), A1(t) ∈ Ω1

S2 : x2(t + 1) = A2(t)x2(t) + B2u2(t) + A21x1(t), A2(t) ∈ Ω2 (4.63)

where:

A1(t) =
[

β1(t) −0.09
0.17 0.79

]
, β1(t) ∈ [0.43, 0.83]

A2(t) =
[

β2(t) −0.09
0.17 0.69

]
, β2(t) ∈ [0.53, 0.93]

B1 =
[
0.06
0.01

]
, B2 =

[
0.07
0.01

]
, A12 = A21 =

[
0 0
0 0.1

]
(4.64)

Here, β1 and β2 are uncertain parameters. The sets Ω1 and Ω2 have two vertices
corresponding to β1 = 0.43, β1 = 0.83 and β2 = 0.53, β2 = 0.93, respectively. The
finite sets Ω̃1 and Ω̃2 are defined as:

Ω̃1 = {[A1(β1), B1], β1 ∈ {0.43, 0.63, 0.83}}
Ω̃2 = {[A2(β2), B2], β2 ∈ {0.53, 0.73, 0.93}} (4.65)

The nominal matrices are An
1 = A1(0.63), An

2 = A2(0.73). The following state and
input constraints are imposed on the system (4.63):

[−0.1
−0.1

]
≤ xi(t),−2 ≤ ui(t) ≤ 2, i = 1, 2 (4.66)

The prediction horizon is N = 5 and the weighting matrices are Qi = I, Ri = 0.01,
i = 1, 2. The centralized robust MPC problem (problem P1) is represented as a
distributed optimization problem (problem P3) by applying the approach described
in Sect. 4.3.1. Algorithm 4.1 with parameters α = 0.95, δinit = 0.5, ε = 0.05 is used
to generate the two control inputs for an initial state of the overall system x(0) =
[2.5 2.5 2.5 2.5]. The simulations are performed for the variations of the uncertain
parameters, shown in Fig. 4.1. The computed trajectories of the control inputs u1, u2
and the states x11, x21 and x12, x22, associated to the subsystems S1 (i.e., x1 = [x11, x21])
and S2 (i.e., x2 = [x12, x22]) are depicted in Figs. 4.2, 4.3, 4.4. They are compared with
the trajectories corresponding to the centralized robustMPC andwith the response of
the uncertain system (4.63) in closed-loopwith a nominal distributedMPC (designed
for the nominal system with matrices An

1 = A1(0.63), An
2 = A2(0.73)).
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Fig. 4.1 The parameters α1, α2

The results show that the suboptimal trajectories obtained with the distributed robust
MPC keep both the state and input constraints and do not differ significantly from the
centralized robust MPC trajectories. There are two reasons why the results with the
distributed robust MPC are so close to those with the centralized robust MPC. First, a
low level of suboptimality is allowed by specifying a large value for the performance
parameter α (α = 0.95) and a small value for the relative optimality tolerance para-
meter ε (ε = 0.05). Thus, according to (4.62) V ∞

MPC(x̄)/V ∞(x̄) ≤ (1/0.9 ≈ 1.11)
and therefore the level of suboptimality is at most 11%. Second, in the cost function
(4.22)–(4.23) the weighting coefficients for the state have relatively large values in
comparison to those for the control input, which is another reason to have a very
small difference between the state trajectories with the distributed and the central-
ized robust MPCs (see Figs. 4.3 and 4.4). Also, it can be seen from Figs. 4.3 and
4.4 that the nominal distributed MPC violates some of the state constraints. This is
not related to the suboptimality of the distributed approach, but to the fact that the
nominal MPC is designed by assuming nominal system matrices and ignoring the
uncertainty. Therefore, the satisfaction of constraints with the nominal MPC can be
guaranteed only for the nominal system.



4 Distributed Robust Model Predictive Control … 87

Fig. 4.2 The control inputs u1 and u2 for subsystems S1 and S2
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Fig. 4.3 The states x11, x21 of subsystem S1. The blue line corresponds to the constraint
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Fig. 4.4 The states x12, x22 of subsystem S2. The blue line corresponds to the constraint
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4.5 Conclusions

In this chapter, a suboptimal approach to distributed robust MPC for uncertain sys-
tems consisting of interconnected constrained polytopic subsystems is proposed. The
approach reformulates the robust MPC problem into a QP problem, which is solved
efficiently by distributed iterations of the dual accelerated gradient method with a
stopping condition. The robust feasibility and the robust performance are defined
for a finite set, which includes the vertices and some interior points of the polytopic
uncertainty set. The richer the set of interior points is, higher would be the guarantee
for robust feasibility over the polytopic uncertainty set and more reduced would be
the level of suboptimality with respect to the robust optimization problem defined for
the whole uncertainty set. However, this should be traded off against the increased
computational complexity associated to the larger size of the resulting QP problem.
The level of suboptimality of the distributed robust MPC with respect to the central-
ized robust MPC (both defined for the finite uncertainty set) depends on the values
of the performance parameter and the relative tolerance parameter, as it is shown in
the simulation example. A further extension of the approach would include consid-
eration of the network-induced constraints (cf. [15, 21]), associated to a networked
control system structure.
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Chapter 5
Optimal Distributed-Coordinated Approach
for Energy Management in Multisource
Electric Power Generation Systems

John Sandoval-Moreno, John Jairo Martínez and Gildas Besançon

Abstract In the context of distributed power generation systems, the energy man-
agement and coordination of generators are imperative tasks to be done. Such sys-
tems, typically considered as large-scale systems, can include different dynami-
cal and functional characteristics in both, generators and loads. In this sense, the
use of distributed-coordinated control strategies, including operational constraints,
becomes an interesting alternative for these applications. This chapter proposes a
novel price-driven coordination technique. The approach considers that a central-
ized optimal control problem can be splitted into several unconstrained controlled
subsystems, all coordinated by an agent which is intended for accomplishing the
global performance, while assuring the system constraints. The approach is applied
to a microgrid that combines different generation technologies and load profiles.
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5.1 Introduction

In the last decades, the advances in renewable-based power generators technolo-
gies, such as fuel cells, photovoltaic panels, and wind turbines [12, 18, 19], have
impulsed the inclusion of smaller power generators in the electric network, along
the bulk power generators such as hydro or thermoelectrical ones [13]. The aim is to
migrate to sustainable generation technologies that cover the rising needs of the soci-
ety. Actually, developments in smart grid technologies [3, 6, 20] aim to implement
efficient communication and control infrastructures for maintaining the power net-
work performance and stability, considering the heterogeneity of generators, storage
unities, and charges (vehicles, residences, industries).

Modern trends in power networks management are keen to obtain decentralized
control structures. In this sense, the application of distributed control methods is use-
ful for developing such algorithms [15], considering the large-scale characteristic of
the power networks. The power control strategies are developed under two princi-
ples: system stability, related with voltage and frequency regulation [13] and optimal
performance that aims to optimize the power generated by the different sources and
is achieved by minimizing a cost function.

The algorithms are based in the decomposition of the control structures in smaller
ones, typically known as local controllers or agents. In the case, where the local
controllers are interacting between them for performing a mission, according to a
global criteria, the global control system is known as a distributed control system.
However, in the case where the local controllers are exchanging information with a
higher hierarchical unit (known as coordinator), the control scheme is considered
as a distributed-coordinated one.The model decomposition can be done by simple
inspection, or using some methods like the proposed in [15, 16, 26].

The distributed-coordination can be performed by using different methods. There
are two well-known coordination methods in the literature, the interaction predic-
tion method and the price-driven method. Both methods are based on the current
states values for each subsystem. The first method propose local control values to
be implemented for every subsystem after the computation of the optimal expected
interactions to achieve the global optimal control [7, 28]. In the case of the price-
driven coordination method, the coordinator considers the subsystems interactions
as a family of equality constraints to be respected. Thus, the coordinator solves a
global optimization problem by introducing a Lagrange multiplier (the price) that is
distributed to every subsystem to locally perform the control [1, 8, 10]. This scheme
reduces the amount of information between the coordinator and local controllers,
while allowing independent local control structures that could eventually work inde-
pendently from the coordinator actions [9, 14, 22, 27].

Considering the requirements of global performancewhile assuring system stabil-
ity, in the present chapter, is presented a methodology for conceiving a price-driven
coordination scheme based on local model predictive control (MPC) algorithms [4,
10]. This chapter represents an extension of a preliminary work presented in [22].
Here, the proposed approach considers that the global objective function can be
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optimized while dealing with the operative constraints. The idea is to decompose the
global optimization problem in several local and coordinated optimization problems.
The local controllers perform a state feedback control law, obtained by the explicit
unconstrained solution of localMPC problems. These local controllers receive, from
the coordinator, an optimal coordination (tuning) signal that is obtained after solving
a constrained optimization problem that considers the global system constraints. The
coordination problem is obtained after directly integrate the local explicit solution,
receiving only the subsystems current data (states, disturbances, and setpoint values).
The coordination approach is applied to a multisource power generation system that
combines different generation technologies and load profiles.

This chapter is organized as follows: Sect. 5.2 includes the definition of the cen-
tralized MPC problem, written in two forms: with and without explicit interactions
handling. Section5.3 shows the details of the optimization problem decomposition
and coordinations strategy. Section5.4 includes the description and simulation of a
two-areas power system in which the proposed control approach is compared with a
centralized MPC strategy. In the final section, some conclusions are added.

5.2 Centralized Optimal Control Problem with System
Interactions

In this section is presented a reformulation of Model Predictive Control (MPC) for
linear systems, introduced in [10]. In the referenced work, the authors present a
MPC formulation that considers the system model as a centralized structure. In the
current work, the same problem is reformulated by adding an explicit representation
of the system interactions. As done in [10], the proposed formulation is written
as a quadratic programming (QP) problem, which can be solved using available
numerical methods.

5.2.1 System Model Including Subsystem Interactions

Considering the following discrete-time dynamical system:

xxx(k + 1) = AxAxAx(k) + BuBuBu(k) + EdEdEd(k) (5.1)

where k denotes the current time step, xxx(k) ∈ IRn,uuu(k) ∈ IRm,ddd(k) ∈ IRq stand for
the state, input anddisturbances vector, respectively,while AAA ∈ IRn×n ,BBB ∈ IRn×m and
EEE ∈ IRn×q are the states, input and disturbancematrices, respectively. The expression
(5.1) represents the systemmodel from a global perspective. Using simple inspection
or particular model analysis techniques [15, 16, 26], the global dynamical model can
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be decomposed in smaller parts, known as subsystems, identified each one with the
subindex i = 1 · · · z.

The subsystem i is represented by local states, inputs, and disturbance vectors
xxxi (k) ∈ IRni , uuui (k) ∈ IRmi and dddi (k) ∈ IRqi , respectively, as well as an interactions
vector vvvi (k) ∈ IRri that represents the effect of the subsystems i �= j at the system i .
In this sense, (5.1) can be written in the following extended form:

⎡

⎢
⎣

xxx1(k + 1)
.
.
.

xxxz(k + 1)

⎤

⎥
⎦ = AAA

⎡

⎢
⎣

xxx1(k)

.

.

.

xxxz(k)

⎤

⎥
⎦ + BBB

⎡

⎢
⎣

uuu1(k)

.

.

.

uuuz(k)

⎤

⎥
⎦ + EEE

⎡

⎢
⎣

ddd1(k)

.

.

.

dddz(k)

⎤

⎥
⎦ (5.2)

From (5.2), it is possible to write the subsystems dynamics in the following form:

xxxi (k + 1) = AiiAiiAiixxxi (k) + BiiBiiBiiuuui (k) + EiiEiiEiidddi (k) + vvvi (k) (5.3)

where vvvi (k) has the following structure:

vvvi (k) =
z∑

j=1; j �=i

Ai jAi jAi j xxx j (k) + Bi jBi jBi juuu j (k) + Ei jEi jEi jddd j (k) (5.4)

The full system interaction vector vvv(k) ∈ IRr (for some r ≤ n), based on (5.4),
satisfies the following expression:

⎡

⎢
⎣

vvv1(k)

.

.

.

vvvz(k)

⎤

⎥
⎦ = vAvAvA

⎡

⎢
⎣

xxx1(k)

.

.

.

xxxz(k)

⎤

⎥
⎦ + vBvBvB

⎡

⎢
⎣

uuu1(k)

.

.

.

uuuz(k)

⎤

⎥
⎦ + vEvEvE

⎡

⎢
⎣

ddd1(k)

.

.

.

dddz(k)

⎤

⎥
⎦ (5.5)

equivalently,
vvv(k) = vAxvAxvAx(k) + vBuvBuvBu(k) + vE dvE dvE d(k) (5.6)

where vAvAvA, vBvBvB , and vEvEvE are the matrices AAA, BBB, and EEE , but replacing by zero matrices
their main diagonal. Now, one can define a global dynamics model that considers
the subsystems interactions in a more explicit way. That is,

xxx(k + 1) = Ad xAd xAd x(k) + Bd uBd uBd u(k) + Ed dEd dEd d(k) + vvv(k) (5.7)

where AdAdAd = A − vAA − vAA − vA, BdBdBd = B − vBB − vBB − vB , and EdEdEd = E − vEE − vEE − vE . The signals in the modified
dynamical model (5.7) are defined for the following admissible sets (according to
the physical restrictions of the system):

xxx(k) ∈ X where X = {xxx(k) ∈ IRn : xminxminxmin ≤ xxx(k) ≤ xmaxxmaxxmax }
uuu(k) ∈ U where U = {uuu(k) ∈ IRm : uminuminumin ≤ uuu(k) ≤ umaxumaxumax }
ddd(k) ∈ D where D = {ddd(k) ∈ IRq : dmindmindmin ≤ ddd(k) ≤ dmaxdmaxdmax }
vvv(k) ∈ V where V = {vvv(k) ∈ IRn : vminvminvmin ≤ vvv(k) ≤ vmaxvmaxvmax }

(5.8)
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where the values vminvminvmin and vmaxvmaxvmax are obtained by replacing the corresponding limits
defined in (5.8) for the states, inputs and disturbances, in (5.6).

5.2.2 Augmented Centralized Optimization Problem

For writing the optimization problem, based on the MPC formulation, define the
following vectors xsxsxs ≡ xxx(∞), ususus ≡ uuu(∞) and vsvsvs ≡ vvv(∞) as the desired steady-
state values of the states, inputs, and interactions vectors, respectively, which would
be achieved when a permanent disturbance vector dsdsds affects the system.

The MPC problem is devoted to minimize the tracking errors x ′x ′x ′(k) = xxx(k) −
xsxsxs , u′u′u′(k) = uuu(k) − ususus and v′v′v′(k) = vvv(k) − vsvsvs , under the effect of some disturbance
variations around an steady-state value d ′d ′d ′(k) = ddd(k) − dsdsds during the finite horizon
N , while considering a final state tracking error x ′x ′x ′(N ) = xxx(N ) − xsxsxs [10]. The cost
function Jgv(xxx,uuu,vvv) (the subindex gv stands for global with interactions), that is
used for computing the optimal input signal is represented in the following form:

Jgv(xxx,uuu,vvv) = 1
2

N−1∑

k=0

(
x ′Tx ′Tx ′T (k)QQQx ′x ′x ′(k) + u′Tu′Tu′T (k)RuRuRuu′u′u′(k) + 2u′Tu′Tu′T (k)SuSuSux ′x ′x ′(k)

)

+ 1
2

N−1∑

k=0

(
v′Tv′Tv′T (k)RvRvRvv

′v′v′(k) + 2v′Tv′Tv′T (k)SvSvSvx ′x ′x ′(k)
) + 1

2x ′Tx ′Tx ′T (N )PPPx ′x ′x ′(N )

(5.9)

where PPP, QQQ, RuRuRu, SuSuSu, RvRvRv , and SvSvSv represent weighting matrices with the following
properties: RuRuRu ≥ 0, QQQ = QTQTQT ≥ 0, SuSuSu requires that QQQ ≥ Su R−1

u ST
uSu R−1

u ST
uSu R−1

u ST
u , RvRvRv should be

chosen conveniently to guarantee convexity of the problem [9, 27], SvSvSv is typically
equal to zero and PPP = PTPTPT ≥ 0 is obtained after solving the discrete-time Ricatti
algebraic equation [10, 26] for the system dynamics (5.1) while using the matrices
QQQ, RuRuRu and SuSuSu .

Differently from the cost function formulation of [10], in the cost function (5.9)
is included a penalization term for the interactions, considering that the proposed
approach treats the interactions explicitly.

At this stage, the idea is to optimize (5.9), considering the system dynamics (5.7),
the interactions (5.6), the constraints defined at (5.8), and a good knowledge of the
disturbances vector ddd(k) for the prediction horizon N . The problem can be written
in the following form:

min
uuu

Jgv(xxx,uuu,vvv)

subject to LuLuLu(k) ≤ WWW
xxx(k + 1) = Ad xAd xAd x(k) + Bd uBd uBd u(k) + Ed dEd dEd d(k) + vvv(k), 0 ≤ k ≤ N − 1
vvv(k) = vAxvAxvAx(k) + vBuvBuvBu(k) + vE dvE dvE d(k), 0 ≤ k ≤ N − 1
xxx(0) ∈ X , xxx(k) ∈ X ,uuu(k) ∈ U,vvv(k) ∈ V,ddd(k) ∈ D, 0 ≤ k ≤ N − 1

(5.10)

Here, the objective is to express the problem (5.10) as a QP problem. For doing so,
define the following sequences for the signal vectors and their reference values:
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x̄̄x̄x ≡ [
xTxTxT (1) · · · xTxTxT (N )

]T
ū̄ūu ≡ [

uTuTuT (0) · · · uTuTuT (N − 1)
]T

d̄̄d̄d ≡ [
dTdTdT (0) · · · dTdTdT (N − 1)

]T

x̄sx̄sx̄s ≡ [
xT

sxT
sxT
s · · · xT

sxT
sxT
s

]T
ūsūsūs ≡ [

uT
suT
suT
s · · · uT

suT
suT
s

]T
d̄s̄ds̄ds ≡ [

dT
sdT
sdT
s · · · dT

sdT
sdT
s

]T

v̄̄v̄v ≡ [
vTvTvT (0) · · · vTvTvT (N − 1)

]T
v̄sv̄sv̄s ≡ [

vT
svT
svT
s · · · vT

svT
svT
s

]T

(5.11)

Taking into account that the interaction variable vvv(k) is linked with the effects of
uuu(k) as seen in (5.6), it is proposed to be used the following decision variable for the
QP problem:

uextuextuext ≡ [
uuuT (0) uuuT (1) · · ·uuuT (N − 1) | vvvT (0) vvvT (1) · · · vvvT (N − 1)

] = [ū̄ūuT
v̄̄v̄v

T ]T (5.12)

With the elements introduced in (5.11)–(5.12), one can write the predicted states
vector x̄̄x̄x as in (5.13), and the predicted states error vector x̄ ′x̄ ′x̄ ′ as in (5.14), as function
of the current state value xxx(0), the disturbances sequences d̄̄d̄d , the extended variable
uextuextuext and the steady-state values of these vectors xsxsxs , d̄s̄ds̄ds , and uext−suext−suext−s ≡ [ūsūsūs

T v̄sv̄sv̄s
T ]T .

In fact, x̄̄x̄x can be obtained by developing the state Eq. (5.7) for k = 1 to k = N
(further details to perform this operation are included in [10]).

x̄̄x̄x = Ωd xΩd xΩd x(0) + ΨdΨdΨduextuextuext + ΘdΘdΘdd̄̄d̄d (5.13)

x̄ ′x̄ ′x̄ ′ = x̄ − x̄sx̄ − x̄sx̄ − x̄s = ΩdΩdΩdx ′x ′x ′(0) + ΨdΨdΨdu′
extu′
extu′
ext + ΘdΘdΘdd̄ ′d̄ ′d̄ ′ (5.14)

where x ′x ′x ′(0) = xxx(0) − xsxsxs , u′
extu′
extu′
ext = uextuextuext − uext−suext−suext−s , d̄ ′d̄ ′d̄ ′ = d̄̄d̄d − d̄s̄ds̄ds , while the matricesΩdΩdΩd ,

ΓdΓdΓd , ΘdΘdΘd , ΛdΛdΛd are obtained from the deployment of (5.7) between k = 1 and k = N ,
withΨdΨdΨd ≡ [ΓdΓdΓd ΛdΛdΛd ]:

ΩdΩdΩd ≡

⎡

⎢
⎢
⎢
⎣

AdAdAd

A2
dA2
dA2
d
.
.
.

AN
dAN
dAN
d

⎤

⎥
⎥
⎥
⎦

ΓdΓdΓd ≡

⎡

⎢
⎢
⎢
⎣

BdBdBd 0 · · · 0
Ad BdAd BdAd Bd BdBdBd · · · 0

.

.

.
.
.
.

. . .
.
.
.

AN−1
d BdAN−1
d BdAN−1
d Bd AN−2

d BdAN−2
d BdAN−2
d Bd · · · BdBdBd

⎤

⎥
⎥
⎥
⎦

ΘdΘdΘd ≡

⎡

⎢
⎢⎢
⎣

EdEdEd 0 · · · 0
Ad EdAd EdAd Ed EdEdEd · · · 0

.

.

.
.
.
.

. . .
.
.
.

AN−1
d EdAN−1
d EdAN−1
d Ed AN−2

d EdAN−2
d EdAN−2
d Ed · · · EdEdEd

⎤

⎥
⎥⎥
⎦

ΛdΛdΛd ≡

⎡

⎢
⎢⎢
⎣

I 0 · · · 0
AdAdAd I · · · 0
.
.
.

.

.

.
. . .

.

.

.

AN−1
dAN−1
dAN−1
d AN−2

dAN−2
dAN−2
d · · · I

⎤

⎥
⎥⎥
⎦

(5.15)

With similar considerations, the predicted interaction vector can be expressed in
terms of the system dynamics and the interactions equations, also considering the
variable uextuextuext as follows:

ΛΛΛv̄̄v̄v = ΓΓΓ ū̄ūu + ΩΩΩxxx(0) + ΘΘΘd̄̄d̄d (5.16)

that is equivalent to:
0 = ΨΨΨuextuextuext + ΩΩΩxxx(0) + ΘΘΘd̄̄d̄d (5.17)
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where matrices ΩΩΩ , ΓΓΓ and ΘΘΘ are defined by developing (5.6) from k = 0 to k =
N − 1, whileΨΨΨ ≡ [ΓΓΓ − ΛΛΛ]:

ΩΩΩ ≡

⎡

⎢⎢
⎢
⎣

vAvAvA
vA AdvA AdvA Ad

.

.

.

vA AN−1
dvA AN−1
dvA AN−1
d

⎤

⎥⎥
⎥
⎦

ΓΓΓ ≡

⎡

⎢⎢
⎢
⎣

vBvBvB 0 · · · 0
vA BdvA BdvA Bd vBvBvB · · · 0

.

.

.
.
.
.

. . .
.
.
.

vA AN−2
d BdvA AN−2
d BdvA AN−2
d Bd AN−3

d BdAN−3
d BdAN−3
d Bd · · · vBvBvB

⎤

⎥⎥
⎥
⎦

ΘΘΘ ≡

⎡

⎢⎢
⎢
⎣

vEvEvE 0 · · · 0
vA EdvA EdvA Ed vEvEvE · · · 0

.

.

.
.
.
.

. . .
.
.
.

vA AN−2
d EdvA AN−2
d EdvA AN−2
d Ed vA AN−3

d EdvA AN−3
d EdvA AN−3
d Ed · · · vEvEvE

⎤

⎥⎥
⎥
⎦

ΛΛΛ ≡

⎡

⎢⎢
⎢
⎣

I 0 · · · 0
−vAvAvA I · · · 0

.

.

.
.
.
.

. . .
.
.
.

−vA AN−2
dvA AN−2
dvA AN−2
d −vA AN−3

dvA AN−3
dvA AN−3
d · · · I

⎤

⎥⎥
⎥
⎦

(5.18)

As a final stage to write the problem (5.10) in QP form, it is defined the following
extended weighting matrices:

QQQ = diag{QQQ · · · QQQ PPP}
RuRuRu = diag{RRRu · · · RRRu}, RvRvRv = diag{RRRv · · · RRRv}, RextRextRext = diag{RuRuRu RvRvRv}
SuSuSu = diag{SSSu · · · SSSu}, SvSvSv = diag{SSSv · · · SSSv}, SextSextSext = diag{SuSuSu SvSvSv}

(5.19)

Then using (5.11) and (5.19), the expression (5.9) takes the following form, as a
function of x̄ ′x̄ ′x̄ ′ and u′

extu′
extu′
ext (see (5.14)):

Jgv(x, uextx, uextx, uext)= 1

2

[
x ′Tx ′Tx ′T (0)QQQx ′x ′x ′(0) + x̄ ′T Qx̄ ′x̄ ′T Qx̄ ′x̄ ′T Qx̄ ′ + u′T

ext Rext u
′
extu′T

ext Rext u
′
extu′T

ext Rext u
′
ext + 2u′T

ext Sextu′T
ext Sextu′T
ext Sext

(
Gx x̄ ′Gx x̄ ′Gx x̄ ′ + G∗

xG∗
xG∗
x x̄ ′x̄ ′x̄ ′(0)

)]

(5.20)
where the matrices GxGxGx and G∗

xG∗
xG∗
x are defined as:

GxGxGx =

⎡

⎢
⎢
⎢
⎣

0 0 · · · 0
In 0 · · · 0
.
.
.

. . .
. . .

.

.

.

0 · · · In 0

⎤

⎥
⎥
⎥
⎦

G∗
xG∗
xG∗
x =

⎡

⎢
⎢
⎢
⎣

In
0
.
.
.

0

⎤

⎥
⎥
⎥
⎦

(5.21)

The equality constraints imposed by the system dynamics and interactions of the
problem (5.10) are included in the QP problem in the following way:

• The predicted states error vector x̄ ′x̄ ′x̄ ′, represented by (5.14) is replaced in the cost
function (5.20).

• The interactions equality (5.17) can be included in the cost function by using
a Lagrange multiplier vector ppp = [ppp(0) · · · ppp(N − 1)]T . In this way, the opti-
mization problem is relaxed and a new parameter should be computed [1]. This
constraint is represented by expression (5.17).

With these considerations, the cost function Jgv(xxx,uuu,vvv) is transformed in the follow-
ing quadratic cost function Jext (uext , puext , puext , p), with V ext gathering all terms independent
of variables uextuextuext and ppp:
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Jext (uext , puext , puext , p) = 1
2uT

ext HcuextuT
ext HcuextuT
ext Hcuext + uT

extuT
extuT
ext [K1cK1cK1c(xxx(0) − xsxsxs) + K2cK2cK2c(d̄ − d̄sd̄ − d̄sd̄ − d̄s) − Hcuext−sHcuext−sHcuext−s]

+ pTpTpT (ΩΩΩxxx(0) + ΘΘΘd̄̄d̄d + K T
3cuextK T
3cuextK T
3cuext ) + V̄ext

(5.22)
where matrices Hc, K1c, K2cHc, K1c, K2cHc, K1c, K2c and K3cK3cK3c are defined as:

HcHcHc = ΨdΨdΨd
T QQQΨdΨdΨd + RextRextRext + 2Sext GxSext GxSext GxΨdΨdΨd K1cK1cK1c = ΨdΨdΨd

T QQQΩdΩdΩd + Sext GxSext GxSext GxΩdΩdΩd

K2cK2cK2c = ΨdΨdΨd
T QQQΘdΘdΘd + Sext GxSext GxSext GxΘdΘdΘd K3cK3cK3c = ΨΨΨ T

(5.23)

and the matrix HcHcHc should be positive defined for assuring the convexity of the cost
function [10]. After these manipulations, the following augmented centralized opti-
mization problem, commonly refereed in the literature as the primal problem [1, 10]
is obtained:

max
ppp

min
uextuextuext

Jext (uext , puext , puext , p)

subject to LextLextLextuextuextuext ≤ WextWextWext

(5.24)

where the matrices LextLextLext and WextWextWext have the following structure, considering the sets
(5.8), the sequences (5.13) and (5.16), the term uext−1uext−1uext−1 as the last time step extended
vector valueuext−1uext−1uext−1 ≡ [ū−1ū−1ū−1

T v̄−1v̄−1v̄−1
T ]T , and δumaxδumaxδumax ,δuminδuminδumin as the sequences of admissible

input’s slew rate values:

LextLextLext =
[

φextφextφext
−φextφextφext

]
; WextWextWext =

[
Δ̄extΔ̄extΔ̄ext

−ΔextΔextΔext

]
+

[−ξextξextξext
ξextξextξext

]
xxx(0) +

[−ξu−extξu−extξu−ext
ξu−extξu−extξu−ext

]
uext−1uext−1uext−1 (5.25)

φextφextφext =

⎡

⎢⎢
⎣

ΨdΨdΨd

IN×m 0N×r

0N×m IN×r

Eδ,extEδ,extEδ,ext 0N×r

⎤

⎥⎥
⎦ Δ̄extΔ̄extΔ̄ext =

⎡

⎢⎢
⎣

xmax − Θdmaxdmaxdmaxxmax − Θdmaxdmaxdmaxxmax − Θdmaxdmaxdmax

umaxumaxumax

vmaxvmaxvmax

δumaxδumaxδumax

⎤

⎥⎥
⎦ ΔextΔextΔext =

⎡

⎢⎢
⎣

xmin − Θdmindmindminxmin − Θdmindmindminxmin − Θdmindmindmin

uminuminumin

vminvminvmin

δuminδuminδumin

⎤

⎥⎥
⎦

ξextξextξext =

⎡

⎢⎢
⎣

ΩdΩdΩd

0N×m

0N×r

0N×m

⎤

⎥⎥
⎦ ξu−extξu−extξu−ext =

⎡

⎢⎢
⎣

0N (m+r)×(m+r)

0Nm×(m+r)

0Nr×(m+r)

E−1,extE−1,extE−1,ext

⎤

⎥⎥
⎦ Eδ,extEδ,extEδ,ext =

⎡

⎢⎢⎢
⎣

Im 0m · · · 0m

−Im Im · · · 0m
...

...
. . .

...

0m · · · −Im Im

⎤

⎥⎥⎥
⎦

E−1,extE−1,extE−1,ext =
[

Im

0(N−1)×m

]

(5.26)

5.3 Decomposition and Coordination Problems

In the last section, it was obtained (5.24) that is indeed the definition for a centralized
model constrained optimization problem, where the interactions are treated in an
explicit way. Although, the interactions are described in the model, the optimal input
signals should correspond after solving the problem described in [10], under the
same operative conditions. The solution of the problem (5.24) delivers the signals
uextuextuext and ppp. Only the first m elements of uextuextuext are used as inputs vector.
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However, the system structure allows to distribute this problem accordingly, by
decomposing the cost function into the z identified subsystems that compose the
global system. This procedure is introduced, in first place in the current section. Then,
it is shown how the price-driven coordination is established [8, 14, 27], including
an analysis related to the stability of the global system under coordination.

5.3.1 Computing Explicit Local Solutions

The extended cost function (5.9) in its original form, and (5.22) in quadratic form,
can now be divided in z parts, each one associated with a subsystem. Remember
that each i th subsystem is described by the dynamical model (5.3) and has its own
states, inputs, disturbances, and interactions are named xixixi (k),uiuiui (k),dididi (k) and vivivi (k),
respectively, and its corresponding steady-state values xi,sxi,sxi,s,ui,sui,sui,s,di,sdi,sdi,s and vi,svi,svi,s .

Before going further, the local extended input-interaction vector ūext,iūext,iūext,i (k), as well
as the local matrices Rext,iRext,iRext,i , Sext,iSext,iSext,i are introduced:

ūext,iūext,iūext,i (k) = [ui
T (k)ui
T (k)ui
T (k) vi

T (k)vi
T (k)vi
T (k)]T , Rext,iRext,iRext,i = diag{Ru,iRu,iRu,i Rv,iRv,iRv,i }, Sext,iSext,iSext,i = diag{Su,iSu,iSu,i Sv,iSv,iSv,i } (5.27)

One can write then, the global cost function (5.9) in the following form (the
subindexes ext and eq stand stand for “extended form” and “equalities,” respec-
tively):

Jext (xxx,uuu, vvv) =
z∑

i=1

Jext,i =
z∑

i=1

Jgv,i +
z∑

i=1

Jeq,i , (5.28)

where the cost functions Jext,i and Jeq,i have the following form:

Jgv,i = 1
2x ′

ix ′
ix ′
i
T (N )PiPiPi x ′

ix ′
ix ′
i (N ) + 1

2

N−1∑

k=0

(
x ′

ix ′
ix ′
i
T (k)QiQiQi x ′

ix ′
ix ′
i (k) + ū′T

ext,iū′T
ext,iū′T
ext,i (k)Rext,iRext,iRext,i ū′

ext,iū′
ext,iū′
ext,i (k)

)

+ 1
2

N−1∑

k=0

(
2ū′T

ext,iū′T
ext,iū′T
ext,i (k)Sext,iSext,iSext,i x ′

ix ′
ix ′
i (k)

)

Jeq,i = pppT
N−1∑

k=0

[
MiMiMiūext,iūext,iūext,i (k) + ηi (xixixi (k),dididi (k))

]

(5.29)

where ū′
ext,iū′
ext,iū′
ext,i (k) = ūext,iūext,iūext,i (k) − ūext,i−sūext,i−sūext,i−s is the difference between the current local

extended vector and its steady-state value and x ′
ix ′
ix ′
i (k) = xixixi (k) − xi,sxi,sxi,s is the local states

error vector t = k. The matrix MiMiMi in (5.29) represents the effect of inputs at subsys-
tem i over the full system interactions vector, while ηi represents the effects of local
states and disturbances. This matrix is obtained after obtaining the vectors ūext,iūext,iūext,i (k)

from (5.5). Here is illustrated how this matrix is obtained for a process with two
subsystems:
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[
v1v1v1(k)

v2v2v2(k)

]
=

[
0 A12A12A12

A21A21A21 0

][
x1x1x1(k)

x2x2x2(k)

]
+

[
0 E12E12E12

E21E21E21 0

][
d1d1d1(k)

d2d2d2(k)

]
+

[
0 B12B12B12

B21B21B21 0

][
u1u1u1(k)

u2u2u2(k)

]

0 =
z∑

i=1
ηi (k) +

[
0 −I
B21B21B21 0

][
u1u1u1(k)

v1v1v1(k)

]
+

[
B12B12B12 0
0 −I

][
u2u2u2(k)

v2v2v2(k)

]

0 =
z∑

i=1
ηi (k) + M1M1M1ūext,1ūext,1ūext,1(k) + M2M2M2ūext,2ūext,2ūext,2(k)

(5.30)

One can then write the local dynamics (5.3), in terms of ūext,iūext,iūext,i (k) as follows, with
B̄iB̄iB̄i ≡ [BiiBiiBii Iv,i ]:

xixixi (k + 1) = AiiAiiAii xixixi (k) + B̄iB̄iB̄i ūext,iūext,iūext,i (k) + EiiEiiEiidididi (k) (5.31)

The current objective is to express the local dynamics as function of the local state
value xixixi (0) and the N − steps local sequences for the inputs and disturbances. For
doing this, the following sequences, within their steady-state values are defined for
the subsystem i:

x̄ix̄ix̄i ≡ [
xT

ixT
ixT
i (1) · · · xT

ixT
ixT
i (N )

]T
x̄i,sx̄i,sx̄i,s ≡

[
xT

i,sxT
i,sxT
i,s · · · xT

i,sxT
i,sxT
i,s

]T

ûext,iûext,iûext,i ≡
[
ūT

ext,iūT
ext,iūT
ext,i (0) · · · ūT

ext,iūT
ext,iūT
ext,i (N − 1)

]T
ûext,i−sûext,i−sûext,i−s ≡ [

ūext,i−sūext,i−sūext,i−s · · · ūext,i−sūext,i−sūext,i−s
]T

d̂îdîdi ≡ [
dT

idT
idT
i (0) · · · dT

idT
idT
i (N − 1)

]T
d̂i,sd̂i,sd̂i,s ≡

[
dT

i,sdT
i,sdT
i,s · · · dT

i,sdT
i,sdT
i,s

]T

(5.32)

With this result, one can write the predicted local states vector x̄ix̄ix̄i as in (5.33), as
well as the predicted local states error vector, presented as in (5.34)

x̄ix̄ix̄i = ΩiΩiΩi xixixi (0) + ΓiΓiΓi ûext,iûext,iûext,i + ΘiΘiΘi d̂îdîdi (5.33)

x̄ ′x̄ ′x̄ ′
i = x̄ix̄ix̄i − x̄i,sx̄i,sx̄i,s = ΩiΩiΩi x

′
ix ′
ix ′
i (0) + ΓiΓiΓi û

′
ext,iû′
ext,iû′
ext,i + ΘiΘiΘi d̂

′
îd ′
îd ′
i (5.34)

where x ′
ix ′
ix ′
i (0) = xixixi (0) − xi,sxi,sxi,s , û′

ext,iû′
ext,iû′
ext,i = ûext,iûext,iûext,i − ûext,i−sûext,i−sûext,i−s , d̂ ′

îd ′
îd ′
i = d̂îdîdi − d̂i,sd̂i,sd̂i,s are the local

error vectors, while the matricesΩiΩiΩi , ΓiΓiΓi andΘiΘiΘi are defined as follows:

ΩiΩiΩi =

⎡

⎢⎢
⎢
⎣

AiiAiiAii

A2
i iA2
i iA2
i i
.
.
.

AN
iiAN
iiAN
ii

⎤

⎥⎥
⎥
⎦

ΓiΓiΓi =

⎡

⎢⎢
⎢
⎣

B̄iB̄iB̄i 0 · · · 0
Aii B̄iAii B̄iAii B̄i B̄iB̄iB̄i · · · 0

.

.

.
.
.
.

. . .
.
.
.

AN−1
i i B̄iAN−1
i i B̄iAN−1
i i B̄i AN−2

i i B̄iAN−2
i i B̄iAN−2
i i B̄i · · · B̄iB̄iB̄i

⎤

⎥⎥
⎥
⎦

ΘiΘiΘi =

⎡

⎢⎢
⎢
⎣

EiiEiiEii 0 · · · 0
Aii EiAii EiAii Ei EiiEiiEii · · · 0

.

.

.
.
.
.

. . .
.
.
.

AN−1
i i EiiAN−1
i i EiiAN−1
i i Eii AN−2

i i EiiAN−2
i i EiiAN−2
i i Eii · · · EiiEiiEii

⎤

⎥⎥
⎥
⎦

(5.35)

With the different elements introduced along this section, the idea is to write the
subsystem cost function (5.29) as a QP form in ūext (i)ūext (i)ūext (i) and p. For obtaining such
formulation, consider the following local cost matrices, whose selection is done
from the global system desired performance, except matrix PiPiPi that is selected after
solving a local Ricatti algebraic equation, for the local dynamics (5.31):
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Q̄iQ̄iQ̄i = diag{QiQiQi · · · PiPiPi }
Ru,iRu,iRu,i = diag{Ru,iRu,iRu,i · · · Ru,iRu,iRu,i } Rv,iRv,iRv,i = diag{Rv,iRv,iRv,i · · · Rv,iRv,iRv,i } Rext,iRext,iRext,i = diag{Ru,iRu,iRu,i Rv,iRv,iRv,i }
Su,iSu,iSu,i = diag{Su,iSu,iSu,i · · · Su,iSu,iSu,i } Sv,iSv,iSv,i = diag{Sv,iSv,iSv,i · · · Sv,iSv,iSv,i } Sext,iSext,iSext,i = diag{Su,iSu,iSu,i Sv,iSv,iSv,i }

(5.36)

the local cost function in quadratic form takes the following form, considering again
the error vectors x ′

ix ′
ix ′
i (0), û′

ext,iû′
ext,iû′
ext,i and d̂ ′

îd ′
îd ′
i used in (5.34), with V̄ext,i) representing the

independent terms:

Jext (i) = 1

2
ûT

ext,iûT
ext,iûT
ext,i HiHiHiûext,iûext,iûext,i + ûT

ext,iûT
ext,iûT
ext,i [K1,iK1,iK1,i x

′
ix ′
ix ′
i (0) + K2(i)K2(i)K2(i)d̂

′
îd ′
îd ′
i + K3(i)K3(i)K3(i)ppp − H(i)ûext,i−sH(i)ûext,i−sH(i)ûext,i−s] + V̄ext,i

(5.37)
where the gains Hi , K1,i , K2,i , K3,iHi , K1,i , K2,i , K3,iHi , K1,i , K2,i , K3,i are defined as follows:

HiHiHi = Γ T
iΓ T
iΓ T
i QiQiQiΓiΓiΓi + Rext,iRext,iRext,i + 2SiSiSiΓiΓiΓi , K1,iK1,iK1,i = Γ T

iΓ T
iΓ T
i QiQiQiΩiΩiΩi + Sext,iSext,iSext,iΩiΩiΩi

K2,iK2,iK2,i = Γ T
iΓ T
iΓ T
i QiQiQiΘiΘiΘi + Sext,iSext,iSext,iΘiΘiΘi , K3,iK3,iK3,i = diag{MiMiMi · · · MiMiMi }T (5.38)

From the subsystem cost function (5.37) the following local unconstrained explicit
optimal solution is obtained:

ûopt
ext,iûopt
ext,iûopt
ext,i = −HiHiHi

−1
(

K1,iK1,iK1,i x
′
ix ′
ix ′
i (0) + K2,iK2,iK2,i d̂

′
îd ′
îd ′
i + K3,iK3,iK3,i ppp − HiHiHiûext,i−sûext,i−sûext,i−s

)
(5.39)

that is equivalent to:

ûopt
ext,iûopt
ext,iûopt
ext,i = −Kx,iKx,iKx,i x

′
ix ′
ix ′
i (0) − Kd,iKd,iKd,i d̂

′
îd ′
îd ′
i − K p,iK p,iK p,i ppp − ûext,i−sûext,i−sûext,i−s (5.40)

The subsystem control loop is depicted in Fig. 5.1. In this structure, it is seen a state
feedback controller that stabilizes the local dynamics, according to the properties of
the local weighting matrices in the cost function (5.29). The structure also includes
a feedforward component for compensating the local disturbance effect, and not less
important, an external tuning signal represented by the LagrangeMultiplier vector ppp.

An interesting aspect of this control configuration is that the subsystems can be
stabilized by local controllers (explicit MPC local solutions), whereas ppp, a common
signal for all the local controllers, is used as external element for modifying the
subsystem control signals, according to a global performance indicator. Evidently,

Σp xi(k + 1) = Aiixi(k) +Biiui(k) +Eiidi(k) + vi(k)

Subsystem i

−Kx,i

ūext(i)

−Kd,i

xi

di

−Kp,i

vi

[Im(i) 0]
ui

Fig. 5.1 Information flow for the Coordination algorithm



104 J. Sandoval-Moreno et al.

the subsystems controllability is a condition that should be verified for applying the
proposed methodology.

This principle, and the possibility of obtaining explicit local solutions from MPC
controllers are the main characteristics of the coordination strategy that is described
in the following section.

5.3.2 Global coordination Based on Local Explicit Solutions

Taking the fact that each subsystem computes a control sequence vector influenced
by vector ppp, the following unconstrained global explicit solution is obtained, after
taking all the local solutions (5.40):

ûopt
extûopt
extûopt
ext = [(ûopt

ext,1ûopt
ext,1ûopt
ext,1)

T (ûopt
ext,2ûopt
ext,2ûopt
ext,2)

T · · · (ûopt
ext,zûopt
ext,zûopt
ext,z)

T ]T (5.41)

This vector takes the following form, in terms of system signals and the price vector
ppp:

ûopt
extûopt
extûopt
ext = −K̃ 1̃K 1̃K1x ′x ′x ′(0) − K̃2d̂ ′K̃2d̂ ′K̃2d̂ ′ − K̃3 pK̃3 pK̃3 p + ûext−sûext−sûext−s (5.42)

where its matrices and vectors are defined as follows:

K̃ 1̃K 1̃K1 = diag{Kx,1Kx,1Kx,1 · · · Kx,zKx,zKx,z} , K̃ 2̃K 2̃K2 = diag{Kd,1Kd,1Kd,1 · · · Kd,zKd,zKd,z} K̃ 3̃K 3̃K3 = [K p,1K p,1K p,1 · · · K p,zK p,zK p,z]T (5.43)

xxx ′(0) =
⎡

⎢
⎣

x1x1x1(0) − x1,sx1,sx1,s
.
.
.

xzxzxz(0) − xz,sxz,sxz,s

⎤

⎥
⎦ d̂ ′d̂ ′d̂ ′ =

⎡

⎢
⎢
⎣

d̂ ′
1̂d ′
1̂d ′
1 − d̂1,sd̂1,sd̂1,s

.

.

.

d̂ ′
ẑd ′
ẑd ′
z − d̂z,sd̂z,sd̂z,s

⎤

⎥
⎥
⎦ ûext−sûext−sûext−s =

⎡

⎢
⎣

ûext,1−sûext,1−sûext,1−s
.
.
.

ûext,z−sûext,z−sûext,z−s

⎤

⎥
⎦ (5.44)

The optimization problem (5.24) is written in terms of the global extended input
vector sequence uextuextuext and the global extended disturbance vector d̄̄d̄d. For integrating
the optimizing solution (5.42) to the problem (5.24), consider the transformations d̄̄d̄d =
Ydd̂̂d̂d and uextuextuext = Yuûextûextûext , being Yd and Yu non singular matrices, built by inspection.
The global optimal unconstrained solution now takes the following form:

uopt
extuopt
extuopt
ext = −ϕ1ϕ1ϕ1(xxx(0) − xsxsxs) − ϕ2ϕ2ϕ2(d̄ − d̄sd̄ − d̄sd̄ − d̄s) − ϕ3 pϕ3 pϕ3 p + uext−suext−suext−s (5.45)

where the matrices ϕ1,ϕ2,ϕ3ϕ1,ϕ2,ϕ3ϕ1,ϕ2,ϕ3 are defined as follows:

ϕ1ϕ1ϕ1 = YuK̃ 1̃K 1̃K1,ϕ2ϕ2ϕ2 = YuK̃ 2̃K 2̃K2Y
−1
d ,ϕ3ϕ3ϕ3 = YuK̃ 3̃K 3̃K3 (5.46)

Given, the time invariantmatricesϕ1ϕ1ϕ1,ϕ2ϕ2ϕ2,ϕ3ϕ3ϕ3, it is possible to use the explicit extended
control expression (5.45) as a feasible optimizer for the optimization problem (5.24)
[1]. After performing this action, the following cost function is obtained:
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Jext (ppp) = V̄p + 1

2
pppT HpHpHp ppp + pppT [K1pK1pK1px ′x ′x ′(0) + K2pK2pK2pd̄ ′d̄ ′d̄ ′ + K3pK3pK3puextsuextsuexts ] + pppT (Ω̄̄Ω̄Ωxxx(0) + Θ̄̄Θ̄Θd̄̄d̄d)

(5.47)

where V̄p are independent terms of ppp and the gains Hp, K1p, K2p, K3pHp, K1p, K2p, K3pHp, K1p, K2p, K3p are defined
as (see (5.23) for details over Hc, K1c, K2c, K3cHc, K1c, K2c, K3cHc, K1c, K2c, K3c):

K3pK3pK3p = K T
3cK T
3cK T
3c HpHpHp = ϕT

3 Hcϕ3ϕT
3 Hcϕ3ϕT
3 Hcϕ3 − 2ϕT

3 K3pϕT
3 K3pϕT
3 K3p,

K1pK1pK1p = ϕT
3 (Hcϕ1 + K1c) − K3pϕ1ϕT
3 (Hcϕ1 + K1c) − K3pϕ1ϕT
3 (Hcϕ1 + K1c) − K3pϕ1 K2pK2pK2p = ϕT

3 (Hcϕ2 + K2c) − K3pϕ2ϕT
3 (Hcϕ2 + K2c) − K3pϕ2ϕT
3 (Hcϕ2 + K2c) − K3pϕ2

(5.48)

The new cost function (5.47) is written only in terms of the Lagrange Multiplier
vector ppp. In this function, the matrix HpHpHp must be assured to be definite positive also
to guarantee its convexity.

Taking into account that it has been only obtained a feasible optimizer from
(5.45) for the primal problem, it should be assured that constraints are respected in
the subsystems, while assuring the global performance defined by (5.47).

This is done by the tuning properties of the vector ppp in the local controllers,
according to Fig. 5.1. Therefore, it is necessary to establish some constraints for the
new decision variable ppp, as:

L pL pL p ppp ≤ WpWpWp (5.49)

where the matrices L pL pL p, WpWpWp are obtained after replacing (5.45) in the constraints
expression of the problem (5.24), obtaining the following structures:

L pL pL p =
[

φpφpφp
−φpφpφp

]
WpWpWp =

[
Δ̄pΔ̄pΔ̄p − δspδspδsp

−ΔpΔpΔp + δspδspδsp

]
+

[−ξxpξxpξxp
ξxpξxpξxp

]
xxx(0) +

[−ξdpξdpξdp
ξdpξdpξdp

]
d̄̄d̄d +

[−ξu−extξu−extξu−ext
ξu−extξu−extξu−ext

]
uext−1uext−1uext−1 (5.50)

φpφpφp = −φextφextφextϕ3ϕ3ϕ3 Δ̄pΔ̄pΔ̄p = Δ̄extΔ̄extΔ̄ext ΔpΔpΔp = ΔextΔextΔext

δspδspδsp = φext (ϕ1ϕ1ϕ1xsxsxs + ϕ2ϕ2ϕ2d̄s̄ds̄ds + uextsuextsuexts)φext (ϕ1ϕ1ϕ1xsxsxs + ϕ2ϕ2ϕ2d̄s̄ds̄ds + uextsuextsuexts)φext (ϕ1ϕ1ϕ1xsxsxs + ϕ2ϕ2ϕ2d̄s̄ds̄ds + uextsuextsuexts) ξxpξxpξxp = ξextξextξext − φextφextφextϕ1ϕ1ϕ1 ξdpξdpξdp = −φextφextφextϕ2ϕ2ϕ2
(5.51)

It can be noticed in (5.50) that WpWpWp includes also elements defined by the admissible
rank of the signals, as well as the current signal values, and the term δspδspδsp that is related
to the desired set point values for the signals, as seen in (5.51). For stability analysis,
δspδspδsp can be turned into 0.

After these manipulations, the following global optimization problem, known as
the dual problem of (5.24) is:

max
ppp

Jext (ppp)

subject to L pL pL p ppp ≤ WpWpWp
(5.52)

Considering that the present approach is devoted to obtain a control structure in
a distributed-coordinated form, this problem is solved by a superior level entity
which receives the subsystems signals (states, disturbances, and set points vectors)
and return to each subsystem the vector ppp. The subsystems work with stabilizer
feedback controllers, and receive from a coordinator the signal ppp that modifies the
local control signals in such way that all subsystems respect their constraints, while
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Fig. 5.2 Information flow
for the coordination scheme

Solve: max Jext(p), Subject to Lpp ≤ Wp(x(0),d,u−1)

Coordinator

Applies u1 = [Im(1) 0].û(x1(0),p) · · ·

ppx1(0), d̂1 xz(0), d̂z

Subsystem 1 Subsystem z

Applies uz = [Im(z) 0].û(xz(0),p)

assuring an optimal global performance. Thus, the price-driven coordination scheme
is performed according to the definition [15], because a price vector is deployed in
the system subcontrollers.

The proposed distributed-coordination principle is shown in Fig. 5.2, and the
details of the implementation of this optimization problem are summarized in the
Algorithm 5.1.

Algorithm 5.1 Proposed Coordination Algorithm for local receding horizon-based
controllers
Require: Offline computation of matrices from the centralized QP problem (5.24):

ΓdΓdΓd ,ΩdΩdΩd ,ΘdΘdΘd ,ΨdΨdΨd , HHHc, K1cK1cK1c, K2cK2cK2c, K3cK3cK3c,ΓΓΓ ,ΩΩΩ,ΘΘΘ,ΨΨΨ as indicated in (5.15), (5.18), and (5.23).
Require: Offline computation of matrices for the original coordination QP problem constraints
polyhedral: LextLextLext , WextWextWext , as indicated in (5.25), (5.26).

Require: Offline computation of matrices for the local QP problems: ΓiΓiΓi ,ΩiΩiΩi ,ΘiΘiΘi , HHHi , K1,iK1,iK1,i ,

K2,iK2,iK2,i , K3,iK3,iK3,i , according to (5.35) and (5.38).
Require: Offline computation of matrices for the coordination problem (5.52):

ϕ1ϕ1ϕ1,ϕ2ϕ2ϕ2,ϕ3ϕ3ϕ3, K1pK1pK1p, K2pK2pK2p, K3pK3pK3p according to (5.46) and (5.48).
Require: Off-line computation of the constraints for the coordination problem (5.52): L pL pL p, WpWpWp ,
according to (5.50), (5.51).
START
S1: At time t = k, the coordinator receives the state, disturbance and reference vectors from
each subsystem: xixixi (0), xi,sxi,sxi,s , d̂îdîdi ,d̂i,sd̂i,sd̂i,s , uext,iuext,iuext,i , and uext,i−suext,i−suext,i−s , i = 1 · · · z. Then, it merges the vectors
accordingly to obtain xxx(k),ddd and uext−1uext−1uext−1(if necessary).
S2: The coordinator solves the optimization problem (5.52), obtaining ppp.
S3: The coordinator sends the vector ppp to each subsystem. Use (5.42) to obtain the local extended
control sequence ûopt

ext,iûopt
ext,iûopt
ext,i at time t = k.

S4: Each subsystem applies the first mi control elements of ûopt
ext,iûopt
ext,iûopt
ext,i as the local control. Go back

to S1 at the next sampling time (t = k + 1).

5.3.3 Stability Analysis of the Coordination Strategy

Considering that all subsystems are locally stabilized by an unconstrained optimal
controller that integrates a Lagrange Multiplier ppp in an additive form (see Fig. 5.3),
the stability conditions can be established by using the small-gain theorem [26].
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x(k + 1) = Ax(k) +Bu(k) +Ed(k)

u(k)
x(k)

d(k)

[Im 0 · · ·]

Coordinator

−ϕ1x (0) − ϕ2d̄ − ϕ3p+ uext−s

uext

x(k)

x(k)

System Dynamics
p

max Jext(p) S.T Lpp ≤ Wp

p

≡
xp

p x

Σ

Coord.

Fig. 5.3 Closed-loop coordinated system configuration

Therefore, the stability properties of the coordinated system depends on the total
open-loop subsystems-coordinator gain.

Considering a stable local-controlled subsystems in closed loop with a coordina-
tor, as depicted in Fig. 5.3, this system is stable if the following condition holds:

γcγs < 1 (5.53)

where the gains γs stands for the local-controlled system gain and γc stands for
the coordinator-agent gain. These bounds can be computed using the bounded real-
lemma [2], and by considering the worst case admissible values of the Lagrange
Multiplier ppp. The latter is determined by the constraints in ppp that depend on the
current states xxx (see (5.49) and (5.50)).

Due to space limitations for this chapter, the stability analysis for the proposed
approachwill be better exposed in further publications. However, a deeper discussion
and results are presented in [23].

5.4 Coordination of a Two-Area Power Generation System

As application for the distributed-coordinated control scheme, it is proposed a sys-
tem, where the load-frequency control (LFC) is required, due to the interaction of
synchronized generators [5, 9, 17]. In Fig. 5.4 is depicted the configuration of the
test system. The system has two generation areas, represented as Area 1 and Area 2,
which are interconnected by power lines. Each area has an hydroelectric generator, a
non-dispatchable generation unit operated at maximum power (photovoltaic or wind
generator), and an energy storage device.

Fig. 5.4 Configuration of
the proposed two-area power
generation system
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Fig. 5.5 Control structure
for each local power
generation system

In the LFC problem, the idea is to maintain the system frequency. This is done
by acting over the mechanical power that after conversion, turns into electric power.
The general scheme of each generation area is depicted in Fig. 5.5. In the diagram,
it is seen how the mechanical power Pt is affected by the electrical powers PL (the
local load), the non-dispatchable power power Pg injected by the alternative-based
generator and the power injected by a controllable backup battery Pbat = u2. The
governor input signal is represented by a control signal u1, generated by the high-
level control strategy that represents a reference load value, and a droop-frequency
component, which is proportional to the frequency variation [13, 24]. The high-level
controller must assure the system stability under power injections by the alternative
generators and local loads (maintain the line frequency around 50Hz), optimize
the power shared between the areas and maintain, under suitable levels, the stored
power in the backup batteries [3, 11, 21, 25]. In this case study only active power is
considered.

5.4.1 Dynamical Model and System Parameters

For the following equations, it is assumed that variables can be defined as x =
X0 + x̃ , where X0 is the equilibrium (initial) operative condition and x̃ is the variation
around this value.

Power Lines Interactions

For the proposed system, it is considered two power nodes i and j , each one with
respective voltage magnitudes Vi , Vj and angles θi , θ j , as well as link impedance
Z f g = j X f g , where X f i j is the power link reactance (active power lossless assump-
tion). The instantaneous active power (Ptie,i j ) transmitted from node i to node j
[13] is:

Ptie,i j = Vi Vj

Xi j
sin(θi − θ j ) (5.54)

From (5.54) it can be seen how voltage magnitude and angle at each node, fix
the amount of active power transmitted between them. Considering small voltage
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variations, the following small signal model for power transmission is [13]:

p̃tie,i j 
 Vi0Vj0

Xi j
cos(θi0 − θ j0) (θ̃i − θ̃ j ) 
 Kti j (θ̃i − θ̃ j ) (5.55)

Microgrid Dynamical Model

Due to the similar configuration of each generator and their identical connectivity
with the other ones, a similar dynamical model represents the dynamics of each
area. For a particular area i and based on the local configuration scheme included in
Fig. 5.5, the following expressions are obtained (recall that ũ1 is the reference power
for the governor and ũ2 is the injected power from the battery):

˙̃θi = 2π f̃i

˙̃fi = 1
TNi

[− f̃i + KNi ( p̃t,i + p̃g,i + ũi,2 − p̃L ,i − p̃tie,i )]
˙̃pt,i = 1

TGi
[− p̃t,i + Gti (̃ui,1 − D f i f̃i )]

˙̃soci = −Ksi .̃ui,2

(5.56)

where θi is the voltage angle, fi is the frequency, pt,i is the transmitted mechanical
power, soci is the state of charge of the battery, pg,i is the power injected by the
uncontrollable generator unit, pL ,i is the local load and ptie,i is the total power
transmitted from the unit to the other ones. TNi and KNi are the generator equivalent
time constant and gain, TGi andGti are the time constant and the gain of the governor-
turbine system and D f i is the droop-frequency coefficient and Ksi is a gain associated
with the capacity of the battery.

In typical hydroelectric generators, TGi << TNi , making ˙̃pt,i
∼= 0. Also, due to

unique connection between the areas, the term p̃tie,i can be directly obtained from
(5.55). The following simplified model is obtained for each generation area:

˙̃θi = 2π f̃i˙̃fi = 1
TNi

[−ai f̃i + bi ũi,1 + KNi (̃ui,2 + p̃gi − p̃L1) − ci θ̃i ] + 1
TNi

ci θ̃ j

˙̃soci = −Ksi .̃ui,2

(5.57)

where ai = 1 + KNi Gti D f i , bi = KNi Gti , and ci = KNi Kti j . It is noticed how the
frequency of the area i is affected by angle variations of area j . Precisely, the right-
most term of the frequency dynamics is the proposed interactions term for each area.
Defining the states vector xixixi = [θ̃i f̃i s̃oci ]T , control vector uiuiui = [̃ui,1 ũi,2]T , dis-
turbances vector dididi = [ p̃Li p̃gi ]T and interactions vector vivivi that only relies on x jx jx j ,
the following state space model in discrete time, with sampling time Ts is obtained
for each area i :
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Table 5.1 Parameters for the
Two areas microgrid

Parameter Value (units)

Voltages magnitudes (V1, V2) 1.00, 0.9525 (p.u)

Initial voltages angles (θ1, θ2) 0.000, − 0.3094 (rad)

Line reactances (X12) 0.9 (p.u)

Equivalent generator gain
(KN1, KN2)

110, 80

Equivalent governor-turbine gain
(Gt1, Gt2)

1.00, 1.00

Equivalent generator time
constant (TN1, TN2)

25, 15 (s)

Droop frequency gain
(D f 1, D f 2)

0.25, 0.40

Max. generated power (PT,max ,
each unit)

0.3 (p.u)

Max. injectable power (Pg,max ,
each unit)

0.25 (p.u)

Initial injected power
(Pg1,0, Pg2,0)

0.00, 0.00 (p.u)

Max. load power (PL ,max , each
unit)

0.5 (p.u)

Initial local load powers
(PL1,0, PL2,0)

0.20, 0.20 (p.u)

xixixi (k + 1) = Aii xiAii xiAii xi (k) + Bii uiBii uiBii ui (k) + Eii diEii diEii di (k) + vivivi (k)

xixixi (k + 1) =
⎡

⎣
1 2πTs 0

−ci Ts/TNi 1 − ai Ts/TNi 0
0 0 1

⎤

⎦ xixixi (k) +
⎡

⎣
0 0

bi Ts/TNi KNi Ts/TNi
0 −Ksi

⎤

⎦uiuiui (k)

+
⎡

⎣
0 0

−KNi Ts/TNi KNi Ts/TNi
0 0

⎤

⎦dididi (k) + Ts
TNi

⎡

⎣
0 0 0

Kti j 0 0
0 0 0

⎤

⎦ x jx jx j (k)

(5.58)

Numerical Values

The parameters as well as initial values for voltage magnitudes and angles, obtained
after a load flow analysis, are shown in Table5.1, based in information taken from
[5, 13].

5.4.2 Control Objectives

For this case study, the control strategy should minimize the frequency and state-
of-charge deviations deviation, as well as minimize the voltage angle variations,
penalizing the power transmitted between both areas. The selected cost function
structure is similar to (5.9). Regarding the cost functions for each subsystem, the
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following ones were selected, where it is strongly penalized the angle and state-of-
charge variations, as well as the batteries actions in each area:

Q1Q1Q1 = Q2Q2Q2 = diag{0.1 10 2} ; Ru,1Ru,1Ru,1 = Ru,2Ru,2Ru,2 = diag{0.1 0.5} ; Su,1Su,1Su,1 = Su,2Su,2Su,2 = 0
Rv,1Rv,1Rv,1 = Rv,2Rv,2Rv,2 = diag{10 10 10} ; Sv,1Sv,1Sv,1 = Sv,2Sv,2Sv,2 = 0

The matrix P in the cost function is computed from the discrete-time Riccati alge-
braic equation with Q, R and S. With this matrix, one can ensure that a potential
centralized strategy would a priori stabilize the system, having in considerations
the disturbance effects [10]. The admissible signals values are defined according to
the values reported in Table5.1, referred to the initial conditions. For this reason, the
constraints are defined such that the origin is one admissible point in the optimization
process. These ranges are:

x1,maxx1,maxx1,max = x2,maxx2,maxx2,max = [π/4 2 0.4]T x1,minx1,minx1,min = x2,minx2,minx2,min = [−π/4 − 2 − 0.3]T

u1,maxu1,maxu1,max = u2,maxu2,maxu2,max = [0.45 0.5]T u1,minu1,minu1,min = u2,minu2,minu2,min = [−0.45 − 0.5]T

d1,maxd1,maxd1,max = d2,maxd2,maxd2,max = [0.8 0.45]T d1,mind1,mind1,min = d2,mind2,mind2,min = [−0.5 − 0.05]T

5.4.3 Simulation Results

For the selected case study, the distributed-coordination approach is considered to
accomplish the control objectives for the system. Considering that the proposed
approach is obtained from the MPC problem definition for the centralized model
according to [10], the obtained results should be compared against this centralized
control methodology. The idea is to analyse the system performance of the pro-
posed approach against the well-knownMPC controller, using the same weights and
constraints.

For this system, an initial load flow analysis [13] was performed to obtain the
voltage magnitudes and phase angles for the proposed start-up conditions. Such
initial values are included in Table5.1, where it is seen that angles and disturbance
are within the operative ranges.

The simulations were executed for both control strategies, considering the distur-
bances profiles (uncontrolled generation in chart Injected Generation and loads in
the chart Loads) that are represented in Fig. 5.6. The simulations results are shown
in Fig. 5.7. For each chart, C refers to the centralized MPC results, while DC refers
to the distributed-coordinated proposed approach, in a simulation of about 450s. For
both systems, the prediction horizon was chosen equal to N = 2 and the sampling
period Ts = 1s. The simulations were performed in a PC with a processor Atmel
A6-3420(1.5Ghz, 4Gb of RAM), under Matlab R2013a. In Fig. 5.7 are included the
states (angle and battery’s state of charge in the charts Angles and SoC), as well as
the power from generators and batteries (charts Hydro Power and Bat. Power. The
frequency is not represented, but given the small angle variations and their stable
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Fig. 5.6 Injected generation and load profiles for the power system simulation (Bold Area 1, Light
Area 2)
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Fig. 5.7 Simulation results of Centralized MPC (C) and Distributed-Coordinated MPC (DC)
approach for the multisource application (Bold Area 1, Light Area 2)

behavior, is maintained around the nominal value in both scenarios. Looking at the
simulation results, the following elements are highlighted:

• For both implementations, the system constraints, defined in Sect. 5.4.2 are
respected. The system performance is not degraded in their presence.

• The angle values are sufficiently small, implying null frequency variation. Also,
the batteries state of charge is also regulated in an optimal fashion. In fact, for the
DMPC case their variation is smaller, aspect that is related with the interactions
penalization in this scheme.

• The batteries action, combined with the hydropower regulation respond in good
way, against power injection and loads. It is seen how hydropower generation is
reduced when the alternative source injects its power, particularly in Area 2.

• The proposed control algorithm performance was compared against the central-
ized control approach, using the mean cost ratio R̄J = 1/L

∑L
l=1

JDC,l

JC,l
, with JDC,l

the cost for the proposed approach while JC,l the cost for the centralized control,
at the simulation l. For L = 10 simulations under the same initial and load condi-
tions, R̄J ≈ 1.05, showing that both approaches have an equivalent performance,
even when JDC,l considers the weighting matrices Rv,iRv,iRv,i , Sv,iSv,iSv,i for penalizing the
interactions.

However, in this case study, the lost of coordination was not tested, due to possible
large angle variations. Under high frequency variations, the total generated hydro
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power should increase to compensate these changes. If this power generation is
sustained during, there is a possibility to expend the stored water [13].

5.5 Conclusions

In this work, a price-driven-based optimization approach was proposed for coordi-
nation of distributed large-scale systems. The approach uses explicit unconstrained
local solutions, along with a coordinator agent, for assuring the global performance,
while respecting the operative constraints. The proposed solution is based in the
decomposition of the global cost function along the subsystems, which solve their
own unconstrained problem, whose solutions are then combined to partially solve
the global optimization problem. After this, the coordinator solves the new optimiza-
tion problem and finds a price vector (Lagrange Multiplier) that satisfies the system
constraints. One of the advantages of the proposed technique is that each subsystem
can operate with a local control strategy, and uses the coordination signal as a tuning
parameter for achieving the global constraints. The technique has been applied in a
two-area power generation system.
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Chapter 6
Evolutionary Game-Based Dynamical Tuning
for Multi-objective Model Predictive Control

Julián Barreiro-Gomez, Carlos Ocampo-Martinez and Nicanor Quijano

Abstract Model predictive control (MPC) is one of the most used optimization-
based control strategies for large-scale systems, since this strategy allows to consider
a large number of states and multi-objective cost functions in a straightforward way.
One of the main issues in the design of multi-objective MPC controllers, which is
the tuning of the weights associated to each objective in the cost function, is treated
in this work. All the possible combinations of weights within the cost function affect
the optimal result in a given Pareto front. Furthermore, when the system has time-
varying parameters, e.g., periodic disturbances, the appropriate weight tuning might
also vary over time. Moreover, taking into account the computational burden and the
selected sampling time in the MPC controller design, the computation time to find
a suitable tuning is limited. In this regard, the development of strategies to perform
a dynamical tuning in function of the system conditions potentially improves the
closed-loop performance. In order to adapt in a dynamical way the weights in the
MPC multi-objective cost function, an evolutionary game approach is proposed. This
approach allows to vary the prioritization weights in the proper direction taking as
a reference a desired region within the Pareto front. The proper direction for the
prioritization is computed by only using the current system values, i.e., the current
optimal control action and the measurement of the current states, which establish the
system cost function over a certain point in the Pareto front. Finally, some simulations
of a multi-objective MPC for a real multivariable case study show a comparison
between the system performance obtained with static and dynamical tuning.
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6.1 Introduction

Model predictive control (MPC) is an optimization-based control strategy widely used
in the solution of the control of large-scale systems since it can manage a large number
of variables in a straightforward manner, it may consider several objectives, and it can
consider a variety of physical and operational constraints. The versatility of the MPC
controller is reflected on the amount of elements that can be adjusted, e.g., control-
oriented model of the system, horizon for the states prediction, control horizon, or
weights in the multi-objective cost function. In this regard, one of the main issues of
the multi-objective MPC design is the selection of all these parameters. This work
focuses particularly on the tuning issue given by the selection of the weights in the cost
function. These weights assign a prioritization to each objective affecting the solution
of the optimization problem that is solved at each iteration by the controller. Conse-
quently, tuning these weights might improve considerably the control performance.

The design problem of tuning has been already treated by many researchers using
different strategies. Most of the existing strategies to tune an MPC controller utilize
an offline approach, and sometimes it is a trial and error procedure. In [5], a review
of some tuning strategies has been made, and some approaches such as offline and
online strategies have been classified. Since the conditions over the system might
vary over time, it has become a relevant issue in the development of strategies that
allow to tune MPC controllers permanently in a dynamical manner. Moreover, it
must be taken into account that an online tuning strategy necessarily implies an extra
computational burden. For instance in [1], a tuning strategy is presented based on a
linear approximation between the closed-loop predicted output, and the parameters
that may be tuned in the MPC controller. Also, it has highlighted its simplicity as
an advantage for implementation. More approaches to solve this problem have been
proposed after the review presented in [5]. In [4], a tuning methodology based on a
matching to a desired reference controller has been proposed. This method allows
to select the MPC weight matrices, making the MPC perform as a desired linear
controller. Afterward, this methodology has been generalized in [23]. The use of
a linear controller as a reference has also been studied for multiple-input-multiple-
output systems in [21]. Other alternatives to perform the tuning of an MPC controller
has been explored. For instance, a self-tuning terminal cost approach is applied in
[13] for an economic MPC controller. In [22], a normalization procedure and a
computation of the minimum distance from the Pareto front to a management point
have been proposed as a tuning strategy. Other approaches use learning systems. For
example, a learning approach based on artificial neural networks and fuzzy logic has
been studied for performing the tuning of a predictive controller in [6]. Then, it is
concluded that other learning techniques might be implemented in order to solve the
problem of dynamical tuning for predictive controllers.
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On the other hand, game theory has been used as a learning approach for a large
variety of control systems. In [12], the use of game theory applied to distributed
control design is discussed. The game theoretical approach has been used for the
design of multiagent systems, and to solve optimization problems [10, 11, 25].
Other perspective is the evolutionary game approach [20, 24]. For instance in [2, 3,
14, 17–19], a population dynamics approach has been presented for control and/or
optimization purposes. Motivated by all the applications of this game theoretical
approach in control systems, this work uses the evolutionary game theory as a learning
approach to propose a dynamical tuning strategy for multi-objective MPC controllers.

The contribution of this chapter is a novel dynamical tuning strategy based on
evolutionary game theory. This approach varies the prioritization weights trying to
maintain the values of the objective functions within a preestablished management
region over the Pareto front. The management region is selected according to a desired
performance of the system, and determines the proper direction for the evolution of
the prioritization weights when disturbances in the system make objective functions
take undesired values over the Pareto front. Furthermore, the population dynamics
approach only requires information about the current condition of the system, which
determine a current value in the Pareto front. In this regard, the present methodology
demands less computational burden with respect to other tuning strategies that need
to compute more than one value over the Pareto front. The proposed evolutionary
game-based dynamical tuning is tested for an MPC controller with a drinking water
network (DWN) as a case study.

This chapter is organized as follows. Section 6.2 introduces a brief background
of MPC and population dynamics. Section 6.3 presents the proposed evolutionary
game-based dynamical tuning for a multi-objective MPC. Section 6.4 describes the
real case study that has been used to test the proposed dynamical tuning approach.
In this section, the results are shown and the proposed tuning strategy performance
is compared with the performance of an MPC tuned with the static strategy. Finally,
some concluding remarks are made and further work is pointed out in Sect. 6.5.

Notation

All column vectors are denoted by bold style, e.g., x. Matrices are denoted by bold
upper case, e.g., A. In contrast, scalars are denoted by nonbold style, e.g., N . The
sets are denoted by calligraphic upper case, e.g., S. The norm ||x|| of the vector

x ∈ R
nx is defined as ||x|| = √

x�x. Finally, real numbers are denoted by R, all the
nonnegative numbers are denoted by R+, and all the nonzero positive real numbers
are denoted byR>0. Similarly, the integer numbers, and nonnegative integer numbers
are denoted byZ, andZ+, respectively. Throughout this document, discrete-time and
continuous-time systems are treated. Therefore, the subindex k ∈ Z+ denotes that the
system is described in discrete time, whereas the use of time t in the continuous-time
expressions is mostly omitted in order to simplify the notation.
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6.2 Background

This section introduces some preliminaries such as the problem statement regarding
multi-objective MPC, and the basic concepts within the framework of population
dynamics, particularly regarding the Smith dynamics. These preliminaries are used
later on in the statement of the proposed novel dynamical tuning.

6.2.1 Model Predictive Control

Consider a system represented by the following discrete-time state-space model:

x(k + 1) = Ax(k) + Bu(k) + Bld(k), (6.1)

where x ∈ R
nx is the state vector, u ∈ R

nu is the vector of manipulated variables,
d ∈ R

nd denotes the vector of disturbances affecting the system, k ∈ Z+ denotes
the discrete time, and A, B, and Bl are the state-space system matrices with suit-
able dimensions. The states and control actions are subject to bounds and physical
constraints, which define feasible sets given by

X �
{
x ∈ R

nx : Gx ≤ g
}
, (6.2a)

U �
{
u ∈ R

nu : Hu ≤ h
}
, (6.2b)

where G, H, g, and h are matrices of suitable dimensions. Let û be the control action
sequence for a fixed-time prediction horizon Hp, x̂ be the state sequence resulting
from applying the control action sequence over the system (6.1) from the initial state
x(0|k) � x(k), and d̂ be the disturbance sequence along Hp, i.e.,

û � {u(0|k), u(1|k), . . . , u(Hp − 1|k)}, (6.3a)

x̂ � {x(1|k), x(2|k), . . . , x(Hp|k)}, (6.3b)

d̂ � {d(0|k), d(1|k), . . . , d(Hp − 1|k)}. (6.3c)

The system (6.1) is controlled by a multi-objective MPC controller whose optimiza-
tion problem is composed by a cost function with N objectives, each one with an
associated weight γi , i = 1, . . . , N that assigns a prioritization, i.e.,

min
û

J (x(0), u) =
N∑

j=1

γ j J j (x(0), u), (6.4a)
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subject to

x(i + 1|k) = Ax(i |k) + Bu(i |k) + Bld(i |k), i ∈ [0, Hp − 1] ⊂ Z+, (6.4b)

u(i |k) ∈ U , i ∈ [0, Hp − 1] ⊂ Z+, (6.4c)

x(i |k) ∈ X , i ∈ [0, Hp] ⊂ Z+. (6.4d)

The issue treated in this work concerns the proper tuning for the optimization
problem (6.4), i.e., how to find the proper values for the weight factors γ1, . . . , γN .

Assuming that the optimization problem (6.4) is feasible, there is an optimal input
sequence given by

û∗ � {u∗(0|k), u∗(1|k), . . . , u∗(Hp − 1|k)} ∈ U ,

and due to the fact that only one control action of the sequence is applied to the
system, then the final optimal control action is given by

u∗(k) � u∗(0|k).

Once the optimal control action u∗(k) is applied to the system, a new optimization
problem of the form in (6.4) is solved to compute the next optimal control action.
Then, a new optimal sequence is computed for the iteration k + 1 repeating the
mentioned procedure and using a new measurement of the system states as an initial
condition in the prediction model.

6.2.2 Population Dynamics

Consider a population composed by a large and finite number of rational agents
involved in a strategic game. During the interaction, each agent chooses a strategy
from the set of the N available strategies in the population, which is denoted by
S = {1, . . . , N }. Each objective in the cost function of the MPC is associated to a
strategy in the population game. The fact that agents are rational implies that they
make decisions in order to improve their benefits known as payoffs, which are deter-
mined by a fitness function. Let pi ∈ R+ be the portion of agents in the population
choosing the strategy i ∈ S. Thus, the vector p = [p1 · · · pN ]� corresponds to a
strategic distribution of agents among all the strategies. The set of possible strategic
distributions within the population is given by a simplex denoted by

Δ =
{

p ∈ R
N
+ :

N∑

i=1

pi = 1

}

, (6.5)

where the unit in the sum of proportions is associated to the total amount of agents
in the population, and the interior of the simplex is defined as
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int Δ =
{

p ∈ R
N
>0 :

N∑

i=1

pi = 1

}

. (6.6)

Each fitness function is a mapping fi : Δ �→ R that takes a strategic distribution in
the population and returns a real value corresponding to the payoff that the portion
of agents pi receives for selecting the strategy i ∈ S. Similarly, the fitness function
defined by the mapping F : Δ �→ R

N is the vector of all fitness functions, i.e., F(p) =[
f1(p) f2(p) · · · fN (p)

]�
.

The vector of fitness F determines the evolution of the game. For instance, the
framework of the proposed dynamical tuning methodology is given by stable games.
This condition establishes conditions over the fitness functions. The formal definition
of stable games is stated next [8].

Definition 6.1 The population game F : Δ �→ R
N is a stable game if

(p − q)� (F(p) − F(q)) ≤ 0, for all p, q ∈ Δ, (6.7)

and this condition is equivalent to the condition that DF(p) is negative semidefinite,

where
[
DF(p)

]
i j = ∂ fi (p)

∂ p j
. ♦

The process of selecting an agent and making decisions to change strategies in order
to improve the payoffs is mathematically described by the population dynamics, e.g.,
replicator dynamics, projection dynamics, or Smith dynamics. In this chapter, the
Smith dynamics have been selected and their features, as the previously mentioned
property, are presented and explained below.

Smith Dynamics

The Smith dynamics are one of the six fundamental population dynamics [20]. Any
of these six fundamental population dynamics can be used for the proposed tuning
strategy. However, in this chapter, the Smith dynamics have been chosen for the
following reasons: (i) they satisfy nonnegativeness of proportion of agents, and (ii)
proportions do not extinct under the Smith dynamics (i.e., if a pi (t1) = 0 for some
t1 ≥ 0 and p∗ ∈ intΔ, then there exists a t2 > t1 such that pi (t2) > 0, and a t3 > t2
such that p(t3) = p∗). The Smith dynamics are given by the following equation:

ṗi =
N∑

j=1

p j
[

fi (p) − f j (p)
]
+ − pi

N∑

j=1

[
f j (p) − fi (p)

]
+, for all i ∈ S, (6.8)

where [·]+ = max(0, ·). Notice that the Smith dynamics can be rewritten as

ṗi = 1

2

N∑

j=1

(
(1 − φi j )pi + (1 + φi j )p j

) [
fi (p) − f j (p)

]
, for all i ∈ S, (6.9)
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where φi j = sgn
(

fi (p) − f j (p)
)
. If the equilibrium point of the Smith dynamics

is p∗ ∈ intΔ, then p∗
i , p∗

j > 0, for all i, j ∈ S, and the equilibrium point in (6.9)
implies that fi (p∗) = f j (p∗), for all i, j ∈ S.

Proposition 6.1 The simplex Δ is an invariant set under the Smith dynamics (6.8),
i.e., if the initial condition of the population state p(0) ∈ Δ, then p(t) ∈ Δ, for all
t ≥ 0.

Proof The simplex is determined by the set of proportions such that
∑N

i=1 pi = 1,
and pi ≥ 0, for all i ∈ S. First, the proof consists of showing that

∑N
i=1 ṗi = 0, i.e.,

N∑

i=1

ṗi =
N∑

i=1

⎧
⎨

⎩

N∑

j=1

p j
[

fi (p) − f j (p)
]
+ −

N∑

j=1

pi
[

f j (p) − fi (p)
]
+

⎫
⎬

⎭
,

=
N∑

i=1

N∑

j=1

p j
[

fi (p) − f j (p)
]
+ −

N∑

j=1

N∑

i=1

p j
[

fi (p) − f j (p)
]
+,

= 0.

This shows the invariance of the set given by condition
∑N

i=1 pi = 1. Now suppose
that the population states are in the limit of the simplex Δ, i.e., a proportion of agents
pi = 0, then the Smith equation associated to i ∈ S is given by

ṗi =
N∑

j=1

p j
[

fi (p) − f j (p)
]
+,

and consequently, ṗi ≥ 0, then the positiveness of proportion of agents is satisfied.
This completes the proof. �

Once it has been shown that the simplex is an invariant set under the Smith
dynamics, it is necessary to show the convergence to the equilibrium point p∗ ∈ Δ

as it is stated in the following theorem.

Theorem 6.1 Let F be a continuously differentiable stable game, then the equilib-
rium point p∗ ∈ Δ is asymptotically stable under the Smith dynamics (6.8).

Proof The proof of this theorem is reported in [20]. However, a sketch of the proof
is presented. Consider the Lyapunov candidate V (p) given by

V (p) = 1

2

N∑

i=1

N∑

j=1

pi
[

f j (p) − fi (p)
]2
+,

where V (p∗) = 0, and V (p) > 0, for all p �= p∗. Its derivative is
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V̇ (p) = ṗ�DF(p)ṗ

+ 1

2

N∑

i=1

N∑

j=1

x j
[

fi (p) − f j (p)
]
+

⎛

⎝
N∑

k=1

[
fk(p) − fi (p)

]2
+ − [

fk(p) − f j (p)
]2
+

⎞

⎠.

Notice that the first element ṗ� DF(p)ṗ ≤ 0 since F is a stable game. In order to
analyze the second term, suppose that fi (p) > f j (p), then

[
fi (p) − f j (p)

]
+ > 0.

Now fk(p) − fi (p) < fk(p) − f j (p), and due to the fact that [·]+ is nondecreasing,

then
∑N

k=1

[
fk(p) − fi (p)

]2
+ − [

fk(p) − f j (p)
]2
+ ≤ 0. Finally, if fi (p) < f j (p),

then
[

fi (p) − f j (p)
]
+ = 0 making zero the second term. As conclusion, V̇ (p) ≤ 0.

Moreover using the La Salle’s invariance principle, the equality V̇ (p) = 0 holds for
fi (p∗) = f j (p∗), for all i, j = 1, . . . , N completing the proof. �

Due to the fact that the MPC controller works in discrete time, and the popula-
tion dynamics evolve in continuous time, a way to sample the population dynamics
is presented, i.e., a sampled Smith dynamics are established using the continuous
evolution of proportions as introduced next. Consider a sampling time denoted by
τ to sample the evolution of the population states p(t) under the Smith dynamics
(6.8), i.e., every time τ , the population states p(τ ) evolve as a discrete evolution
denoted by p̃(k) (Sampled Smith Dynamics). Notice that the population dynamics
sampling time must be shorter than the MPC controller sampling time since the
evolution of the population dynamics determine the prioritization weights for next
iteration in the MPC controller, i.e., τ < Δt . Suppose that the initial condition is
given by p̃(0) = p(0), then the evolution of the discrete population states is given by
p̃(k + 1) = p(τ ), p̃(k + 2) = p(2τ ), and so on, i.e.,

p̃i (k + b) = pi (bτ ), where b ∈ Z, and for all i ∈ S.

Suppose an arbitrary evolution of the proportion of agents playing strategy i ∈ S
in continuous time pi (t) as it is shown in Fig. 6.1. Then, it is obtained the evolution
of the same proportion of agents by saving its values every time τ . Figure 6.1 also
shows the discrete evolution of the proportion of agents p̃i (k) under the sampled
Smith dynamics for different values of τ , i.e., τ = 6 s, τ = 8 s, and τ = 10 s. Fur-
thermore, the dynamical prioritization weights are given by the discrete proportion
of agents p̃(k).

6.3 Proposed Dynamical Tuning Strategy

This section introduces the proposed evolutionary game-based dynamical tuning for
multi-objective MPC. The dynamical tuning strategy is divided in two parts. First, it
is necessary to make a normalization procedure, and then a strategy to assign weights
dynamically. Both stages are presented next.
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Fig. 6.1 Example of proportion of agents for different values τ

6.3.1 Normalization

The cost function in (6.4a) involves multiple control objectives, making necessary to
establish appropriate weights for each one. In general, each objective has a different
nature and, as consequence of this, it is not a trivial issue to find the proper set of
weights to obtain the desired control performance. In order to establish a proper
distribution of weights in the objective functions, it is necessary first to normalize
the cost function [9].

Let x∗
i , u∗

i be the optimal solution for the single objective optimization of the i th
objective function Ji . The solution x∗

i , u∗
i is obtained by solving the optimization

problem of the MPC controller (6.4) with γi = 1 and γ j = 0, for all j �= i . Then,
the utopia point, denoted by Jutopia, is found as follows:

Jutopia = [
J1(x∗

1, u∗
1) J2(x∗

2, u∗
2) · · · JN (x∗

N , u∗
N )

]
. (6.10)

The i th nadir value is denoted by

J nadir
i = max

(
Ji (x∗

1, u∗
1) Ji (x∗

2, u∗
2) · · · Ji (x∗

N , u∗
N )

)
, (6.11)

and the nadir point Jnadir is given by

Jnadir = [
J nadir

1 J nadir
2 · · · J nadir

N

]
. (6.12)

Finally, the normalized multi-objective cost function has the form

J̃ (x, u) =
N∑

i=1

J̃i (x, u),
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where each normalized objective is

J̃i (x, u) = Ji (x, u) − J utopia
i

J nadir
i − J utopia

i

.

After the normalization, weights in the cost function determine a prioritization
without being affected by the order of magnitude of each objective.

6.3.2 Dynamical Weighting Procedure

Once the objective function has been normalized, it is adequate to establish weights
p̃(k) to each one of the objectives at each discrete-time instant, i.e., the weight for
the i th objective at k ∈ Z+ is given by p̃i (k). Then, the optimization problem for the
normalized MPC controller is stated as follows:

min
û

N∑

j=1

p̃ j (k) J̃ j (x(0), u), (6.13a)

subject to

x(i + 1|k) = Ax(i |k) + Bu(i |k) + Bld(i |k), i ∈ [0, Hp − 1] ⊂ Z+, (6.13b)

u(i |k) ∈ U , i ∈ [0, Hp − 1] ⊂ Z+, (6.13c)

x(i |k) ∈ X , i ∈ [0, Hp] ⊂ Z+, (6.13d)

where p̃(k) = [
p̃1(k) p̃2(k) · · · p̃N (k)

]�
and

∑N
i=1 p̃i (k) = 1. The unitary value

in the equality constraint represents the total mass population according to (6.5). The
proper prioritization of these objectives might vary over time as exogenous distur-
bances affecting the system also vary. In order to overcome this issue, it is proposed
a dynamical tuning using a population dynamics approach. Then, the fitness func-
tions fi (pi ) � fi ( p̃i (k)) are selected to be function of each objective evaluated at
the current optimal control action, i.e., J̃i (x̂∗(k), û∗(k)). Note that this selection of
fitness is appropriate since more priority tends to be assigned to those objectives with
greater values.

Furthermore, it is desired to assign a prioritization over a region in the Pareto
front known as management region (MR). The importance assigned over the MR is
determined by a weight wi in the i th fitness function of the Smith dynamics, i.e.,

fi ( p̃i (k)) = wi J̃i (x̂∗(k), û∗(k)). (6.14)

A region is selected over the Pareto front instead of a point as reported in [22]. The
selection of a management point as in [22] implies to have to compute several different
prioritization weights at each iteration in order to find the proper combination of



6 Evolutionary Game-Based Dynamical Tuning for Multi-objective … 125

weights. This procedure must be made at every iteration since conditions in the system
vary over time as disturbances in the system also vary. Moreover, the disturbances
behave in a stochastic manner, for which it is not possible to determine a strategy
that uses a limited number of close values to the last one over the Pareto front. The
selection of an MR helps to determine the proper direction for each weight by only
disposing of a single value over the Pareto front at each iteration. Notice that this
proper direction can be computed despite the stochastic behavior of disturbances in
the system since only the current condition is required. Furthermore, this relaxation
of the point for a region allows to reduce the computational burden.

Remark 6.1 Note that the prioritization in (6.14) assigns an importance to a region
in the Pareto front (i.e., at MR) for the population dynamics evolution, and the
terms wi , for i = 1, . . . , N , do not appear in the optimization problem of the MPC,
and should not be confused with the weights of the cost function in the MPC
controller. ♦

The differences between the MR and the static weights in the multi-objective opti-
mization problem are discussed. To do so, consider a simple and general optimization
problem given by

min
z

J (z) = p1 J1(z) + p2 J2(z), (6.15a)

subject to

Vz ≤ v + c, (6.15b)

where z ∈ R
m is the decision variable, and V ∈ R

l×m is a constant matrix with suitable
dimension. The values p1, p2 ∈ R establish a static prioritization for the objectives
J1(z) and J2(z), respectively. The vector v ∈ R

l is a constant component in the
constraint, whereas the vector c ∈ R

l is a time-varying component. For instance, the
time-variant value of the vector c ∈ R

l may be associated to a disturbance d ∈ R
l

involved in a constraint in the optimization problem of an MPC controller.
First, suppose that c = c1 in (6.15b), being c1 ∈ R

l a vector of arbitrary entries.
For this case, suppose that the obtained Pareto front is the one presented in Fig. 6.2a,
and its normalized Pareto front is the one presented in Fig. 6.2b. This figure shows
an example in which the management region is given by w1 = w2 = 0.5, and shows
the solution for the optimization problem when static weights in the multi-objective
functions are assigned as p1 = p2 = 0.5 to objectives J1(z) and J2(z), respectively.
Notice the difference between the selection of the MR and the assignment of the
weights in the cost function.

Now, suppose that c in (6.15b) varies, e.g., c = c2, where the entries of c1 and c2

are near values, i.e., c1 − c2 ≈ 0. In this case, the Pareto front varies. Suppose that the
new Pareto front is the one obtained in Fig. 6.2c, with its corresponding normalized
front presented in Fig. 6.2d. When making this modification over c, the solution of
the optimization problem for the weights p1 = p2 = 0.5 changes dramatically over
the Pareto front (this fact illustrates the effect when the disturbances, denoted by d,
vary in the optimization problem (6.13)). However, notice that the MR is still defined



126 J. Barreiro-Gomez et al.

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

Management Region (MR)
w1 = w2 = 0.5

p1 = p2 = 0.5
Solution with weights

Objective 1 (J1)

O
b
je
ct
iv
e
2
(J

2
)

Pareto Front

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

Management Region (MR)
w1 = w2 = 0.5

p1 = p2 = 0.5
Solution with weights

Objective 1 (J1)

O
b
je
ct
iv
e
2
(J

2
)

Pareto Front

(a) (b)

(c) (d)

Fig. 6.2 Comparison between the MR and the optimization prioritizing weights

as a region where the objective functions have a equitable value for the particular
case w1 = w2 = 0.5.

When the MR is defined, the dynamical tuning strategy is in charge of finding
the proper weights p̃1 and p̃2 in the normalized cost function, such that the solution
lies inside the MR. This philosophy is different from the static tuning strategy where
the weights are determined previously. The process to assign dynamically the tuning
weights is performed using the population dynamics, and then in order to guaran-
tee that the Smith dynamics have a stable behavior, it is necessary the following
assumption according to the definition of a stable game.

Assumption 6.1 The fitness function fi (pi ) is a decreasing function with respect to
pi . Then the game F is a stable game, and stability of the population game is ensured
according to Theorem 1. Note that it is expected that the value of the objective
J̃i (x̂∗(k), û∗(k)) decreases as bigger weight p̃i (k) is assigned to it when solving the
corresponding optimization problem. ♦

A detailed procedure to implement the evolutionary game-based dynamical tuning
for multi-objective model predictive control is presented in Algorithm 6.1.
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Algorithm 6.1 Evolutionary game-based dynamical tuning for multi-objective MPC
1: procedure initialization
2: Hs ← simulation length
3: Hp ← prediction horizon
4: N ← number of objectives
5: x(k) ← x(0) ∈ R

nx states initial condition
6: p(0) ← p ∈ R

N+ proportion initial condition for continuous Smith dynamics
7: p̃(k) ← p(0) ∈ R

N+ discrete proportion initial condition
8: τ ← time for population dynamics
9: end procedure
10: while k ≤ Hs do
11: procedure normalization
12: i ← 1 initialization index for local objectives
13: while i ≤ N do
14: u∗

i ← arg min
û

Ji (x, u) with constraints

15: J utopia
i ← Ji (x∗

i , u∗
i )

16: i ← i + 1
17: end while
18: j ← 1 initialization index for nadir points
19: while j ≤ N do
20: J nadir

j ← max
(
J j (x∗

1, u∗
1) J j (x∗

2, u∗
2) · · · J j (x∗

N , u∗
N )

)

21: j ← j + 1
22: end while
23: end procedure
24: procedure Normalized MPC

25: x̂∗(k), û∗(k) ← arg min
N∑

i=1
p̃i (k) J̃i (x, u) with constraints

26: u∗(k) ← u∗(0|k) ∈ R
nu optimal control action

27: end procedure
28: procedure computation of fitness functions
29: i ← 1 initialization index for local objectives
30: while i ≤ N do
31: fi (pi ) � fi ( p̃i (k)) ← J̃i (x̂∗(k), û∗(k))

32: i ← i + 1
33: end while
34: end procedure
35: procedure continuous- time Smith dynamics ∀ i ∈ S
36: ṗi =

N∑

j=1
p j

[
fi (pi ) − f j (p j )

]
+ − pi

N∑

j=1

[
f j (p j ) − fi (pi )

]
+, for 0 ≤ t ≤ τ

37: p̃(k) ← p(τ ) update of discrete agent proportions
38: p(0) ← p̃(k) new initial condition for Smith dynamics
39: end procedure
40: procedure optimal control action applied to the system
41: x(k) ← Ax(k) + Bû∗(k) + Bl d(k)

42: k ← k + 1
43: end procedure
44: end while
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6.4 Case Study

The Barcelona Drinking Water Network (DWN) is a large-scale system composed
by tanks, valves, pumps, drinking water sources, and water demands as reported
in [16]. The volumes in tanks compose the state vector x ∈ R

nx , the flows through
the valves and pumps compose the vector of manipulated control actions u ∈ R

nu ,
and the water-demanded flows are collected in vector d ∈ R

nd . The corresponding
discrete-time model is given by

x(k + 1) = Ax(k) + Bu(k) + Bld(k), (6.16a)

0 = Euu(k) + Edd(k), (6.16b)

where the difference equation in (6.16a) describes the dynamics of the storage tanks
in the system, and Eq. (6.16b) describes the static relations given by the mass balance
at junction nodes within the network. Moreover, 0 is a column vector whose entries
are null, and A, B, Bl , Eu , and Ed are constant matrices with suitable dimensions
determined by the DWN topology [7].

6.4.1 System Management Criteria

The cost function for the MPC controller is determined by operational objectives,
which are established by the company in charge of the DWN. These objectives
are usually determined by the following three aspects: (i) economic operation, (ii)
smoothness operation, and (iii) safety operation. For the economical aspect, there are
two costs associated to the DWN operation. The first cost is related to water depending
on the selected source to get water during the day, it is given by α1 ∈ R

nu and whose
units are economic units per flow unit ([e.u.]/[m3/s]). The second cost is time variant
during the day, associated to the energy required to operate the active elements in
the DWN (i.e., valves and pumps), and it is given by α2 ∈ R

nu in economic units per
flow unit ([e.u.]/[m3/s]). In general, the economic operation objective consists in
minimizing the water production and transport costs given in economic units (e.u.),
i.e.,

J1(u(k)) �
∣∣(α1 + α2(k))� u(k)

∣∣ . (6.17)

Regarding the smoothness operation, it is related to the variations of the control
actions along the time, i.e., Δu(k) = u(k) − u(k − 1). This objective consists in
minimizing

J2(u(k)) � ‖Δu(k)‖2 . (6.18)

Finally, the safety operation consists in guaranteeing that there is enough stored
water to satisfy the demands during certain period of time. Due to the fact that demand
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is supposed to be obtained from a forecasting procedure, this operation objective is
managed by the following soft constraint:

x(k) ≥ xs(k) − ξ(k), for all k, (6.19)

where xs ∈ R
nx is the vector of safety volumes for all the tanks. The variable ξ ∈ R

nx

does not have a direct relationship with any element of the system, and it is introduced
as a decision variable in the optimization problem to manage the safety volumes.
Furthermore, it is desired that ξ tends to zero in order to avoid violations of the
constraint (which implies the depletion of such safety volumes). Then, the third
objective related to the system states is given by the minimization of

J3(ξ(k)) � ‖ξ(k)‖2 . (6.20)

It is worth to highlight that it is already known the importance in the prioritization
of objectives, which is determined by the company in charge of the management of
the network. This known importance among the objective functions is commonly
used to determine a static tuning for the system. The most important objective is the
economical aspect, and the second is to guarantee the safety volumes. This fact is
used below with the case study to determine different and possible cases to test the
performance of the MPC controllers.

6.4.2 Optimization Problem of the Predictive Controller

Once the system management criteria have been established with the objectives
J1, J2, and J3, it can be set the normalized optimization problem behind the MPC
controller design, i.e.,

min
û,ξ̂

J (u, ξ) =
Hp−1∑

j=0

p̃1(k) J̃1(u(k + j)) +
Hp−1∑

j=0

p̃2(k) J̃2(u(k + j))

+
Hp−1∑

j=0

p̃3(k) J̃3(ξ(k + j)),

subject to

x(i + 1|k) = Ax(i |k) + Bu(i |k) + Bld(i |k), i ∈ [0, Hp − 1] ⊂ Z+,

0 = Euu(i |k) + Edd(i |k), i ∈ [0, Hp − 1] ⊂ Z+,

u(i |k) ∈ U , i ∈ [0, Hp − 1] ⊂ Z+,

x(i |k) ∈ X , i ∈ [0, Hp] ⊂ Z+,

x(i |k) ≥ xs(k) − ξ(i |k), i ∈ [0, Hp] ⊂ Z+,
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where the feasible sets for the control actions and the system states are given by
U = {u ∈ R

nu |umin ≤ u ≤ umax} and X = {x ∈ R
nx |xmin ≤ x ≤ xmax}, where umin

and umax are the minimum and maximum limits for the control actions, respectively.
Similarly, xmin and xmax are the minimum and maximum limits for the system states.
Finally, similarly as in (6.3), ξ̂ is a sequence during the horizon Hp.

Figure 6.3 shows two different significative portions of the Barcelona DWN.
Figure 6.3a is a portion of the DWN involving three tanks (states), three valves, and
three pumps (control actions), two drinking water sources, and four water demands
(disturbances). Then, the matrices and limits for its discrete model are given by

A =
⎡

⎣
1 0 0
0 1 0
0 0 1

⎤

⎦ , B =
⎡

⎣
0 0 0 1 1 0
0 0 0 0 0 1
0 0 1 0 0 0

⎤

⎦ Δt, Bl =
⎡

⎣
−1 0 0 0
0 0 −1 0
0 0 0 −1

⎤

⎦ Δt,

Eu =
[

1 −1 −1 0 0 −1
0 1 0 0 −1 0

]
, Ed =

[
0 0 0 0
0 −1 0 0

]
, xmin = [0 0 0]�,

xmax = [470 960 3100]�, umin = [0 0 0 0 0 0]�,

umax = [1.2970 0.05 0.12 0.0150 0.0317 0.0220]�,

where the sampling time Δt = 3600 s. On the other hand, Fig. 6.3b shows a portion
with 17 tanks (states), 61 manipulated flows (control actions), nine water sources,
and 25 water demands (disturbances). Matrices and limits for this discrete model are
not presented because of lack of space.

6.4.3 Scenarios

Two different scenarios are presented in order to analyze the performance of the
proposed dynamical tuning strategy. In general, demand has a periodic behavior
(seasonality), maintaining the same mean value and with a regular amplitude in
time. However, it is considered the case in which the periodic demand varies unex-
pectedly during time, i.e., the case in which the demand profile varies its mean value
and its regular amplitude. The purpose of these abrupt changes is to analyze how
the prioritization weights are adapted when the system conditions suffer variations.
Moreover, these scenarios can certainly occur because of unexpected situations such
as public events, damages in the network as leaks, move of population, growth of the
system, etc.

Consequently, it is possible to analyze both the performance when the demand
decreases, and when demand increases unexpectedly as shown in Fig. 6.4, i.e.,

• Scenario 1: decreasing in the demand profiles (see Fig. 6.4a).
• Scenario 2: increasing in the demand profiles (see Fig. 6.4b).
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Fig. 6.4 Demand profile for: a Scenario 1 with a decrease in the demands, and b Scenario 2 with
an increment in the demands

Both scenarios are analyzed to illustrate that the dynamical tuning strategy may
adapt a proper combination of weights in the cost function of the optimization prob-
lem behind the MPC controller, for any change in the nominal system behavior.

In the proposed dynamical tuning methodology, the first step is to normalize
the cost function by computing the nadir and the utopia points. After making this
procedure, then the following step is to assign a prioritization to the MR where it is
desired that different objectives evolve around. For this case study, the prioritization
is given by w1 for economic objective, w2 for smoothness objective, and w3 for the
safety objective, where

∑N
i=1 wi = 1.

In order to make a fair comparison between the performance of a multi-objective
MPC with conventional static tuning and the performance of an multi-objective MPC
with the proposed dynamical tuning strategy, there must be established a relationship
between the weights for objective functions. The weights γ1, . . . , γN for the cost
function in Problem (6.4), and the weights for the MR w1, . . . , wN in (6.14), are
selected to be the same as wi = γi , for all i ∈ S. This criterion establishes a fair
comparison for a prioritization over the cost function without any tuning strategy,
and a prioritization using a dynamical tuning strategy.

6.4.4 Results and Discussion

The performance of the controllers is determined by the economical costs C given
in economic units (e.u.) during the total number of simulation days (in this case 11
days), i.e.,

C =
264∑

k=0

(α1 + α2(k))�u(k), (6.22)
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Table 6.1 Economic results for Scenario 1 and Scenario 2 in the case study of three states in
Fig. 6.3a

Tuning case Dynamical tuning
costs CD 11 days
(e.u.)

Static tuning
costs CS 11 days
(e.u.)

Reduction of
costs CS − CD
(e.u.)

Scenario 1 1 5649.45 5660.61 11.16

2 5656.89 5666.13 9.24

3 5657.53 5677.65 20.12

4 5657.01 5738.12 81.11

Scenario 2 1 8983.86 8984.57 0.71

2 8986.35 8993.64 7.29

3 8985.69 9011.49 25.80

4 8986.33 9075.49 89.16

Notice that for the comparison of data the management region corresponds to the prioritization of
the MPC controller with static tuning, i.e., [w1 w2 w3]� = [γ1 γ2 γ3]�

where the costs are denoted by CD for the dynamical tuning case, and by CS for the
static tuning case. For each scenario, four different cases corresponding to four MRs
are tested:

• Tuning case 1: [γ1 γ2 γ3]� = [0.7 0.1 0.2]�,
• Tuning case 2: [γ1 γ2 γ3]� = [0.6 0.15 0.25]�,
• Tuning case 3: [γ1 γ2 γ3]� = [0.5 0.2 0.3]�,
• Tuning case 4: [γ1 γ2 γ3]� = [0.4 0.25 0.35]�.

Notice that these different cases for tuning satisfy the prioritization explained in
Sect. 6.4.1, i.e., w1 > w3 > w2.

Table 6.1 shows the comparison between the costs of the MPC with the proposed
dynamical tuning and with a static prioritization for the four cases, and for Scenarios
1 and 2, for the case study of three states presented in Fig. 6.3a. Table 6.1 also shows
the difference of costs, i.e., a reduction of costs when changing the static tuning
for the dynamical tuning strategy given by CS − CD . More specifically, results for
Scenario 1 show a reduction of costs with the dynamical tuning for all the tested
cases. During the 11 days, reduction of costs between 9.24 e.u. and 81.11 e.u. can
be obtained.

For Scenario 2, it can be seen that for all the cases a reduction of costs is obtained
if the dynamical tuning strategy is adopted. These reductions during 11 days oscillate
between 0.70 e.u. and 89.16 e.u. depending on the management region case.

Regarding the dynamical behavior of the proposed strategy, and the evolution of
weights, Fig. 6.5 shows the performance of the MPC controller with the dynamical
tuning strategy for a management point given by w = [0.6 0.15 0.25]�, and for the
Scenario 1. Similarly, Fig. 6.6 shows the performance of the MPC controller with the
dynamical tuning strategy for a management point given by w = [0.7 0.1 0.2]�,
and for the Scenario 2. In the performance of the dynamical weights, it can be seen
that they oscillate with the same period as the disturbances in the system. Moreover,
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Fig. 6.5 MPC controller with evolutionary game-based dynamical tuning for the Scenario 1 with
a decrease in the demands and a management region given by w = [0.6 0.15 0.25]�. Subfigures
correspond to: a system states x, b control actions u, and c dynamical tuning p̃(k)
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Fig. 6.6 MPC controller with evolutionary game-based dynamical tuning for the Scenario 2 with
an increment in the demands and a management region given by w = [0.7 0.1 0.2]�. Subfigures
correspond to: a system states x, b control actions u, and c dynamical tuning p̃(k)
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Table 6.2 Economic results for Scenario 1 in the case study of three states in Fig. 6.3b

Dynamical tuning costs CD 11
days (e.u.)

Static tuning costs CS 11 days
(e.u.)

Reduction of costs CS − CD
(e.u.)

398645.19 420894.99 22249.80

Notice that for the comparison of data the management region corresponds to the prioritiza-
tion of the MPC controller with static tuning, and for the tuning case 2, i.e., [w1 w2 w3]� =
[γ1 γ2 γ3]� = [0.6 0.15 0.25]�

it can be seen that the mean value of each weight varies when the behavior of the
demands changes on the seventh day.

The previously presented results are a proof of concept to see how tuning is adapted
dynamically as conditions over the system vary. The case study shown in Fig. 6.3a
does not contain redundant paths to satisfy water demand, and involves a reduced
number of states and control actions. Consequently, there is less freedom in order to
adjust the proper prioritization values to potentially improve the performance.

Then, the dynamical tuning strategy is implemented in a bigger case study shown
in Fig. 6.3b for Scenario 1, and the tuning case 2. This implementation is made in
order to check the improvement of the performance for a large-scale system with the
proposed tuning approach.

Table 6.2 shows the results for the case study shown in Fig. 6.3b. It can be seen
a higher reduction of costs when adopting the dynamical tuning strategy in a larger
case study. The considerable reduction is obtained since the case study in Fig. 6.3b
has redundant paths to satisfy the water demand.

6.5 Conclusions and Further Work

A novel dynamical tuning strategy based on evolutionary game theory has been
proposed. Similarly as other tuning strategies suggest, in the proposed tuning strategy
it is necessary to normalize the cost function. In this regard, the proposed strategy
does not imply to have higher computation burden with respect to other online tuning
strategies. Once the problem is normalized, it is not ensured to generate several points
in the Pareto front. This is an advantage of the proposed strategy in comparison to
other tuning strategies that require the computation of several points in the Pareto
front to establish a proper tuning. However, it should be satisfied that the Pareto front
satisfy an assumption clearly defined in this work.

The results obtained in this chapter reflect an improvement in the reduction of
economical costs. Moreover, a higher reduction of costs is obtained with the 17
variable states network, than with the smaller system of three variable states. For
future work, it is necessary to test the dynamical tuning in a larger system, whose
topology includes redundancy paths, and more actuators and constraints (e.g., the
whole Barcelona network that is composed by 63 states can be found in [26]). Then,
a more considerable improvement between the performance of an MPC with static
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tuning and the performance of an MPC with the proposed dynamical tuning might be
obtained. Finally, the prediction horizon is considered within the MPC parameters
that compose the issue of tuning, and it can be included in the dynamical tuning
strategy.
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Chapter 7
A Model Predictive Control-Based
Architecture for Cooperative Path-Following
of Multiple Unmanned Aerial Vehicles

Alessandro Rucco, António Pedro Aguiar, Fernando A.C.C. Fontes,
Fernando Lobo Pereira and João Borges de Sousa

Abstract This chapter proposes a sampled-data model predictive control (MPC)
architecture to solve the decentralized cooperative path-following (CPF) problem
of multiple unmanned aerial vehicles (UAVs). In the cooperative path-following
proposed scenario, which builds on previous work on CPF, multiple vehicles are
required to follow pre-specified paths at nominal speed profiles (that may be path
dependent) while keeping a desired, possibly time-varying, geometric formation
pattern. In the proposed framework, we exploit the potential of optimization-based
control strategies with significant advantages on explicitly addressing input and state
constraints and on the ability to allow the minimization of meaningful cost functions.
An example consisting of three fixed wing UAVs that are required to follow a given
desiredmaneuver illustrates the proposed framework.We highlight and discuss some
features of the UAVs trajectories.
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7.1 Introduction

In the last fewyears,UnmannedAerialVehicles (UAVs) havebeenplaying an increas-
ing important role in several complex tasks for both civilian and military missions. A
subset of representative operation scenarios includes search and rescue operations,
long endurance missions, and environmental measurements tasks including the use
ofmultiple UAVs in cooperation, see, e.g., [7, 27, 34]. These type ofmissions require
the computation and execution of (in some cases) aggressive and complexmaneuvers,
especially for the case of multiple UAVs working in cooperation.

Once the desired UAVmotion is defined, the next step is to make the UAV to exe-
cute it. To this end, two types of approaches are possible: trajectory tracking and path-
followingmethods. The former is concernedwith the design of control laws that force
the UAV to reach and follow a time-parameterized reference (i.e., a geometric path
with an associated timing law), see, e.g., [5, 29, 32], while the latter requires the vehi-
cle to converge to and follow a geometric path that is specifiedwithout a temporal law,
see, e.g., [15, 28, 31, 35, 36]. The underlying assumption in path-followingmethod is
that the vehicle’s forward speed tracks a desired speedprofile,while the controller acts
on the vehicle’s orientation to drive it to the path. We refer to [1, 3] for a comparison
and discussion between the trajectory tracking and the path-following approaches. In
[33] a trajectory optimization strategy for UAVs is proposed. The strategy is based on
a virtual target vehicle (VTV)perspective. The strategy takes into account the velocity
of the VTV, which helps to improve the convergence of the actual path to the desired
one. In this chapter,weextendandadapt the trajectoryoptimization strategypresented
in [33] for path-following ofmultipleUAVs,where the vehicles are required to follow
pre-specified paths at nominal speed profiles.

The success of more challenging missions requires the employment of multiple
vehicles working in cooperation toward the same goal. To this effect, one naive possi-
bility is to make the vehicles to share all internal and external information to improve
coordination performance. However, such approach is not in general feasible in terms
of bandwidth and computational complexity.Moreover, the communication topology
may vary over time due to connectivity or even vehicle failure. A suitable communi-
cation constraints representation is a methodology based on a framework that relates
the concept of Graph Laplacian to represent links between vehicles as addressed in
[14]. In particular, in [13] the authors show how the Graph Laplacian associated to
a formation interconnection structure plays a fundamental role in assessing stability
of the behavior of the components in coordination. In [20], the authors consider two
types of communication topologies. The first captures the case where the commu-
nication graph is alternately connected and disconnected (called brief connectivity
losses). The second case takes only into account that the union of the communica-
tion graphs over uniform intervals of time remains connected (uniformly connected
in mean). This framework if further extended and applied for the case of multiple
UAVs in [37] where the communications graph is disconnected during some interval
of time or even fails to be connected for the entire duration of the mission. Moreover,
flight tests of a coordinated road-search mission scenario are shown. A framework
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that takes into account the topology of the communication links, the communication
channel model, and the cost of exchanging information is proposed in [2]. Follow-
ing the cooperative control architecture presented in [2] and exploiting the virtual
target approach for trajectory optimization of UAVs proposed in [33], this chapter
addresses a decentralizedmulti-vehicle control structure for a set of UAVs, where the
vehicles dynamics and communication topology constraints are taken into account.

The control approach used here is a sampled-data model predictive control (MPC)
architecture. Sampled-data MPC schemes and its stabilizing properties have been
studied in [9, 16, 18, 26]. Regarding path-following via MPC, there are several
recent works on the subject [4, 8, 11, 12, 30, 38]. The control of multiple vehicles
by MPC schemes has been reported in [10, 19, 29]. The MPC technique, in addition
to its well-known capacity of handling constraints and optimization of performance
characteristics, is particularly suited to the multi-vehicle control since, even when a
communication link becomes temporarily unavailable, breaking the feedback loop,
an already computed open-loop plan can be implemented.

In this chapter, we propose a sampled-data MPC architecture to solve the decen-
tralized cooperative path-following (CPF) problem of multiple UAVs. We refer the
reader to [20] for a discussion on the centralized and decentralized approaches. In
decentralized CPF, multiple vehicles are required to follow pre-specified paths at
nominal speed profiles (that may be path dependent) while keeping a desired pos-
sibly time-varying geometric formation pattern and considering that each vehicle
receives information about its neighbors. In the proposed framework, we exploit
the potential of optimization-based control strategies with significant advantages on
explicitly addressing input and state constraints and on the ability to allow the mini-
mization of meaningful cost functions. We show how stability of the overall strategy
can be guaranteed and, moreover, we are able to guarantee a prescribed rate of expo-
nential convergence to the desired solution. We provide numerical computations to
show the effectiveness of the proposed MPC cooperative path-following system.

The rest of the chapter is organized as follows. In Sect. 7.2, we introduce the UAV
model and formulate the path-following problem using the VTV approach. Then,
a formal definition of the cooperative path-following control problem is given. In
Sect. 7.3, we first propose the MPC law for a single UAV and then we extend it for
a set of UAVs. In Sect. 7.4, we provide numerical computations that illustrate the
effectiveness of the proposed MPC-CPF architecture.

7.2 Problem Formulation

This section formulates the cooperative path-following (CPF) control problem for
multiple UAVs, in which a fleet of nv UAVs is tasked to converge to and to follow
a set of desired geometric paths under a specified formation and velocity profile. In
this chapter, the problem of cooperative trajectory generation is not addressed. It is
assumed that the desired geometric paths for each vehicle are given such that each
path is conveniently parameterized by a single variable γ [i], i = 1, . . . , nv, and with
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the restriction thatwhen thefleet is in the desired formation, the parameterizationvari-
ables satisfy the equality constraint γ [1] = γ [2] = · · · = γ [nv]. The next subsections
describe the adoptedUAVmodel, the path-following, coordination, andCPFproblem
statements.

7.2.1 Constrained UAV Model

This section presents a planar aerial vehicle model in coordinated flight, based on a
simplified model widely used in the literature, see, e.g., [6, 22], but extended as in
[15] to accommodate the effects of the roll dynamics and include the roll rate as a
control input. In this case, the planar UAV motion, [33], can be described by

ẋ = v cosψ,

ẏ = v sinψ,

ψ̇ = g tan φ

v
,

v̇ = u1,

φ̇ = u2,

(7.1)

where (x, y) is the longitudinal and lateral position with respect to an inertial global
frame, ψ is the heading angle, φ is the roll angle, v is the airspeed, and g denotes
the gravity acceleration. The longitudinal acceleration v̇ and the roll rate φ̇ are the
control inputs u1 and u2, respectively.

Due to physical limitations or security specifications, state and input constraints
are imposed on the model as follows:

vmin ≤ v ≤ vmax,

|φ| ≤ φmax,

|u1| ≤ u1max,

|u2| ≤ u2max,

(7.2)

where the constraint parameters used in the simulation section are based on the
ones given in [29], i.e., vmin = 18m/s, vmax = 25m/s, φmax = 24◦, u1max = 0.2m/s2,
u2max = 28deg/s.

7.2.2 Error Dynamics and Path-Following Formulation

Following the approach developed in [33], this section introduces a virtual target
vehicle (VTV) that is constrained to move along a given desired geometric path
(xd(γ ), yd(γ )) parameterized by the variable γ ∈ R, and defines the error vector
between the position of the VTV and the actual UAV through the use of a Serret–
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Fig. 7.1 Tracking error coordinates. The bold triangle and the light rectangle indicate the real UAV
and the VTV, respectively. The bold dash line indicates the desired path

Frenet frame, which can be viewed as the body frame of the VTV that moves accord-
ing to a “convenient velocity”, effectively yielding an extra control input.

Figure7.1 captures the setup, where the dashed line denotes the desired path,
and the light rectangle represents the VTV. The desired course heading χd and the
curvature σd are related by

x′
d = cosχd

y′
d = sin χd

χ ′
d = σd

(7.3)

where the prime symbol denotes the first derivative of a variable with respect to the
parameterization variable γ . Note that one way to obtain the desired geometric path
(xd(γ ), yd(γ )) is to solve (7.3) with a given initial condition (xd(0), yd(0), χd(0))
and specified input signal σd(γ ).

The coordinates of the UAV can be defined with respect to the position of the
VTV, [33]. In particular, defining the longitudinal and lateral error coordinates ex

and ey, the local heading angle μ = ψ − χd and the VTV’s velocity as an additional
control input u3 = γ̇ , the nonlinear system (7.1) can be written with respect to the
new set of coordinates (x, u) = (

ex, ey, μ, v, φ, γ, u1, u2, u3
)
:
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ėx = v cosμ − (1 − eyσd)u3,

ėy = v sinμ − exσdu3,

μ̇ = g tan φ

v
− σdu3,

v̇ = u1,

φ̇ = u2,

γ̇ = u3.

(7.4)

A detailed description of this derivation, including references to some of the related
literature, is given in [33].

With this framework, the path-following problem for a single UAV can be formu-
lated as follows.

Problem 7.1 (Path-following) Consider a given UAV described by (7.4) subject
to the constraints in (7.2), and let (xd(γ ), yd(γ )) be a given desired spatial path,
and vd(γ ) a given desired speed assignment, both parameterized by γ ∈ R. Under
feasibility assumption, design feedback control laws for the longitudinal acceleration
u1, the roll rate u2, and the rate of progression u3 of the VTV along the desired path
such that the errors ex, ey, and μ converge to zero as t → ∞ and the parameter γ

satisfies the speed assignment γ̇ → vd(γ ) as t → ∞.

7.2.3 Coordination and Cooperative Path-Following
Formulation

Consider now a fleet of nv vehicles and for each vehicle i ∈ N = {1, . . . , nv}, it
is given a desired geometric path (x[i]

d , y[i]
d ). Suppose that each vehicle is endowed

with a path-following controller, which means that eventually they will converge
to their respective VTVs. Then, one can conclude that if the nv virtual target vehi-
cles asymptotically synchronize, the UAVs asymptotically reach a desired formation
because the desired paths were conveniently parameterized to satisfy the formation
constraints. In this context, the parametric variable γ [i] represents a measure of the
position of the ith VTV and is said to be the coordination state. To enforce the for-
mation, we formulate a consensus problem by extending the definition of the desired
speed profile to

v[i]
d = vL(γ [i]) + u[i]

c

where vL is the (common) formation speed assignment, and the correction speed
u[i]

c is viewed as an input control signal that should vanish when the vehicles are
in formation. To reach consensus the UAVs will have to exchange the coordination
states. Further, we consider explicitly the fact that communications do not occur in
a continuous manner. To this end, let t[i]k , k ≥ 0, be the instants of time that data
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is transmitted to the ith UAV by a set of neighbor vehicles denoted by N [i]
tk . The

coordination problem can be formulated as follows.

Problem 7.2 (Coordination) Assume that for each vehicle i ∈ N at t = t[i]k , the
variables γ [i] and γ [j], j ∈ N [i]

tk , are available. Derive a control law for u[i]
c such that,

for all i, j ∈ N , (γ [i] − γ [j]) and u[i]
c converge to zero as t → ∞.

Note that u[i]
c is a piecewise continuous signal and is only updated (with new

information) at discrete instants of time t = t[i]k .
Equippedwith the above formulationswecannowstate the problemof cooperative

path-following, which is a combination of the two previously stated problems.

Problem 7.3 (Cooperative Path-following) Consider a fleet of nv UAVs each one
with dynamics described by (7.4) and subject to the constraints in (7.2), a set of
desired geometric paths (x[i]

d , y[i]
d ) parameterized by γ [i], i ∈ N , and a formation

speed assignment vL. Suppose that the UAVs are supported by an inter-vehicle com-
munication network, and, therefore, for each vehicle i ∈ N at t = t[i]k , the variables
γ [i] and γ [j], j ∈ N [i]

tk , are available. Design feedback control laws for the longitu-
dinal acceleration and roll rate of each vehicle such that

1. the corresponding path-following errors ex, ey, and μ of each UAV converge to
zero as t → ∞, and

2. for each pair of vehicles i, j ∈ N , the coordination errors (γ [i] − γ [j]) and the
speed errors (v[i]

d − vL) converge to zero as t → ∞.

7.3 MPC-CPF Control System

In this section, we propose a MPC cooperative path-following controller for a set
of UAVs. We start with the design of a MPC path-following controller for a single
UAV using the virtual target approach introduced in the previous section. Then, we
propose a coordination controller that adjusts the speed of the virtual target at each
sampling time, thus exploiting theMPCscheme. Finally, the overallMPCcooperative
path-following system is proposed and discussed.

7.3.1 MPC Path-Following for a Single UAV

We now address the design of the MPC law to solve the path-following problem for
a single UAV. To this end, we first consider the following open-loop optimal control
problem:

Given a pair (tk, z) ∈ R × R
n, a desired curve (xd(·), ud(·)), a horizon length

T > 0, and positive definite weighting matrices Q, R, and P1 find the optimal pair(
x∗([tk, tk + T ]), u∗([tk, tk + T ])) that solves
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min
x(·),u(·)

1

2

∫ tk+T

tk

(‖x(t)−xd(t)‖2Q+‖u(t)−ud(t)‖2R
)

dt + 1

2
‖x(tk + T) − xd(tk + T)‖2P1

subject to dynamic constraints (7.4), ∀t ∈ [tk, tk + T ] ,

state and input constraints (7.2), ∀t ∈ [tk, tk + T ] ,

x(tk) = z.
(7.5)

The desired curve (xd(·), ud(·)) is chosen as follows. The desired kinematic coor-
dinates, ex d, ey d and μd , are set to zero. The desired speed, vd , and the desired
geometric path, parametrized by γd , are assigned, see Problem 7.1. The desired roll
angle and control inputs, φd , u1d and u2d , are set to zero (in order to minimize the
control effort). The desired control input u3d is set to be equal to the desired speed.
The optimal control trajectory u∗(·) minimizes the deviations of the actual trajectory
from the desired curve according to the quadratic cost function used in (7.5).

It is worth noting that we formulate Problem 7.3 using a sampled-data MPC
approach in which the vehicle model, the state and control constraints, and the cost
function are described in continuous time. Next, we discuss stability and conver-
gence requirements, and, then, we address the optimal control problem (7.5) using
an iterative algorithm for solving continuous-time optimal control problem (where
the optimization problem is not transcribed into a discrete optimization problem).
Exploiting a projection operator approach, [21], we are able to compute approximate
solutions of the Problem7.3 in an efficientway (e.g., avoiding numerical instabilities)
using continuous-time second-order approximations of the cost function.

7.3.1.1 Stability and Exponential Rate of Decay

Wenow show that, for a conveniently selected set of design parameters—thematrices
Q, R, P1 of the objective function and the horizon T -we can guarantee not only
stability, but also a prescribed rate of exponential decay. The rate of exponential
decay is related to the design parameters and can, therefore, under some limitations,
be chosen.

We start by defining the new states and control, which are deviations from the
desired behavior, to be x̄(t) = x(t) − xd(t) and ū(t) = u(t) − ud(t). We rewrite the
dynamics as

˙̄x(t) = f̄ (x̄(t), ū(t)) (7.6)

ū(t) ∈ Ū (7.7)

x̄(t) ∈ X̄ (7.8)

x̄(0) = x0 (7.9)

and its linearization
˙̄x(t) = Ax̄(t) + Bū(t)
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where A = f̄x(0, 0) and B = f̄u(0, 0). We define MB as the ball around the origin
containing all possible initial states, i.e., x0 ∈ MB.

We assume the following hypotheses.

H1 The linearization of the system around the origin is stabilizable, i.e., the unstable
modes of the pair (A, B) are controllable.

H2 There exists a trajectory solving (7.6)–(7.9) that can be bounded by a trajectory of
some stable linear system.More precisely, there exist positive scalars M, M1 and
α such that for any initial state x0 ∈ MBwe can find a control ũ : [t0,∞] → R

m

satisfying (7.6)–(7.9) and

‖x̄(t; x0, ũ)‖2 ≤ M1‖x0‖2e−αt

Given the nature of the system we have in hands, we expect small deviations
from the nominal trajectory, and therefore the previous assumptions for this case
hold. We note that nonholonomic vehicles are generally not adequately modeled by
a linearized system (the linearization of the system around the origin is in general not
stabilizable). On the other hand, the relative distances and relative velocities between
vehicles following a similar trajectory already have a stabilizable linearization, see
[19] for a discussion on this issue.

Define the “maximal vector field speed” S̄ := max{ ‖f̄ (x̄, ū)‖ : x̄ ∈ MB, ū ∈ Ū }.
Such a maximum exists since the sets involved are compact and f̄ is continuous.

Consider the following result from [17] which establishes stability and a given
minimum exponential rate of decay.

Theorem 7.1 Select a scalar μ̄ > 0 such that the pair (A + μ̄I, B) is stabilizable.
There exist a set of design parameters (T , Q, R, P1) and a scalar k̄ > 1 such that
the trajectory resulting from applying the MPC strategy starting at t0 satisfies the
exponential convergence rate

‖x̄(t + t0)‖ ≤
√
4λmax(P1)

ρλmin(Q)
‖x̄(t0)‖e− μ̄

k̄
t, ∀t ≥ T ,

where ρ = min{T ,
‖x̄(t0)‖
2S̄

}.
Again following [17], to choose design parameters (the horizon T , the matrices

Q, R, P1, and the scalar k̄) guaranteeing a prescribed rate of exponential stability we
can follow the following steps.

1. Choose the desired rate μ̄ conditioned to (A + μ̄I, B) being stabilizable.
2. Choose the scalar k̄ > 1.
3. Choose some positive definite matrices R̂ and Q̂.
4. Find P to solve the algebraic Riccati equation

(A + μ̄I)T P + P(A + μ̄I) − PBR̂−1BT P + Q̂ = 0.
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5. Let Q = Q̂ + 2μ̄P.
6. Let P1 = k̄P.
7. Choose R ≥ 0 such that:

a. R̂ − R ≥ 0,
b. there exists a scalar M2 > 0 such that α > 0 and ũ of H2 satisfy

‖ũ(t)‖2R ≤ M2‖x0‖2e−αt .

(Always true if R = 0.)

It remains to choose the horizon T . In [17] a way to compute a conservative bound
is given. We highlight that the larger we choose μ̄ the faster the rate of convergence.
Moreover, the selection of k̄ implies the following compromise: (i) the nearer it is of
1, the faster will be the convergence rate μ̄/k̄, (ii) the smaller k̄, the longer will be
the horizon T . We refer the reader to [17] for more details.

7.3.1.2 Numerical Solution to the Optimal Control Problem

Here, we propose to solve the optimal control problem (7.5) using the projection
operator-based Newton method for trajectory optimization (PRONTO), [21]. This
method is a direct method based for solving continuous-time optimal control prob-
lems. Using a projection operator that maps a state-control curve (e.g., a desired
curve) onto the trajectory manifold, the constrained optimization problem (7.5) can
be converted into an unconstrained one, so that a Newton-based descent method can
be used.

We recall that a trajectory is a (state-input) curve ξ = (x(·), u(·)) defined on
L∞[0, T ] such that

ẋ(t) = f (x(t), u(t)),

for all t ∈ [tk, tk + T ], where f is a (sufficiently smooth) map, [23]. Consider now
the cost functional

h(ξ) =1

2

∫ tk+T

tk

(‖x(t)−xd(t)‖2Q+‖u(t)−ud(t)‖2R
)

dt + 1

2
‖x(tk + T) − xd(tk + T)‖2P1

anddenote byT themanifold of bounded trajectories ξ = (x(·), u(·))on [tk, tk + T ].
Based on the idea developed in [24], we use a barrier function relaxation to handle

the constraints. We rewrite the constraints (7.2) in the equivalent form

cj =
(
2x̃ − (x̃max + x̃min)

x̃max − x̃min

)2

− 1 ≤ 0 j = 1, . . . , nc,
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where x̃ can be a state-input variable, cj is a smooth function that enforces the
constraint x̃min ≤ x̃(t) ≤ x̃max, and nc is the number of constraints (i.e., nc = 4). For
instance, for x̃ = u, we have the constraint umin ≤ u(t) ≤ umax. For a given (state-
input) trajectory ξ = (x(·), u(·)), a barrier functional can be defined as

bδ(ξ)=
∫ tk+T

tk

⎛

⎝
nc∑

j=1

βδ(−cj(x(t), u(t)))

⎞

⎠ dt,

where

βδ(x̃) =
{− log x̃, x̃ > δ

− log δ + 1
2

[(
x̃−2δ

δ

)2 − 1
]
, x̃ ≤ δ

.

Using the barrier functional defined above, the relaxed version of problem (7.5) is
given by

min
ξ∈T

(h(ξ) + εbδ(ξ)) , (7.10)

for some ε > 0. Using the projection operator defined in [21] to locally parameterize
the trajectory manifold, we convert the constrained optimization problem (7.10) into
one of minimizing the unconstrained functional

gε,δ(ξ) = h(P(ξ)) + εbδ(P(ξ)). (7.11)

The PRONTO, [21], is used to optimize the functional (7.11), as part of a continuation
method to seek an approximate solution to (7.5). The strategy is to start with a
reasonably large ε and δ. Then, for the current ε and δ, the problem

(a) (b)

Fig. 7.2 Trajectory exploration strategy for a fixed prediction horizon. Start with a feasible trajec-
tory and solve the relaxed optimal control problem. At the ith step, update the initial trajectory with
the previous optimal trajectory and decrease the barrier functional parameters, see the approximate
barrier function in (b), to compute feasible intermediate optimal trajectories, see the light dot black
lines in (a). The intermediate optimal trajectories approach the optimal trajectory (solid green line
in (a)) for the constrained problem



152 A. Rucco et al.

min gε,δ(ξ)

is solved using the PRONTO method starting from the current trajectory. An illus-
tration of the strategy is shown in Fig. 7.2. An important feature of the optimization
process is its ability to handle state and input constraints. Thus the (temporary) opti-
mal trajectories, light dot lines in Fig. 7.2a, are strictly feasible as the constraints
parameters are reduced (the optimization process works in an interior point fashion).

Following a sampled-dataMPCapproach, the optimal control input u∗(·) is repeat-
edly computed at the discrete-time samples T := {t0, t1, . . . } with z = x(tk), and
where tk+1 > tk and tk+1 − tk < T for k = 0, 1, . . . The sampled-data MPC con-
trol law only uses u∗(·) in the interval t ∈ [tk, tk+1) being the remaining interval
t ∈ [tk+1, T ] discarded, that is,

u(t) = u∗(t), t ∈ [tk, tk+1), ∀tk ∈ T.

7.3.2 Coordination

From the adopted CPF setup, to achieve the specified formation, the UAVs only have
to exchange the coordination states (which are the path-parameterizations) over the
supported communication network to reach agreement on these states. From the
theory of consensus of distributed systems and assuming that each vehicle receives
information from its neighbors continuously, a natural choice for the coordination
control law would be (the so-called neighboring rule, see, e.g., [2])

u[i]
c = −κ

∑

j∈N [i]

(
γ [i] − γ [j]), (7.12)

whereκ is a positive scalar,γ [i] is related to the position andorientationof the ithVTV,
see (7.3), and (γ [i] − γ [j]) is the coordination error. To reduce the communication
rate and lift the continuously transmissions, we consider instead that each vehicle
relies on their estimates that are updated at the transmission times t = tk . In this case,
we propose the following modification:

u[i]
c = −κ

∑

j∈N [i]

(
γ̂

[i]
i − γ̂

[i]
j

)
, (7.13)

where γ̂
[i]
� is an estimate of γ [�] running on agent i. The estimators of the coordination

states in each UAV run open-loop most of the time but are reset once new data is
received from the supported network to correct the state estimates. More precisely,
each estimator at the ith UAV is described by

• For t[i]k ≤ t < t[i]k+1 ˙̂γ [i]
� = f [i]

�

(
γ̂

[i]
j , ·) ∀� ∈ {i} ∪ N [i]

tk
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Fig. 7.3 Overall control system architecture

• For t = t[i]k+1

γ̂
[i]
� = γ [�], ∀� ∈ {i} ∪ N [i]

tk+1

where the vector fields f [i]
�

(
γ̂

[i]
j , ·) could be in general functions of the corre-

sponding coordinated state estimate and other states. A simple choice is to make
f [i]
�

(
γ̂

[i]
j , ·) = 0, which means that (7.13) is just a piecewise continuous sample and

hold discretization of (7.12).

7.3.3 Overall MPC Cooperative Path-Following System

Following closely the approach in [2, 20], Fig. 7.3 shows the overall MPC coop-
erative path-following control architecture of each vehicle, which consists of three
interconnected subsystems: the path-generator, the MPC path-following controller,
and the coordination controller, all supported by the communication system. Next,
we briefly describe the control architecture.

The path-generator system is not addressed in this chapter, but its role is to provide
to the MPC path-following controller the desired path. The coordination controller
has the responsibility to output a correction speed signal uc to adjust the speed of
the virtual target about their nominal value so as to synchronize its position with
the other virtual vehicles and achieve, indirectly, vehicle coordination. Note that the
coordination is achieved by resorting to a decentralized control law whereby the
exchange of data among the vehicles is kept at a minimum. In the consensus liter-
ature (see, e.g., [13, 20, 27]), there exist several algorithms and conditions under
which the coordination is achieve, even when the topology of communication links
among the vehicles is time-varying. For the simple neighboring rule proposed, it is
shown in [20] that consensus is achieved in the case where the communication graph
is intermittently connected with brief connectivity losses, and where the union of
the communication graphs over uniform intervals of time remains connected (uni-
formly connected in mean). Regarding the stability of the overall system, it is shown
in [2, 20] that the system obtained by putting together the path-following and the
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vehicle coordination can be either a feedback interconnection or a cascade of two
input-to-state stable (ISS) systems by assuming that individually each block is ISS.
Stability and convergence properties of the resulting interconnected system can be
then formally concluded through a small gain theorem-based argument.

7.4 Simulation Results

In this section we provide numerical computations showing the effectiveness of the
MPC cooperative path-following introduced in the previous section. First, we apply
the MPC path-following controller to one vehicle (nv = 1) based on the straight
line maneuver. We highlight some features of the computed trajectory. Second, we
illustrate the performance of the MPC cooperative path-following, when applied to
a group of three UAVs (nv = 3).

7.4.1 MPC Path-Following

Similar to the computations shown in [33], we set as desired curve the straight line
shown in Fig. 7.4a, see dash-dot line. Given the initial position (x, y) = (−10, 20)
and orientation ψ = 45◦ of the actual vehicle, the goal is to approach the desired
straight line path with a desired velocity, vd = 19m/s, along it.We run theMPC strat-
egy by setting the following weighting matrices Q = diag([0.01, 0.01, 0.1, 1.0,
0.1, 1e − 09]), R = diag([1.0, 1.0, 0.0001]), and P1 = diag([0.003, 0.003, 3.8,
1.0, 1.4, 1e − 05]). Note that the VTV velocity is weighted lightly thus giving the
optimization the necessary freedom to track the states. We make use of a relatively
short update time (tk+1 − tk) = 1 s and a fixed horizon time T = 15s.

Figure7.4 shows the trajectory of the UAV. It is worth noting that such amaneuver
allows us to highlight an important aspect of the MPC path-following: the VTV’s
velocity allows us to improve the convergence of the actual path to the desired one
(that is main feature of the VTV approach). In fact, due to the initial conditions of
the actual vehicle, see Fig. 7.4a, the VTV assumes a negative velocity value, see
Fig. 7.4f. The VTV goes backward along the straight line thus approaching (almost
instantaneously) the point on the desired path at minimum distance from the actual
vehicle. It is interesting to note in Fig. 7.4e that the actual vehicle starts the maneuver
by applying the maximum roll angle. At the same time, the vehicle decelerates to
increase the yaw rate, see Fig. 7.4d. Thus, decreasing the velocity allows the vehicle
to increase the yaw rate, see (7.1), thus improving the convergence of the actual path
to the desired straight line path. At about t = 4s, the actual vehicle reaches the point
with zero longitudinal tracking error ex, see Fig. 7.4b, and maximum lateral tracking
error ey, see Fig. 7.4c. Immediately after, the actual vehicle turns right by applying
positive roll angle, see Fig. 7.4e. The actual vehicle crosses the desired straight line
at about t = 11s and, in order to regain the desired position, it turns to the left by
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Fig. 7.4 MPC path-following: straight line maneuver. The desired (dash-dot line) and the UAV
(solid line) trajectories are shown. The path, the longitudinal, and lateral tracking error profiles are
shown in (a), (b), and (c), respectively. The velocity, roll angle, and virtual target velocity profiles
are shown in (d), (e), and (f), respectively (constraints in dash line). a x-y. b ex . c ey. d v. e φ. f u3

applying a negative roll angle. Now the VTV (slightly) decelerates and the actual
vehicle (slightly) accelerates thus approaching the desired straight line path.

7.4.2 MPC Cooperative Path-Following

Basedon thestraight linemaneuverof thepreviousnumerical computation, inFigs. 7.5
and 7.6 we illustrate the performance of the MPC cooperative path-following con-
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Fig. 7.5 MPC
path-following of 3 UAVs
(no coordination). The bold
triangle and the light
rectangle indicate the real
UAV and the VTV,
respectively. UAV 1 in blue,
UAV 2 in green, and UAV 3
in red
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troller proposed, when applied to a group of three homogenous UAVs (nv = 3). The
vehicles are required to (i) follow their own straight line and (ii) keep a formation
pattern that consists of having them aligned along a common horizontal line (i.e.,
same inertial longitudinal coordinate). We consider the following scenario: UAV 1 is
allowed to communicate with UAVs 2 and 3, but the latter two do not communicate
between themselves directly. The initial positions of the three vehicles are UAV 1,
(x[1], y[1]) = (−10, 20) and orientation ψ [1] = 45◦, UAV 2, (x[2], y[2]) = (−10, 20)
and orientation ψ [2] = −90◦, and UAV 3, (x[3], y[3]) = (50,−250) and orientation
ψ [3] = −45◦. Similar to the previous computation, the desired velocity is 19m/s,
(tk+1 − tk) = 1s, and T = 15s. A controller gain, see (7.13), of κ = 0.2was found to
work quite well (i.e., it provides a fast convergence of the coordination error to zero).

Figure7.5 shows the trajectories of the UAVs when the coordination is disabled.
Similar to the previous computation, the MPC path-following allows the three vehi-
cles to approach their own desired straight line path. Once again, the VTV’s velocity
allows us to improve the convergence of the actual path to the desired one. As
instance, this is evident from the trajectory performed by the UAV 3, see Fig. 7.5: at
about x = 190m, the VTV is “waiting” the actual vehicle while it is performing a
maneuver at the maximum of its capabilities.

Figure7.6 shows the trajectories of the UAVs when the coordination is taken into
account. Figure7.6b–d show the coordination error. Figure7.6e–g show the VTV’s
velocities. More precisely, from Fig. 7.6a it can be seen that synchronization takes
places after a transient behavior of the controlled system. Thus, the coordination error
(γ [i] − γ [j]) approaches zero, the input control of the coordination controller (see
Fig. 7.3) vanishes, and theVTV’s velocities aswell as the actual vehicles’ speed stabi-
lize (after a transient time due to the different initial conditions of the three vehicles)
around the desired velocity. It is worth noting that the trajectories performed by the
UAVs are slightly different from the ones performedwithout coordination. This is evi-
dent, as instance, from the trajectory of the UAV 3 (red vehicle in Figs.7.5 and 7.6a).
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7.5 Conclusion

In this chapter we proposed a sampled-data MPC architecture to solve the decen-
tralized cooperative path-following problem of multiple UAVs. The MPC controller
takes into account the UAVs dynamics and the communication topology constraints.
Based on the virtual target approach and nonlinear optimal control techniques, we
provided a MPC controller to solve the cooperative path-following problem of mul-
tiple UAVs. TheMPC framework used guarantees exponential stability with a rate of
convergence that can be prescribed. The coordination is obtained by exploiting the
speed of the virtual targets and the MPC scheme (i.e., the desired speed is updated at
each sampling time). A key property of the proposed architecture is that it explicitly
handles state-input constraints and communication topology constraints in a decen-



158 A. Rucco et al.

tralized fashion. We provided numerical computations showing the effectiveness of
the proposed architecture.

Future directions of research include the (i) implementation of a vehicle/obstacle
collision avoidance technique, as the one proposed in [25], (ii) development of the
path-generator system for a general class of desired paths, and (iii) study and analysis
of stringent communication constraints and non-constant update time. Finally, the
efficiency of the proposed cooperative path-following controller should be demon-
strated throughout experimental tests on a real UAV platform.
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Chapter 8
Predictive Control for Path-Following.
From Trajectory Generation
to the Parametrization of the Discrete
Tracking Sequences

Ionela Prodan, Sorin Olaru, Fernando A.C.C. Fontes, Fernando Lobo Pereira,
João Borges de Sousa, Cristina Stoica Maniu and Silviu-Iulian Niculescu

Abstract This chapter discusses a series of developments on predictive control
for path following via a priori generated trajectory for autonomous aerial vehicles.
The strategy partitions itself into offline and runtime procedures with the assumed
goal of moving the computationally expensive part into the offline phase and of
leaving only tracking decisions to the runtime. First, it will be recalled that differential
flatness represents a well-suited tool for generating feasible reference trajectory.
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Next, an optimization-based control problem which minimizes the tracking error
for the nonholonomic system is formulated and further enhanced via path following
mechanisms. Finally, possible changes of the selection of sampling times along the
path and their impact on the predictive control formulationwill be discussed in detail.

Keywords Model predictive control (MPC) ·Differential flatness ·Trajectory track-
ing · Path following · Autonomous aerial vehicles

8.1 Introduction

There aremany situations in control and coordination of dynamical systems forwhich
a trajectory has to be generated a priori in order to provide a reference for a tracking
control problem, [1, 3, 30]. These control applications are often difficult to handle in
embedded solutions (complex dynamics, difficult real-time constraints, short sam-
pling times, limited computational resources, and the like). For all these reasons, it
is essential to push as many of the reference management and control tasks offline.
Therefore, enforcing the computationally demanding effort of trajectory generation
for an offline stage leaves for the runtime only the relatively straightforward trajec-
tory tracking, [14, 20, 23]. Moreover, having a priori feasible reference trajectory
implies that we may offer guarantees of performance for the overall system, [22, 26,
30].

Another challenging problem frequently used in control is path following which
allows dynamical (nonlinear) systems to follow a predefined path specified by points,
lines, and the like. The clear specification of the difference between the following two
close notions is ofmost importance: trajectory tracking and path following. The latter
provides a desired time-independent route for the vehicle, while for the trajectory
tracking the reference is represented by a function of time. Both problems have their
strengths and weaknesses depending on the general control objectives. For example,
we may consider that the former has the advantage of providing simultaneously both
feasible input and state variables for the corresponding system. However, a disad-
vantage would be its time dependence, which often imposes an additional constraint
on the real-time functioning. This is to be compared with the reference path which
remains time-independent and, as such, provides a certain flexibility for tracking.

There is a wealth of work in the literature on trajectory tracking and path fol-
lowing algorithms. From an optimization-based control viewpoint, a widely used
technique for solving tracking problems is model predictive control (MPC) (see, for
instance, [15, 25] for an overview of MPC, and [12] for MPC of nonholonomic sys-
tems) due to its ability to handle control and state constraints, while offering good
performance specifications. For example, [17] uses a predictive guidance controller
for an autonomous UAV and a fault detection filter for taking into account the dis-
turbances. Mixed-integer programming (MIP) techniques combined with receding
horizon strategy were useful for coordinating the efficient interaction of multiple
UAVs in scenarios with many sequential tasks and tight timing constraints (see, [16,
27]). Furthermore, someworks investigate the capability of nonlinearMPC for track-
ing control. Among these contributions, [18] formulates a nonlinear MPC algorithm
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combined with the gradient descent method for trajectory tracking, and [13] pro-
poses a two-layer control scheme composed by a nonlinear and a linear predictive
controller for a group of nonholonomic vehiclesmoving in formation. Reference [21]
proposes as well a gradient-based optimization algorithm for trajectory generation
for aircraft avoidance maneuvers where concepts like polar sets and gauge function
are used to partition the feasible region in convex partitions. The combination of
MPC and path following has been previously addressed in [4, 11], and [35].

The combination of MPC with flatness represents a challenging combination in
the current state of the art by allowing real-time control, trajectory generation, and
robustness by using set-theoretic methods, [22]. In the present work, we choose to
use one of the few generic tools, those based on differential flatness for constructing
a reference trajectory. Then, we propose a trade-off between trajectory and path
tracking. We pre-compute a feasible trajectory but we use it as a path by considering
the velocity along it as the solution of an optimization problem. By allowing this
degree of freedom on how fast we move along the path, we actually increase the
flexibility and robustness of the problem, while at the same time guaranteeing a
feasible path.

The present chapter is motivated mainly by our previous work [22–24], where a
flat trajectory was generated and further used as a reference in an output tracking
MPC problem. The results were also implemented on real UAVs. This work extends
the optimization-based control approach and the path following versus trajectory
tracking discussions previously presented. More specifically, the original contribu-
tions are the following:

• greater flexibility of trajectory tracking by allowing a variable speed along the path
in order to decrease the sensitivity to disturbances and perturbations;

• discretization and the linearization along the reference trajectory are adapted to
the variable speed profile by using variable sampling intervals; and

• simulations results over a high-order unmanned aerial vehicle (UAV) model are
provided.

The chapter is organized as follows. Section8.2 introduces the prerequisites
needed for trajectory generation: flat trajectory and its parametrization together with
proof of concepts examples. Also, the principles of the key background underlying
optimization-based control are briefly introduced. While Sect. 8.3 details the control
part of the trajectory tracking problem, Sect. 8.4 presents its reconfiguration as a path.
Section8.5 presents illustrative simulation results for an UAV system, and Sect. 8.6
concludes the paper.

Notation

Let x(k + 1) denote the value of x at time instant k + 1, predicted upon the infor-
mation available at time k ∈ N. The length of the prediction horizon is denoted by
Np, and the time step within prediction horizon is denoted by s. We write R � 0 and
R � 0 to denote that R is a positive definite and semidefinite matrix, respectively.
The discretization step is denoted by Te.
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8.2 Prerequisites

This section presents some general details on flat trajectories and the optimization-
based control principles.

8.2.1 Flat Trajectory

Consider the nonlinear continuous time-invariant system:

ẋ(t) = f (x(t), u(t)), (8.1)

where x(t) ∈ R
nx is the state vector and u(t) ∈ R

nu is the input vector.

Definition 8.1 The system (8.1) is called differentially flat if there exists a flat output
z(τ ) ∈ R

nu such that the states and inputs can be algebraically expressed in terms of
z(τ ) and a finite number of its higher order derivatives:

x(τ ) = Φ0(z(τ ), ż(τ ), . . . , z(q)(τ )), (8.2)

u(τ ) = Φ1(z(τ ), ż(τ ), . . . , z(q)(τ )), (8.3)

where z(τ ) = γ(x(τ ), u(τ ), u̇(τ ), · · · , u(q)(τ )) and q ∈ N represents the maximum
order of z(τ ) arising in the problem (see also Fig. 8.1 for a general view on differential
flatness concept). �

Remark 8.1 Note that, in (8.2)–(8.3), τ ∈ R is a scalar parameter which can be
assimilated to t ∈ R in (8.1), but will be used as a decision variable interpreted as
a virtual time when the reference tracking problem is casted into path following
problem. �

Fig. 8.1 Differentially flat
systems

z = γ(x,u, u̇, . . . )

x = Φ0(z, ż, . . . )

u = Φ1(z, ż, . . . )

Input/State space Flat Output space
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Remark 8.2 For any system admitting a flat description, the number of flat out-
puts equals the number of inputs [19]. In the case of linear systems [29], the flat
differentiability (existence and constructive forms) is implied by the controllability
property. �

The most important aspect of flatness is that it reduces the problem of trajectory
generation to finding an adequate flat output solving an algebraic system of equalities
and inequalities. This means choosing z(t) such that, via mappings Φ0(·),Φ1(·),
various constraints on state and inputs are verified. The flat output may be itself
difficult to compute. The usual solution (also followed here) is to parameterize z(t)
by using a set of smooth basis functions Λi (t):

z(t) =
N∑

i=1

ciΛ
i (t), ci ∈ R. (8.4)

The number of basis functions directly depends on the number of constraints imposed
onto the dynamics [33].

There are multiple choices for the basis functions Λi (t) in (8.4). The polynomial
basis λi (t) = t i is a well-known choice but suffers from numerical deficiencies: the
number of functions depends on the trajectory constraints and on the degree of the
derivatives appearing in the state and input parametrizations, [6, 10, 31]. Another
choice is the Bésier basis functions [28], they mitigate the numerical difficulties but
their degree still depends on the order of derivatives that appear, [9, 34]. B-spline
basis functions represent an alternative well suited to flatness parametrization due
to their ease of enforcing continuity. Moreover, their degree depends only up to
which derivative is needed to ensure continuity. This basis will be used in the sim-
ulation results presented in this chapter. For details on B-spline functions and their
applications, the interested reader is referred to recent research works, [7, 31, 32].

8.2.2 Principles of Optimization-Based Control

The optimization-based control refers to the control design that optimizes a given
criterion by using methods that generate optimal control laws whose parameters are
such that a certain desired property, such as stability or robustness, is fulfilled. This is a
broaddefinitionwhich actually can cover the classical optimal control, theLMI-based
techniques, MPC, or interpolation-based techniques. We provide in this chapter, a
trajectory trackingMPCproblem forwhich a control actionu(k) for a given state x(k)

is obtained from the control sequence u � {u(k), u(k + 1), . . . , u(k + Np − 1)} as
the result of the optimization problem:

u∗ = arg
u

min

⎧
⎨

⎩
V f (x(k + Np), r(k + Np)) +

Np−1∑

s=1

V (x(k + s), u(k + s), r(k + s))

⎫
⎬

⎭
,

(8.5)
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subject to:

{
x(k + s + 1) = f (x(k + s), u(k + s)), s = 0 : Np − 1,

h(x(k + s), u(k + s), r(k + s)) ≤ 0, s = 1 : Np − 1,
(8.6)

over a finite horizon Np. Here, V f (·, ·) : Rnx × R
nx → R+ represents the terminal

cost function, V (·, ·, ·) : Rnx × R
nu × R

nx → R, the cost at stage s function, f (·, ·)
describes the evolution of the systems’ trajectory, h(·, ·, ·) the constraints in a general
(input state parameters) form, being r(·) ∈ R

nx a vector of time-varying parameters
which includes the reference trajectory along the prediction horizon.

Therefore, our main objective being the design of a predictive control strategy,
a reference trajectory needs to be available beforehand at least for a finite predic-
tion window. Hereinafter, we use flatness concepts previously presented in order to
provide flat states and inputs of the nonlinear finite-time optimization problem (8.5)
at the pre-design stage (trajectory generation), which can be updated in real-time in
order to allow rescheduling and target moves. Finally, the MPC optimization prob-
lem and the a priori generated reference are linked through an optimization block
which adapts the speed of tracking, being this actually the main contribution of the
paper and thus it will be our main focus in the forthcoming section.

Remark 8.3 Note that, the nonlinear systems used in a wide class of practical appli-
cations are differentially flat. For the cases where the specifications of flat outputs
are not possible, other strategies for trajectory generation can be employed (see, for
example, [1, 5]). �

8.3 Optimization-Based Trajectory Tracking

This section starts by presenting the linearization procedure of the system model
which will be further used in the optimization-based control design for trajectory
tracking.

8.3.1 Linearization

Hereinafter, we choose to discretize and linearize the dynamics (8.1) along the flat
trajectory (for the construction details regarding the discretization method, lineariza-
tion points along the flat trajectory and the like, the reader can consult our previous
work, [22]). For the time discretization via Euler explicit method, we compute a
first-order approximation of the state of the system at a time later. The one at the
current time is as follows:

x(k + 1) = x(k) + Te · f (x(t), u(t))|t=k·Te , (8.7)
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where Te is the discretization step. Furthermore, for the discretized model of the
nonlinear system (8.1) defined as:

x(k + 1) = f d(x(k), u(k)), (8.8)

we consider a collection of points along the reference trajectory in which we pre-
compute linear approximations of (8.8):

L � {l j = (x j , u j ), j = 0 : Nl}, (8.9)

with Nl the number of chosen linearization points. For a given point l j ∈ L we
consider the following Taylor decomposition:

f d(x(k), u(k)) = f d(x j , u j ) + A j (x(k) − x j ) + B j (u(k) − u j ) + β j (x(k), u(k)),

(8.10)

where the matrices A j ∈ R
nx ×nx and B j ∈ R

nx ×nu are defined by

A j = ∂ f d

∂x
|(x j ,u j ), B j = ∂ f d

∂u
|(x j ,u j ) (8.11)

and β j (x(k), u(k)) ∈ R
nx represents the terms of the Taylor decomposition of rank

greater than 1 (i.e., the nonlinear residue of the linearization):

β j (x(k), u(k)) = f d(x(k), u(k)) − f d(x j , u j ) − A j (x(k) − x j ) − B j (u(k) − u j ),

(8.12)

for all j = 0, . . . , Nl . Therefore, the system (8.8) is linearized in l j ∈ L as follows:

x(k + 1) = f d
j (x(k), u(k)) � A j x(k) + B j u(k) + d j , (8.13)

where f d
j (x(k), u(k)) = f d(x(k), u(k)) − β j (x(k), u(k)), and the affine constant

terms d j ∈ R
nx are given by

d j = f d(x j , u j ) − A j x j − B j u j , (8.14)

for all j = 0, . . . , Nl .

Remark 8.4 Note that, in general, the linearization and the discretization operations
can be interchanged and even mixed in order to obtain a discrete-time linear system
which best approximates the sampling of the continuum time dynamics. �

Furthermore, for selecting between the predefined linearization points (8.9) for
the current input/state values, we partition the state space into a collection of Voronoi
cells:
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V j = {
(x, u) : ||(x, u) − (x j , u j )|| ≤ ||(x, u) − (xi , ui )||, ∀i 	= j

}
, (8.15)

where each cell consists of all points whose linearization error around point (x j , u j )

is lower than the one with respect to any other point (xi , ui ) from L, with i, j =
0, . . . , Nl . This allows a practical criterion for the selection of the linearization point
during runtime:

if (x(k), u(k)) ∈ V j then x(k + 1) = f d
j (x(k), u(k)), ∀ j = 0, . . . , Nl .

(8.16)

It is worth mentioning that, for a given error norm, the Voronoi decomposition is
unique (by its geometrical properties) and, as such, it offers a generic design tool
for any localization of the linearization points. The drawback is that this criterion
is purely geometric and does not take into account the dynamical properties of the
model. This disadvantage can be mitigated by two practical procedures: increasing
the number of linearization points, and computing the maximal linearization error
(see [8] for a discussion on the accuracy of the linearization and its impact in the
design of stabilizing control laws). Since β j (x, u) = f d(x, u) − f d

j (x, u), it follows
that the linearization error is related to the topology of its corresponding cell, V j : For
all k = 0, 1, . . ., we have

||β j (x(k), u(k))|| ≤ max
(x,u)∈V j

|| f d(x, u) − f d
j (x, u)||. (8.17)

Basically, a Voronoi decomposition with decreasing volume of the cells leads to an
increasing quality of the PWA approximation for the function (8.8).

The following remarks are in order.

Remark 8.5 An a priori computation of the linearization (8.11), (8.12), and (8.14) in
all feasible combinations of inputs and states is difficult to handle. As such, we prefer
to select the linearization points (8.9) along the flat trajectory under the assumption
(to be verified along the system evolution) that the real trajectory will stay in the
correspondingvalidity domain (Voronoi cell), and thus the chosen linearizationpoints
will remain relevant to the problem at hand. �
Remark 8.6 Here, we have chosen the linearization points equidistantly along the
reference trajectory. This choice is acceptable as long as the trajectory tracking error is
contained by similar uncertainty bounds over the associated Voronoi cells. Adaptive
curve sampling can be employed via a different parametrization scheme in order to
select these points. For example, the selection of linearization points can be seen
as an optimization problem where the goal is to position the points in such a way
as to minimize the linearization errors β j (x(k), u(k)) in (8.10). Such an approach
becomes relevant when the control problem is specified in a high-dimensional space
and an automatic implementation of the scheme is required. �
Remark 8.7 Note that, a detailed exposition on the procedure for selecting between
the linearization points can be found in [22]. �
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Next, an optimization problem is formulated in a predictive control framework. It
includes the minimization of the system tracking error since the nominal trajectory is
generated by taking into account the state and input constraints, but the real vehicle
state may not follow exactly the reference flat trajectory. Hence, the system will be
controlled in real time to remain adequately close to the reference trajectory over a
finite-time horizon in the presence of constraints by using the available information.

8.3.2 Real-Time Control

We consider the recursive construction of an optimal open-loop control sequence
u = {u(k), u(k + 1), . . . , u(k + Np − 1)} over a finite constrained receding horizon,
which leads to a feedback control policy by the effective application of the first
control action as system input (see also Fig. 8.2which illustrates the general trajectory
tracking mechanism):

u∗ = argmin
u

Np−1∑

s=0

(||x(k + s) − xre f (k + s)||Q + ||u(k + s) − ure f (k + s)||R
)
,

(8.18)

subject to the set of constraints:

⎧
⎪⎪⎨

⎪⎪⎩

x(k + s + 1) = A j x(k + s) + B j u(k + s) + r j , s = 0 : Np − 1,
x(k + s) ∈ X , s = 1 : Np − 1,
u(k + s) ∈ U , s = 1 : Np − 1,

x(k) = xp(k),

(8.19)

for some j ∈ {1 : Nl}. Here, xp(k) denotes the state of the plantmeasured at instant k,
the matrices Q = QT � 0, R � 0 are weighting matrices and Np denotes the length
of the prediction horizon.

The solutionof the optimizationproblem (8.18)–(8.19) needs to satisfy the dynam-
ical constraints, expressed by the equality constraints in (8.19). At the same time,
other security or performance specifications can be added to the system trajectory.
These physical limitations (velocity and bank control inputs) are stated in terms of
pointwise hard constraints on both the state variables, and input control action as

Trajectory
generation
eq. (2)–(3)

MPC Plant
(x ref (τ ) , uref (τ ))

τ = k · Te

u( k)

xp(k)

a priori given
way-points
in the x space

Fig. 8.2 Trajectory tracking mechanism using MPC
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detailed by the set inclusion constraints in (8.19). Practically, the closed and com-
pact sets X , U denote in a compact formulation the magnitude constraints on states
and inputs, respectively. In the following, all these sets are supposed to be polytopic
(and, thus, bounded) and to contain the reference control process. This means that
xre f (k) ∈ X and ure f (k) ∈ U .

Stability constraints can be considered by adding to problem (8.18)–(8.19) a
terminal set-terminal cost arguments, the particularity being the time-varying nature
of the prediction model.

8.4 Optimization-Based Path Following

This section recalls first the difference between path and trajectory tracking. The
former only provides a desired route which may or may not be feasible when taking
into account the dynamics of the vehicle or the input and state constraints. At each
point in time, the latter provides a pair of reference state and input and thus guar-
antees the feasibility of the problem. While superior to deal with real-time require-
ments, the trajectory tracking problem is more challenging. Besides the increased
difficulty in generating a trajectory rather than a path there is also the issue of time
dependence, whichmay imply the infeasibility of the real-time optimization problem
(8.18)–(8.19).

The synchronization of the absolute time t in (8.1) with the virtual time τ in
(8.2)–(8.3), which parametrizes the flat trajectory, forces a constant “velocity” in the
sense that the state has to track the current values of the reference. If for some reason
(disturbances, unforeseen obstacles), the vehicle “lags”, the tracking controller has
forced the vehicle to remain in a reachable domain around the current values of
the reference trajectory, otherwise the closed-loop control design is compromised.
Conversely, if the vehicle is slightly ahead the reference trajectory, it may perform
“complex” maneuvers (with an inefficient energy use) when trying to be “in sync”
with the reference. This highlights the need for a mechanism which the vehicle can
“decelerate” or “accelerate” as desired along the reference trajectory, by adjusting
the virtual time flow with respect to the real controller time. Specifically, if for
some reason the vehicle remains constantly behind it is not reasonable to follow
the trajectory with a constant or an increasing tracking error which can lead to
infeasibility in predictive control terms. The alternative will be to reconfigure the
trajectory in terms of a path to be followed.

In this section, we propose a formal relaxation of the trajectory tracking scheme.
This is done by choosing the optimal point (in the sense specified above) at each
sampling time on the path to be followed. Subsequently, further enhancement of the
trajectory tracking scheme is provided by varying the speed profile along the path,
thus increasing the flexibility and robustness of the problem while guaranteeing the
path feasibility.
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8.4.1 Selection of the Initial Point of the Reference Trajectory

The basic idea is to find the point and the associated time value τc on the predefined
trajectory, which is the closest one to the current position of the vehicle x(k):

τc = arg min
τ∈[τk−1,t f ]

||xre f (τ ) − x(k)||22. (8.20)

Note that it is assumed implicitly in (8.20) that τk ≥ τk−1 which means that the
only possibility for the vehicle is to advance forward along the path (rather than go
backward).

In order to better explain the proposed strategy, Fig. 8.3 illustrates a reference
trajectory (depicted in blue), which passes through some a priori given waypoints
(denoted by the green dots), and the optimal time obtained by solving (8.20), for
which the current position is the closest one from the reference trajectory. If the
real-time position and the one in virtual time are synchronized, then the vehicle is
forced to track a point which is behind, whereas the optimal choice is to reorient the
vehicle to track the reference using the optimal time τc obtained as in (8.20). Note
that the same figure illustrates where to look for the optimal time by using solid blue
and dashed blue to denote the past and the future, respectively, along the trajectory.

Once the optimal time along the reference is found, an optimization-based control
problem similar to (8.18) is implemented (see also a similar mechanism illustrated
in Fig. 8.2):

u∗ = argmin
u

Np−1∑

s=0

(||x(k + s) − xre f (τc(k) + s · Te)||Q + ||u(k + s)

− ure f (τc(k) + s · Te)||R
)
, (8.21)

Fig. 8.3 Optimal time for
which the current position is
the closest from the
reference trajectory xref(tf)

xref(t0)

xref(τi+1)

xref(τi)

x

y

xref(τc) x(k) current
position

xref(kTe)
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Trajectory
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eq. (2)–(3)

Find τc
eq. (14) MPC Plant

(xref(τ ), uref(τ ))
τ = k · Te

u(k)

xp(k)

τca priori given
way-points
in the x space

Fig. 8.4 Conversion to path following mechanism using MPC

Trajectory
generation
eq. (2)–(3)

Find τc
eq. (14) NMPC Plant

(xref(τ ), uref(τ ))
τ = k · Te

u(k), α(k)

xp(k)

τca priori given
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Fig. 8.5 Conversion to path following mechanism using NMPC

subject to the set of constraints (8.19), with Te the sampling time as in (8.7) and τc

the optimal time obtained as the result of the optimization (8.20) (Fig. 8.4).
Note that the optimization problem (8.21) retains its linear structure, while (8.20)

is the simplest nonlinear optimization problem that can be formulated since it involves
only one decision variable τ subject to the constraints in (8.2)–(8.3).

8.4.2 Selection of the Speed Profile Along the Path

In the following, we go further in the design of the trajectory tracking scheme by
introducing a scalar term α to adjust the speed along the trajectory. This is equivalent
to a decorrelation of the flow along the virtual time by linear acceleration (α > 1) or
deceleration (α < 1). Therefore, the optimization problem (8.21) is reformulated as
follows

(u∗,α∗) = argmin
u,α

Np−1∑

s=0

(||x(k + s) − xre f (τTe(s; k,α(k)))||Q + ||u(k + s)

−ure f (τTe(s; k,α(k)))||R
)
, (8.22)

subject to the set of constraints (8.19), where τTe(s; k,α(k)) = τc(k) + sα(k)Te,
with Te being the sampling time as in (8.7), τc the optimal time obtained as in (8.20),
and α the time-varying speed profiling factor. Now, the structure of the optimization
problem (8.21) becomes nonlinear, and, thus, more complex, but still simple in the
sense that, it involves only one additional dimension, the decision variable α, which
permits to adjust theway the path is followed. Figure8.5 illustrates the path following
mechanism using a nonlinear model predictive control (NMPC) strategy.
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8.4.3 Linearization with Varying Speed Profile

In Sect. 8.3.1, we introduced a general linearization procedure for the system. Fol-
lowing the previous sections, the goal is to compare the system trajectory with the
reference trajectory in a discrete set of time instances when the reference trajectory is
followed at varying speed. To do that, we consider here non-equidistant consecutive
time instants {tk}k≥0 such that:

tk+1 = tk + α(k)Te, k ∈ N, α(k) ∈ (0, 1], (8.23)

where Te is the nominal sampling period.
As with (8.7), we consider Euler explicit method for the discretization:

x(tk+1) = x(tk) + α(k)Te f (x(tk), u(tk)), k ∈ N. (8.24)

Next, for the linearization procedure, the collection of linearization points along
the reference trajectory is redefined by:

L � {l j = (x j , u j ,α j ), j = 1, 2, . . . , Nl}, (8.25)

with the additional component α j , whose nominal value is chosen to be α j = 1,
corresponding to the reference trajectory at the nominal speed. Furthermore, the
linearization around a point l j ∈ L yields the following dynamics:

f (x(tk), u(tk)) � f (x j , u j ) + fx (x j , u j )(x(tk) − x j ) + fu(x j , u j )(u(tk) − u j )

(8.26)
and

x(tk+1) � x(tk) + α j Te fx (x j , u j )x(tk) + α j Te fu(x j , u j )u(tk)

+ α(k)Te( f (x j , u j ) − fx (x j , u j )x j − fu(x j , u j )u j ), (8.27)

which can be rewritten as:

x(tk+1) � (I + α j Te fx (x j , u j ))x(tk) + α j Te fu(x j , u j )u(tk)

+ α(k)Te( f (x j , u j ) − fx (x j , u j )x j − fu(x j , u j )u j ). (8.28)

Note that (8.27) is a bilinear model and a further approximation (α(k) = α j in
the second and third terms) leads to the linear model (8.28).

As with Sect. 8.3.1, we denote x(k + 1) = f d(x(k), u(k),α(k)), thus, x(tk) and
u(tk) become x(k) and u(k), respectively. The discrete-time linearized model can be
written as:

x(k + 1) = A j x(k) + B1
j u(k) + B2

jα(k), (8.29)
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where

A j = I + α j Te fx (x j , u j ), (8.30)

B1
j = α j Te fu(x j , u j ), (8.31)

B2
j = Te( f (x j , u j ) − fx (x j , u j )x j − fu(x j , u j )u j ). (8.32)

8.4.4 Real-Time Control

The optimization problem (8.22) is now reformulated as follows:

(u∗,α∗) = argmin
u,α

Np−1∑

s=0

(||x(k + s) − xre f (τ (k + s))||Q

+||u(k + s) − ure f (τ (k + s))||R + ||α(k + s) − 1||) ,

(8.33)

subject to the set of constraints:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

x(k + s + 1) = A j x(k + s) + B1
j u(k + s) + B2

j α(k + s), s = 0 : Np − 1,

τ (k + s + 1) = τ (k + s) + α(k)Te, s = 0 : Np − 1,
x(k + s) ∈ X , s = 1 : Np − 1,
u(k + s) ∈ U , s = 1 : Np − 1,

x(k) = xp(k),

τ (k) = τc(k),

(8.34)

for the appropriate index j ∈ {1, . . . , Nl} corresponding to the active Voronoi cell
and τc the optimal time obtained as in (8.20) and α the speed profile factor.

Remark 8.8 Note that adapting the discretization step via a time-varying coefficient
α and a constant prediction horizon Np leads to a time-varying prediction horizon
on the absolute continuous timescale. Indeed, in continuous time the prediction time
will be NpTe

∑Np−1
s=0 α(s). In order to mitigate this phenomenon, theMPC prediction

horizon, Np can be adapted, by choosing

Np(k) = min{n ∈ N : nTe

Np−1∑

s=0

α(s) ≥ Np}. �

Finally, let us wrap-up in Algorithm 1 the mechanism implemented based on the
theoretical elements previously presented.



8 Predictive Control for Path-Following … 175

Algorithm 8.1 Path following optimization-based control problem
Input: Specify a collection of waypoints

1 -construct the flat trajectory as in (8.2)–(8.3), passing through the waypoints;
2 -choose a collection of linearization points L (8.19);
3 -construct the PWA function as in (8.23);
4 for k = 1 : kmax do
5 -measure the current state of the plant xp(k);
6 -find the optimal time τc by solving (8.20);
7 -select the linearization point l j ∈ L and consequently the pair (A j , B1

j , B2
j ) as in

Remark 8.7;
8 -find the optimal control action u∗ and the speed profile factor α by solving (8.27);
9 -apply to the plant the first value of the control sequence u∗(k) during the time α∗(k)Te;

10 end

8.5 Simulation Example for an UAV System

In this section, we start with the case of a 2D 3-DOF model (8.35) of an Unmanned
Aerial Vehicle (UAV) in which the autopilot forces coordinated turns (zero side-slip)
at a fixed altitude:

ẋ(t) = va(t) cosΨ (t) + dx ,

ẏ(t) = va(t) sinΨ (t) + dy,

Ψ̇ (t) = g tanΦ(t)
va(t)

.

(8.35)

The state variables are represented by the position (x(t), y(t)) and the heading (yaw)
angleΨ (t) ∈ [0, 2π] rad, whichwe denote as x(t) = [xT (t)yT (t)Ψ T (t)]T . The input
signals are the airspeed va(t) and the bank (roll) angle Φ(t), respectively, denoted
as u(t) = [vT

a (t)ΦT (t)]T . Also, the airspeed and the bank angle are regarded as the
autopilot pseudocontrols. Furthermore, we assume a small angle of attack and that
the autopilot provides a higher bandwidth regulator for the bank angle, making its
dynamics negligible when compared to the heading dynamics. Also, in (8.35), dx

and dy represent the wind velocity components on the x and y axes. The dynamical
model of the vehicle corresponds to a nonholonomic system, which is completely
controllable (under the natural assumption that the velocity is different from zero),
but it cannot make instantaneous turns in certain directions.

We take asflat output the position components of the state, z(τ ) = [z1(τ ) z2(τ )]T =
[x(t)y(t)]T , which permits to compute the remaining variables:

xre f (τ ) =
[

z1(τ ) z2(τ ) arctan

(
ż2(τ )

ż1(τ )

)]T

, (8.36)

ure f (τ ) =
⎡

⎣
√

ż21(τ ) + ż22(τ ) arctan

⎛

⎝1

g

z̈2(τ )ż1(τ ) − ż2(τ )z̈1(τ )
√

ż21(τ ) + ż22(τ )

⎞

⎠

⎤

⎦

T

, (8.37)
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where τ ∈ [t0, t f ] is a scalar parameter which can be assimilated to t in (8.35), but
will be used as a decision variable interpreted as a virtual time when the reference
tracking problem is recast in a path following problem.

Note that, in the heading component of the state variable appears first-order deriv-
atives of the flat outputs, while in the roll angle input appears the second-order deriv-
atives of the flat outputs. Hence, for obtaining a smooth state and input (i.e., their
derivatives are continuous) it follows that the B-spline parametrization has to have
at least degree 4. Further, the linearized model was used for the control part of the
trajectory tracking problem.

Next, for testing the proposed trajectory tracking method and its reformulation
into a path following problem we use an extended model of (8.35) (for low-level
control of an UAV [2]) with 12 states in a 6-DOF simulation. More precisely, the
12-state model includes the positions (x [m], y [m], z [m]), the velocities (vx [m/s],
vy [m/s], vz [m/s]), the roll, pitch and yaw angles (φ [rad], θ [rad], ψ [rad]), and
the angular rates (p [rad/s], q [rad/s], and r [rad/s]), all measured along body frame
coordinates, X, Y, and Z. The simulations also incorporate perturbations like the
wind with an intensity bounded by some reasonable values (e.g., a maximum speed
of 8m/s).

The objective here is to force the UAV to track 6 given waypoints (denoted as
red dots in the forthcoming simulations). The following data and tuning parameters
were used for the simulations:

• the list ofwaypoints: {(500, 200, 150), (450,−250, 150), (0,−350, 150), (−350,
0, 150), (−350, 300, 150), (−200, 500, 150), (50, 450, 150), (400, 0, 150)}.

• the sampling time is Te = 0.01 s;
• constraints on the input: the velocity va ∈ [18, 25] m/s, the bank angle Φ ∈

[−0.43, 0.43] rad and the wind components dx , dy with || [dx dy]
∣∣ |2 ≤ 8 m/s;

• small variations on the velocity and bank command are admitted: the rate of change
of va is limited to the maximum acceleration the aircraft can produce, i.e., 0.1 ∼
0.2m/s2; the variation of Φ is limited to 0.04 rad/s;

• theweightsmatrices are:Q = [10e1 0 0; 0 10e1 0; 0 0 0.1],R = 10e4 · [10 0; 0 1];
• the prediction horizon is Np = 7.

First, we add the current position of the UAV to the list of waypoints. Next, by
using the theoretical results presented in Sect. 8.2.1 and (8.36)–(8.37), we generate a
flat trajectory starting from the current position of the UAV and passing through the
given waypoints. Figure8.6 illustrates the a priori generated flat trajectory and the
heading angle, whereas Fig. 8.7 depicts the control input signals and their derivatives.
The linearized model is used for the control part of the trajectory tracking problem
with the above-mentioned tuning parameters.

Second, by considering the trajectory tracking mechanism detailed in Fig. 8.2 and
solving (8.18)–(8.19) with no wind conditions we obtain good tracking performance
as illustrated in 3D in Fig. 8.8a. In green dashed line, we represent the UAV actual
motion, and, in magenta dashed line, the path projection on the ground.

However, sometimes it may be the case that, under different wind conditions, the
UAV may track the trajectory with an increasing tracking error as proved by the
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Fig. 8.6 Reference trajectory passing through the waypoints and the corresponding heading angle
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Fig. 8.8 Trajectory
tracking: a UAV actual
motion with no wind
conditions. b UAV actual
motion with wind conditions

−600 −400 −200 0
200

400
600

−500

0

500
0

50

100

150

200

East [m]

North [m]

A
lti
tu
de

[m
]

3D trajectory tracking

(a)

−600 −400 −200 0
200

400
600

−500

0

500
0

50

100

150

200

East [m]

North [m]

A
lti
tu
de

[m
]

3D trajectory tracking

(b)

simulation scenario with a wind velocity of 5[m/s] from East depicted in Fig. 8.8b in
blue continuous line.

To deal with these type of situations, the trajectory tracking problem is reformu-
lated via a path following problem. Equation (8.20) is useful in various scenarios. For
instance, we can consider the initial time instant when the real trajectory is far away
from the reference. Also, we can consider it during the runtime whenever we need
to reinitialize the reference time τ : whenever the real trajectory steers too far away
from the reference, we have to recalculate the best time τc as addressed in (8.20). The
scalar α permits to shrink or expand the sampling period and, in this way, to adjust
the speed of the virtual reference vehicle. Note that the use of a speed profile as in
(8.22) shows no discernible difference with respect to the simpler method (8.21).
Starting from a different initial position (−30,−800, 150), Fig. 8.9 illustrates the
performance of the proposed path following mechanism.
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Fig. 8.9 Path following:
UAV actual motion with
wind conditions
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8.6 Conclusions

This chapter presents a predictive control strategy for path following of autonomous
aerial vehicles. The strategy is decomposed in a two-stage procedure, where a ref-
erence trajectory was pre-specified using differential flatness formalism and than an
optimization-based control problem is formulated for minimizing the tracking error
for the vehicle. The discussions provided highlight the advantages of reconfiguring
the generated feasible trajectory in terms of a path along with the structural prop-
erties of the resulting optimization-based control problem. By allowing a variable
speed along the path the control problem sensitivity to disturbances and perturbations
is decreased. Moreover, the discretization and the linearization along the reference
trajectory are adapted to the variable speed profile by using time-varying sampling
intervals. Some simulation examples for the control of autonomous aerial vehicles
are presented in order to illustrate the proposed approach.
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Chapter 9
Formation Reconfiguration Using Model
Predictive Control Techniques
for Multi-agent Dynamical Systems

Minh Tri Nguyen, Cristina Stoica Maniu, Sorin Olaru
and Alexandra Grancharova

Abstract The classical objective for multiple agents evolving in the same environ-
ment is the preservation of a predefined formation because it reinforces the safety of
the global system and further lightens the supervision task. One of the major issues
for this objective is the task assignment problem, which can be formulated in terms
of an optimization problem by employing set-theoretic methods. In real time the
agents will be steered into the defined formation via task (re)allocation and clas-
sical feedback mechanisms. The task assignment calculation is often performed in
an offline design stage, without considering the possible variation of the number of
agents in the global system. These changes (i.e., including/excluding an agent from
a formation) can be regarded as a typical fault, due to some serious damages on the
components or due to the operator decision. In this context, the present chapter pro-
poses a new algorithm for the dynamical task assignment formulation of multi-agent
systems in view of real-time optimization by including fault detection and isolation
capabilities. This algorithm allows to detect whether there is a fault in the global
multi-agent system, to isolate the faulty agent and to integrate a recovered/healthy
agent. The proposed methods will be illustrated by means of a numerical example
with connections to multi-vehicle systems.
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Keywords Multi-agent dynamical systems · Fault detection and isolation ·
Set-membership theory · Tight formation control

9.1 Introduction

A multi-agent system (MAS) is a group of multiple intelligent (decision-making)
agents interacting within an environment subject to constraints. A dynamical multi-
agent system is first a MAS but each agent in this group is a relatively independent
subsystem characterized by a dynamical equation. MAS actually receives consider-
able attention due to flourishing of various applications which require studying the
best policy to control the entire MAS interpreted as a formation. In fact, the control
of a dynamical MAS is translated in terms of supervising the interaction between
the agents and further defining the best strategy of control suitable to a common
objective.

Besides the mission planning performance, the mission safety becomes an inten-
sive research field for MAS applications. In this context, a supplementary fault diag-
nosis layer is required to detect and isolate the possible faults appearing during
the mission. Thus, recently designing a fault detection and isolation (FDI) strategy
becomes a highly required priority for MAS. Many studies in the literature have
been conducted on this topic and various results were obtained. Precisely in [1–3]
the authors have developed a set of FDI filters to detect the actuator faults in the
presence of large environmental disturbance and then the faulty functioning of MAS
is recovered by applying the Markov chain theory. Other works, [4–6], have used
model-based fault detection to generate residual signals for MAS.

Recently, results have been reported on the application of set-theoretic and opti-
mization tools for MAS control, notably [7]. Furthermore, these tools were also used
to design FDI schemes based on the separation between different functioning modes
[8]. The faults treated in this work are principally sensor faults ([9, 10]) and actuator
faults ([11, 12]) for mono-agent dynamical systems. Other recent results concerning
the application of set-theoretic tools to design a fault tolerant control framework on
MAS are presented in [13–15].

The main idea of this chapter is to build on the resent results in [13, 14] and
present a unified approach for the use of set-theoretic tools to design a centralized
fault tolerant control (FTC) for an homogeneous MAS. The aim is on the one hand,
to supervise the interaction of the agents in the global MAS and on the other hand,
to detect if some agents from exterior try to integrate the current global system. For
all of these cases, the priority is to preserve the formation and thus the design can be
considered to be placed at a supervisory level. The main contribution is twofold:

• First, the proposed centralized FDI scheme based on set-theoretic methods for
MAS is able to detect if an agent is faulty1 and if this fault falls in a serious

1Actuator faults are considered further.
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category, to eliminate the faulty agent from the team (and automatically from the
formation).

• Second, it can be used as a threshold to detect intruders. The FDI step is subse-
quently completed by a reconfiguration step to calculate a new optimal configura-
tion for the global system. After finding the optimal formation, a classical control
action is designed to steer and keep the MAS into this new formation, with respect
to the collision avoidance constraints between the agents.

The design of such centralized FDI scheme is based mainly on the quality of
the communication tasks between the agents. This requires that the communication
graph of the global MAS is fully connected, i.e., any agent can send its information
(e.g., position, speed…) to all the agents in the global system and also receive the
information from all these agents. Moreover, we assume that there is no degradation
in the information exchanged between the agents due to the large disturbance of the
environment or due to the delay of communication.

The structure of this chapter is organized as follows: Section9.2 presents a brief
resume of the necessary elements from previous work. Section9.3 formulates the
tracking problem for a MAS completed by few challenges which inspire the current
work. At the end of this section, we describe two scenarios of functioning in the
presence of faults and present a corresponding FDI framework with the associated
reconfiguration step. The treatment of these two cases will be detailed, respectively,
in Sects. 9.4 and 9.5. Section9.6 proposes an example to illustrate the performance
of the new FDI algorithm for a MAS composed of three agents. This MAS is subject
to two faulty scenarios above. Finally, some concluding remarks and perspectives
are mentioned in Sect. 9.7.

General definitions and notation: In order to use set-theoretic concepts, we
introduce next a series of basic notions allowing us to link the dynamical systems
to static geometrical sets in the state space. In order to formalize the present results
and describe the appropriate framework, it should be mentioned that the considered
dynamical systems are linear, time invariant and described by discrete-time models.
The uncertainties are introduced in the model via bounded (additive) disturbances.

Given two sets A and B, the operator A ⊕ B = {a + b|a ∈ A, b ∈ B} denotes
their Minkovski sum set and cv (A,B) denotes their convex hull set.

Consider a bounded polyhedral set S ⊂ R
n, its closure is denoted by cl(S) and

C(S) = cl(S)\S is the complement of S.
With respect to the vector operator, | · | denotes the element-wise absolute value.

‖x‖Q = xT Qx denotes the value of the quadratic norm of vector x ∈ R
n, with

Q = Q� � 0 a weighting symmetric positive definite matrix. In ∈ R
n×n denotes the

unitary matrix of dimension n.
N = {0, 1, 2 . . .} is the set of all natural numbers. In the present study, N[1,N] �

{1, 2, . . . , N}, with N ∈ N, will denote the index of each agent in the MAS. We use
NE ∈ N[1,N] to denote the subset containing the indices of the eliminated agents due
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to the fault occurrence. Hence the complement set of the faulty agents’ indices is
NR = N[1,N]\NE .

In this paper two notions of receding horizons will be used:

• Prediction horizon denoted by Np—will be employed as a finite-time window in
the future;

• Fault monitoring horizon denoted by Nm—a finite-time window in the recent past,
used to characterize the time to detect a fault.

x̌i(k) denotes the one-step predicted state of the ith agent.
x̄i denotes the target position of the ith agent in the case that the common reference

of the entireMAS reduces to the origin. Its role will be detailed in the next subsection.
x̆i(k) denotes the trajectory reference of the ith agent, once one configuration for

the entire system is determined.

Definition 9.1 ([16]) Consider an autonomous linear discrete time-invariant system
x(k + 1) = Ax(k) + w(k), with the matrix A assumed to be a Schur matrix. A set S
is called robustly positive invariant (RPI) for this system, if Ax(k) + w(k) ∈ S for
all x(k) ∈ S, w(k) ∈ W , which is equivalent to:

AS ⊕ W ⊆ S (9.1)

Lemma 9.1 ([17])Consider the system x(k+1) = Ax(k)+w(k), with the matrix A
assumed to be a Schur matrix and a nonnegative vector w(k) such that |w(k)| ≤ w̄,
∀w(k) ∈ W ⊂ R

n. Let A = VJV−1 be the Jordan decomposition of A. Then the set

S = {x ∈ R
n : |V−1x| ≤ (I − |J|)−1|V−1w̄|} (9.2)

is robustly invariant with respect to the system dynamics.

9.2 Background in Multi-agent Formation Control

The notions presented in this section are based on the results in [18]. In order to
elaborate a contribution in the next sections, we need to recall three main elements
introduced and discussed in [18] respectively:

• Safety region construction which is the basic characterization for one agent beside
its dynamical equation.

• The optimization-based framework to obtain an optimal formation.
• The control action for the tracking mission for a formation in the fault-free func-
tioning.
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9.2.1 Robust Tube-Based Safety Region of an Agent

Consider the global formulation of a MAS � composed of N heterogeneous agents:

� : x(k + 1) = Ax(k) + Bu(k) (9.3)

where x = [xT
1 xT

2 . . . xT
N ]T ∈ R

Nn and u = [uT
1 uT

2 . . . uT
N ]T ∈ R

Nm denote respec-
tively the collective state and input vector of the global system �. The dynamics
are fully decoupled and the matrices A = diag(A1, A2, . . . , AN ) ∈ R

Nn×Nn and
B = diag(B1, B2, . . . , BN ) ∈ R

Nn×Nm collect all the matrices corresponding to each
agent by juxtaposition.

The nominal dynamics of each agent i is described by a LTI discrete-time model:

�i : xi(k + 1) = Aixi(k) + Biui(k), ∀i ∈ N[1,N] (9.4)

where xi ∈ R
n and ui ∈ R

m are the ith agent’s nominal state vector and input vector,
respectively. In the presence of disturbances, the model of the ith agent is considered
to account for it additively:

x̃i(k + 1) = Aix̃i(k) + Biũi(k) + wi(k), ∀i ∈ N[1,N] (9.5)

where wi ∈ W is the disturbance vector, x̃i ∈ R
n and ũi ∈ R

m are the ith agent’s state
and input vector, respectively. In the present work it is assumed that the setW ⊂ R

n

is bounded and contains the origin in its interior. If the robust control input vector in
(9.5) accounts for a nominal control action and a linear disturbance rejection term:

ũi(k) = ui(k) + Ki (x̃i(k) − xi(k)) (9.6)

then, by denoting ei = x̃i − xi as the tracking error of the ith agent, the following
expression is obtained:

ei(k + 1) = (Ai + BiKi)ei(k) + wi(k) (9.7)

The pairs (Ai, Bi) are assumed to be stabilizable. The stabilizability assumption of
the pairs (Ai, Bi) guarantees the existence of the feedback gain Ki ∈ R

m×n which
stabilizes (9.7). Applying Lemma9.1 for the tracking error equation, a RPI set Si

can be constructed (see [7]), ensuring that the tracking error ei(k) ∈ Si at each time
instant if ei(0) ∈ Si. The set Si is considered as a basic geometrical structure for the
safety region around the ith agent. Furthermore, although the real state x̃i is unknown
due to disturbances wi, its trajectory is always bounded by the parameterized tube:

Si(xi(k)) = {xi(k)} ⊕ Si (9.8)
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Fig. 9.1 Safety region of an
agent

Therefore, the nominal dynamics (9.4) together with its robust tube-based safety
region are used to characterize the behavior of an agent. As illustrated in Fig. 9.1, for
the ith agent, its real state x̃i (red line) is always bounded in a tube S(xi) composed
of its nominal state xi (blue line) and its safety region Si.

9.2.2 Minimal Formation

Aminimal formation of the MAS system � as presented in [7] is defined as an ideal
configuration where all the considered agents are as close as possible to a common
reference, which is the reference of the formation center. This formation is defined
as the optimal solution x̄∗ of the following problem:

x̄∗ = argmin
ū∗

N∑

i=1

‖x̄i‖ (9.9a)

subject to:

x̄i − x̄j /∈ (−Si) ⊕ Sj (9.9b)

x̄i = Aix̄i + Biūi (9.9c)

with ∀i, j ∈ N[1,N], i �= j. Here, x̄i indicates the error between the state of the
ith agent and the origin (which represents the common reference). The expression
(9.9b) denotes the collision avoidance constraints, while (9.9c) emphasizes that x̄i

is determined as a static equilibrium point according to the dynamical constraints.
The problem (9.9) is a nonconvex problem and due to (9.9b) can be casted in the
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Mixed Integer Programming (MIP) class with the associated solvers and resolution
[19]. The solution given by MIP is the set of target positions for a tight equilibrium
formation �. Moreover, solving (9.9) requires the full information of all agents in
the global system, hence its calculation is centralized and thus it is computed in a
centralized way.

9.2.3 Centralized Tracking Reference

Once the optimal formation is determined, it will be preserved along the common
reference2 xref (depicted by a red line in Fig. 9.2 for the example of aMAS composed
of three agents). Hence, the target trajectory of the ith agent is denoted by:

x̆i(k) = xref (k) + x̄∗
i

ŭi(k) = uref (k) + ū∗
i

(9.10)

This trajectory is associated to the dynamical equation:

x̆i(k + 1) = Aix̆i(k) + Biŭi(k) (9.11)

This can be verified by observing that the pairs [x̄∗
i , ū∗

i ] obtained by solving (9.9)
are always static. In others words, they are used to represent the offset between the
time-varying common reference [xref (k), uref (k)] and the reference of each agent
[x̆i(k), ŭi(k)]. Hence we obtain

x̆i(k + 1) = xref (k + 1) + x̄∗
i

= Aixref (k) + Biuref (k) + x̄∗
i

= Aix̆i(k) + Biŭi(k) − Ax̄∗
i − Biū∗

i + x̄∗
i

= Aix̆i(k) + Biŭi(k)

where the last expression exploits the static equality x̄∗
i = Aix̄∗

i + Biū∗
i .

The main purpose of the formation control remains the design of a closed-loop
control scheme so that the MAS’s states track the common reference which can be
interpreted as a feedforward signal:

xref (k + 1) = Aref xref (k) + Bref uref (k) (9.12)

2The common reference is the reference of the formation center.
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Fig. 9.2 Formation of three
agents

with Aref = Ai for an homogeneous MAS. With this purpose, the following central-
ized model predictive control (MPC) action is designed:

u∗(k) = argmin
u∗

k+Np−1∑

t=k

(‖z(t)‖Q + ‖v(t)‖R

) + ∥
∥z(k + Np)

∥
∥

P (9.13a)

subject to:

z(t) = x(t) − x̆(t) (9.13b)

v(t) = u(t) − ŭ(t) (9.13c)

x(t + 1) = Ax(t) + Bu(t) (9.13d)

x̆(t + 1) = Ax̆(t) + Bŭ(t) (9.13e)

xi(t + 1)−xj(t + 1) /∈ −Si ⊕ Sj (9.13f)

with u∗ = [
u∗�(k), . . . , u∗�(k + Np − 1)

]�
and t ∈ N[k,k+Np−1], ∀i, j ∈ N[1,N],

i �= j.
Alternative formulations enforcing the stability can be employed by adding ter-

minal constraints to (9.13f) but this deserves additional considerations with respect
to the length of the prediction horizon and feasible domain. Their presentation is
beyond the scope of the present work which focuses on the monitoring and fault
detection of the MAS formation (supposed to run on a properly designed tracking
control mechanism). We note that the prediction horizon has to be long enough in
order to allow convergence. Note also that (9.13) does not include static input-state
limitations and the feasibility of the anticollision constraint (9.13f) can be handled
via reachability analysis or viability theory whenever these constraints are consid-
ered as “hard”, [20]. Such centralized control structure requires that any agent has to
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send its information (e.g., position, speed…) to all agents in the global system and
also receive the information from all these agents. The computational time for each
prediction depends on the dimension of the MAS.

9.3 Problem Statement

9.3.1 Different Results in Reference Tracking of MAS

The control task of a MAS is a challenging one, especially when addressing the mis-
sion safety. Given a dynamicalMAS, themission safety is defined as the achievement
of a common tracking goal, while ensuring that the interaction between the agents
does not damage the structural organization of the MAS. More precisely, all agents
have to track a given reference within a predefined formation and integrate the col-
lision avoidance constraints while fulfilling the mission objective. The framework
(9.9) can give a minimal configuration for the system but this predefined configu-
ration does not adapt to the real-time evolution of MAS. In case of changing the
number of agents in MAS, typically when an agent leaves definitely its team,3 due
to a serious fault or due to the operator decision, or when some agents from exterior
try to join the current MAS, clearly a fixed configuration is not suitable. Moreover,
having agents that leave the formation may have a disastrous impact if a subgroup
of agent follows such a faulty element.

9.3.2 Interest and Challenge

Our interest is to reinforce the safety of a MAS during a tracking mission. This
chapter proposes a centralized framework for fault monitoring and the functioning
of the global system in the presence of damages that are acceptable. This requirement
becomes challengingwhenever the supervision level has to integrate the environmen-
tal disturbance and cumbersome computation load due to the dimension of �. The
most important feature is that this supervision/monitoring framework has to be suit-
able to the established control objectives. More precisely, the implementation of a
fault tolerant supplementary layer can introduce some loss of performance during
the operation of the global system.

The theoretic base is offered by the use of set-theoretic tools. Based on the knowl-
edge of the agents dynamics and their safety region construction, we will present
in the next sections a novel Fault Detection and Isolation (FDI) layer for the global
system. This framework is considered as an adaptive threshold with respect to the

3In practice, it may even become even adversary with respect to the team but such behavior is not
considered here. In the following, all the intruders are considered as cooperative and their inclusion
is automatically granted to the formation subject to reconfiguration.
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disturbance and furthermore based on the predicted state of �. We consider here
only additive disturbances to simplify the presentation. The FDI layer for the fault
monitoring is followed by a reconfiguration step which aims to recover the control
structure with respect to the remaining healthy agents in the system. This FDI layer
is installed on each agent, based on the communication between this agent and all
the remaining agents in the global system. Concerning the changing of the number
of agents in the MAS, we consider in the following two notable cases.

First, an agent belonging to the � can suffer some damages on its components
which decrease the performance of functioning. This is often translated to a faulty
behavior relative to the common healthy behavior of the other agents in � (due to
the impact in the common prediction model). The anomalies can also come from
the decision of the central operator in order to isolate this agent out of the current
formation. For this case, an FDI layer has to be introduced to characterize the behavior
of each agent allowing to detect if an agent has some anomalies in its behavior and if
the anomalies are characterized as serious enough to subsequently isolate this agent.

Second, during the mission, some agents positioned outside of the formation
can make maneuvers in order to integrate to the current formation. This scenario is
critical because it can lead to safety loss. A FDI layer which is based on set-theoretic
methods is further used as a threshold to detect these intruders. In order to guarantee
the safety of the formation, this faulty case can be decomposed into two phases. First,
once detected, the status healthy of the agent has to be validated. This validation step
needs a validation time to ensure the integration objective of the intruders. Second,
after being validated as healthy, a suitable reconfiguration step will be effectuated. It
authorizes the inclusion of a novel index (of the intruder) to the global system � and
then reconfigure accordingly the formation at the next iteration. The new formation
has to be a set of optimal positions to which the current agents and the new ones
may converge while fulfilling the anticollision constraints. These two scenarios will
be described in the next two sections.

9.4 Outgoing Agent Case Study

9.4.1 Fault Detection and Isolation for Outgoing Agents

In this section, the FDI layer is designed in order to detect and eliminate the faulty
agents from the current formation. After the elimination step, the formation will
be reconfigured based on the healthy (remaining) subset of agents. A certain time
window has to be predefined to validate the faulty status of an outgoing agent. Two
levels of faults are considered:

• Quarantined Faulty Agent: The faulty agent suffers anomalies in its dynamic
behavior relative to the healthy behavior of its neighbors. These anomalies make
the agent’s behavior different from its nominal (predicted) dynamics, but this still
cannot prove that this agent is faulty, because the anomalies may be issued from
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the environmental disturbance or local decisions made at the control level, see the
problem (9.13). For this reason, we need to set a certain time window of length
Nm to validate the fault. If it is maintained more than Nm time steps, this agent will
be certified as faulty.

• Certified Faulty Agent: This case is similar to the previous case but the impact
of the decision is important in the global formation. The certification is done
whenever the system in quarantine presents a state which is largely different from
the remaining agents, practically outside of the current formation envelope. In this
case, the faulty status has to be reported as soon as possible to eliminate the faulty
agent and reconfigure the formation.

In the sequel, for brevity, x̃i(k) denotes the real state of the ith agent, as specified
in Sect. 9.2.

9.4.1.1 Quarantined Faulty Agent Detection

In order to determine the functioning mode (Healthy or Faulty) of an agent, a set of
N residuals will be used, one for each agent. Each residual is defined as:

ri(k) = x̃i(k) − x̌i(k), with i ∈ N[1,N] (9.14)

with x̌i(k) denoting the one-step predictable state of the ith agent. The value of x̌i(k)

is obtained by using the nominal dynamics (9.4) and the last available state xi(k −1),
i.e.,

x̌i(k) = Aix̌i(k − 1) + Biu∗
i (k − 1), with i ∈ N[1,N] (9.15)

where u∗
i (k − 1) is the control action of the ith element of the optimal solution of

(9.13) at time instant k − 1.
If there is no fault, then ri(k) ∈ Si. Hence, the safety region Si is also the setRH

i
which characterizes the Healthy functioning of the ith agent:

RH
i = Si, with i ∈ N[1,N] (9.16)

We consider a set denoted RF
i to characterize the Faulty functioning and RH→F

i
to characterize the Healthy-to-Faulty transition functioning. These sets must respect
the following detectability set-separation condition:

{RH
i ∩ RH→F

i = ∅
RH

i ∩ RF
i = ∅ , with i ∈ N[1,N] (9.17)

If one of these separations does not hold, then the FDI mechanism will not be able
to ensure one-step detection but can engage in a monitoring procedure [8].

In the present framework, we consider only the critical faults, like leaving the
formation due to serious faults. The fault identification is not considered in this
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paper. This means that once the fault occurs, the residual ri(k) jumps out ofRH
i and

transits toRF
i . The condition of FDI (9.17) is thus simplified to:

RH
i ∩ RF

i = ∅, with i ∈ N[1,N] (9.18)

A candidate set which satisfies the condition (9.18) is the complement set of RH
i ,

i.e.,RF
i = C(RH

i ).

9.4.1.2 Faulty Agent Certification

The previous FDI scheme is used to detect and quarantine an agent which exhibits a
fault. We propose here another set construction to detect whenever the fault becomes
critical. The threshold set for this case is parameterized by a set

Š(xref (k)) = cv
(⋃

S(x̌i(k))
)

, ∀i ∈ NR (9.19)

Here, xref is the common reference of the global system � (see Sect. 9.2.3) and
x̌i(k) is the one-step predicted state of the ith agent. We recall that NR denotes the
indices set of the remaining agents in�. Inwords, the set (9.19) describes an envelope
of formation evolving under healthy behavior.

This threshold set Š(xref (k)) is defined as the convex hull of the one-step predicted
position of all agents around the reference. This description is similar to obtaining a
tube-based construction centered by the common reference xref (k), i.e.,

Š(xref (k)) = {
xref (k)

} ⊕ Š (9.20)

This set can be called the monitoring tube for the formation �.

9.4.2 Reconfiguration—Outgoing Agents Case Study

This section proposes a reconfiguration mechanismwhich is activated when an agent
is certified faulty. It uses the definition of the two faulty cases from the Sect. 9.4.1.
This reconfiguration step is performed (and is enabled) after the FDI step.

First, the nature of the fault has to be determined. At each iteration k, we check
if the residual signal ri(k) belongs toRH

i or not. If ri(k) /∈ RH
i , the respective agent

will be labeled as quarantined faulty agent. After Nm iterations corresponding to
the fault monitoring horizon (Nm is used to characterize the time to detect a fault), if
ri(k +Nm) /∈ RH

i , the ith agent is certified faulty and subsequently will be eliminated
from the team.

Otherwise, x̃i(k) /∈ Š(xref (k)) and the ith agent is immediately certified faulty
and it will be eliminated without passing by the quarantine stage.
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Fig. 9.3 Faulty cases in the interior of the formation

After characterizing the fault nature, the reconfiguration layer will be activated.
Thus the formation is further reconfigured at the next iteration for the remaining
healthy agents.

We illustrate in Fig. 9.3 two faulty cases presented above for a group of five
agents. These five agents are at the initial stage in a minimal formation centered by

Fig. 9.4 Reconfigured formation after elimination of B
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Fig. 9.5 Reconfigured formation after elimination of A

the common reference xref (red square). Their nominal states xi are presented by the
blue squares and their real states x̃i are denoted by the black squares. We describe
the elimination tube set Š(xref (k)) by the black lined set. One agent is quarantined
(the A point). The other agent is certified faulty (the B point) and eliminated and a
reconfiguration takes place for aMAS of four agents (see Fig. 9.4). If the quarantined
status is maintained for Nm steps, then the agent A will be also eliminated and the
formation is reconfigured for the three remaining agents, thus a new formation (of
three agents) is depicted in Fig. 9.5.

9.4.3 Algorithm for the Outgoing Agents Scenario

All the above ideas are incorporated in Algorithm 1 for the task assignment of the
NR healthy subset of agents. This algorithm is executed at each sampling time. A set
of timers will be activated in order to count the time steps when ri(k) /∈ RH

i . Each
timer is associated with one agent in �.

The functioning mode of each agent is represented by:

statusi =
{
1 if Healthy
0 if Faulty
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Algorithm 9.1 Task assignment reconfiguration in case of elimination of faulty
agent

Data: current state x(k), residual set RH
i

Result: Minimal reconfigured formation at sample time k
1 - construct Š(xref ) for NR;
2 for i ∈ NR do
3 if x̃i(k) /∈ Š(xref (k)) then
4 statusi := 0;
5 NR := NR \ {i};
6 else
7 - calculate residual ri(k) = x̃i(k) − x̌i(k);
8 if timeri = 1 then
9 if ri(k) /∈ RH

i then
10 if t = Nm then
11 statusi := 0;
12 NE := NE ∪ {i};
13 else
14 t := t + 1;
15 end
16 else
17 timeri := 0;
18 statusi := 1;
19 t := 0;
20 end
21 else
22 if ri(k) /∈ RH

i then
23 timeri := 1;
24 statusi := 1;
25 t := 1;
26 else
27 timeri := 0;
28 statusi := 1;
29 t := 0;
30 end
31 end
32 end
33 end
34 - solve (9.9) for NR;

The status (activated/deactivated) of each timer is described by the corresponding
element in the vector timer = [timer1 timer2 . . . timerN ]�, with

timeri =
{
1 if activated
0 if deactivated

At each sampling time, the current state of all agents in � will be collected and
also their residual sets RH

i . A loop of calculation is activated for all agents (line
2–33). For each agent, if x̃i(k) /∈ Š(xref (k)) then it will be eliminated immediately,
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else the verification necessary for the quarantine status is activated (line 3–6). In
this case, its residual signal ri(k) = x̃i(k) − x̌i(k) is calculated (line 7) and the
corresponding timer will be activated (line 8–31). During the activation of its timer,
if ri(k) ∈ RH

i then the agent is healthy and its timer is deactivated (line 26–30). Else
after Nm sampling time, if ri(k) /∈ RH

i this agent will be certified faulty and it will
be eliminated (line 10–12). The reconfiguration step is activated and the end of the
loop and it considers just the remaining healthy agents (line 34).

9.5 Incoming-Agent Case Study

Section9.4 presented our FDI framework to detect and isolate the faulty agent in the
interior of the formation. Here we study a different situation when the agents from
exterior integrate the formation.

9.5.1 Fault Detection and Isolation—Incoming
Agent Case Study

Apart from the faulty agent detection and isolation, we propose here a FDI scheme
to preserve safety when some new agents coming from the exterior of the current
formation join the system. The main purpose is to detect whether/when an agent tries
to join the formation, while guaranteeing the safety of the global system during the
integration process.

For this purpose of detection of intrusion, based on the elimination tube set S̆ as
defined in (9.19), we introduce a new set T , called intruder detection tube which
encircles the one-step forward predicted formation, e.g.,

T (xref (k)) = {xref (k)} ⊕ αŠ (9.21)

This set T is constructed to bound the monitoring tube Š(xref (k)). In (9.21) α > 1
is a scaling factor which accounts for the visibility region in the neighborhood of
the formation. Its value can be adjusted in order to enlarge or reduce the scope of
detection. Similar to the description of Š(xref (k)), T (xref (k)) represents a tube set
centered in the common reference xref (k).

This set is used to detect if some agents from exterior try to join the current
formation of �. If this integration effort is accepted by the supervision decision
level, the following reconfiguration step has to be activated.
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9.5.2 Reconfiguration—Incoming Agent Case Study

Let consider an ith agent as not taken into account by �, i.e., i /∈ NR. When this
agent approaches the formation of�, if x̃i(k) ∈ T (xref (k)), a timer will be activated.
After Nm iterations (for brevity we take the same monitoring horizon in the case of
incoming or outgoing agents, although a different length can be adopted if necessary),
if x̃i(k + Nm) ∈ T (xref (k + Nm)), then the integration is accepted. The index of this
agent will be taken into account in the global task allocation and minimal formation,
i.e.,NR = {i}∪NR and a new configuration will be generated for the new subsetNR.
A natural question can rise about the need of a monitoring window for the incoming
agents. The reason for its inclusion resides in the undesired effects of coupling the
outgoing and incoming agents monitoring. Indeed, in the case of an outgoing agent,
its fault can be considered concomitantly as a potential incoming behavior and the
status of the respective agent will be indiscernible.

Here, in order to improve the safety of the integration process, the new formation
obtained from solving (9.9) has to be an optimal formation but admissible from the
current position of all agents in NR.

We illustrate in Fig. 9.6 the faulty case presented above for a group of three agents.
These three agents have to be in a minimal formation centered by the common
reference xref (red square). Their nominal states xi are presented by the blue squares
and their real states x̃i are denoted by the black squares. We describe the monitoring

Fig. 9.6 Detection of an agent outside of the current formation



200 M.T. Nguyen et al.

Fig. 9.7 Integration accepted

tube Š(xref (k)) by a black line set and the intruder detection tube T (xref (k)) by a
dash line set. One agent is trying to join the current group (the C point). When its
integration is accepted, the formation is reconfigured for the four actual agents, thus
a new formation is shown in Fig. 9.7.

9.5.3 Algorithm for the Incoming Agent Scenario

The main ideas in this scenario are resumed in Algorithm 2. We reuse the notation
concerning the timer in Sect. 9.4.3. It is important to note that such a timer is activated
for an unique agent from outside and there is no confusion between the incoming
and outgoing agents. Moreover, we need to consider the following valuation of the
status of the agent which approaches the formation:

statusi =
{
1 if accepted
0 if denied

This means that the integration of an exterior agent is accepted if and only if its
status binary variable is 1, else it is rejected.
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At each sampling time, the current real state of the intruder agent x̃i(k) will be
collected and also the sets Š(xref ), T (xref ), NR of the current formation. If x̃i(k) ∈
T (xref (k)) and there is no timer activated for its integration, then the activation will
take place (line 15–18). During the activation of its timer, if x̃i(k) /∈ T (xref (k)) then
the timer is deactivated and the integration request is denied (line 19–23). Else after
Nm sampling time, if x̃i(k) ∈ T (xref (k)) the integration request is accepted (line
2–5). The reconfiguration step is activated at the end of the Algorithm for the healthy
agents in the new subset NR (line 25).

Algorithm 9.2 Task assignment reconfiguration in case of integration of agent
from exterior

Data: x̃i(k),Š(xref ), T (xref ), NR

Result: Minimal reconfigured formation at sample time k
1 if timeri = 1 then
2 if x̃i(k) ∈ T (xref (k)) then
3 if t = Nm then
4 statusi := 1;
5 NR := NR ∪ {i};
6 else
7 t := t + 1;
8 end
9 else

10 timeri := 0;
11 statusi := 0;
12 t := 0;
13 end
14 else
15 if x̃i(k) ∈ T (xref (k)) then
16 timeri := 1;
17 statusi := 0;
18 t := 1;
19 else
20 timeri := 0;
21 statusi := 0;
22 t := 0;
23 end
24 end
25 - solve (9.9) for NR;
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9.6 Illustrative Example

In this section, a numerical example is presented in order to illustrate the results
obtained by applying Algorithms 1 and 2 on a MAS � composed of N = 3

homogeneous agents. The common dynamics is xi(k + 1) =
[−0.2 0.5
0.2 0.71

]
xi(k) +

[
0.71 0
0 0.22

]
ui(k) + wi, i ∈ {1, 2, 3}. The safety region is constructed by using

the pole placement technique. The chosen poles to construct their safety region are
[0.2; 0.5]. The disturbance is bounded, i.e., |wi| ≤ [0.2 0.2]�. For theMPCcontroller
used in (9.13), the weighting matrices are Q = 100INn, R = INm. The prediction
horizon is Np = 3 and the monitoring horizon chosen to validate the elimination of
a faulty agent from the formation and also the integration of an exterior agent in the
current formation is Nm = 3.

The feedforward common reference is generated by a MPC reference controller,
included an integral tracking error as cost function and theweightingmatrices chosen
are Qr = 10In, Rr = 0.01Im.

u∗
ref (k) = argmin

u∗
ref (k),...,u∗

ref (k+Np−1)

k+Np∑

t=k

‖z(t)‖Qr
+

k+Np−1∑

t=k+1

‖v(t)‖Rr
(9.22a)

subject to:

z(t) = xref (t) − r(k), t ∈ N[k,k+Np] (9.22b)

v(t) = uref (t) − uref (t − 1), t ∈ N[k+1,k+Np−1] (9.22c)

xref (t + 1) = Aref xref (t) + Bref uref (t), t ∈ N[k,k+Np] (9.22d)

We recall here that� is homogeneous. Thus themodel dynamics implemented in this
MPC layer is the common dynamics of all agents, hence Aref = Ai with i ∈ {1, 2, 3}.

As illustrated in Fig. 9.8, the global MAS � pursuits a periodic trajectory illus-
trated by the black line. At the beginning (the A point), � is composed of three
agents, withNR = {1, 2, 3}. The task assignment gives the initial admissible optimal
formation for �. This formation is preserved with the common reference xref , and
the trajectories evolve in a tube centered at the xref (k) with its associated monitoring
tube S̆(xref (k)) and its intruder detection tube T (xref (k)). The red lines present the
set of reference trajectory x̆i of the agents.

At k = 13 (the B point), the 3rd agent is subject to an actuator fault, then it stops.
The remaining agents continue to track their reference trajectory with respect to the
last configuration. When x3 /∈ S̆(xref ) (the C point), the 3rd agent is certified faulty,
and then the formation is reconfigured for the two remaining agents. The new MAS
is denoted by �∗, with NR = {1, 2}. Two new sets S̆∗(xref (k)) and T ∗(xref (k)) are
calculated for �∗.
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Fig. 9.8 Illustrative example

At k = 25 (theD point), the 4th agent fromoutside exhibits an incoming trajectory
with respect to �∗. When x4(k) ∈ T ∗(xref (k)) for more than Nm time steps (the E
point), the integration of the 4th agent is accepted. Thus NR = {1, 2, 4} and the
formation will be reconfigured for three healthy agents.

9.7 Conclusion

This chapter uses set-theoretic methods as a basic tool to design a supervision layer
in order to maintain the functioning of a global MAS under two particular faulty
situations: elimination of a faulty agent from the formation and addition of an external
agent to the current formation. In order to serve this fault detection purpose, set-
theoretic tools are employed to construct offline the safety region of the agents and
further to combine them online in order to build a threshold set for fault detection
and isolation.

In order to deal with computational constraints, a decentralized approach, where
the optimization problem is solved at the agent’s level will be considered in the future
work. In this approach, both fault detection and isolation techniques, also reconfig-
uration techniques have to be constructed in a decentralized manner. Furthermore,
this have to be suitable to the multi-agent typical problem, for example, the tracking
mission, collision avoidance, etc.

We emphasize that the problem mentioned in the main contribution was already
simplified by imposing a series of assumptions. In particular, all of the frameworks
above are presented based on the nominal dynamics of the global MAS. It means
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that the impact of multiplicative uncertainties is not considered. These perturbations
in the context of MAS are various.

There can be the disturbances issued from the working environment which cause
the delay in the communication channel or more seriously degradation of the infor-
mation exchanged between the agents. These can lead to the degradation in the
communication graph of the MAS. In this context, the robustness of the proposed
framework seems interesting to study and specifically the relationship with the fault
detection decision-making. The main purpose is to robustify the functioning of the
global system by compensating the impact of these disturbances. Moreover, the link
between the FDI layer and the control action applied to the global system needs to be
further clarified and thus the theoretic aspects have to be developed in order to offer
a clear picture on the severity of collision constraints after reconfiguration. Another
research avenue which considers fault tolerant control for a heterogeneous system in
a wider sense will be welcomed. This case is interesting and challenging because it
is relative to the constraints on the dynamics of each agent. This can affect strongly
the tracking objective and, more importantly, the generation of a consensus of the
global system to an optimal configuration.
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Chapter 10
Optimal Operation of a Lumostatic
Microalgae Cultivation Process

Sihem Tebbani, Mariana Titica, George Ifrim, Marian Barbu
and Sergiu Caraman

Abstract This chapter proposes the optimization of batch microalgae cultures in
artificially lighted photobioreactors. The strategy consists in controlling the incident
light intensity so that the microalgae growth rate is maximized. Two approaches
were developed and compared. In the first one, the ratio between the incident light
intensity and the cell concentration (light-to-microalgae ratio) is optimized, either
offline or online, and then maintained at its optimal value. In the second approach,
the cells growth rate is maintained at its optimal value by means of nonlinear model
predictive controller (NMPC). The proposed control strategies are illustrated and
their efficiency is assessed, in simulation, for Chlamydomonas reinhardtii batch
cultures. The proposed lumostatic operation strategies are shown to lead to a higher
cell productivity and to a more efficient light utilization in comparison to conventional
constant light operation approach.
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10.1 Introduction

The microalgae use photosynthesis in order to convert the sunlight energy into chem-
ical energy required for the conversion of CO2 into organic compounds. As a result of
their ability to biosynthesize various components with high nutritional values, genera
such as Arthrospira (Spirulina) are used for human nutrition, while certain microal-
gae are used in aquaculture and early juvenile stages of crustaceans and fish. The
microalgae are also attractive for environmental applications such as greenhouse gas
bio-mitigation, [18, 24], and wastewater treatment processes, [4, 16]. The production
of biofuels from microalgae (third generation biofuels) is a very sound idea leading
to numerous fundamental and applied researches, [5, 21]. Lately, increased attention
was conferred to photoautotrophic1 H2 production with microalgae, seen as a novel
source of sustainable and renewable energy, without greenhouse gas emissions or
environmental pollution, [12].

Despite their widely recognized potential, industrial applications are still mar-
ginal, mainly because of the difficulty to propose adapted cultivation systems, called
photobioreactors (PBR), that permits to reach sufficient productivity (with increased
photosynthetic efficiency). Indeed, the specific biological needs of photosynthetic
microorganisms consist in light transparent systems with adapted geometries, maxi-
mizing light energy collection and its supply to the cells. To fulfill these requirements
PBRs have increased surface-to-volume ratio, resulting in specific designs (tubular,
planar (flat panel), and column (vertical and inclined column)). They could be natu-
rally or artificially lighted, depending on the application. These reactors are operated
in continuous2 or discontinuous mode.3 Efficient operation of PBRs poses specific
challenges in terms of process control. In all cases, considering light as a “substrate”
for growth, its distribution inside the bulk governs the performances of the production
system. Biomass itself has an “inhibitor” effect on its growth because an increase in
biomass concentration diminishes the light availability; in contrast, when biomass
concentration is too low, an excess of light energy will inhibit growth. The process
could be optimized by imposing light gradient into the bulk so that the light energy
absorption to be maximized. This type of operated reactor is called lumostat. While
in artificially lighted reactors, the incident light intensity could be controlled, in out-
door conditions the light intensity varies all along the day; specific control strategies
have to be implemented.

This chapter concerns the optimal control of a batch cultivation of microalgae in
a photobioreactor, illuminated with artificial light. More specifically, the objective is
to optimize the supplied light energy so that the bioprocess efficiency is maximized
by maximizing light use. When light energy is in excess, the microalgae growth
declines, especially in the early stage of the culture when cells concentration is low.
On the other hand, when light intensity is too low inside the photobioreactor, the

1Uses light as source of energy and the only carbon source is CO2.
2Continuous addition and withdrawal of medium during the culture.
3No addition or removal of medium during the culture. It is also called batch mode.
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productivity also declines. In addition, to ensure that the production of microalgae is
economically competitive, the light energy should be reduced as much as possible,
while ensuring high efficiency.

In this chapter, the problem of the optimization of the batch culture by controlling
the light supply is addressed. The objective is to maximize the efficiency of the light
use while maximizing the quantity of the produced biomass in a given duration. The
control of the light energy is a recent concern in the scientific community, [14, 17].
The objective is to improve further the bioprocess efficiency by means of advanced
control strategies. Two strategies are proposed and their performances are compared.

The first strategy consists in considering the light-to-microalgae ratio. This quan-
tity was used in the literature and was optimized empirically (considering a constant
ratio). In this chapter, the ratio will be optimized by deriving an optimization problem,
that will be solved either offline (constant ratio) or online (leading to a time-varying
ratio).

In the second approach, the specific growth rate will be controlled so that it is
maintained at its optimal value. Since the bioprocess model is highly nonlinear, a
model predictive controller will be developed. These two strategies will be compared
in simulation, highlighting the advantages and drawbacks of each method.

In order to illustrate the efficiency of the proposed strategies, the microalga
Chlamydomonas reinhardtii is considered. This unicellular green microalga can pro-
duce hydrogen and thus is studied as a candidate for biofuel production.

The chapter is organized as follows. In Sect. 10.2, the studied bioprocess and its
modeling are presented. Then, the lumostatic culture mode is detailed in Sect. 10.3
and compared to a conventional operation at constant incident light intensity. Two
approaches were investigated and developed: the control of the light-to-microalgae
ratio (Sect. 10.4), and the control of the growth rate (Sect. 10.5). For each strategy,
simulation results are presented and discussed. Finally, conclusions are stated in
Sect. 10.6.

10.2 Process Description and Modeling

10.2.1 Process Description

In many applications, a two-stage process is implemented consisting first in produc-
ing high biomass concentrations, before inducing the production of the metabolite
of interest. It is the case with Chlamydomonas reinhardtii, which is able to produce
molecular hydrogen in a clean way, under anoxic conditions, obtained and main-
tained by combining high density cultivation conditions coupled with the modulation
of the incident light, [9]. This study focuses on the first biomass production phase,
with the aim of proposing optimized production protocols increasing the efficiency
of light use. It considers the batch cultivation of photosynthetic microorgansims in
photobioreactor, under artificial light and in standard autotrophic conditions. In these
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Fig. 10.1 Schematic
representation of the studied
photobioreactor

conditions, all mineral nutrients (nitrogen, sulfate, phosphate, and micronutrients)
required for growth are introduced at the beginning in excess, while the inorganic
carbon source (CO2) is supplied continuously in order to maintain optimum pH dur-
ing cultivation. In this way, light becomes the sole factor controlling growth. Under
artificial light conditions, the photobioreactors are generally exposed to constant inci-
dent light intensities, provided by a LED panel or other light sources, applied on their
surface. Owing to absorption and scattering by cells, the light effectively received
by cells is attenuated and thus heterogeneously distributed into the culture (the light
intensity decreases along the depth). The attenuation of light is induced by pigments
of photosynthetic cells which absorb the photonic energy and the self-shading phe-
nomenon, and depends on various factors such as photobioreactor geometry, lighting
source position, hemispherical incident flux density, emission spectrum, optical prop-
erties of culture medium, biomass concentration, etc., [22]. Since the photosynthetic
growth is governed by the received light, a local photosynthetic growth response
can be defined at each location in the bulk. It results in using a particular class of
models which are able to return local photosynthetic responses, as described below.
The considered photobioreactor in this study is rectangular, flat panel, lighted from
one side with a LED panel (Fig. 10.1).

10.2.2 Process Modeling

10.2.2.1 Mass Balance Model

Dynamic models of microalgal growth are mainly represented by a set of ordinary
differential equations issued from mass (and possibly energy) balance of major com-
ponents of the process. Assuming that the culture broth is completely homogeneous,
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i.e., the concentration of microalgae is the same in all the points of the reactor, the
biomass concentration dynamics in batch culture will be represented by:

dCX (t)

dt
= rX (10.1)

where CX is the biomass concentration, and rX represents the mean biomass vol-
umetric growth rate in the photobioreactor. The growth rate is mainly function of
cell and nutrients concentrations, pH, temperature, and of the incident light flux. Its
modeling is detailed hereafter.

10.2.2.2 Kinetic Modeling of Photosynthetic Growth

The mean biomass volumetric growth rate rX in (10.1) is the result of the biomass
increase by photosynthesis in chloroplast (anabolism process) and its partial degra-
dation by respiration in mitochondria (catabolism process):

rX = μpCX (t) − μsCX (t) (10.2)

where μp and μs describe the photosynthetic and respiration rates, respectively. In
this study, μs has been assumed to be constant and not affected by the evolution of
the culture medium, [12]. Under the assumption that all nutrients are introduced in
excess, the photosynthetic rate, μp, is a function of the light received by the cell,
characterized by the available light inside the culture. In a more general formulation,
other nutrient limitations and/or inhibitions can be considered, using appropriate
kinetic relations, [2, 12].

A Haldane type model, [10], has been proposed here to represent the local growth
rate dependency on light, describing growth inhibition at high irradiance, and lim-
itation at low irradiance (see Fig. 10.2). The specific growth rate is in this case
expressed as:

Fig. 10.2 Growth rate
evolution w.r.t. light intensity
(Haldane model)
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μ = μ0
I

K I + I + I 2

K I I

(10.3)

where I is the spectral irradiance, KI the irradiance half-saturation constant, and KI I

the irradiance inhibition constant. μ0 is a kinetic parameter representing the ideal
maximum growth rate. It is related to the real maximum specific growth rate by the
relation:

μmax = μ0

1 + 2
√

K I /K I I
. (10.4)

Indeed, the optimal growth rate in a Haldane model is obtained for I ∗ = √
K I K I I ,

[10]. The Haldane model (10.3) is thus applied at each location in the reactor. The
mean volumetric rate is then obtained by integration of these local responses along
reactor volume. For a cultivation system with one-dimensional light attenuation (flat
panel, see Fig. 10.1), this consists in a simple integration along the depth of culture
(z, between 0 and L):

μp = μ0
1

L

L∫

0

G (z)

K I + G (z) + G2(z)
K I I

dz (10.5)

where G is the spectral irradiance.

10.2.2.3 Radiative Model

As expressed before, the computation of the volumetric rate of growth μp is based on
the knowledge of the available light inside the culture broth. Aside optical properties
and concentration of cells, the light gradient strongly depends on the reactor geome-
try. In the case of flat panel photobioreactors lighted on one side, as considered here,
an analytical solution of irradiance distribution is obtained [22]:

G (z) = 2q0
(1 + α) eδ(L−z) − (1 − α) e−δ(L−z)

(1 + α)2eδL − (1 − α)2e−δL
(10.6)

with δ = CX
√

Ea(Ea + 2bEs), the two-flux extinction coefficient, and α =√
Ea/(Ea + 2bEs), the linear scattering modulus. Ea and Es are optical parame-

ters and represent the mass absorption and the mass scattering coefficients, and b is
the backward scattering fraction. q0 represents the hemispherical incident light flux
(or incident light intensity, or photons flux density, PFD, as commonly named in
photobioreactors studies, [22]). CX represents the biomass concentration inside the
photobioreactor, z is the depth of the culture, and L is the depth of the photobioreac-
tor (Fig. 10.1). The optical parameters can be determined spectrophotometrically for
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any given photosynthetic organism, and depends on microorganism shape and size,
as well as pigment content. Their values depend also on the incident light flux, [23].
In a first approach, their variation has been neglected.

10.2.3 Sensors and Measurements

A certain number of reliable sensors for online measurements exist, most of them
being common in any biotechnological process, [13]. Aside usual sensors measuring
incident radiance, temperature, pH, measurements related to the O2 production rate
and carbon dioxide uptake rate provide reliable online estimation of photosynthetic
growth, especially in mineral nonlimiting conditions.

In particular, the oxygen is produced through water photolysis and is partially
consumed through respiration; its kinetic rate rO2 is, therefore, proportional to the
photosynthetic growth rate, based on overall stoichiometry of the microorganism
under study (which characterizes the yields of conversion of substrates into biomass
and related products), as follows:

rO2 = YO2/X rX . (10.7)

In other words, the oxygen production rate of the cell is proportional to its growth
rate. The conversion yield YO2/X is constant in standard nonlimiting autotrophic
conditions. For Chlamydomonas reinhardtii, its value has been determined in batch
cultivations in, [12].

The oxygen production rate (rO2 ) could be online estimated from dissolved oxygen
data, knowing the oxygen transfer rate from the liquid to the gaseous phase. The
mass balance for the dissolved oxygen assuming well-mixed liquid phase can be
expressed as:

dCO2

dt
= rO2 + KLa(C∗

O2
− CO2) (10.8)

where C∗
O2

and CO2 are the saturation and the actual concentrations of dissolved
oxygen in the liquid phase, KLa is the overall volumetric mass transfer coefficient for
oxygen. KLa strongly depends on photobioreactor geometry and aeration conditions,
[15]. The term KLa(C∗

O2
− CO2) is known as oxygen transfer rate (OTR).

Other method uses gaseous oxygen analyzer to measure the oxygen concentration
of the gas leaving the reactor. OTR can be determined from gas oxygen mass balance
on the reactor as the difference between oxygen flow rate leaving the reactor and the
oxygen flow rate entering in the system (if enriched air is bubbled into the culture
broth).

Whatever the method for measuring the oxygen production rate, Eq. (10.7) allows
to estimate online the volumetric photosynthetic growth rate. The estimated rX will
be denoted r̂X .
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The measurement of the oxygen production rate is more informative, than a bio-
mass measurement (via an optical sensor, for example). It allows to estimate with
better accuracy the specific growth. Thus, from the estimated global growth rate r̂X ,
the estimated biomass concentration ĈX can be also determined using the relation:

dĈX

dt
= r̂X . (10.9)

In this study, Euler integration scheme is used to solve (10.9), since the sampling
time is small in comparison to the system dynamics. Indeed, the sampling time is
chosen about 10 min since the bioprocess dynamics is very slow (characteristic time
about hours) and the response time of oxygen sensor is less than 1 min.

10.2.4 Overall Photosynthetic Growth Model

The model of the considered system is made of an ordinary differential equation:

dCX

dt
= rX (CX , q0) (10.10)

where CX is the state variable and rX , the model dynamics, is given by (10.2),
(10.5), and (10.6). The control input is the incident light flux u = q0, and the output
is the estimated volumetric growth rate y = r̂X (from rO2 , the oxygen production
rate measurements, using (10.7)). The sampled output is available every 10 min (the
chosen sampling time is Ts = 10 min).

The considered model parameters were identified on experimental data in [12]
and [15]. They are reported in Table 10.1.

Table 10.1 Model parameters

Parameter Value Unit

Kinetic model Ea 172 m2 kg−1

Eb 870 m2 kg−1

b 8 · 10−4 –

Radiative model μ0 0.14 h−1

K I 120 µmol m−2 s−1

K I I 500 µmol m−2 s−1

μs 0.013 h−1

Oxygen model YO2/X 1.42 g O2/g biomass

KL a 0.9 h−1

C∗
O2

4.85 · 10−3 g L−1

PBRa geometry V 1.47 L

L 0.04 m
aPhotobioreactor
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The process of photoautotrophic growth of microalgae in photobioreactor is thus
very complex. The models used to represent the system evolution are strongly non-
linear, characterized by parametric and model uncertainties and usually time varying.

10.3 Lumostatic Operating Mode

Microalgae culture in artificially lighted photobioreactors are usually supplied by a
constant light flux. In this case, the incident light intensity is set at a high level, so
that the growth rate is maximized (by ensuring a high average light flux inside the
photobioreactor). However, at the early stage of the culture, when the cell concentra-
tion is low, there is a risk of photoinhibition (because of light excess). Consequently,
the bioprocess productivity decreases, and possibly, the lag phase is longer because
of cells’ stress. If a low level of light flux is applied during all the culture to prevent
photoinhibition phenomenon, the adverse effect occurs: with the growth of the cells,
light limitation increases, leading also to a decrease of the bioprocess productivity.

Figure 10.3 illustrates the evolution of spectral irradiance G inside the photobiore-
actor, for different cell concentrations. This reflects the evolution of light distribution
all along a batch (where the biomass concentration progressively increase). Notice
that based on (10.2), it exists a radiant light energy (called compensation point, Gc)
for which photosynthesis compensates the respiration (rX = 0). Based on this value,
the culture broth can be partitioned in two zones: one with positive growth (light
zone) and one with negative growth (dark zone).

It was shown in [23] that maximal productivity will be obtained when the light
intensity at the backside of the PBR equals Gc (i.e., no dark zone). However, this
condition could be obtained only at low biomass concentrations. At high biomass
concentrations, when the PBR is operated in batch mode, very high incident light
intensity is needed to achieve this goal.

0 0.2 0.4 0.6 0.8 1

G
 (

µm
ol

/m
2
/s

)

0

20

40

60

80

100

120

Gc

(2)

(5)

(4)

(3)

(1)

Dark zone increases with cell concentration

dark zone

light zone

Fig. 10.3 Light distribution inside the culture for different cell concentrations: (1) CX = 0.05 g/L,
(2) CX = 0.5 g/L, (3) CX = 1 g/L, (4) CX = 1.5 g/L, (5) CX = 2 g/L
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Recent studies aim at improving the batch culture by optimizing the light supply
so that the phenomena of photolimitation and photoinhibition are reduced, [3, 8, 14,
17]. It was concluded that an incremental light supply reduces energy consumption
compared to a conventionally operated PBR, for the same cell production. The light
intensity supply is adjusted continuously at an optimal level that depends on the cell
concentration, so that the cell growth is maximized. This culture strategy is called
the lumostatic operation mode or lumostat.

In the literature, the incident light intensity is usually chosen as the control input,
but several possibilities for the controlled outputs are proposed. The main approaches
involve the specific light uptake rate, [6, 19], (and its particular formulation named
light-to-microalgae ratio, [14]); and the cell growth rate, [3, 17]. In this study, these
two approaches will be investigated and compared (in Sects. 10.4 and 10.5).

10.3.1 Control of the Light-to-Microalgae Ratio

The specific light uptake rate, qe, represents the total amount of energy absorbed by
the culture divided by the total microalgae present in the culture. It can be defined as:

qe = (q0 − qL)

CX

A

V
(10.11)

where qL is the outgoing light energy.
In batch mode, the ratio A/V is constant. Its value is optimized by an appropriate

design of the PBR. Thus, the specific light uptake rate can be simplified to the
light-to-microalgae ratio (i.e., q0/CX , the only varying term in (10.11)). qL value is
neglected; indeed it becomes zero even at low biomass concentration (see Fig. 10.3).

In this study, we will assume that the optimal lumostatic operation of the culture
corresponds to maintaining the amount of absorbed light energy proportional to the
cell concentration. In other words, the light intensity is increased proportionally to
the cell concentration. This corresponds to maintaining the light-to-microalgae ratio
constant during the entire culture. The value of this variable should be optimized to
ensure high performance of the bioprocess. Indeed, if this ratio is too high, the light
intensity can reach quickly its upper bounds when cell concentration increases. On
the contrary, if its value is too low, lower cell concentration will be obtained, leading
to longer culture duration.

10.3.2 Lumostatic Versus Constant Light Operations

In this section, cultures operated in batch for constant light and lumostatic operation
modes (with constant light-to-microalgae ratio) are compared. The efficiency of light
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Table 10.2 Simulation
conditions

Parameter Value Unit

CX (t0) 0.02 g L−1

q0min 100 µmol m−2 s−1

q0max 800 µmol m−2 s−1

t f 150 h

utilization has been evaluated as the biomass yield on light energy, expressed as dry
weight of produced biomass per amount of photons absorbed:

YX/q0(t) =
(
CX − CX0

)
V

A
∫ t

0 q0dt
(10.12)

where CX 0 is the initial biomass concentration (concentration at initial time t0, after
inoculation).

A culture with conditions reported in Table 10.2 is studied. The photobioreactor
is assumed to be illuminated with a constant light flux of q0 = 800µmol m−2 s−1

during 150 h. The LED panel can deliver a varying light flux between q0min and
q0max. The lower bound, q0min, ensures to have a minimum level of light regardless
the operating conditions of the culture, to prevent photolimitation. The upper bound,
q0max, depends on the characteristics of the light source used in the experimental
setup. The model parameters used for the simulation are reported in Table 10.1.

For this culture, an incremental light intensity is applied to reach q0 = 800
µmol m−2 s−1 (here equal to the upper bound). To achieve this, the light flux
is increased by maintaining the light-to-microalgae ratio constant and equal to
R = 5845µmol m s−1 kg−1. This value is the solution of an optimization problem
where the criterion to be maximized is the cell concentration at the final time. This
optimization problem and its solution determination will be detailed in Sect. 10.4.1,
but it is used in this section to highlight the benefits of the lumostatic strategy. Here-
after, the ratio unit will be omitted to simplify notation.

Figure 10.4 illustrates the temporal evolution of the cell concentration, the bio-
mass yield on light energy, the specific growth rate (μ = rX/CX ), and the incident
light intensity for the two batch cultures. In the case of lumostatic operation mode,
the light flux is increased gradually from its minimum value until it reaches its upper
bound (at time tmax = 35.6 h). Then, the light intensity is maintained at its upper
bound. This strategy yields to a higher final cell concentration than the conventional
constant light culture (an increase of about 4.8 % at the final time), and higher bio-
mass per mole of supplied photon energy (up to 25 %). These results are summarized
in Table 10.3. In addition, the specific growth rate μ is higher at the early stage of the
culture for the lumostatic culture than the constant light one (see Fig. 10.4). How-
ever, once the light flux reaches its upper bound at time tmax, the growth rate becomes
lower than the conventional strategy. Indeed, from time tmax onwards, even if the two
cultures are similar (constant light cultures with the same incident light flux), the
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Table 10.3 Results with a constant light and a constant light-to-microalgae ratio strategies, tmax is
the time when the control input reaches its upper bound for the lumostatic culture

Strategy tmax (h) CX (tmax)

(g.L−1)

YCX |q0 (tmax)

(g.mol−1)

CX (t f )

(g.L−1)

YCX |q0 (t f )

(g.mol−1)

Constant light 0 0.08 0.03 1.81 0.16

Lumostatic 35.6 0.13 (62 %)a 0.10 (233 %)a 1.90 (4.9 %)a 0.20 (25 %)a

aVariation from constant light strategy to lumostatic strategy

cell concentrations are different (higher for the lumostatic culture). Consequently,
the growth rate of the lumostatic culture becomes lower than the one of the conven-
tional culture. Nevertheless, significant improvements are obtained with lumostatic
strategy, mainly in terms of yield use efficiency over the entire culture duration.

Lumostatic operation leads to better performances than conventional constant
light cultures. It is obvious that the superiority of the lumostatic mode is amplified
in the case of higher upper bound of q0.

As mentioned previously, the value of the light-to-microalgae ratio is a key para-
meter that conditions the bioprocess efficiency. In the following section, it will be
optimized so that the cell production is maximized and its efficiency is evaluated in
the case of model parameters’ uncertainties.
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10.4 Optimization of the Light-to-Microalgae Ratio

10.4.1 Offline Optimization of the Ratio

As highlighted in Sect. 10.3, the lumostatic cultivation mode leads to higher perfor-
mances in comparison to a constant incident light one. More specifically, the light-
to-microalgae ratio is maintained constant in order to increase the light availability
in the bulk. This section will focus on the optimization of the lumostatic mode by
controlling the light-to-microalgae ratio. In order to improve further the bioprocess
efficiency, the ratio is optimized so that the biomass concentration at the final time
is maximized. This light-to-microalgae ratio optimization is solved offline, based
on a model of the bioprocess. The derived optimization problem is a constrained
unidimensional one and can be expressed as:

max
R∈R+

CX (t f ) (10.13)

s. t.

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

q0(t) = RCX (t)

q0min ≤ q0(t) ≤ q0max

dCX (t)

dt
= rX (CX (t), q0(t)), CX (t0) = CX 0

with t ∈ [t0, t f ], t0 and t f are the initial and final times, respectively. CX and CX 0

are the biomass concentration and its initial value, respectively. The incident light
intensity, the control input of the bioprocess, is assumed to be bounded.

The formulation of the problem given in (10.13) helps calculating the optimal
ratio that maximizes the biomass growth, while ensuring that the light intensity
respects the bounds constraints. The optimization problem (10.13) could be further
transformed into an unconstrained one, by removing constraints on the light intensity
and to simply bound the control input during the model dynamics integration. Since
it is a unidimensional unconstrained maximization problem, it can be solved by
a Golden Section Search algorithm, [11]. The transformation of problem (10.13)
into an unconstrained optimization problem is possible because of the optimality
properties of the optimal solution of (10.13). Indeed, since the ratio is constant, the
light intensity temporal evolution will be proportional to the cell concentration one.
Consequently, the higher the cell concentration is, the higher the corresponding light
intensity will be, reminding that the optimal cell concentration trajectory has an
increasing behavior. The limitation on the light intensity (linked to the light panel
maximal capacity) limits the possible applied light intensity, so it can be reached at
an instant either previous to or after the final time, depending on the photoinhibition
phenomenon occurrence.

Once the solution of problem (10.13), denoted as Ropt , is determined, it is applied
online to the real system as depicted by Fig. 10.5. From the measurement of dissolved
oxygen concentration, the cell concentration is calculated as detailed in Sect. 10.2.3.
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Fig. 10.5 Bioprocess
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Then, at each instant time tk , the incident light intensity to be applied to the photo-
bioreactor is calculated online as follows:

q0(tk) =
⎧
⎨

⎩

q0min, if Ropt ĈX (tk) < q0min

q0max, if Ropt ĈX (tk) > q0max

Ropt ĈX (tk), otherwise
(10.14)

The light intensity q0(tk) is set piecewise constant over the time interval [tk, tk+1[:

q0(t) = q0(tk)∀t ∈ [tk, tk+1[. (10.15)

The control law is detailed by Algorithm 10.1.

Algorithm 10.1 Constant optimal ratio
1. Determine Ropt by solving Problem (10.13)
2. For each time index k:

a. Measure rO2 and calculate ĈX from (10.7) and (10.9)
b. Calculate q0 with (10.14) and apply it to the bioprocess with a zero-order hold
c. Go to step 2.

10.4.2 Online Optimization of the Ratio

In the previous section, the light-to-microalgae ratio is calculated offline, using a
model of the microalgae growth. However, when applied to the real photobioreactor,
the determined solution can be suboptimal because of model uncertainties. In order
to improve the lumostatic cultivation efficiency, an alternative approach consists in
optimizing online the ratio as depicted by Fig. 10.6.
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Fig. 10.6 Bioprocess
control with an online
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Thus, at each time index k, the ratio is determined by solving a problem similar to
(10.13), over the time interval [tk, t f ], and with the current state value as initialization:

maxR∈R+ CX (t f ) (10.16)

s. t. for t ∈ [tk, t f ]

⎧
⎪⎪⎨

⎪⎪⎩

q0(t) = RCX (t)

q0min ≤ q0(t) ≤ q0max

dCX (t)

dt
= rX (CX (t), q0(t)), CX (tk) = ĈX (tk).

Algorithm 10.2 Time-varying optimal ratio
1. For k = 0, apply q0 given by the offline optimization procedure (Sect.10.4.1)
2. For each time index k:

a. Measure rO2 and calculate ĈX from (10.7) and (10.9)
b. Update Ropt by solving Problem (10.16) over time interval [tk , t f ]
c. Calculate q0 with (10.14) and apply q0 to the bioprocess with a zero-order hold
d. Go to step 2.

As detailed in the above algorithm, this new approach induces solving an opti-
mization problem at each time step. Nevertheless, the computation burden is still
limited since this problem can be formulated as a unidimensional one (that could be
solved by a Golden Section Search algorithm, [11], as previously). In addition, in the
case of small model uncertainties, the optimal ratio is close to the value determined
offline (Sect. 10.4.1). The search interval can be then chosen according to the ratio
optimal value determined by the offline optimization procedure. Last, it should be
reminded that the sampling time for this application is quite large (about 10 min),
allowing solving, online, complex optimization problems.

The update of the optimal ratio value is performed at each time index. If the com-
putation burden becomes critical, the simplest way to carry out this control strategy
is to consider two sampling times: the ratio is updated with a large sampling time
(typically 1–2 h), whereas the light intensity is calculated with a small sampling time
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(e.g., 10 min), so that the growth of the cells is taken into consideration appropriately.
Indeed, to keep the ratio between the light intensity and the biomass concentration
approximatively constant, the light intensity should be increased frequently so that
it follows the exponential growth of microalgae. The use of a first-order hold for the
control input may improve further the results, but this solution is not adequate for
experimental implementation for this process.

Finally, it should be mentioned that the online optimization-based approach leads
to a time-varying light-to-microalgae ratio since its value is updated at each time
step. The ratio at each time index indirectly takes into account model mismatch
(from the actual biomass concentration). An improvement of the efficiency of this
control law could be to include an adaptive identification of the model, so that the
online optimization procedure uses an accurate up-to-date model of the bioprocess.

10.4.3 Simulation Results

In this section, the performances obtained by the two previously presented control
strategies are tested and compared in simulation. The simulation conditions are those
given by Table 10.2. The values of model parameters considered in this simulation
study are given by Table 10.1. The sampling time is chosen constant and equals
10 min in accordance with the probes constant time (Sect. 10.2.3). Measurements are
corrupted by a centered Gaussian white noise with standard deviation of 10 %. The
real system is assumed to have the same mathematical structure as the model, but
with different parameter values. In order to simplify the study, we will consider a
mismatch on the value of the specific growth rate μ0 only. Three cases are studied
hereafter (where μr

0 denotes the real maximal specific growth rate):

• Case a: a lower growth of microalgae than expected (μr
0 = 0.09 h−1)

• Case b: a higher growth than expected (μr
0 = 0.16 h−1)

• Case c: the growth is low at the early stage of the culture (corresponding to a
lag phase of the microalgae growth) and then becomes higher than expected at
the end of the culture (corresponding to an exponential phase of the microalgae
growth). This model of growth rate translates the adaptation of microorganisms
at the beginning of the culture (up to 2 days) to the cultivation conditions [14]. In
our case, the following specific growth rate was considered:

{
μr

0 = 0.09 h−1 if t0 ≤ t < 24 h
μr

0 = 0.16 h−1 if 24 h ≤ t ≤ t f .
(10.17)

The results obtained for these cases and for the two control strategies are given in
Figs. 10.7, 10.8, and 10.9. The control law that maintains a constant ratio optimized
offline (Sect. 10.4.1) is referred to as constant ratio (in dashed line), whereas the
controller where the ratio is updated at each time step (Sect. 10.4.2) is referred to
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Fig. 10.7 Simulation results of the control of the light-to-microalgae ratio (Case a)
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Fig. 10.8 Simulation results of the control of the light-to-microalgae ratio (Case b)

as optimized ratio (in full line). These figures compare the temporal evolution of
biomass concentration, yield, ratio, and light intensity obtained under controlled light
intensity with both control laws. These results are also summarized in Table 10.4.
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Fig. 10.9 Simulation results of the control of the light-to-microalgae ratio (Case c)

Table 10.4 Results with the control of the light-to-microalgae ratio (tmax is the time when the
control input reaches its upper bound) and variation of the results of online optimization compared
with the offline approach

Optimization
approach

tmax (h) CX (tmax)

(g.L−1)
YCX |q0 (tmax)

(g.mol−1)
CX (t f )

(g.L−1)
YCX |q0 (t f )

(g.mol−1 )

Case a Offline 63.6 0.13 0.05 0.88 0.10

Online 95.5 0.33 0.12 0.89 0.13

Variation +50 % +153 % +140 % 1 % +30 %

Case b Offline 30.1 0.13 0.21 2.11 0.21

Online 44.5 0.32 0.25 2.11 0.23

Variation +47 % +153 % +19 % <0.01 % +9.5 %

Case c Offline 42.8 0.13 0.09 1.99 0.22

Online 57.6 0.33 0.22 1.99 0.24

Variation +34 % +153 % +144 % <0.01 % +9 %

From Figs. 10.7, 10.8, and 10.9, it can be observed that the optimal ratio variation
can be divided into two phases:

• Phase 1: from the start of the cultivation until the time tmax when the control input
q0 reaches its upper bound q0max.

• Phase 2: from time t = tmax onwards. The control input is constant and equals its
upper bound (q0(t) = q0max).



10 Optimal Operation of a Lumostatic Microalgae Cultivation Process 227

In the first phase, the ratio is either constant (for the first control strategy), or time-
decreasing (when it is updated online), whereas its evolution is given by q0max/ĈX (t)
in the second phase.

The benefit of the control of the ratio is mainly present in the first phase since in
the second one, the ratio value is dictated by the cell growth. An improvement could
be to shorten the batch culture and to end it at time tmax instead of time t f . At the
end of the batch culture, either the microalgae can be harvested, or the bioprocess
operation switches to a continuous mode by applying a flow rate through the reactor
(fresh medium is continuously added and reactor fluid is continuously removed)
with fresh medium. In the latter case, microalgae or high-added value products can
be produced over long time periods.

From Table 10.4, it can be noticed that the online optimization of the ratio leads to
a higher biomass yield on light energy in all cases (up to 30 % over the entire culture
duration). The biomass production is slightly the same with both control strategies.

For the online optimization approach, the incident light irradiance reaches its
upper bound later in comparison to the constant ratio strategy (between 34 and 50 %
of increase of this duration). The ratio is indeed adjusted online by optimizing the
light absorption by microalgae. It can be observed that the best performances are
obtained in the case of overestimated growth rate (case a and early stage of case
c). The control strategy adapts the ratio to the real characteristics of microalgae
growth, avoiding photoinhibition by limiting light excess. On the contrary, when the
growth rate is underestimated (case b and last stage of case c), the control law takes
advantage of the microalgae higher growth rate to increase further the bioprocess
performance.

Remark: the lumostatic strategy (with a constant ratio) was compared to the con-
stant light strategy for these three cases of model parameter uncertainty, assessing
the superiority of the lumostatic approach, similarly to the results in the nominal case
in Sect. 10.3.2.

Controlling the light-to-microalgae ratio by updating its reference value online
leads to high performance of the cultivation process. It helps reducing the light
utilization by adjusting the light intensity depending on the real cell growth. The
implementation of this control strategy is quite simple, with a reduced computation
load even if it involves the solution of an optimization problem at each time index.

10.5 Predictive Control of Microalgae Growth

10.5.1 Control of the Growth Rate

Previously, the control strategy consists in optimizing the light-to-microalgae ratio
either offline or online. Another strategy consists in maintaining the growth rate at
an optimal value, using the incident light intensity as the control input.

In [17], this control problem was addressed by means of a feedforward controller.
The control strategy consists of two steps. First, the optimal average light intensity in



228 S. Tebbani et al.
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the photobioreactor that maximizes the growth rate is empirically determined via an
optimal search procedure using Brent’s method. Then, the incident light intensity is
generated from this optimal average light irradiance and from the measured biomass
concentration.

In this study, the knowledge of the growth model structure will be used to deter-
mine the optimal growth rate. Then, a controller will be designed to track this optimal
value.

As detailed in Sect. 10.2.2.2, the growth model considered in this study follows
a Haldane kinetics that takes into consideration the light limitation and inhibition
phenomena on the cell growth. In the case of this growth kinetics, the maximum
specific growth rate, μmax, is related to μ0 by relation (10.4).

The optimal growth rate, μopt , that can be achieved in the photobioreactor is then
obtained from this maximal value and by taking into account respiration phenomenon
(Sect. 10.2.2.2):

μopt = μmax − μs . (10.18)

The control strategy presented hereafter consists in maintaining the growth rate
at this optimal value, by appropriately adjusting the incident light intensity. The
controller structure is depicted by Fig. 10.10.

10.5.2 Predictive Control Strategy

Since the bioprocess model is nonlinear with respect to control and states variables,
a nonlinear model predictive controller (NMPC) is selected. The advantage of this
kind of control law is that it can be easily used for nonlinear systems, especially for
the tracking of a reference trajectory for system outputs. In addition, it can take into
account constraints on the control input and/or state trajectory. The principle of the
NMPC law is to create an anticipated effect, based on the prediction of the future
behavior of the system. The control inputs are derived from the minimization, online,
using this prediction, of an appropriate cost function under operating constraints,
[20]. The minimization of the tracking error over a moving horizon determines the
optimal sequence of the control inputs. Since microalgae growth dynamics is highly
nonlinear, the NMPC control strategy allows achieving high performances for the
bioprocess operation, [1, 24].
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This strategy is applied to the studied system where the criterion to be minimized
is the tracking error of growth rate μ, over the prediction interval of length N ; and the
control inputs are the incident light intensities over this interval. The optimization
problem to be solved at each time index k to determine the sequence of optimal
control inputs is expressed as:

min
Qk

N−1∑

j=0

(
μre f (tk+ j ) − μ(tk+ j )

)2 + λ
(
q0(tk+ j ) − q0(tk+ j−1)

)2

+ (
μre f (tN ) − μ(tN )

)2

s.t. q0min ≤ q0(tk+ j−1) ≤ q0max for j = 1 . . . N

(10.19)

with k the time index, N the prediction horizon length, μre f and μ are the reference
and real ratio, respectively, and λ is a weighting factor on the control variation. The
second term in the criterion (10.19) allows smoothing the control evolution. The last
term in the criterion, the so-called terminal cost, is added to guarantee stability of the
algorithm. Nevertheless, it should be pointed out that the stability is not a critical issue
in the case of this application. Indeed, the culture duration is fixed and the evolution of
the state variables is limited (it depends on the maximal growth capacity of the cells).
The prediction horizon length N and the weighting factor λ are tuning parameters of
the controller. Their choice is dictated by a trade-off between computation load and
the accuracy of the prediction of the future behavior of the system (and consequently
of the controller performance). In (10.19), Qk , the optimization variable, is the vector
of control inputs over the prediction horizon, defined as:

Qk = (q0(tk), . . . , q0(tk+N−1)). (10.20)

The control inputs are set piecewise constant over each interval [tk+ j , tk+ j−1[, j =
0 . . . N , similarly to (10.15). The criterion (10.19) involves the prediction of the
growth rate μ(tk+ j ), derived from the growth model (10.2):

μ(tk+ j ) = rX (CX (tk+ j ), q0(tk+ j ))

CX (tk+ j )
. (10.21)

The prediction of biomass concentrations CX (tk+ j ) is obtained by the integration
of dynamics (10.1), starting from ĈX (tk) and applying the control sequence Qk . The
global volumetric growth rate rX in (10.21) is given by model (10.2).

The reference value of the growth rate, μre f , is set equal to μopt (defined by
(10.18)). However, because of model mismatch between the real system and the
prediction model, a tracking error will be induced. A simple way to reduce this error
consists in correcting the reference value by considering the error between predicted
and real value at the current time index k:

μre f (tk+ j ) = μopt +
(

rX (ĈX (tk), q0(tk))

ĈX (tk)
− r̂X (tk)

ĈX (tk)

)

, j = 1 . . . N (10.22)
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where r̂X (tk) and ĈX (tk) are measured global volumetric growth rate and measured
cell concentration, respectively (from measurement of rO2 as detailed in Sect. 10.2.3),
rX is given by (10.2).

The optimization problem (10.19) is solved at each time index using the deter-
mined control inputs sequence at the previous time step as initial guess. The first
control input of the optimal sequence is applied until the next time index, as per the
moving horizon principle. This optimization problem could be solved either by a
Sequential Quadratic Programming technique [11] or by an interior-reflective New-
ton method [7]. The latter approach is the most suitable since the problem (10.19) is
a nonlinear least-squares problem with only bounds constraints on the optimization
variables (no nonlinear constraints on the optimization variables). The controller
algorithm is summarized by Algorithm 10.3.

Algorithm 10.3 Predictive control of the specific growth rate
1. At initial time t0, apply q0(t0) = q0min with a zero-order hold
2. For each time index k:

a. Measure rO2 and determine r̂X and ĈX from (10.7) and (10.9)
b. Update μre f with (10.22)
c. Solve Problem (10.19) and determine the optimal sequence Q∗

k
d. Apply the first value of the optimal sequence Q∗

k to the bioprocess and to the
model, with a zero-order hold

e. Go to step 2.

10.5.3 Simulation Results

The performance of the predictive controller to track the optimal value of the spe-
cific growth rate is tested in simulation, for the same case study as in Sect. 10.4.3
(case a for an underestimated growth, case b for overestimated growth, and case c for
varying growth rate). The predictive controller performance is compared to the one
obtained with application of an online optimized ratio (presented in Sect. 10.4.2). The
same simulation conditions as in Sect. 10.4.3 are considered. The prediction horizon
was chosen equal to 1 h (N = 6) and the weighting factor λ was fixed to normalize the
two terms in the criterion (10.19) and to give the tracking error more importance than
the smoothing of the control evolution. The results presented hereafter are obtained
with λ = 0.1μre f . For the prediction model, the optimal specific growth rate given by
(10.18) equals 0.057 h−1. The predictive controller will regulate the specific growth
rate of the microalgae to this value. It should be mentioned that the real optimal spe-
cific growth rates for the mismatched models are 0.032 and 0.067 h−1 for case a and
case b, respectively. Figures 10.11, 10.12, and 10.13 illustrate the temporal evolution
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Fig. 10.11 Simulation results of the control of the growth rate (Case a)
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Fig. 10.12 Simulation results of the control of the growth rate (Case b)

of the biomass concentration, the biomass yield on light energy, the specific growth
rate, and the incident light energy, obtained with the application of the predictive
controller and of the online optimized ratio strategy. These results are summarized
in Table 10.5.
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Fig. 10.13 Simulation results of the control of the growth rate (Case c)

Table 10.5 Results with the control of the growth rate (tmax is the time when the control input
reaches its upper bound) and comparison to the results with the control of the ratio

Controlled
output

tmax (h) CX (tmax)

(g.L−1)
YCX |q0 (tmax)

(g.mol−1)
CX (t f )

(g.L−1)
YCX |q0 (t f )

(g.mol−1 )

Case a Ratio 95.5 0.33 0.12 0.89 0.13

μ 89.5 0.33 0.1 0.93 0.12

variation −6.2 % −0.9 % −16 % +4.5 % −7.6 %

Case b Ratio 44.5 0.32 0.25 2.11 0.23

μ 50 0.37 0.36 2.08 0.25

variation +12 % +15 % +44 % −1.5 % +8.7 %

Case c Ratio 57.6 0.33 0.22 1.99 0.24

μ 60.5 0.36 0.24 1.98 0.25

variation +5 % +9 % +9 % −0.5 % 4 %

From the above-mentioned figures, it can be observed that the growth rate evolu-
tion can be divided into two phases:

• Phase 1: from the start of the cultivation until the time tmax when the control input
q0 reaches its upper bound q0max. In this phase the growth rate is quasi-constant.

• Phase 2: from time t = tmax onwards. The control input equals its upper bound
(q0(t) = q0max) and consequently the growth rate decreases. Indeed, since the cell
concentration increases with time, the light availability inside the reactor decreases,
leading to a decrease in the growth rate.
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In the case of an underestimated growth (case a, Fig. 10.11), the predictive con-
troller regulates μ at a lower value than expected. Indeed, in this case, the maximal
specific growth rate that can be reached by the microalgae equals 0.032 h−1. Thus,
the controller maintains the system at its optimal growth capacity, leading to a higher
biomass growth than the one obtained by an online optimized ratio. Nevertheless,
this increase of the biomass growth induces an increase of the applied light intensity,
and thus to a decrease of the yield (of −7.6 % at the final time), in comparison to the
results obtained with the control of the ratio.

On the contrary, when the optimal growth rate is attainable, the predictive con-
troller succeed to regulate the biomass growth rate to the desired value (case b,
Fig. 10.12). In this case, the yield is higher than the one obtained with the control
of the ratio, with a slight decrease of the biomass growth. The bioprocess is not
operated at its optimal capacity (in this case, the real maximal specific growth rate
equals 0.067 h−1), but the global performance is good (an increase of about 44 % of
the yield at tmax in comparison to the ratio control approach).

In the last case (case c, Fig. 10.13), the predictive controller regulates the growth
rate either at a lower level than the reference when the latter is not attainable (early
stage of the culture), or to the desired level when the real optimal value is higher
than expected. The yield increases up to 9 % in comparison to the control of the ratio
approach at time tmax (Table 10.5).

Globally, the predictive strategy improves the performance of the microalgae
cultivation in comparison to the control of the ratio. Nevertheless, it suffers from a
higher sensitivity to the model accuracy than the previous method, more particularly
to the value of the maximal growth rate. An effort for the determination of the real
maximal growth rate of the microalgae is required, either prior to the batch culture
[17], or by an online identification of the model parameters.

10.6 Conclusion

The optimization of the batch cultivation of microalgae was considered, by focusing
the study on the lumostatic operation mode. In this mode, the light intensity is con-
trolled so that the cell growth and the light energy absorption are maximized. It yields
to higher performances than the classical operation at constant incident light intensity
(up to 25 % of increase of the yield and about 5 % of cell concentration ate the final
time in simulation for a Chlamydomonas reinhardtii culture). In order to improve
further the lumostatic mode performance, two optimization-based approaches were
proposed. First, the control of the light-to-microalgae ratio was developed. In this
case, the incident light intensity is increased following the cell growth. The online
optimization of the ratio leads to at least 9 % of increase of the biomass production.
In the second approach, a predictive controller is proposed to regulate the specific
growth rate to its optimal value. The performance of the lumostatic mode is improved
in comparison to the online optimized ratio strategy. Nevertheless, simulations high-
lighted the sensitivity of this approach to the model accuracy. This strategy should
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be further investigated to improve its performances. From the simulation study, the
control of the ratio presents the best compromise between performance, computation
load, and robusteness with respect to model mismatch. These strategies’ efficiency
should be demonstrated through experimental implementation so that their perfor-
mances are assessed when applied to a real bioprocess.
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Chapter 11
Bioprocesses Parameter Estimation
by Heuristic Optimization Techniques

Dorin Şendrescu, Sihem Tebbani and Dan Selişteanu

Abstract This work presents a bioprocesses parameter estimation method based
on heuristic optimization approaches. The identification problem is formulated as a
multimodal numerical optimization problem in a high-dimensional space. Then, the
optimization problem is split in simpler sub-problems that require fewer computa-
tional resources. The main results are obtained using genetic algorithms (GA) and
particle swarm optimization (PSO) methods. One applies three global-search meta-
heuristic algorithms for numerical optimization: two variants of PSO and one type of
genetic algorithm. The estimation procedures are applied for identification of a bac-
terial growthmodel associatedwith the enzymatic catalysis where reaction kinetics is
described by Monod and Haldane models. The performances of the proposed meth-
ods are analysed by numerical simulations. The simulation results indicate that the
proposed metaheuristic algorithms are effective and efficient, and demonstrate that
the applied techniques exhibit a significant performance improvement over classical
optimization methods.

Keywords Parameter estimation · Biotechnology · Particle swarm optimization ·
Genetic algorithms

D. Şendrescu (B) · D. Selişteanu
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e-mail: dansel@automation.ucv.ro

S. Tebbani
Laboratory of Signals and Systems, CentraleSupélec-CNRS-Université Paris-Sud, Université
Paris-Saclay, Control Department, 3 rue Joliot-Curie, F91192 Gif-sur-Yvette, France
e-mail: sihem.tebbani@centralesupelec.fr

© Springer International Publishing Switzerland 2015
S. Olaru et al. (eds.), Developments in Model-Based Optimization and Control,
Lecture Notes in Control and Information Sciences 464,
DOI 10.1007/978-3-319-26687-9_11

237
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11.1 Introduction

The biotechnology is one of the fields that over the last decades has a high devel-
opment. Biotechnology applications can be found especially in agriculture, in food
industry, in medicine and pharmaceutical processes, in waste treatment processes,
etc. Due to its advantages, the control of industrial bioprocesses is an important
practical problem attracting wide attention. A frequent and important challenge in
control of such living processes is finding an accurate model of the system, [2]. The
bioprocesses are highly nonlinear and their kinetic parameters are usually badly or
inadequately known. This problem becomes of great importance in complex sys-
tems where critical oscillations (functioning) and instability of the process must be
avoided. Parameters characterizing the internal behaviour of biotechnological sys-
tems are usually not directly accessible tomeasurement and their attainment is usually
approached indirectly as a parameter estimation problem, [3]. In this work a dynamic
model describing the internal structure of a biotechnological system is formulated
and a parameter estimation method based on heuristic optimization algorithms is
designed.

In recent years, a progress has been made in the area of continuous-time system
identification, [14, 22]. Even if most physical systems are naturally continuous, a
much more attention has been paid to parameter estimation of discrete-time systems,
mainly because they are better suited for numerical implementations. Continuous-
time identification makes possible a more direct link to the physical properties and
operation of the underlying systems and the direct estimation of physical parameters
which have a clear significance. The most common approach for parameter estima-
tion of linear or nonlinear systems is the use of prediction error identificationmethods
(PEM), [15]. In this category falls the well-known least squares methods or the max-
imum likelihood methods. In this approach, identification consists of minimization
of a scalar-valued function of the model parameters. In general, this function cannot
be minimized by analytical methods so, the solution has to be found by iterative,
numerical techniques. In classical approach the most used are the quasi-Newton
methods and interior point algorithms. The main drawback of these nonlinear para-
meter optimization techniques is that they are often unreliable, e.g., they give no
guarantee of converging to a global minimum. Indeed, they converge to a local min-
imum that depends on the algorithm initialization. The increasing computational
power of personal computers and microcontrollers allowed the implementation of
several optimization algorithms inspired from natural phenomena. Examples of these
algorithms include the simulated annealing, [13], genetics algorithms (GA), [10], or
ant colony optimization, [5], algorithms. Particle swarm optimization (PSO), [12],
is among these nature inspired algorithms and it is inspired by the ability of birds
flocking to find food that they have no previous knowledge of its location. Every
member of the swarm is affected by its own experience and its neighbours’ experi-
ences. Although the idea behind PSO is simple and can be implemented by two lines
of programming code, the emergent behaviour is complex and hard to completely
characterize, [11]. GAs are inspired on principles of natural selection and genet-
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ics. GAs encode the decision variables in the sets of solutions called chromosomes,
formed by different parts (genes) with some values (alleles). Once a problem is
encoded in chromosomes and a fitness measure for selecting good solutions (usually
the objective function value) has been chosen, the population can start to evolve.

The most important approaches (based on heuristic optimization) for the yield
and kinetic coefficients estimation of biotechnological systems make use of the state
transformations based on the general structure, [3]. The main drawback of these
methods is the computation time which increase exponentially with the population
size, [20, 23]. In this paper we propose a multi-step identification method based
on particle swarm optimization and genetic algorithms techniques for these classes
of biotechnological systems considering that the unknown parameters can appear
in rational relations with measured variables. The principle of multi-step method is
to split general estimation problem in several simpler sub-problems that require a
reduced population size for optimization.

This chapter is an extended work of the research achieved in [19]. The chapter is
organized in the followingway. The nonlinear dynamical model of a bacterial growth
process associated with the enzymatic catalysis is given in Sect. 11.2. Section11.3
presents the identification method using the particle swarm optimization and genetic
algorithms techniques. Some numerical simulations are presented in Sect. 11.4, and
conclusions in Sect. 11.5.

11.2 Nonlinear Dynamical Model of Bacterial Growth
Bioprocesses

A process that takes place in a bioreactor can be described as a set of m biochemical
reactions involving n components (with n ≥ m). The global dynamics can be rep-
resented by the following dynamical state-space model [2], assuming a well-stirred
bioreactor:

dξ

dt
= K · Φ(ξ, t) − Dξ + F − Q (11.1)

where ξ ∈ R
n×1 is the components concentrations, K is a matrix containing the yield

coefficients, Φ is the reaction rate vector, D is the dilution rate (medium feed flow
rate over effective volume), F the vector of feeding rates and Q the vector of rates
of removal of the components.

Thismodel describes the behaviour of an entire class of biotechnological processes
and is referred to as the general dynamical state-space model of this class of bio-
processes, [11]. In (11.1), the term K · Φ(ξ, t) is the rate of consumption and/or
production of the components in the reactor, i.e., the reaction kinetics and the term
−Dξ + F − Q represents the exchangewith the environment. The strongly nonlinear
character of the model (11.1) is given by the reaction kinetics. In many situations, the
yield coefficients, the structure and the parameters of the reaction rates are partially
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known or unknown.Many of the evolved controlmethods for these kind of systems—
like sliding mode control, [18], robust or adaptive control, [1]—are based on good
initial estimates of the yield and kinetic parameters.

The identification scheme proposed in this chapter is illustrated using bacterial
growth model associated with the enzymatic catalysis. The simplified reaction
scheme is given by two reactions, [18, 19]:

S + O
μ1−→ X + P1, (11.2)

S + X
μ2−→ X + P2. (11.3)

In the reactions (11.2)–(11.3), S is the substrate, X the biomass, O is the dissolved
oxygen, P1 and P2 are the biosynthesis products and μ1 and μ2 are the specific
growth rates and are function of the concentrations of the components. The simplified
dynamical model of the bioprocess with the reaction schemes (11.2)–(11.3) can be
obtained by using the mass balance of the components, considering that the reaction
takes place in a fed-batch bioreactor:

dS

dt
= (−k1μ1(S, O, X, P1, P2) − k2μ2(S, O, X, P1, P2))X − DS + F1 (11.4)

dO

dt
= −k3μ1(S, O, X, P1, P2)X − DO + F2 (11.5)

dX

dt
= μ1(S, O, X, P1, P2)X − DX (11.6)

dP1

dt
= k4μ1(S, O, X, P1, P2)X − DP1 (11.7)

dP2

dt
= μ2(S, O, X, P1, P2)X − DP2. (11.8)

The dynamical model is expressed as a set of differential equations, in terms of
the concentrations of components. In (11.4)–(11.8), all concentrations are in g/L,
ki, i = 1 . . . 4 are the positive yield coefficients (in g/g), F1 is the input feed rate
(in g/L/h) and F1 = D ∗ Sin with D the so-called dilution rate (in h−1) and Sin the
concentration of influent substrate (in g/L) and F2 the oxygen supply flow (in g/L/h).
The model (11.4)–(11.8) can be expressed in the matrix form:

⎡

⎢⎢⎢⎢
⎣

Ṡ
Ȯ
Ẋ
Ṗ1

Ṗ2

⎤

⎥⎥⎥⎥
⎦

=

⎡

⎢⎢⎢⎢
⎣

−k1 −k2
−k3 0
1 0
k4 0
0 1

⎤

⎥⎥⎥⎥
⎦

[
μ1(S, O, X, P1, P2)X
μ2(S, O, X, P1, P2)X

]
− D

⎡

⎢⎢⎢⎢
⎣

S
O
X
P1

P2

⎤

⎥⎥⎥⎥
⎦

+

⎡

⎢⎢⎢⎢
⎣

F1

F2

0
0
0

⎤

⎥⎥⎥⎥
⎦

. (11.9)

The next notations will be used: the state vector is ξ = [S O X P1 P2]T =
[ξ1 ξ2 ξ3 ξ4 ξ5 ]T , the vector of reaction rates (the reaction kinetics) is Φ(ξ) =
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[μ1(ξ)X μ2(ξ)X ]T , K is the matrix of yield coefficients, F = [ F1 F2 0 0 0 ]T is the
vector of feeding rates. With these notations, the system can be compactly written in
the form (11.1).

Themost difficult task for the constructionof the dynamicalmodel is themodelling
of the reaction kinetics. The form of kinetics is complex, nonlinear and inmany cases
unknown. In our study one considers that reaction rates are given by the Monod law

μ1(ξ) = μ∗
1

S

KM1 + S
, (11.10)

and the Haldane kinetic model

μ2(ξ) = μ∗
2

S

KM2 + S + S2/Ki
(11.11)

where KM1 , KM2 are Michaelis–Menten constants (in g/L), μ∗
1
, μ∗

2 represent maxi-
mum specific growth rates (in h−1) and Ki is the inhibition constant (in g/L) .

For simplicity, we shall denote the plant parameters by the vector:

θ = [ θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8 θ9 ]T (11.12)

where:

θ1 = k1; θ2 = k2; θ3 = k3; θ4 = k4;
θ5 = μ∗

1; θ6 = μ∗
2; θ7 = KM1; θ8 = KM2; θ9 = Ki.

(11.13)

Because the dilution rate D can be externally modified, it will be considered as
the first component of the input vector

u = [
u1 u2 u3

]T
. (11.14)

The other two components of u are Sin and F2 so,

u1 = D; u2 = Sin; u3 = F2. (11.15)

Remark 11.1 In the following, one considers that the full system state is measurable.

11.3 Parameter Estimation using Heuristic Optimization

At the beginning of parameter estimation, the input and output data are known and the
real system parameters are assumed as unknown. The full state vector is considered to
be measured and the objective is to determine the values of model parameters from
these data. The identification problem is formulated in terms of an optimization
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problem in which the error between an actual physical measured response of the
system and the simulated response of a parameterized model is minimized. The
estimation of the system parameters is achieved as a result of minimizing the error
function by the heuristic algorithm.

11.3.1 Problem Statement

Consider the following n-dimensional nonlinear system:

dξ(t)

dt
= f (ξ, t, θ) (11.16)

where

ξ ∈ R
n is the state vector,

θ ∈ R
m is the unknown parameters vector,

f is a given nonlinear vector function.

To estimate the unknown parameters in (11.16), a parameter identification system
is defined as follows:

dξ̂(t)

dt
= f (ξ̂, t, θ̂) (11.17)

where

ξ̂ ∈ R
n is the estimated state vector,

θ̂ ∈ R
m is the estimated parameters vector.

The objective function defined as the mean squared errors between real and esti-
mated responses for a set of samples is considered as fitness of estimated model
parameters:

W = 1

N + M

M∑

j=1

N∑

k=1

(ξk
j − ξ̂k

j )
2

(11.18)

s.t. relation (17) is fulfilled.

where M is the number of measurable states, N is the data length used for parameter
identification, whereas ξk

j and ξ̂k
j are the real and estimated values of state j at time

k, respectively.
This objective function is difficult to minimize because there are many local

minima, due for example to measurement noises, and the global minimum has a very
narrow domain of attraction. Our goal is to determine the system parameters, using
heuristic optimization algorithms in such a way that the value of W is minimized,
approaching zero as much as possible. Because this optimization problem requires
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great computational resources, amulti-step approachwas used (that will be presented
in Sect. 11.3.4).

Remark 11.2 In the following, one analyses the noise-free case and the case when
an additive measurement noise is included in model (11.16).

11.3.2 Overview of Basic PSO Algorithms

PSO algorithms have gained much attention and wide applications in different fields
due to their effectiveness in addressing difficult optimization issues, as well as sim-
plicity of implementation and ability to fast converge to a reasonably good solution.
PSO is a population-based heuristic global optimization technique, first introduced
by Kennedy and Eberhart, [12], and referred to as a swarm intelligence technique. It
is motivated from the simulation of social behaviour of animals such as bird flocking,
fish schooling and swarm. In this algorithm, the population is called a swarm, and
the trajectory of each particle in the search space is controlled through the medium
of a term called “velocity”, according to its own flying experience and swarm experi-
ence in the search space. Mathematical description of basic PSO and some important
variants is presented in the following.

Candidate solutions of a population called particles coexist and evolve simul-
taneously based on knowledge sharing with neighbouring particles. Each parti-
cle represents a potential solution to the optimization problem and it has a fit-
ness value decided by optimal function. Supposing search space is D-dimensional,
each individual is treated as a particle in the D-dimensional search space. The
position and rate of position change for ith particle can be represented by D-
dimensional vector, xi = (xi1, xi2, . . . , xiD) and vi = (vi1, vi2, . . . , viD), respectively.
The best position previously visited by the ith particle is recorded and represented as
pi = (pi1, pi2, . . . , piD), called pbest. The swarm best position previously visited by
all the particles in the population is represented as pg = (pg1, pg2, . . . , pgD), called
gbest. Then particles search their best position, which are guided by swarm infor-
mation pg and their own information pi. Each particle modifies its velocity to find a
better solution (position) by applying its own flying experience (i.e., memory of the
best position found in earlier flights) and the experience of neighbouring particles
(i.e., the best solution found by the population). Each particle position is evaluated by
using fitness function and updates its position and velocity according to the following
equations:

vk+1
i = ω · vk

i + c1r1(pbestk
i − xk

i ) + c2r2(gbestk
i − xk

i )

xk+1
i = xk

i + vk+1
i

(11.19)

where k is iteration number, ω is inertia weight, c1 and c2 are two acceleration
coefficients regulating the relative velocity towards local and global best position, r1
and r2 are two random numbers from interval [0, 1]. Many effects have been made
over the last decade to determinate the inertia weight. Various studies have shown
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that under certain conditions convergence is guaranteed to a stable equilibrium point.
These conditions include:

ω >
c1 + c2

2
− 1 and 0 < ω < 1. (11.20)

The technique originally proposed was to bound velocities so that each component
of vi is kept within the range [−Vmax,+Vmax].

Unfortunately, this simple form of PSO suffers from the premature convergence
problem, which is particularly true in complex problems since the interacted infor-
mation among particles in PSO is too simple to encourage a global search. Many
efforts have been made to avoid the premature convergence. One solution is the use
of a constriction factor to ensure convergence of the PSO, introduced in [4]. Thus,
the expression for velocity has been modified as:

vk+1
i = h · [vk

i + c1r1(pbestk
i − xk

i ) + c2r2(gbestk
i − xk

i )]
xk+1

i = xk
i + vk+1

i
(11.21)

where h represents the constriction factor and is defined as

h = 2
∣∣∣2 − α − √

α2 − 4α
∣∣∣

(11.22)

α = c1 + c2 > 4. (11.23)

In this variant of the PSO algorithm, h controls the magnitude of the particle
velocity and can be seen as a dampening factor. It provides the algorithm with two
important features, [6]. First, it usually leads to faster convergence than standard
PSO. Second, the swarm maintains the ability to perform wide movements in the
search space. The constriction PSO has the potential to avoid being trapped in local
optima while possessing a fast convergence.

It is shown that a larger inertia weight tends to facilitate the global exploration and
a smaller inertia weight achieves the local exploration to fine-tune the current search
area. The best performance could be obtained by initially setting ω to some rela-
tively high value (e.g., 0.9), which corresponds to a system where particles perform
extensive exploration, and gradually reducing ω to a much lower value (e.g., 0.4),
where the system would be more dissipative and exploitative and would be better at
homing into local optima. In [21], a linearly decreased inertia weight ω over time is
proposed, where ω is given by the following equation:

ω = (ωi − ωf ) · kmax − k

kmax
+ ωf (11.24)

where ωi, ωf are starting and final values of inertia weight, respectively; kmax is the
maximum number of the iteration and k is the current iteration number. It is generally
taken that starting value ωi = 0.9 and final value ωf = 0.4 .
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On the other hand, in [17] was introduced a PSO with time-varying acceleration
coefficients. The improvement has the same motivation and the similar techniques as
the adaptation of inertia weight. In this case, the cognitive coefficient c1 is decreased
linearly and the social coefficient c2 is increased linearly over time as follows:

c1 = (c1f − c1i) · kmax − k

kmax
+ c1i (11.25)

c2 = (c2f − c2i) · kmax − k

kmax
+ c2i (11.26)

where c1i and c2i are the initial values of the acceleration coefficients c1 and c2; c1f and
c2f are the final values of the acceleration coefficients c1 and c2, respectively. Usually,
c1i = 2.5; c2i = 0.5; c1f = 0.5 and c2f = 2.5. Considering known all the states of the
nonlinear system (11.16) at the sampling moments k ∗ TS (TS = sampling period),
the PSO algorithm has the following steps:

Algorithm 11.1 PSO algorithm
1. Initialize a population of particles with random positions and velocities on D dimensions in

search space.
2. For each particle, evaluate the desired optimization fitness function (11.18) in D variables.
3. Compare particle’s fitness evaluation with its pbest. If the current value is better than pbest,

then set pbest equal to the current value xi in D-dimensional space.
4. Identify the particle in swarm with the best success so far, and assign its index to the variable

gbest.
5. Change the velocity and position of the particle according to the equations (11.21).
6. if a criterion is met (usually a sufficiently good fitness or a maximum number of iterations)

then Stop;
else

go to Step 2.

11.3.3 Overview of Genetic Algorithms

Implementation of a genetic algorithm (GA) begins with a population of random
chromosomes. The algorithm then evaluates these structures and allocates repro-
ductive opportunities such that chromosomes which represent a better solution to
the problem are given more chance to “reproduce”. In selecting the best candidates,
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new fitter offspring are produced and reinserted, and the less fit removed. In using
operators such as crossover and mutation the chromosomes exchange their charac-
teristics. The suitability of a solution is typically defined with respect to the current
population. GA techniques have a solid theoretical foundation, based on the Schema
Theorem. GAs are often viewed as function optimizers, although the range of prob-
lems to which they have been applied is broad, including: pattern discovery, signal
processing and training neural networks, [9, 16]. To illustrate the working process
of genetic algorithm, the steps to realize a basic GA are listed:

Algorithm 11.2 GA algorithm
1. Represent the problem variable domain as a chromosome of fixed length; choose the size of

the chromosome population N, the crossover probability Pc and the mutation probability Pm.
2. Define a fitness function to measure the performance of an individual chromosome in the

problem domain. The fitness function establishes the basis for selecting chromosomes that will
be mated during reproduction.

3. Randomly generate an initial population of size N.
4. Calculate the fitness of each individual chromosome.
5. Select a pair of chromosomes for mating from the current population. Parent chromosomes

are selected with a probability related to their fitness. High fit chromosomes have a higher
probability of being selected for mating than less fit chromosomes.

6. Create a pair of offspring chromosomes by applying the genetic operators.
7. Place the created offspring chromosomes in the new population.
8. Repeat Step 5 until the size of the new population equals that of initial

population, N.
9. Replace the initial (parent) chromosome population with the new (offspring) population.
10. Go to Step 4, and repeat the process until the termination criterion is satisfied.

AGAis an iterative process. Each iteration is called a generation.A typical number
of generations for a simple GA can range from 50 to over 500. A common practice is
to terminate a GA after a specified number of generations and then examine the best
chromosomes in the population. If no satisfactory solution is found, then the GA is
restarted, [7, 8]. Indeed, multiple runs of the optimization algorithm are performed
to get a good estimation of its performance. Depending on this performance, tuning
methods can be applied to obtain a good behaviour of the algorithm, [8].
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11.3.4 Implementation of Multi-step Parameter Estimation

In the following, amulti-step parameter estimation version is proposed and anoptimal
set of yield and kinetic parameter values of the bacterial growth process is obtained. In
order to implement a heuristic optimization-based technique, the model of bacterial
growth process obtained from the macroreactions schemes is used, translated into
the parameter identification system framework represented in (11.9).

To facilitate the application of the proposed parameter estimation strategy, the
time derivatives of the states from model (11.9) must be reconstructed. Because the
measured data are usually very few, an interpolation method is necessary to find
intermediate values of the states, which are actually the biological parameters of the
process, i.e., the concentrations of reactants. Such situations with a small number
of experimental measurements are typical for many bioprocesses. Indeed, there is
a lack for reliable and non-expensive sensors for this kind of systems. Measure-
ments are usually performed offline, with a large sampling time (for example, the
determination of the concentration of biomass is usually performed by cell counting
with a microscope). Ideally speaking, the online measurements (in each sampling
moment) for each concentration are necessary. However, these online measurements
are achieved with expensive instrumentation, or there are no such fast sensors for
some concentrations. Thus, the infrequent offline measurements are preferred. To
facilitate the achievement of an accurate estimation of model parameters, we need
the interpolation of these measured data, which allows us to obtain the unavailable
data between adjacent measurement points (i.e., to estimate the unavailable data
needed to calculate model predictions between these measurement points).

Remark 11.3 Frommathematical point of view, a discussion about the interpolation
technique can be done. Many authors use the linear interpolation, with advantages
related to rapidity and simple implementation. However, the linear interpolation is
not very precise. Another disadvantage is that the interpolant is not differentiable at
the points where the value of the function is known. Therefore, we propose a cubic
interpolation method that is the simplest method that offers true continuity between
the measured data. A cubic Hermite spline or cubic Hermite interpolator is a spline
where each piece is a third-degree polynomial specified in Hermite form: that is, by
its values and first derivatives at the end points of the corresponding domain interval.
Cubic Hermite splines are typically used for interpolation of numeric data specified
at given argument values t1, t2, . . . , tn to obtain a smooth continuous function. The
Hermite formula is applied to each interval (tk, tk+1) separately. The resulting spline
will be continuous and will have continuous first derivative.

The time derivatives of the states are approximated using central differences:

dξ(tk)

dt
≈ ξ(tk + TS) − ξ(tk − TS)

2TS
(11.27)



248 D. Şendrescu et al.

Table 11.1 The sub-problems solved by using the multi-step approach

Sub-problem Estimated parameters Number of state equation

P1 μ∗
1, KM1 3

P2 μ∗
2, KM2, Ki 5

P3 k4 4

P4 k3 2

P5 k1, k2 1

where TS represents the sampling period. In this approximation, the error is pro-
portional with the sampling interval (a smaller sampling period will give a smaller
approximation error).

Because a 9-dimensional optimization problem (for parameters defined by (11.12)
and (11.13)) that must be solved for simultaneous estimation of all unknown para-
meters requires great computational resources, a multi-step approach was used. So,
the problem was split in five simpler problems that are solved sequentially until
all 9 parameters are found. These problems are denoted by P1, P2,. . ., P5 and the
corresponding resulted parameters are presented in Table 11.1. There are also pre-
sented the state equations involved in the corresponding sub-problem. For example,
the problem P1 corresponds to the third equation from system (11.4)–(11.8) (that
represents time evolution of the biomass) and only two parameters must be estimated
in this case: μ∗

1 and KM1. The heuristic optimization algorithm is used to minimize
the sum of the square errors between measured and estimated data:

WP1 =
N∑

k=1

(
ξ3(k · TS) − ξ̂3(k · TS)

)2
(11.28)

s.t. ξ̂3((k + 1) · TS) = ξ̂3(k · TS) + TS · μ∗
1 · ξ1(k · TS) · ξ3(k · TS)

KM1 + ξ1(k · TS)
. (11.29)

The main purpose of this decomposition in simpler problems is to speed up the
estimation procedure and a good performance is obtained if the number of parameters
that must be estimated in one sub-problem is as small as possible (in this case, a
small number of particles is necessary). The structure presented in Table 11.1 is the
simplest and is based on the assumption that full system state is measurable but other
combinations of sub-problems can be developed. For example, parameters estimated
in sub-problemP1 (that characterize the specific growth rateμ1) can be obtained from
any of the first four state equations, and the parameters estimated in sub-problem P2
(that characterize the specific growth rate μ2 ) can be obtained from state equations
(11.1) or (11.5).

Remark 11.4 Parameters estimated in sub-problems P1, P2 and P5, i.e., (μ∗
1, KM1 ,

μ∗
2, KM2 , Ki, k1, k2), can be obtained simultaneously from the first state equation

using a single sub-problem. In this case, it is not necessary that states 3 and 5 to be
measurable.
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11.4 Simulation Results

The efficacy of our approach is shown by numerical simulations on an interval of 30h.
The model given by relation (11.9) was integrated using a fourth-order Runge–Kutta
routine with a sampling period of 1min (TS =1 min) and with initial conditions:
IC = [6 2 1 0.06 0.008] g/L. The optimization algorithms were implemented on a
computer with Intel Core i5, 64-bit, 3.3 GHz processor.

The influence of sampling period, type of the optimization algorithm and of
noisy measurements is analysed. To compare statistical performances of the dif-
ferent approaches the empirical normalized mean square error (NMSE) was used,
that is defined as:

NMSE = 1

m

m∑

j=1

NMSE(θ̂j) (11.30)

with NMSE(θ̂j) =
(

θ̂j − θ∗
j

θ∗
j

)2

, where m is the number of estimated parameters,

θ̂j is the jth element of the estimated parameter vector, while the ‘∗’ superscript
denotes the true value of the parameter. The estimation method was tested using
three optimization algorithms (for a sampling period TS = 1min and noise free
measurements):

• Type 1: PSO algorithm based on relation (11.21) with h defined by relation (11.22)
c1 = c2 = 2.1;

• Type 2: PSO algorithm based on relation (11.19) with ω, c1, c2 defined by relation
(11.24) and (11.25) and ωi = 0.9, ωf = 0.4, c1i = 2.5, c2i = 0.5, c1f = 0.5, c2f =
2.5;

• Type 3: genetic algorithm.

The results are presented in Table11.2.
In order to study the sensitivity of the estimation method to the sampling period

of PSO algorithm (Type 1) the following sampling periods were used:

TS ∈ {1min, 10min, 30min}.

The results are presented in Table11.3.
The influence of noisy measurements (using also PSO algorithm—Type 1) was

analysed using a zero mean gaussian white noise with following signal-to-noise ratio
(SNR):

SNR = {50dB, 40dB, 30dB}.

The results of these simulations are presented in Table11.4. The simulations for
optimization algorithm were performed with a number of particles between 15 and
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Table 11.2 Influence of optimization algorithm type

Estimated coefficients

“Real value” Type of optimization algorithm

Type 1 Type 2 Type 3

θ1 1 1.0166 0.9288 1.0542

θ2 2 1.9486 2.2733 1.6852

θ3 1 0.9999 0.9949 1.0006

θ4 1.5 1.5000 1.5000 1.5027

θ5 1 1.0020 1.0555 0.9881

θ6 2 1.9370 1.9419 2.1539

θ7 1 1.0028 1.1559 0.9563

θ8 20 18.9822 19.5968 20.5016

θ9 10 9.3692 10.0865 9.5672

NMSE 0 9.45e-04 0.0012 0.0320

Table 11.3 Influence of the sampling period (Optimization algorithm—Type 1)

Estimated coefficients

“Real value” Sampling period

TS = 1min TS = 10min TS = 30min

θ1 1 1.0011 0.9846 1.0831

θ2 2 1.9980 2.1402 1.6398

θ3 1 1.0000 0.9993 1.0046

θ4 1.5 1.5000 1.4946 1.5045

θ5 1 0.9999 0.9961 0.9673

θ6 2 2.0237 1.9874 2.0709

θ7 1 0.9999 0.9959 0.8817

θ8 20 20.2339 20.7856 19.7722

θ9 10 9.9841 9.8054 11.0265

NMSE 0 3.13e-05 2.21e-04 0.003

100. All the presented results are obtained for a number of 30 particles. For a greater
number of particles the accuracy of the estimates was not better.

The parameter estimates are very good, results given in Tables11.2–11.4 showing
that the performance of the algorithm deteriorates in the following cases:

• at the increasing of sampling period;
• when ω, c1, c2 are kept constant;
• at high level of noise.

Also, the PSO algorithms lead to better results than GA.
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Table 11.4 Noise influence (Optimization algorithm—Type 1)

Estimated coefficients

“Real value” Noise level

SNR = 50dB SNR = 40dB SNR = 30dB

θ1 1 1.0821 0.9253 0.9666

θ2 2 1.5984 2.1694 2.0836

θ3 1 1.0041 0.9959 0.9923

θ4 1.5 1.5010 1.5010 1.4771

θ5 1 0.9866 1.0763 0.9854

θ6 2 2.0342 1.9723 1.7536

θ7 1 0.9564 1.2388 1.0069

θ8 20 20.1248 19.7956 17.6142

θ9 10 10.1156 11.0008 7.0000

NMSE 0 2.83e-04 0.0081 0.1364

Fig. 11.1 Convergence rate
for PSO algorithm in
sub-problem P1 case
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In Figs. 11.1 and 11.2 are presented the convergence rates for Type 1 (PSO) and
Type 3 (GA) algorithms for sub-problem P1 using a sampling period of 1min. The
algorithms have a good convergence rate, the optimization tolerance being achieved
after 20 iterations in PSO case and 40 iterations in GA case.

As was specified in Sect. 11.3.4, the main advantage of the multi-step approach is
the superior speed to estimate the parameters using the same optimization algorithm.
In Table11.5, a comparison between multi-step approach (called in the following
Method 1) and simultaneously estimation of all parameters (Method 2) is given.
The simulations were performed using a Type 1 algorithm (PSO with constriction
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Fig. 11.2 Convergence rate for GA algorithm in sub-problem P1 case

factor), noise-free case with sampling period TS = 1min. For solving optimization
sub-problems in Method 1 a number of 20 particles were used, and for Method 2,
80 particles were used.

Remark 11.5 As it can be seen in Table 11.5, Method 1 is five times faster than
Method 2. Also, the estimation results are slightly better in Method 1 case. These
can be explained by the fact that optimization problem in Method 2 is more complex
with many local minima.

Table 11.5 Influence of optimization algorithm type

Estimated coefficients

“Real value” Type of optimization algorithm

Method 1 Method 2

θ1 1 1.0011 1.0476

θ2 2 1.9979 1.6885

θ3 1 0.9999 0.9590

θ4 1.5 1.5000 1.4582

θ5 1 0.9999 0.9523

θ6 2 2.1323 2.0724

θ7 1 1.0000 1.0282

θ8 20 21.3394 20.2341

θ9 10 8.3762 11.1848

NMSE 0 0.0039 0.0053

Simulation time 89s 461s
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11.5 Conclusions

This chapter presents an offline estimation procedure based on heuristics for global
optimization for identification of yield and kinetics coefficients in amicrobial growth
model associated with the enzymatic catalysis bioprocess. The identification prob-
lem is formulated in terms of an optimization problem in which the error between
an actual physical measured response of the system and the simulated response of a
parameterized model is minimized. This function is multimodal and classical itera-
tivemethods fail to find the global optimum. The estimation of the system parameters
is achieved as a result of minimizing the error function by the PSO and genetic algo-
rithms. The optimization problem is split in simpler sub-problems that require fewer
computational resources. The simulations evaluated the effects of sampling period,
some basic variants of PSO and GA algorithms and of the noisy measurements. The
proposed strategy can still converge to accurate results even in the presence of mea-
surement noise, as illustrated by the numerical study. The obtained dynamical model
of the bacterial growth process is accurate and can contribute to the development of
model-based applications, which lead to high productivity and better quality prod-
ucts. The proposed estimation approach can also be applied to other bioprocesses
belonging to the nonlinear class considered in the present study.

Acknowledgments This work was supported by UEFISCDI, project ADCOSBIO no. 211/2014,
PN-II-PT-PCCA-2013-4-0544.
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Chapter 12
Real-Time Experimental
Implementation of Predictive
Control Schemes in a Small-Scale
Pasteurization Plant

Albert Rosich and Carlos Ocampo-Martinez

Abstract This chapter proposes three closed-loop control topologies based on
model predictive control (MPC) for a small-scale pasteurization plant. The topolo-
gies are designed taking into account the role of the predictive controller within the
loop: (i) as supervisor control for the computation of the references for regulatory
controllers, (ii) as unique controller within the closed loop and (iii) acting simul-
taneously as supervisor and regulatory controllers together with other regulatory
controllers. All control designs have been applied in real time to a test bench station,
then experimental results are both presented and discussed. Themain advantages and
drawbacks for each topology are presented for the regulation of the temperature of
the output product, while the energy consumption of the overall system isminimized.

Keywords Model predictive control · Pasteurization plant · Industrial processes
constrained controlmodelling and identification ·Real application ·PID controllers ·
Control topologies · Optimization-based control

12.1 Introduction

Along the last decades, model predictive control (MPC) has had a significant impact
on industrial control engineering. Its implementation in process industry is justified
by its capabilities of handling multi-variable control problems in a natural form,
while taking into account actuator limitations and other physical and operational
constraints, [8, 20]. Given the computational burden associated to the optimization
problem solved onlinewhen anMPCcontroller is implemented, the use of this control
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technique was preferred for control architectures formed by two levels: the former,
as a supervisory/management level, where set-points for regulatory controllers at
the lower level are computed, and the latter, as the proper regulatory level, where
the control actions are applied to the dynamical system. Notice that the regulatory
controllers attempt to hide the non-linear behaviours of the systems, allowing the
supervisory controller to use a simpler control-oriented model, [21]. Thus, MPC
controllers, acting as supervisory ones, are based then on those simpler models and
hence their associated optimization problems get less computational burden (see,
e.g., [6, 17] and references therein).

Nevertheless, relevant technological advances during the last years make possible
the real-time implementation of MPC controllers based on more complex and large
dynamical models. Therefore, several possibilities arise when implementing real-
time predictive controllers for industrial processes. The possible topologies can be
such as the aforementioned two-level schemes, where the MPC acts as a supervisory
controller, topologies where the MPC is the unique controller within the closed loop,
and topologies where there is a convenient combination of the MPC controller with
a twofold function and classical regulatory controllers (such as PIDs), interacting
altogether.

On the other hand, a pasteurization system involves typical behaviours of indus-
trial processes, where considering complex dynamical models with nonlinearities
imply important challenges when a suitable controller should be designed. In that
sense, some previous modelling approaches and control schemes have been already
proposed. The so-called divide-and-conquer technique for modelling the system is
applied in [9], where the input–output mathematical model of the system is obtained
from the decomposition of the plant in functional subsystems. Other non-linear mod-
els from thewhole system and/or some subsystems are obtained in [1, 12]. Regarding
its control, in [5] it is proposed a scheme based onPIDwith Smith predictor in order to
compensate delays when some temperatures are regulated. In [10], a dynamic matrix
control (DMC) is designed and implemented using the system models proposed in
[9], where the delay and the energy reduction of the system were not improved. The
regulation of both water and milk temperatures by using MPC is recently reported
in [16], where transient behaviours have been suitably handled with respect to other
control techniques such as cascade generic model control.

According to the previous discussions, this chapter performs the design and imple-
mentation of three control topologies based on MPC, where the temperature of the
output product in a small-scale pasteurization plant is regulated, while the energy
consumption required to this end is simultaneously reduced. Therefore, the main
contribution of this chapter is not only the suitable design of controllers and topolo-
gies in order to satisfy the control objectives fulfilling system constraints, but also the
real-time experimental implementation of those MPC-based topologies in the real
system and the analysis of the performance results in order to highlight the advan-
tages and disadvantages for each topology. This analysis aims at motivating the use
of MPC controllers interacting within the existing industrial topologies, where it is
well known the hegemony of the PID controllers.
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The mathematical models of the pasteurization plant are properly obtained from
the experimental data, [13], but the deep description of the system identification
procedures for the corresponding subsystems is out of the scope of this chapter.
None of themodels previously reported in the literature were considered for the study
performed in this chapter since the real pilot plant considered here is quite different
with respect to those used in [1, 9, 16], among others. Final results where the energy
consumption comparison is performed are taken into accountwith respect to a control
scheme based only on PID controllers properly tuned by using well-known existing
tools, [2, 4, 19]. In any case, these PID controllers have been accurately tuned by
using the available tools inMatlab©, achieving a proper response and avoiding the
unfair comparison between topologies based on the possibly wrong PID tunings.

The remainder of the chapter is structured as follows. In Sect. 12.2, the pasteuriza-
tion plant test bench is described. Section12.3 presents the general statement of the
MPC problems considered in this chapter. Besides the mathematical models, con-
trol problem formulations and main experimental results for each one of the three
proposed topologies are presented and discussed. Section12.4 performs the discus-
sion of the results presented throughout the chapter. Finally, in Sect. 12.5 the main
conclusions are drawn.

12.2 System Description

A process plant trainer for control purposes is used in this chapter as a real bench-
mark to test the different proposed control topologies. Specifically, the small-scale
pasteurization plant PCT23 MKII from Armfield is used, [3]. Only those parts of the
system that are relevant to the chapter are described in this section (see Fig. 12.1).

The system emulates an industrial high-temperature short-time (HTST) pasteur-
ization process. In this process, the goal is to heat and keep the product, which is
usually a liquid, at a predetermined temperature for a minimum time, typically for
bacteriological purposes. This is achieved by circulating the heated liquid through a
holding tube that delays the product stream.

A water heating unit is available in order to provide the necessary heat to the
product. This unit consists of a water pump that circulates the hot water through a
heat exchanger, and a hot water tank equipped with a temperature sensor (T2) and an
electrical resistor. The water heat is transferred to the product inside the first phase
of the heat exchanger. A temperature sensor (T3) at the heat exchanger outlet is used
to ensure that the product has gained the desired temperature. The product is always
pumped at a constant flow velocity in order to guarantee that it remains inside the
holding tube at a constant pasteurization temperature (adiabatic phase of the process)
for theminimum required time.With this end in view, a PIDcontroller is implemented
to regulate the product flow by means of a pump (feeding the product into the plant)
and a flowmetre located before the holding tube. This control loopwill be considered
fixed and out of the study carried out in this chapter. A temperature sensor (T1) at
the output of the holding tube is used to monitor the product temperature after the
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Fig. 12.1 Pasteurization plant diagram

pasteurization process. Finally, the product is cooled in the second phase of the heat
exchanger, where residual heat is transferred to the inlet product.

In summary, from a control point of view, the pasteurization plant can be seen as
a multiple-input and multiple-output (MIMO) system with electric heater power, P ,
and water pump speed, N , as inputs, and temperatures, T1, T2, and T3 as outputs. The
control objectives are twofold: i) the temperature T1 must follow a predefined profile
(tracking control problem), and ii) the energy consumption should be minimized.

It is considered that the pasteurization plant will be operated around the working
point defined by

Po = 290W, N o = 65%, T o
1 = 55.5 ◦C,

T o
2 = 66 ◦C, T o

3 = 56 ◦C, (12.1)

which will be used to obtain the linear models required throughout the chapter.
The design and simulation of the controllers have been performed in Matlab©

R2012b by using Tomlab Optimization Software [7] in an Intel Xeon CPU E31225 -
4 cores, 3.10GHz and 4GB RAM. The discretization of all dynamics as well as the
implementation of the MPC controllers for experimentation were performed using a
sampling time of 1 s. In particular, the dynamical model of the pump N was obtained
by selecting a lower sampling time (0.5 s) given the fast dynamics shown by this
element compared with the remainder processes.
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12.3 Predictive Control Schemes

12.3.1 MPC Problem Statement

Given that the proposed controllers consider dynamical models around the working
point (12.1), they are expressed in the discrete-time state-space linear form

x(k + 1) = A x(k) + B u(k), (12.2a)

y(k) = C x(k), (12.2b)

where x ∈ X ⊆ R
nx , u ∈ U ⊆ R

nu and y ∈ Y ⊆ R
ny correspond to the vector of

system states, the vector of input signals and the vector of measured outputs, respec-
tively, and k ∈ Z+ denotes the discrete time. A, B and C are the system matrices of
suitable dimensions. In the sequel, identified models obtained as transfer functions
are conveniently expressed by their equivalent controllable realizations in state space
as in (12.2). Moreover, let1

û(k) �
(
u(0|k), . . . , u(Hp − 1|k)

)
(12.3)

be the sequence2 of input signals over a fixed-time prediction horizon Hp. Notice
that (12.3) depends on the initial condition x(0|k) � x(k). Therefore, the design of
the different MPC controllers for the proposed control topologies/schemes in this
chapter is based on Problem 12.1.

Problem 12.1 [MPC Design] The MPC design is based on the solution of the
open-loop optimization problem (OOP)

min
{û(k)∈UHp , ξ̂(k)∈RHp }

J (x(k), û(k), ξ̂(k)), (12.4a)

subject to

x(i + 1|k) = Ax(i |k) + Bu(i |k), ∀ i ∈ [0, Hp − 1], (12.4b)

y(i |k) = Cx(i |k), ∀ i ∈ [0, Hp − 1], (12.4c)

x(k) ∈ R
nx , ∀ k, (12.4d)

u(i |k) ∈ U , ∀ i ∈ [0, Hp − 1], (12.4e)

G1y(i |k) + G2 ξ(i |k) ≤ g, ∀ i ∈ [0, Hp − 1], (12.4f)

1Here, m(k + i |k) denotes the prediction of the variable m at time k + i performed at k. For
instance, x(k + i |k) denotes the prediction of the system state, starting from its initial condition
x(0|k) = x(k).
2In the sequel, the notation ẑ means a sequence of vectorial elements of suitable dimensions.
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where J (·) : Unu Hp × R
Hp �→ R in (12.4a) is the cost function, Hp denotes the

prediction horizon and G1, G2 and g are matrices of suitable dimensions. More-
over, ξ ∈ R is the slack variable for softening the output constraints (12.4f), and
ξ̂(k) �

(
ξ(0|k), . . . , ξ(Hp − 1|k)

) ∈ R
Hp . Notice that, in this chapter, expression in

(12.4d) means the unconstrained nature of the system states. Assuming that the OOP
(12.4) is feasible, i.e., u(k) 	= ∅, there will be an optimal solution for the sequence
of control inputs

u(k)∗ �
(
u(0|k)∗, u(1|k)∗, . . . , u(Hp − 1|k)∗

)
, (12.5)

and then, according to the receding horizon philosophy, u∗(0|k) is applied to the
system, while the whole process is repeated for the next time instant k ∈ Z+. �

The following subsections present and discuss three closed-loop control schemes
based on different roles of the MPC controllers wherein the main control objectives
need to be accomplished. Aspects such as the model used, the controller design and
the corresponding experimental results are explained for each considered topology.

12.3.2 Topology 1: MPC as a Supervisory Controller

The pasteurization plant described in Sect. 12.2 can be simply controlled by using a
PID-based control scheme, [15, 18, 22]. A typical approach to track the tempera-
ture T1 is to implement two PID controllers in cascade, [3]. The inner control loop,
denoted here as PIDT3 , regulates T3 by manipulating the pump velocity, N , whereas
the outer loop, denoted here as PIDT1 provides the reference for the inner-loop con-
troller. On the other side, another control loop, denoted here as PIDT2 is typically
implemented to regulate the temperature of the water heating unit T2. The PIDT2

controller manipulates the power of the electrical heater, P , in order to maintain the
temperature T2 at a certain constant and high value in order to guarantee that enough
energy can be transferred to the product. Hence, no energy saving is considered.

In this section, this standard PID-based configuration is used. Nevertheless, the
reference T r

2 , provided to regulate the temperature T2, is supervised by an MPC (see
Fig. 12.2) with the objective of saving energy. For the sake of space and because it
does not involve any additional difficulty, the implementation of the PID controllers
is not here presented. Instead, the chapter is focused on the supervisory MPC design.

12.3.2.1 System Identification and Control-Oriented Model

To accomplish the proposed control configuration, suitable models of the pasteur-
ization plant are needed. In particular, two transfer functions are identified. These
transfer functions relate the measured outputs T1 and T2 to their corresponding input
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Fig. 12.2 Topology 1: MPC as a supervisory controller

references, T r
1 and T r

2 . By applying parametric identification methods (mainly based
on least squares) to different model structures, [14], the following transfer functions
are obtained:

T1(z)

T r
1 (z)

= 0.0008008

z30 − 1.963z29 + 0.9639z28
(12.6)

and
T2(z)

T r
2 (z)

= 0.00358z

z2 − 1.937z + 0.9406
, (12.7)

where z is the z-transformvariable. Observe that the transfer function (12.6) has order
30 because the transportation delay induced by the holding tube. In addition, it is
worth noting that, since the PID control loops are considered in the plant modelling,
the two input/output pairs can be decoupled.

Models (12.6) and (12.7) are validated with real data from the pasteurization plant
obtaining satisfactory results. In Fig. 12.3 a comparison between the real system
behaviour and model-obtained temperatures is depicted.

12.3.2.2 Control Problem Setup

In order to design the corresponding MPC, the constraints and the cost function in
Problem 12.1 should be defined. For the proper system operation, T2 must always be
greater than T1. According to the performed experiments, this temperature difference
between T2 and T1 should be greater than D = 11.8 ◦C. The value of D is considered
as a design parameter, which was determined by iterative simulations in order to
have a safety temperatures difference taking into account the variations given by
the devices dynamics and signal noises. Given that the system is operated around
the working point (12.1), this difference can be conveniently adapted through a soft
constraint of the form



262 A. Rosich and C. Ocampo-Martinez

0 50 100 150 200 250 300

55.5

56

56.5

57
T
1
(
C
)

0 50 100 150 200 250 300 350 400 450 500 550

66

67

68

69

70

71

time (s)

T
2
(
C
)

model prediction
real data

model prediction
real data

Fig. 12.3 Responses from the models (12.6)–(12.7) and comparison with real data

T2(k) − T1(k) ≥ D + ξ(k), (12.8)

where ξ ∈ R allows to avoid infeasibility of the OOP in (12.4). On the other hand,
looking at the energy consumption of the actuators, the water pump consumes 35VA
for flows between 100–300ml/min, [23], while the heater resistor consumes about
300W.Therefore,minimization of the energy consumption is done through the heater
resistor since its consumption is significantly greater than the energy consumption
of the pump. Hence, T r

2 should be minimized. Finally, the minimization of the slew
rate,ΔT r

2 (k) � T r
2 (k) − T r

2 (k − 1), is also considered in order to reduce oscillations
in T2. Thus, the OOP (12.4) for this topology is defined as

min
{T̂r

2(k), ξ̂(k)}

∥∥∥T̂r
2(k)

∥∥∥
2

W1

+
∥∥∥�̂Tr

2(k)

∥∥∥
2

W2

+
∥∥∥ξ̂(k)

∥∥∥
2

W3

, (12.9a)

subject to

x(i + 1|k) = A1x(i |k) + B1

[
T r
1 (i |k)

T r
2 (i |k)

]
, (12.9b)

[
T1(i |k)

T2(i |k)

]
= C1x(i |k), (12.9c)

T2(i |k) − T1(i |k) ≥ D + ξ(i |k), (12.9d)

for all i ∈ [0, Hp − 1], where

T̂r
2(k) = (Tr

2(0|k), . . . , Tr
2(Hp − 1|k)),

�̂Tr
2(k) = (�Tr

2(0|k), . . . ,�Tr
2(Hp − 1|k)),
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Fig. 12.4 Controlled temperatures, T1 and T2, with Topology 1

and Wi , i = 1, 2, 3, are the weighting matrices needed to prioritize the different
control goals within the multi-objective cost function. Notice that, in general, Wi =
ωi I, where I is the identity matrix of suitable dimensions and ωi ∈ R. Here, the
prediction model in (12.9b)–(12.9c) is derived from (12.6) and (12.7).

The MPC controller has been implemented in Matlab© and tested on the pas-
teurization plant. The controller has been experimentally tuned for the weight values
ω1 = ω2 = 0.1, ω3 = 10, whereas a prediction horizon Hp = 35 has been set.3 It
should be note that, in this case, shorter horizons degrade the closed-loop perfor-
mance, while a larger horizon does not improve the results and moreover takes
longer in solving the optimization problem (12.9). The controlled temperatures from
the real plant (i.e., T1 and T2) are shown in Fig. 12.4 together with their corresponding
references, where T r

2 is in this case the control variable. Observe that the MPC tries
to keep T2 as lower as possible and fulfil constraint (12.8) at the same time. This
is particularity difficult when T1 decreases (e.g., time k = 1500 s and k = 2000 s)
since T2 should be reduced by the MPC, accordingly. However, there is no actua-
tor to reduce T2 and the water tank is really cooled by dissipating the heat to the
atmosphere.

12.3.3 Topology 2: MPC as Unique Controller

Another possibility to control the pasteurization plant is a holistic approach bymeans
of one single MPC controller that directly operates the actuators from the system
measurements (see Fig. 12.5).

3In this chapter, it is supposed that the prediction horizon Hp and the control horizon Hu have the
same length in order to have more degrees of freedom when computing the optimal control action
at each time instant k ∈ Z+.
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Fig. 12.5 Topology 2: MPC
as unique controller

12.3.3.1 System Identification and Control-Oriented Model

A complete model of the pasteurization plant is needed for this topology. However,
due to the complexity of the system, it is not feasible to identify the whole plant at
once. Instead, the different subsystems are identified and modelled separately.

Holding tube subsystem: From a thermodynamic point of view, the holding tube
can be modelled as a single-input and single-output system, where temperature T3 is
the input and temperature T1 is the output. By experimentation, the following discrete
transfer function is obtained:

T1(z)

T3(z)
= 0.2231

z30 − 0.7649z29
. (12.10)

Themeasurement of T3 has beenused to validate themodel. InFig. 12.6, the responses
of T1 obtained by applying the same measurement of T3 in both, the real plant and
the model (12.10) are compared.

Hot water tank subsystem: The dynamics of the temperature T2 in the water tank
of the heating unit system are derived from first principles of thermodynamics [11].
Specifically, the following differential equations is used:

cw

dT2(t)

dt
= P(t) − cs F(k)(Tout(t) − Tin(t)) − kl(T2(t) − Ta(t)), (12.11)
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Fig. 12.6 Response from the model of the holding tube
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where cw is the heat capacity coefficient of the water mass in the tank, P is the
power provided by the electrical resistor, cs the specific heat capacity of the water,
F is the water flow given by the pump, Tout and Tin are the output and input water
temperatures, kl is the heat loss coefficient and Ta is the atmospheric temperature.
Note that the water flow is proportional to the pump speed, therefore F = α1N . For
the sake of simplicity, it is assumed that the output water temperature is the same
as the measured water tank temperature, i.e., Tout = T2, and also that the Tin , which
cannot bemeasured, is proportional to T3, i.e., Tin = α2T3. In addition, Ta is assumed
to be known and constant.

The unknown parameters of (12.11) are properly identified (by using parametric
identification based on least squares, [13, 14]) and then the model is discretized and
linearized around the working point in (12.1). The resulting discrete linear model for
the hot water tank system is

T2(k + 1) =9.98 × 10−1T2(k) + 1.2 × 10−4P(k)

− 4.26 × 10−4N (k) − 1.64 × 10−4T3(k). (12.12)

Temperature T2 from both, real plant and model (12.12) are shown in Fig. 12.7.
In this case, the resistor power P and pump speed N are slightly modified from the
working point in (12.1), while input temperature T3 is taken from the real plant.

Heat exchanger subsystem: The first phase of the heat exchanger is here mod-
elled. For simplicity, the input product temperature is assumed to be known and
constant. Therefore, the dynamics of the output product temperature, T3, are only
directly affected by the pump speed, N . It should be noted that the temperature T3 is
indirectly affected by both T2 and the pasteurized product temperature T1 since the
latter circulates through the second phase of the heat exchanger, which is in contact
with the first phase. However, in order to keep the simplicity of the model, these side
effects on T3 are not taken into account. They can be seen as unknown disturbances.
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Fig. 12.7 Response from the model of the hot water tank
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Fig. 12.8 Response from the model of the heat exchanger

The obtained model is represented in discrete transfer function as

T3(z)

N (z)
= 0.01141

z − 0.8796
. (12.13)

The real and the model-predicted temperature T3 are compared in Fig. 12.8.

12.3.3.2 Control Problem Setup

As in the Topology 1, the control objectives remain the same, remarking the priority
on the reduction of the energy consumption. In this case, the management of the
power dissipated by the heater resistor determines the performance of the closed-
loop control. Now, the MPC controller must compute the direct control actions to
the actuators, while performing the tracking task with T1. This task implies the
minimization of the tracking error eT1(k) � T1(k) − T r

1 (k), while the control actions
are minimized and smoothed, and the softening of the operational constraint (12.8)
is penalized. Thus, the OOP (12.4) for this topology is defined as

min
{[N̂(k) P̂(k)]T , ξ̂(k)}

∥∥∥P̂(k)

∥∥∥
2

W1

+
∥∥∥∥∥

[
�̂N(k)

�̂P(k)

]∥∥∥∥∥

2

W2

+
∥∥∥ξ̂(k)

∥∥∥
2

W3

+ ∥∥êT1(k)
∥∥2

W4
,

(12.14a)
subject to

x(i + 1|k) = A2x(i |k) + B2

[
N (i |k)

P(i |k)

]
, (12.14b)

[
T1(i |k)

T2(i |k)

]
= C2x(i |k), (12.14c)

N (i |k) ∈ [−40, 15], P(i |k) ∈ [−0.3, 1.3], (12.14d)

T2(i |k) − T1(i |k) ≥ D + ξ(i |k), (12.14e)
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Fig. 12.9 Controlled temperatures, T1 and T2, with Topology 2

for all i ∈ [0, Hp − 1], where

P̂(k) = (P(0|k), . . . , P(Hp − 1|k)),

�̂N(k) = (ΔN (0|k), . . . , ΔN (Hp − 1|k)),

�̂P(k) = (ΔP(0|k), . . . , ΔP(Hp − 1|k)),

êT1(k) = (eT1(0|k), . . . , eT1(Hp − 1|k)),

and W4 is the weighting matrix related to the tracking error of T1. Notice here that

W2 is a block diagonal matrix, whose elements are matrices Ω2 =
[

Ω21 0
0 Ω22

]
. In this

case, the prediction model (12.14b)–(12.14c) comes from merging of the equivalent
controllable realizations of (12.10), (12.12) and (12.13). Moreover, input constraints
(12.14d) should be stated since

• both the dead zone of the pump (which is up to 25% of its operating range) and
the definition of a safety range below 80% also of its operating range (over this
value some elements can deteriorate rapidly) should be taken into account4; and

• the heating power of the resistor, P , can take values in the range [0, 1.6]kW.Notice
that values in (12.14d) consider the working point (12.1).

TheMPC controller was implemented with the trial-and-error weight valuesω1 = 2,
ω21 = 10−3, ω22 = 10−2, ω3 = 102 and ω4 = 103. Moreover, Hp = 35.

Results obtained by applying this topology are depicted in Fig. 12.9. As before, the
temperature T2 ensures enough transfer heating to the product (i.e., constraint (12.8)
is satisfied). In addition, now the delay caused by the holding tube is compensated.

4Notice that the pump speed N is given in percentage with respect to the maximal speed of the
corresponding pump according to the device specifications.
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On the other hand, although it is not evident in the figure, the steady-state error in
T1 is not null. This is mainly due to two reasons: i) the models, especially the heat
exchangermodel in (12.13), are not accurate and ii) the pump actuator range is limited
to 80% which degrades the controller performance. It is well known that it can be
corrected by using an integrator-in-series configuration but it was not implemented
here due to the small amount of such error.

12.3.4 Topology 3: MPC and PID

The last control topology presented in this chapter is a combination of the previous
ones. A PID controller, denoted as PIDT3 , is used to control T3 by means of the pump
speed N , whereas the MPC provides the set-point for PIDT3 and drives directly the
electric resistor at the same time (see, Fig. 12.10). In this topology, it is intended that
a simple PID controller is more suitable for controlling T3 because fast dynamics are
present in both the temperature T3 and the pump speed N . Furthermore, by using
PIDT3 controller, the effect of the unknown disturbances over T3 are mitigated which
means that the model used in the MPC becomes more accurate.

12.3.4.1 System Identification and Control-Oriented Model

The models used in this topology can easily be derived by combining the previous
models. For instance, the dynamics of T3 driven by T r

3 can straightforwardly be
obtained by computing the corresponding PID closed-loop transfer function with
(12.13). Therefore, no new models are needed for this topology.

12.3.4.2 Control Problem Setup

The control design for this topology combines an MPC coping with the regulation
of P , together with PIDT3 that manages N but which receives its reference from

Fig. 12.10 Topology 3:
MPC and PID
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the MPC controller. Given the control objectives and aforementioned operational
constraints, the OOP (12.4) for this topology is defined as

min
{[P(k) Tr

3(k)]T ξ(k)}
‖P(k)‖2W1

+
∥∥∥�̂Tr

3(k)

∥∥∥
2

W2

+
∥∥∥ξ̂(k)

∥∥∥
2

W3

+ ∥∥eT1(k)
∥∥2

W4
, (12.15a)

subject to

x(i + 1|k) = A3x(i |k) + B3

[
Pi |k

T r
3 (i |k)

]
, (12.15b)

[
T1(i |k)

T2(i |k)

]
= C2x(i |k), (12.15c)

P(i |k) ∈ [−0.3, 1.3], T r
3 (i |k) ∈ [−2, 7], (12.15d)

T2(i |k) − T1(i |k) ≥ D + ξ(i |k), (12.15e)

for all i ∈ [0, Hp − 1], where

�̂Tr
3(k) = (�Tr

3(0|k), . . . ,�Tr
3(Hp − 1|k)),

and the constraints for input T r
3 are given considering a small range of variation

around the system working point (12.1). The prediction model (12.15b)–(12.15c) is
obtained for this topology by merging the controllable realizations of (12.10) and
(12.12). Notice here that the induction to a smooth behaviour of T r

3 implies less
oscillations of T2. For the implementation of this control topology with the real
system, the tuning parameters are set to ω1 = 10−5, ω2 = 300, ω3 = 1, ω4 = 10,
and Hp = 35.

In Fig. 12.11, the temperature responses from the pasteurization plant under the
control Topology 3 are shown. In this case, the delay is compensated and the null
steady-state is achieved. This is because the MPC is now used to compensate the
delay by providing a suitable reference to PIDT3 , and this in turn provides the perfect
tracking in steady-state despite the model inaccuracies. Moreover, the model inac-
curacies alleviation also provides a better performance in terms of T2. Observe that
now the fluctuations in the temperature T2 have been significantly reduced. However,
as far as T1 goes away from its working point, an undesired overshoot appears in its
transient dynamics. It is also produced by the new resultant behaviour of T2, which
also experiments bigger overshoots. This phenomena might be avoided by an accu-
rate tuning of the cost function in (12.15a) (conveniently increasing the prioritization
of �̂Tr

3).
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Fig. 12.11 Controlled temperatures, T1 and T2, with Topology 3

12.4 Results Discussion

The different proposed control topologies are here compared by means of three
performance indices. The values of these indices for each topology are displayed in
Table12.1.

The first index is the MSE (Mean Square Error) between temperature T1 and its
reference. This index indicates how accurate the tracking is performed. In this case,
Topology 1 presents the worst value. This is mainly due to the fact that the holding
tube delay is not compensated. On the other hand, the disturbance effect mitigation
accomplished by the PID-based control loop in Topology 3 improves the MSE in
front of Topology 2.

Another performance index is the settling time for temperature T1. Short settling
times are crucial in pasteurization processes, since all the product obtained during the
settling time is rejected because it does not reach the proper temperature. Topology 1
presents again the worst result while Topology 3 is significantly better that the others.
This is because Topology 3 takes advantage of the fast PID-based control loop.

Third index takes into account the energy consumption by showing the percentage
of saved energy with respect to the standard approach (only PID controllers with no

Table 12.1 Performance
indices

Topology MSE Settling time
(s)

Energy
saving (%)

1 0.94 250 10

2 0.53 150 11

3 0.46 70 11.5
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Table 12.2 Qualitative features

Topology Null steady-state error Actuator constraints

Pump speed N Heater power P

1 �
2 � �
3 � �

MPC) in which no energy saving is considered (i.e., temperature T2 is kept at 75◦C
all the time). Although all topologies perform similarly, Topology 3 shows better
results.

Quantitatively speaking, it would be quite risky to determine the best control
topology from those proposed here. From the point of view of energy savings, tuning
procedures for cost functions in (12.9a), (12.14a) and (12.15a) might improve the
performance of the controllers but the design and application of tuning strategies are
out of the scope of this study. On the other hand, MSE index could also be improved
by different and accurate tuning criteria, which in turn would allow to reduce or even
eliminate some overshoots in temperature dynamics.

Finally, Table12.2 summarizes the main features presented by the three topolo-
gies. It is worth to highlight that Topology 2 presents some small steady-state error
as a consequence of model inaccuracies. However, it is the only one that can handle
both actuator constraints. From this perspective, Topology 3 can be chosen as an
intermediate solution, since null steady-state error is achieved and constraints on the
electrical resistor can be handled.

12.5 Conclusions

Although the pasteurization process can be perfectly accomplished by standard PID
controllers, in this chapter energy saving is also claimed as a control objective, which
makes the MPC approach suitable for operating the plant. Therefore, three different
control topologies based on MPC have been proposed in order to study which the
role of theMPC should be, i.e., MPC as a supervisor or as a regulatory controller. The
study has been carried out from a practical perspective, where conclusions have been
drawn from experimental data. Therefore, typical problems in real implementations
have been encountered, e.g., noisy signals, model inaccuracies, hardware limitations.

Topology 1 shows a proper performance against model uncertainties because the
PID controllers locally compensate the model mismatches. However, the MPC is
merely used to compute the set-point for the local controllers wherein some useful
dynamics for the optimality of the control objective are not used. In addition, actuator
constraints cannot be handled. Notice here that MPC might be suitably replaced
by other optimal control techniques such as LQR. On the opposite side, an MPC
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commanding the actuators directly is tested in Topology 2. In this case, the model
of the plant without controllers is used in the optimization despite the inaccuracies.
This leads to a loss of optimality due to the optimal for the model differs from the
optimal for the plant which, in turn, results in a loss of control performance. Finally,
Topology 3 is intended so that the advantages of the two previous topologies are
preserved. Therefore, Topology 3 is presented as an intermediate solution between
the other two topologies, wherein a local PID controller is used together with the
MPC.

According to the results discussion in Sect. 12.4, Topology 3 results to be the most
convenient one. This means that the choice of a control topology is not obvious since
many intermediate solutions could be possible in a real plant, where a certain number
of control loops need to be considered. Therefore, the results obtained in this work
motivate and justify the need of further studies in order to determine the best control
topology for a given plant.
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Chapter 13
An Optimization-Based Framework
for Impulsive Control Systems
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Abstract This chapter concerns a discrete-time sampling state feedback control
optimizing framework for dynamic impulsive systems. This class of control systems
differs from the conventional ones in that the control space is enlarged to contain
measures and, thus, the associated trajectories are merely of bounded variation. In
other words, it may well exhibit jumps. We adopt the most recent impulsive control
solution concept that pertains to important classes of engineering systems and, in this
context, present impulsive control theory results on invariance, stability, and sampled
data trajectories having in mind the optimization-based framework that relies on an
MPC-like scheme. The stability of the proposed MPC scheme is addressed.
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13.1 Introduction

This chapter concerns the control of a large class of impulsive systems by using a
model predictive control (MPC)-like scheme that combines optimization and state
feedback at discrete points in time. This is a practical approach that makes the most
of optimal control theory in order to take into account perturbations that affect the
behavior of real-life systems, and, at the same time, mitigates the huge computational
burden underlying the online computation associated with optimal feedback control,
which, in general, requires solving a certain partial differential equations of the
Hamilton–Jacobi–Bellman type.

From the application perspective, the motivation for considering the control of
impulsive systems has been growing over the years with the increasing number of
engineering applications involving systems exhibiting jumps in their trajectories.
These include mechanical systems subject to collisions in which the velocity has a
discontinuity at the collision times—for example, robot manipulators, and walking
robots—, spacecraft navigation often associated withminimum fuel problemswhose
solutions involve impulses, multiphase systems—for example, car engines with a
discrete number of gears, for which engine revolutions have a discontinuity during
a gear change—, reposition of a stock of a product in inventory control, investment
policies in economic systems, among many others (see [8, 13, 14, 16, 20, 38, 46]).
Along this vein, Aubin, [12], noticed that the impulsive framework is well suited to
model hybrid systems in which discrete events and continuum dynamics drive the
evolution of the state variable together in such a way that the effect of events in the
latter can be regarded as jumps.

Intuitively, the need to adopt an impulsive control framework arises when the
control systems exhibits very fast and very slowdynamics abstraction and the optimal
control problem of interest is such that these two components of the dynamics cannot
be dealt with separately. In this context, the velocity set associated with the very fast
dynamics can become unbounded, and the existence of solution can be guaranteed
only if the space of conventional controls inL1 can be extended to a larger space, [10,
34], which, in the simpler context in which the unbounded control enters linearly in
the dynamics, could be the space of regular Borel measures, [35].

This chapter follows along the line of the work in [30], by extending in a sig-
nificantly more sophisticated and nontrivial way the class of impulsive control sys-
tems considered previously, so that more realistic challenges can be addressed. In
this sense, the work presented here improves strongly upon the one in the above-
mentioned article.

Given time interval [0, T ], the impulsive dynamic control system is specified by

dx = f (t, x, u)dt + G(t, x, u)dϑ

(x(0), x(T )) ∈ C0 × CT

u ∈ U , ϑ ∈ I,
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where t ∈ [0, T ], x , u, and ϑ are, respectively, the time, state, conventional control,
and the impulsive control variables whose values are restricted to certain sets and
are related by given mappings. This class of dynamic impulsive control systems
was first introduced in [8], being the necessary conditions of optimality in the form
of a Maximum Principle proved in [9] for an even more complete formulation of
the optimal control problem. All the items involved in the equation describing the
impulsive dynamics, and a proper solution concept associated with it are explained
in detail in the next Sect. 13.2.

For now, we remark that this formulation is strongly justified by substantive prac-
tical engineering reasons. Consider this simple abstract, yet representative, example
of driving a disk inR2 between a given pair of distinct points while keeping its angu-
lar velocity equal to zero by controlling it with four jet thrusters (see [8]). Assume
that the center of gravity of disk changes as the fuel is consumed when the jets are
fired. Clearly, the thrusters have to be restricted to yield a resultant force vector whose
line intersects the center of gravity, see Fig. 13.1. Thus, the inclination angles, θi ,
i = 1, . . . , 4, of the thrusters have to be controlled to satisfy the angular velocity
constraint during the firing of the jets. It is well known that in space navigation, as
well as, in many other applications that the optimal solution to the minimum fuel
problem is, in general, of an impulsive nature. Thus, this example clearly shows
that a control of conventional type is required to act “while” control impulses are
active. It is important to remark that impulses are, in fact, mathematical abstractions,
whose compact representation facilitates not only the description of these systems,
but also the derivation of the various types of conditions, such as invariance, stability,
and optimality, supporting control design, thus providing guidance for practical or
implementable approximations.

The current state of the art in MPC is extremely vast. This is not surprising due
to the extremely wide variety of successful applications. Thus, stabilizing properties
have been investigated in a wide number of publications in various contexts that

Fig. 13.1 The angle of the
thrusters are restricted by the
center of gravity location

θ
CG
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concern the wide variety of requirements exhibited by the various classes of applica-
tions. For example, and, to name just a few general contexts, absolutely continuous
trajectories in continuum-time are considered in [2, 19, 24, 26, 29, 33], discontinu-
ous controls, and discontinuous feedbacks are dealt with in [1, 25, 27], and switched
systems are addressed in [37, 45].

In what concerns impulsive control systems, there are several results for optimal
control, both on the maximum principle, [4–7, 9, 11, 40, 43, 50] and Hamilton–
Jacobi–Bellman equation, [32] that extend those pertaining the conventional control
systems, [3, 44, 49]. There are also results for sampled-data and feedback solution
concept, [31] invariance, [32, 42], and stability, [41, 47]. In [30], these results were
readily used, and adapted to a sampled-data MPC framework in the context of the
measure driven dynamics given by

dx = f (t, x, u)dt + g(t, x)dμ

where (u,μ) ∈ U × K is the control variable formed by a pair of a conventional and
an impulsive controls, and x is the state variable. In this work, sufficient conditions
for the stability of the controlled system are given, being a key role played by the
specification of the sampling times in the context of a trajectory that exhibits dis-
continuities generated by the control impulses. Clearly, the set of sampling times of
the sampled-data MPC framework have to include the points at which the trajectory
jumps. This is a critical issue due to the fact that the sampled-data MPC law is a
function of the state at the last sampling instant rather than of the state at the current
time. Therefore, the measurement error at the times of discontinuity may become
unbounded, and, thus, jeopardize the stability and inherent robustness of the MPC.
This issue is addressed by considering the sampling times as an additional variable
provided by the impulsive optimal control optimization which determines the times
at which the optimal impulses will occur in the optimization time horizon. For the
details, check [30]. The simpler case of linear impulsive control systems is addressed
in [48].

As it follows from above, the practical implementation of impulsive control results
necessary involves the construction of some sort of approximation to the impulsive
controls. In the context of the sampled-data MPC, the approximation to the optimal
control solution encompasses also a sampling strategy whose frequency is propor-
tional to the velocity of state variable variation on the support of the measure con-
sidered as the approximation to the impulsive control. This is an extremely welcome
feature of the results discussed in this chapter as resources for sampling (which in
many applications might be extremely significant) are recruited at the stages of the
trajectory evolution in which they are most needed in order to capture the wealth of
the system’s dynamics.

This chapter is organized as follows. In the next Sect. 13.2, we discuss the impul-
sive dynamical system, which includes the main assumptions on the data of the
problem as well as the solution concept and some related work. Then, in Sect. 13.3,
we briefly introduce some key results on impulsive control that are relevant for the
impulsive MPC (IMPC) framework which is introduced and discussed in ensuing
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Sect. 13.4. In Sect. 13.5, the main stability results for this framework are given, and
discussed. The ensuing Sect. 13.6, includes an extended outline of the proof. In the
final Sect. 13.7, we summarize the conclusions.

13.2 The Impulsive Control Framework

Let us present and discuss the class of impulsive control systems that we are going
to consider in this work. This includes the assumptions on the optimal control data,
as well as, the adopted solution concept, first introduced in [8].

Let us state the optimal impulsive control problem that will play a central role in
this work.

(PI ) Minimize h(x(T )) (13.1)

subject to dx = f (t, x, u)dt + G(t, x, u)dϑ (13.2)

(x(0), x(T )) ∈ C0 × CT (13.3)

u ∈ U (13.4)

ϑ ∈ I, (13.5)

where

• h : Rn �→ R specifies the cost functional;
• f : [0, T ] × R

n × R
m → R

n , andG : [0, T ] × R
n × R

m → R
n×k are givenmap-

pings defining, respectively the absolutely continuous and the singular dynamics;
• C0 and CT are compact subsets of Rn;
• U = {u ∈ L∞([0, T ];Rm) : u(t) ∈ Ω}, being Ω a compact subset of Rm ;
• ϑ = (μ, {uτ , vτ }) is the impulsive control, being the first componentμ ∈ K a Borel
measureμwith range in K , i.e., ∀A ⊂ [0, T ],μ(A) ∈ K , being K a convex, closed
and pointed cone in R

k , and {uτ , vτ } is a pair of functions associated with μ at
time τ in the support of its atomic component that are specified by:

uτ ∈ Uτ , i.e., uτ ∈ L∞([0, μ̄τ ]];Rm) s. t. uτ (s) ∈ Ω L-a.e. in [0, μ̄τ ], and
vτ ∈ Vτ , i.e., vτ ∈ L∞([0, μ̄τ ];Rk) s. t. vτ (s) ∈ K with

∑k
j=1 |v j

τ (s)| = 1L-a.e.
in [0, μ̄τ ] and

∫ μ̄τ

0 v j
τ (s)ds = μ j ({τ }), j = 1, . . . , k;

and finally,
• I = K × (Uτ × Vτ ) is the impulsive control constraint set.

In the above and from now on, for any atom τ of the measure μ, μ̄τ := |μ|({τ }),
being d|μ| the total variation measure associated with dμ.

We remark that this is by no means the most general formulation. For example,
in [35], a formulation for nonlinear dependence of the dynamics on the impulsive
control is addressed. Thus, it covers the following famous minimal surface problem
provided by Euler.



282 F. Lobo Pereira et al.

Example 13.1 (Euler minimal surface problem)

Minimize y(1)

subject to ẏ(t) = x(t)
√
1 + u2(t), ẋ(t) = u(t), u(t) ∈ R, (13.6)

y(0) = 0, (x(0), x(1)) = (x0, x1) with x0, x1 ≥ 0.

This dynamic system clearly exhibits nonlinear dependence on the control u, and the
solution to this problem only exists if the control u is in the space of Borel measures.

An example is the following extended impulsive version of the well-known God-
dard rocket problem (see, e.g., [15, 17]) allowing mass drops.

Example 13.2 (Extended Goddard problem with mass drops)

ḣ = v,

v̇ = 1

m
[u − D(v, h)] − g1(h), (13.7)

dm = −1

c
udt − g2(m, u)dμ

where the col(h, v, m) is the state variable, whose components are, respectively,
altitude, vertical velocity, and the mass of the vehicle, col(u,μ) are the controls,
whose components are, respectively, the thrust (conventional control) and the mass
drop (impulsive control),D represents drag, g1 gravity acceleration, and g2 a function
reflecting the way the mass is dropped.

Let us define the trajectory solution concept adopted for (13.2). Consider, the
impulsive control ϑ = (μ, {uτ , vτ }), the number τ ∈ [0, T ] and the arbitrary vector
x ∈ R

n . Denote by χτ (·) = χτ (·, x) the solution to the following dynamical system

{
χ̇τ (s) = G(τ ,χτ (s), uτ (s))vτ (s), s ∈ [0, μ̄τ ],
χτ (0) = x .

(13.8)

The function of bounded variation x(t) on the interval [0, T ] is a solution to the
differential equation (13.2), associated with the control (u,ϑ) and the initial value
x0, if x(0) = x0 and, for every t ∈ (0, T ],

x(t) = x0 +
∫ t

0
[ f (τ , x(τ ), u(τ )) + G(τ , x(τ ), u(τ ))wac(τ )] dτ

+
∫

[0,t]
G(τ , x(τ ), u(τ ))dμsc +

∑

τ≤t

[
χτ (μ̄τ , x(τ−)) − x(τ−)

]
.

(13.9)

Here, wac(τ )dt and dμsc are, respectively, the absolutely continuous and the
singular continuous components of the canonical decomposition of the measure μ,
i.e., dμ = wacdt + dμsc + dμa . The last term concerns the atomic component. Note
also that in spite of μsc({a}) = 0 ∀a ∈ R, the representation of the second integral in
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(13.9) is more natural since, in general, μsc might be supported on sets that are not
defined by a countable number of set operations.

We remark that, by solving the Eq. (13.8) at each atom τ of the control measure,
we obtain a well-defined arc joining the jump endpoints. This is a key issue for the
well posedness of this solution concept as it endows it with robustness in the sense
that any trajectory, solution to the system, can be arbitrarily approximated by a certain
sequence of conventional trajectories, i.e., whose dynamics involve only controls of
conventional type.

The triple (x, u,ϑ) is called a control process, if it satisfies (13.9). A control
process is said to be admissible, if it satisfies all the constraints of problem (PI ), i.e.,
(13.3), (13.4) and (13.5). An admissible process (x∗, u∗,ϑ∗) is said to be optimal if,
for any admissible process (x, u,ϑ), the inequality h(x∗(T )) ≤ h(x(T )) holds.

This trajectory solution concept is well defined under the following standing
assumptions on the data of the problem (PI ):

S1 The mappings f and G are Lipschitz continuous with respect to x , ∀(t, u) ∈
[0, T ] × Ω;

S2 The mapping f is B × L-measurable with respect to (t, u), ∀x ∈ R
n;

S3 The mapping G is continuous with respect to all its arguments and such that the
set G(t, x,Ω) is compact and convex ∀(t, x) ∈ [0, T ] × R

n;
S4 The set Ω ⊂ R

m is compact.

These assumptions are not the weakest under which this trajectory solution concept
holds but are reasonable and simple to state. These conditions do not suffice to
ensure the existence of solution to problem (PI ) and, moreover, they will have to be
supplemented with additional ones in order to enable the proof of some results—to
be addressed in the next section—required to show the stability of our MPC scheme.

13.3 Some Results on Impulsive Systems

In this section, we provide some notation, concepts, and restate for the first time
some previous results for impulsive control systems, such as invariance, [22, 42],
and stability, [41, 47], to the class of systems addressed in this chapter. Moreover,
since we are dealing with a MPC scheme, we also introduce a solution concept for
our system—strongly related to the one above—that is relevant for sampled-data
feedback control, as well as the associated results on invariance of sets and stability
that are pertinent to establish the stability of the proposed MPC scheme.

13.3.1 Some Notation and Preliminary Definitions

Let us recall some notation and preliminary definitions, mostly extracted from [21,
39]. Consider, a closed set S and a point y not in S. If x is the point in S that is the
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nearest one to y, then the direction y − x is called a proximal normal direction to S
at x .

The set of all proximal normals is the proximal normal cone defined by

N P
S (x) = {ζ ∈ R

n : ∃σ ≥ 0 s.t. ζ · (x̄ − x) ≤ σ‖x̄ − x‖2, ∀x̄ ∈ S}.

Given, a lower semi-continuous function f : Rn → R ∪ {+∞}, the proximal sub-
differential of f at a point x ∈ dom can be defined by

∂P f (x) :=
{
ζ ∈ R

n : (ζ,−1) ∈ N P
epi f ((x, f (x)))

}
.

For a given f : D �→ R, with D ⊂ R
n , its epigraph is the set defined by epi f :=

{(x, y) : x ∈ D, y ≥ f (x)}. Conditions for invariance and stability using these
objects for conventional nonlinear dynamic control systems can be found in [21].

A technique that will play a role in impulsive control consists in re-parameterizing
the time variable in order to obtain a detailed characterization of the arc joining the
endpoints of any of the trajectory jumps. The original time variable t is replaced by
the new time variable s ∈ η̄(t) := [η(t−), η(t)]where η ∈ BV +([0, T ];R+) defined
by η(0) = 0 and, for t > 0, by

η(t) := t +
∫

[0,t]
d|μ|(τ ). (13.10)

where, as above, d|μ| denotes the total variation measure associated with dμ and
by BV +([0, T ];R+) we mean the space of scalar functions of bounded variation
on [0, T ] which are monotonically increasing and take on positive values. The set-
valued map η̄(·) is monotone, and thus has an inverse that we denote by θ. Thus,
θ ◦ η̄(t) = t . Let us denote by Sa

μ and Ssc
μ , the support of, respectively, the atomic

and singular continuous components of the measure dμ. Thus, η(T ) = T + |S̃sc
μ | +

∑

τ∈Sa
μ

|I μ
τ | +

∫ T

0
|wac(s)|ds where |A| is a short notation for the Lebesgue measure of

the set A, I μ
τ = [η(τ−), η(τ )] ∀ τ ∈ Sa

μ, and S̃sc
μ is the union of all sets B ⊂ [0, η(T )]

is such that d|μsc| is supported on θ(B) ⊂ [0, T ].

13.3.2 Weak Invariance and Stability

In this subsection, we state invariance and stability results for the class of impulsive
control systems currently considered. Under some additional assumptions, it adapts
the corresponding results for different classes ofmeasure-driven differential systems,
notably, differential inclusions, which have been developed over the years in [32, 41,
42, 47], by migrating some results derived for the conventional context, [21].
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From now on, let ( f, G) denote the measure-driven differential system given by
(13.2). Consider a closed set S ⊂ R

n .
We say that the system (( f, G), S) is weakly invariant if ∀ x0 ∈ S, ∃ (x, (u,ϑ))

with u and ϑ satisfying (13.4) and (13.5) such that (13.2) holds with x(0) = x0, then
x(t) ∈ S ∀ t . If this inclusion holds for all feasible controls, then, we say that the
strong invariance property is satisfied.

The lower Hamiltonian of system (13.2) is defined as the set-valued map

Hl
f,G(t, x, ξ) := min{Hl,a

f,G(t, x, ξ), Hl,c
f,G(t, x, ξ)},

where

Hl,a
f,G(t, x, ξ) = min{〈ξ, G(t, x, ũ(s))ṽ(s)〉 : ũ(s) ∈ Ω, ṽ(s) ∈ Vt },

∀s ∈ [η(t−), η(t)] if t ∈ Sa
μ,

Hl,c
f,G(t, x, ξ) = min{〈ξ, E(t, x, u, v, w)〉 : u ∈ Ω, v ∈ V̄t (w),

w ∈ [0, 1]}, if t ∈ [0, T ] \ Sa
μ,

where E(t, x, u, v, w) := f (t, x, u)w + G(t, x, u)v(1 − w), V̄t (w) = K if w > 0
and V̄t (0) = Ṽ (t), being the graph of Ṽ (t), ∀t ∈ Ssc

μ , defined by the set of pairs

(t, v) = (θ(s), ṽ(s)), such that ṽ(s) ∈ K ∩ Bk
1 (0)∀s ∈ S̃sc

μ , and
∫

A ṽ j (s)ds =
μ

j
sc(θ(A)), j = 1, . . . , k, ∀A ⊂ S̃sc

μ . Note that, the function θ(·) is injective in

S̃sc
μ . Since w ∈ [0, 1] asserts whether, at a given point in time the measure is

absolutely continuous—ifw > 0—or singular—ifw = 0—, the graph of V̄t is given
by (0, Ṽ (t)) for w = 0, and (w, K ), where K is the cone defining the range of the
control measure, for w ∈ (0, 1]. Above and in what follows, Bk

1 (0) denotes the unit
ball in Rk centered at the origin.

The fact that we consider controlled measure-driven differential equations—
where the measure μmight exhibit the three components of its canonical decomposi-
tion, absolutely continuous, singular continuous, and atomic—makes the expressions
of the “Hamiltonian” rather complex. In order to connect with the concepts for con-
ventional systems with which the reader might be more familiar, it should be noted
that Hamiltonian in Mechanics corresponds to the so-called Pontryagin function
when evaluated along the optimal control process that reflects the maximal (w.r.t. to
the defined performance criterion) total energy of system. The term “lower Hamil-
tonian” used by the authors in the chapter reflects the total energy of the control
system which becomes minimal by selecting an admissible control function.

In the control context, weak invariance is a property of a pair (dynamic control
system specified by a certain velocity vector field f , set of points of the state space
denoted by S) that holds when there is at least one control function for which the state
trajectory remains within the given set once it was initiated there. Thus, if the lower
Hamiltonian, Hl(t, x, ξ), is always nonnegative at any point (t, x)—where x ∈ S
is the value of the state variable at time t—whenever, the adjoint variable takes on
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some value ξ in the proximal normal cone of the set S at x , then this means that there
is at least one admissible control function whose value is such that does not point
the state trajectory outwards the set S.

Now, we are ready to state the main invariance result which extends previous
results, [32, 41, 42], to the class of impulsive systems considered here.

Proposition 13.1 Consider the system (( f, G), S) as defined above.
If ∀x ∈ S, and ξ ∈ N P

S (x), we have that Hl
f,G(t, x, ξ) ≤ 0, then the system

(( f, G), S) is weakly invariant.

The proof of this result is inspired in the one of [42] and requires additional
hypotheses, notably,

H1 ∀(t, x) ∈ [0, T ] × R
n , Ē(t, x) and Ḡ(t, x) are nonempty, convex, and compact

sets.
H2 The set-valued maps Ē(·, ·) and Ḡ(·, ·) are upper semi-continuous.
H3 There are constants a and b such that, ∀(x, t) ∈ [0, T ] × R

n , ∀vE ∈ Ē(t, x) and
∀vG ∈ Ḡ(t, x)

max{‖vE‖, ‖vG‖} ≤ a‖x‖ + b.

where Ḡ(t, x) = {G(t, x, u)v : u ∈ Ω, v ∈ K ∩ M B1(0)} and Ē(t, x) = {E(t, x,

Ω, V̄t (w),w) : w ∈ [0, 1]}, being M some sufficiently large in the sense that M ≥
‖dμ‖T V for any (( f, G), S) invariant control process. Here, ‖dμ‖T V denotes the
total variation norm of the measure μ. The outline of a simple proof of this result,
in a context that requires the Lipschitz continuity of the mappings f and G w.r.t.
also to the time variable, consists of using the above-mentioned re-parameterization
procedure in order to construct an equivalent conventional dynamical control sys-
tem or which invariance results are already available. Then, the above proposition
results from expressing these conditions in terms of the data of the original system
by writing the conditions in the original parametrization.

Moreover, the above proposition can be extended from finite horizon to [0,∞) if
we impose the additional assumption

H4 ‖μ‖T V < ∞, and ∀τ > 0, lim
t→∞ |μ|([t, t + τ ]) = 0.

Remark that the invariance conditions provided in Proposition 13.1 are given in
the form of a decreasing function condition, which, for a certain choices of functions,
notably, a pair of Lyapunov functions, yield stability conditions.

Therefore, we use this result in order to provide stability conditions for the class
of impulsive control systems considered in this chapter, and thus, extending the work
in [41, 47].

Proposition 13.2 Let us assume all the hypotheses considered above for the data of
our impulsive dynamic control system in the infinite horizon context.

Assume also that there is a Lyapunov pair (V, W ) that satisfies the following
conditions:
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• Positive definiteness: V (t, x) ≥ 0 and W (t, x) ≥ 0 for all (t, x) ∈ [0,∞) × R
n,

and W (t, x) = 0 if and only if x = 0;
• Growth: the set {x ∈ R

n : V (t, x) ≤ r} is compact for all ∀r ≥ 0 and ∀t;
• Infinitesimal decay: ∀(t, x) ∈ [0,∞) × R

n, ∃(u,ϑ) ∈ U × I s.t., ∀(ν, ζe) ∈
∂P V (t, xe)

Hl
f,G(t, xe, ν, ζe) ≤ −W (t, x).

Then, x = 0 is an asymptotically stable equilibrium.

The lower Hamiltonian is now adapted to accommodate both the extended tra-
jectory and the time dependence, i.e.,

Hl
f,G(t, xe, ν, ζe) = min{Hl,a

f,G(t, xe, ζe), Hl,c
f,G(t, x, ν, ζ)},

where Hl,c
f,G(t, x, ν, ζ) = min

u∈Ω,v∈V̄t (w),w∈[0,1]
{ν̄(w) + 〈ζ, E(t, x, u, v, w)〉}, with ν̄(w) =

ν if w > 0, and ν̄(0) = 0, and ζe and xe denotes that the evolution along the jump
is considered, i.e., ζ̃τ (s) ∈ ∂P

x V (t, x̃τ (s)), ∀s ∈ η̄(s) = θ−1(τ ).

Regarding the literature on optimal control for impulsive systems, we refer to
[4–6, 9, 10, 40, 50] for necessary conditions of optimality, to [32] for Hamilton–
Jacobi–Bellman results, and to [34] for existence results.

13.3.3 Euler Solution

In this subsection,we introduce the notion ofEuler solution for the considered class of
impulsive control systemswhich is an appropriate concept whenwe have to deal with
sampled-data trajectories and feedback control as it is the case of the implementation
of MPC schemes.

Under the standing assumptions and hypothesis H1-H4, the Euler solution is
well defined. However, the MPC scheme requires additional assumptions in order to
ensure existence of solution for the associated family of optimal control problems,
[34], and, in line with [30], conditions on its design parameters.

Let us fix a feasible control strategy formed by a conventional control u ∈ U , and
an impulsive control ϑ ∈ I, whose associated measure dμ ∈ K defined on a given
general time interval [a, b] has a finite total variation measure d|μ|. Then, consider
the following initial-value problem:

dx(t) = f (t, x(t), u(t))dt + G(t, x(t), u(t))dϑ(t), t ∈ [a, b], (13.11)

x(a) = x(a−) = x0.

Along the lines of [32], we consider, the impulsive Euler solution by first recalling the
re-parameterization function (13.10), and the set-valued map η̄ : [a, b] → B([a, b])
defined above to be
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η̄(t) =
{ {η(t)} ifμ({t}) = 0

[η(t−), η(t)] ifμ({t}) �= 0

Then, we define a partition on the range of η̄N as follows: π = {s0, s1, . . . , sN },
with s0 = a and sN = η(b+). The diameter of the partition π is defined by απ :=
max{si − si−1 : 1 ≤ i ≤ N } as depicted in Fig. 13.2.

For i = 1, . . . N , we associate to each node point si of the partition πN , a node
point, ti , in the t-domain by ti = θ−1(si ), being t0 = a. Remark that, for each partition
point on the range of η̄ there corresponds only one point in πN if is in a subset of
the original time on which the measure μ is continuous or exhibits sufficiently small
atoms. However, if there is a significant (relatively to the distance between two
samples in the re-parameterized domain) atom at some time τ , then the interval η̄(τ )

might contain multiple consecutive points of πN . Let si−
τ

= min{si ∈ πN : si ∈ η̄(τ )}
and si+

τ
= max{si ∈ πN : si ∈ η̄(τ )}, then we may define the approximating measure

dμN as follows. For i = 0, . . . , N − 1:

dμN (t) :=

⎧
⎪⎪⎨

⎪⎪⎩

dμ(t), if t ∈ [ti , ti+1) with ti+1 > ti
i+
τ∑

i=i−
τ

(si+1 − si )viδti , if t is such that η(t) > η(t−)
(13.12)

where the vectors vi , for i = i−
τ . . . i+

τ , are such that |vi | = 1,
j∑

i=i−
τ

(si+1 − si )vi ∈ K

and
i+
τ∑

i=i−
τ

(si+1 − si )vi = μ({t}). Notice that dμN coincides with dμ whenever the

singular atomic component is absent.

Fig. 13.2 Sampling scheme
(courtesy from [31])
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The impulsive Euler polygonal multifunction xe
πN
—meaning the superscript e that

the solution is to be interpreted in the extended sense, and the subscript πN that a
partition with πN is being considered—is defined recursively as follows:

We start with the subinterval [t0, t1], and the dynamical system

dx(t) = f (t, x0, u(t))dt + G(t, x0, u(t))dϑ0(t),

with x(t0) = x0. By integration, the node point x1 := x(t1) is uniquely defined.
If the measure dμ0 associated with the impulsive control dϑ0 is singular atomic,
then [t0, t1] reduces to one point, i.e., t1 = t0 and the node x1 is computed by
integrating the singular dynamics with the sampled measure, given by (13.12)
with total variation s1 − s0, and along the extended trajectory and control. For
a general xi , we obtain the next node point xi+1 := x(ti ) by integrating dx(t) =
f (t, xi , u(t))dt + G(t, xi , u(t))dϑi (t) on [ti , ti+1] with x(ti ) = xi .
This procedure is carried out until all elements of the partition πN are covered, and

an impulsive Euler polygonal multifunction xe
πN

(t) is obtained on [a, b]. We recall
that, on the support of the atomic component of the measure dμ, the trajectory xe

πN

exhibits jumps with well defined arcs joining their endpoints.
By Impulsive Euler Solution (IES) of the initial-value problem (13.11), we mean

any set-valued map xe(·) which is the uniform limit of impulsive Euler polygonal
set-valued map xe

πN
(·), corresponding to some sequence πN as N → ∞ and, απN ,

the largest subinterval of the partition, is such that απN ↓ 0. Of course, this uniform
limit also holds for the sequence of arcs joining the endpoints of the jumps.

Similar arguments to those in [32] that, under all the assumptions considered in
this chapter, a IES exists and have a number of desirable properties, namely:

(a) At least an IES xe(t) exists for system (13.11);
(b) Any IES solution to (13.11), interpreted in the extended sense that is by con-

sidering the variation along the arc joining the jump endpoints whenever t is an
atom of the control measure, has linear growth;

(c) Any IES solution to (13.11) is consistent with other solution concepts, namely
the one of robust solution presented in Sect. 13.2.

13.4 Model Predictive Control of Impulsive Systems

Now, we introduce the sampled-data MPC scheme for the class of impulsive control
systems (IMPC), (13.2), considered in this chapter.

The construction of the feedback control law is achieved by using a sampled-data
IMPC strategy.

Consider a sequence of sampling instants π := {ti }i≥0 in [0,+∞) with inter-
sampling times δi > 0 such that ti+1 = ti + δi for all i ≥ 0. The feedback con-
trol is obtained by solving iteratively online open-loop optimal control problems
P(ti , xi , T ) at each sampling instant ti ∈ π, every time using the current measure of
the state of the plant xi .
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P(ti , xi , T ) Minimize W (ti + T, x(ti + T )) +
∫ ti +T

ti

Lac(s, x(s), u(s))ds

+
∫

[ti ,ti +T ]
Ls(s, x(s), u(s))dϑ(s) (13.13)

subject to dx(t) = f (t, x(t), u(t))dt + G(t, x(t), u(t))dϑ(t)∀t ∈ [ti , ti + T ],
(13.14)

x(ti ) = xi , (13.15)

u ∈ U|[ti ,ti +T ],
ϑ ∈ I|[ti ,ti +T ],
x(ti + T ) ∈ S, (13.16)

where S ⊂ R
n is a given closed set, and the mappings W : [ti , ti + T ] × R

n → R,
Lac : [ti , ti + T ] × R

n × R
m → R and Ls : [ti , ti + T ] × R

n × R
m → R

k are cho-
sen in order to ensure the purposes of the IMPC scheme and, in particular, its stability.
Here, V|A denotes the set of functions V restricted to the set A. The remaining ingre-
dients were introduced in Sect. 13.2.

The IMPC algorithm is defined according to a receding horizon scheme that takes
into account the specificities of the impulsive control considered in this work.

1. Initialization. Set parameters, specify initial data, and iteration counter i = 0.
2. Sample the current state of the plant x(ti ) = xi .
3. Solve problem P(ti , xi , T ) to obtain the open-loop optimal conventional control

ūi ∈ U|[ti ,ti +T ] and impulsive control ϑ̄i ∈ I|[ti ,ti +T ].1
Obviously that whenever μ̄i ({t}) �= 0 (i.e., if the optimal control measure has an
atom, including the time endpoints ti and ti + T ), then, the optimal arc joining
the associated trajectory endpoints has to be defined by computing the optimal
pair of functions (ūi

t (·), v̄i
t (·)) defined on the associated emerging interval [t, t +

|μ̄i ({t})|].
4. Determination of the next sampling instant. This is given by ti + δi where δi :=

min{δ, τ } and τ = min{t ∈ [0, δ] : μ̄i ({ti + t}) �= 0}. That is, the next sampling
instant is the earliest time in which either a time interval of duration δ elapses, or
an atom of μ̄i occurs.
It is important to remark that the case of τ = 0makes sensewhen the perturbations
affecting the system are extremely fast, and it is “physically” feasible to “increase
the sampling speed”2 so that the state can be sampled at several midway points
of the jump at ti .

1This problem can be solved by using direct methods or indirect methods which take advantage of
necessary conditions of optimality, possibly, in the form of a maximum principle such as the ones
proved in [9, 10].
2Here, we consider a mathematical abstraction of a scheme whose physical realization may involve
sampling “during” the “atomic activities” at a frequency several orders of magnitude higher than
the one when the trajectory is evolving continuously.
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5. Apply to the plant the control pair ūi and ϑ̄i during the interval [ti , ti + δi ], being
the control strategy values computed for t ≥ ti + δi discarded.

6. Now the optimization time horizon slides, i.e., we consider ti+1 = ti + δi , we let
i = i + 1 and repeat the procedure from step 2.

One might wonder as a remark to step 4, whether an infinite number of jumps
might occur leading to, what in the context o hybrid control, is designated by Zeno
behavior. Under the assumptions of existence of solutions that we impose in our
framework which lead to the existence of feasible trajectories whose associated
control measures have finite total variation in any finite time interval, the answer
is no. Thus, there are no mathematical difficulties in dealing with the accumulation
of a countable number of jumps, or even with an uncountable number of singular
continuous evolutions if the finiteness of their total variation is observed. Obviously,
in our context, there is no need of imposing the assumption/restriction of a threshold
time interval separating consecutive jumps. It is important to have in mind that the
control synthesis leads to control processes which, in the engineering practice, are
approximated by “sufficiently close implementable/computable” controls.

For a given partition π, the control law (u∗
π,ϑ

∗
π) resulting from the concatenation

of the sequentially computed (ūi , ϑ̄i ) is a “sampling-feedback” control law, l, since
during each sampling interval, the control (u∗

π,ϑ
∗
π) depends on the state x∗(ti ) in the

extended sense as defined in Sect. 13.2. More precisely, the resulting trajectory is
given by

dx∗
π(t) = f (t, x∗

π(t), u∗
π(t))dt + G(t, x∗

π(t), u∗
π(t))dϑ∗

π(t), t ≥ t0,

x∗
π(t0) = x0

where

(u∗
π, dϑ∗

π)(t) = (lu, dlϑ)(t, x∗
π(�t�π)), ∀t ≥ t0

:= (ūi , dϑ̄i )(t; �t�π, x∗
π(�t�π)), t ∈ [ti , ti + δi ], i = 1, . . . .

Here, the function t �→ �t�π gives the last sampling instant just before t that is

�t�π := max
i

{ti ∈ π : ti ≤ t}.

Remark that this does not preclude the possibility of several consecutive ti ’s taking
on the same value.

Similar sampled-data frameworks, using continuous-time models and sampling
the state of the plant at discrete instants of time, were adopted in [18, 23, 26, 27,
29, 36]. The main difference here concerns the new steps in the receding horizon
strategy that had to be introduced to deal with the discontinuities of the trajectory.

A key idea in the above IMPC scheme consists in the fact that at least one sampling
point—and, in general, more than one—at every time the trajectory jumps, has to be
ensured (see Fig. 13.3).
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Fig. 13.3 Sample times
include the support of atoms
of the measure μ associated
with the impulsive control

dµ

t t+ t+T
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Suppose that this were not the case, and that τ ∈ (ti , ti + δ) is a point in time in
which the trajectory has a discontinuity. Then, for t ∈ (τ , ti + δ), neither ‖x∗

π(�t�) −
x∗

π(t)‖ nor ‖l(x∗
π(�t�)) − l(t, x∗

π(t))‖ can be ensured to be smaller than an arbitrary
quantity by reducing the size of δ ≥ 0. Thus, a bound on the error between the
sampled-data feedback and the “ideal” continuous feedback required to establish
stability can not be guaranteed.

However, in the impulsive sampled-data framework adopted for the IMPC scheme
proposed here, the solution to optimal impulsive control problem provides not only
the currently conventional control function but also the sequence of future sampling
instants through its impulsive component. Note, that the fact that the trajectory in an
extended sense can be sampled along the arc joining the jump endpoints is critical
to ensure the continuity property relating the error bound and sampling frequency
required to guarantee the stability of the IMPC scheme.

13.5 Stability of the Impulsive MPC Scheme

In this section, stability results for this framework are given. Without any loss of
generality, we assume that the origin of the state space is the equilibrium point of
interest and the goal of the MPC scheme is to drive the system to this equilibrium
point. We show that stability is guaranteed if the design parameters of the optimal
control problem, notably the optimization time horizon T , the mappings Lac, Ls and
W , and terminal constraint set S satisfy certain conditions. While, the ingredients
of the objective function ((Lac, Ls), W ) have to satisfy the properties of a control
Lyapunov pair within the set S, the system (( f, G), S) must be weakly invariant.
Obviously, the set feasible control processes of (P(ti , xi , T )) must be nonempty,
and a solution to (P(ti , xi , T )) must exist.

We start by addressing the feasibility and existence of solution to the optimal
control problems to be solved recursively in the IMPC scheme, and, then, we provide
sufficient stability conditions of the Lyapunov type.
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In order to show the sufficient conditions for the nonemptiness of the set of
feasible control processes as well as the existence of solution of each one of the
(P(ti , xi , T ))’swe need additional hypotheses that also encompass the IMPC scheme
design ingredients.

Consider the following assumptions, collectively designated by feasibility condi-
tion (FC), on the design parameters time horizon T , functions ((Lac, Ls), W ), and
terminal constraint set S.

F1 The set S is closed and contains the origin.
F2 The functions Lac and Ls satisfy the following conditions: continuity in their

arguments, for L(t, 0, 0) = 0, and there is a continuous positive definite and
radially unbounded function M : Rn → R+ such that ‖L(t, x, u)‖ ≥ M(x) for
all u ∈ Ω , where L = col(Lac, Ls).

F3 The extended “velocity” set V e, defined by

V e = {(r, ( f (t, x, u), 0, 1)w + (G(t, x, u)v, 1, 0)(1 − w),w, )) :
r ≥ Lac(t, x, u)w + Ls(1, x, u)v(1 − w),

u ∈ Ω, v ∈ Vt (w), w ∈ [0, 1]},

where (as before) Vt (w) = K if w > 0 and Vt (0) = K ∩ B1(0), is convex.
F4 The function W is positive semi-definite and continuously differentiable.
F5 The set S is reachable within a time interval of duration T from any initial state.

That is, for every x0 there exists a control pair u ∈ U|[t0,t0+T ] and ϑ ∈ I|[t0,t0+T ]
satisfying

x(t0 + T ; t0, x0, u,ϑ) ∈ S.

Now, we are in position to state the following result guaranteeing the feasibility
of the IMPC scheme.

Theorem 13.1 Assume that the standing hypothesis and that H1–H4 hold.
If the design parameters satisfy (FC), then a sequence of control processes which

are optimal solutions to the problems P(ti , xti , T ), i = 1, . . . , exists and the trajec-
tory generated by the IMPC strategy has no finite escape times.

The proof is a straightforward extension and combination of previous results on
(i) existence of solution to impulsive control problems from [11, 34], and (ii) the
overall trajectory associated with the control strategy generated by the proposed
IMPC scheme has no finite escape times, [26, Sect. 6.2]. For the latter conclusion,
just note that, by re-parameterizing the time variable as previously, a sequence of
equivalent conventional optimal control problems is obtained (this is possible under
our assumptions) to which the arguments in [30] can be applied.

Now, in order to state our result on sufficient conditions for the stability of control
strategies generated by the IMPC scheme expressed in terms of a pair of control
Lyapunov functions, let us define the following Lyapunov-like stability condition
(SC) to be satisfied by (13.2).
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For a given time interval of duration T , there are mappings ((Lac, Ls), W ) and an
endpoint constraint S as defined in the statement of P(ti , xti , T ), such that the set of
controls (u,ϑ) ∈ U × I restricted to the considered optimization horizon simulta-
neously satisfying the conditions (S1) and (S2) below is nonempty. These conditions
are:

(S1) ∀ξ ∈ NS(x),

0 ≥
{ 〈ξ, G(t, x, ũ(s))ṽ(s)〉, ∀s ∈ η̄(t), ∀t ∈ Sa

μ

〈ξ, E(t, x, u, v, w)〉,where v ∈ V̄t (w), w ∈ [0, 1], ∀t ∈ (
Sa

μ

)c
,

and

(S2) ∀(ν, ζe) ∈ ∂P W (t, xe),

0 ≥

⎧
⎪⎪⎨

⎪⎪⎩

〈ζ̃t (s), G(t, x̃t (s), ũ(s))ṽ(s)〉 + Ls(t, x̃t (s), ũt (s))ṽt (s),
∀s ∈ η̄(t), ∀t ∈ Sa

μ

ν̄(w) + 〈ζ, E(t, x, u, v, w)〉 + e(t, x, u, v, w),

where v ∈ V̄t (w), w ∈ [0, 1], ∀t ∈ (
Sa

μ

)c
.

Here, e(t, x, u, v, w) = Lac(t, x, u)w + Ls(t, x, u)v(1 − w) and all other
ingredients—functions, sets, and constraints on control values—are as defined in
Sect. 13.3.2.

Our main result is as follows:

Theorem 13.2 Assume that hypotheses H1–H4 and (FC) hold. Moreover, consider
that the design parameters in P(ti , xti , T ) satisfy (SC), then the generated IMPC
control strategy is stabilizing, i.e., for a sufficiently small inter-sample time δ, we
have ‖x∗(t)‖ → 0 as t → +∞.

Let us consider, the following impulsive dynamic control system and let us con-
struct a feedback impulsive control strategy (u,ϑ) that can be generated by the IMPC
scheme to drive the system from its initial time to the origin as t → ∞. The data is
as follows:

Example 13.3

{
dx = Axdt + g(x, u)dμ, x(0) = col(1, 0),
u(t) ∈ [−1, 1], μ ∈ C∗([0,∞),R+),

(13.17)

where A =
[

0 1
−1 0

]
,g(x, u) = h(x)ḡ(x, u),h(x) = max{sgn+

0 (|x2| − |x1|), 0}, and
ḡ(x, u) = (A − sgn+

0 (x1)uI )x .

Here, I is the identity matrix in R
2, sgn+

0 (a) = 1 if a ≥ 0 and sgn+
0 (a) = −1, oth-

erwise, and C∗([0,∞);R+) is the space of positive measures on [0,∞).
From a simple inspection, it is easy to conclude that there are regions of the

state space in which the system is not controllable. Let Ri , i = 1, 2, 3, and 4, are
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defined by the set of pairs (x1, x2), respectively, satisfying −x1 ≤ x2 ≤ x1 for x1 ≥
0, −x2 ≤ x1 ≤ x2 for x2 ≥ 0, x1 ≤ x2 ≤ −x1 for x1 ≤ 0, and −x2 ≤ x21 ≤ x2 for

x2 ≤ 0. Notice that R2 =
4⋃

i=1

Ri . It is easy to see that it is not possible to control the

system in R1
⋃

R3, where the trajectory follows arcs of circumference with a radius
defined by the entry point at either R1 or R3. On the other hand, there are many
control strategies acting in the region R2

⋃
R4 that drive the system to the origin,

some of which even do not require impulses at all. So, in order to show our point, let
us consider that the absolutely component of the measure μ is absent.

The system dynamics clearly suggests that the Lyapunov function V (x1, x2) =
1
2 (x2

1 + x2
2 ) is a suitable one for the control synthesis. Clearly, under the assumptions

on dμ, we have:

• If x ∈ R1
⋃

R3, then V̇ (x) = x1 ẋ1 + x2 ẋ2 = 0.
• If x ∈ R2

⋃
R4, then dV (x) = x1dx1 + x2dx2.

Thus, one may choose u(t) = sgn+
0 (x1(t)) and dμ = π

2

∞∑

k=1

δ(k+ 1
4 )π(t), where δτ (t)

represents the unit Dirac impulse at t = τ . The choice of the impulses is natural
since, otherwise, the state variable would not move at the points were x1 = x2. It is
important to remark that the sign of x1 changes during the jump, and the ordinary
control u also has to change as the jump occurs. It is clear that the chosen control
function implies that V will decrease in the region R2

⋃
R4 when our extended

solution concept—the ordinary control may change as a jump occurs—is adopted.
After re-parameterizing the dynamics as defined above, we have, for the parameter

s varying from 0 to
π

2
, that

[ ˙̃x1(s)˙̃x2(s)
]

=
[−1 1

−1 −1

] [
x̃1(s)
x̃2(s)

]

and, thus, ˙̃V (x̃(s)) = −2x̃2
1 (s) − x̃2

2 (s), which is clearly negative for x �= 0. Notice

that the “magnitude” of the jump,
π

2
, is needed in order to fully transverse either the

region R2 or R4 and that the jump is not just specified by the pair of its endpoints
but rather an arc that satisfies the singular dynamics. As shown in Fig. 13.4, in the

absence of perturbations, the trajectory will have jumps at the times tk = 2k + 1

4
π,

satisfying ‖xt+
k
‖ = e− π

2 ‖xt+
k
‖. The jumps will be from the line x1 = x2 to the line

x1 = −x2, alternating in the x2 > 0 and the x2 < 0 half spaces.
The data of this example satisfies strong assumptions whichmakes the asymptotic

stability to be established with the usual Lyapunov method, thus dispensing with the
sophistication of the above results. However, it is not difficult to check the conditions
derived in this section are sufficient to ensure the stability of the proposed control
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Fig. 13.4 The thicker and
the thinner lines represents,
respectively, the absolutely
continuous and the jump
evolutions

strategy, being the sets S chosen as Sk = e−( π
2 )k

B1(0) where B1(0) is the unit ball
centered at the origin.

In what concerns the sampling strategy, the sparsest one should include the points
tk (just before the jump) and other points short while after the jump. As mentioned
above, ideally, one can consider taking several samples in between tk and t+

k in order
to check the variation of the sign of x1. Of course, in the engineering practice, this
abstraction is considered by approximating the impulsive controls by appropriate
absolutely continuous controls, and, then, practical high-frequency sampling could
take place in the support of the chosen dμ.

13.6 Outline of the Proof for Stability Result

The assumption that the set S will be reached by the proposed IMPC scheme allows
us to assert that there exists some time t such that x(t) = xt ∈ S. Remark that this
“crude” assumption could have been replaced by a more natural one involving the
system’s controllability that would allow us to show that the set S would be attained
at some finite time.

Hence, it is natural to assume (S1) component of the stability condition (SC).
Thus, a straightforward application of Proposition 13.1 in Section 13.3.2, which can
be regarded as an extension of the invariance result in [42], implies that there exists
a control pair (ūt , ϑ̄t ) such that, for some δ1 > 0, and ∀τ ∈ [t, t + δ1), we have

x(τ ; t, xt , (ūt , ϑ̄t )) ∈ S (13.18)
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Here and in what follows, x(b; a, xa, (ua,ϑa)) is a short notation for the value of
the state variable at time b when x(a) = xa and the control (ua,ϑa) is applied in the
interval [a, b].

From the fact that there is a set of feasible control processes (u,ϑ) for which (S1)
and (S2) hold simultaneously, we may conclude from Proposition 13.2 in Section
13.3.2, which can be regarded as an extension of the Lyapunov stability result in [47]
that the control (ūt , ϑ̄t ) may also be such that, for some δ2 > 0, we may have that,
∀τ ∈ [t, t + δ2),

W (τ , x(τ ; t, xt , (ūt , ϑ̄t ))) − W (t, xt )

≤ −
∫ τ

t
Lac(s, x(s), ū(s))ds −

∫

[t,τ ]
Ls(s, x(s), ū(s))dϑ(s). (13.19)

Clearly, both conditions hold for δ̄ = min{δ1, δ2}. A straightforward application
of the arguments from [26] (recall that, under our assumptions, the impulsive con-
trol problem considered here can be re-parameterized in the time variable so that
a conventional optimal control problem is obtained) are used to show that if both
(13.18) and (13.19) are satisfied, then a certain MPC value function V is shown to
be monotone decreasing. More precisely, for some δ > 0, δ < δ̄, small enough and
for any t ′′ > t ′ > 0,

V (t ′′, x∗(t ′′)) − V (t ′, x∗(t ′)) ≤ −
∫ t ′′

t ′
M(x∗(s))ds. (13.20)

where M is the continuous, radially unbounded, positive definite function considered
in the assumption F2.

Now, let us consider a time partition π defining the sampling strategy, and denote
the associated MPC value function by Vπ . In a sufficiently small neighborhood of t
is defined as

Vπ(t, x) := V�t�π
(t, x)

where V�t�π
(t, xt ) is the value function for the optimal control problem P(t, xt , T −

(t − �t�π)) (the optimal control problem defined where the horizon is shrank in its
initial part by t − �t�π).

Now, by patching together a sufficiently large number of adjoint small intervals
[t ′, t ′′) so that (13.20) holds in each one of them, we can then write that for any t ≥ t0

0 ≤ Vπ(t, x∗(t)) ≤ Vπ(t0, x∗(t0)) −
∫ t

t0

M(x∗(τ ))dτ .

Since Vπ(t0, x∗(t0)) is finite, we conclude that the function t �→ Vπ(t, x∗(t)) is
bounded and, thus that t �→ ∫ t

t0
M(x∗(τ ))dτ is also bounded. Therefore, t �→ x∗(t)

is bounded and, since both f and G are continuous and takes values on bounded
sets of (t, x, u), it is clear that, after the re-parameterization considered in Sect. 13.2
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that the map s �→ ˙̃x∗(s), for all s ∈ η̄(t) is also bounded. All the conditions required
to apply Barbalat’s Lemma [28] are met, it follows from its application that the
trajectory x̃∗(·) converges asymptotically to the origin and, since x∗(t) = x̃∗(η(t))
L − a.e. so does the x∗(·).

We just proved the attractiveness property, i.e., for a sufficiently small inter-sample
time δwehave ‖x∗(t)‖ → 0 as t → +∞. The stability in theLyapunov sense follows
from the continuity of V .

13.7 Conclusion

In this chapter, a novel impulsive model predictive control scheme was introduced.
The novelty resides in the sampling scheme as well as in the fact that the “singular”
dynamics, i.e., the ones responsible for the trajectory jumps depends also on the con-
ventional control, besides the usual dependence on the time and state variables. The
motivation for this is clear from the wide classes of problems that can be considered
as it was illustrated in the introduction.

A key feature of the proposed IMPC scheme consists on the fact that the optimal
impulsive control strategy determines an appropriately adapted sampling strategy, in
the sense that the state variable is sampled, at least once, at the points of disconti-
nuity. This feature allows to ensure the stability of the overall IMPC scheme under
assumptions which are standard for the sufficiency of the Lyapunov type of stability.
This is the main result discussed and whose proof is outlined in this article.

It is important to note that the impulsive paradigm can be regarded as a very con-
venient mathematical abstraction to deal with systems with slow and fast dynamics.
An important feature of the proposed IMPC scheme in the context of a practical
implementation approximating the impulsive control is that it yields a feedback con-
trol strategy that includes information to adapt the sampling frequency to the “speed”
of the dynamics.
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Chapter 14
Robustness Issues in Control of Bilinear
Discrete-Time Systems—Applied
to the Control of Power Converters

Mohsen Vatani, Morten Hovd and Sorin Olaru

Abstract Recently, a controller design method based on Sum of Squares program-
ming has been developed for the control of discrete-time bilinear systems, and appli-
cations to power converters have been studied. In the present work, robustness issues
arising in these designs are studied. First, the issue of change of operating point is
addressed, and relevant stability analysis is developed. For linear systems, one can
simply “shift the origin” of the deviation variables to obtain the same behavior for a
new operating point. For nonlinear systems, in contrast, one will experience changed
dynamics when applying the same controller at a new operating point (even after
“shifting the origin”). New criteria are introduced to verify the stability of designed
controller for other desired operating points. A related topic that is covered is the
introduction of integral action in the bilinear controller design, giving offset-free
control for persistent disturbances. The effectiveness of the proposed methods are
evaluated based on time-domain simulations of a boost converter.
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14.1 Introduction

The Sum of Squares (SOS) technique has received a lot of attention in control theory,
a reference point being Parrilo’s thesis, [15], in the year 2000, which showed SOS
effectiveness as a method for proving the non-negativity of polynomial functions
in control analysis and design. Ever since, SOS programming has been used in
implementation of different numerical analysis tools, [3–6, 9, 14, 16].

The main idea of using SOS in the stability analysis of discrete-time systems is
to prove that the decrease in the candidate Lyapunov function in each sampling time
is a SOS, and thus, positive. Using the SOS method for stability investigations in
the literature upon these principles is well understood and represents a systematic
methodology for constructing a Lyapunov function. Furthermore, the design of sta-
bilizing controller can benefit from SOS programming as long as the control degrees
of freedom can be enhanced to ensure that the decrease in the Lyapunov function is
a SOS, see for example [19] as an exemplification on this line.

It is awell-known fact that the state space averagedmodel of a class of dc/dc power
converters, including boost, buck–boost, Cuk, flyback, and so on, are described by
bilinear models which include the product of the duty cycle and states. In addition,
it is recently shown that the dynamics of modular multilevel converters are also
described by a discrete-time bilinear model, [20]. In most of the previous works,
the bilinear terms have usually been neglected and the controller design process is
performed for the linear approximated model by the small signal assumption. This
strategy cannot guarantee the stability of the equilibrium point especially for large
disturbances.

In recent years, several works have been devoted to the problem of stabilizing the
bilinear state space model of power converters. In [1], the stabilization and controller
design process of a continuous-time bilinear system using LMI feasibility problems
is discussed and applied on a Cuk converter. In [7], a piecewise-affine approximation
of the bilinear dynamic is presented and an estimation of the stability region is
found by using a piecewise-quadratic Lyapunov function. Afterward, the stability
analysis problem is converted into an optimization problem with LMI constraints
and the proposed method is applied on a buck–boost converter. In [12, 13], the
robust control design of bilinear dc/dc converters by LMI approaches is considered.
The stability conditions for affine state-feedback control laws by considering input
and state constraints for bilinear discrete-time systems are discussed in [17] and are
applied to a noninverting buck–boost converter.

The application of SOS programming methods in power engineering applications
have been recently reported in the literature, [2, 20]. In [18], the SOS programming
method is used to design a controller for a class of power converters with a discrete-
time bilinear averaged dynamic model and the superiority in the performance of the
proposed SOS-based control strategy are evaluated and compared with the available
control strategies in the literature for various dc/dc converters.
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In this work, robustness issues arising in the design of SOS-based controllers for
dc/dc power converters are discussed. First, the problem of shifting the origin of the
deviation variables is discussed. For linear systems, the same behavior is expected
after shifting the origin to the new equilibrium point. However, for nonlinear systems,
changes in the dynamical behavior may be observed when the systemmoves to a new
operating point. As a result, the designed controller for nominal operating point is
not necessarily stable for all other equilibrium points of the system. A new criterion
is introduced here to check the stability of the designed controller for other desired
operating points. Afterward, the robustness of the SOS controller to persistent distur-
bances is improved by augmenting the bilinear model of the system by an integration
state which provides offset free control for the desired states. The effectiveness of
the proposed methods are evaluated based on time-domain simulations of a boost
converter.

In the following, first, the general averaged discrete-time bilinear model of dc/dc
converters is developed in Sect. 14.2 and a coordinate transformation is performed
to transform the equilibrium point of the model to the origin. Then, the controller
design process for the discrete-time bilinear system based on SOS programming is
described in Sect. 14.3. In Sect. 14.4, the issues related to change of operating point
is discussed. The stability analysis for a set of desired operating points is investigated
while the system is controlled by using the SOS controller designed for the nominal
operating point. Section14.5 is devoted to offset the free control of desired states by
introducing an integral action in the bilinear model of the system. Finally, Sect. 14.6
concludes this work.

14.2 Averaged Model of the Power Converters

A wide variety of power converters are modeled as switched systems with a specific
model for each switching status as

switch status on : ẋ(t) = A1x(t) + B1v, (14.1)

switch status off : ẋ(t) = A2x(t) + B2v,

where state x represents capacitor voltages and inductor currents and vector v rep-
resents source voltages and diode voltages. A pulse width modulation (PWM) sig-
nal with switching frequency fs = 1/Ts controls the on/off status of the converter
switches. The sum of ton (time period in which the switch is in on state) and to f f (the
time period in which the switch is in off state) for each switch is equal to the switch-
ing period Ts . The duty cycle d is defined as the ratio of ton/Ts and consequently
tof f = (1 − d)Ts . Assuming that the inductor current is not saturated and by consid-
ering the duty cycle definition, the average model of the converter is formulated as

ẋ(t) = (d(t)A1 + (1 − d(t))A2)x(t) + (d(t)B1 + (1 − d(t))B2)v
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which can be simplified and reformulated as

ẋ(t) = A2︸︷︷︸
Ac

x(t) + (A1 − A2)︸ ︷︷ ︸
Bcb

x(t)d(t) + (B1v − B2v)︸ ︷︷ ︸
Bc

d(t) + B2v︸︷︷︸
dc

. (14.2)

Equation (14.2) is in the form of a standard bilinear continuous-time system:

ẋ(t) = Acx(t) + Bcbx(t)u(t) + Bcu(t) + dc,

where u(t) = d(t) is the input of the system. In general, for converters with more
than one switch, the averaged continuous-time bilinear model of the converter is
represented by

ẋ(t) = Acx(t) +
m∑

i=1

(Bcb,i x(t) + Bc,i )ui (t) + dc, (14.3)

where ui = di is the duty cycle of the i th switch and m is the number of switches.
The desired equilibrium operating point of the bilinear model of the converter is

nonzero. By defining the desired equilibrium state vector and input as xss and dss ,
respectively, the coordinate transformation is defined by

x̃ = x − xss, d̃ = d − dss . (14.4)

Substituting for the state variables and input from (14.4) in (14.3) yields

˙̃x(t) = Ac(x̃(t) + xss) +
m∑

i=1

(Bcb,i (x̃(t) + xss) + Bc,i )(d̃i (t) + dss
i ) + dc.

(14.5)

Equation (14.5) can be decomposed into two equations. The first equation represents
the relation between the desired equilibrium operating point and equilibrium input as

Acxss +
m∑

i=1

(Bcb,i xss + Bc,i )d
ss
i + dc = 0, (14.6)

while the second equation represents the dynamic of the converter in the form of a
standard bilinear system with its equilibrium point at the origin.

˙̃x(t) =
(

Ac +
m∑

i=1

Bcb,i d
ss
i

)

x̃(t) +
m∑

i=1

(Bcb,i x̃(t) + Bcb,i xss + Bc,i )d̃i (t). (14.7)



14 Robustness Issues in Control of Bilinear Discrete-Time Systems … 305

With respect to the static operation, Eq. (14.6) describes a hyperbolic curve in the
extended (xss, dss) space. For a given constant input vector dss , one has:

(

Ac +
m∑

i=1

dss
i Bcb,i

)

xss = −
m∑

i=1

Bc,i d
ss
i − dc (14.8)

and the existence/uniqueness of an equilibriumpoint is related to the singularity of the

matrix Ac +
m∑

i=1
dss

i Bcb,i . Conversely, the viability of the state xss as an equilibrium

point is related to the feasibility of the set of linear equations:

m∑

i=1

(Bcb,i xss + Bc,i )d
ss
i = −Acxss − dc, (14.9)

which depends on the number of inputs (m) with respect to the number of states (n)
and ultimately on the full row rank condition of the matrix:

[
(Bcb,1xss + Bc,1) . . . (Bcb,mxss + Bc,m

)]. (14.10)

Based on (14.7) and assuming a sampling period of Ts , the discrete-time bilinear
model of the converter, based on a forward Euler approximation, becomes

x̃k+1 = (TsAc + Ts

m∑

i=1

Bcb,i d
ss
i + I)

︸ ︷︷ ︸
A

x̃k

+
m∑

i=1

(TsBcb,i︸ ︷︷ ︸
Bb,i

x̃k + TsBcb,i xss + TsBc,i︸ ︷︷ ︸
Bi

)d̃i,k .

which is in the form of a standard discrete-time bilinear system as

x̃k+1 = Ax̃k +
m∑

i=1

(Bb,i x̃k + Bi )ũi,k . (14.11)

Throughout this chapter, the subscript k will refer to a discrete-time instant while a
subscript i will identify a specific matrix (as in (14.11) above) or a particular element
of a vector.

Example 14.1 The circuit diagram of a dc-dc boost converter is shown in Fig. 14.1
[12]. The states of the system are considered as the inductor current x1 = iL and
the capacitor voltage x2 = vC . The system parameters are RL = 0�, L = 100µH,
C = 200µF, R = 10�, vg = 12V, and Ts = 5µs. During the on state, the status
of the switch is S = 1 for the period of ton and the system matrices with respect to
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Fig. 14.1 Circuit diagram of
boost converter [12]

(14.1) is as follows

A1 =
[− RL

L 0
0 − 1

RC

]
, B1 =

[
1
L
0

]
, v = vg,

while during the off state, the status of the switch is S = 0 for the period of tof f =
Ts − ton and the system matrices with respect to (14.1) is as follows

A2 =
[− RL

L − 1
L

1
C − 1

RC

]
, B2 =

[
1
L
0

]
, v = vg.

The load voltage vo = vC = x2 is considered as the output which should be kept
at the desired voltage xss

2 = vre f = 24 V . By solving (14.6), the desired equilibrium
operating point and the equilibrium input are calculated as

xss
1 = v2

re f

Rvg
= 4.8, dss = vre f − vg

vre f
= 0.5 . (14.12)

The discrete-time bilinear model of the converter, with the origin as the equilib-
rium point, is calculated based on (14.11) as

x̃k+1 =
[

1 Ts (uss−1)
L

− Ts (uss−1)
L 1 − Ts

RC

]

x̃k +
([

0 Ts
L

− Ts
C 0

]

x̃k +
[

Ts xss
2

L

− Ts xss
1

C

])

ũk

=
[

1 −0.025
0.0125 0.9975

]
x̃k +

([
0 0.05

−0.025 0

]
x̃k +

[
1.2

−0.12

])
ũk (14.13)

14.3 Controller Design Based on the Sum of Squares

This section presents a brief introduction to the SOS-based controller design proce-
dure for the stabilization of the discrete-time bilinear system (14.11) to the origin,
proposed in [19].

The main tool for analyzing the stability of nonlinear systems is the Lyapunov’s
direct method:
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Theorem 14.1 Lyapunov stability for discrete-time systems: If in a positive invariant
neighborhood D ⊆ R

n of the equilibrium state x̃e = 0 of a discrete-time system
represented by x̃k+1 = f (x̃k), there exists a function V (.) : D → R such that

W1(‖x̃‖) ≤ V (x̃) ≤ W2(‖x̃‖), ∀x ∈ D

where W1 and W2 are K∞ functions,1 and the rate of change ΔV (x̃) = V ( f (x̃)) −
V (x̃) is negative definite in D\{0}, then the equilibrium state is asymptotically stable
in D.

A quadratic Lyapunov function V (x̃) = x̃T Px̃ is used in this paper for some given
weighting matrix P > 0. The first assumption in Theorem14.1 is satisfied for this
function by considering:

λmin(P) ‖x̃‖22 ≤ x̃T Px̃ ≤ λmax (P) ‖x̃‖22
whereλmin andλmax are theminimumandmaximumeigenvalues ofP. Consequently,
the closed-loop stability is guaranteed by ensuring that the candidate quadratic Lya-
punov function is decreasing in each time step:

V (x̃k) − V (x̃k+1) = x̃T
k Px̃k − x̃T

k+1Px̃k+1 > 0. (14.14)

To fulfill (14.14) within all time steps, a stabilizing controller should be designed.
The stabilizing controller is considered in the form of ratio of two polynomials as

ũi (x̃) = ci (x̃)

c0(x̃)
, (14.15)

where ci (x̃) are polynomials of orders within [1, nn], c0(x̃) is a polynomial of order
within [0, nd ], and ũi is the number i input. Although the example described here
has a single input, the controller design is presented in a general way, allowing for
multiple-input systems. All of the inputs have the same denominator polynomial
c0(x̃). The controller is obliged to satisfy the control constraints of the form

|ũi (x̃)| ≤ ũi,max . (14.16)

To design the controller (14.15) such that it satisfies (14.14) and (14.16), the SOS
programming method is exploited. The basic idea behind the SOS programming
method for checking the nonnegativity of a polynomial p(y) is to replace the non-
negativity with the condition that the polynomial can be transformed in the SOS form
[15].

1See [8] for the definition of K∞ functions.
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Definition 14.1 For y ∈ R
n , a polynomial p(y) is a SOS if there exist some poly-

nomials f j (y), j = {1, 2, . . . m}, such that

p(y) =
m∑

j=1

f 2j (y).

The SOS decomposition can be computed by semi-definite programming by using
the available software. In this paper, the software package YALMIP [10, 11] is used
for solving the SOS decomposition.

In the following, the controller design procedure, using SOS programming
method, to stabilize the system to the origin is discussed. The denominator poly-
nomial c0(x̃) is assumed to be an SOS polynomial. However, to guard against exces-
sively large inputs, the denominator polynomial is specified as c0(x̃) = ć0(x̃) + 1,
with ć0(x̃) being an SOS polynomial, thus ensuring that the denominator polynomial
cannot be very small anywhere inRn . Furthermore, the controller is reformulated as:

ũi (x̃) = C(x̃)x̃
ć0(x̃) + 1

, (14.17)

where C(x̃) is a polynomial matrix.
For the sake of simplicity, the bilinear system dynamics is expressed as

x̃k+1 = Ax̃k + (Bx̃ + B)ũk, (14.18)

where Bx̃ = [
Bb,1x̃k Bb,2x̃k . . . Bb,m x̃k

]
, B = [ B1 B2 . . . Bm ], and m is the num-

ber of inputs.

Theorem 14.2 Region of convergence: Given a quadratic function V (x̃) = x̃T Px̃,
a scalar γ > 0, polynomials ci (x̃), i ∈ [1, . . . , m], and SOS polynomials ć0(x̃) and
s1(x̃, z), a bilinear discrete-time system (14.18) in closed loop with the control law
(14.17) is stable ∀x̃ with x̃T Px̃ < γ, provided that

[
x̃
z

]T

M(x̃)

[
x̃
z

]
− s1(x̃, z)(γ − x̃T Px̃) > 0, (14.19)

where M(x̃) is defined as

[
(ć0(x̃) + 1)P ((ć0(x̃) + 1)A + (Bx̃ + B)C(x̃))T P

P((ć0(x̃) + 1)A + (Bx̃ + B)C(x̃)) (ć0(x̃) + 1)P

]
.

Theorem 14.3 Given the polynomial ci (x̃), SOS polynomials ć0(x̃) and qi (x̃), the
input constraint in (14.16) is satisfied ∀ x̃ with x̃T Px̃ < γ provided

[
(ć0(x̃) + 1)ũ2

max,i − qi (x̃)(γ − x̃T Px̃) ci (x̃)

ci (x̃) ć0(x̃) + 1

]
> 0. (14.20)
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For a given Lyapunov function weighting matrix P, Theorems14.2 and 14.3 allow
for controller design according to

max
ć0(x̃),ci (x̃),s1(x̃,z),qi (x̃)

γ (14.21)

such that (14.18) and (14.19) hold

ć0(x̃), s1(x̃, z), qi (x̃) SOS.

The coefficients in the polynomials ć0(x̃), C(x̃), and s1(x̃, z) enter linearly in
(14.19). Thus, for given γ and P, (14.19) can be verified with the polynomial coeffi-
cients as free variables. This corresponds to finding a feasible point for a constrained
semi-definite programming problem, and can be easily formulated and solved using
readily available software such as YALMIP (with an appropriate semi-definite pro-
gramming solver). As a result of Theorem14.2, the calculated control input (14.17)
stabilizes the system within the region defined by x̃T Px̃ < γ .

Example 14.2 The problem to be solved here is the determination of the controller
which stabilizes the discrete-time bilinear average model of the boost converter,
presented in Example14.1, in the region determined by x̃T Px̃ < γ. The matrix P is
selected as:

P =
[
0.4 0.6
0.6 1.75

]
,

and γ = 4. The control effort constraint is set to ũmax = 0.4 . Based on the controller
design method by SOS programming, using the YALMIP software, the designed
controller based on (14.15) is calculated as follows:

ũ(x̃) = −9.1x̃1 − 7.21x̃2 − 0.14x̃2
1 − 0.003x̃1 x̃2 + 0.16x̃2

2

38.29 − 0.46x̃1 + 0.23x̃2 + 14.71x̃2
1 − 2.13x̃1 x̃2 + 11.56x̃2

2

.

The simulation of the boost converter with the designed SOS controller is per-
formed in PLECS/MATLAB software and the results are shown in Fig. 14.2. The ini-
tial state is set atx0 = [0.3, 25.4]T . Theoutput voltageof the boost converter, x2 = vo,
is shown in Fig. 14.2a and the inductor current, x1 = iL , is shown in Fig. 14.2b where
the oscillations are the consequence of simulating the detailed switching model. The
response of the system is fast without overshoot for the SOS controllers. Figure14.2c
presents the duty cycle of switch S1 which satisfies the input constraints for designed
controller. The cost function x̃T

k Px̃k is shown in Fig. 14.2dwhich verifies the decrease
in the cost function within each time step. Figure14.2e represents the state trajecto-
ries of the boost converter controlled by the SOS controller. The initial condition is
selected on the boundary of the mentioned region of convergence. It is shown that
all trajectories converge to the origin (x̃e = 0).
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Fig. 14.2 Simulation results of the boost converterwithSOScontroller:aOutput voltage,b inductor
current, c duty cycle of the switch, d Lyapunov cost function x̃T

k Px̃k , and e state trajectories started
from boundary of region of convergence

14.4 Change of Operating Point

In the last section, the stability of the discrete-time bilinear system is investigated
by designing a rational controller guaranteeing convergence of the state trajectories
to the nominal operating point of the system. For linear systems, the same behavior
is observed by shifting the origin of the deviation variables when a new operating
point is desired. However, for nonlinear systems, shifting the origin of the deviation
variables results in new dynamics which is not necessarily stabilized by the designed
controller for nominal operating point. In this section, the stability of the discrete-
time bilinear system with the stabilizing controller designed for nominal operating
point is investigated for the cases when the operating point of the system is changed.

By defining the new operating point of the system as xss
new and uss

new, the new
deviation variables are defined as

x̂ = x − xss
new, û = u − uss

new, (14.22)

and the distance of the new operating point from the nominal operating point is
defined as

x̃ss = xss
new − xss, ũss = uss

new − uss, (14.23)
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By substituting for x and u from (14.4) in (14.22), the following equations are
deducted:

x̂ = x̃ + xss − xss
new = x̃ − x̃ss

, (14.24)

û = ũ + uss − uss
new = ũ − ũss

, (14.25)

Substituting for x̃ and ũ from (14.24) and (14.25) in (14.11), the system dynamics
in the new operating point are calculated as follows

x̂k+1 + x̃ss = A(x̂k + x̃ss
) +

m∑

i=1

(Bb,i (x̂k + x̃ss
) + Bi )(ûi,k + ũss

i ). (14.26)

Equation (14.26) consists of two separate equations. The first equation represents
the dynamics of the system for the new deviation variables as

x̂k+1 =

⎛

⎜⎜⎜⎜
⎝

A +
m∑

i=1

Bb,i ũ
ss
i

︸ ︷︷ ︸
ΔA

⎞

⎟⎟⎟⎟
⎠

x̂k +
m∑

i=1

(Bb,i x̂k + Bi + Bb,i x̃
ss

︸ ︷︷ ︸
ΔBi

)ûi,k . (14.27)

where the new dynamics are represented as matrices ΔA and ΔBi . For the sake
of simplicity, we define ΔB = [

ΔB1x̃ss
ΔB2x̃ss

. . . ΔBm x̃ss], so (14.27) is simpli-
fied to

x̂k+1 = (A + ΔA)x̂k + (Bx̂ + B + ΔB)ûk . (14.28)

The second equation represents the trivial relation between the new operating
point and the nominal one as

x̃ss = Ax̃ss +
m∑

i=1

(Bb,i x̃
ss + Bi )ũ

ss . (14.29)

Note that (14.29) is also an immediate result of subtracting (14.6) for newandnominal
operating point.

Corollary 14.1 Given P, γ, ci , and ć0 from (14.21) (design of the controller for the
nominal operating point), and the SOS polynomial s2(x̂, z), the bilinear discrete-time
system with the control law (14.17) is closed-loop stable for the new operating point
xss

new and uss
new in the region ∀x̂ with x̂T Px̂ < γ, provided that

[
x̂
z

]T

M(x̂)

[
x̂
z

]
− s2(x̂, z)(γ − x̂T Px̂) > 0, (14.30)
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where

M(x̂) =
[

(ć0(x̂) + 1)P
P

(
(ć0(x̂) + 1)(A + ΔA) + (Bx̂ + B + ΔB)C(x̂)

)

(
(ć0(x̂) + 1)(A + ΔA) + (Bx̂ + B + ΔB)C(x̂)

)T
P

(ć0(x̂) + 1)P

]
(14.31)

Based on Corollary14.1, considering the controller and region of convergence
calculated for nominal operating point, it is enough to find the SOS polynomial
s2(x̂, z) in (14.30) to prove that the system is stable in the new operating point xss

new.
However, if it is required to prove the stability of the system for a set of equilibrium
points, usage of Corollary14.1 is cumbersome.

Definition 14.2 The convex hull of a set of points Q = {qi }nq

i=1, with qi ∈ R
n , is a

polytope defined as

conv(Q) =
{

x ∈ R
n : x =

nq∑

i=1

αi qi , αi ≥ 0,
nq∑

i=1

αi = 1

}

(14.32)

Each point qi ∈ Q that is not in the convex hull of the other points, i.e., qi /∈
conv(Q\{qi }) is called a vertex of conv(Q).

It follows directly from the definition of the convex hull above that any point in a
polytope can be expressed as an interpolation between the vertices of the polytope.

Lemma 14.1 Consider the set of points V = {vi }nv

i=1 as the set of vertices of a
convex polytope. If there is a linear function f such that f (v1) ≥ 0, f (v2) ≥
0, . . . , and f (vnv

) ≥ 0 then f (v) ≥ 0 where v is any point inside the convex poly-
tope.

Proof Every point in a convex polytope is the convex hull of its vertices. As a result:

f (v) = f (α1v1 + α2v2 + · · · + αnv
vnv

), αi ≥ 0,
nv∑

i=1

αi = 1.

The function f is assumed to be linear. As a result

f (v) = α1 f (v1) + α2 f (v2) + · · · + αnv
f (vnv

) ≥ 0.

Equation (14.29) can be solved for x̃ss and ũss to calculate the set containing the
desired equilibrium points of the system in which the stability analysis of Corol-
lary14.1 should be performed. Several methods are suggested in the literature to
calculate an outer approximating polytope that covers a set of points. The discussion
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of these methods are out of the scope of this work. Here, we assume that a polytope
V with vertices vi , covering all the desired equilibrium points of the discrete-time
bilinear system, is available, such that any desired equilibrium point

v =
[

x̃ss

ũss

]

can be expressed as an interpolation between vertices vi of the polytope V .

Theorem 14.4 If an SOS polynomial s2(x̂, z) is found which satisfies (14.30) for
all vertices of the polytope V , then all steady state operating points in V are stable
equilibrium points with the same controller and region of convergence calculated
for the nominal operating point.

Proof Observe that ΔA is linear in x̃ss and ΔB is linear in ũss , respectively, and that
ΔA andΔB enter linearly in (14.31). For any given (x̂, z), the left-hand side of (14.30)
may therefore be expressed as a function m(v), i.e., (14.30) may be expressed as

m(v) > 0.

We note that the function m is linear in the argument v. The theorem then follows
directly from Lemma 14.1.

Example 14.3 Here, the boost converter with the SOS controller designed in Exam-
ple14.2 for nominal operating point is considered and the stability of the system for
other desired operating points is analyzed. The reference for the output voltage is
assumed to be in the range of vre f = 20V–vre f = 30V. The set of new operation
points is calculated by (14.12) and (14.23) and is shown in Fig. 14.3, together with
a polytope covering the equilibrium points.

−2 −1 0 1 2 3 −6 −4 −2 0 2 4 6 8

−0.1

−0.05
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0.1

x
2
ss [V]x

1
ss [A]

uss

Fig. 14.3 The set of new operating points and the outer approximated polytope which covers the
points
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Theorem14.4 is then applied to the vertices of the convex polytope and the fol-
lowing common SOS polynomial is found

s2(x̂, z) = 1.65x̂2
1 + 5.52x̂1 x̂2 + 7.94x̂2

2 + 2x̂1z1 + 4.44x̂2z1 + 1.7z21
+ 4.07x̂1z2 + 14.63x̂2z2 + 5.75z1z2 + 8.16z22,

which shows that the boost converter is stable in the mentioned range of operation
with the same controller and region of convergence as calculated in Example14.2
for nominal operating point.

The simulation results of the boost converterwithSOScontroller for twonewoper-
ating points are shown in Fig. 14.4. The initial state is set at x0 = [12, 28.6]T and the
first operating point of the converter is selected as xss

new,1 = [7.5, 30]T and uss
new,1 =

0.6. Then, at t = 0.1s, the operating point is changed to xss
new,2 = [6.5325, 28]T and

uss
new,2 = 0.5714. Figure14.4a, b show the output voltage and inductor current of

the converter, respectively. It is shown that both states of the system converge to
their references. Figure14.4c represents the duty cycle of the semiconductor switch
which remains in the predefined bound of input. Finally, Fig. 14.4d shows the state
trajectories of the boost converter controlled by the SOS controller to the operating
point with vre f = 30V. The initial states are selected on the boundary of region of
convergence. It is shown that all trajectories converge to the new operating point by
the same controller designed for nominal operating point.
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14.5 Introducing Integral Action in the SOS Controller
Design

It is a common practice for dc/dc power converters to control their output voltage
close to its reference even in the presence of persistent disturbances. Inmany practical
applications, the accurate values of load parameters are unknown and only the time
variant and the range of parameters are known. The resistor loads are sensitive to
heat and their values change gradually due to heating when conducting electricity. In
addition, the dc source voltage may experience fluctuations due to aging or improper
design. In this section, the SOS controller is improved to provide robustness to
persistent disturbances.

In this regard, a new state is added to the system which represents an integration
action over the error between the state and desired reference value as

xI I,k+1 = xI I,k + x̃I,k (14.33)

where xI I,k is the integration state and x̃I is the state which is desired to follow
its reference in the case of disturbances. If the reference values are nonzero, the
deviation variables should be calculated as described in (14.4). By introducing the
integration state as a new state, the discrete-time bilinear model of the system in
(14.18) is rewritten as follows:

⎡

⎣
x̃o

x̃I

xI I

⎤

⎦

k+1

=
[

A 0[
0 I

]
I

]

︸ ︷︷ ︸
AI

⎡

⎣
x̃o

x̃I

xI I

⎤

⎦

k

+

⎛

⎜⎜⎜
⎝

[
Bx̃

0

]

︸ ︷︷ ︸
Bx̃,I

+
[

B
0

]

︸︷︷︸
BI

⎞

⎟⎟⎟
⎠

ũk . (14.34)

where x̃ = [x̃o, x̃I ]T . Equation (14.34) is in the form a standard discrete-time bilinear
systems in (14.18) as

ỹk+1 = AI ỹk + (Bỹ,I + BI )ũk .

The control design method presented in (14.21) can be used for the new system
model in (14.34) to find a controller in the form of (14.15) which stabilizes the
converter.

Example 14.4 The robustness of the SOS controller with an augmented integrating
state is investigated here for the boost converter presented in Example 14.1 with
disturbances in the parameter values of load resistor (R) and source voltage (vg).
First, the new system matrices are calculated using (14.13) and (14.34) and then the
SOS controller is found using (14.21) as

c1(x̃) = −43.4x̃1 − 170.8x̃2 − 5.4x̃3 + 5.3x̃2
1 + 28.8x̃1 x̃2 − 32.4x̃2

2

+0.9x̃1 x̃3 − 2.0x̃2 x̃3 − 0.1x̃3,
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c0(x̃) = 39.0 − 7.0x̃1 + 0.9x̃2 + 1.3x̃3 + 4.6x̃2
1 − 2.2x̃1 x̃2 + 3.8x̃2

2

+0.7x̃1 x̃3 + 0.2x̃2 x̃3 + 1.4x̃3.

which is in the form of ratio of two polynomials as presented in (14.15). The simula-
tion results of the mentioned controller are shown in Figs. 14.5 and 14.6. The initial
state is set at x0 = [0.5; 24.7].

Figure14.5 shows the simulation results of the boost converter with disturbances
in the load resistor value. The load resistor is set to its nominal value R = 10� at
the beginning of the simulation and is then changed to R = 8� at t = 1.5ms and to
R = 12� at t = 3ms. The output voltage (vo) of the converter is shown in Fig. 14.5a
where the waveform follows its reference value even after step changes in the load
resistor value. The inductor current (iL ) is depicted in Fig. 14.5b and the duty cycle
of the switch is depicted in Fig. 14.5c where it is shown that the duty cycle satisfies
the input constraint.

The simulation results of the boost converter with disturbances in the source
voltage (vg) is shown in Fig. 14.6. The source voltage is set to its nominal value
vg = 12 V at the beginning of the simulation and is then changed to vg = 13V at
t = 1.5ms and vg = 10.5V at t = 3ms. Figures14.6a–c show the corresponding
changes in the output voltage, inductor current, and duty cycle, respectively. The
results of Fig. 14.6 shows that SOS controller with augmented integral action is able
to handle persistent disturbances in the source voltage of the boost converter.
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Fig. 14.5 Simulation results of the boost converter for SOS controller with integral action: a Output
voltage, b inductor current, c duty cycle of the switch, and d load resistor
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Fig. 14.6 Simulation results of the boost converter for SOS controller with integral action: a Output
voltage, b inductor current, c duty cycle of the switch, and d source voltage

14.6 Conclusion

In this work, robustness issues concerning the control of discrete-time bilinear sys-
tems using SOS programming methods are investigated. First, it is shown that a wide
variety of power converters are represented by bilinear averaged models. Then, a
controller design method is described which guarantees the Lyapunov stability of
the system. This controller is designed for the nominal operating point of the sys-
tem. It is shown that the change of operating point for bilinear systems results in new
dynamic in the systemmodel which is not trivially stable. A new theorem is proposed
to prove the stability of the SOS controller designed for nominal operating point for
a range of desired operating points. In addition, an integration state is included in
the model to improve the robustness of the controller to persistent disturbances. The
effectiveness of the proposed methods are verified through time-domain simulations
of a boost converter.
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Chapter 15
On the LPV Control Design and Its
Applications to Some Classes
of Dynamical Systems

Franco Blanchini, Daniele Casagrande, Giulia Giordano and Stefano Miani

Abstract In this chapter, a control design approach based on linear parameter-
varying (LPV) systems, which can be exploited to solve several problems typically
encountered in control engineering, is presented. By means of recent techniques
based on Youla–Kucera parametrization, it is shown how it is possible not only to
design and optimize stabilizing controllers, but also to exploit the structure of the
Youla–Kucera parametrized controller to face and solve side problems, including:
(a) dealing with nonlinearities; (b) taking into account control input constraints;
(c) performing controller commutation or online adaptation, e.g., in the presence of
faults; and (d) dealing with delays in the system. The control scheme is observer-
based, namely a prestabilizing observer-based precompensator is applied. Conse-
quently, a Youla–Kucera parameter is applied to produce a supplementary input
ignition, which is a function of the residual value (the difference between the output
and the estimated output). Based on the fact that any stable operator which maps the
residual to the supplementary input preserves stability, several additional features
can be added to the compensator, without compromising the loop stability.
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15.1 Introduction

Linear parameter-varying (LPV) systems constitute a class of linear time-varying
systems which lay in between uncertain systems and linear systems and allow for an
elegant and effective description of many dynamic systems for which the knowledge
of the current configuration is known pointwise in time, [29]. Such systems have been
studied since the 1990s (see [13, 15, 20, 22, 24, 26, 28, 33]) and can be thought
of as linear time-invariant plants with time-varying, uncertain but pointwise-in-time
known, parameters. The parametric structure may be intrinsic in the physical system
ormay appear in themodel, resulting, e.g., from the linearization of nonlinear systems
in different operating points, [1, 30], or from the adoption of different controllers,
each acting according to the designer-specified switching role, [5, 7, 14]. This last
point of view, say the analysis of LPV systems as the result of the combination of a
linear (possibly time-varying) system alongwith a scheduled controller, has provided
(i) a full comprehension of phenomena occurring during the system commutation,
and (ii) a full and exhaustive characterization of the stabilizing controllers that can
be adopted for this class of systems.

In this chapter, we will review the newly proposed results in this area and we
will provide several examples of systems for which the provided theory guarantees
an effective solution. These examples, aimed at bridging different fields under the
common denominator of LPV systems, span from the case of control in the presence
of actuator and sensor faults, for which effective results have been provided in [32],
to the case of control of time-delay systems, [6, 18, 21], and to the case of control
of saturated systems, [12].

15.2 LPV Systems: Definition and Main Results

The class of LPV systems is described by the n-dimensional system with m inputs
and p outputs

σ(x(t)) = A(w(t))x(t) + B(w(t))u(t),
y(t) = C(w(t))x(t),

(15.1)

where w(·) is a function taking values in an assigned compact set W and σ(x(t))
represents the differential operator in the continuous-time case and the single step
shift in the discrete-time case. The current value ofw(t) ∈ W is known and available
for control purposes, whereas its future evolution is not.

Example 15.1 Consider a simple pendulum of length l and mass M. Its dynamics
are

ẋ1(t) = x2(t),

ẋ2(t) = −g

l
sin(x1(t)) − b

Ml2
x2(t) + 1

Ml2
u(t),

y(t) = x1(t),
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where g is the gravity acceleration, b is the constant viscous coefficient, x1 represents
the angle, x2 the angular velocity and u the control input. Since the current value of
x1(t) = y(t) is known, the system can be “embedded” in an LPV system (precisely,
this particular case of LPV is also known in the literature as quasi-LPV, see [23] and
the references therein), e.g., by rewriting the nonlinear term sin(x1(t)) as

sin(x1(t))
x1(t)

x1(t)

and by definingw(t) = sin(x1(t))
x1(t)

, withW = [−0.2172 1]. Bymeans of this parameter,
the dynamics of the systems can be written in the form (15.1) with

A(w(t)) =
[

0 1
− gw(t)

l − b
Ml2

]
, B(w(t)) =

[
0
1

Ml2

]
, C(w(t)) = [1 0].

In this particular case, matrices B and C do not actually depend on w. ♦
Other significant examples of LPV systems will be reported along the chapter.

Definition 15.1 System (15.1) isLPV stable if the zero equilibrium is asymptotically
stable for any function w : [0,+∞) → W .

It is a rather established fact that stability of A(w) for every constant value of
w ∈ W is just a necessary condition for the stability of (15.1) in the sense of Defin-
ition 15.1.

The asymptotic stability of the zero equilibrium is equivalent to the existence of
a Lyapunov function.

The peculiarity of LPV systems, as far as control design is concerned, lies in the
fact that the future evolution of the time-varying parameter w(t) is unknown, but
its current value is known. This characteristic allows us to derive nonconservative
conditions for the existence of an LPV stabilizing regulator based on linear matrix
inequalities (LMIs), [2, 3, 9, 20, 25], as per the following result proved in [3, 5].

Theorem 15.1 The LPV system (15.1) is (quadratically) stabilizable via a n-dimen-
sional observer—based LPV regulator if and only if there exist two symmetric
positive—definite matrices P and Q, both in R

n×n, and two matrices U(w) ∈ R
m×n

and Y(w) ∈ R
n×p such that the following set of LMIs (in the continuous-time and in

the discrete-time case, respectively) is satisfied for every w ∈ W .

• Continuous-time:

PA(w)� + A(w)P + B(w)U(w) + U(w)�B(w)� ≺ 0, (15.2)

A(w)�Q + QA(w) + Y(w)C(w) + C(w)�Y(w)� ≺ 0. (15.3)

• Discrete-time:
[

P (A(w)P + B(w)U(w))�
A(w)P + B(w)U(w) P

]
� 0, (15.4)

[
Q (QA(w) + Y(w)C(w))�

QA(w) + Y(w)C(w) Q

]
� 0. (15.5)
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If the above conditions are satisfied for every w ∈ W , then the observer—based
control law

σ(x̂(t)) = [A(w(t)) + L(w(t))C(w(t)) + B(w(t))J(w(t))] x̂(t)
−L(w(t))y(t) + B(w(t))v(t),

u(t) = J(w(t))x̂(t) + v(t),
(15.6)

with v(t) = 0,1 is stabilizing. The observer and estimated state gains are

J(w(t)) = U(w(t))P−1 (15.7)

and
L(w(t)) = Q−1Y(w(t)). (15.8)

Remark 15.1 The conditions reported in the previous theorem guarantee the exis-
tence of a Luenberger observer-based controller of the same dimension of the plant.
The interested reader is referred to [5] for necessary and sufficient conditions for the
existence of a linear extended observer when the LMI conditions just reported fail.

It is worth stressing that the stabilizability conditions might correspond to an
infinite number of LMIs. However, there are important cases in which such a set of
LMIs reduces to a finite number, thus the solution is easily computable by means of
standard software tools. Two interesting cases are the following.

1. Systems where the input and output matrices are constant, while A(w(t)) is poly-
topic [1]: A(w(t)) = ∑r

i=1 Aiwi(t), with wi(t) ≥ 0 ∀i and
∑r

i=1 wi(t) = 1.
2. Systems belonging to the class of switching systems, [7, 16], described by

σ(x(t)) = Ai(t)x(t) + Bi(t)u(t),

y(t) = Ci(t)x(t),

where i(t) ∈ {1, . . . , r} is a switching signal.
In both cases, the set of r + r LMIs to be solved is the following (the continuous-

time case LMIs only are reported):

PA�
i + AiP + BiUi + U�

i B�
i ≺ 0, i = 1, . . . , r (15.9)

A�
i Q + QAi + YiCi + C�

i Y�
i ≺ 0, i = 1, . . . , r (15.10)

with the understanding thatBi = B for all i andCi = C for all i if the input and output
matrices are constant.

1 The signal v(t) is introduced in (15.6) to avoid duplicating the observer-based stabilizing regulator
equations and will be used later, when the Youla–Kucera parameter will come into play.
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In case 1, the stabilizing observer—based controller is

σ(x̂(t)) =
r∑

i=1

[Ai + LiC + BJi]wi(t)x̂(t) −
r∑

i=1

Liwi(t)y(t) + Bv(t),

u(t) =
r∑

i=1

Jiwi(t)x̂(t) + v(t),

(15.11)

whereas in case 2 it is

σ(x̂(t)) = (
Ai(t) + Li(t)Ci(t) + Bi(t)Ji(t)

)
x̂(t) − Li(t)y(t) + Bi(t)v(t),

u(t) = Ji(t)x̂(t) + v(t)
(15.12)

and, again, Ji = UiP−1, Li = Q−1Yi, while v(t) = 0 (see Footnote 1).
The signal v(t) appearing in Theorem 15.1, and so far set to 0, can be successfully

employed to parametrize all the linear stabilizing compensators via Youla–Kucera
parametrization. Moreover, if it is generated as the output of an LPV stable operator
whose input is the estimation error, then the overall system remains stable, as per the
next result.

Theorem 15.2 Assume the stabilizability conditions in Theorem 15.1 are satisfied.
Let

o(t) = C(w(t))x̂(t) − y(t) (15.13)

and consider any globally asymptotically stable operator mapping o(t) into v(t),
i.e.,

σ(z(t)) = g(z(t), o(t), t),
v(t) = h(z(t), o(t), t).

(15.14)

Then the observer—based regulator (15.6), with v(·) defined by (15.14) and (15.13),
is stabilizing.

Under the additional assumption of the existence of a single quadratic Lyapunov
function for the closed-loop system, the converse is also true. Consider the closed-
loop system obtained from (15.1) when the stabilizing controller

σ(q(t)) = f (q(t), y(t), t),
u(t) = k(q(t), y(t), t)

(15.15)

is adopted and assume that such system admits a single quadratic Lyapunov function.
Then the stabilizing controller (15.15) can be parametrized as in (15.6) for a proper
stable operator (15.13), (15.14), which is known as the Youla–Kucera parameter.

The constructive proof of this theorem is reported in the Appendix, along with the
procedure to compute the Youla–Kucera parameter. Here it is worth stressing that
the parameterization of all the stabilizing controllers, depicted in Fig. 15.1, is exactly
the classical Youla–Kucera parameterization.
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Fig. 15.1 Youla–Kucera
parameterization
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Apart from the case in which the stabilizing operator is itself LPV, the determi-
nation and realization of the Youla–Kucera parameter are far from being simple and
will not be investigated here (the interested reader is referred to [4] and the references
therein). We rather stress, once again, that the freedom in the choice of the stable
operator can be successfully exploited to cope with different problems, as will be
seen in the next section.

15.3 Exploiting the Youla–Kucera Parameter Choice

In this section, some applications of the proposed results will be presented, to show
how it is possible to take advantage of the freedom in the choice of the Youla–Kucera
parameter, so as to deal with several side problems.

15.3.1 Online Controller Adaptation Induced by Faults

In the recent literature, several LPV fault-tolerant control schemes have been ana-
lyzed (see, for instance, [27, 31]). Here, the case of real over-actuated control systems
with multiple sensing channels is considered. The input and output channel redun-
dancy is supposed to be introduced for security reasons (think, as an example, of the
flap control of an airplane).
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Fig. 15.2 The system of
three tanks considered in
Sect. 15.3.1. Dashed lines
represent normal flows while
solid lines represent
additional flows
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In such systems, rather than designing a single robust controller to cope with
every fault scenario, it is natural to design different controllers for every possi-
ble fault configuration, so as to fully exploit the available sensors and actuators in
each configuration and then commute among the different controllers when a fault
is sensed. Unfortunately, since the commutations can be assumed to be random,
the switching between stabilizing controllers can result in an unstable behavior. To
overcome this limit, it is sufficient to verify the LMI conditions in Theorem 15.1,
design the observer-based controller and then realize the obtained controllers via the
Youla–Kucera parametrization.

In this example, to keep the exposition simple, only the determination of the
observer—based controllers will be dealt with and the Youla–Kucera parameters
will be set to zero.

The dynamics of the system we consider are

ẋ(t) = Aw(t)x(t) + Bw(t)u(t),

y(t) = Cw(t)x(t),

where the integer parameter w(t) is associated with the wth fault scenario. To illus-
trate the idea, consider the simple system formed by three connected tanks as in
Fig. 15.2, in which a natural flow occurs between the different tanks, proportional
to their relative levels.2 The flow from tank k to tank h is qkh(t) = α(xk(t) − xh(t)),
with α > 0. Moreover, tank 3 has a discharge channel, whose flow is proportional
to its level, q3(t) = βx3(t), and tank 1 is fed by u0. An additional flow between the
tanks can be forced by three connecting valves (one for each pair of tanks). In the

2Levels and flows have to be intended as the deviation from the steady–state values.
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nominal condition, the three sensors measuring the levels work, as well as the three
valves controlling the additional flow. In the present example, it is assumed that the
system is always working in some faulty condition corresponding to one sensing
channel and one valve working. Thus the parameterw(t) can be represented as a pair
(i, j) belonging to the set W = {1, 2, 3}2; the corresponding LPV system is

ẋ = Ax + Bi(t)u,

y = Cj(t)x,

where

A =
⎡

⎣
−2α α α
α −2α α
α α −2α − β

⎤

⎦ ,

B1 =
⎡

⎣
1 1 0 0
0 −1 0 0
0 0 0 0

⎤

⎦ , B2 =
⎡

⎣
1 0 0 0
0 0 1 0
0 0 −1 0

⎤

⎦ , B3 =
⎡

⎣
1 0 0 1
0 0 0 0
0 0 0 −1

⎤

⎦

and

C1 =
⎡

⎣
1 0 0
0 0 0
0 0 0

⎤

⎦ , C2 =
⎡

⎣
0 0 0
0 1 0
0 0 0

⎤

⎦ , C3 =
⎡

⎣
0 0 0
0 0 0
0 0 1

⎤

⎦ .

with α = 1 and β = 0.5.
There are nine possible configurations, but given the input and output matrices

combinations are independent, it is sufficient to solve six LMIs (15.2) and (15.3) so
as to obtain the following gains:

J1 =

⎡

⎢⎢
⎣

0.8018 1.0654 −4.4610
0.8977 −1.1775 1.4267

0 0 0
0 0 0

⎤

⎥⎥
⎦ , J2 =

⎡

⎢⎢
⎣

1.9252 −5.4114 1.2044
0 0 0

1.1919 0.4867 −1.3340
0 0 0

⎤

⎥⎥
⎦ ,

J3 =

⎡

⎢⎢
⎣

0.9773 −4.0721 1.0690
0 0 0
0 0 0

0.7539 1.3342 −1.4642

⎤

⎥⎥
⎦ , L1 =

⎡

⎣
0.8372 0 0

−0.9527 0 0
−0.8679 0 0

⎤

⎦ ,

L2 =
⎡

⎣
0 −0.9527 0
0 0.8372 0
0 −0.8679 0

⎤

⎦ , L3 =
⎡

⎣
0 0 −0.7796
0 0 −0.7796
0 0 0.9233

⎤

⎦ .
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Fig. 15.3 Time histories of the tank level deviations from steady–state values

Fig. 15.4 Time histories of the flow deviations from steady–state values

During the system evolution, the ith sensor and the jth actuator faults are sensed and
the corresponding input and output gains are used in the observer-based regulator
(15.12).

Figures15.3 and15.4 depict the system signals evolution during the transientwhen
the initial condition is x(0) = [15 11 3]�, an arbitrary sequence of faults occurs, and
each of the Youla–Kucera parameters is set to zero (i.e., the standard Luenberger
observer-based controllers are used).

To be more precise, Fig. 15.3 depicts the evolution of the state and actual out-
put deviations from steady-state values. The representation in Fig. 15.3 has to be
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interpreted as follows: the solid line is the active output and the dotted lines are the
state values. To clarify the representation, it can be noted that during the first instants,
the second sensing channel is working, then the third, then the first just before t = 1s,
then the second again, etc.

Figure15.4 depicts the evolution of the system input deviation from the steady-
state value, and the pictorial representation is as follows: the active output (corre-
sponding to the working actuator) is working whenever it is different from zero. To
make things clear, the second valve is active during the first instants, then the first,
then the third, etc.

15.3.2 Discrete-Time Delays in Network Controlled Systems

Consider a network controlled n-dimensional discrete-time plant with m inputs and
p outputs in the presence of unknown—but—bounded integer observation delay3

τ (t) ∈ {0, 1, . . . , τmax} (and without delays in the actuator channel). This system can
be modeled by the equations

x(t + 1) = Ax(t) + Bu(t),

y(t) = Cx(t − τ (t)),

and can be alternatively represented by the following switching system, by adding
delayed copies of the output to the state:

xe(t + 1) = Aexe(t) + Beu(t)

y(t) = Ce
τ (t)xe(t)

with τ (t) ∈ {0, 1 , . . . , τmax} and

Ae =
⎡

⎣
A 0n×(τmax−1)p 0n×p

C 0p×(τmax−1)p 0p×p

0(τmax−1)p×n I (τmax−1)p 0(τmax−1)×p)

⎤

⎦ ,

Be =
⎡

⎣
B

0p×m

0(τmax−1)p×m

⎤

⎦ ,

Ce
0 = [

C 0p×(τmax−1)p 0p×p
]
,

Ce
i = [

0p×(n+(i−1)p) Ip 0p×(τmax−i)p
]
,

3The delay is assumed to be a multiple of the sampling period if the discrete-time system is obtained
as the discretization of a continuous-time system.
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for i = 1, . . . , τmax. The above system falls in the class of LPV systems described
in the previous sections. Hence, assuming the satisfaction of the LMIs (15.4) and
(15.5), it is possible to parametrize every stabilizing observer by means of the pro-
posed Youla–Kucera structure. This in turn allows the designer to choose τmax + 1
compensators, each stabilizing the system for a constant value of the delay τ , and
realize such compensators by means of a proper Youla–Kucera parameter, thus guar-
anteeing stability of the system in the presence of arbitrary (bounded) sequences of
delays. Note that the number of variables of the augmented system may be large if
τmax is large, which may result in a heavy computational load. In addition, when the
variation of the delay is very fast, the system may not be robust. We do not consider
these questions here, since an analysis of the robustness of the method and of its
efficiency when applied to a real problem is beyond the scopes of the chapter. For
numerical examples of network controlled systems, we refer the reader to [18], or
to [17].

15.3.3 Smith Predictor for LPV Stable Plants

The combination between time-delay and parameter-dependencymay lead to several
different linear parameter-varying time-delay systems (see, for instance, [10]). Here
we focus on the problem of controlling an LPV stable continuous-time system in the
presence of a known, time-varying but bounded, delay.We show that this problem can
be solved with the technique described in Sect. 15.2. The considered dynamics are

ẋ(t) = A(w)x(t) + B(w)u(t),

y(t) = C(w)x(t − τ (w)),

with τ (w) ∈ [0, τ̄ ], for some τ̄ > 0, for all w ∈ W . We denote by �(w) = {A(w),

B(w), C(w)} the state-space representation of the delay—free part of the plant, by
WP(s, w) its transfer function, by WC(s, w) the (parametric) transfer function of the
controller and by Δ(s, w) the block corresponding to the delay, namely Δ(s, w) =
e−τ (w)s. These notations are used in the block diagram of Fig. 15.5 that represents
the Smith predictor scheme.

Apart from the block associated with the delay, this scheme is analogous to the
scheme depicted in Fig. 15.1, with the negative feedback loop inside the smaller
dashed rectangle playing the role of the Youla–Kucera parameter; however, the block
corresponding to J(w) is absent, since the plant is assumed to be stable. The (para-
metric) transfer function of the Youla–Kucera parameter is

WYK(s, w) = [I + WC(s, w)WP(w, s)]−1WC(s, w). (15.16)
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+� � +

+

� � ηv �� �+

−
WC(s, w) � WP (s, w) Δ(s, w) �� � ��

+
+

WP (s, w)

WP (s, w)Δ(s, w)

�
��− �

� �

Fig. 15.5 Smith predictor control scheme

Consider, now, a state-space realization Θ(w) = {F(w), G(w), H(w), K(w)} of the
transfer function (15.16) associated with the equations

ż(t) = F(w(t))z(t) + G(w(t))v(t),

η(t) = H(w(t))z(t) + K(w(t))v(t).

The overall system equations, in the absence of an external input, are

ẋ(t) = A(w(t))x(t) + B(w(t))u(t), (15.17)

y0(t) = C(w(t))x(t), (15.18)

ẋc(t) = A(w(t))xc(t) + B(w(t))u(t), (15.19)

yc0(t) = C(w(t))xc(t), (15.20)

ż(t) = F(w(t))z(t) + G(w(t))v(t), (15.21)

η(t) = H(w(t))z(t) + K(w(t))v(t), (15.22)

v(t) = yc0(t − τ ) − y0(t − τ ), (15.23)

where x denotes the plant state, xc denotes the state of the copy of the plant in the
feedback loop and z denotes the state of the Youla–Kucera block Θ .

The main result concerning the stability of LPV control systems with delay is the
following [6].

Theorem 15.3 The control system (15.17)–(15.23), as in Fig.15.5, is LPV stable if
the state-space realization Θ(w) is LPV stable.

In order to apply Theorem 15.3, one needs an LPV stable realization of the controller
that can be obtained by steps 5 and 6 of the procedure reported in the Appendix.
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Remark 15.2 The scheme based on the Smith predictor can be fragile with respect
to delay uncertainties (see [19]). However, we stress that in the present setting the
time-varying parameters (one of which is the delay) are assumed to be exactly known
at each time instant. A discussion on the robustness of the proposed method with
respect to uncertainties in the plant only can be found in [6].

15.3.3.1 Example

As an example, we consider the dam–gallery system analyzed in [8] and we focus on
the transfer function between the upstream flow QU and the downstream flow QD.
By using simplified Saint-Venant’s equations, and choosing the downstream flow as
scheduling parameter, this transfer function turns out to be, [8],

WP(w, s) = e−sτ (w)

1 + k1(w)s + k2(w)s2
, (15.24)

where w = QD and where k1(w), k2(w) and τ (w) are polynomials in w of degree
three. A stability analysis, omitted for brevity, shows that, with the polynomial coef-
ficients reported in [8], system (15.24) is LPV stable. Therefore, Theorem 15.3 can
be applied. The LPV controller

R(s, w) = K
1 + k1(w)s + k2(w)s2

s(1 + sT)
,

for instance, which cancels the system dynamics and introduces the new poles 0 and
−1/T , can be adopted. If R(s, w) is realized according to steps 4, 5, and 6 of the
procedure reported in the Appendix, then the closed-loop system is stable for any
time-varying w.

15.3.4 Youla–Kucera Parameter as an Input Limiter
for Constrained Systems

Another interesting problem is the control of LPV systems with input saturation (see,
for instance, [11, 34]). Here we propose a solution based on the idea that, since the
Youla–Kucera parameter can be any stable operator that maps the signal o(t) to the
signal v(t), it can be exploited to achieve override control, [12]. When the absolute
value of the control input is constrained to remain below a threshold ū, the principle
of the override control is to consider the actual control input u(t) as the sum of the
ideal stabilizing control ustab(t) and of an additional signal v(t) defined by
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Fig. 15.6 The overriding
Youla–Kucera block

abs o
1+s τ

k

saturation

o

filtered gain
v

ustab

overriding

a

v(t) =
⎧
⎨

⎩

ū − ustab(t) if ustab(t) > ū
0 if |ustab(t)| ≤ ū
−ū − ustab(t) if ustab(t) < −ū

thus guaranteeing |u(t)| ≤ ū. Since the actual control is different from the ideal one,
the problem is how to ensure stability of this type of scheme. A possible solution,
justified by the fact that the override control is useful at the beginning of the transient,
is to activate it only when the absolute value of the observer error is above a given
threshold ō. When |o(t)| < ō, the state is suitably reconstructed and the override
signal is inactivated. A realization of this idea is depicted in Fig. 15.6. The absolute
value of o(t) is filtered by a filter with transfer function k

1+sτ and then saturated to 1
to obtain the activation signal a(t). The aim of the filter is twofold. First, it avoids
the action to be disabled if the signal |o(t)| is less than the threshold for a too short
interval (for instance when it “passes through zero”). Second, the constant gain k can
be chosen so as to scale the estimation error to a magnitude suitable for the saturation
function. For large values of o(t), a(t) = 1 and the override control is active; after
the transient, o(t) goes to zero and so does a(t).
Figs. 15.7 and 15.8 report the transient for the system with

A =
[
0 1
0 0

]
, B =

[
1
0

]
, C = [

1 0
]
, (15.25)

and ū = 1. The matrices provided by the LMIs (15.2) and (15.3) are

J = [ − 1 − 2
]
, L =

[−1
−1

]
.

The parameters of the filter are k = 10 (corresponding to ō = 0.1) and τ = 3.
Figure15.7 shows the transient from the initial condition [2 2]� without the over-
riding scheme: it can be seen that the control bound is deeply violated. Conversely,
Fig. 15.8 shows the transient from the same initial condition [2 2]� with the overrid-
ing scheme: control bounds are not violated. The scheme can be applied in the same
way also when observer and feedback gain are gain–scheduled.
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Fig. 15.7 The transient of the states (top) and of the control input (bottom) for the system (15.25)
without the overriding scheme

Fig. 15.8 The transient of the states (top) and of the control input (bottom) for the system (15.25)
with the overriding scheme
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15.4 Conclusions

In the present work, the class of LPV systems and some recent fundamental results,
concerning the possibility of resorting to the classical Youla–Kucera parametriza-
tion of stabilizing controllers, have been introduced. The presented results have been
accompanied by several case studies, to illustrate the potential benefits of the pro-
posed approach in different areas. Future research directions include a full charac-
terization of override control schemes in an LPV framework, an investigation of the
benefits of the LPV approach in fault-tolerant multisensor control schemes, [21], and
the exploitation of recent set-theoretic results in the time-delay framework, [32], to
provide a solution to the control of LPV continuous-time open-loop unstable plants
in the presence of time-varying bounded delays.

Appendix

Proof of Theorem 15.2

Proof We sketch the proof of the first part, and of the second part for the case in
which the operator is linear. The interested reader is referred to [4] for the general
case.

Consider the variables e(t) = x̂(t) − x(t), x(t) and z(t), so that the resulting
dynamic system is

σ(e) = [A(w) + L(w)C(w)]e
σ(x) = [A(w) + B(w)J(w)]x + B(w)J(w)e + B(w)v

σ(z) = g(z, o, t)

o = Ce

In view of the quadratic stabilizability conditions in Theorem 15.1, both matrices
A(w) + L(w)C(w) and A(w) + B(w)J(w) are asymptotically stable (since each of
them admits a single quadratic Lyapunov function). Hence, the variable e(t) → 0 as
t → ∞. This in turn implies that also o(t) → 0 and, since the operator that maps
the output error o into v is asymptotically stable, also v → 0. Now, going back to
the state evolution, this is governed by an asymptotically stable system fed by two
signals that vanish as t → ∞, which is enough to conclude that x → 0.

As far as the converse part is concerned, assume there exists an LPV stabilizing
regulator

σ(q(t)) = F(w)q(t) + G(w)y(t)
u(t) = H(w)q(t) + K(w)y(t)

(15.26)
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so that the closed-loop system

[
σ(x)
σ(q)

]
=

[
A(w) + B(w)K(w)C(w) B(w)H(w)

G(w)C(w) F(w)

] [
x
q

]
= Acl(w)

[
x
q

]

is LPV stable and admits a quadratic Lyapunov function. This means that there exists

P =
[

P11 P12

P�
12 P22

]
� 0

such that (in the continuous-time case), the following Lyapunov inequality is satisfied

Acl(w)P + PA�
cl(w) ≺ 0. (15.27)

Denoting by U(w)
.= K(w)C(w)P11 + H(w)P�

12, the upper–left block of (15.27)
gives

(A(w) + B(w)K(w)C(w))P11 + (B(w)H(w))P�
12

+ P11(A(w) + B(w)K(w)C(w))� + P12(B(w)H(w))�

= A(w)P11 + P11A(w)� + B(w)U(w) + U(w)�B(w) ≺ 0,

which corresponds to (15.2) with P = P11. Similarly, if we pre- and post-multiply

(15.27) by P−1 = Q =
[

Q11 Q12

Q�
12 Q22

]
, we obtain QAcl(w) + A�

cl(w)Q ≺ 0 and, by con-

sidering the upper-left block of this expression, condition (15.3) with Q = Q11 is
obtained for Y(w)

.= Q11B(w)K(w) + Q12G(w). To conclude, it must be shown
that the stabilizing LPV regulator can be realized as (15.6) and (15.13) for a proper
stable operator (15.14). To this aim, set

J(w) = U(w)P−1
11

L(w) = P−1
22 Y(w)

and consider the observer-based stabilizing regulator (15.6). By resorting to the stan-
dard Youla–Kucera parameterization, since for every fixed value of w the resulting
closed-loop system is stable, it is known that for each value of w the stabilizing reg-
ulator (15.26) can be realized as (15.6) and (15.13) where the stable operator (15.14)
is linear, say

σ(z(t)) = Fo(w)z + Go(w)o(t)
v(t) = Ho(w)z + Ko(w)o(t)

(15.28)

Since the matrices Fo(w) are Hurwitz stable (Schur stable, in the discrete-time case),
each of them satisfies the Lyapunov equation

Fo(w)�P(w) + P(w)Fo(w) = −I (15.29)
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for P(w) � 0. Now, letΩ(w) be the square root of P(w) = Ω�(w)Ω(w) and apply,
for each w, the following similarity transformation:

F̃o(w) = Ω(w)Fo(w)Ω(w)−1, G̃o(w) = Ω(w)Go(w),

H̃o(w) = Ho(w)Ω−1(w), K̃o(w) = Ko(w)
(15.30)

Notice that, in view of the applied transformation, all of the matrices F̃o(w) share
the same quadratic Lyapunov function with P̃ = I , since

F̃o(w)� + F̃o(w) = −Ω−�(w)Ω−1(w) ≺ 0

for every w. This amounts to saying that the Youla–Kucera parameter

σ(z(t)) = F̃o(w)z + G̃o(w)o(t)
v(t) = H̃o(w)z + K̃o(w)o(t)

(15.31)

has the same input–output behavior as the “original” one and is LPV stable. �

The constructive proof described above for the determination of theYoula–Kucera
parameter is summarized in the next procedure.

Given the LPV plant (15.1) and a family of LPV regulators of the form (15.6)–
(15.14), each stabilizing the LPV plant for a constant value of w:

1. solve the LMIs (15.2) and (15.3) (or (15.4) and (15.5) in the discrete-time case);
2. compute the gains (15.7) and (15.8);
3. compute the Luenberger observer-based controller (15.6);
4. for every stabilizing regulator (15.6)–(15.14), compute the Youla–Kucera para-

meter (15.28);
5. solve the Lyapunov equation (15.29) (or the discrete-time Lyapunov equation, in

the discrete-time case) and, for every w, determine the corresponding square root
Ω(w) (such that P(w) = Ω�(w)Ω(w));

6. apply the suggested transformation to derive the LPV stabilizing Youla–Kucera
parameter (15.31).

Note that the described procedure has to be repeated for all w ∈ W .
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Chapter 16
Ultimate Bounds and Robust Invariant Sets
for Linear Systems with State-Dependent
Disturbances

Sorin Olaru and Vasso Reppa

Abstract The objective of this chapter is to present a methodology for computing
robust positively invariant sets for linear, discrete time-invariant systems that are
affected by additive disturbances, with the particularity that these disturbances are
subject to state-dependent bounds. The proposed methodology requires less restric-
tive assumptions compared to similar established techniques, while it provides the
framework for determining the state-dependent (parameterized) ultimate bounds for
several classes of disturbances. The added value of the proposed approach is illus-
trated by an optimization-based problem for detecting the mode of functioning of a
switching system.

Keywords Invariant sets · Ultimate bounds · State dependent disturbances

16.1 Introduction

The analysis and control design for linear dynamics with set constrained distur-
bances is a mature subject in control theory, [5, 12]. The analysis of dynamical sys-
tems affected by state- and control-dependent disturbances is also a well-established
subject which can be traced back to the early 1970s, [20, 29], mainly in the stochastic
control system framework and latter in works on the mismatched uncertainties, [3,
19]. We recall for example some historical observations made in [20] stating that
“the general conclusion is that control-dependent noise calls for conservative control
(small gains) while state-dependent noise calls for vigorous control (large gains).”

Results dealing with both set-theoretic notions and state-dependent disturbances
can be found in various studies dedicated to viability theory, [1]; propagation of
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parametric uncertainties, [4]; control of system with uncertainties in the parameters
as well as in the input, [18]; ultimate boudedness control via set-induced Lyapunov
functions, [7]; reachability analysis, [22]; and minimal invariant sets, [9, 25]. In the
present paper, we are interested in the characterization of the ultimate boundedness
of linear dynamical systems affected by additive disturbances with the particularity
that these disturbances are subject to state-dependent bounds.

From the theoretical point of view, there are different connections with the mature
literature on minimal invariant sets of dynamic systems with bounded disturbances,
[13, 15, 17, 23], and in a broader sense to the set-theoretic methods in control,
[6, 8, 10]. From a practical standpoint, the characterization of positive invariant
sets can be used for diagnosis. Recently, the set-theoretic methods have been used
in model-based fault diagnosis (FD) and the design of fault tolerant control (FTC)
laws, [28]. The positive invariance enables the analysis and offers guarantees for
FD/FTC performance, that is, robustness, fault detectability and isolability, and fault
tolerance under strict set-inclusion or set-separation conditions, [11, 21, 24, 26, 27].

The goal and the main contribution of this chapter is to establish a methodology
for computing ultimate bounds and robust positively invariant (RPI) sets for a class
of discrete linear systems, affected by disturbances bounded by a state-dependent
function. In order to highlight the contribution, in Sect. 16.2 we present some estab-
lished methodologies for computing state-independent RPI sets and extensions for
state-dependent RPI sets and ultimate bounds, which however require more restric-
tive assumptions compared to those used in the present work. Then, in Sect. 16.3
we describe a new approach for the computation of the state-dependent (parame-
terized) RPI sets, providing some examples for illustrating both the applicability
and limitations of the proposed methodology. In Sect. 16.4, we initially discuss the
design of the parameterized RPI sets for some special classes of systems and the
state-dependent function that bounds the additive system disturbances. Then, the
computation of parameterized sets will be formulated as an optimization problem
that can be applied for detecting the system mode switching (e.g., due to a fault).
Section 16.5 offers some concluding remarks and future directions.

Notation: Z is the set of all integers. Z+ is the set of all nonnegative integers and
Z[k0,k1] the set of nonnegative integers in the interval [k0, k1]. Rn is the n-dimensional
Euclidean space with ‖.‖ denoting the prescribed norm (Euclidean norm for simplic-
ity). The closed convex hull of a set S will be denoted Conv {S}. The Minkowski sum
of two sets S1, S2 ⊂ R

n will be denoted by S1 ⊕ S2 = {x1 + x2 : x1 ∈ S1, x2 ∈ S2.
The image of S ⊂ R

n via g : Rn → R
m is described by the set g(S) = {g(x) : x ∈ S}.

Given a function f : Rn → R, its level set (contour) for c ∈ R is defined as

L f (c) = {
x ∈ R

n : f (x) = c
}
, (16.1)

while its sublevel set for given c ∈ R is described as

L−
f (c) = {

x ∈ R
n : f (x) ≤ c

}
. (16.2)
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Definition 16.1 A set S ⊂ R
n is star-shaped in x̄ ∈ S if for any point x ∈ S and

0 ≤ β ≤ 1 it holds that βx + (1 − β)x̄ ∈ S.

Definition 16.2 A function f : Rn → R+ is called increasing from x̄ ∈ R
n if any

sublevel set L−
f (c), c ∈ R+ is a star-shaped set in x̄ .

16.2 Background

16.2.1 Problem Formulation

Consider a discrete-time linear system affected by additive uncertainty:

xk+1 = Axk + Bwk, (16.3)

where xk ∈ R
n is the state vector at the time k ∈ Z+ and A ∈ R

n×n, B ∈ R
n . It is

considered that the dynamics in (16.3) correspond to a closed-loop system, for which
the exponential stability is guaranteed in the disturbance-free case according to the
following assumption:

Assumption 16.1 The matrix A is Schur (all the eigenvalues are inside the unit
circle).

In the present chapter we concentrate on the case of a matrix B represented by a
column vector, which is related to a signal wk ∈ R representing the additive distur-
bance. The main characteristic of the additive disturbance will be its boundedness
by a state-dependent function f : Rn → R+ such that

|wk | ≤ f (xk). (16.4)

Definition 16.3 Let us consider the solution xk : Z+ → R
n of (16.3) denoted as

xk = x(x0, w0:k−1) for a given initial condition x0 and disturbance sequence w0:k−1 =[
w0, . . . , wk−1

] ∈ R
k satisfying (16.4). We say that

• xk is bounded if there exists a positive constant d(x0) < ∞ such that the inequality
‖x(x0, w0:k−1)‖ ≤ d(x0) holds for all k ∈ Z+. If the initial condition x0 can be
chosen arbitrarily large then the solutions of (16.3) are globally bounded.1

• xk is ultimately bounded if there exists a bounded set S ⊂ R
n , possibly dependent

on x0, and a nonnegative integer T (x0, S) < ∞, such that xk ∈ S for all k ≥
T (x0, S).

1Often the notion of global boundedness is complemented by the attribute uniform to emphasize
the possible dependence of the bound on the initial condition x0 but not on the initial moment in
time. This addition is superfluous for time-invariant dynamics and will be abandoned here.
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• The bounded set S represents an ultimate bound for the trajectories initiated in x0

if the sequence of sets X0 = {x0}, Xk+1 = AXk ⊕ B f (Xk) satisfies2

lim sup
k→∞

Xk ⊂ S.

The set S is a global ultimate bound if it is an ultimate bound for any x0 ∈ R
n .

The problem to be considered in this paper can be outlined as follows:
Objective 1: Find sufficient conditions for ultimate boundedness of the state tra-

jectories satisfying (16.3) taking into account (16.4).
Objective 2: Describe the parameterization of ultimate bounds with respect to the

initial conditions, when these ultimate bounds are not global. In this respect, we seek
to express ultimate bounds in terms of compact and convex sets.

From the analysis point of view, the robust positive invariance of a set with respect
to the system dynamics is another important notion in the present work.

Definition 16.4 (RPI set) A set Ω ⊂ R
n is a robust positively invariant (RPI) set

with respect to (16.3) if Ax + Bw ∈ Ω for all x ∈ Ω and for all w satisfying |w| ≤
f (x).

Even if an ultimate bound set is not guaranteed to be RPI, we will be interested
in finding sets which are both RPI and ultimate bounds for the state trajectories.

16.2.2 A Detour on the State-Independent Disturbance
Bounds Case

Strong results are available with respect to the RPI sets description in the case of state-
independent bounds on disturbance. Let us consider the class of dynamics presented
in (16.3) with

wk ∈ F, (16.5)

with a closed, convex bounded set F ⊂ R. The state-independent bounds can be
interpreted as a particular case of (16.4), with a constant limiting function f (x) = w̄

which leads to F = {w : |w| ≤ w̄}.
In order to differentiate the robust positive invariance in the case of state-

independent bounds on disturbances (16.5) from the state-dependent counterpart
in (16.4), the following definitions are introduced.

Definition 16.5 (F-invariance) A set Ω ⊂ R
n is F-invariant with respect to (16.5)

if Ax + Bw ∈ Ω for all x ∈ Ω and all w ∈ F .

2The set S is a proper superset of lim supk→∞ Xk . The meaning of the outer limit (lim sup) is
particular in this context as it is understood in a set-theoretic framework [2] as the set of cluster
points of sequences x(x0, w0:k−1) ∈ Xk .



16 Ultimate Bounds and Robust Invariant Sets … 343

Definition 16.6 The minimal F-invariant set, denoted by M(F), is defined as the
F-invariant set contained in any closed F-invariant set.

The minimal F-invariant set is unique, compact and contains the origin if F contains
the origin. Its ε-neighborhood (i.e., M(F) ⊕ B

n
ε , where Bn

ε is the ε ball in R
n) repre-

sents an ultimate bound for (16.5). It is well known [8, 15, 17] that a Schur matrix
A leads to a minimal F-invariant set described as

M(F) = lim
k→∞

k⊕

i=0

Ai B F. (16.6)

16.2.3 F-invariant Sets for the Case of State-Dependent
Disturbances

The work in of Kuntsevich and Pshenichnyi, [17], concentrates principally on
dynamic systems affected by bounded disturbances as in Sect. 16.2.2, but presents
an extension to systems with bounded nonlinearity which gives a basic idea on the
possible analysis of the state-dependent disturbances in a set-theoretic framework.
We reformulate here the main developments by adapting the construction in [17]
to the present framework in order to analyze its mechanism and stress the working
hypothesis.

Assumption 16.2 The state-dependent bound on the disturbances for system (16.3)
is described by a function f (.) for which f (Rn) = { f (x) : x ∈ R

n} is bounded.

Under the Assumption 16.2 on the global bounds of the disturbance, one can ini-
tialize a set sequence by choosing M0 = R

n and F0 = Conv { f (M0)}. By assuming
M j to be Fj -invariant for Fj = Conv

{
f (M j )

}
(which trivially holds for M0) the

following set sequence can be defined:

M j+1 = M(Fj ), j = 0, 1, . . . ,∞ (16.7)

as the minimal Fj -invariant for

xk+1 = Axk + Bwk, wk ∈ Fj . (16.8)

Exploiting the inclusion M j+1 ⊂ M j , one can conclude on the existence of convex
sets defined as

M∞ =
∞⋂

j=0

M j and F∞ =
∞⋂

j=0

Fj (16.9)
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Fig. 16.1 Graphical
description of the
state-dependent bound for
the dynamics in (16.10)
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State dependent bound

Theorem 16.1 ([17]) Under the Assumptions16.1 and 16.2, each of the sets M j , j =
0, 1, . . . ,∞ is a robust positively invariant set for (16.3). If the initial state x0 belongs
to M j for some j ∈ Z+, then the trajectory of the system (16.3) reaches in finite-time
the ε-neighborhood of the set M j+1 and remains in that neighborhood. Thus the
system is ultimately bounded and the ε-neighborhood of M∞ represents an ultimate
bound. �

The following remarks motivate our study.

Remark 16.1 The boundedness restrictions in Assumption 16.2 are relatively conser-
vative. The procedure proposed in [17] cannot be initialized in the presence of radially
unbounded functions3 describing the state-dependent limitations on the uncertainties
(16.4) as long as M0 will be unbounded.

Remark 16.2 Even in the case that Assumption 16.2 holds, Theorem 16.1 proposes
a sequence of invariant sets but the asymptotic construction of M∞ leads in practice
to an approximation of the limit set (in fact its ε-neighborhood) which represents
a state-independent ultimate bound. This raises a question about the existence of a
state-dependence (or parameterization) of the ultimate bounds with respect to the
initial conditions. Note that a parametrization can contribute to the reduction of
conservativeness in the description of the ultimate bounds.

There are simple examples to show that the above procedure can be refined by
computing state-dependent ultimate bounds. Consider the dynamics

xk+1 = 0.5xk + wk, |wk | ≤ f (xk) =
∣
∣∣∣
4x2

k − |xk |
4x2

k − 1

∣
∣∣∣ , (16.10)

3A function f : Rn → R is radially unbounded if ‖x‖ → ∞ =⇒ f (x) → ∞.
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Fig. 16.2 Simulations for the dynamics in (16.10) with random initial conditions in [−5; 5]—left;
[−0.5; 0.5]—right

where f (x) is shown in Fig. 16.1. Using the methodology in [17] that is described
through (16.7)–(16.9), the nested set construction results in M∞ = [−1.5; 1.5] and
fails to identify all the intervals [−c; c] with

√
5−2
2 ≤ c ≤ 0.5 which are robust posi-

tively invariant and represent tighter ultimate bounds if x0 ∈ [−c; c].
Figure 16.2 presents the time-domain simulations for different initial conditions

illustrating the existence of invariant sets [−1.5; 1.5] and [−
√

5−2
2 ;

√
5−2
2 ].

16.2.4 Jordan Decomposition Approach for the Design
of Ultimate Bounds in the Presence of
State-Dependent Disturbances

The work of Kofman et al in [14] expresses or maybe deals with the computation
of the ultimate bounds for linear systems with state-dependent perturbation bounds.
The systematic method for their characterization under monotonicity conditions is
provided in the next theorem.

Theorem 16.2 ([14]) Consider the system (16.3), satisfying Assumption16.1 with a
Jordan canonical form of the transition matrix A = V −1ΛV . Suppose that

|Bw| ≤ g(|x |), for all x ∈ R
n (16.11)

with a continuous map g : Rn+ → R
n+ satisfying

|y1| ≤ |y2| =⇒ g(|y1|) ≤ g(|y2|). (16.12)

Consider the map:

T (y)
Δ= |Λ|y + |V −1|g(|V |y) (16.13)
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and suppose that a point b satisfying b = T (b) exists. Let ym ∈ R
n denote any

point satisfying lim
k→∞ T k(|V −1 ym |) = b. If the initial condition x0 satisfies |V −1x0| ≤

|V −1 ym |, then, for any ε ∈ R
n+, there exists l = l(ε, ym) such that for all k ≥ l,

|V −1xk | ≤ b + ε (16.14)

The result is remarkable in several respects. By building the ultimate bounds on
the existence of fixed points for (16.13), the theorem opens the door for the charac-
terization of different ultimate bounds (16.14) for the same dynamics. Such ultimate
bound has an associated domain of attraction identified via the collection of points
ym in the statement. Moreover, the ultimate bound (16.14) is robust positively invari-
ant. All these characteristics provide suitable solutions with respect to the objectives
of the present work. The assumptions are however relatively restrictive as detailed
in the following remarks. This fact motivates the main results presented in the next
section.

Remark 16.3 The monotonicity condition (16.12) is not fulfilled by the increasing
functions from a particular point x̄ (see Definition 16.2), which are related to the
star-shape property of the level set of the boundary function, and not to classical
convexity of the level set of the bounding function. The monotonic functions are
only a particular subclass of these increasing functions.

Remark 16.4 Theorem 16.2 builds on a fixed-point type of condition. This condition
involves the map (16.13) which in turn builds on a series of over-approximations
of the nonlinear state-dependent bounding function as for example those related
to the component-wise absolute values of the matrices V and V −1. Moreover, a
qualitative analysis of the number of such fixed points and the correspondent bassins
of attraction are only implicitly embedded in the result. The set-theoretic methods
can offer alternative condition and describe parameters for the existence of ultimate
bounds.

16.3 Main Result

For a Schur matrix A ∈ R
n×n and vector B ∈ R

n let us define the limit set

M = M(B1) = lim
k→∞

k⊕

i=0

Ai BB1, (16.15)
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where B1 stands for the unit ball.4 The set M is minimal robust positively invariant
(RPI) set with respect to xk+1 = Axk + Bwk f orallwk ∈ B1, or equivalently for all
|wk | ≤ 1.

In order to establish the main results we consider the Minkowski function gM :
R

n → R+ associated to the set M:

gM(x) = in f {λ ∈ R+ : x ∈ λM} . (16.16)

Theorem 16.3 Let us consider the LTI system (16.3) with the state-dependent bound
f (x) presented in (16.4), an increasing function from x̄ = 0 ∈ R

n in the sense of Def-
inition 16.2. Consider the Minkowski function gM(x) of the set M defined through
(16.15)–(16.16), where the matrices (A, B) characterize system (16.3). The para-
meterized set

ΩM(α) = αM (16.17)

is RPI with respect to (16.3) for any scalar positive parameters α in the set

SM = {
α ∈ R+| f (x) ≤ gM(x) ∀x ∈ LgM(α)

}
(16.18)

where LgM(.) is the level set defined according to (16.1).

Proof First note that ΩM(α) is invariant with respect to xk+1 = Axk + Bwk, with wk

∈ αB1. Indeed using the definition (16.15) we have

ΩM(α) = αM = α lim
k→∞

k⊕

i=0

Ai BB1 = lim
k→∞

k⊕

i=0

Ai B {αB1} , (16.19)

which shows that ΩM(α) is RPI with respect to (16.3) when wk ∈ αB1.
Consider now a scalar α ∈ SM. From the definition of the set SM in (16.18),

f (x1) ≤ gM(x1) = α, ∀x1 ∈ LgM(α). (16.20)

The fact that f (x) is an increasing function from 0 ∈ R
n ensures on one hand that

L−
f (c1) ⊇ L−

f (c2) ⊃ {0} if c1 ≥ c2 > 0, and on the other hand the star-shape property
of the sublevel set of f (.). Exploiting this last property, for any x2 ∈ ΩM(α) there
exists a scalar 0 ≤ β ≤ 1 such that x2 = βx1 and x1 ∈ LgM(α). From the definition
of the sublevel set (16.1) we have

f (x2) ≤ f (x1) (16.21)

4The unit ball is defined with respect to a predefined norm |.|p . In the present case the matrix
B ∈ R

n×1 and thus the corresponding unit ball is defined in R where the |.|p are equivalent for
p ∈ [1,∞).
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From (16.20) and (16.21) it yields f (x2) ≤ α and subsequently

|wk | ≤ α ∀xk ∈ αM = ΩM(α). (16.22)

Thus, the proof of invariance of ΩM(α) with respect to (16.3)–(16.4) is
completed. �

The problems formulated in Sect. 16.2.1 can be addressed in light of Theorem 16.3.
The next corollaries resume these basic sufficient conditions for the existence of
ultimate bounds represented by convex sets and their parametrization with respect
to the initial conditions.

Corollary 16.1 The solution xk = x(x0, w0:k−1) of (16.3) is globally ultimately
bounded if the set SM in (16.18) exists and is unbounded. Additionally, if SM = R+
then the origin is a robustly asymptotically stable equilibrium point.

Proof If the set SM is unbounded, then there exists a subset [c̄,∞) ⊆ S such that
ΩM(α) is RPI for all α ∈ [c̄,∞). But these sets are also attractive (in the virtue of
the properties of the minimal RPI sets with constant bounds) and by consequence
ΩM(c̄) will represent a global ultimate bound for the state trajectories. For the second
part of the corollary, it is easy to observe that c̄ = 0 and thus any neighborhood of
the origin [−ε, ε] can be reached in a finite number of iterations independently of the
initial conditions. It follows that xk → 0 as k → ∞. �

Corollary 16.1 offers a sufficient condition for global ultimate boundedness and
robust asymptotic stability in the presence of state-dependent disturbances. It is
worth to mention that this condition admits state-dependent bounds described by
radially unbounded functions f (.) (which is not the case of Theorem 16.1). Indeed,
the only condition to be satisfied in Theorem 16.3 is f (x) < gM(x), ∀x ∈ R

n and,
by definition, the function gM(.) is radially unbounded.
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Fig. 16.3 Left the graph of f (x) (blue) and gM(x) (green)—describing the envelope (positive and
negative) bounds of the disturbances for Example 16.1. The red interval represents the region for
which f (x) > gM(x) and thus correspond to scaling factors α /∈ S. Right time simulations with
random initial conditions in [−8, 8]
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Example 16.1 Consider the dynamical system:

xk+1 = 0.5xk + wk, |wk | ≤ f (xk) = |xk | 1
2 . (16.23)

Figure 16.3 shows the relationship between f (x) and gM(x). The last one rep-
resents the Minkowski function that corresponds to the minimal invariant set
M = [−2, 2] in (16.15). Note that the function f (x) is radially unbounded and
thus Theorem 16.1 cannot be applied. Using Theorem 16.3 one can describe the
set of admissible parameters SM = [2,∞) leading to admissible invariant sets
ΩM(α) = α[−2; 2], ∀α ∈ SM and the global ultimate bound ΩM((1 + ε)2) =
2(1 + ε)[−2; 2] = (1 + ε)[−4; 4], ε > 0. Note also, in the virtue of the Corol-
lary 16.1, that the origin is not a robust asymptotically stable equilibrium point for
this example.

Corollary 16.2 Consider the system (16.3) under the assumptions of Theorem16.3
and the set SM ⊆ R+ in (16.18). If SM is unbounded and described by a (possibly
infinite) union of disjoint intervals

SM = [c1, c̄1) ∪ [c2, c̄2) ∪ · · · ∪ [ci , c̄i ) . . . (16.24)

with 0 = c̄0 ≤ c1 < c̄1 < c2 < c̄2 < . . . ci < c̄i < . . . , then ΩM((1 + ε)ci+1) is an

ultimate bound for ε ∈
(

0,
c̄i+1−ci+1

ci+1

)
and any x0 ∈ ΩM(c) with c ∈ [c̄i , c̄i+1).

Proof We split the interval [c̄i , c̄i+1) = [c̄i , ci+1) ∪ [ci+1, c̄i+1). On one hand, for any
initial condition in ΩM(c) with c ∈ [ci+1, c̄i+1), an ultimate bound can be obtained
using the ε-outer approximation of ΩM(ci+1) with a similar argument used in
Corollary 16.1. On the other hand, it can be observed that x0 ∈ Ω(c) ⊂ Ω(ci+1)

for any c ∈ [c̄i , ci+1) and the ultimate boundedness of the trajectories follows from
the robust positive invariance of of Ω(ci+1). �

The construction of the set SM in Theorem 16.3 might be a difficult task as long
as it involves the Minkowski function of minimal robust positive invariant set M in
(16.6). It is known that M, being the limit set of an infinite Minkowski sum, has a
finite (explicit) representation in terms of generators only for restricted classes of
LTI dynamics (in the case Ak B = αB for some k ∈ N+ and 0 ≤ α ≤ 1). As such,
for practical reasons, the use of approximations is enabled along the lines of the next
results.

Theorem 16.4 Let U be a polyhedral RPI set with respect to xk+1 = Axk + Bwk

with wk ∈ B1. The parameterized set ΩU(α) = αU is RPI with respect to (16.3) for
all α in

SU = {
α ∈ R+| f (x) ≤ gU(x) ∀x ∈ LgU(α)

}
(16.25)

The proof is similar to the one in Theorem 16.3 and is omitted.

Example 16.2 Consider the second-order dynamical system:
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Fig. 16.4 Left the graph of f (x). Right the graph of gU(x) in Example 16.2

[
x1,k+1

x2,k+1

]
=

[
0.2 0.2
0 0.4

] [
x1,k

x2,k

]
+

[
0
1

]
wk, (16.26)

where |wk | ≤ f (xk) = |x1,k | + 0.1|x1,k |0.2|x2,k |0.2 + |x2,k |0.5 and f (.) fulfills the
increasing from 0 assumption as illustrated in Fig. 16.4. The minimal invariant set
M in this case will be replaced by a tight outer invariant approximation U, illustrated
in Fig. 16.4 with its level sets.5 The superposition of the functions f (x) and gU(x)

is given in Fig. 16.5 where it can be seen that their intersection is done along non-
convex curves. At the bottom of the same figure, we can see the regions for which
f (x) ≥ gU(x) together with a value of the scalar α such that the parameterized set
ΩU(α) is guaranteed to be RPI. This provides an exemplification of the analysis tools
available via Theorem 16.3.

Remark 16.5 For constructing the parameterized set ΩU(α), one can use low com-
plexity invariant approximation, [14, 21, 23], of the set M in (16.6), as for example,

U = {
x : |V −1x | ≤ (I − |Λ|)−1|V −1||B|} (16.27)

with Λ = V −1 AV , corresponding to the Jordan canonical form of the transition
matrix in (16.3). The function gU(.) corresponds to a polyhedral cone and is piecewise
linear over a cone partition of the state space.

Proposition 16.1 Let M be the minimal RPI set with respect to xk+1 = Axk + Bwk

with wk ∈ B1. If U is a polyhedral RPI approximation of M, then SM ⊇ SU, where
SM and SU are constructed based on (16.18) and (16.25) for a given function f (.)

increasing from 0.

Proof Note that U ⊇ M based on the properties of the minimal RPI set. This fact
implies gU(x) ≤ gM(x) ∀x ∈ R

n and this relationship can be related to the inequali-
ties involved in (16.18)–(16.25) where f (x) ≤ gU(x) only if f (x) ≤ gM(x). Under

5This particular function is increasing from x̄ = 0 in the sense of Definition 16.2 but not monotonic
according to (16.12) and thus the hypothesis of Theorem 16.2 is not satisfied in this case.
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the star-shaped assumption for f (x) it follows that SM ⊇ SU and thus the approxi-
mation will be inherited by the parameterized set of RPI sets for which the sufficient
conditions hold. �

An illustration of the impact of the invariant set approximation on the function
entering in the comparison with the state-dependent bound in Theorem 16.3 is given
in Fig. 16.6.

Remark 16.6 Theorem 16.3 builds on the assumption of a bounding function increas-
ing from 0 which is satisfied for Examples 16.1 and 16.2. However, the system in
(16.10) violates this assumption which is based on the star-shape property of the
sublevel set. Indeed, a simple check shows that

L−
f (0.05) = [−0.071; 0.071] ∪ [0.167; 0.306] ∪ [−0.306;−0.167].

Another example of bounding function which does not satisfy the increasing assump-
tion will be the Himmelblau’s function for the bound of the disturbance with respect
the system dynamics in (16.26). This function is presented in Fig. 16.7 with the cor-
responding contour (level sets) which are non-connected and cannot lead to RPI sets
centered in the origin.

In order to apply Theorem 16.3 for any state-dependent bound on the disturbance
(see Remark 16.6), embedding via a star-shaped envelope can be used as follows:

Proposition 16.2 Let f : Rn → R+ and a point x̄ ∈ R
n. The function h : Rn → R+

defined as
h(x) = max

0≤γ≤1
f (γx + (1 − γ)x̄) (16.28)

is increasing from x̄ and f (x) ≤ h(x) ∀x ∈ R
n.

Proof Proposition 16.2 can be proved via the direct application of the star-shape
properties described in Definitions 16.1–16.2. �

For the system in (16.10), the use of the star-shape embedding (Fig. 16.8) leads to
the identification of the set of admissible parameters SM = [

√
5−2
4 , 0.25) ∪ [0.75,∞)

for the parameterized invariant sets ΩM = α[−2, 2],α ∈ SM illustrated by the com-
parison between h(x) and gM(x) in Fig. 16.9.
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Fig. 16.5 Top the graph of
f (x) (red) and gM(x) (blue)
in Example 16.2. Bottom 2D
illustration of the shape of
the RPI set in comparison
with the region for which
f (x) ≥ gU(x)

Fig. 16.6 The comparision
of a tight approximation of
the graph of gM(x) (blue)
based on the tight
approximation of the
minimal RPI set in (16.6)
and gU(x) (red) based on
(16.27) for the LTI system in
Example 16.2
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Fig. 16.7 Left the graph of Himmelblau’s function f ([x1x2]T ) = (x2
1 + x2 − 11)2 + (x1 + x2

2 −
7)2. Right the corresponding (non-connected) level sets

Fig. 16.8 f (x) (blue) in
(16.10) and its star-shaped
embedding h(x) (red)
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16.4 Extensions and Connections with Optimization-Based
Design

16.4.1 Extensions

Based on the main results of this study presented in Sect. 16.3, it is worth to deter-
mine the parameterized sets ΩM(α) for special cases of the bound-function f (x)

summarized in the following corollaries.

Corollary 16.3 Consider system (16.3). If f (x) is convex, then ΩM(α) = αM is an
invariant set for all αm ≤ α ≤ αM with

αm = inf
{
α ∈ R+| f (x) ≤ gM(x) ∀x ∈ LgM(α)

}
(16.29)

αM = sup
{
α ∈ R+| f (x) ≤ gM(x) ∀x ∈ LgM(α)

}
(16.30)

Definition 16.7 The nonlinear function f : Rn → R+ is continuous and cone-
bounded over Rn , if there exist nonnegative constants λ0 and λ1 such that

‖ f (x)‖ ≤ λ0 + λ1‖x‖ ∀x ∈ R
n. (16.31)

Corollary 16.4 Consider the system (16.3) where the additive uncertainties sat-
isfy (16.4) with a cone-bounded function f (.) as described in Definition16.7. The
parameterized set ΩM(α) = αM is RPI for all α ≥ αm with αm given by (16.29).

Remark 16.7 In [16], several classes of uncertain nonlinear dynamics have been
mentioned in the context of state-dependent uncertainties, as for example:

xk+1 = Axk + ckg(xk) + zk, (16.32)

with ck, zk ∈ R
n satisfying elementwise the inequality ‖ck‖ ≤ Cmax, ‖zk‖ ≤ Zmax

with Cmax, Zmax ∈ R
n+, and a scalar function of a vector argument g : Rn → R+. The

system (16.32) is an example of dynamics which can be regarded as linear subject
to a cone-bounded uncertainty and parameterized sets ΩM(α) can be determined
according to Corollary 16.4.

Corollary 16.5 Consider the system

xk+1 = Axk + Bwk + Buū, |wk | ≤ f (xk), (16.33)

satisfying Assumption16.1, with f (.) an increasing function from (I − A)−1 Buū,
Bu ∈ R

n and a constant signal ū. The parameterized set ΩM(α, ū) = αM ⊕ (I −
A)−1 Buū is RPI for all α ∈ SM(ū) with SM(ū) computed based on Theorem16.3 for
the system ξk+1 = Aξk + Bwk subject to constraints |wk | ≤ f (ξk + (I − A)−1 Buū).
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Proof We observe that in the absence of disturbances, the trajectories converge to x̄ =
(I − A)−1 Buū. Then the analysis can be done with respect to the shifted dynamics
xk = x̄ + ξk with the particularity that the function gM(ξk) is star-shaped in 0 while
the original bounding function f (.) is described in the original state space and thus
it is computed according to the change of variable f (ξk + x̄). �

16.4.2 Detection of Mode Switching via Set Invariance

The positive invariance of a set with respect to the nominal dynamics is a strong
notion and can be exploited for the detection of a switch in the dynamics, [28]. The
basic idea is to construct off-line the family of invariant sets and monitor in real-
time the inclusion of the state in the respective set. In case that the invariance is
violated, a change of mode is detected. Subsequently, the convergence to a different
invariant (limit set) can lead to the identification of the current mode of functioning.
This mechanism has been documented and is well understood for linear dynamical
systems in the presence of bounded disturbances. We will show in the next paragraphs
the that way the theoretical developments on the state-dependent ultimate bounds
can be used in practice.

The off-line construction of the family of invariant sets is realized based on the
following proposition (the proof is omitted for brevity).

Proposition 16.3 Let us consider a dynamical system described by

xk+1 = Ai xk + Biwk + Biuū, |wk | ≤ fi (xk) (16.34)

with i ∈ {1, 2} a switching signal in between two modes. It is considered that
for each mode we can construct independently the parameterized invariant sets
Ω

(i)
M

(α, ū),α ∈ S(i)
M

(ū) according to Corollary16.5.

• If xk ∈ Ω
(i)
M

(α, ū), where Ω
(i)
M

is RPI with respect to the i-th mode of the dynamics
of system (29) with i ∈ {1, 2},α ∈ S(i)

M
and xk+1 /∈ Ω

(i)
M

(α, ū), then a switch took
place.

• Consider additionally that

S(i)
M

(ū) = [c(i)
1 , c̄(i)

1 ) ∪ [c(i)
2 , c̄(i)

2 ) ∪ · · · ∪ [c(i)
j , c̄(i)

j ) . . . ; i ∈ {1, 2}, (16.35)

and x0 ∈ Ω
(1)

M
(α(1), ū) ∩ Ω

(2)

M
(α(2), ū) for α(1) ∈ [c̄(1)

j , c̄(1)
j+1) ⊆ S(1)

M
(ū),α(2) ∈

[c̄(2)
l , c̄(2)

l+1) ⊆ S(2)

M
(ū). The time-invariant mode of functioning can be identified

if Ω
(1)

M
(c(1)

j+1, ū) ∩ Ω
(2)

M
(c(2)

l+1, ū) = ∅.

A simple way to exploit the result is to consider the auxiliary signal ū as a degree
of freedom for the separation of the ultimate bounds for the modes of functioning
in a switching dynamical system. The basic idea is to find the auxiliary signal ū,
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minimum in norm such that the ultimate bounds, which corresponds to a given state,
are separated. Taking into account Proposition 16.3, we formulate for x ∈ R

n the
following optimization problem in a compact form:

min
ū

|ū| (16.36)

subject to: Ω
(1)

M
(c(1)

j+1, ū) ∩ Ω
(2)

M
(c(2)

l+1, ū) = ∅ (16.37)

where j and l are such that x ∈ Ω
(1)

M
(α(1), ū) ∩ Ω

(2)

M
(α(2), ū). The optimization is

nonlinear and highly correlated with the state-dependent bounds.
If S(i)

M
are non-connected sets, then each subinterval should be treated indepen-

dently. Note however that the resultant ultimate bounds for each interval of parame-

Fig. 16.10 The ultimate
bounds Ω

(1)
M

(α, ū) obtained
by exploiting the relationship
between the state-dependent
noise-bounding function
f (x) and the function gU(x)

on the top. The interval of
scaling factors α
corresponding to invariant
sets Ω

(1)
M

(α)—bottom figure
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ters are convex sets and that for specific classes of state-dependent bounds (convex,
cone-bounded) S(i)

M
is a connected set, see Corollary 16.3–16.4.

Example 16.3 Consider the dynamical system (16.34) with

A1 =
[

1 0.1
−0.9 0

]
; B1 =

[
0
1

]
; B1u =

[
0
0

]
; (16.38)

A2 = 1

3

[
1 −0.2

−0.2 0.5

]
; B2 =

[
1
1

]
; B2u =

[
1
0

]
;

f1(xk) = 0.1 + |0.7 ∗ sin(xk,1) − xk,1|; f2(xk) = 1.

The dynamics of the first mode is not affected by the exogenous signal ū and as such
the parameterized family of ultimate bounds (Fig. 16.10) will be described by the
union of intervals:

S(1)

U
(ū) = [1.1; 2.2) ∪ [5; 6.8) ∪ [8.9; 11.5) ∪ [13.8; 16.1) ∪ [18.5; 20.8)

∪ [22.8; 25.5) ∪ [26.8, . . . (16.39)

The second mode of functioning is linear and the parameterized invariant set is
given by

Ω
(2)

M
(α, ū) = αM ⊕ (I − A)−1 B2uū (16.40)

with α ∈ [1,∞) and ū ∈ R.
Solving four linear programming problems for each of the intervals in (16.39),

one can find the level of ū which ensures asymptotic mode detection—Fig. 16.11.

16.5 Conclusion and Further Research

The chapter revisited the ultimate bounds for linear systems in the presence of addi-
tive disturbances. Their characterization was extended from the classical case of
fixed bounds to the state-dependent bounds. It is shown that a particular set-induced
function can be defined in the state space and serve as a comparison for the state-
dependent bounds.

In the case of multiple sources of additive disturbance affecting linear dynam-
ics, the present study can be extended to account for elementwise state-dependent
bounds by analyzing independently each column of the input matrix B ∈ R

n×m and
aggregating their effects.
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Chapter 17
RPI Approximations of the mRPI Set
Characterizing Linear Dynamics
with Zonotopic Disturbances

Florin Stoican, Cristian Oară and Morten Hovd

Abstract In this chapter we provide a robust positive invariance (RPI) outer-
approximation of the minimal RPI (mRPI) set associated to linear dynamics with
zonotopic disturbances. We prove that the candidate sets considered are either RPI
or become so with a scaling factor. The results base on the concomitant compu-
tation of extremal points and their extremal hyperplanes. Further, we consider the
equivalence with ultimate bounds constructions and show that successive RPI repre-
sentations becomemonotonically “tighter” as their complexity increases. The results
are tested in illustrative examples.

Keywords Minimal robust positive invariant (mrpi) sets · Extremal trajectories ·
Zonotopic disturbances

17.1 Introduction

The notions of positive invariance (PI) and its robust counterpart, robust positive
invariance (RPI) are fundamental in a large number of control topics. We may men-
tion reference governor synthesis, [8], predictive controllerswith terminal constraints
[13], robust time-optimal control, [2], safe collision avoidance, [18, 19], or fault tol-
erant control, [22], as areas which make use of these notions.
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The common thread in all these applications is that the (robust) invariance permits
to ‘push’ the difficult computations (the set construction) into an offline phase and
then, at runtime, only simple computations remain to be made.

As the domain is quite large we concentrate on the rest of the chapter on the
minimal RPI (mRPI) set which represents the smallest set which is still RPI for a
given dynamic (its counterpart is the maximal RPI (MRPI) set, which is the largest
invariant set respecting given constraints). Further, we will consider linear dynam-
ics with zonotopic disturbances (a symmetric subset of the polyhedral sets). These
assumptions not only allow easier computations but actually provide a theoretical
framework for the results shown hereafter.

ThemRPI set, barring some particular cases, has no finite description of its bound-
ary. Consequently, a great deal of research was directed toward finding RPI approxi-
mations of themRPI set. The existing results can be classifiedmainly into: (i) iterative
and (ii) explicit methods. In the former class we consider all the methods which take
an initial set and through a recursive iteration improve the approximation by exploit-
ing the contractive properties of the linear mapping, this includes [1, 20] or [15].
The latter gives an explicit formulation of the boundary of the set, a classic example
being the sublevels of the quadratic Lyapunov functions or ultimate bounds formu-
lation, [11, 16]. The main parameters that characterize these methods are fidelity of
the representation and numerical complexity. With respect to these requirements, the
aforementioned procedures have a complementary behavior. The iterative procedures
can approximate arbitrarily well (“ε”-outer-approximations) but have an exponential
increase in the computational effort, whereas the explicit formulations are simple to
deduce but are conservative.

It is then worthwhile to seek a method which combines the best aspects of both
classes: fast computation and accurate representation of the mRPI set. To this end,
we consider [9, 10] where an explicit representation of the boundary of the null-
controllable set was provided (apparently a well-known technique in the state of the
art, [17]). We have studied these constructions from the point of view of extremal
representations in a previous work, [21]. We will point in the present chapter that
the notions are readily adapted to the mRPI set and use the techniques described in
the respective context for our own ends: the construction of an RPI approximation
of the mRPI set with a minimum of computations.

We expand by exploiting additional structure of the boundary. That is, we consider
both the extremal points defining the boundary and their associated extremal hyper-
planes. This allows to obtain outer-approximations which may be directly RPI or,
if not, become so after scaling with a finite scalar. This is in contrast with the work
in [21] where all the constructions start with inner-approximations and therefore
require a scaling factor regardless of the set. Further, we show that the construction
is strongly related to the notion of ultimate bounds, [11], and that the RPI approxima-
tions which we obtain are increasingly ‘tighter’ around the mRPI set proportionally
with the complexity of the representation.
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Notation
Hereafter, ei denotes the i-th standard basis vector. [X ]i denotes the i-th row of
matrix X . The Minkowski sum of two sets, A and B, is denoted as A ⊕ B =
{x : x = a + b, a ∈ A, b ∈ B}. conv(S)denotes the convexhull of set S. #S denotes
the cardinality of set S.

17.2 Preliminaries

In order to introduce the main ideas of the chapter we recapitulate some basic invari-
ance results (see, e.g., [5]). Let us consider the following LTI system in Rn:

x+ = Ax + δ (17.1)

where A ∈ R
n×n is a Schur matrix; x and x+ represent the current and successor

states of the system, respectively and δ is a disturbance bounded by Δ ⊂ R
n which

is convex, compact, contains the origin in its nonempty interior and is bounded.
System (17.1) is used next for defining basic invariance notions [4].

Definition 17.1 Under dynamics (17.1), a set Ω ⊂ R
n is called positive invariant if

AΩ ⊆ Ω and robust positive invariant set if AΩ ⊕ Δ ⊆ Ω . �

ThemRPI set associated to (17.1), denoted for further use asΩ∞(A,Δ), is defined
as the RPI set contained in any closed RPI set. This is known to be unique, compact
and—in the case when Δ contains the origin—to contain the origin, [12].

An alternative representation is to define it as the limit set to the set recurrence
relation1 Ωk(A,Δ) = AΩk−1(A,Δ) ⊕ Δ (with Ω0 = {0}):

Ω∞(A,Δ) � lim
k→∞ Ωk(A,Δ) =

∞⊕

i=1

AiΔ. (17.2)

The set Ωk(A,Δ) is the k-reachable set under dynamics (17.1) starting from {0}.
As stated earlier, it is not possible to compute an exact representation of (17.2),

except under restrictive assumptions such as whenmatrix A is nilpotent, [14]. Hence,
approximations have to be used and various algorithms for the construction of RPI
approximations exist in the literature.Wepoint to the necessity that the approximation
is itself an RPI set (otherwise the guarantee that a certain signal remains in a bounded
area is no longer valid).

The above invariance notions hold for any kind of bounded disturbance set. Here-
after, in order to apply the techniques from [9] (and obtain meaningful results), we
restrict our analysis to the case of zonotopic disturbances.

1The convergence to a finite limit is guaranteed by the stability of the system and by the boundedness
of the perturbation.
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Zonotopes represent a particular class of polytopes characterized by the following
definition:

Definition 17.2 The subset of Rn with center c and set of generatorsB � {b1, . . . , bm}
⊂ R

n , such that

Z(c,B) =
{

x ∈ R
n : x = c +

m∑

i=1
λi bi , |λi | ≤ 1, bi ∈ B

}

with i = 1, . . . , m is called a zonotope. �

A zonotope has the following properties, [7]:

(i) is closed under linear transformation:

LZ(c,B) = Z(Lc, LB); (17.3)

(ii) is closed under Minkowski sum:

Z(c1,B1) ⊕ Z(c2,B2) = Z(c1 + c2,B1 ∪ B2). (17.4)

These properties together with the associative property of theMinkowski addition
lead to some interesting results.

Proposition 17.1 (Proposition 1, [21]) Consider the dynamics (17.1) with a zono-
topic disturbance set Δ. Then, its associated mRPI set, Ω∞(A,Δ), verifies the fol-
lowing relations:

(i) for any k ≥ 1, Ω∞(A,Δ) = Ω∞(Ak, Ak−1Δ ⊕ · · · ⊕ Δ);
(ii) given Δ = Z(c,B), the mRPI set can be decomposed as Ω∞(A,Δ) =

{
(I − A)−1 c

}⊕
m⊕

i=1
Ω∞(A,Δi ), where Ω∞(A,Δi ) is the mRPI set associated

with dynamics x+ = Ax + δi and where δi ∈ Δi � {λi bi , |λi | ≤ 1}.
Proof See the proof of Proposition 1, [21]. �

Note that the relation between the mRPI set described in (ii) of Proposition 17.1 also
holds for the more general case where the disturbance set Δ is a Minkowski sum of
sets: Δ = Δ1 ⊕ · · · ⊕ Δm .

In the rest of the paper we consider a particular case of dynamics of form (17.1).

Assumption 17.1 Consider the dynamics

x+ = Ax + bλ (17.5)
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with the following particularities:

(i) the eigenvalues of matrix A ∈ R
n×n are real and positive;

(ii) the disturbance varies along a segment defined by the fixed vector b ∈ R
n . With

respect to (17.1) this is equivalent with δ ∈ Δ = {λb, |λ| ≤ 1}. �

Taking into account Proposition 17.1 we observe that the assumptions affecting
(17.5) are manageable, that is, the dynamics can be relaxed up to a systemwhich has:
1) a state matrix with real eigenvalues and 2) zonotopic disturbances. First, notice
that since A2 has only positive eigenvalues regardless of the sign of the eigenvalues of
A (as long as they are real) it follows that we can compute the mRPI set for dynamics
A2 → A and AΔ ⊕ Δ → Δ and use it for the original dynamics (17.5) (see (i) for
k = 2) without any loss in the mRPI representation. Second, using (ii) we have that it
suffices to compute the mRPI sets for each of the segments composing the zonotopic
disturbance and to add them (in the Minkowski sense) at the end of the procedure to
recover the mRPI corresponding to dynamics (17.1).

Remark 17.1 The above discussion is important since it makes the link to more
general dynamics, in the sense of a state matrix which is Schur, regardless of the
sign of the matrix eigenvalues. Coupled with the cases covered earlier we cover a
reasonably large number of dynamics (keep in mind that usually the perturbations
are given as magnitude conditions which can be then modeled as zonotopic sets).
Note also that complex eigenvalues and the continuous time case can be discussed
[9]. �

17.3 Explicit Representation of the mRPI Set

The results described here are based on [9]where the shape of the null-controllable set
of an anti-stable dynamic is studied. With some minor changes, the same reasoning
can be applied to the computation of minimal RPI sets for stable dynamics. Recalling
(17.2), the mRPI set for dynamics (17.5) can be seen as the collection of trajectories
starting from an initial state x0 = {0} and taking all possible noise realizations:

Ω∞(A,Δ) = lim
k→∞

⋃

|λl |≤1

{
k∑

l=1

Ak−lbλl

}

(17.6)

Not all these trajectories will result in extremal points (points which lie on the bound-
ary of Ω∞(A,Δ)). A sequence of disturbances (λ1,λ2, . . . ) is called extremal if it
steers the trajectory starting from {0} into an extremal point (a vertex) ofΩ∞(A,Δ).
The collection of these extremal sequences is denoted asΣ and is given by all “bang-
bang” disturbance realizations which have at most n − 1 switches (see Lemma 3 of
[10]):
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Σ =
⎧
⎨

⎩
±(λ1,λ2, . . . ) : λl =

⎧
⎨

⎩

1, 1 ≤ l < i1,
(−1) j , i j ≤ l < i j+1,

(−1)n−1, in−1 ≤ l ≤ ∞
(i1, . . . , in−1) ∈ In

∞

}
,

(17.7)
where

In
k = {(i1, . . . , in−1) : 1 ≤ i1 ≤ · · · ≤ in−1 ≤ k} (17.8)

denotes the collection of all switching sequences from R
n where we have at most

‘n − 1’ switches (to which correspond ‘n’ intervals along the time domain) and
where the last switch happens no later than the k instant.

Lemma 17.1 To an extremal sequence from (17.7) characterized by switching times
i = {i1, . . . in−1} as in (17.8) corresponds a pair of normal vector and extremal points(
c�

i ,±x∗
i

)
defined as:

(i) the normal vector ci ∈ R
n which respects

c�
i Ai j b = 0, ∀i j ∈ i; (17.9)

(ii) extremal point x∗
i ∈ R

n

x∗
i =

⎛

⎝2
n−1∑

j=1

(−1) j Ai j + (−1)n I

⎞

⎠ (I − A)−1b. (17.10)

Proof These results are derived in [9] for the continuous domain where it is noted
that c�eAt b has at most n − 1 sign changes (‘switches’). This holds for a matrix A
with positive eigenvalues. After various computations it is shown that the disturbance
sequence λ(l) = sgn(c� Alb) is extremal. Based on this, in [10] it is shown that for
a given switching sequence correspond both the extremal hyperplane characterized
by the normal vector verifying (17.9) and the extremal point (17.10). �

Using Lemma 17.1 we provide a dual representation of the mRPI set (17.6).

Proposition 17.2 For dynamics (17.5), the associated mRPI set is given in

(i) half-space representation2:

Ω∞(A,Δ) = {x : |c�
i x | ≤ c�

i x∗
i , ∀i ∈ In

∞} (17.11)

(ii) generator representation (i.e., as convex hull of its extremal points):

Ω∞(A,Δ) = conv
i∈In∞

(±x∗
i

)
(17.12)

2Hereinafter, without any loss of generality, we make the convention that c�
i x∗

i ≥ 0.
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Proof (i) The vector ci represents the direction along which we find the maximal
and minimal values of the mRPI, the extremal points ±x∗

i . Therefore we obtain two
extremal hyperplanes which bound the mRPI: cix = cix∗

i and cix = −cix∗
i . Assum-

ing, as in footnote 2 that the product cix∗
i is positive, it follows that the mRPI set lies

in |c�
i x | ≤ c�

i x∗
i which leads to (17.11).

(ii) Since by definition the points ±x∗
i are extremes of the mRPI, the relation (17.12)

follows immediately. �
Several remarks are in order.

Remark 17.2 Note that there are three elements which interlock to give the boundary
description: the switching sequence i, the normal vector c�

i and the extremal point
x∗

i . Depending on the desired approach, we may: (i) provide a switching sequence i
and introduce it in (17.9) and (17.10) to obtain c�

i and x∗
i respectively; or (ii) provide

a vector c�
i , obtain the sequence i for which (17.9) is verified and use it in (17.10) to

obtain x∗
i . �

Lastly, we recall the dynamical interpretation given to the extreme points (17.10).

Remark 17.3 Let xe,± = ±(I − A)−1b, the equilibrium point of (17.5) for constant
disturbance λ(k) = ±1. It can be noted that half of the points in (17.10) are formed
by trajectories of (17.5) starting from xe,+ under any bang-bang sequence with n − 2
or less switches. The other half is symmetric with the first part and consists of the
trajectories starting from xe,− under any bang-bang sequence with n − 2 or less
switches, see [10] for further details. In particular, this means that no point (except
xe,±) remains fixed on the boundary, that is, the boundary itself is invariant but it
flows in-between the two equilibrium points, see [6] for an analysis of the mRPI
boundary behavior for nonlinear dynamics. �
Illustrative Example
For the purpose of illustration let us consider the two-dimensional case. Keeping the
notation of Lemma 17.1, the switching sequence reduces to a single switch: i = {i1},
as implied by n − 1 = 1. Consequently, the sequence of extremal noise realizations
becomes

Σ =
{
±(λ1,λ2, . . . ) : λl =

{
1, 1 ≤ l < i1,

−1, i1 ≤ l ≤ ∞ , i1 ∈ I2∞

}
(17.13)

which simplifies the formulations of both (17.9) and (17.10) into:

c�
i Ai1b = 0, (17.14a)

x∗
i = ± (

2Ai − I
)
(I − A)−1b. (17.14b)

Further, let us consider the LTI dynamics

x+ =
[
0.91 −0.07
0.01 0.79

]
x +

[
0.03
0.31

]
λ, |λ| ≤ 1. (17.15)
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Fig. 17.1 Illustrations of the mRPI set, a extremal hyperplanes and extremal points, b mapping
cAkb, c dual representation, d equilibrium points and extremal trajectories

Over these dynamics we highlight the theoretical results from above. First, we take
an arbitrary switching time i1 = 5 and depict in Fig. 17.1a the resulting extremal
hyperplanes and corresponding extremal points, as resulting from Lemma 17.1:

ci =
[
0.7114
0.2886

]
, x∗

i = ±
[−0.7176
−0.6062

]
.

Note that (17.14a) does not uniquely define ci ∈ R
2—it only defines the normal

vector direction but not its length. To take a unique ci we add an arbitrary constraint,
c�

i · [1 1
]� = 1. Further, as in Proposition 17.2, we depict the resulting extremal

hyperplanes. We illustrate these against the ‘real’ mRPI set (obtained as in (17.12)
with a large number of extremal points) and it can be seen that indeed (17.14a)
and (17.14b) define extremal hyperplanes for the mRPI set. Moreover, we check in
Fig. 17.1b that ci Ai1b switches its sign at the desired value i1 = 5whichmeans that the
product c�

i x is maximized for the sequence of disturbances {1, 1, 1, 1,−1,−1, . . . }.
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Fig. 17.2 Illustrations of the mRPI set for state matrix with negative eigenvalues, a the sets
Ω∞(A2, b), Ω∞(A2, Ab), b the set Ω∞(A, b)

Further we show in Fig. 17.1c the half-space construction (17.11) by enumerating
pairs (17.14a)–(17.14b) for a sequence of switching instants I210 = {0, 1, . . . , 10} and
{∞}.

As discussed in Remark 17.3, it is possible to describe the extreme points of
the mRPI as two trajectories starting from xe,+ and xe,−, respectively. E.g., for the
two-dimensional case, it means that starting from xe,− and considering a constant
(n − 2 = 0 switches) disturbance, λ(l) = 1 for any l ≥ 0 we pass through half of the
extreme points (17.14b). The converse holds when starting from xe,+ and considering
a constant disturbance λ(l) = −1 for any l ≥ 0. We depict this in Fig. 17.1d.

As stated earlier thesemRPI constructions hold for the restricted dynamics (17.5).
In particular, they are not applicable for state matrices with negative eigenvalues. For
illustration we take dynamics

x+ =
[−1.0559 1.1978
−0.1711 0.9975

]
x +

[
0.03
0.31

]
λ, |λ| ≤ 1. (17.16)

The state matrix has a negative eigenvalue and therefore we apply Proposition 17.1
and consider two auxiliary dynamics where the state matrices are positive ‘x+ =
A2x + Abλ’ and ‘x+ = A2x + bλ’ (case (i) of the proposition) and then combine
the resulting mRPI sets to retrieve the mRPI set for dynamics (17.16), case (ii) of
the proposition. These operations are depicted in Fig. 17.2a and b, respectively.

17.4 RPI Constructions Using Ω∞(A,Δ)

Themain idea of this chapter is to use the constructions stated in Sect. 17.3 to provide
RPI approximations of the mRPI set. With respect to previous work in [21], we
consider here both the extremal points and their corresponding extremal hyperplanes.
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This allows to provide half-space outer-approximations of the mRPI set (in contrast
with the inner-approximations from [21]).

Having an explicit description of the mRPI’s boundary does not suffice since
in practice we can consider only a finite complexity (finite number of extremal
hyperplanes or extremal points3). In [21], finite sequences of extremal points {±x∗

i }
have been considered together with scaling factors which make the resulting inner-
approximation into an RPI set.

Here we pursue the dual approach, that is, we consider the half-space repre-
sentation and inquire about the positive robust invariance of the resulting sets.
To this end, let us consider a sequence of N ≥ n pairs of extremal hyperplanes
and extremal points {c�

i ,±x∗
i }i∈I, where I ⊂ I n∞ gathers a collection of switching

sequences i = {i1, . . . , in−1}.
We can now define the set

S(I) = {z : |c�
i x | ≤ di,∀i ∈ I}, (17.17)

where4 di � c�
i x∗

i and for compactness we denote C�
I �

[
. . . ci . . .

]�
and dI =

[
. . . di . . .

]�
.

Proposition 17.3 Assuming the set S(I) defined as in (17.17) and a scalar μ ∈ R
+,

the set μS(I) is RPI under dynamics (17.5) iff

|c�
i b| ≤ μ[I − |H |]i ·

⎡

⎣c�
i C+

I (I − (C�
I C+

I − H))−1C�
I ·

⎛

⎝2
n−1∑

j=1

(−i) j Ai j + (−1)n I

⎞

⎠ b

⎤

⎦

i∈I

,∀i ∈ I.

(17.18)

Proof As per [3], it is known that the robust invariance of μS(I) under dynamics
(17.5) is validated iff ∃H ∈ R

N×N s.t. C�
I A = HC�

I and |C�
I b| ≤ μ · (I − |H |)dI.

The later inequality comes from forcing |C�
I x+| ≤ dI and using the equality given a

priori.
Since we assumed that N ≥ n it follows that C�

I is ‘tall’ and full rank which
means that it accepts a left pseudoinverse defined as C+

I = (CIC�
I )−1CI. This guar-

antees the existence of H . Note that the i-th element of dI is given by c�
i x∗

i = c�
i (I −

A)−1

(

2
n−1∑

j=1
(−i) j Ai j + (−1)n I

)

b where term (I − A)−1 = (I − C+
I HC�

I )−1,

which, via the ‘Woodburymatrix identity’ transforms intoC+
I (I − (C�

I C+
I − H))−1

C�
I which means that |c�

i b| ≤ [I − |H |]i [di]i∈I becomes (17.18). The minimal

3This dual approach comes from the polyhedral sets definitionwhich allows the equivalence between
generator representation and half-space representation.
4We assume without loss of generality that c�

i is taken such that di ≥ 0.
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scaling factor is then found by searching iteratively for theminimalμwhich validates
the constraint for all i ∈ I. �

While μ can be easily obtained as the result of an LP optimization problem, it is
less obvious what is the link between μ and the collection of switching sequences I or
if the LP problem is feasible at all. Still, it has been shown in [21] that two particular
sequences led to monotonically decreasing scaling factors, so we can expect that
similar inferences can be drawn aswell here. In addition,we note that any formulation
of form (17.17) is an outer-approximation (i.e., it contains the mRPI set).

From Lemma 17.1 and Remark 17.2 we recall that we may choose the normals of
the extremal hyperplanes as we desire. Taking into account the structure of matrix
A we have the following lemma:

Lemma 17.2 Let there be V,Λ ∈ R
n×n such that they describe the eigendecom-

position of matrix A (i.e., A = V ΛV −1 where Λ = diag (. . . λi . . . ) and λi are the
eigenvalues of matrix A). We take the normal vector c�

i = [V −1]i as the i-th row of
the inverse of matrix V and we have that

(i) the switching sequence which define ci is

Ie = {i1 = · · · = in−1 = ∞}, (17.19)

(ii) to which corresponds the extremal point

xi = (I − A)−1b. (17.20)

Proof Note that Ak = V Λk V −1 which means that c�
i Akb becomes

c�
i V Λk V −1b. Coupled with the choice of ci = [V −1]i we have that c�

i Akb = λk ·
e�

i V −1b which means that the mapping never changes sign. From this it follows that
the switching happens at ‘infinity’ and thus we reach (17.19) and (17.20). �

Corollary 17.1 The set S(Ie) is RPI.

Proof We revisit (17.18) with the normal vectors being the rows of V −1 (taken as in
Lemma 17.2) which means that N = n and therefore C�

I is an invertible matrix,
i.e., C+

I = (C�
I )−1 = V and H = Λ. This simplifies the constraint (17.18) into

a more manageable form: the i-th element of the right-side term becomes e�
i μ ·

(I − H)dI = [μ · (I − H)dI]i . This reduces to μ(1 − λi )di = μ(1 − λi )c�
i x∗

i . Not-
ing that (I − A)−1 = V (I − Λ)−1V −1, the fact that Ai j (I − A)−1 = (I − A)−1Ai j

and using these in the definition of x∗
i we reach

|c�
i b| ≤ μ(1 − λi )c

�
i V (I − Λ)−1V −1 ·

⎛

⎝2
n−1∑

j=1

(−i) j Ai j + (−1)n I

⎞

⎠ b (17.21)
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which becomes (by noting that c�
i V = e�

i )

|c�
i b| ≤ μ(1 − λi )e

�
i (I − Λ)−1V −1 ·

⎛

⎝2
n−1∑

j=1

(−i) j Ai j + (−1)n I

⎞

⎠ b (17.22)

Then, we have that (by noting that e�
i (I − Λ)−1V −1 = 1

1 − λi
e�

i V −1 = 1

1 − λi
c�

i )

|c�
i b| ≤ μ

1 − λi

1 − λi
c�

i ·
⎛

⎝2
n−1∑

j=1

(−i) j Ai j + (−1)n I

⎞

⎠ b (17.23)

where, recalling that c�
i Ai j b = 0 by construction, we simplify to

|c�
i b| ≤ μ · (−1)nc�

i b. (17.24)

With c�
i chosen such that the right side of the equation is positive, we have that the

right side is in fact equal to the left side for μ = 1. In other words, S(Ie) is RPI. �

Remark 17.4 In [11] and related papers, the ‘ultimate bounds’ construction is
employed. For dynamics (17.5) the set is described as

SU B(A,Δ) = {x : |V −1x | ≤ (I − |Λ|)−1|V −1b|}. (17.25)

With the additional assumptionsmade in this chapter,Λ > 0 and that c�
i b > 0 (17.25)

reduces to
SU B(A,Δ) = {x : |V −1x | ≤ (I − Λ)−1V −1b} (17.26)

which is in fact equivalent to the construction from Corollary 17.1. Further, this
matches with a result from [23] where it has been shown that under certain assump-
tions the set (17.25) is tight (i.e., it touches the mRPI set). This is also the case here
since (17.20) are extremal points of the mRPI set. �

As stated earlier, (17.10) provides an explicit descriptionof themRPI set boundary.
This description involves an infinity of terms and thus cannot be used in practice. We
observe that the extremal points given in (17.10) agglomerate toward either of the
fixed points xe,− and xe,+. Further, the points closer to the fixed points are generated
with bang-bang subsequences appearing at a latter index in the construction (17.10).
Using these two facts we have that:

(i) we can keep a finite subset of points by discarding the ones closer to xe,+ and
xe,−;

(ii) this subset of points is defined by bang-bang sequences happening in a finite
time (that is, all the n − 1 switches are done in a finite time).



17 RPI Approximations of the mRPI Set Characterizing Linear Dynamics … 373

Lemma 17.3 Under dynamics (17.5), for any k ∈ N, the set

Re
k(A,Δ) � S(In

k ∪ Ie) (17.27)

respects relation

Re
k+1(A,Δ) = ARe

k(A,Δ) ⊕ Δ. (17.28)

Proof Theproof follows from thedefinitionof themRPI’s boundary andRemark17.3.
�

Lemma 17.3 allows to describe the following RPI constructions.

Proposition 17.4 Under dynamics (17.5), for any k ∈ N,

(i) Re
k(A,Δ) is RPI;

(ii) for a set

Ω(I) = S(I ∪ Ie) (17.29)

there exists γ ≥ 1 s.t. γΩ(I) is RPI.

Proof (i) We have that In
k ⊂ In

k+1 since all switching sequences where the last switch
happens not later than k are automatically happening not later than k + 1. This means
that Re

k+1(A,Δ) ⊂ Re
k(A,Δ) since the former contains all the extremal hyperplanes

of the later. Considering Lemma 17.3 as well, it follows that ARe
k(A,Δ) ⊕ Δ ⊂

Re
k(A,Δ) which means that Re

k(A,Δ) is RPI.
(ii) Let there be k = min

l
l s.t. (i1, . . . , in−1) ∈ I, in−1 ≤ l, that is, we identify the lat-

est switch from any of the switching sequences of I. It follows then that Re
k(A,Δ) ⊆

Ω(I) since Re
k(A,Δ) contains all the extremal hyperplanes which appear in Ω(I).

Further, let there be a scalar γ ≥ 1 s.t.Ω(I) ⊂ Re
k(A,Δ) ⊕ γ−1

γ
A−1Δ. It follows then

that AΩ(I) ⊕ 1
γ
Δ ⊂ ARe

k(A,Δ) ⊕ γ−1
γ

Δ ⊕ 1
γ
Δ = ARe

k(A,Δ) ⊕ Δ. Combined

with the initial inclusion and case (i) it follows that AΩ(I) ⊕ 1
γ
Δ ⊂ Ω(I) which

means there exists γ ≥ 1 s.t. γΩ(I) is RPI. �

The constructions discussed in Sect. 17.4 are obtained directly through the enu-
meration of extremal hyperplanes (and eventually a scaling). Thus, the computation-
ally difficult task of calculating recursiveMinkowski sums is avoided (aswould be the
case in the iterative procedures which assure arbitrarily close outer-approximations).
To provide a measure of the storage requirements we give the next result.

Proposition 17.5 The number of extremal hyperplanes defining the boundary of Re
k

(A,Δ) is given by:

#Re
k(A,Δ) = 2 ·

(

1 +
n−1∑

i=0

(
k

i

))

. (17.30)
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Fig. 17.3 RPI approximation of themRPI set.aRPI approximation of themRPI set using Re
3(A,Δ).

b RPI approximation of the mRPI set using Re
10(A,Δ)

Proof The number of normal vectors is actually the number of sequences of at most
‘n − 1’ ordered elements taken from the first ‘k’ natural numbers. Thus, we choose
first 0, then 1 and so forth until n − 1 from the first k integers and obtain the terms
in (17.30), with the addition of the two extremal hyperplanes ‘at infinity.’ �

Illustrative Example
Let us consider again the dynamics (17.15) and apply the RPI approximations pre-
sented in Proposition 17.4. We start with the constructions (17.27) and depict in
Fig. 17.3a the set Re

3(A,Δ) = S(I23 ∪ Ie)—solid blue contour. For comparison we
add the set Re

4(A,Δ)—dashed blue contour and the ‘real’ mRPI set—dotted red
contour. Note that, as per Lemma 17.3, we have that Re

4(A,Δ) = ARe
3(A,Δ) ⊕ Δ.

A larger number of switching sequences will result in a closer approximation of
the mRPI set. In Fig. 17.3b we depict the set Re

10(A,Δ)—solid blue contour, against
the mRPI set—dashed red contour. As it can be seen the difference between the
two sets is almost invisible. To illustrate the point we consider the sequence of sets
Re

k(A,Δ) with k ∈ {0, 1, . . . , 10} and analyze the differences between consecutive
elements. For this purpose we measure the set volume (in R

2 it is actually its area)
and see how it varies. In Table17.1 the first row denotes the volume of the current set;
the second row denotes the variation of the area between two consecutive sets and
the third row enumerates the decrease in volume as a percentage. As it can be seen
the values decrease (second to third row) monotonically. Moreover the variation is

Table 17.1 Volume variation for the Re
k (A,Δ) sets

k 0 1 2 3 4 5 6 . . . 10

vol(Re
k (A,Δ)) 5.62 5.19 4.88 4.66 4.50 4.38 4.30 . . . 4.14

Δvol(Re
k (A,Δ)) * 0.43 0.30 0.22 0.16 0.11 0.08 . . . 0.02

Δvol(Re
k (A,Δ))

vol(Re
k (A,Δ))

[%] * 7.65 5.96 4.56 3.44 2.56 1.89 . . . 0.53
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Fig. 17.4 RPI approximation of the mRPI set using ΩI = S({5} ∪ Ie)

quite fast whichmeans that after a relatively small number of steps the approximation
becomes ‘good enough.’

Secondly, we consider the construction (17.29) and test that indeed there exists a
scaling factor whichmakes it invariant.We take I = {5} and computeΩI = S(I ∪ Ie)

and illustrate it in Fig. 17.4—solid blue contour, against the mRPI set—dotted red
contour. To obtain the RPI set, we solve an LP optimization to find γ = 1.6921. The
set γΩI and its iteration under dynamics (17.15) are depicted as well, dashed blue
and densely dashed red contour, respectively.

17.5 Conclusions

In this chapter we have provided an explicit description for the boundary of the
mRPI set characterizing dynamicswith zonotopic disturbances. Furtherwe have con-
structed RPI outer-approximations from pairs of extremal hyperplanes and extremal
points and discussed their properties. We have studied the RPI property of the can-
didate sets considered, and, where was the case, computed the necessary scaling
factors. We have also analyzed the scaling factors associated to each of them.

Further advances are possible. For example, there are results treating the null-
controllable set for complex eigenvalues and the continuous time case, [9]. These
should be relatively easy to adapt for the present mRPI approximations. Another
direction to be explored is the analytic computation of the scaling factors as a function
of the selected switching sequences.



376 F. Stoican et al.

Acknowledgments The work has been partially funded by the Sectorial Operational Programme
Human Resources Development 2007–2013 of the Ministry of European Funds through the Finan-
cial Agreement [grant number POSDRU/159/1.5/S/132395] and by a grant of the Romanian
National Authority for Scientific Research, CNCS - UEFISCDI, project identification number PN-
II-ID-PCE-2011-3-0235.

References
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