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Abstract We overview families of Boolean logical gates and circuits implemented
in computer models and experimental laboratory prototypes of computing devices
made of living slime mould Physarum polycephalum. These include attraction gates,
based on chemo-tactic behaviour of slime mould; ballistic gates, employing inertial
movement of the slimemould’s active zones and a repulsion between growing zones;
repellent gates, exploited photo avoidance of P. polycephalum; frequency gates,
based on modification of electrical potential oscillations frequency in protoplasmic
tubes; fluidic gates, where a tactical response of the protoplasmic tubes is used for
the actuation of two- and four-input logical gates and memory devices; and circuits
based on quantitative transformations which completely avoids spatial propagation,
branching and crossings in the design of circuits.

1 Introduction

We overview several families of Boolean gates and circuits: attraction gates [13, 33],
ballistic gates [2], repellent gates [19], frequency gates [35], fluidic gates [5], and
quantitative transformation circuits [14].
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In attraction gates [33] the chemo-tactic behaviour of slime mould to sugar
gradient is employed to construct Boolean logic gates. Cells are grown and
propagated on the agar gel with glucose gradient, just as electrons flow through awire
in the case of electric circuits. If a plasmodial cell comes into contact with another
cell, the Physarum plasmodium tend to show following behaviour. If there are oppor-
tunities to escape, the plasmodium changes the growth direction and avoids contact
with another plasmodium. Otherwise, i.e. no space to escape, it merges with another
cell and behave as one single plasmodium cell. This is due to excreted “slime” from
another plasmodium that acts as a weak repellent. By combining these two chemo-
tactic behaviours of Physarum slime mould (attraction to sugar and repulsion from
excreted slime), slime mould-based AND, OR, and NOT gates are constructed.

In designs of ballistic gates [2] we employ inertia of the Physarum growing zones.
On a non-nutrient substrate the plasmodium propagates as a traveling localization,
as a compact wave-fragment of protoplasm. The plasmodium-localization travels in
its originally predetermined direction for a substantial period of time even when no
gradient of chemo-attractants is present. We utilize this property of Physarum local-
izations to design a two-input two-output Boolean logic gates 〈x, y〉 → 〈xy, x + y〉
and 〈x, y〉 → 〈x, x y〉. We verify the designs in laboratory experiments and com-
puter simulations. We cascade the logical gates into one-bit half-adder and simulate
its functionality.

In experimental laboratory prototypes of repellent gates [19], active growing zones
of slime mould representing different inputs interact with other by electronically
switching light inputs and thus invoking photo avoidance in each other.

The electrical activity of the tubes oscillates, creating a peristaltic like action
within the tubes, forcing cytoplasm along the lumen; the frequency of this oscilla-
tion controls the speed and direction of growth. External stimuli such as light and
food cause changes in the oscillation frequency. We demonstrate that using these
stimuli as logical inputs we can approximate logic gates using these tubes and derive
combinational logic circuits by cascading the gates, we can call them frequency gates
[35], with software analysis providing the output of each gate and determining the
input of the following gate.

Tactile response of the protoplasmic tubes is used for the actuation of two- and
four-input logical fluidic gates and memory devices [5]. The tube-based logical gates
display results of logical operation by blocking flow in mechanically stimulated tube
fragments and redirecting the flow to output tube fragments. We demonstrate how
XOR and NOR gates are constructed. We also exemplify circuits of hybrid gates
and binary memory devices. The slime mould based fluidic gates are non-electronic,
simple and inexpensive, several gates can be realised simultaneously at the sites
where protoplasmic tubes merge.

Simulations of more complex combined logic gates and half-adder circuits are
demonstrated using a multi-agent model of slime mould [13]. These simulation
experiments demonstrated the limiting factors affecting the foraging behaviour of
the model plasmodium, particularly at junctions within the gate pattern where choice
of growth direction and timing of propagation may be affected. These limitations are
compounded when more complex circuits such as the half-adder are used, or when
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gates are cascaded. The logical circuits based on quantitative transformations [14]
are based on the following ideas. Computing devices are based on spatial arrange-
ments of simple fundamental logic gates. These gates may be combined to form
more complex adding circuits and, ultimately, complete computer systems. Imple-
menting classical adding circuits using unconventional, or even living, substrates is
made difficult and impractical by the challenges of branching fan-out of inputs and
regions where circuit lines must cross without interference. We explore mechanisms
to avoid spatial propagation, branching and crossing completely in the design of
adding circuits. We analyse the input and output patterns of a single-bit full adder
circuit. A simple quantitative transformation of the input patterns which considers
the total number of bits in the input string allows us to map the respective input
combinations to the correct outputs patterns of the full adder circuit, reducing the
circuit combinations from a 2:1 mapping to a 1:1 mapping. The mapping of inputs to
outputs also shows the same incremental progression, suggesting its implementation
in a range of physical systems. We demonstrate an example application, in simula-
tion, inspired by oscillatory dynamics of the true slime mould P. polycephalum. This
simple transformation may enrich the potential for using unconventional computing
substrates to implement digital circuits.

2 Attraction Gates

The first implementation of Physarum plasmodium logic gates [33] employ attract-
ing behaviour of the slime mould [17]. A uni-directional concentration gradient of
glucose is formed in the agar media where cells are grown and propagate. The logic
gate paths are constructed by limiting the area that plasmodial cells can grow using
cut-outs of transparent plastic film. As slime moulds tend to prefer wet regions over
dry ones, cells thus grow only in the region that agar is exposed (i.e. logic gate paths).
Under this condition, cells are attracted towards areaswith higher sugar concentration
and interact with other cells in the logic gates, as shown in Fig. 1.

When a Physarum cell comes into contact with another cell, it tends to avoid
contacts with other plasmodial cells as “slimes” (gel-like material excreted from a
plasmodium) works as weak repellent to other cells. We exploit these two chemo-
tactic behaviours of Physarum slime mould, i.e. attraction to sugar gradient and
repulsion from excreted slimes, to construct chemo-attractant/repellent-based logic
gates. The attraction logic gates are designed based on following rules:

Rule 1 Physarumcells tend tomove towards an areawith higher sugar concentration.
Rule 2 When a cell comes into contact with another cell, the cell tends to change

migrating directions and avoid contact with another cell if there is a space
that have not been occupied by other cells.

Rule 3 Otherwise, i.e. no space to escape, the active growing zone fuses with another
cell and becomes one single plasmodium afterwards.
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(a)

(b)

(c)

Fig. 1 Physarum attraction logic gates

AND gate (Fig. 1a) produces 1 (i.e., logical True) only when both inputs are 1.
Here, 1 and 0 of input or output correspond to the presence and absence of Physarum
plasmodium in a specific location, respectively. In the case of inputs (0, 1) or (1, 0),
an inoculated cell at an input location migrates along the sugar gradient (Rule 1)
and enters a path to a buffer zone. Cells entered in the region are discarded and will
not contribute to any computation. The gate is designed that Physarum cells take the
route to buffer as it is shortest path to a higher concentration region than the other
diverted route, which lead to the output. Thus, (0, 1) and (1, 0) gives 0 as output.
In the case of input (1, 1), two inoculated cells migrates in the logic gate paths.
However, as one of the input paths has a shorter path (right-hand side in Fig. 1a) than
the other, a cell in the path (indicated as arrow in blue) occupies the route to buffer.
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When another cell (indicated in red) arrives at the junction, it tends to take a path
leading to the output as the path to buffer is already occupied by the first cell (Rule
2). As a result, the input (1, 1) is mapped to output 1, as expected of the operation of
AND gate.

OR gate (Fig. 1b) has a rather simple design. The Y-shaped logic gate takes two
inputs from the top and has one output from the bottom. If a Physarum plasmodium
is present in either one of the two inputs, it just migrates downwards along with the
sugar gradient and gives 1 as output. Even when cells are present in both inputs, they
merge at the junction as there is no space to escape (Rule 3) and gives 1 as well.

NOT gate (Fig. 1c) is an inverter that gives an output opposite to the input. To
implement this gate with the Physarum plasmodia, two additional cells as ‘reference”
are required. In the case of input 0 (Fig. 1c upper row), a reference cell in the left
(arrow in light blue) first arrives at the junction and takes up the path to the buffer
(note that the sugar gradient is higher in the right-hand side).When another reference
cell (blue) reaches the junction, it can only take the route to the output. On the other
hand, in the case of input 1, the input Physarum cell (red) is inoculated first and
it migrates straight to the buffer. This blocks the paths for two reference cells, the
possible action for the reference cells is only to merge with the input cell (Rule 3)
and therefore no output is given.

The attraction logic gates can operate with over 80% success rate [33]. It was
also observed that plasmodium cells changes the tactic behaviour (Rule 1–3) when
the gates are broken.

3 Ballistic Gates

Given cross-junction of agar channels, cut from 2–3mm thick agar plate, and plas-
modium inoculated in one of the channels, the plasmodium propagates straight
through the junction [2]; the speed of propagation may increase if sources of chemo-
attractants are present. An active zone, or a growing tip, of plasmodium propagates in
the initially chosen direction, as if it has some kind of inertia. Based on this phenom-
enon we designed two Boolean gates with two inputs and two outputs, see Fig. 2a,
b. Input variables are x and y and outputs are p and q. Presence of a plasmodium
in a given channel indicates Truth and absence—False. Each gate implements a
transformation from 〈x, y〉 → 〈p, q〉. Experimental examples of the transformations
are shown in Fig. 2.

Plasmodium of Physarum implements two-input two-output Boolean gate P1:
〈x, y〉 → 〈xy, x + y〉.

Plasmodium inoculated in input y of P1 propagates along the channel yq and
appears in the output q (Fig. 2c). Plasmodium inoculated in input x of P1 propagates
till junction of x and y, ‘collides’ with the impassable edge of channel yq and appears
in output q (Fig. 2d). When plasmodia are inoculated in both inputs x and y of P1

they collide with each other and the plasmodium originated in x continues along the
route xp. Thus the plasmodia appear in both outputs p and q (Fig. 2e).
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 2 Physarum ballistic gates. a, b Geometrical structure of Physarum gates P1 (a) and P2 (b)
x and y are inputs, p and q are outputs. c–e Experimental examples of transformation 〈x, y〉 →
〈p, q〉 implemented by Physarum gate P1. c 〈0, 1〉 → 〈0, 1〉. d 〈1, 0〉 → 〈0, 1〉. e 〈1, 1〉 → 〈1, 1〉.
f–i Experimental examples of transformation 〈x, y〉 → 〈p, q〉 implemented by Physarum gate P2.
f 〈0, 1〉 → 〈1, 0〉. g 〈1, 0〉 → 〈0, 1〉. h, i Two snapshots (taken with 11h interval) of transformation
〈1, 1〉 → 〈0, 1〉

Plasmodium of Physarum implements two-input two-output gate P2: 〈x, y〉 →
〈x, x y〉.

If input x is empty, plasmodiumplaced in input y of P2 propagates directly towards
output p (Fig. 2f). Plasmodium inoculated in input x of P2 (when input y is empty)
travels directly towards output q (Fig. 2g). Thus transformations 〈0, 1〉 → 〈1, 0〉 and
〈1, 0〉 → 〈0, 1〉 are implemented. The gate’s structure is asymmetric, x-channel is
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shorter than y-channel. Therefore the plasmodium placed in input x of P2 usually
passes the junction by the time plasmodium originated in input y arrives at the
junction (Fig. 2h). The y-plasmodium merges with x-plasmodium and they both
propagate towards output q (Fig. 2i). Extension of gel substrate after output q does
usually facilitate implementation of the transformation 〈1, 1〉 → 〈0, 1〉.

One-bit half-adder is a logical circuit which takes two inputs x and y and produces
two outputs: sum x y + x y and carry xy. To construct a one-bit half-adder with
Physarum gates we need two copies of gate P1 and two copies of gate P2. Cascading
the gates into the adder is shown in Fig. 3a. Signals x and y are inputted in P2 gates.
Outputs of P2 gates are connected to inputs of P1 gates. We did not manage to realise
a one-bit half-adder in experiments with living plasmodium because the plasmodium
behaved differently in the assembly of the gates than in isolated gates. Therefore we
simulated the adder using the Oregonator model, see details in [2]. To simulate inputs
x = 0 and y = 1 we initiated plasmodium’s active zones near the entrances to the
channels, marked y and arrow in Fig. 3a. The active zones propagated along their
channels (Fig. 3b).

For input values x = 1 and y = 0 active zones are originated at sites marked
x and arrow in Fig. 3a. The active zone starting in the left x-input channel propa-
gated towards the x + y-output of the adder. The active zone originating in the right
x-input channel traveled towards x y + x y (Fig. 3c). When both inputs are activated,
x = 1 and y = 1, an active zone originated in left y-input channel is blocked by
active zone originated in left x-input channels. The plasmodium traveling in the
right x-input channel is blocked by the active zone traveling in the right y-input
channel. The active zones representing x = 1 and y = 1 enter top-right gate P1

and emerge at its outputs xy and x + y (Fig. 3d). The Physarum adder was also
implemented in chemical laboratory experiments with excitable chemical system
employing Belousov-Zhabotinsky reaction [8].

4 Repellent Gates

As a departure from previously described ballistic logics in which bits—migrating
plasmodia—interact with each other in order to perform computation, slime mould
may also be adapted into functional electrical logical gates more akin to those found
in a conventional computer, i.e. where data interacts with the solid components of
the device in order to achieve computation.

This may be achieved relatively easily by capitalising upon the organism’s migra-
tory behaviour and resilience to insulting stimuli. More specifically, conventional
logical operations may be implemented by conditionally routing plasmodial growth
with optical (repellent) inputs between live electrodes: migration of the organism
between two electrodes causes an output circuit within the device to become closed
(as Physarum is tolerant to having a mild electrical current passed through it), result-
ing in the device’s output equating to Truth; when no electrical output is resultant
from the slime mould’s migratory behaviour, the output is False.
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(a) (b)

(c) (d)

Fig. 3 Simulation of Physarum one-bit half-adder using numerical integration of two-variable
Oregonator equations, see details in [2]. a Scheme of one-bit half-adder made of gates P1 and P2.
Inputs are indicated by arrows. Outputs x y + x y and xy are sum and carry values. Outputs 0 and
x + y are byproducts. b–d Time-lapse images of plasmodium’s active zones traveling in channels
of one-bit half-adder. Dynamics of growth is shown for input values b x = 0 and y = 1, c x = 1
and y = 0, d x = 1 and y = 1
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Fig. 4 The PNOTgate. a Schematic representationwhere electrodes (black rectangles) and accom-
panying agar islands (grey square) 〈X, Y 〉 are connected to a live output circuit (‘O’). Plasmodial
homogenate (pentagon) is placed on electrode X and left to propagate: if input LED array A is illu-
minated, it prevents the plasmodium from propagating to electrode Y and closing the circuit. b–c
Photographs of experimental implementation of PNOT gate. b 〈0〉 → 〈1〉. Note how the organism
has oriented its self about the farthest pole of its agar island away from the repellent. c 〈1〉 → 〈0〉.
The organism has, in the absence of a repellent, migrated to electrode Y

Following a brief scoping study in which the most repellent variety of LED-
generated1 light was ascertained to be green (568nm, 40mcd; see Ref. [19] for fur-
ther details), laboratory prototypes of Physarum NOT and NAND (PNOT/PNAND)
gates were fabricated in accordance with these principles. Schemes for each with
photographs of functional prototypes are shown in Figs. 4 and 5.

The PNOT gates works as follows. A fresh plasmodial homogenate is added to a
0.5ml agarose gel (agar) ‘island’ overlying a 90 × 10mm aluminium tape electrode
stuck to the base of a plastic Petri dish. Another agar island and electrode are present
10mm away which is loaded with a chemoattractant. An array of two green LEDs—
input A—is mounted through the lid of the Petri dish directly above the unoccupied

1LEDs were chosen as the repellent input due to their comparative energy efficiency, long life span
and low cost of manufacture, all of which are key properties for alternative computing technologies.
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Fig. 5 The PNAND gate. a Schematic representation; as in Fig. 5, but with a second input LED
array, B, divider to separate LED inputs (white rectangle) and third electrode/agar island, Z , present.
b–d Photographs of device completing 〈0, 1〉 → 〈1〉 operation b Time = 0h. c Time = 6h, the
plasmodium has shifted to the right of its agar island away from the illuminated left electrode.
d Time = 12h, the plasmodium has migrated to the unilluminated electrode and completed the
circuit

agar/electrode. Both electrodes are connected to a separate ‘output’ circuit being
supplied with a constant 9V, 0.1A. When input A = 0, the plasmodium is free to
propagate across the gap between the electrodes and hence closes the output circuit,
such that the operation 〈0〉 → 〈1〉 is completed. When A = 1, the LEDs illuminate
and repel the organism, preventing it from propagating across and closing the circuit,
resulting in the operation 〈1〉 → 〈0〉. The device’s functionality is therefore equal to
that of a conventional NOT gate, i.e. 〈A〉 → 〈A〉.

The PNANDgate operates on the same principles but differs in that it has a second
input LED array, input B, and a third agar/electrode device which is wired into the
common output circuit. The electrodes are in a spatial arrangement such that the
tips of each electrode form the nodes of an equilateral triangle. A card divider is
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mounted onto the Petri dish lid to physically separate the LED arrays, thus isolating
each input from the other. When both inputs are at 0 state, the plasmodium is free
to migrate towards an electrode and complete the output circuit, 〈0, 0〉 → 〈1〉—note
that in such an instance, the electrode to which the organism will migrate is entirely
random. Equally, when both inputs are at 1, the plasmodium is repelled from both
and will not complete the output circuit, resulting in the operation 〈1, 1〉 → 〈0〉.
Crucially, if only one input is at 1, the plasmodium will migrate towards the other
electrode and complete the output circuit, such that 〈0, 1〉, 〈1, 0〉 → 〈1〉. The device’s
truth table is therefore identical to that of a NAND gate, i.e. 〈A, B〉 → 〈A · B〉.

To discuss the detriments of this approach to slime mould logic, these devices
suffer from extremely long propagation delays which consequently makes cascading
extremely difficult to implement. Furthermore, whilst their operation is reasonably
consistent from a biological perspective (circa 75% success rate), they fall far short
of the repeatability requirements of electrical components. It is also pertinent to
mention that the plasmodium, whilst technically electrically conductive, has a high
resistance, which limits the usefulness of any electrical signal passed through the
organism and implies energy inefficiency.

PNOTandPNANDgates are notwithout redeeming features, however.Aside from
their value as intellectual curiosities—indeed, it is the singular joy of an unconven-
tional computer scientist to observe a natural system’s behaviour in the language of
computing—these logical gates demonstrate a slime mould can, via ‘programming’
with optical inputs, be used to implement computationally universal logic. The gates
are made of extremely cheap, readily available materials that utilise virtually no
hazardous waste. They were also found to be resettable—i.e. carry out subsequent
operations—within a limited time frame. Finally, they are also extremely tolerant
to aberrations in certain parameters: for example, increasing the voltage to over
30 Volts was found to have no effect on the devices’ operation or the health of the
organism.Although they cannot be described as true electrical logical gates due to the
disparity in the media through which the ‘data’ is carried—i.e. the electrical-optical-
biomechanical-electrical transitions—they nevertheless exploit the key features of
slime mould that make it an ideal unconventional computing substrate; distributed
sensing, decision making, actuation and resilience to unfavourable conditions.

With these findings, we may begin to imagine a new generation of computing
devices built upon these principles. If, for example, our devices are to continue to
rely on plasmodial migration, it has been found that the organism may be hybridised
with a range of metallic nanoparticles in order to significantly decrease its electrical
resistance [21]. But, when one considers the propagation delay as the major failing
of the devices presented, it is clear that the most effective step would be to min-
imise the role of physical movement in future devices. This could be achieved via
automated computer interpretation of the bioelectrical phenomena that ensue follow-
ing plasmodial stimulation, as was capitalised upon in Ref. [22], in which a basic
tactile sensor was realised via an FPGA-based interface which measured and inter-
preted the alterations in membrane potential that result from insulting stimuli which
were, crucially, extremely rapid when compared to the measurement of migratory
behaviour.
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5 Frequency Gates

Theplasmodial phase of the organismwas cultured using the samemethod asmention
in the previous section, using 2% non-nutrient agar, and daily feeding with rolled
oat flakes; enough stock culture could be produced on several Petri-dishes worth of
agar as long as they were maintained.

Data on Physarum’s response to stimuli was collected for previous research and is
described in full in [36]. The data collected is processed and presented here (Table6)
in order to derive additional Physarum based gates. Figure6 shows the experimental
set up in order to produce andmeasure a single protoplasmic tube. 1ml of non-nutrient
Agar is placedon eachof the aluminiumelectrodes (Farnell,UK) in a customised9 cm
Petri dish (Fisher Scientific, UK) to form a cell interface. A Physarum inoculated oat
flake fromculture is placed on1 agar hemispherewhile a bare oat flake is placed on the
remaining agar hemisphere. The agar acts as a growthmedium for the organismon the
electrode. After a minimum of 5h and maximum of 12h, a single protoplasmic tube
grows between the two electrodes, allowing recording of the surface potential of the
tube. Electricalmeasurement of the protoplasmic tubewere performed by connecting
the aluminium electrodes to a PicoLog ADC-24 high resolution analogue-to-digital
data logger (Pico Technology, UK) connected via USB to a laptop installed with
PicoLogRecorder software for data capture. ThePicoLogADC-24 recorded±39mV
at 1Hz for the duration of the experiment, with a 24bit resolution; the originally
inoculated agar hemisphere was connected to ground, while the newly connected
agar hemisphere was connected to an analogue recording channel. Stimulation of
the organism was performed by adding an oat flake on the recording electrode or
by heating the recording electrode to 10 ◦C above room temperature using a 1.4W
Peltier element (RS Components, UK) placed underneath the Petri dish at the site
of the recording electrode. Simultaneous heating and oat flake addition was also
performed. The 10min period before stimulation was used as the baseline frequency
measurement (fpre) and the 10min after stimulation had started was the frequency
change (fpost); relative frequency change (�f) was calculated and expressed as a
percentage.

Fig. 6 An example of Physarum protoplasmic tube grown between agar hemispheres
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Logic gate approximation as described in [35] uses frequency change of shuttle
streaming to determine a logic true or false output. A logic gate is a single proto-
plasmic tube of Physarum (Fig. 6), which is stimulated with combinations of inputs,
light, oat flakes or heat. The frequency change is measured by custom Matlab soft-
ware which performs a frequency analysis before and after the stimuli, determining
the logical output; the type of gate used determines the thresholds for logic 1 or 0,
as shown in Table1. Using the principals of combinational logic, this paper uses
the basic gates to produce derived gates NOR, NAND, XOR and XNOR, as well
as more complex combinational logic circuits. Combinational logic circuits are cas-
caded manually, with the software output detailing the input for the following gate
which is performed manually; in the future it is envisioned that this process can be
totally automated. For the logic gate inputs A and B, the stimuli heat and oat flake
was applied respectively. While A and B are both false, or logic L0, neither the heat
nor the oat flake is applied, while A and B are both true, or logic L1, both stim-
uli are simultaneously applied. The relative frequency change for each gate and the
classification for the previously produced simple logic gates are shown in Table1.

The exclusive OR (XOR) gate is commonly used in binary adders and other
logic circuits; the output is high if either input is true but not both, otherwise the
output is false. A frequency change system can be deduced using two thresholds,
in a similar manner to that proposed in [35]. Frequency change of between 4.9 and
32% (inclusive) is logical True or 1, a change of either less than 4.9% or greater
than 32% is a logical False or 0 (Table1).

While theAND,ORandXORgates calculate specific outputs, they can be inverted
by, producingNAND,NORandXNORgates respectively. These gates normally have
NOT gates at each input or a single NOT gate at the output, so are in essence combi-
national logic. Hence the frequency system for each gate can be simply modified by
inverting the threshold categories (Table1), for example, an OR gate is high when
the frequency change is greater or equal to 10%, and low when less than 10%; a
NOR gate is low when the frequency change is greater or equal to 10%, and high
when less than 10%. Alternatively the inputs can be inverted, and the inputs to the
OR gate are high when present, that is, when an oat flake and heat are on, whereas
for the NOR gate, the inputs are high when the oat flake and heat are not present;
this becomes more useful when some inputs are inverted and others are not as in the
2–4bit decoder (Fig. 7).

Table 1 Type of logic gate is determined by the upper and lower frequency change threshold

Gate type Lower threshold Upper threshold

OR � f < 10%, L0 � f ≥ 10%, L1

AND � f < 24%, L0 � f ≥ 24%, L1

NOT � f < −5.5%, L0 � f ≥ −5.5%, L1

NOR � f < 10%, L1 � f ≥ 10%, L0

NAND � f < 24%, L1 � f ≥ 24%, L0

XOR � f < 4.9%, L1 � f ≥ 32%, L1

XNOR � f < 4.9%, L1 � f ≥ 32%, L0
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Fig. 7 The 2–4bit decoder logic circuit with truth table

With the production of NAND and NOR gates, functional completeness is
achieved using Physarum frequency gates (PFGs); any possible combination of logic
gates may be produced using a combination of NAND (and NOR) gates. Combi-
national circuits comprising several individual PFGs could be produced; the input
stimuli can be automatically controlled using a microprocessor. The output of the
PFG is measured using custom Matlab software consisting of data handling and a
fast Fourier transform; this could be implemented on amicroprocessor with analogue
to digital converter and appropriate software to automatically determine frequency
change hence logic output of one PFG and subsequently control the input of the
next gate in the sequence. In this instance however, the frequency change was calcu-
lated using the Matlab software and the subsequent inputs were controlled manually,
although frequency analysis software or hardware could be tasked with this process
in the future. The response for each stimuli type used for logic gate approximation
was tested for normality. With the knowledge of frequency change distribution for
each input derived from previous data [35], the probability and hence accuracy of
the NOR, NAND, XOR and XNOR gates were calculated using the distributions
and likelihood of either type I or II error for each input; this method accounted for
the variation in response to the stimuli. In addition to the derived gates, accuracy of
the half adder, full adder and 2–4bit decoder combinational logic circuits were also
calculated. For the gates which had one inverted input and one normal (non-inverted)
input such as in the 2–4bit decoder (Fig. 7), one stimuli/input state was invertedwhile
the other one was not.

The accuracy for the inverted gates is demonstrated in Table2; With the same
accuracy as the non-inverted gates presented previously [35] as the frequency change
boundaries were inverted. PFGs and their inverted input have identical accuracy
because only the thresholds were inverted. The accuracy of the half adder, full adder
and 2–4bit decoder are listed in Table2, with the least accurate being the 2–4bit
decoder.
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Table 2 Accuracy of combinational logic using multiple PFGs

Logic operation Correct output (%) Number of PFGs required 1

OR/NOR 90 1

AND/NAND 77.8 1

NOT 91.7 1

XOR/XNOR 70.8 1

24 decoder 57.5 4

Half adder 65 2

Full adder 58.8 5

The frequency change when exposed to the heat and oat stimuli is repeatable
and of similar magnitude (Fig. 6) we can use this reliable change to approximate
Boolean logic with logic 0 and 1 if the frequency change from these stimuli is within
certain value ranges. Boolean logic operation OR is implemented with a threshold
of 10% increase in frequency while AND uses a threshold of 24% increase in fre-
quency. A NOT gate can be implemented when light is used as an input, with white
light representing the input and using a threshold of −5.5% frequency change. This
information is summarised in Table1. The logic OR, AND and NOT gates derived
in this paper demonstrate that logic functions in the slime mould can be performed
accurately, orders of magnitude faster than the growth based logic implementations.
Tsuda originally implemented the growth based Physarum logic gates with OR,
AND and NOT gates giving 100, 69 and 83% accuracy respectively, values which
are comparable to the accuracy of frequency based logic operations presented in this
chapter (Table1). Until now, Physarum logic computation used growth andmigration
[13, 31]. These computations took several hours to complete due to the slow rate
of organism growth. Frequency-change based logic implementation is significantly
faster than any performed using growth as the calculation, with calculations lasting
between 20 and 30min. The main advantage of this electrically recorded imple-
mentation is the speed of processing; it has been previously reported that while the
migration response of Physarum to stimuli is slow with speeds of up to 5cm per hour
[6], electrically recorded responses to chemical, mechanical and optical stimuli are
immediate [3, 4, 35, 36]. The Physarum logic gates are designed by interpretation
of results where Physarum processes inputs and closely describes the output by way
of frequency change. OR and AND logic gates may closely be approximated when
using the combined effects of Oat and Heat as inputs x and y, the NOT logic gate
uses Light as an input this is tested using obtained data of frequency response using
light as a single stimuli. Thresholds are implemented in order to divide the categories
of logic 1 and logic 0. With a marginal overlap of the frequency changes of different
stimuli, there is some error when approximating the logic outputs. Table2 highlights
the accuracy of the logic operations when using the frequency change as a basis
for Boolean logic operation and using the threshold, as defined above for each gate.
The accuracy was determined by the number of correct outputs using Physarum’s
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Fig. 8 A box-and-whisker plot of frequency changes when testing different stimuli

frequency change, displayed as a percentage, for all 4 input combinations of x and
y; each combination was repeated 12 times for each gate type. A correct output was
given when the frequency change as a result of the stimuli fell the correct side of the
threshold (Fig. 8).

With the addition of the NAND, NOR, XOR and XNOR gates, there is now a
complete database of basic and derived logic gates using frequency change. The
number of inputs to these gates is limited to 2, due to the number of tested stimuli,
however both NAND and NOR gates have functional completeness, which is to say
they can be combined to produce any other logical operation, including single gates
with more than 2 inputs. Multi-NAND ICs are often only used in practical systems to
limit the number of different chips required in a system, as multiple gates of the same
type are produced on CMOS or TTL chips. The fact that the architecture of a PFG
is the same regardless of gate type used, means they are effectively programmable
logic gates, with the gate type being determined purely by the boundary conditions
of the frequency change. The PFGs only have two inputs, however gates with more
than 2 inputs can be approximated with more gates.

The number of PFGs used to solve a logical operation correlates with accuracy as
demonstrated by Fig. 9; the 2–4 decoder and full adder use 4 and 5 PFGs respectively
and have significantly more error than the logic with 1 or 2 PFGs. The trend is not
linear as the error is cumulative in a system, it is evident that logic operations with
gates higher than these presented would have an accuracy no better than tossing a
coin. The layout of the gates also plays a role in accuracy, as a full adder which has
1 more gate than a 2–4 decoder is marginally more accurate, this is due to the series
layout of the logic gates; an error produced from one gate has a chance of being
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Fig. 9 The correlation
between the number of PFGs
required to calculate a logical
problem and the error rate

coincidentally corrected by another error in the subsequent gate whereas parallel
gates such as those in the 2–4 decoder are only correct if all gates produce the correct
answer. In a logic system, a correct output is most important, even if the correct
operation throughout the circuit is not, as in this system. The speed of processing of
a PFG is 30min for a single gate, decreasing the computation time by approximately
30 times compared tomorphological, or growth based, gates [13, 31].We have shown
that the basic logic gates are as accurate as those shown in those previous studies
[13, 31]. The half adder shown is similarly accurate (65%) to that simulated by Jones
and Adamatzky (63%) [13, 31].

6 Fluidic Gates

The protoplasmic networks developed by Physarum are living self-growingmicroflu-
idic systems [16, 18, 27] capable of intake and controllable delivery of biocompatible
materials [1, 20]. The slime mould microfluidic systems can range in size from a
few millimetres to meters of complex protoplasmic networks with hundreds of inter-
connected tube fragments. To be used efficiently the protoplasmic networks must
be controlled and a flow of cytoplasm transporting objects must be programmed.
In 2004 Vestad, Marr and Munakata [18, 34] constructed logical gates by changing
functional properties of a fluidic system without resorting to non-linear properties
of a liquid. They showed that by dynamically changing resistance of individual
channels in a microfluidic system it is possible to direct overall relative system of
flow rates, independently of the pressure of the liquid. Their logical gates are actu-
ated by depressing one channel of the system and reconfiguring the network [34].
Being inspired by Vestad-Marr-Munakata results we conducted laboratory experi-
ments with slime mould Physarum and found that when a fragment of protoplasmic
tube is mechanically stimulated a cytoplasmic flow in this fragment halts and thus
resistivity increases. The cytoplasmic flow is then directed through adjacent proto-
plasmic tubes. We explored this phenomenon to construct several logical gates and
a memory device [5].
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An undisturbed Physarum exhibits more or less regular patterns of oscillations of
its surface electrical potential. The electrical potential oscillations are more likely
controlling a peristaltic activity of protoplasmic tubes, necessary for distribution of
nutrients in the spatially extended body of Physarum [10, 25]. A calcium ion flux
through the membrane triggers oscillators responsible for controlling the dynamic
of contractile activity [9]. Physarum surface electrical potential oscillates with an
amplitude of 1 to 10mV and period 50–200s, associated with shuttle streaming of
cytoplasm [11, 15]. Oscillations of the electrical potential and the corresponding
peristaltic activity are due to calcium waves propagating along protoplasmic tubes.
These waves, and associated electrical charges and a difference in electrical potential
leads to a flow of cytoplasm.

In any given tube cytoplasmic flow reverses its direction approximately every 54s
[5]. We can speculate this is because calcium and peristaltic waves propagate from
a root, an inoculation site, of a Physarum tree towards its leaves (growth zones) and
then back. That is, a protoplasmic tree is polarised and its polarisation is reversed
almost every minute.

When a segment of a protoplasmic tube, between two junctions, or branching
points, is touched with a hair a flow of cytoplasm inside this fragment becomes
blocked. The blockage of a cytoplasmic flow could be due to K+ channel activa-
tion, increase in intracellular Ca2+, temporary increase in concentration of inositol
trisphosphate, activation of adenylyl cyclase. A mechanically stimulated fragment
restores its conductivity and flow of cytoplasm in 54–59s after the stimulation.

Plasmodiumof Physarum is cultivated in plastic containers, on paper towels sprin-
kled with distilled water and fed with oat flakes (Alnatura Haferflocken, Feinblatt,
Germany). Experimental substrate is 2% non-nutrient agar gel (Agar-Agar, Kobe I,
pulv. Carl Roth, Germany) poured in 9cm plastic Petri dishes. In each experiment an
oat flake colonised by plasmodium is placed in the centre of the Petri dish. Protoplas-
mic tubes were mechanically2 stimulated with a human hair approximately 50µm in
diameter, 4–5cm in length. A tip of hair was forced into a wall of a protoplasmic tube
till temporary invagination and/or immediate stoppage of cytoplasmic flow occurred.
Videos of cytoplasmic flows were recorded using digital high-resolution microscope
Keyence VH-Z20R (KEYENCE Microscope Europe) at zoom × 200.

When a fragment of a tube becomes blocked, a flow of cytoplasm is directed
through auxiliary, or second-order, bypassing tubes.Main, or first order, protoplasmic
tubes have diameter c. 100µm while auxiliary, second order, tubes have diameter
30–40µm. In intact Physarum tree, a flow of cytoplasm is directed along a route
with lowest resistance, i.e. along first-order tubes whose diameter is large. Tubes
with a small diameter act as a reserve, or emergency, route for situations when large
diameter tubes are damaged or a flow is blocked. We use this phenomenon to design
logical gates. A detailed example of an XOR gate is shown in Fig. 10 and its scheme
in Fig. 11a–d.

2Experiments are done by Theresa Schubert, Bauhaus University, Weimar, Germany.
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(a) (b) (c)

(d) (e) (f)

Fig. 10 Implementation of XOR gate in Physarum. a scheme of the gate, input tubes x and y and
output tube z are shown; ‘+’ and ‘−’ indicate polarity of cytoplasm flow, the polarity is changing
almost every minute. b snapshot of the living gate before stimulation: x = 1 and y = 1, z = 0;
some parameters of the junction are indicated. c mechanical stimulation of tube x , x = 0. d gate
after stimulation, x = 0, y = 1 and z = 1. e mechanical stimulation of tube y, y = 0. f gate after
stimulation x = 1, y = 0, z = 1. Experimental photos courtesy of Theresa Schubert. From [5]

Flow is directed from ‘+’ to ‘−’ and then reversed from ‘−’ to ‘+’ (Figs. 10a and
11a). First order tubes x and y represent input Boolean variables. Second order tube
z represents an output variable (Figs. 10a and 11a). If there is a flow of cytoplasm in
a tube the tube represents state True, if there is no flow state False. In an intact, or
resting, state the gate’s inputs are in state ‘1’, tubes x and y exhibit flow of cytoplasm
and tube z does not exhibit a flow: x = 1, y = 1, z = 0 (Figs. 10b and 11a). This is
because tube z’s diameter, c. 30µ, is nearly three times smaller than the diameter of
tubes x and y, c. 100µm.

When tube x is touched, the moment of this mechanical stimulation is shown
in Figs. 10c and 11b, tube x becomes ‘non-conductive’ and flow through the tube
x stops. Subsequently a pressure in the cytoplasm increases and the cytoplasm is
directed through tube z, which diameter increases to 70µm due to pressure from the
passing cytoplasm (Figs. 10d and 11b).

The gate remains in such state for 54 s in average and then tube x restores its con-
ductivity. Flow of cytoplasm is then directed through tubes x and y, tube z becomes
unused, shrinks due to elasticity and its diameter returns to a resting value 30µm.
This is somewhat analogical to an automated adjustment employed a microfluidic
implementations ofWheatstone bridge [30]. State of the gate after mechanical stimu-
lation of tube y (Fig. 10e) is shown in (Figs. 10f and 11c). The gate restores its original
state in less than a minute after mechanical stimulation. When a flow stops in x and
y at the same time the flow may not occur in the tube z because the tube becomes
isolated from an upper part of protoplasmic network. Therefore we assume that z = 0
if x = 0 and y = 0. Thus XOR gate is implemented z = x ⊕ y (Fig. 11a–d).
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Fig. 11 Schematics of gates implementable with Physarum tubes. Tubes x and y are solid black
when represent logical True, x = 1, y = 1, and grey when represent logical False, x = 0, y = 0.
Tubes z and p are thin when represent False, z = 0 and p = 0, and they are sick when represent
True, z = 1 and p = 1. Symbols ‘+’ and ‘−’ indicate polarity of cytoplasm flow, the polarity is
changing almost every minute. a–d XOR gate, discussed in Fig. 10, z = x ⊕ y, where a x = 1, y =
1, b x = 0, y = 1, c x = 1, y = 0, d x = 0, y = 0. e–h XOR and NOR gates: z = x ⊕ y and p =
x + y, where e x = 1, y = 1, f x = 0, y = 1, g x = 1, y = 0, f x = 0, y = 0. i–n combined gate:
z = x yp + x yq + x pq + ypq, where i x = 1, y = 1, p = 1, q = 1, j x = 0, y = 1, p = 1, q =
0, k x = 0, y = 1, p = 1, q = 1, l x = 1, y = 1, p = 0, q = 1. m x = 0, y = 0, p = 1, q = 1,
n x = 0, y = 1, p = 0, q = 1. From [5]

By adding one more second order tube to gate XOR (Fig. 11a–d) we produce a
gate with two inputs and two outputs (Fig. 11e–h). The gate is shown in (Fig. 11e–h).
It computes exclusive disjunction and negated disjunction in parallel. Output tube
z = x ⊕ y acts in amanner similar toXOR gate (Fig. 11a–d). Output tube p = x + y
connects inlet to tube x , just before junction of x and z, to outlet of junction of the
tubes x and y. Cytoplasmic flow is directed via tube p, p = 1 only if tubes x and y
are blocked, x = 0 and y = 0 (Fig. 11h).

By adding two more first order tubes to gateXOR (Fig. 11a–d) we produce a gate
with four inputs and one output (Fig. 11i–n). The gate z = x yp + x yq + x pq + ypq
(Fig. 11i–n) responds with value True only when one input tube is blocked yet two
of its neighbouring input tubes are unblocked. Examples are as follows. Tubes x and
q are blocked, x = 0 and q = 0, tubes y and p are unblocked, y = 1 and p = 1
(Fig. 11j), flow is directed via tube z. Tubes y, p, q are unblocked, y = 1, p = 1,
q = 1, tube x is blocked, x = 0 (Fig. 11k), flow is directed via tube z. Tubes x , y and
q are unblocked and tube p is blocked (Fig. 11l), flow is directed via tube z. For all
other combinations of input tuples output is False. Examples are as follows. Tubes
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x and y are blocked and tubes p and q are unblocked (Fig. 11m), there is no flow of
cytoplasm through the gate and thus z = 0. Tubes x and p are blocked and tubes y
and q are unblocked (Fig. 11n), cytoplasm is flowing through tubes y and q and thus
z = 0.

7 Gates and Circuits Implemented Only in Simulation

7.1 Modelling Complex Logical Gates

In the paper by [31] some output channels of Physarum gates were considered as
buffers. Let us now slightly redesign the gates in [31] and interpret all outputs of the
gates as Boolean logic values [13].

Consider G1 gate in (Fig. 12a). Physical structure of the gate satisfies the fol-
lowing constraints |xb| = |yc| and |bd| > |bc| + |ce| (Fig. 12a). Chemoattractants
are placed in sites d and e. We assume strength of attraction to d (e) at point p is
proportional to distance |pd| (|pe|) (Fig. 12a).

Situations corresponding to input values (0, 0), (0, 1) and (1, 0) are simple.When
no plasmodia are inoculated in x and y nothing appears at outputs d and e (Fig. 12b).
When plasmodium is placed only in site y the plasmodium follows the route (yc)(ce)
(Fig. 12c). If plasmodium inoculated only in site x the plasmodium follows the route
(xb)(bc)(ce) (Fig. 12d).

The main novelty of the gate is in how input values x = 1 and y = 1 are handled.
The plasmodia are inoculated in sites x and y (Fig. 12d). The plasmodium growing
from site y follows route (yc)(ce). The plasmodium growing from site x tends to
follow route (xb)(bc)(ce), however part of the route (ce) is already occupied by
another plasmodium. Therefore the plasmodium, starting in x , grows along the route
(xb)(bd) (Fig. 12d).
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Fig. 12 Scheme of G1 gate: a landmark points are shown; b–e configuration of plasmodia in gates
for all combinations of input values—x = 0, y = 0b, x = 0, y = 1 c, x = 1, y = 0d, x = 1, y = 1
e, the plasmodia bodies are shown by thick lines; f input-output logical function realized by the
gate. Chemoattractants are placed in sites marked by solid black discs
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Fig. 13 Scheme of G2 gate. a landmark points are shown; b–i configuration of plasmodia in gates
for all values of input tuple 〈x, y, z〉: b 〈000〉, c 〈001〉, d 〈010〉, e 〈011〉, f 〈100〉, g 〈101〉, h 〈110〉, i
〈111〉, the plasmodia bodies are shown by thick lines; j input-output logical function realized by the
gate. Input are marked with circles, outputs with solid discs. Chemoattractants are placed in sites
marked by solid black discs

A table of transformation 〈x, y〉 → 〈d, e〉 shows that the gate G1 (Fig. 12f) imple-
ments logical conjunction and logical disjunctions 〈x, y〉 → 〈xy, x + y〉 at the same
time but on two different outputs.

Geometrical structure of G2 gate is shown in Fig. 13. Chemoattractants are placed
in sites c and d and plasmodia can be inoculated in sites x , y and z (Fig. 13a). Lengths
of channels in the gate satisfy the following conditions: |xc| < |xd|, |ac| < |ad|,
|bc| < |bd|, and |zb| + |bc| < |ya| + |ac|.

In [31] input channels y and z (Fig. 13a) were assigned to constant Truth inputs
an output channel c to a buffer (unused output to collect ‘excess’ of plasmodium). Let
consider scenario when all three input can take values ‘0’ and ‘1’ and both outputs
have a meaning.

If plasmodium placed in site z it propagates toward closest attractant-site c
(Fig. 13c); similarly a plasmodium inoculated in site y propagates towards attractant-
site c (Fig. 13d). When plasmodia are placed in sites y and z simultaneously, the
plasmodium from the site z follows the route (zb)(bc) and thus blocks the way for
plasmodium propagating from y (Fig. 13e). Therefore the plasmodium originating
in y moves to attractant-site d (Fig. 13e). The situations sketched in Fig. 13g–j can
be described similarly. Considering the transformations 〈x, y, 〉 → 〈c, d〉 we find
that the gate implements the following logical function 〈x, y〉 → 〈x, x y〉. If y- and
z-iputs are constant Truth, y = 1 and z = 1, the gate G2 is a negation (this how it
was initially designed in [31]).
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Fig. 14 Scheme of
Physarum one-bit half-adder.
Input variables are x and y,
1 on input channels represent
constant Truth. Carry value
xy and sum x ⊕ y are
highlighted by dotted
rectangle, unused outputs
x + y, 1 and (¬x)(¬y) by
dotted ellipses

x y

xy x y

1 1 1
1

x+y
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Physarum gates G1 and G2 can be cascaded by linking output gel-channels of
one gate to input gel-channels of another gate. An example of such cascading in a
form of one-bit half adder is shown in Fig. 14. Four pieces of plasmodium are fed in
input channels as constant Truth. The plasmodia representing Boolean variables x
and y are multiplied or branched and fed into gate G1 and two copies of gate G2.
Output channels of gates G2 are fed into data channels of another gate G1. In addition
to results we are looking for—xy and x ⊕ y—the circuit (Fig. 14) produces several
byproducts: x + y, (¬x)(¬y) and two copies of constants Truth. These signals
can be used further down in the chain of computation or routed in the buffer zones
(plasmodium pool). Plasmodia representing constant Truth can be also rerouted
back to control inputs of gates G2.

To model the Physarum gate behaviours the three physical criteria identified in
[31] and utilised in the design of the logic gates need to be implemented. The criteria
can be summarised as:

1. Physarum grows and moves towards nutrient chemoattractant gradients.
2. If two plasmodium fragments encounter each other, they will avoid contact where

other routes exist.
3. If two plasmodium fragments cannot avoid contact, the plasmodia will fuse.

The environment is represented by a greyscale image where different values
correspond to different environmental features (for example, habitable areas, inhabit-
able areas, nutrient sources). The particles move about their environment
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(a two-dimensional lattice) and sample sensory chemoattractant data from an iso-
morphic diffusion map. When particles move about their environment they deposit
chemoattractant to the same structure. Chemoattractant gradients were represented
by projection of chemoattractant to the diffusion map at the locations indicated on
the gate schematic illustrations. The projection weight was set at 20 multiplied by
the chemoattractant pixel value (255). The weight factor is high as chemoattractant is
deemed to be completely absorbed when it encounters the edges of the chamber and
a large weight value is necessary to ensure the required propagation distance. The
diffusion kernel was a 7 × 7 window for all experiments. Diffusion was achieved
by the mean of the local window at each location in the diffusion map and damped
at 10−4 (i.e. new value is equal to the mean multiplied by 1 − 10−4). We assumed
that diffusion of chemoattractant from a nutrient source was suppressed when the
source was engulfed by particles. The suppression was implemented by checking
each pixel of the food source and reducing the projection value (concentration of
chemoattractants) by multiplying it by 10−3 if there was a particle within a 9 × 9
neighbourhood surrounding the pixel. Particle sensor offset was 5 pixels, angle of
rotation set to 45◦, and sensor angle was 45◦.

Growth and shrinkage states are iterated separately for each particle and the
results for each particle are indicated by tagging Boolean values to the particles.
The growth and shrinkage tests were executed every three scheduler steps and the
method employed is specified as follows. If there are 1 to 10 particles in a 9 × 9
neighbourhood of a particle, and the particle has moved forwards successfully, the
particle attempts to divide into two (i.e. a new particle is created) if there is an empty
location in the immediate neighbourhood surrounding the particle. If there are 0 to
20 particles in a 5 × 5 neighbourhood of a particle the particle survives, otherwise it
is annihilated.

7.2 Modelling Individual Gates

To implement the gates using themodel, the schematic illustrations in Figs. 12 and 13
were transformed into the spatial representations shown in Fig. 15. The spatial pat-
tern and greyscale encoding (boundaries, nutrient sources) is used to configure the
diffusive map.

Particles were introduced (depending on logical input conditions) at the areas
indicated by solid circles at the top of the gates. Strong sources of chemoattrac-
tant were introduced at the outputs indicated as enclosed by dashed circles. The
chemoattractant diffused from the output locations along channels etched into the
gate configurations (white areas) and chemoattractant was removed immediately on
contact with boundaries of the channels (light grey areas). The particle population
was inoculated at identical times at the inputs, sensing, growing and moving towards
the propagating diffusion gradients. To ‘anchor’ the growing paths to the start posi-
tions a very small amount of chemoattractant was also deposited at the respective
start positions (the amount chosen was the lowest level needed to anchor the position
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Fig. 15 Spatial implementation of logic gates G1 and G2 used in the particle model

without affecting the actual gate computation). Population inoculation and chemoat-
tractant diffusion occurred at the same time and there was little or no directed growth
of the population until the chemoattractants reached the source of inoculation.

The operation of the gates occurs due to the complex interactions between the
chemoattractant diffusion gradients. Because there is a quantitative aspect to the
chemoattractant gradient (i.e. particles sense not only the presence but also the con-
centration of the diffusion gradient), the gradient concentration is affected by the
length and width of the gate channels [12]. The point at which the competing wave
fronts meet is a spatial interface which delineates path choices in a similar way to
those observed in chemical reaction-diffusion computations [26]. Thus, the environ-
ment is partially responsible for the initial selection of path choice. This ‘background
processing’ by the environment satisfies the first of the three aforementioned criteria
for plasmodium gate construction.

Two more factors add to the complexity of gradient interactions. Firstly when
the particle representation of the plasmodium engulfs a food source, the diffusion of
chemoattractant from that source is suppressed (reduced by a factor of one thousand).
This alters the concentration of the gradient field from the engulfed source and the
interface position where competing fronts meet shifts to reflect the new gradient
field. Secondly, the collective movement of the particle population also results in
local chemoattractant deposition along the path (this deposition is responsible for
the local recruitment of particles by positive feedback and also acts to maintain the
cohesiveness of the particle swarm). The local deposition of chemoattractant is also
subject to the same diffusion as that which affects the food sources (in fact it is
represented computationally as the same ‘substance’) and the diffusion away from
the particle population also acts to generate a dynamical interface which competes
with the food source gradients.
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Suppression of food source gradients and local modification of gradients by the
particle collective represents a highly dynamical spatial computation in which both
local and distant sources of information (food source location, path availability) are
integrated by both environmental and collective swarm computation. It can also be
seen that the localmodification of the gradient by the particle collective indirectly sat-
isfies the second criterion for plasmodium gate construction—attempted avoidance
of local plasmodia. The dynamical gradient interface represents a fragile boundary
between two separate swarms, two separate food gradients or a combination of both
swarm and food gradients. The third criterion—fusion of plasmodia can be repre-
sented in the particle model when movement of separate particle paths is limited and
perturbation of the dynamic boundary occurs. This can result in fusion of network
paths which corresponds to fusion of plasmodia.

The complex evolution of gradient fields can be seen in an example run of G2 with
the inputs 011 in Fig. 16. The top row shows the particle positions and the bottom
row shows the chemoattractant gradient field enhanced by a local method of dynamic
contrast enhancement. The first column shows the propagation of chemoattractant

Fig. 16 Evolution of ‘plasmodium’ positions and interaction fronts in the particle model for the G2
gate with inputs 011. Top Row Particle positions. Bottom Row Chemoattractant gradient. Arrows
indicate propagation of gradient from food sources. Dashed arcs represent boundary regions sep-
arating competing gradients. Dashed circles represent diffusion from food sources suppressed by
engulfment. See text for explanation
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gradient from the two food sources and the interfacial region (dashed arcs). Note
that the gradient from the right suppresses the gradient from the bottom source.
The second column shows the effect of suppression of the rightmost food source
when engulfed by the particle population which has migrated towards it. Because
the bottom food source is not suppressed the gradient from this source is stronger
than the right side and the interface boundary shifts to the right of the T-junction.
Note that there is also a weaker interface boundary between the diffusion gradient
emanating from the bottom food source and the chemoattractant deposition from the
particle population in the long vertical column. The third column shows the result
of the competition between the food gradient and the population gradient—the food
gradient is stronger and the population grows and migrates downwards to the food
node.

When the bottom node is suppressed the two separate paths remain stable and do
not fuse. A fragile interfacial boundary can be seen between the two network paths
(dashed arc) and, as long as the particles do not cross the ‘buffer’ space between the
two paths, the paths will not fuse.

Results using the particle model for gates G1 and G2 are shown in Figs. 17 and 18.
The G1 gate achieved 90% reliability and the G2 gate achieved 98.57% reliability.
The input conditions 0–0 were not included with the results because the output result
for these inputs is guaranteed regardless of gate design. For the G1 gate we see
that the shorter path to the right food source attracts the simulated plasmodium in

Inputs:   00  01  10  11 

Outputs:  00  01  01  11 
Success:            (N/A)           (20/20)            (20/20)            (41/50) 
Total Success: 81/90 (90 %) 

Success:

Failure:

Fig. 17 Summary of results for particle approximation of Physarum based logic gate G1
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Inputs:   000        001  010        011  100        101  110        111 

Success:

Failure:

Outputs:  00        01  01       11  01      11  01         01 
Success:            (N/A)    (20/20)          (20/20)         (19/20)           (20/20)        (20/20)           (20/20)                (19/20) 
Total Success: 138/140 (98.57%) 

Fig. 18 Summary of results for particle approximation of Physarum based logic gate G2

both 0–1 and 1–0 condition. Note that no branching occurs from the plasmodium
to the left nutrient source when the right source is connected. This is because the
movement of particles (and their deposition to the diffusion map) creates a local
diffusion field around the particle collective. The strength of this locally generated
field is enough to suppress the field emanating from the left food source and no
branching is observed. If the strength of the local field were less than that of the
nutrient source then branching and growth to the left nutrient source would indeed
occur.

The errors in the G1 gate all occurred in the 1–1 input condition. The ‘pattern’ of
the error is that the left particle streamdid not continue downwards to the food source,
but fused with the right side particle stream (indicated by dashed box). Analysis of
all of the results found that whenever the growing particle plasmodium encountered
a junction in a gate an apparent ‘hesitation’ was seen. The growth tip appeared to be
indecisive as to which direction to take. When a direction was eventually chosen the
growth speed increased when the growth tip moved past the junction. The hesitation,
and indeed some of the gate errors, was caused by disturbances in the diffusion field
near the tip of the growing plasmodium. The diffusion gradient emanating from the
nutrient sources is relatively uniformwhereas the gradient from the plasmodium tip is
more intermittent in quality (because the tip growth is non uniform and changeable in
form). In contrast the gradient from amoving straight part of the particle plasmodium
was more uniform. The fragility of the gradient field at the growth tip was further
perturbed by the spatial changes in the environment at the junctions. This, coupled
with increased possible choices of directions, led to what we describe as junctional
errors. The junctional errors are characterised by failures in searching of the growing
plasmodium tip and were responsible for all of the failure instances of the G1 gate.

The G2 gate, althoughmore complex in design, was more reliable than G1 and the
only errors which occurred were a single junctional error in the 011 input condition
and an error in the 111 input condition. This error was classed as a timing error
and was caused by different growth rates from the two left-side inputs. Ideally the
two particle streams should meet and fuse but differences in the growth of the two
separate streams led to non fusion and errors in output.
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7.3 Modelling the Half Adder

To implement the half adder based on gates G1 and G2 with the particle model the
scheme of the half adder in Fig. 14 was slightly modified as shown in Fig. 19. The G2

gate combination was simplified by ‘sharing’ the food source between both gates.
Constant Truth inputs (‘1’) were provided as some of the gate inputs to implement
the desired function. The outputs of the combined G2 gates were fed to act as inputs
to the lower G1 gate. To ensure that the particle population continued to the input
positions of the lower gate synthetic chemoattractant stimuli (small dots) were placed
to guide any plasmodium along the channel to the input positions. The ‘G2G2G1’
triplet combination acted as the XOR (summation) part of the half adder. The and
section of the half adder (carry computation) was implemented as a single G1 gate
(Fig. 19, left). In the simulations the branching of initial X and Y signals to provide
the inputs to both sections of the half adder was not implemented in an effort to
simplify the design and the relevant X and Y inputs were introduced to the gate
manually.

The use of constantTruth inputs to the half adder introduces errors in gate output
when inputs are 0–0. This is because the outermost truth signals at the inputs of the
G2G2 gates travel down through the gates and into the lower G1 gate. This would
result in the ‘no input’ condition actually causing an erroneous output. Apart from
redesigning the gate this presents an opportunity to consider possible use of error
checking signals in the gate design. One possible error checking signal is the ‘EA’
output in the left side of the circuit (Fig. 19, left). It can be seen that this flag should be
set whenever any of the inputs are set to true. It would therefore be possible to use the
absence of the EA output to indicate a 0–0 input to the half adder, and thus indicate
erroneous output from the constant Truth inputs to G2G2. Another possible use of
outputs to indicate error conditions is the ‘EB’ output from the left G1 portion of

Fig. 19 Spatial
representation of half adder
based on combinations of G1
and G2. X and Y : Inputs to
half adder, 1: constant
Truth signals, S: Sum
output, C : Carry output.
Solid discs are food sources
and small dots are small food
sources to feed outputs
towards lower gate inputs.
EA and EB: Error checking
flags (see text)
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11011000Inputs: 

S1 C0  
EA0 EB1  

S1 C0  
EA1 EB0 

Typical
Output:

S1 C0  
EA1 EB0 

S0 C1
EA1 EB0 

Success:       (N/A)                              (15/20)                         (15/20)                     (8/20) 
Total Success: 38/60 (63%) 

Fig. 20 Examples of input and output conditions for the particle approximation of the half adder

the G2G2G1 triplet (Fig. 19, bottom). It can be seen (Fig. 20) that the EB flag should
never be set unless the 0–0 condition caused by constant Truth inputs occurs. This
flag could be combined with the lack of EA output to indicate errors. When the EB
flag is set without the presence of EA then a fault can be assumed to have occurred
within the half adder G2G2G1 triplet. Of course the addition paths and mechanisms
to make use of these error checking flags adds another layer of complexity to the
circuitry which is out of the scope for this research. The results of the half adder
approximation can be seen in Fig. 20.

The failure rate for the half adder approximation, even when not including the
difficulty posed by the 0–0 configuration, was significantly higher than for the single
gates. The majority of the failures were caused by timing errors, which occurred
when the outermost inputs to the G2G2 combined gate did not fuse correctly with the
constantTruth inputs and, instead, travelled down towards the lower gate. Junctional
errors also occurred three times in the left G1 gate for the 1–1 input condition.

The combination and extension of the individual gates appeared to compound
the errors in the individual gates. Although no definitive answer can be given as to
why the unreliability increased, we speculate that the combining of the gates subtly
affected the propagation and profile of the chemoattractant gradients.

7.4 Quantitative Transformation of Adder Circuits

The full adder circuit enables the addition of two binary inputs, together with a carry
input (for example, from a previous calculation). The carry output may be cascaded
to other adder circuits so that larger strings of bits may be added. However, the
complex spatial routing of signals from the input channels and fromcombinedoutputs
of individual logic gates is difficult to implement reliably with living substrates
such as the Physarum plasmodium. In [14] we explored whether it was possible to
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avoid spatial propagation, branching and crossing completely in the design of adder
circuits. A simple quantitative transformation of the input patterns which considered
the total number of bits in the input string allowed us to map the respective input
combinations to the correct outputs patterns of the full adder circuit, reducing the
circuit combinations from a 2:1 mapping to a 1:1 mapping. The mapping of inputs
to outputs shows an incremental linear progression, suggesting its implementation
in a range of physical systems. We give a brief overview of the approach below.

The truth table for the full adder circuit is shown in Table3. In binary terms the
full adder may be seen as a 2:1 mapping of the 8 (3-bit) possible input combinations
(X , Y , Cin) into 4 (2-bit) possible output combinations (S, Cout). If we examine the
three inputs to the full adder, together with their corresponding outputs, a pattern can
be seen if we ignore the binary values of the inputs, and instead concentrate on the
total number of ‘1’ bit digits in the input patterns (Table3, column: number of bits).
The number of ‘1’bits in each combination ranges from zero to three, giving four
possible combinations, matching the number of output pattern combinations.

Furthermore, combinations of different inputs which share the same number of
bits all share the same output configuration. For example (referring to Table3) the
input patterns which all contain only a single ‘1’bit (decimal value of patterns 1,
2 and 4) all map to the same output pattern of 0 (Cout) and 1 (S). Similarly, input
patterns which contain two ‘1’ bits (decimal value of patterns 3, 5 and 6) all map to
the output patterns of 1 (Cout) and 0 (S).

This mapping of quantitatively transformed input pattern bits to output pattern
‘bins’ is clarified in Table4 which shows the mapping of quantitatively transformed
inputs into decimalised interpretations of the output patterns. The result is a 1:1
mapping of (transformed) input to output values. By encoding the number of bits
instead of the pattern of bits we have reduced the complexity of the input by half (8
possible combinations to 4). The mapping removes the need for spatial re-routing
of separate components of the adder circuit. Importantly, this mapping of input to
output values is also identical in that they both follow an incremental progression.
This suggests that it might be possible to use a physical mechanism to perform the
computation of the adder circuit. That is, the transformed input could be encoded in
a single signal line carrying a weighted non-binary signal.

Table 3 Single-bit full adder truth table including decimal value of input combinations and the
quantitative number of 1bits in each input combination

Decimal Number of bits Input X Input Y Input Cin Output Cout Output S

0 0 0 0 0 0 0

1 1 0 0 1 0 1

2 1 0 1 0 0 1

3 2 0 1 1 1 0

4 1 1 0 0 0 1

5 2 1 0 1 1 0

6 2 1 1 0 1 0

7 3 1 1 1 1 1
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Table 4 Mapping quantitatively transformed input combinations into truth table outputs

Number of bits Cout S Decimalised outputs

0 0 0 0

1 0 1 1

2 1 0 2

3 1 1 3

Left column shows the total number of bits in the X ,Y and Cin inputs. Middle columns (Cout and S)
are binary outputs. Right column shows the decimal values of the two binary outputs Cout and S

Aphysical implementation of the adder circuit must relate the number of input bits
to an increase in some physical value. This value could be changes in light intensity,
an increase in pressure, and so on…To return the output to the binary domain the
relevant output map ‘bin’ must be transformed into binary values in order to pass the
S and Cout on to the next gate. This conversion adds complexity at the interface of
the circuit, but this is balanced by the increased simplicity within the adder circuit
itself.

7.5 Implementation of the Quantitative Mechanism
in a Model of P. polycephalum

As an illustrative example we demonstrate how a multi-agent model of slime mould
can be used to implement the quantitative adder. Themulti-agent approach is inspired
by the simple components of the Physarum and is composed of a population of simple
mobile particles indirectly coupled within a diffusive lattice. Agents loosely corre-
spond to aggregates of overlapping actin filaments. Their collective structure of the
population corresponds to the pattern of the tube networks of the plasmodium and the
collective movement of particles corresponds to the sol flux within the plasmodium.
A full description of the model is given in [14] and below we concentrate on the
transformations of binary values at the inputs to the adder circuit and the subsequent
interpretation of the changes in behaviour of the model as the outputs of the circuit.

We represent the changing physical quantities of the transformed binary inputs by
geometrically constraining the model plasmodium within a narrow tube-like arena
of 323 × 20 pixels (Fig. 21). The model plasmodium (5000 particles) is inoculated
within the habitable region of this arena.As the individual particlesmove they deposit
a generic chemoattractant trail within the lattice at their new site. Particles are also
attracted by the local concentration of trails. If particles cannot move or collide,
no trail is deposited. After a short period of time the initially uniform distribu-
tion of trail within the lattice becomes unevenly distributed, causing local oscilla-
tions of trail concentration. These oscillatory domains grow and become entrained
(see [28, 32] for a full description of the emergence of oscillatory domains in the
model and real plasmodium respectively). A small sampling window 20 × 20 pixels
at the left of the arena records the mean flux of trails within the lattice within this
region at every 5 scheduler steps.
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(a) (b)

(c) (d)

Fig. 21 Geometrically constraining arena of the model plasmodium. a schematic of model arena
with non-habitable area (i), habitable region (ii) and sampling window (iii, dashed red, online)
indicated, b–d Constrained habitable region (dashed blue, online) of 0.75, 0.5 and 0.25 the original
arena length. a Arena length 1. b Arena length 0.75. c Arena length 0.5, d Arena length 0.25

The quantitative input values mapped from 0 to 3 (from inputs of Table4) are
transformed into a physical representation by only allowing movement of particles
which occupy smaller regions of the arena (elongated dashed regions in Fig. 21b–d).
These regions represent decreasing fractions of the original length of the arena.

If the geometric constraints of the arena represent the binary input transformation,
how is the physical behaviourwhich generates the individual output bins represented?
We can represent this in the model plasmodium by measuring the frequency of
oscillationswithin the arena. The Physarumplasmodium,when confined in a suitably
shaped arena, exhibits regular oscillations of thickness at each end of the arena
[29]. These thickness oscillations emerge from initially random contractions of the
plasmodium strand which propel sol throughout the strand. There is a reciprocal
relationship between contractile activity and strand thickness (presumably due to the
stretch activation phenomenon of the tube strand) as contraction of the tube results
in transport of sol away from the contraction site and a subsequent decrease in strand
thickness.

The same reciprocal relationship emerges in the model. As particles move they
deposit chemoattractant in the lattice (greyscale brightness corresponds to concentra-
tion in Fig. 22). The increased flux attracts local particles, causing further increases
in population density. Eventually the occupancy in this region is too high to allow
free particle movement and flux decreases. At more distant sites the relative decrease
in population density (caused by previous particle efflux) allows greater freedom of
movement and so flux increases in these regions. The result is a gradual emergence of
small oscillatory domains Fig. 22a which fuse and become entrained Fig. 22b until a
single large oscillation traverses the arena from end to end Fig. 22c, d. The dominant
frequency of this stable oscillation Fig. 22e can be measured by FFT transform and
spectral analysis.

When the model plasmodium is geometrically constrained using the patterns in
Fig. 21 the dominant oscillatory frequency increases as arena length decreases. An
example plot of the oscillatory patterns for decreasing arena length is shown in
Fig. 23a. When the oscillation data (10 runs at each arena length fraction) is analysed
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Fig. 22 Emergence of regular oscillations of flux within model the plasmodium on full width
arena. a flux of particle trails at t = 30 shows relatively uniform distribution (increasing grey
brightness corresponds to greater flux), b at early stages there are two oscillatory domains at each
end of the arena, c, d at later stages there is a single reciprocating oscillatory pattern, e plot of
mean flux within measuring window shows initial oscillatory domains fusing by entrainment at
approximately t = 2000 to form a regular reciprocating oscillation pattern. a t = 30, b t = 702,
c t = 4752, d t = 5053

in the frequency domain, the frequency of oscillations does indeed increase as the
arena length decreases. Although the relationship is not perfectly linear (Fig. 23b),
a simple thresholding of oscillation frequency should be sufficient to represent the
output bins of the quantitative adder.

Although this exampleuses changingoscillation frequency in amodel ofPhysarum
plasmodium to represent the physical system, the quantitative concept is applicable to
any physical system with approximately linear progression. For example, constrain-
ing the geometry of the model plasmodium is suggestive of changing the dominant
frequency of a resonant cavity by altering its size.
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Fig. 23 Oscillation frequency and arena length. a Oscillation frequency increases as arena length
decreases, offset plots show example oscillatory activity at arena fractions of (top to bottom) 0.25,
0.5, 0.75 and 1. b Plot showing increase in oscillation frequency as arena length fraction decreases
(10 runs per arena length fraction, standard deviation shown in error bars)



72 A. Adamatzky et al.

8 Discussion

Experimental prototype of attraction, ballistic and repellent gates suffer from low
speed. The gates are based on physical propagation of the slime and therefore com-
putation might take hours if not days, depending on size of the gates. Reliability of
experimental Physarum gate is limited by 69% for gate P1 and 59% for gate P2.
This is because behavior of plasmodium is determined by too many environmen-
tal factors—thickness of substrate, humidity, diffusion of chemo-attractants in the
substrate and in the surrounding air volume, and physiological state of plasmodium
during each particular experiment. Increasing reliability of Physarum gates might be
a scope of further studies.

Frequency gates employ oscillations of electrical potential in the slime mould’s
protoplasmic tubes. They are faster, approximately 30 times faster, than growth based
gates, yet still require 20–30 mins to perform computation, because it is necessary to
calculate frequencies of the potential oscillation before and after stimulation. Func-
tional completeness of the frequency gates is demonstrated with the development of
the NOR and NAND logic gates. NOR, NAND, XOR and XNOR derived gates have
also been demonstrated. Basic gates OR, AND and NOT were correct 90, 77.8 and
91.7% of the time respectively. Derived logic circuits XOR, half adder and full adder
were 70.8, 65 and 58.8% accurate respectively. Increasing the number of frequency
gates in circuits correlates with an increase in error of the combinational logic circuit;
the error is proportional to the number of gates. The results shown here demonstrate
a significant advancement in organism-based computing, providing a solid basis for
hybrid computers of the future.

With regards to fluidic gates, a need for a mechanical control is a hereditary
of many micro-fluidic circuits and slime mould circuits do not make an exclusion.
Physarum fluidic gates can be cascaded using opto-mechanical coupling, e.g. when a
width of an output tube or a speed of flow in the tube is detected by optical means and
then input tubes of next gates in a circuits are stimulated mechanically. This is not an
optimal solution thought. We should think on how to exploit mechanical properties
of slime mould tubes to make device-embedded flow switching functions.There are
some published results showing that embedded check valve and switch valve (with
pressure-dependent states), analogous to diode and p-channel JFET transistor, can be
implemented in layered elastomeric materials [23]. Another route to explore could
be to map designs of hybrid fluidic-electronic-mechanical universal logical gates
[37] onto patterns of living slime mould devices. With respect to delivery of e.g.
encapsulated substances by plasmodial tubes, changes in a cytoplasmic resistance in
tubes containing capsules can be exploited to construct logical gates similar to droplet
based gates [7] and bubble logic [24]. Physarum microfluidic gates are slow, their
speed is an order of seconds, much slower than silicon gates. However, slime mould
microfluidic gates are self-growing and self-repairing and can be incorporated in a
hybridwetware-hardware devices for sensing and analysing of non-lethal substances,
and detection of molecules or certain types of living cells.
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The simulation findings for spatially implemented gates suggest that, although
such circuits can indeed be built, the presence of both timing errors and junctional
(search) errors would severely limit the effectiveness and practicality with the cas-
cading towards more complex circuits. The matter of errors of the gate operations
(timing errors and junctional errors) requires further consideration. The term ‘error’
depends on the perspective taken. From an experimental viewpoint the occasionally
unreliable operation of the gates is erroneous. But the notion of externally applied—
by the experimenter—environment conditions andmetrics of success cannot be easily
applied to the behaviour of a living (or even simulated) collective organism, whose
sole imperative is the location and connection of nutrient sources for survival. By
following the biological imperative, the organism is not actually doing anything
‘wrong’, even though this may not result in reliable logical operations. The quantita-
tive encoding of the adder circuit results in a linear transformation between input and
output conditions. Although this would require additional complexity in transforma-
tion of inputs and outputs, it reduces the potential for errors caused by branching
of signals and bridging of signals and may be implementable in a range of physical
systems.
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