
Cellular Automata Models Simulating
Slime Mould Computing

Michail-Antisthenis I. Tsompanas, Georgios Ch. Sirakoulis
and Andrew Adamatzky

Abstract Slime mould computers have been used to solve graph-theoretical
problems like mazes and evaluate man-made transport networks. For the labora-
tory experiments that demonstrate these computing capabilities, slime mould is first
starved and then introduced to an area with attractants placed on key positions. The
behaviour of slime mould during these laboratory experiments have been simulated
by a model based on cellular automata (CAs). The advantages of a software model
over the real slime mould are repeatability and faster productions of results. Using
CAs can be justified by the emergence of global behaviour from local interactions,
a rule that applies also on the real slime mould. The results of the model have been
compared to the ones produced during laboratory experiments and found in good
agreement both for maze solving and network designing. After thorough examina-
tion of the laboratory experiments an updated model was developed, which yielded
more efficient networks. As the model was parametrized to produce slightly differ-
entiated results, the effects of these parameters were studied.

1 Introduction

Physarum polycephalum broadly noted as true slime mould, have been used lately
as a substance utilizing unconventional computing capacity. Several studies demon-
strated applications of this biological computer on complicated problems, such as
developing logical machines [1, 2], establishing logic gates [1, 3], solving com-
binatorial optimization problems [4, 5], solving maze problems [6, 7], distributed
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robotic control [8], robotic amoebic movement [9] and finding shortest paths while
designing effective networks [1, 10]. The plasmodium of Physarum which is the
vegetative stage of its life cycle, is one of the most frequently employed biological
computing substances. Mainly due its simple body structure, plain production, trivial
manipulation and the fascinating searching and network establishing strategies [11].

In laboratory experiments [11] where the graphic intelligence of slime mould is
realized, the plasmodium is firstly starved and inoculated on an oat flake. The afore-
mentioned oat flake is later introduced on a moisturized surface, like agar plates or
filter papers, at a predefined point characterized as the Starting Point (SP) for the
exploration of the available area. Moreover, on the experimental surface several oat
flakes, that serve as Nutrient Sources (NSs), are placed on key positions. The plas-
modium of Physarum is attracted by the chemicals emitted by NSs, then covers them
with protoplasmic mass to absorb nutrients and, finally, interconnects all available
NSs with a tubular network. The produced network can be identified as biologically
evolved in terms of efficiency and risk avoidance.

The aforementioned experiments require expensive and specialized equipment
and some experience on basic biological laboratory techniques. However, the major-
ity of scientists are unfamiliar with such methods. Moreover, given the large time
periods required for the true slime mould to produce results in laboratory experiments,
namely up to 5 days, it is of utter importance to accelerate these computations. A
commonly proposed alternative alleviating these difficulties is software models that
simulate the behavior of the plasmodium and provide similar results. In [10] a math-
ematical model reproducing the adaptive tubular networks of slime mould have been
presented. In addition to that a multi agent model is suggested in [12] that mimics
the procedure of tubular network formation by the plasmodium. Moreover, a model
based on CAs, named CELL [13], proved to approximate the results of laboratory
experiments and have been updated to produce more realistic results [14, 15].

As slime mould has no brain or any central processing system, its distributed
control can be perfectly described by the local rule of CAs. It is noteworthy that
CAs are known for emerging global behavior from local interactions. Nonetheless,
the distributed receptors of plasmodium perform sensing actions in parallel [16].
That is another aspect that is easily simulated due to the inherent parallel nature of
CAs. Consequently, a CA based model [17] that mimics the foraging strategy and
tubular network formation is proposed. The model is based on the representation
of diffusion of chemical attractants by NSs and the attraction of the plasmodium,
which initiates its exploration from the SP, by these chemicals. The application of
the model to problems recreated by previously presented biological experiments,
like solving a maze [7] and designing a transport network [18], demonstrated that
the model manages to adequately approximate the tubular network designed by the
real plasmodium, as illustrated in the following.

After carefully observing the behaviour of slime mould on the conducted experi-
ments and studying the findings presented in [19], an updated version of the model
was proposed [20, 21]. The second variation of the CA model provides more decen-
tralized networks than the first variation that better approximate proximity graphs
and Physarum produced graphs. The second variation of the model have been used to
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evaluate the motorways of countries and regions, specifically United Kingdom, Ger-
many, Canada, Mexico, the Iberian Peninsula and Greece. The graphs resulted by the
model include the Relative neighbourhood graph (RNG) of the topologies the coun-
tries used, with minor misses, a property characterizing the real slime mould [11].
The graphs provided by the laboratory experiments, with edges appearing frequently
in the conducted experiments, were approximated with small error. Nonetheless, the
real motorways were partially redesigned by the model. Finally, an analysis of the
effects that the parameters of the model have is presented.

2 Cellular Automata Basics

Cellular Automata (CA) are an idealization of a physical system in which space and
time are discrete, and the physical quantities take only a finite set of values [22].
Non-trivial CA are obtained whenever the dependence on the values at each site is
non–linear. As a result, any physical system satisfying differential equations may be
approximated by a CA, by introducing finite differences and discrete variables [23].
A CA consists of a regular grid of cells. Each cell can take, not simultaneously, k
different states, where k is a finite number equal or greater than 2. Cells update their
states in discrete time. That means that the state of each cell in the lattice changes
only at discrete moments of time, namely at time steps t . The time step t = 0 is
usually considered as the initial step and therefore no changes at the state of the cells
occur.

For each cell, a set of cells called its neighbourhood (usually including the cell
itself) is defined relative to the specified cell [24]. Regarding the two-dimensional
CA, there are two fundamental types of neighbourhoods that are mainly considered:
(a) von Neumann neighbourhood, that consists of the central cell, whose condition
is to be updated, and the four cells located to the north, south, east and west of the
central cell and (b) Moore neighbourhood, that consists of the [22] same cells with
the von Neumann neighbourhood together with the four other adjacent cells of the
central cell (the north-west, north-east, south-east and south-west cells).

The evolution of the cells demands the definition of the neighbouring cells as well
as of the local transition function:

• The internal state of a CA is described by a set

C(
→
r , t) = {C1(

→
r , t), C2(

→
r , t), . . . , Cm(

→
r , t)} (1)

of Boolean variables, that connects with each position
→
r of the array and expresses

the local internal state of each cell at time step t = 0, 1, 2, . . .

• The local transition function is defined as:

R = {R1, R2, . . . , Rm} (2)
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and determines the evolution [22] during time of the internal state of each cell
according to the following equation:

Cp,(
→
r , t + 1) = Rp

(
C(

→
r , t), C(

→
r + δ1, t), . . . , C(

→
r + δm, t)

)
(3)

where the position
→
r + δk , k ∈ {1, . . . , m} describes the neighbouring cells of

each
→
r cell.

CA have sufficient expressive dynamics to represent complex phenomena and,
at the same time, can be simulated exactly by digital computers because of their
intrinsic discreteness, i.e. the topology of the simulated object is reproduced in the
simulating device [25, 26]. Prior and more recent works proved that CA are very
effective in simulating physical systems and solving scientific problems, because they
can capture the essential features of systems where global behavior arises from the
collective effect of simple components, which interact locally [27–30]. Furthermore,
they can easily handle complicated boundary and initial conditions, inhomogeneities
and anisotropies [23, 31–33].

The CA approach is consistent with the modern notion of unified space–time.
In computer science, space corresponds to memory and time to processing unit. In
CA, memory (CA cell state) and processing unit (CA local rule) are inseparably
related to a CA cell [34, 35]. Finally, CA can be easily coupled with other com-
putational tools so as to significantly enhance their performance and extend their
applications field [36–38]. Models based on CA lead to algorithms which are fast
when implemented on serial computers because they exploit the inherent parallelism
of the CA structure. These algorithms are also appropriate for implementation on
massively parallel computers [39], such as the cellular automaton machine (CAM)
[40] or Field Programmable Gate Arrays (FPGAs) [26, 41–43].

3 Cellular Automata Representation of Slime Mould
Computing

The most thoroughly studied laboratory experiment that the plasmodium of Physarum
is subjected to, is the imitation and optimization of human-made transport networks.
Consequently, the proposed CA model will be described under the spectrum of these
specific configurations. In these experiments the plasmodium is first starved and then
introduced to an environment with some NSs located at characteristic points. The
plasmodium explores the available area, encapsulates the NSs and creates a tubular
network that connects all these NSs by a nature-inspired, cost effective and risk
avoiding manner.

The model imitates the entire area that is used in a laboratory experiment using the
plasmodium of Physarum. The entire area can be defined, without loss of generality,
as a square grid divided into identical square cells that constitute a set defined as
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E. This area can be categorized as available area (a set of cells defined as A) and
unavailable area (a set of cells defined as U) for the development of the plasmodium.
Also some cells that are included in the available area set of cells, represent the oat
flakes that are considered as NSs for the plasmodium (a set of cells defined as N)
and one cell represents the place where the plasmodium is initially introduced to the
experimental environment or the SP (a set of one cell defined as S). Taking the above
under consideration, Eq. 4 can be defined.

N ⊂ A, S ⊂ A, A ∪ U = E, A ∩ U = ∅ (4)

The neighbourhood type used for the proposed model is Moore neighbourhood
and the state of the C(i, j) cell at time step t (STt

(i, j)) is defined by Eq. 5.

STt
(i, j) = [

AA(i, j), PMt
(i, j), CHAt

(i, j), TEt
(i, j)

]
(5)

AA stands for “Available Area” for the plasmodium to explore and takes values
according to Eq. 6. PM stands for “Physarum Mass”, meaning a percentage of the
cytoplasm located on a specific CA cell. Note here that a cell representing a SP has
PM equal to a predefined number (here 100). CHA stands for “CHemoAttractant”
substances that are located on a specific CA cell and is also represented by a percent-
age. A cell representing a NS has the CHA parameter equal to a predefined number
(here 100). Finally, TE stands for “Tube Existence” and represents the participation
of a cell in the tubular network inside the body of the slime mould.

AA(i, j) =
{

1, ∀i, j : c(i, j) ∈ A

0, ∀i, j : c(i, j) ∈ U
(6)

Note that from here forth, the color map of the images used as inputs of the model
is illustrated in Fig. 1a and for the outputs of the model in Fig. 1b.

3.1 First Variation of the Model

The initially developed model can be described by the following procedures. The
initialization step includes the definition of parameters that have a great impact
on the results. These parameters include the length of the CA grid, the diffusion
parameters for “Physarum Mass” (PMP1, PMP2, PMP3) and “ChemoAttractant”
substances (CAP1, CAP2, CAP3), the minimum percentage of chemoattractant sub-
stances detected by the plasmodium, the consumption percentage of the chemoat-
tractant substances by the plasmodium (CON—Consumption) and the attraction of
the slime mould by chemoattractant substances (PA—Physarum Attraction). Also
the topology of the NSs and the SP is introduced to the model by a picture that
encodes that information as shown in Fig. 1a.
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Color Represented Area
White Available area
Red Unavailable area

Black dot Starting Point (SP)
Blue dot Nutrient Source (NS)

(a)

Color of a cell Cell’s State
Red Unavailable cells

Orange Point of interest (SP or NS)
Blue (forming lines) Participating into tubular network

Light blue to orange
Cells where the plasmodium is present –
light blue less mass (nearly 0%), orange 

more mass (nearly 100%).

(b)

Fig. 1 Color map for a images used as input for the model and b images produced as outputs from
the model

After the initialization and for 100 time steps, diffusion equations are used to
calculate the values for CHA and PM for every cell in the grid. Just for the records,
it should be mentioned that in all cases, the aforementioned time steps values were
considered empirically after several testing runs of the model. Every cell uses the
values of its neighbours at time step t to calculate the value of the CHA and PM
parameter for time step t + 1. The total “Physarum Mass” for a cell C(i, j) for time
t + 1 is described by Eq. 7 and the total “ChemoAttractant” for a C(i, j) cell for time
t + 1 is described in Eq. 8, respectively. The multiplication with the parameter CON ,
provides the imitation of the consumption of the chemoattractant substances by the
plasmodium.

PMt+1
(i, j) = PMt

(i, j) + PMP1 × {(1 + PAt
(i, j),(i−1, j)) × PM(i−1, j) − PMP3 × PMt

(i, j)

+ (1 + PAt
(i, j),(i, j−1)) × PM(i, j−1) − PMP3 × PMt

(i, j)

+ (1 + PAt
(i, j),(i+1, j)) × PM(i+1, j) − PMP3 × PMt

(i, j)

+ (1 + PAt
(i, j),(i, j+1)) × PM(i, j+1) − PMP3 × PMt

(i, j)}
+ PMP2 × {(1 + PAt

(i, j),(i−1, j−1)) × PM(i−1, j−1) − PMP3 × PMt
(i, j)

+ (1 + PAt
(i, j),(i+1, j−1)) × PM(i+1, j−1) − PMP3 × PMt

(i, j)

+ (1 + PAt
(i, j),(i−1, j+1)) × PM(i−1, j+1) − PMP3 × PMt

(i, j)

+ (1 + PAt
(i, j),(i+1, j+1)) × PM(i+1, j+1) − PMP3 × PMt

(i, j)} (7)
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CHAt+1
(i, j) = CON×[CHAt

(i, j) + CAP1 × {(CHAt
(i−1, j)) − CAP3 × CHAt

(i, j)

+ (CHAt
(i, j−1)) − CAP3 × CHAt

(i, j)

+ (CHAt
(i+1, j)) − CAP3 × CHAt

(i, j)

+ (CHAt
(i, j+1)) − CAP3 × CHAt

(i, j)}
+ CAP2 × {(CHAt

(i−1, j−1)) − CAP3 × CHAt
(i, j)

+ (CHAt
(i+1, j−1)) − CAP3 × CHAt

(i, j)

+ (CHAt
(i−1, j+1)) − CAP3 × CHAt

(i, j)

+ (CHAt
(i+1, j+1)) − CAP3 × CHAt

(i, j)}] (8)

The parameter PA(i, j),(k,l) represents the attraction of the Physarum Mass
(“Physarum Attraction”) in cell C(i, j) towards the direction of an adjacent cell C(k,l),
modeling the attraction of the organism towards the higher gradient of chemoattrac-
tants. It is equal to a predefined constant (PAP) for the neighbour with the higher value
of chemoattractant and equals to the negative value of the same predefined constant
for the neighbour across the neighbour with the higher value of chemoattractant. For
all the other neighbours the parameter PAP is equal to zero. The definition of the PA
parameter for cell C(i, j) towards its north neighbour (C(i−1, j)) is illustrated in Eq. 9.

PAt
(i, j),(i−1, j) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

PAP, if CHA(i−1, j) = MAX(CHA(k,l)

∀k, l : i − 1 ≤ k ≤ i + 1

and j − 1 ≤ l ≤ j + 1)

−PAP, if CHA(i+1, j) = MAX(CHA(k,l)

∀k, l : i − 1 ≤ k ≤ i + 1

and j − 1 ≤ l ≤ j + 1)

0, else.

(9)

Finally, after 100 time steps, the procedure of creating Tubes is initiated. During
this phase, one Tube is formed for each NS, with starting point the location of the
NS and the ending point the initial location of the plasmodium (SP). The route
that the Tube follows is the one indicated by the gradient of the amount of the
Physarum’s protoplasmic Mass, from the smallest value to the highest. Namely,
every cell corresponding to a NS, sets its TEt

i, j parameter to high and, then, locates in
its neighborhood the cell with the greater PMt

i, j parameter. That cell must participate
in the path of the Tube. As a result, the NS cell sends to that cell a signal in order
to make that cell to change its TEt

i, j parameter to high. That procedure is continued
until the SP is found, or in the case of a maze, another NS is found.
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3.2 Second Variation of the Model

Taking into consideration the assumptions made for the way the Physarum develops
through an available area, which were confirmed by laboratory experiments in [11,
19], the model initially proposed [17], was altered. Firstly it is determined that the
plasmodium is “amplified” at a NS and then searches for other NSs, considering the
recently encapsulated NS as a new SP. Also, when a NS is covered by the plasmodium,
the generation of chemoattractant substances is ceased. Consequently, the proposed
model is altered in the way the plasmodium is exploring all the available area. In the
previous model there was the initial SP and all the NSs were connected with that
point, in some cases through other NSs. Now, the NSs are turned into SPs when the
plasmodium encapsulates them with a sufficient amount of mass. Furthermore, it is
realized that the plasmodium is propagating away from the most recently captured NS
by taking a semi-circular form [19]. That feature is covered by the diffusion equation
describing the foraging of the plasmodium that was previously used. Moreover, the
model uses a diffusion equation to calculate the propagation of chemoattractants
produced by the NSs, as observed in [19].

The updated model has some important alternation from the previously presented,
thus, it will be thoroughly described, despite the fact that some procedures are identi-
cal to the initial. The new model is analyzed in the following sequence of procedures,
which are also illustrated in a flowchart (Fig. 2):

1. Initialize the model: the parameters of the diffusion equations are set and the
topology of the SP and the NSs is also introduced to the model by a picture coded
as Fig. 1a indicates.

2. Apply the diffusion equations for 50 time steps (t).
3. Check if any of the NSs is covered with a predefined percentage of PM (ThPM).

If there is at least one NS covered continue, else go to (2).
4. All NSs covered with the predefined percentage of PM (ThPM), are encapsulated

by the plasmodium and therefore connected to a SP.
5. The NSs mentioned in (4) change into SPs, meaning their PM is set to 100. If no

more than 5,000 time steps have passed (t <5,000) go to (2), else continue.
6. Redefine all the cells of “interest” (NSs and SP) as NSs, except from the second

to last NS encapsulated for the previous 5,000 time steps which is redefined as a
SP. Execute for a second time (2)–(5) for 5,000 time steps.

Having briefly presented the outline of the model, Eqs. 10 and 11 give values for
PM and CHA of cells constituting sets U, S and N .

PMt
(i, j) =

⎧⎪⎨
⎪⎩

0, ∀i, j : c(i, j) ∈ U

100, ∀i, j : c(i, j) ∈ S

100, ∀i, j : c(i, j) ∈ N and PMt
(i, j) ≥ ThPM

(10)



Cellular Automata Models Simulating Slime Mould Computing 571

Initialize 
the model

Apply the diffusion equations 
for 50 time steps (t).

Redefine all NSs and SPs as NSs.
The second to last NS that was 

“encapsulated” is redefined as a SP.

All NSs covered, are 
connected with SPs.
All NSs covered, are 

changed into SPs.

Is any NS 
covered with 

ThPM?

End

t <= 5.000 ?

t < 10.000 ?

yes

no

yes

no

t = 5.000 ?no

yes
yes

no

Fig. 2 Flowchart of the proposed model

CHAt
(i, j) =

{
100, ∀i, j : c(i, j) ∈ N and PMt

(i, j) < ThPM

0, ∀i, j : c(i, j) ∈ N and PMt
(i, j) ≥ ThPM

(11)

A logical question that comes to mind is why procedures (2) to (5) are executed
for a second time. As identified in some laboratory experiments [44], after a seem-
ingly random and not certain amount of time the plasmodium seems to change the
formation of its protoplasmic networks and abandon some NSs. Then it seems to
regenerate in a manner and re-colonize some NSs, meaning it forms new tubular
edges that connect NSs that were already connected to other NSs. As the CA model
is designed without the use of probabilistic equations, it uses a second starting point
to regenerate and explore the available area once more. That point will be a point of
interest (NS), which is empirically chosen to be away from the initial SP. Further-
more, if that feature was not included to the model, the result would be more like a
spanning tree, than a proximity graph which is proved to be more appropriate to bear
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resemblance to the graphs drawn by the plasmodium [45]. The second to last NS to
be encapsulated was chosen, based on the fact that it is far enough from the initial
SP and it is less likely to be a point of interest surrounded by unavailable area that
would cause difficulties for the growth of the plasmodium. Finally, the time period
of 50 time steps for the diffusion equations, was also empirically chosen, although
the alternation of that will cause little difference to the results of the model.

In order to clarify the model’s procedures, every single one will be further
explained here. The initialization step includes the definition of parameters that have
a great impact on the results of the model. These parameters include the length
of the CA grid, the diffusion parameters for “Physarum Mass” (PMP1, PMP2) and
“ChemoAttractant” substances (CAP1, CAP2), the minimum percentage of chemoat-
tractant substances detected by the plasmodium, the consumption percentage of the
chemoattractant substances by the plasmodium (CON—Consumption), the attrac-
tion of the slime mould by chemoattractant substances (PA—Physarum Attraction)
and the threshold of “Physarum Mass” that encapsulates a NS (ThPM). Also the
topology of the NSs and the SP is introduced to the model by a picture that encodes
that information as shown, previously, in Fig. 1a.

After the initialization and for 50 time steps, diffusion equations are used to
calculate the values for CHA and PM for every cell in the grid. Every cell uses the
values of its neighbours at time step t to calculate the value of the CHA and PM
parameter for time step t + 1. The contribution to the diffusion of the Physarum
Mass of the von Neumann neighbours (PMvNN) of the C(i, j) cell is described in
Eq. 12. Moreover, the contribution to the diffusion of the Physarum Mass of the
exclusively Moore neighbours (PMeMN) of the C(i, j) cell is described in Eq. 13. The
total “Physarum Mass” for a cell C(i, j) for time t + 1, is a sum of the contributions
of its neighbours with appropriate weights and is described by Eq. 14, respectively.

PMvNNt
(i, j) = (1 + PAt

(i, j),(i−1, j)) × PM(i−1, j) − AA(i−1, j) × PMt
(i, j)

+ (1 + PAt
(i, j),(i, j−1)) × PM(i, j−1) − AA(i, j−1) × PMt

(i, j)

+ (1 + PAt
(i, j),(i+1, j)) × PM(i+1, j) − AA(i+1, j) × PMt

(i, j)

+ (1 + PAt
(i, j),(i, j+1)) × PM(i, j+1) − AA(i, j+1) × PMt

(i, j) (12)

PMeMNt
(i, j) = (1 + PAt

(i, j),(i−1, j−1)) × PM(i−1, j−1) − AA(i−1, j−1) × PMt
(i, j)

+ (1 + PAt
(i, j),(i+1, j−1)) × PM(i+1, j−1) − AA(i+1, j−1) × PMt

(i, j)

+ (1 + PAt
(i, j),(i−1, j+1)) × PM(i−1, j+1) − AA(i−1, j+1) × PMt

(i, j)

+ (1 + PAt
(i, j),(i+1, j+1)) × PM(i+1, j+1) − AA(i+1, j+1) × PMt

(i, j)

(13)

PMt+1
(i, j) = PMt

(i, j) + PMP1 × [
PMvNNt

(i, j) + PMP2 × PMeMNt
(i, j)

]
(14)
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Note here that if a neighbouring cell is representing unavailable area, there is
no contribution to the diffusion (neither positive nor negative). Also, the parameter
PA(i, j),(k,l) represents the attraction of the Physarum Mass (“Physarum Attraction”) in
cell C(i, j) towards the direction of an adjacent cell C(k,l), modeling the attraction of the
organism towards the higher gradient of chemoattractants. It is equal to a predefined
constant (PAP) for the neighbour with the higher value of chemoattractant and equals
to the negative value of the same predefined constant for the neighbour across the
neighbour with the higher value of chemoattractant. For all the other neighbours the
parameter PAP is equal to zero. The definition of the PA parameter for cell C(i, j)

towards its north neighbour (C(i−1, j)) is illustrated in Eq. 15.

PAt
(i, j),(i−1, j) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

PAP, if CHA(i−1, j) = MAX(CHA(k,l)

∀k, l : i − 1 ≤ k ≤ i + 1 and j − 1 ≤ l ≤ j + 1)

−PAP, if CHA(i+1, j) = MAX(CHA(k,l)

∀k, l : i − 1 ≤ k ≤ i + 1 and j − 1 ≤ l ≤ j + 1)

0, else.
(15)

Furthermore, the contribution to the diffusion of the chemoattractants for the plas-
modium of the von Neumann neighbours (CHAvNN) of the C(i, j) cell is described in
Eq. 16. The contribution to the diffusion of the chemoattractants for the plasmodium
of the exclusively Moore neighbours (CHAeMN) of the C(i, j) cell is described in
Eq. 17. As a result, the total chemoattractant parameter for a C(i, j) cell for time t + 1
is described in Eq. 18.

CHAvNNt
(i, j) = (CHAt

(i−1, j)) − AA(i−1, j) × CHAt
(i, j)

+ (CHAt
(i, j−1)) − AA(i, j−1) × CHAt

(i, j)

+ (CHAt
(i+1, j)) − AA(i+1, j) × CHAt

(i, j)

+ (CHAt
(i, j+1)) − AA(i, j+1) × CHAt

(i, j) (16)

CHAeMNt
(i, j) = (CHAt

(i−1, j−1)) − AA(i−1, j−1) × CHAt
(i, j)

+ (CHAt
(i+1, j−1)) − AA(i+1, j−1) × CHAt

(i, j)

+ (CHAt
(i−1, j+1)) − AA(i−1, j+1) × CHAt

(i, j)

+ (CHAt
(i+1, j+1)) − AA(i+1, j+1) × CHAt

(i, j) (17)

CHAt+1
(i, j) = CON × {CHAt

(i, j) + CAP1 × (CHAvNNt
(i, j)

+ CAP2 × CHAeMNt
(i, j))}

(18)

Note here that if a neighbouring cell is representing unavailable area, there is
no contribution to the diffusion (neither positive nor negative), as in the diffusion of
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Physarum Mass. Moreover, the multiplication with the parameter CON , provides the
imitation of the consumption of the chemoattractant substances by the plasmodium.

After every 50 time steps of calculating the diffusion equations in the available
area, if any NS is covered with over the predefined PM (ThPM), it is connected
with a SP with a Tube that follows the gradient of the PM to the higher value. More
specifically, starting from the cell representing the encapsulated NS, the adjacent
cell with the higher PM value is selected to participate to the tubular network. Then
the cell selected to participate to the tubular network selects the next cell from its
neighbours with the higher PM value to participate to the tubular network and so on,
until a SP is reached.

Finally, this NS will be transformed to a SP (PM = 100) and will act as a SP for
the remaining time steps, as illustrated in Eqs. 10 and 11, respectively. If more NSs
are covered with the predefined PM, they are connected to the nearest SP and they
are all transformed to SPs.

4 Application of the Model to Transport Networks

In order to compare the results provided by the model with the results produced by
the real plasmodium of Physarum, the topologies of several laboratory experiments
were recreated. The first variation of the model was used to simulate laboratory
experiments with the plasmodium solving mazes and evaluating transport networks,
while the second variation simulated only experiments evaluating transport networks.
Nonetheless, the second variation is, also, capable of solving a maze.

4.1 Results of the First Variation of the Model

The topologies of the experiments were recreated by the model as CA grids of size
50 × 50 for the maze solving instance and 150 × 150 for the instance of evaluating
a train network. The parameters of the first variation of the model are different for
each instance, as described in the following.

4.1.1 Maze Solving

The maze topology used for the biological experiment presented in [7] (Fig. 3) was
used as an input for the model. More specifically, Nakagaki and his colleagues took
a growing tip from a large plasmodiums and divided it into small pieces. Then,
they positioned them in a maze created by an appropriately cut plastic film, placed
on an agar surface. The plasmodial pieces spread and coalesced to form a single
plasmodium that filled the maze, avoiding the dry surface of the plastic film. At
the start and end points of the maze, they placed agar blocks containing nutrient
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Fig. 3 The under study
maze

(ground oat flakes), with four possible routes between the start and the end points. The
plasmodium’s pseudopodia reaching dead ends in the labyrinth shrank, resulting in
the formation of a single thick pseudopodium spanning the minimum length between
the nutrient–containing agar blocks [7].

In our case, we artificially reconstructed the aforementioned maze taking into con-
sideration the exact configuration of the maze used. The model was initialized with
the following parameters: CON = 1, PAP = 0.3, PMP1 = 0.05, PMP2 = 0.025,
PMP3 = 1, CAP1 = 0.05, CAP2 = 0.025 and CAP3 = 1. The model simulation
results after 500, 1000, 1200 and 1500 time steps are shown in Fig. 4. Compared
to the results of the biological experiment in [7], the algorithm can be considered
successful. As is illustrated in Fig. 4c, it takes 1200 time steps to find a solution that
is not the best one. However, after 1500 time steps (Fig. 4d), the model manages to
solve the maze using the shortest possible route. It should be noted that in analogy
to the real experiments, the model changes the network’s shape in the maze to form
one thick tube covering the shortest distance between the NSs, so as to maximize
its efficiency, and therefore, the chances for survival of the simulated plasmodium.
The period of 1500 time steps (which correspond to about 45 s of real time on a PC)
may seem like a long time for some applications, but compared to 8 h needed for the
biological experiment, it is not a significantly long time period.

4.1.2 Train Network of Tokyo Area

The first variation of the model was also used for the development of an adaptive
network. More specifically, Tero et al. [18] presented a simple mathematical model
for the development of a network of veins connecting multiple decisively placed
NSs. In their experiment, cities around Tokyo were represented as oat flakes on
a wet surface that was inoculated with plasmodium. Plasmodial veins connected
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Fig. 4 The simulation results for the maze presented in Fig. 3, after a 500, b 1000, c 1200 and d
1500 time steps, respectively

these oat flakes by forming an optimized network closely approaching the decisively
designed Tokyo railway system. As a result, the plasmodium can construct an efficient
transportation network that meets the multiple requirements of short length and low
degree of separation between NSs, as well as tolerance of accidental disconnection
at random position [18].

In our case, we used a template of 36 NSs that represent geographical locations
of cities in the Tokyo area as an input, and we compared the results of the model
with the actual rail network in Tokyo, Japan. The template is illustrated in Fig. 5. The
results after 500, 1000, 1500 and 2500 time steps, for two different initializations of
the parameters of the diffusion equations, are presented in Figs. 6 and 7, respectively.
It should be noted that in analogy to the real experiments, the presented networks of
plasmodial veins form without any central control mechanism that might inform the
plasmodium about the relative position of the oat flakes or dictate how to connect
them.

The parameters of the “Physarum Mass” diffusion equation in both instances
are the same (PMP1 = 0.08, PMP2 = 0.064, PMP3 = 1), while the parameters
of the “ChemoAttractant” substances diffusion equation are different (for Fig. 6,
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Fig. 5 Template of the Tokyo area and cities in its vicinity

Fig. 6 The model results designing Tokyo railway system, after a 500, b 1000, c 1500 and d 2500
time steps, respectively. The diffusion equation parameters used are: CAP1 = 0.06, CAP2 = 0.036
and CAP3 = 1
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Fig. 7 The model results designing Tokyo railway system, after a 500, b 1000, c 1500 and d 2500
time steps, respectively. The diffusion equation parameters used are: CAP1 = 0.12, CAP2 = 0.144
and CAP3 = 1

CAP1 = 0.06, CAP2 = 0.036, CAP3 = 1, and for Fig. 7, CAP1 = 0.12, CAP2 =
0.144, CAP3 = 1). Moreover, other model parameters were set as
CON = 1, PAP = 0.8. Taking into consideration the results from the instance with
higher diffusion parameters (Fig. 7), it can be noted that the most significant differ-
ence was found at the north–east section, where the tube paths converge faster. In
Fig. 8, the similarities and differences of the results of the model with different initial
parameters, the actual rail network and the result of the biological experiment are
shown. It is obvious that the results of the model are not decentralized as the other
two. This leads to lower fault tolerance. Nevertheless, the pattern of the tube paths,
connecting the NSs together and with the SP of the plasmodium, produced by the
model bear some resemblance with a part of the results of the biological experiment.
By adding to the results of the model, a path connecting the outer FSs with each
other, the results become more similar to the experimental ones.
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Fig. 8 The final model results designing Tokyo railway system, after 2500 time steps, for a CAP1 =
0.06, CAP2 = 0.036, and b CAP3 = 1 and CAP1 = 0.12, CAP2 = 0.144, CAP3 = 1 diffusion
equation parameters, respectively. c The rail network in the Tokyo area as shown in [18]. d The
real experiment’s results of the plasmodium grew out from the SP with a contiguous margin and
progressively colonized each of the food sources as reported in [18]

4.2 Results of the Second Variation of the Model

As mentioned previously, the plasmodium of Physarum was used in laboratory exper-
iments, in order to reproduce human-made networks, like motorways in several coun-
tries and the results of these experiments are thoroughly examined. The networks
produced by these laboratory experiments were compared to proximity graphs and
the real infrastructures [21, 44–48]. Consequently, to demonstrate the efficiency and
applicability of the second variation of the model, the topology of significant cities, in
terms of population or transportation, as defined in laboratory experiments that were
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Table 1 Parameters’ values for the second variation of the model

Parameter Value Parameter Value

PMP1 0.08 GridLength 150 × 150

PMP2 0.01 CON 0.95

CAP1 0.05 PA 0.7

CAP2 0.01 ThPM 0.2

conducted in [21, 44–48], will be used as inputs for the second variation model and
the results will be compared with Physarum, proximity graphs and real motorways.

More specifically the proximity graph chosen as a control is the RNG, due to
the finding from laboratory experiments [47] that when inoculated in a single data
point, the plasmodium finally builds a proximity graph which includes RNG. Points
a and b are connected by an edge in the RNG, if no other point c is closer to a
and b than dist (a, b) [49]. The parameters of the model were set with the values
illustrated in Table 1 for all instances. The countries used as characteristic study
cases are United Kingdom, Germany, Canada, Mexico, the Iberian Peninsula and
Greece. These countries/regions were selected, among many others, based on the
experimental results and their corresponding analysis as presented in [50]. More
specifically, these countries can be considered as typical study cases for reproduction
of human-made networks by Physarum in terms of the following two main measures:
(a) matching and (b) economy of matching [50]. These measures are derived from the
direct comparison of the Motorway and Physarum graphs (with the highest values
of θ , which do not result to disconnected graphs). As a result, one of the top three
regions, where these two graphs better match, is Canada; while United Kingdom
is among the top three regions where these graphs are most economically matched
(adding the minimum of redundant edges). Moreover, another measure defined is
the product of matching to economy, considered as a rough parameter for estimating
“slime-optimality” of motorways approximation. In correspondence, the five selected
countries cover the whole range from the lowest to high values of that measure.

In order to emulate the laboratory experiments in [47], the nine most popu-
lated areas in United Kingdom—Bristol, Sheffield, Nottingham, Liverpool, Tyne-
side, Greater Glasgow, West Yorkshire, Greater Manchester and West Midlands—are
considered as sources of nutrients (NS), while Greater London is chosen to be the
initial position of the plasmodium (SP). The topology of the points of interest and
the borders in United Kingdom are depicted in Fig. 9a. Figure 9b shows the results
of the model (MRUK ) and Fig. 9c the RNG (RNGUK ) for the specific topology. It is
obvious that the proposed model fully reproduces the RNG, while adding one edge
connecting Greater London and Bristol.

Furthermore, in Fig. 9d and e the Physarum graph is illustrated, as derived from
the laboratory experiments in [47], containing edges that appeared more than 5
and 12 times respectively in 25 experiments (PGUK(5/25) and PGUK(12/25)). The
following equations apply for the graphs illustrated in Fig. 9.
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Fig. 9 a Topology of cities used as points of interest for United Kingdom. b Model’s output for
United Kingdom (MRUK ). c Relative Neighbour Graph (RNGUK ). d Physarum graph for θ = 5/25
(PGUK (5/25)) and e for θ = 12/25 (PGUK (12/25)) and f original graph of UK motorways [47]

RNGUK ⊂ MRUK ⊂ PGUK(5/25) (19a)

PGUK(12/25) ⊂ MRUK + (Greater London, West Mindlands) (19b)

Consequently, it can be admitted that in the instance of the United Kingdom, the
model produces a graph that includes the RNG, a characteristic also displayed by the
plasmodium of Physarum. Moreover, the edges constituting PGUK(12/25), meaning
edges that appear with a frequency higher than θ = 0.48 in laboratory experiments
are included in the graph produced by the model, with the exception of one edge, the
one connecting Greater London with West Midlands.

As in the laboratory experiments in [48] where Physarum was imitating Germany
motorway network, the 21 most significant areas in Germany—Berlin (1), Hamburg
(2), Munich (3), Cologne (4) (including Dusseldorf, Bonn), Frankfurt (5) (including
Wiesbaden), Stuttgart (6), Dortmund area (7), Bremen (8), Dresden (9), Hanover
(10), Leipzig (11), Nuremberg (12), Bielefeld (13), Mannheim (14), Karlsruhe (15),
Mnster (16), Augsburg (17), Aachen (18), Chemnitz (19), Braunschweig (20), Kiel
(21)—are considered as points of interest. Note that the numbers next to each area is
representative of the area and appear in Fig. 10a. All these areas are represented by
sources of nutrients (NS), except from Berlin which is chosen to be the initial position
of the plasmodium (SP), as it was in the laboratory experiments. The topology of
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Fig. 10 a Topology of cities used as points of interest for Germany. b Model’s output for Germany
(MRDE). c Relative Neighbour Graph (RNGDE ). d Physarum graph for θ = 9/22 (PGDE(9/22))
and e for θ = 15/22 (PGDE(15/22)) and f original motorways graph [48]

cities used as an input for the model is illustrated in Fig. 10a. The results of the model
are illustrated in Fig. 10b (MRDE), along with the RNG for the topology of Germany
in Fig. 10c (RNGDE).

Moreover, in Fig. 10d and e the Physarum graphs are illustrated, as they were
presented in [48], with edges that are formed more than 9 and 15 times, respectively,
in 22 experiments (PGDE(9/22) and PGDE(15/22)). The following equations are valid
for the graphs illustrated in Fig. 10.

RNGDE ⊂ MRDE

⊂ PGDE(9/22) + {(12, 19), (20, 11), (1, 9)} (20a)

PGDE(15/22) ⊂ MRDE (20b)

As a result, the graph produced by the model (MRDE) is a super-graph of the RNG
of Germany (RNGDE), similarly to the anticipated property of the plasmodium. The
graph (PGDE(15/22)) constituted by edges with probability θ = 0.68 is a sub-graph
of the graph produced by the model.

The topology of the 16 higher in population and significant in terms of trans-
portation areas in Canada—Toronto area (1), Montreal area (2), Vancouver area (3),
Calgary (4), Edmonton (5), Winnipeg (6), Halifax–Moncton (7), Saskatoon–Regina
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Fig. 11 a Topology of cities used as points of interest for Canada. b Model’s output for Canada
(MRCA). c Relative Neighbour Graph (RNGCA). d Physarum graph for θ = 8/23 (PGCA(8/23))
and e for θ = 17/23 (PGCA(17/23)) and f original graph of Canadian motorways [46]

(8), St. John’s (9), Sudbury (10), Thunder Bay (11), Inuvik (12), Wrigley (13), Yel-
lowknife (14), Thompson (15), Radisson (16)—were used as an input for the model.
Note that the numbers next to each area is representative of the area and appear in
Fig. 11a. Toronto area is chosen to be the initial position of the plasmodium (SP)
and all the others are represented by sources of nutrients (NS), reproducing the con-
figuration from the laboratory experiments [46]. Figure 11a illustrates the topology
of the cities and the borders in Canada, and is used as an input for the proposed
model. Furthermore in Fig. 11b and c the results from the model (MRCA) and the
RNG (RNGCA) are depicted, respectively. It is obvious that the model reproduces the
RNG with the exception of the edge connecting regions 7 and 9. That comes as no
surprise, as the borders of the topology are not considered while drawing the RNG.
The model also draws 3 more edges.

Figure 11d and e depict the Physarum graph with edges with existence probabil-
ity of 8/23 and 17/23 respectively (PGCA(8/23) and PGCA(17/23)). The following
equations apply for the graphs illustrated in Fig. 11.

RNGCA − (7, 9) ⊂ MRCA

⊂ PGCA(8/23) + {(2, 10), (10, 16)} (21a)

PGCA(17/23) ⊂ MRCA (21b)

Note that the RNG graph is, once more, re-drawn by the model, although missing
the edge connecting regions 7 and 9 together, due to the topology of the borders.
Nonetheless, the edges that the protoplasmic network of plasmodium is highly likely
to be formed (θ = 0.74) are fully reproduced by the model.
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Fig. 12 a Topology of cities used as points of interest for Mexico. b Model’s output for Mexico
(MRMX ). c Relative Neighbour Graph (RNGMX ). d Physarum graph for θ = 10/26 (PGMX (10/26))
and e for θ = 16/26 (PGMX (16/26)) and f original graph of Mexican motorways [44]

Moreover, as in the laboratory experiments using Mexico as a terrain [44], the 19
higher in population areas—Tijuana (1), Nogales (2), Ciudad Juárez (3), Hermosillo
(4), Chihuahua (5), Nuevo Laredo (6), Monterrey (7), Mazatlán (8), Ciudad Vic-
toria (9), San Luis Potosí (10), Guadalajara (11), León and Irapuato (12), Morelia
(13), Edo. México (14), Xalapa and Veracruz (15), Chilpancingo and Acapulco (16),
Oaxaca and Huatulco (17), Tuxtla Gutiérrez (18), Merida and Cancún (19)—are
considered as the points of interest. Edo. México is chosen to be the initial position
of the plasmodium (SP), in correspondence to the laboratory experiments, and all the
others are represented by sources of nutrients (NS). Figure 12a is used as an input
to the model and illustrates the topology of Mexico. Figure 12b and c illustrate the
results (MRMX ) and the RNG (RNGMX ) for the current topology.

In Fig. 12d and e the graphs that the plasmodium designed during the laboratory
experiments are illustrated, containing edges that appeared more than 10 and 16
times respectively in a total of 26 experiments (PGMX (10/26) and PGMX (16/26)).
The following equations apply for the graphs illustrated in Fig. 12.

RNGMX − {(1, 2), (5, 8), (15, 17)} ⊂ MRMX ⊂ PGMX(10/26)

+ {(14, 17), (15, 18)} (22a)

PGMX(16/26) − {(5, 6), (15, 17)} ⊂ MRMX (22b)

It is obvious that the model (MRMX ) reproduces 17 from the 20 edges of the
RNG (RNGMX ) and the edges with high probability (θ = 0.61) to be formed by the
plasmodium are included in the graph that is derived by the model, with the exception
of two edges.
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Fig. 13 a Topology of cities used as points of interest for Iberia. b Model’s output for Iberia
(MRIB). c Relative neighbour graph (RNGIB). d Physarum graph for θ = 5/30 (PGIB(5/30)) and e
for θ = 17/30 (PGIB(17/30)) and f original graph of Iberian motorways [45]

Using the topology of the 23 higher in population areas in Iberian Peninsula—A
Coruna (1), Gijon–Ovideo (2), Santander (3), Bilbao (4), San Sebastian (5), Vigo
(6), Valladolid (7), Zaragoza (8), Porto (9), Tarragona (10), Barcelona (11), Pombal
(12), Madrid (13) (capital of Spain), Valencia (14), Lisboa (15) (capital of Portugal),
Alicante (16), Cordoba (17), Murcia (18), Sevilla (19), Faro (20), Granada (21),
Malaga–Marbella (22) and Cadiz (23)—the model imitates the behavior of the plas-
modium in [45]. Madrid is chosen to be the starting point of the plasmodium (SP), in
correspondence to the laboratory experiments, and the others are depicted by sources
of nutrients (NS). The topology of the Iberian Peninsula is illustrated in Fig. 13a that
is introduced as an input to the model. Figure 13b shows the results of the model
(MRIB) and Fig. 13c the RNG (RNGIB).

Moreover, Fig. 13d and e illustrate the Physarum graphs that is constituted by
edges that appeared more than 5 and 17 times, respectively, in 30 experiments
(PGIB(5/30) and PGIB(17/30)). The following equations can be used.

RNGIB − {(5, 8), (10, 14)} ⊂ MRIB ⊂ PGIB(5/30)

+ {(7, 3), (7, 9), (7, 12), (7, 8), (8, 13), (13, 17)} .

(23a)

PGIB(17/30) − {(5, 8), (15, 19), (22, 23), (17, 21), (10, 14)} ⊂ MRIB (23b)

Consequently, not taking into account the edges connecting region 5 with region 8
and region 10 with region 14, the RNG (RNGIB) is a sub-graph of the graph produced
by the model (MRIB). The graph produced by the model is a super-graph of the graph
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PGIB(17/30) containing edges with probability θ = 0.57, with the exception of five
edges.

Finally, the topology of the 16 most populated major urban areas in continental
Greece that also have a significant role in today’s Greek transportation network—
Athens (1), Volos (2), Larissa (3), Thessaloniki (4), Kavala (5), Alexandroupoli (6),
Kozani (7), Xanthi (8), Ioannina (9), Igoumenitsa (10), Tripoli (11), Lamia (12),
Patra (13), Korinthos (14), Kalamata (15) and Trikala (16)—was used as input for
the model. Athens is chosen to be the initial position of the plasmodium (SP), in
correspondence to the laboratory experiments, and all the others are represented by
sources of nutrients (NS). Figure 14a is used as an input to the model and illustrates
the topology of Greece. Figure 14b and c illustrate the results (MRGR) and the RNG
(RNGGR) for the current topology.

In Fig. 14d and e the graphs that the plasmodium designed during the labora-
tory experiments are illustrated, containing edges that appeared more than 6 and 9
times respectively in a total of 14 experiments (PGGR(6/14) and PGGR(9/14)). The
following equations apply for the graphs illustrated in Fig. 14.

RNGGR ⊂ MRGR ⊂ PGGR(6/14) + {(7, 3), (12, 14)}. (24a)

PGGR(9/14) ⊂ MRGR (24b)

The conclusion from these equations is that the graph produced by the model
(MRGR) is a super-graph of the RNG of Greece (RNGGR), similarly to the key property

Fig. 14 a Topology of cities used as points of interest for Greece. b Model’s output for Greece
(MRGR). c Relative Neighbour Graph (RNGGR). d Physarum graph for θ = 6/14 (PGGR(6/14))
and e for θ = 9/14 (PGGR(9/14)) and f original graph of Greek motorways [21]
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of the real plasmodium. Furthermore, Physarum graph (PGGR(9/14)) constituted by
edges with probability θ = 0.64 is a sub-graph of the graph produced by the model,
thus it recreates the edges with high appearance probability.

5 Discussion

The results of the second variation of the model, as can be easily realized by the
aforementioned findings, are better approximating the networks provided by the real
plasmodium on laboratory experiments, when compared with the results of the first
variation. To sum up the results delivered by the second variation of the model and
draw a comparison between the produced graphs and the proximity graph RNG,
Physarum graphs and the real motorway networks, Table 2 is presented. The first,
second, forth and fifth column depict the number of edges drawn by the proposed
CA model, the number of edges in the RNG, Physarum graph and the real Motor-
way graph, respectively. The third column illustrates the amount of occurrences,
throughout the total number of laboratory experiments, of the edges that constitute
the Physarum graph that was used as a control. For instance, in the case of United
Kingdom the edges that constitute the Physarum graph with high θ , appeared in at
least 12 experiments in a total of 25, meaning edges appearing in at least 48 % of the
experiments. Finally, the three last columns depict, respectively, the number of edges
in the RNG that are not included in the graph provided by the model, the number
of edges in the Physarum graph that are not included in the graph provided by the
model and the common edges of the Motorway graph and the results of the model.

These results conclude to the fact that the CA model reproduces RNG in a great
degree. The incorporation of the RNG to the final graph is, also, demonstrated by
the real slime mould in the laboratory experiments. Consequently, the ability of
the model to reproduce the RNG indicates its efficiency in emulating the real slime
mould. Moreover, the production of results by the model in a matter of some minutes,
compared to the 3–5 days required by the real slime mould implies the robustness
of the model’s performance. In the instance of Canada, the existence of unavailable
area over the minimum connection between two points of interest causes the loss
of an edge and as a result there is a reproduction of the 14 from a total of 15 edges
constituting the RNG. Moreover, in the cases of Mexico and the Iberian Peninsula
the model constructs 17 from a total of 20 edges and 24 from a total of 26 edges,
respectively, that constitute the RNG, representing an error of approximately 15 and
7.7 %, respectively. On the other hand, in the cases of the United Kingdom, Germany
and Greece the results of the proposed model incorporate all the edges of RNG.

Furthermore, comparing the results of the model with the results of the labora-
tory experiments using Physarum as a living computing material, a direct connec-
tion can be realized. Physarum graphs with high θ -parameter (0.48–0.74)—meaning
consisted of edges with high probability to be constructed by the slime mould—
are included in the graphs drawn by the model. More specifically, in the instance
of Greece, Germany and Canada, Physarum graphs are entirely reproduced by the
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model. Moreover in the cases of the United Kingdom and Mexico, one and two
edges, respectively, of the Physarum graphs are not reproduced, while for the topol-
ogy of the Iberian Peninsula five edges of the Physarum graph are not included in
the model’s results, corresponding to an error of 20 %.

Also, the last column of Table 2 illustrates the number of edges that are common for
the results of the model and the actual motorway network; in specific the intersection
of the two graphs. The edges of the intersection of these two graphs are over 50 %
of the total edges of the real motorway network. That means that the CA model
reproduces the human-made networks with at least 50 % accuracy. Also, the graphs
produced by the second variation of the model have no more than 24 % “redundant”
edges (not included in the real motorway network).

Although, a weak approximation of human-made networks is realized, the repro-
duction of the RNG supports the robustness of the proposed model. As illustrated in
previous studies [11, 45] the plasmodium produces a more effective transport net-
work, which is not identical to existing motorway networks. That finding is based
on the fact that the Relative neighbourhood graph (RNG) is a subgraph of Physarum
graph, while the motorway graph is not. Nonetheless, the proposed CA model uses
as data only the topology of the points of interest and the available space; how-
ever, motorways are designed based on terrain morphology, population distribution,
economical and political factors.

Moreover, to calibrate the second variation of the model for all the aforementioned
study cases a thorough study on the effects of the values of the CA model parameters
was considered. The parameters that were taken into consideration are PMP1, CAP1
and PA, as they are the ones with greater significance in the diffusion equations.
The range of parameters PMP1 and CAP1 is defined from 0.01 to 0.12 and for PA
from 0 to 1.2. To illustrate the effect, an individual parameter has on the final results,
numerous simulations with one of the parameters taking values throughout its range,
while the other two are set to constant, are conducted. To test the range of each
parameter, increments of 0.01 for parameters PMP1 and CAP1 and 0.1 for PA were
used. The networks produced by the model, with parameters altered slightly, have
no significant differences and some times are identical. Nevertheless, the results for
characteristic values are considered and presented. More specifically, to enumerate
the effect that the parameters have on the final graph produced by the CA model, only
the topologies of United Kingdom and Iberian Peninsula are shown for readability
reasons. Table 3 depicts the number of edges constituting the graph resulting from
the model and the intersection between the result and the RNG for different sets of
parameters. In every line of Table 3, a typical different set of parameters was given.
The values that each parameter took for every experiment is depicted in the first
column of Table 3. Moreover, these values are characteristic of the range defined for
each parameter and represent a low, a middle and a high value inside that range.

It is obvious that for middle values of PMP1 parameter, the results match better
the RNG, for the case of United Kingdom. However, for a low value, 11 edges appear
but only 7 of them are included in RNG, thus, a lower accuracy is achieved and the 4
redundant edges can be characterized as unwanted noise. Moreover, for greater values
of the PMP1 parameter, the model seems to have lower accuracy, too. However, in the
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Table 3 CA model simulation results for United Kingdom and Iberian Peninsula with different
parameters

United Kingdom Iberian peninsula

Parameter values # of edges in MR # of edges in
RNG∩MR

# of edges in MR # of edges in
RNG∩MR

PMP1=0.03
CAP1=0.05
PA=0.7

11 7 26 22

PMP1=0.07
CAP1=0.05
PA=0.7

10 9 28 23

PMP1=0.1
CAP1=0.05
PA=0.7

10 8 29 24

PMP1=0.08
CAP1=0.03
PA=0.7

10 9 28 24

PMP1=0.08
CAP1=0.07
PA=0.7

11 9 30 24

PMP1=0.08
CAP1=0.1
PA=0.7

11 9 28 23

PMP1=0.08
CAP1=0.05
PA=0.3

9 7 26 24

PMP1=0.08
CAP1=0.05
PA=0.6

10 9 28 24

PMP1=0.08
CAP1=0.05
PA=1

10 8 28 21

PMP1=0.08
CAP1=0.05
PA=0.7

10 9 29 24

case of the Iberian Peninsula, the higher PMP1 parameter yields greater accuracy, as
the 24 out of 26 edges of RNG are reproduced. Also, the number of redundant edges
increase with higher PMP1 parameters. As far as the CAP1 parameter is concerned,
for the United Kingdom, the accuracy is not influenced by the alternation of the
parameter, as the nine edges of RNG are reproduced in all cases. On the other hand,
middle and high values of that parameter, reflect to adding one redundant edge and,
thus, noise. Moreover, for the Iberian Peninsula the CAP1 parameter slightly affects
the accuracy of reproducing the RNG, as one edge is omitted for high values of
the parameter. Nonetheless, for middle values of the parameter the higher number
of edges are drawn and many of them are redundant, namely 6. Finally, the PA
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parameter has a similar impact with the PMP1 parameter for the topology of the
United Kingdom; for a middle value is more accurate, although, the redundant edges
added for low and high values of the PA parameter are less than the ones in the case
of the PMP1 parameter. For the topology of the Iberian Peninsula, however, the low
values of the parameter give more accurate results and with less redundant edges.
While for the high value of parameter PA the model reproduces a graph that is the
least similar to the RNG, compared with all the other sets of parameters.

Bearing in mind that the RNG of the United Kingdom is consisted of just 9 edges—
a relatively small graph, it is save to admit that the results of the model is not affected
in a tremendous manner but rather minor changes occur. Thus, the resulting graph of
the model is affected by the parameters of the equations, however, the main factor for
the results is the topology of points of interest and available area. On the contrary, the
RNG of the Iberian Peninsula is a quite complicated graph, with a great number of
edges, namely 26. The results of the model for the different sets of parameters seem
to have close results; however some of the graphs produced include several edges
that do not occur in other experiments. For instance, the two edges of the RNG that
were not included to the results of the model as illustrated in Fig. 13c, were produced
in several experiments with other parameters. Nonetheless, many of the redundant
edges, in some cases, are part of the Physarum graph with low θ . Furthermore, the
simulated tubes connecting two points are highly altered for each set of parameters,
but as mentioned previously, we do not take into account the exact configuration of
the protoplasmic tubes but merely their existence.

After this study, the second variation of the model was used with a fixed set of
parameters, as illustrated in Table 1. Although this may sound disadvantageous for
the adaptability of the model’s evolution in accordance with the biological processes
of Physarum for specific under study cases/man-made transport networks, it has been
proved that the CA model succeeds to handle and reproduce the tubular networks in
all the examined cases when compared with the expected theoretical and biological
results.

6 Conclusions

Using insights gained by the observation of laboratory experiments with the plas-
modium of Physarum, two CA models constructing adaptive networks have been
proposed. The proposed models mimic the behavior of the plasmodium that spans
all NS in an available area, using a topology of NSs and borders of unavailable
area that correspond to the geographical topology of cities with great significance
in a country. In several previous studies, slime mould have connected all NSs with
a protoplasmic tubular network compared with proximity graphs and human–made
infrastructures. Consequently, the model results were compared with the proxim-
ity graph RNG, the real motorway networks and the graphs drawn by Physarum in
equivalent laboratory experiments. As the comparison of these results depicted no
major differences between the model and the real Physarum, the proposed CA based
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model inspired by Physarum can be used as a virtual, easy–to–access laboratory
bio-imitation emulator that will economize large time periods needed for biological
experiments. Moreover, such a proposed network using the topology of points of
interest can be designed automatically in a matter of a few minutes. Specifically,
the second variation of the model have been executed for all the examined cases in
no more than 10 min on a commercial computer (Intel Core2 Duo @2.26 GHz with
4 GB RAM) using Matlab, while the real slime mould needed 3–5 days to connect
all available NSs in the corresponding laboratory experiments on a Petri dish 12 ×
12 cm.

Furthermore, the proposed model is using one CA cell for every point of interest.
However, oat flakes used in the laboratory experiments are not dimensionless. As
a result, a future work aspect could be the representation of points of interest with
groups of CA cells. Moreover, the use of landscape information (like mountains,
rivers, lakes) for every place/country as input values for the model can be considered.
Using obstacles with several weights for the modeled plasmodium to overcome can
simulate the excessive costs of constructing tunnels or bridges in real motorway
networks. Finally, the alternation of parameters, used in the diffusion equations for
the proposed model, will allow the imitation of different types of plasmodium (old
or young) that explore the available area with various speeds, as realized in [11, 51],
and different types of nutrient sources that have various attractive forces to the slime
mould. Furthermore, and in correspondence to the presented study, different initial
parameters will provide different results that would mimic better the RNG and the
Physarum graphs for different configurations of points of interest. As a result, a more
detailed study for the impact that parameters have in the final results of the model
and the physical conditions that they can simulate is a future work aspect. Finally,
further enhancement of the proposed CA models could potentially result to many
diverse but fruitful applications of slime mould computing [52–54].
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