
Chapter 4
Examples

We are now ready to compute the curvature tensors on all of the examples
constructed in chapter 1. After a few more general computations, we will exhibit
Riemannian manifolds with constant sectional, Ricci, and scalar curvature. In par-
ticular, we shall look at the space forms Sn

k , products of spheres, and the Riemannian
version of the Schwarzschild metric. We also offer a local characterization of certain
warped products and rotationally symmetric constant curvature metrics in terms of
the Hessian of certain modified distance functions.

The examples we present here include a selection of important techniques
such as: Conformal change, left-invariant metrics, warped products, Riemannian
submersion constructions etc. We shall not always develop the techniques in
complete generality. Rather we show how they work in some basic, but important,
examples. The exercises also delve into important ideas that are not needed for
further developments in the text.

4.1 Computational Simplifications

Before we do more concrete calculations it will be useful to have some general
results that deal with how one finds the range of the various curvatures.

Proposition 4.1.1. Let ei be an orthonormal basis for TpM. If ei ^ ej diagonalize
the curvature operator

R
�
ei ^ ej

� D �ijei ^ ej;

then for any plane � in TpM we have sec .�/ 2 �min�ij;max�ij
�
.

Proof. If v;w form an orthonormal basis for the plane � , then we have sec .�/ D
g .R .v ^ w/ ; .v ^ w//, so the result is immediate. ut
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116 4 Examples

Proposition 4.1.2. Let ei be an orthonormal basis for TpM. If R
�
ei; ej

�
ek D 0,

when the indices are mutually distinct, then ei ^ ej diagonalize the curvature
operator.

Proof. If we use

g
�
R
�
ei ^ ej

�
; .ek ^ el/

� D � g
�
R
�
ei; ej

�
ek; el

�

D g
�
R
�
ei; ej

�
el; ek

�
;

then we see that this expression is 0 when i; j; k are mutually distinct or if i; j; l are
mutually distinct. Thus, the expression can only be nonzero when fk; lg D fi; jg.
This gives the result. ut

We shall see that this proposition applies to all rotationally symmetric and doubly
warped products. In this case, the curvature operator can then be computed by
finding the expressions R

�
ei; ej; ej; ei

�
. In general, however, this will definitely not

work.
There is also a more general situation where we can find the range of the Ricci

curvatures:

Proposition 4.1.3. Let ei be an orthonormal basis for TpM. If

g
�
R
�
ei; ej

�
ek; el

� D 0;

when three of the indices are mutually distinct, then ei diagonalize Ric.

Proof. Recall that

g
�
Ric .ei/ ; ej

� D
nX

kD1
g
�
R .ei; ek/ ek; ej

�
;

so if we assume that i ¤ j, then g
�
R .ei; ek/ ek; ej

� D 0 unless k is either i or j.
However, if k D i; j, then the expression is zero from the symmetry properties of R.
Thus, ei must diagonalize Ric. ut

4.2 Warped Products

So far, all we know about curvature is that Euclidean space has R D 0. Using this,
we determine the curvature tensor on Sn�1.R/. Armed with that information we can
in turn calculate the curvatures on rotationally symmetric metrics.
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4.2.1 Spheres

On R
n consider the distance function r.x/ D jxj and the polar coordinate

representation:

g D dr2 C gr D dr2 C r2ds2n�1;

where ds2n�1 is the canonical metric on Sn�1.1/. The level sets are Or D Sn�1.r/
with the usual induced metric gr D r2ds2n�1. The differential of r is given by dr D
P xi

r dxi and the gradient is @r D 1
r xi@i. Since ds2n�1 is independent of r we can

compute the Hessian of r as follows:

2Hess r D L@r g

D L@r

�
dr2
�C L@r

�
r2ds2n�1

�

D L@r .dr/ dr C drL@r .dr/C @r
�
r2
�

ds2n�1 C r2L@r

�
ds2n�1

�

D @r
�
r2
�

ds2n�1
D 2rds2n�1
D 21r gr:

The tangential curvature equation (see theorem 3.2.4) tells us that

Rr.X;Y/Z D r�2.gr.Y;Z/X � gr.X;Z/Y/;

since the curvature on R
n is zero. In particular, if ei is any orthonormal basis, then

Rr
�
ei; ej

�
ek D 0 when the indices are mutually distinct. Therefore, Sn�1.R/ has

constant curvature R�2 provided n � 3. This justifies our notation that Sn
k is the

rotationally symmetric metric dr2 C sn2k.r/ds2n�1 when k � 0, as these metrics have
curvature k in this case. In section 4.2.3 we shall see that this is also true when k < 0.

4.2.2 Product Spheres

Next we compute the curvatures on the product spheres

Sn
a � Sm

b D Sn

�
1p
a

�
� Sm

�
1p
b

�
:

The metric gr on Sn .r/ is gr D r2ds2n, so we can write
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Sn
a � Sm

b D
�

Sn � Sm;
1

a
ds2n C 1

b
ds2m

�
:

Let Y be a unit vector field on Sn, V a unit vector field on Sm, and X a unit vector
field on either Sn or Sm that is perpendicular to both Y and V . The Koszul formula
shows that

2g .rYX;V/ D g .ŒY;X� ;V/C g .ŒV;Y� ;X/ � g .ŒX;V� ;Y/

D g .ŒY;X� ;V/ � g .ŒX;V� ;Y/

D 0;

as ŒY;X� is either zero or tangent to Sn and likewise with ŒX;V�. Thus rYX D 0 if X
is tangent to Sm and rYX is tangent to Sn if X is tangent to Sn. This shows that rYX
can be computed on Sn

a. We can then calculate R knowing the curvatures on the two
spheres from section 4.2.1 and invoke proposition 4.1.2 to obtain:

R.X ^ V/ D 0;

R.X ^ Y/ D aX ^ Y;

R.U ^ V/ D bU ^ V:

In particular, proposition 4.1.1 shows that all sectional curvatures lie in the interval
Œ0;maxfa; bg�. It also follows that

Ric.X/ D .n � 1/aX;

Ric .V/ D .m � 1/ bV;

scal D n.n � 1/a C m.m � 1/b:

Therefore, we conclude that Sn
a � Sm

b always has constant scalar curvature, is an
Einstein manifold exactly when .n � 1/a D .m � 1/b (which requires n;m � 2 or
n D m D 1), and has constant sectional curvature only when n D m D 1. Note also
that the curvature tensor on Sn

a � Sm
b is always parallel.

4.2.3 Rotationally Symmetric Metrics

Next we consider what happens for a general rotationally symmetric metric

dr2 C �2ds2n�1:

The metric is of the form g D dr2 C gr on .a; b/ � Sn�1, with gr D �2ds2n�1. As
ds2n�1 does not depend on r we have that
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2Hess r D L@r gr

D L@r

�
�2ds2n�1

�

D @r
�
�2
�

ds2n�1 C �2L@r

�
ds2n�1

�

D 2� .@r�/ ds2n�1

D 2
@r�

�
gr:

The Lie and covariant derivatives of the Hessian are computed as follows:

L@r Hess r D L@r

�
@r�

�
gr

�

D @r

�
@r�

�

�
gr C @r�

�
L@r .gr/

D
�
@2r�

�
� � .@r�/

2

�2
gr C 2

�
@r�

�

�2
gr

D @2r�

�
gr C

�
@r�

�

�2
gr

D @2r�

�
gr C Hess2 r

and

r@r Hess r D r@r

�
@r�

�
gr

�

D @r

�
@r�

�

�
gr C @r�

�
r@r .gr/

D
�
@2r�

�
� � .@r�/

2

�2
gr

D @2r�

�
gr �

�
@r�

�

�2
gr

D @2r�

�
gr � Hess2 r:

The fundamental equations from proposition 3.2.11 show that when restricted to
Sn�1 we have

Hess r D @r�

�
gr;
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R .�; @r; @r; �/ D �@
2
r�

�
gr:

This implies that

rX@r D
(
@r�

�
X if X is tangent to Sn�1;

0 if X D @r:

R .X; @r/ @r D
(

� @2r �

�
X if X is tangent to Sn�1;

0 if X D @r:

Next we calculate the other curvatures on

�
I � Sn�1; dr2 C �2.r/ds2n�1

�

that come from the tangential and mixed curvature equations (see theorems 3.2.4
and 3.2.5)

g .R.X;Y/V;W/ D gr .R
r.X;Y/V;W/ � II.Y;V/ II .X;W/C II.X;V/ II .Y;W/ ;

g .R.X;Y/Z; @r/ D � .rX II/ .Y;Z/C .rY II/ .X;Z/ :

Using that gr is the metric of curvature 1
�2

on the sphere, we have from
section 4.2.1 that

gr .R
r .X;Y/V;W/ D 1

�2
gr.X ^ Y;W ^ V/:

Combining this with II D Hess r we obtain from the first equation that

g .R.X;Y/V;W/ D 1 � .@r�/
2

�2
gr.X ^ Y;W ^ V/:

Finally we show that the mixed curvature vanishes as @r�

�
depends only on r W

rX II D rX

�
@r�

�
gr

�

D DX

�
@r�

�

�
gr C @r�

�
rXgr

D 0:
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From this we can use proposition 4.1.2 to conclude

R.X ^ @r/ D �@
2
r�

�
X ^ @r D � R�

�
X ^ @r;

R.X ^ Y/ D 1 � .@r�/
2

�2
X ^ Y D 1 � P�2

�2
X ^ Y

In particular, we have diagonalized R. Hence all sectional curvatures lie between the

two values � R�
�

and 1� P�2
�2

. Furthermore, if we select an orthonormal basis Ei where
E1 D @r, then the Ricci tensor and scalar curvature are

Ric .X/ D
nX

iD1
R .X;Ei/Ei

D
n�1X

iD1
R .X;Ei/Ei C R .X; @r/ @r

D
�
.n � 2/ 1 � P�2

�2
� R�
�

�
X;

Ric .@r/ D � .n � 1/ R�
�
@r

scal D �.n � 1/ R�
�

C .n � 1/
�
.n � 2/1 � P�2

�2
� R�
�

�

D �2.n � 1/ R�
�

C .n � 1/.n � 2/1 � P�2
�2

:

When n D 2, it follows that sec D � R�
�
, as there are no tangential curvatures.

This makes for quite a difference between 2- and higher-dimensional rotationally
symmetric metrics.
Constant curvature: First, we compute the curvature of dr2 C sn2k.r/ds2n�1 on Sn

k .

Since � D snk solves R� C k� D 0 it follows that sec.X; @r/ D k. To compute 1� P�2
�2

recall from section 1.4.3 that if � D snk.r/, then

P� D csk;

1 � P�2 D k�2:

Thus, all sectional curvatures are equal to k, as promised.
Next let us see if we can find any interesting Ricci flat or scalar flat examples.

Ricci flat metrics: A Ricci flat metric must satisfy
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R�
�

D 0;

.n � 2/1 � P�2
�2

� R�
�

D 0:

Hence, R� � 0 and P�2 � 1, when n > 2. Thus, � .r/ D a ˙ r. In case n D 2 we only
need R� D 0. In any case, the only Ricci flat rotationally symmetric metrics are, in
fact, flat.
Scalar flat metrics: To find scalar flat metrics we need to solve

2.n � 1/
�

� R�
�

C n � 2
2

� 1 � P�2
�2

�
D 0;

when n � 3. We rewrite this equation as

R�C n � 2
2

P�2 � 1
�

D 0:

This is an autonomous second-order equation and can be made into a first-order
equation by using � as a new independent variable. If P� D G.�/, then R� D G0 P� D
G0G and the first-order equation becomes

G0G C n � 2
2

G2 � 1
�

D 0:

Separation of variables shows that G and � are related by

P�2 D G2 D 1C C�2�n;

which after differentiation yields:

R� D �n � 2
2

C�1�n:

We focus on solutions to this family of second-order equations. Note that they will
in turn solve P�2 D 1 C C�2�n, when the initial values are related by . P� .0//2 D
1C C .� .0//2�n.
To analyze the solutions to this equation that are positive and thus yield Riemannian
metrics, we need to study the cases C > 0, C D 0, C < 0 separately. But first, notice
that if C ¤ 0, then both P� and R� approach ˙1 at points where � approaches 0.

C D 0: In this case R� � 0 and P�2.0/ D 1. Thus, � D a C r is the only solution
and the metric is the standard Euclidean metric.

C > 0: � is concave since

R� D �n � 2
2

C�1�n < 0:



4.2 Warped Products 123

Thus, if � is extended to its maximal interval, then it must cross the “r-axis,” but as
pointed out above this means that R� becomes undefined. Consequently, we don’t get
any nice metrics this way.

C < 0: This time the solutions are convex. If we write C D ��n�2
0 , then the

equation P�2 D 1 �
�
�0
�

	2�n
shows that 0 < �0 � �. In case � .a/ D �0, it follows

that P� .a/ D 0 and R� .a/ > 0. Thus a is a strict minimum and the solution exists in
a neighborhood of a. Furthermore, j P�j � 1 so the solutions can’t blow up in finite
time. This shows that � is defined on all of R. Thus, there are scalar flat rotationally
symmetric metrics on R � Sn�1.

We focus on the solution with �.0/ D �0 > 0, which forces P�.0/ D 0. Notice that
� is even as � .�r/ solves the same initial value problem. Consequently, .r; x/ 7!
.�r;�x/ is an isometry on

�
R � Sn�1; dr2 C �2.r/ds2n�1

�
:

Thus we get a Riemannian covering map

R � Sn�1 ! �
�
RP

n�1�

and a scalar flat metric on �
�
RP

n�1�, the tautological line bundle over RPn�1.
If we use � as the parameter instead of r, then

d�2 D P�2dr2 D
 

1 �
�
�0

�

�n�2!
dr2:

When r > 0 it follows that � > �0 and the metric has the more algebraically explicit
form

dr2 C �2.r/ds2n�1 D 1

1 �
�
�0
�

	n�2 d�2 C �2ds2n�1:

This shows that the metric looks like the Euclidean metric d�2C�2ds2n�1 as � ! 1.
In section 5.6.2 we show that R � Sn�1, n � 3, does not admit a (complete)

constant curvature metric. Later in section 7.3.1 and theorem 7.3.5, we will see that
if R � Sn�1 has Ric � 0, then Sn�1 also has a metric with Ric � 0. When n D 3 or
4 this means that S2 and S3 have flat metrics, and we shall see in section 5.6.2 that
this is not possible. Thus we have found a manifold with a nice scalar flat metric
that does not carry any Ricci flat or constant curvature metrics.



124 4 Examples

4.2.4 Doubly Warped Products

We wish to compute the curvatures on

�
I � Sp � Sq; dr2 C �2.r/ds2p C �2.r/ds2q

�
:

This time the Hessian looks like

Hess r D .@r�/ �ds2p C .@r�/ �ds2q:

and we see as in the rotationally symmetric case that

rX II D 0:

Thus the mixed curvatures vanish. Let X;Y be tangent to Sp and V;W tangent
to Sq. Using our curvature calculations from the rotationally symmetric case (see
section 4.2.3) and the product sphere case (see section 4.2.2) the tangential curvature
equations (see theorem 3.2.4) yield

R .@r ^ X/ D � R�
�
@r ^ X;

R .@r ^ V/ D �
R�
�
@r ^ V;

R .X ^ Y/ D 1 � P�2
�2

X ^ Y;

R .U ^ V/ D 1 � P�2
�2

U ^ V;

R .X ^ V/ D � P� P�
��

X ^ V:

From this it follows that all sectional curvatures are convex linear combinations
of

� R�
�
;�

R�
�
;
1 � P�2
�2

;
1 � P�2
�2

;� P� P�
��
:

Moreover,

Ric.@r/ D
 

�p
R�
�

� q
R�
�

!

@r;
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Ric.X/ D
 

� R�
�

C .p � 1/1 � P�2
�2

� q � P� P�
��

!

X;

Ric.V/ D
 

� R�
�

C .q � 1/1 � P�2
�2

� p � P� P�
��

!

V:

4.2.5 The Schwarzschild Metric

We wish to find a Ricci flat metric on R
2 � Sn�2. Choose p D n � 2 and q D 1 in

the above doubly warped product case so that the metric is on .0;1/ � Sn�2 � S1.
We’ll see that this forces dr2 C �2 .r/ ds2n�2 to be scalar flat (see also exercise 4.7.16
for a more general treatment).

The equations to be solved are:

� .n � 2/ R�
�

�
R�
�

D 0;

� R�
�

C .n � 3/ 1 � P�2
�2

� P� P�
��

D 0;

�
R�
�

� .n � 2/ P� P�
��

D 0:

Subtracting the first and last gives

R�
�

D P� P�
��
:

If we substitute this into the second equation we simply obtain the scalar flat
equation for dr2 C �2 .r/ ds2n�2:

�2 R�
�

C .n � 3/ 1 � P�2
�2

D 0:

We use the solution � .r/ from section 4.2.3 that is even in r and satisfies:

� .0/ D �0;

P�2 D 1 �
�
�0

�

�n�3
:

Next note that R�
�

D P� P�
��

implies that P�
�

D c is constant. Thus we can define �
using P� D c�.
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Since P�2 D 1 �
�
�0
�

	n�3
we obtain c2�2 D 1 �

�
�0
�

	n�3
. This forces � .0/ D 0.

From 2 R� D .n � 3/ 1
�0

�
�0
�

	n�2
we get

2c P� D .n � 3/ 1
�0

�
�0

�

�n�2
:

To obtain a smooth metric on R
2 � Sn�2 we need � to be odd with P� .0/ D 1. This

forces c D n�3
2
��1
0 and gives us P� D

�
�0
�

	n�2
. Since � is even this makes P� even

and hence � odd as � .0/ D 0. We also see that R� D n�3
2
.2 � n/ �n�3

0 �1�n�. This
shows that the first equation, and hence the other two, are satisfied:

�.n � 2/n � 3
2

�n�2
0 �1�n � n � 3

2
.2 � n/ �n�3

0 �1�n D 0:

If we use � as a parameter instead of r as in section 4.2.3, then we obtain the
more explicit algebraic form

1

1 �
�
�0
�

	n�3 d�2 C �2ds2n�2 C �20
4

.n � 3/3
 

1 �
�
�0

�

�n�3!
d�2:

Thus, the metric looks like R
n�1 � S1 at infinity, where the metric on S1 is suitably

scaled. Therefore, the Schwarzschild metric is a Ricci flat metric on R
2 � Sn�2 that

at infinity looks approximately like the flat metric on R
n�1 � S1.

The classical Schwarzschild metric is a space-time metric and is not smooth at � D
�0. The parameter c above is taken to be the speed of light and is not forced to
depend on �0. We also replace S1 by R. The metric looks like:

1

1 � �0
�

d�2 C �2ds22 � 1

c2

�
1 � �0

�

�
dt2:

4.3 Warped Products in General

We are now ready for a slightly more general context for warped products. This
will allow us to characterize the rotationally symmetric constant curvature metrics
through a very simple equation for the Hessian of a modified distance function.
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4.3.1 Basic Constructions

Given a Riemannian metric .H; gH/ a warped product (over I) is defined as a metric
on I � H, where I � R is an open interval, with metric

g D dr2 C �2 .r/ gH;

where � > 0 on all of I. One could also more generally consider

 2 .r/ dr2 C �2 .r/ gH :

However, a change of coordinates defined by relating the differentials d� D  .r/ dr
allows us to rewrite this as

d�2 C �2 .r .�// gH :

Important special cases are the basic product g D dr2 C gH and polar coordinates
dr2 C r2ds2n�1 on .0;1/ � Sn�1 representing the Euclidean metric.

The goal is to repackage the information that describes the warped product
representation with a goal of finding a simple characterization of such metrics.
Rather than using both r and � we will see that just one function suffices. Starting
with a warped product dr2 C �2 .r/ gH construct the function f D R

�dr on
M D I � H. Since df D �dr it is clear that

dr2 C �2 .r/ gH D 1

�2 .r/
df 2 C �2 .r/ gH :

Proposition 4.3.1. The Hessian of f has the property

Hess f D P�g:

Proof. The Hessian of f is calculated from the Hessian of r. The latter is calculated
as in section 4.2.3

Hess r D 1

2
L@r g

D 1

2
L@r

�
dr2 C �2 .r/ gH

�

D 1

2
@r
�
�2 .r/

�
gH

D P��gH:
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So we obtain

.Hess f / .X;Y/ D .rXdf / .Y/

D .rX�dr/ .Y/

D P�dr .X/ dr .Y/C �Hess r .X;Y/

D P�dr2 .X;Y/C �Hess r .X;Y/

D P�dr2 .X;Y/C P��2gH

D P�g:

ut
In other words we have shown that for a warped product it is possible to find a

function f whose Hessian is conformal to the metric. In fact the relationship

P� D d�

dr
D d�

df

df

dr
D d�

df
� D 1

2

d jrf j2
df

tells us that the warped product representation depends only on f and jrf j since we
have

g D 1

jrf j2 df 2 C jrf j2 gH;

Hess f D 1

2

d jrf j2
df

g:

Before turning to the general characterization let us consider how these construc-
tions work on our standard constant curvature warped products.

Example 4.3.2. Consider the warped product given by

dr2 C sn2k .r/ ds2n�1:

We select the antiderivative of snk .r/ that vanishes at r D 0. When k D 0

f D
Z

rdr D 1

2
r2;

Hess f D g:

When k ¤ 0

f D
Z

snk .r/ D 1

k
� 1

k
csk .r/ ;

Hess f D csk .r/ g D .1 � kf / g:
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More specifically, when k D 1

f D 1 � cos r;

Hess f D cos r D 1 � f

and when k D �1

f D �1C cosh r;

Hess f D cosh r D 1C f :

4.3.2 General Characterization

We can now state and prove our main characterization of warped products.

Theorem 4.3.3 (Brinkmann, 1925). If there is a smooth function f whose Hessian
is conformal to the metric, i.e., Hess f D �g, then the Riemannian structure is
locally a warped product g D dr2 C �2 .r/ gH around any point where df ¤ 0.
Moreover, if df .p/ D 0 and � .p/ ¤ 0, then g D dr2 C �2 .r/ ds2n�1 on some
neighborhood of p.

Proof. We first focus attention on the case where df never vanishes. Thus f can
locally be considered the first coordinate in a coordinate system.

Define � D jrf j and note that

DX�
2 D 2Hess f .rf ;X/ D 2�g .rf ;X/ ;

i.e., d�2 D 2�df . Consequently also d� ^ df D 0. It follows that d� and d� are
both proportional to df and in particular that � and � are locally constant on level
sets of f . Thus we can assume that � D � .f / and � D � .f /. This shows in turn that
1
�
df is closed and locally exact. Define r by dr D 1

�
df and use r as a new parameter.

Note that r is a distance function since

@r D rr D 1

� .f /
rf

is a unit vector field. We can then decompose the metric as g D dr2Cgr on a suitable
domain I � H � M, where H � fx 2 M j r .x/ D r0g. When X ? @r it follows that
rXdr D 1

�
rXdf . Thus Hess r D �

�
gr and L@r gr D 2�

�
gr.
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Observe that if gH is defined such that gr0 D �2 .r0/ gH is the restriction of g to
the fixed level set r D r0, then also

L@r

�
�2gH

� D �
@r�

2
�

gH D 2��gH D 2�

�
�2gH :

This shows that

g D dr2 C gr D dr2 C �2gH :

Next assume that p is a nondegenerate critical point for f . After possibly
replacing f by ˛f C ˇ, we can assume that Hess f D �g with f .p/ D 0, df jp D 0,
and � .p/ D 1. Further assume that M is the connected component of ff < 	g that
contains p and that p is the only critical point for f . Since Hess f D g at p there exist
coordinates around p with yi .p/ D 0 and

f
�
y1; : : : ; yn

� D 1

2

��
y1
�2 C � � � C .yn/2

	
:

Therefore, all the regular level sets for f are spheres in this coordinates system. We
can use the first part of the proof to obtain a warped product structure dr2 C �2gSn�1

on M � fpg ' .0; b/ � Sn�1, where gSn�1 is a metric on Sn�1 and r ! 0 as we
approach p. When all functions are written as functions of r they are determined by
� in the following simple way:

f D f .r/ ;

df

dr
D � .r/ ;

d2f

dr2
D d�

dr
D �;

f .0/ D df

dr
.0/ D � .0/ D 0;

d2f

dr2
.0/ D d�

dr
.0/ D � .0/ D 1:

The goal is to show that gSn�1 D ds2n�1. The initial conditions for � guarantee that
the metric dr2C�2ds2n�1 is continuous at p when we switch to Cartesian coordinates
as in section 1.4.4. We can use a similar analysis here. First assume that dim M D 2

and x D r cos � , y D r sin � , where r is as above and � coordinatizes S1. The metric
gS1 on S1 must take the form �2 .�/ d�2 for some function � W S1 ! .0;1/. The
metric is then given by g D dr2 C �2 .r/ �2 .�/ d�2. As the new coordinate fields
are
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@x D cos �@r � 1

r
sin �@� ;

@y D sin �@r C 1

r
cos �@� ;

the new metric coefficients become

gxx D cos2 � C �2 .�/
�2 .r/

r2
sin2 �;

gyy D sin2 � C �2 .�/
�2 .r/

r2
cos2 �:

As r ! 0 we obtain the limits

gxx .p/ D cos2 � C �2 .�/ sin2 �;

gyy .p/ D sin2 � C �2 .�/ cos2 �;

since � .0/ D 0 and P� .0/ D 1. However, these limits are independent of � as they
are the metric coefficients at p. This implies first that � .�/ is constant since

gxx .p/C gyy .p/ D 1C �2 .�/

and then that � D 1 as gxx .p/ is independent of � .
This case can be adapted to higher dimensions. Simply select a plane that

intersects the unit sphere Sn�1 in a great circle c .�/, where � is the arclength
parameter with respect to the standard metric. The metric g restricted to this plane
can then be expressed as in the 2-dimensional case and it follows that 1 D �2 .�/ D
gSn�1

�
dc
d� ;

dc
d�

�
. As dc

d� can be chosen to be any unit vector on Sn�1 it follows that
gSn�1 agrees with the standard metric on the unit sphere. ut

This theorem can be used to characterize the warped product constant curvature
metrics from example 4.3.2.

Corollary 4.3.4. If there is a function f on a Riemannian manifold such that

f .p/ D 0;

df jp D 0;

and

Hess f D .1 � kf / g;

then the metric is the warped product metric of curvature k in a neighborhood of p
as described in example 4.3.2.
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Proof. Note that � D 1� kf is an explicit function of f . So we can find f D f .r/ as
the solution to

d2f

dr2
D 1 � kf ;

f .0/ D 0;

f 0 .0/ D 0;

and the warping function by

� .r/ D jrf j D df

dr
:

The solutions are consequently given by the standard warped product representa-
tions of constant curvature metrics:

Euclidean Space

g D dr2 C r2ds2n�1;

f .r/ D 1
2
r2:

Constant curvature k ¤ 0

g D dr2 C sn2k .r/ ds2n�1;

f .r/ D 1
k � 1

k csk .r/ :

In all cases r D 0 corresponds to the point p. ut
Remark 4.3.5. A function f W M ! R is called transnormal provided jdf j2 D �2 .f /
for some smooth function �. We saw above that functions with conformal Hessian
locally have this property. However, it is easy to construct transnormal functions
that do not have conformal Hessian. A good example is the function f D 1

2
sin .2r/

on the doubly warped product representation of S3 .1/ given by dr2 C sin2 .r/ d�21 C
cos2 .r/ d�22 on .0; �=2/ � S1 � S1.

4.3.3 Conformal Representations of Warped Products

If .M; g/ is a Riemannian manifold and  is positive on M, then we can construct a
new Riemannian manifold .M;  2g/. Such a change in metric is called a conformal
change, and  2 is referred to as the conformal factor.

A warped product can be made to look like a conformal metric in two basic ways.

dr2 C �2 .r/ gH D  2 .�/
�
d�2 C gH

�
;
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dr D  .�/ d�;

� .r/ D  .�/

or

dr2 C �2 .r/ gH D  2 .�/
�
d�2 C �2gH

�
;

dr D  .�/ d�;

� .r/ D � .�/ :

4.3.3.1 Conformal Models of Spheres

The first of these changes has been studied since the time of Mercator. The sphere
of radius R and curvature 1

R2
can be written as

R2ds2n D R2
�
dt2 C sin2 .t/ ds2n�1

�

D dr2 C R2 sin2
�

r
R

�
ds2n�1:

The conformal change envisioned by Mercator takes the form

R2ds2n D  2 .�/
�
d�2 C ds2n�1

�
:

As

 .�/ d� D dr;

 .�/ D R sin
�

r
R

�

we obtain

d� D dr

R sin
�

r
R

� ;

� D 1

2
log

1 � cos
�

r
R

�

1C cos
�

r
R

� :

Thus

cos
� r

R

	
D 1 � exp .2�/

1C exp .2�/
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and

 2 D R2 sin2
� r

R

	
D R2

4 exp .2�/

.1C exp .2�//2

showing that

R2ds2n D R2
4 exp .2�/

.1C exp .2�//2
�
d�2 C ds2n�1

�
:

Switching the spherical metric to being conformal to the polar coordinate
representation of Euclidean space took even longer and probably wasn’t studied
much until the time of Riemann. The calculations in this case require that we first
solve

d�

�
D dr

R sin
�

r
R

� :

This integrates to

�2 D 1 � cos
�

r
R

�

1C cos
�

r
R

�

and implies

cos
�

r
R

� D 1 � �2
1C �2

:

The relationship

R sin
�

r
R

� D � .�/

then gives us

 2 .�/ D R2
4

.1C �2/
2

and consequently

R2ds2n D R2 2 .�/
�
d�2 C �2ds2n�1

�

D R2
4

.1C �2/
2

�
d�2 C �2ds2n�1

�

D 4R2

.1C �2/
2

gRn :
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This gives us a representation of the metric on the punctured sphere that only
involves algebraic functions. See also exercise 4.7.13 for a geometric construction
of the representation.

4.3.3.2 Conformal Models of Hyperbolic Space

We defined hyperbolic space Hn in example 1.1.7 and exhibited it as a rotationally
symmetric metric in example 1.4.6. The rotationally symmetric metric on Hn .R/
can be written as

dr2 C sn2R�2 .r/ ds2n�1 D dr2 C R2 sinh2
�

r
R

�
ds2n�1

D R2
�
dt2 C sinh2 .t/ ds2n�1

�
:

A construction similar to what we just saw for the sphere leads to the conformal
polar coordinate representation

R2
�
dt2 C sinh2 .t/ ds2n�1

� D 4R2

.1 � �2/2 gRn :

This time, however, the metric is only defined on the unit ball. This is also known
as the Poincarè model on the unit disc. See also exercise 4.7.13 for a geometric
construction of the representation.

Consider the metric

�
1

xn

�2 �
.dx1/2 C � � � C .dxn/2

�

on the open half space xn > 0. If we define r D log.xn/, then this also becomes the
warped product:

g D dr2 C .e�r/2
�
.dx1/2 C � � � C .dxn�1/2

�
:

The upper half space model can be realized as the Poincaré disc using an
inversion, i.e., a conformal transformation of Euclidean space that inverts in a
suitable sphere. It’ll be convenient to write x D �

x1; : : : ; xn�1� as the first n � 1

coordinates and y D xn. The inversion in the sphere of radius
p
2 centered at

.0;�1/ 2 R
n�1 � R is given by

F .x; y/ D .0;�1/C 2.x;yC1/
r2

D
�
2x
r2
;�1C 2.yC1/

r2

	

D 1
r2

�
2x; 1 � jxj2 � y2

	
;
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where r2 D jxj2 C .y C 1/2. This maps H to the unit ball since

jF .x; y/j2 D 1 � 4y

r2
D �2:

The goal is to show that F transforms the conformal unit ball model to the conformal
half space model. This is a direct calculation after we write F out in coordinates:

Fk D 2
xk

r2
; k < n;

Fn D 2 .y C 1/

r2
� 1:

This allows us to calculate the differentials so that we can check how the metric is
transformed:

4

.1 � �2/2
 

.dFn/2 C
X

k<n

�
dFk

�2
!

D
�
r2
�2

4y2

 
2dy

r2
� 2 .y C 1/ 2rdr

.r2/2

!2

C
X

k<n

�
r2
�2

4y2

 
2dxk

r2
� 2xk2rdr

.r2/2

!2

D 1

y2

�
dy � .y C 1/ 2rdr

r2

�2
C 1

y2
X

k<n

�
dxk � xk2rdr

r2

�2

D 1

y2

 

dy2 C
X

k<n

�
dxk
�2
!

C 1

y2

�
.y C 1/ 2rdr

r2

�2
C 1

y2
X

k<n

�
xk2rdr

r2

�2

� 1

y2
dy
.y C 1/ 2rdr

r2
� 1

y2
X

k<n

dxk xk2rdr

r2

� 1

y2
.y C 1/ 2rdr

r2
dy � 1

y2
X

k<n

xk2rdr

r2
dxk

D 1

y2
�
dy2 C gRn�1

�C 1

y2
r2
�
2rdr

r2

�2

� 1

y2
rdr
2rdr

r2

� 1

y2
2rdr

r2
rdr

D 1

y2
�
dy2 C gRn�1

�
:
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More generally, we can ask when

 2 � ..dx1/2 C � � � C .dxn/2/

has constant curvature? Clearly,  � dx1; : : : ;  � dxn is an orthonormal coframe, and
1
 
@1; : : : ;

1
 
@n is an orthonormal frame. We can use the Koszul formula to compute

r@i@j and hence the curvature tensor. This task is done in exercise 4.7.21 or in [97,
vols. II and IV]. Using

 D
�
1C k

4
r2
��1

gives the Riemann model for a metric of constant curvature k on R
n if k � 0 and on

B.0; 2pjkj / if k < 0.
The Riemann model with k D �1 and the Poincaré model from above are also

isometric if we use the map F .x/ D 2x. This clearly maps the unit ball to the ball
of radius 2 and the metric is changed as follows

1
�
1 � 1

4
jFj2

	2

 
nX

kD1

�
dFk

�2
!

D 4
�
1 � jxj2

	2

 
nX

kD1

�
dxk
�2
!

:

4.3.4 Singular Points

The polar coordinate conformal model

dr2 C '2 .r/ ds2n�1 D  2 .�/
�
d�2 C �2ds2n�1

�

offers a different approach to the study of smoothness of the metric as we approach
a point r0 2 @I where ' .r0/ D 0. Assume that the parametrization satisfies � .r0/ D
0. When gH D ds2n�1 smoothness on the right-hand side

 2 .�/
�
d�2 C �2ds2n�1

�

depends only on  2 .�/ being smooth (see Section 1.4.4). Thinking of � as being
Euclidean distance indicates that this is not entirely trivial. In fact we must assume
that  .0/ > 0 and  .odd/ .0/ D 0. Translating back to ' we obtain the usual
conditions: P' .0/ D ˙1 and '.even/ .0/ D 0.
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4.4 Metrics on Lie Groups

We are going to study some general features of left-invariant metrics and show how
things simplify in the biinvariant situation. There are two examples of left-invariant
metrics. The first represents hyperbolic space H2, and the other is the Berger sphere
(see example 1.3.5).

4.4.1 Generalities on Left-invariant Metrics

We can construct a metric on a Lie group G by fixing an inner product .; / on TeG
and then translating it to TgM using left-translation Lg .x/ D gx. The metric is also
denoted .X;Y/ on G so as not to confuse it with elements g 2 G. With this metric,
Lg becomes an isometry for all g since

�
DLg

� jh D �
DLghh�1

� jh
D �

D
�
Lgh ı Lh�1

�� jh
D �

DLgh
� je ı .DLh�1 / jh

D �
DLgh

� je ı ..DLh/ je/�1

and we have assumed that
�
DLgh

� je and .DLh/ je are isometries.
Left-invariant fields X, i.e., DLg .Xjh/ D Xjgh are completely determined by their

value at the identity. This identifies TeM with g, the space of left-invariant fields.
Note that g is in a natural way a vector space as addition of left-invariant fields is
left-invariant. It is also a Lie algebra as the vector field Lie bracket of two such fields
is again left-invariant. In section 1.3.2 we saw that on matrix groups the Lie bracket
is simply the commutator of the matrices in TeM representing the vector fields.

If X 2 g, then the integral curve through e 2 G is denoted by exp .tX/. In case of
a matrix group the standard matrix exponential etX is in fact the integral curve since

d

dt
jtDt0

�
etX
� D d

dt
jsD0

�
e.t0Cs/X

	

D d

dt
jsD0

�
et0XesX

�

D d

dt
jsD0

�
Let0X esX

�

D D .Let0X /

�
d

dt
jsD0esX

�

D D .Let0X / .XjI/
D Xjet0X :
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The key property for t 7! exp .tX/ to be the integral curve for X is evidently that the
derivative at t D 0 is Xje and that t 7! exp .tX/ is a homomorphism

exp ..t C s/X/ D exp .tX/ exp .sX/ :

The entire flow for X can be written as follows

Ft .x/ D x exp .tX/ D Lx exp .tX/ D Rexp.tX/ .x/ :

The curious thing is that the flow maps Ft W G ! G don’t act by isometries unless
the metric is also invariant under right-translations, i.e., the metric is biinvariant.
In particular, the elements of g are not in general Killing fields. In fact, it is the
right-invariant fields that are Killing fields for left-invariant metrics as their flows
are generated by

Ft .x/ D exp .tX/ x D Rx exp .tX/ D Lexp.tX/ .x/ :

We can give a fairly reasonable way of checking that a left-invariant metric is
also biinvariant. Conjugation x 7! gxg�1 is denoted Adg .x/ D gxg�1 on Lie groups
and is called the adjoint action of G on G. The differential of this action at e 2 G
is a linear map Adg W g ! g denoted by the same symbol, and called the adjoint
action of G on g. It is in fact a Lie algebra isomorphism. These two adjoint actions
are related by

Adg .exp .tX// D exp
�
t Adg .X/

�
:

This is quite simple to prove. It only suffices to check that t 7! Adg .exp .tX//
is a homomorphism with differential Adg .X/ at t D 0. The latter follows from
the definition of the differential of a map and the former by noting that it is the
composition of two homomorphisms x 7! Adg .x/ and t 7! exp .tX/. We can now
give our criterion for biinvariance.

Proposition 4.4.1. A left-invariant metric is biinvariant if and only if the adjoint
action on the Lie algebra is by isometries.

Proof. In case the metric is biinvariant we know that both Lg and Rg�1 act by
isometries. Thus also Adg D Lg ı Rg�1 acts by isometries. The differential is then a
linear isometry on the Lie algebra.

Conversely, assume that Adg W g ! g is always an isometry. Using that

�
DRg

� jh D �
DRhg

� je ı ..DRh/ je/�1
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it clearly suffices to prove that
�
DRg

� je is always an isometry. This follows from

Rg D Lg ı Adg�1 ;
�
DRg

� je D D
�
Lg
� je ı Adg�1 :

ut
In sections 4.4.2 and 4.4.3 we shall see how this can be used to check whether

metrics are biinvariant in some specific matrix group examples.
Before giving examples of how to compute the connection and curvatures for

left-invariant metrics we present the general and simpler situation of biinvariant
metrics.

Proposition 4.4.2. Consider a Lie group G with a biinvariant metric .; / and
X;Y;Z;W 2 g. Then

rYX D 1

2
ŒY;X� ;

R .X;Y/ Z D �1
4
ŒŒX;Y� ;Z� ;

R .X;Y;Z;W/ D 1

4
.ŒX;Y� ; ŒW;Z�/ :

In particular, the sectional curvature is always nonnegative, when .; / is positive
definite.

Proof. We first need to construct the adjoint action adX W g ! g of the Lie algebra
on the Lie algebra. If we think of the adjoint action of the Lie group on the Lie
algebra as a homomorphism Ad W G ! Aut .g/, then ad W g ! End .g/ is simply
the differential ad D D .Ad/ je. In section 2.1.4 it is shown that adX .Y/ D ŒX;Y�.
The biinvariance of the metric shows that the image Ad .G/ � O .g/ lies in the
group of orthogonal transformations on g. This immediately shows that the image
of ad lies in the set of skew-adjoint transformations since

0 D d

dt
.Y;Z/ jtD0

D d

dt

�
Adexp.tX/ .Y/ ;Adexp.tX/ .Z/

� jtD0
D .adX Y;Z/C .Y; adX Y/ :

Keeping this skew-symmetry in mind we can use the Koszul formula on X;Y;Z 2
g to see that



4.4 Metrics on Lie Groups 141

2 .rYX;Z/ D DX .Y;Z/C DY .Z;X/ � DZ .X;Y/

� .ŒX;Y� ;Z/ � .ŒY;Z� ;X/C .ŒZ;X� ;Y/

D � .ŒX;Y� ;Z/ � .ŒY;Z� ;X/C .ŒZ;X� ;Y/

D � .ŒX;Y� ;Z/C .ŒY;X� ;Z/C .ŒX;Y� ;Z/

D .ŒY;X� ;Z/ :

As for the curvature we then have

R .X;Y/ Z D rXrYZ � rYrXZ � rŒX;Y�Z

D 1

2
rX ŒY;Z� � 1

2
rY ŒX;Z� � 1

2
ŒŒX;Y� ;Z�

D 1

4
ŒX; ŒY;Z�� � 1

4
ŒY; ŒX;Z�� � 1

2
ŒŒX;Y� ;Z�

D 1

4
ŒX; ŒY;Z��C 1

4
ŒY; ŒZ;X��C 1

4
ŒZ; ŒX;Y�� � 1

4
ŒŒX;Y� ;Z�

D �1
4
ŒŒX;Y� ;Z� ;

and finally

.R .X;Y/ Z;W/ D �1
4
.ŒŒX;Y� ;Z� ;W/

D 1

4
.ŒZ; ŒX;Y�� ;W/

D �1
4
.ŒZ;W� ; ŒX;Y�/

D 1

4
.ŒX;Y� ; ŒW;Z�/ :

ut
We note that Lie groups with biinvariant Riemannian metrics always have

nonnegative sectional curvature and with a little more work it is also possible to
show that the curvature operator is nonnegative (see exercise 3.4.32).

4.4.2 Hyperbolic Space as a Lie Group

Let G be the 2-dimensional Lie group

G D

�
˛ ˇ

0 1

�
j ˛ > 0; ˇ 2 R


:
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Notice that the first row can be identified with the upper half plane. The Lie algebra
of G is

g D

�

a b
0 0

�
j a; b 2 R


:

If we define

X D
�
1 0

0 0

�
; Y D

�
0 1

0 0

�
;

then

ŒX;Y� D XY � YX D Y:

Now declare fX;Yg to be an orthonormal frame on G. Then use the Koszul formula
to compute

rXX D 0; rYY D X; rXY D 0; rYX D rXY � ŒX;Y� D �Y:

Hence,

R .X;Y/ Y D rXrYY � rYrXY � rŒX;Y�Y D rXX � 0 � rYY D �X;

which implies that G has constant curvature �1.
We can also compute Adg:

Ad2
4˛ ˇ

0 1

3

5

�
a b
0 0

�
D
�
˛ ˇ

0 1

� �
a b
0 0

� �
˛ ˇ

0 1

��1

D
�

a �aˇ C b˛
0 0

�

D aX C .�aˇ C b˛/ Y:

The orthonormal basis

�
1 0

0 0

�
;

�
0 1

0 0

�

is then mapped to the basis

�
1 �ˇ
0 0

�
;

�
0 ˛

0 0

�
:

This, however, is not an orthonormal basis unless ˇ D 0 and ˛ D 1. Therefore, the
metric is not biinvariant, nor are the left-invariant fields Killing fields.



4.4 Metrics on Lie Groups 143

This example can be generalized to higher dimensions. Thus, the upper half plane
is in a natural way also a Lie group with a left-invariant metric of constant curvature
�1. This is in sharp contrast to the spheres, where only S3 D SU.2/ and S1 D SO .2/
are Lie groups.

4.4.3 Berger Spheres

On SU.2/ consider the left-invariant metric such that ��1
1 X1, ��1

2 X2, ��1
3 X3 is an

orthonormal frame and ŒXi;XiC1� D 2XiC2 (indices are mod 3) as in example 1.3.5.
The Koszul formula is:

2
�rXi Xj;Xk

� D ��
Xi;Xj

�
;Xk

�C �
ŒXk;Xi� ;Xj

� � ��
Xj;Xk

�
;Xi
�
:

From this we can quickly see that as with a biinvariant metric we have: rXi Xi D 0.
It also follows that

rXi XiC1 D
 
�2iC2 C �2iC1 � �2i

�2iC2

!

XiC2;

rXiC1
Xi D ŒXiC1;Xi�C rXi XiC1

D
 

��2iC2 C �2iC1 � �2i
�2iC2

!

XiC2:

This shows that

R.Xi;XiC1/XiC2 D rXirXiC1
XiC2

�rXiC1
rXi XiC2 � rŒXi;XiC1�XiC2

D 0 � 0 � 0:

Thus all curvatures between three distinct vectors vanish.
The special case of Berger spheres occur when �1 D " < 1, �2 D �3 D 1. In

this case

rX1X2 D �
2 � "2�X3; rX2X1 D �"2X3

rX2X3 D X1; rX3X2 D �X1;

rX3X1 D "2X2; rX1X3 D �
"2 � 2�X2:

and

R .X1;X2/X2 D "2X1;
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R .X3;X1/X1 D "4X3;

R .X2;X3/X3 D �
4 � 3"2�X2;

R .X1 ^ X2/ D "2X1 ^ X2;

R .X3 ^ X1/ D "2X3 ^ X1;

R .X2 ^ X3/ D �
4 � 3"2�X2 ^ X3:

Thus all sectional curvatures must lie in the interval
�
"2; 4 � 3"2�. Note that as

" ! 0 the sectional curvature sec .X2;X3/ ! 4, which is the curvature of the base
space S2

�
1
2

�
in the Hopf fibration.

We should also consider the adjoint action in this case. The standard orthogonal
basis X1;X2;X3 is mapped to

Ad2
4 z w

� Nw Nz
3

5
X1 D

�
jzj2 � jwj2

	
X1 � 2Re .wz/X2 � 2Im .wz/X3;

Ad2
4 z w

� Nw Nz
3

5
X2 D 2 i Im .z Nw/X1 C Re

�
w2 C z2

�
X2 C Im

�
w2 C z2

�
X3;

Ad2
4 z w

� Nw Nz
3

5
X3 D 2Re .z Nw/X1 C Re

�
i
�
z2 � w2

��
X2 C Im

�
i
�
z2 � w2

��
X3:

If the three vectors X1;X2;X3 have the same length, then we see that the adjoint
action is by isometries, otherwise not.

4.5 Riemannian Submersions

In this section we develop formulas for curvatures that relate to Riemannian
submersions. The situation is similar to that of distance functions, which as we know
are Riemannian submersions. In this case, however, we determine the curvature of
the base space from information about the total space.

4.5.1 Riemannian Submersions and Curvatures

Throughout this section let F W � NM; Ng� ! .M; g/ be a Riemannian submersion.
Like with the metrics we shall use the standard “bar” notation: Np and p and NX and
X for points and vector fields that are F-related, i.e., F .Np/ D p and DF

� NX� D X.
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The vertical distribution consists of the tangent spaces to the preimages F�1 .p/ and
is given by VNp D kerDFNp � TNp NM. The horizontal distribution is the orthogonal

complement HNp D �
VNp
�? � TNp NM. The fact that F is a Riemannian submersion

means that DF W HNp ! TpM is an isometry for all Np 2 NM. Given a vector field X on
M we can always find a unique horizontal vector field NX on NM that is F related to X.
We say that NX is a basic horizontal lift of X. Any vector in NM can be decomposed
into horizontal and vertical parts: v D vV C vH .

The next proposition gives some important properties for relationships between
vertical and basic horizontal vector fields.

Proposition 4.5.1. Let V be a vertical vector field on NM and X;Y;Z vector fields
on M with basic horizontal lifts NX; NY; NZ.

(1)
�
V; NX� is vertical,

(2) .LV Ng/ � NX; NY� D DV Ng � NX; NY� D 0,
(3) Ng �� NX; NY� ;V� D 2Ng �r NX NY;V� D �2Ng �rV NX; NY� D 2Ng �r NYV; NX�,
(4) r NX NY D rXY C 1

2

� NX; NY�V .

Proof. (1): NX is F related to X and V is F related to the zero vector field on M. Thus

DF
�� NX;V�� D �

DF
� NX� ;DF .V/

� D ŒX; 0� D 0:

(2): We use (1) to see that

.LV Ng/ � NX; NY� D DV Ng � NX; NY� � Ng ��V; NX� ; NY� � Ng � NX; �V; NY��

D DV Ng � NX; NY� :

Next we use that F is a Riemannian submersion to conclude that Ng � NX; NY� D
g .X;Y/. But this implies that the inner product is constant in the direction of the
vertical distribution.

(3): Using (1) and (2) the Koszul formula in each case reduces to

2Ng �r NX NY;V� D Ng �� NX; NY� ;V� ;
2Ng �rV NX; NY� D �Ng �� NX; NY� ;V� ;
2Ng �r NYV; NX� D Ng �� NX; NY� ;V� :

This proves the claim.

(4) We have just seen in (3) that 1
2

� NX; NY�V is the vertical component of r NX NY . We
know that rXY is horizontal so it only remains to be seen that it is the horizontal
component of r NX NY . The Koszul formula together with F relatedness of the fields
and the fact that inner products are the same in NM and M show that



146 4 Examples

2Ng �r NX NY; NZ� D 2g .rXY;Z/ D 2Ng
�
rXY; NZ

	
:

ut
Note that the map that takes horizontal vector fields X;Y on NM to ŒX;Y�V

measures the extent to which the horizontal distribution is integrable in the sense
of Frobenius. It is in fact tensorial and skew-symmetric since

ŒX; fY�V D f ŒX;Y�V C .DXf /YV D f ŒX;Y�V :

Therefore, it defines a map H � H ! V called the integrability tensor.

Example 4.5.2. In the case of the Hopf map S3 .1/ ! S2
�
1
2

�
we have that X1 is

vertical and X2;X3 are horizontal. However, X2;X3 are not basic. Still, we know that
ŒX2;X3� D 2X1 so the horizontal distribution cannot be integrable.

We are now ready to give a formula for the curvature tensor on M in terms of the
curvature tensor on NM and the integrability tensor.

Theorem 4.5.3 (B. O’Neill and A. Grey). Let R be the curvature tensor on M and
NR the curvature tensor on NM. These curvature tensors are related by the formula

g .R .X;Y/ Y;X/ D Ng � NR � NX; NY� NY; NX�C 3

4

ˇ̌
ˇ
� NX; NY�V

ˇ̌
ˇ
2

:

Proof. The proof is a direct calculation using the above properties. We calculate
the full curvature tensor so let X;Y;Z;H be vector fields on M with vanishing Lie
brackets. This forces the corresponding Lie brackets

� NX; NY�, etc. in NM to be vertical.

Ng � NR � NX; NY� NZ; NH� D Ng
�
r NXr NY NZ � r NYr NX NZ � rŒ NX; NY� NZ; NH

	

D Ng
�

r NX
�

rYZ C 1

2

� NY; NZ�
�
; NH
�

�Ng
�

r NY
�

rXZ C 1

2

� NX; NZ�
�
; NH
�

CNg �� NZ; NH� ; � NX; NY��

D Ng
�

rXrYZ C 1

2

h NX;rYZ
iV C 1

2
r NX
� NY; NZ� ; NH

�

�Ng
�

rYrXZ C 1

2

h NY;rXZ
iV C 1

2
r NY
� NX; NZ� ; NH

�

�1
2

Ng �� NX; NY� ; � NH; NZ��
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D g .R .X;Y/ Z;H/

�1
2

Ng �� NY; NZ� ;r NX NH�C 1

2
Ng �� NX; NZ� ;r NY NH�

�1
2

Ng �� NX; NY� ; � NH; NZ��

D g .R .X;Y/ Z;H/

�1
4

Ng �� NY; NZ� ; � NX; NH��C 1

4
Ng �� NX; NZ� ; � NY; NH��

�1
2

Ng �� NX; NY� ; � NH; NZ��

When X D H and Y D Z we get the above formula. ut
More generally, one can find formulas for NR where the variables are various

combinations of basic horizontal and vertical fields.

4.5.2 Riemannian Submersions and Lie Groups

One can find many examples of manifolds with nonnegative or positive curvature
using the previous theorem. In this section we shall explain the terminology in the
general setting. The types of examples often come about by having

� NM; Ng� with a
free compact group action G by isometries and using M D Gn NM D NM=G. Note we
normally write such quotients on the right, but the action is generally on the left so
GnM is more appropriate. Examples are:

CP
n D S2nC1=S1;

TSn D .SO .n C 1/ � R
n/ =SO .n/ ;

M D SU .3/ =T2:

The complex projective space will be studied further in section 4.5.3.
The most important general example of a Riemannian submersion comes about

by having an isometric group action by G on NM such that the quotient space is
a manifold M D NM=G (see section 5.6.4 for conditions on the action that make
this true). Such a submersion is also called fiber homogeneous as the group acts
transitively on the fibers of the submersion. In this case we have a natural map
F W NM ! M that takes orbits to points, i.e., p D fx � Np j x 2 Gg for Np 2 NM. The
vertical space VNp then consists of the vectors that are tangent to the action. These
directions can be found using the Killing fields generated by G. If X 2 g D TeG,
then we get a vector XjNp 2 TNp NM by the formula

XjNp D d

dt
.exp .tX/ � Np/ jtD0;
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This means that the flow for X on NM is defined by Ft .Np/ D exp .tX/ � Np. As the
map Np 7! x � Np is assumed to be an isometry for all x 2 G we get that the flow
acts by isometries. This means that X is a Killing field. The next observation is that
the action preserves the vertical distribution, i.e., Dx

�
VNp
� D Vx�Np. Using the Killing

fields this follows from

Dx
�
XjNp
� D Dx

�
d

dt
.exp .tX/ � Np/ jtD0

�

D d

dt
.x � .exp .tX/ � Np// jtD0

D d

dt

��
x exp .tX/ x�1� � x � Np� jtD0

D ..Adx .exp .tX/// � x � Np/ jtD0
D d

dt
..exp .t Adx X// � x � Np/ jtD0

D .Adx .X// jx�Np:

Thus Dx
�
XjNp
�

comes from first conjugating X via the adjoint action in TeG and then
evaluating it at x � Np. Since .Adx .X// jx�Np 2 Vx�Np we get that Dx maps vertical spaces
to vertical spaces. However, it doesn’t preserve the Killing fields in the way one
might have hoped for. As Dx is a linear isometry it also preserves the orthogonal

complements. These complements are our horizontal spaces HNp D �
VNp
�? � TNp NM.

We know that DF W HNp ! TpM is an isomorphism. We have also seen that all of the
spaces Hx�Np are isometric to HNp via Dx. We can then define the Riemannian metric
on TpM using the isomorphism DF W HNp ! TpM. This means that F W NM ! M
defines a Riemannian submersion.

In the above discussion we did not discuss what conditions to put on the action
of G on NM in order to ensure that the quotient becomes a nice manifold. If G is
compact and acts freely, then this will happen. The general situation is studied
in section 5.6.4. In the next subsection we consider the special case of complex
projective space as a quotient of a sphere. There is also a general way of getting
new metrics on NM it self from having a general isometric group action. This will be
considered in section 4.5.4.

4.5.3 Complex Projective Space

Recall that CPn D S2nC1=S1, where S1 acts by complex scalar multiplication on
S2nC1 � C

nC1. If we write the metric as

ds22nC1 D dr2 C sin2.r/ds22n�1 C cos2.r/d�2;
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then we can think of the S1 action on S2nC1 as acting separately on S2n�1 and S1.
Then

CP
n D

h
0;
�

2

i
� ��S2n�1 � S1

�
=S1

�
;

and the metric can be written as discussed in section 1.4.6

dr2 C sin2.r/
�
g C cos2.r/h

�
:

If we restrict our attention to the case where n D 2, then the metric can be written as

dr2 C sin2.r/
�
cos2.r/.
1/2 C .
2/2 C .
3/2

�
:

This is a bit different from the warped product metrics we have seen so far. It
is certainly still possible to apply the general techniques of distance functions to
compute the curvature tensor. Instead we use the Riemannian submersion apparatus
that was developed in the previous section. We shall also consider the general case
rather than n D 2.

The O’Neill formula from theorem 4.5.3 immediately shows that CP
n has

sectional curvature � 1. Let V be the unit vector field on S2nC1 that is tangent to the
S1 action. Then i V is the unit inward pointing normal vector to S2nC1 � C

nC1. This
shows that the horizontal distribution, which is orthogonal to V , is invariant under
multiplication by i. This corresponds to the fact that CPn has a complex structure.
It also gives us the integrability tensor for this submersion. If we let NX; NY be basic
horizontal vector fields and denote the canonical Euclidean metric on C

nC1 by Ng,
then

Ng
�
1

2

� NX; NY� ;V
�

D Ng
�
rS2nC1

NX NY;V
	

D Ng
�
rC

nC1

NX NY;V
	

D �Ng
� NY;rC

nC1

NX V
	

D Ng
� NY;rC

nC1

i NX i V
	

D IIS2nC1 � NY; i NX�

D Ng � NY; i NX� :

Thus

1

2

� NX; NY�V D Ng � NY; i NX�V:
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If we let X;Y be orthonormal on CP
n, then the horizontal lifts NX; NY are also

orthonormal so

sec .X;Y/ D 1C 3

4

ˇ̌
ˇ
� NX; NY�V

ˇ̌
ˇ
2

D 1C 3
ˇ̌Ng � NY; i NX�ˇ̌2

� 4;

with equality precisely when NY D ˙ i NX.
The proof of theorem 4.5.3 in fact gave us a formula for the full curvature tensor.

One can use that formula on an orthonormal set of vectors of the form X, i X, Y , i Y
to see that the curvature operator is not diagonalized on a decomposable basis of the
form Ei ^ Ej as was the case in the previous examples. In fact it is diagonalized by
vectors of the form

X ^ i X ˙ Y ^ i Y;

X ^ Y ˙ i X ^ i Y;

X ^ i Y ˙ Y ^ i X

and has eigenvalues that lie in the interval Œ0; 6�.
We can also see that this metric on CP

n is Einstein with Einstein constant 2nC2.
If we fix a unit vector X and an orthonormal basis for the complement E0; : : : ;E2n�2
so that the lifts satisfy i NX D NE0, then we get that

Ric .X;X/ D
2n�2X

iD0
sec .X;Ei/

D sec .X;E0/C
2n�2X

iD1
sec .X;Ei/

D 1C 3
ˇ̌Ng � NE0; i NX�ˇ̌2 C

2n�2X

iD1

�
1C 3

ˇ̌Ng � NEi; i NX�ˇ̌2
	

D 1C 3
ˇ̌Ng �i NX; i NX�ˇ̌2 C

2n�2X

iD1

�
1C 3 j0j2

	

D 1C 3C 2n � 2
D 2n C 2:
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4.5.4 Berger-Cheeger Perturbations

The construction we do here was first considered by Cheeger and was based on a
slightly different construction by Berger used to construct the Berger spheres.

Fix a Riemannian manifold .M; g/ and a Lie group G with a right-invariant
metric .; /. If G acts by isometries on M, then it also acts by isometries on G � M
with respect to the product metrics g� D � .; / C g, � > 0 via the action
h � .x; p/ 7! �

xh�1; hp
�
. This action is free as G acts freely on itself. The quotient

.G � M/ =G is also denoted by G �G M. The natural map M ! G � M ! G �G M
is a bijection. Thus the quotient is in a natural way a manifold diffeomorphic to M.
The quotient map Q W G � M ! M is explicitly given by Q .x; p/ D xp.

As G acts by isometries with respect to the product metrics � .; /C g we obtain
a submersion metric g� on M D G �G M. We wish to study this perturbed metric’s
relation to the original metric g. The tangent space TpM is naturally decomposed
into the vectors Vp that are tangent to the action and the orthogonal complement
Hp. Unlike the case where G acts freely on M this decomposition is not necessarily
a nicely defined distribution. It might happen that G fixes certain but not all points
in M. For example, at points p that are fixed it follows that Vp D f0g. At other
points Vp ¤ f0g. The nomenclature is, however, not inappropriate. If X 2 TeG, then
Ft .p/ D exp .tX/ � p defines a 1-parameter group of isometries. If X D d

dt F
t .p/ jtD0

is the corresponding Killing field on M, then
��X;Xjp

� 2 TeG � TpM is a vertical
direction for this action at .e; p/ 2 G � M. Therefore, Vp is simply the image of the
projection of the vertical distribution to TpM. Vectors in Hp are thus also horizontal
for the action on G � M. All the other horizontal vectors in TeG � TpM depend on

the choice of � and have a component of the form
�ˇ̌

Xjp
ˇ̌2
g X; � jXj2 Xjp

	
. The image

of such a horizontal vector under Q W G � M ! M is given by

DQ
�ˇ̌

Xjp
ˇ̌2
g X; � jXj2 Xjp

	
D ˇ̌

Xjp
ˇ̌2
g DQ .X; 0/C � jXj2 DQ

�
0;Xjp

�

D � ˇ̌Xjp
ˇ̌2
g DQ

�
d

dt
.e � exp .�tX// jtD0; 0

�

C� jXj2 DQ

�
0;

d

dt
.exp .tX/ � p/ jtD0

�

D � ˇ̌Xjp
ˇ̌2
g

d

dt
.Q .exp .�tX/ ; p// jtD0

C� jXj2 d

dt
.Q .e; exp .tX/ � p// jtD0

D � ˇ̌Xjp
ˇ̌2
g

d

dt
.exp .�tX/ � p/ jtD0

C� jXj2 d

dt
.exp .tX/ � p/ jtD0
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D ˇ
ˇXjp

ˇ
ˇ2
g Xjp C � jXj2 Xjp

D
�
� jXj2 C ˇ̌

Xjp
ˇ̌2
g

	
Xjp

The horizontal lift of Xjp 2 Vp to TeG � TpM is consequently given by

Xjp D
0

@

ˇ̌
Xjp
ˇ̌2
g

� jXj2 C ˇ̌
Xjp
ˇ̌2
g

X;
� jXj2

� jXj2 C ˇ̌
Xjp
ˇ̌2
g

Xjp
1

A ;

and its length in g� satisfies

ˇ̌
ˇXjp

ˇ̌
ˇ
2

g�
D
0

@

ˇ̌
Xjp
ˇ̌2
g

� jXj2 C ˇ̌
Xjp
ˇ̌2
g

1

A

2

� jXj2

C
0

@ � jXj2
� jXj2 C ˇ̌

Xjp
ˇ̌2
g

1

A

2

ˇ̌
Xjp
ˇ̌2
g

D � jXj2
� jXj2 C ˇ

ˇXjp
ˇ
ˇ2
g

ˇ̌
Xjp
ˇ̌2
g

� ˇ̌
Xjp
ˇ̌2
g :

In particular,
ˇ̌
ˇXjp

ˇ̌
ˇ
2

g�
has limit 0 as � ! 0 and limit

ˇ̌
Xjp
ˇ̌2
g as � ! 1. This

means that the metric g� is gotten from g by squeezing the orbits of the action
of G. However, the squeezing depends on the point according to this formula. The
only case where the squeezing is uniform is when the Killing fields generated by the
action have constant length on M. The Berger spheres are a special case of this.

Using that we know how to compute horizontal lifts and that the metric on G�M
is a product metric it is possible to compute the curvature of g� in terms of the
curvature of g, �, the curvature of .; /, and the integrability tensor. We will consider
one important special case.

Let X;Y 2 Hp. In this case the vectors are already horizontal for the action on
G � M. Thus we have that secg� .X;Y/ � secg .X;Y/. There is a correction coming
from the integrability tensor associated with the action on G � M that possibly
increases these curvatures.
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4.6 Further Study

The book by O’Neill [80] gives an excellent account of Minkowski geometry and
also studies in detail the Schwarzschild metric in the setting of general relativity. It
appears to have been the first exact nontrivial solution to the vacuum Einstein field
equations. There is also a good introduction to locally symmetric spaces and their
properties. This book is probably the most comprehensive elementary text and is
good for a first encounter with most of the concepts in differential geometry. The
third edition of [47] also contains a good number of examples. Specifically they
have a lot of material on hyperbolic space. They also have a brief account of the
Schwarzschild metric in the setting of general relativity.

Another book, which contains many more advanced examples, is [12]. This is
also a good reference on Riemannian geometry in general.

4.7 Exercises

Remark. It will be useful to read exercises 3.4.23, 3.4.24, and 3.4.25 before doing
the exercises for this chapter.

EXERCISE 4.7.1. Show that the Schwarzschild metric does not have parallel curva-
ture tensor.

EXERCISE 4.7.2. Show that the Berger spheres ." ¤ 1/ do not have parallel
curvature tensor.

EXERCISE 4.7.3. This exercise covers a few interesting aspects of projective
spaces.

(1) Show that U .n C 1/ acts by isometries on CP
n. Hint: Use that U .n C 1/ acts

by isometries on S2nC1 .1/ and commutes with the quotient action that creates
CP

n.
(2) Show that for each p 2 CP

n there is an isometry Ap 2 Isop with DApjp D �I.
(3) Use the fact that isometries leave r and R invariant to show that rR D 0.
(4) Repeat 1,2,3 for HP

n using the symplectic group Sp .n C 1/ of matrices
with quaternionic entries satisfying A�A D I, where A� D NAt. See also
exercise 1.6.22 for more on quaternions.

EXERCISE 4.7.4. Assume that a Riemannian manifold .M; g/ has a function f such
that

Hess f D � .x/ g C � .f / df 2;

where � W M ! R and � W R ! R. Show that the metric is locally a warped
product.
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EXERCISE 4.7.5. Show that if Hess f D �g, then � D �f
dim M .

EXERCISE 4.7.6. Consider a function f on a Riemannian manifold .M; g/ so that
rf ¤ 0 and rf is an eigenvector for S .X/ D rXrf . Show that if S has � 2

eigenvalues, then the metric is locally a warped product metric.

EXERCISE 4.7.7 (O’NEILL). For a Riemannian submersion as in section 4.5 define
the A-tensors

A NX NY D � Nr NX NY�V ;
A NXV D � Nr NXV

�H
:

We also have the T-tensor from exercises 2.5.26 and 2.5.25 but our notation for
horizontal and vertical fields is the reverse of tangent and normal fields from those
exercises. Note that both A NX and TV make sense. We can extend both tensors by
declaring AV D 0 and T NX D 0 and thus obtain .1; 2/-tensors on NM.

(1) Show that both A-tensors are tensorial.
(2) Show that A NX NY D 1

2

� NX; NY�V .
(3) Show that Ng �A NX NY;V� D �Ng � NY;A NXV

�
.

(4) Show that .rVA/W D �ATV W and .rXA/W D �AAXW .
(5) Show that .r NXT/ NY D �TA

NX
NY and .rVT/ NY D �TTV NY .

(6) Show that

Ng ..rUA/ NX V;W/ D Ng .TUV;A NXW/ � Ng .TUW;A NXV/ :

EXERCISE 4.7.8 (O’NEILL). This exercise builds on the previous exercise. The
Gauss equations explain how to calculate the curvature tensor on vectors tangent
to the fibers of a submersion. Show that horizontal and “verti-zontal” curvatures can
be calculated by the formulas

NR � NY; NX; NX; NY� D R .Y;X;X;Y/ � 3 ˇ̌A NX NY ˇ̌2

and

NR �V; NX; NX;V� D Ng �.r NXT/V V; NX�C jA NXVj2 � ˇ̌
TV NXˇ̌2 :

Compare the last formula to the radial curvature equation.

EXERCISE 4.7.9. Let .M; g/ D .M1 � M2; g1 C g2/ be a Riemannian product
manifold.

(1) Show that R D R1 C R2, where Ri is the curvature tensor of .Mi; gi/ pulled back
to M.

(2) Assume for the remainder of this exercise that .Mi; gi/ has constant curvature
ci. Show that R D c1g1 ı g1 C c2g2 ı g2.
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(3) Show that .M; g/ is Einstein if and only if .n1 � 1/ c1 D .n2 � 1/ c2 where
ni D dim Mi.

(4) Show that the Weyl tensor for .M; g/ vanishes when either c1 D �c2, n1 D 1,
or n2 D 1. Hint: Calculate .g1 � g2/ ı .g1 C g2/ and compare it to R.

(5) Show that if none of the conditions in (4) hold, then the Weyl tensor does not
vanish.

EXERCISE 4.7.10. Let .Mn; g/ D �
I � N; dr2 C �2 .r/ gN

�
be a warped product

metric with constant curvature k.

(1) Show that
�
Nn�1; �2 .r/ gN

�
has constant curvature k C

� P�
�

	2
if n > 2.

(2) Show explicitly that hyperbolic space can be represented as a warped product
over both hyperbolic space and Euclidean space.

EXERCISE 4.7.11. Consider an Einstein metric
�
Nn�1; gN

�
with Ric D n�2

n�1�gN ,
� < 0. Find a � W R ! .0;1/ such that .Mn; g/ D �

R � N; dr2 C �2 .r/ gN
�

becomes an Einstein metric with Ric D �g.

EXERCISE 4.7.12. Let
�
Nn�1; gN

�
have constant curvature c with n > 2. Consider

the warped product metric .M; g/ D �
I � N; dr2 C �2 .r/ gN

�
.

(1) Show that the curvature of g is given by

R D c � P�2
�2

gr ı gr � 2 R�
�

dr2 ı gr

D c � P�2
�2

g ı g � 2
� R�
�

C c � P�2
�2

�
dr2 ı g:

(2) Show that the Weyl tensor vanishes.
(3) Show directly that the Schouten tensor satisfies:

.rXP/ .Y;Z/ D .rYP/ .X;Z/ :

See also exercise 3.4.26 for an indirect approach when n > 3.

EXERCISE 4.7.13. The stereographic projection of xnC1 D 0 to a hypersurface M �
R

n�R that is transverse to the lines emanating from �enC1 D .0; : : : ; 0;�1/ is given
by x 7! S .x/ where x 2 R

n and S .x/ D �enC1 C � .x/ .enC1 C .x; 0//.

(1) When M D Sn .1/ show that �
�
1C jxj2

	
D 2 and that S is a conformal map

with the property that in these coordinates the metric on Sn .1/ is given by

4
�
1C jxj2

	2 gRn :
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(2) When M D Hn .1/ 2 R
n;1 show that �

�
1 � jxj2

	
D 2 and that S is a conformal

map with the property that in these coordinates the metric on Hn .1/ is Poincaré
disc

4
�
1 � jxj2

	2 gRn :

EXERCISE 4.7.14. Let Qg D e2 g be a metric conformally equivalent to g and a Q
referring to metric objects in the conformally changed metric.

(1) Show that

QrXY D rXY C .DX /Y C .DY /X � g .X;Y/r :

(2) With notation as in exercise 3.4.23 show that

e�2 QR D R � 2
�

Hess � .d /2
	

ı g � jd j2 g ı g

D R �
�
2Hess � 2 .d /2 C jd j2 g

	
ı g:

(3) If X;Y are orthonormal with respect to g, show that

e2 fsec .X;Y/ D sec .X;Y/ � Hess .X;X/ � Hess .Y;Y/

C .DX /
2 C .DY /

2 � jd j2 :

(4) Show that

fRic D Ric � .n � 2/ �Hess � d 2
� �

�
� C .n � 2/ jd j2

	
g:

(5) Show that

e2 escal D scal �2 .n � 1/� � .n � 1/ .n � 2/ jd j2 :

(6) Using exercise 3.4.25 show that

e�2 QW D W:

This is referred to as the conformal invariance of the Weyl tensor under
conformal changes and was discovered by Weyl.
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EXERCISE 4.7.15. Show that

�
1

4
�n�2
0 C r2�n

� 4
n�2

gRn D 1

1 �
�
�0
�

	n�2 d�2 C �2ds2n�1;

where the right-hand side is the scalar flat metric from section 4.2.3. Use this to
rewrite the Schwarzschild metric from section 4.2.5 as

�
1

4
�n�3
0 C r3�n

� 4
n�3

gRn�1 C �20
4

.n � 3/3
 

1
4
�n�3
0 � r3�n

1
4
�n�3
0 C r3�n

!2
d�2:

EXERCISE 4.7.16 (STATIC EINSTEIN EQUATIONS). Consider a metric of the form
.M; g/ D �

N � R; gN C w2dt2
�
, where w W N ! .0;1/ and dim N D n � 1. Let

X;Y;Z be vector fields on N. Note that they can also be considered as vector fields
on M.

(1) Show that rN
X Y D rM

X Y and RN .X;Y/ Z D RM .X;Y/ Z. Conclude that
RicM .X; @t/ D 0.

(2) Show the vector field @t satisfies j@tj2 D w2 in .M; g/.
(3) Show that

rM
@t
@t D �wrw and rM

X @t D rM
@t

X D 1

w
.DXw/ @t:

Hint: Show that g
�
rM
@t
@t; @t

	
D 0 and calculate DX j@tj2.

(4) Show that

RM .X; @t/ @t D �wrXrw;

and

RicM .@t; @t/ D �w�w;

RicM .X;X/ D RicN .X;X/ � 1

w
Hess .X;X/ :

(5) Show that RicM D �g, � 2 R, if and only if

RicN � 1
w

Hess w D �gN ;

w�w C �w2 D 0;
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if and only if

RicN � 1
w

Hess w D �gN ;

scalN D .n � 2/ �:

EXERCISE 4.7.17. A Riemannian manifold .M; g/ is said to be locally conformally
flat if every p 2 M lies in a coordinate neighborhood U where

g D e�2 ��dx1
�2 C � � � C .dxn/2

	
:

(1) Show that the space forms Sn
k with metrics dr2 C sn2k .r/ ds2n�1 are locally

conformally flat.
(2) Show that if an Einstein metric is locally conformally flat, then it has constant

curvature.
(3) When n D 2 Gauss showed that such coordinates always exit. They are called

isothermal coordinates. Assume that dim M D 2.

(a) Show that if du ¤ 0 on some open subset O � M, then up to sign there is
a unique 1-form ! D iru volg that satisfies: jduj D j!j and g .du; !/ D 0.

(b) Show that d! D �
�gu

�
volg.

(c) Show that isothermal coordinates exit provided that for each p 2 M it is
possible to find u on a neighborhood of p so that �gu D 0 and dujp ¤ 0.

EXERCISE 4.7.18 (SCHOUTEN 1921). Let .M; g/ be a Riemannian manifold of
dimension n > 2.

(1) Show that g is locally conformally flat if and only if W D 0 and locally
there is a function  so that P D 2Hess � 2 .d /2 C jd j2 g. Note that
the condition W D 0 is redundant when n D 3. Hint: You have to use the
curvature characterization of being locally Euclidean (see exercise 3.4.20 or
theorem 5.5.8).

(2) Show that if g is locally conformally flat then

.rXP/ .Y;Z/ D .rYP/ .X;Z/ :

Hint: When n > 3, this follows from exercise 3.4.26. When n � 3, use that
R D P ı g, the specific form of P from (1), and show that

.rX Hess / .Y;Z/ � .rY Hess / .X;Z/ D R .X;Y;r ;Z/ :

EXERCISE 4.7.19 (SCHOUTEN 1921). In this exercise assume that we have a
Riemannian manifold of dimension n > 2 such that W D 0 and .rXP/ .Y;Z/ D
.rYP/ .X;Z/.
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(1) Show that if there is a 1-form ! such that

r! D 1

2
P C !2 � 1

2
j!j2 g;

then locally ! D d and P D 2Hess � 2 .d /2 C jr j2 g.
(2) The integrability condition for finding such an ! in the sense of exercise 3.4.20

can be stated using only covariant derivatives. On the left-hand side we take
one more derivative r2

X;Y! and use the Ricci formula for commuting covariant
derivatives as an alternative to Clairaut’s theorem on partial derivatives:

r2
X;Y! � r2

Y;X! D RX;Y!:

Show that if r! D 1
2
P C !2 � 1

2
j!j2 g, then

�r2
X;Y!

�
.Z/ D 1

2
.rXP/ .Y;Z/

C .rX!/ .Y/ ! .Z/C ! .Y/ .rX!/ .Z/

�g .rX!;!/ g .Y;Z/ :

(3) Use r! D 1
2
P C !2 � 1

2
j!j2 g again to show that

r2
X;Y! � r2

Y;X! D 1

2
P .X;Z/ ! .Y/ � 1

2
P .X;V/ g .Y;Z/

�1
2

P .Y;Z/ ! .X/C 1

2
P .Y;V/ g .X;Z/

D .P ı g/ .X;Y;V;Z/ ;

where V is the vector field dual to !.
(4) Now use R D P ı g to show that

.RX;Y!/ .Z/ D .P ı g/ .X;Y;V;Z/ :

(5) Finally, show that this implies that the integrability conditions for solving for !
are satisfied and conclude that the manifold is locally conformally flat.

EXERCISE 4.7.20. Consider a product metric
�
N2 � R; gN C gR

�
.

(1) Show that PN�R D scalN
2
.gN � gR/.

(2) Show that this product metric is conformally flat if and only if scalN is constant.
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EXERCISE 4.7.21. Let .Mn; g/ ; n > 2 have constant curvature k.

(1) Use exercise 4.7.19 to show that the metric is locally conformally flat.

(2) Show that if g D e�2 
��

dx1
�2 C � � � C .dxn/2

	
, then

2e @i@je
 D

�
k C

X�
@ke 

�2	
ıij:

Hint: Use part 2 of 4.7.14.
(3) Show that

e D a C
X

bix
i C c

X�
xi
�2
;

where k D 4ac �P
b2i .

EXERCISE 4.7.22. The Heisenberg group with its Lie algebra is

G D
8
<

:

2

4
1 a c
0 1 b
0 0 1

3

5 j a; b; c 2 R

9
=

;
;

g D
8
<

:

2

4
0 x z
0 0 y
0 0 0

3

5 j a; b; c 2 R

9
=

;
:

A basis for the Lie algebra is:

X D
2

4
0 1 0

0 0 0

0 0 0

3

5 ;Y D
2

4
0 0 0

0 0 1

0 0 0

3

5 ;Z D
2

4
0 0 1

0 0 0

0 0 0

3

5 :

(1) Show that the only nonzero brackets are

ŒX;Y� D � ŒY;X� D Z:

Now introduce a left-invariant metric on G such that X;Y;Z form an orthonor-
mal frame.

(2) Show that the Ricci tensor has both negative and positive eigenvalues.
(3) Show that the scalar curvature is constant.
(4) Show that the Ricci tensor is not parallel.

EXERCISE 4.7.23. Consider metrics of the form

dr2 C �2.r/
�
�2.r/.
1/2 C .
2/2 C .
3/2

�
:
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(1) Show that if

P� D �;

P�2 D 1 � k��4;

� .0/ D k
1
4 ; P� .0/ D 0;

� .0/ D 0; P� .0/ D 2;

then we obtain a family of Ricci flat metrics on TS2.
(2) Show that � .r/ 	 r, P� .r/ 	 1, R� .r/ 	 2kr�5 as r ! 1. Conclude that all

curvatures are of order r�6 as r ! 1 and that the metric looks like .0;1/ �
RP

3 D .0;1/ � SO .3/ at infinity. Moreover, show that scaling one of these
metrics corresponds to changing k. Thus, we really have only one Ricci flat
metric; it is called the Eguchi-Hanson metric.

EXERCISE 4.7.24. For the general metric

dr2 C �2.r/
�
�2.r/.
1/2 C .
2/2 C .
3/2

�

show that the .1; 1/-tensor, which in the orthonormal frame looks like

2

66
4

0 �1 0 0

1 0 0 0

0 0 0 �1
0 0 1 0

3

77
5 ;

yields a Hermitian structure.

(1) Show that this structure is Kähler, i.e., parallel, if and only if P� D �.
(2) Find the scalar curvature for such metrics.
(3) Show that there are scalar flat metrics on all the 2-dimensional vector bundles

over S2. The one on TS2 is the Eguchi-Hanson metric, and the one on S2 � R
2

is the Schwarzschild metric.

EXERCISE 4.7.25. Show that �
�
RP

n�1� admits rotationally symmetric metrics
dr2 C �2 .r/ ds2n�1 such that � .r/ D r for r > 1 and the Ricci curvatures are
nonpositive. Thus, the Euclidean metric can be topologically perturbed to have
nonpositive Ricci curvature. It is not possible to perturb the Euclidean metric in
this way to have nonnegative scalar curvature or nonpositive sectional curvature.
Try to convince yourself of that by looking at rotationally symmetric metrics on R

n

and �
�
RP

n�1�.

EXERCISE 4.7.26. We say that .M; g/ admits orthogonal coordinates around p 2 M
if we have coordinates on some neighborhood of p, where

gij D 0 for i ¤ j;
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i.e., the coordinate vector fields are perpendicular. Show that such coordinates
always exist in dimension 2, while they may not exist in dimension > 3. To find
a counterexample, you may want to show that in such coordinates the curvatures
Rl

ijk D 0 if all indices are distinct. It can be shown that such coordinates always
exist in 3 dimensions.

EXERCISE 4.7.27. Show that the Weyl tensors for the Schwarzschild metric and the
Eguchi-Hanson metrics are not zero.

EXERCISE 4.7.28. In this problem we shall see that even in dimension 4 the
curvature tensor has some very special properties. Throughout we let .M; g/ be a
4-dimensional oriented Riemannian manifold. The bivectors ƒ2TM come with a
natural endomorphism called the Hodge 
 operator. It is defined as follows: for any
oriented orthonormal basis e1; e2; e3; e4 we define 
 .e1 ^ e2/ D e3 ^ e4.

(1) Show that his gives a well-defined linear endomorphism which satisfies:


 D I. (Extend the definition to a linear map: 
 W ƒpTM ! ƒqTM, where
p C q D n. When n D 2, we have: 
 W TM ! TM D ƒ1TM satisfies: 

 D �I,
thus yielding an almost complex structure on any surface.)

(2) Now decompose ƒ2TM into C1 and �1 eigenspaces ƒCTM and ƒ�TM for 
.
Show that if e1; e2; e3; e4 is an oriented orthonormal basis, then

e1 ^ e2 ˙ e3 ^ e4 2 ƒ˙TM;

e1 ^ e3 ˙ e4 ^ e2 2 ƒ˙TM;

e1 ^ e4 ˙ e2 ^ e3 2 ƒ˙TM:

(3) Thus, any linear map L W ƒ2TM ! ƒ2TM has a block decomposition

L D
�

A D
B C

�
;

A W ƒCTM ! ƒCTM;

D W ƒCTM ! ƒ�TM;

B W ƒ�TM ! ƒCTM;

C W ƒ�TM ! ƒ�TM:

In particular, we can decompose the curvature operator R W ƒ2TM ! ƒ2TM:

R D
�

A D
B C

�
:
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Since R is symmetric, we get that A;C are symmetric and that D D B� is the
adjoint of B. One can furthermore show that

A D WC C scal

12
I;

C D W� C scal

12
I;

where the Weyl tensor can be written

W D
�

WC 0

0 W�
�
:

Find these decompositions for both of the doubly warped metrics:

I � S1 � S2; dr2 C �2 .r/ d�2 C �2 .r/ ds22;

I � S3; dr2 C �2.r/
�
�2.r/.
1/2 C .
2/2 C .
3/2

�
:

Use as basis for TM the natural frames in which we computed the curvature
tensors. Now

(4) find the curvature operators for the Schwarzschild metric, the Eguchi-Hanson
metric, S2 � S2, S4, and CP

2.
(5) Show that .M; g/ is Einstein if and only if B D 0 if and only if for every plane

� and its orthogonal complement �? we have: sec .�/ D sec
�
�?�.
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