
Chapter 1
Riemannian Metrics

In this chapter we introduce the spaces and maps that pervade the subject. Without
discussing any theory we present several examples of basic Riemannian manifolds
and Riemannian maps. All of these examples will be at the heart of future
investigations into constructions of Riemannian manifolds with various interesting
properties.

The abstract definition of a Riemannian manifold used today dates back only
to the 1930s as it wasn’t really until Whitney’s work in 1936 that mathematicians
obtained a clear understanding of what abstract manifolds were other than just being
submanifolds of Euclidean space. Riemann himself defined Riemannian metrics
only on domains in Euclidean space. Riemannian manifolds where then metric
objects that locally looked like a Riemannian metric on a domain in Euclidean
space. It is, however, important to realize that this local approach to a global theory
of Riemannian manifolds is as honest as the modern top-down approach.

Prior to Riemann, other famous mathematicians such as Euler, Monge, and Gauss
only worked with 2-dimensional curved geometry. Riemann’s invention of multi-
dimensional geometry is quite curious. The story goes that Gauss was on Riemann’s
defense committee for his Habilitation (doctorate). In those days, the candidate was
asked to submit three topics in advance, with the implicit understanding that the
committee would ask to hear about the first topic (the actual thesis was on Fourier
series and the Riemann integral). Riemann’s third topic was “On the Hypotheses
which lie at the Foundations of Geometry.” Evidently, he was hoping that the
committee would select from the first two topics, which were on material he had
already developed. Gauss, however, always being in an inquisitive mood, decided
he wanted to hear whether Riemann had anything to say about the subject on which
he, Gauss, was the reigning expert. Thus, much to Riemann’s dismay, he had to go
home and invent Riemannian geometry to satisfy Gauss’s curiosity. No doubt Gauss
was suitably impressed, apparently a very rare occurrence for him.

From Riemann’s work it appears that he worked with changing metrics mostly
by multiplying them by a function (conformal change). By conformally changing
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2 1 Riemannian Metrics

the standard Euclidean metric he was able to construct all three constant curvature
geometries in one fell swoop for the first time ever. Soon after Riemann’s discoveries
it was realized that in polar coordinates one can change the metric in a different
way, now referred to as a warped product. This also exhibits all constant curvature
geometries in a unified way. Of course, Gauss already knew about polar coordi-
nate representations on surfaces, and rotationally symmetric metrics were studied
even earlier by Clairaut. But those examples are much simpler than the higher-
dimensional analogues. Throughout this book we emphasize the importance of these
special warped products and polar coordinates. It is not far to go from warped
products to doubly warped products, which will also be defined in this chapter, but
they don’t seem to have attracted much attention until Schwarzschild discovered a
vacuum space-time that wasn’t flat. Since then, doubly warped products have been
at the heart of many examples and counterexamples in Riemannian geometry.

Another important way of finding examples of Riemannian metrics is by using
left-invariant metrics on Lie groups. This leads us, among other things, to the Hopf
fibration and Berger spheres. Both of these are of fundamental importance and are
also at the core of a large number of examples in Riemannian geometry. These will
also be defined here and studied further throughout the book.

1.1 Riemannian Manifolds and Maps

A Riemannian manifold .M; g/ consists of a C1-manifold M (Hausdorff and second
countable) and a Euclidean inner product gp or gjp on each of the tangent spaces TpM
of M. In addition we assume that p 7! gp varies smoothly. This means that for any
two smooth vector fields X; Y the inner product gp

�
Xjp; Yjp

�
is a smooth function

of p: The subscript p will usually be suppressed when it is not needed. Thus we
might write g .X; Y/ with the understanding that this is to be evaluated at each p
where X and Y are defined. When we wish to associate the metric with M we also
denote it as gM: The tensor g is referred to as the Riemannian metric or simply the
metric. Generally speaking the manifold is assumed to be connected. Exceptions do
occur, especially when studying level sets or submanifolds defined by constraints.

All inner product spaces of the same dimension are isometric; therefore, all
tangent spaces TpM on a Riemannian manifold .M; g/ are isometric to the n-
dimensional Euclidean space R

n with its canonical inner product. Hence, all
Riemannian manifolds have the same infinitesimal structure not only as manifolds
but also as Riemannian manifolds.

Example 1.1.1. The simplest and most fundamental Riemannian manifold is
Euclidean space .Rn; gRn/. The canonical Riemannian structure gRn is defined
by the tangent bundle identification R

n � R
n ' TRn given by the map:

.p; v/ 7! d .p C tv/

dt
.0/ :
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With this in mind the standard inner product on R
n is defined by

gRn ..p; v/ ; .p; w// D v � w:

A Riemannian isometry between Riemannian manifolds .M; gM/ and .N; gN/ is
a diffeomorphism F W M ! N such that F�gN D gM; i.e.,

gN .DF.v/; DF.w// D gM.v; w/

for all tangent vectors v; w 2 TpM and all p 2 M. In this case F�1 is also a
Riemannian isometry.

Example 1.1.2. Any finite-dimensional vector space V with an inner product,
becomes a Riemannian manifold by declaring, as with Euclidean space, that

g ..p; v/ ; .p; w// D v � w:

If we have two such Riemannian manifolds .V; gV/ and .W; gW/ of the same
dimension, then they are isometric. A example of a Riemannian isometry F W V !
W is simply any linear isometry between the two spaces. Thus .Rn; gRn/ is not only
the only n-dimensional inner product space, but also the only Riemannian manifold
of this simple type.

Suppose that we have an immersion (or embedding) F W M ! N, where .N; gN/

is a Riemannian manifold. This leads to a pull-back Riemannian metric gM D F�gN

on M, where

gM .v; w/ D gN .DF .v/ ; DF .w// :

It is an inner product as DF .v/ D 0 only when v D 0.
A Riemannian immersion (or Riemannian embedding) is an immersion (or

embedding) F W M ! N such that gM D F�gN . Riemannian immersions are
also called isometric immersions , but as we shall see below they are almost never
distance preserving.

Example 1.1.3. Another very important example is the Euclidean sphere of radius
R defined by

Sn.R/ D ˚
x 2 R

nC1 j jxj D R
�

:

The metric induced from the embedding Sn.R/ ,! R
nC1 is the canonical metric on

Sn.R/. The unit sphere, or standard sphere, is Sn D Sn.1/ � R
nC1 with the induced

metric. In figure 1.1 is a picture of a round sphere in R
3.
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Fig. 1.1 Sphere

Fig. 1.2 Isometric
Immersions

If k < n there are several linear isometric immersions
�
R

k; gRk

� ! .Rn; gRn/.
Those are, however, not the only isometric immersions. In fact, any unit speed curve
c W R ! R

2, i.e., jPc.t/j D 1 for all t 2 R, is an example of an isometric immersion.
For example, one could consider

t 7! .cos t; sin t/

as an isometric immersion and

t 7!
�

log
�

t C
p

1 C t2
�

;
p

1 C t2
�

as an isometric embedding. A map of the form:

F W Rk ! R
kC1

F.x1; : : : ; xk/ D .c.x1/; x2; : : : ; xk/;

(where c fills up the first two coordinate entries) will then also yield an isometric
immersion (or embedding) that is not linear. This initially seems contrary to intuition
but serves to illustrate the difference between a Riemannian immersion and a
distance preserving map. In figure 1.2 there are two pictures, one of the cylinder,
the other of the isometric embedding of R2 into R

3 just described.
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There is also a dual concept of a Riemannian submersion F W .M; gM/ ! .N; gN/.
This is a submersion F W M ! N such that for each p 2 M, DF W ker.DF/? !
TF.p/N is a linear isometry. In other words, if v; w 2 TpM are perpendicular to the
kernel of DF W TpM ! TF.p/N; then

gM.v; w/ D gN .DF .v/ ; DF .w// :

This is equivalent to the adjoint
�
DFp

�� W TF.p/N ! TpM preserving inner products
of vectors.

Example 1.1.4. Orthogonal projections .Rn; gRn/ ! �
R

k; gRk

�
, where k < n, are

examples of Riemannian submersions.

Example 1.1.5. A much less trivial example is the Hopf fibration S3.1/ ! S2.1=2/.
As observed by F. Wilhelm this map can be written explicitly as

H.z; w/ D
�

1

2

�
jwj2 � jzj2

�
; z Nw

�

if we think of S3.1/ � C
2 and S2.1=2/ � R˚C. Note that the fiber containing .z; w/

consists of the points
�
ei � z; ei � w

�
, where i D p�1. Consequently, i .z; w/ is tangent

to the fiber and � .� Nw; Nz/ ; � 2 C, are the tangent vectors orthogonal to the fiber.
We can check what happens to the latter tangent vectors by computing DH. Since
H extends to a map H W C2 ! R˚C its differential can be calculated as one would
do it in multivariable calculus. Alternately note that the tangent vectors � .� Nw; Nz/ at
.z; w/ 2 S3.1/ lie in the plane .z; w/ C � .� Nw; Nz/ parameterized by �. H restricted to
this plane is given by

H ..z � � Nw; w C �Nz// D
�

1

2

�
jw C �Nzj2 � jz � � Nwj2

�
; .z � � Nw/ .w C �Nz/

�
:

To calculate DH we simply expand H in terms of � and N� and isolate the first-order
terms

DHj.z;w/ .� .� Nw; Nz// D �
2Re

� N�zw
�

; �� Nw2 C N�z2
�

:

Since these have the same length j�j as � .� Nw; Nz/ we have shown that the map is a
Riemannian submersion. Below we will examine this example more closely. There
is a quaternion generalization of this map in exercise 1.6.22.

Finally, we mention a very important generalization of Riemannian manifolds.
A semi- or pseudo-Riemannian manifold consists of a manifold and a smoothly
varying symmetric bilinear form g on each tangent space. We assume in addition
that g is nondegenerate, i.e., for each nonzero v 2 TpM there exists w 2 TpM such
that g .v; w/ ¤ 0: This is clearly a generalization of a Riemannian metric where
nondegeneracy follows from g .v; v/ > 0 when v ¤ 0. Each tangent space admits a
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Fig. 1.3 Hyperbolic Space

splitting TpM D P ˚ N such that g is positive definite on P and negative definite on
N: These subspaces are not unique but it is easy to show that their dimensions are
well-defined. Continuity of g shows that nearby tangent spaces must have a similar
splitting where the subspaces have the same dimension. The index of a connected
pseudo-Riemannian manifold is defined as the dimension of the subspace N on
which g is negative definite.

Example 1.1.6. Let n D n1Cn2 and R
n1;n2 D R

n1�Rn2 . We can then write vectors in
R

n1;n2 as v D v1 C v2; where v1 2 R
n1 and v2 2 R

n2 : A natural pseudo-Riemannian
metric of index n2 is defined by

g ..p; v/ ; .p; w// D v1 � w1 � v2 � w2:

When n1 D 1 or n2 D 1 this coincides with one or the other version of
Minkowski space. This space describes the geometry of Einstein’s space-time in
special relativity.

Example 1.1.7. We define the family of hyperbolic spaces Hn .R/ � R
n;1 using the

rotationally symmetric hyperboloids

�
x1
�2 C � � � C .xn/2 � �

xnC1
�2 D �R2:

Each of these level sets consists of two components that are each properly
embedded copies of Rn in R

nC1. The branch with xnC1 > 0 is Hn .R/ (see figure 1.3).
The metric is the induced Minkowski metric from R

n;1. The fact that this defines
a Riemannian metric on Hn .R/ is perhaps not immediately obvious. Note first that
tangent vectors v D �

v1; � � � ; vn; vnC1
� 2 TpHn .R/, p 2 Hn .R/, satisfy the equation

v1p1 C � � � C vnpn � vnC1pnC1 D 0

as they are tangent to the level sets for
�
x1
�2 C� � �C .xn/2 � �xnC1

�2
. This shows that

jvj2 D �
v1
�2 C � � � C .vn/2 � �

vnC1
�2

D �
v1
�2 C � � � C .vn/2 �

�
v1p1 C � � � C vnpn

pnC1

�2

:
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Using Cauchy-Schwarz on the expression in the numerator together with

�
p1
�2 C � � � C .pn/2

.pnC1/
2

D 1 �
�

R

pnC1

�2

shows that

jvj2 �
�

R

pnC1

�2 ��
v1
�2 C � � � C .vn/2

�
:

When R D 1 we generally just write Hn and refer to this as hyperbolic n-space.

Much of the tensor analysis that we shall develop on Riemannian manifolds can
be carried over to pseudo-Riemannian manifolds without further ado. It is only when
we start using norm and distances that we have to be more careful.

1.2 The Volume Form

In Euclidean space the inner product not only allows us to calculate norms and
angles but also areas, volumes, and more. The key to understanding these definitions
better lies in using determinants.

To compute the volume of the parallelepiped spanned by n vectors v1; : : : ; vn 2
R

n we can proceed in different ways. There is the usual inductive way where we
multiply the height by the volume (or area) of the base parallelepiped. This is in
fact a Laplace expansion of a determinant along a column. If the canonical basis is
denoted e1; : : : ; en, then we define the signed volume by

vol .v1; : : : ; vn/ D det
	
g
�
vi; ej

�


D det
�
Œv1; : : : ; vn� Œe1; : : : ; en�t

�

D det Œv1; : : : ; vn� :

This formula is clearly also valid if we had selected any other positively oriented
orthonormal basis f1; : : : fn as

det
	
g
�
vi; fj

�
 D det
�
Œv1; : : : ; vn� Œf1; : : : ; fn�t

�

D det
�
Œv1; : : : ; vn� Œf1; : : : ; fn�t

�
det

�
Œf1; : : : ; fn� Œe1; : : : ; en�t

�

D det
�
Œv1; : : : ; vn� Œe1; : : : ; en�t

�
:

In an oriented Riemannian n-manifold .M; g/ we can then define the volume
form as an n-form on M by
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volg .v1; : : : ; vn/ D vol .v1; : : : ; vn/ D det
	
g
�
vi; ej

�

;

where e1; : : : ; en is any positively oriented orthonormal basis. One often also uses
the notation d vol instead of vol, however, the volume form is not necessarily exact
so the notation can be a little misleading.

Even though manifolds are not necessarily oriented or even orientable it is still
possible to define this volume form locally. The easiest way of doing so is to locally
select an orthonormal frame E1; : : : ; En and declare it to be positive. A frame is a
collection of vector fields defined on a common domain U � M such that they form
a basis for the tangent spaces TpM for all p 2 U. The volume form is then defined
on vectors and vector fields by

vol .X1; : : : ; Xn/ D det
	
g
�
Xi; Ej

�

:

This formula quickly establishes the simplest version of the “height�base”
principle if we replace Ei by a general vector X since

vol .E1; : : : ; X; : : : ; En/ D g .X; Ei/

is the projection of X onto Ei and this describes the height in the ith coordinate
direction.

On oriented manifolds it is possible to integrate n-forms. On oriented Rieman-
nian manifolds we can then integrate functions f by integrating the form f � vol. In
fact any manifold contains an open dense set O � M where TO D O � R

n is trivial.
In particular, O is orientable and we can choose an orthonormal frame on all of O.
This shows that we can integrate functions over M by integrating them over O. Thus
we can integrate on all Riemannian manifolds.

1.3 Groups and Riemannian Manifolds

We shall study groups of Riemannian isometries on Riemannian manifolds and see
how they can be used to construct new Riemannian manifolds.

1.3.1 Isometry Groups

For a Riemannian manifold .M; g/ we use Iso.M; g/ or Iso.M/ to denote the group
of Riemannian isometries F W .M; g/ ! .M; g/ and Isop.M; g/ the isotropy or
stabilizer (sub)group at p; i.e., those F 2 Iso.M; g/ with F.p/ D p. A Riemannian
manifold is said to be homogeneous if its isometry group acts transitively, i.e., for
each pair of points p; q 2 M there is an F 2 Iso .M; g/ such that F .p/ D q.
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Example 1.3.1. The isometry group of Euclidean space is given by

Iso .Rn; gRn/ D R
n Ì O .n/

D fF W Rn! R
n j F.x/ D v C Ox; v 2 R

n and O 2 O.n/g :

(Here H Ì G is the semi direct product, with G acting on H.) The translational
part v and rotational part O are uniquely determined. It is clear that these maps
are isometries. To see the converse first observe that G .x/ D F.x/ � F.0/ is
also a Riemannian isometry. Using this, we observe that at x D 0 the differential
DG0 2 O .n/ : Thus, G and DG0 are Riemannian isometries on Euclidean space that
both preserve the origin and have the same differential there. It is then a general
uniqueness result for Riemannian isometries that G D DG0 (see proposition 5.6.2).
In exercise 2.5.12 there is a more elementary version for Euclidean space.

The isotropy Isop is always isomorphic to O.n/ and R
n ' Iso=Isop for any

p 2 R
n. In fact any homogenous space can always be written as the quotient

M D Iso=Isop.

Example 1.3.2. We claim that spheres have

Iso
�
Sn.R/; gSn.R/

� D O.n C 1/ D Iso0

�
R

nC1; g
RnC1

�
:

Clearly O.n C 1/ � Iso
�
Sn.R/; gSn.R/

�
. Conversely, when F 2 Iso

�
Sn.R/; gSn.R/

�
,

consider the linear map given by the n C 1 columns vectors:

O D 	
1
R F .Re1/ DFje1 .e2/ � � � DFje1 .enC1/




The first vector is unit since F .Re1/ 2 Sn .R/. Moreover, the first column is
orthogonal to the others as DFjRe1 .ei/ 2 TF.Re1/Sn .R/ D F .Re1/?, i D 2; : : : ; nC1.
Finally, the last n columns form an orthonormal basis since DF is assumed to be a
linear isometry. This shows that O 2 O .n C 1/ and that O agrees with F and DF at
Re1. Proposition 5.6.2 can then be invoked again to show that F D O.

The isotropy groups are again isomorphic to O.n/, that is, those elements of
O.n C 1/ fixing a 1-dimensional linear subspace of R

nC1. In particular, we have
Sn ' O .n C 1/ =O .n/.

Example 1.3.3. Recall our definition of the hyperbolic spaces from example 1.1.7.
The isometry group Iso.Hn.R// comes from the linear isometries of Rn;1

O.n; 1/ D ˚
L W Rn;1 ! R

n;1 j g.Lv; Lv/ D g.v; v/
�

:

One can, as in the case of the sphere, see that these are isometries on Hn.R/ as long
as they preserve the condition xnC1 > 0: The group of those isometries is denoted
OC .n; 1/ : As in the case of Euclidean space and the spheres we can construct an
element in OC .n; 1/ that agrees with any isometry at RenC1 and such that their
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differentials at that point agree on the basis e1; : : : ; en for TRenC1
Hn .R/. Specifically,

if F 2 Iso.Hn.R// we can use:

O D 	
DFjenC1

.e1/ DFjenC1
.e2/ � � � DFjenC1

.en/ 1
R F .RenC1/



:

The isotropy group that preserves RenC1 can be identified with O.n/ (isometries
we get from the metric being rotationally symmetric). One can also easily check
that OC.n; 1/ acts transitively on Hn.R/.

1.3.2 Lie Groups

If instead we start with a Lie group G, then it is possible to make it a group of
isometries in several ways. The tangent space can be trivialized

TG ' G � TeG

by using left- (or right-) translations on G. Therefore, any inner product on
TeG induces a left-invariant Riemannian metric on G i.e., left-translations are
Riemannian isometries. It is obviously also true that any Riemannian metric on G
where all left-translations are Riemannian isometries is of this form. In contrast to
R

n; not all of these Riemannian metrics need be isometric to each other. Thus a Lie
group might not come with a canonical metric.

It can be shown that the left coset space G=H D fgH j g 2 Gg is a manifold
provided H � G is a compact subgroup. If we endow G with a general Riemannian
metric such that right-translations by elements in H act by isometries, then there
is a unique Riemannian metric on G=H making the projection G ! G=H into
a Riemannian submersion (see also section 4.5.2). When in addition the metric
is also left-invariant, then G acts by isometries on G=H (on the left) thus making
G=H into a homogeneous space. Proofs of all this are given in theorem 5.6.21 and
remark 5.6.22.

The next two examples will be studied further in sections 1.4.6, 4.4.3, and 4.5.3.
In sections 4.5.2 the general set-up is discussed and the fact that quotients are
Riemannian manifolds is also discussed in section 5.6.4 and theorem 5.6.21.

Example 1.3.4. The idea of taking the quotient of a Lie group by a subgroup can
be generalized. Consider S2nC1.1/ � C

nC1. Then S1 D f� 2 C j j�j D 1g acts
by complex scalar multiplication on both S2nC1 and C

nC1; furthermore, this action
is by isometries. We know that the quotient S2nC1=S1 D CP

n, and since the action
of S1 is by isometries, we obtain a metric on CP

n such that S2nC1 ! CP
n is a

Riemannian submersion. This metric is called the Fubini-Study metric. When n D
1; this becomes the Hopf fibration S3.1/ ! CP

1 D S2.1=2/.

Example 1.3.5. One of the most important nontrivial Lie groups is SU .2/ ; which
is defined as
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SU .2/ D ˚
A 2 M2�2 .C/ j detA D 1; A� D A�1

�

D
��

z w
� Nw Nz



j jzj2 C jwj2 D 1

�

D S3 .1/ :

The Lie algebra su .2/ of SU .2/ is

su .2/ D
��

i ˛ ˇ C i c
�ˇ C i c � i ˛



j ˛; ˇ; c 2 R

�

and can be spanned by

X1 D
�

i 0

0 � i



; X2 D

�
0 1

�1 0



; X3 D

�
0 i
i 0



:

We can think of these matrices as left-invariant vector fields on SU .2/. If we declare
them to be orthonormal, then we get a left-invariant metric on SU .2/, which as we
shall later see is S3 .1/. If instead we declare the vectors to be orthogonal, X1 to have
length "; and the other two to be unit vectors, we get a very important 1-parameter
family of metrics g" on SU .2/ D S3: These distorted spheres are called Berger
spheres. Note that scalar multiplication on S3 � C

2 corresponds to multiplication
on the left by the matrices

�
ei � 0

0 e� i �




since

�
ei � 0

0 e� i �


 �
z w

� Nw Nz



D
�

ei � z ei � w
�e� i � Nw e� i � Nz



:

Thus X1 is tangent to the orbits of the Hopf circle action. The Berger spheres are
then obtained from the canonical metric by multiplying the metric along the Hopf
fiber by "2:

1.3.3 Covering Maps

Discrete groups are also common in geometry, often through deck transformations
or covering transformations. Suppose that F W M ! N is a covering map. Then
F is, in particular, both an immersion and a submersion. Thus, any Riemannian
metric on N induces a Riemannian metric on M. This makes F into an isometric
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immersion, also called a Riemannian covering. Since dimM D dimN; F must in
fact be a local isometry, i.e., for every p 2 M there is a neighborhood U 3 p in
M such that FjU W U ! F.U/ is a Riemannian isometry. Notice that the pullback
metric on M has considerable symmetry. For if q 2 V � N is evenly covered by
fUpgp2F�1.q/; then all the sets V and Up are isometric to each other. In fact, if F is a
normal covering, i.e., there is a group � of deck transformations acting on M such
that:

F�1 .p/ D fg .q/ j F .q/ D p and g 2 �g ;

then � acts by isometries on the pullback metric. This construction can easily be
reversed. Namely, if N D M=� and M is a Riemannian manifold, where � acts by
isometries, then there is a unique Riemannian metric on N such that the quotient
map is a local isometry.

Example 1.3.6. If we fix a basis v1; v2 for R2; then Z
2 acts by isometries through

the translations

.n; m/ 7! .x 7! x C nv1 C mv2/:

The orbit of the origin looks like a lattice. The quotient is a torus T2 with some
metric on it. Note that T2 is itself an Abelian Lie group and that these metrics are
invariant with respect to the Lie group multiplication. These metrics will depend on
jv1j, jv2j and † .v1; v2/, so they need not be isometric to each other.

Example 1.3.7. The involution �I on Sn.1/ � R
nC1 is an isometry and induces a

Riemannian covering Sn ! RP
n.

1.4 Local Representations of Metrics

1.4.1 Einstein Summation Convention

We shall often use the index and summation convention introduced by Einstein.
Given a vector space V; such as the tangent space of a manifold, we use subscripts
for vectors in V: Thus a basis of V is denoted by e1; : : : ; en: Given a vector v 2 V
we can then write it as a linear combination of these basis vectors as follows

v D
X

i

viei D viei D 	
e1 � � � en



2

6
4

v1

:::

vn

3

7
5 :

Here we use superscripts on the coefficients and then automatically sum over indices
that are repeated as both subscripts and superscripts. If we define a dual basis ei for
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the dual space V� D Hom .V;R/ as follows: ei
�
ej
� D ıi

j , then the coefficients can
be computed as vi D ei .v/. Thus we decide to use superscripts for dual bases in V�:

The matrix representation
h
Lj

i

i
of a linear map L W V ! V is found by solving

L .ei/ D Lj
iej;

	
L .e1/ � � � L .en/


 D 	
e1 � � � en



2

6
4

L1
1 � � � L1

n
:::

: : :
:::

Ln
1 � � � Ln

n

3

7
5

In other words

Lj
i D ej .L .ei// :

As already indicated, subscripts refer to the column number and superscripts to
the row number.

When the objects under consideration are defined on manifolds, the conventions
carry over as follows: Cartesian coordinates on R

n and coordinates on a manifold
have superscripts

�
xi
�

as they are coordinate coefficients; coordinate vector fields
then look like

@i D @

@xi
;

and consequently have subscripts. This is natural, as they form a basis for the tangent
space. The dual 1-forms dxi satisfy dxj .@i/ D ı

j
i and consequently form the natural

dual basis for the cotangent space.
Einstein notation is not only useful when one doesn’t want to write summation

symbols, it also shows when certain coordinate- (or basis-) dependent definitions
are invariant under change of coordinates. Examples occur throughout the book.
For now, let us just consider a very simple situation, namely, the velocity field of a
curve c W I ! R

n: In coordinates, the curve is written

c .t/ D �
xi .t/

�

D xi .t/ ei;

if ei is the standard basis for Rn. The velocity field is defined as the vector Pc .t/ D�Pxi .t/
�
. Using the coordinate vector fields this can also be written as

Pc .t/ D dxi

dt

@

@xi
D Pxi .t/ @i:

In a coordinate system on a general manifold we could then try to use this as our
definition for the velocity field of a curve. In this case we must show that it gives the
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same answer in different coordinates. This is simply because the chain rule tells us
that

Pxi .t/ D dxi .Pc .t// ;

and then observing that we have used the above definition for finding the compo-
nents of a vector in a given basis.

When offering coordinate dependent definitions we shall be careful that they
are given in a form where they obviously conform to this philosophy and are
consequently easily seen to be invariantly defined.

1.4.2 Coordinate Representations

On a manifold M we can multiply 1-forms to get bilinear forms:

�1 � �2.v; w/ D �1.v/ � �2.w/:

Note that �1 � �2 ¤ �2 � �1: This multiplication is actually a tensor product �1 � �2 D
�1 ˝ �2. Given coordinates x.p/ D .x1; : : : ; xn/ on an open set U of M we can thus
construct bilinear forms dxi � dxj. If in addition M has a Riemannian metric g; then
we can write

g D g.@i; @j/dxi � dxj

because

g.v; w/ D g.dxi.v/@i; dxj.w/@j/

D g.@i; @j/dxi.v/ � dxj.w/:

The functions g.@i; @j/ are denoted by gij. This gives us a representation of g in
local coordinates as a positive definite symmetric matrix with entries parametrized
over U. Initially one might think that this gives us a way of concretely describing
Riemannian metrics. That, however, is a bit optimistic. Just think about how many
manifolds you know with a good covering of coordinate charts together with
corresponding transition functions. On the other hand, coordinate representations
are often a good theoretical tool for abstract calculations.

Example 1.4.1. The canonical metric on R
n in the identity chart is

g D ıijdxidxj D
nX

iD1

�
dxi
�2

:
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Example 1.4.2. On R
2 � fhalf lineg we also have polar coordinates .r; �/. In these

coordinates the canonical metric looks like

g D dr2 C r2d�2:

In other words,

grr D 1; gr� D g�r D 0; g�� D r2:

To see this recall that

x D r cos �;

y D r sin �:

Thus,

dx D cos �dr � r sin �d�;

dy D sin �dr C r cos �d�;

which gives

g D dx2 C dy2

D .cos �dr � r sin �d�/2 C .sin �dr C r cos �d�/2

D .cos2 � C sin2 �/dr2 C .r cos � sin � � r cos � sin �/drd�

C.r cos � sin � � r cos � sin �/d�dr C .r2 sin2 �/d�2 C .r2 cos2 �/d�2

D dr2 C r2d�2:

1.4.3 Frame Representations

A similar way of representing the metric is by choosing a frame X1; : : : ; Xn on an
open set U of M, i.e., n linearly independent vector fields on U; where n D dimM:

If �1; : : : ; �n is the coframe, i.e., the 1-forms such that � i
�
Xj
� D ıi

j ; then the metric
can be written as

g D gij�
i� j D g

�
Xi; Xj

�
� i� j:

Example 1.4.3. Any left-invariant metric on a Lie group G can be written as

g D .�1/2 C � � � C .�n/2
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using a coframe dual to left-invariant vector fields X1; : : : ; Xn forming an orthonor-
mal basis for TeG. If instead we just begin with a frame of left-invariant vector fields
X1; : : : ; Xn and dual coframe �1; : : : ; �n, then a left-invariant metric g depends only
on its values on TeG and can be written as g D gij�

i� j, where gij is a positive definite
symmetric matrix with real-valued entries. The Berger sphere can, for example, be
written

g" D "2.�1/2 C .�2/2 C .�3/2;

where � i.Xj/ D ıi
j .

Example 1.4.4. A surface of revolution consists of a profile curve

c.t/ D .r.t/; 0; z.t// W I ! R
3;

where I � R is open and r.t/ > 0 for all t. By rotating this curve around the z-axis,
we get a surface that can be represented as

.t; �/ 7! f .t; �/ D .r.t/ cos �; r.t/ sin �; z .t//:

This is a cylindrical coordinate representation, and we have a natural frame @t; @�

on the surface with dual coframe dt; d� . We wish to calculate the induced metric on
this surface from the Euclidean metric dx2 C dy2 C dz2 on R

3 with respect to this
frame. Observe that

dx D Pr cos .�/ dt � r sin .�/ d�;

dy D Pr sin .�/ dt C r cos .�/ d�;

dz D Pzdt:

so

dx2 C dy2 C dz2 D .Pr cos .�/ dt � r sin .�/ d�/2

C .Pr sin .�/ dt C r cos .�/ d�/2 C .Pzdt/2

D �Pr2 C Pz2
�

dt2 C r2d�2:

Thus

g D .Pr2 C Pz2/dt2 C r2d�2:

If the curve is parametrized by arc length, then we obtain the simpler formula:

g D dt2 C r2d�2:
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Fig. 1.4 Surfaces of
revolution

This is reminiscent of our polar coordinate description of R2. In figure 1.4 there are
two pictures of surfaces of revolution. In the first, r starts out being zero, but the
metric appears smooth as r has vertical tangent to begin with. The second shows
that when r D 0 the metric looks conical and therefore collapses the manifold.

On the abstract manifold I � S1 we can use the frame @t; @� with coframe dt; d�

to define metrics

g D �2.t/dt2 C �2.t/d�2:

These are called rotationally symmetric metrics since � and � do not depend on the
rotational parameter � . We can, by change of coordinates on I, generally assume
that � D 1. Note that not all rotationally symmetric metrics come from surfaces of
revolution. For if dt2 C r2d�2 is a surface of revolution, then Pz2 C Pr2 D 1 and, in
particular, jPrj � 1.

Example 1.4.5. The round sphere S2.R/ � R
3 can be thought of as a surface of

revolution by revolving

t 7! R
�
sin
�

t
R

�
; 0; cos

�
t
R

��

around the z-axis. The metric looks like

dt2 C R2 sin2
�

t
R

�
d�2:

Note that R sin
�

t
R

� ! t as R ! 1, so very large spheres look like Euclidean space.
By formally changing R to i R, we arrive at a different family of rotationally

symmetric metrics:

dt2 C R2 sinh2
�

t
R

�
d�2:

This metric coincides with the metric defined in example 1.1.7 by observing that it
comes from the induced metric in R

2;1 after having rotated the curve

t 7! R
�
sinh

�
t
R

�
; 0; cosh

�
t
R

��

around the z-axis.
If we let snk.t/ denote the unique solution to

Rx.t/ C k � x.t/ D 0;

x.0/ D 0;

Px.0/ D 1;
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then we obtain a 1-parameter family

dt2 C sn2
k.t/d�2

of rotationally symmetric metrics. (The notation snk will be used throughout the text,
it should not be confused with Jacobi’s elliptic function sn .k; u/.) When k D 0; this
is R2; when k > 0; it is S2 .1=

p
k/; and when k < 0 the hyperbolic space H2 .1=

p�k/.
Corresponding to snk we also have csk defined as the solution to

Rx.t/ C k � x.t/ D 0;

x.0/ D 1;

Px.0/ D 0:

The functions are related by

d snk

dt
.t/ D csk .t/ ;

d csk

dt
.t/ D �k snk .t/ ;

1 D cs2
k .t/ C k sn2

k .t/ :

1.4.4 Polar Versus Cartesian Coordinates

In the rotationally symmetric examples we haven’t discussed what happens when
�.t/ D 0. In the revolution case, the profile curve clearly needs to have a horizontal
tangent in order to look smooth. To be specific, consider dt2 C �2.t/d�2, where
� W Œ0; b/ ! Œ0; 1/ with �.0/ D 0 and �.t/ > 0 for t > 0. All other situations can
be translated or reflected into this position.

More generally, we wish to consider metrics on I � Sn�1 of the type dt2 C
�2.t/ds2

n�1, where ds2
n�1 is the canonical metric on Sn�1.1/ � R

n. These are also
called rotationally symmetric metrics and are a special class of warped products
(see also section 4.3). If we assume that � .0/ D 0 and � .t/ > 0 for t > 0, then we
want to check that the metric extends smoothly near t D 0 to give a smooth metric
near the origin in R

n. There is also a discussion of how to approach this smoothness
question in section 4.3.4.

The natural coordinate change to make is x D ts where x 2 R
n, t > 0, and

s 2 Sn�1.1/ � R
n: Thus

ds2
n�1 D

nX

iD1

�
dsi
�2

:
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Keep in mind that the constraint
P�

si
�2 D 1 implies the relationship

P
sidsi D 0

between the restriction of the differentials to Sn�1.1/:

The standard metric on R
n now becomes

X�
dxi
�2 D

X�
sidt C tdsi

�2

D
X�

si
�2

dt2 C t2
�
dsi
�2 C .tdt/

�
sidsi

�C �
sidsi

�
.tdt/

D dt2 C t2ds2
n�1

when switching to polar coordinates.
In the general situation we have to do this calculation in reverse and check that

the expression becomes smooth at the origin corresponding to xi D 0: Thus we have
to calculate dt and dsi in terms of dxi: First observe that

2tdt D 2
X

xidxi;

dt D 1

t

X
xidxi;

and then from
P�

dxi
�2 D dt2 C t2ds2

n�1 that

ds2
n�1 D

P�
dxi
�2 � dt2

t2
:

This implies

dt2 C �2.t/ds2
n�1 D dt2 C �2.t/

P�
dxi
�2 � dt2

t2

D
�

1 � �2.t/

t2

�
dt2 C �2.t/

t2
X�

dxi
�2

D
�

1

t2
� �2.t/

t4

��X
xidxi

�2 C �2.t/

t2
X�

dxi
�2

:

Thus we have to ensure that the functions

�2.t/

t2
and

�
1

t2
� �2.t/

t4

�

are smooth, keeping in mind that t D
qP

.xi/
2 is not differentiable at the origin.

The condition � .0/ D 0 is necessary for the first function to be continuous at t D 0;

while we have to additionally assume that P� .0/ D 1 for the second function to be
continuous.
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The general condition for ensuring that both functions are smooth is that � .0/ D
0, P� .0/ D 1, and that all even derivatives vanish: �(even) .0/ D 0. This implies that
for each l D 1; 2; 3; : : :

� .t/ D t C
lX

kD1

akt2kC1 C o
�
t2lC3

�

as all the even derivatives up to 2l C 2 vanish. Note that

�2.t/

t2
D
 

1 C
lX

kD1

akt2k C o
�
t2lC2

�
!2

D 1 C
lX

kD1

bkt2k C o
�
t2lC2

�
;

where bk D Pk
iD1 aiak�i. Similarly for the other function

1

t2
� �2.t/

t4
D 1

t2

�
1 � �2.t/

t2

�

D 1

t2

 

�
lX

kD1

bkt2k C o
�
t2lC2

�
!

D �
lX

kD1

bkt2k�2 C o
�
t2l
�

:

This shows that both functions can be approximated to any order by polynomials
that are smooth as functions of xi at t D 0. Thus the functions themselves are
smooth.

Example 1.4.6. These conditions hold for all of the metrics dt2Csn2
k.t/ds2

n�1, where
t 2 Œ0; 1/ when k � 0, and t 2 Œ0; 	=

p
k� when k > 0. The corresponding

Riemannian manifolds are denoted Sn
k and are called space forms of dimension n

with curvature k. As in example 1.4.5 we can show that these spaces coincide with
Hn .R/, Rn, or Sn .R/. When k D 0 we clearly get .Rn; gRn/. When k D 1=R2 we get
Sn.R/. To see this, observe that there is a map

F W Rn � .0; R	/ ! R
n � R;

F.s; r/ D .x; t/ D R
�
s � sin

�
r
R

�
; cos

�
r
R

��
;

that restricts to

G W Sn�1 � .0; R	/ ! R
n � R;

G.s; r/ D R
�
s � sin

�
r
R

�
; cos

�
r
R

��
:
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Thus, G really maps into the R-sphere in R
nC1. To check that G is a Riemannian

isometry we just compute the canonical metric on R
n � R using the coordinates

R
�
s � sin

�
r
R

�
; cos

�
r
R

��
. To do the calculation keep in mind that

P�
si
�

2 D 1 andP
sidsi D 0.

dt2 C
X

ıijdxidxj

D �
dR cos

�
r
R

��2 C
X

ıijd
�
R sin

�
r
R

�
si
�

d
�
R sin

�
r
R

�
sj
�

D sin2
�

r
R

�
dr2

C
X

ıij
�
si cos

�
r
R

�
dr C R sin

�
r
R

�
dsi
� �

sj cos
�

r
R

�
dr C R sin

�
r
R

�
dsj
�

D sin2
�

r
R

�
dr2 C

X
ıijs

isj cos2
�

r
R

�
dr2 C

X
ıijR

2 sin2
�

r
R

�
dsidsj

C
X

ıijs
jR cos

�
r
R

�
sin .r/ dsidr C

X
ıijs

iR cos
�

r
R

�
sin
�

r
R

�
drdsj

D sin2
�

r
R

�
dr2 C cos2

�
r
R

�
dr2

X
ıijs

isj C R2 sin2
�

r
R

�X
ıijdsidsj

C R cos
�

r
R

�
sin
�

r
R

�
dr
X

sidsi C R cos
�

r
R

�
sin
�

r
R

� �X
sidsi

�
dr

D dr2 C R2 sin2
�

r
R

�
ds2

n�1:

Hyperbolic space Hn .R/ � R
n;1 is similarly realized as a rotationally symmetric

metric using the map

Sn�1 � .0; 1/ ! R
n;1

.s; r/ 7! .x; t/ D R
�
s � sinh

�
r
R

�
; cosh

�
r
R

��
:

As with spheres this defines a Riemannian isometry from dr2 C R2 sinh2
�

r
R

�
ds2

n�1

to the induced metric on Hn.R/ � R
n;1. For the calculation note that the metric is

induced by gRn;1 D ıijdxidxj � dt2 and that
P

.si/2 D 1 and
P

sidsi D 0.

�dt2 C
X

ıijdxidxj

D � �d �R cosh
�

r
R

���2 C
X

ıijd
�
R sinh

�
r
R

�
si
�

d
�
R sinh

�
r
R

�
sj
�

D � sinh2
�

r
R

�
dr2

C
X

ıij
�
si cosh

�
r
R

�
dr C R sinh

�
r
R

�
dsi
� �

sj cosh
�

r
R

�
dr C R sinh

�
r
R

�
dsj
�

D � sinh2
�

r
R

�
dr2 C

X
ıijs

isj cosh2
�

r
R

�
dr2 C

X
ıijR

2 sinh2
�

r
R

�
dsidsj

D dr2 C R2 sinh2
�

r
R

�
ds2

n�1:
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1.4.5 Doubly Warped Products

We can more generally consider metrics of the type:

dt2 C �2.t/ds2
p C 
2.t/ds2

q

on I � Sp � Sq. These are a special class of doubly warped products. When �.t/ D 0

we can use the calculations for rotationally symmetric metrics (see 1.4.4) to check
for smoothness. Note, however, that nondegeneracy of the metric implies that � and

 cannot both be zero at the same time. The following propositions explain the
various possible situations:

Proposition 1.4.7. If � W .0; b/ ! .0; 1/ is smooth and �.0/ D 0; then we get a
smooth metric at t D 0 if and only if

�.even/.0/ D 0; P�.0/ D 1

and


.0/ > 0; 
.odd/.0/ D 0:

The topology near t D 0 in this case is RpC1 � Sq.

Proposition 1.4.8. If � W .0; b/ ! .0; 1/ is smooth and �.b/ D 0; then we get a
smooth metric at t D b if and only if

�.even/.b/ D 0; P�.b/ D �1

and


.b/ > 0; 
.odd/.b/ D 0:

The topology near t D b in this case is again R
pC1 � Sq.

By adjusting and possibly changing the roles of these functions we obtain three
different types of topologies.

• �; 
 W Œ0; 1/ ! Œ0; 1/ are both positive on all of .0; 1/. Then we have a smooth
metric on R

pC1 � Sq if �; 
 satisfy the first proposition.
• �; 
 W Œ0; b� ! Œ0; 1/ are both positive on .0; b/ and satisfy both propositions.

Then we get a smooth metric on SpC1 � Sq.
• �; 
 W Œ0; b� ! Œ0; 1/ as in the second type but the roles of 
 and � are

interchanged at t D b. Then we get a smooth metric on SpCqC1.

Example 1.4.9. We exhibit spheres as doubly warped products. The claim is that
the metrics
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dt2 C sin2.t/ds2
p C cos2.t/ds2

q; t 2 Œ0; 	=2� ;

are
�
SpCqC1.1/; gSpCqC1

�
. Since Sp � R

pC1 and Sq � R
qC1 we can map

�
0; 	

2

� � Sp � Sq ! R
pC1�RqC1;

.t; x; y/ 7! .x � sin.t/; y � cos.t//;

where x 2 R
pC1; y2 R

qC1 have jxj D jyj D 1. These embeddings clearly map into
the unit sphere. The computations that the map is a Riemannian isometry are similar
to the calculations in example 1.4.6.

1.4.6 Hopf Fibrations

We use several of the above constructions to understand the Hopf fibration. This
includes the higher dimensional analogues and other metric variations of these
examples.

Example 1.4.10. First we revisit the Hopf fibration S3.1/ ! S2 .1=2/ (see also
example 1.1.5). On S3.1/, write the metric as

dt2 C sin2.t/d�2
1 C cos2.t/d�2

2 ; t 2 Œ0; 	=2� ;

and use complex coordinates

�
t; ei �1 ; ei �2

� 7! �
sin.t/ei �1 ; cos.t/ei �2

�

to describe the isometric embedding

.0; 	=2/ � S1 � S1 ,! S3.1/ � C
2:

Since the Hopf fibers come from complex scalar multiplication, we see that they are
of the form

� 7! �
t; ei.�1C�/; ei.�2C�/

�
:

On S2 .1=2/ use the metric

dr2 C sin2.2r/

4
d�2; r 2 Œ0; 	=2� ;

with coordinates

.r; ei � / 7! �
1
2

cos.2r/; 1
2

sin.2r/ei �
�

:
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The Hopf fibration in these coordinates looks like

�
t; ei �1 ; ei �2

� 7! �
t; ei.�1��2/

�
:

This conforms with Wilhelm’s map defined in example 1.1.5 if we observe that

�
sin.t/ei �1 ; cos.t/ei �2

�

is supposed to be mapped to

�
1
2

�
cos2 t � sin2 t

�
; sin .t/ cos .t/ ei.�1��2/

�
D
�

1
2

cos .2t/ ; 1
2

sin .2t/ ei.�1��2/
�

:

On S3.1/ there is an orthogonal frame

@�1 C @�2 ; @t;
cos2.t/@�1

�sin2.t/@�2

cos.t/ sin.t/ ;

where the first vector is tangent to the Hopf fiber and the two other vectors have unit
length. On S2 .1=2/

@r;
2

sin.2r/ @�

is an orthonormal frame. The Hopf map clearly maps

@t 7! @r;

cos2.t/@�1
�sin2.t/@�2

cos.t/ sin.t/ 7! cos2.r/@� Csin2.r/@�

cos.r/ sin.r/ D 2
sin.2r/ � @� ;

thus showing that it is an isometry on vectors perpendicular to the fiber.
Note also that the map

�
t; ei �1 ; ei �2

� 7! �
cos.t/ei �1 ; sin.t/ei �2

� 7!
�

cos.t/ei �1 sin.t/ei �2

� sin.t/e� i �2 cos.t/e� i �1

�

gives us the promised isometry from S3.1/ to SU.2/, where SU.2/ has the left-
invariant metric described in example 1.3.5.

Example 1.4.11. More generally, the map

I � S1 � S1 ! I � S1

�
t; ei �1 ; ei �2

� 7! �
t; ei.�1��2/

�

is always a Riemannian submersion when the domain is endowed with the doubly
warped product metric
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dt2 C �2.t/d�2
1 C 
2.t/d�2

2

and the target has the rotationally symmetric metric

dr2 C .�.t/ � 
.t//2

�2.t/ C 
2.t/
d�2:

Example 1.4.12. This submersion can also be generalized to higher dimensions as
follows: On I � S2nC1 � S1 consider the doubly warped product metric

dt2 C �2.t/ds2
2nC1 C 
2.t/d�2:

The unit circle acts by complex scalar multiplication on both S2nC1 and S1 and
consequently induces a free isometric action on this space (if � 2 S1 and .z; w/ 2
S2nC1 � S1; then � � .z; w/ D .�z; �w/). The quotient map

I � S2nC1 � S1 ! I � ��S2nC1 � S1
�

=S1
�

can be made into a Riemannian submersion by choosing an appropriate metric on
the quotient space. To find this metric, we split the canonical metric

ds2
2nC1 D h C g;

where h corresponds to the metric along the Hopf fiber and g is the orthogonal
component. In other words, if pr W TpS2nC1 ! TpS2nC1 is the orthogonal projection
(with respect to ds2

2nC1) whose image is the distribution generated by the Hopf
action, then

h.v; w/ D ds2
2nC1.pr.v/; pr.w//

and

g.v; w/ D ds2
2nC1.v � pr.v/; w � pr.w//:

We can then rewrite

dt2 C �2.t/ds2
2nC1 C 
2.t/d�2 D dt2 C �2.t/g C �2.t/h C 
2.t/d�2:

Observe that
�
S2nC1 � S1

�
=S1 D S2nC1 and that the S1 only collapses the Hopf fiber

while leaving the orthogonal component to the Hopf fiber unchanged. In analogy
with the above example, the submersion metric on I � S2nC1 can be written

dt2 C �2.t/g C .�.t/ � 
.t//2

�2.t/ C 
2.t/
h:
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Example 1.4.13. In the case where n D 0 we recapture the previous case, as g
doesn’t appear. When n D 1; the decomposition: ds2

3 D h C g can also be written

ds2
3 D .�1/2 C .�2/2 C .�3/2;

h D .�1/2;

g D .�2/2 C .�3/2;

where f�1; �2; �3g is the coframe coming from the identification S3 ' SU.2/ (see
example 1.3.5). The Riemannian submersion in this case can then be written

�
I � S3 � S1; dt2 C �2 .t/

�
.�1/2 C .�2/2 C .�3/2

�C 
2.t/d�2
�

#�
I � S3; dt2 C �2.t/

�
.�2/2 C .�3/2

�C .�.t/�
.t//2

�2.t/C
2.t/
.�1/2

�
:

Example 1.4.14. If we let � D sin .t/ ; 
 D cos .t/ ; and t 2 I D Œ0; 	=2� ; then
we obtain the generalized Hopf fibration S2nC3 ! CP

nC1 defined in example 1.3.4.
The map

.0; 	=2/ � �S2nC1 � S1
� ! .0; 	=2/ � ��S2nC1 � S1

�
=S1

�

is a Riemannian submersion, and the Fubini-Study metric on CP
nC1 can be

represented as

dt2 C sin2.t/.g C cos2.t/h/:

1.5 Some Tensor Concepts

In this section we shall collect together some notational baggage and more general
inner products of tensors that will be needed from time to time.

1.5.1 Type Change

The inner product structures on the tangent spaces to a Riemannian manifold allow
us to view tensors in different ways. We shall use this for the Hessian of a function
and the Ricci tensor. These are naturally bilinear tensors, but can also be viewed
as endomorphisms of the tangent bundle. Specifically, if we have a metric g and an
endomorphism S on a vector space, then b .v; w/ D g .S .v/ ; w/ is the corresponding
bilinear form. Given g, this correspondence is an isomorphism. When generalizing
to the pseudo-Riemannian setting it is occasionally necessary to change the formulas
we develop (see also exercise 1.6.10).
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If, in general, we have an .s; t/-tensor T; then we can view it as a section in the
bundle

TM ˝ � � � ˝ TM„ ƒ‚ …
s times

˝ T�M ˝ � � � ˝ T�M„ ƒ‚ … :

t times

Given a Riemannian metric g on M; we can make T into an .s � k; t C k/-tensor
for any k 2 Z such that both s � k and t C k are nonnegative. Abstractly, this is done
as follows: On a Riemannian manifold TM is naturally isomorphic to T�MI the
isomorphism is given by sending v 2 TM to the linear map .w 7! g .v; w// 2 T�M:

Using this isomorphism we can then replace TM by T�M or vice versa and thus
change the type of the tensor.

At a more concrete level what happens is this: We select a frame E1; : : : ; En and
construct the coframe �1; : : : ; �n: The vectors in TM and covectors in T�M can be
written as

v D viEi D � i .v/ Ei;

! D !j�
j D !

�
Ej
�

� j:

The tensor T can then be written as

T D Ti1���is
j1���jt Ei1 ˝ � � � ˝ Eis ˝ � j1 ˝ � � � ˝ � jt :

Using indices and simply writing Ti1���is
j1���jt is often called tensor notation.

We need to know how we can change Ei into a covector and � j into a vector. As
before, the dual to Ei is the covector w 7! g .Ei; w/ ; which can be written as

g .Ei; w/ D g
�
Ei; Ej

�
� j .w/ D gij�

j .w/ :

Conversely, we have to find the vector v corresponding to the covector � j: The
defining property is

g .v; w/ D � j .w/ :

Thus, we have

g .v; Ei/ D ı
j
i :

If we write v D vkEk; this gives

gkiv
k D ı

j
i :
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Letting gij denote the ijth entry in the inverse of
�
gij
�

; we obtain

v D viEi D gijEi:

Thus,

Ei 7! gij�
j;

� j 7! gijEi:

Note that using Einstein notation will help keep track of the correct way of doing
things as long as the inverse of g is given with superscript indices. With this formula
one can easily change types of tensors by replacing Es with �s and vice versa. Note
that if we used coordinate vector fields in our frame, then one really needs to invert
the metric, but if we had chosen an orthonormal frame, then one simply moves
indices up and down as the metric coefficients satisfy gij D ıij.

Let us list some examples:
The Ricci tensor: For now this is simply an abstract .1; 1/-tensor: Ric .Ei/ D
Ricj

i EjI thus

Ric D Rici
j �Ei ˝ � j:

As a .0; 2/-tensor it will look like

Ric D Ricjk �� j ˝ � k D gji Rici
k �� j ˝ � k;

while as a .2; 0/-tensor acting on covectors it will be

Ric D Ricik �Ei ˝ Ek D gij Rick
j �Ei ˝ Ek:

The curvature tensor: We consider a .1; 3/-curvature tensor R .X; Y/ Z; which we
write as

R D Rl
ijk � El ˝ � i ˝ � j ˝ � k:

As a .0; 4/-tensor we get

R D Rijkl � � i ˝ � j ˝ � k ˝ � l

D Rs
ijkgsl � � i ˝ � j ˝ � k ˝ � l:

Note that we have elected to place l at the end of the .0; 4/ version. In many texts
it is placed first. Our choice appears natural given how we write these tensors in
invariant notation in chapter 3. As a .2; 2/-tensor we have:
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R D Rkl
ij � Ek ˝ El ˝ � i ˝ � j

D Rl
ijsg

sk � Ek ˝ El ˝ � i ˝ � j:

Here we must be careful as there are several different possibilities for raising and
lowering indices. We chose to raise the last index, but we could also have chosen
any other index, thus yielding different .2; 2/-tensors. The way we did it gives what
we will call the curvature operator.

1.5.2 Contractions

Contractions are traces of tensors. Thus, the contraction of a .1; 1/-tensor T D Ti
j �

Ei ˝ � j is its usual trace:

C .T/ D trT D Ti
i :

An instructive example comes from considering the rank 1 tensor X ˝ ! where
X is a vector field and ! a 1-form. In this case contraction is simply evaluation
C .X ˝ !/ D ! .X/. Conversely, contraction is a sum of such evaluations.

If instead we had a .0; 2/-tensor T; then we could, using the Riemannian
structure, first change it to a .1; 1/-tensor and then take the trace

C .T/ D C
�
Tij � � i ˝ � j

�

D C
�
Tikgkj � Ek ˝ � j

�

D Tikgki:

In fact the Ricci tensor is a contraction of the curvature tensor:

Ric D Rici
j �Ei ˝ � j

D Rkj
ik � Ei ˝ � j

D Rj
iksg

sk � Ei ˝ � j;

or

Ric D Ricij �� i ˝ � j

D gklRiklj � � i ˝ � j;

which after type change can be seen to give the same expressions. The scalar
curvature is defined as a contraction of the Ricci tensor:



30 1 Riemannian Metrics

scal D tr .Ric/

D Rici
i

D Ri
iksg

sk

D Ricik gki

D Rijklg
jkgil:

Again, it is necessary to be careful to specify over which indices one contracts in
order to get the right answer.

1.5.3 Inner Products of Tensors

There are several conventions for how one should measure the norm of a linear
map. Essentially, there are two different norms in use, the operator norm and the
Euclidean norm. The former is defined for a linear map L W V ! W between
normed spaces as

kLk D sup
jvjD1

jLvj :

The Euclidean norm is given by

jLj D
p

tr .L� ı L/ D
p

tr .L ı L�/;

where L� W W ! V is the adjoint. These norms are almost never equal. If, for
instance, L W V ! V is self-adjoint and �1 � � � � � �n the eigenvalues of L counted
with multiplicities, then the operator norm is: max fj�1j ; j�njg ; while the Euclidean

norm is
q

�2
1 C � � � C �2

n: The Euclidean norm has the advantage of actually coming
from an inner product:

hL1; L2i D tr
�
L1 ı L�

2

� D tr
�
L2 ı L�

1

�
:

As a general rule we shall always use the Euclidean norm.
It is worthwhile to check how the Euclidean norm of some simple tensors can be

computed on a Riemannian manifold. Note that this computation uses type changes
to compute adjoints and contractions to take traces.

Let us start with a .1; 1/-tensor T D Ti
j � Ei ˝ � j: We think of this as a linear map

TM ! TM. Then the adjoint is first of all the dual map T� W T�M ! T�M; which
we then change to T� W TM ! TM: This means that

T� D Tj
i � � i ˝ Ej;
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which after type change becomes

T� D Tk
l gljgki � Ej ˝ � i:

Finally,

jTj2 D Ti
j T

k
l gljgki:

If the frame is orthonormal, this takes the simple form of

jTj2 D Ti
j T

j
i :

For a .0; 2/-tensor T D Tij � � i ˝ � j we first have to change type and then proceed
as above. In the end one gets the nice formula

jTj2 D TijT
ij:

In general, we can define the inner product of two tensors of the same type, by
declaring that if Ei is an orthonormal frame with dual coframe � i then the .s; t/-
tensors

Ei1 ˝ � � � ˝ Eis ˝ � j1 ˝ � � � ˝ � jt

form an orthonormal basis for .s; t/-tensors.
The inner product just defined is what we shall call the point-wise inner product

of tensors, just as g .X; Y/ is the point-wise inner product of two vector fields. The
point-wise inner product of two compactly supported tensors of the same type can
be integrated to yield an inner product structure on the space of tensors:

.T1; T2/ D
Z

M
g .T1; T2/ vol :

1.5.4 Positional Notation

A final remark is in order. Many of the above notations could be streamlined even
further so as to rid ourselves of some of the notational problems we have introduced
by the way in which we write tensors in frames. Namely, tensors TM ! TM (section
of TM ˝ T�M) and T�M ! T�M (section of T�M ˝ TM) seem to be written in
the same way, and this causes some confusion when computing their Euclidean
norms. That is, the only difference between the two objects � ˝ E and E ˝ � is
in the ordering, not in what they actually do. We simply interpret the first as a map
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TM ! TM and then the second as T�M ! T�M; but the roles could have been
reversed, and both could be interpreted as maps TM ! TM: This can indeed cause
great confusion.

One way to at least keep the ordering straight when writing tensors out in
coordinates is to be even more careful with indices and how they are written down.
Thus, a tensor T that is a section of T�M ˝ TM ˝ T�M should really be written as

T D T j
i k � � i ˝ Ej ˝ � k:

Our standard .1; 1/-tensor (section of TM ˝ T�M) could then be written

T D Ti
j � Ei ˝ � j;

while the adjoint (section of T�M ˝ TM) before type change is

T� D T l
k � � k ˝ El

D Ti
j gkig

lj � � k ˝ El:

Thus, we have the nice formula

jTj2 D Ti
j T

j
i :

Nice as this notation is, it is not used consistently in the literature. It would be
convenient to use it, but in most cases one can usually keep track of things anyway.
Most of this notation can of course also be avoided by using invariant (coordinate
free) notation, but often it is necessary to do coordinate or frame computations both
in abstract and concrete situations.

1.6 Exercises

EXERCISE 1.6.1. On M � N one has the Cartesian product metrics g D gM C gN ,
where gM; gN are metrics on M, N respectively.

(1) Show that .Rn; gRn/ D �
R; dt2

� � � � � � �R; dt2
�
.

(2) Show that the flat square torus

T2 D R
2=Z2 D

 

S1;

�
1

2	

�2

d�2

!

�
 

S1;

�
1

2	

�2

d�2

!

:
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(3) Show that

F .�1; �2/ D 1

2	
.cos �1; sin �1; cos �2; sin �2/

is a Riemannian embedding: T2 ! R
4:

EXERCISE 1.6.2. Suppose we have an isometric group action G on .M; g/ such that
the quotient space M=G is a manifold and the quotient map a submersion. Show
that there is a unique Riemannian metric on the quotient making the quotient map a
Riemannian submersion.

EXERCISE 1.6.3. Let M ! N be a Riemannian k-fold covering map. Show,
vol M D k � vol N:

EXERCISE 1.6.4. Show that the volume form for a metric dr2 C �2 .r/ gN on a
product I � N is given by �n�1dr ^ volN , where volN is the volume form on .N; gN/.

EXERCISE 1.6.5. Show that if E1; : : : ; En is an orthonormal frame, then the dual
frame is given by � i .X/ D g .Ei; X/ and the volume form by vol D ˙�1 ^ � � � ^ �n.

EXERCISE 1.6.6. Show that in local coordinates x1; : : : ; xn the volume form is given

by vol D ˙
q

det
	
gij


dx1 ^ � � � ^ dxn. In the literature one often sees the simplified

notation g D
q

det
	
gij


.

EXERCISE 1.6.7. Construct paper models of the warped products dt2 C a2t2d�2. If
a D 1; this is of course the Euclidean plane, and when a < 1; they look like cones.
What do they look like when a > 1‹

EXERCISE 1.6.8. Consider a rotationally symmetric metric dr2 C �2 .r/ gSn�1.R/,
where Sn�1 .R/ � R

n is given the induced metric. Show that if � .0/ D 0, then we
need P� .0/ D 1=R and �.2k/ .0/ D 0 to get a smooth metric near r D 0.

EXERCISE 1.6.9. Show that if we think of Rn as any of the hyperplanes xnC1 D R
in R

nC1, then Iso .Rn/ can be identified with the group of .n C 1/�.n C 1/ matrices

�
O v

0 1



;

where v 2 R
n and O 2 O .n/. Further, show that these are precisely the linear maps

that preserve xnC1 D R and the degenerate bilinear form x1y1 C � � � C xnyn.

EXERCISE 1.6.10. Let V be an n-dimensional vector space with a symmetric
nondegenerate bilinear form g of index p:

(1) Show that there exists a basis e1; : : : ; en such that g
�
ei; ej

� D 0 if i ¤ j;
g .ei; ei/ D 1 if i D 1; : : : ; n � p and g .ei; ei/ D �1 if i D n � p C 1; : : : ; n:

Thus V is isometric to R
p;q:

(2) Show that for any v we have the expansion
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v D
nX

iD1

g.v;ei/

g.ei;ei/
ei

D
n�pX

iD1

g .v; ei/ ei �
nX

iDn�pC1

g .v; ei/ ei:

(3) Let L W V ! V be a linear operator. Show that

tr .L/ D
nX

iD1

g.L.ei/;ei/

g.ei;ei/
:

EXERCISE 1.6.11. Let g�1 denote the .2; 0/-tensor that is the inner product on the
dual tangent space T�M. Show that type change can be described as a contraction
of a tensor product with g or g�1.

EXERCISE 1.6.12. For a .1; 1/-tensor T on a Riemannian manifold, show that if Ei

is an orthonormal basis, then

jTj2 D
X

jT .Ei/j2 :

EXERCISE 1.6.13. Given .1; 1/-tensor tensors S; T show that if S is symmetric and
T skew-symmetric, then g .S; T/ D 0:

EXERCISE 1.6.14. Show that the inner product of two tensors of the same type can
be described as (possibly several) type change(s) to one of the tensors followed by
(possibly several) contraction(s).

EXERCISE 1.6.15. Consider F W FnC1 � f0g ! FP
n defined by F .x/ D span

F
fxg,

where F D R;C and assume that FP
n comes with the metric that makes the

restriction of F to the unit sphere a Riemannian submersion.

(1) Show that F is a submersion.
(2) Show that F is not a Riemannian submersion with respect to the standard metric

on F
nC1 � f0g.

(3) Is it possible to choose a metric on F
nC1 � f0g so that F becomes a Riemannian

submersion?

EXERCISE 1.6.16. The arc length of a curve c .t/ W Œa; b� ! .M; g/ is defined by

L .c/ D
Z

Œa;b�

jPcj dt

(1) Show that the arc length does not depend on the parametrization of c.
(2) Show that any curve with nowhere vanishing speed can be reparametrized to

have unit speed.



1.6 Exercises 35

(3) Show that it is possible to define the arclength of an absolutely continuous
curve. You should, in particular, show that the concept of being absolutely
continuous is well-defined for curves in manifolds.

EXERCISE 1.6.17. Show that the arclength of curves is preserved by Riemannian
immersions.

EXERCISE 1.6.18. Let F W .M; gM/ ! .N; gN/ be a Riemannian submersion and
c .t/ W Œa; b� ! .M; gM/ a curve. Show that L .F ı c/ � L .c/ with equality holding
if and only if Pc .t/ ? ker DFc.t/ for all t 2 Œa; b�.

EXERCISE 1.6.19. Show directly that any curve between two points in Euclidean
space is longer than the Euclidean distance between the points. Moreover, if the
length agrees with the distance, then the curve lies on the straight line between those
points. Hint: If v is an appropriate unit vector, then calculate the length of v � c .t/
and compare it to the length of c.

EXERCISE 1.6.20. Let Sn � R
nC1 be the standard unit sphere and p; q 2 Sn and

v 2 TpSn a unit vector. We think of p; q and v as unit vectors in R
nC1.

(1) Show that the great circle p cos t C v sin t is a unit speed curve on Sn that starts
at p and has initial velocity v.

(2) Consider the map F .r; v/ D p cos r C v sin r for r 2 Œ0; 	� and v ? p; jvj D 1.
Show that this map defines a diffeomorphism .0; 	/ � Sn�1 ! Sn � f˙pg.

(3) Define @r D F� .@r/ on Sn � f˙pg. Show that if q D F .r0; v0/, then

@rjq D �p C .p � q/ q
q

1 � .p � q/2
D �p sin r0 C v0 cos r0:

(4) Show that any curve from p to q is longer than r0, where q D F .r0; v0/, unless
it is part of the great circle. Hint: Compare the length of c .t/ to the integralR Pc � @rdt and show that Pc � @r D dr

dt , where c .t/ D F .r .t/ ; v .t//.
(5) Show that there is no Riemannian immersion from an open subset U � R

n into
Sn. Hint: Any such map would map small equilateral triangles to triangles on
Sn whose side lengths and angles are the same. Show that this is impossible by
showing that the spherical triangles have sides that are part of great circles and
that when such triangles are equilateral the angles are always > 	

3
.

EXERCISE 1.6.21. Let Hn � R
n;1 be hyperbolic space: p; q 2 Hn; and v 2 TpHn a

unit vector. Thus jpj2 D jqj2 D �1, jvj2 D 1, and p � v D 0.

(1) Show that the hyperbola p cosh tCv sinh t is a unit speed curve on Hn that starts
at p and has initial velocity v.

(2) Consider F .r; v/ D p cosh r Cv sinh r, for r � 0 and v �p D 0; jvj2 D 1. Show
that this map defines a diffeomorphism .0; 1/ � Sn�1 ! Hn � fpg.

(3) Define the radial field @r D F� .@r/ on Hn � fpg. Show that if q D F .r0; v0/,
then
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@rjq D �p � .q � p/ q
q

�1 C .q � p/2
D p sinh r0 C v0 cosh r0:

(4) Show that any curve from p to q is longer than r0, where q D F .r0; v0/, unless
it is part of the hyperbola. Hint: For a curve c .t/ compare the length of c to the
integral

R Pc � @rdt and show that Pc � @r D dr
dt , where c .t/ D F .r .t/ ; v .t//.

(5) Show that there is no Riemannian immersion from an open subset U � R
n into

Hn. Hint: Any such map would map small equilateral triangles to triangles on
Hn whose side lengths and angles are the same. Show that this is impossible by
showing that the hyperbolic triangles have sides that are part of hyperbolas and
that when such triangles are equilateral the angles are always < 	

3
.

EXERCISE 1.6.22 (F. WILHELM). The Hopf fibration from example 1.1.5 can be
generalized using quaternions. Quaternions can be denoted q D aCb i Cc j Cd k D
z C w j, where z D a C b i, w D c C d i are complex numbers and

i2 D j2 D k2 D �1;

i j D k D � j i;

j k D i D � k j;

k i D j D � i k :

The set of quaternions form a 4-dimensional real vector space H with a product
structure that is R-bilinear and associative.

(1) Show the quaternions can be realized as a matrix algebra

q D
�

z w
� Nw Nz

�

where

i D
�p�1 0

0 �p�1

�
;

j D
�

0 1

�1 0

�
;

k D
�

0
p�1p�1 0

�
:

This in particular ensures that the product structure is R-bilinear and associative.
(2) Show that if

Nq D a � b i �c j �d k;
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then the following identities hold:

a2 C b2 C c2 C d2 D jqj2
D qNq
D Nqq

D jzj2 C jwj2

D det

�
z w

� Nw Nz
�

;

jpqj D jpj jqj ;

and

pq D NqNp:

(3) Define two maps H2 ! R ˚ H

Hl .p; q/ D
�

1

2

�
jpj2 � jqj2

�
; Npq

�

Hr .p; q/ D
�

1

2

�
jpj2 � jqj2

�
; pNq

�

Show that they both map S7 .1/ � H
2 to S4 .1=2/ � R ˚ H.

(4) Show that the pre-images of Hl W S7 .1/ ! S4 .1=2/ correspond to the orbits
from left multiplication by unit quaternions on H

2.
(5) Show that the pre-images of Hr W S7 .1/ ! S4 .1=2/ correspond to the orbits

from right multiplication by unit quaternions on H
2.

(6) Show that both Hl and Hr are Riemannian submersions as maps S7 .1/ !
S4 .1=2/.

EXERCISE 1.6.23. Suppose � and 
 are positive on .0; 1/ and consider the
Riemannian submersion

�
.0; 1/ � S3 � S1; dt2 C �2 .t/ Œ.�1/2 C .�2/2 C .�3/2� C 
2.t/d�2

�

#�
.0; 1/ � S3; dt2 C �2.t/Œ.�2/2 C .�3/2� C .�.t/�
.t//2

�2.t/C
2.t/
.�1/2

�
:

Define f D � and h D .�.t/�
.t//2

�2.t/C
2.t/
and assume that

f .0/ > 0; f .odd/ .0/ D 0
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and

h .0/ D 0; h0 .0/ D k; h.even/ .0/ D 0;

where k is a positive integer. Show that the above construction yields a smooth
metric on the vector bundle over S2 with Euler number ˙k: Hint: Away from the zero
section this vector bundle is .0; 1/ � S3=Zk; where S3=Zk is the quotient of S3 by
the cyclic group of order k acting on the Hopf fiber. You should use the submersion
description and then realize this vector bundle as a submersion of S3�R

2: When k D
2; this becomes the tangent bundle to S2: When k D 1; it looks like CP

2 � fpointg :

EXERCISE 1.6.24. Let G be a compact Lie group.

(1) Show that G admits a biinvariant metric, i.e., both right- and left-translations
are isometries. Hint: Fix a left-invariant metric gL and a volume form vol D
�1 ^ � � � ^ �1 where � i are orthonormal left-invariant 1-forms. Then define g as
the average over right-translations:

g .v; w/ D 1R
G vol

Z

G
gL .DRx .v/ ; DRx .w// vol :

(2) Show that conjugation Adh .x/ D hxh�1 is a Riemannian isometry for any
biinvariant metric. Conclude that its differential at x D e denoted by the same
letters

Adh W g ! g

is a linear isometry with respect to g:

(3) Use this to show that the adjoint action

adU W g ! g;

adU X D ŒU; X�

is skew-symmetric, i.e.,

g .ŒU; X� ; Y/ D �g .X; ŒU; Y�/ :

Hint: It is shown in section 2.1.4 that U 7! adU is the differential of h 7! Adh.

EXERCISE 1.6.25. Let G be a Lie group with Lie algebra g. Show that a nondegen-
erate, bilinear, symmetric form .X; Y/ on g defines a biinvariant pseudo-Riemannian
metric if and only if .X; Y/ D .Adh X; Adh Y/ for all h 2 G.
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EXERCISE 1.6.26. Let G be a compact group acting on a Riemannian manifold.
Show that M admits a Riemannian metric such that G acts by isometries. Hint: You
first have to show that any manifold admits a Riemannian metric (partition of unity)
and then average the metric to make it G-invariant.

EXERCISE 1.6.27. Let G be a Lie group. Define the Killing form on g by

B .X; Y/ D tr .adX ı adY/ :

(1) Show that B is symmetric and bilinear.
(2) When G admits a biinvariant metric show that B .X; X/ � 0. Hint: Use part (3)

of exercise 1.6.24.
(3) Show that B .adZ X; Y/ D �B .X; adZ Y/.
(4) Show that B .Adh X; Adh Y/ D B .X; Y/, when G is connected. Hint: Show that

t 7! B
�
Adexp.tZ/ X; Adexp.tZ/ Y

�

is constant, where exp .0/ D e and d
dt exp .tZ/ D Z.

Note B looks like a biinvariant metric on G. When g is semisimple the Killing
form is nondegenerate (this can in fact be taken as the definition of semisimplicity)
and thus can be used as a pseudo-Riemannian biinvariant metric. It is traditional to
use �B instead so as to obtain a Riemannian metric when G is also compact.

EXERCISE 1.6.28. Consider the Lie group of real n�n-matrices with determinant 1,
SL .n;R/. The Lie algebra sl .n;R/ consists of real n�n-matrices with trace 0. Show
that the symmetric bilinear form .X; Y/ D tr .XY/ on sl .n;R/ defines a biinvariant
pseudo-Riemannian metric on SL .n;R/. Hint: Show that it is nondegenerate and
invariant under Adh.

EXERCISE 1.6.29. Show that the matrices

2

4
a�1 0 0

0 a b
0 0 1

3

5 ; a > 0; b 2 R

define a two-dimensional Lie group that does not admit a biinvariant pseudo-
Riemannian metric.
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