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Preface

This book is intended as a comprehensive introduction to Riemannian geometry. The
reader is assumed to have basic knowledge of standard manifold theory, including
the theory of tensors, forms, and Lie groups. At times it is also necessary to have
some familiarity with algebraic topology and de Rham cohomology. Specifically,
we recommend that the reader be familiar with texts such as [15, 72] or [97, vol. 1].
On my web page, there are links to lecture notes on these topics as well as classical
differential geometry (see [90] and [89]). It is also helpful if the reader has a nodding
acquaintance with ordinary differential equations. For this, a text such as [74] is
more than sufficient. More basic prerequisites are real analysis, linear algebra, and
some abstract algebra. Differential geometry is and always has been an “applied
discipline” within mathematics that uses many other parts of mathematics for its
own purposes.

Most of the material generally taught in basic Riemannian geometry as well
as several more advanced topics is presented in this text. The approach we have
taken occasionally deviates from the standard path. Alongside the usual variational
approach, we have also developed a more function-oriented methodology that
likewise uses standard calculus together with techniques from differential equations.
Our motivation for this treatment has been that examples become a natural and
integral part of the text rather than a separate item that is sometimes minimized.
Another desirable by-product has been that one actually gets the feeling that
Hessians and Laplacians are intimately related to curvatures.

The book is divided into four parts:
Part I: Tensor geometry, consisting of chapters 1, 2, 3, and 4
Part II: Geodesic and distance geometry, consisting of chapters 5, 6, and 7
Part III: Geometry à la Bochner and Cartan, consisting of chapters 8, 9, and 10
Part IV: Comparison geometry, consisting of chapters 11 and 12
There are significant structural changes and enhancements in the third edition,

so chapters no longer correspond to those of the first two editions. We offer a brief
outline of each chapter below.

Chapter 1 introduces Riemannian manifolds, isometries, immersions, and sub-
mersions. Homogeneous spaces and covering maps are also briefly mentioned.
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viii Preface

There is a discussion on various types of warped products. This allows us to give
both analytic and geometric definitions of the basic constant curvature geometries.
The Hopf fibration as a Riemannian submersion is also discussed in several places.
Finally, there is a section on tensor notation.

Chapter 2 discusses both Lie and covariant derivatives and how they can be
used to define several basic concepts such as the classical notions of Hessian,
Laplacian, and divergence on Riemannian manifolds. Iterated derivatives and
abstract derivations are discussed toward the end and used later in the text.

Chapter 3 develops all of the important curvature concepts and discusses a
few simple properties. We also develop several important formulas that relate
curvature and the underlying metric. These formulas can be used in many places
as a replacement for the second variation formula.

Chapter 4 is devoted to calculating curvatures in several concrete situations
such as spheres, product spheres, warped products, and doubly warped products.
This is used to exhibit several interesting examples. In particular, we explain
how the Riemannian analogue of the Schwarzschild metric can be constructed.
There is a new section that explains warped products in general and how they are
characterized. This is an important section for later developments as it leads to an
interesting characterization of both local and global constant curvature geometries
from both the warped product and conformal view point. We have a section on Lie
groups. Here two important examples of left invariant metrics are discussed as well
as the general formulas for the curvatures of biinvariant metrics. It is also explained
how submersions can be used to create new examples with special focus on complex
projective space. There are also some general comments on how submersions can
be constructed using isometric group actions.

Chapter 5 further develops the foundational topics for Riemannian manifolds.
These include the first variation formula, geodesics, Riemannian manifolds as met-
ric spaces, exponential maps, geodesic completeness versus metric completeness,
and maximal domains on which the exponential map is an embedding. The chapter
includes a detailed discussion of the properties of isometries. This naturally leads
to the classification of simply connected space forms. At a more basic level, we
obtain metric characterizations of Riemannian isometries and submersions. These
are used to show that the isometry group is a Lie group and to give a proof of the
slice theorem for isometric group actions.

Chapter 6 contains three more foundational topics: parallel translation, Jacobi
fields, and the second variation formula. Some of the classical results we prove
here are the Hadamard-Cartan theorem, Cartan’s center of mass construction in
nonpositive curvature and why it shows that the fundamental group of such spaces is
torsion-free, Preissman’s theorem, Bonnet’s diameter estimate, and Synge’s lemma.
At the end of the chapter, we cover the ingredients needed for the classical quarter
pinched sphere theorem including Klingenberg’s injectivity radius estimates and
Berger’s proof of this theorem. Sphere theorems are revisited in chapter 12.

Chapter 7 focuses on manifolds with lower Ricci curvature bounds. We discuss
volume comparison and its uses. These include proofs of how Poincaré and Sobolev
constants can be bounded and theorems about restrictions on fundamental groups
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for manifolds with lower Ricci curvature bounds. The strong maximum principle
for continuous functions is developed. This result is first used in a warm-up exercise
to prove Cheng’s maximal diameter theorem. We then proceed to cover the Cheeger-
Gromoll splitting theorem and its consequences for manifolds with nonnegative
Ricci curvature.

Chapter 8 covers various aspects of symmetries on manifolds with emphasis on
Killing fields. Here there is a further discussion on why the isometry group is a Lie
group. The Bochner formulas for Killing fields are covered as well as a discussion
on how the presence of Killing fields in positive sectional curvature can lead to
topological restrictions. The latter is a fairly new area in Riemannian geometry.

Chapter 9 explains both the classical and more recent results that arise from
the Bochner technique. We start with harmonic 1-forms as Bochner did and move
on to general forms and other tensors such as the curvature tensor. We use an
approach that considerably simplifies many of the tensor calculations in this subject
(see, e.g., the first and second editions of this book). The idea is to consistently
use how derivations act on tensors instead of using Clifford representations. The
Bochner technique gives many optimal bounds on the topology of closed manifolds
with nonnegative curvature. In the spirit of comparison geometry, we show how
Betti numbers of nonnegatively curved spaces are bounded by the prototypical
compact flat manifold: the torus. More generally, we also show how the Bochner
technique can be used to control the topology with more general curvature bounds.
This requires a little more analysis, but is a fascinating approach that has not been
presented in book form yet.

The importance of the Bochner technique in Riemannian geometry cannot be
sufficiently emphasized. It seems that time and again, when people least expect it,
new important developments come out of this philosophy.

Chapter 10 develops part of the theory of symmetric spaces and holonomy.
The standard representations of symmetric spaces as homogeneous spaces or via
Lie algebras are explained. There are several concrete calculations both specific
and more general examples to get a feel for how curvatures behave. Having
done this, we define holonomy for general manifolds and discuss the de Rham
decomposition theorem and several corollaries of it. In particular, we show that
holonomy irreducible symmetric spaces are Einstein and that their curvatures have
the same sign as the Einstein constant. This theorem and the examples are used to
indicate how one can classify symmetric spaces. Finally, we present a brief overview
of how holonomy and symmetric spaces are related to the classification of holonomy
groups. This is used, together with most of what has been learned up to this point,
to give the Gallot and Meyer classification of compact manifolds with nonnegative
curvature operator.

Chapter 11 focuses on the convergence theory of metric spaces and manifolds.
First, we introduce the most general form of convergence: Gromov-Hausdorff con-
vergence. This concept is often useful in many contexts as a way of getting a weak
form of convergence. The real object here is to figure out what weak convergence
implies in the presence of stronger side conditions. There is a section with a quick
overview of Hölder spaces, Schauder’s elliptic estimates, and harmonic coordinates.
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To facilitate the treatment of the stronger convergence ideas, we have introduced
a norm concept for Riemannian manifolds. The main focus of the chapter is to
prove the Cheeger-Gromov convergence theorem, which is called the Convergence
Theorem of Riemannian Geometry, as well as Anderson’s generalizations of this
theorem to manifolds with bounded Ricci curvature.

Chapter 12 proves some of the more general finiteness theorems that do not fall
into the philosophy developed in Chapter 11. To begin, we discuss generalized
critical point theory and Toponogov’s theorem. These two techniques are used
throughout the chapter to establish all of the important theorems. First, we probe the
mysteries of sphere theorems. These results, while often unappreciated by a larger
audience, have been instrumental in developing most of the new ideas in the subject.
Comparison theory, injectivity radius estimates, and Toponogov’s theorem were first
used in a highly nontrivial way to prove the classical quarter pinched sphere theorem
of Rauch, Berger, and Klingenberg. Critical point theory was introduced by Grove
and Shiohama to prove the diameter sphere theorem. Following the sphere theorems,
we go through some of the major results of comparison geometry: Gromov’s Betti
number estimate, the Soul theorem of Cheeger and Gromoll, and the Grove-Petersen
homotopy finiteness theorem.

At the end of most chapters, there is a short list of books and papers that cover and
often expand on the material in the chapter. We have whenever possible attempted
to refer just to books and survey articles. The reader is strongly urged to go from
those sources back to the original papers as ideas are often lost in the modernization
of most subjects. For more recent works, we also give journal references if the
corresponding books or surveys do not cover all aspects of the original paper. One
particularly exhaustive treatment of Riemannian Geometry for the reader who is
interested in learning more is [12]. Other valuable texts that expand or complement
much of the material covered here are [77, 97] and [99]. There is also a historical
survey by Berger (see [11]) that complements this text very well.

Each chapter ends with a collection of exercises that are designed to reinforce
the material covered, to establish some simple results that will be needed later, and
also to offer alternative proofs of several results. The first six chapters have about
30 exercises each and there are 300+ in all. The reader should at least read and
think about all of the exercises, if not actually solve all of them. There are several
exercises that might be considered very challenging. These have been broken up
into more reasonable steps and with occasional hints. Some instructors might want
to cover some of the exercises in class.

A first course should definitely cover Chapters 3, 5, and 6 together with whatever
one feels is necessary from Chapters 1, 2, and 4. I would definitely not recommend
teaching every single topic covered in Chapters 1, 2, and 4. A more advanced course
could consist of going through Chapter 7 and parts III or IV as defined earlier. These
two parts do not depend in a serious way on each other. One can probably not cover
the entire book in two semesters, but it should be possible to cover parts I, II, and
III or alternatively I, II, and IV depending on one’s inclination.

There are many people I would like to thank. First and foremost are those
students who suffered through my continuing pedagogical experiments over the
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last 25 years. While using this text I always try different strategies every time
I teach. Special thanks go to Victor Alvarez, Igor Belegradek, Marcel Berger,
Timothy Carson, Gil Cavalcanti, Edward Fan, Hao Fang, John Garnett, or Her-
shkovits, Ilkka Holopainen, Michael Jablonski, Lee Kennard, Mayer Amitai Lan-
dau, Peter Landweber, Pablo Lessa, Ciprian Manolescu, Geoffrey Mess, Jiayin
Pan, Priyanka Rajan, Jacob Rooney, Yanir Rubinstein, Semion Shteingold, Jake
Solomon, Chad Sprouse, Marc Troyanov, Gerard Walschap, Nik Weaver, Burkhard
Wilking, Michael Williams, and Hung-Hsi Wu for their constructive criticism of
parts of the book and mentioning various typos and other deficiencies in the first
and second editions. I would especially like to thank Joseph Borzellino for his very
careful reading of this text. Finally, I would like to thank Robert Greene, Karsten
Grove, Gregory Kallo, and Fred Wilhelm for all the discussions on geometry we
have had over the years.

Los Angeles, CA, USA Peter Petersen
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Chapter 1
Riemannian Metrics

In this chapter we introduce the spaces and maps that pervade the subject. Without
discussing any theory we present several examples of basic Riemannian manifolds
and Riemannian maps. All of these examples will be at the heart of future
investigations into constructions of Riemannian manifolds with various interesting
properties.

The abstract definition of a Riemannian manifold used today dates back only
to the 1930s as it wasn’t really until Whitney’s work in 1936 that mathematicians
obtained a clear understanding of what abstract manifolds were other than just being
submanifolds of Euclidean space. Riemann himself defined Riemannian metrics
only on domains in Euclidean space. Riemannian manifolds where then metric
objects that locally looked like a Riemannian metric on a domain in Euclidean
space. It is, however, important to realize that this local approach to a global theory
of Riemannian manifolds is as honest as the modern top-down approach.

Prior to Riemann, other famous mathematicians such as Euler, Monge, and Gauss
only worked with 2-dimensional curved geometry. Riemann’s invention of multi-
dimensional geometry is quite curious. The story goes that Gauss was on Riemann’s
defense committee for his Habilitation (doctorate). In those days, the candidate was
asked to submit three topics in advance, with the implicit understanding that the
committee would ask to hear about the first topic (the actual thesis was on Fourier
series and the Riemann integral). Riemann’s third topic was “On the Hypotheses
which lie at the Foundations of Geometry.” Evidently, he was hoping that the
committee would select from the first two topics, which were on material he had
already developed. Gauss, however, always being in an inquisitive mood, decided
he wanted to hear whether Riemann had anything to say about the subject on which
he, Gauss, was the reigning expert. Thus, much to Riemann’s dismay, he had to go
home and invent Riemannian geometry to satisfy Gauss’s curiosity. No doubt Gauss
was suitably impressed, apparently a very rare occurrence for him.

From Riemann’s work it appears that he worked with changing metrics mostly
by multiplying them by a function (conformal change). By conformally changing

© Springer International Publishing AG 2016
P. Petersen, Riemannian Geometry, Graduate Texts in Mathematics 171,
DOI 10.1007/978-3-319-26654-1_1

1



2 1 Riemannian Metrics

the standard Euclidean metric he was able to construct all three constant curvature
geometries in one fell swoop for the first time ever. Soon after Riemann’s discoveries
it was realized that in polar coordinates one can change the metric in a different
way, now referred to as a warped product. This also exhibits all constant curvature
geometries in a unified way. Of course, Gauss already knew about polar coordi-
nate representations on surfaces, and rotationally symmetric metrics were studied
even earlier by Clairaut. But those examples are much simpler than the higher-
dimensional analogues. Throughout this book we emphasize the importance of these
special warped products and polar coordinates. It is not far to go from warped
products to doubly warped products, which will also be defined in this chapter, but
they don’t seem to have attracted much attention until Schwarzschild discovered a
vacuum space-time that wasn’t flat. Since then, doubly warped products have been
at the heart of many examples and counterexamples in Riemannian geometry.

Another important way of finding examples of Riemannian metrics is by using
left-invariant metrics on Lie groups. This leads us, among other things, to the Hopf
fibration and Berger spheres. Both of these are of fundamental importance and are
also at the core of a large number of examples in Riemannian geometry. These will
also be defined here and studied further throughout the book.

1.1 Riemannian Manifolds and Maps

A Riemannian manifold .M; g/ consists of a C1-manifold M (Hausdorff and second
countable) and a Euclidean inner product gp or gjp on each of the tangent spaces TpM
of M. In addition we assume that p 7! gp varies smoothly. This means that for any
two smooth vector fields X;Y the inner product gp

�
Xjp;Yjp

�
is a smooth function

of p: The subscript p will usually be suppressed when it is not needed. Thus we
might write g .X;Y/ with the understanding that this is to be evaluated at each p
where X and Y are defined. When we wish to associate the metric with M we also
denote it as gM: The tensor g is referred to as the Riemannian metric or simply the
metric. Generally speaking the manifold is assumed to be connected. Exceptions do
occur, especially when studying level sets or submanifolds defined by constraints.

All inner product spaces of the same dimension are isometric; therefore, all
tangent spaces TpM on a Riemannian manifold .M; g/ are isometric to the n-
dimensional Euclidean space R

n with its canonical inner product. Hence, all
Riemannian manifolds have the same infinitesimal structure not only as manifolds
but also as Riemannian manifolds.

Example 1.1.1. The simplest and most fundamental Riemannian manifold is
Euclidean space .Rn; gRn/. The canonical Riemannian structure gRn is defined
by the tangent bundle identification R

n �R
n ' TRn given by the map:

.p; v/ 7! d .pC tv/

dt
.0/ :
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With this in mind the standard inner product on R
n is defined by

gRn ..p; v/ ; .p;w// D v � w:

A Riemannian isometry between Riemannian manifolds .M; gM/ and .N; gN/ is
a diffeomorphism F W M ! N such that F�gN D gM; i.e.,

gN .DF.v/;DF.w// D gM.v;w/

for all tangent vectors v;w 2 TpM and all p 2 M. In this case F�1 is also a
Riemannian isometry.

Example 1.1.2. Any finite-dimensional vector space V with an inner product,
becomes a Riemannian manifold by declaring, as with Euclidean space, that

g ..p; v/ ; .p;w// D v � w:

If we have two such Riemannian manifolds .V; gV/ and .W; gW/ of the same
dimension, then they are isometric. A example of a Riemannian isometry F W V !
W is simply any linear isometry between the two spaces. Thus .Rn; gRn/ is not only
the only n-dimensional inner product space, but also the only Riemannian manifold
of this simple type.

Suppose that we have an immersion (or embedding) F W M ! N, where .N; gN/

is a Riemannian manifold. This leads to a pull-back Riemannian metric gM D F�gN

on M, where

gM .v;w/ D gN .DF .v/ ;DF .w// :

It is an inner product as DF .v/ D 0 only when v D 0.
A Riemannian immersion (or Riemannian embedding) is an immersion (or

embedding) F W M ! N such that gM D F�gN . Riemannian immersions are
also called isometric immersions , but as we shall see below they are almost never
distance preserving.

Example 1.1.3. Another very important example is the Euclidean sphere of radius
R defined by

Sn.R/ D ˚x 2 R
nC1 j jxj D R

�
:

The metric induced from the embedding Sn.R/ ,! R
nC1 is the canonical metric on

Sn.R/. The unit sphere, or standard sphere, is Sn D Sn.1/ � R
nC1 with the induced

metric. In figure 1.1 is a picture of a round sphere in R
3.
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Fig. 1.1 Sphere

Fig. 1.2 Isometric
Immersions

If k < n there are several linear isometric immersions
�
R

k; gRk

� ! .Rn; gRn/.
Those are, however, not the only isometric immersions. In fact, any unit speed curve
c W R! R

2, i.e., jPc.t/j D 1 for all t 2 R, is an example of an isometric immersion.
For example, one could consider

t 7! .cos t; sin t/

as an isometric immersion and

t 7!
�

log
�

tC
p
1C t2

�
;
p
1C t2

�

as an isometric embedding. A map of the form:

F W Rk ! R
kC1

F.x1; : : : ; xk/ D .c.x1/; x2; : : : ; xk/;

(where c fills up the first two coordinate entries) will then also yield an isometric
immersion (or embedding) that is not linear. This initially seems contrary to intuition
but serves to illustrate the difference between a Riemannian immersion and a
distance preserving map. In figure 1.2 there are two pictures, one of the cylinder,
the other of the isometric embedding of R2 into R

3 just described.
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There is also a dual concept of a Riemannian submersion F W .M; gM/! .N; gN/.
This is a submersion F W M ! N such that for each p 2 M, DF W ker.DF/? !
TF.p/N is a linear isometry. In other words, if v;w 2 TpM are perpendicular to the
kernel of DF W TpM! TF.p/N; then

gM.v;w/ D gN .DF .v/ ;DF .w// :

This is equivalent to the adjoint
�
DFp

�� W TF.p/N ! TpM preserving inner products
of vectors.

Example 1.1.4. Orthogonal projections .Rn; gRn/ ! �
R

k; gRk

�
, where k < n, are

examples of Riemannian submersions.

Example 1.1.5. A much less trivial example is the Hopf fibration S3.1/! S2.1=2/.
As observed by F. Wilhelm this map can be written explicitly as

H.z;w/ D
�
1

2

�
jwj2 � jzj2

�
; z Nw

�

if we think of S3.1/ � C
2 and S2.1=2/ � R˚C. Note that the fiber containing .z;w/

consists of the points
�
ei � z; ei �w

�
, where i D p�1. Consequently, i .z;w/ is tangent

to the fiber and � .� Nw; Nz/ ; � 2 C, are the tangent vectors orthogonal to the fiber.
We can check what happens to the latter tangent vectors by computing DH. Since
H extends to a map H W C2 ! R˚C its differential can be calculated as one would
do it in multivariable calculus. Alternately note that the tangent vectors � .�Nw; Nz/ at
.z;w/ 2 S3.1/ lie in the plane .z;w/C� .� Nw; Nz/ parameterized by �. H restricted to
this plane is given by

H ..z � � Nw;wC �Nz// D
�
1

2

�
jwC �Nzj2 � jz � � Nwj2

�
; .z � � Nw/ .wC �Nz/

�
:

To calculate DH we simply expand H in terms of � and N� and isolate the first-order
terms

DHj.z;w/ .� .� Nw; Nz// D
�
2Re

� N�zw
�
;�� Nw2 C N�z2

�
:

Since these have the same length j�j as � .� Nw; Nz/ we have shown that the map is a
Riemannian submersion. Below we will examine this example more closely. There
is a quaternion generalization of this map in exercise 1.6.22.

Finally, we mention a very important generalization of Riemannian manifolds.
A semi- or pseudo-Riemannian manifold consists of a manifold and a smoothly
varying symmetric bilinear form g on each tangent space. We assume in addition
that g is nondegenerate, i.e., for each nonzero v 2 TpM there exists w 2 TpM such
that g .v;w/ ¤ 0: This is clearly a generalization of a Riemannian metric where
nondegeneracy follows from g .v; v/ > 0 when v ¤ 0. Each tangent space admits a
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Fig. 1.3 Hyperbolic Space

splitting TpM D P˚N such that g is positive definite on P and negative definite on
N: These subspaces are not unique but it is easy to show that their dimensions are
well-defined. Continuity of g shows that nearby tangent spaces must have a similar
splitting where the subspaces have the same dimension. The index of a connected
pseudo-Riemannian manifold is defined as the dimension of the subspace N on
which g is negative definite.

Example 1.1.6. Let n D n1Cn2 andRn1;n2 D R
n1�Rn2 . We can then write vectors in

R
n1;n2 as v D v1C v2; where v1 2 R

n1 and v2 2 R
n2 : A natural pseudo-Riemannian

metric of index n2 is defined by

g ..p; v/ ; .p;w// D v1 � w1 � v2 � w2:
When n1 D 1 or n2 D 1 this coincides with one or the other version of
Minkowski space. This space describes the geometry of Einstein’s space-time in
special relativity.

Example 1.1.7. We define the family of hyperbolic spaces Hn .R/ � R
n;1 using the

rotationally symmetric hyperboloids

�
x1
�2 C � � � C .xn/2 � �xnC1�2 D �R2:

Each of these level sets consists of two components that are each properly
embedded copies ofRn inRnC1. The branch with xnC1 > 0 is Hn .R/ (see figure 1.3).
The metric is the induced Minkowski metric from R

n;1. The fact that this defines
a Riemannian metric on Hn .R/ is perhaps not immediately obvious. Note first that
tangent vectors v D �v1; � � � ; vn; vnC1� 2 TpHn .R/, p 2 Hn .R/, satisfy the equation

v1p1 C � � � C vnpn � vnC1pnC1 D 0
as they are tangent to the level sets for

�
x1
�2C� � �C .xn/2� �xnC1�2. This shows that

jvj2 D �
v1
�2 C � � � C .vn/2 � �vnC1�2

D �
v1
�2 C � � � C .vn/2 �

�
v1p1 C � � � C vnpn

pnC1

�2
:
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Using Cauchy-Schwarz on the expression in the numerator together with

�
p1
�2 C � � � C .pn/2

.pnC1/2
D 1 �

�
R

pnC1

�2

shows that

jvj2 �
�

R

pnC1

�2 ��
v1
�2 C � � � C .vn/2

�
:

When R D 1 we generally just write Hn and refer to this as hyperbolic n-space.

Much of the tensor analysis that we shall develop on Riemannian manifolds can
be carried over to pseudo-Riemannian manifolds without further ado. It is only when
we start using norm and distances that we have to be more careful.

1.2 The Volume Form

In Euclidean space the inner product not only allows us to calculate norms and
angles but also areas, volumes, and more. The key to understanding these definitions
better lies in using determinants.

To compute the volume of the parallelepiped spanned by n vectors v1; : : : ; vn 2
R

n we can proceed in different ways. There is the usual inductive way where we
multiply the height by the volume (or area) of the base parallelepiped. This is in
fact a Laplace expansion of a determinant along a column. If the canonical basis is
denoted e1; : : : ; en, then we define the signed volume by

vol .v1; : : : ; vn/ D det
	
g
�
vi; ej

�


D det
�
Œv1; : : : ; vn� Œe1; : : : ; en�

t�

D det Œv1; : : : ; vn� :

This formula is clearly also valid if we had selected any other positively oriented
orthonormal basis f1; : : : fn as

det
	
g
�
vi; fj

�
 D det
�
Œv1; : : : ; vn� Œf1; : : : ; fn�

t�

D det
�
Œv1; : : : ; vn� Œf1; : : : ; fn�

t� det
�
Œf1; : : : ; fn� Œe1; : : : ; en�

t�

D det
�
Œv1; : : : ; vn� Œe1; : : : ; en�

t� :

In an oriented Riemannian n-manifold .M; g/ we can then define the volume
form as an n-form on M by



8 1 Riemannian Metrics

volg .v1; : : : ; vn/ D vol .v1; : : : ; vn/ D det
	
g
�
vi; ej

�

;

where e1; : : : ; en is any positively oriented orthonormal basis. One often also uses
the notation d vol instead of vol, however, the volume form is not necessarily exact
so the notation can be a little misleading.

Even though manifolds are not necessarily oriented or even orientable it is still
possible to define this volume form locally. The easiest way of doing so is to locally
select an orthonormal frame E1; : : : ;En and declare it to be positive. A frame is a
collection of vector fields defined on a common domain U � M such that they form
a basis for the tangent spaces TpM for all p 2 U. The volume form is then defined
on vectors and vector fields by

vol .X1; : : : ;Xn/ D det
	
g
�
Xi;Ej

�

:

This formula quickly establishes the simplest version of the “height�base”
principle if we replace Ei by a general vector X since

vol .E1; : : : ;X; : : : ;En/ D g .X;Ei/

is the projection of X onto Ei and this describes the height in the ith coordinate
direction.

On oriented manifolds it is possible to integrate n-forms. On oriented Rieman-
nian manifolds we can then integrate functions f by integrating the form f � vol. In
fact any manifold contains an open dense set O � M where TO D O�R

n is trivial.
In particular, O is orientable and we can choose an orthonormal frame on all of O.
This shows that we can integrate functions over M by integrating them over O. Thus
we can integrate on all Riemannian manifolds.

1.3 Groups and Riemannian Manifolds

We shall study groups of Riemannian isometries on Riemannian manifolds and see
how they can be used to construct new Riemannian manifolds.

1.3.1 Isometry Groups

For a Riemannian manifold .M; g/ we use Iso.M; g/ or Iso.M/ to denote the group
of Riemannian isometries F W .M; g/ ! .M; g/ and Isop.M; g/ the isotropy or
stabilizer (sub)group at p; i.e., those F 2 Iso.M; g/ with F.p/ D p. A Riemannian
manifold is said to be homogeneous if its isometry group acts transitively, i.e., for
each pair of points p; q 2 M there is an F 2 Iso .M; g/ such that F .p/ D q.
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Example 1.3.1. The isometry group of Euclidean space is given by

Iso .Rn; gRn/ D R
n Ì O .n/

D fF W Rn! R
n j F.x/ D v C Ox; v 2 R

n and O 2 O.n/g :

(Here H Ì G is the semi direct product, with G acting on H.) The translational
part v and rotational part O are uniquely determined. It is clear that these maps
are isometries. To see the converse first observe that G .x/ D F.x/ � F.0/ is
also a Riemannian isometry. Using this, we observe that at x D 0 the differential
DG0 2 O .n/ : Thus, G and DG0 are Riemannian isometries on Euclidean space that
both preserve the origin and have the same differential there. It is then a general
uniqueness result for Riemannian isometries that G D DG0 (see proposition 5.6.2).
In exercise 2.5.12 there is a more elementary version for Euclidean space.

The isotropy Isop is always isomorphic to O.n/ and R
n ' Iso=Isop for any

p 2 R
n. In fact any homogenous space can always be written as the quotient

M D Iso=Isop.

Example 1.3.2. We claim that spheres have

Iso
�
Sn.R/; gSn.R/

� D O.nC 1/ D Iso0
�
R

nC1; g
RnC1

�
:

Clearly O.n C 1/ � Iso
�
Sn.R/; gSn.R/

�
. Conversely, when F 2 Iso

�
Sn.R/; gSn.R/

�
,

consider the linear map given by the nC 1 columns vectors:

O D 	 1
R F .Re1/ DFje1 .e2/ � � � DFje1 .enC1/




The first vector is unit since F .Re1/ 2 Sn .R/. Moreover, the first column is
orthogonal to the others as DFjRe1 .ei/ 2 TF.Re1/S

n .R/ D F .Re1/
?, i D 2; : : : ; nC1.

Finally, the last n columns form an orthonormal basis since DF is assumed to be a
linear isometry. This shows that O 2 O .nC 1/ and that O agrees with F and DF at
Re1. Proposition 5.6.2 can then be invoked again to show that F D O.

The isotropy groups are again isomorphic to O.n/, that is, those elements of
O.n C 1/ fixing a 1-dimensional linear subspace of RnC1. In particular, we have
Sn ' O .nC 1/ =O .n/.

Example 1.3.3. Recall our definition of the hyperbolic spaces from example 1.1.7.
The isometry group Iso.Hn.R// comes from the linear isometries of Rn;1

O.n; 1/ D ˚L W Rn;1 ! R
n;1 j g.Lv;Lv/ D g.v; v/

�
:

One can, as in the case of the sphere, see that these are isometries on Hn.R/ as long
as they preserve the condition xnC1 > 0: The group of those isometries is denoted
OC .n; 1/ : As in the case of Euclidean space and the spheres we can construct an
element in OC .n; 1/ that agrees with any isometry at RenC1 and such that their
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differentials at that point agree on the basis e1; : : : ; en for TRenC1
Hn .R/. Specifically,

if F 2 Iso.Hn.R// we can use:

O D 	DFjenC1
.e1/ DFjenC1

.e2/ � � � DFjenC1
.en/

1
R F .RenC1/



:

The isotropy group that preserves RenC1 can be identified with O.n/ (isometries
we get from the metric being rotationally symmetric). One can also easily check
that OC.n; 1/ acts transitively on Hn.R/.

1.3.2 Lie Groups

If instead we start with a Lie group G, then it is possible to make it a group of
isometries in several ways. The tangent space can be trivialized

TG ' G � TeG

by using left- (or right-) translations on G. Therefore, any inner product on
TeG induces a left-invariant Riemannian metric on G i.e., left-translations are
Riemannian isometries. It is obviously also true that any Riemannian metric on G
where all left-translations are Riemannian isometries is of this form. In contrast to
R

n; not all of these Riemannian metrics need be isometric to each other. Thus a Lie
group might not come with a canonical metric.

It can be shown that the left coset space G=H D fgH j g 2 Gg is a manifold
provided H � G is a compact subgroup. If we endow G with a general Riemannian
metric such that right-translations by elements in H act by isometries, then there
is a unique Riemannian metric on G=H making the projection G ! G=H into
a Riemannian submersion (see also section 4.5.2). When in addition the metric
is also left-invariant, then G acts by isometries on G=H (on the left) thus making
G=H into a homogeneous space. Proofs of all this are given in theorem 5.6.21 and
remark 5.6.22.

The next two examples will be studied further in sections 1.4.6, 4.4.3, and 4.5.3.
In sections 4.5.2 the general set-up is discussed and the fact that quotients are
Riemannian manifolds is also discussed in section 5.6.4 and theorem 5.6.21.

Example 1.3.4. The idea of taking the quotient of a Lie group by a subgroup can
be generalized. Consider S2nC1.1/ � C

nC1. Then S1 D f� 2 C j j�j D 1g acts
by complex scalar multiplication on both S2nC1 and C

nC1; furthermore, this action
is by isometries. We know that the quotient S2nC1=S1 D CP

n, and since the action
of S1 is by isometries, we obtain a metric on CP

n such that S2nC1 ! CP
n is a

Riemannian submersion. This metric is called the Fubini-Study metric. When n D
1; this becomes the Hopf fibration S3.1/! CP

1 D S2.1=2/.

Example 1.3.5. One of the most important nontrivial Lie groups is SU .2/ ; which
is defined as
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SU .2/ D ˚
A 2 M2�2 .C/ j detA D 1;A� D A�1�

D
��

z w
� Nw Nz


j jzj2 C jwj2 D 1

�

D S3 .1/ :

The Lie algebra su .2/ of SU .2/ is

su .2/ D
��

i˛ ˇ C i c
�ˇ C i c � i˛


j ˛; ˇ; c 2 R

�

and can be spanned by

X1 D
�

i 0

0 � i


; X2 D

�
0 1

�1 0

; X3 D

�
0 i
i 0


:

We can think of these matrices as left-invariant vector fields on SU .2/. If we declare
them to be orthonormal, then we get a left-invariant metric on SU .2/, which as we
shall later see is S3 .1/. If instead we declare the vectors to be orthogonal, X1 to have
length "; and the other two to be unit vectors, we get a very important 1-parameter
family of metrics g" on SU .2/ D S3: These distorted spheres are called Berger
spheres. Note that scalar multiplication on S3 � C

2 corresponds to multiplication
on the left by the matrices

�
ei � 0

0 e� i �



since

�
ei � 0

0 e� i �

 �
z w
� Nw Nz


D
�

ei � z ei �w
�e� i � Nw e� i � Nz


:

Thus X1 is tangent to the orbits of the Hopf circle action. The Berger spheres are
then obtained from the canonical metric by multiplying the metric along the Hopf
fiber by "2:

1.3.3 Covering Maps

Discrete groups are also common in geometry, often through deck transformations
or covering transformations. Suppose that F W M ! N is a covering map. Then
F is, in particular, both an immersion and a submersion. Thus, any Riemannian
metric on N induces a Riemannian metric on M. This makes F into an isometric
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immersion, also called a Riemannian covering. Since dimM D dimN; F must in
fact be a local isometry, i.e., for every p 2 M there is a neighborhood U 3 p in
M such that FjU W U ! F.U/ is a Riemannian isometry. Notice that the pullback
metric on M has considerable symmetry. For if q 2 V � N is evenly covered by
fUpgp2F�1.q/; then all the sets V and Up are isometric to each other. In fact, if F is a
normal covering, i.e., there is a group � of deck transformations acting on M such
that:

F�1 .p/ D fg .q/ j F .q/ D p and g 2 �g ;

then � acts by isometries on the pullback metric. This construction can easily be
reversed. Namely, if N D M=� and M is a Riemannian manifold, where � acts by
isometries, then there is a unique Riemannian metric on N such that the quotient
map is a local isometry.

Example 1.3.6. If we fix a basis v1; v2 for R2; then Z
2 acts by isometries through

the translations

.n;m/ 7! .x 7! xC nv1 C mv2/:

The orbit of the origin looks like a lattice. The quotient is a torus T2 with some
metric on it. Note that T2 is itself an Abelian Lie group and that these metrics are
invariant with respect to the Lie group multiplication. These metrics will depend on
jv1j, jv2j and † .v1; v2/, so they need not be isometric to each other.

Example 1.3.7. The involution �I on Sn.1/ � R
nC1 is an isometry and induces a

Riemannian covering Sn ! RP
n.

1.4 Local Representations of Metrics

1.4.1 Einstein Summation Convention

We shall often use the index and summation convention introduced by Einstein.
Given a vector space V; such as the tangent space of a manifold, we use subscripts
for vectors in V: Thus a basis of V is denoted by e1; : : : ; en: Given a vector v 2 V
we can then write it as a linear combination of these basis vectors as follows

v D
X

i

viei D viei D
	

e1 � � � en



2

6
4

v1

:::

vn

3

7
5 :

Here we use superscripts on the coefficients and then automatically sum over indices
that are repeated as both subscripts and superscripts. If we define a dual basis ei for



1.4 Local Representations of Metrics 13

the dual space V� D Hom .V;R/ as follows: ei
�
ej
� D ıi

j , then the coefficients can
be computed as vi D ei .v/. Thus we decide to use superscripts for dual bases in V�:
The matrix representation

h
Lj

i

i
of a linear map L W V ! V is found by solving

L .ei/ D Lj
iej;

	
L .e1/ � � � L .en/


 D 	
e1 � � � en




2

6
4

L11 � � � L1n
:::
: : :

:::

Ln
1 � � � Ln

n

3

7
5

In other words

Lj
i D ej .L .ei// :

As already indicated, subscripts refer to the column number and superscripts to
the row number.

When the objects under consideration are defined on manifolds, the conventions
carry over as follows: Cartesian coordinates on R

n and coordinates on a manifold
have superscripts

�
xi
�

as they are coordinate coefficients; coordinate vector fields
then look like

@i D @

@xi
;

and consequently have subscripts. This is natural, as they form a basis for the tangent
space. The dual 1-forms dxi satisfy dxj .@i/ D ıj

i and consequently form the natural
dual basis for the cotangent space.

Einstein notation is not only useful when one doesn’t want to write summation
symbols, it also shows when certain coordinate- (or basis-) dependent definitions
are invariant under change of coordinates. Examples occur throughout the book.
For now, let us just consider a very simple situation, namely, the velocity field of a
curve c W I ! R

n: In coordinates, the curve is written

c .t/ D �
xi .t/

�

D xi .t/ ei;

if ei is the standard basis for Rn. The velocity field is defined as the vector Pc .t/ D�Pxi .t/
�
. Using the coordinate vector fields this can also be written as

Pc .t/ D dxi

dt

@

@xi
D Pxi .t/ @i:

In a coordinate system on a general manifold we could then try to use this as our
definition for the velocity field of a curve. In this case we must show that it gives the
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same answer in different coordinates. This is simply because the chain rule tells us
that

Pxi .t/ D dxi .Pc .t// ;

and then observing that we have used the above definition for finding the compo-
nents of a vector in a given basis.

When offering coordinate dependent definitions we shall be careful that they
are given in a form where they obviously conform to this philosophy and are
consequently easily seen to be invariantly defined.

1.4.2 Coordinate Representations

On a manifold M we can multiply 1-forms to get bilinear forms:

�1 � �2.v;w/ D �1.v/ � �2.w/:

Note that �1 � �2 ¤ �2 � �1: This multiplication is actually a tensor product �1 � �2 D
�1 ˝ �2. Given coordinates x.p/ D .x1; : : : ; xn/ on an open set U of M we can thus
construct bilinear forms dxi � dxj. If in addition M has a Riemannian metric g; then
we can write

g D g.@i; @j/dxi � dxj

because

g.v;w/ D g.dxi.v/@i; dxj.w/@j/

D g.@i; @j/dxi.v/ � dxj.w/:

The functions g.@i; @j/ are denoted by gij. This gives us a representation of g in
local coordinates as a positive definite symmetric matrix with entries parametrized
over U. Initially one might think that this gives us a way of concretely describing
Riemannian metrics. That, however, is a bit optimistic. Just think about how many
manifolds you know with a good covering of coordinate charts together with
corresponding transition functions. On the other hand, coordinate representations
are often a good theoretical tool for abstract calculations.

Example 1.4.1. The canonical metric on R
n in the identity chart is

g D ıijdxidxj D
nX

iD1

�
dxi
�2
:
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Example 1.4.2. On R
2 � fhalf lineg we also have polar coordinates .r; �/. In these

coordinates the canonical metric looks like

g D dr2 C r2d�2:

In other words,

grr D 1; gr� D g�r D 0; g�� D r2:

To see this recall that

x D r cos �;

y D r sin �:

Thus,

dx D cos �dr � r sin �d�;

dy D sin �drC r cos �d�;

which gives

g D dx2 C dy2

D .cos �dr � r sin �d�/2 C .sin �drC r cos �d�/2

D .cos2 � C sin2 �/dr2 C .r cos � sin � � r cos � sin �/drd�

C.r cos � sin � � r cos � sin �/d�drC .r2 sin2 �/d�2 C .r2 cos2 �/d�2

D dr2 C r2d�2:

1.4.3 Frame Representations

A similar way of representing the metric is by choosing a frame X1; : : : ; Xn on an
open set U of M, i.e., n linearly independent vector fields on U; where n D dimM:
If �1; : : : ; �n is the coframe, i.e., the 1-forms such that � i

�
Xj
� D ıi

j; then the metric
can be written as

g D gij�
i� j D g

�
Xi;Xj

�
� i� j:

Example 1.4.3. Any left-invariant metric on a Lie group G can be written as

g D .�1/2 C � � � C .�n/2
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using a coframe dual to left-invariant vector fields X1; : : : ;Xn forming an orthonor-
mal basis for TeG. If instead we just begin with a frame of left-invariant vector fields
X1; : : : ;Xn and dual coframe �1; : : : ; �n, then a left-invariant metric g depends only
on its values on TeG and can be written as g D gij�

i� j, where gij is a positive definite
symmetric matrix with real-valued entries. The Berger sphere can, for example, be
written

g" D "2.�1/2 C .�2/2 C .�3/2;

where � i.Xj/ D ıi
j .

Example 1.4.4. A surface of revolution consists of a profile curve

c.t/ D .r.t/; 0; z.t// W I ! R
3;

where I � R is open and r.t/ > 0 for all t. By rotating this curve around the z-axis,
we get a surface that can be represented as

.t; �/ 7! f .t; �/ D .r.t/ cos �; r.t/ sin �; z .t//:

This is a cylindrical coordinate representation, and we have a natural frame @t; @�
on the surface with dual coframe dt; d� . We wish to calculate the induced metric on
this surface from the Euclidean metric dx2 C dy2 C dz2 on R

3 with respect to this
frame. Observe that

dx D Pr cos .�/ dt � r sin .�/ d�;

dy D Pr sin .�/ dtC r cos .�/ d�;

dz D Pzdt:

so

dx2 C dy2 C dz2 D .Pr cos .�/ dt � r sin .�/ d�/2

C .Pr sin .�/ dtC r cos .�/ d�/2 C .Pzdt/2

D �Pr2 C Pz2� dt2 C r2d�2:

Thus

g D .Pr2 C Pz2/dt2 C r2d�2:

If the curve is parametrized by arc length, then we obtain the simpler formula:

g D dt2 C r2d�2:
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Fig. 1.4 Surfaces of
revolution

This is reminiscent of our polar coordinate description of R2. In figure 1.4 there are
two pictures of surfaces of revolution. In the first, r starts out being zero, but the
metric appears smooth as r has vertical tangent to begin with. The second shows
that when r D 0 the metric looks conical and therefore collapses the manifold.

On the abstract manifold I � S1 we can use the frame @t; @� with coframe dt; d�
to define metrics

g D �2.t/dt2 C �2.t/d�2:

These are called rotationally symmetric metrics since � and � do not depend on the
rotational parameter � . We can, by change of coordinates on I, generally assume
that � D 1. Note that not all rotationally symmetric metrics come from surfaces of
revolution. For if dt2 C r2d�2 is a surface of revolution, then Pz2 C Pr2 D 1 and, in
particular, jPrj � 1.

Example 1.4.5. The round sphere S2.R/ � R
3 can be thought of as a surface of

revolution by revolving

t 7! R
�
sin
�

t
R

�
; 0; cos

�
t
R

��

around the z-axis. The metric looks like

dt2 C R2 sin2
�

t
R

�
d�2:

Note that R sin
�

t
R

�! t as R!1, so very large spheres look like Euclidean space.
By formally changing R to i R, we arrive at a different family of rotationally

symmetric metrics:

dt2 C R2 sinh2
�

t
R

�
d�2:

This metric coincides with the metric defined in example 1.1.7 by observing that it
comes from the induced metric in R

2;1 after having rotated the curve

t 7! R
�
sinh

�
t
R

�
; 0; cosh

�
t
R

��

around the z-axis.
If we let snk.t/ denote the unique solution to

Rx.t/C k � x.t/ D 0;
x.0/ D 0;
Px.0/ D 1;
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then we obtain a 1-parameter family

dt2 C sn2k.t/d�
2

of rotationally symmetric metrics. (The notation snk will be used throughout the text,
it should not be confused with Jacobi’s elliptic function sn .k; u/.) When k D 0; this
is R2; when k > 0; it is S2 .1=

p
k/; and when k < 0 the hyperbolic space H2 .1=

p�k/.
Corresponding to snk we also have csk defined as the solution to

Rx.t/C k � x.t/ D 0;
x.0/ D 1;
Px.0/ D 0:

The functions are related by

d snk

dt
.t/ D csk .t/ ;

d csk

dt
.t/ D �k snk .t/ ;

1 D cs2k .t/C k sn2k .t/ :

1.4.4 Polar Versus Cartesian Coordinates

In the rotationally symmetric examples we haven’t discussed what happens when
�.t/ D 0. In the revolution case, the profile curve clearly needs to have a horizontal
tangent in order to look smooth. To be specific, consider dt2 C �2.t/d�2, where
� W Œ0; b/ ! Œ0;1/ with �.0/ D 0 and �.t/ > 0 for t > 0. All other situations can
be translated or reflected into this position.

More generally, we wish to consider metrics on I � Sn�1 of the type dt2 C
�2.t/ds2n�1, where ds2n�1 is the canonical metric on Sn�1.1/ � R

n. These are also
called rotationally symmetric metrics and are a special class of warped products
(see also section 4.3). If we assume that � .0/ D 0 and � .t/ > 0 for t > 0, then we
want to check that the metric extends smoothly near t D 0 to give a smooth metric
near the origin in R

n. There is also a discussion of how to approach this smoothness
question in section 4.3.4.

The natural coordinate change to make is x D ts where x 2 R
n, t > 0, and

s 2 Sn�1.1/ � R
n: Thus

ds2n�1 D
nX

iD1

�
dsi
�2
:
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Keep in mind that the constraint
P�

si
�2 D 1 implies the relationship

P
sidsi D 0

between the restriction of the differentials to Sn�1.1/:
The standard metric on R

n now becomes

X�
dxi
�2 D

X�
sidtC tdsi

�2

D
X�

si
�2

dt2 C t2
�
dsi
�2 C .tdt/

�
sidsi

�C �sidsi
�
.tdt/

D dt2 C t2ds2n�1

when switching to polar coordinates.
In the general situation we have to do this calculation in reverse and check that

the expression becomes smooth at the origin corresponding to xi D 0: Thus we have
to calculate dt and dsi in terms of dxi: First observe that

2tdt D 2
X

xidxi;

dt D 1

t

X
xidxi;

and then from
P�

dxi
�2 D dt2 C t2ds2n�1 that

ds2n�1 D
P�

dxi
�2 � dt2

t2
:

This implies

dt2 C �2.t/ds2n�1 D dt2 C �2.t/
P�

dxi
�2 � dt2

t2

D
�
1 � �

2.t/

t2

�
dt2 C �2.t/

t2
X�

dxi
�2

D
�
1

t2
� �

2.t/

t4

��X
xidxi

�2 C �2.t/

t2
X�

dxi
�2
:

Thus we have to ensure that the functions

�2.t/

t2
and

�
1

t2
� �

2.t/

t4

�

are smooth, keeping in mind that t D
qP

.xi/
2 is not differentiable at the origin.

The condition � .0/ D 0 is necessary for the first function to be continuous at t D 0;
while we have to additionally assume that P� .0/ D 1 for the second function to be
continuous.
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The general condition for ensuring that both functions are smooth is that � .0/ D
0, P� .0/ D 1, and that all even derivatives vanish: �(even) .0/ D 0. This implies that
for each l D 1; 2; 3; : : :

� .t/ D tC
lX

kD1
akt2kC1 C o

�
t2lC3�

as all the even derivatives up to 2lC 2 vanish. Note that

�2.t/

t2
D
 

1C
lX

kD1
akt2k C o

�
t2lC2�

!2

D 1C
lX

kD1
bkt2k C o

�
t2lC2� ;

where bk DPk
iD1 aiak�i. Similarly for the other function

1

t2
� �

2.t/

t4
D 1

t2

�
1 � �

2.t/

t2

�

D 1

t2

 

�
lX

kD1
bkt2k C o

�
t2lC2�

!

D �
lX

kD1
bkt2k�2 C o

�
t2l
�
:

This shows that both functions can be approximated to any order by polynomials
that are smooth as functions of xi at t D 0. Thus the functions themselves are
smooth.

Example 1.4.6. These conditions hold for all of the metrics dt2Csn2k.t/ds2n�1, where
t 2 Œ0;1/ when k � 0, and t 2 Œ0; 	=

p
k� when k > 0. The corresponding

Riemannian manifolds are denoted Sn
k and are called space forms of dimension n

with curvature k. As in example 1.4.5 we can show that these spaces coincide with
Hn .R/, Rn, or Sn .R/. When k D 0 we clearly get .Rn; gRn/. When k D 1=R2 we get
Sn.R/. To see this, observe that there is a map

F W Rn � .0;R	/! R
n � R;

F.s; r/ D .x; t/ D R
�
s � sin

�
r
R

�
; cos

�
r
R

��
;

that restricts to

G W Sn�1 � .0;R	/! R
n � R;

G.s; r/ D R
�
s � sin

�
r
R

�
; cos

�
r
R

��
:
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Thus, G really maps into the R-sphere in R
nC1. To check that G is a Riemannian

isometry we just compute the canonical metric on R
n � R using the coordinates

R
�
s � sin

�
r
R

�
; cos

�
r
R

��
. To do the calculation keep in mind that

P�
si
�
2 D 1 andP

sidsi D 0.

dt2 C
X

ıijdxidxj

D �
dR cos

�
r
R

��2 C
X

ıijd
�
R sin

�
r
R

�
si
�

d
�
R sin

�
r
R

�
sj
�

D sin2
�

r
R

�
dr2

C
X

ıij
�
si cos

�
r
R

�
drC R sin

�
r
R

�
dsi
� �

sj cos
�

r
R

�
drC R sin

�
r
R

�
dsj
�

D sin2
�

r
R

�
dr2 C

X
ıijs

isj cos2
�

r
R

�
dr2 C

X
ıijR

2 sin2
�

r
R

�
dsidsj

C
X

ıijs
jR cos

�
r
R

�
sin .r/ dsidrC

X
ıijs

iR cos
�

r
R

�
sin
�

r
R

�
drdsj

D sin2
�

r
R

�
dr2 C cos2

�
r
R

�
dr2

X
ıijs

isj C R2 sin2
�

r
R

�X
ıijdsidsj

CR cos
�

r
R

�
sin
�

r
R

�
dr
X

sidsi C R cos
�

r
R

�
sin
�

r
R

� �X
sidsi

�
dr

D dr2 C R2 sin2
�

r
R

�
ds2n�1:

Hyperbolic space Hn .R/ � R
n;1 is similarly realized as a rotationally symmetric

metric using the map

Sn�1 � .0;1/! R
n;1

.s; r/ 7! .x; t/ D R
�
s � sinh

�
r
R

�
; cosh

�
r
R

��
:

As with spheres this defines a Riemannian isometry from dr2 C R2 sinh2
�

r
R

�
ds2n�1

to the induced metric on Hn.R/ � R
n;1. For the calculation note that the metric is

induced by gRn;1 D ıijdxidxj � dt2 and that
P
.si/2 D 1 and

P
sidsi D 0.

�dt2 C
X

ıijdxidxj

D � �d �R cosh
�

r
R

���2 C
X

ıijd
�
R sinh

�
r
R

�
si
�

d
�
R sinh

�
r
R

�
sj
�

D � sinh2
�

r
R

�
dr2

C
X

ıij
�
si cosh

�
r
R

�
drC R sinh

�
r
R

�
dsi
� �

sj cosh
�

r
R

�
drC R sinh

�
r
R

�
dsj
�

D � sinh2
�

r
R

�
dr2 C

X
ıijs

isj cosh2
�

r
R

�
dr2 C

X
ıijR

2 sinh2
�

r
R

�
dsidsj

D dr2 C R2 sinh2
�

r
R

�
ds2n�1:
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1.4.5 Doubly Warped Products

We can more generally consider metrics of the type:

dt2 C �2.t/ds2p C 
2.t/ds2q

on I � Sp � Sq. These are a special class of doubly warped products. When �.t/ D 0
we can use the calculations for rotationally symmetric metrics (see 1.4.4) to check
for smoothness. Note, however, that nondegeneracy of the metric implies that � and

 cannot both be zero at the same time. The following propositions explain the
various possible situations:

Proposition 1.4.7. If � W .0; b/ ! .0;1/ is smooth and �.0/ D 0; then we get a
smooth metric at t D 0 if and only if

�.even/.0/ D 0; P�.0/ D 1

and


.0/ > 0; 
.odd/.0/ D 0:

The topology near t D 0 in this case is RpC1 � Sq.

Proposition 1.4.8. If � W .0; b/ ! .0;1/ is smooth and �.b/ D 0; then we get a
smooth metric at t D b if and only if

�.even/.b/ D 0; P�.b/ D �1

and


.b/ > 0; 
.odd/.b/ D 0:

The topology near t D b in this case is again R
pC1 � Sq.

By adjusting and possibly changing the roles of these functions we obtain three
different types of topologies.

• �; 
 W Œ0;1/! Œ0;1/ are both positive on all of .0;1/. Then we have a smooth
metric on R

pC1 � Sq if �; 
 satisfy the first proposition.
• �; 
 W Œ0; b� ! Œ0;1/ are both positive on .0; b/ and satisfy both propositions.

Then we get a smooth metric on SpC1 � Sq.
• �; 
 W Œ0; b� ! Œ0;1/ as in the second type but the roles of 
 and � are

interchanged at t D b. Then we get a smooth metric on SpCqC1.

Example 1.4.9. We exhibit spheres as doubly warped products. The claim is that
the metrics
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dt2 C sin2.t/ds2p C cos2.t/ds2q; t 2 Œ0; 	=2� ;

are
�
SpCqC1.1/; gSpCqC1

�
. Since Sp � R

pC1 and Sq � R
qC1 we can map

�
0; 	

2

� � Sp � Sq ! R
pC1�RqC1;

.t; x; y/ 7! .x � sin.t/; y � cos.t//;

where x 2 R
pC1; y2 R

qC1 have jxj D jyj D 1. These embeddings clearly map into
the unit sphere. The computations that the map is a Riemannian isometry are similar
to the calculations in example 1.4.6.

1.4.6 Hopf Fibrations

We use several of the above constructions to understand the Hopf fibration. This
includes the higher dimensional analogues and other metric variations of these
examples.

Example 1.4.10. First we revisit the Hopf fibration S3.1/ ! S2 .1=2/ (see also
example 1.1.5). On S3.1/, write the metric as

dt2 C sin2.t/d�21 C cos2.t/d�22 ; t 2 Œ0; 	=2� ;

and use complex coordinates

�
t; ei �1 ; ei �2

� 7! �
sin.t/ei �1 ; cos.t/ei �2

�

to describe the isometric embedding

.0; 	=2/ � S1 � S1 ,! S3.1/ � C
2:

Since the Hopf fibers come from complex scalar multiplication, we see that they are
of the form

� 7! �
t; ei.�1C�/; ei.�2C�/� :

On S2 .1=2/ use the metric

dr2 C sin2.2r/

4
d�2; r 2 Œ0; 	=2� ;

with coordinates

.r; ei � / 7! �
1
2

cos.2r/; 1
2

sin.2r/ei �
�
:
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The Hopf fibration in these coordinates looks like

�
t; ei �1 ; ei �2

� 7! �
t; ei.�1��2/� :

This conforms with Wilhelm’s map defined in example 1.1.5 if we observe that

�
sin.t/ei �1 ; cos.t/ei �2

�

is supposed to be mapped to

�
1
2

�
cos2 t � sin2 t

�
; sin .t/ cos .t/ ei.�1��2/

�
D
�
1
2

cos .2t/ ; 1
2

sin .2t/ ei.�1��2/
�
:

On S3.1/ there is an orthogonal frame

@�1 C @�2 ; @t;
cos2.t/@�1�sin2.t/@�2

cos.t/ sin.t/ ;

where the first vector is tangent to the Hopf fiber and the two other vectors have unit
length. On S2 .1=2/

@r;
2

sin.2r/ @�

is an orthonormal frame. The Hopf map clearly maps

@t 7! @r;

cos2.t/@�1�sin2.t/@�2
cos.t/ sin.t/ 7! cos2.r/@�Csin2.r/@�

cos.r/ sin.r/ D 2
sin.2r/ � @� ;

thus showing that it is an isometry on vectors perpendicular to the fiber.
Note also that the map

�
t; ei �1 ; ei �2

� 7! �
cos.t/ei �1 ; sin.t/ei �2

� 7!
�

cos.t/ei �1 sin.t/ei �2

� sin.t/e� i �2 cos.t/e� i �1

�

gives us the promised isometry from S3.1/ to SU.2/, where SU.2/ has the left-
invariant metric described in example 1.3.5.

Example 1.4.11. More generally, the map

I � S1 � S1 ! I � S1

�
t; ei �1 ; ei �2

� 7! �
t; ei.�1��2/�

is always a Riemannian submersion when the domain is endowed with the doubly
warped product metric
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dt2 C �2.t/d�21 C 
2.t/d�22
and the target has the rotationally symmetric metric

dr2 C .�.t/ � 
.t//2
�2.t/C 
2.t/d�2:

Example 1.4.12. This submersion can also be generalized to higher dimensions as
follows: On I � S2nC1 � S1 consider the doubly warped product metric

dt2 C �2.t/ds22nC1 C 
2.t/d�2:

The unit circle acts by complex scalar multiplication on both S2nC1 and S1 and
consequently induces a free isometric action on this space (if � 2 S1 and .z;w/ 2
S2nC1 � S1; then � � .z;w/ D .�z; �w/). The quotient map

I � S2nC1 � S1! I � ��S2nC1 � S1
�
=S1

�

can be made into a Riemannian submersion by choosing an appropriate metric on
the quotient space. To find this metric, we split the canonical metric

ds22nC1 D hC g;

where h corresponds to the metric along the Hopf fiber and g is the orthogonal
component. In other words, if pr W TpS2nC1 ! TpS2nC1 is the orthogonal projection
(with respect to ds22nC1) whose image is the distribution generated by the Hopf
action, then

h.v;w/ D ds22nC1.pr.v/; pr.w//

and

g.v;w/ D ds22nC1.v � pr.v/;w � pr.w//:

We can then rewrite

dt2 C �2.t/ds22nC1 C 
2.t/d�2 D dt2 C �2.t/gC �2.t/hC 
2.t/d�2:

Observe that
�
S2nC1 � S1

�
=S1 D S2nC1 and that the S1 only collapses the Hopf fiber

while leaving the orthogonal component to the Hopf fiber unchanged. In analogy
with the above example, the submersion metric on I � S2nC1 can be written

dt2 C �2.t/gC .�.t/ � 
.t//2
�2.t/C 
2.t/h:
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Example 1.4.13. In the case where n D 0 we recapture the previous case, as g
doesn’t appear. When n D 1; the decomposition: ds23 D hC g can also be written

ds23 D .�1/2 C .�2/2 C .�3/2;
h D .�1/2;
g D .�2/2 C .�3/2;

where f�1; �2; �3g is the coframe coming from the identification S3 ' SU.2/ (see
example 1.3.5). The Riemannian submersion in this case can then be written

�
I � S3 � S1; dt2 C �2 .t/ �.�1/2 C .�2/2 C .�3/2�C 
2.t/d�2�

#�
I � S3; dt2 C �2.t/ �.�2/2 C .�3/2�C .�.t/�
.t//2

�2.t/C
2.t/ .�
1/2
�
:

Example 1.4.14. If we let � D sin .t/ ; 
 D cos .t/ ; and t 2 I D Œ0; 	=2� ; then
we obtain the generalized Hopf fibration S2nC3! CP

nC1 defined in example 1.3.4.
The map

.0; 	=2/ � �S2nC1 � S1
�! .0; 	=2/ � ��S2nC1 � S1

�
=S1

�

is a Riemannian submersion, and the Fubini-Study metric on CP
nC1 can be

represented as

dt2 C sin2.t/.gC cos2.t/h/:

1.5 Some Tensor Concepts

In this section we shall collect together some notational baggage and more general
inner products of tensors that will be needed from time to time.

1.5.1 Type Change

The inner product structures on the tangent spaces to a Riemannian manifold allow
us to view tensors in different ways. We shall use this for the Hessian of a function
and the Ricci tensor. These are naturally bilinear tensors, but can also be viewed
as endomorphisms of the tangent bundle. Specifically, if we have a metric g and an
endomorphism S on a vector space, then b .v;w/ D g .S .v/ ;w/ is the corresponding
bilinear form. Given g, this correspondence is an isomorphism. When generalizing
to the pseudo-Riemannian setting it is occasionally necessary to change the formulas
we develop (see also exercise 1.6.10).
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If, in general, we have an .s; t/-tensor T; then we can view it as a section in the
bundle

TM ˝ � � � ˝ TM„ ƒ‚ …
s times

˝ T�M ˝ � � � ˝ T�M„ ƒ‚ … :
t times

Given a Riemannian metric g on M; we can make T into an .s � k; tC k/-tensor
for any k 2 Z such that both s� k and tC k are nonnegative. Abstractly, this is done
as follows: On a Riemannian manifold TM is naturally isomorphic to T�MI the
isomorphism is given by sending v 2 TM to the linear map .w 7! g .v;w// 2 T�M:
Using this isomorphism we can then replace TM by T�M or vice versa and thus
change the type of the tensor.

At a more concrete level what happens is this: We select a frame E1; : : : ;En and
construct the coframe �1; : : : ; �n: The vectors in TM and covectors in T�M can be
written as

v D viEi D � i .v/Ei;

! D !j�
j D ! �Ej

�
� j:

The tensor T can then be written as

T D Ti1 ���is
j1 ���jt Ei1 ˝ � � � ˝ Eis ˝ � j1 ˝ � � � ˝ � jt :

Using indices and simply writing Ti1 ���is
j1���jt is often called tensor notation.

We need to know how we can change Ei into a covector and � j into a vector. As
before, the dual to Ei is the covector w 7! g .Ei;w/ ; which can be written as

g .Ei;w/ D g
�
Ei;Ej

�
� j .w/ D gij�

j .w/ :

Conversely, we have to find the vector v corresponding to the covector � j: The
defining property is

g .v;w/ D � j .w/ :

Thus, we have

g .v;Ei/ D ıj
i :

If we write v D vkEk; this gives

gkiv
k D ıj

i :
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Letting gij denote the ijth entry in the inverse of
�
gij
�
; we obtain

v D viEi D gijEi:

Thus,

Ei 7! gij�
j;

� j 7! gijEi:

Note that using Einstein notation will help keep track of the correct way of doing
things as long as the inverse of g is given with superscript indices. With this formula
one can easily change types of tensors by replacing Es with �s and vice versa. Note
that if we used coordinate vector fields in our frame, then one really needs to invert
the metric, but if we had chosen an orthonormal frame, then one simply moves
indices up and down as the metric coefficients satisfy gij D ıij.

Let us list some examples:
The Ricci tensor: For now this is simply an abstract .1; 1/-tensor: Ric .Ei/ D
Ricj

i EjI thus

Ric D Rici
j �Ei ˝ � j:

As a .0; 2/-tensor it will look like

Ric D Ricjk �� j ˝ �k D gji Rici
k �� j ˝ �k;

while as a .2; 0/-tensor acting on covectors it will be

Ric D Ricik �Ei ˝ Ek D gij Rick
j �Ei ˝ Ek:

The curvature tensor: We consider a .1; 3/-curvature tensor R .X;Y/ Z; which we
write as

R D Rl
ijk � El ˝ � i ˝ � j ˝ �k:

As a .0; 4/-tensor we get

R D Rijkl � � i ˝ � j ˝ �k ˝ � l

D Rs
ijkgsl � � i ˝ � j ˝ �k ˝ � l:

Note that we have elected to place l at the end of the .0; 4/ version. In many texts
it is placed first. Our choice appears natural given how we write these tensors in
invariant notation in chapter 3. As a .2; 2/-tensor we have:
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R D Rkl
ij � Ek ˝ El ˝ � i ˝ � j

D Rl
ijsg

sk � Ek ˝ El ˝ � i ˝ � j:

Here we must be careful as there are several different possibilities for raising and
lowering indices. We chose to raise the last index, but we could also have chosen
any other index, thus yielding different .2; 2/-tensors. The way we did it gives what
we will call the curvature operator.

1.5.2 Contractions

Contractions are traces of tensors. Thus, the contraction of a .1; 1/-tensor T D Ti
j �

Ei ˝ � j is its usual trace:

C .T/ D trT D Ti
i :

An instructive example comes from considering the rank 1 tensor X ˝ ! where
X is a vector field and ! a 1-form. In this case contraction is simply evaluation
C .X ˝ !/ D ! .X/. Conversely, contraction is a sum of such evaluations.

If instead we had a .0; 2/-tensor T; then we could, using the Riemannian
structure, first change it to a .1; 1/-tensor and then take the trace

C .T/ D C
�
Tij � � i ˝ � j

�

D C
�
Tikgkj � Ek ˝ � j

�

D Tikgki:

In fact the Ricci tensor is a contraction of the curvature tensor:

Ric D Rici
j �Ei ˝ � j

D Rkj
ik � Ei ˝ � j

D Rj
iksg

sk � Ei ˝ � j;

or

Ric D Ricij �� i ˝ � j

D gklRiklj � � i ˝ � j;

which after type change can be seen to give the same expressions. The scalar
curvature is defined as a contraction of the Ricci tensor:



30 1 Riemannian Metrics

scal D tr .Ric/

D Rici
i

D Ri
iksg

sk

D Ricik gki

D Rijklg
jkgil:

Again, it is necessary to be careful to specify over which indices one contracts in
order to get the right answer.

1.5.3 Inner Products of Tensors

There are several conventions for how one should measure the norm of a linear
map. Essentially, there are two different norms in use, the operator norm and the
Euclidean norm. The former is defined for a linear map L W V ! W between
normed spaces as

kLk D sup
jvjD1
jLvj :

The Euclidean norm is given by

jLj D
p

tr .L� ı L/ D
p

tr .L ı L�/;

where L� W W ! V is the adjoint. These norms are almost never equal. If, for
instance, L W V ! V is self-adjoint and �1 � � � � � �n the eigenvalues of L counted
with multiplicities, then the operator norm is: max fj�1j ; j�njg ; while the Euclidean

norm is
q
�21 C � � � C �2n: The Euclidean norm has the advantage of actually coming

from an inner product:

hL1;L2i D tr
�
L1 ı L�

2

� D tr
�
L2 ı L�

1

�
:

As a general rule we shall always use the Euclidean norm.
It is worthwhile to check how the Euclidean norm of some simple tensors can be

computed on a Riemannian manifold. Note that this computation uses type changes
to compute adjoints and contractions to take traces.

Let us start with a .1; 1/-tensor T D Ti
j �Ei˝ � j: We think of this as a linear map

TM ! TM. Then the adjoint is first of all the dual map T� W T�M ! T�M; which
we then change to T� W TM! TM: This means that

T� D Tj
i � � i ˝ Ej;
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which after type change becomes

T� D Tk
l gljgki � Ej ˝ � i:

Finally,

jTj2 D Ti
j T

k
l gljgki:

If the frame is orthonormal, this takes the simple form of

jTj2 D Ti
j T

j
i :

For a .0; 2/-tensor T D Tij � � i ˝ � j we first have to change type and then proceed
as above. In the end one gets the nice formula

jTj2 D TijT
ij:

In general, we can define the inner product of two tensors of the same type, by
declaring that if Ei is an orthonormal frame with dual coframe � i then the .s; t/-
tensors

Ei1 ˝ � � � ˝ Eis ˝ � j1 ˝ � � � ˝ � jt

form an orthonormal basis for .s; t/-tensors.
The inner product just defined is what we shall call the point-wise inner product

of tensors, just as g .X;Y/ is the point-wise inner product of two vector fields. The
point-wise inner product of two compactly supported tensors of the same type can
be integrated to yield an inner product structure on the space of tensors:

.T1;T2/ D
Z

M
g .T1;T2/ vol :

1.5.4 Positional Notation

A final remark is in order. Many of the above notations could be streamlined even
further so as to rid ourselves of some of the notational problems we have introduced
by the way in which we write tensors in frames. Namely, tensors TM ! TM (section
of TM ˝ T�M) and T�M ! T�M (section of T�M ˝ TM) seem to be written in
the same way, and this causes some confusion when computing their Euclidean
norms. That is, the only difference between the two objects � ˝ E and E ˝ � is
in the ordering, not in what they actually do. We simply interpret the first as a map
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TM ! TM and then the second as T�M ! T�M; but the roles could have been
reversed, and both could be interpreted as maps TM ! TM: This can indeed cause
great confusion.

One way to at least keep the ordering straight when writing tensors out in
coordinates is to be even more careful with indices and how they are written down.
Thus, a tensor T that is a section of T�M ˝ TM ˝ T�M should really be written as

T D T j
i k � � i ˝ Ej ˝ �k:

Our standard .1; 1/-tensor (section of TM ˝ T�M) could then be written

T D Ti
j � Ei ˝ � j;

while the adjoint (section of T�M ˝ TM) before type change is

T� D T l
k � �k ˝ El

D Ti
j gkig

lj � �k ˝ El:

Thus, we have the nice formula

jTj2 D Ti
j T

j
i :

Nice as this notation is, it is not used consistently in the literature. It would be
convenient to use it, but in most cases one can usually keep track of things anyway.
Most of this notation can of course also be avoided by using invariant (coordinate
free) notation, but often it is necessary to do coordinate or frame computations both
in abstract and concrete situations.

1.6 Exercises

EXERCISE 1.6.1. On M � N one has the Cartesian product metrics g D gM C gN ,
where gM; gN are metrics on M, N respectively.

(1) Show that .Rn; gRn/ D �R; dt2
� � � � � � �R; dt2

�
.

(2) Show that the flat square torus

T2 D R
2=Z2 D

 

S1;

�
1

2	

�2
d�2

!

�
 

S1;

�
1

2	

�2
d�2

!

:
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(3) Show that

F .�1; �2/ D 1

2	
.cos �1; sin �1; cos �2; sin �2/

is a Riemannian embedding: T2 ! R
4:

EXERCISE 1.6.2. Suppose we have an isometric group action G on .M; g/ such that
the quotient space M=G is a manifold and the quotient map a submersion. Show
that there is a unique Riemannian metric on the quotient making the quotient map a
Riemannian submersion.

EXERCISE 1.6.3. Let M ! N be a Riemannian k-fold covering map. Show,
vol M D k � vol N:

EXERCISE 1.6.4. Show that the volume form for a metric dr2 C �2 .r/ gN on a
product I �N is given by �n�1dr^ volN , where volN is the volume form on .N; gN/.

EXERCISE 1.6.5. Show that if E1; : : : ;En is an orthonormal frame, then the dual
frame is given by � i .X/ D g .Ei;X/ and the volume form by vol D ˙�1 ^ � � � ^ �n.

EXERCISE 1.6.6. Show that in local coordinates x1; : : : ; xn the volume form is given

by vol D ˙
q

det
	
gij


dx1 ^ � � � ^ dxn. In the literature one often sees the simplified

notation g D
q

det
	
gij


.

EXERCISE 1.6.7. Construct paper models of the warped products dt2 C a2t2d�2. If
a D 1; this is of course the Euclidean plane, and when a < 1; they look like cones.
What do they look like when a > 1‹

EXERCISE 1.6.8. Consider a rotationally symmetric metric dr2 C �2 .r/ gSn�1.R/,
where Sn�1 .R/ � R

n is given the induced metric. Show that if � .0/ D 0, then we
need P� .0/ D 1=R and �.2k/ .0/ D 0 to get a smooth metric near r D 0.

EXERCISE 1.6.9. Show that if we think of Rn as any of the hyperplanes xnC1 D R
in R

nC1, then Iso .Rn/ can be identified with the group of .nC 1/�.nC 1/matrices

�
O v

0 1


;

where v 2 R
n and O 2 O .n/. Further, show that these are precisely the linear maps

that preserve xnC1 D R and the degenerate bilinear form x1y1 C � � � C xnyn.

EXERCISE 1.6.10. Let V be an n-dimensional vector space with a symmetric
nondegenerate bilinear form g of index p:

(1) Show that there exists a basis e1; : : : ; en such that g
�
ei; ej

� D 0 if i ¤ j;
g .ei; ei/ D 1 if i D 1; : : : ; n � p and g .ei; ei/ D �1 if i D n � p C 1; : : : ; n:
Thus V is isometric to R

p;q:

(2) Show that for any v we have the expansion
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v D
nX

iD1
g.v;ei/

g.ei;ei/
ei

D
n�pX

iD1
g .v; ei/ ei �

nX

iDn�pC1
g .v; ei/ ei:

(3) Let L W V ! V be a linear operator. Show that

tr .L/ D
nX

iD1
g.L.ei/;ei/

g.ei;ei/
:

EXERCISE 1.6.11. Let g�1 denote the .2; 0/-tensor that is the inner product on the
dual tangent space T�M. Show that type change can be described as a contraction
of a tensor product with g or g�1.

EXERCISE 1.6.12. For a .1; 1/-tensor T on a Riemannian manifold, show that if Ei

is an orthonormal basis, then

jTj2 D
X
jT .Ei/j2 :

EXERCISE 1.6.13. Given .1; 1/-tensor tensors S;T show that if S is symmetric and
T skew-symmetric, then g .S;T/ D 0:
EXERCISE 1.6.14. Show that the inner product of two tensors of the same type can
be described as (possibly several) type change(s) to one of the tensors followed by
(possibly several) contraction(s).

EXERCISE 1.6.15. Consider F W FnC1 � f0g ! FP
n defined by F .x/ D span

F
fxg,

where F D R;C and assume that FP
n comes with the metric that makes the

restriction of F to the unit sphere a Riemannian submersion.

(1) Show that F is a submersion.
(2) Show that F is not a Riemannian submersion with respect to the standard metric

on F
nC1 � f0g.

(3) Is it possible to choose a metric on F
nC1�f0g so that F becomes a Riemannian

submersion?

EXERCISE 1.6.16. The arc length of a curve c .t/ W Œa; b�! .M; g/ is defined by

L .c/ D
Z

Œa;b�
jPcj dt

(1) Show that the arc length does not depend on the parametrization of c.
(2) Show that any curve with nowhere vanishing speed can be reparametrized to

have unit speed.
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(3) Show that it is possible to define the arclength of an absolutely continuous
curve. You should, in particular, show that the concept of being absolutely
continuous is well-defined for curves in manifolds.

EXERCISE 1.6.17. Show that the arclength of curves is preserved by Riemannian
immersions.

EXERCISE 1.6.18. Let F W .M; gM/ ! .N; gN/ be a Riemannian submersion and
c .t/ W Œa; b� ! .M; gM/ a curve. Show that L .F ı c/ � L .c/ with equality holding
if and only if Pc .t/ ? ker DFc.t/ for all t 2 Œa; b�.
EXERCISE 1.6.19. Show directly that any curve between two points in Euclidean
space is longer than the Euclidean distance between the points. Moreover, if the
length agrees with the distance, then the curve lies on the straight line between those
points. Hint: If v is an appropriate unit vector, then calculate the length of v � c .t/
and compare it to the length of c.

EXERCISE 1.6.20. Let Sn � R
nC1 be the standard unit sphere and p; q 2 Sn and

v 2 TpSn a unit vector. We think of p; q and v as unit vectors in R
nC1.

(1) Show that the great circle p cos tC v sin t is a unit speed curve on Sn that starts
at p and has initial velocity v.

(2) Consider the map F .r; v/ D p cos rC v sin r for r 2 Œ0; 	� and v ? p; jvj D 1.
Show that this map defines a diffeomorphism .0; 	/ � Sn�1 ! Sn � f˙pg.

(3) Define @r D F� .@r/ on Sn � f˙pg. Show that if q D F .r0; v0/, then

@rjq D �pC .p � q/ q
q
1 � .p � q/2

D �p sin r0 C v0 cos r0:

(4) Show that any curve from p to q is longer than r0, where q D F .r0; v0/, unless
it is part of the great circle. Hint: Compare the length of c .t/ to the integralR Pc � @rdt and show that Pc � @r D dr

dt , where c .t/ D F .r .t/ ; v .t//.
(5) Show that there is no Riemannian immersion from an open subset U � R

n into
Sn. Hint: Any such map would map small equilateral triangles to triangles on
Sn whose side lengths and angles are the same. Show that this is impossible by
showing that the spherical triangles have sides that are part of great circles and
that when such triangles are equilateral the angles are always > 	

3
.

EXERCISE 1.6.21. Let Hn � R
n;1 be hyperbolic space: p; q 2 Hn; and v 2 TpHn a

unit vector. Thus jpj2 D jqj2 D �1, jvj2 D 1, and p � v D 0.

(1) Show that the hyperbola p cosh tCv sinh t is a unit speed curve on Hn that starts
at p and has initial velocity v.

(2) Consider F .r; v/ D p cosh rCv sinh r, for r � 0 and v �p D 0; jvj2 D 1. Show
that this map defines a diffeomorphism .0;1/ � Sn�1 ! Hn � fpg.

(3) Define the radial field @r D F� .@r/ on Hn � fpg. Show that if q D F .r0; v0/,
then
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@rjq D �p � .q � p/ q
q
�1C .q � p/2

D p sinh r0 C v0 cosh r0:

(4) Show that any curve from p to q is longer than r0, where q D F .r0; v0/, unless
it is part of the hyperbola. Hint: For a curve c .t/ compare the length of c to the
integral

R Pc � @rdt and show that Pc � @r D dr
dt , where c .t/ D F .r .t/ ; v .t//.

(5) Show that there is no Riemannian immersion from an open subset U � R
n into

Hn. Hint: Any such map would map small equilateral triangles to triangles on
Hn whose side lengths and angles are the same. Show that this is impossible by
showing that the hyperbolic triangles have sides that are part of hyperbolas and
that when such triangles are equilateral the angles are always < 	

3
.

EXERCISE 1.6.22 (F. WILHELM). The Hopf fibration from example 1.1.5 can be
generalized using quaternions. Quaternions can be denoted q D aCb iCc jCd k D
zC w j, where z D aC b i, w D cC d i are complex numbers and

i2 D j2 D k2 D �1;
i j D k D � j i;

j k D i D � k j;

k i D j D � i k :

The set of quaternions form a 4-dimensional real vector space H with a product
structure that is R-bilinear and associative.

(1) Show the quaternions can be realized as a matrix algebra

q D
�

z w
� Nw Nz

�

where

i D
�p�1 0

0 �p�1
�
;

j D
�
0 1

�1 0
�
;

k D
�

0
p�1p�1 0

�
:

This in particular ensures that the product structure is R-bilinear and associative.
(2) Show that if

Nq D a � b i�c j�d k;
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then the following identities hold:

a2 C b2 C c2 C d2 D jqj2
D qNq
D Nqq

D jzj2 C jwj2

D det

�
z w
� Nw Nz

�
;

jpqj D jpj jqj ;

and

pq D NqNp:

(3) Define two maps H2 ! R˚H

Hl .p; q/ D
�
1

2

�
jpj2 � jqj2

�
; Npq

�

Hr .p; q/ D
�
1

2

�
jpj2 � jqj2

�
; pNq

�

Show that they both map S7 .1/ � H
2 to S4 .1=2/ � R˚H.

(4) Show that the pre-images of Hl W S7 .1/ ! S4 .1=2/ correspond to the orbits
from left multiplication by unit quaternions on H

2.
(5) Show that the pre-images of Hr W S7 .1/ ! S4 .1=2/ correspond to the orbits

from right multiplication by unit quaternions on H
2.

(6) Show that both Hl and Hr are Riemannian submersions as maps S7 .1/ !
S4 .1=2/.

EXERCISE 1.6.23. Suppose � and 
 are positive on .0;1/ and consider the
Riemannian submersion

�
.0;1/ � S3 � S1; dt2 C �2 .t/ Œ.�1/2 C .�2/2 C .�3/2�C 
2.t/d�2�

#�
.0;1/� S3; dt2 C �2.t/Œ.�2/2 C .�3/2�C .�.t/�
.t//2

�2.t/C
2.t/ .�
1/2
�
:

Define f D � and h D .�.t/�
.t//2
�2.t/C
2.t/ and assume that

f .0/ > 0; f .odd/ .0/ D 0
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and

h .0/ D 0; h0 .0/ D k; h.even/ .0/ D 0;

where k is a positive integer. Show that the above construction yields a smooth
metric on the vector bundle over S2 with Euler number˙k:Hint: Away from the zero
section this vector bundle is .0;1/ � S3=Zk; where S3=Zk is the quotient of S3 by
the cyclic group of order k acting on the Hopf fiber. You should use the submersion
description and then realize this vector bundle as a submersion of S3�R2:When k D
2; this becomes the tangent bundle to S2: When k D 1; it looks like CP2 � fpointg :
EXERCISE 1.6.24. Let G be a compact Lie group.

(1) Show that G admits a biinvariant metric, i.e., both right- and left-translations
are isometries. Hint: Fix a left-invariant metric gL and a volume form vol D
�1 ^ � � � ^ �1 where � i are orthonormal left-invariant 1-forms. Then define g as
the average over right-translations:

g .v;w/ D 1R
G vol

Z

G
gL .DRx .v/ ;DRx .w// vol :

(2) Show that conjugation Adh .x/ D hxh�1 is a Riemannian isometry for any
biinvariant metric. Conclude that its differential at x D e denoted by the same
letters

Adh W g! g

is a linear isometry with respect to g:
(3) Use this to show that the adjoint action

adU W g! g;

adU X D ŒU;X�

is skew-symmetric, i.e.,

g .ŒU;X� ;Y/ D �g .X; ŒU;Y�/ :

Hint: It is shown in section 2.1.4 that U 7! adU is the differential of h 7! Adh.

EXERCISE 1.6.25. Let G be a Lie group with Lie algebra g. Show that a nondegen-
erate, bilinear, symmetric form .X;Y/ on g defines a biinvariant pseudo-Riemannian
metric if and only if .X;Y/ D .Adh X;Adh Y/ for all h 2 G.
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EXERCISE 1.6.26. Let G be a compact group acting on a Riemannian manifold.
Show that M admits a Riemannian metric such that G acts by isometries. Hint: You
first have to show that any manifold admits a Riemannian metric (partition of unity)
and then average the metric to make it G-invariant.

EXERCISE 1.6.27. Let G be a Lie group. Define the Killing form on g by

B .X;Y/ D tr .adX ı adY/ :

(1) Show that B is symmetric and bilinear.
(2) When G admits a biinvariant metric show that B .X;X/ � 0. Hint: Use part (3)

of exercise 1.6.24.
(3) Show that B .adZ X;Y/ D �B .X; adZ Y/.
(4) Show that B .Adh X;Adh Y/ D B .X;Y/, when G is connected. Hint: Show that

t 7! B
�
Adexp.tZ/ X;Adexp.tZ/ Y

�

is constant, where exp .0/ D e and d
dt exp .tZ/ D Z.

Note B looks like a biinvariant metric on G. When g is semisimple the Killing
form is nondegenerate (this can in fact be taken as the definition of semisimplicity)
and thus can be used as a pseudo-Riemannian biinvariant metric. It is traditional to
use �B instead so as to obtain a Riemannian metric when G is also compact.

EXERCISE 1.6.28. Consider the Lie group of real n�n-matrices with determinant 1,
SL .n;R/. The Lie algebra sl .n;R/ consists of real n�n-matrices with trace 0. Show
that the symmetric bilinear form .X;Y/ D tr .XY/ on sl .n;R/ defines a biinvariant
pseudo-Riemannian metric on SL .n;R/. Hint: Show that it is nondegenerate and
invariant under Adh.

EXERCISE 1.6.29. Show that the matrices

2

4
a�1 0 0
0 a b
0 0 1

3

5 ; a > 0; b 2 R

define a two-dimensional Lie group that does not admit a biinvariant pseudo-
Riemannian metric.



Chapter 2
Derivatives

This chapter introduces several important notions of derivatives of tensors.
In chapters 5 and 6 we also introduce partial derivatives of functions into
Riemannian manifolds.

The main goal is the construction of the connection and its use as covariant
differentiation. We give a motivation of this concept that depends on exterior and
Lie derivatives. Covariant differentiation, in turn, allows for nice formulas for
exterior derivatives, Lie derivatives, divergence and much more. It is also crucial
in the development of curvature which is the central construction in Riemannian
geometry.

Surprisingly, the idea of a connection postdates Riemann’s introduction of the
curvature tensor. Riemann discovered the Riemannian curvature tensor as a second-
order term in a Taylor expansion of a Riemannian metric at a point with respect to a
suitably chosen coordinate system. Lipschitz, Killing, and Christoffel introduced the
connection in various ways as an intermediate step in computing the curvature. After
this early work by the above-mentioned German mathematicians, an Italian school
around Levi-Civita, Ricci, Bianchi et al. began systematically to study Riemannian
metrics and tensor analysis. They eventually defined parallel translation and through
that clarified the use of the connection. Hence the name Levi-Civita connection for
the Riemannian connection. Most of their work was still local in nature and mainly
centered on developing tensor analysis as a tool for describing physical phenomena
such as stress, torque, and divergence. At the beginning of the twentieth century
Minkowski started developing the geometry of space-time as a mathematical model
for Einstein’s new special relativity theory. It was this work that eventually enabled
Einstein to give a geometric formulation of general relativity theory. Since then,
tensor calculus, connections, and curvature have become an indispensable language
for many theoretical physicists.

Much of what we do in this chapter carries over to the pseudo-Riemannian setting
as long as we keep in mind how to calculate traces in this context.
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2.1 Lie Derivatives

2.1.1 Directional Derivatives

There are many ways of denoting the directional derivative of a function on a
manifold. Given a function f W M ! R and a vector field Y on M we will use
the following ways of writing the directional derivative of f in the direction of Y

rY f D DYf D LYf D df .Y/ D Y.f /:

If we have a function f W M ! R on a manifold, then the differential df W TM !
R measures the change in the function. In local coordinates, df D @i.f /dxi. If, in
addition, M is equipped with a Riemannian metric g, then we also have the gradient
of f , denoted by gradf D rf , defined as the vector field satisfying g.v;rf / D df .v/
for all v 2 TM. In local coordinates this reads, rf D gij@i.f /@j, where gij is the
inverse of the matrix gij (see also section 1.5.1). Defined in this way, the gradient
clearly depends on the metric.

But is there a way of defining a gradient vector field of a function without using
Riemannian metrics? The answer is no and can be understood as follows. On R

n the
gradient is defined as

rf D ıij@i.f /@j D
nX

iD1
@i .f / @i:

But this formula depends on the fact that we used Cartesian coordinates. If instead
we use polar coordinates on R

2, say, then

rf D @x .f / @x C @y .f / @y ¤ @r .f / @r C @� .f / @� ;

One rule of thumb for items that are invariantly defined is that they should satisfy the
Einstein summation convention. Thus, df D @i .f / dxi is invariantly defined, while
rf D @i .f / @i is not. The metric g D gijdxidxj and gradient rf D gij@i .f / @j are
invariant expressions that also depend on our choice of metric.

2.1.2 Lie Derivatives

Let X be a vector field and Ft the corresponding locally defined flow on a smooth
manifold M. Thus Ft .p/ is defined for small t and the curve t 7! Ft .p/ is the
integral curve for X that goes through p at t D 0: The Lie derivative of a tensor in
the direction of X is defined as the first-order term in a suitable Taylor expansion of
the tensor when it is moved by the flow of X: The precise formula, however, depends
on what type of tensor we use.
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If f W M ! R is a function, then

f
�
Ft .p/

� D f .p/C t .LXf / .p/C o .t/ ;

or

.LXf / .p/ D lim
t!0

f .Ft .p// � f .p/

t
:

Thus the Lie derivative LXf is simply the directional derivative DXf D df .X/:
Without specifying p we can also write

f ı Ft D f C tLXf C o .t/ and LXf D DXf D df .X/ :

When we have a vector field Y things get a little more complicated as YjFt can’t
be compared directly to Y since the vectors live in different tangent spaces. Thus we
consider the curve t 7! DF�t

�
YjFt.p/

�
that lies in TpM: When this is expanded in t

near 0 we obtain an expression

DF�t
�
YjFt.p/

� D Yjp C t .LXY/ jp C o .t/

for some vector .LXY/ jp 2 TpM. In other words we define

.LXY/ jp D lim
t!0

DF�t
�
YjFt.p/

� � Yjp
t

:

This Lie derivative turns out to be the Lie bracket.

Proposition 2.1.1. If X;Y are vector fields on M, then LXY D ŒX;Y�.
Proof. While Lie derivatives are defined as a limit of suitable difference quotients
it is generally far more convenient to work with their implicit definition through the
first-order Taylor expansion.

The Lie derivative comes from

DF�t .YjFt / D Y C tLXY C o .t/

or equivalently

YjFt �DFt .Y/ D tDFt .LXY/C o .t/ :

Consider the directional derivative of a function f in the direction of YjFt �DFt .Y/

DYjFt �DFt.Y/f D DYjFt f �DDFt.Y/f

D .DYf / ı Ft � DY
�
f ı Ft

�
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D DYf C tDXDYf C o .t/

�DY .f C tDXf C o .t//

D t .DXDYf �DYDXf /C o .t/

D tDŒX;Y�f C o .t/ :

This shows that

LXY D lim
t!0

YjFt � DFt .Y/

t

D ŒX;Y� :

ut
We are now ready to define the Lie derivative of a .0; k/-tensor T and also give

an algebraic formula for this derivative. Define

�
Ft
��

T D T C t .LXT/C o .t/

or with variables included
��

Ft
��

T
�
.Y1; : : : ;Yk/ D T

�
DFt .Y1/ ; : : : ;DFt .Yk/

�

D T .Y1; : : : ;Yk/C t .LXT/ .Y1; : : : ;Yk/C o .t/ :

As a difference quotient this means

.LXT/ .Y1; : : : ;Yk/ D lim
t!0

.Ft/
� T � T

t
:

Proposition 2.1.2. If X is a vector field and T a .0; k/-tensor on M; then

.LXT/ .Y1; : : : ;Yk/ D DX .T .Y1; : : : ;Yk// �
kX

iD1
T .Y1; : : : ;LXYi; : : : ;Yk/ :

Proof. We restrict attention to the case where k D 1: The general case is similar but
requires more notation. Using that

YjFt D DFt .Y/C tDFt .LXY/C o .t/

we get

��
Ft
��

T
�
.Y/ D T

�
DFt .Y/

�
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D T
�
YjFt � tDFt .LXY/

�C o .t/

D T .Y/ ı Ft � tT
�
DFt .LXY/

�C o .t/

D T .Y/C tDX .T .Y// � tT
�
DFt .LXY/

�C o .t/ :

Thus

.LXT/ .Y/ D lim
t!0

�
.Ft/� T

�
.Y/ � T .Y/

t

D lim
t!0

�
DX .T .Y// � T

�
DFt .LXY/

��

D DX .T .Y// � T .LXY/ :

ut
Finally, we have that Lie derivatives satisfy all possible product rules, i.e.,

they are derivations. From the above propositions this is already obvious when
multiplying functions with vector fields or .0; k/-tensors.

Proposition 2.1.3. If T1 and T2 be .0; ki/-tensors, then

LX .T1 � T2/ D .LXT1/ � T2 C T1 � .LXT2/ :

Proof. Recall that for 1-forms and more general .0; k/-tensors we define the
product as

T1 � T2 .X1; : : : ;Xk1 ;Y1; : : : ;Yk2 / D T1 .X1; : : : ;Xk1 / � T2 .Y1; : : : ;Yk2 / :

The proposition is then a simple consequence of the previous proposition and the
product rule for derivatives of functions. ut
Proposition 2.1.4. If T is a .0; k/-tensor and f W M ! R a function, then

LfXT .Y1; : : : ;Yk/ D fLXT .Y1; : : : ;Yk/C
kX

iD1
.LYi f / T .Y1; : : : ;X; : : : ;Yk/ :

Proof. We have that

LfXT .Y1; : : : ;Yk/ D DfX .T .Y1; : : : ;Yk//�
kX

iD1
T
�
Y1; : : : ;LfXYi; : : : ;Yk

�

D fDX
�
T
�
Y1; : : : ;Yp

�� �
kX

iD1
T .Y1; : : : ; ŒfX;Yi� ; : : : ;Yk/
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D fDX
�
T
�
Y1; : : : ;Yp

�� � f
kX

iD1
T .Y1; : : : ; ŒX;Yi� ; : : : ;Yk/

C
kX

iD1
.LYi f / T .Y1; : : : ;X; : : : ;Yk/ :

ut
The case where Xjp D 0 is of special interest when computing Lie derivatives.

We note that Ft .p/ D p for all t: Thus DFt W TpM! TpM and

LXYjp D lim
t!0

DF�t
�
Yjp
�� Yjp

t

D d

dt

�
DF�t

� jtD0
�
Yjp
�
:

This shows that LX D d
dt .DF�t/ jtD0 when Xjp D 0: From this we see that if �

is a 1-form then LX� D �� ı LX at points p where Xjp D 0: This is a general
phenomenon.

Lemma 2.1.5. If a vector field X vanishes at p, then the Lie derivative LXT at p
depends only on the value of T at p.

Proof. We have that

.LXT/ .Y1; : : : ;Yk/ D DX .T .Y1; : : : ;Yk// �
kX

iD1
T .Y1; : : : ;LXYi; : : : ;Yk/ :

So if X vanishes at p, then

.LXT/ .Y1; : : : ;Yk/ jp D �
kX

iD1
T .Y1; : : : ;LXYi; : : : ;Yk/ jp:

ut
It is also possible to define Lie derivatives of more general tensors and even

multilinear maps on vector fields. An important instance of this is the Lie derivative
of the Lie bracket ŒY;Z� or even the Lie derivative of the Lie derivative LYT. This is
algebraically defined as

.LXL/Y T D LX .LYT/ � LLX YT � LY .LXT/

D ŒLX;LY �T � LŒX;Y�T:
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Proposition 2.1.6 (The Generalized Jacobi Identity). For all vector fields X; Y
and tensors T

.LXL/Y T D 0:

Proof. When T is a function this follows from the definition of the Lie bracket:

.LXL/Y f D ŒLX;LY � f � LŒX;Y�f

D ŒDX;DY � f � DŒX;Y�f

D 0:

When T D Z is a vector field it is the usual Jacobi identity:

.LXL/Y Z D ŒLX ;LY �Z � LŒX;Y�Z

D ŒX; ŒY;Z�� � ŒY; ŒX;Z�� � ŒŒX;Y�;Z�
D ŒX; ŒY;Z��C ŒZ; ŒX;Y��C ŒY; ŒZ;X��
D 0:

When T D ! is a one-form it follows automatically from those two observations
provided we know that

.ŒLX;LY � !/ .Z/ D ŒLX;LY � .! .Z// � ! .ŒLX;LY � Z/

since we then have

..LXL/Y !/ .Z/ D .ŒLX;LY � !/ .Z/ �
�
LŒX;Y�!

�
.Z/

D ŒLX;LY � .! .Z// � ! .ŒLX;LY � Z/

�LŒX;Y� .! .Z//C !
�
LŒX;Y�Z

�

D 0:

A few cancellations must occur for the first identity to hold. Note that

.ŒLX ;LY � !/ .Z/ D .LX .LY!// .Z/ � .LY .LX!// .Z/ ;

.LX .LY!// .Z/ D LX ..LY!/ .Z// � .LY!/ .LXZ/

D LX .LY .! .Z/// � LX .! .LYZ//

�LY .! .LXZ//C ! .LYLXZ/ ;
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and similarly

.LY .LX!// .Z/ D LY .LX .! .Z/// � LY .! .LXZ// � LX .! .LY Z//C ! .LXLYZ/ :

This shows that

.ŒLX;LY � !/ .Z/ D ŒLX;LY � .! .Z// � ! .ŒLX;LY � Z/ :

The proof for general tensors now follows by observing that these are tensor
products of the above three simple types of tensors and that Lie derivatives act as
derivations. ut

The Lie derivative can also be used to give a formula for the exterior derivative
of a k-form

d! .X0;X1; : : : ;Xk/ D 1

2

kX

iD0
.�1/i .LXi!/

�
X0; : : : ;bXi; : : : ;Xk

�
:

C1
2

kX

iD0
.�1/i LXi

�
!
�

X0; : : : ;bXi; : : : ;Xk

��

For a 1-form this gives us the usual definition

d! .X;Y/ D DX .! .Y// �DY .! .X//� ! .ŒX;Y�/ :

2.1.3 Lie Derivatives and the Metric

The Lie derivative allows us to define the Hessian of a function on a Riemannian
manifold as a .0; 2/-tensor:

Hess f .X;Y/ D 1

2

�
Lrf g

�
.X;Y/ :

At a critical point for f this gives the expected answer. To see this, select coordinates
xi around p such that the metric coefficients satisfy gijjp D ıij: If df jp D 0, then
rf jp D 0 and it follows that

Lrf
�
gijdxidxj

� jp D Lrf
�
gij
� jp C ıijLrf

�
dxi
�

dxj C ıijdxiLrf
�
dxj
�

D ıijLrf
�
dxi
�

dxj C ıijdxiLrf
�
dxj
�

D Lrf
�
ıijdxidxj

� jp:
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Thus Hess f jp is the same if we compute it using g and the Euclidean metric in the
fixed coordinate system.

It is perhaps still not clear why the Lie derivative formula for the Hessian is
reasonable. The idea is that the Hessian measures how the metric changes as we
flow along the gradient field. To justify this better let us define the divergence of
a vector field X as the function div X that measures how the volume form changes
along the flow for X:

LX vol D .div X/ vol :

Note that the form LX vol is always exact as

LX vol D diX vol;

where iXT evaluates T on X in the first variable.
The Laplacian of a function is defined as in vector calculus by

�f D divrf

and we claim that it is also given as the trace of the Hessian. To see this select a
positively oriented orthonormal frame Ei and note that

div X D .LX vol/ .E1; : : : ;En/

D LX .vol .E1; : : : ;En//

�
X

vol .E1; : : : ;LXEi; : : : ;En/

D �
X

g .LXEi;Ei/

D 1

2

X
.LX .g .Ei;Ei// � g .LXEi;Ei/ � g .Ei;LXEi//

D
X 1

2
.LXg/ .Ei;Ei/ :

We can also show that the Hessian defined in this way gives us back the usual
Hessian of a function f W Rn ! R with the canonical metric on Euclidean space:

Lrf
�
ıijdxidxj

� D LP @jf@j

X
dxidxi

D
X

L@jf@j dxidxi

D
X�

L@jf@j dxi
�

dxi C
X

dxi
�
L@jf@j dxi

�

D
X

@jf
�
L@j dxi

�
dxi C

X
@jfdxi

�
L@j dxi

�
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D C
X

d
�
@jf
�

dxi
�
@j
�

dxi C
X

d
�
@jf
�

dxidxi
�
@j
�

D 2
X

d .@if / dxi

D 2
X

@jifdxjdxi

D 2Hess f :

2.1.4 Lie Groups

Lie derivatives as might be expected also come in handy when working with Lie
groups. For a Lie group G we have the inner automorphism Adh W x 7! hxh�1and its
differential at x D e denoted by the same letters Adh W g! g.

Lemma 2.1.7. The differential of h 7! Adh is given by U 7! adU .X/ D ŒU;X�.
Proof. If we write Adh .x/ D Rh�1Lh .x/, then its differential at x D e is given by
Adh D DRh�1DLh. Now let Ft be the flow for U: Then Ft .x/ D xFt .e/ D Lx .Ft .e//
as both curves go through x at t D 0 and have U as tangent everywhere since U is a
left-invariant vector field. This also shows that DFt D DRFt.e/. Thus

adU .X/ je D d

dt
DRF�t.e/DLFt.e/ .Xje/ jtD0

D d

dt
DRF�t.e/

�
XjFt.e/

� jtD0

D d

dt
DF�t

�
XjFt.e/

� jtD0
D LUX D ŒU;X� :

ut
This is used in the next lemma.

Lemma 2.1.8. Let G D GL .V/ be the Lie group of invertible matrices on V: The
Lie bracket structure on the Lie algebra gl .V/ of left-invariant vector fields on
GL .V/ is given by commutation of linear maps. i.e., if X;Y 2 TIGL .V/ ; then

ŒX;Y� jI D XY � YX:

Proof. Since x 7! hxh�1 is a linear map on the space Hom .V;V/ we see that
Adh .X/ D hXh�1: The flow of U is given by Ft .g/ D g .I C tU C o .t// so we
have
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ŒU;X� D d

dt

�
Ft .I/XF�t .I/

� jtD0

D d

dt
..I C tU C o .t//X .I � tU C o .t/// jtD0

D d

dt
.X C tUX � tXU C o .t// jtD0

D UX � XU: ut

2.2 Connections

2.2.1 Covariant Differentiation

We now come to the question of attaching a meaning to the change of a vector
field. The Lie derivative is one possibility, but it is not a strong enough concept as it
doesn’t characterize the Cartesian coordinate fields in R

n as having zero derivative.
A better strategy for Rn is to write X D Xi@i, where @i are the Cartesian coordinate
fields. If we want the coordinate vector fields to have zero derivative, then it is
natural to define the covariant derivative of X in the direction of Y as

rYX D �rYXi
�
@i D d

�
Xi
�
.Y/ @i:

Thus we measure the change in X by measuring how the coefficients change.
Therefore, a vector field with constant coefficients does not change. This formula
clearly depends on the fact that we used Cartesian coordinates and is not invariant
under change of coordinates. If we take the coordinate vector fields

@r D 1

r

�
x@x C y@y

�
; @� D �y@x C x@y

that come from polar coordinates in R
2; then we see that they are not constant.

In order to better understand such derivatives we need to find a coordinate
independent definition. This is done most easily by splitting the problem of defining
the change in a vector field X into two problems.

First, we can measure the change in X by asking whether or not X is a gradient
field. If iXg D �X is the 1-form dual to X; i.e., .iXg/ .Y/ D g .X;Y/ ; then we know
that X is locally the gradient of a function if and only if d�X D 0: In general, the
2-form d�X then measures the extent to which X is a gradient field.

Second, we can measure how a vector field X changes the metric via the Lie
derivative LXg: This is a symmetric .0; 2/-tensor as opposed to the skew-symmetric
.0; 2/-tensor d�X: If Ft is the local flow for X; then we see that LXg D 0 if and only
if Ft are isometries (see also section 8.1). When this happens we say that X is a
Killing field.
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In case X D rf is a gradient field we saw that the expression 1
2
Lrf g is the

Hessian of f : From that calculation we can also quickly see what the Killing fields
on R

n should be: If X D Xi@i; then X is a Killing field if and only if @kXiC@iXk D 0:
This implies that

@j@kXi D �@j@iX
k

D �@i@jX
k

D @i@kXj

D @k@iX
j

D �@k@jX
i

D �@j@kXi:

Thus we have @j@kXi D 0 and hence

Xi D ˛i
jx

j C ˇi

with the extra conditions that

˛i
j D @jX

i D �@iX
j D �˛j

i :

In particular, the angular field @� is a Killing field. This also follows from the fact
that the corresponding flow is matrix multiplication by the orthogonal matrix

�
cos .t/ � sin .t/
sin .t/ cos .t/


:

More generally, one can show that the flow of the Killing field X is

Ft .x/ D exp .At/ xC tˇ; A D 	˛i
j



; ˇ D 	ˇi



:

In this way we see that a vector field on R
n is constant if and only if it is both a

Killing field and a gradient field.
Finally we make the important observation.

Proposition 2.2.1. The covariant derivative in R
n is given by the implicit formula:

2g .rYX;Z/ D .LXg/ .Y;Z/C .d�X/ .Y;Z/ :

Proof. Since both sides are tensorial in Y and Z it suffices to check the formula on
the Cartesian coordinate vector fields. Write X D ai@i and calculate the right-hand
side
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.LXg/ .@k; @l/C .d�X/ .@k; @l/ D DXıkl � g .LX@k; @l/ � g .@k;LX@l/

C@kg .X; @l/� @lg .X; @k/ � g .X; Œ@k; @l�/

D �g
�
Lai@i

@k; @l
� � g

�
@k;Laj@j

@l

�

C@kal � @la
k

D �g
�� �@kai

�
@i; @l

� � g
�
@k;�

�
@la

j
�
@j
�

C@kal � @la
k

D C@kal C @la
k C @kal � @la

k

D 2@kal

D 2g
��
@kai

�
@i; @l

�

D 2g .r@k X; @l/ :

ut
Since the right-hand side in the formula forrY X makes sense on any Riemannian

manifold we can use this to give an implicit definition of the covariant derivative of
X in the direction of Y. This covariant derivative turns out to be uniquely determined
by the following properties.

Theorem 2.2.2 (The Fundamental Theorem of Riemannian Geometry). The
assignment X 7! rX on .M; g/ is uniquely defined by the following properties:

(1) Y 7! rYX is a .1; 1/-tensor, i.e., it is well-defined for tangent vectors and linear

r˛vCˇwX D ˛rvX C ˇrwX:

(2) X 7! rY X is a derivation:

rY .X1 C X2/ D rY X1 CrYX2;

rY .fX/ D .DYf /X C frYX

for functions f W M! R:

(3) Covariant differentiation is torsion free:

rXY � rYX D ŒX;Y� :

(4) Covariant differentiation is metric:

DZg .X;Y/ D g .rZX;Y/C g .X;rZY/ :
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Proof. We have already established (1) by using that

.LXg/ .Y;Z/C .d�X/ .Y;Z/

is tensorial in Y and Z: This also shows that the expression is linear in X: To check
the derivation rule we observe that

LfXgC d�fX D fLXgC df � �X C �X � df C d .f�X/

D fLXgC df � �X C �X � df C df ^ �X C fd�X

D f .LXgC d�X/C df � �X C �X � df C df � �X � �X � df

D f .LXgC d�X/C 2df � �X:

Thus

2g .rY .fX/ ;Z/ D f2g .rYX;Z/C 2df .Y/ g .X;Z/

D 2g .frYX C df .Y/X;Z/

D 2g .frYX C .DYf /X;Z/ :

To establish the next two claims it is convenient to create the following expansion
also known as Koszul’s formula.

2g .rYX;Z/ D .LXg/ .Y;Z/C .d�X/ .Y;Z/

D DXg .Y;Z/ � g .ŒX;Y� ;Z/� g .Y; ŒX;Z�/

CDY�X .Z/ �DZ�X .Y/ � �X .ŒY;Z�/

D DXg .Y;Z/ � g .ŒX;Y� ;Z/� g .Y; ŒX;Z�/

CDYg .X;Z/�DZg .X;Y/� g .X; ŒY;Z�/

D DXg .Y;Z/C DYg .Z;X/� DZg .X;Y/

�g .ŒX;Y� ;Z/ � g .ŒY;Z� ;X/C g .ŒZ;X� ;Y/ :

We then see that (3) follows from

2g .rXY � rYX;Z/ D DYg .X;Z/C DXg .Z;Y/ �DZg .Y;X/

�g .ŒY;X� ;Z/ � g .ŒX;Z� ;Y/C g .ŒZ;Y� ;X/

�DXg .Y;Z/ �DYg .Z;X/C DZg .X;Y/

Cg .ŒX;Y� ;Z/C g .ŒY;Z� ;X/� g .ŒZ;X� ;Y/

D 2g .ŒX;Y� ;Z/ :
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And (4) from

2g .rZX;Y/C 2g .X;rZY/ D DXg .Z;Y/C DZg .Y;X/ �DYg .X;Z/

�g .ŒX;Z� ;Y/ � g .ŒZ;Y� ;X/C g .ŒY;X� ;Z/

CDYg .Z;X/C DZg .X;Y/ �DXg .Y;Z/

�g .ŒY;Z� ;X/� g .ŒZ;X� ;Y/C g .ŒX;Y� ;Z/

D 2DZg .X;Y/ :

Conversely, if we have a covariant derivative NrYX with these four properties, then

2g .rYX;Z/ D .LXg/ .Y;Z/C .d�X/ .Y;Z/

D DXg .Y;Z/C DYg .Z;X/� DZg .X;Y/

�g .ŒX;Y� ;Z/ � g .ŒY;Z� ;X/C g .ŒZ;X� ;Y/

D g
� NrXY;Z

�C g
�
Y; NrXZ

�C g
� NrYZ;X

�C g
�
Z; NrY X

�

�g
� NrZX;Y

� � g
�
X; NrZY

�C g
� NrZX;Y

� � g
� NrXZ;Y

�

�g
� NrXY;Z

�C g
� NrYX;Z

� � g
� NrYZ;X

�C g
� NrZY;X

�

D 2g
� NrYX;Z

�

showing that rYX D NrYX: ut
Any assignment on a manifold that satisfies (1) and (2) is called an affine

connection. If .M; g/ is a Riemannian manifold and we have a connection that in
addition also satisfies (3) and (4), then we call it a Riemannian connection. As we
just saw, this connection is uniquely defined by these four properties and is given
implicitly through the formula

2g .rYX;Z/ D .LXg/ .Y;Z/C .d�X/ .Y;Z/

D DXg .Y;Z/C DYg .Z;X/� DZg .X;Y/

�g .ŒX;Y� ;Z/ � g .ŒY;Z� ;X/C g .ŒZ;X� ;Y/ :

Before proceeding we need to discuss how rY X depends on X and Y: Since rYX
is tensorial in Y; we see that the value of rYX at p 2 M depends only on Yjp: But in
what way does it depend on X‹ Since X 7! rYX is a derivation, it is definitely not
tensorial in X: Therefore, we cannot expect .rYX/ jp to depend only on Xjp and Yjp:
The next two lemmas explore how .rYX/ jp depends on X:

Lemma 2.2.3. Let M be a manifold and r an affine connection on M: If p 2 M,
v 2 TpM; and X;Y are vector fields on M such that X D Y in a neighborhood
U 3 p, then rvX D rvY:
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Proof. Choose � W M! R such that � � 0 on M�U and � � 1 in a neighborhood
of p. Then �X D �Y on M: Thus at p

rv�X D �.p/rvX C d�.v/ � X.p/ D rvX

since d�jp D 0 and �.p/ D 1: In particular,

rvX D rv�X D rv�Y D rvY:

ut
For a Riemannian connection we could also have used the Koszul formula to

prove this since the right-hand side of that formula can be localized. This lemma tells
us an important thing. Namely, if a vector field X is defined only on an open subset
of M, then rX still makes sense on this subset. Therefore, we can use coordinate
vector fields or more generally frames to compute r locally.

Lemma 2.2.4. Let M be a manifold and r an affine connection on M. If X is a
vector field on M and c W I ! M a smooth curve with Pc.0/ D v 2 TpM, then rvX
depends only on the values of X along c; i.e., if X ı c D Y ı c; then rPcX D rPcY.

Proof. Choose a frame E1; : : : ;En in a neighborhood of p and write Y D P
YiEi,

X DP
XiEi on this neighborhood. From the assumption that X ı c D Y ı c we get

that Xi ı c D Yi ı c: Thus,

rvY D rv
�
YiEi

�

D Yi.p/rvEi C Ei.p/dYi.v/

D Xi.p/rvEi C Ei.p/dXi.v/

D rvX:

ut
This shows that rvX makes sense as long as X is prescribed along some curve

(or submanifold) that has v as a tangent.
It will occasionally be convenient to use coordinates or orthonormal frames with

certain nice properties. We say that a coordinate system is normal at p if gijjp D ıij

and @kgijjp D 0: An orthonormal frame Ei is normal at p 2 M if rvEi.p/ D 0 for all
i D 1; : : : ; n and v 2 TpM: It is not hard to show that such coordinates and frames
always exist (see exercises 2.5.20 and 2.5.19).
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2.2.2 Covariant Derivatives of Tensors

The connection, as we shall see, is also useful in generalizing many of the
well-known concepts (such as Hessian, Laplacian, divergence) from multivariable
calculus to the Riemannian setting (see also section 2.1.3).

If S is a .s; t/-tensor field, then we can define a covariant derivative rS that we
interpret as an .s; t C 1/-tensor field. Recall that a vector field X is a .1; 0/-tensor
field and rX is a .1; 1/-tensor field. The main idea is to make sure that Leibniz’ rule
holds. So for a .1; 1/-tensor S we should have

rX .S.Y// D .rXS/.Y/C S.rXY/:

Therefore, it seems reasonable to define rS as

rS.X;Y/ D .rXS/.Y/

D rX .S.Y//� S.rXY/:

In other words

rXS D ŒrX; S� :

It is easily checked that rXS is still tensorial in Y:
More generally, when s D 0; 1 we obtain

rS.X;Y1; : : : ;Yr/ D .rXS/.Y1; : : : ;Yr/

D rX.S.Y1; : : : ;Yr// �
rX

iD1
S.Y1; : : : ;rXYi; : : : ;Yr/:

Here rX is interpreted as the directional derivative when applied to a function and
covariant differentiation on vector fields. This also makes sense when s � 2, if we
make sense of defining covariant derivatives of, say, tensor products of vector fields.
This can also be done using the product rule:

rX .X1 ˝ X2/ D .rXX1/˝ X2 C X1 ˝ .rXX2/ :

A tensor is said to be parallel if rS � 0. In Euclidean space one can easily show
that if a tensor is written in Cartesian coordinates, then it is parallel if and only if it
has constant coefficients. Thus rX � 0 for constant vector fields. On a Riemannian
manifold .M; g/ the metric and volume forms are always parallel.
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Proposition 2.2.5. On a Riemannian n-manifold .M; g/

rg D 0;
r vol D 0:

Proof. The metric is parallel due to property (4):

.rg/.X;Y1;Y2/ D rX .g.Y1;Y2// � g.rXY1;Y2/� g.Y1;rXY2/ D 0:

To check that the volume form is parallel we evaluate the covariant derivative on an
orthonormal frame E1; : : : ;En:

.rX vol/ .E1; : : : ;En/ D rX vol .E1; : : : ;En/

�
X

vol .E1; : : : ;rXEi; : : : ;En/

D �
X

g .Ei;rXEi/

D �1
2

X
DX .g .Ei;Ei//

D 0:

ut
The covariant derivative gives us a different way of calculating the Hessian of a

function.

Proposition 2.2.6. If f W .M; g/! R, then

.rXdf / .Y/ D g .rXrf ;Y/ D Hess f .X;Y/ :

Proof. First observe that

.rdf / .X;Y/ D .rXdf / .Y/

D DXDYf � df .rXY/

D DXDYf � DrXY f :

This shows that

.rXdf / .Y/ � .rYdf / .X/ D ŒDX;DY � f � DŒX;Y�f D 0:
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Thus .rXdf / .Y/ is symmetric. This can be used to establish the formulas

.rdf / .X;Y/ D .rXdf / .Y/

D DXg .rf ;Y/ � g .rf ;rXY/

D g .rXrf ;Y/

D 1

2
g .rXrf ;Y/C 1

2
g .X;rYrf /

D 1

2

�rrf g
�
.X;Y/C 1

2
g .rXrf ;Y/C 1

2
g .X;rYrf /

D 1

2
Drf g .X;Y/� 1

2
g .Œrf ;X� ;Y/ � 1

2
g .X; Œrf ;Y�/

D 1

2

�
Lrf g

�
.X;Y/ :

ut

2.2.2.1 The Adjoint of the Covariant Derivative

The adjoint to the covariant derivative on .s; t/-tensors with t > 0 is defined as

�r�S
�
.X2; : : : ;Xr/ D �

X
.rEi S/ .Ei;X2; : : : ;Xr/ ;

where E1; : : : ;En is an orthonormal frame. This means that while the covariant
derivative adds a variable, the adjoint eliminates one. The adjoint is related to the
divergence of a vector field (see section 2.1.3) by

Proposition 2.2.7. If X is a vector field and �X the corresponding 1-form, then

div X D �r��X:

Proof. See section 2.1.3 for the definition of divergence. Select an orthonormal
frame Ei, then

�r��X D
X

.rEi�X/ .Ei/

D
X

DEi g .X;Ei/ �
X

g .X;rEiEi/

D
X

g .rEiX;Ei/

D
X 1

2
.LXg/ .Ei;Ei/

D div X: ut
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The adjoint really is the adjoint of the covariant derivative with respect to the
integrated inner product.

Proposition 2.2.8. If S is a compactly supported .s; t/-tensor and T a compactly
supported .s; tC 1/-tensor, then

Z
g .rS;T/ vol D

Z
g
�
S;r�T

�
vol :

Proof. Define a 1-form by ! .X/ D g .iXT; S/. To calculate its divergence more
easily, select an orthonormal frame Ei such that rvEi D 0 for all v 2 TpM. To
further simplify things a bit assume that s D t D 1, then

�r�! D .rEi!/ .Ei/

D rEi g
�
T
�
Ei;Ej

�
; S
�
Ej
��

D g
�rEi T

�
Ei;Ej

�
; S
�
Ej
��C g

�
T
�
Ei;Ej

�
;rEi S

�
Ej
��

D �g
�r�T; S

�C g .T;rS/ :

So the result follows by the divergence theorem or Stokes’ theorem:

Z
div X vol D

Z
diX vol D 0;

where X is any compactly supported vector field. ut

2.2.2.2 Exterior Derivatives

The covariant derivative gives us a very nice formula for exterior derivatives of
forms as the skew-symmetrized covariant derivative:

.d!/ .X0; : : : ;Xk/ D
X

.�1/i .rXi!/
�

X0; : : : ; OXi; : : : ;Xk

�
:

While the covariant derivative clearly depends on the metric this formula shows that
for forms we can still obtain derivatives that do not depend on the metric. It will
also allow us to define exterior derivatives of more complicated tensors. Suppose
we have a .1; k/-tensor T that is skew-symmetric in the k variables. Then we can
define the .1; kC 1/-tensor

�
drT

�
.X0; : : : ;Xk/ D

X
.�1/i .rXi T/

�
X0; : : : ; OXi; : : : ;Xk

�
:

In case k D 0 the tensor T D Y is a vector field and we obtain the .1; 1/-tensor:
�
drY

�
.X/ D rXY:



2.2 Connections 61

When k D 1 we have a .1; 1/-tensor and obtain the .1; 2/-tensor:
�
drT

�
.X;Y/ D .rXT/ .Y/ � .rYT/ .X/

D rX .T .Y// � rY .T .X//� T ŒX;Y� :

2.2.2.3 The Second Covariant Derivative

For a .s; t/-tensor field S we define the second covariant derivative r2S as the
.s; tC 2/-tensor field
�r2X1;X2S

�
.Y1; : : : ;Yr/ D .rX1 .rS// .X2;Y1; : : : ;Yr/

D .rX1 .rX2S// .Y1; : : : ;Yr/ �
�rrX1X2S

�
.Y1; : : : ;Yr/ :

With this we obtain another definition for the .0; 2/ version of the Hessian of a
function:

r2X;Yf D rXrY f � rrXYf

D rXdf .Y/ � df .rXY/

D .rXdf / .Y/

D Hess f .X;Y/ :

The second covariant derivative on functions is symmetric in X and Y. For more
general tensors, however, this will not be the case. The defect in the second covariant
derivative not being symmetric is a central feature in Riemannian geometry and is
at the heart of the difference between Euclidean geometry and all other Riemannian
geometries.

From the new formula for the Hessian we see that the Laplacian can be written as

�f D �r�rf D
nX

iD1
r2Ei;Ei

f :

2.2.2.4 The Lie Derivative of the Covariant Derivative

We can define the Lie derivative of the connection in a way similar to the Lie
derivative of the Lie bracket

.LXr/U V D .LXr/ .U;V/
D LX .rUV/ � rLX UV � rULXV

D ŒX;rUV� � rŒX;U�V � rU ŒX;V� :
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Since ŒU;V� D rUV � rV U it follows that

.LXr/ .U;V/� .LXr/ .V;U/ D LXLUV D 0:

Moreover asrUV is tensorial in U the Lie derivative .LXr/U V will also be tensorial
in U. The fact that it is also symmetric shows that it is tensorial in both variables.

2.2.2.5 The Covariant Derivative of the Covariant Derivative

We can also define the covariant derivative of the covariant derivative

.rXr/ YT D rX .rYT/ � rrXYT � rY .rXT/ :

Note however, that this is not tensorial in X!
It is related to the second covariant derivative of T by

r2X;YT D .rXr/ YT CrY .rXT/ :

2.3 Natural Derivations

We’ve seen that there are many natural derivations on tensors coming from various
combinations of derivatives. We shall attempt to tie these together in a natural
and completely algebraic fashion by using that all .1; 1/-tensors naturally act as
derivations on tensors.

For clarity we define a derivation on tensors as map T 7! DT that preserves the
type of the tensor T; is linear; commutes with contractions; and satisfies the product
rule

D .T1 ˝ T2/ D .DT1/˝ T2 C T1 ˝DT2:

2.3.1 Endomorphisms as Derivations

The goal is to show that .1; 1/-tensors naturally act as derivations on the space of all
tensors.

We use the natural homomorphism

GL .V/! GL .T .V// ;

where T .V/ is the space of all tensors over the vector space V: This respects the
natural grading of tensors: The subspace of .s; t/-tensors is spanned by

v1 ˝ � � � ˝ vs ˝ 
1 ˝ � � � ˝ 
t
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where v1; : : : ; vs 2 V and 
1; : : : ; 
t W V ! R are linear functions. The natural
homomorphism acts as follows: for ˛ 2 R we have g � ˛ D 0; for v 2 V we have
g � v D g .v/; for 
 2 V� we have g � 
 D 
 ı g�1; and on general tensors

g � .v1 ˝ � � � ˝ vs ˝ 
1 ˝ � � � ˝ 
t/

D g .v1/˝ � � � ˝ g .vs/˝
�

1 ı g�1�˝ � � � ˝ �
t ı g�1� :

The derivative of this action yields a linear map

End .V/! End .T .V// ;

which for each L 2 End .V/ induces a derivation on T .V/ : Specifically, if L 2
End .V/ ; then Lv D L .v/ on vectors; on 1-forms L
 D �
 ı L; and on general
tensors

L .v1 ˝ � � � ˝ vs ˝ 
1 ˝ � � � ˝ 
t/

D L .v1/˝ � � � ˝ vs ˝ 
1 ˝ � � � ˝ 
t

C � � �
Cv1 ˝ � � � ˝ L .vs/˝ 
1 ˝ � � � ˝ 
t

�v1 ˝ � � � ˝ vs ˝ .
1 ı L/˝ � � � ˝ 
t

� � � �
�v1 ˝ � � � ˝ vs ˝ 
1 ˝ � � � ˝ .
t ı L/ :

As the natural derivation comes from an action that preserves symmetries of
tensors we immediately obtain.

Proposition 2.3.1. The linear map

End .V/! End .T .V//

L 7! LT

is a Lie algebra homomorphism that preserves symmetries of tensors.

We also need to show that it is a derivation.

Proposition 2.3.2. Any .1; 1/-tensor L defines a derivation on tensors.

Proof. It is easy to see from the definition that it is linear and satisfies the product
rule. So it remains to show that it commutes with contractions. Consider a .1; 1/-
tensor T and in a local frame Xi with associated coframe � i write it as T D Ti

j Xi˝� j.
The contraction of T is scalar valued and simply the trace of T so we know that
L .tr T/ D 0. On the other hand we have
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L .T/ D Ti
j L .Xi/˝ � j � Ti

j Xi ˝ � j ı L

D Ti
j L

k
i Xk ˝ � j � Ti

j L
j
lXi ˝ � l

D Ti
l L

k
i Xk ˝ � l � Tk

j Lj
lXk ˝ � l

D
�

Ti
l L

k
i � Tk

j Lj
l

�
Xk ˝ � l

so

tr .L .T// D Ti
kLk

i � Tk
j Lj

k D 0:
A similar strategy can be used for general tensors Ti1 ���ik

j1���jl where we trace or contract
over a fixed superscript and subscript. ut

We also need to know how this derivation interacts with an inner product. The
inner product on T .V/ is given by declaring

ei1 ˝ � � � ˝ eip ˝ ej1 ˝ � � � ˝ ejq

an orthonormal basis when e1; : : : ; en is an orthonormal basis for V and e1; : : : ; en

the dual basis for V�:

Proposition 2.3.3. Assume V has an inner product:

(1) The adjoint of L W V ! V extends to become the adjoint for L W T .V/! T .V/.
(2) If L 2 so .V/ ; i.e., L is skew-adjoint, then L commutes with type change of

tensors.

2.3.2 Derivatives

One can easily show that both the Lie derivative LU and the covariant derivative
rU act as derivations on tensors (see exercises 2.5.9 and 2.5.10). However, these
operations are nontrivial on functions. Therefore, they are not of the type we just
introduced above.

Proposition 2.3.4. If we think of rU as the .1; 1/-tensor X 7! rXU, then

LU D rU � .rU/ :

Proof. It suffices to check that this identity holds on vector fields and functions. On
functions it reduces to the definition of directional derivatives, on vectors from the
definition of Lie brackets and the torsion free property of the connection. ut

This proposition indicates that one can make sense of the expression rTU where
T is a tensor and U a vector field. It has in other places been named AXT, but as that
now generally has been accepted as the A-tensor for a Riemannian submersion we
have not adopted this notation.
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2.4 The Connection in Tensor Notation

In a local coordinate system the metric is written as g D gijdxidxj: So if X D Xi@i

and Y D Yj@j are vector fields, then

g .X;Y/ D gijX
iYj:

We can also compute the dual 1-form �X to X by:

�X D g .X; �/
D gijdxi .X/ dxj .�/
D gijX

idxj:

The inverse of the matrix
	
gij



is denoted
	
gij


: Thus we have

ıi
j D gikgkj:

The vector field X dual to a 1-form ! D !idxi is defined implicitly by

g .X;Y/ D ! .Y/ :

In other words we have

�X D gijX
idxj D !jdxj D !:

This shows that

gijX
i D !j:

In order to isolate Xi we have to multiply by gkj on both sides and also use the
symmetry of gij

gkj!j D gkjgijX
i

D gkjgjiX
i

D ık
i Xi

D Xk:

Therefore,

X D Xi@i

D gij!j@i:

The gradient field of a function is a particularly important example of this
construction
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rf D gij@jf@i;

df D @jfdxj:

We proceed to find a formula for rY X in local coordinates

rYX D rYi@i
Xj@j

D Yir@i X
j@j

D Yi
�
@iX

j
�
@j C YiXjr@i@j

D Yi
�
@iX

j
�
@j C YiXj�k

ij@k;

where we simply expanded the term r@i@j in local coordinates. The first part of
this formula is what we expect to get when using Cartesian coordinates in R

n: The
second part is the correction term coming from having a more general coordinate
system and also a non-Euclidean metric. Our next goal is to find a formula for �k

ij in
terms of the metric. To this end we can simply use our defining implicit formula for
the connection keeping in mind that there are no Lie bracket terms. On the left-hand
side we have

2g
�r@i@j; @l

� D 2g
�
�k

ij@k; @l
�

D 2�k
ijgkl;

and on the right-hand side

�
L@j g

�
.@i; @l/C d�@j .@i; @l/ D @jgil C @i

�
�@j .@l/

� � @l
�
�@j .@i/

�

D @jgil C @igjl � @lgji:

Multiplying by glm on both sides then yields

2�m
ij D 2�k

ijı
m
k

D 2�k
ijgklg

lm

D �
@jgil C @igjl � @lgji

�
glm:

Thus we have the formula

�k
ij D

1

2
glk
�
@jgil C @igjl � @lgji

�

D 1

2
gkl
�
@jgil C @igjl � @lgji

�

D 1

2
gkl�ij;l:
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The symbols

�ij;k D 1

2

�
@jgik C @igjk � @kgji

�

D g
�r@i@j; @k

�

are called the Christoffel symbols of the first kind, while �k
ij are the Christoffel

symbols of the second kind. Classically the following notation has also been used

�
k

i; j

�
D �k

ij;

Œij; k� D �ij;k

so as not to think that these things define a tensor. The reason why they are not
tensorial comes from the fact that they may be zero in one coordinate system but not
zero in another. A good example of this comes from the plane where the Christoffel
symbols vanish in Cartesian coordinates, but not in polar coordinates:

���;r D 1

2
.@�g�r C @�g�r � @rg�� /

D �1
2
@r
�
r2
�

D �r:

In fact, as is shown in exercise 2.5.20 it is always possible to find coordinates
around a point p 2 M such that

gijjp D ıij;

@kgijjp D 0:

In particular,

gijjp D ıij;

�k
ijjp D 0:

In such coordinates the covariant derivative is computed exactly as in Euclidean
space

rYXjp D
�rYi@i

Xj@j
� jp

D Yi .p/
�
@iX

j
� jp@jjp:
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The torsion free property of the connection is equivalent to saying that the
Christoffel symbols are symmetric in ij as

�k
ij@k D r@i@j

D r@j@i

D �k
ji@k:

The metric property of the connection becomes

@kgij D g
�r@k@i; @j

�C g
�
@i;r@k@j

�

D �ki;j C �kj;i:

This shows that the Christoffel symbols completely determine the derivatives of the
metric.

Just as the metric could be used to give a formula for the gradient in local
coordinates we can use the Christoffel symbols to get a local coordinate formula
for the Hessian of a function. This is done as follows

2Hess f
�
@i; @j

� D �
Lrf g

� �
@i; @j

�

D Drf gij � g
�
Lrf @i; @j

� � g
�
@i;Lrf @j

�

D gkl .@kf /
�
@lgij

�

Cg
�
L@i

�
gkl .@kf / @l

�
; @j
�

Cg
�
@i;L@j

�
gkl .@kf / @l

��

D .@kf / gkl
�
@lgij

�

C@i
�
gkl .@kf /

�
glj

C@j
�
gkl .@kf /

�
gil

D .@kf / gkl
�
@lgij

�

C .@i@kf / gklglj C
�
@j@kf

�
gklgil

C �@ig
kl
�
.@kf / glj C

�
@jg

kl
�
.@kf / gil

D 2@i@jf

C .@kf /
��
@ig

kl
�

glj C
�
@jg

kl
�

gil C gkl
�
@lgij

��
:
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To compute @igjk we note that

0 D @iı
j
l

D @i
�
gjkgkl

�

D �
@ig

jk
�

gkl C gjk .@igkl/ :

Thus we have

2Hess f
�
@i; @j

� D 2@i@jf

C .@kf /
��
@ig

kl
�

glj C
�
@jg

kl
�

gil C gkl
�
@lgij

��

D 2@i@jf

C .@kf /
��gkl@iglj � gkl@jgli C gkl

�
@lgij

��

D 2@i@jf � gkl
�
@iglj C @jgli � @lgij

�
@kf

D 2
�
@i@jf � �k

ij@kf
�
:

Finally we mention yet another piece of notation that is often seen. Namely, if S
is a .1; k/-tensor written in a frame as:

S D Si
j1���jk � Ei ˝ � j1 ˝ � � � ˝ � jk ;

then the covariant derivative is a .1; kC 1/-tensor that can be written as

rS D Si
j1���jk;jkC1

� Ei ˝ � j1 ˝ � � � ˝ � jk ˝ � jkC1 :

The coefficient Si
j1���jk ;jkC1

can be computed via the formula

rEjkC1
S D DEjkC1

�
Si

j1���jk
� � Ei ˝ � j1 ˝ � � � ˝ � jk

CSi
j1���jk � rEjkC1

�
Ei ˝ � j1 ˝ � � � ˝ � jk

�
;

where one must find the expression for

rEjkC1

�
Ei ˝ � j1 ˝ � � � ˝ � jk

� D
�
rEjkC1

Ei

�
˝ � j1 ˝ � � � ˝ � jk

CEi ˝
�
rEjkC1

� j1
�
˝ � � � ˝ � jk

� � �
CEi ˝ � j1 ˝ � � � ˝

�
rEjkC1

� jk
�
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by writing each of the terms
�
rEjkC1

Ei

�
;
�
rEjkC1

� j1
�
; : : : ;

�
rEjkC1

� jk
�

in terms of

the frame and coframe and substitute back into the formula.
This notation, however, is at odds with the idea that the covariant derivative

variable should come first as the notation forces its index to be last. A better index
notation. often used in physics, is to write

rj0S D rEj0
S

and let

rj0S
i
j1���jk D .rS/ij0���jk :

This notation is also explored in exercise 2.5.34. This will also be our convention
when using indices for the curvature tensor.

2.5 Exercises

EXERCISE 2.5.1. Show that the connection on Euclidean space is the only affine
connection such that rX D 0 for all constant vector fields X:

EXERCISE 2.5.2. Show that the skew-symmetry property ŒX;Y� D � ŒY;X� does
not necessarily hold for C1 vector fields. Show that the Jacobi identity holds for C2

vector fields.

EXERCISE 2.5.3. Let r be an affine connection on a manifold. Show that the
torsion tensor

T .X;Y/ D rXY � rYX � ŒX;Y�

defines a .2; 1/-tensor.

EXERCISE 2.5.4. Show that if c W I ! M has nonzero speed at t0 2 I, then there is
a vector X such that Xjc.t/ D Pc .t/ for t near t0.

EXERCISE 2.5.5. Let .M; g/ be a Riemannian manifold, f ; h functions on M, and X
a vector field on M. Show that

div .fX/ D DXf C f div X;

� .fh/ D h�f C f�hC 2g .rf ;rh/ ;

Hess .fh/ D h Hess f C f Hess hC dfdhC dhdf :



2.5 Exercises 71

EXERCISE 2.5.6. Let .M; g/ be a Riemannian manifold, f a function on M, and 
 a
function on R. Show that

�.
 .f // D P
 .f /�f C R
 .f / jdf j2 ;
Hess .
 .f // D P
 .f /Hess f C R
 .f / df 2:

EXERCISE 2.5.7. Let .M; g/ be a Riemannian manifold, X a vector field on M, and
�X the dual 1-form. Show that d�X .Y;Z/ D g .rYX;Z/� g .Y;rZX/ :

EXERCISE 2.5.8. The metric in coordinates satisfies:

(1) @sgij D gik@sgklglj.
(2) @sgij D �gil�

j
sl � gjl� i

sl.

EXERCISE 2.5.9. Let X be a vector field.

(1) Show that for any .1; 1/-tensor S

tr .rXS/ D rX trS:

(2) Let T .Y;Z/ D g .S .Y/ ;Z/. Show that

.rXT/ .Y;Z/ D g ..rXS/ .Y/ ;Z/ :

(3) Show more generally that contraction and covariant differentiation commute.
(4) Finally show that type change and covariant differentiation commute.

EXERCISE 2.5.10. Let X be a vector field.

(1) Show that for any .1; 1/-tensor S

tr .LXS/ D LX trS:

(2) Let T .Y;Z/ D g .S .Y/ ;Z/. Show that

.LXT/ .Y;Z/ D .LXg/ .S .Y/ ;Z/C g ..LXS/ .Y;Z// :

(3) Show that contraction and Lie differentiation commute.

EXERCISE 2.5.11. Show that a vector field X on a Riemannian manifold is locally
a gradient field if and only if Z 7! rZX is self-adjoint.

EXERCISE 2.5.12. If F W M ! M is a diffeomorphism, then the push-forward of a
vector field is defined as

.F�X/ jp D DF
�
XjF�1.p/

�
:
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Let F be an isometry on .M; g/ :

(1) Show that F� .rXY/ D rF�XF�Y for all vector fields.
(2) Use this to show that isometries on .Rn; gRn/ are of the form F .x/ D Ox C b;

where O 2 O .n/ and b 2 R
n: Hint: Show that F maps constant vector fields to

constant vector fields.

EXERCISE 2.5.13. A vector field X is said to be affine if LXr D 0.

(1) Show that Killing fields are affine. Hint: The flow of X preserves the metric.
(2) Give an example of an affine field on R

n which is not a Killing field.

EXERCISE 2.5.14. Let G be a Lie group. Show that there is a unique affine
connection such that rX D 0 for all left-invariant vector fields. Show that this
connection is torsion free if and only if the Lie algebra is Abelian.

EXERCISE 2.5.15. Show that the Hessian of a composition 
 .f / is given by

Hess
 .f / D 
00df 2 C 
0 Hess f :

EXERCISE 2.5.16. Consider a vector field X and a .1; 1/-tensor L.

(1) Show that LX C L defines a derivation on tensors.
(2) Show that all derivations are of this form and that X is unique.
(3) Show that derivations are uniquely determined by how they act on functions

and vector fields.
(4) Show that LfX D fLX � X ˝ df , where X ˝ df is the rank 1 .1; 1/-tensor Y 7!

Xdf .Y/.

EXERCISE 2.5.17. Show that if X is a vector field of constant length on a Rieman-
nian manifold, then rvX is always perpendicular to X:

EXERCISE 2.5.18. Show that if we have a tensor field T on a Riemannian manifold
.M; g/ that vanishes at p 2 M; then for any vector field X we have LXT D rXT at p:
Conclude that the .1; 1/ version of the Hessian of a function is independent of the
metric at a critical point. Can you find an interpretation of LXT at p?

EXERCISE 2.5.19. For any p 2 .M; g/ and orthonormal basis e1; : : : ; en for TpM;
show that there is an orthonormal frame E1; : : : ;En in a neighborhood of p such that
Ei D ei and .rEi/ jp D 0: Hint: Fix an orthonormal frame NEi near p 2 M with
NEi .p/ D ei: If we define Ei D ˛

j
i
NEj; where

h
˛

j
i .x/

i
2 SO .n/ and ˛j

i .p/ D ı
j
i; then

this will yield the desired frame provided that the directional derivatives Dek˛
j
i are

appropriately prescribed at p.

EXERCISE 2.5.20. Show that there are coordinates x1; : : : ; xn such that @i D ei and
r@i D 0 at p: These conditions imply that the metric coefficients satisfy gij D ıij

and @kgij D 0 at p: Such coordinates are called normal coordinates at p: Hint: Given
a general set of coordinates yi around p with yi .p/ D 0, let xi D ˛i

j .y/ yj, adjust
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˛i
j .0/ to make the fields orthonormal at p, and adjust

@˛i
j

@yk .0/ to make the covariant
derivatives vanish at p.

EXERCISE 2.5.21. Consider coordinates xi and Nxs around p 2 M. Show that the
Christoffel symbols of a metric g in these two charts are related by

N�k
ij D

@2xs

@Nxi@Nxj

@Nxk

@xs
C @xs

@Nxi

@xt

@Nxj

@Nxk

@xl
� l

st;

@2xr

@Nxi@Nxj
D N�k

ij

@xr

@Nxk
� @xs

@Nxi

@xt

@Nxj
� r

st;

and

N�ij;k D @2xs

@Nxi@Nxj

@xt

@Nxk
gst C @xs

@Nxi

@xt

@Nxj

@xl

@Nxk
�st;l:

EXERCISE 2.5.22. Let M be an n-dimensional submanifold of R
nCm with the

induced metric. Further assume that we have a local coordinate system given by a
parametrization us

�
x1; : : : ; xn

�
; s D 1; : : : ; nCm: Show that in these coordinates:

(1)

gij D
nCmX

sD1

@us

@xi

@us

@xj
:

(2)

�ij;k D
nCmX

sD1

@us

@xk

@2us

@xi@xj
:

EXERCISE 2.5.23. Let .M; g/ be an oriented manifold.

(1) Show that if v1; : : : ; vn is positively oriented, then

vol .v1; : : : ; vn/ D
q

det
�
g
�
vi; vj

��
:

(2) Show that in positively oriented coordinates,

vol D
q

det
�
gij
�
dx1 ^ � � � ^ dxn:
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(3) Conclude that the Laplacian has the formula

�u D 1
q

det
�
gij
�@k

�q
det
�
gij
�
gkl@lu

�
:

Given that the coordinates are normal at p we get as in Euclidean space that

�f .p/ D
nX

iD1
@2i f :

EXERCISE 2.5.24. Show that if a .0; 2/-tensor T is given by Tkl, thenrT is given by

.rT/jkl D
@Tkl

@xj
� � i

jkTil � � i
jlTki:

Similarly, when a .1; 1/-tensor T is given by Tk
l , then rT is given by

.rT/kjl D
@Tk

l

@xj
� � i

jlT
k
i C �k

jiT
i
l :

EXERCISE 2.5.25. Let F W .M; gM/ #
� NM; g NM

�
be an isometric immersion. For

two vector fields X;Y tangent to M we can compute both rM
X Y and r NM

X Y. Show
that the component of r NM

X Y that is tangent to M is rM
X Y. Show that the normal

component

r NM
X Y � rM

X Y D TXY

is symmetric in X;Y and use that to show that it is tensorial.

EXERCISE 2.5.26. Let F W .M; gM/#
� NM; g NM

�
be an isometric immersion and

T?M D ˚v 2 Tp NM j p 2 M and v ? TpM
�

the normal bundle. A vector field V W M ! T NM such that Vp 2 T?
p M is called a

normal field along M. For a vector field X and normal field V show that

(1) The covariant derivative r NM
X V can be defined.

(2) Decompose r NM
X V into normal r?

X V and tangential TXV components:

r NM
X V D r?

X V C TXV:

r?
X V is called the normal derivative of V along M. Show that

g NM .TXY;V/ D �gM .Y;TXV/ :
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(3) Show that r?
X V is linear and a derivation in the V variable and tensorial in the

X variable.

EXERCISE 2.5.27. Let .M; g/ be a oriented Riemannian manifold.

(1) If f has compact support, then

Z

M
�f � vol D 0:

(2) Show that

div .f � X/ D g .rf ;X/C f � div X:

(3) Show that

�.f1 � f2/ D .�f1/ � f2 C 2g .rf1;rf2/C f1 � .�f2/ :

(4) Establish Green’s formula for functions with compact support:

Z

M
f1 ��f2 � d vol D �

Z

M
g .rf1;rf2/ vol :

(5) Conclude that if f is subharmonic or superharmonic (i.e., �f � 0 or �f � 0),
then f is constant. (Hint: first show �f D 0I then use integration by parts on
f � �f .) This result is known as the weak maximum principle. More generally,
one can show that any subharmonic (respectively superharmonic) function that
has a global maximum (respectively minimum) must be constant. For this one
does not need f to have compact support. This result is usually referred to as the
strong maximum principle.

EXERCISE 2.5.28. A vector field and its corresponding flow is said to be incom-
pressible if div X D 0:
(1) Show that X is incompressible if and only if the local flows it generates are

volume preserving (i.e., leave the Riemannian volume form invariant).
(2) Let X be a unit vector field on R

2: Show that rX D 0 if X is incompressible.
(3) Find a unit vector field X on R

3 that is incompressible but where rX ¤ 0.

EXERCISE 2.5.29. Let X be a unit vector field on .M; g/ such that rXX D 0:
(1) Show that X is locally the gradient of a function if and only if the orthogonal

distribution is integrable.
(2) Show that the orthogonal distribution is integrable in a neighborhood of p 2 M

if it has an integral submanifold through p. Hint: It might help to show that
LX�X D 0:

(3) Find X with the given conditions so that it is not a gradient field. Hint:
Consider S3:
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EXERCISE 2.5.30. Suppose we have two distributions E and F on .M; g/, that
are orthogonal complements of each other in TM: In addition, assume that the
distributions are parallel i.e., if two vector fields X and Y are tangent to, say, E;
then rXY is also tangent to E:

(1) Show that the distributions are integrable.
(2) Show that around any point p 2 M there is a product neighborhood U D VE�VF

such that .U; g/ D .VE � VF; gjVE C gjVF/, where VE and VF are the integral
submanifolds through p.

EXERCISE 2.5.31. Let X be a parallel vector field on .M; g/ : Show that X has
constant length. Show that X generates parallel distributions, one that contains X and
the other that is the orthogonal complement to X. Conclude that locally the metric
is a product with an interval .U; g/ D �V � I; gjV C dt2

�
, where V is a submanifold

perpendicular to X.

EXERCISE 2.5.32. If we have two tensors S;T of the same type show that

DXg .S;T/ D g .rXS;T/C g .S;rXT/ :

EXERCISE 2.5.33. Recall that complex manifolds have complex tangent spaces.
Thus we can multiply vectors by i : As a generalization of this we can define an
almost complex structure. This is a .1; 1/-tensor J such that J2 D �I. A Hermitian
structure on a Riemannian manifold .M; g/ is an almost complex structure J such
that g .J .X/ ; J .Y// D g .X;Y/. The Kähler form of a Hermitian structure is
! .X;Y/ D g .J .X/ ;Y/.

(1) Show that the Nijenhuis tensor:

N .X;Y/ D ŒJ .X/ ; J .Y/� � J .ŒJ .X/ ;Y�/� J .ŒX; J .Y/�/� ŒX;Y�

is a tensor.
(2) Show that if J comes from a complex structure, then N D 0. The converse is

the famous theorem of Newlander and Nirenberg.
(3) Show that ! is a 2-form.
(4) Show that d! D 0 if rJ D 0.
(5) Conversely show that if d! D 0 and J is a complex structure, then rJ D 0.

In this case we call the metric a Kähler metric.

EXERCISE 2.5.34. Define riT as the covariant derivative in the direction of the
ith coordinate vector field and r iT D gijrjT as the corresponding type changed
tensor.

(1) For a function f show that df D rifdxi and rf D r if@i.
(2) For a vector field X show that .riX/

i D div X.
(3) For a .0; 2/-tensor T show that

�r iT
�

ij
D � .r�T/j.



Chapter 3
Curvature

The idea of a Riemannian metric having curvature, while intuitively appealing and
natural, is also often the stumbling block for further progress into the realm of
geometry. The most elementary way of defining curvature is to set it up as an
integrability condition. This indicates that when it vanishes it should be possible
to solve certain differential equations, e.g., that the metric is Euclidean. This was in
fact one of Riemann’s key insights.

As we shall observe here and later in sections 5.1 and 6.1.2 one can often take
two derivatives (such as in the Hessian) and have them commute in a suitable sense,
but taking more derivatives becomes somewhat more difficult to understand. This
is what is behind the abstract definitions below and is also related to integrability
conditions.

We shall also try to justify curvature on more geometric grounds. The idea is
to create what we call the fundamental equations of Riemannian geometry. These
equations relate curvature to the Hessian of certain geometrically defined functions
(Riemannian submersions onto intervals). These formulas hold all the information
that is needed for computing curvatures in many examples and also for studying
how curvature influences the metric.

Much of what we do in this chapter carries over to the pseudo-Riemannian
setting. The connection and curvature tensor are generalized without changes. But
formulas that involve contractions do need modification (see exercise 1.6.10).

3.1 Curvature

We introduced in the previous chapter the idea of covariant derivatives of tensors and
explained their relation to the classical concepts of gradient, Hessian, and Laplacian.
However, the Riemannian metric is parallel and consequently has no meaningful
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78 3 Curvature

derivatives. Instead, we think of the connection itself as a sort of gradient of the
metric. The next question then is, what should the Laplacian and Hessian be? The
answer is, curvature.

Any affine connection on a manifold gives rise to a curvature tensor. This
operator measures in some sense how far away the connection is from being our
standard connection on R

n, which we assume is our canonical curvature-free, or
flat, space. On a (pseudo-)Riemannian manifold it is also possible to take traces of
this curvature operator to obtain various averaged curvatures.

3.1.1 The Curvature Tensor

We shall work exclusively in the Riemannian setting. So let .M; g/ be a Riemannian
manifold andr the Riemannian connection. The curvature tensor is the .1; 3/-tensor
defined by

R.X;Y/Z D r2X;YZ � r2Y;XZ

D rXrYZ � rYrXZ � rŒX;Y�Z
D ŒrX ;rY �Z � rŒX;Y�Z:

on vector fields X;Y;Z. The first line in the definition is also called the Ricci identity
and is often written as

RX;YZ D r2X;YZ � r2Y;XZ:

This also allows us to define the curvature of tensors

R .X;Y/ T D RX;YT D r2X;YT � r2Y;XT:

Of course, it needs to be proved that this is indeed a tensor. Since both of the
second covariant derivatives are tensorial in X and Y, we need only check that R is
tensorial in Z: This is easily done:

R .X;Y/ fZ D r2X;Y .fZ/ � r2Y;X .fZ/
D fr2X;Y .Z/ � fr2Y;X .Z/
C �r2X;Y f

�
Z � �r2Y;Xf

�
Z

C .rY f /rXZ C .rXf /rYZ

� .rXf /rYZ � .rY f /rXZ

D f
�r2X;Y .Z/ � r2Y;X .Z/

�

D fR .X;Y/ Z:



3.1 Curvature 79

Observe that X;Y appear skew-symmetrically in R.X;Y/Z D RX;YZ, while Z
plays its own role on top of the line, hence the unusual notation.

In relation to derivations as explained in section 2.3 note that RX;Y acts as a
derivation on tensors. Moreover, as the Hessian of a function is symmetric r2X;Y f D
r2Y;Xf it follows that RX;Y acts trivially on functions. This is the content of the Ricci
identity

r2X;Y � r2Y;X D RX;Y D R .X;Y/ ;

where on the right-hand side we think of R .X;Y/ as a .1; 1/-tensor acting on tensors.
As an example note that when T is a .0; k/-tensor then

.RX;YT/ .X1; : : : ;Xk/ D .R .X;Y/ T/ .X1; : : : ;Xk/

D � T .R .X;Y/X1; : : : ;Xk/

:::

� T .X1; : : : ;R .X;Y/Xk/ :

Using the metric g we can change R to a .0; 4/-tensor as follows:

R.X;Y;Z;W/ D g.R.X;Y/Z;W/:

We justify next why the variables are treated on a more equal footing in this formula
by showing several important symmetry properties.

Proposition 3.1.1. The Riemannian curvature tensor R.X;Y;Z;W/ satisfies the
following properties:

(1) R is skew-symmetric in the first two and last two entries:

R.X;Y;Z;W/ D �R.Y;X;Z;W/ D R.Y;X;W;Z/:

(2) R is symmetric between the first two and last two entries:

R.X;Y;Z;W/ D R.Z;W;X;Y/:

(3) R satisfies a cyclic permutation property called Bianchi’s first identity:

R.X;Y/Z C R.Z;X/Y C R.Y;Z/X D 0:

(4) rR satisfies a cyclic permutation property called Bianchi’s second identity:

.rZR/X;Y W C .rXR/Y;Z W C .rYR/Z;X W D 0
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or

.rZR/ .X;Y/W C .rXR/ .Y;Z/W C .rYR/ .Z;X/W D 0:

Proof. The first part of (1) has already been established. For part two of (1) use that
ŒX;Y� is the vector field defined implicitly by

DXDYf �DYDXf � DŒX;Y�f D 0:

In other words, R.X;Y/f D 0. This is the idea behind the calculations that follow:

0 D RX;Y
1

2
g .Z;Z/

D 1

2
DXDYg.Z;Z/� 1

2
DYDXg.Z;Z/ � 1

2
DŒX;Y�g.Z;Z/

D DXg.rYZ;Z/ � DYg.rXZ;Z/ � g.rŒX;Y�Z;Z/
D g.rXrYZ;Z/ � g.rYrXZ;Z/ � g.rŒX;Y�Z;Z/
C g.rXZ;rY Z/� g.rXZ;rYZ/

D g
�r2X;YZ;Z

� � g
�r2Y;XZ;Z

�

D R .X;Y;Z;Z/ :

Now (1) follows by polarizing the identity R .X;Y;Z;Z/ D 0 in Z:

0 D R .X;Y;Z CW;Z CW/

D R .X;Y;Z;Z/C R .X;Y;W;W/

CR .X;Y;Z;W/C R .X;Y;W;Z/ :

Part (3) relies on the torsion free property and the definitions from section 2.2.2.4
to first show that

.LXr/Y Z D LX .rYZ/ � rLXYZ � rY LXZ

D rXrY Z � rrXYZ � rYrXZ

�rrY ZX CrrY XZ CrYrZX

D RX;YZ Cr2Y;ZX:

The Jacobi identity (see proposition 2.1.6) followed by the torsion free property and
the Ricci identity then show that

0 D .LXL/Y Z

D .LXr/Y Z � .LXr/Z Y
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D RX;YZ Cr2Y;ZX � RX;ZY � r2Z;Y X

D RX;YZ C RZ;XY C RY;ZX:

Part (2) is a direct combinatorial consequence of (1) and (3):

R .X;Y;Z;W/ D �R .Z;X;Y;W/ � R .Y;Z;X;W/

D R .Z;X;W;Y/C R .Y;Z;W;X/

D �R .W;Z;X;Y/ � R .X;W;Z;Y/

�R .W;Y;Z;X/ � R .Z;W;Y;X/

D 2R .Z;W;X;Y/C R .X;W;Y;Z/C R .W;Y;X;Z/

D 2R .Z;W;X;Y/ � R .Y;X;W;Z/

D 2R .Z;W;X;Y/ � R .X;Y;Z;W/ ;

which implies 2R .X;Y;Z;W/ D 2R .Z;W;X;Y/.
Part (4) follows from the claim that

.rXR/Y;Z W D r3X;Y;ZW � r3X;Z;YW � r3Y;Z;XW Cr3Z;Y;XW CrRY;ZXW:

To see this simply add over the cyclic permutations of X;Y;Z:

.rXR/Y;Z W C .rZR/X;Y W C .rYR/Z;X W

D r3X;Y;ZW � r3X;Z;YW � r3Y;Z;XW Cr3Z;Y;XW CrRY;ZXW

C r3Z;X;YW � r3Z;Y;XW � r3X;Y;ZW Cr3Y;X;ZW CrRX;Y ZW

C r3Y;Z;XW � r3Y;X;ZW � r3Z;X;YW Cr3X;Z;YW CrRZ;XYW

D rRX;Y ZCRZ;XYCRY;ZXW

D 0:

The claim can be proven directly but also follows from the two different iterated
Ricci identities for taking three derivatives:

r3X;Y;ZW � r3Y;X;ZW D RX;YrZW � rRX;Y ZW

and

r3X;Y;ZW � r3X;Z;YW D .rXR/Y;Z W C RY;ZrXW:

These follow from the various ways one can iterate covariant derivatives (see
sections 2.2.2.3 and 2.2.2.5):
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r3X;Y;ZW D r2X;Y .rZW/ � rr2
X;Y ZW

and

r3X;Y;ZW D rX
�r2�

Y;Z
W Cr2Y;Z .rXW/

and then using the Ricci identity. ut
Example 3.1.2. .Rn; gRn/ has R � 0 since r@i@j D 0 for the standard Cartesian
coordinates.

From the curvature tensor R we can derive several different curvature concepts.

3.1.2 The Curvature Operator

First recall that we have the space ƒ2TM of bivectors. A decomposable bivector
v ^ w can be thought of as the oriented parallelogram spanned by v;w. If ei is
an orthonormal basis for TpM, then the inner product on ƒ2TpM is such that the
bivectors ei^ ej, i < j will form an orthonormal basis. The inner product thatƒ2TM
inherits in this way is also denoted by g: Note that this inner product onƒ2TpM has
the property that

g .x ^ y; v ^ w/ D g .x; v/ g .y;w/ � g .x;w/ g .y; v/

D det

�
g .x; v/ g .x;w/
g .y; v/ g .y;w/

�
:

It is also useful to interpret bivectors as skew symmetric maps. This is done via the
formula:

.x ^ y/ .v/ D g .x; v/ y � g .y; v/ x:

This represents a skew-symmetric transformation in span fv;wg which is a counter-
clockwise 90ı rotation when v;w are orthonormal. (We could have used a clockwise
rotation as that will in fact work more naturally with our version of the curvature
tensor.) Note that

g .x ^ y; v ^ w/ D g .x; v/ g .y;w/ � g .x;w/ g .y; v/ D g ..x ^ y/ .v/ ;w/ :

These operators satisfy a Jacobi-Bianchi type identity:

.x ^ y/ .z/C .y ^ z/ .x/C .z ^ x/ .y/ D 0:
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From the symmetry properties of the curvature tensor it follows that R defines a
symmetric bilinear map

R W ƒ2TM �ƒ2TM ! R

R
�X

Xi ^ Yi;
X

Vj ^Wj

�
D
X

R
�
Xi;Yi;Wj;Vj

�
:

Note the reversal of V and WŠ The relation

g
�
R
�X

Xi ^ Yi

�
;
X

Vj ^Wj

�
D
X

R
�
Xi;Yi;Wj;Vj

�

consequently defines a self-adjoint operator R W ƒ2TM ! ƒ2TM. This operator
is called the curvature operator. It is evidently just a different manifestation of the
curvature tensor. The switch between V and W is related to our definition of the next
curvature concept.

3.1.3 Sectional Curvature

For any v 2 TpM let

Rv.w/ D R.w; v/v W TpM! TpM

be the directional curvature operator. This operator is also known as the tidal
force operator. The latter name describes in physical (general relativity) terms the
meaning of the tensor. As we shall see, this is the part of the curvature tensor that
directly relates to the metric. The above symmetry properties of R imply that this
operator is self-adjoint and that v is always a zero-eigenvector. The normalized
biquadratic form

sec.v;w/ D g.Rv.w/;w/

g.v; v/g.w;w/ � g.v;w/2

D g.R.w; v/v;w/

g .v ^ w; v ^ w/

is called the sectional curvature of .v;w/. Since the denominator is the square
of the area of the parallelogram ftv C sw j 0 � t; s � 1g it is easy to check
that sec.v;w/ depends only on the plane 	 D spanfv;wg. One of the important
relationships between directional and sectional curvature is the following algebraic
result by Riemann.
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Proposition 3.1.3 (Riemann, 1854). The following properties are equivalent:

(1) sec.	/ D k for all 2-planes in TpM.
(2) R.v1; v2/v3 D �k .v1 ^ v2/ .v3/ for all v1; v2; v3 2 TpM.
(3) Rv.w/ D k � .w � g.w; v/v/ D k � prv?.w/ for all w 2 TpM and jvj D 1.
(4) R .!/ D k � ! for all ! 2 ƒ2TpM.

Proof. (2)) (3)) (1) are easy. For (1)) (2) we introduce the multilinear maps
on TpM:

Rk.v1; v2/v3 D �k .v1 ^ v2/ .v3/ ;
Rk .v1; v2; v3; v4/ D �kg ..v1 ^ v2/ .v3/ ; v4/

D kg .v1 ^ v2; v4 ^ v3/ :

The first observation is that these maps behave exactly like the curvature tensor in
that they satisfy properties (1), (2), and (3) of proposition 3.1.1. Now consider the
difference between the curvature tensor and this curvature-like tensor

D .v1; v2; v3; v4/ D R .v1; v2; v3; v4/ � Rk .v1; v2; v3; v4/ :

Properties (1), (2), and (3) from proposition 3.1.1 carry over to this difference tensor.
Moreover, the assumption that sec D k implies

D .v;w;w; v/ D 0

for all v;w 2 TpM: Using polarization w D w1 C w2 we get

0 D D .v;w1 C w2;w1 C w2; v/

D D .v;w1;w2; v/C D .v;w2;w1; v/

D 2D .v;w1;w2; v/

D �2D .v;w1; v;w2/ :

Using properties (1) and (2) from proposition 3.1.1 it follows that D is alternating in
all four variables. That, however, is in violation of Bianchi’s first identity (property
(3) from proposition 3.1.1) unless D D 0. This finishes the implication (see also
exercise 3.4.29 for two other strategies.)

To see why (2)) (4), choose an orthonormal basis ei for TpMI then ei^ej, i < j,
is a basis for ƒ2TpM. Using (2) it follows that

g
�
R
�
ei ^ ej

�
; et ^ es

� D R.ei; ej; es; et/

D k � �g.ej; es/g.ei; et/� g.ei; es/g.ej; et/
�

D k � g �ei ^ ej; et ^ es
�
:
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But this implies that

R
�
ei ^ ej

� D k � �ei ^ ej
�
:

For (4)) (1) just observe that if fv;wg are orthogonal unit vectors, then

k D g .R .v ^ w/ ; v ^ w/ D sec .v;w/ :

ut
A Riemannian manifold .M; g/ that satisfies either of these four conditions for

all p 2 M and the same k 2 R for all p 2 M is said to have constant curvature k.
So far we only know that .Rn; gRn/ has curvature zero. In sections 4.2.1 and 4.2.3
we shall prove that the space forms Sn

k as described in example 1.4.6 have constant
curvature k.

3.1.4 Ricci Curvature

Our next curvature is the Ricci curvature, which can be thought of as the Laplacian
of g:

The Ricci curvature Ric is a trace or contraction of R. If e1; : : : ; en 2 TpM is an
orthonormal basis, then

Ric.v;w/ D tr .x 7! R .x; v/w/

D
nX

iD1
g .R .ei; v/w; ei/

D
nX

iD1
g .R .v; ei/ ei;w/

D
nX

iD1
g .R .ei;w/ v; ei/ :

Thus Ric is a symmetric bilinear form. It could also be defined as the symmetric
.1; 1/-tensor

Ric.v/ D
nX

iD1
R .v; ei/ ei:

We adopt the language that Ric � k if all eigenvalues of Ric.v/ are � k. In .0; 2/
language this means that Ric .v; v/ � kg .v; v/ for all v: When .M; g/ satisfies
Ric.v/ D k � v, or equivalently Ric.v;w/ D k � g.v;w/, then .M; g/ is said to be an
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Einstein manifold with Einstein constant k. If .M; g/ has constant curvature k, then
.M; g/ is also Einstein with Einstein constant .n � 1/k.

In chapter 4 we shall exhibit several interesting Einstein metrics that do not have
constant curvature. Three basic types are

(1) The product metric Sn.1/�Sn.1/with Einstein constant n�1 (see section 4.2.2).
(2) The Fubini-Study metric on CP

n with Einstein constant 2n C 2 (see sec-
tion 4.5.3).

(3) The generalized Schwarzschild metric on R
2 � Sn�2, n � 4, which is a doubly

warped product metric: dr2 C 
2.r/d�2 C �2.r/ds2n�2 with Einstein constant 0
(see section 4.2.5).

If v 2 TpM is a unit vector and we complete it to an orthonormal basis fv; e2; : : : ; eng
for TpM, then

Ric .v; v/ D g .R .v; v/ v; v/C
nX

iD2
g .R .ei; v/ v; ei/ D

nX

iD2
sec .v; ei/ :

Thus, when n D 2, there is no difference from an informational point of view
in knowing R or Ric. This is actually also true in dimension n D 3, because if
fe1; e2; e3g is an orthonormal basis for TpM, then

sec .e1; e2/C sec .e1; e3/ D Ric .e1; e1/ ;

sec .e1; e2/C sec .e2; e3/ D Ric .e2; e2/ ;

sec .e1; e3/C sec .e2; e3/ D Ric .e3; e3/ :

In other words:

2

4
1 0 1

1 1 0

0 1 1

3

5

2

4
sec .e1; e2/
sec .e2; e3/
sec .e1; e3/

3

5 D
2

4
Ric .e1; e1/
Ric .e2; e2/
Ric .e3; e3/

3

5 :

As the matrix has det D 2 any sectional curvature can be computed from Ric.
In particular, we see that

�
M3; g

�
is Einstein if and only if

�
M3; g

�
has constant

sectional curvature. Therefore, the search for Einstein metrics that do not have
constant curvature naturally begins in dimension 4.

3.1.5 Scalar Curvature

The last curvature quantity we define here is the scalar curvature:

scal D tr .Ric/ D 2 � trR:
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Notice that scal depends only on p 2 M, so we obtain a function scal W M ! R.
In an orthonormal basis e1; : : : ; en for TpM it can be calculated from the curvature
tensor in several ways:

scal D tr .Ric/

D
nX

jD1
g
�
Ric

�
ej
�
; ej
�

D
nX

jD1

nX

iD1
g
�
R
�
ei; ej

�
ej; ei

�

D
nX

i;jD1
g
�
R
�
ei ^ ej

�
; ei ^ ej

�

D 2
X

i<j

g
�
R
�
ei ^ ej

�
; ei ^ ej

�

D 2trR

D 2
X

i<j

sec
�
ei; ej

�
:

When n D 2 it follows that scal.p/ D 2 � sec.TpM/. In section 4.2.3 we exhibit
examples of scalar flat metrics that are not Ricci flat when n � 3. There is also
another interesting phenomenon in dimensions� 3 related to scalar curvature.

Lemma 3.1.4 (Schur, 1886). Suppose that a Riemannian manifold .M; g/ of
dimension n � 3 satisfies either one of the following two conditions for a function
f W M! R

(1) sec.	/ D f .p/ for all 2-planes 	 � TpM; p 2 M,
(2) Ric.v/ D .n � 1/ � f .p/ � v for all v 2 TpM; p 2 M.

Then f must be constant. In other words, the metric has constant curvature or is
Einstein, respectively.

Proof. It suffices to show (2), as the conditions for (1) imply that (2) holds. To show
(2) we need an important identity relating derivatives of the scalar curvature and the
.0; 2/-version of the Ricci tensor:

dscal D �2r� Ric :

Let us see how this implies (2). First note that

dscal D dtr .Ric/

D d .n � .n � 1/ � f /
D n � .n � 1/ � df :
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On the other hand using the definition of the adjoint from section 2.2.2; the product
rule; and rg D 0 we obtain

�r� Ric .X/ D .n � 1/ .rEi .fg// .Ei;X/

D .n � 1/ .rEi f / g .Ei;X/C .n � 1/ f .rEig/ .Ei;X/

D .n � 1/ df .g .Ei;X/Ei/

D .n � 1/ df .X/ :

This shows that n �df D 2 �df and consequently: n D 2 or df � 0 (i.e., f is constant).
ut

Proposition 3.1.5 (The Contracted Bianchi Identify). On any Riemannian man-
ifold the scalar and Ricci curvature are related by

dtr .Ric/ D d scal D �2r� Ric :

Proof. The identity is proved by a calculation that relies the second Bianchi
identity (property (4) from proposition 3.1.1). Using that contractions and covariant
differentiation commute (see exercise 2.5.9) we obtain

dscal .W/ jp D DWscal

D
X

.rWR/
�
Ei;Ej;Ej;Ei

�

D �
X�rEj R

� �
W;Ei;Ej;Ei

�

�
X

.rEi R/
�
Ej;W;Ej;Ei

�

D 2
X�rEj R

� �
Ei;W;Ej;Ei

�

D 2
X�rEj R

� �
Ej;Ei;Ei;W

�

D 2
X

g
��rEj Ric

� �
Ej;W

��

D �2 �r� Ric
�
.W/ .p/ :

ut
Corollary 3.1.6. An n .> 2/-dimensional Riemannian manifold .M; g/ is Einstein
if and only if

Ric D scal

n
g:
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3.1.6 Curvature in Local Coordinates

As with the connection it is sometimes convenient to know what the curvature tensor
looks like in local coordinates. We first observe that when X D Xi@i, Y D Yj@j,
Z D Zk@k, then

R .X;Y/Z D XiYjZkRl
ijk@l;

Rl
ijk@l D R

�
@i; @j

�
@k:

Using the definition of R we can calculate Rl
ijk in terms of the Christoffel symbols

(see section 2.4)

Rl
ijk@l D R

�
@i; @j

�
@k

D r@ir@j@k � r@jr@i@k

D r@i

�
� s

jk@s
� � r@j

�
� t

ik@t
�

D @i
�
� s

jk

�
@s C � s

jkr@i@s

�@j
�
� t

ik

�
@t � � t

ikr@j@t

D @i
�
� l

jk

�
@l � @j

�
� l

ik

�
@l

C� s
jk�

l
is@l � � t

ik�
l
jt@l

D �
@i�

l
jk � @j�

l
ik C � s

jk�
l
is � � s

ik�
l
js

�
@l:

So

Rl
ijk D @i�

l
jk � @j�

l
ik C � s

jk�
l
is � � s

ik�
l
js:

Similarly we also have

Rijkl D @i�jk;l � @j�ik;l C gst�ik;s�jl;t � gst�jk;s�il;t:

These coordinate expression can also be used, in conjunction with the proper-
ties of the Christoffel symbols (see section 2.4), to prove all of the symmetry
properties of the curvature tensor.

The formula clearly simplifies if we are at a point p where �k
ijjp D 0

Rl
ijkjp D @i�

l
jkjp � @j�

l
ikjp:

If we use the formulas for the Christoffel symbols in terms of the metric we
can create an expression for Rl

ijk that depends on the metric gij and its first two
derivatives.
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Remark 3.1.7. One often sees the following index notation for Ricci and scalar
curvature in the literature

Ricij D Rij D Rk
ijk D gklRkijl;

scal D R D gijRij:

The idea behind this notation is that these tensors are gotten by contracting indices
in the curvature tensor. In this case the full curvature tensor R is denoted Rm so that
it isn’t confused with scalar curvature.

Remark 3.1.8. Due to how we wrote the .0; 4/ version of R we write

Rijkl D gslR
s
ijk D R

�
@i; @j; @k; @l

�
:

Other conventions such as

Rlijk D gslR
s
ijk

are also used in the literature.

3.2 The Equations of Riemannian Geometry

In this section we will see that curvature comes up naturally in the investigation
of certain types of functions. This will lead us to a collection of formulas that
will facilitate the calculation of the curvature tensor of rotationally symmetric and
doubly warped product metrics (see section 4.2).

3.2.1 Curvature Equations

We start with the goal of calculating the curvatures on a Riemannian manifold using
various geometric concepts that relate to a specific smooth function f W M ! R.
Often this function will only be smooth on an open subset O � M in which case we
just confine our attention to what happens on that subset.

The function has a gradient rf and a Hessian Hess f . We shall also use S .X/ D
rXrf for the .1; 1/-tensor that corresponds to Hess f and Hess2 f for the .0; 2/-
tensor that corresponds to S2 D S ı S.

The second fundamental form of a hypersurface Hn�1 � Mn with a fixed unit
normal vector field N W H ! T?H D ˚

v 2 TpM j p 2 H; v ? TpH
�

is defined
as the .0; 2/-tensor II .X;Y/ D g .rXN;Y/ on H. Since X;Y; ŒX;Y� 2 TH are
perpendicular to N we have
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g .rXN;Y/ D DXg .N;Y/ � g .N;rXY/

D �g .N;rXY/

D �g .N;rYX/

D g .rY N;X/ :

This shows that II is symmetric. Note also that

g .rXN;N/ D 1
2
DX jNj2 D 0:

So we can also define II .X;Y/ D g .rXN;Y/ when X 2 TH, as rXN has no normal
component.

For the remainder of this section assume that f is given and that H � f �1 .a/
is open and consists entirely of regular points for f . In this case H is clearly a
hypersurface. We start by relating the second fundamental form of H to f .

Proposition 3.2.1. The following properties hold:

(1) N D rf
jrf j is a unit normal to H,

(2) II .X;Y/ D 1
jrf j Hess f .X;Y/ for all X;Y 2 TH, and

(3) Hess f .rf ;X/ D 1
2
DX jrf j2 for all X 2 TM.

Proof. (1) Clearly N D rf
jrf j has unit length. It is perpendicular to H since DXf D 0

for any vector field tangent to H.
(2) Using that choice of a normal vector tells us that when X;Y 2 TH:

II .X;Y/ D g

�
rX
rf

jrf j ;Y
�

D g

�
1

jrf jrXrf ;Y

�
C g

�
DX

�
1

jrf j
�
rf ;Y

�

D 1

jrf j Hess f .X;Y/ :

(3) Finally the symmetry of Hess f implies:

Hess f .rf ;X/ D g
�rrfrf ;X

� D g .rXrf ;rf / D 1
2
DX jrf j2 :

ut
Our first fundamental equation is the calculation of what’s called the radial

curvatures.
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Theorem 3.2.2 (The Radial Curvature Equation). When H � f �1 .a/ consists of
regular points for f we have:

�rrf S
�
.X/C S2 .X/� rX .S .rf // D �R .X;rf /rf ;

rrf Hess f CHess2 f � Hess
�
1
2
jrf j2

�
D �R .�;rf ;rf ; �/ ;

and

Lrf Hess f �Hess2 f � Hess
�
1
2
jrf j2

�
D �R .�;rf ;rf ; �/ :

Proof. The first formula is a straightforward computation.

�Rrf .X/ D �R .X;rf /rf

D �r2X;rfrf Cr2rf ;Xrf

D � .rXS/ .rf /C �rrf S
�
.X/

D �rX .S .rf //CrrXrfrf C �rrf S
�
.X/

D �rX .S .rf //C S2 .X/C �rrf S
�
.X/ :

The second formula follows by the definition of Hess2 f ; observing that the gradient
of 1

2
jrf j2 is rrfrf ; and that covariant differentiation commutes with type change

(see exercise 2.5.9):

.rN Hess f / .X;Y/ D g ..rNS/ .X/ ;Y/ :

The final formula is a consequence of

�
Lrf Hess f

�
.X;Y/ D �rrf Hess f

�
.X;Y/

CHess f .rXrf ;Y/C Hess f .X;rYrf /

D �rrf Hess f
�
.X;Y/C 2Hess2 f .X;Y/ :

ut
Remark 3.2.3. The last formula is particularly interesting as it shows how suitable
curvatures can be calculated using only gradients of functions and Lie derivatives,
i.e., covariant derivatives are not necessary.

The following two fundamental equations are also known as the Gauss equa-
tions and Peterson-Codazzi-Mainardi equations, respectively. They will be proved
simultaneously but stated separately. For a vector we use the notation

X D X> C X?

D X � g .X;N/N C g .X;N/N
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for decomposing it into components that are tangential and normal to H. We use the
notation that gH is the metric g restricted to H and that the curvature on H is RH

Theorem 3.2.4 (The Tangential Curvature Equation).

g .R.X;Y/Z;W/ D gH
�
RH.X;Y/Z;W

� � II .X;W/ II.Y;Z/C II.X;Z/ II .Y;W/ ;

where X;Y;Z;W are tangent to H.

Theorem 3.2.5 (The Normal or Mixed Curvature Equation).

g .R.X;Y/Z;N/ D � .rX II/ .Y;Z/C .rY II/ .X;Z/ ;

where X;Y;Z are tangent to H.

Proof. The proofs hinge on the important fact that if X;Y are vector fields that are
tangent to H, then:

rH
X Y D .rXY/>

D rXY � g .rXY;N/N

D rXY C II.X;Y/N:

Here the first equality is a consequence of the uniqueness of the Riemannian
connection on H. One can check either that .rXY/> satisfies properties (1)–(4)
of a Riemannian connection (see theorem 2.2.2) or alternatively that it satisfies
the Koszul formula. The latter task is almost immediate. The other equalities are
immediate from our definitions.

The curvature equations that involve the second fundamental form are verified
by calculating R.X;Y/Z using rXY D rH

X Y � II.X;Y/N.

R.X;Y/Z D rXrYZ � rYrXZ � rŒX;Y�Z
D rX.rH

Y Z � II.Y;Z/N/ � rY.rH
X Z � II.X;Z/N/

�rH
ŒX;Y�Z C II.ŒX;Y� ;Z/N

D rXrH
Y Z � rYrH

X Z � rH
ŒX;Y�Z

�rX .II.Y;Z/N/CrY .II.X;Z/N/C II.ŒX;Y� ;Z/N

D RH.X;Y/Z � II
�
X;rH

Y Z
�

N C II.Y;rH
X Z/N

� .DX II.Y;Z//N � II.Y;Z/rXN C .DY II.X;Z//N C II.X;Z/rYN

C II .rXY;Z/N � II .rYX;Z/N

D RH.X;Y/Z � II .X;rYZ/N C II.Y;rXZ/N

� .DX II.Y;Z//N � II.Y;Z/rXN C .DY II.X;Z//N C II.X;Z/rYN
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C II .rXY;Z/N � II .rYX;Z/N

D RH.X;Y/Z � II.Y;Z/rXN C II.X;Z/rYN

C .� .rX II/ .Y;Z/C .rY II/ .X;Z//N:

To finish we just need to recall the definition of II in terms of rN. ut
These three fundamental equations give us a way of computing curvature tensors

by induction on dimension. More precisely, if we know how to do computations on
H and also how to compute S, then we can compute any curvature in M at a point
in H. We shall clarify and exploit this philosophy in subsequent chapters.

Here we confine ourselves to some low dimensional observations. Recall that
the three curvature quantities sec, Ric, and scal obeyed some special relationships
in dimensions 2 and 3 (see sections 3.1.4 and 3.1.5). Curiously enough this also
manifests itself in our three fundamental equations.

If M has dimension 1, then dim H D 0. This is related to the fact that R � 0 on
all 1 dimensional spaces.

If M has dimension 2, then dim H D 1. Thus RH � 0 and the three vectors
X; Y, and Z are proportional. Thus only the radial curvature equation is relevant.
The curvature is also calculated in example 3.2.12.

When M has dimension 3, then dim H D 2. The radial curvature equation is not
simplified, but in the other two equations one of the three vectors X;Y;Z is a linear
combination of the other two. We might as well assume that X ? Y and Z D X
or Y. So, if fX;Y;Ng represents an orthonormal frame, then the complete curvature
tensor depends on the quantities: g.R.X;N/N;Y/, g.R.X;N/N;X/, g.R.Y;N/N;Y/,
g.R.X;Y/Y;X/, g.R.X;Y/Y;N/, g.R.Y;X/X;N/. The first three quantities can
be computed from the radial curvature equation, the fourth from the tangential
curvature equation, and the last two from the mixed curvature equation.

In the special case where M3 D R
3 we have R D 0. The tangential curvature

equation is particularly interesting as it becomes the classical Gauss equation. If we
assume that E1;E2 is an orthonormal basis for TpM, then

sec.TpH/ D RH .E1;E2;E2;E1/

D II.E1;E1/ II.E2;E2/ � II.E1;E2/ II.E1;E2/

D det ŒII� :

This was Gauss’s wonderful observation! Namely, that the extrinsic quantity det ŒII�
for H is actually the intrinsic quantity, sec.TpH/. The two mixed curvature equations
are the classical Peterson-Codazzi-Mainardi equations.

Finally, in dimension 4 everything reaches its most general level. We can start
with an orthonormal frame fX;Y;Z;Ng and there are potentially twenty different
curvature quantities to compute.
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3.2.2 Distance Functions

The formulas in the previous section become simpler and more significant if we start
by making assumptions about the function. The geometrically defined functions
we shall study are distance functions. As we don’t have a concept of distance yet,
we define r W O ! R, where O � .M; g/ is open, to be a distance function if
jrrj � 1 on O. Distance functions are then simply solutions to the Hamilton-Jacobi
equation or eikonal equation jrrj2 D 1: This is a nonlinear first-order PDE and can
be solved by the method of characteristics (see e.g. [6]). For now we shall assume
that solutions exist and investigate their properties. Later, after we have developed
the theory of geodesics, we establish the existence of such functions on general
Riemannian manifolds and also justify their name.

Example 3.2.6. On .Rn; gRn/ define r.x/ D jx � yj D jxyj. Then r is smooth on
R

n � fyg and has jrrj � 1. If we have two different points fy; zg, then

r.x/ D jx fy; zgj D minfjx � yj ; jx � zjg

is smooth away from fy; zg and the hyperplane fx 2 R
n j jx � yj D jx � zjg equidis-

tant from y and z.

Example 3.2.7. If H � R
n is a submanifold, then it can be shown that

r.x/ D jxHj D inf fjxyj D jx � yj j y 2 Hg

is a distance function on some open set O � R
n. When H is an orientable

hypersurface this can justified as follows. Since H is orientable, it is possible to
choose a unit normal vector field N on H. Now coordinatize Rn using x D tN C y,
where t 2 R; y 2 H. In some neighborhood O of H these coordinates are actually
well-defined. In other words, there is a function ".y/ W H ! .0;1/ such that
any point in

O D ftN C y j y 2 H; jtj < ".y/g

has unique coordinates .t; y/. We can define r.x/ D t on O or f .x/ D jxHj D jtj
on O � H. Both functions will then define distance functions on their respective
domains. Here r is usually referred to as the signed distance to H, while f is just the
regular distance.

On I � H, where I � R, is an interval we have metrics of the form dr2 C gr,
where dr2 is the standard metric on I and gr is a metric on frg � H that depends
on r. In this case the projection I � H ! I is a distance function. Special cases of
this situation are rotationally symmetric metrics, doubly warped products, and our
submersion metrics on I � S2n�1.
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Lemma 3.2.8. Let r W O! I � R, where O is an open set in Riemannian manifold.
The function r is a distance function if and only if it is a Riemannian submersion.

Proof. In general, we have dr .v/ D g .rr; v/, so Dr .v/ D dr .v/ @t D 0 if and
only if v ? rr: Thus, v is perpendicular to the kernel of Dr if and only if it is
proportional to rr: For such v D ˛rr the differential is

Dr .v/ D ˛Dr .rr/ D ˛g .rr;rr/ @t:

Now @t has length 1 in I, so

jvj D j˛j jrrj ;
jDr .v/j D j˛j jrrj2 :

Thus, r is a Riemannian submersion if and only if jrrj D 1. ut
Before continuing we introduce some simplifying notation. A distance function

r W O ! R is fixed on an open subset O � .M; g/ of a Riemannian manifold.
The gradient rr will usually be denoted by @r D rr. The @r notation comes
from our warped product metrics dr2 C gr. The level sets for r are denoted Or D
fx 2 O j r .x/ D rg, and the induced metric on Or is gr. In this spirit rr; Rrare the
Riemannian connection and curvature on .Or; gr/. Since jrrj D 1 we have that
Hess r D II and S is the .1; 1/-tensor corresponding to both Hess r and II. Here
S can stand for second derivative or shape operator or second fundamental form,
depending on the situation. The last two terms are more or less synonymous and
refer to the shape of .Or; gr/ in .O; g/ � .M; g/. The idea is that S D r@r measures
how the induced metric on Or changes by computing how the unit normal to Or

changes.

Example 3.2.9. Let H � R
n be an orientable hypersurface, N the unit normal, and S

the shape operator defined by S .v/ D rvN for v 2 TH: If S � 0 on H then N must
be a constant vector field on H, and hence H is an open subset of the hyperplane

˚
xC p 2 R

n j x � Np D 0
�
;

where p 2 H is fixed. As an explicit example of this, recall our isometric immersion
or embedding

�
R

n�1; gRn�1

�! .Rn; gRn/ from example 1.1.3 defined by

�
x1; : : : ; xn�1�! �

c
�
x1
�
; x2; : : : ; xn�1� ;

where c is a unit speed curve c W R! R
2. In this case,

N D ��Pc2 �x1� ; Pc1 �x1� ; 0; : : : ; 0�



3.2 The Equations of Riemannian Geometry 97

is a unit normal in Cartesian coordinates. So

rN D �d
�Pc2� @1 C d

�Pc1� @2
D �Rc2dx1@1 C Rc1dx1@2

D ��Rc2@1 C Rc1@2
�

dx1:

Thus, S � 0 if and only if Rc1 D Rc2 D 0 if and only if c is a straight line if and only
if H is an open subset of a hyperplane. Thus the shape operator really does capture
the idea that the hypersurface bends in R

n, even though R
n�1 cannot be seen to bend

inside itself.

We have seen here the difference between extrinsic and intrinsic geometry. Intrinsic
geometry is everything we can do on a Riemannian manifold .M; g/ that does not
depend on how .M; g/ might be isometrically immersed in some other Riemannian
manifold. Extrinsic geometry is the study of how an isometric immersion .M; g/!
. NM; g NM/ bends .M; g/ inside . NM; g NM/. For example, the curvature tensor on .M; g/
measures how the space bends intrinsically, while the shape operator measures
extrinsic bending.

3.2.3 The Curvature Equations for Distance Functions

We start by reformulating the radial curvature equation from theorem 3.2.2.

Corollary 3.2.10. When r W O! R is a distance function, then

r@r@r D 0

and

r@r SC S2 D �R@r :

Proof. The first fact follows from part (3) of proposition 3.2.1 and the second from
theorem 3.2.2. ut

We conclude that:

Proposition 3.2.11. If we have a smooth distance function r W .O; g/ ! R and
denote rr D @r, then

(1) L@r g D 2Hess r,
(2) .r@r Hess r/ .X;Y/C Hess2 r .X;Y/ D �R .X; @r; @r;Y/,
(3) .L@r Hess r/ .X;Y/� Hess2 r .X;Y/ D �R .X; @r; @r;Y/ :



98 3 Curvature

Proof. (1) is simply the definition of the Hessian. (2) and (3) follow directly from
theorem 3.2.2 after noting that jrrj D 1. ut

The first equation shows how the Hessian controls the metric. The second and
third equations give us control over the Hessian when we have information about the
curvature. These two equations are different in a very subtle way. The third equation
is at the moment the easiest to work with as it only uses Lie derivatives and hence
can be put in a nice form in an appropriate coordinate system. The second equation
is equally useful, but requires that we find a way of making it easier to interpret.

Next we show how appropriate choices for vector fields can give us a better
understanding of these fundamental equations.

3.2.4 Jacobi Fields

A Jacobi field for a smooth distance function r is a smooth vector field J that does
not depend on r, i.e., it satisfies the Jacobi equation

L@r J D 0:

This is a first-order linear PDE, which can be solved by the method of characteris-
tics. To see how this is done we locally select a coordinate system

�
r; x2; : : : ; xn

�

where r is the first coordinate. Then J D Jr@r C Ji@i and the Jacobi equation
becomes:

0 D L@r J

D L@r

�
Jr@r C Ji@i

�

D @r .J
r/ @r C @r

�
Ji
�
@i:

Thus the coefficients Jr; Ji have to be independent of r as already indicated. What
is more, we can construct such Jacobi fields knowing the values on a hypersurface
H � M where

�
x2; : : : ; xn

� jH is a coordinate system. In this case @r is transverse to
H and so we can solve the equations by declaring that Jr; Ji are constant along the
integral curves for @r: Note that the coordinate vector fields are themselves Jacobi
fields.

The equation L@r J D 0 is equivalent to the linear equation

r@r J D S .J/ :

This tells us that

Hess r .J; J/ D g .r@r J; J/ D
1

2
@rg .J; J/ :
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Jacobi fields also satisfy a more general second-order equation, also known as the
Jacobi Equation:

r@rr@r J D �R .J; @r/ @r;

as

�R .J; @r/ @r D R .@r; J/ @r D r@r S .J/ :

This is a second-order equation and has more solutions than the above first-
order equation. This equation will be studied further in section 6.1.5 for general
Riemannian manifolds.

Equations (1) and (3) from proposition 3.2.11 when evaluated on Jacobi fields
become:

(1) @rg .J1; J2/ D 2Hess r .J1; J2/,
(3) @r Hess r .J1; J2/� Hess2 r .J1; J2/ D �R .J1; @r; @r; J2/.

As we only have directional derivatives this is a much simpler version of the
fundamental equations. Therefore, there is a much better chance of predicting how
g and Hess r change depending on our knowledge of Hess r and R respectively.

This can be reduced a bit further if we take a product neighborhood� D .a; b/�
H � M such that r .t; z/ D t: On this product the metric has the form

g D dr2 C gr;

where gr is a one parameter family of metrics on H. If J is a vector field on H, then
there is a unique extension to a Jacobi field on � D .a; b/ �H. First observe that

Hess r .@r; J/ D g .r@r@r; J/ D 0;
gr .@r; J/ D 0:

Thus we only need to consider the restrictions of g and Hess r to H: By doing this
we obtain

@rg D @rgr D 2Hess r:

The fundamental equations can then be written as

(1) @rgr D 2Hess r,
(3) @r Hess r � Hess2 r D �R .�; @r; @r; �/.
There is a sticky point hidden in (3). Namely, how is it possible to extract
information from R and pass it on to the Hessian without referring to gr. If we
focus on sectional curvature this becomes a little more transparent as
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R .X; @r; @r;X/ D sec .X; @r/
�

g .X;X/ g .@r; @r/� .g .X; @r//
2
�

D sec .X; @r/ g .X � g .X; @r/ @r;X � g .X; @r/ @r/

D sec .X; @r/ gr .X;X/ :

So if we evaluate (3) on a Jacobi field J we obtain

@r .Hess r .J; J//� Hess2 r .J; J/ D � sec .J; @r/ gr .J; J/ :

This means that (1) and (3) are coupled as we have not eliminated the metric from
(3). The next subsection shows how we can deal with this by evaluating on different
vector fields.

Nevertheless, we have reduced (1) and (3) to a set of ODEs where r is the
independent variable along the integral curve for @r through p.

Example 3.2.12. In the special case where dim M D 2 we can more explicitly write
the metric as g D dr2 C �2 .r; �/ d�2, where � denotes a function that locally
coordinatizes the level sets of r. In this case @� is a Jacobi field of length � and
we obtain the formula

2Hess r .@� ; @� / D @r�
2 D 2�@r�:

Since Œ@r; @� � D 0 we further have

Hess r .@� ; @� / D g
�r@� @r; @�

� D g .r@r@� ; @� / D
1

2
@r�

2 D �@r�:

As S is self-adjoint and S .@r/ D 0 this implies

S .@� / D @r�

�
@� :

This in turn tells us that

� sec .@� ; @r/ �
2 D @r .Hess r .@� ; @� //� Hess2 r .@� ; @� /

D @r .�@r�/� .@r�/
2

D �@2r�

and gives us the simple formula for the curvature

sec
�
TpM

� D �@
2
r�

�
:
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3.2.5 Parallel Fields

A parallel field for a smooth distance function r is a vector field X such that:

r@r X D 0:

This is, like the Jacobi equation, a first-order linear PDE and can be solved in a
similar manner. There is, however, one crucial difference: Parallel fields are almost
never Jacobi fields.

If we evaluate g on a pair of parallel fields we see that

@rg .X;Y/ D g .r@r X;Y/C g .X;r@r Y/ D 0:

This means that (1) from proposition 3.2.11 is not simplified by using parallel fields.
The second equation, on the other hand, becomes

@r .Hess r .X;Y//C Hess2 r .X;Y/ D �R .X; @r; @r;Y/ :

If this is rewritten in terms of sectional curvature, then we obtain as in
section 3.2.4

@r .Hess r .X;X//C Hess2 r .X;X/ D � sec .X; @r/ gr .X;X/ :

But this time we know that gr .X;X/ is constant in r as X is parallel. We can even
assume that g .X; @r/ D 0 and g .X;X/ D 1 by first projecting X onto H and then
scaling it. Therefore, (2) takes the form

@r .Hess r .X;X//C Hess2 r .X;X/ D � sec .X; @r/

on unit parallel fields that are orthogonal to @r: In this way we really have decoupled
the equation for the Hessian from the metric. This allows us to glean information
about the Hessian from information about sectional curvature. Equation (1), when
rewritten using Jacobi fields, then gives us information about the metric from the
information we just obtained about the Hessian using parallel fields.

3.2.6 Conjugate Points

In general, we might think of the directional curvatures R@r as being given or
having some specific properties. We then wish to investigate how the curvatures
influence the metric according to the equations from proposition 3.2.11 and their
simplifications on Jacobi fields or parallel fields from sections 3.2.4 and 3.2.5.
Equation (1) is linear. Thus the metric can’t degenerate in finite time unless the
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Fig. 3.1 Focal points for an
ellipse and its bottom half

Hessian also degenerates. However, if we assume that the curvature is bounded,
then equation (2) tells us that, if the Hessian blows up, then it must be decreasing
as r increases, hence it can only go to �1: Going back to (1), we then conclude
that the only degeneration which can occur along an integral curve for @r , is that
the metric stops being positive definite. We say that the distance function r develops
a conjugate or focal point along this integral curve. Below we have some pictures
of how focal points can develop. Note that as the metric itself is Euclidean, these
singularities are relative to the coordinates. There is a subtle difference between
conjugate points and focal points. A conjugate point occurs when the Hessian of r
becomes undefined as we solve the differential equation for it. A focal point occurs
when integral curves for rr meet at a point. It is not unusual for both situations
to happen at the same point, but it is possible to construct metrics where there are
conjugate points that are not focal points.

Figure 3.1 shows that conjugate points for the lower part of the ellipse occur
along the evolute of the lower part of the ellipse. However, when we consider the
entire ellipse, then the focal set is the line between the focal points of the ellipse as
the normal lines from the top and bottom of the ellipse intersect along this line.

It is worthwhile investigating equations (2) and (3) a little further. If we rewrite
them as

(2) .r@r Hess r/ .X;X/ D �R .X; @r; @r;X/� Hess2 r .X;X/,
(3) .L@r Hess r/ .X;X/ D �R .X; @r; @r;X/C Hess2 r .X;X/,

then we can think of the curvatures as representing fixed external forces, while
Hess2 r describes an internal reaction (or interaction). The reaction term is always
of a fixed sign, and it will try to force Hess r to blow up or collapse in finite time.
If, for instance sec � 0, then L@r Hess r is positive. Therefore, if Hess r is positive at
some point, then it will stay positive. On the other hand, if sec � 0, then r@r Hess r
is negative, forcing Hess r to stay nonpositive if it is nonpositive at a point.

We shall study and exploit this in much greater detail throughout the book.
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3.3 Further Study

In the upcoming chapters we shall mention several other books on geometry that
the reader might wish to consult. A classic that is considered old fashioned by
some is [40]. It offers a fairly complete treatment of the tensorial aspects of both
Riemannian and pseudo-Riemannian geometry. I would certainly recommend this
book to anyone who is interested in learning Riemannian geometry. There is also
the authoritative guide [70]. Every differential geometer should have a copy of these
tomes especially volume 2. Volume 1 contains a lot of foundational material and is
probably best as a reference guide.

3.4 Exercises

EXERCISE 3.4.1. Let M be an n-dimensional submanifold of R
nCm with the

induced metric. Further assume that we have a local coordinate system given by
a parametrization us

�
x1; : : : ; xn

�
, s D 1; : : : ; nC m: Show that in these coordinates

Rijkl depends only on the first and second partials of us. Hint: Look at exercise 2.5.22.

EXERCISE 3.4.2. Consider the following conditions for a smooth function f W
.M; g/! R on a connected Riemannian manifold:

(1) jrf j is constant.
(2) rrfrf D 0.
(3) jrf j is constant on the level sets of f .

Show that .1/, .2/) .3/ and give an example to show that the last implication
is not a bi-implication.

EXERCISE 3.4.3. Let f be a function and S .X/ D rXrf the .1; 1/ version of its
Hessian. Show that

Lrf S D rrf S;

Lrf SC S2 � rX .S .rf // D �Rrf :

How do you reconcile this with what happens in theorem 3.2.2 for the .0; 2/-version
of the Hessian?

EXERCISE 3.4.4. Show that if r D f W M ! R is a distance function, then the
tangential and mixed curvature equations from theorems 3.2.4 and 3.2.5 can be
written as

.R.X;Y/Z/> D RH.X;Y/Z � .S .X/ ^ S .Y// .Z/ ;

g .R.X;Y/Z;N/ D �g ..rXS/ .Y/ ;Z/C g ..rYS/ .X/ ;Z/ ;
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and

R.X;Y/N D �drS
�
.X;Y/ :

EXERCISE 3.4.5. Prove the two Bianchi identities at a point p 2 M by using a
coordinate system where r@i@j D 0 at p.

EXERCISE 3.4.6. Show that a Riemannian manifold with constant curvature has
parallel curvature tensor.

EXERCISE 3.4.7. Show that a Riemannian manifold with parallel Ricci tensor has
constant scalar curvature. In section 4.2.3 it will be shown that the converse is not
true, and in section 4.2.2 that a metric with parallel curvature tensor doesn’t have to
be Einstein.

EXERCISE 3.4.8. Show in analogy with proposition 3.1.5 that if R is the .0; 4/-
curvature tensor and Ric the .0; 2/-Ricci tensor, then

�r�R
�
.Z;X;Y/ D .rX Ric/ .Y;Z/ � .rY Ric/ .X;Z/ :

Conclude that r�R D 0 if r Ric D 0: Then show that r�R D 0 if and only if the
.1; 1/ Ricci tensor satisfies:

.rX Ric/ .Y/ D .rY Ric/ .X/ for all X;Y:

EXERCISE 3.4.9. Suppose we have two Riemannian manifolds .M; gM/ and
.N; gN/ : Then the product has a natural product metric .M � N; gM C gN/ : Let
X be a vector field on M and Y one on N. Show that if we regard these as vector
fields on M � N, then rXY D 0: Conclude that sec .X;Y/ D 0: This means that
product metrics always have many curvatures that vanish.

EXERCISE 3.4.10. Show that a Riemannian manifold has constant curvature at p 2
M if and only if R .v;w/ z D 0 for all orthogonal v;w; z 2 TpM. Hint: Start by
showing: if a symmetric bilinear form B .v;w/ on an inner product space has the
property that B .v;w/ D 0 when v ? w, then B is a multiple of the inner product.

EXERCISE 3.4.11. Use exercises 2.5.25 and 2.5.26 to show that if X;Y;Z are
tangent to M, then

R NM.X;Y/Z D RM.X;Y/Z C TXTYZ � TYTXZ C �r?
X T
�

Y
Z � �r?

Y T
�

X
Z

where

�r?
X T
�

Y
Z D r?

X .TYZ/ � TrM
X YZ � TYrM

X Z:

The tangential parts on both sides of this curvature relation form the Gauss equations
and the normal parts the Peterson-Codazzi-Mainardi equations.
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EXERCISE 3.4.12. Let Hn�1 � R
n be a hypersurface. Show that RicH D

tr II � II� II2

EXERCISE 3.4.13. A hypersurface of a Riemannian manifold is called totally
geodesic if its second fundamental form vanishes.

(1) Show that the spaces Sn
k have the property that any tangent vector is normal to a

totally geodesic hypersurface.
(2) Show a Riemannian n-manifold, n > 2, with the property that any tangent

vector is a normal vector to a totally geodesic hypersurface has constant
curvature. Hint: Start by showing that R .X;Y/ Z D 0 when the three vectors
are orthogonal to each other and use exercise 3.4.10.

EXERCISE 3.4.14. Use exercise 2.5.26 to define the normal curvature

R?.X;Y;V;W/

for tangent fields X;Y and normal fields V;W.

(1) Show that R? is tensorial and skew-symmetric in X;Y as well as V;W.
(2) Show that

R NM.X;Y;V;W/ D R?.X;Y;V;W/C gM .TXV;TY W/� gM .TYV;TXW/

These are also known as the Ricci equations.

EXERCISE 3.4.15. For 3-dimensional manifolds, show that if the curvature operator
in diagonal form is given by

0

@
˛ 0 0

0 ˇ 0

0 0 

1

A ;

then the Ricci curvature has a diagonal given by

0

@
˛ C ˇ 0 0

0 ˇ C  0

0 0 ˛ C 

1

A :

Moreover, the numbers ˛; ˇ;  must be sectional curvatures.

EXERCISE 3.4.16. Consider the .0; 2/-tensor

T D RicCb scal gC cg

where b; c 2 R.
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(1) Show that r�T D 0 if b D � 1
2
. The tensor

G D Ric� scal

2
gC cg:

is known as the Einstein tensor and c as the cosmological constant.
(2) Show that if c D 0, then G D 0 in dimension 2.
(3) When n > 2 show that if G D 0, then the metric is an Einstein metric.
(4) When n > 2 show that if G D 0 and c D 0, then the metric is Ricci flat.

EXERCISE 3.4.17. Let TCM D TM ˝ C be the complexified tangent bundle to a
manifold. A vector v 2 TCM looks like v D v1 C i v2, where v1; v2 2 TM, and can
be conjugated Nv D v1 � i v2. Any tensorial object on TM can be complexified. For
example, if S is a .1; 1/-tensor, then its complexification is given by

SC .v/ D SC .v1 C i v2/ D S .v1/C i S .v2/ :

A Riemannian structure g on TM gives a natural Hermitian structure on TCM by

g .v;w/ D gC .v; Nw/
D gC .v1 C i v2;w1 � i w2/

D g .v1;w1/C g .v2;w2/C i .g .v2;w1/ � g .v1;w2// :

A vector is called isotropic if it is Hermitian orthogonal to its conjugate

0 D g .v; Nv/
D gC .v; v/

D gC .v1 C i v2; v1 C i v2/

D g .v1; v1/� g .v2; v2/C i .g .v2; v1/C g .v1; v2// :

More generally, isotropic subspaces are defined as subspaces on which gC vanishes.
The complex sectional curvature spanned by Hermitian orthonormal vectors v;w is
given by the expression

RC .v;w; Nw; Nv/ :

It is called isotropic sectional curvature when v;w span an isotropic plane.

(1) Show that a vector v D v1 C i v2 is isotropic if v1; v2 are orthogonal and have
the same length.

(2) An isotropic plane can be spanned by two Hermitian orthonormal vectors v;w
that are isotropic. Show that if v D v1 C i v2 and w D w1 C i w2, then
v1; v2;w1;w2 are orthonormal.
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(3) Show that RC .v;w; Nw; Nv/ is always a real number.
(4) Show that if the original metric is strictly quarter pinched, i.e., all sectional

curvatures lie in an open interval of the form
�
1
4
k; k
�

with k > 0, then the
complex sectional curvatures are positive.

(5) Show that the complex sectional curvatures are nonnegative (resp. positive) if
the curvature operator is nonnegative (resp. positive). Hint: Calculate

g .R .x ^ u � y ^ v/ ; x ^ u � y ^ v/C g .R .x ^ v C y ^ u/ ; x ^ v C y ^ u/

and compare it to a suitable complex curvature.

EXERCISE 3.4.18. Consider a Riemannian metric .M; g/ and scale the metric
by multiplying it by a number �2: This creates a new Riemannian manifold�
M; �2g

�
:

(1) Show that the new connection and .1; 3/-curvature tensor remain the same.
(2) Show that sec, scal, and R all get multiplied by ��2:
(3) Show that Ric as a .1; 1/-tensor is multiplied by ��2.
(4) Show that Ric as a .0; 2/-tensor is unchanged.

EXERCISE 3.4.19. We say that X is an affine vector field if LXr D 0: Show that
such a field satisfies the equation: r2U;V X D �R .X;U/V:

EXERCISE 3.4.20 (INTEGRABILITY FOR PDES). For given functions Pi
k .x; u/,

where x D �x1; : : : ; xn
�
, u D �u1; : : : ; um

�
, i D 1; : : : ;m, and k D 1; : : : ; n, consider

the initial value problems for a system of first-order PDEs

@ui

@xk
D Pi

k .x; u .x// ;

u .x0/ D u0:

(1) Show that

@2ui

@xk@xl
D @Pi

l

@xk
C @Pi

l

@uj
Pj

k

and conclude that all such initial value problems can only be solved when the
integrability conditions

@Pi
l

@xk
C @Pi

l

@uj
Pj

k D
@Pi

k

@xl
C @Pi

k

@uj
Pj

l

hold.
(2) Conversely show that all such initial value problems can be solved if the inte-

grability conditions hold. Hint: This is equivalent to the Frobenius integrability
theorem but can be established directly (see also [97, vol. 1]). When P does not
depend on u, this result goes back to Clairaut. The general case appears to have
been a folklore result that predates what we call the Frobenius theorem about
integrability of distributions.
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(3) Using coordinates xi on a Riemannian n-manifold form the system

@Ui
j

@xk
D � s

kjU
i
s; i; j D 1; : : : ; n

and show that its integrability conditions are equivalent to Rs
klj D 0.

(4) Show that a flat Riemannian manifold admits Cartesian coordinates. Hint:
Denote the potential Cartesian coordinates by ui and consider the system:

@ui

@xk
D Ui

k

with appropriate initial values. Make sure you check that ui really form a
Cartesian coordinate system. This way of locally characterizing Euclidean
space is very close in spirit to Riemann’s original approach. Hint: Consider
the derivative of

gkl @ui

@xk

@uj

@xl
;

where gkl denotes the metric with respect to x and use 2.5.8.

EXERCISE 3.4.21 (FUNDAMENTAL THEOREM OF (HYPER-)SURFACE THEORY).
Consider a Riemannian immersion F W Mn # R

nC1. In coordinates on M it can
be written as

�
u1 .x/ ; : : : ; unC1 .x/

� D F .x/ D F
�
x1; : : : ; xn

�

and we define

Ui
k D

@ui

@xk
:

(1) Show that

@Ui
j

@xk
D � s

kjU
i
s � IIjk Ni;

where N D Ni @
@ui is a choice of unit normal and the second fundamental form

is IIjk D II
�
@j; @k

� D g
�r@j N; @k

�
.

(2) Show that the integrability conditions for this system are equivalent to the Gauss
(tangential) and Codazzi (mixed) curvature equations:

Riklj D IIij IIkl� IIik IIjl
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@ IIjk

@xl
� @ IIjl

@xk
D � s

lj IIsk �� s
kj IIsl

(3) Given metric coefficients gij and a symmetric tensor IIij that is related to the
metric coefficients through the Gauss and Codazzi equations, show that locally
there exists a Riemannian immersion such that the second fundamental form is
given by IIij.

(4) We can now give a local characterization of spaces with constant positive
curvature. Given a metric of constant curvature R�2 > 0, show that there is
a Riemannian immersion into R

nC1whose image lies in a sphere of radius R.
Hint: Guess what the second fundamental form should look like and show that
the constant curvature condition gives the Gauss and Codazzi equations. Note
that for Sn .R/ the unit normal is N D ˙R�1F.

EXERCISE 3.4.22. Repeat the previous exercise with a Riemannian immersion F W
Mn # R

n;1 where M is a Riemannian manifold and the normal N satisfies jNj2 D
�1. This time we obtain a local characterization of the hyperbolic spaces Hn .R/
from example 1.1.7 as the local model for spaces of constant curvature�R�2. Note
that for Hn .R/ the unit normal is N D ˙R�1F.

EXERCISE 3.4.23. For two symmetric .0; 2/-tensors h; k define the Kulkarni-
Nomizu product as the .0; 4/-tensor

h ı k .v1; v2; v3; v4/ D 1

2
.h .v1; v4/ � k .v2; v3/C h .v2; v3/ � k .v1; v4//

�1
2
.h .v1; v3/ � k .v2; v4/C h .v2; v4/ � k .v1; v3// :

The factor 1
2

is not used consistently in the literature, but is convenient when h D k.
Part (6) of this exercise explains our choice.

(1) Show that h ı k D k ı h.
(2) Show that h ı h D 0 if h has rank 1.
(3) Show that if n > 2; k is nondegenerate; and h ı k D 0, then h D 0. Hint: Let vi

be “eigenvectors” for k and v2 D v3.
(4) Show that h ı k satisfies the first 3 properties of proposition 3.1.1.
(5) Show that rX .h ı k/ D .rXh/ ı kC h ı .rXk/.
(6) Show that .M; g/ has constant curvature c if and only if the .0; 4/-curvature

tensor satisfies R D c � .g ı g/.

EXERCISE 3.4.24. Define the Schouten tensor

P D 2

n � 2 Ric� scal

.n � 1/ .n � 2/ � g

for Riemannian manifolds of dimension n > 2.
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(1) Show that if P vanishes on M, then Ric D 0.
(2) Show that the decomposition

P D scal

n .n � 1/gC 2

n� 2
�

Ric� scal

n
� g
�

of the Schouten tensor is orthogonal.
(3) Show that when n D 2, then

R D scal

2
g ı g:

(4) Show that when n D 3, then

R D scal

6
g ı gC 2

�
Ric� scal

3
� g
�
ı g D P ı g:

(5) Show that .M; g/ has constant curvature when n > 2 if and only if

R D P ı g and Ric D scal

n
g:

(6) Show that

Ric .X;Y/ D
nX

iD1
.P ı g/ .X;Ei;Ei;Y/

for any orthonormal frame Ei.

EXERCISE 3.4.25. The Weyl tensor W is defined implicitly through

R D scal

n .n � 1/g ı gC 2

n � 2
�

Ric� scal

n
� g
�
ı gCW

D P ı gCW;

where P was defined in the previous exercise.

(1) Show that if n D 3, then W D 0.
(2) Show that

nX

iD1
W .X;Ei;Ei;Y/ D 0

for any orthonormal frame Ei. Hint: Use (6) from exercise 3.4.24.
(3) Show that the decomposition R D PıgCW is orthogonal. Hint: This is similar

to showing that homotheties and traceless matrices are perpendicular.
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EXERCISE 3.4.26. Show that

r�P D � 1

n � 1d scal

and

r�W .Z;X;Y/ D n � 3
2

..rXP/ .Y;Z/ � .rYP/ .X;Z// :

Hint: Use the definitions of W and P from the previous two exercises, exercise 3.4.8,
and proposition 3.1.5.

EXERCISE 3.4.27. Given an orthonormal frame E1; : : : ;En on .M; g/, define the
structure constants ck

ij by
	
Ei;Ej


 D ck
ijEk, note that each ck

ij is a function on M, so it
is not constant! Define the �s and Rs by

rEi Ej D �k
ijEk;

R
�
Ei;Ej

�
Ek D Rl

ijkEl

and compute them in terms of the structure constants. Notice that on Lie groups
with left-invariant metrics the structure constants can be assumed to be constant. In
this case, computations simplify considerably.

EXERCISE 3.4.28 (CARTAN FORMALISM). There is yet another effective method
for computing the connection and curvatures, namely, the Cartan formalism. Let
.M; g/ be a Riemannian manifold. Given a frame E1; : : : ;En, the connection can be
written

rEi D !j
i Ej;

where !j
i are 1-forms called the connection forms. Thus,

rvEi D !j
i .v/Ej:

Suppose additionally that the frame is orthonormal and let !i be the dual coframe,
i.e., !i

�
Ej
� D ıi

j .

(1) Show that the connection forms satisfy

!
j
i D �!i

j ;

d!i D !j ^ !i
j :
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These two equations can, conversely, be used to compute the connection forms
given the orthonormal frame. Therefore, if the metric is given by declaring
a certain frame to be orthonormal, then this method can be very effective in
computing the connection.

(2) If we think of
h
!

j
i

i
as a matrix, then it represents a 1-form with values in the

skew-symmetric n�n matrices, or in other words, with values in the Lie algebra
so .n/ for O .n/ : The curvature forms �j

i are 2-forms with values in so .n/
defined as

R .X;Y/Ei D �j
i .X;Y/Ej:

Show that they satisfy

d!j
i D !k

i ^ !j
k C�j

i:

(3) When reducing to Riemannian metrics on surfaces we obtain for an orthonormal
frame E1;E2 with coframe !1; !2

d!1 D !2 ^ !12 ;
d!2 D �!1 ^ !12 ;
d!12 D �1

2;

�1
2 D sec �d vol :

EXERCISE 3.4.29. This exercise will give you a way of finding the curvature tensor
from the sectional curvatures. Assume that R .X;Y;Z;W/ is an algebraic curvature
tensor, i.e., satisfies (1), (2), and (3) of proposition 3.1.1.

(1) Show that

6R .X;Y;V;W/ D @2R .X C sW;Y C tV;Y C tV;X C sW/

@s@t

ˇ
ˇ
ˇ̌
sDtD0

� @
2R .X C sV;Y C tW;Y C tW;X C sV/

@s@t

ˇ
ˇ̌
ˇ
sDtD0

:

(2) Show that

6R .X;Y;V;W/ D R .X CW;Y C V;Y C V;X CW/

�R .X;Y C V;Y C V;X/� R .W;Y C V;Y C V;W/

�R .X CW;V;V;X CW/ � R .X CW;Y;Y;X CW/

CR .X;V;V;X/C R .W;V;V;W/

CR .X;Y;Y;X/C R .W;Y;Y;W/
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�R .X C V;Y CW;Y CW;X C V/

CR .X;Y CW;Y CW;X/C R .V;Y CW;Y CW;V/

CR .X C V;Y;Y;X C V/C R .X C V;W;W;X C V/

�R .X;Y;Y;X/ � R .V;Y;Y;V/

�R .X;W;W;X/� R .V;W;W;V/ :

Note that 4 of the terms on the right-hand side are redundant.

EXERCISE 3.4.30. Using the previous exercise show that the norm of the curvature
operator on ƒ2TpM is bounded by

ˇ
ˇRjp

ˇ
ˇ � c .n/ jsecjp

for some constant c .n/ depending on dimension, and where jsecjp denotes the
largest absolute value for any sectional curvature of a plane in TpM:

EXERCISE 3.4.31. Let G be a Lie group with a left-invariant metric .�; �/ on g (it
need not be positive definite just nondegenerate). For X 2 g denote by ad�

X W g! g
the adjoint of adX Y D ŒX;Y� with respect to .�; �/. Show that:

(1) rXY D 1
2

�
ŒX;Y�C ad�

X Y � ad�
Y X
�
. Conclude that if X;Y 2 g, then rXY 2 g.

(2) R .X;Y;Z;W/ D � .rYZ;rXW/C .rXZ;rYW/ � �rŒX;Y�Z;W
�
.

(3)

R .X;Y;Y;X/ D 1

4
jad�

X Y C ad�
Y Xj2

� �ad�
X X; ad�

Y Y
� � 3

4
jŒX;Y�j2

�1
2
.ŒŒX;Y� ;Y� ;X/� 1

2
.ŒŒY;X� ;X� ;Y/ :

EXERCISE 3.4.32. Let G be a Lie group with a biinvariant metric .�; �/ on g (it need
not be positive definite just nondegenerate). Using left-invariant fields establish the
following formulas. Hint: First go back to the exercise 1.6.24 and take a peek at
section 4.4.1 where some of these things are proved. Show that:

(1) rXY D 1
2
ŒX;Y�.

(2) R .X;Y/ Z D 1
4
ŒZ; ŒX;Y�� :

(3) R .X;Y;Z;W/ D � 1
4
.ŒX;Y� ; ŒZ;W�/ : Conclude that the sectional curvatures

are nonnegative when .�; �/ is positive definite.
(4) Show that the curvature operator is also nonnegative when .�; �/ is positive

definite by showing that:
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g

 

R

 
kX

iD1
Xi ^ Yi

!

;

 
kX

iD1
Xi ^ Yi

!!

D 1

4

ˇ
ˇ
ˇ̌
ˇ

kX

iD1
ŒXi;Yi�

ˇ
ˇ
ˇ̌
ˇ

2

:

(5) Assume again that .�; �/ is positive definite. Show that Ric .X;X/ D 0 if and only
if X commutes with all other left-invariant vector fields. Thus G has positive
Ricci curvature if the center of G is discrete.

EXERCISE 3.4.33. Consider a Lie group where the Killing form B is nondegenerate
and use �B as the left-invariant metric (see exercise 1.6.27).

(1) Show that this metric is biinvariant.
(2) Show that Ric D � 1

4
B.

EXERCISE 3.4.34. It is illustrative to use the Cartan formalism in the previous
exercise and compute all quantities in terms of the structure constants for the Lie
algebra. Given that the metric is biinvariant, it follows that with respect to an
orthonormal basis they satisfy

ck
ij D �ck

ji D ci
jk:

The first equality is skew-symmetry of the Lie bracket, and the second is biinvari-
ance of the metric.



Chapter 4
Examples

We are now ready to compute the curvature tensors on all of the examples
constructed in chapter 1. After a few more general computations, we will exhibit
Riemannian manifolds with constant sectional, Ricci, and scalar curvature. In par-
ticular, we shall look at the space forms Sn

k , products of spheres, and the Riemannian
version of the Schwarzschild metric. We also offer a local characterization of certain
warped products and rotationally symmetric constant curvature metrics in terms of
the Hessian of certain modified distance functions.

The examples we present here include a selection of important techniques
such as: Conformal change, left-invariant metrics, warped products, Riemannian
submersion constructions etc. We shall not always develop the techniques in
complete generality. Rather we show how they work in some basic, but important,
examples. The exercises also delve into important ideas that are not needed for
further developments in the text.

4.1 Computational Simplifications

Before we do more concrete calculations it will be useful to have some general
results that deal with how one finds the range of the various curvatures.

Proposition 4.1.1. Let ei be an orthonormal basis for TpM. If ei ^ ej diagonalize
the curvature operator

R
�
ei ^ ej

� D �ijei ^ ej;

then for any plane 	 in TpM we have sec .	/ 2 	min�ij;max�ij


.

Proof. If v;w form an orthonormal basis for the plane 	 , then we have sec .	/ D
g .R .v ^ w/ ; .v ^ w//, so the result is immediate. ut

© Springer International Publishing AG 2016
P. Petersen, Riemannian Geometry, Graduate Texts in Mathematics 171,
DOI 10.1007/978-3-319-26654-1_4

115



116 4 Examples

Proposition 4.1.2. Let ei be an orthonormal basis for TpM. If R
�
ei; ej

�
ek D 0,

when the indices are mutually distinct, then ei ^ ej diagonalize the curvature
operator.

Proof. If we use

g
�
R
�
ei ^ ej

�
; .ek ^ el/

� D � g
�
R
�
ei; ej

�
ek; el

�

D g
�
R
�
ei; ej

�
el; ek

�
;

then we see that this expression is 0 when i; j; k are mutually distinct or if i; j; l are
mutually distinct. Thus, the expression can only be nonzero when fk; lg D fi; jg.
This gives the result. ut

We shall see that this proposition applies to all rotationally symmetric and doubly
warped products. In this case, the curvature operator can then be computed by
finding the expressions R

�
ei; ej; ej; ei

�
. In general, however, this will definitely not

work.
There is also a more general situation where we can find the range of the Ricci

curvatures:

Proposition 4.1.3. Let ei be an orthonormal basis for TpM. If

g
�
R
�
ei; ej

�
ek; el

� D 0;

when three of the indices are mutually distinct, then ei diagonalize Ric.

Proof. Recall that

g
�
Ric .ei/ ; ej

� D
nX

kD1
g
�
R .ei; ek/ ek; ej

�
;

so if we assume that i ¤ j, then g
�
R .ei; ek/ ek; ej

� D 0 unless k is either i or j.
However, if k D i; j, then the expression is zero from the symmetry properties of R.
Thus, ei must diagonalize Ric. ut

4.2 Warped Products

So far, all we know about curvature is that Euclidean space has R D 0. Using this,
we determine the curvature tensor on Sn�1.R/. Armed with that information we can
in turn calculate the curvatures on rotationally symmetric metrics.
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4.2.1 Spheres

On R
n consider the distance function r.x/ D jxj and the polar coordinate

representation:

g D dr2 C gr D dr2 C r2ds2n�1;

where ds2n�1 is the canonical metric on Sn�1.1/. The level sets are Or D Sn�1.r/
with the usual induced metric gr D r2ds2n�1. The differential of r is given by dr D
P xi

r dxi and the gradient is @r D 1
r xi@i. Since ds2n�1 is independent of r we can

compute the Hessian of r as follows:

2Hess r D L@r g

D L@r

�
dr2
�C L@r

�
r2ds2n�1

�

D L@r .dr/ drC drL@r .dr/C @r
�
r2
�

ds2n�1 C r2L@r

�
ds2n�1

�

D @r
�
r2
�

ds2n�1
D 2rds2n�1
D 21r gr:

The tangential curvature equation (see theorem 3.2.4) tells us that

Rr.X;Y/Z D r�2.gr.Y;Z/X � gr.X;Z/Y/;

since the curvature on R
n is zero. In particular, if ei is any orthonormal basis, then

Rr
�
ei; ej

�
ek D 0 when the indices are mutually distinct. Therefore, Sn�1.R/ has

constant curvature R�2 provided n � 3. This justifies our notation that Sn
k is the

rotationally symmetric metric dr2 C sn2k.r/ds2n�1 when k � 0, as these metrics have
curvature k in this case. In section 4.2.3 we shall see that this is also true when k < 0.

4.2.2 Product Spheres

Next we compute the curvatures on the product spheres

Sn
a � Sm

b D Sn

�
1p
a

�
� Sm

�
1p
b

�
:

The metric gr on Sn .r/ is gr D r2ds2n, so we can write
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Sn
a � Sm

b D
�

Sn � Sm;
1

a
ds2n C

1

b
ds2m

�
:

Let Y be a unit vector field on Sn, V a unit vector field on Sm, and X a unit vector
field on either Sn or Sm that is perpendicular to both Y and V . The Koszul formula
shows that

2g .rYX;V/ D g .ŒY;X� ;V/C g .ŒV;Y� ;X/� g .ŒX;V� ;Y/

D g .ŒY;X� ;V/� g .ŒX;V� ;Y/

D 0;

as ŒY;X� is either zero or tangent to Sn and likewise with ŒX;V�. Thus rYX D 0 if X
is tangent to Sm and rYX is tangent to Sn if X is tangent to Sn. This shows that rYX
can be computed on Sn

a. We can then calculate R knowing the curvatures on the two
spheres from section 4.2.1 and invoke proposition 4.1.2 to obtain:

R.X ^ V/ D 0;
R.X ^ Y/ D aX ^ Y;

R.U ^ V/ D bU ^ V:

In particular, proposition 4.1.1 shows that all sectional curvatures lie in the interval
Œ0;maxfa; bg�. It also follows that

Ric.X/ D .n � 1/aX;

Ric .V/ D .m � 1/ bV;

scal D n.n� 1/aC m.m � 1/b:

Therefore, we conclude that Sn
a � Sm

b always has constant scalar curvature, is an
Einstein manifold exactly when .n � 1/a D .m � 1/b (which requires n;m � 2 or
n D m D 1), and has constant sectional curvature only when n D m D 1. Note also
that the curvature tensor on Sn

a � Sm
b is always parallel.

4.2.3 Rotationally Symmetric Metrics

Next we consider what happens for a general rotationally symmetric metric

dr2 C �2ds2n�1:

The metric is of the form g D dr2 C gr on .a; b/ � Sn�1, with gr D �2ds2n�1. As
ds2n�1 does not depend on r we have that
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2Hess r D L@r gr

D L@r

�
�2ds2n�1

�

D @r
�
�2
�

ds2n�1 C �2L@r

�
ds2n�1

�

D 2� .@r�/ ds2n�1

D 2
@r�

�
gr:

The Lie and covariant derivatives of the Hessian are computed as follows:

L@r Hess r D L@r

�
@r�

�
gr

�

D @r

�
@r�

�

�
gr C @r�

�
L@r .gr/

D
�
@2r�

�
� � .@r�/

2

�2
gr C 2

�
@r�

�

�2
gr

D @2r�

�
gr C

�
@r�

�

�2
gr

D @2r�

�
gr C Hess2 r

and

r@r Hess r D r@r

�
@r�

�
gr

�

D @r

�
@r�

�

�
gr C @r�

�
r@r .gr/

D
�
@2r�

�
� � .@r�/

2

�2
gr

D @2r�

�
gr �

�
@r�

�

�2
gr

D @2r�

�
gr � Hess2 r:

The fundamental equations from proposition 3.2.11 show that when restricted to
Sn�1 we have

Hess r D @r�

�
gr;
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R .�; @r; @r; �/ D �@
2
r�

�
gr:

This implies that

rX@r D
(
@r�

�
X if X is tangent to Sn�1;

0 if X D @r:

R .X; @r/ @r D
(
� @2r �

�
X if X is tangent to Sn�1;

0 if X D @r:

Next we calculate the other curvatures on

�
I � Sn�1; dr2 C �2.r/ds2n�1

�

that come from the tangential and mixed curvature equations (see theorems 3.2.4
and 3.2.5)

g .R.X;Y/V;W/ D gr .R
r.X;Y/V;W/ � II.Y;V/ II .X;W/C II.X;V/ II .Y;W/ ;

g .R.X;Y/Z; @r/ D � .rX II/ .Y;Z/C .rY II/ .X;Z/ :

Using that gr is the metric of curvature 1
�2

on the sphere, we have from
section 4.2.1 that

gr .R
r .X;Y/V;W/ D 1

�2
gr.X ^ Y;W ^ V/:

Combining this with II D Hess r we obtain from the first equation that

g .R.X;Y/V;W/ D 1 � .@r�/
2

�2
gr.X ^ Y;W ^ V/:

Finally we show that the mixed curvature vanishes as @r�

�
depends only on r W

rX II D rX

�
@r�

�
gr

�

D DX

�
@r�

�

�
gr C @r�

�
rXgr

D 0:
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From this we can use proposition 4.1.2 to conclude

R.X ^ @r/ D �@
2
r�

�
X ^ @r D � R�

�
X ^ @r;

R.X ^ Y/ D 1 � .@r�/
2

�2
X ^ Y D 1 � P�2

�2
X ^ Y

In particular, we have diagonalizedR. Hence all sectional curvatures lie between the

two values � R�
�

and 1� P�2
�2

. Furthermore, if we select an orthonormal basis Ei where
E1 D @r , then the Ricci tensor and scalar curvature are

Ric .X/ D
nX

iD1
R .X;Ei/Ei

D
n�1X

iD1
R .X;Ei/Ei C R .X; @r/ @r

D
�
.n � 2/ 1 � P�

2

�2
� R�
�

�
X;

Ric .@r/ D � .n � 1/ R�
�
@r

scal D �.n � 1/ R�
�
C .n � 1/

�
.n � 2/1� P�

2

�2
� R�
�

�

D �2.n� 1/ R�
�
C .n � 1/.n� 2/1� P�

2

�2
:

When n D 2, it follows that sec D � R�
�

, as there are no tangential curvatures.
This makes for quite a difference between 2- and higher-dimensional rotationally
symmetric metrics.
Constant curvature: First, we compute the curvature of dr2 C sn2k.r/ds2n�1 on Sn

k .

Since � D snk solves R� C k� D 0 it follows that sec.X; @r/ D k. To compute 1� P�2
�2

recall from section 1.4.3 that if � D snk.r/, then

P� D csk;

1 � P�2 D k�2:

Thus, all sectional curvatures are equal to k, as promised.
Next let us see if we can find any interesting Ricci flat or scalar flat examples.

Ricci flat metrics: A Ricci flat metric must satisfy
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R�
�
D 0;

.n � 2/1 � P�
2

�2
� R�
�
D 0:

Hence, R� � 0 and P�2 � 1, when n > 2. Thus, � .r/ D a˙ r. In case n D 2 we only
need R� D 0. In any case, the only Ricci flat rotationally symmetric metrics are, in
fact, flat.
Scalar flat metrics: To find scalar flat metrics we need to solve

2.n� 1/
�
� R�
�
C n � 2

2
� 1� P�

2

�2

�
D 0;

when n � 3. We rewrite this equation as

R�C n � 2
2

P�2 � 1
�
D 0:

This is an autonomous second-order equation and can be made into a first-order
equation by using � as a new independent variable. If P� D G.�/, then R� D G0 P� D
G0G and the first-order equation becomes

G0GC n � 2
2

G2 � 1
�
D 0:

Separation of variables shows that G and � are related by

P�2 D G2 D 1C C�2�n;

which after differentiation yields:

R� D �n � 2
2

C�1�n:

We focus on solutions to this family of second-order equations. Note that they will
in turn solve P�2 D 1 C C�2�n, when the initial values are related by . P� .0//2 D
1C C .� .0//2�n.
To analyze the solutions to this equation that are positive and thus yield Riemannian
metrics, we need to study the cases C > 0, C D 0, C < 0 separately. But first, notice
that if C ¤ 0, then both P� and R� approach˙1 at points where � approaches 0.

C D 0: In this case R� � 0 and P�2.0/ D 1. Thus, � D aC r is the only solution
and the metric is the standard Euclidean metric.

C > 0: � is concave since

R� D �n � 2
2

C�1�n < 0:
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Thus, if � is extended to its maximal interval, then it must cross the “r-axis,” but as
pointed out above this means that R� becomes undefined. Consequently, we don’t get
any nice metrics this way.

C < 0: This time the solutions are convex. If we write C D ��n�2
0 , then the

equation P�2 D 1 �
�
�0
�

�2�n
shows that 0 < �0 � �. In case � .a/ D �0, it follows

that P� .a/ D 0 and R� .a/ > 0. Thus a is a strict minimum and the solution exists in
a neighborhood of a. Furthermore, j P�j � 1 so the solutions can’t blow up in finite
time. This shows that � is defined on all of R. Thus, there are scalar flat rotationally
symmetric metrics on R � Sn�1.

We focus on the solution with �.0/ D �0 > 0, which forces P�.0/ D 0. Notice that
� is even as � .�r/ solves the same initial value problem. Consequently, .r; x/ 7!
.�r;�x/ is an isometry on

�
R � Sn�1; dr2 C �2.r/ds2n�1

�
:

Thus we get a Riemannian covering map

R � Sn�1 ! �
�
RP

n�1�

and a scalar flat metric on �
�
RP

n�1�, the tautological line bundle over RPn�1.
If we use � as the parameter instead of r, then

d�2 D P�2dr2 D
 

1 �
�
�0

�

�n�2!
dr2:

When r > 0 it follows that � > �0 and the metric has the more algebraically explicit
form

dr2 C �2.r/ds2n�1 D
1

1 �
�
�0
�

�n�2 d�2 C �2ds2n�1:

This shows that the metric looks like the Euclidean metric d�2C�2ds2n�1 as �!1.
In section 5.6.2 we show that R � Sn�1, n � 3, does not admit a (complete)

constant curvature metric. Later in section 7.3.1 and theorem 7.3.5, we will see that
if R � Sn�1 has Ric � 0, then Sn�1 also has a metric with Ric � 0. When n D 3 or
4 this means that S2 and S3 have flat metrics, and we shall see in section 5.6.2 that
this is not possible. Thus we have found a manifold with a nice scalar flat metric
that does not carry any Ricci flat or constant curvature metrics.
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4.2.4 Doubly Warped Products

We wish to compute the curvatures on

�
I � Sp � Sq; dr2 C �2.r/ds2p C 
2.r/ds2q

�
:

This time the Hessian looks like

Hess r D .@r�/ �ds2p C .@r
/ 
ds2q:

and we see as in the rotationally symmetric case that

rX II D 0:

Thus the mixed curvatures vanish. Let X;Y be tangent to Sp and V;W tangent
to Sq. Using our curvature calculations from the rotationally symmetric case (see
section 4.2.3) and the product sphere case (see section 4.2.2) the tangential curvature
equations (see theorem 3.2.4) yield

R .@r ^ X/ D � R�
�
@r ^ X;

R .@r ^ V/ D �
R



@r ^ V;

R .X ^ Y/ D 1 � P�2
�2

X ^ Y;

R .U ^ V/ D 1 � P
2

2

U ^ V;

R .X ^ V/ D � P�
P


�

X ^ V:

From this it follows that all sectional curvatures are convex linear combinations
of

� R�
�
;� R



;
1 � P�2
�2

;
1 � P
2

2

;� P� P

�

:

Moreover,

Ric.@r/ D
 

�p
R�
�
� q
R




!

@r;
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Ric.X/ D
 
� R�
�
C .p � 1/1� P�

2

�2
� q � P� P


�


!

X;

Ric.V/ D
 
� R



C .q � 1/1�

P
2

2

� p � P�
P


�


!

V:

4.2.5 The Schwarzschild Metric

We wish to find a Ricci flat metric on R
2 � Sn�2. Choose p D n � 2 and q D 1 in

the above doubly warped product case so that the metric is on .0;1/ � Sn�2 � S1.
We’ll see that this forces dr2C�2 .r/ ds2n�2 to be scalar flat (see also exercise 4.7.16
for a more general treatment).

The equations to be solved are:

� .n � 2/ R�
�
�
R



D 0;

� R�
�
C .n � 3/ 1 � P�

2

�2
� P�
P


�

D 0;

� R



� .n � 2/ P� P


�

D 0:

Subtracting the first and last gives

R�
�
D P�
P


�

:

If we substitute this into the second equation we simply obtain the scalar flat
equation for dr2 C �2 .r/ ds2n�2:

�2 R�
�
C .n � 3/ 1 � P�

2

�2
D 0:

We use the solution � .r/ from section 4.2.3 that is even in r and satisfies:

� .0/ D �0;

P�2 D 1 �
�
�0

�

�n�3
:

Next note that R�
�
D P� P


�

implies that P�



D c is constant. Thus we can define 


using P� D c
.
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Since P�2 D 1 �
�
�0
�

�n�3
we obtain c2
2 D 1 �

�
�0
�

�n�3
. This forces 
 .0/ D 0.

From 2 R� D .n � 3/ 1
�0

�
�0
�

�n�2
we get

2c P
 D .n � 3/ 1
�0

�
�0

�

�n�2
:

To obtain a smooth metric on R
2 � Sn�2 we need 
 to be odd with P
 .0/ D 1. This

forces c D n�3
2
��1
0 and gives us P
 D

�
�0
�

�n�2
. Since � is even this makes P
 even

and hence 
 odd as 
 .0/ D 0. We also see that R
 D n�3
2
.2 � n/ �n�3

0 �1�n
. This
shows that the first equation, and hence the other two, are satisfied:

�.n � 2/n� 3
2

�n�2
0 �1�n � n � 3

2
.2 � n/ �n�3

0 �1�n D 0:

If we use � as a parameter instead of r as in section 4.2.3, then we obtain the
more explicit algebraic form

1

1 �
�
�0
�

�n�3 d�2 C �2ds2n�2 C �20
4

.n � 3/3
 

1 �
�
�0

�

�n�3!
d�2:

Thus, the metric looks like R
n�1 � S1 at infinity, where the metric on S1 is suitably

scaled. Therefore, the Schwarzschild metric is a Ricci flat metric on R
2 � Sn�2 that

at infinity looks approximately like the flat metric on R
n�1 � S1.

The classical Schwarzschild metric is a space-time metric and is not smooth at � D
�0. The parameter c above is taken to be the speed of light and is not forced to
depend on �0. We also replace S1 by R. The metric looks like:

1

1 � �0
�

d�2 C �2ds22 �
1

c2

�
1 � �0

�

�
dt2:

4.3 Warped Products in General

We are now ready for a slightly more general context for warped products. This
will allow us to characterize the rotationally symmetric constant curvature metrics
through a very simple equation for the Hessian of a modified distance function.
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4.3.1 Basic Constructions

Given a Riemannian metric .H; gH/ a warped product (over I) is defined as a metric
on I � H, where I � R is an open interval, with metric

g D dr2 C �2 .r/ gH;

where � > 0 on all of I. One could also more generally consider

 2 .r/ dr2 C �2 .r/ gH :

However, a change of coordinates defined by relating the differentials d� D  .r/ dr
allows us to rewrite this as

d�2 C �2 .r .�// gH:

Important special cases are the basic product g D dr2 C gH and polar coordinates
dr2 C r2ds2n�1 on .0;1/ � Sn�1 representing the Euclidean metric.

The goal is to repackage the information that describes the warped product
representation with a goal of finding a simple characterization of such metrics.
Rather than using both r and � we will see that just one function suffices. Starting
with a warped product dr2 C �2 .r/ gH construct the function f D R

�dr on
M D I � H. Since df D �dr it is clear that

dr2 C �2 .r/ gH D 1

�2 .r/
df 2 C �2 .r/ gH:

Proposition 4.3.1. The Hessian of f has the property

Hess f D P�g:

Proof. The Hessian of f is calculated from the Hessian of r. The latter is calculated
as in section 4.2.3

Hess r D 1

2
L@r g

D 1

2
L@r

�
dr2 C �2 .r/ gH

�

D 1

2
@r
�
�2 .r/

�
gH

D P��gH:
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So we obtain

.Hess f / .X;Y/ D .rXdf / .Y/

D .rX�dr/ .Y/

D P�dr .X/ dr .Y/C �Hess r .X;Y/

D P�dr2 .X;Y/C �Hess r .X;Y/

D P�dr2 .X;Y/C P��2gH

D P�g:

ut
In other words we have shown that for a warped product it is possible to find a

function f whose Hessian is conformal to the metric. In fact the relationship

P� D d�

dr
D d�

df

df

dr
D d�

df
� D 1

2

d jrf j2
df

tells us that the warped product representation depends only on f and jrf j since we
have

g D 1

jrf j2 df 2 C jrf j2 gH;

Hess f D 1

2

d jrf j2
df

g:

Before turning to the general characterization let us consider how these construc-
tions work on our standard constant curvature warped products.

Example 4.3.2. Consider the warped product given by

dr2 C sn2k .r/ ds2n�1:

We select the antiderivative of snk .r/ that vanishes at r D 0. When k D 0

f D
Z

rdr D 1

2
r2;

Hess f D g:

When k ¤ 0

f D
Z

snk .r/ D 1

k
� 1

k
csk .r/ ;

Hess f D csk .r/ g D .1 � kf / g:
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More specifically, when k D 1

f D 1 � cos r;

Hess f D cos r D 1 � f

and when k D �1

f D �1C cosh r;

Hess f D cosh r D 1C f :

4.3.2 General Characterization

We can now state and prove our main characterization of warped products.

Theorem 4.3.3 (Brinkmann, 1925). If there is a smooth function f whose Hessian
is conformal to the metric, i.e., Hess f D �g, then the Riemannian structure is
locally a warped product g D dr2 C �2 .r/ gH around any point where df ¤ 0.
Moreover, if df .p/ D 0 and � .p/ ¤ 0, then g D dr2 C �2 .r/ ds2n�1 on some
neighborhood of p.

Proof. We first focus attention on the case where df never vanishes. Thus f can
locally be considered the first coordinate in a coordinate system.

Define � D jrf j and note that

DX�
2 D 2Hess f .rf ;X/ D 2�g .rf ;X/ ;

i.e., d�2 D 2�df . Consequently also d� ^ df D 0. It follows that d� and d� are
both proportional to df and in particular that � and � are locally constant on level
sets of f . Thus we can assume that � D � .f / and � D � .f /. This shows in turn that
1
�
df is closed and locally exact. Define r by dr D 1

�
df and use r as a new parameter.

Note that r is a distance function since

@r D rr D 1

� .f /
rf

is a unit vector field. We can then decompose the metric as g D dr2Cgr on a suitable
domain I � H � M, where H � fx 2 M j r .x/ D r0g. When X ? @r it follows that
rXdr D 1

�
rXdf . Thus Hess r D �

�
gr and L@r gr D 2�

�
gr.
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Observe that if gH is defined such that gr0 D �2 .r0/ gH is the restriction of g to
the fixed level set r D r0, then also

L@r

�
�2gH

� D �@r�
2
�

gH D 2��gH D 2�

�
�2gH:

This shows that

g D dr2 C gr D dr2 C �2gH:

Next assume that p is a nondegenerate critical point for f . After possibly
replacing f by ˛f C ˇ, we can assume that Hess f D �g with f .p/ D 0, df jp D 0,
and � .p/ D 1. Further assume that M is the connected component of ff < �g that
contains p and that p is the only critical point for f . Since Hess f D g at p there exist
coordinates around p with yi .p/ D 0 and

f
�
y1; : : : ; yn

� D 1

2

��
y1
�2 C � � � C .yn/2

�
:

Therefore, all the regular level sets for f are spheres in this coordinates system. We
can use the first part of the proof to obtain a warped product structure dr2C �2gSn�1

on M � fpg ' .0; b/ � Sn�1, where gSn�1 is a metric on Sn�1 and r ! 0 as we
approach p. When all functions are written as functions of r they are determined by
� in the following simple way:

f D f .r/ ;

df

dr
D � .r/ ;

d2f

dr2
D d�

dr
D �;

f .0/ D df

dr
.0/ D � .0/ D 0;

d2f

dr2
.0/ D d�

dr
.0/ D � .0/ D 1:

The goal is to show that gSn�1 D ds2n�1. The initial conditions for � guarantee that
the metric dr2C�2ds2n�1 is continuous at p when we switch to Cartesian coordinates
as in section 1.4.4. We can use a similar analysis here. First assume that dim M D 2
and x D r cos � , y D r sin � , where r is as above and � coordinatizes S1. The metric
gS1 on S1 must take the form 
2 .�/ d�2 for some function 
 W S1 ! .0;1/. The
metric is then given by g D dr2 C �2 .r/ 
2 .�/ d�2. As the new coordinate fields
are
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@x D cos �@r � 1
r

sin �@� ;

@y D sin �@r C 1

r
cos �@� ;

the new metric coefficients become

gxx D cos2 � C 
2 .�/ �
2 .r/

r2
sin2 �;

gyy D sin2 � C 
2 .�/ �
2 .r/

r2
cos2 �:

As r! 0 we obtain the limits

gxx .p/ D cos2 � C 
2 .�/ sin2 �;

gyy .p/ D sin2 � C 
2 .�/ cos2 �;

since � .0/ D 0 and P� .0/ D 1. However, these limits are independent of � as they
are the metric coefficients at p. This implies first that 
 .�/ is constant since

gxx .p/C gyy .p/ D 1C 
2 .�/

and then that 
 D 1 as gxx .p/ is independent of � .
This case can be adapted to higher dimensions. Simply select a plane that

intersects the unit sphere Sn�1 in a great circle c .�/, where � is the arclength
parameter with respect to the standard metric. The metric g restricted to this plane
can then be expressed as in the 2-dimensional case and it follows that 1 D 
2 .�/ D
gSn�1

�
dc
d� ;

dc
d�

�
. As dc

d� can be chosen to be any unit vector on Sn�1 it follows that
gSn�1 agrees with the standard metric on the unit sphere. ut

This theorem can be used to characterize the warped product constant curvature
metrics from example 4.3.2.

Corollary 4.3.4. If there is a function f on a Riemannian manifold such that

f .p/ D 0;
df jp D 0;

and

Hess f D .1 � kf / g;

then the metric is the warped product metric of curvature k in a neighborhood of p
as described in example 4.3.2.
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Proof. Note that � D 1� kf is an explicit function of f . So we can find f D f .r/ as
the solution to

d2f

dr2
D 1 � kf ;

f .0/ D 0;
f 0 .0/ D 0;

and the warping function by

� .r/ D jrf j D df

dr
:

The solutions are consequently given by the standard warped product representa-
tions of constant curvature metrics:

Euclidean Space

g D dr2 C r2ds2n�1;

f .r/ D 1
2
r2:

Constant curvature k ¤ 0

g D dr2 C sn2k .r/ ds2n�1;

f .r/ D 1
k � 1

k csk .r/ :

In all cases r D 0 corresponds to the point p. ut
Remark 4.3.5. A function f W M ! R is called transnormal provided jdf j2 D �2 .f /
for some smooth function �. We saw above that functions with conformal Hessian
locally have this property. However, it is easy to construct transnormal functions
that do not have conformal Hessian. A good example is the function f D 1

2
sin .2r/

on the doubly warped product representation of S3 .1/ given by dr2C sin2 .r/ d�21 C
cos2 .r/ d�22 on .0; 	=2/ � S1 � S1.

4.3.3 Conformal Representations of Warped Products

If .M; g/ is a Riemannian manifold and  is positive on M, then we can construct a
new Riemannian manifold .M;  2g/. Such a change in metric is called a conformal
change, and  2 is referred to as the conformal factor.

A warped product can be made to look like a conformal metric in two basic ways.

dr2 C �2 .r/ gH D  2 .�/
�
d�2 C gH

�
;
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dr D  .�/ d�;

� .r/ D  .�/

or

dr2 C �2 .r/ gH D  2 .�/
�
d�2 C �2gH

�
;

dr D  .�/ d�;

� .r/ D � .�/ :

4.3.3.1 Conformal Models of Spheres

The first of these changes has been studied since the time of Mercator. The sphere
of radius R and curvature 1

R2
can be written as

R2ds2n D R2
�
dt2 C sin2 .t/ ds2n�1

�

D dr2 C R2 sin2
�

r
R

�
ds2n�1:

The conformal change envisioned by Mercator takes the form

R2ds2n D  2 .�/
�
d�2 C ds2n�1

�
:

As

 .�/ d� D dr;

 .�/ D R sin
�

r
R

�

we obtain

d� D dr

R sin
�

r
R

� ;

� D 1

2
log

1 � cos
�

r
R

�

1C cos
�

r
R

� :

Thus

cos
� r

R

�
D 1 � exp .2�/

1C exp .2�/
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and

 2 D R2 sin2
� r

R

�
D R2

4 exp .2�/

.1C exp .2�//2

showing that

R2ds2n D R2
4 exp .2�/

.1C exp .2�//2
�
d�2 C ds2n�1

�
:

Switching the spherical metric to being conformal to the polar coordinate
representation of Euclidean space took even longer and probably wasn’t studied
much until the time of Riemann. The calculations in this case require that we first
solve

d�

�
D dr

R sin
�

r
R

� :

This integrates to

�2 D 1 � cos
�

r
R

�

1C cos
�

r
R

�

and implies

cos
�

r
R

� D 1 � �2
1C �2 :

The relationship

R sin
�

r
R

� D � .�/

then gives us

 2 .�/ D R2
4

.1C �2/2

and consequently

R2ds2n D R2 2 .�/
�
d�2 C �2ds2n�1

�

D R2
4

.1C �2/2
�
d�2 C �2ds2n�1

�

D 4R2

.1C �2/2 gRn :
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This gives us a representation of the metric on the punctured sphere that only
involves algebraic functions. See also exercise 4.7.13 for a geometric construction
of the representation.

4.3.3.2 Conformal Models of Hyperbolic Space

We defined hyperbolic space Hn in example 1.1.7 and exhibited it as a rotationally
symmetric metric in example 1.4.6. The rotationally symmetric metric on Hn .R/
can be written as

dr2 C sn2R�2 .r/ ds2n�1 D dr2 C R2 sinh2
�

r
R

�
ds2n�1

D R2
�
dt2 C sinh2 .t/ ds2n�1

�
:

A construction similar to what we just saw for the sphere leads to the conformal
polar coordinate representation

R2
�
dt2 C sinh2 .t/ ds2n�1

� D 4R2

.1 � �2/2 gRn :

This time, however, the metric is only defined on the unit ball. This is also known
as the Poincarè model on the unit disc. See also exercise 4.7.13 for a geometric
construction of the representation.

Consider the metric

�
1

xn

�2 �
.dx1/2 C � � � C .dxn/2

�

on the open half space xn > 0. If we define r D log.xn/, then this also becomes the
warped product:

g D dr2 C .e�r/2
�
.dx1/2 C � � � C .dxn�1/2

�
:

The upper half space model can be realized as the Poincaré disc using an
inversion, i.e., a conformal transformation of Euclidean space that inverts in a
suitable sphere. It’ll be convenient to write x D �

x1; : : : ; xn�1� as the first n � 1
coordinates and y D xn. The inversion in the sphere of radius

p
2 centered at

.0;�1/ 2 R
n�1 � R is given by

F .x; y/ D .0;�1/C 2.x;yC1/
r2

D
�
2x
r2
;�1C 2.yC1/

r2

�

D 1
r2

�
2x; 1� jxj2 � y2

�
;
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where r2 D jxj2 C .yC 1/2. This maps H to the unit ball since

jF .x; y/j2 D 1 � 4y

r2
D �2:

The goal is to show that F transforms the conformal unit ball model to the conformal
half space model. This is a direct calculation after we write F out in coordinates:

Fk D 2xk

r2
; k < n;

Fn D 2 .yC 1/
r2

� 1:

This allows us to calculate the differentials so that we can check how the metric is
transformed:

4

.1 � �2/2
 

.dFn/2 C
X

k<n

�
dFk

�2
!

D
�
r2
�2

4y2

 
2dy

r2
� 2 .yC 1/ 2rdr

.r2/2

!2

C
X

k<n

�
r2
�2

4y2

 
2dxk

r2
� 2xk2rdr

.r2/2

!2

D 1

y2

�
dy � .yC 1/ 2rdr

r2

�2
C 1

y2
X

k<n

�
dxk � xk2rdr

r2

�2

D 1

y2

 

dy2 C
X

k<n

�
dxk
�2
!

C 1

y2

�
.yC 1/ 2rdr

r2

�2
C 1

y2
X

k<n

�
xk2rdr

r2

�2

� 1
y2

dy
.yC 1/ 2rdr

r2
� 1

y2
X

k<n

dxk xk2rdr

r2

� 1
y2
.yC 1/ 2rdr

r2
dy � 1

y2
X

k<n

xk2rdr

r2
dxk

D 1

y2
�
dy2 C gRn�1

�C 1

y2
r2
�
2rdr

r2

�2

� 1
y2

rdr
2rdr

r2

� 1
y2
2rdr

r2
rdr

D 1

y2
�
dy2 C gRn�1

�
:
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More generally, we can ask when

 2 � ..dx1/2 C � � � C .dxn/2/

has constant curvature? Clearly,  � dx1; : : : ;  � dxn is an orthonormal coframe, and
1
 
@1; : : : ;

1
 
@n is an orthonormal frame. We can use the Koszul formula to compute

r@i@j and hence the curvature tensor. This task is done in exercise 4.7.21 or in [97,
vols. II and IV]. Using

 D
�
1C k

4
r2
��1

gives the Riemann model for a metric of constant curvature k on R
n if k � 0 and on

B.0; 2pjkj / if k < 0.
The Riemann model with k D �1 and the Poincaré model from above are also

isometric if we use the map F .x/ D 2x. This clearly maps the unit ball to the ball
of radius 2 and the metric is changed as follows

1
�
1 � 1

4
jFj2

�2

 
nX

kD1

�
dFk

�2
!

D 4
�
1 � jxj2

�2

 
nX

kD1

�
dxk
�2
!

:

4.3.4 Singular Points

The polar coordinate conformal model

dr2 C '2 .r/ ds2n�1 D  2 .�/
�
d�2 C �2ds2n�1

�

offers a different approach to the study of smoothness of the metric as we approach
a point r0 2 @I where ' .r0/ D 0. Assume that the parametrization satisfies � .r0/ D
0. When gH D ds2n�1 smoothness on the right-hand side

 2 .�/
�
d�2 C �2ds2n�1

�

depends only on  2 .�/ being smooth (see Section 1.4.4). Thinking of � as being
Euclidean distance indicates that this is not entirely trivial. In fact we must assume
that  .0/ > 0 and  .odd/ .0/ D 0. Translating back to ' we obtain the usual
conditions: P' .0/ D ˙1 and '.even/ .0/ D 0.
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4.4 Metrics on Lie Groups

We are going to study some general features of left-invariant metrics and show how
things simplify in the biinvariant situation. There are two examples of left-invariant
metrics. The first represents hyperbolic space H2, and the other is the Berger sphere
(see example 1.3.5).

4.4.1 Generalities on Left-invariant Metrics

We can construct a metric on a Lie group G by fixing an inner product .; / on TeG
and then translating it to TgM using left-translation Lg .x/ D gx. The metric is also
denoted .X;Y/ on G so as not to confuse it with elements g 2 G. With this metric,
Lg becomes an isometry for all g since

�
DLg

� jh D
�
DLghh�1

� jh
D �

D
�
Lgh ı Lh�1

�� jh
D �

DLgh
� je ı .DLh�1 / jh

D �
DLgh

� je ı ..DLh/ je/�1

and we have assumed that
�
DLgh

� je and .DLh/ je are isometries.
Left-invariant fields X, i.e., DLg .Xjh/ D Xjgh are completely determined by their

value at the identity. This identifies TeM with g, the space of left-invariant fields.
Note that g is in a natural way a vector space as addition of left-invariant fields is
left-invariant. It is also a Lie algebra as the vector field Lie bracket of two such fields
is again left-invariant. In section 1.3.2 we saw that on matrix groups the Lie bracket
is simply the commutator of the matrices in TeM representing the vector fields.

If X 2 g, then the integral curve through e 2 G is denoted by exp .tX/. In case of
a matrix group the standard matrix exponential etX is in fact the integral curve since

d

dt
jtDt0

�
etX
� D d

dt
jsD0

�
e.t0Cs/X

�

D d

dt
jsD0

�
et0XesX

�

D d

dt
jsD0

�
Let0X esX

�

D D .Let0X /

�
d

dt
jsD0esX

�

D D .Let0X / .XjI/
D Xjet0X :
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The key property for t 7! exp .tX/ to be the integral curve for X is evidently that the
derivative at t D 0 is Xje and that t 7! exp .tX/ is a homomorphism

exp ..tC s/X/ D exp .tX/ exp .sX/ :

The entire flow for X can be written as follows

Ft .x/ D x exp .tX/ D Lx exp .tX/ D Rexp.tX/ .x/ :

The curious thing is that the flow maps Ft W G ! G don’t act by isometries unless
the metric is also invariant under right-translations, i.e., the metric is biinvariant.
In particular, the elements of g are not in general Killing fields. In fact, it is the
right-invariant fields that are Killing fields for left-invariant metrics as their flows
are generated by

Ft .x/ D exp .tX/ x D Rx exp .tX/ D Lexp.tX/ .x/ :

We can give a fairly reasonable way of checking that a left-invariant metric is
also biinvariant. Conjugation x 7! gxg�1 is denoted Adg .x/ D gxg�1 on Lie groups
and is called the adjoint action of G on G. The differential of this action at e 2 G
is a linear map Adg W g ! g denoted by the same symbol, and called the adjoint
action of G on g. It is in fact a Lie algebra isomorphism. These two adjoint actions
are related by

Adg .exp .tX// D exp
�
t Adg .X/

�
:

This is quite simple to prove. It only suffices to check that t 7! Adg .exp .tX//
is a homomorphism with differential Adg .X/ at t D 0. The latter follows from
the definition of the differential of a map and the former by noting that it is the
composition of two homomorphisms x 7! Adg .x/ and t 7! exp .tX/. We can now
give our criterion for biinvariance.

Proposition 4.4.1. A left-invariant metric is biinvariant if and only if the adjoint
action on the Lie algebra is by isometries.

Proof. In case the metric is biinvariant we know that both Lg and Rg�1 act by
isometries. Thus also Adg D Lg ı Rg�1 acts by isometries. The differential is then a
linear isometry on the Lie algebra.

Conversely, assume that Adg W g! g is always an isometry. Using that

�
DRg

� jh D
�
DRhg

� je ı ..DRh/ je/�1
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it clearly suffices to prove that
�
DRg

� je is always an isometry. This follows from

Rg D Lg ı Adg�1 ;
�
DRg

� je D D
�
Lg
� je ı Adg�1 :

ut
In sections 4.4.2 and 4.4.3 we shall see how this can be used to check whether

metrics are biinvariant in some specific matrix group examples.
Before giving examples of how to compute the connection and curvatures for

left-invariant metrics we present the general and simpler situation of biinvariant
metrics.

Proposition 4.4.2. Consider a Lie group G with a biinvariant metric .; / and
X;Y;Z;W 2 g. Then

rYX D 1

2
ŒY;X� ;

R .X;Y/Z D �1
4
ŒŒX;Y� ;Z� ;

R .X;Y;Z;W/ D 1

4
.ŒX;Y� ; ŒW;Z�/ :

In particular, the sectional curvature is always nonnegative, when .; / is positive
definite.

Proof. We first need to construct the adjoint action adX W g ! g of the Lie algebra
on the Lie algebra. If we think of the adjoint action of the Lie group on the Lie
algebra as a homomorphism Ad W G ! Aut .g/, then ad W g ! End .g/ is simply
the differential ad D D .Ad/ je. In section 2.1.4 it is shown that adX .Y/ D ŒX;Y�.
The biinvariance of the metric shows that the image Ad .G/ � O .g/ lies in the
group of orthogonal transformations on g. This immediately shows that the image
of ad lies in the set of skew-adjoint transformations since

0 D d

dt
.Y;Z/ jtD0

D d

dt

�
Adexp.tX/ .Y/ ;Adexp.tX/ .Z/

� jtD0
D .adX Y;Z/C .Y; adX Y/ :

Keeping this skew-symmetry in mind we can use the Koszul formula on X;Y;Z 2
g to see that
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2 .rYX;Z/ D DX .Y;Z/C DY .Z;X/� DZ .X;Y/

� .ŒX;Y� ;Z/ � .ŒY;Z� ;X/C .ŒZ;X� ;Y/
D � .ŒX;Y� ;Z/ � .ŒY;Z� ;X/C .ŒZ;X� ;Y/
D � .ŒX;Y� ;Z/C .ŒY;X� ;Z/C .ŒX;Y� ;Z/
D .ŒY;X� ;Z/ :

As for the curvature we then have

R .X;Y/ Z D rXrYZ � rYrXZ � rŒX;Y�Z

D 1

2
rX ŒY;Z� � 1

2
rY ŒX;Z� � 1

2
ŒŒX;Y� ;Z�

D 1

4
ŒX; ŒY;Z�� � 1

4
ŒY; ŒX;Z��� 1

2
ŒŒX;Y� ;Z�

D 1

4
ŒX; ŒY;Z��C 1

4
ŒY; ŒZ;X��C 1

4
ŒZ; ŒX;Y�� � 1

4
ŒŒX;Y� ;Z�

D �1
4
ŒŒX;Y� ;Z� ;

and finally

.R .X;Y/ Z;W/ D �1
4
.ŒŒX;Y� ;Z� ;W/

D 1

4
.ŒZ; ŒX;Y�� ;W/

D �1
4
.ŒZ;W� ; ŒX;Y�/

D 1

4
.ŒX;Y� ; ŒW;Z�/ :

ut
We note that Lie groups with biinvariant Riemannian metrics always have

nonnegative sectional curvature and with a little more work it is also possible to
show that the curvature operator is nonnegative (see exercise 3.4.32).

4.4.2 Hyperbolic Space as a Lie Group

Let G be the 2-dimensional Lie group

G D
��
˛ ˇ

0 1


j ˛ > 0; ˇ 2 R

�
:
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Notice that the first row can be identified with the upper half plane. The Lie algebra
of G is

g D
��

a b
0 0


j a; b 2 R

�
:

If we define

X D
�
1 0

0 0


; Y D

�
0 1

0 0


;

then

ŒX;Y� D XY � YX D Y:

Now declare fX;Yg to be an orthonormal frame on G. Then use the Koszul formula
to compute

rXX D 0; rYY D X; rXY D 0; rYX D rXY � ŒX;Y� D �Y:

Hence,

R .X;Y/ Y D rXrY Y � rYrXY � rŒX;Y�Y D rXX � 0 � rYY D �X;

which implies that G has constant curvature �1.
We can also compute Adg:

Ad2
4˛ ˇ

0 1

3

5

�
a b
0 0


D
�
˛ ˇ

0 1

 �
a b
0 0

 �
˛ ˇ

0 1

�1

D
�

a �aˇ C b˛
0 0



D aX C .�aˇ C b˛/ Y:

The orthonormal basis

�
1 0

0 0


;

�
0 1

0 0



is then mapped to the basis

�
1 �ˇ
0 0


;

�
0 ˛

0 0


:

This, however, is not an orthonormal basis unless ˇ D 0 and ˛ D 1. Therefore, the
metric is not biinvariant, nor are the left-invariant fields Killing fields.
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This example can be generalized to higher dimensions. Thus, the upper half plane
is in a natural way also a Lie group with a left-invariant metric of constant curvature
�1. This is in sharp contrast to the spheres, where only S3 D SU.2/ and S1 D SO .2/
are Lie groups.

4.4.3 Berger Spheres

On SU.2/ consider the left-invariant metric such that ��1
1 X1, ��1

2 X2, ��1
3 X3 is an

orthonormal frame and ŒXi;XiC1� D 2XiC2 (indices are mod 3) as in example 1.3.5.
The Koszul formula is:

2
�rXiXj;Xk

� D �	Xi;Xj


;Xk

�C �ŒXk;Xi� ;Xj
� � �	Xj;Xk



;Xi
�
:

From this we can quickly see that as with a biinvariant metric we have: rXi Xi D 0.
It also follows that

rXi XiC1 D
 
�2iC2 C �2iC1 � �2i

�2iC2

!

XiC2;

rXiC1
Xi D ŒXiC1;Xi�CrXi XiC1

D
 
��2iC2 C �2iC1 � �2i

�2iC2

!

XiC2:

This shows that

R.Xi;XiC1/XiC2 D rXirXiC1
XiC2

�rXiC1
rXi XiC2 � rŒXi;XiC1�XiC2

D 0 � 0 � 0:

Thus all curvatures between three distinct vectors vanish.
The special case of Berger spheres occur when �1 D " < 1, �2 D �3 D 1. In

this case

rX1X2 D
�
2 � "2�X3; rX2X1 D �"2X3

rX2X3 D X1; rX3X2 D �X1;

rX3X1 D "2X2; rX1X3 D
�
"2 � 2�X2:

and

R .X1;X2/X2 D "2X1;
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R .X3;X1/X1 D "4X3;

R .X2;X3/X3 D
�
4 � 3"2�X2;

R .X1 ^ X2/ D "2X1 ^ X2;

R .X3 ^ X1/ D "2X3 ^ X1;

R .X2 ^ X3/ D
�
4 � 3"2�X2 ^ X3:

Thus all sectional curvatures must lie in the interval
	
"2; 4 � 3"2
. Note that as

" ! 0 the sectional curvature sec .X2;X3/ ! 4, which is the curvature of the base
space S2

�
1
2

�
in the Hopf fibration.

We should also consider the adjoint action in this case. The standard orthogonal
basis X1;X2;X3 is mapped to

Ad2
4 z w
� Nw Nz

3

5
X1 D

�
jzj2 � jwj2

�
X1 � 2Re .wz/X2 � 2Im .wz/X3;

Ad2
4 z w
� Nw Nz

3

5
X2 D 2 i Im .z Nw/X1 C Re

�
w2 C z2

�
X2 C Im

�
w2 C z2

�
X3;

Ad2
4 z w
� Nw Nz

3

5
X3 D 2Re .z Nw/X1 C Re

�
i
�
z2 � w2

��
X2 C Im

�
i
�
z2 � w2

��
X3:

If the three vectors X1;X2;X3 have the same length, then we see that the adjoint
action is by isometries, otherwise not.

4.5 Riemannian Submersions

In this section we develop formulas for curvatures that relate to Riemannian
submersions. The situation is similar to that of distance functions, which as we know
are Riemannian submersions. In this case, however, we determine the curvature of
the base space from information about the total space.

4.5.1 Riemannian Submersions and Curvatures

Throughout this section let F W � NM; Ng� ! .M; g/ be a Riemannian submersion.
Like with the metrics we shall use the standard “bar” notation: Np and p and NX and
X for points and vector fields that are F-related, i.e., F .Np/ D p and DF

� NX� D X.
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The vertical distribution consists of the tangent spaces to the preimages F�1 .p/ and
is given by VNp D kerDFNp � TNp NM. The horizontal distribution is the orthogonal

complement HNp D
�
VNp
�? � TNp NM. The fact that F is a Riemannian submersion

means that DF WHNp ! TpM is an isometry for all Np 2 NM. Given a vector field X on
M we can always find a unique horizontal vector field NX on NM that is F related to X.
We say that NX is a basic horizontal lift of X. Any vector in NM can be decomposed
into horizontal and vertical parts: v D vV C vH .

The next proposition gives some important properties for relationships between
vertical and basic horizontal vector fields.

Proposition 4.5.1. Let V be a vertical vector field on NM and X;Y;Z vector fields
on M with basic horizontal lifts NX; NY; NZ.

(1)
	
V; NX
 is vertical,

(2) .LV Ng/
� NX; NY� D DV Ng

� NX; NY� D 0,
(3) Ng �	 NX; NY
 ;V� D 2Ng �r NX NY;V

� D �2Ng �rV NX; NY
� D 2Ng �r NYV; NX�,

(4) r NX NY D rXY C 1
2

	 NX; NY
V .

Proof. (1): NX is F related to X and V is F related to the zero vector field on M. Thus

DF
�	 NX;V
� D 	DF

� NX� ;DF .V/

 D ŒX; 0� D 0:

(2): We use (1) to see that

.LV Ng/
� NX; NY� D DV Ng

� NX; NY�� Ng �	V; NX
 ; NY� � Ng � NX; 	V; NY
�

D DV Ng
� NX; NY� :

Next we use that F is a Riemannian submersion to conclude that Ng � NX; NY� D
g .X;Y/. But this implies that the inner product is constant in the direction of the
vertical distribution.

(3): Using (1) and (2) the Koszul formula in each case reduces to

2Ng �r NX NY;V
� D Ng �	 NX; NY
 ;V� ;

2Ng �rV NX; NY
� D �Ng �	 NX; NY
 ;V� ;

2Ng �r NYV; NX� D Ng �	 NX; NY
 ;V� :

This proves the claim.

(4) We have just seen in (3) that 1
2

	 NX; NY
V is the vertical component of r NX NY. We
know that rXY is horizontal so it only remains to be seen that it is the horizontal
component of r NX NY . The Koszul formula together with F relatedness of the fields
and the fact that inner products are the same in NM and M show that
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2Ng �r NX NY; NZ
� D 2g .rXY;Z/ D 2Ng

�
rXY; NZ

�
:

ut
Note that the map that takes horizontal vector fields X;Y on NM to ŒX;Y�V

measures the extent to which the horizontal distribution is integrable in the sense
of Frobenius. It is in fact tensorial and skew-symmetric since

ŒX; fY�V D f ŒX;Y�V C .DXf / YV D f ŒX;Y�V :

Therefore, it defines a map H �H ! V called the integrability tensor.

Example 4.5.2. In the case of the Hopf map S3 .1/ ! S2
�
1
2

�
we have that X1 is

vertical and X2;X3 are horizontal. However, X2;X3 are not basic. Still, we know that
ŒX2;X3� D 2X1 so the horizontal distribution cannot be integrable.

We are now ready to give a formula for the curvature tensor on M in terms of the
curvature tensor on NM and the integrability tensor.

Theorem 4.5.3 (B. O’Neill and A. Grey). Let R be the curvature tensor on M and
NR the curvature tensor on NM. These curvature tensors are related by the formula

g .R .X;Y/ Y;X/ D Ng � NR � NX; NY� NY; NX�C 3

4

ˇ̌
ˇ
	 NX; NY
V

ˇ̌
ˇ
2

:

Proof. The proof is a direct calculation using the above properties. We calculate
the full curvature tensor so let X;Y;Z;H be vector fields on M with vanishing Lie
brackets. This forces the corresponding Lie brackets

	 NX; NY
, etc. in NM to be vertical.

Ng � NR � NX; NY� NZ; NH� D Ng
�
r NXr NY NZ � r NYr NX NZ � rŒ NX; NY� NZ; NH

�

D Ng
�
r NX
�
rY Z C 1

2

	 NY; NZ

�
; NH
�

�Ng
�
r NY
�
rXZ C 1

2

	 NX; NZ

�
; NH
�

CNg �	 NZ; NH
 ; 	 NX; NY
�

D Ng
�
rXrYZ C 1

2

h NX;rYZ
iV C 1

2
r NX
	 NY; NZ
 ; NH

�

�Ng
�
rYrXZ C 1

2

h NY;rXZ
iV C 1

2
r NY
	 NX; NZ
 ; NH

�

�1
2
Ng �	 NX; NY
 ; 	 NH; NZ
�
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D g .R .X;Y/Z;H/

�1
2
Ng �	 NY; NZ
 ;r NX NH

�C 1

2
Ng �	 NX; NZ
 ;r NY NH

�

�1
2
Ng �	 NX; NY
 ; 	 NH; NZ
�

D g .R .X;Y/Z;H/

�1
4
Ng �	 NY; NZ
 ; 	 NX; NH
�C 1

4
Ng �	 NX; NZ
 ; 	 NY; NH
�

�1
2
Ng �	 NX; NY
 ; 	 NH; NZ
�

When X D H and Y D Z we get the above formula. ut
More generally, one can find formulas for NR where the variables are various

combinations of basic horizontal and vertical fields.

4.5.2 Riemannian Submersions and Lie Groups

One can find many examples of manifolds with nonnegative or positive curvature
using the previous theorem. In this section we shall explain the terminology in the
general setting. The types of examples often come about by having

� NM; Ng� with a
free compact group action G by isometries and using M D Gn NM D NM=G. Note we
normally write such quotients on the right, but the action is generally on the left so
GnM is more appropriate. Examples are:

CP
n D S2nC1=S1;

TSn D .SO .nC 1/ � R
n/ =SO .n/ ;

M D SU .3/ =T2:

The complex projective space will be studied further in section 4.5.3.
The most important general example of a Riemannian submersion comes about

by having an isometric group action by G on NM such that the quotient space is
a manifold M D NM=G (see section 5.6.4 for conditions on the action that make
this true). Such a submersion is also called fiber homogeneous as the group acts
transitively on the fibers of the submersion. In this case we have a natural map
F W NM ! M that takes orbits to points, i.e., p D fx � Np j x 2 Gg for Np 2 NM. The
vertical space VNp then consists of the vectors that are tangent to the action. These
directions can be found using the Killing fields generated by G. If X 2 g D TeG,
then we get a vector XjNp 2 TNp NM by the formula

XjNp D d

dt
.exp .tX/ � Np/ jtD0;
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This means that the flow for X on NM is defined by Ft .Np/ D exp .tX/ � Np. As the
map Np 7! x � Np is assumed to be an isometry for all x 2 G we get that the flow
acts by isometries. This means that X is a Killing field. The next observation is that
the action preserves the vertical distribution, i.e., Dx

�
VNp
� D Vx�Np. Using the Killing

fields this follows from

Dx
�
XjNp
� D Dx

�
d

dt
.exp .tX/ � Np/ jtD0

�

D d

dt
.x � .exp .tX/ � Np// jtD0

D d

dt

��
x exp .tX/ x�1� � x � Np� jtD0

D ..Adx .exp .tX/// � x � Np/ jtD0
D d

dt
..exp .t Adx X// � x � Np/ jtD0

D .Adx .X// jx�Np:

Thus Dx
�
XjNp
�

comes from first conjugatingX via the adjoint action in TeG and then
evaluating it at x � Np. Since .Adx .X// jx�Np 2 Vx�Np we get that Dx maps vertical spaces
to vertical spaces. However, it doesn’t preserve the Killing fields in the way one
might have hoped for. As Dx is a linear isometry it also preserves the orthogonal

complements. These complements are our horizontal spaces HNp D
�
VNp
�? � TNp NM.

We know that DF WHNp ! TpM is an isomorphism. We have also seen that all of the
spaces Hx�Np are isometric to HNp via Dx. We can then define the Riemannian metric
on TpM using the isomorphism DF W HNp ! TpM. This means that F W NM ! M
defines a Riemannian submersion.

In the above discussion we did not discuss what conditions to put on the action
of G on NM in order to ensure that the quotient becomes a nice manifold. If G is
compact and acts freely, then this will happen. The general situation is studied
in section 5.6.4. In the next subsection we consider the special case of complex
projective space as a quotient of a sphere. There is also a general way of getting
new metrics on NM it self from having a general isometric group action. This will be
considered in section 4.5.4.

4.5.3 Complex Projective Space

Recall that CPn D S2nC1=S1, where S1 acts by complex scalar multiplication on
S2nC1 � C

nC1. If we write the metric as

ds22nC1 D dr2 C sin2.r/ds22n�1 C cos2.r/d�2;
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then we can think of the S1 action on S2nC1 as acting separately on S2n�1 and S1.
Then

CP
n D

h
0;
	

2

i
� ��S2n�1 � S1

�
=S1

�
;

and the metric can be written as discussed in section 1.4.6

dr2 C sin2.r/
�
gC cos2.r/h

�
:

If we restrict our attention to the case where n D 2, then the metric can be written as

dr2 C sin2.r/
�
cos2.r/.�1/2 C .�2/2 C .�3/2� :

This is a bit different from the warped product metrics we have seen so far. It
is certainly still possible to apply the general techniques of distance functions to
compute the curvature tensor. Instead we use the Riemannian submersion apparatus
that was developed in the previous section. We shall also consider the general case
rather than n D 2.

The O’Neill formula from theorem 4.5.3 immediately shows that CP
n has

sectional curvature� 1. Let V be the unit vector field on S2nC1 that is tangent to the
S1 action. Then i V is the unit inward pointing normal vector to S2nC1 � C

nC1. This
shows that the horizontal distribution, which is orthogonal to V , is invariant under
multiplication by i. This corresponds to the fact that CPn has a complex structure.
It also gives us the integrability tensor for this submersion. If we let NX; NY be basic
horizontal vector fields and denote the canonical Euclidean metric on C

nC1 by Ng,
then

Ng
�
1

2

	 NX; NY
 ;V
�
D Ng

�
rS2nC1

NX NY;V
�

D Ng
�
rC

nC1

NX NY;V
�

D �Ng
� NY;rC

nC1

NX V
�

D Ng
� NY;rC

nC1

i NX i V
�

D IIS2nC1 � NY; i NX�

D Ng � NY; i NX� :

Thus

1

2

	 NX; NY
V D Ng � NY; i NX�V:



150 4 Examples

If we let X;Y be orthonormal on CP
n, then the horizontal lifts NX; NY are also

orthonormal so

sec .X;Y/ D 1C 3

4

ˇ
ˇ
ˇ
	 NX; NY
V

ˇ
ˇ
ˇ
2

D 1C 3 ˇˇNg � NY; i NX�ˇˇ2

� 4;

with equality precisely when NY D ˙ i NX.
The proof of theorem 4.5.3 in fact gave us a formula for the full curvature tensor.

One can use that formula on an orthonormal set of vectors of the form X, i X, Y, i Y
to see that the curvature operator is not diagonalized on a decomposable basis of the
form Ei ^ Ej as was the case in the previous examples. In fact it is diagonalized by
vectors of the form

X ^ i X ˙ Y ^ i Y;

X ^ Y ˙ i X ^ i Y;

X ^ i Y ˙ Y ^ i X

and has eigenvalues that lie in the interval Œ0; 6�.
We can also see that this metric on CP

n is Einstein with Einstein constant 2nC2.
If we fix a unit vector X and an orthonormal basis for the complement E0; : : : ;E2n�2
so that the lifts satisfy i NX D NE0, then we get that

Ric .X;X/ D
2n�2X

iD0
sec .X;Ei/

D sec .X;E0/C
2n�2X

iD1
sec .X;Ei/

D 1C 3 ˇˇNg � NE0; i NX
�ˇˇ2 C

2n�2X

iD1

�
1C 3 ˇˇNg � NEi; i NX

�ˇˇ2
�

D 1C 3 ˇˇNg �i NX; i NX�ˇˇ2 C
2n�2X

iD1

�
1C 3 j0j2

�

D 1C 3C 2n� 2
D 2nC 2:
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4.5.4 Berger-Cheeger Perturbations

The construction we do here was first considered by Cheeger and was based on a
slightly different construction by Berger used to construct the Berger spheres.

Fix a Riemannian manifold .M; g/ and a Lie group G with a right-invariant
metric .; /. If G acts by isometries on M, then it also acts by isometries on G � M
with respect to the product metrics g� D � .; / C g, � > 0 via the action
h � .x; p/ 7! �

xh�1; hp
�
. This action is free as G acts freely on itself. The quotient

.G �M/ =G is also denoted by G �G M. The natural map M ! G �M ! G �G M
is a bijection. Thus the quotient is in a natural way a manifold diffeomorphic to M.
The quotient map Q W G �M ! M is explicitly given by Q .x; p/ D xp.

As G acts by isometries with respect to the product metrics � .; /C g we obtain
a submersion metric g� on M D G �G M. We wish to study this perturbed metric’s
relation to the original metric g. The tangent space TpM is naturally decomposed
into the vectors Vp that are tangent to the action and the orthogonal complement
Hp. Unlike the case where G acts freely on M this decomposition is not necessarily
a nicely defined distribution. It might happen that G fixes certain but not all points
in M. For example, at points p that are fixed it follows that Vp D f0g. At other
points Vp ¤ f0g. The nomenclature is, however, not inappropriate. If X 2 TeG, then
Ft .p/ D exp .tX/ � p defines a 1-parameter group of isometries. If X D d

dt F
t .p/ jtD0

is the corresponding Killing field on M, then
��X;Xjp

� 2 TeG � TpM is a vertical
direction for this action at .e; p/ 2 G �M. Therefore, Vp is simply the image of the
projection of the vertical distribution to TpM. Vectors in Hp are thus also horizontal
for the action on G �M. All the other horizontal vectors in TeG � TpM depend on

the choice of � and have a component of the form
�ˇ
ˇXjp

ˇ
ˇ2
g
X; � jXj2 Xjp

�
. The image

of such a horizontal vector under Q W G �M ! M is given by

DQ
�ˇ
ˇXjp

ˇ
ˇ2
g X; � jXj2 Xjp

�
D ˇ
ˇXjp

ˇ
ˇ2
g DQ .X; 0/C � jXj2 DQ

�
0;Xjp

�

D � ˇ̌Xjp
ˇ̌2
g

DQ

�
d

dt
.e � exp .�tX// jtD0; 0

�

C� jXj2 DQ

�
0;

d

dt
.exp .tX/ � p/ jtD0

�

D � ˇˇXjp
ˇ
ˇ2
g

d

dt
.Q .exp .�tX/ ; p// jtD0

C� jXj2 d

dt
.Q .e; exp .tX/ � p// jtD0

D � ˇ̌Xjp
ˇ̌2
g

d

dt
.exp .�tX/ � p/ jtD0

C� jXj2 d

dt
.exp .tX/ � p/ jtD0
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D ˇ̌
Xjp
ˇ̌2
g

Xjp C � jXj2 Xjp
D
�
� jXj2 C ˇˇXjp

ˇ
ˇ2
g

�
Xjp

The horizontal lift of Xjp 2 Vp to TeG � TpM is consequently given by

Xjp D
0

@

ˇ
ˇXjp

ˇ
ˇ2
g

� jXj2 C ˇˇXjp
ˇ
ˇ2
g

X;
� jXj2

� jXj2 C ˇˇXjp
ˇ
ˇ2
g

Xjp
1

A ;

and its length in g� satisfies

ˇ
ˇ
ˇXjp

ˇ
ˇ
ˇ
2

g�
D
0

@

ˇ
ˇXjp

ˇ
ˇ2
g

� jXj2 C ˇˇXjp
ˇ
ˇ2
g

1

A

2

� jXj2

C
0

@ � jXj2
� jXj2 C ˇ̌Xjp

ˇ̌2
g

1

A

2

ˇ̌
Xjp
ˇ̌2
g

D � jXj2
� jXj2 C ˇˇXjp

ˇ
ˇ2
g

ˇ̌
Xjp
ˇ̌2
g

� ˇˇXjp
ˇ
ˇ2
g :

In particular,
ˇ
ˇ
ˇXjp

ˇ
ˇ
ˇ
2

g�
has limit 0 as � ! 0 and limit

ˇ
ˇXjp

ˇ
ˇ2
g as � ! 1. This

means that the metric g� is gotten from g by squeezing the orbits of the action
of G. However, the squeezing depends on the point according to this formula. The
only case where the squeezing is uniform is when the Killing fields generated by the
action have constant length on M. The Berger spheres are a special case of this.

Using that we know how to compute horizontal lifts and that the metric on G�M
is a product metric it is possible to compute the curvature of g� in terms of the
curvature of g, �, the curvature of .; /, and the integrability tensor. We will consider
one important special case.

Let X;Y 2 Hp. In this case the vectors are already horizontal for the action on
G �M. Thus we have that secg� .X;Y/ � secg .X;Y/. There is a correction coming
from the integrability tensor associated with the action on G � M that possibly
increases these curvatures.
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4.6 Further Study

The book by O’Neill [80] gives an excellent account of Minkowski geometry and
also studies in detail the Schwarzschild metric in the setting of general relativity. It
appears to have been the first exact nontrivial solution to the vacuum Einstein field
equations. There is also a good introduction to locally symmetric spaces and their
properties. This book is probably the most comprehensive elementary text and is
good for a first encounter with most of the concepts in differential geometry. The
third edition of [47] also contains a good number of examples. Specifically they
have a lot of material on hyperbolic space. They also have a brief account of the
Schwarzschild metric in the setting of general relativity.

Another book, which contains many more advanced examples, is [12]. This is
also a good reference on Riemannian geometry in general.

4.7 Exercises

Remark. It will be useful to read exercises 3.4.23, 3.4.24, and 3.4.25 before doing
the exercises for this chapter.

EXERCISE 4.7.1. Show that the Schwarzschild metric does not have parallel curva-
ture tensor.

EXERCISE 4.7.2. Show that the Berger spheres ." ¤ 1/ do not have parallel
curvature tensor.

EXERCISE 4.7.3. This exercise covers a few interesting aspects of projective
spaces.

(1) Show that U .nC 1/ acts by isometries on CP
n. Hint: Use that U .nC 1/ acts

by isometries on S2nC1 .1/ and commutes with the quotient action that creates
CP

n.
(2) Show that for each p 2 CP

n there is an isometry Ap 2 Isop with DApjp D �I.
(3) Use the fact that isometries leave r and R invariant to show that rR D 0.
(4) Repeat 1,2,3 for HP

n using the symplectic group Sp .nC 1/ of matrices
with quaternionic entries satisfying A�A D I, where A� D NAt. See also
exercise 1.6.22 for more on quaternions.

EXERCISE 4.7.4. Assume that a Riemannian manifold .M; g/ has a function f such
that

Hess f D � .x/ gC � .f / df 2;

where � W M ! R and � W R ! R. Show that the metric is locally a warped
product.
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EXERCISE 4.7.5. Show that if Hess f D �g, then � D �f
dim M .

EXERCISE 4.7.6. Consider a function f on a Riemannian manifold .M; g/ so that
rf ¤ 0 and rf is an eigenvector for S .X/ D rXrf . Show that if S has � 2

eigenvalues, then the metric is locally a warped product metric.

EXERCISE 4.7.7 (O’NEILL). For a Riemannian submersion as in section 4.5 define
the A-tensors

A NX NY D
	 Nr NX NY


V
;

A NXV D 	 Nr NXV

H

:

We also have the T-tensor from exercises 2.5.26 and 2.5.25 but our notation for
horizontal and vertical fields is the reverse of tangent and normal fields from those
exercises. Note that both A NX and TV make sense. We can extend both tensors by
declaring AV D 0 and T NX D 0 and thus obtain .1; 2/-tensors on NM.

(1) Show that both A-tensors are tensorial.
(2) Show that A NX NY D 1

2

	 NX; NY
V .
(3) Show that Ng �A NX NY;V

� D �Ng � NY;A NXV
�
.

(4) Show that .rV A/W D �ATV W and .rXA/W D �AAXW .
(5) Show that .r NXT/ NY D �TANX

NY and .rVT/ NY D �TTV NY .
(6) Show that

Ng ..rUA/ NX V;W/ D Ng .TUV;A NXW/ � Ng .TUW;A NXV/ :

EXERCISE 4.7.8 (O’NEILL). This exercise builds on the previous exercise. The
Gauss equations explain how to calculate the curvature tensor on vectors tangent
to the fibers of a submersion. Show that horizontal and “verti-zontal” curvatures can
be calculated by the formulas

NR � NY; NX; NX; NY� D R .Y;X;X;Y/ � 3 ˇˇA NX NY
ˇ
ˇ2

and

NR �V; NX; NX;V� D Ng �.r NXT/V V; NX�C jA NXVj2 � ˇˇTV NX
ˇ
ˇ2 :

Compare the last formula to the radial curvature equation.

EXERCISE 4.7.9. Let .M; g/ D .M1 �M2; g1 C g2/ be a Riemannian product
manifold.

(1) Show that R D R1CR2, where Ri is the curvature tensor of .Mi; gi/ pulled back
to M.

(2) Assume for the remainder of this exercise that .Mi; gi/ has constant curvature
ci. Show that R D c1g1 ı g1 C c2g2 ı g2.
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(3) Show that .M; g/ is Einstein if and only if .n1 � 1/ c1 D .n2 � 1/ c2 where
ni D dim Mi.

(4) Show that the Weyl tensor for .M; g/ vanishes when either c1 D �c2, n1 D 1,
or n2 D 1. Hint: Calculate .g1 � g2/ ı .g1 C g2/ and compare it to R.

(5) Show that if none of the conditions in (4) hold, then the Weyl tensor does not
vanish.

EXERCISE 4.7.10. Let .Mn; g/ D �
I � N; dr2 C �2 .r/ gN

�
be a warped product

metric with constant curvature k.

(1) Show that
�
Nn�1; �2 .r/ gN

�
has constant curvature kC

� P�
�

�2
if n > 2.

(2) Show explicitly that hyperbolic space can be represented as a warped product
over both hyperbolic space and Euclidean space.

EXERCISE 4.7.11. Consider an Einstein metric
�
Nn�1; gN

�
with Ric D n�2

n�1�gN ,
� < 0. Find a � W R ! .0;1/ such that .Mn; g/ D �

R � N; dr2 C �2 .r/ gN
�

becomes an Einstein metric with Ric D �g.

EXERCISE 4.7.12. Let
�
Nn�1; gN

�
have constant curvature c with n > 2. Consider

the warped product metric .M; g/ D �I � N; dr2 C �2 .r/ gN
�
.

(1) Show that the curvature of g is given by

R D c � P�2
�2

gr ı gr � 2 R�
�

dr2 ı gr

D c � P�2
�2

g ı g � 2
� R�
�
C c � P�2

�2

�
dr2 ı g:

(2) Show that the Weyl tensor vanishes.
(3) Show directly that the Schouten tensor satisfies:

.rXP/ .Y;Z/ D .rYP/ .X;Z/ :

See also exercise 3.4.26 for an indirect approach when n > 3.

EXERCISE 4.7.13. The stereographic projection of xnC1 D 0 to a hypersurface M �
R

n�R that is transverse to the lines emanating from�enC1 D .0; : : : ; 0;�1/ is given
by x 7! S .x/ where x 2 R

n and S .x/ D �enC1 C � .x/ .enC1 C .x; 0//.
(1) When M D Sn .1/ show that �

�
1C jxj2

�
D 2 and that S is a conformal map

with the property that in these coordinates the metric on Sn .1/ is given by

4
�
1C jxj2

�2 gRn :
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(2) When M D Hn .1/ 2 R
n;1 show that �

�
1 � jxj2

�
D 2 and that S is a conformal

map with the property that in these coordinates the metric on Hn .1/ is Poincaré
disc

4
�
1 � jxj2

�2 gRn :

EXERCISE 4.7.14. Let Qg D e2 g be a metric conformally equivalent to g and a Q
referring to metric objects in the conformally changed metric.

(1) Show that

QrXY D rXY C .DX / Y C .DY /X � g .X;Y/r :

(2) With notation as in exercise 3.4.23 show that

e�2 QR D R � 2
�

Hess � .d /2
�
ı g � jd j2 g ı g

D R �
�
2Hess � 2 .d /2 C jd j2 g

�
ı g:

(3) If X;Y are orthonormal with respect to g, show that

e2 fsec .X;Y/ D sec .X;Y/� Hess .X;X/�Hess .Y;Y/

C .DX /
2 C .DY /

2 � jd j2 :

(4) Show that

fRic D Ric� .n � 2/ �Hess � d 2
� �

�
� C .n � 2/ jd j2

�
g:

(5) Show that

e2 escal D scal�2 .n � 1/� � .n � 1/ .n � 2/ jd j2 :

(6) Using exercise 3.4.25 show that

e�2 QW D W:

This is referred to as the conformal invariance of the Weyl tensor under
conformal changes and was discovered by Weyl.
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EXERCISE 4.7.15. Show that

�
1

4
�n�2
0 C r2�n

� 4
n�2

gRn D 1

1 �
�
�0
�

�n�2 d�2 C �2ds2n�1;

where the right-hand side is the scalar flat metric from section 4.2.3. Use this to
rewrite the Schwarzschild metric from section 4.2.5 as

�
1

4
�n�3
0 C r3�n

� 4
n�3

gRn�1 C �20
4

.n � 3/3
 

1
4
�n�3
0 � r3�n

1
4
�n�3
0 C r3�n

!2
d�2:

EXERCISE 4.7.16 (STATIC EINSTEIN EQUATIONS). Consider a metric of the form
.M; g/ D �

N �R; gN C w2dt2
�
, where w W N ! .0;1/ and dim N D n � 1. Let

X;Y;Z be vector fields on N. Note that they can also be considered as vector fields
on M.

(1) Show that rN
X Y D rM

X Y and RN .X;Y/ Z D RM .X;Y/ Z. Conclude that
RicM .X; @t/ D 0.

(2) Show the vector field @t satisfies j@tj2 D w2 in .M; g/.
(3) Show that

rM
@t
@t D �wrw and rM

X @t D rM
@t

X D 1

w
.DXw/ @t:

Hint: Show that g
�
rM
@t
@t; @t

�
D 0 and calculate DX j@tj2.

(4) Show that

RM .X; @t/ @t D �wrXrw;

and

RicM .@t; @t/ D �w�w;

RicM .X;X/ D RicN .X;X/� 1

w
Hess .X;X/ :

(5) Show that RicM D �g, � 2 R, if and only if

RicN � 1
w

Hess w D �gN ;

w�wC �w2 D 0;
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if and only if

RicN � 1
w

Hess w D �gN;

scalN D .n � 2/ �:

EXERCISE 4.7.17. A Riemannian manifold .M; g/ is said to be locally conformally
flat if every p 2 M lies in a coordinate neighborhood U where

g D e�2 ��dx1
�2 C � � � C .dxn/2

�
:

(1) Show that the space forms Sn
k with metrics dr2 C sn2k .r/ ds2n�1 are locally

conformally flat.
(2) Show that if an Einstein metric is locally conformally flat, then it has constant

curvature.
(3) When n D 2 Gauss showed that such coordinates always exit. They are called

isothermal coordinates. Assume that dim M D 2.

(a) Show that if du ¤ 0 on some open subset O � M, then up to sign there is
a unique 1-form ! D iru volg that satisfies: jduj D j!j and g .du; !/ D 0.

(b) Show that d! D ��gu
�

volg.
(c) Show that isothermal coordinates exit provided that for each p 2 M it is

possible to find u on a neighborhood of p so that �gu D 0 and dujp ¤ 0.

EXERCISE 4.7.18 (SCHOUTEN 1921). Let .M; g/ be a Riemannian manifold of
dimension n > 2.

(1) Show that g is locally conformally flat if and only if W D 0 and locally
there is a function  so that P D 2Hess � 2 .d /2 C jd j2 g. Note that
the condition W D 0 is redundant when n D 3. Hint: You have to use the
curvature characterization of being locally Euclidean (see exercise 3.4.20 or
theorem 5.5.8).

(2) Show that if g is locally conformally flat then

.rXP/ .Y;Z/ D .rYP/ .X;Z/ :

Hint: When n > 3, this follows from exercise 3.4.26. When n � 3, use that
R D P ı g, the specific form of P from (1), and show that

.rX Hess / .Y;Z/ � .rY Hess / .X;Z/ D R .X;Y;r ;Z/ :

EXERCISE 4.7.19 (SCHOUTEN 1921). In this exercise assume that we have a
Riemannian manifold of dimension n > 2 such that W D 0 and .rXP/ .Y;Z/ D
.rYP/ .X;Z/.
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(1) Show that if there is a 1-form ! such that

r! D 1

2
PC !2 � 1

2
j!j2 g;

then locally ! D d and P D 2Hess � 2 .d /2 C jr j2 g.
(2) The integrability condition for finding such an ! in the sense of exercise 3.4.20

can be stated using only covariant derivatives. On the left-hand side we take
one more derivative r2X;Y! and use the Ricci formula for commuting covariant
derivatives as an alternative to Clairaut’s theorem on partial derivatives:

r2X;Y! � r2Y;X! D RX;Y!:

Show that if r! D 1
2
PC !2 � 1

2
j!j2 g, then

�r2X;Y!
�
.Z/ D 1

2
.rXP/ .Y;Z/

C .rX!/ .Y/ ! .Z/C ! .Y/ .rX!/ .Z/

�g .rX!;!/ g .Y;Z/ :

(3) Use r! D 1
2
PC !2 � 1

2
j!j2 g again to show that

r2X;Y! � r2Y;X! D
1

2
P .X;Z/ ! .Y/ � 1

2
P .X;V/ g .Y;Z/

�1
2

P .Y;Z/ ! .X/C 1

2
P .Y;V/ g .X;Z/

D .P ı g/ .X;Y;V;Z/ ;

where V is the vector field dual to !.
(4) Now use R D P ı g to show that

.RX;Y!/ .Z/ D .P ı g/ .X;Y;V;Z/ :

(5) Finally, show that this implies that the integrability conditions for solving for !
are satisfied and conclude that the manifold is locally conformally flat.

EXERCISE 4.7.20. Consider a product metric
�
N2 � R; gN C gR

�
.

(1) Show that PN�R D scalN
2
.gN � gR/.

(2) Show that this product metric is conformally flat if and only if scalN is constant.



160 4 Examples

EXERCISE 4.7.21. Let .Mn; g/ ; n > 2 have constant curvature k.

(1) Use exercise 4.7.19 to show that the metric is locally conformally flat.

(2) Show that if g D e�2 
��

dx1
�2 C � � � C .dxn/2

�
, then

2e @i@je
 D

�
kC

X�
@ke 

�2�
ıij:

Hint: Use part 2 of 4.7.14.
(3) Show that

e D aC
X

bix
i C c

X�
xi
�2
;

where k D 4ac�P b2i .

EXERCISE 4.7.22. The Heisenberg group with its Lie algebra is

G D
8
<

:

2

4
1 a c
0 1 b
0 0 1

3

5 j a; b; c 2 R

9
=

;
;

g D
8
<

:

2

4
0 x z
0 0 y
0 0 0

3

5 j a; b; c 2 R

9
=

;
:

A basis for the Lie algebra is:

X D
2

4
0 1 0

0 0 0

0 0 0

3

5 ;Y D
2

4
0 0 0

0 0 1

0 0 0

3

5 ;Z D
2

4
0 0 1

0 0 0

0 0 0

3

5 :

(1) Show that the only nonzero brackets are

ŒX;Y� D � ŒY;X� D Z:

Now introduce a left-invariant metric on G such that X;Y;Z form an orthonor-
mal frame.

(2) Show that the Ricci tensor has both negative and positive eigenvalues.
(3) Show that the scalar curvature is constant.
(4) Show that the Ricci tensor is not parallel.

EXERCISE 4.7.23. Consider metrics of the form

dr2 C �2.r/ �
2.r/.�1/2 C .�2/2 C .�3/2� :
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(1) Show that if

P� D 
;
P�2 D 1 � k��4;

� .0/ D k
1
4 ; P� .0/ D 0;


 .0/ D 0; P
 .0/ D 2;

then we obtain a family of Ricci flat metrics on TS2.
(2) Show that � .r/ 	 r, P� .r/ 	 1, R� .r/ 	 2kr�5 as r ! 1. Conclude that all

curvatures are of order r�6 as r ! 1 and that the metric looks like .0;1/ �
RP

3 D .0;1/ � SO .3/ at infinity. Moreover, show that scaling one of these
metrics corresponds to changing k. Thus, we really have only one Ricci flat
metric; it is called the Eguchi-Hanson metric.

EXERCISE 4.7.24. For the general metric

dr2 C �2.r/ �
2.r/.�1/2 C .�2/2 C .�3/2�

show that the .1; 1/-tensor, which in the orthonormal frame looks like

2

6
6
4

0 �1 0 0

1 0 0 0

0 0 0 �1
0 0 1 0

3

7
7
5 ;

yields a Hermitian structure.

(1) Show that this structure is Kähler, i.e., parallel, if and only if P� D 
.
(2) Find the scalar curvature for such metrics.
(3) Show that there are scalar flat metrics on all the 2-dimensional vector bundles

over S2. The one on TS2 is the Eguchi-Hanson metric, and the one on S2 � R
2

is the Schwarzschild metric.

EXERCISE 4.7.25. Show that �
�
RP

n�1� admits rotationally symmetric metrics
dr2 C �2 .r/ ds2n�1 such that � .r/ D r for r > 1 and the Ricci curvatures are
nonpositive. Thus, the Euclidean metric can be topologically perturbed to have
nonpositive Ricci curvature. It is not possible to perturb the Euclidean metric in
this way to have nonnegative scalar curvature or nonpositive sectional curvature.
Try to convince yourself of that by looking at rotationally symmetric metrics on R

n

and �
�
RP

n�1�.

EXERCISE 4.7.26. We say that .M; g/ admits orthogonal coordinates around p 2 M
if we have coordinates on some neighborhood of p, where

gij D 0 for i ¤ j;
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i.e., the coordinate vector fields are perpendicular. Show that such coordinates
always exist in dimension 2, while they may not exist in dimension > 3. To find
a counterexample, you may want to show that in such coordinates the curvatures
Rl

ijk D 0 if all indices are distinct. It can be shown that such coordinates always
exist in 3 dimensions.

EXERCISE 4.7.27. Show that the Weyl tensors for the Schwarzschild metric and the
Eguchi-Hanson metrics are not zero.

EXERCISE 4.7.28. In this problem we shall see that even in dimension 4 the
curvature tensor has some very special properties. Throughout we let .M; g/ be a
4-dimensional oriented Riemannian manifold. The bivectors ƒ2TM come with a
natural endomorphism called the Hodge 
 operator. It is defined as follows: for any
oriented orthonormal basis e1; e2; e3; e4 we define 
 .e1 ^ e2/ D e3 ^ e4.

(1) Show that his gives a well-defined linear endomorphism which satisfies:


 D I. (Extend the definition to a linear map: 
 W ƒpTM ! ƒqTM, where
pC q D n. When n D 2, we have: 
 W TM! TM D ƒ1TM satisfies: 

 D �I,
thus yielding an almost complex structure on any surface.)

(2) Now decomposeƒ2TM intoC1 and �1 eigenspacesƒCTM andƒ�TM for 
.
Show that if e1; e2; e3; e4 is an oriented orthonormal basis, then

e1 ^ e2 ˙ e3 ^ e4 2 ƒ˙TM;

e1 ^ e3 ˙ e4 ^ e2 2 ƒ˙TM;

e1 ^ e4 ˙ e2 ^ e3 2 ƒ˙TM:

(3) Thus, any linear map L W ƒ2TM ! ƒ2TM has a block decomposition

L D
�

A D
B C


;

A W ƒCTM ! ƒCTM;

D W ƒCTM ! ƒ�TM;

B W ƒ�TM ! ƒCTM;

C W ƒ�TM ! ƒ�TM:

In particular, we can decompose the curvature operator R W ƒ2TM! ƒ2TM:

R D
�

A D
B C


:
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Since R is symmetric, we get that A;C are symmetric and that D D B� is the
adjoint of B. One can furthermore show that

A D WC C scal

12
I;

C D W� C scal

12
I;

where the Weyl tensor can be written

W D
�

WC 0

0 W�

:

Find these decompositions for both of the doubly warped metrics:

I � S1 � S2; dr2 C �2 .r/ d�2 C 
2 .r/ ds22;

I � S3; dr2 C �2.r/ �
2.r/.�1/2 C .�2/2 C .�3/2� :

Use as basis for TM the natural frames in which we computed the curvature
tensors. Now

(4) find the curvature operators for the Schwarzschild metric, the Eguchi-Hanson
metric, S2 � S2, S4, and CP

2.
(5) Show that .M; g/ is Einstein if and only if B D 0 if and only if for every plane

	 and its orthogonal complement 	? we have: sec .	/ D sec
�
	?�.



Chapter 5
Geodesics and Distance

We are now ready to move on to the local and global geometry of Riemannian
manifolds. The main tool for this will be the important concept of geodesics. These
curves will help us define and understand Riemannian manifolds as metric spaces.
One is led quickly to two types of “completeness”. The first is of standard metric
completeness, and the other is what we call geodesic completeness, namely, when
all geodesics exist for all time. We shall prove the Hopf-Rinow Theorem, which
asserts that these types of completeness for a Riemannian manifold are equivalent.
Using the metric structure makes it possible to define metric distance functions. We
shall study when these distance functions are smooth and show the existence of the
smooth distance functions introduced in chapter 3. We also classify complete simply
connected manifolds of constant curvature; showing that they are the ones we have
already constructed in chapters 1 and 4.

The idea of thinking of a Riemannian manifold as a metric space must be
old, but it wasn’t until the early 1920s that first Cartan and then later Hopf and
Rinow began to understand the relationship between extendability of geodesics and
completeness of the metric. Nonetheless, both Gauss and Riemann had a pretty
firm grasp on local geometry, as is evidenced by their contributions: Gauss worked
with geodesic polar coordinates and also isothermal coordinates; Riemann was able
to give a local characterization of Euclidean space as the only manifold whose
curvature tensor vanishes. Surprisingly, it wasn’t until Klingenberg’s work in the
1950s that one got a thorough understanding of the maximal domain on which
one has geodesic polar coordinates inside complete manifolds. This work led to
the introduction of the two terms injectivity radius and conjugate radius. Many
of our later results will require a detailed analysis of these concepts. The metric
characterization of Riemannian isometries wasn’t realized until the late 1930s with
the work of Myers and Steenrod showing that groups of isometries are Lie groups.
Even more surprising is Berestovskii’s much more recent metric characterization of
Riemannian submersions.

© Springer International Publishing AG 2016
P. Petersen, Riemannian Geometry, Graduate Texts in Mathematics 171,
DOI 10.1007/978-3-319-26654-1_5
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Another important topic that involves geodesics is the variation of arclength and
energy. In this chapter we only develop the first variation formula. This is used to
show that curves that minimize length must be geodesics if they are parametrized
correctly.

We are also finally getting to results where there will be a significant difference
between the Riemannian setting and the pseudo-Riemannian setting. Mixed partials
and geodesics easily generalize. However, as there is no norm of vectors in the
pseudo-Riemannian setting we do not have arclength or distances. Nevertheless, the
energy functional does make sense so we still obtain a variational characterization
of geodesics as critical points for the energy functional.

5.1 Mixed Partials

So far we have only considered the calculus of functions (and tensors) on a
Riemannian manifold, and have seen that defining the gradient and Hessian requires
that we use the metric structure. Here we are going to study maps into Riemannian
manifolds and how to define meaningful higher derivatives for such maps. The
simplest example is to consider a curve c W I ! M on some interval I � R. We
know how to define the derivative Pc, but not how to define the acceleration in such a
way that it also gives us a tangent vector to M. A similar but slightly more general
problem is that of defining mixed partial derivatives

@2c

@ti@tj

for maps c with several real variables. As we shall see, covariant differentiation
plays a crucial role in the definition of these concepts. In this section we only
develop a method that covers second partials. In section 6.1.2 we shall explain how
to calculate higher order partials as well. This involves a slightly different approach
(see section 6.1.1) that is not needed for the developments in this chapter.

Let c W � ! M, where � � R
m. As we usually reserve xi for coordinates on M

we shall use ti or s; t; u as coordinates on�. The first partials

@c

@ti

are simply defined as the velocity field of ti 7! c
�
t1; : : : ; ti; : : : ; tm

�
, where the

remaining coordinates are fixed. We wish to define the second partials so that they
also lie TM as opposed to TTM. In addition we also require the following two natural
properties:

(1) Equally of mixed second partials:

@2c

@ti@tj
D @2c

@tj@ti
:
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(2) The product rule:

@

@tk
g

�
@c

@ti
;
@c

@tj

�
D g

�
@2c

@tk@ti
;
@c

@tj

�
C g

�
@c

@ti
;
@2c

@tk@tj

�
:

The first is similar to assuming that the connection is torsion free and the second
to assuming that the connection is metric. As with theorem 2.2.2, were we saw that
the key properties of the connection in fact also characterized the connection, we
can show that these two rules also characterize how we define second partials. More
precisely, if we have a way of defining second partials such that these two properties
hold, then we claim that there is a Koszul type formula:

2g

�
@2c

@ti@tj
;
@c

@tk

�
D @

@ti
g

�
@c

@tj
;
@c

@tk

�
C @

@tj
g

�
@c

@tk
;
@c

@ti

�
� @

@tk
g

�
@c

@ti
;
@c

@tj

�
:

This formula is established in the proof of the next lemma.

Lemma 5.1.1 (Uniqueness of mixed partials). There is at most one way of
defining mixed partials so that (1) and (2) hold.

Proof. First we show that the Koszul type formula holds if we have a way of
defining mixed partials such that (1) and (2) hold:

@

@ti
g

�
@c

@tj
;
@c

@tk

�
C @

@tj
g

�
@c

@tk
;
@c

@ti

�
� @

@tk
g

�
@c

@ti
;
@c

@tj

�

D g

�
@2c

@ti@tj
;
@c

@tk

�
C g

�
@c

@tj
;
@2c

@ti@tk

�

C g

�
@2c

@tj@tk
;
@c

@ti

�
C g

�
@c

@tk
;
@2c

@tj@ti

�

� g

�
@2c

@tk@ti
;
@c

@tj

�
� g

�
@c

@ti
;
@2c

@tk@tj

�

D g

�
@2c

@ti@tj
;
@c

@tk

�
C g

�
@c

@tk
;
@2c

@tj@ti

�

C g

�
@c

@tj
;
@2c

@ti@tk

�
� g

�
@2c

@tk@ti
;
@c

@tj

�

C g

�
@2c

@tj@tk
;
@c

@ti

�
� g

�
@c

@ti
;
@2c

@tk@tj

�

D 2g

�
@2c

@ti@tj
;
@c

@tk

�
:
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Next we observe that if we have a map c W � ! M, then we can always add an
extra parameter t0 to get a map Nc W .�"; "/ ��! M with the property that

@Nc
@t0
jp D v 2 TpM;

where v 2 TpM is any vector and p is any point in the image of c. Using k D 0 in

the Koszul type formula at p shows that @2c
@ti@tj

is uniquely defined, as our extension
is independent of how mixed partials are defined. ut

We can now give a local and coordinate dependent definition of mixed partials.
As long as the definition gives us properties (1) and (2) the above lemma shows that
we have a coordinate independent definition.

Note also that if two different maps c1; c2 W �! M agree on a neighborhood of
a point in the domain, then the right-hand side of the Koszul type formula will give
the same answer for these two maps. Thus there is no loss of generality in assuming
that the image of c lies in a coordinate system.

Theorem 5.1.2 (Existence of mixed partials). It is possible to define mixed
partials in a coordinate system so that (1) and (2) hold.

Proof. Assume that we have c W � ! U � M where U is a coordinate
neighborhood. Furthermore, assume that the parameters in use are called s and t.
This avoids introducing more indices than necessary. Finally write c D �c1; : : : ; cn

�

using the coordinates on U. The velocity in the s direction is given by

@c

@s
D @ci

@s
@i:

This suggests that

@

@t

@c

@s
D @

@t

�
@ci

@s
@i

�

D @

@t

@ci

@s
@i C @ci

@s

@

@t
.@i/ :

To make sense of @
@t .@i/ we define

@X

@t
jp D rPc.t/X;

where c .t/ D p and X is a vector field defined in a neighborhood of p. With that in
mind

@

@t

@c

@s
D @2ck

@t@s
@k C @ci

@s
r @c

@t
@i
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D @2ck

@t@s
@k C @ci

@s

@cj

@t
r@j@i

D @2ck

@t@s
@k C @ci

@s

@cj

@t
�k

ji@k:

Thus we define

@2c

@t@s
D @2ck

@t@s
@k C @ci

@s

@cj

@t
�k

ji@k

D
�
@2ck

@t@s
C @ci

@s

@cj

@t
�k

ji

�
@k:

Since @2cl

@t@s is symmetric in s and t by the usual theorem on equality of mixed
partials (Clairaut’s theorem) and the Christoffel symbol �k

ji is symmetric in i and j it
follows that (1) holds.

To check the metric property (2) we use that the Christoffel symbols satisfy the
metric property (see section 2.4) @kgij D �ki;jC�kj;i. With that in mind we calculate

@

@t
g

�
@c

@s
;
@c

@u

�

D @

@t

�
gij
@ci

@s

@cj

@u

�

D @gij

@t

@ci

@s

@cj

@u
C gij

@2ci

@t@s

@cj

@u
C gij

@ci

@s

@2cj

@t@u

D gij

�
@2ci

@t@s
C @ck

@s

@cl

@t
� i

kl

�
@cj

@u
C gij

@ci

@s

�
@2cj

@t@u
C @ck

@u

@cl

@t
�

j
kl

�

C@gij

@t

@ci

@s

@cj

@u
� gij

@ck

@s

@cl

@t

@cj

@u
� i

kl � gij
@ci

@s

@ck

@u

@cl

@t
�

j
kl

D g

�
@2c

@t@s
;
@c

@u

�
C g

�
@c

@s
;
@2c

@t@u

�

C@gij

@t

@ci

@s

@cj

@u
� @ck

@s

@cl

@t

@cj

@u
�kl;j � @ci

@s

@ck

@u

@cl

@t
�

j
kl;i

D g

�
@2c

@t@s
;
@c

@u

�
C g

�
@c

@s
;
@2c

@t@u

�

C@kgij
@ck

@t

@ci

@s

@cj

@u
� @ci

@s

@ck

@t

@cj

@u
�ki;j � @ci

@s

@cj

@u

@ck

@t
�kj;i

D g

�
@2c

@t@s
;
@c

@u

�
C g

�
@c

@s
;
@2c

@t@u

�
:

ut
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In case M � NM it is often convenient to calculate the mixed partials in NM first
and then project them onto M. For each v 2 Tp NM; p 2 M we use the notation v D
v> C v? for the decomposition into tangential TpM and normal T?

p M components.

Proposition 5.1.3 (Mixed partials in submanifolds). If c W � ! M � NM and
@2c
@ti@tj
2 Tp NM is the mixed partial in NM, then

�
@2c

@ti@tj

�>
2 TpM

is the mixed partial in M.

Proof. Let Ng be the Riemannian metric in NM and g its restriction to the submani-
fold M. We know that @2c

@tj@ti
2 T NM satisfies

2Ng
�
@2c

@ti@tj
;
@c

@tk

�
D @

@ti
Ng
�
@c

@tj
;
@c

@tk

�
C @

@tj
Ng
�
@c

@tk
;
@c

@ti

�
� @

@tk
Ng
�
@c

@ti
;
@c

@tj

�
:

As @c
@ti
; @c
@tj
; @c
@tk
2 TM this shows that

2Ng
�
@2c

@ti@tj
;
@c

@tk

�
D @

@ti
g

�
@c

@tj
;
@c

@tk

�
C @

@tj
g

�
@c

@tk
;
@c

@ti

�
� @

@tk
g

�
@c

@ti
;
@c

@tj

�
:

Next use that @c
@tk
2 TM to alter the left-hand side to

2Ng
�
@2c

@ti@tj
;
@c

@tk

�
D 2g

 �
@2c

@ti@tj

�>
;
@c

@tk

!

:

This shows that
�
@2c
@ti@tj

�>
is the correct mixed partial in M. ut

5.2 Geodesics

We define the acceleration of a curve c W I ! M by the formula

Rc D d2c

dt2
:

In local coordinates this becomes

Rc D d2ck

dt2
@k C dci

dt

dcj

dt
�k

ij@k:
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Fig. 5.1 Tangent and
acceleration of a curve

Tangent

Acceleration

A C1 curve c W I ! M with vanishing acceleration, Rc D 0, is called a geodesic
(Fig. 5.1). If c is a geodesic, then the speed jPcj D pg .Pc; Pc/ is constant, as

d

dt
g .Pc; Pc/ D 2g .Rc; Pc/ D 0;

or phrased differently, it is parametrized proportionally to arc length. If jPcj � 1, one
says that c is parametrized by arclength.

Remark 5.2.1. If r W U ! R is a distance function, then r@r@r D 0, where @r D
rr. The integral curves for rr D @r are consequently geodesics. The theory of
geodesics is developed independently of distance functions and ultimately used to
show the existence of distance functions.

Geodesics are fundamental in the study of the geometry of Riemannian manifolds
in the same way that straight lines are fundamental in Euclidean geometry. At first
sight, it is not clear that there are going to be any nonconstant geodesics to study
on a general Riemannian manifold (although Riemann seems to have taken this
for granted). In this section we show that every Riemannian manifold has many
nonconstant geodesics. Informally speaking, there is a unique one at each point with
a given tangent vector at that point. However, the question of how far it will extend
from that point is subtle. To deal with the existence and uniqueness questions, we
need to use some information from differential equations.

In local coordinates on U � M the equation for a curve to be a geodesic is:

0 D Rc
D d2ck

dt2
@k C dci

dt

dcj

dt
�k

ij@k:

Thus, the curve c W I ! U is a geodesic if and only if the coordinate components ck

satisfy:

Rck.t/ D �Pci.t/Pcj.t/�k
jijc.t/; k D 1; : : : ; n:

Because this is a second-order system of differential equations, we expect an
existence and a uniqueness result for the initial value problem of specifying the
value and first derivative, i.e.,

c .0/ D q;

Pc .0/ D Pci .0/ @ijq:

But because the system is nonlinear it is not clear that solutions will exist for all t.
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The precise statements obtained from the theory of ordinary differential equa-
tions give us the following two theorems when we consider geodesics in a chart
U � M.

Theorem 5.2.2 (Local Uniqueness). Let I1 and I2 be intervals with t0 2 I1 \ I2. If
c1 W I1! U and c2 W I2 ! U are geodesics with c1.t0/ D c2.t0/ and Pc1.t0/ D Pc2.t0/,
then c1jI1\I2 D c2jI1\I2 .

Theorem 5.2.3 (Existence). For each p 2 U and v 2 R
n, there is a neighborhood

V1 of p, a neighborhood V2 of v, and an " > 0 such that for each q 2 V1 and w 2 V2,
there is a geodesic cq;w W .�"; "/! U with

c.0/ D q;

Pc.0/ D wi@ijq:

Moreover, the mapping .q;w; t/ 7! cq;w.t/ is C1 on V1 � V2 � .�"; "/.
It is worthwhile to consider what these assertions become in informal terms.

The existence statement includes not only short time existence of a geodesic with
given initial point and initial tangent, it also asserts a kind of local uniformity for the
interval of existence. If you vary the initial conditions but don’t vary them too much,
then there is a fixed interval .�"; "/ on which all the geodesics with the various
initial conditions are defined. Some or all may be defined on larger intervals, but all
are defined at least on .�"; "/.

The uniqueness assertion amounts to saying that geodesics cannot be tangent at
one point without coinciding. Just as two straight lines that intersect and have the
same tangent at the point of intersection must coincide, so two geodesics with a
common point and equal tangent at that point must coincide.

By relatively simple covering arguments these statements can be extended to
geodesics not necessarily contained in a coordinate chart. Let us begin with the
uniqueness question:

Lemma 5.2.4 (Global Uniqueness). Let I1 and I2 be open intervals with
t0 2 I1 \ I2. If c1 W I1 ! M and c2 W I2 ! M are geodesics with c1.t0/ D c2.t0/ and
Pc1.t0/ D Pc2.t0/, then c1jI1\I2 D c2jI1\I2 .

Proof. Define

A D ft 2 I1 \ I2 j c1.t/ D c2.t/, Pc1.t/ D Pc2.t/g:

Then t0 2 A. Also, A is closed in I1 \ I2 by continuity of c1, c2, Pc1, and Pc2. Finally,
A is open, by virtue of the local uniqueness statement for geodesics in coordinate
charts: if t1 2 A, then choose a coordinate chart U around c1.t1/ D c2.t1/. Then
.t1 � "; t1 C "/ � I1 \ I2 and cij.t1�";t1C"/ both have images contained in U. The
coordinate uniqueness result then shows that c1j.t1�";t1C"/ D c2j.t1�";t1C"/, so that
.t1 � "; t1 C "/ � A. ut
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The coordinate-free global existence picture is a little more subtle. The first, and
easy, step is to notice that if we start with a geodesic, then we can enlarge its interval
of definition to be maximal. This follows from the uniqueness assertions: If we look
at all geodesics c W I ! M, 0 2 I, c.0/ D p, Pc.0/ D v, p and v fixed, then the union
of all their domains of definition is a connected open subset of R on which such a
geodesic is defined. Clearly its domain of definition is maximal.

The next observation, also straightforward, is that if bK is a compact subset of
TM, then there is an " > 0 such that for each .q; v/ 2 bK, there is a geodesic
c W .�"; "/ ! M with c.0/ D q and Pc.0/ D v. This is an immediate application of
the local uniformity part of the differential equations existence statement together
with a compactness argument.

The next point to ponder is what happens when the maximal domain of definition
is not all of R. For this, assume c W I D .a; b/ ! M is a maximal geodesic, where
b <1. Then c.t/must have a specific kind of behavior as t approaches b. If K � M
is compact, then there is a number tK < b such that; if tK < t < b, then c.t/ 2 M�K.
We say that c leaves every compact set as t! b.

To see why c must leave every compact set, suppose K is a compact set it doesn’t
leave, i.e., there is a sequence t1; t2; : : : 2 I with lim tj D b and c.tj/ 2 K for each
j. Since jPcj is constant the set fPc.tj/ j j D 1; : : :g lies in a compact subset of TM,
namely,

bK D fvq j q 2 K; v 2 TqM; jvj � jPcjg:

Thus there is an " > 0 such that for each vq 2 bK, there is a geodesic c W .�"; "/! M
with c.0/ D q, Pc.0/ D v. Now choose tj such that b � tj < "=2. Then cq;v patches
together with c to extend c; beginning at tj continue c by ", which takes us beyond
b, since tj is within "=2 of b. This contradicts the maximality of I.

One important consequence of these observations is what happens when M itself
is compact:

Corollary 5.2.5. If M is a compact Riemannian manifold, then for each p 2 M and
v 2 TpM, there is a geodesic c W R ! M with c.0/ D p, Pc.0/ D v. In other words,
geodesics exist for all time.

A Riemannian manifold where all geodesics exist for all time is called geodesi-
cally complete.

A slightly trickier point is the following: Suppose c W I ! M is a geodesic and
0 2 I, where I is a bounded interval. Then we would like to say that for q 2 M near
enough to c.0/ and v 2 TqM near enough to Pc.0/ there is a geodesic cq;v with q; v as
initial position and tangent, respectively, and with cq;v defined on an interval almost
as big as I. More precisely we have:

Lemma 5.2.6. Suppose c W Œa; b�! M is a geodesic on a compact interval. There
is a neighborhood V in TM of Pc.0/ such that if v 2 V, then there is a geodesic
cv W Œa; b�! M with Pcv.a/ D v.
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Proof. A compactness argument allows us to subdivide the interval a D b0 <
b1 < � � � < bk D b in such a way that we have neighborhoods Vi of Pc .bi/ where
any geodesic with initial velocity in Vi is defined on Œbi; biC1�. Using that the map
.t; v/ 7! cv .t/ is continuous, where cv is the geodesic with Pcv .0/ D v, we can
select a new neighborhood U0 � V0 of Pc .b0/ such that Pcv .b1/ 2 V1 for v 2 U0.
Next select U1 � U0 so that Pcv .b2/ 2 V2 for v 2 U1 etc. In this way we get the
desired neighborhood V D Uk�1 in at most k steps. ut

It is easy to check that geodesics in Euclidean space are straight lines. Using this
observation it is simple to give examples of the above ideas by taking M to be open
subsets of R2 with its usual metric.

Example 5.2.7. In the punctured plane R
2 � f.0; 0/g the unit speed geodesic from

.�1; 0/ with tangent .1; 0/ is defined on .�1; 1/ only. But nearby geodesics from

.�1; 0/ with tangents .1 C "1; "2/, "1; "2 small, "2 ¤ 0, are defined on .�1;1/.
Thus maximal intervals of definition can jump up in size, but, as already noted, not
down. See figure 5.2.

Example 5.2.8. On the other hand, for the region f.x; y/ j �1 < xyg, the curve
t 7! .t; 0/ is a geodesic defined on all of R that is a limit of unit speed geodesics
t 7! .t;�"/, " ! 0, each of which is defined only on a finite interval. Note that
the endpoints of these intervals go to infinity as required by the above lemma. See
figure 5.3.

Example 5.2.9. We think of the spheres Sn.R/ D Sn
R�2 � R

nC1. The acceleration
of a curve c W I ! Sn.R/ can be computed as the Euclidean acceleration in R

nC1
projected onto Sn.R/ (see proposition 5.1.3). Thus c is a geodesic if and only if
Rc is normal to Sn.R/. This means that Rc and c should be proportional as vectors.
Great circles c.t/ D p cos.˛t/ C v sin.˛t/, where p; v 2 R

nC1, jpj D jvj D R
and p ? v, clearly have this property. Furthermore, since c.0/ D p 2 Sn.R/ and
Pc.0/ D ˛v 2 TpSn.R/, we see that there is a geodesic for each initial value problem
(see also exercise 1.6.20).

Fig. 5.2 Obstacles to
continuing geodesics (1,0)

Fig. 5.3 Obstacles to
continuing geodesics



5.2 Geodesics 175

Fig. 5.4 Geodesics on the
sphere

We can easily picture great circles on spheres as depicted in figure 5.4. Still,
it is convenient to have a different way of understanding this. For this we project
the sphere orthogonally onto the plane containing the equator. Thus the north and
south poles are mapped to the origin. As all geodesics are great circles, they must
project down to ellipses that have the origin as center and whose greater axis has
length 2R. Of course, this simply describes exactly the way in which we draw three-
dimensional pictures on paper.

Example 5.2.10. We think of Hn .R/ D Sn
�R�2 � R

n;1 as in example 1.1.7. In this
case the acceleration is also the projection of the acceleration in Minkowski space.
In Minkowski space the acceleration in the usual coordinates is the same as the
Euclidean acceleration. Thus we just have to find the Minkowski projection onto
the hypersurface. By analogy with the sphere, one might guess that the hyperbolas
c.t/ D p cosh.˛t/ C v sinh.˛t/, p; v 2 R

n;1, jpj2 D �R2, jvj2 D R2, and p ? v all
in the Minkowski sense, are our geodesics. In fact the ambient acceleration is given
by Rc D ˛2c and TpHn D fv j v ? pg.

This time the geodesics are hyperbolas. On the space itself in Minkowski space,
they are, as in the case of spheres, intersections of 2 dimensional subspaces with
hyperbolic space. If we resort to the trick of projecting hyperbolic space onto the
plane containing the first n coordinates, then the geodesics are hyperbolas whose
asymptotes are straight lines through the origin. See also figure 5.5.

Example 5.2.11. On a Lie group G with a left-invariant metric one might suspect
that the geodesics are the integral curves for the left-invariant vector fields. This in
turn is equivalent to the assertion that rXX � 0 for all left-invariant vector fields.
However, our Lie group model for the upper half plane does not satisfy this (see
section 4.4.2). On the other hand, we did show in proposition 4.4.2 that rXX D
1
2
ŒX;X� D 0 when the metric is biinvariant and X is left-invariant. Moreover, all

compact Lie groups admit biinvariant metrics (see exercise 1.6.24).
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Fig. 5.5 Hyperbolas as
geodesics in hyperbolic space

5.3 The Metric Structure of a Riemannian Manifold

The positive definite inner product structures on the tangent space of a Riemannian
manifold automatically give rise to a concept of lengths of tangent vectors. From
this one can obtain an idea of the length of a curve as the integral of the speed, i.e.,
length of velocity. This is a direct extension of the usual calculus concept of the
length of curves in Euclidean space. Indeed, the definition of Riemannian manifolds
is motivated from the beginning by lengths of curves. The situation is turned around
a bit from that of Rn, though: On Euclidean spaces, we have in advance a concept
of distance between points. Thus, the definition of lengths of curves is justified by
the fact that the length of a curve should be approximated by sums of distances for a
fine subdivision (e.g., a fine polygonal approximation). For Riemannian manifolds,
there is no immediate idea of distance between points. Instead, we have a natural
idea of speed, hence curve length, and we shall use the length of curve idea to define
distance between points. The goal of this section is to carry out these constructions
in detail.

Recall that a curve c W Œa; b�! M is piecewise C1 if c is continuous and if there
is a partition a D a1 < a2 < : : : < ak D b of Œa; b� such that cjŒai;aiC1� is C1 for
i D 1; : : : ; k � 1.

Let c W Œa; b�! M be a piecewise C1 curve in a Riemannian manifold. Then the
length L.c/ is defined as follows:

L.c/ D
Z b

a
jPc.t/j dt D

Z b

a

p
g .Pc.t/; Pc.t//dt:

It is clear from the definition that the function t 7! jPc.t/j is integrable in the Riemann
(or Lebesgue) sense, so L.c/ is a well-defined finite, nonnegative number. The chain
and substitution rules show that L.c/ is invariant under reparametrization. A curve
c W Œa; b� ! M is said to be parametrized by arc length if L.cjŒa;t�/ D t � a for
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all t 2 Œa; b�, or equivalently, if jPc.t/j D 1 for all t 2 Œa; b�. A regular curve
c W Œa; b� ! M, i.e., the velocity never vanishes, admits a reparametrization to
an arclength parametrized curve. To see this define the new parameter as

s D '.t/ D
Z t

a
jPc.�/j d�:

Clearly ' W Œa; b�! Œ0;L .c/� is strictly increasing and piecewise smooth. Thus the
curve c ı '�1 W Œ0;L.c/�! M is piecewise smooth with unit speed everywhere.

We are now ready to introduce the idea of distance between points. For each pair
of points p; q 2 M define the path space

�p;q D fc W Œ0; 1�! M j c is piecewise C1 and c.0/ D p; c.1/ D qg

and the distance d.p; q/ D jpqj between points p; q 2 M as

jpqj D inf
˚
L.c/ j c 2 �p;q

�
:

It follows immediately from this definition that jpqj D jqpj and jpqj � jprj C
jrqj. The fact that jpqj D 0 only when p D q will be established in the proof of
theorem 5.3.8. Thus, j��j satisfies all the properties of a metric. When it is necessary
to specify the Riemannian metric we write jpqjg.

As for metric spaces, we have various metric balls

B .p; r/ D fx 2 M j jpxj < rg ;
B .p; r/ D fx 2 M j jpxj � rg :

More generally, we can define the distance between subsets A;B � M as

d .A;B/ D jABj D inf fjpqj j p 2 A; q 2 Bg :

Finally, we define

B .A; r/ D fx 2 M j jAxj < rg ;
B .A; r/ D D .A; r/ D fx 2 M j jAxj � rg :

Example 5.3.1. The infimum of curve lengths in the definition of jpqj can fail to be
realized. This is illustrated, for instance, by the “punctured plane” R2�f.0; 0/gwith
the induced Euclidean metric. The distance j.�1; 0/.1; 0/j D 2, but this distance
is not realized by any curve, since every curve of length 2 in R

2 from .�1; 0/ to
.1; 0/ passes through .0; 0/ (see figure 5.6). In a sense that we shall explore later,
R
2�f.0; 0/g is incomplete. For the moment, we introduce some terminology for the

cases where the infimum jpqj is realized.
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Fig. 5.6 Distance is not
realized by a curve (0,0)(-1,0) (1,0)

A curve � 2 �p;q is a segment if L.�/ D jpqj and � is parametrized
proportionally to arc length, i.e., j P� j is constant. We also use the notation pq for
a specific segment parameterized on Œ0; jpqj� with pq.0/ D p and pq .jpqj/ D q.

Let us relate these new concepts to our distance functions from section 3.2.2.

Lemma 5.3.2. If r W U ! R is a smooth distance function and U � .M; g/ is open,
then the integral curves for rr are segments in .U; g/. Moreover, if c 2 �p;q .U/
satisfies L .c/ D r .c .1// � r .c .0//, then c D � ı ', where � is the integral curve
for rr through c .0/ and ' .s/ D R s

0 jPcj dt.

Proof. Fix p; q 2 U and let c.t/ W Œ0; b�! U be a curve from p to q. Since dr .v/ D
g .rr; v/ � jvj it follows that

L.c/ D
Z b

0

jPcj dt �
Z b

0

g .rr; Pc/ dt D
Z b

0

dr .Pc/ dt D r.q/� r.p/:

This shows that jpqj � jr .q/ � r .p/j since jpqj D jqpj. If we choose c as an integral
curve forrr, i.e., Pc D rrıc, then dr .Pc/ D 1. Thus L.c/ D jr.q/� r.p/j. This shows
that integral curves must be segments. Moreover, when L .c/ D r .q/� r .p/, then it
follows that Pc D jPcj rr. This implies the last claim.

Notice that we only considered curves in U, and thus only established the result
for .U; g/ and not .M; g/. ut
Example 5.3.3. In Euclidean space R

n, straight line segments parametrized with
constant speed, i.e. curves of the form t 7! pCt �v, are in fact segments. This follows
from lemma 5.3.2 if we use the smooth distance function r .x/ D v � x, where v is a
unit vector. In R

n, each pair of points p; q is joined by a segment t 7! pC t.q � p/
that is unique up to reparametrization. See also exercise 1.6.19.

Example 5.3.4. Consider M D S1 and U D S1�f.1; 0/g. On U we have the distance
function r.�/ D � , � 2 .0; 2	/. The previous lemma shows that any curve c.�/ D
.cos �; sin �/, � 2 I � .0; 2	/ is a segment in U. If, however, the length of I is > 	 ,
then such curves can clearly not be segments in S1.

Example 5.3.5. Next we complete our understanding of segments on Sn .1/ � R
nC1

with its standard round metric (see also the proof of theorem 5.5.4 where this is
covered in greater generality and detail or exercise 1.6.20). Given two points p; q 2
Sn we create a warped product structure

ds2n D dr2 C sin2 .r/ ds2n�1

such that: when p; q are antipodal, then they correspond to r D 0; 	; and otherwise
p D .a; x0/ 2 .0; 	/ � Sn�1 and q D .b; x0/ 2 .0; 	/ � Sn�1. The distance function
we use is r and the domain where it is smooth is U ' .0; 	/�Sn�1. When the points
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are antipodal they are joined by several curves of length 	 . A general curve between
these points can always be shortened so it looks like c W Œ0; b�! Sn, where c .t/ 2 U
for t 2 .0; b/ and c .0/ D �c .b/ correspond to the antipodal points where r D 0; 	 .
Now lemma 5.3.2 shows that L.cjŒ�;b���/ � jr ı c .b � �/ � r ı c .�/j. Therefore,

L.c/ � lim
�!0
jr ı c .b � �/ � r ı c .�/j D 	:

When the points are not antipodal they lie on a unique integral curve for rr which
is part of a great circle in U. This segment will again be the shortest among curves
in U. However, any curve that leaves U will pass through either r D 0 or r D 	 . We
can argue as with antipodal points that any such curve must have length

� min fr .p/C r .q/ ; 	 � r .p/C 	 � r .q/g � jr .p/� r .q/j :

Example 5.3.6. The same strategy can also be used to show that all geodesics in
hyperbolic space are segments. See also exercise 1.6.21.

Example 5.3.7. In R
2 � f.0; 0/g, as already noted, not every pair of points is joined

by a segment.

In section 5.4 we show that segments are always geodesics. Conversely, we
show in section 5.5.2 that geodesics are segments when they are sufficiently short.
Specifically, if c W Œ0; b/ ! M is a geodesic, then cjŒ0;"� is a segment for all
sufficiently small " > 0. Furthermore, we shall show that each pair of points in
a Riemannian manifold can be joined by at least one segment provided that the
Riemannian manifold is either metrically or geodesically complete. This result
explains what is “wrong” with the punctured plane. It also explains why spheres
have segments between each pair of points: compact spaces are always complete in
any metric compatible with the (compact) topology.

Some work needs to be done before we can prove these general statements. To
start with, we consider the question of compatibility of topologies.

Theorem 5.3.8. The metric topology obtained from the distance j��j on a Rieman-
nian manifold is the same as the manifold topology.

Proof. Fix p 2 M and a coordinate neighborhood U of p such that xi .p/ D 0. We
assume in addition that gijjp D ıij. On U we have the given Riemannian metric g
and also a Euclidean metric g0 defined by g0

�
@i; @j

� D ıij. Thus g0 is constant and
equal to g at p. Finally, after possibly shrinking U, we can further assume that

U D Bg0 .p; "/

D ˚
x 2 U j jpxjg0 < "

�

D
�

x 2 U j
q
.x1/2 C � � � C .xn/2 < "

�
:
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For x 2 U we can compare these two metrics as follows: There are continuous
functions: �;� W U ! .0;1/ such that if v 2 TxM, then

� .x/ jvjg0 � jvjg � � .x/ jvjg0 :

Moreover, � .x/ ; � .x/! 1 as x! p.
Now let c W Œ0; 1�! M be a curve from p to x 2 U.

1: If c is a straight line in the Euclidean metric, then it lies in U and

jpxjg0 D Lg0 .c/

D
Z 1

0

jPcjg0 dt

� 1

max� .c .t//

Z 1

0

jPcjg dt

D 1

max� .c .t//
Lg .c/

� 1

max� .c .t//
jpxjg :

2: If c is a general curve that lies entirely in U, then

Lg .c/ D
Z 1

0

jPcjg dt

� .min� .c .t///
Z 1

0

jPcjg0 dt

� .min� .c .t/// jpxjg0 :

3: If c leaves U, then there will be a smallest t0 such that c .t0/ … U, then

Lg .c/ �
Z t0

0

jPcjg dt

� .min� .c .t///
Z t0

0

jPcjg0 dt

� .min� .c .t/// "

� .min� .c .t/// jpxjg0 :

By possibly shrinking U again we can guarantee that min� � �0 > 0 and
max� � �0 <1. We have then proven that
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jpxjg � �0 jpxjg0
and

�0 jpxjg0 � inf Lg .c/ D jpxjg :

Thus the Euclidean and Riemannian distances are comparable on a neighborhood
of p. This shows that the metric topology and the manifold topology (coming from
the Euclidean distance) are equivalent. It also shows that p D q if jpqj D 0.

Finally note that

lim
x!p

jpxjg
jpxjg0

D 1

since � .x/ ; � .x/! 1 as x! p. ut
Just as compact Riemannian manifolds are automatically geodesically complete,

this theorem also shows that such spaces are metrically complete.

Corollary 5.3.9. If M is a compact manifold and g is a Riemannian metric on M,
then .M; j��jg/ is a complete metric space, where j��jg is the Riemannian distance
function determined by g.

The proof of theorem 5.3.8 also tells us that any curve can be replaced by a
regular curve that has almost the same length.

Corollary 5.3.10. For any c 2 �pq and � > 0, there exists a constant speed curve
Nc 2 �pq with L .Nc/ � .1C �/ L .c/.

Proof. First note that it suffices to find a regular curve with the desired property.
Next observe that in Euclidean space this can be accomplished by approximating a
curve with a possibly shorter polygonal curve. In a Riemannian manifold we can use
the same procedure in a chart to approximate a curve by a regular curve. We select
a chart and Euclidean metric g0 as above such that �0Lg0 .c/ � Lg .c/ � �0Lg0 .c/
for any curve in the chart. We can then approximate c by a regular curve Nc such that

Lg .Nc/ � �0Lg0 .Nc/ � �0Lg0 .c/ �
�0

�0
Lg .c/ :

By shrinking the chart we can make the ratio �0
�0

< 1 C �. Finally we can use
compactness to cover the original curve by finitely many such charts to get the
desired regular curve. ut
Remark 5.3.11. It is possible to develop the theory here using other classes of
curves without changing the distance concept. A natural choice would be to expand
the class to all absolutely continuous curves. As corollary 5.3.10 indicates we could
also have restricted attention to piecewise smooth curves with constant speed.
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The functional distance dF between points in a manifold is defined as

dF.p; q/ D supfjf .p/� f .q/j j f W M! R has jrf j � 1 on Mg:

This distance is always smaller than the arclength distance. One can, however,
show as before that it generates the standard manifold topology. In fact, after we
have established the existence of smooth distance functions, it will become clear
that the two distances are equal provided p and q are sufficiently close to each other.

5.4 First Variation of Energy

In this section we study the arclength functional

L .c/ D
Z 1

0

jPcj dt; c 2 �p;q

in further detail. The minima, if they exist, are pre-segments. That is, they have
minimal length, but are not guaranteed to have the correct parametrization. We also
saw that in some cases sufficiently short geodesics minimize this functional. One
issue with this functional is that it is invariant under change of parametrization.
Minima, if they exist, consequently do not come with a fixed parameter. This
problem can be overcome by considering the energy functional

E .c/ D 1

2

Z 1

0

jPcj2 dt; c 2 �p;q:

This functional measures the total kinetic energy of a particle traveling along the
curve. Note that the energy will depend on how the curve is parametrized.

Proposition 5.4.1. If � 2 �p;q is a constant speed curve that minimizes L W �p;q !
Œ0;1/, then � minimizes E W �p;q ! Œ0;1/. Conversely, if � minimizes E W �p;q !
Œ0;1/, then it also minimizes L W �p;q ! Œ0;1/.
Proof. The Cauchy-Schwarz inequality for functions tells us that

L .c/ D
Z 1

0

jPcj � 1dt

�
sZ 1

0

jPcj2 dt

sZ 1

0

12dt

D
sZ 1

0

jPcj2 dt

D p
2E .c/;
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Fig. 5.7 A proper variation

with equality holding if jPcj is a constant multiple of 1, i.e., c has constant speed.
Conversely, when equality holds the speed is forced to be constant. Let � 2 �p;q be
a curve that has constant speed. If it minimizes L and c 2 �p;q. Then

E .�/ D 1

2
.L .�//2 � 1

2
.L .c//2 � E .c/ ;

so � also minimizes E.
Conversely, let � 2 �p;q minimize E and c 2 �p;q be any curve. If c does not

have constant speed we can use corollary 5.3.10 to find c� with constant speed and
L .c�/ � .1C �/ L .c/ for any � > 0. Then

L .�/ � p2E .�/ � p2E .c�/ D L .c�/ � .1C �/ L .c/ :

As � > 0 is arbitrary the result follows. ut
The next goal is to show that minima of E must be geodesics. To establish this

we have to develop the first variation formula of energy. A variation of a curve
c W I ! M is a family of curves Nc W .�"; "/ � Œa; b� ! M, such that Nc .0; t/ D c .t/
for all t 2 Œa; b�. We say that such a variation is piecewise smooth if it is continuous
and Œa; b� can be partitioned into intervals Œai; aiC1�, i D 0; : : : ;m � 1, where Nc W
.�"; "/ � Œai; aiC1� ! M is smooth. Thus the curves t 7! cs .t/ D Nc .s; t/ are all
piecewise smooth, while the curves s 7! Nc .s; t/ are smooth. The velocity field for
this variation is the field @Nc

@t which is well-defined on each interval Œai; aiC1�. At the
break points t D ai, there are two possible values for this field; a right derivative and
a left derivative:

@Nc
@tC

.s; ai/ D
@NcjŒai;aiC1�

@t
.s; ai/ ;

@Nc
@t�

.s; ai/ D @NcjŒai�1;ai�

@t
.s; ai/ :

The variational field is defined as @Nc
@s . This field is well-defined everywhere. It is

smooth on each .�"; "/ � Œai; aiC1� and continuous on .�"; "/ � I. The special case
where a D 0, b D 1, Nc .s; 0/ D p, and Nc .s; 1/ D q for all s is of special importance
as all of the curves cs 2 �p;q. Such variations are called proper variations of c
(Figure 5.7).

Lemma 5.4.2 (The First Variation Formula). If Nc W .�"; "/ � Œa; b� ! M is a
piecewise smooth variation, then
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dE .cs/

ds
D �

Z b

a
g

�
@2 Nc
@t2
;
@Nc
@s

�
dtC g

�
@Nc
@t�

;
@Nc
@s

�ˇˇ̌
ˇ
.s;b/

� g

�
@Nc
@tC

;
@Nc
@s

�ˇˇ̌
ˇ
.s;a/

C
m�1X

iD1
g

�
@Nc
@t�
� @Nc
@tC

;
@Nc
@s

�ˇˇ
ˇ
ˇ
.s;ai/

:

Proof. It suffices to prove the formula for smooth variations as we can otherwise
split up the integral into parts that are smooth:

E .cs/ D
Z b

a

ˇ
ˇ̌
ˇ
@Nc
@t

ˇ
ˇ̌
ˇ

2

dt D
m�1X

iD0

Z aiC1

ai

ˇ
ˇ̌
ˇ
@Nc
@t

ˇ
ˇ̌
ˇ

2

dt

and apply the formula to each part of the variation.
For a smooth variation Nc W .�"; "/ � Œa; b�! M we have

dE .cs/

ds
D d

ds

1

2

Z b

a
g

�
@Nc
@t
;
@Nc
@t

�
dt

D 1

2

Z b

a

@

@s
g

�
@Nc
@t
;
@Nc
@t

�
dt

D
Z b

a
g

�
@2 Nc
@s@t

;
@Nc
@t

�
dt

D
Z b

a
g

�
@2 Nc
@t@s

;
@Nc
@t

�
dt

D
Z b

a

@

@t
g

�
@Nc
@s
;
@Nc
@t

�
dt �

Z b

a
g

�
@Nc
@s
;
@2 Nc
@t2

�
dt

D g

�
@Nc
@s
;
@Nc
@t

�ˇ̌
ˇ
ˇ

b

a

�
Z b

a
g

�
@Nc
@s
;
@2 Nc
@t2

�
dt

D �
Z b

a
g

�
@Nc
@s
;
@2 Nc
@t2

�
dtC g

�
@Nc
@s
;
@Nc
@t

�ˇ̌
ˇ
ˇ
.s;b/

� g

�
@Nc
@s
;
@Nc
@t

�ˇ̌
ˇ
ˇ
.s;a/

:

ut
We can now completely characterize the local minima for the energy functional.

The proof in fact characterizes geodesics c 2 �p;q as stationary points for E W
�p;q ! Œ0;1/.
Theorem 5.4.3 (Characterization of local minima). If c 2 �p;q is a local
minimum for E W �p;q ! Œ0;1/, then c is a smooth geodesic.
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Proof. The assumption guarantees that c is a stationary point for the energy
functional, i.e.,

dE .cs/

ds
D 0

for any proper variation of c. This is in fact the only property that we shall use.
The trick is to find appropriate variations. If V .t/ is any vector field along c .t/, i.e.,
V .t/ 2 Tc.t/M, then there is a variation so that V .t/ D @c

@s j.0;t/. One such variation
can be obtained by declaring the variational curves s 7! c .s; t/ to be geodesics
with @c

@s j.0;t/ D V .t/. As geodesics are unique and vary nicely with respect to the
initial data, this variation is well-defined and as smooth as V is (see theorems 5.2.2
and 5.2.3). Moreover, if V .a/ D 0 and V .b/ D 0, then the variation is proper.

Using such a variational field the first variation formula at s D 0 depends only
on c itself and the variational field V

dE .cs/

ds
jsD0 D �

Z b

a
g .Rc;V/ dtC g

�
dc

dt�
.b/ ;V .b/

�
� g

�
dc

dtC
.a/ ;V .a/

�

C
m�1X

iD1
g

�
dc

dt�
.ai/ � dc

dtC
.ai/ ;V .ai/

�

D �
Z b

a
g .Rc;V/ dtC

m�1X

iD1
g

�
dc

dt�
.ai/� dc

dtC
.ai/ ;V .ai/

�
:

We now specify V further. First select V .t/ D � .t/ Rc .t/, where � .ai/ D 0 at the
break points ai where c might not be smooth, � .a/ D � .b/ D 0, and � .t/ > 0

elsewhere. Then

0 D dE .cs/

ds
jsD0

D �
Z b

a
g .Rc; � .t/ Rc/ dt

D �
Z b

a
� .t/ jRcj2 dt:

Since � .t/ > 0 where Rc is defined it must follow that Rc D 0 at those points. Thus c
is a broken geodesic. Next select a new variational field V such that

V .ai/ D dc

dt�
.ai/ � dc

dtC
.ai/ ;

V .a/ D V .b/ D 0
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and otherwise arbitrary, then

0 D dE .cs/

ds
jsD0

D
m�1X

iD1
g

�
dc

dt�
.ai/ � dc

dtC
.ai/ ;V .ai/

�

D
m�1X

iD1

ˇ
ˇ
ˇ
ˇ

dc

dt�
.ai/� dc

dtC
.ai/

ˇ
ˇ
ˇ
ˇ

2

:

This forces

dc

dt�
.ai/ D dc

dtC
.ai/

and hence the broken geodesic has the same velocity from the left and right at the
places where it is potentially broken. Uniqueness of geodesics (theorem 5.2.2) then
shows that c is a smooth geodesic. ut

This also shows:

Corollary 5.4.4 (Characterization of segments). Any piecewise smooth segment
is a geodesic.

While this result shows precisely what the local minima of the energy functional
must be it does not guarantee that geodesics are local minima. In Euclidean space all
geodesics are minimal as they are the integral curves for globally defined distance
functions: u .x/ D v � x, where v is a unit vector. On the unit sphere, however, no
geodesic of length> 	 can be locally minimizing. Such geodesics always form part
of a great circle where the complement of the geodesic in the great circle has length
< 	 , so they can’t be absolute minima. One can also easily construct a variation
where the nearby curves are all shorter. We shall spend much more time on these
issues in the subsequent sections as well as the next chapter. Certainly much more
work has to be done before we can characterize what makes geodesics minimal.

5.5 Riemannian Coordinates

The goal of this section is to introduce a natural set of coordinates around each
point in a Riemannian manifold. These coordinates will depend on the geometry
and also allow us to show the existence of smooth distance functions as well as
many other things. They go under the name of exponential or Riemannian normal
coordinates. They are normal in the sense of exercise 2.5.20, but have further local
and infinitesimal properties. Gauss first introduced such coordinates for surfaces and
Riemann in the general context.
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5.5.1 The Exponential Map

For a tangent vector v 2 TpM, let cv be the unique geodesic with c .0/ D p and
Pc.0/ D v, and Œ0;Lv/ the nonnegative part of the maximal interval on which c
is defined. Notice that uniqueness of geodesics implies the homogeneity property:
c˛v.t/ D cv.˛t/ for all ˛ > 0 and t < L˛v . In particular, L˛v D ˛�1Lv . Let Op �
TpM be the set of vectors v such that 1 < Lv . In other words cv.t/ is defined on
Œ0; 1�. The exponential map at p, expp W Op ! M, is defined by

expp.v/ D cv.1/:

In exercise 5.9.35 the relationship between the just defined exponential map and the
Lie group exponential map is elucidated. Figure 5.8 depicts how radial lines in the
tangent space are mapped to radial geodesics in M via the exponential map. The
homogeneity property cv.t/ D ctv.1/ shows that expp .tv/ D cv .t/. Therefore, it
is natural to think of expp.v/ in a polar coordinate representation, where from p
one goes “distance” jvj in the direction of v

jvj . This gives the point expp.v/, since
c v

jvj
.jvj/ D cv.1/.
The collection of maps, expp, can be combined to form a map exp W SOp ! M

by setting exp jOp D expp. This map exp is also called the exponential map.
Lemma 5.2.6 shows that the set O D S

Op is open in TM and theorem 5.2.3
that exp W O ! M is smooth. Similarly, Op � TpM is open and expp W Op ! M
is smooth. It is an important property that expp is in fact a local diffeomorphism
around 0 2 TpM. The details of this are given next.

Proposition 5.5.1. Let .M; g/ be a Riemannian manifold.

(1) If p 2 M, then

D expp W T0.TpM/! TpM

is nonsingular at the origin of TpM. Consequently, expp is a local diffeomor-
phism.

Fig. 5.8 The exponential
map at p

TpM

tv
p

p

expp(tv)
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(2) Define E W O! M �M by E.v/ D .	.v/; expv/, where 	.v/ is the base point
of v, i.e., v 2 T	.v/M. Then for each p 2 M and 0p 2 TpM,

DE W T.p;0p/.TM/! T.p;p/.M �M/

is nonsingular. Consequently, E is a diffeomorphism from a neighborhood of
the zero section of TM onto an open neighborhood of the diagonal in M �M.

Proof. That the differentials are nonsingular follows from the homogeneity property
of geodesics given an important identification of tangent spaces. Let I0 W TpM !
T0TpM be the canonical isomorphism, i.e., I0.v/ D d

dt .tv/jtD0. Recall that if v 2 Op,
then cv.t/ D ctv.1/ for all t 2 Œ0; 1�. Thus,

D expp.I0.v// D
d

dt
expp.tv/jtD0

D d

dt
ctv.1/jtD0

D d

dt
cv.t/jtD0

D Pcv.0/
D v:

In other words D expp ıI0 is the identity map on TpM. This shows that D expp is
nonsingular. The second statement of (1) follows from the inverse function theorem.

The proof of (2) is again an exercise in unraveling tangent spaces and identifi-
cations. The tangent space T.p;p/.M � M/ is naturally identified with TpM � TpM.
The tangent space T.p;0p/.TM/ is also naturally identified with TpM � T0p.TpM/ '
TpM � TpM. We can think of points in TM as given by .p; v/ with v 2 TpM. This
shows that E .p; v/ D �

p; expp .v/
�
. So varying p is just the identity map in the first

coordinate, but something unpredictable in the second. While if we fix p and vary v
in TpM, then the first coordinate is fixed and we simply have expp .v/ in the second
coordinate. This explains what the differential DEj.p;0p/ is. If we consider it as a
linear map TpM � TpM ! TpM � TpM, then it is the identity on the first factor
to the first factor, identically 0 from the second factor to the first, and the identity
from the second factor to the second factor as it is D expp ıI0p . Thus it looks like the
nonsingular matrix

�
I 0

 I


:

Now, the inverse function theorem gives (local) diffeomorphisms via E of
neighborhoods of

�
p; 0p

� 2 TM onto neighborhoods of .p; p/ 2 M � M. Since E
maps the zero section of TM diffeomorphically to the diagonal in M � M and the
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zero section is a properly embedded submanifold of TM it is easy to see that these
local diffeomorphisms fit together to give a diffeomorphism of a neighborhood of
the zero section in TM onto a neighborhood of the diagonal in M �M. ut

The largest � > 0 such that

expp W B .0; �/! M

is defined and a diffeomorphism onto its image is called the injectivity radius at p
and denoted injp.

This formalism with the exponential maps yields some results with geometric
meaning. First, we get a coordinate system around p by identifying TpM with R

n

via an isomorphism, and using that the exponential map expp W TpM ! M is
a diffeomorphism on a neighborhood of the origin. Such coordinates are called
exponential or Riemannian normal coordinates at p. They are unique up to how we
choose to identify TpM with R

n. Requiring this identification to be a linear isometry
gives uniqueness up to an orthogonal transformation of Rn. In section 5.5.3 we show
that they are indeed normal in the sense that the Christoffel symbols vanish at p.

The second item of geometric interest is the following idea: On S2 we know
that geodesics are part of great circles. Thus any two points will be joined by both
long and short geodesics. What might be hoped is that points that are close together
would have a unique short geodesic connecting them. This is exactly what (2) in
the proposition says! As long as we keep q1 and q2 near p, there is only one way
to go from q1 to q2 via a geodesic that isn’t very long, i.e., has the form expq1 tv,
v 2 Tq1M, with jvj small.

For now we show that:

Corollary 5.5.2. Let K � .M; g/ be compact. There exists " > 0 such that for every
p 2 K, the map expp W B .0; "/! M is defined and a diffeomorphism onto its image.

Proof. This follows from compactness if we can find " > 0 such that the statement
holds for all p in a neighborhood of a fixed point x 2 M. This in turn is a
consequence of part (2) of proposition 5.5.1. To see this, select a neighborhood
U of .x; 0x/ 2 TM such that E W U ! M �M is a diffeomorphism on to its image.
Next select a neighborhood x 2 V � M and a diffeomorphism F W V � TxM !
	�1 .V/ � TM that is a linear isomorphism fpg � TxM ! TpM for each p 2 V . We
can then find ı > 0 so that F .V � B .0x; ı// � U. The continuity of the metric on
TpM, p 2 V , when pulled back to fpg � TxM via F shows that there is " > 0 so that
B
�
0p; "

� � F .fpg � B .0x; ı// for all p in a neighborhood x 2 W � V . Finally, the
restriction of E to B

�
0p; "

� � TpM is a diffeomorphism onto its image in fpg �M.
This is exactly the map expp if we forget the first factor fpg. We can then invoke
compactness to complete the proof. ut

There is a similar construction that leads to a geometric version of the tubular
neighborhood theorem from differential topology. Let N be a properly embedded
submanifold of M. The normal bundle of N in M is the vector bundle over N
consisting of the orthogonal complements of the tangent spaces TpN � TpM,
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T?N D ˚v 2 TpM j p 2 N; v 2 .TpN/? � TpM
�
:

So for each p 2 N, TpM D TpN ˚ .TpN/? is an orthogonal direct sum. Define the
normal exponential map exp? by restricting exp to O\TN? and only recording the
second factor: exp? W O \ TN? ! M. As in part (2) of proposition 5.5.1, one can
show:

Corollary 5.5.3. The map D exp? is nonsingular at 0p, for all p 2 N and there is an
open neighborhood U of the zero section in TN? on which exp? is a diffeomorphism
onto its image in M.

Such an image exp?.U/ is called a tubular neighborhood of N in M, because
when N is a curve in R

3 it looks like a solid tube around the curve.

5.5.2 Short Geodesics Are Segments

We just saw that points that are close together on a Riemannian manifold are
connected by a short geodesic, and in fact by exactly one short geodesic. But so
far, we don’t have any real evidence that such short geodesics are segments. It is the
goal of this section to take care of this last piece of the puzzle. Incidentally, several
different ways of saying that a curve is a segment are in common use: “minimal
geodesic,” “minimizing curve,” “minimizing geodesic,” and even “minimizing
geodesic segment.”

The first result is the precise statement that we wish to prove in this section.

Theorem 5.5.4. Let .M; g/ be a Riemannian manifold, p 2 M, and " > 0 chosen
such that

expp W B .0; "/! U � M

is a diffeomorphism onto its image U � M. Then U D B .p; "/ and for each v 2
B .0; "/, the geodesic expp.tv/, t 2 Œ0; 1� is the one and only segment with speed jvj
from p to expp v in M.

On U D expp.B.0; "// we define the function r.x/ D j exp�1
p .x/j. That is,

r is simply the Euclidean distance function from the origin on B.0; "/ � TpM
in exponential coordinates. This function can be continuously extended to NU by
defining r .@U/ D ". We know that rr D @r D 1

r xi@i in Cartesian coordinates
on TpM. In order to prove the theorem we show that this is also the gradient with
respect to the general metric g.

Lemma 5.5.5 (The Gauss Lemma). On .U; g/ the function r has gradient rr D
@r, where @r D D expp.@r/.

Let us see how this implies the theorem.



5.5 Riemannian Coordinates 191

Proof of Theorem 5.5.4. The proof is analogous to the specific situation on the
round sphere covered in example 5.3.5, where expp W B .0; 	/ ! B .p; 	/ is a
diffeomorphism.

First observe that in B.0; "/� f0g the integral curves for @r are the line segments
c.s/ D s � vjvj of unit speed. The integral curves for @r on U are then forced to be

the unit speed geodesics c.s/ D exp
�

s � vjvj
�

. Thus lemma 5.5.5 implies that r is

a distance function on U � fpg. First note that U � B .p; "/ as the short geodesic
that joins p to any point q 2 U has length L < ". To see that this geodesic is the
only segment in M, we must show that any other curve from p to q has length > L.
Suppose we have a curve c W Œ0; b�! M from p to q. If a 2 Œ0; b� is the largest value
so that c .a/ D p, then cjŒa;b� is a shorter curve from p to q. Next let b0 2 .a; b/ be
the first value for which c.t0/ … U, if such points exist, otherwise b0 D b. The curve
cj.a;b0/ lies entirely in U � fpg and is shorter than the original curve. It’s length is
estimated from below as in lemma 5.3.2

L
�
cj.a;b0/

� D
Z b0

a
jPcj dt �

Z b0

a
dr .Pc/ dt D r .c .b0// ;

where we used that r.p/ D r .c .a// D 0. If c .b0/ 2 @U, then c is not a segment
from p to q as it has length � " > L. If b D b0, then L

�
cj.a;b/

� � r .c .b// D L and
equality can only hold if Pc .t/ is proportional to rr for all t 2 .a; b�. This shows the
short geodesic is a segment and that any other curve of the same length must be a
reparametrization of this short geodesic.

Finally we have to show that B .p; "/ D U. We already have U � B .p; "/.
Conversely if q 2 B .p; "/ then it is joined to p by a curve of length < ". The
above argument then shows that this curve lies in U. Whence B .p; "/ � U. ut
Proof of Lemma 5.5.5. We select an orthonormal basis for TpM and introduce
Cartesian coordinates. These coordinates are then also used on U via the exponential
map. Denote these coordinates by .x1; : : : ; xn/ and the coordinate vector fields by
@1; : : : ; @n. Then

r2 D .x1/2 C � � � C .xn/2;

@r D 1

r
xi@i:

To show that this is the gradient field for r.x/ on .M; g/, we must prove that dr.v/ D
g.@r; v/. We already know that

dr D 1

r
.x1dx1 C � � � C xndxn/;

but have no knowledge of g, since it is just some abstract metric.
One can show that dr.v/ D g.@r; v/ by using suitable Jacobi fields for r in place

of v. Let us start with v D @r. The right-hand side is 1 as the integral curves for @r



192 5 Geodesics and Distance

are unit speed geodesics. The left-hand side can be computed directly and is also 1.
Next, take a rotational field J D �xi@j C xj@i, i; j D 1; : : : ; n, i < j. In dimension
2 this is simply the angular field @� . An immediate calculation shows that the left-
hand side vanishes: dr .J/ D 0. For the right-hand side we first note that J really is
a Jacobi field as L@r J D Œ@r; J� D 0. Using that r@r@r D 0 we obtain

@rg.@r; J/ D g.r@r@r; J/C g.@r;r@r J/

D 0C g.@r;r@r J/

D g.@r;rJ@r/

D 1

2
DJg.@r; @r/

D 0:

Thus g.@r; J/ is constant along geodesics emanating from p. To show that it vanishes
first observe that

jg.@r; J/j � j@rj jJj
D jJj
� ˇ̌xi

ˇ̌ ˇ̌
@j

ˇ̌C ˇ̌xj
ˇ̌ j@ij

� r .x/
�j@ij C

ˇ
ˇ@j

ˇ
ˇ� :

Continuity of D expp shows that @i; @j are bounded near p. Thus jg.@r; J/j ! 0

as r ! 0. This forces g.@r; J/ D 0. Finally, observe that any vector v is a linear
combination of @r and rotational fields. This proves the claim. ut

The next corollary is an immediate consequence of theorem 5.5.4 and its proof.

Corollary 5.5.6. If p 2 M and " > 0 is such that expp W B .0; "/ ! B .p; "/ is
defined and a diffeomorphism, then for each ı < ",

expp.B.0; ı// D B.p; ı/;

and

expp.B.0; ı// D B.p; ı/:

5.5.3 Properties of Exponential Coordinates

Let us recapture what we have achieved in this section so far. Given p 2 .M; g/ we
found coordinates near p using the exponential map such that the distance function
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r.x/ D jpxj to p has the formula

r.x/ D
p
.x1/2 C � � � C .xn/2:

The Gauss lemma told us that rr D @r . This is equivalent to the statement that

expp W B .0; "/! B .p; "/

is a radial isometry, i.e.,

g
�
D expp.@r/;D expp.v/

� D gp .@r; v/ :

To see this note that being a radial isometry can be expressed as

1
r gijx

ivj D g
�
1
r xi@i; v

j@j
� D 1

r ıijx
ivj:

Since dr .v/ D 1
r ıijxivj this is equivalent to the assertion rr D @r D 1

r xi@i.
We can rewrite this as the condition

gijx
j D ıijx

j:

This relationship, as we shall see, fixes the behavior of gij around p up to first-order
and shows that the coordinates are normal.

Lemma 5.5.7. In exponential coordinates

gij D ıij CO
�
r2
�
:

Proof. The fact that gijjp D ıij follows from taking one partial derivative on both
sides of the formula gijxj D ıijxj

ıik D ıij@kxj

D @k

X

j

gijx
j

D �
@kgij

�
xj C gij@kxj

D �
@kgij

�
xj C gik:

As xj .p/ D 0, the claim follows.
Taking two partial derivatives on both sides gives

0 D @l
��
@kgij

�
xj
�C @lgik

D �
@l@kgij

�
xj C @kgij@lx

j C @lgik

D �
@l@kgij

�
xj C @kgil C @lgik:
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Evaluating at p we obtain

@kgiljp C @lgikjp D 0:

The claim that @kgijjp D 0 follows from evaluating the general formula

2@kgij D
�
@kgij C @jgik

�C �@kgji C @igjk
� � �@igkj C @jgki

�

at p. ut
Since r is a distance function whose level sets near p are Sn�1 we obtain a polar

coordinate representation g D dr2C gr, where gr is the restriction of g to Sn�1. The
Euclidean metric looks like ıij D dr2C r2ds2n�1, where ds2n�1 is the canonical metric
on Sn�1. Since these two metrics agree up to first-order it follows that

lim
r!0

gr D 0;

lim
r!0

�
@rgr � @r

�
r2ds2n�1

�� D 0:

As @rgr D 2Hess r this implies

lim
r!0

�
Hess r � rds2n�1

� D lim
r!0

�
Hess r � 1

r
gr

�
D 0:

Theorem 5.5.8 (Riemann, 1854). If a Riemannian n-manifold .M; g/ has constant
sectional curvature k, then every point in M has a neighborhood that is isometric to
an open subset of the space form Sn

k.

Proof. We use exponential coordinates around p 2 M and the asymptotic behavior
of gr and Hess r near p that was just established. The constant curvature assumption
implies that the radial curvature equation (see proposition 3.2.11) can be written as

r@r Hess rC Hess2 r D �kgr;

lim
r!0

Hess r D 0:

If we think of gr as given, then this equation has a unique solution. However, sn0
k.r/

snk.r/
gr

also solves this equation since

r@r

�
sn0

k .r/

snk .r/
gr

�
C
�

sn0
k .r/

snk .r/

�2
gr

D
�

sn0
k .r/

snk .r/

�0
gr C

�
sn0

k .r/

snk .r/

�2
gr C sn0

k .r/

snk .r/
r@r gr
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D �kgr � sn0
k .r/

snk .r/
r@r dr2; since 0 D r@r gr Cr@r dr2;

D �kgr � sn0
k .r/

snk .r/
.Hess r .@r; �/ drC dr Hess r .@r; �//

D �kgr:

Using that Hess r D sn0
k.r/

snk.r/
gr together with g D dr2 C gr implies that

fk .r/ D
(
1
2
r2; when k D 0
1
k � 1

k csk .r/ ; when k ¤ 0

satisfies Hess fk D .1 � kfk/ g. The result then follows from corollary 4.3.4. ut
Exercises 3.4.20 and 3.4.21 explain how this theorem was proved classically and

exercise 4.7.21 offers an approach focusing on conformal flatness.

Remark 5.5.9. Some remarks are in order in regards to the above proof. First note
that neither of the two systems

L@r gr D 2Hess r;

r@r Hess rC Hess2 r D �kgr

or

L@r gr D 2Hess r;

L@r Hess r �Hess2 r D �kgr

have a unique solution with the initial conditions that both gr and Hess r vanish at
r D 0. In fact there is also a trivial solution where both gr D 0 and Hess r D 0.

Moreover, it is also not clear that Hess r D sn0
k.r/

snk.r/
gr solves

L@r Hess r � Hess2 r D �kgr

unless we know in advance that

L@r gr D 2 sn0
k .r/

snk .r/
gr:

Finally, note that the initial value problem

L@r gr D 2 sn0
k .r/

snk .r/
gr; lim

r!0
gr D 0
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has infinitely many solutions � sn2k .r/ ds2n�1, � 2 R. Although only one of these
with give a smooth metric at p.

5.6 Riemannian Isometries

We are now ready to explain the key properties of Riemannian isometries. After a
general discussion of Riemannian isometries we classify all geodesically complete
simply connected Riemannian manifolds with constant sectional curvature.

5.6.1 Local Isometries

A map F W .M; gM/! .N; gN/ is a local Riemannian isometry if for each p 2 M the
differential DFp W TpM ! TF.p/N is a linear isometry. A special and trivial example
of such a map is a local coordinate system ' W U ! � � R

n where we use the
induced metric g on U and its coordinate representation

�
'�1�� g D gijdxidxj on�.

Proposition 5.6.1. Let F W .M; gM/! .N; gN/ be a local Riemannian isometry.

(1) F maps geodesics to geodesics.
(2) F ı expp .v/ D expF.p/ ıDFp .v/ when expp .v/ is defined. In other words

TpM � Op
DF�! OF.p/ � TF.p/N

expp # # expF.p/

M
F�! N

(3) F is distance decreasing.
(4) If F is also a bijection, then it is distance preserving.

Proof. (1) The geodesic equation depends on the metric and its first derivatives in
a coordinate system. A local Riemannian isometry preserves the metric and is
a local diffeomorphism. So it induces coordinates on N with the same metric
coefficients. In particular, it must take geodesics to geodesics.

(2) If expp .v/ is defined, then t 7! expp .tv/ is a geodesic. Thus t 7! F
�
expp .tv/

�

is also a geodesic. Since

d

dt
F
�
expp .tv/

� jtD0 D DF

�
d

dt
expp .tv/ jtD0

�

D DF .v/ ;

we have that F
�
expp .tv/

� D expF.p/ .tDF .v//. Setting t D 1 then proves the
claim.
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(3) This is also obvious as F must preserve the length of curves.
(4) Both F and F�1 are distance decreasing so they must both be distance

preserving.
ut

This proposition quickly yields two important results for local Riemannian
isometries. The first proposition establishes the important uniqueness for Rieman-
nian isometries and thus quickly allows us to conclude that the groups of isometries
on space forms discussed in section 1.3.1 are the isometry groups.

Proposition 5.6.2 (Uniqueness of Riemannian Isometries). Consider two local
Riemannian isometries F;G W .M; gM/! .N; gN/. If M is connected, F .p/ D G .p/,
and DFp D DGp, then F D G on M.

Proof. Let

A D fx 2 M j F .x/ D G .x/ ; DFx D DGxg :

We know that p 2 A and that A is closed. Property (2) from the above proposition
tells us that

F ı expx .v/ D expF.x/ ıDFx .v/

D expG.x/ ıDGx .v/

D G ı expx .v/ ;

if x 2 A. Since expx maps onto a neighborhood of x it follows that some
neighborhood of x also lies in A. This shows that A is open and hence all of M
by connectedness. ut
Proposition 5.6.3. Let F W .M; gM/ ! .N; gN/ be a Riemannian covering map.
.M; gM/ is geodesically complete if and only if .N; gN/ is geodesically complete.

Proof. Let c W .�"; "/ ! N be a geodesic with c .0/ D p and Pc .0/ D v. For any
Np 2 F�1 .p/ there is a unique lift Nc W .�"; "/ ! M, i.e., F ı Nc D c, with Nc .0/ D Np.
Since F is a local isometry, the inverse is locally defined and also an isometry. Thus
Nc is also a geodesic.

If we assume N is geodesically complete, then c and also Nc will exist for all time.
As all geodesics in M must be of the form Nc this shows that all geodesics in M exist
for all time.

Conversely, when M is geodesically complete, then Nc can be extended to be
defined for all time. Then F ı Nc is a geodesic defined for all time that extends c.
Thus N is geodesically complete. ut
Lemma 5.6.4. Let F W .M; gM/! .N; gN/ be a local Riemannian isometry. If M is
geodesically complete and N is connected, then F is a Riemannian covering map.
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Proof. Fix q 2 N and assume that expq W B .0; "/ ! B .q; "/ is a diffeomorphism.
We claim that F�1 .B .q; "// is evenly covered by the sets B .p; "/ where F .p/ D q.
Geodesic completeness of M guarantees that expp W B .0; "/ ! B .p; "/ is defined
and property (2) that

F ı expp .v/ D expq ıDFp .v/

for all v 2 B .0; "/ � TpM. As expq W B .0; "/ ! B .q; "/ and DFp W B .0; "/ !
B .0; "/ are diffeomorphisms it follows that F ı expp W B .0; "/ ! B .q; "/ is
a diffeomorphism. Thus each of the maps expp W B .0; "/ ! B .p; "/ and F W
B .p; "/! B .q; "/ are diffeomorphisms as well.

Next we need to make sure that

F�1 .B .q; "// D
[

F.p/Dq

B .p; "/ :

If x 2 F�1 .B .q; "//, then we can join q and F .x/ by a unique geodesic c .t/ D
expq .tv/, v 2 B .0; "/. Geodesic completeness of M implies that there is a geodesic
� W Œ0; 1� ! M with � .1/ D x and DFx . P� .1// D Pc .1/. Since F ı � is a geodesic
with the same initial values as c at t D 1 we must have F .� .t// D c .t/ for all t.
Since q D c .0/ we have proven that F .� .0// D q and hence that x 2 B .� .0/ ; "/.

Finally, we need to show that F is surjective. Clearly F .M/ � N is open. The
above argument also shows that it is closed. To see this, consider a sequence qi 2
F .M/ that converges to q 2 N. We can use corollary 5.5.2 to find an � > 0 such that
expx W B .0; �/ ! B .x; �/ is a diffeomorphism for all x 2 fq; q1; : : : ; qk; : : :g. For k
sufficiently large it follows that q 2 B .qk; �/. This shows that q 2 F .M/, since we
proved that B .qk; �/ � F .M/. ut

If S � Iso .M; g/ is a set of isometries, then the fixed point set of S is defined as
those points in M that are fixed by all isometries in S

Fix .S/ D fx 2 M j F .x/ D x for all F 2 Sg :

While the fixed point set for a general set of diffeomorphisms can be quite
complicated, the situation for isometries is much more manageable. A submanifold
N � .M; g/ is said to be totally geodesic if for each p 2 N a neighborhood of
0 2 TpN � TpM is mapped into N via the exponential map expp for M. This means
that geodesics in N are also geodesics in M and conversely that any geodesic in M
which is tangent to N at some point must lie in N for a short time.

Proposition 5.6.5. If S � Iso .M; g/ is a set of isometries, then each connected
component of the fixed point set is a totally geodesic submanifold.

Proof. Let p 2 Fix .S/ and V � TpM be the Zariski tangent space, i.e., the set
of vectors fixed by the linear isometries DFp W TpM ! TpM, where F 2 S. Note
that each such F fixes p so we know that DFp W TpM ! TpM. If v 2 V , then
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t 7! expp .tv/ must be fixed by each of the isometries in S as the initial position
and velocity is fixed by these isometries. Thus expp .tv/ 2 Fix .S/ as long as it is
defined. This shows that expp W V ! Fix .S/.

Next let " > 0 be chosen so that expp W B .0; "/! B .p; "/ is a diffeomorphism.
If q 2 Fix .S/ \ B .p; "/, then the unique geodesic c W Œ0; 1� ! B .p; "/ from p to
q has the property that its endpoints are fixed by each F 2 S. Now F ı c is also a
geodesic from p to q which in addition lies in B .p; "/ as the length is unchanged.
Thus F ı c D c and hence c lies in Fix .S/\ B .p; "/.

This shows that expp W V \B .0; "/! Fix .S/\ B .p; "/ is a bijection and proves
the lemma. ut
Remark 5.6.6. Note that if DFp W TpM ! TpM is orientation preserving for p 2
Fix .F/, then the Zariski tangent space at p must have even codimension as the
C1-eigenspace of an element in SO .n/ has even codimension. In particular each
component of Fix .F/ has even codimension.

5.6.2 Constant Curvature Revisited

We just saw that isometries are uniquely determined by their differential. What
about the existence question? Given any linear isometry L W TpM ! TqN, is there an
isometry F W M ! N such that DFp D L? In case M D N, this would, in particular,
mean that if 	 is a 2-plane in TpM and Q	 a 2-plane in TqM, then there should be an
isometry F W M ! M such that F.	/ D Q	 . But this would imply that M has constant
sectional curvature. Therefore, the problem cannot be solved in general. From our
knowledge of Iso.Sn

k/ it follows that these spaces have enough isometries so that any
linear isometry L W TpSn

k ! TqSn
k can be extended to a global isometry F W Sn

k ! Sn
k

with DFp D L (see section 1.3.1). We show below that in a suitable sense these are
the only spaces with this property. However, there are other interesting results in this
direction for other spaces (see section 10.1.2).

Theorem 5.6.7. Suppose .M; g/ is a Riemannian manifold of dimension n and
constant curvature k. If M is simply connected and L W TpM ! TqSn

k is a linear
isometry, then there is a unique local Riemannian isometry called the monodromy
map F W M ! Sn

k with DFp D L. Furthermore, this map is a diffeomorphism if
.M; g/ is geodesically complete.

Before giving the proof, let us look at some examples.

Example 5.6.8. Suppose we have an immersion Mn ! Sn
k . Then F will be one of

the maps described in the theorem if we use the pullback metric on M. Such maps
can fold in wild ways when n � 2 and need not resemble covering maps in any way
whatsoever.
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Example 5.6.9. If U � Sn
k is an open disc with smooth boundary, then one can

easily construct a diffeomorphism F W M D Sn
k � fpg ! Sn

k � U. Near the missing
point in M the metric will necessarily look pretty awful, although it has constant
curvature.

Example 5.6.10. If M D RP
n or .Rn � f0g/ =antipodal map, then M is not simply

connected and does not admit an immersion into Sn.

Example 5.6.11. If M is the universal covering of S2 � f˙pg, then the monodromy
map is not one-to-one. In fact it must be the covering map M! S2 � f˙pg.
Corollary 5.6.12. If M is a closed simply connected manifold with constant
curvature k, then k > 0 and M D Sn. Thus, Sp � Sq;CPn do not admit any constant
curvature metrics.

Corollary 5.6.13. If M is geodesically complete and noncompact with constant
curvature k, then k � 0 and the universal covering is diffeomorphic to R

n. In
particular, S2 � R

2 and Sn � R do not admit any geodesically complete metrics
of constant curvature.

Now for the proof of the theorem. A different proof is developed in exercise 6.7.4
when M is complete.

Proof of Theorem 5.6.7. We know from theorem 5.5.8 that given x 2 M sufficiently
small balls B .x; r/ are isometric to balls B .Nx; r/ � Sn

k . Furthermore, by composing
with elements of Iso

�
Sn

k

�
(these are calculated in sections 1.3.1) we have: if q 2

B .x; r/, Nq 2 Sn
k , and L W TqU ! TNqSn

k is a linear isometry, then there is a unique
isometric embedding: F W B .x; r/ ! Sn

k , where F .q/ D Nq and DFjq D L. Note
that when k � 0, all metric balls in Sn

k are convex, while when k > 0 we need their
radius to be < 	

2
p

k
for this to be true. So for small radii metric balls in M are either

disjoint or have connected intersection. For the remainder of the proof assume that
all such metric balls are chosen to be isometric to convex balls in the space form.

The construction of F proceeds basically in the same way one does analytic
continuation on simply connected domains. Fix base points p 2 M, Np 2 Sn

k and
a linear isometry L W TpM ! TNpSn

k . Next, let x 2 M be an arbitrary point. If
c 2 �p;x is a curve from p to x in M, then we can cover c by a string of balls
B .pi; r/, i D 0; : : : ;m, where p D p0, x D pm, and B .pi�1; r/ \ B .pi; r/ ¤ ¿.
Define F0 W B .p0; r/ ! Sn

k so that F .p/ D Np and DF0jp0 D L. Then define Fi W
B .pi; r/! Sn

k successively to make it agree with Fi�1 on B .pi�1; r/\ B .pi; r/ (this
just requires their values and differentials agree at one point since the intersection
is connected). Define a function G W �p;x ! Sn

k by G .c/ D Fm .x/. We have to
check that it is well-defined in the sense that it doesn’t depend on our specific way
of covering the curve. This is easily done by selecting a different covering and then
showing that the set of values in Œ0; 1� where the two choices agree is both open and
closed as in proposition 5.6.2.

If Nc 2 �p;x is sufficiently close to c, then it lies in such a covering of c, but then
it is clear that G .c/ D G .Nc/. This implies that G is locally constant. In particular, G
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has the same value on all curves in �p;x that are homotopic to each other. Simple-
connectivity then implies that G is constant on�p;x. This means that F .x/ becomes
well-defined and a Riemannian isometry.

If M is geodesically complete we know from lemma 5.6.4 that F has to be a
covering map. As Sn

k is simply connected it must be a diffeomorphism. ut
We can now give the classification of complete simply connected Riemannian

manifolds with constant curvature. Killing first proved the result assuming in effect
that the manifold has an " > 0 such that for all p the map expp W B .0; "/ !
B .p; "/ is a diffeomorphism, i.e., the manifold has a uniform lower bound for the
injectivity radius. Hopf realized that it was sufficient to assume that the manifold
was geodesically complete. Since metric completeness easily implies geodesic
completeness this is clearly the best result one could have expected at the time.

Corollary 5.6.14 (Classification of Constant Curvature Spaces, Killing, 1893
and H. Hopf, 1926). If .M; g/ is a connected, geodesically complete Riemannian
manifold with constant curvature k, then the universal covering is isometric to Sn

k .

This result shows how important the geodesic completeness of the metric is.
A large number of open manifolds admit immersions into Euclidean space of the
same dimension (e.g., Sn � R

k) and hence carry incomplete metrics with zero
curvature. Carrying a geodesically complete Riemannian metric of a certain type,
therefore, often implies various topological properties of the underlying manifold.
Riemannian geometry at its best tries to understand this interplay between metric
and topological properties.

5.6.3 Metric Characterization of Maps

For a Riemannian manifold .M; g/ we denote the corresponding metric space by�
M; j��jg

�
or simply .M; j��j/ if only one metric is in play. It is natural to ask whether

one can somehow recapture the Riemannian metric g from the distance j��jg. If
for instance v;w 2 TpM, then we would like to be able to compute g.v;w/ from
knowledge of j��jg. First note that it suffices to compute the length of vectors as the
inner product g.v;w/ can be computed by polarization:

g.v;w/ D 1

2

�
jv C wj2 � jvj2 � jwj2

�
:

One way of computing jvj from the metric is by taking a curve ˛ such that P̨ .0/ D v
and observe that

jvj D lim
t!0

j˛.t/˛.0/j
t

:
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Thus, g really can be found from j��jg by using the differentiable structure of M. It is
perhaps then not so surprising that many of the Riemannian maps we consider have
synthetic characterizations, that is, characterizations that involve only knowledge of
the metric space

�
M; j��jg

�
.

Before proceeding with our investigations, let us introduce a new type of
coordinates. Using geodesics we have already introduced one set of geometric
coordinates via the exponential map. We shall now use the distance functions to
construct distance coordinates. For a point p 2 M fix a neighborhood U 3 p
such that for each x 2 U we have that B .q; inj.q// � U (see corollary 5.5.2 and
theorem 5.5.4). Thus, for each q 2 U the distance function rq.x/ D jqxj is smooth
on U � fqg. Now choose q1; : : : ; qn 2 U � fpg, where n D dimM. If the vectors
rrq1 .p/; : : : ;rrqn.p/ 2 TpM are linearly independent, the inverse function theorem
tells us that ' D �rq1 ; : : : ; rqn

�
can be used as coordinates on some neighborhood V

of p. The size of the neighborhood will depend on how these gradients vary. Thus,
an explicit estimate for the size of V can be obtained from suitable bounds on the
Hessians of the distance functions. Clearly, one can arrange for the gradients to be
linearly independent or even orthogonal at any given point.

We just saw that bijective Riemannian isometries are distance preserving. The
next result shows that the converse is also true.

Theorem 5.6.15 (Myers and Steenrod, 1939). If .M; gM/ and .N; gN/ are Rie-
mannian manifolds and F W M ! N a bijection, then F is a Riemannian isometry if
F is distance preserving, i.e., jF.p/F.q/jgN

D jpqjgM
for all p; q 2 M.

Proof. Let F be distance preserving. First we show that F is differentiable. Fix p 2
M and let q D F.p/. Near q introduce distance coordinates

�
rq1 ; : : : ; rqn

�
and find pi

such that F .pi/ D qi. Now observe that

rqi ı F.x/ D jF.x/qij
D jF.x/F.pi/j
D jxpij :

Since jppij D jqqij, we can assume that the qis and pis are chosen such that rpi .x/ D
jxpij are smooth at p. Thus,

�
rq1 ; : : : ; rqn

� ıF is smooth at p, showing that F must be
smooth at p.

To show that F is a Riemannian isometry it suffices to check that jDF.v/j D jvj
for all tangent vectors v 2 TM. For a fixed v 2 TpM let c.t/ D expp.tv/. For small t
we know that c is a constant speed segment. Thus, for small t; s we can conclude

jt � sj � jvj D jc.t/c.s/jgM
D jF .c.t//F .c.s//jgN

;
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implying

jDF.v/j D
ˇ
ˇ
ˇ̌d .F ı c/

dt

ˇ
ˇ
ˇ̌
tD0

D lim
t!0

jF .c.t//F .c.0//jgN

jtj

D lim
t!0

jc.t/c.0/jgM

jtj
D jPc.0/j
D jvj :

ut
Our next goal is to find a characterization of Riemannian submersions. Unfortu-

nately, the description only gives us functions that are C1, but there doesn’t seem
to be a better formulation. Let F W � NM; g NM

� ! .M; gM/ be a function. We call F a
submetry if for every Np 2 NM there is an r > 0 such that F .B .Np; "// D B .F .Np/ ; "/
for all " � r. Submetries are locally distance nonincreasing and hence also
continuous. In addition, we have that the composition of submetries (or Riemannian
submersions) are again submetries (or Riemannian submersions).

Theorem 5.6.16 (Berestovskii, 1995). If F W � NM; g NM
� ! .M; gM/ is a surjective

submetry, then F is a C1 Riemannian submersion.

Proof. We use the notation Np 2 F�1 .p/ for points in the pre-image. The goal is to
show that we have unique horizontal lifts of vectors in M that vary continuously
with Np.

Assume that r < injp; injNp in the submersion property so that all geodesic
segments are unique between the end points

The submetry property shows: If jp qj < r, then for each Np 2 F�1 .p/ there exists
a unique Nq 2 F�1 .q/ with jNp Nqj D jp qj. Moreover, the map Np 7! Nq is continuous.

We can then define horizontal lifts of unit vectors by �!pq D �!NpNq. This is well defined
since �!pq2 D �!pq2 implies that q1; q2 lie on the same segment emanating from p and
thus the same will be true for Nq1; Nq2.

Select distance coordinates .r1; : : : ; rk/ around p. Observe that all of the ris are
Riemannian submersions and therefore also submetries. Then the compositions riıF
are also submetries. Thus, F is C1 if and only if all the maps ri ıF are C1. Therefore,
it suffices to prove the result in the case of functions r W U � M ! .a; b/.

The observation is simply that rr is the horizontal lift of @r on .a; b/. Continuity
of rr follows from continuity of Np 7! Nq. ut
Remark 5.6.17. It can be shown that submetries are C1;1, i.e., their derivatives are
locally Lipschitz. In terms of the above proof this follows from showing that the map
Np 7! Nq is locally Lipschitz. It is in general not possible to improve this. Consider,
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e.g., K D Œ0; 1�2 � R
2 and let r .x/ D jx Kj. Then the levels r D r0 > 0 are not C2

as they consist of a rounded square with sides parallel to the sides of K and rounded
corners that are quarter circles centered at the corners of K.

5.6.4 The Slice Theorem

In this section we establish several important results about actions on manifolds.
First we show that the isometry group is a Lie group and then proceed with a study
of the topology near the orbits of actions by isometries.

The action by a topological group H on a manifold M is said to be proper if the
map H � M ! M � M defined by .h; p/ 7! .hp; p/ is a proper map. The orbit of
H through p 2 M is Hp D fhp j h 2 Hg. The topology on the quotient HnM, that
consists of the space of orbits of the action, is the quotient topology (note the we
are careful to divide on the left as we shall use both right and left cosets in this
section). This makes M ! HnM continuous and open. This topology is clearly
second countable and also Hausdorff when the action is proper.

The isotropy group of an action H at p 2 M is Hp D fh 2 H j hp D pg. Note that
along an orbit the isotropy groups are always conjugate: Hhp D hHph�1. When the
action is proper Hp is compact. This gives us a proper action .k; h/ 7! hk�1 of Hp

on H. The orbit space H=Hp is the natural coset space of left translates of Hp. The
natural identification H=Hp ! Hp is a bijection that is both continuous and proper
and hence a homeomorphism. We say that H is free or acts freely if Hp D feg for all
p 2 M.

The topology on Iso .M; g/ is defined and studied in exercise 5.9.41. The key
property we shall use is that Iso .M; g/ 3 F 7! �

F .p/ ;DFjp
�

is continuous and
a homeomorphism onto its image. Note that the last fact factor is a “linear” map
TpM ! TM.

Example 5.6.18. The Arzela-Ascoli lemma implies that Iso .M/ acts properly on M
(see also exercise 5.9.41). However, a subgroup H � Iso .M/ does not necessarily
act properly unless it is a closed subgroup. The action R�S1�S1 ! S1�S1 defined
by � � .z1; z2/ D

�
e� iz1; e˛� iz2

�
is proper if and only if ˛ is rational.

Theorem 5.6.19 (Myers and Steenrod, 1939). If H is a closed subgroup of
Iso .M; g/, then the orbits of the action are submanifolds. In particular, the isometry
group is a Lie group.

Proof. The proof is a streamlined version of the original proof by Myers and
Steenrod. They showed that the orbits are C1, fortunately a little trick allows us
to bootstrap the construction to obtain smoothness.

Throughout the proof we work locally and use that any Riemannian manifold
looks like Euclidean space via exponential coordinates both around a point as in
proposition 5.5.1 and around a small tube as in corollary 5.5.3. Since we work
locally all metric balls have smooth boundary.
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Fig. 5.9 Tangent and normal
vectors to orbits
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We say that v 2 TpM is tangent to Hp � M if v D lim Pci .0/, where ci are
geodesic segments from p to pi 2 Hp with lim pi D p (see figure 5.9). Since Hp is
compact we can always write pi D hip with lim hi D e. In this case Dhijp converges
to the identity (see exercise 5.9.41). The set of all such tangent vectors at p is denoted
TpHp. We claim that TpHp � TpM is a subspace. First note that this set is invariant
under scaling by positive scalars as we can reparametrize the geodesic segments.
Next consider v D lim vi and w D lim wi, where vi and wi are initial velocities for
geodesic segments from p to pi D hip and qi 2 Hp, respectively. Using that the
metric is locally Euclidean near p it follows that the velocity Pci .0/ for a suitably
parametrized geodesic ci from pi to qi is close to w�v in TM (see figure 5.9). Using
the isometry h�1

i to move pi D hip to p and lim hi D e implies that

lim
d
�
h�1

i ı ci
�

dt
.0/ D w� v:

This shows that w � v 2 TpHp.
The group structure preserves the orbits and maps tangent vectors to tangent

vectors by ThpHp D Dh
�
TpHp

�
. As Dh D exp�1

hp ıh ı expp locally, it follows that
these tangent spaces vary continuously along Hp.

We say that v 2 TpM is normal to Hp if it is proportional to �!pq where jqpj D
jq Hpj. Clearly B .q; jqpj/ \ Hp D ¿ so the angle between tangent and normal
vectors must be � 	=2. Since the tangent vectors form a subspace they must in fact
be perpendicular to all normal vectors (see figure 5.9). This shows that if O � M is
an open subset with smooth boundary and O \ Hp D ¿, then for any q 2 @O \ Hp
we have TqHp � Tq@O.

Let Nk be a small k-dimensional submanifold with TpN D TpHp. Use the normal
exponential map to introduce coordinates .x; y/ on a tubular product neighborhood
of N diffeomorphic to N � B with B D B .0; �/ � R

n�k, where n D dim M (see
figure 5.10). Since fxg � B � N � B is perpendicular to N at .x; 0/ it follows that
N � fyg is almost perpendicular to fxg � B at .x; y/ 2 N � B as long as N and �
are sufficiently small. Since ThpHp varies continuously with h it follows that it has
trivial intersection with the tangent spaces to fxg � B.

We now claim that the map .x; y/ 7! x projects a neighborhood of p 2 Hp to a
neighborhood of p 2 N. Since Hp is closed its image in N is also closed. Let the
complement of the image in N be denoted N0.

If pk D hkp and qk 2 Hp are mapped to the same point in N, then ��!pk qk is tangent
to B. On the other hand, if lim pk D p D lim qk, then ��!pk qk will (sub)converge to a
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Fig. 5.10 Making an orbit a
graph
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vector orthogonal to TpHp. Then
�����!
p h�1

i qk also (sub)converges to a vector orthogonal
to TpHp, which is a contradiction.

Assume that p is on the boundary of N0. Then we can find a sequence of open
sets O0

i � N0 with smooth boundary; @O0
i \ @N0 ¤ ¿; and p D limi!1 qi for any

qi 2 O0
i. This means that if Oi D O0

i � B, then Oi \ Hp D ¿ and we can find
pi D .xi; yi/ 2 @Oi \Hp that converge to .p; 0/ D p. In particular, Tpi Hp � Tpi@Oi.
Now dim Tpi Hp D k and dim Tpi .fxig � B/ D n � k so it follows that they have a
nontrivial intersection as they are both subspaces of the .n � 1/-dimensional space
Tpi@Oi D Txi O

0
i ˚ TyiB. On the other hand Tpi .fxig � B/ converges to T?

p N and so
by continuity must be almost perpendicular to Tpi Hp. This contradicts that p 2 @N0.

By shrinking N if necessary we can write Hp \ .N � B/ as a continuous graph
over N. The tangent spaces to the orbits also vary continuously and are almost
orthogonal to TB. Thus tangent vectors to the orbits are uniquely determined by
their projection on to TN. In particular, any smooth curve in N is mapped to a curve
in the orbit. Moreover, the velocity field of the curve has a unique continuous lift
to the tangent space of the orbit. It is easy to see that this lifted velocity field is
the velocity of the corresponding curve. Similarly we see that the graph is C1 and
consequently that the orbit is a C1 submanifold.

To see that the isometry group of M is a C1 Lie group first note that it acts
properly on MnC1 D M � � � � �M and thus forms a closed subgroup of the isometry
of this space. Moreover, this action is well-defined and free on the open subset of
points .p0; : : : ; pn/ 2 O � MnC1 where ��!p0 pi, i D 1; : : : ; n are linearly independent.
Thus the isometry group of M is naturally identified with a C1 submanifold of O.

Finally, note that the formulas ThpHp D Dh
�
TpHp

�
and Dh D exp�1

hp ıh ı expp
show that the tangent spaces THp to Hp form a submanifold of TM that is as smooth
as the group H. So if H is Ck, k � 1, then so is THp. But this implies that Hp is
a CkC1 submanifold. The above construction then shows that H itself is CkC1. This
finishes the proof that the isometry group is a smooth Lie group. ut

There are other proofs of this theorem that also work without metric assumptions
(see theorem 8.1.6 and [83] or use various profound characterizations of Lie groups
as in exercise 6.7.26 and [79]).
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The goal is to refine our understanding of the topology near the orbits of the
action by a closed subgroup H � Iso .M; g/. Such groups are necessarily Lie groups
and as such have a Lie group exponential map exp W TeH D h ! H. The Lie
subalgebra of Hp is denoted hp. Observe that v 2 hp if and only if exp .tv/ 2 Hp for
all t.

Proposition 5.6.20. Let Op .h/ D hp be the orbit map. Then ker
��

DOp
� je
� D hp

and more generally ker
��

DOp
� jx
� D DLx

�
hp
�
.

Proof. Note that the last statement follows from the first by the chain rule and
.h1h2/ p D h1 .h2p/. To establish the first claim we first note that

�
DOp

� je .v/ D d

dt
.exp .tv/ � p/ jtD0:

Next observe that

d

dt
.exp .tv/ � p/ jtDt0 D

d

ds
.exp.t0v/ exp.sv/ � p/ jsD0

D D .exp.t0v//

�
d

ds
.exp.sv/ � p/ jsD0

�
:

So if
�
DOp

� je .v/ D 0, then exp .tv/ �p D p for all t and hence v 2 hp. The converse
is trivially true. ut

When H acts freely this proposition implies that all orbits Hp are immersed
submanifolds.

Since H consists of isometries there is a natural H-invariant map E W H � Tp

M! M defined by

.h; v/ 7! h expp .v/ D exphp

�
Dhjpv

�
;

i.e., E .hx; v/ D hE .x; v/ for all h; x 2 H and v 2 TpM.

Theorem 5.6.21 (The Free Slice Theorem). If H � Iso .M; g/ is closed and
acts freely, then the quotient HnM can be given a smooth manifold structure and
Riemannian metric so that M ! HnM is a Riemannian submersion.

Proof. We just saw that the orbits are properly embedded copies of H. If we restrict
the map E to the normal bundle to Hp at p, then we obtain a H-invariant map
exp? W H � T?

p Hp ! M. Note that there is a natural trivialization H � T?
p Hp !

T?Hp defined by .h; v/ 7! Dhjp.v/, which is a linear isometry on the fibers.
Moreover, exp? is in fact the normal exponential map exp? W T?Hp ! M
via this identification. We can then invoke the tubular neighborhood theorem
(corollary 5.5.3) to obtain a diffeomorphism from some neighborhood of the zero
section in H � T?

p Hp to a neighborhood of the orbit in M. However, we need a
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Fig. 5.11 Slices along an
orbit

Hp

Slice

uniform neighborhood of the form exp? W H � B .0; �/ ! M, where B .0; �/ �
T?

p Hp. In such a uniform neighborhood the set B .0; �/ is called a slice of the action.
Thus a slice is a cross section of a uniform tube (see figure 5.11).

First we find an � > 0 so that exp? W U � B .0; �/ ! M, e 2 U � H is an
embedding. Thus the usual normal exponential map is also an embedding on the
�-neighborhood of the zero section in T?Up. We can further assume that all closed
�-balls centered in the image are compact and thus have compact intersection with
all orbits.

We can further decrease � so that if v 2 B .0; �/ and
ˇ̌
.hp/ expp .v/

ˇ̌
< �, then

h 2 U. This shows that p is the unique closest point in Hp to expp .v/. In fact the
first variation formula shows that any segment from expp .v/ to Hp is perpendicular
to Hp. Moreover, any such a segment will end at a point hp with h 2 U. But then
v and the tangent vector to the segment from hp to expp .v/ are normal vectors to
Up that are mapped to the same point. This violates the choice of �. This in turn
shows that exp? W H�B .0; �/! M is an embedding. It is clearly nonsingular since
this is true at all points .e; v/, jvj < �, and exp? .h; v/ D h expp .v/, where h is a
diffeomorphism on M. It is also injective since exp? .h1; v1/ D exp? .h2; v2/ first
implies that exp? �h�1

2 h1; v1
� D exp? .e; v2/. This shows that h�1

2 h1 2 U and then
by choice of � that h1 D h2 and v1 D v2. Finally the map is proper since Hp is
properly embedded. This shows that it is closed and an embedding.

We have shown that M ! HnM looks like a locally trivial bundle. The manifold
structure on the quotient comes from the fact that for each p 2 M the slice B .0; �/
is mapped homeomorphically to its image in HnM. These charts are easily shown
to have smooth transition functions. Finally, the metric on HnM is constructed as
in section 4.5.2 by identifying the tangent space at a point Hp 2 HnM with one of
the normal spaces T?

hpHp and noting that Dhjp maps T?
p Hp isometrically to T?

hpHp.
Thus all of these normal spaces are isometric to each other. This induces a natural
Riemannian metric on the quotient that makes the quotient map a Riemannian
submersion. ut
Remark 5.6.22. Let K � H be a compact subgroup of a Lie group. Consider the
action .k; x/ 7! xk�1 of K on H. As K is compact we can average any metric
on H to make it right-invariant under this action by K. Thus we obtain a free
action by isometries and we can use the above to make H=K a manifold with a
Riemannian submersion metric. In case the metric on H is also left-invariant we
obtain an isometric action of H on H=K that makes H=K a homogeneous space.
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In case K � H is closed we still obtain a proper action by right multiplication.
This can again be made isometric by using a right-invariant metric. However, it is
not necessarily possible to also have the metric on H be left-invariant so that H acts
by isometries on H=K.

Corollary 5.6.23. Let H �M ! M be a proper isometric action. For each p 2 M
the orbits Hp are properly embedded submanifolds H=Hp ! Hp.

Proof. We already know that it is a proper injective map and that H=Hp has a
manifold structure. Furthermore proposition 5.6.20 shows that the differential is
also injective. This shows that it is a proper embedding. ut

The slice representation of a proper isometric action is the linear representation
H � T?

p Hp! T?
p Hp given by .h; v/ 7! Dhjp .v/. If we let Hp act on H on the right

as above, then Hp naturally acts on H � T?
p Hp and corollary 5.6.23 shows that the

quotient H �Hp T?
p Hp can be given a natural manifold structure.

Theorem 5.6.24 (The Slice Theorem). Let H � Iso .M; g/ be a closed subgroup.
For each p 2 M there is a map exp? W H �Hp T?

p Hp! M that is a diffeomorphism
on a uniform tubular neighborhood H �Hp B .0; �/ on to an �-neighborhood of the
orbit Hp.

Proof. The proof is as in the free case now that we have shown that all orbits are
properly embedded. For fixed p 2 M consider the bundle map

H � T?
p Hp! T?Hp

.h; v/ 7! Dhjp .v/ :

This map is H-invariant, an isomorphism on the fibers, and H�f0g is mapped to the
zero section in T?Hp represented by the orbit Hp. Since D

�
h ı k�1� jp

�
Dkjp .v/

� D
Dhjp .v/ for any element k 2 Hp this gives us a natural bundle isomorphism from
H �Hp T?

p Hp to T?Hp. Now define exp? W H �Hp T?
p Hp ! M as the normal

exponential map T?Hp! M via this identification (see figure 5.12).
It is now possible to find � > 0 as in theorem 5.6.21 so that exp? W H �Hp

B .0; �/! M becomes an H-invariant embedding. ut

Fig. 5.12 A linear slice and a
slice in the manifold

Hp

T Hpp

T Hpp

exp
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This theorem tells us exactly how H acts near an orbit and allows us to calculate
the isotropy of points near a given point.

Corollary 5.6.25. For small v 2 T?
p Hp the isotropy at expp .v/ is given by

Hexpp.v/
D ˚h 2 Hp j Dhjpv D v

�
:

This in turn implies.

Corollary 5.6.26. If H � Iso .M; g/ is a closed subgroup with the property that
all its isotropy groups are conjugate to each other, then the quotient space is a
Riemannian manifold and the quotient map a Riemannian submersion.

5.7 Completeness

5.7.1 The Hopf-Rinow Theorem

One of the foundational centerpieces of Riemannian geometry is the Hopf-Rinow
theorem. This theorem states that all concepts of completeness are equivalent. This
should not be an unexpected result for those who have played around with open
subsets of Euclidean space. For it seems that in these examples, geodesic and metric
completeness break down in exactly the same places.

Theorem 5.7.1 (Hopf and Rinow, 1931). The following statements are equivalent
for a Riemannian manifold .M; g/:

(1) M is geodesically complete, i.e., all geodesics are defined for all time.
(2) M is geodesically complete at p, i.e., all geodesics through p are defined for all

time.
(3) M satisfies the Heine-Borel property, i.e., every closed bounded set is compact.
(4) M is metrically complete.

Proof. (1))(2) and (3))(4) are trivial.
(4))(1): Recall that every geodesic c W Œ0; b/ ! M defined on a maximal

interval must leave every compact set if b <1. This violates metric completeness
as c.t/, t! b is a Cauchy sequence.

(2))(3): Consider expp W TpM! M. It suffices to show that

expp

�
B.0;R/

� D B.p;R/

for all R (note that � always holds). This will follow if we can show that any point
q 2 M is joined to p by a segment. By corollary 5.5.6 we can find � > 0 such that any
point in the compact set B .p; �/ D expp

�
B.0; �/

�
can be joined to p by a minimal

geodesic. This shows that if p0 2 B .p; �/ � B .p; �/ is closest to q, then jpp0jC
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Fig. 5.13 Two short cuts
from p to q p qc(t)

p'

p

c(a)

q

q'
c(t)

p'

c(t+d)

jp0qj D jpqj. Otherwise, corollary 5.3.10 guarantees a unit speed curve c 2 �p;q

with L.c/ < jpp0j C jp0qj (see top of figure 5.13). Choose t so that c .t/ 2 B .p; �/�
B .p; �/. Since t C jc .t/ qj � L.c/ < jpp0j C jp0qj it follows that jc .t/ qj < jp0qj
contradicting the choice of p0.

Let c .t/ W Œ0;1/! M be the unit speed geodesic with c .0/ D p and c .�/ D p0.
We just saw that jpqj D � C jc .�/ qj.

Consider

A D ft 2 Œ0; jpqj� j jpqj D tC jc .t/ qjg :

Clearly 0; � 2 A. Note that if t 2 A, then

jpqj D tC jc .t/ qj � jpc .t/j C jc .t/ qj � jpqj ;

which implies that t D jpc .t/j. We first claim that if a 2 A, then Œ0; a� � A. When
t < a note that

jpqj � jpc .t/j C jc .t/ qj
� jpc .t/j C jc .t/ c .a/j C jc .a/ qj
� tC a � tC jc .a/ qj
� aC jc .a/ qj
D jpqj :

This implies that jpc .t/j C jc .t/ qj D jpqj and t D jpc .t/j, showing that t 2 A (see
also figure 5.13).

Since t 7! jc .t/ qj is continuous it follows that A is closed.
Finally, we claim that if a 2 A, then aC ı 2 A for sufficiently small ı > 0. Use

corollary 5.5.6 to find ı > 0 so that any point in B .c .a/ ; ı/ can be joined to c .a/ by
a segment (see also figure 5.13). If we select q0 2 B .c .a/ ; ı/ � B .c .a/ ; ı/ closest
to q, then
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jpqj D aC jc .a/ qj
D aC ˇˇc .a/ q0ˇˇC ˇˇq0q

ˇ
ˇ

D aC ı C ˇˇq0q
ˇ
ˇ

� ˇˇpq0ˇˇC ˇˇq0q
ˇ
ˇ

� jpqj :

It follows that jpq0j D aC ı which tells us that the piecewise smooth geodesic that
goes from p to c .a/ and then from c .a/ to q0 is a segment. By corollary 5.4.4 this
segment is a geodesic and q0 D c .aC ı/. It then follows from jpqj D aC ıC jq0qj
that c .aC ı/ 2 A.

This shows that A D Œ0; jpqj�. ut
From (2)) (3) we get the additional result:

Corollary 5.7.2. If .M; g/ is complete in any of the above ways, then any two points
in M can be joined by a segment.

Corollary 5.7.3. If .M; g/ admits a proper Lipschitz function f W M ! R, then M
is complete.

Proof. We establish the Heine-Borel property. Let C � M be bounded and closed.
Since f is Lipschitz the image f .C/ is also bounded. Thus f .C/ � Œa; b� and C �
f �1 .Œa; b�/. As f is proper the pre-image f �1 .Œa; b�/ is compact. Since C is closed
and a subset of a compact set it must itself be compact. ut

This corollary also makes it easy to check completeness for all of our examples
related to warped products. In these examples, the distance function can be extended
to a proper continuous function on the entire space.

From now on, virtually all Riemannian manifolds will automatically be assumed
to be connected and complete.

5.7.2 Warped Product Characterization

In theorem 4.3.3 we offered a local characterization of Riemannian manifolds that
admit functions whose Hessian is conformal to the metric and saw that these were
all locally given by warped product structures. Here we extend this to a global result
for complete Riemannian manifolds.

Theorem 5.7.4 (Tashiro, 1965). Let .M; g/ be a complete Riemannian n-mani-fold
that admits a nontrivial function f whose Hessian is conformal, i.e., Hess f D �g.
Then .M; g/ is isometric to a complete warped product metric and must have one of
the three forms:
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(1) M D R � N and g D dr2 C �2 .r/ gN,
(2) M D R

n and g D dr2 C �2 .r/ ds2n�1, r � 0,
(3) M D Sn and g D dr2 C �2 .r/ ds2n�1, r 2 Œa; b�.
Proof. We start by identifying N. Recall from theorem 4.3.3 that jrf j is locally
constant on ff D f0g \ fdf ¤ 0g for each f0 2 R. From this it follows that the
connected components of ff D f0g\fdf ¤ 0gmust be closed. As f is nontrivial there
will be points where the differential doesn’t vanish. Define N � ff D f0g\fdf ¤ 0g
as any nonempty connected component and note that N is a closed hypersurface
in M.

For p 2 N the unit speed geodesic though p that is normal to N is given by:

cp .t/ D expp

�
t
rf jp
jrf j

�
:

For fixed numbers a < 0 < b consider the set C � N such that f is regular at
cp .t/ for all p 2 C and t 2 Œa; b�. Since the set of regular points is open it follows
that C � N is open. Theorem 4.3.3 shows that on U D ˚

cp .t/ j p 2 C; t 2 Œa; b��
we have a warped product structure gjU D dr2 C �2 .r/ gN , where r is the signed
distance function to N and

rr D rf

jrf j ;

f .r/ D
Z
� .r/ dr:

For all p 2 N

d2
�
f ı cp

�

dt2
D g

�rf ; Rcp
�C Hess f

�Pcp; Pcp
� D � ı cp

with

�
f ı cp

�
.0/ D f0;

d
�
f ı cp

�

dt
.0/ D g

�rf ; Pcp.0/
� D jrf j :

When we restrict attention to U we have � ı cp D �.f ı cp/. Thus f ı cp satisfies a
second-order equation with initial values that do not depend on p 2 C. In particular,
f ı cp.t/ depends only on t 2 Œa; b� and not on p 2 C. Similarly,

d
�
f ı cp

�

dt
.t/ D g

�rf jcp.t/; Pcp.t/
� D ˇˇrf jcp.t/

ˇ
ˇ D �.t/
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depends only on t 2 Œa; b� and not on p 2 C. Continuity of
ˇ
ˇrf jcp.t/

ˇ
ˇwith respect to p

and t, combined with the fact that f is regular on U, shows that for fixed t 2 Œa; b� the
value

ˇ
ˇrf jcp.t/

ˇ
ˇ cannot vanish when p 2 @C � N. Thus we have shown that C � N

is both open and closed. Since N connected we conclude that C D N.
Finally, we obtain nontrivial maximal open interval .a; b/ 3 0 such that cp.t/

is regular for all t 2 .a; b/ and p 2 N. Moreover, the warped product structure
dr2 C �2 .r/ gN extends to hold on .a; b/ � N.

When .a; b/ D R we obtain a global warped product structure.
If, say, b < 1, then the level set fr D bg consists of critical points for f . Since

� D jrf j it follows that limt!b � .t/ D 0. The warped product structure then shows
that any two points in N will approach each other as t! b. In other words

lim
t!b

ˇ̌
cp .t/ cq .t/

ˇ̌ D 0:

Consequently, fr D bg is a single critical point x. Now consider all of the unit vectors
Pcp .b/ 2 TxM. Since N is a closed submanifold this set of vectors is both closed
and open and thus consists of all unit vectors at x. This shows that not only will
any geodesic cp .t/ approach x as t ! b, but after it has passed through x it must
coincide with another such geodesic. Thus ff0 � f < f .x/g ' Œ0; b/�N and x is the
only critical point in ff0 � f � f .x/g. It also follows that N ' Sn�1 since the level
sets for f near x are exactly distance spheres centered at x. The argument that gN is
a round metric on Sn�1 can be completed exactly as in the proof of theorem 4.3.3.

A similar argument holds when �1 < a. We finish the proof by observing that
we are in case 3 when both a and b are finite and in case 2 when only one of a or b
are finite. ut

With more information about � we expect a more detailed picture of what
M can be. In particular, there is a global version of the local classification from
corollary 4.3.4.

Theorem 5.7.5. Let .M; g/ be a complete Riemannian n-manifold that admits a
nontrivial function f whose Hessian satisfies Hess f D .˛f C ˇ/ g, ˛; ˇ 2 R. Then
.M; g/ falls in to one of the following three categories:

(a) .M; g/ D �I � Sn�1; dr2 C sn2k .r/ ds2n�1
�
, i.e., a constant curvature space form.

(b) .M; g/ D �R � N; dr2 C gN
�
, i.e., a product metric.

(c) .M; g/ D
�
R � N; dr2 C �A exp

�p
˛r
�C B exp

��p˛r
��2

h
�

, A;B � 0.

Proof. From the previous theorem we already know that g D dr2C�2 .r/ gN , r 2 I,
with f D f .r/, � .r/ D f 0 .r/, and � D ˛f C ˇ D f 00.

It’ll be convenient to divide into various special cases.
When ˛ D ˇ D 0 it follows that � is constant. This is case (b).
When ˛ D 0 and ˇ ¤ 0 it follows that � D ˇrC  . Thus I is a half line where �

vanishes at the boundary point. This point must correspond to a single critical point
for f . The metric is the standard Euclidean metric.
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When ˛ ¤ 0 we can change f to f C ˇ

˛
. Then Hess

�
f C ˇ

˛

�
D ˛

�
f C ˇ

˛

�
g so

we can assume that ˇ D 0. In case ˛ < 0, it follows that � D A sin
�p�˛rC r0

�
.

Thus I is a compact interval and the metric becomes a round sphere. In case ˛ > 0,
we have that � D A exp

�p
˛r
�C B exp

��p˛r
�
, where at least one of A or B must

be positive. If they are both nonnegative we are in case (c). If they have the opposite
sign we can rewrite � D C sinh

�p
˛rC r0

�
. Then I is a half line and the metric

becomes a constant negatively curved warped product. ut
Note that in case (a) the function f has at least one critical point, while in cases

(b) and (c) f has no critical points. In 1961 Obata established this theorem for round
spheres using the equation

Hess f D .1 � f / g:

Remark 5.7.6. In a separate direction it is shown in [100] that transnormal functions
(see remark 4.3.5) on a complete Riemannian manifold give a similar topological
decomposition of the manifold. Specifically such functions can have zero, one,
or two critical values. All level sets for f are smooth submanifolds, including the
critical levels. Moreover, f D 
 .r/ where r is the signed distance to a fixed level set
of f .

5.7.3 The Segment Domain

In this section we characterize when a geodesic is a segment and use this to find a
maximal domain in TpM on which the exponential map is an embedding. This is
achieved through a systematic investigation of when distance functions to points are
smooth. All Riemannian manifolds are assumed to be complete in this section, but
it is possible to make generalizations to incomplete metrics by working on suitable
star-shaped domains.

Fix p 2 .M; g/ and let r.x/ D jpxj. We know that r is smooth near p and that
the integral curves for @r are geodesics emanating from p. Since M is complete,
these integral curves can be continued indefinitely beyond the places where r is
smooth. These geodesics could easily intersect after some time and consequently
fail to generate a flow on M. But having the geodesics at points where r might not be
smooth helps us understand the lack of smoothness. We know from section (3.2.6)
that another obstruction to r being smooth is the possibility of conjugate points.
It is interesting to note that while distance functions generally aren’t smooth, they
always have one sided directional derivatives (see exercise 5.9.28).
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To clarify matters we introduce some terminology: The segment domain is

seg.p/ D ˚v 2 TpM j expp.tv/ W Œ0; 1�! M is a segment
�
:

The Hopf-Rinow theorem (see theorem 5.7.1) implies that M D expp.seg.p//.
Clearly seg.p/ is a closed star-shaped subset of TpM. The star interior of seg.p/ is

seg0 .p/ D fsv j s 2 Œ0; 1/; v 2 seg.p/g :

Below we show that this set is in fact the interior of seg.p/, but this requires that we
know it is open. We start by proving

Proposition 5.7.7. If x 2 expp.seg0.p//, then it is joined to p by a unique segment.
In particular, expp is injective on seg0 .p/.

Proof. To see this note that there is a segment � W Œ0; 1/ ! M with �.0/ D p and
�.t0/ D x; t0 < 1. Therefore, should O� W Œ0; t0�! M be another segment from p to
x, then we could construct a nonsmooth segment

c.s/ D
� O�.s/; s 2 Œ0; t0�;
�.s/; s 2 Œt0; 1�:

Corollary 5.4.4 shows this is impossible. ut
On the image Up D expp.seg0.p// define @r D D expp.@r/. We expect this to be

the gradient for

r.x/ D jpxj D ˇˇexp�1
p .x/

ˇ
ˇ :

From the proof of lemma 5.5.5 it follows that r will be smooth on Up with gradient
@r if expp W seg0.p/! Up is a diffeomorphism between open sets. Since the map is
injective we have to show that it is nonsingular and that seg0.p/ is open. The image
will then automatically also be open by the inverse function theorem. We start by
proving that the map is nonsingular.

Lemma 5.7.8. expp W seg0.p/! Up is nonsingular everywhere, or, in other words,
D expp is nonsingular at every point in seg0.p/.

Proof. The standard proof of this statement uses Jacobi fields and is outlined in
exercise 6.7.24, but in essence there is very little difference between the two proofs.

The proof is by contradiction. As the set of singular points is closed we can
assume that expp is singular at v 2 seg0.p/ and nonsingular at all points tv, t 2
Œ0; 1/. Since c .t/ D expp .tv/ is an embedding on Œ0; 1/ we can find neighborhoods
U around Œ0; 1/v � TpM and V around c .Œ0; 1// � M such that expp W U ! V
is a diffeomorphism. Note that v … U and c .1/ … V . If we take a tangent vector
w 2 TvTpM, then we can extend it to a Jacobi field J on TpM, i.e., Œ@r; J� D 0.
Next J can be pushed forward via expp to a vector field on V , also called J, that also
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commutes with @r . If D expp jvw D 0, then

lim
t!1

Jjexp.tv/ D lim
t!1

D expp .J/ jexp.tv/ D 0:

In particular, we see that D expp is singular at v if and only if expp .v/ is a conjugate
point for r. This characterization naturally assumes that r is smooth on a region that
has expp .v/ as a accumulation point.

The fact that

lim
t!1
jJj2 jexp.tv/ ! 0 as t! 1

implies that

lim
t!1

log jJj2 jexp.tv/ ! �1 as t! 1:

Therefore, there must be a sequence of numbers tn ! 1 such that

@r jJj2
jJj2 jexp.tnv/ ! �1 as n!1:

Now use the first fundamental equation evaluated on the Jacobi field J (see
proposition 3.2.11 and section 3.2.4) to conclude that: @r jJj2 D 2Hess r .J; J/. This
shows that:

Hess r .J; J/

jJj2 jexp.tnv/ ! �1 as n!1:

By assumption c.t/ D expp.tv/ is a segment on some interval Œ0; 1C "�; " > 0.
Use corollary 5.5.2 to choose " so small that Qr.x/ D jx c.1C "/j is smooth on a ball
B.c.1 C "/; 2"/ (see figure 5.14 for a schematic picture of J and a corresponding
Jacobi field for Qr that agrees with J at tn). Then consider the function

e.x/ D r.x/C Qr.x/:

From the triangle inequality, we know that

e.x/ � 1C " D jp c.1C "/j :

Fig. 5.14 A field that gives
shorter curves from p to
c.1C �/

p c(1)

J(t)

c(1+e)
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Furthermore, e.x/ D 1C" whenever x D c.t/, t 2 Œ0; 1C"�. Thus, e has an absolute
minimum along c.t/ and consequently has nonnegative Hessian at all the points c.t/.
On the other hand,

Hess e .J; J/

jJj2 jexp.tnv/ D
Hess r .J; J/

jJj2 jexp.tnv/ C
Hess Qr .J; J/
jJj2 jexp.tnv/ !n!1 �1

since Hess Qr is bounded in a neighborhood of c.1/ and the term involving Hess r
goes to �1 as n!1. ut

We have shown that expp is injective and has nonsingular differential on seg0.p/.
Before showing that seg0.p/ is open we characterize elements in the star “boundary”
of seg0.p/ as points that fail to have one of these properties.

Lemma 5.7.9. If v 2 seg.p/ � seg0.p/, then either

(1) 9w .¤ v/ 2 seg.p/ such that expp.v/ D expp.w/, or
(2) D expp is singular at v.

Proof. Let c.t/ D expp.tv/. For t > 1 choose segments �t.s/, s 2 Œ0; 1�, with
�t.0/ D p, and �t.1/ D c.t/. Since we have assumed that cjŒ0;t� is not a segment for
t > 1 we see that P�t.0/ is never proportional to Pc.0/. Now choose tn ! 1 such that
P�tn.0/! w 2 TpM. We have that

L.�tn/ D j P�tn.0/j ! L.cjŒ0;1�/ D jPc.0/j;

so jwj D jPc .0/j. Now either w D Pc.0/ or w ¤ Pc.0/. In the latter case w cannot be a
positive multiple of Pc .0/ since jwj D jPc .0/j. Therefore, we have found the promised
w in (1). If the former happens, we must show that D expp is singular at v. If, in fact,
D expp is nonsingular at v, then expp is an embedding near v. Thus, P�tn.0/ ! v D
Pc.0/ together with expp. P�tn.0// D expp.tn Pc.0// implies P�tn.0/ D tn � v. This shows
that c is a segment on some interval Œ0; tn�, tn > 1 which is a contradiction. ut

Notice that in the first case the gradient @r on M becomes undefined at x D
expp.v/, since it could be either D expp.v/ or D expp.w/; while in the second case
the Hessian of r becomes undefined, since it is forced to go to �1 along certain
fields. Finally we show

Proposition 5.7.10. seg0.p/ is open.

Proof. If we fix v 2 seg0.p/, then there is going to be a neighborhood V � TpM
around v on which expp is a diffeomorphism onto its image. If vi 2 V converge to
v, then D expp is also nonsingular at vi. For each i choose wi 2 seg.p/ such that
expp.vi/ D expp.wi/. When wi has an accumulation point w ¤ v it follows that
v … seg0.p/. Hence wi ! v and wi 2 V for large i. As expp is a diffeomorphism
on V this implies that wi D vi and that vi 2 seg.p/. We already know that expp is
nonsingular at vi. Moreover, as wi D vi condition (1) in lemma 5.7.9 cannot hold.
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It follows that vi 2 seg0.p/ for large i and hence that V \ seg0.p/ is a neighborhood
of v. ut

All of this implies that r.x/ D jpxj is smooth on the open and dense subset
Up � fpg � M and in addition that it is not smooth on M �Up.

The set seg.p/ � seg0.p/ is called the cut locus of p in TpM. Thus, being inside
the cut locus means that we are on the region where r2 is smooth. Going back to our
characterization of segments, we have

Corollary 5.7.11. Let c W Œ0;1/! M be a geodesic with c.0/ D p. If

cut.Pc.0// D sup
˚
t j cjŒ0;t� is a segment

�
;

then r is smooth at c.t/, t < cut.Pc.0//, but not smooth at x D c.cut.Pc.0///.
Furthermore, the failure of r to be smooth at x is because expp W seg.p/ ! M
either fails to be one-to-one at x or has x as a critical value.

5.7.4 The Injectivity Radius

In a complete Riemannian manifold the injectivity radius is the largest radius " for
which

expp W B.0; "/! B.p; "/

is a diffeomorphism. If v 2 seg.p/� seg0.p/ is the closest point to 0 in this set, then
in fact inj.p/ D jvj. It turns out that such v can be characterized as follows:

Lemma 5.7.12 (Klingenberg). Suppose v 2 seg.p/ � seg0.p/ and that jvj D
inj.p/. Either

(1) there is precisely one other vector v0 with

expp.v
0/ D expp.v/;

and v0 is characterized by

d

dt
jtD1 expp.tv

0/ D � d

dt
jtD1 expp.tv/;

or
(2) x D expp .v/ is a critical value for expp W seg.p/! M.

In the first case there are exactly two segments from p to x D expp.v/, and they
fit together smoothly at x to form a geodesic loop based at p.
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Fig. 5.15 Moving closer to p
from x

p

x

w

c1

c2

v2

v1

Proof. Suppose x is a regular value for expp W seg.p/! M and that c1; c2 W Œ0; 1�!
M are segments from p to x D expp.v/. If Pc1.1/ ¤ �Pc2.1/, then we can find w 2
TxM such that g.w; Pc1.1// < 0 and g.w; Pc2.1// < 0, i.e., w forms an angle > 	

2
with

both Pc1.1/ and Pc2.1/. Next select c .s/ with Pc .0/ D w. As D expp is nonsingular at
Pci.0/ there are unique curves vi .s/ 2 TpM with vi .0/ D Pci .0/ and D expp .vi .s// D
c .s/ (see also figure 5.15). But the curves t 7! expp .tvi .s// have length

jvij D jpc .s/j < jpxj D jvj :

This implies that expp is not one-to-one on seg0.p/, a contradiction. ut

5.8 Further Study

There are several textbooks on Riemannian geometry such as [23, 24, 47, 65] and
[80] that treat most of the more basic material included in this chapter. All of these
books, as is usual, emphasize the variational approach as being the basic technique
used to prove every theorem. To see how the variational approach works the text
[75] is also highly recommended.

5.9 Exercises

EXERCISE 5.9.1. Assume that .M; g/ has the property that all unit speed geodesics
exist for a fixed time " > 0. Show that .M; g/ is geodesically complete.

EXERCISE 5.9.2. Let c W I ! .M; g/ and 
 W J ! I, where I; J are intervals. Show
that

d .c ı 
/
dt

D Pc ı 
 d


dt
;
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d2 .c ı 
/
dt2

D Pc ı 
 d2


dt2
C Rc ı 


�
d


dt

�2
:

EXERCISE 5.9.3. Show that if the coordinate vector fields in a chart are orthogonal
(gij D 0 for i ¤ j), then the geodesic equations can be written as

d

dt

�
gii

dci

dt

�
D 1

2

X

j

@gjj

@xi

�
dcj

dt

�2
:

EXERCISE 5.9.4. Show that a regular curve can be reparametrized to be a geodesic
if and only if the acceleration is tangent to the curve.

EXERCISE 5.9.5. Let O � .M; g/ be an open subset of a Riemannian manifold.
Show that if .O; g/ is complete, then O D M.

EXERCISE 5.9.6. A Riemannian manifold is called Misner complete if every
geodesic c W .a; b/ ! M with b � a < 1 lies in a compact set. Show that Misner
completeness implies completeness.

EXERCISE 5.9.7. Consider a curve c 2 �p;q with L .c/ D jpqj.
(1) Show that L

�
cjŒa;b�

� D jc.a/c.b/j for all a; b 2 Œ0; 1�.
(2) Show that there is a segment � 2 �p;q and a monotone function ' W Œ0; 1� !

Œ0; 1� such that c D � ı '. Note that ' need not be smooth everywhere.

EXERCISE 5.9.8. Let .M; g/ be a metrically complete Riemannian manifold and Qg
another metric on M such that Qg � g. Show that .M; Qg/ is also metrically complete.

EXERCISE 5.9.9. A Riemannian manifold is said to be homogeneous if the isom-
etry group acts transitively. Show that homogeneous manifolds are geodesically
complete.

EXERCISE 5.9.10. Consider a Riemannian metric .M; g/ D �
R � N; dr2 C gr

�
,

where .N; gr/ is complete for all r 2 R, e.g., .M; g/ D �
R � N; dr2 C �2 .r/ gN

�

where � W R ! .0;1/ and .N; gN/ is metrically complete. Show that .M; g/ is
metrically complete.

EXERCISE 5.9.11. Consider metrics .M; g/ D �
.0;1/ � N; dr2 C �2 .r/ gN

�
,

where � W .0;1/ ! .0;1/ and .N; gN/ is complete. Give examples that are
complete and examples that are not complete.

EXERCISE 5.9.12. Assume F W .M; g/ ! �
R

k; gRk

�
is a Riemannian submersion,

where .M; g/ is complete. Show that if each of the components of F has zero
Hessian, then .M; g/ D .N; h/ � �Rk; gRk

�
.
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EXERCISE 5.9.13. Find and fill in the gap in the proof of theorem 5.6.16.

EXERCISE 5.9.14. Show that a Riemannian manifold that is isotropic at every point
is also homogeneous. Being isotropic at p 2 M means that Isop acts transitively on
the unit sphere in TpM.

EXERCISE 5.9.15. Assume that we have coordinates in a Riemannian manifold so
that g1i D ı1i. Show that x1 is a distance function.

EXERCISE 5.9.16. Let r W U ! R be a distance function on an open set U �
.M; g/. Define another metric Og on M with the property: Og .rr; v/ D g .rr; v/ for
all v, where rr is the gradient with respect to g. Show that r is also a distance
function with respect to Og.

EXERCISE 5.9.17. The projective models of Sn .R/ and Hn .R/ come from project-
ing the spaces along straight lines through the origin to the hyperplane xnC1 D R.

(1) Show that if x 2 R
nC1 and xnC1 > 0, then the projected point is

P .x/ D R

�
x1

xnC1 ; : : : ;
xn

xnC1 ; 1
�
:

(2) Show that geodesics on Sn .R/ and Hn .R/ are given by intersections with 2-
dimensional subspaces.

(3) Show that the upper hemisphere of Sn .R/ projects to all of xnC1 D R.
(4) Show that Hn .R/ projects to an open disc of radius R in xnC1 D R.
(5) Show that geodesics on Sn .R/ and Hn .R/ project to straight lines in xnC1 D R.

EXERCISE 5.9.18. Show that any Riemannian manifold .M; g/ admits a conformal
change

�
M; �2g

�
that is complete. Hint: Choose � W M ! Œ1;1/ to be a proper

function that grows rapidly.

EXERCISE 5.9.19. On an open subset U � R
n we have the induced distance from

the Riemannian metric, and also the induced distance from R
n.

(1) Give examples where U isn’t convex and the two distance concepts agree.
(2) Give examples of U, where NU is convex, but the two distance concepts do not

agree.

EXERCISE 5.9.20. Let M � � NM; g� be a submanifold. Using the T-tensor intro-
duced in 2.5.25 show that T � 0 on M if and only if M � � NM; g� is totally geodesic.

EXERCISE 5.9.21. Let f W .M; g/ ! R be a smooth function on a Riemannian
manifold.

(1) Let c W .a; b/ ! M be a geodesic. Compute the first and second derivatives of
f ı c.

(2) Use this to show that at a local maximum (or minimum) for f the gradient is
zero and the Hessian nonpositive (or nonnegative).



5.9 Exercises 223

(3) Show that f has everywhere nonnegative Hessian if and only if f ı c is convex
for all geodesics c in .M; g/.

EXERCISE 5.9.22. Assume the volume form near a point in a Riemannian manifold
is written as � .r; �/ dr^voln�1, where voln�1 denotes the standard volume form on
the unit sphere. Show that � .r; �/ D rn�1 C O

�
rnC1�.

EXERCISE 5.9.23. Let N � M be a properly embedded submanifold of a complete
Riemannian manifold .M; g/.

(1) The distance from N to x 2 M is defined as

jx Nj D inf fjx pj j p 2 Ng :

A unit speed curve � W Œa; b�! M with � .a/ 2 N, � .b/ D x, and L .�/ D jx Nj
is called a segment from x to N. Show that � is also a segment from N to any
� .t/, t < b. Show that P� .a/ is perpendicular to N.

(2) Show that if N is a closed subset of M and .M; g/ is complete, then any point in
M can be joined to N by a segment.

(3) Show that in general there is an open neighborhood of N in M where all points
are joined to N by segments.

(4) Show that r .x/ D jx Nj is smooth on a neighborhood of N with N excluded.
(5) Show that the integral curves for rr are the geodesics that are perpendicular

to N.

EXERCISE 5.9.24. Find the cut locus on a square torus R2=Z2.

EXERCISE 5.9.25. Find the cut locus on a sphere and real projective space with the
constant curvature metrics.

EXERCISE 5.9.26. Show that in a Riemannian manifold,

ˇ
ˇexpp .v/ expp .w/

ˇ
ˇ D jv � wj C O

�
r2
�
;

where jvj ; jwj � r.

EXERCISE 5.9.27. Consider a Riemannian manifold and let r .x/ D jxpj. Introduce
exponential normal coordinates xi at p.

(1) Show that

�
Hess xi

�
kl D � i

kl D O .r/ :

(2) Use that 1
2
r2 D 1

2

P�
xi
�2

together with g D ıij C O
�
r2
�

to show that

Hess 1
2
r2 D gC O

�
r2
�
:
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(3) Show that

Hess r D 1
r gr C O .r/ :

EXERCISE 5.9.28. Let .M; g/ be a complete Riemannian manifold; K � M a
compact (or properly embedded) submanifold; and r .x/ D jxKj the distance
function to K. The goal is to show that r has well-defined one sided directional
derivatives at all points.

(1) Show that if r is differentiable at x … K, then
H)
xK only contains one vector.

(2) Let c W I ! M be a unit speed curve. Show that if f D r ı c is differentiable at

t, then all the vectors
���!
c.t/K form the same angle with Pc .t/.

(3) More generally show that

D
C

f .t0/ D lim sup
t!tC0

f .t/ � f .t0/

t � t0
� g

�
Pc .t0/ ;�����!c.t0/K

�
:

Hint: Use the first variation formula for a variation of the segment to K with

initial velocity
����!
c.t0/K.

(4) Show that for small h D t � t0

jc.t0/ c.t/j D hC O
�
h2
�
:

(5) Select a point q on a segment from c .t/ to K such that jc .t/ qj D h˛ where

˛ 2 .0; 1/ and let � be the angle between Pc .t/ and the initial direction
���!
c.t/K for

the segment through q. For small h D t � t0 > 0 justify the following:

jc.t0/Kj � jc.t0/ qj C jqKj
D
p

h2˛ C h2 � 2h1C˛ cos .	 � �/C O .h2C˛/C jqKj C O
�
h2˛
�

� jc .t/ qj C jq Kj � h cos .	 � �/C 1

2
h2�˛ C O

�
h2
�C O

�
h2˛
�

D jc .t/ Kj � h cos .	 � �/C 1

2
h2�˛ C O

�
h2
�C O

�
h2˛
�
:

Hint: Use 5.9.26 and part (4) to estimate jc.t0/ qj.
(6) Show that for suitable ˛

DCf .t0/ D lim inf
t!tC0

f .t/ � f .t0/

t � t0
� min���!

c.t0/K

g
�
Pc .t0/ ;�����!c.t0/K

�
:

(7) Conclude that the right-hand (and left-hand) derivatives of f exist everywhere.
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EXERCISE 5.9.29. In a metric space .X; j��j/ one can measure the length of contin-
uous curves c W Œa; b�! X by

L .c/ D sup
nX
jc .ti/ c .tiC1/j j a D t1 � t2 � � � � � tk�1 � tk D b

o
:

(1) Show that a curve has finite length if it is absolutely continuous. Hint: Use
the characterization that c W Œa; b� ! X is absolutely continuous if and only
if for each " > 0 there is a ı > 0 so that

P jc .si/ c .siC1/j � " providedP jsi � siC1j � ı.
(2) Show that the Cantor step function is a counter example to the converse of (1).
(3) Show that this definition gives back our previous definition for smooth curves on

Riemannian manifolds. In fact it will also give us the same length for absolutely
continuous curves. Hint: If you know how to prove this in the Euclidean
situation, then exercise 5.9.26 helps to approximate with the Riemannian
metric.

(4) Let c W Œa; b� ! M be an absolutely continuous curve of length jc.a/ c.b/j.
Show that c D � ı ' for some segment � and monotone ' W Œ0;L�! Œa; b�.

EXERCISE 5.9.30. Assume that we have coordinates xi around a point p 2 .M; g/
such that xi .p/ D 0 and gijxj D ıijxj. Show that these must be exponential normal
coordinates. Hint: Define r D p

ıijxixjI show that it is a smooth distance function
away from p; and that the integral curves for the gradient are geodesics emanating
from p.

EXERCISE 5.9.31. If N1;N2 � M are totally geodesic submanifolds, show that each
component of N1\N2 is a submanifold which is totally geodesic. Hint: The potential
tangent space at p 2 N1 \ N2 should be the Zariski tangent space TpN1 \ TpN2.

EXERCISE 5.9.32. Let F W .M; g/! .M; g/ be an isometry that fixes p 2 M. Show
that DFjp D �I on TpM if and only if F2 D idM and p is an isolated fixed point.

EXERCISE 5.9.33. Show that for a complete manifold the functional distance is the
same as the distance.

EXERCISE 5.9.34. Let c W Œ0; 1� ! M be a geodesic such that expc.0/ is regular at
all tPc .0/ with t � 1. Show that c is a local minimum for the energy functional. Hint:
Show that the lift of c via expc.0/ is a minimizing geodesic in the pull-back metric.

EXERCISE 5.9.35. Consider a Lie group G with a biinvariant pseudo-Riemannian
metric.

(1) Show that homomorphisms R ! G are precisely the integral curves for left-
invariant vector fields through e 2 G.

(2) Show that geodesics through the identity are exactly the homomorphisms
R ! G. Conclude that the Lie group exponential map coincides with the
exponential map generated by the biinvariant Riemannian metric. The Lie
theoretic exponential map exp W TeG ! G is precisely the map that takes
v 2 TeG to c .1/, where c W R ! G is the integral curve with c .0/ D e for
the left-invariant field generated by v.
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(3) Show that when the metric is Riemannian, then every element in x 2 G has a
square root y 2 G with y2 D x. Hint: This uses metric completeness.

(4) Show that SL .n;R/ does not admit a biinvariant Riemannian metric and
compare this to exercise 1.6.28.

EXERCISE 5.9.36. Show that a Riemannian submersion is a submetry.

EXERCISE 5.9.37 (HERMANN). Let F W .M; gM/ ! .N; gN/ be a Riemannian
submersion.

(1) Show that .N; gN/ is complete if .M; gM/ is complete.
(2) Show that F is a fibration if .M; gM/ is complete i.e., for every p 2 N there is a

neighborhood p 2 U such that F�1 .U/ is diffeomorphic to U �F�1 .p/. Give a
counterexample when .M; gM/ is not complete.

EXERCISE 5.9.38. Let S be a set of orientation preserving isometries on a Rieman-
nian manifold .M; g/. Show that if all elements in S commute with each other, then
each component of Fix .S/ has even codimension.

EXERCISE 5.9.39. A local diffeomorphism F W .M; gM/ ! .N; gN/ is said to be
affine if F�

�rM
X Y
� D rN

F�.X/
F� .Y/ for all vector fields X;Y on M.

(1) Show that affine maps take geodesics to geodesics.
(2) Show that given p 2 M an affine map F is uniquely determined by F .p/ and

DFjp.
(3) Give an example of an affine map R

n ! R
n that isn’t an isometry.

EXERCISE 5.9.40. Consider the real or complex projective space FP
n.

(1) Show that GL .nC 1;F/ acts on FP
n by mapping 1-dimensional subspaces in

F
nC1 to 1-dimensional subspaces.

(2) Let H � GL .nC 1;F/ be the transformations that act trivially. Show that H D
f�InC1 j � 2 Fg and is a normal subgroup of GL .nC 1;F/.

(3) Define PGL .nC 1;F/ D GL .nC 1;F/ =H. Show that given p 2 FP
n each

element F 2 PGL .nC 1;F/ is uniquely determined by F .p/ and DFjp.
(4) Show that there is no Riemannian metric on FP

n such that this action is by
isometries.

(5) Show that the action is by affine transformations with respect to the standard
(submersion) metric on FP

n (see exercise 5.9.39 for the definition of affine
transformations).

(6) For a subgroup G � GL, define PG D G=H\G. Show that the isometry group
of RPn is given by PO .nC 1/.

(7) Show that the isometry group of CPn is given by PU .nC 1/.
(8) Show that the isometry group of Hn .R/ can be naturally identified with

PO .n; 1/.
(9) As in exercise 1.6.9 consider Iso .Rn/ as the matrix group

G D
��

O v

0 1


j O 2 O .n/ ; v 2 R

n

�
� GL .nC 1;R/ :

Show that PG D G.
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EXERCISE 5.9.41. Let Diff .M/ denote the group of diffeomorphisms on a mani-
fold. Define Diff .MIK;O/ D fF 2 Diff .M/ j F .K/ � Og.
(1) Show that finite intersections of Diff .MIK;O/ where K is always compact and

O open define a topology. This is the compact-open topology.
(2) Show that the compact-open topology is second countable.
(3) When M has a Riemannian structure, show that convergence in the compact-

open topology is the same as uniform convergence on compact sets.
(4) Show that a sequence in Iso .M; g/ converges in the compact-open topology if

and only if it converges pointwise. Hint: Use the Arzela-Ascoli lemma
(5) Show that Iso .M; g/ is always locally compact in the compact-open topology.

Hint: Use the Arzela-Ascoli lemma.
(6) Show that Isop .M; g/ is always compact in the compact-open topology.
(7) Show that Iso .M; g/ defines a proper action on M.
(8) Show that for fixed p the evaluation map F 7! �

F .p/ ;DFjp
�

is continuous
on Iso .M; g/. Note that DFjp W TpM ! TM so that convergence of the
values of the evaluation map makes sense. Hint: Start by showing that F 7!
.F .p/ ;F .p1/ ; : : : ;F .pn// is continuous.

(9) Show that the evaluation map in (8) is a homeomorphism on to its image when
restricted to Iso .M; g/.

EXERCISE 5.9.42. Consider exponential normal coordinates around p 2 M, i.e.,
ıijxj D gijxj and xi .p/ D 0. All calculations below are at p.

(1) Show that the second partials of the metric satisfy the Bianchi identity

@l@kgji C @j@lgki C @k@jgli D 0:

Hint: Take three derivatives of the defining relation xi D †sgisxs as in
lemma 5.5.7.

(2) Use all four of these Bianchi identities with the last index being i; j; k; or l to
conclude

@i@jgkl D @k@lgij:

(3) Use the formula for the curvature tensor in normal coordinates from sec-
tion 3.1.6 to show

Rikjl D @i@jgkl � @i@lgjk:

(4) Use (3) and (1) to show

@i@jgkl D 1

3

�
Rikjl C Rjkil

�
:
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(5) Show that we have a Taylor expansion

gkl D ıkl C 1

3
Rikjlx

ixj C O
�
jxj3

�
:

(6) (Riemann) Use the symmetries of the curvature tensor to conclude

g D
nX

i;jD1
gkldxkdxl

D
nX

iD1
dxidxi

C 1

12

X

i;j;k;l

Rikjl
�
xidxk � xkdxi

� �
xjdxl � xldxj

�C O
�
jxj3

�

D
nX

iD1
dxidxi

C1
3

X

i<k;j<l

Rikjl
�
xidxk � xkdxi

� �
xjdxl � xldxj

�C O
�
jxj3

�

(7) (Gauss) Show that in dimension 2 we have

g D dx2 C dy2 C 1

3
R1212 .xdy � ydx/2 C o

�
x2 C y2

�

D dx2 C dy2 � 1
3

sec .p/ .xdy� ydx/2 C o
�
x2 C y2

�
:

Riemann’s construction of the curvature tensor proceeded as follows: Start with
the normal coordinates, next use the radial isometry property to conclude that the
Taylor expansion has the form

g D
nX

iD1
dxidxi

C1
3

X

i<k;j<l

Cikjl
�
xidxk � xkdxi

� �
xjdxl � xldxj

�C O
�
jxj3

�

for some tensor C. This tensor has some obvious symmetry properties from the form
of the expansion. It is possible to calculate it from the derivatives @i@jgkl provided
they satisfy @i@jgkl D @k@lgij. Finally, one has to show that this property is equivalent
to the assertion that the above expansion is possible.
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EXERCISE 5.9.43. With notation as in the previous exercise show:

(1)
p

det .gkl/ D 1 � 1
6

Ricij xixj C O
�
jxj3

�
.

(2) (A. Gray) vol B .p; r/D!nrn
�
1 � scal.p/

6.nC2/r
2 C O

�
r3
��

, where !nD vol .B .0; 1/

� R
n/. Hint: Use (1) and expand the integral using polar coordinates.



Chapter 6
Sectional Curvature Comparison I

In the previous chapter we classified complete spaces with constant curvature. The
goal of this chapter is to compare manifolds with variable curvature to spaces with
constant curvature. Our first global result is the Hadamard-Cartan theorem, which
says that a simply connected complete manifold with sec � 0 is diffeomorphic
to R

n. There are also several interesting restrictions on the topology in positive
curvature that we shall investigate, notably, the Bonnet-Myers diameter bound and
Synge’s theorem stating that an orientable even-dimensional manifold with positive
curvature is simply connected. Finally, we also cover the classical quarter pinched
sphere theorem of Rauch, Berger, and Klingenberg. In subsequent chapters we deal
with some more advanced and modern topics in the theory of manifolds with lower
curvature bounds.

We start by introducing the concept of differentiation of vector fields along
curves. This generalizes and ties in nicely with mixed second partials from the
last chapter and also allows us to define higher order partials. This is then used
to define parallel fields, Jacobi fields along geodesics, and finally to establish the
second variation formula of Synge.

We also establish some basic comparison estimates that are needed here and later
in the text. These results are used to show how geodesics and curvature can help in
estimating the injectivity, conjugate, and convexity radii.

6.1 The Connection Along Curves

Recall that in sections 3.2.4 and 3.2.5 we introduced Jacobi and parallel fields for a
smooth distance function. Here we will generalize these concepts to allow for Jacobi
and parallel fields along a single geodesic, rather than the whole family of geodesics
associated to a distance function. This will be quite useful when we study variations.
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6.1.1 Vector Fields Along Curves

Let c W I ! M be a curve in M. A vector field V along c is by definition a map
V W I ! TM with V.t/ 2 Tc.t/M for all t 2 I. The goal is to define the covariant
derivative

PV.t/ D d

dt
V.t/ D rPcV

of V along c. We know that V can be thought of as the variational field for a variation
Nc W .� "; "/ � I ! M. So it is natural to assume that

d

dt
V.t/ D @2 Nc

@t@s
.0; t/ :

Doing the calculation in local coordinates (see section 5.1) gives

V .t/ D Vk .t/ @k

D @Nck

@s
.0; t/ @k

and

@2 Nc
@t@s

.0; t/ D @2 Nck

@t@s
.0; t/ @k C @Nci

@s
.0; t/

@Ncj

@t
.0; t/ �k

ij@k

D dVk

dt
.t/ @k C Vi .t/

dcj

dt
.t/ �k

ij@k:

This shows that PV does not depend on how the variation was chosen. Since the
variation can be selected independently of the coordinate system we see that the
local coordinate formula is independent of the coordinate system. The formula also
shows that if V .t/ D Xc.t/ for some vector field X defined in a neighborhood of
c .t0/, then this derivative is a covariant derivative

PV .t0/ D rPc.t0/X:

Some caution is necessary when thinking of PV in this way as it is not in general true
that PV .t0/ D 0 when Pc .t0/ D 0. It could, e.g., happen that c is the constant curve.
In this case V .t/ is simply a curve in Tc.t0/M and as such has a well-defined velocity
that doesn’t have to be zero.

From the product rule for mixed partials (see section 5.1) we get the product rule:

d

dt
g .V;W/ D g

� PV;W�C g
�
V; PW�
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for vector fields V;W along c by selecting a two-parameter variation Nc .s; u; t/
such that

@Nc
@s
.0; 0; t/ D V .t/ ;

@Nc
@u
.0; 0; t/ D W .t/ :

The local coordinate formula also shows that we have:

d

dt
.V .t/CW .t// D d

dt
V .t/C d

dt
W .t/ ;

d

dt
.� .t/V .t// D d�

dt
.t/V .t/C � .t/ dV

dt
.t/ ;

where � W I ! R is a function.
As with second partials, differentiation along curves can be done in a larger space

and then projected on to M. Specifically, if M � NM and c W I ! M is a curve and
V W I ! TM a vector field along c, then we can compute PV 2 T NM and then project
� PV�> 2 TM to obtain the derivative of V along c in M. Example 6.1.1 shows what
can go wrong if we are not careful about projecting the derivatives.

6.1.2 Third Partials

One of the uses of taking derivatives of vector fields along curves is that we can now
define third and higher order partial derivatives. If we wish to compute

@3c

@s@t@u
.s0; t0; u0/ ;

then consider the vector field s 7! @2c
@t@u .s; t0; u0/ D V .s/ and define

@3c

@s@t@u
.s0; t0; u0/ D dV

ds
.s0/ :

Something rather interesting happens with this definition. We expected and
proved that second partials commute. This, however, does not carry over to third
partials. It is true that

@3c

@s@t@u
D @3c

@s@u@t
;

but if we switch the first two variables the derivatives might be different. One reason
we are not entitled to have these derivatives commute lies in the fact that they were
defined with a specific order of derivatives in mind.
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Example 6.1.1. Let

c .t; �/ D
2

4
cos .t/

sin .t/ cos .�/
sin .t/ sin .�/

3

5

be the standard parametrization of S2 .1/ � R
3 as a surface of revolution around the

x-axis. We can compute all derivatives in R
3 and then project them on to S2 .1/ in

order to find the intrinsic partial derivatives. The curves t 7! c .t; �/ are geodesics.
We can see this by direct calculation as

@c

@t
D
2

4
� sin .t/

cos .t/ cos .�/
cos .t/ sin .�/

3

5 2 TS2 .1/ ;

@2c

@t2
D
2

4
� cos .t/

� sin .t/ cos .�/
� sin .t/ sin .�/

3

5 2 TR3:

Thus the Euclidean acceleration is proportional to the base point c and so has zero
projection onto S2 .1/. Next we compute

@2c

@�@t
D
2

4
0

� cos .t/ sin .�/
cos .t/ cos .�/

3

5 2 TR3:

This vector is tangent to S2 .1/ and therefore represents the actual intrinsic mixed
partial. Finally we calculate

@3c

@t@�@t
D
2

4
0

sin .t/ sin .�/
� sin .t/ cos .�/

3

5 2 TR3;

@3c

@�@t2
D
2

4
0

sin .t/ sin .�/
� sin .t/ cos .�/

3

5 2 TR3:

These are equal as we would expect in R
3. They are also both tangent to S2 .1/. The

first term is consequently @3c
@t@�@t as computed in S2 .1/. The second has no meaning

in S2 .1/ as we are supposed to first project @
2c
@t2

on to S2 .1/ before computing @
@�

@2c
@t2

in R
3 and then again project to S2 .1/. It follows that in S2 .1/ we have @3c

@�@t2
D 0

while @3c
@t@�@t ¤ 0.

In this example it is also interesting to note that the equator t D 0 given by
� 7! c .0; �/ is a geodesic and that @2c

@�@t D 0 along this equator.

We are now ready to prove what happens when the first two partials in a third-
order partial are interchanged.
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Lemma 6.1.2. The third mixed partials are related to the curvatures by the
formula:

@3c

@u@s@t
� @3c

@s@u@t
D R

�
@c

@u
;
@c

@s

�
@c

@t
:

Proof. This result is hardly surprising if we recall the definition of curvature and
think of these partial derivatives as covariant derivatives. It is, however, not so
clear what happens when the derivatives are not covariant derivatives. We are
consequently forced to do the calculation in local coordinates. To simplify matters
assume that we are at a point p D c .u; s; t/, where gijjp D ıij and �k

ijjp D 0. This
implies that

@

@u
.@i/ jp D 0:

Thus

@3c

@u@s@t
jp D @

@u

�
@2cl

@s@t
@l C @ci

@t

@cj

@s
� l

ij@l

�

D @3cl

@u@s@t
@l C @ci

@t

@cj

@s

@

@u

�
� l

ij

�
@l

D @3cl

@u@s@t
@l C @ci

@t

@cj

@s

@ck

@u

�
@k�

l
ij

�
@l;

@3c

@s@u@t
jp D @3cl

@s@u@t
@l C @ci

@t

@cj

@u

@ck

@s

�
@k�

l
ij

�
@l:

Using our formula for Rl
ijk in terms of the Christoffel symbols from section 3.1.6

gives

@3c

@u@s@t
jp � @3c

@s@u@t
jp D @ci

@t

@cj

@s

@ck

@u

�
@k�

l
ij

�
@l � @ci

@t

@cj

@u

@ck

@s

�
@k�

l
ij

�
@l

D @ci

@t

@cj

@s

@ck

@u

�
@k�

l
ij

�
@l � @ci

@t

@ck

@u

@cj

@s

�
@j�

l
ik

�
@l

D @ci

@t

@cj

@s

@ck

@u

�
@k�

l
ij � @j�

l
ik

�
@l

D @ci

@t

@cj

@s

@ck

@u

�
@k�

l
ji � @j�

l
ki

�
@l

D @ci

@t

@cj

@s

@ck

@u
Rl

kji@l

D R

�
@c

@u
;
@c

@s

�
@c

@t
:

ut
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6.1.3 Parallel Transport

A vector field V along c is said to be parallel along c provided PV � 0. We know that
the tangent field Pc along a geodesic is parallel. We also just saw in example 6.1.1
that the unit field perpendicular to a great circle in S2 .1/ is a parallel field.

If V;W are two parallel fields along c, then we clearly have that g .V;W/ is
constant along c. In particular, parallel fields along a curve neither change their
lengths nor their angles relative to each other; just as parallel fields in Euclidean
space are of constant length and make constant angles. Based on example 6.1.1
we can pictorially describe parallel translation around certain triangles in S2 .1/
(see figure 6.1). Exercise 6.7.2 covers some basic features of parallel translation
on surfaces to aid the reader’s geometric understanding.

Theorem 6.1.3 (Existence and Uniqueness of Parallel fields). If t0 2 I and v 2
Tc.t0/M, then there is a unique parallel field V.t/ defined on all of I with V.t0/ D v.

Proof. Choose vector fields E1.t/; : : : ;En.t/ along c forming a basis for Tc.t/M for
all t 2 I. Any vector field V.t/ along c can then be written V.t/ D Vi.t/Ei.t/ for
Vi W I ! R. Thus,

PV D rPcV D
X PVi.t/Ei.t/C Vi.t/rPcEi

D
X PVj.t/Ej.t/C

X

i;j

Vi.t/ � ˛j
i.t/Ej.t/; where rPcEi D

X
˛

j
i.t/Ej

D
X

j

. PVj.t/C Vi.t/˛j
i.t//Ej.t/:

Hence, V is parallel if and only if V1.t/; : : : ;Vn.t/ satisfy the system of first-order
linear differential equations

PVj.t/ D �
nX

iD1
˛

j
i.t/V

i.t/; j D 1; : : : ; n:

Such systems have the property that for given initial values V1.t0/; : : : ;Vn.t0/, there
is a unique solution defined on all of I with these initial values. ut

Fig. 6.1 Parallel translation
along a spherical triangle
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The existence and uniqueness assertion that concluded this proof is a standard
theorem in differential equations that we take for granted. The reader should recall
that linearity of the equations is a crucial ingredient in showing that the solution
exists on all of I. Nonlinear equations can fail to have solutions over a whole given
interval as we saw with geodesics in section 5.2.

Parallel fields can be used as a substitute for Cartesian coordinates. Namely, if
we choose a parallel orthonormal frame E1.t/; : : : ;En.t/ along the curve c.t/ W I !
.M; g/, then we’ve seen that any vector field V.t/ along c has the property that

dV

dt
D d

dt

�
Vi.t/Ei.t/

�

D PVi.t/Ei.t/C Vi.t/ � PEi.t/

D PVi.t/Ei.t/:

So d
dt V , when represented in the coordinates of the frame, is exactly what we would

expect. We could more generally choose a tensor T along c.t/ of type .0; p/ or .1; p/
and compute d

dt T. For the sake of simplicity, choose a .1; 1/ tensor S. Then write

S.Ei.t// D Sj
i.t/Ej.t/. Thus S is represented by the matrix

h
Sj

i.t/
i

along the curve.

As before, we see that d
dt S is represented by

hPSj
i.t/
i
.

This makes it possible to understand equations involving only one covariant
derivative of the type rX . Let Ft be the local flow near some point p 2 M
and H a hypersurface in M through p that is perpendicular to X. Next choose
vector fields E1; : : : ;En on H which form an orthonormal frame for the tangent
space to M. Finally, construct an orthonormal frame in a neighborhood of p by
parallel translating E1; : : : ;En along the integral curves for X. Thus, rXEi D 0,
i D 1; : : : ; n. Therefore, if we have a vector field Y near p, we can write Y D YiEi

and rXY D DX.Yi/Ei. Similarly, if S is a .1; 1/-tensor, we have S.Ei/ D Sj
iEi, and

rXS is represented by .DX.S
j
i//.

In this way parallel frames make covariant derivatives look like standard
derivatives in the same fashion that coordinate vector fields make Lie derivatives
look like standard derivatives.

6.1.4 Jacobi Fields

Another variational field that is often quite useful is the field that comes from a
geodesic variation, i.e., t 7! Nc .s; t/ is a geodesic for all s. We encountered these
fields in section 3.2.4 as vector fields satisfying L@r J D 0. Here they need only
be defined along a single geodesic so the Lie derivative equation no longer makes
sense. The second-order Jacobi equation, however, does make sense in this context:
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0 D @3 Nc
@s@2t

D R

�
@Nc
@s
;
@Nc
@t

�
@Nc
@t
C @3 Nc
@t@s@t

D R

�
@Nc
@s
;
@Nc
@t

�
@Nc
@t
C @3 Nc
@2t@s

D R

�
@Nc
@s
;
@Nc
@t

�
@Nc
@t
C @2

@t2
@Nc
@s
:

So if the variational field along c is J .t/ D @Nc
@s .0; t/, then this field solves the linear

second-order Jacobi Equation

RJ C R .J; Pc/ Pc D 0:

Given J .0/ and PJ .0/ there will be a unique Jacobi field with these initial conditions
as the Jacobi equation is a linear second-order equation. These variational fields are
called Jacobi fields along c. In case J .0/ D 0, they can easily be constructed via the
geodesic variation

Nc .s; t/ D expp

�
t
�Pc .0/C s PJ .0/�� :

Since Nc .s; 0/ D p for all s we must have J .0/ D @Nc
@s .0; 0/ D 0. The derivative is

computed as follows

@2 Nc
@t@s

.0; 0/ D @2 Nc
@s@t

.0; 0/

D @

@s

�Pc .0/C s PJ .0/� jsD0
D PJ .0/ :

What is particularly interesting about these Jacobi fields is that they control two
things we are interesting in studying.

First, observe that they tie in with the differential of the exponential map since

J .t/ D @Nc
@s
.0; t/

D @

@s
expp

�
t
�Pc .0/C s PJ .0/�� j.0;t/

D D expp

�
@

@s

�
t
�Pc .0/C s PJ .0/�� j.0;t/

�

D D expp

�
t PJ .0/� ;



6.1 The Connection Along Curves 239

where we think of t PJ .0/ 2 TtPc.0/TpM. This shows, in particular, that D expp is
nonsingular at t0v if and only if for each vector J .t0/ 2 Texpp.t0v/ there is a Jacobi
field along t 7! expp .tv/ that vanishes at t D 0 and has value J .t0/ at t0.

Second, Jacobi fields can also be used to calculate the Hessian of the function
r .x/ D jxpj. Assume that c .t/ is a unit speed geodesic with c .0/ D p and J .t/
a Jacobi field along c with J .0/ D 0. As long as tPc .0/ 2 seg0p, it follows that
Pc .t/ D rrjc.t/ and consequently:

Hess r .J .t/ ; J .t// D g
�rJ.t/rr; J .t/

�

D g

�
@2 Nc
@s@t

; J

�
j.0;t/

D g

�
@2 Nc
@t@s

; J

�
j.0;t/

D g
� PJ .t/ ; J .t/� :

6.1.5 Second Variation of Energy

Recall from section 5.4 that all geodesics are stationary points for the energy
functional. To better understand what happens near a geodesic we do exactly what
we would do in calculus, namely, compute the second derivative of any variation of
a geodesic.

Theorem 6.1.4 (Synge’s second variation formula, 1926). If Nc W .�"; "/� Œa; b� is
a smooth variation of a geodesic c .t/ D Nc .0; t/, then

d2E .cs/

ds2
jsD0 D

Z b

a

ˇ
ˇ
ˇ
ˇ
@2 Nc
@t@s

ˇ
ˇ
ˇ
ˇ

2

dt�
Z b

a
g

�
R

�
@Nc
@s
;
@Nc
@t

�
@Nc
@t
;
@Nc
@s

�
dtC g

�
@2 Nc
@s2

;
@Nc
@t

�ˇˇ
ˇ
ˇ

b

a

:

Proof. The first variation formula (see lemma 5.4.2) tells us that

dE .cs/

ds
D �

Z b

a
g

�
@Nc
@s
;
@2 Nc
@t2

�
dtC g

�
@Nc
@s
;
@Nc
@t

�ˇˇ
ˇ
ˇ

.s;b/

.s;a/
:

With this in mind we can calculate

@2E .cs/

@s2
D � @

@s

Z b

a
g

�
@Nc
@s
;
@2 Nc
@t2

�
dtC @

@s
g

�
@Nc
@s
;
@Nc
@t

�ˇˇ
ˇ
ˇ

.s;b/

.s;a/

D �
Z b

a
g

�
@2 Nc
@s2

;
@2 Nc
@t2

�
dt �

Z b

a
g

�
@Nc
@s
;
@3 Nc
@s@t2

�
dt

C g

�
@2 Nc
@s2

;
@Nc
@t

�ˇ̌
ˇ
ˇ

.s;b/

.s;a/

C g

�
@Nc
@s
;
@2 Nc
@s@t

�ˇ̌
ˇ
ˇ

.s;b/

.s;a/

:
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Setting s D 0 and using that c .0; t/ is a geodesic we obtain

@2E .cs/

@s2
jsD0

D �
Z b

a
g

�
@Nc
@s
;
@3 Nc
@s@t2

�
dtC g

�
@2 Nc
@s2

;
@Nc
@t

�ˇˇ
ˇ̌
b

a

C g

�
@Nc
@s
;
@2 Nc
@s@t

�ˇˇ
ˇ̌
b

a

D �
Z b

a
g

�
@Nc
@s
;R

�
@Nc
@s
;
@Nc
@t

�
@Nc
@t

�
dt �

Z b

a
g

�
@Nc
@s
;
@3 Nc
@t@s@t

�
dt

C g

�
@2 Nc
@s2

;
@Nc
@t

�ˇˇ̌
ˇ

b

a

C g

�
@Nc
@s
;
@2 Nc
@s@t

�ˇˇ̌
ˇ

b

a

D �
Z b

a
g

�
@Nc
@s
;R

�
@Nc
@s
;
@Nc
@t

�
@Nc
@t

�
dtC

Z b

a
g

�
@2 Nc
@t@s

;
@2 Nc
@s@t

�
dt

�
Z b

a

@

@t
g

�
@Nc
@s
;
@2 Nc
@s@t

�
dtC g

�
@2 Nc
@s2

;
@Nc
@t

�ˇˇ̌
ˇ

b

a

C g

�
@Nc
@s
;
@2 Nc
@s@t

�ˇˇ̌
ˇ

b

a

D �
Z b

a
g

�
@Nc
@s
;R

�
@Nc
@s
;
@Nc
@t

�
@Nc
@t

�
dtC

Z b

a
g

�
@2 Nc
@t@s

;
@2 Nc
@s@t

�
dt

� g

�
@Nc
@s
;
@2 Nc
@s@t

�ˇ̌
ˇ
ˇ

b

a

C g

�
@2 Nc
@s2

;
@Nc
@t

�ˇ̌
ˇ
ˇ

b

a

C g

�
@Nc
@s
;
@2 Nc
@s@t

�ˇ̌
ˇ
ˇ

b

a

D
Z b

a
g

�
@2 Nc
@t@s

;
@2 Nc
@t@s

�
dt �

Z b

a
g

�
R

�
@Nc
@s
;
@Nc
@t

�
@Nc
@t
;
@Nc
@s

�
dtC g

�
@2 Nc
@s2

;
@Nc
@t

�ˇˇ
ˇ̌
b

a

ut
The formula is going to be used in different ways below. First we observe that

for proper variations the last term drops out and the formula depends only on the
variational field V .t/ D @Nc

@s .0; t/ and the velocity field Pc of the original geodesic:

d2E .cs/

ds2
jsD0 D

Z b

a

ˇ
ˇ PVˇˇ2 dt �

Z b

a
g .R .V; Pc/ Pc;V/ dt:

Another special case occurs when the variational field is parallel PV D 0. In this case
the first term drops out:

d2E .cs/

ds2
jsD0 D �

Z b

a
g .R .V; Pc/ Pc;V/ dtC g

�
@2 Nc
@s2

; Pc
�ˇˇ
ˇ
ˇ

b

a

but the formula still depends on the variation and not just on V . If, however, we select
the variation such that s 7! Nc .s; t/ are geodesics, then the last term also drops out.
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6.2 Nonpositive Sectional Curvature

In this section we show that the exponential map expp W TpM ! M is a
covering map, provided .M; g/ is complete and has nonpositive sectional curvature
everywhere. This implies, in particular, that no compact simply connected manifold
admits such a metric. We shall also prove some interesting results about the
fundamental groups of such manifolds.

The first observation about manifolds with nonpositive curvature is that any
geodesic from p to q must be a local minimum for E W �.p; q/ ! Œ0;1/ by our
second variation formula. This is in sharp contrast to what we shall prove in positive
curvature, where sufficiently long geodesics can never be local minima.

Recall from our discussion of the fundamental equations in section 3.2 and 3.2.4
that Jacobi fields seem particularly well-suited for the task of studying nonpositive
curvature. This will be borne out here and later in section 6.4.

6.2.1 Manifolds Without Conjugate Points

We start with a result that gives strong restrictions on the behavior of the exponential
map.

Lemma 6.2.1. If expp W TpM ! M is nonsingular everywhere, i.e., has no critical
points, then it is a covering map.

Proof. By definition expp is an immersion, so on TpM choose the pullback metric
to make it into a local Riemannian isometry. We then know from lemma 5.6.4 that
expp is a covering map provided this new metric on TpM is complete. To see this,
simply observe that the metric is geodesically complete at the origin, since straight
lines through the origin are still geodesics. ut

We can now prove our first big result. It was originally established by Mangoldt
for surfaces. Hadamard in a survey article offered a different proof. Cartan extended
the result to higher dimensions under the assumption that the manifold is metrically
complete.

Theorem 6.2.2 (Mangoldt, 1881, Hadamard, 1889, and Cartan, 1925). If .M; g/
is complete, connected, and has sec � 0, then the universal covering is diffeomor-
phic to R

n.

Proof. The goal is to show that
ˇ̌
D expp .w/

ˇ̌
> 0 for all nonzero w 2 TvTpM. This

will imply that expp is nonsingular everywhere and hence a covering map.

Select a Jacobi field J along c .t/ D expp .tv/ such that J .0/ D 0 and PJ .0/ D w

so that
ˇ
ˇD expp .w/

ˇ
ˇ D jJ .1/j. Consider the function t 7! 1

2
jJ .t/j2 and its first and

second derivatives:
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d

dt

�
1

2
jJ .t/j2

�
D g

� PJ; J� ;

d2

dt2

�
1

2
jJ .t/j2

�
D d

dt
g
� PJ; J�

D g
�RJ; J�C g

� PJ; PJ�

D �g .R .J; Pc/ Pc; J/C ˇˇ PJˇˇ2

� ˇˇ PJˇˇ2 :

The last inequality follows from the assumption that g .R .x; y/ y; x/ � 0 for all
tangent vectors x; y. Integrating this inequality gives

g
� PJ; J� �

Z t

0

ˇ
ˇ PJˇˇ2 dtC g

� PJ .0/ ; J .0/�

D
Z t

0

ˇ̌ PJˇ̌2 dt

> 0

unless PJ .t/ D 0 for all t, in which case PJ .0/ D w D 0. Assuming w ¤ 0, integrating
the last inequality yields

1

2
jJ .t/j2 > 0;

which is what we wanted to prove. ut
No similar theorem can hold for Riemannian manifolds with Ric � 0 or scal �

0, since we saw in sections 4.2.3 and 4.2.5 that there exist Ricci flat metrics on
R
2 � Sn�2 and scalar flat metrics on R � Sn�1.

6.2.2 The Fundamental Group in Nonpositive Curvature

We are going to prove two results on the structure of the fundamental group for
manifolds with nonpositive curvature. The interested reader is referred to the book
by Eberlein [38] for further results on manifolds with nonpositive curvature.

First we need a little preparation. Let .M; g/ be a complete simply connected
Riemannian manifold of nonpositive curvature. The two key properties we use are
that any two points in M lie on a unique geodesic, and that distance functions are
everywhere smooth and convex.

We just saw that expp W TpM ! M is a diffeomorphism for all p 2 M. This
shows, as in Euclidean space, that there is only one geodesic through p and q .¤ p/.
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This also shows that the distance function jxpj is smooth on M�fpg. The modified
distance function

x 7! f0 .x/ D f0;p .x/ D 1

2
jxpj2 D 1

2
.r .x//2

is then smooth everywhere and its Hessian is given by

Hess f0 D dr2 C r Hess r:

If J .t/ is a Jacobi field along a unit speed geodesic emanating from p with J .0/ D 0,
then from section 6.1.4

Hess r .J .b/ ; J .b// D g
� PJ .b/ ; J .b/�

�
Z b

0

ˇ
ˇ PJˇˇ2 dt

> 0:

Since J .b/ can be arbitrary we have shown that the Hessian is positive definite. If c
is a geodesic, this implies that f0 ı c is convex as

d

dt
f0 ı c D g .rf0; Pc/ ;

d2

dt2
f0 ı c D d

dt
g .rf0; Pc/

D g .rPcrf0; Pc/C g .rf0; Rc/
D Hess f0 .Pc; Pc/
> 0:

With this in mind we can generalize the idea of convexity slightly (see also
section 7.1.3). A function is (strictly) convex if its restriction to all geodesics is
(strictly) convex. One sees that the maximum of any collection of convex functions
is again convex (you only need to prove this in dimension 1, as we can restrict to
geodesics). Given a finite collection of points p1; : : : ; pk 2 M, we can in particular
consider the strictly convex function

x 7! max
˚
f0;p1 .x/ ; : : : ; f0;pk .x/

�
:

In general, any proper, nonnegative, and strictly convex function has a unique
minimum. To see this, first note that there must be a minimum as the function is
proper and bounded from below. If there were two minima, then the function would
be strictly convex when restricted to a geodesic joining these two minima. But then
the function would have smaller values on the interior of this segment than at the
endpoints.
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The uniquely defined minimum for

x 7! max
˚
f0;p1 .x/ ; : : : f0;pk .x/

�

is denoted by cm1 fp1; : : : ; pkg and called the L1 center of mass of fp1; : : : ; pkg.
It is the center q of the smallest ball B .q;R/ � fp1; : : : ; pkg. If instead we had
considered

x 7!
kX

iD1
f0;pi .x/

we would have arrived at the usual center of mass also known as the L2 center of
mass.

The first theorem is concerned with fixed points of isometries.

Theorem 6.2.3 (Cartan, 1925). If .M; g/ is a complete simply connected Rieman-
nian manifold of nonpositive curvature, then any isometry F W M ! M of finite
order has a fixed point.

Proof. The idea, which is borrowed from Euclidean space, is that the center of mass
of any orbit must be a fixed point. First, define the order of F as the smallest integer k
such that Fk D id. Second, for any p 2 M consider the orbit

˚
p;F .p/ ; : : : ;Fk�1 .p/

�

of p. Then construct the center of mass

q D cm1
˚
p;F .p/ ; : : : ;Fk�1 .p/

�
:

We claim that F .q/ D q. This is because the function

x 7! f .x/ D max
˚
f0;p .x/ ; : : : f0;Fk�1.p/ .x/

�

has not only q as a minimum, but also F .q/. To see this just observe that since F is
an isometry, we have

f .F .q// D max
˚
f0;p .F .q// ; : : : f0;Fk�1.p/ .F .q//

�

D 1

2

�
max

˚jF .q/ pj ; : : : ; ˇˇF .q/Fk�1 .p/
ˇ
ˇ��2

D 1

2

�
max

˚ˇˇF .q/Fk .p/
ˇ
ˇ ; : : : ;

ˇ
ˇF .q/Fk�1 .p/

ˇ
ˇ��2

D 1

2

�
max

˚ˇ̌
qFk�1 .p/

ˇ̌
; : : : ;

ˇ̌
qFk�2 .p/

ˇ̌��2

D f .q/ :

The uniqueness of minima for strictly convex functions now implies F .q/ D q. ut
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Corollary 6.2.4. If .M; g/ is a complete Riemannian manifold of nonpositive
curvature, then the fundamental group is torsion free, i.e., all nontrivial elements
have infinite order.

The second theorem requires more preparation and a more careful analysis of
distance functions. Suppose again that .M; g/ is complete, simply connected and of
nonpositive curvature. Let us fix a modified distance function: x 7! 1

2
r2 D f0 .x/ and

a unit speed geodesic c W R ! M. The Hessian estimate from above only implies
that d2

dt2
.f0 ı c/ > 0. However, we know that this second derivative is 1 in Euclidean

space. So it shouldn’t be surprising that we have a much better quantitative estimate.

Lemma 6.2.5. If .M; g/ has nonpositive curvature, then any modified distance
function satisfies:

Hess f0 � g:

Proof. We follow the notation in the proof of theorem 6.2.2. If r .x/ D jxpj, then

Hess
1

2
r2 D dr2 C r Hess r:

So the claim follows if we can show that

r Hess r � gr;

where g D dr2 C gr. This estimate in turn holds if we can prove that

t � Hess r .J .t/ ; J .t// D t � g � PJ .t/ ; J .t/�

� g .J .t/ ; J .t// :

The reason behind the proof of this is slightly tricky and is known as Jacobi field
comparison. Consider the ratio

� .t/ D jJ .t/j2
g
� PJ .t/ ; J .t/� :

By l’Hospital’s rule it follows that

� .0/ D 2g
� PJ .0/ ; J .0/�

�g .R .J .0/ ; Pc .0// Pc .0/ ; J .0//C ˇ̌ PJ .0/ˇ̌2
D 0
ˇ̌ PJ .0/ˇ̌2

D 0:
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Using that the sectional curvature is nonpositive and then the Cauchy-Schwarz
inequality it follows that the derivative satisfies

P� .t/ D 2
�
g
�
J; PJ��2 � ˇ̌ PJˇ̌2 jJj2 C g .R .J; Pc/ Pc; J/ jJj2

�
g
�
J; PJ��2

� 2
�
g
�
J; PJ��2 � ˇˇ PJˇˇ2 jJj2
�
g
�
J; PJ��2

� 2
�
g
�
J; PJ��2 � �g �J; PJ��2
�
g
�
J; PJ��2

D 1:

Hence � .t/ � t and t � g �J .t/ ; PJ .t/� � jJ .t/j2. ut
Integrating the inequality d2

dt2

�
f0;p ı c

� � 1, where c is a unit speed geodesic,
yields

jpc .t/j2 � jpc .0/j2 C 2g
�rf0;p; Pc .0/

� � tC t2

D jpc .0/j2 C jc .0/ c .t/j2
C2 jpc .0/j jc .0/ c .t/j cos† �rf0;p; Pc .0/

�
:

Thus, if we have a triangle in M with sides lengths a; b; c and where the angle
opposite a is ˛, then

a2 � b2 C c2 � 2bc cos˛:

From this, one can conclude that the angle sum in any triangle is � 	 , and more
generally that the angle sum in any quadrilateral is � 2	 . See figure 6.2.

Now suppose that .M; g/ has negative curvature. Then it must follow that all of
the above inequalities are strict, unless p lies on the geodesic c. In particular, the
angle sum in any nondegenerate quadrilateral is < 2	 . This will be crucial for the
proof of the next theorem

Fig. 6.2 Triangle and
quadrilateral in negative
curvature

a

bac
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Theorem 6.2.6 (Preissmann, 1943). If .M; g/ is a compact manifold of negative
curvature, then any Abelian subgroup of the fundamental group is cyclic. In
particular, no compact product manifold M � N admits a metric with negative
curvature.

The proof requires some preliminary results that can also be used in other
contexts as they do not assume that the manifold has nonpositive curvature.

An axis for an isometry F W M! M is a geodesic c W R! M such that F .c/ is a
reparametrization of c. Since isometries map geodesics to geodesics, it must follow
that

F ı c .t/ D c .˙t C a/ :

Note that if � occurs, then c
�

a
2

�
is fixed by F. When F ı c .t/ D c .tC a/ we call a

the period of F with respect to c. The period depends on the parametrization of c.
Given an isometry F W M ! M the displacement function is defined as

x 7! ıF .x/ D jxF .x/j :

Lemma 6.2.7. Let F W M ! M be an isometry on a complete Riemannian
manifold. If the displacement function ıF has a positive minimum, then F has an
axis.

Proof. Let ıF have a minimum at p 2 M and c W Œ0; 1� ! M be a segment from
p to F .p/. Then F ı c is a segment from F .p/ to F2 .p/ with the same speed. We
claim that these two geodesics form an angle 	 at F .p/ and thus fit together as the
geodesic extension of c to Œ0; 2�. If we fix t 2 Œ0; 1�, then

ıF .p/ � ıF .c.t//

D jc.t/.F ı c/.t/j
� jc.t/c.1/j C jc .1/ .F ı c/.t/j
D jc.t/c .1/j C j.F ı c/.0/.F ı c/.t/j
D jc.t/c.1/j C jc.0/c.t/j
D jc.0/c.1/j
D jpF.p/j :

This means that the curve that consists of cjŒt;1� followed by F ı cjŒ0;t� must be a
segment and thus a geodesic by corollary 5.4.4 (see also figure 6.3). This geodesic
is obviously just the extension of c, so .F ı c/ .t/ D c .1C t/. We can repeat this
argument forwards and backwards along the extension of c to R to show that it
becomes an axis for F of period 1. ut
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Let 	 W QM! M be the universal cover of M. A deck transformation F W QM! QM
is a map such that 	 ı F D 	 , i.e., a lift of 	 . As such, it is determined by the
value of F .p/ 2 	�1 .q/ for a given p 2 	�1 .q/. We can think of the fundamental
group 	1 .M; q/ as acting by deck transformations: Given p 2 	�1 .q/, a loop in
Œ˛� 2 	1 .M; q/ yields a deck transformation with F .p/ D Q̨ .1/, where Q̨ is the
lift of ˛ such that p D Q̨ .0/. Finally note that in the Riemannian setting deck
transformations are isometries since 	 W QM ! M is a local isometry.

Lemma 6.2.8. If F W QM ! QM is a nontrivial deck transformation on the universal
cover over a compact base M, then the dilation ıF has a positive minimum. The axis
corresponding to this minimum is mapped to a closed geodesic in M whose length
is minimal in its free homotopy class. Moreover, ıF .x/ � 2 inj .M/.

Proof. Fix a nontrivial deck transformation F W QM ! QM. We start by characterizing
the loops in M generated by F. First we show that when xi 2 QM, i D 0; 1 are joined
to F .xi/ by curves ci W Œ0; 1� ! QM, then the loops 	 ı ci are freely homotopic
through a homotopy of loops in M. To see this choose a path H .s; 0/ W Œ0; 1� ! QM
with H .i; 0/ D xi, i D 0; 1. Then define H .s; 1/ D F .H .s; 0// and H .i; t/ D ci .t/,

i D 0; 1. This defines H on @
�
Œ0; 1�2

�
. Simple connectivity of QM shows this can be

extended to a map H W Œ0; 1�2 ! QM. Now 	 .H .s; t// is the desired homotopy in M
since

	 .H .s; 1// D 	 ı F .H .s; 0// D 	 .H .s; 0// :

Conversely we claim that any loop at 	 .x1/ 2 M that is freely homotopic through
loops to 	 ı c0 must lift to a curve from x1 to F .x1/. Let H W Œ0; 1�2 ! M be
such a homotopy, i.e., H .0; t/ D .	 ı c0/ .t/, H .s; 0/ D H .s; 1/, and H .1; 0/ D
	 .x1/. Let QH be the lift of H to QM such that QH .0; 0/ D x0. Unique path lifting
guarantees that c0 .t/ D QH .0; t/. Now both QH .s; 0/ and QH .s; 1/ are lifts of the same
curve H .s; 0/. As F is a deck transformation

�
F ı QH� .s; 0/ is also a lift of H .s; 0/.

However,
�
F ı QH� .0; 0/ D QH .0; 1/ so it follows that

�
F ı QH� .s; 0/ D QH .s; 1/.

Letting s D 1 gives the claim.
In particular, we have shown that if F is nontrivial, then none of these loops can

be homotopically trivial. This implies that ıF .x/ � 2 inj	.x/ .M/, as otherwise the
segment from x to F .x/ would generate a loop of length < 2 inj	.x/ .M/. However,
such loops are contractible as they lie in B

�
	 .x/ ; inj	.x/ .M/

�
.

We are now ready to minimize the dilatation. Consider a sequence qi 2 QM such
that lim ıF .qi/ D inf ıF � inj M and with it a sequence of segments Qci W Œ0; 1�! QM
with ci .0/ D qi and ci .1/ D F .qi/. Let ci D 	 ı Qci be the corresponding loops
in M. Since j Pcij D ıF .qi/, compactness of M implies that after possibly passing
to a subsequence we can assume that Pci .0/ converge to a vector v 2 TqM where
q D lim ci .0/ and jvj D inf ıF. Continuity of the exponential map implies that
the curves ci converge to the geodesic c .t/ D expq .tv/. This geodesic is in turn
a loop at q that is freely homotopic through loops to ci for large i; because when
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jci .t/ c .t/j < inj .M/, they can be joined by unique short geodesics resulting in a
homotopy. The above characterization of loops generated by F, then shows that any

lift Qc of c must satisfy F
� Qc .0/

�
D Qc .1/. All in all,

ıF

� Qc .0/
�
� L .Qc/ D L .c/ D jvj D inf ıF:

It is clear that c has minimal length in its free homotopy class. A simple application
of the first variation formula (see 5.4.2) then shows that it must be a closed geodesic.

ut
These preliminaries allow us to prove the theorem.

Proof of Theorem 6.2.6. We know that nontrivial deck transformations have axes.
To see that axes are unique in negative curvature, assume that we have two

different axes c1 and c2 for F. If these intersect in one point, they must, by virtue of
being invariant under F, intersect in at least two points. But then they must be equal.
Thus they do not intersect. Select p1 2 c1 and p2 2 c2, and join these points by a
segment � . Then Fı� is a segment from F .p1/ to F .p2/. Since F is an isometry that
preserves c1 and c2, we see that the adjacent angles along the two axes formed by the
quadrilateral p1, p2, F .p1/, F .p2/ must add up to 	 (see also figure 6.3). But then
the angle sum is 2	 , which is not possible unless the quadrilateral is degenerate.
That is, all points lie on one geodesic.

Finally pick a deck transformation G that commutes with F. If 1 is the period,
then

.G ı c/ .tC 1/ D .G ı F ı c/ .t/ D .F ı G ı c/ .t/ :

This implies that G ı c is an axis for F, and so must be c itself. Next consider the
group H generated by F; G. Any element in this group has c as an axis. Thus we
get a map H! R that sends an isometry to its uniquely defined period. This map is
a homomorphism with trivial kernel. Consider an additive subgroup A � R and let
a D inf fx 2 A j x > 0g. It is easy to check that if a D 0, then A is dense, while if
a > 0, then A D fna j n 2 Zg. The image of H in R must have the second property
as no nonzero period along c can be smaller than inj M

jPcj . This shows that H is cyclic.
ut

p

F( p)

F(F(p))

x F(x)

F(s)

c2

c1

p1 p2s

Fig. 6.3 Dilatation and axes
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6.3 Positive Curvature

In this section we establish several of the classical results for manifolds with positive
curvature. In contrast to the previous section, it is not possible to carry Euclidean
geometry over to this setting. So while we try to imitate the results, new techniques
are necessary.

In our discussion of the fundamental equations in section 3.2 we saw that
using parallel fields most easily gave useful information about Hessians of distance
functions when the curvature is nonnegative. This will be confirmed here through the
use of suitable variational fields to find the second variation of energy. In section 6.5
below we show how more sophisticated techniques can be used in conjunction with
the developments here to establish stronger results.

6.3.1 The Diameter Estimate

Our first restriction on positively curved manifolds is an estimate for how long
minimal geodesics can be. It was first proven by Bonnet for surfaces and later by
Synge for general Riemannian manifolds as an application of his second variation
formula.

Lemma 6.3.1 (Bonnet, 1855 and Synge, 1926). If .M; g/ satisfies sec � k > 0,
then geodesics of length > 	=

p
k cannot be locally minimizing.

Proof. Let c W Œ0; l� ! M be a unit speed geodesic of length l > 	=
p

k. Along c
consider the variational field

V .t/ D sin
�	

l
t
�

E .t/ ;

where E is a unit parallel field perpendicular to c. Since V vanishes at t D 0 and
t D l, it corresponds to a proper variation. By theorem 6.1.4 the second derivative
of this variation is

d2E

ds2
jsD0 D

Z l

0

ˇ
ˇ PVˇˇ2 dt �

Z l

0

g .R .V; Pc/ Pc;V/ dt

D
Z l

0

ˇ
ˇ̌	

l
cos

�	
l

t
�

E .t/
ˇ
ˇ̌2 dt

�
Z l

0

g
�

R
�

sin
�	

l
t
�

E .t/ ; Pc
�
Pc; sin

�	
l

t
�

E .t/
�

dt

D
�	

l

�2 Z l

0

cos2
�	

l
t
�

dt �
Z l

0

sin2
�	

l
t
�

sec .E; Pc/ dt
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�
�	

l

�2 Z l

0

cos2
�	

l
t
�

dt � k
Z l

0

sin2
�	

l
t
�

dt

< k
Z l

0

cos2
�	

l
t
�

dt � k
Z l

0

sin2
�	

l
t
�

dt

D 0:

Thus all nearby curves in the variation are shorter than c. ut
The next result is a very interesting and completely elementary consequence

of the above result. It seems to have been pointed out first by Hopf-Rinow for
surfaces in their famous paper on completeness and soon after by Myers for general
Riemannian manifolds.

Corollary 6.3.2 (Hopf and Rinow, 1931 and Myers, 1932). If .M; g/ is complete
and satisfies sec � k > 0, then M is compact and diam .M; g/ � 	=

p
k D diam Sn

k .
In particular, M has finite fundamental group.

Proof. As no geodesic of length > 	=
p

k can realize the distance between endpoints
and M is complete, the diameter cannot exceed 	=

p
k. Finally use that the universal

cover has the same curvature condition to conclude that it must also be compact.
Thus, the fundamental group is finite. ut

These results were later extended to manifolds with positive Ricci curvature by
Myers.

Theorem 6.3.3 (Myers, 1941). If .M; g/ is a complete Riemannian manifold with
Ric � .n � 1/k > 0, then diam.M; g/ � 	=

p
k. Furthermore, .M; g/ has finite

fundamental group.

Proof. It suffices to show as before that no geodesic of length > 	=
p

k can be
minimal. If c W Œ0; l�! M is the geodesic we can select n � 1 variational fields

Vi .t/ D sin
�	

l
t
�

Ei .t/ ; i D 2; : : : ; n

as before. This time we also assume that Pc;E2; : : :En form an orthonormal basis
for Tc.t/M. By adding up the contributions to the second variation formula for each
variational field we get

nX

iD2

d2E

ds2
jsD0 D

nX

iD2

Z l

0

ˇ̌ PVi

ˇ̌2
dt �

Z l

0

g .R .Vi; Pc/ Pc;Vi/ dt

D .n � 1/
�	

l

�2 Z l

0

cos2
�	

l
t
�

�
nX

iD2

Z l

0

sin2
�	

l
t
�

sec .Ei; Pc/ dt



252 6 Sectional Curvature Comparison I

D .n � 1/
�	

l

�2 Z l

0

cos2
�	

l
t
�

dt �
Z l

0

sin2
�	

l
t
�

Ric .Pc; Pc/ dt

< .n � 1/ k
Z l

0

cos2
�	

l
t
�

dt � .n � 1/ k
Z l

0

sin2
�	

l
t
�

dt

< 0:

Thus the second variation is negative for at least one of the variational fields. ut
Example 6.3.4. The incomplete Riemannian manifold S2 � f˙pg clearly has con-
stant curvature 1 and infinite fundamental group. To make things worse; the
universal covering also has diameter 	 .

Example 6.3.5. The manifold S1 � R
3 admits a complete doubly warped product

metric

dr2 C �2.r/d�2 C 
2.r/ds22;

that has Ric > 0 everywhere. Curvatures are calculated as in 1.4.5. If we define
�.t/ D t�1=4 and 
.t/ D t3=4 for t � 1, then the Ricci curvature will be positive.
Next extend to Œ0;1� so that the metric becomes smooth at t D 0; the functions
are C1 and piecewise smooth at t D 1; �1 < P� � 0; 0 < P
 � 1; R
 < 0; and on
Œ0; 1� R� � 0. This will result in a C1 metric that has positive Ricci curvature except
at t D 1. Finally, smooth out � at t D 1 ensuring that the Ricci curvature stays
positive.

6.3.2 The Fundamental Group in Even Dimensions

For the next result we need to study what happens when we have a closed geodesic
in a Riemannian manifold of positive curvature.

Let c W Œ0; l� ! M be a closed unit speed geodesic, i.e., Pc .0/ D Pc .l/. Let p D
c .0/ D c .l/ and consider parallel translation along c. This defines a linear isometry
P W TpM! TpM. Since c is a closed geodesic we have that P .Pc .0// D Pc .l/ D Pc .0/.
Thus, P preserves the orthogonal complement to Pc .0/ in TpM. Now recall that linear
isometries L W Rk ! R

k with detL D .�1/kC1 have 1 as an eigenvalue, i.e., L .v/ D
v for somev 2 R

k. We can use this to construct a closed parallel field around c in
one of two ways:

(1) If M is orientable and even-dimensional, then parallel translation around a
closed geodesic preserves orientation, i.e., det D 1. Since the orthogonal
complement to Pc .t/ in TpM is odd dimensional there must exist a closed parallel
field around c.

(2) If M is not orientable, has odd dimension, and furthermore, c is a nonorientable
loop, i.e., the orientation changes as we go around this loop, then parallel
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Fig. 6.4 Finding shorter
curves near a closed geodesic

translation around c is orientation reversing, i.e., det D �1. Now, the orthogonal
complement to Pc .t/ in TpM is even-dimensional, and since P .Pc .0// D Pc .0/,
it follows that the restriction of P to this even-dimensional subspace still has
det D �1. Thus, we get a closed parallel field in this case as well.

In figure 6.4 we have sketched what happens when the closed geodesic is the equator
on the standard sphere. In this case there is only one choice for the parallel field, and
the shorter curves are the latitudes close to the equator.

This discussion leads to an interesting and surprising topological result for
positively curved manifolds.

Theorem 6.3.6 (Synge, 1936). Let M be a compact manifold with sec > 0.

(1) If M is even-dimensional and orientable, then M is simply connected.
(2) If M is odd-dimensional, then M is orientable.

Proof. The proof goes by contradiction. So in either case assume we have a
nontrivial universal covering 	 W QM! M. Let F be a nontrivial deck transformation
that in the odd-dimensional case reverses orientation. From lemma 6.2.8 we obtain
a unit speed geodesic (axis) Qc W R ! QM that is mapped to itself by F. Moreover,
c D 	 ı Qc is the shortest curve in its free homotopy class in M when restricted to an
interval Œa; b� of length b � a D min ıF.

In both cases our assumptions are such that the closed geodesics have closed
perpendicular parallel fields. We can now use the second variation formula with this
parallel field as variational field. Note that the variation isn’t proper, but since the
geodesic is closed the end point terms cancel each other

d2E .cs/

ds2
jsD0 D �

Z b

a
g .R .E; Pc/ Pc;E/ dtC g

�
@2 Nc
@s2

; Pc
�ˇ̌
ˇ
ˇ

b

a

D �
Z b

a
g .R .E; Pc/ Pc;E/ dt

D �
Z b

a
sec .E; Pc/ dt

< 0:



254 6 Sectional Curvature Comparison I

Thus all nearby curves in this variation are closed curves whose lengths are shorter
than c. This contradicts our choice of c as the shortest curve in its free homotopy
class. ut

The first important conclusion we get from this result is that while RP2�RP2 has
positive Ricci curvature, it cannot support a metric of positive sectional curvature.
It is, on the other hand, completely unknown whether S2 � S2 admits a metric of
positive sectional curvature. This is known as the Hopf problem. Recall that in
section 6.2.2 we showed, using fundamental group considerations, that no product
manifold admits negative curvature. In this case, fundamental group considerations
cannot take us as far.

6.4 Basic Comparison Estimates

In this section we lay the foundations for the comparison estimates that will be
needed later in the text.

6.4.1 Riccati Comparison

We start with a general result for differential inequalities.

Proposition 6.4.1 (Riccati Comparison Principle). If we have two smooth func-
tions �1;2 W .0; b/! R such that

P�1 C �21 � P�2 C �22;

then

�2 � �1 � lim sup
t!0

.�2 .t/ � �1 .t// :

Proof. Let F .t/ D R
.�2 C �1/ dt be an antiderivative for �2 C �1 on .0; b/. The

claim follows since the function .�2 � �1/ eF is increasing:

d

dt

�
.�2 � �1/ eF

� D � P�2 � P�1 C �22 � �21
�

eF � 0:

ut
This can be turned into more concrete estimates.

Corollary 6.4.2 (Riccati Comparison Estimate). Consider a smooth function � W
.0; b/! R with � .t/ D 1

t C O .t/ and a real constant k.
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(1) If P�C �2 � �k, then

� .t/ � sn0
k .t/

snk .t/
:

Moreover, b � 	=
p

k when k > 0.
(2) If �k � P�C �2, then

sn0
k .t/

snk .t/
� � .t/

for all t < b when k � 0 and t < min fb; 	=p
kg when k > 0.

Proof. First note that for any k the comparison function satisfies

sn0
k .t/

snk .t/
D 1

t
C O .t/

and solves

P�C �2 D �k:

When k > 0 this function is only defined on .0; 	=
p

k/ and

lim
t! 	p

k

sn0
k .t/

snk .t/
D �1:

In case P�C �2 � �k this will prevent � from being smooth when b > 	=
p

k.
Similarly, when �k � P�C �2 we are forced to assume that b � 	=

p
k in order for

the comparison function to be defined. ut
Let us apply these results to one of the most commonly occurring geometric

situations. Suppose that on a Riemannian manifold .M; g/ we have introduced
exponential coordinates around a point p 2 M so that g D dr2 C gr on a star
shaped open set in TpM � f0g D .0;1/ � Sn�1. Along any given geodesic from p
the metric gr is thought of as being on Sn�1. It is not important for the next result
that M be complete as it is essentially local in nature.

Theorem 6.4.3 (Rauch Comparison). Assume that .M; g/ satisfies k � sec � K.
If g D dr2 C gr represents the metric in the polar coordinates, then

sn0
K .r/

snK .r/
gr � Hess r � sn0

k .r/

snk .r/
gr:

Consequently, the modified distance functions from corollary 4.3.4 satisfy:

Hess fk � .1 � kfk/ g;

Hess fK � .1 � KfK/ g:
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Proof. It’ll be convenient to use slightly different techniques for lower and upper
curvature bounds. Specifically, for lower curvature bounds parallel fields are the
easiest to use, while Jacobi fields are better suited to upper curvature bounds.

In both cases assume that we have a unit speed geodesic c .t/ with c .0/ D p and
that t 2 Œ0; b�, with c .Œ0; b�/ � expp

�
seg0p

�
so that r .x/ D jxpj is smooth along the

entire geodesic segment.
We start with the upper curvature situation as it is quite close in spirit to

lemma 6.2.5. In fact that proof can be easily adapted to the case where sec � K � 0,
but when K > 0 it runs into trouble (see exercise 6.7.11). Instead consider the
reciprocal ratio

� .t/ D g
� PJ; J�

jJj2 D Hess r

�
J

jJj ;
J

jJj
�

for a Jacobi field along c with J .0/ D 0 and PJ .0/ ? Pc .0/. It follows that J .t/ ? Pc .t/
for all t and

P� D �R .J; Pc; Pc; J/ jJj2 C ˇˇ PJˇˇ2 jJj2 � 2 �g � PJ; J��2
jJj4

� �K C
ˇ
ˇ PJˇˇ2 jJj2 � 2 �g � PJ; J��2

jJj4
� �K � �2:

In case there is a lower curvature bound, select instead a unit parallel field E
along c that is perpendicular to Pc and consider

� D g .S .E/ ;E/ D Hess r .E;E/ :

From part (2) of proposition 3.2.11 we obtain

P� D �R .E; Pc; Pc;E/ � g .S .E/ ; S .E//

� �k � .g .S .E/ ;E//2
D �k � �2:

In both cases we have the initial conditions that � .t/ D 1
t C O .t/ and so we

obtain the desired inequalities for � and hence Hess r from corollary 6.4.2.
The Hessian estimates for the modified distance functions follow immediately.

ut
Remark 6.4.4. A more traditional proof technique using the index form is discussed
in exercise 6.7.25 within the context of lower curvature bounds. It can also be
adapted to deal with upper curvature bounds.
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6.4.2 The Conjugate Radius

As in the proof of theorem 6.2.2 we are going to estimate where the exponential
map is nonsingular.

Example 6.4.5. Consider Sn
K ; K > 0. If we fix p 2 Sn

K and use polar coordinates,
then the metric looks like dr2 C sn2Kds2n�1. At distance 	p

K
from p we will hit a

conjugate point no matter what direction we go in.

As a generalization of our result on no conjugate points when sec � 0 we
can show

Theorem 6.4.6. If .M; g/ has sec � K; K > 0, then

expp W B
�
0;

	p
K

�
! M

has no critical points.

Proof. Let c .t/ be a unit speed geodesic and J .t/ a Jacobi field along c with
J .0/ D 0 and PJ .0/ ? Pc .0/. We have to show that J .t/ can’t vanish for any
t 2 .0; 	=

p
K/. Assume that J > 0 on .0; b/ and J .b/ D 0. From the proof of

theorem 6.4.3 we obtain

g
� PJ .t/ ; J .t/�

jJ .t/j2 � sn0
K .t/

snK .t/

for t < min fb; 	=p
Kg. This is equivalent to saying that

d

dt

� jJ .t/j
snK .t/

�
� 0:

Since D expp is the identity at the origin it follows that jJ .t/j D t
ˇ
ˇ PJ .0/ˇˇ C O

�
t2
�
.

This together with l’Hospital’s rule shows that

lim
t!0

� jJ .t/j
snK .t/

�
D lim

t!0

g
� PJ .t/ ; J .t/�

jJ .t/j

D lim
t!0

Hess r .J .t/ ; J .t//

jJ .t/j

D lim
t!0

t�1 jJ .t/j2 C O
�
t3
�

jJ .t/j
D lim

t!0
t�1 jJ .t/j

D ˇ
ˇ PJ .0/ˇˇ :

It follows that J .t/ � ˇˇ PJ .0/ˇˇ snK .t/ > 0 for all t < min fb; 	=p
Kg. This shows that

we can’t have b < 	=
p

K and the claim follows. ut
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With this information about conjugate points, we also get estimates for the
injectivity radius using the characterization from lemma 5.7.12. For Riemannian
manifolds with sec � 0 the injectivity radius satisfies

inj.p/ D 1

2
� .length of shortest geodesic loop based at p/

as there are no conjugate points whatsoever. On a closed Riemannian manifold with
sec � 0 we claim that

inj.M/ D inf
p2M

inj.p/ D 1

2
� .length of shortest closed geodesic/ :

Since M is closed, the infimum must be a minimum. This follows from continuity
p 7! inj.p/, which in turn is a consequence of exp W TM ! M�M being smooth and
the characterization of inj.p/ from lemma 5.7.12. If p 2 M realizes this infimum,
and c W Œ0; 1�! M is the geodesic loop realizing inj.p/, then we can split c into two
equal segments joining p and c

�
1
2

�
. Thus, inj

�
c
�
1
2

�� � inj.p/, but this means that c
must also be a geodesic loop as seen from c

�
1
2

�
. In particular, it is smooth at p and

forms a closed geodesic.
The same line of reasoning yields the following more general result.

Lemma 6.4.7 (Klingenberg). Let .M; g/ be a compact Riemannian manifold with
sec � K, where K > 0. Then

inj .p/ � min

�
	p
K
;
1

2
� .length of shortest geodesic loop based at p/

�
;

and

inj.M/ � 	p
K

or inj.M/ D 1

2
� .length of shortest closed geodesic/ :

These estimates will be used in the next section.
Next we turn our attention to the convexity radius.

Theorem 6.4.8. Suppose R satisfies

(1) R � 1
2
� inj.x/, for x 2 B.p;R/, and

(2) R � 1
2
� 	p

K
, where K D sup fsec.	/ j 	 � TxM; x 2 B.p;R/g.

Then r.x/ D jxpj is convex on B.p;R/, and any two points in B.p;R/ are joined
by a unique segment that lies in B.p;R/.

Proof. The first condition tells us that any two points in B.p;R/ are joined by a
unique segment in M, and that r.x/ is smooth on B.p; 2 � R/ � fpg. The second
condition ensures that Hess r � 0 on B.p;R/. It then remains to be shown that
if x; y 2 B.p;R/, and c W Œ0; 1� ! M is the unique segment joining them, then
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c � B.p;R/. For fixed x 2 B.p;R/, define Cx to be the set of ys for which this
holds. Certainly x 2 Cx and Cx is open. If y 2 B.p;R/ \ @Cx, then the segment
c W Œ0; 1� ! M joining x to y must lie in B.p;R/ by continuity. Now consider
'.t/ D r.c.t//. By assumption

'.0/; '.1/ < R;

R'.t/ D Hess r .Pc.t/; Pc.t// � 0:

Thus, ' is convex, and consequently

max'.t/ � max f'.0/; '.1/g < R;

showing that c � B.p;R/. ut
The largest R such that r.x/ is convex on B.p;R/ and any two points in B.p;R/ are

joined by unique segments in B.p;R/ is called the convexity radius at p. Globally,

conv:rad .M; g/ D inf
p2M

conv:rad.p/:

The previous result tell us

conv:rad .M; g/ � min

�
inj .M; g/

2
;
	

2
p

K

�
; K D sup sec .M; g/ :

In nonpositive curvature this simplifies to

conv:rad .M; g/ D inj .M; g/

2
:

6.5 More on Positive Curvature

In this section we shall establish some further restrictions on the topology of
manifolds with positive curvature. The highlight will be the classical quarter
pinched sphere theorem of Rauch, Berger, and Klingenberg. To prove this theorem
requires considerable preparation. We shall elaborate further on this theorem and its
generalizations in section 12.3.

6.5.1 The Injectivity Radius in Even Dimensions

Using the ideas of the proof of theorem 6.3.6 we get another interesting restriction
on the geometry of positively curved manifolds.
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Theorem 6.5.1 (Klingenberg, 1959). If .M; g/ is a compact orientable even-
dimensional manifold with 0 < sec � 1, then inj .M; g/ � 	 . If M is not orientable,
then inj .M; g/ � 	

2
.

Proof. The nonorientable case follows from the orientable case, as the orientation
cover will have inj .M; g/ � 	 .

By lemma 6.4.7 and the upper curvature bound it follows that if inj M < 	 , then
the injectivity radius is realized by a closed geodesic. So let us assume that there is
a closed geodesic c W Œ0; 2 inj M� ! M parametrized by arclength, where 2 inj M <

2	 . Since M is orientable and even dimensional, we know from section 6.3.2 and the
proof of theorem 6.3.6 that for all small " > 0 there are curves c" W Œ0; 2 inj M� !
M that converge to c as " ! 0 and with L .c"/ < L .c/ D 2 inj M. Since c" �
B .c" .0/ ; inj M/ there is a unique segment from c" .0/ to c" .t/. Thus, if c" .t"/ is
the point at maximal distance from c" .0/ on c", we get a segment �" joining these
points that in addition is perpendicular to c" at c" .t"/. As " ! 0, it follows that
t" ! inj M, and thus the segments �" must subconverge to a segment from c .0/ to
c .inj M/ that is perpendicular to c at c .inj M/. However, as the conjugate radius is
� 	 > inj M, and c is a geodesic loop realizing the injectivity radius at c .0/, we
know from lemma 5.7.12 that there can only be two segments from c .0/ to c .inj M/.
Thus, we have a contradiction with our assumption 	 > inj M. ut

In figure 6.5 we have pictured a fake situation that gives the idea of the proof.
The closed geodesic is the equator on the standard sphere, and �" converges to a
segment going through the north pole.

A similar result can clearly not hold for odd-dimensional manifolds. In dimen-
sion 3 the quotients of spheres S3=Zk for all positive integers k are all orientable.
The image of the Hopf fiber via the covering map S3 ! S3=Zk is a closed geodesic
of length 2	

k that goes to 0 as k ! 1. Also, the Berger spheres
�
S3; g"

�
give

counterexamples, as the Hopf fiber is a closed geodesic of length 2	". In this case
the curvatures lie in

	
"2; 4 � 3"2
. So if we rescale the upper curvature bound to be

1, the length of the Hopf fiber becomes 2	"
p
4 � 3"2 and the curvatures will lie in

the interval
h

"2

4�3"2 ; 1
i

. When " < 1p
3
, the Hopf fibers have length < 2	 . In this

case the lower curvature bound becomes smaller than 1
9
.

Fig. 6.5 Equator with short
cut through the Northpole
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A much deeper result by Klingenberg asserts that if a simply connected manifold
has all its sectional curvatures in the interval . 1

4
; 1�, then the injectivity radius is

still � 	 (see the next section for the proof). This result has been improved first
by Klingenberg-Sakai and Cheeger-Gromoll to allow for the curvatures to be in	
1
4
; 1


. More recently, Abresch-Meyer showed that the injectivity radius estimate

still holds if the curvatures are in
	
1
4
� 10�6; 1



. The Berger spheres show that such

an estimate will not hold if the curvatures are allowed to be in
	
1
9
� "; 1
. Notice

that the hypothesis on the fundamental group being trivial is necessary in order to
eliminate all the constant curvature spaces with small injectivity radius.

These injectivity radius estimates will be used to prove some fascinating sphere
theorems.

6.5.2 Applications of Index Estimation

Some notions and results from topology are needed to explain the material here.
We say that A � X is l-connected if the relative homotopy groups 	k .X;A/

vanish for k � l. A theorem of Hurewicz then shows that the relative homology
groups Hk .X;A/ also vanish for k � l. The long exact sequences for the pair .X;A/

	kC1 .X;A/! 	k .A/! 	k .X/! 	k .X;A/

and

HkC1 .X;A/! Hk .A/! Hk .X/! Hk .X;A/

then show that 	k .A/ ! 	k .X/ and Hk .A/ ! Hk .X/ are isomorphisms for k < l
and surjective for k D l.

We say that a critical point p 2 M for a smooth function f W M ! R has index
� m if the Hessian of f is negative definite on a m-dimensional subspace in TpM.
Note that if m � 1, then p can’t be a local minimum for f as the function must
decrease in the directions where the Hessian is negative definite. The index of a
critical point gives us information about how the topology of M changes as we pass
through this point. In Morse theory a much more precise statement is proven, but it
also requires the critical points to be nondegenerate, an assumption we do not wish
make here (see [75]).

Theorem 6.5.2. Let f W M ! R be a smooth proper function. If b is not a critical
value for f and all critical points in f �1 .Œa; b�/ have index � m, then

f �1 ..�1; a�/ � f �1 ..�1; b�/
is .m � 1/-connected.

Outline of Proof. If there are no critical points in f �1 .Œa; b�/, then the gradient flow
will deform f �1 ..�1; b�/ to f �1 ..�1; a�/. This is easy to prove and is explained
in lemma 12.1.1. If there are critical points, then by compactness we can cover
the set of critical points by finitely many open sets Ui � .�a; a/n, 0 < a < 1,



262 6 Sectional Curvature Comparison I

where NUi � Vi and NVi � Œ�1; 1�n is a closed box coordinate chart where the first m
coordinates correspond to directions where Hess f is negative definite.

Consider a map 
 W Nk�1 ! f �1 .Œa; b�/, k � m, where @Nk�1 � f �1 ..�1; a�/
if the boundary is nonempty.

• On M �SUi we can use the flow of �� .x/rf jx, where � � 0 and ��1 .0/ DS NUi. This will deform 
 keeping it fixed on NUi and forcing maxf �1.Œa;b�/ f ı 
 to
decrease while ensuring that max NVi

f ı 
 is not obtained on @Vi.
• Let Si D

˚
p 2 Vi j x1 .p/ D � � � D xm .p/ D 0�. The restriction k � m allows us to

use transversality to ensure that there is a homotopy 
t, t 2 Œ0; �/, where 
0 D 
;

t does not intersect Si for t > 0; and t 7! 
t is constant on M � Vi. Moreover,
for sufficiently small t max NVi

f ı 
t is still not obtained on @Vi.
• Finally, when 
 doesn’t intersect the submanifold Si, the flow for the radial fieldPm

jD1 xj@j on NVi decreases the value of max NVi
f ı 
 and moves 
 outside NUi.

With these three types of deformations it is possible to continuously deform 
 until
its image lies in f �1 ..�1; a�/. ut

In analogy with �p;q .M/ define

�A;B .M/ D fc W Œ0; 1�! M j c .0/ 2 A; c .1/ 2 Bg :

If A;B � M are compact, then the energy functional E W �A;B .M/ ! Œ0;1/
is reasonably nice in the sense that it behaves like a proper smooth function on a
manifold. If in addition A and B are submanifolds, then the variational fields for
variations in �A;B .M/ consist of fields along the curve that are tangent to A and
B at the endpoints. Therefore, critical points are naturally identified with geodesics
that are perpendicular to A and B at the endpoints. We say that the index of such a
geodesic� k if there is a k-dimensional space of fields along the geodesic such that
the second variation of the these fields is negative.

One can now either try to reprove the above theorem in a suitable infinite
dimensional context (see [30] or [69]) or use finite dimensional approximations to
�A;B .M/ (see [75]). Both routes are technical but fairly straightforward.

Theorem 6.5.3. Let M be a complete Riemannian manifold and A � M a compact
submanifold. If every geodesic in �A;A .M/ that is perpendicular to A at the end
points has index � k, then A � M is k-connected.

Outline of Proof. See also [30] or [69, Theorem 2.5.16] for a proof. Identify A D
E�1 .0/ and use the previous theorem as a guide for how to deform maps. This shows
that A � �A;A .M/ is .k � 1/-connected. Next we note that

	l .�A;A .M/ ;A/ D 	lC1 .M;A/ :

This proves the result. ut
This theorem can be used to prove a sphere theorem by Berger.
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Theorem 6.5.4 (Berger, 1958). Let M be a closed n-manifold with sec � 1. If
injp > 	=2 for some p 2 M, then M is .n � 1/-connected and hence a homotopy
sphere.

Proof. We’ll use theorem 6.5.3 with A D fpg. First note that every geodesic loop
at p is either the constant curve or has length > 	 since injp > 	=2. We showed
in lemma 6.3.1 that geodesics of length > 	 have proper variations whose second
derivative is negative. In fact each parallel field along the geodesic could be modified
to create such a variation. As there is an .n � 1/-dimensional space of such parallel
fields we conclude that the index of such geodesics is � .n � 1/. This shows that
p 2 M is .n � 1/-connected and consequently that M is .n � 1/-connected.

Finally, to see that M is a homotopy sphere we select a map F W M ! Sn of
degree 1. Since M is .n� 1/-connected this map must be an isomorphism on 	k for
k < n as Sn is also .n � 1/-connected. We claim that

	n .M/ ' Hn .M/! Hn .S
n/ ' 	n .S

n/

is an isomorphism. Hurewicz’s result shows that the homotopy and homology
groups are isomorphic, while the fact that F has degree 1 implies that Hn .Sn/ !
Hn .M/ is an isomorphism. A theorem of Whitehead then implies that F is a
homotopy equivalence. ut

This theorem is even more interesting in view of the injectivity radius estimate
in positive curvature that we discussed in section 6.5.1. We can extend this to odd
dimensions using theorem 6.5.3.

Theorem 6.5.5 (Klingenberg, 1961). A compact simply connected Riemannian n-
manifold .M; g/ with 1 � sec < 4 has inj > 	=2.

Proof. It is more convenient to show that simply connected manifolds with 1 <
sec � 4 have inj � 	=2. A simple scaling shows that this implies the statement of
the theorem. We can also assume that n � 3 as we know the theorem to be true
in even dimensions. The lower curvature bound implies that there is a ı > 0 such
that geodesics of length � 	 � ı have index � n � 1 � 2. In particular, any map
Œ0; 1� ! �p;p .M/ of constant speed loops based at p is homotopic to a map where
the loops have length < 	 . It is easy to force the loops to have constant speed as we
can replace them by nearby loops that are piecewise segments and therefore shorter.
This can be done uniformly along a fixed homotopy by selecting the break points
on S1 independently of the variational parameter.

The proof proceeds by contradiction so assume that injp < 	=2. Then lemma 6.4.7
shows that there is a geodesic loop at p of length < 	 that realizes the injectivity
radius. Next use simple connectivity to find a homotopy of loops based at p to the
constant loop and further assume that all the loops in the homotopy have constant
speed and length< 	 . For each s 2 Œ0; 1� parametrize the corresponding loop cs .t/ W
Œ0; 1� ! M so that cs .0/ D cs .1/ D p; c0 .t/ D p for all t; and c1 the closed
geodesic of length< 	 . As each cs has length< 	 it must be contained in B .p; 	=2/.
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Note that the exponential map expp W B .0; 	=2/! B .p; 	=2/ � M is nonsingular
and a diffeomorphism when restricted to B

�
0; injp

�
. We shall further use the pull

back metric on B
�
0; 	

2

�
so that expp becomes a local isometry. This tells us that any

of the loops cs W Œ0; 1� ! B .p; 	=2/ with c .0/ D p have a unique lift to a curve
Ncs W Œ0; bs� ! NB .0; 	=2/ with Ncs .0/ D 0. Here either Ncs .bs/ 2 @B .0; 	=2/ or b D 1.
Note that when cs is a piecewise geodesic, then we can easily create such a lift by
lifting the velocity vectors at break points.

Let A � Œ0; 1� be the set of s such that cs lifts to a loop Ncs W Œ0; 1� ! B .0; 	=2/
based at 0.

Clearly 0 2 A, and as expp is a diffeomorphism near 0 loops cs with s near 0 also
lift to loops.

A is closed: Let si 2 A converge to s. Then Ncsi .1/ is defined and Ncsi .1/ D 0. The
unique lift Ncs must be the limit of the curves Ncsi . Thus it is defined on Œ0; 1� and is a
loop. Finally observe that the limit curve Ncs clearly lies NB .0; 	=2/ and is forced to lie
in the interior as it has length < 	 .

A is open: Fix s0 2 A and let the lift be Ncs0 . Select � > 0 so that expp W
B .Ncs0 .t/ ; �/ ! B .cs0 .t/ ; �/ is an isometry for all t and B .Ncs0 .t/ ; �/ � B .0; 	=2/.
For s near s0, the loops cs must be contained in

S
t2Œ0;1� B .cs0 .t/ ; �/. But then they

have unique lifts to loops in
S

t2Œ0;1� B .Ncs0 .t/ ; �/ � B .0; 	=2/. Thus Ncs .1/ 2 B .0; �/
is a lift of p and consequently Ncs .1/ D 0. This shows that a neighborhood of s0 is
contained in A.

All in all we’ve concluded that A D Œ0; 1�. However, the geodesic c1 lifts to a line
that starts at 0 and consequently is not a loop. The establishes the contradiction. ut

This gives us the classical version of the sphere theorem.

Corollary 6.5.6 (Rauch, Berger, and Klingenberg, 1951–61). Let M be a closed
simply connected n-manifold with 4 > sec � 1. Then M is .n � 1/-connected and
hence a homotopy sphere.

The conclusion can be strengthened to say that M is homeomorphic to a sphere.
This follows from the solution to the (generalized) Poincaré conjecture given
what we have already proven. In section 12.3 we exhibit an explicitly constructed
homeomorphism.

Using an analysis similar to the proof of theorem 6.5.4 one also gets the more
modest result.

Corollary 6.5.7. If M is a closed n-manifold with Ric � .n � 1/ and injp > 	=2

for some p 2 M, then M is simply connected.

Finally we mention a significant result that allows us to make strong conclu-
sions about connectedness in positive curvature. The result will be enhanced in
lemma 8.3.6.

Lemma 6.5.8 (The Connectedness Principle, Wilking, 2003). Let Mn be a com-
pact n-manifold with positive sectional curvature.
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(a) If Nn�k � Mn is a closed codimension k totally geodesic submanifold, then
N � M is .n � 2kC 1/-connected.

(b) If Nn�k1
1 and Nn�k2

2 are closed totally geodesic submanifolds of M with k1 � k2
and k1 C k2 � n, then N1 \ N2 is a nonempty totally geodesic submanifold and
N1 \ N2 ! N2 is .n � k1 � k2/-connected.

Proof. (a) Let c 2 �N;N .M/ be a geodesic and E a parallel field along c such that E
is tangent to N at the endpoints. Then we can construct a variation Nc .s; t/ such that
Nc .0; t/ D c .t/ and s 7! Nc .s; t/ is a geodesic with initial velocity Ejc.t/. Since N is
totally geodesic we see that Nc .s; 0/, Nc .s; 1/ 2 N. Thus the variational curves lie in
�N;N .M/. The second variation formula for this variation tells us that

d2E .cs/

ds2
jsD0 D

Z 1

0

ˇ
ˇ PEˇˇ2 dt �

Z b

a
g .R .E; Pc/ Pc;E/ dtC g

�
@2 Nc
@s2

; Pc
�ˇˇ
ˇ
ˇ

1

0

D �
Z 1

0

g .R .E; Pc/ Pc;E/ dt

< 0

since PE D 0, @2 Nc
@s2
D 0, and E is perpendicular to Pc. Thus each such parallel field

gives us a negative variation. This shows that the index of c is bigger than the set of
parallel variational fields.

Let V � Tc.1/M be the subspace of vectors v D E .1/, where E is a parallel
field along c with E .0/ 2 Tc.0/N. The space of parallel fields used to get negative
variations is then identified with V \ Tc.1/N. To find the dimension of that space we
note that TpN and hence also V have dimension n� k. Moreover, V and Tc.1/N lie in
the orthogonal complement to Pc .1/. Putting this together gives us

2n� 2k D dim
�
Tc.1/N

�C dim .V/

D dim
�
V \ Tc.1/N

�C dim
�
V C Tc.1/N

�

� dim
�
V \ Tc.1/N

�C n � 1:
(b) It is easy to show that N1 \ N2 is also totally geodesic. The key is to guess

that for p 2 N1\N2 we have Tp .N1 \ N2/ D TpN1\TpN2. To see that N1\N2 ¤ ¿
select a geodesic from N1 to N2. The dimension conditions imply that there is a
.n � k1 � k2 C 1/-dimensional space of parallel field along this geodesic that are
tangent to N1 and N2 at the end points. Since k1 C k2 � n we get a variation with
negative second derivative, thus nearby variational curves are shorter. This shows
that there can’t be a nontrivial geodesic of shortest length joining N1 and N2.

Using E W �N1;N2 .M/! Œ0;1/ we can identify N1 \N2 D E�1 .0/. So we have
in fact shown that N1 \ N2 � �N1;N2 .M/ is .n � k1 � k2/-connected. Using that
N1 � M is .n� 2k1 C 1/-connected shows that �N1;N2 .M/ � �M;N2 .M/ is also
.n � 2k1 C 1/-connected. Since k1 � k2 this shows that N1 \ N2 � �M;N2 .M/ is
.n � k1 � k2/-connected. Finally observe that �M;N2 .M/ can be retracted to N2 and
is homotopy equivalent to N2. This proves the claim. ut



266 6 Sectional Curvature Comparison I

What is commonly known as Frankel’s theorem is included in part (b). The
statement is simply that under the conditions in (b) the intersection is nonempty.

6.6 Further Study

Several textbooks treat the material mentioned in this chapter, and they all use
variational calculus. We especially recommend [23, 30, 47] and [65]. The latter also
discusses in more detail closed geodesics and, more generally, minimal maps and
surfaces in Riemannian manifolds.

As we won’t discuss manifolds of nonpositive curvature in detail later in the text
some references for this subject should be mentioned here. With the knowledge we
have right now, it shouldn’t be too hard to read the books [10] and [8]. For a more
advanced account we recommend the survey by Eberlein-Hammenstad-Schroeder
in [51]. At the moment the best, most complete, and up to date book on the subject
is probably [38].

For more information about the injectivity radius in positive curvature the reader
should consult the article by Abresch and Meyer in [54].

All of the necessary topological background material used in this chapter can be
found in [75] and [96].

6.7 Exercises

EXERCISE 6.7.1. Show that in even dimensions the sphere and real projective space
are the only closed manifolds with constant positive curvature.

EXERCISE 6.7.2. Consider a rotationally symmetric metric dr2 C �2 .r/ d�2. We
wish to understand parallel translation along a latitude, i.e., a curve with r D a. To
this end construct a cone dr2 C .� .a/C P� .a/ .r � a//2 d�2 that is tangent to this
surface at the latitude r D a. In case the surface really is a surface of revolution, this
cone is a real cone that is tangent to the surface along the latitude r D a.

(1) Show that in the standard coordinates .r; �/ on these two surfaces, the covariant
derivative r@� is the same along the curve r D a. Conclude that parallel
translation is the same along this curve on these two surfaces.

(2) Now take a piece of paper and try to figure out what parallel translation along
a latitude on a cone looks like. If you unwrap the paper, then it is flat; thus
parallel translation is what it is in the plane. Now rewrap the paper and observe
that parallel translation along a latitude does not necessarily generate a closed
parallel field.

(3) Show that in the above example the parallel field along r D a closes up when
P� .a/ D 0.
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EXERCISE 6.7.3 (Fermi-Walker transport). Related to parallel transport there is a
more obscure type of transport sometimes used in physics. Let c W Œa; b�! M be a
curve into a Riemannian manifold whose speed never vanishes and

T D Pc
jPcj

the unit tangent of c. We say that V is a Fermi-Walker field along c if

PV D g .V;T/ PT � g
�
V; PT� T

D � PT ^ T
�
.V/ :

(1) Show that given V .t0/ there is a unique Fermi-Walker field V along c whose
value at t0 is V .t0/.

(2) Show that T is a Fermi-Walker field along c.
(3) Show that if V;W are Fermi-Walker fields along c, then g .V;W/ is constant

along c.
(4) If c is a geodesic, then Fermi-Walker fields are parallel.

EXERCISE 6.7.4. Let .M; g/ be a complete n-manifold of constant curvature k.
Select a linear isometry L W TpM! TNpSn

k . When k � 0 show that

expp ıL�1 ı exp�1
Np W Sn

k ! M

is a Riemannian covering map. When k > 0 show that

expp ıL�1 ı exp�1Np W Sn
k � f�Npg ! M

extends to a Riemannian covering map Sn
k ! M. (Hint: Use that the differential of

the exponential maps is controlled by the metric, which in turn can be computed
when the curvature is constant. You should also use the conjugate radius ideas
presented in connection with theorem 6.2.2.)

EXERCISE 6.7.5. Let c .s; t/ W Œ0; 1�2 ! .M; g/ be a variation where R
�
@c
@s ;

@c
@t

� D 0.
Show that for each v 2 Tc.0;0/M, there is a parallel field V W Œ0; 1�2 ! TM along c,
i.e., @V

@s D @V
@t D 0 everywhere.

EXERCISE 6.7.6. Use the formula

R

�
@c

@s
;
@c

@t

�
@c

@u
D @3c

@s@t@u
� @3c

@t@s@u

to show that the two skew-symmetry properties and Bianchi’s first identity from
proposition 3.1.1 hold for the curvature tensor.
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EXERCISE 6.7.7. Let c be a geodesic and X a Killing field in a Riemannian
manifold. Show that the restriction of X to c is a Jacobi field.

EXERCISE 6.7.8. Let c W Œ0; 1�! M be a geodesic. Show that expc.0/ has a critical
point at tPc .0/ if and only if there is a nontrivial Jacobi field J along c such that
J .0/ D 0, PJ .0/ ? Pc .0/, and J .t/ D 0.

EXERCISE 6.7.9. Fix p 2 M and v 2 seg0p. Consider a geodesic c .t/ D expp .tv/
and geodesic variation Nc .s; t/ D expp .t .v C sw// with variational Jacobi field J .t/.

Show that if f0 .x/ D 1
2
jxpj2, then

rf0jc.1/ D Pc .1/ ;
Hess f0 .J .1/ ; J .1// D g

� PJ .1/ ; J .1/� :
Use this equation to prove lemma 6.2.5 without first estimating Hess r.

EXERCISE 6.7.10. Let c be a geodesic in a Riemannian manifold and J1; J2 Jacobi
fields along c.

(1) Show that g
� PJ1; J2

� � g
�
J1; PJ2

�
is constant.

(2) Show that g .J1 .t/ ; Pc .t// D g .J1 .0/ ; Pc .0//C g
� PJ1 .0/ ; Pc .0/

�
t.

EXERCISE 6.7.11. Let J be a nontrivial Jacobi field along a unit speed geodesic c
with J .0/ D 0, PJ .0/ ? Pc .0/. Assume that the Riemannian manifold has sectional
curvature� K.

(1) Define

� D jJj2
g
�
J; PJ�

and show that P� � 1C K�2, � .0/ D 0 for as long as � is defined.
(2) Show that if J .b/ D 0 for some b > 0, then g

�
J .t/ ; PJ .t/� D 0 for some

t 2 .0; b/. Give an explicit example where this occurs.

EXERCISE 6.7.12. Let c be a geodesic in a Riemannian manifold and J a space
of Jacobi fields along c. Further assume that J is self-adjoint, i.e., g

� PJ1; J2
� D

g
�
J1; PJ2

�
for all J1; J2 2 J. Consider the subspace

J .t/ D ˚ PJ .t/ j J 2 J; J .t/ D 0�C fJ .t/ j J 2 Jg � Tc.t/M:

(1) Show that the two subspaces in this sum are orthogonal.
(2) Show that the space fJ 2 J j J .t/ D 0g � J is naturally isomorphic to the first

summand in the decomposition.
(3) Show that dimJ D dimJ .t/ for all t. Hint: Consider a basis for J where the

first part of the basis spans fJ 2 J j J .t/ D 0g.
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EXERCISE 6.7.13. A Riemannian manifold is said to be k-point homogeneous if
for all pairs of points .p1; : : : ; pk/ and .q1; : : : ; qk/ with

ˇ
ˇpipj

ˇ
ˇ D ˇ

ˇqiqj

ˇ
ˇ there is

an isometry F with F .pi/ D qi. When k D 1 we simply say that the space is
homogeneous.

(1) Show that a homogenous space has constant scalar curvature.
(2) Show that if k > 1 and .M; g/ is k-point homogeneous, then M is also .k � 1/-

point homogeneous.
(3) Show that if .M; g/ is two-point homogeneous, then .M; g/ is an Einstein metric.
(4) Show that if .M; g/ is three-point homogeneous, then .M; g/ has constant

curvature.
(5) Show that RP

2 is not three-point homogeneous by finding two equilateral
triangles of side lengths 	

3
that are not congruent by an isometry.

It is possible to show that the simply connected space forms are the only
three-point homogeneous spaces. Moreover, all 2-point homogeneous spaces are
symmetric with rank 1 (see [106]).

EXERCISE 6.7.14. Starting with a geodesic on a two-dimensional space form,
discuss how the equidistant curves change as they move away from the original
geodesic.

EXERCISE 6.7.15. Let r .x/ D jxpj in a Riemannian manifold with �K � sec � K.
Write the metric as g D dr2 C gr on B .p;R/ � fpg D .0;R/ � Sn�1, where 2R <

injp.

(1) Show that

sn2K .r/ ds2n�1 � gr � sn2�K .r/ ds2n�1:

Hint: Estimate jJj2, where J is a Jacobi field along a geodesic c with c .0/ D 0,
J .0/ D 0, PJ .0/ ? Pc .0/, and

ˇ
ˇ PJ .0/ˇˇ D 1.

(2) Show that there is a universal constant C such that

ˇ
ˇHess 1

2
r2 � g

ˇ
ˇ � CK

2

R2

as long as R < 	

2
p

K
.

EXERCISE 6.7.16. Let .M; g/ be a complete Riemannian manifold. Show that every
element of 	1 .M; p/ contains a shortest loop at p and that this shortest loop is a
geodesic loop.

EXERCISE 6.7.17. Let .M; g/ be a complete Riemannian manifold with injp < R,
where expp W B .0;R/ ! B .p;R/ is nonsingular. Show that the geodesic loop c
at p that realizes the injectivity radius has index 0. Hint: When c is trivial as an
element in 	1 .M; p/, show that it does not admit a homotopy through loops that are
all shorter than c. When c is nontrivial as an element in 	1 .M; p/, show that it is a
local minimum for the energy functional.
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EXERCISE 6.7.18 (Frankel). Let M be an n-dimensional Riemannian manifold of
positive curvature and A;B two closed totally geodesic submanifolds. Show directly
that A and B must intersect if dimA C dimB � n. Hint: assume that A and B do
not intersect. Then find a segment of shortest length from A to B. Show that this
segment is perpendicular to each submanifold. Then use the dimension condition to
find a parallel field along this geodesic that is tangent to A and B at the endpoints to
the segments. Finally use the second variation formula to get a shorter curve from A
to B.

EXERCISE 6.7.19. Let M be a complete n-dimensional Riemannian manifold and
A � M a compact submanifold. Establish the following statements without using
Wilking’s connectedness principle.

(1) Show that curves in �A;A .M/ that are not stationary for the energy functional
can be deformed to shorter curves in �A;A .M/.

(2) Show that the stationary curves for the energy functional on �A;A .M/ consist
of geodesics that are perpendicular to A at the end points.

(3) If M has positive curvature, A � M is totally geodesic, and 2dimA � dimM,
then all stationary curves can be deformed to shorter curves in �A;A .M/.

(4) (Wilking) Conclude using (3) that any curve c W Œ0; 1�! M that starts and ends
in A is homotopic through such curves to a curve in A, i.e., 	1 .M;A/ is trivial.

EXERCISE 6.7.20. Generalize Preissmann’s theorem to show that any solvable
subgroup of the fundamental group of a compact negatively curved manifold
must be cyclic. Hint: Recall that the group is torsion free. Use contradiction and
solvability to find a subgroup generated by deck transformations F;G with F ıG D
Gk ı F, k ¤ 0. Then show that if c is an axis for G, then F ı c is an axis for Gk and
use uniqueness of axes for Gk to reach a contradiction.

EXERCISE 6.7.21. Let .M; g/ be a compact manifold of positive curvature and F W
M! M an isometry of finite order without fixed points. Show that if dimM is even,
then F must be orientation reversing, while if dimM is odd, it must be orientation
preserving. Weinstein has proven that this holds even if we don’t assume that F has
finite order.

EXERCISE 6.7.22. Use an analog of theorem 6.2.3 to show that any closed manifold
of constant curvature D 1 must either be the standard sphere or have diameter
� 	

2
. Generalize this to show that any closed manifold with sec � 1 is either

simply connected or has diameter � 	
2

. In section 12.3 we shall show the stronger
statement that a closed manifold with sec � 1 and diameter > 	

2
must in fact be

homeomorphic to a sphere.

EXERCISE 6.7.23. Consider a complete Riemannian n-manifold .M; g/ with
jsecj � K. Fix n points pi and a ball B .p; �/ such that the distance functions
ri .x/ D jxpij are smooth on B .p; �/ with g

�rri;rrj
� jp D ıij and jppij � 2�.
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(1) Let gij D g
�rri;rrj

� D g
�
dri; drj

�
. Show that there exists C .K; �/ > 0 such

that
ˇ
ˇdgij

ˇ
ˇ � C D C .n;K; �/.

(2) Show further that C .n;K; �/ can be chosen so that C
�
n; ��2K; ��

� ! 0 as
�!1.

(3) Show that there is a ı D ı .n;C/ > 0 such that gij is invertible on B .p; ı/ and
the inverse gij satisfies:

ˇ
ˇ	gij � ıij


ˇˇ � 1
9

and
ˇ
ˇdgij

ˇ
ˇ � C0 .n;K; �/. Hint: Find ı

such that
ˇ
ˇ	gij � ıij


ˇˇ � 1
10

on B .p; ı/ and use a geometric series of matrices to
calculate the inverse.

(4) Show that
�
r1 .x/� r1 .p/ ; : : : ; rn .x/� rn .p/

�
form a coordinate system on

B .p; ı/ and that the image contains the ball B
�
0; ı

4

�
. Hint: Inspect the proof

of the inverse function theorem.

EXERCISE 6.7.24 (The Index Form). Below we shall use the second variation
formula to prove several results established in section 5.7.3. If V;W are vector fields
along a geodesic c W Œ0; 1� ! .M; g/, then the index form is the symmetric bilinear
form

I10 .V;W/ D I .V;W/ D
Z 1

0

�
g
� PV; PW� � g .R .V; Pc/ Pc;W/� dt:

In case the vector fields come from a proper variation of c this is equal to the second
variation of energy. Assume below that c W Œ0; 1� ! .M; g/ locally minimizes the
energy functional. This implies that I .V;V/ � 0 for all proper variations.

(1) If I .V;V/ D 0 for a proper variation, then V is a Jacobi field. Hint: Let W be
any other variational field that also vanishes at the end points and use that

0 � I .V C "W;V C "W/ D I .V;V/C 2"I .V;W/C "2I .W;W/
for all small " to show that I .V;W/ D 0. Then use that this holds for all W to
show that V is a Jacobi field.

(2) Let V and J be variational fields along c such that V .0/ D J .0/ and V .1/ D
J .1/. If J is a Jacobi field show that

I .V; J/ D I .J; J/ :

(3) (The Index Lemma) Assume in addition that there are no Jacobi fields along c
that vanish at both end points. If V and J are as in (2) show that I .V;V/ �
I .J; J/ with equality holding only if V D J on Œ0; 1�. Hint: Prove that if V ¤ J,
then

0 < I .V � J;V � J/ D I .V;V/ � I .J; J/ :

(4) Assume that there is a nontrivial Jacobi field J that vanishes at 0 and 1, show that
c W Œ0; 1C "� ! M is not locally minimizing for " > 0. Hint: For sufficiently
small " there is a Jacobi field K W Œ1 � "; 1C "�! TM such that K .1C "/ D 0
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and K .1 � "/ D J .1 � "/. Let V be the variational field such that VjŒ0;1�"� D J
and VjŒ1�";1C"� D K. Finally extend J to be zero on Œ1; 1C "�. Now show that

0 D I10 .J; J/ D I1C"0 .J; J/ D I1�"0 .J; J/C I1C"1�" .J; J/

> I1�"0 .J; J/C I1C"1�" .K;K/ D I .V;V/ :

EXERCISE 6.7.25 (Index Comparison). Let J be a nontrivial Jacobi field along a
unit speed geodesic c with J .0/ D 0, PJ .0/ ? Pc .0/. Assume that the Riemannian
manifold has sectional curvature� k. The index form on cjŒ0;b� is given by

Ib
0 .V;V/ D

Z b

0

�ˇ
ˇ PVˇˇ2 � g .R .V; Pc/ Pc;V/

�
dt

and we assume that there are no Jacobi fields on cjŒ0;b� that vanish at the ends points
as in part (3) of exercise 6.7.24.

(1) Show that Ib
0 .J; J/ D g

�
J .b/ ; PJ .b/�.

(2) Define

V .t/ D snk .t/

snk .b/
E .t/

where E is a parallel field with E .b/ D J .b/. Show that

Ib
0 .V;V/ �

sn0
k .b/

snk .b/
jJ .b/j2 :

Hint: Differentiate snk .t/ sn0
k .t/.

(3) Conclude that g
�
J .b/ ; PJ .b/� � sn0

k.b/
snk.b/
jJ .b/j2 and use this to prove the part of

theorem 6.4.3 that relates to lower curvature bounds.

EXERCISE 6.7.26. Consider a subgroup G � Iso .M; g/ of a Riemannian man-
ifold. The topology of Iso .M; g/ is the compact-open topology discussed in
exercise 5.9.41.

(1) Show that if M is complete, simply connected, has nonpositive curvature, and
G is compact, then G has a fixed point, i.e., there exists p 2 M that is fixed by
all elements in G. Hint: Imitate the proof of theorem 6.2.3.

(2) Given p 2 M and � > 0, we say that G is .p; �/-small, if Gp � NB .p; �/.
Show that for sufficiently small � .p/ the closure NG � Iso .M; g/ of a .p; �/-
small group is compact and also .p; �/-small. Note: We do not assume that M is
complete so closed balls are not necessarily compact.

(3) Show that if G is .p; �/-small, then it is .q; 2 jpqj C �/-small.
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(4) Assume that G is .p; �/-small and that � is much smaller than the convexity
radius for all points in NB .p; 4�/. Show that G has a fixed point. Hint: Imitate
(1) after noting all of the necessary distance functions are convex on suitable
domains.

(5) Given a Riemannian manifold show that for all p 2 M there exists � > 0 such
that no subgroup G � Iso .M; g/ can be .p; �/-small. Hint: As in the proof of
theorem 5.6.19 make G act freely on a suitable subset of M � � � � �M.

(6) A topological group is said to have no small subgroups if there a neighborhood
around the identity that contains no nontrivial subgroups. Show that Iso .M; g/
has no small subgroups.

Bochner-Montgomery showed more generally that a locally compact subgroup
of Diff .M/ has no small subgroups. Gleason and Yamabe then later proved that a
locally compact topological group without small subgroups is a Lie group. See also
[79] for the complete story of this fascinating solution to Hilbert’s 5th problem. It is
still unknown whether (locally) compact subgroups of the homeomorphism group
of a topological manifold are necessarily Lie groups.

EXERCISE 6.7.27. Construct a Riemannian metric on the tangent bundle to a
Riemannian manifold .M; g/ such that 	 W TM ! M is a Riemannian submersion
and the metric restricted to the tangent spaces is the given Euclidean metric. Hint:
Construct a suitable horizontal distribution by declaring that for a given curve in M
all parallel fields along this curve correspond to the horizontal lifts of this curve.

EXERCISE 6.7.28. For a Riemannian manifold .M; g/ let FM be the frame bundle
of M. This is a fiber bundle 	 W FM ! M whose fiber over p 2 M consists of
orthonormal bases for TpM. Find a Riemannian metric on FM that makes 	 into
a Riemannian submersion and such that the fibers are isometric to O .n/. Hint:
Construct a suitable horizontal distribution by declaring that for a given curve in
M all orthonormal parallel frames along this curve correspond to the horizontal lifts
of this curve.



Chapter 7
Ricci Curvature Comparison

In this chapter we prove some of the fundamental results for manifolds with lower
Ricci curvature bounds. Two important techniques will be developed: Relative
volume comparison and weak upper bounds for the Laplacian of distance functions.
Later some of the analytic estimates we develop here will be used to estimate Betti
numbers for manifolds with lower curvature bounds.

The goal is to develop several techniques to help us understand lower Ricci
curvature bounds. In the 50s Calabi discovered that one has weak upper bounds
for the Laplacian of distance function given lower Ricci curvature bounds, even at
points where this function isn’t smooth. However, it wasn’t until after 1970, when
Cheeger and Gromoll proved their splitting theorem, that this was fully appreciated.
Around 1980, Gromov exposed the world to his view of how volume comparison
can be used. The relative volume comparison theorem was actually first proved
by Bishop in [14]. At the time, however, one only considered balls of radius less
than the injectivity radius. Gromov observed that the result holds for all balls and
immediately put it to use in many situations. In particular, he showed how one
could generalize the Betti number estimate from Bochner’s theorem (see chapter 9)
using only topological methods and volume comparison. Anderson refined this to
get information about fundamental groups. One’s intuition about Ricci curvature
has generally been borrowed from experience with sectional curvature. This has led
to many naive conjectures that have proven to be false through the construction of
several interesting examples of manifolds with nonnegative Ricci curvature. On the
other hand, much good work has also come out of this, as we shall see.

The focus in this chapter will be on the fundamental comparison techniques and
how they are used to prove a few rigidity theorems. In subsequent chapters there
will be many further results related to lower Ricci curvature bounds that depend on
more analytical techniques.
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7.1 Volume Comparison

7.1.1 The Fundamental Equations

Throughout this section, assume that we have a complete Riemannian manifold
.M; g/ of dimension n and a distance function r .x/ that is smooth on an open set
U � M. In subsequent sections we shall further assume that r .x/ D jxpj so that it is
smooth on the image of the interior of the segment domain (see section 5.7.3). Recall
the following fundamental equations for the metric from proposition 3.2.11:

(1) L@r g D 2Hessr;
(2) .r@r Hessr/ .X;Y/C Hess2 r .X;Y/ D �R .X; @r; @r;Y/ :

There is a similar set of equations for the volume form.

Proposition 7.1.1. The volume form vol and Laplacian �r of a smooth distance
function r are related by:

(tr1) L@r vol D �r vol,

(tr2) @r�rC .�r/2

n�1 � @r�rC jHess rj2 D �Ric .@r; @r/.

Proof. The first equation was established in section 2.1.3 as one of the definitions
of the Laplacian of r.

To establish the second equation we take traces in (2). More precisely, select an
orthonormal frame Ei; set X D Y D Ei, and sum over i. In addition it is convenient
to assume that this frame is parallel: r@r Ei D 0. On the right-hand side

nX

iD1
R .Ei; @r; @r;Ei/ D Ric .@r; @r/ :

While on the left-hand side

nX

iD1
.r@r Hess r/ .Ei;Ei/ D

nX

iD1
@r Hess r .Ei;Ei/

D @r�r

and

nX

iD1
Hess2 r .Ei;Ei/ D

nX

iD1
g .rEi@r;rEi@r/

D
nX

i;jD1
g
�rEi@r; g

�rEi@r;Ej
�

Ej
�

D
nX

i;jD1
g
�rEi@r;Ej

�
g
�rEi@r;Ej

�

D jHess rj2 :
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Finally we need to show that

.�r/2

n � 1 � jHess rj2 :

To this end also assume that E1 D @r, then

jHess rj2 D
nX

i;jD1

�
g
�rEi@r;Ej

��2

D
nX

i;jD2

�
g
�rEi@r;Ej

��2

� 1

n � 1

 
nX

iD2
g .rEi@r;Ei/

!2

D 1

n � 1 .�r/2 :

The inequality

jAj2 � 1

k
jtr .A/j2

for a k � k matrix A is a direct consequence of the Cauchy-Schwarz inequality

j.A; Ik/j2 � jAj2 jIkj2 D jAj2 k;

where Ik is the identity k � k matrix. ut
If we use the polar coordinate decomposition g D dr2 C gr and voln�1 is the

standard volume form on Sn�1 .1/ ; then vol D � .r; �/ dr^voln�1, where � indicates
a coordinate on Sn�1: If we apply (tr1) to this version of the volume form we get

L@r vol D L@r .� .r; �/ dr ^ voln�1/ D @r .�/ dr ^ voln�1

as both L@r dr D 0 and L@r voln�1 D 0: This allows us to simplify (tr1) to the formula

@r� D ��r:

In constant curvature k we know that gk D dr2 C sn2k .r/ ds2n�1, thus the volume
form is

volk D �k .r/ dr ^ voln�1 D snn�1
k .r/ dr ^ voln�1 :
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This conforms with the fact that

�r D .n � 1/ sn0
k .r/

snk .r/
;

@r
�
snn�1

k .r/
� D .n � 1/ sn0

k .r/

snk .r/
snn�1

k .r/ :

7.1.2 Volume Estimation

With the above information we can prove the estimates that are analogous to our
basic comparison estimates for the metric and Hessian of r .x/ D jxpj assuming
lower sectional curvature bounds (see section 6.4).

Lemma 7.1.2 (Ricci Comparison). If .M; g/ has Ric � .n � 1/�k for some k 2 R,
then

�r � .n � 1/ sn0
k .r/

snk .r/
;

@r

�
�

�k

�
� 0;

� .r; �/ � �k .r/ D snn�1
k .r/ :

Proof. Notice that the right-hand sides of the inequalities correspond exactly to
what one would obtain in constant curvature k. Thus the first inequality is a direct
consequence of corollary 6.4.2 if we use � D �r

n�1 .
For the second inequality use that @r� D ��r to conclude that

@r� � .n� 1/ sn0
k .r/

snk .r/
�

and

@r�k D .n � 1/ sn0
k .r/

snk .r/
�k:

This means that

@r

�
�

�k

�
� 0:

The last inequality follows from the second after the observation that � D rn�1 C
O .rn/ at r D 0 so that

lim
r!0

�

�k
D 1: ut
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Our first volume comparison yields the obvious upper volume bound coming
from the upper bound on the volume density.

Lemma 7.1.3. If .M; g/ has Ric � .n � 1/ � k; then vol B .p; r/ � v .n; k; r/, where
v .n; k; r/ denotes the volume of a ball of radius r in the constant curvature space
form Sn

k :

Proof. In polar coordinates

vol B .p; r/ D
Z

segp\B.0;r/
� .r/ dr ^ voln�1

�
Z

segp\B.0;r/
�k .r/ dr ^ voln�1

�
Z

B.0;r/
volk

D v.n; k; r/: ut

With a little more technical work, the above absolute volume comparison result
can be improved in a rather interesting direction. The result one obtains is referred
to as the relative volume comparison estimate. It will prove invaluable throughout
the rest of the text.

Lemma 7.1.4 (Relative Volume Comparison, Bishop, 1964 and Gromov, 1980).
Let .M; g/ be a complete Riemannian manifold with Ric � .n � 1/ � k. The volume

ratio

r 7! vol B.p; r/

v.n; k; r/

is a nonincreasing function whose limit is 1 as r! 0.

Proof. We will use exponential polar coordinates. The volume form �dr ^ voln�1
for .M; g/ is initially defined only on some star-shaped subset of TpM D R

n but we
can just set � D 0 outside this set. The comparison density �k is defined on all of

R
n when k � 0 and on B

�
0; 	=

p
k
�

when k > 0. We can likewise extend �k D 0

outside B
�
0; 	=

p
k
�

. Myers’ theorem 6.3.3 says that � D 0 on R
n � B

�
0; 	=

p
k
�

in this case. So we might as well just consider r < 	=
p

k when k > 0.
The ratio is

vol B.p;R/

v.n; k;R/
D

R R
0

R
Sn�1 �dr ^ voln�1

R R
0

R
Sn�1 �kdr ^ voln�1

;

and 0 � �.r; �/ � �k.r/ D snn�1
k .r/ everywhere.
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Differentiation of this quotient with respect to R yields

d

dR

�
vol B.p;R/

v.n; k;R/

�

D
�R

Sn�1 � .R; �/ voln�1
� �R R

0

R
Sn�1 �k .r/ dr ^ voln�1

�

.v.n; k;R//2

�
�R

Sn�1 �k .R/ voln�1
� �R R

0

R
Sn�1 � .r; �/ dr ^ voln�1

�

.v.n; k;R//2

D .v.n; k;R//�2 �
Z R

0

��Z

Sn�1

� .R; �/ voln�1
�
�
�Z

Sn�1

�k .r/ voln�1
�

�
�Z

Sn�1

�k .R/ voln�1
��Z

Sn�1

� .r; �/ voln�1
�

dr:

So to see that

R 7! vol B.p;R/

v.n; k;R/

is nonincreasing, it suffices to check that

R
Sn�1 � .r; �/ voln�1R
Sn�1 �k .r/ voln�1

D 1

!n�1

Z

Sn�1

� .r; �/

�k .r/
voln�1

is nonincreasing. This follows from lemma 7.1.2 as @r

�
�.r;�/
�k.r/

�
� 0: ut

7.1.3 The Maximum Principle

We explain how one can assign second derivatives to functions at points where the
function is not smooth. In section 12.1 we shall also discuss generalized gradients,
but this theory is completely different and works only for Lipschitz functions.

The key observation for our development of generalized Hessians and Lapla-
cians is

Lemma 7.1.5. If f ; h W .M; g/ ! R are C2 functions such that f .p/ D h.p/ and
f .x/ � h.x/ for all x near p, then

rf .p/ D rh .p/ ;

Hess f jp � Hess hjp;
�f .p/ � �h.p/:
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Proof. If .M; g/ � .R; gR/; then the theorem is standard from single variable
calculus. In general, let c W .�"; "/ ! M be a curve with c.0/ D p. Then use
this observation on f ı c, h ı c to see that

df .Pc.0// D dh.Pc.0//;
Hess f .Pc .0/ ; Pc .0// � Hess h .Pc .0/ ; Pc .0// :

This clearly implies the lemma if we let v D Pc.0/ run over all v 2 TpM. ut
The lemma implies that a C2 function f W M ! R has Hess f jp � B, where B is a

symmetric bilinear map on TpM (or �f .p/ � a 2 R), if and only if for every " > 0
there exists a function f".x/ defined in a neighborhood of p such that

(1) f".p/ D f .p/.
(2) f .x/ � f".x/ in some neighborhood of p.
(3) Hess f"jp � B � " � gjp (or�f".p/ � a � ").

Such functions f" are called support functions from below. One can analogously
use support functions from above to find upper bounds for Hess f and �f . Support
functions are also known as barrier functions in PDE theory.

For a continuous function f W .M; g/! R we say that: Hess f jp � B (or�f .p/ �
a) if and only if for all " > 0 there exist smooth support functions f" satisfying
(1)-(3). One also says that Hess f jp � B (or�f .p/ � a) hold in the support or barrier
sense. In PDE theory there are other important ways of defining weak derivatives.
The notion used here is guided by what we can obtain from geometry.

One can easily check that if .M; g/ � .R; gR/; then f is convex if Hess f � 0

everywhere. Thus, f W .M; g/ ! R is convex if Hess f � 0 everywhere. Using this,
one can prove

Theorem 7.1.6. If f W .M; g/ ! R is continuous with Hess f � 0 everywhere,
then f is constant near any local maximum. In particular, f cannot have a global
maximum unless f is constant.

We shall need a more general version of this theorem called the maximum
principle. As stated below, it was first proved for smooth functions by E. Hopf in
1927 and then later for continuous functions by Calabi in 1958 using the idea of
support functions. A continuous function f W .M; g/! R with �f � 0 everywhere
is said to be subharmonic. If �f � 0; then f is superharmonic.

Theorem 7.1.7 (The Strong Maximum Principle). If f W .M; g/ ! R is
continuous and subharmonic, then f is constant in a neighborhood of every local
maximum. In particular, if f has a global maximum, then f is constant.

Proof. First, suppose that �f > 0 everywhere. Then f can’t have any local maxima
at all. For if f has a local maximum at p 2 M, then there would exist a smooth
support function f".x/ with
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(1) f".p/ D f .p/;
(2) f".x/ � f .x/ for all x near p;
(3) �f".p/ > 0.

Here (1) and (2) imply that f" must also have a local maximum at p. But this
implies that Hess f".p/ � 0; which contradicts (3).

Next assume that �f � 0 and let p 2 M be a local maximum for f . For
sufficiently small r < inj.p/ the restriction f W B.p; r/ ! R will have a global
maximum at p. If f is constant on B.p; r/; then we are done. Otherwise assume (by
possibly decreasing r) that f .x0/ ¤ f .p/ for some

x0 2 @B.p; r/ D fx 2 M j jxpj D rg
and define

V D fx 2 @B.p; r/ j f .x/ D f .p/g:
Our goal is to construct a smooth function h D e˛' � 1 such that

h < 0 on V;

h .p/ D 0;
�h > 0 on NB .p; r/ :

This function is found by first selecting an open disc U � @B .p; r/ that contains V
and then 
 such that


 .p/ D 0;


 < 0 on U;

r
 ¤ 0 on NB .p; r/ :

Such a 
 can be found by letting 
 D x1 in a coordinate system
�
x1; : : : ; xn

�

centered at p where U lies in the lower half-plane: x1 < 0 (see also figure 7.1).
Lastly, choose ˛ so large that

�h D ˛e˛
.˛jr
j2 C�
/ > 0 on B.p; r/:

Now consider the function Nf D f C ıh on B.p; r/. This function has a local
maximum in the interior B.p; r/, provided ı is very small, since this forces

Nf .p/ D f .p/

> max
˚Nf .x/ j x 2 @B.p; r/

�
:

On the other hand, we can also show that Nf has positive Laplacian, thus obtaining a
contradiction as in the first part of the proof. To see that the Laplacian is positive,
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Fig. 7.1 Coordinate function
construction

ppV

V
V

Vf>0 f>0

f<0 f<0

f=0

f=0

select f" as a support function from below for f at q 2 B .p; r/. Then f" C ıh is a
support function from below for Nf at q: The Laplacian of this support function is
estimated by

�.f" C ıh/ .q/ � �"C ı�h .q/ ;

which for given ı must become positive as "! 0: ut
A continuous function f W .M; g/ ! R is said to be linear if Hess f � 0, i.e., both
of the inequalities Hess f � 0, Hess f � 0 hold everywhere. This easily implies that

.f ı c/ .t/ D f .c .0//C ˛t

for each geodesic c as f ı c is both convex and concave. Thus

f ı expp.x/ D f .p/C g.vp; x/

for each p 2 M and some vp 2 TpM. In particular, f is C1 with rf jp D vp.
More generally, we have the concept of a harmonic function. This is a continuous

function f W .M; g/ ! R with �f D 0. The maximum principle shows that if M is
closed, then all harmonic functions are constant. On incomplete or complete open
manifolds, however, there are often many harmonic functions. This is in contrast
to the existence of linear functions, where rf is necessary parallel and therefore
splits the manifold locally into a product where one factor is an interval. It is an
important fact that any harmonic function is C1 if the metric is C1. Using the above
maximum principle this is a standard result in PDE theory (see also theorem 9.2.7
and section 11.2).

Theorem 7.1.8 (Regularity of harmonic functions). If f W .M; g/ ! R is
continuous and harmonic in the weak sense, then f is smooth.

Proof. We fix p 2 M and a neighborhood � around p with smooth boundary. We
can in addition assume that � is contained in a coordinate neighborhood. It is a
standard but nontrivial fact from PDE theory that the following Dirichlet boundary
value problem has a solution:

�u D 0;
uj@� D f j@�:
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Moreover, such a solution u is smooth on the interior of �: Now consider the two
functions u � f and f � u on �: If they are both nonpositive, then they must vanish
and hence f D u is smooth near p: Otherwise one of these functions must be
positive somewhere. However, as it vanishes on the boundary and is subharmonic
this implies that it has an interior global maximum. The maximum principle then
shows that the function is constant, but this is only possible if it vanishes. ut

7.1.4 Geometric Laplacian Comparison

The idea of using support functions to estimate the Laplacian is particularly
convenient for geometric applications since distance functions always have support
functions from above.

Lemma 7.1.9 (Calabi, 1958). If .M; g/ is complete and Ric.M; g/ � .n�1/k, then
any distance function r.x/ D jxpj satisfies:

�r.x/ � .n � 1/ sn0
k.r.x//

snk.r.x//
:

Proof. We know from lemma 7.1.2 that the result is true whenever r is smooth. In
general, we can for each q 2 M choose a unit speed segment � W Œ0;L� ! M with
�.0/ D p; �.L/ D q. Then the triangle inequality implies that r".x/ D "C j�."/xj
is a support function from above for r at q. If all these support functions are smooth
at q, then

�r".q/ � .n � 1/ sn0
k.r�.q//

snk.r�.q//

D .n � 1/ sn0
k.r.q/� �/

snk.r.q/� �/

& .n � 1/ sn0
k.r.q//

snk.r.q//

as "! 0 since sn0
k.r/

snk.r/
is decreasing.

Now for the smoothness. Fix " > 0 and suppose r" is not smooth at q: Then we
know from lemma 5.7.9 that either

(1) there are two segments from � ."/ to q,
(2) q is a critical value for exp�."/ W seg .� ."//! M:

Case (1) would give us a nonsmooth curve of length L from p to q; which we
know is impossible. Thus, case (2) must hold. To get a contradiction out of this, we
show that this implies that expq has � ."/ as a critical value.
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Using that q is critical for exp�."/; we find a Jacobi field J .t/ W Œ";L� ! TM
along � jŒ";L� such that J ."/ D 0; PJ ."/ ¤ 0 and J .L/ D 0 (see section 5.7.3). Then
also PJ .L/ ¤ 0 as it solves a linear second-order equation. Running backwards from
q to � ."/ then shows that expq is critical at � ."/. This however contradicts that
� W Œ0;L�! M is a segment. ut

7.1.5 The Segment, Poincaré, and Sobolev Inequalities

We shall use the results obtained in section 7.1.2 to prove a some important analytic
inequalities that will be used in chapter 9.

Theorem 7.1.10 (The Segment Inequality, Cheeger and Colding, 1996).
Assume that .M; g/ has Ric � .n � 1/ k, k � 0. Let f W M ! Œ0;1/ and
A;B � W � M. Further select segments cx;y W Œ0; 1�! M between points x; y 2 M.
If cx;y .t/ 2 W for all x 2 A, y 2 B, t 2 Œ0; 1�, and diam W � D, then

Z

A�B

Z 1

0

f ı cx;y .t/ dt volx ^ voly � C .vol AC vol B/
Z

W
f vol;

where C D C
�
n; kD2

�
.

Proof. Define

C D max
R�D

snn�1
k .R/

snn�1
k

�
1
2
R
� :

Note that when k D 0 we have C D 2n�1 and otherwise one can show that

C D
sinhn�1

�p�kD
�

sinhn�1
�
1
2

p�kD
� :

Fix x 2 A, t � 1
2
, and use polar coordinates with center x. The map y 7! cx;y .t/ is

a well-defined “scaling” by t inside the segment domain. With that in mind we have:

Z

B
f ı cx;y .t/ voly D

Z

B
f ı cx;y .t/ � .y/ dr ^ voln�1

D
Z

B
f ı cx;y .t/ �

�
cx;y .t/

� � .y/

�
�
cx;y .t/

�dr ^ voln�1

� C
Z

B
f ı cx;y .t/ �

�
cx;y .t/

�
dr ^ voln�1

� C
Z

W
f vol :
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This gives us

Z

A

Z

B

Z 1

1
2

f ı cx;y .t/ dt voly volx � 1

2
C vol A

Z

W
f vol :

Similarly

Z

B

Z

A

Z 1
2

0

f ı cx;y .t/ dt volx voly � 1

2
C vol B

Z

W
f vol :

Adding these gives the desired result. ut
This estimate allows us to establish a weak Poincaré inequality. To formulate the

result it’ll be convenient to define the Lp norm on a domain B by also averaging the
integral:

kukp;B D
�

1
vol B

Z

B
jujp vol

� 1
p

and using the notation uB D 1
vol B

R
B u vol for the average value of a function on a

bounded domain.

Corollary 7.1.11. Assume that .M; g/ has Ric � .n � 1/ k, k � 0. Any smooth
u W M! Œ0;1/ satisfies

�
�u � uB.p;R/

�
�
1;B.p;R/

� 4C2R kduk1;B.p;2R/ ;

where R � D.

Proof. This proof is due to Cheeger and Colding. We use the segment inequality
with A D B D B .p;R/, W D B .p; 2R/, and f D jduj as well as the observation

Z

B
ju � uBj D

Z

B

ˇ
ˇ
ˇ̌u .x/ � 1

vol B

Z

B
u .y/ voly

ˇ
ˇ
ˇ̌ volx

D
Z

B

ˇ
ˇ
ˇ
ˇ

1
vol B

Z

B
.u .x/� u .y// voly

ˇ
ˇ
ˇ
ˇ volx

� 1
volB

Z

B

Z

B
ju .x/� u .y/j voly volx

� 1
vol B

Z

B

Z

B

Z 1

0

jxyj ˇˇjduj �cx;y .t/
�ˇˇ dt voly volx

� 2R
vol B

Z

B

Z

B

Z 1

0

ˇ̌jduj �cx;y .t/
�ˇ̌

dt voly volx :
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This shows that
�
�u � uB.p;R/

�
�
1;B.p;R/

� 4CR vol B.p;2R/
vol B.p;R/ kjdujk1;B.p;2R/ :

The result follows by using that the volume ratio is bounded explicitly by the ratio

v.n; k; 2R/

v.n; k;R/
� v.n; k; 2D/

v.n; k;D/
: ut

Remark 7.1.12. Note that the corollary holds for any measurable u with a function
G in place of jduj provided

ju .x/� u .y/j �
Z 1

0

G .c .t// jPcj dt

for all c 2 �x;y. Such a G is also called an upper gradient.

This leads us, surprisingly, to the much stronger Poincaré-Sobolev inequality
where the domain is the same on both sides and a stronger norm is used on the
left-hand side.

Theorem 7.1.13. Assume that .M; g/ has Ric � .n � 1/ k, k � 0. For all smooth
u W M! Œ0;1/ and � 2 	1; n

n�1



�
�u � uB.x;R/

�
�
�;B.x;R/ � C

�
n; kD2

�
R kjdujk1;B.x;R/ ;

where R � D.

We offer a proof by Hajłasz and Koskela that can be found in [60]. An even
shorter proof is possible when � < n

n�1 . Traditionally, proofs of this theorem
required a very deep and difficult theorem from geometric measure theory. Here
we only need a few basic concepts from analysis together with the weak Poincaré
inequality and relative volume comparison. This proof has the added benefit of
easily allowing generalizations to suitable metric spaces. We will for simplicity
prove it in case B .x;R/ D M and D is an upper bound for the diameter of M. To
keep constants at bay we shall also keep writing them as C with the understanding
that C D C

�
n; kD2

�
depends on n and possibly also kD2. However, the constants

might change from line to line in a proof.
The maximal function of a function u is defined as

M .u/ .x/ D sup
R2.0;D�

1

vol B .x;R/

Z

B.x;R/
juj vol :

We only need the weak version of the maximal function estimate. Note that this
estimate does not bound kM .u/k1 in terms of kuk1, which is in fact impossible, but
it can be used to prove the standard bounds kM .u/kp � C kukp for all p > 1.
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Theorem 7.1.14 (Maximal Function Theorem). There exists a constant C D
C
�
n; kD2

�
such that

t vol fM .u/ > tg � C
Z
juj vol :

Proof. Note that for each x 2 fM .u/ > tg there is Rx � D such that

t vol B .x;Rx/ <

Z

B.x;Rx/

juj vol :

Now use the basic covering property (see exercise 7.5.5) to cover fM .u/ > tg by
balls B .xi; 5Rxi/ with the property that B .xi;Rxi/ are pairwise disjoint. Relative
volume comparison gives us

vol B .x; 5R/

vol B .x;R/
� v .n; k; 5D/

v .n; k;D/
D C D C

�
n; kD2

�
:

We can then estimate

t vol fM .u/ > tg �
X

t vol B .xi; 5Rxi/

� C
X

t vol B .xi;Rxi/

< C
XZ

vol B.xi;Rxi/
juj vol

� C
Z
juj vol : ut

Theorem 7.1.15. Assume that .M; g/ has Ric � .n � 1/ k, k � 0, and diam M � D.
Let u W M! Œ0;1/ be smooth. There is a weak Poincaré-Sobolev inequality

t
n

n�1 vol
˚ˇˇu � uB.x;R/

ˇ
ˇ > t

� � CR
n

n�1 vol M kjdujk
n

n�1

1 ;

where C D C
�
n; kD2

�
.

Proof. For simplicity we prove this when R D D. Fix x 2 M and define Ri D 2�iD.
If Bi D B .x;Ri/, then M D B0. By continuity of u we have u .x/ D lim uBi . This
tells us that

ju .x/ � uB0 j �
1X

iD0

ˇ
ˇuBi � uBiC1

ˇ
ˇ

�
1X

iD0
ku� uBik1;BiC1
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�
1X

iD0

vol Bi

vol BiC1
ku � uBik1;Bi

� C
1X

iD0
ku � uBik1;Bi

� 2C3

1X

iD0
Ri kjdujk1;Bi�1

:

Therefore, it suffices to prove an estimate of the form:

t
n

n�1 vol

( 1X

iD0
Ri kjdujk1;Bi�1

> t

)

� CD
n

n�1 vol M kjdujk
n

n�1

1 :

For any x 2 M and r > 0 split up the sum
X

Ri�r

Ri kjdujk1;Bi�1
C
X

Ri>r

Ri kjdujk1;Bi�1
:

The first term is controlled by the maximal function

X

Ri�r

Ri kjdujk1;Bi�1
�
0

@
X

Ri�r

Ri

1

AM .jduj/ .x/

� 2rM .jduj/ .x/ :
The second term is bounded by kjdujk1 as follows:

X

Ri>r

Ri kjdujk1;Bi�1
�
0

@
X

Ri>r

Ri
vol M

vol Bi�1

1

A kjdujk1

� C
X

Ri>r

Ri

�
D

Ri�1

�n

kjdujk1

� C
X

Ri>r

2�i

2�n.i�1/D kjdujk1

D C2�n
X

Ri>r

2.n�1/iD kjdujk1

� 21�nC2.n�1/i0D kjdujk1
D 21�nC

�
2i0D�1�n�1

Dn kjdujk1
D 21�nCR1�n

i0 Dn kjdujk1
� 21�nCr1�nDn kjdujk1 :
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Thus

1X

iD0
Ri kjdujk1;Bi�1

� C
�
rM .jduj/ .x/C r1�nDn kjdujk1

�

and for r D D
� kjdujk1

M.jduj/.x/
� 1

n
yields the estimate:

1X

iD0
Ri kjdujk1;Bi�1

� CD .M .jduj/ .x// n�1
n kjdujk

1
n
1 :

Note that while it is natural to assume r � D this estimate is still valid when r > D.
The maximal function theorem can now be used to obtain the inequality

vol

( 1X

iD0
Ri kjdujk1;Bi�1

> t

)

D vol

8
<

:

 1X

iD0
Ri kjdujk1;Bi�1

! n
n�1

> t
n

n�1

9
=

;

� vol

�
CD

n
n�1 kjdujk

1
n�1

1 M .jduj/ .x/ > t
n

n�1

�

� t�
n

n�1 CD
n

n�1 kjdujk
1

n�1

1

Z

M
jduj vol

� t� n
n�1 CD

n
n�1 vol M kjdujk

n
n�1

1 : ut

The proof of the Poincaré-Sobolev inequality can now be completed as follows.

Proof of theorem 7.1.13. We use the estimate from theorem 7.1.15 to prove the
result. First we need two more elementary facts. Note that for any c 2 R:

ku � uMkp � kc � uMkp C ku � ckp D juM � cj C ku � ckp � 2 ku� ckp

and

inf
c
ku� ckp � ku� uMkp :

So it suffices to estimate ku � ckp for a suitable c.
For a general u W M ! R find m such that vol fu � mg � vol M

2
and

vol fu � mg � vol M
2

. Then split u into the two functions vC D max fu � m; 0g
and v� D max fm � u; 0g. Note that they both satisfy vol

˚
v˙ D 0� � vol M

2
.

While v˙ is not smooth we can set
ˇ
ˇdv˙ˇˇ D 0 at all points where v˙ vanishes.

Thus it suffices to show that

��v˙��
n

n�1
� C

�
n; kD2

�
D
��ˇ̌dv˙ ˇ̌��

1
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as

kuk n
n�1
� ��vC��

n
n�1
C kv�k n

n�1
and

ˇ
ˇdvCˇˇC jdv�j � jduj :

We first claim that v D v˙ satisfies

vol fv > tg � 2 vol
n
jv � cj > t

2

o
:

To see this note that when t
2
� c we have

˚
c � v > t

2

� � fv D 0g, while when
t
2
� c we have

˚
v > cC t

2

� � fv > tg.
For 0 < a < b consider the truncated function

vb
a .x/ D

8
ˆ̂<

ˆ̂
:

b � a if v .x/ � b;

v .x/ � a if a < v .x/ � b;

0 if v .x/ � a;

and note that the weak Poincaré inequality holds for vb
a if we use jdvj � �fa<v�bg as

an upper gradient. Theorem 7.1.15 can now be used:

t
n

n�1 vol
˚
vb

a > t
� � 2t

n
n�1 inf

c
vol

nˇ
ˇvb

a � c
ˇ
ˇ >

t

2

o

D 2
n

n�1C1
� t

2

� n
n�1

inf
c

vol
nˇ
ˇvb

a � c
ˇ
ˇ >

t

2

o

� 2 n
n�1C1

� t

2

� n
n�1

vol
nˇ
ˇvb

a �
�
vb

a

�
M

ˇ
ˇ >

t

2

o

� CD
n

n�1 2
n

n�1C1 vol M
�
�jdvj � �fa<v�bg

�
�

n
n�1

1
:

We then get the desired estimate as follows:

Z
v

n
n�1 vol �

1X

kD�1
2k n

n�1 vol
˚
2k�1 < v � 2k

�

�
X

k

2k n
n�1 vol

˚
v > 2k�1�

�
X

k

2k n
n�1 vol

n
v2

k�1

2k�2 > 2
k�1 � 2k�2

o

D
X

k

2k n
n�1 vol

n
v2

k�1

2k�2 > 2
k�2
o

� 23 n
n�1C1CD

n
n�1 vol M

X

k

�
��jdvj � �f2k�2<v�2k�1g

�
��

n
n�1

1
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� 23 n
n�1C1CD

n
n�1 vol M

�
��
�
�

X

k

jdvj � �f2k�2<v�2k�1g
�
��
�
�

n
n�1

1

D 23 n
n�1C1CD

n
n�1 vol M kjdvjk

n
n�1

1 : ut

Remark 7.1.16. See exercise 7.5.17 for the Poincaré inequality for functions with
Dirichlet boundary conditions.

Finally we also obtain an entire hierarchy of such inequalities.

Proposition 7.1.17. Assume that all smooth functions on .M; g/ satisfy the
inequality

ku � uMk s
s�1
� S kduk1 ;

with s > 1, then for 1 � p < s

kuk sp
s�p
� p .s � 1/

s � p
S kdukp C kukp :

Proof. When p D 1, this follows from

ku � uMk s
s�1
� kuk s

s�1
� kuMk s

s�1

D kuk s
s�1
� juMj

� kuk s
s�1
� kuk1 :

For p > 1 first note that

kukq
qs

s�1
D kuqk s

s�1

� S kduqk1 C kuqk1
D Sq

�
�uq�1du

�
�
1
C ��uq�1u

�
�
1

� kukq�1
p.q�1/

p�1

�
Sq kdukp C kukp

�
:

Then choose q D p.s�1/
s�p so that qs

s�1 D p.q�1/
p�1 D sp

s�p to obtain the desired inequality.
ut

Finally we establish the Rellich compactness theorem. The same strategy can
also be used to prove the more general Kondrachov compactness theorem for
Lp .M/. Define W1;2 .M/ as the Hilbert space closure of C1 .M/ with the square
norm kuk22 C kduk22. Recall that a sequence vi 2 .H; .�; �// in a Hilbert space is
weakly convergent, vi * v if .vi;w/ ! .v;w/ for all w 2 H. Moreover, any
bounded sequence has a weakly convergent subsequence.
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Theorem 7.1.18 (Rellich Compactness). Assume .Mn; g/ is a compact Riemann-
ian n-manifold. The inclusion W1;2 .M/ � L2 .M/ is compact.

Outline of Proof. Consider a sequence ui of smooth functions where kuik22Ckduik22
is bounded. Then there will be a weakly convergent subsequence ui * u. In
particular, ui;B.x;R/ ! uB.x;R/ for fixed x 2 M and R > 0.

By the Lebesgue differentiation theorem we also have that uB.x;R/ ! u .x/ as
R! 0 for almost all x 2 M. Next note that by theorem 7.1.15

vol
˚ˇˇui � ui;B.x;R/

ˇ
ˇ > �

� � C

�
R

�

� n
n�1

vol M kduik
n

n�1

1 � C0
�

R

�

� n
n�1

;

where C0 is independent of i.
This implies that vol fjui .x/ � u .x/j > �g ! 0 as i ! 1. We can then extract

another subsequence of ui that converges pointwise to u almost everywhere on M.
Since kuik 2n

n�2
is bounded Egorov’s theorem implies that ui ! u in L2. ut

7.2 Applications of Ricci Curvature Comparison

7.2.1 Finiteness of Fundamental Groups

Our first application of volume comparison shows how one can control the
fundamental group. We start with a result that addresses how fundamental groups
can be represented.

Lemma 7.2.1 (Gromov, 1980). A compact Riemannian manifold M admits gener-
ators fc1; : : : cmg for the fundamental group � D 	1 .M/ such that all relations for
� in are of the form ci � cj � c�1

k D 1 for suitable i; j; k. Moreover, the generators ci

can be represented by loops of length � 3 diam .M/.

Proof. For any " 2 .0; inj .M// choose a triangulation of M such that adjacent
vertices in this triangulation are joined by a curve of length less that ": Let
fx1; : : : ; xkg denote the set of vertices and

˚
eij
�

the edges joining adjacent vertices
(thus, eij is not necessarily defined for all i; j). If x is the projection of Qx 2 QM;
then join x and xi by a segment �i for all i D 1; : : : ; k and construct the loops
�ij D �ieij�

�1
j for adjacent vertices.

Any loop in M based at x is homotopic to a loop in the 1-skeleton of the
triangulation, i.e., a loop that is constructed out of juxtaposing edges eij: Since
eijejk D eij�

�1
j �jejk such loops are the product of loops of the form �ij: Therefore, �

is generated by �ij:

Next observe that if three vertices xi; xj; xk are adjacent to each other, then they
span a 2-simplex4ijk: Consequently the loop �ij�jk�ki D �ij�jk�

�1
ik is homotopically

trivial. We claim that these are the only relations needed to describe �: To see
this, let � be any loop in the 1-skeleton that is homotopically trivial in M. Then �
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also contracts in the 2-skeleton. Thus, a homotopy corresponds to a collection of
2-simplices 4ijk: In this way we can represent the relation � D 1 as a product of
elementary relations of the form �ij�jk�

�1
ik D 1:

The generators correspond to loops of length � 2 diam .M/ C " so the result is
proven. ut

A simple example might be instructive here.

Example 7.2.2. Consider Mk D S3=ZkI the constant curvature 3-sphere divided out
by the cyclic group of order k: As k ! 1 the volume of these manifolds goes to
zero, while the curvature is 1 and the diameter 	

2
: Thus, the fundamental groups can

only get bigger at the expense of having small volume. If we insist on writing the
cyclic group Zk in the above manner, then the number of generators needed goes to
infinity as k!1: This is also justified by the next theorem.

For numbers n 2 N; k 2 R; and v;D 2 .0;1/ ; let M .n; k; v;D/ denote the
class of compact Riemannian n-manifolds with

Ric � .n � 1/ k;

vol � v;
diam � D:

We can now prove:

Theorem 7.2.3 (Anderson, 1990). There are only finitely many fundamental
groups among the manifolds in M .n; k; v;D/ for fixed n; k; v;D:

Proof. Choose generators fc1; : : : ; cmg as in the lemma. Since the number of
possible relations is bounded by 2m3 ; we have reduced the problem to showing that
m is bounded. Fix x 2 QM and consider ci as deck transformations. The lemma also
guarantees that jxci.x/j � 3D: Fix a fundamental domain F � QM that contains x,
i.e., a closed set such that 	 W F ! M is onto and vol F D vol M: One could, for
example, choose the Dirichlet domain

F D ˚z 2 QM j jxzj � jc.x/zj for all c 2 	1 .M/
�
:

Then the sets ci .F/ are disjoint up to sets of measure 0; all have the same volume;
and all lie in the ball B .x; 6D/ : Thus,

m � vol B .x; 6D/

vol F
� v .n; k; 6D/

v
:

In other words, we have bounded the number of generators in terms of n;D; v; k
alone. ut

A related result shows that groups generated by short loops must in fact be finite.
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Lemma 7.2.4 (Anderson, 1990). For fixed numbers n 2 N; k 2 R; and v;D 2
.0;1/ there exist L D L .n; k; v;D/ and N D N .n; k; v;D/ such that if M 2
M .n; k; v;D/ ; then any subgroup of 	1 .M/ that is generated by loops of length
� L must have order � N:

Proof. Let � � 	1 .M/ be a subgroup generated by loops fc1; : : : ; ckg of length
� L: Consider the universal covering 	 W QM ! M and let x 2 QM be chosen such
that the loops are based at 	 .x/ : Then select a fundamental domain F � QM as above
with x 2 F: Thus, for any c1; c2 2 	1 .M/ ; either c1 D c2 or c1 .F/ \ c2 .F/ has
measure 0.

Now define U .r/ as the set of c 2 � such that c can be written as a product
of at most r elements from fc1; : : : ; ckg : Since jxci.x/j � L for all i it follows that
jxc.x/j � r � L for all c 2 U .r/ : This means that c .F/ � B .x; r � LC D/. As the
sets c .F/ are disjoint up to sets of measure zero, we obtain

jU .r/j � vol B .x; r � LC D/

vol F

� v .n; k; r � LC D/

v
:

Now define

N D v .n; k; 2D/

v
C 1;

L D D

N
:

If � has more than N elements we get a contradiction by using r D N as we would
have

v .n; k; 2D/

v
C 1 D N

� jU .N/j

� v .n; k; 2D/

v
: ut

7.2.2 Maximal Diameter Rigidity

Next we show how Laplacian comparison can be used. Given Myers’ diameter
estimate, it is natural to ask what happens when the diameter attains it maximal
value. The next result shows that only the sphere has this property.

Theorem 7.2.5 (S. Y. Cheng, 1975). If .M; g/ is a complete Riemannian manifold
with Ric � .n � 1/k > 0 and diam D 	=

p
k, then .M; g/ is isometric to Sn

k .
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Proof. Fix p; q 2 M such that jpqj D 	=
p

k. Define r.x/ D jxpj, Qr.x/ D jxqj. We will
show that

(1) rC Qr D 	=
p

k; x 2 M.
(2) r; Qr are smooth on M � fp; qg.
(3) Hess r D sn0

k
snk

ds2n�1 on M � fp; qg.
(4) g D dr2 C sn2k ds2n�1.

We already know that (3) implies (4) and that (4) implies M must be Sn
k .

Proof of (1): Consider Qr.x/ D jxqj and r.x/ D jxpj, where jpqj D 	=
p

k. Then
rC Qr � 	=pk, and equality will hold for any x 2 M � fp; qg that lies on a segment
joining p and q. On the other hand lemma 7.1.9 implies

�.rC Qr/ � �rC�Qr
� .n � 1/pk cot.

p
kr.x//C .n � 1/pk cot.

p
kQr.x//

� .n � 1/pk cot.
p

kr.x//C .n � 1/pk cot

�p
k

�
	p

k
� r.x/

��

D .n � 1/pk.cot.
p

kr.x//C cot.	 �pkr.x/// D 0:

Thus rCQr is superharmonic on M�fp; qg and has a global minimum. Consequently,
the minimum principle implies that rC Qr D 	=pk on M.

Proof of (2): If x 2 M � fq; pg; then x can be joined to both p and q by segments
c1; c2. The previous statement says that if we put these two segments together, then
we get a segment from p to q through x. Such a segment must be smooth (see
proposition 5.4.4). Thus c1 and c2 are both subsegments of a larger segment. This
implies from our characterization of when distance functions are smooth that both r
and Qr are smooth at x 2 M � fp; qg (see corollary 5.7.11).

Proof of (3): Since r.x/C Qr.x/ D 	=
p

k, we have �r D ��Qr. On the other hand,

.n � 1/ sn0
k.r.x//

snk.r.x//
� �r.x/

D ��Qr.x/

� �.n � 1/ sn0
k.Qr.x//

snk.Qr.x//

D �.n � 1/
sn0

k

�
	p

k
� r.x/

�

snk

�
	p

k
� r.x/

�

D .n � 1/ sn0
k.r.x//

snk.r.x//
:
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This implies,

�r D .n � 1/ sn0
k

snk

and

�.n � 1/k D @r.�r/C .�r/2

n � 1
� @r.�r/C jHess rj2
� �Ric.@r; @r/

� �.n � 1/k:
Hence, all inequalities are equalities, and in particular

.�r/2 D .n � 1/jHess rj2:
Recall from the proof of tr2 from proposition 7.1.1 that this gives us equality in the
Cauchy-Schwarz inequality k jAj2 � .tr A/2. Thus A D tr A

k Ik. In our case we have
restricted Hess r to the .n � 1/ dimensional space orthogonal to @r so on this space
we obtain:

Hess r D �r

n � 1gr D sn0
k

snk
gr:

ut
We now know that a complete manifold with Ric � .n�1/ �k > 0 has diameter�

	=
p

k, and equality holds only when the space is Sn
k . Therefore, a natural perturbation

question is: Do manifolds with Ric � .n � 1/ � k > 0 and diam � 	=
p

k, have to be
homeomorphic or diffeomorphic to a sphere?

For n D 2; 3 this is true. When n � 4, however, there are counterexamples. The
case n D 2 will be settled later and n D 3 was proven in [95] (but sadly never
published). The examples for n � 4 are divided into two cases: n D 4 and n � 5.

Example 7.2.6 (Anderson, 1990). For n D 4 consider metrics on I � S3 of the form

dr2 C �2�21 C 
2.�22 C �23 /:

If we define

� .r/ D
� sin.ar/

a r � r0;
c1 sin.rC ı/ r � r0;


 .r/ D
�

br2 C c r � r0;
c2 sin.rC ı/ r � r0;
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and then reflect these function in r D 	=2�ı;we get a metric on CP
2] NCP2. For any

small r0 > 0 we can adjust the parameters so that � and 
 become C1 and generate
a metric with Ric � 3. For smaller and smaller choices of r0 we see that ı ! 0; so
the interval I ! Œ0; 	� as r0 ! 0. This means that the diameters converge to 	 .

Example 7.2.7 (Otsu, 1991). For n � 5 we consider standard doubly warped
products:

dr2 C �2 � ds22 C 
2ds2n�3

on I � S2 � Sn�3. Similar choices for � and 
 will yield metrics on S2 � Sn�2 with
Ric � n � 1 and diameter! 	 .

In both of the above examples we only constructed C1 functions �; 
 and
therefore only C1 metrics. However, the functions are concave and can easily be
smoothed near the break points so as to stay concave. This will not change the
values or first derivatives much and only increase the second derivative in absolute
value. Thus the lower curvature bound still holds.

7.3 Manifolds of Nonnegative Ricci Curvature

In this section we shall prove the splitting theorem of Cheeger-Gromoll. This
theorem is analogous to the maximal diameter theorem in many ways. It also has
far-reaching consequences for compact manifolds with nonnegative Ricci curvature.
For instance, it can be used to show that S3 � S1 does not admit a Ricci flat metric.

7.3.1 Rays and Lines

We will work only with complete and noncompact manifolds in this section. A ray
r.t/ W Œ0;1/! .M; g/ is a unit speed geodesic such that

jr.t/r.s/j D jt � sj for all t; s � 0:

One can think of a ray as a semi-infinite segment or as a segment from r.0/ to
infinity. A line l.t/ W R! .M; g/ is a unit speed geodesic such that

jl.t/l.s/j D jt � sj for all t; s 2 R:

Lemma 7.3.1. If p 2 .M; g/; then there is always a ray emanating from p. If M is
disconnected at infinity, then .M; g/ contains a line.
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p

q1 q2
qi

r

p1 q1

q2

qi

p2

pi

l

K

Fig. 7.2 Construction of rays and lines

Proof. Let p 2 M and consider a sequence qi ! 1. Find unit vectors vi 2 TpM
such that:

�i.t/ D expp.tvi/; t 2 Œ0; d.p; qi/�

is a segment from p to qi. By possibly passing to a subsequence, we can assume that
vi ! v 2 TpM (see figure 7.2). Now

�.t/ D expp.tv/; t 2 Œ0;1/;

becomes a segment. This is because �i converges pointwise to � by continuity of
expp; and thus

j�.s/�.t/j D lim j�i.s/�i.t/j D js � tj:

A complete manifold is connected at infinity if for every compact set K � M
there is a compact set C � K such that any two points in M � C can be joined by a
curve in M � K. If M is not connected at infinity, we say that M is disconnected at
infinity.

If M is disconnected at infinity, then there is a compact set K and sequences of
points pi !1; qi !1 such that any curve from pi to qi passes through K. If we
join these points by segments �i W .�ai; bi/! M such that ai; bi !1; �i.0/ 2 K,
then the sequence will subconverge to a line (see figure 7.2). ut

Example 7.3.2. Surfaces of revolution dr2C�2.r/ds2n�1;where � W Œ0;1/! Œ0;1/
and P�.t/ < 1; R�.t/ < 0; t > 0, cannot contain any lines. These manifolds look like
paraboloids.
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Example 7.3.3. Any complete metric on Sn�1 � R must contain a line since the
manifold is disconnected at infinity.

Example 7.3.4. The Schwarzschild metric on Sn�2 �R2 does not contain any lines.
This will also follow from our main result in this section as the space is not
metrically a product.

Theorem 7.3.5 (The Splitting Theorem, Cheeger and Gromoll, 1971). If .M; g/
contains a line and has Ric � 0, then .M; g/ is isometric to a product .H �R; g0 C
dt2/.

Outline of Proof. The proof is quite involved and will require several constructions.
The main idea is to find a distance function r W M ! R (i.e. jrrj � 1) that is
linear (i.e. Hess r � 0). Having found such a function, one can easily see that M D
U0 � R; where U0 D fr D 0g and g D dt2 C g0. The maximum principle will
play a key role in showing that r, when it has been constructed, is both smooth
and linear. Recall that in the proof of the maximal diameter theorem 7.2.5 we used
two distance functions r; Qr placed at maximal distance from each other and then
proceeded to show that rC Qr is constant. This implied that r; Qr were smooth, except
at the two chosen points, and that �r is exactly what it is in constant curvature. We
then used the rigidity part of the Cauchy-Schwarz inequality to compute Hess r. In
the construction of our linear distance function we shall use a similar construction.
In this situation the two ends of the line play the role of the points at maximal
distance. Using this line we will construct two distance functions b˙ from infinity
that are continuous, satisfy bC C b� � 0 (from the triangle inequality), �b˙ � 0,
and bC C b� D 0 on the line. Thus, bC C b� is superharmonic and has a global
minimum. The minimum principle implies that bCCb� � 0. Thus, bC D �b� and

0 � �bC D ��b� � 0;

which shows that both of b˙ are harmonic and C1. At this point in the proof it
is shown that they are distance functions, i.e., jrb˙j � 1. We can then invoke
proposition 7.1.1 to conclude that

0 D Drb˙
�b˙ C .�b˙/2

n � 1
� Drb˙

�b˙ C jHess b˙j2

D jHess b˙j2
� �Ric.rb˙;rb˙/

� 0:

This shows that jHess b˙j2 D 0 and b˙ are the sought after linear distance
functions. ut
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7.3.2 Busemann Functions

For the rest of this section fix a complete noncompact Riemannian manifold .M; g/
with nonnegative Ricci curvature. Let c W Œ0;1/! .M; g/ be a unit speed ray, and
define

bt.x/ D jxc.t/j � t:

Proposition 7.3.6. The functions bt satisfy:

(1) For fixed x; the function t 7! bt.x/ is decreasing and bounded in absolute value
by jxc.0/j.

(2) jbt.x/� bt.y/j � jxyj.
(3) �bt.x/ � n�1

btCt everywhere.

Proof. (2) and (3) are obvious since bt.x/C t is the distance from c.t/. For (1), first
observe that the triangle inequality implies

jbt.x/j D jjxc.t/j � tj D jjxc.t/j � jc.0/c.t/jj � jxc.0/j :

Second, if s < t, then

bt.x/� bs.x/ D jxc.t/j � t � jxc.s/j C s

D jxc.t/j � jxc.s/j � jc.t/c.s/j
� jc.t/c.s/j � jc.t/c.s/j D 0: ut

This proposition shows that the family of distance decreasing functions fbtgt�0
is pointwise bounded and decreasing. Thus, bt converges pointwise to a distance
decreasing function bc satisfying

jbc.x/ � bc.y/j � jxyj ;
jbc.x/j � jxc.0/j ;

and

bc.c.r// D lim bt.c.r// D lim .jc.r/c.t/j � t/ D �r:

This function bc is called the Busemann function for c and should be interpreted as
renormalized a distance function from “c.1/.”
Example 7.3.7. If M D .Rn; gRn/; then all Busemann functions are of the form

bc.x/ D Pc.0/ � .c.0/� x/

(see figure 7.3).
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x

c(0)c(t)=c(-b (x))c

Fig. 7.3 Busemann function in Euclidean space

x

c

c~

Fig. 7.4 Asymptote construction from a ray

The level sets b�1
c .t/ are called horospheres. In R

n these are obviously hyper-
planes. In the Poincaré model of hyperbolic space they look like spheres that are
tangent to the boundary.

Given our ray c; as before, and p 2 M, consider a family of unit speed segments
�t W Œ0;Lt� ! .M; g/ from p to c.t/. As in the construction of rays this family
subconverges to a ray Qc W Œ0;1/! M, with Qc.0/ D p. Such Qc are called asymptotes
for c from p (see figure 7.4) and need not be unique.

Proposition 7.3.8. The Busemann functions are related by:

(1) bc.x/ � bc.p/C bQc.x/.
(2) bc.Qc.t// D bc.p/C bQc.Qc.t// D bc.p/� t.

Proof. Let �i W Œ0;Li� ! .M; g/ be the segments converging to Qc. To check (1),
observe that

jxc.s/j � s � jxQc.t/j C jQc.t/c.s/j � s

D jxQc.t/j � tC jpQc.t/j C jQc.t/c.s/j � s

! jxQc.t/j � tC jpQc.t/j C bc.Qc.t// as s!1:

Thus, we see that (1) is true provided that (2) is true. To establish (2), note that

jpc.ti/j D jp�i.s/j C j�i.s/c.ti/j

for some sequence ti !1. Then �i.s/! Qc.s/ and

bc.p/ D lim .jpc.ti/j � ti/

D lim .jpQc.s/j C jQc.s/c.ti/j � ti/
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x

c(-t) c(t)c(0)

l

Fig. 7.5 Triangle inequality for two Busemann functions

D jpQc.s/j C lim .jQc.s/c.ti/j � ti/

D sC bc.Qc.s//
D �bQc.Qc.s//C bc.Qc.s//: ut

We have shown that bc has bc.p/C bQc as support function from above at p 2 M.

Lemma 7.3.9. If Ric.M; g/ � 0; then �bc � 0 everywhere.

Proof. Since bc.p/CbQc is a support function from above at p, we only need to check
that �bQc � 0 at p. To see this, observe that the functions bt.x/ D jxQc.t/j � t are
support functions from above for bQc at p. Furthermore, these functions are smooth
at p with

�bt.p/ � n � 1
t
! 0 as t!1: ut

Proof of Theorem 7.3.5. Now suppose .M; g/ has Ric � 0 and contains a line c.t/ W
R ! M. Let bC be the Busemann function for c W Œ0;1/ ! M; and b� the
Busemann function for c W .�1; 0�! M. Thus,

bC.x/ D lim
t!C1 .jxc.t/j � t/ ;

b�.x/ D lim
t!C1 .jxc.�t/j � t/ :

Clearly,

bC.x/C b�.x/ D lim
t!C1 .jxc.t/j C jxc.�t/j � 2t/ ;

so by the triangle inequality
�
bC C b�� .x/ � 0 for all x. Moreover,�

bC C b�� .c.t// D 0 since c is a line (see figure 7.5).
This gives us a function bCCb� with�.bCCb�/ � 0 and a global minimum at

c.t/. The minimum principle then shows that bCCb� D 0 everywhere. In particular,
bC D �b� and�bC D �b� D 0 everywhere.

To finish the proof of the splitting theorem, we still need to show that b˙ are
distance functions, i.e.

ˇ
ˇrb˙ˇˇ � 1. To see this, let p 2 M and construct asymptotes

Qc˙ for c˙ from p. Then consider bṫ .x/ D
ˇ̌
xQc˙.t/

ˇ̌ � t, and observe:
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bC
t .x/ � bC.x/ � bC .p/ D �b�.x/C b� .p/ � �b�

t .x/

with equality holding for x D p. Since both bṫ are smooth at p with unit gradient
it follows that rbC

t .p/ D �rb�
t .p/. Then b˙ must also be differentiable at p with

unit gradient. Therefore, we have shown (without using that b˙ are smooth from
�b˙ D 0) that b˙ are everywhere differentiable with unit gradient. The result that
harmonic functions are smooth can now be invoked and the proof is finished as
explained earlier. ut

7.3.3 Structure Results in Nonnegative Ricci Curvature

The splitting theorem gives several nice structure results for compact manifolds with
nonnegative Ricci curvature.

Corollary 7.3.10. Sk � S1 does not admit any Ricci flat metrics when k D 2; 3:
Proof. The universal covering is Sk � R. As this space is disconnected at infinity
any metric with nonnegative Ricci curvature must split. If the original metric is
Ricci flat, then after the splitting we obtain a Ricci flat metric on a k-manifold H
that is homotopy equivalent to Sk. In particular, H is compact and simply connected.
If k � 3, such a metric must also be flat and so can’t be simply connected as it is
compact. ut

When k � 4 it is not known whether any space that is homotopy equivalent to
Sk admits a Ricci flat metric, but there do exist Ricci flat metrics on compact simply
connected manifolds in dimensions� 4.

Theorem 7.3.11 (Structure Theorem for Nonnegative Ricci Curvature,
Cheeger and Gromoll, 1971). Suppose .M; g/ is a compact Riemannian manifold
with Ric � 0.

(1) The universal cover . QM; Qg/ splits isometrically as a product N �Rk, where N is
a compact manifold.

(2) The isometry group splits Iso
� QM� D Iso .N/ � Iso

�
R

k
�
.

(3) There exists a finite normal subgroup G � 	1 .M/ whose factor group is
	1 .M/\ Iso

�
R

k
�

and there is a finite index subgroup Z
k � 	1 .M/\ Iso

�
R

k
�
.

Proof. First we use the splitting theorem to write QM D N � R
k, where N does not

contain any lines. Observe that if c.t/ D .c1.t/; c2.t// 2 N � R
k is a geodesic, then

both ci are geodesics, and if c is a line, then both ci are also lines unless they are
constant. Thus, all lines in QM must be of the form c.t/ D .x; �.t//; where x 2 N and
� is a line in R

k.
(2) Let F W QM ! QM be an isometry. If L.t/ is a line in QM; then F ı L is also a line

in QM. Since all lines in QM lie in R
k and every vector tangent to R

k is the velocity of
some line, we see that for each x 2 N we can find F1 .x/ 2 N such that
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F W fxg �R
k ! fF1 .x/g � R

k:

This implies that F must be of the form F D .F1;F2/; where F1 W N ! N is an
isometry. Since DF preserves the tangents spaces to R

k it must also preserve the
tangent spaces to N. Thus F2 W Rk ! R

k. This shows that Iso
� QM� D Iso .N/ �

Iso
�
R

k
�
.

(1) Since the deck transformations	1 act by isometries we can consider the group
	1 \ Iso .N/ that comes from the projection N �Rk ! N. As 	1 acts discretely and
cocompactly on QM, it follows that 	1 \ Iso .N/ also acts cocompactly on N. In
particular, for any sequence pi 2 N, it is possible to select Fi 2 	1 \ Iso .N/ such
that all the points Fi .pi/ lie in a fixed compact subset of N.

If N is not compact, then it must contain a ray c.t/ W Œ0;1/ ! N. We can
then choose a sequence ti ! 1 and Fi 2 	1 \ Iso .N/ such that Fi .c .ti// lie in
a compact set. We can then choose a subsequence so that DFi .Pc .ti// converges to
a unit vector v 2 TN. This implies that the geodesics ci W R ! N defined by
ci .t/ D Fi .c .tC ti// converge to the geodesic exp .tv/. Moreover, for a fixed a 2 R

the geodesics ci are rays on Œa;1/ when ti � �a so it follows that exp .tv/ is also a
ray on Œa;1/. But this shows that exp .tv/ W R! N is a line which contradicts that
N does not contain any lines.

(3) Let G be the kernel that comes from the map 	1 .M/ ! 	1 .M/ \ Iso
�
R

k
�

induced by the projection N � R
k ! R

k. This group acts freely and discretely on
N � R

k without acting in the second factor. Thus it acts freely and discretely on N
and must be finite as N is compact.

The translations form a normal subgroup R
k � Iso

�
R

k
�

whose factor group is
O .k/. The intersection 	1 .M/\R

k is a finitely generated Abelian group with finite
index in 	1\ Iso

�
R

k
�

that acts discretely and cocompactly on R
k. In particular, it is

of the form Z
m. When m < k it is not possible for Zm to act cocompactly on R

k since
it will generate a proper subspace of the space of translations on R

k. On the other
hand if m > k, then Z

m will contain two elements that are linearly independent over
Q but not over R inside the space of translations. The subgroup in Z

m generated
by these two elements will generate orbits that are contained in line, but it can’t
act discretely on these lines (see also the end of the proof of theorem 6.2.6.) We
conclude that 	1 .M/\R

k D Z
k. (For more details about discrete actions on R

n see
also [38] and [106].) ut
Remark 7.3.12. Wilking in [103] has in fact shown that any group G that admits
a finite normal subgroup H � G so that G=H acts discretely and cocompactly
on a Euclidean space must be the fundamental group of a compact manifold with
nonnegative sectional curvature.

We next prove some further results about the structure of compact manifolds with
nonnegative Ricci curvature.

Corollary 7.3.13. Suppose .M; g/ is a compact Riemannian manifold with Ric � 0.
If M is K.	; 1/, i.e., the universal cover is contractible, then the universal covering
is Euclidean space and .M; g/ is a flat manifold.
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Proof. We know that QM D R
k �C, where C is compact. The only way in which this

space can be contractible is if C is contractible. But the only compact manifold that
is contractible is the one-point space. ut
Corollary 7.3.14. If .M; g/ is compact with Ric � 0 and has Ric > 0 on some
tangent space TpM, then 	1.M/ is finite.

Proof. Since Ric > 0 on an entire tangent space, the universal cover cannot split
into a product Rk � C, where k � 1. Thus, the universal covering is compact. ut

This result is a bit stronger than simply showing that H1 .M;R/ D 0 as we
shall prove using the Bochner technique (see 9.2.3). The next result is equivalent to
Bochner’s theorem, but the proof is quite a bit different.

Corollary 7.3.15. If .M; g/ is compact and has Ric � 0, then b1.M/ � dimM D n,
with equality holding if and only if .M; g/ is a flat torus.

Proof. There is a natural surjection

h W 	1.M/! H1 .M;Z/ ' Z
b1 � T;

that maps loops to cycles, and where T is a finite Abelian group. The structure of
the fundamental group shows that h .G/ � T since G is finite. Thus we obtain a
surjective homomorphism 	1.M/=G! Z

b1 , where 	1.M/=G D 	1 .M/\ Iso
�
R

k
�
.

Moreover, the image of 	1.M/ \ R
k D Z

k in Z
b1 has finite index. This shows that

b1 � k � n.
When b1 D n it follows that QM D R

n. In particular, G is trivial. Moreover, the
restriction of h to Z

n must be injective as the image otherwise couldn’t have finite
index in H1 .M;Z/. Thus the kernel of h cannot intersect the finite index subgroup
Z

n � 	1.M/ and so must be finite. However, any isometry on R
n of finite order has a

fixed point so it follows that ker h is trivial. Thus 	1.M/ ' Z
n�T and consequently

T is trivial. This shows that M D R
n=Zn is a torus. Note, however, that the action of

Z
n on R

n might not be the standard action so we don’t necessarily end up with the
square torus. ut

Finally we prove a similar structure result for homogeneous spaces.

Theorem 7.3.16. Let .M; g/ be a Riemannian manifold that is homogeneous. If
Ric � 0, then

.M; g/ D �N � R
k; gN C gRk

�
;

where .N; gN/ is a compact homogeneous space.

Proof. First split .M; g/ D �N � R
k; gN C gRk

�
so that N does not contain any lines.

Then note that the isometry group splits as in theorem 7.3.11 thus forcing N to
become homogeneous.

The claim will then follow from the splitting theorem provided we can show that
any noncompact homogeneous space contains a line. To see this choose a unit speed
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ray c W Œ0;1/! M and isometries Fs such that Fs .c .s// D c .0/. Now consider the
unit speed rays cs W Œ�s;1/ defined by cs .t/ D Fs .c .tC s//. Then cs .0/ D c .0/
and Pcs .0/ D Pc .0/ so cs is simply the extension of c. As cs is a ray it follows that the
extension of c to R must be a line. ut

7.4 Further Study

The adventurous reader could consult [53] for further discussions. Anderson’s
article [2] contains some interesting examples of manifolds with nonnegative Ricci
curvature. For the examples with almost maximal diameter we refer the reader to
[3] and [81]. It is also worthwhile to consult the original paper on the splitting
theorem [31] and the elementary proof of it in [41]. The reader should also consult
the articles by Colding, Perel’man, and Zhu in [54] to get an idea of how the subject
has developed.

7.5 Exercises

EXERCISE 7.5.1. With notation as in section 7.1.1 and using vol D �dr ^ voln�1
show that � D � 1

n�1 satisfies

@2r� � �
�

n � 1 Ric .@r; @r/ ;

� .0; �/ D 0;
lim
r!0

@r� .r; �/ D 1:

This can also be used to show the desired estimates for the volume form.

EXERCISE 7.5.2 (Calabi and Yau). Let .M; g/ be a complete noncompact manifold
with Ric � 0 and fix p 2 M.

(1) Show that for each R > 1 there is an x 2 M such that

vol B .p; 1/ � vol B .x;RC 1/� vol B .x;R � 1/

� .RC 1/n � .R � 1/n
.RC 1/n vol B .p; 2R/ :

(2) Show that there is a constant C > 0 so that vol B .p;R/ � CR.

EXERCISE 7.5.3. Let f W I ! R be continuous, where I � R an interval. Show that
the following conditions are equivalent.
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(1) f is convex.
(2) f has a “linear” support function from below of the form a .x � x0/C f .x0/ at

every x0 2 I.
(3) f 00 � 0 in the support sense at all points x0 2 I.

EXERCISE 7.5.4. Show that on a compact Riemannian manifold it is not possible
to find S .s/ <1 such that kf � fMk s

s�1
� S kdfk1 when 1 < s < dim M.

EXERCISE 7.5.5 (Basic Covering Lemma). Given a separable metric space .X; d/
and a bounded positive function R W X ! .0;D�, show that there is a countable
subset A � X, such that the balls B .p;R.p// are pairwise disjoint for p 2 A and
X D S

p2A B .p; 5R.p//. Hint: Select the points in A successively so that R.pkC1/ �
1
2

supp2X�Sk
iD1 B.pi;2R.pi//

R.p/.

EXERCISE 7.5.6. Assume the distance function r.x/ D jxpj is smooth on B .p;R/ :
Show that if

Hess r D sn0
k .r/

snk .r/
gr

in polar coordinates, then all sectional curvatures on B .p;R/ are equal to k:

EXERCISE 7.5.7. Construct convex surfaces in R
3 by capping off cylinders

Œ�R;R� � S1 to show that the Sobolev-Poincaré constants increase as R increases.
Hint: Consider test functions that are constant except on Œ�1; 1� � S1.

EXERCISE 7.5.8. Show that if .M; g/ has Ric � .n � 1/ k and for some p 2 M we
have vol B .p;R/ D v .n; k;R/ ; then the metric has constant curvature k on B .p;R/ :

EXERCISE 7.5.9. Let X be a vector field on a Riemannian manifold and consider
Ft .p/ D expp

�
tXjp

�
:

(1) For v 2 TpM show that J .t/ D DFt .v/ is a Jacobi field along t 7! c .t/ D
exp .tX/ with the initial conditions J .0/ D v; PJ .0/ D rvX:

(2) Select an orthonormal basis ei for TpM and let Ji .t/ D DFt .ei/ : Show that

.det ŒDFt�/
2 D det

	
g
�
Ji .t/ ; Jj .t/

�

:

(3) Show that as long as det .DFt/ ¤ 0 it satisfies

d2 .det .DFt//
1
n

dt2
� � .det .DFt//

1
n

n
Ric .Pc; Pc/ :

Hint: Use that any n � n matrix satisfies .tr .A//2 � n tr .A�A/ :
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EXERCISE 7.5.10. Show that a complete manifold .M; g/ with the property that

Ric � 0;
lim

r!1
vol B .p; r/

!nrn
D 1;

for some p 2 M; must be isometric to Euclidean space.

EXERCISE 7.5.11. Show that any function on an n-dimensional Riemannian mani-
fold satisfies

jHess uj2 � 1

n
j�uj2

with equality holding only when Hess u D �u
n g. What can you say about M when

Hess u D �u
n g?

EXERCISE 7.5.12. Show that if u; v W M ! R are compactly supported functions
that are both smooth on open dense sets in M, then the following integrals make
sense and are equal

Z
u�v vol D

Z
v�u vol D �

Z
g .du; dv/ vol D �

Z
g .ru;rv/ vol :

EXERCISE 7.5.13. Show that if �u D �u on a closed Riemannian manifold, then
� � 0 and when � D 0, then u is constant.

EXERCISE 7.5.14. Show that the modified distance functions uk D cos
�p

kr
�

on

Sn
k D Sn

�
1p

k

�
, satisfy �uk D � .nk/ uk and

R
uk vol D 0.

EXERCISE 7.5.15 (Lichnerowicz). Let .Mn; g/ be closed with Ric � .n� 1/ k > 0.
Use the Bochner formula to show that all functions with �u D ��u, � > 0, satisfy
� � nk.

The spectral theorem for � then implies that all functions with
R

u vol D 0

satisfy the Poincaré inequality

Z
u2 vol � 1

nk

Z
jduj2 vol :

EXERCISE 7.5.16 (Obata). Let .Mn; g/ be closed with Ric � .n � 1/ k > 0. Use
the Bochner formula as in exercise 7.5.15 to show that if there is a function such
that �u D � .nk/ u, then Hess u D �kug. Conclude that .Mn; g/ D Sn

k .

EXERCISE 7.5.17 (P. Li and Schoen). The goal of this exercise is to show a
Poincaré inequality for functions that vanish on the boundary of a ball. Let .M; g/ be
a complete Riemannian n-manifold with Ric � � .n � 1/ k2, k � 0; p 2 M; R > 0

chosen so that @B .p; 2R/ ¤ ¿; q 2 @B .p; 2R/; and r .x/ D jxqj.
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(1) Show that �r � .n � 1/ �R�1 C k
�

on B .p;R/.
(2) Let f .x/ D a exp .�ar .x//, a > 0. Show that

�f � a exp .�a3R/
�
a � .n � 1/ �R�1 C k

��
:

(3) Let u � 0 be a smooth function with compact support in B .p;R/ and choose
a D n

�
R�1 C k

�
. Use

Z

B.p;R/
u�f vol D �

Z

B.p;R/
g .du; df / vol

to show that
Z

B.p;R/
u vol � C

Z

B.p;R/
jduj vol;

where C D R
1CkR exp .2n .1C kR//.

(4) Prove this inequality for all smooth functions u with compact support in
B .p;R/.

(5) Let s � 1 and u have compact support in B .p;R/. Show that

Z

B.p;R/
jujs vol � .sC/s

Z

B.p;R/
jduj vol :

EXERCISE 7.5.18 (Cheeger). The relative volume comparison estimate can be
generalized as follows: Suppose .Mn; g/ has Ric � .n � 1/ k.

(1) Select points p1; : : : ; pk 2 M: Then the function

r 7!
vol

�Sk
iD1 B .pi; r/

�

v .n; k; r/

is nonincreasing and converges to k as r! 0:

(2) If A � M; then

r 7!
vol

�S
p2A B .p; r/

�

v .n; k; r/

is nonincreasing. To prove this, use the above with the finite collection of points
taken to be very dense in A:
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EXERCISE 7.5.19. The absolute volume comparison can be generalized to hold for
cones. Namely, for p 2 M and a subset � � TpM of unit vectors, consider the cones
defined in polar coordinates:

B� .p;R/ D f.t; �/ 2 M j t � R and � 2 �g :

If Ric M � .n � 1/ k; show that

vol B� .p;R/ � vol� �
Z R

0

.snk .t//
n�1 dt:

EXERCISE 7.5.20. Let G be a compact connected Lie group with a biinvariant
metric such that Ric � 0. Use the results from this chapter to prove

(1) If G has finite center, then G has finite fundamental group.
(2) A finite covering of G looks like G0�Tk;where G0 is compact simply connected,

and Tk is a torus.
(3) If G has finite fundamental group, then the center is finite.

EXERCISE 7.5.21. Let .M; g/ be an n-dimensional Riemannian manifold that is
isometric to Euclidean space outside some compact subset K � M; i.e., M � K
is isometric to R

n � C for some compact set C � R
n: If Ricg � 0; show that

M D R
n:

EXERCISE 7.5.22. Show that if Ric � n � 1; then diam � 	; by showing that if
jpqj > 	; then

ep;q .x/ D jpxj C jxqj � jpqj

has negative Laplacian at a local minimum.



Chapter 8
Killing Fields

In this chapter we begin with a section on some general results about Killing fields
and their relationship to the isometry group. This is used in the subsequent section
to prove Bochner’s theorems about the lack of Killing fields on manifolds with
negative Ricci curvature. In the last section we present several results about how
Killing fields influence the topology of manifolds with positive sectional curvature.
This is a somewhat more recent line of inquiry.

8.1 Killing Fields in General

A vector field X on a Riemannian manifold .M; g/ is called a Killing field if the local
flows generated by X act by isometries. This translates into the following simple
characterization:

Proposition 8.1.1. A vector field X on a Riemannian manifold .M; g/ is a Killing
field if and only if LXg D 0:
Proof. Let Ft be the local flow for X: Recall that

.LXg/ .v;w/ D d

dt
g
�
DFt .v/ ;DFt .w/

� jtD0:
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Thus we have

d

dt
g
�
DFt .v/ ;DFt .w/

� jtDt0 D
d

dt
g
�
DFt�t0DFt0 .v/ ;DFt�t0DFt0 .w/

� jtDt0

D d

ds
g
�
DFsDFt0 .v/ ;DFsDFt0 .w/

� jsD0
D .LXg/

�
DFt0 .v/ ;DFt0 .w/

�
:

This shows that LXg D 0 if and only if t 7! g .DFt .v/ ;DFt .w// is constant. Since
F0 is the identity map this is equivalent to assuming the flow acts by isometries. ut

We can use this characterization to show

Proposition 8.1.2. X is a Killing field if and only if v 7! rvX is a skew symmetric
.1; 1/-tensor.

Proof. Let �X .v/ D g .X; v/ be the 1-form dual to X. Recall that

d�X.V;W/C .LXg/ .V;W/ D 2g .rV X;W/ :

Thus LXg � 0 if and only if v 7! rvX is skew-symmetric. ut
Proposition 8.1.3. If X 2 iso, i.e., X is a Killing field, then

r2V;WX D �R .X;V/W:

If X;Y 2 iso, then

ŒrX;rY� .V/CrV ŒX;Y� D R .X;Y/V:

Proof. The fact that X is a Killing field implies that LXr D 0. Using this with the
identity

.LXr/V W D R .X;V/W Cr2V;WX

from the proof of the first Bianchi identity in proposition 3.1.1 implies the first
claim.

The second identity is a direct calculation that uses the first Bianchi identity

ŒrX;rY� .V/CrV ŒX;Y� D rrV YX � rrV XY CrVrXY � rVrYX

D r2V;XY � r2V;Y X

D �R .Y;V/X C R .X;V/Y

D �R .Y;V/X � R .V;X/ Y

D R .X;Y/V: ut
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Proposition 8.1.4. For a given p 2 M a Killing field X 2 iso is uniquely determined
by Xjp and .rX/jp. In particular, we obtain a short exact sequence

0! isop ! iso! tp ! 0;

where

isop D
˚
X 2 iso j Xjp D 0

�
;

tp D
˚
Xjp 2 TpM j X 2 iso

�
:

Proof. The equation LXg � 0 is linear in X; so the space of Killing fields is a
vector space. Therefore, it suffices to show that X � 0 on M provided Xjp D 0 and
.rX/ jp D 0: Using an open-closed argument we can reduce our considerations to a
neighborhood of p:

Let Ft be the local flow for X near p: The condition Xjp D 0 implies that Ft .p/ D
p for all t: Thus DFt W TpM ! TpM: We claim that also DFt D I: The assumptions
show that X commutes with any vector field at p since

ŒX;Y� jp D rX.p/Y � rY.p/X D 0:

If Yjp D v; then the definition of the Lie derivative implies

0 D LXYjp D lim
t!0

DFt .v/ � v
t

:

Applying this to the vector field Ft0� .Y/ yields

0 D LXDFt0 .Y/ jp

D lim
s!0

DFsDFt0 .v/ � DFt0 .v/

s

D lim
t�t0!0

DFt�t0DFt0 .v/ � DFt0 .v/

t � t0

D lim
t!t0

DFt .v/ �DFt0 .v/

t � t0
:

In other words t 7! DFt .v/ is constant. As DF0 .v/ D v it follows that DFt D I:
Since the flow diffeomorphisms act by isometries, proposition 5.6.2 implies that

they must be the identity map, and hence X D 0 in a neighborhood of p:
Alternatively we could also have used that X when restricted to a geodesic c must

be a Jacobi field as the flow of X generates a geodesic variation. Thus X D 0 along
this geodesic if Xjc.0/ and rPc.0/X both vanish.

The second part of the claim is immediate from the fact that tp is defined as the
image and isop as the kernel of the evaluation map iso! TpM. ut
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These properties lead to two important general results about Killing fields.

Theorem 8.1.5. The zero set of a Killing field is a disjoint union of totally geodesic
submanifolds each of even codimension.

Proof. The flow generated by a Killing field X on .M; g/ acts by isometries so we
know from proposition 5.6.5 that the fixed point set of these isometries is a union of
totally geodesic submanifolds. We next observe that the fixed point set of all of these
isometries is precisely the set of points where the Killing field vanishes. Finally
assume that Xjp D 0 and let V D ker .rX/p. Then V is the Zariski tangent space
to the zero set and hence also the tangent space as in the proof of proposition 5.6.5.
Thus w 7! rwX is an isomorphism on V?. As it is also a skew-symmetric map it
follows that V? is even-dimensional. ut
Theorem 8.1.6. The set of Killing fields iso.M; g/ is a Lie algebra of dimension ��nC1
2

�
. Furthermore, if M is complete, then iso.M; g/ is the Lie algebra of Iso.M; g/.

Proof. Note that LŒX;Y� D ŒLX ;LY �. So if LXg D LYg D 0; then LŒX;Y�g D 0. Thus,
iso.M; g/ forms a Lie algebra. From proposition 8.1.4 it follows that the map X 7!
.Xjp; .rX/jp/ is linear with trivial kernel. Thus

dim.iso.M; g// � dimTpM C dimso
�
TpM

�

D nC n.n� 1/
2

D
 

nC 1
2

!

:

The last statement depends crucially on knowing that Iso.M; g/ is a Lie group in
the first place. We endow Iso.M; g/ with the compact-open topology so that conver-
gence is equivalent to uniform convergence on compact sets (see exercise 5.9.41).
We saw in theorem 5.6.19 that this makes Iso.M; g/ into a Lie group. One can
also appeal to the profound theorem of Bochner and Montgomery that any group
of diffeomorphisms that is also locally compact with respect to the compact-open
topology is a Lie group in that topology (see exercise 6.7.26 and [79]).

Since M is complete the Killing fields have flows that are defined for all time (see
exercise 8.4.5). These flows consist of isometries and thus yield differentiable one-
parameter subgroups of Iso.M; g/. Conversely each differentiable one-parameter
subgroup of Iso.M; g/ also gives a Killing field. This correspondence between one-
parameter subgroups and Killing fields shows that the Lie algebra iso.M; g/ is the
Lie algebra of Iso.M; g/.

There is an alternate proof of this theorem in [83]. However, it requires another
very subtle result about Lie algebras called Ado’s theorem: Every finite dimensional
Lie algebra is the Lie algebra of a Lie group. Using this and the fact that the flows of
Killing fields are defined for all time and consist of isometries shows that there is a
connected subgroup Iso0.M; g/ � Iso.M; g/, which is a Lie group with Lie algebra
iso.M; g/. Given X 2 iso.M; g/ with flow Ft and F 2 Iso.M; g/ observe that the
flow of F�X is F ı Ft ı F�1. Thus conjugation by elements F 2 Iso.M; g/ defines
an automorphism on Iso0.M; g/ whose differential at the identify is given by F�.
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This shows that Iso0.M; g/ is a normal subgroup of Iso.M; g/. We can then define
the topology on Iso.M; g/ so that Iso0.M; g/ becomes the connected component
of Iso.M; g/ containing the identity. This will make Iso.M; g/ into a Lie group
whose component containing the identity is Iso0.M; g/. It is a general fact from
the theory of Lie groups that the differentiable Lie group structure is unique if we
know the group structure and the smooth 1-parameter subgroups. This means that
the topology just introduced is forced to be the same as the compact-open topology.
Note that it is not otherwise immediately clear from this construction that Iso.M; g/
has a countable number of connected components. ut

Recall that dim.Iso.Sn
k// D

�nC1
2

�
. Thus, all simply connected space forms have

maximal dimension for their isometry groups. If we consider other complete spaces
with constant curvature, then we know they look like Sn

k=� , where � � Iso.Sn
k/ acts

freely and discontinuously on Sn
k . The Killing fields on the quotient Sn

k=� can be
identified with the Killing fields on Sn

k that are invariant under � . The corresponding
connected subgroup G � Iso.Sn

k/ will then commute with all elements in � . So if
dim.Iso.Sn

k=�// is maximal, then dim G D �nC1
2

�
and G D Iso.Sn

k/0. As we know
the possibilities for Iso.Sn

k/0 (see section 1.3.1) it is not hard to check that this forces
� to consist of homotheties. Thus, � can essentially only be f˙Ig if it is nontrivial.
But �I acts freely only on the sphere. Thus, only one other constant curvature space
form has maximal dimension for the isometry group, namely RP

n.
More generally, when dim .iso.M; g// D �nC1

2

�
, then .M; g/ has constant

curvature. To prove this we use that for each p 2 M the map X 7! .Xjp; .rX/jp/
is surjective. First note that for each S 2 so

�
TpM

�
there is a Killing field X with

Xjp D 0 and .rX/jp D S. The flow fixes p, i.e., Ft
X .p/ D p, and thus DFt

Xjp defines
a local one-parameter group of orthogonal transformations with d

dt jtD0DFt
Xjp D S.

This implies that DFt
Xjp D exp .tS/, where exp is the usual operator or matrix

exponential map. Since exp W so �TpM
� ! SO

�
TpM

�
is a local diffeomorphism

near the identity it follows that any two planes in TpM that are sufficiently close to
each other can be mapped to each other by an isometry Ft

X . This shows that these
planes have the same sectional curvature. We can now use an open-closed argument
to show that all sectional curvatures at p are the same.

Finally, for each v 2 TpM there is a unique Killing field X such that Xjp D v

and .rX/jp D 0. If Ft
X is the (local) flow of X, then we obtain an “exponential”

map Ep W Op � TpM ! M by Ep .v/ D F1X .p/, where Op is a neighborhood of the
origin. Note that Ep .tv/ D Ft

X .p/ so it follows that d
dt jtD0Ep .tv/ D v. In particular,

the differential is the identity map at the origin and Ep is locally a diffeomorphism.
This implies that for every point q in a neighborhood of p, there is a local isometry
that maps p to q. This means that the curvatures are constant on a neighborhood
of p. An open-closed argument shows as before that the curvature is constant on M.
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8.2 Killing Fields in Negative Ricci Curvature

We start by proving a general result that will be used throughout the chapter.

Proposition 8.2.1. Let X be a Killing field on .M; g/ and consider the function
f D 1

2
g.X;X/ D 1

2
jXj2. Then

(1) rf D �rXX.
(2) Hess f .V;V/ D jrVXj2 � R .V;X;X;V/.
(3) �f D jrXj2 � Ric .X;X/.

Proof. To see (1) observe that

g .V;rf / D DVf

D g.rVX;X/

D �g.V;rXX/:

(2) is proven directly by repeatedly using that V 7! rV X is skew-symmetric:

Hess f .V;V/ D g .rV .�rXX/ ;V/

D � g .R .V;X/X;V/� g .rXrVX;V/� g
�rŒV;X�X;V

�

D �R .V;X;X;V/� g .rXrVX;V/

C g .rrXVX;V/� g .rrV XX;V/

D �RX .V/C g .rVX;rVX/� g .rXrV X;V/� g .rV X;rXV/

D �RX .V/C g .rVX;rVX/�DXg .rVX;V/

D �RX .V/C g .rVX;rVX/ :

For (3) we select an orthonormal frame Ei and see that

�f D
nX

iD1
Hess f .Ei;Ei/

D
nX

iD1
g .rEi X;rEiX/�

nX

iD1
R .Ei;X;X;Ei/

D
nX

iD1
g .rEi X;rEiX/� Ric .X;X/

D jrXj2 � Ric .X;X/ : ut
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Formula (3) in this proposition is called a Bochner formula. We shall meet many
more of these types of formulas in the next chapter.

Theorem 8.2.2 (Bochner, 1946). Suppose .M; g/ is compact and has Ric � 0.
Then every Killing field is parallel. Furthermore, if Ric < 0; then there are no
nontrivial Killing fields.

Proof. If we define f D 1
2
jXj2 for a Killing field X; then the condition Ric � 0

gives us

�f D jrXj2 � Ric .X;X/ � 0:

The maximum principle then shows that f is constant and that jrXj � 0, i.e., X is
parallel. In addition Ric .X;X/ � 0:When Ric < 0 this implies that X � 0: ut
Corollary 8.2.3. With .M; g/ as in the theorem, we have

dim.iso.M; g// D dim.Iso.M; g// � dimM;

and Iso.M; g/ is finite if Ric.M; g/ < 0.

Proof. As any Killing field is parallel, the linear map: X 7! Xjp from iso.M; g/
to TpM is injective. This gives the result. For the second part use that Iso.M; g/ is
compact, since M is compact, and that the identity component is trivial. ut
Corollary 8.2.4. With .M; g/ as before and k D dim.iso.M; g//; we have that the
universal covering splits isometrically as QM D R

k � N.

Proof. On QM there are k linearly independent parallel vector fields, which we can
assume to be orthonormal. Since QM is simply connected, each of these vector fields
is the gradient field for a distance function. If we consider just one of these distance
functions we see that the metric splits as g D dr2C gr D dr2C g0 since the Hessian
of this distance function vanishes. As we get such a splitting for k distance functions
with orthonormal gradients we get the desired splitting of QM: ut

We can now say more about the homogeneous situation discussed in theo-
rem 7.3.16.

Corollary 8.2.5. A compact homogeneous space with Ric � 0 is flat. In particular,
any Ricci flat homogeneous space is flat.

Proof. We know that every Killing field is parallel and the assumption that the space
is homogeneous tells us that every tangent vector is part of a Killing field (see also
exercise 8.4.9). Thus the curvature vanishes.

The second part of the result comes from applying theorem 7.3.16. ut
The result about nonexistence of Killing fields can actually be slightly improved

to yield
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Theorem 8.2.6. Suppose .M; g/ is a compact manifold with quasi-negative Ricci
curvature, i.e., Ric � 0 and Ric.v; v/ < 0 for all v 2 TpM � f0g for some p 2 M.
Then .M; g/ admits no nontrivial Killing fields.

Proof. We already know that any Killing field is parallel. Thus a Killing field is
always zero or never zero. If the latter holds, then Ric.X;X/.p/ < 0, but this
contradicts

0 D �f .p/ D �Ric.X;X/.p/ > 0: ut

Bochner’s theorem has been generalized by X. Rong to a more general statement
asserting that a closed Riemannian manifold with negative Ricci curvature can’t
admit a pure F-structure of positive rank (see [93] for the definition of F structure
and proof of this). An F-structure on M is essentially a finite covering of open sets
Ui on some finite covering space OM ! M; such that we have a Killing field Xi on
each Ui: Furthermore, these Killing fields must commute whenever they are defined
at the same point, i.e.,

	
Xi;Xj


 D 0 on Ui \ Uj: The idea of the proof is to consider
the function

f D det
	
g
�
Xi;Xj

�

:

If only one vector field is given on all of M; then this reduces to the function f D
g .X;X/ that we considered above. For the above expression one must show that it
is a reasonably nice function that has a Bochner formula.

8.3 Killing Fields in Positive Curvature

It is also possible to say quite a bit about Killing fields in positive sectional
curvature. This is a much more recent development in Riemannian geometry.

Recall that any vector field on an even-dimensional sphere has a zero since the
Euler characteristic is 2 .¤ 0/. At some point H. Hopf conjectured that in fact any
even-dimensional compact manifold with positive sectional curvature has positive
Euler characteristic. If the curvature operator is positive, then this is certainly true as
it follows from theorem 9.4.6 that the Euler characteristic is 2. From corollary 6.3.2
we know that the fundamental group is finite provided the Ricci curvature is positive.
In particular H1.M;R/ D 0: This shows that the conjecture holds in dimension 2:
In dim D 4; Poincaré duality implies that H1.M;R/ D H3.M;R/ D 0. Hence

�.M/ D 1C dimH2.M;R/C 1 � 2:

In higher dimensions we have the following partial justification for the Hopf
conjecture.
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Theorem 8.3.1 (Berger, 1965). If .M; g/ is a compact, even-dimensional manifold
of positive sectional curvature, then every Killing field has a zero.

Proof. Consider as before f D 1
2
jXj2. If X has no zeros, then f will have a positive

minimum at some point p 2 M. In particular, Hess f jp � 0. We also know from
proposition 8.2.1 that

Hess f .V;V/ D jrV Xj2 � R .V;X;X;V/ :

By assumption, g.R.V;X/X;V/ > 0 if X and V are linearly independent. Using this,
we seek V such that Hess f .V;V/ < 0 near p; thus arriving at a contradiction.

Recall that the linear endomorphism v 7! rvX is skew-symmetric. Furthermore,
.rXX/jp D 0; since rf jp D � .rXX/ jp, and f has a minimum at p. Thus
.rX/ jp W TpM ! TpM has at least one zero eigenvalue. However, the rank of a
skew-symmetric map is always even, so the kernel must also have even dimension
as TpM is even dimensional. If v 2 TpM is an element in the kernel linearly
independent from X, then

Hess f .v; v/ D jrVXj2 � R .v;X;X; v/

D �R .v;X;X; v/ < 0: ut

In odd dimensions this result is not true as the unit vector field that generates the
Hopf fibration S3 .1/! S2 .1=2/ is a Killing field.

Having an isometric torus action implies that iso .M; g/ contains a certain number
of linearly independent commuting Killing fields. By Berger’s result we know
that in even dimensions these Killing fields must vanish somewhere. Moreover,
the structure of these zero sets is so that each component is a totally geodesic
submanifold of even codimension. A type of induction on dimension can be now
used to extract information about these manifolds.

To understand how this works some important topological results on the zero
set for a Killing field are needed. The Euler characteristic is defined as the alter-
nating sum

� .M/ D
nX

pD0
.�1/p dimHp .M;R/ :

Theorem 8.3.2. Let X be a Killing field on a compact Riemannian manifold. If
Ni � M are the components of the zero set for X; then � .M/ DPi � .Ni/.

Proof. The proof is a modification of the classical result of Poincaré and Hopf where
the Euler characteristic is calculated as a sum of indices for the isolated zeros of a
vector field. The Meyer-Vietoris sequence can be used show that

� .M/ D � .A/C � .B/ � � .A \ B/

for nice subsets A; B; A \ B � M.
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Note that the flow Ft of X fixes points in Ni and in particular, jFt.x/Nij D jxNij.
This shows that X is tangent to the level sets of jxNij. Now choose tubular
neighborhoods around each Ni of the form Ti D fp 2 M j jxNij � �g. Then X
is tangent to the smooth boundary @Ti. Now both � .M �S intTi/ and � .

S
@Ti/

vanish by the Poincaré-Hopf theorem as X is a nonzero vector field on these
manifolds. Thus � .M/ D P

� .Ti/. Finally, Ni � Ti is a deformation retraction
and so they have the same Euler characteristic. This proves the theorem. ut

This implies the following corollary.

Corollary 8.3.3. If M is a compact 6-manifold with positive sectional curvature
that admits a Killing field, then � .M/ > 0:

Proof. We know that the zero set for a Killing field is nonempty and that each
component has even codimension. Thus each component is a 0; 2; or 4-dimensional
manifold with positive sectional curvature. This shows that M has positive Euler
characteristic. ut

If we consider 4-manifolds we get a much stronger result (see also [63]). The
proof uses techniques that appear later in the text and is only given in outline.

Theorem 8.3.4 (Hsiang and Kleiner, 1989). If M4 is a compact orientable posi-
tively curved 4-manifold that admits a Killing field, then the Euler characteristic is
� 3: In particular, M is topologically equivalent to S4 or CP2:

Proof. We assume for simplicity that sec � 1 so that we can use a specific
comparison space for Toponogov’s theorem (see theorem 12.2.2).

In case the zero set of the Killing field contains a component of dimension 2 the
result will follow from lemma 8.3.7 below. Otherwise all zeros are isolated. It is
then necessary to obtain a contradiction if there are at least isolated 4 zeros.

Assume p is an isolated zero for a Killing field X on a Riemannian 4-manifold.
Then the flow Ft of X induces an isometric action DFtjp D Rt on the unit sphere
S3 � TpM that has no fixed points. We can decompose TpM D V1˚V2 into the two
orthogonal and invariant subspaces for this action. This decomposition allows us to
exhibit S3 as a doubly warped product over the interval Œ0; 	=2� as in example 1.4.9.
The natural distance function r for this doubly warped decomposition measures the
angle to say V1. It follows that for any vj 2 S3, j D 1; 2; 3 we have

jr.v1/r.v2/j C jr.v1/r.v3/j C jr.v2/r.v3/j � 	:
The rotations Rt preserve the levels of r and form nontrivial rotations by �it on each
Vi. When �1 and �2 are irrationally related the orbits are in fact dense in the level
sets for r. This shows that for every � > 0 and vj 2 S3, j D 1; 2; 3 there exist tj
such that

† �Rt1v1;R
t2v2

�C† �Rt1v1;R
t3v3

�C† �Rt2v2;R
t3v3

� � 	 C �:
When �1 and �2 are rationally related, this will also be true (in fact with � D 0) and
can be shown by approximating such a rotation by irrational rotations.
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Let
H)
pq be the set of all unit vectors tangent to segments from p to q. Define

inf†pxq as the infimum of the angles between vectors in
H)
xp and

H)
xq . Assume that

pi, i D 1; 2; 3; 4 are isolated zeros for X and note that the flow of X maps segments
between any two such zeros to segments between the same two zeros. Thus we have
shown that

inf†p2p1p3 C inf†p2p1p4 C inf†p4p1p3 � 	:

If we add up over all 4 possibilities of points the sum is � 4	 .
On the other hand, by Toponogov’s theorem any specific angle †pxq can be

bounded from below by the corresponding angle in S2 .1/ for a triangle with the
same sides jxpj ; jxqj ; jpqj. This implies that

inf†p1p2p3 C inf†p3p1p2 C inf†p2p3p1 > 	:

Adding up over all 4 choices gives a total sum > 4	 . So we have reached a
contradiction. ut

The conclusion has been improved by Grove-Wilking in [57] and there are
similar results for 5-manifolds with torus actions in [42] and [45].

Below we discuss generalizations to higher dimensions. The results, however,
do not generalize the Hsiang-Kleiner classification as they require more isometries
even in dimension 4.

Two important tools in the proofs below are a generalization of Berger’s result
about Killing fields in even dimensions and Wilking’s connectedness principle (see
lemma 6.5.8) as well as an enhancement also due to Wilking.

Theorem 8.3.5 (Grove and Searle, 1994). Let M be a compact n-manifold with
positive sectional curvature. Two commuting Killing fields must be linearly depen-
dent somewhere on M:

Proof. Let X;Y be commuting Killing fields on M. We have from proposition 8.1.3
that ŒrX;rY� D R .X;Y/. This gives us the formula

R .X;Y;Y;X/ D g .ŒrX;rY� .Y/ ;X/

D g .rrY YX;X/� g .rrY XY;X/

D �g .rXX;rYY/C jrXYj2 :

If Y vanishes somewhere on M, then we are finished, so assume otherwise and
consider the function

f D 1

2

 

jXj2 � g .X;Y/2

jYj2
!

:
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If f vanishes somewhere we are again finished. Otherwise, f will have a positive
minimum at some point p 2 M: We scale Y to be a unit vector at p, and adjust X to
be NX D X � g

�
Xjp;Yjp

�
Y so that NXjp ? Yjp. Neither change will affect f . We now

have

f D 1

2

 
ˇ
ˇ NXˇˇ2 � g

� NX;Y�2
jYj2

!

� 1

2

ˇ
ˇ NXˇˇ2

with equality at p: This means that the function on the right also has a positive
minimum at p: In particular,r NX NX D 0 at p: Since g

� NX;Y� vanishes at p the Hessian
of f at p is simply given by

Hess f .v; v/ D ˇˇrv NX
ˇ
ˇ2 � R

�
v; NX; NX; v� � �Dvg

� NX;Y��2

for v 2 TpM: The last term can be altered to look more like the first

Dvg
� NX;Y� D g

�rv NX;Y
�C g

� NX;rvY
�

D g
�rv NX;Y

� � g .v;r NXY/

D g
�rv NX;Y

� � g
�
v;rY NX

�

D g
�rv NX; 2Y

�
:

If there is a v ? NX with rv NX D 0, then the Hessian becomes negative and
we have a contradiction. If no such v exists, then ker

�r NX� jp D span
˚ NXjp

�
since

r NX NX D 0 at p:As Y ? NX at p it follows that we can find v ? NX such that rv NX D 2Y.
Then we obtain a contradiction again

Hess f .v; v/ D �R
�
v; NX; NX; v� < 0: ut

Lemma 8.3.6 (Connectedness principle with symmetries, Wilking, 2003). Let
Mn be a compact n-manifold with positive sectional curvature and X a Killing field.
If Nn�k is a component for the zero set of X, then N � M is .n � 2kC 2/-connected.

Proof. Consider a unit speed geodesic c that is perpendicular to N at the endpoints.
It is hard to extract more information from parallel fields along c as we did in
lemma 6.5.8. Instead we consider fields that are orthogonal to both c and the action
and have derivative tangent to the action.

Specifically, consider fields that satisfy the linear ODE

E .0/ 2 Tc.0/N;

PE D �g .E;rPcX/

jXj2 X:
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Note that since

g .E;rPcX/ D �g .Pc;rEX/

and E .0/ 2 Tc.0/N, it follows that g
�
E .0/ ;rPc.0/X

� D 0. In particular, the
differential equation is not singular at t D 0.

We claim that these fields satisfy the properties

g .E;X/ D 0;
g
�
E .1/ ;rPc.1/X

� D 0;
g .E; Pc/ D 0:

The first condition follows from Xjc.0/ D 0 and

d

dt
g .E;X/ D g

� PE;X�C g .E;rPcX/

D g

�
�g .E;rPcX/

jXj2 X;X

�
C g .E;rPcX/

D 0:

As Xjc.1/ D 0 this also implies the second property. For the third property first
note that

d

dt
g .X; Pc/ D g .rPcX; Pc/ D 0;

Xjc.0/ D 0

so g .X; Pc/ D 0: It then follows that

d

dt
g .E; Pc/ D g

� PE; Pc� D �g .E;rPcX/
jXj2 g .X; Pc/ D 0:

Now note that also E .1/?span
˚Pc .1/ ;rPc.1/X

�
. The space span

˚Pc .1/ ;rPc.1/X
�

is 2-dimensional as Pc is perpendicular to the component N of the zero set for X: This
means that the space of such fields E; where in addition E .1/ is tangent to N; must
have dimension at least n � 2kC 2 (see also the proof of part (a) of lemma 6.5.8).

We now need to check that such fields give us negative second variation. This is
not immediately obvious as

ˇ
ˇ PEˇˇ doesn’t vanish. However, we can resort to a trick

that forces it down in size without losing control of the curvatures sec .E; Pc/ : In
section 4.5.4 we showed that the metric g can be perturbed to a metric g�, where
X has been squeezed to have size ! 0 as � ! 0: At the same time, directions
orthogonal to X remain unchanged and the curvatures sec .E; Pc/ become larger as
both E and Pc are perpendicular to X: Finally c remains a geodesic since rY Y is
unchanged for Y ? X (see proposition 4.5.1).
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The second variation formula for g� looks like

d2E

ds2
jsD0 D

Z b

a

ˇ̌ PE .t/ˇ̌2
g�

dt �
Z b

a
g� .R .E; Pc/ Pc;E/ dt

�
Z b

a

ˇ
ˇ
ˇ
ˇ̌
g .E;rPcX/

jXj2g
X

ˇ
ˇ
ˇ
ˇ̌

2

g�

dt �
Z b

a
secg .E; Pc/ jEj2g dt

D
Z b

a

jg .E;rPcX/j2
jXj4g

jXj2g� dt �
Z b

a
secg .E; Pc/ jEj2g dt

! �
Z b

a
secg .E; Pc/ jEj2g dt as �! 0:

This shows that all of the fields E must have negative second variation in the metric
g� for sufficiently small �:

This perturbation is independent of c 2 �N;N .M/ and so we have found a new
metric where all such geodesics have index � n � 2k C 2: This shows that N � M
is .n � 2kC 2/-connected. ut

To get a feel for how this new connectedness principle can be used we prove.

Lemma 8.3.7 (Grove and Searle, 1994). Let M be a closed n-manifold with
positive sectional curvature. If M admits a Killing field such that the zero set has
a component N of codimension 2, then M is diffeomorphic to Sn, CP

n
2 , or a cyclic

quotient of a sphere Sn=Zq.

Proof. We only prove a (co-)homology version of this result for simply connected
manifolds.

The previous lemma shows that N � M is .n � 2/-connected. Thus, for k < n�2,
Hk .N/ ! Hk .M/ and Hk .M/ ! Hk .N/ are isomorphisms. Using this together
with Poincaré duality Hk .M/ ' Hn�k .M/ and Hk .N/ ' Hn�2�k .N/ shows that for
0 < k < n � 2 we have isomorphisms:

HkC2 .M/! Hn�k�2 .M/! Hn�k�2 .N/! Hk .N/! Hk .M/ ;

Hk .M/! Hk .N/! Hn�2�k .N/! Hn�2�k .M/! HkC2 .M/ :

Using that M is simply connected shows that when n is even we have

0 ' H1 .M/ ' H3 .M/ ' � � � ' Hn�1 .M/

and when n is odd

0 ' H1 .M/ ' H3 .M/ ' � � � ' Hn�2 .M/ ' H2 .M/ ' � � � ' Hn�1 .M/ :

This shows that M is a homotopy sphere when n is odd.
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When n is even we still have to figure out the possibilities for the even
dimensional homology groups. This uses that we have

H2 .M/ ' H4 .M/ ' � � � ' Hn�2 .M/! Hn�2 .N/ ' Z:

The last map is injective since N � M is .n � 2/-connected. Thus these even
dimensional cohomology groups are either all trivial or isomorphic to Z. This gives
the claim.

When M has nontrivial fundamental group the proof works for the universal
covering, but more work is needed to classify the space itself. ut
Proposition 8.3.8. Let .M; g/ be compact and assume that X;Y 2 iso .M; g/
commute.

(1) Y is tangent to the level sets of jXj2 and in particular to the zero set of X.
(2) If X and Y both vanish on a totally geodesic submanifold N � M, then some

linear combination vanishes on a larger submanifold.

Proof. (1) Since LYX D 0 and Y is a Killing field we get

0 D .LYg/ .X;X/

D DY jXj2 � 2g .LYX;X/

D DY jXj2 :

Hence flow of Y preserves the level sets for jXj2 :
(2) We can assume that N has even codimension. Fix p 2 N and observe that

proposition 8.1.3 shows that .rX/ jp and .rY/ jp commute. Thus we obtain
a splitting

TpM D TpN ˚ E1 ˚ � � � ˚ Ek;

where Ei are 2-dimensional and invariant under both .rX/ jp and .rY/ jp. As the
space of skew-symmetric transformations on E1; say, is one-dimensional some
linear combination ˛ .rX/ jp C ˇ .rY/ jp vanishes on E1. Let NN � N be the
connected set on which ˛X C ˇY vanishes. Then Tp NN D ker .r .˛X C ˇY// jp
contains TpN ˚ E1 and it follows that N ¤ NN. ut

We are finally ready to present and prove the higher-dimensional versions alluded
to earlier. The symmetry rank of a Riemannian manifold is the dimension of a
maximal subspace of commuting Killing fields.

Theorem 8.3.9 (Grove and Searle, 1994). Let M be a compact n-manifold with
positive sectional curvature and symmetry rank k. If k � n=2, then M is diffeomorphic
to either a sphere, complex projective space or a cyclic quotient of a sphere Sn=Zq;

where Zq is a cyclic group of order q acting by isometries on the unit sphere.
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Proof. We select an Abelian subalgebra a � iso .M; g/ of dimension k � n=2.
Proposition 8.3.5 shows that with respect to inclusion there is a maximal and
nontrivial totally geodesic submanifold N � M and X 2 a that vanishes on N.
Theorem 8.3.8 implies that ajN has dimension k � 1 (see also exercise 8.4.16). If N
does not have codimension 2, then we can continue this construction and construct
a totally geodesic 1- or 2-submanifold S � M with dim .ajS/ � 2. A 1-manifold
has 1-dimensional isometry group so that does not happen. The 2-dimensional case
is eliminated as follows. Select X;Y 2 ajS. Since X is nontrivial we can find an
isolated zero p. As Y preserves the component fpg of the zero set for X it also
vanishes at p. Then

.rX/ jp; .rY/ jp W TpM! TpM

completely determine the Killing fields. As the set of skew-symmetric transforma-
tions on TpM is 1-dimensional they must be linearly dependent. This shows that
dim .ajS/ D 1.

This means that we can use lemma 8.3.7 to finish the proof. ut
With fewer symmetries we also have.

Theorem 8.3.10 (Püttmann and Searle, 2002 and Rong, 2002). If M2n is a
compact 2n-manifold with positive sectional curvature and symmetry rank k �
2n=4� 1, then � .M/ > 0:

Proof. When 2n D 2; 4 there are no assumptions about the symmetry rank and
we know the theorem holds. When 2n D 6 it is Berger’s result. Next consider
the case where M is 8-dimensional. The proof is as in the 6-dimensional situation
unless the zero set for the Killing field has a 6-dimensional component. In that case
lemma 8.3.7 establishes the claim.

In general we would like to use induction on dimension, but this requires that
we work with the stronger statement: If a � iso .M; g/ is an Abelian subalgebra of
dimension k � n=2�1, then any component of the zero set for any X 2 a has positive
Euler characteristic. Note that when 2n D 2; 4; 6; 8 this stronger statement holds.

There are two cases: First assume that every zero set N � M for any X 2 a has
codimension� 4. When N is maximal and nontrivial, then ajN has dimension k�1.
Since any component of a zero set is contained in a nontrivial maximal element the
stronger induction hypothesis can be invoked to prove the induction step.

The other situation is when there is a zero set N for some X 2 a that has
codimension 2. Lemma 8.3.7 then shows that the odd Betti numbers of M vanish.
This in turn implies that the odd Betti numbers for any component of a zero set of
any Killing field must also vanish (see [17]). ut

This theorem unfortunately does not cover all known examples as there is a
positively curved 24-manifold F4=Spin .8/ that has symmetry rank 4 (see [105]).

It is tempting to suppose that one could show that the odd homology groups with
real coefficients vanish given the assumptions of the previous theorem. In fact, all
known even dimensional manifolds with positive sectional curvature have vanishing
odd dimensional homology groups.
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Next we mention without proof an extension of the Grove-Searle result by
Wilking, (see also [105]).

Theorem 8.3.11 (Wilking, 2003). Let M be a compact simply connected positively
curved n-manifold with symmetry rank k and n � 10. If k � n=4 C 1; then M has
the topology of a sphere, complex projective space or quaternionic projective space.
Moreover, when M isn’t simply connected its fundamental group is cyclic.

The proof is considerably more complicated than the above theorems. When
n D 7 there are several spaces with positive curvature and symmetry rank 3 (see
[105]).

Finally, we mention some recent extensions of the above theorems.

Theorem 8.3.12 (Kennard, 2013 [67]). If M4n is a compact 4n-manifold with
positive sectional curvature and symmetry rank k > 2 log2 .4n/�2, then � .M/ > 0:

Theorem 8.3.13 (Kennard, 2012 [68] and Amann and Kennard, 2014 [1]). Let
M2n be a compact positively curved manifold with symmetry rank k � log4=3 .2n/.

(1) The Betti numbers satisfy: b2 � 1 and b4 � 1.
(2) If b4 D 0, then � .M/ D 2.
(3) (1) and (2) imply that M can’t have the homotopy type of a product N�N where

N is compact and simply connected.

8.4 Exercises

EXERCISE 8.4.1. Show that theorem 8.1.6 does not necessarily extend to incom-
plete Riemannian manifolds.

EXERCISE 8.4.2. Let N be a component of the zero set for a Killing field X: Show
that rV .rX/ D 0 for vector fields V tangent to N:

EXERCISE 8.4.3. Show that a coordinate vector field @k is a Killing field if and only
if @kgij D 0.

EXERCISE 8.4.4. Let X be a Killing field on .M; g/ and N � M a submanifold with
the induced metric.

(1) Show that if X is tangent to N, then XjN is a Killing field on N.
(2) Show that if N is totally geodesic (see exercise 5.9.20), then X>, the projection

of X onto N, is a Killing field.

EXERCISE 8.4.5. Let .M; g/ be a complete Riemannian manifold and X a Killing
field on M.

(1) Let c W Œa; b� ! M be a geodesic. Show that there is an � > 0 and a geodesic
variation Nc W .��; �/ � Œa; b�! M such that the curves s 7! Nc .s; t/ are integral
curves of X.
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(2) Use completeness to extend the geodesic variation Nc W .��; �/ �R! M. Show
that for all t 2 R the curves s 7! Nc .s; t/ are integral curves of X.

(3) Show that the integral curve of X through any point in M exists on .��; �/.
(4) Show that X is complete.

EXERCISE 8.4.6. Let .Mn; g/ be a compact Riemannian n-manifold such that
dim .iso/ D n and Ric � 0. Show that M is flat and that 	1 D Z

n. Hint: Show
that QM D R

n and that the deck transformations must have differential I since they
leave a parallel orthonormal frame invariant.

EXERCISE 8.4.7. Let xi be the standard Cartesian coordinates on R
n and consider

W D span
R

˚
1; x1; : : : ; xn

�
and V D span

R

˚
x1; : : : ; xn

�
.

(1) Show that iso .Rn/ is naturally isomorphic toƒ2W if we identify u^ v with the
vector field urv � vru.

(2) Show similarly that iso
�
Sn�1 .R/

�
is naturally isomorphic to ƒ2V .

(3) Use that ru D gij@iu@j for a pseudo-Riemannian space to redo (1) for Rp;q and
(2) for Hn�1 .R/ � R

n;1.

EXERCISE 8.4.8. Let xi be the standard Cartesian coordinates onRnC1 and consider
V D span

R

˚
1; x1; : : : ; xnC1�. Finally restrict all functions in V to Sn. Show that for

u; v 2 V the fields urv � vru are conformal. A field X is conformal if LXg D �g
for some function �.

EXERCISE 8.4.9. Let .M; g/ be a Riemannian manifold and consider the subspaces
tp D

˚
Xjp 2 TpM j X 2 iso

�
.

(1) Show that tp defines an integrable distribution on an open set O � M. Hint:
Show that

˚
p 2 M j dim tp D maxp2M dim tp

�
is open.

(2) Give an example where O ¤ M.
(3) Show that DF

�
tp
� D tF.p/ for all F 2 Iso.

(4) Assume .M; g/ is complete. Show that the leaves of this distribution are
homogeneous and properly embedded. Hint: Show that the connected subgroup
Iso0 � Iso that contains the identity is closed and preserves the leaves (see also
section 5.6.4.)

(5) Show that if .M; g/ is homogeneous, then tp D TpM for all p 2 M.

EXERCISE 8.4.10. Let t � iso .M; g/ be an Abelian subalgebra corresponding to
a torus subgroup Tk � Iso .M; g/ : Define p � t as the set of Killing fields that
correspond to circle actions, i.e., actions induced by homomorphisms S1 ! Tk:

Show that p is a vector space over the rationals with dimQp D dimRt:

EXERCISE 8.4.11. Given two Killing fields X and Y on a Riemannian manifold,
develop a formula for �g .X;Y/ : Use this to give a formula for the Ricci curvature
in a frame consisting of Killing fields.
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EXERCISE 8.4.12. Let X be a vector field on a Riemannian manifold.

(1) Show that

jLXgj2 D 2 jrXj2 C 2 tr .rX ı rX/ :

(2) Establish the following integral formulae on a closed oriented Riemannian
manifold:

Z

M

�
Ric .X;X/C tr .rX ı rX/� .div X/2

�
D 0;

Z

M

�
Ric .X;X/C g

�
trr2X;X�C 1

2
jLXgj2 � .div X/2

�
D 0:

(3) Finally, show that X is a Killing field if and only if

div X D 0;

trr2X D �Ric .X/ :

EXERCISE 8.4.13 (Yano). If X is an affine vector field (see exercise 2.5.13) show
that trr2X D �Ric .X/ and that div X is constant. Use this together with the above
characterizations of Killing fields to show that on closed manifolds affine fields are
Killing fields.

EXERCISE 8.4.14. Let X be a vector field on a Riemannian manifold. Show that X
is a Killing field if and only if LX and � commute on functions.

EXERCISE 8.4.15. Let .M; g/ be a compact n-manifold with positive sectional
curvature and a � iso an Abelian subalgebra.

(1) Show that dim a � n=2.
(2) Show that spheres and complex projective spaces have maximal symmetry rank.
(3) Show that the flat torus Tn has symmetry rank n.

EXERCISE 8.4.16. Let .M; g/ be a compact n-manifold with positive sectional
curvature and a � iso an Abelian subalgebra. Let Z .a/ be the set of nontrivial
connected components of the zero sets of Killing fields in a. Show that if N 2 Z .a/
is maximal under inclusion, then dim .ajN/ D dim a�1 and dim N � 2 .dim a � 1/.
EXERCISE 8.4.17 (Kennard). Let .Mn; g/ be a simply connected compact
n-manifold with positive sectional curvature and symmetry rank � 3n=8C 1.

(1) When n � 8 conclude that the assumptions are covered by theorem 8.3.9.
(2) Use exercise 8.4.16 to show that if N 2 Z .a/ is maximal under inclusion, then

dim N � 3n=4.
(3) Show that a maximal N 2 Z .a/ either has codimension 2 or has symmetry

rank � 3 dim N
8
C 1.
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(4) Use induction on n to show that M has the homology groups of a sphere or
complex projective space. Hint: When the maximal N 2 Z .a/ has codimension
� 4 use the connectedness principle to show that N is also simply connected.
Then use the connectedness principle to calculate the homology/homotopy
groups in dimensions � n=2. Finally use Poincaré duality to find all the
homology groups of M.

EXERCISE 8.4.18. Let QM ! M be the universal covering, with deck transforma-
tions � D 	1 .M/ acting as isometries on QM.

(1) Show that we can identify

iso .M/ D ˚X 2 iso
� QM� j G�X D X for all G 2 �� :

(2) Show that the connected Lie subgroup corresponding to iso .M/ � iso
� QM� is

the connected component of the centralizer

C .�/ D ˚F 2 Iso
� QM� j FG D GF for all G 2 ��

that contains the identity.
(3) Show that Iso .M/ can be identified with N .�/ =� , where N .�/ is the

normalizer

N .�/ D ˚F 2 Iso
� QM� j F�F�1 D �� :



Chapter 9
The Bochner Technique

Aside from the variational techniques we’ve used in prior sections one of the oldest
and most important techniques in modern Riemannian geometry is that of the
Bochner technique. In this chapter we prove the classical theorem of Bochner about
obstructions to the existence of harmonic 1-forms. We also explain in detail how
the Bochner technique extends to forms and other tensors by using Lichnerowicz
Laplacians. This leads to a classification of compact manifolds with nonnegative
curvature operator in chapter 10. To establish the relevant Bochner formula for
forms, we have used a somewhat forgotten approach by Poor. It appears to be quite
simple and intuitive. It can, as we shall see, also be generalized to work on other
tensors including the curvature tensor.

The classical focus of the Bochner technique lies in establishing certain vanishing
results for suitable tensors in positive curvature. This immediately leads to rigidity
results when the curvature is nonnegative. In the 1970s P. Li discovered that it can be
further generalized to estimate the dimension of the kernel of the Laplace operators
under more general curvature assumptions. This became further enhanced when
Gallot realized that the necessary analytic estimates work with only lower Ricci
curvature bounds. This will all be explained here and uses in a crucial way results
from sections 7.1.5 and 7.1.3.

The Bochner technique was, as the name indicates, invented by Bochner.
However, Bernstein knew about it for harmonic functions on domains in Euclidean
space. Specifically, he used

�
1

2
jruj2 D jHessuj2 ;
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where u W � � R
n ! R and �u D 0: It was Bochner who realized that when the

same trick is attempted on Riemannian manifolds, a curvature term also appears.
Namely, for u W .M; g/! R with �gu D 0 one has

�
1

2
jruj2 D jHessuj2 C Ric .ru;ru/:

With this in mind it is clear that curvature influences the behavior of harmonic
functions. The next nontrivial step Bochner took was to realize that one can compute
�1
2
j!j2 for any harmonic form ! and then try to get information about the topology

of the manifold. The key ingredient here is of course Hodge’s theorem, which
states that any cohomology class can be uniquely represented by a harmonic form.
Yano further refined the Bochner technique, but it seems to be Lichnerowicz who
really put things into motion when he presented his formulas for the Laplacian
on forms and spinors around 1960. After this work, Berger, D. Meyer, Gallot,
Gromov-Lawson, Witten, and many others have made significant contributions to
this tremendously important subject.

Prior to Bochner’s work Weitzenböck developed a formula very similar to the
Bochner formula. We shall also explain this related formula and how it can be used
to establish the Bochner formulas we use. It appears that Weitzenböck never realized
that his work could have an impact on geometry and only thought of his work as an
application of algebraic invariant theory.

9.1 Hodge Theory

We start by giving a brief account of Hodge theory to explain why it calculates the
homology of a manifold.

Recall that on a manifold M we have the de Rham complex

0! �0 .M/
d0! �1 .M/

d1! �2 .M/! � � � dn�1

! �n .M/! 0;

where �k.M/ denotes the space of k-forms on M and dk W �k.M/ ! �kC1.M/ is
exterior differentiation. The de Rham cohomology groups

Hk.M/ D ker.dk/

im.dk�1/

compute the real cohomology of M. We know that H0.M/ ' R if M is connected,
and Hn.M/ D R if M is orientable and compact. In this case there is a pairing,

�k.M/ ��n�k.M/! R;

.!1; !2/!
Z

M
!1 ^ !2;
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that induces a nondegenerate pairing on the cohomology groups

Hk.M/ � Hn�k.M/! R:

This shows that the two vector spaces Hk.M/ and Hn�k.M/ are dual to each other
and in particular have the same dimension.

When M is endowed with a Riemannian metric g we also obtain an adjoint
ı D r� to the differential (see proposition 2.2.8 and section 2.2.2.2). Specifically,

ık W �kC1.M/! �k.M/

is adjoint to dk via the formula

Z

M
g.ık!1; !2/vol D

Z

M
g.!1; d

k!2/vol:

It is often convenient to use the notation

.T1;T2/ D 1

volM

Z

M
g .T1;T2/ vol:

This defines an inner product on any space of tensors of the same type. The map ı
is also the adjoint of d with respect to this normalized inner product.

The Laplacian on forms, also called the Hodge Laplacian, is defined as

4 W �k.M/! �k.M/;

4! D .dı C ıd/!:

In the next section we shall see that on functions the Hodge Laplacian is the
negative of the previously defined Laplacian, hence the need for the slightly different
symbol4 instead of �.

Lemma 9.1.1. 4! D 0 if and only if d! D 0 and ı! D 0. In particular, ! D 0, if
4! D 0 and ! D d� .

Proof. The proof just uses that the maps are adjoints to each other:

.4!;!/ D .dı!; !/C .ıd!;!/
D .ı!; ı!/C .d!; d!/:

Thus, 4! D 0 implies .ı!; ı!/ D .d!; d!/ D 0; which shows that ı! D 0 and
d! D 0. The opposite direction is obvious.

Note that when ! D d� and 4! D 0, then ıd� D 0, which in turn shows that
.!; !/ D .�; ıd�/ D 0. ut
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We can now introduce the Hodge cohomology:

H k.M/ D f! 2 �k.M/ j 4! D 0g:

Theorem 9.1.2 (Hodge, 1935). The natural inclusion map H k.M/ ! Hk.M/ is
an isomorphism.

Proof. The fact that H k.M/ ! Hk.M/ is well-defined and injective follows from
lemma 9.1.1. To show that it is surjective requires a fair bit of work that is standard
in the theory of partial differential equations (see [99] or [92]). Some of the results
we prove later will help to establish part of this result in a more general context (see
exercises 9.6.4 and 9.6.5). The essential idea is the claim; since 4 is self-adjoint
there is an orthogonal decomposition

�k.M/ D im4˚ ker4 D im4˚H k.M/:

If ! 2 �k, then we can write ! D dı� C ıd� C Q!, where 4 Q! D 0. When
in addition d! D 0 it follows that 4d� D dıd� D 0. Since d� is also harmonic
it follows that ıd� D 0. In particular, ! D dı� C Q! and Q! represents the same
cohomology class as !. ut

9.2 1-Forms

We shall see how Hodge theory can be used to get information about the first Betti
number b1.M/ D dimH 1.M/. In the next section we generalize this to other forms
and tensors.

9.2.1 The Bochner Formula

Let � be a harmonic 1-form on .M; g/ and f D 1
2
j� j2. To get a better feel for this

function consider the vector field X field dual to �; i.e., �.v/ D g.X; v/ for all v.
Then

f D 1
2
j� j2 D 1

2
jXj2 D 1

2
�.X/:

Proposition 9.2.1. If X and � are related by � .v/ D g .v;X/, then

(1) v 7! rvX is symmetric if and only if d� D 0 and
(2) divX D �ı� .

Proof. Recall that

d�.V;W/C .LXg/ .V;W/ D 2g .rVX;W/:
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Since LXg is symmetric and d� is skew-symmetric the result immediately follows.
The second part was proven in proposition 2.2.7. ut

Therefore, when � is harmonic, then divX D 0 and rX is a symmetric .1; 1/-
tensor.

We present the Bochner formula for closed 1-forms formulated through vector
fields.

Proposition 9.2.2. Let X be a vector field so thatrX is symmetric (i.e. correspond-
ing 1-form is closed). If f D 1

2
jXj2 and X is the gradient of u near p; then

(1)

rf D rXX:

(2)

Hessf .V;V/ D Hess2u .V;V/C .rXHessu/ .V;V/C R .V;X;X;V/

D jrVXj2 C g
�r2X;VX;V

�C R .V;X;X;V/

(3)

�f D jHessuj2 C DX�uC Ric .X;X/

D jrXj2 C DXdivX C Ric .X;X/

Proof. For (1) simply observe that

g.rf ;V/ D DV
1
2
jXj2 D g.rVX;X/ D g.rXX;V/:

(2) is a direct consequence of theorem 3.2.2 applied to the function u.
For (3) take traces in (2). As in the proof of proposition 8.2.1 this gives us the

first and third terms. The second term comes from commuting traces and covariant
derivatives. Specifically, either Xjp D 0 or Ei can be chosen to parallel along X. In
either case

X
g
�r2X;Ei

X;Ei
� D

X
.rXHessu/ .Ei;Ei/

D DX

X
Hessu .Ei;Ei/

D DX�u: ut

9.2.2 The Vanishing Theorem

We can now easily establish the other Bochner theorem for 1-forms.
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Theorem 9.2.3 (Bochner, 1948). If .M; g/ is compact and has Ric � 0, then every
harmonic 1-form is parallel.

Proof. Suppose ! is a harmonic 1-form and X the dual vector field. Then proposi-
tion 9.2.2 implies

�
�
1
2
jXj2

�
D jrXj2 C Ric.X;X/ � 0;

since divX D �u D 0. The maximum principle then shows that 1
2
jXj2 must be

constant and jrXj D 0. ut
Corollary 9.2.4. If .M; g/ is as before and furthermore has positive Ricci curvature
at one point, then all harmonic 1-forms vanish everywhere.

Proof. Since we just proved Ric.X;X/ � 0; we must have that Xjp D 0 if the Ricci
tensor is positive on TpM. But then X � 0; since X is parallel. ut
Corollary 9.2.5. If .M; g/ is compact and satisfies Ric � 0, then b1.M/ � n D
dimM; with equality holding if and only if .M; g/ is a flat torus.

Proof. We know from Hodge theory that b1.M/ D dimH 1.M/. Now, all harmonic
1-forms are parallel, so the linear map: H 1.M/ ! T�

p M that evaluates ! at p is
injective. In particular, dimH 1.M/ � n.

If equality holds, then there are n linearly independent parallel fields Ei; i D
1; : : : ; n. This clearly implies that .M; g/ is flat. Thus the universal covering is R

n

with 	1 .M/ acting by isometries. Now pull the vector fields Ei; i D 1; : : : ; n; back
to QEi; i D 1; : : : ; n; on R

n. These vector fields are again parallel and therefore
constant vector fields. This means that we can think of them as the usual Cartesian
coordinate vector fields @i: In addition, they are invariant under the action of 	1 .M/,
i.e., for each F 2 	1 .M/ we have DF

�
@ijp

� D @ijF.p/; i D 1; : : : ; n: But only
translations leave all of the coordinate fields invariant. Thus,	1 .M/ consists entirely
of translations. This means that 	1 .M/ is finitely generated, Abelian, and torsion
free. Hence � D Z

k for some k. To see that M is a torus, we need k D n: If
k < n, then Z

k generates a proper subspace of the space of translations and can’t act
cocompactly on R

n. If k > n, then Z
k can’t act discretely on R

n. Thus, it follows
that � D Z

n and generates Rn: ut

9.2.3 The Estimation Theorem

The goal is to generalize theorem 9.2.3 to manifolds with a negative lower bound
for the Ricci curvature. The techniques were first developed by P. Li in the late ’70s
and then improved by Gallot to give the results we present. Gallot’s contribution
was in part to obtain a suitable bound for Sobolev constants as in theorem 7.1.13.
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We start with a very general analysis lemma. Assume we have a compact
Riemannian manifold .M; g/ and a vector bundle E ! M where the fibers are
endowed with a smoothly varying inner product and the dimension of the fibers
is m. Sections of this bundle are denoted � .E/ and have several natural norms

ksk1 D max
x2M
js .x/j ;

kskp D
�

1
volM

Z

M
jsjp vol

� 1
p

:

The normalization is consistent with earlier definitions and guarantees that kskp
increases to ksk1. Now fix a finite dimensional subspace V � � .E/. All of the
norms are then equivalent on this space and we can define

C .V/ D max
s2V�f0g

ksk1
ksk2

:

The dimension of V can be estimated by this constant and the dimension of the
fibers of E.

Lemma 9.2.6 (P. Li). With notation as above

dim V � m � C .V/ :

Proof. Note that V has a natural inner product

.s1; s2/ D 1
volM

Z

M
hs1; s2i vol

such that .s; s/ D ksk22. Select an orthonormal basis e1; : : : ; el 2 V with respect to
this inner product and observe that the function

f .x/ D
lX

iD1
jei .x/j2

does not depend on the choice of orthonormal basis. Moreover,

1
volM

Z

M
f vol D l D dim V:

Let x0 be the point where f is maximal. Consider the map V ! Ex0 that evaluates
a section at x0. We can then assume that the basis is chosen so that the last l � k
elements span the kernel. This implies that k � m and

dim V � f .x0/ � k � C .V/
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since each section had unit L2-norm. This proves the claim. ut
Next we extend the maximum principle to a situation where we can bound kuk1

in terms of kukp.

Theorem 9.2.7 (Moser iteration). Let .M; g/ be a compact Riemannian manifold
such that

kuk2� � S kruk2 C kuk2
for all smooth functions, where � > 1. If f W M ! Œ0;1/ is continuous, smooth on
ff > 0g, and�f � ��f , then

kfk1 � exp

 
S
p
��p

� � 1

!

kfk2 :

Proof. Since f is minimized on the set where it vanishes we can assume that all of
its derivatives vanish there. In fact, �f is nonnegative at those points both in the
barrier and distributional sense.

First note that Green’s formula implies

�
f 2q�1;�f

� D � �df 2q�1; df
�

D � .2q� 1/ � f 2q�2df ; df
�
:

This shows that

kdf qk22 D q2
�

f 2q�2df ; df
�

D � q2

2q � 1
�

f 2q�1;�f
�

� q2�

2q � 1
�

f 2q�1; f
�

D q2�

2q � 1 k f qk22 :
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We can then use the Sobolev inequality to conclude that

kf qk2� � S kdf qk2 C kf qk2 �
 

Sq

�
�

2q� 1
� 1

2

C 1
!

kf qk2

and

kfk2�q �
 

Sq

�
�

2q� 1
� 1

2

C 1
! 1

q

kfk2q :

Letting q D �k gives

kfk2�kC1 �
 

S�k

�
�

2�k � 1
� 1

2

C 1
!��k

kfk2�k :

Consequently, by starting at k D 0 and letting k!1 we obtain

kfk1 �
0

@
1Y

kD0

 

S�k

�
�

2�k � 1
� 1

2

C 1
!��k1

A kfk2 :

The infinite product is estimated by taking logarithms and using log .1C x/ � x

1X

kD0
��k log

 

S�k

�
�

2�k � 1
� 1

2

C 1
!

� S
p
�

1X

kD0

�
1

2�k � 1
� 1

2

� S
p
�

1X

kD0

�
1

�k

� 1
2

D S
p
��p

� � 1: ut

Together these results imply

Theorem 9.2.8 (Gromov, 1980 and Gallot, 1981). If M is a compact Riemannian
manifold of dimension n such that Ric � .n � 1/ k and diam .M/ � D, then there is
a function C

�
n; k � D2

�
such that

b1 .M/ � C
�
n; k � D2

�
:

Moreover, lim"!0 C .n; "/ D n: In particular, there is " .n/ > 0 such that when
k �D2 � �" .n/; then b1 .M/ � n:
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Proof. Gromov’s proof centered on understanding how covering spaces of M
control the Betti number. Gallot’s proof has the advantage of also being useful in
a wider context as we shall explore below.

The goal is clearly to estimate dimH 1. Lemma 9.2.6 implies that

dimH 1 � n � C �H 1
�
;

So we have to estimate the ratios k!k1k!k2 . To do so consider f D j!j. This function is
smooth except possibly at points where ! D 0, which also happen to be minimum
points for f . Note that

2fdf D df 2 D 2g .r!;!/ � 2 jr!j f

so we obtain Kato’s inequality df � jr!j. If X is the dual vector field to ! the
Bochner formula implies

jdf j2 C f�f D 1

2
�f 2

D jr!j2 C Ric .X;X/

� jr!j2 C .n � 1/ kf 2:

It follows by Kato’s inequality that�f � .n � 1/ kf . Theorem 9.2.7 then shows that

kfk1 � exp

 
S
p� .n � 1/ k�p

� � 1

!

kfk2 :

Since kf k1kf k2 D
k!k1k!k2 we have proven that

dimH 1 � n � C �H 1
� � n � exp

 
S
p� .n � 1/ k�p

� � 1

!

;

where S D D �C �n; kD2
�

is estimated in theorem 7.1.13 and proposition 7.1.17. The
specific nature of the bound proves the theorem. ut

9.3 Lichnerowicz Laplacians

We introduce a natural class of Laplacians and show how the Bochner technique
works for these operators. In the next section we then show that there are several
natural Laplacians of this type including the Hodge Laplacian.
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9.3.1 The Connection Laplacian

We start by collecting the results from the previous section in a more general context.
Fix a tensor bundle E ! M with m-dimensional fibers. This could the bundle

whose sections are p-forms, symmetric tensors, curvature tensors etc.
First the vanishing result.

Proposition 9.3.1. Let .M; g/ be a Riemannian manifold and T 2 � .E/ a section
such that g .r�rT;T/ � 0. If jTj has a maximum, then T is parallel.

Proof. Note that

�1
2
jTj2 D jrTj2 � g

�r�rT;T
� � 0:

In case jTj has a maximum we can apply the maximum principle to the function
jTj2 and conclude that it must be constant and that T itself is parallel. ut

Next we present the estimating result.

Theorem 9.3.2 (Gallot, 1981). Assume .M; g/ is a compact manifold that satisfies
the assumption of theorem 9.2.7. Let V � � .M/ be finite dimensional. If

g
�r�rT;T

� � � jTj2

for all T 2 V, then

dim V � m � exp

 
S
p
��p

� � 1

!

:

Proof. This is proven as in theorem 9.2.8 using f D jTj. Instead of the Bochner
formula we simply use the equation

jdf j2 C f�f D 1
2
�f 2 D jrTj2 � g

�r�rT;T
�

to conclude via Kato’s inequality that �f � ��f . We can then finish the proof in
the same fashion. ut

9.3.2 The Weitzenböck Curvature

The Weitzenböck curvature operator on a tensor is defined by

Ric .T/ .X1; : : : ;Xk/ D
X�

R
�
ej;Xi

�
T
� �

X1; : : : ; ej; : : : ;Xk
�
:
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We use the Ricci tensor to symbolize this as it is the Ricci tensor when evaluated on
vector fields and 1-forms. Specifically:

Ric .!/ .X/ D
X�

R
�
ej;X

�
!
� �

ej
� D �!

�X
R
�
ej;X

�
ej

�
D ! .Ric .X// :

Often it is referred to as W, but this can be confused with the Weyl tensor.
The Lichnerowicz Laplacian is defined as

�LT D r�rT C cRic .T/

for a suitable constant c > 0:We shall see below that the Hodge Laplacian on forms
is of this type with c D 1: In addition, interesting information can also be extracted
for symmetric .0; 2/-tensors as well as the curvature tensor via this operator when
we use c D 1

2
.

The Bochner technique works for tensors that lie in the kernel of some Lich-
nerowicz Laplacian

�LT D r�rT C cRic .T/ D 0:

The idea is to use the maximum principle to show that T is parallel. In order to apply
the maximum principle we need g .r�rT;T/ � 0 which by the equation for T is
equivalent to showing g .Ric .T/ ;T/ � 0:

The two assumptions�LT D 0 and g .Ric .T/ ;T/ � 0 we make about T require
some discussion.

The first assumption is usually implied by showing that the Lichnerowicz
Laplacian has an alternate expression such as we have seen for the Hodge Laplacian.
The fact that �LT D 0 might come from certain natural restrictions on the tensor
or even as a consequence of having nontrivial topology. In the next section several
natural Laplacians are rewritten as Lichnerowicz Laplacians.

The second assumption g .Ric .T/ ;T/ � 0, is often difficult to check and in
many cases it took decades to sort out what curvature assumptions gave the best
results. The goal in this section is to first develop a different formula for Ric .T/
and second to change T in a suitable fashion so as to create a significantly simpler
formula for g .Ric .T/ ;T/. This formula will immediately show that g .Ric .T/ ;T/
is nonnegative when the curvature operator is nonnegative. It will also make it very
easy to calculate precisely what happens when T is a .0; 1/- or .0; 2/-tensor, a task
we delay until the next section. It is worthwhile mentioning that the original proofs
of some of these facts were quite complicated and only came to light long after the
Bochner technique had been introduced.
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9.3.3 Simplification of Ric .T/

Since RX;Y W TpM! TpM is always skew-symmetric it can be decomposed using an
orthonormal basis of skew-symmetric transformations „˛ 2 so

�
TpM

�
: A tricky

point enters our formulas at this point. It comes from the fact that if v and w
are orthonormal, then v ^ w 2 ƒ2TpM is a unit vector, while the corresponding
skew-symmetric operator, a counter clockwise rotation of 	=2 in span fv;wg; has
Euclidean norm

p
2: To avoid confusion and unnecessary factors we assume that

so
�
TpM

�
is endowed with the metric that comes from ƒ2TpM. With that in mind

we have

RX;Y D
X

g .RX;Y ; „˛/„˛

D
X

g .R .X ^ Y/ ;„˛/„˛

D
X

g .R .„˛/ ;X ^ Y/„˛

D �
X

g .R .„˛/X;Y/„˛:

This allows us to rewrite the Weitzenböck curvature operator.

Lemma 9.3.3. For any .0; k/-tensor T

Ric .T/ D �
X

R .„˛/ .„˛T/ ;

�LT D r�rT � c
X

R .„˛/ .„˛T/ :

Moreover, Ric is self-adjoint.

Proof. This is a straightforward calculation:

Ric .T/ .X1; : : : ;Xk/ D
X�

R
�
ej;Xi

�
T
� �

X1; : : : ; ej; : : : ;Xk
�

D �
X

g
�
R .„˛/ ej;Xi

�
.„˛T/

�
X1; : : : ; ej; : : : ;Xk

�

D �
X

.„˛T/
�
X1; : : : ; g

�
R .„˛/ ej;Xi

�
ej; : : : ;Xk

�

D
X

.„˛T/ .X1; : : : ;R .„˛/Xi; : : : ;Xk/

D �
X

.R .„˛/ .„˛T// .X1; : : : ;Xi; : : : ;Xk/ :
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To check that Ric is self-adjoint select an orthonormal basis „˛ of eigenvectors for
R; i.e., R .„˛/ D �˛„˛: In this case,

g .Ric .T/ ; S/ D �
X

g .R .„˛/ .„˛T/ ; S/

D �
X

�˛g .„˛ .„˛T/ ; S/

D
X

�˛g .„˛T; „˛S/

which is symmetric in T and S. ut
At first sight we have replaced a simple sum over j and i with a possibly more

complicated sum. The next result justifies the reformulation.

Corollary 9.3.4. If R � 0, then g .Ric .T/ ;T/ � 0. More generally, If R � k,
where k < 0, then g .Ric .T/ ;T/ � kC jTj2, where C depends only on the type of
the tensor.

Proof. As above assume R .„˛/ D �˛„˛ and note that

g .Ric .T/ ;T/ D
X

�˛ j„˛Tj2 � k
X
j„˛Tj2:

This shows that the curvature term is nonnegative when k D 0. Clearly there is
a constant C > 0 depending only on the type of the tensor and dimension of the
manifold so that

C jTj2 �
X
j„˛Tj2:

When k < 0 this implies:

g .Ric .T/ ;T/ � kC jTj2: ut

This allows us to obtain vanishing and estimation results for all Lichnerowicz
Laplacians on manifolds.

Theorem 9.3.5. If R � k and diam � D, then the dimension of

V D fT 2 � .E/ j �LT D r�rT C cRic .T/ D 0g

is bounded by

m � exp
�

D � C �n; kD2
� p�kcC�p

��1
�
;

and when k D 0 all T 2 V are parallel tensors.



9.4 The Bochner Technique in General 347

9.4 The Bochner Technique in General

The goal in this section is to show that there are several natural Lichnerowicz
Laplacians on Riemannian manifolds.

9.4.1 Forms

The first obvious case is that of the Hodge Laplacian on k-forms as we already know
that harmonic forms compute the topology of the underlying manifold.

Theorem 9.4.1 (Weitzenböck, 1923). The Hodge Laplacian is the Lichnerowicz
Laplacian with c D 1: Specifically,

4! D .dı C ıd/ .!/ D r�r! C Ric .!/ :

Proof. We shall follow the proof discovered by W. A. Poor. To perform the
calculations we need

ı! .X2; : : : ;Xk/ D �
X

.rEi!/ .Ei;X2; : : : ;Xk/ ;

d! .X0; : : : ;Xk/ D
X

.�1/i .rXi!/
�

X0; : : : ; OXi; : : : ;Xk

�
:

We this in mind we get

dı! .X1; : : : ;Xk/ D �
X

.�1/iC1
�
r2Xi;Ej

!
� �

Ej;X1; : : : ; OXi; : : : ;Xk

�

D �
X�

r2Xi;Ej
!
� �

X1; : : : ;Ej; : : : ;Xk
�
;

ıd! .X1; : : : ;Xk/ D �
X�

r2Ej;Ej
!
�
.X1; : : : ;Xk/

�
X

.�1/i
�
r2Ej;Xi

!
� �

Ej;X1; : : : ; OXi; : : : ;Xk

�

D �r�r!� .X1; : : : ;Xk/

C
X�

r2Ej;Xi
!
� �

X1; : : : ;Ej; : : : ;Xk
�
:

Thus

4! D r�r! C
X�

R
�
Ej;Xi

�
!
� �

X1; : : : ;Ej; : : : ;Xk
�

D r�r! C Ric .!/ : ut
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9.4.2 The Curvature Tensor

We show that a suitably defined Laplacian on curvature tensors is in fact
a Lichnerowicz Laplacian. This Laplacian is a symmetrized version of
.rX .r�R// .Y;Z;W/ so as to make it have the same symmetries as R. It appears as
the right-hand side in the formula below.

Theorem 9.4.2. The curvature tensor R on a Riemannian manifold satisfies

�r�rR
�
.X;Y;Z;W/C 1

2
Ric .R/ .X;Y;Z;W/

D 1
2

�rXr�R
�
.Y;Z;W/ � 1

2

�rYr�R
�
.X;Z;W/

C 1
2

�rZr�R
�
.W;X;Y/ � 1

2

�rWr�R
�
.Z;X;Y/ :

Proof. By far the most important ingredient in the proof is that we have the second
Bianchi identity at our disposal. We will begin the calculation by considering the
(0,4)-curvature tensor R. Fix a point p, let X;Y;Z;W be vector fields with rX D
rY D rZ D rW D 0 at p and let Ei be a normal frame at p. Then

�r�rR
�
.X;Y;Z;W/

D �
nX

iD1

�r2Ei;Ei
R
�
.X;Y;Z;W/

D
nX

iD1

�r2Ei;XR
�
.Y;Ei;Z;W/C

�r2Ei;YR
�
.Ei;X;Z;W/

D
nX

iD1

�r2X;Ei
R
�
.Y;Ei;Z;W/C

�r2Y;Ei
R
�
.Ei;X;Z;W/

C
nX

iD1
.R .Ei;X/ .R// .Y;Ei;Z;W/C .R .Ei;Y/ .R// .Ei;X;Z;W/

D �rXr�R
�
.Y;Z;W/ � �rYr�R

�
.X;Z;W/

�
nX

iD1
.R .Ei;X/ .R// .Ei;Y;Z;W/C .R .Ei;Y/ .R// .X;Ei;Z;W/:

Note that the last two terms are half of the expected terms in �Ric .R/ .X;Y;Z;W/ :
Using that R is symmetric in the pairs X;Y and Z;W we then obtain

�r�rR
�
.X;Y;Z;W/

D 1
2

�r�rR
�
.X;Y;Z;W/C 1

2

�r�rR
�
.Z;W;X;Y/
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D 1
2

��rXr�R
�
.Y;Z;W/ � �rYr�R

�
.X;Z;W/

�

C 1
2

��rZr�R
�
.W;X;Y/ � �rWr�R

�
.Z;X;Y/

�

� 1
2

nX

iD1
.R .Ei;X/ .R// .Ei;Y;Z;W/C .R .Ei;Y/ .R// .X;Ei;Z;W/

� 1
2

nX

iD1
.R .Ei;Z/ .R// .Ei;W;X;Y/C .R .Ei;W/ .R// .Z;Ei;X;Y/

D 1
2

��rXr�R
�
.Y;Z;W/ � �rYr�R

�
.X;Z;W/

�

C 1
2

��rZr�R
�
.W;X;Y/ � �rWr�R

�
.Z;X;Y/

�

� 1
2
Ric .R/ .X;Y;Z;W/ : ut

One might expect that, as with the Hodge Laplacian, there should also be terms
where one takes the divergence of certain derivatives of R: However, the second
Bianchi identity shows that these terms already vanish for R: In particular, R is
harmonic if it is divergence free: r�R D 0:

9.4.3 Symmetric .0; 2/-Tensors

Let h be a symmetric .0; 2/-tensor. If we consider the corresponding .1; 1/-tensor
H, then we have defined

�
drH

�
.X;Y/ D .rXH/ .Y/ � .rYH/ .X/. Changing the

type back allows us to define

drh .X;Y;Z/ D .rXh/ .Y;Z/ � .rYh/ .X;Z/ :

In this form the definition is a bit mysterious but it does occur naturally in
differential geometry. Originally it comes from considering the second fundamental
II for an immersed hypersurface Mn ! R

nC1: In this case the Codazzi-Mainardi
equations can be expressed as drII D 0. Another natural situation is the Ricci
tensor where exercise 3.4.8 shows that

�
drRic

�
.X;Y;Z/ D �r�R

�
.Z;X;Y/ :

This formula also has a counter part relating Schouten and Weyl tensors discussed
in exercise 3.4.26.

Using this exterior derivative we obtain a formula that is similar to what we saw
for forms and the curvature tensor.
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Theorem 9.4.3. Any symmetric .0; 2/-tensor h on a Riemannian manifold satisfies

�rXr�h
�
.X/C �r�drh

�
.X;X/ D �r�rh

�
.X;X/C 1

2
.Ric .h// .X;X/:

Proof. Observe that on the left-hand side the terms are

�rXr�h
�
.X/ D � �r2X;Ei

h
�
.Ei;X/

and

�r�drh
�
.X;X/ D � �rEid

rh
�
.Ei;X;X/

D � �r2Ei;Ei
h
�
.X;X/C �r2Ei;Xh

�
.Ei;X/:

Adding these we obtain

�rXr�h
�
.X/C �r�drh

�
.X;X/

D �r�rh
�
.X;X/C �r2Ei;Xh

�
.Ei;X/�

�r2X;Ei
h
�
.Ei;X/

D �r�rh
�
.X;X/C .R .Ei;X/ h/ .Ei;X/:

Using that h is symmetric we finally conclude that

.R .Ei;X/ h/ .Ei;X/ D 1
2
.Ric .h// .X;X/ ;

thus finishing the proof. ut
A symmetric .0; 2/-tensor is called a Codazzi tensor if drh vanishes and

harmonic if in addition it is divergence free. This characterization can be simplified
slightly.

Proposition 9.4.4. A symmetric .0; 2/-tensor is harmonic if and only if it is a
Codazzi tensor with constant trace.

Proof. In general we have that

�r�h
�
.X/ D � .rEi h/ .Ei;X/

D � .rEi h/ .X;Ei/

D � .rXh/ .Ei;Ei/C
�
drh

�
.X;Ei;Ei/

D �DX .tr h/C �drh
�
.X;Ei;Ei/:

Thus Codazzi tensors are divergence free if and only if their trace is constant. ut
This shows that hypersurfaces with constant mean curvature have harmonic

second fundamental form. This fact has been exploited by both Lichnerowicz and
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Simons. For the Ricci tensor to be harmonic it suffices to assume that it is Codazzi,
but this in turn is a strong condition as it is the same as saying that the full curvature
tensor is harmonic.

Corollary 9.4.5. The Ricci tensor is harmonic if and only if the curvature tensor is
harmonic.

Proof. We know that the Ricci tensor is a Codazzi tensor precisely when the
curvature tensor has vanishing divergence (see exercise 3.4.8). The contracted
Bianchi identity (proposition 3.1.5) together with the proof of the above proposition
then tells us

2DXscal D � �r�Ric
�
.X/

D DX .trRic/

D DX .scal/:

Thus the scalar curvature must be constant and the Ricci tensor divergence free. ut

9.4.4 Topological and Geometric Consequences

Theorem 9.4.6 (D. Meyer, 1971, D. Meyer-Gallot, 1975, and Gallot, 1981). Let
.M; g/ be a closed Riemannian n-manifold. If the curvature operator is nonnegative,
then all harmonic forms are parallel. When the curvature operator is positive the
only parallel l-forms have l D 0; n. Finally when R � k and diam � D,

bl .M/ �
 

n

l

!

exp
�

D � C �n; kD2
�p�kC

�
:

Proof. The first statement is immediate given the Weitzenböck formula for forms.
For the second part we note that when the curvature operator is positive, then the
formula

0 D g .Ric .!/ ; !/ D
X

�˛ j„˛!j2

shows that „˛! D 0 for all ˛: Hence by linearity L! D 0 for all skew-symmetric
L: If we assume m < n and select L so that L .ei/ D 0 for i < m, L .em/ D emC1;
then

0 D .L!/ .e1; : : : ; em/ D �! .e1; : : : ; em�1; emC1/:

Since the basis was arbitrary this shows that ! D 0:
The last part follows from our general estimate from theorem 9.3.5. ut
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We now have a pretty good understanding of manifolds with nonnegative (or
positive) curvature operator.

H. Hopf is, among other things, famous for the following problem: Does S2 � S2

admit a metric with positive sectional curvature? We already know that this space
has positive Ricci curvature and also that it doesn’t admit a metric with positive
curvature operator. It is also interesting to observe that CP2 has positive sectional
curvature but doesn’t admit a metric with positive curvature operator either. Thus,
even among 4-manifolds, there seems to be a big difference between simply
connected manifolds that admit Ric > 0, sec > 0; and R > 0:We shall in chapter 12
describe a simply connected manifold that has Ric > 0 but doesn’t even admit a
metric with sec � 0:

Manifolds with nonnegative curvature operator can in fact be classified (see
theorem 10.3.7). From this classification it follows that there are many manifolds
that have positive or nonnegative sectional curvature but admit no metric with
nonnegative curvature operator.

Example 9.4.7. We can exhibit a metric with nonnegative sectional curvature on
CP

2]CP2 by observing that it is an S1 quotient of S2 � S3. Namely, let S1 act on the
3-sphere by the Hopf action and on the 2-sphere by rotations. If the total rotation on
the 2-sphere is 2	k; then the quotient is S2�S2 if k is even, and CP

2]CP2 if k is odd.
In all cases O’Neill’s formula tells us that the sectional curvature is nonnegative.
From the above-mentioned classification it follows, however, that the only simply
connected spaces with nonnegative curvature operator are topologically equivalent
to S2 � S2; S4; or CP2: These examples were first discovered by Cheeger but with a
very different construction that also lead to other examples.

The Bochner technique has found many generalizations. It has, for instance,
proven very successful in the study of manifolds with nonnegative scalar curvature.
Briefly, what happens is that spin manifolds admit certain spinor bundles. These
bundles come with a natural first-order operator called the Dirac operator. The
square of this operator has a Weitzenböck formula of the form

r�r C 1
4
scal:

This formula was discovered and used by Lichnerowicz (as well as I. Singer,
as pointed out in [107]) to show that a sophisticated invariant called the OA-
genus vanishes for spin manifolds with positive scalar curvature. Using some
generalizations of this formula, Gromov-Lawson showed that any metric on a torus
with scal � 0 is in fact flat. We just proved this for metrics with Ric � 0: Dirac
operators and their Weitzenböck formulas have also been of extreme importance
in physics and 4-manifolds theory. Much of Witten’s work (e.g., the positive mass
conjecture) uses these ideas. Also, the work of Seiberg-Witten, which has had a
revolutionary impact on 4-manifolds, is related to these ideas.

In relation to our discussion above on positively curved manifolds, we should
note that there are still no known examples of simply connected manifolds that admit
positive scalar curvature but not positive Ricci curvature. This despite the fact that
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if .M; g/ is any closed Riemannian manifold, then for small enough " the product�
M � S2; gC "2ds22

�
clearly has positive scalar curvature. This example shows that

there are non-simply connected manifolds with positive scalar curvature that don’t
admit even nonnegative Ricci curvature. Specifically, select your favorite surface
M2 with b1 > 4: Then b1

�
M2 � S2

�
> 4 and therefore by Bochner’s theorem can’t

support a metric with nonnegative Ricci curvature.
Finally, we present a more geometric result for the curvature tensor. It was first

established in [98], and then with a modified proof in [48]. The proof is quite simple
and based on the generalities developed above. In chapter 10 we will also show
that this result basically characterizes compact symmetric spaces as they all have
nonnegative curvature operator.

Theorem 9.4.8 (Tachibana, 1974). Let .M; g/ be a closed Riemannian manifold.
If the curvature operator is nonnegative and r�R D 0; then rR D 0. If in addition
the curvature operator is positive, then .M; g/ has constant curvature.

Proof. We know from above that

r�rRC 1
2
Ric .R/ D 0:

So if the curvature operator is nonnegative, then rR D 0.
Moreover, when the curvature operator is positive it follows as in the case of

forms, that LR D 0 for all L 2 so
�
TpM

�
: This condition implies, as we shall

show below, that R .x; y; y; z/ D 0 and R .x; y; v;w/ D 0 when the vectors are
perpendicular. This in turn shows that any bivector x^y is an eigenvector for R; but
this can only happen if R D kI for some constant k:

To show that the mixed curvatures vanish first select L so that L .y/ D 0 and
L .x/ D z; then

0 D LR .x; y; y; x/ D �R .L .x/ ; y; y; x/ � R .x; y; y;L .x// D �2R .x; y; y; z/ :

Polarizing in y D v C w; then shows that

R .x; v;w; z/ D �R .x;w; v; z/ :

The Bianchi identity then implies

R .x; v;w; z/ D R .w; v; x; z/ � R .w; x; v; z/

D �2R .w; x; v; z/

D 2R .x;w; v; z/

D �2R .x; v;w; z/

showing that R .x; v;w; z/ D 0: ut
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9.4.5 Simplification of g .Ric .T/ ;T/

Finally we mention an alternate method that recovers the formula for 1-forms and
also gives a formula for general .0; 2/-tensors.

Having redefined the Weitzenböck curvature of tensors, we take it a step further
and also discard the orthonormal basis„˛: To assist in this note that a .0; k/-tensor T
can be changed to a tensor OT with values in ƒ2TM. Implicitly this works as follows

g
�

L; OT .X1; : : : ;Xk/
�
D .LT/ .X1; : : : ;Xk/ for all L 2 so .TM/ D ƒ2TM:

Lemma 9.4.9. For all .0; k/-tensors T and S

g .Ric .T/ ; S/ D g
�
R
� OT
�
; OS
�
:

Proof. This is a straight forward calculation

g .Ric .T/ ; S/ D
X

g .„˛T;R .„˛/ S/

D
X

.„˛T/ .ei1 ; : : : ; eik / .R .„˛/ S/ .ei1 ; : : : ; eik /

D
X

g
�
„˛; OT .ei1 ; : : : ; eik /

�
g
�

R .„˛/ ; OS .ei1 ; : : : ; eik/
�

D
X

g
�
R
�

g
�
„˛; OT .ei1 ; : : : ; eik/

�
„˛

�
; OS .ei1 ; : : : ; eik /

�

D
X

g
�
R
� OT .ei1 ; : : : ; eik /

�
; OS .ei1 ; : : : ; eik/

�

D g
�
R
� OT
�
; OS
�

This shows again that Ric is self-adjoint as R is self-adjoint on ƒ2TM. ut
This new expression for g .Ric .T/ ;T/ is also clearly nonnegative when the

curvature operator is nonnegative. In addition, it also occasionally allows us to show
that it is nonnegative under less restrictive hypotheses.

Proposition 9.4.10. If ! is a 1-form and X the dual vector field, then

O! .Z/ D X ^ Z

and

g .R . O!/ ; O!/ D Ric .X;X/ :
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Proof. In this case

.L!/ .Z/ D �! .L .Z//
D �g .X;L .Z//

D �g .L;Z ^ X/

so

O! .Z/ D X ^ Z:

This shows that the curvature term in the Bochner formula becomes

�
X

g .R .„˛/ .„˛!/ ; !/ D
X

g .„˛!;R .„˛/ !/

D
X

g . O! .Ei/ ;R . O! .Ei///

D
X

g .R .Ei ^ X/ ;Ei ^ X/

D
X

R .X;Ei;Ei;X/

D Ric .X;X/ : ut

More generally, one can show that if ! is a p-form and

g
�
�
�
X1; : : : ;Xp�1

�
;Xp

� D ! �X1; : : : ;Xp
�
;

then

O! �X1; : : : ;Xp
� D

pX

iD1
.�1/p�i Xi ^�

�
X1; : : : ; OXi; : : : ;Xp

�
:

Moreover, note that O! can only vanish when ! vanishes.

Next we focus on understanding Ric
�Oh
�

for .0; 2/-tensors. Given a .0; 2/-tensor

h there is a corresponding .1; 1/-tensor called H

h .z;w/ D g .H .z/ ;w/ :

The adjoint of H is denoted H�.

Proposition 9.4.11. With that notation

Oh .z;w/ D H .z/ ^ w � z ^ H� .w/

and Oh D 0 if and only if h D �g:
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Proof. We start by observing that

.Lh/ .z;w/ D �h .L .z/ ;w/ � h .z;L .w//

D �g .H .L .z// ;w/ � g .H .z/ ;L .w//

D �g
�
L .z/ ;H� .w/

� � g .L .w/ ;H .z//

D �g
�
L; z ^ H� .w/

� � g .L;w ^H .z//

D g
�
L;H .z/ ^ w � z ^ H� .w/

�
:

Note that if h D �g then H D �I D H�; thus Oh D 0: Next assume that Oh D 0: Then
for all z;w we have

z ^ H� .H .w// D H .z/ ^H .w/

D �H .w/ ^H .z/

D �w ^ H� .H .z//

D H� .H .z// ^ w:

But that can only be true if H�H D �2I and H D �I: ut
This indicates that we have to control curvatures of the type

g
�
R
�
H .z/ ^ w � z ^ H� .w/

�
;H .z/ ^ w � z ^ H� .w/

�
:

If H is normal, then it can be diagonalized with respect to an orthonormal basis in
the complexified tangent bundle. Assuming that H .z/ D �z and H .w/ D �w where
z;w 2 TpM ˝ C are orthonormal we obtain

�
R
�
H .z/ ^ w � z ^ H� .w/

�
;H .z/ ^ w� z ^ H� .w/

�
D j� � N�j2 g

�
R .z ^ w/ ; z ^ w

�
:

The curvature term g
�
R .z ^ w/ ; z ^ w

�
looks like a complexified sectional

curvature and is in fact called the complex sectional curvature. It can be recalculated
without reference to the complexification. If we consider z D xC iy and w D uC iv,
x; y; u; v 2 TM, then

g .R .z ^ w/ ; Nz ^ Nw/ D g .R .x ^ u � y ^ v/ ; x ^ u� y ^ v/
Cg .R .x ^ v C y ^ u/ ; x ^ v C y ^ u/

D g .R .x ^ u/ ; x ^ u/C g .R .y ^ v/ ; y ^ v/
Cg .R .x ^ v/ ; x ^ v/C g .R .y ^ u/ ; y ^ u/

�2g .R .x ^ u/ ; y ^ v/C 2g .R .x ^ v/ ; y ^ u/
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D R .x; u; u; x/C R .y; v; v; y/C R .x; v; v; x/C R .y; u; u; y/

C2R .x; u; y; v/ � 2R .x; v; y; u/

D R .x; u; u; x/C R .y; v; v; y/C R .x; v; v; x/C R .y; u; u; y/

�2 .R .v; y; x; u/C R .x; v; y; u//

D R .x; u; u; x/C R .y; v; v; y/C R .x; v; v; x/C R .y; u; u; y/

C2R .y; x; v; u/

D R .x; u; u; x/C R .y; v; v; y/C R .x; v; v; x/C R .y; u; u; y/

C2R .x; y; u; v/ :

The first line in this derivation shows that complex sectional curvatures are
nonnegative when R � 0: Thus we see that it is weaker than working with the
curvature operator. On the other hand it is stronger than sectional curvature.

There are three special cases depending on the dimension of span
R
fx; y; u; vg.

When y D v D 0 we obtain the standard definition of sectional curvature. When
x; y; u; v are orthonormal we obtain the so called isotropic curvature, and finally if
u D v we get a sum of two sectional curvatures

2R .x; u; u; x/C 2R .y; u; u; y/

also called a second Ricci curvature when x; y; u are orthonormal.
The next result is a general version of two separate theorems. Simons and Berger

did the case of symmetric tensors and Micallef-Wang the case of 2-forms.

Proposition 9.4.12. Let h be a .0; 2/-tensor such that H is normal. If the complex

sectional curvatures are nonnegative, then g
�
R
�Oh
�
; Oh
�
� 0:

Proof. We can use complex orthonormal bases as well as real bases to compute

g
�
R
�Oh
�
; Oh
�
: Using that H is normal we obtain a complex orthonormal basis ei of

eigenvectors H .ei/ D �iei and H� .ei/ D N�iei. From that we quickly obtain

g
�
R
�Oh
�
; Oh
�
D
X

g
�
R
�Oh �ei; ej

��
; Oh �ei; ej

��

D
X

g
�
R
�
H .ei/ ^ ej � ei ^ H� �ej

��
;H .ei/ ^ ej � ei ^ H� �ej

��

D
Xˇ

ˇ�i � N�j

ˇ
ˇ2 g

�
R
�
ei ^ ej

�
; ei ^ ej

�
: ut

In the special case where H is self-adjoint the eigenvalues/vectors are real and we
need only use the real sectional curvatures. When H is skew-adjoint the eigenvectors
are purely imaginary unless they correspond to zero eigenvalues. This shows that
we must use the isotropic curvatures and also the second Ricci curvatures when M
is odd dimensional. However, in this case none of the terms involve real sectional
curvatures.
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These characterizations can be combined to show

Proposition 9.4.13. g
�
R
�Oh
�
; Oh
�
� 0 for all .0; 2/-tensors on TpM if all complex

sectional curvatures on TpM are nonnegative.

Proof. We decompose h D hsCha into symmetric and skew symmetric parts. Then

g
�
R
�Oh
�
; Oh
�
D g

�
R
�Ohs

�
; Ohs

�
C g

�
R
�Oha

�
; Oha

�
C g

�
R
�Ohs

�
; Oha

�

Cg
�
R
�Oha

�
; Ohs

�

D g
�
R
�Ohs

�
; Ohs

�
C g

�
R
�Oha

�
; Oha

�
C 2g

�
R
�Ohs

�
; Oha

�
:

However,

g
�
R
�Ohs

�
; Oha

�
D
X

g
�
R
�Ohs

�
ei; ej

��
; Oha

�
ei; ej

��

D �
X

g
�
R
�Ohs

�
ej; ei

��
; Oha

�
ej; ei

��

D �g
�
R
�Ohs

�
; Oha

�
:

So

g
�
R
�Oh
�
; Oh
�
D g

�
R
�Ohs

�
; Ohs

�
C g

�
R
�Oha

�
; Oha

�

and the result follows from the previous proposition. ut

9.5 Further Study

For more general and complete accounts of the Bochner technique and spin
geometry we recommend the two texts [107] and [71]. The latter book also has
a complete proof of the Hodge theorem. Other sources for this particular result are
[65], [92], and [101].

For other generalizations to manifolds with integral curvature bounds the
reader should consult [46]. In there the reader will find a complete discussion on
generalizations of the above mentioned results about Betti numbers.
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9.6 Exercises

EXERCISE 9.6.1. Suppose .Mn; g/ is compact and has b1 D k: If Ric � 0; then the
universal covering splits:

� QM; g� D .N; h/ � �Rk; gRn

�
:

Give an example where b1 < n and
� QM; g� D .Rn; gRn/.

EXERCISE 9.6.2. Show directly that if Ei is an orthonormal frame and V 7! rVX
is symmetric, then

P
i g .rEiX;rXEi/ D 0 without assuming that Ei are parallel in

the direction of X.

EXERCISE 9.6.3. Show that for an oriented Riemannian manifold:
�
imdk�1�? D

kerık�1 and imdk�1 � �kerık�1�? in �k .M/.

EXERCISE 9.6.4. Let .Mn; g/ be a compact Riemannian manifold and E ! M
a tensor bundle. Let Wk;2 .E/ denote the Hilbert space completion of � .E/ with
square norm

Pk
iD0

��r iT
��2
2
, e.g., if T 2 W1;2 .E/, then T is defined as an element in

L2 and its derivative rT as an L2 tensor that satisfies .rT;rS/ D .T;r�rS/ for
all S 2 � .E/. It follows that � .E/ � Wk;2 .E/ is dense. The Sobolev inequality
can be used to show that

T
k�0 Wk;2 .E/ D T

k�0 Wk;p .E/ for all p < 1. The
techniques from section 7.1.5 can easily be adapted to show that a tensor T 2 W1;p

is Hölder continuous when p > n (see also [60]). This in turn shows that � .E/ DT
k�0 Wk;2 .E/.

(1) Show that for all T 2 � .E/ there is a commutation relationship

r�r �rkT
� � rk

�r�rT
� D

kX

iD0
Ck

i

�rk�iR˝r iT
�
;

where Ck
i

�rk�iR˝r iT
�

is a suitable contraction.
(2) Assume that T 2 W1;2 .E/ and T 0 2 Wk;2 .E/ satisfy .T 0; S/ D .rT;rS/ for all

S 2 � .E/, i.e., r�rT D T 0 weakly, show that T 2 WkC1;2 .E/. Hint: Define
the weak derivatives r lC1T inductively using a relationship of the form:

�r lC1T;r lC1S
� D �r lT 0;r lS

�C
lX

iD0

�
Cl

i

�r l�iR˝r iT
�
;r lS

�
:

(3) Conclude that if T 0 2 � .E/, then T 2 � .E/ and r�rT D T 0.

EXERCISE 9.6.5. Let .Mn; g/ be a compact Riemannian manifold with diamM �
D, R � k, and E ! M a tensor bundle with m-dimensional fibers and a
Lichnerowicz Laplacian�L. The goal is to establish the spectral theorem for�L and
as a consequence obtain the orthogonal decomposition � .E/ D ker�L˚ im�L.
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(1) Consider the Hilbert space completion W1;2 .E/ of � .E/ as in exercise 9.6.4.
Show that the right-hand side in .�LT; S/ D .rT;rS/ C c .Ric .T/ ; S/ is
symmetric and well-defined for all T; S 2 W1;2 .E/.

(2) Show that infT2W1;2;kTk2D1 .�LT;T/ > cCk, where k � 0 and C is the constant
in corollary 9.3.4.

(3) Show that a sequence Ti � W1;2 .E/, where kTik2 D 1 and .�LTi;Ti/

is bounded, will have an L2-convergent subsequence that is also weakly
convergent in W1;2 .E/. Hint: Use theorem 7.1.18.

(4) Consider a closed subspace V � W1;2 .E/ that is invariant under �L. Show
that the infimum � D infT2V;kTkD1 .�LT;T/ is achieved by a T 2 V , then use
exercise 9.6.4 to show that T 2 � .E/ and�LT D �T. Hint: Prove and use that

kTk22 C krTk22 � lim inf
i!1

�
kTik22 C krTik22

�

if Ti * T (weak convergence) in W1;2 .E/.
(5) Consider a finite dimensional subspace V � � .E/ that is spanned by eigen-

tensors Ti with �LTi D �iTi. Show that dim V � mC
�
n;maxi �i; c;D2k

�
.

(6) Show that all eigenspaces for �L are finite dimensional and that the set of
eigenvalues is discrete. Conclude that they can be ordered �1 < �2 < � � � with
limi!1 �i D 1.

(7) Show that the eigenspaces for �L are orthogonal and that their direct sum is
dense in � .E/.

(8) Show that � .E/ D ker�L ˚ im�L. Hint: Use exercise 9.6.4.

EXERCISE 9.6.6. Let .M; g/ be an n-dimensional Riemannian manifold that is
isometric to Euclidean space outside some compact subset K � M; i.e., M � K
is isometric to R

n � C for some compact set C � R
n: If Ricg � 0; show that

M D R
n: Hint: Find a metric on the n-torus that is isometric to a neighborhood of

K � M somewhere and otherwise flat. Alternatively, show that any parallel 1-form
on R

n � C extends to a harmonic 1-form on M. Then apply Bochner’s formula to
show that it must in fact be parallel when Ricg � 0; and use this to conclude that the
manifold is flat.

EXERCISE 9.6.7. Let .M; g/ be an Einstein metric. Show that all harmonic 1-forms
are eigen-forms for the connection Laplacian r�r.

EXERCISE 9.6.8. Given two vector fields X and Y on .M; g/ such that rX and rY
are symmetric, develop Bochner formulas for Hess 1

2
g .X;Y/ and �1

2
g .X;Y/ :

EXERCISE 9.6.9. For general tensors s1 and s2 of the same type show in analogy
with the formula

�
1

2
jsj2 D jrsj2 � g

�r�rs; s
�
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that:

�g .s1; s2/ D 2g .rs1;rs2/C g
�r�rs1; s2

�C g
�
s1;r�rs2

�
:

Use this on forms to develop Bochner formulas for inner products of such sections.
More generally consider the 1-form defined by ! .v/ D g .rvs1; s2/ that

represents half of the differential of g .s1; s2/ : Show that

�ı! D g .rs1;rs2/� g
�r�rs1; s2

�

d! .X;Y/ D g .R .X;Y/ s1; s2/� g .rXs1;rYs2/C g .rY s1;rXs2/ :

EXERCISE 9.6.10. Let .M; g/ be n-dimensional.

(1) Show that

L! D 0

if L is skew-symmetric and ! is an n-form.
(2) When n D 2,

LR D 0

for all skew-symmetric L:
(3) For general L

Lvol D tr .L/ vol:

EXERCISE 9.6.11 (Simons). Let .M; g/ be a compact Riemannian manifold with a
.0; 2/-tensor field h that is a symmetric Codazzi tensor with constant trace.

(1) Show that if sec � 0, then rh D 0:
(2) Moreover, if sec > 0, then h D c � g for some constant c.
(3) If the Gauss equations

R .X;Y;Z;W/ D h .X;W/ h .Y;Z/ � h .X;Z/ h .Y;W/

are satisfied and the trace of h vanishes, then

�1
2
jhj2 � jrhj2 � jhj4 :

EXERCISE 9.6.12. Let .Mn; g/ # R
nC1 be an isometric immersion of a mani-

fold.

(1) Show that the second fundamental form II is a Codazzi tensor.
(2) Show Liebmann’s theorem: If .M; g/ has constant mean curvature and nonneg-

ative second fundamental from, then .M; g/ is a constant curvature sphere.
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On the other hand, Wente has exhibited immersed tori with constant mean
curvature (see Wente’s article in [51]).

EXERCISE 9.6.13 (Berger). Show that a compact manifold with harmonic curva-
ture and nonnegative sectional curvature has parallel Ricci curvature.

EXERCISE 9.6.14. Suppose we have a Killing field K on a closed Riemannian
manifold .M; g/ : Assume that ! is a harmonic form.

(1) Show that LK! D 0. Hint: Show that LK! is also harmonic.
(2) Show that iK! is closed, but not necessarily harmonic.
(3) Show that all harmonic forms are invariant under Iso0 .M/.
(4) Give an example where a harmonic form is not invariant under all of Iso .M/.

EXERCISE 9.6.15. Let .M; g/ be a closed Kähler manifold with Kähler form !, i.e.,
a parallel nondegenerate 2-form. Show

!k D ! ^ � � � ^ !„ ƒ‚ …
k times

is closed but not exact by showing that !
dimM
2 is proportional to the volume form.

Conclude that none of the even homology groups vanish.

EXERCISE 9.6.16. Let E! M be a tensor bundle.

(1) Let �p .M;E/ denote the alternating p-linear maps from TM to E (note that
�0 .M;E/ D � .E/). Show that�� .M/ acts in a natural way from both left and
right on �� .M;E/ by wedge product.

(2) Show that there is a natural wedge product

�p .M;Hom .E;E// ��q .M;E/! �pCq .M;E/ :

(3) Show that there is a connection dependent exterior derivative

dr W �p .M;E/! �pC1 .M;E/

with the property that it satisfies the exterior derivative version of Leibniz’s rule
with respect to the above defined wedge products, and such that for s 2 � .E/
we have: drs D rs:

(4) Think of R .X;Y/ s 2 �2 .M;Hom .E;E// : Show that:

�
dr ı dr� .s/ D R ^ s

for any s 2 �p .M;E/ and that Bianchi’s second identity can be stated as
drR D 0:
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EXERCISE 9.6.17. If we let E D TM in the previous exercise, then

�1 .M;TM/ D Hom .TM;TM/

will simply consist of all .1; 1/-tensors.

(1) Show that in this case drs D 0 if and only if s is a Codazzi tensor.
(2) The entire chapter seems to indicate that whenever we have a tensor bundle E

and an element s 2 �p .M;E/ with drs D 0; then there is a Bochner type
formula for s: Moreover, when in addition s is “divergence free” and some sort
of curvature is nonnegative, then s should be parallel. Can you develop a theory
in this generality?

(3) Show that if X is a vector field, then rX is a Codazzi tensor if and only if
R .�; �/X D 0: Give an example of a vector field such that rX is Codazzi but X
itself is not parallel. Is it possible to establish a Bochner type formula for exact
tensors like rX D drX even if they are not closed?

EXERCISE 9.6.18 (Thomas). Show that in dimensions n > 3 the Gauss equations
.R D S ^ S/ imply the Codazzi equations

�
drS D 0� provided detS ¤ 0: Hint: use

the second Bianchi identity and be very careful with how things are defined. It will
also be useful to study the linear map

Hom
�
ƒ2V;V

�! Hom
�
ƒ3V; ƒ2V

�
;

T 7! T ^ S

for a linear map S W V ! V: In particular, one can see that this map is injective only
when the rank of S is � 4:



Chapter 10
Symmetric Spaces and Holonomy

In this chapter we give an overview of (locally) symmetric spaces and holonomy.
Most standard results are proved or at least mentioned. We give a few explicit
examples, including the complex projective space, in order to show how one
can compute curvatures on symmetric spaces relatively easily. There is a brief
introduction to holonomy and the de Rham decomposition theorem. We give a few
interesting consequences of this theorem and then proceed to discuss how holonomy
and symmetric spaces are related. Finally, we classify all compact manifolds with
nonnegative curvature operator.

As we have already seen, Riemann showed that locally there is only one
constant curvature geometry. After Lie’s work on “continuous” groups it became
clear that one had many more interesting models for geometries. Next to constant
curvature spaces, the most natural type of geometry to try to understand is that of
(locally) symmetric spaces. One person managed to take all the glory for classifying
symmetric spaces; Elie Cartan. He started out in his thesis with cleaning up and
correcting Killing’s classification of simple complex Lie algebras and several years
later all the simple real Lie algebras. With the help of this and many of his
different characterizations of symmetric spaces, Cartan, by the mid 1920s had
managed to give a complete (local) classification of all symmetric spaces. This was
an astonishing achievement even by today’s deconstructionist standards, not least
because Cartan also had to classify the real simple Lie algebras. This in itself takes
so much work that most books on Lie algebras give up after having settled the
complex case.

After Cartan’s work, a few people worked on getting a better conceptual
understanding of some of these new geometries and also on offering a more global
classification. Still, not much happened until the 1950s, when people realized a
interesting connection between symmetric spaces and holonomy: The de Rham
decomposition theorem and Berger’s classification of holonomy groups. It then
became clear that almost all holonomy groups occurred for symmetric spaces
and consequently gave good approximating geometries to most holonomy groups.

© Springer International Publishing AG 2016
P. Petersen, Riemannian Geometry, Graduate Texts in Mathematics 171,
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366 10 Symmetric Spaces and Holonomy

An even more interesting question also came out of this, namely, what about those
few holonomy groups that do not occur for symmetric spaces? This is related to
the study of Kähler manifolds and some exotic geometries in dimensions 7 and 8.
The Kähler case seems to be quite well understood by now, not least because of
Yau’s work on the Calabi conjecture. The exotic geometries have only more recently
become better understood with D. Joyce’s work.

10.1 Symmetric Spaces

There are many ways of representing symmetric spaces. Below we shall see how
they can be described as homogeneous spaces, Lie algebras with involutions, or by
their curvature tensor.

10.1.1 The Homogeneous Description

We say that a Riemannian manifold .M; g/ is a symmetric space if for each p 2 M
the isotropy group Isop contains an isometry Ap such that DAp W TpM ! TpM
is the antipodal map �I. Since isometries preserve geodesics, any geodesic c .t/
with c .0/ D p has the property that: Ap ı c .t/ D c .�t/ : This quickly shows that
symmetric spaces are homogeneous and hence complete. Specifically, if two points
are joined by a geodesic, then the symmetry in the midpoint between these points
on the geodesic is an isometry that maps these points to each other. Thus, any two
points that can be joined by a broken sequence of geodesics can be mapped to each
other by an isometry. This shows that the space is homogeneous.

A homogeneous space G=H D Iso=Isop is symmetric provided that the symmetry
Ap exists for just one p. In this case we can use Aq D g ı Ap ı g�1, where g
is an isometry that takes p to q. This means, in particular, that any Lie group G
with biinvariant metric is a symmetric space, as g ! g�1 is the desired symmetry
around the identity element. Tables 10.1, 10.2, 10.3, 10.4 list some of the important
families of homogeneous spaces that are symmetric. They always come in dual
pairs of compact and noncompact spaces. There are many more families and several
exceptional examples as well.

Table 10.1 Compact Groups group rank dim

SU .n C 1/ n n .n C 2/

SO .2n C 1/ n n .2n C 1/

Sp .n/ n n .2n C 1/

SO .2n/ n n .2n � 1/
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Table 10.2 Noncompact Analogues of Compact
Groups

(complexified group)/group rank dim

SL .n C 1;C/ =SU .n C 1/ n n .n C 2/

SO .2n C 1;C/ =SO .2n C 1/ n n .2n C 1/

Sp .n;C/ =Sp .n/ n n .2n C 1/

SO .2n;C/ =SO .2n/ n n .2n � 1/

Table 10.3 Compact Homogeneous Spaces

Iso Isop dim rank description

SO .n C 1/ SO .n/ n 1 Sphere

O .n C 1/ O .n/� f1;�1g n 1 RP
n

U .n C 1/ U .n/� U .1/ 2n 1 CP
n

Sp .n C 1/ Sp .n/ � Sp .1/ 4n 1 HP
n

F4 Spin .9/ 16 1 OP
2

SO .p C q/ SO .p/� SO .q/ pq min .p; q/ Real Grassmannian

SU .p C q/ S .U .p/� U .q// 2pq min .p; q/ Complex Grassmannian

SU .n/ SO .n/ .n2�1/=2 n � 1 R
n’s in C

n

Table 10.4 Noncompact Homogeneous Spaces

Iso Isop dim rank description

SO .n; 1/ SO .n/ n 1 Hyperbolic space

O .n; 1/ O .n/ � f1;�1g n 1 Hyperbolic RP
n

U .n; 1/ U .n/ � U .1/ 2n 1 Hyperbolic CP
n

Sp .n; 1/ Sp .n/� Sp .1/ 4n 1 Hyperbolic HP
n

F�20
4 Spin .9/ 16 1 Hyperbolic OP

2

SO .p; q/ SO .p/ � SO .q/ pq min .p; q/ Hyperbolic Grassmannian

SU .p; q/ S .U .p/� U .q// 2pq min .p; q/ Complex hyperbolic Grassmannian

SL .n;R/ SO .n/ .n2�1/=2 n � 1 Euclidean structures on R
n

Here Spin .n/ is the universal double covering of SO .n/ for n > 2: We also have
the following special identities in low dimensions:

SO .2/ D U .1/ ;

Spin .3/ D SU .2/ D Sp .1/ ;

Spin .4/ D Spin .3/ � Spin .3/ :

Note that all of the compact examples have sec � 0 by O’Neill’s formula (see
theorem 4.5.3). It also follows from this formula that all the projective spaces
(compact and noncompact) have quarter pinched metrics, i.e., the ratio between the
smallest and largest sectional curvatures is 1

4
(see also section 4.5.3). These remarks

are further justified below.
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In the tables there is a column called rank. This is related to the rank of a Lie
group as discussed in section 8.3. Here, however, we need a rank concept for more
general spaces. The rank of a geodesic c W R ! M is the dimension of parallel
fields E along c such that R .E .t/ ; Pc .t// Pc .t/ D 0 for all t: The rank of a geodesic
is, in particular, always � 1: The rank of a Riemannian manifold is defined as the
minimum rank over all of the geodesics in M: For symmetric spaces the rank can
be computed from knowledge of Abelian subgroups in Lie groups. For a general
manifold there might naturally be metrics with different ranks, but this is actually
not so obvious. Is it, for example, possible to find a metric on the sphere of rank
> 1‹ A general remark is that any Cartesian product has rank � 2; and also many
symmetric spaces have rank � 2: It is unclear to what extent other manifolds can
also have rank � 2: All of the rank 1 symmetric spaces are listed in tables 10.3
and 10.4. The compact ones are also known as CROSSes.

10.1.2 Isometries and Parallel Curvature

Another interesting property for symmetric spaces is that they have parallel
curvature tensor. This is because the symmetries Ap leave the curvature tensor and
its covariant derivative invariant. In particular, we have

DAp ..rXR/ .Y;Z;W// D �rDApXR
� �

DApY;DApZ;DApW
�
;

which at p implies

� .rXR/ .Y;Z;W/ D .r�XR/ .�Y;�Z;�W/

D .rXR/ .Y;Z;W/ :

Thus, rR D 0: This almost characterizes symmetric spaces.

Theorem 10.1.1 (Cartan). If .M; g/ is a Riemannian manifold with parallel cur-
vature tensor, then for each p 2 M there is an isometry Ap defined in a neighborhood
of p with DAp D �I on TpM: Moreover, if .M; g/ is simply connected and complete,
then the symmetry is defined on all of M; and the space is symmetric.

Proof. The global statement follows from the local one using an analytic continu-
ation argument as in the proof of theorem 5.6.7 and the next theorem below. Note
that for the local statement we already have a candidate for a map. Namely, if "
is so small that expp W B .0; "/ ! B .p; "/ is a diffeomorphism, then we can just
define Ap .x/ D �x in these coordinates. It remains to see why this is an isometry
when we have parallel curvature tensor. Equivalently, we must show that in these
coordinates the metric has to be the same at x and�x: To this end we switch to polar
coordinates and use the fundamental equations relating curvature and the metric.
The claim follows if we can prove that the curvature tensor is the same when we go
in opposite directions. To check this, first observe that at p
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R .�; v/ v D R .�;�v/ .�v/ :
So the curvatures start out being the same. If @r is the radial field, we also have

.r@r R/ D 0:
Thus, the curvature tensors not only start out being equal, but also satisfy the same
simple first-order equation. Consequently, they remain the same as we go equal
distance in opposite directions. ut

A Riemannian manifold with parallel curvature tensor is called a locally symmet-
ric space.

It is worth mentioning that there are left-invariant metrics that are not locally
symmetric. The Berger spheres (" ¤ 1) and the Heisenberg group do not have
parallel curvature tensor. In fact, as they are 3-dimensional they can’t even have
parallel Ricci tensor.

With very little extra work we can generalize the above theorem on the existence
of local symmetries. Recall that in the discussion about existence of isometries with
a given differential prior to theorem 5.6.7 we decided that they could exist only when
the spaces had the same constant curvature. However, there is a generalization to
symmetric spaces. We know that any isometry preserves the curvature tensor. Thus,
if we start with a linear isometry that preserves the curvatures at a point, then we
should be able to extend this map in the situation where curvatures are everywhere
the same. This is the content of the next theorem.

Theorem 10.1.2 (Cartan). Suppose we have a simply connected symmetric space
.M; g/ and a complete locally symmetric space .N; Ng/ of the same dimension. Given
a linear isometry L W TpM ! TqN such that

L .Rg .x; y/ z/ D RNg .Lx;Ly/ Lz

for all x; y; z 2 TpM; there is a unique Riemannian isometry F W M ! N such that
DpF D L:

Proof. The proof of this is, as in the constant curvature case, by analytic continua-
tion. So we need only find these isometries locally. Given that there is an isometry
defined locally, we know that it must look like

F D expq ıL ı exp�1
p :

To see that this indeed defines an isometry, we have to show that the metrics in
exponential coordinates are the same via the identification of the tangent spaces
by L: As usual the radial curvatures determine the metrics. In addition, the
curvatures are parallel and satisfy the same first-order equation. We assume that
initially the curvatures are the same at p and q via the linear isometry. But then
they must be the same in frames that are radially parallel around these points.
Consequently, the spaces are locally isometric. ut
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This result shows that the curvature tensor completely characterizes the symmet-
ric space. It also tells us what the isometry group must be in case the symmetric
space is simply connected. This will be investigated further below.

10.1.3 The Lie Algebra Description

Finally, we offer a more algebraic description of symmetric spaces. There are many
ways of writing homogeneous spaces as quotients G=H; e.g.,

S3 D SU .2/ D SO .4/ =SO .3/ D O .4/ =O .3/ :

But only one of these, O .4/ =O .3/ ; tells us directly that S3 is a symmetric space.
This is because the isometry Ap modulo conjugation lies in O .4/ as it is orientation
reversing. In this section we present two related descriptions based on Killing fields
and curvatures.

To begin we must understand how the map Ap acts on iso. The push forward�
Ap
�

� preserves Killing fields as Ap is an isometry so there is a natural map
�
Ap
�

� D
�p W iso! iso.

Throughout the section let .M; g/ be a symmetric space.

Proposition 10.1.3. Let p 2 M. The map �p D
�
Ap
�

� defines an involution on
iso. The 1-eigenspace is isop and the .�1/-eigenspace consists of X such that
.rX/ jp D 0.

Proof. Since A2p D id it is clear that also �2p D id. This shows that iso is a direct
sum decomposition of the .˙1/-eigenspaces for �p. Moreover, we have:

� .X/ D �Ap
�

� X D DAp

�
XjA�1

p

�
D DAp

�
XjAp

�

and as Ap is an isometry

�
Ap
�

� .rVX/ D r.Ap/�V

�
Ap
�

� X D r.Ap/�
V� .X/ :

At p we know that DAp D �I so if � .X/ D X, then Xjp D �Xjp, showing that
X 2 isop. Conversely, if X 2 isop, then also � .X/ 2 isop and at p

rv� .X/ D �rDAp.v/� .X/

D �DAp .rvX/
D rvX

showing that � .X/ D X.
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On the other hand, if �p .X/ D �X, then .rX/ jp D 0 since at p

�rvX D r�v�p .X/ D rvX:

Conversely, if .rX/ jp D 0, then �X D �p .X/ as the Killing fields agree at p and
both have vanishing derivative at p. ut

Recall from proposition 8.1.4 that there is a short exact sequence

0! isop ! iso! tp ! 0

where

tp D
˚
Xjp 2 TpM j X 2 iso

�
:

As M is homogeneous it follows that tp D TpM and since M is symmetric the .�1/-
eigenspace for �p is mapped isomorphically onto TpM. We can then redefine tp as
the subspace

tp D
˚
X 2 iso j .rX/ jp D 0

�
:

This gives us the natural decomposition iso D tp ˚ isop and by evaluating at p the
alternate representation

iso ' TpM ˚ sp � TpM ˚ so
�
TpM

�
;

where

sp D
˚
.rX/ jp 2 so

�
TpM

� j X 2 isop
�
:

This leads to

Proposition 10.1.4. If we identify iso ' TpM ˚ sp, then the Lie algebra structure
is determined entirely by the curvature tensor and satisfies:

(1) If X;Y 2 TpM, then ŒX;Y� D R .X;Y/ 2 sp.
(2) If X 2 TpM and S 2 sp, then ŒX; S� D �S .X/.
(3) If S;T 2 sp, then ŒS;T� D � .S ı T � T ı S/ 2 sp.

Proof. We rely on proposition 8.1.3: For X;Y 2 iso we have

ŒrX;rY� .V/CrV ŒX;Y� D R .X;Y/V:

(1) When X;Y 2 tp note that ŒX;Y� D rYX � rXY vanishes at p so ŒX;Y� 2 isop.
The Lie derivative is then represented by .r ŒX;Y�/ jp 2 sp. To calculate this
note that ŒrX;rY� vanishes at p so .r ŒX;Y�/ jp D R

�
Xjp;Yjp

�
.



372 10 Symmetric Spaces and Holonomy

(2) When X 2 tp and Y 2 isop we have ŒX;Y� D rYX �rXY which at p reduces to
�rXjp Y.

(3) When X;Y 2 isop it follows that ŒX;Y� D rXY � rYX also vanishes at p.
Moreover, .r ŒX;Y�/ jp D � ŒrX;rY� jp.

ut
We just saw how the Lie algebra structure can be calculated from the curvature,

but it also shows that the curvature can be calculated from the Lie algebra structure.
On a Lie algebra g the adjoint action is defined as

adX W g! g

Y 7! adX .Y/ D ŒX;Y�

and the Killing form by

B .X;Y/ D tr .adX ı adY/ :

It is easy to check that the Killing form is symmetric and that adX is skew-symmetric
with respect to B:

B .adXY;Z/C B .Y; adXZ/ D 0:

Remark 10.1.5. In case of the Lie algebra iso ' TpM˚sp the map adS W iso! iso,
S 2 sp, is also skew-symmetric with respect to the natural inner product

g ..X1; S1/ ; .X2; S2// D g .X1;X2/C g .S1; S2/ D g .X1;X2/ � tr .S1 ı S2/ :

Thus

B .S; S/ D tr .adS ı adS/ D �tr
�
adS ı .adS/

�� � 0:

Moreover, if B .S; S/ D 0, then adS D 0 which in turn implies that S D 0 since
adS .X/ D ŒS;X� D S .X/.

The next result tells us how to calculate the curvature tensor algebraically and is
very important for the next two sections.

Theorem 10.1.6. If X;Y;Z 2 tp, then R .X;Y/ Z D ŒZ; ŒX;Y�� at p: In Lie
algebraic language on iso ' TpM ˚ sp:

R .X;Y/ Z D �adZ ı adY .X/ ;

Ric .Y;Z/ D �1
2

B .Z;Y/ :
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Moreover, in case Ric D �g, it follows that the curvature operator has the same
sign as �.

Proof. For completeness we offer a proof that does not rely on the previous
proposition. Instead it uses proposition 8.1.3: For X;Y;Z 2 iso we have r2X;YZ D
�R .Z;X/ Y. If we additionally assume X;Y;Z 2 tp, then rX D rY D rZ D 0 at
p. Bianchi’s first identity then implies

R .X;Y/ Z D R .X;Z/ Y � R .Y;Z/X

D �rZrYX CrZrXY

D rZ ŒX;Y�

D ŒZ; ŒX;Y�� :
For the Ricci tensor formula first note that the operator adZ ı adY leaves the

decomposition iso ' TpM ˚ sp invariant since each of adZ and adY interchange the
subspaces in this factorization. With this in mind we obtain

tr
�
adZ ı adY jTpM

� D tr
�
adZjsp ı adY jTpM

�

D tr
�
adY jTpM ı adZ jsp

�

D tr
�
adY ı adZ jsp

�
:

Using symmetry of B this gives:

B .Z;Y/ D tr
�
adY ı adZjsp

�C tr
�
adZ ı adY jTpM

� D 2tr
�
adZ ı adY jTpM

�
:

The formula for the curvature tensor then shows that

Ric .Z;Y/ D �tr
�
adZ ı adY jTpM

� D �1
2

B .Z;Y/ :

In case Ric D �g, � ¤ 0 it follows that

g .R .X;Y/ Z;W/ jp D �g .adZ ı adY .X/ ;W/ jp
D � 1

�
Ric .adZ ı adY .X/ ;W/ jp

D 1

2�
B .adZ ı adY .X/ ;W/

D � 1
2�

B .adY .X/ ; adZ .W// :

D � 1
2�

B .ŒX;Y� ; ŒW;Z�/

D 1

2�
tr
�

adŒX;Y� ı
�
adŒW;Z�

���
:
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The diagonal terms for the curvature operator then become

g
�
R
�X

Xi ^ Yi

�
;
�X

Xi ^ Yi

��
jp D

X
g
�
R .Xi;Yi/ Yj;Xj

� jp

D � 1
2�

X
B
�
adXi .Yi/ ; adXj

�
Yj
��

D � 1
2�

B
�X

adXi .Yi/ ;
X

adXi .Yi/
�
:

Since
P

adYi .Xi/ 2 sp it follows from remark 10.1.5 that B .
P

adXi .Yi/ ;P
adXi .Yi// � 0. Thus the eigenvalues of R have the same sign as the Einstein

constant.
In case Ric D 0 corollary 8.2.5 implies that M is flat in the more general case of

homogeneous spaces. ut
Note that the formula is similar to the one that was developed for biinvariant

metrics in proposition 4.4.2. However, while left-invariant fields on a Lie group
are Killing fields as long as the metric is right-invariant, they generally don’t have
vanishing covariant derivative at the identity.

We can now give a slightly more efficient Lie algebra structure of a symmetric
space. Suppose .M; g/ is a symmetric space and p 2 M. We define a bracket
operation on Rp D TpM ˚ so

�
TpM

�
by

ŒX;Y� D RX;Y 2 so
�
TpM

�
for X;Y 2 TpM;

� ŒS;X� D ŒX; S� D S .X/ 2 TpM for X 2 TpM and S 2 so
�
TpM

�
;

	
S; S0
 D � �S ı S0 � S0 ı S

� 2 so
�
TpM

�
for S; S0 2 so

�
TpM

�
:

This bracket will in general not satisfy the Jacobi identity on triples that involve
precisely two elements from TpM

ŒS; ŒX;Y��C ŒY; ŒS;X��C ŒX; ŒY; S��
D �S ı RX;Y C RX;Y ı S � RY;S.X/ C RX;S.Y/

D �S ı RX;Y C RX;Y ı SC RS.X/;Y C RX;S.Y/:

But the other possibilities for the Jacobi identity do hold. When the triple involves
zero or one element from TpM this is straightforward, while if all three are from
TpM it follows from the Bianchi identity

0 D RX;YZ C RZ;XY C RY;ZX

D ŒZ; ŒX;Y��C ŒY; ŒZ;X��C ŒX; ŒY;Z�� :

Fortunately we have the following modification of theorem 10.1.2.
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Corollary 10.1.7. Let .M; g/ be a simply connected symmetric space. If S 2
so
�
TpM

�
, then S 2 sp if and only if for all X;Y 2 TpM

�S ı RX;Y C RX;Y ı SC RS.X/;Y C RX;S.Y/ D 0:

Proof. We start by assuming that Z 2 isop and S D .rZ/ jp. Since Z is a Killing
field we have LZR D 0. Since ŒV;Z� jp D S .V/ for all V 2 TpM this implies that

0 D .LZR/X;Y V

D �S .RX;YV/C RX;YS .V/C RS.X/;YV C RX;S.Y/V:

The converse is proven using theorem 10.1.2 by constructing the flow of the
Killing field corresponding to S 2 so

�
TpM

�
. In TpM construct the isometric flow

for S. Check that the assumption about S implies that the isometries in this flow
satisfy theorem 10.1.2 and then conclude that we obtain a global flow on M. This
flow will then generate the desired Killing field. ut

Let rp � sp be the Lie algebra generated by the skew-symmetric endomorphisms
RX;Y 2 so

�
TpM

�
: We have basically established the following useful relationship

between the curvature tensor and Killing fields on a symmetric space.

Corollary 10.1.8. Let .M; g/ be a simply connected symmetric space. The bracket
structure on Rp makes TpM˚sp into a Lie algebra with subalgebra cp D TpM˚ rp.
In fact TpM ˚ sp is characterized as the maximal Lie algebra: cp � TpM ˚ sp �
NRp

�
cp
�
, where NRp

�
cp
�

is the normalizer of cp in Rp. Moreover, the Lie algebra
involution on TpM ˚ sp (and its restriction on cp) has TpM as the .�1/-eigenspace
and sp as the 1-eigenspace.

Proof. We saw in the above corollary that any subalgebra of k � so
�
TpM

�
such that

TpM ˚ k � Rp becomes a Lie algebra (i.e., also satisfies the Jacobi identity) must
be contained in TpM ˚ sp. We also saw that TpM ˚ sp � NRp

�
cp
�
. ut

We are now ready to attempt to reverse the construction so as to obtain symmetric
spaces from suitable Lie algebras. Assume we have a Lie algebra g with a Lie
algebra involution � W g ! g. First decompose g D t ˚ k where t is the .�1/-
eigenspace for � and k is the 1-eigenspace for � . Observe that k is a Lie subalgebra as

� ŒX;Y� D Œ� .X/ ; � .Y/�
D ŒX;Y� :

Similarly, Œk; t� � t and Œt; t� � k.
Suppose further that there is a connected compact Lie group K with Lie algebra

k such that the Lie bracket action of k on t comes from an action of K on t: In case
K is simply connected this will always be the case. Compactness of K allows us to
choose a Euclidean metric on t making the action of K isometric. It follows that the
decomposition g D t˚k is exactly of the type iso D tp˚isop. Next pick a biinvariant
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metric on K so that g D t ˚ k is an orthogonal decomposition. Finally, if we can
also choose a Lie group G � K whose Lie algebra is g, then we have constructed
a Riemannian manifold G=K: To make it symmetric we need to be able to find an
involution Ap on G=K. When G is simply connected � will be the differential of a
Lie group involution A W G ! G that is the identity on K. This defines the desired
involution on G=K that fixes the point p D K.

It rarely happens that all of the Lie groups in play are simply connected or even
connected. Nevertheless, the constructions can often be verified directly. Without
assumptions about connectedness of the groups there is a long exact sequence:

	1 .K/! 	1 .G/! 	1 .G=K/! 	0 .K/! 	0 .G/! 	0 .G=K/! 1;

where 	0 denotes the set of connected components. As K and G are Lie groups these
spaces are in fact groups. From this sequence it follows that G=K is connected and
simply connected if 	0 .K/ ! 	0 .G/ is an isomorphism and 	1 .K/ ! 	1 .G/ is
surjective.

This algebraic approach will in general not immediately give us the isometry
group of the symmetric space. For Euclidean space we can, aside from the standard
way using g D iso, also simply use g D R

n and let the involution be multiplication
by �1 on all of g: For S3 D O .4/ =O .3/ ; we see that the algebraic approach can
also lead us to the description S3 D Spin .4/ =Spin .3/ : However, as any Lie algebra
description can be used to calculate the curvature, corollary 10.1.8 will in principle
allow us to determine iso.

It is important to realize that a Lie algebra g; in itself, does not give rise to a
symmetric space. The involution is an integral part of the construction and does
not necessarily exist on a given Lie algebra. The map �id can, for instance, not be
used, as it does not preserve the bracket. Rather, it is an anti-automorphism. This is
particularly interesting if g comes from a Lie group G with biinvariant metric. There
the involution Ae .g/ D g�1 is an isometry and makes G a symmetric space. But it’s
differential on g is an anti-automorphism. Instead the algebraic description of G as
a symmetric space comes from using g � g with � .X;Y/ D .Y;X/ : This will be
investigated in the next section.

10.2 Examples of Symmetric Spaces

We explain how some of the above constructions work in the concrete case of
the Grassmann manifold and its hyperbolic counterpart. We also look at complex
Grassmannians, but there we restrict attention to the complex projective space.
Finally, we briefly discuss the symmetric space structure of SL .n/ =SO .n/ : After
these examples we give a formula for the curvature tensor on compact Lie groups
with biinvariant metrics and their noncompact counter parts.
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Throughout we use the convention that for X;Y 2 Matk�l

hX;Yi D tr
�
X�Y

� D tr .XY�/

with the conjugation only being relevant when the entries are complex. This inner
product is invariant under the natural action of O .k/ � O .l/ on Matk�l defined by:

O .k/ � O .l/ �Matk�l ! Matk�l;

.A;B;X/ 7! AXB�1 D AXB�

since

hO1XO2;O1YO2i D tr
�
O�
2X�O�

1O1YO2

�

D tr
�
O�
2X�YO2

�

D tr
�
O2O

�
2X�Y

�

D hX;Yi :

This allows us to conclude that the metrics we study can be extended to the entire
space via an appropriate transitive action whose isotropy is a subgroup of the action
by O .k/ � O .l/ on Matk�l.

Theorem 10.1.6 is used to calculate the curvatures in specific examples and the
relevant Killing forms are calculated in exercise 10.5.6.

10.2.1 The Compact Grassmannian

First consider the Grassmannian of oriented k-planes in R
kCl, denoted by M D

QGk
�
R

kCl
�
. Each element in M is a k-dimensional subspace of RkCl together with

an orientation, e.g., QG1

�
R

nC1� D Sn. We shall assume that we have the orthogonal
splitting R

kCl D R
k˚R

l; where the distinguished element p D R
k takes up the first

k coordinates in R
kCl and is endowed with its natural positive orientation.

Let us first identify M as a homogeneous space. We use that O .kC l/ acts on
R

kCl: If a k-dimensional subspace has the positively oriented orthonormal basis
e1; : : : ; ek, then the image under O 2 O .kC l/ will have the positively oriented
orthonormal basis Oe1; : : :Oek. This action is clearly transitive. The isotropy group
is SO .k/ �O .l/ � O .kC l/ :

The tangent space at p D R
k is naturally identified with the space of k�l matrices

Matk�l, or equivalently, with R
k˝Rl: To see this, just observe that any k-dimensional

subspace of RkCl that is close to R
k can be represented as a linear graph overRk with

values in the orthogonal complement Rl: The isotropy action of SO .k/ � O .l/ on
Matk�l is:
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SO .k/ �O .l/ �Matk�l ! Matk�l;

.A;B;X/ 7! AXB�1 D AXBt:

If we define X to be the matrix that is 1 in the .1; 1/ entry and otherwise zero, then
AXBt D A1 .B1/

t ; where A1 is the first column of A and B1 is the first column of B.
Thus, the orbit of X; under the isotropy action, generates a basis for Matk�l but does
not cover all of the space. This is an example of an irreducible action on Euclidean
space that is not transitive on the unit sphere. The representation, when seen as
acting on R

k ˝R
l; is denoted by SO .k/˝ O .l/ :

To see that M is a symmetric space we have to show that the isotropy group
contains the required involution. On the tangent space TpM D Matk�l it is supposed
to act as �1: Thus, we have to find .A;B/ 2 SO .k/ � O .l/ such that for all X;

AXBt D �X:

Clearly, we can just set

A D Ik;

B D �Il:

Depending on k and l; other choices are possible, but they will act in the same way.
We have now exhibited M as a symmetric space without using the isometry group

of the space. In fact SO .kC l/ is a covering of the isometry group, although that
requires some work to prove. But we have found a Lie algebra description with

so .kC l/ � iso;

so .k/ � so .l/ � isop;

and an involution that fixes so .k/ � so .l/.
We shall use the block decomposition of matrices in so .kC l/:

X D
�

X1 B
�Bt X2

�
; X1 2 so .k/ ; X2 2 so .l/ ; B 2 Matk�l:

If

tp D
��

0 B
�Bt 0

�
j B 2 Matk�l

�
;

then we have an orthogonal decomposition:

so .kC l/ D tp ˚ so .k/˚ so .l/ ;

where tp D TpM: Note that tp consists of skew-symmetric matrices so

hX;Yi D tr
�
XtY

� D �tr .XY/ D � 1

kC l � 2B .X;Y/ :
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This will be our metric on tp and tells us that Ric D kCl�2
2

g and

hR .X;Y/ Y;Xi D � 1

kC l � 2B .ŒX;Y� ; ŒX;Y�/ D jŒX;Y�j2 � 0:

When k D 1 or l D 1; it is easy to see that one gets a metric of constant positive
curvature. Otherwise, the metric will have many zero sectional curvatures.

The calculations also show that in fact rp D so .k/˚ so .l/ and corollary 10.1.8
can be used to show that iso D so .kC l/.

10.2.2 The Hyperbolic Grassmannian

Next we consider the hyperbolic analogue. In the Euclidean space R
k;l we use,

instead of the positive definite inner product vt � w; the quadratic form:

vtIk;lw D vt

�
Ik 0

0 �Il

�
w

D
kX

iD1
viwi �

kClX

iDkC1
viwi:

The group of linear transformations that preserve this form is denoted by O .k; l/ :
These transformations are defined by the relation

X � Ik;l � Xt D Ik;l:

Note that if k; l > 0; then O .k; l/ is not compact. But it clearly contains the
(maximal) compact subgroup O .k/ �O .l/ :

The Lie algebra so .k; l/ of O .k; l/ consists of the matrices satisfying

Y � Ik;l C Ik;l � Yt D 0:

If we use the same block decomposition for Y as for Ik;l, then

Y D
�

Y1 B
Bt Y2

�
; Y1 2 so .k/ ; Y2 2 so .l/ ; B 2 Matk�l:

Now consider only those (oriented) k-dimensional subspaces of Rk;l on which
this quadratic form generates a positive definite inner product. This space is the
hyperbolic Grassmannian M D QGk

�
R

k;l
�
: The selected point is as before p D R

k:

One can easily see that topologically: QGk
�
R

k;l
�

is an open subset of QGk
�
R

kCl
�
: The

metric on this space is another story, however. Clearly, O .k; l/ acts transitively on
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M; and those elements that fix p are of the form SO .k/ �O .l/ : One can, as before,
find the desired involution, and thus exhibit M as a symmetric space. Again some
of these elements act trivially, but at the Lie algebra level this makes no difference.
Thus, we have

so .k; l/ D tp ˚ so .k/˚ so .l/ ;

where

tp D
��

0 B
Bt 0

�
j B 2 Matk�l

�
:

This time, however, tp consists of symmetric matrices so

hX;Yi D tr
�
XtY

� D tr .XY/ D 1

kC l � 2B .X;Y/ :

This will be our metric on tp. Thus Ric D � kCl�2
2

g and

hR .X;Y/Y;Xi D 1

kC l � 2B .ŒX;Y� ; ŒX;Y�/ D � jŒX;Y�j2 � 0:

This is exactly the negative of the expression we got in the compact case. Hence,
the hyperbolic Grassmannians have nonpositive curvature. When l D 1; we have
reconstructed the hyperbolic space together with its isometry group.

Again it follows that rp D so .k/˚ so .l/ and iso D so .k; l/.

10.2.3 Complex Projective Space Revisited

We view the complex projective space as a complex Grassmannian. Namely, let
M D CP

n D G1

�
C

nC1�, i.e., the complex lines in C
nC1: More generally one

can consider Gk
�
C

kCl
�

and the hyperbolic counterparts Gk
�
C

k;l
�

of space-like
subspaces. We leave this to the reader.

The group U .nC 1/ � SO .2nC 2/ consists of those orthogonal transforma-
tions that also preserve the complex structure. If we use complex coordinates,
then the Hermitian metric on C

nC1 can be written as z�w D P Nziwi, where as
usual, A� D NAt is the conjugate transpose. Thus, the elements of U .nC 1/ satisfy
A�1 D A�. As with the Grassmannian, U .nC 1/ acts on M; but this time, all
of the transformations of the form aI; where aNa D 1; act trivially. Thus, we
restrict attention to SU .nC 1/ ; which still acts transitively, but with a finite kernel
consisting of those aI such that anC1 D 1.
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If p D C is the first coordinate axis, then the isotropy group is S .U .1/ � U .n//,
i.e., the matrices in U .1/ � U .n/ of determinant 1: This group is naturally
isomorphic to U .n/ via the map

A 7!
�

detA�1 0
0 A

�
:

The involution that makes M symmetric is then given by

�
.�1/n 0

0 �In

�
:

We pass to the Lie algebra level in order to compute the curvature tensor. From
above, we have

su .nC 1/ D fA j A D �A�; trA D 0g ;
u .n/ D fB j B D �B�g :

The inclusion looks like

B 7!
��trB 0

0 B

�
:

Thus if elements of su .nC 1/ are written

��trB �z�
z B

�
;

and

tp D
��

0 �z�
z 0

�
j z 2 C

n

�

we obtain

su .nC 1/ D tp ˚ u .n/ :

For X;Y 2 tp

hX;Yi D tr
�
X�Y

� D �tr .XY/ D � 1

2 .nC 1/B .X;Y/ :
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So Ric D .nC 1/ g and

hR .X;Y/ Y;Xi D jŒX;Y�j2

D
ˇ
ˇ
ˇ̌
�� .z�w� w�z/ 0

0 wz� � zw�
�ˇˇ
ˇ̌
2

D jz�w � w�zj2 � tr
��

wz� � zw��2�

D 4
ˇ
ˇIm

�
z�w

�ˇˇ2 � 2Re
�
z�w

�2 C 2 jzj2 jwj2 :

To compute the sectional curvatures we need to pick an orthonormal basis X;Y
for a plane. This means that jzj2 D jwj2 D 1

2
and Re .z�w/ D 0, which implies

z�w D iIm .z�w/ and

sec .X;Y/ D 4 ˇˇIm �
z�w

�ˇˇ2 � 2Re
�
z�w

�2 C 2 jzj2 jwj2

D 6 jz�wj2 C 1

2

� 2:

Showing that 1
2
� sec � 2, where the minimum value occurs when z�w D 0 and

the maximum value when w D iz. Note that this scaling isn’t consistent with our
discussion in section 4.5.3 but we have still shown that the metric is quarter pinched.

10.2.4 SL .n/ =SO .n/

The manifold is the quotient space of the n � n matrices with determinant 1 by the
orthogonal matrices. The Lie algebra of SL .n/ is

sl .n/ D fX 2 Matn�n j tr X D 0g :

This Lie algebra is naturally divided up into symmetric and skew-symmetric
matrices sl .n/ D t ˚ so .n/, where t consists of the symmetric matrices. On t we
can use the usual Euclidean metric. The involution is obviously given by �I on t
and I on so .n/ so � .X/ D �Xt. For X;Y 2 t

hX;Yi D tr
�
X�Y

� D tr .XY/ D 1

2n
B .X;Y/ :

So Ric D �ng and hR .X;Y/ Z;Wi D hŒX;Y� ; ŒZ;W�i. In particular, the sectional
curvatures must be nonpositive.
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10.2.5 Lie Groups

Next we check how Lie groups become symmetric spaces.
To this end, start with a compact Lie group G with a biinvariant metric. As usual,

the Lie algebra g of G is identified with TeG as well as the set of left-invariant
vector fields on G: Since the left-invariant fields are Killing fields it follows that
adX D 2rX is skew-symmetric. In particular, the Killing form is nonpositive and
only vanishes on the center of g. Thus, when g has no center, then g D �B defines a
biinvariant as adX is skew-symmetric with respect to B. This is the situation we are
interested in.

The Lie algebra description of G as a symmetric space is given by .g˚ g; �/with
� .X;Y/ D .Y;X/ : Here the diagonal g� D f.X;X/ j X 2 gg is the 1-eigenspace,
while the complement g? D f.X;�X/ j X 2 gg is the .�1/-eigenspace. Thus k D
g� Š g and t D g?. We already know that g corresponds to the compact Lie group
G; so we are simply saying that G D .G �G/ =G�. The Ricci tensor is given by
Ric D � 1

2
B D 1

2
g and the curvatures are nonnegative. Note that the natural inner

product on t is scaled by a factor of 2 from the biinvariant metric on g.
We can also construct a noncompact symmetric space using the same Lie algebra

g that comes from a compact Lie group without center. Consider: .g˝ C; �/, where
� .X/ D NX is complex conjugation. Then k D g � g ˝ C and t D ig. The
inner product on k is �B on g, while on t the metric is given by g .iX; iY/ D
�B .X;Y/ D B .iX; iY/. This gives us Ric .iX; iY/ D � 1

2
B .iX; iY/ D � 1

2
g .iX; iY/

and nonpositive curvature.

10.3 Holonomy

First we discuss holonomy for general manifolds and the de Rham decomposition
theorem. We then use holonomy to give a brief discussion of how symmetric spaces
can be classified according to whether they are compact or not.

10.3.1 The Holonomy Group

Let .M; g/ be a Riemannian n-manifold. If c W Œa; b�! M is a unit speed curve, then

Pc.b/
c.a/ W Tc.a/M! Tc.b/M

denotes the effect of parallel translating a vector from Tc.a/M to Tc.b/M along c. This
property will in general depend not only on the endpoints of the curve, but also on
the actual curve. We can generalize this to work for piecewise smooth curves by
breaking up the process at the breakpoints in the curve.
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Suppose the curve is a loop, i.e., c .a/ D c .b/ D p: Then parallel translation
yields an isometry on TpM: The set of all such isometries is called the holonomy
group at p and is denoted by Holp D Holp .M; g/ : One can easily see that this forms
a subgroup of O

�
TpM

� D O .n/ : Moreover, it is a Lie group. This takes some
work to establish in case the group isn’t compact. The restricted holonomy group
Hol0p D Hol0p .M; g/ is the connected normal subgroup that results from using only
contractible loops. This group is compact and consequently a Lie group. Here are
some elementary properties that are easy to establish:

(a) Holp .Rn/ D f1g :
(b) Holp .Sn .R// D SO .n/ :
(c) Holp .Hn/ D SO .n/ :
(d) Holp .M; g/ � SO .n/ if and only if M is orientable.
(e) Holp

� QM; Qg� D Hol0p
� QM; Qg� D Hol0p .M; g/, where QM is the universal covering

of M:
(f) Hol.p;q/ .M1 �M2; g1 C g2/ D Holp .M1; g1/ � Holq .M2; g2/ :
(g) Holp .M; g/ is conjugate to Holq .M; g/ via parallel translation along any curve

from p to q:
(h) A tensor at p 2 M can be extended to a parallel tensor on .M; g/ if and only if

it is invariant under the holonomy group; e.g., if ! is a 2-form, then we require
that ! .Pv;Pw/ D ! .v;w/ for all P 2 Holp .M; g/ and v;w 2 TpM:

We are now ready to study how the Riemannian manifold decomposes according
to the holonomy. Guided by (f) we see that being a Cartesian product is reflected in
a product structure at the level of the holonomy. Furthermore, (g) shows that if the
holonomy decomposes at just one point, then it decomposes everywhere.

To make things more precise, let us consider the action of Hol0p on TpM: If E �
TpM is an invariant subspace, i.e., Hol0p .E/ � E; then the orthogonal complement

is also preserved, i.e., Hol0p
�
E?� � E?: Thus, TpM decomposes into irreducible

invariant subspaces:

TpM D E1 ˚ � � � ˚ Ek:

Here, irreducible means that there are no nontrivial invariant subspaces inside Ei.
Since parallel translation around loops at p preserves this decomposition, we see
that parallel translation along any curve from p to q preserves this decomposition.
Thus, we obtain a global decomposition of the tangent bundle into distributions,
each of which is invariant under parallel translation:

TM D �1 ˚ � � � ˚ �k:

With this we can state de Rham’s decomposition theorem.

Theorem 10.3.1 (de Rham, 1952). If we decompose the tangent bundle of a
Riemannian manifold .M; g/ into irreducible components according to the restricted
holonomy:
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TM D �1 ˚ � � � ˚ �k;

then around each point p 2 M there is a neighborhood U that has a product
structure of the form

.U; g/ D .U1 � � � � � Uk; g1 C � � � C gk/ ;

TUi D �ijUi :

Moreover, if .M; g/ is simply connected and complete, then there is a global splitting

.M; g/ D .M1 � � � � �Mk; g1 C � � � C gk/ ;

TMi D �i:

Proof. Given the decomposition into parallel distributions, we first observe that
each of the distributions must be integrable. Thus, we do get a local splitting into
submanifolds at the manifold level. To see that the metric splits as well, just observe
that the submanifolds are totally geodesic, as their tangent spaces are invariant under
parallel translation. This gives the local splitting.

The global result is, unfortunately, not a trivial analytic continuation argument
and we only offer a general outline. Apparently, one must understand how simple
connectivity forces the maximal integral submanifolds to be embedded submani-
folds. Let Mi be the maximal integral submanifolds for �i through a fixed p 2 M.
Consider the abstract Riemannian manifold

.M1 � � � � �Mk; g1 C � � � C gk/ :

Around p, the two manifolds .M; g/ and .M1 � � � � �Mk; g1 C � � � C gk/ are isomet-
ric to each other. As .M; g/ is complete and each Mi is totally geodesic it follows
that .M1 � � � � �Mk; g1 C � � � C gk/ is also complete. The goal is to find an isometric
embedding

.M; g/! .M1 � � � � �Mk; g1 C � � � C gk/ :

Completeness will insure us that the map is onto and in fact a Riemannian covering
map. We will then have shown that M is isometric to the universal covering of

.M1 � � � � �Mk; g1 C � � � C gk/ ;

which is the product manifold

� QM1 � � � � � QMk; Qg1 C � � � C Qgk
�

with the induced pull-back metric. ut
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Given this decomposition it is reasonable, when studying classification problems
for Riemannian manifolds, to study only those Riemannian manifolds that are
irreducible, i.e., those where the holonomy has no invariant subspaces. Guided by
this we have a nice characterization of Einstein manifolds.

Theorem 10.3.2. If .M; g/ is an irreducible Riemannian manifold with a parallel
.1; 1/-tensor T, then both the symmetric S D 1

2
.T C T�/ and skew-symmetric

A D 1
2
.T � T�/ parts have exactly one (complex) eigenvalue. Moreover, if the skew-

symmetric part does not vanish, then it induces a parallel complex structure, i.e., a
Kähler structure.

Proof. The fact that T is parallel implies that the adjoint is also parallel as the metric
itself is parallel. More precisely we always have:

g ..rXT/ .Y/ ;Z/ D g .rXT .Y/ ;Z/� g .T .rXY/ ;Z/

D rXg .T .Y/ ;Z/� g .T .Y/ ;rXZ/ � g .T .rXY/ ;Z/

D rXg
�
Y;T� .Z/

� � g
�
Y;T� .rXZ/

� � g
�rXY;T� .Z/

�

D g
�
Y;
�rXT�� .Z/

�
:

Thus rS D 0 D rA and both are invariant under parallel translation.
First, decompose TpM D E1 ˚ � � � ˚ Ek into the orthogonal eigenspaces for

S W TpM ! TpM with respect to distinct eigenvalues �1 < � � � < �k: As above,
we can parallel translate these eigenspaces to get a global decomposition TM D
�1˚ � � �˚ �k into parallel distributions, with the property that Sj�i D �i � I. But then
the decomposition theorem tells us that .M; g/ is reducible unless k D 1.

Second, the skew-symmetric part has purely imaginary eigenvalues, however,
we still obtain a decomposition TpM D F1 ˚ � � � ˚ Fl into orthogonal invariant
subspaces such that AjFk has complex eigenvalue i�k, where �1 < � � � < �l. The
same argument as above shows that l D 1. If �1 ¤ 0, then J D 1

�1
A is also parallel

and only has i as an eigenvalue. This gives us the desired Kähler structure. ut
Corollary 10.3.3. A simply connected irreducible symmetric space is an Einstein
manifold. In particular, it has nonnegative or nonpositive curvature operator
according to the sign of the Einstein constant.

10.3.2 Rough Classification of Symmetric Spaces

We are now in a position to explain the essence of what irreducible symmetric spaces
look like. They are all Einstein and come in three basic categories.

Compact Type: If the Einstein constant is positive, then it follows from Myers’
diameter bound (theorem 6.3.3) that the space is compact. In this case the
curvature operator is nonnegative.
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Flat Type: If the space is Ricci flat, then it is flat. Thus, the only Ricci flat
irreducible examples are S1 and R

1.
Noncompact Type: When the Einstein constant is negative, then it follows from

Bochner’s theorem 8.2.2 on Killing fields that the space is noncompact. In this
case the curvature operator is nonpositive.

We won’t give a complete list of all irreducible symmetric spaces, but one
interesting feature is that they come in compact/noncompact dual pairs as described
in the above tables. Also, there is a further subdivision. Among the compact types
there are Lie groups with biinvariant metrics and then all the others. Similarly, in the
noncompact regime there are the duals to the biinvariant metrics and then the rest.
This gives us the following division explained with Lie algebra pairs that are of the
form

�
cp; rp

� D .g; k/. In all cases there is an involution with 1-eigenspace given by
k, and k is the Lie algebra of a compact group that acts on the .�1/-eigenspace t.
One can further use corollary 10.1.8 to show that for these examples rp D isop.

Type I: Compact irreducible symmetric spaces of the form .g; k/, where g is
simple; the Lie algebra of a compact Lie group; and k � g a maximal subalgebra,
e.g., .so .kC l/ ; so .k/ � so .l//.

Type II: Compact irreducible symmetric spaces .k˚ k; �k/, where k is simple and
corresponds to a compact Lie group. The space is a compact Lie group with a
biinvariant metric.

Type III: Noncompact symmetric spaces .g; k/, where g is simple; the Lie algebra
of a non-compact Lie group; and k � g a maximal subalgebra corresponding to
a compact Lie group, e.g., .so .k; l/ ; so .k/ � so .l// or .sl .n/ ; so .n//

Type IV: Noncompact symmetric spaces .k˝ C; k/, where k is simple; corre-
sponds to a compact Lie group; and k ˝ C D k ˚ ik its complexification, e.g.,
.so .n;C/ ; so .n//.

Note that since compact type symmetric spaces have nonnegative curvature
operator, it becomes possible to calculate their cohomology algebraically. The
Bochner technique tells us that all harmonic forms are parallel. As parallel forms
are invariant under the holonomy we are left with a classical invariance problem:
Determine all forms on a Euclidean space that are invariant under a given group
action on the space. It is particularly important to know the cohomology of the real
and complex Grassmannians, as one can use that information to define Pontryagin
and Chern classes for vector bundles. We refer the reader to [97, vol. 5] and [76] for
more on this.

10.3.3 Curvature and Holonomy

We mention, without proof, the general classification of connected irreducible
holonomy groups. Berger classified all possible holonomies. Simons gave a direct
proof of the fact that spaces with nontransitive holonomy must be locally symmetric,
i.e., he did not use Berger’s classification of holonomy groups.



388 10 Symmetric Spaces and Holonomy

Table 10.5 Holonomy
Groups

dim D n Holp Properties

n SO .n/ Generic case

n D 2m U .m/ Kähler

n D 2m SU .m/ Kähler and Ricci flat

n D 4m Sp .1/ � Sp .m/ Quaternionic-Kähler and Einstein

n D 4m Sp .m/ Hyper-Kähler and Ricci flat

n D 16 Spin .9/ Symmetric and Einstein

n D 8 Spin .7/ Ricci flat

n D 7 G2 Ricci flat

Theorem 10.3.4 (Berger, 1955 and Simons, 1962). Let .M; g/ be a simply con-
nected irreducible Riemannian n-manifold. The holonomy Holp either acts tran-
sitively on the unit sphere in TpM or .M; g/ is a symmetric space of rank � 2:

Moreover, in the first case the holonomy is one of the groups in table 10.5.

The first important thing to understand is that while we list the groups it is
important how they act on the tangent space. The same group, e.g., SU .m/ acts
irreducibly in the standard way on C

m, but it also acts irreducibly via conjugation
on su .m/ D R

m2�1. It is only in the former case that the metric is forced to be Ricci
flat. The latter situation occurs on the symmetric space SU .m/.

It is curious that all but the two largest irreducible holonomy groups, SO .n/ and
U .m/ ; force the metric to be Einstein and in some cases even Ricci flat. Looking
at the relationship between curvature and holonomy, it is clear that having small
holonomy forces the curvature tensor to have special properties. One can, using a
case-by-case check, see that various traces of the curvature tensor must be zero, thus
forcing the metric to be either Einstein or even Ricci flat (see [12] for details). Note
that Kähler metrics do not have to be Einstein (see exercise 4.7.24). Quaternionic
Kähler manifolds are not necessarily Kähler, as Sp .1/ � Sp .m/ is not contained in
U .2m/, in fact Sp .1/ � Sp .1/ D SO .4/. Using a little bit of the theory of Kähler
manifolds, it is not hard to see that metrics with holonomy SU .n/ are Ricci flat.
Since Sp .m/ � SU .2m/ ; it follows that hyper-Kähler manifolds are Ricci flat. One
can also prove that the last two holonomies occur only for Ricci flat manifolds. With
the exception of the four types of Ricci flat holonomies all other holonomies occur
for symmetric spaces. This follows from the above classification and the fact that
the rank one symmetric spaces have holonomy SO .n/ ; U .m/ ; Sp .1/ � Sp .m/ ; or
Spin .9/ :

This leads to another profound question. Are there compact simply connected
Ricci flat spaces with holonomy SU .m/ ; Sp .m/ ; G2; or Spin .7/? The answer
is yes. But it is a highly nontrivial yes. Yau got the Fields medal, in part, for
establishing the SU .m/ case. Actually, he solved the Calabi conjecture, and the
holonomy question was a by-product (see, e.g., [12] for more information on the
Calabi conjecture). Note that we have the Eguchi-Hanson metric (exercise 4.7.24
and 4.7.23) which is a complete Ricci flat Kähler metric and therefore has SU .2/ as
holonomy group. D. Joyce solved the cases of Spin .7/ and G2 by methods similar
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to those employed by Yau. An even more intriguing question is whether there are
compact simply connected Ricci flat manifolds with SO .n/ as a holonomy group.
Note that the Schwarzschild metric (see section 4.2.5) is complete, Ricci flat, and
has SO .n/ as holonomy group. For more in-depth information on these issues we
refer the reader to [12].

A general remark about how special .¤ SO .n// holonomies occur: It seems
that they are all related to the existence of parallel forms. In the Kähler case, for
example, the Kähler form is a parallel nondegenerate 2-form. Correspondingly, one
has a parallel 4-form for quaternionic-Kähler manifolds, and a parallel 8-form for
manifolds with holonomy Spin .9/ (which are all known to be locally symmetric).
This is studied in more detail in the proof of the classification of manifolds with
nonnegative curvature operator below. For the last two exceptional holonomies
Spin .7/ and G2 there are also special 4-forms that do the job of identifying these
types of spaces.

From the classification of holonomy groups we immediately get an interesting
corollary.

Corollary 10.3.5. If a Riemannian manifold has the property that the holonomy
doesn’t act transitively on the unit sphere, then it is either reducible or a locally
symmetric space of rank � 2: In particular, the rank must be � 2.

It is unclear to what extent the converse fails for general manifolds. For
nonpositive curvature, however, there is the famous higher-rank rigidity result
proved independently by W. Ballmann and Burns-Spatzier (see [7] and [21]).

Theorem 10.3.6. A compact Riemannian manifold of nonpositive curvature of rank
� 2 does not have transitive holonomy. In particular, it must be either reducible or
locally symmetric.

It is worthwhile mentioning that in [9] it was shown that the rank of a compact
nonpositively curved manifold can be computed from the fundamental group. Thus,
a good deal of geometric information is automatically encoded into the topology.
The rank rigidity theorem is proved by dynamical systems methods. The idea is to
look at the geodesic flow on the unit sphere bundle, i.e., the flow that takes a unit
vector and moves it time t along the unit speed geodesic in the direction of the unit
vector. This flow has particularly nice properties on nonpositively curved manifolds.
The idea is to use the flat parallel fields to show that the holonomy can’t be transitive.
The Berger-Simons result then shows that the manifold has to be locally symmetric
if it is irreducible.

In nonnegative curvature, on the other hand, it is possible to find irreducible
spaces that are not symmetric and have rank � 2: On S2 � S2 we have a product
metric that is reducible and has rank 3. But if we take another metric on this space
that comes as a quotient of S2�S3 by an action of S1 (acting by rotations on the first
factor and the Hopf action on the second), then we get a metric which has rank 2.
The only way in which a rank 2 metric can split off a de Rham factor is if it splits
off something 1-dimensional, but that is topologically impossible in this case. So in
conclusion, the holonomy must be transitive and irreducible.
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By assuming the stronger condition that the curvature operator is nonnegative,
one can almost classify all such manifolds. This was first done in [48] and in more
generality in Chen’s article in [51]. This classification allows us to conclude that
higher rank gives rigidity. The theorem and proof are a nice synthesis of everything
we have learned in this and the previous chapter. In particular, the proof uses the
Bochner technique in the two most nontrivial cases we have covered: for forms and
the curvature tensor.

Theorem 10.3.7 (Gallot and D. Meyer, 1975). If .M; g/ is a compact Riemannian
n-manifold with nonnegative curvature operator, then one of the following cases
must occur:

(a) .M; g/ is either reducible or locally symmetric.
(b) Hol0 .M; g/ D SO .n/ and the universal covering is a homology sphere.
(c) Hol0 .M; g/ D U

�
n
2

�
and the universal covering is a homology CP

n
2 :

Proof. First we use the structure theory from section 7.3.3 to conclude that the
universal covering is isometric to N � R

k, where k > 0 if the fundamental group
is infinite. In particular, the manifold is reducible. Therefore, we can assume that
we work with a simply connected compact manifold M: Now we observe that either
all of the homology groups Hp .M;R/ D 0 for p D 1; : : : ; n � 1; in which case
the space is a homology sphere, or some homology group Hp .M;R/ ¤ 0 for some
p ¤ 0; n. In the latter case there is a harmonic p-form by the Hodge theorem.
The Bochner technique tells us that this form must be parallel, since the curvature
operator is nonnegative. The idea of the proof is to check the possibilities for this
when we know the holonomy.

We can assume that the manifold is irreducible and has transitive holonomy. The
Ricci flat cases are impossible as the nonnegative curvature would then make the
manifold flat. Thus, we have only the four possibilities SO .n/,U

�
n
2

�
; Sp .1/Sp

�
n
4

�
;

or Spin .9/ : In the latter two cases one can show from holonomy considerations that
the manifold must be Einstein. Tachibana’s result (see theorem 9.4.8) then implies
that the metric is locally symmetric. From the classification of symmetric spaces it
is further possible to show that the space is isometric to either HP

n
4 or OP

2:

Now assume that the holonomy is SO .n/ and that we have a parallel p-form !.
When 0 < p < n and v1; : : : ; vp 2 TpM it is possible to find an element of P 2
SO .n/ such that P .vi/ D vi, i D 2; � � � ; p and P .v1/ D �v1. Therefore, when the
holonomy is SO .n/ and ! is invariant under parallel translation, then

!
�
v1; : : : ; vp

� D ! �Pv1; : : : ;Pvp
�

D ! ��v1; v2; : : : ; vp
�

D �! �v1; : : : ; vp
�
:

This shows that ! D 0:
This leaves us with the case where the holonomy is U

�
n
2

�
, i.e., the metric is

Kähler. In this situation we show that the cohomology ring must be the same as that
of CP

n
2 ; i.e., there is a homology class ! 2 H2 .M;R/ such that any homology class
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is proportional to some power !k D ! ^ : : :^!. This can be seen as follows. Since
the holonomy is U

�
n
2

�
there must be an almost complex structure on the tangent

spaces that is invariant under parallel translation. After type change this gives us
a parallel 2-form !. Any other parallel 2-from must be a multiple of this form by
theorem 10.3.2, so dim H2 D 1. The odd cohomology groups vanish, like in the
case where the holonomy is SO .n/, since the antipodal map P D �I 2 U

�
n
2

�
when

n is even. More generally, consider a p-form � with 1 < p < n that is invariant
under U

�
n
2

�
. Select an orthonormal basis e1; : : : ; en for TpM. We claim that � has

the same values on any p vectors ei1 ; : : : eip ;where i1 < � � � < ip. There is an element
P 2 U

�
n
2

�
such that P .ei/ D ei for i D 1; : : : ; p�1 and P

�
ep
� D eip so it follows that

�
�
e1; : : : ; ep

� D � �e1; : : : ; ep�1; eip

�
. This can be repeated for p�1 etc. This shows

that all p-forms must be multiples of each other. Now the powers !k D ! ^ � � � ^ !
are all nontrivial parallel forms, so they must generate H2k. This shows that M has
the cohomology ring of CP

n
2 . ut

There are two questions left over in this classification. Namely, for the sphere
and complex projective space we get only homology rigidity. For the sphere one
can clearly perturb the standard metric and still have positive curvature operator, so
one couldn’t expect more there. On CP

2, say, we know that the curvature operator
has exactly two zero eigenvalues. These two zero eigenvalues and eigenvectors are
actually forced on us by the fact that the metric is Kähler. Therefore; if we perturb
the standard metric, while keeping the same Kähler structure, then these two zero
eigenvalues will persist and the positive eigenvalues will stay positive. Thus, the
curvature operator stays nonnegative.

There are more profound results that tell us more about the topological structure
in cases (b) and (c). For case (b) one can use Ricci flow techniques to show that
the space is diffeomorphic to a space of constant curvature. This is a combination
of results by Hamilton (see [61]) and Böhm-Wilking (see [16]). In case (c) the
universal cover is biholomorphic to CP

n
2 . This was proven by Mok (see [78])

and can now also be proven using the Ricci flow. In fact the entire result can be
generalized using the Ricci flow to hold under weaker assumptions (see [19]).

Theorem 10.3.8 (Brendle and Schoen, 2008). If .M; g/ is a compact Riemannian
n-manifold with nonnegative complex sectional curvature, then one of the following
cases must occur:

(a) .M; g/ is either reducible or locally symmetric.
(b) M is diffeomeorphic to a space of constant positive curvature.
(c) The universal covering of M is biholomorphic to CP

n
2 :

Given that there is such a big difference between the classes of manifolds with
nonnegative curvature operator and nonnegative sectional curvature, one might
think the same is true for nonpositive curvature. However, the above rank rigidity
theorem tells us that in fact nonpositive sectional curvature is much more rigid than
nonnegative sectional curvature. Nevertheless, there is an example of Aravinda and
Farrell showing that there are nonpositively curved manifolds that do not admit
metrics with nonpositive curvature operator (see [5]).
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10.4 Further Study

We have not covered all important topics about symmetric spaces. For more in-
depth information we recommend the texts by Besse, Helgason, and Jost (see [12,
Chapters 7,10], [13, Chapter 3], [62], and [65, Chapter 6]). Another very good text
which covers the theory of Lie groups and symmetric spaces is [64]. O’Neill’s book
[80, Chapter 8] also has a nice elementary account of symmetric spaces. Finally,
Klingenberg’s book [69] has an excellent geometric account of symmetric spaces.

10.5 Exercises

EXERCISE 10.5.1. Let M be a symmetric space and X 2 tp, i.e., X is a nontrivial
Killing field with .rX/ jp D 0.

(1) Show that the flow for X is given by Fs D Aexpp. s
2Xjp/ ı Ap.

(2) Show that c .t/ D exp
�
tXjp

�
is an axis for Fs, e.g., Fs .c .t// D c .tC s/.

(3) Show that if c .a/ D c .b/, then Pc .a/ D Pc .b/.
(4) Conclude that geodesic loops are always closed geodesics.

EXERCISE 10.5.2. Let M be a symmetric space. Show that the action of
Ap W M ! M on 	1 .M; p/ is given by g 7! g�1 and conclude that 	1 .M; p/ is
Abelian. Hint: Every element of 	1 .M; p/ is represented by a geodesic loop which
by the previous exercise is a closed geodesic.

EXERCISE 10.5.3. Let M be a symmetric space and c a geodesic in M.

(1) Let E .t/ be a parallel field along c. Show that R .E; Pc/ Pc is also parallel.
(2) If E .0/ is an eigenvector for R .�; Pc .0// Pc .0/ with eigenvalue �, then J .t/ D

sn� .t/E .t/ and J .t/ D sn0
� .t/E .t/ are both Jacobi fields along c.

(3) Show that if J .t/ is a Jacobi field along c with J .0/ D 0 and J .t0/ D 0, then
PJ � t0

2

� D 0.
(4) With J as in (3) construct a geodesic variation c .s; t/ such that @c

@s .0; t/ D J .t/,
c .s; 0/ D c .0/, and c .s; t0/ D c .t0/.

EXERCISE 10.5.4. Let M be a symmetric space.

(1) Show directly that if M is compact, then sec � 0. Hint: Argue by contradiction
and produce a Jacobi field that is unbounded along a geodesic.

(2) Show that if c is a closed geodesic, then R .�; Pc/ Pc has no negative eigenvalues.
(3) Show that if M has Ric > 0, then sec � 0.

EXERCISE 10.5.5. Assume that M has nonpositive or nonnegative sectional curva-
ture. Let c be a geodesic and E a parallel field along c: Show that the following
conditions are equivalent.
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(1) g .R .E; Pc/ Pc;E/ D 0 everywhere.
(2) R .E; Pc/ Pc D 0 everywhere.
(3) E is a Jacobi field.

EXERCISE 10.5.6. (1) Let g be a real Lie algebra with Killing form B. Show that
the Killing form of the complixification g ˝ C is simply the complexification
of B.

(2) Show that the Killing forms of gl .n;C/ and gl .n/ are given by B .X;Y/ D
2ntr .XY/ � 2trXtrY. Hint: As a basis use the matrices Eij D

	
ıisıjt



1�s;t�n

.
(3) Show that on sl .n;C/ D sl .n/ ˝ C the Killing form is B .X;Y/ D 2ntr .XY/.

Hint: Use (2) and the fact that I 2 gl .n;C/ commutes with all elements in
sl .n;C/.

(4) Show that sl .kC l;C/ D su .k; l/˝C , and conclude that sl .kC l/ and su .k; l/
have Killing form B .X;Y/ D 2 .kC l/ tr .XY/.

(5) Show that on so .n;C/ D so .n/ ˝ C the Killing form is given by B .X;Y/ D
.n � 2/ tr .XY/. Hint: Use the basis Eij � Eji, i < j.

(6) Show that so .kC l;C/ D so .k; l/˝ C, and conclude that so .k; l/ has Killing
form B .X;Y/ D .kC l � 2/ tr .XY/.

EXERCISE 10.5.7. Show that GLC .pC q;R/ =SO .p; q/ defines a symmetric space
and that it can be identified with the nondegenerate bilinear forms on R

pCq that have
index q.

EXERCISE 10.5.8. Show that U .p; q/ =SO .p; q/ defines a symmetric space and that
u .p; q/˝ C D gl .pC q;C/.

EXERCISE 10.5.9. Show that the holonomy of CPn is U .n/ :

EXERCISE 10.5.10. Show that a covering space of a symmetric space is also a
symmetric space. Show by example that the converse is not necessarily true.

EXERCISE 10.5.11. Show that a manifold is flat if and only if the holonomy is
discrete, i.e., holp D f0g.
EXERCISE 10.5.12. Show that a compact Riemannian manifold with irreducible
restricted holonomy and Ric � 0 has finite fundamental group.

EXERCISE 10.5.13. Which known spaces can be described by SL .2;R/ =SO .2/
and SL .2;C/ =SU .2/?

EXERCISE 10.5.14. Show that the holonomy of a Riemannian manifold is con-
tained in U .m/ if and only if it has a Kähler structure.

EXERCISE 10.5.15. Show that if a homogeneous space has isop D so
�
TpM

�
at

some point, then it has constant curvature.

EXERCISE 10.5.16. Show that the subalgebras so .k/ � so .n � k/ and u
�

n
2

�
are

maximal in so .n/.

EXERCISE 10.5.17. Show that su .m/ � so
�
m2 � 1�. Hint: Let su .m/ act on itself.
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EXERCISE 10.5.18. Show that for any Riemannian manifold rp � holp. Give an
example where equality does not hold.

EXERCISE 10.5.19. Show that for a symmetric space rp D holp. Use this to show
that unless the curvature is constant rp D holp D isop provided rp � so

�
TpM

�
is

maximal.

EXERCISE 10.5.20. Show that SO .n;C/ =SO .n/ and SL .n;C/ =SU .n/ are sym-
metric spaces with nonpositive curvature operator.

EXERCISE 10.5.21. The quaternionic projective space is defined as being the
quaternionic lines in H

nC1. This was discussed when n D 1 in exercise 1.6.22.
Define the symplectic group Sp .n/ � SU .2n/ � SO .4n/ as the orthogonal matrices
that commute with the three complex structures generated by i; j; k on R

4n: An
alternative way of looking at this group is by considering n � n matrices A with
quaternionic entries such that

A�1 D A�:

Show that if we think of H
nC1 as a right (or left) H module, then the space of

quaternionic lines can be written as

HP
n D Sp .nC 1/ = .Sp .1/ � Sp .n// :

EXERCISE 10.5.22. Construct the hyperbolic analogues of the complex projective
spaces. Show that they have negative curvature and are quarter pinched.

EXERCISE 10.5.23. Give a Lie algebra description of a locally symmetric space
(not necessarily complete). Explain why this description corresponds to a global
symmetric space. Conclude that a simply connected locally symmetric space admits
a monodromy map into a unique global symmetric space. Show that if the locally
symmetric space is complete, then the monodromy map is bijective.

EXERCISE 10.5.24. Show that if an irreducible symmetric space has strictly posi-
tive or negative curvature operator, then it has constant curvature.

EXERCISE 10.5.25. Let M be a symmetric space. Show that if X 2 tp and Y 2 isop;

then ŒX;Y� 2 tp:

EXERCISE 10.5.26. Let M be a symmetric space and X;Y;Z 2 tp: Show that

R .X;Y/ Z D ŒLX ;LY �Z;

Ric .X;Y/ D � tr .ŒLX;LY �/ :

EXERCISE 10.5.27. Consider a Riemannian manifold M and a p-form ! on TpM.
Show that ! has an extension to a parallel form on M if and only if ! is invariant
under Holp .M/.



Chapter 11
Convergence

In this chapter we offer an introduction to several of the convergence ideas for
Riemannian manifolds. The goal is to understand what it means for a sequence
of Riemannian manifolds or metric spaces to converge to a metric space. The first
section centers on the weakest convergence concept: Gromov-Hausdorff conver-
gence. The next section covers some of the elliptic regularity theory needed for the
later developments that use stronger types of convergence. In the third section we
develop the idea of norms of Riemannian manifolds as an intermediate step towards
understanding convergence theory as an analogue to the easier Hölder theory for
functions. Finally, in the fourth section we establish the geometric version of the
convergence theorem of Riemannian geometry by Cheeger and Gromov as well as
its generalizations by Anderson and others. These convergence theorems contain
Cheeger’s finiteness theorem stating that certain very general classes of Riemannian
manifolds contain only finitely many diffeomorphism types.

The idea of measuring the distance between subspaces of a given space goes
back to Hausdorff and was extensively studied in the Polish and Russian schools of
topology. The more abstract versions used here go back to Shikata’s proof of the
differentiable sphere theorem. Cheeger’s thesis also contains the idea that abstract
manifolds can converge to each other. In fact, he proved his finiteness theorem by
showing that certain classes of manifolds are precompact in various topologies.
Gromov further developed the theory of convergence to the form presented here
that starts with the weaker Gromov-Hausdorff convergence of metric spaces. His
first use of this new idea was to prove a group-theoretic question about the
nilpotency of groups with polynomial growth. Soon after the introduction of this
weak convergence, the earlier ideas on strong convergence by Cheeger resurfaced.
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11.1 Gromov-Hausdorff Convergence

11.1.1 Hausdorff Versus Gromov Convergence

At the beginning of the twentieth century, Hausdorff introduced what is now called
the Hausdorff distance between subsets of a metric space. If .X; j��j/ is the metric
space and A;B � X; then

d .A;B/ D inf fjabj j a 2 A; b 2 Bg ;
B .A; "/ D fx 2 X j jxAj < "g ;

dH .A;B/ D inf f" j A � B .B; "/ ; B � B .A; "/g :

Thus, d .A;B/ is small if some points in these sets are close, while the Hausdorff
distance dH .A;B/ is small if and only if every point of A is close to a point in B and
vice versa. One can easily see that the Hausdorff distance defines a metric on the
compact subsets of X and that this collection is compact when X is compact.

We shall concern ourselves only with compact or proper metric spaces. The latter
by definition have proper distance functions, i.e., all closed balls are compact. This
implies, in particular, that the spaces are separable, complete, and locally compact.

Around 1980, Gromov extended the Hausdorff distance concept to a distance
between abstract metric spaces. If X and Y are metric spaces, then an admissible
metric on the disjoint union X [ Y is a metric that extends the given metrics on X
and Y:

With this the Gromov-Hausdorff distance is defined as

dG�H .X;Y/ D inf fdH .X;Y/ j admissible metrics on X [ Yg :

Thus, we try to place a metric on X [ Y that extends the metrics on X and Y,
such that X and Y are as close as possible in the Hausdorff distance. In other words,
we are trying to define distances between points in X and Y without violating the
triangle inequality.

Example 11.1.1. If Y is the one-point space, then

dG�H .X;Y/ � radX

D inf
y2X

sup
x2X
jxyj

D radius of smallest ball covering X:

Example 11.1.2. Using jxyj D D=2 for all x 2 X; y 2 Y, where diamX; diamY � D
shows that

dG�H .X;Y/ � D=2:
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Let .M ; dG�H/ denote the collection of compact metric spaces. We wish to
consider this class as a metric space in its own right. To justify this we must show
that only isometric spaces are within distance zero of each other.

Proposition 11.1.3. If X and Y are compact metric spaces with dG�H .X;Y/ D 0;

then X and Y are isometric.

Proof. Choose a sequence of metrics j��ji on X [ Y such that the Hausdorff distance
between X and Y in this metric is < i�1: Then we can find (possibly discontinuous)
maps

Ii W X ! Y; where jxIi .x/ji � i�1;

Ji W Y ! X; where jyJi .y/ji � i�1:

Using the triangle inequality and that j��ji restricted to either X or Y is the given
metric j��j on these spaces yields

jIi.x1/ Ii.x2/j � 2i�1 C jx1x2j ;
jJi.y1/ Ji.y2/j � 2i�1 C jy1y2j ;
jx Ji ı Ii.x/j � 2i�1;

jy Ii ı Ji.y/j � 2i�1:

We construct I W X ! Y and J W Y ! X as limits of these maps in the same
way the Arzela-Ascoli lemma is proved. For each x the sequence .Ii .x// in Y has an
accumulation point since Y is compact. Let A � X be select a countable dense set.
Using a diagonal argument select a subsequence Iij such that Iij .a/ ! I .a/ for all
a 2 A: The first inequality shows that I is distance decreasing on A: In particular, it
is uniformly continuous and thus has a unique extension to a map I W X ! Y; which
is also distance decreasing. In a similar fashion we also get a distance decreasing
map J W Y ! X:

The last two inequalities imply that I and J are inverses to each other. Thus, both
I and J are isometries. ut

The symmetry and the triangle inequality are easily established for dG�H : Thus,
.M ; dG�H/ becomes a pseudo-metric space, i.e., the equivalence classes form a
metric space. We prove below that this metric space is complete and separable. First
we show how spaces can be approximated by finite metric spaces.

Example 11.1.4. Let X be compact and A � X a finite subset such that every point
in X is within distance " of some element in A; i.e., dH .A;X/ � ": Such sets A are
called "-dense in X: It is clear that if we use the metric on A induced by X; then
dG�H .X;A/ � ": The importance of this remark is that for any " > 0 there exist
finite �-dense subsets of X since X is compact. To be consistent with our definition
of the abstract distance we should put a metric on X[A. We can do this by selecting
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very small ı > 0 and defining jxajX[A D ı C jxajX for x 2 X and a 2 A. Thus
dG�H .X;A/ � � C ı. Finally, let ı ! 0 to get the estimate.

Example 11.1.5. Suppose we have "-dense subsets

A D fx1; : : : ; xkg � X; B D fy1; : : : ; ykg � Y;

with the further property that

ˇ
ˇ
ˇ
ˇxixj

ˇ
ˇ� ˇˇyiyj

ˇ
ˇ
ˇ
ˇ � "; 1 � i; j � k:

Then dG�H .X;Y/ � 3": We already have that the finite subsets are "-close to the
spaces, so by the triangle inequality it suffices to show that dG�H .A;B/ � ": For
this we must exhibit a metric on A[B that makes A and B "-Hausdorff close. Define

jxiyij D ";
ˇ
ˇxiyj

ˇ
ˇ D min

k

˚jxixkj C "C
ˇ
ˇyjyk

ˇ
ˇ� :

Thus, we have extended the given metrics on A and B in such a way that no points
from A and B get identified, and in addition the potential metric is symmetric. It then
remains to check the triangle inequality. Here we must show

ˇ
ˇxiyj

ˇ
ˇ � jxizj C

ˇ
ˇyjz

ˇ
ˇ ;

ˇ
ˇxixj

ˇ
ˇ � jykxij C

ˇ
ˇykxj

ˇ
ˇ ;

ˇ
ˇyiyj

ˇ
ˇ � jxkyij C

ˇ
ˇxkyj

ˇ
ˇ :

It suffices to check the first two cases as the third is similar to the second. For the
first we can assume that z D xk and find l such that

ˇ
ˇyjxk

ˇ
ˇ D "C ˇˇyjyl

ˇ
ˇC jxlxkj :

Hence,

jxixkj C
ˇ
ˇyjxk

ˇ
ˇ D jxixkj C "C

ˇ
ˇyjyl

ˇ
ˇC jxlxkj

� jxixlj C "C
ˇ
ˇyjyl

ˇ
ˇ

� ˇˇxiyj

ˇ
ˇ :

For the second case select l;m with

jykxij D jykylj C "C jxlxij ;
ˇ
ˇykxj

ˇ
ˇ D jykymj C "C

ˇ
ˇxmxj

ˇ
ˇ :
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The assumption about the metrics on A and B then lead to

jykxij C
ˇ
ˇykxj

ˇ
ˇ D jykylj C "C jxlxij C jykymj C "C

ˇ
ˇxmxj

ˇ
ˇ

� jxkxlj C jxlxij C jxkxmj C
ˇ
ˇxmxj

ˇ
ˇ

� ˇ̌xixj

ˇ̌
:

Example 11.1.6. Suppose Mk D S3=Zk with the usual metric induced from S3 .1/ :
Then we have a Riemannian submersion Mk ! S2 .1=2/whose fibers have diameter
2	=k ! 0 as k ! 1: Using the previous example it follows that Mk ! S2 .1=2/
in the Gromov-Hausdorff topology.

Example 11.1.7. One can similarly see that the Berger metrics
�
S3; g"

�! S2 .1=2/
as "! 0: Notice that in both cases the volume goes to zero, but the curvatures and
diameters are uniformly bounded. In the second case the manifolds are even simply
connected. It should also be noted that the topology changes rather drastically from
the sequence to the limit, and in the first case the elements of the sequence even
have mutually different fundamental groups.

Proposition 11.1.8. The “metric space” .M ; dG�H/ is separable and complete.

Proof. To see that it is separable, first observe that the collection of all finite metric
spaces is dense in this collection. Now take the countable collection of all finite
metric spaces that in addition have the property that all distances are rational.
Clearly, this collection is dense as well.

To show completeness, select a Cauchy sequence fXng : To establish convergence
of this sequence, it suffices to check that some subsequence is convergent. Select a
subsequence fXig such that dG�H .Xi;XiC1/ < 2�i for all i: Then select metrics
j��ji;iC1 on Xi [ XiC1 making these spaces 2�i-Hausdorff close. Now define a metric
j��ji;iCj on Xi [ XiCj by

ˇ
ˇxixiCj

ˇ
ˇ
i;iCj
D min
fxiCk2XiCkg

(
j�1X

kD0
jxiCkxiCkC1j

)

:

This defines a metric j��j on Y D [iXi with the property that dH
�
Xi;XiCj

� � 2�iC1:
The metric space is not complete, but the “boundary” of the completion is exactly
our desired limit space. To define it, first consider

OX D ˚fxig j xi 2 Xi and
ˇ
ˇxixj

ˇ
ˇ! 0 as i; j!1� :

This space has a pseudo-metric defined by

jfxig fyigj D lim
i!1 jxiyij :
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Given that we are only considering Cauchy sequences fxig ; this must yield a metric
on the quotient space X; obtained by the equivalence relation

fxig 	 fyig iff jfxig fyigj D 0:

Now we can extend the metric on Y to one on X [ Y by declaring

jxk fxigj D lim
i!1 jxkxij :

Using that dH
�
Xj;XjC1

� � 2�j; we can for any xi 2 Xi find a sequence
˚
xiCj

� 2 OX
such that xiC0 D xi and

ˇ
ˇxiCjxiCjC1

ˇ
ˇ � 2�j: Then we must have

ˇ
ˇxi
˚
xiCj

�ˇˇ � 2�iC1:
Thus, every Xi is 2�iC1-close to the limit space X: Conversely, for any given
sequence fxig we can find an equivalent sequence fyig with the property that
jyk fyigj � 2�kC1 for all k: Thus, X is 2�iC1-close to Xi: ut

From the proof of this theorem we obtain the useful information that Gromov-
Hausdorff convergence can always be thought of as Hausdorff convergence. In other
words, if we know that Xi ! X in the Gromov-Hausdorff sense, then after possibly
passing to a subsequence, we can assume that there is a metric on X [ .[iXi/ in
which Xi Hausdorff converges to X:With a choice of such a metric it makes sense to
say that xi ! x; where xi 2 Xi and x 2 X: We shall often use this without explicitly
mentioning a choice of ambient metric on X [ .[iXi/ :

There is an equivalent way of picturing convergence. For a compact metric
space X define C .X/ as the continuous functions on X and L1 .X/ as the bounded
measurable functions with the sup-norm (not the essential sup-norm). We know that
L1 .X/ is a Banach space. When X is bounded construct a map X ! L1 .X/ ; by
sending x to the continuous function z 7! jxzj. This is usually called the Kuratowski
embedding when we consider it as a map into C .X/ : The triangle inequality implies
that this is a distance preserving map. Thus, any compact metric space is isometric to
a subset of some Banach space L1 .X/ : The important observation is that two such
spaces L1 .X/ and L1 .Y/ are isometric if the spaces X and Y are Borel equivalent
(there exists a measurable bijection). Moreover, if X � Y, then L1 .X/ � L1 .Y/,
by extending a function on X to vanish on Y � X. Moreover, any compact metric
space is Borel equivalent to a subset of Œ0; 1� : In particular, any compact metric
space is isometric to a subset of L1 .Œ0; 1�/ : We can then define

dG�H .X;Y/ D inf dH .i .X/ ; j .Y// ;

where i W X ! L1 .Œ0; 1�/ and j W Y ! L1 .Œ0; 1�/ are distance preserving maps.
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11.1.2 Pointed Convergence

So far, we haven’t dealt with noncompact spaces. There is, of course, nothing wrong
with defining the Gromov-Hausdorff distance between unbounded spaces, but it will
almost never be finite. In order to change this, we should have in mind what is done
for convergence of functions on unbounded domains. There, one usually speaks
about convergence on compact subsets. To do something similar, we first define the
pointed Gromov-Hausdorff distance

dG�H ..X; x/ ; .Y; y// D inf fdH .X;Y/C jxyjg :

Here we take as usual the infimum over all Hausdorff distances and in addition
require the selected points to be close. The above results are still true for this
modified distance. We can then introduce the Gromov-Hausdorff topology on the
collection of proper pointed metric spaces M� D f.X; x; j��j/g in the following way:
We say that

.Xi; xi; j��ji/! .X; x; j��j/

in the pointed Gromov-Hausdorff topology if for all R there is a sequence Ri ! R
such that the closed metric balls

� NB .xi;Ri/ ; xi; j��ji
�! � NB .x;R/ ; x; j��j�

converge with respect to the pointed Gromov-Hausdorff metric.

11.1.3 Convergence of Maps

We also need to address convergence of maps. Suppose we have

fk W Xk ! Yk;

Xk ! X;

Yk ! Y.

Then we say that fk converges to f W X ! Y if for every sequence xk 2 Xk

converging to x 2 X it follows that fk .xk/ ! f .x/ : This definition obviously
depends in some sort of way on having the spaces converge in the Hausdorff sense,
but we shall ignore this. It is also a very strong type of convergence, for if we
assume that Xk D X; Yk D Y; and fk D f ; then f can converge to itself only if
it is continuous.



402 11 Convergence

Note also that convergence of maps preserves such properties as being distance
preserving or submetries.

Another useful observation is that we can regard the sequence of maps fk as one
continuous map

F W
 
[

i

Xi

!

! Y [
 
[

i

Yi

!

:

The sequence converges if and only if this map has an extension

X [
 
[

i

Xi

!

! Y [
 
[

i

Yi

!

;

in which case the limit map is the restriction to X: Thus, when Xi are compact it
follows that a sequence is convergent if and only if the map

F W
 
[

i

Xi

!

! Y [
 
[

i

Yi

!

is uniformly continuous.
A sequence of functions as above is called equicontinuous, if for every " > 0 and

xk 2 Xk there is an ı > 0 such that fk .B .xk; ı// � B .fk .xk/ ; "/ for all k. A sequence
is equicontinuous when, for example, all the functions are Lipschitz continuous with
the same Lipschitz constant. As for standard equicontinuous sequences, we have the
Arzela-Ascoli lemma:

Lemma 11.1.9. An equicontinuous family fk W Xk ! Yk; where Xk ! X; and
Yk ! Y in the (pointed) Gromov-Hausdorff topology, has a convergent subse-
quence. When the spaces are pointed we also assume that fk preserves the base
point.

Proof. The standard proof carries over without much change. Namely, first choose
dense subsets Ai D

˚
ai
1; a

i
2; : : :

� � Xi such that ai
j ! aj 2 X as i ! 1. Then

also, A D ˚
aj
� � X is dense. Next, use a diagonal argument to find a subsequence

of functions that converge on the above sequences. Finally, show that this sequence
converges as promised. ut

11.1.4 Compactness of Classes of Metric Spaces

We now turn our attention to conditions that ensure convergence of spaces. More
precisely we want some good criteria for when a collection of (pointed) spaces is
precompact (i.e., closure is compact).
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For a compact metric space X; define the capacity and covering functions as
follows

Cap ."/ D CapX ."/ D maximum number of disjoint �
2
-balls in X;

Cov ."/ D CovX ."/ D minimum number of "-balls it takes to cover X:

First, note that Cov ."/ � Cap ."/. To see this, select a maximum number of
disjoint balls B .xi; �=2/ and consider the collection B .xi; "/. In case the latter balls
do not cover X there exists x 2 X � [B .xi; "/ : This would imply that B .x; �=2/ is
disjoint from all of the balls B .xi; �=2/ : Thus showing that the original �=2-balls did
not form a maximal disjoint family.

Another important observation is that if two compact metric spaces X and Y
satisfy dG�H .X;Y/ < ı; then it follows from the triangle inequality that:

CovX ."C 2ı/ � CovY ."/ ;

CapX ."/ � CapY ."C 2ı/ :

With this information we can characterize precompact classes of compact metric
spaces.

Proposition 11.1.10 (Gromov, 1980). For a class C � .M ; dG�H/ all of whose
diameters are bounded by D <1, the following statements are equivalent:

(1) C is precompact, i.e., every sequence in C has a subsequence that is convergent
in .M ; dG�H/ :

(2) There is a function N1 ."/ W .0; ˛/! .0;1/ such that CapX ."/ � N1 ."/ for all
X 2 C :

(3) There is a function N2 ."/ W .0; ˛/! .0;1/ such that CovX ."/ � N2 ."/ for all
X 2 C :

Proof. .1/ ) .2/: If C is precompact, then for every " > 0 we can find
X1; : : : ;Xk 2 C such that for any X 2 C we have that dG�H .X;Xi/ < �=4 for
some i: Then

CapX ."/ � CapXi

�
�
2

� � max
i

CapXi

�
�
2

�
:

This gives a bound for CapX ."/ for each " > 0:
.2/) .3/ Use N2 D N1.
.3/) .1/: It suffices to show that C is totally bounded, i.e., for each " > 0 we

can find finitely many metric spaces X1; : : : ;Xk 2 M such that any metric space
in C is within " of some Xi in the Gromov-Hausdorff metric. Since CovX .�=2/ �
N .�=2/, we know that any X 2 C is within "

2
of a finite subset with at most

N
�
"
2

�
elements in it. Using the induced metric we think of these finite subsets as

finite metric spaces. The metric on such a finite metric space consists of a matrix�
dij
�
; 1 � i; j � N .�=2/, where each entry satisfies dij 2 Œ0;D�. From among all such
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finite metric spaces, it is possible to select a finite number of them such that any of
the matrices

�
dij
�

is within �=2 of one matrix from the finite selection of matrices.
This means that the spaces are within �=2 of each other. We have then found the
desired finite collection of metric spaces. ut

As a corollary we also obtain a precompactness theorem in the pointed category.

Corollary 11.1.11. A collection C � M� is precompact if and only if for each
R > 0 the collection

˚ NB .x;R/ j NB .x;R/ � .X; x/ 2 C
� � .M ; dG�H/

is precompact.

In order to achieve compactness we need a condition that is relatively easy to
check.

We say that a metric space X satisfies the metric doubling condition with constant
C, if each metric ball B .p;R/ can be covered by at most C balls of radius R=2.

Proposition 11.1.12. If all metric spaces in a class C � .M ; dG�H/ satisfy the
metric doubling condition with constant C <1 and all have diameters bounded by
D <1, then the class is precompact in the Gromov-Hausdorff metric.

Proof. Every metric space X 2 C can be covered by at most CN balls of
radius 2�ND. Consequently, X can be covered by at most CN balls of radius
" 2 	2�ND; 2�NC1D



. This gives us the desired estimate on CovX ."/. ut

Using the relative volume comparison theorem we can show

Corollary 11.1.13. For any integer n � 2, k 2 R; and D > 0 the following classes
are precompact:

(1) The collection of closed Riemannian n-manifolds with Ric � .n � 1/ k and
diam � D:

(2) The collection of pointed complete Riemannian n-manifolds with Ric �
.n � 1/ k:

Proof. It suffices to prove (2). Fix R > 0: We have to show that there
can’t be too many disjoint balls inside NB .x;R/ � M: To see this, suppose
B .x1; "/ ; : : : ; B .xN ; "/ � NB .x;R/ are disjoint. If B .xi; "/ is the ball with the
smallest volume, we have

N � volB .x;R/

volB .xi; "/
� volB .xi; 2R/

volB .xi; "/
� v .n; k; 2R/

v .n; k; "/
:

This gives the desired bound. ut
It seems intuitively clear that an n-dimensional space should have Cov ."/ 	 "�n

as "! 0: The Minkowski dimension of a metric space is defined as
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dimX D lim sup
"!0

log Cov ."/

� log "
:

This definition will in fact give the right answer for Riemannian manifolds. Some
fractal spaces might, however, have non-integral dimension. Now observe that

v .n; k; 2R/

v .n; k; "/
	 "�n:

Therefore, if we can show that covering functions carry over to limit spaces, then
we will have shown that manifolds with lower curvature bounds can only collapse
in dimension.

Lemma 11.1.14. Let C .N ."// be the collection of metric spaces with Cov ."/ �
N ."/ : If N is continuous, then C .N ."// is compact.

Proof. We already know that this class is precompact. So we only have to show that
if Xi ! X and CovXi ."/ � N ."/ ; then also CovX ."/ � N ."/ : This follows easily
from

CovX ."/ � CovXi ." � 2dG�H .X;Xi// � N ." � 2dG�H .X;Xi//

and

N ." � 2dG�H .X;Xi//! N ."/ as i!1:
ut

11.2 Hölder Spaces and Schauder Estimates

First, we define the Hölder norms and Hölder spaces, and then briefly discuss
the necessary estimates we need for elliptic operators for later applications. The
standard reference for all the material here is the classic book by Courant and Hilbert
[35], especially chapter IV, and the thorough text [50], especially chapters 1–6.
A more modern text that also explains how PDEs are used in geometry, including
some of the facts we need is [99], especially vol. III.

11.2.1 Hölder Spaces

Fix a bounded domain � � R
n. The bounded continuous functions from � to R

k

are denoted by C0
�
�;Rk

�
; and we use the sup-norm

kukC0 D sup
x2�
ju .x/j



406 11 Convergence

on this space. This makes C0
�
�;Rk

�
into a Banach space. We wish to generalize

this so that we still have a Banach space, but in addition also take into account
derivatives of the functions. The first natural thing to do is to define Cm

�
�;Rk

�
as

the functions with m continuous partial derivatives. Using multi-index notation, we
define

@Iu D @i1
1 � � � @in

n u D @jIju
@ .x1/i1 � � � @ .xn/in

;

where I D .i1; : : : ; in/ and jIj D i1 C � � � C in. Then the Cm-norm is

kukCm D kukC0 C
X

1�jIj�m

�
�@Iu

�
�

C0
:

This norm does result in a Banach space, but the inclusions

Cm
�
�;Rk

� � Cm�1 ��;Rk
�

are not closed subspaces. For instance, f .x/ D jxj is in the closure of

C1 .Œ�1; 1� ;R/ � C0 .Œ�1; 1� ;R/ :

To accommodate this problem, we define for each ˛ 2 .0; 1� the C˛-pseudo-norm
of u W �! R

k as

kuk˛ D sup
x;y2�

ju .x/ � u .y/j
jx � yj˛ :

When ˛ D 1; this gives the best Lipschitz constant for u:
Define the Hölder space Cm;˛

�
�;Rk

�
as being the functions in Cm

�
�;Rk

�
such

that all mth-order partial derivatives have finite C˛-pseudo-norm. On this space we
use the norm

kukCm;˛ D kukCm C
X

jIjDm

�
�@Iu

�
�
˛
:

If we wish to be specific about the domain, then we write kukCm;˛;� : With this
notation we can show

Lemma 11.2.1. Cm;˛
�
�;Rk

�
is a Banach space with the Cm;˛-norm. Furthermore,

the inclusion

Cm;˛
�
�;Rk

� � Cm;ˇ
�
�;Rk

�
;

where ˇ < ˛ is always compact, i.e., it maps closed bounded sets to compact sets.
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Proof. We only need to show this in the case where m D 0I the more general case
is then a fairly immediate consequence.

First, we must show that any Cauchy sequence fuig in C˛
�
�;Rk

�
converges.

Since it is also a Cauchy sequence in C0
�
�;Rk

�
we have that ui ! u 2 C0 in the

C0-norm. For fixed x ¤ y observe that

jui .x/ � ui .y/j
jx � yj˛ ! ju .x/ � u .y/j

jx � yj˛ :

As the left-hand side is uniformly bounded, we also get that the right-hand side is
bounded, thus showing that u 2 C˛:

Finally select " > 0 and N so that for i; j � N and x ¤ y

ˇ
ˇ�ui .x/� uj .x/

� � �ui .y/� uj .y/
�ˇˇ

jx � yj˛ � ":

If we let j!1; this shows that

j.ui .x/ � u .x//� .ui .y/� u .y//j
jx � yj˛ � ":

Hence ui ! u in the C˛-topology.
Now for the last statement. A bounded sequence in C˛

�
�;Rk

�
is equicontinuous

so the Arzela-Ascoli lemma shows that the inclusion C˛
�
�;Rk

� � C0
�
�;Rk

�
is

compact. We then use

ju .x/� u .y/j
jx � yjˇ D

� ju .x/ � u .y/j
jx � yj˛

�ˇ=˛
� ju .x/� u .y/j1�ˇ=˛

to conclude that

kukˇ � .kuk˛/ˇ=˛ � .2 � kukC0 /
1�ˇ=˛ :

Therefore, a sequence that converges in C0 and is bounded in C˛; also converges in
Cˇ , as long as ˇ < ˛ � 1: ut

11.2.2 Elliptic Estimates

We now turn our attention to elliptic operators of the form

Lu D aij@i@juC bi@iu D f ;
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where aij D aji and aij; bi are functions. The operator is called elliptic when the
matrix

�
aij
�

is positive definite. Throughout we assume that all eigenvalues for
�
aij
�

lie in some interval
	
�; ��1
 ; � > 0; and that the coefficients satisfy

�
�aij

�
�
˛
� ��1

and
�
�bi
�
�
˛
� ��1. We state without proof the a priori estimates, usually called the

Schauder or elliptic estimates, that we need.

Theorem 11.2.2. Let � � R
n be an open domain of diameter � D and K � �

a subdomain such that d .K; @�/ � ı: If ˛ 2 .0; 1/ ; then there is a constant C D
C .n; ˛; �; ı;D/ such that

kukC2;˛;K � C
�kLukC˛;� C kukC˛ ;�

�
;

kukC1;˛;K � C
�kLukC0;� C kukC˛;�

�
:

Furthermore, if � has smooth boundary and u D ' on @�; then there is a constant
C D C .n; ˛; �;D/ such that on all of � we have

kukC2;˛ ;� � C
�kLukC˛;� C k'kC2;˛ ;@�

�
:

One way of proving these results is to establish them first for the simplest
operator:

Lu D �u D ıij@i@ju:

Then observe that a linear change of coordinates shows that we can handle operators
with constant coefficients:

Lu D �u D aij@i@ju:

Finally, Schauder’s trick is that the assumptions about the functions aij imply that
they are locally almost constant. A partition of unity type argument then finishes the
analysis.

The first-order term doesn’t cause much trouble and can even be swept under the
rug in the case where the operator is in divergence form:

Lu D aij@i@juC bi@iu D @i
�
aij@ju

�
:

Such operators are particularly nice when one wishes to use integration by parts, as
we have

Z

�

�
@i
�
aij@ju

��
h D �

Z

�

aij@ju@ih
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when h D 0 on @�: This is interesting in the context of geometric operators, as the
Laplacian on manifolds in local coordinates is of that form

Lu D �gu D 1
p

detgij
@i

�p
detgij � gij � @ju

�
:

Thus
Z
vLuvol D

Z
v@i

�p
detgij � gij � @ju

�
:

The above theorem has an almost immediate corollary.

Corollary 11.2.3. If in addition we assume that
�
�aij

�
�

Cm;˛ ,
�
�bi
�
�

Cm;˛ � ��1, then
there is a constant C D C .n;m; ˛; �; ı;D/ such that

kukCmC2;˛ ;K � C
�kLukCm;˛;� C kukC˛;�

�
:

And on a domain with smooth boundary,

kukCmC2;˛ ;� � C
�kLukCm;˛ ;� C k'kCmC2;˛ ;@�

�
:

The Schauder estimates can be used to show that the Dirichlet problem always
has a unique solution.

Theorem 11.2.4. Suppose � � R
n is a bounded domain with smooth boundary.

Then the Dirichlet problem

Lu D f ; uj@� D '

always has a unique solution u 2 C2;˛ .�/ if f 2 C˛ .�/ and ' 2 C2;˛ .@�/ :

Observe that uniqueness is an immediate consequence of the maximum principle.
The existence part requires more work.

11.2.3 Harmonic Coordinates

The above theorems make it possible to introduce harmonic coordinates on
Riemannian manifolds.

Lemma 11.2.5. If .M; g/ is an n-dimensional Riemannian manifold and p 2 M;
then there is a neighborhood U 3 p on which we can find a harmonic coordinate
system x D �x1; : : : ; xn

� W U ! R
n, i.e., a coordinate system such that the functions

xi are harmonic with respect to the Laplacian on .M; g/ :
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Proof. First select a coordinate system y D �
y1; : : : ; yn

�
on a neighborhood around

p such that y .p/ D 0: We can then think of M as being an open subset of R
n

and p D 0: The metric g is written as gij D g
�
@i; @j

� D g
�
@
@yi ;

@
@yj

�
in the standard

Cartesian coordinates
�
y1; : : : ; yn

�
: We must then find a coordinate transformation

y 7! x such that

�xk D 1p
detgij

@i

�p
detgij � gij � @jx

k
�
D 0:

To find these coordinates, fix a small ball B .0; "/ and solve the Dirichlet problem

�xk D 0; xk D yk on @B .0; "/ :

We have then found n harmonic functions that should be close to the original
coordinates. The only problem is that we don’t know if they actually are coordinates.
The Schauder estimates tell us that

kx � ykC2;˛ ;B.0;"/ � C
�
k�.x � y/kC˛;B.0;"/ C

�
�.x � y/j@B.0;"/

�
�

C2;˛ ;@B.0;"/

�

D C k�ykC˛;B.0;"/ :

If matters were arranged such that k�ykC˛;B.0;"/ ! 0 as " ! 0, then we could
conclude that Dx and Dy are close for small ": Since y does form a coordinate
system, we would then also be able to conclude that x formed a coordinate system.

Now observe that if y were chosen as exponential Cartesian coordinates, then
we would have that @kgij D 0 at p: The formula for �y then shows that �y D 0

at p: Hence, k�ykC˛;B.0;"/ ! 0 as "! 0. Finally recall that the constant C depends
only on an upper bound for the diameter of the domain aside from ˛; n; �: Thus,
kx � ykC2;˛ ;B.0;"/ ! 0 as "! 0. ut

One reason for using harmonic coordinates on Riemannian manifolds is that both
the Laplacian and Ricci curvature tensor have particularly elegant expressions in
such coordinates.

Lemma 11.2.6. Let .M; g/ be an n-dimensional Riemannian manifold with a
harmonic coordinate system x W U ! R

n: Then

(1)

�u D 1p
detgst

@i

�p
detgst � gij � @ju

�
D gij@i@ju:

(2)

1

2
�gij C Q .g; @g/ D �Ricij D �Ric

�
@i; @j

�
:
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Here Q is a universal rational expression where the numerator is polynomial
in the matrix g and quadratic in @g, while the denominator depends only
on
p

detgij.

Proof. (1) By definition:

0 D �xk

D 1p
detgst

@i

�p
detgst � gij � @jx

k
�

D gij@i@jx
k C 1p

detgst
@i

�p
detgst � gij

�
� @jx

k

D gij@iı
k
j C 1p

detgst
@i

�p
detgst � gij

�
� ık

j

D 0C 1p
detgst

@i

�p
detgst � gik

�

D 1p
detgst

@i

�p
detgst � gik

�
:

Thus, it follows that

�u D 1p
detgst

@i

�p
detgst � gij � @ju

�

D gij@i@juC 1p
detgst

@i

�p
detgst � gij

�
� @ju

D gij@i@ju:

(2) Recall that if u is harmonic, then the Bochner formula for ru is

�
�
1
2
jruj2

�
D jHessuj2 C Ric .ru;ru/ :

Here the term jHessuj2 can be computed explicitly and depends only on the
metric and its first derivatives. In particular,

1
2
�g

�rxk;rxk
� � ˇˇHessxk

ˇ
ˇ2 D Ric

�rxk;rxk
�
:

Polarizing this quadratic expression gives us an identity of the form

1
2
�g

�rxi;rxj
� � g

�
Hessxi;Hessxj

� D Ric
�rxi;rxj

�
:

Now use that rxk D gij@jxk@i D gik@i to see that g
�rxi;rxj

� D gij: We then have

1
2
�gij � g

�
Hessxi;Hessxj

� D Ric
�rxi;rxj

�
;
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which in matrix form looks like

1
2

	
�gij


 � 	g �Hessxi;Hessxj
�
 D 	gik


 � ŒRic .@k; @l/� �
	
glj


:

This is, of course, not the promised formula. Instead, it is a similar formula for the
inverse of Œgij�. Now use the matrix equation Œgik� � Œgkj� D Œıj

i � to conclude that

0 D � �Œgik� �
	
gkj

�

D Œ�gik� �
	
gkj

C 2

"
X

k

g
�rgik;rgkj

�
#

C Œgik� �
	
�gkj




D Œ�gik� �
	
gkj

C 2 Œrgik� �

	rgkj

C Œgik� �

	
�gkj



:

Inserting this in the above equation yields

	
�gij


 D �2 Œrgik� �
	rgkl


 � 	glj

 � Œgik� �

	
�gkl


 � 	glj



D �2 Œrgik� �
	rgkl


 � 	glj



�2 Œgik� �
	
g
�
Hessxk;Hessxl

�
 � 	glj



�2 Œgik� �
	
gks

 � ŒRic .@s; @t/� �

	
gtl

 � 	glj




D �2 Œrgik� �
	rgkl


 � 	glj

 � 2 Œgik� �

	
g
�
Hessxk;Hessxl

�
 � 	glj



�2 	Ric
�
@i; @j

�

:

Each entry in these matrices then satisfies

1
2
�gij C Qij .g; @g/ D �Ricij;

Qij D �2
X

k;l

g
�rgik;rgkl

�
glj

�2
X

k;l

gikg
�
Hessxk;Hessxl

�
glj:

ut
It is interesting to apply this formula to the case of an Einstein metric, where

Ricij D .n � 1/ kgij. In this case, it reads

1
2
�gij D � .n � 1/ kgij �Q .g; @g/ :

The right-hand side makes sense as long as gij is C1. The equation can then
be understood in the weak sense: Multiply by some test function, integrate, and
use integration by parts to obtain a formula that uses only first derivatives of gij on
the left-hand side. If gij is C1;˛; then the left-hand side lies in some Cˇ; but then our
elliptic estimates show that gij must be in C2;ˇ . This can be bootstrapped until we
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have that the metric is C1: In fact, one can even show that it is analytic. Therefore,
we can conclude that any metric which in harmonic coordinates is a weak solution
to the Einstein equation must in fact be smooth. We have obviously left out a few
details about weak solutions. A detailed account can be found in [99, vol. III].

11.3 Norms and Convergence of Manifolds

We next explain how the Cm;˛ norm and convergence concepts for functions
generalize to Riemannian manifolds. These ideas can be used to prove various
compactness and finiteness theorems for classes of Riemannian manifolds.

11.3.1 Norms of Riemannian Manifolds

Before defining norms for manifolds, let us discuss which spaces should have
norm zero. Clearly Euclidean space is a candidate. But what about open subsets
of Euclidean space and other flat manifolds? If we agree that all open subsets of
Euclidean space also have norm zero, then any flat manifold becomes a union of
manifolds with norm zero and therefore should also have norm zero. In order to
create a useful theory, it is often best to have only one space with vanishing norm.
Thus we must agree that subsets of Euclidean space cannot have norm zero. To
accommodate this problem, we define a family of norms of a Riemannian manifold,
i.e., we use a function N W .0;1/! .0;1/ rather than just a number. The number
N .r/ then measures the degree of flatness on the scale of r; where the standard
measure of flatness on the scale of r is the Euclidean ball B .0; r/ : For small r; all
flat manifolds then have norm zero; but as r increases we see that the space looks
less and less like B .0; r/ and therefore the norm will become positive unless the
space is Euclidean space.

Let .M; g; p/ be a pointed Riemannian n-manifold. We say that the Cm;˛-norm on
the scale of r at p:

k.M; g; p/kCm;˛ ;r � Q;

provided there exists a CmC1;˛ chart ' W .B .0; r/ ; 0/ � R
n ! .U; p/ � M such

that

(n1) jD'j � eQ on B .0; r/ and
ˇ
ˇD'�1ˇˇ � eQ on U. Equivalently, for all

v 2 R
n the metric coefficients satisfy

e�2Qıklv
kvl � gklv

kvl � e2Qıklv
kvl:
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(n2) For all multi-indices I with 0 � jIj � m

rjIjC˛ ��@Igkl

�
�
˛
� Q:

Globally we define

k.M; g/kCm;˛;r D sup
p2M
k.M; g; p/kCm;˛ ;r :

Observe that we think of the charts as maps from the fixed space B .0; r/ into
the manifold. This is in order to have domains for the functions which do not
refer to M itself. This simplifies some technical issues and makes it more clear
that we are trying to measure how the manifolds differ from the standard objects,
namely, Euclidean balls. The first condition tells us that in the chosen coordinates
the metric coefficients are bounded from below and above (in particular, we have
uniform ellipticity for the Laplacian). The second condition gives us bounds on the
derivatives of the metric.

It will be necessary on occasion to work with Riemannian manifolds that are
not smooth. The above definition clearly only requires that the metric be Cm;˛ in
the coordinates we use, and so there is no reason to assume more about the metric.
Some of the basic constructions, like exponential maps, then come into question,
and indeed, if m � 1 these concepts might not be well-defined. Therefore, we shall
have to be a little careful in some situations.

The norm at a point is always finite, but when M is not compact the global norm
might not be finite on any scale.

Example 11.3.1. If .M; g/ is a complete flat manifold, then k.M; g/kCm;˛ ;r D 0 for
all r � inj .M; g/ : In particular, k.Rn; gRn/kCm;˛ ;r D 0 for all r: We will show that
these properties characterize flat manifolds and Euclidean space.

11.3.2 Convergence of Riemannian Manifolds

Now for the convergence concept that relates to this new norm. As we can’t subtract
manifolds, we have to resort to a different method for defining this. If we fix a
closed manifold M; or more generally a precompact subset A � M; then we say
that a sequence of functions on A converges in Cm;˛; if they converge in the charts
for some fixed finite covering of coordinate patches that are uniformly bi-Lipschitz.
This definition is clearly independent of the finite covering we choose. We can then
more generally say that a sequence of tensors converges in Cm;˛ if the components
of the tensors converge in these patches. This makes it possible to speak about
convergence of Riemannian metrics on compact subsets of a fixed manifold.

A sequence of pointed complete Riemannian manifolds is said to converge in
the pointed Cm;˛ topology, .Mi; gi; pi/ ! .M; g; p/, if for every R > 0 we can
find a domain � � B .p;R/ � M and embeddings Fi W � ! Mi for large i such
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that Fi .p/ D pi, Fi .�/ � B .pi;R/, and F�
i gi ! g on � in the Cm;˛ topology.

It is easy to see that this type of convergence implies pointed Gromov-Hausdorff
convergence. When all manifolds in question are closed with a uniform bound on
the diameter, then the maps Fi are diffeomorphisms. For closed manifolds we can
also speak about unpointed convergence. In this case, convergence can evidently
only occur if all the manifolds in the tail end of the sequence are diffeomorphic. In
particular, we have that classes of closed Riemannian manifolds that are precompact
in some Cm;˛ topology contain at most finitely many diffeomorphism types.

A warning about this kind of convergence is in order here. Suppose we have
a sequence of metrics gi on a fixed manifold M: It is possible that these metrics
might converge in the sense just defined, without converging in the traditional sense
of converging in some fixed coordinate systems. To be more specific, let g be the
standard metric on M D S2: Now define diffeomorphisms Ft coming from the flow
corresponding to the vector field that is 0 at the two poles and otherwise points in
the direction of the south pole. As t increases, the diffeomorphisms will try to map
the whole sphere down to a small neighborhood of the south pole. Therefore, away
from the poles the metrics F�

t g will converge to 0 in some fixed coordinates. So
they cannot converge in the classical sense. If, however, we pull these metrics back
by the diffeomorphisms F�t, then we just get back to g: Thus the sequence .M; gt/ ;

from the new point of view we are considering, is a constant sequence. This is really
the right way to think about this as the spaces

�
S2;F�

t g
�

are all isometric as abstract
metric spaces.

11.3.3 Properties of the Norm

Let us now consider some of the elementary properties of norms and their relation
to convergence.

Proposition 11.3.2. Given .M; g; p/, m � 0, ˛ 2 .0; 1� we have:

(1) k.M; g; p/kCm;˛;r D
���M; �2g; p

���
Cm;˛;�r

for all � > 0:
(2) The function r 7! k.M; g; p/kCm;˛ ;r is increasing, continuous, and converges to

0 as r! 0:

(3) Suppose .Mi; gi; pi/! .M; g; p/ in Cm;˛: Then

k.Mi; gi; pi/kCm;˛ ;r ! k.M; g; p/kCm;˛;r for all r > 0:

Moreover, when all the manifolds have uniformly bounded diameter

k.Mi; gi/kCm;˛ ;r ! k.M; g/kCm;˛ ;r for all r > 0:

(4) If k.M; g; p/kCm;˛ ;r < Q, then for all x1; x2 2 B .0; r/ we have

e�Q min fjx1 � x2j ; 2r � jx1j � jx2jg � j'.x1/ '.x2/j � eQ jx1 � x2j :
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(5) The norm k.M; g; p/kCm;˛ ;r is realized by a CmC1;˛-chart.
(6) If M is compact, then k.M; g/kCm;˛ ;r D k.M; g; p/kCm;˛ ;r for some p 2 M.

Proof. (1) If we change the metric g to �2g; then we can change the chart ' W
B .0; r/! M to '� .x/ D ' ���1x

� W B .0; �r/! M. Since we scale the metric
at the same time, the conditions n1 and n2 will still hold with the same Q:

(2) By restricting ' W B .0; r/ ! M to a smaller ball we immediately get that
r 7! k.M; g; p/kCm;˛ ;r is increasing. Next, consider again the chart '� .x/ D
'
�
��1x

� W B .0; �r/ ! M, without changing the metric g: If we assume that
k.M; g; p/kCm;˛;r < Q, then

k.M; g; p/kCm;˛ ;�r � max
˚
Q˙ jlog�j ;Q � �2� :

Denoting N .r/ D k.M; g; p/kCm;˛ ;r, we obtain

N .�r/ � max
˚
N .r/˙ jlog�j ;N .r/ � �2� :

By letting � D ri
r ; where ri ! r; we see that this implies

lim sup N .ri/ � N .r/ :

Conversely,

N .r/ D N

�
r

ri
ri

�

� max

(

N .ri/˙
ˇ
ˇ
ˇ
ˇlog

r

ri

ˇ
ˇ
ˇ
ˇ ;N .ri/ �

�
r

ri

�2)

:

So

N .r/ � lim inf max

(

N .ri/˙
ˇ
ˇ
ˇ
ˇlog

r

ri

ˇ
ˇ
ˇ
ˇ ;N .ri/ �

�
r

ri

�2)

D lim inf N .ri/ :

This shows that N .r/ is continuous. To see that N .r/ ! 0 as r ! 0; just
observe that any coordinate system around a point p 2 M can, after a linear
change, be assumed to have the property that the metric gkl D ıkl at p: In
particular

ˇ
ˇD'jp

ˇ
ˇ D ˇ

ˇD'�1jp
ˇ
ˇ D 1: Using these coordinates on sufficiently

small balls will yield the desired charts.
(3) Fix r > 0 and Q > k.M; g; p/kCm;˛;r . Pick a domain � � B

�
p; eQr

�
such that

for large i we have embeddings Fi W �! Mi with the property that: F�
i gi ! g

in Cm;˛ on � and Fi .p/ D pi.
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Choose a chart ' W B .0; r/ ! M with properties n1 and n2. Then define
charts in Mi by 'i D Fi ı ' W B .0; r/ ! Mi and note that since F�

i gi ! g
in Cm;˛ , these charts satisfy properties n1 and n2 for constants Qi ! Q. This
shows that

lim sup k.Mi; gi; pi/kCm;˛ ;r � k.M; g; p/kCm;˛ ;r :

On the other hand, if Q > k.Mi; gi; pi/kCm;˛ ;r for a sufficiently large i, then
select a chart 'i W B .0; r/ ! Mi and consider ' D F�1

i ı 'i on M. As before,
we have

k.M; g; p/kCm;˛ ;r � Qi;

where Qi is close to Q. This implies

lim inf k.Mi; gi; pi/kCm;˛;r � k.M; g; p/kCm;˛ ;r

and proves the result.
When all the spaces have uniformly bounded diameter we choose diffeomor-

phisms Fi W M! Mi for large i such that F�
i gi ! g. For every choice of p 2 M

select pi D Fi .p/ 2 Mi and use what we just proved to conclude that

lim inf k.Mi; gi/kCm;˛ ;r � sup
p
k.M; g; p/kCm;˛ ;r :

Similarly, when pi 2 Mi and p D F�1
i .pi/, it follows that

lim sup k.Mi; gi; pi/kCm;˛;r � sup
p
k.M; g/kCm;˛ ;r :

(4) The condition jD'j � eQ; together with convexity of B.0; r/; immediately
implies the second inequality. For the other, first observe that if any segment
from ' .x1/ to ' .x2/ lies in U, then

ˇ
ˇD'�1ˇˇ � eQ implies, that

jx1 � x2j � eQ j'.x1/ '.x2/j :

So we may assume that '.x1/ and '.x2/ are joined by a segment c W Œ0; 1�! M
that leaves U. Split c into c W Œ0; t1/ ! U and c W .t2; 1� ! U with c.ti/ 2 @U.
Then we clearly have

j'.x1/ '.x2/j D L.c/ � L.cjŒ0;t1//C L.cj.t2;1�/
� e�Q.L.'�1 ı cjŒ0;t1//C L.'�1 ı cj.t2;1�//
� e�Q .2r � jx1j � jx2j/ :
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The last inequality follows from the fact that '�1 ı c.0/ D x1 and '�1 ı c.1/ D
x2; and that '�1 ı c .t/ approaches @B .0; r/ as t approaches t1 and t2.

(5) Given a sequence of charts 'i W B .0; r/! M that satisfy n1 and n2 with Qi !
Q we can use the Arzela-Ascoli lemma to find a subsequence that converges
to a CmC1;˛ map ' W B .0; r/ ! M. Property (4) shows that ' is injective
and becomes a homeomorphism onto its image. This makes ' a chart. We can,
after passing to another subsequence, also assume that the metric coefficients
converge. This implies that ' satisfies n1 and n2 for Q.

(6) Property (3) implies that p 7! k.M; g; p/kCm;˛ ;r is continuous. Compactness then
shows that the supremum is a maximum.

ut
Corollary 11.3.3. If k.M; g; p/kCm;˛ ;r � Q, then B

�
p; e�Qr

� � U.

Proof. Let q 2 @U be the closest point to p so that B .p; jqpj/ � U. If c W Œ0; jpqj�!
M is a segment from p to q, then c .s/ 2 B .p; jqpj/ for all s < jqpj and we
can write c .s/ D ' .Nc .s//, where Nc W Œ0; jqpj/ 2 B .0; r/ has the property that
limt!jqpj jNc .t/j D r. Property (4) from proposition 11.3.2 then shows that

jqpj � lim
s!jqpj

j' .Nc .s// ' .0/j

� lim
s!jqpj

e�Q min fjNc .s/j ; 2r � jNc .s/jg

� lim
s!jqpj

e�Q jNc .s/j

D e�Qr:

ut
Corollary 11.3.4. If k.M; g; p/kCm;˛ ;r D 0 for some r, then p is contained in a
neighborhood that is flat.

Proof. It follows from proposition 11.3.2 that there is a CmC1;˛ chart ' W B .0; r/!
U � B

�
p; e�Qr

�
with Q D 0. This implies that it is a C1 Riemannian isometry and

then by theorem 5.6.15 a Riemannian isometry. ut

11.3.4 The Harmonic Norm

We define a more restrictive norm, called the harmonic norm and denoted

k.M; g; p/khar
Cm;˛;r :

The only change in our previous definition is that '�1 W U ! R
n is also assumed to

be harmonic with respect to the Riemannian metric g on M, i.e., for each j
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1
p

det Œgst�
@i

�p
det Œgst� � gij

�
D 0:

Proposition 11.3.5 (Anderson, 1990). Proposition 11.3.2 also holds for the har-
monic norm when m � 1.

Proof. The proof is mostly identical so we only mention the necessary changes.
For the statement in (2) that the norm goes to zero as the scale decreases, just

solve the Dirichlet problem as we did when establishing the existence of harmonic
coordinates in lemma 11.2.5. There it was necessary to have coordinates around
every point p 2 M such that in these coordinates the metric satisfies gij D ıij

and @kgij D 0 at p: If m � 1; then it is easy to show that any coordinate system
around p can be changed in such a way that the metric has the desired properties
(see exercise 2.5.20).

The proof of (3) is necessarily somewhat different, as we must use and produce
harmonic coordinates. Let the set-up be as before. First we show the easy part:

lim inf k.Mi; gi; pi/khar
Cm;˛ ;r � k.M; g; p/khar

Cm;˛ ;r :

To this end, select Q > lim inf k.Mi; gi; pi/khar
Cm;˛ ;r. For large i we can then select

charts 'i W B .0; r/ ! Mi with the requisite properties. After passing to a
subsequence, we can make these charts converge to a chart

' D lim F�1
i ı 'i W B .0; r/! M:

Since the metrics converge in Cm;˛; the Laplacians of the inverse functions must
also converge. Hence, the limit charts are harmonic as well. We can then conclude
that k.M; g; p/khar

Cm;˛ ;r � Q.
For the reverse inequality

lim sup k.Mi; gi; pi/khar
Cm;˛ ;r � k.M; g; p/khar

Cm;˛ ;r ;

select Q > k.M; g; p/khar
Cm;˛ ;r. Then, from the continuity of the norm we can find

" > 0 such that also k.M; g; p/khar
Cm;˛ ;rC" < Q. For this scale, select

' W B .0; rC "/! U � M

satisfying the usual conditions. Now define

Ui D Fi .' .B .0; rC "=2/// � Mi:

This is clearly a closed disc with smooth boundary

@Ui D Fi .' .@B .0; rC "=2/// :
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On each Ui solve the Dirichlet problem

 i W Ui ! R
n;

�gi i D 0;

 i D '�1 ı F�1
i on @Ui:

The inverse of  i; if it exists, will then be a coordinate map B .0; r/ ! Ui: On the
set B .0; rC "=2/ we can compare  i ı Fi ı ' with the identity map I. Note that
these maps agree on the boundary of B .0; rC "=2/ :We know that F�

i gi ! g in the
fixed coordinate system ': Now pull these metrics back to B

�
0; rC "

2

�
and refer to

them as g .D '�g/ and gi
�D '�F�

i gi
�
. In this way the harmonicity conditions read

�gI D 0 and �gi i ı Fi ı ' D 0: In these coordinates we have the correct bounds
for the operator

�gi D gkl
i @k@l C 1

p
det Œgi�

@k

�p
det Œgi� � gkl

i

�
@l

to use the elliptic estimates for domains with smooth boundary. Note that this is
where the condition m � 1 becomes important so that we can bound

1
p

det Œgi�
@k

�p
det Œgi� � gkl

i

�

in C˛: The estimates then imply

kI �  i ı Fi ı 'kCmC1;˛ � C
���gi .I �  i ı Fi ı '/

��
Cm�1;˛

D C
�
��gi I

�
�

Cm�1;˛ :

However, we have that

�
��gi I

�
�

Cm�1;˛ D
�
�
�
�
�

1
p

det Œgi�
@k

�p
det Œgi� � gkl

i

�
�
�
�
�
�

Cm�1;˛

!
�
�
�
��

1
p

det Œg�
@k

�p
det Œg� � gkl

�
�
�
�
��

Cm�1;˛

D �
��gI

�
�

Cm�1;˛ D 0:

In particular,

kI �  i ı Fi ı 'kCmC1;˛ ! 0:

It follows that  i must become coordinates for large i: Also, these coordinates
will show that k.Mi; gi; pi/khar

Cm;˛ ;r < Q for large i: ut
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11.3.5 Compact Classes of Riemannian Manifolds

We can now state and prove the result that is our manifold equivalent of the Arzela-
Ascoli lemma. This theorem is essentially due to J. Cheeger.

Theorem 11.3.6 (Fundamental Theorem of Convergence Theory). For given
Q > 0, n � 2, m � 0; ˛ 2 .0; 1�, and r > 0 consider the class M m;˛.n;Q; r/
of complete, pointed Riemannian n-manifolds .M; g; p/ with k.M; g/kCm;˛ ;r � Q.
The class M m;˛.n;Q; r/ is compact in the pointed Cm;ˇ topology for all ˇ < ˛.

Proof. First we show that M D M m;˛.n;Q; r/ is precompact in the pointed
Gromov-Hausdorff topology. Next we prove that M is closed in the Gromov-
Hausdorff topology. The last and longest part is devoted to getting improved
convergence from Gromov-Hausdorff convergence.

Setup: Whenever we select M 2M ; we can by proposition 11.3.2 assume that it
comes equipped with charts around all points satisfying n1 and n2.

(A) M is precompact in the pointed Gromov-Hausdorff topology.

Define ı D e�Qr and note that there exists an N.n;Q/ such that B.0; r/ can be
covered by at most N balls of radius e�Q � ı=4. Since ' W B.0; r/! U is a Lipschitz
map with Lipschitz constant � eQ, this implies that U � B .p; ı/ can be covered by
N balls of radius ı=4.

Next we claim that every ball B.x; ` � ı=2/ � M can be covered by � N` balls of
radius ı=4. For ` D 1 we just proved this. If B.x; ` � ı=2/ is covered by B.x1; ı=4/,: : :,
B.xN` ; ı=4/, then B .x; ` � ı=2C ı=2/ � S

B.xi; ı/. Now each B.xi; ı/ can be covered
by� N balls of radius ı=4, and hence B .x; .`C 1/ı=2/ can be covered by� N �N` D
N`C1 balls of radius ı=4.

The precompactness claim is equivalent to showing that we can find a function
C."/ D C.";R;K; r; n/ such that each B.p;R/ can contain at most C."/ disjoint
"-balls. To check this, let B.x1; "/,. . . ,B.xs; "/ be a collection of disjoint balls in
B.p;R/. Suppose that ` � ı=2 < R � .`C 1/ı=2. Then

volB.p;R/ � N`C1 � .maximal volume of ı=4-ball/

� N`C1 � .maximal volume of chart/

� N`C1 � enK � volB.0; r/

� V.R/ D V.R; n;K; r/:

As long as " < ı each B.xi; "/ lies in some chart ' W B.0; r/ ! U � M whose
pre-image in B.0; r/ contains an e�K � "-ball. Thus

volB.pi; "/ � e�nKvolB.0; "/:
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All in all, we get

V.R/ � volB.p;R/

�
X

volB.pi; "/

� s � e�nK � volB.0; "/:

Thus,

s � C."/ D V.R/ � enK � .volB.0; "//�1:

Now select a sequence .Mi; gi; pi/ in M . From the previous considerations we
can assume that .Mi; gi; pi/! .X; j��j ; p/ in the Gromov-Hausdorff topology. It will
be necessary in many places to pass to subsequences of .Mi; gi; pi/ using various
diagonal processes. Whenever this happens, we do not reindex the family, but
merely assume that the sequence was chosen to have the desired properties from
the beginning.

(B) .X; j��j ; p/ is a Riemannian manifold of class Cm;˛ with k.X; g/kCm;˛;r � Q

For each q 2 X we need to find a chart ' W B.0; r/ ! U � X with q D ' .0/.
To construct this chart consider qi ! q and charts 'i W B.0; r/ ! Ui � Mi with
qi D 'i .0/. These charts are uniformly Lipschitz and so must subconverge to a map
' W B .0; r/! U � X. This map will satisfy property (4) in proposition 11.3.2 and
thus be a homeomorphism onto its image. This makes X a topological manifold.

We next construct a compatible Riemannian metric on X that satisfies n1 and n2.
For each q 2 X consider the metrics '�

i gi D gi�� written out in components on B.0; r/
with respect to the chart 'i. Since all of the gi�� satisfy n1 and n2, we can again use
Arzela-Ascoli to insure that the components gi�� ! g�� in the Cm;ˇ topology on
B.0; r/ to functions g�� that also satisfy n1 and n2. These local Riemannian metrics
are possibly only Hölder continuous. Nevertheless, they define a distance as we
defined it in section 5.3. Moreover this distance is locally the same as the metric
on X. To see this, note that we work entirely on B.0; r/ and both the Riemannian
structures and the metric structures converge to the limit structures.

Finally, we need to show that the transition function '�1 ı for two such charts
'; W B .0; r/ ! X with overlapping images are at least C1 so as to obtain a
differentiable structure on X. As it stands '�1 ı  is locally Lipschitz with respect
to the Euclidean metrics. However, it is distance preserving with respect to the
pull back metrics from X. Calabi-Hartman in [22] generalized theorem 5.6.15 to
this context. Specifically, they claim that a distance preserving map between C˛

Riemannian metrics is C1;˛ . The proof, however, only seems to prove that the map
is C1; ˛2 , which is more than enough for our purposes.
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(C) .Mi; gi; pi/! .X; j��j ; p/ D .X; g; p/ in the pointed Cm;ˇ topology.

We assume that X is equipped with a countable atlas of charts 's W B .0; r/! Us,
s D 1; 2:3; : : : that are limits of charts 'is W B .0; r/ ! Uis � Mi that also form
an atlas for each Mi. We can further assume that transitions converge: '�1

is ı 'it !
'�1

s ı 't and that the metrics converge: gis�� ! gs��. We say that two maps F1;F2
between subsets in Mi and X are CmC1;ˇ close if all the coordinate compositions
'�1

s ı F1 ı 'is and 's ı F2 ı 'is are CmC1;ˇ close. Thus, we have a well-defined
CmC1;ˇ topology on maps from Mi to X. Our first observation is that

fis D 'is ı '�1
s W Us ! Uis;

fit D 'it ı '�1
t W Ut ! Uit

“converge to each other” in the CmC1;ˇ topology. Furthermore,

.fis/
�gijUis ! gjUs

in the Cm;ˇ topology. These are just restatements of what we already assumed. In
order to finish the proof, we construct maps

Fi` W �` D
[̀

sD1
Us ! �i` D

[̀

sD1
Uis

that are closer and closer to the fis, s D 1; : : : ; ` maps (and therefore all fis) as
i!1. We will construct Fi` by induction on ` and large i depending on `.

For ` D 1 simply define Fi1 D fi1:
Suppose we have Fi` W �` ! �i` for large i that are arbitrarily close to fis,

s D 1; : : : ; ` as i ! 1. If U`C1 \ �` D ¿; then we just define Fi`C1 D Fi` on
�i` and Fi`C1 D fi`C1 on U`C1. In case U`C1 � �`; we simply let Fi`C1 D Fi`.
Otherwise, we know that Fi` and fi`C1 are as close as we like in the CmC1;ˇ topology
as i ! 1. So the natural thing to do is to average them on U`C1. Define Fi`C1 on
U`C1 by

Fi`C1.x/ D 'i`C1 ı .�1.x/ � '�1
i`C1 ı fi`C1.x/C �2.x/ � '�1

i`C1 ı Fi`.x//;

where �1; �2 are a partition of unity for U`C1; �`. This map is clearly well-defined
on U`C1, since �2.x/ D 0 on U`C1 ��`: Now consider this map in coordinates

'�1
i`C1 ı Fi`C1 ı '`C1.y/ D .�1 ı '`C1.y// � '�1

`C1 ı fi`C1 ı '`C1.y/
C .�2 ı '`C1.y// � '�1

i`C1 ı Fi` ı '`C1.y/
D Q�1.y/F1.y/C Q�2.y/F2.y/:

Then

k Q�1F1 C Q�2F2 � F1kCmC1;ˇ D k Q�1.F1 � F1/C Q�2.F2 � F1/kCmC1;ˇ

� C .n;m/ k Q�2kCmC1;ˇ � kF2 � F1kCmC1;ˇ :
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This inequality is valid on all of B.0; r/, despite the fact that F2 is not defined on all
of B.0; r/, since Q�1 � F1 C Q�2 � F2 D F1 on the region where F2 is undefined. By
assumption

kF2 � F1kCmC1;ˇ ! 0 as i!1;

so Fi`C1 is CmC1;ˇ-close to fis, s D 1; : : : ; `C 1 as i!1.
Finally we see that the closeness of Fi` to the coordinate charts shows that it is

an embedding on all compact subsets of the domain. ut
Corollary 11.3.7. Any subclasses of M m;˛.n;Q; r/; where the elements in addition
satisfy diam � D, respectively vol � V, is compact in the Cm;ˇ topology. In
particular, it contains only finitely many diffeomorphism types.

Proof. We use notation as in the fundamental theorem. If diam.M; g; p/ � D; then
clearly M � B .p; k � ı=2/ for k > D � 2=ı. Hence, each element in M m;˛.n;Q; r/ can
be covered by � Nk charts. Thus, Cm;ˇ-convergence is actually in the unpointed
topology, as desired.

If instead, volM � V; then we can use part (A) in the proof to see that we can
never have more than k D V � e2nK � .volB.0; "//�1 disjoint "-balls. In particular,
diam � 2" � k, and we can use the above argument.

Finally, compactness in any Cm;ˇ topology implies that the class cannot contain
infinitely many diffeomorphism types. ut

Clearly there is also a harmonic analogue to the fundamental theorem.

Corollary 11.3.8. Given Q > 0, n � 2, m � 0, ˛ 2 .0; 1�, and r > 0 the class
of complete, pointed Riemannian n-manifolds .M; g; p/ with k.M; g/khar

Cm;˛ ;r � Q is
closed in the pointed Cm;˛ topology and compact in the pointed Cm;ˇ topology for
all ˇ < ˛.

The only issue to worry about is whether it is really true that limit spaces
have k.M; g/khar

Cm;˛ ;r � Q: But one can easily see that harmonic charts converge
to harmonic charts as in proposition 11.3.5.

11.3.6 Alternative Norms

Finally, we mention that the norm concept and its properties do not change if n1 and
n2 are altered as follows:

(n1’) jD'j; ˇ̌D'�1ˇ̌ � f1.n;Q/,
(n2’) rjjjC˛k@jg��k˛ � f2.n;Q/; 0 � jjj � m,

where f1 and f2 are continuous, f1.n; 0; r/ D 1, and f2.n; 0/ D 0. The key properties
we want to preserve are continuity of k.M; g/k with respect to r, the fundamental
theorem, and the characterization of flat manifolds and Euclidean space.
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Another interesting thing happens if in the definition of k.M; g/kCm;˛ ;r we let
m D ˛ D 0. Then n2 no longer makes sense since ˛ D 0, however, we still have
a C0-norm concept. The class M 0.n;Q; r/ is now only precompact in the pointed
Gromov-Hausdorff topology, but the characterization of flat manifolds is still valid.
The subclasses with bounded diameter, or volume, are also only precompact with
respect to the Gromov-Hausdorff topology, and the finiteness of diffeomorphism
types apparently fails. It is, however, possible to say more. If we investigate the
proof of the fundamental theorem, we see that the problem lies in constructing
the maps Fik W �k ! �ik, because we only have convergence of the coordinates
only in the C0 (actually C˛; ˛ < 1/ topology, and so the averaging process fails
as it is described. We can, however, use a deep theorem from topology about local
contractibility of homeomorphism groups (see [39]) to conclude that two C0-close
topological embeddings can be “glued” together in some way without altering
them too much in the C0 topology. This makes it possible to exhibit topological
embeddings Fik W � ,! Mi such that the pullback metrics (not Riemannian metrics)
converge. As a consequence, we see that the classes with bounded diameter or
volume contain only finitely many homeomorphism types. This closely mirrors the
content of the original version of Cheeger’s finiteness theorem, including the proof
as we have outlined it. But, as we have pointed out earlier, Cheeger also considered
the easier to prove finiteness theorem for diffeomorphism types given better bounds
on the coordinates.

Notice that we cannot easily use the fact that the charts converge in C˛.˛ < 1/.
But it is possible to do something interesting along these lines. There is an even
weaker norm concept called the Reifenberg norm that is related to the Gromov-
Hausdorff distance. For a metric space .X; j��j/ we define the n-dimensional norm
on the scale of r as

k.X; j��j/kn
r D

1

r
sup
p2X

dG�H .B .p; r/ ;B .0; r// ;

where B .0;R/ � R
n: The the r�1 factor insures that we don’t have small distance

between B .p; r/ and B .0; r/ just because r is small. Note also that if .Xi; j��ji/ !
.X; j��j/ in the Gromov-Hausdorff topology then

k.Xi; j��ji/kn
r ! k.X; j��j/kn

r

for fixed n; r:
For an n-dimensional Riemannian manifold one sees immediately that

lim
r!0
k.M; g/kn

r ! 0 D 0:

Cheeger and Colding have proven a converse to this (see [29]). There is an " .n/ > 0
such that if k.X; j��j/kn

r � " .n/ for all small r; then X is in a weak sense an n-
dimensional Riemannian manifold. Among other things, they show that for small
r the ˛-Hölder distance between B .p; r/ and B .0; r/ is small. Here the ˛-Hölder
distance d˛ .X;Y/ between metric spaces is defined as the infimum of
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log max

(

sup
x1¤x2

jF .x1/F .x2/j
jx1x2j˛ ; sup

y1¤y2

ˇ
ˇF�1 .y1/F�1 .y2/

ˇ
ˇ

jy1y2j˛
)

;

where F W X ! Y runs over all homeomorphisms. They also show that if .Mi; gi/!
.X; j��j/ in the Gromov-Hausdorff distance and k.Mi; gi/kn

r � " .n/ for all i and small
r; then .Mi; gi/ ! .X; j��j/ in the Hölder distance. In particular, all of the Mis have
to be homeomorphic (and in fact diffeomorphic) to X for large i:

This is enhanced by an earlier result of Colding (see [34]) stating that for a
Riemannian manifold .M; g/ with Ric � .n � 1/ k we have that k.M; g/kn

r is small
if and only if and only if

volB .p; r/ � .1 � ı/ volB .0; r/

for some small ı. Relative volume comparison tells us that the volume condition
holds for all small r if it holds for just one r: Thus the smallness condition for the
norm holds for all small r provided we have the volume condition for just some r:

11.4 Geometric Applications

To obtain better estimates on the norms it is convenient to use more analysis. The
idea of using harmonic coordinates for similar purposes goes back to [37]. In [66]
it was shown that manifolds with bounded sectional curvature and lower bounds
for the injectivity radius admit harmonic coordinates on balls of an a priori size.
This result was immediately seized by the geometry community and put to use
in improving the theorems from the previous section. At the same time, Nikolaev
developed a different, more synthetic approach to these ideas. For the whole story
we refer the reader to Greene’s survey in [51]. Here we shall develop these ideas
from a different point of view due to Anderson.

11.4.1 Ricci Curvature

The most important feature about harmonic coordinates is that the metric is
apparently controlled by the Ricci curvature. This is exploited in the next lemma,
where we show how one can bound the harmonic C1;˛ norm in terms of the harmonic
C1 norm and Ricci curvature.

Lemma 11.4.1 (Anderson, 1990). Suppose that a Riemannian manifold .M; g/
has bounded Ricci curvature jRicj � ƒ: For any r1 < r2; K � k.M; g; p/khar

C1;r2
;

and ˛ 2 .0; 1/ we can find C .n; ˛;K; r1; r2;ƒ/ such that
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k.M; g; p/khar
C1;˛ ;r1

� C .n; ˛;K; r1; r2; ƒ/ :

Moreover, if g is an Einstein metric Ric D kg; then for each integer m we can find a
constant C .n; ˛;K; r1; r2; k;m/ such that

k.M; g; p/khar
CmC1;˛ ;r1

� C .n; ˛;K; r1; r2; k;m/ :

Proof. We just need to bound the metric components gij in some fixed harmonic
coordinates. In such coordinates � D gij@i@j. Given that k.M; g; p/khar

C1;r2
� K, we

can conclude that we have the necessary conditions on the coefficients of � D
gij@i@j to use the elliptic estimate

��gij

��
C1;˛ ;B.0;r1/

� C .n; ˛;K; r1; r2/
����gij

��
C0;B.0;r2/

C ��gij

��
C˛;B.0;r2/

�
:

Since

�gij D �2Ricij � 2Q .g; @g/

it follows that

�
��gij

�
�

C0;B.0;r2/
� 2ƒ ��gij

�
�

C0;B.0;r2/
C OC ��gij

�
�

C1;B.0;r2/
:

Using this we obtain

�
�gij

�
�

C1;˛;B.0;r1/
� C .n; ˛;K; r1; r2/

��
��gij

�
�

C0;B.0;r2/
C ��gij

�
�

C˛;B.0;r2/

�

� C .n; ˛;K; r1; r2/
�
2ƒC OCC 1

� �
�gij

�
�

C1;B.0;r2/
:

For the Einstein case we can use a bootstrap method as we get C1;˛ bounds on
the Ricci tensor from the Einstein equation Ric D kg: Thus, we have that �gij is
bounded in C˛ rather than just C0: Hence,

��gij

��
C2;˛ ;B.0;r1/

� C .n; ˛;K; r1; r2/
����gij

��
C˛;B.0;r2/

C ��gij

��
C˛ ;B.0;r2/

�

� C .n; ˛;K; r1; r2; k/ � C �
�
�gij

�
�

C1;˛ ;B.0;r2/
:

This gives C2;˛ bounds on the metric. Then, of course,�gij is bounded in C1;˛; and
thus the metric will be bounded in C3;˛: Clearly, one can iterate this until one gets
CmC1;˛ bounds on the metric for any m. ut

Combining this with the fundamental theorem gives a very interesting compact-
ness result.
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Corollary 11.4.2. For given n � 2, Q; r; ƒ 2 .0;1/ consider the class of
Riemannian n-manifolds with

k.M; g/khar
C1;r � Q;

jRicj � ƒ:

This class is precompact in the pointed C1;˛ topology for any ˛ 2 .0; 1/ : Moreover,
if we take the subclass of Einstein manifolds, then this class is compact in the Cm;˛

topology for any m � 1 and ˛ 2 .0; 1/ :
Next we show how the injectivity radius can be used to control the harmonic

norm.

Theorem 11.4.3 (Anderson, 1990). Given n � 2 and ˛ 2 .0; 1/ ; ƒ; R > 0;

one can for each Q > 0 find r .n; ˛;ƒ;R/ > 0 such that any compact Riemannian
n-manifold .M; g/ with

jRicj � ƒ;
inj � R

satisfies k.M; g/khar
C1;˛ ;r � Q:

Proof. The proof goes by contradiction. So suppose that there is a Q > 0 such that
for each i � 1 there is a Riemannian manifold .Mi; gi/ with

jRicj � ƒ;
inj � R;

k.Mi; gi/khar
C1;˛ ;i�1 > Q:

Using that the norm goes to zero as the scale goes to zero, and that it is continuous
as a function of the scale, we can for each i find ri 2

�
0; i�1

�
such that

k.Mi; gi/khar
C1;˛ ;ri

D Q: Now rescale these manifolds: Ngi D r�2
i gi: Then we have that

.Mi; Ngi/ satisfies

jRicj � riƒ;

inj � r�1
i R;

k.Mi; Ngi/khar
C1;˛ ;1 D Q:

We can then select pi 2 Mi such that

k.Mi; Ngi; pi/khar
C1;˛ ;1 2

�
Q

2
;Q


:



11.4 Geometric Applications 429

The first important step is to use the bounded Ricci curvature of .Mi; Ngi/ to
conclude that the C1; norm must be bounded for any  2 .˛; 1/ : Then we can
assume by the fundamental theorem that the sequence .Mi; Ngi; pi/ converges in the
pointed C1;˛ topology, to a Riemannian manifold .M; g; p/ of class C1; : Since the
C1;˛ norm is continuous in the C1;˛ topology we can conclude that

k.M; g; p/khar
C1;˛ ;1 2

�
Q

2
;Q


:

The second thing we can prove is that .M; g/ D .Rn; gRn/ : This clearly violates
what we just established about the norm of the limit space. To see that the limit space
is Euclidean space, recall that the manifolds in the sequence .Mi; Ngi/ are covered by
harmonic coordinates that converge to harmonic coordinates in the limit space. In
these harmonic coordinates the metric components satisfy

1

2
�Ngkl CQ .Ng; @Ng/ D �Rickl:

But we know that

j�Ricj � r�2
i ƒNgi

and that the Ngkl converge in the C1;˛ topology to the metric coefficients gkl for the
limit metric. Consequently, the limit manifold is covered by harmonic coordinates
and in these coordinates the metric satisfies:

1

2
�gkl CQ .g; @g/ D 0:

Thus the limit metric is a weak solution to the Einstein equation Ric D 0 and
therefore must be a smooth Ricci flat Riemannian manifold. Finally, we use that:
inj .Mi; Ngi/ ! 1: In the limit space any geodesic is a limit of geodesics from the
sequence .Mi; Ngi/ ; since the Riemannian metrics converge in the C1;˛ topology. If
a geodesic in the limit is a limit of segments, then it must itself be a segment. We
can then conclude that as inj .Mi; Ngi/ ! 1 any finite length geodesic must be a
segment. This, however, implies that inj .M; g/ D 1: The splitting theorem 7.3.5
then shows that the limit space is Euclidean space. ut

From this theorem we immediately get

Corollary 11.4.4 (Anderson, 1990). Let n � 2 and ƒ;D;R > 0 be given. The
class of closed Riemannian n-manifolds satisfying

jRicj � ƒ;
diam � D;

inj � R
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is precompact in the C1;˛ topology for any ˛ 2 .0; 1/ and in particular contains
only finitely many diffeomorphism types.

Notice how the above theorem depended on the characterization of Euclidean
space we obtained from the splitting theorem. There are other similar characteriza-
tions of Euclidean space. One of the most interesting ones uses volume pinching.

11.4.2 Volume Pinching

The idea is to use the relative volume comparison (see lemma 7.1.4) rather than the
splitting theorem. It is relatively easy to prove that Euclidean space is the only space
with

Ric � 0;
lim

r!1
volB .p; r/

!nrn
D 1;

where !nrn is the volume of a Euclidean ball of radius r (see also exercises 7.5.8
and 7.5.10). This result has a very interesting gap phenomenon associated to it under
the stronger hypothesis that the space is Ricci flat.

Lemma 11.4.5 (Anderson, 1990). For each n � 2 there is an " .n/ > 0 such that
any complete Ricci flat manifold .M; g/ that satisfies

volB .p; r/ � .1 � "/!nrn

for some p 2 M is isometric to Euclidean space.

Proof. First observe that on any complete Riemannian manifold with Ric � 0;

relative volume comparison can be used to show that

volB .p; r/ � .1 � "/!nrn

as long as

lim
r!1

volB .p; r/

!nrn
� .1� "/ :

Therefore, if this holds for one p; then it must hold for all p: Moreover, if we scale
the metric to

�
M; �2g

�
; then the same volume comparison still holds, as the lower

curvature bound Ric � 0 isn’t changed by scaling.
If our assertion is assumed to be false, then for each integer i there is a Ricci flat

manifold .Mi; gi/ with
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lim
r!1

volB .pi; r/

!nrn
� �1 � i�1

�
;

k.Mi; gi/khar
C1;˛;r ¤ 0 for all r > 0:

By scaling these metrics suitably, it is then possible to arrange it so that we have a
sequence of Ricci flat manifolds .Mi; Ngi; qi/ with

lim
r!1

volB .qi; r/

!nrn
� �1 � i�1

�
;

k.Mi; Ngi/khar
C1;˛ ;1 � 1;

k.Mi; Ngi; qi/khar
C1;˛ ;1 2 Œ0:5; 1� :

From what we already know, we can then extract a subsequence that converges in
the Cm;˛ topology to a Ricci flat manifold .M; g; q/. In particular, we must have that
metric balls of a given radius converge and that the volume forms converge. Thus,
the limit space must satisfy

lim
r!1

volB .q; r/

!nrn
D 1:

This means that we have maximal possible volume for all metric balls, and thus the
manifold must be Euclidean. This, however, violates the continuity of the norm in
the C1;˛ topology, as the norm for the limit space would then have to be zero. ut
Corollary 11.4.6. Let n � 2; �1 < � � ƒ < 1; and D; R 2 .0;1/ be given.
There is a ı D ı

�
n; � � R2� such that the class of closed Riemannian n-manifolds

satisfying

.n � 1/ƒ � Ric � .n � 1/ �;
diam � D;

volB .p;R/ � .1 � ı/ v .n; �;R/

is precompact in the C1;˛ topology for any ˛ 2 .0; 1/ and in particular contains
only finitely many diffeomorphism types.

Proof. We use the same techniques as when we had an injectivity radius bound.
Observe that if we have a sequence .Mi; Ngi; pi/ where Ngi D k2i gi; ki ! 1; and the
.Mi; gi/ lie in the above class, then the volume condition reads

volBNgi .pi;R � ki/ D kn
i volBgi .pi;R/

� kn
i .1 � ı/ v .n; �;R/

D .1 � ı/ v �n; � � k�2
i ;R � ki

�
:
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From relative volume comparison we can then conclude that for r � R � ki and very
large i;

volBNgi .pi; r/ � .1 � ı/ v
�
n; � � k�2

i ; r
� 	 .1 � ı/ !nrn:

In the limit space we must therefore have

volB .p; r/ � .1 � ı/ !nrn for all r:

This limit space is also Ricci flat and is therefore Euclidean space. The rest of the
proof goes as before, by getting a contradiction with the continuity of the norms.

ut

11.4.3 Sectional Curvature

Given the results for Ricci curvature we immediately obtain.

Theorem 11.4.7 (The Convergence Theorem of Riemannian Geometry). Given
R, K > 0, there exist Q; r > 0 such that any .M; g/ with

inj � R;

jsecj � K

has k.M; g/khar
C1;˛ ;r

� Q. In particular, this class is compact in the pointed C1;˛

topology for all ˛ < 1:

Using the diameter bound in positive curvature and Klingenberg’s estimate for
the injectivity radius from theorem 6.5.1 we get

Corollary 11.4.8 (Cheeger, 1967). For given n � 1 and k > 0; the class of
Riemannian 2n-manifolds with k � sec � 1 is compact in the C˛ topology and
consequently contains only finitely many diffeomorphism types.

A similar result was also proven by A. Weinstein at the same time. The
hypotheses are the same, but Weinstein showed that the class contained finitely
many homotopy types.

Our next result shows that one can bound the injectivity radius provided that one
has lower volume bounds and bounded curvature. This result is usually referred to
as Cheeger’s lemma. With a little extra work one can actually prove this lemma
for complete manifolds. This requires that we work with pointed spaces and also
to some extent incomplete manifolds as it isn’t clear from the beginning that the
complete manifolds in question have global lower bounds for the injectivity radius.
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Lemma 11.4.9 (Cheeger, 1967). Given n � 2, v;K > 0, and a compact
n-manifold .M; g/ with

j sec j � K;

volB .p; 1/ � v;

for all p 2 M, then injM � R, where R depends only on n;K; and v.

Proof. As for Ricci curvature we can use a contradiction type argument. So assume
we have .Mi; gi/ with injMi ! 0 and satisfying the assumptions of the lemma. Find
pi 2 Mi with injpi

D inj .Mi; gi/ and consider the pointed sequence .Mi; pi; Ngi/;

where Ngi D .injMi/
�2gi is rescaled so that

inj.Mi; Ngi/ D 1;
j sec.Mi; Ngi/j � .inj.Mi; gi//

2 � K D Ki ! 0:

Now some subsequence of .Mi; Ngi; pi/ will converge in the pointed C1;˛; ˛ < 1;

topology to a manifold .M; g; p/. Moreover, this manifold is flat since
k.M; g/kC1;˛;1 D 0.

The first observation about .M; g; p/ is that inj.p/ � 1. This follows because
the conjugate radius for .Mi; Ngi/ is � 	=

p
Ki ! 1, so Klingenberg’s estimate for

the injectivity radius (lemma 6.4.7) implies that there must be a geodesic loop of
length 2 at pi 2 Mi. Since .Mi; Ngi; pi/ ! .M; g; p/ in the pointed C1;˛ topology, the
geodesic loops must converge to a geodesic loop of length 2 in M based at p. Hence,
inj.M/ � 1.

The other contradictory observation is that .M; g/ D .Rn; gRn/. Using the
assumption volB.pi; 1/ � v the relative volume comparison (see lemma 7.1.4)
shows that there is a v0.n;K; v/ such that volB.pi; r/ � v0 � rn, for r � 1. The
rescaled manifold .Mi; Ngi/ then satisfies volB.pi; r/ � v0 � rn, for r � .inj.Mi; gi//

�1.
Using again that .Mi; Ngi; pi/ ! .M; g; p/ in the pointed C˛ topology, we get
volB.p; r/ � v0 � rn for all r. Since .M; g/ is flat, this shows that it must be Euclidean
space.

To justify the last statement let M be a complete flat manifold. As the elements
of the fundamental group act by isometries on Euclidean space, we know that they
must have infinite order (any isometry of finite order is a rotation around a point
and therefore has a fixed point). So if M is not simply connected, then there is

an intermediate covering R
n ! OM ! M, where 	1

� OM
�
D Z: This means that

OM D R
n�1 � S1 .R/ for some R > 0. Hence, for any p 2 OM we must have

lim
r!1

volB .p; r/

rn�1 <1:

The same must then also hold for M itself, contradicting our volume growth
assumption. ut
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This lemma was proved with a more direct method by Cheeger. We have included
this proof in order to show how our convergence theory can be used. The lemma
also shows that the convergence theorem of Riemannian geometry remains true if
the injectivity radius bound is replaced by a lower bound on the volume of 1-balls.
The following result is now immediate.

Corollary 11.4.10 (Cheeger, 1967). Let n � 2, K;D; v > 0 be given. The class of
closed Riemannian n-manifolds with

jsecj � K;

diam � D;

vol � v

is precompact in the C1;˛ topology for any ˛ 2 .0; 1/ and in particular, contains
only finitely many diffeomorphism types.

11.4.4 Lower Curvature Bounds

It is also possible to obtain similar compactness results for manifolds that only
have lower curvature bounds as long as we also assume that the injectivity radius is
bounded from below.

We give a proof in the case of lower sectional curvature bounds and mention the
analogous result for lower Ricci curvature bounds.

Theorem 11.4.11. Given R; k > 0; there exist Q; r depending on R; k such that
any manifold .M; g/ with

sec � �k2;

inj � R

satisfies k.M; g/kC1;r � Q.

Proof. It suffices to get a Hessian estimate for distance functions r.x/ D jxpj.
Lemma 6.4.3 shows that

Hessr.x/ � k � coth.k � r.x//gr

for all x 2 B .p;R/ � fpg. Conversely, if r.x0/ < R; then r.x/ is supported from
below by f .x/ D R� jxy0j, where y0 D c.R/ and c is the unique unit speed geodesic
that minimizes the distance from p to x0. Thus

Hessr � Hessf � �k � coth.jx0y0j � k/gr D �k � coth.k.R � r.x0///gr
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at x0. Hence jHessrj � Q .k;R/ on metric balls B .x; r/ where jxpj � R=4 and r � R=4.
For fixed p 2 M choose an orthonormal basis e1; : : : ; en for TpM and geodesics

ci.t/ with ci.0/ D p, Pci.0/ D ei. We use the distance functions

ri.x/ D ˇˇx ci
��R

2

�ˇˇ W B �p; R
4

�! R

to create a potential coordinate system

 .x/ D �r1 .x/ ; : : : ; rn .x/
� � �r1 .p/ ; : : : ; rn .p/

�
:

By construction D jp .ei/ is the standard basis for T0Rn. In particular,  defines
a coordinate chart on some neighborhood of p with gijjp D ıij. While we can’t
define gij on B .p; R=4/, the potential inverse gij D g

�rri;rrj
�

is defined on the
entire region. The Hessian estimates combined with the fact that

ˇ
ˇrrk

ˇ
ˇ D 1 imply

that
ˇ
ˇdgij

ˇ
ˇ � Q .n; k;R/ on B .p; R=4/. In particular,

ˇ
ˇ	ıij � gijjx


ˇˇ < 1=10 for x 2
B .p; ı .n; k;R//. This implies that gij has a well-defined inverse gij on B .p; ı/ with
the properties that

ˇ
ˇ	gijjp � gijjx


ˇˇ � 1=9 and
ˇ
ˇdgij

ˇ
ˇ � C .n;K;R/ on B .p; ı/.

By inspecting the proof of the inverse function theorem we conclude that  is
injective on B .p; ı/ and that B .0; ı=4/ �  .B .p; ı// (see also exercise 6.7.23).
Moreover, we have also established n1 and n2. ut
Example 11.4.12. This theorem is actually optimal. Consider rotationally symmet-
ric metrics dr2 C 
2" .r/d�2, where 
" is concave and satisfies


".r/ D
�

r for 0 � r � 1 � ";
3
4
r for 1C " � r.

These metrics have sec � 0 and inj � 1. As " ! 0; we get a C1;1 manifold with
a C0;1 Riemannian metric .M; g/. In particular, k.M; g/kC0;1;r < 1 for all r. Limit
spaces of sequences with inj � R; sec � �k2 can therefore not in general be
assumed to be smoother than the above example.

Example 11.4.13. With a more careful construction, we can also find  " with

 ".r/ D
�

sin r for 0 � r � 	
2
� ";

1 for 	
2
� r.

Then the metric dr2 C  2" .r/d�2 satisfies j sec j � 4 and inj � 1
4
. As "! 0; we get

a limit metric that is C1;1. We have, however, only shown that such limit spaces are
C1;˛ for all ˛ < 1.

Unlike the situation for bounded curvature we cannot get injectivity radius
bounds when the curvature is only bounded from below. The above examples are
easily adapted to give the following examples.
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EXERCISE 11.4.14. Given a 2 .0; 1/ and � > 0, there is a smooth concave function
�� .r/ with the property that

�".r/ D
�

r for 0 � r � ";
ar for 2" � r.

The corresponding surfaces dr2 C �2".r/d�2 have sec � 0 and inj � 5�, while the
volume of any R ball is always � a	R2.

Finally we mention the Ricci curvature result.

Theorem 11.4.15 (Anderson-Cheeger, 1992). Given R; k > 0 and ˛ 2 .0; 1/

there exist Q; r depending on n; R; k such that any manifold .Mn; g/ with

Ric � � .n � 1/ k2;

inj � R

satisfies k.M; g/khar
C˛;r � Q.

The proof of this result is again by contradiction and uses most of the ideas
we have already covered. However, since the harmonic norm does not work well
without control on the derivatives of the metric it is necessary to use the Sobolev
spaces W1;p � C1�n=p to define a new harmonic norm with Lp control on the
derivatives. For the contradiction part of the argument we need to use distance
functions as above, but we only obtain bounds on their Laplacians. By inspecting
how these bounds are obtained we can show that they! 0 as inj!1 and k! 0.
This will assist in showing that the limit space is Euclidean space. For more details
see the original paper [4].

11.4.5 Curvature Pinching

Let us turn our attention to some applications of these compactness theorems. One
natural subject to explore is that of pinching results. Recall from corollary 5.6.14
that complete constant curvature manifolds have uniquely defined universal cover-
ings. It is natural to ask whether one can in some topological sense still expect this
to be true when one has close to constant curvature. Now, any Riemannian manifold
.M; g/ has curvature close to zero if we multiply the metric by a large scalar. Thus,
some additional assumptions must come into play.

We start out with the simpler problem of considering Ricci pinching and then
use this in the context of curvature pinching below. The results are very simple
consequences of the convergence theorems we have already presented.
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Theorem 11.4.16. Given n � 2; R; D > 0, and � 2 R; there is an " .n; �;D;R/ >
0 such that any closed Riemannian n-manifold .M; g/ with

diam � D;

inj � R;

jRic � �gj � "

is C1;˛ close to an Einstein metric with Einstein constant �:

Proof. We already know that this class is precompact in the C1;˛ topology no matter
what " we choose. If the result is false, there would be a sequence .Mi; gi/! .M; g/
that converges in the C1;˛ topology to a closed Riemannian manifold of class C1;˛ ,
where in addition,

ˇ
ˇRicgi � �gi

ˇ
ˇ! 0:Using harmonic coordinates we conclude that

the metric on the limit space must be a weak solution to

1

2
�gC Q .g; @g/ D ��g:

But this means that the limit space is actually Einstein, with Einstein constant �;
thus, contradicting that the spaces .Mi; gi/ were not close to such Einstein metrics.

ut
Using the compactness theorem for manifolds with almost maximal volume it

follows that the injectivity radius condition could have been replaced with an almost
maximal volume condition. Now let us see what happens with sectional curvature.

Theorem 11.4.17. Given n � 2; v; D > 0, and � 2 R; there is an " .n; �;D; v/ >
0 such that any closed Riemannian n-manifold .M; g/ with

diam � D;

vol � v;
jsec��j � "

is C1;˛ close to a metric of constant curvature �:

Proof. In this case first observe that Cheeger’s lemma 11.4.9 gives us a lower bound
for the injectivity radius. The previous theorem then shows that such metrics must
be close to Einstein metrics. We have to check that if .Mi; gi/ ! .M; g/ ; whereˇ
ˇsecgi ��

ˇ
ˇ! 0 and Ricg D .n � 1/ �g; then in fact .M; g/ has constant curvature �:

To see this, it is perhaps easiest to observe that if Mi 3 pi ! p 2 M then we can
use polar coordinates around these points to write gi D dr2C gr;i and g D dr2C gr.
Since the metrics converge in C1;˛ ; we certainly have that gr;i converge to gr: Using
the curvature pinching, we conclude from theorem 6.4.3
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sn0
�C"i

.ri/

sn�C"i .ri/
gr;i � Hessri �

sn0
��"i

.ri/

sn��"i .ri/
gr;i

with "i ! 0: Using that the metrics converge in C1;˛ it follows that the limit metric
satisfies

Hessr D sn0
� .r/

sn� .r/
gr:

Corollary 4.3.4 then implies that the limit metric has constant curvature �: ut
It is interesting that we had to go back and use the more geometric estimates for

distance functions in order to prove the curvature pinching, while the Ricci pinching
could be handled more easily with analytic techniques using harmonic coordinates.
One can actually prove the curvature result with purely analytic techniques, but
this requires that we study convergence in a more general setting where one uses
Lp norms and estimates. This has been developed rigorously and can be used to
improve the above results to situations were one has only Lp curvature pinching
rather than the L1 pinching we use here (see [91], [88], and [36]).

When the curvature � is positive, some of the assumptions in the above theorems
are in fact not necessary. For instance, Myers’ estimate for the diameter makes the
diameter hypothesis superfluous. For the Einstein case this seems to be as far as we
can go. In the positive curvature case we can do much better. In even dimensions,
we already know from theorem 6.5.1, that manifolds with positive curvature have
both bounded diameter and lower bounds for the injectivity radius, provided that
there is an upper curvature bound. We can therefore show

Corollary 11.4.18. Given 2n � 2; and � > 0; there is an " D " .n; �/ > 0 such
that any closed Riemannian 2n-manifold .M; g/ with

jsec��j � "

is C1;˛ close to a metric of constant curvature �:

This corollary is, in fact, also true in odd dimensions. This was proved by Grove-
Karcher-Ruh in [58]. Notice that convergence techniques are not immediately
applicable because there are no lower bounds for the injectivity radius. Their
pinching constant is also independent of the dimension. Using theorem 6.5.5 we
can only conclude that.

Corollary 11.4.19. Given n � 2; and � > 0; there is an " D " .n; �/ > 0 such that
any closed simply connected Riemannian n-manifold .M; g/ with

jsec��j � "

is C1;˛ close to a metric of constant curvature �:
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Also recall the quarter pinching results in positive curvature that we proved in
section 12.3. There the conclusions were much weaker and purely topological.
These results have more recently been significantly improved using Ricci flow
techniques. First in [16] to the situation where the curvature operator is positive
and next in [20] to the case where the complex sectional curvatures are positive.

In negative curvature some special things also happen. Namely, Heintze has
shown that any complete manifold with �1 � sec < 0 has a lower volume bound
when the dimension � 4 (see also [52] for a more general statement). The lower
volume bound is therefore an extraneous condition when doing pinching in negative
curvature. However, unlike the situation in positive curvature the upper diameter
bound is crucial. See, e.g., [55] and [43] for counterexamples.

This leaves us with pinching around 0: As any compact Riemannian manifold
can be scaled to have curvature in Œ�"; "� for any "; we do need the diameter
bound. The volume condition is also necessary, as the Heisenberg group from the
exercise 4.7.22 has a quotient where there are metrics with bounded diameter and
arbitrarily pinched curvature. This quotient, however, does not admit a flat metric.
Gromov was nevertheless able to classify all n-manifolds with

jsecj � " .n/ ;
diam � 1

for some very small " .n/ > 0:More specifically, they all have a finite cover that is a
quotient of a nilpotent Lie group by a discrete subgroup. Interestingly, there is also
a Ricci flow type proof of this result in [94]. For more on collapsing in general, the
reader can start by reading [44].

11.5 Further Study

Cheeger first proved his finiteness theorem and put down the ideas of Ck conver-
gence for manifolds in [25]. They later appeared in journal form [26], but not
all ideas from the thesis were presented in this paper. Also the idea of general
pinching theorems as described here are due to Cheeger [27]. For more generalities
on convergence and their uses we recommend the surveys by Anderson, Fukaya,
Petersen, and Yamaguchi in [51]. Also for more on norms and convergence theorems
the survey by Petersen in [54] might prove useful. The text [53] should also be
mentioned again. It was probably the original french version of this book that
really spread the ideas of Gromov-Hausdorff distance and the stronger convergence
theorems to a wider audience. Also, the convergence theorem of Riemannian
geometry, as stated here, appeared for the first time in this book.

We should also mention that S. Peters in [86] obtained an explicit estimate for the
number of diffeomorphism classes in Cheeger’s finiteness theorem. This also seems
to be the first place where the modern statement of Cheeger’s finiteness theorem is
proved.
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11.6 Exercises

EXERCISE 11.6.1. Find a sequence of 1-dimensional metric spaces that Hausdorff
converge to the unit cube Œ0; 1�3 endowed with the metric coming from the maximum
norm on R

3: Then find surfaces (jungle gyms) converging to the same space.

EXERCISE 11.6.2. Assume that we have a map (not necessarily continuous) F W
X ! Y between metric spaces such that for some � > 0:

jjx1x2j � jF .x1/F .x2/jj � �; x1x2 2 X

and

F .X/ � Y is �-dense:

Show that dG�H .X;Y/ < 2�.

EXERCISE 11.6.3. C. Croke has shown that there is a universal constant c .n/ such
that any n-manifold with inj � R satisfies volB .p; r/ � c .n/ � rn for r � R

2
: Use this

to show that the class of n-dimensional manifolds satisfying inj � R and vol � V is
precompact in the Gromov-Hausdorff topology.

EXERCISE 11.6.4. Let .M; g/ be a complete Riemannian n-manifold with Ric �
.n � 1/ k. Show that there exists a constant C .n; k/ with the property that for each
� 2 .0; 1/ there exists a cover of metric balls B .xi; �/ with the property that no more
than C .n; k/ of the balls B .xi; 5�/ can have nonempty intersection.

EXERCISE 11.6.5. Show that there are Bochner formulas for Hess
�
1
2
g .X;Y/

�
and

�1
2
g .X;Y/, where X and Y are vector fields with symmetric rX and rY: This can

be used to prove the formulas relating Ricci curvature to the metric in harmonic
coordinates.

EXERCISE 11.6.6. Show that in contrast to the elliptic estimates, it is not possible
to find C˛ bounds for a vector field X in terms of C0 bounds on X and divX:

EXERCISE 11.6.7. Define Cm;˛ convergence for incomplete manifolds. On such
manifolds define the boundary @ as the set of points that lie in the completion but
not in the manifold itself. Show that the class of incomplete spaces with jRicj � ƒ
and inj .p/ � min fR;R � d .p; @/g ; R < 1; is precompact in the C1;˛ topology.

EXERCISE 11.6.8. Define a weighted norm concept. That is, fix a positive function
� .R/ ; and assume that in a pointed manifold .M; g; p/ the points on the distance
spheres S .p;R/ have norm� � .R/ : Prove the corresponding fundamental theorem.

EXERCISE 11.6.9. Assume M is a class of compact Riemannian n-manifolds that
is compact in the Cm;˛ topology. Show that there is a function f .r/, where f .r/! 0

as r! 0, depending on M such that k.M; g/kCm;˛;r � f .r/ for all M 2M .
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EXERCISE 11.6.10. The local models for a class of Riemannian manifolds are the
types of spaces one obtains by scaling the elements of the class by a constant!1:
For example, if we consider the class of manifolds with jsecj � K for some K; then
upon rescaling the metrics by a factor of �2; we have the condition jsecj � ��2K;
as � ! 1; we therefore arrive at the condition jsecj D 0: This means that the
local models are all the flat manifolds. Notice that we don’t worry about any type
of convergence here. If, in this example, we additionally assume that the manifolds
have inj � R; then upon rescaling and letting � ! 1 we get the extra condition
inj D 1: Thus, the local model is Euclidean space. It is natural to suppose that
any class that has Euclidean space as it only local model must be compact in some
topology.

Show that a class of spaces is compact in the Cm;˛ topology if when we rescale
a sequence in this class by constants that! 1; the sequence subconverges in the
Cm;˛ topology to Euclidean space.

EXERCISE 11.6.11. Consider the singular Riemannian metric dt2 C .at/2 d�2, a >
1; on R

2: Show that there is a sequence of rotationally symmetric metrics on R
2

with sec � 0 and inj D 1 that converge to this metric in the Gromov-Hausdorff
topology.

EXERCISE 11.6.12. Show that the class of spaces with inj � R and
ˇ
ˇrkRic

ˇ
ˇ � ƒ

for k D 0; : : : ;m is compact in the CmC1;˛ topology.

EXERCISE 11.6.13 (S-h. Zhu). Consider the class of complete or compact
n-dimensional Riemannian manifolds with

conj:rad � R;

jRicj � ƒ;
volB .p; 1/ � v:

Using the techniques from Cheeger’s lemma, show that this class has a lower bound
for the injectivity radius. Conclude that it is compact in the C1;˛ topology.

EXERCISE 11.6.14. Using the Eguchi-Hanson metrics from exercise 4.7.23 show
that one cannot in general expect a compactness result for the class

jRicj � ƒ;
volB .p; 1/ � v:

Thus, one must assume either that v is large as we did before or that there a lower
bound for the conjugate radius.

EXERCISE 11.6.15. The weak (harmonic) norm k.M; g/kweak
Cm;˛ ;r is defined in almost

the same way as the norms we have already worked with, except that we only insist
that the charts 's W B .0; r/ ! Us are immersions. The inverse is therefore only
locally defined, but it still makes sense to say that it is harmonic.
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(1) Show that if .M; g/ has bounded sectional curvature, then for all Q > 0 there is
an r > 0 such that k.M; g/kweak

C1;˛ ;r � Q: Thus, the weak norm can be thought of
as a generalized curvature quantity.

(2) Show that the class of manifolds with bounded weak norm is precompact in the
Gromov-Hausdorff topology.

(3) Show that .M; g/ is flat if and only if the weak norm is zero on all scales.



Chapter 12
Sectional Curvature Comparison II

In the first section we explain how one can find generalized gradients for distance
functions in situations where the function might not be smooth. This critical point
technique is used in the proofs of all the big theorems in this chapter. The other
important technique comes from Toponogov’s theorem, which we prove in the
following section. The first applications of these new ideas are to sphere theorems.
We then prove the soul theorem of Cheeger and Gromoll. After that, we discuss
Gromov’s finiteness theorem for bounds on Betti numbers and generators for the
fundamental group. Finally, we show that these techniques can be adapted to prove
the Grove-Petersen homotopy finiteness theorem.

Toponogov’s theorem is a very useful refinement of Gauss’s early realization
that curvature and angle excess of triangles are related. The fact that Toponogov’s
theorem can be used to get information about the topology of a space seems to
originate with Berger’s proof of the quarter pinched sphere theorem. Toponogov
himself proved these comparison theorems in order to establish the splitting theorem
for manifolds with nonnegative sectional curvature and the maximal diameter
theorem for manifolds with a positive lower bound for the sectional curvature. As
we saw in theorems 7.2.5 and 7.3.5, these results in fact hold in the Ricci curvature
setting. The next use of Toponogov’s theorem was to the soul theorem of Cheeger-
Gromoll-Meyer. However, Toponogov’s theorem is not truly needed for any of the
results mentioned so far. With little effort one can actually establish these theorems
with more basic comparison techniques. Still, it is convenient to have a workhorse
theorem of universal use. It wasn’t until Grove and Shiohama developed critical
point theory to prove their diameter sphere theorem that Toponogov’s theorem
was put to serious use. Shortly after that, Gromov put these two ideas to even
more nontrivial use, with his Betti number estimate for manifolds with nonnegative
sectional curvature. After that, it became clear that in working with manifolds that
have lower sectional curvature bounds, the two key techniques are Toponogov’s
theorem and the critical point theory of Grove-Shiohama.

© Springer International Publishing AG 2016
P. Petersen, Riemannian Geometry, Graduate Texts in Mathematics 171,
DOI 10.1007/978-3-319-26654-1_12
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The idea of triangle comparison for surfaces goes back to Alexandrov who in
turn influenced Toponogov, however it is interesting to note that in fact Pizzetti had
already established the local triangle comparison on surfaces at the beginning of the
20th century (see [84]).

12.1 Critical Point Theory

In the generalized critical point theory developed here, the object is to define
generalized gradients of continuous functions and then use these gradients to
conclude that certain regions of a manifold have no topology. The motivating basic
lemma is the following:

Lemma 12.1.1. Let .M; g/ be a Riemannian manifold and f W M ! R a proper
smooth function. If f has no critical values in the closed interval Œa; b� ; then
the pre-images f �1 .Œ�1; b�/ and f �1 .Œ�1; a�/ are diffeomorphic. Furthermore,
there is a deformation retraction of f �1 .Œ�1; b�/ onto f �1 .Œ�1; a�/; in particular,
the inclusion

f �1 .Œ�1; a�/ ,! f �1 .Œ�1; b�/
is a homotopy equivalence.

Proof. The idea for creating such a retraction is to follow the negative gradient field
of f . Since there are no critical points for f the gradient�rf is nonzero everywhere
on f �1 .Œa; b�/: Next construct a bump function  W M ! Œ0; 1� that is 1 on the
compact set f �1 .Œa; b�/ and zero outside some compact neighborhood of f �1 .Œa; b�/:
Finally consider the vector field

X D � � rf

jrf j2 :

This vector field has compact support and therefore must be complete (integral
curves are defined for all time). Let Ft denote the flow for this vector field. (See
figure 12.1)

For fixed q 2 M consider the function t 7! f .Ft .q//: The derivative of this
function is g .X;rf /; so as long as the integral curve t 7! Ft .q/ remains in
f �1 .Œa; b�/; the function t 7! f .Ft .q// is linear with derivative -1. In particular,
the diffeomorphism Fb�a W M ! M must carry f �1 .Œ�1; b�/ diffeomorphically
into f �1 .Œ�1; a�/:

The desired retraction is given by:

rt W f �1 .Œ�1; b�/! f �1 .Œ�1; b�/;

rt .p/ D
�

p if f .p/ � a;
Ft.f .p/�a/ .p/ if a � f .p/ � b:
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Fig. 12.1 Gradient Flow
Deformation

Then r0 D id; and r1 maps f �1 .Œ�1; b�/ diffeomorphically into f �1 .Œ�1; a�/: ut
Notice that we used in an essential way that the function is proper to conclude

that the vector field is complete. In fact, if we delete a single point from the region
f �1 .Œa; b�/; then the function still won’t have any critical values, but clearly the
conclusion of the lemma is false.

We shall try to generalize this lemma to functions that are not even C1:

To minimize technicalities we work exclusively with distance functions. There is,
however, a more general theory for Lipschitz functions that could be used in this
context (see [33]). Suppose .M; g/ is complete and K � M a compact subset. Then
the distance function

r .x/ D jx Kj D min fjx pj j p 2 Kg
is proper. Wherever this function is smooth, we know that it has unit gradient and
therefore is noncritical at such points. However, it might also have local maxima,
and at such points we certainly wouldn’t want the function to be noncritical. To
define the generalized gradient for such functions, we list all the possible values it
could have (see also exercise 5.9.28 for more details on differentiability of distance
functions). Define pq to be a choice of a unit speed segment from p to q, its initial

velocity is �!pq, and
H)
pq the set of all such unit vectors �!pq. We can also replace q by

a set K with the understanding that we only consider the segments from p to K of

length jpKj. In the case where r is smooth at x; we clearly have that �rr D �!xK. At

other points,
H)
xK might contain more vectors. We say that r is regular, or noncritical,

at x if the set
H)
xK is contained in an open hemisphere of the unit sphere in TxM:

The center of any such hemisphere is then a possible averaged direction for the
negative gradient of r at x: Stated differently, we have that r is regular at x if and

only if there is a unit vector v 2 TxM such that †
�
v;
�!
xK
�
< 	=2 for all

�!
xK 2 H)

xK .

Clearly v is the center of such a hemisphere. We can quantify being regular by

saying that r is ˛-regular at x if there exists v 2 TxM such that†
�
v;
�!
xK
�
< ˛ for all

�!
xK 2 H)

xK . Thus, r is regular at x if and only if it is 	=2-regular. Let R˛ .x;K/ � TxM
be the set of all such unit directions v at ˛-regular points x.
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x

p

p

x

Fig. 12.2 Critical and Regular Points

Evidently, a point x is critical for r if the segments from K to x spread out at x;
while it is regular if they more or less point in the same direction (see figure 12.2).
It was Berger who first realized and showed that a local maximum must be critical
in the above sense. Berger’s result is a consequence of the next proposition.

Proposition 12.1.2. Suppose .M; g/ and r .x/ D jx Kj are as above. Then:

(1)
H)
xK is closed and hence compact for all x:

(2) The set of ˛-regular points is open in M:
(3) The set R˛ .x;K/ is convex for all ˛ � 	=2.
(4) If U is an open set of ˛-regular points for r; then there is a unit vector field X

on U such that Xjx 2 R˛ .x;K/ for all x 2 U: Furthermore, if c is an integral
curve for X and s < t; then

jc .s/ Kj � jc .t/ Kj > cos .˛/ .t � s/ :

Proof. (1) Let xqi be a sequence of unit speed segments from x to K with �!xqi

converging to some unit vector v 2 TxM: Clearly, expx .tv/ is the limit of the
segments xqi and therefore is a segment itself. Furthermore, since K is closed
expx .jxKj v/ 2 K:

(2) Suppose xi ! x; and xi are not ˛-regular. We shall show that x is not ˛-regular.

This means that for any unit v 2 TxM there is some
�!
xK such that †

�
v;
�!
xK
�
�

˛. So fix a unit v 2 TxM and choose a sequence vi 2 Txi M converging to v:

By assumption †
�
vi;
�!
xiK

�
� ˛ for some

�!
xiK. Now select a subsequence so

that the unit vectors
�!
xiK converge to a w 2 TxM. Thus † .v;w/ � ˛. Finally

note that the segments xi K D expxi

�
t
�!
xiK

�
, t 2 Œ0; jxi Kj� must converge to the

geodesic expx .tw/, t 2 Œ0; jx Kj� which is then forced to be a segment from x
to K.

(3) First observe that for each w 2 TxM, the open cone

C˛ .w/ D fv 2 TxM j † .v;w/ < ˛g
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is convex when ˛ � 	=2. Then observe that R˛ .x;K/ is the intersection of the

cones C˛
��!

xK
�

,
�!
xK 2 H)

xK and is therefore also convex.

(4) For each p 2 U select vp 2 R˛ .p;K/ and extend vp to a unit vector field Vp: It
follows from the proof of (2) that Vp .x/ 2 R˛ .x;K/ for x near p: We can then
assume that Vp is defined on a neighborhood Up on which it is a generalized
gradient. Next select a locally finite collection fUig of Ups and a corresponding
partition of unity �i: Then property (3) tells us that the vector field V DP�iVi

is nonzero. Define X D V=jVj.
Keep in mind that the flow of X should decrease distances to K so it is easier

to consider �r instead of r. Property (4) is clearly true at points where r is
smooth, because in that case the derivative of � .r ı c/ .s/ D � jc .s/ Kj is

g .X;�rr/ D cos† .X;�rr/ D cos†
�

X;
�!
xK
�
> cos .˛/:

Now observe that since �r ı c is Lipschitz continuous it is also absolutely
continuous. In particular, �r ı c is almost everywhere differentiable and the
integral of its derivative. It might, however, happen that �r ı c is differentiable
at a point x where rr is not defined. To see what happens at such points we
select a variation Nc .s; t/ such that t 7! Nc .0; t/ is a segment from K to x;
Nc .s; 0/ D Nc .0; 0/ 2 K;

ˇ
ˇ @Nc
@t .s; t/

ˇ
ˇ is constant in t and hence equal to the length

of the t-curves; and Nc .s; 1/ D c .s/ is the integral curve for X through x D c .0/.
Thus

1

2
j.r ı c/ .s/j2 � 1

2

�Z 1

0

ˇ
ˇ
ˇ
ˇ
@Nc
@t

ˇ
ˇ
ˇ
ˇ dt

�2

� 1

2

Z 1

0

ˇ̌
ˇ
ˇ
@Nc
@t

ˇ̌
ˇ
ˇ

2

dt

D E .Ncs/

with equality holding when s D 0: In particular, the right-hand side is a support
function for the left-hand side. Assuming that r ı c is differentiable at s D 0 we
obtain

r .x/
d .r ı c/

ds
jsD0 D dE

ds
jsD0

D g

�
@Nc
@t
.0; 1/ ;

@Nc
@s
.0; 1/

�

D g

�
@Nc
@t
.0; 1/ ;X

�

D
ˇ
ˇ̌
ˇ
@Nc
@t
.0; 1/

ˇ
ˇ̌
ˇ cos

�
†
�

X;
@Nc
@t

��
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D �r .x/ cos

�
†
�

X;�@Nc
@t

��

D �r .x/ cos
�
†
�

X;
�!
xK
��
:

Thus

�d jc .s/Kj
ds

jsD0 D cos
�
†
�

X;
�!
xK
��

> cos˛:

This proves the desired property.
ut

We can now generalize the above retraction lemma.

Lemma 12.1.3 (Grove-Shiohama). Let .M; g/ and r .x/ D jxKj be as above.
If all points in r�1 .Œa; b�/ are ˛-regular for ˛ < 	=2, then r�1 .Œ�1; a�/ is
homeomorphic to r�1 .Œ�1; b�/ ; and r�1 .Œ�1; b�/ deformation retracts onto
r�1 .Œ�1; a�/:
Proof. The construction is similar to the first lemma. We can construct a compactly
supported “retraction” vector field X such that the flow Ft for X satisfies

r .p/� r
�
Ft .p/

�
> t � cos .˛/ ; t � 0 if p;Ft .p/ 2 r�1 .Œa; b�/ :

For each p 2 r�1 .b/ there is a first time tp � b�a
cos˛ for which Ftp .p/ 2 r�1 .a/: The

function p 7! tp is continuous and thus we get the desired retraction

rt W r�1 .Œ�1; b�/! r�1 .Œ�1; b�/ ;

rt .p/ D
�

p if r .p/ � a
Ft�tp .p/ if a � r .p/ � b

:

ut
Remark 12.1.4. The original construction of Grove and Shiohama actually shows
something stronger, the distance function can be approximated by smooth functions
without critical points on the same region the distance function had no critical points
(see [56].) This has also turned out to be important in certain contexts.

The next corollary is our first simple consequence of this lemma.

Corollary 12.1.5. Suppose K is a compact submanifold of a complete Riemannian
manifold .M; g/ and that the distance function jx Kj is regular everywhere on M�K:
Then M is diffeomorphic to the normal bundle of K in M: In particular, if K D fpg ;
then M is diffeomorphic to R

n:

Proof. We know that M � K admits a vector field �X such that jxKj increases
along the integral curves for �X. Moreover, near K the distance function is smooth,
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and therefore X can be assumed to be equal to ��!xK near K: Consider the normal
exponential map exp? W T?K ! M. It follows from corollary 5.5.3 that this
gives a diffeomorphism from a neighborhood of the zero section in T?K onto a
neighborhood of K: Also, the curves t 7! exp .tv/ for small t coincide with integral
curves for �X. In particular, for each v 2 T?K there is a unique integral curve
for �X denoted cv .t/ W .0;1/ ! M such that limt!0 Pcv .t/ D v. Now define our
diffeomorphism F W T?K ! M by

F
�
0p
� D p for the origin in T?

p K;

F .tv/ D cv .t/ where jvj D 1:

This clearly defines a differentiable map. For small t this is just the exponential
map. The map is one-to-one since integral curves for �X can’t intersect. The
integral curves for �X must leave all of the sublevels of the proper function jxKj.
Consequently they are defined for all t > 0. This shows that F is onto. Finally, as it
is a diffeomorphism onto a neighborhood of K by the normal exponential map and
the flow of a vector field always acts by local diffeomorphisms we see that it has
nonsingular differential everywhere. ut

12.2 Distance Comparison

In this section we introduce the geometric results that will enable us to check
that various distance functions are noncritical. This obviously requires some sort
of angle comparison. The most important step in this direction is supplied by the
Toponogov comparison theorem. The proof we present is probably the simplest
available and is based upon an idea by H. Karcher (see [32]).

Some preparations are necessary. Let .M; g/ be a Riemannian manifold. We
define two very natural geometric objects:

Hinge: A hinge consists of two segments px and xy that form an interior angle ˛
at x, i.e.,† ��!xp;�!xy

� D ˛ if the specified directions are tangent to the given segments.
See also figure 12.3.

Triangle: A triangle consists of three segments xy; yz; zx that meet pairwise at
the three vertices x; y; z.

In both definitions one could use geodesics instead of segments. It is then
possible to have degenerate hinges or triangles where some vertices coincide

Fig. 12.3 A Hinge

px
θ

y
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xy

x = y 

z

Fig. 12.4 Triangles

without the joining geodesics being trivial. This will be useful in a few situations.
In figure 12.4 we have depicted a triangle consisting of segments, and a degenerate
triangle where one of the sides is a geodesic loop and two of the vertices coincide.

Given a hinge or triangle, we can construct comparison hinges or triangles in the
constant curvature spaces Sn

k :

Lemma 12.2.1. Suppose .M; g/ is complete and has sec � k: Then for each hinge
or triangle in M we can find a comparison hinge or triangle in Sn

k where the
corresponding segments have the same length and the angle is the same or all
corresponding segments have the same length.

Proof. Note that when k > 0, then corollary 6.3.2 implies diamM � 	=
p

k D
diamSn

k : Thus, all segments have length � 	=pk:
The hinge case: We have segments px and xy that form an interior angle ˛ D

† ��!xp;�!xy
�

at x. In the space form first choose a segment pkxk of length jpxj. At
xk we can then choose a direction ��!xkyk so that † ���!xkpk;

��!xkyk
� D ˛. Then along the

unique geodesic going in this direction select yk so that jxkykj D jxyj. This is the
desired comparison hinge.

The triangle case: First, pick xk and yk such that jxyj D jxkykj. Then, consider
the two distance spheres @B .xk; jxzj/ and @B .yk; jyzj/. Since all possible triangle
inequalities between x; y; z hold, these distance spheres are nonempty and intersect.
Let zk be any point in the intersection.

To be honest here, we must use Cheng’s diameter theorem 7.2.5 in case any of
the distances is 	=

p
k: In this case there is nothing to prove as .M; g/ D Sn

k : ut
The Toponogov comparison theorem can be stated as follows.

Theorem 12.2.2 (Toponogov, 1959). Let .M; g/ be a complete Riemannian mani-
fold with sec � k:

Hinge Version: Given any hinge with vertices p; x; y 2 M forming an angle ˛ at
x, it follows, that for any comparison hinge in Sn

k with vertices pk; xk; yk we have:
jpyj � jpkykj (see also figure 12.5).

Triangle Version: Given any triangle in M; it follows that the interior angles are
no smaller than the corresponding interior angles for a comparison triangle in Sn

k.
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Fig. 12.5 Hinge Comparison

Fig. 12.6 Distance from a
point to a line

p

s (0)

s

The proof requires a little preparation. First, we claim that the hinge version
implies the triangle version. This follows from the law of cosines in constant
curvature. This law shows that if we have p; x; y 2 Sn

k and increase the distance
jpyj while keeping jpxj and jxyj fixed, then the angle at x increases as well. For
simplicity, we consider the cases where k D 1; 0;�1.

Proposition 12.2.3 (Law of Cosines). Let a triangle be given in Sn
k with side

lengths a; b; c: If ˛ denotes the angle opposite to a; then

k D 0 W a2 D b2 C c2 � 2bc cos˛:
k D �1 W cosh a D cosh b cosh c � sinh b sinh c cos˛:
k D 1 W cos a D cos b cos cC sin b sin c cos˛:

Proof. The general setup is the same in all cases. Suppose that a point p 2 Sn
k and a

unit speed segment � W Œ0; c�! Sn
k are given. The goal is to understand the function

j� .t/ pj D r .� .t// (see also figure 12.6). As in corollary 4.3.4 and theorem 5.7.5 we
will use the modified distance function fk. The Hessian is calculated in example 4.3.2
to be Hessfk D .1 � kfk/ g. If we restrict this distance function to � .t/, then we
obtain a function � .t/ D fk ı � .t/ with derivatives

P� .t/ D g . P�;rfk/ ;

R� .t/ D .1 � k� .t// :

We now split up into the three cases.
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Case k D 0: We have more explicitly

� .t/ D 1

2
.r ı � .t//2

and

P� .t/ D g

�
P�;r 1

2
r2
�
;

R� .t/ D 1:
So if we define b D jp� .0/j and ˛ as the interior angle between � and the line
joining p with � .0/ ; then

cos .	 � ˛/ D � cos˛ D g . P� .0/ ;rr/ :

After integration of R� D 1; we get

� .t/ D � .0/C P� .0/ � tC 1

2
t2

D 1

2
b2 � b � cos˛ � tC 1

2
t2:

Now set t D c and define a D jp� .c/j, then

1

2
a2 D 1

2
b2 � b � c � cos˛ C 1

2
c2;

from which the law of cosines follows.
Case k D �1: This time

� .t/ D cosh .r ı � .t// � 1
with

P� .t/ D sinh .r ı � .t// g .rr; P�/ ;
R� .t/ D � .t/C 1 D cosh .r ı � .t// :

As before, we have b D jp� .0/j ; and the interior angle satisfies

cos .	 � ˛/ D � cos˛ D g . P� .0/ ;rr/ :

Thus, we must solve the initial value problem

R� � � D 1;
� .0/ D cosh .b/� 1;
P� .0/ D � sinh .b/ cos˛:
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The general solution is

� .t/ D C1 cosh tC C2 sinh t � 1
D .� .0/C 1/ cosh tC P� .0/ sinh t � 1:

So if we let t D c and a D jpc .c/j as before, we arrive at

cosh a � 1 D cosh b cosh c � sinh b sinh c cos˛ � 1;

which implies the law of cosines again.
Case k D 1: This case is completely analogous to k D �1: Now

� D 1 � cos .r ı � .t//

and

R�C � D 1;
� .0/ D 1 � cos .b/;

P� .0/ D � sin b cos˛:

Then,

� .t/ D C1 cos tC C2 sin tC 1
D .� .0/� 1/ cos tC P� .0/ sin tC 1;

and consequently

1 � cos a D � cos b cos c � sin b sin c cos˛ C 1;

which implies the law of cosines. ut
The proof of the law of cosines suggests that when working in space forms it is

easier to work with a modified distance function, the main advantage being that the
Hessian is much simpler.

Lemma 12.2.4 (Hessian Comparison). Let .M; g/ be a complete Riemannian
manifold, p 2 M; and r .x/ D jxpj : If sec M � k; then the Hessian of r satisfies

Hessfk � .1 � kfk/ g

in the support sense everywhere.



454 12 Sectional Curvature Comparison II

Proof. We start by noting that this estimate was proven in theorem 6.4.3 when the
distance function is smooth. The proof can then be finished in the same way as
lemma 7.1.9. ut

We are ready to prove the hinge version of Toponogov’s theorem. The proof is
divided into the three cases: k D 0;�1; 1 with the same set-up. Let p 2 M and a
geodesic c W Œ0;L� ! M be given. Correspondingly, select Np 2 Sn

k and a segment
Nc W Œ0;L�! Sn

k . With the appropriate initial conditions, we claim that

jp c .t/j � jNp Nc .t/j :
If we assume that jxpj is smooth at c .0/ : Then the initial conditions are

jp c .0/j � jNp Nc .0/j ;

g .rr; Pc .0// � gk

�
rNr; d

dt
Nc .0/

�
:

In case r is not smooth at c .0/ ; we can just slide c down along a segment joining
p with c .0/ and use a continuity argument. This also shows that we can assume the
stronger initial condition

jp c .0/j < jNp Nc .0/j :
In figure 12.7 we have shown how c can be changed by moving it down along

a segment joining p and c .0/ : We have also shown how the angles can be slightly
decreased. This will be important in the last part of the proof. Note that we could
instead have used exercise 5.9.28 to obtain these initial values as the restriction of r
to c always has one sided derivatives.

Proof. Case k D 0: We consider the modified functions

� .t/ D 1

2
.r ı c .t//2 ;

N� .t/ D 1

2
.Nr ı Nc .t//2 :

Fig. 12.7 Hinge adjustment
and comparison hinge

p

c

c

p
_

_



12.2 Distance Comparison 455

For small t these functions are smooth and satisfy

� .0/ < N� .0/ ;
P� .0/ � PN� .0/ :

Moreover, for the second derivatives we have

R� � 1 in the support sense,

RN� D 1;

whence the difference  .t/ D N� .t/ � � .t/ satisfies

 .0/ > 0;

P .0/ � 0;
R .t/ � 0 in the support sense.

This shows that  is a convex function that is positive and increasing for small t.
Thus, it is increasing and positive for all t: This proves the hinge version.

Case k D �1: Consider

� .t/ D cosh r ı c .t/ � 1;
N� .t/ D cosh Nr ı Nc .t/ � 1:

Then

� .0/ < N� .0/ ;
P� .0/ � PN� .0/ ;
R� � �C 1 in the support sense,

RN� D N�C 1:

The difference  D N� � � satisfies

 .0/ > 0;

P .0/ � 0;
R .t/ �  .t/ in the support sense.

The first condition again implies that  is positive for small t: The last condition
shows that as long as  is positive, it is also convex. The second condition then
shows that  is increasing for small t. It follows that  cannot have a positive
maximum as that violates convexity. Thus  keeps increasing.



456 12 Sectional Curvature Comparison II

Case k D 1: This case is considerably harder. We begin as before by defining

� .t/ D 1 � cos .r ı c .t// ;

N� .t/ D 1 � cos .Nr ı Nc .t//

and observe that the difference  D N� � � satisfies

 .0/ > 0;

P .0/ � 0;
R .t/ � � .t/ in the support sense.

That, however, looks less promising. Even though the function starts out being
positive, the last condition only gives a negative lower bound for the second
derivative. This is where a standard trick from Sturm-Liouville theory will save us.
For that to work well it is best to assume P .0/ > 0. Thus, another little continuity
argument is necessary as we need to perturb c again to decrease the interior angle.
If the interior angle is positive, this can clearly be done, and in the case where this
angle is zero the hinge version is trivially true anyway. We compare  to a new
function � .t/ defined by

R� D � .1C "/ �;
� .0/ D  .0/ > 0;
P� .0/ D P .0/ > 0:

For small t we have

d2

dt2
. .t/ � � .t// � � .t/C .1C "/ � .t/

D � .t/ �  .t/C "� .t/
> 0:

This implies that  .t/ � � .t/ � 0 for small t: To extend this to the interval where
� .t/ is positive, i.e., for

t <
	 � arctan

�
 .0/�p1C"

P .0/
�

p
1C " ;

consider the quotient  =�. This ratio satisfies

 

�
.0/ D 1;
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�
.t/ � 1 for small t:

Should the ratio dip below 1 before reaching the end of the interval it would have a
positive local maximum at some t0: At this point we can use support functions  ı
for  from below, and conclude that also  ı=� has a local maximum at t0: Thus, we
have

0 � d2

dt2

�
 ı

�

�
.t0/

D
R ı .t0/
� .t0/

� 2
P� .t0/
� .t0/

� d

dt

�
 ı

�

�
.t0/�  ı .t0/

�2 .t0/
R� .t0/

� � ı .t0/� ı
� .t0/

C  ı .t0/

� .t0/
.1C "/

D " �  ı .t0/� ı
� .t0/

:

But this becomes positive as ı ! 0; since we assumed  ı .t0/ > 0. Thus we have a
contradiction. Next, we can let " ! 0 and finally, let  .0/ ! 0 to get the desired
estimate for all t � 	 using continuity. ut
Remark 12.2.5. Note that we never really use in the proof that we work with
segments. The only thing that must hold is that the geodesics in the space form
are segments. For k � 0 this is of course always true. When k > 0 this means that
the geodesic must have length � 	=

p
k. This was precisely the important condition

in the last part of the proof.

12.3 Sphere Theorems

Our first applications of the Toponogov theorem are to the case of positively curved
manifolds. Using scaling, we can assume throughout this section that we work with
a closed Riemannian n-manifold .M; g/ with sec � 1: For such spaces we have
established:

(1) diam .M; g/ � 	 , with equality holding only if M D Sn .1/ :

(2) If n is odd, then M is orientable.
(3) If n is even and M is orientable, then M is simply connected and inj .M/ �

	=
p

max sec:
(4) If M is simply connected and max sec < 4; then inj .M/ � 	=pmax sec:
(5) If M is simply connected and max sec < 4; then M is homotopy equivalent to a

sphere.
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We can now prove the celebrated Rauch-Berger-Klingenberg sphere theorem, also
known as the quarter pinched sphere theorem. Note that the conclusion is stronger
than in corollary 6.5.6. The part of the proof presented below is also due the Berger.

Theorem 12.3.1. If M is a simply connected closed Riemannian manifold with 1 �
sec � 4 � ı; then M is homeomorphic to a sphere.

Proof. We have shown that the injectivity radius is � 	=
p
4�ı. Thus, we have large

discs around every point in M: Select two points p; q 2 M such that jpqj D diamM
and note that diamM � injM > 	=2. We claim that every point x 2 M lies in one of
the two balls B .p; 	=

p
4�ı/ ; or B .q; 	=

p
4�ı/ ; and thus M is covered by two discs.

This certainly makes M look like a sphere as it is the union of two discs. Below we
construct an explicit homeomorphism to the sphere in a more general setting.

Fix x 2 M and consider the triangle with vertices p; x; q. If, for instance, jxqj >
	=2, then we claim that jpxj < 	=2. First, observe that since q is at maximal distance
from p; it must follow that q cannot be a regular point for the distance function to p:
Therefore, given a segment xq there is a segment pq such that the interior angle at q
satisfies ˛ D † ��!qx;�!qp

� � 	=2. The hinge version of Toponogov’s theorem implies

cos jpxj � cos jxqj cos jpqj C sin jxqj sin jpqj cos˛

� cos jxqj cos jpqj :
Now, both jxqj ; jpqj > 	=2, so the left-hand side is positive. This implies that jpxj <
	=2 as desired (see also figure 12.8 for the picture on the comparison space). ut

Michaleff and Moore in [73] proved a version of this theorem for closed simply
connected manifolds that only have positive isotropic curvature (see exercise 3.4.17
and also section 9.4.5). Since quarter pinching implies positive complex sectional
curvature and in particular positive isotropic curvature this result is stronger. In fact
more recently Brendle and Schoen in [20] have shown that manifolds with positive
complex sectional curvature admit metrics with constant curvature. This result uses
the Ricci flow.

Fig. 12.8 Spherical hinge
with long sides

q

p

x
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Note that the above theorem does not say anything about the non-simply
connected situation. Thus we cannot conclude that such spaces are homeomorphic
to spaces of constant curvature. Only that the universal covering is a sphere. The
proof in [20], however, does not depend on the fundamental group and thus shows
that strictly quarter pinched manifolds admit constant curvature metrics.

The above proof suggests that the conclusion of the theorem should hold as
long as the manifold has large diameter. This is the content of the next theorem.
This theorem was first proved by Berger for simply connected manifolds by using
Toponogov’s theorem to show that there is a point where all geodesic loops have
length > 	 and then appealing to the proof of theorem 6.5.4. The present version is
known as the Grove-Shiohama diameter sphere theorem. It was for the purpose of
proving this theorem that Grove and Shiohama introduced critical point theory.

Theorem 12.3.2 (Berger, 1962 and Grove-Shiohama, 1977). If .M; g/ is a closed
Riemannian manifold with sec � 1 and diam > 	=2, then M is homeomorphic to a
sphere.

Proof. We first give Berger’s index estimation proof that follows his index proof of
the quarter pinched sphere theorem. The goal is to find p 2 M such that all geodesic
loops at p have length > 	 and then finish by using the proof of theorem 6.5.4.
Select p; q 2 M such that jpqj D diamM > 	=2. We claim that p has the desired
property. Supposing otherwise we get a geodesic loop c W Œ0; 1�! M based at p of
length � 	: As p is at maximal distance from q we can find a segment qp, such that
the hinge spanned by pq and c has interior angle � 	=2. While c is not a segment it
is sufficiently short that the hinge version of Toponogov’s theorem still holds for the
degenerate hinge with sides qp, c and angle ˛ � 	=2 at p (see also Fig. 12.9, where
we included two geodesics from p to q). Thus

0 > cos jpqj
� cos jpqj cos L .c/C sin jpqj sin L .c/ cos˛

� cos jpqj cos L .c/ :

This is clearly not possible unless L .c/ D 0:
Next we give the Grove-Shiohama proof. Fix p; q 2 M with jpqj D diamM > 	=2.

The claim is that the distance function from p only has q as a critical point
(Fig. 12.10). To see this, let x 2 M � fp; qg and ˛ be the interior angle between
any two segments xp and xq. If we suppose that ˛ � 	=2, then the hinge version of
Toponogov’s theorem implies

0 > cos jpqj
� cos jpxj cos jxqj C sin jpxj sin jxqj cos˛

� cos jpxj cos jxqj :
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Fig. 12.9 Degenerate hinge
where one side is a loop

p

q

Fig. 12.10 Spherical hinge x

q

p

But then cos jpxj and cos jxqj have opposite signs. If, for example, cos jpxj > 0

then it follows that cos jpqj > cos jxqj, which implies jxqj > jpqj D diamM:
Thus we have arrived at a contradiction (see also figure 12.10 for the picture on
the comparison space).

We construct a vector field X that is the gradient field for x 7! jxpj near p and
the negative of the gradient field for x 7! jxqj near q: Furthermore, the distance to
p increases along integral curves for X: For each x 2 M � fp; qg there is a unique
integral curve cx .t/ for X through x: Suppose that x varies over a small distance
sphere @B .p; "/ that is diffeomorphic to Sn�1: After time tx this integral curve will
hit the distance sphere @B .q; "/ which can also be assumed to be diffeomorphic to
Sn�1: The function x 7! tx is continuous and in fact smooth as both distance spheres
are smooth submanifolds. Thus we have a diffeomorphism defined by

@B .p; "/ � Œ0; 1�! M � .B .p; "/[ B .q; "// ;

.x; t/ 7! cx .t � tx/ :
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Gluing this map together with the two discs B .p; "/ and B .q; "/ then yields a
continuous bijection M ! Sn: Note that the construction does not guarantee
smoothness of this map on @B .p; "/ and @B .q; "/. ut

Aside from the fact that the conclusions in the above theorems could possibly be
strengthened to diffeomorphism, we have optimal results. Complex projective space
has curvatures in Œ1; 4� and diameter 	=2 and the real projective space has constant
curvature 1 and diameter 	=2. If one relaxes the conditions slightly, it is, however,
still possible to say something.

Theorem 12.3.3 (Brendle-Schoen 2008 and Petersen-Tao 2009). Let .M; g/ be
a simply connected of dimension n. There is " .n/ > 0 such that if 1 � sec �
4 C ", then M is diffeomorphic to a sphere or one of the projective spaces CP

n=2;

HP
n=4; OP

2:

The spaces CP
n=2; HP

n=4; or OP
2 are known as the compact rank 1 symmetric

spaces (CROSS). The quaternionic projective space is a quaternionic generalization
of complex projective space HP

m D S4mC3=S3; but the octonion plane is a bit more
exotic: F4=Spin .9/ D OP

2 (see also chapter 10 for more on symmetric spaces
spaces). The theorem as stated was proven in [87] and uses convergence theory and
the Ricci flow. It relies on a new rigidity result by Brendle and Schoen (see [19]) that
generalizes an older result by Berger and several subtle injectivity radius estimates
(see also section 6.5.1 for a discussion on this).

For the diameter situation we have:

Theorem 12.3.4 (Grove-Gromoll, 1987 and Wilking, 2001). If .M; g/ is closed
and satisfies sec � 1, diam � 	=2, then one of the following cases holds:

(1) M is homeomorphic to a sphere.
(2) M is isometric to a finite quotient Sn .1/ =�; where the action of � is reducible

(has an invariant subspace).
(3) M is isometric to one of CPm; HP

m; or CPm=Z2 for m odd.
(4) M is isometric to OP

2:

Grove and Gromoll settled all but part (4), where they only showed that M had to
have the cohomology ring of OP

2: It was Wilking who finally settled this last case
(see [104]).

12.4 The Soul Theorem

The idea behind the soul theorem is a similar result by Cohn-Vossen for convex
surfaces that are complete and noncompact. Such surfaces must contain a core or
soul that is either a point or a planar convex circle. In the case of a point the surface
is diffeomorphic to a plane. In the case of a circle the surface is isometric to the
generalized cylinder over the circle.
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Theorem 12.4.1 (Gromoll-Meyer, 1969 and Cheeger-Gromoll, 1972). If .M; g/
is a complete noncompact Riemannian manifold with sec � 0; then M contains
a soul S � M. The soul S is a closed totally convex submanifold and M is
diffeomorphic to the normal bundle over S: Moreover, when sec > 0; the soul is
a point and M is diffeomorphic to R

n:

The history is briefly that Gromoll-Meyer first showed that if sec > 0; then M
is diffeomorphic to R

n: Soon after, Cheeger-Gromoll established the full theorem.
The Gromoll-Meyer theorem is in itself remarkable.

We use critical point theory to establish this theorem. The problem lies in finding
the soul. When this is done, it will be easy to see that the distance function to the
soul has only regular points, and then we can use the results from the first section.

Before embarking on the proof, it might be instructive to consider the following
less ambitious result.

Lemma 12.4.2 (Gromov’s critical point estimate, 1981). If .M; g/ is a complete
open manifold of nonnegative sectional curvature, then for every p 2 M the distance
function jxpj has no critical points outside some ball B .p;R/ : In particular, M must
have the topology of a compact manifold with boundary.

Proof. Assume we a critical point x for jxpj and that y is chosen so that
† ��!px;�!py

� � 	=3. The hinge version of Toponogov’s theorem implies that

jxyj2 � jpyj2 C jxpj2 � 2 jpyj jxpj cos 	
3

D jpyj2 C jxpj2 � jpyj jxpj :

Next use that x is critical for p to select segments px and xy that form an angle� 	=2

at x. Then use the hinge version again to conclude

jpyj2 � jxpj2 C jxyj2
� jxpj2 C jpyj2 C jxpj2 � jpyj jxpj
D 2 jxpj2 C jpyj2 � jpyj jxpj :

This forces jpyj � 2 jxpj.
Now observe that there is a fixed bound on the number of unit vectors at p that

mutually form an angle > 	=3. Specifically, use that balls of radius 	=6 around these
unit vectors are disjoint inside the unit sphere and note that

v .n � 1; 1; 	/
v
�
n � 1; 1; 	

6

� � v .n � 1; 0; 	/
v
�
n � 1; 0; 	

6

� � 6n�1:

Finally, we conclude that there can be at most 6n�1 critical points xi for jxpj such
that jxiC1pj > 2 jxipj for all i. This shows, in particular, that the distance function
jxpj has no critical points outside some large ball B .p;R/. ut
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The proof of the soul theorem depends on understanding what it means for a
submanifold and more generally a subset to be totally convex. The notion is similar
to being totally geodesic. A subset A � M of a Riemannian manifold is said to be
totally convex if any geodesic in M joining two points in A also lies in A: There are in
fact several different kinds of convexity, but as they are not important for any other
developments here we confine ourselves to total convexity. The first observation is
that this definition agrees with the usual definition of convexity in Euclidean space.
Other than that, it is not clear that any totally convex sets exist at all. For example, if
A D fpg ; then A is totally convex only if there are no geodesic loops based at p: This
means that points will almost never be totally convex. In fact, if M is closed, then M
is the only totally convex subset. This is not completely trivial, but using the energy
functional as in section 6.5.2 we note that if A � M is totally convex, then A � M
is k-connected for any k: It is however, not possible for a closed n-manifold to have
n-connected nontrivial subsets as this would violate Poincaré duality. On complete
manifolds on the other hand it is sometimes possible to find totally convex sets.

Example 12.4.3. Let .M; g/ be the flat cylinder R � S1: All of the circles fpg � S1

are geodesics and totally convex. This also means that no point in M can be totally
convex. In fact, all of those circles are souls (see also figure 12.11).

Example 12.4.4. Let .M; g/ be a smooth rotationally symmetric metric on R
2 of the

form dr2C�2 .r/ d�2;where R� < 0: Thus, .M; g/ looks like a parabola of revolution.
The radial symmetry implies that all geodesics emanating from the origin r D 0 are
rays going to infinity. Thus the origin is a soul and totally convex. Most other points,
however, will have geodesic loops based there (see also figure 12.11).

The way to find totally convex sets is via convexity of functions.

Lemma 12.4.5. If f W .M; g/ ! R is concave, in the sense that the Hessian is
weakly nonpositive everywhere, then every superlevel set A D fx 2 M j f .x/ � ag
is totally convex.

Fig. 12.11 Souls for cylinder and parabola



464 12 Sectional Curvature Comparison II

Proof. Given a geodesic c in M; we have that the function f ı c has nonpositive
weak second derivative. Thus, f ı c is concave as a function on R: In particular,
the minimum of this function on any compact interval is obtained at one of the
endpoints. This finishes the proof. ut

We are left with the problem of the existence of proper concave functions on
complete manifolds with nonnegative sectional curvature. This requires the notions
of rays and Busemann functions from sections 7.3.1 and 7.3.2.

Lemma 12.4.6. Let .M; g/ be complete, noncompact, have sec � 0, and p 2 M: If
we take all rays Rp D fc W Œ0;1/! M j c.0/ D pg and construct

f D inf
c2Rp

bc;

where bc denotes the Busemann function, then f is both proper and concave.

Proof. First we show that in nonnegative sectional curvature all Busemann func-
tions are concave. Using that, we can then show that the given function is concave
and proper.

Recall from section 7.3.2 that in nonnegative Ricci curvature Busemann func-
tions are superharmonic. The proof of concavity is almost identical. Instead of the
Laplacian estimate for distance functions, we must use a similar Hessian estimate.
If r .x/ D jxpj, then we know that Hessr vanishes on radial directions @r D rr and
satisfies Hessr � r�1g on vectors perpendicular to the radial direction. In particular,
Hessr � r�1g at all smooth points. We can then extend this estimate to the points
where r isn’t smooth as we did for modified distance functions. We can now proceed
as in the Ricci curvature case to show that Busemann functions have nonpositive
Hessians in the weak sense.

The infimum of a collection of concave functions is clearly also concave. So
we must show that the superlevel sets for f are compact. Suppose, on the contrary,
that some superlevel set A D fx 2 M j f .x/ � ag is noncompact. If a > 0; then
fx 2 M j f .x/ � 0g is also noncompact. So we can assume that a � 0: As all of
the Busemann functions bc are zero at p also f .p/ D 0: In particular, p 2 A:
Using noncompactness select a sequence pk 2 A that goes to infinity. Then consider
segments ppk, and as in the construction of rays, choose a subsequence so that �!ppk

converges. This forces the segments to converge to a ray emanating from p. As A is
totally convex, all of these segments lie in A: Since A is closed the ray must also lie
in A and therefore be one of the rays c 2 Rp. This leads to a contradiction as

a � f .c .t// � bc .c .t// D �t! �1:

ut
We need to establish a few fundamental properties of totally convex sets.

Lemma 12.4.7. If A � .M; g/ is totally convex, then A has an interior, denoted by
intA; and a boundary @A: The interior is a totally convex submanifold of M; and
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Fig. 12.12 Supporting
planes and normals for a
convex set

the boundary has the property that for each x 2 @A there is an inward pointing
vector w 2 TxM such that any segment xy with y 2 intA has the property that
† �w;�!xy

�
< 	=2.

Some comments are in order before the proof. The words interior and boundary,
while describing fairly accurately what the sets look like, are not meant in the
topological sense. Most convex sets will in fact not have any topological interior at
all. The property about the boundary is called the supporting hyperplane property.
Namely, the interior of the convex set is supposed to lie on one side of a hyperplane
at any of the boundary points. The vector w is the normal to this hyperplane and can
be taken to be tangent to a geodesic that goes into the interior. It is important to note
that the supporting hyperplane property shows that the distance function to a subset
of intA cannot have any critical points on @A (see also figure 12.12).

Proof. The convexity radius estimate from theorem 6.4.8 will be used in many
places. Specifically we shall use that there is a positive function " .p/ W M ! .0;1/
such that rp .x/ D jxpj is smooth and strictly convex on B .p; " .p// � fpg.

First, let us identify points in the interior and on the boundary. To make the
identifications simpler assume that A is closed.

Find the maximal integer k such that A contains a k-dimensional submanifold
of M: If k D 0; then A must be a point. For if A contains two points, then A also
contains a segment joining these points and therefore a 1-dimensional submanifold.
Now define N � A as being the union of all k-dimensional submanifolds in M that
are contained in A: We claim that N is a k-dimensional totally convex submanifold
whose closure is A: This means we can define intA D N and @A D A � N.

To see that it is a submanifold, pick p 2 N and let Np � A be a k-dimensional
submanifold of M containing p: By shrinking Np if necessary, we can also assume
that it is embedded. Thus there exists ı 2 .0; " .p// so that B .p; ı/ \ Np D Np:

The claim is that also B .p; ı/ \ A D Np: If this were not true, then we could find
q 2 A \ B .p; ı/ � Np. Now assume that ı is so small that also ı < injq: Then we
can join each point in B .p; ı/ \ Np to q by a unique segment. The union of these
segments will, away from q; form a cone that is a .kC 1/-dimensional submanifold
contained in A (see figure 12.13), thus contradicting maximality of k: This shows
that N is an embedded submanifold as we have B .p; ı/\ N D Np:

What we have just proved can easily be modified to show that for points p 2 N
and q 2 A with the property that jpqj < injq there is a k-dimensional submanifold
Np � N such that q 2 NNp. Specifically, choose a .k � 1/-dimensional submanifold
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q

A

p

A

q
p

Fig. 12.13 Interior and boundary points of convex sets

through p in N perpendicular to the segment from p to q, and consider the cone over
this submanifold with vertex q: From this statement we get the property that any
segment xy with y 2 N must, except possibly for x, lie in N. In particular, N is dense
in A:

Having identified the interior and boundary, we have to establish the supporting
hyperplane property. First, note that since N is totally geodesic its tangent spaces
TqN are preserved by parallel translation along curves in N: For p 2 @A we then
obtain a well-defined k-dimensional tangent space TpA � TpM coming from parallel
translating the tangent spaces to N along curves in N that end at p: Next define the
tangent cone at p 2 @A

CpA D ˚v 2 TpM j expp .tv/ 2 N for some t > 0
�
:

Note that if v 2 CpA, then in fact expp .tv/ 2 N for all small t > 0: This shows that
CpA is a cone. Clearly CpA � TpA and is easily seen to be open in TpA.

In order to prove the supporting half plane property we start by showing that CpA
does not contain antipodal vectors˙v. If it did, then there would be short segments
through p whose endpoints line in N. This in turn shows that p 2 N.

For p 2 @A and " > 0 assume that there are q 2 A" D fx 2 A j jx@Aj � "g with
jqpj D ". The set of such points is clearly 2"-dense in @A: So the set of points p 2 @A
for which we can find an " > 0 and q 2 A" such that jqpj D " is dense in @A: We
start by proving the supporting plane property for such p. We can also assume " is
so small that rq .x/ D jxqj is smooth and convex on a neighborhood containing p:
The claim is that † ��rrq; v

�
< 	=2 for all v 2 CpA: To see this, observe that we

have a convex set

A0 D A \ NB .q; "/ ;

with interior

N0 D A \ B .q; "/ � N



12.4 The Soul Theorem 467

and p 2 @A0 (see figure 12.13). Thus CpA0 � CpA and TpA D TpA0: The tangent
cone of NB .q; "/ is given by

Cp NB .q; "/ D
n
v 2 TpM j † �v;�rrq

�
<
	

2

o

as r is smooth at p; thus

CpA0 D
n
v 2 TpA j † �v;�rrq

�
<
	

2

o
:

If CpA0 ¤ CpA, then openness of CpA in TpA implies CpA contains antipodal vectors.
At other points p 2 @A select pi ! p where

Cpi A D
n
v 2 Tpi A j † .v;�wi/ <

	

2

o
:

These open half spaces will have an accumulation half space

n
v 2 TpA j † .v;�w/ <

	

2

o
:

By continuity CpA � ˚
v 2 TpA j † .v;�w/ � 	

2

�
. As CpA � TpA is also open it

must be contained in an open half space. ut
The last lemma we need is

Lemma 12.4.8. Let .M; g/ have sec � 0. If A � M is totally convex, then the
distance function r W A ! R defined by r .x/ D jx@Aj is concave on A. When
sec > 0, then any maximum for r is unique.

Proof. We shall show that the Hessian is nonpositive in the support sense. Fix q 2
intA; and find p 2 @A so that jpqj D jq@Aj. Then select a segment pq in A. Using
exponential coordinates at p we create a hypersurface H which is the image of the
hyperplane perpendicular to�!pq. This hypersurface is perpendicular to�!pq, the second
fundamental form for H at p is zero, and H\ intA D ¿: (See figure 12.14.) We have
that f .x/ D jxHj is a support function from above for r .x/ D jx@Aj at all points
on pq.

Select a point p0 ¤ p; q on the segment pq, i.e., jpp0j C jp0qj D jpqj. One can
show as in section 5.7.3 that f is smooth at p0 except possibly when p0 D q. We
start by showing that the support function f is concave at p0 ¤ q. Note that pq is an
integral curve for rf : Evaluating the fundamental equation (see 3.2.5) on a parallel
field, along pq, that starts out being tangent to H; i.e., perpendicular to �!pq therefore
yields:

d

dt
Hessf .E;E/ D �R .E;rf ;rf ;E/ �Hess2f .E;E/

� 0:
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Fig. 12.14 Distance function
to the boundary of a convex
set

q

A

H

H'

Since Hessf .E;E/ D 0 at p we see that Hessf .E;E/ � 0 along pq (and < 0 if
sec > 0). This shows that we have a smooth support function for jx@Aj on an open
and dense subset in A:

If f is not smooth at q, we can find a hypersurface H0 as above that is

perpendicular to
�!
p0q at p0 and has vanishing second fundamental form at p0. For

p0 close to q we have that jxH0j is smooth at q and therefore also has nonpositive
(negative) Hessian at q: In this case we claim that jpp0j C jxH0j is a support function
for jx@Aj. Clearly, the functions are equal at q and we only need to worry about x
where jx@Aj > jpp0j. In this case we can select z 2 H0 with jx@Aj D jz@Aj C jxH0j.
Thus we are reduced to showing that jz@Aj � jpp0j for each z 2 H0.

As f is smooth at p0 it follows that jx@Aj is concave in a neighborhood of p0.
Now select a segment p0z. By the construction of H0 we can assume that p0z is

contained in H0 and therefore perpendicular to
�!
p0q. Concavity of x 7! jx@Aj along

the segment then shows that jz@Aj � jp0@Aj as it lies under the tangent through p0.
This establishes our claim.

Finally, choose a concave 
 W Œ0;1/! Œ0;1/ with 
 .0/ D 0 and 
0 > 0. Then

 ı r will clearly also be concave. Moreover, if we select 
 to be strictly concave
and sec > 0, then 
 ı r will be strictly concave. In case it has a maximum it follows
that it is unique as in the construction of a center of mass in section 6.2.2. ut

We are now ready to prove the soul theorem. Start with the proper concave
function f constructed from the Busemann functions. The maximum level set

C1 D fx 2 M j f .x/ D max f g

is nonempty and convex since f is proper and concave. Moreover, it follows from
the previous lemma that C1 is a point if sec > 0: This is because the superlevel sets
A D fx 2 M j f .x/ � ag are convex with @A D f �1 .a/ ; so f .x/ D jx@Aj on A: If C1
is a submanifold, then we are also done. In this case jxC1j has no critical points, as
any point lies on the boundary of a convex superlevel set. Otherwise, C1 is a convex
set with nonempty boundary. But then jx@C1j is concave on C1. The maximum set
C2 is again nonempty, since C1 is compact and convex. If it is a submanifold, then
we again claim that we are done. For the distance function jxC2j has no critical
points, as any point lies on the boundary for a superlevel set for either f or jx@C1j :
We can iterate this process to obtain a sequence of convex sets C1 � C2 � � � � � Ck.
We claim that in at most n D dimM steps we arrive at a point or submanifold S
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Fig. 12.15 Iteration for soul
construction

Level set for b 

C2
C1

that we call the soul (see figure 12.15). This is because dimCi > dimCiC1: To see
this suppose dimCi D dimCiC1. Then intCiC1 will be an open subset of intCi: So if
p 2 intCiC1; then we can find ı such that

B .p; ı/\ intCiC1 D B .p; ı/\ intCi:

Now choose a segment c from p to @Ci: Clearly jx@Cij is strictly increasing along c.
On the other hand, c runs through B .p; ı/\ intCi; thus showing that jx@Cij must be
constant on the part of c close to p:

Much more can be said about complete manifolds with nonnegative sectional
curvature. A rather complete account can be found in Greene’s survey in [54]. We
briefly mention two important results:

Theorem 12.4.9. Let S be a soul of a complete Riemannian manifold with sec � 0;
arriving from the above construction.

(1) (Sharafudtinov, 1978) There is a distance nonincreasing map Sh W M! S such
that ShjS D id. In particular, all souls must be isometric to each other.

(2) (Perel’man, 1993) The map Sh W M ! S is a submetry. From this it additional
follows that S must be a point if all sectional curvatures based at just one point
in M are positive.

Having reduced all complete nonnegatively curved manifolds to bundles over
closed nonnegatively curved manifolds, it is natural to ask the converse question:
Given a closed manifold S with nonnegative curvature, which bundles over S admit
complete metrics with sec � 0? Clearly, the trivial bundles do. When S D T2

Özaydın-Walschap in [82] have shown that this is the only 2-dimensional vector
bundle that admits such a metric. Still, there doesn’t seem to be a satisfactory general
answer. If, for instance, we let S D S2; then any 2-dimensional bundle is of the form�
S3 � C

�
=S1; where S1 is the Hopf action on S3 and acts by rotations on C in the

following way: ! � z D !kz for some integer k: This integer is the Euler number of
the bundle. As we have a complete metric of nonnegative curvature on S3 � C; the
O’Neill formula from theorem 4.5.3 shows that these bundles admit metrics with
sec � 0.
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There are some interesting examples of manifolds with positive and zero Ricci
curvature that show how badly the soul theorem fails for such manifolds. In 1978,
Gibbons-Hawking in [49] constructed Ricci flat metrics on quotients of C2 blown up
at any finite number of points. Thus, one gets a Ricci flat manifold with arbitrarily
large second Betti number. About ten years later Sha-Yang showed that the infinite
connected sum

�
S2 � S2

�
]
�
S2 � S2

�
] � � � ] �S2 � S2

�
] � � �

admits a metric with positive Ricci curvature, thus putting to rest any hopes for
general theorems in this direction. Sha-Yang have a very nice survey in [51]
describing these and other examples. The construction uses doubly warped product
metrics on I � S2 � S1 as described in section 1.4.5.

12.5 Finiteness of Betti Numbers

We prove two results in this section.

Theorem 12.5.1 (Gromov, 1978 and 1981). There is a constant C .n/ such that
any complete manifold .M; g/ with sec � 0 satisfies

(1) 	1 .M/ can be generated by � C .n/ generators.
(2) For any field F of coefficients the Betti numbers are bounded:

nX

iD0
bi .M;F/ D

nX

iD0
dimHi .M;F/ � C .n/ :

Part (2) of this result is considered one of the deepest and most beautiful results
in Riemannian geometry. Before embarking on the proof, let us put it in context.
First, we should note that the Gibbons-Hawking and Sha-Yang examples show that
a similar result cannot hold for manifolds with nonnegative Ricci curvature. Sha-
Yang also exhibited metrics with positive Ricci curvature on the connected sums

�
S2 � S2

�
]
�
S2 � S2

�
] � � � ] �S2 � S2

�

„ ƒ‚ …
k times

:

For large k; the Betti number bound shows that these connected sums cannot have
a metric with nonnegative sectional curvature. Thus, there exist simply connected
manifolds that admit positive Ricci curvature but not nonnegative sectional curva-
ture. The reader should also consult our discussion of manifolds with nonnegative
curvature operator in sections 9.4.4 and 10.3.3 to see how much more is known
about these manifolds.
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In the context of nonnegative sectional curvature there are three difficult open
problems. They were discussed and settled in chapters 9 and 10 for manifolds with
nonnegative curvature operator.

(H. Hopf) Does S2 � S2 admit a metric with positive sectional curvature?
(H. Hopf) For M2n, does sec � 0 .> 0/ imply � .M/ � 0 .> 0/?
(Gromov) Does sec � 0 imply

Pn
iD0 bi .M;F/ � 2n?

Recall that these questions were also discussed in section 8.3 under additional
assumptions about the isometry group.

First we establish part (1) of Gromov’s theorem. The proof resembles that of the
critical point estimate lemma 12.4.2 from the previous section.

Proof of (1). We construct what is called a short set of generators for 	1 .M/ :
Consider 	1 .M/ as acting by deck transformations on the universal covering QM
and fix p 2 QM: Inductively select a generating set fg1; g2; : : :g such that

(a) jpg1.p/j � jpg.p/j for all g 2 	1 .M/ � feg :
(b) jpgk.p/j � jpg.p/j for all g 2 	1 .M/ � hg1; : : : ; gk�1i :

We claim that †
�����!

pgk.p/;
���!
pgl.p/

�
� 	=3 for k < l. Otherwise, the hinge version

of Toponogov’s theorem would imply

jgl.p/ gk.p/j2 < jpgk.p/j2 C jpgl.p/j2
� jpgk.p/j jpgl.p/j

� jpgl.p/j2 :

But then

ˇ
ˇp .g�1

l gk/.p/
ˇ
ˇ < jpgl.p/j ;

which contradicts our choice of gl. Therefore, we have produced a generating set
with a bounded number of elements. ut

The proof of the Betti number estimate is established through several lemmas.
First, we need to make three definitions for metric balls. Throughout, fix a
Riemannian n-manifold M with sec � 0 and a field F of coefficients for our
homology theory

H� .�;F/ D H� .�/ D H0 .�/˚ � � � ˚ Hn .�/ :

For A � B � M define

rankk .A � B/ D rank .Hk .A/! Hk .B// ;

rank� .A � B/ D rank .H� .A/! H� .B// :
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Fig. 12.16 Compact set with
infinite topology

Note that when A � B � C � D; then

rank� .A � D/ � rank� .B � C/ :

It follows that when A;B are open, bounded, and NA � B, then the rank is finite, even
when the homology of either set is not finite dimensional. Figure 12.16 pictures a
planar domain where infinitely many discs of smaller and smaller size have been
extracted. This yields a compact set with infinite topology. Nevertheless, this set has
finitely generated topology when mapped into any neighborhood of itself, as that
has the effect of canceling all of the smallest holes.

Content: The content of a metric ball B .p; r/ � M is

contB .p; r/ D rank�
�
B
�
p; r

5

� � B .p; r/
�
:

Corank: The corank of a set A � M is defined as the largest integer k such that
we can find k metric balls B .p1; r1/ ; : : : ; B .pk; rk/ with the properties

(a) There is a critical point xi for pi with jpixij D 10ri.
(b) ri � 3ri�1 for i D 2; : : : ; k:
(c) A �Tk

iD1 B .pi; ri/ :

Compressibility: A ball B .p;R/ is said to be compressible if it contains a ball
B .x; r/ � B .p;R/ such that

(a) r � R=2.
(b) contB .x; r/ � contB .p;R/ :

If a ball is not compressible we call it incompressible. Note that any ball with content
> 1; can be successively compressed to an incompressible ball.

We connect these three concepts through a few lemmas that will ultimately lead
us to the proof of the Betti number estimate. Observe that for large r; the ball B .p; r/
contains all the topology of M; so

contB .p; r/ D
X

i

bi .M/ :

Also, the corank of such a ball will be zero for large r by lemma 12.4.2. The idea is to
compress such a ball until it becomes incompressible and then estimate its content
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in terms of balls that have corank 1: In this way, we will be able to successively
estimate the content of balls of fixed corank in terms of the content of balls with one
higher corank. The proof is then finished first, by showing that the corank of a ball
is uniformly bounded, and second, by observing that balls of maximal corank must
be contractible and therefore have content 1 (otherwise they would contain critical
points for the center, and the center would have larger corank).

Lemma 12.5.2. The corank of any set A � M is bounded by 100n:

Proof. Suppose that A has corank larger than 100n: Select balls B .p1; r1/ ; : : : ;
B .pk; rk/with corresponding critical points x1; : : : ; xk;where k > 100n:Now choose
z 2 A and select segments zxi. One can check that in the unit sphere:

v .n � 1; 1; 	/
v
�
n � 1; 1; 1

12

� � .12	/n�1 � 40n:

Since k > 40n there will be two segments zxi and zxj that form an angle < 1=6 at z:
Figure 12.17 gives the pictures of the geometry involved.

Note that jzpij � ri and
ˇ
ˇzpj

ˇ
ˇ � rj. The triangle inequality implies

jzxij � 10ri C jzpij � 11ri;
ˇ
ˇzxj

ˇ
ˇ � 10rj � rj � 9rj:

Also, rj � 3ri; so
ˇ
ˇzxj

ˇ
ˇ > jzxij. The hinge version of Toponogov’s theorem then

implies

ˇ
ˇxixj

ˇ
ˇ2 � ˇˇzxj

ˇ
ˇ2 C jzxij2 � 2 jzxij

ˇ
ˇzxj

ˇ
ˇ cos 1

6

D ˇ
ˇzxj

ˇ
ˇ2 C jzxij2 � 31

16
jzxij

ˇ
ˇzxj

ˇ
ˇ

�
�ˇ
ˇzxj

ˇ
ˇ� 3

4
jzxij

�2
:

Fig. 12.17 Hinges and
triangles
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In other words:
ˇ
ˇxixj

ˇ
ˇ � ˇˇzxj

ˇ
ˇ � 3

4
jzxij. Now use the triangle inequality to conclude

ˇ
ˇpixj

ˇ
ˇ � ˇˇzxj

ˇ
ˇ � jzpij

� 10rj �
ˇ
ˇzpj

ˇ
ˇ� jzpij

� 8rj

� 24ri

� 20ri D 2 jpixij :

Yet another application of the triangle inequality will then imply
ˇ
ˇxixj

ˇ
ˇ � jpixij :

Since xi is critical for pi; we use the hinge version of Toponogov’s theorem to
conclude

ˇ
ˇpixj

ˇ
ˇ2 � jpixij2 C

ˇ
ˇxixj

ˇ
ˇ2 �

�ˇ
ˇxixj

ˇ
ˇC 1

2
jpixij

�2
:

Thus,

ˇ̌
pixj

ˇ̌ � ˇ̌xixj

ˇ̌C 1

2
jpixij �

ˇ̌
xixj

ˇ̌C 5ri:

The triangle inequality implies

ˇ
ˇzxj

ˇ
ˇ � ˇˇpixj

ˇ
ˇC jzpij �

ˇ
ˇpixj

ˇ
ˇC ri �

ˇ
ˇxixj

ˇ
ˇC 6ri:

However, we also have

jzxij � 10ri � jzpij � 9ri;

which together with

ˇ
ˇxixj

ˇ
ˇ � ˇˇzxj

ˇ
ˇ � 3

4
jzxij

implies

ˇ
ˇxixj

ˇ
ˇ � ˇˇzxj

ˇ
ˇ � 27

4
ri:

Thus, we have a contradiction:

ˇ
ˇxixj

ˇ
ˇC 27

4
ri �

ˇ
ˇzxj

ˇ
ˇ � ˇˇxixj

ˇ
ˇC 6ri:

ut
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Having established a bound on the corank, we next check how the topology
changes when we pass from balls of lower corank to balls of higher corank. This
requires two lemmas. The first is purely topological and its proof can be skipped.

Lemma 12.5.3. Assume that we have bounded open sets Bj
i, i D 1; : : : ;m and j D

0; : : : ; nC 1 with NBj
i � BjC1

i � Mn, then

rankk

 
[

i

B0i �
[

i

BnC1
i

!

� rankk

 
[

i

B0i �
[

i

BkC1
i

!

�
kX

lD0

X

i0<���<ik�l

rankl

 
k�l\

sD0
B0is �

k�l\

sD0
BlC1

is

!

:

Proof. To see why we need multiple intermediate coverings consider the commuta-
tive diagram

ker L! V ! imL
# 0 # f #
imL ! imL! 0

where the rank of f is clearly not bounded by the ranks of the other two maps
between the exact sequences.

We use the generalized Mayer-Vietoris double complex of singular chains with
coefficients F (see also [18, Sections 8 and 15]):

Cj
p;q D

M

i0<���<iq

Cp

�
\q

sD0B
j
is

�
:

This comes with the boundary maps

@ W Cj
p;q ! Cj

p�1;q;

ı W Cj
p;q ! Cj

p;q�1;

where ı comes from the inclusions Cp

�
\q

sD0B
j
is

�
! Cp

�
\s¤lB

j
is

�
with sign .�1/l

for l D 0; : : : ; q. The choice of sign is consistent with the usual Mayer-Vietoris
sequence. Moreover, @ı D ı@. Define Ä D .�1/p ı (eth) to make them anticommute.
We then obtain a new chain complex with vector spaces ˚k

lD0C
j
l;k�l and boundary

maps D D @C Ä defined as:

˚k
lD0C

j
l;k�l ! ˚k�1

lD0Cj
l;k�1�l;

�
cj
0;k; c

j
1;k�1; : : : ; c

j
k;0

�
7!
�
Äcj

0;k C @cj
1;k�1; : : : ; Äcj

k�1;1 C @cj
k;0

�
:
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The Ä-complex can be augmented by adding the natural inclusions Ä W Cj
p;0 !

Cp

�
[iB

j
i

�
. The images of this map generates the @-homology, so let Cj

p D imÄ to

obtain a diagram with exact columns:

:::
:::

:::
::: : :

:

Ä # Ä # Ä #
0

@ Cj
0;1

@ Cj
1;1

@ Cj
2;1

@ � � �
Ä # Ä # Ä #

0
@ Cj

0;0

@ Cj
1;0

@ Cj
2;0

@ � � �
Ä # Ä # Ä #

0
@ Cj

0

@ Cj
1

@ Cj
2

@ � � �
Ä # Ä # Ä #
0 0 0 � � �

Any D-cycle
�

cj
l;k�l

�
defines a @-cycle Äcj

k;0 2 Cj
k since

@Äcj
k;0 D �Ä@cj

k;0 D ÄÄcj
k�1;1 D 0:

Conversely, any @-cycle c 2 Cj
k comes from a D-cycle: We need cj

l;k�l 2 Cj
l;k�l

such that @cj
l;k�l D �Äcj

l�1;k�lC1. Start by finding cj
k;0 such that Äcj

k;0 D c. Since

Ä@cj
k;0 D �@Äcj

k;0 D 0 we can by exactness of Ä find cj
k�1;1 with �Äcj

k�1;1 D
@cj

k;0 etc.
This correspondence also preserves being a boundary and thus gives an isomor-

phism between D-homology and regular @-homology. This is crucial for the proof
as it shows how to represent homology classes by chains in the intersections. That
said, as we don’t generate cycles in the intersections, they don’t immediately create
homology classes.

We use a modified version of Cheeger’s cohomology proof in [28]. To prove
the lemma consider a finite dimensional subspace Zk � ˚k

lD0C0
l;k�l of D-cycles

that contains no nontrivial D-boundaries. Let Z0k D ÄZk � C0
k be the isomorphic

subspace of @-cycles. Specifically: z D Äzk;0 2 Z0k , where .zl;k�l/ 2 Zk. We claim
that there is a filtration Z0k � Z1k � � � � � ZkC1

k with the properties that

dim
�
Zl

k=ZlC1
k

� �
X

i0<���<ik�l

rankl

 
k�l\

sD0
Bl

is �
k�l\

sD0
BlC1

is

!

and ZkC1
k consists of @-cycles that are mapped to @-boundaries in CkC1

k . This will
prove the lemma if Z0k is chosen to map isomorphically to its image in Hk

�[iB
kC1
i

�
.
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For the construction choose inverses @�1 W @Cj
p;q ! Cj

p;q with @@�1c D c,

and name the inclusion maps f j W C�
�
[iB

j�1
i

�
! C�

�
[iB

j
i

�
. Note also that the

restriction maps z 7! zl;k�l are linear.
The construction is inductive and relies on finding suitable linear maps Ll W Zl

k !
Cl

l;k�l whose images consists of @-cycles and then define

ZlC1
k D ˚z 2 Zl

k j f lC1Ll .z/ 2 @ClC1
lC1;k�l

�
:

This will show that

dim
�
Zl

k=ZlC1
k

� �
X

i0<���<ik�l

rankl

 
k�l\

sD0
Bl

is �
k�l\

sD0
BlC1

is

!

:

Starting with l D 0 we set L0 .z/ D z0;k,

Z1k D
˚
z 2 Z0k j f 1 .z0;k/ 2 @C1

1;k

�
;

and note that we trivially have @z0;k D 0.
Now assume we have Ll W Zl

k ! Cl
l;k�l with the properties that

ÄLl .z/ D f l � � � f 1 .Äzl;k�l/ ;

@Ll .z/ D f l � � � f 1 .@zl;k�l/C f l
�
ÄLl�1 .z/

� D 0:

This is clearly valid for l D 0. We can then define ZlC1
k as above and with that

LlC1 .z/ D f lC1 � � � f 1 .zlC1;k�l�1/C Ä@�1f lC1Ll .z/ :

It follows from our induction hypotheses on Ll and the fact that .zl;k�l/ is a D-cycle
that

ÄLlC1 .z/ D f lC1 � � � f 1 .ÄzlC1;k�l�1/ ;

@LlC1 .z/ D f lC1 � � � f 1 .@zlC1;k�l�1/C f lC1 �ÄLl .z/
� D 0:

Finally, when z 2 ZkC1
k we have that f kC1Lk .z/ 2 @CkC1

kC1;0 and

Äf kC1Lk .z/ D f kC1f k � � � f 1 .Äzk;0/ D f kC1 � � � f 1 .z/

showing that also f kC1 � � � f 1 .z/ is a @-boundary. ut
Let B .k/ denote the set of balls in M of corank� k; and C .k/ the largest content

of any ball in B .k/ :
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Lemma 12.5.4. There is a constant C .n/ depending only on dimension such that

C .k/ � C .n/C .kC 1/ :

Proof. Clearly C .k/ is always realized by some incompressible ball B .p;R/. Now
consider a ball B .x; r/ where x 2 B .p; R=4/ and r � R=100. We claim that this ball
lies in B .kC 1/ : To see this, first consider the balls

B
�
x; R

10

� � B
�
p; R

5

� � B
�
x; R

2

� � B .p;R/ :

If there are no critical points for x in B .x; R=2/ � B .x; R=10/, then

rank�
�
B
�
x; R

10

� � B
�
x; R

2

��

D rank�
�
B
�
p; R

5

� � B
�
x; R

2

��

� rank�
�
B
�
p; R

5

� � B .p;R/
�
:

This implies that contB .p;R/ � contB .x; R=2/ and thus contradicts incompressibil-
ity of B .p;R/ : We can now show that B .x; r/ 2 B .kC 1/ : Using that B .p;R/ 2
B .k/ ; select B .p1; r1/ ; : : : ; B .pl; rl/ ; l � k; as in the definition of corank. Then
pick a critical point y for x in B .x; R=2/�B .x; R=10/ and consider the ball B .x; jxyj=10/.
Then the balls B .p1; r1/,. . . , B .pl; rl/, B .x; jxyj=10/ show that B .x; r/ has corank
� lC 1 > k:

Now cover B .p; R=5/ by balls B
�
pi; 10

�n�3R
�
; i D 1; : : : ;m. If in addition the

balls B
�
pi; 10

�n�3R=2
�

are pairwise disjoint, then

m � v .n; 0;R/

v .n; 0; 10�n�3R=2/
D 2n � 10n.nC3/:

Since B .pi; R=2/ � B .p;R/ it follows that

contB .p;R/ � rank�

 
m[

iD1
B
�
pi; 10

�n�3R
� �

m[

iD1
B
�
pi;

R
2

�
!

:

To estimate

rank�

 
m[

iD1
B
�
pi; 10

�n�3R
� �

m[

iD1
B
�
pi;

R
2

�
!

;

use the doubly indexed family Bj
i D B

�
pi; 10

j�n�3R
�
, j D 0; : : : ; n C 1. Note that

for fixed j the family covers B .p; R=5/. It follows from lemma 12.5.3 that
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rank�

 
m[

iD1
B
�
pi; 10

�n�3R
� �

m[

iD1
B
�
pi;

R
2

�
!

� rank�

 
m[

iD1
B
�
pi; 10

�n�3R
� �

m[

iD1
B
�
pi; 10

�2R
�
!

�
nX

jD0

m�1X

kD0

X

i0<���<ik

rank�

 
k\

sD0
B
�
pis ; 10

j�n�3� �
k\

sD0
B
�
pis ; 10

j�n�2R
�
!

:

When
Ts

tD0 B
�
pit ; 10

j�n�3R
� ¤ ¿ the triangle inequality shows that

s\

tD0
B
�
pit ; 10

j�n�3R
� � B

�
pi0 ; 10

j�n�3R
�

� B
�
pi0 ; 10

j�n�2 R
2

�

�
s\

tD0
B
�
pit ; 10

j�n�2R
�
:

Consequently, as long as j � n we have

rank�

 
s\

tD0
B
�
pit ; 10

j�n�3R
� �

s\

tD0
B
�
pit ; 10

j�n�2R
�
!

� contB
�
pi0 ; 10

j�n�2 R
2

�

where B
�
pi0 ; 10

j�n�2 R
2

� 2 B .kC 1/.
The number of intersections

Ts
tD0 B

�
pit ; 10

j�n�3R
�

with j � n and s � 2n �
10n.nC3/ is bounded by

C .n/ D
nX

jD0
22

n�10n.nC3/

:

So we obtain an estimate of the form C .k/ � C .n/C .kC 1/. ut
Proof of (2). The above lemma implies that

contM D C .0/ � C .k/ � .C .n//k ;

where k � 100n is the largest possible corank in M: It then remains to check
that C .k/ D 1: However, it follows from the above that if B .k/ contains an
incompressible ball, then B .kC 1/ ¤ ¿: Thus, all balls in B .k/ are compressible,
but then they must have minimal content 1: ut
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The Betti number theorem can easily be proved in the more general context of
manifolds with lower sectional curvature bounds, but one must then also assume
an upper diameter bound. Otherwise, the ball covering arguments, and also the
estimates using Toponogov’s theorem, won’t work. Thus, there is a constant
C
�
n; k2D

�
such that any closed Riemannian n-manifold .M; g/ with sec � k and

diam � D has the properties that

(1) 	1 .M/ can be generated by � C
�
n; kD2

�
elements,

(2)
Pn

iD0 bi .M;F/ � C
�
n; kD2

�
.

It is also possible to reach a stronger conclusion (see [102]). In outline this is done as
follows. First one should use simplicial instead of singular homology. If one inspects
the proof of lemma 12.5.3 with this in mind, then one can, from a sufficiently
fine simplicial subdivision of M relative to the doubly indexed cover, create a CW
complex X that uses at most C

�
n; kD2

�
cells as well as maps M ! X ! M whose

composition is the identity. In other words M is dominated by a CW complex with
a bounded number of cells. This will also give a bound for the Betti numbers.

12.6 Homotopy Finiteness

This section is devoted to a result that interpolates between Cheeger’s finiteness the-
orem and Gromov’s Betti number estimate. We know that in Gromov’s theorem
the class under investigation contains infinitely many homotopy types, while if we
have a lower volume bound and an upper curvature bound as well, Cheeger’s result
says that we have finiteness of diffeomorphism types.

Theorem 12.6.1 (Grove and Petersen, 1988). Given an integer n > 1 and
numbers v;D; k > 0, the class of Riemannian n-manifolds with

diam � D;

vol � v;
sec � �k2

contains only finitely many homotopy types.

As with the other proofs in this chapter we need to proceed in stages. First, we
present the main technical result.

Lemma 12.6.2. For M as in the theorem, there exists ˛ D ˛ .n;D; v; k/ 2 �0; 	
2

�

and ı D ı .n;D; v; k/ > 0 such that if p; q 2 M satisfy jpqj � ı; then either p is
˛-regular for q or q is ˛-regular for p:

Proof. The proof is by contradiction and based on a suggestion by Cheeger. For
simplicity assume that k D �1. Suppose there are points p; q 2 M that are not
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˛-regular with respect to each other and with jpqj � ı. Then the two sets
H)
pq � TpM

and
H)
qp � TqM of unit vectors tangent segments joining p and q are by assumption

.	 � ˛/-dense in the unit spheres. It is a simple exercise to show that if A � Sn�1;
then the function

t 7! volB .A; t/

v .n � 1; 1; t/
is nonincreasing (see also exercise 7.5.18 for a more general result). In particular,
for any .	 � ˛/-dense set A � Sn�1

vol
�
Sn�1 � B .A; ˛/

� D volSn�1 � volB .A; ˛/

� volSn�1 � volSn�1 � v .n � 1; 1; ˛/
v .n � 1; 1; 	 � ˛/

D volSn�1 � v .n � 1; 1; 	 � ˛/ � v .n � 1; 1; ˛/
v .n � 1; 1; 	 � ˛/ :

Now choose ˛ < 	
2

such that

volSn�1 � v .n � 1; 1; 	 � ˛/ � v .n � 1; 1; ˛/
v .n � 1; 1; 	 � ˛/ �

Z D

0

.snk .t//
n�1 dt D v

6
:

Thus, the two cones in M (see exercise 7.5.19) satisfy

volBSn�1�B
�

H)
pq ;˛

�

.p;D/ � v

6
;

volBSn�1�B
�

H)
qp ;˛

�

.q;D/ � v

6
:

We use Toponogov’s theorem to choose ı such that any point in M that does not
lie in one of these two cones must be close to either p or q. Figure 12.18 shows how
a small ı will force the other leg in the triangle to be smaller than r. To this end,
pick r > 0 such that

v .n;�1; r/ D v

6
:

We claim that if ı is sufficiently small, then

M D B .p; r/[ B .q; r/ [ BSn�1�B
�

H)
pq ;˛

�

.p;D/[ BSn�1�B
�

H)
qp ;˛

�

.q;D/ :
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Fig. 12.18 Comparison
hinge and triangle

r rr

This will, of course, lead to a contradiction, as we would then have

v � volM

� vol

�
B .p; r/[ B .q; r/ [ BSn�1�B

�
H)
pq ;˛

�

.p;D/[ BSn�1�B
�

H)
qp ;˛

�

.q;D/

�

� 4 � v
6
< v:

To see that these sets cover M; observe that if

x … BSn�1�B
�

H)
pq ;˛

�

.p;D/ ;

then there is a hinge xp and pq with angle � ˛ (see figure 12.18).
Thus, we have from Toponogov’s theorem that

cosh jxqj � cosh jpqj cosh jxpj � sinh jpqj sinh jxpj cos .˛/ :

If also

x … BSn�1�B
�

H)
qp ;˛

�

.q;D/ ;

we have in addition,

cosh jxpj � cosh jpqj cosh jxqj � sinh jpqj sinh jxqj cos .˛/ :

If jxpj > r and jxqj > r, we get

cosh jxqj � cosh jpqj cosh jxpj � sinh jpqj sinh jxpj cos .˛/

� cosh jxpj
C .cosh jpqj � 1/ cosh D � sinh jpqj sinh r cos .˛/

and

cosh jxpj � cosh jxqj
C .cosh jpqj � 1/ cosh D � sinh jpqj sinh r cos .˛/ :
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However, as jpqj ! 0; we see that the quantity

f .jpqj/ D .cosh jpqj � 1/ cosh D � sinh jpqj sinh r cos .˛/

D .� sinh r cos˛/ jpqj C O
�
jpqj2

�

becomes negative. Thus, we can find ı .D; r; ˛/ > 0 such that for jpqj � ı we have

.cosh jpqj � 1/ cosh D � sinh jpqj sinh r cos .˛/ < 0:

We have then arrived at another contradiction, as this would imply

cosh jxqj < cosh jxpj

and

cosh jxpj < cosh jxqj

at the same time. Thus, the sets cover as we claimed. As this covering is also
impossible, we are lead to the conclusion that under the assumption that jpqj � ı;
we must have that either p is ˛-regular for q or q is ˛-regular for p: ut

As it stands, this lemma seems rather strange and unmotivated. A simple analysis
will, however, enable us to draw some very useful conclusions from it.

Consider the product M�M with the product metric. Geodesics in this space are
of the form .c1; c2/ ; where both c1; c2 are geodesics in M: In M � M we have the
diagonal� D f.x; x/ j x 2 Mg. Note that

T.p;p/� D
˚
.v; v/ j v 2 TpM

�
;

and the normal bundle

T?
.p;p/� D

˚
.v;�v/ j v 2 TpM

�
:

Therefore, if .c1; c2/ W Œa; b� ! M � M is a segment from .p; q/ to �; then
Pc1 .b/ D �Pc2 .b/ : Thus these two segments can be joined at the common point
c1 .b/ D c2 .b/ to form a geodesic from p to q in M: This geodesic is, in fact, a
segment, for otherwise, we could find a shorter curve from p to q: Dividing this
curve in half would then produce a shorter curve from .p; q/ to �. Thus, we have
a bijective correspondence between segments from p to q and segments from .p; q/
to �: Moreover,

p
2 � j.p; q/�j D jpqj :

The above lemma implies

Corollary 12.6.3. Any point within distance ı=
p
2 of � is ˛-regular for�:
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Fig. 12.19 Critical points for
diagonal and deformation

(p,q)

(y,y)

(x,x)
p

q

x

y

M

M

M

M

Figure 12.19 shows how the contraction onto the diagonal works and also how
segments to the diagonal are related to segments in M:

Thus, we can find a curve of length � 1
cos˛ j.p; q/�j from any point in this

neighborhood to �: Moreover, this curve depends continuously on .p; q/ : We can
translate this back into M: Namely, if jpqj < ı; then p and q are joined by a

curve t 7! H .p; q; t/ ; 0 � t � 1; whose length is �
p
2

cos˛ jpqj : Furthermore, the

map .p; q; t/ 7! H .p; q; t/ is continuous. For simplicity, we let C D
p
2

cos˛ in the
constructions below.

We now have the first ingredient in our proof.

Corollary 12.6.4. If f0; f1 W X ! M are two continuous maps such that

jf0 .x/ f1 .x/j < ı

for all x 2 X; then f0 and f1 are homotopy equivalent.

For the next construction, recall that a k-simplex �k can be thought of as the set
of affine linear combinations of all the basis vectors in R

kC1; i.e.,

�k D ˚�x0; : : : ; xk
� j x0 C � � � C xk D 1 and x0; : : : ; xk 2 Œ0; 1�� :

The basis vectors ei D
�
ı1i ; : : : ; ı

k
i

�
are the vertices of the simplex.

Lemma 12.6.5. Suppose we have kC 1 points p0; : : : ; pk 2 B .p; r/ � M: If

2r
Ck � 1
C � 1 < ı;

then we can find a continuous map

f W �k ! B

�
p; rC 2r � C � Ck � 1

C � 1
�
;

where f .ei/ D pi:
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Fig. 12.20 Homotopy
construction of a simplex

p

p

p

0

2

1

Proof. Figure 12.20 gives the essential idea of the proof. The construction is by
induction on k: For k D 0 there is nothing to show.

Assume that the statement holds for k and that we have k C 2 points p0; : : : ;
pkC1 2 B .p; r/ : First, we find a map

f W �k ! B

�
p; 2r � C � Ck � 1

C � 1 C r

�

with f .ei/ D pi for i D p0; : : : ; pk: We then define

Nf W �kC1 ! B

�
p; rC 2r � C � CkC1 � 1

C � 1
�
;

Nf �x0; : : : ; xk; xkC1� D H

 

f

 
x0

Pk
iD1 xi

; : : : ;
xk

Pk
iD1 xi

!

; pkC1; xkC1
!

:

This clearly gives a well-defined continuous map as long as

ˇ
ˇ
ˇ̌
ˇ
pkC1 f

 
x0

Pk
iD1 xi

; : : : ;
xk

Pk
iD1 xi

!ˇˇ
ˇ̌
ˇ
�
ˇ
ˇ
ˇ̌
ˇ
p f

 
x0

Pk
iD1 xi

; : : : ;
xk

Pk
iD1 xi

!ˇˇ
ˇ̌
ˇ
C jppkC1j

�
�
2r � C � Ck � 1

C � 1 C r

�
C r

D 2r � CkC1 � 1
C � 1

< ı:

Moreover, it has the property that

ˇ
ˇp Nf .�/ˇˇ � jp pkC1j C

ˇ
ˇpkC1 Nf .�/

ˇ
ˇ

� rC 2r � C � CkC1 � 1
C � 1 :

This concludes the induction step. ut
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Note that if we select a face spanned by, say, .e1; : : : ; ek/ of the simplex�k; then
we could, of course, construct a map in the above way by mapping ei to pi. The
resulting map will, however, be the same as if we constructed the map on the entire
simplex and restricted it to the selected face.

We can now prove finiteness of homotopy types. Observe that the class we work
with is precompact in the Gromov-Hausdorff distance as we have an upper diameter
bound and a lower bound for the Ricci curvature. Thus it suffices to prove

Lemma 12.6.6. There is an " D " .n; k; v;D/ > 0 such that if two Riemannian
n-manifolds .M; g1/ and .N; g2/ satisfy

diam � D;

vol � v;
sec � �k2;

and

dG�H .M;N/ < ";

then they are homotopy equivalent.

Proof. Suppose M and N are given as in the lemma, together with a metric on M[N;
inside which the two spaces are " Hausdorff close. The size of " will be found
through the construction.

First, triangulate both manifolds in such a way that any simplex of the trian-
gulation lies in a ball of radius ": Using the triangulation on M; we can construct
a continuous map f W M ! N as follows. First use the Hausdorff approximation
to map all the vertices fpig � M of the triangulation to points fqig � N such
that jpiqij < ". If .pi0 ; : : : ; pin/ forms a simplex in the triangulation of M; then
by the choice of the triangulation fpi0 ; : : : ; ping � B .x; "/ for some x 2 M: Thus
fqi0 ; : : : ; qing � B .qi0 ; 4"/. Therefore, if

8"
Cn � 1
C � 1 < ı;

then lemma 12.6.5 can be used to define f on the simplex spanned by .pi0 ; : : : ; pin/.
In this way we get a map f W M ! N by constructing it on each simplex as
just described. To see that it is continuous, we must check that the construction
agrees on common faces of simplices. But this follows as the construction is natural
with respect to restriction to faces of simplices. We need to estimate how good a
Hausdorff approximation f is. To this end, select x 2 M and suppose that it lies in
the face spanned by the vertices .pi0 ; : : : ; pin/ : Then we have

jx f .x/j � jx pi0 j C jpi0 f .x/j
� 2"C "C jqi0 f .x/j



12.6 Homotopy Finiteness 487

� 3"C 4"C 8" � C � Cn � 1
C � 1

D 7"C 8" � C � Cn � 1
C � 1 :

We can construct g W N ! M in the same manner. This map will, of course, also
satisfy

jy g.y/j � 7"C 8" � C � Cn � 1
C � 1 :

It is now possible to estimate how close the compositions f ı g and g ı f are to the
identity maps on N and M; respectively, as follows:

jy f ı g.y/j � jy g.y/j C jg.y/ f ı g.y/j

� 14"C 16" � C � C
n � 1

C � 1 I

jx g ı f .x/j � 14"C 16" � C � C
n � 1

C � 1 :

As long as

14"C 16" � C � Cn � 1
C � 1 < ı;

we can then conclude that these compositions are homotopy equivalent to the
respective identity maps. In particular, the two spaces are homotopy equivalent. ut

Note that as long as

14"C 16" � CnC1 � 1
C � 1 < ı;

the two spaces are homotopy equivalent. Thus, " depends in an explicit way on

C D
p
2

cos˛ and ı: It is possible, in turn, to estimate ˛ and ı from n; k; v; and D: Thus
there is an explicit estimate for how close spaces must be to ensure that they are
homotopy equivalent. Given this explicit "; it is then possible, using our work from
section 11.1.4 to find an explicit estimate for the number of homotopy types.

To conclude, let us compare the three finiteness theorems by Cheeger, Gromov,
and Grove-Petersen. There are inclusions of classes of closed Riemannian n-
manifolds

�
diam � D
sec � �k2

�
�
8
<

:

diam � D
vol � v
sec � �k2

9
=

;
�
8
<

:

diam � D
vol � v
jsecj � k2

9
=

;
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with strengthening of conclusions from bounded Betti numbers to finitely many
homotopy types to compactness in the C1;˛ topology. In the special case of
nonnegative curvature Gromov’s estimate actually doesn’t depend on the diameter,
thus yielding obstructions to the existence of such metrics on manifolds with
complicated topology. For the other two results the diameter bound is still necessary.
Consider for instance the family of lens spaces

˚
S3=Zp

�
with curvature D 1: Now

rescale these metrics so that they all have the same volume. Then we get a class
which contains infinitely many homotopy types and also satisfies

vol D v;
1 � sec > 0:

The family of lens spaces
˚
S3=Zp

�
with curvature D 1 also shows that the lower

volume bound is necessary in both of these theorems.
Some further improvements are possible in the conclusion of the homotopy

finiteness result. Namely, one can strengthen the conclusion to state that the class
contains finitely many homeomorphism types. This was proved for n ¤ 3 in [59]
and in a more general case in [85]. One can also prove many of the above results for
manifolds with certain types of integral curvature bounds, see for instance [91] and
[88]. The volume [54] also contains complete discussions of generalizations to the
case where one has merely Ricci curvature bounds.

12.7 Further Study

There are many texts that partially cover or expand the material in this chapter.
We wish to attract attention to the surveys by Grove in [51], by Abresch-Meyer,
Colding, Greene, and Zhu in [54], by Cheeger in [28], and by Karcher in [32]. The
most glaring omission from this chapter is probably that of the Abresch-Gromoll
theorem and other uses of the excess function. The above-mentioned articles by
Zhu and Cheeger cover this material quite well.

12.8 Exercises

EXERCISE 12.8.1. Let .M; g/ be a closed simply connected positively curved
manifold. Show that if M contains a totally geodesic closed hypersurface, then M is
homeomorphic to a sphere. Hint: first show that the hypersurface is orientable, and
then show that the signed distance function to this hypersurface has only two critical
points - a maximum and a minimum. This also shows that it suffices to assume that
H1 .M;Z2/ D 0:
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EXERCISE 12.8.2. Let .M; g/ be a complete noncompact manifold with sec � 0

and soul S � M.

(1) Show that if X 2 TS and V 2 T?S, then sec .X;V/ D 0.
(2) Show that if the soul has codimension 1 and trivial normal bundle, then

.M; g/ D �S � R; gS C dr2
�
.

(3) Show that if the soul has codimension 1 and nontrivial normal bundle, then a
double cover splits as in (2).

EXERCISE 12.8.3. Show that the solution to

R� D � .1C "/ �;
� .0/ D  .0/ > 0;
P� .0/ D P .0/ > 0:

is given by

� .t/ D
s

. .0//2 C
� P .0/�2
1C " � sin

 p
1C " � tC arctan

 
 .0/ � p1C "

P .0/

!!

:

EXERCISE 12.8.4. Show that the converse of Toponogov’s theorem is also true.
In other words, if for some k the conclusion to Toponogov’s theorem holds when
hinges (or triangles) are compared to the same objects in S2k ; then sec � k:

EXERCISE 12.8.5. Let .M; g/ be a complete Riemannian manifold. Show that if all
sectional curvatures on B .p; 2R/ are � k, then Toponogov’s comparison theorem
holds for hinges and triangles in B .p;R/.

EXERCISE 12.8.6. Let .M; g/ be a complete Riemannian manifold with sec � k.
Consider f .x/ D jxqj � jxpj and assume that both jxqj and jxpj are smooth at x.
Show that Toponogov’s theorem can be used to bound jrf j jx from below in terms
of the distance from x to a segment from q to p.

EXERCISE 12.8.7 (HEINTZE AND KARCHER). Let c � .M; g/ be a geodesic in a
Riemannian n-manifold with sec � �k2: Let T .c;R/ be the normal tube around
c of radius R; i.e., the set of points in M that can be joined to c by a segment
of length � R that is perpendicular to c: The last condition is superfluous when
c is a closed geodesic, but if it is a loop or a segment, then not all points in M
within distance R of c will belong to this tube. On this tube introduce coordinates
.r; s; �/ ; where r denotes the distance to c; s is the arclength parameter on c; and
� D �

�1; : : : ; �n�2� are spherical coordinates normal to c: These give adapted
coordinates for the distance r to c: Show that as r! 0 the metric looks like
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g .r/ D

0

B
B
B
BB
@

1 0 0 � � � 0
0 1 0 � � � 0
0 0 0 � � � 0
:::
:::
:::
: : :
:::

0 0 0 � � � 0

1

C
C
C
CC
A
C

0

B
B
B
BB
@

0 0 0 � � � 0
0 0 0 � � � 0
0 0 1 � � � 0
:::
:::
:::
: : :
:::

0 0 0 � � � 1

1

C
C
C
CC
A
� r2 CO

�
r3
�

Using the lower sectional curvature bound, find an upper bound for the volume
density on this tube. Conclude that

volT .c;R/ � f .n; k;R;L .c// ;

for some continuous function f depending on dimension, lower curvature bound,
radius, and length of c: Moreover, as L .c/ ! 0; f ! 0: Use this estimate to prove
lemmas 11.4.9 and 12.6.2. This shows that Toponogov’s theorem is not needed for
the latter result.

EXERCISE 12.8.8. Show that any vector bundle over a 2-sphere admits a complete
metric of nonnegative sectional curvature. Hint: You need to know something
about the classification of vector bundles over spheres. In this case k-dimensional
vector bundles are classified by homotopy classes of maps from S1; the equator
of the 2-sphere, into SO .k/ : This is the same as 	1 .SO .k// ; so there is only one
1-dimensional bundle, the 2-dimensional bundles are parametrized by Z; and for
k > 2 there are two k-dimensional bundles.

EXERCISE 12.8.9. Use Toponogov’s theorem to show that bc is convex when
sec � 0:
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A
adjoint

of covariant derivative, 59
Affine field, 72
Angle comparison in negative curvature, 246
Arzela-Ascoli lemma, 402
Axis for an isometry, 247

B
Berger spheres, 10, 11, 260, 399

computation of curvatures, 143
Betti number estimate

by Bochner, 338
by Gromov, 470
by Gromov-Gallot, 341

Bianchi’s first identity, 79
Bianchi’s second identity, 79

contracted, 88, 104, 111
Bochner formula, 440
Bochner technique

for 1-forms, 336
for Killing fields, 318

Bonnet’s diameter estimate, 250, 251
Bundles

of frames, 273
over 2-sphere, 37, 161, 469, 490

Busemann function, 301

C
Cartan formalism, 111
Cartan’s theorem, 244
Center of mass, 244
Cheeger’s lemma, 433

Cheng’s maximal diameter theorem, 295
Christoffel symbols, 67
Codazzi equation, 93, 104
Codazzi tensor, 350
Cohomology

de Rham, 334
Hodge, 336

Compact embedding, 406
Comparison estimates

for Ricci curvature, 276
for sectional curvature, 254

Completeness, 210
closed manifolds, 181
geodesic, 173
metric, 179
of Gromov-Hausdorff topology, 399

Conformal change of metric, 156
Conformal flatness, 158
Conjugate point, 102, 215, 257
Conjugate radius estimate, 257
Connectedness Lemma

for functions, 261
Connectedness Principle, 264

with symmetries, 324
Connectedness Theorem

for the energy functional, 262
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affine, 55
along curves, 232
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of biinvariant metric, 113
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on Lie group, 72
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Constant curvature, 83
global classification, 199
local characterization, 192

Contractions, 29
Convergence

of maps, Gromov-Hausdorff, 401
of pointed spaces, Gromov-Hausdorff, 401
of spaces, 414

Gromov-Hausdorff, 396
Hausdorff, 396

Convergence theorem
of Anderson, 429
of Cheeger-Gromov, 432

Convexity radius, 259
Coordinates

Cartesian, 51, 191
distance, 202
exponential, 189
harmonic, 409
normal at a point, 72, 227
polar, 15

Covariant derivative, 57
in parallel frame, 237
second, 61

Covering space, see Riemannian
Critical point estimate, 462
Critical point theory, 444
Curvature

Complex, 106
constant, 83
directional, 83, 92
form, 112
fundamental equations, 90
in dimension 2, 86
in dimension 3, 86, 105
Isotropic, 106
of product metric, 104
operator, 83, 113, 352, 471

classification of � 0, 389
on symmetric spaces, 374

representation in a frame, 111
Ricci, 85, 275, 426

in harmonic coordinates, 410
Riemannian, 78
scalar, 86, 352
sectional, 83, 113, 231, 443

Cut locus, 219

D
Derivative

Lie, 42
Dirac operator, 352
Directional derivative, 42

Dirichlet problem, 409
Displacement function, 247
Distance function, 95, 97, 178, 191, 192
Divergence, 73
divergence

of vector field, 49
Doubly warped products, 22

E
Eguchi-Hanson metric, 160
Einstein

constant, 86
metric, 86, 386
notation, 12

Einstein tensor, 105
Elliptic estimates, 408
Elliptic operators, 407
Energy functional, 182
Euclidean space, 2

curvature of, 82
isometry group, 8

Exponential map, 187
Lie group, 38

Exponential map comparison, 255
Extrinsic geometry, 97

F
Fibration, 226
Finiteness theorem

for diffeomorphism types, 424, 434
in positive curvature, 432

for fundamental groups, 294
for homotopy types, 480

Focal point, 102
Frame, 15

left-invariant, 15
normal at a point, 56, 72

Frankel’s theorem, 266, 270
Functional distance, 182
Fundamental equations

for curvature, 90
Fundamental theorem

of convergence theory, 421
of Riemannian geometry, 53

G
Gauss equation, 93, 104
Gauss lemma, 190
Geodesic, 171, 187, 190
Gradient, 42
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Grassmannian
compact

as a symmetric space, 377
hyperbolic

as a symmetric space, 379

H
Hadamard-Cartan theorem, 241
Harmonic function, 283
Hessian, 48
Hessian comparison, 453
Hinge, 449
Hodge theorem, 336
Holonomy, 383
Holonomy classification, 388
Homogeneous space, 8

completeness, 221
k-point, 269

Hopf fibration, 5, 10, 23
Hopf problem, 320, 352, 471
Hopf-Rinow theorem, 210
Hyperbolic space, 6

as rotationally symmetric surface, 18
as surface of revolution, 17
geodesics, 175
isometry group, 9
left-invariant metric, 141
Poincarè model, 135
Riemann’s model, 137
upper half plane model, 135

Hypersurface
in Euclidean space, 95

I
Index form, 271
Index Lemma, 271
Index notation, 31
Injectivity radius, 189
Injectivity radius estimate

by Cheeger, 433
generalization of Cheeger’s lemma, 441
in general, 258
in positive curvature, 260

Integrable system, 107
Intrinsic geometry, 97
Isometric immersion, 3
Isometry

distance preserving, 202
Riemannian, 3

Isometry group, 8, 316
Hyperbolic space, 9

of Euclidean space, 8
of the sphere, 9

Isothermal coordinates, 158
Isotropy group, 8

J
Jacobi field

along a geodesic, 237
for a distance function, 98

K
Killing field, 51, 313, 314
Killing form, 39
Koszul formula, 54
Kulkarni-Nomizu product, 109
Kuratowski embedding, 400

L
Laplacian, 49

coordinate representation, 74
in harmonic coordinates, 410
on forms, 335

Laplacian estimate, 284
Law of cosines, 451
Left-invariant

frame, 15
metric, 10

Length functional, 182
Length of curve

in metric space, 224
in Riemannian manifold, 176

Lichnerowicz formula, 352
Lie group, 10

biinvariant metric, 38
geodesics, 175
geodesics of biinvariant metric, 225

Line, 298
Local models, 441

M
Manifold

Riemannian, 2
SU.2/, 10, 143
Maximum principle, 75, 280
Metric

ball, 177
biinvariant, 38, 175, 225, 311

as a symmetric space, 366, 383
coordinate representation, 14
distance, 176
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Metric (cont.)
Einstein, 86
frame representation, 15
functional, 182, 225
homogeneous, 8
Kähler, 76
Kähler, 362, 390, 393
left-invariant, 10
local representation, 14
on frame bundle, 273
on tangent bundle, 273
Riemannian, 2
rotationally symmetric, 18

computation of curvatures, 120
scalar flat, 122
Taylor expansion, 193, 227

Mixed curvature equation, 93
Myers’ diameter estimate, 251

N
Norm

Cm;˛ , 406
for manifolds, 413

harmonic
for manifolds, 418

of tensors, 30
weak

for manifolds, 441
weighted

for manifolds, 440
Norm estimate

using distance functions, 434
using harmonic coordinates, 426

Normal curvature equation, 93

O
Obstructions

constant sectional curvature, 201
for negative sectional curvature, 241
for nonnegative sectional curvature, 469,

470
for positive curvature operator, 352
for positive Ricci curvature, 352
for positive scalar curvature, 352
for positive sectional curvature, 254
for Ricci flatness, 304

P
Parallel

tensor, 57
vector field, 76

Parallel curvature, 368

Parallel field
along curve, 236
for a distance function, 101

Partial derivatives
first, 166
second, 166
third, 233

Partials derivatives
and curvature, 234

Pinching theorem
for Ricci curvature, 437
for sectional curvature, 437

Precompactness theorem
for lower Ricci curvature bounds, 404
for spaces with bounded norm, 421
in Gromov-Hausdorff topology, 403

Preissmann’s Theorem, 247
Product

Cartesian, 32, 104
doubly warped, 22, 124
warped, 116

Product spheres
computations of curvatures, 117

Projective space
complex, 10, 26, 148

as a symmetric space, 380
computation of curvatures, 382
holonomy of, 393

quaternionic, 394
real, 12

Pseudo-Riemannian manifold, 5

Q
Quarter pinching, 106, 458

R
Radial curvature equation, 92
Rank, 367, 389

rigidity in nonpositive curvature, 389
Ray, 298
de Rham’s decomposition theorem, 384
Ricci equations, 105
Ricci Identity, 78
Riemannian

covering, 12, 241
curvature tensor, 78
embedding, 3
immersion, 3
isometry, 3, 197
manifold, 2
metric, 2
submersion, 5, 144, 203, 226
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S
Scaling, 107
Schouten tensor, 109
Schur’s lemma, 87
Schwarzschild metric, 125
Second covariant derivative, 61
Second fundamental form, see Shape operator
Segment, 178, 190

characterization, 215
Segment domain, 216
Semi-Riemannian manifold, 5
Shape operator, 96
Slice Theorem

The, 204
Soul theorem, 462
Space form

rotationally symmetric, 20
Space Forms

Projective models, 222
Sphere, 3

as surface of revolution, 17
computation of curvatures, 117
doubly warped product, 22
geodesics on, 174
isometry group, 9

Sphere theorem
Berger, 263
Grove-Shiohama, 459
Rauch-Berger-Klingenberg, 264, 458

Spin manifolds, 352
Splitting theorem, 300
Subharmonic function, 281
Submetry, 203
Superharmonic function, 281
Surface

of revolution, 16
rotationally symmetric, 17

Symmetric space, 366, 370
computation of curvatures, 372
existence of isometries, 369

Symmetry Rank, 327
Synge’s lemma, 253

T
Tangential curvature equation, 93
Topology

manifold, 179
metric, 179

Toponogov comparison theorem, 450
Torus, 12, 32
Totally Geodesic, 198
Triangle, 449
Type change, 26

V
Variational field, 183
Variations, 183

First Variation Formula, 183
Second Variation Formula, 239

Volume comparison
absolute, 279
for cones, 311
relative, 279, 310

Volume form, 73

W
Warped product, 127

global characterization, 212
local characterization, 129

Weak second derivatives, 281
Weyl tensor, 110
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