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Preface

This book is intended as a comprehensive introduction to Riemannian geometry. The
reader is assumed to have basic knowledge of standard manifold theory, including
the theory of tensors, forms, and Lie groups. At times it is also necessary to have
some familiarity with algebraic topology and de Rham cohomology. Specifically,
we recommend that the reader be familiar with texts such as [15, 72] or [97, vol. 1].
On my web page, there are links to lecture notes on these topics as well as classical
differential geometry (see [90] and [89]). It is also helpful if the reader has a nodding
acquaintance with ordinary differential equations. For this, a text such as [74] is
more than sufficient. More basic prerequisites are real analysis, linear algebra, and
some abstract algebra. Differential geometry is and always has been an “applied
discipline” within mathematics that uses many other parts of mathematics for its
OWN purposes.

Most of the material generally taught in basic Riemannian geometry as well
as several more advanced topics is presented in this text. The approach we have
taken occasionally deviates from the standard path. Alongside the usual variational
approach, we have also developed a more function-oriented methodology that
likewise uses standard calculus together with techniques from differential equations.
Our motivation for this treatment has been that examples become a natural and
integral part of the text rather than a separate item that is sometimes minimized.
Another desirable by-product has been that one actually gets the feeling that
Hessians and Laplacians are intimately related to curvatures.

The book is divided into four parts:

Part I: Tensor geometry, consisting of chapters 1, 2, 3, and 4

Part II: Geodesic and distance geometry, consisting of chapters 5, 6, and 7

Part III: Geometry a la Bochner and Cartan, consisting of chapters 8, 9, and 10

Part I'V: Comparison geometry, consisting of chapters 11 and 12

There are significant structural changes and enhancements in the third edition,
so chapters no longer correspond to those of the first two editions. We offer a brief
outline of each chapter below.

Chapter 1 introduces Riemannian manifolds, isometries, immersions, and sub-
mersions. Homogeneous spaces and covering maps are also briefly mentioned.

vii
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There is a discussion on various types of warped products. This allows us to give
both analytic and geometric definitions of the basic constant curvature geometries.
The Hopf fibration as a Riemannian submersion is also discussed in several places.
Finally, there is a section on tensor notation.

Chapter 2 discusses both Lie and covariant derivatives and how they can be
used to define several basic concepts such as the classical notions of Hessian,
Laplacian, and divergence on Riemannian manifolds. Iterated derivatives and
abstract derivations are discussed toward the end and used later in the text.

Chapter 3 develops all of the important curvature concepts and discusses a
few simple properties. We also develop several important formulas that relate
curvature and the underlying metric. These formulas can be used in many places
as a replacement for the second variation formula.

Chapter 4 is devoted to calculating curvatures in several concrete situations
such as spheres, product spheres, warped products, and doubly warped products.
This is used to exhibit several interesting examples. In particular, we explain
how the Riemannian analogue of the Schwarzschild metric can be constructed.
There is a new section that explains warped products in general and how they are
characterized. This is an important section for later developments as it leads to an
interesting characterization of both local and global constant curvature geometries
from both the warped product and conformal view point. We have a section on Lie
groups. Here two important examples of left invariant metrics are discussed as well
as the general formulas for the curvatures of biinvariant metrics. It is also explained
how submersions can be used to create new examples with special focus on complex
projective space. There are also some general comments on how submersions can
be constructed using isometric group actions.

Chapter 5 further develops the foundational topics for Riemannian manifolds.
These include the first variation formula, geodesics, Riemannian manifolds as met-
ric spaces, exponential maps, geodesic completeness versus metric completeness,
and maximal domains on which the exponential map is an embedding. The chapter
includes a detailed discussion of the properties of isometries. This naturally leads
to the classification of simply connected space forms. At a more basic level, we
obtain metric characterizations of Riemannian isometries and submersions. These
are used to show that the isometry group is a Lie group and to give a proof of the
slice theorem for isometric group actions.

Chapter 6 contains three more foundational topics: parallel translation, Jacobi
fields, and the second variation formula. Some of the classical results we prove
here are the Hadamard-Cartan theorem, Cartan’s center of mass construction in
nonpositive curvature and why it shows that the fundamental group of such spaces is
torsion-free, Preissman’s theorem, Bonnet’s diameter estimate, and Synge’s lemma.
At the end of the chapter, we cover the ingredients needed for the classical quarter
pinched sphere theorem including Klingenberg’s injectivity radius estimates and
Berger’s proof of this theorem. Sphere theorems are revisited in chapter 12.

Chapter 7 focuses on manifolds with lower Ricci curvature bounds. We discuss
volume comparison and its uses. These include proofs of how Poincaré and Sobolev
constants can be bounded and theorems about restrictions on fundamental groups
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for manifolds with lower Ricci curvature bounds. The strong maximum principle
for continuous functions is developed. This result is first used in a warm-up exercise
to prove Cheng’s maximal diameter theorem. We then proceed to cover the Cheeger-
Gromoll splitting theorem and its consequences for manifolds with nonnegative
Ricci curvature.

Chapter 8 covers various aspects of symmetries on manifolds with emphasis on
Killing fields. Here there is a further discussion on why the isometry group is a Lie
group. The Bochner formulas for Killing fields are covered as well as a discussion
on how the presence of Killing fields in positive sectional curvature can lead to
topological restrictions. The latter is a fairly new area in Riemannian geometry.

Chapter 9 explains both the classical and more recent results that arise from
the Bochner technique. We start with harmonic 1-forms as Bochner did and move
on to general forms and other tensors such as the curvature tensor. We use an
approach that considerably simplifies many of the tensor calculations in this subject
(see, e.g., the first and second editions of this book). The idea is to consistently
use how derivations act on tensors instead of using Clifford representations. The
Bochner technique gives many optimal bounds on the topology of closed manifolds
with nonnegative curvature. In the spirit of comparison geometry, we show how
Betti numbers of nonnegatively curved spaces are bounded by the prototypical
compact flat manifold: the torus. More generally, we also show how the Bochner
technique can be used to control the topology with more general curvature bounds.
This requires a little more analysis, but is a fascinating approach that has not been
presented in book form yet.

The importance of the Bochner technique in Riemannian geometry cannot be
sufficiently emphasized. It seems that time and again, when people least expect it,
new important developments come out of this philosophy.

Chapter 10 develops part of the theory of symmetric spaces and holonomy.
The standard representations of symmetric spaces as homogeneous spaces or via
Lie algebras are explained. There are several concrete calculations both specific
and more general examples to get a feel for how curvatures behave. Having
done this, we define holonomy for general manifolds and discuss the de Rham
decomposition theorem and several corollaries of it. In particular, we show that
holonomy irreducible symmetric spaces are Einstein and that their curvatures have
the same sign as the Einstein constant. This theorem and the examples are used to
indicate how one can classify symmetric spaces. Finally, we present a brief overview
of how holonomy and symmetric spaces are related to the classification of holonomy
groups. This is used, together with most of what has been learned up to this point,
to give the Gallot and Meyer classification of compact manifolds with nonnegative
curvature operator.

Chapter 11 focuses on the convergence theory of metric spaces and manifolds.
First, we introduce the most general form of convergence: Gromov-Hausdorff con-
vergence. This concept is often useful in many contexts as a way of getting a weak
form of convergence. The real object here is to figure out what weak convergence
implies in the presence of stronger side conditions. There is a section with a quick
overview of Holder spaces, Schauder’s elliptic estimates, and harmonic coordinates.
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To facilitate the treatment of the stronger convergence ideas, we have introduced
a norm concept for Riemannian manifolds. The main focus of the chapter is to
prove the Cheeger-Gromov convergence theorem, which is called the Convergence
Theorem of Riemannian Geometry, as well as Anderson’s generalizations of this
theorem to manifolds with bounded Ricci curvature.

Chapter 12 proves some of the more general finiteness theorems that do not fall
into the philosophy developed in Chapter 11. To begin, we discuss generalized
critical point theory and Toponogov’s theorem. These two techniques are used
throughout the chapter to establish all of the important theorems. First, we probe the
mysteries of sphere theorems. These results, while often unappreciated by a larger
audience, have been instrumental in developing most of the new ideas in the subject.
Comparison theory, injectivity radius estimates, and Toponogov’s theorem were first
used in a highly nontrivial way to prove the classical quarter pinched sphere theorem
of Rauch, Berger, and Klingenberg. Critical point theory was introduced by Grove
and Shiohama to prove the diameter sphere theorem. Following the sphere theorems,
we go through some of the major results of comparison geometry: Gromov’s Betti
number estimate, the Soul theorem of Cheeger and Gromoll, and the Grove-Petersen
homotopy finiteness theorem.

At the end of most chapters, there is a short list of books and papers that cover and
often expand on the material in the chapter. We have whenever possible attempted
to refer just to books and survey articles. The reader is strongly urged to go from
those sources back to the original papers as ideas are often lost in the modernization
of most subjects. For more recent works, we also give journal references if the
corresponding books or surveys do not cover all aspects of the original paper. One
particularly exhaustive treatment of Riemannian Geometry for the reader who is
interested in learning more is [12]. Other valuable texts that expand or complement
much of the material covered here are [77, 97] and [99]. There is also a historical
survey by Berger (see [11]) that complements this text very well.

Each chapter ends with a collection of exercises that are designed to reinforce
the material covered, to establish some simple results that will be needed later, and
also to offer alternative proofs of several results. The first six chapters have about
30 exercises each and there are 300+ in all. The reader should at least read and
think about all of the exercises, if not actually solve all of them. There are several
exercises that might be considered very challenging. These have been broken up
into more reasonable steps and with occasional hints. Some instructors might want
to cover some of the exercises in class.

A first course should definitely cover Chapters 3, 5, and 6 together with whatever
one feels is necessary from Chapters 1, 2, and 4. I would definitely not recommend
teaching every single topic covered in Chapters 1, 2, and 4. A more advanced course
could consist of going through Chapter 7 and parts III or IV as defined earlier. These
two parts do not depend in a serious way on each other. One can probably not cover
the entire book in two semesters, but it should be possible to cover parts I, II, and
III or alternatively I, II, and IV depending on one’s inclination.

There are many people I would like to thank. First and foremost are those
students who suffered through my continuing pedagogical experiments over the
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last 25 years. While using this text I always try different strategies every time
I teach. Special thanks go to Victor Alvarez, Igor Belegradek, Marcel Berger,
Timothy Carson, Gil Cavalcanti, Edward Fan, Hao Fang, John Garnett, or Her-
shkovits, Ilkka Holopainen, Michael Jablonski, Lee Kennard, Mayer Amitai Lan-
dau, Peter Landweber, Pablo Lessa, Ciprian Manolescu, Geoffrey Mess, Jiayin
Pan, Priyanka Rajan, Jacob Rooney, Yanir Rubinstein, Semion Shteingold, Jake
Solomon, Chad Sprouse, Marc Troyanov, Gerard Walschap, Nik Weaver, Burkhard
Wilking, Michael Williams, and Hung-Hsi Wu for their constructive criticism of
parts of the book and mentioning various typos and other deficiencies in the first
and second editions. I would especially like to thank Joseph Borzellino for his very
careful reading of this text. Finally, I would like to thank Robert Greene, Karsten
Grove, Gregory Kallo, and Fred Wilhelm for all the discussions on geometry we
have had over the years.

Los Angeles, CA, USA Peter Petersen
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Chapter 1
Riemannian Metrics

In this chapter we introduce the spaces and maps that pervade the subject. Without
discussing any theory we present several examples of basic Riemannian manifolds
and Riemannian maps. All of these examples will be at the heart of future
investigations into constructions of Riemannian manifolds with various interesting
properties.

The abstract definition of a Riemannian manifold used today dates back only
to the 1930s as it wasn’t really until Whitney’s work in 1936 that mathematicians
obtained a clear understanding of what abstract manifolds were other than just being
submanifolds of Euclidean space. Riemann himself defined Riemannian metrics
only on domains in Euclidean space. Riemannian manifolds where then metric
objects that locally looked like a Riemannian metric on a domain in Euclidean
space. It is, however, important to realize that this local approach to a global theory
of Riemannian manifolds is as honest as the modern top-down approach.

Prior to Riemann, other famous mathematicians such as Euler, Monge, and Gauss
only worked with 2-dimensional curved geometry. Riemann’s invention of multi-
dimensional geometry is quite curious. The story goes that Gauss was on Riemann’s
defense committee for his Habilitation (doctorate). In those days, the candidate was
asked to submit three topics in advance, with the implicit understanding that the
committee would ask to hear about the first topic (the actual thesis was on Fourier
series and the Riemann integral). Riemann’s third topic was “On the Hypotheses
which lie at the Foundations of Geometry.” Evidently, he was hoping that the
committee would select from the first two topics, which were on material he had
already developed. Gauss, however, always being in an inquisitive mood, decided
he wanted to hear whether Riemann had anything to say about the subject on which
he, Gauss, was the reigning expert. Thus, much to Riemann’s dismay, he had to go
home and invent Riemannian geometry to satisfy Gauss’s curiosity. No doubt Gauss
was suitably impressed, apparently a very rare occurrence for him.

From Riemann’s work it appears that he worked with changing metrics mostly
by multiplying them by a function (conformal change). By conformally changing
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2 1 Riemannian Metrics

the standard Euclidean metric he was able to construct all three constant curvature
geometries in one fell swoop for the first time ever. Soon after Riemann’s discoveries
it was realized that in polar coordinates one can change the metric in a different
way, now referred to as a warped product. This also exhibits all constant curvature
geometries in a unified way. Of course, Gauss already knew about polar coordi-
nate representations on surfaces, and rotationally symmetric metrics were studied
even earlier by Clairaut. But those examples are much simpler than the higher-
dimensional analogues. Throughout this book we emphasize the importance of these
special warped products and polar coordinates. It is not far to go from warped
products to doubly warped products, which will also be defined in this chapter, but
they don’t seem to have attracted much attention until Schwarzschild discovered a
vacuum space-time that wasn’t flat. Since then, doubly warped products have been
at the heart of many examples and counterexamples in Riemannian geometry.

Another important way of finding examples of Riemannian metrics is by using
left-invariant metrics on Lie groups. This leads us, among other things, to the Hopf
fibration and Berger spheres. Both of these are of fundamental importance and are
also at the core of a large number of examples in Riemannian geometry. These will
also be defined here and studied further throughout the book.

1.1 Riemannian Manifolds and Maps

A Riemannian manifold (M, g) consists of a C*°-manifold M (Hausdorff and second
countable) and a Euclidean inner product g, or g|, on each of the tangent spaces 7, M
of M. In addition we assume that p > g, varies smoothly. This means that for any
two smooth vector fields X, Y the inner product g, (X p. Yl ,,) is a smooth function
of p. The subscript p will usually be suppressed when it is not needed. Thus we
might write g (X, Y) with the understanding that this is to be evaluated at each p
where X and Y are defined. When we wish to associate the metric with M we also
denote it as gy. The tensor g is referred to as the Riemannian metric or simply the
metric. Generally speaking the manifold is assumed to be connected. Exceptions do
occur, especially when studying level sets or submanifolds defined by constraints.

All inner product spaces of the same dimension are isometric; therefore, all
tangent spaces 7,M on a Riemannian manifold (M, g) are isometric to the n-
dimensional Euclidean space R" with its canonical inner product. Hence, all
Riemannian manifolds have the same infinitesimal structure not only as manifolds
but also as Riemannian manifolds.

Example 1.1.1. The simplest and most fundamental Riemannian manifold is
Euclidean space (R”, grs). The canonical Riemannian structure grs is defined
by the tangent bundle identification R” x R" ~ TR" given by the map:

Hd(p—i—tv)

. v) dt

).
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With this in mind the standard inner product on R” is defined by

8R" ((ps U) , (p,W)) =UvV-w.

A Riemannian isometry between Riemannian manifolds (M, gy) and (N, gy) is
a diffeomorphism F : M — N such that F*gy = gu, i.e.,

gy (DF(v), DF(w)) = gu(v,w)

for all tangent vectors v,w € T,M and all p € M. In this case F~!is also a
Riemannian isometry.

Example 1.1.2. Any finite-dimensional vector space V with an inner product,
becomes a Riemannian manifold by declaring, as with Euclidean space, that

g((pvv)s(psw)):U'W.

If we have two such Riemannian manifolds (V, gy) and (W, gy) of the same
dimension, then they are isometric. A example of a Riemannian isometry F : V —
W is simply any linear isometry between the two spaces. Thus (R”, grn) is not only
the only n-dimensional inner product space, but also the only Riemannian manifold
of this simple type.

Suppose that we have an immersion (or embedding) F : M — N, where (N, gy)
is a Riemannian manifold. This leads to a pull-back Riemannian metric gy = F* gy
on M, where

gu (v, w) = gy (DF (v) ,DF (w)) .

It is an inner product as DF (v) = 0 only when v = 0.

A Riemannian immersion (or Riemannian embedding) is an immersion (or
embedding) F : M — N such that gy = F*gy. Riemannian immersions are
also called isometric immersions , but as we shall see below they are almost never
distance preserving.

Example 1.1.3. Another very important example is the Euclidean sphere of radius
R defined by
S*R) = {xeR""" | |x| =R}.

The metric induced from the embedding S”(R) <> R " is the canonical metric on
S™(R). The unit sphere, or standard sphere, is §* = §"(1) C R"*! with the induced
metric. In figure 1.1 is a picture of a round sphere in R>.
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Fig. 1.1 Sphere

Fig. 1.2 Isometric
Immersions

If k < n there are several linear isometric immersions (R¥, gge) — (R", ggn).
Those are, however, not the only isometric immersions. In fact, any unit speed curve
c:R— R% e, |é(r)] = 1forall r € R, is an example of an isometric immersion.
For example, one could consider

t > (cost,sint)

as an isometric immersion and
t— (log(t—i— \/1+t2),\/1+t2)

as an isometric embedding. A map of the form:

F : R¥ — R
F(x' x5 = (e(xh), 22, .. x5,

(where c fills up the first two coordinate entries) will then also yield an isometric
immersion (or embedding) that is not linear. This initially seems contrary to intuition
but serves to illustrate the difference between a Riemannian immersion and a
distance preserving map. In figure 1.2 there are two pictures, one of the cylinder,
the other of the isometric embedding of R? into R? just described.
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There is also a dual concept of a Riemannian submersion F : (M, gy) — (N, gn).
This is a submersion F : M — N such that for each p € M, DF : ker(DF)* —
Trp)N is a linear isometry. In other words, if v,w € T,M are perpendicular to the
kernel of DF : T,M — Tr(,N, then

gu(v,w) = gy (DF (v) ,DF (w)).

This is equivalent to the adjoint (DF ,,)* : TryN — T,M preserving inner products
of vectors.

Example 1.1.4. Orthogonal projections (R”, grr) — (R*, ggi), where k < n, are
examples of Riemannian submersions.

Example 1.1.5. A much less trivial example is the Hopf fibration S>(1) — S*(1/2).
As observed by F. Wilhelm this map can be written explicitly as

H(z,w) = (; (|w|2 — |z|2) ,zv’v)

if we think of $*(1) C C? and S?(1/2) C R @ C. Note that the fiber containing (z, w)
consists of the points (ei Oz, Gw), wherei = +/—1. Consequently, i (z, w) is tangent
to the fiber and A (—w,z), A € C, are the tangent vectors orthogonal to the fiber.
We can check what happens to the latter tangent vectors by computing DH. Since
H extends to a map H : C> — R @ C its differential can be calculated as one would
do it in multivariable calculus. Alternately note that the tangent vectors A (—w, z) at
(z.w) € S3(1) lie in the plane (z, w) + A (—w, 7) parameterized by A. H restricted to
this plane is given by

H((z— A, w+ A2)) = (; (|w F AP =z — mz) (2= Aw) (w + AZ)) .

To calculate DH we simply expand H in terms of A and A and isolate the first-order
terms

DH|(Z,W) A (=w,2)) = (2Re (iZW) s —Aw? + izz) .

Since these have the same length |A| as A (—w,Z) we have shown that the map is a
Riemannian submersion. Below we will examine this example more closely. There
is a quaternion generalization of this map in exercise 1.6.22.

Finally, we mention a very important generalization of Riemannian manifolds.
A semi- or pseudo-Riemannian manifold consists of a manifold and a smoothly
varying symmetric bilinear form g on each tangent space. We assume in addition
that g is nondegenerate, i.e., for each nonzero v € T,M there exists w € T,M such
that g (v,w) # 0. This is clearly a generalization of a Riemannian metric where
nondegeneracy follows from g (v, v) > 0 when v # 0. Each tangent space admits a
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Fig. 1.3 Hyperbolic Space

splitting T,M = P @ N such that g is positive definite on P and negative definite on
N. These subspaces are not unique but it is easy to show that their dimensions are
well-defined. Continuity of g shows that nearby tangent spaces must have a similar
splitting where the subspaces have the same dimension. The index of a connected
pseudo-Riemannian manifold is defined as the dimension of the subspace N on
which g is negative definite.

Example 1.1.6. Letn = n;+n; and R"" = R™ xR"2, We can then write vectors in
R™"™ as v = vj 4 vy, where v; € R™ and v, € R™. A natural pseudo-Riemannian
metric of index n, is defined by

g((p’v)v(pvw))ZUI'WI_UZ'WZ.

When ny = 1 or np = 1 this coincides with one or the other version of
Minkowski space. This space describes the geometry of Einstein’s space-time in
special relativity.

Example 1.1.7. We define the family of hyperbolic spaces H" (R) C R™! using the
rotationally symmetric hyperboloids

(xl)z et (x")z _ (xn+1)2 — _R2.

Each of these level sets consists of two components that are each properly
embedded copies of R” in R"*!. The branch with x**! > 0is H" (R) (see figure 1.3).
The metric is the induced Minkowski metric from R™!. The fact that this defines
a Riemannian metric on H" (R) is perhaps not immediately obvious. Note first that
tangent vectors v = (vl, I VAN v”‘H) € T,H" (R), p € H" (R), satisty the equation

Ulpl 4o vnpn _ vn+1pn+l =0

as they are tangent to the level sets for (xl)2 N (x”+1)2. This shows that
|U|2 — (U1)2 4ot (Un)Z _ (vn+1)2

1,1 nn 2
1)2 ny2 vp otV
= (v) +---+(v)—( b :
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Using Cauchy-Schwarz on the expression in the numerator together with
2 v
(pl) ++(p)2_ B R 2
(pn+1)2 o p"'H

shows that

|v|2>( K )2((v1)2+~~+(v")2)
- pn+1 :

When R = 1 we generally just write H" and refer to this as hyperbolic n-space.

Much of the tensor analysis that we shall develop on Riemannian manifolds can
be carried over to pseudo-Riemannian manifolds without further ado. It is only when
we start using norm and distances that we have to be more careful.

1.2 The Volume Form

In Euclidean space the inner product not only allows us to calculate norms and
angles but also areas, volumes, and more. The key to understanding these definitions
better lies in using determinants.

To compute the volume of the parallelepiped spanned by n vectors vy, ..., v, €
R" we can proceed in different ways. There is the usual inductive way where we
multiply the height by the volume (or area) of the base parallelepiped. This is in
fact a Laplace expansion of a determinant along a column. If the canonical basis is
denoted ey, . .., e,, then we define the signed volume by

vol (vy,...,v,) = det [g (v,-,ej)]
= det([vl,...,vn] [el,...,en]’)
=det[vy,...,v,].

This formula is clearly also valid if we had selected any other positively oriented
orthonormal basis fi, . .. f, as

det[g (vi.f;)] = det ([vi,....val[fi.. ... fo])
= det ([vr,.... vl [fi. ... Sl ) det ([fi. ... .Sl [er. - ... en]’)
= det([vl,...,vn] [el,...,en]r).

In an oriented Riemannian n-manifold (M, g) we can then define the volume
form as an n-form on M by
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vol, (vi,...,v,) = vol(vy,...,v,) = det[g (vi.e)].

where ey, ..., e, is any positively oriented orthonormal basis. One often also uses
the notation d vol instead of vol, however, the volume form is not necessarily exact
so the notation can be a little misleading.

Even though manifolds are not necessarily oriented or even orientable it is still
possible to define this volume form locally. The easiest way of doing so is to locally
select an orthonormal frame E\, ..., E, and declare it to be positive. A frame is a
collection of vector fields defined on a common domain U C M such that they form
a basis for the tangent spaces T,M for all p € U. The volume form is then defined
on vectors and vector fields by

vol (Xi,....X,) = det[g (Xi. Ej)].

This formula quickly establishes the simplest version of the “heightxbase”
principle if we replace E; by a general vector X since

vol (Ey,....X,...,E) =g (X,E)

is the projection of X onto E; and this describes the height in the ith coordinate
direction.

On oriented manifolds it is possible to integrate n-forms. On oriented Rieman-
nian manifolds we can then integrate functions f by integrating the form f - vol. In
fact any manifold contains an open dense set O C M where 70 = O x R" is trivial.
In particular, O is orientable and we can choose an orthonormal frame on all of O.
This shows that we can integrate functions over M by integrating them over O. Thus
we can integrate on all Riemannian manifolds.

1.3 Groups and Riemannian Manifolds

We shall study groups of Riemannian isometries on Riemannian manifolds and see
how they can be used to construct new Riemannian manifolds.

1.3.1 Isometry Groups

For a Riemannian manifold (M, g) we use Iso(M, g) or Iso(M) to denote the group
of Riemannian isometries F : (M,g) — (M, g) and Iso,(M,g) the isotropy or
stabilizer (sub)group at p, i.e., those F' € Iso(M, g) with F(p) = p. A Riemannian
manifold is said to be homogeneous if its isometry group acts transitively, i.e., for
each pair of points p, ¢ € M there is an F € Iso (M, g) such that F (p) = q.
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Example 1.3.1. The isometry group of Euclidean space is given by

Iso (R", grr) = R" x O (n)
={F:R"->R"|F(x) =v+ Ox,veR"and O € O(n)}.

(Here H % G is the semi direct product, with G acting on H.) The translational
part v and rotational part O are uniquely determined. It is clear that these maps
are isometries. To see the converse first observe that G (x) = F(x) — F(0) is
also a Riemannian isometry. Using this, we observe that at x = 0 the differential
DGy € O (n). Thus, G and DG are Riemannian isometries on Euclidean space that
both preserve the origin and have the same differential there. It is then a general
uniqueness result for Riemannian isometries that G = DG (see proposition 5.6.2).
In exercise 2.5.12 there is a more elementary version for Euclidean space.

The isotropy Iso, is always isomorphic to O(n) and R" ~ Iso/Iso, for any
p € R”. In fact any homogenous space can always be written as the quotient
M = Iso/Iso,.

Example 1.3.2. We claim that spheres have
Iso (S"(R), gsnr)) = O(n + 1) = Isoy (R"H, Srnt1) -

Clearly O(n + 1) C Iso (S"(R). gs»»))- Conversely, when F € Iso (S"(R). gs())
consider the linear map given by the n 4+ 1 columns vectors:

0= [IIQF(REI) DFl,, (e2) -+ DF],, (en+1)]

The first vector is unit since F (Re;) € S"(R). Moreover, the first column is
orthogonal to the others as DF |g,, (€;) € Trge)S" (R) = F(Rel)J‘,i =2,...,n+1.
Finally, the last n columns form an orthonormal basis since DF is assumed to be a
linear isometry. This shows that O € O (n + 1) and that O agrees with F and DF at
Re;. Proposition 5.6.2 can then be invoked again to show that F = O.

The isotropy groups are again isomorphic to O(n), that is, those elements of
O(n + 1) fixing a 1-dimensional linear subspace of R"*!. In particular, we have
§">~0(m+1)/0(n).

Example 1.3.3. Recall our definition of the hyperbolic spaces from example 1.1.7.
The isometry group Iso(H"(R)) comes from the linear isometries of R™!

O, 1) = {L (R R g(Lv, Lv) = g(v, v)}.

One can, as in the case of the sphere, see that these are isometries on H"(R) as long
as they preserve the condition x**! > 0. The group of those isometries is denoted
O™ (n,1). As in the case of Euclidean space and the spheres we can construct an
element in O" (n, 1) that agrees with any isometry at Re,+; and such that their



10 1 Riemannian Metrics

differentials at that point agree on the basis ey, . . ., e, for Tge, , H" (R). Specifically,
if F € Iso(H"(R)) we can use:

0= [DF|e,,+1 (el) DFle,,_H (62) DFle,,_H (en) IIQF(Ren-H)] .

The isotropy group that preserves Re,+; can be identified with O(n) (isometries
we get from the metric being rotationally symmetric). One can also easily check
that O™ (n, 1) acts transitively on H"(R).

1.3.2 Lie Groups

If instead we start with a Lie group G, then it is possible to make it a group of
isometries in several ways. The tangent space can be trivialized

TG>~GxT,G

by using left- (or right-) translations on G. Therefore, any inner product on
T.G induces a left-invariant Riemannian metric on G i.e., left-translations are
Riemannian isometries. It is obviously also true that any Riemannian metric on G
where all left-translations are Riemannian isometries is of this form. In contrast to
R”, not all of these Riemannian metrics need be isometric to each other. Thus a Lie
group might not come with a canonical metric.

It can be shown that the left coset space G/H = {gH | g € G} is a manifold
provided H C G is a compact subgroup. If we endow G with a general Riemannian
metric such that right-translations by elements in H act by isometries, then there
is a unique Riemannian metric on G/H making the projection G — G/H into
a Riemannian submersion (see also section 4.5.2). When in addition the metric
is also left-invariant, then G acts by isometries on G/H (on the left) thus making
G/H into a homogeneous space. Proofs of all this are given in theorem 5.6.21 and
remark 5.6.22.

The next two examples will be studied further in sections 1.4.6, 4.4.3, and 4.5.3.
In sections 4.5.2 the general set-up is discussed and the fact that quotients are
Riemannian manifolds is also discussed in section 5.6.4 and theorem 5.6.21.

Example 1.3.4. The idea of taking the quotient of a Lie group by a subgroup can
be generalized. Consider $>"*!(1) ¢ C"*!. Then S! = {A € C | |A| = 1} acts
by complex scalar multiplication on both $>**! and C"*!; furthermore, this action
is by isometries. We know that the quotient $>**1/§! = CP", and since the action
of S' is by isometries, we obtain a metric on CP" such that $***! — CP" is a
Riemannian submersion. This metric is called the Fubini-Study metric. When n =
1, this becomes the Hopf fibration $3(1) — CP! = §2(1/2).

Example 1.3.5. One of the most important nontrivial Lie groups is SU (2) , which
is defined as
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SU(2) = {A € Mp> (C) | detA = 1, A* =A7"}

={[Z_Vf}||z|2+|w|2=1}
—W Z
=5(1).

The Lie algebra su (2) of SU (2) is

su(2) = {[—ﬂiiicﬂ—t;c} |a,B,ce R}

and can be spanned by

i0 01 0i
w=lo b =[S = [ia]

We can think of these matrices as left-invariant vector fields on SU (2). If we declare
them to be orthonormal, then we get a left-invariant metric on SU (2), which as we
shall later see is S (1). If instead we declare the vectors to be orthogonal, X; to have
length ¢, and the other two to be unit vectors, we get a very important 1-parameter
family of metrics g. on SU(2) = S°. These distorted spheres are called Berger
spheres. Note that scalar multiplication on S C C? corresponds to multiplication
on the left by the matrices

since

e? 0 z wi _ ez efw
0 e —wz | [—eifiveifz]

Thus X; is tangent to the orbits of the Hopf circle action. The Berger spheres are
then obtained from the canonical metric by multiplying the metric along the Hopf
fiber by &2.

1.3.3 Covering Maps

Discrete groups are also common in geometry, often through deck transformations
or covering transformations. Suppose that F : M — N is a covering map. Then
F is, in particular, both an immersion and a submersion. Thus, any Riemannian
metric on N induces a Riemannian metric on M. This makes F into an isometric
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immersion, also called a Riemannian covering. Since dimM = dimN, F must in
fact be a local isometry, i.e., for every p € M there is a neighborhood U > p in
M such that F|y : U — F(U) is a Riemannian isometry. Notice that the pullback
metric on M has considerable symmetry. For if ¢ € V C N is evenly covered by
{Up}per—1(q)- then all the sets V and U, are isometric to each other. In fact, if F is a
normal covering, i.e., there is a group I' of deck transformations acting on M such
that:

F'(p) ={g(q) | F(g) =pandg e T},

then I' acts by isometries on the pullback metric. This construction can easily be
reversed. Namely, if N = M/ T and M is a Riemannian manifold, where I" acts by
isometries, then there is a unique Riemannian metric on N such that the quotient
map is a local isometry.

Example 1.3.6. If we fix a basis vy, v, for R?, then Z? acts by isometries through
the translations

(n,m) = (x > x + nv; + mv,).

The orbit of the origin looks like a lattice. The quotient is a torus 72 with some
metric on it. Note that 72 is itself an Abelian Lie group and that these metrics are
invariant with respect to the Lie group multiplication. These metrics will depend on
|v1], |v2| and Z (v1, v2), so they need not be isometric to each other.

Example 1.3.7. The involution —/ on §"(1) C R"*! is an isometry and induces a
Riemannian covering S” — RP".

1.4 Local Representations of Metrics

1.4.1 Einstein Summation Convention

We shall often use the index and summation convention introduced by Einstein.
Given a vector space V, such as the tangent space of a manifold, we use subscripts
for vectors in V. Thus a basis of V is denoted by e, ..., e,. Given a vector v € V
we can then write it as a linear combination of these basis vectors as follows

v=Zviei=viei= [6‘1 en]
i

Here we use superscripts on the coefficients and then automatically sum over indices
that are repeated as both subscripts and superscripts. If we define a dual basis ¢’ for
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the dual space V* = Hom (V, R) as follows: e’ (ej) = 8;, then the coefficients can
be computed as v’ = ¢ (v). Thus we decide to use superscripts for dual bases in V*.

The matrix representation [th] of a linear map L : V — V is found by solving

L(e) = Le;.
[Ler) - L(en)] =[er-en]

In other words
L =é(L(e)).

As already indicated, subscripts refer to the column number and superscripts to
the row number.

When the objects under consideration are defined on manifolds, the conventions
carry over as follows: Cartesian coordinates on R" and coordinates on a manifold
have superscripts (xi) as they are coordinate coefficients; coordinate vector fields
then look like

and consequently have subscripts. This is natural, as they form a basis for the tangent
space. The dual 1-forms dx' satisfy dx’' (9;) = &/ and consequently form the natural
dual basis for the cotangent space.

Einstein notation is not only useful when one doesn’t want to write summation
symbols, it also shows when certain coordinate- (or basis-) dependent definitions
are invariant under change of coordinates. Examples occur throughout the book.
For now, let us just consider a very simple situation, namely, the velocity field of a
curve ¢ : I — R". In coordinates, the curve is written

c() = (1)
=x (e,

if ¢; is the standard basis for R”. The velocity field is defined as the vector ¢ (f) =
()'ci (t)). Using the coordinate vector fields this can also be written as

dxt 9

dr i = D%

c() =

In a coordinate system on a general manifold we could then try to use this as our
definition for the velocity field of a curve. In this case we must show that it gives the
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same answer in different coordinates. This is simply because the chain rule tells us
that

(1) = dx' (€ (),

and then observing that we have used the above definition for finding the compo-
nents of a vector in a given basis.

When offering coordinate dependent definitions we shall be careful that they
are given in a form where they obviously conform to this philosophy and are
consequently easily seen to be invariantly defined.

1.4.2 Coordinate Representations

On a manifold M we can multiply 1-forms to get bilinear forms:
01 6:(v,w) = 01(v) - O2(w).

Note that 6 - 6, # 6, - 0;. This multiplication is actually a tensor product 6, - 6, =
1 ® 6,. Given coordinates x(p) = (x',...,x") on an open set U of M we can thus
construct bilinear forms dx’ - dx/. If in addition M has a Riemannian metric g, then
we can write

g = g(0;, aj)dxi ~d¥
because

g(v.w) = g(dx' (v)d;. dv'(w)9))
= g(3;, 9))dx'(v) - dx' (w).

The functions g(9;, d;) are denoted by g;. This gives us a representation of g in
local coordinates as a positive definite symmetric matrix with entries parametrized
over U. Initially one might think that this gives us a way of concretely describing
Riemannian metrics. That, however, is a bit optimistic. Just think about how many
manifolds you know with a good covering of coordinate charts together with
corresponding transition functions. On the other hand, coordinate representations
are often a good theoretical tool for abstract calculations.

Example 1.4.1. The canonical metric on R” in the identity chart is

g= (Sijdxidxj = Z (dxi)z.

i=1



1.4 Local Representations of Metrics 15

Example 1.4.2. On R? — {half line} we also have polar coordinates (r, §). In these
coordinates the canonical metric looks like

g = dr* + r*db*,
In other words,
gr=1, 86 =g0, =0, goo =1’
To see this recall that

x = rcos0,

y = rsinf.
Thus,

dx = cos 0dr — rsin 0d0,
dy = sin8dr + rcos 0d0,

which gives

g = dx* + dy*
= (cos Odr — rsin 0dA)* + (sin Odr + rcos 8d6)*
= (cos® 0 + sin? 0)dr? + (rcos 0 sin @ — rcos 6 sin 0)drdf
+(rcos @ sin @ — rcos 0 sin 0)dOdr + (12 sin® 0)d6* + (r* cos® §)db?
= dr* + r*d6*.

1.4.3 Frame Representations

A similar way of representing the metric is by choosing a frame X;, ..., X, on an
open set U of M, i.e., n linearly independent vector fields on U, where n = dimM.
Ifo!, ..., 0" is the coframe, i.e., the 1-forms such that o (Xj) = 8; then the metric
can be written as

g =gjo'o! = g(Xi. X)) o'o’.

Example 1.4.3. Any left-invariant metric on a Lie group G can be written as

g=(0) 4+ (")’
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using a coframe dual to left-invariant vector fields X, ..., X,, forming an orthonor-
mal basis for 7,G. If instead we just begin with a frame of left-invariant vector fields
Xi,...,X, and dual coframe o', ..., 0", then a left-invariant metric g depends only
on its values on 7, G and can be written as g = g;;0'0”, where g;; is a positive definite
symmetric matrix with real-valued entries. The Berger sphere can, for example, be
written

ge = &X0') + (02 + ()

where o/ (X;) = 8.

Example 1.4.4. A surface of revolution consists of a profile curve
c(t) = (r(1),0.2(r)) : I - R,

where I C R is open and r(f) > 0 for all . By rotating this curve around the z-axis,
we get a surface that can be represented as

(t,0) — f(t,0) = (r(t) cos 8, r(¢) sin 0, z (¢)).

This is a cylindrical coordinate representation, and we have a natural frame 0,, dg
on the surface with dual coframe dt, d6. We wish to calculate the induced metric on
this surface from the Euclidean metric dx> + dy* + dz* on R* with respect to this
frame. Observe that

dx = icos (8)dt — rsin (6) d6,
dy = isin (0) dt + rcos (6) d6,

dz = zdt.
SO
dx? + dy* + d7* = (i cos (9) dt — rsin (0) d6)*
+ (isin (9) dt + rcos (0) df)* + (zdr)*
= (i* + %) d* + r*d6”.
Thus

g = (i? + H)d + r*db*.
If the curve is parametrized by arc length, then we obtain the simpler formula:

g =dr +r7do>.
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Fig. 1.4 Surfaces of
revolution v v

This is reminiscent of our polar coordinate description of R?. In figure 1.4 there are
two pictures of surfaces of revolution. In the first, » starts out being zero, but the
metric appears smooth as r has vertical tangent to begin with. The second shows
that when r = 0 the metric looks conical and therefore collapses the manifold.

On the abstract manifold 7 x S' we can use the frame 9,, 5 with coframe dt, d0
to define metrics

g = 1 (de* + p*(1)dh>.

These are called rotationally symmetric metrics since 1 and p do not depend on the
rotational parameter 8. We can, by change of coordinates on I, generally assume
that n = 1. Note that not all rotationally symmetric metrics come from surfaces of
revolution. For if df? + r*d6? is a surface of revolution, then 7> 4+ #2 = 1 and, in
particular, || < 1.

Example 1.4.5. The round sphere S>(R) C R* can be thought of as a surface of
revolution by revolving

t+ R (sin(5).0.cos (1))

around the z-axis. The metric looks like
df* + Rsin® () d6>.

Note that R sin ( 1te) — tas R — oo, so very large spheres look like Euclidean space.

By formally changing R to iR, we arrive at a different family of rotationally
symmetric metrics:

d* + R*sinh® () d6>.

This metric coincides with the metric defined in example 1.1.7 by observing that it
comes from the induced metric in R>! after having rotated the curve

1+ R (sinh (1) .0, cosh (}))

around the z-axis.
If we let sni(¢) denote the unique solution to
X)) + k-x(r) =0,
x(0) =0,
x(0) =1,
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then we obtain a 1-parameter family
d* + sn?(1)d6?

of rotationally symmetric metrics. (The notation sn; will be used throughout the text,

it should not be confused with Jacobi’s elliptic function sn (k, #).) When k = 0, this

is R?; when k > 0, it is S (1/+/); and when k < 0 the hyperbolic space H? (1//—k).
Corresponding to sn; we also have cs; defined as the solution to

X)) +k-x(r) =0,
x(0) =1,
x(0) = 0.

The functions are related by

dsn
s O =cs).

dcsy

0 = —ksn (o).

1= cs,% )+ ksn,% (1.

1.4.4 Polar Versus Cartesian Coordinates

In the rotationally symmetric examples we haven’t discussed what happens when
p(t) = 0. In the revolution case, the profile curve clearly needs to have a horizontal
tangent in order to look smooth. To be specific, consider df> + p?(f)d6?, where
p :[0,b) — [0, 00) with p(0) = 0 and p(¢) > 0 for ¢ > 0. All other situations can
be translated or reflected into this position.

More generally, we wish to consider metrics on I x S"~! of the type dr* +
,oz(t)dsﬁ_l, where dslzl_1 is the canonical metric on §*~!(1) C R"*. These are also
called rotationally symmetric metrics and are a special class of warped products
(see also section 4.3). If we assume that p (0) = 0 and p (r) > 0 for ¢ > 0, then we
want to check that the metric extends smoothly near ¢+ = 0 to give a smooth metric
near the origin in R”. There is also a discussion of how to approach this smoothness
question in section 4.3.4.

The natural coordinate change to make is x = s where x € R", ¢t > 0, and
s € §"71(1) C R™. Thus

n

ds’_,| = Z (dsi)z.

i=1
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Keep in mind that the constraint Y (s")2 = 1 implies the relationship _ s'ds’ = 0
between the restriction of the differentials to S"~!(1).
The standard metric on R” now becomes

Z (dxi)2 = Z (sidt + tdsi)2
=Y (s) di? + 2 (ds')” + (cdr) (s'ds’) + (s'ds') (zdr)
= di* + f’ds,_,
when switching to polar coordinates.
In the general situation we have to do this calculation in reverse and check that

the expression becomes smooth at the origin corresponding to x* = 0. Thus we have
to calculate df and ds’ in terms of dx'. First observe that

2tdt = 2 indxi,
= 1 indxi,

and then from 3" (dx')” = dr® + ds?_, that

, Y (X)) —ar
ds,_; = p .
This implies
> (d)c")2 —dr?

df* + p*(H)ds>_, = di* + p*(1) 2

2 2
~(1-7 M)+ Y
L P o\, P
:(tz_Pt4 )(Zxdx) +pt2 Z(d

Thus we have to ensure that the functions

pggm(l_fm)

2 t

are smooth, keeping in mind that r = \/ > ()c")2 is not differentiable at the origin.
The condition p (0) = 0 is necessary for the first function to be continuous at ¢ = 0,
while we have to additionally assume that p (0) = 1 for the second function to be
continuous.
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The general condition for ensuring that both functions are smooth is that p (0) =
0, 6(0) = 1, and that all even derivatives vanish: p©"* (0) = 0. This implies that
foreach!/=1,2,3,...

1

p()=t+ X:a/ctﬂ‘+1 +o0 (tZH'?’)

k=1

as all the even derivatives up to 2/ + 2 vanish. Note that

2
24 !
,Ot§ ) (1 Z aktZk 0 (tzz+2))

k=1
I
=14+ Zbktzk +o (tZH'Z),
k=1
where b, = Zle a;ai—;. Similarly for the other function

1_p%yzlo_fm)

2 I 2 2
1 )
=, (— > b +o (t”“))
k=1

l
- _ Z bkt2k_2 +o (t21) )
k=1

This shows that both functions can be approximated to any order by polynomials
that are smooth as functions of x' at + = 0. Thus the functions themselves are
smooth.

Example 1.4.6. These conditions hold for all of the metrics d* 4 sn? (f)ds>_,, where

n—1°
t € [0,00) when k < 0, and r € [0,7/+k when k > 0. The corresponding
Riemannian manifolds are denoted S} and are called space forms of dimension n
with curvature k. As in example 1.4.5 we can show that these spaces coincide with
H" (R), R", or §" (R). When k = 0 we clearly get (R”, grr). When k = 1/r2 we get
S"(R). To see this, observe that there is a map
F:R"x (0,R7r) - R" xR,

F(s,r) = (x,1) = R(s-sin () .cos (z)) .
that restricts to

G:5"!'x(0,Rr) > R"xR,
G(s,r) = R(s-sin(;e),cos (Ig))
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Thus, G really maps into the R-sphere in R"!. To check that G is a Riemannian
isometry we just compute the canonical metric on R” x R using the coordinates
R (s - sin (R) cos ( )) To do the calculation keep in mind that ) ( ) = 1 and

s'ds' = 0.
dr + Z&,-dxfdxf
= (dRcos (}, +25ud (Rsin (1) s')d (Rsin(})s)
= sin’ (},) dr?
+) 8 (s'cos () dr + Rsin (1) ds') (s cos () dr + Rsin () ds')
= sin® (1) dr* + Z 8ijs's’ cos” (1) dr? + ) 8;R* sin’ () ds'ds’
+ ) 8;s/Reos () sin (r) ds'dr + Y 8;s'Reos (1) sin (J,) drds’
= sin® (1) dr* + cos (Ig)erZ&,-sisJ + R?sin” () ) 8yds'ds’
+Rcos () sin () dr  s'ds + Rcos () sin ( (sts)dr
= dr’ + R*sin’ (}) ds;_,

Hyperbolic space H" (R) C R™! is similarly realized as a rotationally symmetric
metric using the map

"1 % (0, 00) — R™!
(s,r) —> (x,1) =R (s - sinh (Ig) , cosh (Ig)) .

As with spheres this defines a Riemannian isometry from dr?> + R? sinh? ( 1re) dslzl_1
to the induced metric on H"(R) C R™!. For the calculation note that the metric is
induced by ggn1 = §;dxid¥ — di* and that ) (s')> = 1 and )_ s'ds’ = 0.

—df’ + ) 8jdx'dy

~ (d (Reosh (5)))’ + 3 8y (Rsinh (5) s) d (R sinh (1) )
= —sinh® () dr’

+ Y8 (s'cosh () dr + Rsinh () ds’) (s/ cosh () dr + Rsinh (1) d))
= —sinh? (;)dr* + ) 8;s's’ cosh? () dr* + > 6;R sinh? () ds'ds’

= dr’ 4+ R?sinh’ (},) ds_,
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1.4.5 Doubly Warped Products

We can more generally consider metrics of the type:
dr* + p*()ds, + ¢*(1)ds,

on [ x S” x §4. These are a special class of doubly warped products. When p(t) = 0
we can use the calculations for rotationally symmetric metrics (see 1.4.4) to check
for smoothness. Note, however, that nondegeneracy of the metric implies that p and
¢ cannot both be zero at the same time. The following propositions explain the
various possible situations:

Proposition 1.4.7. If p : (0,b) — (0, 00) is smooth and p(0) = 0, then we get a
smooth metric at t = 0 if and only if

P (0) = 0. p(0) =1
and

$(0) > 0, p**V(0) = 0.

The topology near t = 0 in this case is RPT! x §9.
Proposition 1.4.8. If p : (0,b) — (0, 00) is smooth and p(b) = 0, then we get a
smooth metric at t = b if and only if
pN(b) =0, p(b) = —1
and

d(b) > 0, $°9(p) = 0.

The topology near t = b in this case is again RPT1 x §4.

By adjusting and possibly changing the roles of these functions we obtain three
different types of topologies.

* p,¢:[0,00) — [0, 00) are both positive on all of (0, co). Then we have a smooth
metric on RPT! x S9 if p, ¢ satisfy the first proposition.

* p,¢ :[0,b] — [0, 00) are both positive on (0, b) and satisfy both propositions.
Then we get a smooth metric on SP+! x §9,

e p,¢ : [0,b] — [0,00) as in the second type but the roles of ¢ and p are
interchanged at t = b. Then we get a smooth metric on SPT9F1,

Example 1.4.9. We exhibit spheres as doubly warped products. The claim is that
the metrics
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ar’ + sinz(t)dsﬁ + cosz(t)dsfj, t €[0,7/2],
are (SPT4%1(1), gg+o+1). Since P C RPT! and §7 C R we can map

(O, g) X SP x §4 — R""I'IXR‘H—I,
(t,x,y) — (x-sin(?), y - cos(r)),

where x € RP*!, ye R?*! have |x| = |y| = 1. These embeddings clearly map into
the unit sphere. The computations that the map is a Riemannian isometry are similar
to the calculations in example 1.4.6.

1.4.6 Hopf Fibrations

We use several of the above constructions to understand the Hopf fibration. This
includes the higher dimensional analogues and other metric variations of these
examples.

Example 1.4.10. First we revisit the Hopf fibration S*(1) — S? (1/2) (see also
example 1.1.5). On S3(1), write the metric as

dr* + sin*(t)d0} + cos*(1d03, t € [0,7/2]
and use complex coordinates
(t, e e 92) — (sin(t)ei o cos(r)e! 02)
to describe the isometric embedding
(0,7/2) x §' x §' — §3(1) c C.

Since the Hopf fibers come from complex scalar multiplication, we see that they are
of the form

0 (1. 81(91+9)’ei(02+0)) .
On S? (1/2) use the metric

sin’(2r)

dr
r-+ 4

do*, re|0,7/7],
with coordinates

(r.e'?) > () cos(2r), ) sin(2r)e'?) .
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The Hopf fibration in these coordinates looks like
(1. L 92) - (1. ei(0‘_92)) )
This conforms with Wilhelm’s map defined in example 1.1.5 if we observe that
(sin(z‘)ei i cos(r)é 92)
is supposed to be mapped to

(; (cos®t —sin?#) , sin (¢) cos (f) ei(91_92)) = (; cos (2f), } sin (21) eiw‘_@”) )

On S$3(1) there is an orthogonal frame

cosz(t)agl —sinz(t)f)g2
cos(?) sin(f) ’

891 + 8925 al‘v

where the first vector is tangent to the Hopf fiber and the two other vectors have unit
length. On S? (1/2)

0 09

2
> sin(2r)
is an orthonormal frame. The Hopf map clearly maps

0; = 0,

cos? ()39, —Sinz(l‘)aez cos2(P)dg+sin®(rdyg __ 2 .9
cos(?) sin(?) cos(r) sin(r) ~ sin(2r) 6>

thus showing that it is an isometry on vectors perpendicular to the fiber.
Note also that the map

o 0 . ; cos()el?  sin(r)el
t,e? %) > (cos(r)e'?, sin(t)e'”?) . . .
( ) = (cos() (De'™) —sin(f)e” 1% cos(r)e” 1%

gives us the promised isometry from S3(1) to SU(2), where SU(2) has the left-
invariant metric described in example 1.3.5.

Example 1.4.11. More generally, the map
IxS'x 8" > IxS!
(t, eié)l’ ei@z) — (t, 81(01—92))

is always a Riemannian submersion when the domain is endowed with the doubly
warped product metric
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di* + p*(1)d6; + ¢*(1)d6?
and the target has the rotationally symmetric metric

s 00,
T o+ 20"

Example 1.4.12. This submersion can also be generalized to higher dimensions as
follows: On I x §?*1 x S! consider the doubly warped product metric

dr* + p*(t)ds3, ., + ¢*(1)d6*.

The unit circle acts by complex scalar multiplication on both $>**! and S! and
consequently induces a free isometric action on this space (if A € S' and (z,w) €
5§21 % S then A - (z,w) = (Az, Aw)). The quotient map

I xSt st 5 1x ((SZ”'H X Sl)/Sl)

can be made into a Riemannian submersion by choosing an appropriate metric on
the quotient space. To find this metric, we split the canonical metric

ds%n-i—l =h+ &>

where h corresponds to the metric along the Hopf fiber and g is the orthogonal
component. In other words, if pr : T,5?"*! — T,§2"*1 is the orthogonal projection
(with respect to ds%n +1) whose image is the distribution generated by the Hopf
action, then

h(v, w) = ds3,1 (pr(v), pr(w))

and

gv,w) = ds%,H_l(v —pr(v),w — pr(w)).

We can then rewrite
df? + pX(1)ds3, 4, + ¢*(DdO* = di* + p*(t)g + p*(Dh + $*(1)d6>.

Observe that (S*"*! x §') /S = $?"*! and that the S' only collapses the Hopf fiber
while leaving the orthogonal component to the Hopf fiber unchanged. In analogy
with the above example, the submersion metric on I x $?"*! can be written

(o) ()

2 2
dr-+ p~(t)g + 22(0) + 20"
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Example 1.4.13. In the case where n = 0 we recapture the previous case, as g
doesn’t appear. When n = 1, the decomposition: ds3 = h + g can also be written

dsi = (0')? + (69)* + (07)%,
h= (")
g= () + (%>,

where {o!, 02,03} is the coframe coming from the identification §* ~ SU(2) (see
example 1.3.5). The Riemannian submersion in this case can then be written

(Ix $3x 81, d? + p* (1) ((6")2 + (62)? + (6°)%) + $*(1)d6?)

3 2 2y2 3y2 (M) (12
(1x 8 df + 020 (027 + @) + S0P (01)?).
Example 1.4.14. If we let p = sin(f), ¢ = cos(f), and r € I = [0,7/2], then
we obtain the generalized Hopf fibration >3 — CP"*! defined in example 1.3.4.
The map

(0,7/2) x (S x 81) — (0,7/2) x ((s¥*+! x §') /8"

is a Riemannian submersion, and the Fubini-Study metric on CP"t! can be
represented as

dr* + sin’(1) (g + cos*(1)h).

1.5 Some Tensor Concepts

In this section we shall collect together some notational baggage and more general
inner products of tensors that will be needed from time to time.

1.5.1 Type Change

The inner product structures on the tangent spaces to a Riemannian manifold allow
us to view tensors in different ways. We shall use this for the Hessian of a function
and the Ricci tensor. These are naturally bilinear tensors, but can also be viewed
as endomorphisms of the tangent bundle. Specifically, if we have a metric g and an
endomorphism S on a vector space, then b (v, w) = g (S (v) , w) is the corresponding
bilinear form. Given g, this correspondence is an isomorphism. When generalizing
to the pseudo-Riemannian setting it is occasionally necessary to change the formulas
we develop (see also exercise 1.6.10).
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If, in general, we have an (s, f)-tensor 7, then we can view it as a section in the
bundle

MR- QTMIT*MQ---QT*M.
~ —_ - ~— —_ -
s times t times

Given a Riemannian metric g on M, we can make 7 into an (s — k,  + k)-tensor
for any k € Z such that both s — k and ¢ 4 k are nonnegative. Abstractly, this is done
as follows: On a Riemannian manifold TM is naturally isomorphic to 7*M; the
isomorphism is given by sending v € TM to the linear map (w +— g (v, w)) € T*M.
Using this isomorphism we can then replace TM by T*M or vice versa and thus
change the type of the tensor.

At a more concrete level what happens is this: We select a frame E1, ..., E, and
construct the coframe ¢!, ..., ¢". The vectors in TM and covectors in T*M can be
written as

v=VvE =o' (v) E;,
w = wjo’ = o (E)d.
The tensor T can then be written as

T = T]lll;:El1 ® - ®FE, ® ol R ® o't

il"'iS

Using indices and simply writing 77/._;* is often called tensor notation.

We need to know how we can change E; into a covector and o/ into a vector. As
before, the dual to E; is the covector w — g (E;, w) , which can be written as

g (Ei,w) = g (Ei, Ej) o (w) = gyo’ (w).

Conversely, we have to find the vector v corresponding to the covector o/. The
defining property is

g(w,w) =0 (w).
Thus, we have
g, E) =6

If we write v = v*E}, this gives
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Letting g7 denote the ijth entry in the inverse of (glj) , we obtain
v =v'E; = ¢gE,.

Thus,

Ei = gijO'j,

O'j = gUE,
Note that using Einstein notation will help keep track of the correct way of doing
things as long as the inverse of g is given with superscript indices. With this formula
one can easily change types of tensors by replacing Es with o's and vice versa. Note
that if we used coordinate vector fields in our frame, then one really needs to invert
the metric, but if we had chosen an orthonormal frame, then one simply moves
indices up and down as the metric coefficients satisty g; = J;;.

Let us list some examples:

The Ricci tensor: For now this is simply an abstract (1, 1)-tensor: Ric (E;) =
Ric] Ej; thus

Ric = Ric}-E; ® o’
As a (0, 2)-tensor it will look like
Ric = Ricj -0/ ® o* = gjRic} -0/ ® o*,
while as a (2, 0)-tensor acting on covectors it will be
Ric = Ric" -E; ® Ex = g/ Ric} -E; ® E;.

The curvature tensor: We consider a (1, 3)-curvature tensor R (X, Y) Z, which we
write as

R:Rﬁjk-E1®cr"®crj®ak.

As a (0, 4)-tensor we get
R=Rju- 0 ®cd®@dc ®d
= R‘,-ijgsz'ai Qo' @c* 0.

Note that we have elected to place / at the end of the (0, 4) version. In many texts
it is placed first. Our choice appears natural given how we write these tensors in
invariant notation in chapter 3. As a (2, 2)-tensor we have:
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R=R{'E,®E®0' ®0
=R, EQE®d Q0.

Here we must be careful as there are several different possibilities for raising and
lowering indices. We chose to raise the last index, but we could also have chosen
any other index, thus yielding different (2, 2)-tensors. The way we did it gives what
we will call the curvature operator.

1.5.2 Contractions

Contractions are traces of tensors. Thus, the contraction of a (1, 1)-tensor T = T; .
E; ® o/ is its usual trace:

C(T)=uT =T.

An instructive example comes from considering the rank 1 tensor X ® @ where
X is a vector field and @ a 1-form. In this case contraction is simply evaluation
C (X ® w) = w (X). Conversely, contraction is a sum of such evaluations.

If instead we had a (0,2)-tensor 7, then we could, using the Riemannian
structure, first change it to a (1, 1)-tensor and then take the trace

C(T)=C(Ty-0'®0)
= C(Tusg" - Ex ® o)
= Tug".
In fact the Ricci tensor is a contraction of the curvature tensor:
Ric = Ric}-E; ® o
=R} E®0d
= Hz:ksgxk ‘E;® o,
or
Ric = Ric; -0’ ® o
= g"Ry;- o' ® o7,

which after type change can be seen to give the same expressions. The scalar
curvature is defined as a contraction of the Ricci tensor:
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scal = tr (Ric)
= Ric!
= Rj,8"
= Ricy g~
= lekzgjkgﬂ‘

Again, it is necessary to be careful to specify over which indices one contracts in
order to get the right answer.

1.5.3 Inner Products of Tensors

There are several conventions for how one should measure the norm of a linear
map. Essentially, there are two different norms in use, the operator norm and the
Euclidean norm. The former is defined for a linear map L : V — W between
normed spaces as

Ll = sup [Lv].
v|=1

The Euclidean norm is given by
Ll = Vir(L* o L) = Vr (Lo L*),

where L* : W — V is the adjoint. These norms are almost never equal. If, for
instance, L : V — V is self-adjoint and A; < --- < A, the eigenvalues of L counted
with multiplicities, then the operator norm is: max {|A{|, |A,|} , while the Euclidean

norm is \/ A% + --- 4+ A2. The Euclidean norm has the advantage of actually coming
from an inner product:

(Li.Ly) =tr(LyoLy) =tr(LyoL}).

As a general rule we shall always use the Euclidean norm.

It is worthwhile to check how the Euclidean norm of some simple tensors can be
computed on a Riemannian manifold. Note that this computation uses type changes
to compute adjoints and contractions to take traces.

Let us start with a (1, 1)-tensor T = T; -E; ® o/. We think of this as a linear map
TM — TM. Then the adjoint is first of all the dual map 7* : T*M — T*M, which
we then change to T* : TM — TM. This means that

T =T .0'QE,
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which after type change becomes
T = T,kgljgki ‘Ei® o'
Finally,
IT? = T/T} 8" g
If the frame is orthonormal, this takes the simple form of
71 = 7T,

For a (0, 2)-tensor T = T;; - 0° ® o/ we first have to change type and then proceed
as above. In the end one gets the nice formula

|T)* = T,T".

In general, we can define the inner product of two tensors of the same type, by
declaring that if E; is an orthonormal frame with dual coframe o' then the (s, 7)-
tensors

E,®  ®FE Qd ® - ®ad"

form an orthonormal basis for (s, f)-tensors.

The inner product just defined is what we shall call the point-wise inner product
of tensors, just as g (X, Y) is the point-wise inner product of two vector fields. The
point-wise inner product of two compactly supported tensors of the same type can
be integrated to yield an inner product structure on the space of tensors:

(Tla T2)=/g(T1,T2)vol.
M

1.5.4 Positional Notation

A final remark is in order. Many of the above notations could be streamlined even
further so as to rid ourselves of some of the notational problems we have introduced
by the way in which we write tensors in frames. Namely, tensors TM — TM (section
of TM ® T*M) and T*M — T*M (section of T*M ® TM) seem to be written in
the same way, and this causes some confusion when computing their Euclidean
norms. That is, the only difference between the two objects 0 ® E and E ® o is
in the ordering, not in what they actually do. We simply interpret the first as a map
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TM — TM and then the second as T*M — T*M, but the roles could have been
reversed, and both could be interpreted as maps 7TM — TM. This can indeed cause
great confusion.

One way to at least keep the ordering straight when writing tensors out in
coordinates is to be even more careful with indices and how they are written down.
Thus, a tensor T that is a section of T*M ® TM ® T*M should really be written as

T=T/, -0 ®E®o*
Our standard (1, 1)-tensor (section of TM ® T*M) could then be written
T=T E®od,
while the adjoint (section of T*M ® TM) before type change is
™" =T -0"®E
= Tf'jgkiglj of ®E,.
Thus, we have the nice formula
7] =TT
Nice as this notation is, it is not used consistently in the literature. It would be
convenient to use it, but in most cases one can usually keep track of things anyway.
Most of this notation can of course also be avoided by using invariant (coordinate

free) notation, but often it is necessary to do coordinate or frame computations both
in abstract and concrete situations.

1.6 Exercises

EXERCISE 1.6.1. On M x N one has the Cartesian product metrics g = gy + gn,
where gy, gn are metrics on M, N respectively.

(1) Show that (R", ggrn) = (R, dtz) X eee X (R, dtz).
(2) Show that the flat square torus

2 2
7’ =R?/7* = (sl,( ! ) d@z) X (Sl,( ! ) d@z).
2 2
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(3) Show that
1 . .
F(01,0,) = 5 (cos By, sin 8y, cos 6>, sin 65)
F11

is a Riemannian embedding: 77 — R*.

EXERCISE 1.6.2. Suppose we have an isometric group action G on (M, g) such that
the quotient space M/G is a manifold and the quotient map a submersion. Show
that there is a unique Riemannian metric on the quotient making the quotient map a
Riemannian submersion.

EXERCISE 1.6.3. Let M — N be a Riemannian k-fold covering map. Show,
volM = k- volN.

EXERCISE 1.6.4. Show that the volume form for a metric dr> + p®(r) gy on a
product I x N is given by p"~'dr A voly, where voly is the volume form on (N, gy).

EXERCISE 1.6.5. Show that if Ey, ..., E, is an orthonormal frame, then the dual
frame is given by o/ (X) = g (E;, X) and the volume form by vol = 0! A--- A 0",
EXERCISE 1.6.6. Show thatin local coordinates x!, . .., x" the volume form is given

by vol = + \/ det[g;]dx" A -+ A dx". In the literature one often sees the simplified
notation g = \/ det [g;].

EXERCISE 1.6.7. Construct paper models of the warped products d> + a*>d6?. If
a = 1, this is of course the Euclidean plane, and when a < 1, they look like cones.
What do they look like when a > 1?

EXERCISE 1.6.8. Consider a rotationally symmetric metric dr* + p? (r) ggi—1(),
where §"~! (R) C R”" is given the induced metric. Show that if p (0) = 0, then we
need p (0) = !/z and p@® (0) = 0 to get a smooth metric near r = 0.

EXERCISE 1.6.9. Show that if we think of R” as any of the hyperplanes x"*! = R
in R"*!, then Iso (R") can be identified with the group of (n + 1) x (n 4 1) matrices

Ov

01]f’
where v € R" and O € O (n). Further, show that these are precisely the linear maps
that preserve X! = R and the degenerate bilinear form x'y! + --- 4 xy".

EXERCISE 1.6.10. Let V be an n-dimensional vector space with a symmetric
nondegenerate bilinear form g of index p.

(1) Show that there exists a basis ej,...,e, such that g (e e)) = 0if i # J,
gle,e) =1ifi=1,...,n—pandg(e,e) =—-1lifi=n—p+1,...,n
Thus V is isometric to R74.

(2) Show that for any v we have the expansion
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n

— gle)
v= gleie) €
i=1
n—p n
= Zg(v,ei) e — Z g, e)e;.
i=1 i=n—p+1

(3) LetL: V — V be a linear operator. Show that

n
_ g(L(ei).ei)
tr(L) = Z gleie)

i=1

EXERCISE 1.6.11. Let g~! denote the (2, 0)-tensor that is the inner product on the
dual tangent space T*M. Show that type change can be described as a contraction

of a tensor product with g or g~ !.

EXERCISE 1.6.12. For a (1, 1)-tensor 7 on a Riemannian manifold, show that if E;
is an orthonormal basis, then

IT)> =) |T (B

EXERCISE 1.6.13. Given (1, 1)-tensor tensors S, T’ show that if S is symmetric and
T skew-symmetric, then g (S,7) = 0.

EXERCISE 1.6.14. Show that the inner product of two tensors of the same type can
be described as (possibly several) type change(s) to one of the tensors followed by
(possibly several) contraction(s).

EXERCISE 1.6.15. Consider F : F"*! — {0} — FP" defined by F (x) = spany {x},
where F = R, C and assume that FP" comes with the metric that makes the
restriction of F to the unit sphere a Riemannian submersion.

(1) Show that F is a submersion.

(2) Show that F is not a Riemannian submersion with respect to the standard metric
on "1 — {0},

(3) Isit possible to choose a metric on F"*! — {0} so that F becomes a Riemannian
submersion?

EXERCISE 1.6.16. The arc length of a curve ¢ (¢) : [a, b] — (M, g) is defined by

L) = / \é| dt
la,b]

(1) Show that the arc length does not depend on the parametrization of c.
(2) Show that any curve with nowhere vanishing speed can be reparametrized to
have unit speed.
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(3) Show that it is possible to define the arclength of an absolutely continuous
curve. You should, in particular, show that the concept of being absolutely
continuous is well-defined for curves in manifolds.

EXERCISE 1.6.17. Show that the arclength of curves is preserved by Riemannian
immersions.

EXERCISE 1.6.18. Let F : (M, gy) — (N, gn) be a Riemannian submersion and
c(t) : [a,b] - (M, gu) a curve. Show that L (F o ¢) < L(c) with equality holding
if and only if ¢ (f) L ker DF,, for all t € [a, b].

EXERCISE 1.6.19. Show directly that any curve between two points in Euclidean
space is longer than the Euclidean distance between the points. Moreover, if the
length agrees with the distance, then the curve lies on the straight line between those
points. Hint: If v is an appropriate unit vector, then calculate the length of v - ¢ (¢)
and compare it to the length of c.

EXERCISE 1.6.20. Let S" C R"*! be the standard unit sphere and p,q € S" and
v € T,S" a unit vector. We think of p, ¢ and v as unit vectors in R"*1,

(1) Show that the great circle p cost + v sint is a unit speed curve on S” that starts
at p and has initial velocity v.

(2) Consider the map F (r,v) = pcosr+vsinrforr e [0,7]andv L p, |v| = 1.
Show that this map defines a diffeomorphism (0, 7) x §"~! — §" — {£p}.

(3) Define 0, = Fy (d,) on 8" — {£p}. Show that if ¢ = F (ry, vo), then

P+ P-9q -
J1-0-a?

(4) Show that any curve from p to ¢ is longer than ry, where ¢ = F (rp, vg), unless
it is part of the great circle. Hint: Compare the length of ¢ (¢) to the integral
J ¢+ 0,dt and show that ¢ - 8, = %, where ¢ (1) = F (r (1) , v (1)).

(5) Show that there is no Riemannian immersion from an open subset U C R" into
S". Hint: Any such map would map small equilateral triangles to triangles on
S" whose side lengths and angles are the same. Show that this is impossible by
showing that the spherical triangles have sides that are part of great circles and

that when such triangles are equilateral the angles are always > 7.
EXERCISE 1.6.21. Let H" C R™! be hyperbolic space: p,q € H"; and v € T,H" a
unit vector. Thus |p|*> = |g|* = —1, [v|> = 1,andp - v = 0.

0,1, =

sin ry + Vg CoS 1.

(1) Show that the hyperbola p cosh t+ v sinh ¢ is a unit speed curve on H" that starts
at p and has initial velocity v.

(2) Consider F (r,v) = pcoshr+vsinhr, forr > 0andv-p =0, |v|2 = 1. Show
that this map defines a diffeomorphism (0, 00) x "' — H" — {p}.

(3) Define the radial field 9, = Fx (d,) on H" — {p}. Show that if ¢ = F (ry, vy),
then
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-p—(q-pq

arlq =
\/—1 +(q-p)

= psinhry + vg coshry.

(4) Show that any curve from p to ¢ is longer than ry, where ¢ = F (ro, vo), unless
it is part of the hyperbola. Hint: For a curve ¢ (f) compare the length of ¢ to the
integral [ ¢ - 9,dt and show that ¢ - 9, = Zf, where c (1) = F (r (1) , v (¢)).

(5) Show that there is no Riemannian immersion from an open subset U C R” into
H". Hint: Any such map would map small equilateral triangles to triangles on
H" whose side lengths and angles are the same. Show that this is impossible by
showing that the hyperbolic triangles have sides that are part of hyperbolas and

that when such triangles are equilateral the angles are always < 7.

EXERCISE 1.6.22 (F. WILHELM). The Hopf fibration from example 1.1.5 can be

generalized using quaternions. Quaternions can be denoted ¢ = a+bi+cj+dk =
z+ wj, where z = a + bi,w = ¢ + d1i are complex numbers and

=i =K=-1,

ij=k=—ji
jk=i=—kj,
ki=j=—ik.

The set of quaternions form a 4-dimensional real vector space H with a product
structure that is R-bilinear and associative.

(1) Show the quaternions can be realized as a matrix algebra

= (5Y)

(6" 0a)
i=(5)
k= (J()—l \/o_l)'

This in particular ensures that the product structure is R-bilinear and associative.
(2) Show that if

where

i

G=a—bi—cj—dk,



1.6 Exercises 37

then the following identities hold:

>+ b+ +d = |q)

=qq
=qq
= [z + [wl’
= det( Z_ v_v) ,
—W Z
lpal = Ipllql,
and
pq = gp

(3) Define two maps H> — R @ H

# .0 = (5 (1~ 1) o)

# 0.0 = (5 (- 10P) .03

Show that they both map S (1) C H? to §* (1/2) C R & HL.

(4) Show that the pre-images of H' : §7 (1) — S§*(1/2) correspond to the orbits
from left multiplication by unit quaternions on H?.

(5) Show that the pre-images of H" : S7 (1) — S*(1/2) correspond to the orbits
from right multiplication by unit quaternions on H?.

(6) Show that both H' and H" are Riemannian submersions as maps S7 (1) —
§*(1/2).

EXERCISE 1.6.23. Suppose p and ¢ are positive on (0,00) and consider the

Riemannian submersion

((0,00) x $3 x S, di* + p? (1) [(61)* + (02)* + (6°)%] + ¢*(1)dO?)
!

. 2
((0.00) x 8, d> + P10 + (@3] + SO0 (0!)?).

i 2
Define f = pand h = /jf(‘gfggz ) and assume that

£©0) >0, f*90) =0
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and
h(0) =0, i (0) =k, K™ (0) =0,

where k is a positive integer. Show that the above construction yields a smooth
metric on the vector bundle over S? with Euler number k. Hint: Away from the zero
section this vector bundle is (0, 00) x §%/7Z;, where S°/7Z; is the quotient of S* by
the cyclic group of order k acting on the Hopf fiber. You should use the submersion
description and then realize this vector bundle as a submersion of $*> x R?. When k =
2, this becomes the tangent bundle to S2. When k = 1, it looks like CIP?> — {point} .

EXERCISE 1.6.24. Let G be a compact Lie group.

(1) Show that G admits a biinvariant metric, i.e., both right- and left-translations
are isometries. Hint: Fix a left-invariant metric g; and a volume form vol =
o' A--- Ao where o' are orthonormal left-invariant 1-forms. Then define g as
the average over right-translations:

gw =, /G g1 (DR, (v). DR, (w)) vol.

G vol

(2) Show that conjugation Adj, (x) = hxh™! is a Riemannian isometry for any
biinvariant metric. Conclude that its differential at x = e denoted by the same
letters

Ad,:g—g

is a linear isometry with respect to g.
(3) Use this to show that the adjoint action

ady : g — g,

ady X = [U,X]
is skew-symmetric, i.e.,
g([U,X],Y) =—g(X,[U,Y].

Hint: It is shown in section 2.1.4 that U + ady is the differential of 4 +— Ad,.

EXERCISE 1.6.25. Let G be a Lie group with Lie algebra g. Show that a nondegen-
erate, bilinear, symmetric form (X, Y) on g defines a biinvariant pseudo-Riemannian
metric if and only if (X, Y) = (Ad, X, Ad, Y) forall h € G.
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EXERCISE 1.6.26. Let G be a compact group acting on a Riemannian manifold.
Show that M admits a Riemannian metric such that G acts by isometries. Hint: You
first have to show that any manifold admits a Riemannian metric (partition of unity)
and then average the metric to make it G-invariant.

EXERCISE 1.6.27. Let G be a Lie group. Define the Killing form on g by

B(X,Y) = tr(adyoady).

(1) Show that B is symmetric and bilinear.

(2) When G admits a biinvariant metric show that B (X, X) < 0. Hint: Use part (3)
of exercise 1.6.24.

(3) Show that B(adzX,Y) = —B(X,adz Y).

(4) Show that B (Ad, X,Ad,Y) = B(X,Y), when G is connected. Hint: Show that

t— B (Adexp(tZ) X, Adexp(tZ) Y)

is constant, where exp (0) = e and jt exp (tZ) = Z.

Note B looks like a biinvariant metric on G. When g is semisimple the Killing
form is nondegenerate (this can in fact be taken as the definition of semisimplicity)
and thus can be used as a pseudo-Riemannian biinvariant metric. It is traditional to
use —B instead so as to obtain a Riemannian metric when G is also compact.

EXERCISE 1.6.28. Consider the Lie group of real nxn-matrices with determinant 1,
SL (n,R). The Lie algebra s[ (n, R) consists of real n x n-matrices with trace 0. Show
that the symmetric bilinear form (X, Y) = tr (XY) on sl (rn, R) defines a biinvariant
pseudo-Riemannian metric on SL (n, R). Hint: Show that it is nondegenerate and
invariant under Ad,,.

EXERCISE 1.6.29. Show that the matrices
aloo

0 ab|,a>0,beR
001

define a two-dimensional Lie group that does not admit a biinvariant pseudo-
Riemannian metric.



Chapter 2
Derivatives

This chapter introduces several important notions of derivatives of tensors.
In chapters 5 and 6 we also introduce partial derivatives of functions into
Riemannian manifolds.

The main goal is the construction of the connection and its use as covariant
differentiation. We give a motivation of this concept that depends on exterior and
Lie derivatives. Covariant differentiation, in turn, allows for nice formulas for
exterior derivatives, Lie derivatives, divergence and much more. It is also crucial
in the development of curvature which is the central construction in Riemannian
geometry.

Surprisingly, the idea of a connection postdates Riemann’s introduction of the
curvature tensor. Riemann discovered the Riemannian curvature tensor as a second-
order term in a Taylor expansion of a Riemannian metric at a point with respect to a
suitably chosen coordinate system. Lipschitz, Killing, and Christoffel introduced the
connection in various ways as an intermediate step in computing the curvature. After
this early work by the above-mentioned German mathematicians, an Italian school
around Levi-Civita, Ricci, Bianchi et al. began systematically to study Riemannian
metrics and tensor analysis. They eventually defined parallel translation and through
that clarified the use of the connection. Hence the name Levi-Civita connection for
the Riemannian connection. Most of their work was still local in nature and mainly
centered on developing tensor analysis as a tool for describing physical phenomena
such as stress, torque, and divergence. At the beginning of the twentieth century
Minkowski started developing the geometry of space-time as a mathematical model
for Einstein’s new special relativity theory. It was this work that eventually enabled
Einstein to give a geometric formulation of general relativity theory. Since then,
tensor calculus, connections, and curvature have become an indispensable language
for many theoretical physicists.

Much of what we do in this chapter carries over to the pseudo-Riemannian setting
as long as we keep in mind how to calculate traces in this context.
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2.1 Lie Derivatives

2.1.1 Directional Derivatives

There are many ways of denoting the directional derivative of a function on a
manifold. Given a function f : M — R and a vector field ¥ on M we will use
the following ways of writing the directional derivative of f in the direction of ¥

Vyf = Dyf = Lyf = df(Y) = Y(f).

If we have a function f : M — R on a manifold, then the differential df : TM —
R measures the change in the function. In local coordinates, df = 9;(f)dx'. If, in
addition, M is equipped with a Riemannian metric g, then we also have the gradient
of f, denoted by gradf = Vf, defined as the vector field satisfying g(v, Vf) = df (v)
for all v € TM. In local coordinates this reads, Vf = g¥9;(f)d;, where gV is the
inverse of the matrix g; (see also section 1.5.1). Defined in this way, the gradient
clearly depends on the metric.

But is there a way of defining a gradient vector field of a function without using
Riemannian metrics? The answer is no and can be understood as follows. On R” the
gradient is defined as

Vf = 890;(£)0; = Y _ 0: (f) 0.

i=1

But this formula depends on the fact that we used Cartesian coordinates. If instead
we use polar coordinates on R2, say, then

Vf =3, (f) 8x + 3y (1) 3y # 3, () 3, + 39 () Do

One rule of thumb for items that are invariantly defined is that they should satisfy the
Einstein summation convention. Thus, df = 9; (f) dx' is invariantly defined, while
Vf = 9;(f) 9; is not. The metric g = g;dx'd¥ and gradient Vf = g¥9; (f) 9; are
invariant expressions that also depend on our choice of metric.

2.1.2 Lie Derivatives

Let X be a vector field and F' the corresponding locally defined flow on a smooth
manifold M. Thus F’ (p) is defined for small ¢ and the curve t — F'(p) is the
integral curve for X that goes through p at + = 0. The Lie derivative of a tensor in
the direction of X is defined as the first-order term in a suitable Taylor expansion of
the tensor when it is moved by the flow of X. The precise formula, however, depends
on what type of tensor we use.
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Iff : M — R is a function, then

FF D) =f)+1Lxf) (p) +0(1).
or

L EE)—f ()
(Lxf) (p) = lim t .

Thus the Lie derivative Lyf is simply the directional derivative Dxf = df (X).
Without specifying p we can also write

foF =f+1tlxf +o0(f) and Lyf = Dxf = df (X).

When we have a vector field Y things get a little more complicated as Y| can’t
be compared directly to Y since the vectors live in different tangent spaces. Thus we
consider the curve t = DF " (Y|f(,) that lies in 7,M. When this is expanded in ¢
near 0 we obtain an expression

DF™" (Y|p() = Y|, + t (LxY) |, + 0 (1)
for some vector (LxY) |, € T,M. In other words we define

DF™ (Ylp) = Y1y

(Lx¥) |p = lim t

This Lie derivative turns out to be the Lie bracket.
Proposition 2.1.1. If X, Y are vector fields on M, then LxY = [X,Y].

Proof. While Lie derivatives are defined as a limit of suitable difference quotients
it is generally far more convenient to work with their implicit definition through the
first-order Taylor expansion.

The Lie derivative comes from

DF ' (Y|p) =Y 4+ tLxY + 0 (1)
or equivalently
Y| — DF' (Y) = tDF' (LxY) + 0 (¢) .
Consider the directional derivative of a function f in the direction of Y|z — DF' (Y)

Dy\,.—prf = Dy|.f — Dporinf
= (Dyf) o F' =Dy (f o F")
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= Dyf + tDxDyf + 0 (t)
—Dy (f + tDxf + 0 (1))

= t (DxDyf — DyDxf) + o (t)

tDix yf +o(1).

This shows that

Y|p — DF' (Y
LyY = lim IF )
t—0 t
= [X,7].

O

We are now ready to define the Lie derivative of a (0, k)-tensor 7" and also give
an algebraic formula for this derivative. Define

(F)"T =T +t(LxT) + 0 (1)
or with variables included
((F’)* T) (Y1,....Y) = T (DF'(Y)).....DF (%))
=T(Y1,....Y) +t(LxT) (Y1.....Y) + 0 (D).

As a difference quotient this means

(LxT) (Y1,...,Y) = lim (Ft)*T_T.

t—0 t

Proposition 2.1.2. If X is a vector field and T a (0, k)-tensor on M, then

k
(LxT) (Y1.....Yo) = Dx (T (V1.....Y)) = D T (Yi.....LyYi..... Ya).

i=1

Proof. We restrict attention to the case where k = 1. The general case is similar but
requires more notation. Using that

Y|pr = DF' (Y) + tDF' (LxY) + 0 (¢)

we get

((F’)* T) (Y) = T (DF' (1))
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=T (Y|p — tDF' (LxY)) + o (1)

=T (Y)o F' —(T (DF' (LxY)) + o (1)

=T (Y) + tDx (T (Y)) — T (DF' (LxY)) + o (7).
Thus

((FY*T) (¥) =T (Y)

(LxT) (Y) = lim t

= lim (Dx (T (Y)) — T (DF' (LxY)))
=Dx(T(Y)) - T (LxY).

|

Finally, we have that Lie derivatives satisfy all possible product rules, i.e.,
they are derivations. From the above propositions this is already obvious when
multiplying functions with vector fields or (0, k)-tensors.

Proposition 2.1.3. If T| and T, be (0, k;)-tensors, then
Ly (T - T2) = (LxT1) - T2 + T1 - (LxT2) .

Proof. Recall that for 1-forms and more general (0, k)-tensors we define the
product as

T Xi,.... X, Y, .. Y) =T (X1, ... X)) - T (Y, ..., Yy)

The proposition is then a simple consequence of the previous proposition and the
product rule for derivatives of functions. O

Proposition 2.1.4. If T is a (0, k)-tensor and f : M — R a function, then

k
LxT (Y1.....Y) =fLyT (Y1,....Y) + Y (LyHT(Y1.....X.....Yp).

i=1

Proof. We have that

k
LT (Y1..... %) = Dx (T (Y1.....Y)) = Y T (Yi.....LxYi..... Yi)

i=1

k
=x (T (Y1.....Y,)) = > T(X.....[;X.¥]..... %)
i=1
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k
=x (T (Y1.....Y,)) = f > T(X.....[X.Y].....Y))
i=1

k
+Y i) T (Ve X X))

i=1
O

The case where X|, = 0 is of special interest when computing Lie derivatives.
We note that F’ (p) = p for all t. Thus DF" : T,M — T,M and

DF™'(Y|,) = Yl,

LxY|, = li
il 0 t
d _
= (D) o (V).
This shows that Ly = jr (DF™") |;=0 when X|, = 0. From this we see that if 0
is a 1-form then Ly = —6 o Ly at points p where X|, = 0. This is a general
phenomenon.

Lemma 2.1.5. If a vector field X vanishes at p, then the Lie derivative LxT at p
depends only on the value of T at p.

Proof. We have that

k
(LxT) (Y1.....Y0) = Dx (T (V1.....Y)) = D T (Yi.....LyYi..... Ya).

i=1

So if X vanishes at p, then

k
(LxT) (V... Y) | ==Y T (V... LxYir... Y0 .
i=1

|

It is also possible to define Lie derivatives of more general tensors and even
multilinear maps on vector fields. An important instance of this is the Lie derivative
of the Lie bracket [Y, Z] or even the Lie derivative of the Lie derivative LyT. This is
algebraically defined as

(LxL)y T = Lx (LyT) — L1y yT — Ly (LxT)
= [Lx,Ly]T — LixynT.
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Proposition 2.1.6 (The Generalized Jacobi Identity). For all vector fields X, Y
and tensors T

(LxL)y T = 0.

Proof. When T is a function this follows from the definition of the Lie bracket:
(LxL)yf = [Lx,Lylf — Lixvf

= [Dx, Dylf — Dx.vif

=0.
When T = Z is a vector field it is the usual Jacobi identity:

(LxL)y Z = [Lx,Ly]Z — Lix nZ
= Xv [YvZ]] - [Ys [XvZ]] - [[Xv Y]vZ]

= X.[¥.Z] + [Z,[X. Y]] + [¥. [Z. X]]
=0.

When T = w is a one-form it follows automatically from those two observations
provided we know that

([Lx, Ly] w) (Z) = [Lx, Ly] (0 (Z2)) — o ([Lx. Ly] Z)
since we then have

(LxL)y ®) (Z) = ([Lx. Lyl ) (Z) — (L y@) (Z)
= [Lx, Ly] (0 (2)) — o ([Lx, Ly] Z)
—Lix.y (@ (2)) + o (Lix.nZ)
=0.

A few cancellations must occur for the first identity to hold. Note that
(Lx. Lyl 0) (Z) = (Lx (Lyw)) (2) — (Ly (Lxw)) (Z) ,

(Lx (Lyw)) (Z) = Lx (Lyw) (2)) — (Lyw) (LxZ)
= Lx (Ly (v (2))) — Lx (» (LyZ))
—Ly (Cl) (LXZ)) + w (LyLXz) .
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and similarly
(Ly (Lxw)) (Z) = Ly (Lx (w0 (2))) — Ly (@ (LxZ)) — Lx (@ (LyZ)) + o (LxLyZ) .
This shows that
(ILx. Ly] @) (2) = [Lx. Ly] (@ (Z)) — o ([Lx. Ly] Z) .
The proof for general tensors now follows by observing that these are tensor

products of the above three simple types of tensors and that Lie derivatives act as
derivations. O

The Lie derivative can also be used to give a formula for the exterior derivative
of a k-form

k
1 i -
do (Xo. X1 X)) = ;(—1) (Lx,0) (Xo,...,X,-,...,Xk).

+; g(_l)iLX,, (o (X0 Reoo X))

For a 1-form this gives us the usual definition

do (X,Y) = Dx (0 (Y)) — Dy (0 (X)) — @ ([X.Y]).

2.1.3 Lie Derivatives and the Metric

The Lie derivative allows us to define the Hessian of a function on a Riemannian
manifold as a (0, 2)-tensor:

Hessf (X,Y) = ; (Lvrg) (X.Y).

At a critical point for f this gives the expected answer. To see this, select coordinates
x around p such that the metric coefficients satisfy g;|, = §;. If df|, = 0, then
Vfl|, = 0 and it follows that

Lyy (gyd'd) |, = Lvy (g4) |y + 8yLvy (dx') d' + 8dx' Ly (dx’)
= 8yLvy (dx') d + 8;dx'Lyy (d')
= LVf (Siidxidxi) |p.
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Thus Hess f|,, is the same if we compute it using g and the Euclidean metric in the
fixed coordinate system.

It is perhaps still not clear why the Lie derivative formula for the Hessian is
reasonable. The idea is that the Hessian measures how the metric changes as we
flow along the gradient field. To justify this better let us define the divergence of
a vector field X as the function div X that measures how the volume form changes
along the flow for X:

Ly vol = (divX) vol.
Note that the form Ly vol is always exact as
LX vol = diX VO],

where ixT evaluates T on X in the first variable.
The Laplacian of a function is defined as in vector calculus by

Af = div Vf

and we claim that it is also given as the trace of the Hessian. To see this select a
positively oriented orthonormal frame E; and note that

divX = (LX VOI) (El, c ,En)
=Ly (VO] (El, c ,En))

=Y Vol(E.... . LxE;, ... Ey,)
=—Y g(xE,E)
= ) Y (U (B E)) — g (LB Ei) — g (B LxED)
= ; (Lxg) (E;, E) .

We can also show that the Hessian defined in this way gives us back the usual
Hessian of a function f : R” — R with the canonical metric on Euclidean space:

Lvy (5ijdxidxj ) = Ly o5, Z dx'dx’
= Z Lajfaj dxidxi
—Z Lafadx dx +de fadx

= > 0f (Lydx) dx' + ) dyfdx (Lydx’)
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=+ d(3f)dx (3) dx' + Y d(3f) dr'dx’ (d;)
=2) d@f)dx

=2 Ofdddy’

= 2Hess/.

2.1.4 Lie Groups

Lie derivatives as might be expected also come in handy when working with Lie
groups. For a Lie group G we have the inner automorphism Ady, : x > hxh™'and its
differential at x = e denoted by the same letters Ad; : g — g.

Lemma 2.1.7. The differential of h — Ady, is given by U — ady (X) = [U, X].

Proof. If we write Ad;, (x) = R,—1Lj (x), then its differential at x = e is given by
Ad;, = DR,—1DL;,. Now let F’ be the flow for U. Then F' (x) = xF' (e) = L, (F' (e))
as both curves go through x at t = 0 and have U as tangent everywhere since U is a
left-invariant vector field. This also shows that DF' = DRp(,). Thus

d
ady (X) |. = dtDRF—«e)DLFf(e) (Xle) li=0
— L DR (K1) |
- dt F~(e) Fi(e)) 1t=0

d _
= dtDF " (XIFre)) li=o

= LyX = [U.X].

This is used in the next lemma.

Lemma 2.1.8. Let G = GL (V) be the Lie group of invertible matrices on V. The
Lie bracket structure on the Lie algebra gl (V) of left-invariant vector fields on
GL (V) is given by commutation of linear maps. i.e., if X,Y € T;GL (V) , then

[X,Y]|; = XY —YX.
Proof. Since x +— hxh™! is a linear map on the space Hom (V, V) we see that

Ad;, (X) = hXh™'. The flow of U is given by F'(g) = g(I + tU + o0 (t)) so we
have
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X1 = & (F OXF () iy

= ddt +tU4+0@®)XUT—tU++ o)) =0

d
= 4 X+tUX —tXU+ 0(?)) |i=0

= UX - XU. o

2.2 Connections

2.2.1 Covariant Differentiation

We now come to the question of attaching a meaning to the change of a vector
field. The Lie derivative is one possibility, but it is not a strong enough concept as it
doesn’t characterize the Cartesian coordinate fields in R” as having zero derivative.
A better strategy for R” is to write X = X 19;, where 9; are the Cartesian coordinate
fields. If we want the coordinate vector fields to have zero derivative, then it is
natural to define the covariant derivative of X in the direction of Y as

VyX = (VyX') 8 = d (X) (Y) 9;.

Thus we measure the change in X by measuring how the coefficients change.
Therefore, a vector field with constant coefficients does not change. This formula
clearly depends on the fact that we used Cartesian coordinates and is not invariant
under change of coordinates. If we take the coordinate vector fields

1
9, = . (xBx + yay) , 0p = —y0x + x0,

that come from polar coordinates in R?, then we see that they are not constant.

In order to better understand such derivatives we need to find a coordinate
independent definition. This is done most easily by splitting the problem of defining
the change in a vector field X into two problems.

First, we can measure the change in X by asking whether or not X is a gradient
field. If ixg = 6O is the 1-form dual to X, i.e., (ixg) (Y) = g (X,Y), then we know
that X is locally the gradient of a function if and only if dfx = 0. In general, the
2-form dfx then measures the extent to which X is a gradient field.

Second, we can measure how a vector field X changes the metric via the Lie
derivative Lyg. This is a symmetric (0, 2)-tensor as opposed to the skew-symmetric
(0, 2)-tensor dfx. If F' is the local flow for X, then we see that Lyg = 0 if and only
if F' are isometries (see also section 8.1). When this happens we say that X is a
Killing field.
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In case X = Vf is a gradient field we saw that the expression ;vag is the
Hessian of f. From that calculation we can also quickly see what the Killing fields
on R” should be: If X = X'9;, then X is a Killing field if and only if 9, X’ 4+ 9;X* = 0.
This implies that

00X = —0;0:X"
= —0;0,;X"
= 0;0.X
= 0,0;X
= — 00X’
= —0,0X".

Thus we have ajakxf = 0 and hence
i i i
X' =ax +p
with the extra conditions that

of = 0;X' = —0,X = —a.

1

In particular, the angular field dy is a Killing field. This also follows from the fact
that the corresponding flow is matrix multiplication by the orthogonal matrix

|:cos () —sin (£) :|

sin (t) cos (1)
More generally, one can show that the flow of the Killing field X is

F'(x) =exp(Anx+1p. A=[cl]. Bp=[p].

In this way we see that a vector field on R” is constant if and only if it is both a
Killing field and a gradient field.
Finally we make the important observation.

Proposition 2.2.1. The covariant derivative in R" is given by the implicit formula:
2¢ (VyX.,Z) = (Lxg) (Y. Z) + (dbx) (Y.2) .
Proof. Since both sides are tensorial in Y and Z it suffices to check the formula on

the Cartesian coordinate vector fields. Write X = a'd; and calculate the right-hand
side
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(Lx8) (Ok, 01) + (dbx) (k. 01) = DxSu — g (Lx . 1) — g (k. Lx ;)
+0kg (X, 1) — dig (X, d) — g (X, [k, 1))
=8 (L¢1’8;3k7 31) — 8 (3k’La/aj3z)

+8kal — 81a"
= —g (— (') B, ) — g (96, — (31) 3))
+8kal — 81a"

= +id + 9;d" + dad — 9,a*
= 20,d

=2g ((akai) d;, 31)
=2g(VyX.0)).

O

Since the right-hand side in the formula for VyX makes sense on any Riemannian
manifold we can use this to give an implicit definition of the covariant derivative of
X in the direction of Y. This covariant derivative turns out to be uniquely determined
by the following properties.

Theorem 2.2.2 (The Fundamental Theorem of Riemannian Geometry). The
assignment X — VX on (M, g) is uniquely defined by the following properties:

(1) Y+ VyXisa (1, 1)-tensor i.e., it is well-defined for tangent vectors and linear
Vm)+ﬂwx = (XVUX + ,BVWX.
(2) X — VyX is a derivation:

Vy (X1 + X2) = VyX1 + VX,
Vy (fX) = (Dyf) X + fVyrX

for functions f : M — R.
(3) Covariant differentiation is torsion free:

VxY - VyX =[X,Y].
(4) Covariant differentiation is metric:
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Proof. We have already established (1) by using that
(Lxg) (Y.Z) + (dbx) (Y. Z)

is tensorial in ¥ and Z. This also shows that the expression is linear in X. To check
the derivation rule we observe that
Lxg +dOx = fLxg + df - Ox + Ox - df + d (fOx)
= fLxg + df - Ox + Ox - df + df A Ox + fdOx
=f(Lxg+dbx)+df-0x + 0x -df +df - 0x — Ox - df
= f(Lxg + dbx) + 2df - Ox.

Thus

28 (Vy (X) . 2) = f2g (VyX,Z) + 2df (Y) g (X, Z)
=2g (fVyX + df (Y) X, Z)
=2 (fVyX + (Dyf) X.Z) .

To establish the next two claims it is convenient to create the following expansion
also known as Koszul’s formula.

28 (VyX.,Z) = (Lxg) (Y.Z) + (dbx) (Y. 2)
=Dxg(Y.Z2) —g([X.Y].Z2) — g (Y.[X.Z])
+Dybx (Z) — Dz6x (Y) — 6x ([Y, Z])
=Dxg(Y.2) —g([X.Y].Z2) — g (Y.[X.Z])
+Dyg (X.Z) —Dzg (X.Y) — g (X.[Y.Z])
= Dxg(Y,Z) + Dyg (Z,X) — Dzg (X.Y)
-8 (X, Y].2) —g([¥.Z] . X) + g (1Z,X].Y).

We then see that (3) follows from

2 (VxY — VyX,Z) = Dyg (X,Z) + Dxg (Z,Y) — Dzg (Y. X)
- (Y.X].2) —g([X.Z].Y) + g ([Z. Y] . X)
—Dxg (Y.Z) — Dyg (Z.X) + Dzg (X.Y)
+¢([X.Y].2) + g ([Y.Z] . X) — ¢ (1Z.X].Y)
=2¢([X,Y],2).
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And (4) from

2g(VzX.,Y) + 28 (X, VzY) = Dxg (Z,Y) + Dzg (Y. X) — Dyg (X, 2)
-8 (X.2].Y) =g ([Z.Y] . X) + g ([Y.X] . 2)
+Dyg (Z.X) + Dzg (X.Y) — Dxg (Y. Z)
—8([Y.Z] . X) — g ([Z.X],Y) + g (X.Y].2)
=2Dzg (X,Y).

Conversely, if we have a covariant derivative VyX with these four properties, then

28 (VyX, Z) = (Lxg) (Y, Z) + (dbx) (Y. Z)
= Dxg(Y,Z) + Dyg (Z.X) — Dzg (X, Y)
—¢ (X, Y].2) — ¢ ([Y.Z].X) + ¢ ([Z. X].Y)
=g (VxV.Z) + g (Y. VxZ) + g (VvZ.X) + g (2. VyX)
—g(VzX.Y) —g (X, V2Y) + g (VzX.Y) — g (VxZ.Y)
—g(VxY.2) + g (VyX.Z) — g (VyZ.X) + g (V2Y.X)
=2g (WyX.2)

showing that VyX = @yX . ]

Any assignment on a manifold that satisfies (1) and (2) is called an affine
connection. If (M, g) is a Riemannian manifold and we have a connection that in
addition also satisfies (3) and (4), then we call it a Riemannian connection. As we
just saw, this connection is uniquely defined by these four properties and is given
implicitly through the formula

28 (VyX.,Z) = (Lxg) (Y.Z) + (dbx) (Y. 2)

Before proceeding we need to discuss how VyX depends on X and Y. Since VyX
is tensorial in Y, we see that the value of VyX at p € M depends only on Y/|,. But in
what way does it depend on X? Since X — VyX is a derivation, it is definitely not
tensorial in X. Therefore, we cannot expect (VyX) |, to depend only on X|, and Y/,
The next two lemmas explore how (VyX) |, depends on X.

Lemma 2.2.3. Let M be a manifold and V an affine connection on M. If p € M,
v € T,M, and X,Y are vector fields on M such that X = Y in a neighborhood
U>sp, then V,X = V,Y.
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Proof. Choose A : M — R suchthat A = 0on M — U and A = 1 in a neighborhood
of p. Then AX = AY on M. Thus at p

VoAX = A(p)VoX +dA(v) - X(p) = V, X
since dA|, = 0 and A(p) = 1. In particular,
V,X = V,AX = V,AY =V, Y.

|

For a Riemannian connection we could also have used the Koszul formula to
prove this since the right-hand side of that formula can be localized. This lemma tells
us an important thing. Namely, if a vector field X is defined only on an open subset
of M, then VX still makes sense on this subset. Therefore, we can use coordinate
vector fields or more generally frames to compute V locally.

Lemma 2.2.4. Let M be a manifold and V an affine connection on M. If X is a
vector field on M and c : I — M a smooth curve with ¢(0) = v € T,M, then V,X
depends only on the values of X along c, i.e.,if Xoc =Y oc, then V.X = VY.

Proof. Choose a frame E|, ..., E, in a neighborhood of p and write Y = ) YE;,
X = Y X'E; on this neighborhood. From the assumption that X o ¢ = ¥ o ¢ we get
that X! o ¢ = Y! o ¢. Thus,

V.Y =V, (YE)
= Y'(p)VuE; + Ei(p)dY'(v)

= X'(p)V,Ei + Ei(p)dX'(v)
= V,X.

|

This shows that V, X makes sense as long as X is prescribed along some curve
(or submanifold) that has v as a tangent.

It will occasionally be convenient to use coordinates or orthonormal frames with
certain nice properties. We say that a coordinate system is normal at p if g;|, = §;;
and 0xg;j|, = 0. An orthonormal frame E; is normal at p € M if V,E;(p) = 0 for all
i=1,...,nand v € T,M. Itis not hard to show that such coordinates and frames
always exist (see exercises 2.5.20 and 2.5.19).
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2.2.2 Covariant Derivatives of Tensors

The connection, as we shall see, is also useful in generalizing many of the
well-known concepts (such as Hessian, Laplacian, divergence) from multivariable
calculus to the Riemannian setting (see also section 2.1.3).

If S is a (s, )-tensor field, then we can define a covariant derivative VS that we
interpret as an (s, ¢ + 1)-tensor field. Recall that a vector field X is a (1, 0)-tensor
field and VX is a (1, 1)-tensor field. The main idea is to make sure that Leibniz’ rule
holds. So for a (1, 1)-tensor S we should have

Vx (8(Y)) = (VxS)(Y) + S(VxY).
Therefore, it seems reasonable to define VS as
VS(X.Y) = (VxS)(Y)
= Vx (8(Y)) = S(VxY).
In other words
VxS = [Vx, S].

It is easily checked that VxS is still tensorial in Y.
More generally, when s = 0, 1 we obtain

VS(X.Yy.....Y,) = (VxS)(Y.....Y,)

= Vx(S(V1.....Y) = > _S(Y1..... VxYi....Y,).

i=1

Here Vy is interpreted as the directional derivative when applied to a function and
covariant differentiation on vector fields. This also makes sense when s > 2, if we
make sense of defining covariant derivatives of, say, tensor products of vector fields.
This can also be done using the product rule:

Vx (X1 ® X2) = (VxX1) ® Xo + X1 ® (VxX3).

A tensor is said to be parallel if VS = 0. In Euclidean space one can easily show
that if a tensor is written in Cartesian coordinates, then it is parallel if and only if it
has constant coefficients. Thus VX = 0 for constant vector fields. On a Riemannian
manifold (M, g) the metric and volume forms are always parallel.
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Proposition 2.2.5. On a Riemannian n-manifold (M, g)

Vg =0,
Vvol = 0.

Proof. The metric is parallel due to property (4):
(Ve)(X. Y1, Y2) = Vx (g(11. Y2)) — g(VxY1, Y2) — g(Y1, VxY2) = 0.

To check that the volume form is parallel we evaluate the covariant derivative on an
orthonormal frame Ey, ..., E,:

(Vxvol) (Ey,...,E,)

VxVOI(El,...,En)
—ZVOl(El,...,Vin,...,En)
= —Zg(Ei, VxEi)

1
==, Y Dx(3(Ei, E))
=0.

|

The covariant derivative gives us a different way of calculating the Hessian of a
function.

Proposition 2.2.6. Iff : (M,g) — R, then
(Vxdf) (Y) = g (VxVf.Y) = Hessf (X.Y).
Proof. First observe that

(Vdf) (X, Y) = (Vxdf) (Y)
= DxDyf — df (VxY)
= DxDyf — Dv,yf.

This shows that

(Vxdf) (Y) — (Vydf) (X) = [Dx, Dy]f — Dix.yyf = 0.
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Thus (Vxdf) (Y) is symmetric. This can be used to establish the formulas

(Vdf) (X, Y) = (Vxdf) (Y)
= Dxg (Vf,Y) — g (Vf, VxY)
= ;g(VXVf, Y) + ;g(X, VyVf)

= (Vvrg) (X.Y) + ;g(Vfo, Y) + ;g(X, VyV£)

N

1 1 1
=, DvgX.Y) = g (Vf.X].Y) — g (X.[V/. Y])

= wg ).

2
0
2.2.2.1 The Adjoint of the Covariant Derivative
The adjoint to the covariant derivative on (s, f)-tensors with ¢ > 0 is defined as
(V*S) Xa..... X)) = =Y (VES) (Ei. Xa..... X)),
where Ei, ..., E, is an orthonormal frame. This means that while the covariant

derivative adds a variable, the adjoint eliminates one. The adjoint is related to the
divergence of a vector field (see section 2.1.3) by

Proposition 2.2.7. If X is a vector field and Ox the corresponding 1-form, then

divX = —V*ex

Proof. See section 2.1.3 for the definition of divergence. Select an orthonormal
frame E;, then

—V*6x = Y (VEbx) (E)
= ZDE"g X,E) — Zg (X, VE,E)
= Z g (Vg X, E))

=3 ) ()
= divX.
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The adjoint really is the adjoint of the covariant derivative with respect to the
integrated inner product.

Proposition 2.2.8. If S is a compactly supported (s, t)-tensor and T a compactly
supported (s,t + 1)-tensor, then

/g(VS, T)vol = /g(S,V*T) vol.

Proof. Define a 1-form by w (X) = g (ixT,S). To calculate its divergence more
easily, select an orthonormal frame E; such that V,E; = 0 forall v € T,M. To
further simplify things a bit assume that s = ¢ = 1, then

Vo = (Vgo) (E)
= Vi (T (Ei ), S (E)))
= ¢ (VuT (EiE), S (E)) + ¢ (T (B, E) , VES (E)))
=—g (V*T, S) +g(T,VS).

So the result follows by the divergence theorem or Stokes’ theorem:

/diVXvol = /dixvol =0,

where X is any compactly supported vector field. O

2.2.2.2 Exterior Derivatives

The covariant derivative gives us a very nice formula for exterior derivatives of
forms as the skew-symmetrized covariant derivative:

(do) (Xo.....X) = Y (1) (Vyo) (Xo, N S ,Xk) .

While the covariant derivative clearly depends on the metric this formula shows that
for forms we can still obtain derivatives that do not depend on the metric. It will
also allow us to define exterior derivatives of more complicated tensors. Suppose
we have a (1, k)-tensor T that is skew-symmetric in the k variables. Then we can
define the (1, k 4+ 1)-tensor

(@) Ko, X0 = 32 (=D (VD) (Xor o R Xe).

In case k = 0 the tensor T = Y is a vector field and we obtain the (1, 1)-tensor:

(@"Y) (X) = VyY.
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When k& = 1 we have a (1, 1)-tensor and obtain the (1, 2)-tensor:
(@¥T) (X,Y) = (VxT) (¥) = (VyT) (X)
=Vx(T () -Vy(T(X)-TI[X.,Y].

2.2.2.3 The Second Covariant Derivative

For a (s, 7)-tensor field S we define the second covariant derivative VS as the
(s, t + 2)-tensor field

(Vx5 (Y1.....Y) = (Vx, (VS) (X2.Y1,....Y))
= (VXl (VXZS)) (Y], R Yr) - (VVX1X2S) (Ylv cee YV) .

With this we obtain another definition for the (0,2) version of the Hessian of a
function:

Vi = VxVyf — Vyuf
— Vxdf (Y) —df (Vx¥)
= (Vxdf) (Y)
= Hessf (X,Y).

The second covariant derivative on functions is symmetric in X and Y. For more
general tensors, however, this will not be the case. The defect in the second covariant
derivative not being symmetric is a central feature in Riemannian geometry and is
at the heart of the difference between Euclidean geometry and all other Riemannian
geometries.

From the new formula for the Hessian we see that the Laplacian can be written as

Af ==V*Vf =Y Vi .f.
i=1

2.2.2.4 The Lie Derivative of the Covariant Derivative

We can define the Lie derivative of the connection in a way similar to the Lie
derivative of the Lie bracket
(LxV)yV = (LxV) (U, V)
= Lx (VyV) = Vi, oV — VylLxV
= [X,VyV] = VxyV - Vy[X,V].
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Since [U, V] = VyV — ViU it follows that
(LxV) (U,V) — (LxV) (V,U) = LxLyV = 0.

Moreover as ViV is tensorial in U the Lie derivative (Lx V), V will also be tensorial
in U. The fact that it is also symmetric shows that it is tensorial in both variables.

2.2.2.5 The Covariant Derivative of the Covariant Derivative
We can also define the covariant derivative of the covariant derivative
(VxV) yT = Vx (VyT) — VyyT — Vy (VxT).

Note however, that this is not tensorial in X!
It is related to the second covariant derivative of T by

ViyT = (VxV)yT + Vy (VxT).

2.3 Natural Derivations

We’ve seen that there are many natural derivations on tensors coming from various
combinations of derivatives. We shall attempt to tie these together in a natural
and completely algebraic fashion by using that all (1, 1)-tensors naturally act as
derivations on tensors.

For clarity we define a derivation on tensors as map 7 +— DT that preserves the
type of the tensor T'; is linear; commutes with contractions; and satisfies the product
rule

DT ®T,)=DT) T, + T DT,.

2.3.1 Endomorphisms as Derivations

The goal is to show that (1, 1)-tensors naturally act as derivations on the space of all
tensors.
We use the natural homomorphism

GL (V) — GL (T (V)),

where T (V) is the space of all tensors over the vector space V. This respects the
natural grading of tensors: The subspace of (s, f)-tensors is spanned by

VI® U ®Pr1 Q@ Py
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where vy,...,v; € Vand ¢1,...,¢; : V — R are linear functions. The natural
homomorphism acts as follows: for ¢ € R we have g-a = 0; for v € V we have
g-v=g(v);forp € V* we have g- ¢ = ¢ o g”'; and on general tensors

gW® QU Q- Q)
=g)® - ®gW)®(p1og ') ® - ®(¢og™).

The derivative of this action yields a linear map
End (V) — End (T (V)),

which for each L € End (V) induces a derivation on 7 (V). Specifically, if L €
End (V), then Lv = L (v) on vectors; on 1-forms Lp = —¢ o L; and on general
tensors
L ® - QuQ0¢ & ® ¢y)
=L(v)R® Qv QP R R ¢y
U@ QL) ®P1 @ Q¢
“V® QU R(P1oL)®-- Q¢

VI Q- QU P QR (hol).
As the natural derivation comes from an action that preserves symmetries of
tensors we immediately obtain.

Proposition 2.3.1. The linear map

End (V) — End (T (V))
L— LT

is a Lie algebra homomorphism that preserves symmetries of tensors.
We also need to show that it is a derivation.
Proposition 2.3.2. Any (1, 1)-tensor L defines a derivation on tensors.

Proof. Tt is easy to see from the definition that it is linear and satisfies the product
rule. So it remains to show that it commutes with contractions. Consider a (1, 1)-
tensor 7 and in a local frame X; with associated coframe ¢’ writeitas T = T;X,- ®o’.
The contraction of T is scalar valued and simply the trace of T so we know that
L (tr T) = 0. On the other hand we have
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LT =TLX)®0' —TX;®0' oL
= TILIX @ o — TILX; ® o
= TiLiX ® o' — T X, ® o
= (T;'Lff - T,{(Lj}) X ® o'
SO
tr(L(T)) = T{Lf — 'L}, = 0.

A similar strategy can be used for general tensors T;l‘;f where we trace or contract

over a fixed superscript and subscript. O

We also need to know how this derivation interacts with an inner product. The
inner product on 7' (V) is given by declaring

€, Q- RQe, Qe Q@@

an orthonormal basis when e, . . ., e, is an orthonormal basis for V and ¢!, ..., ¢"
the dual basis for V*.

Proposition 2.3.3. Assume V has an inner product:

(1) The adjoint of L : V. — V extends to become the adjoint for L : T (V) — T (V).
2) If L € so(V), ie., L is skew-adjoint, then L commutes with type change of
1ensors.

2.3.2 Derivatives

One can easily show that both the Lie derivative Ly and the covariant derivative
Vy act as derivations on tensors (see exercises 2.5.9 and 2.5.10). However, these
operations are nontrivial on functions. Therefore, they are not of the type we just
introduced above.

Proposition 2.3.4. If we think of VU as the (1, 1)-tensor X — VxU, then

Ly = Vy—(VU).

Proof. 1Tt suffices to check that this identity holds on vector fields and functions. On
functions it reduces to the definition of directional derivatives, on vectors from the
definition of Lie brackets and the torsion free property of the connection. O

This proposition indicates that one can make sense of the expression V7 U where
T is a tensor and U a vector field. It has in other places been named Ax 7, but as that
now generally has been accepted as the A-tensor for a Riemannian submersion we
have not adopted this notation.
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2.4 The Connection in Tensor Notation

In a local coordinate system the metric is written as g = gdx'dx/. So if X = X'0;
andY = ¥/ 0; are vector fields, then

g(X.Y) = gX'V.
We can also compute the dual 1-form 6y to X by:
9X =8 (Xv )
= gydx' (X)d¥' ()
= g X'dy.

The inverse of the matrix [g;] is denoted [g¥]. Thus we have

5; = gikgkj-
The vector field X dual to a 1-form @ = w;dx’ is defined implicitly by

gX, V) =w((@).
In other words we have
Ox = gyX'd¥Y = widx' = o.

This shows that

giX' = wj.

In order to isolate X we have to multiply by g% on both sides and also use the
symmetry of g;;
g0 = ggX’
= g¥g;iX'
= §X’
= x*.
Therefore,
X=X
= g’ja)jﬁi.

The gradient field of a function is a particularly important example of this
construction



66 2 Derivatives
Vf = g79;fd;.
df = 9;fdx’.
We proceed to find a formula for VyX in local coordinates
VyX = Vyig X'0;

= Y'V,,X'0;

=Y (3;X') 0; + Y'X'V;,0;

=Y (8,-Xf) aj + YinFl:l;ak,

where we simply expanded the term Vj,0; in local coordinates. The first part of
this formula is what we expect to get when using Cartesian coordinates in R”. The
second part is the correction term coming from having a more general coordinate
system and also a non-Euclidean metric. Our next goal is to find a formula for l"i’; in
terms of the metric. To this end we can simply use our defining implicit formula for
the connection keeping in mind that there are no Lie bracket terms. On the left-hand
side we have

28 (V,0). 91) = 2g (. 01)
= 2[gu,
and on the right-hand side
(L3;8) (8:, 01) + dba, (3i, 1) = djgu + 9; (B, (1)) — 01 (65 (9)))
= 0;gi + digji — igji-
Multiplying by g on both sides then yields
Iy = 2T48y

= 2T} gug™

= (3;gu + 9igy — dig;i) g™
Thus we have the formula

[‘i’]‘. = gk (ajgil + digjt — 1gji)

g (98 + digin — Digsi)

N = N =N =

gkl Fij,l )
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The symbols

1
Thkzz(@&k+3£w—a$ﬁ
=8 (Vaiaj’ ak)

are called the Christoffel symbols of the first kind, while 1"{; are the Christoffel
symbols of the second kind. Classically the following notation has also been used

k k
=T
i) =

[, k] = Tk
so as not to think that these things define a tensor. The reason why they are not
tensorial comes from the fact that they may be zero in one coordinate system but not

zero in another. A good example of this comes from the plane where the Christoffel
symbols vanish in Cartesian coordinates, but not in polar coordinates:

1
Log, = 5 (3¢ gor + O9gor — 0r800)

— 0 ()

= —r.

In fact, as is shown in exercise 2.5.20 it is always possible to find coordinates
around a point p € M such that

8iflp = by
akg,'jlp =0.
In particular,
gijlp = 8y,
ril, = 0.

In such coordinates the covariant derivative is computed exactly as in Euclidean
space

VyXlp = (Vyig, X'9;) I,
=Y (p) (3:X) 1,91 -
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The torsion free property of the connection is equivalent to saying that the
Christoffel symbols are symmetric in ij as

szl;ak = Vy0;
= V0
= T}0.

The metric property of the connection becomes

gy = g (Vs 0. 0;) + g (91, Vi, 9))
= Tuij + L.
This shows that the Christoffel symbols completely determine the derivatives of the
metric.
Just as the metric could be used to give a formula for the gradient in local

coordinates we can use the Christoffel symbols to get a local coordinate formula
for the Hessian of a function. This is done as follows

2Hessf (3;, 9;) = (Lvyg) (9. 9;)
= Dvygij — 8 (Lvs:. 9;) — g (9, Lvy0))
= ¢" () (digy)
+8 (Lo, (8" () 01) . 9y)
+8 (9i. Lo, (8 (8f) 81))
= (/) " (digy)
+0; (" (0f)
+3; (" (0f)
= (/) " (digy)
+ (3,04 &gy + (39u) &g
+ (3ig") Buf) gy + (9;8") (Onf) gt
= 20.0f
+ (f) ((9:8") g + (8;8") git + & (1g47)) -

) &y
) g

il
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To compute 9;¢* we note that
0= 3
= 0; (¢*gu)
= (0;8") gu + &* (digu) -
Thus we have
2Hessf (9;,0;) = 20;0;f
+ (0 ((3:8") g1 + (9;8") gir + " (1g3))
— 20.0f
+ () (—g"digy — 8981 + & (318y))
= 20,0,f — " (0igyy + 981 — 01857) Ouf
=2 (3,0 — Tj0if) -

Finally we mention yet another piece of notation that is often seen. Namely, if S
is a (1, k)-tensor written in a frame as:

§S=8 . E®oc' ®- - ®adk,

Jik

then the covariant derivative is a (1, k + 1)-tensor that can be written as

_ i L. J1 Jk Jk+1
VS—SJ1~-:ika+1 E®®d'®: - &®oc*® c/kt!.
The coefficient St . . canbe computed via the formula
J1 Tk Jk+1

VEl'k+1 §= DEjk+1 (Sl'

J1ik

) E®d ® & d

+5!

e VEjk+1 (E, RIVI®-® O—]k) ,

where one must find the expression for

VEjk+l (Ei ®o' @ ® ajk) = (VE'

k41

Ei)®0jl R ® o

+E ® (VEfkﬂojl) R - Q ok

+E®0" @ ® (Vg o)
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by writing each of the terms (VEjk-H E,-) , (VEjk-H ol 1) e, (VEijrl O'jk) in terms of
the frame and coframe and substitute back into the formula.

This notation, however, is at odds with the idea that the covariant derivative
variable should come first as the notation forces its index to be last. A better index
notation. often used in physics, is to write

VS = VE_/.OS
and let

v, S

Jik

= (V9);

0k

This notation is also explored in exercise 2.5.34. This will also be our convention
when using indices for the curvature tensor.

2.5 Exercises

EXERCISE 2.5.1. Show that the connection on Euclidean space is the only affine
connection such that VX = 0 for all constant vector fields X.

EXERCISE 2.5.2. Show that the skew-symmetry property [X, Y] = —[Y, X] does
not necessarily hold for C! vector fields. Show that the Jacobi identity holds for C?
vector fields.

EXERCISE 2.5.3. Let V be an affine connection on a manifold. Show that the
torsion tensor

T(X,Y) = VxY — VyX — [X, Y]

defines a (2, 1)-tensor.

EXERCISE 2.5.4. Show that if ¢ : I — M has nonzero speed at fy € I, then there is
a vector X such that X|.) = ¢ (¢) for ¢ near f.

EXERCISE 2.5.5. Let (M, g) be a Riemannian manifold, f, 4 functions on M, and X
a vector field on M. Show that
div (fX) = Dxf + fdivX,
A (fh) = hAf + fAh + 2g (Vf,Vh),
Hess (fh) = hHessf + f Hess h + dfdh + dhdf .
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EXERCISE 2.5.6. Let (M, g) be a Riemannian manifold, f a function on M, and ¢ a
function on R. Show that

A () = ¢ () A+ ¢ () dfI,
Hess (¢ (f)) = ¢ (f) Hessf + ¢ (f) df*.

EXERCISE 2.5.7. Let (M, g) be a Riemannian manifold, X a vector field on M, and
Ox the dual 1-form. Show that dfx (Y,Z) = g (VyX,Z) — g (Y, VzX).

EXERCISE 2.5.8. The metric in coordinates satisfies:

(1) 0,87 = g*d,gug’.
(2) 0,7 = =" — &'Ty,.

EXERCISE 2.5.9. Let X be a vector field.

(1) Show that for any (1, 1)-tensor S
tr (VxS) = VtrS.
(2) Let T(Y,Z) = g (S(Y).Z). Show that
(VxT) (Y. Z) = g ((VxS) (Y) . 2Z) .

(3) Show more generally that contraction and covariant differentiation commute.
(4) Finally show that type change and covariant differentiation commute.
EXERCISE 2.5.10. Let X be a vector field.

(1) Show that for any (1, 1)-tensor §
tr (LxS) = LxtrS.
(2) Let T (Y.Z) = g(S(Y),Z). Show that
(LxT) (Y. Z) = (Lxg) (S(Y) . Z) + g (LxS) (Y., Z)) .

(3) Show that contraction and Lie differentiation commute.

EXERCISE 2.5.11. Show that a vector field X on a Riemannian manifold is locally
a gradient field if and only if Z — VX is self-adjoint.

EXERCISE 2.5.12. If F : M — M is a diffeomorphism, then the push-forward of a
vector field is defined as

(F«X)|p = DF (X|F71(,,)) .
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Let F be an isometry on (M, g) .

(1) Show that Fx (VxY) = Vg, xF,Y for all vector fields.

(2) Use this to show that isometries on (R”, gg) are of the form F (x) = Ox + b,
where O € O (n) and b € R". Hint: Show that F' maps constant vector fields to
constant vector fields.

EXERCISE 2.5.13. A vector field X is said to be affine if LyV = 0.

(1) Show that Killing fields are affine. Hint: The flow of X preserves the metric.
(2) Give an example of an affine field on R" which is not a Killing field.

EXERCISE 2.5.14. Let G be a Lie group. Show that there is a unique affine
connection such that VX = 0 for all left-invariant vector fields. Show that this
connection is torsion free if and only if the Lie algebra is Abelian.

EXERCISE 2.5.15. Show that the Hessian of a composition ¢ (f) is given by

Hess ¢ (f) = ¢"df> + ¢’ Hessf.

EXERCISE 2.5.16. Consider a vector field X and a (1, 1)-tensor L.

(1) Show that Ly + L defines a derivation on tensors.

(2) Show that all derivations are of this form and that X is unique.

(3) Show that derivations are uniquely determined by how they act on functions
and vector fields.

(4) Show that Lyy = fLx — X ® df, where X ® df is the rank 1 (1, 1)-tensor ¥ +—
Xdf (Y).

EXERCISE 2.5.17. Show that if X is a vector field of constant length on a Rieman-
nian manifold, then V, X is always perpendicular to X.

EXERCISE 2.5.18. Show that if we have a tensor field 7" on a Riemannian manifold
(M, g) that vanishes at p € M, then for any vector field X we have LyT = VxT at p.
Conclude that the (1, 1) version of the Hessian of a function is independent of the
metric at a critical point. Can you find an interpretation of LxT at p?

EXERCISE 2.5.19. For any p € (M, g) and orthonormal basis ey, ..., e, for T,M,
show that there is an orthonormal frame E;,...,E,ina neighb(zrhood of p such that
E; = ¢; and (VE;) |, = 0. Hint: Fix an orthonormal frame E; near p € M with

E; (p) = e;. If we define E; = ocfl_fj where [ozf (x)] € SO (n) and ozf ) = 8f then

this will yield the desired frame provided that the directional derivatives Deko&l’: are
appropriately prescribed at p.

EXERCISE 2.5.20. Show that there are coordinates x!, . .., x" such that 9; = ¢; and
Vd; = 0 at p. These conditions imply that the metric coefficients satisfy g; = §;
and dxg;; = 0 at p. Such coordinates are called normal coordinates at p. Hint: Given
a general set of coordinates y' around p with y' (p) = 0, let X' = o (y) Y/, adjust
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. . O .
«; (0) to make the fields orthonormal at p, and adjust aji (0) to make the covariant
derivatives vanish at p.

EXERCISE 2.5.21. Consider coordinates x' and X* around p € M. Show that the
Christoffel symbols of a metric g in these two charts are related by
- % 0xk xS ox' Xk,
= e + A .
Vo oxiox dxs  Oxi 0w oxl
0%x" o= 0x 0 ox
ooy Yok oxiow
and
P 02 ox' 4 ox* dx' ox!
T oo axk S T ox o ok

EXERCISE 2.5.22. Let M be an n-dimensional submanifold of R"*™" with the
induced metric. Further assume that we have a local coordinate system given by a

parametrizationu® (x', ..., x") ,s = 1,...,n+m. Show that in these coordinates:
(D
_ S du
87 L i g
(2)

o P

Tiix = .
ik po ox* dxiox

EXERCISE 2.5.23. Let (M, g) be an oriented manifold.

(1) Show thatif vy,..., v, is positively oriented, then

vol (vy,...,v,) = \/det (g (vi, vj)).

(2) Show that in positively oriented coordinates,

vol = \/det (gy)dx" A+ A ax".
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(3) Conclude that the Laplacian has the formula
1
Au = Ok (\/det (g,;j)gklalu) .
\/ det (gy)

Given that the coordinates are normal at p we get as in Euclidean space that
n
Af (p) =) 3.
i=1

EXERCISE 2.5.24. Show thatifa (0, 2)-tensor 7 is given by Ty, then VT is given by

0Ty i ;
(VD) = P Uy Ty — T T

Similarly, when a (1, 1)-tensor T is given by T¥, then VT is given by

v OTf ik ki
(VT); = P U, + TGT.

EXERCISE 2.5.25. Let F : (M, gy) % (1\_/1, gM) be an isometric immersion. For
two vector fields X, Y tangent to M we can compute both V¥Y and V¥Y. Show

that the component of V@ Y that is tangent to M is V4'Y. Show that the normal
component

Viy —vMy = Tyy

is symmetric in X, ¥ and use that to show that it is tensorial.

EXERCISE 2.5.26. LetF: (M, gm) & (A_/I, gM) be an isometric immersion and
T*M = {veT,M|peMandv L T,M}

the normal bundle. A vector field V : M — TM such that V, € TIf-M is called a
normal field along M. For a vector field X and normal field V show that

(1) The covariant derivative Vf? V can be defined.
(2) Decompose V¥V into normal V)J(-V and tangential TxV components:

VIV = ViV 4 TxV.
ViV is called the normal derivative of V along M. Show that

gt TxY,V) = —gu (Y, TxV) .



2.5 Exercises 75

(3) Show that V)J{V is linear and a derivation in the V variable and tensorial in the
X variable.

EXERCISE 2.5.27. Let (M, g) be a oriented Riemannian manifold.

(1) If f has compact support, then

/ Af -vol = 0.
M

(2) Show that
div (f-X) = g (V/.X) +f - divX.
(3) Show that

A(fi-f2) = (Af) -2 + 28 (Vi V) + fi- (Af) .

(4) Establish Green’s formula for functions with compact support:

/.fl'AfZ'dWl: —/ ¢ (V. V) vol
M M

(5) Conclude that if f is subharmonic or superharmonic (i.e., Af > 0 or Af < 0),
then f is constant. (Hint: first show Af = 0; then use integration by parts on
f - Af.) This result is known as the weak maximum principle. More generally,
one can show that any subharmonic (respectively superharmonic) function that
has a global maximum (respectively minimum) must be constant. For this one
does not need f to have compact support. This result is usually referred to as the
strong maximum principle.

EXERCISE 2.5.28. A vector field and its corresponding flow is said to be incom-
pressible if divX = 0.

(1) Show that X is incompressible if and only if the local flows it generates are
volume preserving (i.e., leave the Riemannian volume form invariant).

(2) Let X be a unit vector field on R%. Show that VX = 0 if X is incompressible.

(3) Find a unit vector field X on R? that is incompressible but where VX # 0.

EXERCISE 2.5.29. Let X be a unit vector field on (M, g) such that VxX = 0.

(1) Show that X is locally the gradient of a function if and only if the orthogonal
distribution is integrable.

(2) Show that the orthogonal distribution is integrable in a neighborhood of p € M
if it has an integral submanifold through p. Hint: It might help to show that
Lx6x = 0.

(3) Find X with the given conditions so that it is not a gradient field. Hint:
Consider S°.
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EXERCISE 2.5.30. Suppose we have two distributions £ and F on (M, g), that
are orthogonal complements of each other in 7M. In addition, assume that the
distributions are parallel i.e., if two vector fields X and Y are tangent to, say, E,
then VxY is also tangent to E.

(1) Show that the distributions are integrable.

(2) Show that around any point p € M there is a product neighborhood U = Vg xVp
such that (U,g) = (Vg x Vi, glv, + glv,), where Vg and Vg are the integral
submanifolds through p.

EXERCISE 2.5.31. Let X be a parallel vector field on (M, g). Show that X has
constant length. Show that X generates parallel distributions, one that contains X and
the other that is the orthogonal complement to X. Conclude that locally the metric
is a product with an interval (U, g) = (V x1,glv+ dtz), where V is a submanifold
perpendicular to X.

EXERCISE 2.5.32. If we have two tensors S, T of the same type show that
Dxg(S.T) =g (VxS.T) + g (S. VxT).

EXERCISE 2.5.33. Recall that complex manifolds have complex tangent spaces.
Thus we can multiply vectors by i. As a generalization of this we can define an
almost complex structure. This is a (1, 1)-tensor J such that J> = —I. A Hermitian
structure on a Riemannian manifold (M, g) is an almost complex structure J such
that g (J(X),J(Y)) = g(X,Y). The Kdhler form of a Hermitian structure is
o X,Y)=¢g(J(X),Y).

(1) Show that the Nijenhuis tensor:
NX.Y)=VX).JD]-J([JX).YD)-J(X.J (V)] - [X.Y]

is a tensor.

(2) Show that if J comes from a complex structure, then N = 0. The converse is
the famous theorem of Newlander and Nirenberg.

(3) Show that w is a 2-form.

(4) Show thatdw = 0if VJ = 0.

(5) Conversely show that if dw = 0 and J is a complex structure, then VJ = 0.
In this case we call the metric a Kidhler metric.

EXERCISE 2.5.34. Define V,T as the covariant derivative in the direction of the
i" coordinate vector field and VIT = g¥ V;T as the corresponding type changed
tensor.

(1) For a function f show that df = Vifdx' and Vf = V'f0;.
(2) For a vector field X show that (V;X)' = divX.

(3) For a (0, 2)-tensor T show that (ViT)ij = —(V*7);.



Chapter 3
Curvature

The idea of a Riemannian metric having curvature, while intuitively appealing and
natural, is also often the stumbling block for further progress into the realm of
geometry. The most elementary way of defining curvature is to set it up as an
integrability condition. This indicates that when it vanishes it should be possible
to solve certain differential equations, e.g., that the metric is Euclidean. This was in
fact one of Riemann’s key insights.

As we shall observe here and later in sections 5.1 and 6.1.2 one can often take
two derivatives (such as in the Hessian) and have them commute in a suitable sense,
but taking more derivatives becomes somewhat more difficult to understand. This
is what is behind the abstract definitions below and is also related to integrability
conditions.

We shall also try to justify curvature on more geometric grounds. The idea is
to create what we call the fundamental equations of Riemannian geometry. These
equations relate curvature to the Hessian of certain geometrically defined functions
(Riemannian submersions onto intervals). These formulas hold all the information
that is needed for computing curvatures in many examples and also for studying
how curvature influences the metric.

Much of what we do in this chapter carries over to the pseudo-Riemannian
setting. The connection and curvature tensor are generalized without changes. But
formulas that involve contractions do need modification (see exercise 1.6.10).

3.1 Curvature

We introduced in the previous chapter the idea of covariant derivatives of tensors and
explained their relation to the classical concepts of gradient, Hessian, and Laplacian.
However, the Riemannian metric is parallel and consequently has no meaningful
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derivatives. Instead, we think of the connection itself as a sort of gradient of the
metric. The next question then is, what should the Laplacian and Hessian be? The
answer is, curvature.

Any affine connection on a manifold gives rise to a curvature tensor. This
operator measures in some sense how far away the connection is from being our
standard connection on R”, which we assume is our canonical curvature-free, or
flat, space. On a (pseudo-)Riemannian manifold it is also possible to take traces of
this curvature operator to obtain various averaged curvatures.

3.1.1 The Curvature Tensor

We shall work exclusively in the Riemannian setting. So let (M, g) be a Riemannian
manifold and V the Riemannian connection. The curvature tensor is the (1, 3)-tensor
defined by

RX.Y)Z = V3 ,Z—V;,Z
= VxWyZ — VyVxZ — Vix y|Z

= [Vx,VWy]Z - VixyZ.

on vector fields X, Y, Z. The first line in the definition is also called the Ricci identity
and is often written as

RxyZ = VyyZ—Vy4Z.
This also allows us to define the curvature of tensors
R(X,Y)T = RxyT = Vg, T — Vi ,T.

Of course, it needs to be proved that this is indeed a tensor. Since both of the
second covariant derivatives are tensorial in X and Y, we need only check that R is
tensorial in Z. This is easily done:

RX.NfZ = Vi (f2) = Vix (2)
=fV%y (2) = fVix (2)
+ (Vi) Z = (Vixf) Z
+ (Vyf) VxZ + (Vxf) VyZ
— (Vxf) VvZ — (Vyf) VxZ
=f(Viy (@) - Vix (2)
=fRX,Y)Z.
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Observe that X, Y appear skew-symmetrically in R(X,Y)Z = RxyZ, while Z
plays its own role on top of the line, hence the unusual notation.

In relation to derivations as explained in section 2.3 note that Rxy acts as a
derivation on tensors. Moreover, as the Hessian of a function is symmetric Vf“,f =
V%,,Xf it follows that Ry y acts trivially on functions. This is the content of the Ricci
identity

V)%,Y - Vlz’X = RX.,Y =R (Xv Y) s

where on the right-hand side we think of R (X, Y) as a (1, 1)-tensor acting on tensors.
As an example note that when 7 is a (0, k)-tensor then

RxyT) Xi,.... X)) =RX,NT) X1,...,Xp)

~TRX.V)X1,....Xp)

—TX,...,RX,V)Xy).
Using the metric g we can change R to a (0, 4)-tensor as follows:
RX,Y,Z,W) =g(R(X,Y)Z,W).

We justify next why the variables are treated on a more equal footing in this formula
by showing several important symmetry properties.

Proposition 3.1.1. The Riemannian curvature tensor R(X,Y,Z, W) satisfies the
following properties:

(1) R is skew-symmetric in the first two and last two entries:
RX,Y,Z,W)=—R(Y,X,Z, W) =R(Y,X,W,Z).
(2) R is symmetric between the first two and last two entries:
RX,Y,Z,W) =R(Z,W,X,Y).
(3) R satisfies a cyclic permutation property called Bianchi’s first identity:
RX,Y)Z+R(Z,X)Y + R(Y,Z)X = 0.
(4) VR satisfies a cyclic permutation property called Bianchi’s second identity:

(VzR)xy W+ (VxR)y z W + (VyR),x W = 0
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or
(VZR) (X, Y) W + (VxR) (Y.Z) W + (VyR) (Z,X) W = 0.

Proof. The first part of (1) has already been established. For part two of (1) use that
[X, Y] is the vector field defined implicitly by

Dnyf - Dnyf - D[Xylf == 0

In other words, R(X, Y)f = 0. This is the idea behind the calculations that follow:
1
0= RX,YZg Z.2)

1 1 1
= 2DXDYg(Z Z) - ZDYDXg(Zv Z) - ZD[X,Y]g(Z» Z)
= Dxg(VyZ,Z) — Dyg(VxZ.Z) — g(Vx v Z,Z)
= g(VxVyZ.2) — g(VyVxZ,Z) — ¢(Vix | Z. Z)
+8(VxZ,VyZ) — g(VxZ, VyZ)
=g(V3yZ.2) — g (VixZ.2)
—R(X.Y.Z,7).

Now (1) follows by polarizing the identity R (X,Y,Z,Z) = 0in Z:

0=RX,Y,Z+W,Z+ W)
=RX,Y,Z,Z)+ R(X,Y,W,W)
+RX,Y,Z,W)+R(X,Y,W,2Z).
Part (3) relies on the torsion free property and the definitions from section 2.2.2.4
to first show that
(LxV)y Z = Lx (VyZ) — ViwwZ — VyLxZ
= VxVyZ — Vy,wZ — VyVxZ
—Vy,z2X + Vy,xZ + VyVzX
= RxyZ + Vi ,X.
The Jacobi identity (see proposition 2.1.6) followed by the torsion free property and
the Ricci identity then show that
0= (LxL), Z
= (LxV)yZ—(LxV)z Y
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= RxyZ + Vy ;X — RxzY — V; X
= RxyZ + RzxY + Ry zX.
Part (2) is a direct combinatorial consequence of (1) and (3):
RX,Y,Z,W)=—-R(ZX,Y,W)—R(Y,Z,X,W)
=RZX,W,Y)+R(Y,Z,W,X)
=—RW,Z,X,Y)—R(X,W,Z,Y)
—RW,Y,Z,X)—R(Z,W,Y,X)
=2RZ, W, X,Y)+ RX,W.Y,Z)+ R(W,Y,X,Z)
=2R(Z,W,X,Y)—R(Y,X,W,2Z)
=2R(Z,W,X,Y)—R(X,Y,Z, W),

which implies 2R (X, Y,Z, W) = 2R (Z, W, X,Y).
Part (4) follows from the claim that

(VxR)y, W = V)S(,Y,ZW - V;(,Z,YW - V13’,2.)(W + Vé,y,xw + VeyxW.
To see this simply add over the cyclic permutations of X, Y, Z:
(VxR)yz W+ (VzR)x y W + (VyR); x W
= V;(,Y,ZW - V;(,Z,YW - V13’,2.)(W + Vé,y,xw + Ve xW
+ V%,X,YW - V%,Y,XW - V)S(,Y,ZW + V;”,X,ZW + VreyzW
+ Vi%',z,xw - Vi%',x,zW - Vé,x,YW + V)S(,Z,YW + VRz.xYW

= Ve yz4Ryxv+Ry ,xW

=0.

The claim can be proven directly but also follows from the two different iterated
Ricci identities for taking three derivatives:

Vv oW —V3 W =RxyVzW — Vg, ,zW
and
V;(,Y,ZW - V)?},Z,YW = (VxR)yz W + Ry zVxW.

These follow from the various ways one can iterate covariant derivatives (see
sections 2.2.2.3 and 2.2.2.5):
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ViyzW = Viy (V2W) - Vyz W
and
VirzW =Vx (V?),, W+ Vi, (VxW)

and then using the Ricci identity. O

Example 3.1.2. (R", gr) has R = 0 since V3,0; = 0 for the standard Cartesian
coordinates.

From the curvature tensor R we can derive several different curvature concepts.

3.1.2 The Curvature Operator

First recall that we have the space A2TM of bivectors. A decomposable bivector
v A w can be thought of as the oriented parallelogram spanned by v, w. If ¢; is
an orthonormal basis for 7,M, then the inner product on A2T,,M is such that the
bivectors e; A ¢;, i < j will form an orthonormal basis. The inner product that A’TM
inherits in this way is also denoted by g. Note that this inner product on A2T,,M has
the property that

gxny,vAw) =gxv)gl,w) —glxw g(,v)

(e glnw)
_det(g(y,wg(y,w))'

It is also useful to interpret bivectors as skew symmetric maps. This is done via the
formula:

(xAY) (V) =g, v)y—g(,v)x

This represents a skew-symmetric transformation in span {v, w} which is a counter-
clockwise 90° rotation when v, w are orthonormal. (We could have used a clockwise
rotation as that will in fact work more naturally with our version of the curvature
tensor.) Note that

gAYy VAW =g v)g(y.w) —g(t.w)g(y.v) = g((xAy) (v),w).
These operators satisfy a Jacobi-Bianchi type identity:

xAY@+ AKX+ (@Ax) () =0.
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From the symmetry properties of the curvature tensor it follows that R defines a
symmetric bilinear map

R: A’TM x A’TM — R
R(in/\Yi,Z\/j/\VVj) = > R(X.Y. W, V).

Note the reversal of V and W! The relation
g(ROSXAY). ViAW) = YR (X ¥ W V)

consequently defines a self-adjoint operator R : A’TM — A2TM. This operator
is called the curvature operator. It is evidently just a different manifestation of the
curvature tensor. The switch between V and W is related to our definition of the next
curvature concept.

3.1.3 Sectional Curvature

For any v € T,M let
Ry(w) = Rw,v)v: T,M — T,M

be the directional curvature operator. This operator is also known as the tidal
force operator. The latter name describes in physical (general relativity) terms the
meaning of the tensor. As we shall see, this is the part of the curvature tensor that
directly relates to the metric. The above symmetry properties of R imply that this
operator is self-adjoint and that v is always a zero-eigenvector. The normalized
biquadratic form

g(Ry(w), w)
g, v)g(w, w) — g(v, w)?
_ gR(w,v)v,w)
o gwAw VAW

sec(v,w) =

is called the sectional curvature of (v,w). Since the denominator is the square
of the area of the parallelogram {rv + sw | 0 < f,s < 1} it is easy to check
that sec(v, w) depends only on the plane w = span{v, w}. One of the important
relationships between directional and sectional curvature is the following algebraic
result by Riemann.
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Proposition 3.1.3 (Riemann, 1854). The following properties are equivalent:

(1) sec(mw) = k for all 2-planes in T,M.

(2) R(vi,v2)vz = —k (v1 A v2) (v3) for all vi, v, v3 € T,M.

3) Ry(w) =k-(w—g(w,v)v) =k-pr,.(w) forallw € T,M and |v| = 1.
4) R(w) =k-oforallw € N*T,M.

Proof. (2) = (3) = (1) are easy. For (1) = (2) we introduce the multilinear maps
on T,M:

—k (vi A vy) (v3),

Ry (vi, v2,v3,v4) = —kg ((vi A v2) (v3),Vs)

Ri(v1, v2)v3

kg (v1 A V2,04 A V3).

The first observation is that these maps behave exactly like the curvature tensor in
that they satisfy properties (1), (2), and (3) of proposition 3.1.1. Now consider the
difference between the curvature tensor and this curvature-like tensor

D (v1,v2,3,04) = R (v1, 02,03, V4) — R (v1, V2, V3, 04) .

Properties (1), (2), and (3) from proposition 3.1.1 carry over to this difference tensor.
Moreover, the assumption that sec = k implies

D (v,w,w,v) =0
for all v, w € T,M. Using polarization w = w; + w; we get

0=D,wi +wa,wi +wa,v)
= D(Us wi, Wa, U) + D(U7W27le U)
= 2D (U, wi, wWa, U)
= —=2D (v,w;,v,w7).
Using properties (1) and (2) from proposition 3.1.1 it follows that D is alternating in
all four variables. That, however, is in violation of Bianchi’s first identity (property
(3) from proposition 3.1.1) unless D = 0. This finishes the implication (see also
exercise 3.4.29 for two other strategies.)
To see why (2) = (4), choose an orthonormal basis e; for T,M; then e; Ae;, i < j,
is a basis for AszM . Using (2) it follows that
g (9‘{ (ei A ej) ,er A\ es) = R(e;, ¢j, e5, ¢;)
= k- (g(ej e5)g(ei e) — glei, e5)g(ej, e))
= k-g(ei/\ej,e,/\ex).
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But this implies that
i)‘{(e,-Aej) =k- (e,-Aej).
For (4) = (1) just observe that if {v, w} are orthogonal unit vectors, then
k=g(R@wAwW),vAw) =sec(v,w).

|

A Riemannian manifold (M, g) that satisfies either of these four conditions for
all p € M and the same k € R for all p € M is said to have constant curvature k.
So far we only know that (R", grn) has curvature zero. In sections 4.2.1 and 4.2.3
we shall prove that the space forms S} as described in example 1.4.6 have constant
curvature k.

3.1.4 Ricci Curvature

Our next curvature is the Ricci curvature, which can be thought of as the Laplacian
of g.

The Ricci curvature Ric is a trace or contraction of R. If ey, ..., e, € T,M is an
orthonormal basis, then

Ric(v,w) = tr (x = R (x,v) w)

=Y gR(ev)w,e)
i=1

=Y gR@.e)enw)

i=1
= Zg(R (ei,w)v,e).
i=1

Thus Ric is a symmetric bilinear form. It could also be defined as the symmetric
(1, 1)-tensor

Ric(v) = ZR (v, €)e;.
i=1

We adopt the language that Ric > k if all eigenvalues of Ric(v) are > k. In (0, 2)
language this means that Ric (v,v) > kg (v,v) for all v. When (M, g) satisfies
Ric(v) = k- v, or equivalently Ric(v, w) = k- g(v, w), then (M, g) is said to be an
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Einstein manifold with Einstein constant k. If (M, g) has constant curvature k, then
(M, g) is also Einstein with Einstein constant (n — 1)k.

In chapter 4 we shall exhibit several interesting Einstein metrics that do not have
constant curvature. Three basic types are

(1) The product metric S"(1) xS"(1) with Einstein constant n— 1 (see section 4.2.2).

(2) The Fubini-Study metric on CP" with Einstein constant 2n + 2 (see sec-
tion 4.5.3).

(3) The generalized Schwarzschild metric on R2 x §" 2 n > 4, which is a doubly
warped product metric: dr? + ¢(r)d6* + p?(r)ds>_, with Einstein constant 0
(see section 4.2.5).

If v € T,M is a unit vector and we complete it to an orthonormal basis {v, e, ..., e,}
for T,M, then

Ric (v,v) = g(R(v,v)v,v) + Zg(R (ei,v)v,€) = Zsec (v,e).

i=2 i=2

Thus, when n = 2, there is no difference from an informational point of view
in knowing R or Ric. This is actually also true in dimension n = 3, because if
{e1, ez, e3} is an orthonormal basis for T,M, then

sec (e1, e2) + sec (e1, e3) = Ric (e, e1),

sec (e1, e2) + sec (e2, e3) = Ric (ez, €2),

sec (e1, e3) + sec (e2, e3) = Ric (e3, €3) .

In other words:

101 sec (61,62) Ric (el,el)
110 sec (62, 63) = | Ric (62, 62)
011 Nv& (6‘1 s 63) Ric (6‘3, 63)
As the matrix has det = 2 any sectional curvature can be computed from Ric.

In particular, we see that (M3, g) is Einstein if and only if (M3, g) has constant
sectional curvature. Therefore, the search for Einstein metrics that do not have
constant curvature naturally begins in dimension 4.

3.1.5 Scalar Curvature

The last curvature quantity we define here is the scalar curvature:

scal = tr (Ric) = 2 - trfR.
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Notice that scal depends only on p € M, so we obtain a function scal : M — R.
In an orthonormal basis ey, ..., e, for T,M it can be calculated from the curvature
tensor in several ways:

scal = tr (Ric)

- igauc (€).<)
=33 e (Rlene)ene)

j=1i=1

= Z @L/\Ej Ei/\Ej)

ij=1

—ZZg el/\ej ei/\ej)

i<j

= 2tr’R

=2 Z sec (e, ) .

i<j

When n = 2 it follows that scal(p) = 2 - sec(T,M). In section 4.2.3 we exhibit
examples of scalar flat metrics that are not Ricci flat when n > 3. There is also
another interesting phenomenon in dimensions > 3 related to scalar curvature.

Lemma 3.1.4 (Schur, 1886). Suppose that a Riemannian manifold (M,g) of
dimension n > 3 satisfies either one of the following two conditions for a function
f:M—-R

(1) sec(m) = f(p) for all 2-planes w C T,M, p € M,
(2) Ric(v) =(m—1)-f(p)-vforallveT,M, pecM.

Then f must be constant. In other words, the metric has constant curvature or is
Einstein, respectively.

Proof. It suffices to show (2), as the conditions for (1) imply that (2) holds. To show
(2) we need an important identity relating derivatives of the scalar curvature and the
(0, 2)-version of the Ricci tensor:

dscal = —2V* Ric.
Let us see how this implies (2). First note that

dscal = dtr (Ric)
=d@m-(n—1)-f)
=n-(n—1)-df.
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On the other hand using the definition of the adjoint from section 2.2.2; the product
rule; and Vg = 0 we obtain

—V*Ric (X) = (n— 1) (Vg () (Ei, X)
= (n—1) (Vef) g (Ei,X) + (n— 1) f (VEg) (Ei, X)
= (n—1)df (¢ (Ei.X) Ey)
=(n-1Ddf (X).

This shows that n-df = 2-df and consequently: n = 2 or df = 0 (i.e., f is constant).
O

Proposition 3.1.5 (The Contracted Bianchi Identify). On any Riemannian man-
ifold the scalar and Ricci curvature are related by

dir (Ric) = d'scal = —2V* Ric.

Proof. The identity is proved by a calculation that relies the second Bianchi
identity (property (4) from proposition 3.1.1). Using that contractions and covariant
differentiation commute (see exercise 2.5.9) we obtain

dscal (W) |, = Dyscal
- Z (VwR) (Ei, E}, E;, E;)
=—> (VgR) (W.Ei. E;. E;)
- Z (VER) (Ej, W, E}, E))
=2Y (VgR) (Ei. W.E}. E))
=2 (VgR) (E. Ei. E. W)
=235 (Ve Rie) (. W)
= —2 (V*Ric) (W) (p) .
O

Corollary 3.1.6. An n (> 2)-dimensional Riemannian manifold (M, g) is Einstein
if and only if

. scal
Ric = g.
n
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3.1.6 Curvature in Local Coordinates

As with the connection it is sometimes convenient to know what the curvature tensor
looks like in local coordinates. We first observe that when X = X'9;, Y = ¥/ 0;,
Z = ZF9y, then

R(X.Y)Z = X'VZ'R),

ar,
R};01 = R (3;, 9;) 0.

Using the definition of R we can calculate Rfjk in terms of the Christoffel symbols
(see section 2.4)

Rj; 01 = R (0:.9;) 0
= Vi, V0 — Vi, Vi, 0k
= Vi, (Tjds) — Vi, ()
=0, (I‘ﬁ() ds + I3V, 0
ENALE A
=9; (%) 9, — 3; (%) &
+T3 T} — Tj T,
= (8,Tj, — 8;T} + Ty, — T3T)) 0.
So
Ry = 9;Tj — ;T + T T =TT
Similarly we also have
Rij = 0iTjks — 0Tkt + 8" Ties Djte — 8" Tis Tt

These coordinate expression can also be used, in conjunction with the proper-
ties of the Christoffel symbols (see section 2.4), to prove all of the symmetry
properties of the curvature tensor.

The formula clearly simplifies if we are at a point p where I‘i"jl » =0

Rﬁjk |p = aiFjZk |p - ajrilk |p-
If we use the formulas for the Christoffel symbols in terms of the metric we

can create an expression for Rﬁjk that depends on the metric g; and its first two
derivatives.
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Remark 3.1.7. One often sees the following index notation for Ricci and scalar
curvature in the literature

Ric; = R;j = Ry, = ¢"'Ru.
scal =R = ginij.

The idea behind this notation is that these tensors are gotten by contracting indices
in the curvature tensor. In this case the full curvature tensor R is denoted Rm so that
it isn’t confused with scalar curvature.

Remark 3.1.8. Due to how we wrote the (0, 4) version of R we write
Riju = gaRjy = R (97, 97, 0. 9) -
Other conventions such as

A

Rijjic = gaRyy

are also used in the literature.

3.2 The Equations of Riemannian Geometry

In this section we will see that curvature comes up naturally in the investigation
of certain types of functions. This will lead us to a collection of formulas that
will facilitate the calculation of the curvature tensor of rotationally symmetric and
doubly warped product metrics (see section 4.2).

3.2.1 Curvature Equations

We start with the goal of calculating the curvatures on a Riemannian manifold using
various geometric concepts that relate to a specific smooth function f : M — R.
Often this function will only be smooth on an open subset O C M in which case we
just confine our attention to what happens on that subset.

The function has a gradient Vf and a Hessian Hess f. We shall also use S (X) =
VxVf for the (1, 1)-tensor that corresponds to Hessf and Hessf for the (0,2)-
tensor that corresponds to S = S o S.

The second fundamental form of a hypersurface H"™! C M" with a fixed unit
normal vector field N : H — T*H = {v € T,M | p € H, v L T,H} is defined
as the (0,2)-tensor II (X,Y) = g(VxN,Y) on H. Since X,Y,[X,Y] € TH are
perpendicular to N we have
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g(VxN.Y) = Dxg (N.Y) — g (N, VxY)
= —g (N, VxY)
= —g (N, VyX)

g (VyN.X).

This shows that II is symmetric. Note also that
g(VxN.N) = IDx N} = 0.

So we can also define II (X, Y) = g (VxN, Y) when X € TH, as VxN has no normal
component.

For the remainder of this section assume that f is given and that H C f~! (a)
is open and consists entirely of regular points for f. In this case H is clearly a
hypersurface. We start by relating the second fundamental form of H to f.

Proposition 3.2.1. The following properties hold:
(1) N= Igj:\ is a unit normal to H,

() T(X.Y) = g, Hessf (X.Y) for all X.Y € TH, and

(3) Hessf (Vf.X) = Dy |Vf|* forall X € TM.

Proof. (1) Clearly N = \g;l has unit length. It is perpendicular to H since Dxf = 0
for any vector field tangent to H.
(2) Using that choice of a normal vector tells us that when X, Y € TH:

vf
IIX,Y) = A% Y
*.1 g(XIVfI )

1 1
- VV,Y D V7Y
g(IVfI xVf )+g(X(IVfI) ! )

1
= ] Hessf (X, 7Y).

(3) Finally the symmetry of Hess f implies:
Hess/ (V/.X) = g (VvyV/. X) = g (Vx V. Vf) = }Dx [V/I*.

|

Our first fundamental equation is the calculation of what’s called the radial
curvatures.
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Theorem 3.2.2 (The Radial Curvature Equation). When H C f~! (a) consists of
regular points for f we have:

(VwrS) (X) + 8% (X) — Vx (S (V/)) = =R (X, Vf) Vf,

Vys Hessf + Hess? f — Hess (; |Vf|2) =—R(, V£, Vf,),
and

LvyHessf — Hess” f — Hess (é |Vf|2) =—R(, Vf,Vf,).

Proof. The first formula is a straightforward computation.
—Rvy (X) = =R (X, Vf) Vf
= VvV + VxS
= (Vx8) (Vf) + (VsS) (X)
=Vx (S (V) + Vouws VS + (VerS) (0
—Vx (S(Vf) + S (X) + (VvrS) (X).

The second formula follows by the definition of Hess? f; observing that the gradient
of é |Vf |2 is Vy;Vf; and that covariant differentiation commutes with type change
(see exercise 2.5.9):

(VnHessf) (X, Y) = g (VnS) (X).Y).

The final formula is a consequence of

(LvsHessf) (X, Y) = (VysHessf) (X.Y)
+ Hessf (VxVf,Y) + Hessf (X, VyVf)
= (VyyHessf) (X.Y) + 2Hess’f (X.Y) .

|

Remark 3.2.3. The last formula is particularly interesting as it shows how suitable
curvatures can be calculated using only gradients of functions and Lie derivatives,
i.e., covariant derivatives are not necessary.

The following two fundamental equations are also known as the Gauss equa-
tions and Peterson-Codazzi-Mainardi equations, respectively. They will be proved
simultaneously but stated separately. For a vector we use the notation

X=Xx"+xt
=X-g(X.N)N+g(X,N)N
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for decomposing it into components that are tangential and normal to H. We use the
notation that g is the metric g restricted to H and that the curvature on H is R

Theorem 3.2.4 (The Tangential Curvature Equation).
gRX,Y)Z, W) =gy (RH(X, YZ,W)—1I1(X,W)II(Y,Z) + (X, Z) 1 (Y, W),

where X,Y,Z, W are tangent to H.
Theorem 3.2.5 (The Normal or Mixed Curvature Equation).

8(R(X.Y)Z,N) = —(VxI) (Y, 2) + (Vy1I) (X.Z),

where X,Y,Z are tangent to H.
Proof. The proofs hinge on the important fact that if X, Y are vector fields that are
tangent to H, then:
VY = (Vx1) T
= VxY + II(X,Y)N.
Here the first equality is a consequence of the uniqueness of the Riemannian
connection on H. One can check either that (VxY)T satisfies properties (1)—(4)
of a Riemannian connection (see theorem 2.2.2) or alternatively that it satisfies
the Koszul formula. The latter task is almost immediate. The other equalities are
immediate from our definitions.
The curvature equations that involve the second fundamental form are verified
by calculating R(X, Y)Z using VxY = VZY —II(X, Y)N.
R(X,Y)Z = VxVyZ —VyVxZ — Vixn/Z
= Vx(VEZ —1(Y, Z)N) — Vy(VEZ —TI(X, Z)N)
—Vi nZ + (X, Y]. Z)N
=VxVWZ-WV{Z -V ,Z
—Vx II(Y,Z)N) + Vy II(X, Z)N) + II([X, Y], Z)N
=RY(X,Y)Z-1(X,V{Z)N + 1I(Y, V{Z)N
—(DxI(Y,Z)) N —1I(Y,Z)VxN + (Dy II(X,Z)) N + 1I(X, Z)VyN
+1I(VxY,Z)N —11(VyX,Z) N
=RI(X,Y)Z—-11(X,VyZ) N + 1I(Y, VxZ)N
—(Dx1I(Y,Z2))N —1I(Y,Z)VxN 4+ (DyII(X, Z)) N + 1I(X, Z)VyN
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+11(VxY,Z)N — 11 (VyX,Z)N
= R(X,Y)Z —1(Y,Z)VxN + 1I(X, Z)VyN
+ (= (VxI) (Y,2) + (Vy 1) (X, Z))N.

To finish we just need to recall the definition of II in terms of V. O

These three fundamental equations give us a way of computing curvature tensors
by induction on dimension. More precisely, if we know how to do computations on
H and also how to compute S, then we can compute any curvature in M at a point
in H. We shall clarify and exploit this philosophy in subsequent chapters.

Here we confine ourselves to some low dimensional observations. Recall that
the three curvature quantities sec, Ric, and scal obeyed some special relationships
in dimensions 2 and 3 (see sections 3.1.4 and 3.1.5). Curiously enough this also
manifests itself in our three fundamental equations.

If M has dimension 1, then dim H = 0. This is related to the fact that R = 0 on
all 1 dimensional spaces.

If M has dimension 2, then dimH = 1. Thus R” = 0 and the three vectors
X, Y, and Z are proportional. Thus only the radial curvature equation is relevant.
The curvature is also calculated in example 3.2.12.

When M has dimension 3, then dim H = 2. The radial curvature equation is not
simplified, but in the other two equations one of the three vectors X, Y, Z is a linear
combination of the other two. We might as well assume that X L Y and Z = X
or Y. So, if {X, Y, N} represents an orthonormal frame, then the complete curvature
tensor depends on the quantities: g(R(X, N)N,Y), g(R(X,N)N, X), g(R(Y,N)N,Y),
gRX, Y)Y, X), g(RXX,Y)Y,N), g(R(Y,X)X,N). The first three quantities can
be computed from the radial curvature equation, the fourth from the tangential
curvature equation, and the last two from the mixed curvature equation.

In the special case where M> = R?® we have R = 0. The tangential curvature
equation is particularly interesting as it becomes the classical Gauss equation. If we
assume that £y, E is an orthonormal basis for 7,,M, then

sec(T,H) = R (E|, E,. E;. Ey)
= 1(Ey, E)) II(E,, E;) — (Ey, E>) II(E}, E)
= det[II] .

This was Gauss’s wonderful observation! Namely, that the extrinsic quantity det [II]
for H is actually the intrinsic quantity, sec(7,H). The two mixed curvature equations
are the classical Peterson-Codazzi-Mainardi equations.

Finally, in dimension 4 everything reaches its most general level. We can start
with an orthonormal frame {X, Y, Z, N} and there are potentially twenty different
curvature quantities to compute.
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3.2.2 Distance Functions

The formulas in the previous section become simpler and more significant if we start
by making assumptions about the function. The geometrically defined functions
we shall study are distance functions. As we don’t have a concept of distance yet,
we define r : O — R, where O C (M, g) is open, to be a distance function if
|Vr| = 1 on O. Distance functions are then simply solutions to the Hamilton-Jacobi
equation or eikonal equation |Vr|* = 1. This is a nonlinear first-order PDE and can
be solved by the method of characteristics (see e.g. [6]). For now we shall assume
that solutions exist and investigate their properties. Later, after we have developed
the theory of geodesics, we establish the existence of such functions on general
Riemannian manifolds and also justify their name.

Example 3.2.6. On (R", ggrn) define r(x) = |x—y| = |xy|. Then r is smooth on
R" — {y} and has |Vr| = 1. If we have two different points {y, z}, then

r(x) = |x{y,z}| = min{|x — y|, |x — z|}

is smooth away from {y, z} and the hyperplane {x € R" | |x — y| = |x — z|} equidis-
tant from y and z.

Example 3.2.7. If H C R" is a submanifold, then it can be shown that
r(x) = |xH| = inf{|xy| = [x —y| | y € H}

is a distance function on some open set O C R". When H is an orientable
hypersurface this can justified as follows. Since H is orientable, it is possible to
choose a unit normal vector field N on H. Now coordinatize R" using x = tN + y,
where t € R, y € H. In some neighborhood O of H these coordinates are actually
well-defined. In other words, there is a function e(y) : H — (0,00) such that
any point in

O={N+y|yeH, | <eQ)}

has unique coordinates (¢, y). We can define r(x) = ron O or f(x) = |xH| = |{|
on O — H. Both functions will then define distance functions on their respective
domains. Here r is usually referred to as the signed distance to H, while f is just the
regular distance.

On I x H, where I C R, is an interval we have metrics of the form dr? + &r,
where dr? is the standard metric on I and g, is a metric on {r} x H that depends
on r. In this case the projection I x H — I is a distance function. Special cases of
this situation are rotationally symmetric metrics, doubly warped products, and our
submersion metrics on I x §2"~ !,
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Lemma 3.2.8. Letr: O — I C R, where O is an open set in Riemannian manifold.
The function r is a distance function if and only if it is a Riemannian submersion.

Proof. In general, we have dr (v) = g (Vr,v), so Dr(v) = dr(v)d, = 0 if and
only if v L Vr. Thus, v is perpendicular to the kernel of Dr if and only if it is
proportional to Vr. For such v = o Vr the differential is

Dr(v) = aDr(Vr) = ag (Vr,Vr)0,.
Now 0, has length 1 in I, so

lv] = |ee| |Vr],
IDr (v)| = || |Vr|*.

Thus, r is a Riemannian submersion if and only if |Vr| = 1. O

Before continuing we introduce some simplifying notation. A distance function
r : O — R is fixed on an open subset O C (M, g) of a Riemannian manifold.
The gradient Vr will usually be denoted by d, = Vr. The d, notation comes
from our warped product metrics dr> + g,. The level sets for r are denoted O, =
{x € O | r(x) = r}, and the induced metric on O, is g,. In this spirit V", R"are the
Riemannian connection and curvature on (O,, g,). Since |Vr| = 1 we have that
Hessr = II and S is the (1, 1)-tensor corresponding to both Hess r and II. Here
S can stand for second derivative or shape operator or second fundamental form,
depending on the situation. The last two terms are more or less synonymous and
refer to the shape of (O,, g,) in (0, g) C (M, g). The idea is that S = Vd, measures
how the induced metric on O, changes by computing how the unit normal to O,
changes.

Example 3.2.9. Let H C R” be an orientable hypersurface, N the unit normal, and S
the shape operator defined by S (v) = V,N forv € TH. If S = 0 on H then N must
be a constant vector field on H, and hence H is an open subset of the hyperplane

{x+peR"|x-N, =0},

where p € H is fixed. As an explicit example of this, recall our isometric immersion
or embedding (R”_l, an—l) — (R", grn) from example 1.1.3 defined by

(xl, .. ,)H’_l) — (c (xl) X ,)«,”_1) ,
where c is a unit speed curve c : R — R2. In this case,

N = (=& (x'").¢' (x").0....,0)
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is a unit normal in Cartesian coordinates. So

VN = —d (¢*) 9, +d (¢") 92
= —&%dx'd, + &'dx' 9,
= (=0, +¢'0y) dx'.
Thus, S = 0 if and only if ¢! = ¢ = 0 if and only if c is a straight line if and only
if H is an open subset of a hyperplane. Thus the shape operator really does capture

the idea that the hypersurface bends in R”, even though R"~! cannot be seen to bend
inside itself.

We have seen here the difference between extrinsic and intrinsic geometry. Intrinsic
geometry is everything we can do on a Riemannian manifold (M, g) that does not
depend on how (M, g) might be isometrically immersed in some other Riemannian
manifold. Extrinsic geometry is the study of how an isometric immersion (M, g) —
(M, g;;) bends (M, g) inside (M, g;;). For example, the curvature tensor on (M, g)
measures how the space bends intrinsically, while the shape operator measures
extrinsic bending.

3.2.3 The Curvature Equations for Distance Functions

We start by reformulating the radial curvature equation from theorem 3.2.2.

Corollary 3.2.10. When r : O — R is a distance function, then
V0, =0
and

V5, S+ 8% = —Ry,.

r

Proof. The first fact follows from part (3) of proposition 3.2.1 and the second from
theorem 3.2.2. O

‘We conclude that:

Proposition 3.2.11. If we have a smooth distance function r : (0,g) — R and
denote Vr = 0,, then

(1) Ly,g = 2Hessr,

(2) (Vj, Hessr) (X,Y) + Hess>r (X, Y) = —R (X, 9,.,0,.Y),
(3) (L, Hessr) (X,Y) —Hess’r(X,Y) = —R (X, 9,,0,,Y).
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Proof. (1) is simply the definition of the Hessian. (2) and (3) follow directly from
theorem 3.2.2 after noting that |Vr| = 1. O

The first equation shows how the Hessian controls the metric. The second and
third equations give us control over the Hessian when we have information about the
curvature. These two equations are different in a very subtle way. The third equation
is at the moment the easiest to work with as it only uses Lie derivatives and hence
can be put in a nice form in an appropriate coordinate system. The second equation
is equally useful, but requires that we find a way of making it easier to interpret.

Next we show how appropriate choices for vector fields can give us a better
understanding of these fundamental equations.

3.2.4 Jacobi Fields

A Jacobi field for a smooth distance function r is a smooth vector field J that does
not depend on 7, i.e., it satisfies the Jacobi equation

LyJ = 0.

This is a first-order linear PDE, which can be solved by the method of characteris-
tics. To see how this is done we locally select a coordinate system (r, 2, ,x”)
where r is the first coordinate. Then J = J"d, + J'0; and the Jacobi equation
becomes:

0=1LJ

=Ly, (J79, +J',)

=0,(J") 9, + 0, (J') 0.
Thus the coefficients J”, J have to be independent of r as already indicated. What
is more, we can construct such Jacobi fields knowing the values on a hypersurface
H C M where (xz, ... ,x”) |z is a coordinate system. In this case d, is transverse to
H and so we can solve the equations by declaring that J”, J' are constant along the
integral curves for d,. Note that the coordinate vector fields are themselves Jacobi

fields.
The equation L, J = 0 is equivalent to the linear equation

Vol =S ().

This tells us that

1
Hessr (J,J) = g (Vy,J,J) = 23,g J,J).
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Jacobi fields also satisfy a more general second-order equation, also known as the
Jacobi Equation:

Vy,VaJ = —R(J.9,) 0,
as
—R(J.3,)9, = R(3,.J) 3, = Vs,S(J).

This is a second-order equation and has more solutions than the above first-
order equation. This equation will be studied further in section 6.1.5 for general
Riemannian manifolds.

Equations (1) and (3) from proposition 3.2.11 when evaluated on Jacobi fields
become:

(1) 0-g (J1,J2) = 2Hessr (J1,J2),
A3) 3, Hess r (J1,J2) — Hess? r (J1,J2) = —R (J1, 3, 9,, J2).

As we only have directional derivatives this is a much simpler version of the
fundamental equations. Therefore, there is a much better chance of predicting how
g and Hess r change depending on our knowledge of Hess r and R respectively.

This can be reduced a bit further if we take a product neighborhood Q2 = (a, b) x
H C M such that r (¢, z) = t. On this product the metric has the form

g:dr2+grs

where g, is a one parameter family of metrics on H. If J is a vector field on H, then
there is a unique extension to a Jacobi field on 2 = (a, b) x H. First observe that
Hessr (0,,J) = g(V,0,,J) =0,
8r (al”a J) =0.

Thus we only need to consider the restrictions of g and Hess 7 to H. By doing this
we obtain

drg = 0,8 = 2Hessr.

The fundamental equations can then be written as

) d,g, = 2Hessr,
3) 9, Hess r — Hess’> r = —R (,0,,0;,°).

There is a sticky point hidden in (3). Namely, how is it possible to extract
information from R and pass it on to the Hessian without referring to g,. If we
focus on sectional curvature this becomes a little more transparent as
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R(X.9,.0,.X) = sec (X.9,) (¢ (X.X) g (3,.9,) — (g (X.9,))")
=sec(X,0,)g(X—¢g(X,0,)0,,X—¢g(X,0,)0,)
=sec(X,0,) g (X,X).

So if we evaluate (3) on a Jacobi field J we obtain
9, (Hessr (J,J)) —Hess>r (J,J) = —sec (J,9,) g (J.J).

This means that (1) and (3) are coupled as we have not eliminated the metric from
(3). The next subsection shows how we can deal with this by evaluating on different
vector fields.

Nevertheless, we have reduced (1) and (3) to a set of ODEs where r is the
independent variable along the integral curve for d, through p.

Example 3.2.12. In the special case where dim M = 2 we can more explicitly write
the metric as g = dr?> + p*(r,0)d6?, where 6 denotes a function that locally
coordinatizes the level sets of r. In this case dy is a Jacobi field of length p and
we obtain the formula

2Hessr (39, 0g) = 0,p> = 2pd,p.

Since [d,, dg] = 0 we further have

1
Hessr(Bg, 30) =8 (VBG 0, 89) =8 (Va,f}e, 30) = zarpz = parp‘

As S is self-adjoint and S (9,) = O this implies

d,
S @) = P,
0

This in turn tells us that

—sec (dg, 0,) ,02 = 0, (Hess r (dg, dg)) — Hess? r (09, 09)
= 0, (pd,p) — (9,p)’
= pd7p
and gives us the simple formula for the curvature
dp

sec (T,M) = — )
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3.2.5 Parallel Fields

A parallel field for a smooth distance function r is a vector field X such that:
Vi, X = 0.

This is, like the Jacobi equation, a first-order linear PDE and can be solved in a
similar manner. There is, however, one crucial difference: Parallel fields are almost
never Jacobi fields.

If we evaluate g on a pair of parallel fields we see that

08X, Y)=g(V3,X,Y)+g(X,V,Y) =0.

This means that (1) from proposition 3.2.11 is not simplified by using parallel fields.
The second equation, on the other hand, becomes

9, (Hessr (X,Y)) + Hess’ r (X, Y) = —R (X, 9,,0,.Y).

If this is rewritten in terms of sectional curvature, then we obtain as in
section 3.2.4

9, (Hess r (X, X)) + Hess” r (X, X) = —sec (X, 9,) g (X, X).

But this time we know that g, (X, X) is constant in r as X is parallel. We can even
assume that g (X, d,) = 0 and g (X,X) = 1 by first projecting X onto H and then
scaling it. Therefore, (2) takes the form

9, (Hess r (X, X)) + Hess” r (X, X) = —sec (X, d,)

on unit parallel fields that are orthogonal to d,. In this way we really have decoupled
the equation for the Hessian from the metric. This allows us to glean information
about the Hessian from information about sectional curvature. Equation (1), when
rewritten using Jacobi fields, then gives us information about the metric from the
information we just obtained about the Hessian using parallel fields.

3.2.6 Conjugate Points

In general, we might think of the directional curvatures R; as being given or
having some specific properties. We then wish to investigate how the curvatures
influence the metric according to the equations from proposition 3.2.11 and their
simplifications on Jacobi fields or parallel fields from sections 3.2.4 and 3.2.5.
Equation (1) is linear. Thus the metric can’t degenerate in finite time unless the
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Fig. 3.1 Focal points for an 2
ellipse and its bottom half 5

Hessian also degenerates. However, if we assume that the curvature is bounded,
then equation (2) tells us that, if the Hessian blows up, then it must be decreasing
as r increases, hence it can only go to —oo. Going back to (1), we then conclude
that the only degeneration which can occur along an integral curve for d,, is that
the metric stops being positive definite. We say that the distance function r develops
a conjugate or focal point along this integral curve. Below we have some pictures
of how focal points can develop. Note that as the metric itself is Euclidean, these
singularities are relative to the coordinates. There is a subtle difference between
conjugate points and focal points. A conjugate point occurs when the Hessian of r
becomes undefined as we solve the differential equation for it. A focal point occurs
when integral curves for Vr meet at a point. It is not unusual for both situations
to happen at the same point, but it is possible to construct metrics where there are
conjugate points that are not focal points.

Figure 3.1 shows that conjugate points for the lower part of the ellipse occur
along the evolute of the lower part of the ellipse. However, when we consider the
entire ellipse, then the focal set is the line between the focal points of the ellipse as
the normal lines from the top and bottom of the ellipse intersect along this line.

It is worthwhile investigating equations (2) and (3) a little further. If we rewrite
them as

) (Vs, Hess r) (X, X) = —R (X, 0,, 9,, X) — Hess r (X, X),
3) (Ly, Hess r) (X, X) = —R (X, d,, 0, X) + Hess* r (X, X),

then we can think of the curvatures as representing fixed external forces, while
Hess? r describes an internal reaction (or interaction). The reaction term is always
of a fixed sign, and it will try to force Hess r to blow up or collapse in finite time.
If, for instance sec < 0, then Ly, Hess r is positive. Therefore, if Hess r is positive at
some point, then it will stay positive. On the other hand, if sec > 0, then V;, Hess r
is negative, forcing Hess r to stay nonpositive if it is nonpositive at a point.

We shall study and exploit this in much greater detail throughout the book.
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3.3 Further Study

In the upcoming chapters we shall mention several other books on geometry that
the reader might wish to consult. A classic that is considered old fashioned by
some is [40]. It offers a fairly complete treatment of the tensorial aspects of both
Riemannian and pseudo-Riemannian geometry. I would certainly recommend this
book to anyone who is interested in learning Riemannian geometry. There is also
the authoritative guide [70]. Every differential geometer should have a copy of these
tomes especially volume 2. Volume 1 contains a lot of foundational material and is
probably best as a reference guide.

3.4 Exercises

EXERCISE 3.4.1. Let M be an n-dimensional submanifold of R"*" with the
induced metric. Further assume that we have a local coordinate system given by
a parametrization u* (xl, o ,x”), s = 1,...,n + m. Show that in these coordinates
Rjj depends only on the first and second partials of #*. Hint: Look at exercise 2.5.22.

EXERCISE 3.4.2. Consider the following conditions for a smooth function f :
(M, g) — R on a connected Riemannian manifold:

(1) |Vf] is constant.
(2) VysVf =0.
(3) |Vf] is constant on the level sets of f.

Show that (1) < (2) = (3) and give an example to show that the last implication
is not a bi-implication.

EXERCISE 3.4.3. Let f be a function and S (X) = VxVf the (1, 1) version of its
Hessian. Show that
LvsS = VyyS,
LysS + S* = Vx (S (Vf)) = —Ryy.
How do you reconcile this with what happens in theorem 3.2.2 for the (0, 2)-version
of the Hessian?

EXERCISE 3.4.4. Show thatif » = f : M — R is a distance function, then the
tangential and mixed curvature equations from theorems 3.2.4 and 3.2.5 can be
written as

RX.Y)2)" =Ry(X,Y)Z— (S(X) AS(Y)) (2).

g R(X.V)Z.N) = =g (Vx8) (V). 2) + g (Vy$) (X) . Z)
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and
RX,Y)N = (dVS) (X.Y).

EXERCISE 3.4.5. Prove the two Bianchi identities at a point p € M by using a
coordinate system where V;,0; = 0 at p.

EXERCISE 3.4.6. Show that a Riemannian manifold with constant curvature has
parallel curvature tensor.

EXERCISE 3.4.7. Show that a Riemannian manifold with parallel Ricci tensor has
constant scalar curvature. In section 4.2.3 it will be shown that the converse is not
true, and in section 4.2.2 that a metric with parallel curvature tensor doesn’t have to
be Einstein.

EXERCISE 3.4.8. Show in analogy with proposition 3.1.5 that if R is the (0, 4)-
curvature tensor and Ric the (0, 2)-Ricci tensor, then

(V*R) (Z.X.Y) = (VxRic) (Y, Z) — (VyRic) (X.Z).

Conclude that V*R = 0 if V Ric = 0. Then show that V*R = 0 if and only if the
(1, 1) Ricci tensor satisfies:

(VxRic) (Y) = (VyRic) (X) forall X, Y.

EXERCISE 3.4.9. Suppose we have two Riemannian manifolds (M, gy) and
(N, gn) - Then the product has a natural product metric (M x N, gy + gn) . Let
X be a vector field on M and Y one on N. Show that if we regard these as vector
fields on M x N, then VxY = 0. Conclude that sec (X, Y) = 0. This means that
product metrics always have many curvatures that vanish.

EXERCISE 3.4.10. Show that a Riemannian manifold has constant curvature at p €
M if and only if R (v,w)z = O for all orthogonal v,w,z € T,M. Hint: Start by
showing: if a symmetric bilinear form B (v, w) on an inner product space has the
property that B (v, w) = 0 when v L w, then B is a multiple of the inner product.

EXERCISE 3.4.11. Use exercises 2.5.25 and 2.5.26 to show that if X,Y,Z are
tangent to M, then

RM(X,Y)Z = RY(X,V)Z + TxTyZ — TyTxZ + (V¥T), Z — (V+ 1), Z
where
(V¥ T),Z = Vi (Tv2) — TyyyZ — Ty V' Z.

The tangential parts on both sides of this curvature relation form the Gauss equations
and the normal parts the Peterson-Codazzi-Mainardi equations.
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EXERCISE 3.4.12. Let H"™! C R”" be a hypersurface. Show that Ric”? =
- 11— 11

EXERCISE 3.4.13. A hypersurface of a Riemannian manifold is called totally
geodesic if its second fundamental form vanishes.

(1) Show that the spaces S}, have the property that any tangent vector is normal to a
totally geodesic hypersurface.

(2) Show a Riemannian n-manifold, n > 2, with the property that any tangent
vector is a normal vector to a totally geodesic hypersurface has constant
curvature. Hint: Start by showing that R (X,Y)Z = 0 when the three vectors
are orthogonal to each other and use exercise 3.4.10.

EXERCISE 3.4.14. Use exercise 2.5.26 to define the normal curvature
R(X,Y,V.W)

for tangent fields X, Y and normal fields V, W.

(1) Show that R* is tensorial and skew-symmetric in X, Y as well as V, W.
(2) Show that

RM(X,Y,V.W) = RE(X.Y. V. W) + gu (TxV. Ty W) — gyt (Ty V. Tx W)

These are also known as the Ricci equations.

EXERCISE 3.4.15. For 3-dimensional manifolds, show that if the curvature operator
in diagonal form is given by

a00
080 ],
00y

then the Ricci curvature has a diagonal given by
a+p 0 0
0 B+y O

0 0 a4y

Moreover, the numbers «, 8, y must be sectional curvatures.

EXERCISE 3.4.16. Consider the (0, 2)-tensor
T = Ric+bscalg + cg

where b, c € R.
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(1) Show that V*T = 0if b = — ). The tensor

. scal
G = Ric— ) g+ cg.

is known as the Einstein tensor and c as the cosmological constant.
(2) Show that if ¢ = 0, then G = 0 in dimension 2.
(3) When n > 2 show that if G = 0, then the metric is an Einstein metric.
(4) When n > 2 show that if G = 0 and ¢ = 0, then the metric is Ricci flat.

EXERCISE 3.4.17. Let TcM = TM ® C be the complexified tangent bundle to a
manifold. A vector v € TcM looks like v = vy + 1v,, where v, v, € TM, and can
be conjugated v = v; —iv,. Any tensorial object on 7M can be complexified. For
example, if S is a (1, 1)-tensor, then its complexification is given by

Sc(w)=Sc (v +iv)) =S (v1)+iS(v2).
A Riemannian structure g on TM gives a natural Hermitian structure on 7¢M by

g (v, w) = gc(v,w)
=gc (V1 +ivy, wi —iw)

=g, wy) + g V2, w2) +i(g (v2,w1) — g (v, w2)) .

A vector is called isotropic if it is Hermitian orthogonal to its conjugate

0=2g(v,v)
= gc (v,v)
= gc (v +ivy, v +ivy)
=g (1, v1) — g (12, v2) +1(g (v2,v1) + g (v1,v2)).
More generally, isotropic subspaces are defined as subspaces on which g¢ vanishes.

The complex sectional curvature spanned by Hermitian orthonormal vectors v, w is
given by the expression

RC (v’ W’ v_v’ l_)) M

It is called isotropic sectional curvature when v, w span an isotropic plane.

(1) Show that a vector v = v; + iv; is isotropic if vy, v, are orthogonal and have
the same length.

(2) An isotropic plane can be spanned by two Hermitian orthonormal vectors v, w
that are isotropic. Show that if v = v; + ivy; and w = w; + iw», then
V1, V2, Wi, Wy are orthonormal.
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(3) Show that R¢ (v, w, w, v) is always a real number.

(4) Show that if the original metric is strictly quarter pinched, i.e., all sectional
curvatures lie in an open interval of the form (ik, k) with & > 0, then the
complex sectional curvatures are positive.

(5) Show that the complex sectional curvatures are nonnegative (resp. positive) if
the curvature operator is nonnegative (resp. positive). Hint: Calculate

SREAU—YAV) , XAU—YAV)F+EOREXAVFYAU) XAV +YAU)

and compare it to a suitable complex curvature.

EXERCISE 3.4.18. Consider a Riemannian metric (M, g) and scale the metric
by multiplying it by a number A?. This creates a new Riemannian manifold
(M , Azg) .

(1) Show that the new connection and (1, 3)-curvature tensor remain the same.
(2) Show that sec, scal, and R all get multiplied by A 2.

(3) Show that Ric as a (1, 1)-tensor is multiplied by A 2.

(4) Show that Ric as a (0, 2)-tensor is unchanged.

EXERCISE 3.4.19. We say that X is an affine vector field if LyV = 0. Show that
such a field satisfies the equation: V3 , X = —R(X,U) V.

EXERCISE 3.4.20 (INTEGRABILITY FOR PDES). For given functions P} (x,u),

wherex = (x',....x"),u = (u'.....u"),i=1,....,m,andk = 1,...,n, consider
the initial value problems for a system of first-order PDEs
ou’ ;
fe = Pl
u (xo) = up.

(1) Show that

opPi

0%u oP: ;
i

_ 9

dxkoxl  oxt 0
and conclude that all such initial value problems can only be solved when the
integrability conditions

0P 0P _ 0P, 0P,

— k p/
ok T kT o T gt

hold.

(2) Conversely show that all such initial value problems can be solved if the inte-
grability conditions hold. Hint: This is equivalent to the Frobenius integrability
theorem but can be established directly (see also [97, vol. 1]). When P does not
depend on u, this result goes back to Clairaut. The general case appears to have
been a folklore result that predates what we call the Frobenius theorem about
integrability of distributions.
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(3) Using coordinates x’ on a Riemannian n-manifold form the system

i
j_ sy os
ok —ijUY, Lj=1,...,n

and show that its integrability conditions are equivalent to Ry, = 0.
(4) Show that a flat Riemannian manifold admits Cartesian coordinates. Hint:
Denote the potential Cartesian coordinates by u' and consider the system:

ou’

with appropriate initial values. Make sure you check that u' really form a
Cartesian coordinate system. This way of locally characterizing Euclidean
space is very close in spirit to Riemann’s original approach. Hint: Consider
the derivative of

o Ou' i
axk 9xl”
where g;; denotes the metric with respect to x and use 2.5.8.

EXERCISE 3.4.21 (FUNDAMENTAL THEOREM OF (HYPER-)SURFACE THEORY).
Consider a Riemannian immersion F : M" 9 R"™! In coordinates on M it can
be written as

(ul(x),...,u"+1(x)) :F(x):F(xl,...,)H’)

and we define

Ui — ou'
T gk
(1) Show that
aUll s 7l i
ax)‘ = ijU‘Y — I N,

where N = N' aii is a choice of unit normal and the second fundamental form
is Iy = 11(9;, ) = g (Va,N. ).

(2) Show that the integrability conditions for this system are equivalent to the Gauss
(tangential) and Codazzi (mixed) curvature equations:

Ry = 1L Iy — I 10
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aagj" - 3851’ = T} Iy T} 1

(3) Given metric coefficients g; and a symmetric tensor II;; that is related to the
metric coefficients through the Gauss and Codazzi equations, show that locally
there exists a Riemannian immersion such that the second fundamental form is
given by II;;.

(4) We can now give a local characterization of spaces with constant positive
curvature. Given a metric of constant curvature R~2 > 0, show that there is
a Riemannian immersion into R"*!whose image lies in a sphere of radius R.
Hint: Guess what the second fundamental form should look like and show that
the constant curvature condition gives the Gauss and Codazzi equations. Note
that for §” (R) the unit normal is N = +R™'F.

EXERCISE 3.4.22. Repeat the previous exercise with a Riemannian immersion F :
M" &> R™! where M is a Riemannian manifold and the normal N satisfies |N |2 =
—1. This time we obtain a local characterization of the hyperbolic spaces H" (R)
from example 1.1.7 as the local model for spaces of constant curvature —R™2. Note
that for H”" (R) the unit normal is N = £R™'F.

EXERCISE 3.4.23. For two symmetric (0,2)-tensors A,k define the Kulkarni-
Nomizu product as the (0, 4)-tensor

1
hok(vi,v2,v3,v4) = 5 (h (v, v4) - k (v2,03) + B (v2,v3) - k (v1, v4))
1
5 (h (v1,v3) - k (v2,v4) + h (v2,v4) -k (V1,03)).
The factor |

) is not used consistently in the literature, but is convenient when 7 = k.
Part (6) of this exercise explains our choice.

(1) Show thathok = ko h.

(2) Show that o h = 0 if h has rank 1.

(3) Show that if n > 2; k is nondegenerate; and 4 o k = 0, then 7 = 0. Hint: Let v;
be “eigenvectors” for k and v, = vs.

(4) Show that & o k satisfies the first 3 properties of proposition 3.1.1.

(5) Show that Vy (ho k) = (Vxh) o k 4+ h o (Vxk).

(6) Show that (M, g) has constant curvature c if and only if the (0, 4)-curvature
tensor satisfies R = ¢ (g o g).

EXERCISE 3.4.24. Define the Schouten tensor

p 2 Ri scal
= ic— .
n—2 n—(n-2 ¢

for Riemannian manifolds of dimension n > 2.
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(1) Show that if P vanishes on M, then Ric = 0.
(2) Show that the decomposition

P scal n 2 Ric scal
_n(n—l)g n—2 n &

of the Schouten tensor is orthogonal.
(3) Show that when n = 2, then

scal
= o] .
2 8og
(4) Show that when n = 3, then
scal . scal
R = 6 gog+2|Ric— 3 -glog=Pog.

(5) Show that (M, g) has constant curvature when n > 2 if and only if

) scal
R = Pogand Ric = g.
n

(6) Show that

Ric(X.Y) =) (Pog) (X.E.E;.Y)
i=1
for any orthonormal frame E;.

EXERCISE 3.4.25. The Weyl tensor W is defined implicitly through

scal 2 . scal
R = gog+ Ric — -g)og+ W
nn—1) n—2 n

=Pog+ W,

where P was defined in the previous exercise.

(1) Show thatif n = 3, then W = 0.
(2) Show that

Zn:W(X,E,-,E,-, Y)=0

i=1

for any orthonormal frame E;. Hint: Use (6) from exercise 3.4.24.
(3) Show that the decomposition R = P o g+ W is orthogonal. Hint: This is similar
to showing that homotheties and traceless matrices are perpendicular.
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EXERCISE 3.4.26. Show that

1
V*P = — d scal
n—1

and
-3
VW EX.) =" (WP (Y.2) = (VyP) (X.2)).
Hint: Use the definitions of W and P from the previous two exercises, exercise 3.4.8,

and proposition 3.1.5.
EXERCISE 3.4.27. Given an orthonormal frame Ey,...,E, on (M, g), define the
structure constants cg by [Ei, Ej] = cgEk, note that each cf.‘i is a function on M, so it
is not constant! Define the I's and Rs by
_ Tk
Vi Ej = TEk,
!
R (E,-, Ej) Ey = R Ei
and compute them in terms of the structure constants. Notice that on Lie groups

with left-invariant metrics the structure constants can be assumed to be constant. In
this case, computations simplify considerably.

EXERCISE 3.4.28 (CARTAN FORMALISM). There is yet another effective method
for computing the connection and curvatures, namely, the Cartan formalism. Let
(M, g) be a Riemannian manifold. Given a frame E|, .. ., E,, the connection can be
written

where w{ are 1-forms called the connection forms. Thus,
V,E = ) (v) E;.

Suppose additionally that the frame is orthonormal and let ' be the dual coframe,
ie, 0 (E) = 8]’

(1) Show that the connection forms satisfy
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These two equations can, conversely, be used to compute the connection forms
given the orthonormal frame. Therefore, if the metric is given by declaring
a certain frame to be orthonormal, then this method can be very effective in
computing the connection.

(2) If we think of [wl’ ] as a matrix, then it represents a 1-form with values in the

skew-symmetric n X n matrices, or in other words, with values in the Lie algebra
so0(n) for O (n). The curvature forms 2, are 2-forms with values in so (n)
defined as

R(X,Y)E = Q (X,V)E.
Show that they satisfy
dwf =wf A w,’( + Q’L

(3) When reducing to Riemannian metrics on surfaces we obtain for an orthonormal

frame E;, E, with coframe o', w?

do' = w* A a)zl,
dw?® = —w' A a)zl,
1 _ ol
dw, = Q,,
Q) = sec-dvol.
EXERCISE 3.4.29. This exercise will give you a way of finding the curvature tensor

from the sectional curvatures. Assume that R (X, Y, Z, W) is an algebraic curvature
tensor, i.e., satisfies (1), (2), and (3) of proposition 3.1.1.

(1) Show that

PRX +sW, Y +1tV,Y +1tV, X + sW
6R(X.Y.V.W) = X+ + + + sW)

0sot PR
PR(X + sV, Y +tW,Y + (W, X + sV)
0s0t PR

(2) Show that

6R(X,Y,V.W)=R(X+W, Y+ V.Y +V.X+ W)
“RX.Y+V.Y+V.X)—RW.Y+ V.Y +V.W)
—“RX+W,V.V.X+W)—RX+W.Y.Y.X+ W)
+R(X,V.V.X) +R(W.V,V,W)
+R(X.Y.Y.X) + R(W,Y,Y, W)
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~RX4V.Y+W.Y+W.X+V)
+RX.Y+W.Y+W.X)+R(V.Y + WY + W.V)
+RX+V.Y.Y.X+V)+RX+ V. W, WX+ V)
~R(X.Y,Y.X)—R(V.Y,Y,V)
—R(X,W,W.X)—R(V,W,W,V).

Note that 4 of the terms on the right-hand side are redundant.

EXERCISE 3.4.30. Using the previous exercise show that the norm of the curvature
operator on A?T,M is bounded by

98], < ¢ () [sec,

for some constant ¢ (n) depending on dimension, and where [sec|, denotes the
largest absolute value for any sectional curvature of a plane in 7,,M.

EXERCISE 3.4.31. Let G be a Lie group with a left-invariant metric (-,-) on g (it
need not be positive definite just nondegenerate). For X € g denote by ady : g — g
the adjoint of ady Y = [X, Y] with respect to (-, -). Show that:

(1) VxY =] ([X, Y] + ad} Y — ad} X). Conclude that if X, Y € g, then VxY € g.
) R(X,Y,Z,W) = —(VyZ,VxW) + (VxZ, VyW) — (Vix nZ, W).
3)

1
RX.Y.Y.X) = |ady¥ + ad® X|*
* * 3 2
— (ad} X, ad} Y) — A I[X. Y]]
1 1
—, (X Y1.Y].%) = ([Y.X].X].Y).

EXERCISE 3.4.32. Let G be a Lie group with a biinvariant metric (-, -) on g (it need
not be positive definite just nondegenerate). Using left-invariant fields establish the
following formulas. Hint: First go back to the exercise 1.6.24 and take a peek at
section 4.4.1 where some of these things are proved. Show that:

(1) Vxy =] [X,7Y].

(2 RX.Y)Z=[Z[X.Y].

3) RX,Y,Z,W) = —i ([X,Y],[Z, W]). Conclude that the sectional curvatures
are nonnegative when (-, -) is positive definite.

(4) Show that the curvature operator is also nonnegative when (-,-) is positive
definite by showing that:



114 3 Curvature

k k k
g (i)‘{ (ZXi A Y,') , (ZXi A K)) = i Z[Xi, Y]
=1 i=1 i=1

(5) Assume again that (-, -) is positive definite. Show that Ric (X, X) = 0 if and only
if X commutes with all other left-invariant vector fields. Thus G has positive
Ricci curvature if the center of G is discrete.

2

EXERCISE 3.4.33. Consider a Lie group where the Killing form B is nondegenerate
and use —B as the left-invariant metric (see exercise 1.6.27).

(1) Show that this metric is biinvariant.
(2) Show that Ric = —, B.

EXERCISE 3.4.34. It is illustrative to use the Cartan formalism in the previous
exercise and compute all quantities in terms of the structure constants for the Lie
algebra. Given that the metric is biinvariant, it follows that with respect to an
orthonormal basis they satisfy
k ko i
€ij = ~Cji = G-

The first equality is skew-symmetry of the Lie bracket, and the second is biinvari-
ance of the metric.



Chapter 4
Examples

We are now ready to compute the curvature tensors on all of the examples
constructed in chapter 1. After a few more general computations, we will exhibit
Riemannian manifolds with constant sectional, Ricci, and scalar curvature. In par-
ticular, we shall look at the space forms S}, products of spheres, and the Riemannian
version of the Schwarzschild metric. We also offer a local characterization of certain
warped products and rotationally symmetric constant curvature metrics in terms of
the Hessian of certain modified distance functions.

The examples we present here include a selection of important techniques
such as: Conformal change, left-invariant metrics, warped products, Riemannian
submersion constructions etc. We shall not always develop the techniques in
complete generality. Rather we show how they work in some basic, but important,
examples. The exercises also delve into important ideas that are not needed for
further developments in the text.

4.1 Computational Simplifications

Before we do more concrete calculations it will be useful to have some general
results that deal with how one finds the range of the various curvatures.

Proposition 4.1.1. Let e; be an orthonormal basis for T,M. If e; A e; diagonalize
the curvature operator

R (e,- A\ e,) = /\,;je,- N ej,

then for any plane m in T,M we have sec (1) € [min Ajj, max /\,;j].

Proof. If v,w form an orthonormal basis for the plane 7, then we have sec (1) =
g(R (v Aw), (v Aw)), so the result is immediate. O

© Springer International Publishing AG 2016 115
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Proposition 4.1.2. Let ¢; be an orthonormal basis for T,M. If R (ei, ej) e, = 0,
when the indices are mutually distinct, then e; A e; diagonalize the curvature
operator.

Proof. If we use

¢ (R (erne) (e ne)) = —g (R(ene)er.e)
— ¢ (R(ene)ener).,

then we see that this expression is 0 when i, j, k are mutually distinct or if i,j, [ are
mutually distinct. Thus, the expression can only be nonzero when {k, [} = {i,j}.
This gives the result. O

We shall see that this proposition applies to all rotationally symmetric and doubly
warped products. In this case, the curvature operator can then be computed by
finding the expressions R (ei, ej, e, ei). In general, however, this will definitely not
work.

There is also a more general situation where we can find the range of the Ricci
curvatures:

Proposition 4.1.3. Let ¢; be an orthonormal basis for T,M. If
g (R (ei, ej) ek, el) =0,

when three of the indices are mutually distinct, then e; diagonalize Ric.

Proof. Recall that

n

g (Ric(e) . ¢j) = Z g (R(eiex) er.e))

k=1

so if we assume that i # j, then g (R (ei, ex) ek,ej) = 0 unless k is either i or j.
However, if k = i, j, then the expression is zero from the symmetry properties of R.
Thus, e; must diagonalize Ric. O

4.2 Warped Products

So far, all we know about curvature is that Euclidean space has R = 0. Using this,
we determine the curvature tensor on S"~!(R). Armed with that information we can
in turn calculate the curvatures on rotationally symmetric metrics.
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4.2.1 Spheres

On R”" consider the distance function r(x) = |x| and the polar coordinate
representation:

g=dr* +g, =d* +rds,_|,

where ds?_, is the canonical metric on S"~!(1). The level sets are O, = S""!(r)
with the usual induced metric g, = rzdsﬁ_l. The differential of r is given by dr =

3 xr‘ dx' and the gradient is 9, = lrxiai. Since dslzl_1 is independent of r we can
compute the Hessian of r as follows:

2Hessr = Ly, g
=L, (drz) + Ly, (rzdsi_l)
= Ly, (dr)dr + drLy, (dr) + 0, () dsi_, + r*Ly, (ds._;)
0, (?)dst,
= 2rdsi_l
= Zi gr.
The tangential curvature equation (see theorem 3.2.4) tells us that

R'(X.V)Z = r (/Y. 2)X — (X, 2)Y),

since the curvature on R" is zero. In particular, if ¢; is any orthonormal basis, then
R (ei, ej) ex = 0 when the indices are mutually distinct. Therefore, S"_I(R) has
constant curvature R~> provided n > 3. This justifies our notation that St is the
rotationally symmetric metric dr? 4 sn,% (r)ds,zl_1 when k > 0, as these metrics have
curvature k in this case. In section 4.2.3 we shall see that this is also true when k < 0.

4.2.2 Product Spheres

Next we compute the curvatures on the product spheres

SEx Sy =48" (;a) xS’”(\}b).

The metric g, on S" (r) is g, = r°ds?, so we can write
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n m n m 1 2 1 2
Sy xSy = 8" x8", ds,+ ds, ).
a b

Let Y be a unit vector field on S”, V a unit vector field on $”, and X a unit vector
field on either S" or §™ that is perpendicular to both Y and V. The Koszul formula
shows that
28 (VyX, V) = g ([¥.X].V) + g ([V.Y].X) — g (X, V]. Y)
=0,
as [Y, X] is either zero or tangent to S" and likewise with [X, V]. Thus VyX = 0 if X
is tangent to S™ and VyX is tangent to S” if X is tangent to S”. This shows that VyX

can be computed on S7;. We can then calculate R knowing the curvatures on the two
spheres from section 4.2.1 and invoke proposition 4.1.2 to obtain:

RXAV)=0,
RXAY)=aX Y,
RUAV)=DbUAYV.

In particular, proposition 4.1.1 shows that all sectional curvatures lie in the interval
[0, max{a, b}]. It also follows that

Ric(X) = (n — 1)aX,
Ric (V) = (m—1)bV,
scal = n(n— 1)a + m(m — 1)b.

Therefore, we conclude that S, x S}’ always has constant scalar curvature, is an
Einstein manifold exactly when (n — 1)a = (m — 1)b (which requires n,m > 2 or
n = m = 1), and has constant sectional curvature only when n = m = 1. Note also
that the curvature tensor on S, x S}' is always parallel.

4.2.3 Rotationally Symmetric Metrics

Next we consider what happens for a general rotationally symmetric metric
dr* + p*ds,_,.

The metric is of the form g = dr* + g, on (a,b) x $"7', with g, = p’ds?_,. As
ds>_, does not depend on r we have that
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2Hessr = L, g,
— Ly, (p%s2.,)
= 0, (07) ds2, + pLa, (ds52,)
=20 (3,p) dst_,

9,
=2%"g,.

P

The Lie and covariant derivatives of the Hessian are computed as follows:

|
)
z

9, 9,
ar ( P ) + P LBV (gr)
P P

32p) p — (8,p)* 3.0\’
_ (@p)p (p)gr+2( p) o

02

sz 9rp 2
p p
2

gr + Hess? r

and

0,
Vi, Hessr = V,, ( pg,)
o

9, 9,
8r( p)gr+ prh (gr)
p p

_ (320) p— (3:p)°

= 2 ,
2 (a,p)z
- 8r — 8r
P p
32
= "Og, — Hess? 7.

The fundamental equations from proposition 3.2.11 show that when restricted to
5"~ we have

9,
Hessr = pg,,
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2
R ('7 ah ara ) = - arpgr-
0

This implies that

X if X is tangent to S"1,
Vxo, =< *
0 if X =0,.
_%PX i Xis tangent to ",
R(X.0,)9, =] ¢
if X =0,.

Next we calculate the other curvatures on
(I x S dr? + pz(r)dsﬁ_l)

that come from the tangential and mixed curvature equations (see theorems 3.2.4
and 3.2.5)

S(RX,Y)V,W) = g, (R"(X,Y)V, W) — (Y, V) IL (X, W) + [I(X, V) IL (Y, W),
¢(R(X,Y)Z,9,) = — (Vx 1) (Y, Z) + (VyII) (X, Z) .

Using that g, is the metric of curvature plz on the sphere, we have from
section 4.2.1 that

1
&R X Y)V.W) = ng,(x AY.WAYV).

Combining this with IT = Hess r we obtain from the first equation that

_ 2
g§RX. V)V, W) = : f)zrp) GXAY, WAV).

Finally we show that the mixed curvature vanishes as 8;)[) depends only on r :

VxII = Vx (3r,0gr)
0

3, 3,
P P

=0.
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From this we can use proposition 4.1.2 to conclude

82 ..
”OX/\B,=—’OX/\8,,
P

P

RXAD,) = —

1—(d,p)° 1—p?
R AY) = (2'0)X/\Y= P
0

In particular, we have dlagonahzed fR. Hence all sectional curvatures lie between the
two values — Z and ! p . Furthermore, if we select an orthonormal basis E; where
E, = 0,, then the Ricci tensor and scalar curvature are

Ric (X) = Y "R(X.E)E;
i=1
n—1

= ZR X,E)E; +R(X,0,) 0,

i=1
=@ p

= ((n—Z) , - )X,
P P

Ric (@) = —(n—1)"a,
I

.. 1 _ -2 ..
scalz—(n—l)p—i-(n—l) ((n—2) Zp _p)
p 1Y 1Y
.. 1 _ -2
—20-1" +-Dm-2) .
1Y 1Y
When n = 2, it follows that sec = s , as there are no tangential curvatures.

This makes for quite a difference between 2- and higher-dimensional rotationally
symmetric metrics.
Constant curvature: First, we compute the curvature of dr? + sn?(r)ds>_, on S}.

Since p = sn; solves g + kp = 0 it follows that sec(X, d,) = k. To compute zp

recall from section 1.4.3 that if p = sng(r), then

p = CSk,
1 —p* = kp.
Thus, all sectional curvatures are equal to &, as promised.
Next let us see if we can find any interesting Ricci flat or scalar flat examples.
Ricci flat metrics: A Ricci flat metric must satisfy
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1— 2
m-2 [ P —o
0

AR -HEEA oI o H

Hence, 5 = 0 and p*> = 1, when n > 2. Thus, p (r) = a & r. In case n = 2 we only
need 6 = 0. In any case, the only Ricci flat rotationally symmetric metrics are, in
fact, flat.

Scalar flat metrics: To find scalar flat metrics we need to solve

. _2 1_ -2
2(n—1)(—p+" : zp)=0,
p 2 P

when n > 3. We rewrite this equation as

n—2p"—1 _
2 o

P+ 0.

This is an autonomous second-order equation and can be made into a first-order
equation by using p as a new independent variable. If p = G(p), then § = G'p =
G'G and the first-order equation becomes

Separation of variables shows that G and p are related by
=G =1+ Cp*™,

which after differentiation yields:

We focus on solutions to this family of second-order equations. Note that they will
in turn solve > = 1 4+ Cp>™", when the initial values are related by (p (0))> =
1+ C(p(0)° ™
To analyze the solutions to this equation that are positive and thus yield Riemannian
metrics, we need to study the cases C > 0, C = 0, C < 0 separately. But first, notice
that if C # 0, then both p and g approach £oo at points where p approaches 0.

C = 0: In this case 5 = 0 and 6*>(0) = 1. Thus, p = a + r is the only solution
and the metric is the standard Euclidean metric.

C > 0: p is concave since
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Thus, if p is extended to its maximal interval, then it must cross the “r-axis,” but as
pointed out above this means that p becomes undefined. Consequently, we don’t get
any nice metrics this way.

C < 0: This time the solutions are convex. If we write C = —pg_z, then the

equation 5> = 1 — (’;;’) shows that 0 < pp < p. In case p (a) = po, it follows

that p (a) = 0 and p (a) > 0. Thus a is a strict minimum and the solution exists in
a neighborhood of a. Furthermore, |p| < 1 so the solutions can’t blow up in finite
time. This shows that p is defined on all of R. Thus, there are scalar flat rotationally
symmetric metrics on R x §"~!.

We focus on the solution with p(0) = py > 0, which forces p(0) = 0. Notice that
p is even as p (—r) solves the same initial value problem. Consequently, (r, x) —
(—r, —x) is an isometry on

(R x SV dr* + pz(r)dsﬁ_l) .
Thus we get a Riemannian covering map
RxS$"" - ¢ (RP"")

and a scalar flat metric on © (R]P’”_l), the tautological line bundle over RP" ™!,
If we use p as the parameter instead of r, then

n—2
dp* = p*dr* = (1 - (po) )drz.
o

When r > 0 it follows that p > py and the metric has the more algebraically explicit
form

1
ar’ + ,oz(r)ds,zl_1 = d dp® + ,Ozds,zl_l.
()

P
This shows that the metric looks like the Euclidean metric dp? + p?ds?_, as p — oo.
In section 5.6.2 we show that R x §"~', n > 3, does not admit a (complete)
constant curvature metric. Later in section 7.3.1 and theorem 7.3.5, we will see that
if R x §"~! has Ric = 0, then $"~! also has a metric with Ric = 0. Whenn = 3 or
4 this means that S? and S> have flat metrics, and we shall see in section 5.6.2 that

this is not possible. Thus we have found a manifold with a nice scalar flat metric
that does not carry any Ricci flat or constant curvature metrics.
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4.2.4 Doubly Warped Products

We wish to compute the curvatures on
(I x 8" x 87, dr* + p*(r)ds) + ¢*(r)ds}) .
This time the Hessian looks like
Hessr = (9,p) ,ods[z7 + (9,9) q&dsf[.
and we see as in the rotationally symmetric case that
VxII = 0.
Thus the mixed curvatures vanish. Let X, Y be tangent to S and V, W tangent
to §9. Using our curvature calculations from the rotationally symmetric case (see

section 4.2.3) and the product sphere case (see section 4.2.2) the tangential curvature
equations (see theorem 3.2.4) yield

RO, AX) =0, AX,
0
_
RO AV)=—="0,AV,
¢
= 2
RXAY) = XAy,
0
1—¢?
RwAV =" S U,
REAV) = —"Px AV,
po

From this it follows that all sectional curvatures are convex linear combinations
of

p_¢ 1=p 1-¢ pd
pd 2T T pp

Moreover,

. po¢
R 8, == - - ars
ic(d,) ( pp q¢)
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_-n _ -2 o)
Rmmz(:+@—nuf_ww)x

PP
P L .
mqw=( ? -1 #ﬁ_pii)v

4.2.5 The Schwarzschild Metric

We wish to find a Ricci flat metric on R? x §"~2, Choose p = n—2and ¢ = 1 in
the above doubly warped product case so that the metric is on (0, 00) x "2 x S,
We’ll see that this forces dr? + p* (r) ds>_, to be scalar flat (see also exercise 4.7.16
for a more general treatment).

The equations to be solved are:

—m—P_? _y,
p ¢
p 1—p*  pé
e i) - =0,
> pd
R AT
PP
Subtracting the first and last gives
p_ pd
p P

If we substitute this into the second equation we simply obtain the scalar flat
equation for dr? + p* (r) ds?_,:

.. 1 _ -2
2P ym-3" " o
P p

We use the solution p (r) from section 4.2.3 that is even in r and satisfies:
p (0) = po,

n—3
[)22 1_(/)0) .
0
P

Next note that ﬁ = p‘g implies that g = c is constant. Thus we can define ¢
using p = c¢.
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n n—3
Since p> =1 — (‘:’) we obtain c2¢? = 1 — (’;f) . This forces ¢ (0) = 0.

n—2
From 2 = (n— 3) plo (‘;;’) we get

n—2
2chp = (n—3) ! (,00) .
pPo \ P

To obtain a smooth metric on R? x §"~2 we need ¢ to be odd with ¢ (0) = 1. This

. n—2 .
forces ¢ = ”;3 po_l and gives us ¢ = (‘:’) . Since p is even this makes ¢ even

and hence ¢ odd as ¢ (0) = 0. We also see that ¢p = ";3 (2—n) pp3p'"¢. This
shows that the first equation, and hence the other two, are satisfied:

n—>3 n— —n n—>3 n— —n
—(n=2)" e T = T @=mpg T =0,

If we use p as a parameter instead of r as in section 4.2.3, then we obtain the
more explicit algebraic form

1 4 o\ 7\ .,
_.dp® + p*ds>_, + o} 1—( ) do>.
1_(po)"3 P m=3) p
P

Thus, the metric looks like R*™! x §! at infinity, where the metric on S lis suitably
scaled. Therefore, the Schwarzschild metric is a Ricci flat metric on R? x §"~2 that
at infinity looks approximately like the flat metric on R"~! x §!.

The classical Schwarzschild metric is a space-time metric and is not smooth at p =
po. The parameter ¢ above is taken to be the speed of light and is not forced to
depend on py. We also replace S by R. The metric looks like:

1 2 252 1 Po
l_ppodp +pds2—cz(l—p ar.

4.3 Warped Products in General

We are now ready for a slightly more general context for warped products. This
will allow us to characterize the rotationally symmetric constant curvature metrics
through a very simple equation for the Hessian of a modified distance function.
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4.3.1 Basic Constructions

Given a Riemannian metric (H, gg) a warped product (over I) is defined as a metric
on ] x H, where I C R is an open interval, with metric

g=dr +p"(r) gn.
where p > 0 on all of 1. One could also more generally consider

v2 (r)dr* + p* (r) gn.

However, a change of coordinates defined by relating the differentials dp = v (r) dr
allows us to rewrite this as

dp* + p* (r (p)) gu-

Important special cases are the basic product g = dr? + gy and polar coordinates
dr? + r’ds?_, on (0, 00) x S"~! representing the Euclidean metric.

The goal is to repackage the information that describes the warped product
representation with a goal of finding a simple characterization of such metrics.
Rather than using both r and p we will see that just one function suffices. Starting
with a warped product dr* + p*(r) gy construct the function f = [ pdr on
M =1 x H. Since df = pdr it is clear that

1
A+ 9" (Vgn = df>+ 0 () g

p*(r)
Proposition 4.3.1. The Hessian of f has the property
Hessf = pg.

Proof. The Hessian of f is calculated from the Hessian of ». The latter is calculated
as in section 4.2.3

Hessr = L
2 arg

1
5 Lo, (a@r* + p* (r) gn)

;ar (”* (") gn

= pPPgH.
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So we obtain

(Hessf) (X, Y) = (Vxdf) (Y)
= (Vxpdr) (Y)
= pdr (X)dr(Y) + pHessr(X,Y)
= pdr* (X,Y) + pHessr (X, Y)
= pdr* (X,Y) + pp’gn
= pg.
O

In other words we have shown that for a warped product it is possible to find a

function f whose Hessian is conformal to the metric. In fact the relationship
. _dp _dpdf _dp_ _ 1d|Vf]’
P=a Tarar a2 ar

tells us that the warped product representation depends only on f and |Vf| since we
have

1
= df* + V£’ gn.
g |Vf|2f IVfI” gn
1d|Vf|?
Hessf:2 |d]{|

Before turning to the general characterization let us consider how these construc-
tions work on our standard constant curvature warped products.

Example 4.3.2. Consider the warped product given by
dr* + sni (r)ds>_,.
We select the antiderivative of sny (r) that vanishes at r = 0. When k = 0
1
= dr = 12,
f / rdr 2r
Hessf = g.

When k # 0

= [ =, e,

Hessf =cs (r) g = (1 —kf) g.
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More specifically, when k = 1

f=1—cosr,

Hessf =cosr=1—f
and when k = —1

f =—1+4coshr,
Hessf = coshr =1 +f.

4.3.2 General Characterization

We can now state and prove our main characterization of warped products.

Theorem 4.3.3 (Brinkmann, 1925). [f there is a smooth function f whose Hessian
is conformal to the metric, i.e., Hessf = Ag, then the Riemannian structure is
locally a warped product g = dr* + p* (r) gy around any point where df # 0.
Moreover, if df (p) = 0 and A (p) # O, then g = dr* + p*(r)ds>_, on some
neighborhood of p.

Proof. We first focus attention on the case where df never vanishes. Thus f can
locally be considered the first coordinate in a coordinate system.
Define p = |Vf| and note that

Dxp® = 2Hessf (Vf,X) = 2Ag (Vf.,X),

i.e., dp?> = 2Adf. Consequently also dA A df = 0. It follows that dp and dA are
both proportional to df and in particular that p and A are locally constant on level
sets of f. Thus we can assume that p = p (f) and A = A (f). This shows in turn that
/la df is closed and locally exact. Define r by dr = /l)df and use r as a new parameter.
Note that r is a distance function since

9, =Vr= ! \%i

is a unit vector field. We can then decompose the metric as g = dr’>+g, on a suitable
domain I x H C M, where H C {x e M | r (x) = rp}. When X _L 9, it follows that
Vxdr = ;def. Thus Hess r = 2g, and Ly g, = %g,.
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Observe that if g is defined such that g,, = p? (ro) gu is the restriction of g to
the fixed level set r = ry, then also

22
Ly, (0°gn) = (3:0°) gn = 2Apgn = ) pgn.

This shows that
g=dr’ +g, =dr*+ pgy.

Next assume that p is a nondegenerate critical point for f. After possibly
replacing f by af + B, we can assume that Hessf = Ag with f (p) = 0, df|, = 0,
and A (p) = 1. Further assume that M is the connected component of {f < €} that
contains p and that p is the only critical point for f. Since Hess f = g at p there exist
coordinates around p with y' (p) = 0 and

1

1 n\y __
Oy =

(6 +-+0m2).

Therefore, all the regular level sets for f are spheres in this coordinates system. We
can use the first part of the proof to obtain a warped product structure dr? + pgg—1
on M — {p} ~ (0,b) x §"!, where gg—1 is a metric on S" ! and r — 0 as we
approach p. When all functions are written as functions of r they are determined by
A in the following simple way:

F=10.
a
P p(r),
o _dp_,
dr? dr
ro="0=p0=0
r
d2f _ dp _ _
Lo="Oo=10=1

The goal is to show that ggi—1 = dsi_l. The initial conditions for p guarantee that
the metric dr? 4+ ,ozdsi_1 is continuous at p when we switch to Cartesian coordinates
as in section 1.4.4. We can use a similar analysis here. First assume that dimM = 2
and x = rcos ),y = rsin §, where r is as above and 6 coordinatizes S'. The metric
gst on S' must take the form ¢? (9) df? for some function ¢ : S' — (0, 00). The
metric is then given by g = dr? + p? (r) ¢* (6) d6>. As the new coordinate fields
are
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dy = cosfd, — sinBdy,

~ —_ N —

dy =sinf0, + cosB0s,

the new metric coefficients become
2
p=(r)
2

p* (r)
r2

g = cos’ @ + ¢2 (9) sin® 6,

gy = sin® 0 + ¢ (9) cos® 6.

As r — 0 we obtain the limits

gex (p) = cos? 0 + ¢? () sin’ 6,
gy (p) = sin” 0 + ¢* (9) cos? 6,

since p (0) = 0 and p (0) = 1. However, these limits are independent of 6 as they
are the metric coefficients at p. This implies first that ¢ (@) is constant since

&x (p) + 8y p)=1 +¢2 )

and then that ¢ = 1 as gy, (p) is independent of 6.

This case can be adapted to higher dimensions. Simply select a plane that
intersects the unit sphere S"~! in a great circle c (9), where 6 is the arclength
parameter with respect to the standard metric. The metric g restricted to this plane
can then be expressed as in the 2-dimensional case and it follows that 1 = ¢2 () =
gen—1 (jg, fi’g). As 55 can be chosen to be any unit vector on S"~! it follows that

gg—1 agrees with the standard metric on the unit sphere. O

This theorem can be used to characterize the warped product constant curvature
metrics from example 4.3.2.

Corollary 4.3.4. If there is a function f on a Riemannian manifold such that
fp) =0,
dfl, =0,

and

Hessf = (1—kf) g,

then the metric is the warped product metric of curvature k in a neighborhood of p
as described in example 4.3.2.
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Proof. Note that A = 1 — kf is an explicit function of f. So we can find f = f () as
the solution to

d*f
=1—-kf,
dr? f
f(0) =0,
f(0) =0,
and the warping function by
df
P =1VF1=" .
»

The solutions are consequently given by the standard warped product representa-
tions of constant curvature metrics:
Euclidean Space

g = dr* + rzdsi_l,
F) =17
Constant curvature k # 0

g = dr* + sni (r) ds,zl_l,
f0)=f—fesi ().

In all cases » = 0 corresponds to the point p. O

Remark 4.3.5. A functionf : M — R s called transnormal provided |df |2 = 02 (f)
for some smooth function p. We saw above that functions with conformal Hessian
locally have this property. However, it is easy to construct transnormal functions
that do not have conformal Hessian. A good example is the function f = ; sin (2r)
on the doubly warped product representation of S* (1) given by dr? + sin? (r) d 07 +
cos? (r) d63 on (0,7/2) x ST x S'.

4.3.3 Conformal Representations of Warped Products

If (M, g) is a Riemannian manifold and 1 is positive on M, then we can construct a
new Riemannian manifold (M, ¥%g). Such a change in metric is called a conformal
change, and v? is referred to as the conformal factor.

A warped product can be made to look like a conformal metric in two basic ways.

dr* + p* (r) gu = ¥ (p) (dp* + gu) .
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dr =y (p)dp.
p(r) = (p)
or
dr’ + p* (r) gu = ¥ (p) (dp” + p’gn) .

dr =y (p)dp,
p(r) = py¥ (p)-

4.3.3.1 Conformal Models of Spheres

The first of these changes has been studied since the time of Mercator. The sphere

of radius R and curvature Rlz can be written as

R%ds: = R* (df* + sin’ (t) ds._,)
= dr* + R*sin® (}) ds,_,.
The conformal change envisioned by Mercator takes the form

R*ds;, = v (p) (dp” + ds;_,) -

As
v (p)dp = dr,
¥ (p) = Rsin(})
we obtain
dr
d = )
P Rsin (Ig)
b= llog l—cos(;).
2 T 1+4cos(p)
Thus

1— 2
Cos(r): exp (2p)
R 1+ exp(2p)
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and
4 2
1//2=R2sin2(r)=R2 exp (2p) ,
R (1 +exp(2p))
showing that
4exp (2p)

R*ds2 = R? (dp* +ds;_;) -

(14 exp (2p))?

Switching the spherical metric to being conformal to the polar coordinate
representation of Euclidean space took even longer and probably wasn’t studied
much until the time of Riemann. The calculations in this case require that we first
solve

dp dr
p "~ Rsin (;) '
This integrates to
= 1 —cos (;)
1+ cos (1)
and implies
N 1=p
cos(7) = 1, 7

The relationship

Rsin () = py (p)

then gives us

V2 (p) =R
(1+p%’
and consequently

R*ds}, = R*Y? (p) (dp® + pds),_,)

4
=R (14 ) (dp” + p*ds;_,)
4R?
= SR
1+ p?)°
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This gives us a representation of the metric on the punctured sphere that only
involves algebraic functions. See also exercise 4.7.13 for a geometric construction
of the representation.

4.3.3.2 Conformal Models of Hyperbolic Space
We defined hyperbolic space H" in example 1.1.7 and exhibited it as a rotationally

symmetric metric in example 1.4.6. The rotationally symmetric metric on H" (R)
can be written as

n—1 —

= R*(dr* + sinh® (1) ds2_,) .

dr* + sny_, (r)ds,_; = dr’ + R*sinh® (},) ds;._,

A construction similar to what we just saw for the sphere leads to the conformal
polar coordinate representation

4R?

R* (df* + sinh® (1) ds;_,) =
(1-p%)

28R

This time, however, the metric is only defined on the unit ball. This is also known
as the Poincare model on the unit disc. See also exercise 4.7.13 for a geometric
construction of the representation.

Consider the metric

n

2
(xl ) ((dx")* + -+ + (dx")?)

on the open half space x" > 0. If we define r = log(x"), then this also becomes the
warped product:

g= er + (e—r)Z ((dxl)Z 4t (dxn—l)Z) .

The upper half space model can be realized as the Poincaré disc using an
inversion, i.e., a conformal transformation of Euclidean space that inverts in a
suitable sphere. It’ll be convenient to write x = (xl, - ,x”_l) as the first n — 1

coordinates and y = x". The inversion in the sphere of radius +/2 centered at
(0,—1) e R"! x R is given by
F(x,y) = (0,=1) + *5H
— (f;‘,—l i 2(yrﬁ2L1))

= ,lz (2x, 1—|x —yz) ,
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where 2 = |)c|2 + (y + 1)*. This maps H to the unit ball since

4y
Fley)l=1- "% =p

The goal is to show that F' transforms the conformal unit ball model to the conformal
half space model. This is a direct calculation after we write F out in coordinates:

S
Fr=2" k<n,
r
2(y+1
=200
72

This allows us to calculate the differentials so that we can check how the metric is
transformed:

(1 —4;)2)2 ((an)z > (dFk)z)

k<n

NG <2dy 20+ 1)2rdr)2

4> \ ()’
2)2 2
S () (2dxk - 2xk2rdr)
e N (O
1 v+ 1)2rdr X 2rdr
= d
S CERA RN 3O )
O+ 1)2rdr x"Zrdr
= (dy + Z ka ) y2 ( r2 2 Z
k<n k<n
o+ 1D2rdr 1 xX*2rdr
- ,d - dx*
2 e y2 kg; 2
1 +1) Zrdr Z kardr
g r y k<n
1, ., 1, (2rdr\?
= y2 (dy +an—l) =+ yzr ( r2 )
1  2rd
— 2rdr r2r
y r
1 2rd
-, rzrrdr
¥ or

1
= y2 (dy2 + anfl) .
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More generally, we can ask when
P2 (@) - (@)

has constant curvature? Clearly, ¥ - dx', ..., ¥ - dx" is an orthonormal coframe, and
]}/31, R ]}/an is an orthonormal frame. We can use the Koszul formula to compute
V;,0; and hence the curvature tensor. This task is done in exercise 4.7.21 or in [97,

vols. IT and IV]. Using
£\
=(1 2
=)

gives the Riemann model for a metric of constant curvature k on R" if k > 0 and on
B(0, fw) ifk <0.

The Riemann model with k = —1 and the Poincaré model from above are also
isometric if we use the map F (x) = 2x. This clearly maps the unit ball to the ball
of radius 2 and the metric is changed as follows

(1 - ;|F|2)2 (k; (dFk)z) B (1 —L|‘x|2)2 (k; (ka)z)'

4.3.4 Singular Points

The polar coordinate conformal model
dr + > () s, = ¥ (p) (dp” + pPds; )

offers a different approach to the study of smoothness of the metric as we approach
apoint ry € 91 where ¢ (rp) = 0. Assume that the parametrization satisfies p (ro) =
0. When gy = dsﬁ_1 smoothness on the right-hand side

v2 (p) (dp® + pds2_,)

depends only on ¥ (p) being smooth (see Section 1.4.4). Thinking of p as being
Euclidean distance indicates that this is not entirely trivial. In fact we must assume
that ¥ (0) > 0 and ¥©49 (0) = 0. Translating back to ¢ we obtain the usual
conditions: ¢ (0) = %1 and ¢V (0) = 0.
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4.4 Metrics on Lie Groups

We are going to study some general features of left-invariant metrics and show how
things simplify in the biinvariant situation. There are two examples of left-invariant
metrics. The first represents hyperbolic space H?, and the other is the Berger sphere
(see example 1.3.5).

4.4.1 Generalities on Left-invariant Metrics

We can construct a metric on a Lie group G by fixing an inner product (,) on 7,G
and then translating it to T, M using left-translation L, (x) = gx. The metric is also
denoted (X, Y) on G so as not to confuse it with elements g € G. With this metric,
L, becomes an isometry for all g since

(DLg) |n = (DLgjy1) |n
D (Lg o Ly—1)) |n
DLg;) |e © (DLy—1) |1

DLgh) |e © ((DLh) |e)_l

A~ A~~~

and we have assumed that (DLgh) |e and (DLy) | are isometries.

Left-invariant fields X, i.e., DL, (X|;) = X|,» are completely determined by their
value at the identity. This identifies 7.M with g, the space of left-invariant fields.
Note that g is in a natural way a vector space as addition of left-invariant fields is
left-invariant. It is also a Lie algebra as the vector field Lie bracket of two such fields
is again left-invariant. In section 1.3.2 we saw that on matrix groups the Lie bracket
is simply the commutator of the matrices in 7, M representing the vector fields.

If X € g, then the integral curve through e € G is denoted by exp (£X). In case of
a matrix group the standard matrix exponential ¢’X is in fact the integral curve since

d d :
dtlt:to () = dtl‘v=0 (e(to-l-‘ )X)
— ddtlx=0 (et()XeSX)
d
= =0 (Looxe™)

d
= D (Lyox) (dt|s=0e~‘x)
= D (L) (X]1)

= X| 0.
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The key property for ¢ — exp (¢X) to be the integral curve for X is evidently that the
derivative at t = 0 is X|, and that ¢ — exp (¢X) is a homomorphism

exp (( + s) X) = exp (1X) exp (sX) .
The entire flow for X can be written as follows
F'(x) = xexp (tX) = Ly exp (tX) = Rexpx) (%) .

The curious thing is that the flow maps F* : G — G don’t act by isometries unless
the metric is also invariant under right-translations, i.e., the metric is biinvariant.
In particular, the elements of g are not in general Killing fields. In fact, it is the
right-invariant fields that are Killing fields for left-invariant metrics as their flows
are generated by

F' (x) = exp (1X) x = Ry exp (1X) = Lexp(x) (¥) .

We can give a fairly reasonable way of checking that a left-invariant metric is
also biinvariant. Conjugation x > gxg~! is denoted Ad, (x) = gxg~! on Lie groups
and is called the adjoint action of G on G. The differential of this action ate € G
is a linear map Ad, : g — g denoted by the same symbol, and called the adjoint
action of G on g. It is in fact a Lie algebra isomorphism. These two adjoint actions
are related by

Ad, (exp (£X)) = exp (t Ad, (X)) .

This is quite simple to prove. It only suffices to check that t = Ad, (exp (X))
is a homomorphism with differential Ad, (X) at + = 0. The latter follows from
the definition of the differential of a map and the former by noting that it is the
composition of two homomorphisms x — Ad, (x) and ¢ — exp (1X). We can now
give our criterion for biinvariance.

Proposition 4.4.1. A left-invariant metric is biinvariant if and only if the adjoint
action on the Lie algebra is by isometries.

Proof. In case the metric is biinvariant we know that both L, and R,-i act by
isometries. Thus also Adg = Lg o R,—1 acts by isometries. The differential is then a
linear isometry on the Lie algebra.

Conversely, assume that Ad, : g — g is always an isometry. Using that

(DR;) |1 = (DRyg) | o (DRy) o)™
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it clearly suffices to prove that (DRg) | is always an isometry. This follows from

Ry = Ly 0 Ady1,
(DRy) |e = D (L) |e 0 Adg—1 .

O

In sections 4.4.2 and 4.4.3 we shall see how this can be used to check whether
metrics are biinvariant in some specific matrix group examples.

Before giving examples of how to compute the connection and curvatures for
left-invariant metrics we present the general and simpler situation of biinvariant
metrics.

Proposition 4.4.2. Consider a Lie group G with a biinvariant metric (,) and
X,Y,Z,W € g. Then

VyX = ;[Y,X],
ROXNZ =, [X.1.2].
RX,Y,Z,W) = i([X,Y],[W,Z]).

In particular, the sectional curvature is always nonnegative, when (,) is positive
definite.

Proof. We first need to construct the adjoint action ady : g — g of the Lie algebra
on the Lie algebra. If we think of the adjoint action of the Lie group on the Lie
algebra as a homomorphism Ad : G — Aut(g), then ad : g — End(g) is simply
the differential ad = D (Ad) |.. In section 2.1.4 it is shown that ady (Y) = [X,Y].
The biinvariance of the metric shows that the image Ad(G) C O (g) lies in the
group of orthogonal transformations on g. This immediately shows that the image
of ad lies in the set of skew-adjoint transformations since

d
0= Y.7)|=
(Do

d
dt (Adexp(tX) (Y) s Adexp(rX) (Z)) |t=0

(ade,Z)+(Y,ade).

Keeping this skew-symmetry in mind we can use the Koszul formulaon X, Y, Z €
g to see that
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2(VyX,Z) =Dx (Y,Z)+ Dy (Z,X) — Dz (X,Y)
—(X,Y],2) - ([¥.Z].X) + ([Z,X],Y)
=([Y,X],2).
As for the curvature we then have
R(X,Y)Z = VxVyZ — VyVxZ — Vix yZ
= Vx[Y,Z] - ;VY X,7] - ; [[X,Y],Z]

SN A e N

1

X, [Y,Z]] + 4

[Yv [ZvX]] + [Zs [Xs Y]] - [[Xv Y] 7Z]

A= s = N =
N

1
4
1

= -, [x.1.2].

and finally

RK)ZW) = =, (X,¥],2,W)

L2 XYW

— (2w [x.Y)

L (XY, 7).

|

We note that Lie groups with biinvariant Riemannian metrics always have
nonnegative sectional curvature and with a little more work it is also possible to
show that the curvature operator is nonnegative (see exercise 3.4.32).

4.4.2 Hyperbolic Space as a Lie Group

Let G be the 2-dimensional Lie group

G={[3fj||a>0,,3€[&}.
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Notice that the first row can be identified with the upper half plane. The Lie algebra

of Gis
g:{[gg}m,beﬂ%}.
If we define
X = 10 Y= 01 ’
00 00
then

X.Y]=XY—YX =Y.

Now declare {X, Y} to be an orthonormal frame on G. Then use the Koszul formula
to compute

VxX =0, VyY =X, VxY =0, VyX = VxY — [X, Y] = —Y.
Hence,
RX,Y)Y = VxVyY = VyVxY — Vx y)¥ = VxX — 0 — VyY = —X,

which implies that G has constant curvature —1.
We can also compute Ad,:

o] o=t leelet]

_ [g —a,30+ bozi|

=aX+ (—af +ba)Y.
10 01

oo [60]

1-p 0«

o7 ) [o5)

This, however, is not an orthonormal basis unless § = 0 and « = 1. Therefore, the
metric is not biinvariant, nor are the left-invariant fields Killing fields.

The orthonormal basis

is then mapped to the basis
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This example can be generalized to higher dimensions. Thus, the upper half plane
is in a natural way also a Lie group with a left-invariant metric of constant curvature
—1. This is in sharp contrast to the spheres, where only §> = SU(2) and S' = SO (2)
are Lie groups.

4.4.3 Berger Spheres

On SU(2) consider the left-invariant metric such that Al_le, Az_le, A;ng is an
orthonormal frame and [X;, X;+1] = 2X;4, (indices are mod 3) as in example 1.3.5.
The Koszul formula is:

2(VxX; Xe) = (X3 X5] . X) + (X X X5) = ([X5, Xe] . X))

i

From this we can quickly see that as with a biinvariant metric we have: Vy,X; = 0.
It also follows that

AL, + AR —A2
Vx Xit1 = ( +2 i Xit2,

2
Ai+2

V. Xi = [Xi1. Xi] + Vx, Xit1

A L
— ( i+2 i+1 i Xi+2-

2
Ai+2

This shows that
R(Xi, Xi+1)Xi+2 = Vx, Vx,, Xit2
—Vxip VxXit2 — Vixox 1 Xit2

=0-0-0.

Thus all curvatures between three distinct vectors vanish.
The special case of Berger spheres occur when A} = ¢ < 1,4, = A3 = 1. In
this case

VXIXZ = (2 — 82) X3, VX2X1 = —€2X3
Vi, X3 = X, Vi, Xo = —=X|,
VX3X1 = €2X2, VX1X3 = (82 — 2) Xz.

and

R(X1.X) X> = £°X),



144 4 Examples

R(X3,X) X1 = 'X;,
R(X2.X3) X3 = (4 —38%) X,

RX AXy) = 2X) A X,
R (X3 AX)) = e2X3 A X,
m(Xz /\X3) = (4 — 382) Xz /\X3.

Thus all sectional curvatures must lie in the interval [¢2, 4 — 3¢?]. Note that as
& — 0 the sectional curvature sec (X;, X3) — 4, which is the curvature of the base
space 52 (}) in the Hopf fibration.

We should also consider the adjoint action in this case. The standard orthogonal
basis X, X», X3 is mapped to

Adp 9% = (|Z|2 _ |W|z) X, — 2Re (w2) X» — 2Im (w2) X,
iz ]

Adp 7 X2 = 20Im @) X1+ Re (W) + ) Xa + Im (w? + ) X3,
iz ]

Adr z W_ X3 = 2Re (ZV_V)XI + Re (1 (Z2 _‘,‘}2)))(2 4+ Im (1 (Z2 _Wz))X:;.
L—W Z ]

If the three vectors X, X», X3 have the same length, then we see that the adjoint
action is by isometries, otherwise not.

4.5 Riemannian Submersions

In this section we develop formulas for curvatures that relate to Riemannian
submersions. The situation is similar to that of distance functions, which as we know
are Riemannian submersions. In this case, however, we determine the curvature of
the base space from information about the total space.

4.5.1 Riemannian Submersions and Curvatures

Throughout this section let F : (1\_4 , g) — (M, g) be a Riemannian submersion.
Like with the metrics we shall use the standard “bar” notation: p and p and X and
X for points and vector fields that are F-related, i.e., F (p) = p and DF (X) = X.
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The vertical distribution consists of the tangent spaces to the preimages F~! (p) and
is given by ¥; = kerDF; C T,—,M . The horizontal distribution is the orthogonal
complement J7; = (7/5,)J' C TpM. The fact that F is a Riemannian submersion
means that DF : 5% — T,M is an isometry forall p € M. Given a vector field X on
M we can always find a unique horizontal vector field X on M that is F related to X.
We say that X is a basic horizontal lift of X. Any vector in M can be decomposed
into horizontal and vertical parts: v = v”" + v,

The next proposition gives some important properties for relationships between
vertical and basic horizontal vector fields.

Proposition 4.5.1. Let V be a vertical vector field on M and X, Y, Z vector fields
on M with basic horizontal lifts X, Y, Z.

(1) [V,)_(] is vertical,
@ (Lvg) (_5(, Y) = Dyg (5(,_1?) =0, o ]
3 g([X.Y].V) =2g(VyY.V) = =28 (VvX.Y) = 28 (V}V.X),

@ Vi¥ =Wy + L [x 7]

Proof. (1): X is F related to X and V is F related to the zero vector field on M. Thus
DF ([X.V]) = [DF (X) .DF (V)] = [X.0] = 0.
(2): We use (1) to see that

(Lvd) (X.Y) = Dyg (X.¥) =g ([V.X].¥) —g (X.[V.Y])
=Dvg(X.Y).

Next we use that F' is a Riemannian submersion to conclude that g (}_(, I_/) =
g (X,Y). But this implies that the inner product is constant in the direction of the
vertical distribution.

(3): Using (1) and (2) the Koszul formula in each case reduces to

This proves the claim.

(4) We have just seen in (3) that } [X, )_/]7/ is the vertical component of VY. We
know that VxY is horizontal so it only remains to be seen that it is the horizontal
component of VzY. The Koszul formula together with F relatedness of the fields
and the fact that inner products are the same in M and M show that
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2% (Vg.2) = 2g (Vy¥.Z) = 23 (VXY, Z) .

|

Note that the map that takes horizontal vector fields X,Y on M to [X, Y]a//
measures the extent to which the horizontal distribution is integrable in the sense
of Frobenius. It is in fact tensorial and skew-symmetric since

X7 =f[x.Y]” + (DxH Y =f[x.¥]"

Therefore, it defines a map S x ¢ — ¥ called the integrability tensor.

Example 4.5.2. In the case of the Hopf map §° (1) — S? (;) we have that X is
vertical and X5, X3 are horizontal. However, X, X3 are not basic. Still, we know that
[X2, X3] = 2X; so the horizontal distribution cannot be integrable.

We are now ready to give a formula for the curvature tensor on M in terms of the
curvature tensor on M and the integrability tensor.

Theorem 4.5.3 (B. O’Neil! and A. Grey). Let R be the curvature tensor on M and
R the curvature tensor on M. These curvature tensors are related by the formula

gRX.VY.X)=3(R(X.7)7.X) + ’5(1? ‘2

4

Proof. The proof is a direct calculation using the above properties. We calculate
the full curvature tensor so let X, Y, Z, H be vector ﬁe_lds_ on M Witl;l vanishing Lie
brackets. This forces the corresponding Lie brackets [X , Y], etc. in M to be vertical.

)

g(R(X.7)2.H) = & (VxVsZ — VsV3Z - Vg5

— (% (wz+,[7.2]).A)

+2([2.H] . [X.Y])

:g(VXVyZ—}—; X.wz| + VX[I_/,Z],I:I)
] It 17 1 o o -
3 (Vivaz+  [FWz| + vi[kZ] ,H)
I
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=g¢g(RX,Y)Z,H)

~

([x.¥].[#.2])

When X = H and Y = Z we get the above formula. O

oQl

4
1 _
2

More generally, one can find formulas for R where the variables are various
combinations of basic horizontal and vertical fields.

4.5.2 Riemannian Submersions and Lie Groups

One can find many examples of manifolds with nonnegative or positive curvature
using the previous theorem. In this section we shall explain the terminology in the
general setting. The types of examples often come about by having (M , g) with a
free compact group action G by isometries and using M = G\M = M/G. Note we
normally write such quotients on the right, but the action is generally on the left so
G\M is more appropriate. Examples are:

C]P)n — SZVH—I/SI’
TS" = (SO(n+ 1) xR") /SO (n),
M = SU(3) /T?.

The complex projective space will be studied further in section 4.5.3.

The most important general example of a Riemannian submersion comes about
by having an isometric group action by G on M such that the quotient space is
a manifold M = M/G (see section 5.6.4 for conditions on the action that make
this true). Such a submersion is also called fiber homogeneous as the group acts
transitively on the fibers of the submersion. In this case we have a natural map
F : M — M that takes orbits to points, i.e., p = {x-p | x € G} for p € M. The
vertical space #; then consists of the vectors that are tangent to the action. These
directions can be found using the Killing fields generated by G. If X € g = T,G,
then we get a vector X|; € T;M by the formula

d _
Xl = @xp (%)) im0,
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This means that the flow for X on M is defined by F' (p) = exp (%) - p. As the
map p — x - p is assumed to be an isometry for all x € G we get that the flow
acts by isometries. This means that X is a Killing field. The next observation is that
the action preserves the vertical distribution, i.e., Dx (”1/1-,) = ¥, Using the Killing
fields this follows from

Dx (X[;) = Dx (jt (exp (1) - p) |f=o)

d
o (5 @xp (%) -P) =g

jt ((xexp (1%) X1 xp) =0
((Ad, (exp (tX))) - x - P) |i=0

d

i ((exp (tAd; X)) - x - p) |r=0

(Ad, (X)) |x~f"

Thus Dx (X | ,—,) comes from first conjugating X via the adjoint action in 7,G and then
evaluating it at x - p. Since (Ad, (X)) |x5 € #+5 we get that Dx maps vertical spaces
to vertical spaces. However, it doesn’t preserve the Killing fields in the way one
might have hoped for. As Dx is a linear isometry it also preserves the orthogonal

complements. These complements are our horizontal spaces J%; = (7/1-)J' C T,-,M .
We know that DF : J¢; — T,M is an isomorphism. We have also seen that all of the
spaces 7.5 are isometric to .4 via Dx. We can then define the Riemannian metric
on T,M using the isomorphism DF : . — T,M. This means that F : M—->M
defines a Riemannian submersion.

In the above discussion we did not discuss what conditions to put on the action
of G on M in order to ensure that the quotient becomes a nice manifold. If G is
compact and acts freely, then this will happen. The general situation is studied
in section 5.6.4. In the next subsection we consider the special case of complex
projective space as a quotient of a sphere. There is also a general way of getting
new metrics on M it self from having a general isometric group action. This will be
considered in section 4.5.4.

4.5.3 Complex Projective Space

Recall that CP" = $?"*1/S! where S! acts by complex scalar multiplication on
§2+1 c €1 If we write the metric as

ds%,H_l =dr? + sinz(r)dsgn_l + cos?(r)d6?,
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then we can think of the S! action on $?"*! as acting separately on $>*~! and S'.
Then
cP = o,

72[] % ((S2n—1 « Sl)/Sl)’

and the metric can be written as discussed in section 1.4.6
dr* + sin*(r) (g + cos>(r)h) .
If we restrict our attention to the case where n = 2, then the metric can be written as
dr* + sin*(r) (cos’(r)(c')* + (62)* + (07)?).

This is a bit different from the warped product metrics we have seen so far. It
is certainly still possible to apply the general techniques of distance functions to
compute the curvature tensor. Instead we use the Riemannian submersion apparatus
that was developed in the previous section. We shall also consider the general case
rather than n = 2.

The O’Neill formula from theorem 4.5.3 immediately shows that CP" has
sectional curvature > 1. Let V be the unit vector field on $**! that is tangent to the
S! action. Then i V is the unit inward pointing normal vector to $***! C C"*!. This
shows that the horizontal distribution, which is orthogonal to V, is invariant under
multiplication by i. This corresponds to the fact that CP" has a complex structure.
It also gives us the integrability tensor for this submersion. If we let X, ¥ be basic
horizontal vector fields and denote the canonical Euclidean metric on C"*! by g,

then
1v)

I
o1

ol
/N
N =
—

I
i

(v&'r.v)
g(very)
=z (7.v¢")
g(7.vgiv)

=1 (¥,iX)

=z(7.iX).

Thus
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If we let X, Y be orthonormal on CP", then the horizontal lifts X, Y are also
orthonormal so
3 g2
sec(X.¥) = 14, ‘[X,Y]y‘

1+3)2(V,i%))
E 47

with equality precisely when ¥ = +iX.

The proof of theorem 4.5.3 in fact gave us a formula for the full curvature tensor.
One can use that formula on an orthonormal set of vectors of the form X,iX, Y, 1Y
to see that the curvature operator is not diagonalized on a decomposable basis of the
form E; A E; as was the case in the previous examples. In fact it is diagonalized by
vectors of the form

XANiIXEY ALY,
XAYLiXAiY,
XA1Y L+ Y AIX

and has eigenvalues that lie in the interval [0, 6].

We can also see that this metric on CP" is Einstein with Einstein constant 2n + 2.
If we fix a unit vector X and an orthonormal basis for the complement Ey, . . ., E>,—>
so that the lifts satisfy i X = E,, then we get that

2n—2
Ric (X, X) = ) sec (X, E;)
i=0
2n—2
= sec (X, Ep) + Z sec (X, E;)
i=1
B ~ 2n—2 B _
=143 (@0 + 3 (143 (E9))
i=1
o 2n—2
=143 (i XiX)[ + (1 +3 |0I2)
i=1

=143+2n-2
=2n+ 2.
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4.5.4 Berger-Cheeger Perturbations

The construction we do here was first considered by Cheeger and was based on a
slightly different construction by Berger used to construct the Berger spheres.

Fix a Riemannian manifold (M, g) and a Lie group G with a right-invariant
metric (,). If G acts by isometries on M, then it also acts by isometries on G x M
with respect to the product metrics g2 = A(,) + g, A > 0 via the action
h-(x,p) — (xh_l, hp). This action is free as G acts freely on itself. The quotient
(G x M) /G is also denoted by G xg M. The natural map M — G x M — G xg M
is a bijection. Thus the quotient is in a natural way a manifold diffeomorphic to M.
The quotient map Q : G x M — M is explicitly given by Q (x, p) = xp.

As G acts by isometries with respect to the product metrics A (,) + g we obtain
a submersion metric gy on M = G xg M. We wish to study this perturbed metric’s
relation to the original metric g. The tangent space T,M is naturally decomposed
into the vectors 7, that are tangent to the action and the orthogonal complement
#¢,. Unlike the case where G acts freely on M this decomposition is not necessarily
a nicely defined distribution. It might happen that G fixes certain but not all points
in M. For example, at points p that are fixed it follows that ¥, = {0}. At other
points ¥, # {0}. The nomenclature is, however, not inappropriate. If X € T.G, then
F' (p) = exp (¢tX) - p defines a 1-parameter group of isometries. If X = jtF "(P) =0
is the corresponding Killing field on M, then (—3€,X | 1,) € T,G x T,M is a vertical
direction for this action at (e, p) € G x M. Therefore, ¥}, is simply the image of the
projection of the vertical distribution to 7,M. Vectors in /7, are thus also horizontal
for the action on G x M. All the other horizontal vectors in 7,G x T,M depend on

the choice of A and have a component of the form (\X|p \; X, A |3§|2 X|,,). The image
of such a horizontal vector under Q : G x M — M is given by

DO (|X|,,|§%,A |3e|2X|,,) = [, DQ (x.0) + 4| X DQ (0.X],)

2 d
= ;Do ({ (e exp (-1 [0
d
#2120 (0. § €5 (13)-p) o)
2 d
== Xb, , (@(exp (=), ) li=o
d
FAIX | (Q(e.exp () - p)) lio
d
=~ |x}[; , exp(-1%) - p) =0

d
+AIXI® | (exp (%) ) limo
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= |X|ﬁ|§X|p +A |%|2X|p
= (A |3€|2 + |X|p|§) X|p

The horizontal lift of X|, € ¥} to T,G x T,M is consequently given by

| X1, PAESE
COARRP XL AP + X,
and its length in g, satisfies
2 ‘XlP‘z 2
DOES IR IPYEY
8 AXP A+ (X,
2
AP X1,
AERP+xLE)
Ak
= 2 2|X|1’|§
21X+ X1,

8

X1, -

2
X|p .
A
means that the metric g, is gotten from g by squeezing the orbits of the action

of G. However, the squeezing depends on the point according to this formula. The
only case where the squeezing is uniform is when the Killing fields generated by the
action have constant length on M. The Berger spheres are a special case of this.

Using that we know how to compute horizontal lifts and that the metric on G x M
is a product metric it is possible to compute the curvature of g, in terms of the
curvature of g, A, the curvature of (, ), and the integrability tensor. We will consider
one important special case.

Let X,Y € JZ,. In this case the vectors are already horizontal for the action on
G x M. Thus we have that sec,, (X,Y) > sec, (X, Y). There is a correction coming
from the integrability tensor associated with the action on G x M that possibly
increases these curvatures.

In particular,

has limit 0 as A — 0 and limit |X|,,|Z as A — oo. This
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4.6 Further Study

The book by O’Neill [80] gives an excellent account of Minkowski geometry and
also studies in detail the Schwarzschild metric in the setting of general relativity. It
appears to have been the first exact nontrivial solution to the vacuum Einstein field
equations. There is also a good introduction to locally symmetric spaces and their
properties. This book is probably the most comprehensive elementary text and is
good for a first encounter with most of the concepts in differential geometry. The
third edition of [47] also contains a good number of examples. Specifically they
have a lot of material on hyperbolic space. They also have a brief account of the
Schwarzschild metric in the setting of general relativity.

Another book, which contains many more advanced examples, is [12]. This is
also a good reference on Riemannian geometry in general.

4.7 Exercises

Remark. Tt will be useful to read exercises 3.4.23, 3.4.24, and 3.4.25 before doing
the exercises for this chapter.

EXERCISE 4.7.1. Show that the Schwarzschild metric does not have parallel curva-
ture tensor.

EXERCISE 4.7.2. Show that the Berger spheres (¢ # 1) do not have parallel
curvature tensor.

EXERCISE 4.7.3. This exercise covers a few interesting aspects of projective
spaces.

(1) Show that U (n + 1) acts by isometries on CPP". Hint: Use that U (n 4 1) acts
by isometries on $>**! (1) and commutes with the quotient action that creates
CP".

(2) Show that for each p € CP” there is an isometry A, € Iso, with DA, |, = —I.

(3) Use the fact that isometries leave V and R invariant to show that VR = 0.

(4) Repeat 1,2,3 for HP" using the symplectic group Sp (n+ 1) of matrices
with quaternionic entries satisfying A*A = I, where A* = A’. See also
exercise 1.6.22 for more on quaternions.

EXERCISE 4.7.4. Assume that a Riemannian manifold (M, g) has a function f such
that

Hessf = A (x) g + u (f) df>,

where A : M — R and ¢ : R — R. Show that the metric is locally a warped
product.
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EXERCISE 4.7.5. Show that if Hessf = Ag, then A = %/

EXERCISE 4.7.6. Consider a function f on a Riemannian manifold (M, g) so that

Vf # 0 and Vf is an eigenvector for S (X) = VxVf. Show that if S has < 2
eigenvalues, then the metric is locally a warped product metric.

EXERCISE 4.7.7 (O’NEILL). For a Riemannian submersion as in section 4.5 define
the A-tensors

We also have the T-tensor from exercises 2.5.26 and 2.5.25 but our notation for
horizontal and vertical fields is the reverse of tangent and normal fields from those
exercises. Note that both A; and 7y make sense. We can extend both tensors by
declaring Ay = 0 and Tz = 0 and thus obtain (1, 2)-tensors on M.

(1) Show that both A-tensors are tensorial.

(2) Show that Az = | [X,7]”.

(3) Show thatg (AgY.V) = —g (Y. AzV).

(4) Show that (VvA)W = _ATVW and (VxA)W = _AAXW-
(5) Show that (V)_(T)l? = _TA)-(I_/ and (VvT)y = _TTVI_/'
(6) Show that

g((VyA)z V. W) = g(TyV,A3W) — g (TyW,AzV).

EXERCISE 4.7.8 (O’NEILL). This exercise builds on the previous exercise. The
Gauss equations explain how to calculate the curvature tensor on vectors tangent
to the fibers of a submersion. Show that horizontal and “verti-zontal” curvatures can
be calculated by the formulas

R(V.X.X.7) = R(V.X.X.Y) - 3|4z Y|’
and
R(V.X.X,V) =2 ((Vy), V. X) + A3V’ — | TvX|”.

Compare the last formula to the radial curvature equation.

EXERCISE 4.7.9. Let (M,g) = (M, xM,,g, + g») be a Riemannian product
manifold.

(1) Show that R = R; + R,, where R; is the curvature tensor of (M;, g;) pulled back
to M.

(2) Assume for the remainder of this exercise that (M;, g;) has constant curvature
c¢;. Show that R = c1g1 0 g1 + 282 © g>.
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(3) Show that (M, g) is Einstein if and only if (n; —1)c; = (na — 1) ¢, where
n; = dll’an

(4) Show that the Weyl tensor for (M, g) vanishes when either ¢c; = —cy, n; = 1,
or n; = 1. Hint: Calculate (g; — g2) o (g1 + g2) and compare it to R.

(5) Show that if none of the conditions in (4) hold, then the Weyl tensor does not
vanish.

EXERCISE 4.7.10. Let (M",g) = (I x N,dr* + p? (r) gN) be a warped product
metric with constant curvature k.

.\ 2
(1) Show that (Nn—l , p2 (r) gN) has constant curvature k + (2) ifn > 2.

(2) Show explicitly that hyperbolic space can be represented as a warped product
over both hyperbolic space and Euclidean space.

EXERCISE 4.7.11. Consider an Einstein metric (N”_l,gN) with Ric = Z:%AgN,
A < 0.Findap : R — (0,00) such that (M",g) = (R x N,dr* + p*(r) gv)
becomes an Einstein metric with Ric = Ag.

EXERCISE 4.7.12. Let (N"~!, gy) have constant curvature ¢ with n > 2. Consider
the warped product metric (M, g) = (I x N, dr* + p* (r) gn).

(1) Show that the curvature of g is given by

22

R:C_zp g,og,—Zpdrzog,
p p
C_ -2 .. C_.Z
= pngog—2(2+ pzp)drzog.

(2) Show that the Weyl tensor vanishes.
(3) Show directly that the Schouten tensor satisfies:

(VxP) (Y.Z) = (VyP) (X.2Z).

See also exercise 3.4.26 for an indirect approach when n > 3.

EXERCISE 4.7.13. The stereographic projection of x"*! = 0 to a hypersurface M C

R"xR that is transverse to the lines emanating from —e,+; = (0,...,0,—1) is given

by x — S (x) where x € R" and S (x) = —en41 + A (%) (ent1 + (x,0)).

(1) When M = S§" (1) show that A (1 + |x|2) = 2 and that S is a conformal map
with the property that in these coordinates the metric on S” (1) is given by

4

(1 + |x|2)

zg]Rn.
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(2) When M = H" (1) € R™' show that A (1 — |x|2) = 2 and that S is a conformal

map with the property that in these coordinates the metric on H” (1) is Poincaré
disc

(ot

EXERCISE 4.7.14. Let § = ¢?Vg be a metric conformally equivalent to g and a”~
referring to metric objects in the conformally changed metric.

(1) Show that

8Rn.

VxY = VxY + (Dxy) Y + (Dyy) X — g (X, Y) V.
(2) With notation as in exercise 3.4.23 show that
cVR=R-2 (Hess v — (dlp)2> og—|dygog
—R— (2Hess1// —2(dy)* + |dw|2g) og.
(3) If X, Y are orthonormal with respect to g, show that

e*V§ec (X, Y) = sec (X, Y) — Hess ¢ (X, X) — Hess ¢ (Y, Y)
+(Dxy)? + (Dyy)* = |dy .

(4) Show that
Ric = Ric — (n — 2) (Hess ¢ — dy?) — (Aw +(n—2) |d¢|2) g
(5) Show that
e?scal = scal =2 (n— 1) Ay — (n— 1) (n — 2) |[dy/|* .
(6) Using exercise 3.4.25 show that
W =W.

This is referred to as the conformal invariance of the Weyl tensor under
conformal changes and was discovered by Weyl.
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EXERCISE 4.7.15. Show that

| - )2 1
( oo+ ) g = o dp” + pds; ),
4 1— (Po)
P
where the right-hand side is the scalar flat metric from section 4.2.3. Use this to
rewrite the Schwarzschild metric from section 4.2.5 as

1 a 4 L pn=3 _ 3= 2
n—3 3—n 2 4 2
+ r n—I1 + d@ .

(4’°° ) RT3y (jpg‘3+r3—n)

EXERCISE 4.7.16 (STATIC EINSTEIN EQUATIONS). Consider a metric of the form
(M.g) = (N xR, gy + w?dr*), where w : N — (0,00) and dimN = n — 1. Let
X, Y,Z be vector fields on N. Note that they can also be considered as vector fields
on M.

(1) Show that V§Y = V¥Y and RV (X,Y)Z = R (X,Y)Z. Conclude that
RicM (X, 9;) = 0.

(2) Show the vector field 0, satisfies |8r|2 =w?in (M, g).

(3) Show that

1
Vo, = —wVwand V{9, = VX = (Dxw) 0.
w

Hint: Show that g (vgfa,, 8,) = 0 and calculate Dy |9,|*.
(4) Show that
RM™ (X,9,) 0, = —wVxVw,
and
Ric” (3,,0,) = —wAw,
Ric” (X, X) = Ric" (X, X) — leHess X.X).

(5) Show that Ric® = Ag, A € R, if and only if

1
RicY 0 Hessw = Agy,

wAwW + Aw? = 0,
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if and only if

1
RicV — " Hessw = Agn,
w
scal” = (n—2) A.

EXERCISE 4.7.17. A Riemannian manifold (M, g) is said to be locally conformally
flat if every p € M lies in a coordinate neighborhood U where

g=e2 ((dxl)2 +o (dx")z) .

(1) Show that the space forms S} with metrics dr? + sn? (r)ds>_, are locally
conformally flat.

(2) Show that if an Einstein metric is locally conformally flat, then it has constant
curvature.

(3) When n = 2 Gauss showed that such coordinates always exit. They are called
isothermal coordinates. Assume that dimM = 2.

(a) Show that if du # 0 on some open subset O C M, then up to sign there is
aunique 1-form @ = iy, vol, that satisfies: |du| = |w| and g (du, w) = 0.

(b) Show that dw = (A,u) vol,.

(c) Show that isothermal coordinates exit provided that for each p € M it is
possible to find u on a neighborhood of p so that Agu = 0 and du|, # 0.

EXERCISE 4.7.18 (SCHOUTEN 1921). Let (M, g) be a Riemannian manifold of
dimension n > 2.

(1) Show that g is locally conformally flat if and only if W = 0 and locally
there is a function ¥ so that P = 2Hessy — 2 (dy)* + |d1//|2g. Note that
the condition W = 0 is redundant when n = 3. Hint: You have to use the
curvature characterization of being locally Euclidean (see exercise 3.4.20 or
theorem 5.5.8).

(2) Show that if g is locally conformally flat then

(VxP) (Y.Z) = (VyP) (X.2Z).

Hint: When n > 3, this follows from exercise 3.4.26. When n > 3, use that
R = P o g, the specific form of P from (1), and show that

(VxHessvy) (Y,Z) — (VyHess¢¥) (X,Z) =R(X,Y,Vy,2).
EXERCISE 4.7.19 (SCHOUTEN 1921). In this exercise assume that we have a

Riemannian manifold of dimension n > 2 such that W = 0 and (VxP) (Y,Z) =
(VyP) (X, 2).
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(1) Show that if there is a 1-form w such that
1 1
Vo= P+w— g,
w ) +w ) || g

then locally @ = dy and P = 2 Hess ¥ — 2 (dy)* + |V1,//|2 g.

(2) The integrability condition for finding such an w in the sense of exercise 3.4.20
can be stated using only covariant derivatives. On the left-hand side we take
one more derivative Vf“,a) and use the Ricci formula for commuting covariant
derivatives as an alternative to Clairaut’s theorem on partial derivatives:

V)%,Ya) — V)ZI’XC() = RX,yCl).
Show that if Vo = 1P+ w? — } |w|* g, then
> 1
(Viyo) @) =, (VxP) (Y. 2)

+ (Vxo) (V) 0 (2) + o (Y) (Vxo) (Z)
—g(Vxo,w)g(Y,Z).

(3) Use Vo = 1P+ w? — ! ||’ g again to show that

1 1
Viyw —Viyo = PX.Z)o(Y)— P(X.V)g(V.2)

—;P(Y,Z)a)(X) + ;P(Y, V)g(X,2Z)

(Pog)(X,Y,V,2),

where V is the vector field dual to w.
(4) Now use R = P o g to show that

(Rxyw) (Z) = (Pog)(X,Y,V,Z).

(5) Finally, show that this implies that the integrability conditions for solving for @
are satisfied and conclude that the manifold is locally conformally flat.

EXERCISE 4.7.20. Consider a product metric (N2 xR, gy + gR).

(1) Show that Pyxg = *3" (g — gr)-
(2) Show that this product metric is conformally flat if and only if scaly is constant.
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EXERCISE 4.7.21. Let (M",g), n > 2 have constant curvature k.

(1) Use exercise 4.7.19 to show that the metric is locally conformally flat.
(2) Show thatif g = ¢ ((dx!)” + -+ + (dx")?), then

2e‘”3i3je‘” = (k + Z (ake‘”)z) &/

Hint: Use part 2 of 4.7.14.
(3) Show that

e’ =a+Zbixi+cZ(xi)2,

where k = dac — Y b2,
EXERCISE 4.7.22. The Heisenberg group with its Lie algebra is

[1ac]
G = 01b|]|ab,ceRy,
| 001 ]
[0 xz]
g= 00y |]|ab,ceR
1 000
A basis for the Lie algebra is:
010 000 001
X=]1000|,Y=]001],Z2=(000
000 000 000

(1) Show that the only nonzero brackets are
[X,Y]=—-[Y.X] =Z.

Now introduce a left-invariant metric on G such that X, Y, Z form an orthonor-
mal frame.

(2) Show that the Ricci tensor has both negative and positive eigenvalues.

(3) Show that the scalar curvature is constant.

(4) Show that the Ricci tensor is not parallel.

EXERCISE 4.7.23. Consider metrics of the form

dr* + p*(r) (p*(N(@")? + (6%)* + (7)) -
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(1) Show that if
b=,
1[)2 =1- k,O_4,
.
p(0) =k+,p(0) =0,
¢ (0) =0.¢(0) =2.
then we obtain a family of Ricci flat metrics on TS2.
(2) Show that p(r) ~ r, p(r) ~ 1, p(r) ~ 2kr™ as r — oo. Conclude that all
curvatures are of order ° as r — oo and that the metric looks like (0, c0) x
RP* = (0, 00) x SO (3) at infinity. Moreover, show that scaling one of these

metrics corresponds to changing k. Thus, we really have only one Ricci flat
metric; it is called the Eguchi-Hanson metric.

EXERCISE 4.7.24. For the general metric
dr* + p*(r) (#*(1(0")* + (6°)” + (7))
show that the (1, 1)-tensor, which in the orthonormal frame looks like

-100
0

[y

0
0
0
1

S O = O

0
0
0

yields a Hermitian structure.

(1) Show that this structure is Kéhler, i.e., parallel, if and only if p = ¢.

(2) Find the scalar curvature for such metrics.

(3) Show that there are scalar flat metrics on all the 2-dimensional vector bundles
over S2. The one on TS2 is the Eguchi-Hanson metric, and the one on 52 x R?
is the Schwarzschild metric.

EXERCISE 4.7.25. Show that t (R]P”_l) admits rotationally symmetric metrics
dr? + p? (r)ds?_, such that p(r) = r for r > 1 and the Ricci curvatures are
nonpositive. Thus, the Euclidean metric can be topologically perturbed to have
nonpositive Ricci curvature. It is not possible to perturb the Euclidean metric in
this way to have nonnegative scalar curvature or nonpositive sectional curvature.
Try to convince yourself of that by looking at rotationally symmetric metrics on R”
and t (R]P’”_l).

EXERCISE 4.7.26. We say that (M, g) admits orthogonal coordinates around p € M
if we have coordinates on some neighborhood of p, where

gij = 0fori #j,
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i.e., the coordinate vector fields are perpendicular. Show that such coordinates
always exist in dimension 2, while they may not exist in dimension > 3. To find
a counterexample, you may want to show that in such coordinates the curvatures
Rﬁik = 0 if all indices are distinct. It can be shown that such coordinates always
exist in 3 dimensions.

EXERCISE 4.7.27. Show that the Weyl tensors for the Schwarzschild metric and the
Eguchi-Hanson metrics are not zero.

EXERCISE 4.7.28. In this problem we shall see that even in dimension 4 the
curvature tensor has some very special properties. Throughout we let (M, g) be a
4-dimensional oriented Riemannian manifold. The bivectors A2TM come with a
natural endomorphism called the Hodge * operator. It is defined as follows: for any
oriented orthonormal basis e, 2, €3, e, we define * (e; A e3) = e3 A ey.

(1) Show that his gives a well-defined linear endomorphism which satisfies:
x% = [. (Extend the definition to a linear map: x : A’TM — A9TM, where
p+qg=n Whenn =2, wehave: * : TM — TM = A'TM satisfies: ** = —I,
thus yielding an almost complex structure on any surface.)

(2) Now decompose A2TM into +1 and —1 eigenspaces ATTM and A~TM for *.
Show that if e;, e,, e3, e4 is an oriented orthonormal basis, then

eilNeytesNey € AETTM,
eilNestes Ney € AETTM,

eitNeg ey Nes € ATTM.

(3) Thus, any linear map L : A2TM — A>TM has a block decomposition

[ = [A D:| ’

BC
D ATTM — ATTM,
: ATTM — ATTM,
: ATTM — ATTM,
: ATTM — AT TM.

a w O »

In particular, we can decompose the curvature operator R : A’TM — A>TM:

-[32)
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Since R is symmetric, we get that A, C are symmetric and that D = B* is the
adjoint of B. One can furthermore show that

scal

A=wt I,
T

C—w 4 scall

B 127

where the Weyl tensor can be written

wt o
W= .

Find these decompositions for both of the doubly warped metrics:

I x S' xS, dr* + p* (r)d8* + ¢* (r) ds%,
IxS.dr’ + p*(r) (9*(1)(6")* + (6°)* + (07)?) .

Use as basis for TM the natural frames in which we computed the curvature
tensors. Now

find the curvature operators for the Schwarzschild metric, the Eguchi-Hanson
metric, $2 x §2, §4, and CP2.

Show that (M, g) is Einstein if and only if B = 0 if and only if for every plane
7 and its orthogonal complement 77+ we have: sec (77) = sec (rrJ-).



Chapter 5
Geodesics and Distance

We are now ready to move on to the local and global geometry of Riemannian
manifolds. The main tool for this will be the important concept of geodesics. These
curves will help us define and understand Riemannian manifolds as metric spaces.
One is led quickly to two types of “completeness”. The first is of standard metric
completeness, and the other is what we call geodesic completeness, namely, when
all geodesics exist for all time. We shall prove the Hopf-Rinow Theorem, which
asserts that these types of completeness for a Riemannian manifold are equivalent.
Using the metric structure makes it possible to define metric distance functions. We
shall study when these distance functions are smooth and show the existence of the
smooth distance functions introduced in chapter 3. We also classify complete simply
connected manifolds of constant curvature; showing that they are the ones we have
already constructed in chapters 1 and 4.

The idea of thinking of a Riemannian manifold as a metric space must be
old, but it wasn’t until the early 1920s that first Cartan and then later Hopf and
Rinow began to understand the relationship between extendability of geodesics and
completeness of the metric. Nonetheless, both Gauss and Riemann had a pretty
firm grasp on local geometry, as is evidenced by their contributions: Gauss worked
with geodesic polar coordinates and also isothermal coordinates; Riemann was able
to give a local characterization of Euclidean space as the only manifold whose
curvature tensor vanishes. Surprisingly, it wasn’t until Klingenberg’s work in the
1950s that one got a thorough understanding of the maximal domain on which
one has geodesic polar coordinates inside complete manifolds. This work led to
the introduction of the two terms injectivity radius and conjugate radius. Many
of our later results will require a detailed analysis of these concepts. The metric
characterization of Riemannian isometries wasn’t realized until the late 1930s with
the work of Myers and Steenrod showing that groups of isometries are Lie groups.
Even more surprising is Berestovskii’s much more recent metric characterization of
Riemannian submersions.
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Another important topic that involves geodesics is the variation of arclength and
energy. In this chapter we only develop the first variation formula. This is used to
show that curves that minimize length must be geodesics if they are parametrized
correctly.

We are also finally getting to results where there will be a significant difference
between the Riemannian setting and the pseudo-Riemannian setting. Mixed partials
and geodesics easily generalize. However, as there is no norm of vectors in the
pseudo-Riemannian setting we do not have arclength or distances. Nevertheless, the
energy functional does make sense so we still obtain a variational characterization
of geodesics as critical points for the energy functional.

5.1 Mixed Partials

So far we have only considered the calculus of functions (and tensors) on a
Riemannian manifold, and have seen that defining the gradient and Hessian requires
that we use the metric structure. Here we are going to study maps into Riemannian
manifolds and how to define meaningful higher derivatives for such maps. The
simplest example is to consider a curve ¢ : I — M on some interval / C R. We
know how to define the derivative ¢, but not how to define the acceleration in such a
way that it also gives us a tangent vector to M. A similar but slightly more general
problem is that of defining mixed partial derivatives

9%c
ot oy

for maps ¢ with several real variables. As we shall see, covariant differentiation
plays a crucial role in the definition of these concepts. In this section we only
develop a method that covers second partials. In section 6.1.2 we shall explain how
to calculate higher order partials as well. This involves a slightly different approach
(see section 6.1.1) that is not needed for the developments in this chapter.

Letc: Q — M, where Q C R™. As we usually reserve x' for coordinates on M
we shall use £ or s, t, u as coordinates on 2. The first partials

ac
or

are simply defined as the velocity field of ' + ¢ (¢',.... 7, ..., "), where the
remaining coordinates are fixed. We wish to define the second partials so that they
also lie TM as opposed to TTM. In addition we also require the following two natural
properties:

(1) Equally of mixed second partials:

d%c . 9%c
idr  Aar
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(2) The product rule:

d dc dc ’c  dc dc 9%

a8 (8#’ 8#’) -8 (atkaﬂ” 8;1') ts8 (8#’ 8tk8ﬂ') '
The first is similar to assuming that the connection is torsion free and the second
to assuming that the connection is metric. As with theorem 2.2.2, were we saw that
the key properties of the connection in fact also characterized the connection, we
can show that these two rules also characterize how we define second partials. More

precisely, if we have a way of defining second partials such that these two properties
hold, then we claim that there is a Koszul type formula:

5 32636_3 3636+3 3686_3 dc dc
E\ aror o ) = 968\ ag ok 9%\ ok o ak®\ ai a0 )

This formula is established in the proof of the next lemma.

Lemma 5.1.1 (Uniqueness of mixed partials). There is at most one way of
defining mixed partials so that (1) and (2) hold.

Proof. First we show that the Koszul type formula holds if we have a way of
defining mixed partials such that (1) and (2) hold:

d dc dc n d dc dc B d dc dc
a8\ oo o ) T 08\ o 06 ) T a8\ s oo
_ %c  dc n de  9%c
=8\ arigr ok S\ o0 arar
n 92c  dc n dc 93¢
E\ asar i ) T\ o vror
¢ dc dc  9%c
T8\ qknsi’ 94 ] T8\ 94 qkq
darkor -~ oY ort " drkay
. %c ¢ n dc  9%c
=8\ arior ark A
n dc 3% ?c  dc
§\ a0 arork E\ arkor ov
n %c  dc dc  9%c
§\ aror ori E\ ar arkor

_> %c  dc
=5\ oron otk )
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Next we observe that if we have a map ¢ : 2 — M, then we can always add an
extra parameter 1° to get a map ¢ : (—¢, €) x Q — M with the property that

dc

90 |, =veT,M,

where v € T,M is any vector and p is any point in the image of ¢. Using k = 0 in
2, . . .
the Koszul type formula at p shows that 3?, 5 18 uniquely defined, as our extension

is independent of how mixed partials are defined. O

We can now give a local and coordinate dependent definition of mixed partials.
As long as the definition gives us properties (1) and (2) the above lemma shows that
we have a coordinate independent definition.

Note also that if two different maps c1, ¢ : £ — M agree on a neighborhood of
a point in the domain, then the right-hand side of the Koszul type formula will give
the same answer for these two maps. Thus there is no loss of generality in assuming
that the image of c¢ lies in a coordinate system.

Theorem 5.1.2 (Existence of mixed partials). It is possible to define mixed
partials in a coordinate system so that (1) and (2) hold.

Proof. Assume that we have ¢ : @ — U C M where U is a coordinate
neighborhood. Furthermore, assume that the parameters in use are called s and .
This avoids introducing more indices than necessary. Finally write ¢ = (cl, cees c”)
using the coordinates on U. The velocity in the s direction is given by

dc  oc
= _ 0.
ds ds
This suggests that
ddc 9 ac! 5
ords o\ ds
9 ¢t ac' 9
= aras0 T a0 -
To make sense of Z?t (0;) we define
X
9t Ip = Vé(t)X,

where ¢ (f) = p and X is a vector field defined in a neighborhood of p. With that in
mind
ddc  d*ct act

== V‘c i
sros — aras Okt s ViO
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_ 92k N ac' a¢
T drds £ Bs o

92k ac' d¢
= T49,.
aras % T as gy ik

Vi, 0;

Thus we define
%c 92 ck act dc
= 0 r«
oras — st as o

92ck dct ad
= s .
(atas *oas o ﬂ) %

Ok

92c!
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Since j; is symmetric in s and 7 by the usual theorem on equality of mixed
partials (Clairaut’s theorem) and the Christoffel symbol 1";; is symmetric in i and j it

follows that (1) holds.

To check the metric property (2) we use that the Christoffel symbols satisfy the
metric property (see section 2.4) dxg;; = I'tij + It With that in mind we calculate

d dc dc
3tg ds’ Ou
_ d Haci ac!
T ot 8y ds du
gy dc' o N 97 ad N 9t
T or ds ou ' ST9rds du SV ds drdu

o 9% N ack ac! 2\ ¢ N ”3Ci 02 N ack ac! i
=8\ aras T as ot M) au T a5 \orou T ou o M
dgij oc' 9 dckactad . dc'dctac
o os ou SUos or au M SV os gy o M
_ 9%c dc n dc 9%c
8\ dras  ou ) T8\ os vrou
gy 0c' ac  dct dc! 3CjF A actad
o ds du  ds O du Y Bs du or M
_ 9%c dc n dc d%c
=8\ oras” ou ) TE\ o drou
4 ”8ck act ac/ 3 act ack 8cir o act a¢/ ackr B
KU or ds du  9s ot du " o5 ou o O

_ 9%c oc + dc 90%c
“ 8\ aras ou) TE\ os arou )

D
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In case M C M it is often convenient to calculate the mixed partials in M first
and then project them onto M. For each v € T,M, p € M we use the notation v =
v 4 v for the decomposition into tangential T,M and normal T;-M components.

Proposition 5.1.3 (Mixed partials in submanifolds). Ifc : Q@ — M C M and
= T[,I\_l is the mixed partial in M, then

oy
d%c T
(Bti at/) € LM

Proof. Let g be the Riemannian metric in M and g its restriction to the submani-

fold M. We know that ai;.zi;,. € TM satisfies

9z d%c 8c_8_ 8c8c+8_ dc dc d _(dc dc
E\ oo ok ) ~ 968\ ag” ok a8\ ok o ak®\ ar a0 )

As g;’ g;, E‘;’r‘k € TM this shows that

2% %c Oc _ d dc dc n d dc dc B d dc dc
E\aear o ) T 0¥ \ow ok ) T ar®\osk e ) T o \or a0 )
Next use that 38;]‘ € TM to alter the left-hand side to
9% 2c  dc _s 9%c T ac
S\ orar o ) = 8\ \aros ) o)

T
. 2. . . . .
This shows that (a?i aLrJ’) is the correct mixed partial in M. a

is the mixed partial in M.

5.2 Geodesics

We define the acceleration of a curve ¢ : I — M by the formula

. d?
¢ = .
dr?
In local coordinates this becomes
d?ck dct dd/

k
dr bt dr dr Lok

Z‘:
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Fig. 5.1 Tangent and Tangent

acceleration of a curve /ﬂ/

Acceleration

A C® curve ¢ : I — M with vanishing acceleration, ¢ = 0, is called a geodesic
(Fig.5.1). If c is a geodesic, then the speed |¢| = \/g (¢, ¢) is constant, as

d
80 =28 E0) =0,

or phrased differently, it is parametrized proportionally to arc length. If |¢| = 1, one
says that ¢ is parametrized by arclength.

Remark 5.2.1. If r : U — R is a distance function, then Vj d, = 0, where 9, =
Vr. The integral curves for Vr = 9, are consequently geodesics. The theory of
geodesics is developed independently of distance functions and ultimately used to
show the existence of distance functions.

Geodesics are fundamental in the study of the geometry of Riemannian manifolds
in the same way that straight lines are fundamental in Euclidean geometry. At first
sight, it is not clear that there are going to be any nonconstant geodesics to study
on a general Riemannian manifold (although Riemann seems to have taken this
for granted). In this section we show that every Riemannian manifold has many
nonconstant geodesics. Informally speaking, there is a unique one at each point with
a given tangent vector at that point. However, the question of how far it will extend
from that point is subtle. To deal with the existence and uniqueness questions, we
need to use some information from differential equations.

In local coordinates on U C M the equation for a curve to be a geodesic is:

0=2¢
d2ck dc' dd
= T'“a
a2 " dr oar 0t

Thus, the curve ¢ : I — U is a geodesic if and only if the coordinate components c¥
satisfy:

&) = = OOy, k=1.....n.
Because this is a second-order system of differential equations, we expect an

existence and a uniqueness result for the initial value problem of specifying the
value and first derivative, i.e.,

c(0) =g,
¢(0) = &' (0) By

But because the system is nonlinear it is not clear that solutions will exist for all 7.
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The precise statements obtained from the theory of ordinary differential equa-
tions give us the following two theorems when we consider geodesics in a chart
UcM.

Theorem 5.2.2 (Local Uniqueness). Let I} and I, be intervals with ty € I} N . If
c1: 11 > Uandcy : I, — U are geodesics with ¢ (ty) = c3(ty) and ¢1(ty) = ¢2(tp),
then ci|nnn, = clnnn-

Theorem 5.2.3 (Existence). For eachp € U and v € R", there is a neighborhood
V1 of p, a neighborhood V, of v, and an ¢ > 0 such that for each g € Vi andw € V5,
there is a geodesic c,,, : (—e, &) — U with

c(0) =g,
¢(0) = w'dyl,.

Moreover, the mapping (q, w, t) = cq.(t) is C*° on Vi x V x (=g, ¢).

It is worthwhile to consider what these assertions become in informal terms.
The existence statement includes not only short time existence of a geodesic with
given initial point and initial tangent, it also asserts a kind of local uniformity for the
interval of existence. If you vary the initial conditions but don’t vary them too much,
then there is a fixed interval (—e&, ¢) on which all the geodesics with the various
initial conditions are defined. Some or all may be defined on larger intervals, but all
are defined at least on (—¢, ¢).

The uniqueness assertion amounts to saying that geodesics cannot be tangent at
one point without coinciding. Just as two straight lines that intersect and have the
same tangent at the point of intersection must coincide, so two geodesics with a
common point and equal tangent at that point must coincide.

By relatively simple covering arguments these statements can be extended to
geodesics not necessarily contained in a coordinate chart. Let us begin with the
uniqueness question:

Lemma 5.2.4 (Global Uniqueness). Let I} and I, be open intervals with
toeliNhL.Ifcy : I} > M and c; : I, — M are geodesics with ¢1(ty) = c2(ty) and
¢i(to) = ¢2(to), then ci|nnn, = c2lnni,-

Proof. Define
A={teliNhL|c() =), c1(t) = e2(0)}.

Then ¢ty € A. Also, A is closed in I} N I, by continuity of ¢y, ¢3, ¢, and ¢;. Finally,
A is open, by virtue of the local uniqueness statement for geodesics in coordinate
charts: if #; € A, then choose a coordinate chart U around c¢;(t;) = c»(t;). Then
(1 —e,ti + &) C Iy NI and ¢i|(;;—es +¢) both have images contained in U. The
coordinate uniqueness result then shows that ci|(—es+¢) = C€2|(5—esi+¢), SO that
(th —e,t1 + &) CA. O
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The coordinate-free global existence picture is a little more subtle. The first, and
easy, step is to notice that if we start with a geodesic, then we can enlarge its interval
of definition to be maximal. This follows from the uniqueness assertions: If we look
at all geodesicsc : I — M, 0 € I, ¢(0) = p, ¢(0) = v, p and v fixed, then the union
of all their domains of definition is a connected open subset of R on which such a
geodesic is defined. Clearly its domain of definition is maximal.

The next observation, also straightforward, is that if Kisa compact subset of
TM, then there is an ¢ > 0 such that for each (¢,v) € I?, there is a geodesic
¢ : (—e,&) > M with ¢(0) = g and ¢(0) = v. This is an immediate application of
the local uniformity part of the differential equations existence statement together
with a compactness argument.

The next point to ponder is what happens when the maximal domain of definition
is not all of R. For this, assume ¢ : I = (a,b) — M is a maximal geodesic, where
b < oo. Then ¢(f) must have a specific kind of behavior as ¢ approaches b. If K C M
is compact, then there is a number tx < b such that;if 1x < ¢ < b, thenc(f) € M—K.
We say that ¢ leaves every compact set as t — b.

To see why ¢ must leave every compact set, suppose K is a compact set it doesn’t
leave, i.e., there is a sequence f1, f>,... € I with lim# = b and c(#;) € K for each
J. Since |¢| is constant the set {¢(#) | j = 1,...} lies in a compact subset of TM,
namely,

K={v,|qek, veTM, |v| <[}

Thus there is an &€ > 0 such that for each v, € K ,there is a geodesic ¢ : (—e,8) > M
with ¢(0) = ¢, ¢(0) = v. Now choose #; such that b — 1; < &/2. Then ¢, patches
together with ¢ to extend ¢; beginning at #; continue ¢ by &, which takes us beyond
b, since 1; is within £/2 of b. This contradicts the maximality of /.

One important consequence of these observations is what happens when M itself
is compact:

Corollary 5.2.5. If M is a compact Riemannian manifold, then for each p € M and
v € T,M, there is a geodesic ¢ : R — M with c(0) = p, ¢(0) = v. In other words,
geodesics exist for all time.

A Riemannian manifold where all geodesics exist for all time is called geodesi-
cally complete.

A slightly trickier point is the following: Suppose ¢ : I — M is a geodesic and
0 € I, where [ is a bounded interval. Then we would like to say that for ¢ € M near
enough to ¢(0) and v € T,M near enough to ¢(0) there is a geodesic ¢y, with g, v as
initial position and tangent, respectively, and with ¢, defined on an interval almost
as big as I. More precisely we have:

Lemma 5.2.6. Suppose c : [a,b] — M is a geodesic on a compact interval. There
is a neighborhood V in TM of ¢(0) such that if v € V, then there is a geodesic
¢y @ la, b] = M with ¢,(a) = v.
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Proof. A compactness argument allows us to subdivide the interval a = by <
by < --- < by = b in such a way that we have neighborhoods V; of ¢ (b;) where
any geodesic with initial velocity in V; is defined on [b;, b;+;]. Using that the map
(t,v) + ¢, (¢) is continuous, where ¢, is the geodesic with ¢, (0) = v, we can
select a new neighborhood Uy C V) of ¢ (bg) such that ¢, (by) € V| for v € Uj.
Next select U; C Uy so that ¢, (by) € V, for v € Uy etc. In this way we get the
desired neighborhood V = Uj_; in at most k steps. O

It is easy to check that geodesics in Euclidean space are straight lines. Using this
observation it is simple to give examples of the above ideas by taking M to be open
subsets of R? with its usual metric.

Example 5.2.7. In the punctured plane R? — {(0, 0)} the unit speed geodesic from
(—1,0) with tangent (1, 0) is defined on (—oo, 1) only. But nearby geodesics from
(—1,0) with tangents (1 + &1, &2), €1, &2 small, &, # 0, are defined on (—o0, 00).
Thus maximal intervals of definition can jump up in size, but, as already noted, not
down. See figure 5.2.

Example 5.2.8. On the other hand, for the region {(x,y) | —1 < xy}, the curve
t — (1,0) is a geodesic defined on all of R that is a limit of unit speed geodesics
t — (t,—¢), ¢ = 0, each of which is defined only on a finite interval. Note that
the endpoints of these intervals go to infinity as required by the above lemma. See
figure 5.3.

Example 5.2.9. We think of the spheres S"(R) = S"_, C R"*!. The acceleration
of a curve ¢ : I — S"(R) can be computed as the Euclidean acceleration in R"*!
projected onto S"(R) (see proposition 5.1.3). Thus c is a geodesic if and only if
¢ is normal to S”(R). This means that ¢ and ¢ should be proportional as vectors.
Great circles c(f) = pcos(at) + vsin(at), where p,v € R* |p| = [v] = R
and p L v, clearly have this property. Furthermore, since ¢(0) = p € $"(R) and
¢(0) = av € T,S"(R), we see that there is a geodesic for each initial value problem
(see also exercise 1.6.20).

Fig. 5.2 Obstacles to >
continuing geodesics (1,0)

Fig. 5.3 Obstacles to
continuing geodesics
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Fig. 5.4 Geodesics on the
sphere

~_~)

We can easily picture great circles on spheres as depicted in figure 5.4. Still,
it is convenient to have a different way of understanding this. For this we project
the sphere orthogonally onto the plane containing the equator. Thus the north and
south poles are mapped to the origin. As all geodesics are great circles, they must
project down to ellipses that have the origin as center and whose greater axis has
length 2R. Of course, this simply describes exactly the way in which we draw three-
dimensional pictures on paper.

Example 5.2.10. We think of H" (R) = §" ,_, C R™! as in example 1.1.7. In this
case the acceleration is also the projection of the acceleration in Minkowski space.
In Minkowski space the acceleration in the usual coordinates is the same as the
Euclidean acceleration. Thus we just have to find the Minkowski projection onto
the hypersurface. By analogy with the sphere, one might guess that the hyperbolas
c(t) = pcosh(at) + vsinh(at), p,v € R, |p|> = —R?, |v|*> = R?, and p L v all
in the Minkowski sense, are our geodesics. In fact the ambient acceleration is given
by ¢ = a’cand T,H" = {v | v L p}.

This time the geodesics are hyperbolas. On the space itself in Minkowski space,
they are, as in the case of spheres, intersections of 2 dimensional subspaces with
hyperbolic space. If we resort to the trick of projecting hyperbolic space onto the
plane containing the first n coordinates, then the geodesics are hyperbolas whose
asymptotes are straight lines through the origin. See also figure 5.5.

Example 5.2.11. On a Lie group G with a left-invariant metric one might suspect
that the geodesics are the integral curves for the left-invariant vector fields. This in
turn is equivalent to the assertion that VxX = 0 for all left-invariant vector fields.
However, our Lie group model for the upper half plane does not satisfy this (see
section 4.4.2). On the other hand, we did show in proposition 4.4.2 that VxX =
; [X,X] = 0 when the metric is biinvariant and X is left-invariant. Moreover, all
compact Lie groups admit biinvariant metrics (see exercise 1.6.24).
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Fig. 5.5 Hyperbolas as
geodesics in hyperbolic space

5.3 The Metric Structure of a Riemannian Manifold

The positive definite inner product structures on the tangent space of a Riemannian
manifold automatically give rise to a concept of lengths of tangent vectors. From
this one can obtain an idea of the length of a curve as the integral of the speed, i.e.,
length of velocity. This is a direct extension of the usual calculus concept of the
length of curves in Euclidean space. Indeed, the definition of Riemannian manifolds
is motivated from the beginning by lengths of curves. The situation is turned around
a bit from that of R", though: On Euclidean spaces, we have in advance a concept
of distance between points. Thus, the definition of lengths of curves is justified by
the fact that the length of a curve should be approximated by sums of distances for a
fine subdivision (e.g., a fine polygonal approximation). For Riemannian manifolds,
there is no immediate idea of distance between points. Instead, we have a natural
idea of speed, hence curve length, and we shall use the length of curve idea to define
distance between points. The goal of this section is to carry out these constructions
in detail.

Recall that a curve ¢ : [a, b] — M is piecewise C*° if ¢ is continuous and if there
is a partitiona = a; < a» < ... < ax = b of [a, b] such that c|j,q,,,) is C* for
i=1,...,k—1

Let ¢ : [a, b] — M be a piecewise C* curve in a Riemannian manifold. Then the
length L(c) is defined as follows:

it

b b
L(e) = / &) dr = / Vg E(0). é0))dr.

It is clear from the definition that the function ¢ + |¢(¢)| is integrable in the Riemann
(or Lebesgue) sense, so L(c) is a well-defined finite, nonnegative number. The chain
and substitution rules show that L(c) is invariant under reparametrization. A curve
¢ : la,b] — M is said to be parametrized by arc length if L(c|jsq) = ¢t — a for
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all t € [a,b], or equivalently, if |¢(f)] = 1 for all t € [a,b]. A regular curve
¢ : la,b] — M, i.e., the velocity never vanishes, admits a reparametrization to
an arclength parametrized curve. To see this define the new parameter as

5= gl = / &) dr.

Clearly ¢ : [a,b] — [0, L (c)] is strictly increasing and piecewise smooth. Thus the
curve co ! : [0, L(c)] — M is piecewise smooth with unit speed everywhere.

We are now ready to introduce the idea of distance between points. For each pair
of points p, g € M define the path space

Qpq = {c:[0,1] = M | cis piecewise C* and ¢(0) = p, ¢(1) = ¢}
and the distance d(p, g) = |pq| between points p,q € M as

lpg| = inf{L(c) | ce Qp,q} .

It follows immediately from this definition that |pg| = |gp| and |pq| < |pr| +
|rg]. The fact that |pg| = 0 only when p = ¢ will be established in the proof of
theorem 5.3.8. Thus, || satisfies all the properties of a metric. When it is necessary
to specify the Riemannian metric we write |pg|,.

As for metric spaces, we have various metric balls

B(p,r)={xeM||px| <r},
B(p,r)={xeM||px| <r}.

More generally, we can define the distance between subsets A, B C M as
d(A,B) = |AB| = inf{|pq| | p € A,q € B}.
Finally, we define

BA,r) ={xe M| |Ax| < r},
BA,r)=DA,r)={xeM||Ax| <r}.

Example 5.3.1. The infimum of curve lengths in the definition of |pg| can fail to be
realized. This is illustrated, for instance, by the “punctured plane” R?—{(0, 0)} with
the induced Euclidean metric. The distance [(—1,0)(1,0)| = 2, but this distance
is not realized by any curve, since every curve of length 2 in R? from (—1,0) to
(1, 0) passes through (0, 0) (see figure 5.6). In a sense that we shall explore later,
R?—{(0,0)} is incomplete. For the moment, we introduce some terminology for the
cases where the infimum |pg]| is realized.
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Fig. 5.6 Distance is not ./\.
o

realized by a curve -1.0) ©0) 1.0

A curve 0 € Q,, is a segment if L(0c) = |pg| and o is parametrized
proportionally to arc length, i.e., || is constant. We also use the notation pg for
a specific segment parameterized on [0, |pg|] with pg(0) = p and pq (|pq|) = gq.

Let us relate these new concepts to our distance functions from section 3.2.2.

Lemma 5.3.2. Ifr: U — Ris a smooth distance function and U C (M, g) is open,
then the integral curves for Vr are segments in (U, g). Moreover, if ¢ € Qp,(U)
satisfies L (c) = r(c (1)) —r(c(0)), then ¢ = o o ¢, where o is the integral curve
Sfor Vr through ¢ (0) and ¢ (s) = f(; |c| dt.

Proof. Fixp,q € U andlet c(¢) : [0,b] — U be a curve from p to g. Since dr (v) =
g (Vr,v) < |v| it follows that

b b b
L(C):/0 |C|dt2/0 g(Vr,c)dt:/O dr(¢c)dt = r(q) — r(p).

This shows that |pg| > |r (q) — r (p)| since |pg| = |gp|. If we choose ¢ as an integral
curve for Vr,i.e.,¢ = Vroc, thendr (¢) = 1. Thus L(c) = |r(g) — r(p)|. This shows
that integral curves must be segments. Moreover, when L (c) = r (¢q) — r (p), then it
follows that ¢ = |¢| Vr. This implies the last claim.

Notice that we only considered curves in U, and thus only established the result
for (U, g) and not (M, g). O

Example 5.3.3. In Euclidean space R”", straight line segments parametrized with
constant speed, i.e. curves of the form ¢ — p-+¢-v, are in fact segments. This follows
from lemma 5.3.2 if we use the smooth distance function r (x) = v - x, where v is a
unit vector. In R”, each pair of points p, g is joined by a segment ¢ — p + (g — p)
that is unique up to reparametrization. See also exercise 1.6.19.

Example 5.3.4. Consider M = S' and U = S'—{(1,0)}. On U we have the distance
function r(8) = 0, 8 € (0,2m). The previous lemma shows that any curve c¢(6) =
(cos6,sinf), 0 € I C (0,2r) is a segment in U. If, however, the length of 7 is > 7,
then such curves can clearly not be segments in S'.

Example 5.3.5. Next we complete our understanding of segments on §" (1) ¢ R*+!
with its standard round metric (see also the proof of theorem 5.5.4 where this is
covered in greater generality and detail or exercise 1.6.20). Given two points p, g €
S" we create a warped product structure

ds? = dr* + sin® (r) ds>_,
such that: when p, g are antipodal, then they correspond to » = 0, r; and otherwise

p = (a.x0) € (0,7) x S" ' and g = (b, x0) € (0, ) x S""!. The distance function
we use is 7 and the domain where it is smooth is U ~ (0, ) x S"~'. When the points
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are antipodal they are joined by several curves of length . A general curve between
these points can always be shortened so it looks like ¢ : [0, b] — S", where ¢ (f) € U
fort € (0,b) and ¢ (0) = —c (b) correspond to the antipodal points where r = 0, 7.
Now lemma 5.3.2 shows that L(c|[¢ p—e]) > |r o ¢ (b —€) — r o c(€)|. Therefore,

L(c) > lim |[roc(b—¢€) —roc(e)| = m.
e—>0

When the points are not antipodal they lie on a unique integral curve for Vr which
is part of a great circle in U. This segment will again be the shortest among curves
in U. However, any curve that leaves U will pass through either r = 0 or r = . We
can argue as with antipodal points that any such curve must have length

zmin{r(p) +r(q) .7 —rp)+ 7 —r(g}=I[rp)—rgl.

Example 5.3.6. The same strategy can also be used to show that all geodesics in
hyperbolic space are segments. See also exercise 1.6.21.

Example 5.3.7. In R? —{(0,0)}, as already noted, not every pair of points is joined
by a segment.

In section 5.4 we show that segments are always geodesics. Conversely, we
show in section 5.5.2 that geodesics are segments when they are sufficiently short.
Specifically, if ¢ : [0,b) — M is a geodesic, then c|jp, is a segment for all
sufficiently small ¢ > 0. Furthermore, we shall show that each pair of points in
a Riemannian manifold can be joined by at least one segment provided that the
Riemannian manifold is either metrically or geodesically complete. This result
explains what is “wrong” with the punctured plane. It also explains why spheres
have segments between each pair of points: compact spaces are always complete in
any metric compatible with the (compact) topology.

Some work needs to be done before we can prove these general statements. To
start with, we consider the question of compatibility of topologies.

Theorem 5.3.8. The metric topology obtained from the distance |--| on a Rieman-
nian manifold is the same as the manifold topology.

Proof. Fix p € M and a coordinate neighborhood U of p such that x' (p) = 0. We
assume in addition that g;|, = §;. On U we have the given Riemannian metric g
and also a Euclidean metric g¢ defined by go (8,-, 8]-) = §;. Thus gy is constant and
equal to g at p. Finally, after possibly shrinking U, we can further assume that

U = BS° (p,S)
= {xe U | |pxlg, <8}

=%er| \/(x1)2+---+(x”)2<£ .
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For x € U we can compare these two metrics as follows: There are continuous
functions: A, i : U — (0, 00) such that if v € T, M, then

A @) vy, = o], = @) vl .

Moreover, A (x), i (x) —> 1 asx — p.
Now let ¢ : [0,1] = M be a curve fromptox € U.

1: If c is a straight line in the Euclidean metric, then it lies in U and

Ipxlg, = Lg, (©)

1
/ |¢lq, dt
0

1 .
= max u (¢ (t))/o el at

1
max p (e (1) ¢

% max e (e () P

2: If c is a general curve that lies entirely in U, then

1
L, (c) = /0 ¢, dt

1
> (min A (¢ (t)))/o |é|go dt
> (min A (¢ (1)) [px|y, -

3: If ¢ leaves U, then there will be a smallest #y such that ¢ (zy) ¢ U, then
fo
L@z [ 1ol
0

> (minl (C (t))) /O 0 |é|go dt
> (min A (c () &
> (minl (c(®)) |px|go :

By possibly shrinking U again we can guarantee that minA > Ay > 0 and
max i < (o < co. We have then proven that
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lpx|, < o Ipxy,

and

Ao |px|g, < infLg (c) = |px], .

Thus the Euclidean and Riemannian distances are comparable on a neighborhood
of p. This shows that the metric topology and the manifold topology (coming from
the Euclidean distance) are equivalent. It also shows that p = ¢ if |pg| = 0.

Finally note that

X
lim P =1
x=p |px|y,

since A (x),u (x) > lasx — p. O

Just as compact Riemannian manifolds are automatically geodesically complete,
this theorem also shows that such spaces are metrically complete.

Corollary 5.3.9. If M is a compact manifold and g is a Riemannian metric on M,
then (M, |-|,) is a complete metric space, where |-|, is the Riemannian distance
function determined by g.

The proof of theorem 5.3.8 also tells us that any curve can be replaced by a
regular curve that has almost the same length.

Corollary 5.3.10. For any c € Q,, and € > 0, there exists a constant speed curve
c€QpwithL(c) < (14 ¢€)L (o).

Proof. First note that it suffices to find a regular curve with the desired property.
Next observe that in Euclidean space this can be accomplished by approximating a
curve with a possibly shorter polygonal curve. In a Riemannian manifold we can use
the same procedure in a chart to approximate a curve by a regular curve. We select
a chart and Euclidean metric gy as above such that AgL,, (¢) < L, (c) < oLy, (¢)
for any curve in the chart. We can then approximate ¢ by a regular curve ¢ such that

L () < ptoLgy (&) < oLy, () < ‘;2 L (0).

By shrinking the chart we can make the ratio IAL(? < 1 4+ €. Finally we can use
compactness to cover the original curve by finitely many such charts to get the

desired regular curve. O

Remark 5.3.11. Tt is possible to develop the theory here using other classes of
curves without changing the distance concept. A natural choice would be to expand
the class to all absolutely continuous curves. As corollary 5.3.10 indicates we could
also have restricted attention to piecewise smooth curves with constant speed.
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The functional distance dr between points in a manifold is defined as

dr(p.q) = sup{lf(p) —f(@)| | f : M — R has |Vf| <1 on M;.

This distance is always smaller than the arclength distance. One can, however,
show as before that it generates the standard manifold topology. In fact, after we
have established the existence of smooth distance functions, it will become clear
that the two distances are equal provided p and q are sufficiently close to each other.

5.4 First Variation of Energy

In this section we study the arclength functional

1
L(c) = / [c|dt, ¢ € Qpq
0

in further detail. The minima, if they exist, are pre-segments. That is, they have
minimal length, but are not guaranteed to have the correct parametrization. We also
saw that in some cases sufficiently short geodesics minimize this functional. One
issue with this functional is that it is invariant under change of parametrization.
Minima, if they exist, consequently do not come with a fixed parameter. This
problem can be overcome by considering the energy functional

1 1
E(c) = / el dt, c € Q.
2 Jo

This functional measures the total kinetic energy of a particle traveling along the
curve. Note that the energy will depend on how the curve is parametrized.

Proposition 5.4.1. Ifo € Q,, is a constant speed curve that minimizes L : Q, ; —
[0, 00), then o minimizes E : Q,, — [0, 00). Conversely, if o minimizes E : Q, ; —
[0, 00), then it also minimizes L : Q2,4 — [0, 00).

Proof. The Cauchy-Schwarz inequality for functions tells us that

1
L(c):/ 6] - 1dr
0
1 1
< /|é|2dt /12dt
0 0
1
= |&|? dt
0
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Fig. 5.7 A proper variation

with equality holding if |¢| is a constant multiple of 1, i.e., ¢ has constant speed.
Conversely, when equality holds the speed is forced to be constant. Let o € 2, , be
a curve that has constant speed. If it minimizes L and ¢ € 2, ,. Then

E©) = ) L) =, (L©) <EE.

so o also minimizes E.

Conversely, let 0 € €2, , minimize E and ¢ € ,, be any curve. If ¢ does not
have constant speed we can use corollary 5.3.10 to find ¢, with constant speed and
L(ce) < (14 ¢€)L(c) for any € > 0. Then

L(0) < y2E(0) < V2E(c) =L(co) < (1 +€)L(c).

As € > 0 is arbitrary the result follows. O

The next goal is to show that minima of E must be geodesics. To establish this
we have to develop the first variation formula of energy. A variation of a curve
¢ : I — M is a family of curves ¢ : (—¢,¢) X [a,b] — M, such that ¢ (0,1) = ¢ (¢)
for all ¢ € [a, b]. We say that such a variation is piecewise smooth if it is continuous
and [a, b] can be partitioned into intervals [a;, a;+1], i = 0,...,m — 1, where ¢ :
(—¢,€) x [a;,a;+1] — M is smooth. Thus the curves t — ¢, (f) = ¢ (s,1) are all
piecewise smooth, while the curves s > ¢ (s, ) are smooth. The velocity field for
this variation is the field ‘g? which is well-defined on each interval [a;, a;+1]. At the
break points ¢ = a;, there are two possible values for this field; a right derivative and
a left derivative:

dc 9l (411
3t+ (S, Cli) - 31‘ (S, Cli) )
dc _ 35|[¢¢i—1,¢1i]
o= (s.a) = ot (s.a).

az This field is well-defined everywhere. It is

The variational field is defined as
smooth on each (—¢, €) X [a;, a;+1] and continuous on (—¢, €) x I. The special case
wherea = 0,b = 1,¢(s,0) = p,and ¢ (s, 1) = ¢ for all s is of special importance
as all of the curves ¢; € £2,,. Such variations are called proper variations of ¢

(Figure5.7).

Lemma 5.4.2 (The First Variation Formula). If ¢ : (—¢,¢) X [a,b] > M is a
piecewise smooth variation, then
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dE (c;) /" 0%c dc it dc o dc  dc
as —J, f\aeas f\or0s )| E\art as

m—1 - _ _

dc  adc

+;g(az— at+’as)

Proof. Tt suffices to prove the formula for smooth variations as we can otherwise
split up the integral into parts that are smooth:

(s.a)

(s,a;) ‘

Plogt e et o
E(cx)zf iy dt:Z/ 5| 4
a i=0 Y%

and apply the formula to each part of the variation.
For a smooth variation ¢ : (—¢, ¢) x [a, b] = M we have

dE (c;) dl/” dc ¢ 0
ds  ds2 ), S\or o
1 (>a (oc oc
= 2/a asg(at’ a;)dt
b e oc
= / 8 (asat’ at)dt
_ b 9’c dc
B dtds” ot
_ ” dc ac ” dc d%c &
B a ds’ ot ds’ 012
dc dc dc 0°c
—g( o) / (a )
b (BC 82') (BC 86) (BE 85)
—g ,
ds’ dr? (s.) ds ot
We can now completely characterize the local minima for the energy functional.

The proof in fact characterizes geodesics ¢ € 2,, as stationary points for E :
Q2p4 — [0,00).

(s.a)

|

Theorem 5.4.3 (Characterization of local minima). If ¢ € ,, is a local
minimum for E : Q, ; — [0, 00), then c is a smooth geodesic.
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Proof. The assumption guarantees that ¢ is a stationary point for the energy
functional, i.e.,

dE (c;
@ _,
ds

for any proper variation of c. This is in fact the only property that we shall use.
The trick is to find appropriate variations. If V (¢) is any vector field along c (¢), i.e.,
V (¢) € T,;M, then there is a variation so that V (1) = g‘v |(0.)- One such variation
can be obtained by declaring the variational curves s +— ¢ (s,t) to be geodesics
with gi |0y = V (¢). As geodesics are unique and vary nicely with respect to the
initial data, this variation is well-defined and as smooth as V is (see theorems 5.2.2
and 5.2.3). Moreover, if V (a) = 0 and V (b) = 0, then the variation is proper.

Using such a variational field the first variation formula at s = 0 depends only
on c itself and the variational field V

dE (cs)

b d d
== [sevare( gL ove)-s( @ vo)

L [ de de
+ ; g ( @) = @)V (a»)

b 1 rd d
:_/ g(E,V)dtJng(d:_ (ai) < (ai),V(ai))-
¢ i=1

Cart

We now specify V further. First select V (1) = A () ¢ (f), where A (a;) = 0 at the
break points a; where ¢ might not be smooth, A (@) = A(b) = 0,and A (r) > 0
elsewhere. Then
_ dE(c)
T ds

b
=—/g@xmam

0 |s=0

b
:—/Amwﬁn

Since A (f) > 0 where ¢ is defined it must follow that ¢ = 0 at those points. Thus ¢
is a broken geodesic. Next select a new variational field V such that

Vi) = 5 @ - 1 @,

V) =V(®H) =0
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and otherwise arbitrary, then

dE (¢
0= ( )|s=0
ds

m—1
;g ( (@)= @) V(a,))
-z

dc 2
+ (a)

dt—

This forces
dc dc
dr- (a;) = dr+ (a:)

and hence the broken geodesic has the same velocity from the left and right at the
places where it is potentially broken. Uniqueness of geodesics (theorem 5.2.2) then
shows that ¢ is a smooth geodesic. O

This also shows:

Corollary 5.4.4 (Characterization of segments). Any piecewise smooth segment
is a geodesic.

While this result shows precisely what the local minima of the energy functional
must be it does not guarantee that geodesics are local minima. In Euclidean space all
geodesics are minimal as they are the integral curves for globally defined distance
functions: u (x) = v - x, where v is a unit vector. On the unit sphere, however, no
geodesic of length > m can be locally minimizing. Such geodesics always form part
of a great circle where the complement of the geodesic in the great circle has length
< 1, so they can’t be absolute minima. One can also easily construct a variation
where the nearby curves are all shorter. We shall spend much more time on these
issues in the subsequent sections as well as the next chapter. Certainly much more
work has to be done before we can characterize what makes geodesics minimal.

5.5 Riemannian Coordinates

The goal of this section is to introduce a natural set of coordinates around each
point in a Riemannian manifold. These coordinates will depend on the geometry
and also allow us to show the existence of smooth distance functions as well as
many other things. They go under the name of exponential or Riemannian normal
coordinates. They are normal in the sense of exercise 2.5.20, but have further local
and infinitesimal properties. Gauss first introduced such coordinates for surfaces and
Riemann in the general context.



5.5 Riemannian Coordinates 187
5.5.1 The Exponential Map

For a tangent vector v € T,M, let ¢, be the unique geodesic with ¢ (0) = p and
¢(0) = v, and [0,L,) the nonnegative part of the maximal interval on which ¢
is defined. Notice that uniqueness of geodesics implies the homogeneity property:
Cav(t) = cy(at) forall « > 0 and ¢ < Ly,. In particular, Ly, = o~ 'L,. Let 0, C
T,M be the set of vectors v such that 1 < L,. In other words ¢, () is defined on
[0, 1]. The exponential map at p, exp,, : O, — M, is defined by

exp,(v) = cu(1).

In exercise 5.9.35 the relationship between the just defined exponential map and the
Lie group exponential map is elucidated. Figure 5.8 depicts how radial lines in the
tangent space are mapped to radial geodesics in M via the exponential map. The
homogeneity property c,(f) = cn(1) shows that exp, (tv) = c, (¢). Therefore, it
is natural to think of exp,(v) in a polar coordinate representation, where from p
one goes “distance” |v| in the direction of |5|' This gives the point exp,(v), since
e (vl = (D).

The collection of maps, exp,,, can be combined to form a map exp : Uo, - M
by setting exp |o, = exp,,. This map exp is also called the exponential map.

Lemma 5.2.6 shows that the set O = (J O, is open in TM and theorem 5.2.3
that exp : O — M is smooth. Similarly, O, C T,M is open and exp, : O, — M
is smooth. It is an important property that exp, is in fact a local diffeomorphism
around 0 € T,M. The details of this are given next.

Proposition 5.5.1. Let (M, g) be a Riemannian manifold.
() Ifp € M, then

Dexp, : To(TyM) — T,M

is nonsingular at the origin of T,M. Consequentily, exp, is a local diffeomor-
phism.

Fig. 5.8 The exponential
map at p

TpM
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(2) DefineE: O — M x M by E(v) = (n(v), expv), where m(v) is the base point
of v, i.e, v € TywyM. Then for eachp € M and 0, € T,M,

DE : T(p,()p)(TM) — T([,,‘,,)(M X M)

is nonsingular. Consequently, E is a diffeomorphism from a neighborhood of
the zero section of TM onto an open neighborhood of the diagonal in M x M.

Proof. That the differentials are nonsingular follows from the homogeneity property
of geodesics given an important identification of tangent spaces. Let Iy : T,M —
Ty T,M be the canonical isomorphism, i.e., Io(v) = jr(tv)|,:0. Recall thatif v € O,,
then ¢, () = ¢;»(1) forall ¢ € [0, 1]. Thus,

d
Dexpp(lo(v)) = dr expp(tv)|t=0

d
= dtctv(l)|t=0

d
= dtcv(t)|t=0

= é'v(O)

= V.

In other words Dexp), oly is the identity map on 7,M. This shows that Dexp, is
nonsingular. The second statement of (1) follows from the inverse function theorem.

The proof of (2) is again an exercise in unraveling tangent spaces and identifi-
cations. The tangent space T, ,)(M x M) is naturally identified with T,M x T,M.
The tangent space T, , ) (TM) is also naturally identified with 7,M x Ty, (T,M) =~
T,M x T,M. We can think of points in TM as given by (p, v) with v € T,M. This
shows that E (p, v) = (p, exp, (v)). So varying p is just the identity map in the first
coordinate, but something unpredictable in the second. While if we fix p and vary v
in 7,M, then the first coordinate is fixed and we simply have exp, (v) in the second
coordinate. This explains what the differential DE I(p,O,,) is. If we consider it as a
linear map T,M x T,M — T,M x T,M, then it is the identity on the first factor
to the first factor, identically O from the second factor to the first, and the identity
from the second factor to the second factor as it is D exp), oly,. Thus it looks like the

nonsingular matrix
10
x 1]

Now, the inverse function theorem gives (local) diffeomorphisms via E of
neighborhoods of (p,0,) € TM onto neighborhoods of (p,p) € M x M. Since E
maps the zero section of TM diffeomorphically to the diagonal in M x M and the
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zero section is a properly embedded submanifold of 7M it is easy to see that these
local diffeomorphisms fit together to give a diffeomorphism of a neighborhood of
the zero section in TM onto a neighborhood of the diagonal in M x M. O

The largest € > 0 such that
exp, : B(0,€) > M

is defined and a diffeomorphism onto its image is called the injectivity radius at p
and denoted inj,,.

This formalism with the exponential maps yields some results with geometric
meaning. First, we get a coordinate system around p by identifying 7,M with R"
via an isomorphism, and using that the exponential map exp, : T,M — M is
a diffeomorphism on a neighborhood of the origin. Such coordinates are called
exponential or Riemannian normal coordinates at p. They are unique up to how we
choose to identify 7,,M with R”". Requiring this identification to be a linear isometry
gives uniqueness up to an orthogonal transformation of R". In section 5.5.3 we show
that they are indeed normal in the sense that the Christoffel symbols vanish at p.

The second item of geometric interest is the following idea: On S we know
that geodesics are part of great circles. Thus any two points will be joined by both
long and short geodesics. What might be hoped is that points that are close together
would have a unique short geodesic connecting them. This is exactly what (2) in
the proposition says! As long as we keep ¢; and g, near p, there is only one way
to go from ¢, to ¢» via a geodesic that isn’t very long, i.e., has the form exp,, v,
v € T, M, with |v| small.

For now we show that:

Corollary 5.5.2. Let K C (M, g) be compact. There exists € > 0 such that for every
p € K, the map exp,, : B(0, &) — M is defined and a diffeomorphism onto its image.

Proof. This follows from compactness if we can find ¢ > 0 such that the statement
holds for all p in a neighborhood of a fixed point x € M. This in turn is a
consequence of part (2) of proposition 5.5.1. To see this, select a neighborhood
U of (x,0,) € TM such that E : U — M x M is a diffeomorphism on to its image.
Next select a neighborhood x € V C M and a diffeomorphism F : V x T\M —
71 (V) C TM that is a linear isomorphism {p} x .M — T,M foreachp € V. We
can then find § > 0 so that F (V x B (0, §)) C U. The continuity of the metric on
T,M, p € V, when pulled back to {p} x T:M via F shows that there is ¢ > 0 so that
B (01,, 8) C F ({p} x B(0y,)) for all p in a neighborhood x € W C V. Finally, the
restriction of E to B (01,, 5) C T,M is a diffeomorphism onto its image in {p} x M.
This is exactly the map exp, if we forget the first factor {p}. We can then invoke
compactness to complete the proof. O

There is a similar construction that leads to a geometric version of the tubular
neighborhood theorem from differential topology. Let N be a properly embedded
submanifold of M. The normal bundle of N in M is the vector bundle over N
consisting of the orthogonal complements of the tangent spaces T,N C T,M,
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T*N={veT,M|peN,ve (T,N?*CT,M}.

So foreachp € N, T,M = T,N & (TI,N)J- is an orthogonal direct sum. Define the
normal exponential map exp™ by restricting exp to O N TN~ and only recording the
second factor: expt : O N TN+ — M. As in part (2) of proposition 5.5.1, one can
show:

Corollary 5.5.3. The map D exp™ is nonsingular at 0,, forallp € N and there is an
open neighborhood U of the zero section in TN on which exp™ is a diffeomorphism
onto its image in M.

Such an image expt(U) is called a tubular neighborhood of N in M, because
when N is a curve in R? it looks like a solid tube around the curve.

5.5.2 Short Geodesics Are Segments

We just saw that points that are close together on a Riemannian manifold are
connected by a short geodesic, and in fact by exactly one short geodesic. But so
far, we don’t have any real evidence that such short geodesics are segments. It is the
goal of this section to take care of this last piece of the puzzle. Incidentally, several
different ways of saying that a curve is a segment are in common use: “minimal
geodesic,” “minimizing curve,” “minimizing geodesic,” and even “minimizing
geodesic segment.”
The first result is the precise statement that we wish to prove in this section.

Theorem 5.5.4. Let (M, g) be a Riemannian manifold, p € M, and ¢ > 0 chosen
such that

exp, :B(0,e) > UCM

is a diffeomorphism onto its image U C M. Then U = B (p,¢) and for each v €
B (0, ¢), the geodesic exp,(tv), t € [0, 1] is the one and only segment with speed |v|
Jrom p to exp, v in M.

On U = exp,(B(0,¢)) we define the function r(x) = |exp;1(x)|. That is,
r is simply the Euclidean distance function from the origin on B(0,¢) C T,M
in exponential coordinates. This function can be continuously extended to U by
defining r (AU) = e. We know that Vr = 9, = lrxia,- in Cartesian coordinates
on T,M. In order to prove the theorem we show that this is also the gradient with
respect to the general metric g.

Lemma 5.5.5 (The Gauss Lemma). On (U, g) the function r has gradient Vi =
d,, where 0, = Dexpp(ar).

Let us see how this implies the theorem.
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Proof of Theorem 5.5.4. The proof is analogous to the specific situation on the
round sphere covered in example 5.3.5, where exp, : B(0,7) — B(p,7) is a
diffeomorphism.

First observe that in B(0, ¢) — {0} the integral curves for d, are the line segments
c(s) = s- Izl of unit speed. The integral curves for d, on U are then forced to be

the unit speed geodesics c(s) = exp (s' Izl)' Thus lemma 5.5.5 implies that r is

a distance function on U — {p}. First note that U C B (p, ¢) as the short geodesic
that joins p to any point ¢ € U has length L < ¢. To see that this geodesic is the
only segment in M, we must show that any other curve from p to ¢ has length > L.
Suppose we have a curve ¢ : [0,b] — M from p to g. If a € [0, b] is the largest value
so that ¢ (@) = p, then c||4p) is a shorter curve from p to g. Next let by € (a, b) be
the first value for which ¢(ty) ¢ U, if such points exist, otherwise by = b. The curve
¢|(apy) lies entirely in U — {p} and is shorter than the original curve. It’s length is
estimated from below as in lemma 5.3.2

bo bo
L (c|(a,b0)) = / || dt > / dr(¢)dt = r(c(by)),

where we used that r(p) = r(c(a)) = 0. If ¢ (by) € AU, then c is not a segment
from p to g as it has length > ¢ > L. If b = by, then L (c|(a,b)) >r(c(b)) = Land
equality can only hold if ¢ () is proportional to Vr for all ¢ € (a, b]. This shows the
short geodesic is a segment and that any other curve of the same length must be a
reparametrization of this short geodesic.

Finally we have to show that B (p,e) = U. We already have U C B (p,¢).
Conversely if ¢ € B(p,¢) then it is joined to p by a curve of length < ¢. The
above argument then shows that this curve lies in U. Whence B (p, &) C U. O

Proof of Lemma 5.5.5. We select an orthonormal basis for 7,M and introduce
Cartesian coordinates. These coordinates are then also used on U via the exponential
map. Denote these coordinates by (x!,...,x") and the coordinate vector fields by
d1,...,0,. Then

=) ()

8, = xiBi.

r
To show that this is the gradient field for r(x) on (M, g), we must prove that dr(v) =
g(9,,v). We already know that
Loy
dr= (xdx +---+x"dx"),
r

but have no knowledge of g, since it is just some abstract metric.
One can show that dr(v) = g(9,, v) by using suitable Jacobi fields for r in place
of v. Let us start with v = d,. The right-hand side is 1 as the integral curves for d,
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are unit speed geodesics. The left-hand side can be computed directly and is also 1.
Next, take a rotational field J = —x'd; + x/d;, i,j = 1,...,n, i < j. In dimension
2 this is simply the angular field dg. An immediate calculation shows that the left-
hand side vanishes: dr (/) = 0. For the right-hand side we first note that J really is
aJacobi field as Ly,J = [9,,J] = 0. Using that V. 9, = 0 we obtain

0,8(0,,J) = g(Vy,0,,J) + g(9,, V3,J)
=0+ g(9,, Vy,J)
g(ara VJ ar)

1
D rs Vr
2 18(9r, 9;)

=0.

Thus g(9,, J) is constant along geodesics emanating from p. To show that it vanishes
first observe that

lg(@r, D) = o] V]

= |J]
= el o+ W
< r(x) (|3,| + |8,|)

Continuity of Dexp, shows that d;, d; are bounded near p. Thus |g(d,,J)| — 0
as r — 0. This forces g(d,,J) = 0. Finally, observe that any vector v is a linear
combination of d, and rotational fields. This proves the claim. O

The next corollary is an immediate consequence of theorem 5.5.4 and its proof.

Corollary 5.5.6. Ifp € M and ¢ > 0 is such that exp, : B(0,&) — B(p,¢) is
defined and a diffeomorphism, then for each § < e,

exp,(B(0,8)) = B(p,9),
and

exp,(B(0,4)) = B(p, ).

5.5.3 Properties of Exponential Coordinates

Let us recapture what we have achieved in this section so far. Given p € (M, g) we
found coordinates near p using the exponential map such that the distance function
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r(x) = |px| to p has the formula
r0) = VED? 4 )2
The Gauss lemma told us that Vr = d,.. This is equivalent to the statement that
exp, : B(0,¢) = B(p,¢)
is a radial isometry, i.e.,
g (Dexp,(3,). Dexp,(v)) = g, (3,. ).
To see this note that being a radial isometry can be expressed as
L'y =g (1x'9;,0/9)) = L8

Since dr (v) = ! 8;x'v/ this is equivalent to the assertion Vr = 9, = 'x/0;.
We can rewrite this as the condition

giX = 8x.

This relationship, as we shall see, fixes the behavior of g;; around p up to first-order
and shows that the coordinates are normal.

Lemma 5.5.7. In exponential coordinates
g =8 +0(r).

Proof. The fact that g;|, = J; follows from taking one partial derivative on both
sides of the formula g;¥' = §;%/

8i/( = Sijakxj

= 0 Z g
J

= (8kg,;,~) xj + gijakxj
= (Oegy) ¥ + gi-

As ¥ (p) = 0, the claim follows.
Taking two partial derivatives on both sides gives

0 = 9;((degy) *) + digix
= (3,0kgy) ¥ + gyd¥ + dig
= (3:0k8y) ¥ + it + ik
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Evaluating at p we obtain

Okgilp + 0igixl, = 0.

The claim that d;g;|, = 0 follows from evaluating the general formula
20kg; = (0kgyj + 08ix) + (0kgji + 0igix) — (9igij + 0;gki)

at p. O

Since r is a distance function whose level sets near p are S"~! we obtain a polar
coordinate representation g = dr?> + g,, where g, is the restriction of g to S"~!. The
Euclidean metric looks like §; = dr* + r’ds>_,, where ds?_, is the canonical metric
on "~ Since these two metrics agree up to first-order it follows that

limg, =0,

r—>0

lim( &r — 0r (rlds )) = 0.
As 0,g, = 2 Hess r this implies
lim (Hess r — rds? ) = lim [ Hessr — 1g =0
r—0 n=l r—0 re" '

Theorem 5.5.8 (Riemann, 1854). Ifa Riemannian n-manifold (M, g) has constant
sectional curvature k, then every point in M has a neighborhood that is isometric to
an open subset of the space form Sj.

Proof. We use exponential coordinates around p € M and the asymptotic behavior
of g, and Hess r near p that was just established. The constant curvature assumption
implies that the radial curvature equation (see proposition 3.2.11) can be written as

Vs, Hessr + Hess’ r = —kg,,

lim Hess r = 0.
r—0

snk(r)

If we think of g, as given, then this equation has a unique solution. However, oy (1) 8"

also solves this equation since
snj, (r sn, (r)\°
v () 4 (Y,
sny (r) sng (7)

(s (n) ! sny (1) 2 sny (1)
- (snk (r)) st (snk (r)) Tt ()
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/
= —kg, — sn (r) Va,‘drl, since0 =V, g, + V, dr’,
sn (r) " "
sny (1)
= —kg, — (Hess r (0,,) dr + drHess r (9., ))
sny (7)
= —kg,.

sy (r)

Using that Hess r = ang (1) 8" together with g = dr? + g, implies that

r, whenk =0

1
fe(ry =47
‘ ,i—,icsk(r), when k #£ 0

satisfies Hess fi = (1 — kfi) g. The result then follows from corollary 4.3.4. O

Exercises 3.4.20 and 3.4.21 explain how this theorem was proved classically and
exercise 4.7.21 offers an approach focusing on conformal flatness.

Remark 5.5.9. Some remarks are in order in regards to the above proof. First note
that neither of the two systems
Ly g, = 2Hessr,
Vi, Hessr + Hess’ r = —kg,

or

Ly g = 2Hessr,
Ly, Hessr — Hess? r = —kg,

have a unique solution with the initial conditions that both g, and Hess r vanish at
r = 0. In fact there is also a trivial solution where both g, = 0 and Hess r = 0.

sy (r)

ang (1) 8" solves

Moreover, it is also not clear that Hess r =

L Hessr — Hess? r = —kg,
unless we know in advance that

sn;, (r)

Lyg =2 .
0,8 s ()

Finally, note that the initial value problem

smy, (r)

Lyg, =2
0,8 st ()

gr, limg, =0
r—>0
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has infinitely many solutions A sn,% (r) dsﬁ_ » A € R. Although only one of these
with give a smooth metric at p.

5.6 Riemannian Isometries

We are now ready to explain the key properties of Riemannian isometries. After a
general discussion of Riemannian isometries we classify all geodesically complete
simply connected Riemannian manifolds with constant sectional curvature.

5.6.1 Local Isometries

AmapF : (M, gy) — (N, gn) is a local Riemannian isometry if for each p € M the
differential DF), : T,M — TF(,N is a linear isometry. A special and trivial example
of such a map is a local coordinate system ¢ : U — Q C R" where we use the
induced metric g on U and its coordinate representation ((p_l)* g= gijdxidxi on 2.

Proposition 5.6.1. Let F : (M, gyy) — (N, gn) be a local Riemannian isometry.

(1) F maps geodesics to geodesics.
(2) Foexp, (v) = expg(, oDF), (v) when exp, (v) is defined. In other words

DF
TpM D) OP —> OF(,,) C TF(p)N
expp \L \L eXpF(p)
M-LN

(3) F is distance decreasing.
(4) If F is also a bijection, then it is distance preserving.

Proof. (1) The geodesic equation depends on the metric and its first derivatives in
a coordinate system. A local Riemannian isometry preserves the metric and is
a local diffeomorphism. So it induces coordinates on N with the same metric
coefficients. In particular, it must take geodesics to geodesics.

(2) Ifexp, (v) is defined, then ¢ > exp, (1v) is a geodesic. Thus ¢ - F (expp (tv))
is also a geodesic. Since

dt d

= DF (v),

d F (expp (1)) |i=0 = DF ( dt exp,, (tv) |,=0)

we have that F (exp, (1v)) = expg,) (tDF (v)). Setting ¢ = 1 then proves the
claim.
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(3) This is also obvious as F' must preserve the length of curves.
(4) Both F and F~' are distance decreasing so they must both be distance
preserving.
0

This proposition quickly yields two important results for local Riemannian
isometries. The first proposition establishes the important uniqueness for Rieman-
nian isometries and thus quickly allows us to conclude that the groups of isometries
on space forms discussed in section 1.3.1 are the isometry groups.

Proposition 5.6.2 (Uniqueness of Riemannian Isometries). Consider two local
Riemannian isometries F, G : (M, gy) — (N, gn). If M is connected, F (p) = G (p),
and DF, = DG, then F = G on M.

Proof. Let
A={xeM|F(x) =G(x), DF, = DG,}.

We know that p € A and that A is closed. Property (2) from the above proposition
tells us that

Foexp, (v) = expp() °DF (v)
= eXPg(y) DGy (v)
= Goexp, (v),

if x € A. Since exp, maps onto a neighborhood of x it follows that some
neighborhood of x also lies in A. This shows that A is open and hence all of M
by connectedness. O

Proposition 5.6.3. Let F' : (M,gy) — (N, gn) be a Riemannian covering map.
(M, gu) is geodesically complete if and only if (N, gn) is geodesically complete.

Proof. Let ¢ : (—&,&) — N be a geodesic with ¢ (0) = p and ¢ (0) = v. For any
p € F~!(p) there is a unique lift ¢ : (—&,8) - M, i.e., Foc = ¢, with ¢ (0) = p.
Since F is a local isometry, the inverse is locally defined and also an isometry. Thus
¢ is also a geodesic.

If we assume N is geodesically complete, then ¢ and also ¢ will exist for all time.
As all geodesics in M must be of the form c this shows that all geodesics in M exist
for all time.

Conversely, when M is geodesically complete, then ¢ can be extended to be
defined for all time. Then F o ¢ is a geodesic defined for all time that extends c.
Thus N is geodesically complete. O

Lemma 5.6.4. Let F : (M, gy) — (N, gn) be a local Riemannian isometry. If M is
geodesically complete and N is connected, then F is a Riemannian covering map.
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Proof. Fix q € N and assume that exp, : B(0,¢) — B(qg. ¢) is a diffeomorphism.
We claim that F~! (B (g, ¢)) is evenly covered by the sets B (p, ) where F (p) = q.
Geodesic completeness of M guarantees that exp, : B(0,&) — B (p, ¢) is defined
and property (2) that

F oexp, (v) = exp, oDF), (v)

forall v € B(0,¢) C T,M. As exp, : B(0.¢) — B(q,¢) and DF), : B(0,¢) —
B(0,¢) are diffeomorphisms it follows that F o exp, : B(0,¢) — B(q,¢) is
a diffeomorphism. Thus each of the maps exp, : B(0,¢) — B(p,¢) and F :
B (p,e) — B (g, ¢) are diffeomorphisms as well.

Next we need to make sure that

F'B@e) = |J Bp.o.

F(p)=q

If x € F7'(B(q.¢)), then we can join ¢ and F (x) by a unique geodesic c (f) =
exp, (tv), v € B (0, &). Geodesic completeness of M implies that there is a geodesic
0 :[0,1] > M with ¢ (1) = x and DF, (6 (1)) = ¢(1). Since F o ¢ is a geodesic
with the same initial values as ¢ at t = 1 we must have F (o (f)) = c(¢) for all ¢.
Since ¢ = ¢ (0) we have proven that F (0 (0)) = ¢ and hence that x € B (o (0) , €).

Finally, we need to show that F is surjective. Clearly F (M) C N is open. The
above argument also shows that it is closed. To see this, consider a sequence g; €
F (M) that converges to ¢ € N. We can use corollary 5.5.2 to find an € > 0 such that
exp, : B(0,€) — B (x, ¢) is a diffeomorphism for all x € {q,q1,...,qx,...}. Fork
sufficiently large it follows that ¢ € B (g, €). This shows that ¢ € F (M), since we
proved that B (qx, €) C F (M). ]

If S C Iso (M, g) is a set of isometries, then the fixed point set of S is defined as
those points in M that are fixed by all isometries in §

Fix(S)={xeM|F(x) =xforall F € S}.

While the fixed point set for a general set of diffeomorphisms can be quite
complicated, the situation for isometries is much more manageable. A submanifold
N C (M, g) is said to be rotally geodesic if for each p € N a neighborhood of
0 € T,N C T,M is mapped into N via the exponential map exp, for M. This means
that geodesics in N are also geodesics in M and conversely that any geodesic in M
which is tangent to N at some point must lie in N for a short time.

Proposition 5.6.5. If S C Iso(M,g) is a set of isometries, then each connected
component of the fixed point set is a totally geodesic submanifold.

Proof. Let p € Fix(S) and V C T,M be the Zariski tangent space, i.e., the set
of vectors fixed by the linear isometries DF), : T,M — T,M, where F' € §. Note
that each such F fixes p so we know that DF, : T,M — T,M.If v € V, then
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t > exp, (fv) must be fixed by each of the isometries in § as the initial position
and velocity is fixed by these isometries. Thus exp, (fv) € Fix (S) as long as it is
defined. This shows that exp, : V — Fix (S).

Next let ¢ > 0 be chosen so that exp,, : B (0,&) — B (p, ¢) is a diffeomorphism.
If ¢ € Fix (S) N B(p, &), then the unique geodesic ¢ : [0, 1] — B (p, &) from p to
q has the property that its endpoints are fixed by each F € S. Now F o c is also a
geodesic from p to ¢ which in addition lies in B (p, €) as the length is unchanged.
Thus F o ¢ = ¢ and hence c lies in Fix (S) N B (p, ¢).

This shows that exp, : VN B (0, &) — Fix (S) N B (p, ¢) is a bijection and proves
the lemma. O

Remark 5.6.6. Note that if DF,, : T,M — T,M is orientation preserving for p €
Fix (F), then the Zariski tangent space at p must have even codimension as the
+1-eigenspace of an element in SO (n) has even codimension. In particular each
component of Fix (F) has even codimension.

5.6.2 Constant Curvature Revisited

We just saw that isometries are uniquely determined by their differential. What
about the existence question? Given any linear isometry L : T,M — T,N, is there an
isometry F : M — N such that DF,, = L? In case M = N, this would, in particular,
mean that if 7 is a 2-plane in 7,M and 7 a 2-plane in T,M, then there should be an
isometry F : M — M such that F(;r) = 7. But this would imply that M has constant
sectional curvature. Therefore, the problem cannot be solved in general. From our
knowledge of Iso(S}) it follows that these spaces have enough isometries so that any
linear isometry L : T,S} — T,S} can be extended to a global isometry F : S} — S}
with DF}, = L (see section 1.3.1). We show below that in a suitable sense these are
the only spaces with this property. However, there are other interesting results in this
direction for other spaces (see section 10.1.2).

Theorem 5.6.7. Suppose (M, g) is a Riemannian manifold of dimension n and
constant curvature k. If M is simply connected and L : T,M — T,S} is a linear
isometry, then there is a unique local Riemannian isometry called the monodromy
map F : M — S} with DF, = L. Furthermore, this map is a diffeomorphism if
(M, g) is geodesically complete.

Before giving the proof, let us look at some examples.

Example 5.6.8. Suppose we have an immersion M" — S}. Then F will be one of
the maps described in the theorem if we use the pullback metric on M. Such maps
can fold in wild ways when n > 2 and need not resemble covering maps in any way
whatsoever.
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Example 5.6.9. If U C S} is an open disc with smooth boundary, then one can
easily construct a diffeomorphism F : M = S} — {p} — S} — U. Near the missing
point in M the metric will necessarily look pretty awful, although it has constant
curvature.

Example 5.6.10. If M = RP" or (R" — {0}) /antipodal map, then M is not simply
connected and does not admit an immersion into S”.

Example 5.6.11. If M is the universal covering of §> — {#p}, then the monodromy
map is not one-to-one. In fact it must be the covering map M — S — {£p}.

Corollary 5.6.12. If M is a closed simply connected manifold with constant
curvature k, then k > 0 and M = S". Thus, SP x S, CP" do not admit any constant
curvature metrics.

Corollary 5.6.13. If M is geodesically complete and noncompact with constant
curvature k, then k < 0 and the universal covering is diffeomorphic to R". In
particular, S*> x R? and S" x R do not admit any geodesically complete metrics
of constant curvature.

Now for the proof of the theorem. A different proof is developed in exercise 6.7.4
when M is complete.

Proof of Theorem 5.6.7. We know from theorem 5.5.8 that given x € M sufficiently
small balls B (x, r) are isometric to balls B (x,r) C S}. Furthermore, by composing
with elements of Iso (SZ) (these are calculated in sections 1.3.1) we have: if ¢ €
B(x,r),q € S,and L : T,U — T3S} is a linear isometry, then there is a unique
isometric embedding: F : B (x,r) — S}, where F (¢) = g and DF|, = L. Note
that when k < 0, all metric balls in S} are convex, while when k > 0 we need their
radius to be < 5 :’/k for this to be true. So for small radii metric balls in M are either
disjoint or have connected intersection. For the remainder of the proof assume that
all such metric balls are chosen to be isometric to convex balls in the space form.

The construction of F proceeds basically in the same way one does analytic
continuation on simply connected domains. Fix base points p € M, p € S} and
a linear isometry L : T,M — T;S}. Next, let x € M be an arbitrary point. If
¢ € Qp, is a curve from p to x in M, then we can cover ¢ by a string of balls
B(p;,r),i = 0,...,m, where p = po, x = py, and B (p;—1,7) N B (p;,r) # @.
Define Fy : B(po,r) — S} so that F (p) = p and DFy|,, = L. Then define F; :
B (pi,r) — S} successively to make it agree with Fi_; on B (p;—1,r) N B (p;, r) (this
just requires their values and differentials agree at one point since the intersection
is connected). Define a function G : Q,, — S} by G(c) = F, (x). We have to
check that it is well-defined in the sense that it doesn’t depend on our specific way
of covering the curve. This is easily done by selecting a different covering and then
showing that the set of values in [0, 1] where the two choices agree is both open and
closed as in proposition 5.6.2.

If ¢ € Q,, is sufficiently close to ¢, then it lies in such a covering of ¢, but then
it is clear that G (c¢) = G (c¢). This implies that G is locally constant. In particular, G
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has the same value on all curves in €2, that are homotopic to each other. Simple-
connectivity then implies that G is constant on 2, .. This means that F (x) becomes
well-defined and a Riemannian isometry.

If M is geodesically complete we know from lemma 5.6.4 that F has to be a
covering map. As S} is simply connected it must be a diffeomorphism. O

We can now give the classification of complete simply connected Riemannian
manifolds with constant curvature. Killing first proved the result assuming in effect
that the manifold has an & > 0 such that for all p the map exp, : B(0,&) —
B (p, €) is a diffeomorphism, i.e., the manifold has a uniform lower bound for the
injectivity radius. Hopf realized that it was sufficient to assume that the manifold
was geodesically complete. Since metric completeness easily implies geodesic
completeness this is clearly the best result one could have expected at the time.

Corollary 5.6.14 (Classification of Constant Curvature Spaces, Killing, 1893
and H. Hopf, 1926). If (M, g) is a connected, geodesically complete Riemannian
manifold with constant curvature k, then the universal covering is isometric to Sj.

This result shows how important the geodesic completeness of the metric is.
A large number of open manifolds admit immersions into Euclidean space of the
same dimension (e.g., S" x R¥) and hence carry incomplete metrics with zero
curvature. Carrying a geodesically complete Riemannian metric of a certain type,
therefore, often implies various topological properties of the underlying manifold.
Riemannian geometry at its best tries to understand this interplay between metric
and topological properties.

5.6.3 Metric Characterization of Maps

For a Riemannian manifold (M, g) we denote the corresponding metric space by
(M, || g) or simply (M, |--|) if only one metric is in play. It is natural to ask whether
one can somehow recapture the Riemannian metric g from the distance |-|,. If
for instance v, w € T,M, then we would like to be able to compute g(v, w) from
knowledge of |--|,. First note that it suffices to compute the length of vectors as the
inner product g(v, w) can be computed by polarization:

_1 2 2 2
g.w) = (Jv+wl’ = o = ).

One way of computing |v| from the metric is by taking a curve « such that & (0) = v
and observe that

| = i OO
t

t—0
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Thus, g really can be found from ||, by using the differentiable structure of M. It is
perhaps then not so surprising that many of the Riemannian maps we consider have
synthetic characterizations, that is, characterizations that involve only knowledge of
the metric space (M, |-|,).

Before proceeding with our investigations, let us introduce a new type of
coordinates. Using geodesics we have already introduced one set of geometric
coordinates via the exponential map. We shall now use the distance functions to
construct distance coordinates. For a point p € M fix a neighborhood U > p
such that for each x € U we have that B (¢, inj(g)) D U (see corollary 5.5.2 and
theorem 5.5.4). Thus, for each g € U the distance function r,(x) = |gx| is smooth
on U — {g}. Now choose qi,...,q, € U — {p}, where n = dimM. If the vectors
Vra(p), ..., Vr,(p) € T,M are linearly independent, the inverse function theorem
tells us that ¢ = (rql AU rqn) can be used as coordinates on some neighborhood V
of p. The size of the neighborhood will depend on how these gradients vary. Thus,
an explicit estimate for the size of V can be obtained from suitable bounds on the
Hessians of the distance functions. Clearly, one can arrange for the gradients to be
linearly independent or even orthogonal at any given point.

We just saw that bijective Riemannian isometries are distance preserving. The
next result shows that the converse is also true.

Theorem 5.6.15 (Myers and Steenrod, 1939). If (M, gy) and (N, gy) are Rie-
mannian manifolds and F : M — N a bijection, then F is a Riemannian isometry if
F is distance preserving, i.e., |F(p)F(q)|,, = |p4l,, for allp,q € M.

Proof. Let F be distance preserving. First we show that F is differentiable. Fix p €
M and let ¢ = F(p). Near ¢ introduce distance coordinates (rql ey rqn) and find p;
such that F (p;) = ¢;. Now observe that

rg 0 F(x) = [F(0)gi
= [FQ)F(p))]
= |xpil.
Since |ppi| = |qqi|, we can assume that the ¢;s and p;s are chosen such that r,,, (x) =
|xp;| are smooth at p. Thus, (rq1 ey rqn) o F is smooth at p, showing that F must be
smooth at p.
To show that F'is a Riemannian isometry it suffices to check that [DF(v)| = |v|

for all tangent vectors v € TM. For a fixed v € T,M let c(r) = exp,(tv). For small ¢
we know that c is a constant speed segment. Thus, for small ¢, s we can conclude

|t = s] - [v] = [e()ecls),, = [F (@) F (c(s))y »
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implying
_|d(Foo)
pron =| "9

__|F(c@®) F(c(0)),,

= lim
1—0 2]

_ ey,
=0 2|

= [c(0)]

= |v].

|

Our next goal is to find a characterization of Riemannian submersions. Unfortu-
nately, the description only gives us functions that are C', but there doesn’t seem
to be a better formulation. Let F : (1\_/1 , gA-,,) — (M, gpr) be a function. We call F a
submetry if for every p € M there is an r > 0 such that F (B (p,)) = B (F (p), €)
for all ¢ < r. Submetries are locally distance nonincreasing and hence also
continuous. In addition, we have that the composition of submetries (or Riemannian
submersions) are again submetries (or Riemannian submersions).

Theorem 5.6.16 (Berestovskii, 1995). If F : (M.gy;) — (M.gy) is a surjective
submetry, then F is a C' Riemannian submersion.

Proof. We use the notation p € F~! (p) for points in the pre-image. The goal is to
show that we have unique horizontal lifts of vectors in M that vary continuously
with p.

Assume that r < inj,, inj; in the submersion property so that all geodesic
segments are unique between the end points

The submetry property shows: If |p ¢| < r, then for each p € F~! (p) there exists
a unique g € F~! (¢) with |[pg| = |p g|. Moreover, the map p + ¢ is continuous.

We can then define horizontal lifts of unit vectors by g = 5421 This is well defined
since pgs = pgs implies that g, g, lie on the same segment emanating from p and
thus the same will be true for g, g».

Select distance coordinates (rq, ..., r) around p. Observe that all of the r;s are
Riemannian submersions and therefore also submetries. Then the compositions ;o F
are also submetries. Thus, F is C! if and only if all the maps r;o F are C!. Therefore,
it suffices to prove the result in the case of functions r : U C M — (a, D).

The observation is simply that Vr is the horizontal lift of d, on (a, b). Continuity
of Vr follows from continuity of p — q. O

Remark 5.6.17. Tt can be shown that submetries are C!'!, i.e., their derivatives are
locally Lipschitz. In terms of the above proof this follows from showing that the map
p > g is locally Lipschitz. It is in general not possible to improve this. Consider,
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e.g., K = [0,1]> ¢ RZand let r (x) = |xK|. Then the levels r = ry > 0 are not C
as they consist of a rounded square with sides parallel to the sides of K and rounded
corners that are quarter circles centered at the corners of K.

5.6.4 The Slice Theorem

In this section we establish several important results about actions on manifolds.
First we show that the isometry group is a Lie group and then proceed with a study
of the topology near the orbits of actions by isometries.

The action by a topological group H on a manifold M is said to be proper if the
map H x M — M x M defined by (4, p) — (hp,p) is a proper map. The orbit of
H through p € M is Hp = {hp | h € H}. The topology on the quotient H\M, that
consists of the space of orbits of the action, is the quotient topology (note the we
are careful to divide on the left as we shall use both right and left cosets in this
section). This makes M — H\M continuous and open. This topology is clearly
second countable and also Hausdorff when the action is proper.

The isotropy group of an action Hatp € M is H, = {h € H | hp = p}. Note that
along an orbit the isotropy groups are always conjugate: Hy, = hH,h~'. When the
action is proper H,, is compact. This gives us a proper action (k, h) — hk~!' of H,,
on H. The orbit space H/H, is the natural coset space of left translates of H,. The
natural identification H/H,, — Hp is a bijection that is both continuous and proper
and hence a homeomorphism. We say that H is free or acts freely if H, = {e} for all
pEM.

The topology on Iso (M, g) is defined and studied in exercise 5.9.41. The key
property we shall use is that Iso (M, g) > F +— (F (p),DF |1,) is continuous and
a homeomorphism onto its image. Note that the last fact factor is a “linear” map
M — TM.

Example 5.6.18. The Arzela-Ascoli lemma implies that Iso (M) acts properly on M
(see also exercise 5.9.41). However, a subgroup H C Iso (M) does not necessarily
act properly unless it is a closed subgroup. The action R x S' x §' — S' x S! defined
by 0 - (z1,22) = (eeizl, e‘wizZ) is proper if and only if « is rational.

Theorem 5.6.19 (Myers and Steenrod, 1939). If H is a closed subgroup of
Iso (M, g), then the orbits of the action are submanifolds. In particular, the isometry
group is a Lie group.

Proof. The proof is a streamlined version of the original proof by Myers and
Steenrod. They showed that the orbits are C', fortunately a little trick allows us
to bootstrap the construction to obtain smoothness.

Throughout the proof we work locally and use that any Riemannian manifold
looks like Euclidean space via exponential coordinates both around a point as in
proposition 5.5.1 and around a small tube as in corollary 5.5.3. Since we work
locally all metric balls have smooth boundary.
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Fig. 5.9 Tangent and normal
vectors to orbits

Hp

We say that v € T,M is tangent to Hp C M if v = lim¢; (0), where ¢; are
geodesic segments from p to p; € Hp with lim p; = p (see figure 5.9). Since H, is
compact we can always write p; = h;p with lim h; = e. In this case Dh;|, converges
to the identity (see exercise 5.9.41). The set of all such tangent vectors at p is denoted
T,Hp. We claim that T,Hp C T,M is a subspace. First note that this set is invariant
under scaling by positive scalars as we can reparametrize the geodesic segments.
Next consider v = limv; and w = limw;, where v; and w; are initial velocities for
geodesic segments from p to p; = h;p and ¢q; € Hp, respectively. Using that the
metric is locally Euclidean near p it follows that the velocity ¢; (0) for a suitably
parametrized geodesic ¢; from p; to g; is close to w — v in TM (see figure 5.9). Using
the isometry /; ! to move p; = h;p to p and lim h; = e implies that

d(h;' o ci)
dt

lim 0)=w—v.
This shows that w — v € T,Hp.

The group structure preserves the orbits and maps tangent vectors to tangent
vectors by T;,,Hp = Dh (T,,Hp). As Dh = exp;p1 oh o exp, locally, it follows that
these tangent spaces vary continuously along Hp.

We say that v € T,M is normal to Hp if it is proportional to 175 where |gp| =
|g Hp|. Clearly B (q,|gp]) N Hp = & so the angle between tangent and normal
vectors must be > 7/2. Since the tangent vectors form a subspace they must in fact
be perpendicular to all normal vectors (see figure 5.9). This shows that if O C M is
an open subset with smooth boundary and O N Hp = @, then for any ¢ € 90 N Hp
we have T,Hp C T,00.

Let N* be a small k-dimensional submanifold with T,N = T,Hp. Use the normal
exponential map to introduce coordinates (x, y) on a tubular product neighborhood
of N diffeomorphic to N x B with B = B(0,¢) C R"* where n = dimM (see
figure 5.10). Since {x} x B C N x B is perpendicular to N at (x, 0) it follows that
N x {y} is almost perpendicular to {x} x B at (x,y) € N x B as long as N and ¢
are sufficiently small. Since T},,Hp varies continuously with 4 it follows that it has
trivial intersection with the tangent spaces to {x} x B.

We now claim that the map (x,y) — x projects a neighborhood of p € Hp to a
neighborhood of p € N. Since Hp is closed its image in N is also closed. Let the
complement of the image in N be denoted N'.

If py = hyp and g € Hp are mapped to the same point in N, then pr g, is tangent
to B. On the other hand, if limp, = p = lim g, then p; g; will (sub)converge to a
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Fig. 5.10 Making an orbit a
graph

Hp

vector orthogonal to T,Hp. Then p hi_lqk also (sub)converges to a vector orthogonal
to 7,Hp, which is a contradiction.

Assume that p is on the boundary of N'. Then we can find a sequence of open
sets O C N’ with smooth boundary; 00} N IN’ # @; and p = lim;, « ¢; for any
gi € O.. This means that if O; = O) x B, then O; N Hp = & and we can find
pi = (x;,y;) € 00; N Hp that converge to (p, 0) = p. In particular, T, Hp C T,,00;.
Now dim 7,,Hp = k and dim T}, ({x;} x B) = n — k so it follows that they have a
nontrivial intersection as they are both subspaces of the (n — 1)-dimensional space
T,,00; = T\,0; @ T,,B. On the other hand 7}, ({x;} x B) converges to TIf-N and so
by continuity must be almost perpendicular to 7),,Hp. This contradicts that p € IN’.

By shrinking N if necessary we can write Hp N (N x B) as a continuous graph
over N. The tangent spaces to the orbits also vary continuously and are almost
orthogonal to TB. Thus tangent vectors to the orbits are uniquely determined by
their projection on to TN. In particular, any smooth curve in N is mapped to a curve
in the orbit. Moreover, the velocity field of the curve has a unique continuous lift
to the tangent space of the orbit. It is easy to see that this lifted velocity field is
the velocity of the corresponding curve. Similarly we see that the graph is C' and
consequently that the orbit is a C! submanifold.

To see that the isometry group of M is a C' Lie group first note that it acts
properly on M"+! = M x --- x M and thus forms a closed subgroup of the isometry
of this space. Moreover, this action is well-defined and free on the open subset of
points (po, . ...p,) € O C M"*! where popi, i = 1, ..., n are linearly independent.
Thus the isometry group of M is naturally identified with a C' submanifold of O.

Finally, note that the formulas 7,,Hp = Dh (T,,Hp) and Dh = exp;p1 oh o exp,
show that the tangent spaces THp to Hp form a submanifold of 7M that is as smooth
as the group H. So if H is C¥, k > 1, then so is THp. But this implies that Hp is
a C*'! submanifold. The above construction then shows that H itself is C**!. This
finishes the proof that the isometry group is a smooth Lie group. O

There are other proofs of this theorem that also work without metric assumptions
(see theorem 8.1.6 and [83] or use various profound characterizations of Lie groups
as in exercise 6.7.26 and [79]).
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The goal is to refine our understanding of the topology near the orbits of the
action by a closed subgroup H C Iso (M, g). Such groups are necessarily Lie groups
and as such have a Lie group exponential map exp : T.H = §h — H. The Lie
subalgebra of H,, is denoted b,. Observe that v € b, if and only if exp (tv) € H, for
all 1.

Proposition 5.6.20. Let O, (h) = hp be the orbit map. Then ker ((DO,) |.) = b,
and more generally ker ((DOP) |x) = DL, (hp).

Proof. Note that the last statement follows from the first by the chain rule and
(h1hy) p = hy (hap). To establish the first claim we first note that

d
(DOy) e (@) = (exp (1) - P) li=o-

Next observe that
L (exp () D) iy = ¢ (explion) explsv) p) |
dt p Pt=to—ds plio pP(sv) - p) [s=0
d
= D (exp(tv)) s (exp(sv) - p) |s=0 | -

Soif (DOP) le (v) = 0, then exp (tv)-p = p for all # and hence v € bh,. The converse
is trivially true. O

When H acts freely this proposition implies that all orbits Hp are immersed
submanifolds.

Since H consists of isometries there is a natural H-invariant map £ : H x T,
M — M defined by

(h,v) > hexpp v) = eXPp, (Dhl,,v) ,

ie., E (hx,v) = hE (x,v) forall h,x € Hand v € T,M.

Theorem 5.6.21 (The Free Slice Theorem). If H C Iso(M,g) is closed and
acts freely, then the quotient H\M can be given a smooth manifold structure and
Riemannian metric so that M — H\M is a Riemannian submersion.

Proof. We just saw that the orbits are properly embedded copies of H. If we restrict
the map E to the normal bundle to Hp at p, then we obtain a H-invariant map
expt 1 H x T[}Hp — M. Note that there is a natural trivialization H x T[}Hp —
T1Hp defined by (h,v) Dh|,(v), which is a linear isometry on the fibers.
Moreover, expt is in fact the normal exponential map expt : T1Hp — M
via this identification. We can then invoke the tubular neighborhood theorem
(corollary 5.5.3) to obtain a diffeomorphism from some neighborhood of the zero
section in H x T:-Hp to a neighborhood of the orbit in M. However, we need a
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Fig. 5.11 Slices along an
orbit

uniform neighborhood of the form expt : H x B(0,¢) — M, where B (0,¢) C
TI}Hp. In such a uniform neighborhood the set B (0, €) is called a slice of the action.
Thus a slice is a cross section of a uniform tube (see figure 5.11).

First we find an € > 0 so that epr- :UXxB(0,¢) > M,e € U C His an
embedding. Thus the usual normal exponential map is also an embedding on the
e-neighborhood of the zero section in T-Up. We can further assume that all closed
e-balls centered in the image are compact and thus have compact intersection with
all orbits.

We can further decrease € so that if v € B(0,€) and |(hp) exp, (v)| < €, then
h € U. This shows that p is the unique closest point in Hp to exp, (v). In fact the
first variation formula shows that any segment from exp,, (v) to Hp is perpendicular
to Hp. Moreover, any such a segment will end at a point hp with 2 € U. But then
v and the tangent vector to the segment from /p to exp, (v) are normal vectors to
Up that are mapped to the same point. This violates the choice of €. This in turn
shows that exp : Hx B (0, €) — M is an embedding. It is clearly nonsingular since
this is true at all points (e, v), [v| < €, and exp* (h,v) = hexp, (v), where & is a
diffeomorphism on M. It is also injective since exp® (hy, v;) = exp* (hy, v2) first
implies that exp™ (hy'hi,v) = exp™ (e, v2). This shows that 4, 'h; € U and then
by choice of € that 4y = hy and v; = v,. Finally the map is proper since Hp is
properly embedded. This shows that it is closed and an embedding.

We have shown that M — H\M looks like a locally trivial bundle. The manifold
structure on the quotient comes from the fact that for each p € M the slice B (0, €)
is mapped homeomorphically to its image in H\M. These charts are easily shown
to have smooth transition functions. Finally, the metric on H\M is constructed as
in section 4.5.2 by identifying the tangent space at a point Hp € H\M with one of
the normal spaces T,f[;Hp and noting that Dh|, maps T;-Hp isometrically to T,fI;Hp.
Thus all of these normal spaces are isometric to each other. This induces a natural
Riemannian metric on the quotient that makes the quotient map a Riemannian
submersion. O

Remark 5.6.22. Let K C H be a compact subgroup of a Lie group. Consider the
action (k,x) — xk~! of K on H. As K is compact we can average any metric
on H to make it right-invariant under this action by K. Thus we obtain a free
action by isometries and we can use the above to make H/K a manifold with a
Riemannian submersion metric. In case the metric on H is also left-invariant we
obtain an isometric action of H on H/K that makes H/K a homogeneous space.
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In case K C H is closed we still obtain a proper action by right multiplication.
This can again be made isometric by using a right-invariant metric. However, it is
not necessarily possible to also have the metric on H be left-invariant so that H acts
by isometries on H/K.

Corollary 5.6.23. Let H x M — M be a proper isometric action. For eachp € M
the orbits Hp are properly embedded submanifolds H/H, — Hp.

Proof. We already know that it is a proper injective map and that H/H, has a
manifold structure. Furthermore proposition 5.6.20 shows that the differential is
also injective. This shows that it is a proper embedding. O

The slice representation of a proper isometric action is the linear representation
H x T;-Hp — T;-Hp given by (h, v) = Dh|, (v). If we let H, act on H on the right

as above, then H, naturally acts on H x T;-Hp and corollary 5.6.23 shows that the
quotient H Xy, TIf'Hp can be given a natural manifold structure.

Theorem 5.6.24 (The Slice Theorem). Let H C Iso (M, g) be a closed subgroup.
For each p € M there is a map exp™ : H XH, Tlf-Hp — M that is a diffeomorphism
on a uniform tubular neighborhood H xy, B (0, €) on to an e-neighborhood of the
orbit Hp.

Proof. The proof is as in the free case now that we have shown that all orbits are
properly embedded. For fixed p € M consider the bundle map

H x T;'Hp — THp
(h,v) = Dhl, (v).

This map is H-invariant, an isomorphism on the fibers, and H x {0} is mapped to the
zero section in 7-Hp represented by the orbit Hp. Since D (h ) k‘l) lp (Dk| » (v)) =
Dh|, (v) for any element k € H, this gives us a natural bundle isomorphism from
H x4y, T;-Hp to T+Hp. Now define expt : H X, T;-Hp — M as the normal
exponential map 7-Hp — M via this identification (see figure 5.12).

It is now possible to find € > 0 as in theorem 5.6.21 so that exp~ : H XH,
B (0,€) — M becomes an H-invariant embedding. O

Fig. 5.12 A linear slice and a TLHp
. . 4
slice in the manifold N
%
1, Hp

Hp
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This theorem tells us exactly how H acts near an orbit and allows us to calculate
the isotropy of points near a given point.

Corollary 5.6.25. For smallv € T;'Hp the isotropy at exp,, (v) is given by
Hexp, () = {h € H, | Dh|,v = v}.

This in turn implies.

Corollary 5.6.26. I[f H C Iso (M, g) is a closed subgroup with the property that
all its isotropy groups are conjugate to each other, then the quotient space is a
Riemannian manifold and the quotient map a Riemannian submersion.

5.7 Completeness

5.7.1 The Hopf-Rinow Theorem

One of the foundational centerpieces of Riemannian geometry is the Hopf-Rinow
theorem. This theorem states that all concepts of completeness are equivalent. This
should not be an unexpected result for those who have played around with open
subsets of Euclidean space. For it seems that in these examples, geodesic and metric
completeness break down in exactly the same places.

Theorem 5.7.1 (Hopf and Rinow, 1931). The following statements are equivalent
for a Riemannian manifold (M, g):

(1) M is geodesically complete, i.e., all geodesics are defined for all time.

(2) M is geodesically complete at p, i.e., all geodesics through p are defined for all
time.

(3) M satisfies the Heine-Borel property, i.e., every closed bounded set is compact.

(4) M is metrically complete.

Proof. (1)=(2) and (3)=>(4) are trivial.

(4)=(1): Recall that every geodesic ¢ : [0,b) — M defined on a maximal
interval must leave every compact set if b < oo. This violates metric completeness
as c(t), t — b is a Cauchy sequence.

(2)=(3): Consider exp, : T,M — M. It suffices to show that

exp, (B(0.R)) = B(p.R)

for all R (note that C always holds). This will follow if we can show that any point
q € M is joined to p by a segment. By corollary 5.5.6 we can find € > 0 such that any
point in the compact set B (p, €) = exp, (B(O, e)) can be joined to p by a minimal
geodesic. This shows that if p’ € B(p,€) — B(p,¢€) is closest to g, then |pp’| +
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Fig. 5.13 Two short cuts
from p to ¢ (1) q

|P'q| = |pq|. Otherwise, corollary 5.3.10 guarantees a unit speed curve ¢ € Q,,
with L(c) < |pp’| + |p'q| (see top of figure 5.13). Choose t so that ¢ (t) € B (p, €) —
B(p,€). Since ¢ + |c () q] < L(c) < |pp'| + |p'q| it follows that |c (r) | < |pq|
contradicting the choice of p'.

Let ¢ (¢) : [0, 00) — M be the unit speed geodesic with ¢ (0) = p and ¢ (¢) = p'.
We just saw that |pg| = € + |c (€) g|.

Consider

A={te0,Ipql] | Ipgl = 1+ [c @ ql}.

Clearly 0, € € A. Note thatif r € A, then

lpgl =t+lc () ql = |pc (D] + |c (D) ql = |pql,

which implies that ¢t = |pc (¢)|. We first claim that if a € A, then [0,a] C A. When
t < anote that

lpg| < |pc ()] + |c (@) 4l

lpc )] + |c (@) ¢ (@)| + |c (a) q]
<t4+a—t+|c(a)q|
a+lc(a)q|

IA

IA

Ipql -

This implies that |pc (t)| + |c () g| = |pq| and t = |pc (f)|, showing that € A (see
also figure 5.13).

Since t + |c (¢) g| is continuous it follows that A is closed.

Finally, we claim that if a € A, then a + § € A for sufficiently small § > 0. Use
corollary 5.5.6 to find § > 0 so that any pointin B (c (a) , §) can be joined to ¢ (a) by
a segment (see also figure 5.13). If we select ¢’ € B (c (a),8) — B (c (a),8) closest
to g, then
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lpq|l = a+ |c(a)q]
=a+|c(@)dq]|+]|qq|

=a+38+|qq|
> |pd| + |dq|
> |pql.

It follows that |pg’| = a + § which tells us that the piecewise smooth geodesic that
goes from p to ¢ (a) and then from c (@) to ¢’ is a segment. By corollary 5.4.4 this
segment is a geodesic and ¢’ = ¢ (a + §). It then follows from |pg| = a + 8 + |¢'q|
that ¢ (a + §) € A.

This shows that A = [0, |pg|]. O

From (2) = (3) we get the additional result:

Corollary 5.7.2. If (M, g) is complete in any of the above ways, then any two points
in M can be joined by a segment.

Corollary 5.7.3. If (M, g) admits a proper Lipschitz function f : M — R, then M
is complete.

Proof. We establish the Heine-Borel property. Let C C M be bounded and closed.
Since f is Lipschitz the image f (C) is also bounded. Thus f (C) C [a,b] and C C
£~V ([a.b]). As f is proper the pre-image f~' ([a, b]) is compact. Since C is closed
and a subset of a compact set it must itself be compact. O

This corollary also makes it easy to check completeness for all of our examples
related to warped products. In these examples, the distance function can be extended
to a proper continuous function on the entire space.

From now on, virtually all Riemannian manifolds will automatically be assumed
to be connected and complete.

5.7.2 Warped Product Characterization

In theorem 4.3.3 we offered a local characterization of Riemannian manifolds that
admit functions whose Hessian is conformal to the metric and saw that these were
all locally given by warped product structures. Here we extend this to a global result
for complete Riemannian manifolds.

Theorem 5.7.4 (Tashiro, 1965). Let (M, g) be a complete Riemannian n-mani-fold
that admits a nontrivial function f whose Hessian is conformal, i.e., Hessf = Ag.
Then (M, g) is isometric to a complete warped product metric and must have one of
the three forms:
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(1) M =R xN and g = dr* + p* (r) gw,
2 M=R'and g = dr* + p* (r)ds>_,, r > 0,
(3) M = S"and g = dr* + p* (r)ds>_,, r € [a, b].

n—1
Proof. We start by identifying N. Recall from theorem 4.3.3 that |Vf]| is locally
constant on {f = fo} N {df # 0} for each fy € R. From this it follows that the
connected components of {f = fy}N{df # 0} mustbe closed. As f is nontrivial there
will be points where the differential doesn’t vanish. Define N C {f = fy} N {df # 0}
as any nonempty connected component and note that N is a closed hypersurface
inM.
For p € N the unit speed geodesic though p that is normal to N is given by:

Vflp)
\iva

For fixed numbers a < 0 < b consider the set C C N such that f is regular at
¢y () forall p € Cand t € [a, b]. Since the set of regular points is open it follows
that C C N is open. Theorem 4.3.3 shows that on U = {c,, ®|peC, te [a,b]}
we have a warped product structure g|y = dr? + p* (r) g, where r is the signed
distance function to N and

cp (1) = exp, (t

v
= v
F) = / p (1) dr.

Vr

Forallp e N
d*(foc, ) o
(};ﬂ 2 =g (Vf.é,) + Hessf (¢p.¢p) = Aoy
with
(f o) (0) = fo,
d(focp)

a0 = g (V£.6,(0) = V1.
When we restrict attention to U we have A o ¢, = A(f o ¢,). Thus f o ¢, satisfies a
second-order equation with initial values that do not depend on p € C. In particular,
focy(t) depends only on ¢ € [a, b] and not on p € C. Similarly,

d (f o cp)
dt

®) = & (Vfley- &) = |Vfle,n| = p(2)
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dependsonlyont € [a,b] and noton p € C. Continuity of |Vf le, () \ with respect to p
and ¢, combined with the fact that f is regular on U, shows that for fixed ¢ € [a, b] the
value|Vf|Cp(,)| cannot vanish when p € dC C N. Thus we have shown that C C N
is both open and closed. Since N connected we conclude that C = N.

Finally, we obtain nontrivial maximal open interval (a,b) > 0 such that c,(f)
is regular for all + € (a,b) and p € N. Moreover, the warped product structure
dr* + p?* (r) g extends to hold on (a, b) x N.

When (a, b)) = R we obtain a global warped product structure.

If, say, b < oo, then the level set {r = b} consists of critical points for f. Since
p = | Vf| it follows that lim,— p (f) = 0. The warped product structure then shows
that any two points in N will approach each other as t — b. In other words

}i_I)I; |cp (t) cq (t)| =0.

Consequently, {r = b} is a single critical point x. Now consider all of the unit vectors
¢y (b) € TM. Since N is a closed submanifold this set of vectors is both closed
and open and thus consists of all unit vectors at x. This shows that not only will
any geodesic ¢, (¢) approach x as t — b, but after it has passed through x it must
coincide with another such geodesic. Thus {fy <f < f(x)} ~ [0,b) x N and x is the
only critical point in {fy < f < f (x)}. It also follows that N ~ S"~! since the level
sets for f near x are exactly distance spheres centered at x. The argument that gy is
a round metric on §”~! can be completed exactly as in the proof of theorem 4.3.3.
A similar argument holds when —oo < a. We finish the proof by observing that
we are in case 3 when both a@ and b are finite and in case 2 when only one of @ or b
are finite. O

With more information about A we expect a more detailed picture of what
M can be. In particular, there is a global version of the local classification from
corollary 4.3.4.

Theorem 5.7.5. Let (M, g) be a complete Riemannian n-manifold that admits a
nontrivial function f whose Hessian satisfies Hessf = (af + B) g, o, B € R. Then
(M, g) falls in to one of the following three categories:

(a) M,g) = (I x SV dr? + sn? (r) dsi_l), i.e., a constant curvature space form.
b)) M,g) = (]R x N,dr* + gN), i.e., a product metric.

© (M.g) = (RxN.dr* + (Aexp (Var) + Bexp (—v/ar) h). 4,B = 0.

Proof. From the previous theorem we already know that g = dr?> + p? (r) gn., r € 1,
withf = f (), p(r) = f (), and A = af + B = f".

It’1l be convenient to divide into various special cases.

When o = 8 = 0 it follows that p is constant. This is case (b).

When o = 0 and 8 # 0 it follows that p = Br + y. Thus [ is a half line where p
vanishes at the boundary point. This point must correspond to a single critical point
for f. The metric is the standard Euclidean metric.
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When «o #Owecanchangeftof—i—5.ThenHess<f+€) =a<f—+—g)gso

we can assume that 8 = 0. In case @ < 0, it follows that p = Assin (/—ar + r).
Thus I is a compact interval and the metric becomes a round sphere. In case o > 0,
we have that p = A exp (v/ar) + Bexp (—+/ar), where at least one of A or B must
be positive. If they are both nonnegative we are in case (c). If they have the opposite
sign we can rewrite p = Csinh (\/ar + ro). Then I is a half line and the metric
becomes a constant negatively curved warped product. O

Note that in case (a) the function f has at least one critical point, while in cases
(b) and (c) f has no critical points. In 1961 Obata established this theorem for round
spheres using the equation

Hessf = (1 —f)g.

Remark 5.7.6. In a separate direction it is shown in [100] that transnormal functions
(see remark 4.3.5) on a complete Riemannian manifold give a similar topological
decomposition of the manifold. Specifically such functions can have zero, one,
or two critical values. All level sets for f are smooth submanifolds, including the
critical levels. Moreover, f = ¢ (r) where r is the signed distance to a fixed level set
of f.

5.7.3 The Segment Domain

In this section we characterize when a geodesic is a segment and use this to find a
maximal domain in 7,M on which the exponential map is an embedding. This is
achieved through a systematic investigation of when distance functions to points are
smooth. All Riemannian manifolds are assumed to be complete in this section, but
it is possible to make generalizations to incomplete metrics by working on suitable
star-shaped domains.

Fix p € (M, g) and let r(x) = |px|. We know that r is smooth near p and that
the integral curves for d, are geodesics emanating from p. Since M is complete,
these integral curves can be continued indefinitely beyond the places where r is
smooth. These geodesics could easily intersect after some time and consequently
fail to generate a flow on M. But having the geodesics at points where r might not be
smooth helps us understand the lack of smoothness. We know from section (3.2.6)
that another obstruction to r being smooth is the possibility of conjugate points.
It is interesting to note that while distance functions generally aren’t smooth, they
always have one sided directional derivatives (see exercise 5.9.28).
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To clarify matters we introduce some terminology: The segment domain is
seg(p) = {v € T,M | exp,(tv) : [0, 1] — M is a segment} .

The Hopf-Rinow theorem (see theorem 5.7.1) implies that M = exp,(seg(p)).
Clearly seg(p) is a closed star-shaped subset of T,M. The star interior of seg(p) is

seg’ (p) = {sv | s €[0,1), v € seg(p)}.

Below we show that this set is in fact the interior of seg(p), but this requires that we
know it is open. We start by proving

Proposition 5.7.7. Ifx € exp[,(sego(p)), then it is joined to p by a unique segment.
In particular, exp,, is injective on seg” (p).

Proof. To see this note that there is a segment o : [0, 1) — M with ¢(0) = p and
o(t) = x, tp < 1. Therefore, should & : [0, 7] — M be another segment from p to
x, then we could construct a nonsmooth segment

6(s), s €0, 1],
a(s), s € [t, 1].

c(s) =

Corollary 5.4.4 shows this is impossible. O

On the image U, = expp(sego(p)) define 9, = Dexp,(d,). We expect this to be
the gradient for

r(x) = |px| = Jexp, ' (¥)].

From the proof of lemma 5.5.5 it follows that r will be smooth on U, with gradient
d,if exp,, : seg’(p) — U, is a diffeomorphism between open sets. Since the map is
injective we have to show that it is nonsingular and that seg®(p) is open. The image
will then automatically also be open by the inverse function theorem. We start by
proving that the map is nonsingular.

Lemma 5.7.8. exp, : seg(p) — U, is nonsingular everywhere, or, in other words,
. . . . 0
Dexp,, is nonsingular at every point in seg” (p).

Proof. The standard proof of this statement uses Jacobi fields and is outlined in
exercise 6.7.24, but in essence there is very little difference between the two proofs.

The proof is by contradiction. As the set of singular points is closed we can
assume that exp, is singular at v € seg’(p) and nonsingular at all points tv, t €
[0, 1). Since ¢ (1) = exp,, (tv) is an embedding on [0, 1) we can find neighborhoods
U around [0, I)v C T,M and V around ¢ ([0, 1)) C M such thatexp, : U — V
is a diffeomorphism. Note that v ¢ U and ¢ (1) ¢ V. If we take a tangent vector
w € T,T,M, then we can extend it to a Jacobi field J on T,M, i.e., [0,,J] = 0.
Next J can be pushed forward via exp, to a vector field on V, also called J, that also
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commutes with d,.. If D exp, |,w = 0, then
}1_13} Jlexp(tv) = }I_IED eXP,, (J) |exp(tv) =0.

In particular, we see that D exp, is singular at v if and only if exp,, (v) is a conjugate
point for . This characterization naturally assumes that » is smooth on a region that
has exp, (v) as a accumulation point.

The fact that

1im [J|? |exp) — O as t — 1
t—1

implies that

lim log |J|* lexp(rv) = —00 as t — 1.
t—1

Therefore, there must be a sequence of numbers 7, — 1 such that

0,17

2 |6xp(tny) —> —00 as n — OQ.
/]

Now use the first fundamental equation evaluated on the Jacobi field J (see

proposition 3.2.11 and section 3.2.4) to conclude that: 3, |J|> = 2 Hess r (J, J). This

shows that:

Hessr (J,J)

lexp(t,v) — —0C as n — 00.
| le p(tav)

By assumption c(#) = exp,(fv) is a segment on some interval [0, 1 + ¢], & > 0.
Use corollary 5.5.2 to choose ¢ so small that 7(x) = |xc(1 4 ¢)| is smooth on a ball
B(c(1 + €),2¢) (see figure 5.14 for a schematic picture of J and a corresponding
Jacobi field for 7 that agrees with J at #,,). Then consider the function

e(x) = r(x) + r(x).
From the triangle inequality, we know that

e(x) > 1+e=|pc(l +¢).

Fig. 5.14 A field that gives J(1)
shorter curves from p to

c(l1+¢) ? ~~~~~ N
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Furthermore, e(x) = 1+ ¢ wheneverx = ¢(#), t € [0, 1 4 ¢]. Thus, e has an absolute
minimum along ¢(f) and consequently has nonnegative Hessian at all the points c(7).
On the other hand,

Hesse (J,J) Hessr(J,J)

Hess 7 (J,J)
|J|2 Iexp(t,,v) = |J|2

I

|exp(t,,v) Iexp(t,, v) n—_>)oo —00

since Hess 7 is bounded in a neighborhood of ¢(1) and the term involving Hess r
goes to —oo as n — 00. O

We have shown that exp,, is injective and has nonsingular differential on seg’(p).
Before showing that seg’(p) is open we characterize elements in the star “boundary”
of seg®(p) as points that fail to have one of these properties.

Lemma 5.7.9. Ifv € seg(p) — seg’(p), then either

(1) 3w (# v) € seg(p) such that exp,(v) = exp,(w), or
(2) Dexp, is singular at v.

Proof. Let c(f) = exp,(tv). For t > 1 choose segments o;(s), s € [0, 1], with
0;(0) = p, and 0,(1) = c(#). Since we have assumed that c|[ is not a segment for
t > 1 we see that 6;(0) is never proportional to ¢(0). Now choose 7, — 1 such that
0,(0) — w € T,M. We have that

L(ay,) = 164,(0)] = Llclo.1) = [¢(0)],

so |w| = |¢(0)]. Now either w = ¢(0) or w # ¢(0). In the latter case w cannot be a
positive multiple of ¢ (0) since [w| = |¢ (0)|. Therefore, we have found the promised
win (1). If the former happens, we must show that D exp), is singular at v. If, in fact,
Dexp, is nonsingular at v, then exp, is an embedding near v. Thus, 6,,(0) > v =
¢(0) together with exp,(d;,(0)) = exp,(2,¢(0)) implies 6;,(0) = 1, - v. This shows
that ¢ is a segment on some interval [0, #,], , > 1 which is a contradiction. O

Notice that in the first case the gradient d, on M becomes undefined at x =
exp,(v), since it could be either D exp,(v) or D exp,(w); while in the second case
the Hessian of r becomes undefined, since it is forced to go to —oo along certain
fields. Finally we show

Proposition 5.7.10. seg’(p) is open.

Proof. If we fix v € seg’(p), then there is going to be a neighborhood V C T,M
around v on which exp, is a diffeomorphism onto its image. If v; € V converge to
v, then Dexp, is also nonsingular at v;. For each i choose w; € seg(p) such that
exp,(v;)) = exp,(w;). When w; has an accumulation point w # v it follows that
v ¢ seg’(p). Hence w; — v and w; € V for large i. As exp, is a diffeomorphism
on V this implies that w; = v; and that v; € seg(p). We already know that exp, is
nonsingular at v;. Moreover, as w; = v; condition (1) in lemma 5.7.9 cannot hold.
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It follows that v; € seg’(p) for large i and hence that V N seg®(p) is a neighborhood
of v. O

All of this implies that r(x) = |px| is smooth on the open and dense subset
U, — {p} C M and in addition that it is not smooth on M — U,,.

The set seg(p) — seg’(p) is called the cut locus of p in T,M. Thus, being inside
the cut locus means that we are on the region where 72 is smooth. Going back to our
characterization of segments, we have

Corollary 5.7.11. Let ¢ : [0, 00) — M be a geodesic with ¢(0) = p. If
cut(¢(0)) = sup {t | ¢l isa segment} ,

then r is smooth at c(t), t < cut(¢(0)), but not smooth at x = c(cut(¢(0))).
Furthermore, the failure of r to be smooth at x is because exp, : seg(p) — M
either fails to be one-to-one at x or has x as a critical value.

5.7.4 The Injectivity Radius

In a complete Riemannian manifold the injectivity radius is the largest radius ¢ for
which

exp, : B(0,¢) — B(p, ¢)

is a diffeomorphism. If v € seg(p) — seg’(p) is the closest point to 0 in this set, then
in fact inj(p) = |v|. It turns out that such v can be characterized as follows:

Lemma 5.7.12 (Klingenberg). Suppose v € seg(p) — seg’(p) and that |v| =
inj(p). Either

(1) there is precisely one other vector v’ with
exp,(v') = exp,(v),

and v’ is characterized by

d d
dtlr:l exp, (') = —dt|r=1 exp, (1v),
or
(2) x = exp, (v) is a critical value for exp, : seg(p) — M.

In the first case there are exactly two segments from p to x = exp,(v), and they
fit together smoothly at x to form a geodesic loop based at p.
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Fig. 5.15 Moving closer to p
from x

Proof. Suppose x is a regular value for exp,, : seg(p) — M and that ¢y, ¢z : [0, 1] —
M are segments from p to x = exp,(v). If ¢1(1) # —¢2(1), then we can find w €
T:M such that g(w, ¢1(1)) < 0and g(w, ¢2(1)) < 0, i.e., w forms an angle > 7 with
both ¢1(1) and ¢>(1). Next select ¢ (s) with ¢ (0) = w. As D exp, is nonsingular at
¢i(0) there are unique curves v; (s) € T,M with v; (0) = ¢; (0) and D exp, (v; (s)) =
c (s) (see also figure 5.15). But the curves 7 = exp, (1v; (s)) have length

[vil = Ipc ()] < Ipx| = |v].

This implies that exp), is not one-to-one on seg’(p), a contradiction. O

5.8 Further Study

There are several textbooks on Riemannian geometry such as [23, 24, 47, 65] and
[80] that treat most of the more basic material included in this chapter. All of these
books, as is usual, emphasize the variational approach as being the basic technique
used to prove every theorem. To see how the variational approach works the text
[75] is also highly recommended.

5.9 Exercises

EXERCISE 5.9.1. Assume that (M, g) has the property that all unit speed geodesics
exist for a fixed time ¢ > 0. Show that (M, g) is geodesically complete.

EXERCISE 5.9.2. Letc:I — (M,g) and ¢ : J — I, where [, J are intervals. Show
that

d(cog) . do
dr _Cod)dt

’
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dleog) _ . A . (dp\

= [e) +co .
dr? cod ar ¢ ¢ ( dt )
EXERCISE 5.9.3. Show that if the coordinate vector fields in a chart are orthogonal
(g = 0 for i # j), then the geodesic equations can be written as

d dCi 1 ag,;i de 2
dt (g” dt) N 22 oxi \ dt )~

J

EXERCISE 5.9.4. Show that a regular curve can be reparametrized to be a geodesic
if and only if the acceleration is tangent to the curve.

EXERCISE 5.9.5. Let O C (M, g) be an open subset of a Riemannian manifold.
Show that if (O, g) is complete, then O = M.

EXERCISE 5.9.6. A Riemannian manifold is called Misner complete if every
geodesic ¢ : (a,b) — M with b — a < oo lies in a compact set. Show that Misner
completeness implies completeness.

EXERCISE 5.9.7. Consider a curve ¢ € 2, , with L (¢) = |pq|.

(1) Show that L (c|i.) = |c(@)c(d)| forall a,b € [0, 1].
(2) Show that there is a segment 0 € 2, , and a monotone function ¢ : [0, 1] —
[0, 1] such that ¢ = o o ¢. Note that ¢ need not be smooth everywhere.

EXERCISE 5.9.8. Let (M, g) be a metrically complete Riemannian manifold and g
another metric on M such that g > g. Show that (M, g) is also metrically complete.

EXERCISE 5.9.9. A Riemannian manifold is said to be homogeneous if the isom-
etry group acts transitively. Show that homogeneous manifolds are geodesically
complete.

EXERCISE 5.9.10. Consider a Riemannian metric (M, g) = (]R x N,dr? + gr),
where (N, g,) is complete for all r € R, e.g., (M,g) = (R x N,dr* + p*(r) gv)
where p : R — (0,00) and (N, gy) is metrically complete. Show that (M, g) is
metrically complete.

EXERCISE 5.9.11. Consider metrics (M,g) = ((0, o0) x N, dr* + p*(r) gN),
where p : (0,00) — (0,00) and (N, gy) is complete. Give examples that are
complete and examples that are not complete.

EXERCISE 5.9.12. Assume F : (M,g) — (Rk,ng) is a Riemannian submersion,
where (M, g) is complete. Show that if each of the components of F has zero
Hessian, then (M, g) = (N, h) x (Rk,ng).
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EXERCISE 5.9.13. Find and fill in the gap in the proof of theorem 5.6.16.

EXERCISE 5.9.14. Show that a Riemannian manifold that is isotropic at every point
is also homogeneous. Being isotropic at p € M means that Iso, acts transitively on
the unit sphere in 7,M.

EXERCISE 5.9.15. Assume that we have coordinates in a Riemannian manifold so
that g;; = 68;;. Show that x! is a distance function.

EXERCISE 5.9.16. Let r : U — R be a distance function on an open set U C
(M, g). Define another metric g on M with the property: g (Vr,v) = g (Vr,v) for
all v, where Vr is the gradient with respect to g. Show that r is also a distance
function with respect to g.

EXERCISE 5.9.17. The projective models of S" (R) and H" (R) come from project-
ing the spaces along straight lines through the origin to the hyperplane x"*! = R.

(1) Show that if x € R"! and x"*! > 0, then the projected point is

x! X"
P(x):R(an,...,an,l).

(2) Show that geodesics on S" (R) and H" (R) are given by intersections with 2-
dimensional subspaces.

(3) Show that the upper hemisphere of S" (R) projects to all of x**! = R.

(4) Show that H" (R) projects to an open disc of radius R in x"*! = R.

(5) Show that geodesics on S” (R) and H" (R) project to straight lines in x"*! = R.

EXERCISE 5.9.18. Show that any Riemannian manifold (M, g) admits a conformal
change (M, A%g) that is complete. Hint: Choose A : M — [1,00) to be a proper
function that grows rapidly.

EXERCISE 5.9.19. On an open subset U C R" we have the induced distance from
the Riemannian metric, and also the induced distance from R”.

(1) Give examples where U isn’t convex and the two distance concepts agree.
(2) Give examples of U, where U is convex, but the two distance concepts do not
agree.

EXERCISE 5.9.20. Let M C (1\_/1, g) be a submanifold. Using the T-tensor intro-
duced in 2.5.25 show that 7 = 0 on M if and only if M C (M, g) is totally geodesic.

EXERCISE 5.9.21. Let f : (M,g) — R be a smooth function on a Riemannian
manifold.

(1) Letc : (a,b) — M be a geodesic. Compute the first and second derivatives of
foc.

(2) Use this to show that at a local maximum (or minimum) for f the gradient is
zero and the Hessian nonpositive (or nonnegative).
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(3) Show that f has everywhere nonnegative Hessian if and only if f o ¢ is convex
for all geodesics ¢ in (M, g).

EXERCISE 5.9.22. Assume the volume form near a point in a Riemannian manifold
is written as A (r, ) dr A vol,,_;, where vol,,_; denotes the standard volume form on
the unit sphere. Show that A (r, 0) = "' 4+ O (©*").

EXERCISE 5.9.23. Let N C M be a properly embedded submanifold of a complete
Riemannian manifold (M, g).

(1) The distance from N to x € M is defined as
|[xN| = inf{|xp| | p € N}.

A unit speed curve o : [a,b] - M witho (a) € N,o (b) = x,and L (o) = |xN|
is called a segment from x to N. Show that o is also a segment from N to any
o (1), t < b. Show that ¢ (a) is perpendicular to N.

(2) Show that if N is a closed subset of M and (M, g) is complete, then any point in
M can be joined to N by a segment.

(3) Show that in general there is an open neighborhood of N in M where all points
are joined to N by segments.

(4) Show that r (x) = |xN| is smooth on a neighborhood of N with N excluded.

(5) Show that the integral curves for Vr are the geodesics that are perpendicular
to N.

EXERCISE 5.9.24. Find the cut locus on a square torus R?/Z?.

EXERCISE 5.9.25. Find the cut locus on a sphere and real projective space with the
constant curvature metrics.

EXERCISE 5.9.26. Show that in a Riemannian manifold,
_ 2
|expp (v) exp, W =lv—wl+0(?),

where |v|, |w| < r.

EXERCISE 5.9.27. Consider a Riemannian manifold and let r (x) = |xp|. Introduce
exponential normal coordinates x' at p.

(1) Show that
(Hessxi)kl =T, =0(@).
(2) Use that érz =y ()c")2 together with g = §;; + O (rz) to show that

2

Hess }r” =g+ 0 ().
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(3) Show that
Hessr = ig, +0(r).

EXERCISE 5.9.28. Let (M, g) be a complete Riemannian manifold; K C M a
compact (or properly embedded) submanifold; and r(x) = [xK| the distance
function to K. The goal is to show that r has well-defined one sided directional
derivatives at all points.

BN
(1) Show that if r is differentiable at x ¢ K, then xK only contains one vector.
(2) Letc : I — M be a unit speed curve. Show that if f = r o ¢ is differentiable at

—
t, then all the vectors ¢(¢) K form the same angle with ¢ (7).
(3) More generally show that

FO=1 @) _

D' f (1) = limsup <g (e (to) . —c(to) K) .

t—>t6" I=1o

Hint: Use the first variation formula for a variation of the segment to K with
—
initial velocity c(f) K.
(4) Show that for small 7 =t — 1y

le(to) c(t)| = h+ O ().

(5) Select a point g on a segment from c (7) to K such that |c () g| = h* where

—_—
a € (0, 1) and let 0 be the angle between ¢ (¢) and the initial direction c(f) K for
the segment through ¢. For small 1 = t — ) > 0 justify the following:

|c(t0) K| = c(t0) q] + |gK]|
= VR 12 —2h1Fe cos ( — 0) + O (h2e) + |gK| + O (k™)

< lc(?) q| + |gK| — hcos (r — 0) + ;hz‘“ + 0 (1?) + O (K*)
= |c(t) K| —hcos (7 — 0) + ;hz_“ + 0 (1) + 0 (h*).

Hint: Use 5.9.26 and part (4) to estimate |c(fy) g|.
(6) Show that for suitable o

D (1) = liming @ L) 5 (¢ @), ~c@K).
— r—1o m

(7) Conclude that the right-hand (and left-hand) derivatives of f exist everywhere.
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EXERCISE 5.9.29. In a metric space (X, |-+|) one can measure the length of contin-
uous curves ¢ : [a,b] — X by

L(C) :sup{Z|c(t,-) C(l,’+1)| |a:t1 <t <--<Tfr flk:b}.

(1) Show that a curve has finite length if it is absolutely continuous. Hint: Use
the characterization that ¢ : [a,b] — X is absolutely continuous if and only
if for each ¢ > 0 there is a § > 0 so that Y_ |c(s;) ¢ (si+1)] < & provided
Do lsi—sip1]| < 6.

(2) Show that the Cantor step function is a counter example to the converse of (1).

(3) Show that this definition gives back our previous definition for smooth curves on
Riemannian manifolds. In fact it will also give us the same length for absolutely
continuous curves. Hint: If you know how to prove this in the Euclidean
situation, then exercise 5.9.26 helps to approximate with the Riemannian
metric.

(4) Let ¢ : [a,b] — M be an absolutely continuous curve of length |c(a) c(b)].
Show that ¢ = ¢ o ¢ for some segment o and monotone ¢ : [0, L] — [a, b].

EXERCISE 5.9.30. Assume that we have coordinates x’ around a point p € (M, g)
such that x' (p) = 0 and g;¥ = §;%/. Show that these must be exponential normal
coordinates. Hint: Define r = \/ Sijxixf ; show that it is a smooth distance function
away from p; and that the integral curves for the gradient are geodesics emanating
from p.

EXERCISE 5.9.31. If N;, N, C M are totally geodesic submanifolds, show that each
component of N; NN, is a submanifold which is totally geodesic. Hint: The potential
tangent space at p € N1 N N, should be the Zariski tangent space T,N; N T,N;.

EXERCISE 5.9.32. LetF : (M, g) — (M, g) be an isometry that fixes p € M. Show
that DF|, = —I on T,M if and only if F 2 = idy and p is an isolated fixed point.

EXERCISE 5.9.33. Show that for a complete manifold the functional distance is the
same as the distance.

EXERCISE 5.9.34. Let ¢ : [0,1] — M be a geodesic such that exp,, is regular at
all 7¢ (0) with 7 < 1. Show that c is a local minimum for the energy functional. Hint:
Show that the lift of ¢ via exp, ) is a minimizing geodesic in the pull-back metric.

EXERCISE 5.9.35. Consider a Lie group G with a biinvariant pseudo-Riemannian
metric.

(1) Show that homomorphisms R — G are precisely the integral curves for left-
invariant vector fields through e € G.

(2) Show that geodesics through the identity are exactly the homomorphisms
R — G. Conclude that the Lie group exponential map coincides with the
exponential map generated by the biinvariant Riemannian metric. The Lie
theoretic exponential map exp : T.G — G is precisely the map that takes
v € T,G to ¢ (1), where ¢ : R — G is the integral curve with ¢ (0) = e for
the left-invariant field generated by v.
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(3) Show that when the metric is Riemannian, then every element in x € G has a
square root y € G with y?> = x. Hint: This uses metric completeness.

(4) Show that SL (n,R) does not admit a biinvariant Riemannian metric and
compare this to exercise 1.6.28.

EXERCISE 5.9.36. Show that a Riemannian submersion is a submetry.

EXERCISE 5.9.37 (HERMANN). Let F : (M,gy) — (N, gn) be a Riemannian
submersion.

(1) Show that (N, gn) is complete if (M, gyr) is complete.

(2) Show that F is a fibration if (M, gy) is complete i.e., for every p € N there is a
neighborhood p € U such that F~! (U) is diffeomorphic to U x F~! (p). Give a
counterexample when (M, g;/) is not complete.

EXERCISE 5.9.38. Let S be a set of orientation preserving isometries on a Rieman-
nian manifold (M, g). Show that if all elements in S commute with each other, then
each component of Fix (S) has even codimension.

EXERCISE 5.9.39. A local diffeomorphism F : (M, gy) — (N, gn) is said to be

affine if Fi (VYY) = V| oo Fx (Y) for all vector fields X, ¥ on M.

(1) Show that affine maps take geodesics to geodesics.

(2) Show that given p € M an affine map F is uniquely determined by F (p) and
DF|p.

(3) Give an example of an affine map R” — R” that isn’t an isometry.

EXERCISE 5.9.40. Consider the real or complex projective space FP".

(1) Show that GL (n + 1, F) acts on FPP" by mapping 1-dimensional subspaces in
F**! to 1-dimensional subspaces.

(2) LetH C GL (n + 1, F) be the transformations that act trivially. Show that H =
{Al,4+1 | A € F} and is a normal subgroup of GL (n + 1, F).

(3) Define PGL (n + 1,F) = GL (n + 1,F) /H. Show that given p € FP" each
element F € PGL (n + 1, F) is uniquely determined by F (p) and DF|,,.

(4) Show that there is no Riemannian metric on FP" such that this action is by
isometries.

(5) Show that the action is by affine transformations with respect to the standard
(submersion) metric on FP" (see exercise 5.9.39 for the definition of affine
transformations).

(6) For a subgroup G C GL, define PG = G/H N G. Show that the isometry group
of RIP" is given by PO (n + 1).

(7) Show that the isometry group of CP" is given by PU (n + 1).

(8) Show that the isometry group of H" (R) can be naturally identified with
PO (n, 1).

(9) Asin exercise 1.6.9 consider Iso (R") as the matrix group

G:%[gﬂ 10e0@m).verR COGLM+1.R).

Show that PG = G.
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EXERCISE 5.9.41. Let Diff (M) denote the group of diffeomorphisms on a mani-
fold. Define Diff (M; K, O) = {F < Diff (M) | F (K) C O}.

(1) Show that finite intersections of Diff (M; K, O) where K is always compact and
O open define a topology. This is the compact-open topology.

(2) Show that the compact-open topology is second countable.

(3) When M has a Riemannian structure, show that convergence in the compact-
open topology is the same as uniform convergence on compact sets.

(4) Show that a sequence in Iso (M, g) converges in the compact-open topology if
and only if it converges pointwise. Hint: Use the Arzela-Ascoli lemma

(5) Show that Iso (M, g) is always locally compact in the compact-open topology.
Hint: Use the Arzela-Ascoli lemma.

(6) Show that Iso, (M, g) is always compact in the compact-open topology.

(7) Show that Iso (M, g) defines a proper action on M.

(8) Show that for fixed p the evaluation map F +— (F (p),DF |,,) is continuous
on Iso (M, g). Note that DF|, : T,M — TM so that convergence of the
values of the evaluation map makes sense. Hint: Start by showing that F' —
(F(p),F(p1),...,F(pn)) is continuous.

(9) Show that the evaluation map in (8) is a homeomorphism on to its image when
restricted to Iso (M, g).

EXERCISE 5.9.42. Consider exponential normal coordinates around p € M, i.e.,
;¥ = gy¥ and x' (p) = 0. All calculations below are at p.

(1) Show that the second partials of the metric satisfy the Bianchi identity

010xgji + 0018k + 010,81 = 0.

Hint: Take three derivatives of the defining relation x' = Xg;x* as in
lemma 5.5.7.

(2) Use all four of these Bianchi identities with the last index being i, j, k, or/ to
conclude

0i0jgx = 0x018j.

(3) Use the formula for the curvature tensor in normal coordinates from sec-
tion 3.1.6 to show

Rijji = 0;0;8k — 0;018jk.

(4) Use (3) and (1) to show

1
(Riji + Ryir) -

0;0;gu = 3
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(5) Show that we have a Taylor expansion

1 .
gu = 6+ [ Rujix'x’ + O (|x|3) .

3

(6) (Riemann) Use the symmetries of the curvature tensor to conclude

g =Y gudddx

ij=1

= z”: dx'dx’
i=1

1 i i\ (i j
+ 12 iJZ:klR,-kﬂ (x dxk — xkdx) (xfdxl —xldx’) +0 <|x|3)

= z”: dx'dx
i=1

1 . o )
+3 Z Rixi (x’dxl‘ — x"dx’) (x/dxl —xldxf) +0 <|x|3)

i<kj<l

(7) (Gauss) Show that in dimension 2 we have
g=d’ +dy’ + R (xdy — ydx)* + 0 (¥ +°)

= d + dy* — _ sec (p) (xdy — ydx)* + o (x* + y?) .

W = =

Riemann’s construction of the curvature tensor proceeded as follows: Start with
the normal coordinates, next use the radial isometry property to conclude that the
Taylor expansion has the form

g = Zn:dxidxi
i=1

1 ) o )
+ 3 Z Ciki (x’dxk — xkdx’) (x’dxl - xldx’) +0 (|x|3)

i<kj<l

for some tensor C. This tensor has some obvious symmetry properties from the form
of the expansion. It is possible to calculate it from the derivatives d;0;gx; provided
they satisfy 0;0;gu = 0x0,8;;. Finally, one has to show that this property is equivalent
to the assertion that the above expansion is possible.
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EXERCISE 5.9.43. With notation as in the previous exercise show:

(1) /det (gi) = 1 — | Ricyx'd + 0 (|x|3).
) (A. Gray) vol B (p, r) =w,r" (1 — ) 2 40 (r3)), where w,= vol (B (0, 1)
C R"). Hint: Use (1) and expand the integral using polar coordinates.



Chapter 6
Sectional Curvature Comparison I

In the previous chapter we classified complete spaces with constant curvature. The
goal of this chapter is to compare manifolds with variable curvature to spaces with
constant curvature. Our first global result is the Hadamard-Cartan theorem, which
says that a simply connected complete manifold with sec < 0 is diffeomorphic
to R". There are also several interesting restrictions on the topology in positive
curvature that we shall investigate, notably, the Bonnet-Myers diameter bound and
Synge’s theorem stating that an orientable even-dimensional manifold with positive
curvature is simply connected. Finally, we also cover the classical quarter pinched
sphere theorem of Rauch, Berger, and Klingenberg. In subsequent chapters we deal
with some more advanced and modern topics in the theory of manifolds with lower
curvature bounds.

We start by introducing the concept of differentiation of vector fields along
curves. This generalizes and ties in nicely with mixed second partials from the
last chapter and also allows us to define higher order partials. This is then used
to define parallel fields, Jacobi fields along geodesics, and finally to establish the
second variation formula of Synge.

We also establish some basic comparison estimates that are needed here and later
in the text. These results are used to show how geodesics and curvature can help in
estimating the injectivity, conjugate, and convexity radii.

6.1 The Connection Along Curves

Recall that in sections 3.2.4 and 3.2.5 we introduced Jacobi and parallel fields for a
smooth distance function. Here we will generalize these concepts to allow for Jacobi
and parallel fields along a single geodesic, rather than the whole family of geodesics
associated to a distance function. This will be quite useful when we study variations.

© Springer International Publishing AG 2016 231
P. Petersen, Riemannian Geometry, Graduate Texts in Mathematics 171,
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6.1.1 Vector Fields Along Curves

Letc : I — M be a curve in M. A vector field V along c is by definition a map
VI — TM with V(t) € Te;M for all ¢t € I. The goal is to define the covariant
derivative

. d
Vi) = V() =V.V
="V
of V along c. We know that V can be thought of as the variational field for a variation
¢:(—e¢,e) xI — M. So it is natural to assume that
2

BE(O,t).

d
dr Ve = 91ds

Doing the calculation in local coordinates (see section 5.1) gives

V() = V() o,
dck
= 9s (O, t) O
and
d’c e dc! dc/ f
orgs QD = g0 00 8%+ (0.0, (0.0 Fds

dvk . odd '
= O%+V 0 O T

This shows that V does not depend on how the variation was chosen. Since the
variation can be selected independently of the coordinate system we see that the
local coordinate formula is independent of the coordinate system. The formula also
shows that if V (f) = X, for some vector field X defined in a neighborhood of
¢ (ty), then this derivative is a covariant derivative

V(to) = V&(to)X-

Some caution is necessary when thinking of V in this way as it is not in general true
that V (fy) = 0 when ¢ (19) = 0. It could, e.g., happen that ¢ is the constant curve.
In this case V (¢) is simply a curve in T,(,,)M and as such has a well-defined velocity
that doesn’t have to be zero.

From the product rule for mixed partials (see section 5.1) we get the product rule:

d . .
dtg(V, W) =g(V.W)+g(V.W)
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for vector fields V, W along ¢ by selecting a two-parameter variation c (s, u, )
such that

oc 0,0,1) = V1),
as

9z
€ 0,0, = W().
du
The local coordinate formula also shows that we have:

d d d
LVOEWO) = VO + W,

d dA d
Caovm="0vo+i0° o,

where A : I — R is a function.

As with second partials, differentiation along curves can be done in a larger space
and then projected on to M. Specifically, if M C M and ¢ : I — M is a curve and
V : 1 — TM a vector field along ¢, then we can compute V € TM and then project
(V)T € TM to obtain the derivative of V along ¢ in M. Example 6.1.1 shows what
can go wrong if we are not careful about projecting the derivatives.

6.1.2 Third Partials

One of the uses of taking derivatives of vector fields along curves is that we can now
define third and higher order partial derivatives. If we wish to compute

e

95919 (0, t0, Uo) ,

8%c

then consider the vector field s = 5. (s, to, up) = V (s) and define

dc
dsdtdu
Something rather interesting happens with this definition. We expected and

proved that second partials commute. This, however, does not carry over to third
partials. It is true that

dav
(0, f0, ug) = (s0) -
ds

dc . dc
9s0tdu  dsdudt’
but if we switch the first two variables the derivatives might be different. One reason

we are not entitled to have these derivatives commute lies in the fact that they were
defined with a specific order of derivatives in mind.
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Example 6.1.1. Let

cos (1)
c(t,0) = | sin () cos (0)
sin (¢) sin (0)

be the standard parametrization of S? (1) C R? as a surface of revolution around the
x-axis. We can compute all derivatives in R and then project them on to $? (1) in
order to find the intrinsic partial derivatives. The curves 7 > c¢ (t, ) are geodesics.
We can see this by direct calculation as

9 —sin (7)
n = cos(t)cos () | € TS? (1),
| cos (¢) sin (6)
P2e —cos (1)
a2 = |~ sin () cos (0) | € TR,
| —sin (¢) sin (6)

Thus the Euclidean acceleration is proportional to the base point ¢ and so has zero
projection onto S? (1). Next we compute

0%c 0
g0 — |~ cos(f)sin(9) | € TR,
cos (1) cos (8)

This vector is tangent to S? (1) and therefore represents the actual intrinsic mixed
partial. Finally we calculate

dc 0
araga; = | Sm ()sin(9) | € TR?,
| —sin (¢) cos (6) |
¢ i 0 ]
9092 = sin (/) sin (9) | € TR,
| —sin (f) cos (6) |

These are equal as we would expect in R?. They are also both tangent to S? (1). The

first term is consequently af’;;a , as computed in 52 (1). The second has no meaning
3 %
500
in R? and then again project to S2 (1). It follows that in $? (1) we have ,2¢, = 0

) 3969f
. ¢
while 013631 # 0. o . . .

In this example it is also interesting to note that the equator t = 0 given by

6 — ¢ (0, 0) is a geodesic and that aaggr = 0 along this equator.

in S? (1) as we are supposed to first project gi; on to % (1) before computing

We are now ready to prove what happens when the first two partials in a third-
order partial are interchanged.
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Lemma 6.1.2. The third mixed partials are related to the curvatures by the
formula:

¢ e . dc dc\ dc
dudsdr  Osdudr ou’ ds ) or

Proof. This result is hardly surprising if we recall the definition of curvature and
think of these partial derivatives as covariant derivatives. It is, however, not so
clear what happens when the derivatives are not covariant derivatives. We are
consequently forced to do the calculation in local coordinates. To simplify matters
assume that we are at a point p = c (u, s, t), where g;;|, = J; and I‘i’; | = 0. This
implies that

3
0 @), =0,
Thus
?*c d (9% ac' ad _,
oudsdt” = ou (3s3tal * oo o r,.ja,)

93! N dc’ dc 3 (r))
dudsdr ' 9 ds qu . V!

93¢t dct d¢d dck

= 0 I'L) 0y,
punsoe 't o as g O¥Li) 9

Pe 23! dc’ dc! dck
= 9 ERyAR
dsoude? = asoune” T ar au s 10 ¥

Using our formula for Rfjk in terms of the Christoffel symbols from section 3.1.6
gives

aj;scat b= asa;:at b= %C, %C: aac: (8Ty) & — %Ct ?92] aac: (0xT5) 8,
- aacti %zj %i (0uT5) &1 %C,i %i %Csj (9T 0
= e T Ty
= e =)

dct 3 dck

o ds du W

_R dc dc dc
B ou’ ds ) ot
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6.1.3 Parallel Transport

A vector field V along ¢ is said to be parallel along c provided V = 0. We know that
the tangent field ¢ along a geodesic is parallel. We also just saw in example 6.1.1
that the unit field perpendicular to a great circle in S (1) is a parallel field.

If V,W are two parallel fields along c, then we clearly have that g (V, W) is
constant along c. In particular, parallel fields along a curve neither change their
lengths nor their angles relative to each other; just as parallel fields in Euclidean
space are of constant length and make constant angles. Based on example 6.1.1
we can pictorially describe parallel translation around certain triangles in S (1)
(see figure 6.1). Exercise 6.7.2 covers some basic features of parallel translation
on surfaces to aid the reader’s geometric understanding.

Theorem 6.1.3 (Existence and Uniqueness of Parallel fields). If# € [ and v €
Te4p)M, then there is a unique parallel field V(t) defined on all of I with V (ty) = v.

Proof. Choose vector fields E(1), ..., E,(t) along c forming a basis for T.;,M for
all t € 1. Any vector field V() along ¢ can then be written V() = Vi(¢)E;(t) for
Vi: I — R. Thus,

V=VV=> VOEQ®+ V()VE

=Y VIOE® + Y _ V() dl()E(1). where V.E; = > l()E;
ij
=Y (V) + Vel (0)E;(0).
J

Hence, V is parallel if and only if V'(z), ..., V"(¢) satisfy the system of first-order
linear differential equations

Vi) == @V, j=1.....n.
i=1
Such systems have the property that for given initial values V! (t), ..., V"(to), there

is a unique solution defined on all of I with these initial values. O

Fig. 6.1 Parallel translation
along a spherical triangle
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The existence and uniqueness assertion that concluded this proof is a standard
theorem in differential equations that we take for granted. The reader should recall
that linearity of the equations is a crucial ingredient in showing that the solution
exists on all of /. Nonlinear equations can fail to have solutions over a whole given
interval as we saw with geodesics in section 5.2.

Parallel fields can be used as a substitute for Cartesian coordinates. Namely, if
we choose a parallel orthonormal frame E (?), .. ., E,(f) along the curve c¢(¢) : I —
(M, g), then we’ve seen that any vector field V(¢) along ¢ has the property that

v d .
i =& (VI(Ei(n)
= VIOE(t) + V'(1) - Ei(1)
= VI()Ei(r).

So jtV, when represented in the coordinates of the frame, is exactly what we would
expect. We could more generally choose a tensor T along c(¢) of type (0, p) or (1, p)
and compute jtT. For the sake of simplicity, choose a (1, 1) tensor S. Then write

S(Ei()) = S{(t)Ej(t). Thus S is represented by the matrix [S{(t)] along the curve.

As before, we see that jtS is represented by [S{(t)].

This makes it possible to understand equations involving only one covariant
derivative of the type Vy. Let F' be the local flow near some point p € M
and H a hypersurface in M through p that is perpendicular to X. Next choose
vector fields Ey,...,E, on H which form an orthonormal frame for the tangent
space to M. Finally, construct an orthonormal frame in a neighborhood of p by
parallel translating E|, ..., E, along the integral curves for X. Thus, VxE; = 0,
i = 1,...,n. Therefore, if we have a vector field Y near p, we can write Y = Y ‘E;
and VxY = Dy(Y")E;. Similarly, if S is a (1, 1)-tensor, we have S(E;) = S'E;, and
VxS is represented by (DX(S{:)).

In this way parallel frames make covariant derivatives look like standard
derivatives in the same fashion that coordinate vector fields make Lie derivatives
look like standard derivatives.

6.1.4 Jacobi Fields

Another variational field that is often quite useful is the field that comes from a
geodesic variation, i.e., t — ¢ (s, 1) is a geodesic for all s. We encountered these
fields in section 3.2.4 as vector fields satisfying Lj.J = 0. Here they need only
be defined along a single geodesic so the Lie derivative equation no longer makes
sense. The second-order Jacobi equation, however, does make sense in this context:
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93¢
0= 0502t
_ R dc oc)\ dc N 93¢
B ds’ 9r) dr = 9rdsdr
_ R dc oc)\ dc N 93¢
B ds’ 9r ) 9t = 3%ds

_ g dyae i
a ds’ ot ) ot 9 Os’

So if the variational field along c is J (¢) = gi (0, 1), then this field solves the linear
second-order Jacobi Equation

J+R(UJ,0)é=0.

Given J (0) and J (0) there will be a unique Jacobi field with these initial conditions
as the Jacobi equation is a linear second-order equation. These variational fields are
called Jacobi fields along c. In case J (0) = 0, they can easily be constructed via the
geodesic variation

c(s,1) = exp, (t (c" (0) + sJ (0))) .

Since ¢ (s,0) = p for all s we must have J (0) = gf (0,0) = 0. The derivative is
computed as follows

9%c 9%c
9tds ©.0) = 950t ©.0)

0 .
=, (60 + 57 0) =0
=J(0).
What is particularly interesting about these Jacobi fields is that they control two

things we are interesting in studying.
First, observe that they tie in with the differential of the exponential map since

J(@) = gi 0,1
9 .
= 0y Py (2 (¢ (0) + 57 (0))) 0.0
9 .
= Dexp, (as (t (& ©0) +sJ (O))) |(o,r))

= Dexp, (tJ (0)).,
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where we think of 7/ (0) € Tyi)TpM. This shows, in particular, that Dexp, is
nonsingular at #yv if and only if for each vector J (#y) € Texpp(mv) there is a Jacobi
field along 7 > exp), (tv) that vanishes at 7 = 0 and has value J (7) at 7.

Second, Jacobi fields can also be used to calculate the Hessian of the function
r(x) = |xp|. Assume that c (¢) is a unit speed geodesic with ¢ (0) = p and J (¢)
a Jacobi field along ¢ with J(0) = 0. As long as ¢ (0) € segg, it follows that
¢ (1) = Vr|c) and consequently:

Hess r (J (1) ,J (1) = g (Vs Vr, J ()

6.1.5 Second Variation of Energy

Recall from section 5.4 that all geodesics are stationary points for the energy
functional. To better understand what happens near a geodesic we do exactly what
we would do in calculus, namely, compute the second derivative of any variation of
a geodesic.

Theorem 6.1.4 (Synge’s second variation formula, 1926). Ifc: (—¢,¢) x[a, b] is
a smooth variation of a geodesic c (t) = ¢ (0, 1), then

dzE(cs)| 3 /" : 0 /b RO R AN
a2 "= ), L S\ asmae ) o os S\os2 or
Proof. The first variation formula (see lemma 5.4.2) tells us that
dE (c;) boroe 9% dc oc
- — 5 d 5
ds /a g(as ar? e ds’ ot
With this in mind we can calculate
PE(c;) 9 /b dc 9%c it 0 9 dc
a2 as ), S\as o 05 S\ as” o1 )|
bord% e borae de
__/a g(asz’ azZ)d’_/a g(as’asaﬂ)dt

L (P “*”)+ ac o2\ |
f\os o )| " % \0s” asar

_ b
9%¢

drds

a

(s,b)

(s.a) .

(s.b)

(s.a)



240 6 Sectional Curvature Comparison I
Setting s = 0 and using that ¢ (0, #) is a geodesic we obtain

0%E (cy)
052

B /" oo oey ., (VT b+ k& Pe
=) 8\as asor S\aszar )|, " %\ os asor
b roc dc dc\ dc b roc 3¢
__/a g(as’R(as’ a;) 8t)dt_/a g(as’atasat)dt

N Pc dc "+ ac 0% \|
S oz ar )|, " 8 \as asir )|,
_ /" oc . (08 oc ac dt+/b o ok
=) e \asar ) o S\ ards” asor
/”a 9 e s Pe oc "+ 9 e
oS\ as asor S\os2 ar )|, " &\ os asor
_ /" oc . (08 oc ac dt+/b o ok
=) e \asar ) o S\ ards” asor
9 0% b+ Pe oc "+ ac 0% \|
S\as asor )|, T 8 \os2 ar )|, " 8 \os vsar )|

_/h re e\ /b R o\ o a0 0 ’
= ) 8\ aras” aros 8\ as o) o bs E\ o2 o

a

|s=0

b

a

b

a

|

The formula is going to be used in different ways below. First we observe that
for proper variations the last term drops out and the formula depends only on the
variational field V (f) = gf (0, 7) and the velocity field ¢ of the original geodesic:

dzE(Cx) b, 2 b .
ds? |s=0:/ \4 dt—/ gR(V,¢&)c,V)dr.

Another special case occurs when the variational field is parallel V = 0. In this case
the first term drops out:

d2E (cy) b

b N e .
o o= [ g(R(V,c)c,V)dr+g( )

952 €

a

but the formula still depends on the variation and not just on V. If, however, we select
the variation such that s > ¢ (s, r) are geodesics, then the last term also drops out.
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6.2 Nonpositive Sectional Curvature

In this section we show that the exponential map exp, : T,M — M is a
covering map, provided (M, g) is complete and has nonpositive sectional curvature
everywhere. This implies, in particular, that no compact simply connected manifold
admits such a metric. We shall also prove some interesting results about the
fundamental groups of such manifolds.

The first observation about manifolds with nonpositive curvature is that any
geodesic from p to ¢ must be a local minimum for E : Q (p,q) — [0, co) by our
second variation formula. This is in sharp contrast to what we shall prove in positive
curvature, where sufficiently long geodesics can never be local minima.

Recall from our discussion of the fundamental equations in section 3.2 and 3.2.4
that Jacobi fields seem particularly well-suited for the task of studying nonpositive
curvature. This will be borne out here and later in section 6.4.

6.2.1 Manifolds Without Conjugate Points

We start with a result that gives strong restrictions on the behavior of the exponential
map.

Lemma 6.2.1. Ifexp, : T,M — M is nonsingular everywhere, i.e., has no critical
points, then it is a covering map.

Proof. By definition exp, is an immersion, so on 7,M choose the pullback metric
to make it into a local Riemannian isometry. We then know from lemma 5.6.4 that
exp, is a covering map provided this new metric on 7,M is complete. To see this,
simply observe that the metric is geodesically complete at the origin, since straight
lines through the origin are still geodesics. O

We can now prove our first big result. It was originally established by Mangoldt
for surfaces. Hadamard in a survey article offered a different proof. Cartan extended
the result to higher dimensions under the assumption that the manifold is metrically
complete.

Theorem 6.2.2 (Mangoldt, 1881, Hadamard, 1889, and Cartan, 1925). If (M, g)
is complete, connected, and has sec < 0, then the universal covering is diffeomor-
phic to R".
Proof. The goal is to show that |D exp, (w)\ > 0 for all nonzerow € T,T,M. This
will imply that exp), is nonsingular everywhere and hence a covering map.

Select a Jacobi field J along ¢ (1) = exp,, (v) such that J (0) = 0 and JO)y=w

so that \D exp, (w)\ = |J (1)|. Consider the function ¢ — ; |J (t)|2 and its first and
second derivatives:
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(G OR) =500,

&1L\ d
dr? (2 @ ) = af (7.7)

g (7.7) + g (J.J)

—2 R, &&D + i

> i’
The last inequality follows from the assumption that g (R (x,y)y,x) < 0 for all
tangent vectors x, y. Integrating this inequality gives

g(.J) = / \J’|2dt+g(1'(0),1(0))
0
:/lﬁm
0
>0

unless J (1) = 0 forall 7, in which case J (0) = w = 0. Assuming w # 0, integrating
the last inequality yields

1 2
J@®|" >0,
, W0l

which is what we wanted to prove. O

No similar theorem can hold for Riemannian manifolds with Ric < 0 or scal <
0, since we saw in sections 4.2.3 and 4.2.5 that there exist Ricci flat metrics on
R2 x §"2 and scalar flat metrics on R x §"~ 1,

6.2.2 The Fundamental Group in Nonpositive Curvature

We are going to prove two results on the structure of the fundamental group for
manifolds with nonpositive curvature. The interested reader is referred to the book
by Eberlein [38] for further results on manifolds with nonpositive curvature.

First we need a little preparation. Let (M, g) be a complete simply connected
Riemannian manifold of nonpositive curvature. The two key properties we use are
that any two points in M lie on a unique geodesic, and that distance functions are
everywhere smooth and convex.

We just saw that exp, : T,M — M is a diffeomorphism for all p € M. This
shows, as in Euclidean space, that there is only one geodesic through p and g (# p).
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This also shows that the distance function |xp| is smooth on M—{p}. The modified
distance function

1 1
X o) = fop ) =l = ()’
is then smooth everywhere and its Hessian is given by
Hess fy = dr* + rHessr.

If J (¢) is a Jacobi field along a unit speed geodesic emanating from p with J (0) = 0,
then from section 6.1.4

Hessr (J (b) .J (b)) = g (J (b) ,J (b))
b,
z/ [P di
0
>0

Since J (b) can be arbitrary we have shown that the Hessian is positive definite. If ¢
is a geodesic, this implies that f; o ¢ is convex as

d ,
dtfooc = g(Vﬁ),C),

d2

d o
pfee= " g (Vi)

= g (ViVfo, ¢) + g (Vfo, ©)
= Hessfy (¢, ¢)
> 0.

With this in mind we can generalize the idea of convexity slightly (see also
section 7.1.3). A function is (strictly) convex if its restriction to all geodesics is
(strictly) convex. One sees that the maximum of any collection of convex functions
is again convex (you only need to prove this in dimension 1, as we can restrict to
geodesics). Given a finite collection of points py, ..., px € M, we can in particular
consider the strictly convex function

x> max {fyp, (), fop @}

In general, any proper, nonnegative, and strictly convex function has a unique
minimum. To see this, first note that there must be a minimum as the function is
proper and bounded from below. If there were two minima, then the function would
be strictly convex when restricted to a geodesic joining these two minima. But then
the function would have smaller values on the interior of this segment than at the
endpoints.



244 6 Sectional Curvature Comparison I

The uniquely defined minimum for

x> max {fyp, (0)....fop @)}

is denoted by cme {p1, ..., pr} and called the L™ center of mass of {p1,..., pi}.
It is the center g of the smallest ball B(q,R) D {pi1,...,px}. If instead we had
considered

k
X Zﬁ)*f’i (x)

i=1

we would have arrived at the usual center of mass also known as the L? center of
mass.
The first theorem is concerned with fixed points of isometries.

Theorem 6.2.3 (Cartan, 1925). If (M, g) is a complete simply connected Rieman-
nian manifold of nonpositive curvature, then any isometry F : M — M of finite
order has a fixed point.

Proof. The idea, which is borrowed from Euclidean space, is that the center of mass
of any orbit must be a fixed point. First, define the order of F as the smallest integer k
such that F* = id. Second, for any p € M consider the orbit {p, F(p),...,F1 (p)}
of p. Then construct the center of mass

g = Cheg {p,F(p),...,Fk_1 (p)}
We claim that F (¢) = g. This is because the function
x = f(x) = max {fo,p (X) 5. fo,p—1() (x)}

has not only ¢ as a minimum, but also F (g). To see this just observe that since F is
an isometry, we have

F(F(q) = max {fo, (F (@), fopip F @)}
F(gF* (p]})’

1
5 (max{|F(q)p|,...,

F(@F~ ()|})

e ey

= ; (max{‘F(q)Fk ()

= ; (max {\qu_l (p)\ e \qu_z (p)|})2
=f(q.

The uniqueness of minima for strictly convex functions now implies F (¢) = ¢. O
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Corollary 6.2.4. If (M,g) is a complete Riemannian manifold of nonpositive
curvature, then the fundamental group is torsion free, i.e., all nontrivial elements
have infinite order.

The second theorem requires more preparation and a more careful analysis of
distance functions. Suppose again that (M, g) is complete, simply connected and of
nonpositive curvature. Let us fix a modified distance function: x 572 = fo (x) and
a unit speed geodesic ¢ : R — M. The Hessian estimate from above only implies
that jtzz (fo o ¢) > 0. However, we know that this second derivative is 1 in Euclidean
space. So it shouldn’t be surprising that we have a much better quantitative estimate.

Lemma 6.2.5. If (M, g) has nonpositive curvature, then any modified distance
function satisfies:

Hessfy > g.

Proof. We follow the notation in the proof of theorem 6.2.2. If r (x) = |xp|, then

1, 2
Hess 2r = dr° + rHessr.

So the claim follows if we can show that
rHessr > g,,

where g = dr? + g,. This estimate in turn holds if we can prove that
t-Hessr(J (1), (1) =t-g(J (1) .J (D))
g (0. J@®).

The reason behind the proof of this is slightly tricky and is known as Jacobi field
comparison. Consider the ratio

(1)
A = X .
= iw.s0)

By I’Hospital’s rule it follows that

2g (7 (0).J(0)) 0

A0) = . . . 2= . 2 =0
8 (R(J(0),¢(0)c(0),JO0) +[J O] /(0]
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Using that the sectional curvature is nonpositive and then the Cauchy-Schwarz
inequality it follows that the derivative satisfies

2(g (1)) = [JP P + g R, & &0) )P

(g (.9)

i) =

=1.

Hence A (1) < tandt- g (J (1), J (1)) = |J (0)|*. O

Integrating the inequality jtzz (fo’p o c) > 1, where c is a unit speed geodesic,
yields

Ipe (O = |pc ) + 28 (Vfop, & (0) -1+ 7
= |pc O)]* + |c (0) ¢ ()
42 |pc (0)] |c (0) ¢ ()| cos L (Vfo,p, ¢ (O)) .

Thus, if we have a triangle in M with sides lengths a, b, c and where the angle
opposite a is «, then

a*> > b* + ¢ — 2bccosa.

From this, one can conclude that the angle sum in any triangle is < &, and more
generally that the angle sum in any quadrilateral is < 2. See figure 6.2.

Now suppose that (M, g) has negative curvature. Then it must follow that all of
the above inequalities are strict, unless p lies on the geodesic c. In particular, the
angle sum in any nondegenerate quadrilateral is < 2. This will be crucial for the
proof of the next theorem

Fig. 6.2 Triangle and
quadrilateral in negative b
curvature



6.2 Nonpositive Sectional Curvature 247

Theorem 6.2.6 (Preissmann, 1943). If (M, g) is a compact manifold of negative
curvature, then any Abelian subgroup of the fundamental group is cyclic. In
particular, no compact product manifold M x N admits a metric with negative
curvature.

The proof requires some preliminary results that can also be used in other
contexts as they do not assume that the manifold has nonpositive curvature.

An axis for an isometry F : M — M is a geodesic ¢ : R — M such that F (c) is a
reparametrization of c¢. Since isometries map geodesics to geodesics, it must follow
that

Foc()=c(£t+a).

Note that if — occurs, then ¢ (‘;) is fixed by F. When Foc(f) = c(t 4+ a) wecall a
the period of F with respect to c. The period depends on the parametrization of c.
Given an isometry F' : M — M the displacement function is defined as

x> 6p (x) = |xF (x)] .

Lemma 6.2.7. Let F : M — M be an isometry on a complete Riemannian
manifold. If the displacement function §p has a positive minimum, then F has an
axis.

Proof. Let 6F have a minimum at p € M and ¢ : [0,1] — M be a segment from
p to F (p). Then F o ¢ is a segment from F (p) to F? (p) with the same speed. We
claim that these two geodesics form an angle 7 at F (p) and thus fit together as the
geodesic extension of ¢ to [0, 2]. If we fix ¢ € [0, 1], then

8r (p) = 8F (c(1))

= |e()(F o o) (1)

=< [e@c()] +[c () (F o))

= le@c (D] + [(Foc)(0)(F o))

= le@c(1)] + [c(0)c()]

= c(0)c(D)]

= |pF(p)!.
This means that the curve that consists of c|,;) followed by F o c|p, must be a
segment and thus a geodesic by corollary 5.4.4 (see also figure 6.3). This geodesic
is obviously just the extension of ¢, so (Foc¢) (f) = ¢ (1 + t). We can repeat this

argument forwards and backwards along the extension of ¢ to R to show that it
becomes an axis for F' of period 1. O
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Let v : M — M be the universal cover of M. A deck transformation F : M — M
is a map such that 7 o F = m, i.e., a lift of . As such, it is determined by the
value of F (p) € n~! (¢) for a given p € 7~ (¢). We can think of the fundamental
group m; (M, g) as acting by deck transformations: Given p € 7! (g), a loop in
[@] € 7 (M, q) yields a deck transformation with F (p) = & (1), where & is the
lift of o such that p = & (0). Finally note that in the Riemannian setting deck
transformations are isometries since 7 : M — M is a local isometry.

Lemma 6.2.8. If F : M — M is a nontrivial deck transformation on the universal
cover over a compact base M, then the dilation §r has a positive minimum. The axis
corresponding to this minimum is mapped to a closed geodesic in M whose length
is minimal in its free homotopy class. Moreover, §g (x) > 2 inj (M).

Proof. Fix a nontrivial deck transformation F : M — M. We start by characterizing
the loops in M generated by F. First we show that when x; € M, i = 0, 1 are joined
to F (x;) by curves ¢; : [0,1] — M, then the loops 7 o ¢; are freely homotopic
through a homotopy of loops in M. To see this choose a path H (s,0) : [0,1] — M
with H (i,0) = x;,i = 0, 1. Then define H (s, 1) = F (H (s,0)) and H (i,t) = ¢; (¢),
i = 0, 1. This defines H on 9 ([O, 1]2). Simple connectivity of M shows this can be

extended to a map H : [0, 11> — M. Now 7 (H (s, 1)) is the desired homotopy in M
since

w(H(s,1)) =noF(H(s,0) =m(H(,O0)).

Conversely we claim that any loop at & (x;) € M that is freely homotopic through
loops to 7 o ¢y must lift to a curve from x; to F (x;). Let H : [0,1]* — M be
such a homotopy, i.e., H (0,7) = (7 o co) (), H(5.0) = H(s,1), and H(1,0) =
7 (x1). Let H be the lift of H to M such that H (0,0) = xo. Unique path lifting
guarantees that ¢, (1) = H (0, ). Now both H (s, 0) and H (s, 1) are lifts of the same
curve H (s,0). As F is a deck transformation (F o I:I) (s, 0) is also a lift of H (s, 0).
However, (F oI:I) (0,0) = H (0, 1) so it follows that (F oI:I) (5,0) = H(s, 1).
Letting s = 1 gives the claim.

In particular, we have shown that if F is nontrivial, then none of these loops can
be homotopically trivial. This implies that 87 (x) > 2inj,,, (M), as otherwise the
segment from x to F (x) would generate a loop of length < 2inj, () (M). However,
such loops are contractible as they lie in B (]T (%), inj ) (M)).

We are now ready to minimize the dilatation. Consider a sequence ¢g; € M such
that lim 87 (¢;) = inf 8 > inj M and with it a sequence of segments ¢; : [0, 1] — M
with ¢; (0) = ¢; and ¢; (1) = F (g;). Let ¢; = 7 o ¢; be the corresponding loops
in M. Since |¢;| = &F (g;), compactness of M implies that after possibly passing
to a subsequence we can assume that ¢; (0) converge to a vector v € T,M where
g = limc; (0) and |[v| = infdr. Continuity of the exponential map implies that
the curves ¢; converge to the geodesic ¢ (1) = exp, (fv). This geodesic is in turn
a loop at g that is freely homotopic through loops to ¢; for large i; because when
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|ci (t) ¢ ()] < inj (M), they can be joined by unique short geodesics resulting in a
homotopy. The above characterization of loops generated by F, then shows that any
lift & of ¢ must satisfy F (c (0)) — ¢(1). Allin all,

Sr (c (0)) < L@ =L(c) = |v| = inf 8.

It is clear that ¢ has minimal length in its free homotopy class. A simple application
of the first variation formula (see 5.4.2) then shows that it must be a closed geodesic.
O

These preliminaries allow us to prove the theorem.

Proof of Theorem 6.2.6. We know that nontrivial deck transformations have axes.

To see that axes are unique in negative curvature, assume that we have two
different axes c¢; and ¢, for F. If these intersect in one point, they must, by virtue of
being invariant under F, intersect in at least two points. But then they must be equal.
Thus they do not intersect. Select p; € c¢; and p» € ¢, and join these points by a
segment 0. Then Foo is a segment from F' (p;) to F (py). Since F is an isometry that
preserves ci and ¢, we see that the adjacent angles along the two axes formed by the
quadrilateral py, pa, F (p1), F (p2) must add up to 7 (see also figure 6.3). But then
the angle sum is 2, which is not possible unless the quadrilateral is degenerate.
That is, all points lie on one geodesic.

Finally pick a deck transformation G that commutes with F. If 1 is the period,
then

(Goco)(t+1)=(GoFoc)(t)=(FoGoc)(t).

This implies that G o ¢ is an axis for F, and so must be c itself. Next consider the
group H generated by F, G. Any element in this group has c as an axis. Thus we
get amap H — R that sends an isometry to its uniquely defined period. This map is
a homomorphism with trivial kernel. Consider an additive subgroup A C R and let
a = inf{x € A | x > 0}. It is easy to check that if « = 0, then A is dense, while if
a > 0, then A = {na | n € Z}. The image of H in R must have the second property
as no nonzero period along ¢ can be smaller than mljéj‘u . This shows that H is cyclic.
|

F(p)
X F(x)

P F(F(p)

Fig. 6.3 Dilatation and axes
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6.3 Positive Curvature

In this section we establish several of the classical results for manifolds with positive
curvature. In contrast to the previous section, it is not possible to carry Euclidean
geometry over to this setting. So while we try to imitate the results, new techniques
are necessary.

In our discussion of the fundamental equations in section 3.2 we saw that
using parallel fields most easily gave useful information about Hessians of distance
functions when the curvature is nonnegative. This will be confirmed here through the
use of suitable variational fields to find the second variation of energy. In section 6.5
below we show how more sophisticated techniques can be used in conjunction with
the developments here to establish stronger results.

6.3.1 The Diameter Estimate

Our first restriction on positively curved manifolds is an estimate for how long
minimal geodesics can be. It was first proven by Bonnet for surfaces and later by
Synge for general Riemannian manifolds as an application of his second variation
formula.

Lemma 6.3.1 (Bonnet, 1855 and Synge, 1926). If (M, g) satisfies sec > k > 0,
then geodesics of length > 7/ /k cannot be locally minimizing.

Proof. Let ¢ : [0,]] — M be a unit speed geodesic of length [ > 7//k. Along ¢
consider the variational field

V(1) = sin (’;:) E®),
where E is a unit parallel field perpendicular to c. Since V vanishes at + = 0 and

t = [, it corresponds to a proper variation. By theorem 6.1.4 the second derivative
of this variation is

d’E

l 1
12 .\ .
i |S:0=/ 4 dt—/ gR(V.,&)e,V)dt

/ )l cos E(t)) dt
—/ g(R(sin(lt)E(t),é)é,sin(jlrt)E(t))dt
0
= (7)2/10052(7t) dt—/lsinz(]lrt) sec (E, ¢)dt
0 0
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= (7)2/010052<7;t)dt—k/015in2 (Jlrt)dt
< k/olcosz(jlrt)dt—k/()lsinz(]lrt)dt

=0.

Thus all nearby curves in the variation are shorter than c. O

The next result is a very interesting and completely elementary consequence
of the above result. It seems to have been pointed out first by Hopf-Rinow for
surfaces in their famous paper on completeness and soon after by Myers for general
Riemannian manifolds.

Corollary 6.3.2 (Hopf and Rinow, 1931 and Myers, 1932). If (M, g) is complete
and satisfies sec > k > 0, then M is compact and diam (M, g) < 7/~/k = diam S}.
In particular, M has finite fundamental group.

Proof. As no geodesic of length > 7/./k can realize the distance between endpoints
and M is complete, the diameter cannot exceed 7/+/k. Finally use that the universal
cover has the same curvature condition to conclude that it must also be compact.
Thus, the fundamental group is finite. O

These results were later extended to manifolds with positive Ricci curvature by
Myers.

Theorem 6.3.3 (Myers, 1941). If (M, g) is a complete Riemannian manifold with
Ric > (n — 1)k > 0, then diam(M, g) < 7/k. Furthermore, (M, g) has finite
fundamental group.

Proof. 1t suffices to show as before that no geodesic of length > 7/ can be
minimal. If ¢ : [0, /] — M is the geodesic we can select n — 1 variational fields

V,-(t):sin<71rt)E,-(t),i:2,...,n

as before. This time we also assume that ¢, E», ... E, form an orthonormal basis
for T.(nM. By adding up the contributions to the second variation formula for each
variational field we get

"\ d’E N ! N
> H-é/@ v dt—/og(R(v,-,c)c,v,-)dr

=mn-1) (JIT)Z/OICOS2 (Jlrt)
—LX;:/()Zsin2 (]lrt) sec (E;, ¢) dt
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=mn-1) (];)2/10052 (Jlrt) dt—/lsin2 (jlrt) Ric (¢, ¢) dt
0 0
I

< (n—l)k/lcosz(]lrt)dt—(n—1)k/ sinz(jlrt)dt
0 0

< 0.

Thus the second variation is negative for at least one of the variational fields. O

Example 6.3.4. The incomplete Riemannian manifold S> — {#p} clearly has con-
stant curvature 1 and infinite fundamental group. To make things worse; the
universal covering also has diameter .

Example 6.3.5. The manifold S' x R? admits a complete doubly warped product
metric

dr* + p*(r)d0? + ¢*(r)ds3,

that has Ric > 0 everywhere. Curvatures are calculated as in 1.4.5. If we define
o(t) = t7Y/% and ¢(r) = £3/* for t > 1, then the Ricci curvature will be positive.
Next extend to [0, co] so that the metric becomes smooth at ¢+ = 0; the functions
are C! and piecewise smoothatr = 1; —1 < p < 0; 0 < ¢> <1 ¢ < 0; and on
[0,1] p < 0. This will result in a C' metric that has positive Ricci curvature except
at t+ = 1. Finally, smooth out p at + = 1 ensuring that the Ricci curvature stays
positive.

6.3.2 The Fundamental Group in Even Dimensions

For the next result we need to study what happens when we have a closed geodesic
in a Riemannian manifold of positive curvature.

Let ¢ : [0,]] = M be a closed unit speed geodesic, i.e., ¢ (0) = ¢ (I). Let p =
¢ (0) = ¢ () and consider parallel translation along c. This defines a linear isometry
P :T,M — T,M. Since c is a closed geodesic we have that P (¢ (0)) = ¢ (I) = ¢(0).
Thus, P preserves the orthogonal complement to ¢ (0) in 7,M. Now recall that linear
isometries L : R — R* with detL = (—1)*"! have 1 as an eigenvalue, i.e., L (v) =
v for somev € R¥. We can use this to construct a closed parallel field around c in
one of two ways:

(1) If M is orientable and even-dimensional, then parallel translation around a
closed geodesic preserves orientation, i.e., det = 1. Since the orthogonal
complement to ¢ (¢) in T, M is odd dimensional there must exist a closed parallel
field around c.

(2) If M is not orientable, has odd dimension, and furthermore, ¢ is a nonorientable
loop, i.e., the orientation changes as we go around this loop, then parallel
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Fig. 6.4 Finding shorter
curves near a closed geodesic

translation around c is orientation reversing, i.e., det = —1. Now, the orthogonal
complement to ¢ (¢) in T,M is even-dimensional, and since P (¢ (0)) = ¢ (0),
it follows that the restriction of P to this even-dimensional subspace still has
det = —1. Thus, we get a closed parallel field in this case as well.

In figure 6.4 we have sketched what happens when the closed geodesic is the equator
on the standard sphere. In this case there is only one choice for the parallel field, and
the shorter curves are the latitudes close to the equator.

This discussion leads to an interesting and surprising topological result for
positively curved manifolds.

Theorem 6.3.6 (Synge, 1936). Let M be a compact manifold with sec > 0.

(1) If M is even-dimensional and orientable, then M is simply connected.
(2) If M is odd-dimensional, then M is orientable.

Proof. The proof goes by contradiction. So in either case assume we have a
nontrivial universal covering 7 : M — M. Let F be a nontrivial deck transformation
that in the odd-dimensional case reverses orientation. From lemma 6.2.8 we obtain
a unit speed geodesic (axis) ¢ : R — M that is mapped to itself by F. Moreover,
¢ = m o c is the shortest curve in its free homotopy class in M when restricted to an
interval [a, b] of length b — a = min §p.

In both cases our assumptions are such that the closed geodesics have closed
perpendicular parallel fields. We can now use the second variation formula with this
parallel field as variational field. Note that the variation isn’t proper, but since the
geodesic is closed the end point terms cancel each other

&E (c;) b

b N d’c
dSZ I‘V=0 = _/a g(R (Ev C) c, E) dt + 8 (852 ’C)

a

b
- _/ ¢(R(E,¢) ¢, E)dr

b
= —/ sec (E, ¢) dt

a

< 0.
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Thus all nearby curves in this variation are closed curves whose lengths are shorter
than c. This contradicts our choice of ¢ as the shortest curve in its free homotopy
class. O

The first important conclusion we get from this result is that while RP? x RPP? has
positive Ricci curvature, it cannot support a metric of positive sectional curvature.
It is, on the other hand, completely unknown whether 52 x $? admits a metric of
positive sectional curvature. This is known as the Hopf problem. Recall that in
section 6.2.2 we showed, using fundamental group considerations, that no product
manifold admits negative curvature. In this case, fundamental group considerations
cannot take us as far.

6.4 Basic Comparison Estimates

In this section we lay the foundations for the comparison estimates that will be
needed later in the text.

6.4.1 Riccati Comparison

We start with a general result for differential inequalities.

Proposition 6.4.1 (Riccati Comparison Principle). If we have two smooth func-
tions p15 : (0,b) — R such that

pr+ p7 < f2+ 3,
then

p2— p1 = limsup (p2 (1) — p1 (1)) -
t—0

Proof. Let F (1) = [ (p2 + p1) dt be an antiderivative for p, + p; on (0, b). The
claim follows since the function (p, — p;) e is increasing:

d . .
dt (2= p1)e") = (b2 — p1 + p3 — pi) " = 0.

This can be turned into more concrete estimates.

Corollary 6.4.2 (Riccati Comparison Estimate). Consider a smooth function p :
0,b) > Rwithp(t) = 1 + O (t) and a real constant k.
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(1) If p+ p* < —k, then

sn, (1)
p(y< * .
sny (2)
Moreover, b < 7//k when k > 0.
2) If =k < p + p?, then

sn, (1)
K <p(t)

sny (1)

forallt < bwhenk <0andt < min{b,7/Jk} when k > 0.

Proof. First note that for any k the comparison function satisfies

sng (1) 1
= O(t
sny, (1) t +00
and solves
o+ p*=—k.

When k > 0 this function is only defined on (0, 7/+/k) and

sm (1)

= 7, Sk (®

In case p + p?> < —k this will prevent p from being smooth when b > 7/ /.
Similarly, when —k < p + p? we are forced to assume that b < 7/ in order for
the comparison function to be defined. O

Let us apply these results to one of the most commonly occurring geometric
situations. Suppose that on a Riemannian manifold (M, g) we have introduced
exponential coordinates around a point p € M so that g = dr’> + g, on a star
shaped open set in T,M — {0} = (0, 00) x §"~'. Along any given geodesic from p
the metric g, is thought of as being on §"~!. It is not important for the next result
that M be complete as it is essentially local in nature.

Theorem 6.4.3 (Rauch Comparison). Assume that (M, g) satisfies k < sec < K.
If g = dr* + g, represents the metric in the polar coordinates, then

sn/ sn
K (r)gr <Hessr < X (r) .
sng (r) sny (1)

Consequently, the modified distance functions from corollary 4.3.4 satisfy:

Hessfi < (1 —kfi) 8.
Hessfx = (1 - Kfx) .
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Proof. 1’1l be convenient to use slightly different techniques for lower and upper
curvature bounds. Specifically, for lower curvature bounds parallel fields are the
easiest to use, while Jacobi fields are better suited to upper curvature bounds.

In both cases assume that we have a unit speed geodesic ¢ () with ¢ (0) = p and
that ¢ € [0, b], with ¢ ([0, b]) C exp, (seg)) so that r (x) = |xp]| is smooth along the
entire geodesic segment.

We start with the upper curvature situation as it is quite close in spirit to
lemma 6.2.5. In fact that proof can be easily adapted to the case where sec < K < 0,
but when K > 0 it runs into trouble (see exercise 6.7.11). Instead consider the
reciprocal ratio

p(h) = g(J’ZJ) :Hessr( ! J)

M 171" 1]

for a Jacobi field along ¢ with J (0) = 0 and J (0) L ¢ (0). It follows that J (r) L ¢ (t)
for all # and
. R DUP I WP -2 (g (0.7)
g o’
22 o . 2
JI T —-2(g(,J
ey VI =260
/]
> —K—p’.

In case there is a lower curvature bound, select instead a unit parallel field E
along c that is perpendicular to ¢ and consider

p=g(S(E),E) =Hessr(E,E).
From part (2) of proposition 3.2.11 we obtain

< —k—(g(S(E).E))’
= —k—p*

In both cases we have the initial conditions that p (r) = i + O (¢) and so we
obtain the desired inequalities for p and hence Hess r from corollary 6.4.2.
The Hessian estimates for the modified distance functions follow immediately.
O

Remark 6.4.4. A more traditional proof technique using the index form is discussed
in exercise 6.7.25 within the context of lower curvature bounds. It can also be
adapted to deal with upper curvature bounds.
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6.4.2 The Conjugate Radius

As in the proof of theorem 6.2.2 we are going to estimate where the exponential
map is nonsingular.

Example 6.4.5. Consider S§, K > 0. If we fix p € S% and use polar coordinates,
then the metric looks like dr? + sn%(dslzl_l. At distance jK from p we will hit a

conjugate point no matter what direction we go in.

As a generalization of our result on no conjugate points when sec < 0 we
can show

Theorem 6.4.6. If (M, g) has sec < K, K > 0, then

exp,, B (O, jK) — M

has no critical points.

Proof. Let c(¢) be a unit speed geodesic and J (¢) a Jacobi field along ¢ with
J(0)=0 and J(0) L ¢(0). We have to show that J(f) can’t vanish for any
t € (0,7/yk). Assume that / > 0 on (0,b) and J (b) = 0. From the proof of
theorem 6.4.3 we obtain

g (0,7 ) _ Sk ()
J(* s (1)

for t < min {b, 7//k}. This is equivalent to saying that
d (VO
dt \ sng (1)

Since Dexp, is the identity at the origin it follows that |J ()| = ¢ |J (O)\ + 0 (tz).
This together with I’Hospital’s rule shows that

(IJ(I)I) i g(J (.7 (0)

M\ enc ) =0 o)
Hessr (J (1), J ()
= l1im
—0 |7 (2)]
—1 2 3
i T VO +O(@)
t—0 IJ (l)|

= lim VG]
=1/ (0)].

It follows that J (¢) > \J (0)| sng (f) > 0 for all < min {b, 7//k}. This shows that
we can’t have b < 7//k and the claim follows. O
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With this information about conjugate points, we also get estimates for the
injectivity radius using the characterization from lemma 5.7.12. For Riemannian
manifolds with sec < 0 the injectivity radius satisfies

1
inj(p) = 5" (length of shortest geodesic loop based at p)

as there are no conjugate points whatsoever. On a closed Riemannian manifold with
sec < 0 we claim that

1
inj(M) = plgﬁf/; inj(p) = 5" (Iength of shortest closed geodesic) .

Since M is closed, the infimum must be a minimum. This follows from continuity
p +— inj(p), which in turn is a consequence of exp : TM — M x M being smooth and
the characterization of inj(p) from lemma 5.7.12. If p € M realizes this infimum,
and ¢ : [0, 1] = M is the geodesic loop realizing inj(p), then we can split ¢ into two
equal segments joining p and ¢ (;) Thus, inj (c (;)) < inj(p), but this means that ¢
must also be a geodesic loop as seen from ¢ (é) In particular, it is smooth at p and
forms a closed geodesic.
The same line of reasoning yields the following more general result.

Lemma 6.4.7 (Klingenberg). Let (M, g) be a compact Riemannian manifold with
sec < K, where K > 0. Then

1
inj (p) > min Ly (length of shortest geodesic loop based at p); ,

T
VK
and

1
inj(M) > jK or inj(M) = 5" (length of shortest closed geodesic) .

These estimates will be used in the next section.
Next we turn our attention to the convexity radius.

Theorem 6.4.8. Suppose R satisfies

(1) R <, -inj(x), forx € B(p, R), and

1
2
2)R< é . jK, where K = sup {sec(xw) | # C T:M, x € B(p,R)}.

Then r(x) = |xp| is convex on B(p, R), and any two points in B(p, R) are joined
by a unique segment that lies in B(p, R).

Proof. The first condition tells us that any two points in B(p, R) are joined by a
unique segment in M, and that r(x) is smooth on B(p,2 - R) — {p}. The second
condition ensures that Hess» > 0 on B(p, R). It then remains to be shown that
if x,y € B(p,R), and ¢ : [0,1] — M is the unique segment joining them, then
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¢ C B(p,R). For fixed x € B(p,R), define C, to be the set of ys for which this
holds. Certainly x € C, and C, is open. If y € B(p,R) N dCy, then the segment
¢ : 10,1 — M joining x to y must lie in B(p, R) by continuity. Now consider
@(t) = r(c(t)). By assumption
9(0),9(1) <R,
¢(t) = Hess r (¢c(?),¢(r)) = 0.

Thus, ¢ is convex, and consequently
max ¢(7) < max {p(0), (1)} <R,

showing that ¢ C B(p, R). O

The largest R such that r(x) is convex on B(p, R) and any two points in B(p, R) are
joined by unique segments in B(p, R) is called the convexity radius at p. Globally,

conv.rad (M, g) = inAfI conv.rad(p).
PE

The previous result tell us

inj(M,g) =n

conv.rad (M, g) > min ,
M, g) 5 2K

} , K =supsec (M, g).

In nonpositive curvature this simplifies to

inj (M. g)

conv.rad(M, g) = 5

6.5 More on Positive Curvature

In this section we shall establish some further restrictions on the topology of
manifolds with positive curvature. The highlight will be the classical quarter
pinched sphere theorem of Rauch, Berger, and Klingenberg. To prove this theorem
requires considerable preparation. We shall elaborate further on this theorem and its
generalizations in section 12.3.

6.5.1 The Injectivity Radius in Even Dimensions

Using the ideas of the proof of theorem 6.3.6 we get another interesting restriction
on the geometry of positively curved manifolds.
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Theorem 6.5.1 (Klingenberg, 1959). If (M,g) is a compact orientable even-
dimensional manifold with 0 < sec < 1, then inj (M, g) > m. If M is not orientable,
theninj(M,g) > 7.

Proof. The nonorientable case follows from the orientable case, as the orientation
cover will have inj (M, g) > w.

By lemma 6.4.7 and the upper curvature bound it follows that if inj M < m, then
the injectivity radius is realized by a closed geodesic. So let us assume that there is
a closed geodesic ¢ : [0, 2inj M] — M parametrized by arclength, where 2injM <
2. Since M is orientable and even dimensional, we know from section 6.3.2 and the
proof of theorem 6.3.6 that for all small ¢ > 0 there are curves ¢, : [0,2injM] —
M that converge to ¢ as ¢ — 0 and with L(c;) < L(¢) = 2injM. Since ¢, C
B (c: (0),inj M) there is a unique segment from ¢, (0) to ¢ (¢). Thus, if ¢, () is
the point at maximal distance from ¢, (0) on c,, we get a segment o, joining these
points that in addition is perpendicular to ¢, at ¢, (t;). As ¢ — 0, it follows that
t. — injM, and thus the segments o, must subconverge to a segment from c (0) to
¢ (inj M) that is perpendicular to ¢ at ¢ (inj M). However, as the conjugate radius is
> m > injM, and c is a geodesic loop realizing the injectivity radius at ¢ (0), we
know from lemma 5.7.12 that there can only be two segments from c (0) to ¢ (inj M).
Thus, we have a contradiction with our assumption 7 > inj M. O

In figure 6.5 we have pictured a fake situation that gives the idea of the proof.
The closed geodesic is the equator on the standard sphere, and o, converges to a
segment going through the north pole.

A similar result can clearly not hold for odd-dimensional manifolds. In dimen-
sion 3 the quotients of spheres S*/Z; for all positive integers k are all orientable.
The image of the Hopf fiber via the covering map S* — §3/7Z; is a closed geodesic
of length 2: that goes to 0 as k — oo. Also, the Berger spheres (S3, gs) give
counterexamples, as the Hopf fiber is a closed geodesic of length 27 e. In this case
the curvatures lie in [52, 4 — 382]. So if we rescale the upper curvature bound to be

1, the length of the Hopf fiber becomes 27 ¢ V4 — 3¢2 and the curvatures will lie in
2

the interval [ s _5352, 1] . When ¢ < «}3’ the Hopf fibers have length < 2. In this

case the lower curvature bound becomes smaller than é.

Fig. 6.5 Equator with short
cut through the Northpole
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A much deeper result by Klingenberg asserts that if a simply connected manifold
has all its sectional curvatures in the interval (i, 1], then the injectivity radius is
still > 7 (see the next section for the proof). This result has been improved first
by Klingenberg-Sakai and Cheeger-Gromoll to allow for the curvatures to be in
[i, 1]. More recently, Abresch-Meyer showed that the injectivity radius estimate
still holds if the curvatures are in [}1 - 1078, 1]. The Berger spheres show that such
an estimate will not hold if the curvatures are allowed to be in [é — &, 1]. Notice
that the hypothesis on the fundamental group being trivial is necessary in order to
eliminate all the constant curvature spaces with small injectivity radius.

These injectivity radius estimates will be used to prove some fascinating sphere
theorems.

6.5.2 Applications of Index Estimation

Some notions and results from topology are needed to explain the material here.
We say that A C X is /-connected if the relative homotopy groups m; (X, A)

vanish for k < [. A theorem of Hurewicz then shows that the relative homology

groups Hy (X, A) also vanish for k < [. The long exact sequences for the pair (X, A)

i1 (X, A) = 1 (A) = m (X) — e (X, A)
and
Hit1 (X, A) — Hi (A) — Hi (X) — Hi (X,A)

then show that 7r; (A) — m (X) and Hy (A) — Hj (X) are isomorphisms for k < [
and surjective for k = .

We say that a critical point p € M for a smooth function f : M — R has index
> m if the Hessian of f is negative definite on a m-dimensional subspace in T,M.
Note that if m > 1, then p can’t be a local minimum for f as the function must
decrease in the directions where the Hessian is negative definite. The index of a
critical point gives us information about how the topology of M changes as we pass
through this point. In Morse theory a much more precise statement is proven, but it
also requires the critical points to be nondegenerate, an assumption we do not wish
make here (see [75]).

Theorem 6.5.2. Letf : M — R be a smooth proper function. If b is not a critical
value for f and all critical points in f = ([a, b]) have index > m, then

JH (=o0.a]) Cf7! ((—o0, b))

is (m — 1)-connected.

Outline of Proof. If there are no critical points in f~! ([a, b]), then the gradient flow
will deform f~! ((—oo, b]) to f~! ((—o0, a]). This is easy to prove and is explained
in lemma 12.1.1. If there are critical points, then by compactness we can cover
the set of critical points by finitely many open sets U; =~ (—a,a)", 0 < a < 1,
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where U; C V; and V; ~ [—1,1]" is a closed box coordinate chart where the first m
coordinates correspond to directions where Hess f is negative definite.

Consider a map ¢ : N*! — =1 ([a,b]), k < m, where IN*™! C f~! ((—o0, a])
if the boundary is nonempty.

e On M — | J U; we can use the flow of —A (x) Vf],, where A > 0 and 17! (0) =
U U;. This will deform ¢ keeping it fixed on U; and forcing max;—i(ap) f © ¢ to
decrease while ensuring that maxy, f o ¢ is not obtained on 9V;.

o LetS;={peVi|x'(p)=---=x"(p) = 0}. Therestriction k < m allows us to
use transversality to ensure that there is a homotopy ¢, ¢ € [0, €), where ¢o = ¢;
¢, does not intersect S; for t > 0; and 7 — ¢, is constant on M — V;. Moreover,
for sufficiently small # maxy, f o ¢, is still not obtained on V.

* Finally, when ¢ doesn’t intersect the submanifold S;, the flow for the radial field

> ¥/9; on V; decreases the value of maxy, f o ¢ and moves ¢ outside U;.

With these three types of deformations it is possible to continuously deform ¢ until
its image lies in f~! ((—o0, a]). O

In analogy with 2, , (M) define
QupM) ={c:[0,1] > M |c(0)eA, c(l) €B}.

If A,B C M are compact, then the energy functional £ : Q45 (M) — [0,00)
is reasonably nice in the sense that it behaves like a proper smooth function on a
manifold. If in addition A and B are submanifolds, then the variational fields for
variations in 24 g (M) consist of fields along the curve that are tangent to A and
B at the endpoints. Therefore, critical points are naturally identified with geodesics
that are perpendicular to A and B at the endpoints. We say that the index of such a
geodesic > k if there is a k-dimensional space of fields along the geodesic such that
the second variation of the these fields is negative.

One can now either try to reprove the above theorem in a suitable infinite
dimensional context (see [30] or [69]) or use finite dimensional approximations to
Qa.p (M) (see [75]). Both routes are technical but fairly straightforward.

Theorem 6.5.3. Let M be a complete Riemannian manifold and A C M a compact
submanifold. If every geodesic in Q44 (M) that is perpendicular to A at the end
points has index > k, then A C M is k-connected.

Outline of Proof. See also [30] or [69, Theorem 2.5.16] for a proof. Identify A =
E~'(0) and use the previous theorem as a guide for how to deform maps. This shows
that A C Q4.4 (M) is (k — 1)-connected. Next we note that

71 (Qaa M) ,A) = 141 (M, A).

This proves the result. O

This theorem can be used to prove a sphere theorem by Berger.
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Theorem 6.5.4 (Berger, 1958). Let M be a closed n-manifold with sec > 1. If
inj, > 7/2 for some p € M, then M is (n — 1)-connected and hence a homotopy
sphere.

Proof. We’ll use theorem 6.5.3 with A = {p}. First note that every geodesic loop
at p is either the constant curve or has length > 7 since inj, > 7/2. We showed
in lemma 6.3.1 that geodesics of length > m have proper variations whose second
derivative is negative. In fact each parallel field along the geodesic could be modified
to create such a variation. As there is an (n — 1)-dimensional space of such parallel
fields we conclude that the index of such geodesics is > (n — 1). This shows that
p € M is (n — 1)-connected and consequently that M is (n — 1)-connected.

Finally, to see that M is a homotopy sphere we select a map F : M — S§" of
degree 1. Since M is (n — 1)-connected this map must be an isomorphism on ;, for
k < nas §"is also (n — 1)-connected. We claim that

70 (M) =~ H,, (M) — H,, (S") ~ 7, (S")

is an isomorphism. Hurewicz’s result shows that the homotopy and homology
groups are isomorphic, while the fact that ' has degree 1 implies that H, (§") —
H, (M) is an isomorphism. A theorem of Whitehead then implies that F is a
homotopy equivalence. O

This theorem is even more interesting in view of the injectivity radius estimate
in positive curvature that we discussed in section 6.5.1. We can extend this to odd
dimensions using theorem 6.5.3.

Theorem 6.5.5 (Klingenberg, 1961). A compact simply connected Riemannian n-
manifold (M, g) with 1 < sec < 4 has inj > 7/2.

Proof. It is more convenient to show that simply connected manifolds with 1 <
sec < 4 have inj > 7/2. A simple scaling shows that this implies the statement of
the theorem. We can also assume that n > 3 as we know the theorem to be true
in even dimensions. The lower curvature bound implies that there is a § > 0 such
that geodesics of length > 7 — § have index > n — 1 > 2. In particular, any map
[0,1] — €,, (M) of constant speed loops based at p is homotopic to a map where
the loops have length < 7. It is easy to force the loops to have constant speed as we
can replace them by nearby loops that are piecewise segments and therefore shorter.
This can be done uniformly along a fixed homotopy by selecting the break points
on S' independently of the variational parameter.

The proof proceeds by contradiction so assume that inj, < 7/2. Then lemma 6.4.7
shows that there is a geodesic loop at p of length < m that realizes the injectivity
radius. Next use simple connectivity to find a homotopy of loops based at p to the
constant loop and further assume that all the loops in the homotopy have constant
speed and length < 7. For each s € [0, 1] parametrize the corresponding loop ¢; (7) :
[0,1] — M so that ¢; (0) = ¢; (1) = p; co(t) = p for all ¢; and ¢; the closed
geodesic of length < 7. As each ¢, has length < 7 it must be contained in B (p, 7/2).
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Note that the exponential map exp,, : B (0,7/2) — B (p,7/2) C M is nonsingular
and a diffeomorphism when restricted to B (O, injp). We shall further use the pull
back metric on B (0, r ) so that exp, becomes a local isometry. This tells us that any
of the loops ¢, : [0,1] — B (p,7/2) with ¢ (0) = p have a unique lift to a curve
¢ 1 [0,b,] — B(0,7/2) with &, (0) = 0. Here either ¢, (bs) € 3B (0,7/2) orb = 1.
Note that when ¢, is a piecewise geodesic, then we can easily create such a lift by
lifting the velocity vectors at break points.

Let A C [0, 1] be the set of s such that ¢ lifts to a loop ¢, : [0, 1] — B (0,7/2)
based at 0.

Clearly 0 € A, and as exp, is a diffeomorphism near 0 loops ¢, with s near 0 also
lift to loops.

A is closed: Let s; € A converge to s. Then ¢;, (1) is defined and ¢, (1) = 0. The
unique lift ¢; must be the limit of the curves ¢,,. Thus it is defined on [0, 1] and is a
loop. Finally observe that the limit curve ¢, clearly lies B (0, 7/2) and is forced to lie
in the interior as it has length < 7.

A is open: Fix 5o € A and let the lift be ¢,,. Select € > 0 so that exp,
B (cs, (1) ,€) = Bcy, (1), €) is an isometry for all £ and B (cy, () ,€) C B(0,7/2).
For s near s, the loops ¢; must be contained in Ute[()’l] B (cy, (t) , €). But then they
have unique lifts to loops in (¢ B (Cs, () . €) C B(0,7/2). Thus & (1) € B (0, €)
is a lift of p and consequently ¢, (1) = 0. This shows that a neighborhood of s is
contained in A.

Allin all we’ve concluded that A = [0, 1]. However, the geodesic c; lifts to a line
that starts at 0 and consequently is not a loop. The establishes the contradiction. O

This gives us the classical version of the sphere theorem.

Corollary 6.5.6 (Rauch, Berger, and Klingenberg, 1951-61). Let M be a closed
simply connected n-manifold with 4 > sec > 1. Then M is (n — 1)-connected and
hence a homotopy sphere.

The conclusion can be strengthened to say that M is homeomorphic to a sphere.
This follows from the solution to the (generalized) Poincaré conjecture given
what we have already proven. In section 12.3 we exhibit an explicitly constructed
homeomorphism.

Using an analysis similar to the proof of theorem 6.5.4 one also gets the more
modest result.

Corollary 6.5.7. If M is a closed n-manifold with Ric > (n— 1) and inj, > /2
for some p € M, then M is simply connected.

Finally we mention a significant result that allows us to make strong conclu-
sions about connectedness in positive curvature. The result will be enhanced in
lemma 8.3.6.

Lemma 6.5.8 (The Connectedness Principle, Wilking, 2003). Ler M" be a com-
pact n-manifold with positive sectional curvature.
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(@) If N*™% C M" is a closed codimension k totally geodesic submanifold, then
N C M is (n— 2k + 1)-connected.

(b) IfN;l_kl and Ng_kz are closed totally geodesic submanifolds of M with k; < k>
and ki + ky < n, then N\ N N, is a nonempty totally geodesic submanifold and
N1 NNy — Ny is (n — k; — kp)-connected.

Proof. (a) Letc € Qun (M) be a geodesic and E a parallel field along ¢ such that £
is tangent to NV at the endpoints. Then we can construct a variation ¢ (s, ) such that
¢(0,1) = c(t) and s — c(s,1) is a geodesic with initial velocity E|.(,. Since N is
totally geodesic we see that ¢ (s, 0), ¢ (s, 1) € N. Thus the variational curves lie in
Qn .~ (M). The second variation formula for this variation tells us that

d*E (cy) !

Lo b N e,
52 IX:O:\/O\ |E\ dt—/a g(R(E,c)c,E)dt+g(aS2,c)

:_/lg(R(E,e)e,E)dt
0

<0

0

since £ = 0, gjg = 0, and E is perpendicular to ¢. Thus each such parallel field
gives us a negative variation. This shows that the index of c is bigger than the set of
parallel variational fields.

Let V C T.u)M be the subspace of vectors v = E (1), where E is a parallel
field along ¢ with E (0) € T.)N. The space of parallel fields used to get negative
variations is then identified with V N 7,1, N. To find the dimension of that space we
note that 7, N and hence also V have dimension n — k. Moreover, V and T.()N lie in
the orthogonal complement to ¢ (1). Putting this together gives us

2n — 2k = dim (T,)N) + dim (V)
= dim (V N T,))N) + dim (V + T 1)N)
<dim(VNT.qN) +n—1.

(b) It is easy to show that N N N, is also totally geodesic. The key is to guess
that for p € N; NN, we have T, (N; N N) = T,Ni NT,N,. To see that Ny NN, # &
select a geodesic from N; to N,. The dimension conditions imply that there is a
(n — k1 — ky + 1)-dimensional space of parallel field along this geodesic that are
tangent to Ny and N, at the end points. Since k; + k» < n we get a variation with
negative second derivative, thus nearby variational curves are shorter. This shows
that there can’t be a nontrivial geodesic of shortest length joining N and N>.

Using E : Qu, v, (M) — [0, 00) we can identify Ny N N, = E~!(0). So we have
in fact shown that Ny N N, C Qn, v, (M) is (n — k; — kp)-connected. Using that
Ny C M is (n—2k; 4 1)-connected shows that Qy, n, (M) C Qp N, (M) is also
(n — 2k; + 1)-connected. Since k; < ky this shows that Ny N N» C Qun, (M) is
(n — ki — ky)-connected. Finally observe that €, y, (M) can be retracted to N, and
is homotopy equivalent to N,. This proves the claim. O
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What is commonly known as Frankel’s theorem is included in part (b). The
statement is simply that under the conditions in (b) the intersection is nonempty.

6.6 Further Study

Several textbooks treat the material mentioned in this chapter, and they all use
variational calculus. We especially recommend [23, 30, 47] and [65]. The latter also
discusses in more detail closed geodesics and, more generally, minimal maps and
surfaces in Riemannian manifolds.

As we won’t discuss manifolds of nonpositive curvature in detail later in the text
some references for this subject should be mentioned here. With the knowledge we
have right now, it shouldn’t be too hard to read the books [10] and [8]. For a more
advanced account we recommend the survey by Eberlein-Hammenstad-Schroeder
in [51]. At the moment the best, most complete, and up to date book on the subject
is probably [38].

For more information about the injectivity radius in positive curvature the reader
should consult the article by Abresch and Meyer in [54].

All of the necessary topological background material used in this chapter can be
found in [75] and [96].

6.7 Exercises

EXERCISE 6.7.1. Show that in even dimensions the sphere and real projective space
are the only closed manifolds with constant positive curvature.

EXERCISE 6.7.2. Consider a rotationally symmetric metric dr? + p* (r) d6>. We
wish to understand parallel translation along a latitude, i.e., a curve with r = a. To
this end construct a cone dr> + (p (a) 4 p (a) (r — a))* d6? that is tangent to this
surface at the latitude » = a. In case the surface really is a surface of revolution, this
cone is a real cone that is tangent to the surface along the latitude » = a.

(1) Show that in the standard coordinates (r, €) on these two surfaces, the covariant
derivative V;, is the same along the curve r = a. Conclude that parallel
translation is the same along this curve on these two surfaces.

(2) Now take a piece of paper and try to figure out what parallel translation along
a latitude on a cone looks like. If you unwrap the paper, then it is flat; thus
parallel translation is what it is in the plane. Now rewrap the paper and observe
that parallel translation along a latitude does not necessarily generate a closed
parallel field.

(3) Show that in the above example the parallel field along r = a closes up when

6 (a) = 0.
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EXERCISE 6.7.3 (Fermi-Walker transport). Related to parallel transport there is a
more obscure type of transport sometimes used in physics. Let ¢ : [a,b] — M be a
curve into a Riemannian manifold whose speed never vanishes and

el
the unit tangent of c. We say that V is a Fermi-Walker field along c if

V=g(V.T)T—-g(V.T)T
=(TAT) (V).

(1) Show that given V (1) there is a unique Fermi-Walker field V along ¢ whose
value at 1y is V ().

(2) Show that T is a Fermi-Walker field along c.

(3) Show that if V, W are Fermi-Walker fields along c, then g (V, W) is constant
along c.

(4) If c is a geodesic, then Fermi-Walker fields are parallel.

EXERCISE 6.7.4. Let (M, g) be a complete n-manifold of constant curvature k.
Select a linear isometry L : T,M — T;S}. When k < 0 show that

exp, oL 'o expgl Si—->M
is a Riemannian covering map. When k > 0 show that
exp, oL 'o expl—jl Si—{-prt-M

extends to a Riemannian covering map S} — M. (Hint: Use that the differential of
the exponential maps is controlled by the metric, which in turn can be computed
when the curvature is constant. You should also use the conjugate radius ideas
presented in connection with theorem 6.2.2.)

EXERCISE 6.7.5. Letc (s, 1) : [0, 1]* — (M, g) be a variation where R (g;', %;) =0.

Show that for each v € T,(9,0)M, there is a parallel field V : [0, 1]2 — TM along c,

LAV _ oV _
Le, 5 =% = 0 everywhere.

EXERCISE 6.7.6. Use the formula

u  9sdtdu  Atdsdu

dc dc ac_ e e
ds’ Ot

to show that the two skew-symmetry properties and Bianchi’s first identity from
proposition 3.1.1 hold for the curvature tensor.
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EXERCISE 6.7.7. Let ¢ be a geodesic and X a Killing field in a Riemannian
manifold. Show that the restriction of X to ¢ is a Jacobi field.

EXERCISE 6.7.8. Letc : [0,1] — M be a geodesic. Show that exp, ) has a critical
point at 7¢ (0) if and only if there is a nontrivial Jacobi field J along ¢ such that
J(0)=0,J(0) L¢(0),andJ(r) =0.

EXERCISE 6.7.9. Fixp € M and v € segg. Consider a geodesic ¢ (1) = exp, (1v)
and geodesic variation ¢ (s, 1) = exp, (¢ (v + sw)) with variational Jacobi field J (7).

Show that if fo (x) = } |xp|’, then

Violeay = ¢ (1),
Hessfy (J (1),J (1)) = g (J (1), J (1)) .

Use this equation to prove lemma 6.2.5 without first estimating Hess r.

EXERCISE 6.7.10. Let ¢ be a geodesic in a Riemannian manifold and J;, J, Jacobi
fields along c.

(1) Show that g (jl,Jz) —g (Jl,jz) is constant.
(2) Show that g (Jy (1), ¢ (1) = g (J1 (0), ¢ (0)) + g (/1 (0), ¢ (0)) .
EXERCISE 6.7.11. Let J be a nontrivial Jacobi field along a unit speed geodesic ¢

with J (0) = 0, J (0) L ¢ (0). Assume that the Riemannian manifold has sectional
curvature < K.

(1) Define

i
g (J, J)

and show that A < 1+ KA2, A (0) = 0 for as long as A is defined.
(2) Show that if J(b) = O for some b > 0, then g (J 03] ,J(t)) = 0 for some
t € (0, b). Give an explicit example where this occurs.

EXERCISE 6.7.12. Let ¢ be a geodesic in a Riemannian manifold and J a space
of Jacobi fields along c. Further assume that J is self-adjoint, i.e., g (J 1,]2) =

g (J1,J>) for all J;, J, € J. Consider the subspace

IJO={0IeJJO=0+{(0)|JeJ}CTuyM.

(1) Show that the two subspaces in this sum are orthogonal.

(2) Show that the space {J € J | J (tf) = 0} C J is naturally isomorphic to the first
summand in the decomposition.

(3) Show that dimJ = dimJ (¢) for all 7. Hint: Consider a basis for j where the
first part of the basis spans {J € J | J () = 0}.
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EXERCISE 6.7.13. A Riemannian manifold is said to be k-point homogeneous if
for all pairs of points (pi,...,px) and (q,-..,qx) with |p,-pj‘ = |q,-qj‘ there is
an isometry F' with F (p;) = ¢q;. When k = 1 we simply say that the space is
homogeneous.

(1) Show that a homogenous space has constant scalar curvature.

(2) Show that if k > 1 and (M, g) is k-point homogeneous, then M is also (k — 1)-
point homogeneous.

(3) Show thatif (M, g) is two-point homogeneous, then (M, g) is an Einstein metric.

(4) Show that if (M, g) is three-point homogeneous, then (M, g) has constant
curvature.

(5) Show that RP? is not three-point homogeneous by finding two equilateral
triangles of side lengths 7 that are not congruent by an isometry.

It is possible to show that the simply connected space forms are the only
three-point homogeneous spaces. Moreover, all 2-point homogeneous spaces are
symmetric with rank 1 (see [106]).

EXERCISE 6.7.14. Starting with a geodesic on a two-dimensional space form,
discuss how the equidistant curves change as they move away from the original
geodesic.

EXERCISE 6.7.15. Letr(x) = |xp| in a Riemannian manifold with —K < sec < K.
Write the metric as g = dr?> + g, on B (p,R) — {p} = (0,R) x §"~!, where 2R <
inj,,.

(1) Show that

snf< (r) ds,%_1 <g =< an_K (r) dsi_l.

Hint: Estimate |J |2, where J is a Jacobi field along a geodesic ¢ with ¢ (0) = 0,
J(0) =0,J(0) L ¢(0),and |J(0)] = 1.
(2) Show that there is a universal constant C such that

Hess 1 — g| < CK'R?
Mg
2K’
EXERCISE 6.7.16. Let (M, g) be a complete Riemannian manifold. Show that every

element of 7, (M, p) contains a shortest loop at p and that this shortest loop is a
geodesic loop.

as long as R <

EXERCISE 6.7.17. Let (M, g) be a complete Riemannian manifold with inj, < R,
where exp, : B(0,R) — B (p.R) is nonsingular. Show that the geodesic loop ¢
at p that realizes the injectivity radius has index 0. Hint: When c is trivial as an
element in 7ty (M, p), show that it does not admit a homotopy through loops that are
all shorter than c. When c is nontrivial as an element in ; (M, p), show that it is a
local minimum for the energy functional.
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EXERCISE 6.7.18 (Frankel). Let M be an n-dimensional Riemannian manifold of
positive curvature and A, B two closed totally geodesic submanifolds. Show directly
that A and B must intersect if dimA + dimB > n. Hint: assume that A and B do
not intersect. Then find a segment of shortest length from A to B. Show that this
segment is perpendicular to each submanifold. Then use the dimension condition to
find a parallel field along this geodesic that is tangent to A and B at the endpoints to
the segments. Finally use the second variation formula to get a shorter curve from A
to B.

EXERCISE 6.7.19. Let M be a complete n-dimensional Riemannian manifold and
A C M a compact submanifold. Establish the following statements without using
Wilking’s connectedness principle.

(1) Show that curves in €24 4 (M) that are not stationary for the energy functional
can be deformed to shorter curves in Q4 4 (M).

(2) Show that the stationary curves for the energy functional on €4 4 (M) consist
of geodesics that are perpendicular to A at the end points.

(3) If M has positive curvature, A C M is totally geodesic, and 2dimA > dimM,
then all stationary curves can be deformed to shorter curves in €4 4 (M).

(4) (Wilking) Conclude using (3) that any curve ¢ : [0, 1] — M that starts and ends
in A is homotopic through such curves to a curve in 4, i.e., 7} (M, A) is trivial.

EXERCISE 6.7.20. Generalize Preissmann’s theorem to show that any solvable
subgroup of the fundamental group of a compact negatively curved manifold
must be cyclic. Hint: Recall that the group is torsion free. Use contradiction and
solvability to find a subgroup generated by deck transformations F, G with F o G =
GfoF, k # 0. Then show that if ¢ is an axis for G, then F o ¢ is an axis for G* and
use uniqueness of axes for G* to reach a contradiction.

EXERCISE 6.7.21. Let (M, g) be a compact manifold of positive curvature and F :
M — M an isometry of finite order without fixed points. Show that if dimM is even,
then F must be orientation reversing, while if dimM is odd, it must be orientation
preserving. Weinstein has proven that this holds even if we don’t assume that F has
finite order.

EXERCISE 6.7.22. Use an analog of theorem 6.2.3 to show that any closed manifold
of constant curvature = 1 must either be the standard sphere or have diameter
< 72r Generalize this to show that any closed manifold with sec > 1 is either
simply connected or has diameter < 7. In section 12.3 we shall show the stronger
statement that a closed manifold with sec > 1 and diameter > 72r must in fact be
homeomorphic to a sphere.

EXERCISE 6.7.23. Consider a complete Riemannian n-manifold (M,g) with
[sec] < K. Fix n points p; and a ball B (p,€) such that the distance functions
r' (x) = |xp;| are smooth on B (p, €) with g (Vr/, VF) |, = 67 and |pp;| > 2e.
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(1) Let g/ = g(Vr,Vr) = g (dr',dr’). Show that there exists C (K,€) > 0 such
that |dg’| < C = C(n.K.€).

(2) Show further that C (n, K, €) can be chosen so that C (n, A72K, )&6) — 0 as
A — o0.

(3) Show that there is a § = § (n, C) > 0 such that g is invertible on B (p, §) and
the inverse g;; satisfies: |[glj — 5u]| < ; and \dgij| < C'(n,K, ¢). Hint: Find §
such that \[g‘/ — 8 “ < 110 on B (p, §) and use a geometric series of matrices to
calculate the inverse.

(4) Show that (r' (x) —r' (p),....r" (x) — r" (p)) form a coordinate system on
B (p,§) and that the image contains the ball B (0, i) Hint: Inspect the proof
of the inverse function theorem.

EXERCISE 6.7.24 (The Index Form). Below we shall use the second variation
formula to prove several results established in section 5.7.3. If V, W are vector fields
along a geodesic ¢ : [0, 1] — (M, g), then the index form is the symmetric bilinear
form

1
LL(V,W)y=1(V,W) = /O (g(V.W) —g(R(V,&) e, W)) dt.

In case the vector fields come from a proper variation of c this is equal to the second
variation of energy. Assume below that ¢ : [0, 1] — (M, g) locally minimizes the
energy functional. This implies that I (V, V) > 0 for all proper variations.

(1) If1(V,V) = 0 for a proper variation, then V is a Jacobi field. Hint: Let W be
any other variational field that also vanishes at the end points and use that

0<I(V4eW,V+eW)=I1(V.,V)+2el(V,W)+ (W, W)

for all small € to show that 7 (V, W) = 0. Then use that this holds for all W to
show that V is a Jacobi field.

(2) Let V and J be variational fields along ¢ such that V (0) = J(0) and V (1) =
J (1). If J is a Jacobi field show that

[(V.))=1(.1]).

(3) (The Index Lemma) Assume in addition that there are no Jacobi fields along ¢
that vanish at both end points. If V and J are as in (2) show that I (V,V) >
1 (J,J) with equality holding only if V = J on [0, 1]. Hint: Prove that if V # J,
then

0<I(V=J,V=0)=1(V,V)—-1(,J).
(4) Assume that there is a nontrivial Jacobi field J that vanishes at 0 and 1, show that

¢ :[0,1+ ¢] — M is not locally minimizing for ¢ > 0. Hint: For sufficiently
small ¢ there is a Jacobi field K : [1 —¢,1 + ¢] - TM suchthat K (1 +¢) =0
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and K (1 —&) = J (1 —¢). Let V be the variational field such that V| ;_ = J
and V|[1—,14+¢ = K. Finally extend J to be zero on [1, 1 4 €]. Now show that

0=1 (D) =100 =1 D+ L7 JD)
>IN+ L (K K) =1(V, V).

EXERCISE 6.7.25 (Index Comparison). Let J be a nontrivial Jacobi field along a
unit speed geodesic ¢ with J (0) = 0, J(0) L ¢ (0). Assume that the Riemannian
manifold has sectional curvature > k. The index form on ¢y is given by

Lv,v) = /Ob (Mz —eR(V,0)é, V)) dr

and we assume that there are no Jacobi fields on c|p ;) that vanish at the ends points
as in part (3) of exercise 6.7.24.

(1) Show that 1% (J,J) = g (J (b),J (b)).
(2) Define

_osne (1)
V=t EO

where E is a parallel field with E (b) = J (b). Show that

snj (b)

Lw,v)< Sn’; ®) (b))

Hint: Differentiate sny (¢) snj (7).

(3) Conclude that g (J (b).J (b)) < ;2}%2:; |J (b)|2 and use this to prove the part of

theorem 6.4.3 that relates to lower curvature bounds.

EXERCISE 6.7.26. Consider a subgroup G C Iso (M, g) of a Riemannian man-
ifold. The topology of Iso(M,g) is the compact-open topology discussed in
exercise 5.9.41.

(1) Show that if M is complete, simply connected, has nonpositive curvature, and
G is compact, then G has a fixed point, i.e., there exists p € M that is fixed by
all elements in G. Hint: Imitate the proof of theorem 6.2.3.

(2) Given p € M and € > 0, we say that G is (p, €)-small, if Gp C B (p,€).
Show that for sufficiently small € (p) the closure G C Iso (M, g) of a (p, €)-
small group is compact and also (p, €)-small. Note: We do not assume that M is
complete so closed balls are not necessarily compact.

(3) Show that if G is (p, €)-small, then it is (¢, 2 |pg| + €)-small.
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(4) Assume that G is (p, €)-small and that € is much smaller than the convexity
radius for all points in B (p, 4€). Show that G has a fixed point. Hint: Imitate
(1) after noting all of the necessary distance functions are convex on suitable
domains.

(5) Given a Riemannian manifold show that for all p € M there exists € > 0 such
that no subgroup G C Iso (M, g) can be (p, €)-small. Hint: As in the proof of
theorem 5.6.19 make G act freely on a suitable subset of M x --- x M.

(6) A topological group is said to have no small subgroups if there a neighborhood
around the identity that contains no nontrivial subgroups. Show that Iso (M, g)
has no small subgroups.

Bochner-Montgomery showed more generally that a locally compact subgroup
of Diff (M) has no small subgroups. Gleason and Yamabe then later proved that a
locally compact topological group without small subgroups is a Lie group. See also
[79] for the complete story of this fascinating solution to Hilbert’s 5th problem. It is
still unknown whether (locally) compact subgroups of the homeomorphism group
of a topological manifold are necessarily Lie groups.

EXERCISE 6.7.27. Construct a Riemannian metric on the tangent bundle to a
Riemannian manifold (M, g) such that # : TM — M is a Riemannian submersion
and the metric restricted to the tangent spaces is the given Euclidean metric. Hint:
Construct a suitable horizontal distribution by declaring that for a given curve in M
all parallel fields along this curve correspond to the horizontal lifts of this curve.

EXERCISE 6.7.28. For a Riemannian manifold (M, g) let FM be the frame bundle
of M. This is a fiber bundle # : FM — M whose fiber over p € M consists of
orthonormal bases for 7,,M. Find a Riemannian metric on FM that makes 7 into
a Riemannian submersion and such that the fibers are isometric to O (n). Hint:
Construct a suitable horizontal distribution by declaring that for a given curve in
M all orthonormal parallel frames along this curve correspond to the horizontal lifts
of this curve.



Chapter 7
Ricci Curvature Comparison

In this chapter we prove some of the fundamental results for manifolds with lower
Ricci curvature bounds. Two important techniques will be developed: Relative
volume comparison and weak upper bounds for the Laplacian of distance functions.
Later some of the analytic estimates we develop here will be used to estimate Betti
numbers for manifolds with lower curvature bounds.

The goal is to develop several techniques to help us understand lower Ricci
curvature bounds. In the 50s Calabi discovered that one has weak upper bounds
for the Laplacian of distance function given lower Ricci curvature bounds, even at
points where this function isn’t smooth. However, it wasn’t until after 1970, when
Cheeger and Gromoll proved their splitting theorem, that this was fully appreciated.
Around 1980, Gromov exposed the world to his view of how volume comparison
can be used. The relative volume comparison theorem was actually first proved
by Bishop in [14]. At the time, however, one only considered balls of radius less
than the injectivity radius. Gromov observed that the result holds for all balls and
immediately put it to use in many situations. In particular, he showed how one
could generalize the Betti number estimate from Bochner’s theorem (see chapter 9)
using only topological methods and volume comparison. Anderson refined this to
get information about fundamental groups. One’s intuition about Ricci curvature
has generally been borrowed from experience with sectional curvature. This has led
to many naive conjectures that have proven to be false through the construction of
several interesting examples of manifolds with nonnegative Ricci curvature. On the
other hand, much good work has also come out of this, as we shall see.

The focus in this chapter will be on the fundamental comparison techniques and
how they are used to prove a few rigidity theorems. In subsequent chapters there
will be many further results related to lower Ricci curvature bounds that depend on
more analytical techniques.
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7.1 Volume Comparison

7.1.1 The Fundamental Equations

Throughout this section, assume that we have a complete Riemannian manifold
(M, g) of dimension n and a distance function r (x) that is smooth on an open set
U C M. In subsequent sections we shall further assume that  (x) = |xp| so that it is
smooth on the image of the interior of the segment domain (see section 5.7.3). Recall
the following fundamental equations for the metric from proposition 3.2.11:
(1) Ly g = 2Hessr,
(2) (Vjy Hessr) (X,Y) + Hess>r (X, Y) = —R (X, 0,,9,.Y).
There is a similar set of equations for the volume form.
Proposition 7.1.1. The volume form vol and Laplacian Ar of a smooth distance
function r are related by:
(trl) Ly, vol = Arvol,
(tr2) 0,Ar + (nA_r)lz < d,Ar + |Hess r|2 = —Ric (9,, d,).
Proof. The first equation was established in section 2.1.3 as one of the definitions
of the Laplacian of r.

To establish the second equation we take traces in (2). More precisely, select an

orthonormal frame E;, set X = Y = E;, and sum over i. In addition it is convenient
to assume that this frame is parallel: Vj E; = 0. On the right-hand side

> "R(E:.0,.0,. E)) = Ric (0,.9,) .
i=1
While on the left-hand side

n

> (Vo Hessr) (E.Ei) = Y 0, Hess r (E;, E;)

i=1 i=1
= J,Ar

and

> “Hess’r (Ei.E) = Y _ g (Vg VE0,)
i=1 i=1

n

Z 8 (VE,'BV’ 8 (VEiar’ E/) E/)

ij=1

n

Z 8 (VEi . Ej) 8 (VEiar’ EI)

ij=1

= |Hess r|2.
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Finally we need to show that

A 2
( r)l < |Hess r|*.
n—

To this end also assume that E; = 0,, then

n

|Hess r|* = Z (¢ (VEI.Z),,E/))2
ij=1

n

3 (¢ (Ve E))’

ij=2

n 2
1
n—1 (E 8 (VEiars El))
i=2

1
(Ar)?.
n—1

v

The inequality
21 2
A" = Jtr (A)]
k
for a k x k matrix A is a direct consequence of the Cauchy-Schwarz inequality
(AL < |AP [ = AP,

where [ is the identity k X k matrix. O

If we use the polar coordinate decomposition g = dr?> + g, and vol,—; is the
standard volume form on §"~! (1) , then vol = A (r, §) drAvol,_,, where @ indicates
a coordinate on $"~!. If we apply (trl) to this version of the volume form we get

Ly, vol = Ly, (A (r,0)dr A vol,—1) = 0, (A) dr A vol,—;
as both Ly, dr = 0 and L;, vol,—; = 0. This allows us to simplify (tr1) to the formula

0,4 = AAr.

2

In constant curvature k we know that g, = dr? + sn,% (r) ds;,_,, thus the volume

form is

voly = Ay (r)dr Avol,—; = sn,’(’_l (r)dr Avol,—; .
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This conforms with the fact that

oy ()
Ar=(n-1) s (7))
3 (snf ' () = (n—1) kE;skl(r)

7.1.2 Volume Estimation

With the above information we can prove the estimates that are analogous to our
basic comparison estimates for the metric and Hessian of r (x) = |xp| assuming
lower sectional curvature bounds (see section 6.4).

Lemma 7.1.2 (Ricci Comparison). If (M, g) has Ric > (n — 1)-k for some k € R,
then

sny (r)

Ar<m-—1) s (1)

A
O (/\k) =0

A(r,0) < A (r) =snf 7' (r).

Proof. Notice that the right-hand sides of the inequalities correspond exactly to
what one would obtain in constant curvature k. Thus the first inequality is a direct
consequence of corollary 6.4.2 if we use p = nArl

For the second inequality use that 9,A = AAr to conclude that

a0 <1 %
sn (r)

and
-1 sy (r)

k(r)

A
ar(lk) =0

The last inequality follows from the second after the observation that A = r*~! 4
O (r") at r = 0 so that

This means that
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Our first volume comparison yields the obvious upper volume bound coming
from the upper bound on the volume density.

Lemma 7.1.3. If (M, g) has Ric > (n— 1) - k, then vol B (p,r) < v (n, k, r), where
v (n, k, r) denotes the volume of a ball of radius r in the constant curvature space
form S},.

Proof. In polar coordinates

volB (p,r) = / A (r)dr A vol,—;

segpﬂB(O,r)

< / Ay (r) dr A vol,—
segpﬂB(O,r)

/ VOlk
B(0,r)

=v(n,k,r). O

IA

With a little more technical work, the above absolute volume comparison result
can be improved in a rather interesting direction. The result one obtains is referred
to as the relative volume comparison estimate. It will prove invaluable throughout
the rest of the text.

Lemma 7.1.4 (Relative Volume Comparison, Bishop, 1964 and Gromov, 1980).
Let (M, g) be a complete Riemannian manifold with Ric > (n — 1) - k. The volume
ratio

vol B(p, r)
v(n, k,r)
is a nonincreasing function whose limit is 1 as r — 0.

Proof. We will use exponential polar coordinates. The volume form Adr A vol,—;
for (M, g) is initially defined only on some star-shaped subset of 7,M = R" but we
can just set A = 0 outside this set. The comparison density A is defined on all of

R" when k < 0 and on B (0, w/ \/k) when k > 0. We can likewise extend A; = 0
outside B (O, w/ \/k) Myers’ theorem 6.3.3 says that A = 0on R" — B (O, w/ \/k)

in this case. So we might as well just consider » < 7/+/k when k > 0.
The ratio is

vol B(p,R) f(f IS”71 Adr A vol,_;
v(n, k, R) f(f -[S”71 Axdr A vol,— '

and 0 < A(r, 0) < A(r) = sn{~! (r) everywhere.
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Differentiation of this quotient with respect to R yields

d (volB(p,R)
dR ( v(n,k,R) )

(fyvs A (R.0) vOlimr) (fi fipms 2 (r) i A vol,—y )
B (v(n, k, R))?

(fyvms 2 RY vOlot) (fi Syt 2 . 0) dr A vol,—y )
- (v(n.k.R)?

R
= (v(n,k,R))_z-/O [( SHA(R, 0) Voln_l) ( - Ak (r) voln_l)

— ( Ak (R) voln_l) (/ A(r,0) Voln_l)i| dr.
Srz*l Srz*l

So to see that

vol B(p, R)
v(n,k,R)

is nonincreasing, it suffices to check that

fs"—l A (r,0) vol,— 1 / A(r,0) I
= Vol —
fsn—l A (r) vol,—y Wp—1 Jsi—1 Ay (1) :
is nonincreasing. This follows from lemma 7.1.2 as 9, (ﬁ(:(f))) <0. O

7.1.3 The Maximum Principle

We explain how one can assign second derivatives to functions at points where the
function is not smooth. In section 12.1 we shall also discuss generalized gradients,
but this theory is completely different and works only for Lipschitz functions.

The key observation for our development of generalized Hessians and Lapla-
cians is

Lemma 7.1.5. Iff,h : (M,g) — R are C? functions such that f(p) = h(p) and
f(x) > h(x) for all x near p, then
Vf () = Vh(p),
Hessf|, > Hess h|,,

Af(p) = Ah(p).
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Proof. If (M,g) C (R, gr), then the theorem is standard from single variable
calculus. In general, let ¢ : (—&,6) — M be a curve with ¢(0) = p. Then use
this observation on f o ¢, k o ¢ to see that

df(c(0)) = dh(c(0)),
Hessf (¢ (0), ¢ (0)) > Hess (¢ (0), ¢ (0)).

This clearly implies the lemma if we let v = ¢(0) run over all v € T,M. O

The lemma implies that a C? functionf : M — R has Hess f |p > B, where Bis a
symmetric bilinear map on T,M (or Af(p) > a € R), if and only if for every € > 0
there exists a function f; (x) defined in a neighborhood of p such that

M fep) = f(p).
(2) f(x) = f.(x) in some neighborhood of p.

(3) Hessfe|, = B—¢-g|, (or Afe(p) = a—e).

Such functions f; are called support functions from below. One can analogously
use support functions from above to find upper bounds for Hess f and Af. Support
functions are also known as barrier functions in PDE theory.

For a continuous functionf : (M, g) — R we say that: Hess f|, > B (or Af(p) >
a) if and only if for all ¢ > 0 there exist smooth support functions f; satisfying
(1)-(3). One also says that Hess f|, > B (or Af(p) > a) hold in the support or barrier
sense. In PDE theory there are other important ways of defining weak derivatives.
The notion used here is guided by what we can obtain from geometry.

One can easily check that if (M, g) C (R, gr), then f is convex if Hessf > 0
everywhere. Thus, f : (M, g) — R is convex if Hessf > 0 everywhere. Using this,
one can prove

Theorem 7.1.6. If f : (M,g) — R is continuous with Hessf > 0 everywhere,
then f is constant near any local maximum. In particular, f cannot have a global
maximum unless f is constant.

We shall need a more general version of this theorem called the maximum
principle. As stated below, it was first proved for smooth functions by E. Hopf in
1927 and then later for continuous functions by Calabi in 1958 using the idea of
support functions. A continuous function f : (M, g) — R with Af > 0 everywhere
is said to be subharmonic. If Af < 0, then f is superharmonic.

Theorem 7.1.7 (The Strong Maximum Principle). If f : (M,g) — R is
continuous and subharmonic, then f is constant in a neighborhood of every local
maximum. In particular, if f has a global maximum, then f is constant.

Proof. First, suppose that Af > 0 everywhere. Then f can’t have any local maxima
at all. For if f has a local maximum at p € M, then there would exist a smooth
support function f; (x) with
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M) fe(p) =1 (p).
(2) fe(x) < f(x) for all x near p,

(3) Afe(p) > 0.

Here (1) and (2) imply that f; must also have a local maximum at p. But this
implies that Hess f; (p) < 0, which contradicts (3).

Next assume that Af > 0 and let p € M be a local maximum for f. For
sufficiently small » < inj(p) the restriction f : B(p,r) — R will have a global
maximum at p. If f is constant on B(p, r), then we are done. Otherwise assume (by
possibly decreasing r) that f (xo) # f(p) for some

X0 € 0B(p,r) ={xeM||xp| =r}
and define
V={xe€dB(p.n |fx) =[P}
Our goal is to construct a smooth function 7 = ¢*? — 1 such that
h<OonV,
h(p) =0,
Ah > 0onB(p,r).

This function is found by first selecting an open disc U C 9B (p, r) that contains V
and then ¢ such that

¢ (p) =0,
¢ <OonU,
V¢ #O0onB(p,r).

"in a coordinate system (x',...,x")

' < 0 (see also figure 7.1).

Such a ¢ can be found by letting ¢ = x
centered at p where U lies in the lower half-plane: x
Lastly, choose o so large that

Ah = ae®® (a|Ve|> + Ap) > 0 on B(p, r).

Now consider the function f = f + 8h on B(p, r). This function has a local
maximum in the interior B(p, r), provided § is very small, since this forces

fp) =1 )
> max {f(x) | x € 0B(p. 1)} .

On the other hand, we can also show that f has positive Laplacian, thus obtaining a
contradiction as in the first part of the proof. To see that the Laplacian is positive,
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Fig. 7.1 Coordinate function
construction %4

<

select f. as a support function from below for f at g € B (p,r). Then f, + éh is a
support function from below for f at g. The Laplacian of this support function is
estimated by

A(f. + 6h) (q) = —e + 8AR(q),

which for given § must become positive as ¢ — 0. O

A continuous function f : (M, g) — R is said to be linear if Hessf = 0, i.e., both
of the inequalities Hess f > 0, Hessf < 0 hold everywhere. This easily implies that

(foo)(® =f(c(0) +ar

for each geodesic c as f o ¢ is both convex and concave. Thus

foexp,x) =f(p) + g(vy. %)

for each p € M and some v, € T,M. In particular, f is C* with Vf|, = v,.

More generally, we have the concept of a harmonic function. This is a continuous
function f : (M, g) — R with Af = 0. The maximum principle shows that if M is
closed, then all harmonic functions are constant. On incomplete or complete open
manifolds, however, there are often many harmonic functions. This is in contrast
to the existence of linear functions, where Vf is necessary parallel and therefore
splits the manifold locally into a product where one factor is an interval. It is an
important fact that any harmonic function is C* if the metric is C*°. Using the above
maximum principle this is a standard result in PDE theory (see also theorem 9.2.7
and section 11.2).

Theorem 7.1.8 (Regularity of harmonic functions). If f : (M,g) — R is
continuous and harmonic in the weak sense, then f is smooth.

Proof. We fix p € M and a neighborhood €2 around p with smooth boundary. We
can in addition assume that €2 is contained in a coordinate neighborhood. It is a
standard but nontrivial fact from PDE theory that the following Dirichlet boundary
value problem has a solution:

Au =0,

ulae = flaq-
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Moreover, such a solution « is smooth on the interior of 2. Now consider the two
functions u — f and f — u on 2. If they are both nonpositive, then they must vanish
and hence f = wu is smooth near p. Otherwise one of these functions must be
positive somewhere. However, as it vanishes on the boundary and is subharmonic
this implies that it has an interior global maximum. The maximum principle then
shows that the function is constant, but this is only possible if it vanishes. O

7.1.4 Geometric Laplacian Comparison

The idea of using support functions to estimate the Laplacian is particularly
convenient for geometric applications since distance functions always have support
functions from above.

Lemma 7.1.9 (Calabi, 1958). If (M, g) is complete and Ric(M, g) > (n— 1)k, then
any distance function r(x) = |xp| satisfies:

sy (r(x))
sng (r(x))

Proof. We know from lemma 7.1.2 that the result is true whenever r is smooth. In
general, we can for each ¢ € M choose a unit speed segment o : [0, L] — M with
0(0) = p, (L) = g. Then the triangle inequality implies that r.(x) = & + |o(&)x|
is a support function from above for r at g. If all these support functions are smooth
at g, then

Ar(x) <(n—1)

smy(re(q))
sni(re(q))

smi (r(q) —€)

Are(g) = (n—=1)

=D G - o
@)
N @)

as & — 0 since ;Eﬁig is decreasing.
Now for the smoothness. Fix ¢ > 0 and suppose r, is not smooth at g. Then we

know from lemma 5.7.9 that either

(1) there are two segments from o (¢) to ¢,
(2) g is acritical value for exp, ) : seg (o (¢)) — M.

Case (1) would give us a nonsmooth curve of length L from p to g, which we
know is impossible. Thus, case (2) must hold. To get a contradiction out of this, we
show that this implies that exp, has o (¢) as a critical value.



7.1  Volume Comparison 285

Using that g is critical for exp,,, we find a Jacobi field J (¢) : [e,L] — TM

along o[z} such that J (¢) = 0, J(g) # 0and J (L) = 0 (see section 5.7.3). Then
also J (L) # 0 as it solves a linear second-order equation. Running backwards from
g to o (¢) then shows that exp, is critical at o (¢). This however contradicts that
o :[0,L] — M is a segment. O

7.1.5 The Segment, Poincaré, and Sobolev Inequalities

We shall use the results obtained in section 7.1.2 to prove a some important analytic
inequalities that will be used in chapter 9.

Theorem 7.1.10 (The Segment Inequality, Cheeger and Colding, 1996).
Assume that (M,g) has Ric > (n— 1)k, k < 0. Let f : M — [0,00) and
A,B C W C M. Further select segments cyy : [0, 1] — M between points x,y € M.
Ifcey (f) € Wforallx e A,y € B, t € [0, 1], and diam W < D, then

1
/ / focyy (t)dtvol, Avoly < C(volA + vol B) / fvol,
AXB J0 w

where C = C (n, sz).
Proof. Define
s~ 1 (R)

R)

C = max
R<D sn;(‘_l (

Note that when k = 0 we have C = 2"~! and otherwise one can show that

sinh"~! (\/—kD)

C= .
sinh~! (}v/—kD)

FixxeA,t> ;, and use polar coordinates with center x. The map y = ¢, (¥) is
a well-defined “scaling” by ¢ inside the segment domain. With that in mind we have:

/f 0 Cyy (¢) vOl, = /f 0 Cyry (1) A (y) dr A vol,—;
B B

A ()
(Cx,y (t))

= C/f O Cyy (t) A (Cx,y (t)) dr A vol,—1
B

fC/fvol.
w

dr A vol,—;

_ /B foen @Al ®)
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This gives us

! 1
/// focyey (H)dtvol,vol, < CvolA/fvol.
Al J! 2 w

Similarly

1

2 1
/// Sfocyy (1)dtvol,vol, < CvolB/fvol.
BJaJo 2 W

Adding these gives the desired result. O

This estimate allows us to establish a weak Poincaré inequality. To formulate the
result it’ll be convenient to define the I norm on a domain B by also averaging the

integral:
1
1 P r
lellpz =\ voig Blul vol

and using the notation up = Voll B /; g uvol for the average value of a function on a
bounded domain.

Corollary 7.1.11. Assume that (M, g) has Ric > (n— 1)k, k < 0. Any smooth
u: M — [0, 00) satisfies

|u— uper) HLB(p’R) < 4C?R || dully gy o) »

where R < D.

Proof. This proof is due to Cheeger and Colding. We use the segment inequality
withA = B = B(p,R), W = B (p,2R), and f = |du| as well as the observation

/|u—u3| :/
B B
-,
= vollB// |t (x) — u (y)| voly vol,
BJB
1
<o [ [ [ 1ol sy @) drvol, v,
8JeJo
1
- / / / ||dul (cxy ()] divol, vol, .
8JsJo

vol,

u(x) — VOIIB/BM()}) vol,

vol,

voll B /19 (1 (x) —u (y)) vol,
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This shows that

1 B(p.2R)
|t = usp ]|, spry < 4CR ineny Il 20 -

The result follows by using that the volume ratio is bounded explicitly by the ratio

v(n, k,2R) - v(n, k,2D) -
v(n,k,R) ~ v(n,k,D)’

Remark 7.1.12. Note that the corollary holds for any measurable u with a function

G in place of |du| provided

1
|u(x)—u(y>|s/0 G (c (1) |é]di

forall ¢ € Q,,. Such a G is also called an upper gradient.

This leads us, surprisingly, to the much stronger Poincaré-Sobolev inequality
where the domain is the same on both sides and a stronger norm is used on the
left-hand side.

Theorem 7.1.13. Assume that (M, g) has Ric > (n— 1)k, k < 0. For all smooth
u: M — [0,00)andv € [1, nfl]

HM — UB(x,R) ” vB(R) = C (n, sz) R |||dulll\ pex.r) -

where R < D.

We offer a proof by Hajtasz and Koskela that can be found in [60]. An even
shorter proof is possible when v < " . Traditionally, proofs of this theorem
required a very deep and difficult theorem from geometric measure theory. Here
we only need a few basic concepts from analysis together with the weak Poincaré
inequality and relative volume comparison. This proof has the added benefit of
easily allowing generalizations to suitable metric spaces. We will for simplicity
prove it in case B (x,R) = M and D is an upper bound for the diameter of M. To
keep constants at bay we shall also keep writing them as C with the understanding
that C = C (n sz) depends on n and possibly also kD?. However, the constants
might change from line to line in a proof.

The maximal function of a function u is defined as

1
M (u) (x) = sup |u| vol.
re(0.0] VOLB (X, R) Jp(xr)

We only need the weak version of the maximal function estimate. Note that this
estimate does not bound ||M (u)||, in terms of ||u||;, which is in fact impossible, but
it can be used to prove the standard bounds ||M (u)|, < C ||u]|, forall p > 1.
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Theorem 7.1.14 (Maximal Function Theorem). There exists a constant C =
C (n, sz) such that

tvol{M (u) >t} < C/ |u| vol .
Proof. Note that for each x € {M (u) > ¢t} there is R, < D such that

tvol B (x,R,) < / |u| vol.
B(x,Ry)

Now use the basic covering property (see exercise 7.5.5) to cover {M (u) > t} by
balls B (x;, 5Ry;) with the property that B (x;, R,,) are pairwise disjoint. Relative

volume comparison gives us

vol B (x, 5R) < v (n, k,5D) —Cc=cC (n,kDZ).
vol B (x, R) v (n, k,D)
We can then estimate

tvol {M (u) > £} < > tvol B (x;. 5Ry,)

< C) tvol B (xi.Ry)

<CZ/ |u| vol

ol B(x,- Ry )

§C/|u|v01. O

Theorem 7.1.15. Assume that (M, g) hasRic > (n — 1)k, k <0, and diam M < D.
Letu : M — [0, 00) be smooth. There is a weak Poincaré-Sobolev inequality

tnil VO]{‘M_MB(X,R)‘ > [} E CR”KI VOlM”IdMHH,il ,

where C = C (n, sz).

Proof. For simplicity we prove this when R = D. Fix x € M and define R; = 27'D.
If B; = B(x,R;), then M = By. By continuity of # we have u (x) = limup,. This
tells us that

o0
| (x) — ug,| < |up, —up,,,|

i=0
oo

<D lu—upllyp,,,
i=0
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> vol B;
<> i — s ||,
: i+1
o
<CY lu—usl, g
i=0

o
<2C° > Ri[dulll, p,_, -
i=0

Therefore, it suffices to prove an estimate of the form:

o0
n n n
1071 vol 3 Y Ry |||dulll, 5,_, > t; < CD»1 vol M ||du[[;™" .

i=0

For any x € M and r > 0 split up the sum

> Rilldullly s, + Y Rillldullly 5, -

Ri<r Ri>r

The first term is controlled by the maximal function

Y Rillldullly g, < | DR | M (|dul) (x)

Ri<r Ri<r

< 2rM (|dul) (x) .

The second term is bounded by |||du|||; as follows:

volM
D Rilldull gy = | DR e |l

Rl‘>r R,‘>r
D n
<R () Wl
i—1
R,->r
< 2_i
<CY o ey D lldul,
Rl‘>r
=C27" > 2"7VD ||dul ||,
R,‘>I‘

< 2'7C2"7VD | |du||,

= 27" (2°D7")""" D" ||dul||,
_ Al—n 1—npnn
=27"CR;"D" ||dull),

< 2'=crt D || |dul | -

289
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Thus

o0
> Rillldulll, 5,_, < C (M (|dul) (x) + r'"D" [[|dull|,)
=0

1
— Mdullly ym o : .
and forr =D ( M du‘)(x)) yields the estimate:

> n—1 1
Y Rillldulll ,_, < CD (M (|dul) 3)) " |l|dul]} -
i=0

Note that while it is natural to assume r < D this estimate is still valid when » > D.
The maximal function theorem can now be used to obtain the inequality

o0 o0 rzil
vol { > "Ry ||ldulll, 5, , >t} = vol (ZR,- |||du|||1’Bi_l) > il
=0

i=0

IA

n 1 n
vol { CD»=1 |||du]||{~" M (|du]) (x) > £ }

IA

n n 1
£ CD |||l |1 / |du| vol
M

"1 CD»*1 vol M |||dul |1~ . u]

IA

The proof of the Poincaré-Sobolev inequality can now be completed as follows.

Proof of theorem 7.1.13. We use the estimate from theorem 7.1.15 to prove the
result. First we need two more elementary facts. Note that for any ¢ € R:

lu—uml, < llc—umll, + llu—cll, = luy —c| + [lu—cl|l, <2 lu—c,
and
inf |lu—cl, = [lu—uml, .

So it suffices to estimate |u — c||,, for a suitable c.
For a general u : M — R find m such that vol{u>m} > ‘oM and

2
vol{u <m} > "";M . Then split « into the two functions v™ = max {u —m, 0}

and v~ = max {m — u, 0}. Note that they both satisfy vol {vi = 0} > VO;M.
While v is not smooth we can set |dvi| = 0 at all points where v* vanishes.

Thus it suffices to show that

v

< C(nkD) D |av ],

n
n—1



7.1  Volume Comparison 291

as

lall - < [0
n—1

vl ., and |dv*| + |dvT| < |du].

We first claim that v = v¥ satisfies
t
vol{v > 1} < 2vol{|v —c| > 2}.

To see this note that when ) < ¢ we have {c —-v > ;} C {v = 0}, while when

5 =cwehavef{v>c+ 5} C{v>1}
For 0 < a < b consider the truncated function

b—a if v (x) > b,
vZ(x)z v(x)—a ifa<vx) <b,
0 if v (x) <aq,

and note that the weak Poincaré inequality holds for v? if we use |dv| - y{a<y<py as
an upper gradient. Theorem 7.1.15 can now be used:

tn1 vol {f > 1} < 20+~ inf vol “vfj —d> t}
c

2

n N t
=245 (7)) intvol v — ¢ > |
2 c 2

n t rzil t
=250 () vl fud = 6l > )
< CDM1 247t yol M I1dv] - Xta<v<s} Hlﬂil :

We then get the desired estimate as follows:

o0
/vnil vol < Z 264" vol {2/‘_1 <v < 2"}
k=—o00
= Zanil vol {v > 2"_1}
k
= Y vl {30 > 2 - 22
k

n k—1 _
= E 2kn VO]{U;k_Z > 2k 2}
k

= 225 HED S vol M Y [ dv] - gy
k

n
—1

n
1
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n
n—1

<255 epati vol M

Z |dv| - X{2k=2cyp<ok=1}
k

1
= 23 DA vol M |dvl ||~ O
Remark 7.1.16. See exercise 7.5.17 for the Poincaré inequality for functions with
Dirichlet boundary conditions.
Finally we also obtain an entire hierarchy of such inequalities.
Proposition 7.1.17. Assume that all smooth functions on (M,g) satisfy the
inequality

e —uptl + < Sdull.

withs > 1, thenfor1 <p <s

Jul v < pﬁs__pl)sllduup + lull, -
Proof. When p = 1, this follows from
lu =l . = luall <, = luw]
= flull +, — uu]
> Jull « — lull

For p > 1 first note that

e = el s,
< Sdut], + [l
= Sq [u dul], + |u*u]],

—1
< Nl (Sq dull, + llull,) -

p
p—1

Then choose g = ¥ (SS__pl) sothat * =7 g’__ll) = Ss_pp to obtain the desired inequality.
O

Finally we establish the Rellich compactness theorem. The same strategy can
also be used to prove the more general Kondrachov compactness theorem for
L7 (M). Define W'2 (M) as the Hilbert space closure of C*® (M) with the square
norm ||u||§ + ||du||§. Recall that a sequence v; € (H,(-,-)) in a Hilbert space is
weakly convergent, v; — v if (v;,w) — (v,w) for all w € H. Moreover, any
bounded sequence has a weakly convergent subsequence.
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Theorem 7.1.18 (Rellich Compactness). Assume (M", g) is a compact Riemann-
ian n-manifold. The inclusion W' (M) C L* (M) is compact.

Outline of Proof. Consider a sequence u; of smooth functions where || ui||§ ~+ || du; ||§
is bounded. Then there will be a weakly convergent subsequence u; — u. In
particular, u; pix ) — Up.r) for fixedx € M and R > 0.

By the Lebesgue differentiation theorem we also have that ug, g — u(x) as
R — 0 for almost all x € M. Next note that by theorem 7.1.15

n
n—

1 n R nil
volM ||du||;~" < C' ( ) )
€

vol {|Lt, — Mi,B(x,R)‘ > 6} <C (1:)

where C’ is independent of i.

This implies that vol {|u; (x) —u (x)| > €} — 0 asi — oco. We can then extract
another subsequence of u; that converges pointwise to u# almost everywhere on M.
Since ||u;|| £ is bounded Egorov’s theorem implies that u; — u in L. O

7.2 Applications of Ricci Curvature Comparison

7.2.1 Finiteness of Fundamental Groups

Our first application of volume comparison shows how one can control the
fundamental group. We start with a result that addresses how fundamental groups
can be represented.

Lemma 7.2.1 (Gromov, 1980). A compact Riemannian manifold M admits gener-
ators {ci, ... cn} for the fundamental group I' = w; (M) such that all relations for
I in are of the form c; - c; - ck_1 = 1 for suitable i, j, k. Moreover, the generators c;
can be represented by loops of length < 3 diam (M).

Proof. For any ¢ € (0,inj (M)) choose a triangulation of M such that adjacent
vertices in this triangulation are joined by a curve of length less that ¢. Let
{x1,...,x} denote the set of vertices and {eij} the edges joining adjacent vertices
(thus, e;; is not necessarily defined for all i,j). If x is the projection of X € M ,
then join x and x; by a segment o; for all i = 1,...,k and construct the loops
0jj = 0;e;0; ' for adjacent vertices.

Any loop in M based at x is homotopic to a loop in the 1-skeleton of the
triangulation, i.e., a loop that is constructed out of juxtaposing edges e;. Since
ejejx = e,-jaj_lajejk such loops are the product of loops of the form o;;. Therefore, I"
is generated by oy;.

Next observe that if three vertices x;, x;, x; are adjacent to each other, then they
span a 2-simplex A . Consequently the loop 000 = 0,040 is homotopically
trivial. We claim that these are the only relations needed to describe I'. To see
this, let o be any loop in the 1-skeleton that is homotopically trivial in M. Then o
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also contracts in the 2-skeleton. Thus, a homotopy corresponds to a collection of
2-simplices A . In this way we can represent the relation o = 1 as a product of
elementary relations of the form o007 " = 1.

The generators correspond to loops of length < 2 diam (M) + ¢ so the result is
proven. O

A simple example might be instructive here.

Example 7.2.2. Consider M; = S°/7Zy; the constant curvature 3-sphere divided out
by the cyclic group of order k. As k — oo the volume of these manifolds goes to
zero, while the curvature is 1 and the diameter ’2’ . Thus, the fundamental groups can
only get bigger at the expense of having small volume. If we insist on writing the
cyclic group Zy in the above manner, then the number of generators needed goes to
infinity as k — oo. This is also justified by the next theorem.

For numbers n € N, k € R, and v,D € (0,00), let 9 (n, k, v, D) denote the
class of compact Riemannian n-manifolds with
Ric > (n — 1)k,
vol > v,

diam < D.

We can now prove:

Theorem 7.2.3 (Anderson, 1990). There are only finitely many fundamental
groups among the manifolds in 9 (n, k, v, D) for fixed n, k, v, D.

Proof. Choose generators {cy,...,cy,} as in the lemma. Since the number of
possible relations is bounded by 2" we have reduced the problem to showing that
m is bounded. Fix x € M and consider ¢; as deck transformations. The lemma also
guarantees that |xc;(x)| < 3D. Fix a fundamental domain F C M that contains x,
i.e., a closed set such that 7w : F — M is onto and vol F = vol M. One could, for
example, choose the Dirichlet domain

F={zeM||xz| <|c(x)z| forall c € 7y (M)}.

Then the sets ¢; (F) are disjoint up to sets of measure 0; all have the same volume;
and all lie in the ball B (x, 6D) . Thus,

- vol B (x, 6D) v (n, k, 6D)'
vol F - v

In other words, we have bounded the number of generators in terms of n, D, v,k
alone. O

A related result shows that groups generated by short loops must in fact be finite.
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Lemma 7.2.4 (Anderson, 1990). For fixed numbers n € N, k € R, and v,D €
(0,00) there exist L = L(n,k,v,D) and N = N (n,k,v,D) such that if M €
M (n,k,v,D), then any subgroup of i (M) that is generated by loops of length
< L must have order < N.

Proof. Let I' C m; (M) be a subgroup generated by loops {ci, ..., cx} of length
< L. Consider the universal covering 7 : M — M and let x € M be chosen such
that the loops are based at 7 (x) . Then select a fundamental domain F C M as above
with x € F. Thus, for any c1,c; € 7 (M), either ¢c; = ¢; or ¢; (F) N ¢, (F) has
measure 0.

Now define U (r) as the set of ¢ € I' such that ¢ can be written as a product
of at most r elements from {cy, ..., ¢} . Since |xc;(x)| < L for all i it follows that
|xc(x)] < r- L for all ¢ € U (r). This means that ¢ (F) C B(x,r-L + D). As the
sets ¢ (F) are disjoint up to sets of measure zero, we obtain

volB (x,r- L + D)

U <
Tl = vol F
v(n,k,r-L+ D)
J— U .
Now define
Jk,2D
_ v (n )+1’
v
D
L= .
N

If I has more than N elements we get a contradiction by using r = N as we would
have

v (n,k,2D)
+1=N
v
= U]
< v(n,k,ZD)' -

v

7.2.2 Maximal Diameter Rigidity

Next we show how Laplacian comparison can be used. Given Myers’ diameter
estimate, it is natural to ask what happens when the diameter attains it maximal
value. The next result shows that only the sphere has this property.

Theorem 7.2.5 (S. Y. Cheng, 1975). If (M, g) is a complete Riemannian manifold
with Ric > (n — 1)k > 0 and diam = 7/ Vi, then (M, g) is isometric to Sy.
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Proof. Fix p,q € M such that |pq| = 7//k. Define r(x) = |xp|, 7(x) = |xg|. We will
show that

) r+7r=7/Jk, x € M.

(2) r,rare smoothon M — {p, q}.

(3) Hessr = zﬂ’gdsﬁ_l onM —{p,q}.

4) g=dr*+ sn,% dslzl_l.

We already know that (3) implies (4) and that (4) implies M must be Sj.
Proof of (1): Consider 7(x) = |xq| and r(x) = |xp|, where |pg| = 7/~/k. Then

r+r>mn/ 'k, and equality will hold for any x € M — {p, ¢} that lies on a segment

joining p and g. On the other hand lemma 7.1.9 implies

IA

Ar + AF
(n — DvVkcot(Vkr(x)) + (n — 1) vk cot(vkF(x))

5m_DJ“““%“D+W_UJMM(”(52_AQD

= (n — D)Vk(cot(Vkr(x)) + cot(r — Vkr(x))) = 0.

A(r+7)

IA

Thus r+7 is superharmonic on M —{p, ¢} and has a global minimum. Consequently,
the minimum principle implies that » + 7 = 7/+/k on M.

Proof of (2): If x € M — {q, p}, then x can be joined to both p and ¢ by segments
c1, ¢3. The previous statement says that if we put these two segments together, then
we get a segment from p to g through x. Such a segment must be smooth (see
proposition 5.4.4). Thus c¢; and ¢, are both subsegments of a larger segment. This
implies from our characterization of when distance functions are smooth that both r
and 7 are smooth at x € M — {p, q} (see corollary 5.7.11).

Proof of (3): Since r(x) + 7(x) = 7/, we have Ar = —A¥. On the other hand,

() _
s (r(x)) Ar@)
— _AF()

(n—1)

sny (7(x))
sy (7(x))

. sy, (:}k - r(x))
sy (;k — r(x))

s (r(x))
sng(r(x))

> —(n—1)

=m-1)



7.2 Applications of Ricci Curvature Comparison 297

This implies,
/
Ar=(n— l)snk
SNy
and
A 2
=k = (A + B
n—1
< 3,(Ar) + | Hess r|?
< —Ric(9,,9,)
< —(n— k.

Hence, all inequalities are equalities, and in particular
(Ar)? = (n—1)| Hess r|*.

Recall from the proof of tr2 from proposition 7.1.1 that this gives us equality in the
Cauchy-Schwarz inequality k |A|* > (trA)>. Thus A = “kA I.. In our case we have
restricted Hess r to the (n — 1) dimensional space orthogonal to d, so on this space
we obtain:

Ar sy,
Hessr = g = gr.
n—1 SNy

O

We now know that a complete manifold with Ric > (n—1)-k > 0 has diameter <
7//k, and equality holds only when the space is S}. Therefore, a natural perturbation
question is: Do manifolds with Ric > (n — 1) - k > 0 and diam & 7/./k, have to be
homeomorphic or diffeomorphic to a sphere?

For n = 2, 3 this is true. When n > 4, however, there are counterexamples. The
case n = 2 will be settled later and n = 3 was proven in [95] (but sadly never
published). The examples for n > 4 are divided into two cases: n = 4 and n > 5.

Example 7.2.6 (Anderson, 1990). For n = 4 consider metrics on I x 3 of the form
ar’ + ,02012 + ¢2(022 + 032).

If we define

sin(ar) <

p=13 oo S
cysin(r + 8) r > ry,

brr4+c¢ r<r,
¢y sin(r + 8) r > ry,

¢>(r)={
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and then reflect these function in » = 7/2—8, we get a metric on CP2#CP2. For any
small ry > 0 we can adjust the parameters so that p and ¢ become C' and generate
a metric with Ric > 3. For smaller and smaller choices of ry we see that § — 0, so
the interval I — [0, 7] as rop — 0. This means that the diameters converge to .

Example 7.2.7 (Otsu, 1991). For n > 5 we consider standard doubly warped
products:

dr? + p? - ds3 + ¢ds_,
on I x S? x §"=3. Similar choices for p and ¢ will yield metrics on S? x §"~2 with
Ric > n — 1 and diameter — 7.

In both of the above examples we only constructed C' functions p, ¢ and
therefore only C! metrics. However, the functions are concave and can easily be
smoothed near the break points so as to stay concave. This will not change the
values or first derivatives much and only increase the second derivative in absolute
value. Thus the lower curvature bound still holds.

7.3 Manifolds of Nonnegative Ricci Curvature

In this section we shall prove the splitting theorem of Cheeger-Gromoll. This
theorem is analogous to the maximal diameter theorem in many ways. It also has
far-reaching consequences for compact manifolds with nonnegative Ricci curvature.
For instance, it can be used to show that S° x S' does not admit a Ricci flat metric.

7.3.1 Rays and Lines

We will work only with complete and noncompact manifolds in this section. A ray
r(t) : [0, 00) — (M, g) is a unit speed geodesic such that

[r(t)r(s)| = |t —s| forall ¢, s > 0.

One can think of a ray as a semi-infinite segment or as a segment from r(0) to
infinity. A line I(t) : R — (M, g) is a unit speed geodesic such that

[[(H)I(s)| = |t —s| forallz,5 € R.

Lemma 7.3.1. Ifp € (M, g), then there is always a ray emanating from p. If M is
disconnected at infinity, then (M, g) contains a line.
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ng / q,

Pig di

</
"’
Fig. 7.2 Construction of rays and lines

Proof. Let p € M and consider a sequence ¢; — oo. Find unit vectors v; € T,M
such that:

Ui(t) = epr(lU,'), te [Os d(ps %)]

is a segment from p to g;. By possibly passing to a subsequence, we can assume that
v; — v € T,M (see figure 7.2). Now

a(t) = exp,(t), t € [0, 00),

becomes a segment. This is because o; converges pointwise to o by continuity of
exp,, and thus

lo(s)o (@) = lim|oj(s)oi(1)| = |s —1].

A complete manifold is connected at infinity if for every compact set K C M
there is a compact set C D K such that any two points in M — C can be joined by a
curve in M — K. If M is not connected at infinity, we say that M is disconnected at
infinity.

If M is disconnected at infinity, then there is a compact set K and sequences of
points p; — 00, g; — oo such that any curve from p; to g; passes through K. If we
join these points by segments o; : (—a;, b;) — M such that a;, b; — 00, 0;(0) € K,
then the sequence will subconverge to a line (see figure 7.2). O

Example 7.3.2. Surfaces of revolution dr?+ p*(r)ds>_,, where p : [0, 00) — [0, 00)
and p(7) < 1, p(f) < 0, t > 0, cannot contain any lines. These manifolds look like

paraboloids.
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Example 7.3.3. Any complete metric on S"~! x R must contain a line since the
manifold is disconnected at infinity.

Example 7.3.4. The Schwarzschild metric on §"~2 x R? does not contain any lines.
This will also follow from our main result in this section as the space is not
metrically a product.

Theorem 7.3.5 (The Splitting Theorem, Cheeger and Gromoll, 1971). If (M, g)
contains a line and has Ric > 0, then (M, g) is isometric to a product (H xR, go +
dr).

Outline of Proof. The proof is quite involved and will require several constructions.
The main idea is to find a distance function r : M — R (i.e. |[Vr| = 1) that is
linear (i.e. Hess r = 0). Having found such a function, one can easily see that M =
Up x R, where Uy = {r =0} and g = dr* + go. The maximum principle will
play a key role in showing that r, when it has been constructed, is both smooth
and linear. Recall that in the proof of the maximal diameter theorem 7.2.5 we used
two distance functions r, 7 placed at maximal distance from each other and then
proceeded to show that r + 7 is constant. This implied that r, ¥ were smooth, except
at the two chosen points, and that Ar is exactly what it is in constant curvature. We
then used the rigidity part of the Cauchy-Schwarz inequality to compute Hess r. In
the construction of our linear distance function we shall use a similar construction.
In this situation the two ends of the line play the role of the points at maximal
distance. Using this line we will construct two distance functions b+ from infinity
that are continuous, satisfy b+ + b— > 0 (from the triangle inequality), Ab4+ < 0,
and b4 + b_ = 0 on the line. Thus, b4 + b_ is superharmonic and has a global
minimum. The minimum principle implies that b+ + b— = 0. Thus, by = —b_ and

0> Aby = —Ab_ >0,

which shows that both of b4 are harmonic and C°°. At this point in the proof it
is shown that they are distance functions, i.e., |[Vb+| = 1. We can then invoke
proposition 7.1.1 to conclude that

(AbL)?

OZDVhiAb:I:+ ne1

< Dvp, Aby + | Hess bi|?

= |Hess b |?
< —Ric(Vby,Vby)
<0.
This shows that |Hessbh+|> = 0 and by are the sought after linear distance

functions. O
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7.3.2 Busemann Functions

For the rest of this section fix a complete noncompact Riemannian manifold (M, g)
with nonnegative Ricci curvature. Let ¢ : [0,00) — (M, g) be a unit speed ray, and
define

bi(x) = |xe(t)] — 1.

Proposition 7.3.6. The functions b, satisfy:

(1) For fixed x, the function t — b;(x) is decreasing and bounded in absolute value
by |xc(0)].

(2) 1b:(x) = bi(y)| =< |xyl.

3) Abi(x) < Z;lt everywhere.

Proof. (2) and (3) are obvious since b;(x) + ¢ is the distance from c(¢). For (1), first
observe that the triangle inequality implies

1b(x)| = |[xc(D)| — 1| = [|xc(D)] = |c(O)c@)]] < [xc(0)].
Second, if s < t, then
bi(x) — bs(x) = [xc(O)] — 1 — |xc(s)] + s

= |xe()| = xc(s)] = [e(D)c(s)]
= le@c(s)] = le(®e(s)] = 0. O

This proposition shows that the family of distance decreasing functions {b;}:>0
is pointwise bounded and decreasing. Thus, b, converges pointwise to a distance
decreasing function b, satisfying

be(x) = be(Y)| < |xyl .
be(x)] < [xc(0)],

and
bc(c(r)) = limb,(c(r)) = lim (|c(r)c(t)| — 1) = —r.

This function b, is called the Busemann function for ¢ and should be interpreted as
renormalized a distance function from “c(c0).”

Example 7.3.7. If M = (R", grn), then all Busemann functions are of the form
be(x) = ¢(0) - (c(0) —x)

(see figure 7.3).
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.................... I YR PY
c()=c(-b (x))ci

Fig. 7.3 Busemann function in Euclidean space

Fig. 7.4 Asymptote construction from a ray

The level sets b ! (¢) are called horospheres. In R" these are obviously hyper-
planes. In the Poincaré model of hyperbolic space they look like spheres that are
tangent to the boundary.

Given our ray c, as before, and p € M, consider a family of unit speed segments
o; 1 [0,L] — (M,g) from p to c(f). As in the construction of rays this family
subconverges to aray ¢ : [0, 00) — M, with ¢(0) = p. Such ¢ are called asymptotes
for ¢ from p (see figure 7.4) and need not be unique.

Proposition 7.3.8. The Busemann functions are related by:

(1) be(x) = be(p) + ba(x).
(2) be(e(n) = be(p) + ba(c(1)) = be(p) — .

Proof. Let o; : [0,L;] — (M, g) be the segments converging to ¢. To check (1),
observe that

lxe()| —s < [xc(@)| + [c(®)c(s)| —s
= |[xc()] =1+ |pc(@)] + [c@cls)] —s
— |x¢(®)| — t + |pc(®)| + be(¢(1)) as s — oo.

Thus, we see that (1) is true provided that (2) is true. To establish (2), note that
lpc(@)| = |poi(s)| + |oi(s)e ()]

for some sequence #; — oo. Then o;(s) — ¢(s) and

be(p) = lim (|pc(t;)| — 1)
= lim (|pc(s)| + [e(s)e(@)] — 1)
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i

o(-1) (,‘(IO) (1)

Fig. 7.5 Triangle inequality for two Busemann functions

Ipe(s)| + lim (|c(s)e (@) — 1)
s + be(c(s))
—ba(C(5)) + be(E(9)). o

We have shown that b, has b.(p) + bz as support function from above at p € M.
Lemma 7.3.9. IfRic(M, g) > 0, then Ab. < 0 everywhere.

Proof. Since b.(p) + b is a support function from above at p, we only need to check
that Abz < 0 at p. To see this, observe that the functions b,(x) = |xc¢(r)| — t are
support functions from above for b; at p. Furthermore, these functions are smooth
at p with

-1
Ab,(p)fnt — 0ast— oo. |

Proof of Theorem 7.3.5. Now suppose (M, g) has Ric > 0 and contains a line c(¢) :
R — M. Let b™ be the Busemann function for ¢ : [0,00) — M, and b~ the
Busemann function for ¢ : (—oo, 0] — M. Thus,

bt () = Jim (lxe(@®)] - 1)

b™(x) = lim (jxe(=n]—1).
Clearly,

bY () + b (x) = Aim (xe(®)] + xe(=0] =20,

so by the triangle inequality (b+ + b_) (x) = 0 for all x. Moreover,
(b+ + b_) (c(#)) = 0O since c is a line (see figure 7.5).

This gives us a function b* + b~ with A(b™ +57) < 0 and a global minimum at
¢(). The minimum principle then shows that 5 +b~ = 0 everywhere. In particular,
bT = —b~ and Abt = Ab~ = 0 everywhere.

To finish the proof of the splitting theorem, we still need to show that b* are
distance functions, i.e. |Vbi| = 1. To see this, let p € M and construct asymptotes

¢* for ¢* from p. Then consider b (x) = [x¢*(1)| — 1, and observe:
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bf(0) 2 b (@) = b" (p) = —b" () + b7 (p) = ~b; (¥)

with equality holding for x = p. Since both btjE are smooth at p with unit gradient
it follows that Vb;" (p) = —Vb:(p). Then b* must also be differentiable at p with
unit gradient. Therefore, we have shown (without using that 5* are smooth from
Ab* = 0) that b* are everywhere differentiable with unit gradient. The result that
harmonic functions are smooth can now be invoked and the proof is finished as
explained earlier. O

7.3.3 Structure Results in Nonnegative Ricci Curvature

The splitting theorem gives several nice structure results for compact manifolds with
nonnegative Ricci curvature.

Corollary 7.3.10. S* x S' does not admit any Ricci flat metrics when k = 2, 3.

Proof. The universal covering is S x R. As this space is disconnected at infinity
any metric with nonnegative Ricci curvature must split. If the original metric is
Ricci flat, then after the splitting we obtain a Ricci flat metric on a k-manifold H
that is homotopy equivalent to S¥. In particular, H is compact and simply connected.
If £ < 3, such a metric must also be flat and so can’t be simply connected as it is
compact. O

When k£ > 4 it is not known whether any space that is homotopy equivalent to
S* admits a Ricci flat metric, but there do exist Ricci flat metrics on compact simply
connected manifolds in dimensions > 4.

Theorem 7.3.11 (Structure Theorem for Nonnegative Ricci Curvature,
Cheeger and Gromoll, 1971). Suppose (M, g) is a compact Riemannian manifold
with Ric > 0.

(1) The universal cover (M, g) splits isometrically as a product N x R¥, where N is
a compact manifold.

(2) The isometry group splits Iso (M) = Iso (N) x Iso (R¥).

(3) There exists a finite normal subgroup G C m; (M) whose factor group is
w1 (M) N Iso (Rk) and there is a finite index subgroup ZF C my (M) N Iso (Rk).

Proof. First we use the splitting theorem to write M = N x R¥, where N does not
contain any lines. Observe that if ¢(f) = (c|(?), c2(f)) € N x R* is a geodesic, then
both ¢; are geodesics, and if c is a line, then both ¢; are also lines unless they are
constant. Thus, all lines in M must be of the form ¢(f) = (x, o (¢)), where x € N and
o is a line in R¥.

(2)Let F : M — M be an isometry. If L(?) is a line in M, then F o L is also a line
in M. Since all lines in M lie in R* and every vector tangent to R* is the velocity of
some line, we see that for each x € N we can find F (x) € N such that
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F:{x} x RE > {F| (x)} x R,

This implies that F must be of the form F = (Fy, F,), where F; : N — N is an
isometry. Since DF preserves the tangents spaces to R¥ it must also preserve the
tangent spaces to N. Thus F, : R* — R, This shows that Iso (M) = Iso(N) x
Iso (Rk).

(1) Since the deck transformations r; act by isometries we can consider the group
1 N1so (N) that comes from the projection N x R* — N. As m; acts discretely and
cocompactly on M, it follows that 7; N Iso (N) also acts cocompactly on N. In
particular, for any sequence p; € N, it is possible to select F; € 71 N Iso (N) such
that all the points F; (p;) lie in a fixed compact subset of N.

If N is not compact, then it must contain a ray c(¢) : [0,00) — N. We can
then choose a sequence #; — oo and F; € m; N Iso (N) such that F; (¢ (f;)) lie in
a compact set. We can then choose a subsequence so that DF; (¢ (;)) converges to
a unit vector v € TN. This implies that the geodesics ¢; : R — N defined by
ci (t) = F; (c (t + t;)) converge to the geodesic exp (tv). Moreover, for a fixeda € R
the geodesics ¢; are rays on [a, 00) when f; > —a so it follows that exp (tv) is also a
ray on [a, 00). But this shows that exp (tv) : R — N is a line which contradicts that
N does not contain any lines.

(3) Let G be the kernel that comes from the map w; (M) — m; (M) N Iso (Rk)
induced by the projection N x R*¥ — RK. This group acts freely and discretely on
N x R¥ without acting in the second factor. Thus it acts freely and discretely on N
and must be finite as N is compact.

The translations form a normal subgroup R¥ C Iso (Rk) whose factor group is
O (k). The intersection 7r; (M) N R* is a finitely generated Abelian group with finite
index in 71 N Iso (Rk) that acts discretely and cocompactly on R¥. In particular, it is
of the form Z™. When m < k it is not possible for Z" to act cocompactly on R¥ since
it will generate a proper subspace of the space of translations on R¥. On the other
hand if m > k, then Z™ will contain two elements that are linearly independent over
Q but not over R inside the space of translations. The subgroup in Z™ generated
by these two elements will generate orbits that are contained in line, but it can’t
act discretely on these lines (see also the end of the proof of theorem 6.2.6.) We
conclude that 7r; (M) N RF = ZF. (For more details about discrete actions on R” see
also [38] and [106].) O

Remark 7.3.12. Wilking in [103] has in fact shown that any group G that admits
a finite normal subgroup H C G so that G/H acts discretely and cocompactly
on a Euclidean space must be the fundamental group of a compact manifold with
nonnegative sectional curvature.

We next prove some further results about the structure of compact manifolds with
nonnegative Ricci curvature.

Corollary 7.3.13. Suppose (M, g) is a compact Riemannian manifold with Ric > 0.
IfM is K(r, 1), i.e., the universal cover is contractible, then the universal covering
is Euclidean space and (M, g) is a flat manifold.
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Proof. We know that M = R¥ x C, where C is compact. The only way in which this
space can be contractible is if C is contractible. But the only compact manifold that
is contractible is the one-point space. O

Corollary 7.3.14. If (M, g) is compact with Ric > 0 and has Ric > 0 on some
tangent space T,M, then v\ (M) is finite.

Proof. Since Ric > 0 on an entire tangent space, the universal cover cannot split
into a product R* x C, where k > 1. Thus, the universal covering is compact. O

This result is a bit stronger than simply showing that H' (M,R) = 0 as we
shall prove using the Bochner technique (see 9.2.3). The next result is equivalent to
Bochner’s theorem, but the proof is quite a bit different.

Corollary 7.3.15. If (M, g) is compact and has Ric > 0, then b; (M) < dimM = n,
with equality holding if and only if (M, g) is a flat torus.

Proof. There is a natural surjection
h:m(M)— H (M,Z) ~ Z" x T,

that maps loops to cycles, and where T is a finite Abelian group. The structure of
the fundamental group shows that 4 (G) C T since G is finite. Thus we obtain a
surjective homomorphism (M) /G — Z*', where 7r;(M)/G = m; (M) NIso (Rk).
Moreover, the image of 7, (M) N R¥ = Z* in Z"' has finite index. This shows that
by <k<n.

When b; = n it follows that M = R". In particular, G is trivial. Moreover, the
restriction of 4 to Z" must be injective as the image otherwise couldn’t have finite
index in H| (M, Z). Thus the kernel of / cannot intersect the finite index subgroup
Z" C w1 (M) and so must be finite. However, any isometry on R” of finite order has a
fixed point so it follows that ker # is trivial. Thus 7y (M) ~ Z" x T and consequently
T is trivial. This shows that M = R" /Z" is a torus. Note, however, that the action of
7" on R" might not be the standard action so we don’t necessarily end up with the
square torus. O

Finally we prove a similar structure result for homogeneous spaces.
Theorem 7.3.16. Let (M, g) be a Riemannian manifold that is homogeneous. If
Ric > 0, then

(M.g) = (N xR" g + gi) .

where (N, gn) is a compact homogeneous space.

Proof. Firstsplit (M, g) = (N x R¥, gy + ng) so that N does not contain any lines.
Then note that the isometry group splits as in theorem 7.3.11 thus forcing N to
become homogeneous.

The claim will then follow from the splitting theorem provided we can show that
any noncompact homogeneous space contains a line. To see this choose a unit speed
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ray ¢ : [0, 00) — M and isometries F such that F (c (s)) = ¢ (0). Now consider the
unit speed rays ¢y : [—s, 00) defined by ¢ (t) = F; (c (t + s)). Then ¢; (0) = ¢ (0)
and ¢, (0) = ¢ (0) so ¢, is simply the extension of ¢. As ¢; is a ray it follows that the
extension of ¢ to R must be a line. O

7.4 Further Study

The adventurous reader could consult [53] for further discussions. Anderson’s
article [2] contains some interesting examples of manifolds with nonnegative Ricci
curvature. For the examples with almost maximal diameter we refer the reader to
[3] and [81]. It is also worthwhile to consult the original paper on the splitting
theorem [31] and the elementary proof of it in [41]. The reader should also consult
the articles by Colding, Perel’man, and Zhu in [54] to get an idea of how the subject
has developed.

7.5 Exercises

EXERCISE 7.5.1. With notation as in section 7.1.1 and using vol = Adr A vol,_;
show that u = Anti satisfies

Pu<- "
e

| Ric (@,.9,).
w(0,6) =0,

lin(l) arp(r,0) = 1.

This can also be used to show the desired estimates for the volume form.

EXERCISE 7.5.2 (Calabi and Yau). Let (M, g) be a complete noncompact manifold
with Ric > O and fix p € M.

(1) Show that for each R > 1 there is an x € M such that

volB(p,1) <volB(x,R+ 1) —volB(x,R—1)
R+1D)'—R-1)

< R =R=D" B p.2R).

(R+1)

(2) Show that there is a constant C > 0 so that vol B (p, R) > CR.

EXERCISE 7.5.3. Letf : I — R be continuous, where / C R an interval. Show that
the following conditions are equivalent.
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(1) fis convex.

(2) f has a “linear” support function from below of the form a (x — xp) + f (xo) at
every xo € I.

(3) f” = 0 in the support sense at all points xy € 1.

EXERCISE 7.5.4. Show that on a compact Riemannian manifold it is not possible
to find S (s) < oo such that ||f — fi|| s = S|df|l, when1 < s < dimM.

EXERCISE 7.5.5 (Basic Covering Lemma). Given a separable metric space (X, d)
and a bounded positive function R : X — (0, D], show that there is a countable
subset A C X, such that the balls B (p, R(p)) are pairwise disjoint for p € A and
X = UPE 4B (p,5R(p)). Hint: Select the points in A successively so that R(pi4+1) >
2 SUPyex— U, b 2k R(P):

EXERCISE 7.5.6. Assume the distance function r(x) = |xp| is smooth on B (p, R) .
Show that if

sn,
Hessr = ¢ (r) g
sy (r)

in polar coordinates, then all sectional curvatures on B (p, R) are equal to k.

EXERCISE 7.5.7. Construct convex surfaces in R*® by capping off cylinders
[~R, R] x S' to show that the Sobolev-Poincaré constants increase as R increases.
Hint: Consider test functions that are constant except on [—1, 1] x S'.

EXERCISE 7.5.8. Show that if (M, g) has Ric > (n — 1) k and for some p € M we
have vol B (p, R) = v (n, k, R) , then the metric has constant curvature k on B (p, R) .

EXERCISE 7.5.9. Let X be a vector field on a Riemannian manifold and consider
Fi (p) = exp, (1X],) .

(1) For v € T,M show that J (t) = DF; (v) is a Jacobi field along 7 = c (1) =
exp (#X) with the initial conditions J (0) = v, J (0) = V, X.
(2) Select an orthonormal basis e; for T,M and let J; (1) = DF; (e;) . Show that

(det[DF,))* = det[g (/i (1), J; (0)]
(3) Show that as long as det (DF;) # 0 it satisfies

d? (det (DF,) )5 _ _ (det(DF) "
n

e < Ric (¢,¢) .

Hint: Use that any n x n matrix satisfies (tr (A))* < ntr (A*A).
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EXERCISE 7.5.10. Show that a complete manifold (M, g) with the property that

Ric > 0,
. volB(p,r)
lim =

r—00 Wy 1"

L,

for some p € M, must be isometric to Euclidean space.

EXERCISE 7.5.11. Show that any function on an n-dimensional Riemannian mani-
fold satisfies

1
Hessul® > |Aul?
n

with equality holding only when Hessu = An“g. What can you say about M when

_ Au
Hessu = “"g?

EXERCISE 7.5.12. Show that if u,v : M — R are compactly supported functions
that are both smooth on open dense sets in M, then the following integrals make
sense and are equal

/uAv vol = /vAu vol = —/g (du, dv) vol = —/g (Vu, Vu)vol.
EXERCISE 7.5.13. Show that if Au = Au on a closed Riemannian manifold, then
A < 0and when A = 0, then u is constant.

EXERCISE 7.5.14. Show that the modified distance functions u; = cos (\/ kr) on

Si =g ( ! ) satisfy Aug = — (nk) uy and [ u; vol = 0,

Vk
EXERCISE 7.5.15 (Lichnerowicz). Let (M", g) be closed with Ric > (n— 1)k > 0.
Use the Bochner formula to show that all functions with Au = —Au, A > 0, satisfy
A > nk.

The spectral theorem for A then implies that all functions with [uvol = 0
satisfy the Poincaré inequality

1
/u2V01§ /|du|2vol.
nk

EXERCISE 7.5.16 (Obata). Let (M", g) be closed with Ric > (n— 1)k > 0. Use
the Bochner formula as in exercise 7.5.15 to show that if there is a function such
that Au = — (nk) u, then Hess u = —kug. Conclude that (M", g) = Sj.

EXERCISE 7.5.17 (P. Li and Schoen). The goal of this exercise is to show a
Poincaré inequality for functions that vanish on the boundary of a ball. Let (M, g) be
a complete Riemannian n-manifold with Ric > — (n — 1) kK, k> 0; pEM;R>0
chosen so that 0B (p, 2R) # @; g € 0B (p, 2R); and r (x) = |xq].
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(1) Show that Ar < (n—1) (R™' + k) on B (p,R).
(2) Letf (x) = aexp(—ar(x)), a > 0. Show that

Af > aexp(—a3R) (a—(n—1) (R~ +k)).

(3) Let u > 0 be a smooth function with compact support in B (p, R) and choose
a=n(R™" +k). Use

/ ulAfvol = — / g (du, df) vol
B(p.R) B(p.R)

to show that

/ uvol < C/ |du| vol,
B(p.R) B(p,R)

where C = | f; exp(2n (1 + kR)).
(4) Prove this inequality for all smooth functions u with compact support in

B(p,R).
(5) Lets > 1 and u have compact support in B (p, R). Show that

/ lul® vol < (sC)* |du| vol.
B(p.R) B(p.R)

EXERCISE 7.5.18 (Cheeger). The relative volume comparison estimate can be
generalized as follows: Suppose (M", g) has Ric > (n — 1) k.

(1) Select points py,...,pix € M. Then the function
vol (U{'(=l B (pi, "))
r—
v(nk,r)

is nonincreasing and converges to k as r — O.
(2) If A C M, then

vol (UI,EA B (p, r))
re v(n,k,r)

is nonincreasing. To prove this, use the above with the finite collection of points
taken to be very dense in A.



7.5 Exercises 311

EXERCISE 7.5.19. The absolute volume comparison can be generalized to hold for
cones. Namely, for p € M and a subset I' C T,M of unit vectors, consider the cones
defined in polar coordinates:

B (p.R)={(t.0)eM|t<Randf eT}.

If RicM > (n — 1) k, show that
R
vol B" (p,R) < voIT - / (sng (1))" " dr.
0

EXERCISE 7.5.20. Let G be a compact connected Lie group with a biinvariant
metric such that Ric > 0. Use the results from this chapter to prove

(1) If G has finite center, then G has finite fundamental group.

(2) A finite covering of G looks like G’ x T, where G’ is compact simply connected,
and T* is a torus.

(3) If G has finite fundamental group, then the center is finite.

EXERCISE 7.5.21. Let (M, g) be an n-dimensional Riemannian manifold that is
isometric to Euclidean space outside some compact subset K C M, i.e., M — K
is isometric to R" — C for some compact set C C R”". If Ric, > 0, show that
M = R".

EXERCISE 7.5.22. Show that if Ric > n — 1, then diam < 7, by showing that if
|pg| > 7, then

epq (X) = |px| + |xq| — |pq|

has negative Laplacian at a local minimum.



Chapter 8
Killing Fields

In this chapter we begin with a section on some general results about Killing fields
and their relationship to the isometry group. This is used in the subsequent section
to prove Bochner’s theorems about the lack of Killing fields on manifolds with
negative Ricci curvature. In the last section we present several results about how
Killing fields influence the topology of manifolds with positive sectional curvature.
This is a somewhat more recent line of inquiry.

8.1 Killing Fields in General

A vector field X on a Riemannian manifold (M, g) is called a Killing field if the local
flows generated by X act by isometries. This translates into the following simple
characterization:

Proposition 8.1.1. A vector field X on a Riemannian manifold (M, g) is a Killing
field if and only if Lyg = 0.

Proof. Let F' be the local flow for X. Recall that

d
(Lxg) (v,w) = 8 (DF' (v) ,DF" (W)) |i=0-
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Thus we have

d d _ _
pr (DF' (v) , DF' (W) |i=rp = o (DF'=°DF" (v) , DF"""DF" (w)) | 1=,

= jsg (DF°DF" (v) , DF*DF" (w)) |s=0
= (Lxg) (DF" (v) ,DF" (w)).

This shows that Lyg = 0 if and only if t — g (DF’ (v) , DF" (w)) is constant. Since
FY is the identity map this is equivalent to assuming the flow acts by isometries. O

‘We can use this characterization to show

Proposition 8.1.2. X is a Killing field if and only if v — VX is a skew symmetric
(1, 1)-tensor.

Proof. Let 0x (v) = g (X, v) be the 1-form dual to X. Recall that
dOx(V, W) + (Lxg) (V. W) = 2g (VyX, W).

Thus Lyg = 0 if and only if v — V, X is skew-symmetric. O
Proposition 8.1.3. If X € iso, i.e., X is a Killing field, then

ViwX=—-RX.V)W.
IfX,Y € iso, then
[VX,VY](V) + Vy [X,Y] = R(X,Y) V.

Proof. The fact that X is a Killing field implies that LyV = 0. Using this with the
identity

(LxV)y W =R(X, V)W + Vi X

from the proof of the first Bianchi identity in proposition 3.1.1 implies the first
claim.
The second identity is a direct calculation that uses the first Bianchi identity
[VX, VY] (V) + Vy [X,Y] = Vvva — Vvva + VyVxY — Vi VyX
= V\zf,xy - V\2/,YX
=—RYV)X+RX, V)Y
=—RYV)X-R(V,X)Y
=RX,Y)V. o
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Proposition 8.1.4. Fora givenp € M a Killing field X € iso is uniquely determined
by X|, and (VX)|,. In particular, we obtain a short exact sequence

0 — iso, »>is0 > t, —> 0,
where

iso, = {X € iso | X|, = 0},
t, = {X|, € T,M | X € iso}.
Proof. The equation Lyg = 0 is linear in X, so the space of Killing fields is a
vector space. Therefore, it suffices to show that X = 0 on M provided X|, = 0 and
(VX) |, = 0. Using an open-closed argument we can reduce our considerations to a
neighborhood of p.
Let F” be the local flow for X near p. The condition X|, = 0 implies that F* (p) =

p for all t. Thus DF' : T,M — T,M. We claim that also DF" = I. The assumptions
show that X commutes with any vector field at p since

[X, Y]], = Vx(»¥ — VynX = 0.

If Y|, = v, then the definition of the Lie derivative implies

. DF'(v)—v
0 = LxY|, = lim .
1t—0 t

Applying this to the vector field F (Y) yields

0 = LxDF" (Y)|,

. DF’DF" (v) — DF" (v)
= lim

s—0 Ky
. DF'™™DF" (v) — DF" (v)
= lim
t—tp—0 r—1t
. DF'"(v) — DF" (v)
= lim .
=1 r— to

In other words ¢ — DF' (v) is constant. As DF° (v) = v it follows that DF’ = I.
Since the flow diffeomorphisms act by isometries, proposition 5.6.2 implies that
they must be the identity map, and hence X = 0 in a neighborhood of p.
Alternatively we could also have used that X when restricted to a geodesic ¢ must
be a Jacobi field as the flow of X generates a geodesic variation. Thus X = 0 along
this geodesic if X|.(o) and V()X both vanish.
The second part of the claim is immediate from the fact that t, is defined as the
image and is0,, as the kernel of the evaluation map iso — T,M. a
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These properties lead to two important general results about Killing fields.

Theorem 8.1.5. The zero set of a Killing field is a disjoint union of totally geodesic
submanifolds each of even codimension.

Proof. The flow generated by a Killing field X on (M, g) acts by isometries so we
know from proposition 5.6.5 that the fixed point set of these isometries is a union of
totally geodesic submanifolds. We next observe that the fixed point set of all of these
isometries is precisely the set of points where the Killing field vanishes. Finally
assume that X[, = 0 and let V = ker (VX),. Then V is the Zariski tangent space
to the zero set and hence also the tangent space as in the proof of proposition 5.6.5.
Thus w — V,.X is an isomorphism on V*. As it is also a skew-symmetric map it
follows that V* is even-dimensional. O

Theorem 8.1.6. The set of Killing fields iso(M, g) is a Lie algebra of dimension <
(";l). Furthermore, if M is complete, then iso(M, g) is the Lie algebra of Iso(M, g).

Pi’OOf Note that L[X,Y] = [Lx,Ly] So if Lxg = Lyg = 0, then L[Xy]g = 0. Thus,
is0(M, g) forms a Lie algebra. From proposition 8.1.4 it follows that the map X —
(X|p. (VX)|,) is linear with trivial kernel. Thus

dim(iso(M, g)) < dimT,M + dimso (T,M)

_ nn—1 [n+1
=n-+ ) —( ’ )

The last statement depends crucially on knowing that Iso(M, g) is a Lie group in
the first place. We endow Iso(M, g) with the compact-open topology so that conver-
gence is equivalent to uniform convergence on compact sets (see exercise 5.9.41).
We saw in theorem 5.6.19 that this makes Iso(M, g) into a Lie group. One can
also appeal to the profound theorem of Bochner and Montgomery that any group
of diffeomorphisms that is also locally compact with respect to the compact-open
topology is a Lie group in that topology (see exercise 6.7.26 and [79]).

Since M is complete the Killing fields have flows that are defined for all time (see
exercise 8.4.5). These flows consist of isometries and thus yield differentiable one-
parameter subgroups of Iso(M, g). Conversely each differentiable one-parameter
subgroup of Iso(M, g) also gives a Killing field. This correspondence between one-
parameter subgroups and Killing fields shows that the Lie algebra iso(M, g) is the
Lie algebra of Iso(M, g).

There is an alternate proof of this theorem in [83]. However, it requires another
very subtle result about Lie algebras called Ado’s theorem: Every finite dimensional
Lie algebra is the Lie algebra of a Lie group. Using this and the fact that the flows of
Killing fields are defined for all time and consist of isometries shows that there is a
connected subgroup Isog(M, g) C Iso(M, g), which is a Lie group with Lie algebra
iso(M, g). Given X € iso(M, g) with flow F" and F € Iso(M, g) observe that the
flow of FyX is F o F' o F~!. Thus conjugation by elements F € Iso(M, g) defines
an automorphism on Isoy(M, g) whose differential at the identify is given by F.
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This shows that Isoy(M, g) is a normal subgroup of Iso(M, g). We can then define
the topology on Iso(M, g) so that Isoy(M, g) becomes the connected component
of Iso(M, g) containing the identity. This will make Iso(M, g) into a Lie group
whose component containing the identity is Isog(M, g). It is a general fact from
the theory of Lie groups that the differentiable Lie group structure is unique if we
know the group structure and the smooth 1-parameter subgroups. This means that
the topology just introduced is forced to be the same as the compact-open topology.
Note that it is not otherwise immediately clear from this construction that Iso(M, g)
has a countable number of connected components. O

Recall that dim(Iso(S})) = (";l). Thus, all simply connected space forms have
maximal dimension for their isometry groups. If we consider other complete spaces
with constant curvature, then we know they look like S}/ I', where I' C Iso(S}) acts
freely and discontinuously on S}. The Killing fields on the quotient S}/ I" can be
identified with the Killing fields on S} that are invariant under I'. The corresponding
connected subgroup G C Iso(S}) will then commute with all elements in I'. So if
dim(Iso(S};/I")) is maximal, then dimG = ("42'1) and G = Iso(S})o. As we know
the possibilities for Iso(S})o (see section 1.3.1) it is not hard to check that this forces
T" to consist of homotheties. Thus, " can essentially only be {41} if it is nontrivial.
But —7 acts freely only on the sphere. Thus, only one other constant curvature space
form has maximal dimension for the isometry group, namely RP".

More generally, when dim (iso(M,g)) = ("42'1), then (M,g) has constant
curvature. To prove this we use that for each p € M the map X — (X|,, (VX)|p)
is surjective. First note that for each S € so (TI,M) there is a Killing field X with
X|, = 0 and (VX)|, = S. The flow fixes p, i.e., F§ (p) = p, and thus DF%/|, defines
a local one-parameter group of orthogonal transformations with jr| 1=0DF%|, = S.
This implies that DF%|, = exp (£S), where exp is the usual operator or matrix
exponential map. Since exp : so (T,,M) — SO (T,,M) is a local diffeomorphism
near the identity it follows that any two planes in 7,M that are sufficiently close to
each other can be mapped to each other by an isometry F. This shows that these
planes have the same sectional curvature. We can now use an open-closed argument
to show that all sectional curvatures at p are the same.

Finally, for each v € T,M there is a unique Killing field X such that X|, = v
and (VX)|, = 0. If F} is the (local) flow of X, then we obtain an “exponential”
map E, : O, C T,M — M by E, (v) = Fy (p), where O, is a neighborhood of the
origin. Note that E, (rv) = F% (p) so it follows that ;,1[| 1=0E, (tv) = v. In particular,
the differential is the identity map at the origin and E, is locally a diffeomorphism.
This implies that for every point g in a neighborhood of p, there is a local isometry
that maps p to g. This means that the curvatures are constant on a neighborhood
of p. An open-closed argument shows as before that the curvature is constant on M.
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8.2 Killing Fields in Negative Ricci Curvature

We start by proving a general result that will be used throughout the chapter.

Proposition 8.2.1. Let X be a Killing field on (M, g) and consider the function
f=1g(X.X) =} |X|". Then

(1) Vf = —VxX.
(2) Hessf (V.V) = |[VyX|> —R(V.X.X, V).
(3) Af = |VX]* — Ric (X, X).

Proof. To see (1) observe that

g(V,Vf) = Dvf
= g(WX,X)

(2) is proven directly by repeatedly using that V — VyX is skew-symmetric:

Hessf (V,V) = g (Vy (—VxX),V)
=—gR(V.X)X,V)—g(VxWWX. V) — g (Viv.xX. V)
=—R(V,X,X,V)—g(VxVyX,V)
+g(VywX, V) —g(Vy,xX,V)
= —Rx (V) + g (VvX, VyX) — g (VxVvX, V) — g (Vv X, VxV)
= —Rx (V) + g (VyX, VyX) — Dxg (VyX, V)
= —Rx (V) + g (VvX, VyX).

For (3) we select an orthonormal frame E; and see that

Af = Z Hessf (E;, E))

i=1

= Xn:g (Ve X, VEX) — Xn:R (B, X, X, E))

i=1 i=1

= Zg (Ve X, Vg X) — Ric (X, X)

i=1

= |VX[* — Ric (X, X). O
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Formula (3) in this proposition is called a Bochner formula. We shall meet many
more of these types of formulas in the next chapter.

Theorem 8.2.2 (Bochner, 1946). Suppose (M, g) is compact and has Ric < 0.
Then every Killing field is parallel. Furthermore, if Ric < 0, then there are no
nontrivial Killing fields.

Proof. If we define f = é |X|* for a Killing field X, then the condition Ric < 0
gives us

Af = |VX[* —Ric (X, X) > 0.

The maximum principle then shows that f is constant and that |[VX| = 0, i.e., X is
parallel. In addition Ric (X, X) = 0. When Ric < 0 this implies that X = 0. O

Corollary 8.2.3. With (M, g) as in the theorem, we have
dim(iso(M, g)) = dim(Iso(M, g)) < dimM,

and Iso(M, g) is finite if Ric(M, g) < 0.

Proof. As any Killing field is parallel, the linear map: X — X|, from iso(M, g)
to T,M is injective. This gives the result. For the second part use that Iso(M, g) is
compact, since M is compact, and that the identity component is trivial. O

Corollary 8.2.4. With (M, g) as before and k = dim(iso(M, g)), we have that the
universal covering splits isometrically as M = RF x N.

Proof. On M there are k linearly independent parallel vector fields, which we can
assume to be orthonormal. Since M is simply connected, each of these vector fields
is the gradient field for a distance function. If we consider just one of these distance
functions we see that the metric splits as g = dr?> + g, = dr* + go since the Hessian
of this distance function vanishes. As we get such a splitting for k distance functions
with orthonormal gradients we get the desired splitting of M. O

We can now say more about the homogeneous situation discussed in theo-
rem 7.3.16.

Corollary 8.2.5. A compact homogeneous space with Ric < 0 is flat. In particular,
any Ricci flat homogeneous space is flat.

Proof. We know that every Killing field is parallel and the assumption that the space
is homogeneous tells us that every tangent vector is part of a Killing field (see also
exercise 8.4.9). Thus the curvature vanishes.

The second part of the result comes from applying theorem 7.3.16. O

The result about nonexistence of Killing fields can actually be slightly improved
to yield
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Theorem 8.2.6. Suppose (M, g) is a compact manifold with quasi-negative Ricci
curvature, i.e., Ric < 0 and Ric(v,v) < 0 for all v € T,M — {0} for some p € M.
Then (M, g) admits no nontrivial Killing fields.

Proof. We already know that any Killing field is parallel. Thus a Killing field is
always zero or never zero. If the latter holds, then Ric(X,X)(p) < 0, but this
contradicts

0 = Af(p) = — Ric(X, X)(p) > 0. o

Bochner’s theorem has been generalized by X. Rong to a more general statement
asserting that a closed Riemannian manifold with negative Ricci curvature can’t
admit a pure F-structure of positive rank (see [93] for the definition of F' structure
and proof of this). An F-structure on M is essentially a finite covering of open sets
U; on some finite covering space M — M, such that we have a Killing field X; on
each U;. Furthermore, these Killing fields must commute whenever they are defined
at the same point, i.e., [X,-, Xj] = 0 on U; N U;. The idea of the proof is to consider
the function

f = det[g (Xi.X))].

If only one vector field is given on all of M, then this reduces to the function f =
g (X, X) that we considered above. For the above expression one must show that it
is a reasonably nice function that has a Bochner formula.

8.3 Killing Fields in Positive Curvature

It is also possible to say quite a bit about Killing fields in positive sectional
curvature. This is a much more recent development in Riemannian geometry.

Recall that any vector field on an even-dimensional sphere has a zero since the
Euler characteristic is 2 (# 0). At some point H. Hopf conjectured that in fact any
even-dimensional compact manifold with positive sectional curvature has positive
Euler characteristic. If the curvature operator is positive, then this is certainly true as
it follows from theorem 9.4.6 that the Euler characteristic is 2. From corollary 6.3.2
we know that the fundamental group is finite provided the Ricci curvature is positive.
In particular H;(M,R) = 0. This shows that the conjecture holds in dimension 2.
In dim = 4, Poincaré duality implies that H; (M, R) = H3(M,R) = 0. Hence

(M) = 1 + dimH>(M,R) + 1 > 2.

In higher dimensions we have the following partial justification for the Hopf
conjecture.
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Theorem 8.3.1 (Berger, 1965). If (M, g) is a compact, even-dimensional manifold
of positive sectional curvature, then every Killing field has a zero.

Proof. Consider as before f = é |X |2. If X has no zeros, then f will have a positive
minimum at some point p € M. In particular, Hessf|, > 0. We also know from
proposition 8.2.1 that

Hessf (V.V) = |[Vy X —R(V.X. X, V).

By assumption, g(R(V, X)X, V) > 0if X and V are linearly independent. Using this,
we seek V such that Hessf (V, V) < 0 near p, thus arriving at a contradiction.

Recall that the linear endomorphism v + V, X is skew-symmetric. Furthermore,
(VxX)|, = 0, since Vf|, = —(VxX)|p, and f has a minimum at p. Thus
(VX)|, : T,M — T,M has at least one zero eigenvalue. However, the rank of a
skew-symmetric map is always even, so the kernel must also have even dimension
as T,M is even dimensional. If v € T,M is an element in the kernel linearly
independent from X, then

|VvX|* =R (v, X, X, v)
—R (v, X,X,v) <0. O

Hessf (v, v)

In odd dimensions this result is not true as the unit vector field that generates the
Hopf fibration §* (1) — 52 (1/2) is a Killing field.

Having an isometric torus action implies that iso (M, g) contains a certain number
of linearly independent commuting Killing fields. By Berger’s result we know
that in even dimensions these Killing fields must vanish somewhere. Moreover,
the structure of these zero sets is so that each component is a totally geodesic
submanifold of even codimension. A type of induction on dimension can be now
used to extract information about these manifolds.

To understand how this works some important topological results on the zero
set for a Killing field are needed. The Euler characteristic is defined as the alter-
nating sum

X (M) =" (=1 dimH, (M.R).
p=0

Theorem 8.3.2. Let X be a Killing field on a compact Riemannian manifold. If
N; C M are the components of the zero set for X, then y (M) =Y, x (N;).

Proof. The proof is a modification of the classical result of Poincaré and Hopf where
the Euler characteristic is calculated as a sum of indices for the isolated zeros of a
vector field. The Meyer-Vietoris sequence can be used show that

XM) = x(A)+ x(B)—x(ANB)

for nice subsets A, B,ANB C M.
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Note that the flow F* of X fixes points in N; and in particular, |F*(x)N;| = |xN;|.
This shows that X is tangent to the level sets of |xV;|. Now choose tubular
neighborhoods around each N; of the form 7; = {p € M | [xN;| < €}. Then X
is tangent to the smooth boundary 97;. Now both y (M — | JintT;) and y (| 97T:)
vanish by the Poincaré-Hopf theorem as X is a nonzero vector field on these
manifolds. Thus y (M) = Y x (T;). Finally, N; C T; is a deformation retraction
and so they have the same Euler characteristic. This proves the theorem. O

This implies the following corollary.

Corollary 8.3.3. If M is a compact 6-manifold with positive sectional curvature
that admits a Killing field, then y (M) > 0.

Proof. We know that the zero set for a Killing field is nonempty and that each
component has even codimension. Thus each component is a 0, 2, or 4-dimensional
manifold with positive sectional curvature. This shows that M has positive Euler
characteristic. O

If we consider 4-manifolds we get a much stronger result (see also [63]). The
proof uses techniques that appear later in the text and is only given in outline.

Theorem 8.3.4 (Hsiang and Kleiner, 1989). If M* is a compact orientable posi-
tively curved 4-manifold that admits a Killing field, then the Euler characteristic is
< 3. In particular, M is topologically equivalent to §* or CP>.

Proof. We assume for simplicity that sec > 1 so that we can use a specific
comparison space for Toponogov’s theorem (see theorem 12.2.2).

In case the zero set of the Killing field contains a component of dimension 2 the
result will follow from lemma 8.3.7 below. Otherwise all zeros are isolated. It is
then necessary to obtain a contradiction if there are at least isolated 4 zeros.

Assume p is an isolated zero for a Killing field X on a Riemannian 4-manifold.
Then the flow F' of X induces an isometric action DF’|, = R’ on the unit sphere
§* C T,M that has no fixed points. We can decompose T,M = V; @ V; into the two
orthogonal and invariant subspaces for this action. This decomposition allows us to
exhibit S* as a doubly warped product over the interval [0, 7/2] as in example 1.4.9.
The natural distance function r for this doubly warped decomposition measures the
angle to say V. It follows that for any v; € S3,j =1, 2,3 we have

[rwD)r()| + [r()r(s)| + [r(v2)r(vs)] < 7.

The rotations R’ preserve the levels of r and form nontrivial rotations by 6,7 on each
V;. When 6, and 0, are irrationally related the orbits are in fact dense in the level
sets for r. This shows that for every € > 0 and v; € S3,j = 1,2, 3 there exist
such that

ya (R"vl,ervz) +Z (R"vl,Rr3v3) + Z (ervg,R’3v3) <m+e.

When 6; and 6, are rationally related, this will also be true (in fact with € = 0) and
can be shown by approximating such a rotation by irrational rotations.
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= .
Let pg be the set of all unit vectors tangent to segments from p to g. Define

inf Zpxq as the infimum of the angles between vectors in x:p> and 71} Assume that
pi, i = 1,2,3, 4 are isolated zeros for X and note that the flow of X maps segments
between any two such zeros to segments between the same two zeros. Thus we have
shown that

inf Zpop1ps + inf Zpypipa + inf Lpapips < 7.

If we add up over all 4 possibilities of points the sum is < 4.

On the other hand, by Toponogov’s theorem any specific angle Zpxg can be
bounded from below by the corresponding angle in S? (1) for a triangle with the
same sides |xp|, |xq| , |pg|. This implies that

inf Zpipop3 + inf Zp3pipy + inf Zpypspy > 7.

Adding up over all 4 choices gives a total sum > 4m. So we have reached a
contradiction. O

The conclusion has been improved by Grove-Wilking in [57] and there are
similar results for 5-manifolds with torus actions in [42] and [45].

Below we discuss generalizations to higher dimensions. The results, however,
do not generalize the Hsiang-Kleiner classification as they require more isometries
even in dimension 4.

Two important tools in the proofs below are a generalization of Berger’s result
about Killing fields in even dimensions and Wilking’s connectedness principle (see
lemma 6.5.8) as well as an enhancement also due to Wilking.

Theorem 8.3.5 (Grove and Searle, 1994). Let M be a compact n-manifold with
positive sectional curvature. Two commuting Killing fields must be linearly depen-
dent somewhere on M.

Proof. Let X, Y be commuting Killing fields on M. We have from proposition 8.1.3
that [VX, VY] = R (X, Y). This gives us the formula

R(X,Y.Y.X) = g([VX, VY] (Y).X)
=8 (VVyYXvX) —8 (VVYXY7 X)
= —g (VxX, VyY) + |VxY|%.

If Y vanishes somewhere on M, then we are finished, so assume otherwise and

consider the function
2 P )
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If f vanishes somewhere we are again finished. Otherwise, f will have a positive
minimum at some point p € M. We scale Y to be a unit vector at p, and adjust X to
beX=X-—¢g (le, Ylp) Y so that X|, L Y|,. Neither change will affect f. We now

have
U fjpp &) _1 o0
e R B

with equality at p. This means that the function on the right also has a positive
minimum at p. In particular, VzX = 0 at p. Since g (X , Y) vanishes at p the Hessian
of f at p is simply given by

Hessf (v,v) = |VU}_(|2 —R (v,)_(,)_(, v) — (Dvg ()_(, Y))2

for v € T,M. The last term can be altered to look more like the first

Dyg(X.Y) =g (V,X.Y) + g (X, V,Y)
=g(VuX.Y) — g (v. VzY)
=g (VuX.Y) — g (v, VyX)
=g (V,X.2Y)

If there is a v L X with V,X = 0, then the Hessian becomes negative and
we have a contradiction. If no such v exists, then ker (VX) |, = span {X|,} since
Vs X =0atp. AsY L X at p it follows that we can find v L X such that V,X = 2Y.
Then we obtain a contradiction again

Hessf (v,v) = —R (v.X.X,v) < 0. O

Lemma 8.3.6 (Connectedness principle with symmetries, Wilking, 2003). Let
M" be a compact n-manifold with positive sectional curvature and X a Killing field.
If N"* is a component for the zero set of X, then N C M is (n — 2k + 2)-connected.

Proof. Consider a unit speed geodesic c that is perpendicular to N at the endpoints.
It is hard to extract more information from parallel fields along ¢ as we did in
lemma 6.5.8. Instead we consider fields that are orthogonal to both ¢ and the action
and have derivative tangent to the action.

Specifically, consider fields that satisfy the linear ODE

E(()) (S TC(())N,
E,V.X
8( )X

E=—
x|
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Note that since
g (E,V:X) = —g (¢, VEX)

and E(0) € TN, it follows that g (E 0), V&(O)X) = 0. In particular, the
differential equation is not singular at t = 0.
We claim that these fields satisfy the properties

8 (EvX) = Os
g(E(), ViyX) =0,
g(E,¢)=0.

The first condition follows from X|.) = 0 and

d .
4 EED =5 (E.X) + g (E, V:X)

_, (_g(E, ViX)

X ) +g(E V.X
XP ) 8 (&, VeX)

=0.

As X|.q1y = 0 this also implies the second property. For the third property first
note that

d
8K 0 =g (VeX.0) =0.
XIC(O) =0
s0 g (X, ¢) = 0. It then follows that

8 (E, ViX)

|X|2 g(X,¢)=0.

d .
dtg (E,¢) = g(E, ¢) =

Now note that also E (1) Lspan {¢ (1), V;1)X}. The space span {¢ (1), V:1)X}
is 2-dimensional as ¢ is perpendicular to the component N of the zero set for X. This
means that the space of such fields E, where in addition E (1) is tangent to N, must
have dimension at least n — 2k 4 2 (see also the proof of part (a) of lemma 6.5.8).

We now need to check that such fields give us negative second variation. This is
not immediately obvious as |E | doesn’t vanish. However, we can resort to a trick
that forces it down in size without losing control of the curvatures sec (E, ¢) . In
section 4.5.4 we showed that the metric g can be perturbed to a metric g, where
X has been squeezed to have size — 0 as A — 0. At the same time, directions
orthogonal to X remain unchanged and the curvatures sec (E, ¢) become larger as
both E and ¢ are perpendicular to X. Finally ¢ remains a geodesic since VyY is
unchanged for Y L X (see proposition 4.5.1).
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The second variation formula for g looks like

d*E

b b
; 2 N
s ls=0 = /a |E(t)|gk dt—/a g (R(E,¢)c,E)dr

b
</
a

:/%@WW

4
X1,

g (E,V:X)

2
X1,

2
b
X| di— / secg (E. ¢) |El; dt

128

b
X2, dr — / secy (E.¢) |EI dt
a

b
— —/ secg (E, ) |E|§ dras A — 0.

This shows that all of the fields £ must have negative second variation in the metric
g for sufficiently small A.

This perturbation is independent of ¢ € Qy y (M) and so we have found a new
metric where all such geodesics have index > n — 2k + 2. This shows that N C M
is (n — 2k + 2)-connected. O

To get a feel for how this new connectedness principle can be used we prove.

Lemma 8.3.7 (Grove and Searle, 1994). Let M be a closed n-manifold with
positive sectional curvature. If M admits a Killing field such that the zero set has
a component N of codimension 2, then M is diffeomorphic to S", CP2, or a cyclic
quotient of a sphere S" [ Z,.

Proof. We only prove a (co-)homology version of this result for simply connected
manifolds.

The previous lemma shows that N C M is (n — 2)-connected. Thus, for k < n—2,
H,(N) — H; (M) and H* (M) — H* (N) are isomorphisms. Using this together
with Poincaré duality Hy (M) ~ H"* (M) and H, (N) ~ H"~>~* (N) shows that for
0 < k < n— 2 we have isomorphisms:

Hyy2 (M) — H'™72 (M) — H"™72 (N) — Hy (N) — H (M),
H* (M) — H*(N) - H,_»_« (N) = H,_p_ (M) — H*"> (M) .
Using that M is simply connected shows that when 7 is even we have
0~H (M) ~H; (M) >~ -~ Hy,— (M)
and when n is odd
O0~H M)~H;M)~---~H, »(M) ~H*(M) ~---~ H" " (M).

This shows that M is a homotopy sphere when # is odd.



8.3 Killing Fields in Positive Curvature 327

When n is even we still have to figure out the possibilities for the even
dimensional homology groups. This uses that we have

H*(M) ~H*M) ~---~ H" > (M) - H" 2 (N) ~ Z.

The last map is injective since N C M is (n — 2)-connected. Thus these even
dimensional cohomology groups are either all trivial or isomorphic to Z. This gives
the claim.

When M has nontrivial fundamental group the proof works for the universal
covering, but more work is needed to classify the space itself. O

Proposition 8.3.8. Let (M,g) be compact and assume that X,Y € iso(M,g)
commiite.

(1) Y is tangent to the level sets of |X|2 and in particular to the zero set of X.
(2) If X and Y both vanish on a totally geodesic submanifold N C M, then some
linear combination vanishes on a larger submanifold.

Proof. (1) Since LyX = 0 and Y is a Killing field we get

0= (Lyg) (X, X)
= Dy [X|" — 2g (LyX.X)
= Dy|X|*.

Hence flow of Y preserves the level sets for [ X .

(2) We can assume that N has even codimension. Fix p € N and observe that
proposition 8.1.3 shows that (VX) |, and (VY) |, commute. Thus we obtain
a splitting

TLM=T,NOE & &E,

where E; are 2-dimensional and invariant under both (VX) |, and (VY) |,. As the
space of skew-symmetric transformations on E|, say, is one-dimensional some
linear combination & (VX) |, + B (VY) |, vanishes on E;. Let N D N be the
connected set on which «X + BY vanishes. Then T,,N = ker (V (aX + BY)) |,
contains T,N & E and it follows that N ; N. O

We are finally ready to present and prove the higher-dimensional versions alluded
to earlier. The symmetry rank of a Riemannian manifold is the dimension of a
maximal subspace of commuting Killing fields.

Theorem 8.3.9 (Grove and Searle, 1994). Let M be a compact n-manifold with
positive sectional curvature and symmetry rank k. If k > n/2, then M is diffeomorphic
to either a sphere, complex projective space or a cyclic quotient of a sphere S" |/ Z,,
where Z is a cyclic group of order q acting by isometries on the unit sphere.
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Proof. We select an Abelian subalgebra a C iso (M, g) of dimension k > n/2.
Proposition 8.3.5 shows that with respect to inclusion there is a maximal and
nontrivial totally geodesic submanifold N C M and X € a that vanishes on N.
Theorem 8.3.8 implies that a|y has dimension k — 1 (see also exercise 8.4.16). If N
does not have codimension 2, then we can continue this construction and construct
a totally geodesic 1- or 2-submanifold S C M with dim (a|s) > 2. A 1-manifold
has 1-dimensional isometry group so that does not happen. The 2-dimensional case
is eliminated as follows. Select X,Y € als. Since X is nontrivial we can find an
isolated zero p. As Y preserves the component {p} of the zero set for X it also
vanishes at p. Then

(VX) |, (VY) |, : T,M — T,M

completely determine the Killing fields. As the set of skew-symmetric transforma-
tions on T,M is 1-dimensional they must be linearly dependent. This shows that
dim (als) = 1.

This means that we can use lemma 8.3.7 to finish the proof. O

With fewer symmetries we also have.

Theorem 8.3.10 (Piittmann and Searle, 2002 and Rong, 2002). If M*" is a
compact 2n-manifold with positive sectional curvature and symmetry rank k >
/4 — 1, then y (M) > 0.

Proof. When 2n = 2,4 there are no assumptions about the symmetry rank and
we know the theorem holds. When 2n = 6 it is Berger’s result. Next consider
the case where M is 8§-dimensional. The proof is as in the 6-dimensional situation
unless the zero set for the Killing field has a 6-dimensional component. In that case
lemma 8.3.7 establishes the claim.

In general we would like to use induction on dimension, but this requires that
we work with the stronger statement: If a C iso (M, g) is an Abelian subalgebra of
dimension k > #/2—1, then any component of the zero set for any X € a has positive
Euler characteristic. Note that when 2n = 2, 4, 6, 8 this stronger statement holds.

There are two cases: First assume that every zero set N C M for any X € a has
codimension > 4. When N is maximal and nontrivial, then a|y has dimension k — 1.
Since any component of a zero set is contained in a nontrivial maximal element the
stronger induction hypothesis can be invoked to prove the induction step.

The other situation is when there is a zero set N for some X € a that has
codimension 2. Lemma 8.3.7 then shows that the odd Betti numbers of M vanish.
This in turn implies that the odd Betti numbers for any component of a zero set of
any Killing field must also vanish (see [17]). O

This theorem unfortunately does not cover all known examples as there is a
positively curved 24-manifold F4/Spin (8) that has symmetry rank 4 (see [105]).

It is tempting to suppose that one could show that the odd homology groups with
real coefficients vanish given the assumptions of the previous theorem. In fact, all
known even dimensional manifolds with positive sectional curvature have vanishing
odd dimensional homology groups.
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Next we mention without proof an extension of the Grove-Searle result by
Wilking, (see also [105]).

Theorem 8.3.11 (Wilking, 2003). Let M be a compact simply connected positively
curved n-manifold with symmetry rank k and n > 10. If k > #/4 + 1, then M has
the topology of a sphere, complex projective space or quaternionic projective space.
Moreover, when M isn’t simply connected its fundamental group is cyclic.

The proof is considerably more complicated than the above theorems. When
n = 7 there are several spaces with positive curvature and symmetry rank 3 (see
[105]).

Finally, we mention some recent extensions of the above theorems.

Theorem 8.3.12 (Kennard, 2013 [67]). If M* is a compact 4n-manifold with
positive sectional curvature and symmetry rank k > 21og, (4n)—2, then y (M) > 0.

Theorem 8.3.13 (Kennard, 2012 [68] and Amann and Kennard, 2014 [1]). Let
M?" be a compact positively curved manifold with symmetry rank k > logy/, (2n).

(1) The Betti numbers satisfy: by < 1 and by < 1.

(2) If by =0, then y (M) = 2.

(3) (1) and (2) imply that M can’t have the homotopy type of a product N x N where
N is compact and simply connected.

8.4 Exercises

EXERCISE 8.4.1. Show that theorem 8.1.6 does not necessarily extend to incom-
plete Riemannian manifolds.

EXERCISE 8.4.2. Let N be a component of the zero set for a Killing field X. Show
that Vy (VX) = 0 for vector fields V tangent to N.

EXERCISE 8.4.3. Show that a coordinate vector field 9y is a Killing field if and only
if akgij =0.

EXERCISE 8.4.4. Let X be a Killing field on (M, g) and N C M a submanifold with
the induced metric.

(1) Show that if X is tangent to N, then X|y is a Killing field on N.
(2) Show that if N is totally geodesic (see exercise 5.9.20), then X T, the projection
of X onto N, is a Killing field.

EXERCISE 8.4.5. Let (M, g) be a complete Riemannian manifold and X a Killing
field on M.

(1) Letc : [a,b] — M be a geodesic. Show that there is an € > 0 and a geodesic
variation ¢ : (—¢, €) X [a, b] — M such that the curves s + ¢ (s, f) are integral
curves of X.
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(2) Use completeness to extend the geodesic variation ¢ : (—e, €) x R — M. Show
that for all # € R the curves s — ¢ (s, f) are integral curves of X.

(3) Show that the integral curve of X through any point in M exists on (—¢, €).

(4) Show that X is complete.

EXERCISE 8.4.6. Let (M",g) be a compact Riemannian n-manifold such that
dim (iso) = n and Ric < 0. Show that M is flat and that =; = Z". Hint: Show
that M = R” and that the deck transformations must have differential I since they
leave a parallel orthonormal frame invariant.

EXERCISE 8.4.7. Let x' be the standard Cartesian coordinates on R” and consider
W = spany {l,xl, ... x”} and V = spang {xl, ... ,x”}.

(1) Show that iso (R") is naturally isomorphic to AW if we identify u A v with the
vector field uVv — vVu.

(2) Show similarly that iso (S”_1 (R)) is naturally isomorphic to A2V.

(3) Use that Vu = g¥9;ud; for a pseudo-Riemannian space to redo (1) for R”¢ and
(2) for H"~' (R) C R™!,

EXERCISE 8.4.8. Let x' be the standard Cartesian coordinates on R"! and consider
V = spang {1 L ,x”+1}. Finally restrict all functions in V to §”. Show that for
u,v € V the fields uVv — vVu are conformal. A field X is conformal if Lxg = Ag
for some function A.

EXERCISE 8.4.9. Let (M, g) be a Riemannian manifold and consider the subspaces
t, = {X|, € T,M | X € iso}.

(1) Show that t, defines an integrable distribution on an open set O C M. Hint:
Show that {p € M | dimt, = max,ey dimt,} is open.

(2) Give an example where O # M.

(3) Show that DF (t,) = tp(y for all F € Iso.

(4) Assume (M, g) is complete. Show that the leaves of this distribution are
homogeneous and properly embedded. Hint: Show that the connected subgroup
Isop C Iso that contains the identity is closed and preserves the leaves (see also
section 5.6.4.)

(5) Show that if (M, g) is homogeneous, then t, = T,M forallp € M.

EXERCISE 8.4.10. Let t C iso (M, g) be an Abelian subalgebra corresponding to
a torus subgroup 7% C Iso (M, g). Define p C t as the set of Killing fields that
correspond to circle actions, i.e., actions induced by homomorphisms §' — T*.
Show that p is a vector space over the rationals with dimgp = dimgt.

EXERCISE 8.4.11. Given two Killing fields X and Y on a Riemannian manifold,
develop a formula for Ag (X, Y) . Use this to give a formula for the Ricci curvature
in a frame consisting of Killing fields.
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EXERCISE 8.4.12. Let X be a vector field on a Riemannian manifold.

(1) Show that
ILxg> = 2|VX] + 2tr (VX 0 VX).

(2) Establish the following integral formulae on a closed oriented Riemannian
manifold:

/ (Ric (X, X) + tr (VX o VX) — (divX)z) -0,
M

1
/ (Ric (X.X) + g (r V2X, X) + 5 |Lxg|* — (div X)Z) = 0.
M
(3) Finally, show that X is a Killing field if and only if

divX =0,
tr V2X = —Ric (X).

EXERCISE 8.4.13 (Yano). If X is an affine vector field (see exercise 2.5.13) show
that tr V2X = — Ric (X) and that div X is constant. Use this together with the above
characterizations of Killing fields to show that on closed manifolds affine fields are
Killing fields.

EXERCISE 8.4.14. Let X be a vector field on a Riemannian manifold. Show that X
is a Killing field if and only if Ly and A commute on functions.

EXERCISE 8.4.15. Let (M, g) be a compact n-manifold with positive sectional
curvature and a C iso an Abelian subalgebra.

(1) Show that dima < 7/2.
(2) Show that spheres and complex projective spaces have maximal symmetry rank.
(3) Show that the flat torus 7" has symmetry rank n.

EXERCISE 8.4.16. Let (M, g) be a compact n-manifold with positive sectional
curvature and a C iso an Abelian subalgebra. Let 2 (a) be the set of nontrivial
connected components of the zero sets of Killing fields in a. Show thatif N € 2 (a)
is maximal under inclusion, then dim (a|y) = dima—1anddimN > 2 (dima — 1).

EXERCISE 8.4.17 (Kennard). Let (M",g) be a simply connected compact
n-manifold with positive sectional curvature and symmetry rank > 31/3 + 1.

(1) When n < 8 conclude that the assumptions are covered by theorem 8.3.9.

(2) Use exercise 8.4.16 to show that if N € 2 (a) is maximal under inclusion, then
dimN > 3n/4,

(3) Show that a maximal N € % (a) either has codimension 2 or has symmetry
rank > 3di§nN + 1.
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(4) Use induction on n to show that M has the homology groups of a sphere or
complex projective space. Hint: When the maximal N € £ (a) has codimension
> 4 use the connectedness principle to show that N is also simply connected.
Then use the connectedness principle to calculate the homology/homotopy
groups in dimensions < #/2. Finally use Poincaré duality to find all the
homology groups of M.

EXERCISE 8.4.18. Let M — M be the universal covering, with deck transforma-
tions I' = 7 (M) acting as isometries on M.

(1) Show that we can identify
is0 (M) = {X € iso (M) | G.X = X forall G € T'}.

(2) Show that the connected Lie subgroup corresponding to iso (M) C iso (M) is
the connected component of the centralizer

C(I') = {F €Iso (M) | FG = GF forall G € T'}
that contains the identity.
(3) Show that Iso (M) can be identified with N(I') /", where N (I") is the

normalizer

N(T) = {F elso(M) | FTF' =T}.



Chapter 9
The Bochner Technique

Aside from the variational techniques we’ve used in prior sections one of the oldest
and most important techniques in modern Riemannian geometry is that of the
Bochner technique. In this chapter we prove the classical theorem of Bochner about
obstructions to the existence of harmonic 1-forms. We also explain in detail how
the Bochner technique extends to forms and other tensors by using Lichnerowicz
Laplacians. This leads to a classification of compact manifolds with nonnegative
curvature operator in chapter 10. To establish the relevant Bochner formula for
forms, we have used a somewhat forgotten approach by Poor. It appears to be quite
simple and intuitive. It can, as we shall see, also be generalized to work on other
tensors including the curvature tensor.

The classical focus of the Bochner technique lies in establishing certain vanishing
results for suitable tensors in positive curvature. This immediately leads to rigidity
results when the curvature is nonnegative. In the 1970s P. Li discovered that it can be
further generalized to estimate the dimension of the kernel of the Laplace operators
under more general curvature assumptions. This became further enhanced when
Gallot realized that the necessary analytic estimates work with only lower Ricci
curvature bounds. This will all be explained here and uses in a crucial way results
from sections 7.1.5 and 7.1.3.

The Bochner technique was, as the name indicates, invented by Bochner.
However, Bernstein knew about it for harmonic functions on domains in Euclidean
space. Specifically, he used

1
A, |Vu|* = [Hessul|?,
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where u : © C R" — R and Au = 0. It was Bochner who realized that when the
same trick is attempted on Riemannian manifolds, a curvature term also appears.
Namely, for u : (M, g) — R with A,u = 0 one has

1
A, |Vu|* = [Hessu|* + Ric (Vu, Vu).

With this in mind it is clear that curvature influences the behavior of harmonic
functions. The next nontrivial step Bochner took was to realize that one can compute
A é |a)|2 for any harmonic form w and then try to get information about the topology
of the manifold. The key ingredient here is of course Hodge’s theorem, which
states that any cohomology class can be uniquely represented by a harmonic form.
Yano further refined the Bochner technique, but it seems to be Lichnerowicz who
really put things into motion when he presented his formulas for the Laplacian
on forms and spinors around 1960. After this work, Berger, D. Meyer, Gallot,
Gromov-Lawson, Witten, and many others have made significant contributions to
this tremendously important subject.

Prior to Bochner’s work Weitzenbock developed a formula very similar to the
Bochner formula. We shall also explain this related formula and how it can be used
to establish the Bochner formulas we use. It appears that Weitzenbock never realized
that his work could have an impact on geometry and only thought of his work as an
application of algebraic invariant theory.

9.1 Hodge Theory

We start by giving a brief account of Hodge theory to explain why it calculates the
homology of a manifold.
Recall that on a manifold M we have the de Rham complex

0 1 n—1
-2 S S -5 ) —o,

where Q¥(M) denotes the space of k-forms on M and d* : Q¥(M) — Q¥ (M) is
exterior differentiation. The de Rham cohomology groups

ker(d¥)

k —
H M) = im(d%1)

compute the real cohomology of M. We know that H°(M) ~ R if M is connected,
and H"(M) = R if M is orientable and compact. In this case there is a pairing,

QM) x Q" F(M) — R,

(wl,wz)—>/a)1/\w2,
M
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that induces a nondegenerate pairing on the cohomology groups
H* (M) x H™* (M) — R.

This shows that the two vector spaces H*(M) and H" *(M) are dual to each other
and in particular have the same dimension.

When M is endowed with a Riemannian metric g we also obtain an adjoint
8 = V* to the differential (see proposition 2.2.8 and section 2.2.2.2). Specifically,

sk QM vy — QFm)

is adjoint to d* via the formula

/g(é’ka)l,a)z)vol:/g(a)l,dka)z)vol.
M M
It is often convenient to use the notation
(T, T,) ! / (T, T,) vol
) = , vol.
1,42 volM Mg 1,42

This defines an inner product on any space of tensors of the same type. The map §
is also the adjoint of d with respect to this normalized inner product.
The Laplacian on forms, also called the Hodge Laplacian, is defined as
A QM) — QFm),
Aw = (d§ + dd)w.
In the next section we shall see that on functions the Hodge Laplacian is the

negative of the previously defined Laplacian, hence the need for the slightly different
symbol A instead of A.

Lemma 9.1.1. Aw = 0ifand only ifdo = 0 and §w = 0. In particular, v = 0, if
Aw = 0and w = db.

Proof. The proof just uses that the maps are adjoints to each other:

(Aw,w) = (déw, w) + (bdw, w)
= (bw,dw) + (dw, dw).

Thus, Aw = 0 implies (§w, dw) = (dw,dw) = 0, which shows that §o = 0 and
dw = 0. The opposite direction is obvious.

Note that when v = df and Aw = 0, then §d6 = 0, which in turn shows that
(w,w) = (6,8d0) = 0. O
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We can now introduce the Hodge cohomology:
HEM) = {w e Q"M) | Aw = 0}.
Theorem 9.1.2 (Hodge, 1935). The natural inclusion map S#*(M) — H*(M) is
an isomorphism.

Proof. The fact that #*(M) — H*(M) is well-defined and injective follows from
lemma 9.1.1. To show that it is surjective requires a fair bit of work that is standard
in the theory of partial differential equations (see [99] or [92]). Some of the results
we prove later will help to establish part of this result in a more general context (see
exercises 9.6.4 and 9.6.5). The essential idea is the claim; since A is self-adjoint
there is an orthogonal decomposition

QY(M) = imA @ kerA = imA @ X (M).

If o € QF, then we can write ® = d§6 + 8§d6 + &, where A® = 0. When
in addition dw = 0 it follows that Adf = dddf = 0. Since d6 is also harmonic
it follows that §d6 = 0. In particular, w = dé6 + & and @ represents the same
cohomology class as . O

9.2 1-Forms

We shall see how Hodge theory can be used to get information about the first Betti
number b; (M) = dim.s#' (M). In the next section we generalize this to other forms
and tensors.

9.2.1 The Bochner Formula

Let 6 be a harmonic 1-form on (M, g) and f = ; |9|2. To get a better feel for this
function consider the vector field X field dual to 6, i.e., 6(v) = g(X,v) for all v.
Then

f=31007 = IXI = ;000

Proposition 9.2.1. If X and 6 are related by 6 (v) = g (v, X), then

(1) v+ VX is symmetric if and only if d6 = 0 and
(2) divX = —66.

Proof. Recall that

dO(V, W) + (Lxg) (V, W) = 2g (VvX, W).
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Since Lxg is symmetric and d is skew-symmetric the result immediately follows.
The second part was proven in proposition 2.2.7. O

Therefore, when 6 is harmonic, then divX = 0 and VX is a symmetric (1, 1)-
tensor.

We present the Bochner formula for closed 1-forms formulated through vector
fields.

Proposition 9.2.2. Let X be a vector field so that VX is symmetric (i.e. correspond-
ing 1-form is closed). If f = é |X|2 and X is the gradient of u near p, then

1)

Vf = VxX.
(2)
Hessf (V, V) = Hess’u (V, V) + (VxHessu) (V,V) + R (V,X,X,V)
= |VyXP + ¢ (V2,X,V) + R(V,X,X,V)
(3)

Af = |Hessu|* + DxAu + Ric (X, X)
= |VX[* 4+ DxdivX + Ric (X, X)
Proof. For (1) simply observe that
g(Vf.V) = Dy, IXI" = g(VvX, X) = g(VxX. V).
(2) is a direct consequence of theorem 3.2.2 applied to the function u.
For (3) take traces in (2). As in the proof of proposition 8.2.1 this gives us the
first and third terms. The second term comes from commuting traces and covariant

derivatives. Specifically, either X|, = 0 or E; can be chosen to parallel along X. In
either case

Y 8 (VipX.E) =) (VxHessu) (E;. E)

= Dx Y Hessu (E;. E;)
= DxAM. d

9.2.2 The Vanishing Theorem

We can now easily establish the other Bochner theorem for 1-forms.
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Theorem 9.2.3 (Bochner, 1948). If (M, g) is compact and has Ric > O, then every
harmonic 1-form is parallel.

Proof. Suppose w is a harmonic 1-form and X the dual vector field. Then proposi-
tion 9.2.2 implies

A (; |X|2) = |VX]? + Ric(X, X) > 0,

since divX = Au = 0. The maximum principle then shows that é |X|> must be
constant and |[VX| = 0. O

Corollary 9.2.4. If (M, g) is as before and furthermore has positive Ricci curvature
at one point, then all harmonic 1-forms vanish everywhere.

Proof. Since we just proved Ric(X, X) = 0, we must have that X|, = 0 if the Ricci
tensor is positive on 7,M. But then X = 0, since X is parallel. O

Corollary 9.2.5. If (M, g) is compact and satisfies Ric > 0, then by(M) < n =
dimM, with equality holding if and only if (M, g) is a flat torus.

Proof. We know from Hodge theory that b; (M) = dim.7#’' (M. Now, all harmonic
1-forms are parallel, so the linear map: J#'(M) — T[’," M that evaluates w at p is
injective. In particular, dim.2#! (M) < n.

If equality holds, then there are n linearly independent parallel fields E;, i =
1,...,n. This clearly implies that (M, g) is flat. Thus the universal covering is R”
with 7y (M) acting by isometries. Now pull the vector fields E;, i = 1,...,n, back
to Ei, i = 1,...,n, on R". These vector fields are again parallel and therefore
constant vector fields. This means that we can think of them as the usual Cartesian
coordinate vector fields 9;. In addition, they are invariant under the action of 71 (M),
i.e., for each F € m; (M) we have DF (8i|p) = Oilrp), I = 1,...,n. But only
translations leave all of the coordinate fields invariant. Thus, 7r; (M) consists entirely
of translations. This means that r; (M) is finitely generated, Abelian, and torsion
free. Hence T' = ZF for some k. To see that M is a torus, we need k = n. If
k < n, then Z* generates a proper subspace of the space of translations and can’t act
cocompactly on R". If k > n, then ZF can’t act discretely on R”". Thus, it follows
that I' = Z" and generates R”. O

9.2.3 The Estimation Theorem

The goal is to generalize theorem 9.2.3 to manifolds with a negative lower bound
for the Ricci curvature. The techniques were first developed by P. Li in the late *70s
and then improved by Gallot to give the results we present. Gallot’s contribution
was in part to obtain a suitable bound for Sobolev constants as in theorem 7.1.13.
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We start with a very general analysis lemma. Assume we have a compact
Riemannian manifold (M, g) and a vector bundle E — M where the fibers are
endowed with a smoothly varying inner product and the dimension of the fibers
is m. Sections of this bundle are denoted I'" (E) and have several natural norms

N = max |§ (X
Islloe = max s ()]

1

1 p 1 p

volM |s|” vol | .
M

The normalization is consistent with earlier definitions and guarantees that [|s||,
increases to ||s||o.- Now fix a finite dimensional subspace V C I" (E). All of the
norms are then equivalent on this space and we can define

s,

C(V) = max ”S”°°.
sev—{0} |5,

The dimension of V can be estimated by this constant and the dimension of the
fibers of E.

Lemma 9.2.6 (P. Li). With notation as above
dmV <m-C (V).

Proof. Note that V has a natural inner product
(S1 s Sz) = VollM / (S1 s Sz) vol
M

such that (s, s) = ||s||§. Select an orthonormal basis ¢, ..., e; € V with respect to
this inner product and observe that the function

!
f@=>le®
i=1

does not depend on the choice of orthonormal basis. Moreover,

o / fvol =1=dimV.
M

Let xo be the point where f is maximal. Consider the map V — E,, that evaluates
a section at xo. We can then assume that the basis is chosen so that the last [ — k
elements span the kernel. This implies that k < m and

dimV < f(x0) <k-C(V)
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since each section had unit L>-norm. This proves the claim. O

Next we extend the maximum principle to a situation where we can bound ||u|| o
in terms of |ul|,,.

Theorem 9.2.7 (Moser iteration). Let (M, g) be a compact Riemannian manifold
such that

llullyy = SUVully 4 llull,

for all smooth functions, where v > 1. If f : M — [0, 00) is continuous, smooth on
{f > 0}, and Af > —Af, then

A
lloo = exp (j“_l) Il

Proof. Since f is minimized on the set where it vanishes we can assume that all of
its derivatives vanish there. In fact, Af is nonnegative at those points both in the
barrier and distributional sense.

First note that Green’s formula implies

(P27 Af) = = (" df)
—(Qq—1) (f7df . df) .

This shows that

Idfe|l; = ¢* (f24~2df . df)

_ _ q2 (qu_l,Af)
2g—1 "
2

< 2;1_1 (f>71f)

2
_ q-A q 12
= 5 p I77IB.
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We can then use the Sobolev inequality to conclude that

1
A 2
), = S 1l + I < (Sq (o) + 1) I

and

1

Ay
IlfllzuqS(SQ(zq_l) +1) WVl

Letting ¢ = v¥ gives

—k

AN\
Hf“ka‘H = (Svk (Zl)k _ 1) + 1) ||f||2v" :

Consequently, by starting at k = 0 and letting k — oo we obtain

—k

00 A ! v
oo < ﬂ(sw(w_l) +1) Il

k=0

The infinite product is estimated by taking logarithms and using log (1 4+ x) < x

Together these results imply

Theorem 9.2.8 (Gromov, 1980 and Gallot, 1981). If M is a compact Riemannian
manifold of dimension n such that Ric > (n — 1) k and diam (M) < D, then there is
a function C (n, k- Dz) such that

b1 (M) < C (n,k-D?).

Moreover, limy—o C (n,&) = n. In particular, there is € (n) > 0 such that when
k-D?> > —g(n), then by (M) < n.
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Proof. Gromov’s proof centered on understanding how covering spaces of M
control the Betti number. Gallot’s proof has the advantage of also being useful in
a wider context as we shall explore below.

The goal is clearly to estimate dim .7#’'. Lemma 9.2.6 implies that

dims#"' <n-C(#"),
So we have to estimate the ratios ”lﬁllﬁ’; . To do so consider f = |w|. This function is
smooth except possibly at points where w = 0, which also happen to be minimum
points for f. Note that

24df = df* = 2g (Vo) < 2|Volf

so we obtain Kato’s inequality df < |Vw|. If X is the dual vector field to w the
Bochner formula implies

1 +7AF = AP

= |Vo|* + Ric (X, X)
> |Vol* + (n— 1) kf>.

It follows by Kato’s inequality that Af > (n — 1) kf. Theorem 9.2.7 then shows that

SV ”"”) £l

flloo < exp( o1

Since Wles — lolloo
Il = ol

we have proven that

Jv—1

where S = D-C (n sz) is estimated in theorem 7.1.13 and proposition 7.1.17. The
specific nature of the bound proves the theorem. O

9.3 Lichnerowicz Laplacians

We introduce a natural class of Laplacians and show how the Bochner technique
works for these operators. In the next section we then show that there are several
natural Laplacians of this type including the Hodge Laplacian.
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9.3.1 The Connection Laplacian

We start by collecting the results from the previous section in a more general context.
Fix a tensor bundle E — M with m-dimensional fibers. This could the bundle
whose sections are p-forms, symmetric tensors, curvature tensors etc.
First the vanishing result.

Proposition 9.3.1. Let (M, g) be a Riemannian manifold and T € T (E) a section
such that g (V*VT,T) < 0. If |T| has a maximum, then T is parallel.

Proof. Note that
AMTP = |VT|” - g (V*VT,T) > 0.

In case |T| has a maximum we can apply the maximum principle to the function
|T|2 and conclude that it must be constant and that T itself is parallel. O

Next we present the estimating result.

Theorem 9.3.2 (Gallot, 1981). Assume (M, g) is a compact manifold that satisfies
the assumption of theorem 9.2.7. Let V C " (M) be finite dimensional. If

g (V*VT.T) < A|T)?

forall T €V, then

SV A
dimV§m~exp<\/\/ Ul).
U_

Proof. This is proven as in theorem 9.2.8 using f = |T|. Instead of the Bochner
formula we simply use the equation

\df 1> +fAf = LAf? = VTP — g (V*VT, T)

to conclude via Kato’s inequality that Af > —Af. We can then finish the proof in
the same fashion. O

9.3.2 The Weitzenbick Curvature
The Weitzenbock curvature operator on a tensor is defined by

Ric(T) (X1..... X)) = Y _ (R(e:. X)) T) (X1.....¢1.... Xk).
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We use the Ricci tensor to symbolize this as it is the Ricci tensor when evaluated on
vector fields and 1-forms. Specifically:

Ric (w) (X) = Z (R (ej,X) a)) (ej) =—-w (ZR (ej,X) ej) = w (Ric (X)) .

Often it is referred to as W, but this can be confused with the Weyl tensor.
The Lichnerowicz Laplacian is defined as

ALT = V*VT + cRic (T)

for a suitable constant ¢ > 0. We shall see below that the Hodge Laplacian on forms
is of this type with ¢ = 1. In addition, interesting information can also be extracted
for symmetric (0, 2)-tensors as well as the curvature tensor via this operator when
we use ¢ = ;

The Bochner technique works for tensors that lie in the kernel of some Lich-
nerowicz Laplacian

ALT = V*VT + cRic (T) = 0.

The idea is to use the maximum principle to show that T is parallel. In order to apply
the maximum principle we need g (V*VT,T) < 0 which by the equation for T is
equivalent to showing g (Ric (T),T) > 0.

The two assumptions A; 7 = 0 and g (Ric (T), T) > 0 we make about T require
some discussion.

The first assumption is usually implied by showing that the Lichnerowicz
Laplacian has an alternate expression such as we have seen for the Hodge Laplacian.
The fact that A;T = 0 might come from certain natural restrictions on the tensor
or even as a consequence of having nontrivial topology. In the next section several
natural Laplacians are rewritten as Lichnerowicz Laplacians.

The second assumption g (Ric (7),T) > 0, is often difficult to check and in
many cases it took decades to sort out what curvature assumptions gave the best
results. The goal in this section is to first develop a different formula for Ric (7))
and second to change 7 in a suitable fashion so as to create a significantly simpler
formula for g (Ric (T) , T'). This formula will immediately show that g (Ric (T"), T)
is nonnegative when the curvature operator is nonnegative. It will also make it very
easy to calculate precisely what happens when T is a (0, 1)- or (0, 2)-tensor, a task
we delay until the next section. It is worthwhile mentioning that the original proofs
of some of these facts were quite complicated and only came to light long after the
Bochner technique had been introduced.
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9.3.3 Simplification of Ric (T)

Since Ry y : T,M — T,M is always skew-symmetric it can be decomposed using an
orthonormal basis of skew-symmetric transformations &, € so (TPM). A tricky
point enters our formulas at this point. It comes from the fact that if v and w
are orthonormal, then v A w € AZTPM is a unit vector, while the corresponding
skew-symmetric operator, a counter clockwise rotation of /2 in span {v, w}, has
Euclidean norm /2. To avoid confusion and unnecessary factors we assume that
so (T,M) is endowed with the metric that comes from A?T,M. With that in mind
we have

Rxy =) g(Rxy. Eq) Eq
=Y §(R(XAY),Eo)Eq
=) 2R (E).XAY)E,
=—) g(R(Es)X.Y) Eq.

This allows us to rewrite the Weitzenbock curvature operator.

Lemma 9.3.3. For any (0, k)-tensor T
Ric (T) = = ) " R(8) (EuT).
ALT =V*VT —¢ Y R(Eq) (Eal).

Moreover; Ric is self-adjoint.

Proof. This is a straightforward calculation:

Ric (T) (X1.....X) = Y (R(e.X:)T) (X1..... ... Xk)
= =Y ¢ (R(B) 6. X)) (EaT) (Xis-.. . €ue. .. Xe)
== (BaD) (X1.....¢ (R(Ee) €. Xi) €. ... Xa)
=Y (EaD) (X1.....R(Eo) Xi..... X0)

==Y (R(Ey) (BoT)) Xi.... . Xino. . Xi)
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To check that Ric is self-adjoint select an orthonormal basis &, of eigenvectors for
R, ie., R(Ey) = Ay Eg. In this case,

gRic(T),S) ==Y g(R(Ea) (E.T).5)
—Y g (Eq (BaT),S)

> " Xag (BoT. Eab)

which is symmetric in 7 and S. O

At first sight we have replaced a simple sum over j and i with a possibly more
complicated sum. The next result justifies the reformulation.

Corollary 9.34. If R > 0, then g Ric(T),T) > 0. More generally, If R > k,
where k < 0, then g Ric (T),T) > kC |T|2, where C depends only on the type of
the tensor.

Proof. As above assume R (E,) = A, &, and note that

gRic(7).7) =Y Ay |EaT|” = kY |EaTl’.
This shows that the curvature term is nonnegative when k = 0. Clearly there is

a constant C > 0 depending only on the type of the tensor and dimension of the
manifold so that

CITP =) €T
When k < 0 this implies:
g Ric (T),T) = kC|T|*. u]

This allows us to obtain vanishing and estimation results for all Lichnerowicz
Laplacians on manifolds.

Theorem 9.3.5. IfR > k and diam < D, then the dimension of
V={T el (E)| AT = V*VT + cRic (T) = 0}
is bounded by

meexp (D€ (n407) ¥75°).

and when k = 0 all T € V are parallel tensors.
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9.4 The Bochner Technique in General

The goal in this section is to show that there are several natural Lichnerowicz
Laplacians on Riemannian manifolds.

9.4.1 Forms

The first obvious case is that of the Hodge Laplacian on k-forms as we already know
that harmonic forms compute the topology of the underlying manifold.

Theorem 9.4.1 (Weitzenbock, 1923). The Hodge Laplacian is the Lichnerowicz
Laplacian with ¢ = 1. Specifically,

Aw = (d§ + 8d) (w) = V*Vw + Ric (w) .

Proof. We shall follow the proof discovered by W. A. Poor. To perform the
calculations we need

S (Xa,.... X)) ==Y (Vgo) (EnX2..... X)),
do (Ko, X)) = Y (1) (vxlw)(xo,... x,,...,xk).

We this in mind we get
o (X1..... X)) = =Y (~1)"F! (v;i,ij) (E,-,Xl, oK ,xk)

== (Vhgo) Xio B X,

Sdo (X1, ..., X)) = —Z(VE]E] )(Xl,...,Xk)
Y (vﬁj,xiw) (E,-,Xl, X X)
— (V*V0) (X..... X))
+ 30 (VE®) (Koo B X))
Thus

Ao =V'Vo + Y (R(E.X) o) (Xi1.....E.....X)

= V*Vw + Ric (w) . a
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9.4.2 The Curvature Tensor

We show that a suitably defined Laplacian on curvature tensors is in fact
a Lichnerowicz Laplacian. This Laplacian is a symmetrized version of
(Vx (V*R)) (Y, Z, W) so as to make it have the same symmetries as R. It appears as
the right-hand side in the formula below.

Theorem 9.4.2. The curvature tensor R on a Riemannian manifold satisfies

(V*VR) (X.Y.Z, W) + JRic(R) (X,Y,Z, W)
= 1 (VxV*R) (Y.Z, W) — ] (VyV*R) (X.Z, W)
+1(VZ2V*R) (W.X,Y) — } (VwV*R) (Z.X.Y) .

Proof. By far the most important ingredient in the proof is that we have the second
Bianchi identity at our disposal. We will begin the calculation by considering the
(0,4)-curvature tensor R. Fix a point p, let X, Y, Z, W be vector fields with VX =
VY =VZ = VW = 0atp and let E; be a normal frame at p. Then

(V*VR) (X.Y,Z, W)

== Z (Véi,EiR) (X’ Yv Z, W)
i=1

=Y (V&xR) (Y.E.Z.W) + (V; yR) (E.. X.Z. W)
i=1

=Y (VigR) (Y.E.Z.W) + (Vi 5R) (Ei. X.Z. W)

i=1

+ Z (R (EHX) (R)) (Ys E,',Z, W) + (R (Eiv Y) (R)) (Eivxv Zs W)
i=1
= (VxV*R) (Y.Z,W) — (VyV*R) (X.Z, W)
—Y RE.X)(R) (E.Y.Z.W) + R(E..Y) (R) (X.E.Z.W).

i=1

Note that the last two terms are half of the expected terms in —Ric (R) (X, Y, Z, W).
Using that R is symmetric in the pairs X, Y and Z, W we then obtain

(V*VR) (X,Y,Z, W)
=3 (V*VR) (X.Y.Z,W) + ) (V*VR) (Z,W.X.Y)
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=5 ((VxV*R) (Y, Z,W) — (VyV*R) (X, Z, W))
+1 ((V2V*R) (W.X.Y) — (VwV*R) (Z.X.Y))

i=1

—} Y (R(E..Z) (R) (E. W.X.Y) + (R (E.. W) (R)) (Z.E+. X.Y)

i=1
=1 ((VxV*R) (Y.Z,W) — (VyV*R) (X, Z, W))
+1 ((V2V*R) (W.X,Y) — (VwV*R) (Z.X.Y))
—IRic(R) (X.Y.Z,W). 0

One might expect that, as with the Hodge Laplacian, there should also be terms
where one takes the divergence of certain derivatives of R. However, the second
Bianchi identity shows that these terms already vanish for R. In particular, R is
harmonic if it is divergence free: V*R = 0.

9.4.3 Symmetric (0, 2)-Tensors

Let i be a symmetric (0, 2)-tensor. If we consider the corresponding (1, 1)-tensor
H, then we have defined (dVH) (X,Y) = (VxH) (Y) — (VyH) (X). Changing the
type back allows us to define

d¥h(X,Y,Z) = (Vxh) (Y.Z) — (Vyh) (X, Z) .

In this form the definition is a bit mysterious but it does occur naturally in
differential geometry. Originally it comes from considering the second fundamental
II for an immersed hypersurface M"* — R"*! In this case the Codazzi-Mainardi
equations can be expressed as dVII = 0. Another natural situation is the Ricci
tensor where exercise 3.4.8 shows that

(aVRic) (X,Y.Z) = (V*R) (Z,X.Y).

This formula also has a counter part relating Schouten and Weyl tensors discussed
in exercise 3.4.26.

Using this exterior derivative we obtain a formula that is similar to what we saw
for forms and the curvature tensor.
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Theorem 9.4.3. Any symmetric (0, 2)-tensor h on a Riemannian manifold satisfies
(VxV*h) (X) + (V*dVh) (X.X) = (V*Vh) (X.X) + ) (Ric (b)) (X, X).
Proof. Observe that on the left-hand side the terms are
(VxV*h) (X) = — (Vg g h) (Ei. X)
and

(V*dVh) (X,X) = — (Vgd" h) (E., X, X)

o (Véi,Eih) (X’ X) + (Vé,‘,Xh) (EHX)

Adding these we obtain

(VxV*h) (X) + (V*dVh) (X, X)
= (V*Vh) (X.X) + (Vi xh) (E.X) — (V5 zh) (E. X)
= (V*Vh) (X.X) + (R(Ei.X) h) (E;. X).

Using that & is symmetric we finally conclude that
(R(E;,X)h) (Ei,X) = , (Ric (b)) (X, X),

thus finishing the proof. O

A symmetric (0,2)-tensor is called a Codazzi tensor if d¥h vanishes and
harmonic if in addition it is divergence free. This characterization can be simplified
slightly.

Proposition 9.4.4. A symmetric (0,2)-tensor is harmonic if and only if it is a
Codazzi tensor with constant trace.

Proof. In general we have that

(V*h) (X) = = (Vgh) (E;, X)
= —(Vgh) (X, E)
= — (Vxh) (. E) + (d"h) (X. E;. E))
= —Dx (trh) + (aVh) (X, E., E}).
Thus Codazzi tensors are divergence free if and only if their trace is constant. O

This shows that hypersurfaces with constant mean curvature have harmonic
second fundamental form. This fact has been exploited by both Lichnerowicz and
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Simons. For the Ricci tensor to be harmonic it suffices to assume that it is Codazzi,
but this in turn is a strong condition as it is the same as saying that the full curvature
tensor is harmonic.

Corollary 9.4.5. The Ricci tensor is harmonic if and only if the curvature tensor is
harmonic.

Proof. We know that the Ricci tensor is a Codazzi tensor precisely when the
curvature tensor has vanishing divergence (see exercise 3.4.8). The contracted
Bianchi identity (proposition 3.1.5) together with the proof of the above proposition
then tells us
2Dyscal = — (V*Ric) (X)
= Dy (trRic)
= Dy (scal).

Thus the scalar curvature must be constant and the Ricci tensor divergence free. 0O

9.4.4 Topological and Geometric Consequences

Theorem 9.4.6 (D. Meyer, 1971, D. Meyer-Gallot, 1975, and Gallot, 1981). Let
(M, g) be a closed Riemannian n-manifold. If the curvature operator is nonnegative,
then all harmonic forms are parallel. When the curvature operator is positive the
only parallel I-forms have | = 0, n. Finally when R > k and diam < D,

by (M) < (’l’) exp (D C (n.kD?) V/=kC).

Proof. The first statement is immediate given the Weitzenbdck formula for forms.
For the second part we note that when the curvature operator is positive, then the
formula

0 =g (Ric(®).0) =Y Ay|Ee0|’
shows that E,@ = O for all @. Hence by linearity Lo = 0 for all skew-symmetric

L. If we assume m < n and select L so that L (e;) = 0 fori < m, L(ey) = €p+t1,
then

0= (Lw)(er,...,en) = —w(e1,...,Cm—1,€mt1)-

Since the basis was arbitrary this shows that w = 0.
The last part follows from our general estimate from theorem 9.3.5. O
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We now have a pretty good understanding of manifolds with nonnegative (or
positive) curvature operator.

H. Hopf is, among other things, famous for the following problem: Does S? x §?
admit a metric with positive sectional curvature? We already know that this space
has positive Ricci curvature and also that it doesn’t admit a metric with positive
curvature operator. It is also interesting to observe that CP? has positive sectional
curvature but doesn’t admit a metric with positive curvature operator either. Thus,
even among 4-manifolds, there seems to be a big difference between simply
connected manifolds that admit Ric > 0, sec > 0, and R > 0. We shall in chapter 12
describe a simply connected manifold that has Ric > 0 but doesn’t even admit a
metric with sec > 0.

Manifolds with nonnegative curvature operator can in fact be classified (see
theorem 10.3.7). From this classification it follows that there are many manifolds
that have positive or nonnegative sectional curvature but admit no metric with
nonnegative curvature operator.

Example 9.4.7. We can exhibit a metric with nonnegative sectional curvature on
CP?#CP? by observing that it is an S' quotient of > x S>. Namely, let S act on the
3-sphere by the Hopf action and on the 2-sphere by rotations. If the total rotation on
the 2-sphere is 27k, then the quotient is S? x S? if k is even, and CP?#CP? if k is odd.
In all cases O’Neill’s formula tells us that the sectional curvature is nonnegative.
From the above-mentioned classification it follows, however, that the only simply
connected spaces with nonnegative curvature operator are topologically equivalent
to % x $2, §*, or CP2. These examples were first discovered by Cheeger but with a
very different construction that also lead to other examples.

The Bochner technique has found many generalizations. It has, for instance,
proven very successful in the study of manifolds with nonnegative scalar curvature.
Briefly, what happens is that spin manifolds admit certain spinor bundles. These
bundles come with a natural first-order operator called the Dirac operator. The
square of this operator has a Weitzenbock formula of the form

V*V + iscal.

This formula was discovered and used by Lichnerowicz (as well as I. Singer,
as pointed out in [107]) to show that a sophisticated invariant called the A-
genus vanishes for spin manifolds with positive scalar curvature. Using some
generalizations of this formula, Gromov-Lawson showed that any metric on a torus
with scal > 0 is in fact flat. We just proved this for metrics with Ric > 0. Dirac
operators and their Weitzenbock formulas have also been of extreme importance
in physics and 4-manifolds theory. Much of Witten’s work (e.g., the positive mass
conjecture) uses these ideas. Also, the work of Seiberg-Witten, which has had a
revolutionary impact on 4-manifolds, is related to these ideas.

In relation to our discussion above on positively curved manifolds, we should
note that there are still no known examples of simply connected manifolds that admit
positive scalar curvature but not positive Ricci curvature. This despite the fact that
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if (M, g) is any closed Riemannian manifold, then for small enough ¢ the product
(M x 8% g+ szds%) clearly has positive scalar curvature. This example shows that
there are non-simply connected manifolds with positive scalar curvature that don’t
admit even nonnegative Ricci curvature. Specifically, select your favorite surface
M? with by, > 4. Then b, (M2 X SZ) > 4 and therefore by Bochner’s theorem can’t
support a metric with nonnegative Ricci curvature.

Finally, we present a more geometric result for the curvature tensor. It was first
established in [98], and then with a modified proof in [48]. The proof is quite simple
and based on the generalities developed above. In chapter 10 we will also show
that this result basically characterizes compact symmetric spaces as they all have
nonnegative curvature operator.

Theorem 9.4.8 (Tachibana, 1974). Let (M, g) be a closed Riemannian manifold.
If the curvature operator is nonnegative and V*R = 0, then VR = 0. If in addition
the curvature operator is positive, then (M, g) has constant curvature.

Proof. We know from above that
V*VR + JRic(R) = 0.

So if the curvature operator is nonnegative, then VR = 0.

Moreover, when the curvature operator is positive it follows as in the case of
forms, that LR = O for all L € so (TPM). This condition implies, as we shall
show below, that R (x,y,y,z) = 0 and R (x,y,v,w) = 0 when the vectors are
perpendicular. This in turn shows that any bivector x Ay is an eigenvector for ‘R, but
this can only happen if SR = kI for some constant k.

To show that the mixed curvatures vanish first select L so that L (y) = 0 and
L (x) = z, then

0=LR(x.y.y.x) = —R(L(x).y.y.X) =R (x.y,y.L(x)) = =2R (x.y.y.2) .
Polarizing in y = v + w, then shows that
R(x,v,w,2) = =R (x,w,v,2).
The Bianchi identity then implies

R(x,v,w,2) = R(w,v,x,2) —R (W, x,v,2)
= —2R(w,x,v,2)
= 2R (x,w,v,2)
= —2R (x,v,w,2)

showing that R (x, v, w,z) = 0. O
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9.4.5 Simplification of g (Ric(T),T)

Finally we mention an alternate method that recovers the formula for 1-forms and
also gives a formula for general (0, 2)-tensors.

Having redefined the Weitzenbock curvature of tensors, we take it a step further
and also discard the orthonormal basis E,,. To assist in this note that a (0, k)-tensor T’
can be changed to a tensor T with values in A2TM. Implicitly this works as follows

g (L, (X, ... ,Xk)) = (LT) (Xy,...,X;) forall L € s0 (TM) = A>TM.
Lemma 9.4.9. For all (0, k)-tensors T and S
¢ (Ric (T),S) = g(m(f) S) .
Proof. This is a straight forward calculation
g Ric(7).5) = Y g (E.T.R(Eq)S)
=Y (BuD) (ir.-. - ;) (R(Ee)S) (€i. .. €i)
= Zg(Ea,f‘(eil,...,eik))g (R(Ea),b:(eil, .. .,eik))

This shows again that Ric is self-adjoint as R is self-adjoint on A2TM. O

This new expression for g (Ric (7),T) is also clearly nonnegative when the
curvature operator is nonnegative. In addition, it also occasionally allows us to show
that it is nonnegative under less restrictive hypotheses.

Proposition 9.4.10. If o is a I-form and X the dual vector field, then
0@Z)y=XNZ
and

¢ (R (@), d) = Ric (X, X).
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Proof. In this case

(Lo) (2) = —o (L(2))
=—gX,L(2)
= —¢(L.ZAX)

)
& (@2Z)=XAZ.
This shows that the curvature term in the Bochner formula becomes
—Y 2(R(Ba) (Bow), @) = ) g (B, R(Ey) 0)
= 26 (E). R (& (E)))
=Y gR(E AX).EAX)

=Y R(X.E.E.X)
= Ric (X, X). O

More generally, one can show that if @ is a p-form and
g(QX1, ... X-1).X) =0 (X1.....X,),
then
p . A
& (X X) =Y (17X AQ (XIXX,) .
i=1

Moreover, note that ® can only vanish when @ vanishes.
Next we focus on understanding Ric (}Az) for (0, 2)-tensors. Given a (0, 2)-tensor

h there is a corresponding (1, 1)-tensor called H
h(z,w) = g(H (). w).

The adjoint of H is denoted H*.

Proposition 9.4.11. With that notation
hzw)=H@) Aw—zAH" (W)

and h = 0 if and only if h = Ag.
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Proof. We start by observing that

(Lh) (z,w) = —h (L (z) ,w) —h(z,L(w))
=—g(H(L().,w)—g(H (), LW))
=—g(L@),H" (W) —g(LW), H{)
=—g(L.zAH" (W) —g(L.wAH(2))
=g(L.H@AwW—zAH*(W)).

Note that if h = Agthen H = Al = H*, thus 7 = 0. Next assume that 7 = 0. Then
for all z, w we have

IAH*(HWw)) =H(z) AH (w)
—H (w) AH (2)
=-wAH"(H ()

= H* (H (z)) A w.

But that can only be true if H*H = A%l and H = Al O

This indicates that we have to control curvatures of the type
g(i)"u(H(z) Aw—2zAH* (W), H () Aw—2zAH* (w)).

If H is normal, then it can be diagonalized with respect to an orthonormal basis in
the complexified tangent bundle. Assuming that H (z) = Az and H (w) = uw where
z,w € T,M ® C are orthonormal we obtain

(%(H(z)/\w—z/\H* w)).H(@) Aw—zAH* (w)) = |A—ﬂ|2g(9{(z/\w),z/\w).

The curvature term g (i)"u zAW),ZA w) looks like a complexified sectional
curvature and is in fact called the complex sectional curvature. It can be recalculated
without reference to the complexification. If we consider z = x+iyand w = u+iv,
x,y,u,v € TM, then

SREAW ,ZAW) =gPR(XAU—YAV),XAU—YAD)
+sREAV+YAU),XAV+YAU)
=gAR@Au,xAu)+g(RyAV),yAD)
Fe(RxAV),xAV)+gROG AU,y AU
28(RxAu),yAV)+28(R(xAV),yA W)
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=R(x,u,u,x) + R(y,v,v,y) + R(x,v,v,x) + R(y,u,u,y)
+2R (x,u,y,v) — 2R (x,v,y, u)

=R(x,u,u,x) + R(y,v,v,y) + R(x,v,v,x) + R(y,u,u,y)
2R, y,x,u) + R (x,v,y,u))

=R(x,u,u,x) + R(y,v,v,y) + R(x,v,v,x) + R(y,u,u,y)
+2R (y,x, v, 1)

=R, u,u,x) +R(y,v,v,y) + R(x,v,v,x) + R(y,u,u,y)
+2R (x,y,u,v) .

The first line in this derivation shows that complex sectional curvatures are
nonnegative when Y& > 0. Thus we see that it is weaker than working with the
curvature operator. On the other hand it is stronger than sectional curvature.

There are three special cases depending on the dimension of spang {x,y, u, v}.
When y = v = 0 we obtain the standard definition of sectional curvature. When
X, y, u, v are orthonormal we obtain the so called isotropic curvature, and finally if
u = v we get a sum of two sectional curvatures

2R (x,u,u,x) + 2R (y,u,u,y)

also called a second Ricci curvature when x, y, u are orthonormal.

The next result is a general version of two separate theorems. Simons and Berger
did the case of symmetric tensors and Micallef-Wang the case of 2-forms.
Proposition 9.4.12. Let h be a (0, 2)-tensor such that H is normal. If the complex
sectional curvatures are nonnegative, then g (9"« (ﬁ) , il) > 0.

Proof. We can use complex orthonormal bases as well as real bases to compute
g (9% (fz) , fz) . Using that H is normal we obtain a complex orthonormal basis e; of

eigenvectors H (e¢;) = Aje; and H* (¢;) = Xje;. From that we quickly obtain
g (i)"t (ﬁ) ,fz) = Zg (9‘{ (iz (e,-, ej)) ,il (e,-, ej))
= Zg (i)‘{ (H (e)) nej—ei ANH* () . H (e;) A ej—e; AH* (ej)>

:Ziki—ij|2g(iﬁ(€i/\€j),€i/\€j). O

In the special case where H is self-adjoint the eigenvalues/vectors are real and we
need only use the real sectional curvatures. When H is skew-adjoint the eigenvectors
are purely imaginary unless they correspond to zero eigenvalues. This shows that
we must use the isotropic curvatures and also the second Ricci curvatures when M
is odd dimensional. However, in this case none of the terms involve real sectional
curvatures.
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These characterizations can be combined to show

Proposition 9.4.13. ¢ (9{ (il) ,il) > 0 for all (0, 2)-tensors on T,M if all complex

sectional curvatures on T,M are nonnegative.

Proof. We decompose h = h; + h, into symmetric and skew symmetric parts. Then

g (R (). 7) = (3 7). ) 8 (38 () o) 5 (% (7).

However,
g (R (k) ha) = 3 (R (A (ere) ha (erer))
==Y g (R(h(ere) (o))
~—e(3()-5)
So
(1 (3).8) = (3 (0) ) +£ (2 0)-)
and the result follows from the previous proposition. O

9.5 Further Study

For more general and complete accounts of the Bochner technique and spin
geometry we recommend the two texts [107] and [71]. The latter book also has
a complete proof of the Hodge theorem. Other sources for this particular result are
[65], [92], and [101].

For other generalizations to manifolds with integral curvature bounds the
reader should consult [46]. In there the reader will find a complete discussion on
generalizations of the above mentioned results about Betti numbers.
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9.6 Exercises

EXERCISE 9.6.1. Suppose (M", g) is compact and has b; = k. If Ric > 0, then the
universal covering splits:

(M, g) = (N, ]’l) X (Rk,an) .

Give an example where b; < n and (M , g) = (R", grn).

EXERCISE 9.6.2. Show directly that if E; is an orthonormal frame and V +— VyX
is symmetric, then Zi g (Vg X, VxE;) = 0 without assuming that E; are parallel in
the direction of X.

EXERCISE 9.6.3. Show that for an oriented Riemannian manifold: (imd"_l)J' =
kerd*™! and imd*~!' C (keré’k_l)J' in QF (M).

EXERCISE 9.6.4. Let (M", g) be a compact Riemannian manifold and £E — M
a tensor bundle. Let W2 (E) denote the Hilbert space completion of I' (E) with
square norm Z{;o | i, e.g.,if T € W2 (E), then T is defined as an element in
L? and its derivative VT as an L? tensor that satisfies (VT, VS) = (T, V*VS) for
all § € T (E). It follows that T' (E) C W*?2 (E) is dense. The Sobolev inequality
can be used to show that (oo W*? (E) = (Vo W (E) for all p < oco. The

techniques from section 7.1.5 can easily be adapted to show that a tensor T € W'
is Holder continuous when p > n (see also [60]). This in turn shows that I" (E) =

MNiso W2 (E).
(1) Show that for all T € T" (E) there is a commutation relationship

k
V*V (VAT) = VE(V*VT) = > CF (VIR @ V'T)
i=0

where C¥ (V¥7'R @ V'T) is a suitable contraction.

(2) Assume that T € W'? (E) and T' € W*2 (E) satisty (T, S) = (VT, VS) for all
S € T (E), ie., V¥*VT = T’ weakly, show that T € W**1.2 (E). Hint: Define
the weak derivatives V/*!T inductively using a relationship of the form:

1
(VT VITLS) = (VT VIS) + ) (CH (VTR ® V'T) . V'S).
i=0

(3) Conclude thatif 7/ € T' (E), then T € I (E) and V*VT =T'.

EXERCISE 9.6.5. Let (M", g) be a compact Riemannian manifold with diamM <
D, R > k, and E — M a tensor bundle with m-dimensional fibers and a
Lichnerowicz Laplacian A, . The goal is to establish the spectral theorem for Ay and
as a consequence obtain the orthogonal decomposition I' (E) = ker A; @ imA;.
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(1) Consider the Hilbert space completion W'? (E) of T" (E) as in exercise 9.6.4.
Show that the right-hand side in (A.T,S) = (VT,VS) + c¢(Ric(T),S) is
symmetric and well-defined for all T, S € W'?2 (E).

(2) Show that infreyi2 7),=1 (ALT,T) > cCk, where k < 0 and C is the constant
in corollary 9.3.4.

(3) Show that a sequence 7; C w2 (E), where ||T;|l, = 1 and (AT, T;)
is bounded, will have an L’-convergent subsequence that is also weakly
convergent in W2 (E). Hint: Use theorem 7.1.18.

(4) Consider a closed subspace V. C W!2 (E) that is invariant under A;. Show
that the infimum A = infrey =1 (ALT,T) is achieved by a T € V, then use
exercise 9.6.4 to show that 7 € I" (E) and AT = AT. Hint: Prove and use that

2 2 S 2 2
17Nz + IVTIl; = 11m1nf(||Ti||2 + ”VTL'HZ)
1—>00

if T; — T (weak convergence) in W' (E).

(5) Consider a finite dimensional subspace V C I' (E) that is spanned by eigen-
tensors T; with A;T; = A;T;. Show that dimV < mC (n, max; A;, C, Dzk).

(6) Show that all eigenspaces for A, are finite dimensional and that the set of
eigenvalues is discrete. Conclude that they can be ordered A; < A, < --- with
limi_,oo Ai = Q.

(7) Show that the eigenspaces for Ay are orthogonal and that their direct sum is
dense in I" (E).

(8) Show that I' (E) = ker Ay @ imA,. Hint: Use exercise 9.6.4.

EXERCISE 9.6.6. Let (M, g) be an n-dimensional Riemannian manifold that is
isometric to Euclidean space outside some compact subset K C M, i.e.,, M — K
is isometric to R"” — C for some compact set C C R”". If Ric, > 0, show that
M = R". Hint: Find a metric on the n-torus that is isometric to a neighborhood of
K C M somewhere and otherwise flat. Alternatively, show that any parallel 1-form
on R"” — C extends to a harmonic 1-form on M. Then apply Bochner’s formula to
show that it must in fact be parallel when Ric, > 0, and use this to conclude that the
manifold is flat.

EXERCISE 9.6.7. Let (M, g) be an Einstein metric. Show that all harmonic 1-forms
are eigen-forms for the connection Laplacian V*V.

EXERCISE 9.6.8. Given two vector fields X and Y on (M, g) such that VX and VY
are symmetric, develop Bochner formulas for Hess ; g(X,Y)and A ; gX,Y).

EXERCISE 9.6.9. For general tensors s; and s, of the same type show in analogy
with the formula

1
A2 Is|* = |Vs|* — g (V*Vs,s)
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that:
Ag (s1,82) = 2g (Vs1,Vs2) + g (V*Vsi,52) + g (51, V' Vs2) .

Use this on forms to develop Bochner formulas for inner products of such sections.
More generally consider the 1-form defined by w (v) = g (Vys1,s2) that
represents half of the differential of g (s1, s2) . Show that

—8w = g (Vs1,Vs2) — g (V* Vs, )

do (X,Y) = g(R(X,Y)sy,s) — g (Vxsy, Vysa) + g (Vysy, Vxsz) .

EXERCISE 9.6.10. Let (M, g) be n-dimensional.
(1) Show that

Lo =0

if L is skew-symmetric and o is an n-form.
(2) Whenn =2,

IR=0

for all skew-symmetric L.
(3) For general L

Lvol = tr (L) vol.

EXERCISE 9.6.11 (Simons). Let (M, g) be a compact Riemannian manifold with a
(0, 2)-tensor field A that is a symmetric Codazzi tensor with constant trace.

(1) Show that if sec > 0, then VA = 0.
(2) Moreover, if sec > 0, then & = ¢ - g for some constant c.
(3) If the Gauss equations

RX,Y,ZW)=hX,W)h(Y,Z2)—hX,Z)h(Y,W)
are satisfied and the trace of 4 vanishes, then
Ay |h? = | VAP = |h[*

EXERCISE 9.6.12. Let (M",g) 9> R"*! be an isometric immersion of a mani-
fold.

(1) Show that the second fundamental form II is a Codazzi tensor.
(2) Show Liebmann’s theorem: If (M, g) has constant mean curvature and nonneg-
ative second fundamental from, then (M, g) is a constant curvature sphere.
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On the other hand, Wente has exhibited immersed tori with constant mean
curvature (see Wente’s article in [51]).

EXERCISE 9.6.13 (Berger). Show that a compact manifold with harmonic curva-
ture and nonnegative sectional curvature has parallel Ricci curvature.

EXERCISE 9.6.14. Suppose we have a Killing field K on a closed Riemannian
manifold (M, g) . Assume that @ is a harmonic form.

(1) Show that Lxw = 0. Hint: Show that Lgw is also harmonic.

(2) Show that ixw is closed, but not necessarily harmonic.

(3) Show that all harmonic forms are invariant under Isog (M).

(4) Give an example where a harmonic form is not invariant under all of Iso (M).

EXERCISE 9.6.15. Let (M, g) be a closed Kihler manifold with Kihler form w, i.e.,
a parallel nondegenerate 2-form. Show

a)kza)/\---/\a)
- -_ -
k times

is closed but not exact by showing that w s proportional to the volume form.
Conclude that none of the even homology groups vanish.
EXERCISE 9.6.16. Let E — M be a tensor bundle.

(1) Let Q27 (M, E) denote the alternating p-linear maps from TM to E (note that
Q% (M,E) = T (E)). Show that Q* (M) acts in a natural way from both left and
right on Q* (M, E) by wedge product.

(2) Show that there is a natural wedge product

QP (M,Hom (E,E)) x Q4 (M,E) — QT (M,E).
(3) Show that there is a connection dependent exterior derivative
dv QP (M,E) —> Q" (M,E)

with the property that it satisfies the exterior derivative version of Leibniz’s rule

with respect to the above defined wedge products, and such that for s € " (E)

we have: dVs = Vs.
(4) Thinkof R(X,Y)s € Q2 (M,Hom (E, E)) . Show that:

(dVOdV)(s) =RAs

for any s € QF (M, E) and that Bianchi’s second identity can be stated as
d"R = 0.
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EXERCISE 9.6.17. If we let E = TM in the previous exercise, then
Q' (M, TM) = Hom (TM, TM)

will simply consist of all (1, 1)-tensors.

(1) Show that in this case d¥s = 0 if and only if s is a Codazzi tensor.

(2) The entire chapter seems to indicate that whenever we have a tensor bundle E
and an element s € QP (M, E) with d¥s = 0, then there is a Bochner type
formula for s. Moreover, when in addition s is “divergence free” and some sort
of curvature is nonnegative, then s should be parallel. Can you develop a theory
in this generality?

(3) Show that if X is a vector field, then VX is a Codazzi tensor if and only if
R (-,-) X = 0. Give an example of a vector field such that VX is Codazzi but X
itself is not parallel. Is it possible to establish a Bochner type formula for exact
tensors like VX = dVX even if they are not closed?

EXERCISE 9.6.18 (Thomas). Show that in dimensions n > 3 the Gauss equations
(R = S AS) imply the Codazzi equations (dVS = 0) provided detS # 0. Hint: use
the second Bianchi identity and be very careful with how things are defined. It will
also be useful to study the linear map

Hom (A’V,V) — Hom (A’V,A%V),
T—TAS

for alinear map S : V — V. In particular, one can see that this map is injective only
when the rank of S is > 4.



Chapter 10
Symmetric Spaces and Holonomy

In this chapter we give an overview of (locally) symmetric spaces and holonomy.
Most standard results are proved or at least mentioned. We give a few explicit
examples, including the complex projective space, in order to show how one
can compute curvatures on symmetric spaces relatively easily. There is a brief
introduction to holonomy and the de Rham decomposition theorem. We give a few
interesting consequences of this theorem and then proceed to discuss how holonomy
and symmetric spaces are related. Finally, we classify all compact manifolds with
nonnegative curvature operator.

As we have already seen, Riemann showed that locally there is only one
constant curvature geometry. After Lie’s work on “continuous” groups it became
clear that one had many more interesting models for geometries. Next to constant
curvature spaces, the most natural type of geometry to try to understand is that of
(locally) symmetric spaces. One person managed to take all the glory for classifying
symmetric spaces; Elie Cartan. He started out in his thesis with cleaning up and
correcting Killing’s classification of simple complex Lie algebras and several years
later all the simple real Lie algebras. With the help of this and many of his
different characterizations of symmetric spaces, Cartan, by the mid 1920s had
managed to give a complete (local) classification of all symmetric spaces. This was
an astonishing achievement even by today’s deconstructionist standards, not least
because Cartan also had to classify the real simple Lie algebras. This in itself takes
so much work that most books on Lie algebras give up after having settled the
complex case.

After Cartan’s work, a few people worked on getting a better conceptual
understanding of some of these new geometries and also on offering a more global
classification. Still, not much happened until the 1950s, when people realized a
interesting connection between symmetric spaces and holonomy: The de Rham
decomposition theorem and Berger’s classification of holonomy groups. It then
became clear that almost all holonomy groups occurred for symmetric spaces
and consequently gave good approximating geometries to most holonomy groups.
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An even more interesting question also came out of this, namely, what about those
few holonomy groups that do not occur for symmetric spaces? This is related to
the study of Kihler manifolds and some exotic geometries in dimensions 7 and 8.
The Kihler case seems to be quite well understood by now, not least because of
Yau’s work on the Calabi conjecture. The exotic geometries have only more recently
become better understood with D. Joyce’s work.

10.1 Symmetric Spaces

There are many ways of representing symmetric spaces. Below we shall see how
they can be described as homogeneous spaces, Lie algebras with involutions, or by
their curvature tensor.

10.1.1 The Homogeneous Description

We say that a Riemannian manifold (M, g) is a symmetric space if for each p € M
the isotropy group Iso, contains an isometry A, such that DA, : T,M — T,M
is the antipodal map —/. Since isometries preserve geodesics, any geodesic c (7)
with ¢ (0) = p has the property that: A, o ¢ (f) = ¢ (—1). This quickly shows that
symmetric spaces are homogeneous and hence complete. Specifically, if two points
are joined by a geodesic, then the symmetry in the midpoint between these points
on the geodesic is an isometry that maps these points to each other. Thus, any two
points that can be joined by a broken sequence of geodesics can be mapped to each
other by an isometry. This shows that the space is homogeneous.

A homogeneous space G/H = Iso/Iso, is symmetric provided that the symmetry
A, exists for just one p. In this case we can use A, = go A, o g~!, where g
is an isometry that takes p to g. This means, in particular, that any Lie group G
with biinvariant metric is a symmetric space, as g — g~ ! is the desired symmetry
around the identity element. Tables 10.1, 10.2, 10.3, 10.4 list some of the important
families of homogeneous spaces that are symmetric. They always come in dual
pairs of compact and noncompact spaces. There are many more families and several
exceptional examples as well.

Table 10.1 Compact Groups

group rank dim
SUmn+1) n n(n—+2)
SO@2n+1) n n(2n+1)
Sp (n) n n(2n+1)
SO (2n) n n(2n—1)
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Table 10.2 Noncompact Analogues of Compact
Groups

(complexified group)/group rank dim

SL(n+1,C)/SU(n+1) n n(n+2)
SO(2n+1,C)/SOQ2n+1) n n(2n+1)
Sp (n,C) /Sp (n) n n(2n+1)
SO (2n,C) /SO (2n) n n(n—1)
Table 10.3 Compact Homogeneous Spaces
Iso Iso, dim rank description
SO(n+1) SO(n) n 1 Sphere
O(n+1) O@Mmx{l,—1} n 1 RP"
Umr+1) UmxU() 2n 1 cpt
Sp(n+1) Sp(n) xSp(l) 4n 1 HP"
Fy Spin (9) 16 1 0l
SO(p+¢q) SO() xSO(g) pg min (p,q) Real Grassmannian
SUp+¢q) SU@P)xU(g) 2pq min (p,q) Complex Grassmannian
SU (n) SO (n) (=1 n—1 R™s in C"
Table 10.4 Noncompact Homogeneous Spaces
Iso Iso, dim rank description

SO(n,1) SO () n 1 Hyperbolic space

O 1) OMmx{l,—-1} n 1 Hyperbolic RP"

U(n,1) U(n) xU(1) 2n 1 Hyperbolic CP"

Sp(n,1)  Sp(n) xSp(1) 4n 1 Hyperbolic HP"

F 2 Spin (9) 16 1 Hyperbolic OP?

SO(p,qg) SO(p) xSO(q) pg min (p,q) Hyperbolic Grassmannian
SU(p,.q9) S(Up) xU(g) 2pq min (p,q) Complex hyperbolic Grassmannian
SL(n,R) SO (n) (=12 n—1 Euclidean structures on R”

Here Spin (n) is the universal double covering of SO (n) for n > 2. We also have
the following special identities in low dimensions:

SO0(2)=U(),
Spin(3) = SU(2) =Sp (1),
Spin (4) = Spin (3) x Spin (3).
Note that all of the compact examples have sec > 0 by O’Neill’s formula (see
theorem 4.5.3). It also follows from this formula that all the projective spaces
(compact and noncompact) have quarter pinched metrics, i.e., the ratio between the

smallest and largest sectional curvatures is 411 (see also section 4.5.3). These remarks
are further justified below.
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In the tables there is a column called rank. This is related to the rank of a Lie
group as discussed in section 8.3. Here, however, we need a rank concept for more
general spaces. The rank of a geodesic ¢ : R — M is the dimension of parallel
fields E along c such that R (E (), ¢ (f)) ¢ (f) = 0 for all ¢. The rank of a geodesic
is, in particular, always > 1. The rank of a Riemannian manifold is defined as the
minimum rank over all of the geodesics in M. For symmetric spaces the rank can
be computed from knowledge of Abelian subgroups in Lie groups. For a general
manifold there might naturally be metrics with different ranks, but this is actually
not so obvious. Is it, for example, possible to find a metric on the sphere of rank
> 1?7 A general remark is that any Cartesian product has rank > 2, and also many
symmetric spaces have rank > 2. It is unclear to what extent other manifolds can
also have rank > 2. All of the rank 1 symmetric spaces are listed in tables 10.3
and 10.4. The compact ones are also known as CROSSes.

10.1.2 Isometries and Parallel Curvature

Another interesting property for symmetric spaces is that they have parallel
curvature tensor. This is because the symmetries A, leave the curvature tensor and
its covariant derivative invariant. In particular, we have

DA, (VxR) (Y,Z,W)) = (VDA,,XR) (DA,Y.DA,Z,DA,W),
which at p implies

—(VxR) (Y, Z, W) = (VxR) (=Y, ~Z,=W)
= (VxR) (Y.Z, W).

Thus, VR = 0. This almost characterizes symmetric spaces.

Theorem 10.1.1 (Cartan). If (M, g) is a Riemannian manifold with parallel cur-
vature tensor, then for each p € M there is an isometry A, defined in a neighborhood
of pwith DA, = —I on T,M. Moreover, if (M, g) is simply connected and complete,
then the symmetry is defined on all of M, and the space is symmetric.

Proof. The global statement follows from the local one using an analytic continu-
ation argument as in the proof of theorem 5.6.7 and the next theorem below. Note
that for the local statement we already have a candidate for a map. Namely, if ¢
is so small that exp, : B(0,&) — B(p,¢) is a diffeomorphism, then we can just
define A, (x) = —x in these coordinates. It remains to see why this is an isometry
when we have parallel curvature tensor. Equivalently, we must show that in these
coordinates the metric has to be the same at x and —x. To this end we switch to polar
coordinates and use the fundamental equations relating curvature and the metric.
The claim follows if we can prove that the curvature tensor is the same when we go
in opposite directions. To check this, first observe that at p
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R(¢,v)v=R(,—v)(-v).
So the curvatures start out being the same. If 9, is the radial field, we also have
(Vy,R) = 0.

Thus, the curvature tensors not only start out being equal, but also satisfy the same
simple first-order equation. Consequently, they remain the same as we go equal
distance in opposite directions. O

A Riemannian manifold with parallel curvature tensor is called a locally symmet-
ric space.

It is worth mentioning that there are left-invariant metrics that are not locally
symmetric. The Berger spheres (¢ # 1) and the Heisenberg group do not have
parallel curvature tensor. In fact, as they are 3-dimensional they can’t even have
parallel Ricci tensor.

With very little extra work we can generalize the above theorem on the existence
of local symmetries. Recall that in the discussion about existence of isometries with
a given differential prior to theorem 5.6.7 we decided that they could exist only when
the spaces had the same constant curvature. However, there is a generalization to
symmetric spaces. We know that any isometry preserves the curvature tensor. Thus,
if we start with a linear isometry that preserves the curvatures at a point, then we
should be able to extend this map in the situation where curvatures are everywhere
the same. This is the content of the next theorem.

Theorem 10.1.2 (Cartan). Suppose we have a simply connected symmetric space
(M, g) and a complete locally symmetric space (N, g) of the same dimension. Given
a linear isometry L : T,M — T,N such that

L (R® (x,y)z) = R® (Lx,Ly) Lz

forall x,y,z € T,M, there is a unique Riemannian isometry F : M — N such that
D,F = L.

Proof. The proof of this is, as in the constant curvature case, by analytic continua-
tion. So we need only find these isometries locally. Given that there is an isometry
defined locally, we know that it must look like

F =exp,oLo exp;1 .

To see that this indeed defines an isometry, we have to show that the metrics in
exponential coordinates are the same via the identification of the tangent spaces
by L. As usual the radial curvatures determine the metrics. In addition, the
curvatures are parallel and satisfy the same first-order equation. We assume that
initially the curvatures are the same at p and g via the linear isometry. But then
they must be the same in frames that are radially parallel around these points.
Consequently, the spaces are locally isometric. O
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This result shows that the curvature tensor completely characterizes the symmet-
ric space. It also tells us what the isometry group must be in case the symmetric
space is simply connected. This will be investigated further below.

10.1.3 The Lie Algebra Description

Finally, we offer a more algebraic description of symmetric spaces. There are many
ways of writing homogeneous spaces as quotients G/H, e.g.,

§$2=SU((2) =S0(4)/SO(3) =0(4)/0(3).

But only one of these, O (4) /O (3), tells us directly that S* is a symmetric space.
This is because the isometry A, modulo conjugation lies in O (4) as it is orientation
reversing. In this section we present two related descriptions based on Killing fields
and curvatures.

To begin we must understand how the map A, acts on iso. The push forward
(A,), preserves Killing fields as A, is an isometry so there is a natural map (4,), =
Op . 150 —> is0.

Throughout the section let (M, g) be a symmetric space.

Proposition 10.1.3. Let p € M. The map o, = (Ap)* defines an involution on

iso. The 1-eigenspace is iso, and the (—1)-eigenspace consists of X such that
VX)|, =0.

Proof. Since Af, = id it is clear that also aﬁ = id. This shows that iso is a direct
sum decomposition of the (£1)-eigenspaces for o,. Moreover, we have:

o (X) = (Ay), X = DA, (X|a;1) = DA, (Xa,)
and as A, is an isometry
(4p), (VvX) = Via),v (4p), X = Via,),vo X).

At p we know that DA, = —I so if 0 (X) = X, then X|, = —X]|,,, showing that
X € iso,. Conversely, if X € iso,, then also o (X) € iso, and at p
Vo (X) = _VDAP(U)O- X)
—DA, (V,X)
=V, X

showing that o (X) = X.
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On the other hand, if 0, (X) = —X, then (VX) |, = O since at p
-V, X =V_,0,(X) =V, X.

Conversely, if (VX)|, = 0, then —X = o), (X) as the Killing fields agree at p and
both have vanishing derivative at p. O

Recall from proposition 8.1.4 that there is a short exact sequence
0—is0, > iso > t, — 0
where
t, = {X|, € T,M | X € iso}.

As M is homogeneous it follows that t, = T,M and since M is symmetric the (—1)-
eigenspace for o, is mapped isomorphically onto 7,M. We can then redefine t, as
the subspace

t, = {X €iso | (VX)|, = 0}.

This gives us the natural decomposition iso = t, @ is0, and by evaluating at p the
alternate representation

iso >~ T,M & s, C T,M & so (T,M),
where
s, = {(VX) |, € 50 (T,M) | X € is0p} .

This leads to

Proposition 10.1.4. If we identify iso >~ T,M ® s, then the Lie algebra structure
is determined entirely by the curvature tensor and satisfies:

() IfX,Y € T,M, then [X,Y] = R(X.,Y) € sp,.

(2) If X e T,M and S € s, then [X, S] = =S (X).

3) IfS.T €sp, then [S,T] =—(SoT —ToS) €5,

Proof. We rely on proposition 8.1.3: For X, Y € iso we have
VX, VYI(V) + VW [X,Y]=RX,Y) V.
(1) When X, Y € t, note that [X, Y] = VyX — VxY vanishes at p so [X, Y] € iso,,.

The Lie derivative is then represented by (V [X, Y]) |, € s,. To calculate this
note that [VX, VY] vanishes at p so (V [X, Y]) [, = R (X|,. Y],).
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(2) WhenX € t, and Y € iso, we have [X, Y] = VyX — VxY which at p reduces to
_VX\p Y.

(3) When X,Y € iso, it follows that [X,Y] = VxY — VyX also vanishes at p.
Moreover, (V [X,Y]) |, = —[VX, VY]|,.

|

We just saw how the Lie algebra structure can be calculated from the curvature,
but it also shows that the curvature can be calculated from the Lie algebra structure.
On a Lie algebra g the adjoint action is defined as

adx:g— g
Y adyx (Y) = [X,Y]

and the Killing form by
B(X,Y) = tr(ady o ady) .

Itis easy to check that the Killing form is symmetric and that ady is skew-symmetric
with respect to B:

B(adyY,Z) 4+ B(Y,adxZ) = 0.

Remark 10.1.5. In case of the Lie algebraiso >~ T,M ® s, the map ads : iso — iso0,
S € 5, is also skew-symmetric with respect to the natural inner product

g ((X1,81),(X2,82) = g (X1, X2) + 2(51,82) = g (X1, X2) —tr (§105).
Thus
B(S.S) = tr (adg 0 adg) = —tr (ads o (adg)™) < 0.

Moreover, if B (S,S) = 0, then adg = 0 which in turn implies that S = 0 since
ads (X) =[S, X] = S (X).

The next result tells us how to calculate the curvature tensor algebraically and is
very important for the next two sections.

Theorem 10.1.6. If X,Y,Z € t,, then R(X,Y)Z = [Z,[X,Y]] at p. In Lie
algebraic language on iso >~ T,M @ s,:

R(X.Y)Z = —ady o ady (X),

1
Ric(Y.Z) = — B(Z.Y).
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Moreover, in case Ric = Ag, it follows that the curvature operator has the same
sign as A.

Proof. For completeness we offer a proof that does not rely on the previous
proposition. Instead it uses proposition 8.1.3: For X, Y,Z € iso we have V)Z(,YZ =
—R (Z,X) Y. If we additionally assume X,Y,Z € t,, then VX = VY = VZ =0 at
p- Bianchi’s first identity then implies

RX.Y)Z=R(X.Z)Y—R(Y,2)X
= —V,VyX + V,VyY
=V, [X,Y]
=[Z,[X.Y]].

For the Ricci tensor formula first note that the operator ad; o ady leaves the
decomposition iso ~ T,M & s, invariant since each of adz and ady interchange the
subspaces in this factorization. With this in mind we obtain

tr (adz o ady|7,u) = tr (adz|s, o ady|r,u)
=1tr (ady|T,,M o adZ|s,,)

= tr (ady o adz[s,) .
Using symmetry of B this gives:
B(Z,Y)=tr (ady o adZ|5p) + tr (adZ o adlepM) = 2tr (adZ o adlepM) .
The formula for the curvature tensor then shows that

1
Ric (Z,Y) = —tr (adZ o adlepM) = _ZB z,Y).

In case Ric = Ag, A # 0 it follows that
g (R (Xv Y) Zv W) |P = _g (adZ o adY (X) ’ W) |P

1
= —/\Ric (adz o ady (X), W) |,

1
=, Bladzoady (X). W)

_ 21/13 (ady (X),adz (W)).

1
—,, BIX.Y].[W.2)

1
— 2 tr (ad[X,Y] o (ad[W,Z])*) .
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The diagonal terms for the curvature operator then become

o () (S0 0)

> g (R(X:.Y) Y. X)) |,

_ 211 > B (ady, (¥) . ady, (1))

B _ZIAB (Z ady, (¥). ) adx, (Yi)) :

Since ) ady, (X;) € s, it follows from remark 10.1.5 that B () ady, (Y;) .
> ady, (Y;)) < 0. Thus the eigenvalues of 93 have the same sign as the Einstein
constant.

In case Ric = 0 corollary 8.2.5 implies that M is flat in the more general case of
homogeneous spaces. O

Note that the formula is similar to the one that was developed for biinvariant
metrics in proposition 4.4.2. However, while left-invariant fields on a Lie group
are Killing fields as long as the metric is right-invariant, they generally don’t have
vanishing covariant derivative at the identity.

We can now give a slightly more efficient Lie algebra structure of a symmetric
space. Suppose (M, g) is a symmetric space and p € M. We define a bracket
operation on R, = T,M @ so (T,,M) by

[X.Y] = Rxy € s0(T,M) forX,Y € T,M,
—[5.X] = [X.S] = S(X) € T,M forX € T,M and S € so (T,M),
[S.8]=—(S0S8 —S"0S) €so(T,M) forS,S €so(T,M).
This bracket will in general not satisfy the Jacobi identity on triples that involve
precisely two elements from 7,M
[S. X Y]] + [Y. [S. X]] + [X. [Y, S]]
= —SoRxy+ RxyoS—Rysx) + Rxsw
= —SoRxy+ RxyoS+ Rsx)y + Rxsw).
But the other possibilities for the Jacobi identity do hold. When the triple involves
zero or one element from 7, M this is straightforward, while if all three are from
T,M it follows from the Bianchi identity
0 =RxyZ+ RzxY + RyzX
=[Z. [X. Y]] + [Y.[Z.X]] + [X.[Y. Z]] .

Fortunately we have the following modification of theorem 10.1.2.
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Corollary 10.1.7. Let (M,g) be a simply connected symmetric space. If S €
50 (T[,M), then S € s, if and only if for all X, Y € T,M

—SoRxy + RxyoS+ Rsx).y + Rxsy) =0.

Proof. We start by assuming that Z € iso, and § = (VZ) |,,. Since Z is a Killing
field we have LzR = 0. Since [V, Z] |, = S (V) for all V € T,M this implies that

0= (LZR)X,Y \%
= —S(RxyV) + RxyS (V) + Rsx)yV + Rx sr)V.

The converse is proven using theorem 10.1.2 by constructing the flow of the
Killing field corresponding to S € so (TPM). In T,M construct the isometric flow
for S. Check that the assumption about S implies that the isometries in this flow
satisfy theorem 10.1.2 and then conclude that we obtain a global flow on M. This
flow will then generate the desired Killing field. O

Lett, C s, be the Lie algebra generated by the skew-symmetric endomorphisms
Ryy € so (TPM) . We have basically established the following useful relationship
between the curvature tensor and Killing fields on a symmetric space.

Corollary 10.1.8. Let (M, g) be a simply connected symmetric space. The bracket
structure on R, makes T,M @ s, into a Lie algebra with subalgebra ¢, = T,M ®,,.
In fact T,M @ s, is characterized as the maximal Lie algebra: ¢, C T,M & s, C
Ngqp (cp), where Ng;p (cp) is the normalizer of ¢, in R,. Moreover, the Lie algebra
involution on T,M @ s, (and its restriction on ¢,) has T,M as the (—1)-eigenspace
and s, as the 1-eigenspace.

Proof. We saw in the above corollary that any subalgebra of £ C so (T,,M) such that
T,M @t C R, becomes a Lie algebra (i.e., also satisfies the Jacobi identity) must
be contained in T,M @ s,. We also saw that T,M & s, C Nmp (cp). O

We are now ready to attempt to reverse the construction so as to obtain symmetric
spaces from suitable Lie algebras. Assume we have a Lie algebra g with a Lie
algebra involution ¢ : g — g. First decompose g = t @ ¢ where t is the (—1)-
eigenspace for o and £ is the 1-eigenspace for 0. Observe that £ is a Lie subalgebra as

o[X,Y] =[oX),0(Y)]
= [X.7].

Similarly, [¢,¢] C tand [t, t] C &

Suppose further that there is a connected compact Lie group K with Lie algebra
£ such that the Lie bracket action of £ on t comes from an action of K on t. In case
K is simply connected this will always be the case. Compactness of K allows us to
choose a Euclidean metric on t making the action of K isometric. It follows that the
decomposition g = tEis exactly of the type iso = t,@iso,. Next pick a biinvariant
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metric on K so that g = t @ ¢ is an orthogonal decomposition. Finally, if we can
also choose a Lie group G D K whose Lie algebra is g, then we have constructed
a Riemannian manifold G/K. To make it symmetric we need to be able to find an
involution A, on G/K. When G is simply connected o will be the differential of a
Lie group involution A : G — G that is the identity on K. This defines the desired
involution on G/K that fixes the point p = K.

It rarely happens that all of the Lie groups in play are simply connected or even
connected. Nevertheless, the constructions can often be verified directly. Without
assumptions about connectedness of the groups there is a long exact sequence:

w1 (K) = 71 (G) = 711 (G/K) = 7o (K) = 70 (G) = 79 (G/K) —> 1,

where 7 denotes the set of connected components. As K and G are Lie groups these
spaces are in fact groups. From this sequence it follows that G/K is connected and
simply connected if 7y (K) — 7 (G) is an isomorphism and 7} (K) — m; (G) is
surjective.

This algebraic approach will in general not immediately give us the isometry
group of the symmetric space. For Euclidean space we can, aside from the standard
way using g = iso, also simply use g = R" and let the involution be multiplication
by —1 on all of g. For §* = O (4) /O (3), we see that the algebraic approach can
also lead us to the description S* = Spin (4) /Spin (3) . However, as any Lie algebra
description can be used to calculate the curvature, corollary 10.1.8 will in principle
allow us to determine iso.

It is important to realize that a Lie algebra g, in itself, does not give rise to a
symmetric space. The involution is an integral part of the construction and does
not necessarily exist on a given Lie algebra. The map —id can, for instance, not be
used, as it does not preserve the bracket. Rather, it is an anti-automorphism. This is
particularly interesting if g comes from a Lie group G with biinvariant metric. There
the involution A, (g) = g~! is an isometry and makes G a symmetric space. But it’s
differential on g is an anti-automorphism. Instead the algebraic description of G as
a symmetric space comes from using g x g with o (X,Y) = (Y, X). This will be
investigated in the next section.

10.2 Examples of Symmetric Spaces

We explain how some of the above constructions work in the concrete case of
the Grassmann manifold and its hyperbolic counterpart. We also look at complex
Grassmannians, but there we restrict attention to the complex projective space.
Finally, we briefly discuss the symmetric space structure of SL (r) /SO (n) . After
these examples we give a formula for the curvature tensor on compact Lie groups
with biinvariant metrics and their noncompact counter parts.
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Throughout we use the convention that for X, ¥ € Maty;
(X.Y) =t (X*Y) = tr (XY*)

with the conjugation only being relevant when the entries are complex. This inner
product is invariant under the natural action of O (k) x O (/) on Mat,x; defined by:

(0] (k) x O (l) X Matyx; — Matyx;,
(A,B,X) — AXB™! = AXB*

since
(01X0,,0,Y0,) = tr (05X*070,Y0,)
tr (03X*Y0,)
= r (0,05X"Y)
= (X.Y).

This allows us to conclude that the metrics we study can be extended to the entire
space via an appropriate transitive action whose isotropy is a subgroup of the action
by O (k) x O (I) on Maty;.

Theorem 10.1.6 is used to calculate the curvatures in specific examples and the
relevant Killing forms are calculated in exercise 10.5.6.

10.2.1 The Compact Grassmannian

First consider the Grassmannian of oriented k-planes in R/, denoted by M =
Gy (R¥H!). Each element in M is a k-dimensional subspace of R¥*! together with
an orientation, e.g., Gl (R"H) = S". We shall assume that we have the orthogonal
splitting R¥t! = R¥ @ R/, where the distinguished element p = R¥ takes up the first
k coordinates in R¥* and is endowed with its natural positive orientation.

Let us first identify M as a homogeneous space. We use that O (k + [) acts on
R+ If a k-dimensional subspace has the positively oriented orthonormal basis
el,-..,ex, then the image under O € O (k + [) will have the positively oriented
orthonormal basis Oey, . .. Oe;. This action is clearly transitive. The isotropy group
isSO(k)xO() CO(k+1).

The tangent space at p = R¥ is naturally identified with the space of kx  matrices
Maty;, or equivalently, with R*@R’. To see this, just observe that any k-dimensional
subspace of R¥ that is close to R¥ can be represented as a linear graph over R¥ with
values in the orthogonal complement R’. The isotropy action of SO (k) x O (/) on
Maty; is:
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SO (k) x O (l) X Matyx; — Matx;,
(A,B,X) — AXB™! = AXB'.

If we define X to be the matrix that is 1 in the (1, 1) entry and otherwise zero, then
AXB' = A; (B1)", where A, is the first column of A and B; is the first column of B.
Thus, the orbit of X, under the isotropy action, generates a basis for Mat; but does
not cover all of the space. This is an example of an irreducible action on Euclidean
space that is not transitive on the unit sphere. The representation, when seen as
acting on R ® R/, is denoted by SO (k) ® O (/) .

To see that M is a symmetric space we have to show that the isotropy group

contains the required involution. On the tangent space T,M = Mat;; it is supposed
to act as —1. Thus, we have to find (4, B) € SO (k) x O (/) such that for all X,

AXB' = —X.
Clearly, we can just set
A =1,
B =-I.

Depending on k and /, other choices are possible, but they will act in the same way.
We have now exhibited M as a symmetric space without using the isometry group

of the space. In fact SO (k + [) is a covering of the isometry group, although that

requires some work to prove. But we have found a Lie algebra description with

so (k+ 1) C iso,

50 (k) x 50 (]) C is0,,

and an involution that fixes so (k) x so (/).
We shall use the block decomposition of matrices in so (k + [):

X = XltB ,X1eso(k),Xzeso(l),BeMathl.
—B" X,

If

0 B
t‘,, = {(—Bt 0) |B€Math1} s

then we have an orthogonal decomposition:
so(k+1) =1t Psok) Dso(]),

where t, = T,M. Note that t, consists of skew-symmetric matrices so

(X.Y) = (X'Y) = —tr(XY) = — 2B (X,Y).

k+1-—
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k+1-2

This will be our metric on t, and tells us that Ric = )

g and

1

RENYX) ==

B([X,Y].[X.Y]) = |[X, Y]]’ > 0.

When k = 1 orl = 1, it is easy to see that one gets a metric of constant positive
curvature. Otherwise, the metric will have many zero sectional curvatures.

The calculations also show that in fact v, = so (k) ® so (/) and corollary 10.1.8
can be used to show that iso = so (k + [).

10.2.2 The Hyperbolic Grassmannian

Next we consider the hyperbolic analogue. In the Euclidean space R*/ we use,
instead of the positive definite inner product v’ - w, the quadratic form:

I, 0
tI — t
U L W v (0 —Il) w

k k+1
= E Viw; — E Viw;.
i=1 i=k+1

The group of linear transformations that preserve this form is denoted by O (k, /) .
These transformations are defined by the relation

X Iy X' =1I,.

Note that if k,/ > 0, then O (k,[) is not compact. But it clearly contains the
(maximal) compact subgroup O (k) x O (/) .
The Lie algebra so (k, [) of O (k, [) consists of the matrices satisfying

Y Ly + Iy Y'=0.

If we use the same block decomposition for Y as for I; ;, then

Y= Ylt B , 7 Gﬁﬂ(k), Y, 650(1), B € Maty;.
B'Y,

Now consider only those (oriented) k-dimensional subspaces of R*! on which
this quadratic form generates a positive definite inner product. This space is the
hyperbolic Grassmannian M = Gy (R*!) . The selected point is as before p = R¥.
One can easily see that topologically: Gy (R“) is an open subset of G (RH'I) . The
metric on this space is another story, however. Clearly, O (k, /) acts transitively on
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M, and those elements that fix p are of the form SO (k) x O (I) . One can, as before,
find the desired involution, and thus exhibit M as a symmetric space. Again some
of these elements act trivially, but at the Lie algebra level this makes no difference.
Thus, we have

so(k,]) =t, ®so(k)Pso(l),

where

0B
t, = {(Bt 0) |B€Math1} .

This time, however, t, consists of symmetric matrices so

X,Y) = tr (X'Y) = tr (XY) = B(X,Y).
KV =uwXr)=w@E)= BXY)
This will be our metric on t,. Thus Ric = —k+é_2 g and
R(X,Y)Y,X) = B([X,Y],[X,Y]) = —|[X,Y]]* <0.
REVY.X) =, BEXYLXY) =~ XY <

This is exactly the negative of the expression we got in the compact case. Hence,
the hyperbolic Grassmannians have nonpositive curvature. When / = 1, we have
reconstructed the hyperbolic space together with its isometry group.

Again it follows that v, = so (k) ® so (/) and iso = so (k, ).

10.2.3 Complex Projective Space Revisited

We view the complex projective space as a complex Grassmannian. Namely, let
M = CP" = G;(C""), ie., the complex lines in C"*'. More generally one
can consider Gy ((CkH) and the hyperbolic counterparts Gy ((Ck’l) of space-like
subspaces. We leave this to the reader.

The group U (n + 1) C SO (2n + 2) consists of those orthogonal transforma-
tions that also preserve the complex structure. If we use complex coordinates,
then the Hermitian metric on C"T! can be written as z*w = > ziw;, where as
usual, A* = A’ is the conjugate transpose. Thus, the elements of U (n + 1) satisfy
A" = A*. As with the Grassmannian, U (n + 1) acts on M, but this time, all
of the transformations of the form al, where aa = 1, act trivially. Thus, we
restrict attention to SU (n + 1) , which still acts transitively, but with a finite kernel
consisting of those al such that a"*! = 1.
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If p = C is the first coordinate axis, then the isotropy group is S (U (1) x U (n)),
i.e., the matrices in U (1) x U(n) of determinant 1. This group is naturally
isomorphic to U () via the map

-1
A detA™" 0 ‘
0 A

The involution that makes M symmetric is then given by

(=" 0
0 -I,)°
We pass to the Lie algebra level in order to compute the curvature tensor. From
above, we have

su(n+1)={A]|A=—-A%trA =0},
u(n) = {B| B =—B"}.

B'_)(—trB 0)'
0 B

Thus if elements of su (n 4 1) are written

—trB —z*
z B )’

The inclusion looks like

and
0—z*
t, = eC!
(7)o
we obtain
su(n+1)=t, dun).
ForX,Y e t,

1
(X.Y) =t (X*Y) = —tr (XY) = T 1)B(X, Y).



382 10 Symmetric Spaces and Holonomy

SoRic = (n+ 1) g and

(R(X.Y)Y.X) = |[X.Y]]?

. K—(Z*w—w*z) 0 )
- 0 wz* — zw*

2
= |Zw—wz* —tr ((wz* —zw¥) )

2

= 4|Im (z*w)‘2 —2Re (z*w)2 + 22 [w]?.

To compute the sectional curvatures we need to pick an orthonormal basis X, Y
for a plane. This means that |z|* = |w|* = ) and Re (z*w) = 0, which implies
Z*w = ilm (z*w) and

sec (X, Y) = 4|Im (z*w)|2 —2Re (z"‘w)2 + 21z |w)?
1
— 6 * 2
|25 w|” + 5
< 2.
Showing that ; < sec < 2, where the minimum value occurs when z*w = 0 and

the maximum value when w = iz. Note that this scaling isn’t consistent with our
discussion in section 4.5.3 but we have still shown that the metric is quarter pinched.

10.2.4 SL (n) /SO (n)

The manifold is the quotient space of the n x n matrices with determinant 1 by the
orthogonal matrices. The Lie algebra of SL (n) is

sl(n) = {X € Mat,x, | tr X = 0}.
This Lie algebra is naturally divided up into symmetric and skew-symmetric
matrices sl (n) = t @ so (n), where t consists of the symmetric matrices. On t we

can use the usual Euclidean metric. The involution is obviously given by —/ on t
andIonso(n)soo (X) = —X".ForX,Y €t

(X,Y) =t (X*Y) =t (XY) = 21’13 X,Y).

So Ric = —ng and (R(X,Y)Z,W) = ([X,Y],[Z, W]). In particular, the sectional
curvatures must be nonpositive.
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10.2.5 Lie Groups

Next we check how Lie groups become symmetric spaces.

To this end, start with a compact Lie group G with a biinvariant metric. As usual,
the Lie algebra g of G is identified with 7,G as well as the set of left-invariant
vector fields on G. Since the left-invariant fields are Killing fields it follows that
ady = 2VX is skew-symmetric. In particular, the Killing form is nonpositive and
only vanishes on the center of g. Thus, when g has no center, then g = —B defines a
biinvariant as ady is skew-symmetric with respect to B. This is the situation we are
interested in.

The Lie algebra description of G as a symmetric space is given by (g & g, o) with
0 (X,Y) = (Y.X). Here the diagonal g* = {(X,X) | X € g} is the 1-eigenspace,
while the complement gt = {(X,—X) | X € g} is the (—1)-eigenspace. Thus ¢ =
g% =~ gand t = g*. We already know that g corresponds to the compact Lie group
G, so we are simply saying that G = (G x G) /G”. The Ricci tensor is given by
Ric = — éB = ég and the curvatures are nonnegative. Note that the natural inner
product on t is scaled by a factor of 2 from the biinvariant metric on g.

We can also construct a noncompact symmetric space using the same Lie algebra
g that comes from a compact Lie group without center. Consider: (g ® C, o), where
o (X) = X is complex conjugation. Then ¢ = g C g ® C and t = ig. The
inner product on £ is —B on g, while on t the metric is given by g (iX,iY) =
—B(X.,Y) = B(iX.iY). This gives us Ric (iX,i¥) = —}B(iX,i¥) = —]g (iX.iY)
and nonpositive curvature.

10.3 Holonomy

First we discuss holonomy for general manifolds and the de Rham decomposition
theorem. We then use holonomy to give a brief discussion of how symmetric spaces
can be classified according to whether they are compact or not.

10.3.1 The Holonomy Group

Let (M, g) be a Riemannian n-manifold. If ¢ : [a, b] — M is a unit speed curve, then

b
PO ToM = T M
denotes the effect of parallel translating a vector from 7,,M to T.)M along c. This
property will in general depend not only on the endpoints of the curve, but also on
the actual curve. We can generalize this to work for piecewise smooth curves by
breaking up the process at the breakpoints in the curve.
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Suppose the curve is a loop, i.e., c (@) = c(b) = p. Then parallel translation
yields an isometry on T,M. The set of all such isometries is called the holonomy
group at p and is denoted by Hol, = Hol, (M, g) . One can easily see that this forms
a subgroup of O (T,,M) = O (n). Moreover, it is a Lie group. This takes some
work to establish in case the group isn’t compact. The restricted holonomy group
Holg = Holg (M, g) is the connected normal subgroup that results from using only
contractible loops. This group is compact and consequently a Lie group. Here are
some elementary properties that are easy to establish:

(a) Hol, (R") = {1}.

(b) Hol, (8" (R)) = SO (n).

(c¢) Hol, (H") =SO(n).

(d) Hol, (M, g) C SO (n) if and only if M is orientable.

(e) Hol, (M , g) = Holg (1\7[ , g) = Holg (M, g), where M is the universal covering
of M.

(f) Hol,q) (M1 x M>, g1 + g2) = Hol,, (M1, g1) x Holy (M2, &) .

(g) Hol, (M, g) is conjugate to Hol, (M, g) via parallel translation along any curve
from p to g.

(h) A tensor at p € M can be extended to a parallel tensor on (M, g) if and only if
it is invariant under the holonomy group; e.g., if w is a 2-form, then we require
that w (Pv, Pw) = w (v, w) forall P € Hol, (M, g) and v,w € T,M.

We are now ready to study how the Riemannian manifold decomposes according
to the holonomy. Guided by (f) we see that being a Cartesian product is reflected in
a product structure at the level of the holonomy. Furthermore, (g) shows that if the
holonomy decomposes at just one point, then it decomposes everywhere.

To make things more precise, let us consider the action of Holg onT,M.If E C

T,M is an invariant subspace, i.e., Holg (E) C E, then the orthogonal complement

is also preserved, i.e., Holg (EJ-) C E*. Thus, T,M decomposes into irreducible
invariant subspaces:

TM=E & & E.

Here, irreducible means that there are no nontrivial invariant subspaces inside E;.
Since parallel translation around loops at p preserves this decomposition, we see
that parallel translation along any curve from p to g preserves this decomposition.
Thus, we obtain a global decomposition of the tangent bundle into distributions,
each of which is invariant under parallel translation:

TM=m&: - & n.

With this we can state de Rham’s decomposition theorem.

Theorem 10.3.1 (de Rham, 1952). If we decompose the tangent bundle of a
Riemannian manifold (M, g) into irreducible components according to the restricted
holonomy:
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I™M=m&- - np,

then around each point p € M there is a neighborhood U that has a product
structure of the form

U,g) =W x-xU,g+--+8g0),
TU,‘=7MUI..

Moreover, if (M, g) is simply connected and complete, then there is a global splitting

(Mvg) = (Ml X"'XMksgl ++gk)s
™; = n;.

Proof. Given the decomposition into parallel distributions, we first observe that
each of the distributions must be integrable. Thus, we do get a local splitting into
submanifolds at the manifold level. To see that the metric splits as well, just observe
that the submanifolds are totally geodesic, as their tangent spaces are invariant under
parallel translation. This gives the local splitting.

The global result is, unfortunately, not a trivial analytic continuation argument
and we only offer a general outline. Apparently, one must understand how simple
connectivity forces the maximal integral submanifolds to be embedded submani-
folds. Let M; be the maximal integral submanifolds for n; through a fixed p € M.
Consider the abstract Riemannian manifold

(My X -- - X My, g1+ -+ + &) -
Around p, the two manifolds (M, g) and (M X --- X M, g1 + --- + gi) are isomet-
ric to each other. As (M, g) is complete and each M; is totally geodesic it follows

that (M} X --- x My, g1 + - -+ + gx) is also complete. The goal is to find an isometric
embedding

(M, g) - (My X+ XM, g1+ -+ g -

Completeness will insure us that the map is onto and in fact a Riemannian covering
map. We will then have shown that M is isometric to the universal covering of

(My X+ X My, g1+ -+ + &),
which is the product manifold
(My X -+ X My 31+ -+ + &)

with the induced pull-back metric. O
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Given this decomposition it is reasonable, when studying classification problems
for Riemannian manifolds, to study only those Riemannian manifolds that are
irreducible, i.e., those where the holonomy has no invariant subspaces. Guided by
this we have a nice characterization of Einstein manifolds.

Theorem 10.3.2. If (M, g) is an irreducible Riemannian manifold with a parallel
(1, 1)-tensor T, then both the symmetric S = é (T + T*) and skew-symmetric
A= ; (T — T*) parts have exactly one (complex) eigenvalue. Moreover, if the skew-
symmetric part does not vanish, then it induces a parallel complex structure, i.e., a
Kdhler structure.

Proof. The fact that T is parallel implies that the adjoint is also parallel as the metric
itself is parallel. More precisely we always have:

g((VxT) (Y).Z) = g(VxT (Y),Z2) —g (T (VxY).Z)
= Vxg (T(Y).2) —g(T (Y),VxZ) — g (T (VxY).Z)
= Vxg (Y.T* (2)) — g (Y.T* (Vx2)) — g (VxY.T* (2))
=g (Y, (VxT*) (2)).

Thus VS = 0 = VA and both are invariant under parallel translation.

First, decompose T,M = E; & --- ® Ej into the orthogonal eigenspaces for
S : T,M — T,M with respect to distinct eigenvalues A; < --- < A4. As above,
we can parallel translate these eigenspaces to get a global decomposition TM =
n @ - - - @ ny into parallel distributions, with the property that S|,, = A;-I. But then
the decomposition theorem tells us that (M, g) is reducible unless k = 1.

Second, the skew-symmetric part has purely imaginary eigenvalues, however,
we still obtain a decomposition T,M = F; @ --- & F) into orthogonal invariant
subspaces such that A|p, has complex eigenvalue iy, where ) < --- < ;. The
same argument as above shows that / = 1. If y; # 0, then J = MllA is also parallel
and only has i as an eigenvalue. This gives us the desired Kéhler structure. O

Corollary 10.3.3. A simply connected irreducible symmetric space is an Einstein
manifold. In particular, it has nonnegative or nonpositive curvature operator
according to the sign of the Einstein constant.

10.3.2 Rough Classification of Symmetric Spaces

We are now in a position to explain the essence of what irreducible symmetric spaces
look like. They are all Einstein and come in three basic categories.

Compact Type: If the Einstein constant is positive, then it follows from Myers’
diameter bound (theorem 6.3.3) that the space is compact. In this case the
curvature operator is nonnegative.



10.3 Holonomy 387

Flat Type: If the space is Ricci flat, then it is flat. Thus, the only Ricci flat
irreducible examples are S' and R!.

Noncompact Type: When the Einstein constant is negative, then it follows from
Bochner’s theorem 8.2.2 on Killing fields that the space is noncompact. In this
case the curvature operator is nonpositive.

We won’t give a complete list of all irreducible symmetric spaces, but one
interesting feature is that they come in compact/noncompact dual pairs as described
in the above tables. Also, there is a further subdivision. Among the compact types
there are Lie groups with biinvariant metrics and then all the others. Similarly, in the
noncompact regime there are the duals to the biinvariant metrics and then the rest.
This gives us the following division explained with Lie algebra pairs that are of the
form (c,,, tp) = (g, ®). In all cases there is an involution with 1-eigenspace given by
£, and ¢ is the Lie algebra of a compact group that acts on the (—1)-eigenspace t.
One can further use corollary 10.1.8 to show that for these examples t, = is0,,.

Type I: Compact irreducible symmetric spaces of the form (g, €), where g is
simple; the Lie algebra of a compact Lie group; and £ C g a maximal subalgebra,
e.g., (so(k+ 1), s0 (k) x so0 ().

Type II: Compact irreducible symmetric spaces (¢ @ €, At), where ¢ is simple and
corresponds to a compact Lie group. The space is a compact Lie group with a
biinvariant metric.

Type III: Noncompact symmetric spaces (g, £), where g is simple; the Lie algebra
of a non-compact Lie group; and £ C g a maximal subalgebra corresponding to
a compact Lie group, e.g., (so (k, 1) , s0 (k) x so0 (])) or (sl (n),s0 (n))

Type IV: Noncompact symmetric spaces (£ ® C, ), where € is simple; corre-
sponds to a compact Lie group; and ¢ ® C = & @ it its complexification, e.g.,

(so0 (n,C),s0(n)).

Note that since compact type symmetric spaces have nonnegative curvature
operator, it becomes possible to calculate their cohomology algebraically. The
Bochner technique tells us that all harmonic forms are parallel. As parallel forms
are invariant under the holonomy we are left with a classical invariance problem:
Determine all forms on a Euclidean space that are invariant under a given group
action on the space. It is particularly important to know the cohomology of the real
and complex Grassmannians, as one can use that information to define Pontryagin
and Chern classes for vector bundles. We refer the reader to [97, vol. 5] and [76] for
more on this.

10.3.3 Curvature and Holonomy

We mention, without proof, the general classification of connected irreducible
holonomy groups. Berger classified all possible holonomies. Simons gave a direct
proof of the fact that spaces with nontransitive holonomy must be locally symmetric,
i.e., he did not use Berger’s classification of holonomy groups.
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Table 10.5 Holonomy

dim =n Hol, Properties
Groups n SO (n) Generic case
n=2m U(@m) Kihler
n=2m SU(m) Kihler and Ricci flat
n=4m Sp(1)-Sp(m) Quaternionic-Kihler and Einstein
n=4m Sp(m) Hyper-Kihler and Ricci flat
n=16  Spin(9) Symmetric and Einstein
n=238 Spin (7) Ricci flat
n=717 G, Ricci flat

Theorem 10.3.4 (Berger, 1955 and Simons, 1962). Let (M, g) be a simply con-
nected irreducible Riemannian n-manifold. The holonomy Hol, either acts tran-
sitively on the unit sphere in T,M or (M, g) is a symmetric space of rank > 2.
Moreover, in the first case the holonomy is one of the groups in table 10.5.

The first important thing to understand is that while we list the groups it is
important how they act on the tangent space. The same group, e.g., SU (m) acts
irreducibly in the standard way on C™, but it also acts irreducibly via conjugation
on su (m) = R Itis only in the former case that the metric is forced to be Ricci
flat. The latter situation occurs on the symmetric space SU (m).

It is curious that all but the two largest irreducible holonomy groups, SO () and
U (m) , force the metric to be Einstein and in some cases even Ricci flat. Looking
at the relationship between curvature and holonomy, it is clear that having small
holonomy forces the curvature tensor to have special properties. One can, using a
case-by-case check, see that various traces of the curvature tensor must be zero, thus
forcing the metric to be either Einstein or even Ricci flat (see [12] for details). Note
that Kihler metrics do not have to be Einstein (see exercise 4.7.24). Quaternionic
Kihler manifolds are not necessarily Kéhler, as Sp (1) - Sp (m) is not contained in
U (2m), in fact Sp (1) - Sp (1) = SO (4). Using a little bit of the theory of Kéhler
manifolds, it is not hard to see that metrics with holonomy SU (n) are Ricci flat.
Since Sp (m) C SU (2m) , it follows that hyper-Kéhler manifolds are Ricci flat. One
can also prove that the last two holonomies occur only for Ricci flat manifolds. With
the exception of the four types of Ricci flat holonomies all other holonomies occur
for symmetric spaces. This follows from the above classification and the fact that
the rank one symmetric spaces have holonomy SO (n), U (m), Sp(1) - Sp (m) , or
Spin (9) .

This leads to another profound question. Are there compact simply connected
Ricci flat spaces with holonomy SU (m), Sp (m), Gz, or Spin(7)? The answer
is yes. But it is a highly nontrivial yes. Yau got the Fields medal, in part, for
establishing the SU (m) case. Actually, he solved the Calabi conjecture, and the
holonomy question was a by-product (see, e.g., [12] for more information on the
Calabi conjecture). Note that we have the Eguchi-Hanson metric (exercise 4.7.24
and 4.7.23) which is a complete Ricci flat Kidhler metric and therefore has SU (2) as
holonomy group. D. Joyce solved the cases of Spin (7) and G, by methods similar
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to those employed by Yau. An even more intriguing question is whether there are
compact simply connected Ricci flat manifolds with SO () as a holonomy group.
Note that the Schwarzschild metric (see section 4.2.5) is complete, Ricci flat, and
has SO (n) as holonomy group. For more in-depth information on these issues we
refer the reader to [12].

A general remark about how special (% SO (n)) holonomies occur: It seems
that they are all related to the existence of parallel forms. In the Kihler case, for
example, the Kihler form is a parallel nondegenerate 2-form. Correspondingly, one
has a parallel 4-form for quaternionic-Kéhler manifolds, and a parallel 8-form for
manifolds with holonomy Spin (9) (which are all known to be locally symmetric).
This is studied in more detail in the proof of the classification of manifolds with
nonnegative curvature operator below. For the last two exceptional holonomies
Spin (7) and G; there are also special 4-forms that do the job of identifying these
types of spaces.

From the classification of holonomy groups we immediately get an interesting
corollary.

Corollary 10.3.5. If a Riemannian manifold has the property that the holonomy
doesn’t act transitively on the unit sphere, then it is either reducible or a locally
symmetric space of rank > 2. In particular, the rank must be > 2.

It is unclear to what extent the converse fails for general manifolds. For
nonpositive curvature, however, there is the famous higher-rank rigidity result
proved independently by W. Ballmann and Burns-Spatzier (see [7] and [21]).

Theorem 10.3.6. A compact Riemannian manifold of nonpositive curvature of rank
> 2 does not have transitive holonomy. In particular, it must be either reducible or
locally symmetric.

It is worthwhile mentioning that in [9] it was shown that the rank of a compact
nonpositively curved manifold can be computed from the fundamental group. Thus,
a good deal of geometric information is automatically encoded into the topology.
The rank rigidity theorem is proved by dynamical systems methods. The idea is to
look at the geodesic flow on the unit sphere bundle, i.e., the flow that takes a unit
vector and moves it time ¢ along the unit speed geodesic in the direction of the unit
vector. This flow has particularly nice properties on nonpositively curved manifolds.
The idea is to use the flat parallel fields to show that the holonomy can’t be transitive.
The Berger-Simons result then shows that the manifold has to be locally symmetric
if it is irreducible.

In nonnegative curvature, on the other hand, it is possible to find irreducible
spaces that are not symmetric and have rank > 2. On §? x S we have a product
metric that is reducible and has rank 3. But if we take another metric on this space
that comes as a quotient of S? x S* by an action of S' (acting by rotations on the first
factor and the Hopf action on the second), then we get a metric which has rank 2.
The only way in which a rank 2 metric can split off a de Rham factor is if it splits
off something 1-dimensional, but that is topologically impossible in this case. So in
conclusion, the holonomy must be transitive and irreducible.
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By assuming the stronger condition that the curvature operator is nonnegative,
one can almost classify all such manifolds. This was first done in [48] and in more
generality in Chen’s article in [51]. This classification allows us to conclude that
higher rank gives rigidity. The theorem and proof are a nice synthesis of everything
we have learned in this and the previous chapter. In particular, the proof uses the
Bochner technique in the two most nontrivial cases we have covered: for forms and
the curvature tensor.

Theorem 10.3.7 (Gallot and D. Meyer, 1975). If (M, g) is a compact Riemannian
n-manifold with nonnegative curvature operator, then one of the following cases
must occur:

(a) (M, g) is either reducible or locally symmetric.
(b) Hol® (M, g) = SO (n) and the universal covering is a homology sphere.
(©) Hol° M,g) =U (;) and the universal covering is a homology CP? .

Proof. First we use the structure theory from section 7.3.3 to conclude that the
universal covering is isometric to N x R, where k > 0 if the fundamental group
is infinite. In particular, the manifold is reducible. Therefore, we can assume that
we work with a simply connected compact manifold M. Now we observe that either
all of the homology groups H” (M,R) = 0 forp = 1,...,n — 1, in which case
the space is a homology sphere, or some homology group H? (M, R) # 0 for some
p # 0, n. In the latter case there is a harmonic p-form by the Hodge theorem.
The Bochner technique tells us that this form must be parallel, since the curvature
operator is nonnegative. The idea of the proof is to check the possibilities for this
when we know the holonomy.

We can assume that the manifold is irreducible and has transitive holonomy. The
Ricci flat cases are impossible as the nonnegative curvature would then make the
manifold flat. Thus, we have only the four possibilities SO (n),U (;) ,Sp (1) Sp (Z) ,
or Spin (9) . In the latter two cases one can show from holonomy considerations that
the manifold must be Einstein. Tachibana’s result (see theorem 9.4.8) then implies
that the metric is locally symmetric. From the classification of symmetric spaces it
is further possible to show that the space is isometric to either HIPi or QP2

Now assume that the holonomy is SO (n) and that we have a parallel p-form w.
When 0 < p < nand vy,...,v, € T,M it is possible to find an element of P €
SO (n) such that P (v;) = v;, i = 2,---,p and P (v;) = —v;. Therefore, when the
holonomy is SO (n) and w is invariant under parallel translation, then

o (vi,...,v,) = o (Pvy,...,Puvp)
= o (v, 02....,0))
= -0 (v,...,0).
This shows that w = 0.
This leaves us with the case where the holonomy is U (’2’), i.e., the metric is

Kahler. In this situation we show that the cohomology ring must be the same as that
of CP2, i.e., there is a homology class w € H? (M, R) such that any homology class



10.3 Holonomy 391

is proportional to some power @* = w A ... A . This can be seen as follows. Since

the holonomy is U (;) there must be an almost complex structure on the tangent
spaces that is invariant under parallel translation. After type change this gives us
a parallel 2-form w. Any other parallel 2-from must be a multiple of this form by
theorem 10.3.2, so dim H?> = 1. The odd cohomology groups vanish, like in the
case where the holonomy is SO (n), since the antipodal map P = —I € U (;) when
n is even. More generally, consider a p-form 6 with 1 < p < n that is invariant
under U (;) Select an orthonormal basis ey, ..., e, for T,M. We claim that 6 has
the same values on any p vectors e;,, . . . €i,, where iy < --- < i,. Thereis an element
P e U(4)suchthatP(e;) = ejfori=1,....p—land P (e,) = e;, soitfollows that
0 (e1,....ep) = 0 (er.....ep1.e;,). This can be repeated for p — 1 etc. This shows
that all p-forms must be multiples of each other. Now the powers of = w A -+ A @
are all nontrivial parallel forms, so they must generate H>*. This shows that M has
the cohomology ring of CPP2. O

There are two questions left over in this classification. Namely, for the sphere
and complex projective space we get only homology rigidity. For the sphere one
can clearly perturb the standard metric and still have positive curvature operator, so
one couldn’t expect more there. On CP2, say, we know that the curvature operator
has exactly two zero eigenvalues. These two zero eigenvalues and eigenvectors are
actually forced on us by the fact that the metric is Kéhler. Therefore; if we perturb
the standard metric, while keeping the same Kihler structure, then these two zero
eigenvalues will persist and the positive eigenvalues will stay positive. Thus, the
curvature operator stays nonnegative.

There are more profound results that tell us more about the topological structure
in cases (b) and (c). For case (b) one can use Ricci flow techniques to show that
the space is diffeomorphic to a space of constant curvature. This is a combination
of results by Hamilton (see [61]) and Bohm-Wilking (see [16]). In case (c) the
universal cover is biholomorphic to CP2. This was proven by Mok (see [78])
and can now also be proven using the Ricci flow. In fact the entire result can be
generalized using the Ricci flow to hold under weaker assumptions (see [19]).

Theorem 10.3.8 (Brendle and Schoen, 2008). If (M, g) is a compact Riemannian
n-manifold with nonnegative complex sectional curvature, then one of the following
cases must occur:

(a) (M, g) is either reducible or locally symmetric.
(b) M is diffeomeorphic to a space of constant positive curvature.
(c) The universal covering of M is biholomorphic to CP2 .

Given that there is such a big difference between the classes of manifolds with
nonnegative curvature operator and nonnegative sectional curvature, one might
think the same is true for nonpositive curvature. However, the above rank rigidity
theorem tells us that in fact nonpositive sectional curvature is much more rigid than
nonnegative sectional curvature. Nevertheless, there is an example of Aravinda and
Farrell showing that there are nonpositively curved manifolds that do not admit
metrics with nonpositive curvature operator (see [5]).
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10.4 Further Study

We have not covered all important topics about symmetric spaces. For more in-
depth information we recommend the texts by Besse, Helgason, and Jost (see [12,
Chapters 7,10], [13, Chapter 3], [62], and [65, Chapter 6]). Another very good text
which covers the theory of Lie groups and symmetric spaces is [64]. O’Neill’s book
[80, Chapter 8] also has a nice elementary account of symmetric spaces. Finally,
Klingenberg’s book [69] has an excellent geometric account of symmetric spaces.

10.5 Exercises

EXERCISE 10.5.1. Let M be a symmetric space and X € t,, i.e., X is a nontrivial
Killing field with (VX) |, = 0.

(1) Show that the flow for X is given by F; = Aexpp(;x\p) 0A,.

(2) Show that ¢ (f) = exp (tle) is an axis for Fy, e.g., F (c () = c (t + ).
(3) Show thatif ¢ (@) = c (b), then ¢ (a) = ¢ (b).
(4) Conclude that geodesic loops are always closed geodesics.

EXERCISE 10.5.2. Let M be a symmetric space. Show that the action of
A, M — M on m (M,p) is given by g +— g~! and conclude that 7y (M, p) is
Abelian. Hint: Every element of ) (M, p) is represented by a geodesic loop which
by the previous exercise is a closed geodesic.

EXERCISE 10.5.3. Let M be a symmetric space and ¢ a geodesic in M.

(1) Let E (¢) be a parallel field along c¢. Show that R (E, ¢) ¢ is also parallel.

(2) If E(0) is an eigenvector for R (-, ¢ (0)) ¢ (0) with eigenvalue «, then J (1) =
sne (1) E (1) and J () = sn, (¢) E (¢) are both Jacobi fields along c.

(3) Show that if J (¢) is a Jacobi field along ¢ with J (0) = 0 and J (fp) = 0, then
7(3) =0,

(4) With J as in (3) construct a geodesic variation c (s, f) such that gf 0,0 =J(),
c(s,0) = c(0), and c (s, o) = c (to).

EXERCISE 10.5.4. Let M be a symmetric space.

(1) Show directly that if M is compact, then sec > 0. Hint: Argue by contradiction
and produce a Jacobi field that is unbounded along a geodesic.

(2) Show that if ¢ is a closed geodesic, then R (-, ¢) ¢ has no negative eigenvalues.

(3) Show that if M has Ric > 0, then sec > 0.

EXERCISE 10.5.5. Assume that M has nonpositive or nonnegative sectional curva-
ture. Let ¢ be a geodesic and E a parallel field along c. Show that the following
conditions are equivalent.
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(1) g(R(E,¢)c, E) = 0 everywhere.
(2) R(E,¢) ¢ = 0everywhere.
(3) E is alJacobi field.

EXERCISE 10.5.6. (1) Let g be a real Lie algebra with Killing form B. Show that
the Killing form of the complixification g ® C is simply the complexification
of B.

(2) Show that the Killing forms of gl (n,C) and gl (n) are given by B(X,Y) =
2ntr (XY) — 2trXtrY. Hint: As a basis use the matrices E;; = [8if8}f]1<s,t<n'

(3) Show that on sl (n, C) = sl(n) ® C the Killing form is B (X, Y) = 2ntr (XY).
Hint: Use (2) and the fact that I € gl(n, C) commutes with all elements in
sl (n, C).

(4) Show thatsl (k + I, C) = su(k,])®C, and conclude that s (k + /) and su (k, /)
have Killing form B (X, Y) = 2 (k + [) tr (XY).

(5) Show that on so (n,C) = so (n) ® C the Killing form is given by B (X,Y) =
(n —2) tr (XY). Hint: Use the basis E;; — Ej;, i <.

(6) Show that so (k + [, C) = so (k,[) ® C, and conclude that so (k, /) has Killing
form B (X,Y) = (k+ [ —2) tr (XY).

EXERCISE 10.5.7. Show that GL™ (p + ¢.R) /SO (p. g) defines a symmetric space
and that it can be identified with the nondegenerate bilinear forms on R”¢ that have
index q.

EXERCISE 10.5.8. Show that U (p, ¢) /SO (p, g) defines a symmetric space and that
u(@p,q) ® C =gl(p +¢,C).
EXERCISE 10.5.9. Show that the holonomy of CP" is U (n) .

EXERCISE 10.5.10. Show that a covering space of a symmetric space is also a
symmetric space. Show by example that the converse is not necessarily true.

EXERCISE 10.5.11. Show that a manifold is flat if and only if the holonomy is
discrete, i.e., hol, = {0}.

EXERCISE 10.5.12. Show that a compact Riemannian manifold with irreducible
restricted holonomy and Ric > 0 has finite fundamental group.

EXERCISE 10.5.13. Which known spaces can be described by SL (2,R) /SO (2)
and SL (2,C) /SU (2)?

EXERCISE 10.5.14. Show that the holonomy of a Riemannian manifold is con-
tained in U (/) if and only if it has a Kéhler structure.

EXERCISE 10.5.15. Show that if a homogeneous space has iso, = so (T,M) at
some point, then it has constant curvature.

EXERCISE 10.5.16. Show that the subalgebras so (k) x so (n — k) and u (;) are
maximal in so (n).

EXERCISE 10.5.17. Show that su (m) C so (m* — 1). Hint: Let su (m) act on itself.
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EXERCISE 10.5.18. Show that for any Riemannian manifold v, C hol,. Give an
example where equality does not hold.

EXERCISE 10.5.19. Show that for a symmetric space v, = hol,. Use this to show
that unless the curvature is constant v, = hol, = iso, provided v, C so (T,,M) is
maximal.

EXERCISE 10.5.20. Show that SO (n, C) /SO (n) and SL (n,C) /SU (n) are sym-
metric spaces with nonpositive curvature operator.

EXERCISE 10.5.21. The quaternionic projective space is defined as being the
quaternionic lines in H"*!. This was discussed when n = 1 in exercise 1.6.22.
Define the symplectic group Sp (n) C SU (2n) C SO (4n) as the orthogonal matrices
that commute with the three complex structures generated by i,j,k on R*. An
alternative way of looking at this group is by considering n x n matrices A with
quaternionic entries such that

A7l = A%

Show that if we think of H"™! as a right (or left) H module, then the space of
quaternionic lines can be written as

HP" =Sp(n+1)/(Sp(1) x Sp (n)) .

EXERCISE 10.5.22. Construct the hyperbolic analogues of the complex projective
spaces. Show that they have negative curvature and are quarter pinched.

EXERCISE 10.5.23. Give a Lie algebra description of a locally symmetric space
(not necessarily complete). Explain why this description corresponds to a global
symmetric space. Conclude that a simply connected locally symmetric space admits
a monodromy map into a unique global symmetric space. Show that if the locally
symmetric space is complete, then the monodromy map is bijective.

EXERCISE 10.5.24. Show that if an irreducible symmetric space has strictly posi-
tive or negative curvature operator, then it has constant curvature.

EXERCISE 10.5.25. Let M be a symmetric space. Show thatif X € t, and Y € iso,,
then [X, Y] € t,.

EXERCISE 10.5.26. Let M be a symmetric space and X, Y, Z € t,. Show that

R(X.Y)Z = [Lx,Ly] Z,
Ric (X, Y) = —tr ([Lx, Ly]) .
EXERCISE 10.5.27. Consider a Riemannian manifold M and a p-form w on T,M.

Show that @ has an extension to a parallel form on M if and only if w is invariant
under Hol, (M).



Chapter 11
Convergence

In this chapter we offer an introduction to several of the convergence ideas for
Riemannian manifolds. The goal is to understand what it means for a sequence
of Riemannian manifolds or metric spaces to converge to a metric space. The first
section centers on the weakest convergence concept: Gromov-Hausdorff conver-
gence. The next section covers some of the elliptic regularity theory needed for the
later developments that use stronger types of convergence. In the third section we
develop the idea of norms of Riemannian manifolds as an intermediate step towards
understanding convergence theory as an analogue to the easier Holder theory for
functions. Finally, in the fourth section we establish the geometric version of the
convergence theorem of Riemannian geometry by Cheeger and Gromov as well as
its generalizations by Anderson and others. These convergence theorems contain
Cheeger’s finiteness theorem stating that certain very general classes of Riemannian
manifolds contain only finitely many diffeomorphism types.

The idea of measuring the distance between subspaces of a given space goes
back to Hausdorff and was extensively studied in the Polish and Russian schools of
topology. The more abstract versions used here go back to Shikata’s proof of the
differentiable sphere theorem. Cheeger’s thesis also contains the idea that abstract
manifolds can converge to each other. In fact, he proved his finiteness theorem by
showing that certain classes of manifolds are precompact in various topologies.
Gromov further developed the theory of convergence to the form presented here
that starts with the weaker Gromov-Hausdorff convergence of metric spaces. His
first use of this new idea was to prove a group-theoretic question about the
nilpotency of groups with polynomial growth. Soon after the introduction of this
weak convergence, the earlier ideas on strong convergence by Cheeger resurfaced.
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11.1 Gromov-Hausdorff Convergence

11.1.1 Hausdorff Versus Gromov Convergence

At the beginning of the twentieth century, Hausdorff introduced what is now called
the Hausdorff distance between subsets of a metric space. If (X, |--|) is the metric
space and A, B C X, then

d(A,B) = inf{|ab| | a € A, b € B},
B(A,e) ={xe X | |xA| < &},
dy(A,B) = inf{e | A CB(B,e), BC B(A,¢)}.

Thus, d (A, B) is small if some points in these sets are close, while the Hausdorff
distance dy (A, B) is small if and only if every point of A is close to a point in B and
vice versa. One can easily see that the Hausdorff distance defines a metric on the
compact subsets of X and that this collection is compact when X is compact.

We shall concern ourselves only with compact or proper metric spaces. The latter
by definition have proper distance functions, i.e., all closed balls are compact. This
implies, in particular, that the spaces are separable, complete, and locally compact.

Around 1980, Gromov extended the Hausdorff distance concept to a distance
between abstract metric spaces. If X and Y are metric spaces, then an admissible
metric on the disjoint union X U Y is a metric that extends the given metrics on X
and Y.

With this the Gromov-Hausdorff distance is defined as

do—p (X,Y) = inf{dy (X, Y) | admissible metricson X U Y} .

Thus, we try to place a metric on X U Y that extends the metrics on X and Y,
such that X and Y are as close as possible in the Hausdorff distance. In other words,
we are trying to define distances between points in X and Y without violating the
triangle inequality.

Example 11.1.1. Tf Y is the one-point space, then

do—g (X, Y) < radX

= inf sup |xy|
VEX yxex

= radius of smallest ball covering X.

Example 11.1.2. Using |xy| = D/2forall x € X, y € Y, where diamX, diamY < D
shows that

dG-un (X,Y) <D/2.
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Let (#,dc—pg) denote the collection of compact metric spaces. We wish to
consider this class as a metric space in its own right. To justify this we must show
that only isometric spaces are within distance zero of each other.

Proposition 11.1.3. If X and Y are compact metric spaces with dg—y (X,Y) = 0,
then X and Y are isometric.

Proof. Choose a sequence of metrics |--|; on X U Y such that the Hausdorff distance
between X and Y in this metric is < i~!. Then we can find (possibly discontinuous)
maps

I;: X — Y, where |xI; ()], <i™",
Ji Y — X, where |yJ; (y)|; < it

Using the triangle inequality and that |--|; restricted to either X or Y is the given
metric || on these spaces yields

1(x1) i(x2)] < 207" + |x1xa]

i) Ji(y2)| < 207" + [yiyal
IxJio L(x)] < 27",
[yl o Ji(y)| < 2i L.

We construct / : X — Y and J : ¥ — X as limits of these maps in the same
way the Arzela-Ascoli lemma is proved. For each x the sequence (/; (x)) in Y has an
accumulation point since Y is compact. Let A C X be select a countable dense set.
Using a diagonal argument select a subsequence /;; such that I;; (a) — I (a) for all
a € A. The first inequality shows that 7 is distance decreasing on A. In particular, it
is uniformly continuous and thus has a unique extension to amap I : X — Y, which
is also distance decreasing. In a similar fashion we also get a distance decreasing

mapJ:Y — X.
The last two inequalities imply that / and J are inverses to each other. Thus, both
I and J are isometries. O

The symmetry and the triangle inequality are easily established for dg—g. Thus,
(A ,dc—p) becomes a pseudo-metric space, i.e., the equivalence classes form a
metric space. We prove below that this metric space is complete and separable. First
we show how spaces can be approximated by finite metric spaces.

Example 11.1.4. Let X be compactand A C X a finite subset such that every point
in X is within distance ¢ of some element in A4, i.e., dy (A, X) < &. Such sets A are
called e-dense in X. It is clear that if we use the metric on A induced by X, then
do—p (X,A) < e. The importance of this remark is that for any ¢ > 0 there exist
finite e-dense subsets of X since X is compact. To be consistent with our definition
of the abstract distance we should put a metric on X UA. We can do this by selecting
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very small § > 0 and defining |xa|y 4 = & + |xaly forx € X and a € A. Thus
do—p (X,A) < € + 6. Finally, let § — 0 to get the estimate.

Example 11.1.5. Suppose we have e-dense subsets
A={x,...,xq3 CX, B={y1,...,y} CY,
with the further property that
[ = [yl | < e 1 <ij <.
Then dg—py (X,Y) < 3e. We already have that the finite subsets are e-close to the

spaces, so by the triangle inequality it suffices to show that dg_p (A, B) < e. For
this we must exhibit a metric on A U B that makes A and B e-Hausdorff close. Define

[xiyil = e,

|X,'yj| = mkin {IX,'.Xk| + &+ |y,yk|} .

Thus, we have extended the given metrics on A and B in such a way that no points
from A and B get identified, and in addition the potential metric is symmetric. It then
remains to check the triangle inequality. Here we must show

)

lxiy| < |xizl + |yjz
|xixj| < |ywxil + |ykxjiv
lyivi| < bxyil + |xeyi| -

It suffices to check the first two cases as the third is similar to the second. For the
first we can assume that z = x; and find / such that

[y = & + [ymi] + o
Hence,

|xix| + iijki = |xixe| + & + |yjy1i + |k
> x| + & + [yl
= \Xiyj’\ .
For the second case select [, m with

il = |yl + & + |xxil
|kaj| = |ykym| +é&+ ‘.mej| .
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The assumption about the metrics on A and B then lead to

yixil + |yex;| = Iyl + & + il + [yiym| + & + x|
> |xex| 4 Pexi| + ] + x|

2 |xixj| .

Example 11.1.6. Suppose M; = S*/7; with the usual metric induced from S° (1)
Then we have a Riemannian submersion M; — S? (1/2) whose fibers have diameter
27 /k — 0 as k — oo. Using the previous example it follows that M; — S?(1/2)
in the Gromov-Hausdorff topology.

Example 11.1.7. One can similarly see that the Berger metrics (S3 , gs) — §%2(1/2)
as ¢ — 0. Notice that in both cases the volume goes to zero, but the curvatures and
diameters are uniformly bounded. In the second case the manifolds are even simply
connected. It should also be noted that the topology changes rather drastically from
the sequence to the limit, and in the first case the elements of the sequence even
have mutually different fundamental groups.

Proposition 11.1.8. The “metric space” (M ,dc—n) is separable and complete.

Proof. To see that it is separable, first observe that the collection of all finite metric
spaces is dense in this collection. Now take the countable collection of all finite
metric spaces that in addition have the property that all distances are rational.
Clearly, this collection is dense as well.

To show completeness, select a Cauchy sequence {X,} . To establish convergence
of this sequence, it suffices to check that some subsequence is convergent. Select a
subsequence {X;} such that dg—g (X;, X;+1) < 27 for all i. Then select metrics
|+]; ;+1 On X; U X;+1 making these spaces 2~ _Hausdorff close. Now define a metric
|“[i.i4; On X U Xiyj by

J=1
\xixiﬂ\iiiﬂ = min |xi+kxi+k+1| .
' {rieeXigd (120
This defines a metric || on Y = U;X; with the property that dy (X;, Xi4;) < 2771,
The metric space is not complete, but the “boundary” of the completion is exactly
our desired limit space. To define it, first consider
X = {{x;} | xi € X; and |xix;| — O asi,j — oo} .

This space has a pseudo-metric defined by

[xiy id| = i fxyil
1—>00
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Given that we are only considering Cauchy sequences {x;}, this must yield a metric
on the quotient space X, obtained by the equivalence relation

(it ~ i iff [{xi} {yi}| = 0.
Now we can extend the metric on Y to one on X U Y by declaring

|xe {x;}| = Hm x|
1—> 00

Using that dy (XJXH_I) < 277, we can for any x; € X; find a sequence xH_j} eX
such that x;+9 = x; and |xi+jxi+j+1| < 277. Then we must have |xi {xH_j} < 27l
Thus, every X; is 2 "T!-close to the limit space X. Conversely, for any given
sequence {x;} we can find an equivalent sequence {y;} with the property that
[vi {vi}| < 27%F1 for all k. Thus, X is 27" !-close to X;. O

From the proof of this theorem we obtain the useful information that Gromov-
Hausdorff convergence can always be thought of as Hausdorff convergence. In other
words, if we know that X; — X in the Gromov-Hausdorff sense, then after possibly
passing to a subsequence, we can assume that there is a metric on X U (U;X;) in
which X; Hausdorff converges to X. With a choice of such a metric it makes sense to
say that x; — x, where x; € X; and x € X. We shall often use this without explicitly
mentioning a choice of ambient metric on X U (U;X;) .

There is an equivalent way of picturing convergence. For a compact metric
space X define C (X) as the continuous functions on X and L*° (X) as the bounded
measurable functions with the sup-norm (not the essential sup-norm). We know that
L* (X) is a Banach space. When X is bounded construct a map X — L*° (X), by
sending x to the continuous function z > |xz|. This is usually called the Kuratowski
embedding when we consider it as a map into C (X) . The triangle inequality implies
that this is a distance preserving map. Thus, any compact metric space is isometric to
a subset of some Banach space L* (X) . The important observation is that two such
spaces L* (X) and L* (Y) are isometric if the spaces X and Y are Borel equivalent
(there exists a measurable bijection). Moreover, if X C Y, then L>® (X) C L*° (Y),
by extending a function on X to vanish on ¥ — X. Moreover, any compact metric
space is Borel equivalent to a subset of [0, 1]. In particular, any compact metric
space is isometric to a subset of L ([0, 1]) . We can then define

dg-p (X.Y) = infdy (i (X).j(Y)),

where i : X — L% ([0,1]) andj : Y — L ([0, 1]) are distance preserving maps.



11.1 Gromov-Hausdorff Convergence 401
11.1.2 Pointed Convergence

So far, we haven’t dealt with noncompact spaces. There is, of course, nothing wrong
with defining the Gromov-Hausdorff distance between unbounded spaces, but it will
almost never be finite. In order to change this, we should have in mind what is done
for convergence of functions on unbounded domains. There, one usually speaks
about convergence on compact subsets. To do something similar, we first define the
pointed Gromov-Hausdorff distance

de—n ((X,x), (Y, y)) = inf{dy (X, Y) + |xy[} .

Here we take as usual the infimum over all Hausdorff distances and in addition
require the selected points to be close. The above results are still true for this
modified distance. We can then introduce the Gromov-Hausdorff topology on the
collection of proper pointed metric spaces .# = {(X, x, |-+|)} in the following way:
We say that

(Xis-xis II,) - (X,.X, ||)

in the pointed Gromov-Hausdorff topology if for all R there is a sequence R; — R
such that the closed metric balls

(B (xi, R) , x;, |"|i) - (B (x,R), x, |"|)

converge with respect to the pointed Gromov-Hausdorff metric.

11.1.3 Convergence of Maps

We also need to address convergence of maps. Suppose we have

S X = Y,
Xk—>X,
Yk—>Y.

Then we say that f; converges to f : X — Y if for every sequence x; € X;
converging to x € X it follows that f; (xy) — f (x). This definition obviously
depends in some sort of way on having the spaces converge in the Hausdorff sense,
but we shall ignore this. It is also a very strong type of convergence, for if we
assume that X; = X, Y; = Y, and f; = f, then f can converge to itself only if
it is continuous.
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Note also that convergence of maps preserves such properties as being distance
preserving or submetries.
Another useful observation is that we can regard the sequence of maps f; as one

continuous map
F: (UX) - YU (UYL») :
i i

The sequence converges if and only if this map has an extension

Xu(Li)X,-) —>YU<LLJY,~),

in which case the limit map is the restriction to X. Thus, when X; are compact it
follows that a sequence is convergent if and only if the map

F: (UX,-) - YU (UY)
is uniformly continuous.

A sequence of functions as above is called equicontinuous, if for every ¢ > 0 and
xx € Xj there is an § > 0 such that fi (B (x¢, 8)) C B (fi (xx) , &) for all k. A sequence
is equicontinuous when, for example, all the functions are Lipschitz continuous with
the same Lipschitz constant. As for standard equicontinuous sequences, we have the
Arzela-Ascoli lemma:

Lemma 11.1.9. An equicontinuous family fi : Xy — Yi, where X — X, and
Yy — Y in the (pointed) Gromov-Hausdorff topology, has a convergent subse-
quence. When the spaces are pointed we also assume that f preserves the base
point.

Proof. The standard proof carries over without much change. Namely, first choose
dense subsets A; = {a},ab,...} C X; such that @} — a; € X as i — oc. Then
also, A = {aj} C X is dense. Next, use a diagonal argument to find a subsequence
of functions that converge on the above sequences. Finally, show that this sequence
converges as promised. O

11.1.4 Compactness of Classes of Metric Spaces

We now turn our attention to conditions that ensure convergence of spaces. More
precisely we want some good criteria for when a collection of (pointed) spaces is
precompact (i.e., closure is compact).
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For a compact metric space X, define the capacity and covering functions as
follows

Cap (¢) = Capy (¢) = maximum number of disjoint % -balls in X,

Cov (¢) = Covy (¢) = minimum number of &-balls it takes to cover X.

First, note that Cov (¢) < Cap (¢). To see this, select a maximum number of
disjoint balls B (x;, ¢/2) and consider the collection B (x;, €). In case the latter balls
do not cover X there exists x € X — UB (x;, ¢) . This would imply that B (x, ¢/2) is
disjoint from all of the balls B (x;, ¢/2) . Thus showing that the original ¢/2-balls did
not form a maximal disjoint family.

Another important observation is that if two compact metric spaces X and Y
satisfy dg—p (X, Y) < 6, then it follows from the triangle inequality that:

Covy (¢ + 28) < Covy (e),
Capy (¢) > Capy (¢ + 26).

With this information we can characterize precompact classes of compact metric
spaces.

Proposition 11.1.10 (Gromov, 1980). For a class € C (M ,dg—p) all of whose
diameters are bounded by D < 00, the following statements are equivalent:

(1) ¥ is precompact, i.e., every sequence in € has a subsequence that is convergent
in (%, dG—H) .

(2) There is a function Ny (¢) : (0, ) — (0, 00) such that Capy (¢) < N; (&) for all
Xe¥.

(3) There is a function N; (¢) : (0,a) — (0, 00) such that Covy (¢) < N, (¢) for all
Xe¥.

Proof. (1) = (2): If € is precompact, then for every ¢ > 0 we can find
Xi,..., Xy € ¥ such that for any X € % we have that dg—y (X, X;) < ¢/4 for
some i. Then

Capy (¢) < Capy, (;) = m?x Capy, (;) .

This gives a bound for Capy (¢) for each & > 0.

(2) = (3) Use N, = N;.

(3) = (1): It suffices to show that ¥ is totally bounded, i.e., for each ¢ > 0 we
can find finitely many metric spaces X1, ..., X, € .# such that any metric space
in € is within ¢ of some X; in the Gromov-Hausdorff metric. Since Covy (¢/2) <
N (¢/2), we know that any X € % is within 7 of a finite subset with at most
N (;) elements in it. Using the induced metric we think of these finite subsets as
finite metric spaces. The metric on such a finite metric space consists of a matrix

(dij) , 1 <i,j <N (¢/2), where each entry satisfies d;; € [0, D]. From among all such
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finite metric spaces, it is possible to select a finite number of them such that any of
the matrices () is within ¢/2 of one matrix from the finite selection of matrices.
This means that the spaces are within ¢/2 of each other. We have then found the
desired finite collection of metric spaces. O

As a corollary we also obtain a precompactness theorem in the pointed category.

Corollary 11.1.11. A collection € C 4« is precompact if and only if for each
R > 0 the collection

{1_9 (x,R) | B(x,R) C (X,x) € ‘to”} C (A ,dG-g)

is precompact.

In order to achieve compactness we need a condition that is relatively easy to
check.

We say that a metric space X satisfies the metric doubling condition with constant
C, if each metric ball B (p, R) can be covered by at most C balls of radius R/2.

Proposition 11.1.12. If all metric spaces in a class € C (M ,dg—p) satisfy the
metric doubling condition with constant C < oo and all have diameters bounded by
D < oo, then the class is precompact in the Gromov-Hausdorff metric.

Proof. Every metric space X € % can be covered by at most CV balls of
radius 27VD. Consequently, X can be covered by at most CV balls of radius
e € [27VD,27V*ID]. This gives us the desired estimate on Covy (&). O

Using the relative volume comparison theorem we can show

Corollary 11.1.13. For any integer n > 2, k € R, and D > 0 the following classes
are precompact:

(1) The collection of closed Riemannian n-manifolds with Ric > (n— 1)k and
diam < D.

(2) The collection of pointed complete Riemannian n-manifolds with Ric >
(n—1)k.

Proof. Tt suffices to prove (2). Fix R > 0. We have to show that there
can’t be too many disjoint balls inside B(x,R) C M. To see this, suppose
B(x1,€),..., B(xy.e) C B(x,R) are disjoint. If B (x;, ¢) is the ball with the
smallest volume, we have

- volB (x, R) - volB (x;, 2R) v (n,k,2R)
~ volB(x;,&) ~ volB(xi,e) ~— v(n k)’
This gives the desired bound. O

It seems intuitively clear that an n-dimensional space should have Cov (g) ~ ¢™"
as ¢ — 0. The Minkowski dimension of a metric space is defined as
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logC
dimX = lim sup osLov (8).
o —loge

This definition will in fact give the right answer for Riemannian manifolds. Some
fractal spaces might, however, have non-integral dimension. Now observe that

v (n,k,2R) .
v(n,k,e)

—n

Therefore, if we can show that covering functions carry over to limit spaces, then
we will have shown that manifolds with lower curvature bounds can only collapse
in dimension.

Lemma 11.1.14. Let € (N (g)) be the collection of metric spaces with Cov (&) <
N (e) . If N is continuous, then € (N (¢&)) is compact.

Proof. We already know that this class is precompact. So we only have to show that
if X; — X and Covy, (¢) < N (¢), then also Covy (¢) < N (¢) . This follows easily
from

COVX (8) < COVXi (S — ZdG—H (X, Xl)) < N (S — ZdG—H (X, Xl))
and

N (e —2dg—g (X, X;)) = N (g) asi — oo.

11.2 Holder Spaces and Schauder Estimates

First, we define the Holder norms and Holder spaces, and then briefly discuss
the necessary estimates we need for elliptic operators for later applications. The
standard reference for all the material here is the classic book by Courant and Hilbert
[35], especially chapter IV, and the thorough text [50], especially chapters 1-6.
A more modern text that also explains how PDEs are used in geometry, including
some of the facts we need is [99], especially vol. III.

11.2.1 Holder Spaces

Fix a bounded domain 2 C R”". The bounded continuous functions from € to R*
are denoted by C° (€2, R¥) , and we use the sup-norm

llull co = sup |u (x)]
XEQ
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on this space. This makes C° (Q , Rk) into a Banach space. We wish to generalize
this so that we still have a Banach space, but in addition also take into account
derivatives of the functions. The first natural thing to do is to define C" (Q , Rk) as
the functions with m continuous partial derivatives. Using multi-index notation, we
define

My

Nu= "3y = , .
()"0 ()™

where I = (iy,...,i,) and |I| =i + -+ + i,. Then the C""-norm is
lullen = llulleo + 3 [0 o
1=<|l|<m
This norm does result in a Banach space, but the inclusions
C" (Q.RY ccm ' (Q.RY
are not closed subspaces. For instance, f (x) = |x| is in the closure of
C'(-1.1],R) c C°(-1,1].R).

To accommodate this problem, we define for each o € (0, 1] the C*-pseudo-norm
of u:Q — RFas

Ju () —u (y)]
p .

llull, = su
* X,yEQ |x_y|0t

When o = 1, this gives the best Lipschitz constant for u.

Define the Holder space C™* (2, R*) as being the functions in C" (€2, R¥) such
that all mth-order partial derivatives have finite C*-pseudo-norm. On this space we
use the norm

lullene = llullen + D [0l -

lIl=m

If we wish to be specific about the domain, then we write ||u||cna g . With this
notation we can show

Lemma 11.2.1. C"™¢ (Q , Rk) is a Banach space with the C"™* -norm. Furthermore,
the inclusion

cm(Q,RY c cP(Q,RY),

where B < « is always compact, i.e., it maps closed bounded sets to compact sets.
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Proof. We only need to show this in the case where m = 0; the more general case
is then a fairly immediate consequence.

First, we must show that any Cauchy sequence {u;} in C* (€2, R¥) converges.
Since it is also a Cauchy sequence in C° (€2, R¥) we have that u; — u € C° in the
C%-norm. For fixed x # y observe that

u; (x) — u; (v)] N lu(x) —u ()|
x — y|® e—y/*

As the left-hand side is uniformly bounded, we also get that the right-hand side is
bounded, thus showing that u € C“.
Finally select ¢ > 0 and N so that for i,j > Nand x # y

[ (i (0) = 1 () = (s () — 1; ()]

<e.
lx —y|*

If we let j — oo, this shows that

(i () = (x)) = (i () =u )] _ .
lx — y|* -

Hence u; — u in the C*-topology.

Now for the last statement. A bounded sequence in C* (Q , R¥) is equicontinuous
so the Arzela-Ascoli lemma shows that the inclusion C* (,R*) C C° (Q,R¥) is
compact. We then use

| ) —u ()] _ (IM(X)—M(y)I

Bla
= a ) () =)
b=l

bx — y|?
to conclude that
1_
leellg < Clully) - @+ [l o) P72

Therefore, a sequence that converges in C° and is bounded in C¥, also converges in
CP,aslongas B <a < 1. ]

11.2.2 Elliptic Estimates

We now turn our attention to elliptic operators of the form

Lu = a"d;0u + b'du =f,
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where a/ = & and a¥, b’ are functions. The operator is called elliptic when the
matrix (aif ) is positive definite. Throughout we assume that all eigenvalues for (aij )
lie in some interval [A, A‘l] , A > 0, and that the coefficients satisfy ||aif ||a < A7l

and H b Ha < A~!. We state without proof the a priori estimates, usually called the
Schauder or elliptic estimates, that we need.

Theorem 11.2.2. Let Q2 C R" be an open domain of diameter < D and K C
a subdomain such that d (K,0) > §. If « € (0, 1), then there is a constant C =
C(n,a, A, 6, D) such that

lullca g < C (I1Lullcag + lutlcu ) -
lullcreg = C(ILutllcog + lullceq) -

Furthermore, if Q has smooth boundary and u = ¢ on 092, then there is a constant
C = C(n,a, A, D) such that on all of Q we have

Il 2o = € (Lt ceg + @l o) -

One way of proving these results is to establish them first for the simplest
operator:

Lu= Au= (S'ifa,-aju.

Then observe that a linear change of coordinates shows that we can handle operators
with constant coefficients:

Lu= Au= aijBiaju.

Finally, Schauder’s trick is that the assumptions about the functions @’ imply that
they are locally almost constant. A partition of unity type argument then finishes the
analysis.

The first-order term doesn’t cause much trouble and can even be swept under the
rug in the case where the operator is in divergence form:

Lu= aiiBiaju + b ou=9; (a’:iBju) .

Such operators are particularly nice when one wishes to use integration by parts, as
we have

/ (8,- (aijaju)) h = —/ a’:"ajua,-h
Q Q
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when 2 = 0 on d<2. This is interesting in the context of geometric operators, as the
Laplacian on manifolds in local coordinates is of that form

Lu= Agu= \/detg; - g" - 8,14) .

1
Jdetg;; o (

Thus

/ vLuvol = / v0; <\/detgij gl a,u) .

The above theorem has an almost immediate corollary.

Corollary 11.2.3. If in addition we assume that Haij H cmas Hb"\ < A7L then

there is a constant C = C (n,m,a, A, 8, D) such that

cmo

[ull entze g < C (ILullona g + lullce o) -
And on a domain with smooth boundary,

lulentra o < C (ILullone g + ll@llontae se) -
The Schauder estimates can be used to show that the Dirichlet problem always
has a unique solution.
Theorem 11.2.4. Suppose Q@ C R”" is a bounded domain with smooth boundary.
Then the Dirichlet problem
Lu=f, ulpo =¢

always has a unique solution u € C*>* (Q) iff € C* () and ¢ € C>* (3Q).

Observe that uniqueness is an immediate consequence of the maximum principle.
The existence part requires more work.

11.2.3 Harmonic Coordinates

The above theorems make it possible to introduce harmonic coordinates on
Riemannian manifolds.

Lemma 11.2.5. If (M, g) is an n-dimensional Riemannian manifold and p € M,
then there is a neighborhood U > p on which we can find a harmonic coordinate
system x = (xl, . ,x") : U — R, ie., a coordinate system such that the functions
x' are harmonic with respect to the Laplacian on (M, g) .
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Proof. First select a coordinate system y = (yl, cees y") on a neighborhood around
p such that y (p) = 0. We can then think of M as being an open subset of R”

and p = 0. The metric g is written as g; = g (ai, Bj) =g (33,-, aid') in the standard

Cartesian coordinates (yl, cees y") . We must then find a coordinate transformation
y = x such that

k — 1 . e ” . . =
Ax* = ety 0; (\/detg€, g 8]xk) 0.
To find these coordinates, fix a small ball B (0, ¢) and solve the Dirichlet problem

AX =0, X =y ondB(0,¢).

We have then found n harmonic functions that should be close to the original
coordinates. The only problem is that we don’t know if they actually are coordinates.
The Schauder estimates tell us that

b= Yllczemon = € (18 G = Dllewson + 16 = Maaos o sao)
=C ||Ay||cu,3(0,s) .

If matters were arranged such that [|Ay||ce g — 0 as e — 0, then we could
conclude that Dx and Dy are close for small €. Since y does form a coordinate
system, we would then also be able to conclude that x formed a coordinate system.

Now observe that if y were chosen as exponential Cartesian coordinates, then
we would have that dyg; = 0 at p. The formula for Ay then shows that Ay = 0
at p. Hence, [|Ay||ce g — 0 as & — 0. Finally recall that the constant C depends
only on an upper bound for the diameter of the domain aside from «, n, A. Thus,
[x = yllc2e poe — 0ase— 0. O

One reason for using harmonic coordinates on Riemannian manifolds is that both
the Laplacian and Ricci curvature tensor have particularly elegant expressions in
such coordinates.

Lemma 11.2.6. Let (M,g) be an n-dimensional Riemannian manifold with a
harmonic coordinate system x : U — R". Then

1)

1

Au =
‘ Vdetgy

9; (\/ detg, - g - afu) = g"d;0;u.
(2)

1
5 A8+ 0 (g.9g) = —Ricy = —Ric (9, 9)) .
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Here Q is a universal rational expression where the numerator is polynomial
in the matrix g and quadratic in dg, while the denominator depends only

on /detg;;.
Proof. (1) By definition:

0= Ax
- «/ditgsz ai (\/detgft : glj ’ af}tj{)
= gljalaj){k + \/ditg Iai (\/detgst . glj) . 31)4,}
_ Jiiq.sk 1 i) . sk
= g%0:6; + \/detgﬂa,- (\/detgs, . gJ) -8
=0+ L 0 (Vetgy - g*)
= Jditgsz o <\/detg‘” ' gik) ’
Thus, it follows that
Au = «/d:ztgsz o (\/detgst g7 af“)
" 1 "
= U190 + 0 (Vdetgy - ¢") -8
8 oioju Jdetgy, \/ 8st* 8 iU
= gijaiBju.
(2) Recall that if u is harmonic, then the Bochner formula for Vu is
A (; |Vu|2) — |Hessul* + Ric (Vu, Vi) .

Here the term |Hessu|2 can be computed explicitly and depends only on the
metric and its first derivatives. In particular,

L Ag (Vt, V) — [Hessx|” = Ric (Va¥, Vi) .
Polarizing this quadratic expression gives us an identity of the form
éAg (in, ij) -8 (Hessxi, Hessxj) = Ric (in, ij) .
Now use that Vx* = g¥9;x*9; = g™, to see that g (Vx', V¢/) = g¥. We then have

éAgij —g (Hessxi, Hessxj) = Ric (in, ij) ,
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which in matrix form looks like
1[Ag"] — [g (Hessx', Hess¥’) | = [¢™] - [Ric (3, 3))] - [£7] -

This is, of course, not the promised formula. Instead, it is a similar formula for the
inverse of [g;]. Now use the matrix equation [gx] - [¢¥] = [§] to conclude that

0= A ([gal - [¢"])

= [Agil - [¢Y] +2 [Zg (Vgir, Vg"’)} + [gul - [A8Y]

3
= [Agul - [8] +2[Vgul - [V8Y] + [gul - [AgY].

Inserting this in the above equation yields

[Agy] = —2[Vgul - [V"] - [85] — [su] - [A8"] - [84]
= —2[Veul - [V£"] - [gy]
=2 [gu] - [g (Hessxk, Hessxl)] . [glj]
—2 [ga] - [¢"] - [Ric (3, )] - [¢"] - [2y]
= —2[Veu] - [V&"] - [gy] — 2 [gu] - [¢ (Hessx", Hessx')] - [g4]
—2[Ric (3;,9;)] -

Each entry in these matrices then satisfies

Vg + 04 (8. 08)

Q5 =-2) 8 (Ve V') gy
k.l

-2 Z 8ik8 (Hessxk, Hessxl) 8ij-
k.l O

—RiC,:,',

It is interesting to apply this formula to the case of an Einstein metric, where
Ric; = (n — 1) kg;;. In this case, it reads

1Ag=—(n—1)kg;—Q(g.0g).

The right-hand side makes sense as long as g; is C !. The equation can then
be understood in the weak sense: Multiply by some test function, integrate, and
use integration by parts to obtain a formula that uses only first derivatives of g; on
the left-hand side. If g;; is C Lo then the left-hand side lies in some C?; but then our
elliptic estimates show that g; must be in C*P. This can be bootstrapped until we
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have that the metric is C*°. In fact, one can even show that it is analytic. Therefore,
we can conclude that any metric which in harmonic coordinates is a weak solution
to the Einstein equation must in fact be smooth. We have obviously left out a few
details about weak solutions. A detailed account can be found in [99, vol. III].

11.3 Norms and Convergence of Manifolds

We next explain how the C™* norm and convergence concepts for functions
generalize to Riemannian manifolds. These ideas can be used to prove various
compactness and finiteness theorems for classes of Riemannian manifolds.

11.3.1 Norms of Riemannian Manifolds

Before defining norms for manifolds, let us discuss which spaces should have
norm zero. Clearly Euclidean space is a candidate. But what about open subsets
of Euclidean space and other flat manifolds? If we agree that all open subsets of
Euclidean space also have norm zero, then any flat manifold becomes a union of
manifolds with norm zero and therefore should also have norm zero. In order to
create a useful theory, it is often best to have only one space with vanishing norm.
Thus we must agree that subsets of Euclidean space cannot have norm zero. To
accommodate this problem, we define a family of norms of a Riemannian manifold,
i.e., we use a function N : (0, c0) — (0, co) rather than just a number. The number
N (r) then measures the degree of flatness on the scale of r, where the standard
measure of flatness on the scale of r is the Euclidean ball B (0, r) . For small r, all
flat manifolds then have norm zero; but as r increases we see that the space looks
less and less like B (0, r) and therefore the norm will become positive unless the
space is Euclidean space.

Let (M, g, p) be a pointed Riemannian n-manifold. We say that the C"*-norm on
the scale of r at p:

M. g p)llcne , = O,

provided there exists a C" 1% chart ¢ : (B(0,r),0) C R* — (U,p) C M such
that

(nl) |Dg| < ¢ on B(0,r) and |D<p_l| < ¢2 on U. Equivalently, for all
v € R" the metric coefficients satisfy

e 22500 < guvful < 28 vt
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(n2) For all multi-indices I with 0 < |I| < m

A o ul, = 0.

Globally we define

1M )l e, = stp [ (M, g P)l|one, -
PEM

Observe that we think of the charts as maps from the fixed space B (0, r) into
the manifold. This is in order to have domains for the functions which do not
refer to M itself. This simplifies some technical issues and makes it more clear
that we are trying to measure how the manifolds differ from the standard objects,
namely, Euclidean balls. The first condition tells us that in the chosen coordinates
the metric coefficients are bounded from below and above (in particular, we have
uniform ellipticity for the Laplacian). The second condition gives us bounds on the
derivatives of the metric.

It will be necessary on occasion to work with Riemannian manifolds that are
not smooth. The above definition clearly only requires that the metric be C"“ in
the coordinates we use, and so there is no reason to assume more about the metric.
Some of the basic constructions, like exponential maps, then come into question,
and indeed, if m < 1 these concepts might not be well-defined. Therefore, we shall
have to be a little careful in some situations.

The norm at a point is always finite, but when M is not compact the global norm
might not be finite on any scale.

Example 11.3.1. If (M, g) is a complete flat manifold, then |[(M, g)| cna , = O for
all » < inj(M, g) . In particular, |(R", gr#)||cma, = 0 for all . We will show that
these properties characterize flat manifolds and Euclidean space.

11.3.2 Convergence of Riemannian Manifolds

Now for the convergence concept that relates to this new norm. As we can’t subtract
manifolds, we have to resort to a different method for defining this. If we fix a
closed manifold M, or more generally a precompact subset A C M, then we say
that a sequence of functions on A converges in C"™“, if they converge in the charts
for some fixed finite covering of coordinate patches that are uniformly bi-Lipschitz.
This definition is clearly independent of the finite covering we choose. We can then
more generally say that a sequence of tensors converges in C"“ if the components
of the tensors converge in these patches. This makes it possible to speak about
convergence of Riemannian metrics on compact subsets of a fixed manifold.

A sequence of pointed complete Riemannian manifolds is said to converge in
the pointed C™* topology, (M;, gi,p;) — (M, g,p), if for every R > 0 we can
find a domain 2 D B (p,R) C M and embeddings F; : 2 — M, for large i such
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that F; (p) = pi, Fi(2) D B(pi,R), and F/'g; — g on Q in the C™“ topology.
It is easy to see that this type of convergence implies pointed Gromov-Hausdorff
convergence. When all manifolds in question are closed with a uniform bound on
the diameter, then the maps F; are diffeomorphisms. For closed manifolds we can
also speak about unpointed convergence. In this case, convergence can evidently
only occur if all the manifolds in the tail end of the sequence are diffeomorphic. In
particular, we have that classes of closed Riemannian manifolds that are precompact
in some C"™“ topology contain at most finitely many diffeomorphism types.

A warning about this kind of convergence is in order here. Suppose we have
a sequence of metrics g; on a fixed manifold M. It is possible that these metrics
might converge in the sense just defined, without converging in the traditional sense
of converging in some fixed coordinate systems. To be more specific, let g be the
standard metric on M = S%. Now define diffeomorphisms F, coming from the flow
corresponding to the vector field that is O at the two poles and otherwise points in
the direction of the south pole. As ¢ increases, the diffeomorphisms will try to map
the whole sphere down to a small neighborhood of the south pole. Therefore, away
from the poles the metrics F;'g will converge to 0 in some fixed coordinates. So
they cannot converge in the classical sense. If, however, we pull these metrics back
by the diffeomorphisms F_,, then we just get back to g. Thus the sequence (M, g;) ,
from the new point of view we are considering, is a constant sequence. This is really
the right way to think about this as the spaces (S?, F;"g) are all isometric as abstract
metric spaces.

11.3.3 Properties of the Norm

Let us now consider some of the elementary properties of norms and their relation
to convergence.

Proposition 11.3.2. Given (M, g,p), m > 0, « € (0, 1] we have:

) (M, g.p)lcna, = | (M. 228, P)|| a5, for all A > 0.

(2) The function r — ||(M, g, p)||cma , is increasing, continuous, and converges to
Oasr— 0.

(3) Suppose (M;, gi,pi) — (M, g,p) in C"*. Then

”(Mis givpi)”C’”"‘,r g ”(Ms gvp)”C’”"‘,r fOV allr > 0.

Moreover, when all the manifolds have uniformly bounded diameter
”(Miv gi)”C”’-",r - ”(Mv g)”C’”’”,r fOV allr > 0.

@) If M, g,p)llcne, < O, then for all x1,x, € B (0, r) we have

e Cmin{|x; — x|, 2r — [xi] — %2} < le(x1) p(x2)| < €€ |x1 — x2] .
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(5) The norm ||(M, g, p) | cna,, is realized by a C" T _chart.
(6) If M is compact, then ||(M, g)||cna , = (M, g, p)||cne . for some p € M.

Proof. (1) If we change the metric g to A%g, then we can change the chart ¢ :
B(0,7r) = Mto ¢ (x) = ¢ (A_lx) : B(0, Ar) — M. Since we scale the metric
at the same time, the conditions nl and n2 will still hold with the same Q.

(2) By restricting ¢ : B(0,r) — M to a smaller ball we immediately get that
r = |[(M,g,p)|cne, is increasing. Next, consider again the chart ot (x) =
¢ (A7'x) : B(0,Ar) — M, without changing the metric g. If we assume that
”(Ms gvp)”C”W,r < Q’ then

1(M. 8. p)l| one 5, < max {Q = [log A]. Q- 2%} .
Denoting N (r) = ||(M, g, p)||cna ,» We obtain
N (Ar) < max {N (r) & |logA| N (r) - A%} .
By letting A = "7, where r; — r, we see that this implies

limsupN (r;) < N (r).

Conversely,
N(r)=N ( : r,-)
ri
r \?
< max { N (r;) £ |log ,N(r,-)'( ) } .
ri ri
So
r r 2
N (r) < liminfmax { N (r;) £ |log |,N(r;)- ( ) }
ri ri

= liminfN () .

This shows that N (r) is continuous. To see that N (r) — 0 as r — 0, just
observe that any coordinate system around a point p € M can, after a linear
change, be assumed to have the property that the metric gy = 8y at p. In
particular |D<p|p| = |D<p_1|p\ = 1. Using these coordinates on sufficiently
small balls will yield the desired charts.

(3) Fix r > 0 and Q > |(M, g.p)| cne.,- Pick a domain Q@ D B (p. €?r) such that
for large i we have embeddings F; : Q@ — M; with the property that: F'g; — g
in C"™* on Q and F; (p) = p;.
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“)

Choose a chart ¢ : B(0,r) — M with properties nl and n2. Then define
charts in M; by ¢; = F; o ¢ : B(0,r) — M; and note that since F'g; — g
in C"™, these charts satisfy properties nl and n2 for constants Q; — Q. This
shows that

limsup [|(M;, g, pi) | cne , = (M, &, P) || cna -

On the other hand, if Q > ||(M;, gi, pi) | cme, for a sufficiently large 7, then
select a chart ¢; : B(0,r) — M; and consider ¢ = Fl._l o ¢; on M. As before,
we have

(M, g,p)llcna, < Qi

where Q; is close to Q. This implies

liminf ||(Mlv gispi)”C’”"‘,r = ||(M7 gsp)”C'”-"‘,r

and proves the result.

When all the spaces have uniformly bounded diameter we choose diffeomor-
phisms F; : M — M; for large i such that Fg; — g. For every choice of p € M
select p; = F; (p) € M; and use what we just proved to conclude that

tim inf || (M. 80)l|emr, > sup | (M. g.p)l|cm, -
p

Similarly, when p; € M; and p = F;! (p;), it follows that

lim sup ”(Mh givpi)“C”’-",r = sup ”(Mv g)“C’”’”,r :
p

The condition [Dg| < e, together with convexity of B(0,r), immediately
implies the second inequality. For the other, first observe that if any segment
from ¢ (x1) to ¢ (x2) lies in U, then \Dgo_li < ¢? implies, that

lr1 — x| < €2 ]p(x1) p(x2)] .

So we may assume that ¢(x;) and ¢(x,) are joined by a segment ¢ : [0, 1] - M
that leaves U. Split c into ¢ : [0,7;) — U and ¢ : (£, 1] — U with ¢(t;) € oU.
Then we clearly have

L(c) > L(c|jo.)) + L(c|z.17)
e 2(L(p ™" oclon)) + L@ o clw)
e @ Q2r—|x1] = |x2]) .

lp(x1) @ (x2)]

%

%
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The last inequality follows from the fact that ¢ ' o ¢(0) = x; and ¢! o ¢(1) =

X2, and that 9! o ¢ (r) approaches 9B (0, r) as t approaches #; and 1.

(5) Given a sequence of charts ¢; : B (0,r) — M that satisfy nl and n2 with Q; —
QO we can use the Arzela-Ascoli lemma to find a subsequence that converges
toa C""1“ map ¢ : B(0,r) — M. Property (4) shows that ¢ is injective
and becomes a homeomorphism onto its image. This makes ¢ a chart. We can,
after passing to another subsequence, also assume that the metric coefficients
converge. This implies that ¢ satisfies nl and n2 for Q.

(6) Property (3) implies thatp — ||(M, g, p)|| cn« . is continuous. Compactness then
shows that the supremum is a maximum.

O

Corollary 11.3.3. If||(M.g.p)|lcne,, < O, then B (p,e 2r) C U.

Proof. Let g € dU be the closest point to p so that B (p, |gp|) C U.Ifc: [0, |pq|]] —
M is a segment from p to g, then c(s) € B(p,|qp|) for all s < |gp| and we
can write ¢ (s) = ¢ (c(s)), where ¢ : [0,|gp|) € B(0,r) has the property that
lim,_, 4| | (t)| = r. Property (4) from proposition 11.3.2 then shows that

%

lgp| = lim ¢ (¢ (s)) ¢ (0)]
s—gp|

v

lim e Cmin{|c (s)|,2r — | (s)|}

s—|qpl

lim e ¢ (s)]

s—|qpl

Q

v

=e “r.

|

Corollary 11.3.4. If |[(M, g,p)||cne, = O for some r, then p is contained in a
neighborhood that is flat.

Proof. Tt follows from proposition 11.3.2 that there is a C" 1% chart ¢ : B (0,r) —
U D B (p,e 9r) with Q = 0. This implies that it is a C' Riemannian isometry and
then by theorem 5.6.15 a Riemannian isometry. O

11.3.4 The Harmonic Norm

We define a more restrictive norm, called the harmonic norm and denoted

h
1. g.p)[cne -

The only change in our previous definition is that ¢ ~' : U — R" is also assumed to

be harmonic with respect to the Riemannian metric g on M, i.e., for each j
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1
\/ det [gy]

Proposition 11.3.5 (Anderson, 1990). Proposition 11.3.2 also holds for the har-
monic norm when m > 1.

0 (Vdetlga] - ¢") = 0.

Proof. The proof is mostly identical so we only mention the necessary changes.

For the statement in (2) that the norm goes to zero as the scale decreases, just
solve the Dirichlet problem as we did when establishing the existence of harmonic
coordinates in lemma 11.2.5. There it was necessary to have coordinates around
every point p € M such that in these coordinates the metric satisfies g; = §;
and drg; = O at p. If m > 1, then it is easy to show that any coordinate system
around p can be changed in such a way that the metric has the desired properties
(see exercise 2.5.20).

The proof of (3) is necessarily somewhat different, as we must use and produce
harmonic coordinates. Let the set-up be as before. First we show the easy part:

o h h
liminf || (M;, gi. p)llcne» = |(M. g, P) | e, -
To this end, select O > liminf | (M, g;, p,-)II}é‘fnr.u’,. For large i we can then select

charts ¢; : B(0,r) — M; with the requisite properties. After passing to a
subsequence, we can make these charts converge to a chart

¢ =1limF; ' og;:B(0,r) > M.

Since the metrics converge in C"™*, the Laplacians of the inverse functions must
also converge. Hence, the limit charts are harmonic as well. We can then conclude

that ||(M. 8. p) ¢, < Q-
For the reverse inequality

har har

limsup [|(M;, g, pi) | cna » = (M & P)[[cne - »

select Q0 > ||(M, g, p)||’g,‘,,’u,,. Then, from the continuity of the norm we can find
& > 0 such that also ||(M, g,p)||}é‘i,f_u’r+s < Q. For this scale, select

0:BO,r+e)—-UCM
satisfying the usual conditions. Now define
U =Fi(p(BO,r+e¢/2) CM,.
This is clearly a closed disc with smooth boundary

an = Fi ((p (BB (0,}"+ 8/2)))
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On each U; solve the Dirichlet problem
Yt U > R,
Agyi = 0,
Vi = ¢ ' o F ! on dU,.
The inverse of ;, if it exists, will then be a coordinate map B (0, r) — U;. On the
set B(0,r + &/2) we can compare y; o F; o ¢ with the identity map /. Note that

these maps agree on the boundary of B (0, r 4 &/2) . We know that F'g; — g in the
fixed coordinate system ¢. Now pull these metrics back to B (O, r+ ;) and refer to

them as g (= ¢*g) and g; (= ¢*Fg;). In this way the harmonicity conditions read
Agl = 0and A,y o Fj o ¢ = 0. In these coordinates we have the correct bounds
for the operator

1
A = 301 + 0 (Veet[gi - ¢!') &

Vdet [gi]

to use the elliptic estimates for domains with smooth boundary. Note that this is
where the condition m > 1 becomes important so that we can bound

Jd:t oy (Vaetls &)

in C*. The estimates then imply

”I_WioFio(p”C'erl.a f CHA& (I—'(ﬂiOFioq))

Cm*l.o(
=C “ AgiI”cm*lu :
However, we have that
etlere = | byt (Vasteaos?)]
0 d
" Jdet[g] k «/ etfg]- g ) .
= A s = 0.

In particular,
|l —yioFioglomtia = 0.

It follows that ¥; must become coordinates for large i. Also, these coordinates
will show that ||(M;, g,~,p,~)||’é‘,’,f,a’, < Q for large i. a
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11.3.5 Compact Classes of Riemannian Manifolds

We can now state and prove the result that is our manifold equivalent of the Arzela-
Ascoli lemma. This theorem is essentially due to J. Cheeger.

Theorem 11.3.6 (Fundamental Theorem of Convergence Theory). For given
0>0n>2m=>0, a € (0,1], and r > 0 consider the class A#"™*(n,Q,r)
of complete, pointed Riemannian n-manifolds (M, g,p) with ||(M, g)|cne, < Q.
The class #™%(n, Q, r) is compact in the pointed C™P topology for all B < a.

Proof. First we show that .# = .#™%(n,Q,r) is precompact in the pointed
Gromov-Hausdorff topology. Next we prove that .# is closed in the Gromov-
Hausdorff topology. The last and longest part is devoted to getting improved
convergence from Gromov-Hausdorff convergence.

Setup: Whenever we select M € .# , we can by proposition 11.3.2 assume that it
comes equipped with charts around all points satisfying nl and n2.

(A) A is precompact in the pointed Gromov-Hausdorff topology.

Define § = ¢~ 2r and note that there exists an N(n, Q) such that B(0, r) can be
covered by at most N balls of radius e~ ¢ - /4. Since ¢ : B(0,r) — U is a Lipschitz
map with Lipschitz constant < €2, this implies that U D B (p, §) can be covered by
N balls of radius 4/4.

Next we claim that every ball B(x, £ - 5/2) C M can be covered by < N* balls of
radius /4. For £ = 1 we just proved this. If B(x, £ - §/2) is covered by B(x,%/4),. . .,
B(xyt,3/4), then B (x,£ - 8/2 4+ 8/2) C | B(x;,8). Now each B(x;, §) can be covered
by < N balls of radius /4, and hence B (x, (£ + 1)3/2) can be covered by < N-N* =
N1 balls of radius /4.

The precompactness claim is equivalent to showing that we can find a function
C(e) = C(&,R,K,r,n) such that each B(p,R) can contain at most C(¢) disjoint
e-balls. To check this, let B(xy, ¢),...,B(x;, &) be a collection of disjoint balls in
B(p,R). Suppose that £ - /2 < R < (£ 4+ 1)3/2. Then

volB(p, R) < N**! . (maximal volume of §/4-ball)
< N**!'. (maximal volume of chart)
< Nt K volB(0, r)
<V(R) =V(R,n,K,r).

As long as ¢ < § each B(x;, ¢) lies in some chart ¢ : B(0,r) — U C M whose
pre-image in B(0, r) contains an e~ X - e-ball. Thus

volB(p;, €) > ¢ "KvolB(0, ¢).
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All in all, we get
V(R) > volB(p, R)
> Z volB(p;, €)

>s5.¢"K. volB(0, ¢).
Thus,
s < C(e) = V(R) - "€ - (volB(0, £)) .

Now select a sequence (M;, g;, p;) in .# . From the previous considerations we
can assume that (M;, g;, p;) — (X, ||, p) in the Gromov-Hausdorff topology. It will
be necessary in many places to pass to subsequences of (M;, g;, p;) using various
diagonal processes. Whenever this happens, we do not reindex the family, but
merely assume that the sequence was chosen to have the desired properties from
the beginning.

(B) (X,]|-],p) is a Riemannian manifold of class C"* with ||(X, g)||cme, < Q

For each g € X we need to find a chart ¢ : B(0,r) — U C X with ¢ = ¢ (0).
To construct this chart consider g; — ¢ and charts ¢; : B(0,r) — U; C M, with
q; = ¢; (0). These charts are uniformly Lipschitz and so must subconverge to a map
¢ : B(0,r) > U C X. This map will satisfy property (4) in proposition 11.3.2 and
thus be a homeomorphism onto its image. This makes X a topological manifold.

We next construct a compatible Riemannian metric on X that satisfies nl and n2.
For each ¢ € X consider the metrics ¢ g; = g;.. written out in components on B(0, r)
with respect to the chart ¢;. Since all of the g;. satisfy nl and n2, we can again use
Arzela-Ascoli to insure that the components g;. — g.. in the C"™# topology on
B(0, r) to functions g.. that also satisfy nl and n2. These local Riemannian metrics
are possibly only Holder continuous. Nevertheless, they define a distance as we
defined it in section 5.3. Moreover this distance is locally the same as the metric
on X. To see this, note that we work entirely on B(0, r) and both the Riemannian
structures and the metric structures converge to the limit structures.

Finally, we need to show that the transition function ¢! o v for two such charts
. ¥ : B(0,r) — X with overlapping images are at least C' so as to obtain a
differentiable structure on X. As it stands ¢! o v is locally Lipschitz with respect
to the Euclidean metrics. However, it is distance preserving with respect to the
pull back metrics from X. Calabi-Hartman in [22] generalized theorem 5.6.15 to
this context. Specifically, they claim that a distance preserving map between C*
Riemannian metrics is C'%. The proof, however, only seems to prove that the map
is C'"2, which is more than enough for our purposes.
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(©) Mi, gi,p)) — (X, ]| ,p) = (X, g,p) in the pointed C"# topology.

We assume that X is equipped with a countable atlas of charts ¢; : B (0,r) — Uj,
s = 1,2.3,... that are limits of charts ¢;; : B(0,r) — U;; C M, that also form
an atlas for each M;. We can further assume that transitions converge: (pi;l o @i —>
(ps_l o ¢, and that the metrics converge: g;.. — gs.. We say that two maps F, F,
between subsets in M; and X are C"T1# close if all the coordinate compositions
@' o Fy o g;; and ¢, o F; o ¢ are C"T1'# close. Thus, we have a well-defined
C"*18 topology on maps from M; to X. Our first observation is that

fis = @iso%_l 2 Us — Uy,
Jie = @irowr_l U — Uy
“converge to each other” in the C"*!# topology. Furthermore,
(fis)*gilui, — glu,

in the C™# topology. These are just restatements of what we already assumed. In
order to finish the proof, we construct maps

¢ ¢
Fig 1 Q¢ = UUY_)QM =UUis
s=1 s=1

that are closer and closer to the fi;, s = 1,...,£ maps (and therefore all f;;) as
i — 00. We will construct Fj; by induction on £ and large i depending on £.

For £ = 1 simply define F;; = f;;.

Suppose we have Fy; : Q;, — € for large i that are arbitrarily close to fj,
s=1,...,Lasi — oco. If U4 N 2y = @, then we just define Fyyy; = Fy on
Qi and Fyg+1 = fiy+1 on Ugyy. In case Upyy C 24, we simply let Fipqy = Fy.
Otherwise, we know that Fj; and fi;+ are as close as we like in the cmtlp topology
as i — oo. So the natural thing to do is to average them on U4 . Define Fjy4+; on
Ur+1 by

Fi41(X) = @it41 0 (11 (X) - Qg1 © fit1(x) + f2(x) - @ik © Fie(x)),

where (1, (, are a partition of unity for Uy, €2¢. This map is clearly well-defined
on Uy, since pp(x) = 0 on Upy — Q4. Now consider this map in coordinates

@iet1 © Fitg1 0 0e41(3) = (111 0 0e1(0)) - 9531 © fiet1 © @et1()
+ (k2 0 @e41()) - @igg © Fie 0 0r41()
= LOEF©) + L2(0)F20).
Then

|l Fy + fioFao — Fillntis = | (Fy — Ft) + fia(F2 — Fr) || en18

< C(n,m) || palentrs - |F2 = Fillcntrs.
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This inequality is valid on all of B(0, r), despite the fact that F; is not defined on all
of B(0,r), since ji; - F| 4+ fi; - F» = F| on the region where F» is undefined. By
assumption

|F2 — Fil|ont1s — 0 asi — oo,

S0 Figq1is C" T P close to fiy, s = 1,...,£ + 1 asi — oo.
Finally we see that the closeness of Fj; to the coordinate charts shows that it is
an embedding on all compact subsets of the domain. O

Corollary 11.3.7. Any subclasses of #™*(n, Q, r), where the elements in addition
satisfy diam < D, respectively vol < V, is compact in the C™P topology. In
particular, it contains only finitely many diffeomorphism types.

Proof. We use notation as in the fundamental theorem. If diam(M, g, p) < D, then
clearly M C B (p, k - 3/2) for k > D - 2/s. Hence, each element in .Z"™“(n, Q, r) can
be covered by < N charts. Thus, C"f-convergence is actually in the unpointed
topology, as desired.

If instead, volM < V, then we can use part (A) in the proof to see that we can
never have more than k = V - ¢*X . (volB(0, £))~! disjoint e-balls. In particular,
diam < 2¢ - k, and we can use the above argument.

Finally, compactness in any C"# topology implies that the class cannot contain
infinitely many diffeomorphism types. O

Clearly there is also a harmonic analogue to the fundamental theorem.

Corollary 11.3.8. Given Q > 0,n > 2, m > 0, a € (0,1], and r > 0 the class
of complete, pointed Riemannian n-manifolds (M, g, p) with ||(M, g)||'é‘,’,{u’r <Qis
closed in the pointed C™* topology and compact in the pointed C™P topology for

all B < a.

The only issue to worry about is whether it is really true that limit spaces
have ||(M, g)| ’é‘ﬁf.a, < (. But one can easily see that harmonic charts converge
to harmonic charts as in proposition 11.3.5.

11.3.6 Alternative Norms

Finally, we mention that the norm concept and its properties do not change if n1 and
n2 are altered as follows:

(nl”) D¢l |Dg~"| < fi(n, Q),
(n2’) A g le < fr(n,0), 0 < |j| <m,
where f; and f, are continuous, fi(n,0,7) = 1, and f,(n, 0) = 0. The key properties

we want to preserve are continuity of ||(M, g)|| with respect to r, the fundamental
theorem, and the characterization of flat manifolds and Euclidean space.
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Another interesting thing happens if in the definition of ||(M, g)||cme, we let
m = o = 0. Then n2 no longer makes sense since « = 0, however, we still have
a C%-norm concept. The class .#°(n, Q, r) is now only precompact in the pointed
Gromov-Hausdorff topology, but the characterization of flat manifolds is still valid.
The subclasses with bounded diameter, or volume, are also only precompact with
respect to the Gromov-Hausdorff topology, and the finiteness of diffeomorphism
types apparently fails. It is, however, possible to say more. If we investigate the
proof of the fundamental theorem, we see that the problem lies in constructing
the maps Fy : Q; — Q4i, because we only have convergence of the coordinates
only in the C° (actually C*,a¢ < 1) topology, and so the averaging process fails
as it is described. We can, however, use a deep theorem from topology about local
contractibility of homeomorphism groups (see [39]) to conclude that two C°-close
topological embeddings can be “glued” together in some way without altering
them too much in the C° topology. This makes it possible to exhibit topological
embeddings Fy, : Q < M; such that the pullback metrics (not Riemannian metrics)
converge. As a consequence, we see that the classes with bounded diameter or
volume contain only finitely many homeomorphism types. This closely mirrors the
content of the original version of Cheeger’s finiteness theorem, including the proof
as we have outlined it. But, as we have pointed out earlier, Cheeger also considered
the easier to prove finiteness theorem for diffeomorphism types given better bounds
on the coordinates.

Notice that we cannot easily use the fact that the charts converge in C*(« < 1).
But it is possible to do something interesting along these lines. There is an even
weaker norm concept called the Reifenberg norm that is related to the Gromov-
Hausdorff distance. For a metric space (X, |--|) we define the n-dimensional norm
on the scale of r as

a1
I 1-DII; = supde—u (B(p,r),B(0,7)),
I pex

where B (0, R) C R". The the r~! factor insures that we don’t have small distance
between B (p, r) and B (0, r) just because r is small. Note also that if (X, |-|;) —
(X, |-+]) in the Gromov-Hausdorff topology then

GG 1117 = 1 =D

for fixed n, r.
For an n-dimensional Riemannian manifold one sees immediately that

lim | (M. )| — 0 = 0.
r—>0

Cheeger and Colding have proven a converse to this (see [29]). Thereis an ¢ (n) > 0
such that if ||(X, |||} < &(n) for all small r, then X is in a weak sense an n-
dimensional Riemannian manifold. Among other things, they show that for small
r the a-Holder distance between B (p, r) and B (0, r) is small. Here the a-Holder
distance d, (X, Y) between metric spaces is defined as the infimum of
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FaF@)] PO F o)

logmax ¢ sup o s o
X17x2 |X1)C2| YiFEy2 |Y1)’2|

where F : X — Y runs over all homeomorphisms. They also show that if (M;, g;) —
(X, |-*]) in the Gromov-Hausdorff distance and || (M}, g,) || < & (n) for all i and small
r, then (M;, g;) — (X, |-+]) in the Holder distance. In particular, all of the M;s have
to be homeomorphic (and in fact diffeomorphic) to X for large i.

This is enhanced by an earlier result of Colding (see [34]) stating that for a
Riemannian manifold (M, g) with Ric > (n — 1) k we have that ||(M, g)||" is small
if and only if and only if

volB (p,r) > (1 —§) volB (0, r)

for some small §. Relative volume comparison tells us that the volume condition
holds for all small r if it holds for just one 7. Thus the smallness condition for the
norm holds for all small r provided we have the volume condition for just some r.

11.4 Geometric Applications

To obtain better estimates on the norms it is convenient to use more analysis. The
idea of using harmonic coordinates for similar purposes goes back to [37]. In [66]
it was shown that manifolds with bounded sectional curvature and lower bounds
for the injectivity radius admit harmonic coordinates on balls of an a priori size.
This result was immediately seized by the geometry community and put to use
in improving the theorems from the previous section. At the same time, Nikolaev
developed a different, more synthetic approach to these ideas. For the whole story
we refer the reader to Greene’s survey in [51]. Here we shall develop these ideas
from a different point of view due to Anderson.

11.4.1 Ricci Curvature

The most important feature about harmonic coordinates is that the metric is
apparently controlled by the Ricci curvature. This is exploited in the next lemma,
where we show how one can bound the harmonic C!** norm in terms of the harmonic
C! norm and Ricci curvature.

Lemma 11.4.1 (Anderson, 1990). Suppose that a Riemannian manifold (M, g)
has bounded Ricci curvature |Ric| < A. Forany ry < ry, K > ||(M, g,p)||’é‘llfr2,
anda € (0, 1) we can find C (n,o, K, ry, ry, A) such that
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I(M. g.p)1¢,, < C (o K. 11,12, A).

Moreover, if g is an Einstein metric Ric = kg, then for each integer m we can find a
constant C (n,a, K, ry, ra, k, m) such that

(M. g.p) |, < C(noet K.ryora km).

Proof. We just need to bound the metric components g;; in some fixed harmonic

coordinates. In such coordinates A = g¥9;d;. Given that | (M, g, p)||’é“1’r2 < K, we

can conclude that we have the necessary conditions on the coefficients of A =
879,0; to use the elliptic estimate

8l 1o poyy = €0t Kor1m2) (H Agil o gy + Hg’j”C",B(O,rz)) :
Since
Agij = —2Ric; — 20 (g, 9g)

it follows that

” Agjj “ COBO.m) = 2A Hglf “ B0 T ¢ ”gi/”Cl,B(o,rz) :

Using this we obtain

HgiJ'HCM,B(o,rl) =Cma.K r.r) (” AginCO,B(O,rz) +si C“,B(O,rz))

<C(n,o,K,ri,r) (2/\ +C+ 1) ”gii”cl,B(o,rz) :

For the Einstein case we can use a bootstrap method as we get C'** bounds on
the Ricci tensor from the Einstein equation Ric = kg. Thus, we have that Ag;; is
bounded in C* rather than just C°. Hence,

l8ill 2 g,y = € (10t K1 72) (” Aifll o,y + ||gl:j||C“,B(0,r2))

< CnaKn ) C- g ooy

This gives C% pounds on the metric. Then, of course, Ag;; is bounded in Ch and
thus the metric will be bounded in C>%. Clearly, one can iterate this until one gets
C™*t1% bounds on the metric for any m. O

Combining this with the fundamental theorem gives a very interesting compact-
ness result.
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Corollary 11.4.2. For given n > 2, Q,r,A € (0,00) consider the class of
Riemannian n-manifolds with

h
M. )¢, < Q.
|Ric| < A.
This class is precompact in the pointed C"* topology for any a € (0, 1) . Moreover;

if we take the subclass of Einstein manifolds, then this class is compact in the C™“
topology foranym > 1 and o € (0,1) .

Next we show how the injectivity radius can be used to control the harmonic
norm.

Theorem 11.4.3 (Anderson, 1990). Given n > 2 and « € (0,1), A, R > 0,
one can for each Q > 0 find r (n,a, A,R) > 0 such that any compact Riemannian
n-manifold (M, g) with
[Ric| < A,
inj > R
satisfies ||(M. g) | e, < O.
Proof. The proof goes by contradiction. So suppose that there is a Q > 0 such that
for each i > 1 there is a Riemannian manifold (M;, g;) with
|Ric| < A,
inj > R,
(M gl i1 > Q.

Using that the norm goes to zero as the scale goes to zero, and that it is continuous
as a function of the scale, we can for each i find r; € (O, i_l) such that

| (M;, gi)ll}é‘ffu,ri = Q. Now rescale these manifolds: g; = r;2g;. Then we have that
(M;, g;) satisfies
IRic| < rA,
inj > 'R,

I(M:. g1, = 0.

We can then select p; € M; such that

- ar Q
||(Mi,gial7i)”}él-0f,l € |: Q|-



11.4 Geometric Applications 429

The first important step is to use the bounded Ricci curvature of (M;, g;) to
conclude that the C' norm must be bounded for any y € (e, 1). Then we can
assume by the fundamental theorem that the sequence (M;, g;, p;) converges in the
pointed C' topology, to a Riemannian manifold (M, g, p) of class C'”. Since the
C'® norm is continuous in the C!* topology we can conclude that

1M, g, P, € [f,Q].

The second thing we can prove is that (M, g) = (R", gr») . This clearly violates
what we just established about the norm of the limit space. To see that the limit space
is Euclidean space, recall that the manifolds in the sequence (M;, g;) are covered by
harmonic coordinates that converge to harmonic coordinates in the limit space. In
these harmonic coordinates the metric components satisfy

1 = = = .
) Agu + Q(g,08) = —Ricy.
But we know that
|—Ric| < r;2Ag;

and that the gy converge in the C'* topology to the metric coefficients gy for the
limit metric. Consequently, the limit manifold is covered by harmonic coordinates
and in these coordinates the metric satisfies:

1
zAgkl + Q(g.dg) =0.

Thus the limit metric is a weak solution to the Einstein equation Ric = 0 and
therefore must be a smooth Ricci flat Riemannian manifold. Finally, we use that:
inj (M;, g;) — oo. In the limit space any geodesic is a limit of geodesics from the
sequence (M;, g;), since the Riemannian metrics converge in the C!** topology. If
a geodesic in the limit is a limit of segments, then it must itself be a segment. We
can then conclude that as inj (M;, g;) — oo any finite length geodesic must be a
segment. This, however, implies that inj (M, g) = oo. The splitting theorem 7.3.5
then shows that the limit space is Euclidean space. O

From this theorem we immediately get
Corollary 11.4.4 (Anderson, 1990). Let n > 2 and A,D,R > 0 be given. The
class of closed Riemannian n-manifolds satisfying
|Ric| < A,
diam < D,

inj > R
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is precompact in the C'* topology for any o € (0, 1) and in particular contains
only finitely many diffeomorphism types.

Notice how the above theorem depended on the characterization of Euclidean
space we obtained from the splitting theorem. There are other similar characteriza-
tions of Euclidean space. One of the most interesting ones uses volume pinching.

11.4.2 Volume Pinching

The idea is to use the relative volume comparison (see lemma 7.1.4) rather than the
splitting theorem. It is relatively easy to prove that Euclidean space is the only space
with

Ric > 0,

. VvolB(p,r)
lim =1,

r—>00 Wy 1"

where w, 7" is the volume of a Euclidean ball of radius r (see also exercises 7.5.8
and 7.5.10). This result has a very interesting gap phenomenon associated to it under
the stronger hypothesis that the space is Ricci flat.

Lemma 11.4.5 (Anderson, 1990). For each n > 2 there is an € (n) > 0 such that
any complete Ricci flat manifold (M, g) that satisfies
volB (p,r) = (1 — &) w,r"

for some p € M is isometric to Euclidean space.

Proof. First observe that on any complete Riemannian manifold with Ric > 0,
relative volume comparison can be used to show that

volB (p,r) > (1 — &) w, "
as long as

1B (p,
tim OB ().
r—>00 wp, 1"

Therefore, if this holds for one p, then it must hold for all p. Moreover, if we scale
the metric to (M A2 g) , then the same volume comparison still holds, as the lower
curvature bound Ric > 0 isn’t changed by scaling.

If our assertion is assumed to be false, then for each integer i there is a Ricci flat
manifold (M;, g;) with
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tim OB (),

r—>00 Wy 1"

||(Mi,gi)||’éafu’, £ 0forall r > 0.

By scaling these metrics suitably, it is then possible to arrange it so that we have a
sequence of Ricci flat manifolds (M;, g;, g;) with

volB (g;, r
tim OB Sy,
r—>00 wy 1"
I3 gl < 1.
”(Miagivqi)uléall.ﬁa’l € [0.5,1].
From what we already know, we can then extract a subsequence that converges in
the C"™“ topology to a Ricci flat manifold (M, g, ¢). In particular, we must have that

metric balls of a given radius converge and that the volume forms converge. Thus,
the limit space must satisfy

. volB(q,r)
lim =

=00 W,

1.

This means that we have maximal possible volume for all metric balls, and thus the
manifold must be Euclidean. This, however, violates the continuity of the norm in
the C'* topology, as the norm for the limit space would then have to be zero. O

Corollary 11.4.6. Letn > 2, —o00 < A < A < 00, and D, R € (0, 00) be given.
Thereisa$ = § (n, A -Rz) such that the class of closed Riemannian n-manifolds
satisfying
n—1)A>Ric>=n—-1)A,
diam < D,
volB(p,R) > (1 =8)v(n,A,R)
is precompact in the C** topology for any o € (0, 1) and in particular contains
only finitely many diffeomorphism types.
Proof. We use the same techniques as when we had an injectivity radius bound.
Observe that if we have a sequence (M;, g;, p;) wWhere g; = kizgi, k; — o0, and the
(M;, g;) lie in the above class, then the volume condition reads
volBg, (pi, R - ki) = k}volBy, (pi,R)
> k' (1—-8)v(nA,R)
=(1-=¥5v (n,)k -ki_z,R'k,-).
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From relative volume comparison we can then conclude that for » < R - k; and very
large i,

volBg, (pi,r) = (1 =8)v (n A -k 2, r) ~ (1 — 8) war".
In the limit space we must therefore have
volB (p,r) > (1 — §) w,r" for all r.

This limit space is also Ricci flat and is therefore Euclidean space. The rest of the
proof goes as before, by getting a contradiction with the continuity of the norms.
O

11.4.3 Sectional Curvature

Given the results for Ricci curvature we immediately obtain.

Theorem 11.4.7 (The Convergence Theorem of Riemannian Geometry). Given
R, K > 0, there exist Q,r > 0 such that any (M, g) with

inj > R,

[sec|] < K

has ||(M, g)||'g{ﬁy , =< Q. In particular; this class is compact in the pointed c'e

topology forall o < 1.
Using the diameter bound in positive curvature and Klingenberg’s estimate for
the injectivity radius from theorem 6.5.1 we get

Corollary 11.4.8 (Cheeger, 1967). For given n > 1 and k > 0, the class of
Riemannian 2n-manifolds with k < sec < 1 is compact in the C* topology and
consequently contains only finitely many diffeomorphism types.

A similar result was also proven by A. Weinstein at the same time. The
hypotheses are the same, but Weinstein showed that the class contained finitely
many homotopy types.

Our next result shows that one can bound the injectivity radius provided that one
has lower volume bounds and bounded curvature. This result is usually referred to
as Cheeger’s lemma. With a little extra work one can actually prove this lemma
for complete manifolds. This requires that we work with pointed spaces and also
to some extent incomplete manifolds as it isn’t clear from the beginning that the
complete manifolds in question have global lower bounds for the injectivity radius.
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Lemma 11.4.9 (Cheeger, 1967). Given n > 2, v,K > 0, and a compact
n-manifold (M, g) with

|sec| < K,

volB (p, 1) > v,

forallp € M, then injM > R, where R depends only on n,K, and v.

Proof. As for Ricci curvature we can use a contradiction type argument. So assume
we have (M;, g;) with injM; — 0 and satisfying the assumptions of the lemma. Find
pi € M; with inj, = inj(M;, &) and consider the pointed sequence (M;,p;, &),
where g; = (injM;) g is rescaled so that

inj(Mi,éi) = 1,
|'sec(M;, ;)| < (inj(M;, g:))*- K = K; — 0.

Now some subsequence of (M;, g;, p;) will converge in the pointed c <1,
topology to a manifold (M,g,p). Moreover, this manifold is flat since
I(M.8) ¢ty = 0.

The first observation about (M, g, p) is that inj(p) < 1. This follows because
the conjugate radius for (M;, g;) is > 7/ /k; — o0, so Klingenberg’s estimate for
the injectivity radius (lemma 6.4.7) implies that there must be a geodesic loop of
length 2 at p; € M,. Since (M;, g;.p;) — (M, g.p) in the pointed C'* topology, the
geodesic loops must converge to a geodesic loop of length 2 in M based at p. Hence,
inj(M) < 1.

The other contradictory observation is that (M,g) = (R", ggr:). Using the
assumption volB(p;, 1) > v the relative volume comparison (see lemma 7.1.4)
shows that there is a v’(n, K, v) such that volB(p;,r) > v’ - ", for r < 1. The
rescaled manifold (M;, g;) then satisfies volB(p;, r) > v’ - 7", for r < (inj(M;, g;))~".
Using again that (M;, g;,p;) — (M,g,p) in the pointed C* topology, we get
volB(p, r) > v/ -r" forall r. Since (M, g) is flat, this shows that it must be Euclidean
space.

To justify the last statement let M be a complete flat manifold. As the elements
of the fundamental group act by isometries on Euclidean space, we know that they
must have infinite order (any isometry of finite order is a rotation around a point
and therefore has a fixed point). So if M is not simply connected, then there is

an intermediate covering R" — M - M, where m; (M) = 7. This means that

M = R"! x §' (R) for some R > 0. Hence, for any p € M we must have

lim VOB _

r—oo  p—1

The same must then also hold for M itself, contradicting our volume growth
assumption. O
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This lemma was proved with a more direct method by Cheeger. We have included
this proof in order to show how our convergence theory can be used. The lemma
also shows that the convergence theorem of Riemannian geometry remains true if
the injectivity radius bound is replaced by a lower bound on the volume of 1-balls.
The following result is now immediate.

Corollary 11.4.10 (Cheeger, 1967). Letn > 2, K,D,v > 0 be given. The class of
closed Riemannian n-manifolds with
|sec| < K,
diam < D,
vol > v

is precompact in the C'* topology for any a € (0, 1) and in particular, contains
only finitely many diffeomorphism types.

11.4.4 Lower Curvature Bounds

It is also possible to obtain similar compactness results for manifolds that only
have lower curvature bounds as long as we also assume that the injectivity radius is
bounded from below.

We give a proof in the case of lower sectional curvature bounds and mention the
analogous result for lower Ricci curvature bounds.

Theorem 11.4.11. Given R, k > 0, there exist Q, r depending on R, k such that
any manifold (M, g) with

sec > —kz,
inj > R
satisfies |[(M, 8)lc1 , <
Proof. 1t suffices to get a Hessian estimate for distance functions r(x) = |xp|.

Lemma 6.4.3 shows that

Hessr(x) < k- coth(k - r(x))g,
for all x € B(p,R) — {p}. Conversely, if r(xp) < R, then r(x) is supported from
below by f(x) = R — |xyg|, where yop = ¢(R) and c is the unique unit speed geodesic

that minimizes the distance from p to xy. Thus

Hessr > Hessf > —k - coth(|xoyo| - k)g» = —k - coth(k(R — r(x0)))g:
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at xo. Hence |Hessr| < Q (k, R) on metric balls B (x, r) where |xp| > R/aand r < R/a.
For fixed p € M choose an orthonormal basis e, ..., e, for T,M and geodesics
ci(t) with ¢;(0) = p, ¢;(0) = ;. We use the distance functions

r(x) = ‘xc,- (—§)| : B (p, {f) - R
to create a potential coordinate system

Y@ =@, @)= (@), ).

By construction Dyr|, (e;) is the standard basis for ToR". In particular,  defines
a coordinate chart on some neighborhood of p with g;|, = &;. While we can’t
define g;; on B (p, #/4), the potential inverse g/ = g (Vr', VF/) is defined on the
entire region. The Hessian estimates combined with the fact that |Vrk | = 1 imply
that |dg?| < Q(n.k,R) on B (p,R/4). In particular, |[§7 — g7].]| < /10 for x €
B(p,§ (n, k, R)). This implies that g has a well-defined inverse g;; on B (p, §) with
the properties that \[g,ﬂp - gij|x]| < 1/9and |dgij| < C(n,K,R)onB(p,$).

By inspecting the proof of the inverse function theorem we conclude that ¥ is
injective on B (p,§) and that B (0,%/4) C v (B(p,d)) (see also exercise 6.7.23).
Moreover, we have also established n1 and n2. O

Example 11.4.12. This theorem is actually optimal. Consider rotationally symmet-
ric metrics dr? + ¢2(r)d6?, where ¢, is concave and satisfies

bo(r) = ;; forO0 <r<1-—g¢,
W forl+e<r.

These metrics have sec > 0 and inj > 1. As ¢ — 0, we get a C"! manifold with

a C*! Riemannian metric (M, g). In particular, ||(M, g)||co1, < oo for all r. Limit

spaces of sequences with inj > R, sec > —k? can therefore not in general be

assumed to be smoother than the above example.

Example 11.4.13. With a more careful construction, we can also find v, with

sinr for0 ’2’ — &,
T
2

Ve(r) = 1

=r=
for 7 <r.
Then the metric dr? + ¥2(r)d6? satisfies | sec | < 4 and inj > i. As e — 0, we get
a limit metric that is C''!. We have, however, only shown that such limit spaces are
Cle foralla < 1.

Unlike the situation for bounded curvature we cannot get injectivity radius
bounds when the curvature is only bounded from below. The above examples are
easily adapted to give the following examples.
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EXERCISE 11.4.14. Givena € (0, 1) and € > 0, there is a smooth concave function
Pe (r) with the property that

() = r forO<r<e,
P =0 ar for2e <r.

The corresponding surfaces dr’ + ,og(r)dQ2 have sec > 0 and inj < 5¢, while the
volume of any R ball is always > amR?.

Finally we mention the Ricci curvature result.

Theorem 11.4.15 (Anderson-Cheeger, 1992). Given R, k > 0 and o € (0,1)
there exist Q, r depending on n, R, k such that any manifold (M", g) with

Ric > —(n— 1) &%,

inj > R

satisfies ||(M, 9)||", < Q.

o=

The proof of this result is again by contradiction and uses most of the ideas
we have already covered. However, since the harmonic norm does not work well
without control on the derivatives of the metric it is necessary to use the Sobolev
spaces W' C C'™" to define a new harmonic norm with I control on the
derivatives. For the contradiction part of the argument we need to use distance
functions as above, but we only obtain bounds on their Laplacians. By inspecting
how these bounds are obtained we can show that they — 0 as inj — oo and k — 0.
This will assist in showing that the limit space is Euclidean space. For more details
see the original paper [4].

11.4.5 Curvature Pinching

Let us turn our attention to some applications of these compactness theorems. One
natural subject to explore is that of pinching results. Recall from corollary 5.6.14
that complete constant curvature manifolds have uniquely defined universal cover-
ings. It is natural to ask whether one can in some topological sense still expect this
to be true when one has close to constant curvature. Now, any Riemannian manifold
(M, g) has curvature close to zero if we multiply the metric by a large scalar. Thus,
some additional assumptions must come into play.

We start out with the simpler problem of considering Ricci pinching and then
use this in the context of curvature pinching below. The results are very simple
consequences of the convergence theorems we have already presented.
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Theorem 11.4.16. Givenn >2, R, D > 0, and A € R, thereisan ¢ (n,A,D,R) >
0 such that any closed Riemannian n-manifold (M, g) with
diam < D,
inj > R,

[Ric —Ag| < ¢

is C close to an Einstein metric with Einstein constant ).

Proof. We already know that this class is precompact in the C!* topology no matter
what ¢ we choose. If the result is false, there would be a sequence (M;, g;,) — (M, g)
that converges in the C!* topology to a closed Riemannian manifold of class C',
where in addition, |Ric,, — /\g,-| — 0. Using harmonic coordinates we conclude that
the metric on the limit space must be a weak solution to

1
5 Ag+ Q0 (g, 0g) = —Ag.

But this means that the limit space is actually Einstein, with Einstein constant A,
thus, contradicting that the spaces (M;, g;) were not close to such Einstein metrics.
O

Using the compactness theorem for manifolds with almost maximal volume it
follows that the injectivity radius condition could have been replaced with an almost
maximal volume condition. Now let us see what happens with sectional curvature.

Theorem 11.4.17. Givenn > 2,v, D > 0, and A € R, there isan e (n,A,D,v) >
0 such that any closed Riemannian n-manifold (M, g) with

diam < D,

vol > v,

[sec—A| <&

is C1* close to a metric of constant curvature \.

Proof. In this case first observe that Cheeger’s lemma 11.4.9 gives us a lower bound
for the injectivity radius. The previous theorem then shows that such metrics must
be close to Einstein metrics. We have to check that if (M;, g;) — (M, g), where
\secgi —A\ — 0 and Ric, = (n — 1) Ag, then in fact (M, g) has constant curvature A.
To see this, it is perhaps easiest to observe that if M; > p; — p € M then we can
use polar coordinates around these points to write g; = dr*> + g,; and g = dr’ + g,.
Since the metrics converge in C1*, we certainly have that g, ; converge to g,. Using
the curvature pinching, we conclude from theorem 6.4.3
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Snﬁ_si (r)

I
snf (1)

Me g, s < Hessr; < gri
sny—; (r7)

sy, (1)

with &; — 0. Using that the metrics converge in C' it follows that the limit metric
satisfies

sn, (r
Hessr = % (r)
sny (r)
Corollary 4.3.4 then implies that the limit metric has constant curvature A. O

It is interesting that we had to go back and use the more geometric estimates for
distance functions in order to prove the curvature pinching, while the Ricci pinching
could be handled more easily with analytic techniques using harmonic coordinates.
One can actually prove the curvature result with purely analytic techniques, but
this requires that we study convergence in a more general setting where one uses
L? norms and estimates. This has been developed rigorously and can be used to
improve the above results to situations were one has only L” curvature pinching
rather than the L*° pinching we use here (see [91], [88], and [36]).

When the curvature A is positive, some of the assumptions in the above theorems
are in fact not necessary. For instance, Myers’ estimate for the diameter makes the
diameter hypothesis superfluous. For the Einstein case this seems to be as far as we
can go. In the positive curvature case we can do much better. In even dimensions,
we already know from theorem 6.5.1, that manifolds with positive curvature have
both bounded diameter and lower bounds for the injectivity radius, provided that
there is an upper curvature bound. We can therefore show

Corollary 11.4.18. Given2n > 2, and A > 0, there is an ¢ = ¢ (n,A) > 0 such
that any closed Riemannian 2n-manifold (M, g) with

[sec —A| < ¢

is C1* close to a metric of constant curvature \.

This corollary is, in fact, also true in odd dimensions. This was proved by Grove-
Karcher-Ruh in [58]. Notice that convergence techniques are not immediately
applicable because there are no lower bounds for the injectivity radius. Their
pinching constant is also independent of the dimension. Using theorem 6.5.5 we
can only conclude that.

Corollary 11.4.19. Givenn > 2, and A > 0, there is an ¢ = ¢ (n, 1) > 0 such that
any closed simply connected Riemannian n-manifold (M, g) with

[sec—A| < ¢

is CY* close to a metric of constant curvature A.
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Also recall the quarter pinching results in positive curvature that we proved in
section 12.3. There the conclusions were much weaker and purely topological.
These results have more recently been significantly improved using Ricci flow
techniques. First in [16] to the situation where the curvature operator is positive
and next in [20] to the case where the complex sectional curvatures are positive.

In negative curvature some special things also happen. Namely, Heintze has
shown that any complete manifold with —1 < sec < 0 has a lower volume bound
when the dimension > 4 (see also [52] for a more general statement). The lower
volume bound is therefore an extraneous condition when doing pinching in negative
curvature. However, unlike the situation in positive curvature the upper diameter
bound is crucial. See, e.g., [55] and [43] for counterexamples.

This leaves us with pinching around 0. As any compact Riemannian manifold
can be scaled to have curvature in [—e&, €] for any &, we do need the diameter
bound. The volume condition is also necessary, as the Heisenberg group from the
exercise 4.7.22 has a quotient where there are metrics with bounded diameter and
arbitrarily pinched curvature. This quotient, however, does not admit a flat metric.
Gromov was nevertheless able to classify all n-manifolds with

[sec| < & (n),

diam < 1

for some very small ¢ (n) > 0. More specifically, they all have a finite cover that is a
quotient of a nilpotent Lie group by a discrete subgroup. Interestingly, there is also
a Ricci flow type proof of this result in [94]. For more on collapsing in general, the
reader can start by reading [44].

11.5 Further Study

Cheeger first proved his finiteness theorem and put down the ideas of C* conver-
gence for manifolds in [25]. They later appeared in journal form [26], but not
all ideas from the thesis were presented in this paper. Also the idea of general
pinching theorems as described here are due to Cheeger [27]. For more generalities
on convergence and their uses we recommend the surveys by Anderson, Fukaya,
Petersen, and Yamaguchiin [51]. Also for more on norms and convergence theorems
the survey by Petersen in [54] might prove useful. The text [53] should also be
mentioned again. It was probably the original french version of this book that
really spread the ideas of Gromov-Hausdorff distance and the stronger convergence
theorems to a wider audience. Also, the convergence theorem of Riemannian
geometry, as stated here, appeared for the first time in this book.

We should also mention that S. Peters in [86] obtained an explicit estimate for the
number of diffeomorphism classes in Cheeger’s finiteness theorem. This also seems
to be the first place where the modern statement of Cheeger’s finiteness theorem is
proved.
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11.6 Exercises

EXERCISE 11.6.1. Find a sequence of 1-dimensional metric spaces that Hausdorff
converge to the unit cube [0, 1]? endowed with the metric coming from the maximum
norm on R, Then find surfaces (jungle gyms) converging to the same space.

EXERCISE 11.6.2. Assume that we have a map (not necessarily continuous) F :
X — Y between metric spaces such that for some € > 0:

[|x1x2] = |F (x1) F (x2)]| <€, x1x0 € X
and
F (X) C Y is e-dense.

Show that dg—g (X, Y) < 2e.

EXERCISE 11.6.3. C. Croke has shown that there is a universal constant ¢ (n) such
that any n-manifold with inj > R satisfies volB (p,r) > ¢ (n) - " for r < 1;. Use this
to show that the class of n-dimensional manifolds satisfying inj > R and vol < V' is
precompact in the Gromov-Hausdorff topology.

EXERCISE 11.6.4. Let (M, g) be a complete Riemannian n-manifold with Ric >
(n — 1) k. Show that there exists a constant C (n, k) with the property that for each
€ € (0, 1) there exists a cover of metric balls B (x;, €) with the property that no more
than C (n, k) of the balls B (x;, 5¢) can have nonempty intersection.

EXERCISE 11.6.5. Show that there are Bochner formulas for Hess (é g (X, Y)) and
A ég (X,Y), where X and Y are vector fields with symmetric VX and VY. This can
be used to prove the formulas relating Ricci curvature to the metric in harmonic
coordinates.

EXERCISE 11.6.6. Show that in contrast to the elliptic estimates, it is not possible
to find C* bounds for a vector field X in terms of C° bounds on X and divX.

EXERCISE 11.6.7. Define C™% convergence for incomplete manifolds. On such
manifolds define the boundary 9 as the set of points that lie in the completion but
not in the manifold itself. Show that the class of incomplete spaces with |Ric| < A
and inj (p) > min{R,R - d (p, )}, R < 1, is precompact in the C"* topology.

EXERCISE 11.6.8. Define a weighted norm concept. That is, fix a positive function
p (R), and assume that in a pointed manifold (M, g, p) the points on the distance
spheres S (p, R) have norm < p (R) . Prove the corresponding fundamental theorem.

EXERCISE 11.6.9. Assume ./ is a class of compact Riemannian n-manifolds that
is compact in the C"™“ topology. Show that there is a function f (r), where f (r) — 0
as r — 0, depending on ./ such that ||(M, g)||cne, < f (r) forall M € .Z.
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EXERCISE 11.6.10. The local models for a class of Riemannian manifolds are the
types of spaces one obtains by scaling the elements of the class by a constant — oco.
For example, if we consider the class of manifolds with [sec| < K for some K, then
upon rescaling the metrics by a factor of A2, we have the condition [sec| < A 72K,
as A — oo, we therefore arrive at the condition [sec| = 0. This means that the
local models are all the flat manifolds. Notice that we don’t worry about any type
of convergence here. If, in this example, we additionally assume that the manifolds
have inj > R, then upon rescaling and letting A — oo we get the extra condition
inj = oo. Thus, the local model is Euclidean space. It is natural to suppose that
any class that has Euclidean space as it only local model must be compact in some
topology.

Show that a class of spaces is compact in the C"“ topology if when we rescale
a sequence in this class by constants that — oo, the sequence subconverges in the
C™ topology to Euclidean space.

EXERCISE 11.6.11. Consider the singular Riemannian metric dr2 + (at)> d6%, a >
1, on R?. Show that there is a sequence of rotationally symmetric metrics on R?
with sec < 0 and inj = oo that converge to this metric in the Gromov-Hausdorff
topology.

EXERCISE 11.6.12. Show that the class of spaces with inj > R and ‘V"Ric| <A
fork = 0,...,m is compact in the "' topology.

EXERCISE 11.6.13 (S-h. Zhu). Consider the class of complete or compact
n-dimensional Riemannian manifolds with

conj.rad > R,
|Ric| < A,
volB (p, 1) > v.

Using the techniques from Cheeger’s lemma, show that this class has a lower bound
for the injectivity radius. Conclude that it is compact in the C'* topology.

EXERCISE 11.6.14. Using the Eguchi-Hanson metrics from exercise 4.7.23 show
that one cannot in general expect a compactness result for the class

[Ric| < A,
volB (p, 1) > v.

Thus, one must assume either that v is large as we did before or that there a lower
bound for the conjugate radius.

weak

EXERCISE 11.6.15. The weak (harmonic) norm ||(M, g)|¢ma , is defined in almost
the same way as the norms we have already worked with, except that we only insist
that the charts ¢; : B(0,r) — U, are immersions. The inverse is therefore only
locally defined, but it still makes sense to say that it is harmonic.
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(1) Show that if (M, g) has bounded sectional curvature, then for all Q > 0 there is
an r > 0 such that ||(M, g) ||ch‘ff(’,]fr < Q. Thus, the weak norm can be thought of
as a generalized curvature quantity.

(2) Show that the class of manifolds with bounded weak norm is precompact in the
Gromov-Hausdorff topology.

(3) Show that (M, g) is flat if and only if the weak norm is zero on all scales.



Chapter 12
Sectional Curvature Comparison II

In the first section we explain how one can find generalized gradients for distance
functions in situations where the function might not be smooth. This critical point
technique is used in the proofs of all the big theorems in this chapter. The other
important technique comes from Toponogov’s theorem, which we prove in the
following section. The first applications of these new ideas are to sphere theorems.
We then prove the soul theorem of Cheeger and Gromoll. After that, we discuss
Gromov’s finiteness theorem for bounds on Betti numbers and generators for the
fundamental group. Finally, we show that these techniques can be adapted to prove
the Grove-Petersen homotopy finiteness theorem.

Toponogov’s theorem is a very useful refinement of Gauss’s early realization
that curvature and angle excess of triangles are related. The fact that Toponogov’s
theorem can be used to get information about the topology of a space seems to
originate with Berger’s proof of the quarter pinched sphere theorem. Toponogov
himself proved these comparison theorems in order to establish the splitting theorem
for manifolds with nonnegative sectional curvature and the maximal diameter
theorem for manifolds with a positive lower bound for the sectional curvature. As
we saw in theorems 7.2.5 and 7.3.5, these results in fact hold in the Ricci curvature
setting. The next use of Toponogov’s theorem was to the soul theorem of Cheeger-
Gromoll-Meyer. However, Toponogov’s theorem is not truly needed for any of the
results mentioned so far. With little effort one can actually establish these theorems
with more basic comparison techniques. Still, it is convenient to have a workhorse
theorem of universal use. It wasn’t until Grove and Shiohama developed critical
point theory to prove their diameter sphere theorem that Toponogov’s theorem
was put to serious use. Shortly after that, Gromov put these two ideas to even
more nontrivial use, with his Betti number estimate for manifolds with nonnegative
sectional curvature. After that, it became clear that in working with manifolds that
have lower sectional curvature bounds, the two key techniques are Toponogov’s
theorem and the critical point theory of Grove-Shiohama.
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The idea of triangle comparison for surfaces goes back to Alexandrov who in
turn influenced Toponogov, however it is interesting to note that in fact Pizzetti had
already established the local triangle comparison on surfaces at the beginning of the
20th century (see [84]).

12.1 Critical Point Theory

In the generalized critical point theory developed here, the object is to define
generalized gradients of continuous functions and then use these gradients to
conclude that certain regions of a manifold have no topology. The motivating basic
lemma is the following:

Lemma 12.1.1. Let (M, g) be a Riemannian manifold and f : M — R a proper
smooth function. If f has no critical values in the closed interval [a,b], then
the pre-images f~' ([—o00, b]) and f~' ([—o0, a]) are diffeomorphic. Furthermore,
there is a deformation retraction of f~' ([—o0, b]) onto f~' ([—o0, a]), in particular,
the inclusion

[ ([=00,a)) = 7 ([=00, b))
is a homotopy equivalence.

Proof. The idea for creating such a retraction is to follow the negative gradient field
of f. Since there are no critical points for f the gradient —Vf is nonzero everywhere
on f~! ([a, b]). Next construct a bump function ¥ : M — [0, 1] that is 1 on the
compact set f ! ([a, b]) and zero outside some compact neighborhood of f~! ([a, b]).
Finally consider the vector field

\Y
X=—y- fz.
VA
This vector field has compact support and therefore must be complete (integral
curves are defined for all time). Let F’ denote the flow for this vector field. (See
figure 12.1)

For fixed ¢ € M consider the function ¢ +— f (F' (g)). The derivative of this
function is g (X, Vf), so as long as the integral curve ¢ +— F’(g) remains in
f~"([a, b)), the function ¢ +— f (F'(g)) is linear with derivative -1. In particular,
the diffeomorphism F*~¢ : M — M must carry f~! ([—oo, b]) diffeomorphically
into f~! ([—o0, a]).

The desired retraction is given by:

r i f 7[00, 8]) = 7 ([~o0, b)),

p iff(p) = a,
11(P) =\ P -0 (p) if a < £ (p) < b,
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Fig. 12.1 Gradient Flow
Deformation

Then ry = id, and ry maps f~! ([—o0, b]) diffeomorphically into f ! ([—00,a]). O

Notice that we used in an essential way that the function is proper to conclude
that the vector field is complete. In fact, if we delete a single point from the region
f~"([a, b]), then the function still won’t have any critical values, but clearly the
conclusion of the lemma is false.

We shall try to generalize this lemma to functions that are not even C'.
To minimize technicalities we work exclusively with distance functions. There is,
however, a more general theory for Lipschitz functions that could be used in this
context (see [33]). Suppose (M, g) is complete and K C M a compact subset. Then
the distance function

r(x) = |xK| = min{|xp| | p € K}

is proper. Wherever this function is smooth, we know that it has unit gradient and
therefore is noncritical at such points. However, it might also have local maxima,
and at such points we certainly wouldn’t want the function to be noncritical. To
define the generalized gradient for such functions, we list all the possible values it
could have (see also exercise 5.9.28 for more details on differentiability of distance
functions). Define pq to be a choice of a unit speed segment from p to g, its initial

velocity is P4, and ﬁ the set of all such unit vectors pg. We can also replace g by
a set K with the understanding that we only consider the segments from p to K of

length |pK]|. In the case where r is smooth at x, we clearly have that —Vr = XK. At

=

other points, xK might contain more vectors. We say that r is regular, or noncritical,
=

at x if the set xK is contained in an open hemisphere of the unit sphere in 7, M.

The center of any such hemisphere is then a possible averaged direction for the
negative gradient of r at x. Stated differently, we have that r is regular at x if and

EEN
only if there is a unit vector v € T, M such that Z (v,)ﬁ){) < m/2 for a11)7{ e xK.
Clearly v is the center of such a hemisphere. We can quantify being regular by
saying that r is a-regular at x if there exists v € T, M such that Z (v, )7{) < o forall

BN
XK e XK. Thus, r is regular at x if and only if it is 7/2-regular. Let R, (x, K) C T.M
be the set of all such unit directions v at @-regular points x.
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P

Fig. 12.2 Critical and Regular Points

Evidently, a point x is critical for r if the segments from K to x spread out at x,
while it is regular if they more or less point in the same direction (see figure 12.2).
It was Berger who first realized and showed that a local maximum must be critical
in the above sense. Berger’s result is a consequence of the next proposition.

Proposition 12.1.2. Suppose (M, g) and r (x) = |x K| are as above. Then:

) 7; is closed and hence compact for all x.

(2) The set of a-regular points is open in M.

(3) The set Ry (x,K) is convex for all @ < 7/2.

(4) If U is an open set of a-regular points for r, then there is a unit vector field X
on U such that X|, € Ry (x,K) for all x € U. Furthermore, if c is an integral
curve for X and s < t, then

lc(s) K| —|c(¢) K| > cos(a) (t—5).

Proof. (1) Let xg; be a sequence of unit speed segments from x to K with xqi
converging to some unit vector v € T.M. Clearly, exp, (tv) is the limit of the
segments xq; and therefore is a segment itself. Furthermore, since K is closed
exp, (|xK|v) € K.

(2) Suppose x; — x, and x; are not a-regular. We shall show that x is not ¢-regular.

— -
This means that for any unit v € T, M there is some xK such that £ (v, xK) >
a. So fix a unit v € T,M and choose a sequence v; € Ty,M converging to v.

. — —
By assumption £ (vi,xiK) > « for some x;K. Now select a subsequence so

. — .
that the unit vectors x;K converge to a w € T,M. Thus £ (v,w) > «. Finally
—
note that the segments x; K = exp,, (txiK), t € [0, |x; K|] must converge to the

geodesic exp, (tw), t € [0, |x K|] which is then forced to be a segment from x
to K.
(3) First observe that for each w € T, M, the open cone

Cowy={veT M| L(v,w) <a}
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is convex when o < 7/2. Then observe that R, (x, K) is the intersection of the

—\ = == .
cones Cy (xK), xK € xK and is therefore also convex.

(4) Foreachp € U select v, € Ry (p, K) and extend v, to a unit vector field V,,. It
follows from the proof of (2) that V, (x) € Ry (x, K) for x near p. We can then
assume that V), is defined on a neighborhood U, on which it is a generalized
gradient. Next select a locally finite collection {U;} of U,s and a corresponding
partition of unity A;. Then property (3) tells us that the vector field V = ) A;V;
is nonzero. Define X = V/|v|.

Keep in mind that the flow of X should decrease distances to K so it is easier
to consider —r instead of r. Property (4) is clearly true at points where r is
smooth, because in that case the derivative of — (r o ¢) (s) = — |c (s) K| is

g(X,—Vr)=cos £L(X,—Vr) =cos L (X,)ﬁ){) > cos (a).

Now observe that since —r o ¢ is Lipschitz continuous it is also absolutely
continuous. In particular, —r o ¢ is almost everywhere differentiable and the
integral of its derivative. It might, however, happen that —r o ¢ is differentiable
at a point x where Vr is not defined. To see what happens at such points we
select a variation ¢ (s,t) such that r — ¢ (0,7) is a segment from K to x;
c(s,0) =¢(0,0) € K; gi (s, t)‘ is constant in 7 and hence equal to the length
of the r-curves; and ¢ (s, 1) = ¢ (s) is the integral curve for X through x = ¢ (0).
ot

Thus
1 s 2
2|(roc)(s)| 2(/0 dt)
ac |?

1 1
< dt
- 2/0 ot

=E (Es)

dac

IA

with equality holding when s = 0. In particular, the right-hand side is a support
function for the left-hand side. Assuming that r o ¢ is differentiable at s = 0 we
obtain

d(roc)| __dE
ds =7 ds

ac Jac
_ g(at 0.1, 0. 1))

dc
= g(at (0, l),X)

(o)

r(x)

|s=0

dc
= ‘ g D
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= —r(x)cos (4 (X, —(2;))

—r(x) cos (4 (X,)ﬁ){)) .

Thus

_d |CL(1? K| |s=0 = cos (Z (X,)ﬁ()))

> cosK.

This proves the desired property.

We can now generalize the above retraction lemma.

Lemma 12.1.3 (Grove-Shiohama). Let (M,g) and r(x) = |xK| be as above.
If all points in r~' ([a,b]) are a-regular for o < /2, then r~' ([—00,a]) is
homeomorphic to r~' ([—o0,b]), and r~' ([—o0,b]) deformation retracts onto
r~! ([~o0, a)).

Proof. The construction is similar to the first lemma. We can construct a compactly
supported “retraction” vector field X such that the flow F’ for X satisfies

r(p)—r(F' (p)) >t-cos(a), t > 0if p, F' (p) € r ' ([a. D]).

For each p € r~! (b) there is a first time 7, < ”~ for which F” (p) € r~! (a). The
. . . cos . .
function p > £, is continuous and thus we get the desired retraction

reoor! ([—00,b]) — r! ([—o0, b)),

Yy ifr(p) <a
1P = )y ifa<r(p) < b

|

Remark 12.1.4. The original construction of Grove and Shiohama actually shows
something stronger, the distance function can be approximated by smooth functions
without critical points on the same region the distance function had no critical points
(see [56].) This has also turned out to be important in certain contexts.

The next corollary is our first simple consequence of this lemma.

Corollary 12.1.5. Suppose K is a compact submanifold of a complete Riemannian
manifold (M, g) and that the distance function |x K| is regular everywhere on M —K.
Then M is diffeomorphic to the normal bundle of K in M. In particular, if K = {p},
then M is diffeomorphic to R".

Proof. We know that M — K admits a vector field —X such that |xK| increases
along the integral curves for —X. Moreover, near K the distance function is smooth,
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and therefore X can be assumed to be equal to XK near K. Consider the normal
exponential map expt : 71K — M. It follows from corollary 5.5.3 that this
gives a diffeomorphism from a neighborhood of the zero section in 7K onto a
neighborhood of K. Also, the curves r — exp (tv) for small ¢ coincide with integral
curves for —X. In particular, for each v € T1K there is a unique integral curve
for —X denoted ¢, (¢) : (0,00) — M such that lim,—o ¢, (f) = v. Now define our
diffeomorphism F : TXK — M by

F (0,) = p for the origin in T;'K,
F (tv) = ¢, (1) where |v]| = 1.

This clearly defines a differentiable map. For small ¢ this is just the exponential
map. The map is one-to-one since integral curves for —X can’t intersect. The
integral curves for —X must leave all of the sublevels of the proper function |xK]|.
Consequently they are defined for all # > 0. This shows that F' is onto. Finally, as it
is a diffeomorphism onto a neighborhood of K by the normal exponential map and
the flow of a vector field always acts by local diffeomorphisms we see that it has
nonsingular differential everywhere. O

12.2 Distance Comparison

In this section we introduce the geometric results that will enable us to check
that various distance functions are noncritical. This obviously requires some sort
of angle comparison. The most important step in this direction is supplied by the
Toponogov comparison theorem. The proof we present is probably the simplest
available and is based upon an idea by H. Karcher (see [32]).

Some preparations are necessary. Let (M, g) be a Riemannian manifold. We
define two very natural geometric objects:

Hinge: A hinge consists of two segments px and xy that form an interior angle o
atx,ie., £ (x_l)), ?y) = « if the specified directions are tangent to the given segments.
See also figure 12.3.

Triangle: A triangle consists of three segments xy, yz, zx that meet pairwise at
the three vertices x, y, z.

In both definitions one could use geodesics instead of segments. It is then
possible to have degenerate hinges or triangles where some vertices coincide

Fig. 12.3 A Hinge
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Fig. 12.4 Triangles

without the joining geodesics being trivial. This will be useful in a few situations.
In figure 12.4 we have depicted a triangle consisting of segments, and a degenerate
triangle where one of the sides is a geodesic loop and two of the vertices coincide.

Given a hinge or triangle, we can construct comparison hinges or triangles in the
constant curvature spaces .

Lemma 12.2.1. Suppose (M, g) is complete and has sec > k. Then for each hinge
or triangle in M we can find a comparison hinge or triangle in S where the
corresponding segments have the same length and the angle is the same or all
corresponding segments have the same length.

Proof. Note that when k& > 0, then corollary 6.3.2 implies diamM < =/ Jk =
diamsS}. Thus, all segments have length < 7/ JVk.

The hinge case: We have segments px and xy that form an interior angle o =
VA (x_ﬁ,?y) at x. In the space form first choose a segment pyx; of length |px|. At

x; we can then choose a direction x;y; so that £ (xkpk,xkyk) = «. Then along the

unique geodesic going in this direction select y; so that |xgyx| = |xy|. This is the
desired comparison hinge.
The triangle case: First, pick x; and y; such that |xy| = |xxyx|. Then, consider

the two distance spheres dB (xx, |xz|) and 9B (yk, [yz|). Since all possible triangle
inequalities between x, y, z hold, these distance spheres are nonempty and intersect.
Let z; be any point in the intersection.

To be honest here, we must use Cheng’s diameter theorem 7.2.5 in case any of
the distances is 77/ +/k. In this case there is nothing to prove as (M, g) = Sk O

The Toponogov comparison theorem can be stated as follows.

Theorem 12.2.2 (Toponogov, 1959). Let (M, g) be a complete Riemannian mani-
fold with sec > k.

Hinge Version: Given any hinge with vertices p, x,y € M forming an angle o at
x, it follows, that for any comparison hinge in S} with vertices py, X, yx we have:
Pyl < |piyi| (see also figure 12.5).

Triangle Version: Given any triangle in M, it follows that the interior angles are
no smaller than the corresponding interior angles for a comparison triangle in S}.
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X

Pk

Fig. 12.5 Hinge Comparison

Fig. 12.6 Distance from a
point to a line

The proof requires a little preparation. First, we claim that the hinge version
implies the triangle version. This follows from the law of cosines in constant
curvature. This law shows that if we have p,x,y € S} and increase the distance
|py| while keeping |px| and |xy| fixed, then the angle at x increases as well. For
simplicity, we consider the cases where k = 1,0, —1.

Proposition 12.2.3 (Law of Cosines). Let a triangle be given in S with side
lengths a, b, c. If o denotes the angle opposite to a, then

k=0:d*=b*+ c?—2bccosa.
k = —1 : cosha = cosh b cosh ¢ — sinh b sinh ¢ cos «.
k=1:cosa = cosbcosc+ sinbsinccos .

Proof. The general setup is the same in all cases. Suppose that a point p € S} and a
unit speed segment o : [0, c] — S} are given. The goal is to understand the function
lo (£) p| = r (o (¢)) (see also figure 12.6). As in corollary 4.3.4 and theorem 5.7.5 we
will use the modified distance function f;. The Hessian is calculated in example 4.3.2
to be Hessfy = (1 — kfi) g. If we restrict this distance function to o (¢), then we
obtain a function p () = f; o o (¢) with derivatives

o) =g(6. Vi),
p () =1 —=kp ().

We now split up into the three cases.
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Case k = 0: We have more explicitly

p() =, (roo ()’

and
. .ol
pi)=g(6.V, ),
P =1.
So if we define » = |po (0)| and « as the interior angle between o and the line

joining p with o (0) , then
cos(m —a) = —cosa = g (6 (0), Vr).

After integration of p = 1, we get
) 1
M0=M®+Mmﬁ+;2

1 1
= b —b-cosa-t+ 1.
2 2

Now set t = ¢ and define a = |po (¢)|, then

1 1 1
= b*—b-c-cosa + c2,
2 2 2

from which the law of cosines follows.
Case k = —1: This time

p(t) =cosh(roao(r))—1
with
p(t) = sinh(roo (1)) g (Vr,d),
p()=p@)+1=cosh(roa ().
As before, we have b = |po (0)|, and the interior angle satisfies
cos(m —a) = —cosa =g (g (0),Vr).

Thus, we must solve the initial value problem

p—p=1,
p(0) = cosh (b)) — 1,
0(0) = —sinh (b) cos .
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The general solution is

p (f) = Cycosht 4 Cpsinhz— 1
= (p(0) + 1)cosht + p (0) sinh ¢ — 1.

Soif welett = c and a = |pc (¢)| as before, we arrive at
cosha — 1 = coshbcoshc —sinhbsinhccosa — 1,

which implies the law of cosines again.
Case k = 1: This case is completely analogous to k = —1. Now

p=1—=cos(roo ()

and
p+p=1
p(0) =1—cos(b),
p(0) = —sinbcosa.
Then,

p(t) = Cicost+ Cysint + 1
= (p(0)—1)cost+ p(0)sinr + 1,

and consequently
1—cosa = —cosbcosc—sinbsinccosa + 1,

which implies the law of cosines. O

The proof of the law of cosines suggests that when working in space forms it is
easier to work with a modified distance function, the main advantage being that the
Hessian is much simpler.

Lemma 12.2.4 (Hessian Comparison). Let (M,g) be a complete Riemannian
manifold, p € M, and r (x) = |xp|. If sec M > k, then the Hessian of r satisfies

Hessfi < (1 — kfi) g

in the support sense everywhere.
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Proof. We start by noting that this estimate was proven in theorem 6.4.3 when the
distance function is smooth. The proof can then be finished in the same way as
lemma 7.1.9. O

We are ready to prove the hinge version of Toponogov’s theorem. The proof is
divided into the three cases: k = 0, —1, 1 with the same set-up. Let p € M and a
geodesic ¢ : [0, L] — M be given. Correspondingly, select p € S} and a segment
¢ : [0, L] — S}. With the appropriate initial conditions, we claim that

lpc®] < lpc(].

If we assume that |xp| is smooth at ¢ (0) . Then the initial conditions are
lpc(0)] < |pc(0)].
d
¢ = g (V42 0).

In case r is not smooth at ¢ (0) , we can just slide ¢ down along a segment joining
p with ¢ (0) and use a continuity argument. This also shows that we can assume the
stronger initial condition

lpcO]f <|pc(O).

In figure 12.7 we have shown how c can be changed by moving it down along
a segment joining p and ¢ (0) . We have also shown how the angles can be slightly
decreased. This will be important in the last part of the proof. Note that we could
instead have used exercise 5.9.28 to obtain these initial values as the restriction of r
to ¢ always has one sided derivatives.

Proof. Case k = 0: We consider the modified functions

1
2
1
2

pH)=_ (roc®)’,

p)=_ (Foc().

Fig. 12.7 Hinge adjustment
and comparison hinge
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For small ¢ these functions are smooth and satisfy

p(0) <p(0),
p(0) < p(0).

Moreover, for the second derivatives we have

0 < 1in the support sense,

L,

D
Il

whence the difference ¢ () = p (f) — p (¢) satisfies

¥ (0) > 0,
¥ (0) =0,
¥ (f) > 0 in the support sense.
This shows that ¥ is a convex function that is positive and increasing for small 7.
Thus, it is increasing and positive for all ¢. This proves the hinge version.
Case k = —1: Consider
p(t) =coshroc(r)—1,
o (f) = coshroc(r) — 1.

Then

p(0) < p(0).
p©0) < p(0),
p < p+ 1 in the support sense,
p=p+1.
The difference ¥ = p — p satisfies

¥ (0) > 0,

¥ (0) = 0,

¥ () = ¥ (7) in the support sense.
The first condition again implies that ¥ is positive for small ¢. The last condition
shows that as long as v is positive, it is also convex. The second condition then

shows that v is increasing for small 7. It follows that ¥ cannot have a positive
maximum as that violates convexity. Thus ¥ keeps increasing.
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Case k = 1: This case is considerably harder. We begin as before by defining

p()=1—cos(roc(t)),
p(t) =1—cos(roc(t))

and observe that the difference v = p — p satisfies

¥ (0) >0,

¥ (0) =0,
¥ (1) = — () in the support sense.

That, however, looks less promising. Even though the function starts out being
positive, the last condition only gives a negative lower bound for the second
derivative. This is where a standard trick from Sturm-Liouville theory will save us.
For that to work well it is best to assume ¥ (0) > 0. Thus, another little continuity
argument is necessary as we need to perturb ¢ again to decrease the interior angle.
If the interior angle is positive, this can clearly be done, and in the case where this
angle is zero the hinge version is trivially true anyway. We compare { to a new
function ¢ (¢) defined by

t=-(1+e¢,
£(0) =y (0) >0,

¢(0) =y (0) > 0.

For small t we have

2
SO L) =y O+ (40

SO =y () +et@)
> 0.

This implies that ¢ (f) — ¢ () > 0 for small z. To extend this to the interval where
¢ (¢) is positive, i.e., for

7T — arctan ( (0)

w(O)-J1+s)
t<
J1+¢

consider the quotient ¥/¢. This ratio satisfies

Vo) =
C(O)_l’
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14

(1) > 1 for small ¢.

Should the ratio dip below 1 before reaching the end of the interval it would have a
positive local maximum at some #y. At this point we can use support functions ;s
for ¢ from below, and conclude that also 5 /¢ has a local maximum at ¢y. Thus, we

have
a (y
0= 2 ( ;) (t0)

_Us)  E@w) d (s, o Vs
c e (e) @ B Ew
—Ys (o) =8 | ¥s (o)
1
= tw o Y
_ & Vs(to) =4
¢(o)
But this becomes positive as § — 0, since we assumed s (fy) > 0. Thus we have a

contradiction. Next, we can let ¢ — 0 and finally, let ¢ (0) — 0 to get the desired
estimate for all # < 7 using continuity. O

Remark 12.2.5. Note that we never really use in the proof that we work with
segments. The only thing that must hold is that the geodesics in the space form
are segments. For k < 0 this is of course always true. When k > 0 this means that
the geodesic must have length < 7/./k. This was precisely the important condition
in the last part of the proof.

12.3 Sphere Theorems

Our first applications of the Toponogov theorem are to the case of positively curved
manifolds. Using scaling, we can assume throughout this section that we work with
a closed Riemannian n-manifold (M, g) with sec > 1. For such spaces we have
established:

(1) diam (M, g) < &, with equality holding only if M = §" (1) .

(2) If nis odd, then M is orientable.

(3) If nis even and M is orientable, then M is simply connected and inj (M) >
7/ +/max sec.

(4) If M is simply connected and max sec < 4, then inj (M) > 7/ /max sec.

(5) If M is simply connected and max sec < 4, then M is homotopy equivalent to a
sphere.
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We can now prove the celebrated Rauch-Berger-Klingenberg sphere theorem, also
known as the quarter pinched sphere theorem. Note that the conclusion is stronger
than in corollary 6.5.6. The part of the proof presented below is also due the Berger.

Theorem 12.3.1. If M is a simply connected closed Riemannian manifold with 1 <
sec < 4 —§, then M is homeomorphic to a sphere.

Proof. We have shown that the injectivity radius is > #/+/4—s. Thus, we have large
discs around every point in M. Select two points p, g € M such that |pg| = diamM
and note that diamM > injM > 7/2. We claim that every point x € M lies in one of
the two balls B (p, 7/+/4-5) , or B (g, 7/+/4—5) , and thus M is covered by two discs.
This certainly makes M look like a sphere as it is the union of two discs. Below we
construct an explicit homeomorphism to the sphere in a more general setting.

Fix x € M and consider the triangle with vertices p, x, g. If, for instance, |xg| >
7 /2, then we claim that |px| < 7/2. First, observe that since ¢ is at maximal distance
from p, it must follow that g cannot be a regular point for the distance function to p.
Therefore, given a segment xq there is a segment pg such that the interior angle at g
satisfies @ = £ (E))c, q_l))) < 7/2. The hinge version of Toponogov’s theorem implies

cos |px| = cos |xq| cos |pg| + sin |xq| sin |pg| cos

\Y

cos |xg| cos |pq| .

Now, both |xq|, |pg| > 7/2, so the left-hand side is positive. This implies that |px| <
n/2 as desired (see also figure 12.8 for the picture on the comparison space). O

Michaleff and Moore in [73] proved a version of this theorem for closed simply
connected manifolds that only have positive isotropic curvature (see exercise 3.4.17
and also section 9.4.5). Since quarter pinching implies positive complex sectional
curvature and in particular positive isotropic curvature this result is stronger. In fact
more recently Brendle and Schoen in [20] have shown that manifolds with positive
complex sectional curvature admit metrics with constant curvature. This result uses
the Ricci flow.

Fig. 12.8 Spherical hinge
with long sides S
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Note that the above theorem does not say anything about the non-simply
connected situation. Thus we cannot conclude that such spaces are homeomorphic
to spaces of constant curvature. Only that the universal covering is a sphere. The
proof in [20], however, does not depend on the fundamental group and thus shows
that strictly quarter pinched manifolds admit constant curvature metrics.

The above proof suggests that the conclusion of the theorem should hold as
long as the manifold has large diameter. This is the content of the next theorem.
This theorem was first proved by Berger for simply connected manifolds by using
Toponogov’s theorem to show that there is a point where all geodesic loops have
length > 7 and then appealing to the proof of theorem 6.5.4. The present version is
known as the Grove-Shiohama diameter sphere theorem. It was for the purpose of
proving this theorem that Grove and Shiohama introduced critical point theory.

Theorem 12.3.2 (Berger, 1962 and Grove-Shiohama, 1977). If (M, g) is a closed
Riemannian manifold with sec > 1 and diam > 7/2, then M is homeomorphic to a
sphere.

Proof. We first give Berger’s index estimation proof that follows his index proof of
the quarter pinched sphere theorem. The goal is to find p € M such that all geodesic
loops at p have length > s and then finish by using the proof of theorem 6.5.4.
Select p,g € M such that |pg| = diamM > 7/2. We claim that p has the desired
property. Supposing otherwise we get a geodesic loop ¢ : [0, 1] — M based at p of
length < 7. As p is at maximal distance from ¢ we can find a segment gp, such that
the hinge spanned by pg and ¢ has interior angle < 7/2. While c is not a segment it
is sufficiently short that the hinge version of Toponogov’s theorem still holds for the
degenerate hinge with sides gp, ¢ and angle o < 7/2 at p (see also Fig. 12.9, where
we included two geodesics from p to g). Thus

0 > cos |pg|
> cos |pg|cos L (c) + sin |pg|sin L (c) cos o
> cos |pg|cosL(c).
This is clearly not possible unless L (¢) = 0.
Next we give the Grove-Shiohama proof. Fix p, g € M with |pg| = diamM > =/>.
The claim is that the distance function from p only has g as a critical point
(Fig. 12.10). To see this, let x € M — {p,q} and « be the interior angle between

any two segments xp and xq. If we suppose that & < 7/2, then the hinge version of
Toponogov’s theorem implies

0 > cos|pgq|

v

cos |px| cos |xg| + sin |px| sin |xq| cos &

\

cos |px| cos |xq| .
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Fig. 12.9 Degenerate hinge
where one side is a loop

Fig. 12.10 Spherical hinge

But then cos |px| and cos |xg| have opposite signs. If, for example, cos |px| > 0
then it follows that cos |pg| > cos|xgq|, which implies |xq| > |pg| = diamM.
Thus we have arrived at a contradiction (see also figure 12.10 for the picture on
the comparison space).

We construct a vector field X that is the gradient field for x > |xp| near p and
the negative of the gradient field for x — |xg| near ¢. Furthermore, the distance to
p increases along integral curves for X. For each x € M — {p, g} there is a unique
integral curve ¢, (t) for X through x. Suppose that x varies over a small distance
sphere B (p, ¢) that is diffeomorphic to $"~'. After time ¢, this integral curve will
hit the distance sphere dB (¢, €) which can also be assumed to be diffeomorphic to
§"=!. The function x > ¢, is continuous and in fact smooth as both distance spheres
are smooth submanifolds. Thus we have a diffeomorphism defined by

0B (p,e) x[0,1] = M — (B(p,e) UB(q,¢)),

) e (t-ty).
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Gluing this map together with the two discs B (p,¢) and B(q, ¢) then yields a
continuous bijection M — S". Note that the construction does not guarantee
smoothness of this map on 9B (p, €) and 9B (g, ¢). O

Aside from the fact that the conclusions in the above theorems could possibly be
strengthened to diffeomorphism, we have optimal results. Complex projective space
has curvatures in [1, 4] and diameter 7/2 and the real projective space has constant
curvature 1 and diameter 7/2. If one relaxes the conditions slightly, it is, however,
still possible to say something.

Theorem 12.3.3 (Brendle-Schoen 2008 and Petersen-Tao 2009). Let (M, g) be
a simply connected of dimension n. There is € (n) > 0 such that if 1 < sec <
4 + &, then M is diffeomorphic to a sphere or one of the projective spaces CP"?,
HPY*, OP2.

The spaces CP2, HP"*, or OP? are known as the compact rank 1 symmetric
spaces (CROSS). The quaternionic projective space is a quaternionic generalization
of complex projective space HIP" = §*"*3/83 but the octonion plane is a bit more
exotic: F4/Spin(9) = QOP? (see also chapter 10 for more on symmetric spaces
spaces). The theorem as stated was proven in [87] and uses convergence theory and
the Ricci flow. It relies on a new rigidity result by Brendle and Schoen (see [19]) that
generalizes an older result by Berger and several subtle injectivity radius estimates
(see also section 6.5.1 for a discussion on this).

For the diameter situation we have:

Theorem 12.3.4 (Grove-Gromoll, 1987 and Wilking, 2001). If (M, g) is closed
and satisfies sec > 1, diam > 7/2, then one of the following cases holds:

(1) M is homeomorphic to a sphere.

(2) M is isometric to a finite quotient S" (1) / ', where the action of T is reducible
(has an invariant subspace).

(3) M is isometric to one of CP", HP", or CP"/Z, for m odd.

(4) M is isometric to OP?.

Grove and Gromoll settled all but part (4), where they only showed that M had to
have the cohomology ring of OP?2. It was Wilking who finally settled this last case
(see [104]).

12.4 The Soul Theorem

The idea behind the soul theorem is a similar result by Cohn-Vossen for convex
surfaces that are complete and noncompact. Such surfaces must contain a core or
soul that is either a point or a planar convex circle. In the case of a point the surface
is diffeomorphic to a plane. In the case of a circle the surface is isometric to the
generalized cylinder over the circle.
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Theorem 12.4.1 (Gromoll-Meyer, 1969 and Cheeger-Gromoll, 1972). If (M, g)
is a complete noncompact Riemannian manifold with sec > 0, then M contains
a soul S C M. The soul S is a closed totally convex submanifold and M is
diffeomorphic to the normal bundle over S. Moreover, when sec > 0, the soul is
a point and M is diffeomorphic to R".

The history is briefly that Gromoll-Meyer first showed that if sec > 0, then M
is diffeomorphic to R”. Soon after, Cheeger-Gromoll established the full theorem.
The Gromoll-Meyer theorem is in itself remarkable.

We use critical point theory to establish this theorem. The problem lies in finding
the soul. When this is done, it will be easy to see that the distance function to the
soul has only regular points, and then we can use the results from the first section.

Before embarking on the proof, it might be instructive to consider the following
less ambitious result.

Lemma 12.4.2 (Gromov’s critical point estimate, 1981). If (M, g) is a complete
open manifold of nonnegative sectional curvature, then for every p € M the distance
Sunction |xp| has no critical points outside some ball B (p, R) . In particular, M must
have the topology of a compact manifold with boundary.

Proof. Assume we a critical point x for |xp| and that y is chosen so that
VA (ITJ)CIT)) < 7/3. The hinge version of Toponogov’s theorem implies that

2 2 2
beyl™ < py[™ + [xp|” = 2 [pyl [xp| cos 5
= Ipyl* + x| = pyl lxp) -
Next use that x is critical for p to select segments px and xy that form an angle < 7/2
at x. Then use the hinge version again to conclude
2 2 2
lpy[™ = lap|” + |xyl
< bpl® + pyl” + bl = Ipyl 1xp]
=2l + |py* = pyl lxp] -
This forces |py| < 2 |xp].
Now observe that there is a fixed bound on the number of unit vectors at p that

mutually form an angle > 7/3. Specifically, use that balls of radius 7/6 around these
unit vectors are disjoint inside the unit sphere and note that

v(in—1,1,7) - v(n—1,0,7) e
v(n—1,1,%7) " v(n—-1,0,%) "

Finally, we conclude that there can be at most 6"~ critical points x; for |xp| such
that |x;+1p| > 2 |x;p| for all i. This shows, in particular, that the distance function
|xp| has no critical points outside some large ball B (p, R). O
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The proof of the soul theorem depends on understanding what it means for a
submanifold and more generally a subset to be fotally convex. The notion is similar
to being totally geodesic. A subset A C M of a Riemannian manifold is said to be
totally convex if any geodesic in M joining two points in A also lies in A. There are in
fact several different kinds of convexity, but as they are not important for any other
developments here we confine ourselves to total convexity. The first observation is
that this definition agrees with the usual definition of convexity in Euclidean space.
Other than that, it is not clear that any totally convex sets exist at all. For example, if
A = {p}, then A is totally convex only if there are no geodesic loops based at p. This
means that points will almost never be totally convex. In fact, if M is closed, then M
is the only totally convex subset. This is not completely trivial, but using the energy
functional as in section 6.5.2 we note that if A C M is totally convex, then A C M
is k-connected for any k. It is however, not possible for a closed n-manifold to have
n-connected nontrivial subsets as this would violate Poincaré duality. On complete
manifolds on the other hand it is sometimes possible to find totally convex sets.

Example 12.4.3. Let (M, g) be the flat cylinder R x S'. All of the circles {p} x S!
are geodesics and totally convex. This also means that no point in M can be totally
convex. In fact, all of those circles are souls (see also figure 12.11).

Example 12.4.4. Let (M, g) be a smooth rotationally symmetric metric on R? of the
form dr? + p? (r) d6?, where p < 0. Thus, (M, g) looks like a parabola of revolution.
The radial symmetry implies that all geodesics emanating from the origin r = 0 are
rays going to infinity. Thus the origin is a soul and totally convex. Most other points,
however, will have geodesic loops based there (see also figure 12.11).

The way to find totally convex sets is via convexity of functions.

Lemma 124.5. Iff : (M,g) — R is concave, in the sense that the Hessian is
weakly nonpositive everywhere, then every superlevel set A = {x e M | f (x) > a}
is totally convex.

Fig. 12.11 Souls for cylinder and parabola
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Proof. Given a geodesic ¢ in M, we have that the function f o ¢ has nonpositive
weak second derivative. Thus, f o ¢ is concave as a function on R. In particular,
the minimum of this function on any compact interval is obtained at one of the
endpoints. This finishes the proof. O

We are left with the problem of the existence of proper concave functions on
complete manifolds with nonnegative sectional curvature. This requires the notions
of rays and Busemann functions from sections 7.3.1 and 7.3.2.

Lemma 12.4.6. Let (M, g) be complete, noncompact, have sec > 0, andp € M. If
we take all rays R, = {c : [0,00) — M | ¢(0) = p} and construct

f = inf b,.

CER,

where b, denotes the Busemann function, then f is both proper and concave.

Proof. First we show that in nonnegative sectional curvature all Busemann func-
tions are concave. Using that, we can then show that the given function is concave
and proper.

Recall from section 7.3.2 that in nonnegative Ricci curvature Busemann func-
tions are superharmonic. The proof of concavity is almost identical. Instead of the
Laplacian estimate for distance functions, we must use a similar Hessian estimate.
If r (x) = |xp|, then we know that Hessr vanishes on radial directions d, = Vr and
satisfies Hessr < r~'g on vectors perpendicular to the radial direction. In particular,
Hessr < r~'g at all smooth points. We can then extend this estimate to the points
where r isn’t smooth as we did for modified distance functions. We can now proceed
as in the Ricci curvature case to show that Busemann functions have nonpositive
Hessians in the weak sense.

The infimum of a collection of concave functions is clearly also concave. So
we must show that the superlevel sets for f are compact. Suppose, on the contrary,
that some superlevel set A = {x € M | f (x) > a} is noncompact. If a > 0, then
{x e M | f (x) = 0} is also noncompact. So we can assume that a < 0. As all of
the Busemann functions b, are zero at p also f (p) = 0. In particular, p € A.
Using noncompactness select a sequence p; € A that goes to infinity. Then consider
segments ppy, and as in the construction of rays, choose a subsequence so that m
converges. This forces the segments to converge to a ray emanating from p. As A is
totally convex, all of these segments lie in A. Since A is closed the ray must also lie
in A and therefore be one of the rays ¢ € R,,. This leads to a contradiction as

a=f(c(t)=be(c(t)=—1—>—00.

We need to establish a few fundamental properties of totally convex sets.

Lemma 12.4.7. IfA C (M, g) is totally convex, then A has an interior, denoted by
intA, and a boundary 0A. The interior is a totally convex submanifold of M, and
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Fig. 12.12 Supporting
planes and normals for a
convex set

the boundary has the property that for each x € 0A there is an inward pointing
vector w € T,M such that any segment xy with y € intA has the property that
Z(w,xp) <7/

Some comments are in order before the proof. The words interior and boundary,
while describing fairly accurately what the sets look like, are not meant in the
topological sense. Most convex sets will in fact not have any topological interior at
all. The property about the boundary is called the supporting hyperplane property.
Namely, the interior of the convex set is supposed to lie on one side of a hyperplane
at any of the boundary points. The vector w is the normal to this hyperplane and can
be taken to be tangent to a geodesic that goes into the interior. It is important to note
that the supporting hyperplane property shows that the distance function to a subset
of intA cannot have any critical points on dA (see also figure 12.12).

Proof. The convexity radius estimate from theorem 6.4.8 will be used in many
places. Specifically we shall use that there is a positive function ¢ (p) : M — (0, co0)
such that r,, (x) = |xp| is smooth and strictly convex on B (p, € (p)) — {p}.

First, let us identify points in the interior and on the boundary. To make the
identifications simpler assume that A is closed.

Find the maximal integer k such that A contains a k-dimensional submanifold
of M. If k = 0, then A must be a point. For if A contains two points, then A also
contains a segment joining these points and therefore a 1-dimensional submanifold.
Now define N C A as being the union of all k-dimensional submanifolds in M that
are contained in A. We claim that N is a k-dimensional totally convex submanifold
whose closure is A. This means we can define intA = N and 0A = A — N.

To see that it is a submanifold, pick p € N and let N, C A be a k-dimensional
submanifold of M containing p. By shrinking N, if necessary, we can also assume
that it is embedded. Thus there exists § € (0,& (p)) so that B(p,§) N N, = N,,.
The claim is that also B (p,§) N A = N,. If this were not true, then we could find
q € AN B(p,8) — Np. Now assume that § is so small that also § < inj,. Then we
can join each point in B (p, §) N N, to g by a unique segment. The union of these
segments will, away from ¢, form a cone that is a (k + 1)-dimensional submanifold
contained in A (see figure 12.13), thus contradicting maximality of k. This shows
that NV is an embedded submanifold as we have B (p, §) "N = N,.

What we have just proved can easily be modified to show that for points p € N
and g € A with the property that [pg| < inj, there is a k-dimensional submanifold

N, C N such thatg € Np. Specifically, choose a (k — 1)-dimensional submanifold
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Fig. 12.13 Interior and boundary points of convex sets

through p in N perpendicular to the segment from p to ¢, and consider the cone over
this submanifold with vertex g. From this statement we get the property that any
segment xy with y € N must, except possibly for x, lie in N. In particular, N is dense
in A.

Having identified the interior and boundary, we have to establish the supporting
hyperplane property. First, note that since N is totally geodesic its tangent spaces
T,N are preserved by parallel translation along curves in N. For p € dA we then
obtain a well-defined k-dimensional tangent space 7,A C T,M coming from parallel
translating the tangent spaces to N along curves in N that end at p. Next define the
tangent cone at p € JA

CyA = {v € T,M | exp, (1v) € N for some t > 0} .

Note that if v € C,A, then in fact exp, (tv) € N for all small 7 > 0. This shows that
C,A is a cone. Clearly C,A C T,A and is easily seen to be open in T,A.

In order to prove the supporting half plane property we start by showing that C,A
does not contain antipodal vectors £v. If it did, then there would be short segments
through p whose endpoints line in N. This in turn shows that p € N.

For p € 0A and ¢ > 0 assume that there are ¢ € A, = {x € A | [xdA| > ¢} with
lgp| = . The set of such points is clearly 2e-dense in dA. So the set of points p € 0A
for which we can find an ¢ > 0 and g € A, such that |gp| = ¢ is dense in JA. We
start by proving the supporting plane property for such p. We can also assume ¢ is
so small that r, (x) = |xg| is smooth and convex on a neighborhood containing p.
The claim is that Z (—Vr,, v) < 7/2 for all v € C,A. To see this, observe that we
have a convex set

A'=ANB(q.e),
with interior

N =ANB(q,e) CN
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and p € 0A’ (see figure 12.13). Thus C,A” C CpA and T,A = T,A’. The tangent
cone of B (g, €) is given by

CpB (g.¢) = {v eT,M| L (v,—qu) < Z}
as r is smooth at p, thus

s
A = {v e TA | £(v,-Vr,) < 2}.

If C,A” & CpA, then openness of C,A in T),A implies C,A contains antipodal vectors.
At other points p € dA select p; — p where

CoA = {v e TyA | £ (v.—w) < Z}
These open half spaces will have an accumulation half space
i
{v €ETA| L(v,—w) < 2}.

By continuity C,A C {v € T)A | Z(v,—w) < 7}. As C,A C T,A is also open it
must be contained in an open half space. O

The last lemma we need is

Lemma 12.4.8. Let (M, g) have sec > 0. If A C M is totally convex, then the
distance function r : A — R defined by r (x) = |x0A| is concave on A. When
sec > 0, then any maximum for r is unique.

Proof. We shall show that the Hessian is nonpositive in the support sense. Fix g €
intA, and find p € 0A so that |pg| = |q0A|. Then select a segment pq in A. Using
exponential coordinates at p we create a hypersurface H which is the image of the
hyperplane perpendicular to pg. This hypersurface is perpendicular to 175, the second
fundamental form for H at p is zero, and H NintA = &. (See figure 12.14.) We have
that f (x) = |xH| is a support function from above for r (x) = |xdA]| at all points
on pq.

Select a point p’ # p, g on the segment pg, i.e., |pp’| + |p'q| = |pq|. One can
show as in section 5.7.3 that f is smooth at p’ except possibly when p’ = ¢g. We
start by showing that the support function f is concave at p’ # q. Note that pq is an
integral curve for Vf. Evaluating the fundamental equation (see 3.2.5) on a parallel
field, along pg, that starts out being tangent to H, i.e., perpendicular to pg therefore
yields:

thessf (E.E) = —R (E, Vf,Vf,E) — Hess’f (E, E)

IA

0.
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Fig. 12.14 Distance function H
to the boundary of a convex
set

Since Hessf (E,E) = 0 at p we see that Hessf (E, E) < 0 along pq (and < 0 if
sec > 0). This shows that we have a smooth support function for [xdA| on an open
and dense subset in A.

If £ is not smooth at g, we can find a hypersurface H' as above that is

perpendicular to p—’c; at p’ and has vanishing second fundamental form at p’. For
p’ close to ¢ we have that |xH’| is smooth at g and therefore also has nonpositive
(negative) Hessian at g. In this case we claim that |pp’| + |xH’| is a support function
for |xdA|. Clearly, the functions are equal at g and we only need to worry about x
where |xdA| > |pp’|. In this case we can select z € H' with [xdA| = |z0A| + |xH'|.
Thus we are reduced to showing that |z0A| < |pp’| for each z € H'.

As f is smooth at p’ it follows that |xdA| is concave in a neighborhood of p’.
Now select a segment p’z. By the construction of H' we can assume that p'z is

contained in H" and therefore perpendicular to p—/c)] Concavity of x > |xdA| along
the segment then shows that |zdA| < |p’dA| as it lies under the tangent through p’.
This establishes our claim.

Finally, choose a concave ¢ : [0, 00) — [0, 00) with ¢ (0) = 0 and ¢’ > 0. Then
¢ o r will clearly also be concave. Moreover, if we select ¢ to be strictly concave
and sec > 0, then ¢ o r will be strictly concave. In case it has a maximum it follows
that it is unique as in the construction of a center of mass in section 6.2.2. O

We are now ready to prove the soul theorem. Start with the proper concave
function f constructed from the Busemann functions. The maximum level set

Ci={xeM|f(x)=maxf}

is nonempty and convex since f is proper and concave. Moreover, it follows from
the previous lemma that C; is a point if sec > 0. This is because the superlevel sets
A ={x €M |f(x) > a}are convex with dA = f~! (a),sof (x) = [xdA| on A. If C;
is a submanifold, then we are also done. In this case |xC;| has no critical points, as
any point lies on the boundary of a convex superlevel set. Otherwise, C; is a convex
set with nonempty boundary. But then |[xdC;| is concave on C;. The maximum set
C, is again nonempty, since C; is compact and convex. If it is a submanifold, then
we again claim that we are done. For the distance function |xC;| has no critical
points, as any point lies on the boundary for a superlevel set for either f or |xdC ]| .
We can iterate this process to obtain a sequence of convex sets C; D C; D --+ D (.
We claim that in at most n = dimM steps we arrive at a point or submanifold S
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Fig. 12.15 Tteration for soul Level set for b
construction

that we call the soul (see figure 12.15). This is because dimC; > dimCj4;. To see
this suppose dimC; = dimCi4;. Then intC;4; will be an open subset of intC;. So if
p € intC;4, then we can find § such that

B(p,8) NintCiy1 = B (p, §) N intC;.

Now choose a segment ¢ from p to dC;. Clearly [xdC;| is strictly increasing along c.
On the other hand, ¢ runs through B (p, §) N intC;, thus showing that [xdC;| must be
constant on the part of ¢ close to p.

Much more can be said about complete manifolds with nonnegative sectional
curvature. A rather complete account can be found in Greene’s survey in [54]. We
briefly mention two important results:

Theorem 12.4.9. Let S be a soul of a complete Riemannian manifold with sec > 0,
arriving from the above construction.

(1) (Sharafudtinov, 1978) There is a distance nonincreasing map Sh : M — S such
that Sh|s = id. In particular, all souls must be isometric to each other.

(2) (Perel’man, 1993) The map Sh : M — S is a submetry. From this it additional
follows that S must be a point if all sectional curvatures based at just one point
in M are positive.

Having reduced all complete nonnegatively curved manifolds to bundles over
closed nonnegatively curved manifolds, it is natural to ask the converse question:
Given a closed manifold S with nonnegative curvature, which bundles over S admit
complete metrics with sec > 0? Clearly, the trivial bundles do. When § = T2
Ozaydin-Walschap in [82] have shown that this is the only 2-dimensional vector
bundle that admits such a metric. Still, there doesn’t seem to be a satisfactory general
answer. If, for instance, we let § = S2, then any 2-dimensional bundle is of the form
(S3 X (C) /S', where S' is the Hopf action on S* and acts by rotations on C in the
following way: w x z = wz for some integer k. This integer is the Euler number of
the bundle. As we have a complete metric of nonnegative curvature on S* x C, the
O’Neill formula from theorem 4.5.3 shows that these bundles admit metrics with
sec > 0.
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There are some interesting examples of manifolds with positive and zero Ricci
curvature that show how badly the soul theorem fails for such manifolds. In 1978,
Gibbons-Hawking in [49] constructed Ricci flat metrics on quotients of C? blown up
at any finite number of points. Thus, one gets a Ricci flat manifold with arbitrarily
large second Betti number. About ten years later Sha-Yang showed that the infinite
connected sum

(S x S?) (2 x St (S* x S*) f- -

admits a metric with positive Ricci curvature, thus putting to rest any hopes for
general theorems in this direction. Sha-Yang have a very nice survey in [51]
describing these and other examples. The construction uses doubly warped product
metrics on I x §? x S! as described in section 1.4.5.

12.5 Finiteness of Betti Numbers

We prove two results in this section.

Theorem 12.5.1 (Gromov, 1978 and 1981). There is a constant C (n) such that
any complete manifold (M, g) with sec > 0 satisfies

(1) 7 (M) can be generated by < C (n) generators.
(2) For any field F of coefficients the Betti numbers are bounded:

Zn:b,- (M,F) = Z dimH; (M,F) < C(n).

i=0 i=0

Part (2) of this result is considered one of the deepest and most beautiful results
in Riemannian geometry. Before embarking on the proof, let us put it in context.
First, we should note that the Gibbons-Hawking and Sha-Yang examples show that
a similar result cannot hold for manifolds with nonnegative Ricci curvature. Sha-
Yang also exhibited metrics with positive Ricci curvature on the connected sums

(S% x S?) #(S* x S?) t--- 1 (S* x §?).
k:;r:l-es -

For large k, the Betti number bound shows that these connected sums cannot have
a metric with nonnegative sectional curvature. Thus, there exist simply connected
manifolds that admit positive Ricci curvature but not nonnegative sectional curva-
ture. The reader should also consult our discussion of manifolds with nonnegative
curvature operator in sections 9.4.4 and 10.3.3 to see how much more is known
about these manifolds.
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In the context of nonnegative sectional curvature there are three difficult open
problems. They were discussed and settled in chapters 9 and 10 for manifolds with
nonnegative curvature operator.

(H. Hopf) Does S? x S? admit a metric with positive sectional curvature?
(H. Hopf)  For M?", does sec > 0 (> 0) imply y (M) > 0 (> 0)?
(Gromov) Does sec > 0 imply Y ' b; (M,F) <2"?

Recall that these questions were also discussed in section 8.3 under additional
assumptions about the isometry group.

First we establish part (1) of Gromov’s theorem. The proof resembles that of the
critical point estimate lemma 12.4.2 from the previous section.

Proof of (1). We construct what is called a short set of generators for m; (M) .
Consider 7y (M) as acting by deck transformations on the universal covering M
and fix p € M. Inductively select a generating set {g1, g2, . ..} such that

@ Ipgi(p)| = |pg(p)| forall g € 1 (M) — {e}.
(b) lpgr(p)| = lpg(p)| forall g € 1 (M) — (g1, ..., 8k-1) -

. é % . . .
We claim that £ (pgk(p), pgz(p)) > 7/3 for k < [. Otherwise, the hinge version
of Toponogov’s theorem would imply

l51(p) & @)* < |pgc®)* + paip)®
— per(P)| lpgi(p)]
< Ipgip)|* .

But then

Ip (g7 'e0) ()| < Ipgi(p)] .

which contradicts our choice of g;. Therefore, we have produced a generating set
with a bounded number of elements. O

The proof of the Betti number estimate is established through several lemmas.
First, we need to make three definitions for metric balls. Throughout, fix a
Riemannian n-manifold M with sec > 0 and a field F of coefficients for our
homology theory

Hy (\F) =Hx () =Ho () ®---®H, ().
For A C B C M define

rank; (A C B) = rank (Hy (A) — H (B)),
ranky (A C B) = rank (Hx (A) — H.« (B)).
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Fig. 12.16 Compact set with
infinite topology

Note that when A C B C C C D, then
ranky (A C D) <rank« (BC C).

It follows that when A, B are open, bounded, and A C B, then the rank is finite, even
when the homology of either set is not finite dimensional. Figure 12.16 pictures a
planar domain where infinitely many discs of smaller and smaller size have been
extracted. This yields a compact set with infinite topology. Nevertheless, this set has
finitely generated topology when mapped into any neighborhood of itself, as that
has the effect of canceling all of the smallest holes.

Content: The content of a metric ball B (p,r) C M is

contB (p,r) = ranky« (B (p. ;) C B(p.r)).

Corank: The corank of a set A C M is defined as the largest integer k such that
we can find k metric balls B (p1, r1), ..., B (pg, rx) with the properties

(a) There is a critical point x; for p; with |px;| = 10r;.
(b) r;>3ri_jfori=2,... k.
© AC i B(ir).

Compressibility: A ball B (p, R) is said to be compressible if it contains a ball
B (x,r) C B(p,R) such that

(a) r <R/,
(b) contB (x,r) > contB (p,R).

If a ball is not compressible we call it incompressible. Note that any ball with content
> 1, can be successively compressed to an incompressible ball.

We connect these three concepts through a few lemmas that will ultimately lead
us to the proof of the Betti number estimate. Observe that for large r, the ball B (p, r)
contains all the topology of M, so

contB (p.r) = Y _ b (M).

Also, the corank of such a ball will be zero for large r by lemma 12.4.2. The idea is to
compress such a ball until it becomes incompressible and then estimate its content
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in terms of balls that have corank 1. In this way, we will be able to successively
estimate the content of balls of fixed corank in terms of the content of balls with one
higher corank. The proof is then finished first, by showing that the corank of a ball
is uniformly bounded, and second, by observing that balls of maximal corank must
be contractible and therefore have content 1 (otherwise they would contain critical
points for the center, and the center would have larger corank).

Lemma 12.5.2. The corank of any set A C M is bounded by 100".

Proof. Suppose that A has corank larger than 100". Select balls B (p1,r1), ...,
B (py, ry) with corresponding critical points x, . . . , x¢, where k > 100”. Now choose
z € A and select segments zx;. One can check that in the unit sphere:

vin—1,1,m)

v(”_l’l’ 112)

< (127)"' < 40m.

Since k > 40" there will be two segments zx; and zx; that form an angle < 1/6 at z.
Figure 12.17 gives the pictures of the geometry involved.
Note that |zp;| < r; and |zpj‘ < r;. The triangle inequality implies

|zxi] < 107 + |zpi| < 117,
2| = 107 — 1 = 9r;.

Also, r; > 3r;, so \zxji > |zx;|. The hinge version of Toponogov’s theorem then
implies

ixixj|2 < |ZXj|2 + |in|2 — 2 |zx] |ij| COSé

31

= ey + |l - L6 il |2
3 2
< (|zxj|—4|zxi|) :

Fig. 12.17 Hinges and Xi
triangles
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In other words: |xixj\ < \zxji — i |zx;|. Now use the triangle inequality to conclude

pix| = 2] = lzpil

> 10r; — |2p;| — |zpil
> 8r;

> 24r;

> 20r; = 2 |pixi| .

Yet another application of the triangle inequality will then imply ‘xixj| > |pxi| -
Since x; is critical for p;, we use the hinge version of Toponogov’s theorem to
conclude

| < paxil + x| < (\xile + ; |Pixi|)2-

Thus,
Ipi| < || + ; ipixi] < x| + 5.

The triangle inequality implies

os] = | + bl = ] + 7= b+ 6
However, we also have

|2xi| = 10r; — |zpi| = 9ri.
which together with
i | < x| — i |2xi|
implies
27

| <[] =, e

Thus, we have a contradiction:

|xixji + 2477',‘ < |iji < ixixj| + 6r;.
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Having established a bound on the corank, we next check how the topology
changes when we pass from balls of lower corank to balls of higher corank. This
requires two lemmas. The first is purely topological and its proof can be skipped.

Lemma 12.5.3. Assume that we have bounded open sets Bf, i=1,....mandj =
0,....,n+ 1withB, C B*' € M", then

ranky (U B) C UB?“) < ranky (U B) C UBffH)
k k—1 k=1
Y Yk (mBg c ﬂBﬁj‘) .
5s=0 s=0

1=0 ip<-<if—;

Proof. To see why we need multiple intermediate coverings consider the commuta-
tive diagram

kerL - V — imL

Lo U
imL - imL — 0

where the rank of f is clearly not bounded by the ranks of the other two maps
between the exact sequences.

We use the generalized Mayer-Vietoris double complex of singular chains with
coefficients IF (see also [18, Sections 8 and 15]):

G,= @ 6 (nLs).

ig<-<ig
This comes with the boundary maps

e v
0:C,, = Cpyye
. v
§:C,, > C, 1
where § comes from the inclusions C, (ﬂi’=OBfS) - C, (DX#BL) with sign (=1)’
for/ = 0,...,q. The choice of sign is consistent with the usual Mayer-Vietoris
sequence. Moreover, 3§ = §d. Define 3 = (—1)? § (eth) to make them anticommute.

We then obtain a new chain complex with vector spaces @§=OC{,k—l and boundary
maps D = d + 0 defined as:

k i k—1
D=0 Cli—s = Pi=0Clp—1—1>

(C{),k’ Cl‘l,k—l’ e CJ/;,O) g (BC{),k + acjl,k—l’ e 6CJ/‘<—1,1 + BCJ/;,O) :
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The 8-complex can be augmented by adding the natural inclusions 9 : Cf;,o —

G (Ule) The images of this map generates the d-homology, so let Cf, = im0 to
obtain a diagram with exact columns:

o/ 9| 98l
a J a J d J d
0 Cyy < Cp <Gy«

8] ©d] 98}
0L c, <, L,
8] 9d] 38}

d ] ;0 ; 0
0« C, <« C <« C) «---
5, ©) 5]

0 0 0

Any D-cycle (le'qk_l) defines a 0-cycle 68,'(’0 € C, since
9dc), = —B8dc,, = 8d¢,_, | = 0.

Conversely, any d-cycle ¢ € C{( comes from a D-cycle: We need d,k—z € C;,k—l

such that BC{J(_Z = —64_1’,(_1“. Start by finding cJ,‘(!O such that 6ch’0 = ¢. Since
688,;’0 = —366‘;‘(,0 = 0 we can by exactness of d find cjl;_m with —68,;_1,1 =
ad,;’o etc.

This correspondence also preserves being a boundary and thus gives an isomor-
phism between D-homology and regular d-homology. This is crucial for the proof
as it shows how to represent homology classes by chains in the intersections. That
said, as we don’t generate cycles in the intersections, they don’t immediately create
homology classes.

We use a modified version of Cheeger’s cohomology proof in [28]. To prove
the lemma consider a finite dimensional subspace Z; C EB;;OC?,(_Z of D-cycles
that contains no nontrivial D-boundaries. Let Z,? = 07 C C,? be the isomorphic
subspace of d-cycles. Specifically: z = dzi0 € Z), where (z;4—;) € Z. We claim
that there is a filtration Z,? >Zl oD Z,’f“ with the properties that

k—1 k—1
dim (Z,l(/zllj'l) < Z rank; (ﬂ st C ﬂij-l)
ip<-+<ig— s=0 s=0

and Z,l(‘+1 consists of d-cycles that are mapped to d-boundaries in C,’j“. This will
prove the lemma if Z,? is chosen to map isomorphically to its image in Hy (UiBf“).
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For the construction choose inverses 97! : 8CI{, g~ C{, q with 307 '¢ = ¢,

and name the inclusion maps f/ : C, (UiBé_l) — Cx (Ule) Note also that the

restriction maps z — z;x—; are linear.
The construction is inductive and relies on finding suitable linear maps L' : Z} —
C!,_, whose images consists of d-cycles and then define

' ={zezi | f' @ e dCE] )
This will show that
k=1 k=1
dim (z;/ZT") < Z rank; (ﬂ Bi C ﬂBi‘H) .
o <w+<ig—| s=0 s=0
Starting with [ = 0 we set L° (z) = zo,
Zl ={zeZ} | f' (z00) € IC},}

and note that we trivially have dzox = 0.
Now assume we have L' : Z,Z( — Cf,k—z with the properties that

OL' (2) = f'---f" Bz
I (2) = f'---f' Bzp—) + 1 (BL™" (1)) = 0.

This is clearly valid for / = 0. We can then define Z,Z;H as above and with that
L @) = f @aem) 007 (2).

It follows from our induction hypotheses on L' and the fact that (z;;—;) is a D-cycle
that

L™ () = f! Buriaaim).
L @) = Bz p——) + T (BL () = 0.

Finally, when z € Z*! we have that f**'L* (z) € C}f| , and
of ML () = U Bzo) = (2)

showing that also f**!...f1 (z) is a d-boundary. O

Let Z (k) denote the set of balls in M of corank > k, and ¥’ (k) the largest content
of any ball in A (k) .
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Lemma 12.5.4. There is a constant C (n) depending only on dimension such that
Ck)<Cm)Ck+1).

Proof. Clearly ¥ (k) is always realized by some incompressible ball B (p, R). Now
consider a ball B (x, r) where x € B (p,R/4) and r < R/100. We claim that this ball
lies in # (k + 1) . To see this, first consider the balls

B(x, £YcB(p.®)cB(x.%)cB@.R).
If there are no critical points for x in B (x, ®/2) — B (x, R/10), then

rank. (B (x, f) C B(x. %))

— rank. (8 (5. %) € B (+. %))
> rank (B (p, 1;) CB (p,R)) .

This implies that contB (p, R) < contB (x, ®/2) and thus contradicts incompressibil-
ity of B (p, R) . We can now show that B (x,r) € % (k + 1). Using that B (p,R) €
A (k) , select B(py,r1), ..., B(pi, ), > k, as in the definition of corank. Then
pick a critical point y for x in B (x, ®/2) — B (x, ®/10) and consider the ball B (x, ®/10).
Then the balls B (p1,r1),..., B(pi, ), B(x,™/10) show that B (x, r) has corank
>14+1>k

Now cover B (p, ®/5) by balls B (pi, 10_”_3R) ,i =1,...,m. If in addition the
balls B (pi, 10_”_3R/2) are pairwise disjoint, then

v (n,0,R)

— 2n . 10)1()1+3).
~ v (n,0,107"3R/2)

Since B (p;, R/2) C B (p, R) it follows that
contB (p, R) < ranks (CJB (pi, 107"°R) C LmJB (pi, ’;)) )
i=1 i=1
To estimate
rank, (LmJB (pi. 107"°R) C C)B (pi. 1;)) ,
i=1 i=1

use the doubly indexed family Bﬁ =B (pi, 10f_”_3R),j = 0,...,n + 1. Note that
for fixed j the family covers B (p, ®/5). It follows from lemma 12.5.3 that
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rank (OB (pi, 107" °R) C OB( is I;))

i=1 i=1

< ranky (UB (p,-, 10_"_3R) c UB (Pi, IO_ZR))

i=1 i=1

n m—1 k
<Y ) rank, (ﬂB pi, 10773 C ﬂB(pix,IO"_”_zR)).
J=0 k=0 ig<--<ik 5=0

When (;_y B (pi,, 10™"73R) # & the triangle inequality shows that

(B (pi. 107" °R) C B (piy. 107" °R)
t=0

B (plb* loj_n_zg)
C (B (pi- 107" °R).
t=0

Consequently, as long as j < n we have

WMOWNM“WH@CHB%JWHM)Smwmwmﬁf)

=0 =0

where B (pio, 10/_"_21;) e B(k+1).
The number of intersections (_y B (p;,, 10" >R) with j < nand s < 2"-
10"+ is bounded by

" n.1on(n+3)
C(ny=Y 2210,
j=0
So we obtain an estimate of the form ¢ (k) < C(n) € (k + 1). O
Proof of (2). The above lemma implies that
contM = € (0) < € (k) - (C (n))~,

where £k < 100" is the largest possible corank in M. It then remains to check
that € (k) = 1. However, it follows from the above that if % (k) contains an
incompressible ball, then % (k + 1) # @. Thus, all balls in 4 (k) are compressible,
but then they must have minimal content 1. O
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The Betti number theorem can easily be proved in the more general context of
manifolds with lower sectional curvature bounds, but one must then also assume
an upper diameter bound. Otherwise, the ball covering arguments, and also the
estimates using Toponogov’s theorem, won’t work. Thus, there is a constant
C (n.k*D) such that any closed Riemannian n-manifold (M, g) with sec > k and
diam < D has the properties that

(1) m (M) can be generated by < C (1, kD?) elements,
(2) Yi—bi (M, F) < C (n,kD?).

It is also possible to reach a stronger conclusion (see [102]). In outline this is done as
follows. First one should use simplicial instead of singular homology. If one inspects
the proof of lemma 12.5.3 with this in mind, then one can, from a sufficiently
fine simplicial subdivision of M relative to the doubly indexed cover, create a CW
complex X that uses at most C (n, kD?) cells as well as maps M — X — M whose
composition is the identity. In other words M is dominated by a CW complex with
a bounded number of cells. This will also give a bound for the Betti numbers.

12.6 Homotopy Finiteness

This section is devoted to a result that interpolates between Cheeger’s finiteness the-
orem and Gromov’s Betti number estimate. We know that in Gromov’s theorem
the class under investigation contains infinitely many homotopy types, while if we
have a lower volume bound and an upper curvature bound as well, Cheeger’s result
says that we have finiteness of diffeomorphism types.

Theorem 12.6.1 (Grove and Petersen, 1988). Given an integer n > 1 and
numbers v, D, k > 0, the class of Riemannian n-manifolds with
diam < D,
vol > v,

sec > —K?

contains only finitely many homotopy types.

As with the other proofs in this chapter we need to proceed in stages. First, we
present the main technical result.

Lemma 12.6.2. For M as in the theorem, there exists « = o (n,D,v,k) € (O, 72’)
and § = §(n,D,v,k) > 0 such that if p,q € M satisfy |pq| < §, then either p is

a-regular for q or q is o-regular for p.

Proof. The proof is by contradiction and based on a suggestion by Cheeger. For
simplicity assume that k = —1. Suppose there are points p,g € M that are not
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a-regular with respect to each other and with |pg| < §. Then the two sets ﬁ c1T,M

and gp C T,M of unit vectors tangent segments joining p and g are by assumption
(7 — a)-dense in the unit spheres. It is a simple exercise to show that if A C §"!,
then the function

volB (A, 1)
v(in—1,1,1)

is nonincreasing (see also exercise 7.5.18 for a more general result). In particular,
for any (7 — a)-dense set A C 5"

vol ($"' — B(A,a)) = volS"™" — volB (A, a)

vin—1,1,a)

volS" ™! — vols™ ! .
vin—1,1,7m —a)

IA

15! vin—1,1,r—a)—v(n—1,1,a)
= vo . .
vin—1,1,7m — )

Now choose o < ’2’ such that

-LlLr—a)-— - 1,1, b _
volgr-t V@ —LLm—@) —vm =1 1) / (smy ()t =
vin—1,1,7m —a) 0 6

Thus, the two cones in M (see exercise 7.5.19) satisfy
n— =
VolBS I_B( Pq .,a) (. D) < 27
n— ==
volg™ (7 ) g py < ¥

We use Toponogov’s theorem to choose § such that any point in M that does not
lie in one of these two cones must be close to either p or g. Figure 12.18 shows how
a small § will force the other leg in the triangle to be smaller than r. To this end,
pick r > 0 such that

v
s 1 ) = .
v(n r) 6
We claim that if § is sufficiently small, then

M=Bp.rnUB@qrUB 279, pyug® (@) 4 py.
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Fig. 12.18 Comparison
hinge and triangle

This will, of course, lead to a contradiction, as we would then have
v < volM

< vol (B . UB@gnuB Be) o, pyu g B (@) () D))

v
<4. <.
6

To see that these sets cover M, observe that if

v 8720 e) ) py

then there is a hinge xp and pg with angle < « (see figure 12.18).
Thus, we have from Toponogov’s theorem that

cosh |xg| < cosh |pg| cosh |xp| — sinh |pg| sinh |xp| cos («) .
If also
x¢ 8" ) ().
we have in addition,
cosh [xp| < cosh |pg| cosh |xq| — sinh |pg| sinh |xg| cos («) .
If |xp| > r and |xq| > r, we get

cosh |xg| < cosh |pg| cosh |xp| — sinh |pg| sinh |xp| cos (&)
< cosh |xp|

+ (cosh |pg| — 1) cosh D — sinh |pg| sinh r cos («)
and

cosh |xp| < cosh |xq|

+ (cosh |pg| — 1) cosh D — sinh |pg| sinh r cos (@) .



12.6 Homotopy Finiteness 483

However, as |pg| — 0, we see that the quantity

f (Ipql) = (cosh |pg| — 1) cosh D — sinh |pg| sinh r cos ()

= (—sinhrcosa) |pg| + O (|PCI|2)

becomes negative. Thus, we can find § (D, r, «) > 0 such that for |pg| < § we have
(cosh |pg| — 1) cosh D — sinh |pg| sinh r cos () < O.
We have then arrived at another contradiction, as this would imply
cosh |xg| < cosh |xp|
and
cosh |xp| < cosh |xq|

at the same time. Thus, the sets cover as we claimed. As this covering is also
impossible, we are lead to the conclusion that under the assumption that |pg| < §,
we must have that either p is a-regular for g or ¢ is a-regular for p. O

As it stands, this lemma seems rather strange and unmotivated. A simple analysis
will, however, enable us to draw some very useful conclusions from it.

Consider the product M x M with the product metric. Geodesics in this space are
of the form (cy, ¢;) , where both ¢y, ¢; are geodesics in M. In M x M we have the
diagonal A = {(x,x) | x € M}. Note that

TppA = {(v,v) |ve T,,M},
and the normal bundle

T(J[;’p)A = {(v,—v) |ve TpM}.
Therefore, if (c1,¢;) @ [a,b)] — M x M is a segment from (p,q) to A, then
¢1 (b) = —¢, (b). Thus these two segments can be joined at the common point
c1 (b) = ¢, (b) to form a geodesic from p to g in M. This geodesic is, in fact, a
segment, for otherwise, we could find a shorter curve from p to g. Dividing this
curve in half would then produce a shorter curve from (p, g) to A. Thus, we have
a bijective correspondence between segments from p to g and segments from (p, q)
to A. Moreover, v/2 - |(p, q) Al = |pq| .
The above lemma implies

Corollary 12.6.3. Any point within distance §/~/2 of A is a-regular for A.
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Fig. 12.19 Critical points for
diagonal and deformation

~

Figure 12.19 shows how the contraction onto the diagonal works and also how
segments to the diagonal are related to segments in M.

Thus, we can find a curve of length < coi » |(P-q@) A| from any point in this
neighborhood to A. Moreover, this curve depends continuously on (p, g) . We can
translate this back into M. Namely, if |[pg| < &, then p and ¢ are joined by a
curve t > H(p,q,1),0 <t < 1, whose length is < C;/Sza |pg| - Furthermore, the
V2

cosa

map (p,q,t) — H(p,q,1t) is continuous. For simplicity, we let C = in the

constructions below.
We now have the first ingredient in our proof.

Corollary 12.6.4. Iffy,fi1 : X — M are two continuous maps such that

fo () fi W] <

forall x € X, then fy and f| are homotopy equivalent.

For the next construction, recall that a k-simplex AX can be thought of as the set
of affine linear combinations of all the basis vectors in Rt i.e.,

A= {0 ) [+ =Tand AL X e [0, 1)

The basis vectors ¢; = (5}, e, 81") are the vertices of the simplex.

Lemma 12.6.5. Suppose we have k + 1 points py, ..., px € B(p,r) C M. If

ck—1
2r <4,
Cc—-1

then we can find a continuous map

ck—1
f:Ak—>B(p,r+2r'C' c 1),

where f (e;) = p;.
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Fig. 12.20 Homotopy D
construction of a simplex E

Proof. Figure 12.20 gives the essential idea of the proof. The construction is by
induction on k. For k = 0 there is nothing to show.

Assume that the statement holds for k& and that we have k + 2 points py, ...,
DPk+1 € B (p, r) . First, we find a map

ck—1
:AF > B(p,2r-C-
f — (p r c 1—}—r)
with f (e;) = p; fori = py, ..., px. We then define

_ Ck+l_1
f:Ak+1—>B(p,r+2r-C- c 1),

T W1 Y R BRIV R)
BE D DY
This clearly gives a well-defined continuous map as long as
s X0 x* < |ps X0 x*
s Zf:lxi’ o Zlexi - Zf:lxi’ o Zlexi

< (2SN
r-C- r r
= c—1

Ck+l -1

+ [pPi+1]

Moreover, it has the property that

IPfO)| < Ipprs1l + |prs1 )]
Ck+1 —1

<r+2r-C-
<r r c_1

This concludes the induction step. O



486 12 Sectional Curvature Comparison II

Note that if we select a face spanned by, say, (e, . . ., e;) of the simplex A¥, then
we could, of course, construct a map in the above way by mapping e; to p;. The
resulting map will, however, be the same as if we constructed the map on the entire
simplex and restricted it to the selected face.

We can now prove finiteness of homotopy types. Observe that the class we work
with is precompact in the Gromov-Hausdorff distance as we have an upper diameter
bound and a lower bound for the Ricci curvature. Thus it suffices to prove

Lemma 12.6.6. There is an ¢ = ¢ (n,k,v,D) > 0 such that if two Riemannian
n-manifolds (M, g1) and (N, g2) satisfy

diam < D,
vol > v,

sec > —k2,
and
de-—n(M,N) <e,

then they are homotopy equivalent.

Proof. Suppose M and N are given as in the lemma, together with a metric on MUN,
inside which the two spaces are ¢ Hausdorff close. The size of ¢ will be found
through the construction.

First, triangulate both manifolds in such a way that any simplex of the trian-
gulation lies in a ball of radius ¢. Using the triangulation on M, we can construct
a continuous map f : M — N as follows. First use the Hausdorff approximation
to map all the vertices {p;} C M of the triangulation to points {g;} C N such
that |piqi| < e. If (pi,....,pi,) forms a simplex in the triangulation of M, then
by the choice of the triangulation {p;,,...,p;,} C B(x,¢) for some x € M. Thus
{4iy> - - -+ qi,} C B(qiy,4¢). Therefore, if

c'—1
8¢ < 6,
c-1
then lemma 12.6.5 can be used to define f on the simplex spanned by (py,, ..., p;,)-

In this way we get a map f : M — N by constructing it on each simplex as
just described. To see that it is continuous, we must check that the construction
agrees on common faces of simplices. But this follows as the construction is natural
with respect to restriction to faces of simplices. We need to estimate how good a
Hausdorff approximation f is. To this end, select x € M and suppose that it lies in
the face spanned by the vertices (p;,, . .., p;,) - Then we have

|-xf(x)| = |xpi0| + |piof(x)|
< 2e+ e+ |giy f()]
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<38+48+88'C'Cn_1
- Cc-1
B g c"—1
=Te+8-C- c_1

We can construct g : N — M in the same manner. This map will, of course, also

satisfy
c'—1
<T7e+8¢-C- .
lygwl = 7e + 8¢ C—1

It is now possible to estimate how close the compositions f o g and g o f are to the
identity maps on N and M, respectively, as follows:

yfogWl = lygWI+ 80 fogll
c"—1
<14 l6g-C- ;
< e+ 16¢ C—1
c"—1
[xgof(x)| < 14e + 16s-C- .
C—-1
As long as
"1
148+16£-C-C <4,
C—-1

we can then conclude that these compositions are homotopy equivalent to the
respective identity maps. In particular, the two spaces are homotopy equivalent. O

Note that as long as

n+l_1
14 16¢ - <34,
£+ & C—1

the two spaces are homotopy equivalent. Thus, ¢ depends in an explicit way on

= C:)/Sza and §. It is possible, in turn, to estimate « and § from n, k, v, and D. Thus
there is an explicit estimate for how close spaces must be to ensure that they are
homotopy equivalent. Given this explicit &, it is then possible, using our work from
section 11.1.4 to find an explicit estimate for the number of homotopy types.

To conclude, let us compare the three finiteness theorems by Cheeger, Gromoyv,
and Grove-Petersen. There are inclusions of classes of closed Riemannian n-
manifolds

. diam < D diam < D

diam < D
e > g2 Dyvol >vw Dyvol >vw
= sec > —k2 |sec| < k?
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with strengthening of conclusions from bounded Betti numbers to finitely many
homotopy types to compactness in the C!'* topology. In the special case of
nonnegative curvature Gromov'’s estimate actually doesn’t depend on the diameter,
thus yielding obstructions to the existence of such metrics on manifolds with
complicated topology. For the other two results the diameter bound is still necessary.
Consider for instance the family of lens spaces {S3 / Zp} with curvature = 1. Now
rescale these metrics so that they all have the same volume. Then we get a class
which contains infinitely many homotopy types and also satisfies

vol = v,
1 > sec > 0.

The family of lens spaces {S3 / Z,,} with curvature = 1 also shows that the lower
volume bound is necessary in both of these theorems.

Some further improvements are possible in the conclusion of the homotopy
finiteness result. Namely, one can strengthen the conclusion to state that the class
contains finitely many homeomorphism types. This was proved for n # 3 in [59]
and in a more general case in [85]. One can also prove many of the above results for
manifolds with certain types of integral curvature bounds, see for instance [91] and
[88]. The volume [54] also contains complete discussions of generalizations to the
case where one has merely Ricci curvature bounds.

12.7 Further Study

There are many texts that partially cover or expand the material in this chapter.
We wish to attract attention to the surveys by Grove in [51], by Abresch-Meyer,
Colding, Greene, and Zhu in [54], by Cheeger in [28], and by Karcher in [32]. The
most glaring omission from this chapter is probably that of the Abresch-Gromoll
theorem and other uses of the excess function. The above-mentioned articles by
Zhu and Cheeger cover this material quite well.

12.8 Exercises

EXERCISE 12.8.1. Let (M, g) be a closed simply connected positively curved
manifold. Show that if M contains a totally geodesic closed hypersurface, then M is
homeomorphic to a sphere. Hint: first show that the hypersurface is orientable, and
then show that the signed distance function to this hypersurface has only two critical
points - a maximum and a minimum. This also shows that it suffices to assume that
H' (M, Z,) = 0.
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EXERCISE 12.8.2. Let (M, g) be a complete noncompact manifold with sec > 0
and soul S C M.

(1) Show thatif X € TS and V € TS, then sec (X, V) = 0.

(2) Show that if the soul has codimension 1 and trivial normal bundle, then
M,g) = (S xR, gs + drz).

(3) Show that if the soul has codimension 1 and nontrivial normal bundle, then a
double cover splits as in (2).

EXERCISE 12.8.3. Show that the solution to

t=-(+e¢
£(0) =y (0) >0,
¢ (0) = ¥ (0) > 0.

is given by

; 2
¢@) = \/(1/,(0))2_’_ (‘ff)g) -sin(\/l+£-t+arctan<1p(01b'£g;+£))'

EXERCISE 12.8.4. Show that the converse of Toponogov’s theorem is also true.
In other words, if for some k the conclusion to Toponogov’s theorem holds when
hinges (or triangles) are compared to the same objects in S,%, then sec > k.

EXERCISE 12.8.5. Let (M, g) be a complete Riemannian manifold. Show that if all
sectional curvatures on B (p,2R) are > k, then Toponogov’s comparison theorem
holds for hinges and triangles in B (p, R).

EXERCISE 12.8.6. Let (M, g) be a complete Riemannian manifold with sec > k.
Consider f (x) = |xq| — |xp| and assume that both |xg| and |xp| are smooth at x.
Show that Toponogov’s theorem can be used to bound |Vf| |, from below in terms
of the distance from x to a segment from ¢ to p.

EXERCISE 12.8.7 (HEINTZE AND KARCHER). Let ¢ C (M, g) be a geodesic in a
Riemannian n-manifold with sec > —kZ. Let T (¢, R) be the normal tube around
c of radius R, i.e., the set of points in M that can be joined to ¢ by a segment
of length < R that is perpendicular to c¢. The last condition is superfluous when
c is a closed geodesic, but if it is a loop or a segment, then not all points in M
within distance R of ¢ will belong to this tube. On this tube introduce coordinates
(r,s,0), where r denotes the distance to c, s is the arclength parameter on ¢, and
6 = (6',...,0"?%) are spherical coordinates normal to c. These give adapted
coordinates for the distance r to c. Show that as r — 0 the metric looks like
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100---0 000---0
010---0 000---0

g =[000-0]foor-0f. 200
000---0 000---1

Using the lower sectional curvature bound, find an upper bound for the volume
density on this tube. Conclude that

volT (¢,R) <f (n,k,R,L(c)),

for some continuous function f* depending on dimension, lower curvature bound,
radius, and length of ¢. Moreover, as L (c) — 0, f — 0. Use this estimate to prove
lemmas 11.4.9 and 12.6.2. This shows that Toponogov’s theorem is not needed for
the latter result.

EXERCISE 12.8.8. Show that any vector bundle over a 2-sphere admits a complete
metric of nonnegative sectional curvature. Hint: You need to know something
about the classification of vector bundles over spheres. In this case k-dimensional
vector bundles are classified by homotopy classes of maps from S', the equator
of the 2-sphere, into SO (k) . This is the same as 7} (SO (k)), so there is only one
1-dimensional bundle, the 2-dimensional bundles are parametrized by Z, and for
k > 2 there are two k-dimensional bundles.

EXERCISE 12.8.9. Use Toponogov’s theorem to show that b, is convex when
sec > 0.
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for functions, 261
Connectedness Principle, 264

with symmetries, 324
Connectedness Theorem

for the energy functional, 262
Connection

affine, 55

along curves, 232

form, 111

of biinvariant metric, 113

on Euclidean space, 51

on Lie group, 72

representation in a frame, 111

Riemannian, 55
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Constant curvature, 83
global classification, 199
local characterization, 192
Contractions, 29
Convergence
of maps, Gromov-Hausdorff, 401
of pointed spaces, Gromov-Hausdorff, 401
of spaces, 414
Gromov-Hausdorff, 396
Hausdorff, 396
Convergence theorem
of Anderson, 429
of Cheeger-Gromoyv, 432
Convexity radius, 259
Coordinates
Cartesian, 51, 191
distance, 202
exponential, 189
harmonic, 409
normal at a point, 72, 227
polar, 15
Covariant derivative, 57
in parallel frame, 237
second, 61
Covering space, see Riemannian
Critical point estimate, 462
Critical point theory, 444
Curvature
Complex, 106
constant, 83
directional, 83,92
form, 112
fundamental equations, 90
in dimension 2, 86
in dimension 3, 86, 105
Isotropic, 106
of product metric, 104
operator, 83, 113,352,471
classification of > 0, 389
on symmetric spaces, 374
representation in a frame, 111
Ricci, 85,275, 426
in harmonic coordinates, 410
Riemannian, 78
scalar, 86, 352
sectional, 83, 113, 231, 443
Cut locus, 219

D
Derivative
Lie, 42
Dirac operator, 352
Directional derivative, 42

Index

Dirichlet problem, 409
Displacement function, 247
Distance function, 95,97, 178, 191, 192
Divergence, 73
divergence
of vector field, 49
Doubly warped products, 22

E
Eguchi-Hanson metric, 160
Einstein
constant, 86
metric, 86, 386
notation, 12
Einstein tensor, 105
Elliptic estimates, 408
Elliptic operators, 407
Energy functional, 182
Euclidean space, 2
curvature of, 82
isometry group, 8
Exponential map, 187
Lie group, 38
Exponential map comparison, 255
Extrinsic geometry, 97

F
Fibration, 226
Finiteness theorem
for diffeomorphism types, 424, 434
in positive curvature, 432
for fundamental groups, 294
for homotopy types, 480
Focal point, 102
Frame, 15
left-invariant, 15
normal at a point, 56, 72
Frankel’s theorem, 266, 270
Functional distance, 182
Fundamental equations
for curvature, 90
Fundamental theorem
of convergence theory, 421
of Riemannian geometry, 53

G

Gauss equation, 93, 104
Gauss lemma, 190
Geodesic, 171, 187, 190
Gradient, 42
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Grassmannian of Euclidean space, 8
compact of the sphere, 9
as a symmetric space, 377 Isothermal coordinates, 158
hyperbolic Isotropy group, 8
as a symmetric space, 379
J
H Jacobi field
Hadamard-Cartan theorem, 241 along a geodesic, 2'37
Harmonic function. 283 for a distance function, 98
Hessian, 48
Hessian comparison, 453
Hinge, 449 K
Hodge theorem 336 Kllhng ﬁeld, 51, 313, 314

Killing form, 39

Koszul formula, 54
Kulkarni-Nomizu product, 109
Kuratowski embedding, 400

Holonomy, 383

Holonomy classification, 388

Homogeneous space, 8
completeness, 221

k-point, 269
Hopf fibration, 5, 10, 23
Hopf problem, 320, 352,471 L

Laplacian, 49
coordinate representation, 74
in harmonic coordinates, 410
on forms, 335
Laplacian estimate, 284
Law of cosines, 451
Left-invariant
frame, 15
metric, 10
Length functional, 182
Length of curve
in metric space, 224
in Riemannian manifold, 176
Lichnerowicz formula, 352
Lie group, 10
biinvariant metric, 38
Index form, 271 geodesics, 175

Index Lemma, 271 geodesics of biinvariant metric, 225
Index notation, 31 Line, 298

Injectivity radius, 189 Local models. 441
Injectivity radius estimate ’
by Cheeger, 433

Hopf-Rinow theorem, 210
Hyperbolic space, 6
as rotationally symmetric surface, 18
as surface of revolution, 17
geodesics, 175
isometry group, 9
left-invariant metric, 141
Poincaré model, 135
Riemann’s model, 137
upper half plane model, 135
Hypersurface
in Euclidean space, 95

I

generalization of Cheeger’s lemma, 441 M
in general, 258 Manifold
in positive curvature, 260 Riemannian, 2
Inte'gra'ble system, 107 SU(2), 10, 143
Intrlnmg g‘eometr}./, 97 Maximum principle, 75, 280
Isometric immersion, 3 Metric
Isometry , ball, 177
distance preserving, 202 biinvariant, 38, 175,225, 311

Riemannian, 3
Isometry group, 8,316
Hyperbolic space, 9

as a symmetric space, 366, 383
coordinate representation, 14
distance, 176
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Metric (cont.)

Einstein, 86

frame representation, 15

functional, 182, 225

homogeneous, 8

Kihler, 76

Kihler, 362, 390, 393

left-invariant, 10

local representation, 14

on frame bundle, 273

on tangent bundle, 273

Riemannian, 2

rotationally symmetric, 18

computation of curvatures, 120

scalar flat, 122

Taylor expansion, 193, 227
Mixed curvature equation, 93
Myers’ diameter estimate, 251

N
Norm
™%, 406
for manifolds, 413
harmonic
for manifolds, 418
of tensors, 30
weak
for manifolds, 441
weighted
for manifolds, 440
Norm estimate
using distance functions, 434
using harmonic coordinates, 426
Normal curvature equation, 93

(0}

Obstructions
constant sectional curvature, 201
for negative sectional curvature, 241

for nonnegative sectional curvature, 469,

470
for positive curvature operator, 352
for positive Ricci curvature, 352
for positive scalar curvature, 352
for positive sectional curvature, 254
for Ricci flatness, 304

P
Parallel

tensor, 57

vector field, 76
Parallel curvature, 368

Parallel field
along curve, 236
for a distance function, 101
Partial derivatives
first, 166
second, 166
third, 233
Partials derivatives
and curvature, 234
Pinching theorem
for Ricci curvature, 437
for sectional curvature, 437
Precompactness theorem
for lower Ricci curvature bounds, 404
for spaces with bounded norm, 421
in Gromov-Hausdorft topology, 403
Preissmann’s Theorem, 247
Product
Cartesian, 32, 104
doubly warped, 22, 124
warped, 116
Product spheres
computations of curvatures, 117
Projective space
complex, 10, 26, 148
as a symmetric space, 380
computation of curvatures, 382
holonomy of, 393
quaternionic, 394
real, 12
Pseudo-Riemannian manifold, 5

Q
Quarter pinching, 106, 458

R
Radial curvature equation, 92
Rank, 367, 389
rigidity in nonpositive curvature, 389
Ray, 298
de Rham’s decomposition theorem, 384
Ricci equations, 105
Ricci Identity, 78
Riemannian
covering, 12,241
curvature tensor, 78
embedding, 3
immersion, 3
isometry, 3, 197
manifold, 2
metric, 2
submersion, 5, 144, 203, 226
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S
Scaling, 107
Schouten tensor, 109
Schur’s lemma, 87
Schwarzschild metric, 125
Second covariant derivative, 61
Second fundamental form, see Shape operator
Segment, 178, 190
characterization, 215
Segment domain, 216
Semi-Riemannian manifold, 5
Shape operator, 96
Slice Theorem
The, 204
Soul theorem, 462
Space form
rotationally symmetric, 20
Space Forms
Projective models, 222
Sphere, 3
as surface of revolution, 17
computation of curvatures, 117
doubly warped product, 22
geodesics on, 174
isometry group, 9
Sphere theorem
Berger, 263
Grove-Shiohama, 459
Rauch-Berger-Klingenberg, 264, 458
Spin manifolds, 352
Splitting theorem, 300
Subharmonic function, 281
Submetry, 203
Superharmonic function, 281
Surface
of revolution, 16
rotationally symmetric, 17

499

Symmetric space, 366, 370
computation of curvatures, 372
existence of isometries, 369

Symmetry Rank, 327

Synge’s lemma, 253

T
Tangential curvature equation, 93
Topology
manifold, 179
metric, 179
Toponogov comparison theorem, 450
Torus, 12, 32
Totally Geodesic, 198
Triangle, 449
Type change, 26

\'%
Variational field, 183
Variations, 183
First Variation Formula, 183
Second Variation Formula, 239
Volume comparison
absolute, 279
for cones, 311
relative, 279, 310
Volume form, 73

W
Warped product, 127
global characterization, 212
local characterization, 129
Weak second derivatives, 281
Weyl tensor, 110
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