
Chapter 12
Mixture Models: Latent Profile and Latent
Class Analysis

Daniel Oberski

Abstract Latent class analysis (LCA) and latent profile analysis (LPA) are
techniques that aim to recover hidden groups from observed data. They are simi-
lar to clustering techniques but more flexible because they are based on an explicit
model of the data, and allow you to account for the fact that the recovered groups
are uncertain. LCA and LPA are useful when you want to reduce a large number of
continuous (LPA) or categorical (LCA) variables to a few subgroups. They can also
help experimenters in situations where the treatment effect is different for different
people, but we do not know which people. This chapter explains how LPA and LCA
work, what assumptions are behind the techniques, and how you can use R to apply
them.

12.1 Introduction

Mixture modeling is the art of unscrambling eggs: it recovers hidden groups from
observed data. By making assumptions about what the hidden groups look like, it is
possible to get back at distributions within such groups, and to obtain the probability
that each person belongs to one of the groups. This is useful when:

• You measured one thing but were really interested in another. For example, how
students answer exam questions is indicative of whether or not they have mastered
the material, and how somebody you chat with online reacts to your messages is
indicative of them being human or a bot;

• You fit a model but suspect that it may work differently for different people, and
you are interested in how. For example, when designing the information given to
vistors of a birdwatching site, putting up signs with just the Latin names of birds
is helpful to some people and likely to annoy others. When investigating the effect
of putting up such signs it might be helpful to take this into account.
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Table 12.1 Names of different kinds of latent variable models

Observed Models for means Regression models

Latent Latent

Continuous Discrete Continuous Discrete

Continuous Factor analysis Latent profile
analysis

Random effects Regression
mixture

Discrete Item response
theory

Latent class
analysis

Logistic ran. eff. Logistic reg. mix.

• You have a lot of different variables—too many to handle and interpret—and
would like to reduce these to a few easily interpretable groups. This is often done
in marketing where such groups are called “segments”.

There aremany other uses of mixturemodeling—toomany to explain here. Suffice to
say that by understanding mixture modeling, you will make a start at understanding a
host of other statistical procedures that can be very useful, such as regression mixture
modeling, noncompliance in experiments, capture-recapture models, randomized
response, and many more. Moreover, mixture models are popular tools in computer
vision, such as face detection and hand gesture recognition (e.g., Yang and Ahuja
2001).While these applications go beyond the scope of this chapter, it may be helpful
to keep in mind that they are extensions of the models we discuss here.

Mixture modeling is a kind of latent variable modeling: it helps you to deal with
situations where some of the variables are unobserved. The specific thing about mix-
ture modeling is that is concerns latent variables that are discrete. You can think of
these as groups, “classes”, or “mixture components”—or as categories of an unob-
served nominal or ordinal variable. Depending on whether the observed variables
are continuous or categorical, mixture models have different names. These names,
together with the names of the other kinds of latent variable models, are shown in
Table12.1, in which the rows correspond to continuous or discrete observed vari-
ables, and the columns to continuous or discrete latent variables. The left part of
the table concerns models in which the groups are based on differences in means,
and the right part concerns models in which the groups are based on differences
in regression-type coefficients. The two types of models dealt with in this chapter
are indicated in bold: “latent profile analysis”, which tries to recover hidden groups
based on the means of continuous observed variables, and “latent class analysis”,
which does the same for categorical variables.1 Some of the other models in the table
are explained in other chapters.

A different name for latent profile analysis is “gaussian (finite) mixture model”
and a different name for latent class analysis is “binomial (finite) mixture model”.
Its Bayesian version is popular in the computer science literature as “latent Dirichlet
allocation”. Here we will stick to the terminology LCA/LPA, which is more common
in the social sciences.

1Confusingly, sometimes latent class analysis is used as a broader term for mixture models.
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Height (meters) Height (meters)
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Fig. 12.1 Peoples’ height. Left observed distribution. Right men and women separate, with the
total shown as a dotted line

12.2 Mixtures of Continuous Variables: Latent Profile
Analysis

For this chapter, I measured the height of every human being on the planet.2 I then
plotted the distribution of heights measured in Fig. 12.1 (right-hand side).

Interestingly, the height distribution on the left-hand side of Fig. 12.1 is clearly
not normal. It has two peaks that look like they might come from two groups. Now,
you may have happened to guess what these groups are: women and men. If I had
recorded each person’s sex, I could confirm this by creating my picture separately for
men and women, as shown on the right-hand side of Fig. 12.1. Women differ in their
height according to a normal distribution, as do men—it is just when you combine
the two that the non-normal picture emerges.

Unfortunately, I forgot to record peoples’ sex, and now it is too late. When you
performan experiment thismight happen to you too—or itmight havehappened to the
people who collected your data. For example, a usability test might omit peoples’
handedness. Even more commonly, you may need information that is difficult or
impossible to get at directly, such as an attitude, feeling, or socially desirable behavior.
In all of these cases you will be in a similar spot as I am with the height data: I think
there might be hidden groups, but I have not actually recorded them. Latent class
analysis is concerned precisely with recovering such hidden (“latent”) groups.

So how can we recover the picture on the right-hand side of Fig. 12.1? One idea is
to split the sample on someguess about peoples’ sex andmake histogramswithin each
guessed group. Unfortunately, it can be shown that this will never give the picture on
the right (McLachlan and Peel 2004, pp. 26–28). Without extra information, the only
way to get exactly that picture is to guess each person’s sex correctly, but the only
information I have to guess sex is height. And although a random man is likely to be
taller than a randomwoman, inevitably people like Siddiqa Parveen, who is currently
the world’s tallest woman, and Chandra Bahadur Dangi, the shortest man, will cause
me to count incorrectly, and create a picture that is at least slightly different from the
“true” one on the right.3

2This is not true, but the rest of the chapter is.
3Apparently, Ms. Parveen is 213.4cm and Mr. Dangi is 48.3cm.
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This is where mixture modeling comes to the rescue. Because it turns out that,
while we will never know each person’s sex for certain, we can still recover a picture
very close to that on the right-hand side of Fig. 12.1. So we can discover the distrib-
utions of height for men and women without ever having observed sex! Even more
astoundingly, as more and more data are gathered, we will more and more correctly
surmise what the distributions for men and women look like exactly.

There is a well-known saying that “there is no such thing as a free lunch”. I have
personally falsified this statement on several—sometimes delicious—occasions. But
while false in real life, inmathematics this statement is law.Wewill pay in unverifiable
assumptions—on this occasion the assumption that height is normally distributed for
men and women. This assumption is unverifiable from just the observed data because
the problem is exactly that we do not know sex. So when faced with data that produce
a picture like the one on the left-hand side of Fig. 12.1, wewill need to simply assume
that this picture was produced by mixing together two perfect normal distributions,
without us being able to check this assumption.

The corresponding mathematical model is

p(height) = Pr(man)Normal(μman, σman) + Pr(woman)Normal(μwoman, σwoman),

(12.1)
which I will write as

p(height) = π X
1 Normal(μ1, σ1) + (1 − π X

1 )Normal(μ2, σ2). (12.2)

So we see that the the probability curve for height is made up of the weighted sum
of two normal curves,4 which is exactly what the right-hand side of Fig. 12.1 shows.
There are two reasons forwritingπ X

1 instead of Pr(man): first, when fitting amixture
model, I can never be sure which of the “components” (classes) corresponds to which
sex. This is called the “label switching problem”. Actually, it is not really a problem,
but just means that X is a dummy variable that could be coded 1 = man, 2 = woman
or vice versa. The second reason is that by using a symbol such asπ X

1 , I am indicating
that this probability is an unknown parameter that I would like to estimate from the
data. Note that the superscript does not mean “to the power of” here, but is just means
“π X

1 is the probability that variable X takes on value 1”. Thisway ofwriting equations
to do with latent class analysis is very common in the literature and especially useful
with categorical data, as we will see in the next section.

Assuming that both men’s and women’s weights follow a normal distribution, the
problem is now to find the means and standard deviations of these distributions: the
within-class parameters (i.e.μ1,μ2, σ1, and σ2).5 The trick to doing that is in starting
with some initial starting guesses of the means and standard deviations. Based on
these guesses we will assign a posterior probability of being a man or woman to
each person. These posterior probabilities are then used to update our guess of the
within-class parameters, which, in turn are used to update the posteriors, and so

4As can be gleaned from the figures, by “normal curve” I mean the probability density function.
5We also need to know the proportion of men/women π X

1 but I will ignore that for the moment.
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Fig. 12.2 EM algorithm
estimating the distribution of
height for men and women
separately without knowing
peoples’ sex

Fig. 12.3 Tall woman or
short man? The probability
density of observing a person
1.7m tall is a weighted sum
of that for men and women
separately

on until nothing seems to change much anymore. This algorithm, the “expectation-
maximization” (EM) algorithm, is depicted inFig. 12.2. Theonline appendix contains
R code (simulation_height.R) that allows you to execute and play with this
algorithm.

How can the posterior probabilities be obtained (step 1), when the problem is
exactly that we do not know sex? This is where our unverifiable assumption comes
in. Suppose that my current guess for the means and standard deviations of men and
women is given by the curves in Fig. 12.3, and I observe that you are 1.7m tall. What
then is the posterior probability that you are a man? Figure12.3 illustrates that this
posterior is easy to calculate. The overall probability density of observing a person
of 1.7m is 2.86, which we have assumed (in Eq.12.2) is just the average of two
numbers: the height of the normal curve for men plus that for women. The picture
shows that a height of 1.7m is much more likely if you are a man than if you are a
woman. In fact, the posterior is simply the part of the vertical line that is made up
by the normal curve for men which is 2.20/(2.20 + 0.66) = 2.20/2.86 ≈ 0.77. So,
if all I know is that you are 1.7m tall, then given the current guess of normal curves
for men and women, the posterior probability that you are a man is about 0.77. Of
course, the posterior probability that you are a woman is then just 1 − 0.77 = 0.23,
since both probabilities sum to one.

Now for step (2) in Fig. 12.2. I apply my earlier idea: guess people’s gender, and
then count their height towards men’s or women’s means and standard deviations,
depending on the guess. Recognizing that I am not 100% certain about any one
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person’s sex, however, instead of guessing “man” or “woman”, I will use the posterior
probabilities. For example, if a 1.7m-tall person has a 0.77 posterior chance of being
a man and (therefore) a 0.23 chance of being a woman, I will add (0.77)(1.7) to my
estimate of the mean of men but also (0.23)(1.7) to that for women. So each person’s
observed value contributes mostly to the mean of the sex I guessed for them but also
some to the other sex, depending on how strongly I believe they are a man or woman.
If I have no idea whether a person is man or woman, that is, when the probability is
0.50:0.50, the height contributes equally to the guessedmeans of both. InFig. 12.3 this
occurs where the two curves cross, at about 1.65. By using the posterior probabilities
as weights, I obtain new guesses for the means and standard deviations, which allow
me to go back to step (1) and update the posteriors until convergence. Note that
whereas earlier in the section this idea of guessing then calculating would not work,
the assumptions allow me to get the posterior probabilities necessary to perform this
step.

This section has shown how you might recover hidden groups from observed
continuous data. By making assumptions about what the hidden groups look like, it
is possible to get back at distributions within such groups, and to obtain a posterior
probability that each person belongs to one of the groups. There are several software
packages that can do latent profile analysis, including Mplus (Muthén and Muthén
2007) and Latent GOLD (Vermunt and Magidson 2013a). In R, this model could be
fitted using the mclust library (Fraley and Raftery 1999):

library(mclust)

height_fit_mclust <- Mclust(height)

summary(height_fit_mclust, parameters = TRUE)

As mentioned above, you can play with this example using the online appendix
(simulation_height.R).

With just one variable, we needed to pay a hefty price for this wonderful result:
an unverifiable assumption. It is possible to do better by incorporating more than one
variable at the same time; for example, not just height but also estrogen level. Both
are imperfect indicators of sex but using them together allows me to guess the hidden
group better. The next section gives an example of modeling with several categorical
variables.

12.3 Mixtures of Categorical Variables: Latent Class
Analysis

Latent class analysis (LCA) is similar to latent profile analysis: it also tries to recover
hidden groups. The difference, as you can see in Table12.1, is that LCA deals with
categorical observed variables. Another difference between LCA and LPA is that
no specific distribution is assumed for the variables: each of the observed variables’
categories has an unknown probability of being selected without this probability
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following any particular functional form. But by retracting our assumption, we also
retract the necessary payment to buy the possibility of estimating latent classes. In
LCA, this payment is made, not by assuming that the variables are distributed in any
particular way, but by assuming that within each class, the observed variables are
unrelated to each other. This assumption is called “local independence”, and tends
to create classes in which the observations are similar to each other but different from
those in other classes.

Typically, the researcher (1) determines the “best” number of latent classes K
that sufficiently explain the observed data; and (2) summarizes the results. At times,
researchers are also interested in (3) relating the most likely class membership to
some external variables not used in the model. When performing this last task, how-
ever, the researcher should be very careful to account for the uncertainty in each
observation’s class membership: failure to do so will result in biased estimates of the
class membership prediction. Modeling class membership while accounting for the
uncertainty about it is called “three-step modeling” in the literature, and can be done
in certain software packages such asMplus and Latent GOLD. Formore information,
see Bakk et al. (2013).

Suppose there are three observed variables A, B, and C , all three categorical
with six categories. The model for traditional latent class analysis is then typically
written as

π ABC
abc =

∑

x

π X
x π A|X

a π
B|X
b πC |X

c , (12.3)

where X is the latent class variable, π X
x the size of class x and, for example, π A|X

a is
the probability that variable A takes on the value a in the latent class x . Equation12.3
describes the probability of seeing any combination of values a, b, and c as depend-
ing solely on the differences in latent class sizes (π X

x ) combined with how different
these classes are in terms of the observed variables. Within the classes, the vari-
ables are unrelated (“conditionally independent”), which is reflected in the product
π

A|X
a π

B|X
b π

C |X
c .

Let’s apply LCA as an exploratory technique to the SuSScale example data with
3 time points. As a reminder, some example answers to the 10 questions in the
questionnaire are shown in Table12.2. These 10 variables are moderately related

Table 12.2 Example data from the SUS questionnaire

Time V01 V02 V03 V04 V05 V06 V07 V08 V09 V10

1 1 4 3 5 4 3 4 3 2 2 3

87 2 4 5 3 5 5 5 5 4 5 5

173 3 3 3 2 4 3 2 3 2 2 3

2 1 3 2 3 3 3 3 4 3 3 2

… … … … … … … … … … … …
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Table 12.3 Fit of the latent class models with increasing numbers of classes

# Classes Log-likelihood AIC BIC

1 –3753.32 7614.64 7806.50

2 –3441.70 7103.39 7494.22

3 –3327.72 6987.45 7577.24

4 –3245.73 6935.46 7724.22

The lowest AIC and BIC are shown in boldface

with an average correlation of 0.4. Our goal is to find K classes such that these
relationships are small within the classes, where we still need to find out the best
number of classes K .

Because the data are categorical, we apply a latent class model for polytomous
variables to the 258 observations. This is done using the poLCA package in R (Linzer
and Lewis 2011; Core Team 2012):

library(poLCA)

f <- as.matrix(dplyr::select(scale, starts_with("V")))˜Time

M4 <- poLCA(f, scale, nclass=4, nrep=50)

Here, the first command loads the library; the second command constructs an R
formula with all of the observed indicators (variables that measure the class member-
ship) V01–V10 on the left-hand side, and the covariate Time on the right-hand side
to control for any time effects. The last command fits the model with four classes.
The nrep=50 argument tells poLCA to try out 50 different starting values so that
we are certain that the best solution has been found. This is always recommended
when performing latent class analysis.

We fit the model for a successively increasing number of classes, up to four:
K = {1, 2, 3, 4}. With one class, the model in Eq.12.3 simply says the variables are
independent. Obviously if this one-class model fits the data well we are done already
since there are no relationships between the variables in that case. The first order
of business is therefore to evaluate how well the latent class models with different
numbers of classes fit the data and to select one of them. There are many measures
of model fit, the most common ones being the AIC (“Akaike information criterion”)
and BIC (“Bayesian information criterion”). These are shown for our four models in
Table12.3.

In Table12.3, lower values of the fit measures are better. The best model appears
to be the four-class model. We therefore pick that model as our preferred solution.
This procedure of choosing the lowest BIC is the most used in LCA. However, this
is an exploratory method: just as in exploratory factor analysis, it is therefore often
also possible to pick a lower or a higher number of classes based on substantive
concerns or ease of interpretation. We might only be interested in finding a small
number of broad classes, for instance, and ignore any remaining distinctions within
these classes (Fig. 12.4).
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Fig. 12.4 Output of poLCA
for the four-class model
showing the estimated
distribution of the ten
observed variables V01–V10
within each of the four
classes. The profile plot is
easier to read
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Class 3: population share = 0.28
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Class 4: population share = 0.228
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With the argument graphs=TRUE, poLCA produces graphs that show the esti-
mated distributions of the observed variables in each latent class. These graphs can
be very useful with fewer variables of nominal measurement level, but with ten vari-
ables having six categories each, this output is rather hard to read. Instead, I created
a so-called “profile plot” for these variables in Fig. 12.5, which displays the esti-
mated class means instead of their entire distribution. This plot is usually reserved
for continuous variables, but with our six-point ordinal variables it still makes sense
to display their means.

Figure12.5 shows the profile plots for all four fitted models. In a profile plot, there
is one line for each class. The lines represent the estimated mean of the observed
variable on the x-axis within that class. So the profile plot for the two-class solution
shows that the two classes separate peoplewho give high scores on all of the questions
(class 2) from people who give low scores on all of them (class 1). Note that the class
numbers or “labels” are arbitrary. In the three-class solution, there is also a class
with low scores on all of the variables (class 1). The other two classes both have
high scores on the first five variables but are different from each other regarding the
last five variables: class 2 also has high scores on these whereas class 3 has low
scores. The four-class solution, finally, has “overall high” (class 2) and “overall low”
(class 3) classes, as well as “V01–V05 but not V06–V10” (class 4) and its opposite
(class 1).
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Fig. 12.5 “Profile plot”: estimated means of the 10 observed variables in the SuSScale data within
each of the K classes for K = {1, 2, 3, 4}

Although the four-class solution is the “best” solution, this does not necessarily
mean that it is a good solution. In particular, if our local independence model is
to provide an adequate explanation of the observed data, the relationships between
the indicators after controlling for class membership should be small. An intuitive
way of thinking about this is that the scatterplot between two indicators should
show a relationship before conditioning on the class membership, but none after this
conditioning.

Figure12.6 demonstrates thiswith two example indicators, V01 andV10. Tomake
the points easier to see in the figure they have been “jittered” (moved a bit). The top
part of Fig. 12.6 is simply a scatterplot of V01 and V10 over all 258 observations.
The shape of the points here corresponds to the most likely class membership of that
point. For example, the upper-rightmost point is a triangle to indicate that its most
likely class is the “overall high” class (class 2). It can be seen that there is a moderate
relationship between these two indicators before accounting for the classes, with a
linear correlation of 0.30. The bottom part of Fig. 12.6 splits up the same scatterplot
by class, so that each graph contains only points with a particular shape. It can be
seen that within each of the classes the relationship is almost non-existent. This
is exactly what conditional independence means. Therefore the model fits well to
the data for these two indicators. Graphs like Fig. 12.6 only make sense when the
observed score (1–6 in our case) is approximately of interval level. For nominal
variables, a different kind of fit measure is therefore necessary. One such measure is
the “bivariate residual” (BVR), the chi-square in the residual cross-table between two
indicators. At the time of writing, the BVR is not available in R but can be obtained
from commercial software such as Latent GOLD (Vermunt and Magidson 2013b).
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Fig. 12.6 Top graph the data with observed correlation 0.30 are modeled as a “mixture” of four
classes (circles, triangles, pluses, and crosses). Bottom graph these classes are chosen such that the
correlation between the variables is minimal within them

In this example we applied LCA as an exploratory method to artificial data that
were generated according to a linear factor model. The profiles then recuperate the
generated structure. In real data, there will often be additional classes. For example,
if some respondents tend to use the extreme points of a scale (“extreme response
style”) while others use the whole scale, this will lead to an additional class in which
the extremes are more likely to be chosen. Because this is a nonlinear effect, such a
finding is not possible with linear models such as factor analysis.

12.4 Other Uses of Latent Class/Profile Analysis

While the traditional use of LCA/LPA is as an exploratory technique, latent class
models can also be seen as a very general kind of latent variable modeling. Latent
class models are then a type of structural equation modeling, factor analysis, or
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random effects (hierarchical/multilevel) modeling in which the latent variable is
discrete rather than continuous (Skrondal and Rabe-Hesketh 2004). The advantage
of a discrete latent variable is that the distribution of the latent variable is estimated
from the data rather than assumed to have some parametric form, such as a normal
distribution. Hence, several special cases of latent class models are sometimes called
“nonparametric”. The term “nonparametric” here does not mean that there are no
parameters or assumptions; rather, it means that the distribution of the latent variables
is estimated. In fact, the relaxation of assumptions about the distribution of the latent
variables usually means that there are more parameters to estimate, and that some
of the assumptions, such as local independence rather than just uncorrelatedness,
become necessary to identify parts of the model.

Mixture models are also useful for analyzing experimental data. For example,
when the effect of the treatment is thought to be different in different groups, but
these groups are not directly observed: in this case “regression mixture modeling”
can be used. In R, the flexmix package (Gruen et al. 2013) is especially useful for
regression mixture modeling.

Another situation that often occurs in randomized experiments with people is that
the people do not do what they are supposed to do. For example, a patient assigned to
take a pill might neglect taking it, or a person receiving different versions of a website
based on cookies might have blocking software installed that prevents the assigned
version from coming up. When participants do not follow the randomly assigned
treatment regime, this is called “noncompliance”. For people in the treatment group,
we can often seewhether they did or did not actually receive the treatment. But simply
deleting the other subjects would break the randomization, causing a selection effect.
Therefore these people should be compared, not with the entire group of controls, but
with a hidden subgroup of controls who would have taken the treatment if they had
been assigned to it. The fact that we cannot observe this hypothetical hidden group
leads to a latent class (mixture) model, and methods to deal with noncompliance
in randomized experiments are special cases of the models discussed here. The
Latent GOLD software contains several examples demonstrating how to deal with
noncompliance. In R, a package containing some basic noncompliance functionality
is experiment (Imai 2013).

12.5 Further References

An accessible and short introduction to latent class analysis and its variations is given
by Vermunt and Magidson (2004). More background information and details on the
various types of models that can be fitted is found in Hagenaars and McCutcheon
(2002). A comprehensive introduction-level textbook is Collins and Lanza (2013).
The manuals and examples of software that can fit these models, especially Mplus
and Latent GOLD, are another great source of information. Some examples of appli-
cations of LCAandLPA to human-computer interaction areNagygyörgy et al. (2013)
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and Hussain et al. (2015). For an application to computer detection of human skin
color, see Yang and Ahuja (2001, Chap. 4).
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