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Foreword

Lies, damned lies, and statistics.
Attributed to Benjamin Disraeli by Mark Twain

It is easy to lie with statistics, it is even easier to lie without them.
Attributed to Frederick Mosteller

These two popular quotes vividly capture the necessity and misuse of statistical
methods in research and argumentation in general. HCI is no exception.

The goal of the human–computer interaction field is to invent, design, develop,
and understand effective means to delight users of computing devices, apps, and
services. But unlike typical engineering and computer science problem solving, the
solutions we devise in HCI rarely have a simple and deterministic measure of
efficacy. Any measure we come up with, such as the usual time to completion, error
rate, learning speed, subjective preference and ratings, tends to vary from trial to
trial, task to task, and one individual user to another. Statistics, the art of making
sense of fluctuating data, is a common method, among others, of moving our
research, design or invention beyond a personal belief.

Most HCI researchers, particularly those coming from computer science and
engineering backgrounds, did not usually have formal training in statistics. Even
those who do often also struggle with deciding on the most appropriate statistical
models, tests, data processing techniques, and software tools for each project
because the underlying logic, assumptions and exceptions of each statistical method
are complex and often debated by specialists. Statistical issues are often contentious
in HCI publications. Paper reviewers often take issue with sample size, power,
model assumption such as normality, and the statistical tests used. The reviewers’
criticism of statistical methods often frustrates authors who follow other published
papers on the same subject. Often neither the reviewers nor the authors have enough
training in statistical methods to debate the chosen method’s validity to a con-
vincing level. Even if they do, research results, paper writing, and reviewing are just
not the right forum for statistical method discussion.

Furthermore, even if one rigorously followed all the classical inferential statis-
tics, the research conclusion and its reliability may still not mean the same to
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everyone. Ever since null hypothesis significance testing (NHST) became the
dominant quantitative research method, its validity has been regularly questioned
and challenged in empirical sciences such as experimental psychology. In recent
years, such criticisms, and the advocacy toward alternative methods, particularly
Bayesian methods, intensified in many fields. Resorting to simple descriptive
statistics from larger samples, one psychology journal recently banned inferential
statistics all together. However, no other journals have taken such an extreme
position.

Unhappy with how statistics were interpreted and practiced in HCI Maurits
Kaptein and Judy Robertson took their discussion formally by publishing their CHI
2012 paper “Rethinking statistical analysis methods for CHI.” The paper drew great
interest from researchers like me who are interested in and frequently apply sta-
tistical methods in our research, invention, product design, and development work.
Knowing one conference paper is not enough, Judy and Maurits decided to take the
subject to the next level, first by writing a journal paper. As the editor-in-chief of
ACM Transactions On Computer-Human Interaction at the time, I ran an extensive
board discussion of their journal submission. Many of my esteemed associate
editors are enthusiastic and knowledgeable about the topic. Their views, however,
are as varied as in the field. Some think most of what Judy and Maurits recom-
mended was what they already taught their students. Some think science by nature
is very much driven by community culture or prevailing norms. Some think criti-
cisms of NHST are cyclic and may fade away once again. Most agree with the spirit
of the Bayesian approach because it allows knowledge and hypothesis to be
updated and improved with each new experiment, but they also acknowledge in
practice the first novel study of a specific idea, design, or UI method, is always most
valued. Subsequent studies which can give stronger Bayesian analysis benefiting
from a prior estimated from the previous studies are less valued by academics and
hence rare. There are also HCI researchers who do not think statistics are worth-
while and believe their best work did not rely on or use statistics at all. But none
denied the need to educate the field to a much comprehensive level of under-
standing and practice of statistics in HCI. Several associate editors spontaneously
suggested a book presenting the best practices of statistical methods from more than
one school of thought. Everyone loved the idea of having such a book for their
teaching and research. Having also served on the editorial board of Springer’s HCI
book series since its beginning, I knew academic publishers like Springer would
welcome such a book proposal.

But having a wish or desire is easy. Many others in HCI have wished such a
book, but they could not devote the large amount of time required to prepare, write,
or edit such a book. Fortunately, Judy and Maurits did it, and they did a remarkable
job. They reached out to an impressive set of knowledgeable authors in and outside
the HCI field with different approaches and background in researching and prac-
ticing statistics. Judy and Maurits gave them a common set of hypothetical HCI
data that researchers could easily relate to. The common dataset also allowed
different statistical approaches be compared and contrasted. Judy and Maurits also
wrote introductions to each section of the book, and multiple chapters of their own.
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So finally, the HCI field has a comprehensive statistical methods book of its own
for researchers and students. It may not resolve many of the explicit or implicit
debates in statistical methods. Instead, the book supports a less rigid, procedural
view of statistics in favor of “fair statistical communication.” The book should
become a common reference for empirical HCI research. Those who are interested
in even deeper understanding of a particular statistical method can follow many
of the references in the end of each chapter. I will certainly keep the book among
the most reachable books on my shelf.

December 2015 Shumin Zhai
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Preface

For those of us who are passionately interested in research, the methods we use are
at least as important as our findings. We need to have confidence that our quan-
titative methods give us more than just an illusion of rigor; they should provide
genuine insight into the problems which interest us. This book is a tool to assist
researchers in making sense of their quantitative data without confusion, bias, or
arbitrary conventions.

A few years ago we wrote a critical examination of statistical practice in
Human–Computer Interaction which was presented at CHI 2012. Due to the lively
discussions that surfaced at the conference, we thought there was more to “statis-
tical methods in HCI” than could be conveyed through a conference paper. Initially,
we set out to work on a journal paper which would both examine current practice,
as well as introduce a number of statistical methods that are not covered in intro-
ductory research methods and statistics lectures but could, in our view, strengthen
the field. The article then became lengthy, and we really wanted it to be hands-on. It
spiraled out of control: we started involving both experts in different methods, as
well as users of “a-typical” methods in HCI, and discussed their possible contri-
butions to the article. Hence, mid 2014, we decided, in collaboration with Springer,
to turn our article into a book. And here it is.

About the Authors

We confess to the reader at the outset that our own statistical practices are not
perfect. In fact, over the years, both of us have committed about all of the potential
errors identified in this volume (and they are there in the literature for you to sorrow
over). These less than perfect analyses stem from ignorance of the pitfalls of null
hypothesis significance testing—honestly!—rather than an intention to deceive the
reading public. On occasion however, we have consciously used “traditional”
methods rather than their more recent counterparts in order to tailor the analyses to
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the reviewers’ expectations. It would be better for our field if authors didn’t have to
do this. You can help by leaving your copy of this book on coffee tables in HCI
conference venues, with Part V of Chap. 14 helpfully highlighted.

Maurits

I am a social scientist and researcher primarily interested in persuasion, quantitative
research methods, and optimal design. After doing my master’s in (economic-)
Psychology at the University of Tilburg, and doing a post-master program in User–
System Interaction at the Eindhoven University of Technology, I received my Ph.D.
with honors from the Eindhoven University of Technology, Eindhoven, the
Netherlands. Next, I worked as a postdoctoral researcher at the Aalto school of
Economics, Aalto, Finland. Afterwards, I worked for 2 years as assistant professor
of Statistics and Research Methods at the University of Tilburg. During my Ph.D.
I also worked as a research scientist at Philips Research, Eindhoven, the
Netherlands and as a distinguished visiting scholar at the CHIMe lab of Stanford
University, Stanford CA, USA.

Currently I am assistant professor in Artificial Intelligence (AI) at the Radboud
University Nijmegen. Also, I am the track leader of a master track called “Web and
Language.” I (amongst other courses) teach a course on AI techniques on the web
called “AI at the Webscale.” You can find the website of the research lab that I run
right here: www.nth-iteration.com.

At the end of 2012 my first “popular” (Dutch) book called “Digitale Verleiding”
which, since 2015 ̇, is also available in English under the name “Persuasion
Profiling” was released. I am also a founder of PersuasionAPI, “pioneers in per-
suasion profiling” (see www.sciencerockstars.com). The company is now owned by
Webpower b.v.

My prime research interest are:

• Persuasive technologies. I focus on the real-time adaptation of the use of distinct
persuasive principles in interactive technologies.

• Research methods. I study both parametric and non-parametric statistical
methods, hierarchical models, and time-series.

• Online/streaming learning. I work quite a bit on how to fit hierarchical models
online.

• Bandit problems. I have worked on policies for multi-armed bandit problems.
• Dynamic Adaptation. I have been involved in several attempts to model, in

real-time, consumer behavior and adapt e-commerce attempts accordingly.

Obviously, my interest in research methods drove me to start editing this book.
I have, throughout my studies and work, been interested in quantitative methods in
diverse fields, ranging from social science, to computer science, to physics and

x Preface

http://dx.doi.org/10.1007/978-3-319-26633-6_14
https://www.nth-iteration.com
https://www.sciencerockstars.com


engineering. And, I think the social sciences can broaden their views on their
methods by looking around, and by keeping a close eye to modern developments. In
this book we are trying to alert readers to methods that they might not have covered
in their introductory stats course, but which are of use for their research and practice.

Judy

I am a computer scientist by training, although I am now a professor in the School of
Education at the University of Edinburgh. I managed to graduate from two uni-
versity degrees without ever taking a course in statistics; everything I know about
statistics is self-taught. This is why I ended wandering down the path of editing this
book—I kept innocently searching for answers to questions which should have been
simple but weren’t (such as “how do you analyse Likert data?”). It’s quite easy to fall
down a statistical rabbit hole if you don’t start with the “traditional” knowledge
about which statistical techniques to use in particular cases. I first became aware that
null hypothesis significance testing (NHST) was a crumbling edifice when I listened
to a podcast interview with Eric-Jan Wagenmakers who used Bayesian methods to
demonstrate why experimental results from a series of PSI studies were flawed.
While mildly disappointed that PSI doesn’t really exist, I had a new rabbit hole to
explore. But although I understood the criticisms of NHST and was interested to try
new analytic techniques, I couldn’t find many examples of such analyses in the HCI
literature. I teamed up with Maurits, and we set out to draw together a book that
would help other HCI researchers like me to apply appropriate statistical techniques
to the sort of research problems we encounter daily. This is the book I wish I had
beside me when struggling with countless analyses. I can attest to the fact it is useful:
since getting initial chapter drafts from the authors, I have referred to them on many
occasions already. I hope it is useful to you too.

Who Is This Book For?

This book is for Human−Computer Interaction (HCI) researchers who want to get
better at making sense of quantitative data in a rigorous and thoughtful way. It aims
both to critically reflect on current statistical methods used in HCI, and to introduce
a number of novel methods to the HCI audience. Throughout the book HCI
examples are used. However, we sincerely hope the book will be of use to a wider
audience: this book, as far as we know, is one of the first attempts to bundle
together non-introductory-course methods in a critical yet usable fashion.

It is not an introductory textbook—we assume you have a basic grasp of
probability and commonly used NHST techniques such as t-tests, analysis of
variance, and regression. We also assume that you have enough of a background in
programing (or motivation to learn it) not to be intimidated by [R] code.
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The Structure of the Book

The book opens with our own introduction which explains why the statistical
methods we choose matter so much, and how researchers in other fields have
moved away from blind reliance on the familiar null hypothesis significance testing
(NHST) framework. It identifies some of the most common misunderstandings
about NHST and often encountered misapplications of these methods. These
themes are picked up again in the discussion Chaps. 13 and 14 at the end of the
book.

In Part I (Getting Started With Data Analysis), the authors introduce the [R]
environment (Chap. 2), explain how to visualize data to gain an intuitive under-
standing of your dataset before embarking on further analysis, and to illustrate your
argument clearly in publications (Chap. 3). In the initial stages of the analysis, it is
sensible to consider what to do about missing data—Chap. 4 explains how. Hint:
you will always have more missing data than you expect and the solution is not to
sweep it under the carpet.

Part II (Classical Null Hypothesis Significance Testing Done Properly) takes the
pragmatic view that as many researchers will continue to use NHST, we might as
well focus on applying such methods correctly and them interpreting them mean-
ingfully. The issues of effect size and power are discussed in Chap. 5, highlighting
the inconvenient truth that you generally need more participants than you want to
find and that the size of an effect is more useful for interpreting the real-world
significance of your results than a gloriously small p-value. Chapter 6 covers
techniques for handling time with repeated measures analysis of variance and event
history analysis. The importance of checking the assumptions underlying the tests
you employ is emphasized in Chap. 7, along with a useful guide to the appropriate
use of non-parametric tests.

We venture into the world of Bayesian Inference in Part III. Chapter 8 introduces
the concepts of Bayesian reasoning and how they can be usefully applied to help us
interpret data, while Chap. 9 illustrates how to quantify the strength of evidence for
multiple competing hypotheses. This will equip you with the tools to weigh up the
merits of alternative substantive hypotheses rather than examining the rather weak
and watery hypothesis that the means of two groups are identical.

In Part IV we address some techniques for Advanced Modeling in HCI. Chapter
10 introduces latent variable analysis and structural equation modeling which can
be used to infer properties of variables which cannot be directly measured. Chapter
11 discusses generalized linear mixed models, link functions and how to deal with
data with a nested structure. In Chap. 12, techniques for latent class analysis and
mixture models are explained with running examples.

Part V is a reflection on Improving Statistical Practice in HCI. Chapter 13 is a
clear and well-argued call to use estimation methods to support fair statistical
communication. The author offers many tips that researchers can follow to improve
the clarity of their reporting. The concluding chapter by the editors draws together
the chapters in the book and how the techniques presented here—and other novel
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techniques which we did not have the space to cover—could address some of the
problems pervading the use of statistical methods in social sciences. To allay any
doubts of those who believe that HCI is immune to the methodological failings of
other fields, we critically analyze the methods used in eight case studies of top cited
quantitative studies in our field. We consider changing attitudes to quantitative
methods in HCI and conclude with some recommendations for authors, reviewers,
and journal editors which we hope will help in improving the clarity and fairness of
statistical reporting in our field.

The Sample Dataset: The Mango Watch

We decided that it would be helpful to have running examples relating to HCI, as
presently this is hard to find in the literature. A shared dataset would provide some
continuity between chapters and a link to topics of interest to HCI researchers. We
were unable to find an open-source dataset which suited this purpose, so we provide
a simulated dataset from the following hypothetical scenario:

A company has recently invested in smart watches (known as the Mango) for all sales
executives. They have tasked the world famous UX expert Professor Houdini and his team
to evaluate the impact of the Mango on productivity among the sales staff. They firmly
believe that having email on one’s wrist1will cause faster response times to customers, and
therefore more sales. The professor, at long last unfettered by constraints on resources
imposed by measly academic research grants, has come up with the following data col-
lection plan.

Data will be collected for Sales Team A over a period of 3 months after the introduction of
Mangos. Control data will be collected from members of Sales Team B over the same
period—this group will not yet be equipped with Mangos. However, they will receive their
Mangos in month 4, giving the researchers both between subjects (A compared to B) and
within subjects (pre-Mango B compared to post-Mango B) data.

The measures used are:

• A 7 point SUS-like usability scale about experience of using Mango (ordinal).
• Average response time to answer customer emails (ratio/interval).
• Sales Team A and B staff are distributed over several geographical regions:
• Sales Team A: Aachen, Abik, Aberdeen,
• Sales Team B: Babol, Bakersfield, Barrie.

More details of the [R] code which generated the dataset can be found in the
supplementary materials to Chap. 2. You will find that the chapter authors have
extended and changed the scenario to better illustrate their techniques. For most
of the chapters online supplements are available (http://extras.springer.com). If the
authors deviate from, or extend the initial Mango watch dataset they either use [R]
code—presented in the chapter text—to generate their data, or their datasets are

1It is company policy that Mangos must be worn at all times, even in bed.
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available in the supplementary materials. As the code generates the data randomly,
the data sets used by different authors will differ.2 For this reason, we don’t rec-
ommend trying to make sense of the experimental findings across chapters. Sadly,
this book will tell you nothing of value about the impact of fruit-based smart
watches on the performance of sales executives. However, the Mango watch sce-
nario does offer a context that is shared between all chapters which saves the
authors the effort (and space) to introduce novel settings. Needless to say, the
editors remain open to funding offers from such companies who do wish to
investigate fruit-based smart watch performance.

Our Approach

We chose to use [R] as the language for conducting the analyses in the book
because it a widely used, free, open-source platform which evolves fast enough to
keep up with new techniques as they emerge. We realize that [R] will introduce a
learning curve for some readers (but in Judy’s recent personal experience it is worth
investing the time to make the switch from a graphical package). We have asked the
chapter authors to explain the statistical concepts in plain language, and to introduce
the supporting mathematics where necessary. You will find the finer mathematical
details in footnotes from time to time, in places where Maurits’ mathematical
conscience has been sufficiently troubled. Above all, the authors have made a real
effort throughout to help the reader to interpret the numerical results in the context
of a research problem, as you will need to do yourself when making sense of your
data for publication.

This book might be disappointing for some of you: in many ways the book will
lead to more questions than answers. However, this is inherent in our subject: there
is no single best method to use to analyze your data. Many methods could be
considered, tried, and possibly combined. You may notice that the authors con-
tradict each other from time to time, and that different analytical techniques lead to
quite different interpretations of the data. This is a wider point of the book: we must
choose the techniques we use wisely, and report it wisely so that other researchers
in the future are aware of our assumptions and are informed to make their own
interpretations.

It will become obvious as you read through the volume that the method of
analysis really does matter. The decisions made by the analyst make a difference to
the results and how they are interpreted. Interpreting quantitative data is more prone
to subjectivity than you might think. It is better to acknowledge this fact and deal
with it sensibly, than to hide it in a clutter of procedural use of “accepted” statistical
methods.

2Some authors explicitly mention their seeds for reproducibility. Others provide their dataset in the
supplementary materials.
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Chapter 1
An Introduction to Modern Statistical
Methods in HCI

Judy Robertson and Maurits Kaptein

Abstract This chapter explains why we think statistical methodology matters so
much to the HCI community and why we should attempt to improve it. It introduces
some flaws in the well-accepted methodology of Null Hypothesis Significance Test-
ing and briefly introduces some alternatives. Throughout the bookwe aim to critically
evaluate current practices in HCI and support a less rigid, procedural view of sta-
tistics in favour of “fair statistical communication”. Each chapter provides scholars
and practitioners with the methods and tools to do so.

1.1 Introduction

Why do statistical methods matter in the first place? Is it just dry academic pedantry
about obscure statistics? The premise behind this book is that methodology—
however dry it might seem—matters. The quality of our experimental design(s),
statistical analysis and reporting makes all the difference to what we collectively
believe about the design and use of interfaces. Statistics and quantitative research
methods often fuel our understanding of how humans interact with computers. Mis-
use of statistics enables us to delude ourselves now and confuse our colleagues in
the future, thus wasting resources in pursuing fruitless areas of research. Erroneous
interpretations of collected data risk some of the most important conclusions in the
field andmisinform future research efforts. A combination of lack of statistical power
through small sample sizes, and inattention to the consequences of multiple compar-
isons can lead tomisleading conclusions that are almost impossible to interpret. And,
even if the research findings in a published paper are true, because of the general
lack of effect size reporting, we do not tend to address the question of how much
of a difference they actually make. Papers within the field often report whether an
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effect exists instead of examining the magnitude and real-world importance of the
effect. These latter issues have fuelled arguments by qualitative researchers that HCI
work can hardly be examined quantitatively (Cf. Seaman 1999). This however is
a lack in our own analysis and reporting of quantitative experiments, rather than a
consequence of experiments or other quantitative methods per se.

Colleagues within the community may argue—correctly—that there is more to
HCI than quantitative methods. They may make the case that it is an engineering
field, focussed on building applications which meet users’ needs. Some practitioners
might prefer to focus on design and aesthetics, considering their work to be more
artistic than scientific. Others chose to focus on qualitative methods since aspects of
our field are too complex to meaningfully be captured in quantitative experiments.
These are all valid view-points. Our view here is however that quantitative methods
currently do have an important place in HCI research, and that we should examine
whether we as a field are using these methods appropriately. If not, there needs to be
a discussion about how we will address this problem. Can we improve our practice?
This question is relevant even if quantitative methods are only a part of our practice.
And, if so, what is the best approach to doing so? Or should we even give up on
statistical inference altogether?

We chose the optimistic position that it is possible to improve practice, and that
for the health of our field, we should try to do so. This volume offers practical
explanations and examples of techniques which can be used to help us interpret data
with clarity, insight and with a wary respect for the strength of our claims. We hope
that others within the community will build on these in the future.

1.2 Earlier Commentaries on Statistical
Methods in HCI and Beyond

Critiques of methods used in any field have a time and place. Why do we at this place
and time raise an issue about the statistical methods in HCI? We believe that HCI is
ready for such a discussion for several reasons. First, this samediscussion has recently
(re-) emerged in neighbouring disciplines such as psychology (Wagenmakers et al.
2011) computer science (Cairns 2007; Gray and Salzman 1998; Seaman 1999), and
economics (Ziliak and McCloskey 2008). Second, our contribution to CHI 2012
saw a critical discussion of quantitative methods in the field (Kaptein and Robertson
2012) which was greeted with considerable interest. Our aim here is to follow up on
these arguments and in this book make a positive and practical contribution to those
who wish to avoid the pitfalls identified which have consistently been identified.

We start by reviewing some of the fiercest critiques of Null Hypothesis Signif-
icance Testing (NHST) out there today. In 2008 Ziliak and McCloskey published
their book called “The cult of statistical significance: how the p-value is costing us
jobs, money, and lives”. As is clear from the title the main issue of the book is a
consideration of the use of what the authors call qualitative tests which decide only
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between whether or not an effect exists without considering the size or importance
of the effects. Further, the “qualitative” test—the NHST—introduces an arbitrary
cut-off (often p < 0.05) to guide decision making. The authors give a number of
examples of (a) statistically significant results that bear no real-world importance,
and (b) insignificant results that do bear real-world importance. They argue that a
heuristic that errs in both directions can hardly be a reliable guide for our decisions.

While Zilliak andMcCloskey’s critique ofNHST is zealous to an extent thatmight
harm their arguments, they are certainly not alone in their crusade against NHST as
the only basis for sense-making of quantitative data. In Psychology, authors such as
Wagenmakers et al. (2011) attack the NHST approach primarily for its inability to
quantify evidence in favour of the null-hypothesis. These authors point to Bayesian
alternatives of the NHST test—see “the fallacy of the transposed conditional” below.
Many scholars have picked up on Bayesian alternatives to NHST in psychology
(Rouder et al. 2009), cognitive science (Kruschke 2010), bioinformatics (Fox and
Dimmic 2006), and economics (Conley et al. 2008). While we believe that often
Bayesian methods might improve the quality of statistical analysis, we do not think
that Bayesian “equivalents” to NHST should blind fully overtake current NHST
methods. You can find out how to conduct Bayesian analysis in Sect. 1.3 of the book.

Ioannidis’s (2005) critique of our standard practices of NHST testing is different
from that of authors pushing Bayesian methods. His critique focuses more on the
asymptotic properties of our tests, and how these seem to be violated by over-testing,
and biases in the selection of publications and variables. It is becomingmore andmore
apparent that within the orthodox frameworks that we use regularly to analyse our
quantitative data many “researcher degrees of freedom” exist: hence, while scientists
hoped to have converged on objective methods, it seems that also our objective
methods allow for researcher subjectivity. Ioannidis’s (2005) shows convincingly
based on simulation that it is very likely that these researcher-degrees of freedom are
indeed often used: they are the core driver of the conclusion that “most published
research findings are false”.

Gelman and David (2009) raises an additional worry that might threaten our
scientific findings coined the “significance filter”. The worry is not so much that
findings are wrong, but more that the effects we identify are overestimated. The idea
is simple if we have a treatment for which the effect is “borderline significant” given
a specific sample size: some of our studies will show a significant result, and some
will not purely by chance. Those that do have a sampling error in the direction of
the effect are over-estimates of the effect. The significance filter as such is analogues
to regression towards the mean: if we select high (or low) scoring groups out of a
sample based on some measure that contains error, it is most likely that the error
was upwards (or downwards) for the selected individuals. Hence, one would expect
them to “regress towards the mean”: the selected high (or low) scoring individuals
are likely to score lower (or higher) on a re-test. The significance filter introduces the
same problem into our estimates of effect sizes. A related concern is often termed the
“file drawer effect” which refers to bias in the literature introduced by researchers
(or journals) neglecting to publish experiments with null results (Rosenthal 1979).
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It is not just our related disciplines who discuss possible shortcomings of the
quantitative methods that we use. Researchers and practitioners within HCI have
identified several problems both with the methods used in the field as well as with
the reporting of these methods. In 1998 Gray and Salzman (1998) evaluated the
validity of the methodological and statistical procedures used in five famous studies
comparing Usability Evaluation Methods. Besides many methodological threats to
validity they identify a number of issues regarding statistical validity. The authors
note that for the five important HCI studies that they examine often sample sizes are
too low, and researchers test toomany comparisonswithout controlling for increasing
error rates. Surprisingly the authors close their section on statistical validity with the
remark that “…practitioners should keep in mind that, if an effect is too unstable for
statistics to show a significant difference, then it is too unstable to be relied on as
guidance when selecting UEMs” [Usability Evaluation Methods].While we would
often concurwith such a recommendation it needs to be establishedfirst that the power
of the experiment was sufficient to warrant a conclusions of non-guidance based on
an experiment versus the conclusion to conduct a more elaborate experiment. As we
will discuss in more detail below, a failure to detect an effect is not the same as lack
of an effect.

Subsequently Cairns (2007) examined the ubiquity of statistical problems in HCI
work. The author selects papers from several respected HCI outlets (such as Human
Computer Interaction and the ACM transactions on Human Computer Interaction)
and examines their use of statistical tests. The author finds that over half of the papers
report statistical tests, and all but one make errors. Cairns identifies errors in the writ-
ing related the APA norms (American Psychological Association 2009), assumption
checking (the assumptions underlying the test are often not checked), over testing
(researchers use too many comparisons), and the use of inappropriate tests (using a
test in which clearly the probability model does not fit the data generating process).
Besides showing the ubiquity of statistical problems in HCI work, the author also
questions the value of NHST tests for the field and recommends that HCI should
explore other frameworks for doing statistics.

In 2009 Dunlop and Baillie (2009) discussed the value of NHST for mobile
HCI. Based on the critiques of NHST in neighboring fields they introduce five core
problems of the NHST approach. First, they highlight the drawback of using p-values
only for a binary approval stating that “there is nothing magical about 0.05”. Next
the authors highlight the common confusion between p-values and effect sizes: a
low p-value implies a combination of effect size and measurement precision and
the two are often confused. Thirdly the authors note that statistical tests are often
misused (or even abused): distributional properties that underlie reported tests are
not actually met (see Chap.7 for how to test assumptions about the properties of data
using [R]). Fourth, the authors criticize the interpretation of non-significant result as
an indication of no effect: often a non-significant result cannot be grounds to conclude
that the effect indeed does not exist. Finally, the authors highlight that often p-values
are interpreted erroneously to indicate the probability of the null hypothesis being
true, while this is not the actual meaning of the p value.

http://dx.doi.org/10.1007/978-3-319-26633-6_7
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We hope the above discussion makes clear that there is an increasing concern
about the statistical methods used both in HCI as well as in our neighboring fields.
While we believe that there are no “one size fits all” analysis schemes available to
perfect our practice, there are many improvements that can be made to our statistical
practice that would increase the likelihood that HCI research findings are not false.
Below we will first briefly introduce the basic ideas of NHST to provide a common
background in front of which we can illustrate the most common statistical problems
we encounter as a field.

1.3 Some of the Very Basic Ideas of Our Common
“NHST” Method

The “orthodox” (Ziliak and McCloskey 2004; Ziliak 2008) approach to statistics
within many scientific fields is to use NHST methods.1 In the common decision
making procedure, the “null hypothesis” is scrutinized and either rejected—leading
to accepting the alternative hypothesis—or it is concluded that there is not sufficient
evidence to reject the null hypothesis, and subsequently it is accepted. The great
advantage of this decision-making procedure is that long-term error rates are known,
and therefore can be controlled. Researchers can control for both Type I and Type II
errors. Type I errors occur when the null hypothesis is rejected when it is actually true
and can be controlled by specifying an alpha value (before beginning data collection)
that specifies the level of significance underwhich the null hypothesiswill be rejected.
Type II errors occur when the null hypothesis is accepted when it is actually false:
that is, there is an effect that has not been detected. The proportion of times the
null is false but was accepted is called Beta. The power of an experiment (1-Beta)
is the probability of detecting an effect given that the effect really exists in the
population. If it is sufficiently unlikely that the observed data was generated by a
process that is adequately described by the null hypothesis, then the null is rejected
and another, alternative, hypothesis is accepted. To summarize: The experimenter
specifies a decision criterion alpha in advance. Using the NHST decision procedure,
alpha*100% of the time she will accept the null when there is no effect (Type I
error). Beta is the probability that she make a type II error—detecting an effect when
the true effect is zero. Statistical power (1-beta) is then the probability of avoiding a
Type II error: of detecting a true effect.

Sufficiently unlikely as referred to in the previous paragraph is inmost null hypoth-
esis tests defined in terms of a ratio of signal and (sampling) error. To understand the
basic idea of this procedure it is useful to consider the one-sample t-test:

t = x̄ − μ0

s/
√

n
(1.1)

1While technically the often applied methods are an—arguably erroneous—hybrid between meth-
ods introduced by Neymann-Pearson and Fisher, we focus here on the common practice.
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The so-called tvalue is given by the difference of the sample mean x̄ and the
(hypothesized) population mean u0 (often zero in this particular test)—the signal—
divided by the sample standard deviation over the square root of the number of
subjects—the sampling (or standard) error. Higher t-values indicate that it’s less
likely that the sample mean (given the standard deviation and the number of obser-
vations) would be observed if indeed in the population mean was equal to u0. Thus
high t-values lead to low p—values: the probability of observing the current data (or
more extreme data) given the null hypothesis that the sample mean is indeed equal
to the population mean. When a p-value, the probability of the data given the null
hypothesis, is lower than alpha we reject the null.

Low p-values—often those lower than 0.05—would thus drive most researchers
to conclude that the null-hypothesis is not true, and some alternative hypothesis
should be accepted. It is easy to see that high t-values (and thus low p-values) can
be obtained through a combination of a large signal (difference between x̄ and u0),
and a small sampling error (small s and / or high n) (See also Baguley 2012).

The basic idea underlying the t-test can be extended in many directions. The way
we currently test differences in proportions (Chan and Zhang 1999), examine the
“significance” of regression coefficients (Paternoster et al. 1998), test the effects of
factors in ANOVA analysis (Gelman 2005), and a whole range of other tests all
depend on the same principle: There is some quantification of the signal—in the
above example the difference between the sample mean and the tested population
mean—and some quantification of how certain we can be of the observed signal. Lots
of noise, wide distributions, or a small number of observations lead to uncertainty
and thus a failure to reject the null hypothesis. In all cases, the cut-off value of p
(often 0.05) is arbitrary.

1.4 The Common, and Well-Acknowledged, Problems
with Our Current NHST Methods

Now that we share a common understanding of NHST we can discuss the most
frequently occurring problems that originate from it. Despite being introduced as
only one of the many tools of disposal for analyst by William Gosset in 1908
(Student 1908; See also: Box 1987), the NHST test has become one of the only,
if not the only, reported outcome of experiments and other quantitative explorations
throughout the social sciences. Owing to this narrow focus on NHST, and a lack of
understanding of the associated p-value, erroneous conclusions make their way into
the literature. Below we describe six common misunderstandings surrounding the
use of the NHST test.
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1.4.1 Misinterpretations of the P-Value

The NHST approach, fiercely promoted by Fisher in the 1930s (Fisher 1934 and also
Pearson et al. 1994), has become the gold standard in many disciplines including
quantitative evaluations in HCI. However, the approach is rather counter-intuitive;
and subsequently many researchers misinterpret the meaning of the p-value. To
illustrate this point Oakes (1986) posed a series of true/false questions regarding the
interpretation of p-vales to seventy experienced researchers and discovered that only
two had a sound understanding of the underlying concept of significance.

So what does a p-value actually mean? “…the p-value is the probability of obtain-
ing the observed value of a sample statistic (such as t, F, χ2) or a more extreme value
if the data were generated from a null-hypothesis population and sampled according
to the intention of the experimenter” (Oakes 1986, p. 293). Because p-values are
based on the idea that probabilities are long run frequencies, they are properties of
a collective of events rather than single event. They do not give the probability of
a hypothesis being true or false for this particular experiment, they only provide a
description of the long termType I error rate for a class of hypothetical experiments—
most of which the researcher has not conducted.

1.4.2 The Fallacy of the Transposed Conditional

The erroneous interpretation of the p-value by many researchers brings up the first
actual threat to the validity of conclusions that are supported by null-hypothesis
testing. Researchers often interpret the p-value to quantify the probability that the
null hypothesis is true. Thus, a p-value smaller than 0.05 indicates to large groups
of researchers—be it conscious or unconscious—that the probability that the null
hypothesis is true (e.g. x̄ = u0) is very small.

Under this misinterpretation the p-value would quantify P(H0/D)—the proba-
bility of the null hypothesis (H0) given the data collected in the experiment. However,
the correct interpretation of the p-value is rather different: it quantifies P(D/H0)—
the probability of the data given that H0 is true. Researchers who state that it is very
unlikely that the null hypothesis is true based on a low p-value are attributing an
incorrect meaning to the p-value.

The difference between P(H0/D) and P(D/H0) is not merely a statistical quirk
that is unlikely to affect anything in practice. Not at all. It is easy to understand
why this misconception is incorrect and hugely important by the following example:
consider the probability of being dead after being shot, P(D = true/S = true).
Most would estimate this to be very high, say 0.99. However, the mere observation of
a dead person does not leadmost people to believe that the corpse was shot—after all,
there are many possible ways to die which don’t involve shooting. P(S = true/D =
true) is estimated to be rather small. Luckily, the relationship between P(D/H0) and
P(H0/D) is well-known and given by Bayes rule (Barnard and Bayes 1958). Thus,
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if one wishes to estimate P(H0/D)—which we often do—the proper analytical tools
are at our disposal. For an accessible introduction to Bayesian analysis, see Chap. 8
and Kruschke (2011b).

1.4.3 A Lack of Power

The use of p-values enables researchers to control Type I errors—or the rejection
of H0 when in fact it is true. However, controlling Type II errors (the failure to
reject H0 when it is false) by estimating the power of an experiment appears to be
attended to less frequently (Dienes 2008). The power of a statistical test is the long-
term probability that a given test will find an effect assuming that one exists in the
population. Thus, power indicates whether your experimental setup is capable of
detecting the effect that you wish to find. The power is a function of sample size,
population effect size and the significance criteria (known as the alpha (or p) value,
which is set by convention at 0.05).

The standard accepted power within psychology is 0.80 (Cohen 1992) which
means that there would 20%(1 − 0.80) chance that the researcher fails to reject
the null hypothesis when it is false. Hence, the researcher does not “discover” the
effect that in reality does exist. Reviews of the psychology literature reveal that the
majority of published studies lack power, resulting in a confusing literature with
apparently contradictory results (Maxwell 2004). In studies with low power, getting
a null result is not particularly informative: it does not distinguish between the cases
where the null is true and where the experimental set-up did not detect the null.
Chap.5 introduces power calculations in [R].

1.4.4 Confusion of P-Values and Effect Size Estimates

Besides the often-erroneous interpretation of p-values and low power, the focus
on null hypothesis significance testing in HCI has another severe consequence: we
are slowly turning our quantitative science into a qualitative one. We seem to be
more concerned with the mere fact that a finding is statistically significant than with
interpreting the actual importance of the effects we are studying. The latter can only
be assessed by considering effect sizes and appropriate loss functions. Effect size
calculations in [R] are covered in Chap.5 of this volume.

A p-value smaller than 0.05 does not necessarily imply that the effect is
important—it only informs us that the noise was small compared to the signal. Also,
a p-value smaller than 0.001— according to some “highly significant” does also not
inform us that the effect is more important. Especially for large data sets (which often
lead to very powerful tests) low p-values are common but do not inform our search
for scientific answers. Only an informed interpretation of the numerical estimated
effect can tell us whether a “significant” effect is indeed important to us and warrants

http://dx.doi.org/10.1007/978-3-319-26633-6_8
http://dx.doi.org/10.1007/978-3-319-26633-6_5
http://dx.doi.org/10.1007/978-3-319-26633-6_5
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further research or a theoretical explanation. For example, if there was a significant
difference in the time taken to learn two competing versions of a software package,
but the size of the effect was only 1.2 s (over a total use time of the software of
2+ years), this would likely not have a very large practical impact.

Perhaps surprisingly, the flip side of the argument also holds: a high p-value does
not imply that the effect under study was unimportant. It only means that it was
measured with a relatively high sampling error. Compelling examples of this can be
found in neighbouring disciplines, and even in the court room: the painkiller Vioxx
was in tested in a clinical trial against Naproxen, a general already-on-the-market
painkiller. During the trial one person died that was taking Naproxen. For Vioxx
however, five people died. The difference was not statistically significant, p > 0.05,
and thus written off as unimportant. The lawsuits against Vioxx in 2005 proved the
researchers wrong: The real-life, and regrettably more powerful test, showed that
Vioxx severely—although initially not significantly—raised risks of cardiovascular
side effects. If statistical significance is neither a sufficient nor a necessary criterion
for importance, what good does it do?

Currently the “size-less stare” at p-values does a lot of harm (Ziliak andMcCloskey
2008). In some fields, where historically researchers were trained in graphing their
data and exploring the numerical values, means, and confidence intervals, this prac-
tice seems to be decreasing due to the fixation on p-values (Ziliak and McCloskey
2008). In computing fields it is not clear that effect size reporting was ever common;
Dunlop and Baillie have identified lack of effect size reporting in HCI as “danger-
ous” and in the related field of software engineering experiments, a review of 92
experiments published between 1993 and 2002 shows that only 29% of the papers
reported estimates of effects (Kampenes et al. 2007).

1.4.5 Multiple Comparisons

An important aspect of the orthodox NHST procedure is to control for Type 1 errors,
to protect against the possibility of a falsely rejecting the null hypothesis. For each
test carried out, the probability of finding an effect where there is actually none (a
false alarm) is generally set to be 5%. However, this picture is complicated when we
consider the experiment-wise error rates. Typically, researchers will wish to carry
out more than one test on the same data set, and with each further tests carried
out, the probability of a false positive result is inflated. In an experimental design
with k experimental conditions, the number of possible comparisons is given by the
formula:

c = k(k − 1) ∗ 1/2 (1.2)

The experiment-wise error rate is 1(1 − α)c, where α is the per comparison false
alarm rate (again, usually set to be 0.05), and the comparisons are assumed to be
structurally independent of each other (Kruschke 2011b)
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Suppose that there are three experimental conditions, and so three comparison
tests are carried out. Although the probably of making a Type 1 error when consid-
ering each test in isolation is 5%, the experiment-wise error rate rises to 14%. In a
more complex design, say with 5 groups, comparisons between each group would
inflate the experiment-wise error rates to 40%—which is considered unacceptably
high. A solution to this problem is to use an omnibus test (we will consider ANOVA
in the following examples) to find whether there are overall main effects, and then
conduct follow up t-tests to establish where the differences lie. Planned contrasts
test relationships which the research has predicted in advance based on theory or
previous results. Post-hoc tests are pairwise comparisons which were not specified
when the experiment was designed, but which the researcher uses to explore inter-
esting emergent relationships. Running all possible comparisons without correcting
for inflated Type I error rates would negate the point of doing an omnibus test in
the first place, so it is good practice to control family-wise error rates by applying a
correction which uses more stringent values for a result to be considered significant.
See Chap.7 if you would like to know how to correct ANOVA results for multiple
comparisons in [R].

An anomaly in NHST practice is that it is acceptable to conduct planned com-
parisons without correcting for experiment-wise error rates, while post-hoc tests
do require it. This relates to the incoherence regarding the experimenter’s intention
embedded in NHST (Kruschke 2011a). Imagine two researchers who conducted the
same experiment, and analysed the same data set but who started out with different
opinions about which hypotheses should be tested. They could find different results
because Researcher A—who didn’t predict the effect at the outset—must use strin-
gent corrections on his post-hoc comparisons, while smug researcher B—who had
the foresight to bury his hypotheses in a time capsule along with a copy of a daily
newspaper—has the luxury of using less conservative significance values.

1.4.6 Researcher Degrees of Freedom

Simmons et al. recently introduced the concept of “researcher degrees of freedom”
to describe the series of decisions which researchers must make when designing,
running, analysing and reporting experiments. The result of ambiguity when making
such decisions is that researchers often (without intention of deceit) perform mul-
tiple alternative statistical analyses and then choose to report the form of analysis
which found statistically significant results. The authors show through a cleverly
constructed simulation study that “It is unacceptably easy to publish “statistically
significant” evidence consistent with any hypothesis” (Simmons et al. 2011, p. 1).
The authors illustrate this by reporting evidence in support of the hypothesis that
listening to the song “When I’m 64” reduces chronological age. The simulation
study investigated how the significance of the results changed when different forms
of analyses were conducted on a simulated data set randomly drawn from the nor-
mal distribution, repeated 15,000 times. The different forms of analysis manipulated

http://dx.doi.org/10.1007/978-3-319-26633-6_7
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common researcher degrees of freedom: selecting dependant variables, setting sam-
ple size, the use of covariates and reporting only selected subsets of experimental
conditions. If the researcher is flexible about when she stops data collection—a com-
mon practice although it is not at all advocated in the NHST literature—and gathers
more data after doing a significance test, the false positive rate increases by 50%. By
using covariates, such as the ubiquitous gender factor, the researcher can introduce a
false positive rate of 11%, and by reporting only a subset of the data, a false positive
rate of 12.6% is produced. Finally, if our researcher was too flexible in all four of
these areas, the false positive rate would be 61%.

Simmons et al. (2011) recommend a set of ten simple practices which reduce the
problem of false positives. Firstly, they recommend that authors should decide in
advance on their criteria for when to stop data collection. Given the prevalence of
problems of underpowered tests, it would be sensible to use stopping rules based on
power analysis. The second guideline of providing at least 20 observations per cell is
directly related to power, and reduces the risk of type II errors. According to guide-
lines 3 and 4, authors would be required to report all the variables collected, and all
experimental conditions investigated even if they are not reported in the final analysis
in the paper. This would enable readers to judge how selective authors are in report-
ing their results. Guideline 5 recommends that if observations (such as outliers) are
removed, they should report both the results with and without their removal to enable
the reader to determine what effect it has. To reduce the occurrence of false posi-
tives by the introduction of covariates, guidelines 6 recommends that results should
be reported with and without covariates. As changes in authorial practices require
monitoring by reviewers, Simmons et al. (2011) propose four related guidelines for
reviewers, starting with ensuring that authors follow the first 6 recommendations.
Following these guidelines is likely to lead to publications with fewer significant and
less perfect seeming results; reviewers are therefore encouraged to be more toler-
ant of imperfections in results (but less tolerant of imperfections in methodology!).
Reviewers are also asked to check that the authors have demonstrated that their
results don’t depend on arbitrary decisions while conducting the analysis, and that
the analytic decisions are consistent across studies reported in the same paper. Lastly,
Simmons et al. (2011) invite reviewers to make themselves unpopular by requiring
that authors conduct replications of studies where data collection or analysis methods
are not compelling.

1.4.7 What Is the Aim of Statistical Analysis?

So, despite our common and ubiquitous use of NHST methods the methods are
plagued with errors. Then why are these methods so ubiquitous? Are the problems
described above perhaps only theoretical, and would they only have an impact on
practice in special borderline cases?

The problems are real, and they plague real studies and conclusions in many
fields (see Chap.14 to see a critical examination of the problems in highly cited HCI

http://dx.doi.org/10.1007/978-3-319-26633-6_14


12 J. Robertson and M. Kaptein

papers). To understand however why these methods are ubiquitous in spite of their
flaws we need to make the aim of our statistical procedures explicit.

Statisticalmethods of inference allowus to do the following: given somehypothet-
ical idea about our data generating process, we set out to actually collect data—our
sample—and next answer questions about our data generating process. For exam-
ple, we have a hypothetical description of a fair coin toss where P(Heads) =
pk(1 − p)1−k(where k = {0, 1}, heads or tails). Next, we observe ten actual tosses
(H, H, T, T, H, H, T, H, H, H—our sample). Based on this data we can start answering
questions about the relationship between our hypothetical ideas of the data generating
process and the actually observed data. We could for example ask: “How likely is the
data that we observed given that we postulate the coin to be fair (p = 0.5)?” Hence,
we assume that the data generating process is P(Heads) = 0.5k(1 − 0.5)1−k using
the Bernoulli distribution. Next, we examine whether our observed data—containing
7 heads instead of the 5 heads which would be most likely given the postulated
long term proportion of 0.5—are still sufficiently likely to have originated from the
assumed data generating process. This is a standard NHST question.

We use our statistical methods to answer the above question, and we want tests
that do so which are easy to compute, easy to understand, and in the end lead to a
presentation of our results that will enable us to get our work published. The NHST
satisfies all these latter criteria easily: software packages to compute p-values for
various experimental design arewidely available,we generally believeweunderstand
the p-value (despite (Oakes 1986)), and if we manage to find p-values lower than
0.05 we are also almost guaranteed publication. Hence, the NHST test satisfies all
of the secondary requirements that good statistical methods should have.

If we are honest however, the answer to the question “How likely is the data that
we observed given that the coin is fair (p = 0.5)” is only marginally interesting.
What is really interesting, given our above sample, is to answer questions like: “what
is the probability that this coin will turn heads if I flip it again?” We do not just want
to contrast our collected data to the hypothetical scenario where p = 0.5 (the coin
is fair), but we would actually like to learn about P(Heads) of the coin itself given
the data that we have collected (the quantity P(H0|D) as described above). We want
to estimate p(as used in the formulation of P(Heads), not in p-value), and quantify
our uncertainty around this estimate. From such a quantification we can then assess
whether (e.g.) this coin would be suitable for usage in a casino or not. Or, whether
it is “fair enough” for our application of the coin. Or perhaps whether we are too
uncertain to answer any of the above questions and we should obtain a few more
tosses before rushing to decisions.

The coin introduced in this section is obviously exemplar for any data generating
process. We collect data, and often, using NHST examine only a very limited ques-
tion: we postulate a very strict and often unrealistic data generating process and next
ask ourselves how likely it is that the data originated from this process. The focus on
NHST—we believe in part due to its satisfying of the “secondary requirements” of a
statistical procedure lead us to not properly examine the broader scientific questions
into the actual size of the effect—the true value of p in this case. All too often these
questions are left unanswered. Regrettably answering the latter questions does not
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necessarily satisfy the secondary requirements: they are not always easy to compute,
andwill require thought to interpret. Furthermoremethods that do answer these ques-
tions will not necessarily get the work published. Our intention in editing this book
is to show readers that recent advances in computational power and freely available
packages in [R] give you the opportunity to answer the sorts of research questions
whichmatter. Our authors have also provided examples of how to interpret the results
of their analyses to help you understand how the techniques might apply to your own
data.

1.5 Broadening the Scope of Statistical Analysis in HCI

We find that on one hand our currently used “toolbox” (see also Chap.13) for sta-
tistical analysis is being increasingly criticized. On the other hand, we see that in
statistics, machine learning, and a number of related fields novel methods are being
introduced at a steady pace. This book aims to (a) critically evaluate our current prac-
tice and support a less rigid, procedural view of statistics in favour of “fair statistical
communication” (see Chap.13), and (b) provides scholars and practitioners with the
methods and tools to do so.
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Part I
Getting Started With Data Analysis

Despite the fact that this book came about, partially, as a critique on the current use
of null-hypothesis significance testing (NHST) methods in HCI, we do not want to
delve directly into technical arguments or alternatives. Rather, we want to stress that
many analyses would benefit first and foremost from a strong exploratory effort,
of which data visualization is a core component. Before one reports, one needs to
understand.

This first part of the book therefore starts with an explanation of the software that
is used throughout the book, with the minor exception of the specialist Bayes Factor
software introduced in Chap. 9 all chapters use [R]. Second, we will have a look at
data visualization: a key to understanding any dataset is the ability to explore it using
both descriptive statistics as well as readable and intuitive plots. Finally, we end this
part of the book by presenting methods that deal with “missingness” in a collected
dataset: if the data you would like to analyze contains missing observations, likely
you want to decide on how to deal with those prior to running your actual analysis.
Thus, this part provides a starting point for the more elaborate methods discussed in
later chapters.

Chapter 2: Getting Started With [R]
Chapter 2, contributed by Ms. L. Ippel, introduces the use of [R] for the analysis
of data in HCI. We included this chapter for several reasons: a) one of the editors
loves [R] and always uses it for his analysis (yes, we ourselves consider this a fairly
bad reason, but still), b) many novel statistical methods appear first in [R], not in
proprietary software, and c) pretty much all of the chapter authors use [R] for their
examples. Hence, we need, for those with no experience using [R] whatsoever, a
brief intro. Ippel was kind enough to provide one.

In her chapter Ippel briefly introduces how to download [R] and get started. The
chapter discusses using [R] directly by writing scripts (code), despite the fact that
in the past few years a number of “point-and-click” solutions have been created
(see also the “Editor suggestions”). However, since all the chapters following this
chapter use [R] by directly writing code, we choose this approach also for this intro-
duction chapter. The chapter details how data files can be opened and manipulated,
discusses well-known descriptive statistics such as means, variances, correlations,
etc., and discusses how a default installation of [R] can be extended by importing
new packages: an approach that is adopted in many of the subsequent chapters. If

http://dx.doi.org/10.1007/978-3-319-26633-6_9
http://dx.doi.org/10.1007/978-3-319-26633-6_2
http://dx.doi.org/10.1007/978-3-319-26633-6_2
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you are well acquainted with [R] you can probably skip this chapter. However, if
you find functionalities of [R] (such as data manipulations, the loading of packages,
quick descriptives, and quick plots using the [R] core plotting library) in subsequent
chapters that are not clear, likely they are explained in here.

Chapter 3: Data Visualization
This chapter of the book introduces the science and art of visualizing data. Data
visualizations (plots, graphs, etc.) are useful for two primary reasons: first, they help
you, the analyst, understand the data at hand. For this process it is useful to have
quick access tomeaningful, non-distorting visualizations. Second, data visualizations
can be used to formally communicate your results. For this purpose one would like
the ability to produce meaningful (and perhaps even fancy looking) figures that
communicate clearly.

As mentioned by the authors of this chapter, Dr. J. Young and Dr. J. Wessnitzer,
data visualization is a research field in its own right on which many books and
articles have been written. Hence, the authors point to several authoritative books
in the field for readers interested in the details of this science. However, within
the chapter the authors introduce a brief history of data visualization, and its main
principles. Second, the authors illustrate how to create a large variety of graphs
using the ggplot2 package in [R]. The chapter introduces a structured grammar
of graphics, and highlight the pros and cons of different types of visualizations.

We would like to stress that data visualization is, in part, software dependent.
Although the main principles of clear communication using visualizations do not
change, the ability of an analyst to quickly produce meaningful figures depends
heavily on her experience with the software that is used to create the figures. Within
[R], a number of different methods to produce plots exist. Most notably, [R] provides
a number of core plotting functions (some of which are discussed in Chap. 2),
and [R] provides the extension packages lattice and ggplot2. The latter two
packages allow for intricate figures, but the syntax (and code) needed to produce
figures using these twopackages is quite different. In this chapter the use of ggplot2
is illustrated, but it has to be noted that many other methods (in [R] or using other
software packages) can be used to produce the figures introduced in this chapter.
In any case, we would advise any analyst to choose a package that she or he is
comfortable with and study it in detail since the ability to visualize quickly can
greatly improve the understanding of a dataset.

Chapter 4: Missing Data
In Chap. 4 Dr. T. Baguley and Dr. M. Andrews discuss the often occurring prob-
lem of missing data. After running an observational study, or even after running an
experiment, we might end up with an incomplete dataset. This can have all kinds
of reasons: some users might forget to fill in answers to some items, the technology
used to measure user behavior might break, or respondents might be reluctant to fill
out some of the questions and consciously omit responses. Whatever the cause, the
problem should be dealt with before starting any meaningful analysis.
In this chapter the authors motivate that the “standard” method of dealing with
missing data (pretending the user never existed in the first place) severely hampers

http://dx.doi.org/10.1007/978-3-319-26633-6_3
http://dx.doi.org/10.1007/978-3-319-26633-6_2
http://dx.doi.org/10.1007/978-3-319-26633-6_4
http://dx.doi.org/10.1007/978-3-319-26633-6_4
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the subsequent analysis and conclusions. Missing data introduces both a loss of
precision, and bias in the estimates, which are not at all relieved by closing ones
eyes and pretending the missing data were never there (we are very aware of the fact
that this is an odd sentence). The authors also highlight that the cause of the missing
data might actually matter a lot: whatever mechanism caused the missing data likely
impact how you should deal with the missingness. Through a series of practical
examples using the Mango Watch data (or parts thereof) the authors show both the
effect that missing data of various origin can have on the subsequent analysis, and
suggest remedies.

Dealing with missing data, just like data visualization, is a topic of study in
itself. This chapter introduces the main topics (types of missingness, single and
multiple imputation, etc.) and provides the reader with a thorough understanding of
the underlying issues. However, the chapter certainly does not cover all available
methods for dealing with missing data. It does however extensively reference the
missing data literature: hence if you are unable to use the presented examples one-
on-one for your missing data challenge, we encourage following up on the references
in the specific parts: these will quickly guide you to ready to use methods for your
application. Please note that there are some parts in this chapterwhich applyBayesian
techniques. If you are reading the book in the order that it is printed, you may wish
to skip these for now until you have read Part 3.

Editor Suggestions
For each of the five parts of this book we (the editors) will try to point readers to
additional materials (as far as this is not yet done by the authors themselves) that we
ourselves found useful in understanding the topics that are discussed here.
For more on [R] please consider:

• The [R] website is the definite starting point for downloads and documentation:
https://www.r-project.org.

• Awell-developed andwell-supported “point and click” interface to [R], although it
definitely supports writing code, is RStudio which can be found here: https://www.
rstudio.com/products/RStudio/. Next to the extensive documentation that can be
found online, a number of introductory books to [R] exist. For those starting from
scratch the book The art of R programming by Norman Matloff (2011) might
provide a good starting point. Books like R Cookbook by Paul Teetor (2011) also
start from the beginning, but provide a slightly wider overview of the possibilities
of [R]. Tailored more to data analysis and visualization, we can also recommend
R for Everyone: Advanced Analytics and Graphics by Jared P. Lander (2013).

• For thosewishing to really use [R] to its fullest,wedefinitely recommendAdvanced
R by Hadley Wickham (2014).

For more on data visualization, outside of the books recommended in the chapter
itself, please consider:

• For more on ggplot, the package used in Chap. 3, consider ggplot2: Elegant
Graphics for Data Analysis (Use R!) by Hadley Wickham (2009).

https://www.r-project.org
https://www.rstudio.com/products/RStudio/
https://www.rstudio.com/products/RStudio/
http://dx.doi.org/10.1007/978-3-319-26633-6_3
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• An alternative plotting package in [R] is lattice: see for more info Lattice:
Multivariate Data Visualization with R (Use R!) by Deepayan Sarkar (2008).

And finally, for more on missing data please consider Flexible Imputation of Missing
Data by Stef van Buuren (2012). This book covers both the basic theory, as well as
a large number of modern data-imputation methods.



Chapter 2
Getting Started with [R]; a Brief
Introduction

Lianne Ippel

Abstract In this chapterwe provide some basics into [R] thatwill get you started and
provide you with tools to continue the development of your skills in doing analyses
in [R].

2.1 Introduction

Many statistical software packages are out there (SPSS, SAS, STATA, Mplus, just to
name a few), each of them has its pros and cons. However, they have one common
disadvantage: they all come with a (rather expensive) price tag. In contrast, [R] is an
open source programming environment and is freely downloadable. Additionally, it
allows a researcher to conduct the analyses exactly in the way she wants the analyses
done. Data analysis in [R] does require some programming skills, for which we
provide a short introduction. For issues beyond this introduction, you will find many
of your questions answered with a search in your favorite search engine.

Step one of doing your data cleaning and analysis in [R] is, of course, to get
the program on your computer. You can download [R] from https://cran.r-project.
org.1 Choose the version matching your operating system, and you are good to
go. For those who desire some point-and-click options in [R], several Integrated
Development Environments such as ‘R Studio’ exist, although we do not go into
them here.

A few remarks before you get started and confused: (1) [R] is a case sensitive
language, so be careful with howyou name your variables, x1 �= X1. (2)Unlike other
program languages such asC, which read the entire script at once before executing it,
[R] reads one line at a time. [R] will continue reading until it has reached the end of

1Note that if you use [R] for your reports, do not forget to mention the version of [R] you used,
because slightly different results may come from different versions of [R], or the packages you
used. we used [R] 3.2.2, 64-bit.

L. Ippel (B)
Department of Methodology and Statistics, Tilburg University,
Warandelaan 2, 5000 AB Tilburg, The Netherlands
e-mail: g.j.e.ippel@uvt.nl
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a command or found something it does not understand, which will produce an error.
(3) Errors tell you approximately where it went wrong. However be aware, the fact
that [R] did not produce an error does not mean it has done what you intended to do,
it just has done exactly what you told it to do. What [R] did and what you wanted to
do, are not necessarily the same thing. In fortunate cases, [R] will produce a warning
when something did not fully go according to plan. Whether or not to take these
warnings seriously is dependent on the warning and what you were aiming at doing.
However in unfortunate cases, [R] does not produce an error or a warning, while still
not doing what you aimed to do. Therefore always check whether the results make
sense. (4) If you want to prevent yourself from doing the exact same command over
and over again, you won’t use the console of [R], but rather use a script (File →
New script). You run the script either by ‘right-click → run’, or ‘ctrl + r’. Lastly (5)
to prevent you from trying to read your code a week after you produced it and being
clueless about what you tried to do: insert comments in your code. Doing so is easy:
inserting a # will tell [R] to skip this line, giving you the opportunity to write down
what the code should do.

The organization of this chapter is as follows. First we discuss the types of data
[R] can deal with and how these data are handled in [R]. We mention some useful
tools to get some insight in your data. In Sect. 2.2 we detail how you can write your
own commands with the use of functions and how to incorporate code written by
others. The final section might be the most important section, because it contains the
[R] help manual and additional literature.

2.1.1 Data Types

[R] can handle both numerical and character input. The difference between the two
is denoted by adding quotation mark(s) in case of characters, for instance:

> # an example of a numerical variable:

> x1 <- 10

> x1

[1] 10

> x1 + x1

[1] 20

>

> # an example of a string variable:

> x2 <- ‘10’

> x2

[1] ‘‘10’’

> x2 + x2

Error in x2 + x2 : non-numeric argument to binary

operator
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In the above example, x1 is a numerical variable containing a single value, 10, with
which you can do calculations. However x2 is a string variable because we placed
quotation marks around the input, instructing [R] it should treat it as characters,
with which you obviously cannot do computations. [R] can do all computations
(as long as it concerns numerical values) your simple calculator can do too. Besides
the obvious commands (+,−, ∗, /,̂ , sqrt(), exp()), ∗∗ can be used interchangeably
for .̂ A third data type we want to illustrate is ‘boolean’, a data type which is either
TRUE or FALSE. Although booleans look like characters, you can do computations
with them, as TRUE translates to 1 and FALSE to 0. This data type is generated
when you use a logical expression, for instance to see if two variables are equal to
each other:

> # logical expressions

> x1==10 # equal to

[1] TRUE

> x1 <= 5 # smaller or equal

[1] FALSE

> x1 > 5 # larger

[1] TRUE

> x1 != 5 # unequal to

[1] TRUE

> # an example of computations with booleans

> (x1 == x1)+1 # TRUE +1 = 2

[1] 2

2.1.2 Storage

Besides different input (number vs. character), the input can be wrapped differently.
You can think of thesewrappings as different storages: they vary in size andflexibility.
Depending on what you want to do with your data, one or the other storage can be
more efficient. There are five different storage types: vector,matrix, array, data frame,
and list. They all can deal with characters or numbers. In the first example (x1 and
x2) both variables were vectors with only one element. Now we focus on larger
vectors:

2.1.2.1 Vectors

We start with a vector, using command c(data):

> x3 <- c(1,2, NA)

> x3

[1] 1 2 NA
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In the example above, we created a variable x3, which is now a vector with three
elements, two knowns and one missing.2 If there is input missing, whether it is non
response in your data collection or something else, you can instruct [R] to leave a
blank space using NA (Not Available).

The command ‘c()’ is one of the ways to create a vector. Other common used
commands for vectors are:

> # a vector containing a sequence, is created using

> # seq(from, to, by ):

> x4 <- seq(from = 1, to = 10, by = 2)

> x4

[1] 1 3 5 7 9

>

> # note a sequence with interval of 1:

> x5 <- c(1:5)

> x5

[1] 1 2 3 4 5

>

> # a vector containing series of repeated elements,

> # rep(data, times, each)

> # data = what should be repeated

> # times = number the data are repeated

> # each = number a single element is repeated

> x6 <- rep(c(1:2), times=3, each=2)

> x6

[1] 1 1 2 2 1 1 2 2 1 1 2 2

You can also select separate elements from a vector, as follows.

> # select second element of vector x3

> x3[2]

[1] 2

> # add fourth element to x3

> x3[4] <- 4

> x3

[1] 1 2 NA 4

> # this also works:

> x3_new <- c(x3, 5)

> x3_new

[1] 1 2 NA 4 5

2Be aware of how you name you variables, because you do not want to overwrite a command that
already exist in [R]. Simply typing in the name you want to use for your object in the console will
give insight in whether this name is already in use.
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As you can see from the above example, there are oftenmultiple wayswhich yield the
exact same result. For small vectors, different ways of adding data and/or selecting
elements do not really make a difference, however once you start working with large
data sets (like data frames and lists) it pays to check for the fastest option.

2.1.2.2 Matrix

An extension of a vector is a matrix, which unlike a vector which is unidimensional,
has two dimensions: rows and columns.

> x7 <- matrix(data = c(1:4), nrow = 2, ncol = 2)

> x7

[,1] [,2]

[1,] 1 3

[2,] 2 4

Basically, what this command does is: you give [R] a vector and instruct [R] to break
it down into the number of rows and columns. When the matrix has more cells than
the number of elements in the provided vector, [R] will fill up the matrix, starting
from the beginning, without error or warning!

> x8 <- matrix(data = c(1:3), nrow = 3, ncol = 2)

> x8

[,1] [,2]

[1,] 1 1

[2,] 2 2

[3,] 3 3

So we cannot repeat this too often, check whether [R] did what you wanted to do
even, or maybe especially, when no error or warning was produced. One way to do
so is check whether the elements are positioned the way you expected. Selecting or
adding data from a matrix is very similar to a vector, with the minor difference of
having to specify two dimensions. In line with algebraic rules, [R] will take the first
input as row number and the second input as column number: [1,1] will select top left
element, while [2,1] will select the element on the second row, first column. When
you leave the first dimension open, [,1], the entire column is selected or when you
leave the second dimension open, [1,], the entire row is selected.

> # select element on second row, first column of x7

> x7[2,1]

[1] 2

> # select second row

> x7[2,]
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[1] 2 4

> # select second column

> x7[,2]

[1] 3 4

> # add row to x7 using rbind(data, new_row):

> # rbind binds the new row to the data

> x7_new_row <- rbind(x7, c(1,2))

> x7_new_row

[,1] [,2]

[1,] 1 3

[2,] 2 4

[3,] 1 2

> # add column to x7 using cbind(data, new_column)

> # cbind binds the new column to the data

> x7_new_column <- cbind(x7, c(5,6))

> x7_new_column

[,1] [,2] [,3]

[1,] 1 3 5

[2,] 2 4 6

2.1.2.3 Data Frame

A data frame is a special case of a matrix. It also consists of two dimensions, with
the cases stored in the rows and the variables in the columns. The example dataset on
fruit-based smart watch performance provided as supplementary material is a data
frame, which will be used throughout the book to explain multiple analyses. A data
frame is created as follows:

> x9 <- data.frame(id=factor(c(1:3)), obs=c(10:12))

> x9

id obs

1 1 10

2 2 11

3 3 12

where the first column (without heading), denotes the row numbers, the second col-
umn is a nominal variable of the data frame (in this case labeled ‘id’). Nominal
variables can be created using the command ‘factor()’. The third column is a numer-
ical variable (labeled ‘obs’).

Because a data frame is a special case of a matrix, selecting and adding data can
also be done similarly. However, because it is a special case and not exactly the same,
it can also be done differently. The advantage of a data frame is that the columns
have labels, which you can use to select elements or columns or add variables.
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> # select element on second row, first variable of x9

> x9$id[2]

[1] 2

Levels: 1 2 3

> x9[2,1]

[1] 2

Levels: 1 2 3

> # or select a case with a particular number,

> # convenient when row numbers != id numbers:

> x9[x9$id==2,]

id obs

2 2 11

> # select variable

> x9$obs

[1] 10 11 12

> # add variable

> x9$new_var <- c(20:22)

> x9

id obs new_var

1 1 11 20

2 2 12 21

3 3 13 22

2.1.2.4 Array

Next we turn to the two larger storages which have a flexible number of dimensions.
First an ‘array’ which is an extension of a matrix, and can have many dimensions.
An array with only two dimensions is equivalent to a matrix.

> # array(data, dim = c(rows, columns, slices, etc.))

> x10 <- array(data = c(1:4), dim = c(1, 3, 2))

> x10

, , 1

[,1] [,2] [,3]

[1,] 1 2 3

, , 2

[,1] [,2] [,3]

[1,] 4 1 2
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Again we see that [R] fills up the array, starting from the beginning. Variable x10
has 1 row (first entry of the dim argument), 3 columns (second entry of the dim
argument), and 2 slices (third entry of the dim argument). The only downside of an
array is that you have to keep in mind how many dimensions you have and which
dimension is which. Of course we could continue and add more dimensions but for
the sake of claritywe stop at three dimensions.We skip adding and selecting elements
from an array, because it is similar to a matrix.

2.1.2.5 List

The last storage is a ‘list’, which is different from the other storages in the sense that
a list wraps storages. For instance, a list can contain a vector in the first cell, a data
frame in the second, an other list in the third and so on. This makes a list very flexible
and complicated at the same time. A list can be very convenient as an output of your
analyses, storing all results in one place, however selecting one single number from
a large list might end up challenging.

> # list(cell 1, cell 2, cell 3, etc.)

> x11 <- list(scalar=x1, vector=x3, array=x10, c(1,2))

> x11

$scalar

[1] 10

$vector

[1] 1 2 NA

$array

, , 1

[,1] [,2] [,3]

[1,] 1 2 3

, , 2

[,1] [,2] [,3]

[1,] 4 1 2

[[4]]

[1] 1 2

Note that you can label the different cells, but it is not necessary to do so. You label
the cells by adding the label before the object you stored in the cell: scalar = x1
labels the first cell as scalar. As mentioned above, selecting an element from a list is
somewhat odd in the sense that adding or selecting an element depends on what you
have stored in the list and whether you have labeled the different cells. If you have
labeled the cells you can select the cell just like you would select a variable in a data
frame, if you did not you select a cell using double squared brackets:
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> # select second cell from list x11

> x11$vector

[1] 1 2 NA

> x11[[2]]

[1] 1 2 NA

Selecting an element within a cell then depends on which storage is in the cell, and
it would be repetition of the text above to illustrate how each of them work.

2.1.3 Storage Descriptives

As mentioned above, it is very important to inspect the result [R] produced to check
whether it actually did what you intended. Sometimes looking at the entire object at
once is cumbersome. [R] has some tools that make a first inspection whether your
object looks like what you expected:

• class(x, …): x is an arbitrary object. This function tells you which storage type is
between the brackets

• str(x,…): x is an arbitrary object. This function tells youwhether x contains strings
or numbers

• summary(x, …): x is an arbitrary object. This function returns, depending on the
kind of object you want the summary from, statistics such as number of cases,
averages, standard deviations, etc.

• length(x): gives the length of the object x, usually x is a vector, but it works for
other objects as well.

• dim(x): x is anything but a vector. The function gives the dimensions: first number
of rows, then number of columns etc.

• nrow(x): x can be a vector, matrix, array or data frame. The function returns the
number of rows

• ncol(x): like nrow, however this function returns columns

Note that some function have ‘…’ and others do not; these dots imply that additional
arguments could be included in the function.

2.2 Working with [R]

2.2.1 Writing Functions

Now you have some sense of how data looks like in [R], you of course want to
do something with these data. The tools to work with are called functions. Without
being explicit about it, we already came across many functions. All the commands
we have used so far, whether it is to make a vector (c()), or to get some summary
about an object (summary()), these are functions integrated in [R] already. You can,
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and most likely will, write functions yourself as well. Writing functions is done as
follows:

> test <- function(argument_1, argument_2, ...)

+ {

+ actions

+ return()

+ }

>

> result <- test(argument_1 = X, argument_2 = Y)

You define a function (in this case: test) and you provide the function with arguments.
A (very simple) example could be

> multiplier <- function(input, times)

+ {

+ local_result<- input*times

+ return(local_result)

+ }

>

> global_result <- multiplier(input=5, times=2)

> global_result

[1] 10

> # note local_result is defined within the function

> # therefore it doesn’t exist globally:

> local_result

Error: object’local_result’ not found

Note that, although we indent the code, this is not required. Indentation improves
readability, but it does not have any other function in [R].

Sometimes you onlywant your function to perform the action if a certain condition
or conditions are satisfied, for instance if the result of themultiplier is zero, youmight
want to add 1:

> multiplier_not_zero<- function(input, times)

+ {

+ local_result<- input*times

+ if(local_result==0)

+ {

+ local_result<- 1

+ }

+ return(local_result)

+ }

> multiplier_not_zero(input = 3, times = 0)

[1] 1
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When there are multiple conditions you want to be satisfied before your function
should run you can make combinations using the “and” and “or” operators which
are written as “&” and “|” respectively. For example:

• | : if(x1 <= 1|x1 >= 15 ) { action }: or-statement
• & : if(x1 >= 1&x1 ∗ x1 < 10) { action }: and-statement

2.2.2 Data: Input and Output

2.2.2.1 Loading Data into [R]

Next, we discuss how you get your data in [R] to handle them. How to get your data
into [R] depends on the format in which the data is stored. Most data formats (*.txt,
*.RData, *.csv) can be easily included:

> # *.txt file: are there variable names: header=T

> # what separates different values? sep=‘’

> my_dat1 <- read.table(‘directory/filename.txt’,

+ header, sep=‘’)

> # *.RData file

> my_dat2 <- load(‘directory/filename.RData’)

> # *.csv file

> my_dat3 <- read.csv(‘directory/filename.csv’,

+ header, sep=‘’)

For files with other extensions, you might need an additional package to load the
data, for instance the package ‘foreign’ or ‘Hmisc’ for SPSS and SAS.

To prevent yourself from typing in the same directory repeatedly and having very
long calls for your data, you can also set (and get) your working directory as follows:

> setwd(‘the/directory/you/want/to/work/in’)

> getwd()

[1] ‘the/directory/you/are/working/in’

Knowing in which directory you are working saves you an elaborate search in all
your files and folders when you saved an [R] object, which can be done as follows:

> # *.txt file

> write.table(‘directory/filename.txt’, header,

+ sep=‘’)

> # *.RData file

> save(‘directory/filename.RData’)

> # *.csv file

> write.csv(‘directory/filename.csv’, header, sep=‘’)
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2.2.2.2 Simulate Data

When you do not have any data but you do want to practice with [R], or more likely,
you want to test a new method it is useful to create data. [R] has plenty functions
to generate (random) data. We put random between brackets because [R] will never
provide you with fully random data, simply because your computer has a set of rules
to create these data and therefore it cannot be completely random. Although this is
an interesting topic, the point we want to make is that you can get the exact same
‘random’ data by fixing the begin point of the algorithm which creates the data using
‘set.seed(number)’. For instance, if you want 3 draws from a normal distribution
with mean = 10, and standard deviation = 2:

> set.seed(64568)

> rnorm(n=3, mean=10, sd=2)

[1] 10.468961 8.574238 9.754691

You will see that if you insert this code that you will have the exact same three
numbers. Besides generating data using ‘rnorm()’ you can get other distributional
information about the normal distribution using either

• dnorm(x, mean, sd): x is a scalar, the function returns the density of normal dis-
tribution at x

• pnorm(x, mean, sd): like above, though this function returns the lower tail proba-
bility

• qnorm(x, mean, sd): opposite of the above one: x is the probability and the function
returns the quantile belonging to probability x

Similar functions exist for many distributions. Because different distributions require
different parameters, the arguments within the function differ, though the idea is
similar.

2.2.3 For Loop

One of the tools which is common in many program languages is the for loop. The
for loop in [R] is a simple function to go line by line through the data. Because it is
a simple function it makes life easy when doing for instance simulations, however
it also makes life slow. The for loop in [R] has the downfall that it can be rather
slow when working with complex computations in combination with large datasets.
In case of complex computations, you might want to look into the plyr package,
which has some integrated functions which also perform computations on every line
of data, though do it more quickly. For now, let us have a look at the for loop.
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The function works as follows:

> # for loop example

> # if you want to store the result

> # you have to define the result outside the for loop:

> row_average <- c()

> for(i in 1 : nrow(x7))

+ {

+ row_average[i] <- mean(x7[i,])

+ print(row_average[i])

+ }

[1] 2

[1] 3

> row_average

[1] 2 3

First note that you should store the result of the computation performed by the loop
in a variable which will not be over-written. Second, objects defined within the for
loop are accessible outside the local scope of the for loop. Apart from the fact that
this is just a very simply example to illustrate for loops, the same result could have
been obtained alternatively by

> (row_average <- rowMeans(x7))

[1] 2 3

> # putting brackets around an assignment

> # tells [R] to print the object

>

> # example of one of plyr functions

> adply(.data=x7, .margins=1, .fun=mean)

X1 V1

1 1 2

2 2 3

where the adply function returns a data frame with X1 the variable which indicates
the row numbers and V 1 being the averages per row.

2.2.4 Apply Function

An example of a functionwhich is alreadymore efficient but alsomore advanced than
the for loop is the ‘apply’ function. It is incorporated in the [R] base, so no additional
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packages are required. The function loops through either arrays ormatrix-like objects
(as long as it has more than one dimension). The function works as follows:

> # example of apply function

> # apply(array, margin, function)

> apply(x10, 1, mean)

[1] 2.166667 # mean of the 2 rows

> apply(x10, 2, sum)

[1] 5 3 5 # sum of each column

> apply(x10, 3, FUN=function(x)

+ {return(x*2)})

[,1] [,2]

[1,] 2 8

[2,] 4 2

[3,] 6 4

> # per slice the elements are multiplied by 2,

> # column 1 = slice 1, column 2 = slice 2

The apply function can deal withmany preprogrammed functions. You can also write
your own functions. When you get the hang of these functions, you also might want
to look of variations of the apply function (among others):

• mapply(function, arguments): multiple argument version of apply,
• lapply(x, function): like apply, but it returns a list as result, of the same length as
the array you put in,

• sapply(x, function): an easier function which does the same as lapply,
• tapply(x, margin, function): applies a function to each cell of a ragged array.

2.2.5 Common Used Functions

You do not have to program every single function you can think of yourself, because
many of the simple descriptives are already included in [R], for instance:

• mean(x, …): x is a vector (other storages will be vectorized), the function returns
arithmetic mean,

• sd(x, …): like the previous, returning the standard deviation,
• var(x, …): like the previous, returning the variance,
• cov(x, …): x consist of two dimensions, the function returns the covariance,
• corr(x, …): like the previous, returning the correlation,
• table(x, …): this function returns a frequency table
• max(x, …): x is an arbitrary object, the function returns highest value,
• min(x, …): like the previous, returning the lowest value.
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amongmanymore. Fill in your object of interest between the brackets and [R] returns
the answer in no time. Besides these numerical descriptives of your data, [R] allows
you to inspect your data graphically with different kind of plots:

• plot(x, …): add type=‘l’ such that a line will connect the data points
• lines(x, …): add more lines to your plot
• points(x, …): add more data points to your plot
• hist(x, …): histogram
• boxplot(x, …)
• barplot(x, …)

Even many analyses are ready-to-use in [R], so no additional programming is
required to do:

• anova(x, …): x containing the results returned by a model fitting function (e.g., lm
or glm). The function can do both model testing as well as model comparisons.

• glm(formula, data, …): to fit generalized linear models
• lm(formula, data, …): to fit linear regression
• princomp(formula, data, …): to do principle component analysis
• t.test(x, …): the function wants at least one vector, additional arguments can be
included to test one or two sided etc.

2.2.6 Packages

When you want to do some analysis which is not included in [R] base, you either
have to program it yourself or see if others have done it before you (and made it
publicly available). If the latter is the case you can include this code as follows:

> install.packages(‘plyr’)

which will install the plyr package, which we already discussed above. What hap-
pens next is a pop-up window to select the server it should download the package
from. Select your country (or something close) to complete the installation of the
package. In order to use the package you have to attach the package to your working
environment as follows:

> library(plyr)

Each time you open [R] you do have to attach packages again, but you do not have
to install them every time. Thus, you do not want to put ‘install.packages()’ in your
script (but in the console), however you do want to include ‘library()’ in your script
so when you run your entire script it will automatically load the packages.
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2.2.6.1 Useful Packages

There are a lot of packages available, not all of them of very good quality. Here we
shortly list packages that are useful and/or used throughout the book

• digest: allows users to easily compare arbitrary [R] objects by means of hash
signatures

• directlabels: adds nice labels to (the more fancy) plots
• foreign: allows you to include data files from other software programs such as
SPSS

• GGally: to make a matrix of plots produced by ggplot2
• ggplot2: to make pretty plots
• gridExtra: to arrange multiple grid-based plots on a page
• lattice: to make pretty plots
• lme4: to do multi-level analyses
• MASS: functions and datasets to support Venables and Ripley (2002)
• plyr: for faster for loops
• poLCA: to perform latent structure analysis
• psych: for multivariate analysis and scale construction using factor analysis, prin-
cipal component analysis, cluster analysis and reliability analysis

• reshape2: to transform data between wide and long formats
• xtable: export tables to LaTeX or HTML

2.3 Mastering [R]

This is of course a very short introduction in [R] which allows you to do the very
basics of data analysis and hopefully understand what the authors of the following
chapters are doing. There is only one way to truly learn [R], which is hands on.
Practice (eventually) makes perfect, so do not be discouraged when you are faced
withmany errors, warnings or unexpected results. There is an extensive help function
in [R]: if you do not know how a function works, you can get information by putting
it within the help function or, put one or two question marks before the name of the
function.

> help(plot)

> ?plot

>??plot

One question mark will provide you with the web page with information about
the particular function including examples. Two question marks will give you an
overview of closely related topics. When these pages do not provided you with the
information you need or understand, there is also a large community of [R] users,
which have answered many questions at the many forums out there. Do not be afraid
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to plug your error, warning, or problem in a search engine on the Internet, because
you will be amazed about the amount of information, examples and ready-to-use
solutions that is out there, whether you have beginner questions or more advanced
problems.

2.3.1 Further Reading

Belowwe listed some readings, which are either focused on introducing and working
with [R], or on statistics using [R], both have proven to be useful.

• http://cran.r-project.org/doc/manuals/R-intro.pdf: A users guide to [R] in which
the topics covered in this chapter are discussed in more details, including some
code to work with

• http://cran.r-project.org/doc/contrib/Torfs+Brauer-Short-R-Intro.pdf: This arti-
cle has besides what is mentioned in this chapter, an additional overview of some
integrated functions

• Discovering statistics using R by Field et al. (2012): This is more a stats book than
a [R] manual, but it does what you expect: it explains statistics in [R]

• Bayesian computation in [R] by Albert (2009): Similar story to the above one,
though dealing with Bayesian analysis

• Introduction to Applied Bayesian Statistics and Estimation for Social Scientist by
Lynch (2007): different angle, similar in content to the above one
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Chapter 3
Descriptive Statistics, Graphs,
and Visualisation

Joanna Young and Jan Wessnitzer

The greatest value of a picture is when it forces us to notice what
we never expected to see.

–John Tukey

Abstract Good exploratory data analysis starts with the ability to describe and plot
a data set. Exploratory data analysis has taken flight in recent years and there there is
a pressing need to use the right tools to express the data correctly. In this chapter, we
introduce basic descriptive statistics, principles of visualisation, and novel plotting
methods using the [R] package ggplot2. We illustrate the grammar of graphics of
ggplot2 with examples of commonly used graphs.

3.1 Introduction

Our relianceondata has increased considerably in the last decade, as newmethods and
technologies have emerged to capture, store and process a range of different types
of information. These methods are now being integrated into everyday software
and products and they have become more accessible. Capturing data and making
informed decisions based on the results is fast becoming ubiquitous: at home, smart
meters assess how we consume electricity; in business, marketing analytics and
business processes are optimised based on data; in government, policies are formed
from vast amounts of data; in advertising, products are recommended based on user
interactions.
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Managing this flow of information raises several important challenges and issues:
the volume of data we are producing is increasing rapidly and the rate at which we
are generating it is still rising; storage solutions need to be cheap and accessible;
tools to process and display the data need to be easy to learn and use. Last but not
least, the information has to be displayed in a way that is relatively easy to interpret.
It is this final aspect that we will focus on in this chapter, introducing the reader to a
number of ways to visualise and interpret data using descriptive statistics and graphs.
As with other chapters in this book, examples using the free open source software1

[R] will be used and provided.

3.1.1 Why Do We Visualise Data?

The process of displaying basic but informative quantitative information in a visual
format has been in existence for centuries: the Turin papyrus map, a detailed draw-
ing displaying topographic and geological information dating from 1150BCE, was
created by the ancient Egyptians, and the Romans developed accurate maps such
as the Tabula Peutingeriana, a map of the Roman road network that dates from the
5th century AD. Fast forward to 18th century Britain and the evolution of statistical
graphics was experiencing something of a Cambrian explosion. By the latter half
of the century, with the industrial revolution well underway and a rising need to
respond to the rapidly changing social and economic conditions, datasets were being
generated for economic, medical and geographical purposes.

One of the first individuals to produce notable statistical graphics was William
Playfair, who published The commercial and political atlas in 1786, a volume which
contained over 40 time series plots and is the publication credited with inventing
the bar chart. Prior to publication, datasets and information were being recorded and
stored in tables that could be referred to later and used to inform decisions. Playfair
recognised that the interpretation of financial and economic data in this tabular format
was inefficient and information could be easily forgotten, so he invented anewmethod
of information communication: visualisation of data through statistical graphics.
Playfair was a pioneer in the then embryonic field of data visualisation and he is
credited with inventing the line graph, bar chart and the pie chart, all of which are
commonly used today.

The 19th century saw other major contributors to this field. In medicine, John
Snow’s On the Mode of Communication of Cholera, published in 1853, included a
graphic showing cases of cholera in a region of London which detailed both quan-
titative and spatial information. This image elegantly demonstrated how graphics
could be used to highlight key pieces of information, in this case it identified the
water pump that was the source of the cholera outbreak. The use of statistics to
inform medical practitioners and policy makers was taken even further by Florence
Nightingale, whose polar area diagrams (also known as rose diagrams) were created

1http://www.r-project.org/.

http://www.r-project.org/
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to quantitatively show the various causes of death of soldiers in the CrimeanWar. Her
diagrams revealed that themajority of soldiers were not dying from direct war related
casualties, but overcrowding and poor sanitation. As a direct result of Nightingale’s
work, death rates in military hospitals were drastically reduced.

Descriptive statistics did not see many major advances in the early 20th century,
but a renaissance began in 1969 with John Tukey’s invention of the box plot and the
field has expanded rapidly since. The advent of the Internet and the rapid generation
of data in so many aspects of daily life now underline a requirement for efficient and
accurate ways to visualise and interpret complex information. Human perception is
biased towards visual information processing; we do not facilitate communication by
presenting people with tables of numbers or randomly organised groups of images,
but instead we can use images to demonstrate patterns and relationships in data that
would otherwise be difficult to extract. A fairly complete history of statistical graphs
and data visualisation can be found in Friendly and Denis (2001).

In the remainder of this chapter, we define exploratory analysis and we explore
what makes efficient graphs for communicating the data clearly. The grammar of
graphics and the [R] package ggplot2 will be introduced and example code will
be presented.

Fig. 3.1 A typical data science process
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Table 3.1 Statistical sample properties of Anscombe’s quartet

Sample property Value

Mean x̄ 9

Variance of x 11

Mean ȳ 7.50 (to 2 decimal places)

Variance of y 4.122 or 4.127 (to 3 decimal places)

Correlation between x and y 0.816 (to 3 decimal places)

Linear regression line y = 3.00+ 0.500x (to 2 and 3 decimal places,
respectively)

3.2 Descriptive Statistics and Exploratory Data Analysis

A typical data science process is shown in Fig. 3.1 which illustrates that graphs
and visualisation have two important roles: exploration and communication. The
ultimate aim of any visualisation is to communicate the data clearly without any
bias, distortion or unnecessary information.

For statisticians and non-statisticians alike, determining what analysis and statis-
tical tests to undertake is a difficult question. Indeed, before making any inferences
from data, it is essential to examine all your variables and graphing is a fundamental
part of your analysis. Exploratory data analysis fulfills a range of important steps
in building models and algorithms. First and foremost, visually exploring your data
facilitates catching mistakes (data screening), seeing patterns in your data, recognis-
ing violations of statistical assumptions, and generating hypotheses.

Complementing basic numeral summaries of data with basic graphical summaries
can provide a great deal of additional information. To illustrate this point, Francis
Anscombe, in 1973, constructed four datasets in an attempt to demonstrate that
relying on descriptive summary statistics alone can bemisleading.More importantly,
he demonstrated the importance of graphing data.

Anscombe’s quartet consists of four datasets with almost identical2 descriptive
statistics, including mean (to a minimum of 2 decimal places in the case of y)
(x̄ = 9.0, ȳ = 7.50), sample variance (SD(x) = 11.0, SD(y) = 4.12), correlation
between x and y in each case (0.816 to 3 decimal places), and linear regression line
in each case (y = 3.00 + 0.500x, to 2 and 3 decimal places respectively). The summary
statistics for all four data sets can be seen in Table3.1.

However, by graphingAnscombe’s quartet (Fig. 3.2), it becomes clear that a linear
regression is probably a reasonable fit for set 1. However, a polynomial regression
fit is more appropriate for set 2. By plotting sets 3 and 4, the effects of outliers on
descriptive statistics is clearly demonstrated. In both cases, the fitted regression line
is “skewed” by a single outlier. The outliers could be genuine outliers or they could be

2To at least two decimal places.
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Fig. 3.2 Anscombe’s quartet

erroneous data points, e.g., typos during data entry, but they highlight the importance
of screening your data visually.

3.3 Principles of Visualisation

Creating effective data visualisations is challenging. A first step is to identify the
purpose of your graph, i.e., what question is to be answered, and how can the graph
help the reader understand your message? When deciding which type of graph to
use further depends on the variables themselves (e.g., discrete versus continuous,
univariate versus bivariate, etc.). Next steps often begin by drawing a first graph,
then modifying the graph to be clear, non-distorting and well-labeled. A final step
would be the dissemination of the graph (e.g., include it in a report or publication).

In his book The Visual Display of Quantitative Information, Edward Tufte defines
‘graphical displays’ and principles for effective graphical display as follows: “Excel-
lence in statistical graphics consists of complex ideas communicated with clarity,



42 J. Young and J. Wessnitzer

precision and efficiency” (Tufte 2001). A good graph should show the data, facilitate
the viewer’s understanding of the data, and induce the viewer to think about the sub-
stance rather than some other factor. Furthermore, it should avoid distorting what the
data have to say, or present too much in a small space. Rather, a graph should make
data more coherent, and encourage the viewer to compare different pieces of data,
perhaps even unraveling levels of data from a broad overview to a finer structure. The
graph should have clearly labelled axes and provide a meaningful, descriptive figure
caption, provide sufficient information for the graph to be interpretable as a whole
without detailed references to accompanying text by using legends and/or footnotes
as appropriate. “Like good writing, good graphical displays of data communicate
ideas with clarity, precision, and efficiency. Like poor writing, bad graphical displays
distort or obscure the data, make it harder to understand or compare, or otherwise
thwart the communicative effect which the graph should convey” (c.f., Friendly and
Denis 2001).

Tufte proposed a graphical efficiency measure that he dubbed the Data-Ink ratio
defined as

ink used portraying data

total ink used
(3.1)

This ratio represents the proportion of a graphic’s ink devoted to the non-redundant
display of information. This ratio is equal to 1.0minus the proportion of a graphic that
can be erased without loss of information. The graph should only contain necessary
information and avoid so-called “chart junk”.

Detailed guidelines are outlined in Kelleher and Wagener (2011), Rougier et al.
(2014) and, with these principles in mind, the next section describes a process of
creating graphs.

3.4 ggplot2—A Grammar of Graphics

In his landmark book The Grammar of Graphics, Leland Wilkinson describes how
graphics can be broken down into abstract concepts (Wilkinson 2005). Wilkinson’s
grammar tells us that a statistical graphic is amapping fromdata to aesthetic attributes
of geometric objects and describes the basic elements that make up a graph. This
approach of handling elements of a graph separately and building the features up
in a series of layers allows for versatility and control, building step by step towards
powerful and informative graphs.

The grammar in Wickham’s [R] package ggplot2 defines the components of a
plot as: a default dataset and set ofmappings from variables to aesthetics, one ormore
layers, with each layer having one geometric object, one statistical transformation,
one position adjustment, and optionally, one dataset and set of aesthetic mappings,
one scale for each aesthetic mapping used, a coordinate system, and the facet spec-
ification (Wickham 2010). These high-level components are quite similar to those
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of Wilkinson’s grammar (Wickham 2010) and will be explained in the remainder of
this chapter.

Several [R] graphing packages implement a grammar of graphics. Examples
include ggplot2, ggvis, ggmap, ggdendro, ggsubplot, etc. Here, we will
focus on ggplot2.

3.4.1 ggplot2

ggplot2 is a large, versatile data exploration and visualisation package and a
complete introduction is beyond the scope of this chapter. The reader is encouraged
to refer to Wickham (2010) for a comprehensive introduction.

To install and load ggplot2, run the following:

# install ggplot2 package

install.packages("ggplot2")

# load ggplot2

library(ggplot2)

3.4.1.1 Layers

A ggplot graph consists of two necessary components—a ggplot object and at
least one layer. For example, in order to create Fig. 3.2a, we first need to define the
data vectors and create a dataframe from these vectors. Then, the plot is instantiated
by first creating a ggplot object and then layers are added to display the data:

# data vectors - Anscombe’s first dataset
x1 <- c(10.0,8.0,13.0,9.0,11.0,14.0,6.0,4.0,12.0,7.0,5.0)
y1 <- c(8.04,6.95,7.58,8.81,8.33,9.96,7.24,4.26,10.84,4.82,5.68)

# create dataframe from vectors - ggplot2 requires dataframes
anscombe <- data.frame(x1,y1)

# create the ggplot
p <- ggplot(data=anscombe, aes(x=x1, y=y1)) +

# add layer with data points
layer(
geom="point"

) +
# add layer with regression line
layer(
geom="smooth",
method="lm",
se=FALSE

)
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# display the plot
p

The plot is instantiated by first creating a ggplot object, where data specifies
the dataframe and aes maps the variables to the axes of the plot. Then, layers are
added to display the data. The aes() defines the “how”—how data is stored and
how data is split. Then we add two layers. First, we plot the data points and then we
add a layer displaying a linear regression line. The geom is the “what”—what the
data looks like (point or line in this example). The + operator is used to construct
further specifics by appending layers and connecting the “how” (aesthetics) to the
“what” (geometric objects).

However, many wrapper functions exist that define layers for commonly used
graphical aspects by providing short-hand forms. For example, an alternative but
equivalent way of plotting a scatterplot of Anscombe’s first data set is:

# create the ggplot

p <- ggplot(data=anscombe, aes(x=x1, y=y1)) +

geom_point() +

geom_smooth(method=lm, se=FALSE)

# show the graph

p

A schematic illustrating the structure of ggplot2 plots is shown in Fig. 3.3.
A layer is defined by an R data frame and its aesthetic properties (data+aes),
a geometric object to visually represent the data (geom), and an optional position
adjustment to move overlapping geometric objects out of their way (position)
and a statistical approach to summarize the rows of that frame (stat).

3.4.1.2 Coordinates, Scales, Facets, and Themes

Formatting plots and graphs for publication requires setting coordinates, overriding
default perceptual mappings, and fine-tuning parameters of axes and legends. For
these reasons, besides layers, a plot also has a coordinate system, scales, a faceting
specification (shared among all layers in the plot), and themes.

3.4.1.3 Coordinate System

The coordinate system of a plot (together with the x and y position scale) determines
the location of a geom, for example, whether the data is presented in a Cartesian or
polar coordinate system.
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3.4.1.4 Scales

Scales affect the data+aes defined in the layers of a plot. A scale affects the
mapping of an attribute of the data into an aesthetic property of a geom (e.g., a
geom’s position along the y-axis, or a geom’s fill color in a color space).

3.4.1.5 Facets

Adding a facet specification to a plot generates the same plot for different subsets of
data. It specifies how the data should be split up and how the data should be arranged
(e.g., as a grid). Figure3.2 provides an example of the use of facets.

Fig. 3.3 A schematic illustrating the structure of plots. A layer is defined by an R data frame and its
aesthetic properties, a geometric object to visually represent that summary, and an optional position
adjustment to move overlapping geometric objects out of their way and a statistical approach to
summarize the rows of that data frame. Scales affect the data+aes defined in the layers of a plot
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3.4.1.6 Themes

ggplot2 provides a theme function which controls the presentation of non-data
elements; for example, text formatting of axis labels, graph titles etc. can be set
using theme(). A good overview can be found on.3

3.4.1.7 Saving Your Work

Saving your work to be included in reports, presentations, etc. is simply done by
calling ggsave() and specifying a file name. The file format is determined by
the file extension provided (c.f., ?ggsave for details). For more info the reader is
referred to the ggplot2 documentation.4

# save graph as PNG file

ggsave(file="anscombe1.png")

3.5 Case Study

In this section, data from a case study (outlined in Chap.1) investigating the usabil-
ity and performance of the Mango smart watch is evaluated and visualised using
ggplot2.

The sales team has been subdivided into two sub-teams, Team A is continuing
with solely using computers whereas Team B proceeds with using the Mango as a
means to receive email notifications. Thus, the data contains every subject’s ID and
their assignment to one of the two teams.

In order to evaluate the usability and performance of theMango, teamBwas asked
to fill out a System Usability Scale (SUS, Brooke 1996, 2013) survey every month
over a period of three months. The SUS survey is a standard method for measuring
the subjective satisfaction of the participants, whether the participants were able to
achieve their objectives and how efficiently they could do so. The questionnaire asked
the salespeople to quantify their experiences with the Mango by rating the following
statements on a five-point Likert scale (from strongly disagree to strongly agree):

1. I think that I would like to use this system frequently.
2. I found the system unnecessarily complex.
3. I thought the system was easy to use.
4. I think that I would need the support of a technical person to be able to use this

system.
5. I found the various functions in this system were well integrated.

3http://docs.ggplot2.org/dev/vignettes/themes.html.
4http://docs.ggplot2.org/dev/.

http://dx.doi.org/10.1007/978-3-319-26633-6_1
http://docs.ggplot2.org/dev/vignettes/themes.html
http://docs.ggplot2.org/dev/
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6. I thought there was too much inconsistency in this system.
7. I would imagine that most people would learn to use this system very quickly.
8. I found the system very cumbersome to use.
9. I felt very confident using the system.
10. I needed to learn a lot of things before I could get going with this system.

Finally, the email response times for both teamsweremeasured over threemonths.
Average monthly email response times by members of 2 sales teams (between sub-
jects) over 3months (within subjects) are available.

The first step in exploratory data analysis is to summarise each variable in the
dataset using both numerical and graphical summaries. Identifying the types of vari-
ables (e.g., quantitative or categorical) is important as some statistical analyses are
only appropriate for specific types of variables. In [R], basic numerical summary
statistics can be obtained with summary().

Univariate analysis involves describing the distribution of a single variable, includ-
ing its central tendency (e.g., the mean, median, and mode) and dispersion (e.g., the
range and quantiles of the data-set, and measures of spread such as the variance,
standard deviation, range, and interquartile range (IQR)). The shape of the distri-
bution may also be described via indices such as skewness and kurtosis but may
also be described visually using probability density functions. Characteristics of a
variable’s distribution may also be depicted in graphical or tabular format, including
histograms and stem-and-leaf displays. In the remainder of this section, we will plot
the case study data using many of these graphs. The code for all the examples is
available in the online repository which can be found at SPRINGERURL.

Fig. 3.4 Bar chart
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Fig. 3.5 Pie chart

3.5.1 Team Size

The researchermight first considerwhether the size of the teams is similar. Figures3.4
and 3.5 show the team sizes represented using a pie chart and a bar chart respectively.
Both figures enable us to answer this readily, but what if we want to ascertain the
difference in size? How can we accurately describe such information with graphs?

The bar chart is created as follows:

# bar chart

p1 <- ggplot(base, aes( x=Team , fill = as.factor(Team))) +

scale_fill_grey(name="team") +

geom_bar(width=.5) +

ylab("salespeople")

The pie chart is a bar chart in a polar coordinate system:

p2 <- ggplot(base, aes(x ="Team", fill = as.factor(Team)) ) +

scale_fill_grey(name="team") +

geom_bar() +

coord_polar(theta ="y")

As previously discussed, representing information accurately is important. Con-
sider the bar and pie charts above, Figs. 3.4 and 3.5 respectively, and answer the
simple question does Team A have more or less than twice as many members than
Team B? Put in other words, does Team A consist of more or less than 66.6% of
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all salespeople? Which graph facilitates this information better? This simple infor-
mation can be extracted more readily from a bar chart. Bar charts indeed facilitate
comparisons better than pie charts. Pie charts represent percentage data as pie slices
(using angles, sizes, and non-orthogonal lines). Generally speaking, pie charts are not
as effective as either bar or error-bar graphs since they do not facilitate comparison
of the relative size of similar-sized slices. Furthermore, many small slices become
difficult to label and annotate (but this is also true for other types of graphs). Bar
charts are considered more appropriate for illustrating quantities, such as totals or
percentages for categories or the means of different groups or variables. The x-axis
typically shows the categories, groups or variables, the y-axis shows the quantity
(frequency, percentage, or a statistic such as a mean).

3.5.2 SUS Scores

The researcher may want to ascertain the usability of the Mango by analysing the
responses of the salespeople to the SUS survey items. A standard approach for
interpreting a SUS survey is described in Lewis and Sauro (2009). In summary, the
responses of every user are aggregated into a final score as follows: for positively-
worded items (1, 3, 5, 7 and 9), the score contribution is the scale position minus 1.
For negatively-worded items (2, 4, 6, 8 and 10), it is 5 minus the scale position. To
get the overall SUS score, multiply the sum of the item score contributions by 2.5.
Thus, SUS scores range from 0 to 100 in 2.5-point increments. Note, the scores are
not percentages! Typically, a score of around 70.0 is considered average (Lewis and
Sauro 2009).

After calculating the SUS scores, the researcher may now wish to plot the SUS
scores and ascertain whether the scores have changed over the three month period.
The following code plots as a bar graph with error bars:

p <- ggplot(SUS, aes(x=Time, y=Mean, fill=as.factor(Time)))
p <- p + xlim(0.0, 4.0) +
geom_bar(stat="identity", width=.5) + # aes(fill = SUS$Time)) +
geom_errorbar(aes(ymin=Mean-SD, ymax=Mean+SD), width=.3) +
scale_x_continuous(breaks=c(1.0,2.0,3.0)) +
scale_fill_grey(name="month") +
xlab("Time (month)") +
theme_minimal()

Over the three month period, the mean SUS scores have increased as shown in
the bar chart in Fig. 3.6. The error bars represent the standard deviations.

The bar chart does not tell us much about the distribution of the data. However, bar
charts are commonly used in academic studies but rarely included are scatterplots,
box plots, and histograms that allow readers to more critically evaluate continuous
data.
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Fig. 3.6 SUS scores of
Mango wearers over a 3
month period
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Instead of just showing themeans and standard deviations in the bar chart, boxplots
show other descriptive statistics, including the median, the first and third quartiles,
minimum and maximum values, and thus giving us a better understanding of the
spread of the distributions of the SUS scores.

The SUS scores can be compared using boxplots, as shown in Fig. 3.7, as follows:

p <- ggplot(SUS_sums, aes(x=Time, y=Score))

p <- p + xlim(0.0, 4.0) +

geom_boxplot(aes(fill=as.factor(Time))) +

scale_x_continuous(breaks=c(1.0,2.0,3.0)) +

scale_fill_grey(name="month") +

xlab("Time (month)") +

theme_minimal()

The core element of the boxplot is the box whose length/height is the IQR
(interquartile range) but whose width is often arbitrary (although some versions
use the width to represent the sample size).

A boxplot allows to observe key values, such as the median, the 25th and 75th
percentiles, and, any potential outliers and their values (Tukey), or the minimum and
maximumvalues (Spear). Thewhiskers, in the twomost commonly used conventions,
extend to the most extreme data point no further than 1.5 * IQR from the edge of the
box (Tukey) or to the minimum and the maximum values (Spear) (Krzywinski and
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Fig. 3.7 Box plots of SUS
scores
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Altman 2014). Furthermore, the boxplot shows how tightly the data is grouped and
whether it is symmetrical around the median or skewed.

Many variations of boxplots exist: notched boxplots, violin plots
(geom_violin()), Tufte’s minimal quartile plot (Tufte 2001; Wickham and Stry-
jewski 2011). Using boxplots in communications should be carefully considered as
the general public is often not familiar with this type of graph.

However, the boxplot does not show variation in between the key values that it
shows. Another alternative is to show the scores as histogramswith overlayed density
plots. A histogram looks similar to a bar chart but its horizontal axis is continuous
whereas a bar chart may show gaps between bars (as its horizontal axis represents
different categories). The histogram facilitates the discovery of the underlying fre-
quency distribution (or shape) of a set of continuous data.

First, the histograms are created:

# create histograms of SUS scores over a three-month period
bin_width <- 5
p <- ggplot(SUS_sums, aes(x=Score)) +

geom_histogram(data=SUS_sums, aes(
y = ..density.., group=Time), binwidth=bin_width, alpha = 0.5

)

Then, the layer containing the density plots are added:

p <- p + geom_density(data=SUS_sums, aes(

y = ..density.., group=Time

), alpha = 0.5)
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Last, the graph is formatted:

p <- p + scale_fill_grey(name="time") +

scale_color_grey() +

theme_bw() +

scale_y_continuous(breaks=c(0.0,0.05,0.1)) +

facet_grid(Time ˜ .)

3.5.3 Response Times

The teams’ response times are compared next. We would like to convey the teams’
performances on a single graph without facets whilst including the factor month.
Plotting a boxplot of the response times for both teams, seen in Fig. 3.9, is achieved
as follows (Fig. 3.8):

p1 <- ggplot(email, aes(x=as.factor(Team), y = responseTime)) +

geom_jitter() + #coord_cartesian(xlim = c(-100, 10)) +

geom_boxplot(aes(fill=as.factor(Time))) +

xlab(" ") +

0.00

0.05

0.10

0.00

0.05

0.10

0.00

0.05

0.10

1
2

3

60 80 100
Score

de
ns

ity

Fig. 3.8 Facetted histograms with density plots of SUS scores
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Response times of teams over 3 months

Fig. 3.9 Response times for each team by month

ylab("response time (s)") +

ggtitle("Response times of teams over 3 months") +

scale_fill_grey(name="month") +

scale_color_grey() +

theme_bw()

Figure3.9 show that the response times of both teams decrease over a 3-month
period. However, it clearly shows that the Mango users managed better response
times. To complement the boxplots, another layer was added containing the data
points using the line geom_jitter().

Looking at the graphs, the researcher may now wish to confirm statistically
whether the SUS scores increased significantly or whether the time responses
decreased significantly over the 3-month period.

In order to avoid violating any assumptions of NHST statistical tests, it is rec-
ommended to test for normality. Many tests (Student’s t-test, analysis of variance)
require that the data is normally distributed and a common graph to check for normal-
ity is a quantile-quantile scatterplot. The so-called Q-Q plot graphs the theoretical
quantiles of a normal distribution against the quantiles from a data sample. The points
in the Q-Q plot will approximately lie on the line y = x if the two distributions being
compared are similar.
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Fig. 3.10 Quantile-quantile
plot

290

295

300

305

310

−2 −1 0 1 2

theoretical

sa
m

pl
e

In ggplot2, the statistical transformation stat_qq() provides a simple way
of producing a Q-Q plot (see Fig. 3.10):

# get email response times of Team A during month 3

S <- email[email$Time==3,]

S <- S[S$Team=="Team A",]

# plot quantile-quantile plot

p <- ggplot(S, aes(sample=S$responseTime)) +

stat_qq() +

theme_bw()

3.5.4 Model Predictions

The researcher may want to predict the response time for Mango users in month 4.
Response variables (the variables we want to predict, i.e., the response time) with
the use of explanatory variables (i.e., month). Simple regression assumes a linear
relationship between the independent variables (or explanatory variables) and the
dependent variables (or response variables). Plotting the response times with a linear
regression model is achieved as follows:

p <- ggplot(email,aes(x=Time,y=responseTime)) +

geom_point() +

xlim(0,5) +
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Fig. 3.11 Model predictions

stat_smooth(method="lm",fullrange=TRUE,level=0.95) +

facet_grid(˜Team)

In today’s data-intensive world, predictive analysis methods are important in
decision-making processes. Such predictive analysis involves searching for mean-
ingful relationships between variables and describing these relationships with the
use of statistical models. A model’s value is synonymous with the quality of its
predictions. In R, the model fit can be summarised as follows (see Fig. 3.11):

fit <- lm(responseTime ˜ Time, data=email)

summary(fit)

3.6 Summary

The goal of data visualisation is two-fold: to explore data and to effectively com-
municate information. Indeed, key discoveries were enabled through visualisation
facilitating the discovery of relationships and patterns,making comparisons or under-
standing causality. Modern information graphics or infographics are prime examples
of presenting complex information clearly.
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Principles of data visualisation were discussed. It is important to show your data,
to avoid any distortion, to remove any distractions, and to perfect the little (but impor-
tant) details (labels, color palettes, tick marks, title, font size,...) etc. Graphs should
be labelled, annotated and have a caption such that the graph could be understood
on its own.

A grammar of graphics describes the individual components of a graphic and
allows the piece-by-piece building of graphs. In this chapter, the grammar of the
[R] package ggplot2 was introduced and the reader is encouraged to read through
the documentation when building graphs. The grammar of ggplot2was illustrated
with a selection of examples that explore different components and their interactions.

Visualisation serves two important roles: exploration and communication. In both
use cases, ggplot2 allows to quickly produce exploratory graphs and iteratively
improve graphs and data communication.
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Chapter 4
Handling Missing Data

Thom Baguley and Mark Andrews

Abstract This chapter provides an overview of the topic of missing data. We intro-
duce themain types ofmissing data that can occur in practice and discuss the practical
consequences of each of these types for general data analysis. We then describe gen-
eral and practical solutions to the problem of missing data, discussing common but
flawed approaches as well as more powerful approaches such as multiple imputation,
which is an approach to dealingwithmissing data that is suitable formany—although
not all—situations. Finally, we consider the topic of missing data as part of statistical
inference more generally, and how it can be handled in both maximum likelihood
and Bayesian approaches to inference.

4.1 Introduction

Missing data poses a challenge for almost every field of research—and particularly
for research that involves data from human participants. Data might be missing for
a large number of reasons. These include incomplete responses from participants,
bugs in software and equipment failure. Data may also be missing as a deliberate
feature of the design of a study (e.g., in a large project where collecting data on all
measures is too expensive).

The starting point for dealing with the problem of missing data is to understand
why it is a problem. One of the fundamental ideas in statistics is that the accuracy
of an estimate is a function of two properties: precision and bias. Missing data
is potentially disastrous for both of these properties. If you lose data you almost
inevitably reduce the precision with which you measure what you are interested in.
Worse still, more often than not, the processes that cause you to lose data are not
completely random and therefore will also introduce bias. In certain applications of
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statistics, bias is negligible (e.g., the usual estimate of the standard deviation as the
square root of the unbiased variance estimate has a small bias that is negligible in large
samples and usually inconsequential in small samples). Unfortunately, missing data
also has the potential to introduce considerable distortions into an analysis—ones
that can plausibly alter the magnitude or even direction of effects in some contexts.
For many years the seriousness of this problem was not fully appreciated, and thus
many common methods of dealing with missing data (including methods that are
still widely used) merely hide the problem rather than deal with it.

A key message to take away from this chapter is that there is information in the
pattern of missing data of an incomplete data set. The aim of this chapter is to show
that a researcher can incorporate this information into his or her analysis, increasing
statistical power and reducing the bias that arises when data are discarded or the
presence of missing data is ignored.

4.2 Missing Data: Problems and Pitfalls

In order to understand why missing data might be a serious problem, it is helpful to
think about the processes that led to an incomplete data set. The following discussion
introduces three different scenarios that represent the most common classification
of missing data and illustrates the practical consequences of each type by way of
examples.

4.2.1 Mechanisms of Misssingness

The best known classification of the mechanisms that lead to missing data was pre-
sented by Rubin (1976) (see also Little and Rubin 2002). This described three broad
mechanisms of how the data missingness (as it is termed in the literature) was gen-
erated: The data may be missing completely at random (mcar), missing at random
(mar), or missing not at random (mnar). These concepts, and the accompanying
concept of ignorability, represent profoundly different processes of missing data,
each with their own practical consequences and potential solutions. In what follows,
we will first introduce these concepts informally before providing a more a formal
description.

Missing data are mcar if the mechanism that leads to the loss of data is “com-
pletely random”, or completely independent of other variables that are known.
Although often implausible in practice, somemissing data may indeed be considered
random in this way. Examples include equipment malfunction or having to terminate
an experiment due to a fire-alarm. mcar missing can also be part of the design of
a study (see, Graham 2009). For example, respondents in a survey may be required
only to complete a random subset of all the available items.
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Missing data aremar if themechanism that leads tomissing observations depends
only on fully observed variables. The data are thus missing “at random” in the
technical sense of being missing randomly conditional on observed variables (see,
Schafer and Graham 2002; Graham 2009). mar is, unlike mcar, regarded as a
plausible account of the mechanisms that produce missing observations in many
research contexts. For instance, in intervention studies, participants are measured at
regular intervals throughout the study. Participants who are not benefiting from the
intervention may be more likely to drop out than participants who are benefiting.
Thus, the probability than an outcome is missing may depend on whether they are
receiving the intervention or not, which is known. It should be noted that treating
missing data of this kind as mcar would be a mistake. The data from remaining
participants in the control group, are now a biased sample, of those that began the
study. This is particularly problematic in medical or health interventions where the
incomplete data setsmight contain unusually healthy participants in the control group
but a more representative (but less healthy) treatment group.

The final mechanism to consider ismnar. Data are missing “not at random” if the
mechanism that leads to missing data depends on the values of the missing data. This
poses a serious threat to the validity of any analysis based on only the remaining data.
In fact, as we will see, if the mechanism that produces missing data is mnar then it
not possible to derive an unbiased analysis of the data without explicitly modelling
how the missing data were generated. As an example, missing values would be
mnar if the probability of an individual dropping out of a drug intervention study
depended on the effect of the drug on that individual. Similarly, missing data from
e-commerce product ratings would bemnar if ratings were likely to bemade only by
those who had either an extremely positive or an extremely negative experience (see,
Marlin et al. 2011). The distorting effects of mnar can be ameliorated somewhat by
including more observed variables in the analysis and then treating the missing data
as mar conditional on these new variables. For example, in the drug intervention
case, we could use each patient’s test scores prior to drop out as a measure of the
drug effectiveness for that person. Now, the probability of being missing can be
conditioned on this fully observed information.

Describing the mechanisms of missingness more formally is essential to fully
appreciate the practical consequences of missing data in any analysis, as well to
appreciate the potential solutions to these problems. To do so, it is necessary to
introduce some notation. Let us assume, for simplicity, that our data set consists
of two observable variables x and y for each of n individuals, i.e., x = x1 . . . xn ,
y = y1 . . . yn . These could be, for example, the sex and age of n individuals, with
xi ∈ {0, 1} coding whether person i is male (xi = 0) or female (xi = 1) and yi being
that person’s age. Our aim could be to model age as function of sex as follows:

yi ∼ N (α + βxi ,σ
2), for i ∈ {1 . . . n}. (4.1)

Let us also assume that the sexes x1 . . . xn are observed in full, but that ages y1 . . . yn

contain some missing values. We now introduce indicator variables I1 . . . In that
indicate which values of y are missing:
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Ii =
{

1, if yi is missing,

0, if yi is observed.
(4.2)

If the data are mcar, a probabilistic model of I might be

Ii ∼ dbern(p), for i ∈ {1 . . . n}. (4.3)

Here, the value of Ii is being treated as equivalent to the outcome of coin toss with
bias p and as such is independent of either x or y. This independence of I from the
values of x or y is the defining feature of mcar missingness. If, on the other hand,
whether the age of a person is missing depends on whether they are male or female,
i.e. with males being more or less likely to report their age, then a model of I might
now be

Ii ∼ dbern(pi ), log

(

pi

1 − pi

)

= a + bxi , for i ∈ {1 . . . n}. (4.4)

Here, the probability Ii = 1 now obviously varies as a function of xi . However, it is
still independent of yi . This is therefore an example of mar missingness: The value
of Ii is conditioned only on fully observed variables. Finally, it could be the case that
whether a person’s age is missing depends on what their age is. For example, people
over a certain age may be less likely to report their age than others. This tendency
could also vary by sex. For example, males over a certain age may be more or less
likely than females of the same age to report their age. In this case, a model of I
might be

Ii ∼ dbern(pi ), log

(

pi

1 − pi

)

= a + bxi + cyi + dxi yi , for i ∈ {1 . . . n}.
(4.5)

Here, we obviously have Ii being dependent on both xi and yi , where yi is itself
possibly missing. This scenario, where the probability of a variable being missing
depends on the true value of that variable is the definition of mnar.

The practical consequences of these three types of missing mechanisms is best
appreciated when we consider the problem of inference of the parameters of the
original data model, i.e. inferring α and β in our example. For simplicity, we will
collectively refer to the parameters of the original data model by θ and the parameters
of themissing datamechanism (e.g. a, b or a, b, c, d in ourmar andmnar examples,
respectively) by Ω . We will also split the y variable into yobs and ymis, which are the
observed and missing values of y, respectively.

In general, the likelihood function of θ and Ω—which encapsulates all the infor-
mation in the observed data for inferences concerning θ and Ω—is as follows:

P(yobs, I |x, θ,Ω) =
∫

P(yobs, ymis|θ, x)P(I |x, yobs, ymis,Ω)dymis. (4.6)
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By definition, in the case of mcar, we will always have P(I |x, yobs, ymis,Ω)
.=

P(I |Ω). As such, the likelihood function simplifies to

P(yobs, I |x, θ,Ω) = P(I |Ω)

∫

P(yobs, ymis|θ, x)dymis (4.7)

Similarly, in the case of mar, where P(I |x, yobs, ymis,Ω)
.= P(I |x,Ω), the likeli-

hood function simplifies to

P(yobs, I |x, θ,Ω) = P(I |x,Ω)

∫

P(yobs, ymis|θ, x)dymis (4.8)

In both these cases, therefore, the likelihood function decouples into the product of
two separate functions: The likelihood function for θ and the likelihood function for
Ω . As such, in the case of mcar and mar, if the primary interest is in inferring θ,
the missing data mechanism need not be modelled. In these cases, the missing data
mechanism is said to be ignorable.

Crucially, however, in the case of mnar, the likelihood function can not
decouple—the likelihood functions of θ and of Ω both depend on ymis. As such,
the missing data mechanism is nonignorable: It is not possible to infer θ without
also having an explicit probabilistic model for the missing data and simultaneously
inferring Ω . Clearly, this introduces a considerable, yet unavoidable, increase in
complexity to the data analysis.

4.2.2 Comparing Three Missing Data Scenarios

To illustrate the impact of missing data on a data set, consider a simple example
based on pilot data for the mango study. This pilot involves 200 sales staff with
half randomly allocated to the mango smart watch intervention (mango) and half
to a comparison group (no mango) for a 3 month period. The data set comprises
three main variables: the group to which each salesperson as allocated (group), their
average email response time in minutes (aveRT) and their average daily sales in
dollars (sales).

The following R code creates a data frame containing simulated mango pilot data:

group <- gl(2, 100, labels=c(’no mango’,’mango’))

set.seed(14)

mango.effect <- c(rep(0.78, 100), rep(1, 100))

aveRT <- round(mango.effect * rnorm(200, 10, 3), 2)

set.seed(19)

sales <- round(rnorm(200, 500, 50), 2) - aveRT*12

mango.pilot <- data.frame(group, aveRT, sales)
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To understand the impact of missing data on the analysis it is helpful to start with
an analysis of the complete data set and then explore what happens when data are
removed from the analysis. A good start is to plot the complete data set to get a feel
for the pattern of sales in each group. In this case, a bean plot is used to summarise the
data in each group, which is particularly useful here because it uses a kernel density
estimate to give a feel for the shape of the distribution as well as depicting the mean
(the long central black line) and the individual data points (the shorter black lines).

install.packages(’beanplot’)

library(beanplot)

beanplot(sales ˜ group, data = mango.pilot,

col ="lightgray", border = "grey", cutmin = 0,

xlab=’Group’,

ylab=’Average daily sales (dollars)’, main=’(a)’

)

It is also helpful to look at the relationship between average response times and
sales using a simple scatter plot:

with(mango.pilot, plot(sales ˜ aveRT, pch=1, xlab=

’Average response time (minutes)’, main=’(b)’,

ylab=’Average daily sales (dollars)’)

)

These two plots are reproduced in panel (a) and (b) of Fig. 4.1. The bean plot
in panel (a) shows the distribution of sales for each group and suggests—counter
to predictions—that sales may be lower for the mango group than the no mango

20
0

30
0

40
0

50
0

60
0

no mango mango

Group

A
ve

ra
ge

 d
ai

ly
 s

al
es

 (
do

lla
rs

)

5 10 15

30
0

35
0

40
0

45
0

50
0

55
0

Average response time (minutes)

A
ve

ra
ge

 d
ai

ly
 s

al
es

 (
do

lla
rs

)

(a) (b)

Fig. 4.1 Summary of the complete mango pilot data set. Panel a shows a bean plot of the sales by
group while panel b is a scatter plot of the relationship between the average daily sales and average
email response times
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group. In contrast, the scatter plot in panel (b) suggests—as anticipated—that faster
response times are associated with higher sales. The main interest focuses on the
differences in sales between the groups. This can be tested in several ways, but for
present purposes a simple linear regression with sales as the outcome and group as
the predictor (equivalent to a t test of the difference in groups) will suffice:

complete.mod <- lm(sales ˜ group , data= mango.pilot)

summary(complete.mod)

This produces the following output:

Call:
lm(formula = sales ˜ group, data=mango.pilot)

Residuals:
Min 1Q Median 3Q Max

-126.13 -42.62 0.59 38.51 185.97

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 405.816 5.898 68.810 <2e-16 ***
groupmango -18.323 8.341 -2.197 0.0292 *
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 58.98 on 198 degrees of freedom
Multiple R-squared: 0.02379,Adjusted R-squared: 0.01886
F-statistic: 4.826 on 1 and 198 DF, p-value: 0.02919

This supportswhat the pattern in Fig. 4.1a suggests: the difference in sales between
the no mango group and the mango group is statistically significant, t (198) = 2.20,
p = 0.029. The estimate of the difference in sales between groups is around 19 dol-
lars/month, although a Bayesian hypothesis test (see Rouder et al. 2009 and Chaps. 8
and 9 of this book) suggests that the evidence for the advantage of the no mango
group is relatively weak:

> install.packages(’BayesFactor’)

> library(BayesFactor)

> ttestBF(formula= sales ˜ group, data=mango.pilot)

Bayes factor analysis

--------------

[1] Alt., r=0.707 : 1.448814 0%

Against denominator:

Null, mu1-mu2 = 0

---

Bayes factor type: BFindepSample, JZS

http://dx.doi.org/10.1007/978-3-319-26633-6_8
http://dx.doi.org/10.1007/978-3-319-26633-6_9
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How will these results change as a consequence of missing data? The answer
will depend on the mechanism that leads to missingness—specifically whether it is
mcar, mar or mnar.

4.2.2.1 Scenario 1: MCAR

To illustrate mcar, we simply randomly delete certain salespersons using a ran-
dom number generator. The following code implements this deletion and re-runs the
previous analysis without these sales staff:

> set.seed(100)

> mango.pilot.mcar <- mango.pilot

> mango.pilot.mcar[,3] <- replace(

+ mango.pilot[,3], round(runif(200, 0, 11) +1) == 5, NA

+ )

> mcar.mod <- lm(sales ˜ group, data = mango.pilot.mcar)

> summary(mcar.mod)

Call:

lm(formula = sales ˜ group, data = mango.pilot.mcar)

Residuals:

Min 1Q Median 3Q Max

-122.817 -42.717 0.694 40.623 188.494

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 402.507 6.286 64.034 <2e-16 ***

groupmango -17.541 8.817 -1.989 0.0482 *

---

Signif. codes:

0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 59.3 on 179 degrees of freedom

Multiple R-squared: 0.02163, Adjusted R-squared: 0.01617

F-statistic: 3.958 on 1 and 179 DF, p-value: 0.04817

> ttestBF(formula= sales ˜ group,

+ data = na.omit(mango.pilot.mcar))

Bayes factor analysis

--------------

[1] Alt., r=0.707 : 1.00488 ±0%
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Against denominator:

Null, mu1-mu2 = 0

---

Bayes factor type: BFindepSample, JZS

Re-running the simple linear regression on the incomplete data set (losing 19
cases) produces a similar pattern of results with a lower average sales for the no
mango group of around 18 dollars. However, the test of the difference in groups is
now only just statistically significant at the 0.05 level; t (179) = 1.99, p = 0.048. In
addition, the Bayes factor—previously providing some weak evidence (BF = 1.4) of
a difference in groups—is now equivocal (B F ≈ 1). The reduced sample size—for
a virtually identical size of effect—now suggests that there is no evidence that the
groups differ.

4.2.2.2 Scenario 2: MAR

Themarmechanism can be illustrated by consideringwhat happens if the probability
of that data are missing depends on the outcome (average sales) and the group they
were in. In this scenario a large number of sales staff are discovered to have artificially
inflated their sales figures (e.g., booking false sales, double counting or poaching
sales from other staff) and their sales data—being fraudulent—are excluded from
the study. Notably, the staff in the mango group and staff with lower sales are under
more pressure to sell well and this have a higher probability of having their sales
figures be excluded. Missingness therefore depends on two variables (group and
sales) that are in the analysis and one (average response time) that is in the data set
that is known to predict sales and is missing at random with respect to the available
data.

The following R code simulates data from the scenario in which sales figures are
more likely to be missing for those staff with lower sales and who are in the mango
group:

set.seed(19)
prob.missing <- (
pnorm(scale(mango.pilot[2]))) * c(rep(.20,100),

rep(1,.90,100)
)
set.seed(10)
missing.vals <- rbinom(200,1, prob.missing)

mango.pilot.mar <- mango.pilot
mango.pilot.mar[,3] <- replace(mango.pilot[,3],

missing.vals ==1, NA)

This time, with mar data, fitting a linear model to predict sales from group shows
a very different pattern:
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> mar.mod <- lm(sales ˜ group , data= mango.pilot.mar)
> summary(mar.mod)

Call:
lm(formula = sales ˜ group, data = mango.pilot.mar)

Residuals:
Min 1Q Median 3Q Max

-150.461 -47.717 5.739 40.866 157.369

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 407.617 6.208 65.665 <2e-16 ***
groupmango 8.474 11.549 0.734 0.464
---
Signif. codes:
0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 60.82 on 133 degrees of freedom
(65 observations deleted due to missingness)

Multiple R-squared: 0.004031,
Adjusted R-squared: -0.003457
F-statistic: 0.5383 on 1 and 133 DF, p-value: 0.4644

> ttestBF(formula= sales ˜ group,
+ data = na.omit(mango.pilot.mar))

Bayes factor analysis
--------------
[1] Alt., r=0.707 : 0.2562848 ±0.01%

Against denominator:
Null, mu1-mu2 = 0

---
Bayes factor type: BFindepSample, JZS

Whereas the mcar and complete data scenarios gave similar estimates of the
difference in sales, the analysis of data missing at random produces an estimate that
is not only different, but in the opposite direction: with the mango group selling on
average around 8.5 dollars per month more than the mango group. This difference is
not statistically significant at the 0.05 level; t (133) = 0.73, p = 0.464. In addition,
the Bayes factor now favours the null hypothesis of no differences in the groups of a
difference in groups (B F0 ≈ 1/0.26 = 3.9). Like mcar, mar missingness reduces
statistical power through loss of data. However, it also introduces bias—whether in
terms of estimating size or (as happened here) in estimating the direction of effect.
In this instance, the bias further reduces statistical power because the estimate of the
difference, while in the wrong direction, is smaller than that in the complete data set.
This is far from inevitable, and it is quite possible for missing data to make an effect
appear larger and hence provide strong evidence for a spurious effect or for an effect
in the wrong direction.
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4.2.2.3 Scenario 3: MNAR

The distinction between data missing not at random and data missing at random
is a particularly subtle one. As noted earlier, it is a joint property of the data and
the analysis. First note that the mango pilot sales data are a function of the average
response time of the sales staff (e.g., see Fig. 4.1b). In the third and final scenario
a server failure leads to a catastrophic loss of the response time data for the mar
scenario. As the response time variable (aveRT) was not used in the previous mar
analysis this will not change the analysis in any way—and themnar analysis suffers
from the same problems (loss of statistical power and bias) as the mar analysis.
What has changed is that the missingness now depends on a variable (aveRT) that
is unavailable to the analysis. The implications of data being mnar are reviewed in
the following section when solutions for dealing with missing data are considered.

4.3 Missing Data: Potential Solutions

This section explores some (but by no means all) potential solutions to the miss-
ing data problem, focusing on one powerful and flexible approach known as mul-
tiple imputation. Several widely used, but flawed approaches are reviewed before
approaches that capitalise on the information available when data are mar are intro-
duced. The section ends with an extended example of multiple imputation applied to
the three missing data scenarios for the mango pilot data described in the previous
section.

4.3.1 Popular but Inadequate ‘Solutions’

4.3.1.1 Deletion

The simplest approach to handling missing data in analysis is deletion. In casewise
deletion any observed unit of study (typically a person in HCI research, but it could
be an animal, plant or even a group such as an office or school) with a value missing
from one ormore variables is dropped from the analysis. This is the approach adopted
by default in most software and one that many researchers implement without any
particular forethought. The approach is so common that it is sometimes not obvious
that it is itself a method of handing missing data. In other words, sticking with the
status quo—not doing anything about missing values and running the analysis with
only complete cases—involves implicitly (or perhaps explicitly) adopting very strong
assumptions about the mechanism that generated the incomplete data set.

A closely related approach is pairwise deletion. Pairwise deletion is appropriate
when the analysis involves considering only pairs of variables at a time (e.g., multiple
t tests or calculating a correlation matrix). Each pairwise computation then proceeds
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only using complete pairs. Pairwise deletion is effectively casewise deletion applied
within pairs of variables in the data set, but has the advantage that each step of the
analysis (e.g., each correlation coefficient) uses as many observations as possible.
For example, if each pair of variables in a data set had only a few units with missing
values pairwise deletion would ensure minimal loss of power, whereas casewise
deletion might lead to the loss of many cases (except in the unlikely situation that
the pattern of missing values was the same for all units).

Deletion methods are, as a rule, extremely dangerous. The most optimistic assess-
ment is that themissing data aremcar and the only impact is loss of statistical power.
However, unless themcar assumption is highly plausible (perhaps because the cause
of the missing data is both known and random) and the proportion of missing cases
is very low (perhaps 5% at most) deletion methods should be avoided wherever pos-
sible. In practice, it is far more likely that the mechanism for missingness is mar or
mnar. If so, casewise or pairwise deletion has the potential to introduce huge levels
of bias, levels of bias sufficient to produce widely inaccurate parameter estimates
and inferences (e.g., as shown in the mar example in Sect. 4.2.2.2).

4.3.1.2 From Mean Substitution to Single Imputation

An alternative to simple deletion approaches is to replace the missing data with
an estimate of its true value. This is—at least superficially—an attractive approach
because, if done properly, it should reduce bias when data are mar. Yet even if done
properly replacingmissing data with an accurate estimate of the true value introduces
new dangers.

A good place to start is a fairly common strategy known as mean substitution.
This involves replacing missing values for a given variable with the mean of that
variable. This allows the analysis to take place with complete cases and thus appears
to avoid any loss of statistical power. The danger of this approach is twofold. First,
replacing the missing value with the mean does not remove any bias if the data
are mar or mnar (though it would not create bias if the missingness mechanism
were mcar). Second, the increase in statistical power from mean substitution is
largely spurious (being accompanied by a increase in the Type I error rate). In the
unlikely event that the mean was a perfect estimate of the true mean (that including
the missing data), mean substitution would create a new type of bias. Because the
replacement values are all identical they would be more similar to each other than
real data (which are influenced by sampling error). In particular the variances and
covariances of the imputed variables would be underestimated and hence the error
terms in any subsequent analysis (e.g., the standard errors used to calculate test
statistics or confidence intervals) would be too small.

If the previous argument is not sufficiently persuasive, consider extrapolating the
mean substitution approach for a participant that failed to turn up for an experiment.
If it is reasonable to add the mean of a variable to replace two or three missing values
for a case, then it should also be reasonable to so for all values. In other words, the
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same argument that supports mean substitution for a partially complete case also
supports creating entirely new cases based on the properties of the available data.

Amore sophisticated approach is to use conditional mean substitution (also known
as regression imputation). With this technique, rather than use the grand mean of
each variable, missing data are replaced with a predicted or expected mean value
(one that is conditional on other variables in the data set). For example, in a two
group experiment one might replace a missing value by the mean of the group rather
than the grandmean or a weightedmean of the two groups. Usingmultiple regression
one can extend this approach to more complex studies by predicting missing values
from the values of non-missing variables in the data set. Because condition mean
substitution can in principle use all the available information to estimate the missing
values it has the potential to produce unbiased parameter estimates when the data
aremar. Unfortunately, like mean substitution, it does not account for the variability
inherent in sampling real data. It therefore likewise underestimates sources of error
in the data, leading to a spurious increase in statistical power.

In order to get both accurate estimates of the missing data (at least when the data
aremar) and accurate estimates of the variances and covariances of the complete data
set, it is necessary to find some way of adding error to the replacement values. This
added error is needed to capture themany sources of uncertainty that would influence
real data (and presumably the missing data if they were available). One option is
to estimate the variability in the available data and add an equivalent quantity of
random noise to each of the replacement values. This process of estimating a single
replacement value and adding an appropriate amount of noise is known as single
imputation. It is by far the most satisfactory missing data method of those considered
so far, but is still far from ideal. It turns out that single imputation is problematic in
twoways. First, adding noise to the imputed estimatesmakes the parameter estimates
less accurate than some simpler approaches such as conditional mean substitution.
Second, and perhaps surprisingly, it still underestimates the variability in the data.
This is because the variance and covariances of a sample are themselves parameter
estimates of the true population variances and covariances. So imputation needs to
account for a further source of uncertainty on top of the uncertainty in estimating the
conditional means of the data. A further step is required—rather than use a single
set of imputed data it is better to impute several such sets. This approach is known
as multiple imputation.

4.3.2 Multiple Imputation

Multiple imputation is attractive as a method for handling missingness because—if
done correctly—it minimises any bias or loss of statistical power caused by missing
values when the data are mcar or mar. Imputing a data set with missing values
is nevertheless a very computationally intensive task. Imputing multiple data sets
and pooling the results of the subsequent analyses on the imputed data sets also
presents a number of challenges (Graham et al. 2007). Fortunately, recent advances
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in computing power reduce the difficulty of implementing imputation considerably
(except for the very largest data sets). Software to impute data and pool results is now
also readily available (e.g., R presently offers several add-on packages for multiple
imputation).

The initial step in imputation is to decide on an imputation model. This involves
deciding what variables will be used to predict the values of the missing data. Where
possible it makes sense to use all the available variables—adopting what is termed
an inclusive imputation strategy (Collins et al. 2001). As with any regression model
an imputation may also benefit from transforming variables (e.g., if they are heav-
ily skewed) or the inclusion of interaction terms. The main limit on the inclusive
approach is that it can become cumbersome (e.g., if many transformed variables
or hundreds of interaction terms are added). A sensible approach is to explore the
data set and use knowledge of the context to include the most important potential
predictors. Auxiliary variables—variables that are in the data set but not included in
the analysis play an important role in imputation. This is because the mnar versus
mar distinction depends on whether all variables that predict missingness are in the
imputation model. If these variables are not in the imputation model then a data set
that is potentially mar is mnar in practice. Including additional predictors makes it
more likely that the mar mechanism describes the processes that generate missing
data and more likely that the bias from mnar is ameliorated.

After an imputation model is decided on, the next step is to determine on the
number of imputations that are required. Early work on multiple imputation—when
imputing a single data set required considerable programming expertise, computing
resources and time—suggested that “excellent” results could be obtained with only
3–5 data sets (Little and Smith 1987; Graham et al. 2007). Little and Smith (1987)
showed that m (the number of imputed data sets) required to get sufficiently accurate
results from multiple imputation depends on the fraction of missing information (γ)
in the analysis. In simple situations, this is merely the proportion of missing cases,
but may be lower if the pattern of missing data is highly correlated with values of
other variables in the data set. More recently, Graham et al. (2007) have shown that
statistical power to detect small effects also suffers when m is low—and this loss of
power also depends on the fraction of missing information. Thus Graham (2009) has
argued that m should be much higher—say 40 or greater if the fraction of missing
information is 50% or more.

For more specific guidance it is helpful to return to Rubin (1987). This work
reveals that standard errors based on m imputed data set are expected to be larger
than when making perfect use of available information by a factor of:

√

1 + γ
/

m (4.9)

From a theoretical perspective this equation indicates that imputation is perfectly
efficient only when γ = 0 or when m = ∞. With m = 3 and γ = 0.5 (50% of infor-
mation missing) the standard errors of a subsequent analysis are likely to be ≈8%
larger than they would be with infinite imputations. Plugging in the 40 imputations
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recommended by Graham (2009) reduces the expected degree to which standard
errors are inflated to ≈0.6%. Thus even with 40 imputations statistical power to
detect very small effects might be compromised.

A popular recent approach to implementing multiple imputation is to use chained
equations. Technical details of the chained equation approach is beyond the scope of
this chapter, though a brief summary can be found inAzur et al. (2011) andmore tech-
nical background in Buuren and Groothuis-Oudshoorn (2011). The chained equation
is implemented in a number of software packages including the R packages mi (Su
et al. 2011) and mice (Buuren and Groothuis-Oudshoorn 2011). Using such software,
imputing themissing data for one ormore data sets is relatively straightforward. Hav-
ing obtained the imputed data, the final steps are to run the intended analysis on each
data set in turn, before pooling the results from each analysis. Pooling the results
minimises bias in parameter estimates and in the variances and covariances, hence
providing more accurate inferences.

4.3.3 Pooling Imputations Using Rubin’s Equations

The equations in Rubin (1987) for pooling results from analyses onmultiply imputed
data sets rely on a few basic statistical principles. They can be explained very simply
using a regression model in which a single outcome is predicted from one or more
predictors. As random noise is added to the imputed data it is independent across the
imputed data sets and standard procedures for average independent observations be
applied. Thus, if b j represents a parameter estimate (e.g., slope or intercept) of the
j th imputed data set then b̄ (the pooled estimate of the m data sets) is their arithmetic
mean:

b̄ =
∑m

j=1 b j

m
(4.10)

The same logic can be applied to taking the mean of the sampling variance (the
square of the standard error σ̂b j ) of each estimate:

σ̂2
b̄ =

∑m
j=1 σ̂2

b j

m
(4.11)

As noted earlier, the quantity σ̂2
b̄
underestimates the true standard error (because

it ignores between-imputation variation). This can be corrected by combining the
within-imputation sampling variancewith τ̂ 2

b̄
(the between-imputation sampling vari-

ance):

σ̂2
M I = σ̂2

b̄ +
(

1 + 1

m

)

τ̂ 2
b̄ (4.12)
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The between-imputation sampling variance can be calculated from the squared
deviations of each estimate from the mean estimate using the standard inferential
formula for a variance:

τ̂ 2
b̄ =

∑m
j=1

(

b j − b̄
)2

m − 1
(4.13)

Inferences can then be obtained from these pooled estimates and sampling vari-
ances with relative ease. For example, the t statistic for the coefficient of a linear
regression model has the form b̄/σ̂2

M I with υ degrees of freedom where:

υ = (m − 1)

(

1 + mσ̂2
b̄

(m + 1) τ̂ 2
b̄

)2

(4.14)

Although the calculations are not too difficult to work out by hand, they are fiddly.
Fortunately, modern imputation software will often include the facility to pool results
as well as impute data sets. The principles can also be extended to more complex
models without too much trouble.

4.3.4 Multiple Imputation in Practice

How easy is it to carry out multiple imputation in practice? This extended example
will return to the three missing data scenarios considered earlier for the mango
pilot data. All three analyses will use a simple imputation model with one auxiliary
variable and default settings in the R package mice. A more complete introduction
to the package is provided by Buuren and Groothuis-Oudshoorn (2011).

4.3.4.1 Scenario 1: Multiple Imputation When Data Are MCAR

The primary attraction of multiple imputation when data are mcar is that it may
mitigate the loss of power associated with deleting cases. A further advantage is that
the imputed data sets have no missing cells and this can be convenient for certain
types of analysis such as analysis of variance where imbalance or unequal cell sizes is
an annoyance (e.g., requiring corrections or specialist software). In scenario 1, sales
staff were randomly excluded from the analysis. For the purposes of the imputation
model, we will assume that only the sales data for those staff were excluded.

Imputing the missing data requires first installing and loading the mice package:

install.packges(’mice’)
library(mice)
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It is now possible to use the mice() function to impute the missing data using a
data frame or matrix as input. The default behaviour of the function is to use all
other columns as predictors to impute values in any column with missing variables.
For the mango pilot data, it will therefore use both group and aveRT to impute sales
(the only variable with missing values).

This call to the mice() function will impute m = 50 data sets and assigns the output
to a multiply imputed data set (mids) object that other functions in the package will
recognize:

m.imputations <- 50
mp.imputed.mcar <- mice(

mango.pilot.mcar, m = m.imputations
)

Analysis of the multiply imputed data sets is easy within mice() because there is a
version of the lm() function that recognises a mids object and the output of this linear
modelling function can then be called by the pool() function:

mp.imputed.fit.mcar <- with(
mp.imputed.mcar, lm(sales ˜ group)

)
summary(pool(mp.imputed.fit.mcar))

The output of the pooling procedure provides estimates of the coefficients of the
regression predicting sales from group, inferential statistics for that regression and
the fraction of missing information for each coefficient. Note because the example
has not fixed the random number seed, you will obtain slightly different results from
those shown here:

> summary(pool(mp.imputed.fit.mcar))

est se t df
(Intercept) 403.85138 6.470882 62.410562 154.5548
group2 -18.70523 8.751914 -2.137273 178.6332

Pr(>|t|) lo 95 hi 95 nmis
(Intercept) 0.00000000 391.06860 416.634169 NA
group2 0.03393599 -35.97567 -1.434786 NA

fmi lambda
(Intercept) 0.16150225 0.15072151
group2 0.08168361 0.07145926

The fraction of missing information because it can guide us on what value of m
might be appropriate. Here the fraction of missing information for difference in sales
between groups is just over 8%, so our initial value of m = 50 should be sufficient.
Indeed, plugging these values into Eq. (4.1) suggests standard errors less than 0.1%
higher than for infinite m. For practical purposes it usually best to start with small
values of m (e.g., 5 or 10) when setting up an imputation model, pooling the results
and checking the output inR.Once themodel is running correctly it is easy to increase
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m to some suitably large value (e.g., 50 or more) based on the fraction of missing
information and the stability of the output when imputation is repeated.

The output from the multiple imputation of the mcar data estimates the differ-
ence in sales as 18.6 dollars (in favour of the no mango group), t (178.6) = 2.14,
p = 0.034. As anticipated (given that data are missing at random and the fraction
of missing information so low) this is close to the pattern of results for the complete
data set. Although the BayesFactor ttestBF() function can not take input from
the mids object that contains the imputed data, it is possible to obtain a Bayes factor
directly from the summary data using other functions in that package. This approach
is not as user-friendly (because it outputs the BF on a log scale) but the following R
code illustrates how to extract the Bayes factor and place in on the appropriate scale.
It also makes sense to adjust the effective sample size per group based on the degrees
of freedom of the imputed data sets (rather than n from the complete data).

> ess <- (178.6332+2)/2
> exp(ttest.tstat(t=2.137273, n1=ess, n2=ess,
+ rscale = 0.707)[[1]])

[1] 1.329816

The imputed data therefore provide evidence—albeit very weak evidence
(B F ≈ 1.3)—suggesting that the mango group have lower sales than the no mango
group.

4.3.4.2 Scenario 2: Multiple Imputation When Data Are MAR

In scenario 2 the sales data were more likely to be missing for low values of sales
(and hence low aveRT ) or for staff in the mango group. Thus the data are mar with
respect to an imputation model that includes these predictors. The following R code
imputes m = 50 data sets using this imputation model and pools the results.

m.imputations <- 50
mp.imputed.mar <- mice(mango.pilot.mar, m = m.imputations)
mp.imputed.fit.mar <- with(

mp.imputed.mar, lm(sales ˜ group)
)
summary(pool(mp.imputed.fit.mar))

The fraction of missing data is much higher here (around 40%) and the results
are not that stable if repeated. For this reason it is worth imputing a much larger
number of data sets. Using Eq. (4.1) suggests m = 400 will be more than adequate.
Re-running the imputation produces the following output:
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> m.imputations <- 400
> mp.imputed.mar <- mice(mango.pilot.mar, m = m.imputations)
> mp.imputed.fit.mar <- with(mp.imputed.mar,
+ lm(sales ˜ group))
> summary(pool(mp.imputed.fit.mar))

est se t df
(Intercept) 406.83327 6.130983 66.356944 190.0955
group2 -17.73112 10.397180 -1.705378 127.7734

Pr(>|t|) lo 95 hi 95 nmis
(Intercept) 0.00000000 394.73977 418.926766 NA
group2 0.09055389 -38.30407 2.841823 NA

fmi lambda
(Intercept) 0.03990903 0.02986074
group2 0.33564553 0.32532734

> ess <- (127.7734 +2)/2
> exp(ttest.tstat(t=1.705378, n1=ess, n2=ess,
+ rscale = 0.707)[[1]]

[1] 0.6988488

The output from the multiple imputation of the mar data estimates the difference
in sales as 17.7 dollars in favour of the nomango group, t (127.8) = 1.71, p = 0.091.
This effect much closer to the estimate for the complete analysis (and in the same
direction) than for the original analysis of complete cases in the mar scenario. The t
statistic is also closer to the original, and while the Bayes factor still favours the null
hypothesis of no difference, it does so only weakly (B F0 ≈ 1/0.70 = 1.4).

4.3.4.3 Scenario 3: Multiple Imputation When Data Are MNAR

For anmar analysis using multiple imputation to becomemnar in practice, requires
only that the imputation model excludes one or more variables crucial to the predic-
tion of missingness. In scenario 3, we considered what would happen if the aveRT
auxiliary variable is no longer available. The following R code creates a data frame
without the aveRT variable:

mango.pilot.mnar <- subset(
mango.pilot.mar, select=c(group, sales)

)

What happens if the imputation is repeated with this potentially crucial variable
missing?

> m.imputations <- 500
> mp.imputed.mnar <- mice(mango.pilot.mnar, m = m.imputations)
> mp.imputed.fit.mnar <- with(mp.imputed.mnar,
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+ lm(sales ˜ group))
> summary(pool(mp.imputed.fit.mnar))

est se t df
(Intercept) 408.01109 5.978136 68.2505505 188.8420
group2 9.35603 10.685188 0.8756075 114.0281

Pr(>|t|) lo 95 hi 95 nmis
(Intercept) 0.0000000 396.21858 419.80359 NA
group2 0.3830842 -11.81119 30.52325 NA

fmi lambda
(Intercept) 0.04623743 0.03618947
group2 0.40693440 0.39662274

> ess <- (114.0281 +2)/2
> exp(ttest.tstat(t= 0.8756075, n1=ess, n2=ess,
+ rscale = 0.707)[[1]])
[1] 0.2787383

There is now insufficient information in the imputation model to predict the miss-
ing values and the data are—in effect—mnar. The results here closely match those
for the analysis of incomplete data in themar or mcar scenarios. The estimate of the
difference in sales is 9.3 dollars higher for the mango group with t (114.0) = 0.88,
p = 0.38 and the Bayes factor is more strongly in favour of the null hypothesis than
for the mar analysis (B F0 ≈ 1/0.28 = 3.6).

4.3.4.4 Comparing Results Across the Three Missing Data Scenarios

At this point it is worth reviewing the patterns of results across the three scenarios
with and without imputation. Table4.1 shows the estimate of the difference in groups
(μ̂1 − μ̂2), the standard error of this difference (SE), and a selection of inferential
statistics (t, p and BF) for each analysis:

Table 4.1 Comparing the results for three missing data scenarios (mcar, mar and mnar) with
and without multiple imputation

Without imputation With multiple imputation

μ̂1 − μ̂2 SE t p BF μ̂1 − μ̂2 SE t p BF

Complete
data

−18.3 8.34 −2.19 0.029 1.45 −18.3 8.34 −2.19 0.029 1.45

Scenario
1: mcar

−17.5 8.82 −1.99 0.048 1.00 −18.7 8.75 −2.13 0.034 1.33

Scenario
2: mar

8.5 11.55 0.73 0.464 0.26 −17.7 10.40 −1.71 0.091 0.70

Scenario
3: mnar

8.5 11.55 0.73 0.464 0.26 9.35 10.69 0.88 0.383 0.28
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Without imputation only the mcar data set (which has only a small fraction of
information missing) produces results similar to that of the analysis of the complete
data. Even so, there is some loss of statistical power. The standard error is larger
and consequently both the frequentist t test and the Bayesian t test provide results
less supportive of the alternative hypothesis (that the sales between the mango and
no mango conditions differ). While the mcar analysis produced relatively unbiased
parameter estimates, both themar (and hencemnar results) are biased both in terms
of the estimate of the effect and its standard error. The estimate of the difference
in groups is lower in magnitude and in the wrong direction, while the standard
errors are substantially inflated. The frequentist t is no longer even close to statistical
significance, while the Bayes factor nowweakly favours the null hypothesis. The key
message here is that bias and loss of power inherent in any analysis where the mcar
assumption is not tenable will have a negative impact for any method that merely
drops incomplete cases.

With imputation things are much better. Themcar analysis is again similar to that
for the complete data (and indeed parameter estimates and inferences are slightly
improved). The most dramatic change, however, is for the mar scenario where the
parameter estimate is very close to (and in the same direction as) the analysis with
no missing values. Nevertheless, although the bias is reduced, there is still some loss
of statistical power (albeit much less than would happen if incomplete cases were
dropped from the analysis). Only in the case of the mnar scenario does multiple
imputation have little impact. Here there is simply not enough information in the set
of variables used for imputing the missing values. It is therefore always wise to retain
(and perhaps invest resources in collecting) data that might predict missingness. This
is especially true if dropout is likely (e.g., in longitudinal research, surveys or long
experiments). Even if a variable is not likely to be useful in your intended analysis
it may be vital for imputation.

4.4 Maximum Likelihood and Bayesian
in Approaches to Missing Data

Missing data present no real conceptual difficulty for either maximum likelihood or
Bayesian approaches1 to model inference. As will be explained, missing data simply
necessitate more elaborate probabilistic models of the data, with the original models
being extended to include latent variables, or possibly to also include an additional
probabilistic model of the missing data mechanism. Practically speaking, of course,
these extensions may be far from trivial, and even in the best case scenarios may

1Editor note: In this section the authors discuss Bayesianmethods. These have not yet been covered
in the previous chapters. The basic ideas behind Bayesian inference are introduced in Chap. 8. We
recommend those readers who are totally unaware of Bayesian methods to read Chap. 8 before
proceeding.

http://dx.doi.org/10.1007/978-3-319-26633-6_8
http://dx.doi.org/10.1007/978-3-319-26633-6_8
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still require considerable extra modelling effort. In this section, we provide a general
overview of these issues.

The starting point for bothmaximum likelihood estimation andBayesian inference
is the likelihood function. As described in Sect. 4.2.1, the likelihood function of the
parameters of our data model, denoted generically by θ, and the parameters of the
missing data mechanism, denoted generally by Ω , is generally given by2

P(yobs, I |x, θ,Ω) =
∫

P(yobs, ymis|θ, x)P(I |x, yobs, ymis,Ω)dymis. (4.15)

Maximum likelihood estimation of θ and Ω aims to find

θ̂, Ω̂ = argmax
{θ,Ω}

P(yobs, I |x, θ,Ω), (4.16)

while Bayesian inference aims to infer the posterior distribution

P(θ,Ω|yobs, I, x) ∝ P(yobs, I |x, θ,Ω)P(θ,Ω), (4.17)

with P(θ,Ω) being some suitably chosen prior model for θ and Ω . In the case
of mcar and mar, however, P(yobs, I |x, θ,Ω) decouples into the product of two
independent likelihood functions, one for θ and one forΩ . As such, when attention is
primarily focused on inferring θ, as is usually the case, the missing data mechanism
is ignorable and need not be modelled explicitly in order to infer θ. In this case,
maximum likelihood estimation aims to find

θ̂ = argmax
{θ}

P(yobs, |x, θ), (4.18)

while Bayesian inference aims to infer the posterior distribution

P(θ, |yobs, x) ∝ P(yobs, |x, θ)P(θ), (4.19)

where, in both cases, the likelihood function is now

P(yobs, |x, θ) =
∫

P(yobs, ymis|θ, x)dymis. (4.20)

2Continuing with the notation introducted in Sect. 4.2.1, here we will denote the fully observed
variables in our data by x , the partially observed variables by y = yobs, yobs, and we will index the
missing variables in y by the I . We can also assume that any or all of x , y and I may be multivariate
arrays.
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4.4.1 Maximum Likelihood Estimation in Ignorable Models
Using Expectation-Maximization

Even in the case of ignorablemodels, the problem of inferring θ is complicated by the
fact that the likelihood function involves the integration over the missing values, and
maximizing this function with respect to θ is often intractable. A general numerical
algorithm that has been routinely applied to problems of this nature—i.e., maximum
likelihood estimation in the presence of unobserved variables—is the Expectation-
Maximization (em) algorithm, first introduced in Dempster et al. (1977).

To understand em, note thatmaximum likelihood estimation can always bewritten
as

θ̂ = argmax
θ

log P(yobs, |θ, x), (4.21)

given that the log is a monotonic function. The objective of the em algorithm is to
provide a functional F (q, θ) that bounds Eq. (4.21), and iteratively maximizes this
bound with respect to both q and θ. This bound is defined as

log P(yobs, |θ, x) = log
∫

P(yobs, ymis|θ, x) dymis, (4.22)

≥
∫

q(ymis) log

(

Pyobs, ymis|θ, x

q(ymis)

)

dymis, (4.23)

= F (q, θ), (4.24)

where q(ymis) is an arbitrary probability distribution over ymis. We optimizeF (q, θ)
with respect to both q and θ. This proceeds iteratively, first by holding θ constant
and optimizing F (q, θ) with respect to q, and then by holding q constant at its
optimized value from the previous step and optimizing F (q, θ) with respect to θ.
In other words, having chosen an arbitrary initial parameter setting θ0, for t ≥0, we
recursively perform the following two steps:

qt = argmax
q

F (q, θt ), (E-step) (4.25)

θt+1 = argmax
θ

F (qt , θ), (M-step). (4.26)

It can be readily verified that the E-step is maximized by setting the function
q equal to P(ymis|yobs, θt , x), which is the probability of ymis conditioned on the
observed data and estimate of θ. The subsequent M-step then maximizes the expec-
tation

∫

p(ymis|yobs, θt , x) log P(yobs, ymis|θ, x) dymis, (4.27)

with respect to θ. In many commonly used probabilistic models, both the E-step
andM-step have simple analytical solutions, with theM-step often being practically
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identical to maximum likelihood estimation in the corresponding model with no
missing data.

It should be emphasized that as an ascent algorithm, em is an approximate maxi-
mum likelihood estimationmethod that can only be guaranteed to reach local maxima
of the likelihood function. Nonetheless, for mcar and mar problems, em provides a
general means for (approximate) model inference, and one that explicitly integrates
over the uncertainty introduced by themissing data. It is also useful to consider the em
algorithm formissing data in amore intuitivemanner:We inititially guess themodel’s
parameters, then predict the values of the missing data, then use these predictions to
form a complete model of the data from which to infer the model’s parameters, and
so on. This procedure resembles the process of missing data imputation, followed
by model inference, but does so in a iterative manner. This iterative procedure also
provides a direct link to the Markov chain Monte Carlo (mcmc) methods used in
Bayesian inference.

4.4.2 Bayesian Inference with Missing Data

For ignorable models, as mentioned above, Bayesian inference of the model’s para-
meters involves the calculation of the posterior distribution:

P(θ, |yobs, x) ∝
∫

P(yobs, ymis|θ, x)dymisP(θ). (4.28)

Even in cases of complete data, the posterior distribution rarely has a closed form,
and here, the presence of ymis almost inevitably entails that mcmc methods are
required to draw samples from P(θ, |yobs, x). One widely used mcmc method is the
Gibbs sampler, first described by Geman and Geman (1984). In a Gibbs sampler,
we initially assign values to all unobserved variables. In the case of the models we
are considering here, the unobserved variables include the missing data variables
ymis and the model parameters θ. We then draw a sample from the distribution over
each unobserved variable conditional on the assigned values of other variables. This
sample is then assigned as the new value of that variable, and the process continues
iteratively.

For example, if we index our missing data variables as ymis
1 , ymis

2 . . . ymis
k . . . ymis

K ,
and index the parameters as θ1, θ2 . . . θs . . . θS , the Gibbs sampler proceeds by ini-
tially assigning the variables random values. Then, for each ymis

k , we sample from

P(ymis
k |ymis

1 , ymis
2 . . . ymis

k−1, ymis
k+1 . . . ymis

K , θ, x, yobs) (4.29)

and assign the sampled value as the new value of ymis
k . Likewise, for each θs , we

sample from
P(θs |θ1, θ2 . . . θs−1, θs+1 . . . θS, ymis, x, yobs). (4.30)
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By proceeding as follows, we are guaranteed to converge to drawing sample from
the joint posterior

P(θ, ymis|yobs, x), (4.31)

with, for example, the θ samples being effectively drawn from the marginal posterior

P(θ|yobs, x) =
∫

P(θ, ymis|yobs, x) dymis. (4.32)

The Gibbs sampler also applies without any conceptual modification to infer-
ence in the case of nonignorable models. In this case, we extend the sampler to
include inference of the parameters Ω of the missing data mechanism. Now infer-
ence concerningΩ are conditioned on all other variables, including I . The remaining
unobserved variables ymis and θ are themselves then conditioned on Ω and I . Apart
from extending the model to include new variables, the nature of themcmc sampling
is identical.

4.5 Conclusion

Missing data is an almost ubiquitous phenomenon in practice and one that can have
catastrophic consequences on the precision and validity of data analysis. Despite
this, it is often not treated adequately in practice. For example, Peugh and Enders
(2004) estimate that up to 96% of research in social science employs casewise or
pairwise deletion strategies when dealing with missing data, despite the fact that
these methods are likely to increase the bias and decrease the precision of most
analyses. This chapter has reviewed the main types of missing data, and described
somepractical and effective solutions for dealingwith generalmissing data problems.

In conclusion, understanding how missing data arise is always the first step to
ameliorating its negative consequences. This is particularly the case when the prob-
ability that a variable’s value is missing depends on the actual value of the variable.
In these situations, so called nonignorable missingness, it is necessary to explic-
itly model the missing data mechanism in order to properly estimate a model of
the data. However, developing and inferring a model of the mechanism of missing-
ness, while simultaneously inferring the original data model, can readily be han-
dled as a standard example of general Bayesian probabilistic modeling. Given that
Bayesian methods have achieved dramatic growth in recent years, it is arguable that
this Bayesian approach to missing data will become more common in practice. In
addition, Bayesian approaches to the problem of missing data such as Mohan et al.
(2013)may also lead to theoretical guarantees for the accuracy of statistical estimates
made on the basis of missing data, the validity of the assumptions made about the
missingness mechanism and whether those assumptions are empirically testable.
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Part II
Classical Null Hypothesis Significance

Testing Done Properly

Null hypothesis significance tests (NHST) comprise the core ofmost statistical analy-
sis in HCI (and broader, the social sciences). Obviously, they deserve a place in this
book. Despite the criticisms of the widespread, often procedural, use of NHST, this
part aims to both nuance their use, and offer options that go beyond the standard use
of NHST methods.

However, as this is not an introductory book on NHST, we assume the reader to
be familiar with the main ideas. However, for those who are not, we very briefly
introduce the core concept behind these tests before introducing the three chapters
in this part.

NHST in very, very, brief
Here we present a very brief statement of what NHST methods do. Before we do so
we want to make explicit that the idea here is based on the common, everyday, use
of the procedure rather than on the ideas of Neyman & Pearson or Fisher who all,
although with conflicting approaches, provided input for the current practice.

Supposewe are investigatingwhether a coin is fair or not.Hence,we throw the coin
a number of times (let’s say n) times. So, we now have data D = {H, T, T, . . . , T }
containing a list of our heads and tails that is n elements long. Subsequently we define
the null hypothesis to test: H0 : p = 1

2 . Thus, we are stating that we are expecting
the probability of heads p to be 1

2 . Our alternative hypothesis will be that this is not
the case HA : p �= 0.

Now, given some model that we assumed generated the data, for example that the
observed sequence of heads and tails are realizations of an independent Bernoulli(p)
randomvariable,we can compute the probability of our specific dataset (or something
more “extreme”) D given that the null hypothesis is true: P(D|H0). For example, if
our sequence is ten tosses long, and we observe only heads, then this is quite unlikely
given that the true data generating process is a “fair coin” (that is D ∼ Bernoulli( 12 )).
Thus, P(D|H0) will be small.

The p-valuewhich is thenoftenused to drawaconclusion regarding the hypothesis
is P(D|H0): hence, it is the probability of observing the data D (or more extreme
values), given that the null hypothesis holds. If the p − value is too small (often
< .05), then we “reject” the null-hypothesis and accept that HA is supported by the
data.
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Much can be said about the reasoning above, and much has been said about it
(see the Editor suggestions). One could argue for example that P(D|H0) is not very
interesting; what we really want is P(H0|D). This is something we will cover in
Part 3 of this book. However, in this part we are broadly concerned with methods
that focus on P(D|H0). Instead of introducing NHST as a mechanical procedure we
have tried to encourage authors to discuss NHST in more detail, and focus also on
the pitfalls of the standard methods.

Chapter 5: Effect Sizes and Power
Chapter 5 by Dr. K. Yatani briefly introduces NHST methods, and extensively dis-
cusses measures of effect size to summarize experiments. The chapter gives readers
a feel for the robustness of NHST test for violations of certain assumptions of the
test, and, by using simulated data, allows the reader to develop an intuition that goes
beyond the procedural use of NHST test. The chapter advocates the use of effect
size measure over p-values. Finally, the chapter also discusses power analysis; if
one embraces the frequentist NHST framework, then power analysis should be an
integral part of the analysis.

Chapter 6: Repeated Measures and Time Series
In the next chapter of this part Dr. D. Fry, Dr. K. Wazny, and Dr. N. Anderson
discuss the analysis of repeated measure data or time series data using frequentist
methods and NHST. Repeated measures designs often occur within HCI, but are not
extensively treated in social science methodology text books: hence, we are very
pleased to include a separate chapter on the topic. The authors demonstrate the use
of [R] to conduct repeated measure ANONAs and discuss extensively how these can
be interpreted.
The authors also introduce the topic of event-history analysis: an analysis aimed at
understanding when an event will occur. This latter analysis is not common in HCI,
but applicable to many HCI problems (e.g., when will a user install a new piece
of software for the first time? Or, when does a user stop using her smart-watch?).
Admittedly, the topic of event-history analysis is broad, and it is covered in several
fields in the social sciences under different headings; hence, the current chapter
only provides an introduction. In the editor suggestions we recommend a number
of sources that are not already referenced in the chapter itself to give readers easy
access into the topic.

Chapter 7: Nonparametric Tests
The last chapter in this part byDr. J.Wobbrock andDr.M.Kay discuss nonparametric
statistics and their use in HCI. Often, methodology textbooks that introduce NHST
methods focus on parametric tests. However, the field of nonparametric testing is
very mature, and, due to the increases in computing power in recent years, many
nonparametric test can be computed exactly.

In HCI we often encounter data for which nonparametric tests might be more
appropriate than parametric tests. The authors explain in detail which assumptions
should be checked before conducting parametric tests, and thus motivate when non-
parametric tests should be considered. After discussing the assumptions the authors

http://dx.doi.org/10.1007/978-3-319-26633-6_5
http://dx.doi.org/10.1007/978-3-319-26633-6_5
http://dx.doi.org/10.1007/978-3-319-26633-6_6
http://dx.doi.org/10.1007/978-3-319-26633-6_7
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demonstrate the use of [R] to conduct nonparametric tests on a large number of
examples, each time comparing the parametric and nonparametric “versions” of the
test. The chapter contains a large number of references, and we recommend the
interested reader to follow up on these. We think you will find the clear presentation
the nonparametric versions of their more familiar parametric counterparts a useful
reference.

Editors’ Suggestions
Here are some more pointers, not referenced in the contributed chapters, that we
ourselves found useful in understanding the topics that are discussed in this part.

• For a general discussion on controversies in statistics we wholeheartedly recom-
mend the paper Controversies in the Foundations of Statistics by Bradley Efron
published in The American Mathematical Monthly way back in 1978.

• For a (fierce) discussion of the use ofNHSTmethods in the social sciences,we refer
the reader to The Cult of Statistical Significance: How the Standard Error Costs
Us Jobs, Justice, and Lives by Stephen Ziliak and Deirdre McCloskey (2008).

• In his book Understanding The New Statistics: Effect Sizes, Confidence Intervals,
and Meta-Analysis Geoff Cumming (2011) provides a thorough overview of the
effect sizes.

• The book Event History Modeling: A Guide for Social Scientists by Janet Box-
Steffensmeier (2004) providesmore detail on event-history analysis, geared specif-
ically for the social sciences. The bookEvent History Modeling: A Guide for Social
Scientists by Goran Bostrom (2012) details how to use [R] for advanced event his-
tory models.



Chapter 5
Effect Sizes and Power Analysis in HCI

Koji Yatani

Abstract Null hypothesis significance testing (NHST) is a common statistical analy-
sis method in HCI. But its usage and interpretation are often misunderstood. In par-
ticular, NHST does not offer the magnitude of differences observed, which is more
desirable to determine the effect of comparative studies than the p value. Effect sizes
and power analysis can mitigate over-reliance on the p value, and offer researchers
better informed preparation and interpretation on experiments. Many research fields
now require authors to include effect sizes in NHST results, and this trend is expected
to bemore andmore common. In this chapter, I first discuss commonmisunderstand-
ings of NHST and p value, and how effect sizes can complement them. I then present
methods for calculating effect sizes with examples. I also describe another closely
related topic, power analysis. Power analysis can be useful for appropriately design-
ing experiments though it is not frequently used in HCI. I present power analysis
methods and discuss how they should and should not be used.

5.1 Introduction

Before diving into the main topic in this chapter, let’s imagine a quick experiment.
Imagine you are running a comparative user study, measuring task completion time
with two systems. Each participant is exposed to both systems; that is, systems are a
within-subject factor. Then, suppose that you have run ten participants. We prepare
fictional data by using the random function:

> set.seed(123)

> a <- rnorm(10, 10, 2)

> set.seed(456)

> b <- rnorm(10, 11, 2)

The code above creates data of two arrays, a and b, representing measured perfor-
mance time with the two systems; one with the mean of 10 and standard deviation
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of 2, and the other with the mean of 11 and the same standard deviation. Now, let’s
run a paired t-test.

> t.test(a, b, paired=T)

Then, we get the following result:

Paired t-test
data: a and b
t = -1.0795, df = 9, p-value = 0.3084
alternative hypothesis:
true difference in means is not equal to 0
95 percent confidence interval:
-2.7410162 0.9700802

sample estimates:
mean of the differences
-0.885468

The test shows that we do not have a significant result. But what if you were able
to run 100 participants instead of 10? Let’s do it.

> set.seed(123)
> a <- rnorm(100, 10, 2)
> set.seed(456)
> b <- rnorm(100, 11, 2)
> t.test(a, b, paired=T)
Paired t-test
data: a and b
t = -3.915, df = 99, p-value = 0.0001662
alternative hypothesis:
true difference in means is not equal to 0
95 percent confidence interval:
-1.5977429 -0.5229327

sample estimates:
mean of the differences
-1.060338

Voila, now we have a significant result! We do not do any suspicious data manip-
ulation nor modify the statistical method. We simply increase the sample size from
10 to 100 to obtain statistically significant results. What we should understand with
this example is that a very simple “trick” of increasing the sample size would give
us significant results.

How can we estimate the actual magnitude of the difference in a way that is
not affected by the sample size? The absolute value of the difference would not be
a universal metric we can apply for different experiments. Intuitively, we want to
measure “how much overlap” there is between the two distributions. The effect size,
one of the main topics in this chapter, does this job for us.
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Let’s take a look at how the effect size behaves compared to the p value. With
ten participants, the estimated effect size (Cohen’s d, which is a commonly used
measure) is 0.34 with the 95% confidence interval (CI) of [−0.31, 0.97] while the p
value is 0.31. With 100 participants, it becomes 0.39 (95% CI: [0.18, 0.59]) whereas
the p value goes down to 0.0001, giving us a significant result. If we further increase
the sample size to 1000, the effect size gets close to 0.40 with a confidence interval
of [0.33, 0.46], and the p value becomes extremely small. This example clearly
illustrates that the p value can provide inconsistent results depending on the number
of samples whereas our estimation of the effect size is consistent (i.e., note that the
three estimated Cohen’s d are roughly similar and 0.40 is always within confidence
intervals). This is one of the advantages that the effect size has; it is much more
robust to the sample size than the p value. And as we increase the sample size,
the confidence interval of the effect size becomes smaller. This indicates that if we
have more samples, we can better estimate the magnitude of the difference, (i.e., the
effect), which is in line with what we learned in an introductory statistics class.

In some research disciplines, it is now a de-facto requirement that all statistical
results include the report of effect sizes (and even their confidence intervals). This
trend became more visible recently in the field of HCI, and it is good time to review
it in depth. This chapter first reviews issues in the p value, and explains the notion
of effect sizes. We then look into how to calculate effect sizes for well-known null
hypothesis significance testing (e.g., t-tests andANOVA)with examples. This chapter
also covers power analysis briefly as a related topic to effect sizes, and concludes
with discussions on what the HCI research community should make effort on to
improve our reports of statistical results.

5.2 Myths of the p Value

Null hypothesis significance testing (NHST) is one of the most common statistical
methods used in the field of HCI. Several reasons contribute to this. Many tools
support them (e.g., R, IBM SPSS, SAS, and even Microsoft Excel). Results we
get from NHST are very simple to understand; we mainly look for whether the p
value is above or below 0.05. NHST is proven to be a useful tool to test potential
differences among groups, but we need to be careful about how to use them and
interpret results. In particular, many people misunderstand what the p value means
and write wrong arguments with incorrectly-interpreted results. Chapters12 and 13
discuss common misunderstandings of the p value and the effect of sample sizes
which could potentially be abused. In addition to them, we review threemyths people
may believe in order to understand potential danger of over-reliance on the p value.
This section is inspired by Field’s (2005) discussions about effect sizes.

http://dx.doi.org/10.1007/978-3-319-26633-6_12
http://dx.doi.org/10.1007/978-3-319-26633-6_13
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5.2.1 Myth 1: Threshold of the P Value

You probably already know that if p < 0.05, you can argue that there is a significant
effect. Some people often report that there is a marginal significant difference if
p < 0.1. But where did these thresholds (0.05 and 0.1) come from? These thresholds
are basically from Fisher’s publication back in 1925 (Fisher 1925). In his book, he
discussed details of different statistical testingmethods around p=0.05.He described
his justifications on choosing p = 0.05 as follows:

The value for which P = 0. 05, or 1 in 20, is 1.96 or nearly 2; it is convenient to take this point
as a limit in judging whether a deviation is to be considered significant or not. Deviations
exceeding twice the standard deviation are thus formally regarded as significant. Using this
criterion, we should be led to follow up a negative result only once in 22 trials, even if the
statistics are the only guide available. Small effects would still escape notice if the data were
insufficiently numerous to bring them out, but no lowering of the standard of significance
would meet this difficulty. (Fisher 1925)

This has greatly influenced researchers in psychology. Researchers in other fields
also followed them, but we have no theoretical reason for choosing p = 0.05. For
example, we do not know why p = 0.04 is significant and p = 0.06 needs to be non-
significant. Even in a more extreme example, we do not know why p = 0.0499 is
significant and p = 0.0501 is not. If they have the equal sample sizes, the size of
effects is almost the same, but why do we have completely opposite results? These
thresholds are surely useful criteria for discussions, but we should not blindly believe
this dichotomy. To have the whole picture of results, we need information besides
the p value and significance flag.

5.2.2 Myth 2: Magnitude of the Effect

Another common misunderstanding is that the p value indicates the magnitude of an
effect. For example, someone might say that the effect with p = 0.001 is larger than
with p = 0.01. This is not true. The p value has nothing to do with the magnitude of
an effect. The p value is merely the conditional probability of the occurrence of the
data you observed given the null hypothesis. It does not give us any information of
how large the effect is, and we need another metric.

5.2.3 Myth 3: “Significant” is “Important”

Even if you have a significant result, it is “significant” only in the context of statistics.
It does not necessarilymean that the difference you have ismeaningful or important in
a practical setting. Imagine that you are reviewing a very typical interaction technique
paper. It compares two techniques: one is what the authors developed, and the other
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is a conventional technique. Suppose that the performance time of some tasks was
improved with a new interaction technique by 1% with the standard deviation of
0.1%. In this case, their NHST would show a significant difference. So should you
automatically accept that paper because it shows significant improvements backed up
with well-known statistical testing methods? No—it is probably too early to decide
the fate of the paper. 1% improvement may be a difference between 10 and 9.9 s.
Would this 100ms. be really important?Maybe so for fighter pilots, but we definitely
need more contextual information to assess the magnitude of this improvement.

Now you are reviewing another paper. In this paper, the performance time was
improved with a new technique by 15%, but the standard deviation was also as large
as 15%. The results would not show a significant difference because the standard
deviation is too large. So would your conclusion be that the new technique is useless?
I would say not. 15% improvement in average (e.g., 10 vs. 8.5 s) could have an impact
on user experience. There may have been some factors that caused such variances.
For example, some participants might have been able to use experience from other
interactive systems (e.g., heavy smartphone users might be able to adapt to new
touch interaction more quickly than others). Other researchers might come up with
an even better technique which can remove that variance while maintaining faster
performance. Thus, the developed technique may be important enough to be shared
even though the present paper could not find a significant difference. Assuming the
paper is of high quality in other aspects, I think that it should be accepted (though I
would ask the authors to explain why the standard deviation was so large and how
their technique could be improved to make it smaller). Thus, we should not overrate
statistically-significant results and underrate non-statistically-significant results. All
results should be interpreted in a larger context.

5.2.4 Summary

The discussions about these myths around the p value may be discouraging to some
of you. But if you can use correctly, it is no doubt that NHST is a great tool to analyze
your data as long as you:

• Understand the meaning of the p value correctly
• Use the term “significant” appropriately
• Define a null hypothesis that can occur with your data, and
• Seek dichotomous answers (i.e., “yes” or “no”).

5.3 Effect Size

An effect size is the metric that indicates the magnitude of the effect attributed to
the factor of interest. The effect size is not subject to the sample size, unlike the p



92 K. Yatani

value. Thus, the effect size can complement the information that the p value offers
us. Fortunately, calculations of effect sizes are easy to perform in most cases, and R
already has powerful libraries for it. Reporting the effect size does not take up much
space in your paper. So, we should start the practice of reporting the effect size now,
and raise discussions.

However, we should also note that the effect size you can calculate from data is
a point estimate. Thus, this estimate should have an error range. This error range is
called a confidence interval, which probably you are already familiar with in NHST.
Unlike means, confidence intervals for effect sizes can be asymmetric. This means
that the estimated effect size may not be the exact average of the lower bound and
upper bound of the confidence interval. For example, you can encounter cases where
your estimated effect size is 0.5, and the confidence interval is [0.1, 0.7].

5.3.1 Interpretation of Effect Sizes

It is common to interpret effect sizes by comparison to thresholds that are consid-
ered “small”,“medium”, and “large”. Table5.1 summarize these values. This chapter
explains how to calculate each effect size in the following sections.

However,we should use this table with care. These are the values agreed in other
researchfields, but theymaynot be appropriate forHCI. I have seenmany caseswhere
the estimated effect size is much larger than “Large” values in this table. The HCI
community must continue discussions and achieve consensus on what researchers
should consider “small”, “medium”, and “large”. But we can still use this table as a
guide.

My favorite way to use effect sizes is to look at their confidence intervals and see
whether it includes the zero or not (Nakagawa and Cuthill 2007). The zero effect size
means that there is no effect by the factor. Simply speaking, if the confidence interval
includes zero, we cannot be sure that an effect exists (even though its estimated size
is large). Table5.2 summarizes possible implications given an effect size and its
confidence interval.

Table 5.1 Effect sizes commonly used for null hypothesis significance testing and their values
considered small, medium, and large effect sizes. This table was created based on existing literature
(Cohen 1998; Field 2009; Mizumoto and Takeuchi 2008)

Statistical
methods

Effect size Small Medium Large

t-test Cohen’s d 0.2 0.5 0.8

ANOVA η2 and η2
p 0.01 0.06 0.14

Non-parametric
tests

R 0.1 0.3 0.5

Correlation R 0.1 0.3 0.5



5 Effect Sizes and Power Analysis in HCI 93

Table 5.2 Implications with eight possible combinations of effect sizes (ES) and confidence inter-
vals (CI)

CI includes 0 ES absolute value CI range Implication

No Small Small The effect apparently exists, but
the effect is small

Small Large (This is unlikely to happen)

Large Small The effect apparently exists, and
we are sure that the effect is large

Large Large The effect apparently exists and
may be large, but we are not sure
about its actual size

Yes Small Small We are sure that the effect is
small, but not sure whether the
effect really exists

Small Large We are not sure whether the effect
exists. We thus need more data

Large Small (This is unlikely to happen)

Large Large We are not sure whether the effect
exists. We thus need more data

In this chapter, I provide ways to calculate the confidence interval for some of the
effect sizes. Even in other fields, reporting confidence intervals of effect sizes is not
common yet (at least as of February 2015 when I wrote this chapter). However, as I
described in Table 5.2, confidence intervals of effect sizes can be very informative.
Although there are many journal articles, textbooks and online tutorials, methods for
calculating the confidence interval of an effect size are not well summarized. I hope
that this would serve as a useful guide for HCI researchers to better report effect
sizes.

In the following subsections, I look into how to calculate effect sizes of common
NHST. I also provide small examples and codes so that you can also execute them
yourself. The code is not complicated at all, so even if you are not confident at coding,
you should be able to understand. You also see some formulae, but you do not have
to remember all of them as R libraries can do the job for you.

5.3.2 Paired t-Test

The t-tests is the most basic parametric testing method. I am sure that most of you
have used it. A common effect size used for paired t-tests is Cohen’s d. Its definition
is as follows:

d = μ1 − μ2

SDdiff
,
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whereμ1 andμ2 represent themean in each group, andSDdiff is the standard deviation
of the difference between the two groups. To have a large d, a large effect size, the
mean difference has to be large or the standard deviation has to be small. This fits
well to our intuition. If the difference of the means between two groups is large, we
want to say that the effect is large. Even if it is small, when its variance is small, the
difference between the two groups is apparent. So we want to consider this case as
showing a large effect too. This d does not depend on the sample size because we
can transform d as follows (n is the sample size and x1, x2 represent data points in
each group).

d =
1
n�x1 − 1

n�x2
√

�
((x1 − x2)− (μ1 −μ2))2

n2

= �(x1 − x2)
√

�((x1 − x2) − (μ1 − μ2))2

Thus, thismetric also has the desired characteristics of independence of the sample
size.

Fortunately, we have a library to calculate this (and its confidence interval), so
you do not have to remember this formula. We will now look at how to calculate
Cohen’s d with a simple example. Suppose you have conducted a comparative study
with two techniques in a within-subject design. In the following, the variables group
and value represent the experimental conditions and participants’ performance.

> value <- c(1,1,2,3,3,1,2,4,1,2,6,5,2,3,5,2,2,3,4,4)
> group <- c(0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1)
> data <- data.frame(group, value)
> by(data $value, data$group, summary)
data$group: 0
Min. 1st Qu. Median Mean 3rd Qu. Max.
1.00 1.00 2.00 2.00 2.75 4.00

-----------------------------------------------------
data$group: 1
Min. 1st Qu. Median Mean 3rd Qu. Max.
2.00 2.25 3.50 3.60 4.75 6.00

This fictional dataset looks like it will have a significant result. Let’s run a paired
t-test to confirm.

> t.test(data[data["group"]==0,2],
> data[data[’group’]==1,2], paired=T)
Paired t-test
data:
data[data["group"] == 0, 2] and
data[data["group"] == 1, 2]
t = -2.588, df = 9, p-value = 0.02931
alternative hypothesis:
true difference in means is not equal to 0
95 percent confidence interval:
-2.9985588 -0.2014412

sample estimates:
mean of the differences
-1.6
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Yes, we have a significant difference. Now, wewill calculate the effect size.μ1 − μ2

is already in this result view, which is in the last line (−1.6). For SDdiff , we can
calculate as follows:

> sd(data[data$group=="0",2] -
+ data[data$group=="1",2])
1.95505

We then use the MBESS library [MBESS]. You need to install it before using.
Please refer to other [R] manuals on how to do it).

> library(MBESS)
> ci.sm(Mean=1.6, SD=1.95505, N=10, conf.level=0.95)
[1]"The 0.95 confidence limits for the standardized mean are
given as:"
$Lower.Conf.Limit.Standardized.Mean
[1] 0.07897955
$Standardized.Mean
[1] 0.8183934
$Upper.Conf.Limit.Standardized.Mean
[1] 1.52514

Thus, the effect size is 0.82 with the 95% confidence interval of [0.08, 1.53]. Note
that 0.8183934 = 1.6/1.95505. We now use Table5.2. The CI does not include the
zero, the absolute value of the effect size is large. And the range of CI is large. Thus,
according to Table5.2, we have some grounds to believe there is a positive effect.
But the actual effect can be much smaller (or larger) than the estimate we have here.

5.3.3 Unpaired t-Test

We also use Cohen’s d for unpaired t-tests, but the calculation is a little different:

d = μ1 − μ2
√

(n1 − 1)σ 2
1 + (n2 − 1)σ 2

2
n1 + n2 − 2

where μi, σi, ni are the mean, standard deviation, and sample size of the group i,
respectively. Similar to what we saw in the paired t-test, this metric is not dependent
to the sample size. We use the same fictional data again to calculate the effect size.
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> value <- c(1,1,2,3,3,1,2,4,1,2,6,5,2,3,5,2,2,3,4,4)

> group <- c(0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1)

> data <- data.frame(group, value)

> t.test(data[data["group"]==0,2],

+ data[data[’group’]==1,2], var.equal=T)

Two Sample t-test

data:

data[data["group"] == 0, 2] and

data[data["group"] == 1, 2]

t = -2.8483, df = 18, p-value = 0.01067

alternative hypothesis:

true difference in means is not equal to 0

95 percent confidence interval:

-2.7801789 -0.4198211

sample estimates:

mean of x mean of y

2.0 3.6

This time, we run an unpaired t-test, and still have a significant result. What we
need for calculating the effect size this time is the t value, which is 2.8483. With the
ci.smd function in the MBESS library, we can calculate the Cohen’s d as follows:

> library(MBESS)
> ci.smd(ncp=2.8483, n.1=10, n.2=10, conf.level=0.95)
$Lower.Conf.Limit.smd
[1] 0.2903809
$smd
[1] 1.273798
$Upper.Conf.Limit.smd
[1] 2.228362

Therefore, we have an estimated effect size of 1.27 with 95% CI = [0.29, 2.23].
This would appear to be a large effect but with a fairly large confidence interval so
we require more data for further investigation.

5.3.4 ANOVA

ANOVA (Analysis of variance) is also used in HCI very often. There are a couple
of effect sizes which can be used in ANOVA tests. But eta-squared (η2) and partial
eta-squared (η2

p) are probably the most common, and this section mainly explains
them.

The intuition of eta-squared is a ratio of the variance which can be explained
by a particular factor over the total variance observed. If a factor has a large effect,
it causes measurable differences in your observation. With ANOVA, suppose that
you have found that the factor is contributing to generating half of these observed
differences (i.e., variances). In this case, the eta-squared is 0.5.



5 Effect Sizes and Power Analysis in HCI 97

η2 = SSfactor

SStotal

where SSfactor and SStotal represent the sum of square for the factor and all factors
(including errors). When the number of factors is large, eta-squared may underesti-
mate the magnitude of the effect as SStotal tends to be much larger SSeffect than . To
mitigate this issue, we have partial eta-squared defined as follows:

η2
p = SSfactor

SSfactor + SSerror

The partial eta-squared compares the variance attributed to the factor against the
error (i.e., the residual of the total variance afterwe removeones by factors).However,
this partial eta-squared may overrate the size of the effect (you will see this later). It
is important to clarify which you use in your paper.

5.4 One-Way ANOVA

Let’s take a look at howwe can calculate the effect size when we perform anANOVA
test. Suppose that we are comparing three user groups, each of which consists of
eight people. We also have a value for each person which represents some kinds of
performance.

> Group <- rep(c("A", "B", "C"), each=8)

> Value <- c(1, 2, 4, 1, 1, 2, 2, 3, 3, 4, 4,

+ 2, 3, 4, 4, 3, 4, 5, 3, 5, 5, 3, 4, 6)

> data <- data.frame(Group, Value)

We perform an ANOVA test (not repeated-measure) with this data.

> aov <- aov(Value ~ Group, data)
> summary(aov)

Df Sum Sq Mean Sq F value Pr(>F)
Group 2 22.75 11.38 12.1 0.00032 ***
Residuals 21 19.75 0.94
---
Signif. codes:
0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1

We find that the Group factor is significant. From this result, we also know that
SSfactor is 22.75 and SSerror is 19.75. As we only have one factor, the total variance
SStotal is the sum of SSfactor and SSerror, which is 42.50. We thus can calculate the
eta-squared:

η2 = SSfactor

SStotal
= 22.75

42.50
= 0.54
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Please also note that the partial eta-squared is the same as this eta-squared this
time. This is always true for one-way ANOVA by definition. We also calculate the
confidence interval of the eta-squared with the MBESS library with the F value and
two degrees of freedom:

> library(MBESS)
> ci.R2(F.value=12.1, df.1=2, df.2=21,
+ conf.level=.95, Random.Predictor=F)
$Lower.Conf.Limit.R2
[1] 0.1752996
$Prob.Less.Lower
[1] 0.025
$Upper.Conf.Limit.R2
[1] 0.6870796
$Prob.Greater.Upper
[1] 0.025

What we need to look for in this result is Lower.Conf.Limit.R2 and
Upper.Conf.Limit.R2. Thus, the 95% confidence interval is [0.18, 0.69]. This
suggests that there is a large effect, and that we might want to gather more data to
increase our confidence.

5.5 One-Way Repeated-Measure ANOVA

How about if we run a repeated-measure ANOVA test? Let’s take a look with the
same example.

> Group <- rep(c("A", "B", "C"), each=8)
> Value <- c(1, 2, 4, 1, 1, 2, 2, 3, 3, 4, 4, 2, 3,
+ 4, 4, 3, 4, 5, 3, 5, 5, 3, 4, 6)
> Participant <- rep(c(1:8),3)
> data <- data.frame(Group, Value, Participant)
> aov <- aov(Value ~ Group +
+ Error(factor(Participant)/ Group), data)
> summary(aov)
Error: factor(Participant)

Df Sum Sq Mean Sq F value Pr(>F)
Residuals 7 5.167 0.7381
Error: factor(Participant):Group

Df Sum Sq Mean Sq F value Pr(>F)
Group 2 22.75 11.375 10.92 0.00139 **
Residuals 14 14.58 1.042
---
Signif. codes:
0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1

Again, we have a significant result but several numbers have been changed. The
F value is 10.92. SSerror becomes 14.58 while SSfactor stays as 22.75. We also have a
new “error” for Participant. Its sum of square is 5.17. Thus the eta-squared is:
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η2 = SSfactor

SStotal
= 22.75

22.75 + 14.58 + 5.17
= 0.54

This is the same value as we had in the previous example. But if we calculate the
partial eta-squared, we have:

η2
p = SSfactor

SSfactor + SSerror
= 22.75

22.75 + 14.58
= 0.61

This is because we have removed effects of participants’ individual differences.
The residual of 5.167 means the variance that can be explained as individual differ-
ences. You may also notice that 14.58 + 5.17 = 19.75. This is how repeated-measure
ANOVA considers individual differences.

We now calculate the confidence interval of the estimated effect sizes. The proce-
dure is almost the same as one-wayANOVA.We start with the confidence interval for
the partial eta-squared. As Group is now a within-subject factor, we have to change
Random.Predictor to true.

> library(MBESS)
> ci.R2(F.value=10.92, df.1=2, df.2=14,
+ conf.level=.95, Random.Predictor=T)
$Lower.Conf.Limit.R2
[1] 0.1647956
$Prob.Less.Lower
[1] 0.025
$Upper.Conf.Limit.R2
[1] 0.8174432
$Prob.Greater.Upper
[1] 0.025

Thus, the estimated effect size is η2
p = 0.61 with 95% CI = [0.16, 0.82]. Next,

we calculate the confidence interval for the eta-squared. Unfortunately, we cannot
directly use the F value we see in the ANOVA test result because it is calculated with
the residual (error) of each factor. As we calculated the eta-squared, we need to take
all errors into account. To do this, we re-calculate the F value:

SSfactor/df factor

SStotal_error/dferror

= 22.75/(3 − 1)

(14.58 + 5.17)/((3 − 1) × (8 − 1))
= 0.86
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> ci.R2(F.value=8.06, df.1=2, df.2=14,
+ conf.level=.95, Random.Predictor=T)
$Lower.Conf.Limit.R2
[1] 0.08764731
$Prob.Less.Lower
[1] 0.025
$Upper.Conf.Limit.R2
[1] 0.7755121
$Prob.Greater.Upper
[1] 0.025

Thus, η2 = 0.54 with 95% CI = [0.09, 0.78]. With either the eta-squared or
partial eta-squared, the confidence interval do not include the zero. Thus, it is likely
that we have a large effect according to Table5.1.

5.6 Two-Way ANOVA

The basic idea of calculating effect sizes in two-way ANOVA is the same as one-way
ANOVA. Let’s take a look with an example. Suppose that we want to compare user
performance differences among two types of devices (a tablet and mobile phone)
and three kinds of interaction techniques for text entry (a gesture-based method,
pen-based method, and the QWERTY keyboard). Both factors are within-subject,
and we have eight participants in total.

> Participant <- factor(rep(c(1:8), 6))
> Device <- factor(c(rep("Tablet",24),
+ rep("Mobile",24)))
> Technique <- factor(rep(c(rep("Gesture",8),
+ rep("Pen",8),
rep("QWERTY",8)), 2))
> Time <- c(1.2,1.4,1.8,2.0,1.1,1.5,1.5,1.7,
+ 2.1,2.5,2.2,2.2,2.9,2.3,2.3,2.6,
+ 3.5,3.4,3.3,3.2,2.9,2.8,3.8,3.4,
+ 2.4,1.8,2.5,2.1,2.2,1.9,1.7,2.3,
+ 2.8,3.1,3.2,4.0,2.9,3.6,3.2,3.7,
+ 4.5,4.8,4.7,4.1,4.1,4.2,4.6,4.9)
> data <- data.frame(
+ Device, Technique, Participant, Time)

We now run a two-way ANOVA test with the ez library. Please refer to its manual
([R] ezANOVA manual) for more details on how to use the library.
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> library(ez)
> options(contrasts=c("contr.sum", "contr.poly"))
> ezANOVA(data=data, dv=.(Time), wid=.(Participant),
+ within=.(Technique, Device), type=3, detailed=T)
$ANOVA
Effect DFn DFd SSn SSd F p p<.05

1 (Intercept) 1 7 390.4 0.81 3368 1.1e-10 *
2 Technique 2 14 34.2 1.76 135 6.8e-10 *
3 Device 1 7 9.8 0.2 273 7.2e-07 *
4 Tech:Dev 2 14 0.7 1.5 3.4 6.0e-02
$‘Mauchly’s Test for Sphericity‘
Effect W p p<.05

2 Technique 0.7849017 0.4835549
4 Technique:Device 0.4815467 0.1116645
$‘Sphericity Corrections‘
Effect GGe p[GG] p[GG]<.05

2 Technique 0.8229787 1.831468e-08 *
4 Tech:Dev 0.6585649 8.883789e-02

There is much information in the result view. First, we need to check if our
dataset violates the sphericity assumption (see Chap.6 for more on sphericity).
Under the section of “Mauchly’s Test for Sphericity”, a main effect factor Technique
and the interaction term Technique:Device do not show significant results. Thus,
we do not need any correction and use direct interpretation of the ANOVA result.
Now, we move to the section of “ANOVA”. Technique is significant (F2,14 = 135.8,
p < 0.001), and also is Device (F1,7 = 273.8, p < 0.001), but the interaction term
is not (F2,14 = 3.44, p = 0.06).

Let’s calculate the effect size. For the eta-squared of Technique, the denominator
is all the sum of square for all factors (except the intercept term) and all errors
(including the one associated with the intercept). Thus,

η2 = SSTech

SStotal
= 34.24

34.24 + 9.81 + 0.75 + 0.81 + 1.76 + 0.25 + 1.53
= 0.70

If we calculate the partial eta-squared instead, the denominator only includes the
sum of square associated with the factor of interest. That is,

η2
p = SSTech

SSTech + SSTech_error
= 34.24

34.24 + 1.76
= 0.95

http://dx.doi.org/10.1007/978-3-319-26633-6_6
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Unlike one-way ANOVA, the values of these two effect sizes are different. Either
of them is generally acceptable in publications, but we should know that the partial
eta-squared may overestimate the magnitude of the effect.

We then calculate the confidence intervals of our eta-squared and partial eta-
squared. We start with calculating the confidence interval for the partial eta-squared.
Similar to the case of one-way ANOVA, we need the F value and two degrees of
freedom. Technique is a within-subject factor, so we set Random.Predictor to
true (if the factor is between-subject, you need to set it to false):

> library(MBESS)
> ci.R2(F.value=135.8, df.1=2, df.2=14,
+ conf.level=.95, Random.Predictor=T)
$Lower.Conf.Limit.R2
[1] 0.8452752
$Prob.Less.Lower
[1] 0.025
$Upper.Conf.Limit.R2
[1] 0.9797964
$Prob.Greater.Upper
[1] 0.025

Thus, η2
p = 0.95 with 95% CI = [0.85, 0.98].

Next, we calculate the confidence interval for the eta-squared. We re-calculate the
F value by doing:

SSTech/dfTech

SStotal_error/dferror
= 34.24/(3 − 1)

(0.81 + 1.76 + 0.25 + 1.53+)/((3 − 1) ∗ (8 − 1))

= 55.1.

Here, the denominator is the mean of square for errors, which is the division of the
total sum of square for errors by their degree of freedom. The numerator is the mean
of square for Technique. Our new F value is 55.1, and we use the ci.R2 function with
this:

> ci.R2(F.value=55.1, df.1=2, df.2=14,
+ conf.level=.95, Random.Predictor=T)
$Lower.Conf.Limit.R2
[1] 0.6693722
$Prob.Less.Lower
[1] 0.025
$Upper.Conf.Limit.R2
[1] 0.9525595
$Prob.Greater.Upper
[1] 0.025
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Thus, we have η2 = 0.70 with 95% CI = [0.67, 0.95]. By Table5.1, this is a
rather large effect with fairly small confidence interval.

In case your ANOVA results require corrections (e.g., Greenhouse-Geisser or
Huynh-Feldt correction, seeChap.6), you need to use corrected degrees of freedom to
calculate the confidence interval. The example above does not require any correction,
but suppose that we decide to do it. According to the result view, Greenhouse-
Geisser’s is 0.8229787. Thus,

> ci.R2(F.value=135.8, df.1=2*0.82, df.2=14*0.82,
+ conf.level=.95, Random.Predictor=T)
$Lower.Conf.Limit.R2
[1] 0.8269647
$Prob.Less.Lower
[1] 0.025
$Upper.Conf.Limit.R2
[1] 0.9819841
$Prob.Greater.Upper
[1] 0.025

Note that the confidence interval becomes slight wider this time, which means
that the estimation gets a little conservative due to the correction.

5.7 Non-parametric Tests

Effect sizes for non-parametric tests have not been used as often as parametric tests
even in other fields. This is probably why t-tests and ANOVA suffice in most cases
(i.e., these tests are well robust to violations of assumptions and we also have well-
known correction methods). However, non-parametric tests are rather common in
HCI, and it is still good to discuss their effect size aswell. Formore on non-parametric
tests, see Chap.7 of this book.

According to the book written by Field (2009), r is a metric we can use as an
effect size for non-parametric tests, defined as:

r = Z√
N

where Z is the z value we can obtain from non-parametric tests and N is the total
number of samples.

Let’s take a look at an example of Wilcoxon tests. This is a non-parametric equiv-
alence to a paired t-test. Suppose that we have some results from a 7-Likert scale
question:

We then perform anWilcoxon test with a function in the coin library ([R] coin
manual).

http://dx.doi.org/10.1007/978-3-319-26633-6_6
http://dx.doi.org/10.1007/978-3-319-26633-6_7
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> GroupA <- c(1,3,2,4,3,2,1,1,3,2)
> GroupB <- c(3,5,6,4,2,4,7,6,3,5)
> library(coin)
> wilcoxsign_test(GroupA ~ GroupB, distribution="exact")
Exact Wilcoxon-Signed-Rank Test (zeros handled a la Pratt)
data: y by x (neg, pos) stratified by block
Z = -2.366, p-value = 0.01562
alternative hypothesis: true mu is not equal to 0

We thus have a significant result. And the effect size is:

r = Z√
N

= 2.366√
20

= 0.53

If you ran a Friedman test, you calculate the effect size for pairwise comparison.
Unfortunately, we do not have an agreed method to calculate the confidence interval
of r. New metrics whose confidence intervals can be calculated have been proposed
(Newcombe 2012), and the HCI community should continue to review what would
be most appropriate in the context of our research and revising our statistical testing
practices.

5.8 Pearson’s Correlation

To calculate the confidence interval of the correlation r, we need to obtain z-score
by doing the Fisher transformation. We add or subtract the standard error with the
factor of 1.96 as we do for normal null hypothesis significance testing. But because
of transformation, the standard error is approximately 1√

n−3
. And we then transform

back to the space of r. In summary, we have to calculate:

tanh

(

tanh−1r ± 1.96√
n − 3

)

In reality, we do not have to do this; fortunately, the function to calculate the
Pearson’s correlation also shows its confidence interval. Let’s take a look with an
example. Suppose you have 10 samples:

> x <- c(10,14,12,20,15,13,18,11,10,11)
> y <- c(22,21,25,35,28,29,31,19,17,24)
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We then calculate the correlation with the cor.test function.

> cor.test(x,y,method="pearson")
Pearson’s product-moment correlation

data: x and y
t = 4.7377, df = 8, p-value = 0.001468
alternative hypothesis:
true correlation is not equal to 0
95 percent confidence interval:
0.4984860 0.9660124

sample estimates:
cor

0.8586245

The results already shows that the confidence interval is [0.50, 0.97], so by
Table5.1 we can be reasonably confident that the effect is large.

5.9 Power Analysis

We have seen effect sizes and how to calculate them. I hope you now have a clearer
understanding how effect sizes could be useful to interpret statistical testing results.
With the notion of effect sizes, we can perform another analysis, called power analy-
sis. This is not frequently used in HCI research (see Chap.14), but it can be a useful
tool for some of the readers. Before talking about the details of power analysis, we
need to understand two types of errors we may have in the decision with statistical
testing results.

5.9.1 Type I Error and Type II Error

NHST can tell you how likely randomly-sampled data would be like your data or
even more extreme than it given that the null hypothesis is true (e.g., there is no
difference in the mean across the comparison groups). As a standard threshold, we
use 0.05, and we call this alpha (α). This means that if randomly sampled data can be
like your data at lower than a 5% chance, you reject the null hypothesis (and claim
that you observe a difference). Thus, if your p value is lower than the alpha, we say
that you have a significant result.

If a difference does not exist but we reject the null hypothesis, this is an error. We
call this a Type I error or false positive. As you have seen in various NHSTs, your
p value will never be zero (which can be extremely small though). As your p value
directly means the probability of this Type I error, there is a very slight chance that
your conclusion is wrong even if the p value is very small.

http://dx.doi.org/10.1007/978-3-319-26633-6_14
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There is another kind of errors we may have in NHSTs as illustrated in Table5.3.
Another possible error is that we fail to reject the null hypothesis although the null
hypothesis is in fact false. In otherwords,we conclude thatwedonot have a difference
although there is a difference. This is called a Type II error or false negative. Its
probability is represented as beta (β).1 − β represents the probability to have true
negative, and it is called power. Power analysis is a way to determine how likely it
is that we have a Type II error.

To summarize in a bit more mathematical notation, α = p (Reject H0 | H0 is
true). H0 is the null hypothesis. And p = p (Data | H0 is true). If p is smaller than
α, we call the result significant. β = p (fail to reject H0 | H0 is false), and power =
p (reject H0 | H0 is false) = 1 − β.

5.9.2 Conducting Power Analysis

There are four pieces of information used in power analysis.

• Sample size,
• Effect size of the underlying population (not the estimated value),
• Alpha, and
• Beta or Power.

We need three of the above information to estimate the other by power analysis.
For example, we can estimate a sample size we would need given the effect size,
alpha and power. We can also estimate how likely we have a false negative given the
sample size, effect size (note that it is the one for the underlying population, not the
one you calculate from your data) and alpha. Based on what you estimate, power
analysis often has different names.

• A priori power analysis: Estimating the sample size given the effect size, alpha
and power,

• Sensitivity analysis: Estimating the effect size given the sample size, alpha and
power,

• Criterion analysis: Estimating the alpha given the sample size, effect size, and
power, and

• Post hoc power analysis: Estimating the power given the sample size, effect size,
alpha.

Table 5.3 Type I and Type II errors

Rejecting the null hypothesis Not rejecting the null
hypothesis

The null hypothesis is true Type I error (false positive) True negative

The null hypothesis is false True positive Type II error (false negative)



5 Effect Sizes and Power Analysis in HCI 107

In this chapter, we first explain how to perform a priori power analysis because
the sample size estimation is often key to determine an experimental design. We then
demonstrate post hoc power analysis with MangoWatch data. Other analyses can be
performed with the same functions; the only difference is to change arguments. For
example, if you want to run a sensitivity analysis, you feed the sample size, alpha
and power instead of the effect size, alpha and power (a priori power analysis).

5.9.3 Sample Size Estimation

Let’s take a look at an example with t-tests. Suppose that we have two groups to
compare and we do a within-subject design (so we are using a t paired test). We
want to have a difference with α = 0.05. It is a little hard to set a proper effect size,
but let’s say 0.5 (regarded as a middle-size effect, see Table5.1). The power is also
tricky to determine. Here, we shall accept 20% false negative in cases where the null
hypothesis fails to be rejected. So, we set the power to be 0.8. To perform power
analysis, we can use the pwr library ([R] pwr manual).

> library(pwr)
> pwr.t.test(power=0.8, d=0.5,
+ sig.level=0.05, type="paired")

Paired t-test power calculation
n = 33.36713
d = 0.5

sig.level = 0.05
power = 0.8

alternative = two.sided
NOTE: n is number of *pairs*

Thus, we would need 33 samples to meet the criteria we specified. What if we
design this experiment as between-subject? It turns out thatwewould have to increase
the sample size for each group to around 64:

> pwr.t.test(power=0.8, d=0.5, sig.level=0.05)
Two-sample t-test power calculation

n = 63.76561
d = 0.5

sig.level = 0.05
power = 0.8

alternative = two.sided
NOTE: n is number in *each* group

The pwr library also has the function for unbalanced sample sizes. Suppose that
we are considering the same between-subject experiment, but this time we are only
able to have 50 samples for one group due to some constraints. So our question is
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how many samples we would need for the other group. We can do this with the
pwr.t2n.test function:

> pwr.t2n.test(d=0.5, power=0.8, sig.level=0.05,
+ n1=50)

t-test power calculation
n1 = 50
n2 = 87.70891
d = 0.5

sig.level = 0.05
power = 0.8

alternative = two.sided

Therefore, wewould need about 88 samples. Youmay encounter a following error
with the pwr.t2n.test function:

> pwr.t2n.test(d=0.5, power=0.8, sig.level=0.05, n1=20)
Error in uniroot(function(n2) eval(p.body) - power,

c(2 + 1e-10, 1e+07)) :
f() values at end points not of opposite sign

This means that your sample size for one group is too small. Thus the sample size
for the other is infinitely large, and the functionwas not able to complete a calculation.
So if you see this error, you definitely need more samples in both groups.

For an ANOVA test, we can use the pwr.anova.test() function. The para-
meters are similar except that k for the number of groups to compare, and f for the
effect size called Cohen’s f . It can be converted from an eta-squared:

f −
√

η2

1 − η2

Suppose that we have three groups to compare, and we hypothesize that the effect
size of the underlying populations is medium. So we assume that it would be 0.06,
which is a plausible choice from Table5.1. We also set the power to be 0.8. With all
of these, the sample size we would need to have is:

> pwr.anova.test(k=3, f=sqrt(0.06/(1-0.06)),
sig.level=0.05, power=0.8)

Balanced one-way analysis of variance power calculation
k = 3
n = 51.32635
f = 0.2526456

sig.level = 0.05
power = 0.8

NOTE: n is number in each group
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Thus, we would need 51 samples for each group. If you plan to do a repeated-
measure ANOVA test, it is generally the case that you would need a little fewer
samples, but this result would still serve as a good sample size estimate.

Similarly, you can perform power analysis on correlation and χ2 tests with
pwr.r.test and pwr.chisq.test, respectively. The pwr library does not
include any function for non-parametric tests. You can use the function matching
with equivalent parametric tests (e.g., paired t-tests for Wilcoxon tests), and use the
results as a guide. You would likely need larger sample sizes than what the results
show as non-parametric tests does not assume normality.

5.9.4 Retrospective Power Analysis
(Caution: Not Recommended)

Retrospective power analysis is another analysis we should learn. It means that we
are trying to estimate the power (or the observed power) based on the observed
effect size. This looks similar to post hoc power analysis, but the difference is in
the effect size: retrospective power analysis uses the observed power, and post hoc
power analysis uses the true effect size of the underlying populations determined in
a priori manner. This retrospective power analysis is often considered to be useful to
determine if there is really no difference between the groups we are comparing.

However, retrospective power analysis is regarded as inappropriate for determin-
ing that differences between the groups do not exist.Many researchers have suggested
avoiding this type of analysis. A more detailed discussion is available in Hoenig and
Heisey’s paper (Hoenig and Heisey 2001), but here is a quick summary of why retro-
spective power analysis is not appropriate: First, power analysis assumes the effect
size of the underlying population. It is known that the estimated effect size (i.e., the
one you calculate from the given data) is not generally a good approximation of
the true effect size (the one we want to use for power analysis). Analysis with the
estimated effect size would just generate results with low reliability.

Second, when you want to claim that there is no difference, you want your p
value to be high (so it is unlikely that you say there is a difference although there
is not) and your power to be also high (so it is unlikely that you say there is not
a difference although there is). However, the p value and the observed power (the
power calculated based on the estimated effect size) are somewhat correlated to each
other; when the p value becomes large, the power tends to become low.

Unfortunately, there is a misunderstanding on the power analysis, and this ret-
rospective power analysis is often seen in academic publications. When you see it,
please interpret it with caution.



110 K. Yatani

5.10 Conclusion

In this chapter, we discuss effect sizes and power analysis. Bruce Thompson cited
the words of Roger Kirk to emphasize the importance of effect sizes in his article
(Thompson 2007):

It is evident that the current practice of focusing exclusively on a dichotomous reject–
nonreject decision strategy of null hypothesis testing can actually impede scientific
progress . . . In fact, focusing on p values and rejecting null hypotheses actually distracts
us from our real goals: deciding whether data support our scientific hypotheses and are
practically significant. The focus of research should be on our scientific hypotheses, what
data tell us about the magnitude of effects, the practical significance of effects, and the steady
accumulation of knowledge. (Kirk 2003)

This applies to HCI research. It is very important to interpret statistical results
in a broader context. We should pose more critical questions to these results: how
large should the effect size be to interest us? What are implications of differences in
a realistic setting? What contributions still remain that should the community share
even if results are not statistically significant? Even effect sizes are not a panacea.
The surface of statistical results would never give us the entire picture of phenomena.
It is the responsibility of the researchers’—both authors and readers—to interpret
results and discuss them in a fair manner.
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Chapter 6
Using R for Repeated and Time-Series
Observations

Deborah Fry, Kerri Wazny and Niall Anderson

Abstract This chapter explores calculating two types of analyses that are often
used for repeated measures designs: within-subjects Analysis of Variance (ANOVA)
and Event History Analysis. Within-subjects ANOVA is used when members of a
particular sample are exposed to several different conditions or experiments and the
measurement of the dependent variable is repeated in each condition, thus inducing
correlation between the set of dependent variable measurements for each individual.
Event history analysis, by contrast, helps researchers to determine the probability that
an event occurs at a particular time interval, making it useful for research questions
that want to know how long it takes before the event of interest happens. Both of
these analyses have particular relevance for the field of human-computer interaction
and this chapter will explore how to use R for these two types of analyses using the
Mango watch example.

6.1 Repeated Measures and Time Series in HCI

Many studies focused on human-computer interaction are interested in evaluating
software by manipulating experiments or interactions with the same participants
over time and measuring changes in the variables of interest. Thus, the term repeated
measures is used to describe participants who engage in all conditions of an exper-
iment or provide data at multiple time points. For example, it may be interesting
to measure changes over time to student’s learning on a particular Massive Open
Online Course (MOOC) if there are different curriculum or pedagogical changes, or
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you could explore changes in user satisfaction with software as they become more
familiar with it over several sessions. As the observations made within each subject
must be correlated, analysis of these types of studies requires inferential approaches
that will allow for the presence of repeated measures. This chapter will highlight two
frequently used approaches: the within-subjects Analysis of Variance (ANOVA) and
Event History Analysis.

6.2 An Introduction to Within-Subjects Analysis
of Variance (ANOVA)

Repeated measures ANOVA, similar to other ANOVA methods, tests the equal-
ity of the means of a continuous outcome/dependent variable across a number of
experimental groups. Repeated measures ANOVA is used when members of a par-
ticular sample are exposed to several different conditions or experiments and the
measurement of the dependent variable is repeated in each condition, thus inducing
correlation between the set of dependent variable measurements for each individual.
This doesn’t necessarily mean that every question asked or factor tested needs to
be the same across every condition—as long as some are the same, then repeated
measures methods should be used.

The difference between a repeated measures ANOVA design and a multivariate
design for longitudinal data is that in the repeated measures design, each trial (or
time point) represents the measurement of the same characteristic under a different
condition. Using our example, a repeated measures ANOVA test can be used to
compare the effectiveness of the Mango Watch at months one, two and three. The
measurement is the effectiveness of the watch (as measured through productivity and
sales), and the condition that changes is the month. A repeated measures ANOVA
test, by contrast, should not be used to compare the types of watchesworn by the sales
team, the price of the watches, etc., as these do not represent different conditions,
but different (independent) qualities.

Repeated measures ANOVA is useful in many circumstances. Firstly, it is used for
repeated measures designs such as pretest-posttest designs, within-subjects experi-
ments matched designs or multiple measures. Secondly, when a sample is difficult
to recruit, repeated measures may be more a more cost effective way to run a trial
because each respondent is measured under all conditions. Thirdly, some research
questions are more suited to repeated measures designs such as those that look at
changes within participants or that use time as a key variable. Finally, repeated
measures can be used when respondents have been matched according to a specific
characteristic and that characteristic is then used to group respondents. For example,
consider choosing a group of students who have different experiences with using
online technology for learning and grouping them into pairs having similar technol-
ogy exposure backgrounds. One respondent from each pair can then be exposed to a
different condition (say, twodifferent introductory sessions of aMassiveOpenOnline
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Course orMOOC) and afterwards the entire sample is measured again.When sample
members arematched,measurements across conditions are treated like repeatedmea-
sures in a repeated measures ANOVA design. Lastly, within-subjects designs may
have more power to detect significance than between-subjects designs. In essence,
each participant is also his or her own control group (or there is a related other that
serves as a control). This is useful because it can help eliminate variance due specif-
ically to individual differences making the error term used in this technique more
precise.

6.2.1 Assumptions of Within-Subjects ANOVA

There are several assumptions underpinning thewithin-subjects ANOVAdesign. The
first is that the inferential method for within-subjects ANOVA relies on the assump-
tion that the rate of change for all participants is constant. This is most appropriate
for experimental designs where the repeated measures are conditions or measure-
ments in the experiment that respondents participate in rather than time points where
behaviour is observed, as is the case with more traditional longitudinal data.

Other ANOVA procedures (the between-subjects tests) assume different condi-
tions are independent (i.e., not from the same people over time). This is also an
underlying assumption of the F-test which is used to examine the null hypothesis of
equality of group means. Since repeated measures are by definition obtained from
the same participants (or whatever the objects/subjects of the experiment are), the
independence assumption is violated which means that variables taken under differ-
ent experimental conditions are still likely to be related because they are from the
same participants. This proves problematic for the accuracy of the F-statistic and
leads to a separate assumption for the within-subjects ANOVA of sphericity.

6.2.2 Sphericity

Sphericity means that we assume the relationship between pairs of experimental
conditions is similar with approximately equal variances between them. In other
words, the differences between all possible pairs of groups of the experiment are
no more dependent than any other two pairs. If sphericity is violated, then variance
calculations may be distorted leading to an inflated F-test statistic (and potential
loss of power). Sphericity presents difficulties as well with post-hoc comparisons.
Post hoc analyses involve looking for patterns or relationships between subgroups
of the data (usually by comparing pairs of group means) that were not thought of
before data was collected.1 These tests are done after (or post hoc) the main analyses

1 Chap.14 discusses the problems resulting from uncorrected multiple comparisons in HCI, while
Chap.13 advises designing experiments in such a way as to avoid unplanned comparisons.

http://dx.doi.org/10.1007/978-3-319-26633-6_14
http://dx.doi.org/10.1007/978-3-319-26633-6_13
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and are usually carried out to understand the patterns across groups that have driven
statistically significant findings in the initial ANOVA. To compensate for themultiple
comparisons, these tests use stronger criteria for significance to control for Type 1
errors, often known as ‘false positives’ or incorrectly rejecting a true null hypothesis
(no difference between the means). In other words, multiple comparisons can lead
to an increased likelihood of apparently significant findings where none exist. When
sphericity is violated, the Bonferroni post-hocmethodmay bemore robust than other
methods for control of the Type 1 error rate (Field et al. 2012). When sphericity is
not violated, other post-hoc measures such as Tukey’s Wholly Significant Difference
(WSD) test can be used.

Since sphericity is an assumption of the dependence and equality of variances
between treatment conditions, at least three conditions or experiments (or points of
data collection) are needed for sphericity to occur and with each additional repeated
measures factor, the risk for violating sphericity increases. Mauchly’s test, which
tests the hypothesis that the variances of the differences between the conditions are
equal, is therefore used to assess levels of sphericity. If Mauchly’s test is significant
(p < 0.05) then we would conclude that there are significant differences between the
variance of differences in conditions and sphericity may not be present in the data.

6.2.3 Correcting for Sphericity

There are two different tests that can be used to correct for sphericity if it is present in
the data developed by Greenhouse and Geisser (1959) and Huynh and Feldt (1976)
with tests that match the names of the authors that developed them. Academics
recommend that when estimates of sphericity are greater than 75 the Huynh-Feldt
correction should be used but when they are less than 75 or unknown then the
Greenhouse-Geisser correction can be used (Girden 1992; Field et al. 2012). Since
sphericity affects the F-statistic, another option is to use a test that does not rely on
the F distribution. One option is to use a multivariate test statistic because they do
not make assumptions about sphericity.

6.3 Conceptual Model for Within-Subjects ANOVA

The conceptual model for theWithin-Subjects ANOVA is presented in Fig. 6.1. Here
we can see the total variability is made up of the within participant variability which
is influenced by the effect of the condition plus random error. It shows that the same
respondents participate in each condition on the same factors.
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Fig. 6.1 Conceptual model for within-subjects ANOVA

6.4 Statistical Inference for Within-Subjects ANOVA

We can also present this same concept statistically. To calculate a repeated measures
ANOVA, the total sum of squares, within-participant sum of squares, model sum of
squares, residual sum of squares and mean squares need to be calculated in order to
calculate the F-ratio. Their equations are:

Total sum of squares (SST)

SST = (N − 1)s2grand

where N is the total number of values used in the calculation and s2grand is the grand
variance. This quantity represents the total variability in the dependent variable in a
form that will allow us to partition it into components representing different facets
of the structure of the model, as well as the variability due to residual error (in the
sense of variability unexplained by the model structure).

The within-participant sum of squares (SSW) identifies the variability across the
repeated measurements for each individual, summing each quantity to give a model
total:

SSW = (n1 − 1)s2person 1 + (n2 − 1)s2person 2 + · · · (nn − 1)s2person n

where ni represents the number of measurements for the i-th person.
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The model sum of squares (SSM) measures how much variability we can account
for by introducing the group structure inherent in the ANOVA model, which is why
it is calculated from the differences between the group means and the overall (grand)
mean of the dependent variable, as follows:

SSM =
k

∑

n=1

nk(x̄k − x̄grand)
2

The residual sum of squares (SSR) then represents the converse of the above
quantity—i.e. how much variability has not been captured by the model:

SSR = SSW − SSM

To make further progress with formal inference, we need to convert the sums of
squares back to variances, which we achieve by dividing them by their degrees of
freedom (df). The df represent the number of independent pieces of information used
to calculate the relevant quantity: for example

d fR = d fW − d fM

where dfM would be the number of groupsminus 1 and dfW the number of individuals
participating in the study.

To calculate the mean squares (MSM and MSR), you use the following equations:

M SM = SSM

d fM

M SR = SSR

d fR

Finally, to calculate the F-ratio:

F = M SM

M SR

A successful model will capture a large proportion of the total variability, which
will be identified by the F statistic increasing in size, driven by relatively larger values
of MSM in comparison to MSR.

Like an independent ANOVA, the F-value is compared against a critical value
based on its degrees of freedom (Field et al. 2012).
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6.5 Calculating Within-Subjects ANOVA Using R

First we will need to install several packages (see also Chap.2) and load them using
the following functions:

> library (pastecs)

> library (ggplot2)

> library (ez)

> library (nlme)

> library (multcomp)

Using theMango watch data (please also see Chap.2 for how to load the data), we
will want to first explore the data utilising descriptive statistics and also to check for
sphericity. We want to explore whether usability scores for the Mango watch were
different during different months. We will pick one of the usability questions. In our
case, we have picked SuS10, which is “I needed to learn a lot of things before I could
get going with this system.” We would expect that the users would be less likely to
agree with this over time as they get used to the watch.

Firstly, we need to ensure we have changed Time to a factor. We do this by
inputting:

> scale$Time <- factor(scale$Time)

We want to ensure that the data appear normal, so we will explore the data using
descriptive statistics, separately for each time point. To do this, we input:

> by(scale$SUS10, scale$Time, stat.desc)

We will see the following table:

Table 6.1 Descriptive statistics for question 10 on the SUS scale

http://dx.doi.org/10.1007/978-3-319-26633-6_2
http://dx.doi.org/10.1007/978-3-319-26633-6_2
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This table displays descriptive statistics such as the minimum and maximum
values, along with the mean, median, standard errors and standard deviations for
SUS10. You’ll notice that at Time 1, 2 and 3, the maximum value is 6. As the SUS
Usability Scale is a scale of 1–5, we know that scores of 6 are errors. As such, we
must make a decision of how to deal with these scores. When this happens in your
research, you must use your judgment to decide how to handle impossible entries.
Another, real-life, example of an impossible entry would be an age of 100 in a study
of children up to 10years of age. Sometimes, it is easy to see that the entry is a typo
and to see what the entry is meant to be, like in the case of the age of 100—it is likely
a 10-year old child. It is always good practice to re-check the original data collection
forms, if possible. If the incorrect data is impossible to decipher or if you cannot say
with certainty it is a typo, it is better to exclude it from the analysis. These decisions
need to be made on a case-by-case basis. In our case, we will assume that the entries
with value 6 are typos and were intended to take the value 5. Thus, we will need to
change all values of 6 to 5 in order to proceed with our analysis. To do this, we input
the following:

> scale$SUS10[scale$SUS10>5]<-5

Because the questions in the usability scale alternate from being a positive question
to a negative one, we need to convert them to being measured on the same scale.
We do this by subtracting user-responses of even-numbered SUS questions from five
and odd-numbered SUS questions from one. We end up with a scale of 0–4, with
four being the most positive response and zero being the most negative. Since we
have chosen SUS10, which is an even numbered question, we will need to subtract
user-responses from 5. We will create another variable in order to do this (Table6.1):

> scale$SUS10a<-5-scale$SUS10

Now we can explore this new variable with some descriptive statistics:

> by(scale$SUS10a, scale$Time, stat.desc)

The results are presented in Table6.2:

Table 6.2 Descriptive statistics of the transformed question 10 on the SUS scale
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Fig. 6.2 Bar chart with error bars for transformed SUS question 10

Again, we can see descriptive statistics such as the mean, median, minimum,
maximum, standard deviation and standard error. We can check that this time, the
values fall into the range of what we would expect.

We can also use graphs to explore the data. Using the following script in the
ggplot2 package gives us a bar graph with error bars as displayed in Fig. 6.2.

> SuSgraph<- ggplot(scale, aes(Time,SUS10a))

> SuSgraph + stat_summary(

+ fun.y=mean,geom="bar",fill="White",

+ colour="Black")+stat_summary(

+ fun.data=mean_cl_normal,geom="pointrange"

+ )

If we then input

> SuSgraph + geom_boxplot()

we will get the boxplot displayed in Fig. 6.3.
Contrary to our intuition, both the graph (Fig. 6.2) and the boxplot (Fig. 6.3) con-

firm visually that users found the Mango watch more difficult to use as time went
on, since 4 is a more positive response and 0 is a more negative one. We can see that
users were more likely to give a positive response at Time 1 and less likely to have
a positive response at Time 2 and 3 (Figs. 6.2 and 6.3).

The ezANOVA package will let us quickly see whether there are significant dif-
ferences in usability scores across months one, two and three. This package is useful
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Fig. 6.3 Boxplot overview of the SUS question 10 (transformed) data

Fig. 6.4 ezANOVA output

to give us a snapshot of whether there are differences and if so, we can move onto a
more in-depth analysis using the nlme package. To run ezANOVA, we enter:

> scale$ID <- factor(scale$ID); # Converts ID to a factor, as required by package
>
> ezscale <- ezANOVA(
+ data=scale,dv=.(SUS10a),wid=.(ID),
+ within=.(Time),detailed= TRUE,type=3
+ )
> ezscale

Figure6.4 shows the output that is created using the above command.
As we can see in Fig. 6.4, there is a significant difference across months one, two

and three.ezANOVA does not showuswhichmonths are causing the differences. This
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will need to be explored in the nlme package.We can also see that the requirement
of sphericity has been met through Mauchly’s test, as the p-value is non-significant.

We will want to set contrasts so that we can see where the differences between
groups lie. In order to do this, we’ll create dummy variables. The model calculated
by ezANOVA above uses a standard approach to constructing (or parameterising, to
use the statistical jargon) ANOVAmodels, in that 2 parameters are used to represent
the effects at the 3 different time points. Time point 1 is regarded as a reference
or baseline value (arbitrarily—one of the other points could play this role as an
alternative) and then the first parameter estimates the difference between time points
1 and 2, and the second parameter estimates the difference between time points 1
and 3. In thinking about which months might differ from the others in our case, it
could make sense that the steepest learning curve for the Mango watch would occur
in Month 1. So, we might prefer to compare Month 1 with Months 2 and 3 taken
together and then also to compare Month 2 and Month 3. Or, in this case, we can
see that there is the biggest difference graphically between the first month and the
second and third. So, we will separate the first month. Therefore, we would like to
replace the original two parameters in the model discussed above with 2 contrasts
representing the new effects of interest, so that we can have the model make these
comparisons explicitly.

It is worth noting at this point that there is no obligation to carry out this step
in your analysis. However, if you find that there are significant differences in your
model and you think the differences are due to comparisons between groups that the
regression itself is not able to explore, it may be worth setting up contrasts in order
to explore this hypothesis.

When beginning to set up contrasts, you must first think of which groups it would
make sense to compare. As previously mentioned, in our case, there seems to be a
large difference between the first month and months two and three when exploring
the data graphically. Therefore, we want to compare Month 1 with Months 2 and 3
(as a group) before comparing Month 2 with Month 3. Unfortunately, you cannot
create an unlimited number of contrasts (and therefore cannot compare everything).
Themaximum total number of contrasts that can uniquely be estimated is the number
of variables minus 1. Once a variable is used independently in a contrast, it cannot
be used in the contrast again. So, since we’ve already used month 1 in comparison
to months 2 and 3 together, month 1 cannot be used again in a contrast. Finally, you
need to create a weight table using positive and negative integers for your contrasts
and the weights should add up to 0. See Table 6.3 for a visual example of a weight
table.

Table 6.3 Contrasts table for
dummy variables

Month Contrast 1 Contrast 2

1 2 0

2 −1 1

3 −1 −1

Total 0 0
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Contrast 1 works because we assign the same weight to Times 2 and 3, but we
ensure that these weights have opposite sign to the weight for Time 1, which must
therefore equal 2 to cancel out the other twoweights—in spiritwe are therefore setting
up the subtraction Time 1—(Time 2 + Time 3). Contrast 2 is easier to understand—the
0 weight knocks out Time 1, then directly compares Time 2 against Time 3.

Once we’ve created our table, we enter the following code to set up the contrasts
within R:

> EarlyvsLate<-c(2,-1,-1)

> TwovsThree<-c(0,1,-1)

> contrasts(scale$Time)<-cbind(EarlyvsLate,

TwovsThree)

We then set-up our model using the nlme package using the commands below. The
output is presented in Fig. 6.5.

> newscale<-lme(SUS10a˜Time, random=˜1|ID/Time,

data=scale, method="ML")

> baseline<-lme(SUS10a˜1,random=˜1|ID/Time,

data=scale, method="ML")

> anova(baseline,newscale)

> summary(newscale)

The ANOVA table indicates that the Time effect is extremely significant (p <

0.0001), as we would expect. The lme() fit indicates that this is substantially due
to the difference between month 1 and the two later measurement times, but that the
second and third times are perhaps less different (although with a marginal p-value).
You will notice that this model shows our contrasts with their names.

If we still want to explore further, we can carry out post-hoc analyses. These
analyses will display all the individual comparisons, which will let us see whether
there is a difference between month 1 and month 3.

We enter the following into R:

> postHocs<-glht(newscale,linfct=mcp(Time = "Tukey"))

> summary(postHocs)

> confint(postHocs)
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Fig. 6.5 Output of the anova() and summary() functions using the nlme package for the analysis
of SUS10 (transformed)
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where ‘glht’ in the R code above refers to ‘general linear hypothesis’ and pro-
vides comparisons for parametricmodels, including generalized linearmodels, linear
mixed effects models, and survival models. Figure6.6 presents the R output.

Fig. 6.6 Output of the glht package, calculating all pairwise comparisons (by both hypothesis
tests and confidence intervals) between time points using Tukey’s method, for the transformed
SUS10 data
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6.6 Interpreting and Presenting the Within-Subjects
ANOVA Findings

As we can see, there is a significant difference across months one, two and three,
although with relatively little difference between months two and three. Mauchly’s
test indicated that the assumption of sphericity had been met (p = 0.906), therefore
the degrees of freedom did not need to be corrected. The results show that the learn-
ing usability of the Mango watch (as measured by the answer to SUS10 question)
was significantly affected by month of use with a significant reduction in usability
apparent between months one and three (p = 0.001). Further tests need to be con-
ducted to determine if this decrease in usability of the Mango Watch is hampering
productivity of the sales executive team, which was the purpose of introducing the
watch in the first instance.

6.7 An Introduction to Event History Analysis

Event history analysis helps researchers to determine the probability that an event
occurs at a particular time interval,making it useful for research questions thatwant to
know how long it takes before the event of interest happens.Event History Analysis is
also called survival analysis in the biomedical disciplines, where the event of interest
is often onset of disease or death from illness; duration modelling in econometrics,
where the event of interest could be specific policies or major political or economic
events; reliability analysis in engineering, where the event of interest could be a
particular function of a design feature; and event history analysis within many of
the social sciences, where the event of interest can range from political revolutions
to language acquisition to children becoming adopted. Within the human-computer
interaction field, which is very interdisciplinary, it may be referred to under any of
these terms. Within this chapter, we will refer to it as Event History Analysis.

There is terminology related to Event History Analysis that may be new to readers
who have never used this technique before. The first is that the analyses are primarily
concerned with events (which are sometimes referred to as failures even if it’s not
a negative event) and the time of occurrence to such an event. Table6.4 gives an
example of the types of ‘events’ that are commonlymeasured in the human-computer
interaction field and what terminology is used in these examples.

The event history is measured in time and time can be measured in different units
such as seconds, days, weeks, months, years, or even decades. The duration of time
it takes before the event of interest occurs is called survival time (or duration time,
episode time, waiting time, exposure time or risk period). There may be instances
when you do not know the exact time that the event occurred but just that it occurred
within a particular interval (such as a year), this is called discrete-time. Whether
time to event is measured precisely on a continuous scale or whether a discrete-time
model is used, both model the risk of the event occurring at time (t).
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Table 6.4 Examples of event history analysis in the human-computer interaction field

Start Event history Event (and terminology)

Modelling various online
subcommunities on the level
of participation in threaded
discussions in three separate
MOOCs

Various measurements across time Student drop-out in MOOCs
(Yang et al. 2014)

Utilising a visual analytic
system with cancer patients
to explore integrative
genomics data in order to
put patients into subgroups
to provide better care

Death of cancer patients in
subgroups (Ding et al. 2014)

Exploring the use of satellite
technology (through
distance education networks
and a primary school
network in one state) on
access to education in India

Events (such as number of
new entrants, number of
patents, R&D projects
funded, etc.) are matched to
an analytical framework of
events contributing to
system functions (Iyer 2014)

Elderly tremor patients
using touchscreen
technologies with and
without swabbing (an input
method for touchscreen
systems based on motions)

Error rate using touchscreen
technology (Mertens et al.
2012)

Additionally, the dependent or outcome variable is called the hazard rate, which
examines the conditional probability that an event occurs at a time (t). The indepen-
dent (or input) variables that can influence this can either be fixed (do not change
across time) such as a respondent’s race, ethnicity or place of birth or these variables
can be time-varying (they do change across time) such as age, educational attainment
and training, attitudes, etc.

Event HistoryAnalysis is based on regressionmodels but with different likelihood
estimates than ordinary least squares (OLS)models. Likelihood functions are needed
for fitting parameters or making other kinds of inferences with the data. Due to the
element of repeated measures over time leading to an event, and with the likelihood
of some missing data, the Event History Analysis takes into account censored data.

6.7.1 Censoring

Censoring occurs when there is only partial information about the time to event
outcome measurement for a study participant, and this “missing” data may occur in
the survival analysis in a number of different ways. Right censoring occurs when a
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subject leaves the study before an event occurs, or the study ends before the event has
occurred. So in our example, if someone had left the Mango watch company before
month three, these participants would be censored with respect to relevant time to
event outcome measurements. Left Censoring is where the event of interest (or loss
to follow-up) has occurred before enrolment into the study (this is more rare).

6.8 Statistical Model for Event History Analysis

In the following section, we will be using the Kaplan Meier product limit estimate,
the log-rank test and Cox’s Proportional Hazards Model for survival.

The Kaplan Meier product limit estimate is a step function that estimates the
probability of surviving to time k, and is calculated as

pk = pk − 1 × rk − fk

rk

where p is the probability of surviving for k days, rk is the number of individuals
alive before time k and fk deaths occur at time k.

To calculate the confidence interval around the Kaplan-Meier curve, the following
formula is used

SE(pk) = pk

√

√

√

√

k
∑

j=1

[

f j

r j (r j − f j )

]

For the log-rank test, we use the expected and observed events (or deaths) at
each time point at which there is an event, forming a 2 × 2 table of events and
non-events by group. The expected numbers of deaths are calculated in the usual
way for a 2 × 2 table, and then we calculate the total number of observed events
(O1) and non-events (O2) and expected events (E1) and non-events (E2) across all
of the contingency tables for the data set. We can then test the null hypothesis that
the distributions of events are identical between the two groups using a chi-squared
test with 1 degree of freedom based on the following test statistic.

χ2 = (O1 − E1)
2

E1
+ (O2 − E2)

2

E2

The Cox Model is defined in terms of the hazard function, h(t), which represents
the instantaneous risk of an event at time t, assuming the absence of an event prior
to time t. If we have several covariates of interest, say X1 to Xp, the proportional
hazards model says that the hazard function, h(t), is given by

h(t) = h0(t) exp (b1X1 + b2X2 + · · · + bpXp).
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Here h0(t), the baseline (or underlying) hazard function, corresponds to the hazard
function when all of the covariates take the value zero. The function h0(t), together
with the regression coefficients b1 to bp, are all estimated from the data.

Under the model, the hazard function for any individual is thus assumed to be a
multiple of the underlying hazard ratio, and the ratio of the hazard functions for any
two individuals will be constant for all values of t (since t is not involved in the exp()
term on the right-hand side of the equation above). For example, in our case, we have
Group A and Group B. This structure can be represented by a single covariate that
has a value of 0 for Group A and 1 for Group B, so that then the hazard functions for
individuals in groups A and B (assuming no other covariates are of interest) will be:

hA(t) = h0(t) exp (0) = h0(t),

hB(t) = h0(t) exp (b)

and then the hazard ratio of an individual in group B relative to an individual in group
A will be

hB(t)/hA(t) = {h0 (t) exp (b)} / h0 (t) = exp (b)

which is a constant value, independent of t. This gives rise to the term
“proportional hazards” in the name of the model, and this forms a key underlying
assumption when we come to fit Cox models to data.

6.9 Calculating Event History Analysis Using R

In order to calculate survival analysis, we will need to load the survival library:

> library(survival)

We will be asking if there is a difference in time to respond to emails during month
three between Mango watch users and non-Mango watch users. In this case, not
having responded to an email is synonymouswith not having died in a classic survival
analysis—the event, which is usually death is now responding to an email.

Because we will be looking solely at month 3 of the email data, our first step will
be to create a new data frame restricted to that time frame. We will do this by:

> email3<-subset(email,Time==3)

Now, our new data frame is called ‘email3.’ We also need to create a status column
for those who have responded versus those who have not responded. Fortunately for
us, this company is amazing, everyone responds to their emails and nobody quit their
job and ran away with the new Mango watch. So, we can create this column by:

> email3$status<-rep("Responded",dim(email3)[1])
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Here, the “dim(email3)” part of the code is saying to write “Responded” by the
dimensions of the email3 data frame. But, if your world isn’t as perfect as ours, you
will need to manually code the Status column for each participant. This is easiest to
do if your participants are organized so that the first X amount have responded and
the last Y amount have not. For example, if there are 200 participants and the first
150 have responded but the last 50 have not, you could use the following to add the
status column:

> email3$status<-c(rep(

+ "Responded",150),rep("No Response",50))

We found that the email dataweren’t amenable for the full analyses that wewanted
to demonstrate, so we also created another data frame called “email3swap.” In the
real world, not everyone will stay at a company or answer an email. So, we’ve added
some censoring to make the data more realistic. Please switch to this data frame for
the remaining analyses.

After attaching our new data frame (thus ensuring that we can refer to individual
variables without the data.frame$variable.name full-length reference),

> attach(email3swap)

we can examine the survival object that will be used as the outcome variable in further
survival modelling functions:

> Surv(responseTime,status=="Responded")

In this object, censored observations are marked with a + sign, so that the Surv()
object is a composite one consisting of both the survival time and the censoring flag.

Now, we’ll create Kaplan-Meier plots to graphically view the survival curves
for Mango watch users and non-Mango watch users for time to email response.
First, we’ll create a survfit object. In our case, we will get information from this
because we do not have considerable censoring; however, there will be instances
where non-censored events will not even make up half the total events, making a
median inestimable. The resulting plot is presented in Fig. 6.7.
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Fig. 6.7 The Kaplan-Meier
plot for response time in
Teams A and B

> surv.byTeam<-survfit(Surv(

+ responseTime,status=="Responded")˜Team)

> Surv.byTeam; # For descriptive statistics

Call: survfit(formula = Surv(responseTime, status =="Responded") ˜
Team)

records n.max n.start events median 0.95LCL 0.95UCL
Team=Team A 109 109 109 99 301 299 302
Team=Team B 91 91 91 84 177 176 179

> plot(surv.byTeam,conf.int=F,col=c("black","red"))

> legend("bottomleft",

+ c("Team A","Team B"),

+ col=c("black","red"),lty=1)

In this Kaplan-Meier plot, the black line represents Team A and the red, Team B.
Each ‘tick’ on the graph represents an episode of censoring. In a typical ‘survival’
plot, thiswould represent someone either dropping out of the study or dying.However
in our case, this is more likely due to someone quitting, deleting the email prior to
responding, theMangowatch breaking or some explanation other than answering the
email. If censoring were to have occurred disproportionately on one side or the other,
that could be a sign of bias in your study. Our survival curve has very few downward
“steps”; however, normally survival curves have many small drops which indicate
events (i.e. deaths, or in our case, responses to an email). In this study, the majority
of the respondents in TeamA seemed to have responded at the 160–180 second mark
or just after 300s before the experiment closed whereas team B, who received the
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Fig. 6.8 Output of the log rank test for response time

Mango watch, responded slightly earlier. In either case, customers got a fairly fast
response time, and we might wonder whether shaving a couple of minutes off an
email response time really has enough of an impact on sales to merit the cost of the
Mangos (see Chap. 14 for more discussion of effect size and real world significance).

We can use a log rank test to explore whether the two survival curves are identical.
To do this, we input:

> survdiff(Surv(responseTime,

+ status==’’Responded’’)˜Team).

which produces the output presented in Fig. 6.8.
We can now try to fit a Cox Proportional Hazards model. To do this, we enter the

following (result displayed in Fig. 6.9):

> team.ph<-coxph(

+ Surv(responseTime,status==’’Responded’’)˜Team)

> summary(team.ph)

We will also check the assumption of proportional hazards using the following
formula (results presented in Fig. 6.10):

> cox.zph(team.ph)

> plot(cox.zph(team.ph))

The function calculates a correlation (rho) between the residuals and the Kaplan-
Meier estimate of survival at each time,which takes the value−0.318, suggesting that
the “hazard” of a response is decreasing over time. The Chi-squared test (of the null

http://dx.doi.org/10.1007/978-3-319-26633-6_14
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Fig. 6.9 Output of the Cox proportional hazards model for response time in terms of Team

Fig. 6.10 Checking the proportional hazard assumption for the response time Cox model

hypothesis that this change is equal to 0) is extremely significant, so the proportional
hazards assumption is not satisfied—it appears that the relative likelihood of a Team
Bmember responding compared to a Team Amember reduces over time, rather than
being constant as the Cox model assumes.
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6.10 Interpreting and Presenting the Event
History Analysis Findings

In this study, the majority of the respondents in Team A responded at the 160–
180 second mark or just after 300s before the experiment closed whereas team B,
who received the Mango watch, responded slightly earlier with few people quitting,
deleting the email prior to responding or other events such as the Mango watch
breaking. The differences between these two groups are significant suggesting that
the conditional probability of responding to an email in month three is higher among
Mango watch users. However, there is some evidence that this effect decreases over
time, and therefore we would not want to place any weight on the hazard ratio of
2.6 (95% CI: 1.95, 3.56) that we obtain from the Cox model—the group difference
appears to be reducing noticeably at the longer response times, which prevents a
single numerical measure like a hazard ratio capturing the behaviour exhibited by
the data.

Unlike other measures, event history analysis shows the differences over time and
the amount of time duration before one ormore events happen. This can be incredibly
helpful for figuring out optimal time points for interventions or the amount of time
needed before a particular outcomes is seen.

Please note: All analyses were done on a Mac using OS 10.10.5 and in R Studio
using version 0.98.1102. Very small numerical differences may be expected when
using different operating systems or versions of R orR Studio orwhen using different
versions of the packages used for the analyses.
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Chapter 7
Nonparametric Statistics
in Human–Computer Interaction

Jacob O. Wobbrock and Matthew Kay

Abstract Data not suitable for classic parametric statistical analyses arise frequently
in human–computer interaction studies. Various nonparametric statistical procedures
are appropriate and advantageous when used properly. This chapter organizes and
illustratesmultiple nonparametric procedures, contrasting themwith their parametric
counterparts. Guidance is given for when to use nonparametric analyses and how to
interpret and report their results.

7.1 Introduction

The field of human–computer interaction (HCI) is diverse in many ways. Its
researchers and practitioners come from all over the academic spectrum, from social
sciences like psychology, sociology, and anthropology, technical endeavors like com-
puter science, information science, and electrical engineering, and design disciplines
like product design, graphic design, interaction design, and architecture. With such
a wide range of backgrounds, methods, and phenomena of interest, it is no wonder
that almost any kind of data may arise as part of a study in HCI.

Whether we are examining people’s interactions with existing technology or eval-
uating new technologies that we invent, it is common to find that our data is not
amenable to conventional parametric analyses. Such analyses, most commonly the
familiar analysis of variance (ANOVA), are based on assumptions often violated
by data arising from HCI studies. Different “nonparametric” analyses are needed to
properly draw conclusions from such data.
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This chapter reviews nonparametric analyses,many ofwhich are commonly found
in HCI studies, and others that are more recently emerging but could be of value to
HCI researchers and practitioners. For historical context, this chapter endeavors to
cite the original articles where the analyses first appeared. But before plunging into
the analyses themselves, let us first understand when to use nonparametric analyses.

7.2 When to Use Nonparametric Analyses

As Chap.3 described, every data set should be explored with descriptive statistics
and visual plots to ascertain the shape of its distribution. Preparing to analyze data
with nonparametric procedures is no different. A lot can be learned by examining the
shape of data to seewhether it appears to conform to a normal distribution, also known
as a Gaussian distribution or “bell curve.” The concept behind most nonparametric
analyses is that they do not assume a normal distribution and effectively destroy the
distribution inherent in a data set by operating on ranks, rather than on the original
data points themselves. Ranks destroy the intervals between values, so ascending
data points like 1, 5, 125 and 1, 3, 5 both become ranks 1, 2, 3.

Certain types of measures in HCI tend to fall normally while others almost never
do. Common non-normal data distributions that arise frequently in HCI studies are:

• Preference tallies, such as from studies of competing technologies
• Completion times, which may be skewed and long-tailed
• Error rates, which may have numerous zeroes amidst other values
• Ordinal scales, such as responses on Likert-type scales
• Rare events, such as recognition errors from an accurate gesture recognizer

The above examples are just some of the types of data that arise in HCI and may
warrant nonparametric analyses.

7.2.1 Assumptions of Analysis of Variance (ANOVA)

The familiar analysis of variance procedure, or ANOVA, is often more powerful than
analogous nonparametric procedures for the same data. The oft-used t-test and F-test
are two examples. Such tests are therefore generally preferred to their nonparametric
cousins. But t-tests and F-tests cannot always be used when data violates one or
more of three underlying assumptions required by such analyses. HCI researchers
and practitioners seeking to useANOVAprocedures should first ensure that their data
conforms to the three assumptions.When violations occur, nonparametric procedures
may be preferred.

The three underlying assumptions of ANOVA, and how to test for them, are:

1. Independence. Responses must be distinct measurements independent from one
another, except as correlated in a within-subjects design. Put another way, the

http://dx.doi.org/10.1007/978-3-319-26633-6_3
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value of one measure should not determine the value of any other measure. How
to test? The independence assumption is not tested mathematically but is verified
by an experiment design that ensures this assumption is met.

2. Normality.Residuals are the differences betweenmodel predictions and observed
measures. The normality assumption requires that residuals are normally distrib-
uted. In practice, the normality assumption can be regarded as referring to the
distribution of the response within each group under consideration. Mild devia-
tions from normality often do not pose serious threats to drawing valid statistical
conclusions, particularly when sample sizes are large. However, in the presence
of substantial deviations from normality, especially with small sample sizes as
are common in HCI, nonparametric procedures ought to be used. How to test? A
histogram of the residuals or the data itself can often reveal obvious deviations
from normality, such as data that conforms to log-normal, Poisson, or exponen-
tial data distributions. More formal tests of normality can be conducted, such as
the Shapiro-Wilk test (Shapiro and Wilk 1965) or the Kolmogorov-Smirnov test
(Kolmogorov 1933; Massey 1951; Smirnov 1939). R code for executing these
tests is provided elsewhere in this chapter. A good review of these and other
goodness-of-fit tests can be found in the literature (D’Agostino 1986).

3. Equal variances. The equal variances assumption is more formally known as the
assumption of “homogeneity of variance” or “homoscedasticity.” It requires that
the variance, or equivalently the standard deviation, among different experimen-
tal groups should be about the same. How to test? A histogram of the data from
each group being compared can reveal whether some groups have different vari-
ances than others. More formally, Levene’s test can be used (Levene 1960). If
homoscedasticity is violated, a Welch ANOVA or White-corrected ANOVA can
be used (Welch 1951;White 1980),which do not have the equal variances assump-
tion. An alternative is to use a nonparametric analysis, such as those covered in
this chapter.

7.2.2 Table of Analogous Parametric and Nonparametric
Tests

Many HCI researchers and practitioners are more familiar with parametric tests than
nonparametric tests. It can be helpful to see how the two types of tests relate. By
understanding the relation among parametric tests and their nonparametric equiva-
lents, researchers andpractitioners canmore confidently choosewhichnonparametric
test is right for their data.

This chapter is far from a comprehensive treatment of nonparametric statistics.
There are myriad nonparametric tests that might benefit researchers and practitioners
in HCI. This chapter focuses on the most common, widely available, and versatile
nonparametric tests. For a complete approach to nonparametric statistics, the reader
is directed to comprehensive treatments on the subject (Higgins 2004; Lehmann
2006).
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Table 7.1 Parametric tests and their nonparametric cousins

Samples Parametric test Nonparametric test

1 • One-sample t-test • One-sample chi-square
test
• Binomial test
• Multinomial test

≥1 • N -sample chi-square test
• G-test
• Fisher’s exact test

Factors Levels Between- or
within-subjects

Parametric test Nonparametric test

1 2 B • Independent-samples
t-test

• Median test

• Mann-Whitney U test

1 ≥2 B • One-way ANOVA • Kruskal-Wallis test

1 2 W • Paired-samples t-test • Sign test

• Wilcoxon signed-rank test

1 ≥2 W • One-way repeated
measures ANOVA

• Friedman test

≥1 ≥2 B • N -way ANOVA • Aligned rank transform

• Generalized linear
models†

–Multinomial logistic

–Ordinal logistic

–Poisson

–Gamma

≥1 ≥2 W • N -way repeated measures
ANOVA

• Aligned rank transform

• Generalized linear mixed
models†

• Generalized estimating
equations

†Generalized linear models and generalized linear mixed models may be considered parametric
analyses but the distributions on which they operate may be non-normal

Table7.1 categorizes the tests covered in this chapter based on the number of
“factors” and their “levels.” Factors are the independent variables manipulated
in an experiment, such as Device when comparing mice to a trackballs. They
may also be covariates, like Sex, which are not manipulated but are still of inter-
est for their possible effect on dependent variables, or responses. Factors can be
“between-subjects” or “within-subjects,” owing to whether each participant is
assigned only one level of the factor or more than one. Levels are the number of
values any given factor can assume. For example, Device, above, has two levels
(mouse, trackball), as does Sex (male, female). Note that Device could be a within-
subjects factor if every participant utilized both devices. Sex, on the other hand, is
generally considered only a between-subjects factor.
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Besides factors and levels, another distinguishing feature of certain tests iswhether
they are “exact tests.” Exact tests do not rely on approximations or asymptotic prop-
erties of the sampling distribution to derive p-values. Rather, they calculate their
p-values directly and exactly. HCI studies often have small sample sizes, which can
cause problems for asymptotic tests, and exact tests are then preferred. The Chi-
Square test is a popular asymptotic test. It may underestimate p-values at less than
1000 samples, increasing the chance of falsely rejecting null hypotheses. Exact tests
are currently under-utilized in HCI, largely due to conventions established before
advances in computing made exact tests widely practicable. Where possible, we
provide R code for running exact tests in this chapter.

Having established the criteria that are used to inform whether to use parametric
or nonparametric analyses, we now turn to the analyses themselves. In each case, an
(inappropriate) parametric analysis is conducted prior to any nonparametric analyses
for comparisons. These parametric analyses are flagged with a � symbol to indicate
caution. For continuity, the storyline about the sales teams using the new Mango
smartwatches is used.

7.3 Tests of Proportions

Often in HCI studies, researchers and practitioners elicit responses from participants
or users, count those responses, and thenwish to draw conclusions from those counts.
Responses of these kinds tend to be categorical in nature. For example, in a survey
respondentsmay be asked to express a preference for one of a variety of technologies,
like web browsers. Some number of respondents may choose Microsoft Internet
Explorer, while others may choose Google Chrome, while still others may choose
Mozilla Firefox or Apple Safari. One-sample tests of proportions can reveal whether
responses differ significantly from chance or from known probabilities—in this case,
perhaps the global market share percentage of each browser.

Going further, we may wish to know how respondents’ browser preferences differ
by country.We nowwould use a two-sample test of proportions. Known probabilities
may now need to be adjusted by the market share of each browser in each country.

A three-sample test would allow us to determine whether sex plays a role. A
four-sample test might include respondents’ income bracket. And so on… In short,
tests of proportions tell us whether observed proportions differ from chance or from
otherwise hypothesized probabilities.

7.3.1 One-Sample Tests of Proportions

Let us introduce our scenario for our one-sample tests. At one point prior to the com-
panywide adoption of Mango smartwatches, 75 sales representatives were recruited
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for a pilot study in which each Mango smartwatch was outfitted with one of two
email applications, A-mail or B-mail. After 3weeks, the watches were updated to
remove the first mail program and install the second. Another 3 weeks passed. At the
end of 6 weeks, each sales representative had used both A-mail and B-mail. The rep-
resentatives were then asked for their preference. As the data file prefs1AB.csv
shows, A-mail was preferred by 46 sales representatives and B-mail was preferred
by 29 representatives. The question is whether there was a significant preference for
one email application over the other.

As stated above, for comparisons we briefly report an (inappropriate) parametric
test prior to the preferred nonparametric tests.

� One-sample t-test. The one-sample t-test is a simple parametric test that
assumes the population response is normal (Student 1908). For our example, we
can assume that if respondents showed no overall preference, 75/2 = 37.5 respon-
dents would vote for each email application. In other words, no overall preference
would mean a 50% chance of preferring one or the other applications. In our data,
we have 46/75 = 61.3% of respondents preferring A-mail, and 29/75 = 38.7%
preferring B-mail. Is this a statistically significant difference?

The R code for performing a one-sample t-test on prefs1AB.csv is:

> prefs1AB = read.csv("chapter7/prefs1AB.csv")
> t.test(prefs1AB$email_preference == "A-mail", mu=0.5)

One Sample t-test

data: prefs1AB$email_preference == "A-mail"
t = 2.002, df = 74, p-value = 0.04895
alternative hypothesis: true mean is not equal to 0.5
95 percent confidence interval:
0.5005335 0.7261332

sample estimates:
mean of x
0.6133333

The p-value is 0.049, which is less than the critical value of α = 0.05, meaning
the 46 votes for A-mail do represent a statistically significant preference for A-mail
over B-mail. The test result is reported as t (74) = 2.00, p < 0.05.

One-sample Chi-Square test. The most common way to test proportions is using
a one-sample Chi-Square test (Pearson 1900), which is a nonparametric alternative
to the one-sample t-test. Unlike the t-test, the Chi-Square test does not require that
the data be sampled from a normal distribution. However, it is an asymptotic test,
not an exact test, so for small sample sizes it must be used with caution. The premise
behind the test is the same as before, where we compare observed proportions to
chance, i.e., to 50/50.

The R code for performing a one-sample Chi-Square test on prefs1AB.csv
is:



7 Nonparametric Statistics in Human–Computer Interaction 141

# assuming prefs1AB.csv is already loaded
# chisq.test expects frequency tables as input: here we
# create a cross tabulation (hence xtabs) of the number of
# responses for each level of email_preference
> email_preferences = xtabs( ~ email_preference, data=prefs1AB)
> email_preferences
email_preference
A-mail B-mail

46 29
> chisq.test(email_preferences)

Chi-squared test for given probabilities

data: email_preferences
X-squared = 3.8533, df = 1, p-value = 0.04965

The truncated p-value is 0.049, again indicating that the 46 votes for A-mail
represent a statistically significant preference over B-mail. The test result is reported
as χ2(1, N = 75) = 3.85, p < 0.05, where 1 is the value of df above.

Binomial test. The binomial test is a nonparametric test used to compare two
categories against expected probabilities, often called the probability of “success” or
“failure.” Unlike the Chi-Square test, which relies on approximations, the binomial
test is an exact test. A common use of the binomial test is to see whether responses
in two categories are equally likely to occur, such as testing whether a coin is fair
from a series of tosses. We can use the binomial test to see whether the probability of
someone preferring one of the email programs is significantly different from chance
(i.e., 50%).

The R code for performing a binomial test on prefs1AB.csv is:

# assuming prefs1AB.csv is already loaded
> email_preferences = xtabs( ~ email_preference, data=prefs1AB)
> binom.test(email_preferences)

Exact binomial test

data: email_preferences
number of successes = 46, number of trials = 75,
p-value = 0.06395
alternative hypothesis: true probability of success is not
equal to 0.5
95 percent confidence interval:
0.4937958 0.7236319

sample estimates:
probability of success

0.6133333

The p-value is 0.064, greater than the critical value of α = 0.05, meaning we
fail to reject the null hypothesis that the two categories are equally probable. In this
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case, the one-sample Chi-Square test underestimated the p-value: we rejected the
null hypothesis when using the asymptotic Chi-Square test and failed to reject when
using the exact binomial test. Since modern computers allow us to easily run an
exact test in this case, we should prefer the exact result to the Chi-Square result. The
test result is reported as a binomial test of N = 75 responses, a 50/50 hypothesized
response probability, and a p-value of 0.0640.

Multinomial test. What if there are more than two response categories? The
binomial test cannot be used. In such cases, the nonparametric multinomial test is
appropriate. Like the binomial test, the multinomial test is an exact test, and should
be preferred to the Chi-Square test.

Suppose the original study had compared three email programs instead of
two. Preferences were elicited from the 75 sales representatives. The data in
prefs1ABC.csv indicates that 35 respondents preferred A-mail, 22 preferred
B-mail, and 18 preferred C-mail. The question is whether these counts differ sig-
nificantly from chance, i.e., a third of respondents in each category. The code for
performing a multinomial test on prefs1ABC.csv is:

> library(XNomial)
> prefs1ABC = read.csv("chapter7/prefs1ABC.csv")
> email_preferences = xtabs(~ email_preference, data=prefs1ABC)
> xmulti(email_preferences, c(1/3, 1/3, 1/3), statName="Prob")

P value (Prob) = 0.04748

The p-value is 0.047, indicating that we should reject the null hypothesis that
each email program is preferred equally. The test result is reported as a multinomial
test of N = 75 responses, equal chance hypothesized response probability (i.e., a 1/3
chance of each email application being preferred), and a p-value less than 0.05.

The one-sample Chi-Square test we utilized above can also accommodate more
than two response categories like the multinomial test. The following R code runs a
one-sample Chi-Square test on prefs1ABC.csv:

# assuming prefs1ABC.csv is already loaded
> email_preferences = xtabs(~ email_preference, data=prefs1ABC)
> chisq.test(email_preferences)

Chi-squared test for given probabilities

data: email_preferences
X-squared = 6.32, df = 2, p-value = 0.04243

The p-value is 0.042. According to this Chi-Square test, there is a statistically
significant difference between the observed preferences and chance. Observing the
preference counts, we surmise a significant preference for A-mail over the other
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two mail programs. Note that the Chi-Square test underestimates the p-value com-
pared to the exact multinomial test. The multinomial test should be preferred where
computationally feasible, typically for sample sizes of less than 1000.

7.3.2 N-Sample Tests of Proportions

Regardless of how many response categories there are, if only one dimension of
data is considered, a multinomial test or a one-sample Chi-Square test is an option.
But what if we wish to categorize responses along more than one dimension? Con-
sider the question ofwhether preferences for theMango email applications—A-mail,
B-mail, or C-mail—were different in Sales TeamXversus Sales TeamY.One dimen-
sion lies along the sales teams, with two possible categories. A second dimension
lies along the email applications, with three possible categories. Thus, we have a
2 × 3 contingency table, also known as a “crosstabulation” or “crosstabs”.

Data appearing in prefs2ABC.csv contains 75 responses from each of two
sales teams. Its 2 × 3 contingency table is shown in Table7.2.

The question is whether the email application preferences of the two sales teams
differ significantly.

N-Sample Chi-Square test.Wehave thus far been generating 1× 2 and 1× 3 con-
tingency tables using the xtabs command. This command can generate crosstabs
with an arbitrary number of dimensions,making N -SampleChi-Square tests a simple
extension of the procedures we have already employed above.

The R code for running a two-sample Chi-Square test of proportions is:

> prefs2ABC = read.csv("chapter7/prefs2ABC.csv")
# we specify multiple factors in the xtabs formula to get
# crosstabs of higher dimensions.
> email_preferences = xtabs( ~ email_preference + team,

data=prefs2ABC)
> chisq.test(email_preferences)

Pearson’s Chi-squared test
data: email_preferences
X-squared = 6.4919, df = 2, p-value = 0.03893

Table 7.2 A2 × 3 contingency table of email application preferences by 75members each of Sales
Team X and Sales Team Y

Email application preference

A-mail B-mail C-mail Total

Sales team X 35 22 18 75

Y 21 35 19 75

Total 56 57 37 150
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The p-value is 0.039, indicating a significant difference in email application pref-
erences between the two sales teams. The test result is reported as χ2(2, N = 150) =
6.49, p < 0.05.

Other N-sample tests. Here we highlight two alternative tests of proportions that
use a similar syntax as chisq.test. One test that is gaining popularity is the G-
test (Sokal and Rohlf 1981), which, although an asymptotic test, is considered more
accurate than the Chi-Square test, which employs approximations where the G-test
directly computes likelihood ratios. The test is conducted in R using the G.test
function in the RVAideMemoire package.

Another popular test is Fisher’s exact test (Fisher 1922), which is an exact test
used primarily on 2 × 2 contingency tables but is capable of being extended to
general r × c tables provided sufficient computational resources (Mehta and Patel
1983). The test is conducted in R using the fisher.test function, and is natively
capable of handling general r × c contingency tables.

7.4 Single Factor Tests

In the previous section, we discussed tests for data that counted respondents—and
more precisely, their preferences—as measures of interest. In the rest of this chapter,
we consider the results of experimental designs in which people are assigned treat-
ments and the measures of interest involve the behavior or attributes of those people
under those treatments. We first consider single-factor tests. Before doing so, how-
ever, we introduce statistical tests for the assumptions of ANOVA, which may be
used to determine whether nonparametric tests are warranted in the first place.

7.4.1 Testing ANOVA Assumptions

Recall from the outset of this chapter that the three assumptions of ANOVA are
independence, normality, and equal variances. Here we examine these assumptions
for the salesXY.csv data file, which arises from the following scenario. Let
us assume members of one company sales team, Sales Team X, were given Mango
smartwatches over a three-monthperiod.During the sameperiod,members of another
company sales team, Sales TeamY, were not given the smartwatches so as to serve as
a control group. Each representative’s sales were measured during the three-month
period and multiplied by four to reflect estimated annualized sales. Thus, we have a
single between-subjects factor, Team, and a continuous measure for each participant,
annualized sales, in dollars.

The first assumption is independence. Do the measures arise independent of one
another?Assuming the salespeoplework independently and that there aremanymore
sales opportunities than sales representatives, and thus one salesperson’s gain is not
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inherently another salesperson’s loss, we can trust that the independence assumption
is met.

The second assumption is normality. Before conducting formal tests of normality,
let us visually examine the distribution of data with a histogram, one for each sales
team (Fig. 7.1).

The histograms are clearly non-normal in their appearance.Aswithmostmeasures
of income, the annualized sales data conforms to an exponential distribution. This
hunch canbe formally testedwith goodness-of-fit tests.Webriefly review twopopular
goodness-of-fit tests here. We recommend Shapiro-Wilk for testing normality; the
Kolmogorov-Smirnov test can be used to test the goodness-of-fit of non-normal
distributions. For more on goodness-of-fit tests, the reader is directed elsewhere
(D’Agostino 1986).

Shapiro-Wilk test. The Shapiro-Wilk test considers whether data from a sample
originated from a normal distribution (Shapiro and Wilk 1965). It has been shown to
have the best power of the three tests considered here (Razali and Wah 2011).

The R code for conducting a Shapiro-Wilk test on each team in salesXY.csv
is:

> salesXY = read.csv("chapter7/salesXY.csv")
> shapiro.test(salesXY[salesXY$team == "X",]$sales)

Shapiro-Wilk normality test
data: salesXY[salesXY$team == "X", ]$sales
W = 0.8368, p-value = 1.238e-07
> shapiro.test(salesXY[salesXY$team == "Y",]$sales)

Shapiro-Wilk normality test
data: salesXY[salesXY$team == "Y", ]$sales
W = 0.791, p-value = 6.013e-09

The p-value for both teams is p < 0.0001, indicating a statistically significant
difference between the distribution of their annualized sales and a normal distribution.

Fig. 7.1 The distribution of
annualized sales for each
sales team. Team X had
Mango smartwatches. Team
Y did not yet have the
Mango smartwatches.
Histograms can be generated
using the hist function, as
in hist(salesXY
[salesXY$team
=="X",]$sales)
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Kolmogorov-Smirnov test. The Kolmogorov-Smirnov test considers how a data
sample compares to a given probability distribution (Kolmogorov 1933; Massey
1951; Smirnov 1939). It calculates the distance between the empirical distribution
function of a sample and the cumulative distribution function of the given probability
distribution. Thus, the Kolmogorov-Smirnov test can be used to test against non-
normal distributions.

The R code for executing the Kolmogorov-Smirnov test is:

# assuming salesXY.csv is already loaded

> lillie.test(salesXY[salesXY$team == "X",]$sales)

Lilliefors (Kolmogorov-Smirnov) normality test

data: salesXY[salesXY$team == "X", ]$sales

D = 0.1445, p-value = 0.0005212

> lillie.test(salesXY[salesXY$team == "Y",]$sales)

Lilliefors (Kolmogorov-Smirnov) normality test

data: salesXY[salesXY$team == "Y", ]$sales

D = 0.1791, p-value = 2.904e-06

The p-values for the teams are p < 0.001 and p < 0.0001, again indicating sta-
tistically significant departures from normality. Thus, from visual inspection and
from both formal goodness-of-fit tests, we conclude the data violates the normality
assumption of ANOVA.

The third assumption of ANOVA is equal variances. The standard deviation
of annualized sales for Sales Team X is $1,169,590.80. For Sales Team Y, it is
$904,175.91. Of course, with highly non-normal distributions, standard deviations
are not particularly descriptive. So how might we formally test the assumption of
equal variances?

Levene’s test. Levene’s test for homogeneity of variance, or homoscedasticity, is
a formal method for testing the equal variances assumption (Levene 1960). The test
determines the likelihood of whether two data samples are drawn from populations
with equal variance. A significant p-value below the α = 0.05 level indicates that
the data samples being tested are unlikely to have come from populations with equal
variances.

We conduct Levene’s test on two data samples, the annualized sales of Sales Team
X and of Sales Team Y. The R code for conducting Levene’s test is:
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# assuming salesXY.csv is already loaded
> library(car)
> leveneTest(sales ~ team, data=salesXY)
Levene’s Test for Homogeneity of Variance (center = median)

Df F value Pr(>F)
group 1 2.9567 0.08761 .

148
---
Signif. codes:
0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

The p-value is 0.088, above the α = 0.05 threshold for declaring that the equal
variances assumption has been violated. Even still, with a trend-level result such as
this one, we ought to be wary of utilizing parametric tests. The result of Levene’s
test is reported as F(1,148) = 2.96, p = 0.088.

We have heretofore demonstrated that the data in salesXY.csv is not suitable
to analyse via parametric ANOVA. Nonparametric tests are therefore warranted. Let
us now turn to those tests.

7.4.2 Single-Factor Between-Subjects Tests

We continue with our scenario comparing the annualized sales of two sales teams,
Sales TeamXwearingMango smartwatches and Sales TeamYwithout suchwatches.
As above, for comparisons we briefly report an (inappropriate) parametric test prior
to the preferred nonparametric options.

� Independent-samples t-test. The independent-samples t-test is a parametric
test for one-factor two-level between-subjects designs (Student 1908). Due to the
violation of normality, the test is inappropriate for the data in salesXY.csv.
Nevertheless, the R code for executing such an analysis is shown below. Note that by
default, R uses theWelch t-test (Welch 1951),which does not require equal variances,
having been formulated for this purpose.

# assuming salesXY.csv is already loaded
> t.test(sales ~ team, data=salesXY)

Welch Two Sample t-test
data: sales by team
t = 2.2293, df = 139.173, p-value = 0.02739
alternative hypothesis: true difference in means is not
equal to 0
95 percent confidence interval:
43049.83 718064.85

sample estimates:
mean in group X mean in group Y

1250090.3 869532.9
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The p-value is 0.027,which indicates that the annualized sales of the two teams are
significantly different. Specifically, the sales of Sales TeamX are higher than those of
Sales Team Y, suggesting that the Mango smartwatches are having a positive effect.
The test result is reported as t (139.2) = 2.23, p < 0.05.

Median test. A more appropriate test is the nonparametric median test (Brown
and Mood 1948, 1951). The median test considers whether the medians from the
populations from which two data samples are drawn are the same. A simple test, the
median test counts each data point as above or below the median in the combined
sample. Traditionally, then a Chi-Square test—although we can also use an exact
test—is used to see whether the counts of data points from each sample differ. The
median test is the preferred choice if any data points are extreme outliers.

The R code for conducting a median test is:

# assuming salesXY.csv is already loaded
# the distribution="exact" parameter specifies the exact
# version of this test, and can be dropped if an
# asymptotic test is needed (e.g., if this code
# takes too long to execute).
> library(coin)
> median_test(sales ~ team, data=salesXY, distribution="exact")

Exact Median Test
data: sales by team (X, Y)
Z = -3.0923, p-value = 0.003157
alternative hypothesis: true mu is not equal to 0

The p-value is 0.003, indicating a significant difference in sales between the
teams. The test result is reported as an exact median test Z = −3.09, p < 0.01.

Mann-Whitney U test. Like the median test, the nonparametric Mann-WhitneyU
test1 operates on one-factor two-level between-subjects designs (Mann andWhitney
1947). It is more common in the field of HCI than the median test and usually more
powerful. The test converts data to ranks and is generally more powerful than the
parametric t-test for non-normal data.

The R code for conducting the test is:

# assuming salesXY.csv is already loaded
> library(coin)
> wilcox_test(sales ~ team, data=salesXY, distribution="exact")

Exact Wilcoxon Mann-Whitney Rank Sum Test
data: sales by team (X, Y)
Z = 2.2346, p-value = 0.02521
alternative hypothesis: true mu is not equal to 0

1 The Mann-Whitney U test has multiple and sometimes confusing names. It is also known as
the Wilcoxon-Mann-Whitney test, the Mann-Whitney-Wilcoxon test, and the Wilcoxon rank-sum
test. None of these should be confused with the Wilcoxon signed-rank test, which is for one-factor
two-level within-subjects designs.
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Fig. 7.2 The distribution of
annualized sales for Sales
Team Z

The p-value is 0.025, similar to that of the independent-samples t-test. The test
result is reported as an exact Mann-Whitney Z = 2.23, p < 0.05.

The Mann-Whitney U test is a good option for analyzing one-factor two-level
between-subjects designs. But what if we have one factor with more than two levels?
For example, let us consider 75 additional sales representatives, this time from Sales
Team Z, added to the study. Like Sales Team Y, Sales Team Z was not given Mango
watches at this time. The distribution of the team’s annualized sales is shown in
Fig. 7.2.

We now have a one-factor three-level between-subjects design. The factor is Team
and the levels are X, Y, and Z. We will use salesXYZ.csv, which extends the
data table to include the data from Sales Team Z.

� One-way ANOVA. The popular parametric analysis for one factor with more
than two levels is a one-way ANOVA (Fisher 1921, 1925). As with the t-test above,
this analysis is inappropriate for these data due to the violation of the normality
assumption.

The R code for conducting a one-way ANOVA is:

> salesXYZ = read.csv("chapter7/salesXYZ.csv")
> summary(aov(sales ~ team, data=salesXYZ))

Df Sum Sq Mean Sq F value Pr(>F)
team 2 5.438e+12 2.719e+12 2.345 0.0982 .
Residuals 222 2.574e+14 1.159e+12
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

The p-value is 0.098, which is not statistically significant at the α = 0.05 level.
The test result is reported as F(2,222) = 2.35, p = 0.098.

Kruskal-Wallis test. The nonparametric Kruskal-Wallis test extends the Mann-
Whitney U test to one factor with more than two levels (Kruskal and Wallis 1952).
Like theMann-WhitneyU test, the Kruskal-Wallis test operates on ranks. It is a more
appropriate test to conduct on salesXYZ.csv than a one-way ANOVA.

The R code for executing a Kruskal-Wallis test is:
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# assuming salesXYZ.csv is already loaded
library(coin)
kruskal_test(sales ~ team, data=salesXYZ,

distribution="asymptotic")

Asymptotic Kruskal-Wallis Test

data: sales by team (X, Y, Z)
chi-squared = 5.1486, df = 2, p-value = 0.07621

The p-value is 0.076, indicating no significant differences among groups. The
test result is reported as a Kruskal-Wallis test χ2(2, N = 225) = 5.15, p = 0.076.

Many studies inHCI utilize designs inwhichmultiple responses are received from
each participant. We now turn to nonparametric tests for one-factor within-subjects
designs.

7.4.3 Single-Factor Within-Subjects Tests

In an effort to collect more data per participant, and generally to increase the power
of statistical tests on that data, many HCI researchers and practitioners prefer to
utilize within-subjects factors rather than between-subjects factors. Within-subjects
factors expose participants to more than one of their levels, for example, by having
each sales representative not use and use a Mango smartwatch over different time
periods. Suchwas the case for Sales TeamY, which initially was not given theMango
smartwatches to serve as a control for Sales TeamX. After three months, Sales Team
Y was given the watches, thereby enabling within-subjects comparisons for Sales
Team Y.

The data in salesYY.csv contains the same pre-Mango sales data for Sales
Team Y as shown in Fig. 7.1. It also contains post-Mango sales data for each rep-
resentative, shown in Fig. 7.3. Thus, we have a single within-subjects factor, Watch,
and a continuous measure for each participant: their annualized sales, in dollars.

As before, we begin with an (inappropriate) parametric test for comparisons.

Fig. 7.3 The distribution of
annualized sales for Sales
Team Y after the adoption of
the Mango smartwatches
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� Paired-samples t-test. A paired-samples t-test is a parametric within-subjects
test when two measures are taken from each participant (Student 1908). Due to the
violation of normality, the test is inappropriate for the data in salesYY.csv.
Nevertheless, the R code for executing such an analysis is:

> salesYY = read.csv("chapter7/salesYY.csv")
> library(reshape2) #for dcast
# for a paired t-test we must use a wide-format table. Most
# functions in R do not require a wide-format table, but the
# dcast function offers a quick way to translate long-format
# into wide-format when we do need it. This creates “pre”
# and “post” columns containing pre- and post-watch sales.
> salesYY_wide = dcast(salesYY, subject ~ watch,

value.var="sales")
> t.test(salesYY_wide$pre, salesYY_wide$post, paired=TRUE)

Paired t-test
data: salesYY_wide$pre and salesYY_wide$post
t = -2.4309, df = 74, p-value = 0.01748
alternative hypothesis: true difference in means is
not equal to 0
95 percent confidence interval:
-732056.10 -72552.05

sample estimates:
mean of the differences

-402304.1

The p-value is 0.017, which indicates that after the adoption of the Mango smart-
watches, the annualized sales of Sales Team Y were different. The t-test result is
reported as t (74) = −2.43, p < 0.05. By examining the means and distributions,
we can see that the sales went up, from a median of about $580,000 before the
watches to about $870,000 after the watches:

# generate summary statistics for the sales, split
# into groups according to the levels of watch
> ddply(salesYY, ~ watch, function(data) summary(data$sales))

watch Min. 1st Qu. Median Mean 3rd Qu. Max.
1 post 10000 342500 870300 1272000 1911000 5000000
2 pre 10000 239800 580300 869500 1091000 4351000

Sign test. The sign test is a nonparametric alternative to the paired-samples t-test
(Dixon andMood1946; Stewart 1941). It is analogous to themedian test but for paired
data rather than unpaired data. The test is particularly useful when paired values do
not have scalar magnitudes but simply a greater-than or less-than relationship, even
coded as just 1 or 0.
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The intuition behind the sign test is if the paired samples are not significantly
different, then subtracting one value from its paired value should result in a positive
number (vs. a negative number) about 50% of the time. A binomial test is then used
to test for significant departures from an equal number of positive versus negative
differences.

The R code for conducting a sign test on salesYY.csv is:

# assuming salesYY_wide was constructed as above
# We can conduct a sign test simply by cross-tablulating the
# number of times post-watch sales are greater than pre-watch.
> post_sales_greater = xtabs( ~ post > pre, data=salesYY_wide)
> binom.test(post_sales_greater)

Exact binomial test

data: post_sales_greater
number of successes = 31, number of trials = 75, p-value =
0.1654
alternative hypothesis: true probability of success is not
equal to 0.5
95 percent confidence interval:
0.3007536 0.5329729

sample estimates:
probability of success

0.4133333

The p-value is 0.165, indicating that theMango smartwatches did not statistically
significantly affect the probability an individual team member’s annualized sales
increased on Sales Team Y. The test result is reported as a sign test of N = 75 paired
observations and p = 0.165.

Recognizing the relative statistical weakness of the sign test, Wilcoxon developed
amore powerful test, the signed-rank test, which considers not just direction of paired
differences but their magnitude as well.

Wilcoxon signed-rank test. The Wilcoxon signed-rank test, not to be confused
with the Wilcoxon rank-sum test (see Footnote 1), is a powerful and widely used
nonparametric test for one within-subjects factor with two levels (Wilcoxon 1945).
In HCI studies, the test is often used when individual participants try each of two
alternatives, say input devices or webpage designs, and the best alternative is to be
determined. Like many nonparametric tests, it operates on ranks rather than on raw
observations.
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The R code for executing a Wilcoxon signed-rank test is:

# assuming salesYY.csv is already loaded
> library(coin)
# here we specify the response variable (sales), the within-
# subjects variable (watch), and the variable identifying each
# subject (subject).
> wilcoxsign_test(sales ~ watch | subject, data=salesYY,

dist="exact")

Exact Wilcoxon-Signed-Rank Test

data: y by x (neg, pos)
stratified by block

Z = -2.2178, p-value = 0.02615
alternative hypothesis: true mu is not equal to 0

The p-value is 0.026, indicating a statistically significant difference in annualized
sales for Sales Team Y pre- and post-adoption of the Mango smartwatches. The test
result is reported as an exact Wilcoxon Z = −2.22, p < 0.05. We note that whereas
the sign test did not find a statistically significant difference, the Wilcoxon signed-
rank test did, confirming the greater power of this test and a reason for its preference.

The Wilcoxon signed-rank test is powerful but limited in an important way: it
can only compare two levels of a single factor. What if there are more than two
levels to be compared at once? Let us imagine that the company, pleased with the
increase in annualized sales due to the Mango smartwatches, decided to have Sales
TeamY conduct a third three-month experiment inwhich sales representatives would
wear two Mango smartwatches, one on each wrist. (Perhaps in the hope that if one
smartwatch is good, two might be better!)

The distribution of annualized sales is shown in Fig. 7.4.
The data for two watches represented above are captured in salesYY2.csv.

They are accompanied by the data for Sales Team Y for no watch (Fig. 7.1) and one
watch (Fig. 7.3). We therefore have one factor, Watch, now with three levels: none,
one watch, and two watches.

As above, we begin with an (inappropriate) parametric test for comparisons.
� One-way repeated measures ANOVA. The parametric repeated measures

ANOVA can be used when multiple measures are taken from the same participant. It

Fig. 7.4 The distribution of
annualized sales for Sales
Team Y when each sales
representative wore two
Mango smartwatches, one on
each wrist
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is important to use a corrected test such as a Greenhouse-Geisser correction (Green-
house and Geisser 1959) in the event that sphericity is violated. Sphericity is a
property of the data related to the covariance among experimental groups that can
be tested with Mauchly’s test of sphericity (Mauchly 1940). When sphericity is not
violated, an uncorrected test can be used.

The R code for conducting Mauchly’s test of sphericity and the ensuing repeated
measures ANOVA is:

> salesYY2 = read.csv("chapter7/salesYY2.csv")
> library(ez)
# here we specify the dependent variable (sales), within-
# subjects variables (watch), and the variable that
# identifies subjects (subject).
> m = ezANOVA(dv=sales, within=watch,wid=subject,data=salesYY2)
# we then check the model for violations of sphericity
> m$Mauchly
Effect W p p<.05

2 watch 0.9518013 0.1647936
# and given no violations, examine the uncorrected ANOVA. If
# violations were found, we would instead look at m$Sphericity.
> m$ANOVA
Effect DFn DFd F p p<.05 ges

2 watch 2 148 2.973636 0.05418002 0.02593512

Mauchly’s test of sphericity gives W = 0.952, p = 0.165, indicating that spheric-
ity is not violated and that an uncorrected test can be used. The repeated measures
ANOVA gives F(2,148) = 2.97, p = 0.054, falling just shy of statistical significance.
Of course, given the violations of normality, we know this result to be specious. A
nonparametric test should be used instead.

Friedman test. The nonparametric Friedman test is a rank-based test for a single
within-subjects factor of any number of levels (Friedman 1937). The test is particu-
larly useful in HCI studies where participants work with more than two variations of
a user interface. For our example, we will use it to compare the annualized sales of
Sales TeamYwhen its representatives wore zero, one, and twoMango smartwatches.

The R code for initiating a Friedman test on salesYY2.csv is:

# assuming salesYY2.csv is already loaded
> library(coin)
> friedman_test(sales ~ watch | subject, data=salesYY2)

Asymptotic Friedman Test

data: sales by
watch (none, one, two)
stratified by subject

chi-squared = 6.9067, df = 2, p-value = 0.03164
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Table 7.3 Pairwise comparisons of annualized sales among the three levels of Watch using Holm’s
sequential Bonferroni procedure

No watch One watch Two watches

Median Sales $580,320.00 $870,290.00 $337,919.00

Comparison Wilcoxon W p-value Holm’s α Significant?

One watch versus two
watches

457.0 0.0153 α/3 = 0.0167 Yes

No watch versus one
watch

420.0 0.0262 α/2 = 0.0250 No

No watch versus two
watches

190.0 0.3189 α/1 = 0.0500 No

The p-value is 0.032, indicating a statistically significant difference in annualized
sales among the levels ofWatch. The test result is reported as χ2(2, N = 75) = 6.91,
p < 0.05.

With three levels of Watch, we may wish to knowwhich pairwise comparisons are
significant. Three pairwise comparisons may be conducted, but we must be careful
to apply a correction to avoid inflating the Type I error rate—the possibility of false
positives. A correction such as Holm’s sequential Bonferroni procedure can avoid
inflating the Type I error rate (Holm 1979).2 We conduct the pairwise comparisons
using Wilcoxon signed-rank tests, the results of which are shown in Table7.3.

We can conduct all pairwise comparisons in R and use the p.adjust function
to apply Holm’s sequential Bonferroni procedure follows:

# assuming salesYY2.csv is already loaded
> library(plyr)
# get all pairwise combinations of levels of the watch factor,
# equivalent to combn(levels(salesYY2$watch),2,simplify=FALSE).
comparisons = list(c("none", "one"), c("none", "two"),
c("one", "two"))
# run wilcoxon signed-ranks on each pair of levels, collecting
# the test statistic and the p-value into a single table.
> post_hoc_tests = ldply(comparisons, function(watch_levels){

wt = wilcoxsign_test(sales ~ factor(watch) | subject,
data=salesYY2[salesYY2$watch %in% watch_levels,],
dist="exact")

data.frame(comparison = paste(watch_levels,collapse=" - "),
z = statistic(wt), pvalue = pvalue(wt)

)
})

2Holm’s sequential Bonferroni procedure for three pairwise comparisons uses a significance thresh-
old ofα = 0.05/3 for the lowest p-value,α = 0.05/2 for the second lowest p-value, andα = 0.05/1
for the highest p-value. Should a p-value compared in that ascending order fail to be statistically
significant, the procedure halts and any subsequent comparisons are regarded as statistically non-
significant.



156 J.O. Wobbrock and M. Kay

# derive adjusted p-values using Holm’s sequential Bonferroni
# procedure
> post_hoc_tests$adjusted_pvalue =

p.adjust(post_hoc_tests$pvalue, method="holm")
> post_hoc_tests
comparison z pvalue adjusted_pvalue

1 none - one 2.217834 0.02615427 0.05230854
2 none - two -1.003306 0.31893448 0.31893448
3 one - two -2.413214 0.01532255 0.04596764

Corrected pairwise comparisons show that one Mango smartwatch produced dif-
ferent sales than two Mango smartwatches. Looking at median sales, it is clear that
two smartwatches hindered sales compared to one smartwatch. Perhaps information
overload had a deleterious effect on sales representatives’ productivity!

We have thus far considered nonparametric tests of proportions and nonparametric
single-factor tests with two or more levels. Our final consideration in this chapter
is nonparametric multifactor tests—those used when more than one factor is being
tested in the same experimental design.

7.4.4 Multifactor Tests

Modern experiments in HCI often involve more than one factor. Multifactor experi-
mental designs examine more than one factor simultaneously. Each factor may have
two or more levels. Chief among statistical concerns are tests for “interactions,”
wherein levels of one factor interact with levels of another factor to differentially
affect responses. For example, perhaps one Mango smartwatch email application
creates higher sales for Sales Team X, while a different email application creates
higher sales for Sales TeamY. This situation would result in a statistically significant
Team × Application interaction.

Nonparametric statistical methods for multifactor designs can be quite complex
and are a topic of active statistical research (Sawilowsky 1990). This chapter offers
a pragmatic but cursory review of four techniques: the Aligned Rank Transform,
Generalized Linear Models, Generalized Linear Mixed Models, and Generalized
Estimating Equations. For full treatments, the reader is directed to books on non-
parametric statistics (Higgins 2004; Lehmann 2006).

7.4.5 � N-Way Analysis of Variance

As above, we begin with an (inappropriate) parametric analysis for comparisons. Let
us reuse the data from Sales Team Y with zero, one, and two Mango smartwatches,
but now embellishedwith the city in which each sales representative operated: Babol,
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Fig. 7.5 Annualized sales for Sales Team Y by Watch and by City. A significant Watch × City
interaction is suggested by this graph. A similar graph can be generated by the R code
with(salesYY2city, interaction.plot(watch,city, sales))

Bakersfield, or Barrie. Thus, City is a three-level between-subjects factor, as each
sales representative worked only in one city. As before, Watch is a three-level within-
subjects factor. We therefore have a two-factor mixed design. These data are shown
in salesYY2city.csv.

The R code for executing a two-way factorial ANOVA with one within-subjects
factor, Watch, and one between-subjects factor, City, is:

> salesYY2city = read.csv("chapter7/salesYY2city.csv")

> library(ez)

> m = ezANOVA(dv=sales, between=city, within=watch,

wid=subject, data=salesYY2city)

> m$Mauchly

Effect W p p<.05

3 watch 0.9619982 0.2527474

4 city:watch 0.9619982 0.2527474

> m$ANOVA

Effect DFn DFd F p p<.05 ges

2 city 2 72 0.2622249 0.77006952 0.00255353

3 watch 2 144 3.1014944 0.04800009 * 0.02717733

4 city:watch 4 144 2.5909015 0.03915842 * 0.04459346

Although City alone was not a statistically significant main effect, there was a
significant Watch × City interaction as indicated by p-value of 0.039, meaning each
level of Watch resulted in different annualized sales depending on the city in which
the sales representative worked. Although a formal analysis would use pairwise
comparisons to draw conclusions, for our purposes we simply eyeball the graph
shown in Fig. 7.5. The graph suggests that although sales in all three cities were
similar without a Mango smartwatch, with one watch, sales in Babol and Bakersfield
improved, but not in Barrie. But with two Mango smartwatches, sales in Barrie
improved, but were worse in Babol and Bakersfield. (Perhaps the Barrie salespeople
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were all ambidextrous!) Differential results like these are what cause the statistically
significant Watch × City interaction.

Given the known violations of normality, the above parametric ANOVA is an
inappropriate analysis. We now turn to multifactor nonparametric procedures.

7.4.6 Aligned Rank Transform (ART)

Rank transforms have been utilized extensively in nonparametric procedures
(Conover and Iman 1981). However, ANOVAs applied to rank transforms are known
to drastically inflate Type I error rates for interaction effects (the chance of declaring
a significant interaction effect when there is not one), and therefore are not suitable
as multifactor analyses (Higgins and Tashtoush 1994; Mansouri 1999b; Salter and
Fawcett 1993).

One rank-based procedure that avoids this problem is called the Aligned Rank
Transform (ART). The nonparametric ART procedure originated in the 1980s (Faw-
cett and Salter 1984; Salter and Fawcett 1985) and has been a subject of attention
ever since (Higgins et al. 1990; Higgins and Tashtoush 1994; Mansouri 1999a; Man-
souri et al. 2004; Richter 1999; Salter and Fawcett 1993). Before ranking, the ART
procedure “aligns” the data separately for each effect by subtracting estimates of all
effects other than the effect of interest from each response (Hodges and Lehmann
1962). The idea is to “strip out” any effects except one from the data. The aligned
data is then ranked and a factorial ANOVA is performed with the aligned ranks as
the response. Importantly, only the effect for which the responses were aligned is
examined in the effects table; others are ignored. Thus, a separate aligning-ranking-
ANOVA process is conducted for every effect of interest, whether a main effect
or interaction. As aligning and ranking for every effect is tedious, tools have been
developed to automate the process (Wobbrock et al. 2011).

The authors of this chapter have created an R package for performing the ART
procedure called ARTool, based on a prior tool for Microsoft Windows of the
same name (Wobbrock et al. 2011). The package performs the aligning-and-ranking
process and automates running an ANOVA for each main effect and interaction.3

Using this package, the ART procedure is run on the data in salesYY2city.csv
using the following code:

3 Rather than using traditional repeated measures ANOVAs, ARTool uses mixed-effects analyses
of variance, explained below in the section on Generalized Linear Mixed Models.
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# assuming salesYY2city.csv is already loaded
> library(ARTool)
> m = art(sales ~ watch * city + (1|subject),data=salesYY2city)
> anova(m)
Aligned Rank Transform Anova Table (Type III tests)

Response: art(sales)

F Df Df.res Pr(>F)
watch 4.3132 2 144 0.01516 *
city 0.0165 2 72 0.98361
watch:city 2.0173 4 144 0.09510 .
---
Signif. codes: 0’***’ 0.001’**’ 0.01’*’ 0.05 ’.’ 0.1’’ 1

As with the parametric two-way ANOVA above, we have a statistically signifi-
cant effect of Watch on annualized sales F(2,144) = 4.31, p < 0.05. Also as above,
City alone did not exhibit a statistically significant effect. However, unlike above,
the Watch × City interaction is not statistically significant here but only a trend.
This result is to be trusted over the parametric result, given the evident violation of
normality.

The ART procedure can facilitate post hoc comparisons, provided levels are com-
pared within the aligned-and-ranked effects from which they came (Mansouri et al.
2004). We can conduct pairwise comparisons for all levels of the Watch factor using
the following R code:

# assuming m is the result of the call to art() above
> library(lsmeans)
> lsmeans(artlm(m, "watch"), pairwise ~ watch)
$lsmeans
watch lsmean SE df lower.CL upper.CL
none 108.5600 7.359735 216 94.05391 123.0661
one 130.0133 7.359735 216 115.50724 144.5194
two 100.4267 7.359735 216 85.92057 114.9328

Results are averaged over the levels of: city
Confidence level used: 0.95

$contrasts
contrast estimate SE df t.ratio p.value
none - one -21.453333 10.40824 144 -2.061 0.1017
none - two 8.133333 10.40824 144 0.781 0.7150
one - two 29.586667 10.40824 144 2.843 0.0141

Results are averaged over the levels of: city
P value adjustment: tukey method for a family of 3 means
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The lsmeans procedure reports p-values corrected for multiple comparisons
using Tukey’s method (Kramer 1956; Tukey 1949, 1953). As for the post hoc tests
conducted above, we find the only significant difference is between one and two
watches, reported as t (144) = 2.84, p < 0.05.

7.4.7 Generalized Linear Models (GLM)

The classic ANOVA we have been utilizing in this chapter can be mathematically
formulated by what is called the General Linear Model (LM).4 This model describes
a family of analyses where the dependent variables are a linear combination of inde-
pendent variables5 plus normally-distributed errors. However, when the assumption
of normality is not met, the Generalized LinearModel (GLM) can utilize non-normal
response distributions (Nelder and Wedderburn 1972). GLMs are specified with a
distribution and a link function, which describe how factors relate to responses. The
LM is subsumed by the GLMwhen the distribution is “normal” and the link function
is “identity.” Many distribution-link function combinations are possible. Here we
review four common uses of the GLM for data arising in HCI studies. It is important
to note that such models are suitable only for between-subjects factors. For within-
subjects factors, we must add random effects to the models, as described in the next
subsection.

Multinomial logistic regression. Multinomial logistic regression, also referred to
as nominal logistic regression, is used for categorical (nominal) responses6 (Nelder
and Wedderburn 1972). In this respect, it can be used on data also suited to N -
sample Chi-Square tests of proportions. Recall the contingency data in Table7.2,
contained in prefs2ABC.csv. We can use multinomial logistic regression with
Team as a two-level factor and Preference as a response to discover whether there
were statistically significant differences in preference between sales teams.

In terms of the GLM, multinomial logistic regression uses a “multinomial” dis-
tribution and “logit” link function. The R code for executing such an analysis is:

4 General Linear Models are often called “linear models” and may be abbreviated “LM.” These
should not be confused with Generalized Linear Models, which may be abbreviated “GLM.” How-
ever, some texts use “GLM” for linear models and “GZLM” for generalizedmodels. Readers should
take care when encountering this family of abbreviations.
5 While not covered in this chapter, LMs and GLMs also offer the ability to use continuous inde-
pendent variables, not just categorical independent variables (see Chap. 11).
6 Multinomial logistic regression—when used with dichotomous responses such as Yes/No,
True/False, Success/Fail, Agree/Disagree, or 1/0—is called “binomial regression.” The GLM for
binomial regression uses a “binomial” distribution and “logit” link function. It can be conducted
using the glm function in much the same way as Poisson regression explained below, except with
the parameter family=binomial.

http://dx.doi.org/10.1007/978-3-319-26633-6_11
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> prefs2ABC = read.csv("chapter7/prefs2ABC.csv")
> library(nnet) #for multinom
> library(car) #for Anova
> m = multinom(email_preference ~ team, data=prefs2ABC)
> Anova(m)
Analysis of Deviance Table (Type II tests)

Response: email_preference

LR Chisq Df Pr(>Chisq)
team 6.5556 2 0.03771 *
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

The p-value is 0.038, indicating a significant difference in preference. The test
result is reported as a multinomial logistic regression χ2(2, N = 150) = 6.56, p <

0.05.
Multinomial logistic regression is useful for multifactor analyses as well. The file

prefs2ABCsex.csv has the same preferences data now embellished with the sex
of each sales representative. Thus, we have Team with two levels (Sales Team X or
Y) and Sex with two levels (male or female).

The R code for executing multinomial logistic regression on prefs2ABC
sex.csv is:

> prefs2ABCsex = read.csv("chapter7/prefs2ABCsex.csv")
> library(nnet) #for multinom
> library(car) #for Anova
# set contrasts for each factor to be sum-to-zero contrasts.
# this is necessary for the Type III Anova we will use.
> contrasts(prefs2ABCsex$team) <- "contr.sum"
> contrasts(prefs2ABCsex$sex) <- "contr.sum"
> m = multinom(email_preference ~ team * sex,data=prefs2ABCsex)
# We use a Type III Anova since it simplifies interpreting
# significant main effects in the presence of interactions.
> Anova(m, type=3)
Analysis of Deviance Table (Type III tests)

Response: email_preference

LR Chisq Df Pr(>Chisq)
team 6.4923 2 0.03892 *
sex 0.1029 2 0.94985
team:sex 0.5136 2 0.77354
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
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As with our contingency table analysis, here there was a statistically significant
effect of Team on email application preference (χ2(2, N = 150) = 6.49, p < 0.05).
However, as one would expect, there was no statistically significant effect of Sex or
significant Team × Sex interaction.

Ordinal logistic regression. Ordinal logistic regression, also called ordered logit,
proportional odds logistic regression, or the cumulative link model, is analogous
to multinomial logistic regression but for ordered responses rather than unordered
categories ( McCullagh 1980). Such responses occur frequently in HCI studies that
utilize Likert scales, e.g., with subjective responses ranging from “strongly disagree”
to “strongly agree.”Ordinal logistic regression is an extension ofmultinomial logistic
regression to ordered response categories.

Let us assume that each sales representative was asked to indicate how much
they liked the email application they most preferred. On a 1–7 scale with end-
points “strongly disagree” to “strongly agree,” they rated their agreement with the
statement, “I love my preferred Mango smartwatch email application.” The data in
prefs2ABClove.csv reflects their responses.

The R code for running ordinal logistic regression on prefs2ABClove.csv
is:

> prefs2ABClove = read.csv("chapter7/prefs2ABClove.csv")
> library(MASS)
> library(car)
> contrasts(prefs2ABClove$team) <- "contr.sum"
> contrasts(prefs2ABClove$sex) <- "contr.sum"
# transform numeric variable into an ordinal variable
> prefs2ABClove$love = ordered(prefs2ABClove$love)
> m = polr(love ~ team * sex, data=prefs2ABClove)
> Anova(m, type=3)
Analysis of Deviance Table (Type III tests)

Response: love

LR Chisq Df Pr(>Chisq)
team 0.0149 1 0.9029
sex 29.5134 1 5.553e-08 ***
team:sex 0.0285 1 0.8659
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

There was no significant effect of Team on how much sales representatives love
their preferred Mango email application. There was also no Team × Sex interaction.
But there was a significant effect of Sex, reported as ordinal logistic χ2(1, N =
150) = 29.51, p < 0.0001. The average 1–7 Likert rating for males was 4.45; for
females it was 5.70. Perhaps the female sales representatives were a more positive
bunch!
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Poisson regression. Poisson regression is used for nonnegative integers that rep-
resent count data (Nelder and Wedderburn 1972; Bortkiewicz 1898). A common
use of Poisson regression in HCI is for counts of rare events. For example, accurate
gesture recognizers or automatic spelling correction systems that produce relatively
few errors from every 100 attempts may lend themselves to Poisson regression.7

For our scenario, let us pretend that the Mango smartwatch email applications
tracked and counted the number of customers to whom each sales representa-
tive failed to respond within 48 hours. Since sales representatives are trained to
respond quickly to customers, such occurrences should be relatively rare. The file
prefs2ABClate.csv contains the email application preferences data
embellished with the number of late responses for that sales representative during the
three-month study. Now, the preferred email application is treated not as a response
but as an independent variable potentially influencing the new response. Thus, we
have a 2 × 2 × 3 three-factor design with Team (X, Y), Sex (M, F), and Preference
(A-mail, B-mail, C-mail).

In the GLM, Poisson regression uses a “Poisson” distribution and “log” link
function, specified by the family argument to the glm function. It is executed in
R with the following:

> prefs2ABClate = read.csv("chapter7/prefs2ABClate.csv")
> contrasts(prefs$ABClate$team) <- "contr.sum"
> contrasts(prefs2ABClate$sex) <- "contr.sum"
> contrasts(prefs2ABClate$email_preference) <- "contr.sum"
> m = glm(late_responses ~ team * sex * email_preference,

data=prefs2ABClate, family=quasipoisson)
> Anova(m, type=3)
Analysis of Deviance Table (Type III tests)

Response: late_responses

LR Chisq Df Pr(>Chisq)
team 20.8684 1 4.919e-06 ***
sex 1.2934 1 0.25541
email_preference 3.3016 2 0.19190
team:sex 2.0317 1 0.15405
team:email_preference 0.1471 2 0.92907
sex:email_preference 5.2803 2 0.07135 .
team:sex:email_preference 4.1328 2 0.12664
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

7 Givendatawith a large number of zeroes, it is prudent to consider an extension toPoisson regression
called “zero-inflated” Poisson regression. This model incorporates binomial regression to
predict the probability of a zero alongside Poisson regression to model counts. See the zeroinfl
function in the pscl package.
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There was a significant effect of Team on number of late responses, reported as a
Poisson regression χ2(1, N = 150) = 20.87, p < 0.0001.

> ddply(prefs2ABClate, ~ team, function(data)
summary(data$late_responses))

team Min. 1st Qu. Median Mean 3rd Qu. Max.
1 X 0 0 1 1.080 2 4
2 Y 0 1 2 2.307 3 8

The average number of late responses for Sales Team X was 1.08; for Sales Team
Y, which did not have the Mango smartwatch yet, it was 2.31. We can also extract
the estimated ratio of rates of late responses between the two teams:

> library(multcomp) #for glht
> library(lsmeans) #for lsm
> team_effect = confint(glht(m, lsm(pairwise ~ team)))

Simultaneous Confidence Intervals

Fit: glm(formula = late_responses ~ team * sex *
email_preference, family = quasipoisson, data = prefs2ABClate)
Quantile = 1.96
95% family-wise confidence level

Linear Hypotheses:

Estimate lwr upr
X - Y == 0 -0.6594 -0.9465 -0.3723

# effects in a Poisson model are on a log scale (because of the
# log link), so we often exponentiate them to interpret them.
> exp(team_effect$confint)

Estimate lwr upr
X - Y 0.5171661 0.3880856 0.6891797
attr(,"conf.level")
[1] 0.95
attr(,"calpha")
[1] 1.959964

Thus, we should expect members of Team X to have about 0.517 times the rate
of late responses as Team Y (95% confidence interval: [0.388, 0.689]).
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Gamma regression. For data conforming to a Gamma distribution, a GLM can
be fitted with a “log” link function.8 A Gamma distribution applies to skewed, con-
tinuous data with a theoretical minimum, often zero. It is defined by two parameters,
“shape” and “scale.” The inverse of the scale parameter is called the “rate.” The
exponential distribution is a special case of Gamma distribution where the shape
parameter equals one.

The data contained in salesXY.csv and graphed in Fig. 7.1 can be modeled
by a Gamma distribution. That data has now been embellished with the sex of each
salesperson in salesXYsex.csv. The question now is how Team and Sex may
have affected annualized sales.

The R code for executing a GLMwith a Gamma distribution and log link function
is:

> salesXYsex = read.csv("chapter7/salesXYsex.csv")
> contrasts(salesXYsex$team) <- "contr.sum"
> contrasts(salesXYsex$sex) <- "contr.sum"
> m = glm(sales ~ team * sex, data=salesXYsex,

family=Gamma(link="log"))
> Anova(m, type=3)
Analysis of Deviance Table (Type III tests)

Response: sales

LR Chisq Df Pr(>Chisq)
team 5.1408 1 0.02337 *
sex 1.9128 1 0.16666
team:sex 0.1767 1 0.67420
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

The results indicate that therewas a statistically significant effect ofTeam on annu-
alized sales (χ2(1, N = 150) = 5.14, p < 0.05). The same conclusion was reached
with the Mann-Whitney U test, whose p-value of 0.025 was similar. It does not
appear that Sex or Team × Sex had any effect on annualized sales.

7.4.8 Generalized Linear Mixed Models (GLMM)

The GLMs reviewed in the last section are powerful models but with a major
limitation—they are unable to handle within-subjects factors because they cannot

8Although the canonical link function for the Gamma distribution is actually the “inverse” function,
the “log” function is often used because the inverse function can be difficult to estimate due to
discontinuity at zero. The two functions provide similar results.
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account for correlations amongmeasures of the same participant. This restriction lim-
its their utility in HCI studies in which the same participants are measured repeatedly
in one session or over time.

The Generalized Linear Mixed Model (GLMM) is an extended model that allows
for within-subjects factors (Gilmour et al. 1985; Stiratelli et al. 1984). A “mixed-
effects model” refers to the combination of both “fixed” and “random” effects. Thus
far in this chapter, we have only considered fixed effects, which are thosewhose levels
are purposefully and specifically chosen as treatments. By contrast, random effects
have levels whose values are not themselves of interest, but that represent a random
sample from a larger population about which we wish to generalize. In HCI studies
with repeatedmeasures, the random effects are almost always the human participants
in the experiment. By modeling Subject as a random effect, the correlation among
measures taken from the same participant can be accounted for.

In other respects, GLMMs are similar to the GLMs reviewed above. Distributions
and link functions can be specified for non-normal data.

Let us again consider the annualized sales for Sales TeamYwith noMango smart-
watch, oneMango smartwatch, and twoMango smartwatches in salesYY2city.
csv. (See Fig. 7.5.)

The R code for executing a factorial GLMM with a Gamma distribution, log link
function, and Subject as a random effect9 is:

> salesYY2city = read.csv("chapter7/salesYY2city.csv")
> library(lme4) #for glmer
> library(car) #for Anova
> contrasts(salesYY2city$city) <- "contr.sum"
> contrasts(salesYY2city$watch) <- "contr.sum"
# here (1|subject) indicates a random intercept
# dependent on subject.
> m = glmer(sales ~ city * watch + (1|subject),

data=salesYY2city, family=Gamma(link="log"))
> Anova(m, type=3)
Analysis of Deviance Table (Type III Wald chisquare tests)

Response: sales

Chisq Df Pr(>Chisq)
(Intercept) 37079.7322 1 < 2e-16 ***
city 1.0191 2 0.60077
watch 5.4790 2 0.06460 .
city:watch 10.9741 4 0.02686 *
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

9 This model uses an intercept-only random effect. There are other types of random effects such as
slopes-and-intercept random effects that are described in Chap.11.

http://dx.doi.org/10.1007/978-3-319-26633-6_11
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The results show a statistically significant Watch × City interaction (χ2(4, N =
225) = 10.97, p < 0.05) and a nonsignificant main effect of Watch (χ2(2, N =
225) = 5.48, p = 0.065). These results differ somewhat from those of the Aligned
Rank Transform, which showed a statistically significant main effect of Watch
(F(2,144) = 4.31, p < 0.05) and a nonsignificant Watch × City interaction
(F(4,144) = 2.02, p = 0.095). In neither analysis was City statistically significant.
The discrepancies in these results indicate the degree to which statistical conclusions
may vary depending on the analyses used.

7.4.9 Generalized Estimating Equations (GEE)

When the relationship among factors and responses is not known or there is no dis-
cernable structure, a Generalized Estimating Equation (GEE) can be used (Liang and
Zeger 1986; Zeger et al. 1988). Unlike GLMMs, GEEs are less sensitive to covari-
ance structure specification and can handle unknown correlation among outcomes.
Responsesmay be continuous, nominal, or ordinal. Statistical inference is commonly
performed with the Wald test (Wald 1943).

The R code for using a GEE with a Gamma distribution and log link function on
salesYY2city.csv is:

> salesYY2city = read.csv("chapter7/salesYY2city.csv")
> library(geepack)
# geeglm requires data sorted by grouping variable, so we sort
# by subject (so that all rows for a given subject are
# contiguous).
> salesYY2city = salesYY2city[order(salesYY2city$subject),]
> m = geeglm(sales ~ city * watch, id=subject,

data=salesYY2city, family=Gamma(link="log"))
> anova(m)
Analysis of ’Wald statistic’ Table
Model: Gamma, link: log
Response: sales
Terms added sequentially (first to last)

Df X2 P(>|Chi|)

city 2 0.46 0.795
watch 2 7.94 0.019 *
city:watch 4 12.03 0.017 *
---
Signif. codes:
0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

The results show a statistically significant Watch main effect (χ2(2, N = 225) =
7.94, p < 0.05) andWatch × City interaction (χ2(4, N = 225) = 12.03, p < 0.05).
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However, geeglm does not support Type-III ANOVAs,10 and as a result, our inter-
pretationof these tests is slightly different: The significant effect ofWatch canbe inter-
preted as a significant effect only outside the presence of a significant Watch × City
interaction, which this model contains. Therefore, we ignore the significant Watch
main effect and focus any further analysis on the interaction. As above, City is sta-
tistically nonsignificant.

7.5 Summary

The field of human-computer interaction is a field devoted both to invention and
to science. Its researchers and practitioners often transition fluidly from inventing
new interactive technologies to scientifically evaluating the behavior of people with
interactive technologies. The ability to correctly drawconclusions about this behavior
is therefore of paramount importance in focusing the efforts of these professionals.
Although not all studies in HCI require statistical inference, those that domust utilize
it correctly or risk missing actual benefits or proclaiming phantom ones.

With the wide variety of data collected in HCI studies, nonparametric statistics are
rife with opportunity for broad application. Such statistics may be understood best
by their relationship to more familiar, but often inapplicable, parametric statistics.
This chapter has provided an overview of nonparametric statistics useful in HCI at
an exciting time when the appreciation of their utility is growing in the field.
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Part III
Bayesian Inference

The previous part of this book, while introducing topics that are not often focused
on in methodology textbooks, still discussed “classical” significance testing. This
can be typified by a “frequentist” approach to statistical inference. To a frequentist
(and in layman’s terms) probabilities are considered long-run frequencies. As such,
there is an interest in the long-run frequency of the data D given the hypothesis H0.
Hence, the frequentist aims to answer the hypothetical question: “If I would do this
experiment again and again, and H0 is indeed true, howwould my data be distributed
over these repeated experiments?" Hence, the frequentist treats the hypothesis fixed
and given, and the data as random.

The Bayesian has a different view: for a Bayesian the data are fixed and given,
and he is interested in the “degree of belief” regarding the hypothesis. This degree
of belief in the hypothesis is considered random, and is informed by the information
that is present in the fixed data. Hence, while the frequentist is interested in P(D|H0),
the Bayesian is interested in P(H0|D). Now, these two quantities might coincide,
but this is not generally the case.

Computing the transposed conditional (thus going from P(D|H0) to P(H0|D))
is often relatively easy, and its computation is well known and undisputed by Fre-

quentists and Bayesians alike: P(θ |D) = P(D|θ)P(θ)

P(D)
However, the frequency of use of the above equation and the impact of the prior

P(θ) remain disputed.
We believe the Bayesian view provides an extremely useful addition to the (mostly

frequentist) methods that are part of the typical HCI methods curriculum. Hence, we
have invited two authors to contribute on this topic.

Chapters 8 and 9 of this book introduce Bayesian inference and highlight the
possibilities of Bayesian testing for HCI. As was stated in the earlier introduction
part, but it is particularly true for this part, the chapters can only be seen as good
introductions to their respective topics: Bayesian analysis is a field in its own right.

Chapter 8: Bayesian Inference
In Chap. 7 Dr.M. Tsiderdekis introduces Bayesian inference in general, and provides
several examples of the use of [R] to quantify P(θ |D). The chapter starts with an
introduction to Bayesian reasoning, and a didactical example. We hope that this
introduces the basic ideas sufficiently to the reader to, at least, read the remainder of

http://dx.doi.org/10.1007/978-3-319-26633-6_8
http://dx.doi.org/10.1007/978-3-319-26633-6_9
http://dx.doi.org/10.1007/978-3-319-26633-6_8
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the material with heightened interest. Next, several analyses using Bayesian methods
are presented. For each example the code to produce the analysis as well as an
elaborate discussion of the interpretation of the results is included.

Chapter 9: Bayesian Testing of Constrained Hypothesis
Chapter 8 illustrates clearly how, by adopting a Bayesian approach, relevant research
questions that cannot be tested using a frequentist framework can be solved. Dr. J.
Mulder introduces the use of theBayes Factors (aBayesianmodel comparison “tool”)
to test (order) constrained hypotheses.

Tests of constrained hypotheses are extremely useful in HCI: we often do not
merely have the hypothesis that there is no difference between our experimen-
tal groups (the standard frequentist null-hypothesis), but rather we have a theory
describing how the groups should be ordered. The Bayes Factor allows researchers
to directly quantify the evidence in favor of specific orderings, compared to others,
that is provided by the data.

Contrary to the other chapters in the book, this chapter uses a specialized software
package called BIEMS to conduct the presented analysis. The chapter points readers
to the location where the software can be downloaded for free.

Editor suggestions
There is much much more to the Bayesian approach than can be included in this part.
Hence, we strongly encourage readers to further deepen their understanding of this
topic by consulting the following classical works in this area:

• Also referenced in Chapter 7, but still worth recommending separately is the book
Bayesian Data Analysis by AndrewGelman and John B. Carlin (2013). It provides
an extensive overview of the theory and its use in practice.

• The book Bayesian Methods by Jeff Gill (2007) is also recommended as a starting
point.

• Taking a computer science / AI approach, the authoritative book Pattern Recog-
nition and Machine Learning by Christopher Bishop (2007) focuses heavily on
applied Bayesian Methods.

http://dx.doi.org/10.1007/978-3-319-26633-6_9


Chapter 8
Bayesian Inference

Michail Tsikerdekis

Abstract Bayesian inference has a long standing history in the world of statistics
and this chapter aims to serve as an introduction to anyone who has not been formally
introduced to the topic before. First, Bayesian inference is introduced using a simple
and analytical example. Then, computational methods are introduced. Examples are
provided with common HCI problems such as comparing two group rates based on
a binary variable, numeric variable, as well as building a regression model.

8.1 Introduction

Dennis V. Lindley, arguably one of the leading advocates of Bayesian statistics has
said that “Inside every nonBayesian there is a Bayesian struggling to get out” (Jaynes
2003). To someone that has never heard of Bayesian statistics, this statement could
sound a bit condescending. It could be interpreted as an attack towards “classical”
statistics taught in most colleges as the main introductory statistics course. Such
an attack is not without precedence. A “war” between Bayesians and Frequentists
(a term often reserved for non-Bayesians), has been ongoing for the majority of
the 20th century. Ronald A. Fisher, one of the leading contributors to frequentist
statistics has referred to Bayesian statistics as “fallacious rubbish” (Aldrich 2008).
Others have followed in his example and a campaign to devalueBayesian statistics has
been going strong ever since. Yet, Bayesian statistics are still strong and often used in
many scientific fields especially Computer Science. This is of no surprise since Alan
Turing, seen by many as the father of Computer Science, has used Bayesian logic
in his infamous Enigma machine meant to decipher German encrypted messages
(McGrayne 2011). Since then, Bayesian logic has been utilized in various problems
such as artificial intelligence, machine learning, pattern recognition and even email
spam classification.Why utilize Bayesian statistics to solve such problems? Looking
back at Lindley’s statement one may find the answer. Doing Bayesian statistics is in
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many ways how we intuitively perceive the world as humans; having a prior belief
about a statement, looking at the evidence and adjusting our prior belief based on
the evidence.

Human-Computer Interaction (HCI) has largely been a field of frequentism when
it comes to quantitative research. This can in part be attributed to the lack of proper
introductory curriculum for Bayesian statistics in HCI but also a lack of software
that can accompany research. Just a few decades ago the computing power was
simply non-existent for the complex models and calculations that are required to
conduct Bayesian inference (Robert and Casella 2011). Fast-forward a few decades
and today Bayesian statistics are not only popular in a number of scientific fields
but one can claim that they are not any more difficult to use than frequentist statis-
tics. Bayesian inference is arguably more powerful and more informative due to its
robustness for comparing hypotheses including the null hypothesis as well as making
use of more information that is available to a researcher through the use of priors
(Wagenmakers et al. 2008). This chapter serves as an introduction to Bayesian infer-
ence by presenting examples of typical HCI problems and Bayesian solutions to
them.

8.2 Introduction to Bayes’ Theorem

We will consider a computer science adaptation of the popular sunrise problem
(Chung and AitSahlia 2003) in order to understand how Bayesian inference works.
Imagine a child receiving their first technology device (e.g., computer, laptop, tablet,
etc.) and turning it on for the first time. After spending some time using the device,
the child turns it off and goes to sleep. What would the probability be that the
device will turn on again when the child wakes up? Frequentist solutions may just
assign 100% probability to the event that the device will turn on or may express that
if the device fails it would be a 1:1 odds for that event to happen. The difficulty of
frequentist statistics for this particular problem is that they are not equipped to provide
answers for statements requiring an expression of probabilities from an observer’s
perspective. They work well for cases such as survey research, where a phenomenon
is standardized and repeatable, but, they fail when it comes to answering questions
when an infinite number of repetitions (even hypothetical) may not be possible.

This introduces the first major difference between Bayesian inference and fre-
quentist statistics. In the latter, the data (D) are random while the rate that the device
turns on (θ ) is an unknown yet it is a fixed value. In Bayesian inference, we are
concerned with the present without involving hypothetical multiple future attempts.
The data (D) are fixed, objective and known while the rate that the device will turn
on (θ ) is unknown and random. As pointed out by Jackman (2009), this does not
mean that the rate θ (the rate the device turns on) keeps changing but rather that our
belief about it changes as we observe the digital device turning on each time. Hence,
while a frequentist sees the probability of a device turning on as a characteristic of
the device, a Bayesian sees the probability of a device turning on as a degree of



8 Bayesian Inference 175

one’s belief given the observations. While both incorporate uncertainty, the frequen-
tist approach fails in some problems since uncertainty is defined as a measurement
error of finding the characteristic of a device. In contrast, a Bayesian’s uncertainty is
expressed in weaker probabilities that represent a belief due to limited data at hand
or data that comes in conflict with prior beliefs.

This perspective gives a Bayesian statistician the power to assign probabilities to
statements or beliefs. In our case that would be assigning probabilities to the rate
θ . We can say that there are two different outcomes for the child’s digital device:
θ = 0 the device does not turn on, and, θ = 1 the device turns on. Or better yet,
we may stipulate that the possibilities of the rate θ should be expressed in terms
of a likelihood scale. We can say that the possibilities (or possible values) for our
parameter θ will represent that a device will: Not Turn On, Not Very Probable to
Turn On, Not Probable to Turn On, Probable to Turn On, Very Probable to Turn On,
Turn On. Having six possibilities for our θ and assuming a range between 0 to 1, we
can give θ six different numeric possibilities that correspond to our likelihood scale.
So, θ is denoted by {0, 0.2, 0.4, 0.6, 0.8, 1}.

Before we see any data (D) and even begin evaluating a problem, we have certain
preconceptions or prior beliefs. These are prior probabilities (p(θ)) that are assigned
to each possible value (or outcome) for θ and should always sum to 1. For those
fancying formal expressions that would be:

n
∑

i=0

p(θi ) = 1 (8.1)

where n is all the discrete possible values for theta based on ourmade up likelihood
scale.

If we believe prior to seeing any data that digital devices usually turn on, we can
assign more weight on the θ = 1 which corresponds to the will turn on belief in our
likelihood scale and gradually decrease our assigned probabilities. Our probability
mass for our prior beliefs for p(θ)will be 0.1, 0.15, 0.15, 0.20, 0.20, 0.4. Such a prior
is considered to be a subjective prior. However, one can also decide that there is no
apriori knowledge before one observes the data (D) and assign uniform probabilities
to the prior p(θ) such as 0.2, 0.2, 0.2, 0.2, 0.2, 0.2. This is often called an objective
prior since all possible outcomes for θ have equal probabilities (p(θ)). However,
even the uniform prior is not the least informative prior which can be selected1 but
it is considered sufficiently uninformative for many problems. Figure8.1 shows the
probability mass for the two examples of priors.

For our example we will assume that a friend informed the child that devices
usually turn on and it is rare that they would not turn on. The child has a prior
knowledge on the likelihood that a device will turn on, therefore we assume a prior
belief that the device is likely to turn on. In R this will look like:

1Priors with higher variance can be considered less informative in this setting.
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Fig. 8.1 Probability mass for prior beliefs. Left figure shows an subjective prior while right figure
shows an objective prior

> Theta = c(0,0.2,0.4,0.6,0.8,1)

> pTheta = c(0.1,0.15,0.15,0.20,0.20,0.4)

After declaring our prior beliefs, the next step involves processing the data D that
the child has observed. This is usually expressed as the Likelihood or p(D|θ) which
translates as the probability of the Data (D) given each θ . In our example, a device
can turn on and turn off. Since this is a binary problem, we can define that the device
can turn on as θ and device not turning on as 1 − θ . Given that the possible outcomes
for θ belong to the range of decimals between 0 and 1, you can think of the outcome
turning on (θ ) and outcome not turning on (1 − θ ) as “polar” opposites. To avoid
any confusion, the possible outcomes {θ, 1 − θ}which are derived from our data, are
different fromour arbitrarily definedpossible values for θ = {0, 0.2, 0.4, 0.6, 0.8, 1}.
For example, we could represent θ in a three point scale such as θ = {1, 2, 3} and
perceive the values as a discrete scale that means Not Likely, Neutral and Likely.

The likelihood (p(D|θ)) is calculated using the binary data outcomes and obser-
vations (successes and failures) regarding these outcomes for each possible value θ .
This is formally defined as:

p(D|θ)
︸ ︷︷ ︸

likelihood

= θ s
︸︷︷︸

succeses

(1 − θ) f

︸ ︷︷ ︸

failures

(8.2)
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Fig. 8.2 Probability mass
for likelihood p(D|θ)
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where s represents the numbers of times where the digital device turned on and
f represents the number of times where the digital device failed to turn on.2 In R we
can write this using the following code:

> Data = c(1)

> s = sum( Data == 1 )

> f = sum( Data == 0 )

> pDataGivenTheta = Thetaˆs * (1-Theta)ˆf

This will result in p(D|θ)with probabilities for each possible θ : 0.0, 0.2, 0.4, 0.6,
0.8, 1.0 which are also shown in Fig. 8.2. Since we had just one success in turning on
the device the biggest probability for our θ likelihood scale is placed in θ = 1 with
gradually decreasing probabilities on the rest possible values for θ . Notice that θ = 0
that represents the will not turn on case has virtually a zero probability of occurring.

Of course, Bayesian inference is all about the transformation of our prior beliefs
(p(θ)) to a posterior belief (p(θ |D)) having seen the data through the likelihood
(p(D|θ)). The posterior is basically our set of probabilities for θ after we have seen
the data. To achieve this we use a mathematical formula called Bayes’ Rule. It was
conceptualized by Reverend Thomas Bayes in 1740s and later was given a formal
mathematical form and scientific application by Pierre Simon Laplace. It is formally
defined as (Kruschke 2010):

p(θ |D)
︸ ︷︷ ︸

posterior

= p(D|θ)
︸ ︷︷ ︸

likelihood

p(θ)
︸︷︷︸

prior

/ p(D)
︸ ︷︷ ︸

evidence

(8.3)

In other words, having a prior belief, p(θ), times the likelihood, p(D|θ), divided
by the evidence, p(D), we can obtain a posterior belief conditional on the data

2A more formal version of the likelihood would be p({y1, ..., yn}|θ) = ∏

i θ yi (1 − θ)(1−yi ), where
the set D = {y1, ..., yn} represents the outcome for the sequence of attempts to turn on the device
(Kruschke 2013).
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p(θ |D). In cases where θ has a discrete set of values, the evidence can be calculated
as the sum of the likelihood times the prior or formally defined as:

p(D)
︸ ︷︷ ︸

evidence

=
n

∑

i=1

p(D|θi )
︸ ︷︷ ︸

likelihood

p(θi )
︸ ︷︷ ︸

prior

(8.4)

In R, we calculate the evidence p(D) using:

> pData = sum( pDataGivenTheta * pTheta )

Notice that since p(D) is a sum of all probabilities, the result is a number (in our
example p(D) = 0.77) and not a probability mass like we had in the case of p(θ)

and p(D|θ).
Having calculated all the necessary components we can finally calculate our pos-

terior probabilities based on our data using:

> pThetaGivenData = pDataGivenTheta * pTheta / pData

The posterior probabilities for p(θ |D) are 0.00, 0.04, 0.08, 0.16, 0.21, 0.52. This
is also shown in Fig. 8.3. Due to our prior belief favoring the the possible values
for θ where a device will most likely turn on, and, the fact that the data through
the likelihood also favored the case where a device turned on, our posterior belief is
elevated higher towards the possibility that a device will turn on.

The answer provided by Bayesian inference may appear to be terminal but this is
not the case. Just like in real life, we hold a belief andwe update it as new evidence (or
data) comes in. This process can be iterative with today’s posterior belief becoming
tomorrow’s prior.

The child may accept her current beliefs about the device turning on. After ten
days she can use those same beliefs as a new prior and calculate the new poste-
rior but this time having observed ten successful times where the device turned on.

Fig. 8.3 Probability mass
for posterior p(θ |D)
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Fig. 8.4 Overview of prior,
likelihood, and posterior
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This transformation of beliefs is shown in Fig. 8.4 and it is the core concept behind
Bayesian inference. Repeated times of following this process and having continuous
success in turning the device on will place even more weight in θ = 1 for the pos-
terior p(θ |D), however, this will never become 100%. There is always uncertainty
and this unknown property of probability is included in Bayesian inference.

The example in this section has been using a discrete θ for instructional purposes.
In practice, a continuous θ should be used instead. The exact mathematical approach
for solving this problem would require a prior (p(θ)) that would be a continuous
probability distribution and not discrete. There is also a need for a likelihood func-
tion (p(D|θ)) that when combined with the prior, produces a posterior probability
distribution of the same form with the prior. The prior of this form is often called a
conjugate prior. This binary problem is mathematically solved using a Beta distribu-
tion prior and a Binomial likelihood.3 The computational approach for this problem

3In the Beta/Binomial approach, the prior is defined using the Beta distribution’s probabil-
ity density function (PDF). The simplified form of Beta’s PDF (for this type of problem), is
p(θ |α, β) ∝ θα−1(1 − θ)β−1. Assuming that the friend told the child that he/she has seen these
devices turn on ten times (α = 10) and fail to turn on two times (β = 2), our priorwould be: p(θ |α =
10, β = 2) ∝ θ10−1(1 − θ)2−1. The likelihood function is based on the Bernoulli distribution
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is described later on in this chapter. An alternative mathematical approach for this
type of problem is the use of a Gamma prior and a Poisson likelihood (Lynch 2007).

As it is the case with many digital devices, at some point in the future the device
will not turn on and that may make us question our belief in induction, positivism,
and, our ability to deal with an unhappy child. However, this is a matter for another
discussion.

8.3 Computing Bayesian Statistics

It is easy to demonstrate how Bayesian statistics work in a simple problem such
as the one described in the previous section, however, nowadays we do not conduct
Bayesian inference by hand. The issue is one of complexity as problems are defined in
more “detail.” For example, the probabilitymass for our posteriormay be determined
by a more complex likelihood (p(D|θ)) function that involves more outcomes for
θ . Additionally, the possible outcome values for θ may not be discrete (e.g., the
probability scale metaphor that we have used in our previous example) but can be
instead continuous involving a range of values (e.g., a range from 0 to 1 with all
possible decimal points in between). For example, studying user reaction times when
replying to emails would require such a continuous θ . The posterior probabilities in
this case are not called a probability mass but a probability density (Kruschke 2010).
The evidence p(D) which is the sum of the likelihood times the prior for all θ

values cannot be calculated as such since there could be an infinite number of values
with all of their decimals possibilities. Hence, we calculate instead the integral of
the likelihood times the prior for all θ values which in layman’s terms produces an
approximation of what the sum would be if we could calculate it. Such complex
problems require a different approach to the analytical approach that we have used
in the previous section.

Monte CarloMarkovChain algorithms are used as a tool in order to solve complex
problems since they can approximatemodel parameters such as the parameter θ in our
previous example (Gilks 2005). They use randomwalks (switching between different
values of all parameters in a model) based on a model of probabilities derived from
our observed data to approximate the point where a probability mass (or probability
density) for parameters is reaching a state of “equilibrium.” The randomwalk creates
a sequence which is called a chain (also known as Markov chain) and the length of
a chain (called the sample) is important for accurately determining the value of a

(Footnote 3 continued)
with 1 successes and 0 failures expressed as p(D|θ) ∝ θ1(1 − θ)0. Using Bayes’ Rule we can
combine the likelihood and prior to produce the posterior distribution: p(θ |D) ∝ p(D|θ)p(θ) =
θ10−1(1 − θ)2−1θ1(1 − θ)0 = θ10(1 − θ)1. The posterior density is a beta density that we can
easily interpret if we calculate its α and β parameters: α = 10 + 1 and β = 1 + 1. As such the
mean for θ is M = α/(α + β) = 11/(11 + 2) = 0.846 or the child’s beliefs that the device will

turn on is focused at 84.6%. The standard deviation is SD =
√

αβ

(α+β)2(α+β+1)
≈ 0.0093. The

probability interval with a 95% probability will be 0.846 ± 1.96 × 0.0093 which places the child’s
belief in the device turning on between 82.7% and 86.4%.
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parameter. Each step in a chain is considered to be “memoryless.” In essence, each
step transitions betweenvarious states for a state space and the probability distribution
for every step is only dependent on the previous step. Theoretically, an infinite sample
would create the most accurate result but in practical terms we usually obtain a large
enough sample (Plummer et al. 2006).

Figure8.5 demonstrates how the algorithm works step by step to approximate the
probability “equilibrium.” The top two plots demonstrate a small sample. Our sample
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is just 10 which creates 10 steps in our chain (also called an interval). The algorithm
walks randomly between values but still within the constraints of observed data. The
traceplot demonstrates this walk and chain. The index represents each step of the
walk while the y-axis shows the sampled value for that step. If we summarize these
ten values we can create a probability density plot for our parameter X̄ . It is evident
that a sample of 10 is not large enough to obtain an accurate estimate. However, as
we increase the sample (seen in the rest of the plots in Fig. 8.5) we slowly achieve
higher accuracy and approximate our probability “equilibrium.”

Early in the sample, chains often appear to be random. They can take a while to
get into the “sweet” spot of a parameter’s probabilities. For this reason, we often
decide to ignore the early parts of a chain and retain the latter parts. This is called a
burnin. For example, we may decide to retrieve a sample of 15,000 steps but have a
burnin of the first 15,000 steps. Figure8.6 demonstrates a sample of 15,000 without
a burnin and a sample with a burnin of 15,000. The lower two plots basically start
from the 15,000th step and end at 30,000th. Notice that for the first sample without
the burnin, the chain moves slightly downward. Chains that take longer to converge
are often referred to as slow-mixing (Lynch 2007).

The process of random walking utilized by MCMC algorithms can lead to chains
that look different each time. Using multiple chains and aggregating the results into
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Fig. 8.6 Example of Probability Density plot and Trace plot of MCMC with the same sample size
but different burnin for X̄ parameter
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Fig. 8.7 Example of Trace
plot with the same sample
size with 4 chains for X̄
parameter
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one ensemble can create amore accurate estimate. Figure8.7 demonstrates 4 different
chains for a small MCMC sample.

AnMCMC samplewith a large interval andmany chains can be a computationally
intensive task especially depending on the number of parameters we wish to retain in
order to construct their probability density distribution. In order to make this process
more memory efficient for computational systems the idea of thinning was invented.
Thinning retains only every nth element in a chain therefore reducing the size of the
sample in memory (Albert 2009).

While we know that MCMC algorithms can produce a desired probability dis-
tribution for a parameter, we can never be sure how long it will take for a chain to
converge to that distribution. We may set an interval of 100,000 and a chain may
still not converge. For this reason, we use tests of convergence (Rossi et al. 2005).
There are several tests to verify an MCMC sample’s convergence. We can test for
convergence visually or using algorithms that test for it.

Visual inspection for convergence can be done by viewing traceplots for chains
and their mixing. If a chain takes longer to move through the whole parameter space
then it will take longer to converge. Good mixing appears as a trace that tends to be
stable within the values of the parameter (or parameter space). Figure8.8 provides
an example of a sample that converges and one that does not.

TheGelman and Rubin shrink factor is another way to verify that the convergence
(Gelman and Rubin 1992). The measure uses within-chain and between-chain vari-
ance to produce a value of how well the model is converging over time. If the shrink
factor is close to 1 then our model has converged while values beyond 1.2 are indica-
tive of a model that may have not converged and requires a longer chain. However,
there may be an occasion where one may receive a value that is smaller than 1.2 by
chance. Hence, plotting the statistic over time is considered to be a more accurate
approach. Figure8.9 shows two Gelman plots for two parameters. The shrink factor
appears to reach 1 and hover around it after approximately the 2,000th step in the



184 M. Tsikerdekis

−0.50

−0.25

0.00

0.25

0.50

0 250 500 750 1000

Index

X X

Traceplot, Good Mixing

−1

0

1

2

3

0 250 500 750 1000

Index

Traceplot, Bad Mixing

Fig. 8.8 Example of Trace plot that converges and one that does not for X̄ parameter

sample. This is the point where the model started to converge. In this case, a 3,000
interval for our MCMC sample would be sufficient.

The Geweke diagnostic is another popular measure for detecting convergence
(Cowles and Carlin 1996). The diagnostic tests for convergence on a per chain basis.
The test retrieves samples from the chain of two non-overlapping samples (by default
the first 10% and the last 50% of a chain) and conducts a test of equality of means.
If convergence has occurred the means should be virtually the same. The result
is a Z-score where scores below 1.98 indicate convergence and greater than 1.98
indicate statistically significant difference for the samples derived from a chain using
a significance level 0.05 (5% probability that we are wrong over repeated samples).
One can also produce a plot over time for the statistic which is demonstrated in
Fig. 8.10. In this case,we cannotice that parametermu X is having trouble converging.
Some of the points are beyond the threshold lines that mark the ±1.98 limit. One
also has to take into account whether an MCMC chain had a burnin which would
affect convergence diagnostic.

Finally, there other diagnostics that can verify convergence forMCMCalgorithms
such asmeasuring autocorrelation lag, Raferty andLewis diagnostic, and,Heidelberg
and Welch diagnostic Cowles and Carlin 1996.
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Fig. 8.9 Example of Gelman and Rubin shrink factor plot for two parameters
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8.4 Bayesian Two Group Comparison for Binary Variables

We can consider a practical example in order to demonstrate howMCMC algorithms
assist in Bayesian inference. The example below can also be solved using a math-
ematical approach with a combination of a Beta prior and a Bernoulli likelihood.
MCMC is used in this section for instructional purposes.

A company wishes to improve employees email practices by investing in Mango
smart watches. The employees use mainly their desktop computers but need to carry
their tablets whenever they are away from their workspace. Tablets however are
bulkier and so many employees prefer to carry their personal cell phones with them.
The use of personal cell phones for work-related matters is a security risk according
to company policy and so replacing them with smart watches is considered to be a
safer alternative by the company. The company conducts an experiment where group
A gets smart watches while group B does not. They receive back answers on whether
users have utilized their cell phones during the study. The results were measured in a
binary scale for individuals that used their cell phones during the period of the study
and individuals that did not.

We need to compare the rates between the two groups in order to determine if the
smart watches are a good choice for reducing the likelihood for cell phone use.4 The
problem involves a dichotomous variable (exactly a yes or no question). We start by
defining our data in R:

> source("generate.R")

> email$usedcellphone = 0 #generating random data

> email$usedcellphone[email$team == 0] = sample(c(0,1),

+ nrow(email[email$team == 0,]),2,prob=c(.80,.20))

> email$usedcellphone[email$team == 1] = sample(c(0,1),

+ nrow(email[email$team == 1,]),2,prob=c(.20,.80))

> s1 = sum(email$usedcellphone[email$team == 0])

> s2 = sum(email$usedcellphone[email$team == 1])

> n1 = nrow(email[email$team == 0,])

> n2 = nrow(email[email$team == 1,])

where s1 and s2 represent the number of people who end up using their cellphones
for each group respectively, and, n1 and n2 represent the total number of people on
each group. In our example, the total number of people varies between the two groups.

MCMC algorithms work based on the process of model building. The aim is
to structure probability distributions for our parameters in order to simulate them
based on our observed data. Understanding probability distributions beforehand is
essential for building models. For example, normal distributions are reserved usually
for numeric variables and take as parameters the mean of a variable and the standard
deviation. In the case of binary variables, beta distributions are more appropriate

4An alternative approach to solving the problem would be to use Bayesian Probit Regression
Jackman 2009.
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Fig. 8.11 Example Beta
distributions based on
different α and β
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because they are continuous, bound between 0 and 1 and take two parameters α

and β, which define the slope of the distribution. Figure 8.11 shows examples of
beta distributions for a θ parameter. In our previous example with the digital device,
we decided that θ values will represent a likelihood scale. In this problem, we can
decide that θ values will denote the likelihood of cell phone use with 1 representing
an absolute probability for using a cell phone while 0 representing no probability of
using a cell phone. As such, α and β become representations of using and not using
a cell phone for our beta distribution.

Just like our digital device problem turning on and off, we can define a parameter
denoting cell phone use for each group, θ1 for group 1 and θ2 for group 2. These
rates will also need to be assigned priors based on our prior belief. In this case, we
decide that we do not have prior knowledge on what the outcome may be for our
experiment and we define equal prior “results”:

> s1prior = 1

> f1prior = 1

> s2prior = 1

> f2prior = 1

where s1prior and s2prior are the prior rates of people that use cell phones for
the two groups and f 1prior and f 2prior are the prior rates for people that do not
use cell phones for each group respectively. In this case the values for all variables
are 1 but they could have been any number as long as high and low values are equal so
that we can produce a uniform set of prior probabilities (see Fig. 8.11 first example).
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MCMCmodelling in R is represented by a set of distributions and their parameters
(e.g., α and β for a Beta distribution) as well as functions. All of these are enclosed
within an R function that contains the model. Models unlike programming code do
not have to be written sequentially as they are not executed as such. Additionally, in
programming we often declare functions as y = x + z where y is the unknown while
x and z are variables with known values. In MCMC models, we could also declare
the same function but with x and y as variables with a known value and z being the
unknown variable.

> jags.bin <- function() {

+ theta1 ˜ dbeta(s1prior,f1prior)

+ theta2 ˜ dbeta(s2prior,f2prior)

+ s1 ˜ dbin(theta1,n1)

+ s2 ˜ dbin(theta2,n2)

+ delta <- theta1 - theta2

+ }

Our two distributions for θ1 and θ2 are declared within the JAGS model. JAGS
stands for Just Another Gibbs Sampler and it is a program for analyzing Bayesian
models using MCMC sampling. We first supply parameters and their assigned prior
beliefs (which are uniform in this case) to our model. We also need to define the
likelihood. Binomial distribution is our choice for this problem which is a discrete
distribution using parameters as the probability rate (probability of using a cell phone)
and the total number of sequences. From a programming perspective this may appear
a bit peculiar, however, models do not have to operate sequentially or have functions
and distributions being sequentially defined. As long as all variables, distributions
and parameters are all accounted for, the model will produce results. In this case, s1,
s2, n1, n2 are known discrete variables and θ1 and θ2 are unknown albeit with priors
defined. Finally, we can also calculate the difference between θ1 and θ2 called δ (in
the R code defined as delta).

After setting up our model we can proceed by setting the parameters for MCMC
using the command jag.model and then utilize coda.samples to generate posterior
samples based on the parameters of interest. The process simulates all variables for
our model however the sampled chains that are returned are only those that interest
us. These are declared as a list.

> n.simu <- 50000

> n.burnin <- n.simu/2

> par <- c("theta1","theta2","delta","deltaprior",

+ "theta1prior","theta2prior")

> D <- list(s1 = s1, s2 = s2, n1 = n1, n2 = n2,

+ s1prior = s1prior, s2prior = s2prior,

+ f1prior = f1prior, f2prior = f2prior)

> m.jags <- jags.model("jags.txt", data = D,
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+ n.adapt = n.burnin, quiet = TRUE, n.chains = 4)

> s <- coda.samples(m.jags, par,

+ n.iter = n.simu - n.burnin, quiet = TRUE)

The object produced by coda.samples contains all the variables requested using
the list par. The object can be converted to a data frame containing all chains for
easier post-processing. The downside to this approach is that the data frame can be
quite large unless thinning is applied. Using the data frame we can then obtain the
mean value of the posterior sample for θ1, θ2, and δ.

> df = as.data.frame(as.matrix( s ))

> mean(df$theta1)

[1] 0.2335576

> mean(df$theta2)

[1] 0.7144396

> mean(df$delta)

[1] -0.480882

In this case, we can see that group B has a higher cell phone use rate than group A.
The difference δ is almost half (0.481) for our values of θ that range between 0 and 1.
Just like traditional confidence intervals in frequentist statistics we can also calculate
95% probability intervals. The commonly used probability interval for Bayesian
statistics is called High Density Interval (HDI) included in R’s BEST package.

> c(hdi(df$theta1,.95)[1],hdi(df$theta1,.95)[2])

lower upper

0.0930076 0.3841601

> c(hdi(df$theta2,.95)[1],hdi(df$theta2,.95)[2])

lower upper

0.4879375 0.9260797

> c(hdi(df$delta,.95)[1],hdi(df$delta,.95)[2])

lower upper

-0.7445349 -0.2098999

We can observe that the probability interval for the difference is quite broad
which is likely a result of a small sample. However, we can still be confident based
on the results that group B exhibited higher cell phone use. In other words, the
implementation of devices in group A had a substantial improvement in reducing
cell phoneuse and therefore improving security in compliancewithwhat the company
wanted to achieve. But, how about hypothesis testing?

Bayesian inference also provides paths to perform hypothesis testing. A popular
formula is Bayes Factor which allows us to test the odds ratio between two hypothe-
ses (e.g., H0: δ = 0 and H1: δ �= 0). This is covered in Chap.9 of this book. An
alternative to the Bayes Factor is provided by Kruschke (2010), which is similar to

http://dx.doi.org/10.1007/978-3-319-26633-6_9
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equivalence testing used in biomedical sciences. One can define aRegion of Practical
Equivalence (ROPE) around a point of non-difference between rates and determine
on whether a practical difference exists between two rates. In our case, we could
suggest that for the point of equivalence (δ = 0) we define a ROPE in a ±0.20. The
definition is dependent on the context and experimental design. For example, in our
binary problem of cell phone use, we may assume that if the difference between two
groups is less than 0.2 then we may decide that the smart watches are not a worth-
while investment. Different companies may be willing to invest on the smart watches
with differences as low as 0.1. After a ROPE is defined, we identify whether we can
accept the hypothesis of δ = 0 or whether our 95% HDI falls within the ROPE or
falls completely outside the ROPE. As our sample size grows, 95% HDI tends to
accumulate more around the mean of the posterior sample and as such probability
around the posterior mean value increases.

To calculate the percentage of our posterior sample that falls within the ROPE we
need to determine if any of the sample values fall within our ROPE.

> ROPE = c(-0.2,0.2)

> (pcInROPE = sum( df$delta > ROPE[1] & df$delta <

+ ROPE[2] ) / length( df$delta ) )

[1] 0.02984

Determining the amount of HDI that falls within the ROPE requires us to calculate
what is the 95% of our posterior sample for δ and then use a similar approach to
determine what amount falls within the ROPE. The code for this is provided in the
supplementary materials of the book.

For this particular example, 2.984%of our posterior sample fallswithin theROPE,
while 0% of our HDI falls within the ROPE.We can therefore reject the null hypoth-
esis and accept that there is a substantial difference between groups.

Similar to our previous example, the advantage of using Bayesian inference to
determine the improvement of processes due to the implementation of a product or
user interface is that we can relaunch an experiment for future device implemen-
tations. The second experiment can then utilize the posterior results from the first
experiment as priors.

8.5 Bayesian Two Group Comparison for Numeric
Variables

In HCI, we often want to evaluate the difference for a numeric variable between two
groups. In our smart watch example, we have measured the email response times
between group A that had the smart watch and group B that did not have the smart
watch.
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The process of obtaining posterior samples for each group and hypothesis testing
is similar to testing binary rates. The main difference involves establishing a model
that can reflect the nature of the numeric variable.

In this case, distributions of numeric variables are usually normal. A normal
distribution is a continuous probability distribution that accumulates around a single
point and gradually dissipates (see Fig. 8.6). Comparing two rates between normal
distributions is establishing the difference between their two means. Hence, our
likelihood portion for our model will include a loop between our data for each group
using a normal distribution.

> jags.bin <- function() {

+ for (i in 1:n1) {

+ group1[i] ˜ dnorm(muX, tauX)

+ }

+ for (i in 1:n2) {

+ group2[i] ˜ dnorm(muY, tauY)

+ }

+ muX ˜ dnorm(0, 0.001)

+ muY ˜ dnorm(0, 0.001)

+ sigmaX ˜ dunif(0, 1000)

+ sigmaY ˜ dunif(0, 1000)

+ tauX <- 1 / (sigmaX * sigmaX)

+ tauY <- 1 / (sigmaY * sigmaY)

+ delta <- muY - muX

+ }

Notice that in this case the known part is the list of values for group1 and group2
that are indexed by i within the loop. The means, μX and μY (in the code typed as
muX and muY), as well as the standard deviations, τX and τY (in the code typed
as tauX and tauY), are the unknown components. Normal distributions in JAGS use
standard deviations using τ and not σ which is more common in statistics. We need
to take this into account when modeling.

Since the means μX and μY are our rates of interest (just like θ previously), we
need to represent them in the form of a probability distribution not a single point
estimate. As such we can set their priors in a form of a normal distribution. We also
set the standard deviations, τX and τY , derived from σX and σY (in the code typed as
sigmaX and sigmaY) in a form of a uniform distribution where all probabilities are
the same for all possible values.

Finally, we add to the model any final calculated variables such as the difference
between the means, δ (in the code typed as delta).

By declaring the model using JAGS, we can obtain posterior samples and deter-
mine the means for the two groups. These can be obtained as a point estimate (e.g.,
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Fig. 8.12 Probability
distributions between Group
A and Group B for the smart
watch experiment
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based on the mean of posterior sample) or as a posterior probability distributions for
the two groups which can be plotted. These are shown on Fig. 8.12.

It is evident that the implementation of smart watches for group A had a dramatic
effect in reducing email response time. Notice that the two probability distributions
do not overlap and that we are more certain about a point estimate for group A.

We can further calculate the point estimate based on the mean for the posterior
samples of the two means, their 95% HDI, and further use the posterior sample for
δ to determine based on a ROPE whether to reject or accept the null hypothesis.

The results for this particular experiment suggest that there is a considerable
difference between group A (M =3.222, 95% HDI [2.597, 3.822]) and group B
(M =7.835, 95% HDI [6.372, 9.239]) since the 95% HDI for δ falls outside the
ROPE of ±0.2. The mean difference is 4.6 minutes which can have a considerable
effect on productivity. Just like before, whether smart watches are a worthwhile
investment depends on the company and the threshold used as a ROPE. For example,
in our case the managers have decided on using a really small ROPE, which is a 0.2
minutes difference. On the other hand, if managers were to decide that an investment
was worth it only if email response time was beyond three minutes then the ROPE
would have to be set to 3. Even for this case, the HDI falls outside the ROPE so the
smart watches are a good investment. An alternative model to the one offered in this
chapter for a Bayesian t-test can be found by Lee and Wagenmakers (2014).

8.6 Bayesian Regression with Numeric Predicted Variable

Aside from determining how an experimental design may influence the outcome of
email response time, we can also attempt to determine information such as how tech-
nical efficacy of people may affect email response time. We can start by generating
an artificially correlated variable for illustrative purposes.
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> source("generate.r")

> email$technicalEfficacy = email$responseTime *

+ runif(length(email$responseTime), 0.0, 5.0)

Regression models that involve numeric predictors are implemented using the
regular regression formula (y = b0 + b1 ∗ x) with a slight modification:

> jags.bin <- function() {

+ for(i in 1:N) {

+ y[i] ˜ dnorm(f[i], tau)

+ f[i] <- b0 + b1 * x[i]

+ }

+

+ # Priors

+ tau <- 1/pow(sigma,2)

+ sigma ˜ dunif(0, 1000)

+ b0 ˜ dnorm(0, 0.001)

+ b1 ˜ dnorm(0, 0.001)

+

+ # R-squared calculation

+ y.mean <- mean(y[])

+ for (i in 1:N) {

+ ss.res.temp[i] <- y[i] - f[i]

+ ss.res[i] <- pow(ss.res.temp[i], 2)

+ ss.reg.temp[i] <- f[i] - y.mean

+ ss.reg[i] <- pow(ss.reg.temp[i], 2)

+ ss.tot.temp[i] <- y[i] - y.mean

+ ss.tot[i] <- pow(ss.tot.temp[i], 2)

+ }

+ r.squared <- (sum(ss.reg[])) / (sum(ss.tot[]))

+ }

In this case, the known variables are y (representing response time), x (represent-
ing technical efficacy) and N which is the total number of cases that are used for our
loop. Our modeled variable is f which forms the typical regression formula with b0
being the intercept and b1 the coefficient for our predictor variable.

Priors are defined in our model for τ , σ , b0 and b1. The priors in this case are
objective since there is no prior knowledge for these variables. Priors for the coef-
ficients have a mean of 0 and a small standard deviation while sigma is a uniform
distribution, which is a distribution with equal probability for all outcomes.

Using the coefficients b0 and b1, we can obtain all relevant data for our regression
model similar to a frequentist linear regression. We can also implement within the
model other calculated statistics. An important measure for regression is calculating
R2 (the amount of explained variance by our model) and in Bayesian regression we



194 M. Tsikerdekis

Fig. 8.13 Probability
distribution for R2 when
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time and technical efficacy.
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can obtain a probability distribution for it. In this example, the implementation of
R2 uses the exact same formula used in frequentist regression.

We can then obtain our posterior samples the same way we did before using JAGS
and coda.samples. Figure8.13 demonstrates the probability distribution for R2 which
indicates a substantial amount of accounted variance.

We can further obtain point estimates for our coefficients as well as their 95%
HDIs.

> mean(df$b0)

[1] 2.230924

> c(hdi(df$b0,.95)[1],hdi(df$b0,.95)[2])

lower upper

1.463655 3.008316

> mean(df$b1)

[1] 0.1877244

> c(hdi(df$b1,.95)[1],hdi(df$b1,.95)[2])

lower upper

0.1433942 0.2326414

> mean(df$r.squared)

[1] 0.6821717

> c(hdi(df$r.squared,.95)[1],hdi(df$r.squared,.95)[2])

lower upper

0.3720231 1.0010375

Notice that the upper bounds for the R2 95%HDI exceed 1 which is the otherwise
analytical upper limit. However, since in Bayesian statistics we simulate calculated
variables, these could go beyond the limits for metrics such as R2. It is a consequence
caused by the “noise” created by our simulation. As the sample size increases this
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behavior will dissipate and R2 will be bounded between 0 and 1 as it is expected
to be.

The accounted variance (R2) informs us that technical efficacy is an important
factor that affects email response time. The coefficient for technical efficacy (b1)
has a mean of 0.18 according to its posterior probability distribution. The arbitrary
scale for technical efficacy used in this example varies between 0 and 51 with lowest
scores representing higher efficacy.Assuming that email response time ismeasured in
minutes, this translates to about a minute of slower response time for every five-point
increase (less technical expertise) in the technical efficacy scale. The result suggests
that training individuals to have better technical skills will result in a substantial
increase in email response time. On the other hand, if the email response time was
measured in seconds, the increase in response time may have been negligible even
though our model will still suggest a large accounted variance between technical
efficacy and email response time.

8.7 Do Not Reinvent the Wheel

The examples demonstrated in this chapter are not meant to cover a complete view
of Bayesian inference but rather serve as an introduction. At this point, it may seem
that Bayesian inference may involve a lot of work for HCI professionals, however,
this is not the case. Bayesian statistics were prevented from appearing in mainstream
curriculum due to the computational inefficiency that existed for MCMC algorithms
over the past decades. This fact has also restricted many to develop software for
Bayesian statistics that requires the same effort comparable to building a traditional
t-test or linear regression model. At the moment, software for Bayesian statistics
is not as flexible for building complex models and JAGS or similar modeling soft-
ware is necessary. However, many methods frequently used by HCI professionals
such as a variety of regression models as well as various statistical tests (e.g., t-test)
are available. For example, the package BEST in R Kruschke (based on 2013) pro-
vides a way for testing two group means. Also, packages such as Zelig Imai et al.
2008 include an ensemble of many Bayesian methods such as Bayesian Logistic
Regression, Multinomial Logistic Regression, Linear Regression and Ordered Pro-
bit Regression. As a brief example, the regression model that we tested previously
can be built using Zelig with just two lines of code.

> z.out <- zelig(output ˜ predictor,

+ model ="normal.bayes", data=df,

+ mcmc = n.simu - n.burnin, burnin = n.burnin)

> summary(z.out)

Call: zelig(formula = output ˜ predictor,

model = "normal.bayes", data = df,
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mcmc = n.simu - n.burnin, burnin = n.burnin)

Iterations = 25001:50000

Thinning interval = 1

Number of chains = 1

Sample size per chain = 25000

Mean, standard deviation, and quantiles

for marginal posterior distributions.

Mean SD 2.5% 50% 97.5%

(Intercept) 2.2323 0.3848 1.4725 2.2316 2.9955

predictor 0.1876 0.0223 0.1440 0.1875 0.2316

sigma2 2.7399 0.6624 1.7388 2.6451 4.3284

Research papers in HCI as well as other fields have utilized Bayesian analysis
as the main analytical method or as a supplementary method Tsikerdekis 2013;
Triantafyllopoulos and Pikoulas 2002; Muchnik et al. 2013; Volf et al. 2014; Trusov
et al. 2010. When utilizing Bayesian methods the degree of introduction can vary.
Some authors choose to provide a bit more background information on the methods
used while others prefer to publish the result and refer readers to textbooks for more
information on the methods. The same degree of variance can be found in the use of
probability distribution charts. At times, authors choose to display point estimates
even though Bayesian analyses offer probability distributions for the parameters of
interest. The language can also vary when it comes to reporting results. For example,
consideration should be given when one needs to report MCMC sample, burnin,
thinning and additional measures that may be essential for replicating the same
results or approximating them.

Bayesian inference has arrived and it is not just easier to perform but much more
powerful compared to frequentist statistics Wagenmakers et al. 2008. It adds more
diversity to HCI research and thus produces more intuitive results that can be directly
interpreted based on current and past knowledge. It is time for all of us to listen to
our inner Bayesian that is struggling to get out!
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Chapter 9
Bayesian Testing of Constrained Hypotheses

Joris Mulder

Abstract Statistical hypothesis testing plays a central role in applied research to
determine whether theories or expectations are supported by the data or not. Such
expectations are often formulated using order constraints. For example an executive
board may expect that sales representatives who wear a smart watch will respond
faster to their emails than sales representatives who don’t wear a smart watch. In
addition it may be expected that this difference becomes more pronounced over time
because representatives need to learn how to use the smart watch effectively. By
translating these expectations into statistical hypotheses with equality and/or order
constraints we can determine whether the expectations receive evidence from the
data. In this chapter we show how a Bayesian statistical approach can effectively be
used for this purpose. This Bayesian approach is more flexible than the traditional
p-value test in the sense that multiple hypotheses with equality as well as order
constraints can be tested against each other in a direct manner. The methodology
can straightforwardly be used by practitioners using the freely downloadable soft-
ware package BIEMS. An application in a human-computer interaction is used for
illustration.

9.1 Introduction

In many applications people have expectations or theories regarding a certain phe-
nomenon which they want to test based on the observed data. In medical research for
example we want to know whether a new drug treatment works better than a placebo
treatment; in sociology want to know whether people with low socio-economic status
have less access to health care than people with high socio-economic status; and in
marketing we want to know whether sales representatives who wear a smart watch
respond faster to their emails and sell more products than sales representatives who
don’t wear a smart watch. In order to answer such questions we need empirical data
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to determine whether our expectations are supported or not. This can be done by first
translating our expectations to statistical hypotheses and then use a statistical testing
criterion to determine which hypothesis receives most support from the data. In this
chapter we discuss how the Bayes factor, a relatively new criterion for hypothesis
testing, can effectively be used for this purpose.

9.1.1 Multiple Hypothesis Testing in HCI

For the purpose of this book we consider a human-computer interaction (HCI) appli-
cation where the interest is in the effect of smart watches on the response times
of sales representatives to their email. In this application we use hypothetical data
containing the response times of the representatives in two sales teams: representa-
tives in team B received a smart watch, referred to as the ‘Mango’, which allowed
them to check their email at all time, and representatives in team A did not receive
a smart watch. For this application we are interested in testing the effects between
the two teams as well as testing time effects across the three months. We consider
competing hypotheses with different relationships between the response time means:
μA1, μA2, μA3, μB1, μB2, and μB3, where μA1 denotes the mean response time of
team A in the 1st month, for example.

In the first hypothesis a positive team effect is expected, i.e., team B responds faster
to emails than team A on average, as well as a positive time effect, i.e., representatives
respond faster to their email over consecutive months. Note that the direction of the
effect is formulated in terms of the speed of a response. So a positive effect implies a
faster response and thus a smaller response time. The motivation of the positive team
effect is that having email on ones wrist causes faster response times. The motivation
of the positive time effect is that sales representatives in both teams become more
efficient in responding to their emails over time. This expectation can be translated
to the ‘all positive effects hypothesis’ H1 with the following combination of order
constraints between the mean response times:

H1 :
⎧

⎨

⎩

μA1 > μA2 > μA3

∨ ∨ ∨
μB1 > μB2 > μB3.

(9.1)

In the second hypothesis we assume that there is only a positive time effect for
team B and no time effect for team A. The motivation is that for team A nothing
changes over time and therefore no time effect is expected. For Team B on the other
hand a learning effect is expected because the representatives need to learn how to use
the Mango effectively. This ‘only positive time effect for Mango users hypothesis’
H2 can be written as a combination of equality and order constraints on the means,

H2 :
⎧

⎨

⎩

μA1 = μA2 = μA3

∨ ∨ ∨
μB1 > μB2 > μB3.

(9.2)
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In the third hypothesis no time effect is expected for both teams and a positive
team effect is expected. The motivation is that no learning effect is expected over
time. The ‘positive team effect, no time effect hypothesis’ H3 can be formulated as

H3 :
⎧

⎨

⎩

μA1 = μA2 = μA3

∨ ∨ ∨
μB1 = μB2 = μB3,

(9.3)

The fourth hypothesis is based on the idea that wearing a smart watch has no
effect on the response times in addition to smart phones which are already used by
all representatives in both teams. A positive time effect is expected on the other hand
because past results have shown that representatives tend to challenge themselves
more and more every month to communicate with customers more efficiently. The
‘positive time effect, no team effect hypothesis’ H4 can be formulated as

H4 :
⎧

⎨

⎩

μA1 > μA2 > μA3

|| || ||
μB1 > μB2 > μB3,

(9.4)

The fifth hypothesis corresponds to the classical null hypothesis that neither a
team effect nor a time effect is expected. The ‘no effects’ H5 with only equality
constraints between the means can be written as

H5 :
⎧

⎨

⎩

μA1 = μA2 = μA3

|| || ||
μB1 = μB2 = μB3,

(9.5)

Finally the sixth hypothesis assumes that none of the above hypotheses are true.
This ‘complement hypothesis’ H6 can be written as

H6 : “H1, . . . , H5 not true”. (9.6)

Thus the testing problem comes down to determining which hypothesis of H1 to
H6 receives most evidence from the observed data. The difficulty of this test lies in
the fact that the hypotheses of interest contain equality constraints as well as order
constraints. In addition, we consider a multiple hypothesis test instead of testing a
single hypothesis against one other hypothesis.

9.1.2 Limitations of Classical Methods

The most commonly used technique for testing statistical hypotheses is the classical
p-value. A p-value quantifies how close the observed data are from a null hypothesis
if it would be true. Thus, a small value indicates that the null hypothesis may be
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false. Typically we reject the null hypothesis if the p-value is smaller than some
prespecified significance level. Although most users only use the p-value for testing
a null hypothesis with only equality constraints (i.e., H5 given above) against the
classical alternative HA : “at least one pair of means is unequal”, there are two types
of p-value tests available for hypotheses with order constraints. First, p-value tests
are available for testing a null hypothesis with only equality constraints against an
alternative with only order constraints. So a p-value can be computed of the ‘no
effects hypothesis’ H5 against the ‘all positive effects hypothesis’ H1. Second, p-
values can be used for testing a null hypothesis with only order constraints against
an unconstrained alternative. For example, a p-value test is available for testing
H1 against its complement. Classical references on this methodology are Barlow
et al. (1972), Robertson et al. (1988), and Silvapulle and Sen (2004). The multiple
hypothesis testing problem given above however does not fall in either one of these
two categories. For example, a p-value is not available for testing the ‘positive team
effect, no time effect hypothesis’ H3, with equality as well as order constraints,
against the ‘positive time effect, no team effect hypothesis’ H4, also with equality as
well as order constraints. Furthermore, we are interested in testing all six hypotheses
simultaneously. Classical p-value tests however are designed for testing one specific
null hypothesis against one other hypothesis. Finally it is important to note that p-
values can only be used to determine if a null hypothesis is false; p-values cannot be
used to quantify evidence in favor of a null hypothesis.

Because of the limitations of this methodology, testing complex hypotheses with
equality and/or order constraints between the parameters of interest are often per-
formed using post-hoc tests. The general idea is that we first perform an omnibus
test of a null hypothesis (i.e., H5 in the above test) against its complement HA that
at least one pair of means is unequal using a prespecified significance level α (typ-
ically 0.05). Subsequently, if there is enough evidence to reject H0 (i.e., p < α),
we perform post-hoc tests between every pair of means in order to find out how the
parameters are related to each other. This approach suffers from several problems
however.

The omnibus test has two possible outcomes. First, we may observe a p-value that
is larger than the significance level which implies that there is not evidence in the
data to reject the null hypothesis. In this scenario we end up in a state of ignorance
because there is not enough evidence in the data to reject the null hypothesis but we
also cannot claim there is support for the null hypothesis. Again note that a p-value
can only be used to falsify the null hypothesis, not to quantify evidence for the null
(Wagenmakers 2007).

Second we may observe a p-value that is smaller then the significance level which
implies that there is enough evidence in the data to reject the null hypothesis that all
means are equal. In this case we need to perform post-hoc tests to determine which
pair of means is unequal. In the above example where we compare six different
means, there are 15 different pairs of means and thus we need to perform 15 post-
hoc tests in total, namely, H0 : μA1 = μA2 versus HA : μA1 �= μA2, H0 : μA1 = μB1

versus HA : μA1 �= μB1, . . ., until H0 : μB2 = μB3 versus HA : μB2 �= μB3. Per-
forming 15 different hypothesis tests based on the 15 p-values is very problematic.
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If we do not correct for the fact that we performed 15 different hypothesis signifi-
cance tests, we will get a huge inflation of the type I error probability of incorrectly
rejecting a null hypothesis. If we would correct for performing that many tests (e.g.,
using Bonferroni by dividing the significance level α by 15) the tests are very con-
servative. Consequently there is a large chance that we end up not rejecting any null
hypothesis even though some effects are present (van de Schoot et al. 2011). Another
problem with post-hoc tests is that we may end up with conflicting conclusions, e.g.,
there is not enough evidence to reject H0 : μA1 = μA2 or H0 : μA1 = μA3 but there
is enough evidence to reject H0 : μA2 = μA3. This suggests that μA1 = μA2 and
μA1 = μA3 while μA2 �= μA2 which is problematic to interpret. For this reason, the
omnibus test in combination with the post-hoc tests is not recommended for the
multiple hypothesis test discussed in Sect. 9.1.1.

Another class of criteria that can be used for hypothesis testing (and model com-
parison) is the class of information criteria. Akaike’s information criterion (AIC)
(Akaike 1973), the Bayesian (or Schwarz’) information criterion (BIC) (Schwarz
1978), and the deviance information criterion (DIC) (Spiegelhalter et al. 2002) are
popular examples. These methods are useful when more than two hypotheses (or
models) have been formulated. The basic idea is that each hypothesis is evaluated
based on its fit to the data and based on the complexity of the statistical model
underlying each hypothesis. The complexity of a hypothesis is quantified through
the number of free parameters. For example the null hypothesis H0 : μA1 = μA2 has
one parameter less than the alternative hypothesis HA : μA1 �= μA2. And therefore,
when the estimates for μA1 and μA2 are equal for a given data set, this suggests
that both hypotheses H0 and HA fit the data equally well, and therefore an informa-
tion criterion will result in preferring H0 because it is the least complex hypothesis.
When a hypothesis contains order constraints however the number of free parameters
is ill-defined. For example how many free parameters does H1 : μA1 < μA2 contain
in relation to HA : μA1 �= μA2? Another potential issue with information criteria is
that the scale of information criteria is difficult to interpret. For example when three
competing hypotheses result in AIC values of 1202, 1200, and 1209, respectively,
we learn that the second hypothesis is the best because it has the smallest AIC value.
The AIC values however do not tell us how much better the second hypothesis is in
comparison to the first or third hypothesis. For this reason, we do not know anything
about the certainty of our conclusions when selecting the second hypothesis for the
data at hand.

9.1.3 Bayes Factors for Multiple Hypothesis Testing

The issues discussed above are avoided when using the Bayes factor, a Bayesian
criterion for hypothesis testing and model selection originally developed by Jeffreys
(1961). As will be shown the Bayes factor can be used for testing multiple hypotheses
with equality and/or order constraints in a direct manner. Furthermore, Bayes factors
can be translated to the posterior probability of each hypothesis to be true after



204 J. Mulder

observing the data. These posterior probabilities give a clear answer how much
evidence there is in the data given the hypotheses under consideration.

For a thorough overview of the use of Bayes factors for testing scientific theories,
see a classic reference such as Kass and Raftery (1995). For more information about
Bayes factor tests in the context of hypotheses with order constraints we refer the
interested reader to Klugkist et al. (2005) in the context of ANOVA models, Kato and
Hoijtink (2006) for linear mixed models, Mulder et al. (2009) for repeated measures
models, Braeken et al. (2015) for regression models, van de Schoot et al. (2012) and
Gu et al. (2014) for structural equation models, Mulder (In Press) for testing order
constraints in correlation matrices, or Hoijtink (2011) for an overview or various
methods on this topic.

9.1.4 Outline

The chapter is organized as follows. Section 9.2 starts with an introduction to
Bayesian estimation of the HCI application discussed in the introduction. In Sect. 9.3
Bayesian hypothesis testing is discussed using the Bayes factor. Section 9.4 discusses
a Bayesian test for a simple example using BIEMS (Bayesian inequality and equality
constrained model selection, Mulder et al. 2012), a freely downloadable statistical
software package that can be used for Bayesian hypothesis testing. Section 9.5 dis-
cusses the evaluation of the constrained hypotheses in the HCI application discussed
in Sect. 9.1.1. Finally, Sect. 9.6 ends with a short discussion.

9.2 Bayesian Estimation in the HCI Application

Before going into detail about Bayesian hypothesis testing in the HCI application
we discuss some basics about Bayesian estimation for readers who are not familiar
with this topic. As will be seen the Bayesian approach can result in the same conclu-
sions as the classical approach using maximum likelihood when no prior knowledge
is available. When prior knowledge is available on the other hand, the Bayesian
approach allows one to combine this with the information in the data in a natural
way via Bayes’ theorem. For an introduction to Bayesian data analysis we refer the
interested reader to Chap. 8 of this book, Lynch (2007), or Gelman et al. (2004).

9.2.1 The Multivariate Normal Model

In the first stage of a Bayesian data analysis a statistical model must be formulated that
captures the dependency structure and the nature of the data. In the HCI application
discussed in the introduction we can assume that the average monthly response times

http://dx.doi.org/10.1007/978-3-319-26633-6_8
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are independent across the two groups. Furthermore, the average monthly response
times of each representative over the three months are assumed to be dependent.
For example, an executive who is relatively fast (slow) in the first month is likely
to be fast (slow) in the second month. For this illustration, we will also assume that
the monthly average response times of the representatives are normally distributed.
Note that slight violations of the normality assumption is not problematic due to large
sample theory (e.g., see Gelman et al. 2004). Finally, we assume unequal means over
time and between teams and equal error covariance matrices for both teams. Thus
the following multivariate analysis of variance (MANOVA) model is used for these
data

yA,i A
= N (μA,Σ) and yB,iB

= N (μB,Σ), (9.7)

where yA,i A
and yB,iB

are vectors of length 3 with the measurements of the i Ath
representative in team A and the iB th representative in team B, for i A = 1, . . . , n A,
and iB = 1, . . . , nB , μA = (μA1, μA2, μA3)

′ and μB = (μB1, μB2, μB3)
′ contain the

measurement means in month 1, 2, and 3, for team A and team B, respectively,
and Σ denotes the common positive definite error covariance matrix. In these data
team A consisted of n A = 114 representatives and team B consisted of nB = 86
representatives.

9.2.2 The Prior: A Formalization of Prior Beliefs

After the model is specified a prior distribution (or simply prior) needs to be cho-
sen for the unknown model parameters, μA, μB , and Σ . The prior is denoted by
p(μA,μB,Σ). The prior reflects the information we have about the model para-
meters before observing the data. Depending on the amount of prior information
that is available we can specify a noninformative prior, a weakly informative prior
(which contains very little information relative to the information in the data), or an
informative prior. A commonly used noninformative prior is the improper Jeffreys
prior which is given by pJ (μA,μB,Σ) ∝ |Σ |− P+1

2 , where P = 3 is the number of
dependent measurements. Note that the Jeffreys’ prior for μA and μB is flat and
therefore every value for these model parameters is equally likely a priori. For this
reason we can state that the Jeffreys prior reflects prior ignorance.1

On the other hand, prior information may be available about the mean response
times, for example, based on past results or personal experience. When prior infor-
mation is available about the response times, an informative prior can be specified.
For example the company may expect that the response times will be close to the
response times in the previous months which were approximately equal to, say, 350

1Note that the Jeffreys prior is not a proper probability distribution (it is improper). This implies
that it does not integrate to 1. Improper priors can be used in Bayesian estimation when there is
enough information in the data to obtain a proper posterior. In this application this is the case when
n A + nB ≥ 5 (i.e., P = 3 plus the number of groups/teams), and n A, nB ≥ 2.
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s. If the executive board is uncertain about the response times in the following months
a weakly informative prior can be specified with mean 350 and a standard deviation
of 100. This implies that the board has 95 % prior beliefs that the monthly response
times lies between 154 and 546. This prior can be qualified as ‘weakly informative’
because essentially all board members (even very optimistic or pessimistic board
members) are confident that the monthly response times of the sales representatives
will fall in this region. This weakly informative prior (with index W I ) can be written
as pW I (μA) = N (35013, 1002I3) and pW I (μB) = N (35013, 1002I3), where 13 is a
vector of length 3 with ones and I3 is the identity matrix of length 3.

It may also be the case that the board is confident that the mean response times
are very close to the response time means of previous months. This more informative
prior state can be translated to an informative prior with means of 350 and smaller
standard deviations of, say, 10. This implies that the board expects that they have
95 % prior belief that the true response time means lie between 330 and 370. This
informative prior (with index I ) can be written as pI (μA) = N (35013, 102I3) and
pI (μB) = N (35013, 102I3).

Specifying an informative prior for the covariance matrix Σ is often more difficult
because the error (co)variances are more difficult to interpret than the means. For this
reason we set the noninformative Jeffreys prior for Σ in the weakly informative prior
as well as in the informative prior for the means. In sum, the noninformative Jeffreys’
prior, the weakly informative prior, and the informative prior are then given by

pJ (μA,μB,Σ) ∝ |Σ |−2

pW I (μA,μB,Σ) = NμA
(35013, 102I3) × NμB

(35013, 102I3) × |Σ |−2 (9.8)

pI (μA,μB,Σ) = NμA
(35013, 1002I3) × NμB

(35013, 1002I3) × |Σ |−2,

respectively.
Finally note that we could also have specified different priors for the mean response

times of team A and team B. This would be reasonable if the board is confident that
the means across teams will be different a priori. We choose to set equal priors for
all means however to reflect prior ignorance regarding the differences between the
means.

9.2.3 The Posterior: Our Belief After Observing the Data

The data are contained in the (n A + nB) × 3 data matrix Y where the first n A rows
of Y contain the average response times of the sales representatives in team A over
the three months and the remaining nB rows contain the response times of the sales
representatives in team B over the three months. The information in the data about the
model parameters is reflected in the likelihood function, denoted by p(Y|μA,μB,Σ).
The likelihood quantifies how likely the observations are given the unknown model
parameters.
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In a Bayesian data analysis our prior knowledge, reflected in the prior distribution,
is updated with the information in the data, reflected in the likelihood function, using
Bayes’ theorem:

p(μA,μB,Σ |Y) = p(Y|μA,μB,Σ)p(μA,μB,Σ)

p(Y)
, (9.9)

where p(μA,μB,Σ |Y) denotes the posterior distribution of the model parameters
and p(Y) denotes the marginal likelihood of the data under the model. The poste-
rior distribution reflects the information we have about the model parameters after
observing the data. The marginal likelihood plays an important role in Bayesian
hypothesis testing as will be shown in the next section. In Bayesian estimation, the
marginal likelihood only serves as a normalizing constant in (9.9) because it does not
depend on the unknown parameters. For this reason, Bayes’ theorem is sometimes
written in the simpler form,

p(μA,μB,Σ |Y) ∝ p(Y|μA,μB,Σ)p(μA,μB,Σ), (9.10)

which reads as “posterior is proportional to likelihood times prior”.
The posterior can be used to get useful statistics, such as Bayesian point estimates

or Bayesian credibility intervals (the Bayesian equivalence to classical confidence
intervals) for the unknown parameters. A relatively easy and flexible way to obtain
such statistics is by drawing a sample of sufficient size, say, 1,000,000 draws, of
the unknown parameters (μA,μB,Σ) from the posterior in (9.10). This can be done
using a Gibbs sampler. The general idea of a Gibbs sampler is to sequentially sample
each parameter, μA, μB , and Σ , separately, given the other parameters using the
conditional posterior distributions of the model parameters. The Gibbs sampler for
this model is given in detail in Appendix 1.

Thus, based on a sample of say S = 1,000,000 draws we can compute the pos-
terior mean of each parameter. For example, the posterior mean of, μA1, can then
be obtained by taking the arithmetic mean of the respective posterior draws, i.e.,
μ̄A1 ≈ 1

S

∑S
s=1 μ

(s)
A1, where μ

(s)
A1 denotes the sth posterior draw of μA1. Furthermore,

a 95 %-credibility interval for μA1 can be obtained by ordering the posterior draws
and discard the lowest 2.5 % and the largest 2.5 %. The posterior can also be used to
compute other interesting statistics for which no classical equivalences are available.
For example we could determine the posterior probability that the mean response
time of team A in the first month is larger than the mean response time of team B in
the first month. This can be estimated as the proportion of posterior draws that are
in agreement with this constraint, i.e., Pr(μA1 > μB1|Y) ≈ 1

S

∑S
s=1 I (μ

(s)
A1 > μ

(s)
B1),

where I (·) is the indicator function which is equal to 1 is the constraints hold and 0
otherwise.
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Table 9.1 Maximum likelihood (ML) estimates of the response time means for 6 mean parameters,
and the numerical estimates of the posterior means and 95 %-credibility intervals using different
priors

μA1 μA2 μA3 μB1 μB2 μB3

ML estimates 251.5 349.7 347.1 332.2 307.1 280.8

Post. means 351.5 349.7 347.1 332.2 307.1 280.8

Jeffreys’ prior UB 355.1 353.5 351.0 336.4 311.4 285.4

LB 347.9 346.0 343.2 328.0 302.9 276.3

Post. means 351.5 349.7 347.1 332.2 307.2 280.9

Weakly infor- UB 355.1 353.5 351.0 336.4 311.4 285.4

mative prior LB 347.9 346.0 343.2 328.0 302.9 276.3

Post. means 351.4 349.7 347.3 332.7 309.0 284.2

Informative UB 355.0 353.4 351.1 336.8 313.3 288.8

prior LB 347.9 346.1 344.4 328.6 304.7 279.8

9.2.4 HCI Data Example

Hypothetical data were generated consisting of n A = 114 representatives in team
A and nB = 86 representatives in team B with true model parameters of μA =
(350, 350, 350)′, μB = (330, 310, 280)′, and Σ = 400I3, where I3 is the iden-
tity matrix of length 3. The R code for this can be found in Appendix 2. The
sample means of monthly response times (equal to the maximum likelihood esti-
mates) over the three months resulted in ȳA = (351.5, 349.7, 347.1)′ for team A and
ȳB = (332.2, 307.1, 280.8)′ for team B.

The Gibbs sampler in Appendix 1 was used to get a sample of 1,000,000 posterior
draws for the model parameters when using the noninformative Jeffreys’ prior, the
weakly informative prior, and the informative prior given in (9.8). The R code for this
Gibbs sampler can be found in Appendix 2. Based on the posterior draws we estimated
the posterior mean of each mean parameter and its 95 %-credibility interval. The
results can be found in Table 9.1. As can be seen in the table, the Bayesian estimates
based on the noninformative Jeffreys prior correspond to the sample means (this
holds by definition). For the weakly informative prior the posterior means are very
slightly shrunk towards the prior means of 350. For the informative prior this prior
shrinkage is a bit stronger. Similar conclusions can be drawn when looking at the
intervals estimates.
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Fig. 9.1 Prior (thin lines) and posterior densities (thick lines) for μB1 and μB2 based on a normal
prior with mean 350 and standard deviation 10 (solid) and a normal prior with mean 350 and
standard deviation 100 (dashed). The sample mean of the response times in team B in the first
month was equal to 332.2 and for the second month equal to 307.1

Figure 9.1 displays the weakly informative prior, N (350, 1002), and the informa-
tive prior, N (350, 102), and the resulting posterior density estimates for μB1 (left
panel) and μB2 (right panel). The posterior density estimates based on Jeffreys prior
essentially coincided with the posterior density estimates based on the weakly infor-
mative prior and are therefore omitted in the Fig. 9.1. Note that the Jeffreys prior
for μB1 and μB2 can be seen represented as a flat line over the whole unconstrained
space R

1. As can be seen the posterior densities based on the informative prior are
slightly shrunk towards the prior mean of 350.

Overall we can conclude that the Bayesian estimates and the Bayesian credibility
intervals are similar based on all three priors. This implies that the conclusions are
quite robust to the choice of the prior. This is a consequence of the fact that the
information in the data is relatively large, due to the sample size of n A = 114 and
nB = 86, relative to the information in the prior. Consequently, even if the board
is confident that the monthly response time means fall between 330 and 370 (with
a prior probability of 95 % as in the informative prior), and we observe a monthly
response time of 307.1 (for team B in the second month) which is well outside the
expected range, the posterior mean of 309.0 is still close to the observed sample mean.

Finally note that the (interval) estimates in Table 9.1 already give some idea there
is some evidence in these data in favor of the ‘only positive time effect for the Mango
users hypothesis’ H2 relative to the other hypotheses. This is clearly a consequence
of the underlying model that was used to generate the data. In order to conclude that
H2 is indeed most supported by the data relative to the other hypotheses however a
formal statistical test needs to be performed. In the next section it is motivated that
the Bayes factor is exactly the right tool for this purpose.
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9.3 Bayes Factors and Posterior Model Probabilities

9.3.1 Definition of the Bayes Factor

The Bayes factor is a Bayesian criterion for hypothesis testing that was originally
developed by Jeffreys (1961). The Bayes factor for hypothesis H1 against hypothesis
H2 is defined as the ratio of the marginal likelihoods under the hypotheses, i.e.,

B12 = p1(Y)

p2(Y)
=

∫∫∫

p1(Y|μA,μB,Σ)p1(μA,μB,Σ)dμAdμBdΣ
∫∫∫

p2(Y|μA,μB,Σ)p2(μA,μB,Σ)dμAdμBdΣ
, (9.11)

where pt (Y|μA,μB,Σ) denotes the likelihood under Ht and pt (μA,μB,Σ) denotes
the prior under Ht , for t = 1 or 2. The Bayes factor quantifies how much more likely
the data were generated under hypothesis H1 relative to H2. Therefore, the Bayes
factor B12 can be interpreted as a measure of evidence in the data for H1 relative to
H2. Thus if B12 > 1, there is more evidence for H1 relative to H2 and when B12 < 1
there is more evidence for H2 relative to H1. If B12 = 1, the evidence for H1 is equal
to H2. Furthermore, a Bayes factor of, say, B12 = 10, implies that there is 10 times
more evidence in the data for H1 than H2.

Note that expression (9.11) shows that there is a clear similarity between the
Bayes factor and the likelihood ratio test statistic. The likelihood ratio between two
hypotheses is the defined as the ratio of the likelihoods evaluated at their maximum
likelihood estimates. The Bayes factor on the other hand can be seen as the ratio of
integrated likelihoods weighted according to the priors under the hypotheses.

A direct consequence of the definition in (9.11) is that the Bayes factor has the
following intuitive properties:

1. B11 = 1 (identity).
2. B12 ≥ 0 (positivity).
3. B12 = 1

B21
(inverse).

4. B12 = B13 × B32 (transitivity).

For example, the transitivity relation implies that if the relative evidence for H1

against H3 is B13 = 10, and the relative evidence for H3 against H2 is B32 = 5, then
the relative evidence for H1 against H2 is B12 = B13 × B32 = 50. Furthermore, the
inverse property implies that if H1 is 10 times better than H2, i.e., B12 = 10, then
H2 is 10 times worse than H1, i.e., B21 = 0.1. Note that these intuitive properties are
not shared by classical p-values.

9.3.2 Interpreting Bayes Factors

An important difference between a Bayes factor test and a p-value test lies in the inter-
pretation. A p-value test results in a dichotomous decision: there is either enough or
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Table 9.2 Guidelines for
interpreting Bayes factors

B12 Evidence in favor of H1

<1 Negative (i.e., evidence for H2)

1−3 Anecdotal

3−20 Positive

20−150 Strong

>150 Very strong

not enough evidence to reject the null hypothesis depending on whether the observed
p-value is smaller or larger than a pre-specified significance level. For this reason
conclusions such as “very significant” or “mildly significant” based on an observed p-
value of 0.01 or 0.1, respectively, are not allowed. Note however that many researchers
and practitioners tend to draw such conclusions. The problem is then that the p-value
is misinterpreted as an error probability (For a discussion see Chap. 14 of this book
or Hubbard and Armstrong 2006).

The outcome of the Bayes factor test on the other hand lies on a continuous scale.
Based on a Bayes factor B12 we can make statements such as “little”, “strong”, or
“decisive” evidence for H1 against H2, depending on its outcome. Default guidelines
have been provided when interpreting Bayes factors (Jeffreys 1961; Kass and Raftery
1995). These are provided in Table 9.2. Note that these guidelines should be not be
used as strict rules but more as a convenient starting point when interpreting Bayes
factors.

9.3.3 Posterior Model Probabilities

Bayes factors can be used to update the prior odds between two hypotheses to obtain
the posterior odds according to

Pr(H1|y)

Pr(H2|y)
= B12 × Pr(H1)

Pr(H2)
, (9.12)

where Pr(Ht ) denotes the probability that hypothesis Ht is true before observing the
data and Pr(Ht |y) denotes the probability that Ht is true after observing the data. Note
that when using equal prior probabilities for the hypotheses, i.e., Pr(H1) = Pr(H2),
the posterior odds are equal to the Bayes factor. The posterior probability Pr(Ht |y)

is often referred to as the posterior model probability of Ht .
When considering multiple hypotheses, say, H1, . . . , HT , and we assume equal

prior probabilities for the hypotheses, which is the default choice (i.e., Pr
(H1) = . . . = Pr(HT ) = 1

T ), the posterior model probability for Ht can be computed
via the Bayes factors according to

Pr(Ht |y) = BtT
∑T

t=1 BtT

, (9.13)

for t = 1, . . . , T . This follows automatically from (9.12).

http://dx.doi.org/10.1007/978-3-319-26633-6_14
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It is important to note that posterior model probabilities differ fundamentally from
p-values. The p-value quantifies the plausibility of observing the data Y conditional
that H0 is true. A p-value therefore does not quantify if the null hypothesis is true;
it only quantifies if the data are unlikely under H0. The posterior model probability
of Ht on the other hand quantifies how plausible Ht is conditional on the observed
data and other hypotheses under investigation. In our experience users find posterior
model probabilities easier to interpret than classical p-values when testing statistical
hypotheses. For an interesting discussion about the relation between Bayes factors
and classical p-values we refer the interested reader to Sellke et al. (2001) and Wetzels
et al. (2011).

9.3.4 Prior Specification When Computing Bayes Factors

The choice of the prior of the unknown parameters under each hypothesis plays
an important role in a Bayesian hypothesis test. The reason is that the marginal
likelihood pt (Y) quantifies how likely the data are to be observed under the chosen
prior of Ht . Therefore one should not set the prior arbitrarily (vague). Also note that
improper priors, such as the noninformative Jeffreys prior, cannot be used for the
parameters of interest (Jeffreys 1961).

To illustrate the importance of the choice of the prior, let us consider a univariate
data set of the differences between the response times of the first two months of
team A. For simplicity let us assume that these data come from a normal distribution
with unknown mean, δ, and known variance, say, σ 2 = 10. We are interested in testing
whether there is a difference in the monthly response times in the population or not,
i.e., H0 : δ = 0 versus H1 : δ �= 0. Under H0 we do not have to set a prior because
there are no unknown parameters. The marginal likelihood under H0 is then equal to
the likelihood under H1 evaluated at δ = 0, i.e., p0(y) = p1(y|δ = 0). Under H1 δ

is unknown, so we have to set a prior for δ, denoted by p1(δ). This prior quantifies
which values for δ are expected under H1 before observing the data. Because we are
testing whether δ equals 0 or not, it is likely to expect that δ will be close to 0 if H0

is not true. For this reason we could set a normal prior for δ under H1 with mean 0,
i.e., p1(δ) = N (0, σ 2

0 ). Note that this implies that a positive effect is equally likely a
priori as a negative effect under H1 which seems a reasonable noninformative choice.

The prior variance σ 2
0 quantifies the effects that are expected if H1 is true. A large

(small) prior variance suggests that large (small) effects are anticipated if H0 is not
true. It is not recommended to set an arbitrarily large prior variance even though it
may seem ‘noninformative’ as in the estimation problem. Setting an arbitrarily large
prior variance implies that unrealistically large effects are likely under H1. This has
undesirable consequences. For example, when observing a ‘medium’ effect, which
would suggest that H0 is not true, the Bayes factor may prefer H0 over H1 because
H0, which assumes the effect is zero, may be a better and simpler explanation of the
observed medium effect than H1 with prior p1(δ), which assumes that unrealistically
large effects are expected. On the other hand it is also not recommendable to set a
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very small prior variance because then it will be very difficult to distinguish between
the two hypotheses, either no effect (H0) is expected or a very small effect (H1) is
expected. For this reason the prior variance should neither be too large nor too small.

Many different methods have been proposed to specify an automatic or default
prior that satisfies this property. A well-known example is Zellner’s g prior (with
g = n), which contains the information of one observation, i.e., the unit information
prior (Zellner 1986; Liang et al. 2008). Another possibility is to split the data in
a training set that is used for constructing a proper prior and a testing set that is
used for testing the hypotheses. The fractional Bayes factor (O’Hagan 1995) and
the intrinsic Bayes factor (Berger and Pericchi 1996) are based on this approach. By
choosing a training set of minimal size (referred to as a minimal training sample),
maximal information is used for hypothesis testing. In a variation of this approach,
Mulder et al. (2010) combined the idea of a minimal training sample with linear
restrictions which ensure the prior is centered around the testing value of interest
(which is 0 when testing H0 : δ = 0 versus H1 : δ �= 0). This approach is illustrated
in the following section.

9.4 A Bayesian T Test Using BIEMS

The software package BIEMS can be used for computing Bayes factors between
competing hypotheses with equality and/or inequality constraints on the parame-
ters of interest (Mulder et al. 2012). The package is freely downloadable from
jorismulder.com. The model that is implemented in BIEMS is the multivari-
ate normal linear model. Special cases of this model are (multivariate) t-tests,
(M)AN(C)OVA, (multivariate) regression, and repeated measures designs. Thus the
hypotheses that were described in the introduction, with (in)equality constraints on
the means in a MANOVA model, can be tested against each other using BIEMS. In
this section we illustrate how the program works for a Bayesian t-test with multiple
hypotheses.

9.4.1 Hypotheses

We consider the data of the 114 difference scores between the 1st and the 2nd month
of team A and the 86 difference scores of team B. We focus on the mean difference
of the response times between the 3rd and the 2nd month for team A and team B,
separately. The difference scores are assumed to come from a normal distribution
with unknown mean δA and unknown variance σ 2

A for team A, and with unknown
mean δB and variance σ 2

B for team B. We are interested in testing whether there is ‘no
change’ versus ‘decrease’ versus ‘increase’ in mean response times. This corresponds
to the multiple hypothesis test of

H0 : δA = 0 versus H1 : δA < 0 versus H2 : δA > 0
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for team A, and

H0 : δB = 0 versus H1 : δB < 0 versus H2 : δB > 0

for team B.

9.4.2 Prior Specification

In BIEMS the so-called encompassing prior approach is implemented for the
unknown means and regression parameters (Klugkist et al. 2005). This means that
an unconstrained prior is specified for δB or δB under an unconstrained hypothesis,
denoted by Hu . Under Hu there are not additional constraints on the δ’s, which implies
that each δ can have any value on the real line. Subsequently, the priors for each δ

under the one-sided hypotheses H1 and H2 are truncations of this unconstrained prior
in their constrained regions. For example, the prior for δA under H1 is truncated in the
region where δA < 0. Consequently prior specification comes down to specifying the
unconstrained prior for each δ. In BIEMS a normal distribution is used by default.
Furthermore, for the nuisance parameters, σ 2

A and σ 2
B , the noninformative Jeffreys’

prior is used.
The mean and variance in the unconstrained prior can be chosen automatically

or manually. The automatic (or default) prior specification is based on the conjugate
expected constrained posterior prior approach (Mulder et al. 2009, 2010, 2012). In
this method the prior mean is set on the focal point of interest. In this example, the
focal point is 0 because we are testing whether the population mean is equal to 0,
smaller than 0, or larger than 0. For this reason the prior mean for δA and δB is set
to 0. The prior variance is constructed using an automatic method based on minimal
training samples (which contain the information of two observations). Consequently,
the prior variance is a combination of the variation in the data and the observed effect.
Thus more variation in the data or larger effects in the data result in a larger prior
variance. This is an empirical Bayes approach where the prior adapts to the data.
This methodology has proven to have good frequency properties (Hoijtink 2011).
Therefore we recommend to use this default setting if prior information is weak or
unavailable regarding the expected effect sizes if the null is not true.

For the data of team A and B, the sample mean and sample standard deviation
were equal to δ̂A = −1.78 and σ̂A = 26.7, and δ̂B = −25 and σ̂B = 31, respectively.
For the data of team A, BIEMS generated an automatic prior with a mean of 0 and a
variance of 440 (with standard deviation 21), and for the data of team B, an automatic
prior with mean 0 and a variance of 975 (with standard deviation 31) was generated.
The default prior densities are displayed in Fig. 9.2. As can be seen the default prior
variance for δA is smaller than the default prior variance for δA.

When prior information is available about the magnitude of the effect, the prior
mean and prior variance under Hu can also be manually set in BIEMS. For example
if the company is pessimistic about the actual effect if H0 is not true, a small prior
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Fig. 9.2 The unconstrained
default priors generated by
BIEMS for the two different
data sets of team A and B
and the resulting posteriors.
The default prior standard
deviations for the data of
team A and B are 21 and 31,
respectively. The
probabilities of δA > 0 and
δB > 0 are displayed as grey
areas
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variance can be chosen. For example, a prior variance of 100 would imply that effects
of 10 s are anticipated by the company if H0 is not true. On the other hand, if the
company is optimistic about the effect if H0 is not true a larger prior variance can
be chosen. For example, a prior variance of 2500 would imply that an effect of 50 s
is expected if H0 is not true. For this example we keep the prior mean equal to 0 to
ensure that a positive effect is equally likely a priori as a negative effect.

9.4.3 Bayes Factors and Posterior Model Probabilities

A consequence of the encompassing prior approach is that the marginal likelihoods
in (9.11) do not have to be computed directly. In this example the Bayes factors of
each constrained hypothesis H0, H1, and H2 against the unconstrained hypothesis
Hu can be expressed as,

B0u = pu(δA = 0|y)

pu(δA = 0)
(9.14)

B1u = Pr(δA < 0|y, Hu)

Pr(δA < 0|Hu)
(9.15)

B2u = Pr(δA > 0|y, Hu)

Pr(δA > 0|Hu)
. (9.16)

For a derivation see, for example, Klugkist et al. (2005) or Mulder (2014). For com-
pleteness we provided derivations of these expressions in Appendix 3. Hence, the
Bayes factor for the null hypothesis against the unconstrained hypothesis comes
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down to the unconstrained posterior density of δ evaluated at 0 divided by the
unconstrained prior density evaluated at zero, as can be seen in Eq. 9.14. This is
known as the Savage-Dickey density ratio (Dickey 1971; Verdinelli and Wasserman
1995; Wetzels et al. 2010). Furthermore, the Bayes factor of a one-sided hypothesis
against the unconstrained hypothesis is equal to the posterior probability that the
inequality constraint holds divided by the prior probability that the constraint holds.
The posterior probability that the inequality constraints hold can be interpreted as a
measure of relative fit and the prior probability that the inequality constraints hold
can be interpreted as a measure of relative complexity (both relative to the uncon-
strained hypothesis) (Mulder et al. 2010). In this example, Pr(δA < 0, Hu) = 1

2 , and
therefore H1 : δA < 0 can be seen as half as complex as the unconstrained hypothesis
H1 : δA ∈ R

1.
Figure 9.2 displays the unconstrained default priors and the resulting uncon-

strained posterior distribution for δA and δB . As can be seen the unconstrained prior
density for δA evaluated at 0 is approximately equal to 0.019 and the prior proba-
bilities of δA < 0 and δA > 0 are both equal to 0.5. Furthermore, the unconstrained
posterior density evaluated at 0 is approximately equal to 0.125, and the correspond-
ing posterior probabilities of δA < 0 and δA > 0 are equal to 0.76 and 0.24, respec-
tively. Following (9.14)–(9.16), the Bayes factors are then equal to B0u = 0.125

0.019 = 6.6,
B1u = 0.76

0.50 = 1.52, and B2u = 0.24
0.50 = 0.48. The transitive property of the Bayes fac-

tor can be used to compute the Bayes factor between two constrained hypotheses,
e.g., B01 = B0u

B1u
= 6.6

1.52 = 4.3. Thus there is 4.3 times more evidence for ‘no effect’
relative to a ‘negative effect’. These Bayes factors can be converted to posterior
probabilities that each hypothesis is true given the data according to

Pr(Ht |y) = Btu

B0u + B1u + B2u
,

where we assumed equal prior probabilities, Pr(H0) = Pr(H1) = Pr(H2) = 1
3 . The

resulting posterior probabilities for the hypotheses based the default priors, the opti-
mistic subjective prior, and the pessimistic subjective prior can be found in Table 9.3.
By computing Bayes factors using different priors we get an idea how sensitive the
results are when using different priors.

Table 9.3 Posterior probabilities of the constrained hypotheses for two different tests (and data)
and different priors

Team A Team B

Pr(H0|y) Pr(H1|y) Pr(H2|y) Pr(H0|y) Pr(H1|y) Pr(H2|y)

Default
prior

0.767 0.177 0.056 0.000 1.00 0.000

Pessimistic
prior

0.617 0.287 0.096 0.000 1.00 0.000

Optimistic
prior

0.884 0.088 0.028 0.000 1.00 0.000
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Table 9.3 shows that there is positive evidence that H0 is true for team A. This
implies that the data provide evidence that the mean response times remained stable
between the first and second month for team A. The amount of evidence for H0 varied
for different priors with posterior probabilities varying between 0.617 and 0.884. To
be able to draw a more decisive conclusion more data are needed. For team B there
was clear evidence that H1 is true with posterior probabilities of approximately 1.
This implies that the sales representatives responded faster to their email in the second
month in comparison to the first month.

9.5 Evaluation of the HCI Application

In this section we evaluate the six constrained hypotheses that were discussed in the
introduction of this chapter using the Bayes factor. The Bayes factors are computed
using BIEMS which comes with a graphical user interface. The interface allows users
to specify the (in)equality constraints relatively easily.

In the first step the data are uploaded. Each row in the data matrix contains the
three measurements of each sales representative in the first three columns followed
by a group indicator to indicate whether the representative belong to team A or B.
For the analysis team A was coded as 1 and team B was coded as 2. The R code for
exporting the data to this format is provided in Appendix 2. When uploading the data
in BIEMS, we need to specify that there are 3 dependent variables (corresponding
to the three measurements) and 2 groups (corresponding to the two teams). A screen
shot is provided in Fig. 9.3 (Upper left panel).

In BIEMS the constraints under each hypothesis must be specified separately. The
separate constraints under each hypotheses are given by

‘All positive effects ’H1 :

⎧

⎪

⎪

⎨

⎪

⎪

⎩

μA1 > μA2, μA2 > μA3,

μB1 > μB2, μB2 > μB3

μA1 > μB1, μA2 > μB2,

μA3 > μB3,

‘Only positive time effect for Mango users’ H2 :
⎧

⎨

⎩

μA1 = μA2, μA2 = μA3,

μA1 > μB1, μB1 > μB2,

μB2 > μB3,

‘Positive team effect; no time effect’ H3 :
⎧

⎨

⎩

μA1 = μA2, μA2 = μA3,

μB1 = μB2, μB2 = μB3,

μA1 > μB1

‘Positive time effect; no team effect’ H4 :
⎧

⎨

⎩

μA1 > μA2, μA2 > μA3,

μA1 = μB1, μA2 = μB2,

μA3 = μB3

‘No effects’ H5 :
⎧

⎨

⎩

μA1 = μA2, μA2 = μA3,

μB1 = μB2, μB2 = μB3,

μA1 = μB1.
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Fig. 9.3 Upper left panel Screen shot of BIEMS when uploading data with 2 groups (teams) and
3 dependent variables (measurements). Upper right panel Screen shot of BIEMS when specifying
models (hypotheses). Hypothesis H2 is displayed. Lower left panel Screen shot of default prior
generated by BIEMS. Lower right panel Screen shot of resulting Bayes factors of each constrained
hypothesis against the unconstrained hypothesis

A screen shot of this specification for H2 is provided in Fig. 9.3 (Upper right panel).
Note that the monthly response time mean μB1 corresponds to μ(2, 1) in BIEMS
(the first argument corresponds to the group number (1 or 2) and the second to the
measurement occasion (1, 2, or 3)).

The automatic prior is generated by pressing the button “Generate default prior”. A
screen shot of the resulting automatic prior is given in Fig. 9.3 (Lower left panel). As
can be seen the prior means for all μ’s are approximately equal to 331. Furthermore,
the prior variances are all equal to approximately 325 and the prior covariances are
approximately equal to 100. Possibly one can manually set priors for the μ’s depend-
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ing on one’s prior knowledge as discussed in Sect. 9.2.2. Here we shall continue with
the default (noninformative) setting.

Finally the Bayes factors of each constrained hypothesis against the unconstrained
hypothesis can be computed based on this unconstrained prior by pressing “Calculate
Bayes factors”. Note that the unconstrained hypothesis contains no constraints on the
μ’s. We can then compute Bayes factors between two constrained hypothesis via the
transitive relationship discussed earlier, e.g., B12 = B1u/B2u , where Hu denotes
the unconstrained hypothesis. A screen shot where all Bayes factors of each con-
strained hypothesis against the unconstrained hypothesis is computed is given in
Fig. 9.3 (Lower right panel). Note that “BF(2,0)” denotes B2u , i.e., the Bayes fac-
tor of H2 against the unconstrained hypothesis (so “0” reflects the unconstrained
hypothesis).

The Bayes factors of each constrained hypotheses H1–H5 against the uncon-
strained hypothesis using the default prior are presented in Table 9.4 (under the col-
umn default prior). As can be seen there is clearly no evidence that only a positive
team effect is present (B3u = 0), no evidence that only a positive time team effect is
present (B4u = 0), and no evidence that no effect is present (B5u = 0). On the other
hand, the ‘all positive effects hypothesis’ H1 received approximately 84 times more
evidence from the data than the unconstrained and the ‘only positive time effect for
the Mango users hypothesis’ H2 received approximately 589 more evidence than Hu .
Using the transitive relationship of the Bayes factor we can compute the Bayes fac-
tors between the constrained hypotheses, e.g., B21 = B2u/B1u = 7.01, which implies
there is approximately 7 times more evidence that only there is only a positive time
effect for the Mango users instead that all effects are positive.

Based on these Bayes factors we can also compute the Bayes factor of the
‘complement hypothesis’ H6 against the unconstrained hypothesis. Thus, similar
as in (9.15), the Bayes factor of H6 against Hu is equal to the posterior probability
that none of the constraints of H1 to H5 hold divided by the prior probability that
none of the constraints of H2 to H5 hold. Because the hypotheses H2 to H5 contain
equality constraints which have zero measure, the posterior and prior probability that
the constraints of H6 hold is equal to 1 minus the posterior and prior probability that
the order constraints of H1 hold, respectively. Thus,

B6u = Pr(constraints of H1 to H5 do not hold|Y, Hu)

Pr(constraints of H1 to H5 do not hold|Hu)

= Pr(constraints of H1 do not hold|Y, Hu)

Pr(constraints of H1 do not hold|Hu)

= 1 − Pr(constraints of H1 hold|Y, Hu)

1 − Pr(constraints of H1 hold|Hu)

Furthermore, the posterior and prior probability that the constraints of H1 hold under
Hu can be found in the “detailed output” in BIEMS (Fig. 9.3, lower right panel)
under “estimated model fit” and “estimated model complexity” respectively. These
were equal to 0.582 and 0.00693, respectively, which explains the Bayes factor of
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Table 9.4 Bayes factors of each constrained hypothesis against the unconstrained hypothesis and
the corresponding posterior probabilities assuming equal prior probabilities and using different
priors under the hypotheses

Btu Pr(Ht |Y)

H1: ‘All positive effects’ 84 0.124

H2: ‘Only positive time effect for team B’ 589 0.875

H3: ‘Positive team, no time effect’ 0 0.000

H4: ‘Positive time, no team effect’ 0 0.000

H5: ‘No time, no team effect’ 0 0.000

H6: ‘Complement’ 0.42 0.001

B1u = 0.582
0.00693 = 83.95 of H1 against Hu (Fig. 9.3, lower right panel). Consequently,

B6u = 1−0.582
1−0.00693 = 0.421 (see Table 9.4).

Finally we can translate these Bayes factors to posterior model probabilities for
the hypotheses which can be interpreted as the plausibility that a hypothesis is true
after observing the data. The common default choice is to set equal prior probabilities
for the hypotheses, i.e., Pr(H1) = . . . = Pr(H6) = 1

6 . These prior probabilities are
updated using the observed Bayes factors to obtain the posterior model probabilities
using (9.13). The resulting posterior model probabilities can be found in Table 9.4.
These posterior model probabilities tell the same story as the Bayes factors but
because the posterior model probabilities add up to one they may be easier to interpret.
From the posterior probabilities we can conclude that there is clear evidence for H2

that team B (who use the Mango smart watch) respond faster to their email than
team A (who don’t use the smart watch) and that the response speed for team B
increases over time while it remains stable over time for team A. This hypothesis
received a posterior probability of 0.875. Furthermore, there was also some evidence
for hypothesis H1 that all effects are positive (with a posterior probability of 0.124),
so we cannot yet completely rule out this hypothesis. In order to be able to draw a
more decisive conclusion we need to collect more data.

9.6 Discussion

This chapter discussed a Bayesian data analysis of an application in HCI. Bayesian
estimation and Bayesian hypothesis testing using the Bayes factor were considered.
It was illustrated that Bayesian estimation often results in very similar results as
classical estimation using maximum likelihood. The Bayesian approach to hypothesis
testing on the other hand differs fundamentally from classical p-value tests. The
main reason is that the Bayes factor, the Bayesian criterion in hypothesis testing,
quantifies the relative evidence in the data between two hypotheses while the p-value
quantifies how unlikely the data are under a specific null hypothesis. In our experience
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practitioners find Bayes factors (and the corresponding posterior model probabilities)
easier to interpret than classical p-values. Furthermore, the Bayesian approach has
the advantage that it can straightforwardly be used for evaluating multiple hypotheses
with equality as well as order constraints on the parameters of interest.

The software package BIEMS was developed to evaluate constrained hypotheses
using Bayes factors in a relatively easy manner. Because of the sensitivity of the
Bayes factor to the prior, an automatic prior approach was implemented in BIEMS
using an empirical Bayes approach. This default setting can be used when prior
information regarding the magnitude of the effects is weak or unavailable. If prior
information is available on the other hand, for example based on personal experience
or published work, it is also possible to manually specify the prior. After the prior
is specified Bayes factors and posterior model probabilities can be computed which
provide a direct answer about the evidence in the data for each hypothesis under
investigation relative to the other hypotheses.

Appendix 1: Gibbs sampler (theory)

We consider the general case of P repeated measurements. In the example discussed
above, P was equal to 3. The following semi-conjugate prior is used for the model
parameters,

p(μA,μB,Σ) = p(μA) × p(μB) × p(Σ) (9.17)

∝ NμA
(mA0, SA0) × NμA

(mA0, SA0) × |Σ |− P+1
2 ,

where mA0 and mB0 are the prior mean of μA and μB , respectively, and SA0 and SB0

the respective prior covariance matrices of μA and μB .
The data are stored in the (n A + nB) × P data matrix Y = [Y′

A Y′
B]′, where the

i th row of Y contains the P measurements of i th sales executive and the first n A rows
correspond to the responses of the executives in team A and the remaining nB rows
contain the responses of the executives of team B. The likelihood of the data can be
written as

p(Y|μA, μB , Σ) =
n A
∏

i=1

p(yi |μA, Σ) ×
n A+nB

∏

i=n A+1

p(yi |μB , Σ)

∝ NμA|Σ (ȳA,Σ/n A) × NμA|Σ (ȳB , Σ/nB) × I WΣ (S, n A + nB − 2),

where ȳA and ȳB denote the sample means of team A and team B over the P mea-
surements, the sums of squares equal

S = (YA − 1n A ȳ′
A)′(YA − 1n A ȳ′

A) + (YB − 1nB ȳ′
B)′(YB − 1nB ȳ′

B),
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and I WΣ (S, n) denotes an inverse Wishart probability density for Σ . Note that
the likelihood function of Σ given μA and μB is proportional to an inverse
Wishart density I W (Sμ, n A + nB), where Sμ = (YA − 1n Aμ

′
A)′(YA − 1n Aμ

′
A) +

(YB − 1nB μ
′
B)′(YB − 1nB μ

′
B). These results can be found in most classic Bayesian

text books, such as Gelman et al. (2004), for example.
Because the prior in (9.17) is semi-conjugate, the conditional posterior distribu-

tions of each model paramater given the other parameters have known distributions
from which we can easily sample,

p(μA|Y, Σ) = N

(

(

S−1
A0 + n AΣ−1

)−1 (

S−1
A0mA0 + n AΣ−1ȳA

)

,
(

S−1
A0 + n AΣ−1

)−1
)

p(μB |Y, Σ) = N

(

(

S−1
B0 + nBΣ−1

)−1 (

S−1
B0mB0 + n AΣ−1ȳB

)

,
(

S−1
B0 + nBΣ−1

)−1
)

p(Σ |Y, μA, μB ) = I W (Sμ, n A + nB ).

We can use a Gibbs sampler to get a sample from the joint posterior of (μA,μB,Σ).
In a Gibbs sampler we sequentially draw each model parameter from its conditional
posterior given the remaining parameters. The Gibbs sampler algorithm can be writ-
ten as

1. Set initial values for the model parameters: μ
(0)
A , μ

(0)
B , and Σ (0).

2. Draw μ
(s)
A from its conditional posterior p(μA|Y,Σ (s−1)).

3. Draw μ
(s)
B from its conditional posterior p(μB |Y,Σ (s−1)).

4. Draw Σ (s) from its conditional posterior p(Σ |Y,μ
(s)
A ,μ

(s)
A ).

5. Repeat steps 2–4 for s = 1, . . . , S.

In the software program R, drawing from a multivariate normal distribution can
be done using the function ‘rmvnorm’ in the ‘mvtnorm’-package and drawing
from an inverse Wishart distribution can be done using the function ‘riwish’ in the
‘MCMCpack’-package.

It may be that the initial values, μ(0)
A , μ(0)

B , and Σ (0), are chosen far away from the
subspace where the posterior is concentrated. If this is the case, a burn-in period of,
say, 100 draws is needed. After the burn-in period convergence is reached and the
remaining draws come from the actual posterior of the model parameters.

Appendix 2: Gibbs sampler (R code)

Conditional posteriors for μA, μB , and Σ .

require(mvtnorm)
require(MCMCpack)

#draw the measurement means of team A, muA, given the covariance matrix, Sigma.
draw_muA = function(ybarA,nA,nB,m0A,S0,Sigma){

covPost = solve(solve(S0)+solve(Sigma/nA))
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meanPost = covPost%*%(solve(S0)%*%m0A+solve(Sigma/nA)%*%ybarA)
muA = c(rmvnorm(1,mean=meanPost,sigma=covPost))
return(muA)

}

#draw the measurement means of team B, muB, given the covariance matrix Sigma.
draw_muB = function(ybarB,nA,nB,m0B,S0,Sigma){

covPost = solve(solve(S0)+solve(Sigma/nB))
meanPost = covPost%*%(solve(S0)%*%m0B+solve(Sigma/nB)%*%ybarB)
muB = c(rmvnorm(1,mean=meanPost,sigma=covPost))
return(muB)

}

#draw the covariance matrix Sigma given the measurement means of team A and B
draw_Sigma = function(Ymat,nA,nB,muA,muB,S0,Sigma){
#the posterior is based on the Jeffreys’ prior for Sigma

muMatcurr = matrix(0,ncol=3,nrow=2)
muMatcurr[1,] = muA
muMatcurr[2,] = muB
Xmat = matrix(c(rep(1,nA),rep(0,nB),rep(0,nA),rep(1,nB)),ncol=2)
SSN = t(Ymat - Xmat%*%muMatcurr)%*%(Ymat - Xmat%*%muMatcurr)
Sigma = riwish(nA+nB,SSN)
return(Sigma)

}

Gibbs sampler

#MCMC sampler with sample size 1e4 by default
MCMC_HCI = function(Ymat,nA,nB,m0A,m0B,S0,samsize=1e4){

MmuA = matrix(0,nrow=samsize,ncol=3)
MmuB = matrix(0,nrow=samsize,ncol=3)
MSigma = array(0,dim=c(samsize,3,3))

#set ML estimates as initial values
muA = c(apply(matrix(Ymat[1:nA,],ncol=3),2,mean))
ybarA = muA
muB = c(apply(matrix(Ymat[(nA+1):(nA+nB),],ncol=3),2,mean))
ybarB = muB
muMat = matrix(0,ncol=3,nrow=2)
muMat[1,] = muA
muMat[2,] = muB
Xmat = matrix(c(rep(1,nA),rep(0,nB),rep(0,nA),rep(1,nB)),ncol=2)
Sigma = t(Ymat - Xmat%*%muMat)%*%(Ymat - Xmat%*%muMat)/(nA+nB)

#burn-in period of 100 draws
for(ss in 1:100){

muA = draw_muA(ybarA,nA,nB,m0A,S0,Sigma)
muB = draw_muB(ybarB,nA,nB,m0B,S0,Sigma)
Sigma = draw_Sigma(Ymat,nA,nB,muA,muB,S0,Sigma)

}
#actual draws from posterior
for(ss in 1:samsize){

muA = draw_muA(ybarA,nA,nB,m0A,S0,Sigma)
MmuA[ss,] = muA
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muB = draw_muB(ybarB,nA,nB,m0B,S0,Sigma)
MmuB[ss,] = muB
Sigma = draw_Sigma(Ymat,nA,nB,muA,muB,S0,Sigma)
MSigma[ss,,] = Sigma

}
return(list(MmuA,MmuB,MSigma))

}

Generate data matrix Y

#Set group size team A and team B
nA = 114
nB = 86
#Set true measurement means of team A and B over month 1, 2, and 3
muAtrue = c(350,350,350)
muBtrue = c(330,310,280)
muMat = matrix(0,ncol=3,nrow=2)
muMat[1,] = muAtrue
muMat[2,] = muBtrue
#Set true covariance matrix Sigma
Sigma = diag(3)*400
#Generate data matrix Y
Xmat = matrix(c(rep(1,nA),rep(0,nB),rep(0,nA),rep(1,nB)),ncol=2)
Ymat = rmvnorm(nA+nB,mean=c(0,0,0),sigma=Sigma) + Xmat%*%muMat

Compute classical estimates

#Compute maximum likelihood of the means
Bhat = solve(t(Xmat)%*%Xmat)%*%t(Xmat)%*%Ymat
#Compute unbiased least squares estimate of Sigma
SigmaHat = t(Ymat-Xmat%*%Bhat)%*%(Ymat-Xmat%*%Bhat)/(nA+nB-ncol(Xmat))

Set priors for Gibbs sampler

#Set prior hyperparameters

mn1 = 350

sd1 = 1e10

#Note that a very large values for sd1 essentially corresponds to the Jeffreys prior

m0A = mn1*rep(1,3)

m0B = mn1*rep(1,3)

S0 = diag(3)*sd1**2

Run Gibbs sampler

sampleSize = 1e4
out1 = MCMC_HCI(Ymat,nA,nB,m0A=m0A,m0B=m0B,S0=S0,samsize=sampleSize)

Compute descriptive statistics from Gibbs output

#Make trace plot for mu’s
team=1 #team number A=1, B=2
dv=1 #which measurement 1, 2 or 3
plot(1:sampleSize,out1[[team]][1:sampleSize,dv],"l")
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#density plot of posterior
plot(density(out1[[team]][1:sampleSize,dv]))

#Make trace plot for elements of Sigma
s1 = 1
s2 = 1
plot(1:sampleSize,out1[[3]][1:sampleSize,s1,s2],"l")
#density plot of posterior
plot(density(out1[[3]][1:sampleSize,s1,s2]))

#Compute posterior mean for mu
team=1 #team number A=1, B=2
dv=1 #which measurement 1, 2 or 3
mean(out1[[team]][,dv])

#Compute posterior mean for Sigma[s1,s2]
s1 = 1
s2 = 1
mean(out1[[3]][1:sampleSize,s1,s2])

#compute credibility intervals
team=1 #team number A=1, B=2
dv=1 #which measurement 1, 2 or 3
volgorde = order(out1[[team]][,dv])
percentage = 95
#upper bound
out1[[team]][volgorde,dv][round(sampleSize*((100/2+percentage/2)/100))]
#lower bound
out1[[team]][volgorde,dv][round(sampleSize*((100-percentage)/2)/100)]

Create data matrix for BIEMS

dataBIEMS = matrix(NA,nrow=nrow(Ymat),ncol=ncol(Ymat)+1)
dataBIEMS[,1:ncol(Ymat)] = Ymat
dataBIEMS[,ncol(Ymat)+1] = c(rep(1,nA),rep(2,nB))
write.table(dataBIEMS,file="dataBIEMS.txt",row.names=F,col.names=F)

Appendix 3: Derivation of the Bayes factor

The Bayes factor is derived for a one-sided hypothesis H1 : δ < 0 versus the uncon-
strained hypothesis Hu : δ ∈ R. In the encompassing prior approach, the prior under
H1, p1(δ, σ

2), is a truncation of the unconstrained (or encompassing) prior under Hu ,
pu(δ, σ

2), in the region where δ < 0, i.e., p1(δ, σ
2) = pu(δ, σ

2)I (δ < 0)/Pr(δ <

0|Hu), where the prior probability Pr(δ < 0|Hu) = ∫

δ<0 pu(δ)dδ, where I (·) is the
indicator function. Note that Pr(δ < 0|Hu) = 1

2 if the unconstrained prior is centered
at 0, such as pu(δ) = N (0, σ 2

0 ). Also note that the likelihood under H1 is a truncation
of the likelihood under Hu , i.e., p1(y|δ, σ 2) = pu(y|δ, σ 2)I (δ < 0). For this reason
we can omit the hypothesis index u in the likelihood functions in the derivation
below. The Bayes factor of H1 versus Hu can then be derived as follows
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B1u =
∫∫

δ<0 p(y|δ, σ 2)p1(δ, σ
2)dδdσ 2

∫∫

p(y|δ, σ 2)pu(δ, σ 2)dδdσ 2

= 1

Pr(δ < 0|Hu)

∫∫

δ<0

p(y|δ, σ 2)pu(δ, σ
2)

∫∫

p(y|δ, σ 2)pu(δ, σ 2)dδdσ 2
dδdσ 2

= 1

Pr(δ < 0|Hu)

∫∫

δ<0
pu(δ, σ

2|y)dδdσ 2

= Pr(δ < 0|y, Hu)

Pr(δ < 0|Hu)
,

which corresponds to (9.15), where Pr(δ < 0|y, Hu) = ∫∫

δ<0 pu(δ|y)dδdσ 2 is the
posterior probability that the constraints hold under Hu . For H2 : δ > 0 versus the
unconstrained hypothesis Hu : δ ∈ R we can follow the same steps to obtain (9.16).

For H0 : δ = 0 versus the unconstrained hypothesis Hu : δ ∈ R, the encompassing
prior approach implies that p0(σ

2) = pu(σ
2|δ = 0). Consequently,

B0u =
∫

p(y|δ = 0, σ 2)p0(σ
2)dσ 2

∫∫

p(y|δ, σ 2)pu(δ, σ 2)dδdσ 2

=
∫

p(y|δ = 0, σ 2)pu(σ
2|δ = 0)dσ 2

∫∫

p(y|δ, σ 2)pu(δ, σ 2)dδdσ 2

= 1

pu(δ = 0)

∫

p(y|δ = 0, σ 2)pu(δ = 0, σ 2)
∫∫

p(y|δ, σ 2)pu(δ, σ 2)dδdσ 2
dσ 2

= 1

pu(δ = 0)

∫

pu(δ = 0, σ 2|y)dσ 2

= pu(δ = 0|y)

pu(δ = 0)
,

which is equal to the Savage-Dickey density ratio in (9.14).
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Part IV
Advanced Modeling in HCI

This final part of this book, consisting of 3 chapters, introduces a number of
“advanced” statistical methods that are not generally covered in social science intro-
ductory courses. Each of these methods has experienced rapid developments in the
past 20 to 30 years, mainly due to large improvements in computing power. Because
of this, many numerical optimization methods needed to fit complex models are
finally practically within reach.

This last part should not be seen as a definite overview of novel methods: there is
muchmore happening in the large fields of researchmethods and statistics. Therefore,
we have included (in addition to the extensive references provided by the authors) a
number of pointers to both textbooks as well as recent articles to enable interested
readers to find their ways.

Before introducing the chapters, we would like to make very explicit that the for-
mat of a book chapter obviously limits the depth in which methods can be discussed.
As such, the authors have mostly chosen to present a high level introduction to the
topic (accompanied by practical examples). However, for many methods, especially
the very general frameworks such as latent variable models, this general introduc-
tion might not cover, in all detail, the pitfalls that come with powerful new methods:
Each powerful method has its assumptions and drawback, and should not be used
carelessly.

Chapter 10: Latent Variable Models
In this chapter Dr. A. Beaujean and Dr. G. Morgan introduce latent variable mod-
els, and specifically the lavaan [R] package for fitting these models. The chapter
first explains the basic jargon and terminology used in the discussion of latent vari-
able models, and subsequently focuses on using [R] to conduct confirmatory factor
analysis and to fit structural equation models. Latent variable models provide a very
flexible framework formodeling both experimental and observational data. However,
the authors do add a word of caution; recently developed easy to use software to fit
latent variable models might “[...] allow the untrained analyst to specify models that
exceed both their substantive knowledge as well as their ability to evaluate models
critically”. The authors point to an extensive discussion by Kline (2011) in the book
Principles and practice of structural equation modeling which we feel should be a
starting point for readers who wish to advance their use of latent variable models in
HCI.

http://dx.doi.org/10.1007/978-3-319-26633-6_10
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Chapter 11: Generalized Linear Mixed Models
In Chap. 10 Dr. M. Kaptein discusses generalized linear mixed models. The chapter
starts with a discussion of relatively simple linear regression models with which
we think most readers will be familiar. However, the chapter focuses on simulating
datasets and plottingmodel predictions: a focus that is slightly different from themore
common focus on null-hypothesis testing of model coefficients. After discussing
simple linear models, and the use of [R] to fit these models, regularization and the
bias-variance trade-off is discussed. The bias-variance trade-off is important when
modeling sample data, but hardly discussed in social science courses (despite being
an introductory topic in machine learning and AI).

After introducing regularization, the chapter introduces generalized linearmodels:
by using link functions the well-known linear regression model can be altered to deal
with more complex outcome variables (e.g., binary or count data). Then linear mixed
models are introduced: these models allow the analyst to deal with complex (often
nested) data structures.

Chapter 12: Mixture Models
In Chap. 11 Dr. D. Oberski discusses latent profile and latent class analysis. The
author present a useful table positioning the different latent variable models and
discusses both discrete and continuous mixture models. The author also discusses
conceptually the EM algorithm that is used to fit the presented models: the EM
algorithm is a widely used algorithm to fit all kinds of latent variable models (it is
also often used for the generalized mixed models discussed in Chap. 10). The EM
algorithm was also briefly touched upon in Chap. 4.
After providing an extremely readable didactic treatment of mixture models (which
includes quite a bit of mathematical sophistication), the author discusses latent class
analysis and provides several examples of the use of this method in HCI. For a more
extensive introduction we would recommend, as also referred to by the author of
the chapter, the book applied latent class analysis by Hagenaars and McCutcheon
(2002).

Editor Suggestions
It is hard to determinewhere to startwhen recommending “novel”methods.However,
there are a few books those generally interested should consult:

• The book Pattern Recognition and Machine Learning by Christopher Bishop
(2007) provides an extensive overview ofmodernmachine learningmethods, often
taking a Bayesian point of view.

• The book The Elements of Statistical Learning: Data Mining, Inference, and Pre-
diction. by Trevor Hastie, Robert Tibshirani, and Jerome Friedman (2011) surveys
methods of statistics learning and includes a large number ofmethods not generally
covered in social science statistics curricula.

We would also like to point to novel books on a number of more specialized topics
that we regretfully were unable to include in this book:

http://dx.doi.org/10.1007/978-3-319-26633-6_11
http://dx.doi.org/10.1007/978-3-319-26633-6_10
http://dx.doi.org/10.1007/978-3-319-26633-6_12
http://dx.doi.org/10.1007/978-3-319-26633-6_11
http://dx.doi.org/10.1007/978-3-319-26633-6_10
http://dx.doi.org/10.1007/978-3-319-26633-6_4


Advanced Modeling in HCI 231

• Causal inference: a topic we regretfully have been unable to cover in this book.
The books Causal Inference for Statistics, Social, and Biomedical Sciences: An
Introduction by Guido Imbens and Donald Rubin (2015) and Causality: Models,
Reasoning and Inference by Judea Pearl (2009) provide good starting points.

• Network analysis: An advanced topic that might also be of interest to readers is
the analysis of network data; the book Statistical Analysis of Network Data with
R (Use R!) by Eric Kolaczyk and Gabor Csardi (2014) provides an overview.

• Bootstrapping: An approach to inference that is “distinct” from frequentist NHST
andBayesianmethodswhich can be useful inmany situationswhere onewould like
to quantify uncertainty in the obtained estimates. An Introduction to the Bootstrap
by Bradley Efron and Robert Tibshirani (1993) provides a good overview.

• Optimal Design: Usually not covered in methods courses are the (statistical) meth-
ods to design “maximally informative” experiments. The book Optimal Design of
Experiments: A Case Study Approach by Peter Goos and Bradley Jones (2011)
provides a starting point.

• Sequential Decision making / Multi-armed Bandit problems: Adaptive treatment
selection the “sequential allocation of experiments” is interesting for its large num-
ber of applied uses. The book Bandit problems: Sequential Allocation of Experi-
ments by Donald A. Berry and Bert Fristedt (2013) discusses the topic at length.

Obviously, many other interesting works and methods are not reviewed here. The
fields of statistics, AI, and machine learning progress fast, and it takes time for
theoretical advances to make their way into common practice.



Chapter 10
Latent Variable Models

A. Alexander Beaujean and Grant B. Morgan

Abstract Human-computer interaction research increasingly involves investigating
psychological phenomena as latent variables. In this chapter, we discuss basic latent
variable models using a path model approach. In addition, we given some examples
of conducting a latent variable model analysis using the lavaan package in the R
statistical programming language.

10.1 Introduction

The exploration of human-computer interaction (HCI) has grown to encompass
practical uses in many areas of everyday life. Scholars have explored HCI and
relations with various phenomena, such as simulation games in education (Gee
2005), computer-mediated communication (Maloney-Krichmar and Preece 2005;
Haythornthwaite and Wellman 1998), engagement with avatar interaction (Norris
et al. 2014), nursing training (Nehring and Lashley 2009), and customer experience
with new product development (Robinson and Min 2002). These HCI studies all
involve the examination of psychological phenomena, which are latent variables
(LVs) and should be treated as such in the statistical analysis. A LV is one that is
theorized to exist but cannot be directly measured (Bollen 2002). Instead, data are
collected on a set of observed variables that are used as an indication or approximation
of the underlying latent variable.

The use of LVs can be seen in several recent HCI studies. For example, Norris et al.
(2014) used factor analysis to identify six factors (i.e., LVs) related to game player
involvement, and van Schaik and Ling (2003) used factor analysis to investigate
the quality of HCI in online surveys. Likewise, Schulenberg and Melton (2007) used
factor analysis to gather construct validity evidence for theComputingUnderstanding
and Experience Scale (Potosky and Bobko 1998).
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HCI scholars have employed LV techniques that go beyond traditional factor
analysis. For example, Schmidt et al. (2002) used a special type of LV model for
dichotomous items to investigate a 13-item survey instrument that measured aspects
of upper-extremity student-role functioning. As another example, Nam et al. (2013)
examined the predictive relations among LVs (i.e., structural equationmodel) in their
study of the acceptance of assistive technology among special education teachers.

Given the inclusions of humans in HCI, many of the psychological phenomena of
interest (e.g., engagement, competence, ease of use, technology acceptance) could
be viewed as LVs. As such, statistical analyses uniquely developed for modeling LVs
should be considered when conducting HCI research. The purpose of this chapter is
to introduce basic LV modeling as an approach for studying psychological phenom-
ena and provide worked examples using the R (R Development Core Team 2014)
statistical programming language.

10.1.1 Data

To aid in our descriptions in this chapter, we use the System Usability Scale (SUS)
data provided with this book. The SUS consists of 10 items with 7-point Likert-
type scales. The dataset used for this chapter’s examples consists of 86 responses on
the SUS about the usability of the Mango Watch. While the original data contains
responses across three time periods, we just use the data from the first time point.

10.2 Path Models

There are two non-mutually exclusive ways to introduce a latent variable model
(LVM): matrix algebra and path models. We only focus on the path model approach
in this chapter as it directly translates into the R package we use to demonstrate the
latent variable analysis.1 A path model is a pictorial representation of a theory of
variable relations. Figure10.2 shows an example of a path model using the SUS data
with one latent variable .

10.2.1 Variables Types in a Path Model

There are two types of variables in path model: manifest and latent (see the top of
Fig. 10.1). A manifest variable (MV) is one that is able to be measured directly. This
differs from a LV, which can only be measured indirectly through other variables.
In Fig. 10.2 there is one LV (Usability) and 10 MVs (SUS1–SUS10). In addition to

1Those interested in a matrix-based approach should see Bollen’s (1989) classic text.
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Manifest Variable Latent Variable

Directional Relation Non-Directional Relation

Fig. 10.1 Symbols used to create path model diagrams

Fig. 10.2 Path model of System Usability Scale items using a single latent variable

variables, path models can also contain constants, which are scalar values used to
specify intercepts and means. We do not discuss models that include constants in this
chapter; those interested in such models should see Ployhart and Oswald (2004).

10.2.2 Variables Relations in a Path Model

There are two ways variables can relate to each other in a path model (see the
bottomof Fig. 10.1). Single-headed arrows represent direct relations (e.g., regression,
factor loading), while double-headed arrows represent non-directional relations (e.g.,
correlation, variance). A variable’s variance is represented by a variable having a non-
directional relation with itself. For example, in Fig. 10.2 the LV has a double-headed
arrow that starts and ends with itself, representing the latent variance for Usability
(VUsability).

The variables involved in direct relations can be categorized into one of two
types: those that are without a direct cause in the model (exogenous) and those with
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a direct cause (endogenous). Exogenous variables are sometimes called predictor,
source, upstream, or independent variables, while endogenous variables are some-
times called outcome, criterion, downstream, or dependent variables. In Fig. 10.2,
the LV is exogenous, while all the SUS items are endogenous.

Endogenous variables always have an attached error term (sometimes called resid-
ual or disturbance). It represents the discrepancy between the observed values and
the values predicted by the model. The variability of these discrepancies is the error
variance (e.g., e1–e10 in Fig. 10.2), which is the amount of variance in an endoge-
nous variable not explained by the other variables in the model. Because error repre-
sents something unexplained by the model, it has no direct cause and is exogenous.
Endogenous variables should not be connected to non-directional arrows in a path
model. The reason is that as all of their variance can be accounted for by their error
terms and other variables in the model. The errors, however, can covary with other
variables. For example, in Fig. 10.2 the SUS1 and SUS2 variables cannot covary; but
their errors, Error1 and Error2, could covary.

10.2.3 Tracing Rules

There are a set of rules used to estimate values for coefficients in a path model.
These rules involve tracing the paths within it (i.e., path analysis), so are often called
tracing rules (Wright 1934). They are simply a way to calculate the magnitude of the
relations among variables by summing the appropriate connecting paths. The rules
are given in Fig. 10.3. While computers can do all the computations involved, it is
useful to know the tracing rules in order to understand how all the variable relations
are used to estimate the parameters. For someworked examples, see Beaujean (2014)
or Boker et al. (2002).

• Trace all paths between two variables (or a variable back to itself), multiply-
ing all the coefficients along a given path.

• You can start by going backwards along a single-headed arrow, but once you
start going forward along these arrows you can no longer go backwards.

• You cannot go through the same variable more than once for a given path (i.e.,
no loops).

• At most, there can be one double-headed arrow included in a traced path.
• After tracing all the paths for a given relation, sum all the paths.

Fig. 10.3 Path model tracing rules
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10.3 Latent Variable Models

A LVM is a broad class of statistical models that typically consists of two parts:
the measurement model and the structural model. The structural model consists of
regression-like relations among the variables. The measurement model forms any
LVs used in the structural model. If the LVM contains both structural and measure-
ment models, the LVM is often called a structural equation model (SEM); if the
LVM does not contain a structural model, it is often called a confirmatory factor
analysis (CFA). If there was not an a priori hypothesized set of relationships for
the measurement model, then it would be an exploratory factor analysis (EFA).
This chapter focuses largely on CFAs, although we do fit a very basic SEM at the
end of the chapter. Beaujean (2013) demonstrated how to conduct an EFA in R.

The purpose of a CFA is to understand the underlying structure that produced
relations among multiple manifest variables (i.e., covariance matrix).2 TheMVs that
are directly influenced by the LV are the indicator variables. The idea behind fac-
tor analysis is that there are a small number of LVs within a given domain (e.g.,
disorientation, perceived ease of use, and intensity of flow; van Schaik and Ling
2003) that influence each of its many indicator variables, which subsequently pro-
duce the observed covariances. Thus, covariation in the indicator variables is due
to their dependence on one or more LVs. LV modeling, then, involves identifying
or confirming the number of the LVs that produce the observed covariation in the
indicator variables as well as understanding the nature of those LVs (e.g., what they
predict, what variables predict them).

One measure of the influence a LV has on MVs is the factor loading. These are
akin to regression coefficients. The correlation between a LV and aMV is a structure
coefficient. For models with one LV, factor loadings and structure coefficients have
the same values. For models with more than one LV (e.g., Fig. 10.4), they will have
different values unless all the LVs are uncorrelated with each other.

In Fig. 10.2, coefficients a − j are all factor loadings. We can obtain something
akin to a R2 value for each MV using the tracing rules: find all the legitimate paths
that go from a MV to the LVs and return back to the same MV. This value is called
the communality. Conversely, the uniqueness is the amount of variance in the MV
not explained by the model’s LVs. For example, to find the communality for SUS1
in Fig. 10.2, trace the path from it to Usability and then back to SUS1. There is only
one path that goes from SUS1 to Usability that meets the tracing rules criteria, so the
communality is a × vUsability × a. Thus, the amount of SUS1 variance that Usability
explains is a2 × vUsability. If the LV was standardized, then its variance would be one,
the SUS1’s communality would be a2, and its uniqueness would be 1 − a2.

2We assume that the LV is reflective (i.e., causes the MVs to covary). An alternative would be to
have a formative LV, which are thought to result from the MVs’ covariation. For more information
on formative LVs, see Bollen and Bauldry (2011).
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Fig. 10.4 Path model of System Usability Scale items using two latent variables

10.3.1 Identification of Latent Variable Models

To be able to estimate the parameters in a LVM, the MVs need to provide enough
unique information to be able to estimate the required parameters. This is the issue
of model identification. The amount of unique information in the data is the number
of non-redundant variances and covariances in the variables used in the model. This
can be calculated using Eq.10.1.

Unique Information = p(p + 1)

2
(10.1)

where p is the number of MVs in the model.
If a model is just identified, then the number of parameters to estimate exactly

equals the amount of unique information. If there are more parameters to estimate
than the amount of unique information, then themodel is underidentified. Conversely,
if there is more unique information than parameters to estimate, then the model is
usually overidentified.

If a model is underidentified, then it is not possible to find a single value for the
model’s parameters andmost LVMprograms will return an error message. If a model
is over- or just-identified, there should be one “best” value for each parameter. For
overidentified models, not only do they provide parameter estimates, but they can
also provide measures of model fit. This is because they have degrees of freedom (df )
greater than 0. In LVMs, df can be thought of as the number of unique pieces of infor-
mation in the data minus the number of parameters to estimate.3 Only overidentified
models have df > 0.

Model identification can be tricky (Kenny and Milan 2012). Instead of going
into all the complexities involved, we just provide some rules-of-thumb conditions

3For a more thorough explanation of the degrees of freedom concept, see Walker (1940).
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that should work for typical LVMs. Meeting these conditions typically produces an
overidentified LVM, or at least a just-identified LVM. It is atypical for the first two
conditions not to be met, so we do not discuss them in any detail.

1. If there is more than one LV in the model, then for every pair of LVs, either there
is at least one indicator variable per LV whose error variance does not covary
with the error variance of the other LV’s indicator variables, or the covariance
between the pair of LVs is constrained to a specified value.

2. For every indicator variable, there must be at least one other indicator variable
(of the same LV or a different LV) with which the error variances do not covary.

3. Every LV in a model has at least four indicator variables and none of their error
variances covary.

4. The LVs’ scales are set by constraining some parameter estimates.

If a LV cannot have at least four indicator variables, it can still be just-identified
under any of the following conditions.

1. The LV has three indicator variables, and the error variances do not covary.
2. The LV has at least two indicators with non-covarying error variances and the

indicator variables’ loadings are set equal to each other.
3. The LV has one indicator variable, the directional paths are set to one, and its error

variance is fixed to (1 − rXX ′)σ 2
X , where rXX ′ and σ 2

X are the indicator variable’s
reliability and observed variance, respectively.

The LVs’ scales have to be set by the researcher because there are no inherent
units by which to measure latent quantities. The two most common ways to set this
scale are to standardize the LV or to use a marker variable. These different methods
place the LVs on different scales, so the resulting parameter estimates will differ.
The choice of scaling method will not alter how a model fits the data.

To standardize the LV, the LV’s variance is constrained to one, which places the
LV on a Z scale. Moreover, if there is more than one LV, then the covariance among
the LVs becomes a correlation. If the indicator variables are standardized as well,
the loadings can be interpreted the same as a standardized regression coefficient.

The marker variable method requires a single factor loading for each LV be con-
strained to an arbitrary value (usually one). The indicator variable whose loading is
constrained is called the marker variable. With this method, the marker variable’s
variance defines the LV’s variance.

10.4 Latent Variable Models in R

10.4.1 Entering Data

Both raw data and summary statistics can be used to fit most LVMs. Entering raw
data into R is covered in Chap.2 in this book, so we only focus on entering summary
statistics and the book’s SUS example data.

http://dx.doi.org/10.1007/978-3-319-26633-6_2
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10.4.1.1 Summary Statistics

In some situations, there is not access to raw data but there is access to the covariance
(or correlation) matrix. Since such matrices are symmetric, we can simplify the
input using the lavaan package’s lav_matrix_lower2full() function. The
lav_matrix_lower2full() function requires entering the lower diagonal of
the covariance matrix by row. The following syntax creates a correlation matrix
named example.cor that consists of the correlations among four variables as well as a
standard deviation (SD) vector named example.sd that consists of the SDs for the four
variables. We name the variables using the native rownames(), colnames(),
and names() functions. Last, we transform the correlations to covariances using
lavaan’s cor2cov() function. It requires both a correlation matrix argument and
a SD vector argument.

# load lavaan package

library(lavaan)

# name variables

example.vars <- c("Var1","Var2","Var3","Var4")

# input covariances

example.cor <- lav_matrix_lower2full(c(1,0.85,1,0.84,0.61,1,

0.68,0.59,0.41,1))

# name the rows and columns

rownames(example.cor) <- colnames(example.cor) <- example.vars

# enter the SDs

example.sd <- c(3.01,3.03,2.99,2.89)

names(example.sd) <- example.vars

# correlation matrix

example.cor

## Var1 Var2 Var3 Var4

## Var1 1.00 0.85 0.84 0.68

## Var2 0.85 1.00 0.61 0.59

## Var3 0.84 0.61 1.00 0.41

## Var4 0.68 0.59 0.41 1.00

# convert correlations and SDs to covarainces

example.cov <- cor2cov(example.cor,example.sd)

# covariance matrix

example.cov

## Var1 Var2 Var3 Var4

## Var1 9.1 7.8 7.6 5.9

## Var2 7.8 9.2 5.5 5.2

## Var3 7.6 5.5 8.9 3.5

## Var4 5.9 5.2 3.5 8.4
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Table 10.1 lavaan Syntax for specifying path models

Syntax Command Example

~ Regress onto Regress B onto A: B ~ A

~~ (Co)variance Variance of A: A ~~ A

Covariance of A and B: A ~~ B

=~ Define latent variable Define Factor 1 by A-D: F1 =~A+B+C+D

:= Define non-model parameter Define parameter u2 to be twice the square
of u: u2 := 2*(u^2)

* Label parameters (the label has to be
pre-multiplied)

Label the regression of Z onto X as b: Z
~b*X

10.4.1.2 SUS Data

The SUS data is saved as a Rdata file, so we use the load() function to import it.

# load SUS data

load("SuSScaleData.rdata")

The dataset within the SuSScaleData.rdata file is named scale. For this analysis,
we only want the data from Time 1, so we subset the original data and name this new
dataset scale.time1.

# select data at time 1

scale.time1 <- scale[scale$Time == 1, ]

10.4.2 Specifying Models in Lavaan

There are multiple packages in R that can fit latent variable models, but we focus on
the lavaan package (Rosseel 2012). lavaan (LAtent VAriable ANalysis) is designed
for general latent variable modeling. Information and documentation about it can be
found on the package’s web page: http://www.lavaan.org.4

Estimating LVM parameters in lavaan is a two-step process. First specify the
path model, then associate the model with a dataset and estimate the parameters.
Specifying the model requires using the package’s pre-defined model specification
commands, many of which are shown in Table10.1. As an example, the following
syntax specifies the LVM shown in Fig. 10.2. Although not required, we label each
parameter to match the figure’s labels.

one.lv.model <- ’

# define latent variable

4For examples of fitting LV models in R using a package other than lavaan see Fox et al. (2012).

http://www.lavaan.org
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usability =˜ a*SUS1 + b*SUS2 + c*SUS3 + d*SUS4 + e*SUS5 +

f*SUS6 + g*SUS7 + h*SUS8 + i*SUS9 + j*SUS10

# optional, label latent variance

usability˜˜v_lv*usability

# optional, label residual variance

SUS1˜˜e1*SUS1

’

The first line of the code above consists of the name of the model (one.lv.
model), R’s assignment operator (<−) and a single apostrophe (’). The apostrophe
tells R that the subsequent syntax needs to be stored as text. Line 2 defines the part of
the path model that has Usability as the LV and the SUS items as indicator variables.
The LV is defined (=~) using all ten of the SUS items. We separate all the indicator
variables for the same LV using the + sign before each variable after the first.

The last few lines are optional. By default, lavaan creates an error term for each
endogenous variable and estimates its variance while constraining the path from
the error term to one. So, the only contribution of the last lines is to label the latent
variance and the error variance for SUS1, respectively. The final line is another single
apostrophe to indicate the end of R interpreting syntax as text.

Once the model is specified, use either the cfa() (for Confirmatory Factor
Analysis), or sem() (for StructuralEquationModel) function to fit themodel. Either
raw data or a covariance matrix (with accompanying sample size) are acceptable
data to analyze. To input raw data, use the data argument; to input a covariance
matrix and sample size, use the sample.cov and sample.nobs arguments,
respectively.

For example, to estimate the parameters specified in one.lv.model using the
raw SUS data, we use the following syntax:

one.lv.fit <- cfa (model = one.lv.model, data =scale.time1)

The first two arguments to the cfa() function are the model and data objects, which
we previously defined. To use the variables’ covariance matrix (named scale.cov)
instead of the raw data, we would use the following syntax:

one.lv.fit <- sem(model=one.lv.model,

sample.cov=scale.time1.cov,

sample.nobs=81)

The third argument, sample.nobs, indicates the sample size from which the
covariance matrix was calculated; it needs to be used every time summary statis-
tics are used for input.

Both of the preceding lavaan calls will return nothing on screen because the results
are stored in the one.lv.fit object. One option to produce the results from fitting the
model is to use the summary() function.
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summary(one.lv.fit)

## lavaan (0.5-18) converged normally after 22 iterations

##

## Number of observations 86

##

## Estimator ML

## Minimum Function Test Statistic 147.216

## Degrees of freedom 35

## P-value (Chi-square) 0.000

##

## Parameter estimates:

##

## Information Expected

## Standard Errors Standard

##

## Estimate Std.err Z-value P(>|z|)

## Latent variables:

## usability =˜

## SUS1 (a) 1.000

## SUS2 (b) 1.053 0.184 5.723 0.000

..<Output Omitted>..

By default, lavaan’s summary() function returns: (a) a note indicating if the para-
meter estimation algorithm converged; (b) the sample size; (c) estimator; (d) fit
statistic (χ2) and its df and p-value; (e) the unstandardized parameter estimates; (f)
the parameter estimates’ standard errors; (g) the ratio of the parameter estimates to
their standard errors (i.e., Wald statistic); and (h) the p-value for the Wald statistic.

The summary() function has these default specifications for its arguments:
standardized=FALSE, fit.measures=FALSE, rsquare=FALSE,
and modindices=FALSE. Setting standardized=TRUE will produce stan-
dardized estimates in the results, setting fit.measures=TRUE will produce fit
indices in the results, setting rsquare=TRUEwill produce the R2 for each endoge-
nous variable, and setting modindices=TRUE will produce modification indices.

Another option to produce the model results is to use the parameter
Estimates() function. As with the summary() function, specifying stand-
ardized=TRUE produces both the unstandardized and standardized estimates. The
unstandardized estimates (Estimate) use the raw score scales for the MVs and use
the marker variable method to scale the LV. There are three types of standardized
estimates returned. The first (Std.lv) standardizes the LV, but leaves the MVs in the
raw score scale. The second (Std.all) standardizes both the LV and all the MVs. The
third type (std.nox) standardizes all variables are except exogenous MVs.
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parameterEstimates(one.lv.fit, standardized=TRUE)

## lhs op rhs est se std.lv std.all std.nox

## 1 usability =˜ SUS1 1.00 0.000 0.68 0.72 0.72

## 2 usability =˜ SUS2 1.05 0.184 0.71 0.69 0.69

## 3 usability =˜ SUS3 0.94 0.170 0.63 0.66 0.66

## 4 usability =˜ SUS4 1.05 0.186 0.71 0.68 0.68

## 5 usability =˜ SUS5 1.08 0.190 0.73 0.69 0.69

## 6 usability =˜ SUS6 0.40 0.160 0.27 0.29 0.29

## 7 usability =˜ SUS7 0.55 0.148 0.37 0.44 0.44

## 8 usability =˜ SUS8 0.52 0.188 0.35 0.33 0.33

## 9 usability =˜ SUS9 0.49 0.172 0.33 0.34 0.34

## 10 usability =˜ SUS10 0.59 0.168 0.40 0.41 0.41

## 11 usability ˜˜ usability 0.46 0.128 1.00 1.00 1.00

## 12 SUS1 ˜˜ SUS1 0.43 0.083 0.43 0.49 0.49

## 13 SUS2 ˜˜ SUS2 0.54 0.101 0.54 0.52 0.52

## 14 SUS3 ˜˜ SUS3 0.50 0.090 0.50 0.56 0.56

## 15 SUS4 ˜˜ SUS4 0.58 0.106 0.58 0.54 0.54

## 16 SUS5 ˜˜ SUS5 0.58 0.108 0.58 0.52 0.52

## 17 SUS6 ˜˜ SUS6 0.76 0.118 0.76 0.91 0.91

## 18 SUS7 ˜˜ SUS7 0.57 0.091 0.57 0.80 0.80

## 19 SUS8 ˜˜ SUS8 1.03 0.161 1.03 0.89 0.89

## 20 SUS9 ˜˜ SUS9 0.85 0.133 0.85 0.88 0.88

## 21 SUS10 ˜˜ SUS10 0.76 0.121 0.76 0.83 0.83

We can use the tracing rules and standardized parameter estimates to estimate the
communality for SUS1 in the one-factor model in Fig. 10.2. The standardized factor
loading for SUS1 is 0.72, making the communality 0.722 = 0.51. This means that
about half of the variance in SUS1 can be explained by the latent variable.

In addition to the communality estimates,we can calculate the correlations implied
by the model’s parameter estimates, which we can then compare them to the actual
correlations (i.e., residual correlations). Using the labels from Fig. 10.2, the relation
between the SUS1 and SUS2 variables is defined by a × b since that is the only valid
path from SUS1 to SUS2. Plugging in the values for a and b, the model-implied
correlation is 0.72 × 0.69 = 0.50, which is similar to the sample correlation of 0.45.
Hence, the model reproduces the observed correlation well. This is an indication of
good model fit.
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The fitted() function in lavaan returns all the model-implied covariances.
A little manipulation of this output using R’s cov2cor() function returns the
implied correlations. We can then compare these to the actual correlations using the
residuals() function with the additional type="cor" argument.

# model-implied covariances

fitted(one.lv.fit)$cov

# transform model-implied covariances to correlations

cov2cor(fitted(one.lv.fit)$cov)

# original correlations

cor(scale.time1[paste("SUS",1:10,sep="")])

# residual correlations

residuals(one.lv.fit,type="cor")

The fitMeasures() function returns measures of model fit. For more on
interpreting model fit values, see West et al. (2012).

# fit of single-latent variable model

fitMeasures(one.lv.fit)

10.4.3 More Complex Models

There are alternativemodels we can fit to the SUS data other than the one in Fig. 10.2.
We fit two of those alternative models. In the first model, we specify that there are
two correlated LVs based on the SUS item types (positive vs. negative). In the second
model, we fit a full SEM. We specify that a manifest Positive variable (created from
the sum of SUS items 1–5) directly predicts the Negative LV. For examples of fitting
more advanced LV models in R, see Beaujean (2014).

10.4.3.1 Model with Two Correlated Latent Variables

The model with two correlated LVs is shown in Fig. 10.4. The lavaan syntax for
the model is similar to the original model, only now there are two LVs. Since the
LVs are exogenous in this model, they are specified to correlate by default. For
didactic purposes, we include the syntax allowing two variables to covary in our
model specification.
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# specify model with two latent variables

two.lv.model <- ’

# define latent variables

positive =˜ a*SUS1 + b*SUS2 + c*SUS3 + d*SUS4 + e*SUS5

negative =˜ f*SUS6 + g*SUS7 + h*SUS8 + i*SUS9 + j*SUS10

# covariance between latent variables

positive˜˜cv_pn*negative

’

# fit model to SUS data

two.lv.fit <- cfa(two.lv.model, data=scale.time1)

10.4.3.2 Structural Equation Model

The structural equation model is shown in Fig. 10.5. Before fitting it, we first create
the composite Positive variable.

# create positive item set

pos.items <- c("SUS1","SUS2","SUS3","SUS4","SUS5")

# create composite score

scale.time1$pos.score <- rowSums(scale.time1[,pos.items])

The lavaan syntax for the model is similar to the model with two LVs, except that
we specify that the new Positive MV predicts the Negative LV. For more details on
how to interpret this model and its estimates please see Beaujean (2013) or Rosseel
(2012).

Fig. 10.5 Structural equation model of System Usability Scale items
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# specify structural equation model

sem.model <- ’

# define latent variable

negative =˜ f*SUS6 + g*SUS7 + h*SUS8 + i*SUS9 + j*SUS10

# direct relation from composite positive to latent negative

negative˜predict*pos.score

’

# fit model

sem.fit <- cfa(sem.model,data=scale.time1)

10.5 Cautions and Considerations in Using Latent
Variable Models

Latent variablemodeling has emerged as an incredibly popular and, in some respects,
unifying framework for many types of statistical analysis commonly used in HCI
research. Given the utility and flexibility of LVM, users must exercise considerable
care and caution when making modeling decisions. This section highlights some of
the cautions and consideration when using LVM.

To begin, much criticism has been offered regarding, for example, issues of the
selecting a model among a set of competing models, model-data fit, and the ability
to estimate causal relations within a LVM. The common theme in most of these
criticisms is the role of substantive theory (or lack thereof). Each path specified in a
LVM is an assertion of the researcher about the nature of the relation between two
or more variables. As a result of this, some have criticized LVM for falsely allowing
users to infer too strong of a causal relation from non-experimental data.

The nature of causal relationships is a centuries old interest of humans. The flex-
ibility provided by the LVM framework allows researchers to model relationships in
accordance with their guiding theory, even those that specify causation in the absence
of experimental manipulation (e.g., Bollen and Pearl 2013). It is a combination of
the guiding theory, nature of the collected data, and the method used to analyze the
data that determines the strength of any causal inferences that can be inferred from
a study (Antonakis et al. 2010). LVM as an analytic technique cannot overcome the
absence of theory or a weak research design.

Another criticismof LVMs is the over-reliance onmeasures ofmodel fit. Undoubt-
edly, the availability of many measures of model-data fit is a benefit to researchers
using LVM as they assess their models. The problem comes when the fit measures
are blindly interpreted or fit measure cutoff criteria are used uncritically. First, mod-
els that fit the data well may have underlying problems that are not reflected by the
measures of fit. For example, Hancock and Mueller (2011) discussed a paradoxical
relationship between poor measurement quality and model-data fit. They described a
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situation in which model-data fit was acceptable with a poorer quality measurement
model, and fit was unacceptable with a high quality measurement model. Although
the authors explained why this paradox may be observed, it provides evidence that
poor models can produce acceptable model fit. Second, there are a theoretically infi-
nite number of competing, or equivalent, models that fit at least as well as the ones
being investigated. Reviews of published LVM studies have noted that researchers
have often failed to explore other models, which is considered a type of confirmabil-
ity bias (Kline 2011). Once again, researchers’ guiding theory plays an essential role
in model selection. If numerous models fit the data equally well, then researchers
should rely on their theoretical expectations of the model relationships to identify
the best approximating model among a set of competing models.

We should note that some of the criticisms leveled at LVMs have likely been
exacerbated by the ever-increasing power of personal computers coupled with the
growing ease of using LVM software packages (e.g., point-and-click type programs).
For appropriately training researchers, these developments are welcomed, but they
may also allowuntrained analysts to specifymodels that exceed both their substantive
knowledge as well as their ability to evaluate models critically. We agree with Kline
(2011) that computers should make theoretically justified models easier to estimate,
but not allow users to suspend their judgment as it relates to modeling decisions.

The bottom line is that the use of a LVM–in and of itself–is not sufficient to
establish any sort of causal relationship. Researchers should only use LV modeling
(or any other type of data analysis) in conjunction with a theory of how the variables
should relate to each other as well as knowing any limitations of causal inference
imposed on the data from the research design. While modern software and computer
programs have made the estimation of LVMs much easier and more efficient now
than at any point in history, this is not a substitute for rigorous training in the proper
use and interpretation of LVMs.

10.6 Conclusion

Human-computer interaction research often involves investigating psychological
phenomena that cannot be measured directly. In such studies, these LVs should be
analyzed correctly using LVmodels. In this chapter, we showed how to analyze three
relatively simple LVMs in the R language using the lavaan package. We concluded
the chapter discussing some criticisms of LVMs as well as emphasizing that latent
variable modeling (or any other type of data analysis) should always be conducted
in the presence of some theory of how the variables should relate. Likewise, the
accessibility that R provides to those wishing to analyze LVMs is not a substitute for
proper training in their use and interpretation.
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Chapter 11
Using Generalized Linear (Mixed) Models
in HCI

Maurits Kaptein

Abstract In HCI we often encounter dependent variables which are not (condition-
ally) normally distributed: we measure response-times, mouse-clicks, or the number
of dialog steps it took a user to complete a task. Furthermore, we often encounter
nested or grouped data; users are grouped within companies or institutes, or we
obtain multiple observations within users. The standard linear regression models
and ANOVAs used to analyze our experimental data are not always feasible in such
cases since their assumptions are violated, or the predictions from the fitted models
are outside the range of the observed data. In this chapter we introduce extensions to
the standard linear model (LM) to enable the analysis of these data. The use of [R]
to fit both Generalized Linear Models (GLMs) as well as Generalized Linear Mixed
Models (GLMMs, also known as random effects models or hierarchical models) is
explained. The chapter also briefly covers regularized regression models which are
hardly used in the social sciences despite the fact that these models are extremely
popular in Machine Learning, often for good reasons. We end with a number of
recommendations for further reading on the topics that are introduced: the current
text serves as a basic introduction.

11.1 Introduction

(Generalized) Linear Models ((G)LMs) and (Generalized) Linear Mixed Models
(GLMMs) are a basic building block of many advanced statistical and machine
learning methods, and they are invaluable tools in the toolbox of anyone analyzing
complex data. This chapter introduces the use of [R] to fit such models, with a focus
on estimation and prediction rather than (the more standard) hypothesis testing; the
rationale of which is discussed extensively in Chap.13. Throughout the chapter we
present the [R] code both to generate the data used in the examples and the the code
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used to fit the models.1 We focus on the generation of data since this allows the analyst
to create a dataset with known properties and hence provides a valuable method to
evaluate the chosen analysis against a ground truth. The format of a chapter (with a
fairly strict page-limit) is obviously too limited to discuss these very general methods
in large detail, hence, the chapter ends with a number of pointers to both introductory
texts on the topics as well as more advanced discussions.

11.2 Linear Models

Let’s start by creating a simulated dataset containing n = 100 observations that
might have originated from the Mango watch evaluation as introduced earlier in the
book. Here we will start by focussing on the possible relationship between the age
of 100 Mango watch users, and the time (in minutes per week) they spend using
the watch. The data can be generated using the following [R] commands:

> # Set the number of subjects:
> n <- 100
> # Generate a randomly uniform age between 20 and 80:
> age <- runif(n, 20, 80)
> # Model usage time as a quadratic function of age plus noise:
> time <- 320 + 25*age - .3*age^2+ rnorm(n,0,80)
> # Put everything together in a dataframe.
> data <- data.frame(n = 1:n, age = age, time = time)

Note in the passing that in the simulated dataset the Mango employees retire at a
fairly late age. A quick overview of the generated data is given in Table11.1.

Before analyzing our data we should always have a look at our data by plotting it.2

In this chapter we will mainly use the [R] core plotting functions to do so (despite
more versatile alternatives such aslattice or ggplot). The code presented above
Fig. 11.1 creates a simple scatterplot of the data that we have just generated: each dot
represents a user, and depicts her or his age and usage time. It is clear from the plot
that the relationship between age and usage time can be described by a parabola,3

although there is quite some noise present in the data. Now, let’s start our analysis
by fitting a linear model to this dataset.

1The practice of fitting GLMs is also briefly discussed in Chap. 6 as a method for dealing with
non-normal dependent data.
2See also Chap.3 of this volume for more on data visualization.
3This is quite obvious since in this particular case we generated the data using a second-order
polynomial, y = 320 + 25x − 0.3x2 + ε. However, in a real study one would not know the
exact data generating model and visual inspection of the data will help to understand the data.

http://dx.doi.org/10.1007/978-3-319-26633-6_6
http://dx.doi.org/10.1007/978-3-319-26633-6_3
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Table 11.1 Illustration of the simulated data recording the relationship between the age of Mango
watch users and the time they use the watch

n Age Time

1 72.84 620.55

2 51.14 715.43

3 37.22 719.39

… … …

… … …

100 59.20 702.24
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> # Make a call to the default plotting and provide labels:
> plot(data$age, data$time, xlab="Age", ylab="Usage time")

Fig. 11.1 Quick scatterplot of the relationship between the age of a user of the Mango watch and
their usage time

11.2.1 Fitting a Line

One, informal, way to think of our aim when fitting linear (regression) models is that
we are trying to find the line that “best” matches the observations, or the line that is
“closest” to the observations.4 In [R] the lm function allows us to find such “best”
lines.

4 More formally, finding the “best” of “closest” line can be (and is often) defined by minimizing the
squared error

∑n
i = 1(y − Xβ)2 where, using matrix notation, X is the n × k design matrix, and β

the vector of coefficients of length k. For example, for model M1 (ŷ = β0 + β1x , see body text), X
is a n × 2matrix ofwhich the first column contains only 1’s (for the intercept) and the second column
contains the values x1, ...,n respectively. We are looking for the vector β that minimizes the square
error which is relatively easy to do by taking the gradient (vector of first order partial derivatives)
of the error function and setting it to 0. Minimizing the squared error gives the same solution for β
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The function call has two primary arguments5: the first argument is the so called
model formula,while the second (not required) argument specifies thedata.frame
from which the data is obtained. The code below uses the lm function three times to
fit three possible models to our generated data:

The different model formulas used in the code above specify, in order, the follow-
ing models:

ˆtimeM0 = β0

ˆtimeM1 = β0 + ageβ1

ˆtimeM2 = β0 + ageβ1 + age2β2

where ˆt imeM. denotes the predicted value of the time given model M .
We can now inspect the estimated parameter (vector) β for the models. Let us,

for example, examine M1 by printing a summary of the model:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 1005.1836 35.3206 28.46 0.0000
age −5.3098 0.6705 −7.92 0.0000

(Footnote 4 continued)
as maximizing the likelihood using a probabilistic framework. Likelihood maximization provides
an estimation method that scales more easily to more complex models then the minimixation of
the squared error. To use maximum likelihood estimation we would assume y|X ∼ N (Xβ, σ 2)

where σ 2 denotes the residual variance. Hence, in this model we assume the dependent variable
y to be distributed normal conditional on X . The likelihood of the dataset, given that we assume
our observations to be independent and identically distributed (i.i.d), is just the product over the
likelihood for each datapoint. This we can maximize by taking its derivative and setting to zero.
Often, for practical purposes, we take the derivative of the log of the likelihood which results in a
summation over datapoints instead of a product and is thus easier to differentiate (For more info
see, e.g., Gelman and Hill 2007; Millar 2011). In the case of simple linear models (LMs) an exact
solution for β exists and is given, in matrix notation, by: β̂ = (X T X)−1X T y.
5The call takes a number of additional arguments which are not discussed here. For more details
one can always type ?lm into the [R] terminal and see the documentation.
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This table gives an overview of the model estimates given that we are fitting a
linear trend (which we know to not be correctly representing the data-generating
model). It shows that the estimated intercept, the predicted usage time of the Mango
watch for users of age 0 is high; β0 = 1005.18. Furthermore, we find an effect of
age that is negative: β1 = −5.31. Thus, M1 would lead us to conclude that the older
users get, the less time they will spend using the Mango watch (and, that newborns
spend quite a lot of time using the Mango watch; this might be quite unrealistic).
Note that in both cases the estimated coefficient β is significantly different from
0 evaluated using a t-test: the p-value, Pr(>|t|), is smaller then 0.05 for both
β0 as well as β1 (thus, the null hypotheses H0 : β0 = 0 and H0 : β1 = 0 are both
rejected).

We can also easily compare the threemodels that we just fit using standard F-tests
or fit measures such as the AI C or B I C :

> # Print an ANOVA (F-test) comparison table:
> print(xtable(anova(M0, M1, M2)))

Res. Df RSS Df Sum of Sq F Pr(>F)
1 99 1985256.47
2 98 1210551.49 1 774704.98 162.64 0.0000
3 97 462041.28 1 748510.21 157.14 0.0000

> # Print the rounded AIC (or BIC()) value for each model:
> print(paste(round(AIC(M0)), round(AIC(M1)), round(AIC(M2))))

[1] "1277 1230 1136"

This analysis shows that the AIC of model M2, the model with a second order
polynomial of age, is the lowest and is thus preferred. Also, M2 presents a significant
increase in model fit compared to M1 and M0.6

The fact that the model including both a linear as well as a quadratic term of age is
the best fitting model is easily seen by plotting the predictions. Figure11.2 presents
the predicted relationship between age and time for each of the three models.

11.2.2 [R] Model Formulas

The previous section has introduced basic linear model fitting using [R], and demon-
strated the use of ANOVA F-tests to compare models. Also, we explicitly inspected
model M1 by displaying its estimated coefficients, and using the standard t-test to
test the null hypothesis H0 : β = 0. Adding to this we also explored plotting (using
base [R] plotting functions) the three models to graphically inspect model fit. Jointly

6Please be cautious using these types of comparisons: a “good” fit, does not mean the model is true.
This chapter is too short to properly cover model selection methods. More on the topic of model
selection can be found in (e.g., Bozdogan 1987).
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> # Setup the scatterplot:
> plot(data$age, data$time, xlab="Age", ylab="Usage time")
> # Add the (horizontal) line for M0:
> abline(M0, lty=1)
> # Add the line for M1:
> abline(M1, lty=2)
> # Sort the data (necessary to add the line for m2):
> data <- data[order(data$age), ]
> # Add a line using age and the predictions from M2:
> # Note the use of the "predict" function.
> lines(data$age, predict(M2, data), lty = 3)

Fig. 11.2 Scatterplot of the relationship between the age of a user of the Mango watch and their
usage time. Included are, using different line types, the predicted usage time values as derived from
the three different models

this provides a brief overview of the basic linear regressionmethods used in the social
sciences. It is however worthwhile to also inspect in a bit more detail the versatility
of the [R] formula interface.

We have already seen how we can specify the dependent and independent vari-
ables, and how we can include higher order terms of an independent variable. The
following uses are however also noteworthy:

• Specification of a model without an intercept requires explicit deletion of the
intercept in the formula: Omission of the “−1” in the formula
will by default include an intercept.

• Specification of an interaction between two predictors in a formula can be done
using the “∗” sign: Using a “∗” includes both the interaction
as well as the two main effects (by default). Including an interaction and exclud-
ing the main effects (which is often regarded bad-practice, but might be useful
occasionally) can be done using the “:” sign: The formula
includes the interaction between x1 and x2, but does not include the main effects
of x1 and x2.
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• Independent variables of nominal or ordinal level—also sometimes called cat-
egorical predictors—can automatically be transformed to dummy coding using
the as.factor() function. If (e.g.,) predictor x has four unique values then

will encode x as a “factor”. Subse-
quently calling will fit a model with an intercept (default),
and three dummy variables.7 One can specify specific contrasts in [R] quite easily
using the contrast or multcomp packages.

11.3 Regularization

The previous section introduced the usage of the lm function in [R] to fit linear
models. While admittedly very condensed, we have introduced the standard methods
of model fitting, model comparison, model building (using model formulas), testing
of null-hypothesis, and dealing with nominal or ordinal predictors (see for a more
elaborate introduction on linear models Gelman and Hill 2007).

In this section we introduce regularized linear models as a noteworthy and useful
extension of the linear modeling framework. There are a number of arguments to
motivate regularized regression approaches; an often used argument is the fact that
in cases where the number of predictors k is larger then the number of observations n
(thus k > n), the standard linear model cannot be fit (its solution is undefined) and in
such situations we need alternative methods. While true, we think that the argument
of overfitting when using models with large k (not necessarily larger then n) should
already motivate interest for regularization methods (For more on overfitting see for
example Hawkins 2004; Zou and Hastie 2005). The term overfitting loosely refers
to the idea that the model that we might fit to the data (and use to draw substantive
conclusions)might actually, in part, bemodeling noise in the data that is not a genuine
part of the true data-generating model. Thus, while we might believe our model fit
improves by seeing the fit measures improve on the data we collected in actuality
the fitted model would perform badly on new data: in the new data the noise will be
different, and hence our “overfitted” model will not approximate the newly collected
data very well.

To illustrate this idea, let’s continue with our dataset describing the age and the
time spend on the Mango watch. However, this time we fit a model using not just
a quadratic function of age, but rather a polynomial of degree 30 (using the poly
function)8:

7Note that analysis using only categorical predictors are often thought of in an ANOVA frame-work
by most social scientist. However, the lmmodels and ANOVAmodels are mathematically the exact
same, perhaps with a different choice of dummy encoding and different summary statistics that are
of interest.
8Model M0 is a 0th order polynomial, M1 is a first order polynomial of age (the linear term), and M2
a second order polynomial of age (the quadratic term). The poly function easily generates higher
order polynomial. The model we fit here thus looks as follows: y = β0 + β1age + β2age2

+ · · · + β30age30.
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> # Create the scatterplot:
> plot(data$age, data$time, xlab="Age", ylab="Usage time")
> # Add the line predicted by model M3:
> lines(data$age, predict(M3, data), col = "red")

Fig. 11.3 Fit of a high order polynomial to theMangowatch data: Note that while the line is “close”
the observed data-points, it likely models, in part, noise that is present in the data as opposed to
actual signal (we know for sure that this is true in this specific case, since we created the data using
only a quadratic function)

Figure11.3 shows the fit of this new model to the dataset. While the black line
is fairly “close” to each of the individual datapoints, one can imagine that the line
actually partially models a signal which should have been regarded as noise.9 For
example, the little jitter at age = 75 in the Figure seems to reflect the particularities
of this dataset more then the actual relationship between age and time in the
population.

Model M3 is a good example of a model that overfits the data. Often this is
thought of a model having high variance and low bias, where variance is the error
from sensitivity to small fluctuations in the sample (noise), while bias is the error that
results from erroneous assumptions in the model (see for a more elaborate discussion
of theBias-Variance tradeoffHastie et al. 2013).A classical challengewhenmodeling
data is to decide how much bias or variance to introduce: Model M2 is a model with
higher bias then M3, but with lower variance. In this case, since we created the data
ourselves, we know that M2 fits the data generating process more closely than M3.

The idea of overfitting can also be illustrated by comparing the within-sample and
out-of-sample prediction errors of the different models. We start by computing the
within sample (so for the 100 datapoint is our dataset) mean squared prediction error

9Actually, in this specific case we know that M3 is modeling noise: we generated the data using
only a 2nd order polynomial and some Gaussian noise.



11 Using Generalized Linear (Mixed) Models in HCI 259

Error =
∑n

i=1(ŷi − yi )

n
. (11.1)

for both M2 as well as M3 on our simulated dataset.

The mean squared error is, as expected, (much) lower for M3 since the fitted line
“matches” the observations better.

However, when creating a new dataset and subsequently using the estimated β’s
obtained on the original sample to predict scores out of sample we see:
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Note that on this new dataset the out-of-sample prediction error of model M2,
containing more bias, is actually lower then that of M3. This indicates that M3 was
indeed overfitting the data.10

While in this case we were fully aware of the true data generating model, this
is often not the case. Thus, often in practice we do not know where to stop adding
variance (e.g., including more predictors. A higher variance of the model will lead
to increased within sample fit of the model, but realistically we would like to select
a model that also performs well for new datasets: we want to prevent explicitly
modeling the noise in the sample.

One method of addressing this problem is the addition of a so-called regulariza-
tion term to the linear model: this additional (mathematical) term introduced in the
problem of finding the “best” fitting line “punishes” extremely large values of β and
essentially introduces bias in the model even if k is large.11

We can use the lm.ridge function in [R] to fit a regularized model: again, this
is a model in which the size of the coefficients is penalized to introduce bias:

The lambda argument controls the size of the penalty: when lambda= 0 the
ridge regression and the standard linear model will give the exact same result since
no penalty is introduced. The following table compares the first 5 coefficients of
both the unpenalized polynomial model, as well as the ridge regression model using
lambda = 0.1:

Note that the fitted values for the first few terms of the regularized model M4
are much closer to the true values, β = {320, 25, 0.3}, then fitted values in the large
polynomial model (M3). Lambda is referred to as a tuning parameter and needs to
be selected by the analyst. While several methods for choosing lambda exist, in
most cases it is selected by inspecting the out-of-sample predictions of the model

10This procedure outlines the standard methods that are used to asses overfitting: by splitting up
a dataset into a training-set and a test-set one can fit models on the training-set, and subsequently
evaluate them on the test-set. If a model performs well on the training-set, but badly on the test-set
(in terms of error), then the model likely overfits the data.
11Regularization changes the definition of “best” line to one in which we minimize a term that
looks like

∑n
i = 1(y − Xβ)2 + λ f (β). Here, f (β) is some function whose output grows as the

size of the elements of β grow. Using the sum of the absolute elements of β for f (x) is called the
“Lasso”, while using the L2 norm is called “ridge” regression. Here, λ is a tuning parameter which
determines the magnitude of the penalty.
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M3 M4
1 14724907.77 155.42
2 −4489768.72 31.89
3 607555.30 −0.28
4 −47892.92 −0.00
5 2418.58 −0.00

and choosing a value of lambda that minimizes the out-of-sample error. In practice
we often use a procedure called cross-validation (Cross validation is described in
detail in Hastie et al. 2013): across multiple subsampled datasets from the original
data the out-of-sample error is computed and lambda is “tuned” to obtain a low
out-of-sample error.

Regularization can be a feasible solution in cases where the number of predictors
k is large compared to the number of datapoints n. This often occurs in HCI when a
large number of features can be measured (properties of the product and of the user),
but it is costly to do a large experiment; in such cases the number of observations
n is limited, but the number of possible predictors k is large. Also, regularization
can be extremely useful when the focus of the modeling effort is on out-of-sample
prediction instead of testing or estimatingmodel coefficients. For example, in HCI, if
we are interested in predicting task-completion times for new users, wemight benefit
in our predictions from the use of regularization.

11.4 Generalized Linear Models

Mathematically, we have up to now been assuming y to be (conditionally) normally
distributed y|X ∼ N (Xβ, σ 2). Practically, we were also assuming y to take on all
the possible values on a real number line. However, what do we do for other types
of observations? We often have observations in which people “yes” or “no” make a
decision; for example, based on their age, users might decide to abandon using the
Mango watch altogether. We would then have a dataset very similar to our previous
example, but this time y ∈ {0, 1}. The following code simulates such a dataset:

Note that here we use first compute the probability of adopting the watch using
a scheme very similar to our earlier discussion, but this time we use the inverse
logit function in the arm package to “rescale” the outcomes which we obtained to
fall within the range of 0 to 1 (probabilities). The invlogit function, y = 1

1+ e−x



262 M. Kaptein

−10 −5 0 5 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

in
vl

og
it

> # Quick plot of the invlogit function:
> plot(invlogit, xlim=c(-10,10), ylim=c(0,1))

Fig. 11.4 Quick plot of the inverse logit function

> # scatter plot of the choice to adopt (0,1) of the Mango watch
> # as a function of age (note the call to "jitter()")
> plot(x=data3$age, y=jitter(data3$adopt))

Fig. 11.5 Quick plot of the generated data

is quickly plotted in Fig. 11.4. The invlogit function maps a range of values
from −∞ < x < ∞ to 0 < y < 1 using a continuous function. Thus, we end up
with a dataset describing a (quadratic) relationship of age to the probability of adopt-
ing the mango watch. The line adopt <- rbinom(n, 1, prob.adopt)
generates, from the predicted probabilities, the actual observations y ∈ {0, 1}.

Figure11.5 provides a quick look at the data and shows that thosewith a“medium”
age are likely to use the mango watch, while those who are either old or young are
less likely to use the watch.12

12Note the use of jitter to display the values of adopt. Since these observations are ∈ {0, 1},
plotting the values directly would clutter the figure. The jitter command adds a slight random
variation to the observed values.
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Once we have simulated (or, in a real case, collected) a dataset denoting the age
of users and their adoption of the watch, we could wonder how to best model the
data. One choice could be to model the data using a (regularized) linear model; the
models we have just discussed. However, next to a number of more technical issues13

fitting a linear model would lead us to fit a model that would predict values that are
unrealistic: the linear model would predict values for y anywhere on the real number
line, while we know that y in reality only takes up values of 0 or 1. Hence, the
standard linear model does not seem to work well for this type of data. This is a more
general problem: for example, if we observe count data then we know the data has
only integer values and is truncated at 0; none of these limitations would be included
in the model if we used a linear model to model counts.

A very versatile method to deal with“non-normal” (conditionally) dependent data
is to use a linearmodel in combinationwith a so-called link function: the link function
can be thought of as a mapping of the values predicted by the linear model to values
within the range of the expected value of the dependent variable. More technically,
it links the expected value of the dependent variable, conditional on the predictors,
to the linear part of the model. Models using link functions are called Generalized
Linear Models (GLMs). So, while the linear model predicts the expected value of
the outcome y given X directly:

E[y|X ] = Xβ (11.2)

GLMs use a link function L ():

E[y|X ] = L (Xβ) (11.3)

and clearly the linear model is a special case of the generalized linear model where
L (x) = x . Note that in the above formulas we used matrix notation, capital X and
β, to denote the linear part of the model which allows us to write models using
(possibly) a large number of predictors k in a concise way.

For the case of adoption of the Mango watch the expected value of adoption
of the Mango watch is the probability of adopting the watch: Pr(adopt = 1|X).
Since probabilities run from 0 to 1, we need a link function that maps the continuous
values produced by the linear part to a scale ranging from 0 to 1: indeed, the inverse
logit function that we used to simulate the data is an often used choice (For a more
elaborate discussion of link functions see, e.g., Gelman and Hill 2007). The full
model specification of the so-called logit model (also known as the logistic regression
model) then becomes:

13For example the fact that for the linearmodel, one of the assumptions—in themaximum likelihood
framework—is the fact that the conditional expected value and the variance of the observed variable
are unrelated: while this is true for normally distributed outcomes, it is not generally true for many
other outcome types.
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> # Create age squared in the new dataset:
> data3$age2 <- data3$age^2
> # Fit the Generalized Linear Model:
> GM <- glm(adopt ~ 1 + age + age2, data=data3, family=binomial(logit))
> # Make a scatterplot of the data:
> plot(data3$age, jitter(data3$adopt))
> # Add the predicted line to the plot:
> data3 <- data3[order(data3$age), ]
> lines(data3$age, predict(GM, data3, type="response"))

Fig. 11.6 Predicted probability of adopting the Mango watch as a function of age

E[y|X ] = Pr(y = 1|X) = L (Xβ) = 1

1 + e−Xβ
(11.4)

As we did for our linear model, we can now look for a “best” fitting line as a
function of β.14 The following code uses the glm function in [R] to fit a generalized
linear model to the data we have just created. Here, in the glm call we specify the
link function using the family=binomial(logit) argument.

Next, we plot the raw data and superimpose a line depicting the expected value of
y given the different values of age. Note that here we use type="response" in
the predict function to indicate that we want to retrieve the expected values (by

14For more info on the actual methods of finding a “best” line in this context, using Maximum
Likelihood estimation, see (Hastie et al. 2013).
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default, predict gives the predictions of only the linear part of the model). For the
code and output see Fig. 11.6.

Link functions provide a very versatile tool to model, using the basic ideas derived
from linearmodels, all kinds of dependent variables.Note thatwe have only scratched
the surface here of the use of generalized linear models. The logit link is useful for
Bernoulli or Binomial distributed dependent variables, while many other links for
(e.g.,) Poisson or Exponentially distributed dependent variables exist. Many of the
standard methods of obtaining confidence intervals of the estimated β’s, performing
null-hypothesis significance tests, or comparing models are provided by [R] in a
fashion that is very similar to these procedures in the case of linear models (See for
more details Gelman and Hill 2007).

11.5 Linear Mixed Models

We have now (briefly) discussed methods to model observations both when these are
assumed to be conditionally normally distributed (linear models), as well as for other
types of distributions of the dependent variable (generalized linear models). In this
section we introduce so-called “Mixed Models”, which are provide another exten-
sion of the linear modeling framework. The main conceptual difference is that in
GLMs we assumed the observations to be conditionally independent, while in mixed
models (LMMs or GLMMs) we deal with data in which the outcome of interest has
some dependency structure: for example, if we consider multiple observations within
individuals, then it is likely that the observations within an individual are related.
Also, when we conduct a usability study of educational software we likely observe
multiple pupils per school class and the observations of pupils within the same class
are likely related. Or, if we have observations of the usage of a device—for exam-
ple the Mango watch—within different countries, then there might be relationships
between the observations within a country.

To explain mixed models, we again simulate some data that could motivate the
use of Mixed Models in a research context. The code below creates a dataset again
describing the relationship between the age of a user (age), and the duration of usage
of the Mango watch (time), but this time we also have information regarding the
twenty different countries of origin of the user of the watch. Note that in each country
the baseline usage duration (operationalized by the different intercepts of the model
for each country in this case) is distinct.
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The call to ddply is quite involved so we will explain it in a bit more detail:
ddply takes as first input argument a matrix (the 100 × 3 matrix of simulated
datapoints in this case), and the second argument .(country) specifies that the
original dataset should be passed to the third argument (a custom function in this
case) in batches grouped by the different values of country. Hence, the function
is executed 20 times, once for each country, and for each country it simulates the
dependent variable y. Different from the earlier listings of simulation code, the
intercept of the model, β0 are different for each country.

After generating the data we can inspect the data by plotting it and see that while
the overall trend is similar everywhere (a quadratic effect of age on usage time), the
starting points (intercepts) for the country differ: some countries apparently use the
watch longer then others. Figure11.7 shows an overview of the data that we just
generated. Note that (e.g.,) the country indicated by the solid dots has consistently
lower values then most of the other countries.

We could nowwonder how to analyze such a dataset. Sincewe are familiar already
with linear models, we have two logical courses of action:

1. We fit a so-called pooled model: We ignore the country structure and simply fit
a model that ignores the country variable.

2. We fit a so-called unpooled model: In effect, we fit different models for each
country.
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> # Use lattice for easy "group-by" plots:
> library(lattice)
> # Use only black and white:
> lattice.options(default.theme = standard.theme(color = FALSE))
> # Create a plot grouped by country:
> xyplot(time ~ age, data=data, groups=country)

Fig. 11.7 Relationship between age and usage time in multiple countries. Plot created using
package lattice for easy splitting based on the countries. The data in each country uses its
own symbol

While these two approaches could both be sensible in some cases, they both suffer
from a number of drawbacks. The most general drawback is the fact that at different
“levels” of the data (e.g., within a country or between countries), the effect under
study might differ.

To illustrate the latter, suppose we would collect a dataset like that depicted in
Fig. 11.8, where we see simulated data of the relationship between x and y for five
distinct groups. Clearly, fitting a pooled model—ignoring the groups—would lead
us to conclude that x has a positive effect on y, while if we focussed on each group
individually (unpooled), the effect in each case would be negative. This “reversal”
of effects is generally known in statistics as Simpson’s paradox, and should make
one very cautious when dealing with grouped data. What is also often problematic
about the above suggested approach is that for individual groups—when we are
fitting unpooled models—the size of the data is often limited, leading to very noisy
estimates of the parameters; often we only have a limited number of observations
within a school class, individual, or country.

Mixed models can be though of as providing a way of modeling hierarchical (or
otherwise dependent) data which is “in between” the two extremes of the pooled and
the unpooled approach: within the mixed modeling framework we specify batches of
parameters that we link together: For example, we might fit a model with a different
intercept in each country of origin, but we do not use distinct dummies for each, but
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Fig. 11.8 Plot illustrating a possible reverse effect at different levels

rather we make a distributional assumption regarding the intercepts. We assume that
the intercepts are random draws from a distribution of country level effects.

The mixed modeling approach can be illustrated using a more formal notation:

• In pooled models we fit a model of the following form y = β0 + β1age + · · · .
We do not explicitly include the countries in the model.

• In an unpooledmodel we fit a model of the following form: y = β0C1 + β1C2 +
β2C2 + · · · + β j age + · · · where C1, . . . , Ck would be (dummy) indicators for
the countries. Hence each country has its own intercept. Note that we have to
estimate this parameter for each country.15

• Using hierarchical models the model would be y = β[k] + β1age + · · · where
β[k] ∼ N (β0, σ

2
C). Here, with the β[k] notation, we identify a random effect: we

assume that the intercepts for each country themselves can be modelled as being
drawn randomly from a normal distribution of country intercepts with mean β0

and variance σ 2
C . Note that in this case we only estimate two parameters to model

all the country intercepts.16

Effectively, the assumption that the country intercepts are drawn from a normal
distribution17 leads to estimates for each country that are “shrunk” together: large val-
ues of β[k] for individual countries are effectively penalized since these are less likely

15Often, in a complete unpooled approach, the analyst actually fitsmultiple, completely independent
models. Then, the slopes would also differ per country. Here we focus only on the intercept for
illustration purposes.
16From the above it can be seen why also more formally mixed models can be regarded “in-
between” pooled and unpooled models: A pooled model is the special case of a mixed model where
β[k] ∼ N (β0, 0), and an unpooled model is the special case where β[k] ∼ N (β0,∞).
17The analyst could also include different distributional assumptions regarding the “batches” of
coefficient. This however is outside the scope of this article.
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given the normality assumption. This is very similar to the penalties we discussed
for regularized models.

Intuitively the shrinkage can be motivated as follows: if a country has (a small
number of) observations which are all (extremely) high compared to observations
in other countries, then—assuming that the data contains noise—this country likely
has a number of “upwards” errors: collecting more measurement for the country
likely decreases its mean. The likely decrease is informed by the information that
is “borrowed” from the other countries. In this sense mixed models introduce bias
in the estimates of the country level intercepts, but this bias (as was the case for
regularization), likely improves the out of sample predictions of the models (For
more on shrinkage and the relationships to mixed models please see Morris and
Lysy 2012).

11.5.1 Random Intercept Models

The lme4 package provides a convenient way of fitting mixed effect models. Lets
quickly examine the simulated Mango watch dataset for different countries using
a pooled, an unpooled (at least in the intercepts), and a mixed modeling approach.
First, we focus on the pooled model. The estimated coefficients are presented in
Table11.2. In this model the possible differences between the countries are not mod-
elled explicitly.

We then fit the unpooled model, and the estimated coefficients are presented in
Table11.3.
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Table 11.2 Summary of the completely pooled model fit to the country dataset

Estimate Std. error t value Pr(>|t|)
(Intercept) 348.9431 113.6533 3.07 0.0028

age 22.5714 4.8881 4.62 0.0000

age2 −0.2739 0.0480 −5.70 0.0000

Table 11.3 Summary of the unpooled model fit to the country dataset. A number of the intercepts
are omitted because of space limitations

Estimate Std. error t value Pr (>|t|)
as.factor(country)1 250.2092 82.1222 3.05 0.0032

as.factor(country)2 272.8883 87.2648 3.13 0.0025

as.factor(country)3 589.5119 85.4191 6.90 0.0000

as.factor(country)4 342.6736 89.2812 3.84 0.0003

… … … … …

as.factor(country)19 404.8110 74.1133 5.46 0.0000

as.factor(country)20 361.2721 87.7444 4.12 0.0001

age 20.5396 3.0617 6.71 0.0000

age2 −0.2555 0.0299 −8.54 0.0000

For comparison we can contrast with these fitted intercepts with the actual inter-
cepts used when generating the data. The following commands print the standard
deviations of the estimated and true intercepts:

Note that here the standard deviation of the estimated intercepts is too high; this is
caused by the relatively low number of datapoints at the country level which results
in overfitting of the model.
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Finally, we can use the the lmer function from the lme4 package to fit a mixed
model:

The term …+ (1 | country) in the call to the lmer function indicates the
fact that we want to fit a “random” effect for the intercepts of different countries.
Using this syntax we are fitting a model in which the intercepts are assumed to be
distributed normally around some mean β0 with a variance σ 2

C .
In the output we find both the so called fixed effects as well as the random effects.

The fixed effects provide the estimates of the coefficients β that are the same for all
levels of the grouping factor (countries) in this case. Here we find that the overall
intercept (the mean intercept over countries) is 320.78, and thus very close to it’s
actual value. Second, we find β1 = 25.33 and β2 = −0.30, again very close to the
values we used to generate the data. Finally, the random effect for country estimates
σ 2

C , and it thus quantifies the “spread” of the country level intercepts. The estimated
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standard deviation of the country level intercepts σ̂C = 107.71 is also fairly close
to its true value σC = 100. The final random effect coined “Residual” provides an
estimate of the error variance of the model (For more details see, e.g., Gelman and
Hill 2007).

11.5.2 More Random Effect Specifications

The above provided an example of a very simple mixed model: here only the country
level intercepts where assumed to be related. However, one could easily imagine the
fact that the effect of age might also differ between countries, or that other types of
grouping are present in the data (e.g., we do not only know the country of origin,
but we also know the primary education of the user of the Mango watch; this would
provide another grouping factor of the data—another dependency structure—that is
not nestedwithin the countries). Thelmer function allows for a number of alternative
specifications:

• Using would indicate not
only random intercepts for different countries, but would also introduce random
“slopes”: now the effect of x1 on y can differ for different countries. Technically
the intercepts and slopes are now assumed to be generated from a multi-variate
normal distribution with mean vector (βk, βx1) and co-variance matrix Σ .

• Using would
introduce not merely a random intercept for countries, but also a random intercept
for education, the possible second grouping present in theMango watch data. This
latter model is often referred to as a crossed-random effects model.

The package lme4 is very versatile, and one easily fits very complex models to the
data. One should be careful not to overcomplicate the analysis. A recommended
check after fitting models is to generate data from the model (again using the
predict function) and comparing the predicted outcomes with the observed out-
comes. However, despite possible complications, nested (or otherwise dependent)
datastructures are omnipresent in HCI, and thus mixed models often provide a useful
addition to our standard hierarchical modeling techniques.

11.5.3 Generalized Mixed Models

After discussing LMs, GLMs, and LMMs, a logical next step is the introduction of
link functions when using mixed models. This leads to the use of so-called Gener-
alized Linear Mixed Models. Conceptually the step from LMMs to GLMMs is the
same as that from LMs to GLMMs: we can introduce a link function given spe-
cific distributional assumptions regarding the dependent variable. In [R] the function
glmerwhich is also provided in the lme4 package can be used to fit GLMMs. Here
we can again use the family= argument to specify the link function.
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11.6 Conclusions and Recommendations

In this chapterwe have introduced the use of [R] for fittingLMs,GLMs, andGLMMs.
We have tried to focus on simulation and plotting of the data (as well as inspection
of model fit), as opposed to statistical testing since testing is heavily discussed in
other chapters of this volume. GLMMs provide an extremely powerful framework
for analyzing a large range of possible datasets. We have tried to illustrate cases
where the data are dependent (the country example), or where the dependent data
where not conditionally normally distributed (the adaptation of the watch “yes” vs
“no” example using logistic regression).

We encourage readers to try out the here presented examples by themselves, and
inspect the model objects in detail. But we would also like to refer interested readers
to additional materials. We recommend the following:

• A more extensive guide to LMs, GLMs, and GLMMs and the use of [R] to fit
these models can be found in Gelman and Hill (2007). This book is referenced
throughout the Chapter; however, it is by no means the only book on the topic.
We just regard this specific book a very good starting point before digging into the
more theoretical discussions of (G)L(M)Ms.

• A Bayesian approach to many of the methods discussed here can be found in
Gelman et al. (2013). The Bayesian framework—other then the frequentist frame-
work used throughout the chapter—provides an often useful and more natural
extension to the above presented modeling techniques. For introductions into the
Bayesian “way of thinking” see also Chaps. 8 and 9 of this book.

• Amore theoretical discussion on issues such as overfitting, the bias-variance trade-
off can be found in (Hastie et al. 2013).

• A discussion of (G)LMs from a machine learning point of view can be found in
(Bishop 2006).

• LMs,GLMs, andGLMMs are already being used routinely inHCI analysis. Exam-
ples are Kaptein and van Halteren (2012), who use GLMMs to analyze the out-
comes of their experiments evaluating a persuasive technology, and (Kaptein and
Eckles 2012), where the authors use a LMM to estimate the heterogeneity in the
effects of persuasive messages.
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Chapter 12
Mixture Models: Latent Profile and Latent
Class Analysis

Daniel Oberski

Abstract Latent class analysis (LCA) and latent profile analysis (LPA) are
techniques that aim to recover hidden groups from observed data. They are simi-
lar to clustering techniques but more flexible because they are based on an explicit
model of the data, and allow you to account for the fact that the recovered groups
are uncertain. LCA and LPA are useful when you want to reduce a large number of
continuous (LPA) or categorical (LCA) variables to a few subgroups. They can also
help experimenters in situations where the treatment effect is different for different
people, but we do not know which people. This chapter explains how LPA and LCA
work, what assumptions are behind the techniques, and how you can use R to apply
them.

12.1 Introduction

Mixture modeling is the art of unscrambling eggs: it recovers hidden groups from
observed data. By making assumptions about what the hidden groups look like, it is
possible to get back at distributions within such groups, and to obtain the probability
that each person belongs to one of the groups. This is useful when:

• You measured one thing but were really interested in another. For example, how
students answer exam questions is indicative of whether or not they have mastered
the material, and how somebody you chat with online reacts to your messages is
indicative of them being human or a bot;

• You fit a model but suspect that it may work differently for different people, and
you are interested in how. For example, when designing the information given to
vistors of a birdwatching site, putting up signs with just the Latin names of birds
is helpful to some people and likely to annoy others. When investigating the effect
of putting up such signs it might be helpful to take this into account.
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Table 12.1 Names of different kinds of latent variable models

Observed Models for means Regression models

Latent Latent

Continuous Discrete Continuous Discrete

Continuous Factor analysis Latent profile
analysis

Random effects Regression
mixture

Discrete Item response
theory

Latent class
analysis

Logistic ran. eff. Logistic reg. mix.

• You have a lot of different variables—too many to handle and interpret—and
would like to reduce these to a few easily interpretable groups. This is often done
in marketing where such groups are called “segments”.

There aremany other uses of mixturemodeling—toomany to explain here. Suffice to
say that by understanding mixture modeling, you will make a start at understanding a
host of other statistical procedures that can be very useful, such as regression mixture
modeling, noncompliance in experiments, capture-recapture models, randomized
response, and many more. Moreover, mixture models are popular tools in computer
vision, such as face detection and hand gesture recognition (e.g., Yang and Ahuja
2001).While these applications go beyond the scope of this chapter, it may be helpful
to keep in mind that they are extensions of the models we discuss here.

Mixture modeling is a kind of latent variable modeling: it helps you to deal with
situations where some of the variables are unobserved. The specific thing about mix-
ture modeling is that is concerns latent variables that are discrete. You can think of
these as groups, “classes”, or “mixture components”—or as categories of an unob-
served nominal or ordinal variable. Depending on whether the observed variables
are continuous or categorical, mixture models have different names. These names,
together with the names of the other kinds of latent variable models, are shown in
Table12.1, in which the rows correspond to continuous or discrete observed vari-
ables, and the columns to continuous or discrete latent variables. The left part of
the table concerns models in which the groups are based on differences in means,
and the right part concerns models in which the groups are based on differences
in regression-type coefficients. The two types of models dealt with in this chapter
are indicated in bold: “latent profile analysis”, which tries to recover hidden groups
based on the means of continuous observed variables, and “latent class analysis”,
which does the same for categorical variables.1 Some of the other models in the table
are explained in other chapters.

A different name for latent profile analysis is “gaussian (finite) mixture model”
and a different name for latent class analysis is “binomial (finite) mixture model”.
Its Bayesian version is popular in the computer science literature as “latent Dirichlet
allocation”. Here we will stick to the terminology LCA/LPA, which is more common
in the social sciences.

1Confusingly, sometimes latent class analysis is used as a broader term for mixture models.
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Height (meters) Height (meters)

1.4 1.5 1.6 1.7 1.8 1.9 2.0 1.4 1.5 1.6 1.7 1.8 1.9 2.0

Fig. 12.1 Peoples’ height. Left observed distribution. Right men and women separate, with the
total shown as a dotted line

12.2 Mixtures of Continuous Variables: Latent Profile
Analysis

For this chapter, I measured the height of every human being on the planet.2 I then
plotted the distribution of heights measured in Fig. 12.1 (right-hand side).

Interestingly, the height distribution on the left-hand side of Fig. 12.1 is clearly
not normal. It has two peaks that look like they might come from two groups. Now,
you may have happened to guess what these groups are: women and men. If I had
recorded each person’s sex, I could confirm this by creating my picture separately for
men and women, as shown on the right-hand side of Fig. 12.1. Women differ in their
height according to a normal distribution, as do men—it is just when you combine
the two that the non-normal picture emerges.

Unfortunately, I forgot to record peoples’ sex, and now it is too late. When you
performan experiment thismight happen to you too—or itmight havehappened to the
people who collected your data. For example, a usability test might omit peoples’
handedness. Even more commonly, you may need information that is difficult or
impossible to get at directly, such as an attitude, feeling, or socially desirable behavior.
In all of these cases you will be in a similar spot as I am with the height data: I think
there might be hidden groups, but I have not actually recorded them. Latent class
analysis is concerned precisely with recovering such hidden (“latent”) groups.

So how can we recover the picture on the right-hand side of Fig. 12.1? One idea is
to split the sample on someguess about peoples’ sex andmake histogramswithin each
guessed group. Unfortunately, it can be shown that this will never give the picture on
the right (McLachlan and Peel 2004, pp. 26–28). Without extra information, the only
way to get exactly that picture is to guess each person’s sex correctly, but the only
information I have to guess sex is height. And although a random man is likely to be
taller than a randomwoman, inevitably people like Siddiqa Parveen, who is currently
the world’s tallest woman, and Chandra Bahadur Dangi, the shortest man, will cause
me to count incorrectly, and create a picture that is at least slightly different from the
“true” one on the right.3

2This is not true, but the rest of the chapter is.
3Apparently, Ms. Parveen is 213.4cm and Mr. Dangi is 48.3cm.



278 D. Oberski

This is where mixture modeling comes to the rescue. Because it turns out that,
while we will never know each person’s sex for certain, we can still recover a picture
very close to that on the right-hand side of Fig. 12.1. So we can discover the distrib-
utions of height for men and women without ever having observed sex! Even more
astoundingly, as more and more data are gathered, we will more and more correctly
surmise what the distributions for men and women look like exactly.

There is a well-known saying that “there is no such thing as a free lunch”. I have
personally falsified this statement on several—sometimes delicious—occasions. But
while false in real life, inmathematics this statement is law.Wewill pay in unverifiable
assumptions—on this occasion the assumption that height is normally distributed for
men and women. This assumption is unverifiable from just the observed data because
the problem is exactly that we do not know sex. So when faced with data that produce
a picture like the one on the left-hand side of Fig. 12.1, wewill need to simply assume
that this picture was produced by mixing together two perfect normal distributions,
without us being able to check this assumption.

The corresponding mathematical model is

p(height) = Pr(man)Normal(μman, σman) + Pr(woman)Normal(μwoman, σwoman),

(12.1)
which I will write as

p(height) = π X
1 Normal(μ1, σ1) + (1 − π X

1 )Normal(μ2, σ2). (12.2)

So we see that the the probability curve for height is made up of the weighted sum
of two normal curves,4 which is exactly what the right-hand side of Fig. 12.1 shows.
There are two reasons forwritingπ X

1 instead of Pr(man): first, when fitting amixture
model, I can never be sure which of the “components” (classes) corresponds to which
sex. This is called the “label switching problem”. Actually, it is not really a problem,
but just means that X is a dummy variable that could be coded 1 = man, 2 = woman
or vice versa. The second reason is that by using a symbol such asπ X

1 , I am indicating
that this probability is an unknown parameter that I would like to estimate from the
data. Note that the superscript does not mean “to the power of” here, but is just means
“π X

1 is the probability that variable X takes on value 1”. Thisway ofwriting equations
to do with latent class analysis is very common in the literature and especially useful
with categorical data, as we will see in the next section.

Assuming that both men’s and women’s weights follow a normal distribution, the
problem is now to find the means and standard deviations of these distributions: the
within-class parameters (i.e.μ1,μ2, σ1, and σ2).5 The trick to doing that is in starting
with some initial starting guesses of the means and standard deviations. Based on
these guesses we will assign a posterior probability of being a man or woman to
each person. These posterior probabilities are then used to update our guess of the
within-class parameters, which, in turn are used to update the posteriors, and so

4As can be gleaned from the figures, by “normal curve” I mean the probability density function.
5We also need to know the proportion of men/women π X

1 but I will ignore that for the moment.
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Fig. 12.2 EM algorithm
estimating the distribution of
height for men and women
separately without knowing
peoples’ sex

Fig. 12.3 Tall woman or
short man? The probability
density of observing a person
1.7m tall is a weighted sum
of that for men and women
separately

on until nothing seems to change much anymore. This algorithm, the “expectation-
maximization” (EM) algorithm, is depicted inFig. 12.2. Theonline appendix contains
R code (simulation_height.R) that allows you to execute and play with this
algorithm.

How can the posterior probabilities be obtained (step 1), when the problem is
exactly that we do not know sex? This is where our unverifiable assumption comes
in. Suppose that my current guess for the means and standard deviations of men and
women is given by the curves in Fig. 12.3, and I observe that you are 1.7m tall. What
then is the posterior probability that you are a man? Figure12.3 illustrates that this
posterior is easy to calculate. The overall probability density of observing a person
of 1.7m is 2.86, which we have assumed (in Eq.12.2) is just the average of two
numbers: the height of the normal curve for men plus that for women. The picture
shows that a height of 1.7m is much more likely if you are a man than if you are a
woman. In fact, the posterior is simply the part of the vertical line that is made up
by the normal curve for men which is 2.20/(2.20 + 0.66) = 2.20/2.86 ≈ 0.77. So,
if all I know is that you are 1.7m tall, then given the current guess of normal curves
for men and women, the posterior probability that you are a man is about 0.77. Of
course, the posterior probability that you are a woman is then just 1 − 0.77 = 0.23,
since both probabilities sum to one.

Now for step (2) in Fig. 12.2. I apply my earlier idea: guess people’s gender, and
then count their height towards men’s or women’s means and standard deviations,
depending on the guess. Recognizing that I am not 100% certain about any one
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person’s sex, however, instead of guessing “man” or “woman”, I will use the posterior
probabilities. For example, if a 1.7m-tall person has a 0.77 posterior chance of being
a man and (therefore) a 0.23 chance of being a woman, I will add (0.77)(1.7) to my
estimate of the mean of men but also (0.23)(1.7) to that for women. So each person’s
observed value contributes mostly to the mean of the sex I guessed for them but also
some to the other sex, depending on how strongly I believe they are a man or woman.
If I have no idea whether a person is man or woman, that is, when the probability is
0.50:0.50, the height contributes equally to the guessedmeans of both. InFig. 12.3 this
occurs where the two curves cross, at about 1.65. By using the posterior probabilities
as weights, I obtain new guesses for the means and standard deviations, which allow
me to go back to step (1) and update the posteriors until convergence. Note that
whereas earlier in the section this idea of guessing then calculating would not work,
the assumptions allow me to get the posterior probabilities necessary to perform this
step.

This section has shown how you might recover hidden groups from observed
continuous data. By making assumptions about what the hidden groups look like, it
is possible to get back at distributions within such groups, and to obtain a posterior
probability that each person belongs to one of the groups. There are several software
packages that can do latent profile analysis, including Mplus (Muthén and Muthén
2007) and Latent GOLD (Vermunt and Magidson 2013a). In R, this model could be
fitted using the mclust library (Fraley and Raftery 1999):

library(mclust)

height_fit_mclust <- Mclust(height)

summary(height_fit_mclust, parameters = TRUE)

As mentioned above, you can play with this example using the online appendix
(simulation_height.R).

With just one variable, we needed to pay a hefty price for this wonderful result:
an unverifiable assumption. It is possible to do better by incorporating more than one
variable at the same time; for example, not just height but also estrogen level. Both
are imperfect indicators of sex but using them together allows me to guess the hidden
group better. The next section gives an example of modeling with several categorical
variables.

12.3 Mixtures of Categorical Variables: Latent Class
Analysis

Latent class analysis (LCA) is similar to latent profile analysis: it also tries to recover
hidden groups. The difference, as you can see in Table12.1, is that LCA deals with
categorical observed variables. Another difference between LCA and LPA is that
no specific distribution is assumed for the variables: each of the observed variables’
categories has an unknown probability of being selected without this probability
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following any particular functional form. But by retracting our assumption, we also
retract the necessary payment to buy the possibility of estimating latent classes. In
LCA, this payment is made, not by assuming that the variables are distributed in any
particular way, but by assuming that within each class, the observed variables are
unrelated to each other. This assumption is called “local independence”, and tends
to create classes in which the observations are similar to each other but different from
those in other classes.

Typically, the researcher (1) determines the “best” number of latent classes K
that sufficiently explain the observed data; and (2) summarizes the results. At times,
researchers are also interested in (3) relating the most likely class membership to
some external variables not used in the model. When performing this last task, how-
ever, the researcher should be very careful to account for the uncertainty in each
observation’s class membership: failure to do so will result in biased estimates of the
class membership prediction. Modeling class membership while accounting for the
uncertainty about it is called “three-step modeling” in the literature, and can be done
in certain software packages such asMplus and Latent GOLD. Formore information,
see Bakk et al. (2013).

Suppose there are three observed variables A, B, and C , all three categorical
with six categories. The model for traditional latent class analysis is then typically
written as

π ABC
abc =

∑

x

π X
x π A|X

a π
B|X
b πC |X

c , (12.3)

where X is the latent class variable, π X
x the size of class x and, for example, π A|X

a is
the probability that variable A takes on the value a in the latent class x . Equation12.3
describes the probability of seeing any combination of values a, b, and c as depend-
ing solely on the differences in latent class sizes (π X

x ) combined with how different
these classes are in terms of the observed variables. Within the classes, the vari-
ables are unrelated (“conditionally independent”), which is reflected in the product
π

A|X
a π

B|X
b π

C |X
c .

Let’s apply LCA as an exploratory technique to the SuSScale example data with
3 time points. As a reminder, some example answers to the 10 questions in the
questionnaire are shown in Table12.2. These 10 variables are moderately related

Table 12.2 Example data from the SUS questionnaire

Time V01 V02 V03 V04 V05 V06 V07 V08 V09 V10

1 1 4 3 5 4 3 4 3 2 2 3

87 2 4 5 3 5 5 5 5 4 5 5

173 3 3 3 2 4 3 2 3 2 2 3

2 1 3 2 3 3 3 3 4 3 3 2

… … … … … … … … … … … …
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Table 12.3 Fit of the latent class models with increasing numbers of classes

# Classes Log-likelihood AIC BIC

1 –3753.32 7614.64 7806.50

2 –3441.70 7103.39 7494.22

3 –3327.72 6987.45 7577.24

4 –3245.73 6935.46 7724.22

The lowest AIC and BIC are shown in boldface

with an average correlation of 0.4. Our goal is to find K classes such that these
relationships are small within the classes, where we still need to find out the best
number of classes K .

Because the data are categorical, we apply a latent class model for polytomous
variables to the 258 observations. This is done using the poLCA package in R (Linzer
and Lewis 2011; Core Team 2012):

library(poLCA)

f <- as.matrix(dplyr::select(scale, starts_with("V")))˜Time

M4 <- poLCA(f, scale, nclass=4, nrep=50)

Here, the first command loads the library; the second command constructs an R
formula with all of the observed indicators (variables that measure the class member-
ship) V01–V10 on the left-hand side, and the covariate Time on the right-hand side
to control for any time effects. The last command fits the model with four classes.
The nrep=50 argument tells poLCA to try out 50 different starting values so that
we are certain that the best solution has been found. This is always recommended
when performing latent class analysis.

We fit the model for a successively increasing number of classes, up to four:
K = {1, 2, 3, 4}. With one class, the model in Eq.12.3 simply says the variables are
independent. Obviously if this one-class model fits the data well we are done already
since there are no relationships between the variables in that case. The first order
of business is therefore to evaluate how well the latent class models with different
numbers of classes fit the data and to select one of them. There are many measures
of model fit, the most common ones being the AIC (“Akaike information criterion”)
and BIC (“Bayesian information criterion”). These are shown for our four models in
Table12.3.

In Table12.3, lower values of the fit measures are better. The best model appears
to be the four-class model. We therefore pick that model as our preferred solution.
This procedure of choosing the lowest BIC is the most used in LCA. However, this
is an exploratory method: just as in exploratory factor analysis, it is therefore often
also possible to pick a lower or a higher number of classes based on substantive
concerns or ease of interpretation. We might only be interested in finding a small
number of broad classes, for instance, and ignore any remaining distinctions within
these classes (Fig. 12.4).
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Fig. 12.4 Output of poLCA
for the four-class model
showing the estimated
distribution of the ten
observed variables V01–V10
within each of the four
classes. The profile plot is
easier to read
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Class 3: population share = 0.28
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Class 4: population share = 0.228

V01 V02 V03 V04 V05 V06 V07 V08 V09 V10
1234567

Manifest variables

O
ut

co
m

es

P
r 

(o
ut

co
m

e)

With the argument graphs=TRUE, poLCA produces graphs that show the esti-
mated distributions of the observed variables in each latent class. These graphs can
be very useful with fewer variables of nominal measurement level, but with ten vari-
ables having six categories each, this output is rather hard to read. Instead, I created
a so-called “profile plot” for these variables in Fig. 12.5, which displays the esti-
mated class means instead of their entire distribution. This plot is usually reserved
for continuous variables, but with our six-point ordinal variables it still makes sense
to display their means.

Figure12.5 shows the profile plots for all four fitted models. In a profile plot, there
is one line for each class. The lines represent the estimated mean of the observed
variable on the x-axis within that class. So the profile plot for the two-class solution
shows that the two classes separate peoplewho give high scores on all of the questions
(class 2) from people who give low scores on all of them (class 1). Note that the class
numbers or “labels” are arbitrary. In the three-class solution, there is also a class
with low scores on all of the variables (class 1). The other two classes both have
high scores on the first five variables but are different from each other regarding the
last five variables: class 2 also has high scores on these whereas class 3 has low
scores. The four-class solution, finally, has “overall high” (class 2) and “overall low”
(class 3) classes, as well as “V01–V05 but not V06–V10” (class 4) and its opposite
(class 1).
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Fig. 12.5 “Profile plot”: estimated means of the 10 observed variables in the SuSScale data within
each of the K classes for K = {1, 2, 3, 4}

Although the four-class solution is the “best” solution, this does not necessarily
mean that it is a good solution. In particular, if our local independence model is
to provide an adequate explanation of the observed data, the relationships between
the indicators after controlling for class membership should be small. An intuitive
way of thinking about this is that the scatterplot between two indicators should
show a relationship before conditioning on the class membership, but none after this
conditioning.

Figure12.6 demonstrates thiswith two example indicators, V01 andV10. Tomake
the points easier to see in the figure they have been “jittered” (moved a bit). The top
part of Fig. 12.6 is simply a scatterplot of V01 and V10 over all 258 observations.
The shape of the points here corresponds to the most likely class membership of that
point. For example, the upper-rightmost point is a triangle to indicate that its most
likely class is the “overall high” class (class 2). It can be seen that there is a moderate
relationship between these two indicators before accounting for the classes, with a
linear correlation of 0.30. The bottom part of Fig. 12.6 splits up the same scatterplot
by class, so that each graph contains only points with a particular shape. It can be
seen that within each of the classes the relationship is almost non-existent. This
is exactly what conditional independence means. Therefore the model fits well to
the data for these two indicators. Graphs like Fig. 12.6 only make sense when the
observed score (1–6 in our case) is approximately of interval level. For nominal
variables, a different kind of fit measure is therefore necessary. One such measure is
the “bivariate residual” (BVR), the chi-square in the residual cross-table between two
indicators. At the time of writing, the BVR is not available in R but can be obtained
from commercial software such as Latent GOLD (Vermunt and Magidson 2013b).
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Fig. 12.6 Top graph the data with observed correlation 0.30 are modeled as a “mixture” of four
classes (circles, triangles, pluses, and crosses). Bottom graph these classes are chosen such that the
correlation between the variables is minimal within them

In this example we applied LCA as an exploratory method to artificial data that
were generated according to a linear factor model. The profiles then recuperate the
generated structure. In real data, there will often be additional classes. For example,
if some respondents tend to use the extreme points of a scale (“extreme response
style”) while others use the whole scale, this will lead to an additional class in which
the extremes are more likely to be chosen. Because this is a nonlinear effect, such a
finding is not possible with linear models such as factor analysis.

12.4 Other Uses of Latent Class/Profile Analysis

While the traditional use of LCA/LPA is as an exploratory technique, latent class
models can also be seen as a very general kind of latent variable modeling. Latent
class models are then a type of structural equation modeling, factor analysis, or
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random effects (hierarchical/multilevel) modeling in which the latent variable is
discrete rather than continuous (Skrondal and Rabe-Hesketh 2004). The advantage
of a discrete latent variable is that the distribution of the latent variable is estimated
from the data rather than assumed to have some parametric form, such as a normal
distribution. Hence, several special cases of latent class models are sometimes called
“nonparametric”. The term “nonparametric” here does not mean that there are no
parameters or assumptions; rather, it means that the distribution of the latent variables
is estimated. In fact, the relaxation of assumptions about the distribution of the latent
variables usually means that there are more parameters to estimate, and that some
of the assumptions, such as local independence rather than just uncorrelatedness,
become necessary to identify parts of the model.

Mixture models are also useful for analyzing experimental data. For example,
when the effect of the treatment is thought to be different in different groups, but
these groups are not directly observed: in this case “regression mixture modeling”
can be used. In R, the flexmix package (Gruen et al. 2013) is especially useful for
regression mixture modeling.

Another situation that often occurs in randomized experiments with people is that
the people do not do what they are supposed to do. For example, a patient assigned to
take a pill might neglect taking it, or a person receiving different versions of a website
based on cookies might have blocking software installed that prevents the assigned
version from coming up. When participants do not follow the randomly assigned
treatment regime, this is called “noncompliance”. For people in the treatment group,
we can often seewhether they did or did not actually receive the treatment. But simply
deleting the other subjects would break the randomization, causing a selection effect.
Therefore these people should be compared, not with the entire group of controls, but
with a hidden subgroup of controls who would have taken the treatment if they had
been assigned to it. The fact that we cannot observe this hypothetical hidden group
leads to a latent class (mixture) model, and methods to deal with noncompliance
in randomized experiments are special cases of the models discussed here. The
Latent GOLD software contains several examples demonstrating how to deal with
noncompliance. In R, a package containing some basic noncompliance functionality
is experiment (Imai 2013).

12.5 Further References

An accessible and short introduction to latent class analysis and its variations is given
by Vermunt and Magidson (2004). More background information and details on the
various types of models that can be fitted is found in Hagenaars and McCutcheon
(2002). A comprehensive introduction-level textbook is Collins and Lanza (2013).
The manuals and examples of software that can fit these models, especially Mplus
and Latent GOLD, are another great source of information. Some examples of appli-
cations of LCAandLPA to human-computer interaction areNagygyörgy et al. (2013)
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and Hussain et al. (2015). For an application to computer detection of human skin
color, see Yang and Ahuja (2001, Chap. 4).
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Part V
Improving Statistical Practice in HCI

This book has tried to introduce a number of statistical methods that might be of use
in HCI that are not covered, at least not extensively, in most social science methods
curricula. Hence, we hope to have introduced novel options to readers, and we hope
to have inspired readers to be critical regarding their own analysis, explore multiple
options, and feel empowered to not merely stick to the defaults that are present in
our field.

However, merely providing new methods will likely not change our practice, and
it is worthwhile to consider whether our statistical practices should be improved, and
how this might be done. If a change is needed (we somewhat feel it is, this partly
inspired this book), we should be aware that the change will need to be made both
by authors, as well as reviewers and editors.

This final part of the book consists of twodiscussion pieces, both aimed at critically
evaluating our current analysis practice and introducing novel ideas.

Chapter 13: Fair Statistical Communication
In Chap. 13Dr. P. Dragicevic discusses howwe canmove from the standard reporting
on NHST methods, to what he coins “fair statistical communication.” The chapter
clearly illustrates the difficulties that NHST methods have, and, like Chap. 5, dis-
cusses effect sizes. However, the chapter subsequently focuses primarily on esti-
mation: What do we want to know, and how do we quantify and visualize it? Dr.
Dragicevic makes a strong argument in favor of adopting an estimation (as opposed
to testing) approach: a view on fair statistical communication that is worthwhile for
any author or reviewer to consider.

The chapter ends with a large number of practical pointers on how to improve our
analysis and reporting in HCI. Although not every pointer might be applicable for
your study at hand, we definitely recommend authors and reviewers to consider the
tips. At http://www.aviz.fr/badstats Dr. Dragicevic maintains a collection of ideas
and tips to improve statistical communication in HCI.

Chapter 14: Should We Improve?
This book ends with a final contributed chapter by the editors. In this chapter we try
to wrap up the views presented in the book, and provide suggestions for the future.
The chapter also tries to evaluate whether our current practice needs improvements
by reviewing a number of the most cited quantitative works in our field.

http://dx.doi.org/10.1007/978-3-319-26633-6_13
http://dx.doi.org/10.1007/978-3-319-26633-6_13
http://dx.doi.org/10.1007/978-3-319-26633-6_5
http://www.aviz.fr/badstats
http://dx.doi.org/10.1007/978-3-319-26633-6_14


Chapter 13
Fair Statistical Communication in HCI

Pierre Dragicevic

Abstract Statistics are tools to help end users accomplish their task. In research,
to be qualified as usable, statistical tools should help researchers advance scientific
knowledge by supporting and promoting the effective communication of research
findings. Yet areas such as human-computer interaction (HCI) have adopted tools—
i.e., p-values and dichotomous testing procedures—that have proven to be poor
at supporting these tasks. The abusive use of these procedures has been severely
criticized in a range of disciplines for several decades, suggesting that tools should be
blamed, not end users. This chapter explains in a non-technical manner why it would
be beneficial for HCI to switch to an estimation approach, i.e., reporting informative
charts with effect sizes and interval estimates, and offering nuanced interpretations
of our results. Advice is offered on how to communicate our empirical results in a
clear, accurate, and transparent way without using any tests or p-values.

13.1 Introduction

A common analogy for statistics is the toolbox. As it turns out, researchers in human-
computer interaction (HCI) study computer tools. A fairly uncontroversial position
among them is that tools should be targeted at end users, and that we should judge
them based on how well they support users’ tasks. This applies to any tool. Also
uncontroversial is the idea that the ultimate task of a scientific researcher is to con-
tribute useful scientific knowledge by building on already accumulated knowledge.
Science is a collective enterprise that heavily relies on the effective communication
of empirical findings. Effective means clear, accurate, and open to peer scrutiny.
Yet the vast majority of HCI researchers (including myself in the past, as well as
researchers from many other disciplines) fully endorse the use of statistical proce-
dures whose usability has proven to be poor, and that are not able to guarantee either
clarity, accuracy, or verifiability in scientific communication.
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A distinguishing feature of these statistical procedures is their mechanical nature:
data is fed to amachine called “statistics”, and a binary answer is produced: either we
can trust the data or not. The idea is that for the work to qualify as scientific, inference
from data should be as objective as possible and human judgment should be put aside.
FewHCI researchers see the contradiction between this idea and the values they have
been promoting—in particular, the notion that “humans in the loop” are often more
powerful than algorithms alone (Beaudouin-Lafon 2008). Similarly, researchers in
information visualization (infovis) went to great lengths to explain why data analysis
cannot be fully delegated to algorithms (Fekete et al. 2008): computing should be
used to augment human cognition, not act as a substitute for human judgment. Every
year infovis researchers contribute new interactive data analysis tools for augmenting
human cognition. Yetwhen analyzing data from their own user studies, they strangely
resort to mechanical decision procedures.

Do HCI and infovis researchers suffer from multiple personality disorder? A
commonly offered explanation for this contradiction is that there are two worlds in
data analysis: (i) exploratory analysis (see Chap.3), meant to generate hypotheses,
and where human judgment is crucial and (ii) confirmatory analysis, meant to test
hypotheses, and where human judgment is detrimental. This chapter challenges the
view that human judgment can be left out when doing confirmatory analysis.

By mechanical decision procedures I refer to a family of statistical procedures
termed null hypothesis significance testing (NHST ). This chapter compares NHST
with interval estimation of effect sizes (or estimation for short), an alternative
approach that consists of reporting effect sizes with interval estimates and offering
nuanced interpretations (Cumming 2013). The chapter skips many technical details,
widely available elsewhere. The key difference between the two approaches lies in
their usability, and it can be summarized by the illustration in Fig. 13.1.

NHST as it is typically carried out involves (i) computing quantities called
p-values and then (ii) applying a cut-off to these p-values to determine “statisti-
cal significance”. Section13.2 focuses on the notion of p-value divorced from the
notion of a cut-off. Confidence intervals, a particular type of interval estimate closely
related to p-values, will be used as a baseline of comparison. Section13.3 discusses
the use of cut-offs to determine statistical significance and contrasts this approach

Fig. 13.1 If empirical
knowledge was coffee and
articles were coffee cups,
experiments would be coffee
machines and statistical tools
would be coffee pots.
Drawing inspired
from Norman (2002)

http://dx.doi.org/10.1007/978-3-319-26633-6_3
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with estimation. Section13.4 offers practical advice on how to achieve fair (i.e., clear
and truthful) statistical communication through estimation. Readers seeking practi-
cal advice can jump to Sect. 13.4, while those seeking for justifications can keep on
reading.

13.2 p-Values, Effect Sizes and Confidence Intervals

Though the aim of this chapter is not to offer an introduction to statistics, it is useful
to start by briefly reviewing a few basic concepts. This will make sure we understand
the examples offered throughout this chapter, and will also clarify our assumptions.

13.2.1 A Minimalistic Example and Quick Reminders

Imagine you need to help your best friend decide whether or not she should buy an
expensive pill for losing weight, and you find a scientific paper assessing the pill’s
efficacy. From the statistical report you gather the information in Fig. 13.2.

What can you conclude from this figure? How confident can you be? Where does
the uncertainty come from, exactly?

Sample and population. There is uncertainty as to the true efficacy of the pill,
partly because the pill has only been tested on a few volunteers. Ideally, these volun-
teers constitute a random sample from a population of interest (e.g., all overweight
US citizens), to which we assume your friend belongs. The mean weight loss only
informs us about the sample, but a much better measure would be the weight loss
averaged across the entire population. Neither measure will tell for sure what will
happen to your friend, but the population average would be a much better indication.

Statistical inference. Since the population average is a better measure of efficacy,
we decide it is really our measure of interest, even though it can only be guessed.
This guessing process about a hypothetical population is essentially what is meant
by statistical “inference”. It is only part of what we can do with statistics but it is
central in HCI and other domains, and this is what this chapter focuses on. Note that
other interpretations of statistical inference exist that are perhaps more accurate and
realistic for HCI experiments (Frick 1998). However, random sampling is by far the
most widespread and we will stick to it for simplicity.

Fig. 13.2 Results of an
imaginary study on the
effectiveness of a
weight-loss pill

0 1 2 3 4
Mean Weight loss (kg)

p = .009
(H  = 0)0
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Replication. In statistics, a replication typically refers to a hypothetical sample
that could have been obtained from the same (also hypothetical) population on a
different experiment. For example, had the researcher above chosen a different set
of randomly selected volunteers, the results would have been different. A concrete
illustration of multiple replications will be provided in Sect. 13.2.4.4.

Point estimate. The black dot on the chart is the point estimate of the population-
wise weight loss: it is our best bet on how much weight your friend will lose, in the
absence of any other information. A simple method for computing the point estimate
is to take the sample mean (for other methods see Sect. 13.4.3). Different replications
would yield a different point estimate, hence the uncertainty.

Interval estimate. The bar on the figure is an interval estimate. It indicates the
uncertainty around the point estimate. The most common type of interval estimate
is the confidence interval. Let us assume that a 95% confidence interval has been
provided, as it is commonly the case. Strictly speaking, a 95% confidence interval
is an interval that is obtained from a procedure that satisfies a certain property, this
property being that the intervals it generates capture the population mean 95% of
the time across many replications. In practice, it is simpler to think of a confidence
interval as a range of plausible values for the population mean (Cumming 2012;
Fidler and Loftus 2009; Schmidt and Hunter 1997). The point estimate is the most
plausible, and plausibility smoothly decreases as we move away from it—in typical
cases, the point estimate is about seven times more plausible than the confidence
limits, i.e., the interval’s upper and lower ends (Cumming 2013, p. 17). Plausibility
does not suddenly drop when crossing the limits, as values outside are implausible
but not impossible. This interpretation is an approximation and there is debate over
whether it is a good one (more on this in Sect. 13.3.1), but for now let us trust it.

p-values. The number to the left is the p-value for a null hypothesis of no effect.
This null hypothesis is the devil’s advocate claim that the pill yields exactly zero
weight loss on average across the entire population. If this was true, any result would
be caused by sampling error alone. However, not all results would be equally likely:
a consistent and massive weight loss, for example, would be quite unlikely under the
null hypothesis. This is what the p-value captures: it is the probability of observing
results as extreme as (or more extreme than) what was actually observed if the
null hypothesis was true. In practice, it is easier to think of a p-value as a measure
of strength of evidence against the null hypothesis; The closer p is to 0, the more
evidence that the pill has a some effect overall, or more specifically has a strictly
positive effect, since here the point estimate is positive. This is how R.A. Fisher, who
introduced p-values, thought we should understand them (Goodman 1999, p. 997;
Gigerenzer 2004, p. 593). A different view will be given in Sect. 13.3.1.

There is no way of interpreting Fig. 13.2 that would satisfy all statisticians and
methodologists, but a reasonable interpretation is that we can trust the pill to be
effective (p = .009 is low), and that on average theweight loss ismost likely between
0.5 to 3.5kg, maybe not too far from 2kg. Now let us see how useful p really is.



13 Fair Statistical Communication in HCI 295

13.2.2 Choosing a Pill

Your friend has now decided to buy a pill to lose weight, but there are many options
and she cannotmakeuphermind (this problem is inspired fromZiliak andMcCloskey
(2008, p. 2303)). As a proponent of evidence-based decision making, you search for
publications online, find four different studies testing different pills, write down the
results and compile them into a single chart, shown in Fig. 13.3.

Note that you only have access to the four study reports. So even if you can do
statistics and would like to compute the p-values for all pairwise differences between
pills, you cannot. This scenario is meant to illustrate to what extent already published
studies can be used to inform decisions, depending on how results are reported. A
researcher who writes a literature survey does not usually download all datasets to
re-run analyses. Also, it does not matter whether the p-values are used to assess
conditions individually (as it is the case here) or differences between conditions (as
is more often the case in HCI). It may help to think of the reported weight losses as
differences between pills and a common baseline, e.g., a placebo.

Any trained scientist will have immediately noticed the enormous amount of
uncertainty in the data—except apparently for the first pill1—and should not feel
compelled to draw any conclusion. But here you need to make a decision. Given the
data you have, which pill would you recommend?

I have shown this problem to different audiences and most people would choose
pill 4. This is indeed a sensible answer: it is reasonable to favor a pill that yields
the maximum expected utility—here, weight loss. Recall that each point estimate
shows your friend’s most likely weight loss with that pill. For your friend, pill 4 is
the best bet, and it is certainly a much better bet than pill 1.

Now suppose that pill 4 does not exist. Which pill would you pick among the
remaining ones? Look at Fig. 13.3 carefully.With some hesitation, most people reply
pill 3. Now also remove pill 3. More hesitation ensues: some people choose pill 2
while others choose pill 1. But the most reasonable choice is really pill 4, then 3,
then 2, then 1. The expected weight loss with pill 1 is way lower than with any other.
Unless your friend had bet her life that she will lose at least some weight (even one
gram), there is no logical reason to favor pill 1 over any other.

13.2.3 How Useful Is the Information Conveyed by P?

Not very much. When presented with the pill problem, many researchers will ignore
p-values, despite using them in their papers. This stems from a correct intuition: the
p-values are not only largely irrelevant to the decision, but also redundant. If needed,

1The width of confidence intervals generally increases with the variability of observations and
decreases (somehow slowly) with sample size (Cumming 2012). So either pill 1 has a much more
consistent effect or the number of subjects was remarkably larger. It is not very important here.
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Fig. 13.3 Chart showing the
results from four (imaginary)
studies on the effectiveness
of different weight-loss pills.
Error bars are 95%
confidence intervals and
p-values assume a null
hypothesis of no effect

Table 13.1 The p-value for
each pill

Pill 1 p = .0003

Pill 2 p = .056

Pill 3 p = .048

Pill 4 p = .012

a p-value can always be roughly inferred from a confidence interval by looking at
how far it is from zero (Cumming and Finch 2005; Cumming 2012, pp. 106–108).

But suppose we get rid of all confidence intervals and only report the p-values
(Table13.1). Ranking the pills based on this information only yields a quite different
outcome: pill 1 appears to give themost impressive results,with a hugely “significant”
effect of p = .0003. Then comes pill 4 (p = .012), then pills 3 and 2, both close to
.05. Such a ranking assumes that losing some weight (even a single gram) is the
only thing that matters, which is absurd, both in research and in real-world decision
making (Gelman 2013b).We should, at the very least, account for the point estimates
in Fig. 13.3, i.e., our best bets.

13.2.3.1 The Importance of Conveying Effect Sizes

Broadly speaking, an effect size is anything that might be of interest2 (Cumming
2012, p. 34). An effect size can be, e.g., the average completion time difference
between two techniques. In our case, effect sizes are simply average weight losses.

p-values capture what is traditionally termed statistical significance, while effect
sizes capture practical significance (Kirk 2001). For example, the effect of pill 1

2The term effect size is often used in a narrower sense to refer to standardized effect sizes (Coe
2002, see alsoChap.5). Although sometimes useful, reporting standardized effect sizes is not always
necessary nor is it always recommended (Baguley 2009; Wilkinson 1999, p. 599).
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(a) (b)

Fig. 13.4 Showing the most plausible effect sizes and their associated uncertainty using a p-values
with point estimates of effect sizes (here shown as bar charts); b 95% CIs around point estimates

can be said to exhibit a high statistical significance, but only a moderate practical
significance compared to others.

Practical significance is our primary focus, both in research and in real-world deci-
sion making. Thus it is widely recognized that effect sizes should be reported (APA
2010). What methodologists generally mean by this is that we should report all point
estimates of interest, or equivalently—assuming we are interested in simple effect
sizes—all sample means of interest. But since a point estimate only conveys our best
guess about the population, it is crucial to also convey information on uncertainty.
Figure13.4 shows two ways of doing this.

On the figure, each black dot has been replaced by a bar, but this is only amatter of
presentation (see Fig. 13.9 in Sect. 4). The option a (left) follows the orthodoxy and
the common recommendation to reportp-values togetherwith effect sizes (Thompson
1998). The option b (right) follows an estimation approach that consists of reporting
point and interval estimates for effect sizes, without p-values (Cumming 2012).
In the simplest cases, a and b are theoretically equivalent and convey the same
information—readers can even learn to mentally convert from b to a (Cumming
2012, pp. 106–108). However, it seems harder to mentally convert from a to b,
especially when confidence intervals are asymmetrical (e.g., confidence intervals
on proportions, correlations, transformed data, or bootstrap confidence intervals).
Regardless, the option b is clearly easier to read and more informative.

Methodologists who remain attached to p-values (APA 2010; Abelson 1995;
Levine et al. 2008b) suggest reporting everything: p-values, point estimates of effect
sizes, and their confidence intervals. No clear explanation has been offered on why
p-values are needed, as the same information is already provided by confidence
intervals. The recommendation to “complement” p-values with effect sizes and 95%
confidence intervals also misleadingly suggests that effect sizes and their associated
uncertainty are secondary information.
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Fig. 13.5 Merging a bad
design with a good design
does not necessarily yield a
good design. In statistical
communication, reporting
everything just in case can
produce unnecessary clutter
and prompt
misinterpretations

Some may still find it more rigorous to complement a confidence interval with
a p-value that captures accurately how far it is from zero. Later I offer arguments
against this idea, which can be summarized using the illustration in Fig. 13.5.

13.2.3.2 The Importance of Conveying Effect Similarity

The fictional chart in Fig. 13.6 shows the differences between three interactive infor-
mation visualization techniques in terms of average number of insights. We can
safely say that B outperforms A. We can also say that A and C are similar in that
they may yield a different number of average insights across the population, but the
difference is likely less than 0.5. We have less information on A versus D, but we
can be reasonably confident that the mean population difference is less than 2.

Since the confidence interval for C–A is roughly centered at zero, its p-value is
quite high (p = .66). It is common knowledge that we cannot conclude anything from
such a high p-value: it tells us that zero is plausible, but says nothing about other
plausible values—the confidence interval could be of any size. In fact, the p-value
for D–A is exactly the same: p = .66. Knowing the sample mean in addition to the
p-value does not help, unless it is used to reconstruct the confidence interval (assum-
ing it is possible). Had you only focused on p-values and effect sizes in your study,
you could have thrown almost all of your data away. Had you not tested technique
B, you probably would not have submitted anything.

Fig. 13.6 95% confidence
intervals showing differences
between conditions
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Knowing that two conditions are similar is very useful. Inmedicine, it is important
to know when a drug is indistinguishable from a placebo. In HCI, if two techniques
perform similarly, we want to know it. Medicine has developed equivalence testing
procedures, but confidence intervals also support formal (Dienes 2014, p. 3; Tryon
2001) as well as informal (see above) inferences on equivalence.

We can often conclude something from a confidence interval. Arguably, if an
experiment does not have enough participants and/or the effect is small (i.e., the
experiment has low power), confidence intervals can be disappointingly wide as
with D–A, making it hard to conclude anything really useful. Confidence intervals
just reveal the uncertainty in the experimental data. This is crucial information.

13.2.4 Usability Problems with p-Values

So far we have mostly focused on the amount of exploitable information conveyed
by p (i.e., its low usefulness), but a lot has been also written on how ineffective p
is at conveying that information (i.e., its poor usability). Recall that the task is to
communicate empirical findings clearly and accurately.

13.2.4.1 General Interpretation Difficulties

It is safe to assume that the general public can grasp confidence intervals more easily
than p-values. Confidence intervals simply convey the uncertainty around an average,
and they are used by the media, for example when reporting opinion polls (Cumming
and Williams 2011). Another important difference is that confidence intervals have
natural visual representations while p-values do not.

One issue specific to confidence intervals is their lack of standardization. They are
visually represented by error bars, which are also used to show several other types
of information, including standard errors (typically about half the size of 95% CIs)
and standard deviations. Researchers simply need to become more consistent and
get used to clearly indicating what error bars refer to (Cumming et al. 2007).

As evidenced by numerous studies on statistical cognition (Kline 2004; Beyth-
Marom et al. 2008), even trained scientists have a hard time interpreting p-values,
which frequently leads to misleading or incorrect conclusions. Decades spent edu-
cating researchers have had little or no influence on beliefs and practice (Schmidt
and Hunter 1997, pp. 20–22). Below we review common misinterpretations and fal-
lacies. Because confidence intervals are theoretically connected with p-values, they
can also be misinterpreted and misused (Fidler and Cumming 2005). We will discuss
these issues as well, and why they may be less damaging.
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13.2.4.2 Misinterpretations Regarding Probabilities

Again, p is the probability of seeing results as extreme (or more extreme) as those
actually observed if the null hypothesiswere true. Sop is computed under the assump-
tion that the null hypothesis is true. Yet it is common for researchers, teachers and
even textbooks to think of p as the probability of the null hypothesis being true (or
equivalently, of the results being due to chance), an error called the “fallacy of the
transposed conditional” (Haller and Krauss 2002; Cohen 1994, p. 999).

As will be discussed in Sect. 13.3.1.2, stating that a particular 95% confidence
interval has a 0.95 probability of capturing the population mean is also generally
incorrect. However, confidence intervals do not convey probabilities as explicitly
as p-values, and thus they do not encourage statements involving precise numerical
probabilities that give a misleading impression of scientific rigor despite being factu-
ally wrong (Fidler and Loftus 2009). Shown visually, confidence intervals look less
rigorous, and do not prompt overconfidence when making inferences about data.

A lot has beenwritten on the fallacyof the transposed conditional, but awidespread
and equallyworrisome fallacy consists in ascribingmagical qualities to p by insisting
on computing and reporting p-values as rigorously as possible, as if they conveyed
some objective truth about probabilities. This is despite the fact that the probability
conveyed by p is only a theoretical construct that does not correspond to anything real.
Again, p is computed with the assumption that the null hypothesis is true—i.e., that
the population effect size takes a precise numerical value (typically zero)—which
is almost always false (Cohen 1994; Gelman 2013a).

Reasoning with probabilities is possible, using Bayesian statistical methods (see
Chaps. 8 and 9). In particular, tools exist for computing confidence intervals that
convey probabilities, as will be further discussed in Sect. 13.3.1.

13.2.4.3 Misinterpretation of High p-Values

Although strictly speaking, p-values do not capture any practically meaningful prob-
ability, we can use them, like Fisher, as an informal measure of strength of evidence
against the null hypothesis (Goodman 1999, p. 997; Gigerenzer 2004, p. 593). The
closer a p-value is to 0, the stronger the evidence that the null hypothesis is false.
If the null hypothesis is the hypothesis of zero effect and p is very low, we can
be reasonably confident that there is an effect. But unfortunately, the closer p is to
1 the less we know. As seen before (see Fig. 13.6), we cannot conclude anything
from a high p-value, because it tells us that zero is plausible, but says nothing about
other plausible values. Despite this, few researchers can resist the temptation to con-
clude that there is no effect, a common fallacy called “accepting the null” which
had frequently led to misleading or wrong scientific conclusions (Dienes 2014, p. 1).
Plotting confidence intervals such as in Fig. 13.6 eliminates the problem.

http://dx.doi.org/10.1007/978-3-319-26633-6_8
http://dx.doi.org/10.1007/978-3-319-26633-6_9
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Fig. 13.7 p-values and 95%
confidence intervals obtained
by simulating replications of
an experiment (normally
distributed population with
μ = 10 and σ = 20; n = 20;
statistical power 0.56). After
Cumming (2009a)
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13.2.4.4 Misinterpretations Regarding Reliability

Many researchers fail to appreciate that p-values are unreliable and vary widely
across replications. This can be shown with simple simulations such as in the dance
of p-values video (Cumming 2009a), or in Fig. 13.7.

Running an experiment amounts to closing your eyes and picking one of the
p-values (and confidence interval) in this figure.With a statistical power3 of about 0.5
[typical in both psychology (Rossi 1990) and HCI (Kaptein and Robertson 2012)]
about any p-value can be obtained. The behavior of p-values across replications
is well understood (Cumming 2008). Suppose an experiment yields p = .05 for a
t-test. If the experiment is repeated with different participants, there is a 20% chance
that the new p-value will fall outside the interval (.00008, .44). Even if the initial
experiment yielded an impressive p = .001, there is still a 20% chance that the new
p-value falls outside the interval (.000006, .22). pwill remain appropriately lowmost
of the time, but with such a wide range of possible values, reporting and interpreting
p values with up to three decimal places should strike us as a futile exercise.

Manyfind it hard to believe that “real”p-values can exhibit such a chaotic behavior.
Suppose you run a real study and get a set of observations, e.g., differences in
completion times. You compute a mean difference, a standard deviation, and obtain
a p-value from a one-sample t-test. Now suppose you decide to re-run the same study
with different participants, again for real. Would you expect the mean and standard
deviation to come up identical? Hopefully not. Yet p is a function of the mean and the
standard deviation (and sample size, if not held constant). Thus the p-value obtained
would be different for the exact same reasons: sampling variability.

3Briefly, statistical power is the probability of correctly detecting an effect whose magnitude has
been postulated in advance. The more participants, the larger the effect size and the lower the
variability, the higher the statistical power (see also Chap. 5).

http://dx.doi.org/10.1007/978-3-319-26633-6_5
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Any statistical calculation is subject to sampling variability. This is also true for
confidence intervals, which “jump around” across replications (see Fig. 13.7). By
definition (see Sect. 13.2.1), only 95% of these will capture the population mean in
the long run. Being fully aware of the dance of confidence intervals is certainly an
important prerequisite for their correct use and interpretation. Watching replication
simulations (e.g., from Cumming (2009a)) is enough to get a good intuition, and one
can hardly claim to understand statistics without being equipped with such an intu-
ition. p-values add another layer of complexity. It is easier to remember and picture
a typical dance of confidence intervals (they are all alike) than to recall all possi-
ble replication p-intervals. Any single confidence interval gives useful information
about its whole dance, in particular where a replication is likely to land (Cumming
2008, 2012, Chap.5). Any single p-value gives virtually no such information. There
are also likely perceptual and cognitive differences: confidence intervals, especially
shown graphically, may not give the same illusion of certainty and truth as p-values
reported with high numerical precision.

Here is the R code for Fig. 13.7 to help you play with your own simulations:

require(ggplot2)
require(plyr)

replications <- 20
sampleSize <- 20
populationMean <- 10
populationSd <- 20
plotRange <- c(-15, 35)

createReplication <- function(replication) {
#set.seed(replication) # uncomment this to get the same results each time
obs <- rnorm(sampleSize, populationMean, populationSd)
ttest <- t.test(obs)
data.frame(mean = mean(obs), ci.lower = ttest[4]$conf.int[1],

ci.upper = ttest[4]$conf.int[2], pvalue = ttest[3]$p.value)
}

dance <- ldply(1:replications, createReplication)

format_p <- function(p) {
paste("p =", substring(prettyNum(p, digits=2, scientific=FALSE), 2))

}

ggplot(data = dance, aes(x = 1:replications, y = mean, label=format_p(pvalue))) +
geom_pointrange(aes(ymin=ci.lower, ymax=ci.upper), size=0.7) +
geom_text(y=plotRange[1], hjust=0) +
geom_abline(intercept = 0, slope = 0) +
geom_abline(intercept = populationMean, slope = 0, lty = 2) +
ylim(plotRange) + coord_flip() +
theme_bw() + theme(
axis.title = element_blank(),
axis.text.y = element_blank(),
axis.ticks = element_blank(),
panel.grid = element_blank(),
panel.border = element_blank(),
text = element_text(size=17))
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13.2.5 Conclusion

There rarely seems to be a good reason to report p-values in an HCI research paper,
since confidence intervals can present the same information and much more, and in
a much clearer, more usable manner. Perhaps the only remaining argument in favor
of p-values is that they are useful for formally establishing statistical significance.
But as we will now see, the notion of binary significance testing is a terrible idea for
those who want to achieve fair statistical communication.

13.3 Null Hypothesis Significance Testing Versus
Estimation

We previously mentioned that statistical significance can be quantified in a contin-
uous manner with p-values. Roughly speaking, p-values tell us how confident we
can be that the population effect size differs from some specific value of interest—
typically zero. We also explained why this notion is less useful than the orthodoxy
suggests. As if the current overreliance on p-values was not enough, a vast major-
ity of researchers see fit to apply a conventional (but nonetheless arbitrary) cut-off
of α = .05 on p-values. If p is less than .05, then the “results” are declared signifi-
cant, otherwise they are declared non-significant (the term “statistically” is typically
omitted). This is a major component of null hypothesis significance testing (NHST).

13.3.1 A Few More Reminders

To put things in context and further clarify our underlying assumptions, let us recall
a few under-discussed but important statistical ideas before proceeding.

13.3.1.1 Frequentist Statistics, Fisher and Neyman–Pearson

For the sake of simplicity let us equate the null hypothesis to the hypothesis of no
effect. Suppose that (1) many replications of an experiment are carried out; (2) each
time, the researcher concludes that there is an effect iif p < α; (3) there is in truth
no effect. In the long run, the researcher will be wrong (100× α)% of the time. A
known proportion of the time, she will be committing what is called a Type I error.

This way of interpreting p-values is termed frequentist because it involves long-
run frequencies. Originally put forward by Fisher, it was formalized into a rigor-
ous procedure by Neyman and Pearson (Goodman 1999, p. 998; Gigerenzer 2004,
p. 590–591). According to this procedure, the researcher sets α before carrying out
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the experiment, and if p < α, the researcher behaves as if there was an effect.4 If all
researchers were to apply this procedure and agree on, say, α = .05, then only 5%
of all significance tests where there is in truth no effect would yield a Type I error.

Neyman and Pearson insisted that if p < α, the researcher should behave as if
therewas an effect, and nothing else. The researcher should not only ignore p, but also
refrain from reasoning or holding any belief (Gigerenzer et al. 1990, pp. 98–105).
This view of statistics can be characterized as strictly frequentist and behavioristic.
It seems well suited for automating repeated decisions (e.g., in quality control), but
not so much for actual research practice. Fisher, who was an applied researcher,
advocated an epistemic view of statistics, where the p-value brings knowledge about
the data. Although he suggested in his earlier writings that conventional α cut-offs
can be useful (see Chap.5), he viewed p as a continuous measure of strength of
evidence. He rejected the Neyman–Pearson procedure as “childish”, “remote from
scientific research”, and intellectually “horrifying” (Gigerenzer 2004, p. 593). In turn,
Neyman and Pearson criticized Fisher for lacking rigor and consistency. Although
this may be true, fair statistical communication seems deeply incompatible with the
Neyman–Pearson view of scientists as brainless decision machines.

Today no researcher uses a strict Neyman–Pearson procedure, since virtually any
researcher carries out statistical analyses for epistemic reasons: for learning things,
drawing conclusions and making arguments. Yet some aspects of the procedure crept
into research practice and textbooks. Researchers report and often interpret p-values,
but they also apply an α cut-off and use it to make dichotomous “decisions” about
what we should believe. NHST as it is carried out today consists of this incoherent
mix of Fisher and Neyman–Pearson methods (Gigerenzer 2004).

13.3.1.2 On Interpreting Confidence Intervals

Having covered frequentist statistics, it is now possible to discuss interpretation
issues with confidence intervals. Perhaps surprisingly, confidence intervals were first
introducedbyNeyman.Theywere designed to beusedwithin his strict frequentist and
behavioristic framework: the researcher states that the confidence interval contains
the population mean, and nothing else (Morey et al. 2015, p. 3). She does not reason
or holds beliefs, only behaves as if this was true. If the confidence level is 95%, in
the long run she will be wrong about 5% of the time.

There is another link between confidence intervals and Neyman–Pearson testing.
Confidence intervals can be used to carry out statistical significance tests, since exam-
ining whether a 100× (1− α)% CI contains the value v is the same as examining
whether the p-value for H0 = v is lower than α. This can be verified in all previous
figures for α = .05 and v = 0. This use of confidence intervals is common practice
but since it is essentially the same as NHST, it inherits all of its drawbacks.

4Strictly speaking, Neyman–Pearson’s procedure involved choosing between the null hypothesis
and an alternative hypothesis generally stating that the effect exists and takes some precise value.
Accepting the null if the alternative hypothesis is true is a Type II error. Its frequentist probability is
noted β, and power is defined as 1− β. These notions are not important to the present discussion.

http://dx.doi.org/10.1007/978-3-319-26633-6_5
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Advocates of estimation reject both interpretations of confidence intervals and rec-
ommend instead the more nuanced epistemic interpretation offered in Sect. 13.2.1
(Schmidt andHunter 1997, p. 13; Cumming 2012). This approach focuses on extract-
ing as much useful information as possible from confidence intervals while recog-
nizing that they cannot be fully trusted.

There is a caveat, though. Confidence intervals are defined in a frequentist way
(see Sect. 13.2.1), and this definition is permissive enough to allow for many differ-
ent types of confidence interval procedures, including absurd ones. For example, a
random procedure that returns the real line (R) 95% of the time and the empty set
(∅) 5% of the time is a valid 95% confidence interval procedure. This challenges
the notion that any given confidence interval will necessary capture the range of
plausible values. Other pathologic cases are illustrated by Morey et al. (2015).

Bayesian interval estimates, or credible intervals (see Chaps. 8 and 9), are the
only interval estimates for which the “range of plausible values” interpretation is
formally correct (Morey et al. 2015). In addition, they produce more reasonable and
more informative interval estimates if there is reliable a priori knowledge about the
possible range of effect sizes (Gelman 2013a).

Nevertheless, there are practical reasons to use confidence intervals. In many
common situations, confidence intervals agreewith so-called objective credible inter-
vals (Greenland and Poole 2013). This is true for exact confidence intervals (Bayarri
and Berger 2004, p. 63) and bootstrap confidence intervals (Bååth 2015). In addi-
tion, confidence intervals are easier to compute than credible intervals, they are more
widely used, and they are currently better supported by statistical tools. In the context
of this chapter, their mathematical equivalence with statistical significance testing
also allows us to clearly contrast estimation thinking with dichotomous testing. Con-
fidence intervals can be seen as the “poor man’s” credible intervals, and as a good
bridge between mindless NHST and sophisticated Bayesian reasoning.

With these issues in mind, let us now compare significance testing as it is carried
out today (i.e., using α as an epistemic tool) with estimation as it is done today (i.e.,
using confidence intervals as approximations to objective credible intervals).

13.3.2 How Useful Is the α Cut-Off?

The insights yielded by the use of an α cut-off can be assessed by returning to our
first scenario and considering again the respective merits of our four pills Fig. 13.8.

As we saw previously, a sensible ranking scheme (shown to the right) would give
a preference to pill 4, then pills 2–3 (whose results are almost identical), then pill
1. Nothing is certain and we may well be wrong, especially about pills 2, 3, and 4
for which the data is very unreliable. But since we need to decide we are forced to
rank. In a scientific paper one would typically be much more conservative and would
perhaps only comment on the likely superiority of pill 4 over pill 1. Regardless, doing
statistical inference is always betting. There are good bets and bad bets.

http://dx.doi.org/10.1007/978-3-319-26633-6_8
http://dx.doi.org/10.1007/978-3-319-26633-6_9
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Fig. 13.8 The same four pills, ranked based on the outcome of statistical tests (left), and based on
an examination of effect sizes and interval estimates (right)

Good bets require relevant information. The left part of Fig. 13.8 shows how our
decisionmakerwould have summarized the studies had the authors focused onNHST
methods: pills 1, 3 and 4 had a statistically significant effect on weight loss (p < .05):
they would have been presented as effective. Pill 2, on the other hand, would have
been presented as having a non-significant effect5 and despite textbook warnings
against “accepting the null”, the message would have almost certainly become that
the pill may not be effective at all.

A large amount of information is thrown away by the use of a cut-off. Statistical
significance in its continuous form—i.e., reporting exact p-values—already did not
carry much useful information (compared to interval estimates). It is only logical to
assume that statistical significance in its binary form cannot carry more.

13.3.3 More Usability Problems Brought by the α Cut-Off

Binary significance testing is based on p-values and therefore inherits their usability
problems. The use of a binary decision rule based on a cut-off also introduces a range
of additional usability problems that are discussed next.

13.3.3.1 Misjudgments of Uncertainty

p-values give a seductive illusionof certainty and truth (Cumming2012,Chap.1). The
sacred α = .05 criterion amplifies this illusion, since results end up being either “sig-
nificant” or “non-significant”. In a researcher’s mind, significant results have passed
the rigorous test of statistics and are declared “valid”—uncertainty almost ceases

5The sharp distinction between pills 2 and 3 is not a caricature. Due to Neyman–Pearson’s heritage,
even pointing out that a non-significant p-value is close to .05 is often considered a serious fault.
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to exist, and sample means often end up being interpreted as being exact (Vicente
and Torenvliet 2000, pp. 252–258; Hoekstra et al. 2006). For example, this amounts
to saying that in Fig. 13.4a, each bar with p < .05 should be trusted fully. On the
other hand, non-significant results are interpreted either as no effect or no informa-
tion whatsoever, both of which are incorrect. Potential misjudgments abound and are
easily dispelled by plotting confidence intervals, as in Fig. 13.4b.

The use of a cut-off on p is especially problematic in studies with low statistical
power, given how widely p-values vary across replications (see Sect. 13.2.4.4). Thus
many HCI experiments effectively amount to tossing a coin (Dragicevic et al. 2014).

13.3.3.2 Misinterpretations Regarding Comparisons

Few researchers are fully aware of the disturbing paradoxes yielded by the use of a
cut-off when comparing findings. The results for pills 2 and 3, for example, appear
very different despite being virtually identical (Fig. 13.8). In fact, pill 2 has close to
a 50% chance of ending up better than pill 3 on the next replication (remember the
dance in Fig. 13.7). This paradox causes erroneous inferences both within studies and
across studies. Within studies, two conditions can be wrongly interpreted as being
different, simply because one happened to pass a test while the other one did not
(Gelman and Stern 2006; Abelson 1995, p. 111). Across studies, research can appear
inconsistent or controversial for the same reasons (Cumming 2012, Chap.1).

Although it has been recognized that statistical significance cannot be used as a
criterion for comparison (Gelman and Stern 2006), refraining from comparing enti-
ties that are given very different labels goes against the most basic human intuitions.
The problem clearly lies not in researchers’ minds, but in the design of NHST tools.

With estimation, results are labeled with confidence intervals, whose comparison
is not always trivial (Cumming 2012, Chap.6) but is certainlymuch less problematic.
For example, instead of simply writing “we were not able to replicate previous work
by Schmidt (2010) and John (2012) who found a significant improvement on task
completion time”, a conscientious researcher could write “our mean improvement
of 1.9 s, 95% CI [−0.7, 4.4] is consistent with the improvement of 3.1 s, 95% CI
[1.7, 4.7] reported by Schmidt (2010) but seemingly lower than the improvement of
5.2 s, 95% CI [4.1, 6.6] reported by John (2012)”.

13.3.3.3 Misinterpretations Regarding Type I Error Rates

Due to sampling error, any statistical analysis is error-prone. The idea that a researcher
can take control over the likelihood ofmaking false discoveries is very appealing, and
so is the idea that among all published results a known proportion will be wrong. But
Neyman–Pearson’s Type I error rate captures neither of these, even remotely (Pollard
and Richardson 1987; Colquhoun 2014). Like p (see Sect. 13.2.4.2), the Type I
error rate is computed with the assumption that the null hypothesis is true. In many
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disciplines a Type I error is impossible, and one can only fail to detect the effect,6 or
commit sign errors andmagnitude errors (Gelman 2004). In addition, the fact that not
all results are published renders theoretical error rates mostly irrelevant for assessing
research reliability (also see Sect. 13.3.3.5). The Type I error rate is only a theoretical
convenience that captures an idealized situation. It is a useful and powerful thinking
tool, but the current obsession with Type I error rates and insistence on maintaining
them at a precise 5% level sound more like a magical ritual than something that will
necessarily guarantee reliable research.

13.3.3.4 Multiple Levels of Significance

A practice that has become less popular in HCI (although it is still sometimes advo-
cated) is the use of multiple levels of significance by the way of “post-hoc” α values
(.001, .01, .05, .1), stars (***, **, *), or codified significance terminology (“highly
significant”, “marginally significant”, etc.). This categorical approach suffers from
the same problems as binary approaches, and is inconsistent with both Neyman–
Pearson’s strict frequentist approach and Fisher’s approach of using exact p-values as
a measure of strength of evidence (Gigerenzer 2004). Few, if any, statistical method-
ologists recommend the use of multiple levels of significance.

13.3.3.5 Issues Regarding Publication Bias

Since statistical significance is a major criterion for publishing study papers, con-
ference proceedings and journals give a very distorted image of reality. This issue,
termed publication bias or the file drawer problem, is harming science’s credibil-
ity (The Economist 2013; Goldacre 2012). In HCI, publication bias can hamper
scientific progress because results on ineffective techniques are never published and
those that are published because of statistical luck or flawed analyses are never
disproved. By legitimizing negative and (to some extent) inconclusive results and
making publication criteria more flexible (Anderson 2012), estimation can reduce
publication bias, advance our knowledge of what does not work, and encourage
replication (Hornbæk et al. 2014) and meta-analysis (Cumming 2012).

13.3.3.6 Issues Regarding p-Hacking

Another damaging consequence of the NHST ritual is the widespread use of “statis-
tical convolutions [...] to reach the magic significance number” (Giner-Sorolla 2012).
These include selectively removing outliers and trying different testing procedures
until results are significant (Abelson 1995, p. 55). Such practices go by various

6Since computing β (or the probability of a Type II error) requires assigning a precise value to the
population mean, β is also very unlikely to correspond to an actual probability or error rate.
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names such as p-hacking, torturing data, data dredging, or researcher degrees of
freedom (Nuzzo 2014; Lakens et al. 2014; Simmons et al. 2011; Brodeur et al. 2012;
Gelman andLoken 2013). They differ from the legitimate practice of exploratory data
analysis (Tukey 1980) because their goal is to obtain the results one wishes for, not to
learn or to inform. Information obfuscation can also occur after p-values have been
computed, e.g., by selectively reporting results (cherry picking), using post-hoc α

cut-offs (Gigerenzer 2004), or elaborating evasive narratives (Abelson 1995, p. 55).
NHST makes it easy to dissimulate unscientific practices under the appearance of
objectivity and rigor. Since humans excel at unconsciously taking advantage of fuzzy
lines between honest and dishonest behavior (Mazar et al. 2008), merely promoting
scientific integrity is likely futile. To be usable, statistical tools should be designed so
that they do not leave too much space for questionable practices and self-deception.
Estimation approaches do not draw a sharp line between interesting and uninterest-
ing results, and thus make “torturing” data much less useful. As I will discuss later,
planned analyses are another very effective safeguard.

13.3.3.7 Dichotomous Thinking

Humans like to think in categories. Categorical thinking is a useful heuristic in
many situations, but can be intellectually unproductive when researchers seek to
understand continuous phenomena (Dawkins 2011). A specific form of categorical
thinking is dichotomous thinking, i.e., thinking in two categories. Some dichotomies
are real (e.g., pregnant vs. non-pregnant), some are good approximations (e.g., male
vs. female, dead vs. alive), and some are convenient decision making tools (e.g.,
guilty vs. not guilty, legal vs. illegal). However, many dichotomies are clearly false
dichotomies, and statistical thinking is replete with these. For example:

1. There is an effect or not.
2. There is evidence or not.
3. An analysis is either correct or wrong.7

Statistical testing promotes the second dichotomy by mapping statistical signifi-
cance to conclusive evidence, and non-significance to no evidence. This dichotomy is
false because the degree of evidence provided by experimental data is inherently con-
tinuous. NHST procedures also promote the first dichotomy by forcing researchers
to ask questions such as “is there an effect?”. This dichotomy is false because with
human subjects, almost any manipulation has an effect (Cohen 1994).

There is a more insidious form of false dichotomy concerning effects. In HCI,
researchers generally do not test for the mere presence of an effect, but instead ask
questions such as “is A faster than B?”. Since there is likely a difference, A can only
be faster than B or the other way around. Thus the dichotomy is formally correct,

7For elements of discussion concerning this particular dichotomy, see Stewart-Oaten (1995), Nor-
man (2010), Velleman and Wilkinson (1993), Wierdsma (2013), Abelson (1995, Chap.1) and
Gigerenzer (2004, pp. 587–588).
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but it conceals the importance of magnitude. For example, if A takes one second on
average and B takes two, A is clearly better than B. But the situation is very different
if B takes only a millisecond longer. To deal with such cases, some recommend the
use of equivalence testing procedures (e.g., Dienes 2014, p. 3; Tryon 2001). However,
this does little more than turn an uninformative dichotomy into a false trichotomy,
as there is rarely a sharp boundary between negligible and non-negligible effects.

Thinking is fundamental to research. A usable research tool should support and
promote clear thinking. Statistical significance tests encourage irrational beliefs in
false dichotomies that hamper research progress—notably regarding strength of
evidence and effect sizes—and their usability is therefore low. Estimation seems
much more likely to promote clear statistical thinking.

13.3.3.8 Misinterpretations of the Notion of Hypothesis

Although the term hypothesis testing may sound impressive, there is some confu-
sion about the meaning of a hypothesis in research. Most methodologists insist on
distinguishing between research (or substantive) hypotheses and statistical hypothe-
ses (Meehl 1967; Hager 2002). Briefly, research hypotheses are general statements
that follow from a theory, and statistical hypotheses are experiment-specific state-
ments derived from research hypotheses in order to assess the plausibility of the
theory. Juggling between theories and statistical hypotheses is a difficult task that
requires considerable research expertise (Meehl 1967; Vicente and Torenvliet 2000,
pp. 252–258; Gelman and Loken 2013).

Many research hypotheses are dichotomous: the Higgs boson either exists or not;
the acceleration of a falling object is either a function of itsmass or it is not; a pointing
method either obeys Fitts’ Law or some other (say, Schmidt’s) law. Such dichotomies
are justified: although there is the possibility that a pointing method follows a mix of
Fitts’ and Schmidt’s laws, it is sensible to give more weight to the simplest models.
In such situations, asking dichotomous questions and seeking yes/no answers can
be sensible, and Bayesian approaches (rather than NHST) can be considered (see
Chaps. 8 and 9). That said, in many cases choosing a hypothesis is a decision that
is informed both by data and by extraneous considerations, so estimation methods
(e.g., for goodness of fit) can still be beneficial in this context.

Regardless, the vast majority of HCI studies are not conducted to test research
hypotheses. That technique A outperforms technique B on task X may have practical
implications, but this information is far from having the predictive or explanatory
power of a theory. Using the term “hypothesis” in such situations presents a mere
hunch (or hope) as something it is not, a scientific theory that needs to be tested. It is
sufficient to simply ask a question. Since the respective merits of two techniques can-
not be meaningfully classified into sharp categories, it is preferable to ask questions
in a quantitative manner, and use estimation to answer them.

http://dx.doi.org/10.1007/978-3-319-26633-6_8
http://dx.doi.org/10.1007/978-3-319-26633-6_9
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13.3.3.9 End User Dissatisfaction

NHST has been severely criticized for more than 50years by end users to whom fair
statistical communication matters. Levine et al. (2008a) offer a few quotes: “[NHST]
is based upon a fundamental misunderstanding of the nature of rational inference,
and is seldom if ever appropriate to the aims of scientific research; “Statistical sig-
nificance is perhaps the least important attribute of a good experiment; it is never a
sufficient condition for claiming that a theory has been usefully corroborated, that a
meaningful empirical fact has been established, or that an experimental report ought
to be published”. Some go as far as saying that “statistical significance testing retards
the growth of scientific knowledge; it never makes a positive contribution” (Schmidt
and Hunter 1997). Ten years ago, Kline (2004) reviewed more than 300 articles crit-
icizing the indiscriminate use of NHST and concluded that it should be minimized
or eliminated. Even Fisher—who coined the terms “significance testing” and “null
hypothesis” in the 1920s—came to reject mindless testing. In 1956 he wrote that
“no scientific worker has a fixed level of significance at which from year to year,
and in all circumstances, he rejects hypotheses; he rather gives his mind to each
particular case in the light of his evidence and his ideas.” (Gigerenzer 2004). The
damaging side effects of NHST use (publication bias and p-hacking in particular)
have even led some researchers to conclude that “most published research findings
are false” (Ioannidis 2005; Open Science Collaboration 2015).

13.3.4 Conclusion

Null hypothesis significance testing rests on important theoretical ideas that can
help reflect on difficult notions in statistics, such as statistical power and multi-
ple comparisons (briefly covered in the next Section). However, it is now widely
understood that it is not a good tool for scientific investigation. I—as many oth-
ers before—have pointed out a range of usability problems with NHST procedures.
HCI researchers may think they can ignore these issues for the moment, because they
are currently being debated. In reality, the debate mostly opposes strong reformists
who think NHST should be banned (e.g., Loftus 1993; Schmidt and Hunter 1997;
Lambdin 2012; Cumming 2013) with weak reformists who think it should be (i)
de-emphasized and (ii) properly taught and used (e.g., Abelson 1995, 1997; Levine
et al. 2008a, b). I have already given arguments against (i) by explaining that p-values
are redundant with confidence intervals (Sect. 13.2). Concerning (ii), I suggested that
the problem lies in the tools’ usability, not in end users. This view is consistent with
decades of observational data (Schmidt and Hunter 1997, pp. 3–20) and empirical
evidence (Beyth-Marom et al. 2008; Haller and Krauss 2002; Fidler and Cumming
2005). There is no excuse for HCI to stay out of the debate. Ultimately, everyone is
free to choose a side, but hopefully HCI researchers will find the usability argument
compelling.
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13.4 Fair Statistical Communication Through Estimation

What do we do now? There are many ways to analyze data without using NHST or
p-values. Two frequently advocated alternatives are estimation and Bayesian meth-
ods, although the two address different issues and can be combined. Aswementioned
in Sect. 13.3.1.2, there is a Bayesian version of estimation, and much of the justifi-
cation and discussion of interpretation of CIs can be transferred to these methods.
Again, we focus here on estimation with confidence intervals because it is simple
and accessible to a wide audience of investigators and readers (thus it emphasizes
simplicity as discussed next). Keep in mind, however, that some Bayesians strongly
reject any kind of frequentist tool, including confidence intervals for the reasons
outlined in Sect. 13.3.1.2 (Trafimow and Marks 2015; Morey et al. 2015).

Confidence intervals have been studied extensively, and statistical packages likeR
offer extensive libraries for computing them. However, there is a lack of pedagogical
material that brings all of these methods together in a coherent fashion. Currently
there is also a lack of guidance on how to use estimation in practice, from the
experiment design stage to the final scientific communication. Cumming (2012) is a
good place to start for those already familiar with NHST. Since this is a vast topic,
in this section we only discuss a few general principles and pitfalls of estimation.

13.4.1 General Principles

Adopting better tools is only part of the solution: we also need to change the way we
think about our task. Most research tasks require expertise, judgment, and creativity.
The analysis and communication of empirical findings is no exception. This task is
necessarily subjective, but it is our job as scientists to carry it out (Thompson 1999;
Lambdin 2012).

While we cannot be fully objective when writing a study report, we can give our
readers the freedom to decide whether or not they should trust our interpretations. To
quote Fisher, “we have the duty of [...] communicating our conclusions in intelligible
form, in recognition of the right of other free minds to utilize them in making their
own decisions.” (Fisher 1955). This is the essence of fair statistical communication.
From this general principle one can derive a set of more basic principles:

Clarity. Statistical analyses should be as easy to understand as possible, because
as implied by Fisher, one cannot judge without understanding. The more accessible
an analysis is, the more the free minds who can judge it. Thus a study report should
be an exercise of pedagogy as much as an exercise of rhetoric.

Transparency. All decisions made when carrying out an analysis should be com-
municated as explicitly as possible, because the results of an analysis cannot be fairly
assessed if many decisions remain concealed (see p-hacking in Sect. 13.3.3.6).

Simplicity.When choosing between two analysis options, the simplest one should
be preferred even if it is slightly inferior in other respects. This follows from the
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principle of clarity. In other words, the KISS principle (Keep It Simple, Stupid) is as
relevant in statistical communication as in any other domain.

Robustness. A statistical analysis should be robust to sampling variability, i.e.,
it should be designed so that similar experimental outcomes yield similar results
and conclusions.8 This is a corollary of the principle of clarity, as any analysis that
departs from this principle is misleading about the data.

Noncontingency. Ideally, no decision subtending an analysis should be contigent
on experimental data, e.g., “if the data turns out like this, compute this, or report
that”. This principle may seem less trivial than the previous ones, but it follows
from the principles of clarity, transparency and simplicity, because data-contingent
procedures are hard to explain and easy to leave unexplained (Gelman and Loken
2013). It is also a corollary of the principle of robustness because any dichotomous
decision decreases a procedure’s robustness to sampling variability.

Precision. Even if all the above precautions are taken, a study reportwhere nothing
conclusive can be said would be a waste of readers’ time, and may prompt them to
seek inexistent patterns. High statistical power (Cohen 1990), which in the estimation
world translates to high statistical precision (Cumming 2012, Chap.13), should also
be a goal to pursue.

13.4.2 Before Analyzing Data

Experiment design and statistical analysis are tightly coupled (Drummond and
Vowler 2011, p. 130). Many textbooks provide extensive advice on how to conduct
research and design experiments, and most of it is relevant to estimation research.
Here are a few tips that are particularly relevant to estimation methods and can help
ensure fair statistical communication.

Tip 1: Ask focused research questions. Ask clear and focused research ques-
tions, ideally only one or a few, and design an experiment that specifically answers
them (Cumming 2012). This should result in a simple experiment design (see Tip 2),
and make the necessary analyses straightforward at the outset (see Tip 5).

Tip 2: Prefer simple designs. Except in purely exploratory studies and when
building multivariate models, complex experiment designs—i.e., many factors or
many conditions per factor—are best avoided. These are hard to analyze, grasp
and interpret appropriately (Cohen 1990). There is no perfect method for analyzing
complex designs using estimation (Franz and Loftus 2012; Baguley 2012), and even
NHST procedures likeAnova that have been specifically developed for such designs
are not without issues (Smith et al. 2002; Baguley 2012; Kirby and Gerlanc 2013,
p. 28; Rosnow and Rosenthal 1989, p. 1281; Cumming 2012, p. 420). Faithfully
communicating results fromcomplex designs is simply hard, nomatterwhichmethod
is used. Best is to break down studies in separate experiments, each answering a

8The meaning of robust here differs from its use in robust statistics, where it refers to robustness
to outliers and to departures from statistical assumptions.
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specific question. Ideally, experiments should be designed sequentially, so that each
one addresses the questions and issues raised by the previous one.

Tip 3: Prefer within-subjects designs. While not always feasible, within-
subjects designs yield more statistical precision, and also facilitate many confidence
interval calculations (see Tip 10).

Tip 4: Prefer continuous measurement scales. Categorical and ordinal data can
be hard to analyze and communicate, with the exception of binary data for which
estimation is routinely used (Newcombe 1998a, b). Binary data, however, does not
carry much information and thus suffers from low statistical precision (Rawls 1998).
For measurements such as task errors or age, prefer continuous metrics to binary or
categorical scales.9

Tip 5: Plan all analyses using pilot data. It is very useful to collect initial data,
e.g., from co-authors and family, and analyze it. This makes it possible to debug the
experiment, refine predictions, and most importantly, plan the final analysis (Cum-
ming 2013). Planned analyses meet the uncontingency principle and are way more
convincing than post-hoc analyses because they leave less room for self-deception
and prevent questionable practices such as “cherry picking” (see Sect. 13.3.3.6). An
excellent way to achieve this is to write scripts for generating all confidence inter-
vals and plots, then collect experimental data and re-run the same scripts. Pilot data
should be naturally thrown away. If all goes well, the researcher can announce in
her article that all analyses were planned. Additional post-hoc analyses can still be
conducted and reported in a separate “Unplanned Analyses” subsection.

Tip 6: There is no magic number of participants. The idea that there is a “right”
number of participants in HCI is part of the folklore and has no theoretical basis.
One issue is statistical precision, and it will be discussed next. A separate issue is
meeting statistical assumptions. Concerning statistical assumptions, about twenty
participants put the researcher in a safe zone for analyzing about any numerical data
(see Tips 13 and 14). Analyses do not suddenly become invalid below that—just
possibly less accurate. If all scales are believed to be approximately normal (e.g.,
logged times, see Tip 12), exact confidence intervals can be used and the lower limit
falls to two participants (Forum 2015; Norman 2010, p. 628).

Tip 7: Anticipate precision. It is important to achieve high statistical precision,
i.e., narrow confidence intervals (Cumming 2012, Chap.13). Therefore, when decid-
ing on an appropriate number of participants, themost rudimentary precision analysis
is preferable to wishful thinking. One approach consists in duplicating participants
from pilot data (see Tip 5) until confidence intervals get small enough. How small
is small enough? At the planning stage, considering whether or not an interval is
at a safe distance from zero is a good rule of thumb. The p < .05 criterion has so

9There is considerable debate on how to best collect and analyze questionnaire data, and I have not
gone through enough of the literature to provide definitive recommendations. Likert scales are easy
to analyze if they are constructed adequately, i.e., by averaging responses from multiple question
items (see Carifio and Perla 2007). If responses to individual items are of interest, it can be sufficient
to report all responses visually (see Tip 22). Visual analogue scales seem to be a promising option
to consider if inferences need to be made on individual items (Reips and Funke 2008). However,
analyzing many items individually is not recommended (see Tips 1, 5 and 30).



13 Fair Statistical Communication in HCI 315

much psychological influence on reviewers that it is not unreasonable to try to meet
it. However, it is better to forget about it in the analysis stage.

Tip 8: Hypotheses are optional. Hypotheses have their place, especially when
they are informed by a theory or by a careful review of the past literature. However,
it is often sufficient to simply ask questions. Reporting investigators’ initial expec-
tations can benefit transparency (Rosenthal and Fode 1963; Rosenthal 2009), but
expectations do not need to be called hypotheses. Expectations can also change, for
example after a pilot study (see Tip 5)—this is part of the research process and does
not need to be concealed. Finally, having no hypothesis or theory to defend departs
from typical narratives such as used in psychology (Abelson 1995), but admitting
one’s ignorance and taking a neutral stance seems much more acceptable than fab-
ricating hypotheses after the fact (Kerr 1998; Gelman and Loken 2013).

13.4.3 Calculating Confidence Intervals

About any statistical test can be replacedwith the calculation of a confidence interval.
The counterpart of a classic t-test is termed (a bit misleadingly) an exact confidence
interval (Cumming 2012). There is not much to say about calculation procedures,
as they are extensively covered by textbooks and on the Web. Here are a few tips
that are not systematically covered by existing material. Some of them are at odds
with orthodox practices as popularized by textbooks, but they are in better accordance
with fair statistical communication and are supported by compelling arguments from
the methodology literature. I have also tried to include common pitfalls that I have
committed or observed while working with students.

Tip 9: As many observations as participants. Perhaps the only serious mistake
that can be made when computing confidence intervals is by not aggregating data.
Suppose you recruit 20 subjects, show them various conditions (e.g., technique ×
task type), and for each condition you ask them to perform 10 similar tasks. Multiple
measurements can greatly help reduce statistical noise, but reporting confidence
intervals based on all measurements (n=200) would be wrong (Lazic 2010). This
is because the purpose of statistical inference in HCI is typically to generalize data
to a population of people (see Sect. 13.2.1), not of trials.10 Measurements need to be
aggregated (e.g., averaged) so that each participant ends up with a single observation
before any confidence interval is computed. NHST has developed notations that
make it possible for readers to spot such mistakes, but estimation has not. Thus it is
good practice to mention the number of observations involved in the computation of
confidence intervals, either in the text or in figure captions (e.g., n=20).

Tip 10: Feel free to process data. As long as Tip 9 is observed, it does not matter
how the per-participant observations were obtained. Raw measurements can be con-
verted into different units and be aggregated in anyway: arithmetic means, geometric

10Both types of inferences can be combined using hierarchical or multi-level models, and tools exist
for computing hierarchical confidence intervals (see Chap. 11).

http://dx.doi.org/10.1007/978-3-319-26633-6_11
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means, sums, or percentages. With within-subject designs, new data columns can be
added to capture averages across several conditions, differences between conditions,
differences between differences (i.e., interactions), or even regression coefficients
for learning effects. There is nothing sacred about raw measurements (Velleman and
Wilkinson 1993, pp. 8–9), and these can be processed in any way as long as the
numbers reflect something meaningful about participants’ performance, answer a
relevant research question (Tip 1), and all calculations have been planned (Tip 5).

Tip 11: Avoid throwing data away. Data can be discarded for good reasons, e.g.,
when a researcher ignores certain effects to achieve a more focused analysis (Tip 1).
But data can also be discarded pointlessly, e.g., by turning continuous measurements
into discrete or binary values through binning (see Tip 4). This results in a loss of
information, and therefore of statistical precision, and possibly biased results (Rawls
1998;MacCallum et al. 2002). Discarding observations beyond a certain value (trun-
cation, see Ulrich and Miller 1994) or based on spread (restriction, see Miller 1991)
can help eliminate spurious observations, but can also result in a loss of precision
or in bias (Miller 1991; Ulrich and Miller 1994). Discarding observations based on
rank (trimming, see Wilcox 1998, of which the median is a special case) can in some
cases increase precision (Wilcox 1998), but for approximately normal distributions
the mean outperforms all other measures (Wilcox 1998). In general there is dis-
agreement on how to discard observations, and whether this should be done at all
(see Osborne and Overbay 2004 for a favorable stance), but the simplicity principle
would suggest to skip such procedures.

Tip 12: Consider the log transform. The log transform corrects for positive
skewness in time measurements and gives less weight to extreme observations, thus
rendering outlier removal unnecessary (Sauro and Lewis 2010). Another nice con-
sequence is that it yields asymmetric confidence intervals, which better convey the
underlying distributions and prevent the embarrassing situation where a confidence
interval extends to negative values. Theprocedure consists in log-transforming all raw
time measurements, performing all analyses as usual, then converting back (antilog-
ging) the means and confidence interval limits at the very end, when they need
to be presented numerically or graphically (Gardner and Altman 1986, p. 749). All
meanswill indicate geometric (instead of arithmetic)means, and differences between
means will become ratios (Gardner and Altman 1986, p. 750). As it turns out, ratios
between completion times are easier to interpret than differences because they are
unitless (Dragicevic 2012). No justification or test is needed for using a log transform
on time measurements (Keene 1995) (see also Tip 14).

Tip 13: Consider bootstrapping. Bootstrapping is a very useful method that
has not received enough attention (Kirby and Gerlanc 2013; Wood 2004, 2005).
Briefly, it consists of generating many alternative datasets from the experimental
data by randomly drawing observations with replacement. The variability across
these datasets is assumed to approximate sampling error and is used to compute so-
called bootstrap confidence intervals. This way of calculating confidence intervals is
recent in the history of statistics because it requires computers, but it is very versatile
and works for many kinds of distributions (Kirby and Gerlanc 2013). Also, since
bootstrapping relies on a simple algorithm, the computer scientists in HCI may find
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it easier to intuitively grasp than the traditional analytical approaches (Ricketts and
Berry 1994; Duckworth and Stephenson 2003). Bootstrap confidence intervals are
generally accurate with about 20 observations or more (Kirby and Gerlanc 2013, p.
8), but tend to be a bit narrow with 10 or less (Wood 2005, p. 467).

Tip 14: Do not test for normality. The world is not sharply divided into normal
and non-normal distributions. This false dichotomy has been largely promoted by
NHST procedures for testing normality, which are logically and practically unsound
(Wierdsma 2013; Stewart-Oaten 1995, p. 2002). When computing exact confidence
intervals, departures from normality are not such a big deal: as with the t-test, the
normality assumption does not concern the population distribution but the sampling
distribution of the sample mean.11 As per the central limit theorem, this distribution
turns out to be approximately normal for almost any population distribution shape,
provided that the sample size is large enough (Norman 2010, p. 628). One difficulty
is that it is often unclear how large is large enough, as it also depends on how
much the original population departs from a normal distribution. Another issue with
exact confidence intervals is that they are necessarily symmetric, so they do not
reflect skewed distributions very well and may cover impossible values. Thus there
are merits to using alternative methods (see Tips 12 and 13) if there are reasons
to think that the population distribution is not normal. Measurement scales that are
strictly positive (e.g., time) or bounded (e.g., percents) cannot benormally distributed.
Strictly positive scales are typically positively skewed and approximate a normal
distribution once logged (Tip 12). When in doubt, use bootstrapping (Tip 13).

Tip 15: Report interval estimates for everything. Any statistic is subject to
sampling variability, not only sample means. A report should complement all sta-
tistics from which inferences are made—including standard deviations, correlation
coefficients, and linear regression coefficients—with interval estimates that convey
the numerical uncertainty around those estimates. Many sources are available in text-
books and online on how to compute such intervals. Be aware, however, that not all
confidence interval procedures are reliable, in the sense that in some special cases
they may produce incorrect intervals (Morey et al. 2015).

13.4.4 Plotting Confidence Intervals

Confidence intervals can be conveyed numerically, or graphically by the way of
error bars. There exists a standard numerical notation (APA 2010, p. 117), but no
well-established standard for representing confidence intervals graphically. The tips
I include here emphasize fair statistical communication and most of them are, I
believe, based on common sense. As before, I have tried to include common pitfalls.

Tip 16: Prefer pictures. Graphic formats for confidence intervals effectively
convey magnitudes and patterns (Fidler and Loftus 2009). Some would consider this

11For more on the important concepts of sampling distribution and the central limit theorem, see,
e.g., Cumming (2013, Chap.3) and the applet at http://tinyurl.com/sdsim.

http://tinyurl.com/sdsim
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as a disadvantage as many such patterns can be spurious, but plots do not lie—they
just conceal less. For example, how different is 2.9kg, 95% CI [0.02, 5.8] from
2.8kg, 95% CI [−0.08, 5.7]? Or from 4.5kg, 95% CI [2.5, 6.5]? While this is
not immediately clear with numerical data, the graphical representation in Fig. 13.3
makes comparison much easier. In addition, plots generally appear less precise than
numbers, which likely reduces dichotomous thinking and overconfidence in results.

Tip 17: Use numbers wisely. If plots with confidence intervals are already pro-
vided, numerical values are not very useful and only produce clutter. However,
because the numerical format is more compact, it can be used for reporting secondary
results. A complete list of numerical confidence intervals can also be included as a
table or in the accompanying material to facilitate comparison with future studies
and meta-analysis. However, in the article itself, refrain from reporting an absurdly
high number of significant digits, e.g., 2.789kg, 95% CI [−0.0791, 5.658].

Tip 18: Do not ignore conventions. When plotting confidence intervals, aim for
simplicity and try to stick to the few existing conventions. Ideally, figures should be
interpretable with as little contextual information as possible. Changing the level of
confidence from the standard 95% to 50% or 99% does not help. Similarly, do not
use procedures that “adjust” or “correct” the length of confidence intervals unless
there are good reasons to do so. Several such procedures have been described to facil-
itate visual inference or reinforce the equivalence with classical NHST procedures
(Baguley 2012; Tryon 2001; Bender and Lange 2001), but their downside is that they
change the meaning of confidence intervals and increase the amount of contextual
information required to interpret them. Finally, do not show standard errors (SEs) in
your plots. As Cumming and Finch (2005, p. 177) have pointed out, “if researchers
prefer to publish SE bars merely because they are shorter, they are capitalizing on
their readers’ presumed lack of understanding of SE bars, 95% CIs, and the relation
between the two.”

Tip 19: Be creative. The scarcity of graphical standards should be taken as an
opportunity to explore custom visual designs, within the limits suggested by Tip
18. For example, there are many options for displaying error bars (Fig. 13.9): while
the design (1) is widely used, (2) is a common alternative that has the advantage of

Fig. 13.9 Seven ways of plotting effect sizes with confidence intervals
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Fig. 13.10 Top the effects of three animation complexity metrics (one per row) on visual tracking
accuracy. The first plot shows mean subject accuracy depending on whether animations are low or
high on that metric, while the second plot shows mean within-subject improvement when switching
from high to low (after Chevalier et al. 2014). Bottom the upper plot shows map reading accuracy
for three terrain visualization techniques. On the lower plot, each row shows mean within-subject
improvement when switching from the left technique to the right one (the scale has been magnified)
(after Willett et al. 2015). All error bars are 95% CIs, n=20

de-emphasizing confidence limits; The variant (3) improves the legibility of point
estimates; Error bars can also be combined with bar charts (4); Bars help compare
magnitudes on a ratio scale (Zacks and Tversky 1999), but they introduce visual
asymmetry (Newman and Scholl 2012; Correll and Gleicher 2014) and tend to de-
emphasize error bars; This is evident in the so-called “dynamite plots” (5); The design
(6) supports ratio comparisonwhilemaintaining emphasis on error bars; Finally, error
bars can be combined with line charts (7) to convey temporal ordering (Zacks and
Tversky 1999) or within-subject factors (Cumming 2012, p. 172).

Tip 20: Emphasize effects of interest. When choosing what to plot, focus on
the effects that answer your research questions (Cumming 2012). These are typically
differences betweenmeans, e.g., differences in average task average completion times
between conditions. In within-subject designs, differences are typically computed on
a per-participant basis, as with the paired t-test (Cumming 2012, pp. 168–175) (also
see Tip 10). When comparing multiple conditions (see Tips 30 and 31), stick to the
most informative pairs. For a nice example of informative pairwise comparisons, see



320 P. Dragicevic

the second experiment in (Jansen 2014, Chap.5). Even though the individual means
are rarely the researcher’s focus, it can be very informative to show them alongside
the differences (Franz and Loftus 2012). Doing so also has an explanatory value, and
thus contributes to clarity. See Fig. 13.10 for two examples.

Tip 21: Aim for visual robustness. By visually robust, I refer to visual represen-
tations that are not overly affected by small changes in data,12 and are thus resistant to
sampling variability. See Dragicevic (2015) for illustrations. While it is hard to make
a plot visually more robust without discarding information, there are many ways to
make it less robust without adding any new information. One way consists of sorting
conditions or pairwise comparisons by effect size. If effects are similar, every repli-
cation will lead to a different ordering—thus the plot misleads. Instead, choose a
sensible ordering ahead of time. For similar reasons, boxplots (Wickham and Stry-
jewski 2011) lack visual robustness because they embed dichotomous decisions as
to whether an observation should be considered as an “outlier”. The resulting dots
draw unnecessary attention to observations that just happen to be at the tails of the
population distribution (Wickham and Stryjewski 2011, pp. 3–5). When designing a
plot, always try to imagine how it could “dance” across replications.

Tip 22: Think beyond averages. Inferences about populationmeans are an impor-
tant but limited part of statistical analysis and communication. Distributions and
individual differences can also be insightful (Vicente and Torenvliet 2000, pp. 250–
253). Some empirical data—especially categorical or ordinal data like questionnaire
responses—is also hard to faithfully capture with a single aggregated measure. As
an alternative, such data can be conveyed without loss of information using compact
visualizationmethods such asmatrix displays (Perin et al. 2014). Showing individual
observations next to error bars can also be informative and pedagogical (Drummond
and Vowler 2011; Ecklund 2012). Finally, while confidence and credible intervals
are useful for conveying uncertainty about population averages, alternatives such
as tolerance intervals and prediction intervals may be better suited in some cases
(Nelson 2011). Unfortunately, using interval estimates with very different meanings
may exacerbate confusions surrounding the meaning of error bars.

13.4.5 Interpreting Confidence Intervals

Interpreting confidence intervals is a key aspect of estimation. It is hard to master,
and it could almost be called an “art”. Despite this, not much has been written on the
topic. Here is a list of recommendations that can help interpret plots with confidence
intervals, and since this is both an important and an error-prone task, some of the
tips here will be developed more extensively than the previous ones.

12Visual robustness is related to the concept of visual-data correspondence recently introduced
in infovis (Kindlmann and Scheidegger 2014). The counterpart of robustness (i.e., a visualiza-
tion’s ability to reveal differences in data) has been variously termed distinctness (Rensink 2014),
power (Hofmann et al. 2012), and unambiguity (Kindlmann and Scheidegger 2014).
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Tip 23: Build strong intuitions. The key to a correct interpretation of confi-
dence intervals is a deep understanding of their relationship to sampling variability,
and of sampling variability itself. Simulated replications like those created by Cum-
ming (2009a) are a powerful tool for building this intuition, perhaps more so than
mathematical formulas. Watch simulations over and over again, and run your own.

Tip 24: Know inference by eye. Cumming offers useful rules of thumb for doing
statistical inference “by eye” (Cumming and Finch 2005; Cumming 2009b). The
most basic rule follows from the equivalence between CIs and NHST, that is, if a
certain value is outside a 95% CI, it would be rejected as a null hypothesis at the
α = .05 level. This is only a convenient reference point, not a hard rule to be applied
mindlessly (see Tip 25). Cumming also explains how to visually compare confidence
intervals in between-subjects designs: if two error bars overlap by less than 1/4 of
their average length, then the difference is statistically significant at the α = .05 level.
This rule is also just a convenient rule of thumb, and should not be used in a binary
way. In within-subject designs, the 1/4 overlap rule is often (but not necessarily)
conservative. Pairwise differences of interest thus need to be plotted and interpreted
separately (Cumming and Finch 2005, p. 176) (see Fig. 13.10).

Tip 25: Ban dichotomous interpretations. Using confidence intervals to pro-
vide yes/no answers defeats the whole purpose of estimation: “It seems clear that no
confidence interval should be interpreted as a significance test” (Schmidt and Hunter
1997, pp. 3–15); “CIs can prompt better interpretation if NHST is avoided” (Cum-
ming 2013, p. 17). Plausibility does not suddenly drop when crossing the confidence
limits (See Sect. 13.2.1). A confidence interval can be thought of as abstracting a
continuous “plausibility” function (Cumming 2012, pp. 98–102, 2013, p. 17). While
a recent study has explored alternatives to error bars that visually convey this con-
tinuity (Correll and Gleicher 2014), the classical error bar has the benefit of being
visually cleaner and more economical in terms of space and data-ink ratio (Wainer
1984, p. 139). The edges of error bars offer visual reference points, whereas other
representations such as color gradients may not.

Tip 26: Use vague language and hedges. We could say that Fig. 13.6 “pro-
vides good evidence that B outperforms A, whereas C and A seem very similar,
and results are largely inconclusive concerning the difference between D and A.”
The terms “good evidence”, “very similar” and “largely inconclusive” are vague.
The use of vague language is necessary for acknowledging and honestly conveying
the uncertainty present in effect size estimates. Vague language—which is not the
same as ambiguous language—plays a key role in reasoning (van Deemter 2010).
In the face of uncertainty and complexity, the only alternatives to vagueness are false
clarity (van Deemter 2010, Chap.1) and pseudo-objectivity (Thompson 1999). The
term “seem” in the text above is a hedge, and hedges are also important in science
communication (van Deemter 2010, Chap.6). There are many ways Fig. 13.6 can
be described using text, and different investigators will use different wordings. The
subjective nature of this task should not make the researcher feel uncomfortable. It is
important to be objective when performing planned analyses and turning them into
numbers and plots, but after that one can afford to be subjective, knowing that no
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Fig. 13.11 Identical confidence intervals calling for different interpretations

reader is forced to accept one’s conclusions. That said, wordings that misrepresent
or exaggerate findings naturally tend not to give a good image of their authors.

Tip 27: Never say “no effect”. Avoid suggesting that there is no effect, even using
hedges (e.g., “results suggest that A has no effect on B”). Almost any experimental
manipulation has some effect on human behavior (Cohen 1994), so an effet of exactly
zero is highly implausible. Better wordings include “the direction of the effect is
uncertain, but it is likely small”, or “we were not able to measure an effect”.

Tip 28: Use external information. A key part of empirical research consists
of interpreting results in relation to externally available information. For example,
the imaginary plot on Fig. 13.11 (left) shows the results of a study assessing the
clinical efficacy of a homeopathic treatment. While the data speaks in favor of this
treatment, the scientific consensus is that such treatments are ineffective, and thus the
result should be interpretedwith skepticism. Following the skeptical inquiry principle
that “extraordinary claims require extraordinary evidence”, perhaps the investigator
should require that the confidence interval be much further from zero. In contrast,
the right plot concerns a drug whose efficacy has been already firmly established, so
one only needs to see it as a successful replication. The two results are identical, yet
their interpretation is very different. Although Bayesian statisticians would typically
attempt to incorporate such knowledge into the statistical analysis itself, not every
reader needs to agree on the a priori plausibility of a result. Confidence intervals have
both the drawback and the advantage of moving the burden of Bayesian reasoning
to the investigator and the readers. The cost of error is also important. While HCI
studies on safety-critical systems require cautious interpretations, excessive caution
can slow down exploration and be detrimental to progress in studies that simply
investigate new user interface technologies (i.e., most of HCI).

Tip 29: Use internal information. Individual confidence intervals should also
be interpreted according to internal information, i.e., other pieces of information
obtained from the same study. For example, in Fig. 13.12, there is nothing wrong

Fig. 13.12 In this plot, each
confidence interval needs to
be interpreted in relation to
other confidence intervals
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Fig. 13.13 Three possible sets of confidence intervals that can be tricky to summarize

with interpreting A as providing “only moderate evidence for an effect”. However, it
would be misleading to then interpret B as exhibiting “clear evidence for an effect”.
The principle of robustness requires that two similar results are interpreted in a similar
way (also see Sect. 13.3.3.2 for the danger of not doing so). A less misleading way
of describing Fig. 13.12 would be to group results, e.g., by stating that the figure
provides evidence “for a small effect for A, B, D, and for a larger effect for C and E.”
Also see Tip 24 for information about how to read overlaps in confidence intervals.
On the other hand, care must be taken not to suggest that the effects within each
group are the same or similar—if pairwise differences are of interest, they should
be reported and interpreted separately. Providing non-misleading interpretations of
figures with confidence intervals requires judgment, and no mechanical decision
procedure can carry out this job better than a thoughtful investigator.

Tip 30: Combine results very carefully. Drawing conclusions from a set of
confidence intervals without any consideration for joint probabilities is particularly
dangerous. Suppose that a personwhopurports to have extrasensory perception (ESP)
abilities is subjected to testing sessions labeled A–E (Fig. 13.13-1). The investigator,
observing that testD appears positive, may conclude that ESP is real. But even if ESP
does not exist, the chances of observing D is about 5%, already not particularly low.
The chances of observing a similar deviation in any of the five tests is even higher:
about 20%. If 40 tests were conducted, the possibility of a false positive would be
about 90%—almost certain. An HCI researcher who concludes that a technique is
promising because it succeeded in one out of five tasks commits the same fallacy.
The converse fallacy (unsurprisingly less common) is also possible: a researcher
observing Fig. 13.13-2 may conclude that the technique is imperfect because one
task yields inconclusive results. However, such an outcome is likely to occur even
if the technique is better in all respects (e.g., a consistent population difference of 1
for all tasks—see again the dance in Fig. 13.7).

Disjunctive (or operator) and conjunctive (and operator) logical combinations
are best avoided when interpreting multiple results. Results should be averaged, or
expressed with buts (Abelson 1995, Chap.6): e.g., “results are inconclusive except
perhaps for one task out of five”, and “the technique seems consistently better,
although possibly not for one out of the five tasks”. Complex results should not
be oversimplified in the paper’s abstract or conclusion.

Finally, you may find on occasion a striking pattern, as in Fig. 13.13-3. Such
a linear trend is unlikely to emerge from a dance of confidence intervals (unless
conditions have been sorted, see Tip 21), so the investigator should not be shy to
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point it out. Nevertheless, it is best to express a pattern with a single number (e.g., a
grand mean, difference, interaction or correlation) and report a confidence interval.
However, such analyses are largely uninformative if they are unplanned (see Tip 5).

Tip 31: Do not mindlessly correct for multiplicity. Correction procedures (e.g.,
Bonferroni correction) that account for the ESP scenario in Tip 30 (Fig. 13.13-1) are
part of the NHST ritual, and have been adapted to confidence intervals (Bender and
Lange 2001; Tryon 2001). Such procedures are a powerful safeguard against falla-
cious reasoning, but they are too conservative in the many situations where results
are not combined in a disjunctive manner. They also have the drawback of chang-
ing the meaning of error bars (Cumming 2009b, p. 209) (see Tip 18). Multiplicity
correction procedures are far from having reached a consensus (Bender and Lange
2001) and there are strong arguments against their systematic use (Wilson 1962;
Stewart-Oaten 1995, p. 2003). Between the fervent defenders and the strong oppo-
nents, estimation advocates tend to take a laissez-faire position (Cumming 2012,
pp. 421–423; Cumming and Finch 2005, p. 177; Baguley 2012, pp. 173–174). The
principle of simplicity provides an argument for skipping such procedures, while the
principles of transparency and clarity requires that issues related to joint probabil-
ities are kept in mind and pointed out if necessary. If a conclusion follows from a
disjunctive combination of many confidence intervals, it can be useful to also report
multiplicity-corrected confidence intervals. The best solution is to avoid reporting
many confidence intervals by keeping experiments simple (Tip 2) and planning all
analyses ahead of time (Tip 5) based on clear research questions (Tip 1).

Tip 32: Point out possibly spurious patterns. For a researcher who is committed
to fair statistical communication, it is not enough to write an irreproachable analysis.
Such a researcher should also anticipate possible misinterpretations of figures by
statistically less sophisticated readers, and take the necessary precautions.

Tip 33: Defer judgment. NHST and the idea of statistical significance made us
forget that no single study can provide conclusive evidence. Although this chapter
focuses on uncertainty due to sampling error, there are many other sources of uncer-
tainty (Brewer 2000; Meehl 1967; Rosenthal 2009; Vicente and Torenvliet 2000, pp.
264–266).According to Schmidt andHunter (1997, pp. 3–16) “it is best for individual
researchers to [...] refrain from attempting to draw final conclusions about research
hypotheses.” This echoes Fisher’s belief that we should grant our readers the right to
make “their own decisions”. It is fine for a study to “provide strong evidence for X”,
but not to “show that X”. Authors tend to be especially oversimplifying and brash in
conclusions and abstracts, the very parts on which hurried readers (and journalists
of course) tend to focus their attention. Using hedges as suggested in Tip 26 and
providing nuanced conclusions as suggested in Tip 30 can help.

Tip 34: Share study material. Finally, sharing as much experimental material
as possible (stimuli and data) is important as it greatly facilitates peer scrutiny and
replication. Being able to run the experimental software and examine what partic-
ipants saw (the techniques, tasks, instructions, and questions asked) is essential in
order for other researchers to understand the details of a study and greatly facilitates
replication. Similarly, experimental data (all data tables and possibly analysis scripts)



13 Fair Statistical Communication in HCI 325

is necessary for conducting re-analyses and meta-analyses. To be useful this material
should be freely shared online upon paper acceptance.

For errata and updates, go to www.aviz.fr/badstats.

13.5 Conclusion

When assessing the quality of a statistical analysis in an HCI paper, reviewers often
tend to exclusively focus on the rigorous application of statistical procedures. This
reveals several misconceptions about statistics. One is the belief that there exists a set
of “correct”, universally-accepted statistical procedures, a myth largely cultivated by
textbooks and introductory statistics courses (Gliner et al. 2002). Gigerenzer (2004,
pp. 587–588) tells the story of a textbook author who was forced by his editor not to
mention alternative methods in order to produce “the illusion that there is only one
tool”. Another belief is that statistical procedures can produce rigorous knowledge,
just because they can output precise numbers. However, there is no such information
in the data. Data is uncertain and messy, and so are statistics.

This chapter has introduced some basic principles of fair statistical communica-
tion, i.e., principles for conveying uncertainty in empirical data in a way that does
not prompt misinterpretations, so that as-wide-as-possible an audience can judge and
decide whether or not to trust the authors’ conclusions. There are many questions
this chapter does not address (e.g., what is a good research question? How to design
experiments?) and it does not stand by itself as a guide to statistics—interested read-
ers will need to go through some of the literature. Also, none of the tips offered in
Sect. 13.4 should be taken as a dogma. Closely following guidelines will never be
a necessary nor a sufficient condition for an article to merit publication. However,
I do think that the general principles of fair statistical communication outlined in
Sect. 13.4.1 should be given more consideration in peer reviewing.

Among the worst enemies of good statistical communication is dichotomous
thinking. False dichotomies exist at many levels in current statistical practice, and
have been greatly encouraged by NHST procedures. Judging articles based on the
outcomes of such procedures reveals a deep misunderstanding of the purpose of
statistics and is damaging to science, because it encourages questionable practices,
information obfuscation, and publication bias. Dropping mindless statistical testing
procedures and trying to achieve clarity and transparency while fully embracing the
messiness of our data (Giner-Sorolla 2012) can not only benefit science, but can also
make statistical analysis a much more exciting and rewarding experience.

Many issues outlined in this chapter are old and have been raised in many dis-
ciplines. But things seem to be changing—in the most recent edition of its highly
influential “Publication Manual” (APA 2010), the American Psychological Associa-
tion deemphasizes p-values and stresses the importance of reporting and interpreting
effect sizes and confidence intervals (Fidler 2010).Meanwhile, high-impact psychol-
ogy journals are starting to enforce the use of estimation (Eich 2014). Large collective
initiatives, whose values overlap a lot with the idea of fair statistical communication,

www.aviz.fr/badstats
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are also being started under the umbrella of the “open science” movement.13 In par-
allel, more and more articles on bad statistics are being published in newspapers and
blogs, raising the public’s awareness of those issues. It may well be that statistical
practice will be very different only a few years from now.

Since statistics are nothing but user interfaces meant to help researchers in their
task of producing and disseminating knowledge, the fields ofHCI and infovis can take
a head start and show the way to other disciplines. HCI and infovis researchers also
have the exciting opportunity to contribute new research, for example by studying
new visual representations for communicating study results (Correll and Gleicher
2014; Perin et al. 2014). Such representations do not have to be static, and there are
many ways computers, animation, and interactivity can be used to teach statistics
and convey scientific evidence to a wide audience (Victor 2011).
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Chapter 14
Improving Statistical Practice in HCI

Judy Robertson and Maurits Kaptein

14.1 Introduction

So you have come to the end. You have, if all is according to plan, learned novel
methods and have started to think fairly critically about the methods that are of
common use in HCI. Perhaps you are convinced that we could, and should, improve
our reporting practice. The previous chapter has highlighted, practically without
reference to specific methods or choosing a “camp” (Bayesian or Frequentist), a
large number of possible directions for improvements.

In this closing chapter we have two final aims. First, we strengthen the argument
that HCI needs change, by reflecting critically upon some of the most highly cited
quantitative studies in the HCI field. Referring back to the seven common fallacies
in our current methods as introduced in Chap.1, we examine how these fallacies are
present, even in our most respected pieces of work. We do not aim to discredit the
work done by the authors that we review here: in each case the paper is rightfully
influential in thefield.However,wedo aim to strengthen the argument that continuous
improvements of statistical methods can benefit the even the best in the field, and thus
likely the field as a whole. To this end, we close with a series of recommendations to
authors, reviewers, and editors for improving the quality of statistical methodology
and reporting in HCI.
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14.2 Case Studies from the HCI Literature

Perhaps flaws which commonly occur in psychology or economics might not occur
in HCI. Even though scholars in these neighbouring fields are clearly advocating
a deviation from the procedural use of NHST methods, we might ourselves not be
at risk. And, even if such flaws do occur in HCI, perhaps they do not practically
matter much. To conclude this book, we decided to review highly cited (quantitative)
papers from respected HCI publications to identify whether methodological “flaws”
(or at least analysis and reporting practices that could be debated or strengthened)
do get past reviewers within HCI, and if so, what impact these flaws could have. We
also wished to document good practice which other researchers could adopt in the
future. We conducted a literature search for the top 50 most cited article(s) matching
the search terms “human computer interaction” OR “HCI” with no date restriction
in the Scopus citation database.1 Scopus was chosen based on Meho and Rogers
(2008) conclusions that the coverage of Scopus is superior to Web of Science and
is sufficiently good that it can be used as the “a sole data source for citation-based
research and evaluation in HCI” (p1).

Of the 50 most highly cited HCI articles, 8 (16%) reported the results of quanti-
tative analysis using t-tests or analysis of variance (ANOVA), tests which are com-
monly misapplied in other fields. We use the methodologies of these papers as case
studies in this section.

It is worth noting that the proportion of this sort of quantitative articles in the
most highly cited papers in a field is likely to be lower than the proportion within all
published papers in a field, as theories, review and meta-analysis papers are likely to
attract high numbers of citations.Within our 8 papers, the least cited had 143 citations,
and themost cited had attracted 250 citations. The articleswere published in reputable
journals such as Human Computer Interaction and Computers in Human Behaviour.
Topics ranged across the spectrum of HCI from emerging technology (human-robot
interaction) to documenting user behaviour with established technology (patterns
of internet usage) to exploring facets of user satisfaction (such as the relationship
between usability and aesthetics). Table14.1 shows the 8 articles that were selected
based on the publication counts including the references use below to identify the
different papers (e.g. P1, P2,… etc.). In the remainder of this section we first briefly
summarize these top scoring 8 quantitative papers, after which wewill examine these
paper for common misconceptions as introduced earlier.

P1, the first of our 8 reviewed papers, surveyed college internet users in order to
assess incidence of pathological internet usage (PIU) and to investigate the character-
istics of those users who did exhibit PIU. Only 27% of users showed no symptoms of
PIU. Users whose Internet usage was considered pathological were more likely to be
male, technologically sophisticated and to play internet games. Given the alarmingly
high proportion of users who displayed some characteristics of PIU, it is not surpris-
ing that this paper is highly cited (250 citations). InP2, the authors investigated status
effects in electronic communication compared to face to face communication. They

1 The search was carried out in Sept 2013.
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Table 14.1 Overview of the 8 highly cited quantitative HCI articles used in the review of HCI’s
statistical practices

ID Reference Citation count

P1 (Morahan-Martin and
Schumacher 2000)

250

P2 (Dubrovsky et al. 1991) 248

P3 (Tractinsky et al. 2000) 241

P4 (Kanda et al. 2004) 180

P5 (Schumacher and
Morahan-Martin 2001)

160

P6 (Endsley and Kaber 1999) 153

P7 (Claypool et al. 2001) 152

P8 (Hassenzahl 2004) 143

found that status and expertise were less influential in email, thus make contributions
more equal across group members.

In P3 the authors explored the relationship between the aesthetics and usability of
interfaces in a study in which 132 participants used an ATM simulation. Pre-test and
post-test measures indicated a strong correlation between aesthetics and usability.
Based on a multivariate analysis, the authors observed that “the results suggesting
interface aesthetics has amajor effect on priori perceptions of ease of use, and perhaps
more importantly on post-facto evaluations of usability may come as a surprise to
those versed in the field of HCI” (p140). Hassenzahl’s 2004 paper (P8) on usability
and aesthetics which discusses P3 at length is also one of our case studies. P8 reports
two studies on the interplay of beauty, goodness, and usability in interactive products.
The authors conclude that beauty is related to self-oriented and hedonic attributes of
a product, while goodness is related to goal-oriented and pragmatic attributes. This
latter paper thus nuances the conclusions drawn in P3.

P4 explored the potential for robots to form relationships with children and
whether children might learn English from them. The authors report that interac-
tion with the robots during the second of week of the study predicted scores in the
post-test. The paper suggested that robots may have been more successful when they
had something common with their users.

P5 explores whether internet and computer experiences, skills, and attitudes are
related. It does so over two time points (1989/90 and 1997). The study is survey based,
and studies freshman college students. In the analysis the authors focus on trends
over time in internet use, computer experience, and attitudes towards computers as
well as on gender differences. The study shows that the overall competency and
comfort towards computers and the internet increase over the 7years. Finally they
show that on a number of measures gender differences exist and that females report
higher levels of incompetence and discomfort than males do.

The next paper we examined, P6, examines the effects of automation on perfor-
mance, situation awareness and workload in a dynamic control task. The authors
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examine how different levels of automation—e.g. handing more control over to a
computer in a task that is completed jointly by a computer and a human—influences
several aspects of the joint task. Thus, the article examines the fundamental question
of howmuch automation is feasible in control tasks. The authors conclude that under
normal operation some specific types of automation, namely that of the implemen-
tation portion of the task, should be preferred in terms of performance.

We also examined P7 by Claypool et al. (2001). Taken from a different area
of HCI, this highly cited paper examines how implicit interest indicators compare
to explicit interest indicators. The authors discuss explicit interest rating as (e.g.)
product ratings that users provide to train a recommendation engine. Implicit ratings
would be other indicators of interest for the product which are not provided by the
users, but rather are derived from the browsing behaviour of the customer. The authors
conclude that the time that users spend on a page and the amount of scrolling people
perform strongly relate to explicit interest indicators.

All of these eight studies clearly examine questions that are important to HCI
researchers. In the following sections we discuss the good and poor practices adopted
in these papers in terms of the six commonly occurring methodological flaws we
previously discussed in Chap.1.

14.2.1 Misinterpretations of the p-Value

Our first examination of the above eight papers concerns the interpretation of p-
values. As described earlier it is fairly common for researchers to misinterpret the
p-value in two basic ways: first, rejection of the null hypothesis is often interpreted
as strong evidence in favour of the alternative hypothesis, despite the fact that the
specific alternative is often not tested. Second, a failure to reject the null is often
interpreted as evidence in favour of the null hypothesiswhile this need not be the case.
In P5 this second erroneous interpretation of the p-value is striking: the researchers
combine the survey results of two subsequent years (89 and 90) since there is no
statistically significant difference between the two (although from the description it
is somewhat unclear which dependent variables are actually used in this analysis).
Next, the researchers compare 89/90 with 97 and describe trends over time. Despite
the non-significant difference for the first 2years the researchers could havemodelled
the 89/90 difference explicitly in their subsequent analysis and perhaps had obtained
different results.Without a discussion of power (which is not present) assuming a null
result as proof for “absolutely no effect” is a threat to the validity of the conclusions.
The first interpretation error is also present in P5 albeit less prominently: Despite
directional expectations arising from previous work the authors only test the null
against its rather uninformative alternative (not null) instead of testing explicitly for
directions of the differences.

A similar mistake was made in P3, where the authors write “...most surprising
is the fact that post-experimental perceptions of usability were affected by the inter-
face’s aesthetics and not by the actual usability of the system” p140. That is, no
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differences were detected in perceptions of usability according to the actual usability
of the system; the authors are taking a large p-value as evidence in favour of the
null, without a discussion of how Type II errors were controlled. P4 also appears
to misinterpret p-values, confusing a non-significant p-value with lack of an effect
(confirmation of the null hypothesis) “The amount of time children spent with the
robot during the 1st week also had no effect on their improvement in English by the
2nd week” (p.77). Again, power is not discussed.

A misinterpretation of p-values in one way or another, albeit not always explicit,
is present in each of the eight papers we reviewed. This is consistent with the ques-
tionnaire study by Oakes (1986) and with examinations in economics by Ziliak and
McCloskey (2008): Even the top authors in our field occasionally misunderstand
(or misrepresent) one of our most highly regarded numerical quantities. HCI is no
exception in this regard.

14.2.2 The Fallacy of the Transposed Conditional

The second issue concerns an extension to the misinterpretation of p-values in which
a low p-value is interpreted as a high probability that the alternative hypothesis is
true, or a high p-value is interpreted as large evidence in favour of the null hypothesis.
If no prior probabilities for either of the hypotheses being true are specified, such a
claim is hard to defend.

A small chance that the data would have occurred given that no differences exist
in the population seems sufficient evidence within HCI to accept (e.g.) directional
conclusions about hypothesis. Conversely, a large probability to observe the data
given the data comes from a null hypothesis population (see also the next section) is
often interpreted as decisive evidence in favour of the null. To consider two specific
examples, in P6 the authors find an “extremely significant F value” (p 477), incor-
rectly suggesting a connection between the size of the F ratio and actual strength of
evidence. This latter use of the F value as a comparison to other F-values would only
be possible if n and s are equal.

In P4, the authors write: “However, this analysis did show that sixth graders
learned more English than first graders (p <0.01), and that first graders benefited
slightly more from interaction with the robot in the 1st week (p < 0.08).” p78. Here,
although the p-value is above the standard alpha value of 0.05, it is incorrectly used
to quantify differences in benefits between groups, suggesting that the authors equate
p-value with strength of evidence for hypotheses.

It is surprising to see that the evidence in favour of the hypothesis that researchers
are testing is not discussed in any of the 8 papers that we reviewed. None of the papers
employed Bayesian analysis techniques despite that fact that for several papers—
most noticeably P5 and P8—prior knowledge in explicit quantified form is available
to direct hypothesis. It may be, however, that appropriate Bayesian methods were
unavailable to the authors at the papers were published. It would be interesting to
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apply the techniques discussed in Chap.9 to these datasets to see what new insights
may be gained.

14.2.3 A Lack of Power (Type II Errors)

We have discussed a lack of power as one of the threats to validity, especially when
interpreting null results: when power is low a null result is hardly informative. It is
striking to see that none of the case study papers report the results of power calcula-
tions or even discuss this issue. Hence, it is clear that type II errors, in comparison
to type I errors, are not necessarily subject of our scrutiny.

In particular, P5 should have discussed power at several places since within the
paper the authors actually build on the null result comparing 89/90. Despite the fact
that due to their large sample sizes power is unlikely to actually be an issue, such a
discussion given the estimated effect sizes would be worthwhile and strengthen the
reader’s confidence in the validity of merging the results for the 2years.

P8 uses a fairly small sample size (33 and 10, albeit with repeated measures)
compared to the sheer number of tests (>30 for experiment 1 alone) that is reported
upon. Power is however not discussed at all, despite the fact that the authors could
have made informed guesses about effect sizes a priori (given previous literature
on the topic) and thus could have performed explicit power calculations. The lack
of power in P8 becomes especially troublesome when, on several occasions, null
effects—for example with regard to the effect of beauty—are explicitly interpreted
and contrasted (a) to findings previously reported in the literature, and (b) to findings
earlier in the paper. To be explicit, the second study reported in P8 with a sample
size of 10 would, with reasonable limits (e.g. alpha 0.05, and beta 0.20) only “find”
correlations that are larger than 0.78 (see Chap. 5 to see how to perform this calcu-
lation). These are extremely high correlations in our field. Any correlations smaller
than 0.78 for which a NHST is rejected will not be very informative. It is hard to
decide whether it indicates no relation or simply too little data tomake a decision.We
argue that P8 study 2 has too few observations to draw any meaningful conclusions
from null-results.

Interestingly, the converse of a lack of power also plagues the validity of some of
the studies. Out of all our reviewed papers, P6 reports the most extreme p-values—
and it reports many of them. However, for a number of the reported tests it is largely
unclear howmany observations were used (and whether these were treated as depen-
dent or independent) due to the rather complex setup of the experiment. A more
thorough discussion of the experimental setup and the data-treatment in the analysis
stage would aid readers in their understanding of the reported results. Here, more
advanced methods, like those discussed in Sect. 4 of this book (Chaps. 10–12) might
be of use.

http://dx.doi.org/10.1007/978-3-319-26633-6_9
http://dx.doi.org/10.1007/978-3-319-26633-6_5
http://dx.doi.org/10.1007/978-3-319-26633-6_10
http://dx.doi.org/10.1007/978-3-319-26633-6_12
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14.2.4 Confusion of p-Values and Effect Size Estimates

None of the papers include effect size predictions in their hypotheses, or quantify
the size of effects found in the literature. There is only one standardised measure
of effect reported in one section of one paper (Cohen’s d), although some papers
do report descriptive statistics sufficiently well to enable the reader to compare raw
differences inmeans and draw their own conclusions. The authors by and large do not
attempt to interpret the real world significance of the effect magnitudes they found.
An example of a paper with clearly reported large effects is P2 where the authors
report the percentages of participants who were first advocates of an idea—the first
person to propose an ideawhichwas eventually adopted by the group—in face to face
discussions compared to email discussions. There is a 42% point difference between
face to face and electronic discussions, indicating amore equal participation structure
in the electronic medium. The authors, however, correctly resist the temptation to
over interpret the results, cautiously concluding “In sum, although we were able to
use the experimental technique to study a small piece of the technology-participation
link, we cannot generalise very far” (p141).

In P3 the authors do not interpret the effect size but a consideration of raw differ-
ences in scores between the experimental results does make the findings less com-
pelling. This paper examines the relationship between the aesthetics and usability
of interfaces in a study in which 132 participants used an ATM simulation. Pre-test
and post-test measures indicate a strong correlation between aesthetics and usability.
Based on a multivariate analysis, the authors observe that “the results suggesting
interface aesthetics has a major effect on priori perceptions of ease of use, and per-
haps more importantly on post-facto evaluations of usability may come as a surprise
to those versed in the field of HCI.” (p140). There were statistically significant differ-
ences in usability between interfaces of difference aesthetic quality, but were these
differences practically significant? It is difficult to establish this because the nec-
essary descriptive statistics are not clearly reported. However, figures are provided
for the changes in perceived usability between pre and post test, which relate to one
of the paper’s most surprising findings: “the fact that post-experimental perceptions
of system usability were affected by the interface’s aesthetics and not by the actual
usability of the system” (p140). The changes in perceptions of usability between pre
and post test were around 0.5 on a scale between 1 and 10. Does this magnitude of
improvement make a difference to real world interface designers? The answer to that
is not obvious to us, and the authors do not argue the point either way.

P4 is a clear example where full interpretation of the effect size and consideration
of practical issues should havemade a difference to the conclusions of the study. This
paper explores the potential for robots to form relationshipswith children andwhether
the children might learn English from them. The authors report that interactions
with the robots during the second of week of the study predict scores in the English
language post-test. The authors also suggest that robotsmay bemore successfulwhen
they had something common with users. However, when the results are examined
more closely it becomes apparent that these claims are misleading. The average raw
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difference in test scores before and after the experiment is in the order of tenths of
a percentage point. The lack of convincing effect is not entirely surprising given
that the children chose to interact with the robots for only a total of around 3min in
the second week of the study (the time period during which interactions predicted
scores). It is unlikely that 3min per week of instruction of any sort will make an
impact on language learning. To their credit, the authors do acknowledge that “the
benefits may be still too small to justify practical applications” (p81). However, this
caveat is not prominent in the abstract and conclusions, leading to the possibility that
the 180 authors who cited this work could have taken the headline claims at face
value. This paper has further methodology flaws which can explain the significant
statistical results which appear to challenge common sense, as discussed in the next
section.

In P5 the authors discuss several differences between years and gender. By giving
percentages of (e.g.) internet use amongst their surveyed respondents they allow for
interpretation of the effects that they find on a number of important metrics. However,
while the percentages of use are intuitively clear and easy to interpret, the authors
do not interpret the sizes of the differences uncovered on the other scales that they
use. For example, table8 of P5 gives the differences between internet competent
and internet incompetent users on a number of variables. Each is measured on a 4
points scales (of which interpretation as ratio (Kaptein et al. 2010) is debatable) and
differences in means are presented. It is however not clear whether a mean difference
on this scale of 0.24 points is important in practice.

Interestingly,P7 (which we have hitherto not discussed as it conducts few inferen-
tial statistics) does a very good job at communicating unstandardized effect sizes. The
authors present box-and-whiskers plots that are split according to the relationships
that they wish to examine. Presented this way, readers have an almost full account of
the collected data and canmake up their own conclusions about the importance of the
findings (although we would argue that providing some inference would make this
much easier for the readers). Next, the authors explicitly try to interpret differences
in median scores on the implicit ratings. The authors also provide a check of how
well the implicit ratings (within sample) predict the explicit ratings: this gives a fairly
good idea of the usefulness of implicit ratings when taking the explicit ratings a gold
standard.

To conclude, this error is most definitely present in HCI work. A number of the
eight papers we reviewed do focus on statistical significance rather than effect sizes
or real-world importance. This leads to conclusions which might grossly overstate
the importance of an effect—when measured with high precision—or understate the
importance—when measurement error is large.

14.2.5 Multiple Comparisons (Type I Errors)

The case study papers are variable in the extent to which they successfully controlled
Type 1 errors. There are some examples of good practice for reducing Type I errors



14 Improving Statistical Practice in HCI 339

among the case studies. P1 for example controlled the likelihood of Type 1 errors
by clearly specifying hypotheses in advance, and therefore not relying on multiple
post-hoc tests. P3 corrected for multiple post-hoc comparisons by using the Scheffe
test, and P6 applies Tukey’s HSD correction. Hence it is clear that these authors
considered the multiple comparisons problem and have tried to address it.

Not all papers however address the issue: InP1,whichwas cited by250 subsequent
papers, some of the discussion points no longer hold once Bonferroni corrections2 to
multiple post-hoc comparisons are made. For example, in the analysis of the reasons
the participants gave for using the internet, the authors carried out nineteen follow
up ANOVAs on dependant variables without any corrections. Once Bonferroni cor-
rections are applied (assuming an intended alpha value of 0.05), four of the eleven
previously significant results are no longer significant. The authors also performed
follow up tests on 25 dependent variables about people’s Internet behaviour. If Bon-
ferroni corrections are applied, ten of the eighteen originally significant results no
longer hold. The conclusions of the paper would remain broadly the same, but there
are four occasions where the discussion makes potentially misleading points based
on results which are not significant once corrections are performed.

P4 is a more extreme case where researcher degrees of freedom inflated Type 1
error rates. For example, the authors write “Because we found significant improve-
ment in English learning after 2weeks, we examined whether there was any evi-
dence of improvement after first week with the robot.” Although there were no initial
hypotheses relating to the time period, the authors conducted some unplanned tests,
which should be corrected. Because the reported p-values are close to the alpha value,
if a Bonferroni correction were applied, even the headline finding from the abstract
relating to the interaction time with robot in second week would not be deemed
true. This not only highlights the threat to validity of a failure to correct for multiple
comparisons, but it also highlights the arbitrariness of the NHST cut off points for
significance. P5 does not discuss the issue of multiple comparisons. This poses a
threat to the validity of the conclusions since a large number of tests is reported
(over 50) and it is thus unclear how many reported significant differences are due
to chance. Given that the total number of test that were done (and the possibility of
those which were conducted but were not reported upon in the paper) it is hard for
the reader to assess whether or not the researchers are capitalizing on chance in their
discussion.

Besides over testing, of the eight case studies, only three reported that they had
checked whether the assumptions for the use of the statistical tests were reasonably
met. The other papers may be thus be using statistical tests for which the assumptions
have not been met, therefore possibly increasing the Type I error rates.

In sum, while we resort to NHST testingmethods as an objective standard, we find
that in many cases its assumptions are stretched or its basic ideas are not respected.
This introduces subjectivity in our analysis, and raises the spectre of Ioannidis (2005)

2 Other types of corrections may be more suitable given the intentions of the original research team:
this is merely an illustrative example.
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proposition: are these published research findingswrong?Were these findingsmerely
quirks of randomness, something the NHST was supposedly guarding us against?

14.2.6 Researcher Degrees of Freedom

None of the papers reported stopping rules for data collection, the importance of
which to NHST is highlighted by Dienes (2008), Kruschke (2011) and Simmons
et al. (2011). P4, P5, and P8 indicate the time period for data collection, in some
cases implying that the stopping rule was time related but do not explicitly state it.
For the other papers it is unclear why the number of subjects was chosen as is, and
it is unclear whether this was done in advance.

P5 —similar to most survey studies—allows for a large number of researcher
degrees of freedom. The authors posses a large number of measurements and can
construct a large number of possibly interesting indictors. The authors focus in their
discussion on changes of the effect of gender over time. It is however unclear whether
other differences (e.g. ethnicity, socio-economic status, etc.) are measured or exam-
ined. Likely with these types of large scale surveys a multitude of comparisons could
have been carried out and researchers havemany opportunities to pick those tests that
“work”: e.g. produce statistically significant results. We are not implying dishonesty
on the part of the authors, merely that explicit reporting along the lines of Simmons
et al. (2011) recommendations removes ambiguity. On the other hand—in fairness
to the authors of P5—the consistency of the findings presented over a multitude of
dependent measures strengthens the confidence that the reported upon differences
are indeed meaningful.

In P4, the researchers decided post-hoc to control for the presence of friends and
initial pre-test score in analyses of learning gains in the human-robot interaction
study. Both of these researcher degrees of freedom could have increased the likeli-
hood of false positives.P6, due to its very large number ofmeasurements, conditions,
and tasks also allows for many different analysis methods. It is unclear how much
this freedom has been exploited in this paper—perhaps none—but a more specific
account of the initial plans, would have removed any doubt that might be cast on the
validity of the reported results.

In general, many studies contain researcher degrees of freedom in one way or
another. Post experiment removal of outliers (see P7) for example can have large
effects on the presented results: such practice should only be undertaken if outlier
criteria are identified a priori. Over testing, post-hoc re-classification, selection of
“interesting” dependent variables based on p-values are other examples of researcher
degrees of freedom which are—regrettably—all present within the body of the eight
papers that we have reviewed.
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14.3 What Do We Know Now?

Despite the common errors, it is important to review what we might have learned
from the eight reviewed papers. Are the errors so severe that they hamper the validity
of the results? In this sectionwe try to address one by one the severity of the statistical
errors on the validity of the conclusions in each of the eight reviewed papers.

P1 reports an alarmingly high rate of Pathological Internet Usage among their
participants, and proposed a model of the characteristics associated with PIU. The
paper reports a large number of post-hoc comparisons which are not corrected for.
When corrections are applied, 14 of the results are no longer significant, although we
do believe that the broad conclusions remain the same. So despite some caution, we
would say that the authors provide sufficient evidence in favour of their conclusions. It
is however unclear what the practical value for HCI and wider fields of the uncovered
differences actually is since effect sizes are not reported. Hence, while we feel the
general conclusion of the paper is warranted, more elaborate reporting, using (e.g.,)
an estimation approach as advocated inChap.13,would have strengthened the impact
of the work.

The analysis inP2waswell conducted and the conclusions are appropriately care-
ful. Their contribution about the equalisation of group members when using elec-
tronic communication have large effect sizes, and are likely to be reliable, assuming
that the assumptions of the tests were met. This is an example of carefully planned
and reported analysis.

P3 reported some surprising results regarding aesthetics and usability: users’
post-test perceptions of a system were affected by aesthetics and not by usability.
However, although these results were statistically significant, the effect sizes are very
small and it is not obvious what impact this size of effect might have on designs in
the real world. Hassenzahl (P8) also set out to study the relationship of beauty and
usability; due to the lack of power in the experiments, however, we do not think
the faith in the null effect—as advocated in the discussion—is warranted. While
the Hassenzahl data might add to our belief that the effects of beauty on usability
are typically not very large, concluding that they are zero is erroneous. This paper
would have benefited from a Bayesian approach (Chaps. 8 and 9), which could have
helped to authors quantifying evidence in favour of the null hypothesis. Thus, while
the interplay of beauty and usability is of high interest—interesting enough to be
the subject of two of the 8 most cited quantitative works in our fields—we feel that
the actual relationship has not at all been fleshed out. This is a typical example in
which methods matter, and better methods should be used to answer this important
question. Again, the estimation approach advocated in Chap.13 would also be an
interesting way to widen the debate.

P4’s results seem not very reliable due to problems with researcher degrees of
freedom, and multiple comparisons. The effect sizes are very small. A key recom-
mendation from the paper is that “we need to study long-term interactions to learn
how to create effective partner robots” (p79). While this may be true, it does not fol-
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low from the experimental results reported in the paper. So despite the fact that one of
the conclusions is sensible, the actual data presented hardly justifies the conclusions.

P5 is of interest party due to the trends it describes, but also partly due to the
estimates of internet use that are contained within. The paper has been referenced for
both. Regarding the trends described—and the explicit focus on gender differences—
it is possible that many of the reported differences might have been due to chance.
As discussed above the study permits many researcher degrees of freedom and the
authors could have more explicitly discussed other possible covariates. For the esti-
mates of internet use the study provides a very poor basis (partly because this was
obviously not the intent of the authors) for generalisation beyond the American col-
lege in which the study took place.

P6 motivates how and when we should automate tasks: an extremely important
topic. The work presented is nuanced, which is warranted given the complex exper-
imental design. However, power is not discussed, nor are real world effect sizes
discussed: the latter despite the fact that the topic begs for such a discussion. Thus,
while this work surely contributes to our understanding of automation, it leaves us
oblivious to the real world importance of the uncovered differences.

Lastly, P7 while not at all standard in its reporting, actually raises the least objec-
tions: the authors’ discussion of the importance of implicit ratings seems highly
valid, and never are the results overstated. Although studies using other experimen-
tal groups for increased generalizability are feasible, we believe the paper poses no
threats to its own conclusions.

To conclude, there were “flaws” in the analysis sections of our eight case study
papers that were published in reputable HCI journals. These papers have been cited
in a total of over 1300 other papers. This demonstrates that also HCI as a field is
not immune to challenges in its statistical and methodological practice. We hope this
book contributes to addressing these challenges.

14.4 Recommendations for Improving Statistical
Methodology

It is clear from the above discussion, the six frequently occurring problems with
respect to NHST also occur in HCI. These problems threaten the validity of some
of the highest cited works in the field. By explaining the problems, highlighting
them, and presenting above some examples of good practice, we hope to circumvent
some of the problems and to have motivated researchers to analyse and report their
quantitative data differently and more informatively. However, to further improve
our reporting of quantitative studies, we recommend the following changes, adapted
and extended from our previous recommendations in (Kaptein and Robertson 2012)
according to our analysis of the eight case study papers.

1. Firstly, consider whether quantitative methods are actually appropriate for the
type of research questions under consideration. If the research aims to richly
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document the experiences of only a few key users, qualitative methods may be
more appropriate. If the questions are exploratory in nature, hypothesis testing
might best be deferred until descriptive (possibly quantitative) results from initial
analysis have been published. Visualization (Chap.3) and estimation techniques
(Chap. 13) will be a good place to start.

2. A more specific hypothesis yields more information when it is falsified than a
vaguely specified hypothesis. For this reason, researchers should be bolder about
predicting the direction and magnitude of effects rather than choosing the “safe”
null that there is no difference between conditions. Bayesian techniques (See
Chap.9) can be used to quantify evidence in support of competing hypotheses.

3. When planning an experiment, researchers should predict the size of the effect
they are likely to find, based on previous findings from related studies if possible.
Predictions can also be used to construct prior probabilities for Bayesian analysis
(See Chap.8).

4. Decidingonpower, significance criterion (alphavalue), and effect size in advance
enable the researcher to calculate the number of participants they require to detect
an effect of practical or theoretical importance. Power calculations can also be
used to specify a stopping rule for data collection. Following Simmons et al.
(2011) it is recommended that authors should collect at least 20 observations in
each cell if NHST is to be used or provide a justification of why this was not
possible on grounds of the cost of collecting the data. Amore through discussion
of stopping rules can be found in (Frick 1998). Chapters5–7 of this book have
discussed effect sizes details of the NHST framework extensively.

5. To increase the number of observations in cells, researchers should consider
reducing the complexity of experimental design. For example, instead of com-
paring multiple versions of an interface in a single study, the researchers could
run a comparison between two versions, and decide whether to pursue additional
studies in the future to test further versions if the results warrant it. While the
real-world is often complex and thus researchers should not avoid complexity
per-se, researchers should be cautious about increasing the number of cells in
their experiments without also increasing their power leading to results that are
too ill informed by the data to derive any conclusions. If complex experimen-
tal designs are adopted, research should consider using more elaborate analysis
methods such as those presented in Chaps. 10–12 of this book.

6. If there are practical difficulties in recruiting enough participants, research teams
should consider collaborating for multi-site experiments. Power can also be
increased by careful choice of valid and appropriate measurement instruments.
Furthermore, analysing the results of multiple studies into the same topic (meta-
analysis) can, through collaboration, strengthen our beliefs.

7. Researchers should consider using Bayesian analysis to calculate the probability
of the hypothesis given the data instead of “orthodox” significance testing (see
Chaps. 8 and 9). This analysis method enables researchers to build on the body of
knowledge in thefield by incorporatingprevious results as prior probabilities, and
avoids the fallacy of the transposed conditional. It also enables the quantification
of strength of evidence for a hypothesis without misinterpreting the p-value.
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8. When making data collection and analysis decisions, authors should attempt to
mitigate problems arising from researcher degrees of freedom by following the
recommendations of Simmons et al. (2011) about reporting stopping rules, all
variable collected, all experimental conditions, complete results of testing with
and without covariates and how outliers are processed. Careful consideration of
techniques for handling missing data are also important, as discussed in Chap.4.

9. Researchers, reviewers, programme chairs and journal editors should work
towards raising the standard of reporting statistical results in order that future
researchers can use this information to inform their own hypothesis generation,
effect size estimates and prior probabilities in Bayesian analysis. The guidelines
in the 6th edition of theAPA publicationmanual (American Psychological Asso-
ciation 2009) are helpful in this regard. At the very least, the mean and standard
error should be reported to enable future researchers to calculate standardized
effect sizes.

10. And, last but absolutely not least, researchers should interpret the magnitude of
the effects in terms of real world significance. Here, unstandardized effect sizes
need to be reported and interpreted. The mere reporting of standardized effect-
sizes (such as Cohen’s d, R2, etc.) as suggested by the APA is not sufficient: the
measures also combine both signal and noise into a single estimate. Ultimately
designers need to know the extent to which design decisions will impact their
users to make cost benefit decisions and the certainty of these estimates.

The above recommendations should help researchers when discussing the results
of their quantitative studies. In all cases however, there is no “single best answer”.
While NHST conveniently provides such a single-best answer procedure, it does
so at great cost. NHST should be only one of many tools available to quantitative
researchers, and perhaps it should not be singled out as the most important one.
We would like to stress that we do not believe that there is a single best way to
analyse data given the experimental setup: one can approach the data in a multitude
of ways, examining descriptive statistics, running the appropriate (and planned) tests,
and fitting models. However, as Box said: “All models are wrong, some are useful”
(Box 1979). We are looking for a useful interpretation of our quantitative results that
furthers our field. We are not merely seeking small p-values. This should be a note
not just to authors, but perhaps even more prominently to reviewers.

14.5 Closing Remarks

So, do methods matter? We argue that they do; the above case studies suggest that
lack of rigour in quantitative methods in HCI research has in the past led to the
publication of possibly misleading findings in well-respected journals. We will now
aim to place this argument in the context of the contemporary HCI community by
examining some current debates among researchers and practitioners. As informal
yet revealing debates currently often take place online, we will characterise points of

http://dx.doi.org/10.1007/978-3-319-26633-6_4
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view with quotes from recent calls for papers, panel discussion and HCI blogs and
blog commenters.

Our intention is not to dissuade colleagues from using quantitative methods. Nor
dowe intend to imply that our ownwork is perfect in this regard (far from it!). Accord-
ing to the blog post of a CHI Associate Chair, hundreds of CHI conference papers are
annually rejected on the basis of their statistical conclusion validity (including many
of the errors described in this paper), even although the topic of the paper is timely
and important.3 It would be much better for the field if the authors could overcome
these barriers and present their important work in front of their peers. Another CHI
associate chair blogged that although “poor rigor is seldom a winning recipe for
publication …some flaw or compromise in the rigor can be found in most papers…
the issue is how seriously to judge that flaw as a part of the whole contribution.”4

While this is a reasonable consideration, based on the case study papers we exam-
ined above, our position is that flawed statistical analysis can seriously undermine
the quality of a contribution and that therefore reviewers, editors and chairs should
be able to confidently identity when the findings are not supported by the evidence
as presented in the analysis.

We argue that methodological rigour is increasingly important, given important
current trends within the HCI community: research in the wild (as discussed at a DIS
2012 workshop), longitudinal research (as discussed at the “Theories, methods and
case studies of longitudinal HCI research” workshop at CHI 2012), and replication
(see the Replichi panel at CHI 2011 and the more recent workshops stemming from
it). A 2012 ToCHI call for papers on a special issue entitled “The Turn to the Wild”5

reads: “Whereas the burning question in HCI used to be “how many participants do
I need?” the hotly debated question now is “how long should my study run for?”
Some say a few weeks, others argue for months while some even suggest years are
needed to show sustainable and long-term effects.” As the call for papers notes, in
the wild research, particularly longitudinal work, can be extremely costly. While we
acknowledge that not all in wild research will be quantitative, some such work will
benefit from statistical methods. It is simply too expensive in terms of researchers’
and users’ time to run in the wild studies which aim to make quantitative claims but
are inadequately designed or suffer from problems with data collection and analy-
sis. The recommendations about transparent statistical reporting in Chap.13 and
Simmon’s et al. advice (2011) on researcher degrees of freedom are particularly rel-
evant here. Years of research effort could be wasted, thus raising the ethical question
of whether the long-term intrusion into users’ lives is warranted for compromised
research findings.

There is a laudable move towards replication, as demonstrated by the replichi
group, who ran a workshop at CHI 2014. Replication of quantitative research find-
ings can only be done if the experimental reporting of the original work is clear

3 See http://oulasvirta.posterous.com/86113982 for this discussion.
4 Quote retrieved from: http://interactionculture.wordpress.com/2012/01/27/a-position-on-peer-
reviewing-in-hci-part-1/.
5 See http://cs.swansea.ac.uk/turntothewild/.
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and complete. This relates to recommendations 4 and 9 which refer to basing power
calculations on reported effect sizes from the literature and adopting the APA guide-
lines for clear reporting. For the replichi6 movement to succeed, higher standards of
reporting must be applied consistently (see also Chap. 13, Sect. 13.2.2).

At a deeper level, the replichi cause exemplifies debate about the very nature of
HCI research, which will perhaps also concern critics of this book. In an extended
abstract for CHI 2011, the replichi group writes: “The replication of, or perhaps the
replicability of, research is often considered to be a cornerstone of scientific progress.
Yet unlike many other disciplines, like medicine, physics, or mathematics, we have
almost no drive and barely any reason to consider replicating the work of other HCI
researchers. Our community is driven to publish novel results in novel spaces using
novel designs, and to keep up with evolving technology.”7

For somemembers of the community, the alignment of HCIwith science is unwel-
come.8 Some consider HCI closer to engineering.9 A somewhat cynical blog com-
ment reads:“I think that HCI is attempting to assume the mantle of science *because*
science is ‘practically the only measurable form of progress in the 20th century’;
it’s a legitimacy ploy”10 James Landay blogs: “I think we have been blinded by the
perception that “true scientific” research is only found in controlled experiments
and nice statistics.”11 Our position closely matches that of another blog commenter
who wrote: “Is HCI a science?—I don’t care other than that I rarely find such
discussions worthwhile other than as distractions. Can science be used to better
HCI? Absolutely! Can someone ignorant of science be an effective HCI practitioner
(without supervision of someone who’s not ignorant)? Extremely unlikely.”12 This
captures our viewpoint in the sense that we believe that the scientific method using
statistical analysis is a substantial and important tool in the toolkit ofHCI researchers.
We should therefore aspire to a state where all authors and reviewers who use these
methods know how to do so competently and report them clearly in such a way that
the results can be replicated. We hope this book is a contribution towards this goal.

Consistent with previous studies of statisticalmethodswithin the field ofHCI (and
our neighbouring fields), our examination of eight of the most highly cited quantita-
tive papers from reputable HCI publications indicates that there is considerable room
for improvement in our statistical methodologies. We believe that quantitative meth-
ods are important for some types of HCI research, and that we should continue to use
them for hypothesis testing in confirmatory research. Broadly speaking we believe

6 The first replichi special interest group can be found at: http://chi2012.acm.org/program/desktop/
Session25.html.
7 From http://www.cs.nott.ac.uk/$\sim$mlw/pubs/RepliCHI-panel_CR.pdf.
8 For a detailed discussion of this see Stuart Reeve’s blog at http://notesonresearch.tumblr.com/.
9 Comment on http://web.archive.org/web/20100914113440/http://unraveled.com/archives/2003/
10/hci_as_science.
10 Comment on http://web.archive.org/web/20100914113440/http://unraveled.com/archives/2003/
10/hci_as_science.
11 See: http://dubfuture.blogspot.co.uk/2009/11/i-give-up-on-chiuist.html.
12 Comment on http://web.archive.org/web/20100914113440/http://unraveled.com/archives/2003/
10/hci_as_science.
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that there are two issues which we as a field need to improve: (a) identifying cases
where null hypothesis significance testing (NHST) tells us what we need to know
and those cases where alternative analysis methods (e.g. Bayesian) might be more
suitable and (b) eliminating common errors in carrying out NHST which potentially
lead to errors in interpreting results, thus misdirecting future research effort. Such
improvements will serve practitioners and users better by enabling us to quantify the
outcomes of experiments in a real world context. We need to be confident both that
most of our research findings are not false, but also that they are actually useful.
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