Chapter 7
Almost Periodic Solutions of Evolution
Differential Equations with Impulsive Action

Viktor Tkachenko

Abstract In an abstract Banach space we study conditions for the existence of
piecewise continuous, almost periodic solutions for semilinear impulsive differential
equations with fixed and nonfixed moments of impulsive action.

7.1 Introduction

We consider the problem of the existence of piecewise continuous, almost periodic
solutions for the linear impulsive differential equation

AT A=, 1 # ), a.n
u(tj(u) + 0) — u(tj(u)) = Bju+ gj(w), jeZ, (7.2)

where u : R — X, X is a Banach space, A is a sectorial operator in X, A; () is some
operator-valued function, {B;} is a sequence of some closed operators, and {z;(u)} is
an unbounded and strictly increasing sequence of real numbers for all # from some
domain of space X.

We use the concept of piecewise continuous, almost periodic functions proposed
in [7]. Points of discontinuities of these functions coincide with points of impulsive
actions {7;}. We mention the remarkable paper [18], where a number of important
statements about the almost periodic pulse system were proved. Then these results
were included in the well-known monograph [19]. Today there are many articles
related to the study of almost periodic impulsive systems (see, for example, [1, 3]).
In the papers [8, 23, 27, 28] almost periodic solutions for abstract impulsive
differential equations in the Banach space are investigated.

In this chapter we consider the semilinear abstract impulsive differential equation
in a Banach space with sectorial operator in the linear part of the equation and
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some closed operators in linear parts of impulsive action. Using fractional powers
of operator A and corresponding interpolation spaces allows us to consider strong
or classical solutions. Note that such equations with periodic right-hand sides were
first studied in [17]. In equations with nonfixed moments of impulsive action, points
of discontinuity depend on solutions; that is, every solution has its own points of
discontinuity. Moreover, a solution can intersect the surface of impulsive action
several times or even an infinite number of times. This is the so-called pulsation
or beating phenomenon. We will assume that solutions of (7.1) and (7.2) don’t have
beating at the surfaces t = 7;(u); in other words, solutions intersect each surface
no more than once. For impulsive systems in the finite-dimensional case, there are
several sufficient conditions that allow us to exclude the phenomenon of pulsation
(see, [19], [22]). Unfortunately, in a Banach space this conditions cannot easily be
verified. In every concrete case one needs a separate investigation.

We assume that the corresponding linear homogeneous equation (if f = 0,
g = 0) has an exponential dichotomy. The definition of exponential dichotomy
for an impulsive evolution equation corresponds to the definition of exponential
dichotomy for continuous evolution equations in an infinite-dimensional Banach
space [5, 9, 16]. We require that only solutions of a linear system from an unstable
manifold be unambiguously extended to the negative semiaxis.

Robustness is an impotent property of the exponential dichotomy [5, 10, 16].
We mention the papers [4, 14, 25, 26], where the robustness of the exponential
dichotomy for impulsive systems by small perturbations of right-hand sides is
proved. In this chapter we prove robustness of the exponential dichotomy also by
the small perturbation of points of impulsive action. We use a change of time in
the system. Then approximation of the impulsive system by difference systems
(see [9]) can be used. If a linear homogeneous equation is exponentially stable, we
prove stability of the almost periodic solution of nonlinear equations (7.1) and (7.2).
Following [17], we use the generalized Gronwall inequality, taking into account
singularities in integrals and impulsive influences.

This chapter is organized as follows. In Sect. 7.2 we present some preliminary
definitions and results. In Sect. 7.3, we study an exponential dichotomy of impulsive
linear equations. Section 7.4 is devoted to studying the existence and stability of
almost periodic solutions in linear inhomogeneous equations with impulsive action
and semilinear impulsive equations with fixed moments of impulsive action. In
Sect.7.5 we consider impulsive evolution equations with nonfixed moments of
impulsive action. In Sect. 7.6 we discuss the case of unbounded operators B; in linear
parts of linear parts of impulsive action.

7.2 Preliminaries

Let (X, ||.||) be an abstract Banach space and R and Z be the sets of real and integer
numbers, respectively.

We consider the space Z%€(J,X), J C R, of all piecewise continuous functions
x :J — X such that
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i) theset{r; € J: tj+1 > 1;,j € Z} of discontinuities of x has no finite limit points;
ii) x(¢) is left-continuous x(z; + 0) = x(z;) and there exists lim/y—ox(f) =
x(z; —0) < oo.

We will use the norm ||x||pc = sup,¢; [|x(¢)||, in the space ZE€(J, X).

Definition 1. The integer p is called an e-almost period of a sequence {x;} if
lxk+p — xk|| < € for any k € Z. The sequence {x;} is almost periodic if for any
& > 0 there exists a relatively dense set of its e-almost periods.

Definition 2. The strictly increasing sequence {t;} of real numbers has uniformly
almost periodic sequences of differences if for any ¢ > 0 there exists a relatively
dense set of g-almost periods common for all sequences {7} }, where 7, = T4, —
T, j € Z.

By Samoilenko and Trofimchuk [21], the sequence {7} has uniformly almost
periodic sequences of differences if and only if tz = ak + ¢, where {c;} is an
almost periodic sequence and a is a positive real number.

By Lemma 22 ([19], p. 192), for a sequence {7;} with uniformly almost periodic
sequences of differences there exists the limit

. i(tt+T)
lim — =

T—o00

(7.3)

uniformly with respect to ¢t € R, where i(s, 7) is the number of the points t; lying
in the interval (s, t). Then for each g > 0 there exists a positive integer N such that
on each interval of length g there are no more than N elements of the sequence {7;};
that is, i(s,7) < N(t —s) + N.

Also, for sequence {7;} with uniformly almost periodic sequences of differences
there exists ® > O such that 74| — 7, < ©,j € Z.

Definition 3. The function ¢ € Z%€ (R, X) is said to be W-almost periodic if

i) the strictly increasing sequence {7;} of discontinuities of ¢(¢) has uniformly
almost periodic sequences of differences;

ii) for any & > 0 there exists a positive number § = §(¢) such that if the points ¢
and 7’ belong to the same interval of continuity and |/ — 7’| < &, then |Jo(¢') —
()] <&

iii) for any ¢ > O there exists a relatively dense set I" of e-almost periods such that
if t € T, then |t + t) — ¢(t)|| < e for all # € R that satisfy the condition
|t—t| > e,k eZ.

We consider the impulsive equations (7.1) and (7.2) with the following
assumptions:

(H1) A is a sectorial operator acting in X and inf{Reu : © € 0(A)} > 8§ > 0,
where o (A) is the spectrum of A. Consequently, the fractional powers of A
are well defined, and one can consider the spaces X* = D(A*) fora > 0
endowed with the norms ||x|, = [|A%x]|.
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(H2) The function A;(¢) : R — L(X%, X) is Bohr almost periodic and Holder
continuous, & > 0, L(X%, X) is the space of linear bounded operators
XY - X.

(H3)  We shall use the notation Uy = {x € X* : |[lx[lo < o}. Assume that the
sequence {7;(u)} of functions 7; : U; — R has uniformly almost periodic
sequences of differences uniformly with respect to u € Uj and there exists
¢ > 0 such that inf, 74, (u) —sup, 7j(u) > 6 > 0, forallu € Uy andj € Z.
Also, there exists ® > 0 such that sup, tj+; (u) —inf, 7j(u) < O forallj € Z
and u € Uy.

(H4) The sequence {B;} of bounded operators is almost periodic and there exists
b > 0 such that ||Bjullq < b||u|| forj e Z,a > 0, and u € X“.

(H5) The function f(r,u) : R x U; — X is continuous in u and is Holder
continuous and W-almost periodic in 7 uniformly with respect to x € Uj
with some p > 0.

(H6)  The sequence {g;(u)} of continuous functions U, — X* is almost periodic
uniformly with respect to x € U7.

Remark 1. We assume that operators B; are bounded and satisfy assumption (H4).
Many of our results are valid if the B; are unbounded closed operators X**7 — X“
for « > 0 and some y > 0. We discuss this case in the last section.

We use the following generalization of Lemma 7 from [7] (also, see [6] and [19]):

Lemma 1. Assume that a sequence of real numbers {t;} has uniformly almost
periodic sequences of differences, the sequence {B;} is almost periodic, and the
Sfunction f(t) : R — X is W-almost periodic. Then for any ¢ > 0 there exist a such
[ = l(¢) > O that for any interval J of length  there are such r € J and an integer q
that the following relations hold:

Wft+r—f@O <e teR|t—1g]>¢j€Z,
| Bitqg — Bl <&, It —rll < v,k € Z.

If A is a sectorial operator, then (—A) is an infinitesimal generator of the
analytical semigroup e™. For every x € X* we get e 4'A%x = A%e~“'x. Further,
we shall use the inequalities (see [9])

[A% || < Cot e, 1> 0, a > 0,

1
1™ = Dul| < —Ci—at||A%ull, 1> 0, € (0, 1], u € X*,
o

where C, € R is nonnegative and bounded as o — +0.
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Definition 4. The function x(¢) : [fy,#;] — X“ is said to be a solution of the
initial-value problem u(ty) = uy € X* for Egs. (7.1) and (7.2) on [ty, 1] if

(i) itis continuous in [to, T], (Tk, Tat1], - - -» (fx+s, 11] With the discontinuities of the
first kind at the moments ¢ = 7;(u) of intersections with impulsive surfaces;
(i) x(7) is continuously differentiable in each of the intervals (¢o, 7¢), (Tk, Tk+1),
..., (tr5- 1) and satisfies Eqs. (7.1) and (7.2) if t € (to,11),t # 75, and t = Tj,
respectively;
(iii) the initial-value condition u(ty) = uy is fulfilled.

We assume that solutions u(t) of (7.1) and (7.2) are left-hand-side continuous;
hence u(t;) = u(z; — 0) at all points of impulsive action.

Also, we assume that in the domain U;‘ solutions of (7.1) and (7.2) don’t have
beating at the surfaces t = t;(u); in other words, solutions intersect each surface
only once.

7.3 Exponential Dichotomy

Together with Eqs. (7.1) and (7.2) we consider the corresponding linear homoge-
neous equation

% FA+AOU=0, 1£T, (7.4)
Aul=y = u(t; +0) — u(g) = Bu(z), j€Z, (75)

where 7; = 7;(0). Denote by V/(t,s) the evolution operator of the linear equation
without impulses (7.4). It satisfies V(t,7) = I, V(t,5)V(s, ) = V(t,7), t > 5 > 1.

By Theorem 7.1.3 [9, p.190], V(z, 7) is strongly continuous with values in L(X?)
forany 0 < B < 1 and

IV 0)xllg < Lo — )P |xl),, (7.6)
where (y — B)— = min(y — ,0), t —t < Q, Ly = Ly(Q). Moreover,
V(0 —2llp < Lot = O Ixllprns v>0.8+v <1 (1D

Using the proof of Lemma 7.1.1 from [9], p. 188, one can verify the following
generalized Gronwall inequality:

Lemma 2. a; > 0,a; > 0, and y(¢) is a nonnegative function locally integrable on
0<t< Qwith

t
(1) <ar +axt™™ + b/ (t — )" Pu(s)ds
0
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on this interval; then there is a constant C = C (B, b, Q) < oo such that

az

y(@) < (a1 + m

) C(B.b.0).

We will use the following perturbation lemma.

Lemma 3. Let us consider the perturbation equation

du

o A+ As)u =0, (7.8)

where y = Const > 0, Ay(f) : R — L(X*, X).

For Q > 0, there exists &g > 0 such that for all ¢ < gy and |y — 1| <
g, sup, ||A1 (1) —A2(t) || Lo x) < € the evolution operators V (¢, s) of (7.4) and V, (¢, 5)
of (7.8) satisfy

[V(t.5) = Vi(t,s)|l« <Ri(e), t—5 <0, (7.9)

where R\ (g) depends on Q,a, and Ri(¢) — 0 as ¢ — 0.

Proof. For definiteness let y > 1. Solutions x(¢) and y(¢) of Egs.(7.4) and (7.8)
satisfy the following integral equations:

t
)C(t) — e—A(T—lo)xo +/ e—A(t—s)Al(s)x(s)ds

0
and
y(t) = e A0 g 4 /te_AV(’_”Az(s)y(s)ds.
1
Then
16(2) = YD) o < [|(1 — e ATTDETIN) A% A0 ||

t
+ / (I — e AV=DE=9) 42 =49 4 (5)x(s) || ds +
to
t
+ / 1A% 476 (A, () — Aa()x(s) s +
to
t
+ / 1A% 270975 (5) (x(s) — y(s)) | ds <
10

< a@)xolle + as / (0 — )~ x(s) — y(5) ladls.
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where ay = C,sup, [|A1(s)||Lxe.x) and a;(¢) — 0 as ¢ — 0. By Lemma 2, there
exists a positive constant K; depending on « and Q such that

[x(t) = y(D)lle = Kia1(e)[[xolle = Ra2()[1%0]la-
Lemma 4. Let us consider Eq. (7.4) and

i—i + (A + A (D)) = 0, (7.10)

such that A; : R — L(X%, X) is a bounded and Holder continuous function.
Then for Q > 0, there exists gy > 0 such that for all ¢ < gy and

sup [|A; (t) — As(D|lexex) < €
t

the evolution operators V(t, s) of (7.4) and V (¢, s) of (7.10) satisfy
I(V(t.5) = Vilt.s)ulla < R3(e)lr = 1o > flulls, 1=s < Q. (7.11)

where R3(e) = R;3(e, Q,a) and R3(¢) — O as e — 0.

Proof. Denote by u(f) and v(f) solutions of (7.4) and (7.10) with initial value
u(ty) = u(ty) = uyp. They satisfy the inequalities

lu(e) — v(D)la < / 1A% (A, (5) — As(s))uls) [ ds +
+ / A% Ay (5) () — v s <

+Ca||A1||L/ ”“(S)(‘M -

t
W (6= 8)%(s — 10)* "
" lu(s) — v(s)|wds
< éelluollsRs + Ca”AIHL/ ”()—(3”a
o (t—ys)

Applying Lemma 2 to (7.12), we obtain (7.11).

< CyLope||u
< CuLoelluols .

(7.12)

We define the evolution operator for Egs. (7.4) and (7.5) as
Ult,s) =V(t,s)if tp <5 <t < 1441
and
Uuts) =V(e, w)d + B)V(tk, ti—1)...(L + Bn) V (T, 5) (7.13)

T <S<Tp <Tp+1 <...<T <t =< Tgtg-
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It it easy to verify that for fixed + > s the operator U(t,s) is bounded in the
space X“.

Definition 5. We say that the system (7.4)—(7.5) has an exponential dichotomy on R
with exponent 8 > 0 and bound M > 1 (with respect to X*) if there exist projections
P(1),t € R, such that

(1) U(t,s)P(s) = P()U(t,s), t > 5,
(ii) U(t,s)|mp(sy for t > s is an isomorphism on Im(P(s)), and then U(s, ?) is
defined as an inverse map from Im(P(t)) to Im(P(s));
(i)) [|U(5,9)(1 = P()ulla < Me P |ullq, t > 5, u € X%
Av) U, $)P(s)|le < MeP|u|y, t <5, u € X~

If the system (7.4)—(7.5) has an exponential dichotomy on R, then the nonhomo-
geneous equation

At AOu=10. (#3, (7.14)
A=y = u(t; + 0) —u(z) = Bju(y) + 8. jEZ, (7.15)

has a unique solution bounded on R

up(t) = [ G(t, s)f (s)(x)ds + Z G(t, 77)g) (7.16)
o jez
where
_J U@ U —=P(s), 1=5,
Gle.s) = % —U(t $)P(s), 1 <s.

is the Green function such that
||G(tv S)M”Ot E Me—ﬂlt_s‘ ||u||0ls ta NS R (717)

Analogous to [9], p. 250, it can be proven that a function u(¢) is a bounded
solution on the semiaxis [fg, +00) if and only if

+o0
u(t) = U(t, tg) (I — P(tg))u(to) +/ G(t,s)f (s)ds + Z G(t, tj)gj, t > t9. (7.18)

fo 1=<7;

A function u(f) is a bounded solution on the semiaxis (—oo, fy] if and only if

fo

MOZIKLMPmmmw+:[ GOJV@M&+§:G“QBPISM.UJ%

- 10>1;
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Now we estimate |G(z, s)ull, foru € X. Lett > sand T,—) <5 < Ty, Tt < <
Ty+1. Then

G, s)ulle = U, s)I — P(s))ulle <
< WU t) T = P(@a) e |U (T, )ulle <
< Me P Lo (1, — $) 7| < Me POz, — 5|74 ul| (7.20)

and
IG(s. Dulle = [U(s, )P(Dulle =
< UGs.t+ DP+ D]a|A“U(t + 1 t)ull < Me P ]l (7.21)
If #; and 1, belong to the same interval of continuity, then
1P(t1)u = P(t)ull, < Millty — 12" ull+ (7.22)
since as in [9], p. 247,
|PG + hyu— P@ull, < [P — V(i + h)P(oull, +

+|V(t + h, 0)P(t)u — P(t + h)u|, <
==V +h0)P@ull, + [P+ h)(V(E+ h.u—u)ll,.
Lemma 5. Let the impulsive system (7.4) and (7.5) be exponentially dichotomous

with positive constants B and M. Then there exists € > 0 such that the perturbed
systems

d ~
T A+ADN=0. 1#7, (723)
Aul—z, = u(% + 0) —u(%) = Bu(¥). jeZ, (7.24)

with sup; |t; — 7| < &, sup; ||B; — Bj|| < e, sup, [|A1(2) —A(Z‘)HL((Xax) < &, are also
exponentially dichotomous with some constants B < 8 and M > M.

Proof. Insystem (7.4) and (7.5), we introduce the change of time = ¥ (¢') such that
7; = ¥(%),j € Z, and the function ¥ is continuously differentiable and monotonic
on each interval (7, Tj31).
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The function ¢ can be chosen in piecewise linear form:

Tji+1— b= LiTi+1 — G+1T

t=at +b a= j
Tji+1— Tj T+1— 7T

if 1€ (§.7541). (1.25)

The function ¢ (') satisfies the conditions

dv(t')

9({)—7| <e,
@)~ <o 1=

— 1] < 2¢/6.

The system (7.4) and (7.5) in the new coordinates v(#') = u(¢(¢')) has the form

v dd(t) , )
ot ArAGO)v=0, 1#7F (7.26)
Avly=z = v(5 + 0) —v(§) = B(f), jeZ (7.27)

The system (7.26) and (7.27) has the evolution operator U, (¢, s') = U(J (), ¥ (5)).
If the system (7.4) and (7.5) has an exponential dichotomy with projector P(f)
at point #, then the system (7.26) and (7.27) has an exponential dichotomy with
projector Py (') = P(J(¢)) at point ¢. Really,

U1, s) (1 = Pi(sDlle = U@ (), 3 () (A = PO ()]l <
< Me—BEE)=9(") < Me%e—ﬁ(l’—&'), t>s.

The inequality for an unstable manifold is proved analogously.
The linear systems (7.26), (7.27) and (7.23), (7.24) have the same points of
impulsive actions 7;,j € Z, and

¢ dv(t
120 0 - Ay = 1 220

A1 @ () — A )] + 1A (F) —A(t')ll = Kx(¢).

A (@ () = A @) +

where K,(g) — 0 as ¢ — 0.

Let U (7,s') be the evolution operator for the system (7.23) and (7.24). To
show that for sufficiently small &y the system (7.23) and (7.24) is exponentially
dichotomous, we use the following variant of Theorem 7.6.10 [9]:

Assume that the evolution operator U; (¢, s') has an exponential dichotomy on R
and satisfies

sup  |U (7,5 ||l < o0 (7.28)

0<t'—s'<d

for some positive d. Then there exists > 0 such that
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10, s') — U (f,s)|l« <7, whenever t—s < d;

the evolution operator U(¢, s") also has an exponential dichotomy on R with some
constants 8; < 8, M; > M.
To prove this statement, we set forn € Z

th=s+dn, T,=U/( +dn+1),s +dn), T, =U( +dn+1),s + dn).

If the evolution operator U, (t,s) has an exponential dichotomy, then {7;} has a
discrete dichotomy in the sense of [9, Definition 7.6.4].

According to Henry [9], Theorem 7.6.7, there exists 7 > 0 such that {7} with
sup,, || T, — T,lle < n has a discrete dichotomy.

Now we are in the conditions of [9], Exercise 10, pp. 229-230 (see also a more
general statement [5, Theorem 4.1]), which finishes the proof.

Let us estimate the difference ||T; — T¢||o. There exists a positive integer N such
that each interval of length d contains no more than N elements of sequence {t;}. Let
the interval [§,, §,41] contain points of impulses T, . . ., Tx where k—m < N. Denote
by Vi(z,s) and V(z, s) the evolution operators of equations without impulses (7.26)
and (7.23), respectively. Then

1T = Tulle = U1 Ens1.60) = UEnt1- ) lla

< Vi1 T = V(Enp1. T + BOVI G Ter)- - (L + Bu) Vi (Fns )l +
HVEng1. 5 Be — BOVi (R i) ..+ Bu)ViEnE)lla + ... +
HIVEnrr T + BV @ Tit)- (4 B) (Vi €)= V(@ 6)) o (7.29)

Using (7.9), we get that

sup ”Tn - Tn”a = KS(S)
n

with some K3(¢) — 0 as ¢ — 0.
The exponentially dichotomous system (7.23) and (7.24) has Green’s function

- l~]t,s I—ps,tzs,
Glins) = (~ )(~ (5))
=U(t,s)P(s), t < s,
such that
1G(t, )ulle < Mye PV |u|ly. 1,5 € R, u e X

The sequence of bounded operators 7, : X* — X defines the difference
equation

Upt1 = Thuy, n € Z, (7.30)
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with evolution operator 7,,,, = Ty—1...T,y, n = m, T,,,, = I. It is exponentially
dichotomous with Green’s function

Tn,m(I_Pm)s n=m,

Gym =
’ —TymPm, n < m,

where P,, = P(€,).
The second difference equation

Uppr = Tytty, n € Z, (7.31)

has the evolution operator T,Lm = ~,,_~1. . .Tm, n>m, Tm,m =1
By sufficiently small sup, |7, — 7|l Eq. (7.31) is exponentially dichotomous
with Green’s function

~ Tnm(l ﬁm)a n 2 m,
Gym = L.
—TymPm, n < m.

According to Henry [9], p. 233, the difference between two Green’s functions
satisfies equality:

én.m - Gn,m = Z Gn,k—i—l(Tk - Tk)ék,m (732)
kez
and estimation
G — Gumlla = Mae P sup | Ty — Tillo, nom € Z (7.33)
k

with some constants 8, < 1, M, > M. y
Now we can consider the difference of two Green’s functions G(¢,s) — G (¢, s).
Lett =s+nd+t;,t; € [0,d). Then
G, 5) = Gi(t,9) e =
= ||U(s + nd + t1, s + nd)G(s + nd,s) — U(s + nd + t1, s + nd)G(s + nd, s) || <
< (U(s + nd + 1, s + nd) — U(s + nd + 11, s + nd))G(s + nd, s)||o +
+|U(s 4+ nd + 11, s + nd)(G(s + nd, s) — G(s + nd, s))||

Using (7.33) and an estimation of the difference U — U, at a bounded interval as is
done in (7.29), we get

1G(t, ) — G1(t, T)|la < Ma(e)e P71, 17 R, (7.34)

with M»(g) — 0 as ¢ — 0.
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By the definition of Green’s function, we have
|P(z) — Pi(7)|l« < M>(¢) forall v €R. (7.35)

Corollary 1. Let the conditions of Lemma 5 be satisfied. Then fort € R, |t — 7j| >
e,j € Z, we have

I(P(2) — P())ulle < Ms(e) |ttt (7.36)

wherev > 0,0 +v < l,andMg(g)—>0asa—>O.

Proof. Using (7.22) and (7.35), we get

1(P(5) = P@)ulle < I(P(1) = P (0))ulla +
+HI P (@) = PO 0))ulle + (PO 1) = P@)ulle < M3(e) |ullav-

7.4 Almost Periodic Solutions of Equations with Fixed
Moments of Impulsive Action

Consider the linear inhomogeneous equation

At aOu=10. (#3, (7.37)
Auli=; = u(t; + 0) —u(tr)) = Bu(y) + g, jE€Z (7.38)

We assume that

(H7) the functionf(r) : R — X is W-almost periodic and locally Holder continuous
with points of discontinuity at moments t = t;,j € Z, at which it is continuous
from the left;

(H8) the sequence {g;} of g; € X*', a; > & > 0, is almost periodic.

Theorem 1. Assume that Egs.(7.37) and (7.38) satisfy conditions (H1)-(H3),
(H7), and (H8) and that the corresponding homogeneous equation is exponentially
dichotomous.

Then the equation has a unique W-almost periodic solution uy(t) € Z€ (R, X*).

Proof. We show that an almost periodic solution is given by the formula (7.16). For
t € (1, Tiy1], it satisfies

luo(lle = / IA*U (2, ) (I = P(5))f (s)|ds +

—0o0

+ [ AU POl + 166 gl <

jez
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= S 1GC gl + [ 14V~ PO s +

jez

Ti—k

#3100 = P A U0 lds +
k=0T

—k—1

X Tkt
+y [ U@ Tipas )P Eipis ) [alA* U (Tipicr 1, $)f (5) [ ds +
k=1 Y Titk

i M 0
+/ AV (2, 5)P(s)f (9)||ds < ———z ———Ifllpc +
. l—e % 1—a

2M _
T P Iglle = Mo max{[lf(1)llpc. lI8)lla} (7.39)
J

with some constant Mo > 0.

Take an e-almost period % for the right-hand side of the equation, which satisfies
the conditions of Lemma 1; that is, there exists a positive integer ¢ such that 7;,, €
(S + h,l‘l’ I’l) if Tj S (S,l) and |‘L’j +h— Tj+q| <e§g, ||Bj+q —BJ” < &.

Letz € (t; + ¢, Ti+1 — €). We define points ny = (7 + ©%—1)/2,k € Z. Then

luo(t + 1) = oD la < Y NG + B, Tig)gjrg — G, g llo +

jez

+ /OO |G+ h,s + h)f (s + h) — G(t, )f (5) |l ods <

oo

< /oo (Gt + h,s + h) — G(t,5)f (s + h)||ods +

+ [ 16EDCG+ D~ 6lads + 3165 @~ &)l +

j€z

+ ) G + h.T1g) — Gt 1))l (7.40)

JEZ

Denote U, (t,s) = U(t+ h, s + h). If u(t) = U(t, s)ug, u(s) = up, is a solution of
the impulsive equations (7.4) and (7.5), then u, () = U(t + h, s + h)ug, ux(s) = uo,
is a solution of the equation

d
;’: T A+AC+Ru=0, 17 Grg—h (7.41)

Autlipn=ry, = W(TGq +0) —u(Tq) = Birqu(Tirg), jE€Z. (742)



7 Almost Periodic Evolution Equations 175

We will use the notation V,(t,s) = V(¢ + h,s + h) for the evolution operator of
an equation without impulses (7.41). Denote also 7, = T,y4 — hB, = By
Since Egs. (7.4) and (7.5) are exponentially dichotomous, Egs. (7.41) and (7.42)
are exponentially dichotomous also with projector P,(s) = P(s + h).

The first integral in (7.40) is the sum of two integrals:

/ 1(G(+ rs + 1) — Gt sHF(s + ) ads =

—0o0

= / (U2, $)(I = P2(s)) = U(t, ) = P(s))f (s + 1) [lads +

+ / (Ut YP(s) — UGt YP($)F (s + P)lads. (7.43)

We estimate the first integral in (7.43); the second integral is considered
analogously.

/ [(U2(t, ) — P2(s)) — U(z, ) = P()))f (s + 1)lods <

—00

=< [ A% (Va(2. )T = Pa(s)) — V(t. ) — P(s))f (s + r)llds +

ite

Ti+e
+/ [A% (U2 (. ) — Pa(s)) — U(t, s)(I — P(s)))f (s + r)|lds +

i—¢

+/ i |A%* (U (2, )(I = P2(s)) = U2, $)(I = P(s))f (s + r)||ds +

ni

O ikt

+ Z/ A% (Ua (. ) = Pa(s)) — U(t, )L — P(s)))f (s + r)llds. ~ (7.44)
k=1 " Ti—k

Let us consider all integrals in (7.44) separately. By (7.36) and (7.11) we have

Iy = [ JA% (Va(t,5) (I — P(s)) — V(b s)(I — P(s))f (s + r)llds =

i+te

= / [A*(( = Po(1) Va(t.5) — (I = P@)V (1. 5))f (s + r)lds <

ite

< / JA%(P2(t) — PO)Va(e, )/ (s + )lds +

ite

4 / JA%(L = P() (Va(t. ) — V(& 5)f (s + P)lds <

ite
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5 < DOLR, [ AU )IU‘IIPC < @l

ite (t - s)a it+e (t - S)Za—l

Ti+e
Iy = / AU = PO+ )lds <
Tite
< / |A“(I = P@)V (2, 5)f (s + h)||ds +

4 / A% — POV ) + BYU( )/ (s + h)llds <

T,—¢&
Ti+e C,ds T C,ds
= M| + B ) -
B (/r, (t—5)* + M+ Bil /;g G—1)" Ifllpc <
= La(@)|fllpc-

Analogously,

Tit+e
Iy = / AU = P (s + W) ds < T3 f e,

T,—¢&

where I'j(¢) - 0ase — 0, j=1,2,3.
Using (7.11) and (7.36), we get

he = /n IA® (Ua (1, $)(I = Pa(s)) — U(t.5)(I — P(s)))f (s + r)|lds =
_ /n (= Paa)Vate. 2+ BVa(iios)
—(I = P)V(t, )T + B)V(z;, s))f (s + h)llads <
< / _ 1(P2(5) = PO)Va(t. )T + B)Va (G $)f (5 + 1) ludls +
+ /n iH 1T = P@O)(Vat, E) — V(&, 1)) (I + B)Va(F, $)f (s + h)lladls +
+ / _ 1 = POV (e, ) (B — B Va(i, )f (s + 1) adls +

. [rf—s I = P@)V(t, t)I — B)(Va(Ti,s) — V(i 8))f (s + h)|lods <
ni

< Ly |fllpcs

where I'y(¢) > 0as e — 0.
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The last sum in (7.44) is transformed as follows:

hs=¥" [ AR Wt 5) (T — Pa(s)) — U )T — PFGs + s =
),

= ki [ 1w = Ponuon e Va9 -
—Us(t ) = Pa ) U (i Mimtc DU i1 (5 + )l <
< Z / "
+Ua(t, 1) (I = P)Uis Nimie1) = (I = Pa)) U (i, ik 1)) U (Mit1, 8) +
U ()0 = Py )V ) (U i1.9) = Us (i ) )f (s + )| s

—k+1
| (Uten) = Vst 0 U = POV ks ) U (i) +

As in the proof of Lemma 5, we construct in space X* two sequences of bounded
operators

Sn = U(Mn+1,1n), Sn = Uy(Mut1,M0), n€Z,
and corresponding difference equations
Upt+1 = Snun» Un+1 = Snvn, neZz.

Per our assumption, these difference equations are exponentially dichotomous
with corresponding evolution operators

Sn,m = Op—1-- -Sma Sn.m = Sn—l~ . 'va n=m,
and Green’s functions

Sum — Py), n>m, ~ { S‘n.m(l - Pm)’ n=m,
Gn,m = pd

Gn m = =
_Sn,umv n<m, _Sn,umv n<m,

where P,, = P(nm),pm = Py(np)-
Analogous to (7.32) and (7.33), we obtain

Gn,m - n m Z Gn k41 (Sk Sk)Gk m

kez
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and

1Gum — Gamlla = Mie PO sup (IS, — Sill, n,m € Z (7.45)
k

with some constants 81 < 8,M; > M.

1S5 = Sulle = 1U@nt1. 1) = U2 Q1. 1) lla =

= |VQus1. T + BV (Tn. 1) = Vot T) T + B)Va (T ) e <
< I Vat1s ) = Va(ut1, )T + B) V(T 0 e +

Va1 ) By — BV (@ )l +

V20t 1. T + B (V (T 1) = Vo 1))

Here we assume for definiteness that 7,, > t,,. We have

I(V(Mut1. ) = Va1 TVl < 1V Mnt1, T) (V(T0s T) — Dylle +
HIVDnt1, T) = V2t 1, TV lle <
< Is5(e)|[ylle

and

||(V2(‘EH’ nn) - V(Tnv nn))y”a = ”(VZ(:EVH Tn) - I)VZ(‘EIH 77n))’||a +
+||V2(Tn’ nn) - V(Tn’ nn)y”a = F6(8)||y”a7

where I'5(¢) — 0 and ['¢(¢) — O as e — 0.
Now we get

IS, — Sn”ﬂt < Ts(e) + BullllU(ta, 1)l +
+el|Ua(Mns t) le | U (s 1)l + To ()| U2 (Mt 15 Ta) eIl + Bn” <I(e)

and by (7.45)
1Ui, ni—t) — Ua(nis nimi) la < Mie P15 (e), (7.46)

where I'7(¢) > 0as e — 0.
Continuing to evaluate /15, we can obtain the inequalities

1022 ni)glle < Maglla-
U@ ) = Ua(t.1))glle < Ts(e)lIglla
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Ni—k+1
/ NGt ) — Us(isr. (s + W) lads < To()|lf e

§i—k

where ['g(e) — 0 and ['9(¢) — 0 as ¢ — 0, M, is some positive constant. Note that
as earlier, t € (t; + &, Ti41 — &).
Taking into account the last inequalities, we conclude that series /;5 is convergent
and there exists I'1o(¢) such that I15 < T'yo(e)||f]lpc and T'1o(e) — 0 as e — 0.
Using estimations for [y, .. ., I;5, we get that there exists I'j; (¢) such that

o0
/ (Gt +r.s+71) = G )f (s + Dllads < Tr(@)lfllrc (7.47)
—00

and I'1;(¢) > 0ase — 0.

By Lemma 1, |tj4, — 7; — h| < ¢; therefore, 7; + h + ¢ > 74, (We assume
that 2 > O for definiteness). The difference G(t, 7j)) — G(¢ + h, tj+,) is estimated as
follows. Let t — 7; > e. Then

(G(z, ) — G(t+h, Tj+q))gj+q||a =
= [[(Ut, ) — P() — U(t + h, G4 ) (I — P(Tj19)))&j+4lla <
= W@ 5 = P(5) — U(t. 5 + &) = P(5; + £)))gjglla +
+|(U@t 17+ e)I—P(tj+¢) —Ult+ht+e+h)x
X(I = P(tj + & + 1))gjtqlla + U+ . Tj40) (I — P(Tj14)))&j+g —
—U@t+ht+e+hI—P(ri+ e+ h)gitqlla (7.48)
The first and third differences are small due to the continuity of function U(z, s) at
intervals between impulse points:
(U@ )T = P(z) = U, G + &) (I = P(zj + €)))gj+glla <
= UG+ o)l — Py +e)(U(y + &) — Dgjqlla =
=0 =P@)U@E 7+ )lell(U(y + &, 1) = Dgjtglle =
< Me PUTIC) gy 408 N gg o
[(U@+ht+e+hI—P+e+h)—Ul+h 549 = P(T19))g+qlla =
=[lUt+ht+e+hI—P(ti+e+n)U(y+e+h ti4g) —Dgitqglla <
< Me PUTIC) gy 408 N gjg o -

The second difference in (7.48) is estimated using inequality (7.46) and the
following transformation:

U@t 7 +e)I —P(ti+¢e) —Ult+ht+e+h)I—Pri+e+h)le =
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=U(t. 55+ &) = P(zj + €)) — Ua(t. 7 + &)L — Pa(7j + &) [la =

= Ut n)U = Pm) Ui, j+)UMjg1. 7 + &) —

—Us(t,n) (I — Pm) Ua(ni, nj+ ) Vo (M1, G + &) [lo <

= U@ n) — Vot )T — Pm) Ui, nj+)UMj1, G + ) [l +

+ U1, n) P Ui 1) — P2 () U (03, 04 ) U 1. 7 + €) llo +
H U2t n)P2(0) Ua (i nj+ ) (U1, G + €) — Ua (g1, T + ) o

Therefore,
Z I(G(t + h, Tj+q) - G(t, Tj))gj-i-q”a <T(e) sup ”gj“al , (7.49)
j€z J

where I'j5(¢) - 0as ¢ — 0.
The second integral and first sum in (7.40) are estimated as in (7.39):

[ 16N+ 1 = 6)luds + 310G 5) g0~ )l = Mie

- jez
since 4 is e-almost periodic of the right-hand side of the equation.
As aresult of these evaluations, we get
lluo(t + h) —up(®)||lo <T'(e) for teR, [t—7| > ¢, j€Z,
with I'(¢) — 0 as ¢ — 0. The last inequality implies that the function u(z) is
We-almost periodic as function R — X“.
Corollary 2. Assume that Eqs. (7.37) and (7.38) satisfy the following:

i) conditions (H1)-(H3), (H7);
ii) the sequence {g;} of g; € X is almost periodic;
iii) the corresponding homogeneous equation is exponentially dichotomous.

Then the equation has a unique W-almost periodic solution uy(t) € € (R, X")
withy < «a.

Now we consider a nonlinear equation with fixed moments of impulsive action:
du
dt
Auli=; = u(r; + 0) — u(ty)) = Bju(yy) + gi(u(y)), Jje€Z. (7.51)

+@A+ADu=[f(tu), t#7 (7.50)

Theorem 2. Let us consider Egs. (7.50) and (7.51) in some domain U;‘ = {x €
X ||xlle < p} of space X*. Assume that
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1) the equation satisfies assumptions (H1)—(H4), t; = 7;(0);

2) the corresponding linear equation is exponentially dichotomous;

3) the function f(t,u) : R X Uy — X is continuous in u, W-almost periodic, and
Holder continuous in t uniformly with respect to u € U7 with some p > 0, and
there exist constants N; > 0 and v > 0 such that

[f(t1,w1) —f(t2, u)|| < Ni(Jtn — 12]” + [lur — uz|e):

4) the sequence {gj(u)} of continuous functions Uy — X*' is almost periodic
uniformly with respect to u € Uj and

lgi(u1) — gju2)lle < Nillwy —uzlla. j € Z,

forti,to €R, uj,up € Ug and some oy > o
5) the functions f(t,0) and g;(0) are uniformly bounded fort € R, j € Z.
Then in domain Uy for sufficiently small Ny > O there exists a unique
W-almost periodic solution uy(t) of Egs. (7.50) and (7.51).

Proof. Denote by .#, the set of all W-almost periodic functions ¢ : R — X* with
discontinuity points 7;,j € Z, satistying the inequality ||¢|pc < 0. In .#,, we define
the operator

o0

G(t,9)f (5. p(s))ds + Y_ G(t.7))g;(¢ (1))

jez

o0 = [

Proceeding in the same way as in the proof of Theorem 1, we prove that (% ¢)(¢)
is a W-almost periodic function and .% : .#, — .#, for some ¢ > 0.

Next, .# is a contracting operator in .#, by sufficiently small N; > 0.

Hence, there exists ¢y € .#, such that

oo(t) = [ Gt )/ (5, go(s)ds + 3 G(t, 1), (o(5).

jez
The function ¢y (#) is locally Holder continuous on every interval (tj, 7j+1),j € Z.
Actually,

oo

G(1, 5)f (s, po(s))ds +

oo

@o(t + 8) — @o(t) = /_ G(t + 8, 5)f (s, po(s))ds — /_
+ DGl + 8. 1)gi(90(1) = Y Gt 1)g(vo()) =

jez jez

Z/_ (V(t +8,0) = DU, 5)(I = P(5))f (5. 9o (s))ds —
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— /OO(V(t 4+ 8,8) = DU(t, s)P(s)f (s, o (s))ds +
t+8

14§ 1+4
+ f V(i + 8.5)( — P(s)f (5. go())ds + f V(1. )P (5. go(5))ds

+ Y (V(t+ 8,0 — DU, 5 — P(1)))g;(po(1)) +

Tj<t

+ Z(V(l + 68,0 — DU(t, 1) P()gi(po(T)))-

7>t

Applying (7.7), (7.20), (7.21), and (7.39), we conclude that for every interval ¢t €
(', 7") not containing impulse points t;, there exists a positive constant C such that
oot + 8) — @o(D)lle = CE* 7.

The local Holder continuity of f(, ¢o(t)) follows from

I (2. 00(1)) = f (s, @o(sNI = N1 (7= sI" + lloo(1) — @o(s)lla) =
< Ci(lt—s"+ |1 —s["77).

By Lemma 37, [19], p. 214, if ¢y(¢) is W-almost periodic and inf;(tj4+1 — ) > O,
then {¢o(7x)} is an almost periodic sequence.
The linear inhomogeneous equation

du

o TA@TAOu=fEp®). t#7T (7.52)
Auli=g; = u(t; + 0) — u()) = Bju(y)) + gi(po(7))). j€Z,  (7.53)

has a unique W-almost periodic solution in the sense of Definition 4. Due to the
uniqueness, it coincides with ¢ (7).

Hence, the W-almost periodic function ¢y(f) : R — X* satisfies Eq. (7.50) for
t € (75, Tj+1) and the difference equation (7.51) for t = 1;.

Now we study the stability of the almost periodic solution assuming exponential
stability of the linear equation. First, using ideas in [17], we prove the following
generalized Gronwall inequality for impulsive systems.

Lemma 6. Assume that {t;} is an increasing sequence of real numbers such that
Q0 > tiy1—t = 0 > 0 forall j Mi,M,, and M3 are positive constants, and
a € (0,1). Then there exists a positive constant C such that the positive piecewise
continuous function u : [ty, f] — R satisfying

m 1 t
2(t) < Myzo+ My Y / (t; — 5) " z(s)ds + M, / (t — 5)"*z(s)ds +
j=1 i1 Im



7 Almost Periodic Evolution Equations 183

+Ms Y a(t) for 1€ (ty.tuti] (7.54)

J=1
also satisfies

1—o

z2(f) < Myz0C (1 + MZCIQ

” +M3&) . (7.55)

Proof. We apply the method of mathematical induction. At the interval ¢ € [fo, #;]
the inequality (7.54) has the form

7
z(t) < Mizo + Mz/ (11 — 8) “z(s)ds.
fo

By Lemma 2 there exists C such that
0 < z(t) < MizC, 1€ [t0.1],C = C(M1, My, Q). (7.56)

Hence, (7.55) is true for ¢ € [y, t1]. Assume (7.55) is true for ¢ € [fy, t,] and prove it
for t € (t,, t,+1]. Hence, for t € (¢,, t,+1] we have

1
() < Mizo + M> / (1) — $)2()ds + Msa(tr) +
t

My Y [j (t— )" 2(s)ds + M3 Y _ 2(t;) + Mo / t(z — )2 (s)ds <

j=2 Y-l j=1

I—a

t
<Mz +M21 aM1ZOC+M3M1ZOC+M2/ (I—S)_(XZ(S)dS-i-
_ 0

1—a l—a

+2n: 1+M26Q +M36] Mz&Q
1 1«

— ~|—M36) Mz =
=2

l—a

= Mz +M21Q

t
aM1ZoC + M5MzoC + M2/ (t— )" %z(s)ds +
- r}l

. 5 Ql—ot 5 J—1 5 Ql—a 5
+Z(1 —i—MzC1 +M3C) |:(1 —i—MzCl +M3C)—1]M120=

; - —
j=2

Ql—a
<Mz (1 -|-1V121 "

n t
C+ M3C) + M, f (t — 5)"%z(s)ds.
In

Hence, for ¢ € [t,, t,+1), the function z(f) satisfies the inequality
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t
20 = G [ (=920,
tll
where C; = Mz (1 —i—le C—i—M;C) Applying (7.56) at the interval
(t,, ty+1], we obtain (7.55). The lemma is proved.

Theorem 3. Let Egs.(7.50) and (7.51) satisfy assumptions of Theorem 2 and let
the corresponding linear equation be exponentially stable.

Then for sufficiently small Ny > 0, the equation has a unique W-almost periodic
solution uy(t), and this solution is exponentially stable.

Proof. The existence and uniqueness of the W-almost periodic solution ug(t)
follows from Theorem 2. We prove its asymptotic stability. Let u(f) be an arbitrary
solution of the equation satisfying |lu(ty) — uo(fo) |l < 8, where § is a small positive
number.

Then by ¢ > #, the difference of these solutions satisfies

1) = 00) = Ut 1) i) — o) + [ 00576000 -

4]

(s uo(s))ds + D Ul w) (@) — geluo(w)

Then for #y € (19, 71) and ¢ € (1}, Tj+1] we have
e®) — ol < 10 1)l 1) — ) o +
+ / UG eV GG, 1) — £ (5. () s + -+ +
[ IV (556 . u6) = s s +

/ IV (2. $)(f (s, u(s)) = f (s, uo(5))) [l ads +

+ ) U ) (2e(u(z) — giluo(t) lle <

o=t <t
< Me P |lu(ty) — uo(to) |l + Me P / ﬁ””(s) — uo(9) [lods +
T
fo
oo [ Lol
+eo + Me J —a”’l(s) _MO(S)”otdS+
Tji—1 (] )

" / )~ s Y M PN ) = ()

o<t <t
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Denote v(t) = P!||u(t) — uo(t)||o, M> = eﬁQMLQNl,M3 = MN,. Then

v(1) < Mv(to) ~|—M2/ (U(S_)i;a +---+Mz/ (:(i)d;a M3ZU(TI<)
to G N

Then by Lemma 6 we get

l—a

i(,10)
o ) 5
1) = 0 = M (14 MC L4 M) i) = o)l

Therefore, if

Qla

B >pln (1 +M2C +M3C)

where p is defined by (7.3), then the W-almost periodic solution uy () of Egs. (7.50)
and (7.51) is asymptotically stable. This can be achieved by sufficiently small N;.

7.5 Almost Periodic Solutions of Equations with Nonfixed
Moments of Impulsive Action

We consider the following equation with points of impulsive action depending on
solutions

ci’_u +Au=f(t,u), t# 7u), (7.57)

u(ti(u) + 0) — u(zj(u)) = Bju + gi(uw), jeZ. (7.58)

Definition 6 ([11]). A solution u(7) of Egs. (7.57) and (7.58) defined for all t > £,
is called Lyapunov stable in space X¢ if, for an arbitrary ¢ > 0 and n > 0, there
exists such a number § = §(g, ) that, for any other solution u(f) of the system,
lluo(to) — u(to)|le < 6 implies that |lug(r) — u(?)||o < € for all + > 7y such that
[t — Tjo| > 1, where ‘L’jo are the times during which the solution u () intersects the
surfaces t = 7;j(u),j € Z.

A solution u(?) is said to be attractive if for each ¢ > 0, > 0, and 7y € R, there
exist 6o = 8o(tp) and T = T(8p, &, 1) > 0 such that for any other solution u(f) of
the system lluo(to) — u(to)|| < 8o implies ||uo(f) — u(t)||q < € fort > ty + T and
lt—10 > n.

A solution uy(?) is called asymptotically stable if it is stable and attractive.

Theorem 4. Assume that in some domain Uy = {u € X*, ||lulle < p}, Egs.(7.57)
and (7.58) satisfy conditions (H1), (H3)—-(H6), and
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1) all solutions in domain U} intersect each surface t = 7;() no more than once;

2) If(w) = f(2.wll < Hilty — 6", v >0, H > 0;

3) It w) = fw)|| + llgi() — gi(w2)lloe + 17(u1) — G(u2)| < Nifluy — uallo,
uniformlytot € R,j € Z,

4) AB; = BA, |[f(,0)|| = Mo, llg;(0)|l1 =Mo.j€Z

5) the linear homogeneous equation

M C l—a
M, ! (1+ «Q )

T 1—ehi -«

du
— +Au=0, t#71, (7.59)
dt
Auli=y = u(r; + 0) —u(y)) = Bu(y)), jeEZ, (7.60)

is exponentially stable in space X*
U@ s)ulla < Me™P ™ ulla, t > 5.u € X (7.61)

where 1; = 7;(0), B > 0and M > 1.
6) N\M. < 1 and p > py = MoM../(1 — NiMy), where

Then for sufficiently small values of the Lipschitz constant Ny, Egs.(7.57)
and (7.58) have in Ufj a unique W-almost periodic solution and this solution is
exponentially stable.

Proof. 1. First, using the method proposed in [6], we prove the existence of the
W-almost periodic solution. Let y = {y;} be an almost periodic sequence of
elements y; € X%, |lyjll« < 0. We consider the equation with fixed moments of
impulsive action

du

5 TAu =ft.u), t#75(), (7.62)
u(zi(y) +0) —u(G(y)) = Bu(G(y)) + 0y, jeZ. (763
By Lemma 5, if a constant N, sufficiently small, then corresponding to (7.62)

and (7.63) the linear impulsive equation [if f = 0,g;(yj) = 0,j € Z] is
exponentially stable. Its evolution operator U(?, 7, y) satisfies estimate

lUGt . y)ulle <Mie P ully, > 7, (7.64)
with some positive constants My > M, f; < B.

Equations (7.62) and (7.63) have a unique solution bounded on the axis which
satisfies the integral equation
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i’i(tv y) = / U(t’ T, y)f(Tv i:t(‘L', y))dt + Z U(t7 Tj(yj)ny)g](yl) (7.65)

h G0y <t

We choose uy(t,y) = 0 and construct the sequence of W-almost periodic functions

un-i-l(tvy) = f U(tv tsy)f(f»un(fvy))dr—i_ Z U(t» Tj()’j)vy)gj(yj)v I’l:(), 1! e

- G0y <t

The proof of the W-almost periodicity of u,+1(¢,y) in space X* is similar to the
proof of Theorem 1.

One can verify that for sufficiently small Ny > 0 the sequence {u,(t,y)}
converges to the W-almost periodic solution u*(¢,y) : R — X“ of Eq.(7.65). As
in the proof to Theorem 2, we prove that u* (¢, y) is the W-almost periodic solution
of impulsive equations (7.62) and (7.63).

Lett € (T, Ti4+1), where 7; = 7;(y;). As in (7.39), we obtain

t

™ & 3) e S/ IA“U (2,5, 9)(f (5. 0) + f (5.6 (5.¥) = f(5.0)) | ds +

—00
+ Y U@ E.3)(g(0) + ) — (O la <
I,'(yj)<t
M, Ca®1_a *
=< "y Mo + Nysup [lu™ (2, y)[le | + Mo + Nisup |lyjlla | -
1—e b1 1l -« t j

Hence, by sufficiently small Ny > 0
sup [lu* (%, )| < po. (7.66)
t

If we choose the almost periodic sequence y* = {y7'},y} € X, such that
u* (G(;). y*) = yf

for all j € Z, then the function u*(¢,y*) will be exactly the W-almost periodic
solution of Eqgs. (7.57) and (7.58).

We consider the space .4 of sequences y = {y;}, y; € X%, with norm ||y||s =
sup; [[yjll« and map S : A — A,

SO) = {u" (50 y)jez-

By (7.66), S maps the domain Uy C ./ onto itself for p = py.
Now we prove that S is a contraction:

I180); = S@jlla = u* (). y) —u*(73(z). Dl <
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< lu* (@ y) —u* @G Do + 10" (T 2) — u" (T Do (7.67)

where 7} = 7;(y), 77 = 1(z).
Denote ¢ = U _¢;,
= (max{zl,, T2}, min{7, )] = (¢, 7).

Denote also & = (r] —7.)/2, i € Z.
To estimate the difference ||u* (% ,y) — u*(~ ,2) |le» we apply iteration on n. Put
uo(t,y) = uo(t,z) = 0. Then for r € (7", 7/, ] we get

s (2. 3) — w1 (1. | =
=Y AU g — Y AU R D) <

k<i k<i

<Y AU ELY) (@) — ge@)) || + 1A% (U T y) — U 7. 2) gi(z) | +

k<i

+Z A% (U, Ty - U@ 2)) gzl <
k<i

<3 M PITEIN |y — zello + (A% (AT T — Dgiap) | +
k<i

+ D U E ) UG Errr. DU Eerr. T y) —
k<i

—U(t. &, 2)(U(E. &1, DU Gt 7. 2) 8k (@) lo <

M N ~// —o | 2!

= g lly =l + CuColt = )15 — Flllailh +

+ Z 1A% (Ut &, y) — U1, &, D) U(Ein i1 DU G T 080 | +
k<i

+ Z [A*U(t, &, 2) (U (i, Ex1,Y) — U(Er Eetr, 2) U Ers T 08z || +
k<i

+ Z [A*U (1, &, 2) U (i k1. D) (U(Eig1. T 0 y) — UlErgr. T 2)ge(zoll. - (7.68)
k<i

To evaluate the difference U(&;, &+1,y) — U(&i, Ex41,2) we construct two
sequences of bounded operators X* — X* defined by

T, = U(Sn-l—l’i:n’y)v Tn = U($n+1,§n, Z)» ne’z.
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The corresponding difference equations u,+; = T,u, and u,y; = T,u, are
exponentially stable. Their evolution operators

Tn,m - Tn—l- . -va n=m, Tm,m - I»

and
Tnm = ~,,_1 Tm, n>m, Tmm =1,
satisfy equality
Tom—Tom = Tuir1 (Te = T) T, n = m. (7.69)
k<n

Analogous to (7.32) and (7.33), we obtain

”Tn,m - Tn.m”a < Mze—ﬁ20(n—m) sup ”Tk - Tk”ou n=m, (770)
k

withsome,Bzg,Bl,Mzle. .
Now we estimate the difference ||T;, — Ty ||« :

170 = Tulle = 1UGEnt1,60) — UEns1, 60 Dl =

= [le G (] 4 B,)e A EE) _ oA (] 4 By AG)||, <

< [[(e7ACrh1=T) _ o= AGH1=TD) (] 4 B )e @) ||, 4

e AEH=E ([ 4 B,) (e A=) _ omAG—E)|| L <

<2C,Ci(0/2)7 7z — 2. (7.71)

Therefore,

”(Tn.m = Tum)ulle = 1(UEns Emy) — Un, Ems Dulla <
< Moe P00, €1 (0/2) 7 sup [§) — F | ulla, n = m. (1.72)
J

To finish the estimation of (7.68), we consider the following two differences:

(U, &, y) — Ut &, D)l < A% (e (I + By)e ™A@ =8 —
4CoCi—o , ,

—e AT (1 4 Be AT 0y < 2% |1

"l 7.73
< Gum el — el .73

I(UE 7L y) — Uk, 32, 2)ulle = A% — ™A@ =)o AGH =10y || <
< CoCi(0/2) |t — t/|lullq- (7.74)
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Taking into account (7.70), (7.73), and (7.74), by (7.68) we obtain for r € (z’, 7/ ]

llur (2. y) — ur (2. 2)la < Nilly —zlls (K] + K5 (1 — ) ™)

where the positive constants K| and K} don’t depend on i.
Now we consider the (n + 1)st iteration

st 1(2,y) — thpi1 (8, 2Dl =

oy [ AU, T ) (@ (e ) + 3 AU T 3 g —

k<i

—/_t A%U(t, T, 2)f (z, un(z, 2))dT — ZA“U(t 28 )| <

k<i

< /_ AUt 7.9) (F(2. a2, 9)) — (2. 10n(2.2))) 1 +

+ / JA® (Ut 7.y) — Ut 7. 2)f (o g (. ) T +

+ ) AU E L) (8e0) — gu(z) || +

k<i

+ ) 1A (U 2L y) — Ut 2. 2) i@ -

k<i

Similar to (7.39), we get

17 )~ e e e+

3 / AU, 7,3) (F (5, (2 3)) — £ (T, (1, 2) T +

k<i

M, C,O'™
= 0 - Nl sup ||u,,(r,y) _un(‘[»Z)”s
l—e % 1-q e g

M,
DAV T ) (se00) = 8@ | < 7 g Milly = 2l

k<i

If [|u,(z,y)[le < pand [|u,(z.2)[le < p,thenforre (¢, 7/,

Z/ AU (2. 5.y) (f (5. un(s5.y)) = f (5. un(s.2))) |ds <

k<i Y%

(7.75)

(7.76)

(7.77)
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7 o
<> / UG s (s, 9) s + Y / UG s f (5.5, ) lods <
k<i V% k<i ¥k

44
<2) M P (M + Nip) + 2 [ |A“U(t.5.3) (Mo + Nip)ds <

k<i

<

2M 2M _
(1 — e_],glo Tz ; t—1) a) (Mo + Nip)Nilly — zlls. (71.78)

since for t > 17, > 1}

/TZ ds < Th— T
0 (t=9)* T (1—a)((t—1)*

The second integral in (7.76) satisfies the following inequality:

L= / A% (U, 5, y) = U(t, 5, 2))f (s, un(s, 2)) llds <

—o0

t
< / 1A (A0 — A9 (5,1 (5. 2) s +
rl-”

u

[ 1AW — Ul 9 6. 2D s +

i

’

4 /S A5, ) — UG, ) (5,5, ) s +

k41
2 /Ek ' [A*(U(t.5,y) — U(t,5,2))f (5, un(s, 2)) l|ds. (7.79)

k<i

We consider all integrals in (7.79) separately.

i

b= [ 1A UG53 s ) s <
T

i

Ca||I+Bi||(MO +Nlp)| "_ (|
(1 _ Ol)(l— _L,i//)a 1 [N

Iy = / AU, 5,2 (5. (5. 2)) s <
'[/

i

Ca”I‘I'Bi”(MO +N1’0)|‘L'-// _ ‘L'-/|
(1—o)(t—1/") ! e

Iy = /S AU 5.3) = U5, ) 5 s, ) s =

/

= /Ti AU ' U 5.y) — U@ T2, U 5. 2)f (5, un(5.2)) | ds <
&
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’

< /Ii ”Aa ((g—A(t—?il) _ e—A(t—?l.z))(I + Bi)e—A(‘?il—s) _
&

_Aae—A(z—?iz))(I+Bi)(e—A(%i1_s) —e_A(?iz_S)))f(s,un(s, 2)llds <

2CoCy, Criq—a, (¢/ %‘,)“ e '
< DO ldaman gy gL SU ),
S e W B e

L

The last sum in (7.79) is transformed as follows:

Ly = Z/ A% (U(t, s,y) — U(t, s, 2))f (s, un(s,2))||ds =

k<i

-y / IO £ DU Errr. DU Ersr.5.9) —

k<i

_U(t’ Ei? Z)U(Eiv Sk-}-l’ Z)U(Ek-i-lv s, Z))f(s9 Mn(S, Z))”Olds =

=< Z/ (||(U(f» §i.y) = U, & DU St ) U G158 9)f (5, tn (5. 2) o +

k<i

HU@, &, D) (U E k1, Y) — U k1, 2) U Err1, 5. 0)F (5, (5, 2)) || +

HIU, &, DU E S, D (U Ert1,5,Y) — UErt1, 5, D) (s, un (s, Z))||a)d5-
To finish the estimation of integral I,4 we use (7.72), (7.73), and (7.74):

Ect1
L A (U Eegr529) — UlEesr. 5. 2)f lads <

k1
< / ||A0t(e—A(§k+1—S) _ e—A(€k+1—X))f||ds +
74

"

+/ g ||Aa(e—A($k+1—r;ﬁ')(1+Bk)e—A(rk”—S) _e—A(Ek+1—S))f||ds+
o

’

T
+/ . ||(e—A($k+1—fzf)(] + Bk)e—A(fzﬁ—S) _ e—A($k+1—fzf')(1 + Bk)e_A(I‘/'/_s))fHads <
&k

< KCoy Gt — 1) 11 + Belllg — %l I/ |

with some positive constant K. Therefore,

KN
L < (KéNl + ﬁ) Iy —zlls (7.80)
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with a; > « and positive constants K| and K} independent of i, k.
By (7.75), (7.79), and (7.80) we obtain for t € (7}, 7/, ]

l[utn1 (2, y) —tny1(1, ) le =

-y f AU, 79 (@t (5, ) — £, (T, D) e +

k<i

+ [ AU w03 S ) e +
(x5 Ywiy -z
3 (t— ‘L'i/’)al iy S

where the constants K} and K3 don’t depend on 7.
Let the nth iteration satisfy the inequality

"

L
lltn (2, y) — un(t,2)[le < (L:L + m) Nilly —zlls. t € (r', t/44].
1

with positive constants L, and L. We estimate the (n + 1)st iteration.

1

K3
(t _ ~//)a1

L//
+N1 ly —zlls Z/ AU (2, 5) || (Ln + G- ”)011 ) ds +

k<i

g1 (t,y) — 1 (2, Dl < (K§+ )N1||y—z||5+

A
Nyl [ 0ol (1 + ) <

_ s L//
§N12||y_Z”S<Z B M1€ Pil= l( +W) s +

k<i VT

L//
f M(t—s)™ (L +( //)al)ds +
/ Ky
+ Ks"‘m Nilly —zlls <

M L// 1—oq L//M 22a
S (—1 (L;Q + nQ ) + n i1 (t_ Ti//)l*ZOl] +

1 —e Ao 11— 1 —oy

1"

LM

+
1—0[1

(t—1/)™

193

(7.81)

1 _ K
-1 “‘)Nflly—ZIls + (Ké + —3) Nilly—zlls =
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1 LZ—H
=\ Lt +m Nilly —zlls. (7.82)

One can verify that for sufficiently small N; the sequences L, and L are
uniformly bounded by some constants L, and L.

Since the sequences u,(,y) and u,(t,z) tend to limit the functions u.(t,y) and
ux(t, z), respectively, we conclude by (7.82) for 7 € (', 7/, ] that

"
e = 0.0l = (L + o ) Nl =l
1+1
and
L//
I ) = gl < (Lot g YWl =clls. (789

Now we estimate the second summand in (7.67). Note that by our assumption

=1 =2
‘L'j < ‘L'j .

=2
~ - Vd
(. 2) — u* (7. D)0 = H/ i (5, )ds |
/ I ;jl ds o4
By Theorem 3.5.2, [9], at the interval ( e 2) the derivative satisfies

ol =k

with some positive constant K| independent of j and initial value from Ug.
Then for t € (%jl, %jz)

ool =k (5) T =

and
l* (7, 2) = u* (T, Do < Kol T} = T < KoNi[ly — 2lls- (7.84)
By (7.83) and (7.84) we have
lu* (7}, 2) — u* (T, Dlle = Tolly —zlls, (7.85)

where I'g < 1 uniformly for jand y,z € A;,.
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By (7.67), (7.83), and (7.85) we conclude that the map S : Ay, — A, isa
contraction. Therefore, there exists a unique almost periodic sequence y* = {y]?*}
such that u*(7;(y}),y*) = y; for all j € Z. The function u*(z,y*) is the W-almost
periodic solution of Egs. (7.57) and (7.58).

2. Now we prove the stability of the almost periodic solution. Fix arbitrary ¢ > 0
and n > 0. Let tp € [79(0) + n, 71(0) — n].

The W-almost periodic solution u(¢) satisfies the integral equation

wolt) = Up(t, to)uo + / Uot, )f (s uo()ds + 3 Ul 2)gi(z?), (7.86)

fo <‘[jo<t

where ‘L'jO = T;(uo (tjo)) and Uy (t, s) is the evolution operator of the linear equation

du .
Z + Au =0, u(rjo +0) — u(rjo) = Bju(rjo), j=12,...

Let u; € X* such that ||ug — u1 ]| < 8. The solution u; () with initial value u; (ty) =
u; satisfies equation

M]([) = Ul (tv to)ll] +/ Ul (t7 S)f(S,ul(S))dS + Z Ul (t7 T‘l)gj(rjl)’ (787)

1
t0<‘L'j <t

where ‘L'jl = 7;(u (‘L'jl)) and U, (z, s) is the evolution operator of the linear equation

du

7 + Au =0, u(rj1 +0) — u(rjl) = Bju(rjl), j=12,...

By Lemma 5, for a sufficiently small Lipschitz constant N; the evolution operator
Uo(2, s) satisfies the inequality

1Uo(t. S)ulle < M1 |lullg, 1> 5, (7.88)

with some positive constants 81 < §,M; > M. Moreover, one can verify that for
some domain Ug, 0 < p, and N; < N, the evolution operator satisfies

U (2, s)ulle < Mie P ully, t > 5, 1,5 € [to, 8o + T1, (7.89)

if the values u; (f) belong to U% for rjl € [to, 10 + T).
At the interval without impulses, the difference between solutions ug () — u;(f)
satisfies the inequality

lur (8) — uo@ [la < lle™ (uo(11) — w1 (1))l +
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4 [ 1A% (£ (5. 10 (5)) — £ (5. 100 (5))) s <

Bi(t—s)

¢ —
B (- M Nye
SMle Bt [1)”14()(11)_”1([])”0( —|—/ (t—a||u1(s)—u0(s)||ads.
1 -

5)
Then by Lemma 2,
ler (1) = uo)la < M1Ce P luy (17) = ug(t)llaer 1 =11 < Q. (7.90)
Hence, if initial values belong to the bounded domain from X*, then the correspond-
ing solutions are uniformly bounded for ¢ from the bounded interval.

Assume for definiteness that r;) > rjl and estimate |rj1 - rjo| by (u; (rjl) —u (rjl ).

11 (51) — uo () llae = 1uo(z) = o (Tl + lluto () — i (7)o =

7 4
- 1 1
[, zgmo@de] +nteh) =)l <
J
< K|t — 1| + lluo(g)) — wr () -
Hence,

17! — /| < lluo(r)) — (7)o < luo(r)) — w1 (z)lla- (791

/ 1 — KN,

We assume that ¢ € (z/’, 7/, ] and estimate the difference
lluo () — ur (Dlle = Vo (t, o) (1o — ur) | + 1(Uo (2, o) — Ur (2, f0))us [l

+ / Vot $)f (5. t0()) — Ur (1, 5)F 5. 101 (5)) s +

+ YD U thegEh - Y U t)giE)e <

to<t!<t t0<rjo<t

< 1 Uo(t, t0) (o — ur)lle + [[(Uo(2, o) — U1 (2, t0))us |l +

+ f Ut 95, 0()) — U (1, 5)f (5, 1 (5)) s +

1o

i—1 Zj/ .
+ Z /,,+ |Uo (2, s)(f (s, uo(s)) — £ (s, u1(s)) lloads +
j=17%

i—1 Zj/ .
+2 / ,,+ [(Uo(t, 5) = U (t. $))f (5. 11(5)) [l odls +
j=17%
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+y / ,i 1Uo(, $)f (5. 1o(5)) — Uy (1, 9)f (5. 1 (5))l|dls +
=177
+ /,, | Uo(t, )f (5, uo(s)) — Ur(t, $)f (s, u1(s)) |l adls +

+ ) Ut t)gi(x)) — Ur(t. )gi(t)) - (7.92)
j=1

Denote v(t) = |lug(t) —u;(?)||«. Assume that for 7 € [to, 7/] the values u(r) belong
to Ug; hence, the evolution operators Uy(t, 7) and U, (¢, 7) satisfy (7.88) and (7.89)
at this interval. By (7.92), analogous to the proof of (7.75), (7.79), and (7.80), we
conclude that there exist positive constants M, and P; independent of i such that for
te fiy

MoN 7
v(f) < Mie Py (1) + — 271 hil v (s)ds +
1) (T] _S)Ot
+Z/ M2N1€ Prl—, U(S)dS+ZP1N1€ ri—t U(T)+
j=1

= ")—al (/ MNPy (s)ds + PyNye P10y (2] ))
+/ MoN 1107 (1 = 5) ™ u(s)ds (7.93)

with o1 > . By (7.90), at the interval [fo, 7{] v(¢) satisfies
v(t) < M Ce Py (1), 1 € 19, ]]. (7.94)

By (7.93) and (7.94), for t € (17, 7;] we get

(1) < Mye Py (1) + W/ MNPy (5)ds +

+P N P (1 — )y~ (2]) + / MoN e P19 (1 — §) ™y (s)ds.
4

Hence, for M3 = MeP2,C, = C‘/(l — ), vi(t) = eP'v() and P, =
P, ePrsur It/
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t
M,N,(t — S)_a] v1(s)ds.

OE (1 s w) X

(t - T{/)al )
By Lemma 2
~ NiC(M;Q0 + P
v(t) < M;Cro(tg)e P10 (1 + %) cte (] gl (7.95)
1

Denote O = max;{1, (t/4, — 1)} and 6 = min;{1, (7/;, — 7/')}. Let us prove
that

ME060+P | (| MEiono+r)) T oo
(=) (1—ar) B

v(t)<M; Cyu(tg)e P10 <1+

fort € (¢f', 7/, ,]i > 2. We apply the method of mathematical induction. Assume
that (7.96) is true for ¢ € [t |, 7/] and prove it for t € [¢/’, 7/, |]. Really, by (7.93)
fort € [t/, 7/, ] we have

v(t) < Mie Py (z) ((1 + (M50 + P))N,C) +

i—1 i—1 ~. ~
. . . N, Ci (M50 + P .
+ > AMNQC + Y T 1+ MG M50 + Pr) NiP,Cy +
=2 =2 6%

) ) N\ Cy(M30 + Po) (1] — /.
JZ{,zNMC(.’—” l ll)
+ ( MCi((5 = 7imy) + (I —a)(r — L™ "

+N1P261(1 + W))Jﬁ%’m <

(r/ — 7)™

i—1
<+ Yy A+ NCM0+P)—1) +
j=2

/"IN C{ (M50 + P3)
(t—‘ci”)“l

NiCi(M5Q + P»)

i—1
+H(t) < o (1 + ()

) + A(1).

where

N Ci(M30 + P ' M,N
o =1+ M , B(t) = 2L By (5)ds.
(1 —a)f o (t—s5)™
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Hence, for t € (t/', 7/, ,]. the function v (1) = eP1"v (1) satisfies the inequality
NiCi (M50 + P,)

i—1
n = (” (i~

t
) +M2N1/ (t—s)_“‘vl(s)ds.

Applying Lemma 2, we obtain (7.96).
Let N; > 0 be such that @700 e=P1=10) < =81(=10) for some positive §,. For
the given ¢ > 0 and 1 > 0 we choose v(#y) = vy such that

- NiCi(M3Q + P
M, Ee (1+ 1C1(M30 + 2)) e
n
This proves the asymptotic stability of solution .

Example 1. Let us consider the parabolic equation with impulses in variable
moments of time:

U = Uy, + a(t)u, + b(t, x), (7.97)

Au = u(7j(u) + 0,x) — u(zj(u),x) = —aju(z;(u), x), (7.98)

t=1j(u)

with boundary conditions
u(t,0) =u(t,w) =0, (7.99)

where the sequence of hypersurfaces t; is defined by

Tj(u) = 0; + b, /0 1’ (§)dE, (7.100)

where the sequence of real numbers {6;} has uniformly almost periodic sequences
of differences and 6,11 — 6; > 0 > 1/2,

{a;} and {b;} are almost periodic sequences of positive numbers,

a(t) is a Bohr almost periodic function,

b(t, x) is a Bohr almost periodic function in ¢ uniformly with respect to x € [0, r].

Denote
2

ad
X =1L1,0,7), A= —33 X' = D(A) = H*(0, 7) N Hy(0, 7).
X

The operator A is sectorial with simple eigenvalues A; = k? and corresponding
eigenfunctions
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2\ 12
or(x) = (—) sinkx, k=1,2,....
b4

Operator —A generates an analytic semigroup e’

Letu = Y o2, agsinkx, ap = ~ [ u(x) sin kxdx. Then

o0 o o0
. . _ IE
Au = E Ka, sinkx, A%u = E kK*%ay sinkx, e ' = E e Xy sinkx.
k=1 k=1 k=1

Hence,
X2 = p(AY?) = H} (0, 7).
Let us consider Eqgs. (7.97)~(7.99) in space X'/2 = D(A'/?) = H} (0, 7) :

du

L Au = f(nu). u(5() +0) = (1= a)u(g). j=0.....

where f(f,u) : R x X'/? — X, f(t,u)(x) = a(t)u, + b(t,x).

We verify that in some domain 2 = {u > 0, |u|| < p} solutions of (7.97)—(7.99)
don’t have beating at the surfaces ¢+ = t;(u). Assume to the contrary that solution
u(t) intersects the surface t = 7;(u) at two points tjl and tjz, tjl < tjz.

Denote u(t!) = wj.u(?) = up.ii = ¢*“~Du(r! + 0). Then u(t! + 0) =
(1 — aj)ul, r](ul)) = t<1, ‘L'J(I/tz)) = l‘jz, and

2

2
uy = Dyl +0) + / LTI (s, u(s))ds.
1

i

We have

|7j(u2) — ()| < bl /O (ua (2, %) — (2, ) (ua (2, x) + u(t, x))dx <

< Djllua(t, x) — u(t, x) ||z, lua (2, x) + u(t, x) ||z, <

s i

< bl / MG (5, () ds |, o 1,2) + (2, ) -
t
J

The function f(t, u) satisfies ||f(z,u)|x < K(1 + ||u||x:/2); hence, solutions of the
equation without impulses exist for all # > #, and there exist positive constants M
and M, such that My > sup,ecq |If(t. w)|lL,, M3 > sup,cq |lua(t,x) + u(t,x) |1,
Therefore, 7j(uz) — 7;(i1) < by|t} — 1}|M>M5. By sufficiently small b = sup; b; we
have bM, M3 < 1 and



7 Almost Periodic Evolution Equations 201

0<8—1 =1(n) — 5(w) < 7(w) — 5(@) + (@) — 1(u),

bi((1 —a)*—1)

1
2 1 ~
=1 < —————(7;(u) — 5(w1)) = DM,

2
u < 0.
i 1 — bM,Ms eIz,

This contradicts our assumption.

Corresponding to (7.97)—(7.99), the linear impulsive equation is exponentially
stable in space X'/2. By Theorem 4, for sufficiently small b = sup; bj and a =
sup, |a(z)| the equation has an asymptotically stable W-almost periodic solution.

7.6 Equations with Unbounded Operators B;

Many results in our chapter remain true if operators B; in linear parts of impulsive
action are unbounded. We refer to [27], where the following semilinear impulsive
differential equation

d
EIZ =Au+f(tu). t#1. (7.101)

Auli=; = u(ty) — u(r; — 0) = Bju(r; — 0) + gj(u(t; — 0)), je€ Z,(7.102)

was studied. Here u : R — X, X is a Banach space, A is a sectorial operator in X,
{B;} is a sequence of some closed operators, and {7;} is an unbounded and strictly
increasing sequence of real numbers. Assume that the equation satisfies conditions
(H1), (H3), (H5), (H6), and

(H4u) the sequence {B;} of closed linear operators B; € L(X*17,X%) is almost
periodic in the space L(X*™7, X%), for « > 0 and some y > 0.

As in [17], we assume that solutions u(¢) of (7.1), (7.2) are right-hand-side
continuous; hence, u(zj) = u(z; + 0) at all points of impulsive action. Due to such a
selection we avoid considering operators e A¢=%) (I 4+ B;) with unbounded operator
B; and can work with the family of bounded operators e~4(~%).

Since the operator A is sectorial and operators B; are subordinate to A, an
evolution operator of a corresponding linear impulsive equation is constructed
correctly. Now analogs of the theorems 2 and 3 can be proven.

Example 2 ([27]). We consider the following parabolic equation with impulsive
action:

U = Uy + f(2, %), (7.103)

Au = u(7j,x) —u(t; — 0,x) = br(sinx)u, + crx(w —x),  (7.104)
t

=T
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with boundary conditions
u(t,0) = u(t,7) =0, (7.105)

where {7;} is a sequence of real numbers with uniformly almost periodic sequences
of differences, 741 — 7, > 60 > 1/2,

{b;} and {c;} are almost periodic sequences of real numbers,

f(t,x) is almost periodic and locally Holder continuous with respect to ¢ and for
every fixed f belongs to L, (0, ).

As in Example 1, denote

2

3
X=1L,0,7), A= —35 X' = D(A) = H*(0, 7) N H}(0, 7).
X

The operator A is sectorial with simple eigenvalues A; = k? and corresponding
eigenfunctions @i (x) = sinkx, k = 1,2,....

Operators B; have form B; = b; sin x%.

Ifu =332, apsinkx, ap = < [" u(x) sin kxdx, then

oo
b:
Bju = bysinxu, = bjsinx y _ akcoskx = E](R — DA ?u = b;TAVu,
k=1

where Ru = Y ;2 axsin(k — 1)x and Lu = Y ;2 ax sin(k + 1)x are bounded shift
operators in X. Hence, operators B; : X*+1/2 5 X are linear continuous, o > 0.

By (7.13), the evolution operator for homogeneous equations (7.103)
and (7.104) is

Ut,s) = e if g <5 <t < 54y,
and
U(t,s) = eI + B)e 2 %=1 (I + B,,)e ("™

if T <Ss<Tp < Tpt1... % <t<Tg1, m<k, k,meZ.

Theorem 5. Let pIn(1+b) < 1, where p is defined by (7.3) and b = sup; |b;|. Then
Eqs. (7.103) and (7.104) with boundary conditions (7.105) have a unique W-almost
periodic solution which is asymptotically stable.

Proof. We show that the unique almost periodic solution of (7.103) and (7.104) is
given as function R — L, (0, ) by formula

uo(t) = / Ut s)f (s)ds + Y U(t.7)g. (7.106)

i<t

where f() = f(t,.) : R — L(0, ), 8i(x) = cix(mw —x), 8 = gj(\) : Z — Ly(0, 7).
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First, ug(¢) is bounded in space X* :

|10l < [ parerqolas +

[ e By T o)ds +

i—1
& Ti—kt1

e3[4 e
— Ti—k

i—k+2
< [T 1T+ Be @5 DY|(I + Biyy1)e +179F(s)||ds. (7.107)

j=i—1

where t € [t;, Ti4+1). The first integral in (7.107) has upper bound
' o —A(t—s) 7 CD‘ 7
[A%e™ 2 () llds = ——IIf [l pc-
- l -«
Next, we need the following inequality (see [17], p. 35):
ap B —At 1 [ B —At 4 +1 a+p —At
[A*TA"e™ || = S [[A*(R — L)A"e™|| = ——[[A*"Pe™™||.  (7.108)
2 2
Then by (7.108),
- —T; —A(T;—S o . —s 5 o —. —s
e 4 Be M| < fJATe NI 4 A2 <
5 ((1—s
< (ca(r— 5) 7% + 5 Cati Ja(t — s)—<“+1/2>) e 079(7.109)

From Henry [9], p. 25, we have

A%~y || < ba ¥ ]I,

where b (1) = (te/a) ™ if 0 < t < a/Ay, and by(f) = A%~ if t > a/A;. Since
IT|| = 1and A; = 1, we have

1t + Be 5750 < [l @IV 4 || A 2G| <
<1+ |bj|)e—(fj—fj—1) (7.110)

if0 > 1/2.
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Let 0 < &; < 1 —pIn(1 + b). Then there exists a positive integer k; such that for
k >k

Mok 1y gy — 1 < ey,
T — Ti—k
Denote
Ny = max exp (i(ti—, i) In(1 + b) — (t; — 1i—1)) -
1<k<k
Then

i
1_[ I + Bj)e—A(fj—rjq)” < (1 + b)iEr@ =@t <
j=i—k+1

< Nye @m0 < N ee10k, (7.111)
For t € (t;, ti+1), by (7.109) and (7.111) we get

||U(l, Ti—k)”a < ”Aae—A(t—Ti)(I + Bl_)e—A(ti—ri_l)|| «
i-1
x 1_[ ||(I+Bj)e_A(Z"_I/'*1)|| < Kje 61(—u—0)
j=i—k+1

with constant K| independent of ¢ and ;.
Using the last inequality, we obtain the boundedness of |juy(?)||,. We can now
proceed analogously to the proof of Theorem 1 and show the almost periodicity of

uo(1).
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