
Chapter 7
Almost Periodic Solutions of Evolution
Differential Equations with Impulsive Action

Viktor Tkachenko

Abstract In an abstract Banach space we study conditions for the existence of
piecewise continuous, almost periodic solutions for semilinear impulsive differential
equations with fixed and nonfixed moments of impulsive action.

7.1 Introduction

We consider the problem of the existence of piecewise continuous, almost periodic
solutions for the linear impulsive differential equation

du

dt
C .A C A1.t/u D f .t; u/; t 6D �j.u/; (7.1)

u.�j.u/C 0/ � u.�j.u// D Bju C gj.u/; j 2 Z; (7.2)

where u W R ! X; X is a Banach space, A is a sectorial operator in X, A1.t/ is some
operator-valued function, fBjg is a sequence of some closed operators, and f�j.u/g is
an unbounded and strictly increasing sequence of real numbers for all u from some
domain of space X:

We use the concept of piecewise continuous, almost periodic functions proposed
in [7]. Points of discontinuities of these functions coincide with points of impulsive
actions f�jg: We mention the remarkable paper [18], where a number of important
statements about the almost periodic pulse system were proved. Then these results
were included in the well-known monograph [19]. Today there are many articles
related to the study of almost periodic impulsive systems (see, for example, [1, 3]).
In the papers [8, 23, 27, 28] almost periodic solutions for abstract impulsive
differential equations in the Banach space are investigated.

In this chapter we consider the semilinear abstract impulsive differential equation
in a Banach space with sectorial operator in the linear part of the equation and
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some closed operators in linear parts of impulsive action. Using fractional powers
of operator A and corresponding interpolation spaces allows us to consider strong
or classical solutions. Note that such equations with periodic right-hand sides were
first studied in [17]. In equations with nonfixed moments of impulsive action, points
of discontinuity depend on solutions; that is, every solution has its own points of
discontinuity. Moreover, a solution can intersect the surface of impulsive action
several times or even an infinite number of times. This is the so-called pulsation
or beating phenomenon. We will assume that solutions of (7.1) and (7.2) don’t have
beating at the surfaces t D �j.u/I in other words, solutions intersect each surface
no more than once. For impulsive systems in the finite-dimensional case, there are
several sufficient conditions that allow us to exclude the phenomenon of pulsation
(see, [19], [22]). Unfortunately, in a Banach space this conditions cannot easily be
verified. In every concrete case one needs a separate investigation.

We assume that the corresponding linear homogeneous equation (if f � 0;

gj � 0) has an exponential dichotomy. The definition of exponential dichotomy
for an impulsive evolution equation corresponds to the definition of exponential
dichotomy for continuous evolution equations in an infinite-dimensional Banach
space [5, 9, 16]. We require that only solutions of a linear system from an unstable
manifold be unambiguously extended to the negative semiaxis.

Robustness is an impotent property of the exponential dichotomy [5, 10, 16].
We mention the papers [4, 14, 25, 26], where the robustness of the exponential
dichotomy for impulsive systems by small perturbations of right-hand sides is
proved. In this chapter we prove robustness of the exponential dichotomy also by
the small perturbation of points of impulsive action. We use a change of time in
the system. Then approximation of the impulsive system by difference systems
(see [9]) can be used. If a linear homogeneous equation is exponentially stable, we
prove stability of the almost periodic solution of nonlinear equations (7.1) and (7.2).
Following [17], we use the generalized Gronwall inequality, taking into account
singularities in integrals and impulsive influences.

This chapter is organized as follows. In Sect. 7.2 we present some preliminary
definitions and results. In Sect. 7.3, we study an exponential dichotomy of impulsive
linear equations. Section 7.4 is devoted to studying the existence and stability of
almost periodic solutions in linear inhomogeneous equations with impulsive action
and semilinear impulsive equations with fixed moments of impulsive action. In
Sect. 7.5 we consider impulsive evolution equations with nonfixed moments of
impulsive action. In Sect. 7.6 we discuss the case of unbounded operators Bj in linear
parts of linear parts of impulsive action.

7.2 Preliminaries

Let .X; k:k/ be an abstract Banach space and R and Z be the sets of real and integer
numbers, respectively.

We consider the space PC .J;X/; J � R; of all piecewise continuous functions
x W J ! X such that
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i) the set f�j 2 J W �jC1 > �j; j 2 Zg of discontinuities of x has no finite limit points;
ii) x.t/ is left-continuous x.�j C 0/ D x.�j/ and there exists limt!�j�0 x.t/ D

x.�j � 0/ < 1:

We will use the norm kxkPC D supt2J kx.t/k, in the space PC .J;X/.

Definition 1. The integer p is called an "-almost period of a sequence fxkg if
kxkCp � xkk < " for any k 2 Z: The sequence fxkg is almost periodic if for any
" > 0 there exists a relatively dense set of its "-almost periods.

Definition 2. The strictly increasing sequence f�kg of real numbers has uniformly
almost periodic sequences of differences if for any " > 0 there exists a relatively
dense set of "-almost periods common for all sequences f� j

kg; where � j
k D �kCj �

�k; j 2 Z:

By Samoilenko and Trofimchuk [21], the sequence f�kg has uniformly almost
periodic sequences of differences if and only if �k D ak C ck; where fckg is an
almost periodic sequence and a is a positive real number.

By Lemma 22 ([19], p. 192), for a sequence f�jg with uniformly almost periodic
sequences of differences there exists the limit

lim
T!1

i.t; t C T/

T
D p (7.3)

uniformly with respect to t 2 R; where i.s; t/ is the number of the points �k lying
in the interval .s; t/: Then for each q > 0 there exists a positive integer N such that
on each interval of length q there are no more than N elements of the sequence f�jg;
that is, i.s; t/ � N.t � s/C N:

Also, for sequence f�jg with uniformly almost periodic sequences of differences
there exists ‚ > 0 such that �jC1 � �j � ‚; j 2 Z:

Definition 3. The function ' 2 PC .R;X/ is said to be W-almost periodic if

i) the strictly increasing sequence f�kg of discontinuities of '.t/ has uniformly
almost periodic sequences of differences;

ii) for any " > 0 there exists a positive number ı D ı."/ such that if the points t0
and t00 belong to the same interval of continuity and jt0 � t00j < ı, then k'.t0/ �
'.t00/k < "I

iii) for any " > 0 there exists a relatively dense set � of "-almost periods such that
if � 2 �; then k'.t C �/ � '.t/k < " for all t 2 R that satisfy the condition
jt � tkj � "; k 2 Z:

We consider the impulsive equations (7.1) and (7.2) with the following
assumptions:

.H1/ A is a sectorial operator acting in X and inffRe� W � 2 �.A/g � ı > 0;

where �.A/ is the spectrum of A: Consequently, the fractional powers of A
are well defined, and one can consider the spaces X˛ D D.A˛/ for ˛ � 0

endowed with the norms kxk˛ D kA˛xk:
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.H2/ The function A1.t/ W R ! L.X˛;X/ is Bohr almost periodic and Hölder
continuous, ˛ � 0; L.X˛;X/ is the space of linear bounded operators
X˛ ! X:

.H3/ We shall use the notation U˛
% D fx 2 X˛ W kxk˛ � %g: Assume that the

sequence f�j.u/g of functions �j W U˛
% ! R has uniformly almost periodic

sequences of differences uniformly with respect to u 2 U˛
% and there exists

� > 0 such that infu �jC1.u/� supu �j.u/ � � > 0; for all u 2 U˛
% and j 2 Z:

Also, there exists‚ > 0 such that supu �jC1.u/� infu �j.u/ � ‚ for all j 2 Z
and u 2 U˛

% :

.H4/ The sequence fBjg of bounded operators is almost periodic and there exists
b > 0 such that kBjuk˛ � bkuk˛ for j 2 Z; ˛ � 0, and u 2 X˛:

.H5/ The function f .t; u/ W R � U˛
� ! X is continuous in u and is Hölder

continuous and W-almost periodic in t uniformly with respect to x 2 U˛
�

with some � > 0:
.H6/ The sequence fgj.u/g of continuous functions U˛

� ! X˛ is almost periodic
uniformly with respect to x 2 U˛

� :

Remark 1. We assume that operators Bj are bounded and satisfy assumption .H4/:
Many of our results are valid if the Bj are unbounded closed operators X˛C� ! X˛

for ˛ � 0 and some � � 0: We discuss this case in the last section.

We use the following generalization of Lemma 7 from [7] (also, see [6] and [19]):

Lemma 1. Assume that a sequence of real numbers f�jg has uniformly almost
periodic sequences of differences, the sequence fBjg is almost periodic, and the
function f .t/ W R ! X is W-almost periodic. Then for any " > 0 there exist a such
l D l."/ > 0 that for any interval J of length l there are such r 2 J and an integer q
that the following relations hold:

kf .t C r/ � f .t/k < "; t 2 R; jt � �jj > "; j 2 Z;

kBkCq � Bkk < "; k�q
k � rk < 	; k 2 Z:

If A is a sectorial operator, then .�A/ is an infinitesimal generator of the
analytical semigroup e�At: For every x 2 X˛ we get e�AtA˛x D A˛e�Atx: Further,
we shall use the inequalities (see [9])

kA˛e�Atk � C˛t�˛e�ıt; t > 0; ˛ > 0;

k.e�At � I/uk � 1

˛
C1�˛t˛kA˛uk; t > 0; ˛ 2 .0; 1
; u 2 X˛;

where C˛ 2 R is nonnegative and bounded as ˛ ! C0:
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Definition 4. The function x.t/ W Œt0; t1
 ! X˛ is said to be a solution of the
initial-value problem u.t0/ D u0 2 X˛ for Eqs. (7.1) and (7.2) on Œt0; t1
 if

(i) it is continuous in Œt0; �k
; .�k; �kC1
; : : :; .tkCs; t1
with the discontinuities of the
first kind at the moments t D �j.u/ of intersections with impulsive surfaces;

(ii) x.t/ is continuously differentiable in each of the intervals .t0; �k/; .�k; �kC1/;
: : :; .tkCs; t1/ and satisfies Eqs. (7.1) and (7.2) if t 2 .t0; t1/; t 6D �j, and t D �j,
respectively;

(iii) the initial-value condition u.t0/ D u0 is fulfilled.

We assume that solutions u.t/ of (7.1) and (7.2) are left-hand-side continuous;
hence u.�j/ D u.�j � 0/ at all points of impulsive action.

Also, we assume that in the domain U˛
� solutions of (7.1) and (7.2) don’t have

beating at the surfaces t D �j.u/I in other words, solutions intersect each surface
only once.

7.3 Exponential Dichotomy

Together with Eqs. (7.1) and (7.2) we consider the corresponding linear homoge-
neous equation

du

dt
C .A C A1.t//u D 0; t 6D �j; (7.4)

�ujtD�j D u.�j C 0/ � u.�j/ D Bju.�j/; j 2 Z; (7.5)

where �j D �j.0/: Denote by V.t; s/ the evolution operator of the linear equation
without impulses (7.4). It satisfies V.�; �/ D I; V.t; s/V.s; �/ D V.t; �/; t � s � �:

By Theorem 7.1.3 [9, p.190], V.t; �/ is strongly continuous with values in L.Xˇ/
for any 0 � ˇ < 1 and

kV.t; �/xkˇ � LQ.t � �/.��ˇ/
�kxk� ; (7.6)

where .� � ˇ/� D min.� � ˇ; 0/; t � � � Q; LQ D LQ.Q/: Moreover,

kV.t; �/x � xkˇ � Lˇ;	.t � �/	kxkˇC	; 	 > 0; ˇ C 	 � 1: (7.7)

Using the proof of Lemma 7.1.1 from [9], p. 188, one can verify the following
generalized Gronwall inequality:

Lemma 2. a1 � 0; a2 � 0, and y.t/ is a nonnegative function locally integrable on
0 � t < Q with

y.t/ � a1 C a2t
�˛ C b

Z t

0

.t � s/�ˇu.s/ds
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on this interval; then there is a constant QC D QC.ˇ; b;Q/ < 1 such that

y.t/ �
�

a1 C a2
.1 � ˛/t˛

�
QC.ˇ; b;Q/:

We will use the following perturbation lemma.

Lemma 3. Let us consider the perturbation equation

du

dt
C .�A C A2.t//u D 0; (7.8)

where � D Const > 0; A2.t/ W R ! L.X˛;X/:
For Q > 0; there exists "0 > 0 such that for all " � "0 and j� � 1j �

"; supt kA1.t/�A2.t/kL.x˛;X/ � " the evolution operators V.t; s/ of (7.4) and V1.t; s/
of (7.8) satisfy

kV.t; s/ � V1.t; s/k˛ � R1."/; t � s � Q; (7.9)

where R1."/ depends on Q; ˛, and R1."/ ! 0 as " ! 0:

Proof. For definiteness let � > 1: Solutions x.t/ and y.t/ of Eqs. (7.4) and (7.8)
satisfy the following integral equations:

x.t/ D e�A.t�t0/x0 C
Z t

t0

e�A.t�s/A1.s/x.s/ds

and

y.t/ D e�A�.t�t0/x0 C
Z t

t0

e�A�.t�s/A2.s/y.s/ds:

Then

kx.t/ � y.t/k˛ � k.I � e�A.��1/.t�t0//A˛e�A.t�t0/x0k C

C
Z t

t0

k.I � e�A.��1/.t�s//A˛e�A.t�s/A1.s/x.s/kds C

C
Z t

t0

kA˛e�A�.t�s/.A1.s/ � A2.s//x.s/kds C

C
Z t

t0

kA˛e�A�.t�s/A2.s/.x.s/ � y.s//kds �

� a1."/kx0k˛ C a2

Z t

t0

.t � s/�˛kx.s/ � y.s/k˛ds;
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where a2 D C˛ sups kA1.s/kL.X˛;X/ and a1."/ ! 0 as " ! 0: By Lemma 2, there
exists a positive constant K1 depending on ˛ and Q such that

kx.t/ � y.t/k˛ � K1a1."/kx0k˛ D R2."/kx0k˛:

Lemma 4. Let us consider Eq. (7.4) and

dv

dt
C .A C A2.t//v D 0; (7.10)

such that A2 W R ! L.X˛;X/ is a bounded and Hölder continuous function.
Then for Q > 0; there exists "0 > 0 such that for all " � "0 and

sup
t

kA1.t/ � A2.t/kL.X˛;X/ � "

the evolution operators V.t; s/ of (7.4) and V1.t; s/ of (7.10) satisfy

k.V.t; s/ � V1.t; s//uk˛ � R3."/jt � t0j1�2˛Cıkukı; t � s � Q; (7.11)

where R3."/ D R3.";Q; ˛/ and R3."/ ! 0 as " ! 0:

Proof. Denote by u.t/ and v.t/ solutions of (7.4) and (7.10) with initial value
u.t0/ D u.t0/ D u0: They satisfy the inequalities

ku.t/ � v.t/k˛ �
Z t

t0

kA˛e�A.t�s/.A1.s/ � A2.s//u.s/kds C

C
Z t

t0

kA˛e�A.t�s/A2.s/.u.s/ � v.s//kds �

� C˛LQ"ku0kı
Z t

t0

ds

.t � s/˛.s � t0/˛�ı C C˛kA1kL

Z t

t0

ku.s/ � v.s/k˛ds

.t � s/˛
�

� "ku0kıR4 C C˛kA1kL

Z t

t0

ku.s/ � v.s/k˛ds

.t � s/˛
: (7.12)

Applying Lemma 2 to (7.12), we obtain (7.11).

We define the evolution operator for Eqs. (7.4) and (7.5) as

U.t; s/ D V.t; s/ if �k < s � t � �kC1

and

U.t; s/ D V.t; �k/.I C Bk/V.�k; �k�1/: : :.I C Bm/V.�m; s/ (7.13)

if �m�1 < s < �m < �mC1 < : : : < �k � t � �kC1:
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It it easy to verify that for fixed t > s the operator U.t; s/ is bounded in the
space X˛:

Definition 5. We say that the system (7.4)–(7.5) has an exponential dichotomy on R
with exponent ˇ > 0 and bound M � 1 (with respect to X˛) if there exist projections
P.t/; t 2 R; such that

(i) U.t; s/P.s/ D P.t/U.t; s/; t � s;
(ii) U.t; s/jIm.P.s// for t � s is an isomorphism on Im.P.s//, and then U.s; t/ is

defined as an inverse map from Im.P.t// to Im.P.s//;
(iii) kU.t; s/.1 � P.s//uk˛ � Me�ˇ.t�s/kuk˛; t � s; u 2 X˛;
(iv) kU.t; s/P.s/k˛ � Meˇ.t�s/kuk˛; t � s; u 2 X˛ .

If the system (7.4)–(7.5) has an exponential dichotomy on R, then the nonhomo-
geneous equation

du

dt
C .A C A1.t//u D f .t/; t 6D �j; (7.14)

�ujtD�j D u.�j C 0/ � u.�j/ D Bju.�j/C gj; j 2 Z; (7.15)

has a unique solution bounded on R

u0.t/ D
Z 1

�1
G.t; s/f .s/.x/ds C

X
j2Z

G.t; �j/gj; (7.16)

where

G.t; s/ D
�

U.t; s/.I � P.s//; t � s;
�U.t; s/P.s/; t < s;

is the Green function such that

kG.t; s/uk˛ � Me�ˇjt�sjkuk˛; t; s 2 R: (7.17)

Analogous to [9], p. 250, it can be proven that a function u.t/ is a bounded
solution on the semiaxis Œt0;C1/ if and only if

u.t/ D U.t; t0/.I � P.t0//u.t0/C
Z C1

t0
G.t; s/f .s/ds C

X
t0��j

G.t; �j/gj; t � t0: (7.18)

A function u.t/ is a bounded solution on the semiaxis .�1; t0
 if and only if

u.t/ D U.t; t0/P.t0/u.t0/C
Z t0

�1
G.t; s/f .s/ds C

X
t0>�j

G.t; �j/gj; t � t0: (7.19)
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Now we estimate kG.t; s/uk˛ for u 2 X: Let t > s and �m�1 < s < �m; �k < t <
�kC1: Then

kG.t; s/uk˛ D kU.t; s/.I � P.s//uk˛ �
� kU.t; �m/.I � P.�m//k˛kU.�m; s/uk˛ �
� Me�ˇ.t��m/L‚.�m � s/�˛kuk � QMe�ˇ.t�s/j�m � sj�˛kuk (7.20)

and

kG.s; t/uk˛ D kU.s; t/P.t/uk˛ �
� kU.s; t C 1/P.t C 1/k˛kA˛U.t C 1; t/uk � QMe�ˇ.t�s/kuk: (7.21)

If t1 and t2 belong to the same interval of continuity, then

kP.t1/u � P.t2/uk� � QM1kt1 � t2j	kuk�C	 (7.22)

since as in [9], p. 247,

kP.t C h/u � P.t/uk� � kP.t/u � V.t C h; t/P.t/uk� C
CkV.t C h; t/P.t/u � P.t C h/uk� �
� k.I � V.t C h; t//P.t/uk� C kP.t C h/.V.t C h; t/u � u/k� :

Lemma 5. Let the impulsive system (7.4) and (7.5) be exponentially dichotomous
with positive constants ˇ and M: Then there exists " > 0 such that the perturbed
systems

du

dt
C .A C QA.t//u D 0; t 6D Q�j; (7.23)

�ujtDQ�j D u. Q�j C 0/ � u. Q�j/ D QBju. Q�j/; j 2 Z; (7.24)

with supj j�j � Q�jj � "; supj kBj � QBjk � "; supt kA1.t/ � QA.t/kL..X˛;X/ � "; are also
exponentially dichotomous with some constants ˇ1 � ˇ and M1 � M:

Proof. In system (7.4) and (7.5), we introduce the change of time t D #.t0/ such that
�j D #. Q�j/; j 2 Z; and the function # is continuously differentiable and monotonic
on each interval . Q�j; Q�jC1/:
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The function # can be chosen in piecewise linear form:

t D ajt
0 C bj; aj D �jC1 � �j

Q�jC1 � Q�j
; bj D �j Q�jC1 � �jC1 Q�j

Q�jC1 � Q�j
if t0 2 . Q�j; Q�jC1/: (7.25)

The function #.t0/ satisfies the conditions

j#.t0/ � t0j � "; jd#.t0/
dt0

� 1j � 2"=�:

The system (7.4) and (7.5) in the new coordinates v.t0/ D u.#.t0// has the form

dv

dt0
C d#.t0/

dt0
�
A C A1.#.t

0/
�
v D 0; t 6D Q�j; (7.26)

�vjt0DQ�j D v. Q�j C 0/ � v. Q�j/ D Bjv. Q�j/; j 2 Z: (7.27)

The system (7.26) and (7.27) has the evolution operator U1.t0; s0/ D U.#.t0/; #.s0//:
If the system (7.4) and (7.5) has an exponential dichotomy with projector P.t/
at point t, then the system (7.26) and (7.27) has an exponential dichotomy with
projector P1.t0/ D P.#.t0// at point t0. Really,

kU1.t
0; s0/.1 � P1.s

0//k˛ D kU.#.t0/; #.s0//.1 � P.#.s0//k˛ �
� Me�ˇ.#.t0/�#.s0// � Me2"e�ˇ.t0�s0/; t � s:

The inequality for an unstable manifold is proved analogously.
The linear systems (7.26), (7.27) and (7.23), (7.24) have the same points of

impulsive actions Q�j; j 2 Z; and

kd#.t0/
dt0

A1.#.t
0// � QA.t0/k � kd#.t0/

dt0
A1.#.t

0// � A1.#.t
0//k C

CkA1.#.t
0// � A1.t

0/k C kA1.t
0/ � QA.t0/k � K2."/;

where K2."/ ! 0 as " ! 0:

Let QU.t0; s0/ be the evolution operator for the system (7.23) and (7.24). To
show that for sufficiently small ı0 the system (7.23) and (7.24) is exponentially
dichotomous, we use the following variant of Theorem 7.6.10 [9]:

Assume that the evolution operator U1.t0; s0/ has an exponential dichotomy on R
and satisfies

sup
0�t0�s0�d

kU1.t
0; s0/k˛ < 1 (7.28)

for some positive d. Then there exists  > 0 such that
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k QU.t0; s0/ � U1.t
0; s0/k˛ < ; whenever t � s � dI

the evolution operator QU.t0; s0/ also has an exponential dichotomy on R with some
constants ˇ1 � ˇ;M1 � M:

To prove this statement, we set for n 2 Z

tn D s0 C dn; Tn D U1.s
0 C d.n C 1/; s0 C dn/; QTn D QU.s0 C d.n C 1/; s0 C dn/:

If the evolution operator U1.t; s/ has an exponential dichotomy, then fTng has a
discrete dichotomy in the sense of [9, Definition 7.6.4].

According to Henry [9], Theorem 7.6.7, there exists  > 0 such that f QTng with
supn kTn � QTnk˛ �  has a discrete dichotomy.

Now we are in the conditions of [9], Exercise 10, pp. 229–230 (see also a more
general statement [5, Theorem 4.1]), which finishes the proof.

Let us estimate the difference k QTk � Tkk˛: There exists a positive integer N such
that each interval of length d contains no more than N elements of sequence f�jg: Let
the interval Œ�n; �nC1
 contain points of impulses Q�m; : : :; Q�k where k�m � N:Denote
by V1.t; s/ and QV.t; s/ the evolution operators of equations without impulses (7.26)
and (7.23), respectively. Then

kTn � QTnk˛ D kU1.�nC1; �n/ � QU.�nC1; �n/k˛
� k.V1.�nC1; Q�k/ � QV.�nC1; Q�k//.I C Bk/V1. Q�k; Q�k�1/: : :.I C Bm/V1. Q�m; �n/k˛ C
Ck QV.�nC1; Q�k/.Bk � QBk/V1. Q�k; Q�k�1/: : :.I C Bm/V1. Q�m; Q�n/k˛ C : : : C
Ck QV.�nC1; Q�k/.I C QBk/ QV. Q�k; Q�k�1/: : :.I C QBm/.V1. Q�m; �n/ � QV. Q�m; �n//k˛: (7.29)

Using (7.9), we get that

sup
n

kTn � QTnk˛ � K3."/

with some K3."/ ! 0 as " ! 0:

The exponentially dichotomous system (7.23) and (7.24) has Green’s function

QG.t; s/ D
( QU.t; s/.I � QP.s//; t � s;

� QU.t; s/ QP.s/; t < s;

such that

k QG.t; s/uk˛ � M1e
�ˇ1jt�sjkuk˛; t; s 2 R; u 2 X˛:

The sequence of bounded operators Tn W X˛ ! X˛ defines the difference
equation

unC1 D Tnun; n 2 Z; (7.30)
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with evolution operator Tn;m D Tn�1: : :Tm; n � m; Tm;m D I: It is exponentially
dichotomous with Green’s function

Gn;m D
�

Tn;m.I � Pm/; n � m;
�Tn;mPm; n < m;

where Pm D P.�m/:

The second difference equation

unC1 D QTnun; n 2 Z; (7.31)

has the evolution operator QTn;m D QTn�1: : : QTm; n � m; QTm;m D I:
By sufficiently small supn kTn � QTnk˛ , Eq. (7.31) is exponentially dichotomous

with Green’s function

QGn;m D
� QTn;m.I � QPm/; n � m;

� QTn;m QPm; n < m:

According to Henry [9], p. 233, the difference between two Green’s functions
satisfies equality:

QGn;m � Gn;m D
X
k2Z

Gn;kC1. QTk � Tk/ QGk;m (7.32)

and estimation

k QGn;m � Gn;mk˛ D M2e
�ˇ2djn�mj sup

k
k QTk � Tkk˛; n;m 2 Z (7.33)

with some constants ˇ2 � ˇ1;M2 � M1:

Now we can consider the difference of two Green’s functions QG.t; s/ � G1.t; s/:
Let t D s C nd C t1; t1 2 Œ0; d/: Then

k QG.t; s/ � G1.t; s/k˛ D
D k QU.s C nd C t1; s C nd/ QG.s C nd; s/ � U.s C nd C t1; s C nd/G.s C nd; s/k˛ �
� k. QU.s C nd C t1; s C nd/ � U.s C nd C t1; s C nd// QG.s C nd; s/k˛ C
CkU.s C nd C t1; s C nd/. QG.s C nd; s/ � G.s C nd; s//k˛:

Using (7.33) and an estimation of the difference QU � U1 at a bounded interval as is
done in (7.29), we get

k QG.t; �/ � G1.t; �/k˛ � QM2."/e
�ˇ2jt�� j; t; � 2 R; (7.34)

with QM2."/ ! 0 as " ! 0:
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By the definition of Green’s function, we have

k QP.�/ � P1.�/k˛ � QM2."/ for all � 2 R: (7.35)

Corollary 1. Let the conditions of Lemma 5 be satisfied. Then for t 2 R; jt � �jj �
"; j 2 Z; we have

k.P.t/ � QP.t//uk˛ � QM3."/kuk˛C	; (7.36)

where 	 > 0; ˛ C 	 < 1; and QM3."/ ! 0 as " ! 0:

Proof. Using (7.22) and (7.35), we get

k.P.t/ � QP.t//uk˛ � k.P.t/ � P.#.t///uk˛ C
Ck.P.#.t// � QP.#.t///uk˛ C k. QP.#.t// � QP.t//uk˛ � QM3."/kuk˛C	:

7.4 Almost Periodic Solutions of Equations with Fixed
Moments of Impulsive Action

Consider the linear inhomogeneous equation

du

dt
C .A C A1.t//u D f .t/; t 6D �j; (7.37)

�ujtD�j D u.�j C 0/ � u.�j/ D Bju.�j/C gj; j 2 Z: (7.38)

We assume that

.H7/ the function f .t/ W R ! X is W-almost periodic and locally Hölder continuous
with points of discontinuity at moments t D �j; j 2 Z; at which it is continuous
from the left;

.H8/ the sequence fgjg of gj 2 X˛1 ; ˛1 > ˛ > 0; is almost periodic.

Theorem 1. Assume that Eqs. (7.37) and (7.38) satisfy conditions .H1/–.H3/,
.H7/; and .H8/ and that the corresponding homogeneous equation is exponentially
dichotomous.

Then the equation has a unique W-almost periodic solution u0.t/ 2 PC .R;X˛/:

Proof. We show that an almost periodic solution is given by the formula (7.16). For
t 2 .�i; �iC1
; it satisfies

ku0.t/k˛ �
Z t

�1
kA˛U.t; s/.I � P.s//f .s/kds C

C
Z 1

t
kA˛U.t; s/P.s/f .s/kds C

X
j2Z

kG.t; �j/gjk˛ �
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�
X
j2Z

kG.t; �j/gjk˛ C
Z t

�i

kA˛V.t; s/.I � P.s//f .s/kds C

C
1X

kD0

Z �i�k

�i�k�1

kU.t; �i�k/.I � P.�i�k//k˛kA˛U.�i�k; s/f .s/kds C

C
1X

kD1

Z �iCkC1

�iCk

kU.t; �iCkC1/P.�iCkC1/k˛kA˛U.�iCkC1; s/f .s/kds C

C
Z �iC1

t
kA˛V.t; s/P.s/f .s/kds � 2M

1 � e��ˇ
C˛‚1�˛

1 � ˛ kf kPC C

C 2M

1 � e��ˇ sup
j

kgjk˛ � QM0 maxfkf .t/kPC; kgjk˛g (7.39)

with some constant QM0 > 0:

Take an "-almost period h for the right-hand side of the equation, which satisfies
the conditions of Lemma 1; that is, there exists a positive integer q such that �jCq 2
.s C h; t C h/ if �j 2 .s; t/ and j�j C h � �jCqj < "; kBjCq � Bjk < ":

Let t 2 .�i C "; �iC1 � "/: We define points k D .�k C �k�1/=2; k 2 Z. Then

ku0.t C h/ � u0.t/k˛ �
X
j2Z

kG.t C h; �jCq/gjCq � G.t; �j/gjk˛ C

C
Z 1

�1
kG.t C h; s C h/f .s C h/ � G.t; s/f .s/k˛ds �

�
Z 1

�1
k.G.t C h; s C h/ � G.t; s//f .s C h/k˛ds C

C
Z 1

�1
kG.t; s//.f .s C h/ � f .s//k˛ds C

X
j2Z

kG.t; �j//.gjCq � gj/k˛ C

C
X
j2Z

k.G.t C h; �jCq/ � G.t; �j//gjCqk˛: (7.40)

Denote U2.t; s/ D U.t C h; s C h/: If u.t/ D U.t; s/u0; u.s/ D u0; is a solution of
the impulsive equations (7.4) and (7.5), then u2.t/ D U.t C h; s C h/u0; u2.s/ D u0;
is a solution of the equation

du

dt
C .A C A1.t C h//u D 0; t 6D �jCq � h; (7.41)

�ujtChD�jCq D u.�jCq C 0/ � u.�jCq/ D BjCqu.�jCq/; j 2 Z: (7.42)
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We will use the notation V2.t; s/ D V.t C h; s C h/ for the evolution operator of
an equation without impulses (7.41). Denote also Q�n D �nCq � h; QBn D BnCq:

Since Eqs. (7.4) and (7.5) are exponentially dichotomous, Eqs. (7.41) and (7.42)
are exponentially dichotomous also with projector P2.s/ D P.s C h/:

The first integral in (7.40) is the sum of two integrals:

Z 1

�1
k.G.t C r; s C r/ � G.t; s//f .s C r/k˛ds D

D
Z t

�1
k.U2.t; s/.I � P2.s// � U.t; s/.I � P.s///f .s C r/k˛ds C

C
Z 1

t
k.U2.t; s/P2.s/ � U.t; s/P.s//f .s C r/k˛ds: (7.43)

We estimate the first integral in (7.43); the second integral is considered
analogously.

Z t

�1
k.U2.t; s/.I � P2.s// � U.t; s/.I � P.s///f .s C r/k˛ds �

�
Z t

�iC"
kA˛.V2.t; s/.I � P2.s// � V.t; s/.I � P.s///f .s C r/kds C

C
Z �iC"

�i�"
kA˛.U2.t; s/.I � P2.s// � U.t; s/.I � P.s///f .s C r/kds C

C
Z �i�"

i

kA˛.U2.t; s/.I � P2.s// � U.t; s/.I � P.s///f .s C r/kds C

C
1X

kD1

Z i�kC1

i�k

kA˛.U2.t; s/.I � P2.s// � U.t; s/.I � P.s///f .s C r/kds: (7.44)

Let us consider all integrals in (7.44) separately. By (7.36) and (7.11) we have

I11 D
Z t

�iC"
kA˛.V2.t; s/.I � P2.s// � V.t; s/.I � P.s///f .s C r/kds D

D
Z t

�iC"
kA˛..I � P2.t//V2.t; s/ � .I � P.t//V.t; s//f .s C r/kds �

�
Z t

�iC"
kA˛.P2.t/ � P.t//V2.t; s/f .s C r/kds C

C
Z t

�iC"
kA˛.I � P.t//.V2.t; s/ � V.t; s//f .s C r/kds �
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�
 Z t

�iC"

QM3."/LQds

.t � s/˛
C
Z t

�iC"
R3."/ds

.t � s/2˛�1

!
kf kPC � �1."/kf kPC:

I12 D
Z �iC"

�i�"
kA˛U.t; s/.I � P.s//f .s C h/kds �

�
Z �iC"

�i

kA˛.I � P.t//V.t; s/f .s C h/kds C

C
Z �i

�i�"
kkA˛.I � P.t//V.t; �i/.I C Bi/U.�i; s/f .s C h/kds �

�
�Z �iC"

�i

C˛ds

.t � s/˛
C MkI C Bik

Z �i

�i�"
C˛ds

.s � �i/˛

�
kf kPC �

� �2."/kf kPC:

Analogously,

I13 D
Z �iC"

�i�"
kA˛U2.t; s/.I � P2.s//f .s C h/kds � �3."/kf kPC;

where �j."/ ! 0 as " ! 0; j D 1; 2; 3:

Using (7.11) and (7.36), we get

I14 D
Z �i�"

i

kA˛.U2.t; s/.I � P2.s// � U.t; s/.I � P.s///f .s C r/kds D

D
Z �i�"

i

k
�
.I � P2.t//V2.t; Q�i/.I C QBi/V1. Q�i; s/ �

�.I � P.t//V.t; �i/.I C Bi/V.�i; s/
�

f .s C h/k˛ds �

�
Z �i�"

i

k.P2.t/ � P.t//V2.t; Q�i/.I C Bi/V2. Q�i; s/f .s C h/k˛ds C

C
Z �i�"

i

k.I � P.t//.V2.t; Q�i/ � V.t; �i//.I C Bi/V2. Q�i; s/f .s C h/k˛ds C

C
Z �i�"

i

k.I � P.t//V.t; �i/. QBi � Bi/V2. Q�i; s/f .s C h/k˛ds C

C
Z �i�"

i

k.I � P.t//V.t; �i/.I � Bi/.V2. Q�i; s/ � V.�i; s//f .s C h/k˛ds �

� �4."/kf kPC;

where �4."/ ! 0 as " ! 0:
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The last sum in (7.44) is transformed as follows:

I15 D
1X

kD1

Z i�kC1

i�k

kA˛.U2.t; s/.I � P2.s// � U.t; s/.I � P.s///f .s C r/kds D

D
1X

kD1

Z i�kC1

i�k

k.U.t; i/.I � P.i//U.i; i�kC1/U.i�kC1; s/ �

�U2.t; i/.I � P2.i//U2.i; i�kC1/U2.�i�kC1; s//f .s C h/k˛ds �

�
1X

kD1

Z i�kC1

i�k

			
�

U.t; i/ � U2.t; i//.I � P.i//U.i; i�kC1/U.i�kC1; s/C

CU2.t; i/..I � P.i//U.i; i�kC1/ � .I � P2.i//U2.i; i�kC1//U.i�kC1; s/C
CU2.t; i/.I � P2.i//U2.i; i�kC1/.U.i�kC1; s/ � U2.i�kC1; s//

�
f .s C h/

			
˛
ds:

As in the proof of Lemma 5, we construct in space X˛ two sequences of bounded
operators

Sn D U.nC1; n/; QSn D U2.nC1; n/; n 2 Z;

and corresponding difference equations

unC1 D Snun; vnC1 D QSnvn; n 2 Z:

Per our assumption, these difference equations are exponentially dichotomous
with corresponding evolution operators

Sn;m D Sn�1: : :Sm; QSn;m D QSn�1: : :QSm; n � m;

and Green’s functions

Gn;m D
�

Sn;m.I � Pm/; n � m;
�Sn;mPm; n < m;

QGn;m D
� QSn;m.I � QPm/; n � m;

�QSn;m QPm; n < m;

where Pm D P.m/; QPm D P2.m/:

Analogous to (7.32) and (7.33), we obtain

QGn;m � Gn;m D
X
k2Z

Gn;kC1.QSk � Sk/ QGk;m
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and

k QGn;m � Gn;mk˛ D M1e
�ˇ1� jn�mj sup

k
kQSk � Skk˛; n;m 2 Z (7.45)

with some constants ˇ1 � ˇ;M1 � M:

kSn � QSnk˛ D kU.nC1; n/ � U2.nC1; n/k˛ D
D kV.nC1; �n/.I C Bn/V.�n; n/ � V2.nC1; Q�n/.I C QBn/V2. Q�n; n/k˛ �
� k.V.nC1; �n/ � V2.nC1; Q�n//.I C Bn/V.�n; n/k˛ C
CkV2.nC1; Q�n//.Bn � QBn/V.�n; n/k˛ C
CkV2.nC1; Q�n//.I C QBn/.V.�n; n/ � V2. Q�n; n//k˛

Here we assume for definiteness that Q�n � �n: We have

k.V.nC1; �n/ � V2.nC1; Q�n//yk˛ � kV.nC1; Q�n/.V. Q�n; �n/ � I/yk˛ C
Ck.V.nC1; Q�n/ � V2.nC1; Q�n//yk˛ �
� �5."/kyk˛

and

k.V2. Q�n; n/ � V.�n; n//yk˛ � k.V2. Q�n; �n/ � I/V2.�n; n/yk˛ C
CkV2.�n; n/ � V.�n; n/yk˛ � �6."/kyk˛;

where �5."/ ! 0 and �6."/ ! 0 as " ! 0:

Now we get

kSn � QSnk˛ � �5."/kI C BnkkU.�n; n/k˛ C
C"kU2.n; �n/k˛kU.�n; n/k˛ C �6."/kU2.nC1; Q�n/k˛kI C QBnk � �7."/

and by (7.45)

kU.i; i�k/ � U2.i; i�k/k˛ � M1e
�ˇ1�k�7."/; (7.46)

where �7."/ ! 0 as " ! 0:

Continuing to evaluate I15, we can obtain the inequalities

kU2.t; i/gk˛ � M2kgk˛;
k.U.t; i/ � U2.t; i//gk˛ � �8."/kgk˛;
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Z i�kC1

�i�k

k.U.i�kC1; s/ � U2.i�kC1; s//f .s C h/k˛ds � �9."/kf kPC;

where �8."/ ! 0 and �9."/ ! 0 as " ! 0; M2 is some positive constant. Note that
as earlier, t 2 .�i C "; �iC1 � "/:

Taking into account the last inequalities, we conclude that series I15 is convergent
and there exists �10."/ such that I15 � �10."/kf kPC and �10."/ ! 0 as " ! 0:

Using estimations for I11; : : :; I15, we get that there exists �11."/ such that

Z 1

�1
k.G.t C r; s C r/ � G.t; s//f .s C r/k˛ds � �11."/kf kPC (7.47)

and �11."/ ! 0 as " ! 0:

By Lemma 1, j�jCq � �j � hj < "I therefore, �j C h C " > �jCq (we assume
that h > 0 for definiteness). The difference G.t; �j/ � G.t C h; �jCq/ is estimated as
follows. Let t � �j � ": Then

k.G.t; �j/ � G.t C h; �jCq//gjCqk˛ D
D k.U.t; �j/.I � P.�j// � U.t C h; �jCq/.I � P.�jCq///gjCqk˛ �
� k.U.t; �j/.I � P.�j// � U.t; �j C "/.I � P.�j C "///gjCqk˛ C
Ck.U.t; �j C "/.I � P.�j C "// � U.t C h; �j C "C h/ �
�.I � P.�j C "C h///gjCqk˛ C kU.t C h; �jCq/.I � P.�jCq///gjCq �
�.U.t C h; �j C "C h/.I � P.�j C "C h//gjCqk˛: (7.48)

The first and third differences are small due to the continuity of function U.t; s/ at
intervals between impulse points:

k.U.t; �j/.I � P.�j// � U.t; �j C "/.I � P.�j C "///gjCqk˛ �
� kU.t; �j C "/.I � P.�j C "//.U.�j C "; �j/ � I/gjCqk˛ �
� k.I � P.t//U.t; �j C "/k˛k.U.�j C "; �j/ � I/gjCqk˛ �
� Me�ˇ.t��j�"/C1�˛1C˛"˛1�˛kgjCqk˛1 ;
k.U.t C h; �j C "C h/.I � P.�j C "C h// � U.t C h; �jCq/.I � P.�jCq///gjCqk˛ D
D kkU.t C h; �j C "C h/.I � P.�j C "C h//.U.�j C "C h; �jCq/ � I/gjCqk˛ �
� Me�ˇ.t��j�"/C1�˛1C˛"˛1�˛kgjCqk˛1 :

The second difference in (7.48) is estimated using inequality (7.46) and the
following transformation:

kU.t; �j C "/.I � P.�j C "// � U.t C h; �j C "C h/.I � P.�j C "C h//k˛ D
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D kU.t; �j C "/.I � P.�j C "// � U2.t; �j C "/.I � P2.�j C "//k˛ D
D kU.t; i/.I � P.i//U.i; jC1/U.jC1; �j C "/ �
�U2.t; i/.I � P.i/U2.i; jC1/U2.jC1; �j C "/k˛ �
� k.U.t; i/ � U2.t; i//.I � P.i//U.i; jC1/U.jC1; �j C "/k˛ C
CkU1.t; i/.P.i/U.i; jC1/ � P2.i/U2.i; jC1/U.jC1; �j C "/k˛ C
CkU2.t; i/P2.i/U2.i; jC1/.U.jC1; �j C "/ � U2.jC1; �j C "//k˛:

Therefore,

X
j2Z

k.G.t C h; �jCq/ � G.t; �j//gjCqk˛ � �12."/ sup
j

kgjk˛1 ; (7.49)

where �12."/ ! 0 as " ! 0:

The second integral and first sum in (7.40) are estimated as in (7.39):

Z 1

�1
kG.t; s//.f .s C h/ � f .s//k˛ds C

X
j2Z

kU.t; �j/.gjCq � gj/k˛ � M3"

since h is "-almost periodic of the right-hand side of the equation.
As a result of these evaluations, we get

ku0.t C h/ � u0.t/k˛ � �."/ for t 2 R; jt � �jj > "; j 2 Z;

with �."/ ! 0 as " ! 0: The last inequality implies that the function u0.t/ is
W-almost periodic as function R ! X˛:

Corollary 2. Assume that Eqs. (7.37) and (7.38) satisfy the following:

i) conditions .H1/–.H3/, .H7/I
ii) the sequence fgjg of gj 2 X˛ is almost periodic;

iii) the corresponding homogeneous equation is exponentially dichotomous.

Then the equation has a unique W-almost periodic solution u0.t/ 2 PC .R;X� /
with � < ˛:

Now we consider a nonlinear equation with fixed moments of impulsive action:

du

dt
C .A C A1.t//u D f .t; u/; t 6D �j; (7.50)

�ujtD�j D u.�j C 0/ � u.�j/ D Bju.�j/C gj.u.�j//; j 2 Z: (7.51)

Theorem 2. Let us consider Eqs. (7.50) and (7.51) in some domain U˛
� D fx 2

X˛ W kxk˛ � �g of space X˛: Assume that
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1) the equation satisfies assumptions .H1/–.H4/, �j D �j.0/I
2) the corresponding linear equation is exponentially dichotomous;
3) the function f .t; u/ W R � U˛

� ! X is continuous in u, W-almost periodic, and
Hölder continuous in t uniformly with respect to u 2 U˛

� with some � > 0; and
there exist constants N1 > 0 and 	 > 0 such that

kf .t1; u1/ � f .t2; u2/k � N1.jt1 � t2j	 C ku1 � u2k˛/I

4) the sequence fgj.u/g of continuous functions U˛
� ! X˛1 is almost periodic

uniformly with respect to u 2 U˛
� and

kgj.u1/ � gj.u2/k˛ � N1ku1 � u2k˛; j 2 Z;

for t1; t2 2 R; u1; u2 2 U˛
� and some ˛1 > ˛I

5) the functions f .t; 0/ and gj.0/ are uniformly bounded for t 2 R; j 2 Z:
Then in domain U˛

� for sufficiently small N1 > 0 there exists a unique
W-almost periodic solution u0.t/ of Eqs. (7.50) and (7.51).

Proof. Denote by M% the set of all W-almost periodic functions ' W R ! X˛ with
discontinuity points �j; j 2 Z; satisfying the inequality k'kPC � %. In M%;we define
the operator

.F'/.t/ D
Z 1

�1
G.t; s/f .s; '.s//ds C

X
j2Z

G.t; �j/gj.'.�j//:

Proceeding in the same way as in the proof of Theorem 1, we prove that .F'/.t/
is a W-almost periodic function and F W M% ! M% for some % > 0:

Next, F is a contracting operator in M% by sufficiently small N1 > 0:
Hence, there exists '0 2 M% such that

'0.t/ D
Z 1

�1
G.t; s/f .s; '0.s//ds C

X
j2Z

G.t; �j/gj.'0.�j//:

The function '0.t/ is locally Hölder continuous on every interval .�j; �jC1/; j 2 Z.
Actually,

'0.t C ı/ � '0.t/ D
Z 1

�1
G.t C ı; s/f .s; '0.s//ds �

Z 1

�1
G.t; s/f .s; '0.s//ds C

C
X
j2Z

G.t C ı; �j/gj.'0.�j// �
X
j2Z

G.t; �j/gj.'0.�j// D

D
Z t

�1
.V.t C ı; t/ � I/U.t; s/.I � P.s//f .s; '0.s//ds �
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�
Z 1

tCı
.V.t C ı; t/ � I/U.t; s/P.s/f .s; '0.s//ds C

C
Z tCı

t
V.t C ı; s/.I � P.s//f .s; '0.s//ds C

Z tCı

t
V.t; s/P.s/f .s; '0.s//ds

C
X
�j<t

.V.t C ı; t/ � I/U.t; �j/.I � P.�j//gj.'0.�j//C

C
X
�j>t

.V.t C ı; t/ � I/U.t; �j/P.�j/gj.'0.�j//:

Applying (7.7), (7.20), (7.21), and (7.39), we conclude that for every interval t 2
.t0; t00/ not containing impulse points �j, there exists a positive constant C such that
k'0.t C ı/ � '0.t/k˛ � Cı˛1�˛:

The local Hölder continuity of f .t; '0.t// follows from

kf .t; '0.t// � f .s; '0.s//k � N1 .jt � sj	 C k'0.t/ � '0.s/k˛/ �
� C1 .jt � sj	 C jt � sj˛1�˛/ :

By Lemma 37, [19], p. 214, if '0.t/ is W-almost periodic and infk.�kC1 � �k/ > 0,
then f'0.�k/g is an almost periodic sequence.

The linear inhomogeneous equation

du

dt
C .A C A1.t//u D f .t; '0.t//; t 6D �j; (7.52)

�ujtD�j D u.�j C 0/ � u.�j/ D Bju.�j/C gj.'0.�j//; j 2 Z; (7.53)

has a unique W-almost periodic solution in the sense of Definition 4. Due to the
uniqueness, it coincides with '0.t/:

Hence, the W-almost periodic function '0.t/ W R ! X˛ satisfies Eq. (7.50) for
t 2 .�j; �jC1/ and the difference equation (7.51) for t D �j:

Now we study the stability of the almost periodic solution assuming exponential
stability of the linear equation. First, using ideas in [17], we prove the following
generalized Gronwall inequality for impulsive systems.

Lemma 6. Assume that ftjg is an increasing sequence of real numbers such that
Q � tjC1 � tj � � > 0 for all j, M1;M2, and M3 are positive constants, and
˛ 2 .0; 1/: Then there exists a positive constant QC such that the positive piecewise
continuous function u W Œt0; t
 ! R satisfying

z.t/ � M1z0 C M2

mX
jD1

Z tj

tj�1

.tj � s/�˛z.s/ds C M2

Z t

tm

.t � s/�˛z.s/ds C
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CM3

mX
jD1

z.tj/ for t 2 .tm; tmC1
 (7.54)

also satisfies

z.t/ � M1z0 QC
�
1C M2

QC Q1�˛

1 � ˛ C M3
QC
�m

: (7.55)

Proof. We apply the method of mathematical induction. At the interval t 2 Œt0; t1

the inequality (7.54) has the form

z.t/ � M1z0 C M2

Z �1

t0

.�1 � s/�˛z.s/ds:

By Lemma 2 there exists QC such that

0 � z.t/ � M1z0 QC; t 2 Œt0; t
; QC D QC.M1;M2;Q/: (7.56)

Hence, (7.55) is true for t 2 Œt0; t1
: Assume (7.55) is true for t 2 Œt0; tn
 and prove it
for t 2 .tn; tnC1
: Hence, for t 2 .tn; tnC1
 we have

z.t/ � M1z0 C M2

Z t1

t0

.t1 � s/�˛z.s/ds C M3z.t1/C

CM2

nX
jD2

Z tj

tj�1

.tj � s/�˛z.s/ds C M3

nX
jD1

z.tj/C M2

Z t

tn

.t � s/�˛z.s/ds �

� M1z0 C M2

Q1�˛

1 � ˛M1z0 QC C M3M1z0 QC C M2

Z t

tn

.t � s/�˛z.s/ds C

C
nX

jD2

�
1C M2

QC Q1�˛

1 � ˛ C M3
QC
�j �

M2
QC Q1�˛

1 � ˛ C M3
QC
�

M1z0 D

D M1z0 C M2

Q1�˛

1 � ˛M1z0 QC C M3M1z0 QC C M2

Z t

tn

.t � s/�˛z.s/ds C

C
nX

jD2

�
1C M2

QC Q1�˛

1 � ˛ C M3
QC
�j�1 
�

1C M2
QC Q1�˛

1 � ˛ C M3
QC
�

� 1
�

M1z0 D

� M1z0

�
1C M2

Q1�˛

1 � ˛
QC C M3

QC
�n

C M2

Z t

tn

.t � s/�˛z.s/ds:

Hence, for t 2 Œtn; tnC1/; the function z.t/ satisfies the inequality
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z.t/ � C1 C M2

Z t

tn

.t � s/�˛z.s/ds;

where C1 D M1z0
�
1C M2

Q1�˛

1�˛ QC C M3
QC
�n
: Applying (7.56) at the interval

.tn; tnC1
; we obtain (7.55). The lemma is proved.

Theorem 3. Let Eqs. (7.50) and (7.51) satisfy assumptions of Theorem 2 and let
the corresponding linear equation be exponentially stable.

Then for sufficiently small N1 > 0, the equation has a unique W-almost periodic
solution u0.t/, and this solution is exponentially stable.

Proof. The existence and uniqueness of the W-almost periodic solution u0.t/
follows from Theorem 2. We prove its asymptotic stability. Let u.t/ be an arbitrary
solution of the equation satisfying ku.t0/� u0.t0/k˛ � ı; where ı is a small positive
number.

Then by t � t0 the difference of these solutions satisfies

u.t/ � u0.t/ D U.t; t0/.u.t0/ � u0.t0//C
Z t

t0

U.t; s/
�

f .s; u.s// �

�f .s; u0.s//
�

ds C
X

t0��k<t

U.t; �k/ .gk.u.�k// � gk.u0.�k/// :

Then for t0 2 .�0; �1/ and t 2 .�j; �jC1
 we have

ku.t/ � u0.t/k˛ � kU.t; t0/k˛ku.t0/ � u0.t0/k˛ C

C
Z �1

t0

kU.t; �1/k˛kV.�1; s/.f .s; u.s// � f .s; u0.s///k˛ds C � � � C

C
Z �j

�j�1

kU.t; �j/k˛kV.�j; s/.f .s; u.s// � f .s; u0.s///k˛ds C

C
Z t

�j

kV.t; s/.f .s; u.s// � f .s; u0.s///k˛ds C

C
X

t0��k<t

kU.t; �k/ .gk.u.�k// � gk.u0.�k/// k˛ �

� Me�ˇ.t�t0/ku.t0/ � u0.t0/k˛ C Me�ˇ.t��1/
Z �1

t0

LQN1
.�1 � s/˛

ku.s/ � u0.s/k˛ds C

C� � � C Me�ˇ.t��j/

Z �j

�j�1

LQN1
.�j � s/˛

ku.s/ � u0.s/k˛ds C

C
Z t

�j

LQN1
.t � s/˛

ku.s/ � u0.s/k˛ds C
X

t0��k<t

Me�ˇ.t��k/N1ku.�k/ � u0.�k/k˛:
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Denote v.t/ D eˇtku.t/ � u0.t/k˛;M2 D eˇQMLQN1;M3 D MN1: Then

v.t/ � Mv.t0/C M2

Z �1

t0

v.s/ds

.�1 � s/˛
C � � � C M2

Z t

tj

v.s/ds

.�j � s/˛
C M3

jX
kD1

v.�k/:

Then by Lemma 6 we get

ku.t/ � u0.t/k˛ � M QCe�ˇ.t�t0/

�
1C M2

QC Q1�˛

1 � ˛ C M3
QC
�i.t;t0/

ku.t0/ � u0.t0/k˛:

Therefore, if

ˇ > p ln

�
1C M2

QC Q1�˛

1 � ˛ C M3
QC
�
;

where p is defined by (7.3), then the W-almost periodic solution u0.t/ of Eqs. (7.50)
and (7.51) is asymptotically stable. This can be achieved by sufficiently small N1:

7.5 Almost Periodic Solutions of Equations with Nonfixed
Moments of Impulsive Action

We consider the following equation with points of impulsive action depending on
solutions

du

dt
C Au D f .t; u/; t 6D �j.u/; (7.57)

u.�j.u/C 0/ � u.�j.u// D Bju C gj.u/; j 2 Z: (7.58)

Definition 6 ([11]). A solution u0.t/ of Eqs. (7.57) and (7.58) defined for all t � t0;
is called Lyapunov stable in space X˛ if, for an arbitrary " > 0 and  > 0; there
exists such a number ı D ı."; / that, for any other solution u.t/ of the system,
ku0.t0/ � u.t0/k˛ < ı implies that ku0.t/ � u.t/k˛ < " for all t � t0 such that
jt � �0j j > ; where �0j are the times during which the solution u0.t/ intersects the
surfaces t D �j.u/; j 2 Z:

A solution u0.t/ is said to be attractive if for each " > 0;  > 0; and t0 2 R; there
exist ı0 D ı0.t0/ and T D T.ı0; "; / > 0 such that for any other solution u.t/ of
the system, ku0.t0/ � u.t0/k < ı0 implies ku0.t/ � u.t/k˛ < " for t � t0 C T and
jt � �0k j > :

A solution u0.t/ is called asymptotically stable if it is stable and attractive.

Theorem 4. Assume that in some domain U˛
� D fu 2 X˛; kuk˛ � �g, Eqs. (7.57)

and (7.58) satisfy conditions (H1), (H3)–(H6), and
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1) all solutions in domain U˛
� intersect each surface t D �j.u/ no more than once;

2) kf .t1; u/ � f .t2; u/k � H1jt1 � t2j	; 	 > 0; H1 > 0I
3) kf .t; u1/ � f .t; u2/k C kgj.u1/ � gj.u2/k˛ C j�j.u1/ � �j.u2/j � N1ku1 � u2k˛;

uniformly to t 2 R; j 2 Z;
4) ABj D BjA; kf .t; 0/k � M0; kgj.0/k1 � M0; j 2 Z
5) the linear homogeneous equation

M� D M1

1 � e�ˇ1�

�
1C C˛Q1�˛

1 � ˛
�
:

du

dt
C Au D 0; t 6D �j; (7.59)

�ujtD�j D u.�j C 0/ � u.�j/ D Bju.�j/; j 2 Z; (7.60)

is exponentially stable in space X˛

kU.t; s/uk˛ � Me�ˇ.t�s/kuk˛; t � s; u 2 X˛ (7.61)

where �j D �j.0/; ˇ > 0 and M � 1:

6) N1M� < 1 and � � �0 D M0M�=.1 � N1M�/, where

Then for sufficiently small values of the Lipschitz constant N1; Eqs. (7.57)
and (7.58) have in U˛

� a unique W-almost periodic solution and this solution is
exponentially stable.

Proof. 1. First, using the method proposed in [6], we prove the existence of the
W-almost periodic solution. Let y D fyjg be an almost periodic sequence of
elements yj 2 X˛; kyjk˛ � %: We consider the equation with fixed moments of
impulsive action

du

dt
C Au D f .t; u/; t 6D �j.y/; (7.62)

u.�j.yj/C 0/ � u.�j.yj// D Bju.�j.yj//C gj.yj/; j 2 Z: (7.63)

By Lemma 5, if a constant N1 sufficiently small, then corresponding to (7.62)
and (7.63) the linear impulsive equation [if f � 0; gj.yj/ � 0; j 2 Z;] is
exponentially stable. Its evolution operator U.t; �; y/ satisfies estimate

kU.t; �; y/uk˛ � M1e
�ˇ1.t��/kuk˛; t � �; (7.64)

with some positive constants M1 � M; ˇ1 � ˇ:

Equations (7.62) and (7.63) have a unique solution bounded on the axis which
satisfies the integral equation
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Qu.t; y/ D
Z t

�1
U.t; �; y/f .�; Qu.�; y//d� C

X
�j.yj/<t

U.t; �j.yj/; y/gj.yj/: (7.65)

We choose u0.t; y/ � 0 and construct the sequence of W-almost periodic functions

unC1.t; y/D
Z t

�1
U.t; �; y/f .�; un.�; y//d�C

X
�j.yj/<t

U.t; �j.yj/; y/gj.yj/; n D 0; 1; : : : :

The proof of the W-almost periodicity of unC1.t; y/ in space X˛ is similar to the
proof of Theorem 1.

One can verify that for sufficiently small N1 > 0 the sequence fun.t; y/g
converges to the W-almost periodic solution u�.t; y/ W R ! X˛ of Eq. (7.65). As
in the proof to Theorem 2, we prove that u�.t; y/ is the W-almost periodic solution
of impulsive equations (7.62) and (7.63).

Let t 2 . Q�i; Q�iC1/; where Q�i D �i.yi/: As in (7.39), we obtain

ku�.t; y/k˛ �
Z t

�1
kA˛U.t; s; y/.f .s; 0/C f .s; u�.s; y// � f .s; 0//kds C

C
X
�j.yj/<t

kU.t; Q�j; y/.gj.0/C gj.yj/ � gj.0//k˛ �

� M1

1 � e�ˇ1�

 
C˛‚1�˛

1 � ˛
�

M0 C N1 sup
t

ku�.t; y/k˛
�

C M0 C N1 sup
j

kyjk˛
!
:

Hence, by sufficiently small N1 > 0

sup
t

ku�.t; y/k � �0: (7.66)

If we choose the almost periodic sequence y� D fy�
j g; y�

j 2 X˛; such that

u�.�j.y
�
j /; y

�/ D y�
j

for all j 2 Z, then the function u�.t; y�/ will be exactly the W-almost periodic
solution of Eqs. (7.57) and (7.58).

We consider the space N of sequences y D fyjg; yj 2 X˛; with norm kykS D
supj kyjk˛ and map S W N ! N ;

S.y/ D fu�.�j.yj/; y/gj2Z :

By (7.66), S maps the domain U˛
% � N onto itself for � D �0:

Now we prove that S is a contraction:

kS.y/j � S.z/jk˛ D ku�.�j.yj/; y/ � u�.�j.zj/; z/k˛ �
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� ku�. Q�1j ; y/ � u�. Q�1j ; z/k˛ C ku�. Q�1j ; z/ � u�. Q�2j ; z/k˛; (7.67)

where Q�1j D �j.yj/; Q�2j D �j.zj/:

Denote J D [Jj;

Jj D .maxfQ�1j�1; Q�2j�1g;minfQ�1j ; Q�2j g
 D .� 00
j�1; � 0

j 
:

Denote also �i D .� 0
i � � 00

j�1/=2; i 2 Z:
To estimate the difference ku�. Q�1j ; y/ � u�. Q�1j ; z/k˛ , we apply iteration on n: Put

u0.t; y/ D u0.t; z/ D 0: Then for t 2 . Q� 00
i ; Q� 0

iC1
 we get

ku1.t; y/ � u1.t; z/k˛ D
D k

X
k�i

A˛U.t; Q�1k ; y/gk.yk/ �
X
k�i

A˛U.t; Q�2k ; z/gk.zk/k �

�
X
k�i

kA˛U.t; Q�1k ; y/ .gk.yk/ � gk.zk// k C kA˛
�
U.t; Q�1i ; y/ � U.t; Q�2i ; z/

�
gi.zi/k C

C
X
k<i

kA˛
�
U.t; Q�1k ; y/ � U.t; Q�2k ; z/

�
gk.zk/k �

�
X
k<i

M1e
�ˇ1jt�Q�1k jN1kyk � zkk˛ C kA˛e�A.t�Q� 00

i /.e�A.Q� 00

i �Q� 0

i / � I/gi.zi/k C

C
X
k<i

k.U.t; �i; y/.U.�i; �kC1; y/U.�kC1; Q�1k ; y/ �

�U.t; �i; z/.U.�i; �kC1; z/U.�kC1; Q�2k ; z//gk.zk/k˛ �

� M1N1
1 � e�ˇ1� ky � zkS C C˛C0.t � Q� 00

i /
�˛j Q� 00

k � Q� 0
kjkgi.zi/k1 C

C
X
k<i

kA˛.U.t; �i; y/ � U.t; �i; z//U.�i; �kC1; y/U.�kC1; Q�1k ; y/gk.zk/k C

C
X
k<i

kA˛U.t; �i; z/.U.�i; �kC1; y/ � U.�i; �kC1; z//U.�k; Q�1k ; y/gk.zk/k C

C
X
k<i

kA˛U.t; �i; z/U.�i; �kC1; z/.U.�kC1; Q�1k ; y/ � U.�kC1; Q�2k ; z//gk.zk/k: (7.68)

To evaluate the difference U.�i; �kC1; y/ � U.�i; �kC1; z/ we construct two
sequences of bounded operators X˛ ! X˛ defined by

Tn D U.�nC1; �n; y/; QTn D U.�nC1; �n; z/; n 2 Z:



7 Almost Periodic Evolution Equations 189

The corresponding difference equations unC1 D Tnun and unC1 D QTnun are
exponentially stable. Their evolution operators

Tn;m D Tn�1: : :Tm; n � m; Tm;m D I;

and

QTn;m D QTn�1: : : QTm; n � m; QTm;m D I;

satisfy equality

QTn;m � Tn;m D
X
k<n

Tn;kC1. QTk � Tk/ QTk;m; n � m: (7.69)

Analogous to (7.32) and (7.33), we obtain

k QTn;m � Tn;mk˛ � M2e
�ˇ2�.n�m/ sup

k
k QTk � Tkk˛; n � m; (7.70)

with some ˇ2 � ˇ1;M2 � M1:

Now we estimate the difference k QTn � Tnk˛ W

kTn � QTnk˛ D kU.�nC1; �n; y/ � U.�nC1; �n; z/k˛ D
D ke�A.�nC1�Q�1n /.I C Bn/e

�A.Q�1n ��n/ � e�A.�nC1�Q�2n /.I C Bn/e
�A.Q�2n ��n/k˛ �

� k.e�A.�nC1�Q�1n / � e�A.�nC1�Q�2n //.I C Bn/e
�A.Q�1n ��n/k˛ C

Cke�A.�nC1�Q�2n /.I C Bn/.e
�A.Q�1n ��n/ � e�A.Q�2n ��n//k˛ �

� 2C˛C1.�=2/
�1�˛j Q�1n � Q�2n j: (7.71)

Therefore,

k. QTn;m � Tn;m/uk˛ D k.U.�n; �m; y/ � U.�n; �m; z//uk˛ �
� M2e

�ˇ2�.n�m/2C˛C1.�=2/
�1�˛ sup

j
j Q�1i � Q�2i jkuk˛; n � m: (7.72)

To finish the estimation of (7.68), we consider the following two differences:

k.U.t; �i; y/ � U.t; �i; z///uk˛ � kA˛.e�A.t�� 0

i /.I C Bi/e
�A.� 0

i ��i/ �

�e�A.t�� 00

i /.I C Bi/e
�A.� 00

i ��i//uk � 4C0C1�˛
�.t � � 00

i /
˛

j� 00
i � � 0

i jkuk˛: (7.73)

k.U.�k; Q�1k ; y/ � U.�k; Q�2k ; z//uk˛ D kA˛.I � e�A.� 00

k �� 0

k//e�A.�kC1�� 00

k /uk �
� C0C1.�=2/

�˛j� 00
i � � 0

i jkuk˛: (7.74)
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Taking into account (7.70), (7.73), and (7.74), by (7.68) we obtain for t 2 .� 00
i ; �

0
iC1


ku1.t; y/ � u1.t; z/k˛ � N1ky � zkS
�
K0
1 C K00

2 .t � � 00
i /

�˛� ; (7.75)

where the positive constants K0
1 and K00

2 don’t depend on i:
Now we consider the .n C 1/st iteration

kunC1.t; y/ � unC1.t; z/k˛ D

D k
Z t

�1
A˛U.t; �; y/f .�; un.�; y//d� C

X
k�i

A˛U.t; Q�1k ; y/gk.yk/ �

�
Z t

�1
A˛U.t; �; z/f .�; un.�; z//d� �

X
k�i

A˛U.t; Q�2k ; z/gk.zk/k �

�
Z t

�1
kA˛U.t; �; y/ .f .�; un.�; y// � f .�; un.�; z/// kd� C

C
Z t

�1
kA˛.U.t; �; y/ � U.t; �; z//f .�; un.�; z//kd� C

C
X
k�i

kA˛U.t; Q�1k ; y/ .gk.yk/ � gk.zk// k C

C
X
k�i

kA˛
�
U.t; Q�1k ; y/ � U.t; Q�2k ; z/

�
gk.zk/k: (7.76)

Similar to (7.39), we get

Z t

� 00

i

kA˛e�A.t�s/ .f .�; un.�; y// � f .�; un.�; z/// kd� C

X
k<i

Z � 0

kC1

� 00

k

kA˛U.t; �; y/ .f .�; un.�; y// � f .�; un.�; z/// kd� C

� M1

1 � e��ˇ1
C˛‚1�˛

1 � ˛ N1 sup
�2J

kun.�; y/ � un.�; z/k;

X
k�i

kA˛U.t; Q�1k ; y/ .gk.yk/ � gk.zk// k � M1

1 � e��ˇ1 N1ky � zk˛: (7.77)

If kun.�; y/k˛ � � and kun.�; z/k˛ � �, then for t 2 .� 00
i ; �

0
iC1


X
k�i

Z � 00

k

� 0

k

kA˛U.t; s; y/ .f .s; un.s; y// � f .s; un.s; z/// kds �
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�
X
k�i

Z � 00

k

� 0

k

kU.t; s; y/f .s; un.s; y//k˛ds C
X
k�i

Z � 00

k

� 0

k

kU.t; s; y/f .s; un.s; z//k˛ds �

� 2
X
k<i

M1e
�ˇ1jt�� 00

k j.M0 C N1�/C 2

Z � 00

i

� 0

i

kA˛U.t; s; y/k.M0 C N1�/ds �

�
�

2M1

1 � e�ˇ1� C 2M1

1 � ˛ .t � � 00
i /

�˛
�
.M0 C N1�/N1ky � zkS; (7.78)

since for t > �2 > �1
Z �2

�1

ds

.t � s/˛
� �2 � �1
.1 � ˛/..t � �2/˛ :

The second integral in (7.76) satisfies the following inequality:

I2 D
Z t

�1
kA˛.U.t; s; y/ � U.t; s; z//f .s; un.s; z//kds �

�
Z t

� 00

i

kA˛.e�A.t�s/ � e�A.t�s//f .s; un.s; z//kds C

C
Z � 00

i

� 0

i

kA˛.U.t; s; y/ � U.t; s; z//f .s; un.s; z//kds C

C
Z � 0

i

�i

kA˛.U.t; s; y/ � U.t; s; z//f .s; un.s; z//kds C

C
X
k<i

Z �kC1

�k

kA˛.U.t; s; y/ � U.t; s; z//f .s; un.s; z//kds: (7.79)

We consider all integrals in (7.79) separately.

I21 D
Z � 00

i

� 0

i

kA˛U.t; s; y/f .s; un.s; z//kds � C˛kI C Bik.M0 C N1�/

.1 � ˛/.t � � 00
i /
˛

j� 00
i � � 0

i j;

I22 D
Z � 00

i

� 0

i

kA˛U.t; s; z/f .s; un.s; z//kds � C˛kI C Bik.M0 C N1�/

.1 � ˛/.t � � 00
i /
˛

j� 00
i � � 0

i j;

I23 D
Z � 0

i

�i

kA˛.U.t; s; y/ � U.t; s; z//f .s; un.s; z//kds D

D
Z � 0

i

�i

kA˛.U.t; Q�1i ; y/U. Q�1i ; s; y/ � U.t; Q�2i ; z/U. Q�2i ; s; z//f .s; un.s; z//kds �
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�
Z � 0

i

�i

kA˛
�
.e�A.t�Q�1i / � e�A.t�Q�2i //.I C Bi/e

�A.Q�1i �s/ �

�A˛e�A.t�Q�2i //.I C Bi/.e
�A.Q�1i �s/ � e�A.Q�2i �s//

�
f .s; un.s; z//kds �

� 2C0C˛1C1C˛�˛1
.t � � 00

i /
˛1

kI C Bik .�
0
i � �i/

˛1�˛

˛1 � ˛ j� 00
i � � 0

i j:

The last sum in (7.79) is transformed as follows:

I24 D
X
k<i

Z �kC1

�k

kA˛.U.t; s; y/ � U.t; s; z//f .s; un.s; z//kds D

D
X
k<i

Z �kC1

�k

k.U.t; �i; y/U.�i; �kC1; y/U.�kC1; s; y/ �

�U.t; �i; z/U.�i; �kC1; z/U.�kC1; s; z//f .s; un.s; z//k˛ds �

�
X
k<i

Z �kC1

�k

 
k.U.t; �i; y/ � U.t; �i; z//U.�i; �kC1; y/U.�kC1; s; y/f .s; un.s; z//k˛ C

CkU.t; �i; z/.U.�i; �kC1; y/ � U.�i; �kC1; z//U.�kC1; s; y/f .s; un.s; z//k˛ C

CkU.t; �i; z/U.�i; �kC1; z/.U.�kC1; s; y/ � U.�kC1; s; z//f .s; un.s; z//k˛
!

ds:

To finish the estimation of integral I24 we use (7.72), (7.73), and (7.74):

Z �kC1

�k

kA˛.U.�kC1; s; y/ � U.�kC1; s; z//f k˛ds �

�
Z �kC1

� 00

k

kA˛.e�A.�kC1�s/ � e�A.�kC1�s//f kds C

C
Z � 00

k

� 0

k

kA˛.e�A.�kC1�� 00

k /.I C Bk/e
�A.� 00

k �s/ � e�A.�kC1�s//f kds C

C
Z � 0

k

�k

k.e�A.�kC1�� 0

k/.I C Bk/e
�A.� 0

k�s/ � e�A.�kC1�� 00

k /.I C Bk/e
�A.� 00

k �s//f k˛ds �

� QKC˛1.�kC1 � � 00
k /

�˛1kI C Bkkj� 00
k � � 0

kjkf k

with some positive constant QK: Therefore,

I2 �
�

K0
2N1 C K00

2N1
.t � � 00

i /
˛1

�
ky � zkS (7.80)
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with ˛1 > ˛ and positive constants K0
1 and K00

2 independent of i; k:
By (7.75), (7.79), and (7.80) we obtain for t 2 .� 00

i ; �
0
iC1


kunC1.t; y/ � unC1.t; z/k˛ �

�
X
k<i

Z � 0

kC1

� 00

k

kA˛U.t; �; y/.f .�; un.�; y// � f .�; un.�; z///kd� C

C
Z t

� 00

i

kA˛U.t; �; y/.f .�; un.�; y// � f .�; un.�; z///kd� C

C
�

K0
3 C K00

3

.t � � 00
i /
˛1

�
N1ky � zkS; (7.81)

where the constants K0
3 and K00

3 don’t depend on n:
Let the nth iteration satisfy the inequality

kun.t; y/ � un.t; z/k˛ �
�

L0
n C L00

n

.t � � 00
i /
˛1

�
N1ky � zkS; t 2 .� 00

i ; �
0
iC1
;

with positive constants L0
n and L00

n : We estimate the .n C 1/st iteration.

kunC1.t; y/ � unC1.t; z/k˛ �
�

K0
3 C K00

3

.t � Q� 00
i /
˛1

�
N1ky � zkS C

CN2
1ky � zkS

X
k<i

Z � 0

kC1

� 00

k

kA˛U.t; s/k
�

L0
n C L00

n

.s � � 00
k /
˛1

�
ds C

CN2
1ky � zkS

Z t

� 00

i

kA˛U.t; s/k
�

L0
n C L00

n

.s � � 00
i /
˛1

�
ds �

� N2
1ky � zkS

 X
k�i

Z � 0

kC1

� 00

k

M1e
�ˇ1jt�sj

�
L0

n C L00
n

.s � � 00
k /
˛1

�
ds C

C
Z t

� 00

i

M1.t � s/�˛1
�

L0
n C L00

n

.s � � 00
i /
˛1

�
ds

!
C

C
�

K0
3 C K00

3

.t � � 00
i /
˛1

�
N1ky � zkS �

�
 

M1

1 � e�ˇ1�

�
L0

nQ C L00
n Q1�˛1
1 � ˛1

�
C L00

n M12
2˛

1 � ˛1 .t � � 00
i /
1�2˛1 C

C L0
nM1

1 � ˛1 .t � � 00
i /
1�˛1

!
N2
1ky � zkS C

�
K0
3 C K00

3

.t � � 00
i /
˛1

�
N1ky � zkS �
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D
�

L0
nC1 C L00

nC1
.t � � 00

i /
˛1

�
N1ky � zkS: (7.82)

One can verify that for sufficiently small N1 the sequences L0
n and L00

n are
uniformly bounded by some constants L0� and L00�:

Since the sequences un.t; y/ and un.t; z/ tend to limit the functions u�.t; y/ and
u�.t; z/, respectively, we conclude by (7.82) for t 2 .� 00

i ; �
0
iC1
 that

ku�.t; y/ � u�.t; z/k˛ �
�

L0� C L00�
.t � � 00

iC1/˛1

�
NiC1ky � zkS

and

ku�.� 0
iC1; y/ � u�.� 0

iC1; z/k˛ �
�

L0� C L00�
�˛1

�
N1ky � zkS: (7.83)

Now we estimate the second summand in (7.67). Note that by our assumption
Q�1j < Q�2j :

ku�. Q�1j ; z/ � u�. Q�2j ; z/k˛ D
			
Z Q�2j

Q�1j

d

ds
u�.s; z/ds

			
˛
:

By Theorem 3.5.2, [9], at the interval . Q�2j�1; Q�2j / the derivative satisfies

			 d

ds
u�.s; z/

			
�
� QK1.s � Q�2j�1/˛���1

with some positive constant QK1 independent of j and initial value from U˛
� :

Then for t 2 . Q�1j ; Q�2j /
			 d

ds
u�.s; z/

			
�
� QK1

�
�

2

�˛���1
D QK2

and

ku�. Q�1j ; z/ � u�. Q�2j ; z/k˛ � QK2j Q�1j � Q�2j j � QK2N1ky � zkS: (7.84)

By (7.83) and (7.84) we have

ku�. Q�1j ; z/ � u�. Q�2j ; z/k˛ D �9ky � zkS; (7.85)

where �9 < 1 uniformly for j and y; z 2 N%0 :
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By (7.67), (7.83), and (7.85) we conclude that the map S W N%0 ! N%0 is a
contraction. Therefore, there exists a unique almost periodic sequence y� D fy�

j g
such that u�.�j.y�

j /; y
�/ D y�

j for all j 2 Z: The function u�.t; y�/ is the W-almost
periodic solution of Eqs. (7.57) and (7.58).

2. Now we prove the stability of the almost periodic solution. Fix arbitrary " > 0

and  > 0: Let t0 2 Œ�0.0/C ; �1.0/ � 
:
The W-almost periodic solution u0.t/ satisfies the integral equation

u0.t/ D U0.t; t0/u0 C
Z t

t0

U0.t; s/f .s; u0.s//ds C
X

t0<�0j <t

U0.t; �
0
j /gj.�

0
j /; (7.86)

where �0j D �j.u0.�0j // and U0.t; s/ is the evolution operator of the linear equation

du

dt
C Au D 0; u.�0j C 0/ � u.�0j / D Bju.�

0
j /; j D 1; 2; : : ::

Let u1 2 X˛ such that ku0 � u1k˛ < ı: The solution u1.t/ with initial value u1.t0/ D
u1 satisfies equation

u1.t/ D U1.t; t0/u1 C
Z t

t0

U1.t; s/f .s; u1.s//ds C
X

t0<�1j <t

U1.t; �
1
j /gj.�

1
j /; (7.87)

where �1j D �j.u1.�1j // and U1.t; s/ is the evolution operator of the linear equation

du

dt
C Au D 0; u.�1j C 0/ � u.�1j / D Bju.�

1
j /; j D 1; 2; : : ::

By Lemma 5, for a sufficiently small Lipschitz constant N1 the evolution operator
U0.t; s/ satisfies the inequality

kU0.t; s/uk˛ � M1e
�ˇ1.t�s/kuk˛; t � s; (7.88)

with some positive constants ˇ1 � ˇ;M1 � M: Moreover, one can verify that for
some domain U˛

Q� ; Q� � �; and N1 � N0 the evolution operator satisfies

kU1.t; s/uk˛ � M1e
�ˇ1.t�s/kuk˛; t � s; t; s 2 Œt0; t0 C T
; (7.89)

if the values u1.t/ belong to U˛
Q� for �1j 2 Œt0; t0 C T
.

At the interval without impulses, the difference between solutions u0.t/ � u1.t/
satisfies the inequality

ku1.t/ � u0.t/k˛ � ke�A.t�t1/.u0.t1/ � u1.t1//k˛ C
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C
Z t

t1

kA˛e�A.t�t1/.f .s; u1.s// � f .s; u0.s///kds �

� M1e
�ˇ1.t�t1/ku0.t1/ � u1.t1/k˛ C

Z t

t1

M1N1e�ˇ1.t�s/

.t � s/˛
ku1.s/ � u0.s/k˛ds:

Then by Lemma 2,

ku1.t/ � u0.t/k˛ � M1
QCe�ˇ1.t�t1/ku1.t1/ � u0.t1/k˛; t � t1 � Q: (7.90)

Hence, if initial values belong to the bounded domain from X˛; then the correspond-
ing solutions are uniformly bounded for t from the bounded interval.

Assume for definiteness that �0j � �1j and estimate j�1j ��0j j by .u1.�1j /�u0.�1j //:

k.u1.�1j / � u0.�
0
j /k˛ � k.u0.�1j / � u0.�

0
j /k˛ C ku0.�

1
j / � u1.�

1
j /k˛ �

�
			
Z �0j

�1j

d

d�
u0.�/d�

			
˛
Cku0.�

1
j / � u1.�

1
j /k˛ �

� QK2j�1j � �0j j C ku0.�
1
j / � u1.�

1
j /k˛:

Hence,

j�1j � �1j j � ku0.�
0
j / � u1.�

1
j /k˛ � N1

1 � QK2N1
ku0.�

1
j / � u1.�

1
j /k˛: (7.91)

We assume that t 2 .� 00
i ; �

0
iC1
 and estimate the difference

ku0.t/ � u1.t/k˛ D kU0.t; t0/.u0 � u1/k˛ C k.U0.t; t0/ � U1.t; t0//u1k˛
C
Z t

t0

kU0.t; s/f .s; u0.s// � U1.t; s/f .s; u1.s//k˛ds C

Ck
X

t0<�1j <t

U.t; �1j /gj.�
1
j / �

X
t0<�0j <t

U.t; �0j /gj.�
0
j /k˛ �

� kU0.t; t0/.u0 � u1/k˛ C k.U0.t; t0/ � U1.t; t0//u1k˛ C

C
Z � 0

1

t0

kU0.t; s/f .s; u0.s// � U1.t; s/f .s; u1.s//k˛ds C

C
i�1X
jD1

Z � 0

jC1

� 00

j

kU0.t; s/.f .s; u0.s// � f .s; u1.s///k˛ds C

C
i�1X
jD1

Z � 0

jC1

� 00

j

k.U0.t; s/ � U1.t; s//f .s; u1.s//k˛ds C
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C
iX

jD1

Z � 00

j

� 0

j

kU0.t; s/f .s; u0.s// � U1.t; s/f .s; u1.s//k˛ds C

C
Z t

� 00

i

kU0.t; s/f .s; u0.s// � U1.t; s/f .s; u1.s//k˛ds C

C
iX

jD1
kU0.t; �

0
j /gj.�

0
j / � U1.t; �

1
j /gj.�

1
j /k˛: (7.92)

Denote v.t/ D ku0.t/�u1.t/k˛:Assume that for t 2 Œt0; � 0
i 
 the values u.t/ belong

to U˛
Q� I hence, the evolution operators U0.t; �/ and U1.t; �/ satisfy (7.88) and (7.89)

at this interval. By (7.92), analogous to the proof of (7.75), (7.79), and (7.80), we
conclude that there exist positive constants M2 and P1 independent of i such that for
t 2 JiC1

v.t/ � M1e
�ˇ1.t�t0/v.t0/C

Z � 0

1

t0

M2N1
.� 0
1 � s/˛

e�ˇ1.t�� 00

1 /v.s/ds C

C
i�1X
jD2

Z � 0

j

� 00

j�1

M2N1e
�ˇ1.t�� 00

j /v.s/ds C
i�1X
jD1

P1N1e
�ˇ1.t�� 00

j /v.� 0
j /C

C 1

.t � � 00
i /
˛1

 Z � 0

i

� 00

i�1

M2N1e
�ˇ1.t�� 00

i /v.s/ds C P1N1e
�ˇ1.t�� 00

i /v.� 0
i /

!
C

C
Z t

� 00

i

M2N1e
�ˇ1.t�s/.t � s/�˛1v.s/ds (7.93)

with ˛1 > ˛: By (7.90), at the interval Œt0; � 0
1
 v.t/ satisfies

v.t/ � M1
QCe�ˇ.t�t0/v.t0/; t 2 Œt0; � 0

1
: (7.94)

By (7.93) and (7.94), for t 2 .� 00
1 ; �

0
2
 we get

v.t/ � M1e
�ˇ1.t�t0/v.t0/C 1

.t � � 00
1 /
˛1

Z � 0

1

t0

M2N1e
�ˇ1.t�� 00

1 /v.s/ds C

CP1N1e
�ˇ1.t�� 00

1 /.t � � 00
1 /

�˛1v.� 0
1/C

Z t

� 00

1

M2N1e
�ˇ1.t�s/.t � s/�˛1v.s/ds:

Hence, for M3 D M2eˇ1Q; QC1 D QC=.1 � ˛/; v1.t/ D eˇ1tv.t/ and P2 D
P1e

ˇ1 supj j� 00

j �� 0

j j
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v1.t/ � M1v1.t0/

 
1C N1 QC.M3

QQ C P2/

.t � � 00
1 /
˛1

!
C
Z t

� 00

1

M2N1.t � s/�˛1v1.s/ds:

By Lemma 2

v.t/ � M1
QC1v.t0/e�ˇ1.t�t0/

 
1C N1 QC.M3

QQ C P2/

.t � � 00
1 /
˛1

!
; t 2 .� 00

1 ; �
0
2
: (7.95)

Denote QQ D maxjf1; .� 0
jC1 � � 00

j /g and Q� D minjf1; .� 0
jC1 � � 00

j /g: Let us prove
that

v.t/�M1
QC1v.t0/e�ˇ1.t�t0/

 
1CN1 QC1.M3

QQCP2/

.t�� 00

j /
˛1

! 
1CN1 QC1.M3

QQCP2/

.1�˛1/ Q�˛1

!i�1

(7.96)

for t 2 .� 00
i ; �

0
iC1
i � 2: We apply the method of mathematical induction. Assume

that (7.96) is true for t 2 Œ� 00
i�1; � 0

i 
 and prove it for t 2 Œ� 00
i ; �

0
iC1
: Really, by (7.93)

for t 2 Œ� 00
i ; �

0
iC1
 we have

v.t/ � M1e
�ˇ1.t�t0/v.t0/

 �
1C .M3

QQ C P2/N1 QC�C

C
i�1X
jD2

A jM3N1 QQ QC1 C
i�1X
jD2

A j�1
 
1C N1 QC1.M3

QQ C P2/
Q�˛1

!
N1P2 QC1 C

CA i�2
 

N1M3
QC1
�
.� 0

i � � 00
i�1/C N1 QC1.M3

QQ C P2/.� 0
i � � 00

i�1/
.1 � ˛1/.� 0

i � � 00
i�1/˛1

�
C

CN1P2 QC1
�
1C N1 QC1.M3

QQ C P2/

.� 0
i � � 00

i�1/˛1
�!

CB.t/ �

� A C
i�1X
jD2

A j�1.1C N1 QC1.M3
QQ C P2/ � 1/C A i�1N1 QC1.M3

QQ C P2/

.t � � 00
i /
˛1

C

CB.t/ � A i�1
 
1C N1 QC1.M3

QQ C P2/

.t � � 00
i /
˛1

!
C B.t/:

where

A D
 
1C N1 QC1.M3

QQ C P2/

.1 � ˛/ Q�˛1

!
; B.t/ D

Z t

� 00

i

M2N1
.t � s/˛1

e�ˇ1.t�s/v.s/ds:
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Hence, for t 2 .� 00
i ; �

0
iC1
; the function v1.t/ D eˇ1tv.t/ satisfies the inequality

v1.t/ � A i�1
 
1C N1 QC1.M3

QQ C P2/

.t � � 00
i /
˛1

!
C M2N1

Z t

� 00

i

.t � s/�˛1v1.s/ds:

Applying Lemma 2, we obtain (7.96).
Let N1 > 0 be such that A i.t0;t/e�ˇ1.t�t0/ < e�ı1.t�t0/ for some positive ı1: For

the given " > 0 and  > 0 we choose v.t0/ D v0 such that

M1
QC1v0

 
1C N1 QC1.M3

QQ C P2/

˛1

!
< ":

This proves the asymptotic stability of solution u0:

Example 1. Let us consider the parabolic equation with impulses in variable
moments of time:

ut D uxx C a.t/ux C b.t; x/; (7.97)

�u

ˇ̌
ˇ̌
ˇ
tD�j.u/

D u.�j.u/C 0; x/ � u.�j.u/; x/ D �aju.�j.u/; x/; (7.98)

with boundary conditions

u.t; 0/ D u.t; �/ D 0; (7.99)

where the sequence of hypersurfaces �j is defined by

�j.u/ D �j C bj

Z �

0

u2.�/d�; (7.100)

where the sequence of real numbers f�jg has uniformly almost periodic sequences
of differences and �jC1 � �j � � � 1=2;

fajg and fbjg are almost periodic sequences of positive numbers,
a.t/ is a Bohr almost periodic function,
b.t; x/ is a Bohr almost periodic function in t uniformly with respect to x 2 Œ0; �
:
Denote

X D L2.0; �/; A D � @2

@x2
; X1 D D.A/ D H2.0; �/ \ H1

0.0; �/:

The operator A is sectorial with simple eigenvalues �k D k2 and corresponding
eigenfunctions
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'k.x/ D
�
2

�

�1=2
sin kx; k D 1; 2; : : ::

Operator �A generates an analytic semigroup e�At:

Let u D P1
kD1 ak sin kx; ak D 1

�

R �
0

u.x/ sin kxdx: Then

Au D
1X

kD1
k2ak sin kx; A˛u D

1X
kD1

k2˛ak sin kx; e�At D
1X

kD1
e�k2tak sin kx:

Hence,

X1=2 D D.A1=2/ D H1
0.0; �/:

Let us consider Eqs. (7.97)–(7.99) in space X1=2 D D.A1=2/ D H1
0.0; �/ W

du

dt
C Au D f .t; u/; u.�j.u/C 0/ D .1 � aj/u.�j.u//; j D 0; : : :;

where f .t; u/ W R � X1=2 ! X; f .t; u/.x/ D a.t/ux C b.t; x/:
We verify that in some domain D D fu � 0; kuk � �g solutions of (7.97)–(7.99)

don’t have beating at the surfaces t D �j.u/: Assume to the contrary that solution
u.t/ intersects the surface t D �j.u/ at two points t1j and t2j , t1j < t2j :

Denote u.t1j / D u1; u.t2j / D u2; Qu D e�A.t2j �t1j /u.t1j C 0/: Then u.t1j C 0/ D
.1 � aj/u1; �j.u1// D t1j ; �j.u2// D t2j ; and

u2 D e�A.t2j �t1j /u.t1j C 0/C
Z t2j

t1j

e�A.t2j �s/f .s; u.s//ds:

We have

j�j.u2/ � �j.Qu/j � bjj
Z t

0

.u2.t; x/ � Qu.t; x//.u2.t; x/C Qu.t; x//dx �

� bjku2.t; x/ � Qu.t; x/kL2ku2.t; x/C Qu.t; x/kL2 �

� bjk
Z t2j

t1j

e�A.t2j �s/f .s; u.s//dskL2ku2.t; x/C Qu.t; x/kL2 :

The function f .t; u/ satisfies kf .t; u/kX � K.1 C kukX1=2 /I hence, solutions of the
equation without impulses exist for all t � t0 and there exist positive constants M1

and M2 such that M2 � supu2D kf .t; u/kL2 ; M3 � supu2D ku2.t; x/ C Qu.t; x/kL2 :

Therefore, �j.u2/ � �j.Qu/ � bjjt2j � t1j jM2M3: By sufficiently small b D supj bj we
have bM2M3 < 1 and
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0 < t2j � t1j D �j.u2/ � �j.u1/ � �j.u2/ � �j.Qu/C �j.Qu/ � �j.u1/;

t2j � t1j � 1

1 � bM2M3

.�j.Qu/ � �j.u1// � bj..1 � aj/
2 � 1/

1 � bM2M3

ku1k2L2 < 0:

This contradicts our assumption.
Corresponding to (7.97)–(7.99), the linear impulsive equation is exponentially

stable in space X1=2: By Theorem 4, for sufficiently small b D supj bj and a D
supt ja.t/j the equation has an asymptotically stable W-almost periodic solution.

7.6 Equations with Unbounded Operators Bj

Many results in our chapter remain true if operators Bj in linear parts of impulsive
action are unbounded. We refer to [27], where the following semilinear impulsive
differential equation

du

dt
D Au C f .t; u/; t 6D �j; (7.101)

�ujtD�j D u.�j/ � u.�j � 0/ D Bju.�j � 0/C gj.u.tj � 0//; j 2 Z;(7.102)

was studied. Here u W R ! X; X is a Banach space, A is a sectorial operator in X,
fBjg is a sequence of some closed operators, and f�jg is an unbounded and strictly
increasing sequence of real numbers. Assume that the equation satisfies conditions
.H1/; .H3/; .H5/; .H6/, and
.H4u/ the sequence fBjg of closed linear operators Bj 2 L.X˛C� ;X˛/ is almost

periodic in the space L.X˛C� ;X˛/; for ˛ � 0 and some � � 0:

As in [17], we assume that solutions u.t/ of (7.1), (7.2) are right-hand-side
continuous; hence, u.�j/ D u.�j C 0/ at all points of impulsive action. Due to such a
selection we avoid considering operators e�A.t��j/.I C Bj/ with unbounded operator
Bj and can work with the family of bounded operators e�A.t��j/:

Since the operator A is sectorial and operators Bj are subordinate to A, an
evolution operator of a corresponding linear impulsive equation is constructed
correctly. Now analogs of the theorems 2 and 3 can be proven.

Example 2 ([27]). We consider the following parabolic equation with impulsive
action:

ut D uxx C f .t; x/; (7.103)

�u
ˇ̌
ˇ
tD�j

D u.�j; x/ � u.�j � 0; x/ D bk.sin x/ux C ckx.� � x/; (7.104)
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with boundary conditions

u.t; 0/ D u.t; �/ D 0; (7.105)

where f�jg is a sequence of real numbers with uniformly almost periodic sequences
of differences, �jC1 � �j � � � 1=2;

fbjg and fcjg are almost periodic sequences of real numbers,
f .t; x/ is almost periodic and locally Hölder continuous with respect to t and for

every fixed t belongs to L2.0; �/:

As in Example 1, denote

X D L2.0; �/; A D � @2

@x2
; X1 D D.A/ D H2.0; �/ \ H1

0.0; �/:

The operator A is sectorial with simple eigenvalues �k D k2 and corresponding
eigenfunctions 'k.x/ D sin kx; k D 1; 2; : : ::

Operators Bj have form Bj D bj sin x @
@x :

If u D P1
kD1 ak sin kx; ak D 1

�

R �
0

u.x/ sin kxdx; then

Bju D bj sin xux D bj sin x
1X

kD1
akk cos kx D bj

2
.R � L/A1=2u D bjTA1=2u;

where Ru D P1
kD1 ak sin.k � 1/x and Lu D P1

kD1 ak sin.k C 1/x are bounded shift
operators in X: Hence, operators Bj W X˛C1=2 ! X˛ are linear continuous, ˛ � 0:

By (7.13), the evolution operator for homogeneous equations (7.103)
and (7.104) is

U.t; s/ D e�A.t�s/; if �k � s � t < �kC1;

and

U.t; s/ D e�A.t��k/.I C Bk/e
�A.�k��k�1/: : :.I C Bm/e

�A.�m�s/

if �m�1 � s < �m < �mC1: : :�k � t < �kC1; m < k; k;m 2 Z:

Theorem 5. Let p ln.1Cb/ < 1; where p is defined by (7.3) and b D supj jbjj: Then
Eqs. (7.103) and (7.104) with boundary conditions (7.105) have a unique W-almost
periodic solution which is asymptotically stable.

Proof. We show that the unique almost periodic solution of (7.103) and (7.104) is
given as function R ! L2.0; �/ by formula

u0.t/ D
Z t

�1
U.t; s/Qf .s/ds C

X
�j�t

U.t; �j/Qgj; (7.106)

where Qf .t/ � f .t; :/ W R ! L2.0; �/; gj.x/ D cjx.� � x/; Qgj D gj.:/ W Z ! L2.0; �/:
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First, u0.t/ is bounded in space X˛ W
Z t

�1
kU.t; s/Qf .s/k˛ds �

Z t

�i

kA˛e�A.t�s/Qf .s/kds C

C
Z �i

�i�1

kA˛e�A.t��i/.I C Bi/e
�A.�i�s/Qf .s/kds C

C
1X

kD2

Z �i�kC1

�i�k

kA˛e�A.t��i/.I C Bi/e
�A.�i��i�1/k �

�
i�kC2Y
jDi�1

k.I C Bj/e
�A.�j��j�1/kk.I C Bi�kC1/e�A.�i�kC1�s/Qf .s/kds; (7.107)

where t 2 Œ�i; �iC1/: The first integral in (7.107) has upper bound

Z t

�i

kA˛e�A.t�s/Qf .s/kds � C˛
1 � ˛ kQf kPC:

Next, we need the following inequality (see [17], p. 35):

kA˛TAˇe�Atk D 1

2
kA˛.R � L/Aˇe�Atk � 4˛ C 1

2
kA˛Cˇe�Atk: (7.108)

Then by (7.108),

kA˛e�A.t��i/.I C Bi/e
�A.�i�s/k � kA˛e�A.t�s/k C 5

2
kA˛C1=2e�A.t�s/k �

�
�

C˛.t � s/�˛ C 5

2
C˛C1=2.t � s/�.˛C1=2/

�
e�ı.t�s/:(7.109)

From Henry [9], p. 25, we have

kA˛e�At k < b˛.t/k k;

where b˛.t/ D .te=˛/�˛ if 0 < t � ˛=�1; and b˛.t/ D �˛1e��1t if t � ˛=�1: Since
kTk D 1 and �1 D 1, we have

k.I C Bj/e
�A.�j��j�1/k � ke�A.�j��j�1/k C jbjjkA1=2e�A.�j��j�1/k �

� .1C jbjj/e�.�j��j�1/ (7.110)

if � � 1=2:
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Let 0 < "1 < 1� p ln.1C b/: Then there exists a positive integer k1 such that for
k � k1

i.�i�k; �i/

�i � �i�k
ln.1C b/ � 1 < �"1:

Denote

N1 D max
1�k�k1

exp .i.�i�k; �i/ ln.1C b/ � .�i � �i�k// :

Then

iY
jDi�kC1

k.I C Bj/e
�A.�j��j�1/k � .1C b/i.�i�k ;�i/e�.�i��i�k/ �

� N1e
�"1.�i��i�k/ � N1e

�"1�k: (7.111)

For t 2 .�i; �iC1/; by (7.109) and (7.111) we get

kU.t; �i�k/k˛ � kA˛e�A.t��i/.I C Bi/e
�A.�i��i�1/k �

�
i�1Y

jDi�kC1
k.I C Bj/e

�A.�j��j�1/k � K1e
�"1.t��i�k/

with constant K1 independent of t and �i�k:

Using the last inequality, we obtain the boundedness of ku0.t/k˛: We can now
proceed analogously to the proof of Theorem 1 and show the almost periodicity of
u0.t/:
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