
Chapter 5
Boundedness of Solutions to a Certain System
of Differential Equations with Multiple Delays

Cemil Tunç

Abstract In this chapter, we consider a system of differential equations of second
order with multiple delays. Based on the Lyapunov–Krasovskii functional approach,
we investigate the boundedness of solutions. The obtained results essentially
complement and improve some known results in the literature.

5.1 Introduction

In recent years, the theory of delay differential equations (DDEs) with retarded
arguments has provided a natural framework for the mathematical modeling of
many real-world phenomena related to the engineering technique fields, mechanics,
models of economic dynamics, optimal control problems, physics, chemistry, life
sciences, medicine, atomic energy, information sciences, nerve conduction theory,
the slowing down of neutrons in nuclear reactors, the description of traveling waves
in a spatial lattice, among others. See, in particular, the books of Bellman and
Cooke [1], Erneux [2], Kolmanovskii and Myshkis [3], Smith [4], and Wu et al.
[5] for more applications of differential equations of retarded type. The concept of
delay is related to the memory of systems, where past events influence the current
behavior, and which could be useful for decision making. Further, finding solutions
of DDEs is difficult and many times cannot be obtained in closed form. In the
absence of a closed form, a viable alternative is studying the qualitative behavior of
solutions. In this case, for nonlinear systems without and with delay, the Lyapunov
function and Lyapunov–Krasovskii functional approach, respectively, provide a way
to analyze the qualitative behavior of solutions (stability, instability, boundedness,
asymptotic behaviors, global existence, etc.) of a system without explicitly solving
the differential equations. However, since the method requires an auxiliary function
or functional, which is not easy to find, it remains an open problem in the literature
at this time. When we look at the related literature, the qualitative properties of
solutions to second-order DDEs have been intensively discussed and are still being
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investigated. We refer the reader to the papers or books of Ahmad and Rama Mohana
Rao [6], Anh et al. [7], Barnett [8], Burton [9], Burton and Zhang [10], Caldeira-
Saraiva [11], Cantarelli [12], Èl’sgol’ts and Norkin [13], Gao and Zhao [14], Hale
[15], Hara and Yoneyama [16, 17], Heidel [18], Huang and Yu [19], Jitsuro and
Yusuke [20], Kato [21, 22], Krasovskiì [23], LaSalle and Lefschetz [24], Li [25],
Liu and Huang [26, 27], Liu and Xu [28], Liu [29], Long and Zhang [30], Luk
[31], Lyapunov [32], Malyseva [33], Muresan [34], Sugie [35], Sugie and Amano
[36], Sugie et al. [37], Tunç [38–45], Tunç and Tunç [46], Yang [47], Ye et al. [48],
Yu and Xiao [49], Yoshizawa [50], Zhang [51, 52], Zhang and Yan [53], Zhou and
Jiang [54], Zhou and Liu [55], Zhou and Xiang [56], Wei and Huang [57], and
Wiandt [58].

At the same time, very recently Omeike et al. [59] considered the following
second-order nonlinear system of differential equations of the form

X00 C F
�
X; X0�X0 C H.X/ D P

�
t; X; X0� : (5.1)

Omeike et al. [59] proved two new results dealing with the boundedness of solutions
of Eq. (5.1). In their work, the authors extended some known results, in the literature,
on the boundedness of certain second-order nonlinear scalar differential equations
to a system of second-order differential equations, Eq. (5.1). However, to the best
of our knowledge of the literature, there is no work based on the results of Omeike
et al. [59] to discuss the boundedness of solutions of certain systems of second-order
DDEs.

In this chapter, we study the boundedness of solutions to the retarded system of
differential equations with multiple constant delays,

X00 C F
�
X; X0�X0 C

nX

iD1

Hi .X .t � �i// D P
�
t; X; X0� ; (5.2)

where t 2 <C; <C D Œ0; 1/ ; X 2 <n; � i are positive constants with t � �i � 0;

F is a continuous n � n� symmetric matrix function, Hi W <n ! <n and P W <C �
<n � <n ! <n are continuous, and Hi are also differentiable with Hi.0/ D 0: The
existence and uniqueness of the solutions of Eq. (5.2) are assumed (see Èl’sgol’ts
and Norkin [13]).We can write Eq. (5.2) in the differential system form

X0 D Y;

Y 0 D �F .X; Y/ Y �
nX

iD1

Hi.X/

C
nX

iD1

tZ

t��i

JHi .X.s// Y.s/ds C P .t; X; Y/

(5.3)
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or

X0 D Y;

Y 0 D �F .X; Y/ Y �
nX

iD1

Hi

�
X .t � �i/

�
C P .t; X; Y/ ; (5.4)

which were obtained by setting X0 D Y from Eq. (5.2), and X(t) and Y(t) are
respectively abbreviated as X and Y throughout the chapter.

Throughout the chapter, the Jacobian matrices of H1(X), : : : , Hn(X) will be
given by

JH1 .X/ D
�

@h1i

@xj

�
; : : : ; JHn.X/ D

�
@hni

@xj

�
; .i; j D 1; 2; : : : ; n/ ;

where (x1, : : : , xn) and (h1i), : : : , (hni) are the components of X and Hi, respectively.
Moreover, we assume that the given Jacobian matrices exist and are continuous.

The symbol hX, Yi corresponding to any pair X, Y in <n stands for the usual

scalar product
nX

iD1

xiyi; that is, hX; Yi D
nX

iD1

xiyiI thus hX; Xi D kXk2; and �i(A)

are the eigenvalues of the real symmetric n � n matrix A. The matrix A is said to be
negative definite when hAX; Xi � 0 for all nonzero X in <n. Finally, by sgn X, we
mean (sgn x1, sgn x2, : : : , sgn xn) and ksgn Xk D p

n:

Motivated by the work in Omeike et al. [59], in this chapter we will improve and
extend the results in [59] to DDE (5.2). This work is also a first attempt to obtain
certain sufficient conditions on the ultimate boundedness of solutions of a vector
Lienard equation with multiple delays; and it is a contribution to the subject in the
literature and may be useful for researchers’ work on the qualitative behaviors of
solutions.

We need the following preliminary result.

Lemma 1. (Bellman [60]) Let A be a real symmetric n � n matrix and

a � �i.A/ � a > 0; .i D 1; 2; : : : ; n/ ;

where ā and a are constants.
Then

akXk2 � hAX; Xi � akXk2
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and

a2kXk2 � hAX; AXi � a2kXk2:

5.2 The Main Results

In this section, we introduce the main results.

Theorem 1. We assume that there exist some positive constants �, ˇ, ıf , �f , ˛i, ˇi

and � such that the following conditions hold in Eq. (5.2):

(i) � � ˇ > 0; the matrix F is symmetric,
0 < ıf � �i .F .X; Y// � �f for all X, Y,

(ii) Hi.0/ D 0; Hi.X/ ¤ 0; .X ¤ 0/; JHi.X/ are symmetric, ˛i � �i .JHi.X// � ˇi

for all X, hHi.X/; Xi ! C1 as kXk ! 1 or hHi.X/; Xi ! �1 as kXk ! 1;

(iii)

lim
kXk!1

n
h˛H1 .X .t � �1// ; sgn Xi C � � � C h˛Hn .X .t � �n// ; sgn Xi

� 2��f

o
> 2�ˇ;

where

˛ D sgn hHi .X .t � �i// ; sgn Xi and � D p
n;

(iv) kP .t; X; Y/k � ˇ for all t, X and Y.
If

� <
ıf

p
n

nX

iD1

ˇi

;

then there exists a positive constant D, whose magnitude depends only on the
constants �, ˇ, ıf , �f , ˛i, ˇi as well as on F(X, Y), JH1 .X/; : : : ; JHn.X/ and
P(t, X, Y) such that every solution X of Eq. (5.2) ultimately satisfies

kXk � D;
��X0�� � D:

Proof We define a Lyapunov–Krasovskii functional V D V1 C V2 D V1 .Xt; Yt/ C
V2 .X; Y/ by
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V1 D
nX

iD1

1Z

0

hHi .�X/ ; Xi d� C 1

2
hY; Yi C

nX

iD1

	i

0Z

��i

tZ

tCs

kY .
/k2d
ds (5.5)

and

V2 D
	

˛ hY; sgn Xi if kYk � kXk ;

hX; sgn Yi if kXk � kYk ;

where s is a real variable such that the integrals

0Z

��i

tZ

tCs

kY .
/k2d
ds are nonnegative

and 	i are some positive constants to be determined later in the proof.
It is clear that V1 .0; 0/ D 0: Using the estimates Hi.0/ D 0; @

@�
Hi .�X/ D

JHi .�X/ X; �i .JHi.X// � ˛i; .i D 1; 2; : : : ; n/ ; we obtain

Hi.X/ D
1Z

0

JHi .�X/ Xd�

so that
1Z

0

hH1 .�X/ ; Xi d� D
1Z

0

1Z

0

h�1JH1 .�1�2X/ X; Xi d�2d�1

�
1Z

0

1Z

0

h�1˛1X; Xi d�2d�1 � 1
2
˛1kXk2;

1Z

0

hH2 .�X/ ; Xi d� D
1Z

0

1Z

0

h�1JH2 .�1�2X/ X; Xi d�2d�1

�
1Z

0

1Z

0

h�1˛2X; Xi d�2d�1 � 1
2
˛2kXk2;

:::

1Z

0

hHn .�X/ ; Xi d� D
1Z

0

1Z

0

h�1JHn .�1�2X/ X; Xi d�2d�1

�
1Z

0

1Z

0

h�1˛nX; Xi d�2d�1 � 1
2
˛nkXk2:
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Then it follows from V1 that

V1 � 1

2

 
nX

iD1

˛i

!

kXk2 C 1

2
kYk2 C

nX

iD1

	i

0Z

��i

tZ

tCs

kY .
/k2d
ds

� D1

�
kXk2 C kYk2

�
C

nX

iD1

	i

0Z

��i

tZ

tCs

kY .
/k2d
ds

� D1

�
kXk2 C kYk2

�
;

where D1 D min

(
1
2

 
nX

iD1

˛i

!

; 1
2

)

:

Further, it follows from the definition of V2 that jV2j � ı kYk ; where ı

is a positive constant. Hence, we can conclude

V � D1

�
kXk2 C kYk2

�
� ı kYk :

Then it is clear that the right-hand side of the last estimate tends to C1 when

kXk2 C kYk2 ! C1:

Using a basic calculation, by the time derivatives of V1 and V2 along the solutions
of (5.3), we have

PV1 D � hF .X; Y/ Y; Yi C <

nX

iD1

tZ

t��i

JHi .X.s// Y.s/ds; Y >

C hY; P .t; X; Y/i C <

nX

iD1

�
	i�i

�
Y; Y > �

nX

iD1

	i

tZ

t��i

kY .
/k2d


and

PV2 D

8
ˆ̂̂
<̂

ˆ̂̂
:̂

�˛
n

hF .X; Y/ Y; sgn Xi C <

nX

iD1

Hi .X .t � �i// ; sgn X >

�
D
P .t; X; Y/ ; sgn X

oE
if kYk � kXk ;

hY; sgn Yi if kXk � kYk :

In view of Lemma 1, the assumptions �i .F .X; Y// � ıf ; �i .JHi.X// � ˇi and the
estimate 2 jaj jbj � a2 C b2 (with a and b real numbers) combined with the classical
Cauchy–Schwartz inequality, it follows that
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� hF .X; Y/ Y; Yi � �ıf kYk2;

<

tZ

t��i

JHi .X.s// Y.s/ds; Y >� kYk
��
����

tZ

t��i

JHi .X.s// Y.s/ds

��
����

� p
nˇi kYk

���
���

tZ

t��i

Y.s/

���
���

ds

� p
nˇi kYk

tZ

t��i

kY.s/kds

� 1

2

p
nˇi

tZ

t��i

�
kY.t/k2 C kY.s/k2

�
ds

� 1

2

p
nˇi�ikYk2 C 1

2

p
nˇi

tZ

t��i

kY.s/k2ds

so that

PV1 � �ıf kYk2 C
 

nX

iD1

	i�i

!

kYk2 C 1
2

�p
n

nX

iD1

ˇi�i

�
kYk2

�
nX

iD1

�
	i � 1

2

p
nˇi

� tZ

t��i

kY.s/k2ds C hY; P .t; X; Y/i :

Let 	i D 1

2

p
nˇi; � D max �i; and ı D p

n
nX

iD1

ˇi: Then it is clear that

PV1 � �
(

ıf � p
n

nX

iD1

�
ˇi�i

�)

kYk2 C hY; P .t; X; Y/i
� � �ıf � ı�

� kYk2 C hY; P .t; X; Y/i :

If � <
ıf

ı
; then we can obtain, for some positive constant �, that

PV1 � ��kYk2 C hY; P .t; X; Y/i :

In view of the last estimates for PV1 and PV2; if kYk � kXk ; then

PV � ��kYk2 C hY; P .t; X; Y/i � ˛ hF .X; Y/ Y; sgn Xi
� ˛ <

nX

iD1

Hi .X .t � �i// ; sgn X > C˛ hP .t; X; Y/ ; sgn Xi
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and if kXk � kYk ; then

PV � ��kYk2 C hY; P .t; X; Y/i C hY; sgn Yi :

Hence, it follows that

PV � ��kYk2 C jhF .X; Y/ Y; sgn Xij � ˛ <

nX

iD1

Hi .X .t � �i// ; sgn X >

C .kYk C �/ kP .t; X; Y/k if kYk � kXk
(5.6)

and

PV � ��kYk2 C .kP .t; X; Y/k C �/ kYk if kXk � kYk : (5.7)

The assumption

lim
kXk!1

n
˛ hH1 .X .t � �1// ; sgn Xi C � � � C ˛ hHn .X .t � �n// ; sgn Xi

� 2��f

o
> 2�ˇ

with ˛ D .sgn hHi .X .t � �i// ; sgn Xi/ ; and � D p
n; ˇ are positive constants,

implies the existence of finite constants ˛0 > 0 and D2 > 0 such that kXk � ˛0:

By assumption (iii) of Theorem 1, kXk � ˛0 implies that

˛ hH1 .X .t � �1// ; sgn Xi C � � � C ˛ hHn .X .t � �i// ; sgn Xi
� 2��f � 2�ˇ � D2:

(5.8)

Let

˛1 D max f1; ˛0; 	g

with 	 D ��1 .ˇ C �/ :

We claim, for some finite positive constant D3 > 0; that

PV � �D3 if kXk � ˛1:

In fact, if kYk � kXk ; then it is clear that PV satisfies (5.6), and if kYk � 1; then, by
the assumptions 0 < ıf � �i .F .X; Y// � �f ; kP(t, X, Y)k � ˇ, and � � ˇ > 0; we
have
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PV � �˛ <

nX

iD1

Hi .X .t � �i// ; sgn X > � kYk �� kYk � ��f
�C ˇ .kYk C �/

� �˛ <

nX

iD1

Hi .X .t � �i// ; sgn X > � �� kYk � ��f
�C ˇ .kYk C �/

D � .� � ˇ/ kYk � ˛ <

nX

iD1

Hi .X .t � �i// ; sgn X > C�
�
ˇ C �f

�

� �˛ <

nX

iD1

Hi .X .t � �i// ; sgn X > C2�
�
ˇ C �f

�
:

(5.9)

By noting assumption (iii) of Theorem 1,

lim
kXk!1

n
˛ hH1 .X .t � �1// ; sgn Xi C � � � C ˛ hHn .X .t � �n// ; sgn Xi

� 2��f

o
> 2�ˇ

it can be followed from (5.9), for some positive constant D2, that

PV � �D2 if kXk � ˛1: (5.10)

Next, we suppose that kYk � 1: Then

PV � ��kYk2 C ��f kYk � ˛ <

nX

iD1

Hi .X .t � �i// ; sgn X > Cˇ .kYk C �/

� �˛ <

nX

iD1

Hi .X .t � �i// ; sgn X > C��f C ˇ .1 C �/

� �˛ <

nX

iD1

Hi .X .t � �i// ; sgn X > C2�
�
ˇ C �f

�
:

Hence, it can be concluded that estimates (5.8) and (5.10) still hold in this case.
We now consider estimate (5.7) when kXk � kYk : If kXk � ˛1 with ˛1 D

max f1; ˛0; 	g ; then kYk � ˛1: Hence,

PV � ��kYk2 C .ˇ C �/ kYk D � kYk f� kYk � .ˇ C �/g � �1

if kYk � 	 D ��1 .ˇ C �/ :
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This means that if kXk � ˛1; then PV � �1: In view of the last estimate and
(5.10), PV � �D2; if kXk � ˛1; it follows that

PV � �D3;

where D3 D max f1; D2g :

To conclude the end of the proof, we suppose, on the contrary, that kXk � ˛1:

Let kYk � ˛1: Then kYk � kXk : Hence,

PV � ��kYk2 C .ˇ C �/ kYk D � kYk f� kYk � .ˇ C �/g � �1

if kYk � ��1 .ˇ C �/ :

Then, in view of the last estimate and PV � �D2 if kXk � ˛1; it follows that

PV � �D3;

where D3 D max f1; D2g : Therefore, we can conclude that

PV � �D3 if kXk2 C kYk2 � 2˛1:

The proof of Theorem 1 is complete. �

Our second main result is the following theorem.

Theorem 2. Let all assumptions of Theorem 1 hold, except (iii), and assume that

(i)
lim

kXk!1

n
˛ hH1 .X .t � �1// ; sgn Xi C � � � C ˛ hHn .X .t � �n// ; sgn Xi

� 2��f

o
> 2�ˇ�;

where

ˇ� D max
n�

8

�
�f C ˇ

�2
.� � ˇ/�1; ˇ

o
;

and
(ii) kP .t; X; Y/k � ˇ kYk for all t; X; Y 2 <n:

If

� <
�

p
n

nX

iD1

ˇi

;

then there exists a positive constant D, whose magnitude depends only on the
constants �, ˇ, ıf , �f , ˛i, ˇi as well as on F(X, Y), JH1 .X/; : : : ; JHn.X/, and
P(t, X, Y) such that every solution X of Eq. (5.2) ultimately satisfies
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kXk � D;
��X0�� � D:

Proof The main tool to prove Theorem 1 is the Lyapunov–Krasovskii functional
V D V1CV2 used in Theorem 1. We use the same procedure as that used in the proof
of Theorem 1. The proof of Theorem 2 is immediate when we show the following
estimates:

V ! 1 as kXk2 C kYk2 ! 1 (5.11)

and

PV � �D0 if kXk2 C kYk2 � D1: (5.12)

The verification of (5.11) can be easily checked from the discussion made in the
proof of Theorem 1. Therefore, we omit the details to verify (5.11), V ! 1 as
kXk2 C kYk2 ! 1: To verify estimate (5.12), we benefit from estimates (5.6)
and (5.7), which are still valid in this case. In fact, in view of assumption (i) of
Theorem 2, that is, the definition of an infinite limit, we can say that there are
positive constants ˛0 and D4 such that kXk � ˛0 implies the existence of the
following estimate:

˛ hH1 .X .t � �1// ; sgn Xi C � � � C ˛ hHn .X .t � �n// ; sgn Xi
� 2��f � 2�ˇ� � D4:

(5.13)

We also assume that there exists a positive constant �0 such that kYk � �0 implies

� .� � ˇ/ kYk2 C kYk � �1:

Let

˛1 D max f1; ˛0; ı0g : (5.14)

We claim, for some finite positive constant D5 > 0; that

PV � �D5 if kXk � ˛1:

To conclude the preceding claim; we consider the following two cases:
kYk � kXk and kXk � kYk ; separately.
In fact, if kYk � kXk and kYk � 1; then in view of (5.6) and the assumptions of

Theorem 2, it follows that
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PV � ��kYk2 C ��f kYk � ˛ <

nX

iD1

Hi .X .t � �i// ; sgn X >

C ˇ kYk .kYk C �/

� �˛ <

nX

iD1

Hi .X .t � �i// ; sgn X > � .� � ˇ/



kYk � �.�f Cˇ/

2.��ˇ/

�2

C �2.�f Cˇ/
2

4.��ˇ/

� �˛ <

nX

iD1

Hi .X .t � �i// ; sgn X > C �2.�f Cˇ/
2

4.��ˇ/

� �˛ <

nX

iD1

Hi .X .t � �i// ; sgn X > C2��f C �2.�f Cˇ/
2

4.��ˇ/
:

Next, we suppose that kYk � 1: Then

PV � ��kYk2 C ��f kYk � ˛ <

nX

iD1

Hi .X .t � �i// ; sgn X >

C ˇ kYk .kYk C �/

D �˛ <

nX

iD1

Hi .X .t � �i// ; sgn X >

C �
�
�f C ˇ

� kYk
� �˛ <

nX

iD1

Hi .X .t � �i// ; sgn X > C2�
�
ˇ C �f

�
:

Hence, in view of (5.13), assumption (i) of Theorem 2, and (5.14), it follows in
either case that if kXk � ˛1; then

PV � �D5; D5 > 0; (5.15)

hold. Thus, we have

PV � � .� � ˇ/ kYk2 C � kYk for kYk � �.�-ˇ/-1 :

On the contrary, we now suppose that kXk � ˛1 and assume kYk � ˛1: In this case,
it is clear that kYk � kXk : Then in view of kYk � ˛1; we get

PV � �
n
.� � ˇ/ kYk � �

�o
kYk � �1

for kYk � �.� � ˇ/�1:

The last estimate and (5.15) together imply that

PV � �D5 if kXk2 C kYk2 � 2˛1;
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which verifies

PV � �D0 if kXk2 C kYk2 � D1:

The proof of Theorem 2 is complete. �

5.3 Conclusion

We have considered a system of second-order differential equations with multiple
delays. By using the Lyapunov–Krasovskii functional approach, we proved two new
theorems on the boundedness of solutions to the considered system. The obtained
results complement and improve the recent results obtained by Omeike et al. [59].
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