Chapter 2
On Periodic Motions in a Time-Delayed,
Quadratic Nonlinear Oscillator with Excitation

Albert C.J. Luo and Hanxiang Jin

Abstract Analytical solutions of periodic motions in a time-delayed, quadratic
nonlinear oscillator with periodic excitation are obtained through the finite Fourier
series, and the stability and bifurcation analysis for periodic motions are discussed.
The bifurcation trees of period-1 motion to chaos can be presented. Numerical
illustration of periodic motion is given to verify the analytical solutions.

2.1 Introduction

The quadratic nonlinear oscillator is often used to describe boat motion under
periodic ocean waves. To stabilize boat motions under waves, once the feedback
is introduced, the boat motion equation will be a time-delayed dynamical system.
In this chapter, the analytical solution of periodic motions in a time-delayed,
quadratic nonlinear oscillator will be investigated for the stabilization of boat
motion.

The study of periodic motions in dynamical systems dates back to the eighteenth
century. In 1788, Lagrange [1] developed the standard Lagrange form to obtain the
method of averaging and used this method for the periodic motions of three-body
problems. In the nineteenth century, Poincaré [2] developed perturbation theory
to determine the periodic motions of celestial bodies. In 1920, van der Pol [3]
employed the method of averaging for the periodic solutions of oscillation systems
in circuits. In 1928, Fatou [4] gave the first proof of the asymptotic validity of
the method of averaging through the existing theorems of solutions of differential
equations. In 1935, Krylov, Bogoliubov, and Mitropolsky [5] further developed the
method of averaging and applied it to periodic motions in nonlinear oscillators. In
1961, Bogoliubov and Mitropolsky [6] summarized the asymptotic perturbation
methods in nonlinear oscillations. In 1964, Hayashi [7] employed perturbation
methods, the method of averaging, and the principle of harmonic balance for the
approximate solutions of nonlinear oscillators, and the stability of approximate
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periodic solutions in nonlinear oscillators was determined by the improved Mathieu
equation. In 1973, Nayfeh [8] presented multiscale methods for approximate
solutions of periodic motions in nonlinear structural dynamics (also see Nayfeh and
Mook [9]). In 1990, Coppola and Rand [10] developed the method of averaging with
elliptic functions for the approximate of limit cycle. In 2012, Luo [11] developed a
methodology for analytical solutions of periodic motions in nonlinear dynamical
systems. In 2012, Luo and Huang [12] applied such a generalized harmonic balance
method to the Duffing oscillator for approximate solutions of periodic motions,
and Luo and Huang [13] gave the analytical bifurcation trees of period-m motions
to chaos in the Duffing oscillator. In 2013, Luo [14] systematically proposed a
methodology for periodic motions in time-delayed, nonlinear dynamical systems.
In 2014, Luo and Jin [15] used such a technique to investigate periodic motion in a
quadratic nonlinear oscillator with time delay.

In this chapter, the analytical solutions of period-m motions for such a time-
delayed, quadratic nonlinear oscillator will be presented and the stability and
bifurcation of period-m motions in the time-delayed nonlinear oscillator will be
discussed. From the bifurcation trees of period-1 motion to chaos, numerical
simulations will be carried out for comparison of analytical and numerical solutions
of periodic motions.

2.1.1 Analytical Solutions

As in Luo and Jin [15], consider a periodically forced, time-delayed, quadratic
nonlinear oscillator as

¥4 8% + apx —aox” 4+ Bx* = Qpcos Q1, 2.1

where x* = x (r — t) and X* = x (¢ — 7). The coefficients in Eq. (2.1) are § for linear
damping, o and «, for linear springs, B for quadratic nonlinearity, and Qg and
for excitation amplitude and frequency, respectively. The standard form of Eq. (2.1)
is written as

4 f (x5 X7, 5, 1) = 0, 2.2)
where

f (i, x5, 57, 1) = 8x% 4+ ayx — aox® + Bx* — Qg cos Q. (2.3)
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The analytical solution of period-m motion for the preceding equation is
A k k
Km* — af)m)([) + Zbk/m(t) cos (—Qt) + ci/m(t) sin (—QI),
pot m m

N
k k k
T(m)* T(m) T T .
xm* = q" (1) + kg_l |:bk/m(t) cos (%Qr) — Cpym (1) sin (ZQ‘L’):| cos (%QI)

[ (0 c0s (£Q7) + ¢, (0 sin (£Qr) [ sin (£21).
(2.4)

where a(t](m) ® = af)m) (t—1), b, () = biym (t — 1) ¢}, (1) = cijm (t — 7). The

coefficients a(()'") (®), bm(t), cum(t) vary with time. The first and second order of

derivatives of xX"*(¢) and x*"*(¢) are

N
x(m)* _ a(()m)(t) + Z |:(bk/m(t) + ’%Qck/m(t)) COS (%QI)

k=1
+ (Ck/m(t) - %Qbk/m(t)) sin (%Qt) ],

N
Tm* - t(m) T k_ . k
= t b, (t —Q t —Q
X ag ()—l—k;%[( k/m()+m ck/m())cos(m ‘L')

- (éZ/m(t) - ﬁszb;/m(t)) sin (£Qr) ] cos (L)
+|: (bl:/m(t) + %QCIE/m(t)> sin (%Q'If)

2.5)
+ (él‘i/m(t) - ﬁﬂbi/m(t)) cos (£Qr) ] sin (£Q1)},

N 2
. k k
e (m o (m) .
(1) = ag” (1) + § |:bk/m +2 (%Q) Ckjm — (EQ) bk/m] cos (£Q1)

k=1
+ [Ek/m -2 (ﬁQ) Zyk/m - (EQ)zck/m] sin (%Qt) .

m

(2.6)

Substitution of Egs. (2.4)—(2.6) into Eq. (2.1) and averaging for the harmonic terms
of cos(kQ2t/m) and sin (kQ2t/m) (k = 0,1,2,...) gives

ay” + Fy" (2,20 277 = o,

.. . 2 . .

brym + Z%Ck/m - (%) bijm + F&n) (20, 20m; 2777 = 0,
. I 2 , 7

Ck/m — Z%bk/m - (%) Ck/m + Fg{") (z(m)’ Z(m); zz(m)zt(m)) =0,
k=1,2,...,N,

2.7
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where

(m) T L m) Tm) am))

z2m — (a ,b(’">,c<'">) and 720" — (ao ,b('">,c('">) ,
r(m) _ r(m b‘[(m) T(m) T d sr(m) _ [ :T(m) Bf(m) T (m) T.
c and 2" = (a," ", ,C ;

T
b — bgm{ bg’”),--- , bxm) and T — (bﬁ(’”), hg('”),--- , b]rv(m))

FU (24, 702500 700) = 540 4 0l — crat™ + B,

T T
c(m) = (cYn)7 C(zm), e cl(\;n)> and cf(m) = (C‘i(m), C;(m)7 cee C;](m)) ;

2.8)

Ff;") (20, 227 37 = § (b + ch/m) + a1brm — 2 [bk/m cos (£Q1)

— iy sin (£27) | + BAS), + 008y

Fg{”) (z(m)’ i(m); zr(m), ir(m)) =4 (Ck/m - —bk/m) + a1Ck/m — Olzl:clzc/m cos (%QT)

+ b, sin (£Q )] +,3fk(;3n,

and

o= (d") 2Z(bz/m+“z/m>

fk(/cl)n = Za(()m)bk/m 22 sz/m ]/m 1+] + 8k ;T 8k )

i=1 j=1

+ c,/mc,/,,, (5 eI 5,"—_,-) ;

Jijm O = Zaém) Ci/m + Z Z bi/mCj/m (5f+j + 8/]'{—i N 81{(—1')'
i=1 j=1

Equation (2.7) can be expressed in the form of a vector field as
Z0m — ng) and z(m) g ( (m) 7 m). j(m). r(m)) ,

where
g(m) Z(m)’ Z(lm); Zr(m)’ Z;(m)
—F™ (z(*“), 2™ 77 7T
= -fF” (Z(m, 2" 270 Z;(m)) — 2k 260 4 Ky (2)p
=R (025 ) 2K B ()

2.9)

(2.10)

@2.11)

(2.12)
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and

k, = diag(1,2,...,N) andk, = diag (1,2%,...,N?)

T T
B = (FP . FR) and B = (FPFY. L FR) T @13)
forN =1,2,...,00.

Setting

y™ = (z(’”),zgm)), y = (z”(m),zf(m)>, and f™ = (zim),g(m)f, (2.14)
equation (2.11) becomes

o = g (g yromy (2.15)

The steady-state solutions for periodic motion in Eq. (2.1) can be obtained by setting

F(()m) (z,0;27™,0) =0,
F") (200,027 0) — kz(%)zb""’ =0, (2.16)
FU (20,0,27,0) — ks (2)%e™ = 0.

The (2N + 1) nonlinear equations in Eq. (2.16) are solved by the Newton—
Raphson method. In Luo [11, 14], the linearized equation at the equilibrium point is
given by

Ay(m) — Df <y(m)* , yf(m)*) Ay(m) + D'f (y(m)* , yz(m)*> Ayr(m) . (2 1 7)
The corresponding eigenvalues are determined by
|A +BeH — AI2(2N+1)><2(2N+1)| =0, (2.18)

where

A = Df (y(m)* s yr(m)*) = of (y(m) s yt(m)) /ay(m) | (y(’”)*.yr(’”)*) s

* * (2.19)
B= Drf<y(m) Ly ) = 3 (Y5 ™) /0y e yeinn)-
The corresponding submatrices are
A= |:0(2N+1)X(2N+1) I(2N+l)x(2N+l)]
G H (2.20)

B— 0n+nxev+1) Tov+nxev+1)
N G’ H* '
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where

= 0z(m)

= (G©,GY,GY)", G" = o2

= - (6", 6", G')', (221

GO — (GE)O) G&O),“' G(z%)
GO — (G(l“) GY, ... (‘)>
GO — (Gﬁ‘),GS),-- G(s>)T
GO — (Gr(O) Gr(O) . GIOY
GrO — (G}‘”),Gg‘”),--- ,G,TV(C))T,
G — (Gfé‘)’(;;(‘f),... ,G;v@)T

=

(2.22)
)

forN =1,2,...,00 with

() _ () (c) () _ () () (5)
G, = (kale e Gk(2N)>’ G, = (GkO’le 1t Gk(zN)

(2.23)
Gr(c) (G]Z(()C)’G/:§C)7”. ’GIZ((QV)) ’ Gl:(s) _ (G]:(()S),G]:I(S),"' ’G]:((gv))

fork =1,2,...,N. The corresponding components are

P = —18 - pg”
. 2 .
Gy = (50) 3 — 8538 —end] — By @24
s k2 k2 s
Gkr (7) 8/:+N + 87812 - alsl:—i-N - ﬂgk, s

where
(0) Za(m)80 + Z l/m8 + cl/m8l+N)

N N
&) =2 (s + 0l 87) + 3D bymf (8 + 8L+ 55

i=1 j=1
+ Cl/m8,+N <8k Slk+j + 81]'(—1') ’
N N

i =2 (cumd) + a8 y) + 303 (cimd+bumd ) (8 + 8= ok

i=1 j=1
(2.25)

forr =0,1,...,2N. The components relative to the time delay forr =0, 1,...,2N
are
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GT(O) = 80
GI(C) =, [8’ cos (k Q‘L’) 84y sin (%Qr)] ,
GT(X = o [8;ycos (£QT) + &7 sin (£Q7)].

The matrices relative to the velocity are

_ ogm 0 o\ T
H = 20 = (10,10, 10)

H = Bg‘(’")) — (H‘L’(O) HT© Hr(s))T
T s s s

where

HO = (H(()O),H{“),--- ,H;‘;)) :
HO — (H(l"),Héc),-~- ,H<c)>T
HO — (Hﬁ‘),H;‘),-- H(n)T

O — (HS(O)’ HO ... r«») 7
HT© — (H;m’H;(c)’,_, ,H,TV‘C))T,

: N\ T
H'®) = (Hi(‘), 1 L H}v‘”)
forN =1,2,...,00, with

(© _ (¢) z4(c)
H (HkO ’Hkl C k(2N))’
() _ (5) 77(s) (5) .
H, ’ (ka) ’HkSl e ’Hki2N)> ’
() () py7(0) 7(c)
H ¢ (Hkoc ka1L ’Hk(éN))’

T(s) _ 7(s) 7(s) 7(s)
H™ = (Hko Hyy e ’Hk(ZN))‘
fork =1,2,...,N. The corresponding components are

H((Z)) 588, (jc) 2k§2)5}:+N 88, H, IE;) = 2kQ8; — 885 s
I‘II O H]:rc —0 I-IlfrA =0

forr=0,1,...,2N.
From Luo [11, 14], the eigenvalues of Eq. (2.17) are classified as

<n17n27n3‘n49n5s n6) )

53

(2.26)

(2.27)

(2.28)

(2.29)

(2.30)

2.31)

where n; is the total number of negative real eigenvalues, n, is the total number
of positive real eigenvalues, ns3 is the total number of negative zero eigenvalues;
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ny is the total pair number of complex eigenvalues with negative real parts, ns is
the total pair number of complex eigenvalues with positive real parts, ng is the
total pair number of complex eigenvalues with zero real parts. If Re (A;) < 0
(k=1,2,---,2(2N + 1)), the approximate steady-state solution y* with truncation
of cos(NQ2t) and sin(NQr) is stable. If Re (A;) > 0 (k € {1,2,--- ,2(2N + 1)}),
the truncated approximate steady-state solution is unstable. The corresponding
boundary between the stable and unstable solutions is given by the saddle-node
bifurcation and Hopf bifurcation.
The harmonic amplitude and phase are defined by

Agm = [ + €2, and @iy = arctan Z"/ " 2.32)
k/m

The corresponding solution in Eq. (2.4) becomes

N
k
x*@) = a((Jm) + ZAk/m cos (n_19t_ (pk/m),
k=1

N . (2.33)
xXT*(t) = af)m) + ;Ak/m cos [ZQ (t—1)— gok/m].
Consider system parameters as
8§ =0.050; =15.0,00 =5.0, =5.0,00 =45, =T/4. (2.34)

2.2 Numerical Illustrations

To verify the approximate analytical solutions of periodic motion in the time-
delayed, quadratic nonlinear oscillator, numerical simulations will be completed
through the midpoint discrete scheme. The initial conditions and the initial time-
delay values in the range of ¢ € (—1, 0) for numerical simulation are computed from
the approximate analytical solutions. The numerical results are depicted by solid
curves, but the analytical solutions are given by red circular symbols. The big filled
circular symbols are initial conditions and initial time-delay response values. The
initial starting and final points of the time delay are represented by the acronyms
D.LS. and D.LF,, respectively.

The displacement, velocity, trajectory, and amplitude spectrum of stable period-1
motion for the time-delayed, quadratic nonlinear oscillator are presented in Fig. 2.1
for Q = 7.767 with initial condition (xg ~ —0.100171, xy ~ 0.089894) with
initial time-delayed responses. This analytical solution is based on 20 harmonic
terms (HB20) in the Fourier series solution of period-1 motion. In Fig. 2.1a,
b, for over 100 periods, the analytical and numerical solutions of the period-1
motion in the time-delayed, quadratic nonlinear oscillator match very well. The
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Fig. 2.1 Analytical and
numerical solutions of stable
period-1 motion based on 20
harmonic terms (HB20)

(2 =17.767): (a)
displacement, (b) velocity, (c¢)
phase plane, and (d)
amplitude spectrum. Initial
condition (xy ~
—0.100171,xy & 0.089894).
Parameters:

(8 = 0.05,(11 = 15.0,&2 =
5.0, =5.0,00 = 4.5,
t=T/4)

Displacement, x

Velocity, y

Velocity, y

0.2

0.1

0.6

0.0

-0.6
D.L.S.

0.5

0.0

55

Time, ¢

0.0 1.0 2.0 3.

Time, ¢

0.0 1.0 20 3.

1.0 o b b b

-0.150 -0.075 0.000 0.075 0.150

Displacement, x
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Fig. 2.1 (continued) d
1.0e+2 y % -
(@] A, 10
A
= 1.0e-6 Q A, 1e-31 \20
< 1.0e- o A,
E A
= Q@ Msiozs
é‘ 10 15 20
2 10e-14f A,
2 o)
5 A
£ R
= 1.0e-22f
. A,
T A10
1.0e-30 (f
0.0 2.0 4.0 6.0 8.0 10.0

Harmonic Order, k&

initial time-delayed displacement and velocity are represented by the large circular
symbols for the initial delay period of t € (—t,0). In Fig. 2.1c, analytical and
numerical trajectories match very well, and the initial time-delay response in the
phase plane is clearly depicted. In Fig. 2.1d, the amplitude spectrum versus the
harmonic order is presented. The corresponding quantity levels of the harmonic
amplitudes are given as follows: ay ~ —2.4302e-3, A} =~ 0.0985, and A; €
(107°°,107*) (k = 2,3,...,20). For the distribution of harmonic amplitudes,
the harmonic amplitudes decrease with harmonic order nonuniformly. The main
contribution for this periodic motion is from the primary harmonics. The truncated
harmonic amplitude is A5y ~ 1073¢. For this periodic motion, one can use a
harmonic term to get an accurate enough analytical solution.

From the bifurcation tree of period-1 motion to chaos in Luo and Jin [15],
the stable period-1, period-2, period-4, and period-8 motions are presented in
Fig. 2.2 at Q = 1.897, 1.8965, 1.8920, 1.88906 for illustrations of the complexity of
periodic motions. The initial conditions for such stable periodic motions are listed
in Table 2.1.

In Fig. 2.2a, the analytical and numerical trajectories of period-1 motion are
presented. Such period-1 motion possesses two cycles and the initial time-delay
conditions are presented. The harmonic amplitude distribution is presented in
Fig. 2.2b. The main amplitudes of the period-1 motion in such a time-delayed,
nonlinear system are ap ~ —0.618722, A; ~ 0.309591, A, ~ 1.264949, A;
~ 0.086255, Ay ~ 0.076064, and A, € (107'*,1072) for k = 5,6,...,20. The
second harmonic amplitude plays an important role in the period-1 motion.

In Fig. 2.2c, the analytical and numerical trajectories of period-1 motion are
presented. Such period-1 motion possesses two cycles and the initial time-delay
conditions are presented. The harmonic amplitude distribution is presented in
Fig. 2.2d. The main amplitudes of the period-2 motion in such a time-delayed,
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Fig. 2.2 Phase plane and
amplitude spectrum: (a) and
(b) period-1 motion

(2 = 1.8970, HB20); (¢) and
(d) period-2 motion

(22 = 1.8965, HB40); (e) and
(f) period-4 motion

(2 = 1.8920, HB8O0); (g) and
(h) period-4 motion

(2 = 1.88906, HBSO0).
Parameters:

((3 = 0.05,(11 = 15.0,&2 =
5.0, =5.0,00 = 4.5,
t=T/4)

Velocity, y

b

Harmonic Amplitude, 4,

8.0 ¢

Displacement, x

1.0e+2

1e-4
A2 5e-9 -
10e+0 - A O ©
o) A A,
@ o 1e-13
A e
1.0e-2 -
1.0e-4
1.0e-6
0.0 2.0 4.0 6.0 8.0 10.0
Harmonic Order, k&

8.0 ¢

40 L

Velocity, y
=}
S}

Displacement, x
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Fig. 2.2 (continued)

A.C.J. Luo and H. Jin
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Fig. 2.2 (continued) g 8.0 -

Velocity, y

h 1e+2

1e+0

1/8

1e-2

1e-4 h

Harmonic Amplitude, 4, ¢

1e-6 H

1e-8
0.0 2.0 4.0 6.0 8.0 10.0

Harmonic Order, /8

nonlinear system are a;’ ~ —0.589080, Aj;» ~ 0.312662, A; ~ 0.366173,
Az ~ 0.345472, Ay ~ 1.120050, A5/ ~ 0.209455, A; ~ 0.089404, A;)» ~
0.038283, A, ~ 0.052349, Ag;» ~ 0.021267, and Ay, € (107',1077) for
k = 10,11,...,40. The biggest contribution is from the harmonic term of A, ~
1.120050.

In Fig. 2.2e, the analytical and numerical trajectories of period-4 motion are
presented. Such period-4 motion possesses eight cycles and the initial time-delay
conditions are presented. The harmonic amplitude distribution is presented in
Fig. 2.2f. The main amplitudes of the period-4 motion are aé‘” ~ —0.591813,
A =~ 0.058286, Ajjp ~ 0.322076, A3y ~ 0.025289, A; ~ 0.373248, As/s ~
0.021254, A3/» ~ 0.351173, A7/4 ~ 0.094394, A, ~ 1.106125, Ag;s ~ 0.067732,
A5/2 A 0214359, A11/4 ~ 0012157, A3 ~ 0090130, A13/4 ~ 7042438E-3,
A7/2 ~ 0037581, A15/4 ~ 87845261‘:‘-3, A4 ~ 0050681, A17/4 ~ 70353581‘:‘-3,
Agjr ~ 0.021354, Ajgys ~ 1.263319E-3, and Ay € (107'4,1072%) for k =
20,21, ...,80.

The analytical and numerical trajectories of period-8 motion are presented
in Fig. 2.2g. Such period-8 motion possesses 16 cycles and the initial time-
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Table 2.1 Input data for numerical illustrations (6 = 0.05,0; = 15.0,0p =
50,6=50,00=4.51t=T/4)

Figure no. Q Initial condition (xo,%p) | Types | Harmonics terms
Figure 2.2a,b | 1.8970 | (0.713984, 4.045130) P-1 HB20 (stable)
Figure 2.2c,d | 1.8965 | (0.959465, 2.965047) P-2 HBA40 (stable)
Figure 2.2e,f | 1.8920 | (0.926914, 3.026495) P-4 HBSO (stable)
Figure 2.2g, h | 1.88876 | (0.904503, 3.045649) P-8 HB160 (stable)

delay conditions are presented clearly. As presented before, the harmonic ampli-
tude spectrum is presented in Fig. 2.2h. The main amplitudes of the period-

8 motion are a)) ~ —0.594919, A;x ~ 8.668953¢-3, A4 ~ 0.075480,
Ays ~ 0.017434, Ay ~ 0324209, Asjg ~ 0.012676, Ay ~ 0.033521,
Azjg ~ 6.822809-4, A, ~ 0.376686, Agjs ~ 3.278184e-3, As;y ~ 0.027110,

A][/g ~ 0012213, A3/2 % 0351086, A]3/8 ~ 0019842, A7/4 o 0122173,
A]S/g ~ 0025622, A2 = 1099997, A]7/g A 0010327, A9/4 = 0087137, A]g/g ~
0015794, A5/2 A 0214882, Az]/g ~ 59982946-3, A11/4 ~ 0016157, A23/g ~
1.775930e-3, A3 ~ 0.090622, Ays;s ~ 1.485620e-3, Aj3/4 ~ 8.904199-3,
A27/g % 15925526-3, A7/2 % 0036887, Azg/g ~ 18296816-3, A15/4 ~
0.011286, A3j/3 ~ 2.891636e-3, A4 ~ 0.050091, Az3/;3 ~ 9.021719%¢-4, A7,4 ~
8.953262¢-3, Azs/s ~ 1.640158e-3, Ag)> & 0.021173, and Ay, € (107'%,1077) for
k = 37,38,...,160. The biggest contribution of the period-8 motion is still from
the harmonic amplitude of A, ~ 1.099997.

2.3 Conclusion

In this chapter, the analytical solutions of period-m motions in the time-delayed,
quadratic nonlinear oscillator were obtained from the finite Fourier series expres-
sion. Based on such analytical solutions, the stability and bifurcation of period-m
motions of the time-delayed nonlinear oscillator were discussed. From the bifurca-
tion trees of period-1 motion to chaos, numerical simulations were carried out to
compare analytical and numerical solutions of periodic motions. The numerical and
analytical solutions of periodic motions are well matched in such a time-delayed,
quadratic nonlinear oscillator once enough harmonic terms are included in the finite
Fourier series expression.
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