
Approximation Algorithms for Generalized MST
and TSP in Grid Clusters

Binay Bhattacharya1, Ante Ćustić1, Akbar Rafiey1(B), Arash Rafiey1,2,
and Vladyslav Sokol1

1 Simon Fraser University, Burnaby, Canada
{binay,acustic,arafiey,arashr,vsokol}@sfu.ca
2 Indiana State University, Terre Haute, IN, USA

arash.rafiey@indstate.edu

Abstract. We consider a special case of the generalized minimum span-
ning tree problem (GMST) and the generalized travelling salesman prob-
lem (GTSP) where we are given a set of points inside the integer grid
(in Euclidean plane) where each grid cell is 1 × 1. In the MST version
of the problem, the goal is to find a minimum tree that contains exactly
one point from each non-empty grid cell (cluster). Similarly, in the TSP
version of the problem, the goal is to find a minimum weight cycle con-
taining one point from each non-empty grid cell. We give a (1+4

√
2+ ε)

and (1.5 + 8
√

2 + ε)-approximation algorithm for these two problems in
the described setting, respectively.

Our motivation is based on the problem posed in [6] for a constant
approximation algorithm. The authors designed a PTAS for the more
special case of the GMST where non-empty cells are connected end
dense enough. However, their algorithm heavily relies on this connectiv-
ity restriction and is unpractical. Our results develop the topic further.

Keywords: Generalized minimum spanning tree · Generalized travel-
ling salesman · Grid clusters · Approximation algorithm

1 Introduction

The generalized minimum spanning tree problem (GMST) is a generalization
of the well known minimum spanning tree problem (MST). An instance of the
GMST is given by an undirected graph G = (V,E) where the vertex set is
partitioned into k clusters Vi, i = 1, . . . , k, and a weight w(e) ∈ R

+ is assigned
to every edge e ∈ E. The goal is to find a tree with minimum weight containing
one vertex from each cluster.

The GMST occurs in telecommunications network planning, where a net-
work of node clusters need to be connected via a tree architecture using exactly
one node per cluster [9]. More precisely, local subnetworks must be intercon-
nected by a global network containing a gateway from each subnetwork. For this

Supported by NSERC Canada.

c© Springer International Publishing Switzerland 2015
Z. Lu et al. (Eds.): COCOA 2015, LNCS 9486, pp. 110–125, 2015.
DOI: 10.1007/978-3-319-26626-8 9

Approximation Algorithms for Generalized MST and TSP in Grid Clusters 111

inter-networking, a point has to be chosen in each local network as a hub and the
hub point must be connected via transmission links such as optical fiber, see [14].
Furthermore, the GMST has some applications in design of backbones in large
communication networks, energy distribution, and agricultural irrigation [10].

The GMST was first introduced by Myung, Lee and Tcha in 1995 [14].
Although MST is polynomially solvable [7], it was shown in [14] that the GMST
is strongly NP-hard and there is no constant factor approximation algorithm,
unless P=NP. However, several heuristic algorithms have been suggested for
the GMST, see [9,10,16,17]. Furthermore, Pop, Still and Kern [18] used an LP-
relaxation to develop a 2ρ−approximation algorithm for the GMST where the
size of every cluster is bounded by ρ.

In [6], Feremans, Grigoriev and Sitters consider the geometric generalized
minimum spanning tree problem in grid clusters, GGMST for short. In this spe-
cial case of the GMST, a complete graph G = (V,E) is given where the set of
vertices V correspond to a set of points in the planar integer grid. Every non-
empty 1× 1 cell of the grid forms a cluster. The weight of the edge between two
vertices is given by their Euclidean distance. Figure 1 depicts one instance of the
GGMST.

i

i + 1

j j + 1 j + 2j − 1j − 2

i − 1

Fig. 1. An GGMST instance with n = 21 points and N +1 = 8 non-empty cells, which
are connected and fit into a 3 × 5 sub-grid

We say that two grid cells are connected if they share a side or a corner. Fur-
thermore, we say that a set of grid cells is connected if they form one connected
component. The authors in [6] show that the GGMST is strongly NP-hard, even
if we restrict to instances in which non-empty grid cells are connected and each
grid cell contains at most two points. Furthermore, they designed a dynamic pro-
gramming algorithm that solves in O(lρ6k234k2

k2) time the GGMST for which
the set of non-empty grid cells is connected and fits into k×l sub-grid. (Note that
the algorithm is polynomial if k is bounded.) Moreover, the authors used this
algorithm to develop a polynomial time approximation scheme (PTAS) for the
GGMST for which non-empty cells are connected and the number of non-empty
cells is superlinear in k and l. The GGMST instances are often used to test
heuristics for the GMST which, in light of the results in [6], is not adequate. The
objective of this paper is to develop this topic further and to design a simple

112 B. Bhattacharya et al.

approximation algorithms for the GGMST and of its variants without restricting
only to connected and dense instances.

Analogously as the GMST and the GGMST, the generalized travelling sales-
man problem (GTSP) and the geometric generalized travelling salesman prob-
lem in grid clusters (GGTSP) can be defined. The GTSP was introduced by
Henry-Labordere [11] and is also known in the literature as set TSP, group TSP
or One-of-a-Set TSP. This problem has many applications, including airplane
routing, computer file sequencing, and postal delivery, see [2,12,13]. Elbassioni,
Fishkin, Mustafa and Sitters [5] considered the GTSP in which non-empty clus-
ters (i.e. regions) are disjoint α-fat objects with possibly varying size. In this
setting they obtained a (9.1α + 1)-approximation algorithm. They also give the
first O(1)-approximation algorithm for the problem with intersecting clusters
(regions). Note that in the GGTSP, fatness of each cluster is 4 (each cluster is
a square).

As a special case of the GTSP we can look at each geometric region as an
infinite set of points. This problem, called the TSP with neighbourhood, was
introduced by Arkin and Hassin [1]. In the same paper they present constant
factor approximation algorithm for two cases in which the regions are translates
of disjoint convex polygons, and for disjoint unit disks. For the general prob-
lem Mata and Mitchell [15] and later on Gudmundsson and Levcopoulos [8],
gave an O(log n)-approximation algorithm. For intersecting unit disks an O(1)-
approximation algorithm is given in [4]. Safra and Schwartz [19] show that it
is NP-hard to approximate the TSP with neighbourhood within (2 − ε). In this
context, it is natural to consider the GTSP in which points are sitting inside
geometric objects such as the integer grid.

Notation. We will usually refer to vertices as points. Throughout this paper,
the number of points (|V |) will be denoted by n. Furthermore, N denotes the
number of edges in every feasible solution (tree) of the GGMST, i.e. N is the
number of non-empty cells minus 1. The edge between two points u and v will
be denoted by eu,v. We naturally extend the notation for the weight to sets of
edges and graphs, i.g. the weight of a tree T is denoted by w(T) =

∑
e∈T w(e),

where e ∈ T means that e is an edge of T . We assume that every point is in just
one cell, i.e. points on the cell borders are assigned to only one neighbouring
cell by any rule. An optimal solution of the GGMST will be denoted by Topt

throughout this paper.

Our results and organization of the paper. The main result of this paper
is a (1 + 4

√
2+ ε)-approximation algorithm for the GGMST. We do not assume

any restrictions on connectivity, density or cardinality of non-empty cells. The
algorithm is presented and analyzed in Sect. 2. A lower bound for the weight of
an optimal solution in terms of N is used to prove the approximation quality of
the algorithm. Section 3 is devoted to proving this lower bound. Lastly, in Sect. 4
we use our GGMST algorithm to develop an approximation algorithms for the
GGTSP.

Approximation Algorithms for Generalized MST and TSP in Grid Clusters 113

2 The GGMST Approximation Algorithm

In this section we present a (1+4
√
2+ε)-approximation algorithm (Algorithm3)

for the GGMST. Main part of the algorithm is Algorithm1 which we describe
next.

Algorithm 1.
(
1 + 4

√
2 + 2

√
2

w(Topt)

)
-approximation alg. for the GGMST

1 T ← solution of the MST problem on non-empty cells (where the distance
2 between a pair of cells is the length of the shortest edge between them);
3 G ← the graph consisting of the set of edges (and points) that correspond to the
4 edges in T ;
5 for all cells C that contain more than one point from G do
6 CG ← the set of points from G that are in C;
7 p ← point from C that is a median for CG;
8 Replace CG by p, i.e. reconnect to p all edges of G that enter C;

9 end
10 return G;

Algorithm1 is divided into two parts; in the first part we solve an MST
instance defined as follows: non-empty cells play the role of vertices, and the
weight of the edge between two cells C1, C2 is the smallest weight edge ep1,p2

where p1 ∈ C1 and p2 ∈ C2. Let T be an optimal tree of such MST instance,
and let graph G be the set of edges (with its endpoints) of the original GGMST
instance that correspond to the edges of T . Note that G has N edges and spans
all non-empty cells but it can have multiple points in some cells. In the second
part of the Algorithm1 (i.e. the for loop), we modify G to obtain the GGMST
feasibility, by iteratively replacing multiple cell points by a single point p. We
choose point p to be the one that has the minimum sum of distances to other
points of G that are in the corresponding cell.

Next we present an upper bound for solutions obtained by Algorithm1 in
terms of the number of edges N .

Theorem 1. Algorithm1 produces a feasible solution TA of the GGMST such
that w(TA) ≤ w(Topt) +

√
2N − √

2, where N is the number of edges of TA.

Proof. Denote by G0 the non-feasible graph obtained in the first part of the
algorithm, i.e. the first version of graph G. Then the weight of the solution TA

obtained by the algorithm is equal to w(G0) + ext, where ext is the amount by
which we increase (extend) the weight of G0 in the second part of the algorithm.
Note that w(G0) ≤ w(Topt), as G0 is an optimal solution of the problem for
which Topt is a feasible solution (find a minimum weight set of edges that spans
all non-empty cells, with all GGMST edges being allowed). In the rest of the
proof we will bound the value of ext.

In every run of the for loop we replace the set of points CG with p. In doing so,
every edge eq,c, c ∈ CG from G, is replaced by eq,p. From the triangle inequality

114 B. Bhattacharya et al.

we get that w(eq,p) − w(eq,c) ≤ w(ec,p). Hence, the increase (extension) of the
weight of G in every run of the for loop is less or equal than

∑
c∈CG

w(ec,p).
Instead of bounding such absolute values, we will bound its average per edge
adjacent to the corresponding cell. More precisely, we will calculate an average
extension per half-edge assigned to the corresponding cell. Namely, every edge
will be extended at most two times, once on each endpoint, so we can look
at each extension as an extension of a half-edge. Furthermore, note that edges
that contain leafs will be extended only on one side. We will use this fact to
assign half-edges that contain leafs to other cells to lower their average half-edge
extension. To every cell C, we will assign |CG|− 2 leaf half-edges. Intuitively, we
can do this because every node v of a tree generates deg(v) − 2 leafs. Formally,
it follows from the following well know equality:

|V1| = 2 +
∑

i≥2

|Vi|(i − 2), (1)

where Vi = {v ∈ V : deg(v) = i}, and V is the set of vertices of a graph.
Then for a cell C the average extension per assigned half-edges is bounded

above by ∑
c∈CG

w(ec,p)
|CG| + (|CG| − 2)

. (2)

Note that the maximum distance between two cell points is
√
2. Since points

from CG are candidates for p, it follows that
∑

c∈CG
w(ec,p) ≤ √

2(|CG| − 1).
Hence, (2) is bounded above by

√
2(|CG| − 1)
2|CG| − 2

=
√
2
2

.

Hence, in average, every half-edge (except 2 leaf half-edges, see (1)) is extended
by at most

√
2/2. Note that this average bound is a constant, i.e. does not depend

on C. Now ext can be bounded by

ext ≤
√
2
2

(2N − 2) =
√
2N −

√
2. (3)

Finally, we can bound the solution TA of the algorithm by

w(TA) ≤ w(G0) + ext ≤ w(Topt) +
√
2N −

√
2. ��

The following theorem gives a lower bound for the optimal solution in terms
of the number of edges N . Section 3 is dedicated to proving the theorem.

Theorem 2. If Topt is an optimal solution of the GGMST on N +1 non-empty
cells, then N ≤ 4w(Topt) + 3.

Now from Theorems 1 and 2 the following approximation bound for
Algorithm1 follows.

Approximation Algorithms for Generalized MST and TSP in Grid Clusters 115

Corollary 1. Algorithm1 produces a feasible solution TA of the GGMST such
that w(TA) ≤ (1 + 4

√
2)w(Topt) + 2

√
2.

Note that, due to the constant 2
√
2, Corollary 1 does not gives us a constant

approximation ratio for Algorithm1. Namely, the approximation ratio that we
get is equal to 1 + 4

√
2 + 2

√
2

w(Topt)
. Next we focus on improving Algorithm1 so

that 2
√
2

w(Topt)
is replaced by arbitrary small ε > 0. Note that the optimal solution

weight does not necessarily increase with the increase of the number of points
n, namely all points can be in the same cells. Hence we cannot use the standard
approach. However, the following two facts will do the trick. First, note that the
weight of the GGMST optimal solution increases as the number of non-empty
cells increases. Second, given a spanning tree structure of non-empty cells T , we
can in polynomial time find the minimum weight GGMST feasible solution T ′

with the same tree structure as T (i.e. there is an edge in T ′ between two cells if
and only if these two cells are adjacent in T). Next we design one such dynamic
programming algorithm (see Algorithm2).

Given an GGMST instance, let T be a spanning tree of the complete graph
where the set of vertices correspond to the set of non-empty cells. Denote by Xi

the set of points inside cell Ci. We observe T as a rooted tree with Cr as its
root. If Ci is a leaf of T then the weight W (z) of each point z in set Xi is set to
zero. If Ci is not a leaf then T has some children Ci1 , . . . , Cik and the weight for
points inside sets Xi1 , . . . , Xik has already been computed. Then for each point
p in cell Ci (set Xi) we compute:

W (p) =
k∑

j=1

min
q∈Xij

{W (q) + w(ep,q)}

Algorithm2 computes W (p) for all p ∈ Cr. Note that it is easy to adapt
Algorithm2 to store selected points at each step.

Now we have all ingredients to design a (1 + 4
√
2 + ε)-approximation algo-

rithm, see Algorithm3. Note that 1 + 4
√
2 is approximately equal to 6.66.

Theorem 3. For any ε > 0, Algorithm3 is a (1 + 4
√
2 + ε)-approximation

algorithm for the GGMST.

Proof. If N ≤ 15 or N ≤ 10
√
2/ε, then we can enumerate all spanning trees on

N + 1 non-empty cells, and apply Algorithm2 on each of them. That will give
us an optimal solution in polynomial time.

Assume N > 15 and N > 10
√
2/ε. By Corollary 1 it follows that Algorithm1

will produce a solution TA such that

w(TA) ≤
(
1 + 4

√
2
)

w(Topt) + 2
√
2. (4)

116 B. Bhattacharya et al.

Algorithm 2. Optimal GGMST solution for a given spanning tree of cells
Data: A spanning tree T of non-empty cells
Result: An optimal weight of the GGMST tree with the same structure as T

1 Choose an arbitrary cell Cr as the root of T ;
2 for each leaf Ci of T do
3 for each p ∈ Xi do
4 W (p) = 0;
5 end

6 end
7 CurrentLevel = height of T ;
8 while CurrentLevel ≥ root level do
9 for each node Ci of CurrentLevel do

10 Let Ci1 , . . . , Cik be children of Ci in T ;
11 for each p ∈ Xi do

12 W (p) =
∑k

j=1 minq∈Xij
{W (q) + w(ep,q)};

13 end

14 end
15 CurrentLevel = CurrentLevel − 1;

16 end
17 return minp∈Xr W (p);

Algorithm 3. (1 + 4
√
2 + ε)-approximation algorithm for the GGMST

1 if N ≤ 15 or N ≤ 10
√

2/ε then
2 Output minimum weight solution obtained by Algorithm 2 on all spanning

trees of non-empty cells;

3 else
4 Run Algorithm 1;
5 end

From Theorem2 and N > 15 it follows that 1 ≤ 5w(Topt)/N . Applying that on
the rightmost element of inequality (4) we get

w(TA) ≤
(
1 + 4

√
2
)

w(Topt) +
10

√
2

N
w(Topt),

≤
(

1 + 4
√
2 +

10
√
2

N

)

w(Topt).

Now from N > 10
√
2/ε it follows that

w(TA) ≤
(
1 + 4

√
2 + ε

)
w(Topt),

which proves the theorem. ��

Approximation Algorithms for Generalized MST and TSP in Grid Clusters 117

3 The Lower Bound Proof

This section is entirely devoted to proving Theorem2 which gives us a lower
bound on the weight of an optimal solution. The lower bound is expressed in
terms of the number of edges N .

Throughout this section we identify 1× 1 grid cell with its coordinates (i, j),
where i, j ∈ Z is the row and the column of the cell inside the infinite integer
grid. For example, in Fig. 1, cell (i, j + 1) contains one point which is near its
upper right corner.

We start by proving lower bounds for trees of small size.

Lemma 1. The weight of any subtree of Topt with four edges is at least 1.

Proof. Consider a subtree T ′ of Topt with four edges. Let H denote the set of
the five cells that contain vertices of T ′. Note that there will be two cells in H
with coordinates (i, j) and (i′, j′) such that |i − i′| ≥ 2 or |j − j′| ≥ 2. Hence,
Euclidean distance between a vertex from the cell (i, j) and a vertex from the
cell (i′, j′) is a least 1. This implies w(T ′) ≥ 1. See Fig. 2 for an example. ��

i

i + 1

j j + 1 j + 2

Fig. 2. An example of a tree T ′ with four edges

Lemma 2. The weight of any subtree of Topt with seven edges is at least 1
3 (2

√
6+

√
6 − 3

√
3) (which is greater than 1.93).

Proof. Let T ′ be a subtree of Topt with seven edges. If T ′ does not fit in any
3×3 sub-grid of the original grid, then there are two vertices u, v of T ′ which are
from cells with coordinates (i, j) and (i′, j′) such that |i − i′| ≥ 3 or |j − j′| ≥ 3.
In that case w(eu,v) ≥ 2 and therefore w(T ′) ≥ 2.

Next we consider the case when T ′ fits into 3 × 3 grid. Since T ′ has eight
vertices, at least three of them are in the corner cells of a 3 × 3 grid. Without
loss of generality we assume that these three vertices are vertex v in cell (i, j),
vertex u in cell (i+ 2, j) and vertex y in cell (j + 2, i). Let P be a shortest path
in T ′ from v to u and let Q be the shortest path in T ′ from v to y. Note that
w(ev,u) ≥ 1 and w(ev,y) ≥ 1. If P and Q do not have a common vertex apart
from v, then w(T ′) ≥ 2. Thus we are left with the case when P and Q have a
common vertex other than v, which we denote by x.

First we assume that P and Q do not go through the point in cell (i+1, j+1).
In this case, up to symmetry, one of the configurations depicted in Fig. 3(a,b)

118 B. Bhattacharya et al.

i

i + 1

j j + 1 j + 2

i + 2

jj j + 1 j + 1j + 2 j + 2

v v
v

u u
u

y y
y

x

x

x

(a) (b) (c)

Fig. 3. Layouts of P and Q

occurs. However, it is clear that w(ev,x) + w(ex,y) + w(ex,u) ≥ 2 and hence
w(T ′) ≥ 2.

Lastly, we observe the case when vertex x is in cell (i + 1, j + 1). Then
w(P ∪Q) is at least w(ex,v)+w(ex,u)+w(ex,y), which is minimized when x is the
Fermat point for the three corners of cell (i + 1, j + 1) and T ′ has the structure
depicted in Fig. 3(c). Therefore it can be computed that w(T ′) ≥ 1

3 (2
√
6 +

√
6 − 3

√
3) > 1.93. ��

Lemma 3. The weight of any subtree of Topt with eight edges is at least 2.

Proof. Let T ′ be a subtree of Topt with eight edges. If T ′ does not fit in any 3×3
sub-grid then by the same simple argument as in the proof of Lemma2 we get
w(T ′) ≥ 2. If T ′ fits in a 3 × 3 grid, then there is one vertex of T ′ in any cell
of such 3 × 3 grid. More specifically, there are vertices in cells (i, j), (i + 2, j),
(i, j + 2) and (i + 2, j + 2) from which easily follows that w(T ′) > 2. �

Lemma 4. The weight of any subtree of Topt with nine edges is at least 1+
√
3.

Proof. Let T ′ be a subtree of Topt with nine edges. If T ′ does not fit in any 4×4
sub-grid of the original grid, then there are two vertices u, v of T ′ which are in
cells with coordinates (i, j) and (i′, j′) such that |i − i′| ≥ 4 or |j − j′| ≥ 4. In
that case w(eu,v) ≥ 3 and therefore w(T ′) ≥ 3 > 1 +

√
3.

Next we consider the case when the smallest rectangular sub-grid that con-
tains T ′ is of the size 4 × 4, and let (i, j) be the bottom left corner cell of
such 4 × 4 grid. In that case there are four (not necessarily distinct) vertices
u, v, x, y of T ′ that for some i ≤ i′, i′′ ≤ i + 3 and j ≤ j′, j′′ ≤ j + 3 lie in cells
(i′, j), (i, j′), (i′′, j +3), (i+3, j′′), respectively. Let P be the shortest path in T ′

from u to x and let Q be the shortest path in T ′ from v to y. Let us observe
the union of paths P and Q. This union is a set of k edges we denote by e�,
� = 1, . . . , k. Let us denote by x� and y� the lengths of projections of e� on x-axis
and y-axis, respectively. Then

w(P ∪ Q) =
k∑

�=1

√
x2

� + y2
� . (5)

Approximation Algorithms for Generalized MST and TSP in Grid Clusters 119

Since distance between projections of u and x on x-axis is at least 2 and distance
between projections of v and y on y-axis is at least 2, it follows that

∑k
�=1 x� ≥ 2

and
∑k

�=1 y� ≥ 2. Hence, (5) is minimized when k = 1 and x1 = y1 = 2 with
minimal value being 2

√
2. Therefore we get w(T ′) ≥ 2

√
2 > 1 +

√
3.

Lastly, we consider the case when T ′ fits into a rectangular sub-grid R of
dimensions smaller than 4 × 4. Without loss of generality we can assume that
R is of the size 4 × 3, and let (i, j) be the bottom left corner cell of R. Note
that there are at least two vertices of T ′ that are in corner cells of R. Without
loss of generality we assume that vertex v is in cell (i, j). Next we distinguish
remaining cases with respect to the position of the second corner point which
we denote by u.

Case 1. Vertex u is in cell (i, j + 2). As there are ten vertices in T ′, one of
them must be in cell (i + 3, j′) for some j ≤ j′ ≤ j + 3. Denote such vertex by
y. By calculating the Fermat point x it can be seen that weight of the Steiner
tree containing u, v and y is at least 2 +

√
3/2 which is greater than 1+

√
3, see

Fig. 4(a).

i

i + 1

j j + 1 j + 2

i + 2

jj j + 1 j + 1j + 2 j + 2

v vu

uy

x

(a) (b) (c)

i + 3

y

y

Fig. 4. T ′ configurations cases

Case 2. Vertex u is in cell (i + 3, j). We can assume that there are no vertices
of T ′ in cells (i, j + 2) or (i+ 3, j + 2) as then Case 1 applies. Then there must
be vertices y′, y′′ in T ′ in cells (i+1, j +2) and (i+2, j +2). Hence, w(T ′) must
be at least as the weight of the Steiner tree that contains right upper corner
of cell (i, j), right bottom corner of cell (i + 3, j) and left bottom corner of cell
(i + 2, j + 2). By calculating the Fermat point, one can see that such Steiner
tree has weight 1 +

√
3, hence w(T ′) ≥ 1 +

√
3. In Fig. 4(b) subtree T ′ has the

configuration that mimics such Steiner tree.

Case 3. Vertex u is in cell (i+3, j+2). We can assume that there are no vertices
of T ′ in cells (i, j +2) or (i+3, j) as then Case 1 or Case 2 apply. In this case
minimal weight T ′ mimics the Steiner tree that contains right upper corner of
cell (i, j), left bottom corner of cell (i + 3, j + 2), right bottom corner of cell
(i + 2, j) and left upper corner of the cell (i + 1, j + 2), see Fig. 4(c). It is easy

120 B. Bhattacharya et al.

to calculate that the weight of such Steiner tree is
√

5 + 2
√
3 which is greater

than 1 +
√
3. ��

Now we are ready to prove Theorem2.

Proof (of Theorem 2). We will proof the theorem by induction on N . Recall that
N is the number of edges in Topt.

By Lemmas 1, 3 and 4, theorem holds for N ≤ 13. Next we assume that
theorem holds for all trees with number of edges strictly less than N .

We will perform the induction step as follows: through exhaustive case study
we will show that there always exist a subtree T ′ of Topt for which w(T ′) is
greater or equal to number of edges of T ′ divided by 4, and if we remove from
Topt the edges of T ′, it remains connected. In that case, by induction hypothesis
the bound for Topt holds.

We observe Topt as a rooted tree, and given a vertex v of Topt, we denote by
Tv the maximal subtree of Topt rooted at v.

Let u be a non-leaf vertex of Topt with maximum number of edges in its path
to the root.

Assumption 1: We may assume u has at most two children. Namely, in the
case when u has four children u1, u2, u3, u4 let T ′ be a subtree of Tu induced
by {u, u1, u2, u3, u4}. In the case when u has exactly three children u1, u2, u3

set T ′ to be Tv where v is the parent of u. Note that in both cases T ′ has
four edges. Let T ′′ = Topt \ E(T ′) where E(T) denotes the set of edges of a
tree T . Since T ′′ is a tree, by induction hypothesis it follows that |E(T ′′)| =
N −4 ≤ 4w(T ′′)+3. Furthermore, by Lemma1 we have that 4 ≤ 4w(T ′). Hence,
N ≤ 4w(T ′′) + 4w(T ′) + 3 = 4w(Topt) + 3.

Assumption 2: If u has exactly two children u1, u2, we may assume that the
parent of u (denoted by v) has degree strictly greater than two. Namely, if this
is not the case, we set T ′ = Tv ∪ {ev,w} where w is the parent of v, and we
set T ′′ = Topt \ E(Tw). Since T ′ has four edges and T ′′ is a tree, by induction
hypothesis for T ′′ and Lemma 1 we obtain the bound.

Case 1: Vertex u has exactly two children u1, u2. Then by Assumption 2 v has
at least two children. By the choice of u, the number of edges in any path from
v to a leaf in Tv is at most 2. Let w′ be another child of v. By Assumption 1
w′ has at most two children. Also note that we can assume that w′ has at least
one child. Otherwise the subtree T ′ induced by {w′, v, u, u1, u2} has four edges,
hence by removing the edges of T ′ from T we can apply the induction hypothesis
and obtain the bound.

Case 1.1: Vertex v has another child w′′. In this case using the same arguments
as above it can be shown that w′′ must have exactly one or two children. Note
that subtree T ′ induced by v, u, u1, u2 together with Tw′ , Tw′′ has at least seven
edges and at most nine edges. Therefore, Lemmas 2, 3 or 4 can be applied for each
of the cases. Furthermore, for the remaining subtree Topt \ E(T ′) the induction
hypothesis can be applied to obtain the bound.

Approximation Algorithms for Generalized MST and TSP in Grid Clusters 121

Case 1.2: Vertex v has only two children w′, u. Let w be the parent of v. We can
assume that w′ has exactly one child, otherwise the subtree T ′ induced by the
vertices of Tv and vertex w has exactly seven edges, hence we could use Lemma 2.
If the degree of w is two, then let T ′ be the subtree induced by Tw together with
the edge ew,y, where y is the parent of w. T ′ has seven edges and therefore, the
result follows. Now, we may assume that w has another child v′. Let T1 = Tv

and observe that T1 has 5 edges. Let T2 = Tv′ . By the same argument used for
Tv, we conclude that T2 has at most five edges. Let T ′ = T1 ∪ T2 ∪ {ew,v′ , ew,v}.
If T2 has zero, one or two edges, then T ′ has at least seven and at most nine
edges, and hence the bound follows. If T2 has four edges then by induction
hypothesis on Topt \ E(T2) and by applying the Lemma1 on T2, we obtain the
bound. It remains to consider the cases when T2 has three or five edges. If T2

has three edges, then we add edge ew,v′ to T2 and now the new tree has four
edges, hence we can apply the same arguments as before. We are left only with
the case when T2 has five edges. In this case w(T2) ≥ 1, according to Lemma1,
and also T3 = T1 ∪ {ew,v′ , ev,w} has seven edges. By Lemma 2, either w(T3) is
at least 2, or it has the structure depicted in Fig. 3(c), and it is clear that every
edge incident to the tree in Fig. 3(c) is grater than, say 0.5. Hence, in either
case w(T ′) ≥ 3. Since T ′ has twelve edges the bound is obtained by induction
hypothesis on Topt \ E(T ′).

Case 2: Vertex u has exactly one child u1.

Case 2.1 Vertex v has another child w′. In this case Tw′ has depth at most 1. If
w′ has more than one child, then from Case 1 (w′ instead of u) we are done. If
w′ has one child (denoted by w1), then the subtree induced by {u1, u, v, w′, w1}
has four edges and we are done.

We continue by assuming that w′ has no child. If v has another child w′′ /∈
{u,w′}, then as we argued for w′, we can assume that w′′ has no child. However,
in this case subtree induced by {u1, u, v, w′, w′′} has four edges and we are done.
Therefore we can assume that v has exactly two children w′ and u. Let w be the
parent of v. Then the subtree induced by u1, u, v, w′, w has four edges and we
are done.

Case 2.2: Vertex v has only child u. Let w be the parent of v. W can assume
that v has a sibling node v′, as otherwise we can remove the four edge subtree
induced by {u1, u, v, w, z}, where z is the parent of w. Furthermore, we can
assume that v′ has a child u′, as otherwise we can remove the four edge subtree
induced by {u1, u, v, w, v′}.
Case 2.2.1: Vertex u′ has no child but has a sibling u′′. We can assume that no
child of v′ has a child, as we can observe such case as an instance of Case 2.2.3.
Furthermore, we can assume that u′ and u′′ are only children of v′. Otherwise,
in the case when v′ has more than three children, there would exist a subtree of
Tv′ with four edges that we could remove. Furthermore, in the case when v′ has
exactly three children, we can remove T ′ = Tv′ ∪ {ew,v′}.

Hence we are left with the case when u′′ is the only sibling of u′. In the
case v and v′ are only children of w, we can remove seven edge subtree T ′ =

122 B. Bhattacharya et al.

Tw ∪ {ew,z}, where z denotes the parent of w. Lastly, we consider the case when
there exist third child of w denoted by v′′. From the assumptions and solved
cases above, we can assume that Tv′′ has at most two edges, hence subtree
T ′ = Tv ∪Tv′ ∪Tv′′ ∪{ew,v, ew,v′ , ew,v′′} has seven, eight or nine edges, therefore
we can remove it.

Case 2.2.2: Vertex u′ has no child nor sibling. In the case there exists a third
child of w, from the assumptions and solved cases above if would follow that we
can assume that it has only one child which has no child. In that case thee would
exist a subtree of Tw with four edges that we can remove. Hence, we can assume
that w has no other children besides v and v′. Then Tw is a path with five edges.
If w(Tw) is grater than 5/4, we can remove it and we are done. Otherwise it must
be similar to the structure depicted in Fig. 5, i.e. with a path of approximate
size 1 alongside a border of a cell, and with remaining vertices grouped at the
endpoints of such path. Note that in that case, edge ew,z must be big enough so
that w(Tw ∪ {ew,z}) is greater than 6/4. Hence we can remove Tw ∪ {ew,z} and
by induction hypothesis obtain the bound.

Fig. 5. A short path with five edges

Case 2.2.3: Vertex u′ has a child u′
1. Note that from the assumption on maxi-

mality of depth of u, u′
1 has no children. As we solved Case 2.1, we can assume

that u′
1 has no siblings. Furthermore, we can assume that there is no sibling of u′

that has a child, as in that case there would exist subtree of Tv′ with four edges
that we could remove. Now in the case that u′ has more than one sibling, again,
there would exist subtree of Tv′ with four edges that we could remove. In the
case that u′ has exactly one sibling, subtree T ′ = Tv′ ∪ {ew,v′} can be removed.
We are left with the case when both Tv and Tv′ are paths with two edges. In
the case there is a third child of w, denoted by v′′, from the solved cases above
if follows that we can assume that Tv′′ is also a path with two edges. In that
case there is a subtree of Tw with nine edges that can be removed. In the case
there is no third child of w, the seven edges subtree T ′ = Tw ∪ {ew,z} (with z
being the parent of w), can be removed and the bound obtained. We considered
all the cases, therefore proving the theorem. ��

4 Approximation of the GGTSP

Our approximation algorithms for the GGMST can be used to obtain approxi-
mation algorithms for the geometric generalized travelling salesman problem on
grid clusters (GGTSP) using standard methods.

Approximation Algorithms for Generalized MST and TSP in Grid Clusters 123

Algorithm 4. (2 + 8
√
2 + 2ε)-approximation algorithm for the GGTSP

Data: Instance I of the GGTSP
Result: Generalized travelling salesman tour

1 TA ← output of Algorithm 3 on I;
2 GE ← Eulerian graph obtained by doubling all edges in TA;
3 ET ← an Euler tour of GE ;
4 C ← a GGTSP tour obtained by going along ET and skipping repeated vertices;
5 return C;

We start with the approach of shortcutting a double MST, presented in
Algorithm4 and analyzed next.

By removing one edge from a GGTSP tour, one obtains a GGMST tree, hence
w(TA) is less than (1 + 4

√
2 + ε)OPT , where OPT is the weight of an optimal

solution of the GGTSP. Therefore, w(GE) is less than 2(1+ 4
√
2+ ε)OPT . Due

to triangle inequality, shorcutting the Euler tour in line 4 of the algorithm does
not increase the weight. Hence, Algorithm4 is a (2 + 8

√
2 + 2ε)-approximation

algorithm for the GGTSP. Note that 2 + 8
√
2 is approximately equal to 13.31.

Next we use the approach from the famous Christofides 3
2 -approximation

algorithm for the metric TSP, see [3]. This approach will give us 0.5 decrease
of the approximation ratio. We give a sketch of the algorithm and the analysis,
and leave details to the reader.

We start by running Algorithm1 on the GGTSP instance. Let TG be the
resulting tree. Note that w(TG) is less or equal than (1 + 4

√
2)OPT + 2

√
2,

where OPT is the weight of an optimal solution of the GGTSP. Let S be a set
of non-empty cells that contain a vertex of TG with an odd degree. Note that
|S| is even. Let M be a minimum perfect matching among cells in S, where the
distance between two cells C1, C2 ∈ S is the smallest distance between two points
p1, p2 among all p1 ∈ C1, p2 ∈ C2. It is not hard to show that w(M) ≤ 1

2OPT .
Let MG be the set of edges et1,t2 for which t1, t2 are vertices of TG and there exist
an edge ep1,p2 ∈ M such that p1 and t1 are in the same cell and p2 and t2 are
in the same cell. Note that w(MG) ≤ 1

2OPT + N
√
2, and hence by Theorem2

we get that w(MG) ≤ 1
2OPT + 4

√
2OPT + 3

√
2. By merging MG and TG we

obtain an Eulerian graph, and by shortcutting one of its Euler tours we obtain
a GGTSP tour with weight at most (32 +8

√
2)OPT +5

√
2. By similar approach

as in Algorithm3 and Theorem3, we can get rid of 5
√
2 error, and obtain a

(32 + 8
√
2 + ε)-approximation algorithm for every ε > 0.

5 Conclusions

We presented a simple (1+4
√
2+ ε)-approximation algorithm for the geometric

generalized minimum spanning tree problem on grid clusters (GGMST) and
(1.5+8

√
2+ ε)-approximation algorithm for the geometric generalized travelling

salesman problem on grid clusters (GGTSP).

124 B. Bhattacharya et al.

To obtain guarantied approximation ratios for our algorithms, we used the
following lower bound on the optimal solution: Every tree with N edges that
contains at most one point from any 1 × 1 grid cell is of size at least N−3

4 .
Obtaining a tight lower bound in terms of the number of edges would decrees
guaranteed approximation ratios of our (and other similar) algorithms. Moreover,
it would be an interesting result on its own.

Acknowledgment. We would like to thank Geoffrey Exoo for many usefull discus-
sions.

References

1. Arkin, E.M., Hassin, R.: Approximation algorithms for the geometric covering
salesman problem. Discrete Appl. Math. 55(3), 197–218 (1994)

2. Bovet, J.: The selective traveling salesman problem. Papers Presented at the EURO
VI Conference, Vienna (1983)

3. Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman
problem. In: Traub, J.F. (ed.) Symposium on New Directions and Recent Results
in Algorithms and Complexity, p. 441. Academic Press, Orlando, Florida (1976)

4. Dumitrescu, A., Mitchell, J.S.B.: Approximation algorithms for TSP with neigh-
borhoods in the plane. In: Symposium on Discrete Algorithms, pp. 38–46 (2001)

5. Elbassioni, K.M., Fishkin, A.V., Mustafa, N.H., Sitters, R.A.: Approximation algo-
rithms for Euclidean group TSP. In: Caires, L., Italiano, G.F., Monteiro, L.,
Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 1115–1126.
Springer, Heidelberg (2005)

6. Feremans, C., Grigoriev, A., Sitters, R.: The geometric generalized minimum span-
ning tree problem with grid clustering. 4OR 4, 319–329 (2006)

7. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H Freeman, New York (1979)

8. Gudmundsson, J., Levcopoulos, C.: Hardness result for TSP with neighborhoods.
Technical report LU-CS-TR:2000–216, Department of Computer Science, Lund
Unversity, Sweden (2000)

9. Golden, B.L., Raghavan, S., Stanojevic, D.: Heuristic search for the generalized
minimum spanning tree problem. INFORMS J. Comput. 17(3), 290–304 (2005)

10. Jiang, H., Chen, Y.: An efficient algorithm for generalized minimum spanning tree
problem. In: Proceedings of Genetic and Evolutionary Computation Conference,
pp. 217–224 (2010)

11. Henry-Labordere, A.L.: The record balancing problem: a dynamic programming
solution of a generalized traveling salesman problem. RIBO B–2, 736–743 (1969)

12. Laporte, G.: The traveling salesman problem: an overview of exact and approxi-
mate algorithms. Eur. J. Oper. Res. 59, 231–247 (1992)

13. Laporte, G., Asef-Vaziri, A., Srikandarajah, C.: Some applications of the general-
ized traveling salesman problem. J. Oper. Res. Soc. 47, 1461–1467 (1996)

14. Myung, Y.-S., Lee, C.-H., Tcha, D.-W.: On the generalized minimum spanning
tree problem. Networks 26(4), 231–241 (1995)

Approximation Algorithms for Generalized MST and TSP in Grid Clusters 125

15. Mata, C.S., Mitchell, J.S.B.: Approximation algorithms for geometric tour and
network design problems. In: Proceedings of the 11th Annual Symposium on Com-
putational Geometry, pp. 360–369. ACM (1995)

16. Oncan, T., Corseau, J.F., Laporte, G.: A tabu search heuristic for the generalized
minimum spanning tree problem. Eur. J. Oper. Res. 191, 306–319 (2008)

17. Pop, P.C.: The generalized minimum spanning tree problem. Ph.D. Thesis, Uni-
versity of Twente (2002)

18. Pop, P.C., Still, G., Kern, W.: An approximation algorithm for the generalized
minimum spanning tree problem with bounded cluster size. In: Proceedings of the
First ACiD Workshop. Texts Algorithms vol. 4, pp. 115–121 (2005)

19. Safra, S., Schwartz, O.: On the complexity of approximating TSP with neighbor-
hoods and related problems. In: Di Battista, G., Zwick, U. (eds.) ESA 2003. LNCS,
vol. 2832, pp. 446–458. Springer, Heidelberg (2003)

	Approximation Algorithms for Generalized MST and TSP in Grid Clusters
	1 Introduction
	2 The GGMST Approximation Algorithm
	3 The Lower Bound Proof
	4 Approximation of the GGTSP
	5 Conclusions
	References

