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Abstract. Monitoring an electrical network is an important and chal-
lenging task. Phasor measurement units are measurement devices that
can be used for a state estimation of this network. In this paper we
consider a PMU placement problem without conventional measurements
and with zero injection nodes for a full observability of the network.
We propose two new approaches to model this problem, which take into
account a propagation rule based on Ohm’s and Kirchoff’s law. The nat-
ural binary linear programming description models an iterative observ-
ability process. We remove the iteration by reformulating its fixed point
conditions to a bilevel program, which we then further reformulate to a
single-level mixed-integer linear program. We also present a bilevel algo-
rithm to solve directly the proposed bilevel model. We implemented and
tested our models and algorithm: the results show that the bilevel algo-
rithm is better in terms of running time and size of instances which can
be solved.

Keywords: Bilevel program · Mixed integer linear program · Monitor-
ing electrical network · PMU placement problem

1 Introduction

One of the properties making a grid smart is that its state is continuously moni-
tored. The term state is an abstract concept which may be represented in many
ways. We consider that a state of a grid is the set of values of all the branch
currents and node voltages. Monitoring the state of a grid can be achieved using
tools of measurement and control. A piece of equipment which can be used is
Phasor Measurement Unit (PMU). PMUs are monitoring devices that provide
time synchronized phasor measurement (a phasor is a complex number that
represents both the magnitude and phase angle of the sine waves found in elec-
tricity). A PMU placed at a (sub)station measures the voltage and phase angle
of this (sub)station and branch current phasor of all transmission line emerging
from it [11]. PMUs are synchronized via global positioning systems (GPS) and
send large bursts of data to a system monitoring centre. Due to the relatively
high cost of PMUs, their optimal placement constitutes an important challenge.

Modelling the network by a graph where nodes correspond to (sub)stations
and edges to transmission lines, the optimal location problem of PMUs, called
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PMU placement problem, consists of determining the minimum number of
PMUs to place on the nodes, in order to ensure a full observability of the graph.
A graph is said fully observed if the voltage is known at each node, and the
current known on each edge. In [2], the observability of a graph is defined by
two rules: (i) if a node has a PMU then this node and all its neighbours are
observed; (ii) if an observed node has all its neighbours observed, except one,
then this latter is observed. The PMU placement problem is also known
as power dominating set (PDS) problem [8]. This problem has been largely
studied in literature. The PDS is shown to be NP -complete even for bipartite,
chordal graphs [8] and planar bipartite graphs [2], and polynomial for trees and
grids [4]. Some approximation results are presented in [1]. Different solution
methods have been proposed to solve the PMU placement problem [11,12].
In all these approaches, the propagation rule has been considered for the zero
injection nodes with a limited depth.

The PMU placement problem has also been studied for PMUs with lim-
ited channels � where only a limited number of incident transmission lines can
be observed [9,10]. Korkali and Abur propose a binary linear program consid-
ering for each node of the graph all the possible combinations of � edges among
incident edges of that node [9]. The number of combinations can be exponential.
Kumar and Rao propose a new method to solve PMU placement problem
based on node connectivity and edge selectivity matrices where the number of
channels are less than the minimum degree of the graph [10]. For PMUs with
one channel, only one incident line can be observed. The placement of PMUs is
then no more on nodes but on edges. The first rule of observability is then: if an
edge has a PMU then its extremity nodes are observed. Emami et al. propose
a binary linear program for this variant of the problem [5,6], which turns out
to be equivalent to the minimum edge cover problem. They consider the second
rule of observability defined in [2] for zero injection nodes with only one depth.

We propose in this paper a new approach to model the optimal location of
PMUs with one channel. We place PMUs on edges (next to one of the adjacent
nodes) and take into account both rules of observability. We call this particular
variant the Power Edge Set (PES) problem. More specifically, we consider
the case without conventional measurements (measures provided by non syn-
chronized sensors) and all nodes are zero injection nodes (no current is injected
in the network at those nodes). We present two mathematical formulations for
this problem: iterative and bilevel models; the latter can be formally inferred
from the former by means of a fixed-point argument. The former is a Binary
Linear Program. We show that the latter can be reformulated exactly to a
Mixed-Integer Linear Program (MILP) with binary variables, and also propose
a cutting-plane algorithm to solve it in its native bilevel formulation. We bench-
marked our solution methods on standard IEEE bus-systems [14] and randomly
generated graphs.
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2 Problem Statement

Let G = (V,E) be a graph modelling the electrical network where V = {1, . . . , n}
is the set of nodes representing the (sub)stations and E the set of edges corre-
sponding to transmission lines. For i ∈ V , Γ (i) = {j : {i, j} ∈ E} is the set of
neighbours (adjacent nodes) of i. For graph-theoretical notions, see [7,13].

In this paper, we are interested in the optimal placement of PMUs with
one channel, so as to ensure a full observability of G. We consider that no
conventional measures exist, which would reduce the number of PMUs to install.

A PMU is placed on an edge {i, j} close to node i, for i ∈ V and {i, j} ∈ E.
We remark that the fact that PMU placement occurs closer to an adja-

cent node than the other is relevant for physical reasons, but irrelevant for our
abstract modelling purposes. Henceforth, we shall simply assume that placement
occurs on an edge {i, j} ∈ E. A graph is said to be observable if all node volt-
ages and current edges are known either measured by a PMU or estimated using
electrical laws. The problem is defined as follows:

Power Edge Set (PES) problem
Input: A graph G = (V,E).
Output: A PMU placement Π ⊂ E of minimum cardinality such that G is fully
observable.

2.1 Observability of a Graph

Let Π be a given PMU placement on G and Ω the set of observed nodes. The
observability of G is defined by the two following rules based on electrical laws
explained below.

R1: If a PMU is placed on an edge {i, j}, then nodes i and j are observed

{i, j} ∈ Π ⇒ i, j ∈ Ω

R2: If an observed node i has all its neighbors observed, save one, then this node
is observed

i ∈ Ω and |Γ (i) \ Ω| ≤ 1 ⇒ Γ (i) ⊆ Ω

By rule R1, the PMU placed at {i, j} measures the voltage at i and the
current on {i, j}. Using Ohm’s law, we can deduce the voltage on j. Then i and
j are observed. By rule R2, if a node i and all its neighbors k ∈ Γ (i) are observed,
except a single node j, then using Ohm’s law we can determine the current on
{i, k} for k ∈ Γ (i) \ {j}; knowing the currents on all {i, k} (for k �= j) we can
deduce the current on {i, j} using Kirchoff’s law. Then, knowing the voltage at i
and the current on {i, j}, we determine the voltage on j using Ohm’s law. Hence,
j is observed.
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3 Mathematical Modelling

We present two Mathematical Programming (MP) models for PES problem: an
iterative based model, and a bilevel one.

3.1 Iterative Model

The model is based on the iterative process of observability given by rules R1
and R2. Assuming the problem instance to be a feasible one, the set of observed
nodes can be found in at most n − 2 steps: this is because, in the worst case,
only one PMU is placed on an edge (this observes the adjacent nodes), and one
more node is observed at each iteration. Let T = n−2 be the maximum number
of steps. The iterative model (PIT) is as follows.

Variables. We define the following set of variables:

∀i ∈ V, j ∈ Γ (i), sij =
{

1 if a PMU is installed on {i, j}
0 otherwise

∀i ∈ V, t = 0, . . . , T, ωit =
{

1 if the node i is observed at step t
0 otherwise

and ∀i ∈ V, j ∈ Γ (i), t = 0, . . . , T − 1,

yijt =
{

1 if R2 is used to observe j using the observed node i at step t
0 otherwise.

Constraints. The set of constraints is the following:

– All nodes must be observed at step T

∀i ∈ V, ωiT = 1

– If a node i is observed at step 0 then at least one PMU is placed at {i, j} or
{j, i} for a given neighbour j of i

∀i ∈ V, ωi0 ≤
∑

j∈Γ (i)

(sij + sji)

– The set of constraints corresponding to rule R2 is the following:
• If i not observed at step t is observed at step t + 1 then at least one

neighbour observed node has been used to observe i

∀i ∈ V, t = 0, . . . , T − 1, ωi(t+1) ≤ ωit +
∑

�:i∈Γ (�)

y�it

• If an observed node i is used at step t to observe a neighbour node j and
j is observed at step t + 1 then j is not observed at step t

∀i ∈ V, j ∈ Γ (i), t = 0, . . . , T − 1, ωj(t+1) + yijt ≤ ωjt + ωit + 1
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• If an observed node i is used at step t to observe a neighbour node j and j
is observed at step t + 1 then j is not observed at step t and all the other
neighbour nodes k of i are observed at step t

∀i ∈ V, j, k ∈ Γ (i), k �= j, t = 0, . . . , T − 1, ωj(t+1) + yijt ≤ ωjt +ωkt +1

– If a node i is observed at step t then i is observed from step t to step T

∀i ∈ V, t = 0, . . . , T − 1, ωit ≤ ωi(t+1).

Objective Function. The aim of PES problem is to minimize the number of
PMUs to install and that allow a full observability of G. Hence the objective
function is given by

min
∑
i∈V

∑
j∈Γ (i)

sij .

3.2 From Iterative to Bilevel Model

We show in this subsection how to deduce a bilevel model from the iterative one
using a fixed-point method.

Let ωt = (ωit | i ∈ V ) be the characteristic vector describing the observ-
ability of nodes at step t. The iterative model computes the vector values for
t ∈ {1, . . . , T}. Let ω = (ωi | i ∈ V ) be the characteristic vector of Ω:

∀i ∈ V, ωi =
{

1 if node i is observed
0 otherwise.

We have that ω = ωT . We show now how to obtain a non iterative model where
ω are the only variables that model the observability of the graph.

Let t ≤ T and i a node in V . The recursive relation that allows to express
ωi(t+1) in function of ωt is:

ωi(t+1) = max

⎛
⎝ωit, max

j∈Γ (i)

⎛
⎝1 − |Γ (j)| + ωjt +

∑
k∈Γ (j),k �=i

ωkt

⎞
⎠

⎞
⎠

meaning that a node i is observed at step t+1 if it was already observed at step
t or if there exists a neighbour j of i such that all the other neighbours k �= i of
j are observed.

Let θ : {0, 1}n 	→ {0, 1}n be a function where

∀i ∈ V, θi(x) = max

⎛
⎝xi, max

j∈Γ (i)

⎛
⎝1 − |Γ (j)| + xj +

∑
k∈Γ (j),k �=i

xk

⎞
⎠

⎞
⎠ .

with x = (xi | i ∈ V ) and (θ(x))i = θi(x).
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By definition we have that:

∀t ∈ {1, . . . , T − 1} ω(t+1) = θ(ωt).

Recursive Computation of ω: The vector ω is determined recursively as
follows:

– Based on R1, for t = 0 we have:

∀i ∈ V, ωi0 = max( max
j∈Γ (i)

sij , max
j∈Γ (i)

sji)

– Knowing ωt, we can compute ω(t+1) by looking for an optimal solution of the
linear program:

(∗)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

min
ωt+1∈{0,1}n

n∑
i=1

ωi(t+1)

∀i ∈ V ωi(t+1) ≥ ωit

∀i ∈ V, j ∈ Γ (i) ωi(t+1) ≥ 1 − |Γ (j)| + ωjt +
∑

k∈Γ (j)
k �=i

ωkt.

Theorem 1. We have that ω is the smallest fixed point of θ.

Proof. By the definition of the function θ, we have that θi(ω) ≥ ωi,∀i ∈ V.
Suppose that ∃i ∈ V, θi(ω) > ωi i.e. ωi = 0 and θi(ω) = 1. Then i ∈ Ω by an
application of R2 which implies ωi = 1 > 0 = ωi, contradiction. Hence θ(ω) = ω.

Assume now that ∃ω′ < ω : ω′ = θ(ω′). This means that R2 cannot be used
to observed more nodes. Hence the number of nodes observed in ω′ is less then
the one in ω, i.e.

∑
i∈V

ω′
i <

∑
i∈V

ωi which contradict the optimality of (∗).

Therefore, ω is the smallest fixed point of θ and correspond to the optimal
solution of the following linear program:

⎧⎪⎪⎨
⎪⎪⎩

min
ω∈{0,1}n

∑n
i=1ωi

ωi ≥ sij + sji ∀i ∈ V, j ∈ Γ (i)
ωi − ωj − ∑

k∈Γ (j),k �=i

ωk ≥ 1 − |Γ (j)| ∀i ∈ V, j ∈ Γ (i)

��

3.3 Bilevel Model

We describe in this subsection the bilevel program proposed to model the PES
problem. We also show how it can be reformulated to a MILP.
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The formulation

(†)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
s

∑
i∈V

∑
j∈Γ (i)

sij

sij ∈ {0, 1} ∀i ∈ V, j ∈ Γ (i)
f(s) ≥ n

f(s) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

min
ω

∑
i∈V

ωi

ωi ≥ sij + sji ∀i ∈ V, j ∈ Γ (i)
ωi − ωj − ∑

k∈Γ (j),k �=i

ωk ≥ 1 − |Γ (j)| ∀i ∈ V, j ∈ Γ (i)

ωi ∈ {0, 1} ∀i ∈ V

In the upper level problem, the objective is to minimize the number of PMUs
to install such that the number of observed nodes given fy the function f(s) is
at least n. The function f corresponds to the optimal value of the lower level
problem described below and s is the vector representing sij .

In the lower level problem, the objective is to minimize the number of nodes
observed. The first set of constraints says that if a PMU is placed at {i, j} or
{j, i} then i and j are observed. The second expresses the propagation rule R2:
if a non observed node i has an observed neighbour j that has all its others node
neighbours k(k �= i) observed then i is observed.

MILP Reformulation. The integrality of variables ωi can be relaxed in the
lower level problem.

Lemma 1. For each i ∈ V, the constraint ωi ∈ {0, 1} can be replaced by ωi ≥ 0.

Proof. Let ω̄ be an optimal solution of the slave problem and consider a certain
configuration of installed PMUs in the graph.

By the first constraint

ωi ≥ sij + sji, ∀i ∈ V, j ∈ Γ (i) (1)

we have that ∃S ⊆ V,∀i ∈ S, ω̄i = 1. If we rewrite the second constraint of the
slave problem as

∀i ∈ V, j ∈ Γ (i), ωi ≥ ωj +
∑

k∈Γ (j),k �=i

ωk − |Γ (j)| + 1

we have that the right hand side r(ω̄) ∈ [1 − |Γ (j)|, 1].
If r(ω̄) ∈]0, 1[ then ∃z ∈ Γ (j) ∪ {j} : ω̄z ∈]0, 1[. Hence, ∃Z ⊆ V, ∀z ∈ Z :

ω̄z ∈]0, 1[. Also, ∀z ∈ Z, z is not constrained by (1) otherwise ω̄z = 1. By the
objective function direction, ∀z ∈ Z we can set ω̄z = 0 and still be feasible,
which contradict the optimality of ω̄. Therefore, we can relax the integrity of
variables ω to [0, 1]n.

Similarly, we can prove that ∀i ∈ V, ωi ≥ 0. ��
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Hence, by replacing the lower-level problem by its KarushKuhnTucker (KKT)
conditions [3], we obtain the following MILP:

(P )

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
s

∑
i∈V

∑
j∈Γ (i)

sij

sij ∈ {0, 1} ∀i ∈ V, j ∈ Γ (i)

∑
i∈V

∑
j∈Γ (i)

sijμij + sjiμij + (1 − |Γ (j)|)λij ≥ n

∑
j∈Γ (i)

(μij + λij − λji − ∑
k∈Γ (j),k �=i

λkj) ≤ 1 ∀i ∈ V

λij , μij ≥ 0 ∀i ∈ V, j ∈ Γ (i)

We now prove that the dual variables μij are bounded, ∀i ∈ V, j ∈ Γ (i).

Proposition 1. ∀i ∈ V, j ∈ Γ (i), ∃M > 0 : μij ≤ M .

Proof. Let (s∗, μ∗, λ∗) be an optimal solution of (P ) and (s∗, ω∗) be the corre-
sponding optimal solution of the bilevel formulation. In particular, we consider
(s∗, μ∗, λ∗) such that (μ∗, λ∗) is a basis solution of the dual program of the linear
program that defines f :

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

max
s

∑
i∈V

∑
j∈Γ (i)

sijμij + sjiμij + (1 − |Γ (j)|)λij∑
j∈Γ (i)

(μij + λij − λji − ∑
k∈Γ (j),k �=i

λkj) ≤ 1 ∀i ∈ V

λij , μij ≥ 0 ∀i ∈ V, j ∈ Γ (i)

Necessarily at most n dual variables are non-zero. Let I = {(i, j) | μij �= 0}
and J = {(i, j) | λij �= 0}. We have |I| + |J | ≤ n.

Let i ∈ {1, ..., n} such that ω∗
i = 1. By complementary slackness conditions

we have ∑
j∈Γ (i)

(μ∗
ij + λ∗

ij − λ∗
ji −

∑
k∈Γ (j),k �=i

λ∗
kj) = 1 (2)

Let AB ∈ R
n×n be the basis matrix corresponding to the optimal solution

(μ∗, λ∗). By Eq. (2), v = (μ∗, λ∗, β∗) is a solution of the system AB v = e, where
β∗ denotes the slack variables used to write the above dual program in standard
form, e is a vector in R

n where each component is one, and all elements of AB

are in {−1, 0, 1}.

SinceA−1
B = adj(AB)

det(AB) , where adj(AB) is the adjugatematrix ofAB and det(AB)
is the determinant of AB , using Hadamard inequality for determinant, we obtain
that the dual variables μij are all bounded by M = n

n
2 , ∀i ∈ V, j ∈ Γ (i). ��
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By Proposition 1, we can linearize the program (P ) by replacing the variable
products by ∀i ∈ V, j ∈ Γ (i), pij = sijμij and qij = sjiμij . Therefore, we obtain
the MILP (PMILP).

(PMILP)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
∑
i∈V

∑
j∈Γ (i)

sij

si,j ∈ {0, 1} ∀i ∈ V, j ∈ Γ (i)∑
i∈V

∑
j∈Γ (i)

pij + qij + (1 − |Γ (j)|)λij ≥ n

∑
j∈Γ (i)

(μij + λij − λji − ∑
k∈Γ (j),k �=i

λkj) ≤ 1 ∀i ∈ V

pij ≤ M sij ∀i ∈ V, j ∈ Γ (i)
pij ≤ μij ∀i ∈ V, j ∈ Γ (i)
pij ≥ μij − M(1 − sij) ∀i ∈ V, j ∈ Γ (i)
qij ≤ M sji ∀i ∈ V, j ∈ Γ (i)
qij ≤ μij ∀i ∈ V, j ∈ Γ (i)
qij ≥ μij − M(1 − sji) ∀i ∈ V, j ∈ Γ (i)
λij , μij ≥ 0 ∀i ∈ V, j ∈ Γ (i)

4 An Algorithm for the Bilevel Problem

We propose a cutting plane algorithm BiLevelSolve to solve the bilevel pro-
gram (†) directly. BiLevelSolve iteratively solves a modified version of the
upper level problem as a master MILP, adding a new cut at each iteration. The
cuts are generated by means of the combinatorial procedure GenerateCut on
the lower level slave problem.

Consider the following MILP P k:

[P k]

{
min

s∈{0,1}|E|

∑
i∈V

∑
j∈Γ (i)

sij

∀h ≤ k αhs ≥ 1,
(3)

where αh ∈ {0, 1}|E| for each h ≤ k, and k is the main algorithm iteration
counter: at iteration k, P k has k linear covering constraint, starting with α1 =
(1, . . . , 1).

Although BiLevelSolve needs exponentially many cuts in the worst case,
we found it to perform very well empirically.

5 Computational Results

All the experimentations presented here were performed on a 2.70 GHz computer
with 8.0 GB RAM. The models (PIT), (PMILP) and the bilevel algorithm were
implemented using IBM ILOG CPLEX 12.6. We considered as instances a 5-bus
system and standard IEEE n-bus systems, with n ∈ {7, 14, 30, 57, 118} [14]. We
also generate randomly graphs with n nodes and m = 1.4 × n for n = {5 × i, i =
1, . . . , 10} where 1.4 is the average rate of edges over nodes in standard IEEE
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Algorithm 1. BiLevelSolve

1: k = 1
2: termination ← 0
3: while termination = 0 do
4: s ← MILPSolve(P k)
5: k ← k + 1
6: αk = GenerateCut(s, termination)
7: P k ← [P k−1 s.t. αks ≥ 1]
8: end while

Algorithm 2. GenerateCut(s, termination)
1: termination ← 0
2: // observe nodes according to PMUs in s
3: place PMUs in G in all edges in the support of s
4: apply rules R1 and R2 to G, to obtain Ω ⊆ V (observed nodes)
5: if Ω = V then
6: // if PMUs in s suffice to observe all nodes, terminate
7: termination ← 1
8: α ← (0, . . . , 0)
9: else

10: // otherwise, apply more PMUs and aim to observe all nodes
11: Θ ← Ω
12: while Ω � V do
13: choose v ∈ V setminusΩ and {u, v} ∈ E
14: place PMU in {u, v} and apply R1, R2 to update Ω
15: if Ω �= V then
16: Θ ← Ω
17: end if
18: end while
19: // generate cut on edges not induced by nodes observed
20: // at R2 application step before full observability
21: let F be the set of edges induced by Θ
22: let α be the support of E \ F
23: end if
24: return (α, termination)

bus systems. The instances can be forests and no node is isolated. For each value
of n, 10 different instances were generated and tested. The results obtained are
reported in Table 1 where each given value for the randomly generated graphs
is the average over 10 instances. We limited the running time to 2 h. For any
instance which is not solved optimally within the time limit, the running time
is set to this limit. We reported: (i) the Gap, expressed as a percentage, that
is the average over ratios UB − BS

UB computed on all instances returning at least
one feasible solution, where UB is the final best upper bound and BS is the best
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solution value found; and (ii) the number of instances #opt solved optimally,
and the number of instances that run out of memory (mof, for memory overflow).

Table 1. Computational results

Networks/graphs n m Iterative MILP Bilevel algo.

Time Gap #opt Time Gap #opt Time Gap #opt

(s) (%) (mof) (s) (%) (mof) (s) (%) (mof)

IEEE bus system 5 6 1.30 0 1 1.29 0 1 2.01 0 1

7 8 6.22 0 1 1.33 0 1 2.14 0 1

14 20 19.30 0 1 1.38 0 1 2.17 0 1

30 41 7200 100 0 40.93 0 1 2.37 0 1

57 80 7200 100 0 7200 63.51 0 4.26 0 1

118 176 7200 100 0 7200 100 0 247.41 0 1

Rand. gen. graphs 5 7 1.30 0 10 6.42 0 10 2.09 0 10

10 14 2.20 0 10 1.37 0 10 2.16 0 10

15 21 297.60 0 10 1.48 0 10 2.18 0 10

20 28 7200 69.89 0 2.34 0 10 2.26 0 10

25 35 7200 96.33 0 29.16 0 10 2.64 0 10

30 42 7200 95.71 0 1820.58 5.31 8 4.86 0 10

35 49 7200 98.14 0(1) 3789.77 16.81 6 15.26 0 10

40 56 7200 93.11 0 6316.36 33.56 1(5) 24.34 0 10

45 62 7200 98.57 0 7200 47.14 0 148.58 0 9

50 70 7200 93.16 0 7200 50.36 0(4) 414.24 0 7

italics: average over instances that did not run out of memory

We note that the iterative model cannot be used to solve medium and larger
size instances. The MILP model can solve instances with more larger size than
the iterative one but cannot solve large size instances. The bilevel algorithm can
solve almost all the instances considered in few seconds. It did not solve only 4
instances of the random generated graphs considered within the time limit. For
small instances, MILP performs a little better than the bilevel. This is due to
the choice of the solution selected at each iteration to generate the cutting plane
in the bilevel algorithm. Hence some iterations may be needed to converge to the
optimal solution in the bilevel algorithm while in the MILP model, having a small
number of variables and constraints for those instances, the model converges in
few seconds.

Therefore the bilevel algorithm is better in terms of running time and size of
instances that can be solved.

Remark 1. We assumed here that the installation cost is the same for every PMU
location at a node along an edge. If not, the problem consists then in finding the
placement of PMUs that ensures a full observability of the graph and minimize
the total installation cost. Let, ∀i ∈ V, j ∈ Γ (i), cij be the cost of installing a
PMU on {i, j} at i. The new objective function is then given by:

min
∑
i∈V

∑
j∈Γ (i)

cij sij
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Remark 2. The models proposed for PMU placement problem, where PMUs
are with unlimited number of channels and hence the placement is done on nodes,
do not consider the propagation rule too. Our proposed models can easily be
adapted to this node version.

6 Conclusions

We presented a new approach to model PES problem using a propagation rule
based on Ohm’s and Kirchoff’s laws to reduce the number of PMUs to place. We
proposed two mathematical models: an iterative model and a bilevel one. The
iterative model is based on the observability propagation process and is given
by a binary linear program. The bilevel model is deduced from the iterative
one using fixed point method. We showed that we can transform the bilevel
model to a MILP. We proposed also an algorithm to solve the bilevel model.
We implemented these models and algorithm for the bilevel program and we
performed tests on different IEEE bus systems and randomly generated graphs.
The results showed that: the iterative model cannot be used for medium and
large instances; the MILP model can solve instances with more large size than
the iterative one but cannot solve large size instances; and the bilevel algorithm
can solve instances with large sizes. Therefore, the bilevel algorithm is better in
terms of running time and size of instances that can be solved. Further future
work could be to model the case of conventional measures. We can also consider
the case of line outage and single contingency of PMUs. Another further future
work would be to generalize our models for the case of PMUs with limited
channels �. Also, due to maintenance or repairing works the electrical network
topology is not fixed. Hence, another interesting perspective is to study the PMU
placement problem under these conditions by proposing a robust model and
a solution method to solve it.
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