
Improved Algorithms
for the Evacuation Route Planning Problem

Gopinath Mishra1, Subhra Mazumdar2, and Arindam Pal2(B)

1 Advanced Computing and Microelectronics Unit,
Indian Statistical Institute, Kolkata, India

gopianjan117@gmail.com
2 Innovation Labs, TCS Research, Tata Consultancy Services, Kolkata, India

{subhra.mazumdar,arindam.pal1}@tcs.com

Abstract. Emergency evacuation is the process of movement of people
away from the threat or actual occurrence of hazards such as natural
disasters, terrorist attacks, fires and bombs. In this paper, we focus on
evacuation from a building, but the ideas can be applied to city and
region evacuation. We define the problem and show how it can be mod-
eled using graphs. The resulting optimization problem can be formulated
as an integer linear program. Though this can be solved exactly, this app-
roach does not scale well for graphs with thousands of nodes and several
hundred thousands of edges. This is impractical for large graphs.

We study a special case of this problem, where there is only a single
source and a single sink. For this case, we give an improved algorithm
Single Source Single Sink Evacuation Route Planner (SSEP), whose
evacuation time is always at most that of a famous algorithm Capacity
Constrained Route Planner (CCRP), and whose running time is strictly
less than that of CCRP. We prove this mathematically and give support-
ing results by extensive experiments. We also study randomized behavior
model of people and give some interesting results.

1 Introduction

Emergency evacuation is the process of movement of people away from the threat
or actual occurrence of hazards such as natural disasters, terrorist attacks, fires
and bombs. In this paper, we focus on evacuation from a building, though the ideas
can be applied to city and region evacuation. We are motivated by the evacuation
drill that regularly happens in our company Tata Consultancy Services. We are
developing a system SmartEvacTrak [1] for people counting and coarse-level
localization for evacuation of large buildings. Safe evacuation of thousands of
employees in a timely manner, so that no one is left behind, is a major challenge for
the building administrators. Time is the main parameter in our model. The travel
time between different areas of the building is part of the input and the evacuation
time is the output. In the following discussion, we use {graph, network}, {node,
vertex}, {edge, arc}, and {path, route} interchangeably.

We have a building along with its floor plan. Employees are present in some
portions (rooms) of the building. There are some exits on the floor. Every
c© Springer International Publishing Switzerland 2015
Z. Lu et al. (Eds.): COCOA 2015, LNCS 9486, pp. 3–19, 2015.
DOI: 10.1007/978-3-319-26626-8 1

4 G. Mishra et al.

corridor has a capacity, which is the number of employees that can pass through
the corridor per unit time. Every corridor also has a travel time, which is the
time required to move from the start of the corridor to the end. The goal is to
suggest a feasible route for each employee so that he can be guided to an exit.
It must be ensured that at any time the number of employees passing through
a corridor does not exceed it’s capacity.

A complex building does not provide its occupants with all the information
required to find the optimal route. In an emergency, people tend to panic and
do not always follow the paths suggested by the algorithm. They are not given
enough time to establish a cognitive map of the building. To address this issue, we
need to model the behavior of people in emergency situations. We have proposed
a simple randomized behavior model and analyzed it. The expected evacuation
time comes out to be quite good. None of the previous works considered any
behavior model of people.

2 Related Work

In this section, we give a summary of different algorithms for the evacuation route
planning problem. Skutella [12] has a good survey on the network flows over time
problem. The monograph by Hamacher and Tjandra [4] surveys the state of the
art on the mathematical modeling of evacuation problems. Both these papers
give a good introduction and comprehensive treatment to this topic.

The LP based polynomial time algorithm for evacuation problem by Hoppe
and Tardos [5] uses the ellipsoid method and runs in O(n6T 6) time, where n is
the number of nodes in the graph and T is the evacuation egress time for the
given network. It uses time-expanded graphs for the network, where there are
T +1 copies of each node. The expression for time complexity shows that it is not
scalable even for mid-sized networks. Another disadvantage is that it requires
the evacuation egress time (T) apriori, which is not easy to estimate. As the
time complexity is a function of T , it is not a fully polynomial time algorithm.

One of the earliest algorithms by Lu et al. [8] is Capacity Constrained Route
Planner (CCRP). CCRP uses Dijkstra’s generalized shortest path algorithm to
find shortest paths from any source to any sink, provided that there is enough
capacity available on all nodes and edges of the path. An important feature of
CCRP is that instead of a single value which does not vary with time, edge
capacities and node capacities are modeled as time series (function of time).
Here, we need to update edge and node capacities for each time period. The
running time of CCRP is O(p(m+n log n)), (O(pn log n) for sparse graphs, where
m = O(n)) and space complexity is O((m+n)T) (O(nT) for sparse graphs). Here
m and n denotes the number of edges and the number of vertices of the graph
respectively, p denotes the number of evacuees, and T denotes the evacuation
egress time. As space complexity is always at most the time complexity, the
running time of CCRP is implicitly dependent on T . For sparse graphs, nT ≤
pn log n, i.e., T ≤ p log n. So, for sparse graphs the evacuation egress time is at
most O(p log n). The space complexity of O(nT) and unnecessary expansion of
source nodes in each iteration are two main disadvantages of CCRP.

Improved Algorithms for the Evacuation Route Planning Problem 5

To overcome the unnecessary expansion in each iteration, Yin et al. [14]
introduced the CCRP++ algorithm. The main advantage of CCRP++ is that
it runs faster than CCRP. But the quality of solution is not good, because
availability along a path may change between the times when paths are reserved
and when they are actually used.

Min and Neupane [11] introduced the concept of combined evacuation time
(CET) and quickest paths, which considers both transit time and capacity on
each path and provides a fair balance between them. Let there be k edge-disjoint
paths {P1, P2, . . . , Pk} from source node s to sink node t. Then, the combined
evacuation time is given by,

CET ({P1, P2, . . . , Pk}) =

⌈
p +

∑k
i=1 CiTi∑k

i=1 Ci

⌉
− 1 (1)

where Ci and Ti denotes the capacity and transit time of path Pi respectively,
and p denotes the number of evacuees. Time required to evacuate p people via
a path P having transit time T and capacity C is T +

⌈
p
C

⌉ − 1. So, Pi is said

to be the quickest path if and only if Ti +
⌈

p
Ci

⌉
− 1 ≤ Tj +

⌈
p

Cj

⌉
− 1, for all

j ∈ {1, . . . , k} \ {i}.
The formula for combined evacuation time not only gives an exact expres-

sion for the evacuation time, but it also gives the number of people that will
be evacuated on each path. The intuition behind the concept of CET is that
paths having lesser arrival time will evacuate more groups. This algorithm is
known as QPER (Quickest Path Evacuation Routing). The algorithm finds all
edge-disjoint paths between a single source and a single sink and orders them
according to the quickest evacuation time (calculated using CET) and adds
them one by one. The algorithm is fairly simple. It does not use time-expanded
graphs and there is no need to store availability information at each time stamp,
as only edge-disjoint paths are considered. But their algorithm is limited to
single source and single sink evacuation problems. Besides these, the addition of
paths is not consistent, i.e., a path added at some point of time may be removed
by the algorithm at a latter point of time, in case removal makes the solution
better.

The solutions produced by CCRP++ and QPER do not follow semantics
of CCRP, i.e., the solution quality is not better than that of CCRP. Recently
Gupta and Sarda [3] have given an algorithm called CCRP*, where evacuation
plan is same as that of CCRP and it runs faster in practice. Instead of running
Dijkstra’s algorithm from scratch in each iteration, they resume it from the
previous iteration.

Kim et al. [6] studied the contraflow network configuration problem to mini-
mize the evacuation time. In the contraflow problem, the goal is to find a recon-
figured network identifying the ideal direction for each edge to minimize the
evacuation time, by reallocating the available capacity. They proved that this
problem is NP-complete. They designed a greedy heuristic to produce high-
quality solutions with significant performance. They also developed a bottleneck

6 G. Mishra et al.

relief heuristic to deal with large numbers of evacuees. They evaluated the pro-
posed approaches both analytically and experimentally using real-world data
sets. Min and Lee [10] build on this idea to design a maximum throughput
flow-based contraflow evacuation routing algorithm.

Min [9] proposed the idea of synchronized flow based evacuation route plan-
ning. Synchronized flows replace the use of time-expanded graphs and provides
higher scalability in terms of the evacuation time or the number of people evac-
uated. The computation time only depends on the number of source nodes and
the size of the graph.

Dressler et al. [2] uses a network flow based approach to solve this problem.
They use two algorithms: one is based on minimum cost transshipment and
the other is based on earliest arrival transshipment. They evaluate these two
approaches using a cellular automaton model to simulate the behavior of the
evacuees. The minimum cost approach does not consider the distances between
evacuees and exits. It may fail if there are exits very far away. Problems also arise
if a lot of exits share the same bottleneck edges. The earliest arrival approach
uses an optimal flow over time and thus does not suffer from these problems.
But the exit assignment computed by the earliest arrival approach may not be
optimal.

There are some previous works which considered the behavior of people in
an emergency. Løvs [7] proposed different models of finding escape routes in an
emergency. Song et al. [13] collect big and heterogeneous data to capture and
analyze human emergency mobility following different disasters in Japan. They
develop a general model of human emergency mobility using a Hidden Markov
Model (HMM) for generating or simulating large amount of human emergency
movements following disasters.

v2, 2 v3, 3

v9, 3 v10, 3

v7, 7

(1, 1)

(1, 1)

(1, 1)

(1, 1)

(2, 1)

(2, 1)

p1

ex1 ex2

v1, 2

v4, 7 v5, 3

v8, 2

v6, 4

p2 p3

p4 p5 p7

p6

(2, 2)

(2, 1)

(1, 1)

(2, 2)

(2, 2)

(1, 2) (1, 2)

(2, 1) (2, 1)

Fig. 1. A building graph, where vertices represented as squares denote exits. The vertex
name and capacity are written inside a vertex. The edge capacity and travel time are
written beside an edge. Persons residing on a vertex are specified beside that vertex.

Improved Algorithms for the Evacuation Route Planning Problem 7

3 Problem Definition and Model

The building floor plan can be represented as a graph G = (V,E), where V and
E are the set of vertices and edges respectively. The number of vertices and edges
are n and m respectively. Nodes represent rooms, lobbies and intersection points
and arcs represent corridors, hallways and staircases. Some nodes in the building
having significant number of people are modeled as source nodes. The exits of a
building are represented as sink nodes. Each node has a capacity, which is the
maximum number of people that can stay at that location at any given time and
an occupancy, which is the number of people currently occupying the location.
Here, p is the total number of people who needs to be evacuated.

Each edge has a capacity, which is the maximum number of people that can
traverse the edge per unit time and a travel time, which is the time needed to
travel from one node to another along that edge.

Figure 1 shows a building graph that consists of 10 vertices and 15 edges.
For each vertex v, it’s name and the capacity are specified by a pair of the form
(v, c(v)). A vertex representing an exit is drawn as a square, while the others are
drawn as circles. For each edge e, the capacity and the travel time are specified
on the edge by the pair (c(e), d(e)). The goal is to find the exit and the path
(route) for each employee, subject to the constraint that the number of source-
sink paths passing through an edge does not exceed the capacity of the edge at
any unit time interval. The objective function we want to minimize is the total
time of evacuation, that is the time at which the last employee is evacuated.
Let’s define this as the evacuation time. In the quickest flow problem, we are
given a flow value f . We want to minimize the time T in which a feasible flow
of value at least f can be sent from sources to sinks.

4 The Single Source Single Sink Problem

In this section, we focus on the single source single sink evacuation (SSEP)
problem. In real life, single source single sink evacuation problem has many
applications. For example, if all the people are in an auditorium, and there is only
one exit in the building, we want to evacuate people as soon as possible, when
there is an emergency. Throughout the rest of this paper, s denotes the source
and t denotes the sink. Before proceeding further let’s have some definitions.

Definition 1. Transit time of a path is the sum of the transit times of all the
edges in P from s to t, and is denoted as T (P).

Definition 2. Destination arrival time of a path is the time required by a person
to move from s to t using path P subject to prior reservations, and is denoted
as DA(P). In other words, we can say that DA(P) is the sum of T (P) and any
intermediate delay. Note that DA(P) ≥ T (P).

Definition 3. Capacity of a path is the minimum of the capacities of all nodes
and edges present in the path P , and is denoted by C(P).

8 G. Mishra et al.

Definition 4. A node (edge) on a path P is called saturated if the capacity of
the node (edge) equals the capacity of P .

Definition 5. Two paths P1 and P2 are said to be distinct if V1 �= V2 or E1 �=
E2, where V1, V2 are the set of vertices and E1, E2 are the set of edges on the
paths P1 and P2 respectively.

4.1 Limitation of QPER Algorithm for SSEP

Using the concept of combined evacuation time, Min et al. [11] gave an algorithm
QPER for the single source single sink evacuation problem. Their algorithm
works well when we have already discovered k edge-disjoint paths. In QPER,
paths from s to t are added one by one in ascending order of quickest paths, and
new CET is calculated after each path addition. But after addition of a path,
the new CET may be less than the transit time of a previously added path. In
that case, we have to delete those paths which have higher transit time than
the current CET . This in turn increases the running time, since the addition of
paths is not consistent.

We overcome the above limitations of the algorithm by adding paths in
increasing order of transit time in each iteration till the transit time of the
currently discovered path exceeds the CET of the previously added set of paths.
Note that, we need not discover all possible paths from source to sink, since
unlike QPER, if a path is added in any iteration, it will remain till the end. The
CET after each iteration will be monotonically non-increasing.

4.2 Modified Algorithm for SSEP When We Are Given k
Edge-Disjoint Paths

Let P1, P2, . . . , Pk be k edge-disjoint paths from s to t in ascending order of their
transit time, i.e., T1 ≤ T2 ≤ . . . ≤ Tk. We define, Si = {P1, . . . , Pi}. We add
paths to our set of routes (R) in the following fashion.

1. R = {P1}.
2. CET = CET (S1).
3. Start with i = 1 Execute step 4 and 5 till i ≤ k and Ti+1 ≤ CET .
4. Add path Pi+1 to R.
5. CET = CET (Si+1) and i ← i + 1.
6. Return R.

Lemma 1. If Sj = {P1, P2, . . . , Pj}, j ≤ k is returned as R by the above algo-
rithm then

1. Tl+1 ≤ CET (Sl), 1 ≤ l < j
2. CET (S1) ≥ CET (S2) ≥ . . . ≥ CET (Sj)
3. CET (Sj) ≤ CET (Sl), j < l ≤ k.

Improved Algorithms for the Evacuation Route Planning Problem 9

Proof. Directly follows from the algorithm.

Lemma 2. If Sj = {P1, P2, . . . , Pj}, j ≤ k is returned as R by above algorithm
then T1 ≤ T2 ≤ . . . ≤ Tj ≤ CET (Sj) ≤ CET (Sj−1) ≤ . . . ≤ CET (S1)

Proof. Here T1 ≤ T2 ≤ . . . ≤ Tj and by Lemma 1 CET (Sj) ≤ CET (Sj−1)
≤ . . . ≤ CET (S1). So, the only thing remains to prove is Tj ≤ CET (Sj). Let
by contrary assume that Tj > CET (Sj). By putting formula for CET (Sj−1)
from Eq. (1) and then solving we get Tj > CET (Sj−1). By Lemma 1,
Tj ≤ CET (Sj−1). This is a contradiction.

Lemma 3. If Sj = {P1, P2, . . . , Pj}, j ≤ k is returned as R by above algorithm
then CET (Sj) ≤ CET (Sj \ {Pi}), 2 ≤ i ≤ j.

Proof. We will prove this statement by contradiction. Let CET (Sj) > CET (Sj \
{Pi}), which implies Ti > CET (Sj) by putting formula for CET from equation-1.
It is not possible by Lemma 2. Hence the claim holds.

Remark 1. The addition of paths by the above algorithm is consistent, i.e. if a
path is added then it will remain till the end of the algorithm execution.

4.3 An Important Observation

In Fig. 2, ordered pair (C, T) denotes capacity and transit time of an edge. There
are two paths P1 and P2 between s and t.

P1 : s − B − C − E − G − t, C(P1) = 4, T (P1) = 19.
P2 : s − A − C − E − F − t, C(P2) = 6, T (P2) = 23.

P1 and P2 are not edge-disjoint, but common edge CE has capacity of 10 i.e.
C(P1) + C(P2) = C(CE). So, flow can be sent through P1 and P2 in parallel
and we may think like we have two copies of edge CE one having capacity 4,
dedicated for P1 and other one having capacity 6, dedicated for P2. We name
such set of paths as “virtually edge disjoint”. Now it is easy to observe that
to apply the formula of combined evacuation time on a set of paths, defined in
Eq. (1), the necessary condition is they should be virtually edge disjoint rather
than edge disjoint.

s

A

B

C E

F

G

t

(15, 1)

(15, 1)

(6, 4)

(4, 2)

(10, 8)

(12, 7)

(10, 5)

(8, 3)

(8, 3)

Fig. 2. An example to show that parallel flows can be sent on non edge-disjoint paths.

10 G. Mishra et al.

4.4 Our Algorithm for SSEP

The main idea of the algorithm is to find set of virtually edge disjoint paths one
by one and calculate CET as in Sect. 4.2 after each path addition till it satisfies
a required condition.

We discover paths one by one in the order of their transit time as follows.
We find path P1 along with its capacity C1 having minimum transit time and
decrease capacities of each node and path of P1 by its capacity C1 permanently
and delete saturated nodes and edges. Let’s say we have already added paths
{P1, P2, . . . , Pi}, i ≥ 1, and updated the capacities of nodes and edges along
with deletion of required saturated nodes and edges. Note that P1, P2, . . . , Pi are
virtually edge disjoint. Hence formula of CET can be applied. In next iteration
we discover a path Pi+1 in residual graph iff t is reachable from s and i < p(see
line number-4 in Algorithm1). We add the discovered path Pi+1 iff Ti+1 ≤
CET (Si)(see line number-6 in Algorithm1). As we delete saturated nodes and
edges in each iteration when a path is added we discover paths in maximum of
m + n iterations i.e. at max m + n paths and we are not going to discover more
than p paths as each path can evacuate atleast one people. So, our algorithm
restricts finding exponential number of possible paths from s to t . More clearly
we discover at most min(m + n, p) paths.

Here one may think of we are adding paths only based on transit time without
considering capacity. Note that selection of a path for addition is based on transit
time, addition of selected path is done if its transit time less than or equal to
previously calculated CET, which is function of both capacities and transit times
of previously added paths. So, our addition of paths to the solution is based on
both transit time and capacities of paths implicitly.

4.5 Running Time Analysis of SSEP

From the above discussion it is clear that at most min(m + n, p) paths will
be discovered and equivalently our algorithm runs for at most min(m + n, p)
iterations. As each path discovery can be done in O((m + n log n) time,
using well known Dijkstra algorithm for shortest path, our entire algorithm
requires O(min(m + n, p)(m + n log n) time. Assuming m = O(n), this becomes
O(min(n, p) ·n log n), which is always at most O(pn log n). Recall that the time-
complexity of CCRP is O(pn log n). Hence, SSEP always performs faster than
CCRP. In real life, the number of evacuees is much larger than the number of
vertices, so SSEP runs much faster than CCRP.

4.6 CCRP Algorithm for SSEP and Some Observations

CCRP [8] is an industry standard algorithm. Many studies have shown that the
quality of solution produced by CCRP is better than most heuristic algorithms.
We present the CCRP algorithm in simplified form, when there is a single source
and a single sink.

Improved Algorithms for the Evacuation Route Planning Problem 11

Algorithm 1. Single Source Single Sink Evacuation Route Planner (SSEP)
Input: A graph G(V, E) representing the network with designated source s ∈ V and sink

t ∈ V . Every node v ∈ V has an occupancy and maximum capacity. Every edge
e ∈ E has a maximum capacity and transit time. Initially, all persons are in s.

Output: Evacuation route plan for each person.
1 begin
2 Initialize R = ∅ and CET = ∞.
3 Initialize i ← 0.
4 while (t is reachable from s) and number of discovered paths ≤ p − 1 do
5 Find the shortest path Pi+1 from s to t in G(V, E)and let Ti+1, Ci+1 be its transit

time and capacity respectively.
6 if Ti+1 ≤ CET then
7 R = R ∪ {Pi+1}.
8 CET = CET (Si+1).
9 Reduce capacity of each node and each edge of Pi+1 by Ci+1.

10 V = V \ {v : v is a saturated node of Pi+1}.
11 E = E \ {e : e is a saturated edge of Pi+1}.
12 end
13 else
14 break.
15 end

16 end
17 Let R = {P1, P2, . . . , Pk}.
18 Send xi persons via Pi, 1 ≤ i ≤ k, where Ti + 	 xi

Ci

 − 1 = CET .

19 end

1. s is added to the priority queue. The nodes in priority queue are ordered
based on the distance calculated from s during algorithm execution.

2. While there are evacuees in s, find the path P having minimum destination
arrival time from s to t taking the capacity of the various nodes and edges
into consideration.

3. Find capacity of P and reserve capacity along the path for a group of size
equal to the minimum capacity.

4. If there are evacuees left at s, go to step 2.

Definition 6 (Group Size of a Path). In each iteration of CCRP one path
(say Pi) from s to t is discovered along with maximum number of people that
can be evacuated through that path. This is defined as the group size of Pi for
this iteration.

For the below sections we denote Ti, Ci as transit time and group size of path
Pi respectively.

Observation 1. Let’s consider execution of single source(s) single sink(t) evac-
uation network by CCRP algorithm. Let P1, P2, . . . , Pk be distinct paths(not nec-
essarily edge-disjoint) from s to t discovered by CCRP such that T1 ≤ T2 ≤ . . . ≤
Tk. Here Ai(T) is any permutation of P1(T), P2(T), . . . , Pi(T) and Pj(T) is the
path Pj with destination arrival time T .

Phase 1: A1(T1), A1(T1 + 1), . . . , A1(T2 − 1)
. . .

12 G. Mishra et al.

Phase i: Ai(Ti), Ai(Ti + 1), . . . , Ai(Ti+1 − 1), i < k
. . .
Phase k: Ak(Tk), Ak(Tk + 1), . . . , Ak(Tk + ε − 2), Ak(Tk + ε − 1).

Here ε is the maximum number of times any path is discovered in phase k. Note
that ε ≥ 1 as Pk is discovered at least once.

Number of times any path discovered in phase-k is either ε or ε − 1. It
is because of the following argument. By definition of ε there exists a path
(say Pm) discovered ε number of times. Let Pl is a path discovered less than
ε − 1 number of times. In this case CCRP algorithm would have returned Pl

instead of Pm, because using path Pl some people can reach destination before or
at time Tk + ε − 2 and Pm has earliest destination arrival time of Tk + ε − 1.

Consider the point when all k paths have been returned ε − 1 times in phase
k. Now we may not have enough evacuees such that CCRP will return each
path once. We can add some virtual evacuees such that we will use all the paths
exactly ε times in phase-k and for simplicity we can say ε is the number of times
path Pk is returned by CCRP.

Here it is easy to note that evacuation egress time TCCRP
Evac = Tk + ε − 1 and

it is independent of permutation of paths in any Ai(T). So, fix a permutation
i.e. Ai(T) = P1(T), P2(T), . . . , Pi(T). Fixing up this permutation doesn’t affect
the solution, but it will make the analysis easier.

Observation 2. Let P1, P2, . . . , Pk be distinct paths(not necessarily edge-
disjoint) from s to t discovered by CCRP such that T1 ≤ T2 ≤ . . . ≤ Tk.
Here Pi is the shortest path discovered after deletion of saturated nodes/edges
of P1, P2, . . . , Pi−1.

Remark 2. Algorithm 1 finds a path even after we have deleted saturated nodes
and edges of all previously discovered path, if it satisfies the conditions given on
line numbers 4 and 6.

Observation 3. Let’s consider the sequence of paths as in Observation 1 with
the fixed permutation of each Ai(T) as explained. A path Pi may be returned in
many iterations of CCRP. Group size returned in all iterations are equal possibly
except last time when Pi is discovered(in phase k) in case we don’t have enough
evacuees left at s. This type of situation might happen only once as we are dealing
with single source single destination network and it can happen in phase k after
or while discovery of Pk for the first time. In such cases we can add some virtual
evacuees to s so that group size of a path remains same in all iterations. It will
not affect evacuation egress time but it will make the analysis easier.

Remark 3. We can represent each path discovered by CCRP as an ordered pair
of path and its group size. Algorithm 1 returns a path with maximum number of
people who can travel by that path at any time. As each path is discovered only
once, we can represent each path along with the capacity as an ordered pair.

Improved Algorithms for the Evacuation Route Planning Problem 13

4.7 Analysis of Algorithm 1

Lemma 4. Let (P1, C1), (P2, C2), . . . , (Pk, Ck) be distinct paths (not necessarily
edge-disjoint) from s to t in order of their transit time discovered by CCRP.

1. Number of iterations that will return path Pi is Tk − Ti + ε, 1 ≤ i ≤ k, where
ε denotes number of iterations that returns path Pk.

2. Number of iterations that will return path Pi before phase j is Tj − Ti, where
i ≤ j ≤ k.

3. The same paths will be returned by Algorithm 1, and T1 ≤ T2 ≤ . . . ≤ Tk.

Proof. Parts (1) and (2) directly follows from Observation 1. For part (3), by
induction we can prove that algorithm 1 finds each path Pj , 1 ≤ j ≤ k with
available capacity Cj .

Base Case: j = 1 i.e. (P1, C1) is added by Algorithm 1. This is obvious.

Inductive Step: Suppose paths (P1, C1), . . . , (Pj , Cj), 1 ≤ j < k have been
added by Algorithm 1. We have to prove that Algorithm 1 will also add
(Pj+1, Cj+1).

Part 1: From Observation 2, Pj+1 is the shortest path from s to t in resid-
ual graph i.e. if we delete saturated node(s) and/or edge(s) of the paths
P1, P2, . . . , Pj . Algorithm 1 also adds paths one by one after deleting saturated
node(s) and/or edges(s) of previously discovered paths. So, structure of the graph
remains same after addition of these j paths both in CCRP and Algorithm1.
So, Pj+1 is also the best path w.r.t. transit time in residual graph according to
Algorithm 1. As Pj+1 is the best path in residual network either no paths will
be added or Pj+1 will be added to set of routes in Algorithm 1.

Let by contrary assume that Algorithm 1 doesn’t add path Pj+1 i.e. Algo-
rithm1 does not add any path. Clearly it may happen due to one of the two rea-
sons i.e. either t is not reachable from s or number of paths discovered = p(line
number-4 in Algorithm 1) or Tj+1 > CET (Sj)(line number-6 in Algorithm1).

Case 1(a): (t is not reachable from s)
As CCRP is able to find path Pj+1, t is reachable from s. Contradiction!

Case 1(b): (Number of paths discovered = p)
It is clear from CCRP Algorithm given in Sect. 4.6 that it does not discover
more than p paths as in each path at least one people will be evacuated. As
CCRP finds path Pj+1, number of paths discovered before discovery of Pj+1 by
Algorithm 1 can’t be more than p − 1.

Case 2: (Tj+1 > CET (Sj))
Just come back to the point when CCRP adds path (Pj+1, Cj+1) for the first
time. It can happen only in phase j +1. From Lemma 4 Pi is returned in Tj+1 −
Ti, 1 ≤ i ≤ j < k, iterations before phase j +1. As Pj+1 discovered in phase j +1
for the first time total number of people evacuated through Pi before discovery of

14 G. Mishra et al.

Pj+1 is at least Tj+1 −Ti. As group size of path Pi is Ci, total number of people
evacuated before discovery of Pj+1 is at least

∑j
i=1 Ci(Tj+1−Ti). As CCRP adds

the path Pj+1 we can say that still there are people to be evacuated. Also from
Observation 3 virtual evacuees are added while or after addition of path Pk. So,
total number of people evacuated before discovery of Pj+1 is strictly less than
p. Mathematically

∑j
i=1 Ci(Tj+1 − Ti) < p, which implies Tj+1 ≤ CET (Sj).

Contradiction!

Part 2: Now one thing remains to prove is available capacity of the path Pj+1

returned by Algorithm 1 is also Cj+1. If Pj+1 doesn’t share any node or edge
with previously discovered path we are done. So, assume that there is some
node or edge x which is common to both Pj+1 and some Pi, 1 ≤ i ≤ j. Here
we argue considering x as a node and argument for x as an edge is same.
Let tkn denotes time required to travel from s(source) to node n via path Pk

with out intermediate delay. Observe that tj+1
x ≥ tix. From observation 1 Pj+1 is

discovered in phase j + 1 for the first time by CCRP algorithm. In phase j + 1
consider Aj+1(Tj+1). Pi has been discovered once before discovery of Pj+1 with
its destination arrival time Tj+1 i.e. it has made a reservation of Ci at x for the
time instance tj+1

x at node x. Now arrival time of evacuees via Pj+1 to x is also
tj+1
x . At tj+1

x we can not use that capacity of Ci for evacuees routing via Pj+1. In
other words as if node x has dedicated capacity of Ci at time tj+1

x for evacuees
routing via Pi and that can’t be used by evacuees routing via Pj+1. Here we
have not assumed anything on i and x. For each such i and x, Pj+1 can’t use
the capacity of Ci at time tj+1

x at node x. It is equivalent to permanently decre-
menting the capacity of such x’s by corresponding Ci, because from observation
1 whenever Pj+1 is discovered prior to that a reservation of Ci must have been
done at common node x(of Pi and Pj+1) by path Pi. Now come back to Algo-
rithm1. By induction each path Pi, i ≤ j is returned with capacity Ci. We find
path Pj+1 by decrementing the capacity of each path by Ci permanently. So,
just before addition of Pj+1 structure of the graph remains same w.r.t. capacity
both in CCRP and Algorithm1. From this discussion we can say that capacity
of path Pj+1 returned by Algorithm 1 is Cj+1.

Theorem 1. The evacuation time of the solution given by Algorithm1 is at
most as that of the CCRP Algorithm for single source and single sink.

Proof. Let (P1, C1), (P2, C2), . . . , (Pk, Ck) be distinct paths (not necessarily
edge-disjoint) from s to t in order of their transit time (neglecting delays)
discovered by CCRP. By Lemma 4, Algorithm 1 also returns the same set
of paths. From Observation 1, we can say that evacuation time of CCRP is
TCCRP

Evac = Tk + ε − 1. Evacuation time of Algorithm 1 is CET (Sk). Also from
Lemma 4, number of people that are evacuated through Pi is Ci(Tk −Ti + ε). As
All people have been evacuated we can write

∑k
i=1 Ci(Tk − Ti + ε) ≥ p, which

implies TCCRP
Evac ≥ CET (Sk).

Theorem 2. Upper bound on the evacuation time given by CCRP (hence by
Algorithm1) for single source single sink network is

⌊
p
k

⌋
+ (n − 1)τ − 1, where

p is the number of evacuees, n is the number of nodes in the graph, τ is the

Improved Algorithms for the Evacuation Route Planning Problem 15

maximum transit time of any edge and k is the number of paths used by CCRP
(and Algorithm1).

Proof. From Lemma 4, number of iterations executed by CCRP is
∑k

i=1(Tk −
Ti + ε) ≤ p, as in each iteration at least one person will be evacuated. Hence,
TCCRP

Evac ≤ ⌊
p
k

⌋
+ (n − 1)τ − 1.

5 Randomized Behavior Model of People

The idea of combined evacuation time [11] can be extended by considering prob-
abilistic behavior of people. Suppose in an evacuation, people do not follow the
paths suggested by Algorithm 1 (or CCRP). Let’s say with probability α > 0 a
person follows suggested path and with probability 1−α he follows the shortest
path (to the nearest exit). In this situation, we have to redistribute people via
various paths. If we suggest xi persons via Pi, i �= 1, then the number of persons
who will follow Pi and P1 is αxi and (1−α)xi respectively (in expectation). The
total number of people following P1 and Pi are x1+

∑k
i=2(1−α)xi and αxi, i �= 1

respectively. Expected time at which the last person will arrive at destination
via P1 is T1 + x1+

∑k
i=2(1−α)xi

C1
−1. Expected time at which last person will arrive

at destination via Pi is Ti + αxi

Ci
− 1, i �= 1

Let the expected evacuation time in this scenario be E[T]. Now we can write,

E[T] = max
(

T1 +
(1 − α)n

C1
− 1, max

2≤i≤k

(
Ti +

αxi

Ci
− 1

))
.

E[T] will be minimum when it satisfies the following equation,

E[T] = T1 +
x1 +

∑k
i=2(1 − α)xi

C1
− 1

= Ti +
αxi

Ci
− 1, 2 ≤ i ≤ k. (2)

where
∑k

i=1 xi = n and xi ≥ 0,∀i. Solving the above equations we get,

E[T] =
n +

∑k
i=1 CiTi∑k

i=1 Ci

− 1 = CET ({P1, P2, . . . , Pk}) (3)

Expected evacuation time given by Eq. (3) doesn’t depend on α. This is true
and solution is feasible as long as x1 ≥ 0. But it is not always the case, specifi-
cally when (1 − α)

∑k
i=2 xi > C1(T − T1 + 1). So, implicitly evacuation time is

dependent on α. In the following sections we give the algorithm that considers
the randomized behavior of people along with analysis for expected evacuation
time.

5.1 Lower Bound for Expected Evacuation Time

On expectation x1 + (1 − α)
∑k

i=2 xi = αx1 + (1 − α)n number of people will
be evacuated via path P1. This is minimum when x1 = 0 as x1 ≥ 0. So, lower
bound for expected evacuation time is T1 + (1−α)n

C1
− 1.

16 G. Mishra et al.

Fig. 3. Evacuation time vs number of nodes for SSEP and CCRP.

5.2 Algorithm for Randomized Behavior of People

Algorithm 2

1. Run Algorithm 1. Find CET and x1, x2, . . . , xk using Eq. (2).
2. If x1 ≥ 0 then quit; else go to step 3. In this case, the expected evacuation

time = CET.
3. Assign x′

1 to 0 and x′
i = nxi∑k

j=2 xj
,∀i �= 1. In this case, the expected evacuation

time = T1 + (1−α)n
C1

− 1.

Lemma 5. x′
i < xi, ∀i �= 1, and

∑k
i=2 x′

i = n.

Proof. Directly follows from the algorithm.

Lemma 6. Above algorithm has a expected evacuation time of CET ({P1, P2,
. . . , Pk}) when it quits from step-2.

Proof. In this case x1 ≥ 0. From the equation-4 also we can observe that xi ≥
0,∀i �= 1. Hence the solution is feasible. So, we can safely say that the expected
evacuation time is CET .

Lemma 7. Above algorithm has a expected evacuation time of T1 + (1−α)n
C1

− 1
when it quits from step-3.

Proof. In this case x1 < 0 and by Lemma 5 x′
i < xi, i �= 1. For i �= 1 x′

i number
of people are suggested path Pi. Hence Ti + px′

i

Ci
− 1 < Ti + pxi

Ci
− 1 < CET ,

i �= 1 and T1 + (1−α)n
C1

− 1 > CET .

Improved Algorithms for the Evacuation Route Planning Problem 17

Fig. 4. Run time vs number of nodes for SSEP and CCRP.

Theorem 3. In a single source single sink evacuation problem, if people follow
the path suggested by Algorithm 2 with probability α, then the expected evacuation
time is max(CET, T1 + (1−α)n

C1
− 1) and algorithm runs in O(min(n, p) · n log n)

time.

6 Experimental Results

6.1 Details of the Experiments

We executed the SSEP and CCRP algorithms on a Dell Precision T7600 server
having an Intel Xeon E5-2687W CPU running at 3.1 GHz with 8 cores (16 logical
processors) and 128 GB RAM. The operating system is Microsoft Windows 7
Professional 64-bit edition. We used the C/C++ network analysis libraries igraph
and LEMON to implement the algorithms. We used netgen to generate synthetic
graphs. The number of vertices in the graph varies from 100 to 500,000. The
number of people varies from 3,000 to 120,000. The results are shown in Table 1.
The graphs are plotted on a log-log scale.

6.2 Results

We show the variation of evacuation time and run time with number of nodes
for SSEP and CCRP algorithms in Figs. 3 and 4 respectively. From Fig. 3, we
can see that the evacuation time of SSEP is at most that of CCRP. It is evident
from Fig. 4 that the running time of SSEP is much lower than that of CCRP.
Hence, for all these instances SSEP clearly outperforms CCRP with respect to
both evacuation time and run time. The absolute and relative amount by which
SSEP performs better than CCRP is shown in Table 1.

18 G. Mishra et al.

Table 1. Comparison of evacuation time and run time of SSEP and CCRP algorithms

Number of Number of Evacuation Run Time Improvement in SSEP

Nodes Evacuees Time over CCRP
(
CCRP
SSEP

)

(n) (p) SSEP CCRP SSEP CCRP Evacuation Time Run Time

100 3000 68 69 0.124 1.326 1.01 10.69

500 5000 130 130 0.358 2.73 1.00 7.63

1000 7000 155 156 1.014 14.586 1.01 14.38

1500 9000 115 117 1.466 35.443 1.02 24.18

2000 15000 661 661 1.622 29.016 1.00 17.89

2500 25000 179 186 2.761 25.739 1.04 9.32

5000 40000 903 903 3.899 93.521 1.00 23.99

10000 65000 517 520 12.012 231.535 1.01 19.28

15000 95000 1848 1853 14.025 336.946 1.00 24.02

25000 100000 1126 1128 23.134 815.682 1.00 35.26

50000 120000 1436 1446 46.69 1684.217 1.01 36.07

100000 110000 1032 1044 93.4952 3016.3005 1.01 32.26

500000 100000 1698 1720 344.341 11363.253 1.01 33.00

7 Conclusion and Future Work

In this paper, we have studied the evacuation route planning problem and given
an improved algorithm for the single source single sink case. We theoretically
showed that the SSEP algorithm performs better than the CCRP algorithm,
both in terms of evacuation time and run time. This is also demonstrated by
extensive experiments. We also analyzed a simple probabilistic behavior model
of people. Here are some open problems which we would like to work in future.

– Design a system for real time monitoring of evacuation in a building using our
indoor localization app [1].

– Extend this algorithm to the multiple source multiple sink case, and compare
it’s performance with CCRP and other algorithms.

– Develop a more sophisticated probabilistic behavior model of people for the
case when they don’t follow the routes suggested by the algorithm.

– Give good lower and upper bounds for the problem.

References

1. Ahmed, N., Ghose, A., Agrawal, A.K., Bhaumik, C., Chandel, V., Kumar, A.:
SmartEvacTrak: a people counting and coarse-level localization solution for effi-
cient evacuation of large buildings. In: IEEE International Conference on Pervasive
Computing and Communication Workshops (PerCom Workshops), pages 372–377.
IEEE (2015)

2. Dressler, D., Groß, M., Kappmeier, J.-P., Kelter, T., Kulbatzki, J., Plümpe, D.,
Schlechter, G., Schmidt, M., Skutella, M., Temme, S.: On the use of network flow
techniques for assigning evacuees to exits. Procedia Eng. 3, 205–215 (2010)

Improved Algorithms for the Evacuation Route Planning Problem 19

3. Gupta, A., Sarda, N.L.: Efficient evacuation planning for large cities. In: Decker,
H., Lhotská, L., Link, S., Spies, M., Wagner, R.R. (eds.) DEXA 2014, Part I.
LNCS, vol. 8644, pp. 211–225. Springer, Heidelberg (2014)

4. Hamacher, H.W., Tjandra, S.A: Mathematical Modelling of Evacuation Problems:
A State of Art. Fraunhofer-Institut für Techno-und Wirtschaftsmathematik, Fraun-
hofer (ITWM) (2001)

5. Hoppe, B., Tardos, É.: Polynomial time algorithms for some evacuation problems.
In: Proceedings of the fifth annual ACM-SIAM symposium on Discrete algorithms,
pp. 433–441. Society for Industrial and Applied Mathematics (1994)

6. Kim, S., Shekhar, S., Min, M.: Contraflow transportation network reconfiguration
for evacuation route planning. IEEE Trans. Knowl. Data Eng. 20(8), 1115–1129
(2008)

7. Løvs, G.G.: Models of wayfinding in emergency evacuations. Eur. J. Oper. Res.
105(3), 371–389 (1998)

8. Lu, Q., George, B., Shekhar, S.: Capacity constrained routing algorithms for evac-
uation planning: a summary of results. In: Medeiros, C.B., Egenhofer, M., Bertino,
E. (eds.) SSTD 2005. LNCS, vol. 3633, pp. 291–307. Springer, Heidelberg (2005)

9. Min, M.: Synchronized flow-based evacuation route planning. In: Wang, X., Zheng,
R., Jing, T., Xing, K. (eds.) WASA 2012. LNCS, vol. 7405, pp. 411–422. Springer,
Heidelberg (2012)

10. Min, M., Lee, J.: Maximum throughput flow-based contraflow evacuation routing
algorithm. In: IEEE International Conference on Pervasive Computing and Com-
munications Workshops (PERCOM Workshops), pages 511–516. IEEE (2013)

11. Min, M., Neupane, B.C.: An evacuation planner algorithm in flat time graphs.
In: Proceedings of the 5th International Conference on Ubiquitous Information
Management and Communication, p. 99. ACM (2011)

12. Skutella, M.: An introduction to network flows over time. In: Cook, W., Lovász,
L., Vygen, J. (eds.) Research Trends in Combinatorial Optimization, pp. 451–482.
Springer, Heidelberg (2009)

13. Song, X., Zhang, Q., Sekimoto, Y., Shibasaki, R., Yuan, N.J., Xie, X.: A simula-
tor of human emergency mobility following disasters: knowledge transfer from big
disaster data. In: AAAI Conference on Artificial Intelligence (2015)

14. Yin, D.: A scalable heuristic for evacuation planning in large road network. In: Pro-
ceedings of the Second International Workshop on Computational Transportation
Science, pp. 19–24. ACM (2009)

	Improved Algorithms for the Evacuation Route Planning Problem
	1 Introduction
	2 Related Work
	3 Problem Definition and Model
	4 The Single Source Single Sink Problem
	4.1 Limitation of QPER Algorithm for SSEP
	4.2 Modified Algorithm for SSEP When We Are Given k Edge-Disjoint Paths
	4.3 An Important Observation
	4.4 Our Algorithm for SSEP
	4.5 Running Time Analysis of SSEP
	4.6 CCRP Algorithm for SSEP and Some Observations
	4.7 Analysis of Algorithm [1]

	5 Randomized Behavior Model of People
	5.1 Lower Bound for Expected Evacuation Time
	5.2 Algorithm for Randomized Behavior of People

	6 Experimental Results
	6.1 Details of the Experiments
	6.2 Results

	7 Conclusion and Future Work
	References

