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Preface

The 9th Annual International Conference on Combinatorial Optimization and Appli-
cations (COCOA 2015) was held during December 18-20, 2015, in Houston, Texas,
USA. COCOA 2015 provided a forum for researchers working in the area of theoretical
computer science and combinatorics.

The technical program of the conference included 59 contributed papers selected by
the Program Committee from 125 full submissions received in response to the call for
papers. All the papers were peer reviewed by Program Committee members or external
reviewers.

The topics cover most aspects of theoretical computer science and combinatorics
related to computing, including classic combinatorial optimization, geometric opti-
mization, network optimization, optimization in graphs, applied optimization, com-
plexity and game, and miscellaneous. Some of the papers will be selected for
publication in special issues of Algorithmica, Theoretical Computer Science, Journal of
Combinatorial Optimization, and Computational Social Networks. It is expected that
the journal version of the papers will appear in a more complete form.

We thank all the people who made this meeting possible: the authors for submitting
papers, the Program Committee members, and external reviewers for volunteering their
time to review conference papers. We would also like to extend special thanks to the
publication, publicity, and local organization chairs for their work in making COCOA
2015 a successful event.

September 2015 Zaixin Lu
Donghyun Kim

Weili Wu

Wei Li

Ding-Zhu Du
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Improved Algorithms
for the Evacuation Route Planning Problem

Gopinath Mishra!, Subhra Mazumdar?, and Arindam Pal?®)

! Advanced Computing and Microelectronics Unit,
Indian Statistical Institute, Kolkata, India
gopianjan117@gmail.com
2 Innovation Labs, TCS Research, Tata Consultancy Services, Kolkata, India
{subhra.mazumdar,arindam.pall}@tcs.com

Abstract. Emergency evacuation is the process of movement of people
away from the threat or actual occurrence of hazards such as natural
disasters, terrorist attacks, fires and bombs. In this paper, we focus on
evacuation from a building, but the ideas can be applied to city and
region evacuation. We define the problem and show how it can be mod-
eled using graphs. The resulting optimization problem can be formulated
as an integer linear program. Though this can be solved exactly, this app-
roach does not scale well for graphs with thousands of nodes and several
hundred thousands of edges. This is impractical for large graphs.

We study a special case of this problem, where there is only a single
source and a single sink. For this case, we give an improved algorithm
Single Source Single Sink Evacuation Route Planner (SSEP), whose
evacuation time is always at most that of a famous algorithm Capacity
Constrained Route Planner (CCRP), and whose running time is strictly
less than that of CCRP. We prove this mathematically and give support-
ing results by extensive experiments. We also study randomized behavior
model of people and give some interesting results.

1 Introduction

Emergency evacuation is the process of movement of people away from the threat
or actual occurrence of hazards such as natural disasters, terrorist attacks, fires
and bombs. In this paper, we focus on evacuation from a building, though the ideas
can be applied to city and region evacuation. We are motivated by the evacuation
drill that regularly happens in our company Tata Consultancy Services. We are
developing a system SMARTEVACTRAK [1] for people counting and coarse-level
localization for evacuation of large buildings. Safe evacuation of thousands of
employees in a timely manner, so that no one is left behind, is a major challenge for
the building administrators. Time is the main parameter in our model. The travel
time between different areas of the building is part of the input and the evacuation
time is the output. In the following discussion, we use {graph, network}, {node,
vertex}, {edge, arc}, and {path, route} interchangeably.

We have a building along with its floor plan. Employees are present in some
portions (rooms) of the building. There are some exits on the floor. Every

© Springer International Publishing Switzerland 2015
Z. Lu et al. (Eds.): COCOA 2015, LNCS 9486, pp. 3-19, 2015.
DOI: 10.1007/978-3-319-26626-8_1
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corridor has a capacity, which is the number of employees that can pass through
the corridor per unit time. Every corridor also has a travel time, which is the
time required to move from the start of the corridor to the end. The goal is to
suggest a feasible route for each employee so that he can be guided to an exit.
It must be ensured that at any time the number of employees passing through
a corridor does not exceed it’s capacity.

A complex building does not provide its occupants with all the information
required to find the optimal route. In an emergency, people tend to panic and
do not always follow the paths suggested by the algorithm. They are not given
enough time to establish a cognitive map of the building. To address this issue, we
need to model the behavior of people in emergency situations. We have proposed
a simple randomized behavior model and analyzed it. The expected evacuation
time comes out to be quite good. None of the previous works considered any
behavior model of people.

2 Related Work

In this section, we give a summary of different algorithms for the evacuation route
planning problem. Skutella [12] has a good survey on the network flows over time
problem. The monograph by Hamacher and Tjandra [4] surveys the state of the
art on the mathematical modeling of evacuation problems. Both these papers
give a good introduction and comprehensive treatment to this topic.

The LP based polynomial time algorithm for evacuation problem by Hoppe
and Tardos [5] uses the ellipsoid method and runs in O(nT°) time, where n is
the number of nodes in the graph and T is the evacuation egress time for the
given network. It uses time-expanded graphs for the network, where there are
T +1 copies of each node. The expression for time complexity shows that it is not
scalable even for mid-sized networks. Another disadvantage is that it requires
the evacuation egress time (T') apriori, which is not easy to estimate. As the
time complexity is a function of T', it is not a fully polynomial time algorithm.

One of the earliest algorithms by Lu et al. [8] is Capacity Constrained Route
Planner (CCRP). CCRP uses Dijkstra’s generalized shortest path algorithm to
find shortest paths from any source to any sink, provided that there is enough
capacity available on all nodes and edges of the path. An important feature of
CCRP is that instead of a single value which does not vary with time, edge
capacities and node capacities are modeled as time series (function of time).
Here, we need to update edge and node capacities for each time period. The
running time of CCRP is O(p(m+nlogn)), (O(pnlogn) for sparse graphs, where
m = O(n)) and space complexity is O((m+n)T) (O(nT) for sparse graphs). Here
m and n denotes the number of edges and the number of vertices of the graph
respectively, p denotes the number of evacuees, and T denotes the evacuation
egress time. As space complexity is always at most the time complexity, the
running time of CCRP is implicitly dependent on T'. For sparse graphs, nT <
pnlogn, i.e., T < plogn. So, for sparse graphs the evacuation egress time is at
most O(plogn). The space complexity of O(nT') and unnecessary expansion of
source nodes in each iteration are two main disadvantages of CCRP.
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To overcome the unnecessary expansion in each iteration, Yin et al. [14]
introduced the CCRP++ algorithm. The main advantage of CCRP++ is that
it runs faster than CCRP. But the quality of solution is not good, because
availability along a path may change between the times when paths are reserved
and when they are actually used.

Min and Neupane [11] introduced the concept of combined evacuation time
(CET) and quickest paths, which considers both transit time and capacity on
each path and provides a fair balance between them. Let there be k edge-disjoint
paths {Py, Ps,..., P} from source node s to sink node ¢. Then, the combined
evacuation time is given by,

CET({P,,Py..... P}) = Fzz’f_cmw 1 1)

where C; and T; denotes the capacity and transit time of path P; respectively,
and p denotes the number of evacuees. Time required to evacuate p people via
a path P having transit time 7" and capacity C is T + [%1 — 1. So, P; is said
to be the quickest path if and only if T; + [Cﬂ—‘ -1<T;+ [C%—‘ — 1, for all
je{l,... k}\{i}.

The formula for combined evacuation time not only gives an exact expres-
sion for the evacuation time, but it also gives the number of people that will
be evacuated on each path. The intuition behind the concept of CET is that
paths having lesser arrival time will evacuate more groups. This algorithm is
known as QPER (Quickest Path Evacuation Routing). The algorithm finds all
edge-disjoint paths between a single source and a single sink and orders them
according to the quickest evacuation time (calculated using CET) and adds
them one by one. The algorithm is fairly simple. It does not use time-expanded
graphs and there is no need to store availability information at each time stamp,
as only edge-disjoint paths are considered. But their algorithm is limited to
single source and single sink evacuation problems. Besides these, the addition of
paths is not consistent, i.e., a path added at some point of time may be removed
by the algorithm at a latter point of time, in case removal makes the solution
better.

The solutions produced by CCRP++ and QPER do not follow semantics
of CCRP, i.e., the solution quality is not better than that of CCRP. Recently
Gupta and Sarda [3] have given an algorithm called CCRP*, where evacuation
plan is same as that of CCRP and it runs faster in practice. Instead of running
Dijkstra’s algorithm from scratch in each iteration, they resume it from the
previous iteration.

Kim et al. [6] studied the contraflow network configuration problem to mini-
mize the evacuation time. In the contraflow problem, the goal is to find a recon-
figured network identifying the ideal direction for each edge to minimize the
evacuation time, by reallocating the available capacity. They proved that this
problem is NP-complete. They designed a greedy heuristic to produce high-
quality solutions with significant performance. They also developed a bottleneck
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relief heuristic to deal with large numbers of evacuees. They evaluated the pro-
posed approaches both analytically and experimentally using real-world data
sets. Min and Lee [10] build on this idea to design a maximum throughput
flow-based contraflow evacuation routing algorithm.

Min [9] proposed the idea of synchronized flow based evacuation route plan-
ning. Synchronized flows replace the use of time-expanded graphs and provides
higher scalability in terms of the evacuation time or the number of people evac-
uated. The computation time only depends on the number of source nodes and
the size of the graph.

Dressler et al. [2] uses a network flow based approach to solve this problem.
They use two algorithms: one is based on minimum cost transshipment and
the other is based on earliest arrival transshipment. They evaluate these two
approaches using a cellular automaton model to simulate the behavior of the
evacuees. The minimum cost approach does not consider the distances between
evacuees and exits. It may fail if there are exits very far away. Problems also arise
if a lot of exits share the same bottleneck edges. The earliest arrival approach
uses an optimal flow over time and thus does not suffer from these problems.
But the exit assignment computed by the earliest arrival approach may not be
optimal.

There are some previous works which considered the behavior of people in
an emergency. Lovs [7] proposed different models of finding escape routes in an
emergency. Song et al. [13] collect big and heterogeneous data to capture and
analyze human emergency mobility following different disasters in Japan. They
develop a general model of human emergency mobility using a Hidden Markov
Model (HMM) for generating or simulating large amount of human emergency
movements following disasters.

(1,2) Pe (1,2)

o, 10,3
Ty W oy W

Ps pr

Fig. 1. A building graph, where vertices represented as squares denote exits. The vertex
name and capacity are written inside a vertex. The edge capacity and travel time are
written beside an edge. Persons residing on a vertex are specified beside that vertex.
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3 Problem Definition and Model

The building floor plan can be represented as a graph G = (V| E), where V' and
E are the set of vertices and edges respectively. The number of vertices and edges
are n and m respectively. Nodes represent rooms, lobbies and intersection points
and arcs represent corridors, hallways and staircases. Some nodes in the building
having significant number of people are modeled as source nodes. The exits of a
building are represented as sink nodes. Each node has a capacity, which is the
maximum number of people that can stay at that location at any given time and
an occupancy, which is the number of people currently occupying the location.
Here, p is the total number of people who needs to be evacuated.

Each edge has a capacity, which is the maximum number of people that can
traverse the edge per unit time and a travel time, which is the time needed to
travel from one node to another along that edge.

Figure 1 shows a building graph that consists of 10 vertices and 15 edges.
For each vertex v, it’s name and the capacity are specified by a pair of the form
(v, c¢(v)). A vertex representing an exit is drawn as a square, while the others are
drawn as circles. For each edge e, the capacity and the travel time are specified
on the edge by the pair (c(e),d(e)). The goal is to find the exit and the path
(route) for each employee, subject to the constraint that the number of source-
sink paths passing through an edge does not exceed the capacity of the edge at
any unit time interval. The objective function we want to minimize is the total
time of evacuation, that is the time at which the last employee is evacuated.
Let’s define this as the evacuation time. In the quickest flow problem, we are
given a flow value f. We want to minimize the time T in which a feasible flow
of value at least f can be sent from sources to sinks.

4 The Single Source Single Sink Problem

In this section, we focus on the single source single sink evacuation (SSEP)
problem. In real life, single source single sink evacuation problem has many
applications. For example, if all the people are in an auditorium, and there is only
one exit in the building, we want to evacuate people as soon as possible, when
there is an emergency. Throughout the rest of this paper, s denotes the source
and ¢ denotes the sink. Before proceeding further let’s have some definitions.

Definition 1. Transit time of a path is the sum of the transit times of all the
edges in P from s to t, and is denoted as T(P).

Definition 2. Destination arrival time of a path is the time required by a person
to move from s to t using path P subject to prior reservations, and is denoted
as DA(P). In other words, we can say that DA(P) is the sum of T(P) and any
intermediate delay. Note that DA(P) > T'(P).

Definition 3. Capacity of a path is the minimum of the capacities of all nodes
and edges present in the path P, and is denoted by C(P).
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Definition 4. A node (edge) on a path P is called saturated if the capacity of
the node (edge) equals the capacity of P.

Definition 5. Two paths Py and Py are said to be distinct if Vi # Vo or By #
Es5, where V1, Vo are the set of vertices and Eq, E5 are the set of edges on the
paths Py and Py respectively.

4.1 Limitation of QPER Algorithm for SSEP

Using the concept of combined evacuation time, Min et al. [11] gave an algorithm
QPER for the single source single sink evacuation problem. Their algorithm
works well when we have already discovered k edge-disjoint paths. In QPER,
paths from s to t are added one by one in ascending order of quickest paths, and
new C'ET is calculated after each path addition. But after addition of a path,
the new C'ET may be less than the transit time of a previously added path. In
that case, we have to delete those paths which have higher transit time than
the current CET'. This in turn increases the running time, since the addition of
paths is not consistent.

We overcome the above limitations of the algorithm by adding paths in
increasing order of transit time in each iteration till the transit time of the
currently discovered path exceeds the C'ET of the previously added set of paths.
Note that, we need not discover all possible paths from source to sink, since
unlike QPER, if a path is added in any iteration, it will remain till the end. The
CFET after each iteration will be monotonically non-increasing.

4.2 Modified Algorithm for SSEP When We Are Given k
Edge-Disjoint Paths

Let Py, Ps, ..., Py be k edge-disjoint paths from s to ¢ in ascending order of their
transit time, i.e., Ty < Ty < ... < Ty. We define, S; = {P1,..., P;}. We add
paths to our set of routes (R) in the following fashion.

R={P}.

CET = CET(S)).

Start with ¢ = 1 Execute step 4 and 5 till i < k and T;11 < CET.
Add path P11 to R.

CET =CET(S;4+1) and i «— i+ 1.

Return R.

AR e

Lemma 1. If S; = {P1, P»,...,P;}, j < k is returned as R by the above algo-
rithm then

1. Tyy <CET(S),1<1<j
2. CET(Sy) > CET(Sy) > ... > CET(S;)
3. CET(S;) < CET(S)),j <1<k.
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Proof. Directly follows from the algorithm.

Lemma 2. IfS; = {Pi, Ps,...,P;}, j <k is returned as R by above algorithm

Proof. Here Th < Tp < ... < T; and by Lemma 1 CET(S;) < CET(S;-1)
< ... < CET(S1). So, the only thing remains to prove is T; < CET(S;). Let
by contrary assume that T; > CET(S;). By putting formula for CET(S;_1)
from Eq.(1) and then solving we get 7; > CET(S;—1). By Lemma 1,
T; < CET(S;_1). This is a contradiction.

Lemma 3. IfS; = {Pi, Ps,...,P;}, j <k is returned as R by above algorithm
then CET(S;) < CET(S; \ {P:}), 2<i <j.

Proof. We will prove this statement by contradiction. Let CET'(S;) > CET(S; \
{P;}), which implies T; > CET(S;) by putting formula for CET from equation-1.
It is not possible by Lemma 2. Hence the claim holds.

Remark 1. The addition of paths by the above algorithm is consistent, i.e. if a
path is added then it will remain till the end of the algorithm execution.

4.3 An Important Observation

In Fig. 2, ordered pair (C,T) denotes capacity and transit time of an edge. There
are two paths P; and P, between s and t.

P:s—B-C—-E—-G—t,CP)=4,T(P)=19.
Py:is—A—C—E—F—t C(P) =6, T(P)=23.

P, and P, are not edge-disjoint, but common edge C'E has capacity of 10 i.e.
C(Py) + C(P2) = C(CE). So, flow can be sent through P; and P» in parallel
and we may think like we have two copies of edge C'E one having capacity 4,
dedicated for P; and other one having capacity 6, dedicated for P,. We name
such set of paths as “virtually edge disjoint”. Now it is easy to observe that
to apply the formula of combined evacuation time on a set of paths, defined in
Eq. (1), the necessary condition is they should be virtually edge disjoint rather
than edge disjoint.

Fig. 2. An example to show that parallel flows can be sent on non edge-disjoint paths.
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4.4 Our Algorithm for SSEP

The main idea of the algorithm is to find set of virtually edge disjoint paths one
by one and calculate CET as in Sect. 4.2 after each path addition till it satisfies
a required condition.

We discover paths one by one in the order of their transit time as follows.
We find path P; along with its capacity C7 having minimum transit time and
decrease capacities of each node and path of P, by its capacity C7 permanently
and delete saturated nodes and edges. Let’s say we have already added paths
{P1, P,..., P}, i > 1, and updated the capacities of nodes and edges along
with deletion of required saturated nodes and edges. Note that P, Ps,..., P; are
virtually edge disjoint. Hence formula of CET can be applied. In next iteration
we discover a path P;y1 in residual graph iff ¢ is reachable from s and i < p(see
line number-4 in Algorithm 1). We add the discovered path P,y iff Tj1q <
CET(S;)(see line number-6 in Algorithm 1). As we delete saturated nodes and
edges in each iteration when a path is added we discover paths in maximum of
m + n iterations i.e. at max m + n paths and we are not going to discover more
than p paths as each path can evacuate atleast one people. So, our algorithm
restricts finding exponential number of possible paths from s to ¢t . More clearly
we discover at most min(m -+ n,p) paths.

Here one may think of we are adding paths only based on transit time without
considering capacity. Note that selection of a path for addition is based on transit
time, addition of selected path is done if its transit time less than or equal to
previously calculated CET, which is function of both capacities and transit times
of previously added paths. So, our addition of paths to the solution is based on
both transit time and capacities of paths implicitly.

4.5 Running Time Analysis of SSEP

From the above discussion it is clear that at most min(m + n,p) paths will
be discovered and equivalently our algorithm runs for at most min(m + n,p)
iterations. As each path discovery can be done in O((m + nlogn) time,
using well known Dijkstra algorithm for shortest path, our entire algorithm
requires O(min(m + n,p)(m + nlogn) time. Assuming m = O(n), this becomes
O(min(n, p) - nlogn), which is always at most O(pnlogn). Recall that the time-
complexity of CCRP is O(pnlogn). Hence, SSEP always performs faster than
CCRP. In real life, the number of evacuees is much larger than the number of
vertices, so SSEP runs much faster than CCRP.

4.6 CCRP Algorithm for SSEP and Some Observations

CCRP [§] is an industry standard algorithm. Many studies have shown that the
quality of solution produced by CCRP is better than most heuristic algorithms.
We present the CCRP algorithm in simplified form, when there is a single source
and a single sink.
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Algorithm 1. Single Source Single Sink Evacuation Route Planner (SSEP)

Input: A graph G(V, E) representing the network with designated source s € V' and sink
t € V. Every node v € V has an occupancy and maximum capacity. Every edge
e € E has a maximum capacity and transit time. Initially, all persons are in s.
Output: Evacuation route plan for each person.
1 begin
2 Initialize R = @ and CET = oo.
3 Initialize 4 < 0.
4 while (¢ is reachable from s) and number of discovered paths < p — 1 do
5 Find the shortest path P;4; from s to ¢ in G(V, E)and let T;41, C;41 be its transit
time and capacity respectively.
6 if Ti+1 S CET then
7 R=RU {qu+1 }
8
9

CET = CET(S;41).
Reduce capacity of each node and each edge of P;41 by Ciy1.

10 V =V \ {v:vis asaturated node of P;;1}.

11 E = E\ {e: e is a saturated edge of P;11}.

12 end

13 else

14 break.

15 end

16 end

17 Let R = {Py, Pa,..., P,}.

18 Send z; persons via P;,1 < i < k, where T; + [é—:] —1=CET.
19 end

1. s is added to the priority queue. The nodes in priority queue are ordered
based on the distance calculated from s during algorithm execution.

2. While there are evacuees in s, find the path P having minimum destination
arrival time from s to t taking the capacity of the various nodes and edges
into consideration.

3. Find capacity of P and reserve capacity along the path for a group of size
equal to the minimum capacity.

4. If there are evacuees left at s, go to step 2.

Definition 6 (Group Size of a Path). In each iteration of CCRP one path
(say P;) from s to t is discovered along with maximum number of people that
can be evacuated through that path. This is defined as the group size of P; for
this iteration.

For the below sections we denote T3, C; as transit time and group size of path
P; respectively.

Observation 1. Let’s consider execution of single source(s) single sink(t) evac-
uation network by CCRP algorithm. Let Py, Py, ..., Py be distinct paths(not nec-
essarily edge-disjoint) from s to t discovered by CCRP such that Ty <Tp < ... <
Ty. Here A;(T) is any permutation of P1(T), Po(T),...,Pi(T) and P;(T) is the
path P; with destination arrival time T

Phase 1: Al(Tl);Al(Tl + 1), .. .,Al(TQ — 1)
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Phase i: Al(ﬂ),Al(ﬂ + 1), e ,Ai(TlH_l — 1),2 <k
Phase k: Ak(Tk), Ak(Tk + 1), ce. ,Ak(Tk +€e— 2), Ak(Tk +€e— 1).

Here € is the maximum number of times any path is discovered in phase k. Note
that € > 1 as Py, is discovered at least once.

Number of times any path discovered in phase-k is either ¢ or e — 1. It
1s because of the following argument. By definition of € there exists a path
(say Pp,) discovered € number of times. Let P, is a path discovered less than
€ — 1 number of times. In this case CCRP algorithm would have returned P,
instead of P,, because using path P, some people can reach destination before or
at time Ty, + € — 2 and P,, has earliest destination arrival time of T, + ¢ — 1.

Consider the point when all k paths have been returned ¢ — 1 times in phase
k. Now we may not have enough evacuees such that CCRP will return each
path once. We can add some virtual evacuees such that we will use all the paths
ezactly € times in phase-k and for simplicity we can say € is the number of times
path Py is returned by CCRP.

Here it is easy to note that evacuation egress time TSCEP =Ty + ¢ —1 and
it is independent of permutation of paths in any A;(T). So, fix a permutation
i.e. A;(T) = P (T),P(T),...,Pi(T). Fizing up this permutation doesn’t affect
the solution, but it will make the analysis easier.

Observation 2. Let Py, P»,..., P, be distinct paths(not necessarily edge-
disjoint) from s to t discovered by CCRP such that Ty < Tp < ... < Tj.
Here P; is the shortest path discovered after deletion of saturated nodes/edges
ObePQ;"'a-P’L'fl-

Remark 2. Algorithm 1 finds a path even after we have deleted saturated nodes
and edges of all previously discovered path, if it satisfies the conditions given on
line numbers 4 and 6.

Observation 3. Let’s consider the sequence of paths as in Observation 1 with
the fized permutation of each A;(T) as explained. A path P; may be returned in
many iterations of CCRP. Group size returned in all iterations are equal possibly
except last time when P; is discovered(in phase k) in case we don’t have enough
evacuees left at s. This type of situation might happen only once as we are dealing
with single source single destination network and it can happen in phase k after
or while discovery of Py for the first time. In such cases we can add some virtual
evacuees to s so that group size of a path remains same in all iterations. It will
not affect evacuation egress time but it will make the analysis easier.

Remark 3. We can represent each path discovered by CCRP as an ordered pair
of path and its group size. Algorithm 1 returns a path with maximum number of
people who can travel by that path at any time. As each path is discovered only
once, we can represent each path along with the capacity as an ordered pair.
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4.7 Analysis of Algorithm 1

Lemma 4. Let (Py,C1), (P2, C2),..., (P, Cy) be distinct paths (not necessarily
edge-disjoint) from s to t in order of their transit time discovered by CCRP.

1. Number of iterations that will return path P; is Ty, — T; +¢€, 1 < i <k, where
€ denotes number of iterations that returns path Py.

2. Number of iterations that will return path P; before phase j is T; — T}, where
i1 <j<k.

8. The same paths will be returned by Algorithm 1, and Ty < Tp < ... < T.

Proof. Parts (1) and (2) directly follows from Observation 1. For part (3), by
induction we can prove that algorithm 1 finds each path P;,1 < j < k with
available capacity Cj.

Base Case: j = 1 ie. (P;,C}) is added by Algorithm 1. This is obvious.

Inductive Step: Suppose paths (Pi,C4),...,(P;,C;),1 < j < k have been
added by Algorithm 1. We have to prove that Algorithm 1 will also add
(Pj41,Cjtr).

Part 1: From Observation2, P;;; is the shortest path from s to ¢ in resid-
ual graph i.e. if we delete saturated node(s) and/or edge(s) of the paths
Py, P, ..., P;. Algorithm 1 also adds paths one by one after deleting saturated
node(s) and/or edges(s) of previously discovered paths. So, structure of the graph
remains same after addition of these j paths both in CCRP and Algorithm 1.
So, Pj4, is also the best path w.r.t. transit time in residual graph according to
Algorithm 1. As Pj4, is the best path in residual network either no paths will
be added or Pj;; will be added to set of routes in Algorithm 1.

Let by contrary assume that Algorithm 1 doesn’t add path Pj;; i.e. Algo-
rithm 1 does not add any path. Clearly it may happen due to one of the two rea-
sons i.e. either ¢ is not reachable from s or number of paths discovered = p(line
number-4 in Algorithm 1) or T; 41 > CET(S;)(line number-6 in Algorithm 1).

Case 1(a): (¢ is not reachable from s)
As CCRP is able to find path Pji1, t is reachable from s. Contradiction!

Case 1(b): (Number of paths discovered = p)

It is clear from CCRP Algorithm given in Sect.4.6 that it does not discover
more than p paths as in each path at least one people will be evacuated. As
CCRP finds path Pj; 1, number of paths discovered before discovery of P, by
Algorithm 1 can’t be more than p — 1.

Case 2: ( Tj11 > CET(S;))

Just come back to the point when CCRP adds path (Pjy1,Cj41) for the first
time. It can happen only in phase j+ 1. From Lemma4 P; is returned in 7)1 —
T;,1 < i < j <k, iterations before phase j+1. As P;;; discovered in phase j+1
for the first time total number of people evacuated through P; before discovery of
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Pj41 is at least T}41 —T;. As group size of path P; is C;, total number of people
evacuated before discovery of Pjq is at least Y 7_; C;(Tj41—1T;). As CCRP adds
the path P;; we can say that still there are people to be evacuated. Also from
Observation 3 virtual evacuees are added while or after addition of path Pj. So,
total number of people evacuated before discovery of Pjy; is strictly less than
p. Mathematically >7_, C;(Tj41 — T;) < p, which implies Tj11 < CET(S;).
Contradiction!

Part 2: Now one thing remains to prove is available capacity of the path P;
returned by Algorithm 1 is also Cj41. If Pj41 doesn’t share any node or edge
with previously discovered path we are done. So, assume that there is some
node or edge = which is common to both P;;; and some P;, 1 < i < j. Here
we argue considering x as a node and argument for x as an edge is same.
Let t* denotes time required to travel from s(source) to node n via path Py
with out intermediate delay. Observe that t27! > ¢ . From observation 1 Pj 4 is
discovered in phase j + 1 for the first time by CCRP algorithm. In phase j + 1
consider A;11(Tj4+1). P; has been discovered once before discovery of P;y; with
its destination arrival time T} i.e. it has made a reservation of C; at x for the
time instance 27! at node z. Now arrival time of evacuees via P;;1 to z is also
21 At ¢3! we can not use that capacity of C; for evacuees routing via Pj1;. In
other words as if node x has dedicated capacity of C; at time /! for evacuees
routing via P; and that can’t be used by evacuees routing via P;y;. Here we
have not assumed anything on 4 and x. For each such i and z, Pj;1 can’t use
the capacity of C; at time tJ71 at node z. It is equivalent to permanently decre-
menting the capacity of such z’s by corresponding C;, because from observation
1 whenever P;, is discovered prior to that a reservation of C; must have been
done at common node z(of P; and Pj;1) by path P;. Now come back to Algo-
rithm 1. By induction each path P;, i < j is returned with capacity C;. We find
path Pj;q by decrementing the capacity of each path by C; permanently. So,
just before addition of P;; structure of the graph remains same w.r.t. capacity
both in CCRP and Algorithm 1. From this discussion we can say that capacity
of path Pji; returned by Algorithm 1 is Cj4;.

Theorem 1. The evacuation time of the solution given by Algorithm 1 is at
most as that of the CCRP Algorithm for single source and single sink.

Proof. Let (P1,C4),(P2,C3),..., (P, Ck) be distinct paths (not necessarily
edge-disjoint) from s to ¢t in order of their transit time (neglecting delays)
discovered by CCRP. By Lemma 4, Algorithm 1 also returns the same set
of paths. From Observation 1, we can say that evacuation time of CCRP is
TECRP = T}, + € — 1. Evacuation time of Algorithm 1 is CET(Sy). Also from
Lemma 4, number of people that are evacuated through P; is C;(Ty, — T; +¢€). As
All people have been evacuated we can write Zle Ci(Ty, — T; + €) > p, which
implies TSCEP > CET(Sy).

Theorem 2. Upper bound on the evacuation time given by CCRP (hence by
Algorithm 1) for single source single sink network is || + (n — 1)7 — 1, where
p is the number of evacuees, n is the number of nodes in the graph, T is the



Improved Algorithms for the Evacuation Route Planning Problem 15

mazximum transit time of any edge and k is the number of paths used by CCRP
(and Algorithm 1).

Proof. From Lemma4, number of iterations executed by CCRP is Zle(T E—
T; 4+ €¢) < p, as in each iteration at least one person will be evacuated. Hence,
TSERP < 2|+ (n—1)7 — 1.

FEvac

5 Randomized Behavior Model of People

The idea of combined evacuation time [11] can be extended by considering prob-
abilistic behavior of people. Suppose in an evacuation, people do not follow the
paths suggested by Algorithm 1 (or CCRP). Let’s say with probability a > 0 a
person follows suggested path and with probability 1 — « he follows the shortest
path (to the nearest exit). In this situation, we have to redistribute people via
various paths. If we suggest x; persons via P;,i # 1, then the number of persons
who will follow P; and P; is ax; and (1 —«)x; respectively (in expectation). The
total number of people following P; and P; are x1 +Zf:2(1 —a)z; and ax;, i £ 1
respectively. Expected time at which the last person will arrive at destination
via Py is T1 + %M — 1. Expected time at which last person will arrive
at destination via P; is T; + Og‘ —1,i#1

Let the expected evacuation time in this scenario be F[T]. Now we can write,

E[T] = max (T1 + % - 1,;;1;1;{}9 (Ti + Cgl - 1)) .

E[T] will be minimum when it satisfies the following equation,
1 + Zf:g(l — )T

Cq
ax;

:Ti+a—1,2§z‘§k. (2)

E[T] =T+

where Zle x; =n and x; > 0,Vi. Solving the above equations we get,

k
E[T] = nt X G CET({Py,Ps,..., Py} (3)

Zf:l Ci
Expected evacuation time given by Eq.(3) doesn’t depend on «. This is true
and solution is feasible as long as x1 > 0. But it is not always the case, specifi-
cally when (1 — «) 25:2 x; > C1(T — Ty + 1). So, implicitly evacuation time is
dependent on «. In the following sections we give the algorithm that considers
the randomized behavior of people along with analysis for expected evacuation
time.

5.1 Lower Bound for Expected Evacuation Time

On expectation z1 + (1 — «) Zf:z x; = ary + (1 — a)n number of people will
be evacuated via path P;. This is minimum when xz; = 0 as x; > 0. So, lower
bound for expected evacuation time is 77 + % —1.
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Fig. 3. Evacuation time vs number of nodes for SSEP and CCRP.

5.2 Algorithm for Randomized Behavior of People

Algorithm 2
1. Run Algorithm 1. Find CET and 21,22, ..., 2} using Eq. (2).
2. If 1 > 0 then quit; else go to step 3. In this case, the expected evacuation

Vi 2 1. In this case, the expected evacuation

time - CET.
3. Assign x} to 0 and z =
j=2%j
time = 17 + (-ajn a)n —1.

. k
Lemma 5. 2} < z;, Vi # 1, and ), _,x; =n.

Proof. Directly follows from the algorithm
Lemma 6. Above algorithm has a expected evacuation time of CET({P, Py,

..., Pp}) when it quits from step-2.
Proof. In this case z1 > 0. From the equation-4 also we can observe that x;
0,Vi # 1. Hence the solution is feasible. So, we can safely say that the expected

evacuation time is CET.
(1—a)n o
= 1

Lemma 7. Above algorithm has a expected evacuation time of Ty +

when it quits from step-3.

Proof. In this case x; < 0 and by Lemma 5 a} < x;,i # 1. For i # 1 2} number
P 1< T+ 5% -1 <CET

of people are suggested path P;. Hence T; +

i#1land Ty + U520 — 1> CET.

)
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Algorithm Run Time vs Number of nodes
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Fig. 4. Run time vs number of nodes for SSEP and CCRP.

Theorem 3. In a single source single sink evacuation problem, if people follow
the path suggested by Algorithm 2 with probability o, then the expected evacuation
time is max(CET, Ty + (-on _ 1) and algorithm runs in O(min(n,p) - nlogn)

. Cl
time.

6 Experimental Results

6.1 Details of the Experiments

We executed the SSEP and CCRP algorithms on a Dell Precision T7600 server
having an Intel Xeon E5-2687W CPU running at 3.1 GHz with 8 cores (16 logical
processors) and 128 GB RAM. The operating system is Microsoft Windows 7
Professional 64-bit edition. We used the C/C++ network analysis libraries igraph
and LEMON to implement the algorithms. We used netgen to generate synthetic
graphs. The number of vertices in the graph varies from 100 to 500,000. The
number of people varies from 3,000 to 120,000. The results are shown in Table 1.
The graphs are plotted on a log-log scale.

6.2 Results

We show the variation of evacuation time and run time with number of nodes
for SSEP and CCRP algorithms in Figs.3 and 4 respectively. From Fig. 3, we
can see that the evacuation time of SSEP is at most that of CCRP. It is evident
from Fig.4 that the running time of SSEP is much lower than that of CCRP.
Hence, for all these instances SSEP clearly outperforms CCRP with respect to
both evacuation time and run time. The absolute and relative amount by which
SSEP performs better than CCRP is shown in Table 1.
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Table 1. Comparison of evacuation time and run time of SSEP and CCRP algorithms

Number of | Number of | Evacuation Run Time Improvement in SSEP
Nodes Evacuees Time over CCRP (S5EL)
(n) (p) SSEP | CCRP | SSEP CCRP EvacuarioN TIME | RUN TIME
100 3000 68 69 0.124 1.326 | 1.01 10.69
500 5000 130 130 0.358 2.73 1.00 7.63
1000 7000 155 156 1.014 14.586 | 1.01 14.38
1500 9000 115 117 1.466 35.443 | 1.02 24.18
2000 15000 661 661 1.622 29.016 | 1.00 17.89
2500 25000 179 186 2.761 25.739 | 1.04 9.32
5000 40000 903 903 3.899 93.521 | 1.00 23.99
10000 65000 517 520 12.012 231.535 | 1.01 19.28
15000 95000 1848 | 1853 14.025 336.946 | 1.00 24.02
25000 100000 1126 | 1128 23.134 815.682 | 1.00 35.26
50000 120000 1436 | 1446 46.69 1684.217 | 1.01 36.07
100000 110000 1032 | 1044 93.4952 | 3016.3005 | 1.01 32.26
500000 100000 1698 | 1720 344.341 | 11363.253 | 1.01 33.00

7 Conclusion and Future Work

In this paper, we have studied the evacuation route planning problem and given
an improved algorithm for the single source single sink case. We theoretically
showed that the SSEP algorithm performs better than the CCRP algorithm,
both in terms of evacuation time and run time. This is also demonstrated by
extensive experiments. We also analyzed a simple probabilistic behavior model
of people. Here are some open problems which we would like to work in future.

— Design a system for real time monitoring of evacuation in a building using our
indoor localization app [1].

— Extend this algorithm to the multiple source multiple sink case, and compare
it’s performance with CCRP and other algorithms.

— Develop a more sophisticated probabilistic behavior model of people for the
case when they don’t follow the routes suggested by the algorithm.

— Give good lower and upper bounds for the problem.
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Abstract. The degree of a variable z; in a MAXSAT instance is the
number of times x; and T; appearing in the given formula. The degree
of a MAXSAT instance is equal to the largest variable degree in the
instance. In this paper, we study techniques for solving the MAXSAT
problem on instances of degree 3 (briefly, (n,3)-MAXSAT), which is NP-
hard. Two new non-trivial reduction rules are introduced based on the
resolution principle. As applications, we present two algorithms for the
(n,3)-MAXSAT problem: a parameterized algorithm of time O*(1.194%),
and an exact algorithm of time O*(1.237"), improving the previous best
upper bounds O*(1.2721%) and O*(1.2600™), respectively.

1 Introduction

The MAXIMUM SATISFIABILITY problem (MAXSAT) plays a key role in the
study of computational optimization [9]. The Strong Exponential Time Hypoth-
esis [10] conjectures that MAXSAT cannot be solved in time O*(2°") for any
constant ¢ < 1, where n is the number of variables in the input instance, which
is a CNF formula. Algorithms for MAXSAT and various restricted versions of
MAXSAT have been studied extensively (see, for example, [6] and its references).
Define the degree of a variable x; in a MAXSAT instance to be the number of
times x; and Z; appearing in the formula. The (s,t)-MAXSAT problem is a well-
known restricted version of the MAXSAT problem in which each clause in an
instance contains at most s literals and each variable has degree bounded by ¢t
[12,14]. It is shown that (n,2)-MaxSAT problem can be solved in polynomial
time [7].

This paper focuses on algorithms for the (n,3)-MAXSAT problem. Since the
(2,3)-MAXSAT problem is NP-hard [12], the (n,3)-MAXSAT problem is NP-
hard for n > 2. Exact and parameterized algorithms (e.g., [2,3,12,13]) have been
extensively studied for the problem. Two main parameters used for evaluating
the performance of the algorithms have been used: the number n of variables
and the number k of satisfied clauses.
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The main results of the current paper are two new non-trivial reduction rules
(R-Rules 7-8), which are based on the resolution principle. As applications, we
propose two algorithms for the (n,3)-MAXSAT problem in terms of the two
main parameters.

We first give formal definitions of the problems we are focused on. The (n, 3)-
MAXSAT problem asks for an assignment satisfying the maximum number of
clauses in a given formula in which each variable has degree bounded by 3. The
(parameterized) (n,3)-MAXSAT problem consists of instances of the form (F, k),
where F is a formula of the (n,3)-MAXSAT and k is an integer, asking whether
there is an assignment to the variables that satisfies at least k& clauses in F'.

The table in Fig.1 lists the current literature on algorithms for the (n,3)-
MAXSAT problem. For comparison, we also include our result in the current
paper in the table.!

Bound(n) Bound(k) Reference Year
0" (1.732™) Raman et al [14] 1998
07 (1.3248") Bansal, Raman [1] 1999
0*(1.3247%)  Chen, Kanj [5] 2002
0*(1.27203") Kulikov [15] 2005
0*(1.2721%) Bliznets, Colovnev [3] 2012

0" (1.2600™) Bliznets [4] 2013
0*(1.237")  0*(1.194%) this paper 2015

Fig. 1. Progress in (n,3)-MAXSAT algorithms

Most algorithms for MAXSAT (as well as for (n,3)-MAXSAT) are based on
the branch-and-bound technique [8]. The Strong Ezponential Time Hypothesis
[10] conjectures, to some extent, a popular opinion that branch-and-bound is per-
haps unavoidable to solve the MAXSAT problem and its variations. Therefore,
how to branch more efficiently in algorithms solving (n,3)-MAXSAT becomes
crucial.

A contribution of the current paper is to show that the resolution principle [7]
can be applied to solve the (n,3)-MAXSAT problem, while keeping all variables
of degree 3. It has been well-known that the resolution principle is a very powerful
tool to solve the satisfiability problem [7]. In particular, variable resolutions in
a CNF formula preserve the satisfiability of the formula. Unfortunately, variable
resolutions cannot be used directly to solve the (n,3)-MAXSAT problem in
general case, since not all clauses are presumed to be satisfied by an optimal
assignment to an instance of the (n,3)-MAXSAT problem.

We begin with some preliminary definitions.

! Following the current convention in the research in exact and parameterized algo-
rithms, we will use the notation O*(f) to denote the bound f - mPW | where f is an
arbitrary function and m is the instance size.
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A (Boolean) wariable = can be assigned value either 1 (TRUE) or 0 (FALSE).
A variable x has two corresponding literals: the positive literal x and the negative
literal Z, which will be called the literals of . A clause C is a disjunction of a
set of literals, also regarded as a set of the literals. So, C7 = zC indicates that
the clause (7 is in consist of the literal z plus all literals in the clause C5, and
use C1C5 to denote the clause that consists of all literals that are in either C;
or (5, or both. Without loss of generality, we assume that a literal can appear
in a clause at most once. A clause C is satisfied by an assignment if under the
assignment, at least one literal in C' gets a value 1. A (CNF Boolean) formula F'
is a conjunction of clauses Cq, ..., C),, regarded as a collection of the clauses.
The formula F' is satisfied by an assignment to the variables in the formula if all
clauses in F are satisfied by the assignment.

The size of a clause C' is the number of literals in C. A clause is an h-clause
if its size is h, and an ht-clause if its size is at least h. A clause is unit if its size
is 1 and is non-unit if its size is larger than 1. The size of a CNF formula F' is
equal to the sum of the sizes of the clauses in F.

A literal z is an (4, j)-literal in a formula F if z and Z appear 4 times and j
times in F, respectively. Thus, a variable x is of degree h if x is an (i, j)-literal
such that ¢ + j = h. An (i,1)-literal z is an (i, 1)-singleton if Z occurs in a
unit clause (Z). When 4 is not critical, we also call an (¢, 1)-singleton simply a
singleton. A variable of degree h (resp. at least h) is also called an h-variable
(vesp. ht-variable).

A resolvent on a variable x in a formula F' is a clause of a new form C'D
such that xC' and D are clauses in F. The resolution on the variable z in F,
written as DP,(F'), is a formula that is obtained by first removing all clauses
that contain either z or Z from F' and then adding all resolvents on x into F'.

2 Reduction Rules

A reduction rule converts, in polynomial time, an instance (F,k) of (n,3)-
MAXSAT into another instance (F’, k') with k > k' such that (F,k) is a Yes-
instance if and only if (F’, k') is a Yes-instance. Note that a reduction rule can
be acknowledged as a special case of branching steps.

We present 9 reduction rules, R-Rules 1-9. The reduction rules are supposed
to be applied in order, i.e., R-Rule j cannot be applied until none of R-Rules @
with ¢ < j is applicable. In the following, F' is always supposed to be a conjunc-
tion of clauses.

The first three reduction rules are from [4].

R-Rule 1 ([4]). (FA(2zC), k) — (F,k—1), and (FA(2) A (Z), k) — (F,k—1).

R-Rule 2 ([4]). If there is an (4, j)-literal z in the CNF formula F, with at least
J unit clauses (2), then (F, k) — (F.=1,k —1), where F,_; is the formula F with
an assignment z = 1 on the literal z.

Assume that R-Rule 2 is not applicable to F', and then each literal in F" has its
negation also in F. Thus, all variables are 2%-variables. Under this condition, we
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can process 2-variables based on the resolution principle [7], whose correctness
can be easily verified.

R-Rule 3 ([4]). For any 2-variable x, (FA(xCy)A(ZC3), k) — (FA(C1C3), k—1).

Note that each variable appears at most 3 times in F'. In case none of R-Rules
1-3 is applicable, every variable is a 3-variable. Moreover, for each (2, 1)-literal
z, there is no unit clause (z). Now we describe two reduction rules based on
variations of the resolution principle, which are from [2].

R-Rule 4 ([2]). For a (2,1)-literal « in a 2-clause (zy) and the clause with
Z contains at least two literals, (Fy = F A (zy) A (zC1) A (D), k) — (Fy =
F A (yD) A (yC1 D),k —1).

After R-Rule 4, the degree of all variables in yD becomes 4. In order to
keep all variables being 3-variables, a branching for variable y must be applied.
Naturally, the branching vector is (34+1,1+1), whose root is 1.2721. However,
since we only need consider |D| > 1, we can do better.

R-Rule 5 ([2]). If two variables = and y of degree 3 appear together in 3 clauses,
then all these 3 clauses can be satisfied by assigning = and y properly.
Next rule is just a part from Corollary 1 in [2].

R-Rule 6 ([2]). If there are two clauses zyCy and ZyCs in the formula F' such
that each variable appears in three times, then we can safely do resolution on z,
such that F' is replaced with DP, (F).

After R-Rule 6, R-Rule 1 must be followed, keeping that each variable appears
three times in the obtained formula. The next 2 rules are based on resolution, but
its transformation is non-trivial, i.e. there is no direct relation to other MAXSAT
algorithms. To be convenient, let maxzsat(F') be the maximum number of clauses
satisfied in F. Note that since R-Rule 5 is not applicable, any two 3-variables
appear in at least 4 clauses.

R-Rule 7. For a CNF formula F} = FA(xyCy) A (xgCa) A(ZD1) A(§D2), where
xis a (2,1)-literal in Fy, (Fy = FA(zyCy) A (xgCa) AN(ZD1) A (yD2), k) — (Fo =
F A (2'Cy) A (' Dy) A (Z'C1Dy), k —1).

Lemma 1. R-Rule 7 converts the instance (Fi,k) of (n,3)-MAXSAT into an
instance (Fo, k — 1) such that (F1 = F A (xyCh) A (xgCa) A (ZD1) A (§D2), k) is
a Yes-instance if and only if (Fo = F A (2'C2) A ('Da) A (Z'C1D1),k—1) is a
Yes-instance.

Proof. For an optimal assignment satisfying C; =1 or Dy =1or Co = Dy =1,
by reassigning properly to variables x,y, 2, maxzsat(Fy) = mazxsat(F) + 4 and
mazxsat(Fy) = mazxsat(F) + 3 = mazxsat(Fy) — 1. For an optimal assignment
satisfying C1 = Dy = 0 and Cy = 0 (resp. Dy = 0), mazsat(Fy) = mazxsat(F)+3
and mazsat(Fy) = mazsat(F) + 2 = maxsat(Fy) — 1. Thus, for both cases
maxsat(Fy) = maxsat(Fy) — 1. O
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Now, we introduce the following new reduction rule.

R-Rule 8. For any two (2, 1)-literals 2y both in two clauses (zyC;) and (zyCs),
(F1 = F A (zyCh) A xyCQ) A (ZD1) A (§D2), k) — (Fy = F A (2'Cy) A (2/Ca) A
(z'D1D3), k —1).

Lemma 2. R-Rule 8 converts the instance (Fy,k) of (n,3)-MAXSAT into an
instance (Fo, k — 1) such that (F1 = F A (xyCh) A (xyCa) A (ZD1) A (§D2), k) is
a Yes-instance if and only if (Fo = F A (2'Cy) A (2'Coy) A (D1 D2),k — 1) is a
Yes-instance.

Proof. Similar to the proof in Lemma 2, for an optimal assignment satisfying
Dy =1or Dy = 1or C; = Cy = 1, by reassigning properly to variables
x,y, ', maxsat(F) = maxsat(F) + 4 and mazsat(Fy) = mazxsat(F) + 3 =
mazsat(F;) — 1. For an optimal assignment satisfying D; = Dy = 0 and
Cy = 0 (resp. Cy = 0), at least one clause is not satisfied, and mazsat(Fy) =
maxsat(F) + 3 and mazsat(Fy) = mazxsat(F') + 2 = maxsat(Fy) — 1. For both
cases maxsat(Fy) = maxsat(Fy) — 1. O

After R-Rules 1-3, 5-8, for any 2-literal x, the two clauses with x, each of
which has at least two literals, and each pair of distinct clauses share at most
one common variables. According to this property, similar to R-Rule 5, we can
prove that for each quadruple of 3-variables must appear in at least 6 clauses.

Lemma 3. If any quadruple variables of degree 3 appear together in at most 5
clauses, then all these clauses can be satisfied by assigning properly.

Proof. Suppose variables x1, x2, x3 and x4 of degree 3 are in 5 clauses. Note that
3 x 4 = 12 literals of z1, s, x3, x4 must be in these clauses. We first choose a
2-literal, i.e. the literal occurring in two clauses, denoted by z;. Let z1 = 1,
and two clauses x1C4, x1Cs are satisfied. Since R-Rules 58 are not applicable,
for any literal x;, no two clauses containing literal x; share another common
variables. Thus, there are at most 3 literals (of variables from wz2,z3 and x4)
satisfied by z1 = 1 in C1Cs. In all, at most 6 literals (of variables from xy, xo, x3
and z4) are reduced by at this time. Then there are two cases to consider. One
is that there is still a 2-literal in the remaining of 3 variables, denoted by xs. Let
29 = 1, and at most 2 extra literals (of variables x3 and z4) are satisfied. In all,
there are 6 + 2 + 3 = 11 literals (of variables from x1,z9, 23 and x4) satisfied.
Thus, there are at least one literal not satisfied and denoted by z3. Let x3 =1,
and all clauses are satisfied. The other case is that each literal (of variables from
Z9,x3 and x4) appearing in the remaining of three clauses is a 1-literal. Since
no two clauses share two common variables, there is at most one unit clause in
the remaining of the 3 clauses, and can be simultaneously satisfied by assigning
To,x3 and x4 properly. |

Next, we introduce another reduction rule, which is implemented in practical
MAXSAT solver MaxSatz [1].

R-Rule 9 ([L]). (Fi = F A (¢y) A (2) A (5),k) — (Fy = F A (z9), k — 1).
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3 An O*(1.194%)-time Parameterized Algorithm

Branching on an instance (F, k) of (n,3)-MAXSAT leads to a collection {(F}, k—
dy),...,(Fy, k —d.)} of instances of (n,3)-MAXSAT, such that (F,k) is a Yes-
instance if and only if at least one of (Fi,k — dy), ..., (Fr, k — d,) is a Yes-
instance. Such a branching step is called a (dy, . . ., d,)-branching, and the vector
t = (di,...,d,) is called the branching vector for the branching. Each branching
vector corresponds to a polynomial (see, e.g. [5]), and has a unique positive root
that is larger than or equal to 1. Let the root p(¢) of a branching be the root of
the branching vector t¢.

Let ¢; and ts be two branching vectors. We say that the t;-branching is
inferior to the to-branching if p(t1) > p(t2). Based on the branch-and-bound
technique, if every branching step in the algorithm has its root bounded by a
constant ¢ > 1, then the running time of the algorithm is bounded by O*(c*).

We called formula F' reduced if none of R-Rules 1-3, 5-9 and Lemma 3 is
applicable.

Next we first give two lemmas for branching.

Lemma 4. Fy is a reduced formula where each variable is a 3-variable. Let x
be a 3-variable such that Fy = F A (zy) A (xC) A (ZD), with |D| > 1. First apply
R-Rule 4, and then: (1) if y is a (2,1)-literal in Fy, branch on y; (2) if y is a
(1,2)-literal in Fy, branch with y = 1 and y = D = 0. As a result, we have a
(5,3)-branching.

Proof. Since R-Rules 1-3, 5-8 are not applicable, |C| > 1, and yUCUD contains
no same literals and no conflict literals (e.g. z and z). By applying R-Rule 4,
(zy) A (zC) A (D) is replaced with (yD) A (§CD). Consequently, only variables
in yD become 4-variables. Since D is contained both in clauses (yD) and (gC D),
both branchings with y = 1 and y = 0 can reduce D. So, the obtained formula
is also a (n,3)-MAXSAT formula. Next, we show it is not inferior to (5,3)-
branching.

Case 1: if y is a (2, 1)-literal in Fp, then since R-Rules 5-8, except clause (zy),
there is no other clause both containing variables xy. Hence, denote the clauses
with variable y as (zy), (yF1), (§E2), where |F1| > 1, and let E; = ¢y E’. More-
over, y is a (2,2)-literal after R-Rule 4 (i.e. (yD), (§CD), (yy'E}), (§E2), and k
is reduced by 1). Thus, we simply branch on variable y. When y = 1, two clauses
containing literal y are satisfied. At least one other variable y’, either v’ € D
or y' ¢ D, becomes a 2-variable. Therefore, R-Rules 1-3 are applicable and the
number of satisfied clauses is 3. When y = 0, clauses (gE2) and (gCD) are satis-
fied. Thus, at least one literal z € C, noted that |C| > 1 and 2,z ¢ D, becomes
a 2-variable and R-Rules 1-3 become applicable again. Similarly, 3 clauses are
satisfied. As a result, besides the satisfied clause by R-Rule 4 (where k is reduced
by 1), we give a (4,4)-branching.

Case 2: if y is a (1,2)-literal in Fp, then after R-Rule 4, y becomes a (1, 3)-
literal. Tt is safe to branch with y = 1 and y = D = 0, when y is a (1, 3)-literal
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and there is a clause (yD), because for each optimal assignment o with y = 0
and D = 1, there is another assignment ¢’ by only replacing y = 0 with y = 1.
Note that g is a non-singleton, with clauses (yD), (gCD), (§E1) and (§E>),
because |D| > 1, and let D = 21 --- z5. Thus, we branch with: Bl)y = 0, satis-
fying 3 clauses. Similarly, R-Rule 2 becomes applicable, since each literal in C'
appears at least 1 (by R-Rules 5-8) and at most 2 times in the obtained formula
after R-Rule 4 and branch with y = 0. Therefore, at least 4 clauses are satisfied;
B2)y = 1,21 =-+- =z, = 0, and at least a clause with y and a clause with z;
are satisfied. This is a (5, 3)-branching (besides R-Rule 4). O

Next, we show the branching is still better if R-Rule 4 is not applicable on a
chosen variable.

Lemma 5. Fjy is a reduced formula where each variable is a 3-variable. Let x
be a non-singleton such that: Fy = F A (zy1y2C1) A (xy3yaC2) A (Tys D). Branch
on wariable x, we have (7,2)-branching and the obtained formula is a (n,3)-
MAXSAT formula.

Proof. Tt |[D| > 1, then let D = yg. Since R-Rules 5-8 are not applicable, no two
clauses share two common variables, so that x, y;-ys are 7 different variables.
Also, according to Lemma 3, there are at least 6 clauses containing at least one
of 3-variables y1,y2,y3 and y4. When x = 1, all the 3-variables y1, y2, y3 and y4
become 2-variables. Hence, Rule 1-3 can be applied and the number of satisfied
clauses is reduced by at least 2+ 4 = 6. When « = 0, at least y5 and yg become
2-variables, where R-Rules 1-3 are applicable. The number of satisfied clauses
is reduced by at least 1 + 2 = 3. This is a (6, 3)-branching.

Consider when |D| > 0 and ys is a (2, 1)-literal. When x = 1, y5 is contained
in unit clause (y5). By R-Rule 2, y5 = 1. Similarly, all the 3-variables y1yay3ya4
become 2-variables. The number of satisfied clauses is reduced by at least 2 +
14+4 =7 When x = 0, at least y5 becomes a 2-variable, and the number of
satisfied clauses is reduced by at least 1 + 1 = 2. This is a (7, 2)-branching.

Consider when |D| > 0 and ys5 is a (1,2)-literal. Similarly when z = 1, the
number of satisfied clauses is reduced by at least 2 +4 = 6. When = = 0, no
literal y5 exists, so that y5; = 0 according to R-Rule 2, and two other clauses
containing ys are satisfied. This is a (6, 3)-branching.

In summary, since p(7,2) = 1.191 and p(6,3) = 1.174, branching on variable
x, so that we have a (7,2)-branching. |

Before showing the algorithm, we must first introduce a lemma.

Lemma 6. (Bliznets [2]). If each variable of F appears once negatively and
twice positively and all negative literals occur in unit clauses, then there is a
polynomial time algorithm to F that returns an optimal assignment satisfying
the maximum number of clauses in F.

Summarizing all the discussions, we present our algorithm for the (n,3)-
MAXSAT problem in Fig. 2.
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Algorithm (n,3)-MaxSAT-Solver(F, k)
INPUT: an instance (F, k) of (n,3)-MAXSAT, where
each variable appears in three clauses
OUTPUT: an assignment to F' that satisfies at least k clauses,
or report no such an assignment exists
1. apply R-Rules 1-3 and 5-9, in order, repeatedly until (F, k) is irreducible;
2. if all variables are singletons
then using Lemma 6 to solve it in polynomial time; return;
3. choose a non-singleton z: (zC1), (zC2), (ZD) and |D| > 1;
4. if only one literal in C'y or C2 then using Lemma 4 for branching;
5. else using Lemma 5 for branching;

Fig. 2. The parameterized algorithm for (n,3)-MAXSAT in time O*(1.194%)

Theorem 1. The algorithm (n,3)-MaxSAT-Solver solves the (n,3)-MAXSAT
problem in time O* (1.194%).

Proof. The algorithm (n,3)-MaxSAT-Solver can be described as a search tree
T, where each node of T is an instance of the (n,3)-MAXSAT problem. Each
leaf of 7 corresponds to a reduced formula containing only singletons and their
negations, where step 2 of the algorithm concludes with a decision. By Lemma 6,
a leaf in the search tree 7 can be solved in polynomial time.

Each internal node of 7 is associated with an instance (F, k) and corresponds
to an application of one of the branching rules in Lemmas4 and 5, and its
children correspond to the branches of the branching rule. By Lemmas 4 and 5,
the root of each of the branching rules is bounded by 1.194, which is the root of
the (5, 3)-branching. Now a simple induction shows that the search tree 7, i.e.,
the algorithm Max-SAT-Solver solves the (n,3)-MAXSAT problem in time
O*(1.194%). O

4 An O*(1.237™)-time Algorithm for (n,3)-MAXSAT

Note that R-Rules 2-3 and 5-9 reduce the number n of variables by at least
1, and R-Rule 1 reduces the size of the formula by at least 1. So, they can be
applied in polynomial time, and we can also use them as the transformation
rules for our exact algorithm in terms of n.

Next, we present our exact algorithm for (n,3)-MAXSAT problem in Fig. 3.
Note that a (2,1)-literal z is a singleton, if Z occurs in the unit clause (z). A
variable z is called a singleton, if literal z or Z is a singleton.
Theorem 2. The algorithm n3MaxSAT solves the (n,3)-MAXSAT problem
in time O*(1.237™).

Proof. The process of the algorithm n3MaxSAT can be depicted by a search
tree 7 in which each node corresponds to an instance of the (n,3)-MAXSAT
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Algorithm n3MaxSAT (F)
INPUT: an instance (F, k) of (n,3)-MAXSAT, where
each variable appears in three clauses
OUTPUT: an assignment to F' that satisfies the maximum number of clauses
1. apply R-Rules 1-3 and 5-9 repeatedly until F' is irreducible;
2. if all variables are singletons or there is no variable in F’
then return corresponding result according to Lemma 6;
3. choose a non-singleton z: (zC1), (zC2), (ZD) and |D| > 1;
4. if [D| =2 (i.e. D = yy’) and at least one of yy’ is not a singleton
then max(n3MaxSAT(F[z]), n3MaxSAT(F[z,y,9']));
5. else max(n3MaxSAT(F[z]), n3MaxSAT(F[z]));

Fig. 3. The exact algorithm for (n,3)-MAXSAT in time O*(1.2377")

problem. Each leaf of the search tree 7 corresponds to a simplified instance for
which step 2 of the algorithm concludes with a decision. Therefore, by Lemma, 6,
a leaf in the search tree 7 associated with instance (F, k) of (n,3)-MAXSAT can
be solved in polynomial time.

Each internal node of the search tree 7 either branch on x or branch with
z =1and r = y = ¢y = 0. Remind that it is safe to branch z = 1 and
x =1y =19 =0 in Step 4, because T is a 1-literal, for each optimal assignment
o with z = 0 and y = 1 (or ¥’ = 1), there is another assignment ¢’ by only
replacing z = 0 with = 1.

Now we analyze the branching vector of each cases. Since R-Rule 2 and R-
Rules 5-8 are not applicable, |C1| > 1, |C3| > 1 and there is no common variable
among C1,Cy and D.

Casel. consider y € D is a 1-literal. (1) When z = 1, at least two variables from
C1C5 become 2-variables and can be reduced by R-Rules 2-3. In all, the number
of variables is reduced by at least 3. (2) When z = 0, by R-Rule 2, y = 0. Since
R-Rules 2, 5-8 are not applicable to F, at least two other variables, except for
x and y, are satisfied by y = 0, so that they become 2-variables. Thus, R-Rules
2-3 become applicable, and the number of variables is reduced by at least 4.
This is a (4, 3)-branching.

Case2. consider |D| > 3, and all literals in D are 2-literals. (1) When branching
x = 1, similar to Case 1, the number of variables is reduced by at least 3. (2)
When = = 0, at least three variables become 2-variables, so that R-Rules 2-3
become applicable. The number of variables is reduced by at least 4. This is a
(4, 3)-branching.

Case3. consider |D| = 2, and both literals yy’ in D are singletons. (1) When
branching x = 1, at least two variables, except zyy’, become 2-variables and can
be reduced by R-Rules 2-3. Moreover, clause (Zyy’) becomes (yy’), plus unit
clauses (3), (¢'). Thus, by R-Rule 9, replace (yv'), (§), (§') with (g7’) and both
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yy' are reduced by R-Rule 2. As a result, the number of variables is reduced by
at least 5. (2)When = = 0, at least two variables become 2-variables, so that
R-Rules 2-3 become applicable. The number of variables is reduced by at least
3. This is a (5, 3)-branching.

Cased. counsider |D| = 2, and a literal y in D is not a singleton, so that Step
4 is applicable. (1) When branching z = 1, similar to Case 1, the number of
variables is reduced by at least 3. (2) When © = D = 0, because y is a non-
singleton, at least another variable becomes a 2-variable, so that R-Rules 2-3
become applicable. The number of variables is reduced by at least 4. This is a
(4, 3)-branching.

Caseb. consider |D| = 1, denoted by D =y, and y is a 2-literal.

Caseb5.1. consider |C1Cs| > 3. (1) When branching x = 1, at least other three
variables become 2-variables and can be reduced by R-Rules 2-3. Moreover, by
R-Rule 2, y = 1. Thus, the number of variables is reduced by at least 5. (2) When
branching « = 0, variable y is reduced by R-Rules 2-3. This is a (5, 2)-branching.

Caseb5.2. consider |C1] = |Ca] = 1.

Caseb.2.1. consider at least one literal of C1C5 is a (2,1)-literal. (1) When
branching x = 1, similar to Case 1, at least 2 other variables except for xy are
reduced. Moreover, since |D| = 1, (2,1)-literal y appears in a unit clause (y),
so that set y = 1 by R-Rule 2. In all, the number of variables is reduced by at
least 4. (2) When branching = = 0, variable y becomes a 2-variable and can be
reduced by R-Rules 2-3. Also, at least one literal of C;C5 is a 2-literal, so that
R-Rule 2 becomes applicable. The number of variables is reduced by at least 3.
This is a (4, 3)-branching.

Case5.2.2. consider both the literals, denoted by z1 23, in C1C5 are (1, 2)-literals.
(1) When branching z = 1, by R-Rule 2, y = 1, and C; = C2 = 0; (2) When
branching x = 0, then variable y can be reduced by R-Rules 2—-3. There are two
cases. If there is at least another variable reduced by z =y =1 and Cy, = C = 0,
then the number of variables is reduced by 4 + 1 = 5, where we have a (5,2)-
branching. If there is no other variable reduced by x =y =1 and C; = Cs =0,
then, when branching = 0, variable y can be reduced by R-Rules 2-3 and one of
variables z1z5 can be reduced by R-Rules 5-8, where we have a (4, 3)-branching.
In all, this is a (5, 2)-branching.

In summary, the root of each branching rule is bounded by 1.237, which
is the root of the (5,2)-branching. Now a simple induction shows that the
search tree 7, i.e., the algorithm n3MaxSAT solves the (n,3)-MAXSAT in time
O*(1.237™). O
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Conclusion

In this paper we present two new reduction rules, so that each pair of distinct
clauses has at most one variable in common in the reduced formula, which is
also called a linear CNF formula [11]. Consequently, we improve parameterized
algorithm from O*(1.2721%) [2] to O*(1.194F)-time, and exact algorithm from
0*(1.2600™) [3] to O*(1.237™)-time for the (n,3)-MAXSAT problem.
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Abstract. In delivery industry, bins have to be stacked-up from con-
veyor belts onto pallets. Given k sequences of labeled bins and a positive
integer p. The goal is to stack-up the bins by iteratively removing the
first bin of one of the k sequences and put it onto a pallet located at one
of p stack-up places. Each of these pallets has to contain bins of only
one label, bins of different labels have to be placed on different pallets.
After all bins of one label have been removed from the given sequences,
the corresponding place becomes available for a pallet of bins of another
label. In this paper we introduce a graph model for this problem, the so
called sequence graph, which allows us to show that there is a processing
of some list of sequences with at most p stack-up places if and only if the
sequence graph of this list has directed pathwidth at most p — 1.

Keywords: Computational complexity + Combinatorial optimization -
Directed pathwidth - Stack-up systems - Palletizing systems

1 Introduction

We consider the combinatorial problem of stacking up bins from a set of conveyor
belts onto pallets. This problem originally appears in stack-up systems that play
an important role in delivery industry and warehouses. A detailed description of
the practical background of this work is given in [3,15].

The bins that have to be stacked-up onto pallets reach the stack-up system
on a main conveyor belt. At the end of the line they enter the palletizing system.
Here the bins are picked-up by stacker cranes or robotic arms and moved onto
pallets, which are located at stack-up places. Often vacuum grippers are used
to pick-up the bins. This picking process can be performed in different ways
depending on the architecture of the palletizing system (single-line or multi-line
palletizers). Full pallets are carried away by automated guided vehicles, or by
another conveyor system, while new empty pallets are placed at free stack-up
places.

The developers and producers of robotic palletizers distinguish between
single-line and multi-line palletizing systems. Each of these systems has its
advantages and disadvantages.
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DOI: 10.1007/978-3-319-26626-8_3
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storage conveyor belt

stack—up places

Fig. 1. A single-line stack-up system using a random access storage of size 5. The
patterns represent the pallet labels. Bins with different patterns have to be placed on
different pallets, bins with the same pattern have to be placed on the same pallet.

In single-line palletizing systems there is only one conveyor belt from which
the bins are picked-up. Several robotic arms or stacker cranes are placed around
the end of the conveyor. We model such systems by a random access storage
which is automatically replenished with bins from the main conveyor, see Fig. 1.
The area from which the bins can be picked-up is called the storage area. It is
determined by the operation range of stacker cranes or robotic arms.

In multi-line palletizing systems there are several buffer conveyors from which
the bins are picked-up. The robotic arms or stacker cranes are placed at the end
of these conveyors. Here, the bins from the main conveyor of the order-picking
system first have to be distributed to the multiple infeed lines to enable parallel
processing. Such a distribution can be done by some cyclic storage conveyor, see
Fig. 2. From the cyclic storage conveyor the bins are pushed out to the buffer
conveyors. A stack-up system using a cyclic storage conveyor is, for example,
located at Bertelsmann Distribution GmbH in Giitersloh, Germany. On certain
days, several thousands of bins are stacked-up using a cyclic storage conveyor
with a capacity of approximately 60 bins and 24 stack-up places, while up to 32
bins are destined for a pallet. This palletizing system has originally initiated our
research.

If we ignore the task to distribute the bins from the main conveyor to the
k buffer conveyors, i.e., if the filled buffer conveyors are already given, and if
each arm can only pick-up the first bin of one of the buffer conveyors, then the
system is called a FIFO palletizing system. Such systems can be modeled by
several simple queues, see Fig. 3.

From a theoretical point of view, an instance of the FIFO STACK-UP problem
consists of k sequences ¢i,...,q; of bins and a number of available stack-up
places p. Each bin of ¢ is destined for exactly one pallet. The stack-up problem
is to decide whether one can remove iteratively the bins from the sequences such
that in each step only one of the first bins of ¢1, ..., g is removed and after each
step at most p pallets are open. A pallet ¢ is called open, if at least one bin for
pallet ¢ has already been removed from the sequences, and if at least one bin for
pallet t is still contained in the remaining sequences. If a bin b is removed from
a sequence then all bins located behind b are moved-up one position to the front
(cf. Sect. 2 for the formal definition).
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Fig. 2. A multi-line stack-up system with a Fig. 3. The FIFO stack-up system
pre-placed cyclic storage conveyor. analyzed in this paper.

Every processing should absolutely avoid blocking situations. A system is
blocked, if all stack-up places are occupied by pallets, and non of the bins that
may be used in the next step are destined for an open pallet. To unblock the
system, bins have to be picked-up manually and moved to pallets by human
workers. Such a blocking situation is sketched in Fig. 3. The system is blocked
(cf. above for the definition), because the pallet for the bins which are striped
from bottom left to top right cannot be opened and the pallets for the other
three types of bins located on the stack-up places cannot be closed.

The single-line stack-up problem can be defined in the same way. An instance
for the single-line stack-up problem consists of one sequence g of bins, a storage
capacity s, and a number of available stack-up places p. In each step one of the
first s bins of ¢ can be removed. Everything else is defined analogously.

Many facts are known about single-line stack-up systems [15-17]. In [15] it
is shown that the single-line stack-up decision problem is NP-complete, but can
be solved efficiently if the storage capacity s or the number of available stack-up
places p is fixed. The problem remains NP-complete as shown in [16], even if
the sequence contains at most 9 bins per pallet. In [16], a polynomial-time off-
line approximation algorithm for minimizing the storage capacity s is introduced.
This algorithm yields a solution that is optimal up to a factor bounded by log(p).
In [17] the performances of simple on-line stack-up algorithms are compared with
optimal off-line solutions by a competitive analysis [2,5].

The FIFO STACK-UP problem seems to be not investigated by other authors
up to now, although stack-up systems play an important role in delivery industry
and warehouses. In [6] we have shown a dynamic programming solution and in
[7] we have given several parameterized algorithms for the FIFO STACK-UP
problem. A breadth first search solution combined with some cutting technique
for the problem was presented in [8].

In this paper, we introduce a digraph model which leads to a close relation
between the FIFO STACK-UP problem and the directed pathwidth. The so-
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called sequence graph Gg of a given list of sequences ) has a vertex for every
pallet and the arc set displays the order in which the pallets of @) can be opened.
We show that there is a processing of some list ) with at most p stack-up
places if and only if the sequence graph Gg of @ has directed pathwidth at
most p — 1 (cf. Sect. 3 for the formal definition). Our proofs are constructive,
i.e. we show how to define a solution for @) from a directed path-decomposition
of Gg, and vice versa. By the known time complexity for directed pathwidth
[18] this connection implies that the FIFO STACK-UP problem can also be
solved in polynomial time, if the number p of given stack-up places is assumed
to be fixed. Further this connection is used to show, that the FIFO STACK-UpP
problem is NP-complete in general, even if all sequences together contain at most
6 bins destined for the same pallet. Due to the approximation result of directed
pathwidth in [11] the optimization version of the FIFO STACK-UP problem can
be approximated up to a factor of (9(10g1'5 m), where m represents the number
of pallets in all sequences. Our result extends the previously known areas of
applications for directed pathwidth in graph databases and boolean networks,
which have been shown in [4].

2 Preliminaries

Unless otherwise stated, k and p are some positive integers throughout the paper.
We consider sequences g1 = (b1,-..,0n, )y @k = (bny_y 41, - -, bn,,) of pairwise
distinct bins. These sequences represent the buffer queues (handled by the buffer
conveyors) in real stack-up systems. Each bin b is labeled with a pallet symbol
plt(b). We say bin b is destined for pallet pit(b). We use in our examples characters
for pallet symbols. The set of all pallets of the bins in some sequence g; is denoted
by
plts(q;) = {plt(b) | b € ¢;}.

For a list of sequences @ = (q1, ..., qr) we denote
plts(Q) = plts(q1) U--- U plts(qr,).-
For some sequence ¢ = (b1,...,by), we say bin b; is on the left of bin b,
in sequence ¢ if ¢ < j. A sequence ¢’ = (b;,bj11,...,by), j > 1, is called a

subsequence of sequence ¢ = (by,...,by,). We define ¢ — ¢’ = (b1,...,b;_1).

Let Q = (q1,.--,q%) and Q" = (qi,...,q;) be two lists of sequences of bins
such that each sequence q;., 1 < j <k, is a subsequence of sequence g;. Each
such pair (Q, Q') is called a configuration. In every configuration (Q, Q') the first
entry @ is the initial list of sequences of bins and the second entry @’ is the list of
sequences that remain to be processed. A pallet t is called open in configuration
(Q,Q’), if a bin of pallet ¢ is contained in some ¢} € @’ and if another bin of
pallet ¢ is contained in some g; — g; for ¢; € Q, ¢ € Q'. The set of open pallets
in configuration (@, Q') is denoted by open(Q, Q’). A pallet ¢ € plts(Q) is called
closed in configuration (Q,Q’), if ¢t & plts(Q’), i.e. no sequence of @’ contains a
bin for pallet ¢. Initially all pallets are unprocessed. After the first bin of a pallet
t has been removed from one of the sequences, pallet ¢ is either open or closed.
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In view of the practical background, we only consider lists of sequences that
together contain at least two bins for each pallet. Throughout the paper @ always
denotes a list of some sequences of bins.

The FIFO STACK-UP Problem. Consider a configuration (Q, Q). The removal
of the first bin from one subsequence ¢’ € Q' is called a transformation step. A
sequence of transformation steps that transforms the list @@ of k sequences into
k empty subsequences is called a processing of Q).

Name: FIFO Stack-Up

Instance: A list Q = (¢q1,.-.,qx) of k sequences and a positive integer p.

Question: Is there a processing of @, such that in each configuration (Q, Q")
during the processing at most p pallets are open?

We use the following variables: k denotes the number of sequences, and p
stands for the number of stack-up places. Furthermore, m represents the number
of pallets in plts(@), and n denotes the number of bins in all sequences, i.e.
n = ng. Finally, N = max{|q],...,|¢x|} is the maximum sequence length. In
view of the practical background, it holds p < m, k <m, m <n, and N < n.

It is often convenient to use pallet identifications instead of bin identifications

to represent a sequence q. For n not necessarily distinct pallets tq,...,t, let
[t1,...,t,] denote some sequence of n pairwise distinct bins (by,...,b,), such
that plt(b;) = t; for i = 1,...,n. We use this notion for lists of sequences as
well. For the sequences q1 = [t1,...,tny)s--sQk = [tnp_i+1s---,tn,) Of pallets
we define g1 = (b1,...,bny )5+, @ = (bny_;+15---,bn, ) to be sequences of bins
such that plt(b;) =t; for i = 1,...,nk, and all bins are pairwise distinct.

For some list of subsequences Q' we define front(Q’) to be the set of pallets
of the first bins of the queues of Q’.

Ezample 1. Consider list Q = (g1, ¢2) of sequences ¢ = (by,...,bs) = [a,a,b,b]
and g3 = (bs,...,b12) = [¢,d,e,c,a,d, b, e]. Table1 shows a processing of @ with
3 stack-up places. The underlined bin is always the bin that will be removed in
the next transformation step. We denote Q; = (¢, ¢4), thus each row represents
a configuration (Q, Q;).

Consider a processing of a list @ of sequences. Let B = (br(1),---,br(n))
be the order in which the bins are removed during the processing of ), and
let T = (t1,...,t,) be the order in which the pallets are opened during the
processing of Q. Then B is called a bin solution of @), and T is called a pallet
solution of ). The transformation in Table 1 defines the bin solution

B = (b57 b67 b77 b87 b17 b27 b97 blOa b117b3a b4a 612)7

and the pallet solution T' = (¢, d, e, a, b).

During a processing of a list @) of sequences there are often configurations
(Q, Q') for which it is easy to find a bin b that can be removed from @’ such that
a further processing with p stack-up places is still possible. This is the case, if
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Table 1. A processing of Q = (q1,¢2) from Example 1 with 3 stack-up places. There
is no processing of @) that needs less than 3 stack-up places.

i |q¢t a front(Q;) | remove | open(Q, Q;)
0 |[a,a,b,b]| [c,d, e, c,a,d,b,e] {a,c} bs 0

1 |[a,a,b,b]| [d,e,c a,dbe |{a,d} be {c}

2 |[a,a,b,b]| [e, c,a,d,b,e] {a, e} br {c,d}

3 |la,a,b,b]| [ca,d,b,e] {a,c} bs {c,d, e}
4 |la,a,b,b]| [a,d,b,e] {a} b {d, e}

5 | [a,b,b] [a,d,b, €] {a} ba {a,d, e}
6 |[b,b] [a,d, b, €] {a, b} bo {a,d, e}
7 1 [bY] [d,b, €] {b,d} bio {d, e}

8 |[b,b] [b ,e} {b} b11 {e}

9 | [bb] [e] {b,e} b3 {b,e}
10 [b] [¢] {b,e} bs {b,e}
11 le] fe} bi2 {e}

12| ] I 0 - 0

bin b is destined for an already open pallet, see configuration (@, Qs), (Q,Qs),
(Q,QG)’ (Q,Q7), (Q7Q9)7 (QanO)a or (Qanl) in Table1. In the fOHOWng we

show:

— If one of the first bins of the sequences is destined for an already open pallet
then this bin can be removed without increasing the number of stack-up places
necessary to further process the sequences.

— If there is more than one bin at choice for already open pallets then the order,
in which those bins are removed is arbitrary.

To show the rules, consider a processing of some list ) of sequences with p
stack-up places. Let

(br(1)s -+ br(i=1) bx(i)s - - 5 Da(e=1), b)), br(t41)5 - - + 5 Or(m))

be the order in which the bins are removed from the sequences during the process-
ing, and let (Q,Q;), 1 < j < n denote the configuration such that bin b, ;) is
removed in the next transformation step. Suppose bin b, ;) will be removed in
some transformation step although bin b, (), £ > 4, for some already open pallet
plt(bx(e)) € open(Q, Q;) could be removed next. We define a modified processing

(br(1)ys« -+ br(i=1)5 br(e)s br(i)s - - + 5 Or(=1)5 Ore(41)5 - - + 5 O (m))

by first removing bin b4, and afterwards the bins br(;, ..., br—1) in the given
order. Obviously, in each configuration during the modified processing there are
at most p pallets open. To remove first some bin of an already open pallet is a
kind of priority rule.
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A configuration (Q,Q’) is called a decision configuration, if the first bin
of each sequence ¢’ € Q' is destined for a non-open pallet, see configura-
tions (Qv Q0)7 (Qv Q1)7 (Qv Q2)7 (Qv Q4)7 and (Qa Q8) in Table]-7 ie. f’l’O?’lt(Ql) N
open(Q, Q") = (. We can restrict FIFO stack-up algorithms to deal with such
decision configurations, in all other configurations the algorithms automatically
remove a bin for some already open pallet.

If we have a pallet solution computed by some FIFO stack-up algorithm,
we can convert the pallet solution into a sequence of transformation steps, i.e.
a processing of ). This is done by algorithm TRANSFORM shown in Fig. 4.
Given a list of sequences @ = (q1, ..., qr) and a pallet solution T = (t1,...,tm)
algorithm TRANSFORM gives us in time O(n - k) € O(n?) a bin solution of @,
i.e. a processing of Q.

Algorithm TRANSFORM
a1 =L Gk = Gk

7ji=1
T/ = {t1}

repeat the following steps until g1 = 0,...,q), = 0:

1. if there is a sequence g} such that the first bin b of ¢} is destined for a pallet in T”,
i.e. plt(b) € T’, then remove bin b from sequence ¢, and output b
Comment: Bins for already open pallets are removed automatically.

2. otherwise set j:=j+ 1 and T' :=T" U {t;}
Comment: If the first bin of each subsequence ¢} is destined for a non-open pallet,
the next pallet of the pallet solution has to be opened.

Fig. 4. Algorithm for transforming a pallet solution into a bin solution.

Obviously, there is no other processing of @) that also defines pallet solution
T but takes less stack-up places.

3 Main Result

Next we show a correlation between the used number of stack-up places for a
processing of an instance ) and the directed pathwidth of a digraph Gg defined
by Q. The notion of directed pathwidth (directed treewidth) was introduced by
Johnson, Robertson, Seymour, and Thomas in [9].

This correlation implies that (1) the decision version of the FIFO STAck-Up
problem is NP-complete, (2) a pallet solution can be computed in polynomial
time if there are only a fixed number of stack-up places, and (3) the optimization
version of the FIFO STACK-UP problem can be approximated up to a factor of
O(log"® m).

A directed path-decomposition of some digraph G = (V, E) is a sequence
(X1,...,X,) of subsets of V, called bags, that satisfy the following three
properties.
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(de-l) X1U...UXT =V

(dpw-2) for each arc (u,v) € E there are indices 4,j with ¢ < j such
that v € X; and v € X

(dpw-3) if v € X; and v € X for some vertex u and two indices 4, j
with ¢ < j, then u € X, for all indices £ with i < ¢ < j

The width of a directed path-decomposition (X7, ..., X, ) is maxj<;<, | X;|—1.
The directed pathwidth of G, d-pw(G) for short, is the smallest integer w such
that there is a directed path-decomposition for G of width w. For symmetric
digraphs, the directed pathwidth is equivalent to the undirected pathwidth of
the corresponding undirected graph [12]. For each fixed integer w, it is decidable
in polynomial time whether a given digraph has directed pathwidth at most w,
see Tamaki [18].

The sequence graph Gg = (V,E) for an instance Q@ = (qi,...,qx) of the
FIFO STACK-UP problem is defined by vertex set V' = pits(Q) and the following
set of arcs. There is an arc (u,v) € F if and only if there is a sequence ¢; =
(bn;_141,---,bn,) with two bins b;,,b;, such that (1) j1 < jo, (2) plt(bj,) = u
(3) plt(b;,) =v, and (4) u # v.

If Gg = (V,E) has an arc (u,v) € E then u # v and for every processing
of @, pallet u is opened before pallet v is closed. Digraph G = (V, E) can be
computed in time O(n + k- |E|) C O(n + k- m?).

Example 2. Figure5 shows the sequence graph Gg for Q@ = (q1,¢2,¢q3) with
sequences qi = [aa a, da ¢, d}? q2 = [ba b7 d]v and q3 = [Ca Cy da €, d]

Before we give our main Theorems we want

to emphasize that not every directed path-
GD\\ decomposition of a sequence graph G¢ imme-
diately leads to a pallet solution. In Exam-
®—> ple 2 the sequence ({e,a}, {e,b},{e,c},{e,d}) is
a directed path-decomposition of optimal width
1 for the sequence graph Gg. But opening
the pallets one after another leads (e, a,b, ¢, d),
Fig. 5. Sequence graph Go of which is no pallet solution since pallet e can-
Example 2. not be opened at first and must be put on hold.
Within the proof of Theorem 2 we show how to

transform a directed path-decomposition of Gg into a pallet solution for Q.
Example 3 and Table 2 illustrate this process.

Theorem 1. A processing (Q,Qo), (Q,Q1),...,(Q,Qn) of @ with Qy = Q,
Qn = (0,...,0), and p stack-up places defines a directed path-decomposition

X = (open(Q, Qo), . .., open(Q, Q) for Gg of width p — 1.

Proof. We show that X = (open(Q, Qo), - . ., open(Q, Q,,)) satisfies all properties
of a directed path-decomposition.

(dpw-1) open(Q, Qo) U --- U open(Q, Q) = plts(Q), because every pallet is
opened at least once.
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(dpw-2) If (u,v) € E then there are indices 4,j with ¢ < j such that u €
open(Q, Q;) and v € open(Q,Q;), because v can not be closed before u is
opened.

(dpw-3) If u € open(Q,Q;) and u € open(Q,Q;) for some pallet v and two
indices %, j with ¢ < j, then u € open(Q, Q) for all indices £ with i < £ < 7,
because every pallet is opened at most once.

Since @ is processed with p stack-up places, we have |open(Q,Q;)| < p for
0 <i < n, and therefore X has width at most p — 1. a

Theorem 2. If there is a path-decomposition X = (X1, ..., X,) for Gg of width
p — 1 then there is a processing of Q with p stack-up places.

Proof. For a pallet t let a(X,t) be the smallest ¢ such that ¢ € X; and 3(X,t)
be the largest ¢ such that ¢t € X;, see Example 3. Then ¢t € X, if and only if
a(X,t) <i < B(X,t). If (t1,t2) is an arc of G, then (X, t1) < B(X,t2). This
follows by (dpw-2) of the definition of a directed path-decomposition.

Instance ) can be processed as follows. If it is necessary to open in a con-
figuration (Q, Q') a new pallet, then we open a pallet ¢ of front(Q’) for which
a(X,t) is minimal.

We next show that for every configuration (Q,Q’) of the processing above
there is a bag X; in the directed path-decomposition X = (Xi,..., X, ), such
that open(Q, Q") C X;. This implies that the processing uses at most p stack-up
places.

First, let (Q,Q’) be a decision configuration, let ¢ € front(Q’) such that
a(X,t) is minimal, and let ¢ € open(Q,Q’) be an already open pallet. We
show that the intervals [a(X,t), B(X,t)] and [a(X,t), B(X,t')] overlap, because
a(X,t) < B(X,t) and a(X,t) < B(X,1).

(1) To show a(X,t) < B(X,t') we observe the following:

Since t' & front(Q’), there has to be a pallet ¢ € front(Q’) such that (¢, ¢)

is an arc of Gg. This implies that a(X,t"”) < B(X,t'). Since ¢ is a pallet of

front(Q') for which a(X,t) is minimal, we have a(X,t) < a(X,t") and thus

a(X,1) < B, 1),

(2) To show a(X,t') < B(X,t) we observe the following:

Let (@, Q") be the configuration in that ¢’ has been opened.

(a) t € front(Q"). Since t' is a pallet of front(Q") for which a(X,t’) is
minimal, we have a(X,t') < a(X,t) and thus a(X,t") < B(X,1).

(b) t & front(Q"). Then there is a pallet ¢’ € front(Q") such that (¢”,t) is
an arc of Gg. This implies that a(X,t"”) < B(X,t). Since t’ is a pallet of
front(Q") for which a(X,t') is minimal, we have a(X,t') < a(X,t") <
B, 1)

Finally, let (Q, Q) be an arbitrary configuration during the processing of Q. By
the discussion above, we can conclude that for every pair ¢;,t; € open(Q, Q) the
intervals [a(X,¢t;), B(X, ;)] and [a(X,t;), B(X,t;)] overlap, because ¢; is opened
before t; or vice versa. Since all intervals [a(X,t;), B(X, )], t; € open(Q, Q)
mutually overlap, the cut of all these intervals is not empty, and so there is a bag
X in the directed path-decomposition X such that open(Q, Q) C X;. O
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Ezample 3. We consider the digraph Gg for Q = (¢1,¢2,¢3) with sequences
@1 = la,a,d,e,d], g2 = [b,b,d], and g3 = [¢,¢,d, e,d] from Example 2. Sequence
X = ({a,e},{b,e},{c,e},{d,e}) is a directed path-decomposition of width 1,
which implies the following values for « and § used in the proof of Theorem 2.

|pallett|a|b|c|d|e|
a(X,t)| 1121341
B(X,t)[ 12344

Table 2 shows a processing of ) with 2 stack-up places and pallet solution
S = (a,b,c¢,d, e). The underlined bin is always the bin that will be removed in the
next transformation step. We denote Q; = (qi, ¢4, ¢3), thus each row represents
a configuration (Q, Q;).

Table 2. A processing of Q with respect to a given directed path-decomposition for
G¢ of Example 3.

i q @ @ front(Q:) | open(Q, Q:)
0 |la,a,d,e,d]|[bb,d] [c,c,d,e,d]|{a,bc} |0

1 |[a,d,e,d] |[b,b,d]|][c,c,d,ed]|{a,b,c} {a}
2 |[d,e,d] [b,b,d] | [c,c,d,e,d] | {b,c,d} 0

3 |[d, e d] [b,d] |[c e d,e,d]|{b,c d} {b}

4 | [d,e,d] [d] [c,c,d,e,d] | {c,d} 0

5 |[d,e,d] [d] [c,d,e,d] |{c,d} {c}

6 |[d, e, d] [d] [d, e, d] {d} 0

7 |led] [d] [d, e, d] {d, e} {d}
8 |[e,d] | [d e, d] {d,e} {d}
9 |[e,d] [ [e, d] {e} {d}
10| [d [ [e, d] {d, e} {d, e}
11 ] | [, d] {e} {d, e}
12 ] [ d {d} {d}
13 ] [ I 0 0

4 Applications

4.1 Hardness Result

Next we will show the hardness of the FIFO STACK-UP problem. In contrast to

Sect. 3 we will transform an instance of a graph problem into an instance of the
FIFO StACK-UP problem.
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Let G = (V,E) be a digraph. We will assume that G = (V, E) does not
contain any vertex with only outgoing arcs and not contain any vertex with
only incoming arcs. This is only for technical reasons and the removal of such
vertices will not change the directed pathwidth of G, because a vertex u with
only outgoing arcs can be placed in a singleton X; = {u} at the beginning of
the directed path-decomposition and a vertex u with only incoming arcs can be
placed in a singleton X; = {u} at the end of the directed path-decomposition,
without to change its width.

Let G = (V, E) be some digraph and F = {ej,...,ep} its arc set. The queue
system Qa = (q1, - . .,qe) for G is defined as follows.

(1) There are 2¢ bins by, .. ., bay.

(2) Queue g; = (bgj—1,be;) for 1 <i < (.

(3) The pallet symbol of bin by, is the first vertex of arc e; and the pallet
symbol of bs; is the second vertex of arc e; for 1 < ¢ < £. Thus plts(Qg) = V.

The definition of queue system Q¢ and sequence graph G, defined in Sect. 3,
now imply the following proposition.

Proposition 1. For every digraph G it holds G = Ggq,, -

Lemma 1. There is a directed path-decomposition for G of width p — 1 if and
only if there is a processing of Qg with at most p stack-up places.

Proof. By Proposition 1 we know that G = Gg,. If there is a directed path-
decomposition for G = Gg, of width p — 1 then by Theorem 2 there is a
processing of Qg with at most p stack-up places. If there is a processing of Qg
with at most p stack-up places then by Theorem 1 there is a directed path-
decomposition for G of width p — 1. O

Theorem 3. The FIFO STACK-UP problem is NP-complete.

Proof. The given problem is obviously in NP. Determining whether the path-
width of some given (undirected) graph is at most some given value w is NP-
complete [10] and for symmetric digraphs a special case of the problem on
directed graphs (cf. Introduction of [12]). Thus the NP-hardness follows from
Lemma 1, because Q¢ can be constructed from G in linear time. O

According to [1] it is shown in [13] that determining whether the pathwidth
of some given (undirected) graph G is at most some given value w remains
NP-complete even for planar graphs with maximum vertex degree 3. Thus the
problem to decide, whether the directed pathwidth of some given symmetric
digraph G is at most some given value w remains NP-complete even for planar
digraphs with maximum vertex in-degree 3 and maximum vertex out-degree 3.
Therefore by our transformation of graph G into Q¢ we get sequences that
contain together at most 6 bins per pallet. Hence the FIFO STACK-UP problem
is NP-complete even if the number of bins per pallet is bounded. Thus we have
proved the following statement.

Corollary 1. The FIFO STACK-UP problem is NP-complete, even if the
sequences of Q contain together at most 6 bins per pallet.
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4.2 Bounded FIFO Stack-Up Systems

In this section we show that the FIFO STACK-UP problem can be solved in
polynomial time, if the number p of stack-up places or the number & of sequences
is assumed to be fixed.

Fixed Number of Stack-Up Places. In [18] it is shown that the problem of
determining the bounded directed pathwidth of a digraph is solvable in poly-
nomial time. By Theorems 1 and 2 the FIFO STACK-UP problem with fixed
number p of stack-up places is also solvable in polynomial time.

Theorem 4. The FIFO STACK-UP problem can be solved in polynomial time,
if the number p of stack-up places is fized.

Fixed Number of Sequences. Next we assume that the number k of sequences
is fixed. In [8] we have shown that the FIFO STACK-UP problem can be solved
by dynamic programming in time O(k - (N + 1)¥).

Theorem 5 ([8]). The FIFO STACK-UP problem can be solved in polynomial
time, if the number k of sequences in Q is fized.

Next we improve this result. Therefore we need two additional definitions.
The position of the first bin in some sequence ¢; destined for some pallet ¢ is
denoted by first(g;,t), similarly the position of the last bin for pallet ¢ in sequence
q; is denoted by last(q;,t).

Theorem 6. The FIFO STACK-UP problem is non-deterministically decidable
using logarithmic work-space, if the number k of sequences in @) is fized.

Proof. We need k + 1 variables, namely posi,...,pos; and open. Each vari-
able pos; is used to store the position of the bin which has been removed
last from sequence ¢;. Variable open is used to store the number of open pal-
lets. These variables take (k + 1) - [log(n)] bits. The simulation starts with
posy :=0,...,posy := 0 and open := 0.

(i) Choose non-deterministically any index i and increment variable pos;. Let
b be the bin on position pos; in sequence ¢;, and let ¢ := plt(b) be the pallet
symbol of bin b.

Comment: The next bin b from some sequence ¢; will be removed.

(i) If first(q;,t) > pos; or t & plts(q;) for each j # i, 1 < j < k, and
first(q;,t) = pos;, then increment variable open.

Comment: If the removed bin b was the first bin of pallet ¢ that ever has
been removed from any sequence, then pallet ¢ has just been opened.

(iil) If last(q;,t) < pos; or t & plts(g;) for each j, 1 < j < k, then decrement
variable open.
Comment: If bin b was the last one of pallet ¢, then pallet ¢ has just been
closed.
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If open is set to a value greater than p in step (ii) of the algorithm then the
execution is stopped in a non-accepting state. To execute steps (ii) and (iii) we
need a fixed number of additional variables. Thus, all steps can be executed
non-deterministically using logarithmic work-space. a

Theorem 6 implies that the FIFO STACK-UP problem with a fixed number of
given sequences can be solved in polynomial time since NL is a subset of P. The
class NL is the set of problems decidable non-deterministically on logarithmic
work-space. Even more, it can be solved in parallel in polylogarithmic time with
polynomial amount of total work, since NL is a subset of NCs. The class NCs is
the set of problems decidable in time O(log?(n)) on a parallel computer with a
polynomial number of processors, see [14].

4.3 Approximation

In [11] it is shown that the directed pathwidth of a digraph G = (V, E) can be
approximated up to a factor of O(log*” |V]). By Theorems 1 and 2 the opti-
mization version of the FIFO STACK-UP problem can be approximated up to a
factor of O(log"® m).

5 Conclusion

In this paper, we have shown that the minimum number of stack-up places
needed to solve the FIFO STACK-UP problem for some instance @ is equivalent
to the directed pathwidth of the sequence graph Gg of Q.

In our future work, we want to find online algorithms for instances where we
only know the first ¢ bins of every sequence instead of the complete sequences.
Especially, we are interested in the answer to the following question: Is there a
d-competitive online algorithm? Such an algorithm must compute a processing
of some () with at most p - d stack-up places, if ) can be processed with at most
p stack-up places.

In real life the bins arrive at the stack-up system on the main conveyor of
a pick-to-belt orderpicking system. That means, the distribution of bins to the
sequences has to be computed. Up to now we consider the distribution as given.
We intend to consider how to compute an optimal distribution of the bins from
the main conveyor onto the sequences such that a minimum number of stack-up
places is necessary to stack-up all bins from the sequences.
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Abstract. The black and white bin packing problem is a variant of the
classical bin packing problem, where in addition to a size, each item also
has a color (black or white), and in each bin the colors of items must
alternate. The problem has been studied extensively, but the best com-
petitive online algorithm has competitiveness of 3. The competitiveness
of 3 can be forced even when the sizes of items are ‘halved’, i.e. the sizes
are restricted to be in (0,1/2]. We give the first ‘better than 3’ compet-
itive algorithm for the problem for the case that item sizes are in the
range (0, 1/2]; our algorithm has competitiveness 5.

1 Introduction

We consider the Black and White Bin Packing Problem (B&W, for short)
recently introduced by Bélogh et al. [1,2]. The input is a set of items with sizes in
(0, 1], furthermore each item is categorized as “black” or “white”. The object is
to pack the items into the minimum number of bins under the additional stipula-
tion that no two items of the same color can be packed into a bin consecutively. In
this paper we are interested in the online version of the problem, i.e. items arrive
one by one according to a list L, and no information is given in advance. Thus the
next item can be packed only into a bin where it fits and the last item already
packed into that bin has the opposite color; if there is no such bin, the item must
be packed into a new bin. This problem is a variant of the classical bin packing
(Refer to e.g. [5,10-13]) which is a well known NP-hard problem [9].

As pointed out in Bélogh et al. [1] no algorithm can be competitive against
an offline algorithm which can reorder items. Thus B&W is instead analyzed
against the restricted offline algorithm, where items as before are given by a list
L and packing has to be according to L, but in contrast to the online situation
the order of the items, and the sizes and colors are known in advance. The
absolute competitive ratio of algorithm A is then defined as

Cy = S%P{A(L)/OPTR(L)L
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where A(L) and OPTg denote the number of bins required by online algorithm
A and the restricted offline algorithm for list L.

Though in this paper we analyze competitiveness in terms of the absolute
competitive ratio, we mention that online bin packing algorithms are sometimes
analyzed in term of the asymptotic competitive ration defined by:

CY = lim sup{A(L)/OPTRr(L) | OPTr = n}.
n—oo L

We review a number results relevant to our contribution; for a more complete
exposition of the history of B&W we refer the reader to Bélogh et al. [1]. They
proved that first fit (FF) is 3-competitive in the asymptotic sense and it was
also shown that this is tight (for FF see [4,6,15]). Bélogh et al. [1] introduced
algorithm Pseudo, which is 3 competitive in the absolute sense.

Furthermore Bélogh et al. [1,3] give a lower bound of 1.7213. This bound
was improved to 2 by Désa et al. [7], and it was shown that there is no online
algorithm for B&W with asymptotic competitive ratio smaller than 2. However
a large gap remains between the tight competitiveness of Pseudo and the lower
bound of 2. Désa et al. [7], have introduced the colorful bin packing problem,
where items have a size from (0, 1], and a color from color set C. This problem
generalizes the black and white bin packing problem (where |C| = 2). They
showed the method applied for |C| = 2 does not work for |C| > 3 and con-
structed an algorithm for |C| > 3 with absolute competitive ratio of 4. Vesely
et al. [3], gave an absolutely 3.5-competitive algorithm for the colorful bin pack-
ing problem, and a lower bound of 2.5.

As mentioned Pseudo [1] is 3-competitive in the absolute sense; in fact it is
the first such algorithm. For the parametric case, if items sizes are at most 1/d
(for d > 1, d is an integer), the performance ratio of pseudo is 1 + d%‘ll. The
3 competitive ratio of Pseudo algorithm is tight, even items have size at most
1/2, as shown in [1]. Vesely [8,14], proved that the competitive ratio of the first
fit algorithm for the B&W problem is at most 3. Furthermore Béalogh et al. [1],
proved that in any parametric case, if items sizes are at most 1/d (for d > 1, d
is an integer), the performance ratio of FF is at least 3.

Our Contribution. It has been conjectured that there be a “better than 3”
competitive algorithm for B&W. In this paper we settle this conjecture in the
affirmative for the case when sizes are in (0, 1/2].

2 Algorithm “Balance Between Stacks”

We recall the algorithm Pseudo given in [1]. Pseudo depends on a lower bound
LBy: For an input list L of n items, let ¢; = 1 if the ith item is black and ¢; = —1
if it is white, then LB is:

J
LBy = max |> cl (1)
k=1

1<i<j<n
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Remark 1. ([1]) For any problem instance, LBy is a lower bound on the optimum,
both in the online and restricted offline cases.

Algorithm Pseudo is as follows

Step 1: Render all items as “pseudo items” with size 0 but retained color, and
pack these pseudo items using algorithm Any Fit, which will uses exactly
LB; bins (also called stacks).

Step 2: Consider the original size of the pseudo items, and divide the contents
of each such stack into subsequent bins of unit sizes, as soon as a bin would
exceed 1, open a new bin.

The competitiveness of Pseudo is tight even when sizes are restricted to
(0,1/2] (see [1]). The worst case for algorithm Pseudo occurs in the following
situation: one Stack has many bins, but all the remaining Stacks only have one
bin with little contents in the bin.

In our algorithm we use data structures, namely Stacks, Buffers and a Set C
to avoid such unbalances. Our aim is to construct an algorithm for B&W with
competitive ratio better than 3. The algorithm is called BAL.

2.1 Description of Algorithm BAL

We now give a description of our algorithm, while referring to Fig. 1 below. As
shown in the Figure, we make use of data structures: Stacks and Buffers. Stacks
contain bins which in turn contain the items. We define the color of a Stack as
the color of the last item packed into this Stack. When an item z arrives, first
find a Stack with the opposite color of x. Then pack x into the open bin in this
Stack. Each Stack also has a Buffer which can contain at most two bins. The
invariant for a Stack is that it carries at most three bins. When a bin is opened
it is affiliated with the Stack where it was opened. Each bin is only affiliated
with one Stack, but its affiliation may change during packing.

Given a Stack, let £ be the number of bins in this Stack for £ < 3; we call
this an Sy, Stack. The expression Buf f(S) is the Buffer of Stack S. An Ly Stack
is a special S7 Stack, where one bin (dashed lines in Fig. 1) is not opened here
but moved from another Stack. L; Stack is S; Stack throughout the algorithm
and the one bin is opened in this Stack.

Furthermore we define set C to be a set of pairs of bins. There are two types
of pairs, couple and fat. A couple pair is a pair of bins with different top colors,
total contents of these two bins larger than 1, and each individual bin total
contents at least % A fat pair is a pair of bins which has a total contents of at
least g. A fat pair may have the same top color. In the algorithm, whenever a
new Stack is about to be opened, the set of C is checked first to create better
balance. Unless C' is empty, a pair of bins will be used for the opening of a new
Stack.

In our algorithm, an Sy Stack where Buf f(S1) = 0, and the one bin inside
the S7 Stack has contents less than 1/5, is called a low Sy Stack. Sy Stacks that



48 J. Chen et al.

have Buff(S1) = 0 are called unsaturated S; Stacks. An So Stack where the
second bin is not size collision with the first bin, and the contents of the second
bin is less than 3/10 (Stacks marked by * in our algorithm) is called an isolated
Stack. Both S; Stacks with Buff(S1) = 0 and marked Sy Stacks are called
unsaturated Stacks.

At any moment of the algorithm: if there is at most one unsaturated Stack,
we record this state by a variable State = 0; if there are at least two unsaturated
Stacks, and all the unsaturated Stacks have the same top color, we record this
state by State = 1; if there are more than one unsaturated Stack, and at least two
unsaturated Stacks have different top colors, we record this state by State = 2.
In our algorithm, if there are at least two unsaturated Stacks, we try to keep
State = 2 if possible. With these data structures, our algorithm runs as follows:

x< ﬁ T > % Unsaturated Stacks
|
Stack: S3 S1 | Sa S Sy
o | I
/ 5 |
] *
Set C: |
L
{(C1,C), ) 7 | B
' Lo | D ABEL u
N Lo ] Lol |
By Cs By BL BL
Buffer: Buff(Ss) Buff(S1) | Buff(S2) Buff(S1) Buff(S1)
- | TS
[ [ [ 0 0
o [ | o
s G | s
[ [
[ 0 [ 0 0

Fig. 1. Data structures of algorithm BAL

For an input item z, we first choose an existing Stack for x.
Step I: Choose a Stack for x.

We will choose Stack with opposite color for z. If z > 3/10 we will choose an
Sy Stack with Buf f(S1) = 0, or an isolated Stack (marked by x) first. If z < 3/10
we will first to insure that at least two unsaturated Stacks (Buf f(S1) = 0 Stacks
and marked Stacks) have different top colors. If at least two unsaturated Stacks
have different top colors, or at most one unsaturated Stack exists, we will choose
Stack with the largest number of affiliated bins first. The details are as follows:
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State = 0. In this case we choose Stack as follows:

If 2 > 3/10

If an unsaturated Stack with opposite color of x exists, choose it (S7 Stack
prior to marked Stack).

Else choose a Stack S with opposite color of z and the largest number of
affiliated bins.

If < 3/10, from all the Stacks that are not unsaturated, choose a Stack S
with opposite color of z and the largest number of affiliated bins.
If an S; Stack with Buff(S1) = 1 is chosen, and the bin in S; and
bin in Buf f(S1) have different colors then proceed as follows: If there
is a marked S Stack with opposite color of x, choose the Sy for z, else
choose 5.
If the only Stack with opposite color of x is an unsaturated Stack, choose
it.

State = 1. If all the unsaturated Stacks have different color with x, choose one
as S (choose S; Stack with Buff(S1) = 0 prior to marked Stack), update
the value of State. Otherwise all unsaturated Stacks have same color with
z. Choose a Stack S with opposite color of z and the largest number of
affiliated bins.

State = 2. In this case at least two unsaturated Stacks have different colors.
Therefore there must be one unsaturated Stack with opposite color of x.

If 2 > 3/10, choose one unsaturated Stack with opposite of x. Update the
value of State.
If z < 3/10, from all the existing Stacks, choose an Stack S with opposite
color of = and the largest number of affiliated bins (In this case S3 or So
Stack with opposite color of = will be chosen prior to S; Stack). Update the
value of State.

Step II: Pack = into Stack.

(1) If no existing Stack is available for z.
A new Stack will be opened.
If set C is empty: open a new Stack.

If S; Stack with |Buf f(S1)| = 2 exists, and the contents of the bin in S
has contents at least 1/5. Then move the two bins in Buf f(S1) to the
Buffer of the new Stack. If = can be packed into one bin move this bin to
new Stack as open bin. Otherwise open a new bin in the new Stack for x.
(As Stack Sp of Fig. 1.)

Else directly open a new bin in the new Stack for x.

If set C' is not empty:

(a) If z can be packed into one bin of a pair in set C, pack z into it.
Assume this bin is Cs, the other bin of the pair is C;. After packing x,
if Cy has same top color with C7, and C; has less contents, then move
(' to the new Stack as open bin. Otherwise move C5 to the new Stack
as open bin. In both case, move the other bin to the Buffer of the new
Stack.

(b) In this case x can not be packed into any bin of a pair in set C.
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If x < 1/5, move a pair to the Buffer of the new Stack, and open
a new bin in new Stack for z (Refer to Fig.1). For such Stack with
Buf f(S1) = 2, we can prove that the three bins have a total contents
of at least 1 4+ 1/5 (Refer to the analysis of Egs. (10) and (12)).

If © > 1/5, then directly open a new Stack and open a new bin for z.

(2) Assume Stack S is chosen for packing .
S is an S; Stack. Assume the bin in the Stack is Bj.
(2) |Buf f(S)] # 2. If possible, pack x into the open bin Bj in the Stack.
If  can not be packed into Bj, just open a new bin By to pack z. If
Buf f(S) =1 move By to Buff(S).
(i) |Buf f(S)| = 2.

If the contents of bin Bj is at least 2/5, and a bin in the Buf f(S)
has the same color of By but contents smaller than Bj. In this case,
assume the bin in Buf f(5) to be By bin, exchange By with By, use
By as open bin.

Pack x into the open bin in the Stack as possible. If  can not be
packed into the open bin, open a new bin By to pack x. If the pair in
Buf f(S) is a fat pair and Sy Stack with Buf f(S1) = 0 exists, move
the pair to the Buffer of a Sy Stack (low S; is preferable). Otherwise
move the fat pair to set C.

S is an S5 Stack. Assume the bins in the Stack are B; and Bs.

If  can be packed into Bs bin.

Pack z into the open bin By in the Stack. If the contents of the
second bin is larger than 3/10, remove the mark * of S if exists.

If x can not be packed into Bs.

Remove the mark * of the Stack if the mark exists.
Then check if = can be packed in to By, if so pack x into By bin, and
exchange B; and By, use B; as open bin. Otherwise open a new bin
for z.
S is an S3 Stack. As in Fig.1 assume the three bins are By, By and Bs.
Case: |Buff(S)| = 0. Pack z into Bs bin if possible. If x can not be
packed into Bs, then open a new bin for z, and move B; and Bs to
Buf f(S), S becomes an Sy Stack.
Case: |Buff(S)| = 1. (Impossible for S3 Stack.)
Case: |Buff(S)| =2
(2.1) If there are at least two unsaturated Stacks, pack z into Bj if
possible. If z can not be packed into Bs, open a new bin for z. In
this case By and B3 must be a fat pair (Lemma1). Move By and Bs
to the Buffer of a low S; Stack. If no low S; Stack exists, move the
fat pair to set C.
(2.2) There is at most one unsaturated Stack.
If there is an S; Stack with Buf f(S1) = 0 then
(2.2.1) We change the S3 Stack and the S; Stack with empty
Buffer into a marked S Stack and an S7 Stack with Buf f(S1) =
1. (As the S; in Fig.2.) Assume BL represents the bin in the
S1 Stack.
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Let min{B1, Bz} be the bin of minimum contents between B,
and Bs. Move min{Bi, Ba} bin to the Buffer of S; Stack.

If B3 and BL have the same top color, exchange B3 and BL
bin. Change the affiliation of BL to .S, while B3 and Bj still
affiliate to the S Stack. If BL has contents less than 3/10,
mark Stack S by mark . Pack = into the new open bin BL
in S. S Stack becomes an Sy Stack.

If B3 and BL have different top colors, pack x into B3 bin
first then exchange B3 and BL, do the same operations as
above.

Else check bins B, and Bj (Fig. 3).

(2.2.2) B, and Bj have different top colors, and the contents
of Bj is at least % By definition By and Bs is a couple pair.
Then in this case we will check By and By bin first:

(a) B; and Bj have different top colors. Pack z into Bs; if x
can not be packed into Bs, then open a new bin for z, and
move B and B to set C' as a couple pair; S becomes a Sy
Stack.

(b) B; and B have the same color. Let min{B;, Ba} be
the bin of minimum contents between B; and Bs. Move
min{B1, Ba} and Bj as a couple pair (Lemma3) to set C.
Then open a new bin in S for x, and mark the Stack S by
mark * since the new bin is not size collision with B;. Now
S becomes a Sy Stack.

(2.2.3) If By and Bj is not a couple pair.

The algorithm will pack = into bin Bs, if possible. If x can not
be packed into bin Bz, then open a new bin for x, and move
B; and Bs to set C' (B; and By must be a pair by Lemma4),
S becomes an Sy Stack.

We have the following lemmas.

Lemma 1. Assume B; is the open bin of an unsaturated Stack. Bin B; has
contents at least 7/10, if at least two unsaturated Stacks exist when it is closed.

Proof. Let B; be the open bin of a Stack .S, where S is not an unsaturated Stack.
Assume item x is chosen to be packed into Stack S, and z is too large for B;.
We must prove that it is not possible for > 3/10. Assume that z is larger than
3/10, then in this case the algorithm chooses Stack S, only in the case that all
the unsaturated Stacks have the same color with x. Let y be the top item of B;
bin, and z be the top item of any unsaturated Stack. If z comes after y then, z
chosen the unsaturated Stack only when z > 3/10, contradicting the definition
of an unsaturated Stack. Therefore z comes before y. Then by our algorithm
y should choose an unsaturated Stack. At least two unsaturated Stacks have
different top colors. Again a contradiction. Therefore if at least two unsaturated
Stacks exist, it is impossible for the present item x to be larger than 3/10, when
B; is about to close. a
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Lemma 2. Assume Sy is a marked Stack with two bins, By, By, and By is an
isolated bin (Bg is not size collision with By). Let Cy and Cy be the last pair
moved out from Sy Stack, then Cy and Cy can only be in an Lo or Ly Stack or

in Set C.
The proof of the lemma will be in the journal version.
Lemma 3. Bins min{By, B2} and Bs in step (b) of (2.2.2) form a couple pair.

Proof. In step (b) of (2.2.2), we know that By and Bs form a couple pair, and
B; and Bs have the same top color, we only need to prove that B; and Bs
form a couple pair. Since By, and Bs; have the same top color, therefore when
the first item of the B3 bin comes, the Stack is a Ss Stack. According to our
algorithm (step (2)) the algorithm will attempt to put the item into By bin also,
and only the case that the item is size collision with both bins then a new bin
will be opened. Therefore we have By and Bs have total size large than 1. B;
has contents at least 1/2 and Bs has contents at least 1/5, they are a couple
pair. O

Lemma 4. In step (2.2.3), By and By is a couple pair or a fat pair.

Proof. If the first item of Bj is smaller than 1/5, then By has contents at least
%. Since bin B; has contents at least 1/2, By and Bs form a fat pair.

Now for the case that the first item = of bin Bj is larger than 1/5. When
the next item of x in B3 appears, By and Bs is a couple pair at the time. If By
and Bs have same top color then by (b) of (2.2.2), min{B;, B2} and B3 will be
moved out as a couple pair. Therefore if z > 1/5, for the next items of x in the
same Stack, algorithm can go to step (2.2.3) only under the condition that B
and By have different top colors. By and Bs form a couple pair. Therefore in
step (2.2.3), if By and By is not a fat pair, By and By must be a couple pair. O

Finally, we observe that an S5 Stack cannot transition into an Sy Stack, and
an S3 Stack can only transition into an Sy Stack after generating a pair. And
each pair in set C is generated when no low S; Stack exists.

3 Competitive Analysis of Algorithm BAL

We now analyze the performance of our algorithm. Let M be the total number
of bins used by the algorithm at the end. Then we divide M into disjoint subsets;
and analyze the total size of the bins in each subset. For example a pair of bins
in set C' has total size at least 1, while a fat pair by definition have total size at
least 1 4 1/5. If a couple pair is used to open a Stack and the Stack opened a
new bin, then these three bins have a total size of at least 14 1/5, since the new
opened bin must has size collision with one bin of the pair, and the contents of
the left bin is at least 1/5. Using these properties we can calculate the contents
of the disjoint subsets; if we can assure that there are at least total size of ¢- M,
¢ > 0 then the competitive ratio of our algorithm is at most 1/c.
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Fig. 2. Buff(S:1) =1. Fig. 3. Couple pair.

In the following sections we first we define a number of useful terms for the
analysis of the algorithm, and introduce a case analysis. Then we develop a
methodology of calculating contents for various kinds configurations. Finally we
give the proofs of our performance ratio.

3.1 Terminology and Case Analysis

As defined before an Sy Stack has k bins (k < 3), an Sy Stack has at least 4 bins
but does not exist in our algorithm. We define S;, as the number of S) Stacks
at the end of the algorithm.

Let k be the number of bins affiliated to a Stack at the end of the algorithm,
if £ < 3 we call the stack an Ly Stack, else if k > 4 we call it an L4+ Stack (L4+
Stacks exist in the algorithm. Because when a Stack generated pairs, the pairs
are moved out of the Stack but are still affiliated with this Stack). An Ly Stack
is a Stack that has only one affiliated bin at the end of the algorithm, it must
be an S; Stack. But an S; Stack at the end of the algorithm is not necessarily
an L; Stack. There may be one bin in the Stack and another bin in the Buffer,
the two bins are bins of a pair that moved in from other Stack. This Stack is an
Lo Stack.

Lemma 5. An S; Stack at the end of the algorithm can not be an Ly+ Stack.

Proof. Assume an S; Stack at the end of the algorithm is an L,+ Stack. Since
there is only one bin left in the Stack at the end of the algorithm, the other bins
affiliated with this Stack are moved out of the Stack. If the last bin moved out
is only one bin, then this S; Stack is once an Sy Stack. But in our algorithm no
bin will be moved out from an Sy Stack. Therefore it is impossible to move only
one bin from the Stack at a time. Suppose the last bins moved are two bins,
then this S7 Stack is once an S3 Stack. Where by our algorithm each operation
on an S Stack is insured to make the Stack to be an S5 Stack when moving a
pair of bins outside the Stack. Again a contradiction. g
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In our algorithm an S; Stack might change to an S; Stack by opening a new
bin inside the Stack. An Sy Stack might increase to an S3 Stack too. But an S
Stack can only be changed to an Sy Stack by any operation in our algorithm.

There are Lg stacks (Fig. 1), it must be one bin (call this bin C3 bin) of a pair
placed in the Lg stack (another bin of the pair is moved into the Buf f(Lo)).
This pair of bins are not affiliated with this stack, but affiliated with some L3
or L} Stack where they are opened. All the items packed in the Lo Stack can
be packed into this Cs bin and no new bin is opened. At each step no Stack has
more than three bins, therefore at the end of the algorithm, an L4+ Stack will be
either an S5 Stack or an S3 Stack. An L3 Stack will be an S5 Stack. An Lo Stack
will be an Sy Stack. An S7 Stack at the end of the algorithm is either an Lg or
an L1 Stack. An S; Stack that have no new bin opened is an Ly Stack, otherwise
it is an Ly Stack. An L; Stack can only be an S; Stack at any moment. If the
Stack is start with a Cy bin, it will be moved to the Buffer of the Stack when a
new bin is opened. As mentioned S;, is the number of Sj, Stacks at the end of
the algorithm, then we have

S1 = Lo+ L.

As defined Sy is the number of S, Stacks at the end of the algorithm, and Ss is
the number of S3 Stacks. Then we have:

LBy =51+ 82+ 83 =Lo+ L1 + S2 + Ss, (2)
As defined M is the total number of bins used by the algorithm, then we have
M =1Ly +25 +3S3+T,

where T is the total number of bins in set C, bins in Buf f(5) and bins in Stack
Lo (Cy bin as in Fig.1). T can also be calculated as the total bins in dashed
lines in Fig.1 plus the bins in set C'. Therefore we have T' = 2z, where x is the
number of pairs generated by the algorithm. Each pair can used to fill the Buffer
of a Stack.

T=M-—1L;—2S,—3S;. (3)

Each Buffer of a Stack has a capacity of at most 2. Therefore at least the
number of x = min{T/2, LB;} Stacks can be filled by T, these Stacks include
L; Stacks, k > 2. Therefore we can only assure that the number of S; Stack
with |Buf f(S1)| # 0 is at most x — Sy — Ss.

The first case is that T is large enough that can insure all S; Stacks
(S1 = Lo + L1) will have Buf f(S;) # 0. That is

Case @: >S5+ 85y +Ss.

Consider the more general case: only part of S; can be insured to have

Buf f(81) #0.
C(ISP,@: §2+S3<$<5’1+§2+§3.



Black and White Bin Packing Revisited 55

The third case is that
Case @ : <S5+ S5s.

Thus in the third case no S; stack can be insured have no empty Buffer, but in
this case we can find the total number of bins is bounded.

3.2 A Function Calculating the Total Size of Bins

For a set S = {B1, Bs, ...}, function w(S) calculates the lower bound of the total
size of the bins in S. Let V be the set of all M bins at the end of our algorithm,
We divide V into disjoint subsets of Vi, Va, ..., then the function w(V;) has the

property:

OPT > total size of items in V > Y w(V;). (4)

K2

The values of w(x) for different set of bins are defined as follows:
If V; = {B1, B2}, where By and By are two consecutive opened bins in the
same Stack, or both bins have contents at least 1/2, then we have

w({By, B2}) = L. ()

If V; = {B1, B2}, where By is not size collision with By (Bs is an isolated
bin). Refer to step (2.2.1) or step (a) of (2.2.2) in our algorithm, that a pair of
bins are moved out, and the next bin is not size collision with By bin in the S5
Stack. We have the following lemmas.

Lemma 6. For an Sy = {By, B2} Stack with an isolated bin Bs(Bs is not size
collision with By ). Let Cy and Cy be the pair moved out, if C; and Cs is moved
out by step (b) of (2.2.2), By and C; have same top color.

Proof. As in our algorithm, if the isolated bin is generated in step (b) of (2.2.2),
that B; and By must have same color. O

Lemma 7. For an S = {B1, Ba} Stack with an isolated bin Ba, and Sy is not
marked (By has contents larger than 3/10), let By, Byo be the two bins in the
Buf f(Ss), we have:

w({Bp1, By2} U{By, Ba}) = 3/2 4 3/10 = 9/5. (6)

Lemma 8. For an Sy = {By, Ba} Stack with an isolated bin Bs, let Cy and Cy
be the last pair moved out. If So is still marked, and Cy and Cy are in set C' or
in an Ly Stack at the end of the algorithm, then we have:

w({By1, Bra} U{By,C1,Cy, By }) = 2.5. (7)

Proof. Cy and Cy have total size 1, Bj is closed bin have size at least 1/2.
B¢1, By are a pair of bins and have total size 1. O
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Lemma 9. For an Sy = {B1, Ba} Stack with an isolated bin Bs, let Cy and Cy
be the last pair moved out. If Sy is still marked, and C; and Cs are in an Ly
Stack at the end of the algorithm. Let BL be the bin in Ly Stack, then we have:

w({Bg1, B2} U{B1,C1,Cs, By } U{BL}) = 3. (8)

Proof. BL bin must be opened later than Cy and C5 in Stack L;. The size of (8)
is calculated as follows: if BL is size collision with Cs (have total size 1), then
the total size of By and C] is 1, therefore the total is 3. If 'y and C5 are moved
into Ly Stack by operation (2.2.1) then BL must be size collision with Cs.

If BL has size collision with C7, then B; and C; must have the same color
(otherwise By and By would have moved out as couple pair), and size of C; is
no more than By. (We move the smaller bin with Cy as couple in step (b) of
(2.2.2)). Therefore BL and B; have total size at least 1, and also Cy and Cj
have total size 1, therefore we have the above size equation. a

Lemma 10. If V; = {By, By, B3}, where By and Bz are two consecutively
opened bins in the same Stack, then we have

w({Bl,BQ,B3}) = 1.5. (9)

Proof. where Bj3 is opened to pack an item which is size collision with Bs.
Therefore the contents in the two bins is at least 1, By is a closed bin and has
contents at least 1/2.

Lemma 11. IfV; = {Cy,Cy, BL}, where Cy, Cy form a couple pair and BL is
the bin of a Ly Stack. The total size of the three bins is at least:

w(couple U{BL}) =1+ % (10)

Proof. BL is opened by size collision with one bin of the couple bins, by definition
the top colors of the couple are different and each bin of a couple pair has contents
at least 1/5. O
Regarding fat pairs we have following lemmas about the total size inside the
bins:
Lemma 12. IfV; = fat = {B1, By}, where By, By is a fat pair, we have
6
w(fat) > 5. (11)

Proof. If a fat pair is generated by operation (2.2.3) from an Ss stack, then the
first item of the third bin Bs of S35 has a size < % Refer to Fig. 3. Therefore the
contents of By has contents larger than %, while B; have contents larger than %
as a closed bin. If the fat pair is generated in operation (i7) of (2) in a Sy Stack,

then by Lemma 2, they have total size at least 6/5. a

We can assign one low Ly bin with a fat pair. And we have
6
w(fatU{BL}) > E (12)

where BL is the bin of an L; Stack.
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3.3 Case by Case Analysis of the Competitive Ratio of BAL

Lemma 13. Case® : if v > S; + Sy + S3, then the competitive ratio of
algorithm BAL is at most g

Proof. The number of pairs is larger than the number of Stacks. If set C is
empty, then there is a number of LB; pairs in LB; Stacks. If the set C' is not
empty, then there is no low L; Stack. But there are potentially L; Stacks that
have Buf f(L;) = 0, and contents at least 1/5. By operation of (2.2.1), the pairs
in set C' can not be generated later than any L; Stack that has Buf f(L;) = 0.
These L; Stacks opened the Stack when the pairs in C' are existing. Then it can
only be the case of operation (b) of (1), the first item of the Stack is larger than
1/5 and can not be packed into any bin of the pairs. We can move a pair in
set C' to the Buff(Ly), then the total size of the three bin is at least 6/5 and
the bin in Ly Stack is size collision with one bin in the Buf f(L1). This kind
of Ly Stack just has the same property as the L Stack with Buff(L1) = 2
that are generated by our algorithm. Therefore at the end of the algorithm, if
set C' is not empty, and there are L, Stacks with Buf f(L;) = 0, we can simply
move the pairs from set C' to the Buffers of the L, Stacks. This new L; with
Buf f(L1) = 2 still has the property for (8) and for the proof of Lemma 2.

Since the number of pairs is larger than the number of Stacks, if C' is not
empty we can move pairs to the empty Buffers of L; Stacks. Therefore we can
assume that all L; Stacks have Buf f(L1) # 0 in Case (D.

We consider the contents of S, Stacks first. The size of an Sy Stack
(B; and Bs bin) is either by (5) that has total contents of at least 1, or Bs
is not size collision with By (B is an isolated bin). But B; B can combine size
by (7) or (8). We define y» to be the number of Sy Stacks that have the following
properties: Sy Stack has an isolated bin, the last moved out pair is either in set
C or used by an Ly Stack. The total size of these y, Stacks can be calculated
by (7). We define 5} to be the number of S, Stacks that have the following
properties: Sy Stack has an isolated bin, the last moved out pair is used by an
L, Stack. Then the total size of yo Stacks can be calculated by (8). We define
Y4 to be the number of Sy Stacks, that have an isolated bin but not marked at
the end of the algorithm (isolated bin have contents 3/10), then these Stacks are
calculating size by (6). All of these types of Stacks have Buf f(S2) = 2.

Let 1 = Ly — yb, then by Eqgs. (10) and (12). These bins will have total
contents at least:

X - w({Cl, CQ, } U {BL}) Z %, (13)

where BL is the bin of an L, Stack, and Cy, C5 are a pair of bins from T'. If the
bins C; and Cy are moved into the L; Stack by operation (2.2.1), the three bins
will have total size of at least 1.5.

M bins are divided into subsets as follows:

M =L, +2S5,+ 353 + T,
=z +yh+2x; +3S3+T — 221 +25,.
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By Egs. (5) and (9), we have

T— 21[,’1
—

Let S, = Sy —yo — 9 — y4, by (6), (7) and (8), we have

w(T —2x1) =

w(289 + 2ya + 2y + yh + 2y5) = Sh + 2.5y5 + 3yy + 9yh /5.
Let TV =T — 221 — 2y — 2yb — 2y4, then we have:

w(M) = w(zy + 2x1) +w(3S3) + w(T") + w(25,)
61‘1 353 T/

> 22h £ SR S S+ 25yn 4 3y, + 043 /5.

We have OPT > w(M), therefore the competitive ratio is:

M LM +22) + 385+ T + 285,
OPT ~ 6x1/5+ (395)/2 + (T")/2 + S5
3z1 + 383 + T + 254 + 6ya + Tyh + 4y
= 621/5+3S3/2+ (T")/2 + S) + 2.5y2 + 3y + 9y4 /5
5

5"

IN

O

Lemma 14. Case@) : If So+S3 < x < 81+ Sy +S3, then the competitive ratio
of algorithm BAL is at most %.

Lemma 15. Case@®) : if v < Sy + Ss, then the competitive ratio of algorithm
BAL is at most %.

Proofs of the Lemmas 14 and 15 will be in the journal version. Combine the
results of Lemmas 13, 14 and 15, we have the following theorem:

Theorem 1. For the instance that all items have sizes in (0, 1/2], the compet-
itive ratio of algorithm BAL is at most %.

4 Concluding Remarks

We conjecture and have obtained partial results to show that our scheme can
be used for the problem where items sizes are in (0, a], with @ < 1, to obtain
a competitive ratio smaller than 3 — w(+). We note that the analysis, though
similar to the analysis of BAL presented in the previous chapter, is more involved
when item sizes are in (0, «]. We also conjecture that there is a better than 3
competitive algorithm for B&W, and it is conceivable that further refinement

of the ideas for BAL will yield such a desirable result.
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1

Facility location problem is one of the most important problems in the area of
combinatorial optimization, and it has numerous applications in computer sci-
ence, industrial engineering, and operations management etc. The uncapacitated
facility location problem (UFLP) is a classical location problem, in which we are
given a set of facilities F with |F| = n, a set of clients D with |D| = m, con-
nection costs c;; for all ¢ € F and j € D, and facility costs f; for all ¢ € F.
The objective is to open some facilities S C F and connect each client to an
opened facility, such that the total connection and facility cost is minimized. In
the metric case, the connection costs ¢ are in a given metric space (F|JD,c),
satisfying nonnegativity, symmetry, and triangle inequalities. From now on we
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There are two important variants of the classical UFLP. The first is the
k-median problem. In contrast to the UFLP, the k-median problem incurs no
facility costs (f; = 0 for all ¢ € F), and opens no more than k facilities. The
second is the k-facility location problem (k-FLP), which is similar to the k-
median problem except that opening facilities may incur non-zero costs.

Both the k-median problem and the k-FLP are NP-hard. Therefore there
have been many studies focusing on the design of approximation algorithms for
these two problems. For the k-median problem, Charikar et al. [6] apply the
LP-rounding technique to give a 6§—appr0ximation algorithm, the first constant
approximation for this problem. Subsequently, several approximation algorithms
are presented based on LP-rounding [5,9], primal-dual [10,11], and local search
[2]. The currently best known approximation ratio of 2.611 + € is due to Byrka
et al. [5] based on LP-rounding and primal-dual techniques. Jain et al. [10] prove
that no algorithm can achieve approximation ratio better than 1+ 2/e ~ 1.735
unless P = NP for the k-median problem.

For the k-FLP, the first approximation algorithm with ratio 6 is given by
Jain and Vazirani [11], based on the primal-dual scheme. Jain et al. [10] further
combine the greedy process and the factor-revealing LP technique to improve
the approximation ratio to 4. Zhang [14] offers the currently best known approx-
imation ratio 2 + v/3 + € based on local search technique. Since the k-FLP is an
extension of k-median problem, 14 2/e a2 1.735 is also a lower bound for k-FLP.

This work incorporates penalty cost to consider the k-median problem with
linear penalties (k-MPLP) and the k-FLP with linear penalties (k-FLPLP).
Penalty cost p; € D is incurred whenever client j is denied service and this
cost is linear, namely for any subset 7' C D, p(T) = ZJET p;. The objective is
to minimize the total connection and penalty cost in the former problem and
the total connection, facility and penalty cost in the latter. These two problems
are evidently extensions of the k-median and the k-FLP where p; = 400 for
all j € D, and hence also NP-hard. The only extant result for these two prob-
lems is a primal-dual based approximation algorithm with ratio 4 for the metric
k-MPLP due to Charikar et al. [7].

Combinatorial optimization problems with penalty cost have been widely
investigated in the literature, including the facility location problem with penal-
ties [7,8,12], the scheduling problem with rejection [4,13], and the price-collecting
Steiner tree problem [1,3], among others.

In this paper, we offer a (3+2/p+ ¢)-approximation algorithm for the metric
kE-MPLP and a (24 1/p++/3 4+ 2/p + 1/p? + €)-approximation algorithm for the
metric k-FLPLP, where p € Z is a parameter of the algorithms and € > 0 is
a positive number, utilizing the local search techniques from Arya et al. [2] and
Zhang [14], respectively.

The rest of this paper is organized as follows. In Sect. 2, we introduce the
general local search algorithm. In Sects.3 and 4, we present the local search
algorithms for the k-MPLP and k-FLPLP respectively. In Sect.5, we improve
the algorithms in Sects.3 and 4 to polynomial-time. All the proofs are deferred
to the journal version of this paper.
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2 General Local Search Algorithm

The main idea of local search algorithm is to move from solution to its neighbour-
ing solution iteratively with improved cost. Formally, for any feasible solution X,
define its neighborhood N (X) and its cost cost(X). Then a local search algorithm
can be described as the following pseudo-code.

Local search algorithm Al
1. Give an initial feasible solution Xj.
2. X «— Xj.
3. While 3X’ C N(X) such that cost(X') < cost(X)
X «— X'
Endwhile
4. Return X.

For any problem instance I, the final solution produced by a local search
algorithm is called a local optimal solution along with its local optimal value.
Denote local(I, X) and global(I) as the local optimal value produced by a local
search algorithm from the initial solution X and the global optimal value of the
instance I respectively. The local gap of the local search algorithm is defined as

local(I, X)
sup ————=.
1,x global(I)

In Sects.3 and 4, we will present two local search algorithms for the met-
ric k-MPLP and k-FLPLP with local gaps at most 3 + 2/p and 2 + 1/p +

V34 2/p+ 1/p? respectively.

3 Local Search for k.-MPLP

For the location problems considered in this work, any subset of opened facili-
ties X C F represents a solution because the assignment of clients to facilities
afterwards can be easily achieved with the minimum connection cost once the
opened facilities are fixed.

For the the k-median problem, Arya et al. [2] define the neighborhood of any
feasible solution X as

N(X):={(X\A)UB: ACX,BCF, and 1< [A|= B/ <p} (1)

where p < k is a given positive integer. The local search operation (X\A)U B
therein is called the swap of A and B, denoted as swap(A, B). Arya et al. [2]
consider two types of swap, namely, single-swap (p = 1) and multi-swap (p > 1),
with local gaps of 5 and 3 + 2/p respectively.

Note that there must exist an optimal solution O such that |O] = k in the k-
median problem as we can add facilities in absence of any opening cost. Thus, it is
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reasonable to start from a feasible solution with | X| = k and apply the operation
swap(A, B) with |A| = |B| in every step of the local search procedure.

We now apply the local search algorithm Al to k-MPLP using the same
neigborhood N(X) defined in (1) with the penalized total cost:

cost(X) := costs(X) + cost,(X),

where costs(X) and cost,(X) are the connection and penalty costs respectively.

3.1 Analysis

The main idea to establish the local gap a between the local optimal solution X
and the global optimal solution O, namely cost(X) < acost(O), is to focus on
some specific swaps between X and O. Each of these swaps satisfies an inequality
due to the local optimality of X, and the sum of these inequalities leads to the
desired local gap.

We follow similar analysis in Arya et al. [2] with the further complication of
penalty cost. For our purpose, we view the penalty cost of each client j as the
connection cost between j and a dummy facility d with cg4; := p;. However these
new connection costs may violate the triangle inequality, a crucial property in the
analysis of [2] for the k-median problem. To overcome this hurdle, we divide D
into four subsets according to whether a client is penalized in X or O. Only those
clients that are not penalized in both X and O require the triangle inequality
property to carry through the analysis.

From now on, we use d and d* to represent the dummy facility in the solution
X and O respectively. We need the following notations.

— o(j) and o*(4): the facilities (including the dummy facility) serving the client
j in the local optimal solution X and the global optimal solution O respec-
tively.

~Dy(A):={j € D:o(j) € A} for A C X U{d}, and Dy«(B) :={j € D :
0*(j) € B} for BC OU{d*}.

— D4 :=D,(A) N Dy+(B).

~ Dy :=Dy(X), Dy :=Ds({d}), D; := Do+ (0), and D}, := Do~ ({d*}).

— X; and O;: the connection cost of the client j in X and O respectively for
any unpenalized client j.

~ C(A) :== {y € 0 :|D,(A) N Dy-(y)| > 5|Do+(y)\Dp|}. We say that A cap-
tures facility y if y € C(A), and A captures B if B C C(A).

For convenience, we abbreviate the notation of a single-element set {i} to ¢
whenever there is no confusion.

We call a facility i € X good If i does not capture any facility, i.e. C(i) = 0;
otherwise we call it bad. Let X’ = {b1,ba,--- ,b._1} be the set of all bad facilities.
We partition X = U;_; A; and O = U;_; B; based on a similar procedure in Arya
et al. [2]:
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Procedure of partitioning X and O for k-MPLP
Fort=1tor—1
Let At = {bt}
While |4 < |C(Ay)|
Add a facility i € X\(A; U---UA; UX') to A;.

End while
Let B; = C(Ay).
End for
Let A, = X\(A1U---UA,_1), B.=0O\(B1U---UB,_1).
It is easy to see that each of Ay,---, A._1 contains exactly one bad facility; A,
contains only good facilities; and |A;| = |By| for t =1,--- ,r.
Now we consider some specific swaps between A; and B; for t = 1,--- ,r.

There are two cases depending on the number of facilities in A; and By:

1. If |A| = |B:| < p, we consider swap(A;, By).

1.1 D;(A¢) N'D;, # 0. In this case the clients in D, (A;) N D;; are penalized
after the swap operation.

1.2 D, (Ay) N D,y = (). In this case no client in D, (A;) is penalized after the
swap operation.

2. If |Ay| = |Bt| = ¢ > p, we consider the single-swaps swap(i, o) for each good
facility ¢ € A; and each facility o € B;. Note that there are ¢—1 good facilities
in A; and ¢ facilities in By, implying that there are (¢ — 1) swaps in total.
Similar to the case 1, some clients in D, (i) may be penalized after the swap
operation.

A local operation swap(A, B) may reassign a client in D,(A) U Dy« (B) to
another facility. We therefore need to bound the new connection cost by using
the bijection 7 : Dy (0)\D)p — Dy« (0)\D), for each o € O. With a given partition
of X = Uj_, A;, the bijection 7 is constructed via the following process.

We partition D,«(0)\D, = Uj_; D%, . Renumber the clients in Dy-(0)\D,, as
{j1,-++ 1}, such that clients in D¢ for all i € X are numbered consecutively,
and clients in D9, for all t € {1,---,r} are numbered consecutively. If o is
not captured by any facility, let 7(js) = js for every js € {j1, -+, i}, where
s =14 (s+ [I/2] — 1) modulo {. Otherwise, o must be captured by only
one facility by definition; we denote this facility as 71, and assume that Df =
{j1,-++ ,ji } without loss of generality. Since {; > 1l, we can construct [l — I |
mutual mappings between js and jsy;, for s =1,---,1 —1[;. For the remaining
|21y — 1| clients {ji—i,+1, " ,Ji, }, let w(js) = js where s’ = 1+ (s + [(2; —
1)/2] — 1) modulo (21; —1). It is easy to prove that bijection 7 has the following
properties.

L o"(n(4)) = 0" (j)-

2. fo(mw(j)) = o(j), then o(j) captures o*(j).

3. If 0(j) € A4, o(w(j)) € A; for some t € {1,2,--- ,r}, then A; captures o*(j).
4. 7 is a bijection on Dy N DE, and also on {j € Ds N DY : 7(j) ¢ Ds(o(5))}-

From the above properties we have the following two lemmas.
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Lemma 1. Given a facility o € O, let Ay (t € {1,2,---,r}) be a set such
that Dy, # 0 and does not capture o. The removal of A; from X results in
a new connection (or penalty) cost of each client j € D, being bounded by
Oj + Ox(j) + Xn(j)-

Lemma 2. Given a facility o € O, let facility i (i € X ) be a set such that D¢ # ()
and does not capture o. The removal of Ay from X results in a new connection
(or penalty) cost of each client j € Dy being bounded by O 4 Ox(;) + Xr(j)-

To analyze the new cost after swap(A, B), we only need to focus on the
clients in D, (A) U D,+(B). We consider four cases.

Case 1. 0*(j) € B and o(j) # d. Let i*(j) be the closest facility to j in the
new solution. Then we have c¢;«(;); < O; from o*(j) € B. So we can use
O; to bound the new connection cost. In this case, the upper bound of the
increased cost is O; — X;.

Case 2. 0*(j) € B and o(j) = d. In this case, o*(j) must be the closest facility
to j because ¢;; > p; for all i« € X and p; > O;. So the increased cost is
Oj = pj-

Case 3. 0*(j) ¢ BU{d*} and o(j) € A. We do not know which facility is
closest to j in the new solution, and we can not use O; or p; to bound
the cost because o*(j) is not in the new solution. However, we know that
DZ*(” # 0 and C(A) = B if |A] > 1, or A = {i} such that i does not
capture any facility. We use Lemmas 1 and 2 for these two cases respectively
to obtain an upper bound of the increased cost: O; + Or(;) + X7 (j) — Xj-

Case 4. 0*(j) = d* and o(j) € A. It is clear that j is penalized or connected to
a facility ¢ with ¢;; < p;. So p; — X is an upper bound of the increased cost
in this case.

Combining the above four cases, we have the following theorem.

Theorem 1. For the k-MPLP, the local gap of algorithm Al with N(X) defined
in (1) is at most 3+ 2/p.

4 Local Search for k-FLPLP

For the k-FLP, adding or dropping facilities is not costless. For this reason,
Zhang et al. [14] provide a local search algorithm for the k-FLP with a local gap
of 2 4+ /3, by introducing the new operations swap, add, and drop:

— swap(A, B): for a solution X, swap the subset A C X and B C F\X, i.e.
X — (X\A)UB.

— add(i): add the facility ¢ € F\X to X, i.e. X — X U {i}.

— drop(i): drop the facility ¢ € X, i.e. X «— X\{i}.
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Consequently, the neighborhood N(X) with |X| < k is defined as

N(X):={(X\A)UB:ACX,BCF, and 1 <|A| =|B| <p} U
{(Xu{i}:ie A\X,|XU{i}| <k}U (2)
{X\{i}:ie X}.

In our work, we apply the local search algorithm Al to the k-FLPLP, using
N(X) defined above and cost(X) := cost;(X) + costs(X) + cost,(X) where
costy(X), costs(X) and cost,(X) are the facility, connection and penalty costs
respectively.

4.1 Analysis

Similar to the analysis for the k&-MPLP in Sect. 3, we need to construct some
local operations to establish the relationship between the local optimal solution
and the global optimal solution. Our analysis is similar to that in Zhang [14]
with the complication of penalty cost.

We first cite the following lemma from [14], modified to include penalty cost.

Lemma 3. For a given i € X, let o € O be the closest facility captured by i
and o another facility captured by i. For each client j € DY such that 7(j) =
Dy (1), the new connection (or penalty) cost of j is no more than 2X; 4+ O; after
swap(i, 0).

To bound the facility cost, let X' = {b1,---,bx/|} be the set of all bad
facilities and partition X and O using the following procedure similar to that
n [14]. The bijection 7 : D — D with this partition can be constructed using
the same method in Sect.3 earlier. Let X = U;_;A; be this partition. Then
Lemmas 1 and 2 also hold for this partition.

Procedure of partitioning X and O for the analysis of
facility cost for k-FLPLP

For t =1 to |X’|
Let A; = {b;} and B; = C(A4).
While |A;| < | B
Add a facility ¢ € X\(4A; U---U A, UX') (if it exists) to A;.
End while
End for
Let B|X/H_1 = O\(Bl U---uy B|X’\)
IF[X\(AL U UA x| = [Bixoj4l
A|x/|41 = the set of arbitrary |B|x/ 11| facilities in X'\(A; U--- U A|x/|);
AlX/H_Q = X\(Al U---uy A|X’H—1) =: R.
Else if
A|X/H_1 = X\(Al U---uy A|X’\)
End if
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Fig. 1. Partition for the analysis of facility cost, case 1: lo <lx.

Let lo = |O] and ix = |X]|. The partition involves two cases: lo < Ix and
lo>lx.

For lp < lx (Fig.1), let X := A;U---UA,_1UR and O := ByU---UB,_;.
According to the partition procedure, each A; (t € {1,--- ,r — 2}) contains one
bad facility denoted by b;, while none of each B; = C(b;) and A,_; contains
bad facility. Moreover, |A;| = |B| for t € {1,--- ,r —1}, and R is the remaining
set such that |R| = |X| — |O|. Without loss of generality, assume that A,_,
B,_1, and R are non-empty. Denote e; as the closest facility to b; in B, and
then consider the following local operations.

1. Consider drop(i) for facility ¢ € R.

2. Consider swap(by,e;) for (A¢, By),t € {1,--- ,r — 2} and consider swap(i, o)
for the remaining |A\{b;}| pairs in which every facility is swapped only once.

3. Consider |A,_1| single-swaps swap(i,0) for i € A,_1 and o € B,_; where
every facility is only swapped once.

For lo > Ix, let X := AjU---UA, and O := ByU---UB,. Each A; (t €
{1,--- ,r—1} ) contains one bad facility; each B; is the corresponding captured
set; A, contains no bad facility; and B, is the uncaptured facility set. Let P be
the union of the sets formed by any |B;| — | A¢| facilities in Bi\{ey, - ,e,_1} for
t € {1,---,r}. Note that there are two subcases: A, = 0 and A, # 0 (Fig.2(a)
and (b) respectively). For the facilities not in P, we apply swap operations similar
to that of lp < lx, while for each facility o € P, we apply the add(o) operation.

B, By, By B By B,y B,
0 |e-1/! ~u |- (@) aan|[a-aDp 0 |e-‘/! . ||-/; ~u|[n@al)p
x[feoe-f |l | x [fmu]- g n]ln |
Al Ar—z Ar—l Al Ar—l Ar
a) (b)

Fig. 2. Partition for the analysis of facility cost, case 2: lo > Ix.

Combining the local operations specified earlier for these two cases (namely
lo <lx and lp > lx), the following lemma bounds the facility cost of X.
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Lemma 4. For the k-FLPLP, the global optimal solution O and the local opti-
mal solution X produced by the algorithm Al with N(X) defined in 2 satisfies
that cost§(X) < costf(O) + 2costs(O) + cost,(O).

Next we analyze the upper bound of the connection and penalty cost of X.
We partition X and O by using the following procedure from [14] for the case
of lo < lx (Fig.3). Note that except for the set R, this partition is the same
as that for k-MPLP in Sect. 3. So similar properties apply and Lemmas 1 and 2
also hold for this partition.

Procedure of partitioning X and O for the analysis of
connection and penalty cost for k.-FLPLP
For t =1 to | X'|
Let At = {’Lt}
While |4y < |C(Ay)]
Add a facility i € X\(4; U---U A, UX') to A;.

End while
Let Bt = C(At)
End for

Let lelH_l = O\(Bl U---uy BIX")7
A|xr|4+1 = the set of arbitrary |B|x/ 11| facilities in X\ (A U--- U Ajx/|).
Let A‘X/H‘Q = X\(Al J---u A\X/|+1) = R.

By B, Br_s Br_q
0[in-n|[d-u][an-p|[ua]

% ‘b‘:- -|||£-| bi/i----||--~-||-----|

2 r—2

Al AZ AT—Z Ar—l R

Fig. 3. Partition for the analysis of connection and penalty cost, case 1: lo < Ix.

For the case of Ix > lp, we apply operation add(o) for each o € O. For the
case of Ix < lp, we consider the swap operations similar to that for k-MPLP
in Sect.3 for each pair (A¢ By), t € {1,---,r — 1}, and operation drop(i) for
each ¢ € R. Using these local operations for the two cases, we have the following
lemma, showing the upper bound of connection and penalty cost.

Lemma 5. For the k-FLPLP, the global optimal solution O and the local opti-
mal solution X produced by the algorithm Al with N(X) defined in 2 satisfies
that costs(X) + cost,(X) < cost(O) + (34 2/p)costs(O) + (1 + 1/p)cost,(O).

Summing up the upper bound of the facility cost in Lemma 4 and the upper
bound of the connection and penalty cost in Lemma 5, we get

cost(X) < 2cost ;(0) + (5 + ;) cost,(0) + (2 + 11)) cost,(O).

Finally, we get the following theorem.
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Theorem 2. For the metric k-FLPLP, the local gap of the algorithm Al with
N(X) defined in 2 is at most 5+ 2/p.

4.2 Improve the Local Gap Using Scaling Technique

In Sect. 4.1, the local gap of the algorithm Al is given by max(2,5 + 2/p,2 +
1/p), where the three numbers therein are the factors of facility, connection, and
penalty costs of O respectively for bounding the cost of X. These three factors
are different, implying that there are room to improve the local gap by scaling the
input of the instance. We construct a new instance I’ by scaling the facility costs
in the original instance I, namely, in the instance I, fi = 0f;, c;; = cij,pj = p;
for i € F,j € D, where § > 0 is a constant to be determined later.

Define costs(I, X), costs(1,X), costy,(I,X), and cost(I,X) as the facility,
connection, penalty, and total costs of the solution X for instance I respectively.
From the analysis in Sect. 4.1, we know that after replacing the optimal solution
O with any feasible solution S, Lemmas 4 and 5 still hold; that is, for any instance
I with the local optimal solution X and any feasible solution S, we have

costy(I,X) < costy(I,S) + 2costs(1,S) + costp(I,S);

costs(I,X) + costy(I,X) < costy(1,S) + (3 + 12;) costs(1,S) + (1 + %) costy(S).

Now we have the following theorem.

Theorem 3. For the k-FLPLP, the local gap of Algorithm Al with N(X)
defined in 2 to the scaled instance is at most 2 + % +.4/3+ % + p%.

5 Polynomial-Time Algorithm for k.-MPLP and k-FLPLP

The local search approach Al is not a polynomial-time algorithm because it
may not reduce sufficient cost at each local search step, resulting in exponential
number of iterations. To solve the problem in polynomial-time, we modify the
local search condition cost(X') < cost(X) to cost(X') < (1—€/Q)cost(X) where
€ > 0 is a constant and @ is the number of local operations for the analysis of
local gap. We call this modified algorithm A2. The following lemma is from [2].

Lemma 6 (Arya et al. [2]). The number of local search steps in algorithm A2
is at most log(cost(Xo)/cost(O))/log% < log(cost(Xp)/cost(0)) - —1=Q.

eloge
If the local gap of algorithm Al is «, then the local gap of algorithm A2 is at
most 1%~ = a + €, where € = £< ~ €.

It is easy to see that the number @ is at most n? + n for both k-MLP
and k-FLPLP. Moreover, at each local search step, A2 searches for at most
|IN(X)| = O(nP) solutions, and the time for calculating the cost is O(mn). So
by Lemma 6 we have the following theorem.
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Theorem 4. The time compleity of algorithm A2 is O(+ log(cost(Xo)/cost(O))-
m - n3) for both k-MLP and k-FLPLP. The approzimation ratio of algorithm A2
is3+2/p+¢€ fork-MLP, and2+ 1/p+ /3 +2/p+ 1/p? + € for k-FLPLP. In
particular, when the parameter p is large enough, the approzimation ratios for the
two problems are 3 + € and 2 + /3 + € respectively.
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Abstract. In the universal facility location problem, we are given a set
of clients and facilities. Our goal is to find an assignment such that the
total connection and facility cost is minimized. The connection cost is
proportional to the distance between each client and its assigned facil-
ity, whereas the facility cost is a nondecreasing function with respect to
the total number of clients assigned to the facility. The universal facility
location problem generalizes several classical facility location problems,
including the uncapacitated facility location problem and the capacitated
facility location problem (both hard and soft capacities). This work con-
siders the universal facility location problem with linear penalties, where
each client can be rejected for service with a penalty. The objective is
to minimize the total connection, facility and penalty cost. We present
a (5.83 + ¢)-approximation local search algorithm for this problem.

Keywords: Local search - Approximation algorithm - Universal facility
location - Penalty

1 Introduction

Facility location is one of the most classical and active research topics of combi-
natorial optimization. In the universal facility location problem, we are given a
set of clients D and a set of facilities F. Each client j served by facility i pays a
connection cost ¢;;, which is assumed to be metric (i.e., nonnegative, symmetric,
and satisfying triangle inequalities). Let f;(u;) denote the facility cost which is a
nondecreasing left-continuous function with respect to its allocated capacity u;
and f;(0) = 0 where u; depends on the total amount of clients served by facility
© Springer International Publishing Switzerland 2015
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1. The objective is to assign every client to a facility such that the total facility
and connection cost is minimized subject to the facility capacity constraint.

This problem generalizes several classical facility location problems such as
the uncapacitated facility location problem and capacitated facility location
problem (both hard and soft capacities). In the uncapacitated problems we pay
a fixed cost for opening each facility, which can serve any number of clients. In
the hard-capacitated problems each facility has an upper bound on the amount
of demand it can serve. In the soft-capacitated problems each facility has a
capacity, but we are allowed to open multiple copies of each facility.

As special cases of universal facility location problems, uncapacitated and
soft-capacitated facility location problems have been investigated intensively
in the literature based on linear programming relaxation technique. However,
this technique has been ineffective in dealing with hard-capacitated or univer-
sal cases, mainly because no linear programming formulation of bounded inte-
grality gap was known for hard-capacitated case, until An et al. [2] propose a
new multi-commodity-flow relaxation for the capacitated facility location prob-
lems, resulting in the first constant approximation ratio of 288 via semi-rounding
technique.

On the other hand, local search technique has been effective in handling these
problems. Under the assumption of uniform capacities, Korupolu et al. [7] and
Chudak et al. [5] give an approximation algorithm with constant approximation
guarantee based on local search. The currently best approximation ratio for the
hard capacitated facility location problem with uniform capacities is 3, achieved
by Aggarwal et al. [1].

For nonuniform hard capacities, Pal et al. [10] give a local search algorithm
that achieves a constant approximation ratio of (9 + €). They propose such
operations as add, close and open in their algorithm. Zhang et al. [15] extend
their close/open operation to a more general multi-exchange operation, achieving
(5.83 + €) approximation ratio. It is the first local search algorithm in which the
analysis is proved to be tight.

For the universal facility location problem, Mahadian and Pal [9] give the first
constant approximation ratio of (7.88+¢) based on local search algorithm. They
employ add and pivot operations in their work. Vygen [12] improves this result
to (6.702 + €)-approximation by extending the pivot operation. The currently
best approximation ratio is (5.83 + €) by Angel et al. [3].

Facility location problems with penalties is another extension of the basic facil-
ity location problems and have been studied for many years (e.g. [4,13,14]). Both
linear and submodular penalties problems have been investigated by Li et al. [§]
with approximation ratios 2 and 1.5148, respectively. Gupta and Gupta’s work [6]
on capacitated facility location problem with linear penalties achieves an approx-
imation ratio of (5.83 + ¢) for uniform case and (8.532 + ¢€) for nonuniform case.

In this paper, we consider the universal facility location problem with linear
penalties which generalizes the universal facility location problem and the (capaci-
tated) facility location problem with linear penalties. We design alocal search based
(5.834€)-approximation algorithm which maintains the same approximation ratio
for the universal facility location problem. Comparing with the universal facility
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location problem, we explore the penalty structure in the so-called flow decompo-
sition and exchange graph (cf. Sect. 3).

The rest of this paper is organized as follows. In Sect. 2, we present the local
search algorithm for the universal facility location problem with linear penalties.
In Sect. 3, we analyze the algorithm and obtain the 6 + € approximation ratio.
We further improve the ratio to 5.83 4+ € in Sect. 4. All the proofs are deferred
to the journal version of this paper.

2 Local Search Algorithm

The universal facility location problem with linear penalties can be formulated
as the following program.

min Zfi(ui) + Z CijTij + ijzj

i€F i€F,jED JjED
s.t. in]‘ +z;=1, VjeD, (1)
icF
injgui, Vi e F,
j€D

xij,2; € {0,1}, Vie F,jeD.

Here f;(u;) denotes the facility cost function with respect to its allocation
u; and c¢;; denotes the connection cost from client j to facility . The set of
facility is F and the set of clients is D. p; is the penalty cost of client j. The
decision variables are z, u, z, where x represents the assignment, u represents
the allocation and z; denotes whether client j is served. Under the assumption
that f;(-) is nondecreasing, the optimal solution S* := (z*,u*, 2*) must satisfy
uf=>" jep T for each facility . Therefore, it suffices to denote any solution of

the above program by (z, z).

2.1 Operations

The set of operations that will be used in our algorithm are defined as follows.

— ADD(s,0): Given any solution S := (z,z), add capacity us of facility s by 4,
and assign clients optimally by solving a linear program. Note that when given
allocation u, the program (1) above is a transportation problem with integer
parameters, and hence equivalent to its linear relaxation. This operation is
widely used in both universal and hard-capacitated facility location problems
to bound the service cost. In our work, this “ADD” operation will be used to
bound the total service and penalty cost (Lemma 4).

— OPEN(s,0): Given any solution S := (x, z), increase the capacity us by ¢ from
some unserved clients or some other facilities i1,io, ... to s via the shortest
path. In other words, capacities of i1,is, ... will decrease.
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— CLOSE(t,9): Given any solution S := (x,z), decrease the capacity u; from ¢
to some other facilities i1,i0, ... via the shortest path or penalize. In other
words, capacities of i1,i2, ... will increase.

— OPEN-CLOSE(s,t,d5,0¢): Given any solution S := (z, z), increase the capacity
us by 05 from some unserved clients or some other facilities i1,is, ... (may
include t) to s via the shortest path. Decrease the capacity u; from t to some
other facilities 41,i2, ... (may include s) via the shortest path or penalize.

2.2 Polynomial-Time Proof

In this subsection, we will show how to compute the minimum cost of the oper-
ations in polynomial time. Note the operation OPEN-CLOSE(s,t,05,0;) generalizes
the OPEN(s,d) and CLOSE(t,0) operation. Thus it suffices to prove the OPEN-
CLOSE(s,t,05,0;) and ADD(s,0) operations run in polynomial time.

For ADD(s,0), let S be the current solution and Y the solution after the
ADD(s,d) operation. We define our estimated cost as

c(5,0) = oY) + (V) = cs(S) = cp(S) + fo [ D waj +0 | = fo [ D wsj |
JED JjED

where ¢, (Y") denotes the service cost and ¢,(Y") denotes the penalty cost of Y. One
can obtain minimum ¢, (Y")+c¢,(Y") by solving a transportation problem, i.e.,

min ¢;(Y) +¢,(Y) := Z CijYij + ijzj

1€F,j€D j€D
s.t. Zyij +z;=1, Vj €D,
ieF
Zyij S Zl’ij, V’Le.f.\{S}7
j€D JjE€ED
Zysj S szj+6a
j€D je€D

Ogyij,ZjSI, ViEf,jED.

Lemma 1. Givene > 0 andt € F, let x be a feasible solution to a given instance
of the problem. We can find a § € R* with ¢°(t,8) < —ec(x) or decide that no
§ € R* exists for which ¢(t,8) < —2ec(x) in polynomial time.

To guarantee the polynomial running time of OPEN-CLOSE operation, we
have the following lemma.

Lemma 2. Given the current solution S := (x,z), we can, in polynomial time,
find s, t, 05, and &; such that the cost of OPEN-CLOSE(s,t,0s,0:) is minimized
and the minimum cost can be computed in polynomial time in terms of n and
m, where s,t € F, 0 <65,0: <mn, | F|:=m, and | D |:=n.
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2.3 Algorithm

Let € > 0 be any fixed small constant. Starting with any feasible solution, apply
ADD, OPEN, CLOSE and OPEN-CLOSE operations iteratively until the cost of iter-
ated solution can no longer decrease. Then the following lemma implies that we
can in polynomial time find an approximate local optimal solution. Note the
approximate local optimal solution is only (1 4 €) worse than local optimal one.

Lemma 3. If we can find ADD, OPEN, CLOSE and OPEN-CLOSE operation with

estimated cost at most —c(S) /p(n, €), where p(n, €) is a suitably chosen polynomial

inn and1/e, then the algorithm terminates after at most O (p(n, €) log CC(SS*)) ) oper-

ations, where S denotes the initial solution and S* denotes the optimal solution.

3 Analysis

To bound the connection and penalty cost of the approximate local optimal
solution, we utilize the ADD operation.

Lemma 4. For all € > 0, let S and S* be a feasible solution and the optimal
solution respectively to a given instance. Let ¢*(t,0) > —<c(S) for allt € F
and § € Ry, where n denotes the number of facilities. Then cs(S) + ¢,(5) <
cs(S*) + ¢p(S*) + ¢4 (S*) + €c(5).

For bounding facility cost, we recall the concepts of flow decomposition and
exchange graph. For a network graph, flows can be represented either on arc or
on path and cycle. Flow decomposition technique is to transform a flow from arc
representation to path and cycle representation. This can be done in polynomial
time respect to the number of nodes and edges (e.g., [11]).

Let S and S* be the approximate local optimal solution and optimal solu-
tion, respectively. We view them as flows in a bipartite graph with vertices
corresponding to facilities and clients. For S, the arc direction is from the facil-
ities to the clients, and for S* the arc direction is opposite. Each edge (i,7)
carries z(i,j) — x*(4, ) units of flow. Negative flow indicates the reverse direc-
tion. Applying flow decomposition on this bipartite graph we obtain paths and
cycles. A path can only start at a facility and end at a facility, since every client
has the same outdegree and indegree. If we are only concerned about the origin
and destination, we obtain the so-called exchange graph with only facility ver-
tices. This technique also provides a feasible way to reassign demands from an
origin to a destination along the path.

We introduce a dummy facility IV for S to denote the penalty facility with
zero facility cost and p; service cost for client j. The corresponding dummy
facility for S* is N*. We want to replace all capacities in S with capacities in
S* via the exchange graph. We call a path starting at ¢ € F and ending at
N* a penalty path. Consider one such path P starting at s € F. Let s’ be the
facility just before N* on this path and j be a client of s’. Define Pen;(s,s’) as
the set of all such paths. Let w(Pen;(s,s’)) be the total flow along these paths.
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To distinguish paths in different sets, let N, ; be the destination of a penalty
path corresponding to s’ and j. In other words, we introduce at most |F||D|
dummy copies of facilities instead of one.

The following transportation problem describes the transferring from the

approximate local optimal solution S := (z,z) to the optimal solution S* :=
(x*, 2%).
min Z csry(s,t) + Z (css' +pj)y(s, N3 ;)
seUt teU— seU*t,s'eF,j€D
s.t. Z y(s,t) + Z y(s, N3 ;) =us —u}, VseUT,
teU— s'eF,jeD
Z y(s,t) = uy — uy, VieU™, (2)
seU+
y(s,t) >0, VseUT,teU,
0 <y(s, N ;) <w(Pen;(s,s")), VieD,seU", s eF,

where Ut :={i € F:u; >uf}, U :={i € F:u; <ul}

Lemma 5. Let opty, be the optimal value of the transportation problem. We
have opty, < cg(S) + ¢p(S) + ¢s(S*) + ¢p(S*).

Now we know that a local optimal with respect to ADD operation always
reduces the service and penalty cost. We argue that whenever S has a large
facility cost, there will exist an OPEN-CLOSE operation that can improve the
cost of S.

Consider the optimal solution y to the transportation problem. Without loss
of generality we assume the set of edges with nonzero flow of y forms a forest.
Since we can make the cost of a cycle (if exists) zero by taking augmenting
techniques afterwards, we are able to remove all cycles one by one.

So we are only concerned about replacing the capacity u of every facility
with u*. We say the OPEN-CLOSE operations that decreases the capacity of some
facilities from w; to u} is closed, and that increases some facilities from u; to
at most u; is opened. Note that only facilities in U~ can be opened and only
facilities in U™ can be closed. We root each tree at an arbitrary facility in U~.
Now we search for OPEN-CLOSE operations that close facilities in U™ exactly
once and open facilities in U~ as few times as possible.

For a vertex t € U™, let T; be the subtree of depth at most 2 rooted at ¢
in the forest. Define K(t) as the set of children of t. Note that the odd level
(i.e. U7) in the tree may contain a penalty facility N7, ; for some s’ € U* and
j € D. So let K(s) denote the children of s excluding the penalty facilities. We
will analyze every such T;.

For t € U™ that is not the penalty facility, i.e., Vs’ € UT,j € D,t # Ng
we consider the following cases.
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For each s € NDom(t), define Rem(s) = (y(s,t) — y(s,w(s)))". Order
the facilities in nondecreasing sequence of Rem(s), say 1,2,...,l. For i =
1,2,...,1 — 1, Close s; and open K(s;) U S(s;+1); that is, apply operation
CLOSE(s;,y(s;,-)). Note that this operation will increase the capacities of
facilities in K (s;) U S(si+1)-

. For the rest of facilities in K (¢), i.e. s; and Dom(t):

when ¢ is strong. Open {t} U K(s;) and close Dom/(t) U {s;}; that is, apply
operation OPEN-CLOSE(t,51,y(s1,t) + e pom() Y(Ss*):y(s15°))-

when ¢ is weak but there exists h € Dom(t) such that y(h,t) > $y(-,1).]
Close h and open K (h) U {t}; then close {s;} U Dom(t)\{h} and open
K (s;)U{t}. That is, apply operations CLOSE(h,y(h, -)) and OPEN-CLOSE(t,
s, y(si,t) + Zsepom(t)\{h} y(s,-), y(si,7)).

when ¢ is weak and no h € Dom(t) exists such that y(h,t) > 1y(-,¢). If
Dom(t) # @, we will prove that there exists a facility s € Dom(t) such
that the rest of Dom(t) can be partitioned into two parts Dy and Do, sat-
isfying y(5, 1)+ e p, ¥(s,-) < y(.t) and y(s1, 1)+ e p, (s, ) < y(-,0).
In other words, operations OPEN-CLOSE(t,5,y(5,t) + ) .cp, ¥(5,°),y(5,))
and OPEN-CLOSE (t,51,y(s1,t) + >_.cp, Y(5,°),y(s1,-)) are feasible.

These operations are illustrated in Figs. 1, 2, 3 and 4. If there exist s’ € U™

and j € D such that t = N7, ., then consider operation OPEN(t,y(-,t)).

’
s

NDom(t)

W(s)  S(s) SGi) W)

Fig. 1. CLOSE(s:,y(s:,-))

Lemma 6. The operations used in the transferring are all feasible, and we close
each facility in U exactly once, open each facility in U~ at most 3 times and
the transportation cost of the transfer is bounded by twice the optimal flow y of
the transportation problem.

Therefore the following lemma holds.

Lemma 7. c;(5)<4cs(S*) + 4cp(S*) + 5¢(S*).
Combining Lemma 7 with the upper bound for ¢s(.5), we have
Theorem 1. ¢(5)<5cs(S*) + 5e,p(S*) + 6¢,(S™).

The last theorem yields an approximation ratio of (6 + €).
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K(s) KGs)

Fig. 4. OPEN-CLOSE(t,3,y(5,t) + > .cp, ¥(s,°):y(S,-)) and OPEN-CLOSE (t,s1,y(s1,t)
+ ZSGDQ y(37 ')7y(sl7 ))
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Discussions

We can slightly improve this result by employing the standard scaling technique.
Consider a universal facility location instance. We scale the facility cost (or unit
service and penalty cost) by a factor of 3, and run the local search algorithm on

the

and

modified instance. Let S denote the local optimal solution. We have

¢s(5) +¢p(S5) < Pep(S7) +¢s(57) + ¢p(S7),

Bes(S) < 4es(S7) + 4c,y(S7) + 58c (7).

Summation yields

c(9) < (; + 1) cs(S™) + (; + 1) cp(S*) + (54 B)cs(S%).

Selecting 3 = 2v/2 — 2, we get an approximation ratio of 3 + 2v/2 ~ 5.83.
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Abstract. We tackle the problem of non-preemptive scheduling of a set
of tasks of duration p over m machines with given release and deadline
times. We present a polynomial time algorithm as a generalization to
this problem, when the number of machines fluctuates over time. Fur-
ther, we consider different objective functions for this problem. We show
that if an arbitrary function cost ¢;(t) is associated to task ¢ for each
time ¢, minimizing > ., ¢;(s;) is NP-Hard. Further, we specialize this
objective function to the case that it is merely contingent on the time
and show that although this case is pseudo-polynomial in time, one can
derive polynomial algorithms for the problem, provided the cost func-
tion is monotonic or periodic. Finally, as an observation, we mention
how polynomial time algorithms can be adapted with the objective of
minimizing maximum lateness.

1 Introduction

We explore several variants of the problem of scheduling, without preemption,
tasks with equal processing times on multiple machines while respecting release
times and deadlines. More formally, we consider n tasks and m identical machines.
Task ¢ has a release time 7; and deadline d;. All tasks have a processing time
p. Without loss of generality, all parameters r;, d; and p are positive integers.
Moreover, we consider the time point u; = d; —p+ 1, by starting at which a task
i oversteps its deadline. We denote r,;, = min; r; the earliest release time and
Umax = Max; u; the latest value u;. A solution to the problem is an assignment
of the starting times s; which satisfies the following constraints

r; < s <u; Vie{l,...,n} (1)
Hi:t<s;<t+p}<m YVt € [Tmin, Umax) (2)

The completion time of a task C; is equal to s; + p. From 1, we obtain C; < d;.

Following the notations of [9], this problem is denoted Pm | r;;p; = p;d; |
where ~ is an objective function. The problem is sometimes reformulated by
dividing all time points by p, resulting in tasks with unit processing times [13,
14]. However, this formulation does not make the problem easier to solve, as
release times and deadlines lose their integrality. Without this integrality, greedy

© Springer International Publishing Switzerland 2015
Z. Lu et al. (Eds.): COCOA 2015, LNCS 9486, pp. 82-97, 2015.
DOI: 10.1007/978-3-319-26626-8_7
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algorithms, commonly used to solve the problem when p = 1, become incorrect.
Indeed, when the greedy scheduling algorithms choose to start a task i, they
assume that no other tasks arrive until ¢ is completed. This assumption does not
hold if release times can take any rational value.

We explore several variations of this scheduling problem. Firstly, we solve
the problem when the number of machines fluctuates over time. This models
situations where there are fewer operating machines during night shifts or when
fewer employees can execute tasks during vacation time or holidays. Then, we
consider the problem with different objective functions. For an arbitrary func-
tion ¢;(t) associated to task i that maps a time point to a cost, we prove that
minimizing Y., ¢;(s;) is NP-Hard. This function is actually very general and
can encode multiple well known objective functions. We study the case where
all tasks share the same function ¢(¢). This models the situation where the cost
of using the resource fluctuates with time. This is the case, for instance, with
the price of electricity. Executing any task during peak hours is more expensive
than executing the same task during a period when the demand is low. We show
that minimizing Y., ¢(t) can be done in pseudo-polynomial time and propose
improvements when ¢(t) is monotonic or periodic. The periodicity of the cost
function is a realistic assumption as high and low demand periods for electricity
have a predictable periodic behavior. Finally, we point out how the problem is
solved in polynomial time with the objective of minimizing maximum lateness.

The paper is divided as follows. Section 2 presents a brief survey on exist-
ing algorithms related to the scheduling problem, the basic terminology and
notations used in this paper, and the objective functions of interest. Section 3
solves the case where the number of machines fluctuates over time and shows
how to adapt an existing algorithm for this case, while preserving polynomiality.
Section 4 shows that minimizing Y . ; ¢;(s;) is NP-Hard. Sections5 and 6 con-
sider a unique cost function ¢(t) that is either monotonic or periodic and present
polynomial time algorithms for these cases. Finally, as an additional remark,
we show how to adapt a polynomial time algorithms for minimizing maximum
lateness.

2 Literature Review, Framework and Notations

2.1 Related Work

Simons [13] presented an algorithm with time complexity O(n?loglog(n)) that
solves the scheduling problem. It is reported [9] that it minimizes both the sum
of the completion times ) j C;, and the latest completion time Chax (also called
the makespan). Simons and Warmth [14] further improved the algorithm com-
plexity to O(mn?). Diirr and Hurand [4] reduced the problem to a shortest path
in a digraph and designed an algorithm in O(n?). This led Lépez-Ortiz and
Quimper [11] to introduce the idea of the scheduling graph. By computing the
shortest path in this graph, one obtains a schedule that minimizes both > y C;

and Cpayx. Their algorithm runs in O(n? min(1, p/m)).
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There exist more efficient algorithms for special cases. For instance, when
there is only one machine (m = 1) and unit processing times (p = 1), the
problem is equivalent to finding a matching in a convex bipartite graph. Lipski
and Preparata [10] present an algorithm running in O(na(n)) where « is the
inverse of Ackermann’s function. Gabow and Tarjan [5] reduce this complexity
to O(n) by using a restricted version of the union-find data structure.

Baptiste proves that in general, if the objective function can be expressed as
the sum of n functions f; of the completion time C; of each task ¢, where f;’s are
non-decreasing and for any pair of jobs (4, j) the function f; — f; is monotonous,
the problem can be solved in polynomial time. Note that the assumption holds
for several objectives, such as the weight sum of completion times _ w;C;. A
variant of the problem exists when the tasks are allowed to miss their deadlines
at the cost of a penalty. Let L; = C; — d; be the lateness of a task j. The
problem of minimizing the maximum lateness Lmax = max; L; (denoted P |
r4yPi = D | Limaz) 18 polynomial [15] and the special case for one machine and
unit processing times (denoted 1| 7j,p; = p | Limaz) is solvable in O(nlogn) [8].

Méhring et al. [12] study the case where no release times or deadlines are
provided and the processing times are not all equal. For the case that their prob-
lem is not resource-constrained, they consider the objective of minimizing costs
per task and per time, as it is considered in this paper. They establish a con-
nection between a minimum-cut in an appropriately defined directed graph and
propose a mathematical programming approach to compute both lower bounds
and feasible solutions. The minimum-cut problem is the dual of the maximum
flow problem that will be used in this paper.

Bansal and Pruhs [3] consider preemptive tasks, a single machine, no dead-
lines, and distinct processing times. Tasks incur a cost depending on their com-
pletion time. They introduce an approximation for the general case and an
improved approximation algorithm for the case that all release times are
identical.

2.2 Objective Functions

Numerous objective functions can be optimized in a scheduling problem. We
consider minimizing costs per task and per time, in which case executing a task
i at time ¢ costs c(i,t) and we aim to minimize the sum of costs, i.e. >, , c(i, s;).
Such an objective function depends on the release time of the task. In the indus-
try, that can be used to model a cost that increases as the execution of a task is
delayed. For instance, c(i,t) = t — r;. Then, we consider minimizing task costs
per time, in which case executing any task at time t costs ¢(t) and we want to
minimize ), ¢(s;). An alternative common objective function is to minimize the
sum of the completion times. In the context where the tasks have equal process-
ing times, a solution that minimizes the sum of the completion times necessarily
minimizes the sum of the starting time. We consider these two objectives equiv-
alent. Finally, we consider minimizing the maximum lateness Ly .x = max; L;.
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2.3 Network Flows

Consider a digraph N = (V, E) where each arc (i,j) € F has a flow capacity
u;; and a flow cost ¢;;. There is one node s € V' called the source and one node
t € V called the sink. A flow is a vector that maps each edge (i,5) € E to a
value x;; such that the following constraints are satisfied.

0 < @iy < g (3)
iji—inj:O ViEV\{S,t} (4)
jev jev

The min-cost flow satisfies the constraints while minimizing Z(i, feE CijTij-

A matrix with entries in {—1,0,1} which has precisely one 1 and one —1 per
column is called a network matriz. If A is a network matrix, the following linear
program identifies a flow.

Maximize ¢” x, subject to { 23>0 (5)
There is one node for each row of the matrix in addition to a source node s and a
sink node ¢t. Each column in the matrix corresponds to an edge (i,j) € E where
¢ is the node whose row is set to 1 and j is the node whose column is set to -1.
If b; > 0 we add the edge (7,t) of capacity b; and if b; < 0 we add the edge (s, 1)
of capacity —b; [16].

The residual network with respect to a given flow x is formed with the same
nodes V as the original network. However, for each edge (4, j) such that z;; < u;j,
there is an edge (¢, ) in the residual network of cost ¢;; and residual capacity
u;; — x;5. For each edge (i,7) such that x;; > 0, there is an edge (j,¢) in the
residual network of cost —c;; and residual capacity ;.

To our knowledge, the successive shortest path algorithm is the state of the
art, for this particular structure of the network, to solve the min-cost flow prob-
lem. This algorithm successively augments the flow values y;; of the edges along
the shortest path connecting the source to the sink in the residual graph. Let
N = max(; j)cE lcij| be the greatest absolute cost and U = max;ey b; be the
largest value in the vector b. To compute the shortest path, one can use Gold-
berg’s algorithm [6] with a time complexity of O(|E|y/[V[log N). Since at most
|V|U shortest path computations are required, this leads to a time complexity
of O(|V|*?|E|log(N)U).

2.4 Scheduling Graph

Loépez-Ortiz and Quimper [11] introduced the scheduling graph which holds
important properties. For instance, it allows to decide whether an instance is
feasible, i.e. whether there exists at least one solution. The graph is based on
the assumption that it is sufficient to determine how many tasks start at a given
time. If one knows that there are h; tasks starting at time ¢, it is possible to
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determine which tasks start at time ¢ by computing a matching in a convex
bipartite graph (see [11]).

The scheduling problem can be written as a satisfaction problem where the
constraints are uniquely posted on the variables h;. As a first constraint, we
force the number of tasks starting at time ¢ to be non-negative.

vrmingtgumax_l htZO (6)

At most m tasks (n tasks) can start within any window of size p (size tmax —Tmin )-

t+p—1 Umax—1
v"dminStgumax_p Z hj§m7 Z hJSTL (7)
Jj=t J=Tmin

Given two arbitrary (possibly identical) tasks ¢ and j, the set K;; = {k : r; <
T Au, < u;} denotes the jobs that must start in the interval [r;, u;). Hence,

u].,l

Vi je{l,...,n} > he > Ky (8)

t=r;

Some objective functions, such as minimizing the sum of the starting times, can
also be written with the variables h;.

min Z t- hy (9)

To simplify the inequalities (6)—(8), we proceed to a change of variables. Let
Ty = Zf;{min hi, for rmin < t < Umax, be the number of tasks starting to execute

before time t. Therefore, the problem can be rewritten as follows.

V "min <t < Umax — P Tipp — Tt <My Uinax — Trpin ST (10)
v Tmin <t< Umax — 1 Tt — Tr41 < 0 (11)
VT1‘+1§’U,]‘ xrifxujgf\Kij\ (12)

These inequalities form a system of difference constraints which can be solved
by computing shortest paths in what is call the scheduling graph [11]. In this
graph, there is a node for each time point ¢, Ty < t < upmax and an edge of
weight k4, connecting the node ¢ to the node p for each inequality of the form
Tp — Tq < kpg.

The scheduling graph has for vertices the nodes V' = {rmin, ..., Umax} and
for edges E = Ey U Ep U E,, where Ef = {(t,t +p) : Tmin < t < Umax —
P} U {(Tmin, Umax)} 18 the set of forward edges (from inequalities (10)), E, =
{(uj,r;) + r; < u;} is the set of backward edges (from inequality (12)), and
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E,={({t+1,%) : "min <t < Unmax} is the set of null edges (from inequality (11)).
The following weight function maps every edge (a,b) € E to a weight:

m ifa+p=">
w(a,b) = n if @ = Tmin A b = Umax (13)
—Hk:b<rpAu, <a}|ifa>Db

Theorem 1 shows how to compute a feasible schedule.

Theorem 1 (Lépez-Ortiz and Quimper [11]). Let d(a,b) be the shortest
distance between node a and node b in the scheduling graph. The assignment
¢ = N+ 0(Umaz, t) is & solution to the inequalities (10)—(12) that minimizes the
sum of the completion times.

The scheduling problem has a solution if and only if the scheduling graph
has no negative cycles. An adaptation [11] of the Bellman-Ford algorithm finds
a schedule with time complexity O(min(1, £)n?), which is sub-quadratic when
p < m and quadratic otherwise.

In the next sections, we adapt the scheduling graph to solve variations of the
problem.

3 Variety of Machines

Consider the problem where the number of machines fluctuates over time. Let
T = [(to,m0), .-, (tjr)—1,m7|=1)] be a sequence where ¢;’s are the time points
at which the fluctuations occur and they are sorted in chronological order and
m; machines are available within the time interval [¢;,¢;+1). This time interval
is the union of a (possibly empty) interval and an open-interval: [t;,t;11) =
[ti, tiv1 —P]U(tit1 — P, tiv1). A task starting in [t;,t;11 — p] is guaranteed to have
access to m; machines throughout its execution, whereas a task starting in (¢;41—
p,ti+1) encounters the fluctuation of the number of machines before completion.
Therefore, no more than min(m;,m;4+1) tasks can start in the interval (¢;41 —
p,ti+1). In general, a task can encounter multiple fluctuations of the number of
machines throughout its execution. Let «(t) = max{t; € T'| t; < t} be the last
time the number of machines fluctuates before time ¢. At most M (t) tasks can
start at time .

M(t) = min{m; | t; € [a(t),t + p)}. (14)

From 14, we conclude that no more than maxy ¢y ¢1p) M (t') tasks can start
in the interval [¢,¢ + p). Accordingly, one can rewrite the first inequality of the
constraints (10)

_ < /
Tpyp — Ly < tgrtrflgﬁpM(t ) (15)
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and update the weight function of the scheduling graph.

maXg<¢'<qrp M(t') ifa+p=0>
w(a,b) = n if @ =7pin Ab = Umax (16)
—HEk:b<rpAu, <a}|ifa>b

It remains to show how the algorithm presented in [11] can be adapted to
take into account the fluctuating number of machines. This algorithm maintains
a vector d~1[0..n] such that d~![i] is the latest time point reachable at distance
—i from the node upax. In other words, all nodes whose label is a time point in
the semi-open interval (d~1[i +1],d~*[]] are reachable at distance —i from node
Umax- Let a be a node in (d~1[i + 1],d~1[i]] and consider the edge (a,a + p) of
weight w(a, a + p). Upon processing this edge, the algorithm updates the vector
by setting d~![i — w(a,b)] «+ max(d~'[i — w(a,b)],b), i.e. the rightmost node
accessible at distance —i + w(a,b) is either the one already found, or the node
a+ p that is reachable through the path to a of distance —i followed by the edge
(a,a + p) of distance w(a,a + p).

To efficiently perform this update, the algorithm evaluates w(a,a+ p) in two

steps. The first step transforms 7" in a sequence T" = [(t(, my), (t1,m}), .. .] such
that M(t) = m] for every t € [t],t;, ). The second step transforms the sequence
T’ into a sequence T = [(tg,m(), (t{,mY),...] such that w(¢t,t + p) = m] for

all t € [t],t] ). Interestingly, both steps execute the same algorithm.

To build the sequence T”, one needs to iterate over the sequence T and
find out, for every time window [t,¢ + p), the minimum number of available
machines inside that time window. If a sequence of consecutive windows such as
[t,t+p), [t+1,t+p+1),[t+2,t+p+2),... have the same minimum number of
available machines, then only the result of the first window is reported. This is
a variation of the minimum on a sliding window problem [7] where an instance
is given by an array of numbers A[l..n] and a window length p. The output is a
vector B[l..n — p+1] such that B; = min{A;, A;11,..., Aitp—1}. The algorithm
that solves the minimum on a sliding window problem can be slightly adapted.
Rather than taking as input the vector A that contains, in our case, many
repetitions of values, it can simply take as input a list of pairs like the vector T
and 7" which indicate the value in the vector and until which index this value is
repeated. The same compression technique applies for the output vector. This
adaptation can be done while preserving the linear running time complexity of
the algorithm.

Once computed, the sequence 7" can be used as input to the mazimum
on a sliding window problem to produce the final sequence T”. Finally, the
Algorithm 1 simultaneously iterates over the sequence T” and the vector d—!
to relax the edges in O(|T| + n) time. Since relaxing forward edges occurs at
most O(min(1, £)n) times [11], the overall complexity to schedule the tasks is
O(min(1, Z)(|T| 4 n)n).
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Algorithm 1. RelaxForwardEdges([(t{,mY), - . ., ({7, m{7))], d=1[0..n],p)

t < Tmin, ¢ <N, j 0
while i >0V j <|T"| do
if i —m/ >0 then d™'[i —m)] < max(d~'[i —m}],t +p)
if j=[T"|Vi>0Ad '[i—1] <m/,, then
i—i+1

‘ t—d'[i]
else

LJ’HJ'Jrl

t<—t;-'

4 General Objective Function

We prove that minimizing costs per task and per time, i.e. th ci(s;) for arbi-
trary functions ¢;(t) is NP-Hard. We proceed with a reduction from the INTER-
DISTANCE constraint [2]. The predicate INTERDISTANCE([X7, . .., X,],p) is true
if and only if | X; — X;| > p holds whenever i # j. Let Sy, ..., S, be n sets of inte-
gers. Deciding whether there exists an assignment for the variables X1,..., X,
such that X; € S; and INTERDISTANCE([X1, ..., X,],p) hold is NP-Complete [2].
We create one task per variable X; with release time r; = min(.S;), latest starting
time u; = max(.S;), processing time p, and a cost function ¢;(t) equal to 0if ¢t € .S;
and 1 otherwise. There exists a schedule with objective value 3, , ¢;(s;) = 0 iff
there exists an assignment with X; € S; that satisfies the predicate INTERDIS-
TANCE, hence minimizing _, ; ¢;(s;) is NP-Hard.

The NP-hardness of this problem motivates the idea of studying specializa-
tions of this objective function in order to seek polynomial time algorithms.

5 Monotonic Objective Function

Let ¢(t) : Z — Z be an increasing function, i.e. ¢(t) + 1 < ¢(t + 1) for any ¢. We
prove that a schedule that minimizes ), s; also minimizes ), ¢(s;). Theorem 1
shows how to obtain a solution that minimizes ), s;. Lemma 1 shows that this
solution also minimizes other objective functions. Recall that h; is the number
of tasks starting at time t.

Lemma 1. The schedule obtained with Theorem 1 minimizes Zzzz‘xfl he for
any time t.

Proof. Let (a1, a2),(ag,as),...,(ax—1,ax), with a1 = umax and ar = ¢, be the
edges on the shortest path from wup.x to ¢ in the schedulin%C graph. By sub-
stituting the inequalities (10)—(12), we obtain §(umax,t) = 21;11 w(ag, aj11) >
Zf;ll (Ta,yy — Ta;) = Tt — Ty, This shows that the difference z; — z,,,,, is at
most O (Umax, ) for any schedule. It turns out that by setting x; = n+ §(Umax, t),
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the difference x; — z,,,, = 0(Umax,t) — 0(Umax, Umax) = O(Umax,t) reaches its
u —1
max h

i « 18 maximized. a

maximum and therefore, z,,  — ;=)

Theorem 2. The schedule of Theorem 1 minimizes > ., c(s;) for any increas-
ing function c(t).

Proof. Consider the following functions that differ by their parameter a.

calt) = {c(t) ift<a (17)

c(a)+t—a otherwise

The function ¢,(¢) is identical to ¢(t) up to point a and then increases with a
slope of one. As a base case of an induction, the schedule described in Theorem 1
minimizes )., s; and therefore minimizes Y ., ¢, (s;). Suppose that the
algorithm minimizes >, ¢,(s;), we prove that it also minimizes Y, | cq41(8;).
Consider the function

0 ift<a
Al(t) = - 18
®) {c(a +1) —c(a) =1 otherwise (18)

and note that ¢, (t) + Aq(t) = cqo41(t). For all ¢, since ¢(t+1) —c(t) > 1, we have
A,(t) > 0.

If c(a+ 1) —e(a) = 1 then A,(t) =0 for all ¢ and therefore ¢, (t) = cqt1(%).
Since the algorithm returns a solution that minimizes Y. ¢,(s;), it also mini-
mizes Y ., Cay1(8;).

If ¢(a + 1) — ¢(a) > 1, a schedule minimizes the function Y. ; A,(s;) if and
only if it minimizes the number of tasks starting after time a. From Lemmal,
the schedule described in Theorem 1 achieves this. Consequently, the algorithm
minimizes Y. ; ¢q(s;), it minimizes Y .~ Aq(s;), and therefore, it minimizes
Doict Calsi) + 200 Aal(si) = 20001 Car(si)-

By induction, the algorithm minimizes Y .| coo(si) = Dy ¢(s;). 0

If the cost ¢(t) function is decreasing, i.e. ¢(t) — 1 > ¢(t + 1), it is possible
to minimize ), ; ¢(t) by solving a transformed instance. For each task i in the
original problem, one creates a task i with release time r, = —u,; and latest
starting time u} = —r;. The objective function is set to ¢’(¢t) = —c(t) which is an
increasing function. From a solution s} that minimizes Y ;" , ¢/(s}), one retrieves

the original solution by letting s; = —s.

6 Periodic Objective Function

6.1 Scheduling Problem as a Network Flow

Theorem 1 shows that computing the shortest paths in the scheduling graph can
minimize the sum of the completion times. We show that computing, in pseudo-
polynomial time, a flow in the scheduling graph can minimize ., ¢(s;) for an
arbitrary function c(¢).
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The objective function (9) can be modified to take into account the function
Umax —1

o c(t)hy. After proceeding to the change of

_h;, we obtain S tmex b (4 (2,41 — x) which is equivalent

t="min

c. We therefore minimize )
t—1
1=Tmi

variables x; =
to

Umax—1
maximize ¢(Tmin)Tr, ., — Z (c(t) —c(t — 1)) ¢ — c(Umax — 1) T,
t=Tmin+1

We use this new objective function with the original constraints of the problem
given by Eqgs. (10)—(12). This results in a linear program of the form max{c’z |
Az < b,z < 0} which has for dual min{b%y | ATy = ¢,y > 0}. Every row of
matrix A has exactly one occurrence of value 1, one occurrence of the value —1,
and all other values are null. Consequently, A7 is a network matriz and the dual
problem min{b?y | ATy = ¢,y > 0} is a min-cost flow problem.

Following Sect. 2.3, we reconstruct the graph associated to this network flow
which yields the scheduling graph augmented with a source node and a sink
node. An edge of capacity ¢(rmin) connects the node i, to the sink. An edge of
capacity ¢(umax — 1) connects the source node to the node uyax. For the nodes ¢
such that rpin < t < Umax, an edge of capacity ¢(t —1) — ¢(t) connects the source
node to node ¢t whenever ¢(t — 1) > ¢(t) and an edge of capacity c(t) — c(t — 1)
connects the node ¢ to the sink node whenever c(t — 1) < ¢(t). All other edges in
the graph (forward, backward, and null edges) have an infinite capacity. Figure 1
illustrates an example of such a graph.

Source

Fig. 1. A network flow with 5 tasks. The cost on the forward, backward, and null edges
are written in black. These edges have unlimited capacities. The capacities of the nodes
from the source and to the sinks are written in blue. These edges have a null cost.

The computation of a min-cost flow gives rise to a solution for the dual
problem. To convert the solution of the dual to a solution for the primal (i.e.
an assignment of the variables ), one needs to apply a well known principle in
network flow theory [1]. Let §(a,b) be the shortest distance from node a to node
b in the residual graph. The assignment 2y = § (Umax, t) is an optimal solution of
the primal. The variable x; is often called node potential in network theory.
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Consider a network flow of [V| nodes, |E| edges, a maximal capacity of U, and
a maximum absolute cost of N. The successive shortest path algorithm computes
a min-cost flow with O(|V'|U) computations of a shortest path that each executes
in O(|E|y/|V]log N) time using Goldberg’s algorithm [6]. Let Ac = max; |c(t) —
¢(t — 1)| be the maximum cost function fluctuation and H = Umax — Tmin b€
the horizon. In the scheduling graph, we have |V| € O(H), |E| € O(H + n?),
N € O(n), and U = Ac. Therefore, the overall running time complexity to find
a schedule is O((H — p +n?)(H)3/2 Aclogn).

6.2 Periodic Objective Function Formulated as a Network Flow

In many occasions, one encounters the problem of minimizing y ;- ; ¢(s;) where
c(s;) is a periodic function, i.e. a function where ¢(t) = ¢(t + W) for a period
W. Moreover, within a period, the function is increasing. An example of such a
function is the function ¢(¢) = ¢ mod 7. If all time points correspond to a day,
the objective function ensures that all tasks are executed at their earliest time
in a week. In other words, it is better to wait for Monday to start a task rather
than executing this task over the weekend. In such a situation, it is possible
to obtain a more efficient time complexity than the algorithm presented in the
previous section.

Without loss of generality, we assume that the periods start on times kW for
k € N which implies that the function ¢(t) is only decreasing between c(kW — 1)
and c(kW) for some k € N. In the network flow from Sect.6.1, only the time
nodes kW have an incoming edge from the source. We use the algorithm from [11]
to compute the shortest distance from every node kW to all other nodes. Thanks
to the null edges, distances can only increase in time, i.e. §(kW,t) < §(kW,t+1),
and because of the edge (Tmin, Umax) Of cost n and the nonexistence of negative
cycles, all distances lie between —n and n. Therefore, the algorithm outputs a list
of (possibly empty) time intervals [a®,, b ), [a* . 1,%,.1),. .., [ak,bF) where
for any time t € [ak, %), 6(kW,t) = d. The min-cost flow necessarily pushes the
flow along these shortest paths. We simply need to identify which shortest paths
the flow follows.

There are c(kW — 1) — ¢(kW) units of flow that must circulate from node
EW and c(t) — ¢(t — 1) units of flows that must arrive to node ¢, for any ¢
that is not a multiple of W. In order to create a smaller graph with fewer
nodes, we aggregate time intervals where time points share common properties.
We consider the sorted set S of time points a¥ and b¥. Let t; and ¢y be two
consecutive time points in this set. All time points in the interval [¢;,t3) are at
equal distance from the node kW, for any k € N. The amount of units of flow
that must reach the sink from the nodes in [tq, t2) is given by

to—1

j;l max(c(j)—c(j—1),0) = c(t2—1)—c(t1—1)+<rzv; 1J _ [%—‘ + 1> (c(W = 1) = c(0)) (19)

Consequently, we create a graph, called the compressed graph, with one source
and one sink node. There is one node for each time point kW for =ais < kb < “mex,
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There is an edge between the source node and a node kW with capacity c(kW —
1) — ¢(kW). For any two consecutive time points t1, t2 in S there is a time interval
node [t1, t2). An edge whose capacity is given by Eq. (19) connects the interval node
[t1,t2) to the sink. Finally, a node kW is connected to an interval node [ty t3) with
an edge of infinite capacity and a cost of §(kW, ¢1). Figure 2 shows the compressed
version of the graph on Fig. 1.

Source

Fig. 2. The compressed version of the graph on Fig. 1.

Computing a min-cost flow in this network simulates the flow in the schedul-
ing graph. Indeed, a flow going through an edge (KW, [t1,t2)) in the compressed
graph is equivalent, in the scheduling graph, to a flow leaving the source node,
going to the node kW, going along the shortest path from node kW to a time
node t € [t1,t2), and reaching the sink.

Theorem 3. To every min-cost flow in the compressed graph corresponds a min-
cost flow in the scheduling graph.

Proof. Let G be the scheduling graph and G’ be the compressed graph. Let Y’
denote a min-cost flow in G'. We show how to obtain a min-cost flow Y in G
whose cost is the same as the cost of Y.

Consider an edge e; = (kW, [t1,12)) in G’ which conveys a positive amount of
flow, say f. In the scheduling graph G, it is possible to push f units of flow along
the shortest paths from kW to the nodes within the interval [t1,t2). It suffices
to see how one can retrieve Y from Y’ presuming it is initially null. This is done
by considering all incoming flows to [t1,t2) and manage to spread them over the
edges of G. We start with the node ¢; and consider the shortest path P from
kW to t1 in G. The amount of flow that can be incremented is the minimum
between f and the amount of flow that ¢; can receive. Then, we increment the
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amount of flow on the extended path in GG, which connects the source to P and
connects P to the sink.

If the capacity of 7 is reached, we decrement f by the amount of flow which
was consumed and we move to the next node in the interval. Now, there remains
f units of flow for the nodes within the interval [t; + 1,t2). By repeating the
same instruction for the rest of the nodes in [¢1, t3) and for every edge in G’ that
carries a positive amount of flow, we obtain the flow Y. It is guaranteed that all
the flow can be pushed to the nodes in [t1,¢2) as the sum of the capacities of the
edges that connect a node in [t1,%2) to the sink in G is equal to the capacity of
the edges between [t1,t3) and the sink in the G’.

Furthermore, the flow Y satisfies the capacities since the capacities on the
edges adjacent to the source in G are the same as those in G’. Moreover, the
capacities were respected for the nodes adjacent to the sink. The cost of Y is
the same as Y since the paths on which the flow is pushed in Y have the same
cost as the edges in the compressed graph.

We prove that Y is optimal, i.e. it is a min-cost flow. Each unit of flow in a
min-cost flow in G leaves from the source to a node kW and necessarily traverses
along the shortest path going to a node ¢ and then reaches the sink. Note that the
edges on the shortest path have unlimited capacities. The question is therefore
on which shortest path does each unit of flow travel? This is exactly the question
that the flow in the compressed graph answers. a

In what follows, RG and RG’, stand for the residual graph of the scheduling
graph G and the residual compressed graph G'.

Lemma 2. Let t be a node in the residual scheduling graph RG and [t;,ti+1),
such that t; <t < t;11, be a node in the residual compressed scheduling graph.
The distance between node kW and t in RG is equal to the distance between kW
and [ti,ti+1) m RGI

Proof. We show that for any path P’ in the residual compressed graph RG’, there
is a path P in the residual graph RG that has the same cost. From Lemma 3, we
know that for a flow in the compressed graph G’, there is an equivalent flow in
the original graph G. Consider a path P’ from a node kW to an interval node
[ti,ti+1). By construction of the compressed graph, for each edge of this path
corresponds a path of equal cost in the residual graph RG’. Consequently, there
is a path in G’ that goes from node kW to any node t € [t;, t;+1) with the same
cost as the path going from kW to [t;, t;41) in G.

Consider a path P in the residual graph RG going from a node k1W to a
node t. Suppose that this path contains exactly one edge in RG that is not in
G. We denote this edge (a,b) and the path P can be decomposed as follows:
kyW ~~ a — b ~> t. The edge (a,b) appears in the residual graph RG because
there is a positive amount of flow circulating on a shortest path S : koW ~» b —
a ~ u to which the reversed edge (b, a) belongs. Let @ be the following path in
the residual graph RG: k1W ~» u ~> a — b ~» koW ~~ t. Let [ be the function
that evaluates the cost of a path. We prove that @) has a cost that is no more
than P and that it has an equivalent in the residual compressed graph RG'.
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HQ) =l(kaW ~> u~> a — b~ kW ~ t)
<U(BAW ~> a~s u~sr a— b~ kW~ 1)

In the residual graph, the paths a ~» u and u ~» a have opposite costs, hence
l(a~>u~a)=0.

=1(kiW ~ a — b~ kW ~~ 1)
<U(BiW ~> a — b~ kgW ~> b~ t)

In the residual graph, the paths b ~» koW and koW ~» b have opposite costs,
hence I(b ~» koW ~~ D).

=1(k1W ~>a— b~ t)=1(P)

The path Q has an equivalent in the residual compressed graph RG’. Indeed,
the sub-paths k1 W ~» u and koW ~ t are edges in RG’ whose cost is given by
the shortest paths in G. The path u ~ a — b ~» koW is the reverse of path
S. Since S is an edge in G’ and there is a flow circulating on S, the reverse of
S also appears in RG’. Consequently, the path P can be transformed into path
Q that has an equivalent in the compressed residual graph. If P contains more
than one edge that belongs to RG but not G, then the transformation can be
applied multiple times.

Since a path in RG has an equivalent path whose cost is not greater in RG’
and vice-versa, we conclude that a node kW is at equal distance from all the
other nodes in either graph. a

Notice that the above lemma implies that after computing the min-cost flow
in the compressed graph, one sets the value for z; to the shortest distance
between an arbitrary but fixed node kW to the interval node that contains ¢.

Let H = Umax — Tmin b€ the horizon, we need 8(%) calls to the algorithm
in [11] to build the compressed graph in O(#n? min(1, £)) time. As in Sect. 6.1,
the successive shortest paths technique, with Goldberg’s algorithm [6], com-
putes the maximum flow. The compressed graph has |V| € O(& + n?) nodes,
|E| € O(#£n?) edges, a maximum absolute cost of N € O(n), and a maximum
capacity of U = Ac = C(W — 1) — ¢(0). Computing the values for z; requires
an additional execution of Goldberg’s algorithm on the compressed graph. The
final running time complexity is O (((%)25 + n5> Aclog(n)) which is faster

than the algorithm presented in the previous sections when the number of peri-
ods is small, i.e. when % is bounded. In practice, there are fewer periods than

.. H
tasks: 77 < n.

7 Additional Remark

Consider the case where tasks have due dates d; and deadlines d;. One wants to
minimize the maximum lateness Ly,.x = max; max(C;—d;, 0) while ensuring that
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tasks complete before their deadlines. To test whether there exists a schedule
with maximum lateness L, one changes the deadline of all task i for min(d;, d; +
L). If there exists a valid schedule with this modification, then there exists a
schedule with maximum lateness at most L in the original problem. Since the
maximum lateness is bounded by 0 < L < [%1 , a well known technique consists
of using the binary search that calls at most log([22|) times the algorithm in [11]

n
m
and achieves a running time complexity of O(log(*£)n? min(1, £)).

8 Conclusion

We studied variants of the problem of non-preemptive scheduling of tasks with
equal processing times on multiple machines. We presented polynomial time
algorithms for different objective functions. We generalized the problem to the
case that the number of machines fluctuate through time.
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Abstract. Let P be a set of n points in the plane, the discrete min-
imax 2-center problem (DMM2CP) is that of finding two disks cen-
tered at {p1,p2} € P that minimize the maximum of two terms, namely,
the Euclidean distance between two centers and the distance of any
other point to the closer center. The mixed minimax 2-center problem
(MM M2CP) is when one of the two centers is not in P. We present algo-
rithms for solving the DM M2C P and M M M2C P. The time complexity
of solving DM M2C P and MM M2CP are O(n*logn) and O(n?log®n)
respectively.

Keywords: 2-center problem - Farthest point Voronoi diagram -
Computational geometry

1 Introduction

Facility location problems can be seen as the model for applications in a diverse
set of fields including public policy, locating fire stations in a city, locating base
stations in wireless networks, clustering of documents and so on. It has been
extensively studied over the past years. The facility location problem is to choose
the location of facilities to minimize the cost of satisfying the demand for cer-
tain commodity. Sometimes the location problem is associated with the costs
for locating the facilities, as well as the transportation costs for distributing
the commodities. This paper considers two new facility location problems: the
discrete and mixed minimax 2-center problem.

The 2-center problem for a planar point set P, i.e., finding two congru-
ent closed disks whose union covers the point set and the radius is as small
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as possible, has also been extensively studied. It is a special case of the gen-
eral k-center problem, where we need to find k& congruent closed disks whose
union covers P and the radius is as small as possible. When k is part of the
input, the problem is known to be NP-complete [12]. For the 2-center problem,
Jaromczyk and Kowaluk first gave a deterministic algorithm with running time
O(n?logn) [7]. Eppstein gave an improvement with a randomized algorithm run-
ning in O(nlog®n) expected time [8]. In a major breakthrough, Sharir showed
that the planar 2-center problem can actually be solved in near-linear time. The
time bound of their algorithm is O(nlog” n) time [3] and finally the algorithm
was further improved by Chan in O(nlog? nlog®logn) time [4]. Yet another ver-
sion of the 2-center problem is under the so-called streaming model, i.e., the
points in P appear in sequence and we need to maintain the two centers right
after a point arrives. A factor-5.611 approximation was designed in [14].

The discrete 2-center problem (D2CP) is defined as follows: covering P by
the union of two congruent closed disks whose radius is as small as possible, and
whose centers are two points in P. It has also been considered. The first near-
quadratic algorithm was proposed in [9] and finally improved to O(n% log® n)
time in [2].

While much has been done on this classical problem, little has been done in
some practical variations. Some interesting results were provided by Ho et al. [1]
and Gudmundsson et al. [6]. Ho et al. studied the geometric minimum-diameter
spanning tree (M DST) of P that is a tree which spans P and minimizes the
Fuclidean distance of the longest path. They showed that there always exists
an M DST which is either a monopolar or a dipolar. The more difficult dipo-
lar case can be computed in O(n?®) time in [1]. The cubic time algorithm has
been improved to O(ns ) time by Chan [10]. Gudmundsson et al. [6] studied
the minimum sum dipolar spanning tree (M SST), which mediates between the
minimum-diameter dipolar spanning tree and the discrete 2-center problem in
the following sense: find two centers p; and py in P that minimize the sum of
their distance plus the maximum distance of any other point to the closer center.
They showed that the M SST can be solved in O(n?logn) time.

Note that in the dipolar case, the M DST is to find two centers {p1,p2} €
P such that r; + ro + d(p1, p2) is minimized, where d(p1,ps2) is the Euclidean
distance between p; and po, r1 and ro are the radii of two disks centered at p;
and ps whose union covers P. Using the notation above, the discrete 2-center
problem consists of finding two centers {p1,p2} € P such that max{ry,ro} is
minimized; the MSST consists of finding two centers {p1,p2} € P such that
d(p1,p2) + maz{ry,ra} is minimized.

In this paper we study two generalizations of the 2-center problem: the dis-
crete minimax 2-center problem (DM M2C P) and mixed minimax 2-center prob-
lem (M MM2CP). The minimax 2-center problem is that of finding two centers
{p1,p2} with radius r1, 7 respectively such that max{ry,rs,d(p1,p2)} is mini-
mized. If the two centers are not in P, we call the problem the standard min-
imax 2-center problem (SMM2CP); if one of the two centers is in P, we call
the problem the mixed minimax 2-center problem (M M M2C P) and if both the
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two centers are in P, we call the problem the discrete minimax 2-center problem
(DMM2CP). DMM2CP is similar to the MSST because both of them are
interested in when the two centers do not only serve their customers, but also
frequently exchange goods or personnel between themselves. We show that the
way solving the M SST can also be applied to the DM M2C P. Furthermore, we
consider the mixed minimax 2-center problem that one of two centers is not in
P. This is of importance, e.g., considering the construction cost of the facility
location, the minimax 2-center location problem with cost constraint is that,
suppose building a new facility costs M7, rebuilding (changing one facility into a
new one) a facility costs My and the budget is M, under the budget constraint,
how to choose two centers is necessary (Note that M is greater than Ms). Here
we consider the minimax two center location problem as following:

if M > 2M;, correspoding to the SMM2CP
if My + My < M < 2Mj, correspoding to the MMM2CP
if M < My + M, correspoding to the DMM2CP

In Sect. 2, we discuss the DM M2C'P which can be solved by using the data
structure in [6]. In Sect. 3, we show some properties and consider the minimum
enclosing disk with constraint that the center must be lying on a given circle
or arc, which can be solved in O(nlogn) time. Finally the M MM2CP can be
solved in O(n?log®n) time using O(n) space. In Sect. 4, we give a conclusion.

2 The Discrete Minimax 2-Center Problem

For a planar point set P, the discrete minimax 2-center problem (DM M2CP),
as a variation of the discrete 2-center problem, is defined as follows: finding
two disks centered at {p1,p2} € P that minimize the maximum of two terms,
namely, the Euclidean distance between two centers and the distance of any
other point to the closer center. It is simple to give an O(n®) time algorithm.
Just go through all O(n?) pairs {p, ¢} of input points and compute Vm; € P\
{p, q¢}, min{maz{d(p, q¢), min{d(m;, p),d(mi,q)}}}. Note that d(m;,p) < d(m;,
¢) means m; is in the closed halfplane h,q that contains p and is delimited by the
perpendicular bisector b,, of p and ¢. Let P, (resp. P,) be the point set with all
the points in it are closer to p (resp. ¢) (Points on b,, can be assigned to either
p or q). Clearly min{max{d(p’, p),d(¢,q),d(p,q)}} where p’ € P, and ¢’ € P,
is the solution of DM M2CP for P. It is clear that we only need to compute the
farthest point f, (resp. f;) to p (resp. ¢) in P, (resp. P,).

From [6], Gudmundsson et al. considered the minimum sum dipolar spanning
tree, which can be seen as finding two centers p, ¢ in P that minimize the sum
of d(p,q) plus the maximum distance of any other point to the closer center.
They presented a solution by using a new data structure, built upon a balanced
red-black search tree that solves f, for each ordered pair {p,q} in a batch. For
fixed p as one center, computing f, for every ¢ € P\{p} takes O(nlogn) time
by using their data structure. It can be implied that the data structure can also
be applied to the DM M2C P: for each fixed center p, compute the f, for each ¢
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in P\ {p}. After that, for each ordered pair {p, ¢}, compute maz{ fp, f;, d(p,q)}
Then DM M?2C P can also be solved in O(n?logn) time.

Algorithm 1. The Algorithm of Discrete Minimax 2-Center Problem
: Phase I: Compute all f,

: for each p € P do: Compute all the farthest points f,

: end for {p}

: Phase II: Search for DM M2CP

: for each {p,q} € P do: dpq — maz{d(p, f,),d(p,q),d(q, fa)}

: end for {p, ¢}

: Return dpq; minimum with p and gq.

O UL W N

Theorem 1. Let P be a planar point set of n points, the DM M2CP can be
found in O(n?logn) time using quadratic space.

3 The Mixed Minimax 2-Center Problem

In this section, we consider the minimax 2-center problem in the mixed case
where only one center is in P. First we give some notations: for a fixed point p
and fixed radius r, let D(p,r) denote the disk with center p and radius r, C(p, )
denote the circle bounding D(p,r). Let set P,, consist of the points in D(p,r)
and PT be the complementary set. The points located on C(p,r) are also in
Py, . The center and the radius of the minimum enclosing disk of g , are oy
and 7 respectively. We call the 2-center problem with one center in p the mixed
2-center problem (M2CP). For fixed p and r, let the other disk of the solution
of MMM2CP be D(oy',7,"). For each fixed center p, we first go through the
points p; € P\{p} (i =1,2,...,n—1) in order of non-decreasing distance from p.
For a trivial O(n?logn) time implement of this procedure, for each p and d(p, p;)
as the fixed center and radius, we compute the optimal solution for MM M2CP.
We show some geometry properties of the optimal solution of MM M2CP for
fixed center and radius.

3.1 The Structure of the Optimal Solution
First we show two properties between M M M2CP and M2CP.
Lemma 1. For a fived center p and radius v, maz{r,ry", d(p,op")} > maz{r,ry}.

Lemma 2. For a fized center p and radius r, if p and o, are in one of D(p,r)
or D(oj,75), then MMM2CP and M2CP have the same optimal solution.

Proof. The optimal radius of M2CP is max{r,r,}, and maz{r,r;} > d(p,0;).
As r,, is the radius of the minimum enclosing disk of set PT , from Lemma 1, we
have r; < rp Then we choose op and rp as the center and radlus of the other
disk of MM M2CP respectively. The MM M2CP and M2CP have the same

optimal solution. O
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From Lemma 2, we have

Lemma 3. For a fized center p and radius r, the optimal solution of
MMM?2CP is either when p and oy are in one of D(p,r) or D(oy',7,") which
is same to M2CP, or when one center lies on the boundary of another disk.

Proof. From Lemma 2, if p and oj, are in one of D(p,r) or D(o r,), the optimal
solution equals to the solution of M2CP. We choose o, and r; as the center and
radius of o' and r)"

Otherwise, we show that if p and o;, are not in one of D(p,r) or D(o5,7;),
then p or o must lie on the boundary of the other disk. We can enlarge the
radius rp 1nto r, + 0 where ¢ is a positive number so that PpT is still located in
D(o Ty +6). We move oy, towards p until C(o;, 7, + §) hits at least one point

PPTT which satisfies d( 0,,p) = 1, + 6 or d(o p,p) = r. We denote the new
center 0, as pi. During the move, the distance between p and pj is decreasing.
There exists a 0 such that max{r; +d,d(p,pi),r} is minimized.

At this time, either pi lies on C(p,r) which means d(p,p}) = r, or p lies on
C(p7,r,+09) which means d(p, p7) = 75 +6. Because for d, maz{r;+0d,d(p,p3),r}
is minimized, Yy > 9, max{r,d(p,p7),r, +~} > max{r,d(p, pi),r; +J}. Finally
we choose pj as the center o) and r; + ¢ as the radius r;". Figure 1 shows these
cases. The blue bold circle is the boundary of the fixed disk D(p,r); the green
thin circle is the boundary of the other disk of the solution of M2CP; the red

dash circle is the boundary of the other disk of the solution of MM M2CP. O

(i) (ii) (iii)

Fig. 1. (i) p and op' are in one disk (ii) p is on C(oy",r,") (iii) o' is on C(p,r)

3.2 Solving MM M?2CP for a Fixed p and r

We first show that how to find the other center and radius of MM M2CP for a
fixed center p and radius r. From Lemma 2, we know that if p and o}, are both
in D(p,r) or D(op,7,), then M2CP and MMM2CP have the same solutlon
We turn to solve the case where one center lies on the boundary of the other
disk. We have the following theorem which is similar to the Lemmal in [13].
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Theorem 2. For a planar point set P and a fized circle or arc whose center
is o and radius is r, the minimum enclosing disk D(o*,r*) covering set P with
center on the given circle or arc, satisfies that either when at least two points are
on C(o*,r*), or when one point p is on C(0*,7*),0,0" and p must be collinear
and p 1is the farthest point of o in P.

Proof. If the minimum enclosing disk D(o*,r*) covering set P with center on
the given circle or arc is defined by at least two points a, b on C(o*,r*), then a, b
are the farthest points to o*. Otherwise there is only one point p on C(o*, 7).
Suppose o0, 0* and p are not on a line. As p is the only one point on C'(o*,r*),
we move the center o* along C(o,r) in order that Loo*p < Zoo™p, where o’* is
also on C'(o,) so that P is still located in D(o™*,7*). With center o”* and radius
r*, all the distance between the points in P and o’* is smaller than r*, which
implies that we can reduce the radius of the disk to maintain that the disk can
still cover P. With center o™, the radius of the minimum enclosing disk covering
P is smaller than r*. This contradicts to that D(o*,7*) is the minimum enclosing
disk covering P with center on C(o,). Figure 2(i) shows that if 0, 0* and p are
not on a line, then there exists a disk that covers P with center on C(o,r) but
the radius is smaller than r*. The disk with the dash circle can also cover P.
Figure 2(ii) shows that o,0* and p are on a line, then D(o*,r*) is the minimum
enclosing disk with center on C'(0,r) and the disk with dash circle can’t cover P.
Suppose p is not the farthest point to o in set P, let f, be the farthest point
to o, then d(o, f,) > d(o,p). As d(o*,p) > d(o*, f,), by the triangle inequality,
d(o,p) = d(o*,p) + d(o,0*) > d(o*, f,) + d(0,0*) = d(o, f,). This contradicts to
the assumption. O

Fig. 2. (i) 0,0",p is not on a line (ii) 0,0, p is on a line

From Lemma 3, for a fixed center p and radius r, D(ogT7 r;”) is the minimum
enclosing disk covering set Pg: » with the constraint that either p lies on C(0}, 7))
or o' lies on C(p,r). If p lies on C(o*,7;"), we know that D(oy',r,") is the

minimum disk covering p U P, Otherwise o}* lies on C(p, ).
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For the first case, we can compute the farthest point Voronoi diagram of
pU Pg » and compute the minimum enclosing disk with p on its boundary. This
can be done in O(nlogn) time [11]; for the second case, from Theorem 2, if there
are more than one point in Pg » on C(opt,r)'), we can compute the intersection
points of C(p,r) and farthest point Voronoi diagram of PE - We can then find
the minimum distance between the intersection points and their farthest points.
Otherwise there is only one point which is the farthest point of p in Pg:r on
C(op*,r;"). We compute the farthest point f,, to p, then find the intersection
point w of C(p,r) and l,;, which is the line crossing p and f,. Let Ry, denote
the region in which all the points have the same farthest point f,. If w lies in the
region Ry , then we find the optimal center. Otherwise there must be at least
two points on C(0p',r,"). As there are at most O(n) lines of the farthest point
Voronoi diagram of P} and O(n) intersection points, then this can be done in
O(nlogn) time. These two cases can be solved in O(nlogn).

Lemma 4. For a fized p and r, the MMM2CP can be solved in O(nlogn)
time.

Algorithm 2. The Algorithm of Mixed Minimax 2-Center Problem for a Fixed
pand r

1: For a fixed p and r, by using linear programming in [5], compute the center o,
and radius 7, of the minimum enclosing circle of qujr := P\ {p,p1,...,p:} where
d(p3p2) <r.

if d(op,p) < max{ry,r}, then
The MMM2CP and M2C P have the same solution. Return r," = maz{ry,r}.

end if

(1) Compute the minimum enclosing disk P;, U {p} with p on its boundary. Let

the radius be 7.

6: (2) Compute the farthest point f, to p in set Pg:r, and the intersection point w of
C(p,7) and lps,. If w is in the region of Ry,, then w is op'. Let r2 = d(p, fp) — 7.
Otherwise go to next step.

7: (3) Compute the intersection point of the farthest point Voronoi diagram of Pgr
and C(p,r). Compute the distance between the intersection points and their far-
thest points, choose the minimum distance, denoted as r3.

8: (4) Return r," = min{ri,r2,r3}.

3.3 The Monotone Property

In the preprocessing, we have d(p,p1) < d(p,p2) < ... < d(p,pn—1). Suppose
that D(p,r;) is the fixed disk where r; = d(p, p;), let D(o}™,r!"*) denote the other
disk of the MMM2CP whose center is o]" and radius is r]". We discuss the
monotone property under two cases.

Case 1. r; > r[". In this case, we have:

Lemma 5. Ifr; > rl”, then Yk > i,r; < maz{ry, v, d(p,of")}.
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Proof. If r; > r*, from Lemma 3, the optimal solution of MM M2CP is either
when the two centers are in D(p,r;) or when o* is on C(p,r;). Vk > i,1, <
max{rg,d(p,o),r"}. Thus, r; < max{rg,r},d(p, o)} O

Case 2. r; <. We handle this case with the following two lemmas.

Lemma 6. Vk <i,r, <7’

Proof. Suppose that there exists a point p; with & < 4, such that r, > .
Then the union of the two disks D(p,ry) U D(of*,r}") can cover the set P. So,
D(p,r;) U D(o7", ") can also cover the set P. Then, r; > 7. The optimal
solution of MM M?2CP for a fixed point p and radius r; is less than or equal to
r;. It contradicts to the optimal solution 7™ O

™.
Lemma 7. If r; <7r}*, then Vk <i,7]" <71},

Proof. Suppose that there exists a point p; with k£ < 4 such that »}* < r™.
Then we can enlarge the radius rj into r;, the union of D(p,r;) and D(o}*, ")
can cover the set P. In this case, the solution of optimal radius of M M M2CP
with a fixed center p and radius r; is maz{r;, 7", d(p, of*)}. From Lemma 6, we
have r, <, so d(p, o) < ri*. With a fixed center p and radius r;, D(p,r;) U
D(of}, ) covers the set P and the solution of MMM2CP is max{r;,r'}. As
v <rit, g < rpt, again, it contradicts to the optimal solution r; < ri". O

From Lemmad4, for a fixed p and radius r, the MM M2CP can be found
in O(nlogn) time. From Lemmas5 and 7, by using binary search, in O(logn)
time, the M M M2C'P can be solved in O(n log? n) time for a fixed p. Then going
through all the points in P, the total complexity for solving the MM M2CP is
O(n?log®n).

Theorem 3. Let P be a planar point set of n points, the MMM2CP can be
solved in O(n?log®n) time using O(n) space.

4 Conclusion

We consider two facility location problems called the discrete minimax 2-center
problem (DM M2C P) and the mixed minimax 2-center problem (MM M2CP).
We show that the DM M2CP can be solved in O(n? logn) time using quadratic
space and the MM M2CP can be solved in O(n?log®n) time using O(n) space.
So far, we have not been able to find any algorithm for the SM M2C P. This is
an interesting problem for further research.
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Abstract. We consider a special case of the generalized minimum span-
ning tree problem (GMST) and the generalized travelling salesman prob-
lem (GTSP) where we are given a set of points inside the integer grid
(in Euclidean plane) where each grid cell is 1 x 1. In the MST version
of the problem, the goal is to find a minimum tree that contains exactly
one point from each non-empty grid cell (cluster). Similarly, in the TSP
version of the problem, the goal is to find a minimum weight cycle con-
taining one point from each non-empty grid cell. We give a, (1+4v/24 ¢)
and (1.5 + 8v2 + €)-approximation algorithm for these two problems in
the described setting, respectively.

Our motivation is based on the problem posed in [6] for a constant
approximation algorithm. The authors designed a PTAS for the more
special case of the GMST where non-empty cells are connected end
dense enough. However, their algorithm heavily relies on this connectiv-
ity restriction and is unpractical. Our results develop the topic further.

Keywords: Generalized minimum spanning tree - Generalized travel-
ling salesman - Grid clusters + Approximation algorithm

1 Introduction

The generalized minimum spanning tree problem (GMST) is a generalization
of the well known minimum spanning tree problem (MST). An instance of the
GMST is given by an undirected graph G = (V,E) where the vertex set is
partitioned into k clusters V;, i = 1,...,k, and a weight w(e) € R* is assigned
to every edge e € E. The goal is to find a tree with minimum weight containing
one vertex from each cluster.

The GMST occurs in telecommunications network planning, where a net-
work of node clusters need to be connected via a tree architecture using exactly
one node per cluster [9]. More precisely, local subnetworks must be intercon-
nected by a global network containing a gateway from each subnetwork. For this
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inter-networking, a point has to be chosen in each local network as a hub and the
hub point must be connected via transmission links such as optical fiber, see [14].
Furthermore, the GMST has some applications in design of backbones in large
communication networks, energy distribution, and agricultural irrigation [10].

The GMST was first introduced by Myung, Lee and Tcha in 1995 [14].
Although MST is polynomially solvable [7], it was shown in [14] that the GMST
is strongly NP-hard and there is no constant factor approximation algorithm,
unless P =NP. However, several heuristic algorithms have been suggested for
the GMST, see [9,10,16,17]. Furthermore, Pop, Still and Kern [18] used an LP-
relaxation to develop a 2p—approximation algorithm for the GMST where the
size of every cluster is bounded by p.

In [6], Feremans, Grigoriev and Sitters consider the geometric generalized
minimum spanning tree problem in grid clusters, GGMST for short. In this spe-
cial case of the GMST, a complete graph G = (V, E) is given where the set of
vertices V' correspond to a set of points in the planar integer grid. Every non-
empty 1 x 1 cell of the grid forms a cluster. The weight of the edge between two
vertices is given by their Euclidean distance. Figure 1 depicts one instance of the
GGMST.

° o ° L4
i+ 1 ° °
o °® o
° °
g °
°
e |® o *
i—1 ° °
°

j—2 j-1 J j+1l j+2

Fig. 1. An GGMST instance with n = 21 points and N +1 = 8 non-empty cells, which
are connected and fit into a 3 x 5 sub-grid

We say that two grid cells are connected if they share a side or a corner. Fur-
thermore, we say that a set of grid cells is connected if they form one connected
component. The authors in [6] show that the GGMST is strongly NP-hard, even
if we restrict to instances in which non-empty grid cells are connected and each
grid cell contains at most two points. Furthermore, they designed a dynamic pro-
gramming algorithm that solves in (9(l/)6’“234’€2 k?) time the GGMST for which
the set of non-empty grid cells is connected and fits into k x I sub-grid. (Note that
the algorithm is polynomial if k& is bounded.) Moreover, the authors used this
algorithm to develop a polynomial time approximation scheme (PTAS) for the
GGMST for which non-empty cells are connected and the number of non-empty
cells is superlinear in k and [. The GGMST instances are often used to test
heuristics for the GMST which, in light of the results in [6], is not adequate. The
objective of this paper is to develop this topic further and to design a simple
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approximation algorithms for the GGMST and of its variants without restricting
only to connected and dense instances.

Analogously as the GMST and the GGMST, the generalized travelling sales-
man problem (GTSP) and the geometric generalized travelling salesman prob-
lem in grid clusters (GGTSP) can be defined. The GTSP was introduced by
Henry-Labordere [11] and is also known in the literature as set TSP, group TSP
or One-of-a-Set TSP. This problem has many applications, including airplane
routing, computer file sequencing, and postal delivery, see [2,12,13]. Elbassioni,
Fishkin, Mustafa and Sitters [5] considered the GTSP in which non-empty clus-
ters (i.e. regions) are disjoint a-fat objects with possibly varying size. In this
setting they obtained a (9.1 + 1)-approximation algorithm. They also give the
first O(1)-approximation algorithm for the problem with intersecting clusters
(regions). Note that in the GGTSP, fatness of each cluster is 4 (each cluster is
a square).

As a special case of the GTSP we can look at each geometric region as an
infinite set of points. This problem, called the TSP with neighbourhood, was
introduced by Arkin and Hassin [1]. In the same paper they present constant
factor approximation algorithm for two cases in which the regions are translates
of disjoint convex polygons, and for disjoint unit disks. For the general prob-
lem Mata and Mitchell [15] and later on Gudmundsson and Levcopoulos [8],
gave an O(logn)-approximation algorithm. For intersecting unit disks an O(1)-
approximation algorithm is given in [4]. Safra and Schwartz [19] show that it
is NP-hard to approximate the TSP with neighbourhood within (2 — ¢). In this
context, it is natural to consider the GTSP in which points are sitting inside
geometric objects such as the integer grid.

Notation. We will usually refer to vertices as points. Throughout this paper,
the number of points (|V]) will be denoted by n. Furthermore, N denotes the
number of edges in every feasible solution (tree) of the GGMST, i.e. N is the
number of non-empty cells minus 1. The edge between two points v and v will
be denoted by e, ,. We naturally extend the notation for the weight to sets of
edges and graphs, i.g. the weight of a tree T is denoted by w(T') = Y ., w(e),
where e € T means that e is an edge of T'. We assume that every point is in just
one cell, i.e. points on the cell borders are assigned to only one neighbouring
cell by any rule. An optimal solution of the GGMST will be denoted by T,
throughout this paper.

Our results and organization of the paper. The main result of this paper
is a (1 +4v/2 + €)-approximation algorithm for the GGMST. We do not assume
any restrictions on connectivity, density or cardinality of non-empty cells. The
algorithm is presented and analyzed in Sect.2. A lower bound for the weight of
an optimal solution in terms of N is used to prove the approximation quality of
the algorithm. Section 3 is devoted to proving this lower bound. Lastly, in Sect. 4
we use our GGMST algorithm to develop an approximation algorithms for the
GGTSP.
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2 The GGMST Approximation Algorithm

In this section we present a (1-+4+/2+¢)-approximation algorithm (Algorithm 3)
for the GGMST. Main part of the algorithm is Algorithm 1 which we describe
next.

Algorithm 1. (1 +4v2 + w?ﬁt))-approximation alg. for the GGMST

T « solution of the MST problem on non-empty cells (where the distance
between a pair of cells is the length of the shortest edge between them);

G — the graph consisting of the set of edges (and points) that correspond to the
edges in T}

for all cells C' that contain more than one point from G do
Cg « the set of points from G that are in C}
p < point from C' that is a median for Cg;
Replace C¢ by p, i.e. reconnect to p all edges of G that enter C;

© 00N O s W N

end
return G;

fury
o

Algorithm 1 is divided into two parts; in the first part we solve an MST
instance defined as follows: non-empty cells play the role of vertices, and the
weight of the edge between two cells Cq,Cy is the smallest weight edge e, p,
where p; € Cy and py € Cy. Let T be an optimal tree of such MST instance,
and let graph G be the set of edges (with its endpoints) of the original GGMST
instance that correspond to the edges of T. Note that G has IV edges and spans
all non-empty cells but it can have multiple points in some cells. In the second
part of the Algorithm 1 (i.e. the for loop), we modify G to obtain the GGMST
feasibility, by iteratively replacing multiple cell points by a single point p. We
choose point p to be the one that has the minimum sum of distances to other
points of G that are in the corresponding cell.

Next we present an upper bound for solutions obtained by Algorithm 1 in
terms of the number of edges N.

Theorem 1. Algorithm 1 produces a feasible solution T of the GGMST such
that w(Ta) < w(Topt) + V2N — /2, where N is the number of edges of Ta.

Proof. Denote by Gy the non-feasible graph obtained in the first part of the
algorithm, i.e. the first version of graph G. Then the weight of the solution T4
obtained by the algorithm is equal to w(Gg) + ext, where ext is the amount by
which we increase (extend) the weight of Gy in the second part of the algorithm.
Note that w(Go) < w(Top), as Go is an optimal solution of the problem for
which Ty, is a feasible solution (find a minimum weight set of edges that spans
all non-empty cells, with all GGMST edges being allowed). In the rest of the
proof we will bound the value of ext.

In every run of the for loop we replace the set of points C'g with p. In doing so,
every edge eq ., ¢ € C¢ from G, is replaced by e, ,. From the triangle inequality
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we get that w(eqp) — wleg,e) < w(eep). Hence, the increase (extension) of the
weight of G in every run of the for loop is less or equal than ... w(ecp)-
Instead of bounding such absolute values, we will bound its average per edge
adjacent to the corresponding cell. More precisely, we will calculate an average
extension per half-edge assigned to the corresponding cell. Namely, every edge
will be extended at most two times, once on each endpoint, so we can look
at each extension as an extension of a half-edge. Furthermore, note that edges
that contain leafs will be extended only on one side. We will use this fact to
assign half-edges that contain leafs to other cells to lower their average half-edge
extension. To every cell C, we will assign |C| — 2 leaf half-edges. Intuitively, we
can do this because every node v of a tree generates deg(v) — 2 leafs. Formally,
it follows from the following well know equality:

Vil =2+ |Vil(i - 2), (1)

i>2

where V; = {v € V': deg(v) =i}, and V is the set of vertices of a graph.
Then for a cell C the average extension per assigned half-edges is bounded
above by
ZCGCG w(eC’P)
[Cal+ (ICal —2)

(2)

Note that the maximum distance between two cell points is v/2. Since points
from Cg are candidates for p, it follows that »_ .o w(ecp) < V2(|Cql| — 1).
Hence, (2) is bounded above by

V2(ICel —1) V2

21Cql -2 27

Hence, in average, every half-edge (except 2 leaf half-edges, see (1)) is extended
by at most v/2 /2. Note that this average bound is a constant, i.e. does not depend
on C. Now ext can be bounded by

ext < ?(QN —2)=V2N - V2. (3)

Finally, we can bound the solution T4 of the algorithm by
w(Ta) < w(Go) + ext < w(Top) + V2N — V2. O

The following theorem gives a lower bound for the optimal solution in terms
of the number of edges N. Section 3 is dedicated to proving the theorem.

Theorem 2. IfT,,; is an optimal solution of the GGMST on N +1 non-empty
cells, then N < 4w (T,pt) + 3.

Now from Theorems1 and 2 the following approximation bound for
Algorithm 1 follows.
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Corollary 1. Algorithm 1 produces a feasible solution Ty of the GGMST such
that w(Ta) < (14 4V2)w(Topt) + 2V/2.

Note that, due to the constant 2v/2, Corollary 1 does not gives us a constant
approximation ratio for Algorithm 1. Namely, the approximation ratio that we

get is equal to 1 + 42 + 2:}/{

w(
that w?i\{ft) is replaced by arbitrary small € > 0. Note that the optimal solution
weight does not necessarily increase with the increase of the number of points
n, namely all points can be in the same cells. Hence we cannot use the standard
approach. However, the following two facts will do the trick. First, note that the
weight of the GGMST optimal solution increases as the number of non-empty
cells increases. Second, given a spanning tree structure of non-empty cells T', we
can in polynomial time find the minimum weight GGMST feasible solution 7"
with the same tree structure as T (i.e. there is an edge in T between two cells if
and only if these two cells are adjacent in T). Next we design one such dynamic
programming algorithm (see Algorithm 2).

Given an GGMST instance, let T be a spanning tree of the complete graph
where the set of vertices correspond to the set of non-empty cells. Denote by X;
the set of points inside cell C;. We observe T as a rooted tree with C, as its
root. If C; is a leaf of T then the weight W (z) of each point z in set X; is set to
zero. If C; is not a leaf then 7" has some children C; , ..., C;, and the weight for
points inside sets X;,, ..., X;, has already been computed. Then for each point
p in cell C; (set X;) we compute:

3 Next we focus on improving Algorithm 1 so

k

W(p) = Z qren)i(n {Wi(q) +w(epq)}
g=1""""
Algorithm 2 computes W(p) for all p € C,. Note that it is easy to adapt
Algorithm 2 to store selected points at each step.

Now we have all ingredients to design a (1 + 4/2 + €)-approximation algo-
rithm, see Algorithm 3. Note that 1 + 4/2 is approximately equal to 6.66.

Theorem 3. For any ¢ > 0, Algorithm 3 is a (1 + 4v/2 + €)-approzimation
algorithm for the GGMST.

Proof. If N <15 0or N < 10\/5/6, then we can enumerate all spanning trees on
N + 1 non-empty cells, and apply Algorithm 2 on each of them. That will give
us an optimal solution in polynomial time.

Assume N > 15 and N > 10v/2/¢. By Corollary 1 it follows that Algorithm 1
will produce a solution T4 such that

w(Ty) < (1 + 4\/5) w(Topt) +2V/2. (4)
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Algorithm 2. Optimal GGMST solution for a given spanning tree of cells

Data: A spanning tree T' of non-empty cells
Result: An optimal weight of the GGMST tree with the same structure as 7'
Choose an arbitrary cell C, as the root of T
for each leaf C; of T' do
for each p € X; do
| Wi(p)=0;
end
end
CurrentLevel = height of T}
while CurrentLevel > root level do
for each node C; of CurrentLevel do

© 0N O A W N

10 Let Cj,,...,Cs, be children of C; in T}

11 for each p € X; do

12 ‘ W(p) = 25:1 minqexij {W(q) +wlepq)};
13 end

14 end

15 CurrentLevel = CurrentLevel — 1;

16 end

[
~

return minyex, W(p);

Algorithm 3. (1 + 4v/2 + €)-approximation algorithm for the GGMST

1 if N <15 or N < 10v/2/¢ then

2 Output minimum weight solution obtained by Algorithm 2 on all spanning
trees of non-empty cells;

3 else

4 ‘ Run Algorithm 1;

5 end

From Theorem 2 and N > 15 it follows that 1 < 5w(T,,)/N. Applying that on
the rightmost element of inequality (4) we get

w(Ta) < (14+4v2) w(Top) + &fw(npt),

<1 +4v2 + 10[) w(Topt)-

Now from N > 10v/2/e it follows that
w(Ta) < (144V2+ ) w(Top),

which proves the theorem. O
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3 The Lower Bound Proof

This section is entirely devoted to proving Theorem 2 which gives us a lower
bound on the weight of an optimal solution. The lower bound is expressed in
terms of the number of edges N.

Throughout this section we identify 1 x 1 grid cell with its coordinates (4, j),
where 4,7 € Z is the row and the column of the cell inside the infinite integer
grid. For example, in Fig. 1, cell (¢, 4+ 1) contains one point which is near its
upper right corner.

We start by proving lower bounds for trees of small size.

Lemma 1. The weight of any subtree of T,p: with four edges is at least 1.

Proof. Consider a subtree T" of T,,, with four edges. Let H denote the set of
the five cells that contain vertices of T’. Note that there will be two cells in H
with coordinates (i, ) and (¢/,j') such that |i —i'| > 2 or |j — 5| > 2. Hence,
Euclidean distance between a vertex from the cell (4,5) and a vertex from the
cell (#',5") is a least 1. This implies w(T”) > 1. See Fig. 2 for an example. O

i+1

J j+1 j5+2

Fig. 2. An example of a tree T with four edges

Lemma 2. The weight of any subtree of T, with seven edges is at least %(2\/64—
6 — 3v/3) (which is greater than 1.93).

Proof. Let T" be a subtree of T,,; with seven edges. If 7" does not fit in any
3 x 3 sub-grid of the original grid, then there are two vertices u, v of 7' which are
from cells with coordinates (i, 5) and (¢, ') such that |i —¢'| > 3 or |j — j'| > 3.
In that case w(ey,,) > 2 and therefore w(71”) > 2.

Next we consider the case when T fits into 3 x 3 grid. Since T” has eight
vertices, at least three of them are in the corner cells of a 3 x 3 grid. Without
loss of generality we assume that these three vertices are vertex v in cell (4, ),
vertex u in cell (i + 2, j) and vertex y in cell (j + 2,4). Let P be a shortest path
in T from v to u and let Q) be the shortest path in T’ from v to y. Note that
w(ey,y) > 1 and w(e, ) > 1. If P and @ do not have a common vertex apart
from v, then w(T’) > 2. Thus we are left with the case when P and @ have a
common vertex other than v, which we denote by x.

First we assume that P and @ do not go through the point in cell (i+1, j+1).
In this case, up to symmetry, one of the configurations depicted in Fig. 3(a,b)
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i+ 2 " u
? A ugs
i+1 T\,\ =
e o
‘ —l, ./A\_\' v e Y
i v Y v T Y
J J+1 j+2 J Jj+1l j+2 J Jj+1 j+2

(a) (b) (c)
Fig. 3. Layouts of P and @

occurs. However, it is clear that w(e, ;) + w(es,y) + w(eg,) > 2 and hence
w(T’) > 2.

Lastly, we observe the case when vertex z is in cell (¢ + 1,5 + 1). Then
w(PUQ) is at least w(ey ) +w(ey,u) +w(es ), which is minimized when « is the
Fermat point for the three corners of cell (i + 1,7 4+ 1) and 7" has the structure
depicted in Fig.3(c). Therefore it can be computed that w(T’) > £(2v/6 +

6 —3v/3) > 1.93. |
Lemma 3. The weight of any subtree of T, with eight edges is at least 2.

Proof. Let T’ be a subtree of T,,; with eight edges. If 7" does not fit in any 3 x 3
sub-grid then by the same simple argument as in the proof of Lemma2 we get
w(T") > 2. If T" fits in a 3 x 3 grid, then there is one vertex of T’ in any cell
of such 3 x 3 grid. More specifically, there are vertices in cells (,7), (i + 2,7),
(i,7+2) and (i + 2,7 + 2) from which easily follows that w(7”) > 2. O

Lemma 4. The weight of any subtree of T, with nine edges is at least 1+ V3.

Proof. Let T be a subtree of T,,; with nine edges. If 7" does not fit in any 4 x 4
sub-grid of the original grid, then there are two vertices u,v of T” which are in
cells with coordinates (i,7) and (¢, j') such that |i — /| >4 or [j — j'| > 4. In
that case w(ey,) > 3 and therefore w(7") > 3 > 1+ /3.

Next we consider the case when the smallest rectangular sub-grid that con-
tains T" is of the size 4 x 4, and let (i,7) be the bottom left corner cell of
such 4 x 4 grid. In that case there are four (not necessarily distinct) vertices
u, v, 2,y of T that for some 1 < ¢',¢" <i+3 and j < j/,5” < j+ 3 lie in cells
(7', 7), (4,4, (@, 5+ 3),(i+3,5"), respectively. Let P be the shortest path in 7"
from u to x and let (Q be the shortest path in 7" from v to y. Let us observe
the union of paths P and @. This union is a set of k edges we denote by ey,
{=1,... k. Let us denote by xy and y, the lengths of projections of e, on z-axis
and y-axis, respectively. Then

k
w(PUQ) :Z\/xf—i-yf. (5)
=1
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Since distance between projections of u and x on z-axis is at least 2 and distance
between projections of v and y on y-axis is at least 2, it follows that 25:1 Ty > 2
and Z]Z:l y¢ > 2. Hence, (5) is minimized when & = 1 and z; = y; = 2 with
minimal value being 21/2. Therefore we get w(T') > 2v/2 > 1+ /3.

Lastly, we consider the case when T” fits into a rectangular sub-grid R of
dimensions smaller than 4 x 4. Without loss of generality we can assume that
R is of the size 4 x 3, and let (4,) be the bottom left corner cell of R. Note
that there are at least two vertices of 7" that are in corner cells of R. Without
loss of generality we assume that vertex v is in cell (¢,7). Next we distinguish
remaining cases with respect to the position of the second corner point which
we denote by w.

Case 1. Vertex u is in cell (i,5 + 2). As there are ten vertices in 7’, one of
them must be in cell (i + 3, j") for some j < j' < j + 3. Denote such vertex by
y. By calculating the Fermat point z it can be seen that weight of the Steiner
tree containing u,v and y is at least 2 + v/3/2 which is greater than 1+ /3, see
Fig.4(a).

i+ 3 .
Dy U oo
i+ 2 H\ "
y/
i+ 1 /.x\
o 0

v u v
i

J Jj+1 j+2 J Jj+1 j+2 J Jj+1l j+2

(a) (b) ()

Fig. 4. T’ configurations cases

Case 2. Vertex u is in cell (i + 3, 7). We can assume that there are no vertices
of T" in cells (4,5 +2) or (i + 3,7 + 2) as then Case 1 applies. Then there must
be vertices y',y” in T in cells (i + 1,5+ 2) and (i + 2,5 4+ 2). Hence, w(T”) must
be at least as the weight of the Steiner tree that contains right upper corner
of cell (3,7), right bottom corner of cell (i + 3,7) and left bottom corner of cell
(i +2,j + 2). By calculating the Fermat point, one can see that such Steiner
tree has weight 1 + /3, hence w(T) >1+ V3. In Fig. 4(b) subtree T" has the
configuration that mimics such Steiner tree.

Case 3. Vertex u is in cell (143, j+2). We can assume that there are no vertices
of " in cells (i,7+2) or (i + 3, J) as then Case 1 or Case 2 apply. In this case
minimal weight 7" mimics the Steiner tree that contains right upper corner of
cell (4,7), left bottom corner of cell (i + 3,5 + 2), right bottom corner of cell
(i 4+ 2,7) and left upper corner of the cell (i + 1,7 + 2), see Fig.4(c). It is easy
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to calculate that the weight of such Steiner tree is \/5 + 21/3 which is greater
than 1+ /3. O

Now we are ready to prove Theorem 2.

Proof (of Theorem?2). We will proof the theorem by induction on N. Recall that
N is the number of edges in Top:.

By Lemmas1, 3 and 4, theorem holds for N < 13. Next we assume that
theorem holds for all trees with number of edges strictly less than N.

We will perform the induction step as follows: through exhaustive case study
we will show that there always exist a subtree T” of T,y for which w(1") is
greater or equal to number of edges of T’ divided by 4, and if we remove from
Topt the edges of T, it remains connected. In that case, by induction hypothesis
the bound for T, holds.

We observe T, as a rooted tree, and given a vertex v of T, we denote by
T, the maximal subtree of T,,: rooted at v.

Let u be a non-leaf vertex of T,,; with maximum number of edges in its path
to the root.

Assumption 1: We may assume u has at most two children. Namely, in the
case when u has four children w;,us,us,us let 77 be a subtree of T, induced
by {uw,u1,us,us, us}. In the case when u has exactly three children uy,us, us
set T to be T, where v is the parent of u. Note that in both cases T” has
four edges. Let T" = T,,; \ E(T’) where E(T') denotes the set of edges of a
tree T. Since T" is a tree, by induction hypothesis it follows that |E(T")| =
N —4 < 4w(T")+ 3. Furthermore, by Lemma 1 we have that 4 < 4w(7"”). Hence,
N < 4w(T") + 4w(T") 4+ 3 = 4w(Tppt) + 3.

Assumption 2: If u has exactly two children wuy,us, we may assume that the
parent of u (denoted by v) has degree strictly greater than two. Namely, if this
is not the case, we set 7" = T, U {ey .} where w is the parent of v, and we
set T = T, \ E(Ty). Since T” has four edges and T” is a tree, by induction
hypothesis for 7" and Lemma 1 we obtain the bound.

Case 1: Vertex u has exactly two children uy,us. Then by Assumption 2 v has
at least two children. By the choice of u, the number of edges in any path from
v to a leaf in T, is at most 2. Let w’ be another child of v. By Assumption 1
w’ has at most two children. Also note that we can assume that w’ has at least
one child. Otherwise the subtree 7" induced by {w’, v, u,u1,us} has four edges,
hence by removing the edges of T’ from T we can apply the induction hypothesis
and obtain the bound.

Case 1.1: Vertex v has another child w”. In this case using the same arguments
as above it can be shown that w” must have exactly one or two children. Note
that subtree 7" induced by v, u, u1, us together with T, T,,» has at least seven
edges and at most nine edges. Therefore, Lemmas 2, 3 or 4 can be applied for each
of the cases. Furthermore, for the remaining subtree Ty \ E(T”) the induction
hypothesis can be applied to obtain the bound.
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Case 1.2: Vertex v has only two children w’, u. Let w be the parent of v. We can
assume that w’ has exactly one child, otherwise the subtree 7" induced by the
vertices of T, and vertex w has exactly seven edges, hence we could use Lemma 2.
If the degree of w is two, then let T be the subtree induced by T, together with
the edge ey, where y is the parent of w. T' has seven edges and therefore, the
result follows. Now, we may assume that w has another child v’. Let T} = T,
and observe that 77 has 5 edges. Let T, = T),/. By the same argument used for
T, we conclude that T, has at most five edges. Let T7 = T UTo U {ew v, €w,v }-
If T, has zero, one or two edges, then 7" has at least seven and at most nine
edges, and hence the bound follows. If 75 has four edges then by induction
hypothesis on Ty, \ E(T%) and by applying the Lemmal on 75, we obtain the
bound. It remains to consider the cases when T5 has three or five edges. If T5
has three edges, then we add edge e, . to 75 and now the new tree has four
edges, hence we can apply the same arguments as before. We are left only with
the case when T5 has five edges. In this case w(T) > 1, according to Lemma 1,
and also T5 = T1 U {ewv, €y,w } has seven edges. By Lemma 2, either w(T3) is
at least 2, or it has the structure depicted in Fig. 3(c), and it is clear that every
edge incident to the tree in Fig.3(c) is grater than, say 0.5. Hence, in either
case w(T") > 3. Since 1" has twelve edges the bound is obtained by induction
hypothesis on T,y \ E(T7).

Case 2: Vertex u has exactly one child u.

Case 2.1 Vertex v has another child w’. In this case T, has depth at most 1. If
w’ has more than one child, then from Case 1 (w’ instead of u) we are done. If
w’ has one child (denoted by w;), then the subtree induced by {uy,u,v,w’, w1}
has four edges and we are done.

We continue by assuming that w’ has no child. If v has another child w” ¢
{u,w'}, then as we argued for w’, we can assume that w” has no child. However,
in this case subtree induced by {uy,u, v, w’,w”} has four edges and we are done.
Therefore we can assume that v has exactly two children w’ and u. Let w be the
parent of v. Then the subtree induced by ui,u,v,w’, w has four edges and we
are done.

Case 2.2: Vertex v has only child u. Let w be the parent of v. W can assume
that v has a sibling node v’, as otherwise we can remove the four edge subtree
induced by {ui,u,v,w,z}, where z is the parent of w. Furthermore, we can
assume that v’ has a child u/, as otherwise we can remove the four edge subtree
induced by {uy,u,v,w,v'}.

Case 2.2.1: Vertex ' has no child but has a sibling u”. We can assume that no
child of v" has a child, as we can observe such case as an instance of Case 2.2.3.
Furthermore, we can assume that v’ and u” are only children of v'. Otherwise,
in the case when v’ has more than three children, there would exist a subtree of
T, with four edges that we could remove. Furthermore, in the case when v’ has
exactly three children, we can remove 77 = T,y U {ey . }-

Hence we are left with the case when u” is the only sibling of «’. In the
case v and v’ are only children of w, we can remove seven edge subtree T =
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Ty U{ew,}, where z denotes the parent of w. Lastly, we consider the case when
there exist third child of w denoted by v”. From the assumptions and solved
cases above, we can assume that T, has at most two edges, hence subtree
T =T,UTy UTy U{eww, ew v, ewv } has seven, eight or nine edges, therefore
we can remove it.

Case 2.2.2: Vertex u’ has no child nor sibling. In the case there exists a third
child of w, from the assumptions and solved cases above if would follow that we
can assume that it has only one child which has no child. In that case thee would
exist a subtree of T3, with four edges that we can remove. Hence, we can assume
that w has no other children besides v and v’. Then T, is a path with five edges.
If w(T,,) is grater than 5/4, we can remove it and we are done. Otherwise it must
be similar to the structure depicted in Fig.5, i.e. with a path of approximate
size 1 alongside a border of a cell, and with remaining vertices grouped at the
endpoints of such path. Note that in that case, edge e,, . must be big enough so
that w(T, U {ew, - }) is greater than 6/4. Hence we can remove Ty, U {e, .} and
by induction hypothesis obtain the bound.

-

Fig. 5. A short path with five edges

Case 2.2.3: Vertex u’ has a child u}. Note that from the assumption on maxi-
mality of depth of u, u} has no children. As we solved Case 2.1, we can assume
that u} has no siblings. Furthermore, we can assume that there is no sibling of u’
that has a child, as in that case there would exist subtree of T, with four edges
that we could remove. Now in the case that u’ has more than one sibling, again,
there would exist subtree of T, with four edges that we could remove. In the
case that v’ has exactly one sibling, subtree T" = T,» U {ey,, } can be removed.
We are left with the case when both T, and T,  are paths with two edges. In
the case there is a third child of w, denoted by v”, from the solved cases above
if follows that we can assume that T~ is also a path with two edges. In that
case there is a subtree of T, with nine edges that can be removed. In the case
there is no third child of w, the seven edges subtree 77 = T, U {ey ,} (with z
being the parent of w), can be removed and the bound obtained. We considered
all the cases, therefore proving the theorem. a

4 Approximation of the GGTSP

Our approximation algorithms for the GGMST can be used to obtain approxi-
mation algorithms for the geometric generalized travelling salesman problem on
grid clusters (GGTSP) using standard methods.
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Algorithm 4. (2 + 8v/2 + 2¢)-approximation algorithm for the GGTSP

Data: Instance I of the GGTSP
Result: Generalized travelling salesman tour
1 T4 < output of Algorithm 3 on I;
2 (Gg < Eulerian graph obtained by doubling all edges in T;
3 £7 < an Euler tour of Gg;
4 C «— a GGTSP tour obtained by going along £7 and skipping repeated vertices;
5 return C;

We start with the approach of shortcutting a double MST, presented in
Algorithm 4 and analyzed next.

By removing one edge from a GGTSP tour, one obtains a GGMST tree, hence
w(Ta) is less than (1 + 4v/2 + €)OPT, where OPT is the weight of an optimal
solution of the GGTSP. Therefore, w(Gg) is less than 2(1 +4v/2 +€)OPT. Due
to triangle inequality, shorcutting the Euler tour in line 4 of the algorithm does
not increase the weight. Hence, Algorithm 4 is a (2 4 8v/2 + 2¢)-approximation
algorithm for the GGTSP. Note that 2 + 8v/2 is approximately equal to 13.31.

Next we use the approach from the famous Christofides %—approximation
algorithm for the metric TSP, see [3]. This approach will give us 0.5 decrease
of the approximation ratio. We give a sketch of the algorithm and the analysis,
and leave details to the reader.

We start by running Algorithm 1 on the GGTSP instance. Let Tg be the
resulting tree. Note that w(T¢) is less or equal than (1 + 4v/2)OPT + 2v/2,
where OPT is the weight of an optimal solution of the GGTSP. Let S be a set
of non-empty cells that contain a vertex of T with an odd degree. Note that
|S| is even. Let M be a minimum perfect matching among cells in S, where the
distance between two cells Cy, Cy € S is the smallest distance between two points
p1,p2 among all p; € Cy, ps € Cs. It is not hard to show that w(M) < OPT.
Let Mg be the set of edges ey, +, for which ¢;, 5 are vertices of T and there exist
an edge ep, p, € M such that p; and #; are in the same cell and pp and t3 are
in the same cell. Note that w(Mg) < %OPT + N+/2, and hence by Theorem 2
we get that w(Mg) < %OPT + 4v/20PT + 3v/2. By merging Mg and Tg we
obtain an Eulerian graph, and by shortcutting one of its Euler tours we obtain
a GGTSP tour with weight at most (3 + 8v/2)OPT +5v/2. By similar approach
as in Algorithm 3 and Theorem 3, we can get rid of 5v/2 error, and obtain a
(3 4+ 8v/2 + €)-approximation algorithm for every e > 0.

5 Conclusions

We presented a simple (14 4+/2 + ¢)-approximation algorithm for the geometric
generalized minimum spanning tree problem on grid clusters (GGMST) and
(1.548v/2 4 ¢)-approximation algorithm for the geometric generalized travelling
salesman problem on grid clusters (GGTSP).
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To obtain guarantied approximation ratios for our algorithms, we used the
following lower bound on the optimal solution: Every tree with N edges that
contains at most one point from any 1 x 1 grid cell is of size at least %.
Obtaining a tight lower bound in terms of the number of edges would decrees
guaranteed approximation ratios of our (and other similar) algorithms. Moreover,

it would be an interesting result on its own.

Acknowledgment. We would like to thank Geoffrey Exoo for many usefull discus-
sions.
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Abstract. We consider special cases of set cover, hitting set, piercing
set, and independent set problems for axis-parallel squares and axis-
parallel rectangles in the plane, where the objects are intersecting an
inclined line, or equivalently a diagonal line. We prove that for axis-
parallel unit squares the hitting set and set cover problems are NP-
complete, whereas the piercing set and independent set problems are in
P. For axis-parallel rectangles, we prove that the piercing set problem is
NP-complete, which solves an open question from Correa et al. [Discrete
& Computational Geometry (2015) [3]]. Further, we give a n@(llegcl+1)
time exact algorithm for the independent set problem with axis-parallel
squares, where n is the number of squares and side lengths of the squares
vary from 1 to c. We also prove that when the given objects are unit-
height rectangles, both the hitting set and set cover problems are NP-
complete. For the same set of objects, we prove that the independent set
problem can be solved in polynomial time.

Keywords: Covering - Hitting - Piercing - Packing - Inclined line -
Diagonal line - NP-complete - Exact algorithm - Unit-height - Rectan-
gles + Squares

1 Introduction

The four problems - set cover, hitting set, piercing set, and independent set -
are NP-hard even for simple geometric objects like disks, squares, rectangles
and many more. For the reason that it is computationally hard to get efficient
algorithms, researchers have explored special cases of these problems. One of the
special cases is when all the given geometric objects intersect a given diagonal
line. In this paper, we consider this special case of the above four problems
where the geometric objects are axis-parallel unit squares, squares, unit-height
rectangles, and rectangles in the plane.
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We are given a set P of points, a set O of objects, and a diagonal D such
that all the objects in O are intersecting the diagonal D. The Set Cover Problem
(SCP) is to find a subset O’ C O of objects with minimum cardinality that covers
all the points in P. In the Hitting Set Problem (HSP), the goal is to find a subset
P’ C P of points with minimum cardinality that hits all the objects in ©. When
the point set is not given as a part of the input for HSP, the resulting problem
is known as the Piercing Set Problem (PSP). In the Independent Set Problem
(ISP), a set O of objects is given, the goal is to find a subset @' C O of objects
with maximum cardinality such that any pair of objects in @’ do not intersect.

Assume that O is a set of axis-parallel rectangles and the diagonal D makes
an angle 180° — @, 0 < 6 < 90° with the z-axis. We can apply a rotation such
that the diagonal D is parallel to the z-axis and all the rectangles are tilted at
the same angle 6 with respect to the z-axis.

Previous Work: Chepoi and Felsner [2] first consider PSP and MIS where
given geometric objects are axis-parallel rectangles intersecting an axis-monotone
curve. They give a factor 6 approximation algorithm for both these problems.
Recently, Correa et al. [3] consider PSP and ISP on axis-parallel rectangles.
They show that ISP for axis-parallel rectangles is NP-complete even when each
of the rectangles is touching the diagonal line at a corner. Further, they give
factor 2 and factor 4 approximation algorithms for ISP and PSP respectively.
They optimally solve ISP in quadratic time by improving a cubic time algorithm
of Lubiw [10] when the axis-parallel rectangles are on one side of the diagonal
and touch the diagonal at a single point.

By the result of Chan and Grant [1], it follows that HSP and SCP with axis-
parallel rectangles touching a diagonal are APX-hard. Erlebach and van Leeuwen
[5] show that SCP with axis-parallel unit squares (and hence HSP, since for unit
squares SCP and HSP are dual to each other) can be solved in polynomial time
when the unit squares intersect a fixed number of horizontal lines.

Fraser et al. [6] prove that the minimum hitting set and minimum set cover
problems on unit disks are NP-complete, when the set of points and the set of
disk centers lie inside a strip of any non-zero height. Recently, Das et al. [4] give
a cubic time algorithm for the maximum independent set problem on disks with
diameter 1 such that the disk centers lie inside a unit height strip.

Our Contributions: We summarize our contributions in Table 1.

2 Set Cover and Hitting Set Problems

2.1 Unit Squares Intersecting a Diagonal Line

In this section, we prove that SCP and HSP with axis-parallel unit squares
are NP-complete, when the diagonal D makes an angle 135° with z-axis. We
give a reduction from a NP-complete problem: vertex cover in planar graphs
with maximum degree 3 (PVC(3)) [7]. In this reduction we assume that D is
horizontal and squares are tilted.
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Table 1. Our contributions are shown in bold colored text. (*n is the number of squares
with side lengths in [1, ¢].)

Geometric Objects scpP HSP PSP ISP
Axis-Parallel NP-complete | NP-complete P P
Unit Squares Theorem 1 | Theorem 1 | Theorem 5| Corollary 2
,O(Mog eT+1)°
Axis-Parallel NP-complete | NP-complete Open time exact
Squares Theorem 1 | Theorem 1 question algorithm
Theorem 6
Axis-Parallel NP-complete | NP-complete Open P
Unit-Height Rectangles| Theorem 2 | Theorem 2 question Theorem 7
Axis-Parallel APX-hard APX-hard NP-complete| NP-complete
Rectangles Chan et al. [1]|Chan et al. [1]| Theorem 4 | Correa et al. [3]

The reduction is similar to the reduction of Fraser et al. [6] for the hitting
set problem on unit disks and point inside a strip. The construction can be
done in two phases. Phase I is identical to Fraser et al. [6]. In this phase, we
are given an instance G (Fig.1(a)) of PVC(8) with different z-coordinates of
vertices. We reduce G into another instance G (Fig. 1(b)) of PVC(3) through
an intermediate instance G’ of PVC(3) (Fig. 1(b) without pink colored vertices)
by adding dummy vertices to the edges of G. The graph G’ satisfies the following
properties: (i) G’ is embedded inside a horizontal strip, (ii) there is no degree
three vertex in G’ whose all incident edges connect to it either from left or from

>
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Fig. 1. (a) An instance of vertex cover problem on planar graph of degree at most 3.
(b) After adding dummy vertices in Phase I. (¢) The SCP instance created with unit
squares and points in Phase II from the planar graph in (b). (Color figure online)
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right side, (iii) vertical line passing through any vertex of G’ does not intersect
an edge of G’ in the middle, and (iv) the difference between the number of
vertices on two vertical lines passing through vertices of G’ with consecutive -
coordinates is at most 1. Finally, G” is constructed from G’ by adding one extra
dummy vertex to each edge of G containing an odd number of dummy vertices.
Note that edges of G may have a single dummy vertex (pink colored vertex in
(Fig. 1(b)) which does not lie on any vertical line.

In Phase II, we incorporate our ideas. Here we first reduce graph G’ to 7
(Fig. 1(c)), an instance of SCP with unit squares, as follows. For each vertex in
G’ we take a unit square and for each edge we take a point in 7. The different
types of arrangements of the squares and points in % for the vertices in two
consecutive vertical lines and edges between these two lines in G’ are shown in
Fig. 2. The centers of the squares for the vertices of G’ on a vertical line are on a
vertical line in 5 and two consecutive centers are h = T\/E distance apart, where
n is the number of vertices in G” and k is a suitable constant. This ensures that
all squares will intersect D. Two consecutive vertical lines containing the centers
of the squares are /2 — h distance apart. The reduction from G” to JZ is as
follows. Let (a,b) be an edge of G'. Suppose a dummy vertex d is added inside
(a,b) in G”. We take one unit square s (see pink colored squares in (Fig.1(c))
for d. Next we remove the point for edge (a,b) and add two points, one for edge
(a,d) and other for edge (d,b), such that these two points are covered by s.

V2—h V2—h
h{ X\V ° At o
(a) (b) (c) (d)

Fig.2. (a) One configuration in G’, (b) gadget of (a) in 4%, (c) another configuration
in G’, and (d) gadget of (c) in . The other types of gadgets can be made by either
modifying or extending the gadgets (b) and (d). (Color figure online)

The proof of correctuness is straightforward. Finding a vertex cover in G” is
equivalent to finding a set cover in J#. Further, since hitting set and set cover
for unit squares are self-dual, we have the following theorem.

Theorem 1. The minimum set cover and the minimum hitting set problems
with unit squares intersecting a diagonal line are NP-complete.

2.2 Unit-Height Rectangles Intersecting a Diagonal Line

We prove that SCP and HSP for axis-parallel unit-height rectangles are NP-
complete. The reduction is similar to the reduction described in Sect. 2.1. Apply-
ing transformations z’ = x and y' = dy, where 0 is chosen appropriately, to
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Fig. 3. An instance of SCP with unit-height rectangles generated for the graph in
(Fig. 1(b)). (Color figure online)

the reduction in Sect. 2.1 gives NP-completeness for diagonal making any angle
between 90° and 180° with the xz-axis. We depict the NP-completeness construc-
tion in Fig. 3 for the PVC(3) instance G in Fig. 1(a) where the diagonal makes
an angle 150° with the z-axis.

Theorem 2. The minimum set cover and the minimum hitting set problems
with unit-height rectangles intersecting a diagonal line are NP-complete.

2.3 Unit Squares Touching a Diagonal Line

Let P be a set of points and S be a set of axis-parallel unit squares such that
squares in S intersect a diagonal at a single point from the right side. We consider
the hitting set problem. we shift D to its right to a position D’ such that D’ will
pass through the centers of all the squares. For each square s € S, take a point
ps at its center. For each point p € P, take a unit square s, with p as its center
and take an interval i5, = s, N D’. The following claim can be proved easily.

Claim 1. A point p € P hits a square s € S if and only if the interval i,
corresponding to p covers the point ps.

Hence, HSP with unit squares is equivalent to the problem of covering points
on a real line by intervals. Similarly, we can reduce SCP to the problem of
hitting intervals by point on a real line. Since both the problems can be solved
in polynomial time using standard algorithms, we have the following theorem.

Theorem 3. The minimum set cover and the minimum hitting set problems
with unit squares touching a diagonal line can be solved in polynomial time.

3 Piercing Set Problem

3.1 Rectangles Intersecting a Diagonal Line

In this section, we prove that PSP with axis-parallel rectangles is NP-complete.
We give a reduction from the NP-complete problem Rectilinear-Planar-3-SAT [8]
which is another form of Planar-3-SAT [9] problem. The reduction involves ideas
from Correa et al. [3]. We slightly modify the Rectilinear-Planar-3-SAT problem
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as follows. Let ¢ be a 3-SAT formula with every clause containing exactly 3
literals. The variables are placed on a diagonal line. The clauses shaped “la.” or
“TT” connect to the variables either from the left or from the right side of the
diagonal such that the shapes do not intersect with each other (see Fig.4(a)).
The goal is to find a satisfying assignment for the formula ¢. We take « to be
the maximum number of clauses which connect to a variable of ¢ either from
left or from right. Take ¢t = 2 + 1.

TIN o] @ 7"% ;
pét—l%’hl L
VD)
o i
3
Py
€T3 Cs
Cy .
o 4 ,
05 ’Fti 1,
Ave Ll
\ZL5 {
Cs \ pf&
(a) (b)

Fig. 4. (a) Representation of a modified Rectilinear-Planar-3-SAT formula ¢ = Cy A
CaoNC3ANCyANCs5N\Cs, where C1 = (1’1 \/fz\/fg), Cy = (51 ng\/f5), C3 = (fg \/1'4Vf5)7
Cy = (ZT2VT3Vaa), Cs = (1 Va2 VZTs), and Cs = (x1 V Ta V x5). (b) Structure of
gadget for a variable x;. (Color figure online)

For each variable x;, we take 2t squares with ¢ squares each on the left and
right side of the diagonal D (see Fig. 4(b)). Two consecutive squares intersect at
a point except for pairs ri_,, ! and r%, ,, 7%, which intersect on a portion of their
boundaries. We choose a single point from each intersection and call these points
as representative points. Let Pi = {pi,pb,...,ps,} be the 2k representative
points for variable x;. Now to pierce the variable squares we can select points
from the set P{,. Since the representative points form a cycle of length 2¢, there
are two optimal piercing sets of points {p%,p, ..., p4,_1} and {pb,pi,...,pb,}
for each variable gadget.

Now consider a clause C' which connects to the variables z;, ;, and z) from
the right side of D. Define three binary variables b;, b;, and by, as follows: b; = 0,
if x; occurs as a negative literal in C, otherwise b; = 1, for [ € {7, j, k}. We take
a rectangle r. for clause C. Let clause C be the ni-, ny-, and ng-th clause for
x;, ¢j, and x, respectively, when the clauses from the right side of D connecting
to these variables are ordered from left to right. We place the rectangle r. such
that it satisfies the following conditions (see Fig.5(a)): (i) it covers only the
representative point pgnl 4p,_1 [rom variable z;, (ii) we extend the two squares
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Fig. 5. (a) Interconnection between variable gadgets for z;, x;, and % and the rectangle
for clause C. (b) Complete construction for the formula 7 in Fig.4(a). (Color figure
online)

r%m b1 and r%nz +b, from variable x; vertically upward such that they only
intersect r. at a point ¢J and move the point pgnz +b;—1 tO q’, and (iii) we extend
the two squares 75, ., and 75 ., from variable x;, vertically upward such
that they only intersect r. at a point ¢* and move the point pgns 4by—1 PO q~.
Note that after extension some of the variable squares become rectangles. From
now on we call all the variable squares as rectangles. Similarly, we make the
construction for the clauses that connect to the variables from left.

In Fig. 5(b) we demonstrate the above construction for the formula shown in
Fig.4(a). Therefore, from formula ¢ with n variables and m clauses we construct
an instance & of piercing set with 2¢tn+m rectangles intersecting a diagonal line.
We can observe that any point p in the plane can be replaced by a representative
point which hits at least all the rectangles hit by p. Therefore, any optimal
piercing set can pick points from the representative points. Now we prove the
correctness of the construction.

Theorem 4. The minimum piercing set problem with rectangles intersecting a
diagonal line is NP-complete.

Proof. We shall prove that ¢ is satisfiable iff % has a piercing set of at most
tn points. First, a satisfying assignment of ¢ is considered. From the gadget
of x;, select odd-numbered representative points if x; is false, otherwise select
even-numbered representative points. Clearly, these tn selected points hit all
the variable as well as clause rectangles. Next, the rectangles for one variable
are disjoint from those for any other variable. Then, any tn size solution must
select t alternate representative points from each variable. Hence, we can set
binary values to each variable based on which of the two optimal solutions of
t representative points is selected for that variable. Finally, a clause rectangle
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is hit iff the alternate representative points selected for some variable make the
binary value of a literal present in the clause 1. ]

3.2 Unit Squares Intersecting a Diagonal Line

In this section, we give an exact algorithm for PSP, where the objects are axis-
parallel unit squares. Let S be a set of n unit squares intersecting a diagonal
line D. Assume D is horizontal by a rotation. Let H be a horizontal strip of
height 2v/2 such that the diagonal D divides it into two equal parts. We further
partition strip H into rectangular regions of length /2 and height 2v/2. Now
we remove all regions which are not intersected by one of the given squares. Let
R1, Rs, ..., R, be the remaining regions sorted according to xz-coordinate. Note
that r is at most 2n, since a unit square can intersect at most two regions. We
now take a dummy region Ry before Ry and a dummy region R, after R,. Let
S; be the subset of squares that intersect region R;. Also let Si"™ be the set of
squares in S; whose centers are inside R; and let ¢! = S; '\ Sf” be the set of
squares in S; whose centers are outside R;.

Lemma 1. The mazimum number of points required to pierce the squares in
S for any region R; is at most 8.

Proof. Note that the dimension of region R; is v2 x 2v/2. Take 8 squares
Dy, Ds,...,Dg of length %, four in a column and two in a row, such that
together they completely cover R;. Since the diagonal lengths of the squares are
exactly 1, the center ¢; of square D; is at distance less than or equal to % from
any other point of D;. Thus, ¢; pierces all squares in S} whose centers lie in D;.
Hence, the 8 points c1, g, ... ,cs form a piercing set of size 8 for Si™. |

Lemma 2. Any optimal piercing set contains at most 24 points from region R;.

Proof. Observe that S¢** C Si™, U S,. Therefore, by Lemmal the squares
in S; can be hit by 24 points, 8 points each from regions R;_1, R;, and R;11.
Since points inside R; can only hit squares in .S;, if an optimal solution OPT
contains more than 24 points from region R;, we can replace them by 24 points
in regions R;_1, R;, R;+1 without leaving any square to be hit. This contradicts
the assumption that OPT was an optimal piercing set. |

Let the squares in S; divide R; into m; subregions. Since any two squares
can intersect in at most 2 points, m; = O(|S;|?) = O(n?). Let P; be a set of m;
points, with one point picked from each of the m; subregions. We can assume
that optimal piercing set is a subset of U::()l P;.

For 0 < i < r, let T(i,Uy,Us) where Uy C P; and Uy C P;;1 denote the
cost of an optimal piercing set H for the squares which lie completely inside

;;1 R; such that H( P, = Uy and H () Pi11 = Us. Note that by Lemma 2, we
can assume that both U; and U have at most 24 points. T'(i, Uy, Usy) satisfies
the following recurrence:
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1. If Uy |JUs does not pierce all squares which lie completely inside R; |J Ri+1,
then T(’L, Ul, Ug) = Q.
2. Otherwise,

T(i,Ul,Ug) = T(i+1,U2,U3)+|U3|

min
UsCPit2, |Us|<24

The optimal piercing set is now given by miny, cp,,v,cp, T(0,U1,Us) and
can be obtained from the above recurrences by dynamic programming.

We now analyze the time required to find the optimal piercing set. As each
P; has O(n?) points, the number of 24 element subsets of P; is O(n*®). There-
fore, the number of subproblems T'(i, Uy, Us) defined above are at most O(n°7).
Each subproblem depends on O(n*®) smaller subproblems. By allowing an extra
bookkeeping cost the total time taken to compute the optimal piercing set is
n®M) . This leads to the following theorem.

Theorem 5. The minimum piercing set problem with unit squares intersecting
a diagonal line can be solved in polynomial time.

4 Independent Set Problem

4.1 Squares Intersecting a Diagonal Line

In this section, an exact algorithm for ISP with axis-parallel squares is proposed.
We are given a set S of n axis-parallel squares with integer side lengths in [1, ¢].
The squares are intersecting a diagonal D. We make the diagonal parallel to
z-axis by performing a rotation on the given input. The idea of the algorithm
is similar to the algorithm of Das et al. [4] for the maximum independent set
problem on unit disks such that disks do not overlap and hit a horizontal line. In
their algorithm, they show that at most 4 pairwise independent unit disks can
intersect a vertical line. However, in this case we partition the squares in S into
k = [loge] + 1 groups g1, 92, - - -, gk, where the i-th group g¢; contains squares
with side lengths in the semi-open interval [2¢71, 2¢) and show that at most 16k
pairwise independent squares can intersect a given vertical line.

Lemma 3. There are at most 16 pairwise independent squares whose side
lengths are in [1,2) such that they intersect both D and a vertical line L.

Proof. Let R be a square of length 21/2 with D and L as middle horizontal and
vertical lines. Observe that the centers of the squares that intersect both L and
D should be inside R. Now we partition the region R into 16 congruent squares
D1, Do, ..., Dig arranged in a grid such that there are exactly 4 squares in each
row and each column respectively. The center ¢; of D; is at most 1 unit far from
any other point inside D; and hence at most one square with center inside D;
is in the independent set. Thus, any independent set has size at most 16. ]

The following corollary directly follows from the above lemma.
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Corollary 1. There are at most 16k pairwise independent squares, a mazximum
of 16 squares from each group g;, which intersect D and a vertical line.

Now consider vertical lines through every corner point of the squares. Let
L1, Lo, ... L, be these vertical lines sorted from left to right. Add two extra
vertical lines, Lg to the left of L; and L, to the right of L,., such that no square
in S can intersect them. Let Sq; be the set of squares from S that intersect the
vertical line L; for ¢ = 1,2,...,r. For 0 < ¢ < r + 1, the subproblem 7'(¢, Sq})
denotes the size of the optimal independent set S* of squares such that: (i)
squares in S* intersect the closed region bounded by Lo and L;, (ii) S¢; C S¢;
is the set of squares in S* that intersect L;. Note that from Corollary 1 we have
|Sqi| < 16k. Now the following recurrence is satisfied by the above subproblem:

1. If any two squares in Sq} intersect, then T'(i, S¢;) = —cc.

2. Otherwise, let S¢;_; be a subset of squares from S¢;_; such that the squares
in Sq; which intersect L;_; are in Sq}_; and squares in Sq} do not intersect
with the squares in Sq]_;. Then,

T(i,Sq;) = max {T(i —1,8¢;_1)} +|Sq; \ Sq;_|
Sq;_1CSqi—1,|8q;_,|<16k

The optimal independent set can be calculated by solving T'(r + 1,0).

Running Time: There are 4n corner points and hence r is O(n). By Lemma 3,
at most 16k squares from S can intersect a vertical line L;. Observe that there
are at most O(n'%**1) subproblems. Further, at most O(n'®*) subproblems are
considered in the right hand side of the above recurrence. Therefore, to compute
an optimal independent set n@®*) i.e., n@Megcl+1) otal time is required. Hence,
we have the following theorem.

Theorem 6. The mazrimum independent set problem with squares intersecting
a diagonal line can be solved in nC°8cI+D) time where n is the number of
squares and the side lengths of the squares are in [1, c].

For unit squares we can take ¢ as 1 and hence we have the following result.

Corollary 2. The mazimum independent set problem with unit squares inter-
secting a diagonal line can be solved in polynomial time.

4.2 Unit-Height Rectangles Intersecting a Diagonal Line

In this section, we prove that ISP, where the given objects are axis-parallel unit-
height rectangles can be solved in polynomial time using a dynamic programming
algorithm similar to that described in Sect. 4.1. However, a large number of unit-
height rectangles from any optimal solution may now intersect a vertical line.
To address this problem we do the following.

Let M be a real number. We now perform the following transformation to
every point (z,y) in the plane: y' = y and 2’ = Mxz. We choose M such that
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after the above transformation the width of each unit-height rectangle becomes
at least 1. Note that after this transformation the angle made by D with z-axis
will increase and D becomes almost parallel to z-axis for large M.

Lemma 4. Let D be a diagonal line and D1, Do be two parallel lines on either
side of D at unit vertical distance from D. Let r, ro be two axis-parallel unit-
height rectangles that intersect D. Then rq, ro intersect each other iff they have
an intersection point in the area bounded by D1 and D-.

Proof. Let ¢ be a point to the right of D; such that r; and ro contain ¢g. Further,
assume that r; and 7o do not have any intersection point inside the region
bounded by D; and Ds. Clearly the vertical distance from D to ¢ is greater
than 1. Now take a horizontal line L, through ¢ and let it intersect D; at a
point, say ¢’ (see Fig.6(a)). The vertical distance between D and ¢’ is exactly
1. So no unit-height rectangle with left boundary to the right of the vertical line
through ¢’ and intersecting D can cover g. Since r; and ro intersect at g, the
left boundaries of both r; and 75 should start before or at ¢’. Hence both have
q' also as an intersection point. This gives a contradiction. |

Now by Lemma 4, for computing optimal independent set we need to consider
only the portions of the unit-height rectangles inside the strip formed by D; and
D5. Next, we apply a rotation such that D becomes parallel to z-axis.

Lemma 5. Let L be a vertical line segment of length 2 such that D partitions L
in two equal parts. Then at most 18 pairwise independent unit-height rectangles,
each having width at least 1, can intersect both D and L.

Proof. Let R be a rectangle of size v/5 x (2+\/5) with D as the middle horizontal
line. Place the vertical line L such that D splits L into two equal segments and
the distances from left and right boundaries of R to L are equal. Let r be a
unit-height rectangle which intersects L and D. Let p be a point on LNr. Take a
line L' through p with the same slope as the left boundary of r. Further, take two
rectangles 71 and ro each of size % x 1 such that the left boundary of r; and the
right boundary of r2 coincide with the unit segment L' Nr (see Fig. 6(b)). Since
the width of r is at least 1, at least one of r1 or 7 is fully contained inside r.
Let r fully contain 7. Since 71 covers p, 1 is fully contained inside R. The area
of R is 54 2v/5 and that of r; is % Since each unit-height rectangle intersecting
both D and L has at least 3 unit of area inside R, at most |10 + 4v/5] i.e., 18

2
independent unit-height rectangles can intersect L and D. |

We apply the same dynamic programming algorithm described in Sect. 4.1
with L;’s as the vertical line segments of length 2 bisected by D and passing
through every corner of the portions of unit-height rectangles inside the region
bounded by D; and Ds. As each portion has at most 6 corner points, the num-
ber of L;’s is O(n). By Lemmab, each L; intersects at most 18 portions in an
independent set and hence by an analysis similar to that in Sect. 4.1, we can say
that the total time taken to compute the optimal independent set is n®M).
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Fig. 6. (a) Proof of Lemmad4. (b) Proof of Lemma5. (Color figure online)

Theorem 7. The mazximum independent set problem with unit-height rectangles
intersecting a diagonal line can be solved in polynomial time.

Note that M can be very large. Therefore, we will not calculate the actual

value of M. Instead, we will take M as a variable and execute the above algorithm
symbolically on a computer.
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Abstract. Working in a three-dimensional variant of Winfree’s abstract
Tile Assembly Model, we show that, for an arbitrary finite, connected
shape X C Z?, there is a tile set that uniquely self-assembles into a 3D
representation of X at temperature 1 with optimal program-size com-
plexity (the program-size complexity, also known as tile complexity, of
a shape is the minimum number of tile types required to uniquely self-
assemble it). Moreover, our construction is “just barely” 3D in the sense
that it only places tiles in the z = 0 and z = 1 planes. Our result is
essentially a just-barely 3D temperature 1 simulation of a similar 2D
temperature 2 result by Soloveichik and Winfree (SICOMP 2007).

1 Introduction

Self-assembly is intuitively defined as the process through which simple, unorga-
nized components spontaneously combine, according to local interaction rules,
to form some kind of organized final structure. While examples of self-assembly
in nature are abundant, Seeman [21] was the first to demonstrate the feasibil-
ity of self-assembling man-made DNA tile molecules. Since then, self-assembly
researchers have used principles from DNA tile self-assembly to self-assemble a
wide variety of nanoscale structures, such as regular arrays [25], fractal struc-
tures [8,19], smiling faces [18], DNA tweezers [26], logic circuits [15], neural
networks [16], and molecular robots [11]. What is more, over roughly the past
decade, researchers have dramatically reducing the tile placement error rate (the
percentage of incorrect tile placements) for DNA tile self-assembly from 10 % to
0.05% [2,7,8,19].

In 1998, Winfree [24] introduced the abstract Tile Assembly Model (aTAM)
as an over-simplified, combinatorial, error-free model of experimental DNA tile
self-assembly. The aTAM is a constructive version of mathematical Wang tiling
[23] in that the former bestows upon the latter a mechanism for sequential
“growth” of a tile assembly starting from an initial seed. Very briefly, in the
aTAM, the fundamental components are un-rotatable, translatable square “tile

S.M. Summers—This author’s research was supported in part by UWO Faculty
Development Research grant FDR881.
© Springer International Publishing Switzerland 2015

Z. Lu et al. (Eds.): COCOA 2015, LNCS 9486, pp. 138-151, 2015.
DOTI: 10.1007/978-3-319-26626-8_11



Optimal Self-assembly of Finite Shapes at Temperature 1 in 3D 139

types” whose sides are labeled with (alpha-numeric) glue “colors” and (inte-
ger) “strengths”. Two tiles that are placed next to each other bind if both the
glue colors and the strengths on their abutting sides match and the sum of
their matching strengths sum to at least a certain (integer) “temperature”. Self-
assembly starts from a “seed” tile type, typically assumed to be placed at the
origin, and proceeds nondeterministically and asynchronously as tiles bind to
the seed-containing assembly one at a time. In this paper, we work in a three-
dimensional variant of the aTAM in which tile types are unit cubes and tiles are
placed in a non-cooperative manner.

Tile self-assembly in which tiles may bind to an existing assembly in a non-
cooperative fashion is often referred to as “temperature 1 self-assembly” or sim-
ply “non-cooperative self-assembly”. In this type of self-assembly, a tile may
non-cooperatively bind to an assembly via (at least) one of its sides, unlike
in cooperative self-assembly, in which some tiles may be required to bind on
two or more sides. It is worth noting that cooperative self-assembly leads to
highly non-trivial theoretical behavior, e.g., Turing universality [24] and the effi-
cient self-assembly of N x N squares [1,17] and other algorithmically specified
shapes [22].

Despite its theoretical algorithmic capabilities, when cooperative self-assembly
is implemented using DNA tiles in the laboratory [2,13,19,20,25], tiles may (and
do) erroneously bind in a non-cooperative fashion, which usually results in the pro-
duction of undesired final structures. In order to completely avoid the erroneous
effects of tiles unexpectedly binding in a non-cooperative fashion, the experimenter
should only build nanoscale structures using constructions that are guaranteed to
work correctly in non-cooperative self-assembly. Thus, characterizing the theoret-
ical power of non-cooperative self-assembly has significant practical implications.

Although no characterization of the power of non-cooperative self-assembly
exists at the time of this writing, Doty et al. conjecture [6] that 2D non-cooperative
self-assembly is weaker than 2D cooperative self-assembly because a certain tech-
nical condition, known as “pumpability”, is true for any 2D non-cooperative tile
set. If the pumpability conjecture is true, then non-cooperative 2D self-assembly
can only produce simple, highly-regular shapes and patterns, which are too simple
and regular to be the result of complex computation.

In addition to the pumpability conjecture, there are a number of results that
study the suspected weakness of non-cooperative self-assembly. For example,
Rothemund and Winfree [17] proved that, if the final assembly must be fully con-
nected, then the minimum number of unique tile types required to self-assemble
an N x N square (i.e., its tile complexity) is exactly 2N — 1. Manuch et al. [12]
showed that the previous tile complexity is also true when the final assembly
cannot contain even any glue mismatches. Moreover, at the time of this writ-
ing, the only way in which non-cooperative self-assembly has been shown to be
unconditionally weaker than cooperative self-assembly is in the sense of intrinsic
universality [4,5]. First, Doty et al. [4] proved the existence of a universal cooper-
ative tile set that can be programmed to simulate the behavior of any tile set (i.e.,
the aTAM is intrinsically universal for itself). Then, Meunier et al. [14] showed,
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via a combinatorial argument, that there is no universal non-cooperative tile set
that can be programmed to simulate the behavior of an arbitrary (cooperative)
tile set. Thus, in the sense of intrinsic universality, non-cooperative self-assembly
is strictly weaker than cooperative self-assembly.

While non-cooperative self-assembly is suspected of being strictly weaker
than cooperative self-assembly, in general, it is interesting to note that 3D non-
cooperative self-assembly (where the tile types are unit cubes) and 2D coopera-
tive self-assembly share similar capabilities. For instance, Cook et al. [3] proved
that it is possible to deterministically simulate an arbitrary Turing machine
using non-cooperative self-assembly, even if tiles are only allowed to be placed
in the z = 0 and z = 1 planes (Winfree [24] proved this for the 2D aTAM).
Cook et al. [3] also proved that it is possible to deterministically self-assemble
an N x N 3D “square” shape Sy C {0,...,N — 1} x {0,...,N — 1} x {0,1}
using non-cooperative self-assembly with O(log V) tile complexity (Rothemund
and Winfree [17] proved this for the 2D aTAM). Furcy et al. [9] reduced the
tile complexity of deterministically assembling an N x N square in 3D non-

cooperative self-assembly to O ( og ) (Adleman et al. [1] proved this for the

loglog N
2D aTAM), which is optimal for all algorithmically random values of N. Given
that it is possible to optimally self-assemble an N x N square in 3D using non-
cooperative self-assembly, the following is a natural question: Is it possible to
self-assemble an arbitrary finite shape in 3D using non-cooperative self-assembly
with optimal tile complexity?

Note that the previous question was answered affirmatively by Soloveichik
and Winfree [22] for the 2D aTAM, assuming the shape of the final assembly
can be a scaled-up version of the input shape (i.e., each point in the input
shape is replaced by a ¢ x ¢ block of points, where ¢ is the scaling factor).
Specifically, Soloveichik and Winfree gave a construction that takes as input
an algorithmic description of an arbitrary finite, connected shape X C Z?2 and
outputs a cooperative (temperature 2) tile set Tx that deterministically self-

assembles into a scaled-up version of X and |Tx| = O (#]\aﬂ)’ where |M]|

is the size of (i.e., number of bits needed to describe) the Turing machine M,
which outputs the list of points in X. In the main result of this paper, using
a combination of 3D, temperature 1 self-assembly techniques from Furcy et al.
[9] and Cook et al. [3], we show how the optimal construction of Soloveichik
and Winfree can be simulated in 3D using non-cooperative self-assembly with
optimal tile complexity. Thus, our main result represents a Turing-universal way
of guiding the self-assembly of a scaled-up, just-barely 3D version of an arbitrary
finite shape X at temperature 1 with optimal tile complexity.

2 Definitions

In this section, we give a brief sketch of a 3-dimensional version of the aTAM
along with some definitions of scaled finite shapes and the complexities thereof.
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2.1 3D Abstract Tile Assembly Model

Let X be an alphabet. A 3-dimensional tile type is a tuple t € (X* x N)¢ e.g., a
unit cube with six sides listed in some standardized order, each side having a glue
g € X* x N consisting of a finite string label and a non-negative integer strength.
In this paper, all glues have strength 1. There is a finite set T of 3-dimensional
tile types but an infinite number of copies of each tile type, with each copy being
referred to as a tile.

A 3-dimensional assembly is a positioning of tiles on the integer lattice Z3
and is described formally as a partial function o : Z3 --» T. Two adjacent tiles
in an assembly bind if the glue labels on their abutting sides are equal and have
positive strength. Each assembly induces a binding graph, i.e., a “grid graph”
(sometimes called the adjacency graph) whose vertices are (positions of) tiles
and whose edges connect any two vertices whose corresponding tiles bind. If 7 is
an integer, we say that an assembly is 7-stable if every cut of its binding graph
has strength at least 7, where the strength of a cut is the sum of all of the
individual glue strengths in the cut.

A 3-dimensional tile assembly system (TAS) is a triple 7 = (T, 0, 1), where
T is a finite set of tile types, o : Z3 --» T is a finite, 7-stable seed assembly,
and 7 is the temperature. In this paper, we assume that |dom o] =1 and 7 = 1.
An assembly « is producible if either o = o or if § is a producible assembly and
« can be obtained from (8 by the stable binding of a single tile. In this case we
write 3 —7 a (to mean « is producible from 3 by the binding of one tile), and
we write 3 —7 a if 3 =7  «a (to mean « is producible from 3 by the binding
of zero or more tiles). When 7T is clear from context, we may write —; and —
instead. We let A [7] denote the set of producible assemblies of 7. An assembly
is terminal if no tile can be T-stably bound to it. We let Ag[7] C A[7] denote
the set of producible, terminal assemblies of 7.

A TAS 7 is directed if | Ag [T]] = 1. Hence, although a directed system may
be nondeterministic in terms of the order of tile placements, it is deterministic in
the sense that exactly one terminal assembly is producible. For a set X C Z3, we
say that X is uniquely produced if there is a directed TAS 7, with Ag [7] = {a},
and dom o = X.

2.2 Complexities of (Scaled) Finite Shapes

The following definitions are based on the definitions found in [22]. We include
these definitions for the sake of completeness.

A coordinated shape is a finite set X C Z? such that X is connected, i.e., the
grid graph induced by X is connected. For some ¢ € Z™, we say that a c-scaling
of X, denoted as X¢, is the set X¢ = {(a,b) | (la/c],|b/c]) € X}. Intuitively,
X¢ is the coordinated shape obtained by taking X and replacing each point in X
with a ¢ x ¢ block of points. Here, the constant ¢ is known as the scale factor (or
resolution loss). Note that a c-scaling of an actual shape is itself a coordinated
shape.
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Let X; and X5 be two coordinated shapes. We say that X; and X, are
scale-equivalent if X¢ = X3, for some a,b € Z*. We say that X; and X, are
translation-equivalent if they are equal up to translation. We write X{ = X3
if X¢ is translation-equivalent to X3, for some a,b € Z*. Note that the three
previously defined relations are all equivalence relations (see the appendix of
[22]). We will use the notation X to denote the equivalence class containing X
under the equivalence relation 2. We say that X is the shape of X. While X is

technically a set of coordinate shapes, we will abuse the notation ‘)? ’ and say

that it represents the size of coordinate shape X € )?, ie., |X1|.

We will now define the tile complexity of a 3D shape. However, we will first
briefly define Kolmogorov complexity of a binary string x, relative to a universal
Turing machine U. We say that the Kolmogorov complexity of x relative to U is
Ky (z) = min{|p| | U(p) = =}, where, for any Turing machine M, |M| denotes
the number of bits used to describe M, with respect to some fixed encoding
scheme. In other words, Ky (z) is the smallest program that outputs = (see [10]
for a comprehensive discussion of Kolmogorov complexity).

Relative to a fixed universal Turing machine U, we say that the Kolmogorov
complezity of a shape X is the size of the smallest program that outputs some X €
X as alist of locations, i.e., Ky ()}) = min{|p| U(p) = (X) for some X € X }
Beyond this point, we will assume U is a fixed universal Turing machine and there-
fore will be omitted from our notation.

The 3D tile complezity at temperature 7 (often referred to as program-size
complezity) of a shape X at temperature T is

T =(T,0,7),|T| = n and there exists

Kipga ()?) =min{ n| X € X such that 7 uniquely produces
such that X x {0} C dom o C X x {0,1}

3 Main Theorem

The main theorem of this paper describes the relationship between the quanti-
ties K ()?) and K:%DSA ()Z') This relationship is formally stated in Theorem 1.
Note that the main result of [22] describes the relationship between K ()N( ) and
K%, ()?), where K% , ()N() (see [22]) is the tile complexity of the 2D shape X
at temperature 2. In this section, assume that X is an arbitrary finite shape.
Theorem 1. The following hold: K (X) = O (Kipga (X)log Kipga (X))
ond Kl (%) o Kby (%) = 0 (K (%)),

We will prove Theorem 1 in Lemmas 1 and 2.
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Lemma 1. K (X') =0 (KL%DSA ()?) log K3pga ()Z'))

Proof. Soloveichik and Winfree [22] showed that K ()N( ) =0 (K T ()N( ) log KT 4
()?)) , which still holds when K7 , is replaced with K7, 4, for any 7 € Z7.

The main contribution of this paper is the following lemma, the proof of
which mimics the proof of K2, ()?) log K2, ()?) =0 (K ()?)) from [22]. We
give the details of the proof here for the sake of completeness.

Lemma 2. Kl,g, ()?) log K pg ()?) -0 (K (5())

Proof. Let s be a program (Turing machine) that outputs a list of points con-
tained in some coordinated shape X € X. We develop a temperature 1 3D
construction that takes s as input and outputs a TAS 75 = (TX, o, 1) such that

75 uniquely produces an assembly whose domain is some shape X € X and
| | (log‘ |>. This construction is discussed in Sect. 4.

Now suppose that s is the smallest Turing machine that outputs the list
of points in some coordinated shape X € X. In other words, s is such that

K ()?) = |s|. Let T; = <T)*?,O', 1) be the TAS produced by our construction,
when given s as input. Observe that, for any TAS 7 = (7,0,1) in which the
shape X uniquely self-assembles, we have K1,q, (5( ) < |T|. Then, for some

constant ¢ € ZT, the following is true:

_ - . \ 5] El
Kipsa (X) log K3psa (X) < ’T log ’T log| | log log |s|
sl
= log loglog |s|) < c]s|.
“Iog|s |( |s| — Isl) < cls|

Thus, Kipsa (X)10g Kipsa (X) =0 (K (X)).

4 Main Construction

In this section, we give an overview of our main construction.

4.1 Setup

Our construction represents a Turing-universal way of guiding the self-assembly
of a scaled-up, just-barely 3D version of an arbitrary input shape X at temper-
ature 1 with optimal tile complexity. Therefore, we let U be a fixed universal
Turing machine over a binary alphabet, with a one-way infinite tape (to the
right), such that, upon termination, U contains the output — and only the out-
put — of the Turing machine being simulated on its tape, perhaps padded to the
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left and right with 0 bits (the tape alphabet symbol 0) and the tape head is
reading the last bit of its output. We also assume that, to the left of the leftmost
tape cell, there is a special left marker symbol #, which can be read by U but
can neither be overwritten nor written elsewhere on the tape. In general, if M
is a Turing machine and w is an input string such that M (w) = y, then, upon
termination, U((M,w)) leaves exactly a string of the form #0*y0* on its tape
with its tape head reading the last bit of y (# is eventually converted to a 0
bit). Our construction is programmed by specifying the program to be executed
by U.

|
w——l
—
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I
| e rrmoik
LB A BB |

‘ 3

(a) The (b) X? (¢c) Put a (d) Connect (e) Do a modified

-
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'
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input wicket in the wickets depth-first search
shape each 2 X 2 to get a to get a Hamil-
X. block. spanning tree  tonian cycle of

of X2 X* that contains

three consecutive,
collinear points.

Fig. 1. An overview of the algorithm for plotting out a Hamiltonian cycle of an input
shape (scaled up by a factor of 4), such that the cycle has three consecutive, collinear
points. Although a Hamiltonian cycle is hard to compute, in general, it is clear that,
for an arbitrary finite shape X, a Hamiltonian cycle, as described above, of X*, can be
computed in polynomial time.

The input to U is a program p, appropriately encoded as (p), using some
fixed encoding scheme. The output of p is used to guide the self-assembly of our
construction. We assume p is actually the concatenation of two programs s and
Phe, Where s, the input to our construction, is a program that outputs the list of
points in X and py. is a fixed program (independent of X) that uses the output
of s as its input and builds a special Hamiltonian cycle H of X4, along which
there are three consecutive, collinear points. The seed block, which is described in
the next subsection, is defined as the middle point of an arbitrarily chosen triplet
of consecutive, collinear points of H (by the way we construct H, there is always
at least one such triplet of points). We further assume that p outputs H — and
only H — as a sequence of pairs of bits, such that, 00, 10, 01 and 11 correspond
to “no-move”, “left”, “right” and “straight”, respectively and possibly padded
to the left with at least two no-moves and to the right with an even number of
no-moves (see Fig. 1 for an overview of how H is constructed). Thus, p satisfies
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4.2 Seed Block

The (upper portion of what will eventually become the) seed block of our con-
struction grows from a single seed tile and carries out the following three logical
phases: decoding, simulation and output. These three phases are depicted in
Fig. 2 with vertical, zig-zag and diagonal patterns, respectively.

NNRSSSLSSSRSSRSSRRSLLSSRSRSSRRSLLSRRSLLSRRSLLSRRS

+\ ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

W

] 103
i

01001010010101

>

01101010010011001010101111110101010111111000010101

Fig. 2. Self-assembly of the upper portion of the seed block consists of three logical
phases. In the first phase (the region filled with vertical lines), the bits of p are decoded
using the 3D, temperature 1 optimal encoding scheme of Furcy et al. [9] (the encoded
bits of p are depicted as the shorter binary string). The decoded bits of p (the longer
binary string) are input to a fixed universal Turing machine U. Then, in the second
phase, the simulation of p on U is carried out (in the region with the zig-zag pattern).
We require that U((p)) evaluates precisely to the sequence of moves in the Hamiltonian
cycle of X*, padded to the left and right with an even number of 0 bits (the boxes
that are not encircled in this figure). In other words, we require that U((p)) evaluates
to a string of the form (00)*(00]/10]01|11)*(00)*, with the tape head of U reading the
second bit in the last move of the Hamiltonian cycle. Finally, in the third phase (in the
region with the diagonal line pattern), the moves in the Hamiltonian cycle are shifted
to the right. Self-assembly of the first growth block begins from the upward-pointing
arrow. Note that the moves in the Hamiltonian cycle are listed in the grey boxes and
we use the characters ‘N’; ‘L’; ‘R’ and ‘S’ to represent “no-move”, “left”, “right” and
“straight”, respectively.

Decoding. The first phase is the decoding phase. In the decoding phase, the bits
of (p) are decoded from a O(log |{p)|)-bits-per-tile representation to a 1-bit-per-
tile representation (actually, we end up with a 1-bit-per-gadget representation,
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which is sufficient to maintain the optimality of our construction). To accomplish
this, we use the 3D, temperature 1 optimal encoding scheme of Furcy et al. [9].
When the decoding phase completes, the decoded bits of (p) are advertised in a
one-bit-per-gadget representation along the top of the optimal encoding region
(the rectangle with the vertical lines in Fig. 2).

Simulation. Once the bits of (p) are decoded, the simulation phase begins. In
this phase, p is simulated on U using a specialized temperature 1, just-barely
3D Turing machine simulation (the region with the zig-zag pattern in Fig. 2).
Our specialized Turing machine simulation assumes an input Turing machine
M with (1) a binary alphabet, (2) a one-way infinite tape (to the right), the
leftmost tape cell of which contains a special left marker symbol #, which can
be read by M but can neither be overwritten nor written elsewhere on the tape.
We simulate M in a zig-zag fashion, similar to the temperature 1, just-barely
3D Turing machine simulation by Cook et al. [3]. However, unlike that of Cook
et al., our simulation represents the contents of each tape cell of M using a
six-tile-wide gadget. This gives a more compact geometric representation of the
output of M and, as a result, simplifies the construction of the growth blocks
(see Sect. 4.3).

By the definition of U and p and because of the compact geometry of our
simulation of p on U, the output of the simulation phase, i.e., U({p)), is an even
number of geometrically-encoded bits (each bit is represented by a six-tile-wide
bit-bump gadget), possibly padded to the left and right with an even number
of 0 bits, such that each pair of bits corresponds to a move in the Hamiltonian
cycle H (not counting occurrences of the pair 00, which represents a no-move).

Output. In order to satisfy certain geometric constraints, which are required by
the growth blocks, after the simulation phase of p on U is complete, the (final)
output phase begins. In the output phase, we use a special, constant-size tile
set to shift the geometrically-encoded bits of H to the right, so that the bits of
H are in a right-justified position along the top of the seed block (the region
with diagonal lines in Fig. 2). For each right-shift, we add a pair of 0 bits to the
left, which ensures that the upper portion of the seed block will be wider than
it is taller. After the output phase of the seed block, self-assembly of the first
growth block, which is always to the north in our construction, as guaranteed
by p, begins from the left side of the top of the upper portion of the seed block
(see the upward-pointing arrow in Fig. 2).

Scale factor. Let Wyecode and Hgecode be the maximum horizontal and vertical
extent, respectively, of the seed block after the decoding phase (the rectangle
with vertical lines pattern in Fig. 2) completes. From [9], we know that Wyecoqe >
Hecode- Next, in the simulation phase, the tape grows to the right by two tape
cells for each transition. Each transition is comprised of two rows of gadgets,
which are wider than they are tall (six tiles versus four tiles). Also, we may
assume that, during the simulation phase, p is programmed to initially scan the
input from left-to-right and then from right-to-left before beginning. Let W,
and Hg;,, be the maximum horizontal and vertical extent, respectively, of the
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seed block after the simulation phase (the zig-zag pattern in Fig.2) completes.
Then we have Wy, > Hgip,- Finally, in the output phase, as the output bits
of the simulation phase are shifted to the right, two tape cells are added to the
left for each shift. Each shift is comprised of two rows of gadgets, which, like the
simulation gadgets, are wider than they are tall (six versus four). Therefore, let
W, and Hgp, be the maximum horizontal and vertical extent, respectively, of the
seed block after the simulation phase (the diagonal pattern in Fig. 2) completes.
Then we have Wy, > Hgp,. From this we may conclude that the seed block, once
completely filled in by the last growth block (see Fig. 5a) will be a square. The
scale factor of our construction is Wy,.

4.3 Growth Blocks

Each growth block has a single input side, which reads the remaining moves
in the Hamiltonian cycle and a single output side, which advertises the same
remaining path but with its first move erased. This first move determines the
position of the output side in relation to the input side. In this section, we assume
that the input side of the growth block is its south side (the construction simply
needs to be rotated for the three other possible positions of the input side). So,
if the first (erased) move in the remaining path is a right turn, then the output
side of the growth block is its east side. We describe the construction for this
case here (see Fig.4). The overview figure for the growth blocks uses gadgets
whose structure is explained in Fig. 3.

The growth block starts assembling in its southwest corner and progresses
in a zig-zag pattern. The first row of gadgets, moving from left to right, starts
by copying all of the leading no-moves, of which there are exactly two in Fig. 4
but generally many more. Once the first actual move is found, a set of gadgets
specific to its type is activated. In the case of a right turn, all of the moves
are shifted by one position to the right (and the first move is replaced by a no-
move). The last move in the remaining path is advertised at the bottom of the
output (or east) side of the block. Then the construction switches direction and
moves from right to left, simply copying the shifted path, which completes the
first iteration. In each subsequent iteration, the left-to-right pass shifts the whole

_ - narrow marker present when the gadget is on

geometrical patterns /—ﬂ k/ the right (or left) edge of the growth block
embodying three types

of output information

wide move marker including a move type
--7 label: S (straight), L (left), R (right) or none
glues embodying input

or output information \\NO | @902 T e~-o__Jl_-- medium-width marker present when the
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Fig. 3. Key to the representation of our gadgets
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Fig. 4. Overall construction of a growth block whose input path starts with a right turn

path to the right by one position and advertises one more move on the output (or
east) side. In addition to the right shift, each zig-zag iteration moves a diagonal
marker by one position to the right, starting from the southwest corner. Once
this diagonal marker reaches the east side of the block, the top row, moving
from right to left, can complete the block. Note that in this case, the remaining
path is not advertised on the west nor the north sides. If the first move in the
remaining path were a straight move, the remaining moves would not be shifted
but simply copied at each iteration and eventually advertised on the north side
of the block. If the first move in the remaining path were a left turn, then the
remaining moves would be shifted to the left and advertised on the west side
instead. In other words, for a straight move, Fig. 4 would have smooth east and
west sides, with bit-bumps along its north side and for a left move, Fig. 4 would
have smooth east and north sides, with bit-bumps along its west side.
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(a) In the upper portion (pattern-filed regions) of the seed block, (b) The grey
the points in X are decoded and a special Hamiltonian cycle H of squares indicate
X*. As moves of H are carried out within each growth block, the the portion being
bits of H are propagated to the next growth block but the move assembled in
that was just executed is erased (depicted as dashes). The last Figure 5a. The
growth block assembles the remaining portion of the seed block darker square is
with a sequence of single-tile-wide paths that assemble northward the seed block.
until running into the existing portion of the seed block. Self-assembly
always proceeds
north from the
seed block.

Fig. 5. Putting it all together. In this figure, we depict the moves in the Hamiltonian
cycle of X% as 2, ‘I’, ‘R’ and ‘S’ for “no-move”, “left”, “right” and “straight”, respec-
tively. In our construction, these moves are represented using the pairs of bits 00, 10,
01 and 11, for “no-move”, “left”, “right” and “straight”, respectively.
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4.4 Putting It All Together

After the final growth block completes, the remaining portion of the seed block,
i.e., its lower portion, is assembled. Note that, up until this point, the seed block
is not a ¢ x ¢ square. However, the horizontal extent of the upper portion of
the seed block defines the scale factor ¢ of our construction. This scale factor is
dominated by running time of p on U, which is the sum of the running times
of s and pp.. The final growth block fills in the remaining portion of the seed
block by initiating the assembly of a sequence of ¢ single-tile-wide, vertically
and uncontrollably assembling paths that are inhibited only by existing portions
of the seed block (see the explosion icons in Fig.5a). Thus, the final, uniquely-
produced terminal assembly of our construction is an assembly made up of ¢ X ¢
blocks of tiles, where each block is mapped to some point in X. Figure 5 gives a
high-level overview of how all of the major components of our construction work
together.

5 Conclusion

In this paper, we develop a Turing-universal way of guiding the self-assembly of
a scaled-up, just-barely 3D version of an arbitrary input shape X at tempera-
ture 1 with optimal tile complexity. This result is essentially a just-barely 3D
temperature 1 simulation of a similar 2D temperature 2 result by Soloveichik
and Winfree [22]. One possibility for future research is to resolve the tile com-
plexity of an arbitrary shape X at temperature 1 in 2D, i.e., what is the quantity

Kb, (X)?

Acknowledgement. We thank Matthew Patitz for offering helpful suggestions, which
improved the presentation of our main construction.
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Abstract. Given a collection L of line segments, we consider its arrange-
ment and study the problem of covering all cells with line segments
of L. That is, we want to find a minimum-size set L’ of line segments
such that every cell in the arrangement has a line from L’ defining its
boundary. We show that the problem is NP-hard, even when all segments
are axis-aligned. In fact, the problem is still NP-hard when we only need
to cover rectangular cells of the arrangement. For the latter problem
we also show that it is fixed parameter tractable with respect to the
size of the optimal solution. Finally we provide a linear time algorithm
for the case where cells of the arrangement are created by recursively
subdividing a rectangle using horizontal and vertical cutting segments.

1 Introduction

Set cover [3] is one of the most fundamental problems of computer science.
This problem is usually formulated in terms of hypergraphs: the input of the
problem is a hypergraph H = (X,F) where F C 2% is a collection of sub-
sets of X, and we aim for a subset 7/ C F of smallest cardinality that covers
X (i.e., Upe F = X). This problem is known to be NP-hard and even hard to
approximate [3,6,8].

Given its importance, it is not surprising that this problem has been studied
extensively. In most cases, the set F is given implicitly (this is specially true
when considering geometric variants of the problem). For example, in the well-
known k-center problem [5] we want to cover a set .S of n points with unit disks.
In the hypergraph definition, this is equivalent to X = S and F is the collection
of subsets of S that can be covered with a single unit disk.

Sometimes the relationship between X and F is much more involved. For
example, in the discrete center problem, we only consider the disks whose center
is a point of S. Akin to the discrete variant of the k-center problem, in this paper
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© Springer International Publishing Switzerland 2015
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we study a geometric setting where the elements X and sets F are defined by
the same geometric primitives. Specifically, we study the problem of covering
the cells of an arrangement of line segments L with segments of L. Given a
set L of line segments in the plane a cell in the arrangement of L is defined
as a maximally connected region that is not intersected by any segments of L.
Essentially the cells are the ‘empty’—mnot intersected by segments of L—regions
in the arrangement defined by L. Now let C' denote the set of all cells in the
arrangement of L. We say that a cell ¢ € C is covered by a line segment ¢ € L if
and only if £ is part of the boundary of c. Similarly ¢ is covered by a set L’ of
line segments if and only if there is a segment £ € L’ that covers c¢. The goal is
then to find a minimum-size set L’ C L that covers all cells of C. We call this
the line-segment covering problem.

The problem can also be viewed as a guarding problem. In the traditional art
gallery problem, the goal is to place guards so that the guards together see the
whole gallery (often a simple polygon). Many variants of this have been studied.
Bose et al. [2] study guarding and coloring problems between lines. They provide
results for several types of guards and objects to guard, such as guarding the cells
of the arrangement with the lines, or guarding the lines by selecting cells. Their
results however do not extend to line segments as they use properties of the lines
that do not hold for line segments. To the best of our knowledge covering cells in
an arrangement of line segments with the segments has not been studied before.

We study three different variants of this problem. First, in Sect.2 we show
that the line-segment covering problem is NP-hard, even when all segments of L
are axis-aligned. In Sect. 3 we consider a slightly different variant, where we are
required to cover only rectangular cells, those defined by four line segments. For
this variant we show that the NP-hardness reduction still works. However, we
show that this variant is fixed parameter tractable with respect to the size of the
optimal solution. In Sect. 4, inspired by subdivisions induced by KD-trees, we
study a variant where the line segments define a type of rectangular subdivision.
That is, an axis aligned rectangle that is recursively subdivided with horizontal
or vertical line segments, similar to the subdivision defined by a KD-tree [1]. For
this case we show that an optimal cover can be computed in linear time, assuming
that the partitioning is given as a tree-structure defined by the splitting lines.

2 NP-hardness for Rectilinear Line Segments

In this section we show that the line-segment covering problem is NP-hard, even
if the input consists of only horizontal and vertical line segments. We reduce
the problem from PLANAR 3SAT [7]. An input instance for the 3SAT problem
is a set {x1,x2,...,2,} of n variables and a Boolean expression in conjunctive
normal form. That is, the expression is a conjunction of clauses ® = c; A... Acp,
such that each clause ¢; is a disjunction of three literals (a variable or negation of
a variable). The problem is then to decide if there is a truth assignment for the
variables so that @ is true. In PLANAR 3SAT we impose further restrictions by
looking at the representation of @ as a bipartite graph with variables and clauses
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Fig. 1. PLANAR 3SAT problem instance along with a planar embedding.
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Fig. 2. Gadget for a variable with a true (left) and false (right) assignment. Red (thick)
edges show the two possible covers with m + 1 segments (Color figure online).

as vertices. A variable-node v is connected to a clause-node c if and only if v
occurs in ¢. In PLANAR 3SAT we assume that this graph is planar. Specifically
we assume that a planar embedding is given that places all variable-nodes on
a horizontal line and all clause-nodes above or below this line (see Fig.1). We
also assume that no variable appears more than once in any clause (that is, the
above described bipartite graph is a proper graph and not a multigraph).

It is well-known that the PLANAR 3SAT problem is NP-hard [7]. Also note
that it is easy to see that the line-segment covering problem is in NP. Indeed,
given a possible covering, we can construct the arrangement of line segments and
verify in polynomial time that indeed all cells are covered. In the remainder of
this section we provide a polynomial time reduction and prove its correctness.

2.1 Reduction

For each variable in @ we create a gadget consisting of 4m—+8 horizontal segments
and 4m + 2 vertical segments. The leftmost and rightmost vertical line stab all



Line Segment Covering of Cells in Arrangements 155

Fig.3. A clause gadget used in showing NP-hardness in Sect.2, parts are variable
gadgets that connect to the edges of a clause gadget (marked with thicker line
segments).

horizontal lines of the gadget, whereas 2m of the other lines stab the top 2m +4
horizontal lines and 2m stab the lower 2m + 4 horizontal lines as illustrated in
Fig.2. As we describe later, some of the vertical line segments may be further
extended (above or below) to connect to the clause gadgets, but the horizontal
segments will not cross any segments of other gadgets.

Intuitively speaking, we will show that any covering of the variable gad-
gets must choose one every other vertical segment, including either the right or
leftmost segment. The choice of using either the rightmost or leftmost vertical
segment is equivalent to assigning the variable to be true or false. The clause
gadget will create additional cells that will be covered for free (without selecting
additional line segments) provided that at least one variable satisfies the clause.

Let ng‘)7 ey sg?n be the vertical segments created in the gadget for variable
x; (numbered from left to right). We would like to sort the clauses ci,...,¢;

in which x; occurs in the order in which they appear on the embedding of
the PLANAR 3SAT instance. However, this is not well-defined (since it is not
always clear when a segment goes before another), so we proceed as follows: let
c1,...,cy be the clauses that contain variable z; and are embedded above the
line containing all variable nodes, sorted in clockwise order of their connections
to x;. Similarly, let ¢ji41,...,¢; be the clauses that are embedded below the
line (this time in counter-clockwise order). We define the ordering of the clauses
around x; as the concatenation of both orderings. Since we have 2m vertical
line segments for each clause and m clauses we ensure that any vertical segment
of a variable gadget is extended only towards a single clause, and any clause is
associated to exactly three segments.

We now detail the gadget associated to clause ¢ = ¢; Alj ALy, (for i < j < k),
where ¢; is a literal of variable x; (similarly, ¢; and ¢y are literals of variables
x; and zy, respectively). First, we extend the three segments associated to clause
¢ (above or below depending on where ¢ is placed in the embedding). We extend
the segments associated to variables x; and xy, slightly further than the segment
of z;. We complete our transformation by adding two horizontal segments that
create a rectangle with the three extended segments, see Fig. 3.
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This concludes the construction of a line-segment-covering instance L from a
PLANAR 3SAT input @. Next we show that there is a satisfying assignment for
@ if and only if there is a subset L’ of L of size at most n(2m + 1) that covers
all cells in the arrangement.

2.2 Correctness

Lemma 1. A PLANAR 3SAT expression @ is satisfiable if and only if there is
a cover of size at most n(2m + 1) for its corresponding line-segment-covering
instance L.

Proof. First we prove that given a satisfying assignment for ¢ we can cover L
with n(2m + 1) segments. If a variable is true, then we select the rightmost
vertical segment, and for each set of 2m segments that only intersect the top or
bottom we select the odd ones counting from the leftmost segment starting at
one, see also Fig. 2. If the variable is false we select the leftmost longer segment
and the even ones from the sets of shorter segments.

Next we show that all cells are covered. We consider three types of cells: cells
in the interior of the grids created of the variable gadgets are called variable cells,
the single rectangular cell associated to a clause gadget is called clause cell; any
other cell (included the unbounded one) that is created with our construction is
simply called an other cell.

Since we have selected one every other segment, clearly all variable cells are
covered. The fact that the variable assignment satisfies all clauses implies that at
least one of the three vertical segments defining a clause cell has been selected, so
the clause cell is covered. Hence, all clause cells are also covered. Finally, for the
remaining cells it suffices to see that each such cell always has two consecutive
vertical segments of a variable gadget in its boundary. Indeed, Such cells are only
created when connecting clauses and variables and in particular, their left and
right boundaries are created by those extensions. Thus, when walking along the
boundary of any such cell, we will find the next vertical segment of the variable
gadget (or the predecessor in case the segment was the last one). One of the
segments must have been selected, so also these cells are covered.

The reverse statement is similar. Assume that we have a cover L’ for L of size
n(2m+1). First observe that each variable gadget needs at least 2m+ 1 selected
line segments to cover its interior cells. To achieve this we must select either the
left or rightmost segment, after which there is a unique cover for the remaining
cells that uses only 2m segments. Covering the cells within the variable gadgets
with fewer than 2m + 1 segments is not possible, so any cover consist of exactly
2m + 1 segments per variable gadget. Furthermore, none of these segments can
be reused between different variable gadgets. Thus, we conclude that each clause
gadget must be covered by the lines selected from the variable gadgets. We create
a variable assignment for each variable as before, depending if the leftmost or
rightmost segments has been selected.

Since L’ covers all cells, it must also cover the clause cells, which implies that
at least one of the three vertical segments has been selected. Equivalently, this
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implies that in each clause the choice of assignment of the variables makes at
least one of its literals true and the formula @ is satisfiable.

Since the reduction is easily computed in polynomial time we conclude the
following result.

Theorem 1. Given a set L of azis-aligned line segments, it is NP-hard to find
a minimum-size set L' C L so that for each cell of the arrangement at least one
of its defining segments is in L'.

3 Covering Only Rectangular Cells

From the above reduction we can see that the main difficulty of the problem
lies in covering the rectangular cells. Thus, in this section we turn our attention
to a variant of the problem in which segments are axis-aligned and we are not
required to cover all cells, but only those that are rectangles. That is, cells whose
boundary is formed by exactly four line segments. First we briefly argue that
this variant is also NP-hard by adapting the NP-hardness proof in the previous
section. Then we show that the problem is fixed parameter tractable (FPT) with
respect to k, the number of segments in the optimal solution.

3.1 NP-hardness

The hardness almost follows from the construction of Sect. 2. Indeed, clause cells
are the only critical part of the reduction that need to be modified. Instead, we
create the clause gadget with 6 segments as shown in Fig. 4. This modified gadget
contains three rectangular cells. Note that incoming segments from variables can
cover at most two of these cells, but at least one segment must be added so as to
cover the intermediate rectangular cell. This additional edge can cover two cells,
either the left and middle cells, or the middle and right cells. Thus, it follows
that we can find a covering of all rectangular cells of this modified instance with
n(2m+ 1) +m segments if and only if the associated PLANAR 3SAT instance is
satisfiable, and thus this variation is also NP-hard.

Theorem 2. Given a set L of azis-aligned line segments, it is NP-hard to find
a minimum-size set L' C L so that for each rectangular cell of the arrangement
at least one of its defining segments is in L’.

3.2 FPT on the Size of the Optimal Solution

Next we show that the problem is fixed parameter tractable (FPT) with respect
to k, the size of the optimal solution. Our aim is to compute a kernel of small
size (or conclude that there is no solution of size at most k).

Since we want to cover only rectangular cells we can represent each cell by an
associated subset (or subset for short) C' = {1, {5, {3, €4} with the four bounding
line segments as its elements. This reduces the line segment covering problem to
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Fig. 4. Modified clause gadget. The three dashed vertical segments connect to the
corresponding variable gadgets. This new gadget creates three rectangular cells that
can be guarded with one additional segment if and only if the variable assignment
satisfies the clause.

a hitting set problem for a collection C of subsets of size four. Our approach is to
reduce the number of subsets to consider; first to a set C; where for any two line
segments there are at most 2k subsets that contain both these line segments;
then to a set Cy where for any single line segment there are at most 2k subsets
containing it. First we prove the following lemma.

Lemma 2. Let £, and {" be any three line segments in L. There are at most
two subsets in C containing all three line segments, £,¢ and £".

Proof. Since the arrangement is rectilinear, two lines, say ¢ and ¢ are parallel
and the other is orthogonal to these. This means that any cell having all three
line segments £, ¢’ and ¢” on its boundary must span the strip between £ and ¢’
However at most two such cells can also be adjacent to the third line segments £”.

We start reducing our problem instance by looking at pairs of line segments.
Specifically we count for every pair of line segments how many subsets contain
both. Then for any pair £, ¢ shared in more than 2k subsets we add the subset
{¢,¢'} and remove all subsets containing both £ and ¢'. Let C; denote this reduced
subset.

Lemma 3. A set L' C L of line segments, with |L'| < k is a minimum-size
cover of Cy if and only if it is a minimum-size cover of C.

Proof. Clearly the claim holds if C = C;. Thus, from now on we assume that
Ct =C;\C and C~ = C\C; are two nonempty sets that contain all elements that
were added and removed from C, respectively.

Now assume that L’ with |L/| < k is a minimum size cover for C;. Observe
that all subsets of C™ must also be covered, since for every subset C' € C~ there
is a subset {£, '} such that both £ and ¢ occur in C (and {¢,¢'} € CT). It follows
that L’ is a also a cover for C. To show that L’ is of minimum size assume for a
contradiction that a smaller set L” is also a cover for C. Clearly, L” covers CNCj.
Now take any set {£, £’} in C*, if neither £ nor ¢ is part of L”, then we claim that
|L"| > k. Indeed, we introduced {¢, ¢’} into C; only when more than 2k subsets in
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C contain both ¢ and ¢'. If neither ¢ nor ¢’ are part of L, then Lemma 2 implies
that every other line can cover at most two of these subsets. In particular, the
cardinality of L” will be larger than k, contradicting with the fact that L” is
smaller than L’. A similar argumentation shows that any minimum-size cover of
C is also a minimum-size cover of C;, which concludes the proof.

Now we further reduce our problem instance to a set Cy as follows. We count
for each line how many subsets of C; contain it. Then for each line ¢ that has
more than 2k? subsets containing it we replace all these subsets by subset {/}.

Lemma 4. A set L', with |L'| < k is a minimum-size cover for Cy if and only
if it is a minimum-size cover of Ca.

Proof. As before, it suffices to consider the case in which C; # Cs. Let Cf =C\(4
and C; = C1\Cz denote the sets that were added and removed from C; to create
Cy. Since all sets in C; contain a line of one of the singleton sets of C;, a set L/,
with |L'| < k that is a minimum size cover of Cy is also a cover of C;. To show
that L’ is also a minimum-size cover for C1, assume for a contradiction that there
is a smaller cover L” for C;. The lines of L” also cover Co\C;". Therefore, if L”
is not a cover of C, then there must be a subset {¢} € C{" that is not covered
by L”. Recall that {¢} was added to Cy because there were more than 2k? sets
in C; that contain ¢. By construction of C1, no line ¢ # ¢ can cover more than
2k of these sets (otherwise, the pair {¢,¢'} would have been added to C;). Thus,
we conclude that L” has more than k segments, a contradiction.

In a similar way we can prove that a subset L', with |L/| < k, that is a
minimum-size cover for C; is also a minimum size cover for Co, thus, concluding
the proof.

Lemma 5. If |Co| > 2k3, then there is no cover of size at most k for C.

Proof. Proof of this claim follows from Lemmas 3 and 4 and the fact that each
segment can only cover at most 2k? sets of Co.

Now we look at the computational aspect of generating Cy. Both reduction
steps from C to C; and from C; to Cs require counting subsets. Here we use the
fact that the subsets are of size at most 4 to show that this can be done in linear
time using hash tables. Note that linear time here is in the size of C, the size
of the arrangement, which may be quadratic with respect to the number of line
segments.

Lemma 6. The set Cy can be constructed in time O(nlogn + C), where n is
the number of segments in L and C is the number of cells in the arrangement

induced by L.

Proof. To reduce C to C; we count for every pair of line segments £, ¢’ the number
of subsets of C that contain both. We do this by making a single pass over all
subsets of C and maintaining for each pair £, ¢ how many subsets contain them
thus far. To avoid having to initialize counts for all pairs ¢, ¢, which may be
more than linear in the size of C we use a hash table and create a new count
whenever we encounter a new pair of line segments. Each subset contains at
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most 4 segments and at most 6 pairs of segments, so we can process it in O(1)
time. After counting we can go through all pairs of line segments with non-zero
count and for each pair ¢, ¢ that is contained in more than 2k subsets we remove
the sets (which is easily done by storing which sets contain the pair) and add a
new subset {/,¢'}. To compute Cy from C; we can use a similar construction.

Theorem 3. For the problem of finding a minimum-size cover for all rectangu-
lar cells in an arrangement of n axis-parallel line segments L we can either find
a kernel of size O(k®) or conclude that no solution of at most size k is possible.
Moreover, the algorithm runs in O(nlogn + C) time, where C' is the number of
cells in the arrangement induced by L.

Since we now have a kernel of size O(k®) it follows that the problem is fized
parameter tractable [4].

Corollary 1. Given a set L of line segments the problem of finding a minimum
size set L' C L that covers the rectangular cells of the arrangement of L is fized
parameter tractable with respect to the size k of the optimal solution.

4 Rectangular Subdivisions

Although the problem of finding a minimum set of covering segments is NP-hard,
there are special cases where the problem can be solved in polynomial time. One
such case is that the input line segments form a special type of rectangular
subdivision. The rectangular subdivisions we consider are those defined by a
KD-tree [1]. That is, a recursive subdivision of a rectangle using horizontal or
vertical splitting segments (see Fig.5). Note that the segments that have only
an endpoint on the boundary of a cell are not considered part of the boundary
of that cell. From now on we refer to such a subdivision simply as a rectangular
subdivision.

A rectangular subdivision provides a clear tree-structure which we can use
to compute an optimal covering in a bottom up fashion. Each node in the tree
is associated to some rectangle. For a leaf-node this rectangle is a cell of the
arrangement, whereas for an interior node its associated rectangle r is formed
by the union of the rectangles associated to its children. We also associate an
interior node of the tree with a horizontal or vertical segment that splits its
associated rectangle into two rectangles associated to its children.

Although the above FPT approach works we show there is a much faster exact
algorithm for rectangular subdivision. Without loss of generality we assume that
the subdivision is given as a binary tree (the KD-tree structure)!. We show that
an optimal covering can then be computed in linear time. Note that in this
definition the outer face is covered if and only if at least one of the edges of the
bounding rectangle is in the cover, and any other cell is covered if one of the
segments defining its boundary is chosen as a covering segment.

! If the structure is not given as a binary tree, but a more general subdivision structure
such as a double-connected edge list, we can construct the tree in linear time.
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Fig.5. (a) A rectilinear binary space partition within a rectangle. (b) A possible tree
representing the partition.

Theorem 4. Given the tree structure of a rectangular subdivision, where each
node stores the rectangle it represents and its splitting segment, we can compute
in linear time a segment-cover of the cells with a minimum size.

Proof. Starting at the leaves, we compute an optimal covering in a bottom up
fashion. For each node v of the tree we compute the solution to sixteen different
subproblems and store these solutions in the corresponding nodes. Let R be the
rectangle associated to a given node, and let {s1,...,s4} be the four segments
that define its boundary. For any subset S’ C {s1,...,54}, we consider the
subproblem of finding the smallest covering of all the cells within R that contains
the segments of S’. For each such subproblem its cardinality as well as how
it is constructed from solutions of its children (this second part is needed to
reconstruct the optimal solution).

Clearly, if v is a leaf the optimal cover is simply S’ (unless S’ = () in which
case there is no solution). For an interior node we proceed as follows: let v be
an interior node of the tree and R the rectangle stored at v. Without loss of
generality assume that R is split by a vertical line . The children of v are vieg
and vright With corresponding rectangles Riefe and Ryighe. We must compute a
minimum-size cover for each possible choice of the top, left, bottom and right
edges of R. Note that a fixed choice of boundary edges for r already forces a
choice of three edges for Rief, and Ryighe. Only their shared edge £ is not fixed by
the choice of boundary edges of . However, we can simply try both options and
see which results in the overall better cover of R. That is, we first assume ¢ is
not part of the cover and retrieve our already computed solutions for Rjes, and
Riigne for the current selection of boundary edges. Then we do the same when
we do pick ¢ and choose the solution with the smallest number of edges. This
results in an optimal solution since the only edges shared by Rier; and Ryigny are
¢ and the top and bottom edge of R. We consider all possible selections of these
edges. For each selection the two subproblems of finding an optimal cover for
the Riery and Ryigne are independent, so we can reuse our previously computed
solutions.
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We now show that the algorithm indeed runs in linear time. Observe that
only a constant number of subproblems are considered at each node of the tree.
Moreover, each of these subproblems is solved in constant time by accessing the
solution to a constant number of subproblems. Thus, overall we spent a constant
amount of time per node of the tree, giving the desired bound.

5 Conclusions and Open Problems

Our results show that covering cells in an arrangement, similar to the original
set-cover problem, may be NP-hard or polynomial-time solvable depending on
various restrictions. It may be interesting to investigate further variants of the
problem to see which restriction makes the problem polynomial-time solvable—
this may be due to the lack of intersections between line segments or due to
the tree-structure of the subdivision. It would also be interesting to see if good
approximations are possible for the more general case or even the case with line
segments of arbitrary orientations.
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Abstract. We present a new, on-line strategy for a mobile robot to
explore an unknown simple polygon P, so as to output a so-called watch-
man route such that every interior point of P is visible from at least one
point along the route. The length of the robot’s route is guaranteed to
be at most 6.7 times that of the shortest watchman route that could be
computed off-line. This significantly improves upon the previously known
26.5-competitive strategy. A novelty of our strategy is an on-line imple-
mentation of a previously known off-line algorithm that approximates
the optimum watchman route to a factor of v/2. The other is in the way
the polygon exploration problem is decomposed into two different types
of the subproblems and a new method for analyzing its cost performance.

1 Introduction

Visibility-based problems of guarding or searching have received much attention
in the communities of computational geometry, robotics and on-line algorithms.
Finding stationary positions of guarding a polygonal region P of n vertices is the
well-known art gallery problem. The watchman route problem asks for a shortest
route along which a mobile robot can see the whole polygon P [1,5-7].

When a point s on the boundary of P is given, the shortest watchman
route through s can be computed in O(n?) time [6,7]. It was later improved to
O(n®logn) [3]. A linear-time approximation algorithm for the watchman route
problem has also been proposed [5], which reports a watchman route guaranteed
to be at most v/2 times longer than the shortest watchman route through s.

In the polygon exploration problem, a starting point s on the boundary of the
(unknown) polygon P is given. A robot with a vision system that continuously
provides the visibility of its current position walks to see (or explore) the whole
region of P, starting from s. When each point of P has been seen at least once,
the robot returns to s. We are interested in a competitive exploration strategy
that guarantees that the route of the robot will never exceed in length a constant
times the length of the shortest watchman route through s. For the problem of
exploring unknown simple polygons, Deng et al. were the first to claim that
a competitive strategy does exist, but the constant is estimated to be in the
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thousands [2]. A factor of 133 was later given by Hoffmann et al., and further
improved to 18v/2 + 1 < 26.5 [4]. Since the known lower bound is smaller than
1.207 [2], it is conjectured that the competitive factor is far below 10 [4].

In this paper, we present a new, on-line strategy for a mobile robot to explore
an unknown simple polygon. An important observation is that the known off-
line v/2-approximation algorithm can be used to build blocks of the on-line
strategy. Next, we reduce the polygon exploration problem to the subproblems
of exploring two different types of reflex vertices. Although the reduction is done
in a way similar to that of [4], we show that the exploration of the same type
of reflex vertices can be evaluated together. More specifically, a subproblem is
solved by resembling the v/2-approximation algorithm for that watchman route
subproblem. For this purpose, we present a paradigm for implementing on-line
the off-line approximating techniques. Furthermore, we present a new method
to evaluate the total cost of the solutions to the subproblems of exploring the
same type of reflex vertices. With these new ideas, we are able to prove that an
unknown polygon can be explored by a route of length at most 4v/2 + 1 < 6.7
times that of the shortest watchman route through s. This gives a significant
improvement upon the previously known 26.5-competitive strategy [4].

2 Preliminaries

A polygon is simple if it has neither holes nor self-intersections. Let P be a simple
polygon with a point s on its boundary. A point p € P sees the other point ¢ € P
if P contains the line segment pq that has p and ¢ as its two endpoints.

A vertex of P is reflex if its internal angle is strictly larger than m; otherwise,
it is convex. The polygon P can be partitioned into two parts by a “cut” C that
starts at a reflex vertex v and extends an edge incident to v until it first hits the
polygon boundary. The part of P containing s and including C itself is called
the essential part of C. We denote by P(C') the essential part of the cut C. The
cut C' is said to be a wisibility cut if it produces a convex angle at v in P(C).
Also, we call v the defining vertex of C.

We say a visibility cut C; dominates the other cut C; if P(C;) contains
P(C;). If C;j dominates C;, any route that visits C; will automatically visit C;.
We also say a point p dominates cut C' if p is not contained in P(C) (i.e., p lies
in P— P(C)). A visibility cut is called an essential cut if it is not dominated by
any other cuts. The watchman route problem is then reduced to that of finding
the shortest route intersecting or visiting all essential cuts [1,5].

For two arbitrary points a and b inside the polygon P, we denote by m(a,b)
the shortest path between a and b, which does not cross the boundary of P. The
shortest path tree of s, denoted by SPT(s), consists of all shortest paths from
s to the vertices of P. The vertices touching a shortest path from the right are
called the right reflex vertices, or shortly, right vertices. The left reflex vertices
or left vertices can be defined accordingly [4].

A region D inside P is said to be a relatively convex polygon if the shortest
path between any two points of D is contained in D [4]. Also, a polygonal chain
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H inside P is relatively conver if the region bounded by H and the shortest
path between two endpoints of H is a relative convex polygon in P. The relative
convez hull of a set of points inside P is defined as the boundary of the smallest,
relative convex polygon containing the set of the given points.

For a route R, we denote by |R| the length of the route R. In this paper,
we denote by W,,: the shortest watchman route, and W, the watchman route
that is computed by the off-line approximation algorithm [5].

Let S denote an on-line exploration strategy. A vertex is said to be discovered
if it has ever been visible once from the robot, when the robot follows S to
explore the polygon P. A left or right vertex is unexplored as long as its cut
has not been reached, and fully explored thereafter. Denote by W,.,, the robot’s

route produced by the strategy S. The competitive factor of the strategy S is
f ‘W7ob|

then defined as the upper bound o T

2.1 An Overview of the v/2-approximation Algorithm

Let a and b denote two points in the same side of a line L. The shortest path
visiting a, L and b in this order, denoted by S(a, L,b), follows the reflection
principle. That is, the incoming angle of S(a, L, b) with L is equal to the outgoing
angle of S(a,L,b) with L. Denote by L(a) the point of L closest to a, and b’
the point obtained by reflecting b across L. See Fig. 1(a). The path consisting
of the line segments a L(a) and L(a) b, denoted by S’(a, L,b), then gives a v/2-
approximation of the path S(a, L,b) [5]. Generally, for a line segment [, denote
by I(a) the point of I closest to a. The path consisting of a I(a) and I(a) b is also
2-approximation of the shortest path from a to b that visits I (Fig. 1(b)).

~
//I

=

Fig. 1. The reflection principle and its approximation.

Let m be the number of essential cuts, and C1,Cs, - ,C,, the sequence of
essential cuts indexed in clockwise order of their left endpoints, as viewed from s.
Let s = sg = sm+1- Also, let the edge containing s be the cuts Cy and Cy, 41,
whose essential parts P(Cy) and P(C),4+1) are defined as the polygon P itself.
Given a point p in the polygon P(C), we define the image of p on the cut C as
the point of C' that is closest to p inside P(C) (in the geodesic distance).

Beginning with the point s, the approximation algorithm repeatedly com-
putes the point of the cut C to visit next, which is closest to the endpoint e
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of the currently found path and contained in the essential part of the cut on
which e is [5]. Specifically, we first compute the images of sy on the cuts in the
polygon P(Cy). Let s denote the image of sg on C1, so the image of sy on Cy,
and so on. The computation of sy’s images is terminated when the image s;11
does not dominate all the cuts Cy,Cs,...,C; before it. See Fig.2(a). Then, we
choose a critical image s, (1 < h <) from s1,82,...,5; as the first image (of
the smallest index) such that the image of s, on C;y1, which is computed (and
thus contained) in P(C},), dominates Chy1,...,C;. For the polygon shown in
Fig.2(a), we have i = 4 and h = 2 (i.e., s2 is critical in Fig. 2(a)).

Fig. 2. Critical images and the routes Wop¢, Wapp and T).

From the definition of the critical image si(1 < h < i), C}, intersects all the
cut(s) before it. Hence, the following observations can be made.

Observation 1. If C; does not intersect Ciy1, then the image s; is critical.

Observation 2. Assume that sy, is the critical image computed above, and h <
i. Then, the intersection point of C; with Cy, is closer to s; than that of C; with
any other Cy, h+1<k<i—1.

Next, we compute the images of sy, on the following cuts in the polygon P(C}).
When the image s;41 of s, on Cjy1, which does not dominate Cj41,...,C}, is
found, we can determine a new critical image from sp41,...,s;. This procedure
is repeatedly performed until the image s,, on C}, is computed. The route W,
is the concatenation of the shortest paths between every pair of adjacent critical
images. (We also consider sg and s,,41 as two critical images.)

The following results on W, then hold.

Lemma 1 (See [5]). Suppose that the image s; on C; is critical. If the route
Wopt reflects on C;, then s; is to the left of the reflection point of Wop on Cj.
Lemma 2 (See [5]). For any instance of the watchman route problem with a
given starting point s, |Wapp| < V2|Wopt| holds.

Lemma 3. Let T; be the portion of Wy from s to the point of Wope on Cj,
which visits all the cuts C1,Ca,...,C; (1 <i < m). If the (computed) image s;
on C; is critical, then |7(s,s;)| < |T3.

Proof. Omitted in this extended abstract. O



An Improved On-line Strategy for Exploring Unknown Polygons 167

2.2 An Overview of the 26.5-Competitive Strategy

In an unknown polygon, exploring a reflex vertex v requires a little care. Since
the equation of the cut of v is not known, the point of the cut closest to the
current position of the robot, say, a, cannot simply be computed. This difficulty
can be overcome by using the circle spanned by v and by a. The intersection
point of the circular arc with the cut is then the required point (see Fig. 1(b)).
Let D denote a convex region in the plane. Suppose that a photographer
follows a path to take a picture of D that shows as large a portion of D as
possible, but no white space or other objects. The photographer uses a fixed
angle lens, say, of 90°. While the right angle is touching two vertices, u and v,
of D, its apex follows the circular arc spanned by u and v. All points enclosed
by the photographer’s path, and no other, can see two points of D at the right
angle; we call this point set the angle hull of D, and denote it by AH(D) [4].
Consider now the setting where D is contained in a simple polygon whose
edges are considered as obstacles. In this case, the region D is defined as a
relatively convex polygon in P. The photographer does not want any edges of
P to appear in pictures; thus, the photographer’s path may touch a vertex of P
or overlap with a portion of the polygon edge. Again, call the set of all points
enclosed by the photographer’s path the angle hull of D, and denote it by AH(D).

Lemma 4 (See [4]). Suppose that P is a simple polygon, and D is a relatively
convex polygon inside P. The length of the perimeter of the angle hull AH(D),
with respect to P, is less than 2 times the length of D’s boundary. Moreover, the
bound of 2 holds if D is a relative convex chain that is contained in P.

The strategy of Hoffmann et al. [4] recursively reduces the polygon explo-
ration problem to two different types of subproblems: one for exploring a group of
right vertices and the other for exploring a group of left vertices. Only such right
(resp. left) vertices are gathered into a group that the shortest paths from the
local starting point to them (called the stage point in [4]) make only right (resp.
left) turns. The competitive factor for a subproblem of exploring right (resp.
left) vertices is then proved to be 6v/2, by employing the structure of angle
hulls. Next, groups of reflex vertices that are on sufficiently different recursive
levels are classified into three categories [4]. Any two local routes for the sub-
problems of the same category are mutually invisible, except for their starting
points. Hence, the total length of the robot’s routes for all subproblems of a sin-
gle category is at most 6v/2 |Wopt|. Since the connection among all subproblems
in three categories makes up to an additional path of length at most |[Wo,|,
putting all results together gives a competitive factor of 18v/2 41 < 26.5 [4].

In the rest of this paper, a polygon P is termed a right polygon (left polygon)
if the shortest paths from s to all reflex vertices of P turn only right (left).

3 Exploring a Right Polygon

Assume that the robot can measure the distance to a point in its view. Denote by
C'P the current position of the robot. The following observation can be made [4].
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Observation 3. For a point p that had ever been seen, the robot knows the
shortest path between p and C'P, even when p is currently invisible from the
robot.

The robot in our strategy always selects the smallest discovered vertex to
explore. Denote by RightTarget the list of the right vertices in clockwise order,
which have already been discovered but not yet explored. Denote by r the head
of RightTarget, which is the target vertex that the robot is going to explore. So,
the value of r is updated as soon as a smaller right vertex becomes visible.

The on-line computation of the critical images is crucial to our strategy. To
simplify the discussion, we first consider a simple situation in which no smaller
vertex is found in the procedure of exploring r, and the vertex r is always visible
from C'P. Then, we complete the exploration strategy and give the performance
analysis of our strategy.

3.1 How to Reach the Cut of a Right Vertex at the Wanted Point

Assume that C1T is the critical image that has just been found. (The initial value
of C1I is s.) Let C be the visibility cut of a vertex v, which is currently reached
by the robot (say, by a walk on the semicircle spanned by CT and by v). Denote
by T'I the image of CI on the cut C. So, CI # T1I.

Starting from the point CP(= T'I), the robot walks to explore the target ver-
tex . Assume that no smaller right vertex is found in the procedure of exploring
r, and the vertex r is visible from CP. In exploring r, the variable C as well as
T is dynamically changed, as soon as a previously visited cut is reached again.
For ease of presentation, we may also use C’ to represent such a previously vis-
ited cut and TI’ the image of CI on C’. Except for the cut of r, all other cuts
mentioned in this section had been visited by the robot’s path from CT to T
(on the cut C'). Assume also that T'I (resp. TI') dominates the cuts having been
explored along the path from CTI to T (resp. TT').

In our algorithm, we make use of the following two angle hulls. Denote by
AH(TI,r) the angle hull of the shortest path between T'I and r. Although the
cut of r has not been reached, the robot can walk on the known portion of
AH(TI,r). (Note that the unknown portion of AH(T'I,r) is only the semicircle
spanned by T and by r.) In particular, we denote by Ah(TI,r) the portion
of AH(TI,r), which is contained in Q(C). So, Ah(TI,r) is completely known
to the robot, and a part of the cut C' appears on the boundary of Ah(TI,r).
Analogously, we denote by AH(CI, ) the angle hull of the shortest path between
CTI and r, and aH(CI,r) the portion of AH(CI,r) that lies in @ — Q(C).

To explore the vertex r, starting from T'I (= CP) on C, the robot initially
walks on the boundary of Ah(T'I,r). Since r is larger than the defining vertex v
of C, the left (right) point of aH(CI,r) on C, is to the right (left) of TI (Fig. 3).
The robot then walks to explore r by the following rules.

Rule 1. When the robot reaches the left point of aH(C1,r) on the current cut C
(which is a part of Ah(T'I,r)), it changes to move on aH(CI,r). Afterwards,
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if the robot ever reaches the right point of a H(CI,r) along C, then it changes
to move on the present hull Ah(TI,r).

Rule 2. While the robot walks on aH(CI,r), it may encounter a previously
reached cut. In this case, the variable C' is changed to that cut, and T'T and
Ah(T1I,r) are updated accordingly. Afterwards, the robot moves along the
boundary of the new hull Ah(TI,r).

Rule 3. While the robot walks on the cut C (a part of Ah(TI,r)), it may
encounter an intersection point ¢ of C' with a previously reached cut C'. If
i is on the hull Ah(TI’,r) (it is known to the robot), then the variables C
and T are set to C’ and TI' respectively, and the robot walks along the
boundary of the new hull Ah(TI,r). Otherwise, nothing happens.

Fig. 3. Basic motions for exploring the target vertex r.

Lemma 5. Assume that TI(T1') dominates the cuts having been explored along
the path from CI to TI(TI'). By Rules 1 ~ 3, the robot can reach the cut of r
at the same point as that is found by the approzimation algorithm [5].

Proof. Starting from the point T'I on C, the robot first walks on Ah(TI,r). If
the robot reaches the left point of aH(CI,r), it changes to move on aH(CI,r)
(Rule 1). If the cut of r is ever reached along aH(CT,r), the (stopping) position
of the robot gives the image of CI on the cut of r and we are done (Fig. 3(a)). If
the robot moves back to the cut C' (from aH (CI,r)), it then walks on Ah(TI,r)
again. In this case, the exploration of the vertex r may finish when the robot
moves to the image of T'T on the cut of r (Fig. 3(b)—(c)).

While walking on aH(C1,r), the robot may encounter a previously visited
cut C’. In this case, we let C' «+ C’ and TI « TI’, and then, the robot walks on
the new hull Ah(T1,r) (Rule 2). This makes it possible to move to the image
of TT' on the cut of r, as that image may dominate C' (see Fig. 3(d)—(e)). While
walking on Ah(TI,r), the robot may reach an intersection point i of C' with
a previously visited cut C’ (Observation 2). If 4 is on the hull Ah(TI’,r), then
let C « C" and TI « TI', and the hull Ah(TI,r) is thus updated (Rule 3).
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In this case, the robot moves on the new hull Ah(TI,r) and probably finishes
the exploration of r at the image of T'I’ on the cut of r. See Fig. 3(e). Otherwise,
the robot continues to walk on Ah(T'I,r), because it knows that the image of T'T'
on the cut of r doesn’t dominate C' and thus needn’t be computed (Fig. 3(f)).
From Rules 1 ~ 3, the cut of r is reached along either aH(CI,r) or
AR(T1,r). In the former case, the stopping position C'P of the robot, which
dominates all the cuts visited by the robot’s path from CI to C'P, is the image
of CT on the cut of r (Fig.3(a)). In the latter case, the image of the current
point T'I on the cut of r does not dominate all the cuts visited by the path
from CI to C'P, but it dominates the cuts between its cut and the cut of r (see
Figs. 3(b)—(f)). From Rules 2 ~ 3 as well as Observation 2, we are sure that the
image T is a critical one. (One can see it in Fig.2(a) by exploring the cut Cj,
starting from s4. Rule 3 is then applied at the intersection point of Cy and Cs,
and s2 is finally reported as a critical image.) Hence, the lemma follows. a

From the proof of Lemma 5, if the robot reaches the cut of r along Ah(T1, ),
then the current point T'I is a critical image. The other situation for reporting
a critical image occurs when the target vertex r is invisible from the point C'P,
which will be discussed in the subsequent section.

3.2 The Exploration Strategy

The robot always selects the smallest discovered right vertex to explore. At the
very first step, we let CI,TI « s and set the target vertex r to be the smallest
right vertex, which is visible to s. Then, the robot can start exploring towards
the cut of r by walking on Ah(TI,r). Note that TT is identical to CI only in
the case that no cut has been reached by the robot’s path from CTI to C'P.

In approaching the target vertex r, all newly discovered right vertices are
added to RightTarget. The robot may also go across the cuts of some right ver-
tices, which are larger than r. All of these vertices are removed from RightTarget.
After r is fully explored, we update the variable C to the cut of r and the image
T1 accordingly, and delete the vertex r from RightTarget.

Let us now describe how to explore the target vertex r, if the value of
r is allowed to be changed. Since it has been discussed in the procedure
EzploreRight Vertex of [4], we first give a brief review of ExploreRight Vertex. Tt
starts at a point, called the base point, and always selects the smallest of all dis-
covered right vertices to explore. The target vertex r is explored by repeatedly
performing the following motions: (i) the robot follows the clockwise oriented
circle spanned by r and by the last vertex before C'P on the shortest path from
the base point to C'P, and (ii) when the view to the current target vertex r
gets blocked, the robot walks straight towards the blocking vertex (or follow the
polygon boundary) until the motion (i) becomes possible again. It is also shown
in [4] that if the robot reaches the cut of the target vertex at point ¢, the robot’s
path is part of the boundary of the angle hull of the shortest path from the base
point to ¢, except for the segments leading to the blocking vertices.

For our strategy given in Sect. 3.1, each point CI can be considered as a base
point. Rules 1 ~ 3 ask the robot to move on the boundary of aH(CI,r) or
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introduced edges

(b)
Fig. 4. Exploring a right-like polygon

Ah(T1,r). By allowing the value of r in aH(C1,r) and Ah(TI,r) to dynamically
change, motion (i) is already implied by Rules 1 ~ 3. In the case that the robot
loses sight of the new target vertex r, except for letting the robot walk straight
towards the blocking vertex (motion (ii)), we report the current point 71(= CP)
as a critical image becasue the cut on which C'P is cannot intersect its following
the cuts (Observation 2). The following results can then be concluded.

Lemma 6. Let r denote the smallest of the right vertices discovered by the
mobile robot. Rules 1 ~ 8 together with the two motions described above can
be used to explore the target vertex r.

By exploring the target vertex r repeatedly till the list RightTarget becomes
empty, the polygon @ can then be explored. Let us now give our procedure
RightPolygonFExp for exploring (). The point s and the list RightTarget of the
right vertices, which are visible from s, are input of RightPolygonExp.

Procedure. RightPolygonExp (in RightTarget, in s)

1. Set CI,T1,C « s. Assume that s is a special cut, with Q(s) = Q.
2. While RightTarget is not empty do

(a) Set the target vertex r to the head of RightTarget. As soon as a smaller
right vertex is discovered, the value of r changes to it. Moreover, a right
vertex is removed from RightTarget when it is fully explored, or added to
RightTarget when it becomes visible to the robot for the first time.

(b) The robot walks on the boundaries of the current hull Ah(TI,r) or
aH(CI,r) (by Rules 1 ~ 3) to explore the target vertex r, and per-
forms the following operations as soon as possible.

i. If no right vertex is visible from CP, the robot walks clockwise on
the shortest path with the turning points at polygon vertices until the
target vertex r becomes visible again. In this case, the current point
T1 is reported as a critical image, and we let CI «— T'1.

ii. If the cut of r is reached along the boundary of Ah(TI,r), the point
T1 is reported as a critical image and we let C'I «— T1.

3. The robot walks on the shortest path back to the starting point s.
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Lemma 7. The procedure RightPolygtonExp computes the same set of critical
images on the cuts, which are defined by the right vertices, as the off-line approx-
imation algorithm.

Proof. Omitted in this extended abstract. O

3.3 The Performance Analysis

Let W, (Q) denote the shortest watchman route in . We then have the fol-
lowing result.

Theorem 1. A call of the procedure RightPolygonExp explores the polygon Q
by outputting a watchman route of length at most 2v/2|Wop (Q)|.

Proof. It follows from Lemma 7 that a call of RightPolygonFExp (RightTarget, s)
simulates on-line the off-line approximation algorithm [5]. Denote by W, the
route consisting of the shortest paths in @', which connect every pair of con-
secutive critical images. Let W,.,;,(Q) denote the robot’s route produced by our
strategy for exploring Q. To apply Lemma 4, we then construct an artificial poly-
gon from . For each essential cut C, we cut off the portion @ — Q(C) from @,
in the order of essential cuts. See Fig. 4(b). For every point at which the robot’s
route changes between two different circular arcs, we insert into ) two isometric
edges between it and a boundary point such that the added edges are outside
of W,.05(Q) and on the line through two vertices of @, which are on the shortest
paths from s to some right vertices. The resulting polygon, denoted by @', is
simple. Both W,.,4(Q) and W, are the relatively convex polygons in Q’.

We prove below [W,.0,(Q)] < 2|Wapp|. To this end, we claim that each part
of W,.05(Q) between two consecutive critical images, say, p and ¢, is no longer
than twice the length of the shortest path between p and ¢ in Q’. For any two
consecutive points at which the artificial edges are added, we connect them using
the shortest path. This gives a path between p and ¢ inside Q’, and we denote
it by T. It is easy to see that T is a relatively convex chain in @', and the
portion of W,.,;(Q) between p and ¢ is contained in the angle hull of the path
T inside @’'. Thus, the portion of W,..,(Q) between p and ¢ cannot exceed in
length 2|T°|. Since the path T is longer than the shortest path between p and
g, our claim is proved. Hence, we can conclude that |W,o| < 2|Wqpp|. Since
[Wapp| < V2| Wopt(Q)| holds, the theorem follows. O

A polygon @Q is said to be right-like if (i) some right vertices in the initial list
RightTargeT may not be visible from s but to them the robot knows in advance
the shortest paths, (ii) if a reflex vertex = happens to be encountered by the
robot’s route, then the right vertices that are visible from x are also added to
the list RightTarget, and (iii) a call of RightPolygonExp(RightTarget, s) explores
the polygon Q. The left-like polygons are defined analogously. For instance, the
polygon shown in Fig.4 is right-like, as vertex r3 is visible from vertex f that
happens to be encountered by the robot’s route, and thus, 3 is also explored.
Also, we have the following result.
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Theorem 2. A call of RightPolygonExp(RightTarget, s) can explore the right-
like polygon Q by outputting a watchman route of length at most 2v/2| W (Q)].

Obviously, there is a symmetric procedure LeftPloygonExp that is identi-
cal to RightPolygonFEzp, except that left/right, clockwise/counterclockwise and
small/large are exchanged.

4 Exploring a Simple Polygon

Our strategy for exploring a simple polygon P is mainly a recursive procedure
that reduces the polygon exploration problem to the subproblems of exploring
the groups of right vertices and the groups of left vertices. It differs from the
strategy of Hoffmann et al. [4] in the following two sides. First, the explorations
for the left vertices and for the right vertices are exchanged as soon as possible.
This helps to save an additional path of length at most |W,,,|, which is used to
connect the local starting points in the strategy of Hoffmann et al. [4]. Second,
we give a new method to analyze the total cost of the solutions for exploring the
right (left) vertices. This makes it possible to classify the subproblems into two
categories, instead of three ones required in [4]. Excluding some special paths, the
solutions for the subproblems of the same category together have a competitive
factor 2v/2. Moreover, all the special paths together cannot exceed in length
|Wopt|. Hence, the competitive factor of our strategy is 4v/2 + 1.

4.1 The 6.7-Competitive Strategy

Denote by RightEzxplorationRec(LeftExplorationRec) the recursive procedure for
exploring a group of right (left) vertices. Suppose that the robot makes the very
first clockwise tour from s to explore the discovered right vertices, which satisfy
the definition of a right-like polygon. For those right vertices whose parents in
the known portion of SPT(s) are left vertices, they may be discovered by this
tour but are not explored, because they do not belong to the right-like polygon
starting from s. On the other hand, some left vertices may happen to be fully
explored in this clockwise tour. Among those fully explored left vertices, we mark
the ones that have the right vertices as their sons in SPT(s).

The procedure RightEzplorationRec can be given by modifying RightPoly-
gonEzxp as follows. First, the essential cuts and critical images are now defined
with respect to the set of explored right vertices. Second, we maintain during the
clockwise tour a list LeftList of the discovered left vertices, which either have not
been fully explored or have a right-vertex son in the known portion of SPT(s).
The list LiftList is kept as a local data structure in RightExplorationRec.

A new idea of our strategy here is to change to explore the discovered left
vertices, as soon as it is possible. We say the switching condition is satisfied in
performing RightFxplorationRec if C'P is on the cut of a right vertez, say, v, and
at least one vertex of LeftList is the son of v in the known portion of SPT(s).
(The condition for switching to explore the right vertices is defined analogously.)
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Whenever the switching condition is satisfied, the robot moves to v (if needed)
and then makes a call of LeftExplorationRec with the initial list Left Target, whose
elements are v’s descendants (in SPT(s)) contained in LeftList.

Since LeftEzplorationRec is a recursive procedure, all elements of LeftTar-
get, and everything behind, get explored by a call of LeftExzplorationRec. After
LeftEzplorationFExp terminates, the robot continues its clockwise tour, from the
break point, so as to explore the remaining elements of RightTarget.

By symmetry, we will give only the detail of RightExzplorationRec. Let s,
denote the point at which RightExplorationRec is invoked, and RightTarget the
initial list of right vertices in clockwise order, to which the robot knows the
shortest paths. The initial list RightTarget may contain some right vertices, which
had been fully explored but have a left-vertex son in SPT(s). So, if the target
vertex was already explored, the robot walks along the shortest path to it. Also,
we consider s, as the largest element of RightTarget and an already explored
vertex.

Procedure. RightExplorationRec (in RightTarget, in s,)

1. Set CI,TI,C « s,. Assume that s, is a special cut, with P(s,) = P.
2. While RightTarget is not empty do

(a) If the target vertex r was already explored, walk along the shortest path
to it (at which the switching condition is always satisfied).

(b) If r has not yet been explored, perform Step 2 of RightPolygonExp with
the following modifications: (i) the essential cuts and critical images are
defined with respect to the set of explored right vertices, and (ii) save in
LeftList in counterclockwise order the discovered left vertices, which have
not been fully explored or have a right-vertex son in SPT(s).

(¢) Whenever the switching condition is satisfied in Step 2(a) or 2(b), do the
followings:

i. Walk along the current cut to its defining vertex (if needed).
ii. Select (and delete) from LeftList the elements, which are the descen-
dants of CP in SPT(s), and put them in LeftTarget.
iii. Call LeftExzplorationRec(LeftTarget, s;) by setting s; < CP.
iv. Restart Step 2(a) or 2(b) from the breaking point.

By considering the point s as an already explored left/right vertex, the pro-
cedure for exploring the polygon P can be given as follows.

Procedure. PolygonEzploration (in P, in s)

1. Set RightTarget (LeftTarget) to the list of the right (left) vertices, which are
visible from s and ordered in clockwise (counterclockwise) order.

2. If RightTarget is not empty Call RightEzplorationRec(RightTarget, s)
else Call LeftExplorationRec(LeftTarget, s).

The robot’s walk caused by Step 2 of a procedure RightFExplorationRec or
LeftEzplorationRec, without considering further calls within it, clearly forms a
closed curve. In Fig.5(a), the route R1 is the very first tour for exploring right
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Fig. 5. Exploring an unknown polygon.

vertices. The switching condition is satisfied at the point s, as [1 belongs to
LeftList and is the son of the right vertex s. So, the robot moves to explore
I1 along the route L2, see Fig.5(b). When the robot reaches the point i1, the
switching condition is satisfied again. The robot walks to explore r1 along R3,
and then moves back to /1 (along R3) and finally to s (along L2). Next, the
robot moves to explore r7, r4, r5 and r6 along R1. When the robot reaches 7,
it changes to explore the left vertices along L4, and so on.

Lemma 8. A call of the procedure PolygonExploration outputs a watchman
route.

Proof. Omitted in this extended abstract. O

Lemma 9. All local starting points, at which RightExplorationRec and Left-
EzplorationRec are called, have to be visited at least once by Wop.

Proof. Omitted in this extended abstract (see also [4]). O
By now, we can give the main result of this paper.

Theorem 3. For a polygon P and a starting point s on its boundary, a call of
PolygonExploration(P, s) explores P, which outputs a watchman route of length
at most 6.7 times the length of the shortest watchman route through s.

Proof. Denote by W R,.op(W L,.op) the union of the routes R of the robot, which
are outputted in Step 2 of RightExplorationRec (RightExplorationRec). Also,
denote by W R,p: (W Lopt) the optimal watchman route that visits the union of
the cuts of right (left) vertices and starting points, which are visited by all routes
in WRyob(WLyop). Then, [WRopi| < [Wope| and [W Lopi| < [Wope| (Lemma9).

Denote by R and R’ two routes of W R,..;,. Assume that the starting point a
of R is immediately before the starting point b of R’ on the boundary of P. We
first give a method to evaluate the total length of R and R’.

Case 1. R and R’ are mutually invisible, except for their local starting points.
Suppose that a “clever” robot knows the shortest paths to the right vertices
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explored by R/, when it starts the exploration at a. Denote by RR’ the route
of this clever robot, which explores the vertices that are explored by R and R’.
Then, we have |R| + |R'| < |RR'| [4].

¢ P
~ =~ TRCH(AA")
rd

Fig. 6. Illustrating the proof of Theorem 3.

Case 2. R and R’ are not mutually invisible. From the definition of the right-like
polygons, R cannot touch the starting point b of R’ (see Fig.6). Let C be the
last cut explored by R’, and ¢ the point of C, at which R’ reaches C. Since R
and R’ are not mutually invisible, we denote by d and e the two points on R
such that d (e) is visible from b and closest to (furthest from) the point a along
R. See Fig. 6. So, if the point d (e) is not a vertex of P, then the line through
b and d (e) is tangent to R. This implies that the extension of the last segment
of m(c,b) intersects R. The angle formed by 7 (b, e) and 7 (b, c) at point b is then
larger than 7/2 and smaller than 7. Since 7(b,d) is just the line segment bd, we
have |7(b,d)| < |m(c,d)|. Since the portion of R from d to e is relatively convex,
it cannot exceed in length the route that consists of w(d,b) and = (b, e).

As in Case 1, denote by RR’ the clever robot’s route, which explores the
vertices that are explored by R and R/, starting from a. Denote by AA’ the
route that is computed by the off-line approximation algorithm, with respect to
the cuts visited by RR'. See Fig. 6. The route consisting of the portion of R from
a to d, the path 7(d,b), the portion of R’ from b to ¢, the path m(c,e) and the
portion of R from e back to a is then relatively convex. Clearly, the length of this
route cannot exceed |RCH(AA’)|. See Fig.6. By noticing the fact that w(d,b)
does not belong to R nor R/, we are sure that |R|+|R'|—|7(b,c)| < |[RCH(AA)|.

The above analysis can repeatedly be made to any two consecutive routes of
W R,0p- So, except for the paths 7(b, c¢) used in Case 2, the total length of the
routes in W R,..;, cannot exceed the clever robot’s route that visits the union of
the cuts of right vertices and starting points, which are visited by all routes of
W R,op. Since the length of this clever robot’s route cannot exceed 2|W R, |, the
total length of the routes outputted by all calls of RightPolygonRec is at most
2v/2|Wopi|. Analogously, except for the special paths (b, c), the total length of
the routes outputted by all calls of LeftPolygonRec is at most 2ﬂ|Wopt|.

It remains to evaluate the total length of all the paths (b, ¢) used in Case 2.
First, the starting points b as well as the cuts C are all different, no matter
whether the paths (b, ¢) are introduced for the routes of WR,.o, or W iL,pp.
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Second, W, passes through these points b (Lemma9). Finally, ¢ is a critical
image, with respect to the cuts visited by R’. The total length of these paths
m(b,c) is then less than |W,,:| (Lemma3). Hence, we obtain the competitive
factor 42+ 1 < 6.7. O
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