
Zaixin Lu · Donghyun Kim · Weili Wu
Wei Li · Ding-Zhu Du (Eds.)

 123

LN
CS

 9
48

6

9th International Conference, COCOA 2015
Houston, TX, USA, December 18–20, 2015
Proceedings

Combinatorial
Optimization
and Applications

Lecture Notes in Computer Science 9486

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zürich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Zaixin Lu • Donghyun Kim • Weili Wu •

Wei Li • Ding-Zhu Du (Eds.)

Combinatorial
Optimization
and Applications
9th International Conference, COCOA 2015
Houston, TX, USA, December 18–20, 2015
Proceedings

123

Editors
Zaixin Lu
Marywood University
Scranton, PA
USA

Donghyun Kim
North Carolina Central University
Durham, NC
USA

Weili Wu
University of Texas at Dallas
Richardson, TX
USA

Wei Li
Texas Southern University
Houston, TX
USA

Ding-Zhu Du
University of Texas at Dallas
Richardson, TX
USA

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-26625-1 ISBN 978-3-319-26626-8 (eBook)
DOI 10.1007/978-3-319-26626-8

Library of Congress Control Number: 2015954595

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

Springer Cham Heidelberg New York Dordrecht London
© Springer International Publishing Switzerland 2015
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

Springer International Publishing AG Switzerland is part of Springer Science+Business Media
(www.springer.com)

Preface

The 9th Annual International Conference on Combinatorial Optimization and Appli-
cations (COCOA 2015) was held during December 18–20, 2015, in Houston, Texas,
USA. COCOA 2015 provided a forum for researchers working in the area of theoretical
computer science and combinatorics.

The technical program of the conference included 59 contributed papers selected by
the Program Committee from 125 full submissions received in response to the call for
papers. All the papers were peer reviewed by Program Committee members or external
reviewers.

The topics cover most aspects of theoretical computer science and combinatorics
related to computing, including classic combinatorial optimization, geometric opti-
mization, network optimization, optimization in graphs, applied optimization, com-
plexity and game, and miscellaneous. Some of the papers will be selected for
publication in special issues of Algorithmica, Theoretical Computer Science, Journal of
Combinatorial Optimization, and Computational Social Networks. It is expected that
the journal version of the papers will appear in a more complete form.

We thank all the people who made this meeting possible: the authors for submitting
papers, the Program Committee members, and external reviewers for volunteering their
time to review conference papers. We would also like to extend special thanks to the
publication, publicity, and local organization chairs for their work in making COCOA
2015 a successful event.

September 2015 Zaixin Lu
Donghyun Kim

Weili Wu
Wei Li

Ding-Zhu Du

Organization

Program Chairs

Zaixin Lu Marywood University, USA
Donghyun Kim North Carolina Central University, USA
Ding-Zhu Du University of Texas at Dallas, USA

Program Committee

Wolfgang Bein University of Nevada, Las Vegas, USA
Gruia Calinescu Illinois Institute of Technology, USA
Zhi-Zhong Chen Tokyo Denki University, Japan
Xujin Chen Chinese Academy of Sciences, China
Yongxi Cheng Xi’an Jiaotong University, China
Ovidiu Daescu University of Texas at Dallas, USA
Bhaskar DasGupta University of Illinois at Chicago, USA
Vladimir Deineko Warwick University, UK
Thang Dinh Virginia Commonwealth University, USA
Ding-Zhu Du University of Texas at Dallas, USA
Zhenhua Duan Xidian University, China
Neng Fan University of Arizona, USA
Bin Fu University of Texas-Pan American, USA
Xiaofeng Gao Shanghai Jiao Tong University, USA
Majed Haddad University of Avignon, France
Juraj Hromkovic ETH Zurich, Switzerland
Sun-Yuan Hsieh National Cheng Kung University, Taiwan
Tsan-sheng Hsu Academia Sinica, Taiwan
Hejiao Huang Harbin Institute of Technology, China
Kazuo Iwama Kyoto University, Japan
Donghyun Kim North Carolina Central University, USA
Jie Li University of Tsukuba, Japan
Minming Li City University of Hong Kong, SAR China
Zaixin Lu Marywood University, USA
Mitsunori Ogihara University of Miami, USA
Xian Qiu Zhejiang University, China
Suneeta Ramaswami Rutgers University, USA
Rahul Vaze The Tata Institute of Fundamental Research, India
Lusheng Wang City University of Hong Kong, SAR China
Boting Yang University of Regina, Canada
Hsu-Chun Yen National Taiwan University, Taiwan

Zhao Zhang Zhejiang Normal University, China
Jiaofei Zhong California State University, USA
Yuqing Zhu California State University, USA
Ilias Kotsireas Wilfrid Laurier University, Canada

VIII Organization

Contents

Classic Combinatorial Optimization

Improved Algorithms for the Evacuation Route Planning Problem. 3
Gopinath Mishra, Subhra Mazumdar, and Arindam Pal

Improved MAXSAT Algorithms for Instances of Degree 3 20
Chao Xu, Jianer Chen, and Jianxin Wang

Directed Pathwidth and Palletizers. 31
Frank Gurski, Jochen Rethmann, and Egon Wanke

Black and White Bin Packing Revisited . 45
Jing Chen, Xin Han, Wolfgang Bein, and Hing-Fung Ting

Local Search Algorithms for k-Median and k-Facility Location Problems
with Linear Penalties . 60

Yishui Wang, Dachuan Xu, Donglei Du, and Chenchen Wu

A ð5:83þ �Þ-Approximation Algorithm for Universal Facility Location
Problem with Linear Penalties . 72

Yicheng Xu, Dachuan Xu, Donglei Du, and Chenchen Wu

Variants of Multi-resource Scheduling Problems with Equal
Processing Times . 82

Hamed Fahimi and Claude-Guy Quimper

Geometric Optimization

The Discrete and Mixed Minimax 2-Center Problem 101
Yi Xu, Jigen Peng, Yinfeng Xu, and Binhai Zhu

Approximation Algorithms for Generalized MST and TSP in Grid Clusters . . . 110
Binay Bhattacharya, Ante Ćustić, Akbar Rafiey, Arash Rafiey,
and Vladyslav Sokol

Covering, Hitting, Piercing and Packing Rectangles Intersecting
an Inclined Line . 126

Apurva Mudgal and Supantha Pandit

Optimal Self-assembly of Finite Shapes at Temperature 1 in 3D 138
David Furcy and Scott M. Summers

http://dx.doi.org/10.1007/978-3-319-26626-8_1
http://dx.doi.org/10.1007/978-3-319-26626-8_2
http://dx.doi.org/10.1007/978-3-319-26626-8_3
http://dx.doi.org/10.1007/978-3-319-26626-8_4
http://dx.doi.org/10.1007/978-3-319-26626-8_5
http://dx.doi.org/10.1007/978-3-319-26626-8_5
http://dx.doi.org/10.1007/978-3-319-26626-8_6
http://dx.doi.org/10.1007/978-3-319-26626-8_6
http://dx.doi.org/10.1007/978-3-319-26626-8_6
http://dx.doi.org/10.1007/978-3-319-26626-8_7
http://dx.doi.org/10.1007/978-3-319-26626-8_7
http://dx.doi.org/10.1007/978-3-319-26626-8_8
http://dx.doi.org/10.1007/978-3-319-26626-8_9
http://dx.doi.org/10.1007/978-3-319-26626-8_10
http://dx.doi.org/10.1007/978-3-319-26626-8_10
http://dx.doi.org/10.1007/978-3-319-26626-8_11

Line Segment Covering of Cells in Arrangements . 152
Matias Korman, Sheung-Hung Poon, and Marcel Roeloffzen

An Improved On-line Strategy for Exploring Unknown Polygons 163
Xuehou Tan and Qi Wei

Polynomial Time Approximation Scheme for Single-Depot Euclidean
Capacitated Vehicle Routing Problem . 178

Michael Khachay and Helen Zaytseva

Network Optimization

A Fast and Effective Heuristic for Discovering Small Target Sets
in Social Networks . 193

Gennaro Cordasco, Luisa Gargano, Marco Mecchia, Adele A. Rescigno,
and Ugo Vaccaro

An Efficient Shortest-Path Routing Algorithm in the Data Centre
Network DPillar . 209

Alejandro Erickson, Abbas Eslami Kiasari, Javier Navaridas,
and Iain A. Stewart

A Sensor Deployment Strategy in Bus-Based Hybrid Ad-Hoc Networks 221
Hongwei Du, Rongrong Zhu, Xiaohua Jia, and Chuang Liu

New Insight into 2-Community Structures in Graphs with Applications
in Social Networks . 236

Cristina Bazgan, Janka Chlebíková, and Thomas Pontoizeau

WDCS: A Weight-Based Distributed Coordinate System 251
Yaning Liu, Hongwei Du, and Qiang Ye

Adaptive Scheduling Over a Wireless Channel Under Constrained Jamming. . . 261
Antonio Fernández Anta, Chryssis Georgiou, and Elli Zavou

Metric and Distributed On-Line Algorithm for Minimizing Routing
Interference in Wireless Sensor Networks. 279

Kejia Zhang, Qilong Han, Zhipeng Cai, Guisheng Yin, and Junyu Lin

Distributed Algorithm for Mending Barrier Gaps via Sensor Rotation
in Wireless Sensor Networks . 293

Yueshi Wu and Mihaela Cardei

Applied Optimization

A Hybrid Large Neighborhood Search for Dynamic Vehicle Routing
Problem with Time Deadline . 307

Dan Yang, Xiaohan He, Liang Song, Hejiao Huang, and Hongwei Du

X Contents

http://dx.doi.org/10.1007/978-3-319-26626-8_12
http://dx.doi.org/10.1007/978-3-319-26626-8_13
http://dx.doi.org/10.1007/978-3-319-26626-8_14
http://dx.doi.org/10.1007/978-3-319-26626-8_14
http://dx.doi.org/10.1007/978-3-319-26626-8_15
http://dx.doi.org/10.1007/978-3-319-26626-8_15
http://dx.doi.org/10.1007/978-3-319-26626-8_16
http://dx.doi.org/10.1007/978-3-319-26626-8_16
http://dx.doi.org/10.1007/978-3-319-26626-8_17
http://dx.doi.org/10.1007/978-3-319-26626-8_18
http://dx.doi.org/10.1007/978-3-319-26626-8_18
http://dx.doi.org/10.1007/978-3-319-26626-8_19
http://dx.doi.org/10.1007/978-3-319-26626-8_20
http://dx.doi.org/10.1007/978-3-319-26626-8_21
http://dx.doi.org/10.1007/978-3-319-26626-8_21
http://dx.doi.org/10.1007/978-3-319-26626-8_22
http://dx.doi.org/10.1007/978-3-319-26626-8_22
http://dx.doi.org/10.1007/978-3-319-26626-8_23
http://dx.doi.org/10.1007/978-3-319-26626-8_23

Indoor Localization via Candidate Fingerprints and Genetic Algorithm 319
Zeqi Song, Hongwei Du, Hejiao Huang, and Chuang Liu

On Clustering Without Replication in Combinatorial Circuits 334
Zola Donovan, Vahan Mkrtchyan, and K. Subramani

On Replica Placement in High-Availability Storage Under
Correlated Failure . 348

K. Alex Mills, R. Chandrasekaran, and Neeraj Mittal

Observing the State of a Smart Grid Using Bilevel Programming 364
Sonia Toubaline, Pierre-Louis Poirion, Claudia D’Ambrosio,
and Leo Liberti

Optimizing Static and Adaptive Probing Schedules for Rapid
Event Detection . 377

Ahmad Mahmoody, Evgenios M. Kornaropoulos, and Eli Upfal

Complexity and Game

Vertex Cover in Conflict Graphs: Complexity and a Near
Optimal Approximation . 395

Dongjing Miao, Jianzhong Li, Xianmin Liu, and Hong Gao

On the Complexity of Scaffolding Problems: From Cliques
to Sparse Graphs. 409

Mathias Weller, Annie Chateau, and Rodolphe Giroudeau

Parameterized Lower Bound and NP-Completeness of Some H-Free
Edge Deletion Problems. 424

N.R. Aravind, R.B. Sandeep, and Naveen Sivadasan

Multicast Network Design Game on a Ring . 439
Akaki Mamageishvili and Matúš Mihalák

Extreme Witnesses and Their Applications . 452
Andrzej Lingas and Mia Persson

Orbital Independence in Symmetric Mathematical Programs 467
Gustavo Dias and Leo Liberti

Symbolic Model Checking for Alternating Projection Temporal Logic 481
Haiyang Wang, Zhenhua Duan, and Cong Tian

Optimization in Graphs

An I/O Efficient Algorithm for Minimum Spanning Trees 499
Alka Bhushan and Gopalan Sajith

Contents XI

http://dx.doi.org/10.1007/978-3-319-26626-8_24
http://dx.doi.org/10.1007/978-3-319-26626-8_25
http://dx.doi.org/10.1007/978-3-319-26626-8_26
http://dx.doi.org/10.1007/978-3-319-26626-8_26
http://dx.doi.org/10.1007/978-3-319-26626-8_27
http://dx.doi.org/10.1007/978-3-319-26626-8_28
http://dx.doi.org/10.1007/978-3-319-26626-8_28
http://dx.doi.org/10.1007/978-3-319-26626-8_29
http://dx.doi.org/10.1007/978-3-319-26626-8_29
http://dx.doi.org/10.1007/978-3-319-26626-8_30
http://dx.doi.org/10.1007/978-3-319-26626-8_30
http://dx.doi.org/10.1007/978-3-319-26626-8_31
http://dx.doi.org/10.1007/978-3-319-26626-8_31
http://dx.doi.org/10.1007/978-3-319-26626-8_32
http://dx.doi.org/10.1007/978-3-319-26626-8_33
http://dx.doi.org/10.1007/978-3-319-26626-8_34
http://dx.doi.org/10.1007/978-3-319-26626-8_35
http://dx.doi.org/10.1007/978-3-319-26626-8_36

The Connected p-Centdian Problem on Block Graphs 510
Liying Kang, Jianjie Zhou, and Erfang Shan

Searching for (near) Optimal Codes. 521
Xueliang Li, Yaping Mao, Meiqin Wei, and Ruihu Li

Dynamic Single-Source Shortest Paths in Erdös-Rényi Random Graphs 537
Wei Ding and Ke Qiu

Trees, Paths, Stars, Caterpillars and Spiders . 551
Minghui Jiang

Algorithms for the Densest Subgraph with at Least k Vertices
and with a Specified Subset . 566

Wenbin Chen, Lingxi Peng, Jianxiong Wang, Fufang Li,
and Maobin Tang

Deleting Edges to Restrict the Size of an Epidemic: A New Application
for Treewidth . 574

Jessica Enright and Kitty Meeks

Optimal Approximation Algorithms for Maximum Distance-Bounded
Subgraph Problems . 586

Yuichi Asahiro, Yuya Doi, Eiji Miyano, and Hirotaka Shimizu

The Influence of Preprocessing on Steiner Tree Approximations 601
Stephan Beyer and Markus Chimani

Legally ðDþ 2Þ-Coloring Bipartite Outerplanar Graphs in Cubic Time. 617
Danjun Huang, Ko-Wei Lih, and Weifan Wang

Maximum Independent Set on B1-VPG Graphs . 633
Abhiruk Lahiri, Joydeep Mukherjee, and C.R. Subramanian

Approximating the Restricted 1-Center in Graphs . 647
Wei Ding and Ke Qiu

The Disjunctive Bondage Number and the Disjunctive Total Bondage
Number of Graphs . 660

Eunjeong Yi

Edge-Disjoint Packing of Stars and Cycles . 676
Minghui Jiang, Ge Xia, and Yong Zhang

Dynamic Minimum Bichromatic Separating Circle 688
Bogdan Armaselu and Ovidiu Daescu

XII Contents

http://dx.doi.org/10.1007/978-3-319-26626-8_37
http://dx.doi.org/10.1007/978-3-319-26626-8_38
http://dx.doi.org/10.1007/978-3-319-26626-8_39
http://dx.doi.org/10.1007/978-3-319-26626-8_40
http://dx.doi.org/10.1007/978-3-319-26626-8_41
http://dx.doi.org/10.1007/978-3-319-26626-8_41
http://dx.doi.org/10.1007/978-3-319-26626-8_42
http://dx.doi.org/10.1007/978-3-319-26626-8_42
http://dx.doi.org/10.1007/978-3-319-26626-8_43
http://dx.doi.org/10.1007/978-3-319-26626-8_43
http://dx.doi.org/10.1007/978-3-319-26626-8_44
http://dx.doi.org/10.1007/978-3-319-26626-8_45
http://dx.doi.org/10.1007/978-3-319-26626-8_45
http://dx.doi.org/10.1007/978-3-319-26626-8_46
http://dx.doi.org/10.1007/978-3-319-26626-8_46
http://dx.doi.org/10.1007/978-3-319-26626-8_47
http://dx.doi.org/10.1007/978-3-319-26626-8_48
http://dx.doi.org/10.1007/978-3-319-26626-8_48
http://dx.doi.org/10.1007/978-3-319-26626-8_49
http://dx.doi.org/10.1007/978-3-319-26626-8_50

Miscellaneous

Searching Graph Communities by Modularity Maximization
via Convex Optimization . 701

Yuqing Zhu, Chengyu Sun, Deying Li, Cong Chen, and Yinfeng Xu

A New Tractable Case of the QAP with a Robinson Matrix 709
Eranda Çela, Vladimir G. Deineko, and Gerhard J. Woeginger

An Online Model of Berth and Quay Crane Integrated Allocation
in Container Terminals . 721

Feifeng Zheng, Longliang Qiao, and Ming Liu

On the Minimal Constraint Satisfaction Problem: Complexity
and Generation . 731

Guillaume Escamocher and Barry O’Sullivan

Algebraic Theory on Shortest Paths for All Flows. 746
Tadao Takaoka

The Minimum Acceptable Violation Ranking of Alternatives
from Voters’ Ordinal Rankings . 758

Kelin Luo and Yinfeng Xu

Listing Center Strings Under the Edit Distance Metric 771
Hiromitsu Maji and Taisuke Izumi

Online Scheduling for Electricity Cost in Smart Grid. 783
Xin Feng, Yinfeng Xu, and Feifeng Zheng

Proportional Cost Buyback Problem with Weight Bounds 794
Yasushi Kawase, Xin Han, and Kazuhisa Makino

Erratum to: On Replica Placement in High-Availability Storage
Under Correlated Failure . E1

K. Alex Mills, R. Chandrasekaran, and Neeraj Mittal

Author Index . 809

Contents XIII

http://dx.doi.org/10.1007/978-3-319-26626-8_51
http://dx.doi.org/10.1007/978-3-319-26626-8_51
http://dx.doi.org/10.1007/978-3-319-26626-8_52
http://dx.doi.org/10.1007/978-3-319-26626-8_53
http://dx.doi.org/10.1007/978-3-319-26626-8_53
http://dx.doi.org/10.1007/978-3-319-26626-8_54
http://dx.doi.org/10.1007/978-3-319-26626-8_54
http://dx.doi.org/10.1007/978-3-319-26626-8_55
http://dx.doi.org/10.1007/978-3-319-26626-8_56
http://dx.doi.org/10.1007/978-3-319-26626-8_56
http://dx.doi.org/10.1007/978-3-319-26626-8_57
http://dx.doi.org/10.1007/978-3-319-26626-8_58
http://dx.doi.org/10.1007/978-3-319-26626-8_59

Classic Combinatorial Optimization

Improved Algorithms
for the Evacuation Route Planning Problem

Gopinath Mishra1, Subhra Mazumdar2, and Arindam Pal2(B)

1 Advanced Computing and Microelectronics Unit,
Indian Statistical Institute, Kolkata, India

gopianjan117@gmail.com
2 Innovation Labs, TCS Research, Tata Consultancy Services, Kolkata, India

{subhra.mazumdar,arindam.pal1}@tcs.com

Abstract. Emergency evacuation is the process of movement of people
away from the threat or actual occurrence of hazards such as natural
disasters, terrorist attacks, fires and bombs. In this paper, we focus on
evacuation from a building, but the ideas can be applied to city and
region evacuation. We define the problem and show how it can be mod-
eled using graphs. The resulting optimization problem can be formulated
as an integer linear program. Though this can be solved exactly, this app-
roach does not scale well for graphs with thousands of nodes and several
hundred thousands of edges. This is impractical for large graphs.

We study a special case of this problem, where there is only a single
source and a single sink. For this case, we give an improved algorithm
Single Source Single Sink Evacuation Route Planner (SSEP), whose
evacuation time is always at most that of a famous algorithm Capacity
Constrained Route Planner (CCRP), and whose running time is strictly
less than that of CCRP. We prove this mathematically and give support-
ing results by extensive experiments. We also study randomized behavior
model of people and give some interesting results.

1 Introduction

Emergency evacuation is the process of movement of people away from the threat
or actual occurrence of hazards such as natural disasters, terrorist attacks, fires
and bombs. In this paper, we focus on evacuation from a building, though the ideas
can be applied to city and region evacuation. We are motivated by the evacuation
drill that regularly happens in our company Tata Consultancy Services. We are
developing a system SmartEvacTrak [1] for people counting and coarse-level
localization for evacuation of large buildings. Safe evacuation of thousands of
employees in a timely manner, so that no one is left behind, is a major challenge for
the building administrators. Time is the main parameter in our model. The travel
time between different areas of the building is part of the input and the evacuation
time is the output. In the following discussion, we use {graph, network}, {node,
vertex}, {edge, arc}, and {path, route} interchangeably.

We have a building along with its floor plan. Employees are present in some
portions (rooms) of the building. There are some exits on the floor. Every
c© Springer International Publishing Switzerland 2015
Z. Lu et al. (Eds.): COCOA 2015, LNCS 9486, pp. 3–19, 2015.
DOI: 10.1007/978-3-319-26626-8 1

4 G. Mishra et al.

corridor has a capacity, which is the number of employees that can pass through
the corridor per unit time. Every corridor also has a travel time, which is the
time required to move from the start of the corridor to the end. The goal is to
suggest a feasible route for each employee so that he can be guided to an exit.
It must be ensured that at any time the number of employees passing through
a corridor does not exceed it’s capacity.

A complex building does not provide its occupants with all the information
required to find the optimal route. In an emergency, people tend to panic and
do not always follow the paths suggested by the algorithm. They are not given
enough time to establish a cognitive map of the building. To address this issue, we
need to model the behavior of people in emergency situations. We have proposed
a simple randomized behavior model and analyzed it. The expected evacuation
time comes out to be quite good. None of the previous works considered any
behavior model of people.

2 Related Work

In this section, we give a summary of different algorithms for the evacuation route
planning problem. Skutella [12] has a good survey on the network flows over time
problem. The monograph by Hamacher and Tjandra [4] surveys the state of the
art on the mathematical modeling of evacuation problems. Both these papers
give a good introduction and comprehensive treatment to this topic.

The LP based polynomial time algorithm for evacuation problem by Hoppe
and Tardos [5] uses the ellipsoid method and runs in O(n6T 6) time, where n is
the number of nodes in the graph and T is the evacuation egress time for the
given network. It uses time-expanded graphs for the network, where there are
T +1 copies of each node. The expression for time complexity shows that it is not
scalable even for mid-sized networks. Another disadvantage is that it requires
the evacuation egress time (T) apriori, which is not easy to estimate. As the
time complexity is a function of T , it is not a fully polynomial time algorithm.

One of the earliest algorithms by Lu et al. [8] is Capacity Constrained Route
Planner (CCRP). CCRP uses Dijkstra’s generalized shortest path algorithm to
find shortest paths from any source to any sink, provided that there is enough
capacity available on all nodes and edges of the path. An important feature of
CCRP is that instead of a single value which does not vary with time, edge
capacities and node capacities are modeled as time series (function of time).
Here, we need to update edge and node capacities for each time period. The
running time of CCRP is O(p(m+n log n)), (O(pn log n) for sparse graphs, where
m = O(n)) and space complexity is O((m+n)T) (O(nT) for sparse graphs). Here
m and n denotes the number of edges and the number of vertices of the graph
respectively, p denotes the number of evacuees, and T denotes the evacuation
egress time. As space complexity is always at most the time complexity, the
running time of CCRP is implicitly dependent on T . For sparse graphs, nT ≤
pn log n, i.e., T ≤ p log n. So, for sparse graphs the evacuation egress time is at
most O(p log n). The space complexity of O(nT) and unnecessary expansion of
source nodes in each iteration are two main disadvantages of CCRP.

Improved Algorithms for the Evacuation Route Planning Problem 5

To overcome the unnecessary expansion in each iteration, Yin et al. [14]
introduced the CCRP++ algorithm. The main advantage of CCRP++ is that
it runs faster than CCRP. But the quality of solution is not good, because
availability along a path may change between the times when paths are reserved
and when they are actually used.

Min and Neupane [11] introduced the concept of combined evacuation time
(CET) and quickest paths, which considers both transit time and capacity on
each path and provides a fair balance between them. Let there be k edge-disjoint
paths {P1, P2, . . . , Pk} from source node s to sink node t. Then, the combined
evacuation time is given by,

CET ({P1, P2, . . . , Pk}) =

⌈
p +

∑k
i=1 CiTi∑k

i=1 Ci

⌉
− 1 (1)

where Ci and Ti denotes the capacity and transit time of path Pi respectively,
and p denotes the number of evacuees. Time required to evacuate p people via
a path P having transit time T and capacity C is T +

⌈
p
C

⌉ − 1. So, Pi is said

to be the quickest path if and only if Ti +
⌈

p
Ci

⌉
− 1 ≤ Tj +

⌈
p

Cj

⌉
− 1, for all

j ∈ {1, . . . , k} \ {i}.
The formula for combined evacuation time not only gives an exact expres-

sion for the evacuation time, but it also gives the number of people that will
be evacuated on each path. The intuition behind the concept of CET is that
paths having lesser arrival time will evacuate more groups. This algorithm is
known as QPER (Quickest Path Evacuation Routing). The algorithm finds all
edge-disjoint paths between a single source and a single sink and orders them
according to the quickest evacuation time (calculated using CET) and adds
them one by one. The algorithm is fairly simple. It does not use time-expanded
graphs and there is no need to store availability information at each time stamp,
as only edge-disjoint paths are considered. But their algorithm is limited to
single source and single sink evacuation problems. Besides these, the addition of
paths is not consistent, i.e., a path added at some point of time may be removed
by the algorithm at a latter point of time, in case removal makes the solution
better.

The solutions produced by CCRP++ and QPER do not follow semantics
of CCRP, i.e., the solution quality is not better than that of CCRP. Recently
Gupta and Sarda [3] have given an algorithm called CCRP*, where evacuation
plan is same as that of CCRP and it runs faster in practice. Instead of running
Dijkstra’s algorithm from scratch in each iteration, they resume it from the
previous iteration.

Kim et al. [6] studied the contraflow network configuration problem to mini-
mize the evacuation time. In the contraflow problem, the goal is to find a recon-
figured network identifying the ideal direction for each edge to minimize the
evacuation time, by reallocating the available capacity. They proved that this
problem is NP-complete. They designed a greedy heuristic to produce high-
quality solutions with significant performance. They also developed a bottleneck

6 G. Mishra et al.

relief heuristic to deal with large numbers of evacuees. They evaluated the pro-
posed approaches both analytically and experimentally using real-world data
sets. Min and Lee [10] build on this idea to design a maximum throughput
flow-based contraflow evacuation routing algorithm.

Min [9] proposed the idea of synchronized flow based evacuation route plan-
ning. Synchronized flows replace the use of time-expanded graphs and provides
higher scalability in terms of the evacuation time or the number of people evac-
uated. The computation time only depends on the number of source nodes and
the size of the graph.

Dressler et al. [2] uses a network flow based approach to solve this problem.
They use two algorithms: one is based on minimum cost transshipment and
the other is based on earliest arrival transshipment. They evaluate these two
approaches using a cellular automaton model to simulate the behavior of the
evacuees. The minimum cost approach does not consider the distances between
evacuees and exits. It may fail if there are exits very far away. Problems also arise
if a lot of exits share the same bottleneck edges. The earliest arrival approach
uses an optimal flow over time and thus does not suffer from these problems.
But the exit assignment computed by the earliest arrival approach may not be
optimal.

There are some previous works which considered the behavior of people in
an emergency. Løvs [7] proposed different models of finding escape routes in an
emergency. Song et al. [13] collect big and heterogeneous data to capture and
analyze human emergency mobility following different disasters in Japan. They
develop a general model of human emergency mobility using a Hidden Markov
Model (HMM) for generating or simulating large amount of human emergency
movements following disasters.

v2, 2 v3, 3

v9, 3 v10, 3

v7, 7

(1, 1)

(1, 1)

(1, 1)

(1, 1)

(2, 1)

(2, 1)

p1

ex1 ex2

v1, 2

v4, 7 v5, 3

v8, 2

v6, 4

p2 p3

p4 p5 p7

p6

(2, 2)

(2, 1)

(1, 1)

(2, 2)

(2, 2)

(1, 2) (1, 2)

(2, 1) (2, 1)

Fig. 1. A building graph, where vertices represented as squares denote exits. The vertex
name and capacity are written inside a vertex. The edge capacity and travel time are
written beside an edge. Persons residing on a vertex are specified beside that vertex.

Improved Algorithms for the Evacuation Route Planning Problem 7

3 Problem Definition and Model

The building floor plan can be represented as a graph G = (V,E), where V and
E are the set of vertices and edges respectively. The number of vertices and edges
are n and m respectively. Nodes represent rooms, lobbies and intersection points
and arcs represent corridors, hallways and staircases. Some nodes in the building
having significant number of people are modeled as source nodes. The exits of a
building are represented as sink nodes. Each node has a capacity, which is the
maximum number of people that can stay at that location at any given time and
an occupancy, which is the number of people currently occupying the location.
Here, p is the total number of people who needs to be evacuated.

Each edge has a capacity, which is the maximum number of people that can
traverse the edge per unit time and a travel time, which is the time needed to
travel from one node to another along that edge.

Figure 1 shows a building graph that consists of 10 vertices and 15 edges.
For each vertex v, it’s name and the capacity are specified by a pair of the form
(v, c(v)). A vertex representing an exit is drawn as a square, while the others are
drawn as circles. For each edge e, the capacity and the travel time are specified
on the edge by the pair (c(e), d(e)). The goal is to find the exit and the path
(route) for each employee, subject to the constraint that the number of source-
sink paths passing through an edge does not exceed the capacity of the edge at
any unit time interval. The objective function we want to minimize is the total
time of evacuation, that is the time at which the last employee is evacuated.
Let’s define this as the evacuation time. In the quickest flow problem, we are
given a flow value f . We want to minimize the time T in which a feasible flow
of value at least f can be sent from sources to sinks.

4 The Single Source Single Sink Problem

In this section, we focus on the single source single sink evacuation (SSEP)
problem. In real life, single source single sink evacuation problem has many
applications. For example, if all the people are in an auditorium, and there is only
one exit in the building, we want to evacuate people as soon as possible, when
there is an emergency. Throughout the rest of this paper, s denotes the source
and t denotes the sink. Before proceeding further let’s have some definitions.

Definition 1. Transit time of a path is the sum of the transit times of all the
edges in P from s to t, and is denoted as T (P).

Definition 2. Destination arrival time of a path is the time required by a person
to move from s to t using path P subject to prior reservations, and is denoted
as DA(P). In other words, we can say that DA(P) is the sum of T (P) and any
intermediate delay. Note that DA(P) ≥ T (P).

Definition 3. Capacity of a path is the minimum of the capacities of all nodes
and edges present in the path P , and is denoted by C(P).

8 G. Mishra et al.

Definition 4. A node (edge) on a path P is called saturated if the capacity of
the node (edge) equals the capacity of P .

Definition 5. Two paths P1 and P2 are said to be distinct if V1 �= V2 or E1 �=
E2, where V1, V2 are the set of vertices and E1, E2 are the set of edges on the
paths P1 and P2 respectively.

4.1 Limitation of QPER Algorithm for SSEP

Using the concept of combined evacuation time, Min et al. [11] gave an algorithm
QPER for the single source single sink evacuation problem. Their algorithm
works well when we have already discovered k edge-disjoint paths. In QPER,
paths from s to t are added one by one in ascending order of quickest paths, and
new CET is calculated after each path addition. But after addition of a path,
the new CET may be less than the transit time of a previously added path. In
that case, we have to delete those paths which have higher transit time than
the current CET . This in turn increases the running time, since the addition of
paths is not consistent.

We overcome the above limitations of the algorithm by adding paths in
increasing order of transit time in each iteration till the transit time of the
currently discovered path exceeds the CET of the previously added set of paths.
Note that, we need not discover all possible paths from source to sink, since
unlike QPER, if a path is added in any iteration, it will remain till the end. The
CET after each iteration will be monotonically non-increasing.

4.2 Modified Algorithm for SSEP When We Are Given k
Edge-Disjoint Paths

Let P1, P2, . . . , Pk be k edge-disjoint paths from s to t in ascending order of their
transit time, i.e., T1 ≤ T2 ≤ . . . ≤ Tk. We define, Si = {P1, . . . , Pi}. We add
paths to our set of routes (R) in the following fashion.

1. R = {P1}.
2. CET = CET (S1).
3. Start with i = 1 Execute step 4 and 5 till i ≤ k and Ti+1 ≤ CET .
4. Add path Pi+1 to R.
5. CET = CET (Si+1) and i ← i + 1.
6. Return R.

Lemma 1. If Sj = {P1, P2, . . . , Pj}, j ≤ k is returned as R by the above algo-
rithm then

1. Tl+1 ≤ CET (Sl), 1 ≤ l < j
2. CET (S1) ≥ CET (S2) ≥ . . . ≥ CET (Sj)
3. CET (Sj) ≤ CET (Sl), j < l ≤ k.

Improved Algorithms for the Evacuation Route Planning Problem 9

Proof. Directly follows from the algorithm.

Lemma 2. If Sj = {P1, P2, . . . , Pj}, j ≤ k is returned as R by above algorithm
then T1 ≤ T2 ≤ . . . ≤ Tj ≤ CET (Sj) ≤ CET (Sj−1) ≤ . . . ≤ CET (S1)

Proof. Here T1 ≤ T2 ≤ . . . ≤ Tj and by Lemma 1 CET (Sj) ≤ CET (Sj−1)
≤ . . . ≤ CET (S1). So, the only thing remains to prove is Tj ≤ CET (Sj). Let
by contrary assume that Tj > CET (Sj). By putting formula for CET (Sj−1)
from Eq. (1) and then solving we get Tj > CET (Sj−1). By Lemma 1,
Tj ≤ CET (Sj−1). This is a contradiction.

Lemma 3. If Sj = {P1, P2, . . . , Pj}, j ≤ k is returned as R by above algorithm
then CET (Sj) ≤ CET (Sj \ {Pi}), 2 ≤ i ≤ j.

Proof. We will prove this statement by contradiction. Let CET (Sj) > CET (Sj \
{Pi}), which implies Ti > CET (Sj) by putting formula for CET from equation-1.
It is not possible by Lemma 2. Hence the claim holds.

Remark 1. The addition of paths by the above algorithm is consistent, i.e. if a
path is added then it will remain till the end of the algorithm execution.

4.3 An Important Observation

In Fig. 2, ordered pair (C, T) denotes capacity and transit time of an edge. There
are two paths P1 and P2 between s and t.

P1 : s − B − C − E − G − t, C(P1) = 4, T (P1) = 19.
P2 : s − A − C − E − F − t, C(P2) = 6, T (P2) = 23.

P1 and P2 are not edge-disjoint, but common edge CE has capacity of 10 i.e.
C(P1) + C(P2) = C(CE). So, flow can be sent through P1 and P2 in parallel
and we may think like we have two copies of edge CE one having capacity 4,
dedicated for P1 and other one having capacity 6, dedicated for P2. We name
such set of paths as “virtually edge disjoint”. Now it is easy to observe that
to apply the formula of combined evacuation time on a set of paths, defined in
Eq. (1), the necessary condition is they should be virtually edge disjoint rather
than edge disjoint.

s

A

B

C E

F

G

t

(15, 1)

(15, 1)

(6, 4)

(4, 2)

(10, 8)

(12, 7)

(10, 5)

(8, 3)

(8, 3)

Fig. 2. An example to show that parallel flows can be sent on non edge-disjoint paths.

10 G. Mishra et al.

4.4 Our Algorithm for SSEP

The main idea of the algorithm is to find set of virtually edge disjoint paths one
by one and calculate CET as in Sect. 4.2 after each path addition till it satisfies
a required condition.

We discover paths one by one in the order of their transit time as follows.
We find path P1 along with its capacity C1 having minimum transit time and
decrease capacities of each node and path of P1 by its capacity C1 permanently
and delete saturated nodes and edges. Let’s say we have already added paths
{P1, P2, . . . , Pi}, i ≥ 1, and updated the capacities of nodes and edges along
with deletion of required saturated nodes and edges. Note that P1, P2, . . . , Pi are
virtually edge disjoint. Hence formula of CET can be applied. In next iteration
we discover a path Pi+1 in residual graph iff t is reachable from s and i < p(see
line number-4 in Algorithm1). We add the discovered path Pi+1 iff Ti+1 ≤
CET (Si)(see line number-6 in Algorithm1). As we delete saturated nodes and
edges in each iteration when a path is added we discover paths in maximum of
m + n iterations i.e. at max m + n paths and we are not going to discover more
than p paths as each path can evacuate atleast one people. So, our algorithm
restricts finding exponential number of possible paths from s to t . More clearly
we discover at most min(m + n, p) paths.

Here one may think of we are adding paths only based on transit time without
considering capacity. Note that selection of a path for addition is based on transit
time, addition of selected path is done if its transit time less than or equal to
previously calculated CET, which is function of both capacities and transit times
of previously added paths. So, our addition of paths to the solution is based on
both transit time and capacities of paths implicitly.

4.5 Running Time Analysis of SSEP

From the above discussion it is clear that at most min(m + n, p) paths will
be discovered and equivalently our algorithm runs for at most min(m + n, p)
iterations. As each path discovery can be done in O((m + n log n) time,
using well known Dijkstra algorithm for shortest path, our entire algorithm
requires O(min(m + n, p)(m + n log n) time. Assuming m = O(n), this becomes
O(min(n, p) ·n log n), which is always at most O(pn log n). Recall that the time-
complexity of CCRP is O(pn log n). Hence, SSEP always performs faster than
CCRP. In real life, the number of evacuees is much larger than the number of
vertices, so SSEP runs much faster than CCRP.

4.6 CCRP Algorithm for SSEP and Some Observations

CCRP [8] is an industry standard algorithm. Many studies have shown that the
quality of solution produced by CCRP is better than most heuristic algorithms.
We present the CCRP algorithm in simplified form, when there is a single source
and a single sink.

Improved Algorithms for the Evacuation Route Planning Problem 11

Algorithm 1. Single Source Single Sink Evacuation Route Planner (SSEP)
Input: A graph G(V, E) representing the network with designated source s ∈ V and sink

t ∈ V . Every node v ∈ V has an occupancy and maximum capacity. Every edge
e ∈ E has a maximum capacity and transit time. Initially, all persons are in s.

Output: Evacuation route plan for each person.
1 begin
2 Initialize R = ∅ and CET = ∞.
3 Initialize i ← 0.
4 while (t is reachable from s) and number of discovered paths ≤ p − 1 do
5 Find the shortest path Pi+1 from s to t in G(V, E)and let Ti+1, Ci+1 be its transit

time and capacity respectively.
6 if Ti+1 ≤ CET then
7 R = R ∪ {Pi+1}.
8 CET = CET (Si+1).
9 Reduce capacity of each node and each edge of Pi+1 by Ci+1.

10 V = V \ {v : v is a saturated node of Pi+1}.
11 E = E \ {e : e is a saturated edge of Pi+1}.
12 end
13 else
14 break.
15 end

16 end
17 Let R = {P1, P2, . . . , Pk}.
18 Send xi persons via Pi, 1 ≤ i ≤ k, where Ti + 	 xi

Ci

 − 1 = CET .

19 end

1. s is added to the priority queue. The nodes in priority queue are ordered
based on the distance calculated from s during algorithm execution.

2. While there are evacuees in s, find the path P having minimum destination
arrival time from s to t taking the capacity of the various nodes and edges
into consideration.

3. Find capacity of P and reserve capacity along the path for a group of size
equal to the minimum capacity.

4. If there are evacuees left at s, go to step 2.

Definition 6 (Group Size of a Path). In each iteration of CCRP one path
(say Pi) from s to t is discovered along with maximum number of people that
can be evacuated through that path. This is defined as the group size of Pi for
this iteration.

For the below sections we denote Ti, Ci as transit time and group size of path
Pi respectively.

Observation 1. Let’s consider execution of single source(s) single sink(t) evac-
uation network by CCRP algorithm. Let P1, P2, . . . , Pk be distinct paths(not nec-
essarily edge-disjoint) from s to t discovered by CCRP such that T1 ≤ T2 ≤ . . . ≤
Tk. Here Ai(T) is any permutation of P1(T), P2(T), . . . , Pi(T) and Pj(T) is the
path Pj with destination arrival time T .

Phase 1: A1(T1), A1(T1 + 1), . . . , A1(T2 − 1)
. . .

12 G. Mishra et al.

Phase i: Ai(Ti), Ai(Ti + 1), . . . , Ai(Ti+1 − 1), i < k
. . .
Phase k: Ak(Tk), Ak(Tk + 1), . . . , Ak(Tk + ε − 2), Ak(Tk + ε − 1).

Here ε is the maximum number of times any path is discovered in phase k. Note
that ε ≥ 1 as Pk is discovered at least once.

Number of times any path discovered in phase-k is either ε or ε − 1. It
is because of the following argument. By definition of ε there exists a path
(say Pm) discovered ε number of times. Let Pl is a path discovered less than
ε − 1 number of times. In this case CCRP algorithm would have returned Pl

instead of Pm, because using path Pl some people can reach destination before or
at time Tk + ε − 2 and Pm has earliest destination arrival time of Tk + ε − 1.

Consider the point when all k paths have been returned ε − 1 times in phase
k. Now we may not have enough evacuees such that CCRP will return each
path once. We can add some virtual evacuees such that we will use all the paths
exactly ε times in phase-k and for simplicity we can say ε is the number of times
path Pk is returned by CCRP.

Here it is easy to note that evacuation egress time TCCRP
Evac = Tk + ε − 1 and

it is independent of permutation of paths in any Ai(T). So, fix a permutation
i.e. Ai(T) = P1(T), P2(T), . . . , Pi(T). Fixing up this permutation doesn’t affect
the solution, but it will make the analysis easier.

Observation 2. Let P1, P2, . . . , Pk be distinct paths(not necessarily edge-
disjoint) from s to t discovered by CCRP such that T1 ≤ T2 ≤ . . . ≤ Tk.
Here Pi is the shortest path discovered after deletion of saturated nodes/edges
of P1, P2, . . . , Pi−1.

Remark 2. Algorithm 1 finds a path even after we have deleted saturated nodes
and edges of all previously discovered path, if it satisfies the conditions given on
line numbers 4 and 6.

Observation 3. Let’s consider the sequence of paths as in Observation 1 with
the fixed permutation of each Ai(T) as explained. A path Pi may be returned in
many iterations of CCRP. Group size returned in all iterations are equal possibly
except last time when Pi is discovered(in phase k) in case we don’t have enough
evacuees left at s. This type of situation might happen only once as we are dealing
with single source single destination network and it can happen in phase k after
or while discovery of Pk for the first time. In such cases we can add some virtual
evacuees to s so that group size of a path remains same in all iterations. It will
not affect evacuation egress time but it will make the analysis easier.

Remark 3. We can represent each path discovered by CCRP as an ordered pair
of path and its group size. Algorithm 1 returns a path with maximum number of
people who can travel by that path at any time. As each path is discovered only
once, we can represent each path along with the capacity as an ordered pair.

Improved Algorithms for the Evacuation Route Planning Problem 13

4.7 Analysis of Algorithm 1

Lemma 4. Let (P1, C1), (P2, C2), . . . , (Pk, Ck) be distinct paths (not necessarily
edge-disjoint) from s to t in order of their transit time discovered by CCRP.

1. Number of iterations that will return path Pi is Tk − Ti + ε, 1 ≤ i ≤ k, where
ε denotes number of iterations that returns path Pk.

2. Number of iterations that will return path Pi before phase j is Tj − Ti, where
i ≤ j ≤ k.

3. The same paths will be returned by Algorithm 1, and T1 ≤ T2 ≤ . . . ≤ Tk.

Proof. Parts (1) and (2) directly follows from Observation 1. For part (3), by
induction we can prove that algorithm 1 finds each path Pj , 1 ≤ j ≤ k with
available capacity Cj .

Base Case: j = 1 i.e. (P1, C1) is added by Algorithm 1. This is obvious.

Inductive Step: Suppose paths (P1, C1), . . . , (Pj , Cj), 1 ≤ j < k have been
added by Algorithm 1. We have to prove that Algorithm 1 will also add
(Pj+1, Cj+1).

Part 1: From Observation 2, Pj+1 is the shortest path from s to t in resid-
ual graph i.e. if we delete saturated node(s) and/or edge(s) of the paths
P1, P2, . . . , Pj . Algorithm 1 also adds paths one by one after deleting saturated
node(s) and/or edges(s) of previously discovered paths. So, structure of the graph
remains same after addition of these j paths both in CCRP and Algorithm1.
So, Pj+1 is also the best path w.r.t. transit time in residual graph according to
Algorithm 1. As Pj+1 is the best path in residual network either no paths will
be added or Pj+1 will be added to set of routes in Algorithm 1.

Let by contrary assume that Algorithm 1 doesn’t add path Pj+1 i.e. Algo-
rithm1 does not add any path. Clearly it may happen due to one of the two rea-
sons i.e. either t is not reachable from s or number of paths discovered = p(line
number-4 in Algorithm 1) or Tj+1 > CET (Sj)(line number-6 in Algorithm1).

Case 1(a): (t is not reachable from s)
As CCRP is able to find path Pj+1, t is reachable from s. Contradiction!

Case 1(b): (Number of paths discovered = p)
It is clear from CCRP Algorithm given in Sect. 4.6 that it does not discover
more than p paths as in each path at least one people will be evacuated. As
CCRP finds path Pj+1, number of paths discovered before discovery of Pj+1 by
Algorithm 1 can’t be more than p − 1.

Case 2: (Tj+1 > CET (Sj))
Just come back to the point when CCRP adds path (Pj+1, Cj+1) for the first
time. It can happen only in phase j +1. From Lemma 4 Pi is returned in Tj+1 −
Ti, 1 ≤ i ≤ j < k, iterations before phase j +1. As Pj+1 discovered in phase j +1
for the first time total number of people evacuated through Pi before discovery of

14 G. Mishra et al.

Pj+1 is at least Tj+1 −Ti. As group size of path Pi is Ci, total number of people
evacuated before discovery of Pj+1 is at least

∑j
i=1 Ci(Tj+1−Ti). As CCRP adds

the path Pj+1 we can say that still there are people to be evacuated. Also from
Observation 3 virtual evacuees are added while or after addition of path Pk. So,
total number of people evacuated before discovery of Pj+1 is strictly less than
p. Mathematically

∑j
i=1 Ci(Tj+1 − Ti) < p, which implies Tj+1 ≤ CET (Sj).

Contradiction!

Part 2: Now one thing remains to prove is available capacity of the path Pj+1

returned by Algorithm 1 is also Cj+1. If Pj+1 doesn’t share any node or edge
with previously discovered path we are done. So, assume that there is some
node or edge x which is common to both Pj+1 and some Pi, 1 ≤ i ≤ j. Here
we argue considering x as a node and argument for x as an edge is same.
Let tkn denotes time required to travel from s(source) to node n via path Pk

with out intermediate delay. Observe that tj+1
x ≥ tix. From observation 1 Pj+1 is

discovered in phase j + 1 for the first time by CCRP algorithm. In phase j + 1
consider Aj+1(Tj+1). Pi has been discovered once before discovery of Pj+1 with
its destination arrival time Tj+1 i.e. it has made a reservation of Ci at x for the
time instance tj+1

x at node x. Now arrival time of evacuees via Pj+1 to x is also
tj+1
x . At tj+1

x we can not use that capacity of Ci for evacuees routing via Pj+1. In
other words as if node x has dedicated capacity of Ci at time tj+1

x for evacuees
routing via Pi and that can’t be used by evacuees routing via Pj+1. Here we
have not assumed anything on i and x. For each such i and x, Pj+1 can’t use
the capacity of Ci at time tj+1

x at node x. It is equivalent to permanently decre-
menting the capacity of such x’s by corresponding Ci, because from observation
1 whenever Pj+1 is discovered prior to that a reservation of Ci must have been
done at common node x(of Pi and Pj+1) by path Pi. Now come back to Algo-
rithm1. By induction each path Pi, i ≤ j is returned with capacity Ci. We find
path Pj+1 by decrementing the capacity of each path by Ci permanently. So,
just before addition of Pj+1 structure of the graph remains same w.r.t. capacity
both in CCRP and Algorithm1. From this discussion we can say that capacity
of path Pj+1 returned by Algorithm 1 is Cj+1.

Theorem 1. The evacuation time of the solution given by Algorithm1 is at
most as that of the CCRP Algorithm for single source and single sink.

Proof. Let (P1, C1), (P2, C2), . . . , (Pk, Ck) be distinct paths (not necessarily
edge-disjoint) from s to t in order of their transit time (neglecting delays)
discovered by CCRP. By Lemma 4, Algorithm 1 also returns the same set
of paths. From Observation 1, we can say that evacuation time of CCRP is
TCCRP

Evac = Tk + ε − 1. Evacuation time of Algorithm 1 is CET (Sk). Also from
Lemma 4, number of people that are evacuated through Pi is Ci(Tk −Ti + ε). As
All people have been evacuated we can write

∑k
i=1 Ci(Tk − Ti + ε) ≥ p, which

implies TCCRP
Evac ≥ CET (Sk).

Theorem 2. Upper bound on the evacuation time given by CCRP (hence by
Algorithm1) for single source single sink network is

⌊
p
k

⌋
+ (n − 1)τ − 1, where

p is the number of evacuees, n is the number of nodes in the graph, τ is the

Improved Algorithms for the Evacuation Route Planning Problem 15

maximum transit time of any edge and k is the number of paths used by CCRP
(and Algorithm1).

Proof. From Lemma 4, number of iterations executed by CCRP is
∑k

i=1(Tk −
Ti + ε) ≤ p, as in each iteration at least one person will be evacuated. Hence,
TCCRP

Evac ≤ ⌊
p
k

⌋
+ (n − 1)τ − 1.

5 Randomized Behavior Model of People

The idea of combined evacuation time [11] can be extended by considering prob-
abilistic behavior of people. Suppose in an evacuation, people do not follow the
paths suggested by Algorithm 1 (or CCRP). Let’s say with probability α > 0 a
person follows suggested path and with probability 1−α he follows the shortest
path (to the nearest exit). In this situation, we have to redistribute people via
various paths. If we suggest xi persons via Pi, i �= 1, then the number of persons
who will follow Pi and P1 is αxi and (1−α)xi respectively (in expectation). The
total number of people following P1 and Pi are x1+

∑k
i=2(1−α)xi and αxi, i �= 1

respectively. Expected time at which the last person will arrive at destination
via P1 is T1 + x1+

∑k
i=2(1−α)xi

C1
−1. Expected time at which last person will arrive

at destination via Pi is Ti + αxi

Ci
− 1, i �= 1

Let the expected evacuation time in this scenario be E[T]. Now we can write,

E[T] = max
(

T1 +
(1 − α)n

C1
− 1, max

2≤i≤k

(
Ti +

αxi

Ci
− 1

))
.

E[T] will be minimum when it satisfies the following equation,

E[T] = T1 +
x1 +

∑k
i=2(1 − α)xi

C1
− 1

= Ti +
αxi

Ci
− 1, 2 ≤ i ≤ k. (2)

where
∑k

i=1 xi = n and xi ≥ 0,∀i. Solving the above equations we get,

E[T] =
n +

∑k
i=1 CiTi∑k

i=1 Ci

− 1 = CET ({P1, P2, . . . , Pk}) (3)

Expected evacuation time given by Eq. (3) doesn’t depend on α. This is true
and solution is feasible as long as x1 ≥ 0. But it is not always the case, specifi-
cally when (1 − α)

∑k
i=2 xi > C1(T − T1 + 1). So, implicitly evacuation time is

dependent on α. In the following sections we give the algorithm that considers
the randomized behavior of people along with analysis for expected evacuation
time.

5.1 Lower Bound for Expected Evacuation Time

On expectation x1 + (1 − α)
∑k

i=2 xi = αx1 + (1 − α)n number of people will
be evacuated via path P1. This is minimum when x1 = 0 as x1 ≥ 0. So, lower
bound for expected evacuation time is T1 + (1−α)n

C1
− 1.

16 G. Mishra et al.

Fig. 3. Evacuation time vs number of nodes for SSEP and CCRP.

5.2 Algorithm for Randomized Behavior of People

Algorithm 2

1. Run Algorithm 1. Find CET and x1, x2, . . . , xk using Eq. (2).
2. If x1 ≥ 0 then quit; else go to step 3. In this case, the expected evacuation

time = CET.
3. Assign x′

1 to 0 and x′
i = nxi∑k

j=2 xj
,∀i �= 1. In this case, the expected evacuation

time = T1 + (1−α)n
C1

− 1.

Lemma 5. x′
i < xi, ∀i �= 1, and

∑k
i=2 x′

i = n.

Proof. Directly follows from the algorithm.

Lemma 6. Above algorithm has a expected evacuation time of CET ({P1, P2,
. . . , Pk}) when it quits from step-2.

Proof. In this case x1 ≥ 0. From the equation-4 also we can observe that xi ≥
0,∀i �= 1. Hence the solution is feasible. So, we can safely say that the expected
evacuation time is CET .

Lemma 7. Above algorithm has a expected evacuation time of T1 + (1−α)n
C1

− 1
when it quits from step-3.

Proof. In this case x1 < 0 and by Lemma 5 x′
i < xi, i �= 1. For i �= 1 x′

i number
of people are suggested path Pi. Hence Ti + px′

i

Ci
− 1 < Ti + pxi

Ci
− 1 < CET ,

i �= 1 and T1 + (1−α)n
C1

− 1 > CET .

Improved Algorithms for the Evacuation Route Planning Problem 17

Fig. 4. Run time vs number of nodes for SSEP and CCRP.

Theorem 3. In a single source single sink evacuation problem, if people follow
the path suggested by Algorithm 2 with probability α, then the expected evacuation
time is max(CET, T1 + (1−α)n

C1
− 1) and algorithm runs in O(min(n, p) · n log n)

time.

6 Experimental Results

6.1 Details of the Experiments

We executed the SSEP and CCRP algorithms on a Dell Precision T7600 server
having an Intel Xeon E5-2687W CPU running at 3.1 GHz with 8 cores (16 logical
processors) and 128 GB RAM. The operating system is Microsoft Windows 7
Professional 64-bit edition. We used the C/C++ network analysis libraries igraph
and LEMON to implement the algorithms. We used netgen to generate synthetic
graphs. The number of vertices in the graph varies from 100 to 500,000. The
number of people varies from 3,000 to 120,000. The results are shown in Table 1.
The graphs are plotted on a log-log scale.

6.2 Results

We show the variation of evacuation time and run time with number of nodes
for SSEP and CCRP algorithms in Figs. 3 and 4 respectively. From Fig. 3, we
can see that the evacuation time of SSEP is at most that of CCRP. It is evident
from Fig. 4 that the running time of SSEP is much lower than that of CCRP.
Hence, for all these instances SSEP clearly outperforms CCRP with respect to
both evacuation time and run time. The absolute and relative amount by which
SSEP performs better than CCRP is shown in Table 1.

18 G. Mishra et al.

Table 1. Comparison of evacuation time and run time of SSEP and CCRP algorithms

Number of Number of Evacuation Run Time Improvement in SSEP

Nodes Evacuees Time over CCRP
(
CCRP
SSEP

)

(n) (p) SSEP CCRP SSEP CCRP Evacuation Time Run Time

100 3000 68 69 0.124 1.326 1.01 10.69

500 5000 130 130 0.358 2.73 1.00 7.63

1000 7000 155 156 1.014 14.586 1.01 14.38

1500 9000 115 117 1.466 35.443 1.02 24.18

2000 15000 661 661 1.622 29.016 1.00 17.89

2500 25000 179 186 2.761 25.739 1.04 9.32

5000 40000 903 903 3.899 93.521 1.00 23.99

10000 65000 517 520 12.012 231.535 1.01 19.28

15000 95000 1848 1853 14.025 336.946 1.00 24.02

25000 100000 1126 1128 23.134 815.682 1.00 35.26

50000 120000 1436 1446 46.69 1684.217 1.01 36.07

100000 110000 1032 1044 93.4952 3016.3005 1.01 32.26

500000 100000 1698 1720 344.341 11363.253 1.01 33.00

7 Conclusion and Future Work

In this paper, we have studied the evacuation route planning problem and given
an improved algorithm for the single source single sink case. We theoretically
showed that the SSEP algorithm performs better than the CCRP algorithm,
both in terms of evacuation time and run time. This is also demonstrated by
extensive experiments. We also analyzed a simple probabilistic behavior model
of people. Here are some open problems which we would like to work in future.

– Design a system for real time monitoring of evacuation in a building using our
indoor localization app [1].

– Extend this algorithm to the multiple source multiple sink case, and compare
it’s performance with CCRP and other algorithms.

– Develop a more sophisticated probabilistic behavior model of people for the
case when they don’t follow the routes suggested by the algorithm.

– Give good lower and upper bounds for the problem.

References

1. Ahmed, N., Ghose, A., Agrawal, A.K., Bhaumik, C., Chandel, V., Kumar, A.:
SmartEvacTrak: a people counting and coarse-level localization solution for effi-
cient evacuation of large buildings. In: IEEE International Conference on Pervasive
Computing and Communication Workshops (PerCom Workshops), pages 372–377.
IEEE (2015)

2. Dressler, D., Groß, M., Kappmeier, J.-P., Kelter, T., Kulbatzki, J., Plümpe, D.,
Schlechter, G., Schmidt, M., Skutella, M., Temme, S.: On the use of network flow
techniques for assigning evacuees to exits. Procedia Eng. 3, 205–215 (2010)

Improved Algorithms for the Evacuation Route Planning Problem 19

3. Gupta, A., Sarda, N.L.: Efficient evacuation planning for large cities. In: Decker,
H., Lhotská, L., Link, S., Spies, M., Wagner, R.R. (eds.) DEXA 2014, Part I.
LNCS, vol. 8644, pp. 211–225. Springer, Heidelberg (2014)

4. Hamacher, H.W., Tjandra, S.A: Mathematical Modelling of Evacuation Problems:
A State of Art. Fraunhofer-Institut für Techno-und Wirtschaftsmathematik, Fraun-
hofer (ITWM) (2001)

5. Hoppe, B., Tardos, É.: Polynomial time algorithms for some evacuation problems.
In: Proceedings of the fifth annual ACM-SIAM symposium on Discrete algorithms,
pp. 433–441. Society for Industrial and Applied Mathematics (1994)

6. Kim, S., Shekhar, S., Min, M.: Contraflow transportation network reconfiguration
for evacuation route planning. IEEE Trans. Knowl. Data Eng. 20(8), 1115–1129
(2008)

7. Løvs, G.G.: Models of wayfinding in emergency evacuations. Eur. J. Oper. Res.
105(3), 371–389 (1998)

8. Lu, Q., George, B., Shekhar, S.: Capacity constrained routing algorithms for evac-
uation planning: a summary of results. In: Medeiros, C.B., Egenhofer, M., Bertino,
E. (eds.) SSTD 2005. LNCS, vol. 3633, pp. 291–307. Springer, Heidelberg (2005)

9. Min, M.: Synchronized flow-based evacuation route planning. In: Wang, X., Zheng,
R., Jing, T., Xing, K. (eds.) WASA 2012. LNCS, vol. 7405, pp. 411–422. Springer,
Heidelberg (2012)

10. Min, M., Lee, J.: Maximum throughput flow-based contraflow evacuation routing
algorithm. In: IEEE International Conference on Pervasive Computing and Com-
munications Workshops (PERCOM Workshops), pages 511–516. IEEE (2013)

11. Min, M., Neupane, B.C.: An evacuation planner algorithm in flat time graphs.
In: Proceedings of the 5th International Conference on Ubiquitous Information
Management and Communication, p. 99. ACM (2011)

12. Skutella, M.: An introduction to network flows over time. In: Cook, W., Lovász,
L., Vygen, J. (eds.) Research Trends in Combinatorial Optimization, pp. 451–482.
Springer, Heidelberg (2009)

13. Song, X., Zhang, Q., Sekimoto, Y., Shibasaki, R., Yuan, N.J., Xie, X.: A simula-
tor of human emergency mobility following disasters: knowledge transfer from big
disaster data. In: AAAI Conference on Artificial Intelligence (2015)

14. Yin, D.: A scalable heuristic for evacuation planning in large road network. In: Pro-
ceedings of the Second International Workshop on Computational Transportation
Science, pp. 19–24. ACM (2009)

Improved MaxSAT Algorithms
for Instances of Degree 3

Chao Xu1, Jianer Chen1,2, and Jianxin Wang1(B)

1 School of Information Science and Engineering,
Central South University, Changsha, People’s Republic of China

jxwang@mail.csu.edu.cn
2 Department of Computer Science and Engineering,

Texas A&M University, College Station, USA

Abstract. The degree of a variable xi in a MaxSAT instance is the
number of times xi and x̄i appearing in the given formula. The degree
of a MaxSAT instance is equal to the largest variable degree in the
instance. In this paper, we study techniques for solving the MaxSAT
problem on instances of degree 3 (briefly, (n, 3)-MaxSAT), which is NP-
hard. Two new non-trivial reduction rules are introduced based on the
resolution principle. As applications, we present two algorithms for the
(n, 3)-MaxSAT problem: a parameterized algorithm of time O∗(1.194k),
and an exact algorithm of time O∗(1.237n), improving the previous best
upper bounds O∗(1.2721k) and O∗(1.2600n), respectively.

1 Introduction

The Maximum Satisfiability problem (MaxSAT) plays a key role in the
study of computational optimization [9]. The Strong Exponential Time Hypoth-
esis [10] conjectures that MaxSAT cannot be solved in time O∗(2cn) for any
constant c < 1, where n is the number of variables in the input instance, which
is a CNF formula. Algorithms for MaxSAT and various restricted versions of
MaxSAT have been studied extensively (see, for example, [6] and its references).
Define the degree of a variable xi in a MaxSAT instance to be the number of
times xi and x̄i appearing in the formula. The (s, t)-MaxSAT problem is a well-
known restricted version of the MaxSAT problem in which each clause in an
instance contains at most s literals and each variable has degree bounded by t
[12,14]. It is shown that (n, 2)-MaxSAT problem can be solved in polynomial
time [7].

This paper focuses on algorithms for the (n, 3)-MaxSAT problem. Since the
(2, 3)-MaxSAT problem is NP-hard [12], the (n, 3)-MaxSAT problem is NP-
hard for n ≥ 2. Exact and parameterized algorithms (e.g., [2,3,12,13]) have been
extensively studied for the problem. Two main parameters used for evaluating
the performance of the algorithms have been used: the number n of variables
and the number k of satisfied clauses.

This work is supported by the National Natural Science Foundation of China, under
grants 61173051, 61232001, 61472449, and 61420106009.

c© Springer International Publishing Switzerland 2015
Z. Lu et al. (Eds.): COCOA 2015, LNCS 9486, pp. 20–30, 2015.
DOI: 10.1007/978-3-319-26626-8 2

Improved MaxSAT Algorithms for Instances of Degree 3 21

The main results of the current paper are two new non-trivial reduction rules
(R-Rules 7–8), which are based on the resolution principle. As applications, we
propose two algorithms for the (n, 3)-MaxSAT problem in terms of the two
main parameters.

We first give formal definitions of the problems we are focused on. The (n, 3)-
MaxSAT problem asks for an assignment satisfying the maximum number of
clauses in a given formula in which each variable has degree bounded by 3. The
(parameterized) (n, 3)-MaxSAT problem consists of instances of the form (F, k),
where F is a formula of the (n, 3)-MaxSAT and k is an integer, asking whether
there is an assignment to the variables that satisfies at least k clauses in F .

The table in Fig. 1 lists the current literature on algorithms for the (n, 3)-
MaxSAT problem. For comparison, we also include our result in the current
paper in the table.1

Bound(n) Bound(k) Reference Year

O∗(1.732n) Raman et al [14] 1998
O∗(1.3248n) Bansal, Raman [1] 1999

O∗(1.3247k) Chen, Kanj [5] 2002
O∗(1.27203n) Kulikov [15] 2005

O∗(1.2721k) Bliznets, Golovnev [3] 2012
O∗(1.2600n) Bliznets [4] 2013

O∗(1.237n) O∗(1.194k) this paper 2015

Fig. 1. Progress in (n, 3)-MaxSAT algorithms

Most algorithms for MaxSAT (as well as for (n, 3)-MaxSAT) are based on
the branch-and-bound technique [8]. The Strong Exponential Time Hypothesis
[10] conjectures, to some extent, a popular opinion that branch-and-bound is per-
haps unavoidable to solve the MaxSAT problem and its variations. Therefore,
how to branch more efficiently in algorithms solving (n, 3)-MaxSAT becomes
crucial.

A contribution of the current paper is to show that the resolution principle [7]
can be applied to solve the (n, 3)-MaxSAT problem, while keeping all variables
of degree 3. It has been well-known that the resolution principle is a very powerful
tool to solve the satisfiability problem [7]. In particular, variable resolutions in
a CNF formula preserve the satisfiability of the formula. Unfortunately, variable
resolutions cannot be used directly to solve the (n, 3)-MaxSAT problem in
general case, since not all clauses are presumed to be satisfied by an optimal
assignment to an instance of the (n, 3)-MaxSAT problem.

We begin with some preliminary definitions.
1 Following the current convention in the research in exact and parameterized algo-
rithms, we will use the notation O∗(f) to denote the bound f ·mO(1), where f is an
arbitrary function and m is the instance size.

22 C. Xu et al.

A (Boolean) variable x can be assigned value either 1 (true) or 0 (false).
A variable x has two corresponding literals: the positive literal x and the negative
literal x̄, which will be called the literals of x. A clause C is a disjunction of a
set of literals, also regarded as a set of the literals. So, C1 = zC2 indicates that
the clause C1 is in consist of the literal z plus all literals in the clause C2, and
use C1C2 to denote the clause that consists of all literals that are in either C1

or C2, or both. Without loss of generality, we assume that a literal can appear
in a clause at most once. A clause C is satisfied by an assignment if under the
assignment, at least one literal in C gets a value 1. A (CNF Boolean) formula F
is a conjunction of clauses C1, . . ., Cm, regarded as a collection of the clauses.
The formula F is satisfied by an assignment to the variables in the formula if all
clauses in F are satisfied by the assignment.

The size of a clause C is the number of literals in C. A clause is an h-clause
if its size is h, and an h+-clause if its size is at least h. A clause is unit if its size
is 1 and is non-unit if its size is larger than 1. The size of a CNF formula F is
equal to the sum of the sizes of the clauses in F .

A literal z is an (i, j)-literal in a formula F if z and z̄ appear i times and j
times in F , respectively. Thus, a variable x is of degree h if x is an (i, j)-literal
such that i + j = h. An (i, 1)-literal z is an (i, 1)-singleton if z̄ occurs in a
unit clause (z̄). When i is not critical, we also call an (i, 1)-singleton simply a
singleton. A variable of degree h (resp. at least h) is also called an h-variable
(resp. h+-variable).

A resolvent on a variable x in a formula F is a clause of a new form CD
such that xC and x̄D are clauses in F . The resolution on the variable x in F ,
written as DPx(F), is a formula that is obtained by first removing all clauses
that contain either x or x̄ from F and then adding all resolvents on x into F .

2 Reduction Rules

A reduction rule converts, in polynomial time, an instance (F, k) of (n, 3)-
MaxSAT into another instance (F ′, k′) with k ≥ k′ such that (F, k) is a Yes-
instance if and only if (F ′, k′) is a Yes-instance. Note that a reduction rule can
be acknowledged as a special case of branching steps.

We present 9 reduction rules, R-Rules 1–9. The reduction rules are supposed
to be applied in order, i.e., R-Rule j cannot be applied until none of R-Rules i
with i < j is applicable. In the following, F is always supposed to be a conjunc-
tion of clauses.

The first three reduction rules are from [4].

R-Rule 1 ([4]). (F ∧ (xx̄C), k) → (F, k −1), and (F ∧ (x)∧ (x̄), k) → (F, k −1).

R-Rule 2 ([4]). If there is an (i, j)-literal z in the CNF formula F , with at least
j unit clauses (z), then (F, k) → (Fz=1, k − i), where Fz=1 is the formula F with
an assignment z = 1 on the literal z.

Assume that R-Rule 2 is not applicable to F , and then each literal in F has its
negation also in F . Thus, all variables are 2+-variables. Under this condition, we

Improved MaxSAT Algorithms for Instances of Degree 3 23

can process 2-variables based on the resolution principle [7], whose correctness
can be easily verified.

R-Rule 3 ([4]). For any 2-variable x, (F∧(xC1)∧(x̄C2), k) → (F∧(C1C2), k−1).
Note that each variable appears at most 3 times in F . In case none of R-Rules

1–3 is applicable, every variable is a 3-variable. Moreover, for each (2, 1)-literal
z, there is no unit clause (z). Now we describe two reduction rules based on
variations of the resolution principle, which are from [2].

R-Rule 4 ([2]). For a (2, 1)-literal x in a 2-clause (xy) and the clause with
x̄ contains at least two literals, (F1 = F ∧ (xy) ∧ (xC1) ∧ (x̄D), k) → (F2 =
F ∧ (yD) ∧ (ȳC1D), k − 1).

After R-Rule 4, the degree of all variables in yD becomes 4. In order to
keep all variables being 3-variables, a branching for variable y must be applied.
Naturally, the branching vector is (3+1,1+1), whose root is 1.2721. However,
since we only need consider |D| ≥ 1, we can do better.

R-Rule 5 ([2]). If two variables x and y of degree 3 appear together in 3 clauses,
then all these 3 clauses can be satisfied by assigning x and y properly.

Next rule is just a part from Corollary 1 in [2].

R-Rule 6 ([2]). If there are two clauses xyC1 and x̄ȳC2 in the formula F such
that each variable appears in three times, then we can safely do resolution on x,
such that F is replaced with DPx(F).

After R-Rule 6, R-Rule 1 must be followed, keeping that each variable appears
three times in the obtained formula. The next 2 rules are based on resolution, but
its transformation is non-trivial, i.e. there is no direct relation to other MaxSAT
algorithms. To be convenient, let maxsat(F) be the maximum number of clauses
satisfied in F . Note that since R-Rule 5 is not applicable, any two 3-variables
appear in at least 4 clauses.

R-Rule 7. For a CNF formula F1 = F ∧(xyC1)∧(xȳC2)∧(x̄D1)∧(ȳD2), where
x is a (2, 1)-literal in F1, (F1 = F ∧ (xyC1)∧ (xȳC2)∧ (x̄D1)∧ (ȳD2), k) → (F2 =
F ∧ (x′C2) ∧ (x′D2) ∧ (x̄′C1D1), k − 1).

Lemma 1. R-Rule 7 converts the instance (F1, k) of (n, 3)-MaxSAT into an
instance (F2, k − 1) such that (F1 = F ∧ (xyC1) ∧ (xȳC2) ∧ (x̄D1) ∧ (ȳD2), k) is
a Yes-instance if and only if (F2 = F ∧ (x′C2) ∧ (x′D2) ∧ (x̄′C1D1), k − 1) is a
Yes-instance.

Proof. For an optimal assignment satisfying C1 = 1 or D1 = 1 or C2 = D2 = 1,
by reassigning properly to variables x, y, x′, maxsat(F1) = maxsat(F) + 4 and
maxsat(F2) = maxsat(F) + 3 = maxsat(F1) − 1. For an optimal assignment
satisfying C1 = D1 = 0 and C2 = 0 (resp. D2 = 0), maxsat(F1) = maxsat(F)+3
and maxsat(F2) = maxsat(F) + 2 = maxsat(F1) − 1. Thus, for both cases
maxsat(F2) = maxsat(F1) − 1. ��

24 C. Xu et al.

Now, we introduce the following new reduction rule.

R-Rule 8. For any two (2, 1)-literals xy both in two clauses (xyC1) and (xyC2),
(F1 = F ∧ (xyC1) ∧ (xyC2) ∧ (x̄D1) ∧ (ȳD2), k) → (F2 = F ∧ (x′C1) ∧ (x′C2) ∧
(x̄′D1D2), k − 1).

Lemma 2. R-Rule 8 converts the instance (F1, k) of (n, 3)-MaxSAT into an
instance (F2, k − 1) such that (F1 = F ∧ (xyC1) ∧ (xyC2) ∧ (x̄D1) ∧ (ȳD2), k) is
a Yes-instance if and only if (F2 = F ∧ (x′C1) ∧ (x′C2) ∧ (x̄′D1D2), k − 1) is a
Yes-instance.

Proof. Similar to the proof in Lemma 2, for an optimal assignment satisfying
D1 = 1 or D2 = 1 or C1 = C2 = 1, by reassigning properly to variables
x, y, x′, maxsat(F1) = maxsat(F) + 4 and maxsat(F2) = maxsat(F) + 3 =
maxsat(F1) − 1. For an optimal assignment satisfying D1 = D2 = 0 and
C1 = 0 (resp. C2 = 0), at least one clause is not satisfied, and maxsat(F1) =
maxsat(F) + 3 and maxsat(F2) = maxsat(F) + 2 = maxsat(F1) − 1. For both
cases maxsat(F2) = maxsat(F1) − 1. ��

After R-Rules 1–3, 5–8, for any 2-literal x, the two clauses with x, each of
which has at least two literals, and each pair of distinct clauses share at most
one common variables. According to this property, similar to R-Rule 5, we can
prove that for each quadruple of 3-variables must appear in at least 6 clauses.

Lemma 3. If any quadruple variables of degree 3 appear together in at most 5
clauses, then all these clauses can be satisfied by assigning properly.

Proof. Suppose variables x1, x2, x3 and x4 of degree 3 are in 5 clauses. Note that
3 × 4 = 12 literals of x1, x2, x3, x4 must be in these clauses. We first choose a
2-literal, i.e. the literal occurring in two clauses, denoted by x1. Let x1 = 1,
and two clauses x1C1, x1C2 are satisfied. Since R-Rules 5–8 are not applicable,
for any literal xi, no two clauses containing literal xi share another common
variables. Thus, there are at most 3 literals (of variables from x2, x3 and x4)
satisfied by x1 = 1 in C1C2. In all, at most 6 literals (of variables from x1, x2, x3

and x4) are reduced by at this time. Then there are two cases to consider. One
is that there is still a 2-literal in the remaining of 3 variables, denoted by x2. Let
x2 = 1, and at most 2 extra literals (of variables x3 and x4) are satisfied. In all,
there are 6 + 2 + 3 = 11 literals (of variables from x1, x2, x3 and x4) satisfied.
Thus, there are at least one literal not satisfied and denoted by x3. Let x3 = 1,
and all clauses are satisfied. The other case is that each literal (of variables from
x2, x3 and x4) appearing in the remaining of three clauses is a 1-literal. Since
no two clauses share two common variables, there is at most one unit clause in
the remaining of the 3 clauses, and can be simultaneously satisfied by assigning
x2, x3 and x4 properly. ��

Next, we introduce another reduction rule, which is implemented in practical
MaxSAT solver MaxSatz [1].

R-Rule 9 ([1]). (F1 = F ∧ (xy) ∧ (x̄) ∧ (ȳ), k) → (F2 = F ∧ (x̄ȳ), k − 1).

Improved MaxSAT Algorithms for Instances of Degree 3 25

3 An O∗(1.194k)-time Parameterized Algorithm

Branching on an instance (F, k) of (n, 3)-MaxSAT leads to a collection {(F1, k−
d1), . . . , (Fr, k − dr)} of instances of (n, 3)-MaxSAT, such that (F, k) is a Yes-
instance if and only if at least one of (F1, k − d1), . . ., (Fr, k − dr) is a Yes-
instance. Such a branching step is called a (d1, . . . , dr)-branching, and the vector
t = (d1, . . . , dr) is called the branching vector for the branching. Each branching
vector corresponds to a polynomial (see, e.g. [5]), and has a unique positive root
that is larger than or equal to 1. Let the root ρ(t) of a branching be the root of
the branching vector t.

Let t1 and t2 be two branching vectors. We say that the t1-branching is
inferior to the t2-branching if ρ(t1) > ρ(t2). Based on the branch-and-bound
technique, if every branching step in the algorithm has its root bounded by a
constant c ≥ 1, then the running time of the algorithm is bounded by O∗(ck).

We called formula F reduced if none of R-Rules 1–3, 5–9 and Lemma 3 is
applicable.

Next we first give two lemmas for branching.

Lemma 4. F0 is a reduced formula where each variable is a 3-variable. Let x
be a 3-variable such that F0 = F ∧ (xy) ∧ (xC) ∧ (x̄D), with |D| ≥ 1. First apply
R-Rule 4, and then: (1) if y is a (2, 1)-literal in F0, branch on y; (2) if y is a
(1, 2)-literal in F0, branch with y = 1 and y = D = 0. As a result, we have a
(5, 3)-branching.

Proof. Since R-Rules 1–3, 5–8 are not applicable, |C| ≥ 1, and y∪C∪D contains
no same literals and no conflict literals (e.g. z and z̄). By applying R-Rule 4,
(xy) ∧ (xC) ∧ (x̄D) is replaced with (yD) ∧ (ȳCD). Consequently, only variables
in yD become 4-variables. Since D is contained both in clauses (yD) and (ȳCD),
both branchings with y = 1 and y = 0 can reduce D. So, the obtained formula
is also a (n, 3)-MaxSAT formula. Next, we show it is not inferior to (5, 3)-
branching.

Case 1: if y is a (2, 1)-literal in F0, then since R-Rules 5–8, except clause (xy),
there is no other clause both containing variables xy. Hence, denote the clauses
with variable y as (xy), (yE1), (ȳE2), where |E1| ≥ 1, and let E1 = y′E′. More-
over, y is a (2, 2)-literal after R-Rule 4 (i.e. (yD), (ȳCD), (yy′E′

1), (ȳE2), and k
is reduced by 1). Thus, we simply branch on variable y. When y = 1, two clauses
containing literal y are satisfied. At least one other variable y′, either y′ ∈ D
or y′ /∈ D, becomes a 2-variable. Therefore, R-Rules 1–3 are applicable and the
number of satisfied clauses is 3. When y = 0, clauses (ȳE2) and (ȳCD) are satis-
fied. Thus, at least one literal z ∈ C, noted that |C| ≥ 1 and z, z̄ /∈ D, becomes
a 2-variable and R-Rules 1–3 become applicable again. Similarly, 3 clauses are
satisfied. As a result, besides the satisfied clause by R-Rule 4 (where k is reduced
by 1), we give a (4,4)-branching.

Case 2: if y is a (1, 2)-literal in F0, then after R-Rule 4, y becomes a (1, 3)-
literal. It is safe to branch with y = 1 and y = D = 0, when y is a (1, 3)-literal

26 C. Xu et al.

and there is a clause (yD), because for each optimal assignment σ with y = 0
and D = 1, there is another assignment σ′ by only replacing y = 0 with y = 1.

Note that ȳ is a non-singleton, with clauses (yD), (ȳCD), (ȳE1) and (ȳE2),
because |D| ≥ 1, and let D = z1 · · · zh. Thus, we branch with: B1)y = 0, satis-
fying 3 clauses. Similarly, R-Rule 2 becomes applicable, since each literal in C
appears at least 1 (by R-Rules 5–8) and at most 2 times in the obtained formula
after R-Rule 4 and branch with y = 0. Therefore, at least 4 clauses are satisfied;
B2)y = 1, z1 = · · · = zh = 0, and at least a clause with y and a clause with z̄1
are satisfied. This is a (5, 3)-branching (besides R-Rule 4). ��

Next, we show the branching is still better if R-Rule 4 is not applicable on a
chosen variable.

Lemma 5. F0 is a reduced formula where each variable is a 3-variable. Let x
be a non-singleton such that: F0 = F ∧ (xy1y2C1) ∧ (xy3y4C2) ∧ (x̄y5D). Branch
on variable x, we have (7, 2)-branching and the obtained formula is a (n, 3)-
MaxSAT formula.

Proof. If |D| ≥ 1, then let D = y6. Since R-Rules 5–8 are not applicable, no two
clauses share two common variables, so that x, y1-y6 are 7 different variables.
Also, according to Lemma 3, there are at least 6 clauses containing at least one
of 3-variables y1, y2, y3 and y4. When x = 1, all the 3-variables y1, y2, y3 and y4
become 2-variables. Hence, Rule 1–3 can be applied and the number of satisfied
clauses is reduced by at least 2 + 4 = 6. When x = 0, at least y5 and y6 become
2-variables, where R-Rules 1–3 are applicable. The number of satisfied clauses
is reduced by at least 1 + 2 = 3. This is a (6, 3)-branching.

Consider when |D| ≥ 0 and y5 is a (2, 1)-literal. When x = 1, y5 is contained
in unit clause (y5). By R-Rule 2, y5 = 1. Similarly, all the 3-variables y1y2y3y4
become 2-variables. The number of satisfied clauses is reduced by at least 2 +
1 + 4 = 7. When x = 0, at least y5 becomes a 2-variable, and the number of
satisfied clauses is reduced by at least 1 + 1 = 2. This is a (7, 2)-branching.

Consider when |D| ≥ 0 and y5 is a (1, 2)-literal. Similarly when x = 1, the
number of satisfied clauses is reduced by at least 2 + 4 = 6. When x = 0, no
literal y5 exists, so that y5 = 0 according to R-Rule 2, and two other clauses
containing y5 are satisfied. This is a (6, 3)-branching.

In summary, since ρ(7, 2) = 1.191 and ρ(6, 3) = 1.174, branching on variable
x, so that we have a (7, 2)-branching. ��

Before showing the algorithm, we must first introduce a lemma.

Lemma 6. (Bliznets [2]). If each variable of F appears once negatively and
twice positively and all negative literals occur in unit clauses, then there is a
polynomial time algorithm to F that returns an optimal assignment satisfying
the maximum number of clauses in F .

Summarizing all the discussions, we present our algorithm for the (n, 3)-
MaxSAT problem in Fig. 2.

Improved MaxSAT Algorithms for Instances of Degree 3 27

Algorithm (n,3)-MaxSAT-Solver(F, k)
input: an instance (F, k) of (n, 3)-MaxSAT, where

each variable appears in three clauses
output: an assignment to F that satisfies at least k clauses,

or report no such an assignment exists
1. apply R-Rules 1-3 and 5-9, in order, repeatedly until (F, k) is irreducible;
2. if all variables are singletons

then using Lemma 6 to solve it in polynomial time; return;
3. choose a non-singleton x: (xC1), (xC2), (x̄D) and |D| ≥ 1;
4. if only one literal in C1 or C2 then using Lemma 4 for branching;
5. else using Lemma 5 for branching;

Fig. 2. The parameterized algorithm for (n, 3)-MaxSAT in time O∗(1.194k)

Theorem 1. The algorithm (n,3)-MaxSAT-Solver solves the (n, 3)-MaxSAT
problem in time O∗(1.194k).

Proof. The algorithm (n,3)-MaxSAT-Solver can be described as a search tree
T , where each node of T is an instance of the (n, 3)-MaxSAT problem. Each
leaf of T corresponds to a reduced formula containing only singletons and their
negations, where step 2 of the algorithm concludes with a decision. By Lemma 6,
a leaf in the search tree T can be solved in polynomial time.

Each internal node of T is associated with an instance (F, k) and corresponds
to an application of one of the branching rules in Lemmas 4 and 5, and its
children correspond to the branches of the branching rule. By Lemmas 4 and 5,
the root of each of the branching rules is bounded by 1.194, which is the root of
the (5, 3)-branching. Now a simple induction shows that the search tree T , i.e.,
the algorithm Max-SAT-Solver solves the (n, 3)-MaxSAT problem in time
O∗(1.194k). ��

4 An O∗(1.237n)-time Algorithm for (n, 3)-MaxSAT

Note that R-Rules 2–3 and 5–9 reduce the number n of variables by at least
1, and R-Rule 1 reduces the size of the formula by at least 1. So, they can be
applied in polynomial time, and we can also use them as the transformation
rules for our exact algorithm in terms of n.

Next, we present our exact algorithm for (n, 3)-MaxSAT problem in Fig. 3.
Note that a (2, 1)-literal z is a singleton, if z̄ occurs in the unit clause (z̄). A
variable z is called a singleton, if literal z or z̄ is a singleton.

Theorem 2. The algorithm n3MaxSAT solves the (n, 3)-MaxSAT problem
in time O∗(1.237n).

Proof. The process of the algorithm n3MaxSAT can be depicted by a search
tree T in which each node corresponds to an instance of the (n, 3)-MaxSAT

28 C. Xu et al.

Algorithm n3MaxSAT(F)
input: an instance (F, k) of (n, 3)-MaxSAT, where

each variable appears in three clauses
output: an assignment to F that satisfies the maximum number of clauses
1. apply R-Rules 1-3 and 5-9 repeatedly until F is irreducible;
2. if all variables are singletons or there is no variable in F

then return corresponding result according to Lemma 6;
3. choose a non-singleton x: (xC1), (xC2), (x̄D) and |D| ≥ 1;
4. if |D| = 2 (i.e. D = yy) and at least one of yy is not a singleton

then max(n3MaxSAT(F [x]), n3MaxSAT(F [x̄, ȳ, ȳ]));
5. else max(n3MaxSAT(F [x]), n3MaxSAT(F [x̄]));

Fig. 3. The exact algorithm for (n, 3)-MaxSAT in time O∗(1.237n)

problem. Each leaf of the search tree T corresponds to a simplified instance for
which step 2 of the algorithm concludes with a decision. Therefore, by Lemma 6,
a leaf in the search tree T associated with instance (F, k) of (n, 3)-MaxSAT can
be solved in polynomial time.

Each internal node of the search tree T either branch on x or branch with
x = 1 and x = y = y′ = 0. Remind that it is safe to branch x = 1 and
x = y = y′ = 0 in Step 4, because x̄ is a 1-literal, for each optimal assignment
σ with x = 0 and y = 1 (or y′ = 1), there is another assignment σ′ by only
replacing x = 0 with x = 1.

Now we analyze the branching vector of each cases. Since R-Rule 2 and R-
Rules 5–8 are not applicable, |C1| ≥ 1, |C2| ≥ 1 and there is no common variable
among C1, C2 and D.

Case1. consider y ∈ D is a 1-literal. (1) When x = 1, at least two variables from
C1C2 become 2-variables and can be reduced by R-Rules 2–3. In all, the number
of variables is reduced by at least 3. (2) When x = 0, by R-Rule 2, y = 0. Since
R-Rules 2, 5–8 are not applicable to F , at least two other variables, except for
x and y, are satisfied by y = 0, so that they become 2-variables. Thus, R-Rules
2–3 become applicable, and the number of variables is reduced by at least 4.
This is a (4, 3)-branching.

Case2. consider |D| ≥ 3, and all literals in D are 2-literals. (1) When branching
x = 1, similar to Case 1, the number of variables is reduced by at least 3. (2)
When x = 0, at least three variables become 2-variables, so that R-Rules 2–3
become applicable. The number of variables is reduced by at least 4. This is a
(4, 3)-branching.

Case3. consider |D| = 2, and both literals yy′ in D are singletons. (1) When
branching x = 1, at least two variables, except xyy′, become 2-variables and can
be reduced by R-Rules 2–3. Moreover, clause (x̄yy′) becomes (yy′), plus unit
clauses (ȳ), (ȳ′). Thus, by R-Rule 9, replace (yy′), (ȳ), (ȳ′) with (ȳȳ′) and both

Improved MaxSAT Algorithms for Instances of Degree 3 29

yy′ are reduced by R-Rule 2. As a result, the number of variables is reduced by
at least 5. (2)When x = 0, at least two variables become 2-variables, so that
R-Rules 2–3 become applicable. The number of variables is reduced by at least
3. This is a (5, 3)-branching.

Case4. consider |D| = 2, and a literal y in D is not a singleton, so that Step
4 is applicable. (1) When branching x = 1, similar to Case 1, the number of
variables is reduced by at least 3. (2) When x = D = 0, because y is a non-
singleton, at least another variable becomes a 2-variable, so that R-Rules 2–3
become applicable. The number of variables is reduced by at least 4. This is a
(4, 3)-branching.

Case5. consider |D| = 1, denoted by D = y, and y is a 2-literal.

Case5.1. consider |C1C2| ≥ 3. (1) When branching x = 1, at least other three
variables become 2-variables and can be reduced by R-Rules 2–3. Moreover, by
R-Rule 2, y = 1. Thus, the number of variables is reduced by at least 5. (2) When
branching x = 0, variable y is reduced by R-Rules 2–3. This is a (5, 2)-branching.

Case5.2. consider |C1| = |C2| = 1.

Case5.2.1. consider at least one literal of C1C2 is a (2,1)-literal. (1) When
branching x = 1, similar to Case 1, at least 2 other variables except for xy are
reduced. Moreover, since |D| = 1, (2, 1)-literal y appears in a unit clause (y),
so that set y = 1 by R-Rule 2. In all, the number of variables is reduced by at
least 4. (2) When branching x = 0, variable y becomes a 2-variable and can be
reduced by R-Rules 2–3. Also, at least one literal of C1C2 is a 2-literal, so that
R-Rule 2 becomes applicable. The number of variables is reduced by at least 3.
This is a (4, 3)-branching.

Case5.2.2. consider both the literals, denoted by z1z2, in C1C2 are (1, 2)-literals.
(1) When branching x = 1, by R-Rule 2, y = 1, and C1 = C2 = 0; (2) When
branching x = 0, then variable y can be reduced by R-Rules 2–3. There are two
cases. If there is at least another variable reduced by x = y = 1 and C1 = C2 = 0,
then the number of variables is reduced by 4 + 1 = 5, where we have a (5, 2)-
branching. If there is no other variable reduced by x = y = 1 and C1 = C2 = 0,
then, when branching x = 0, variable y can be reduced by R-Rules 2–3 and one of
variables z1z2 can be reduced by R-Rules 5–8, where we have a (4, 3)-branching.
In all, this is a (5, 2)-branching.

In summary, the root of each branching rule is bounded by 1.237, which
is the root of the (5, 2)-branching. Now a simple induction shows that the
search tree T , i.e., the algorithm n3MaxSAT solves the (n, 3)-MaxSAT in time
O∗(1.237n). ��

30 C. Xu et al.

5 Conclusion

In this paper we present two new reduction rules, so that each pair of distinct
clauses has at most one variable in common in the reduced formula, which is
also called a linear CNF formula [11]. Consequently, we improve parameterized
algorithm from O∗(1.2721k) [2] to O∗(1.194k)-time, and exact algorithm from
O∗(1.2600n) [3] to O∗(1.237n)-time for the (n, 3)-MaxSAT problem.

References

1. Bonet, M.L., Levy, J., Manya, F.: Resolution for max-sat. Artif. Intell. 171(8),
606–618 (2007)

2. Bliznets, I., Golovnev, A.: A new algorithm for parameterized MAX-SAT. In:
Thilikos, D.M., Woeginger, G.J. (eds.) IPEC 2012. LNCS, vol. 7535, pp. 37–48.
Springer, Heidelberg (2012)

3. Bliznets, I.: A new upper bound for (n, 3)-MAX-SAT. J. Math. Sci. 188(1), 1–6
(2013)

4. Chen, J., Kanj, I.: Improved exact algorithms for Max-SAT. Discrete Appl. Math.
142, 17–27 (2004)

5. Chen, J., Kanj, I., Jia, W.: Vertex cover: further observations and further improve-
ments. J. Algorithms 41, 280–301 (2001)

6. Chen, J., Xu, C., Wang, J.: Dealing with 4-variables by resolution: an improved
MaxSAT algorithm. In: Dehne, F., Sack, J.-R., Stege, U. (eds.) WADS 2015. LNCS,
vol. 9214, pp. 178–188. Springer, Heidelberg (2015)

7. Davis, M., Putnam, H.: A computing procedure for quantification theory. J. ACM
7, 201–215 (1960)

8. Gu, J., Purdom, P., Wah, W.: Algorithms for the satisfiability (SAT) problem:
a survey. In: Satisfiability Problem: Theory and Applications. DIMACS Series in
Discrete Mathematics and Theoretical Computer Science, pp. 19–152. AMS (1997)

9. Hochbaum, D. (ed.): Approximation Algorithms for NP-Hard Problems. PWS Pub-
lishing Company, Boston (1997)

10. Impagliazzo, R., Paturi, R.: On the complexity of k-SAT. J. Comput. Syst. Sci.
62, 367–375 (2001)

11. Porschen, S., Speckenmeyer, E., Zhao, X.: Linear CNF formulas and satisfiability.
Discrete Appl. Math. 157(5), 1046–1068 (2009)

12. Raman, V., Ravikumar, B., Rao, S.S.: A simplified NP-complete MAXSAT prob-
lem. Inf. Process. Lett. 65(1), 1–6 (1998)

13. Kulikov, A.S.: Automated generation of simplification rules for SAT and MAXSAT.
In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp. 430–436. Springer,
Heidelberg (2005)

14. Kratochvil, J., Savicky, P., Tuza, Z.: One more occurrence of variables makes sat-
isfiability jump from trivial to NP-complete. SIAM J. Comput. 22(1), 203–210
(1993)

Directed Pathwidth and Palletizers

Frank Gurski1(B), Jochen Rethmann2, and Egon Wanke1

1 Institute of Computer Science, Heinrich Heine University Düsseldorf,
40225 Düsseldorf, Germany

frank.gurski@hhu.de
2 Faculty of Electrical Engineering and Computer Science,

Niederrhein University of Applied Sciences, 47805 Krefeld, Germany

Abstract. In delivery industry, bins have to be stacked-up from con-
veyor belts onto pallets. Given k sequences of labeled bins and a positive
integer p. The goal is to stack-up the bins by iteratively removing the
first bin of one of the k sequences and put it onto a pallet located at one
of p stack-up places. Each of these pallets has to contain bins of only
one label, bins of different labels have to be placed on different pallets.
After all bins of one label have been removed from the given sequences,
the corresponding place becomes available for a pallet of bins of another
label. In this paper we introduce a graph model for this problem, the so
called sequence graph, which allows us to show that there is a processing
of some list of sequences with at most p stack-up places if and only if the
sequence graph of this list has directed pathwidth at most p − 1.

Keywords: Computational complexity · Combinatorial optimization ·
Directed pathwidth · Stack-up systems · Palletizing systems

1 Introduction

We consider the combinatorial problem of stacking up bins from a set of conveyor
belts onto pallets. This problem originally appears in stack-up systems that play
an important role in delivery industry and warehouses. A detailed description of
the practical background of this work is given in [3,15].

The bins that have to be stacked-up onto pallets reach the stack-up system
on a main conveyor belt. At the end of the line they enter the palletizing system.
Here the bins are picked-up by stacker cranes or robotic arms and moved onto
pallets, which are located at stack-up places. Often vacuum grippers are used
to pick-up the bins. This picking process can be performed in different ways
depending on the architecture of the palletizing system (single-line or multi-line
palletizers). Full pallets are carried away by automated guided vehicles, or by
another conveyor system, while new empty pallets are placed at free stack-up
places.

The developers and producers of robotic palletizers distinguish between
single-line and multi-line palletizing systems. Each of these systems has its
advantages and disadvantages.
c© Springer International Publishing Switzerland 2015
Z. Lu et al. (Eds.): COCOA 2015, LNCS 9486, pp. 31–44, 2015.
DOI: 10.1007/978-3-319-26626-8 3

32 F. Gurski et al.

Fig. 1. A single-line stack-up system using a random access storage of size 5. The
patterns represent the pallet labels. Bins with different patterns have to be placed on
different pallets, bins with the same pattern have to be placed on the same pallet.

In single-line palletizing systems there is only one conveyor belt from which
the bins are picked-up. Several robotic arms or stacker cranes are placed around
the end of the conveyor. We model such systems by a random access storage
which is automatically replenished with bins from the main conveyor, see Fig. 1.
The area from which the bins can be picked-up is called the storage area. It is
determined by the operation range of stacker cranes or robotic arms.

In multi-line palletizing systems there are several buffer conveyors from which
the bins are picked-up. The robotic arms or stacker cranes are placed at the end
of these conveyors. Here, the bins from the main conveyor of the order-picking
system first have to be distributed to the multiple infeed lines to enable parallel
processing. Such a distribution can be done by some cyclic storage conveyor, see
Fig. 2. From the cyclic storage conveyor the bins are pushed out to the buffer
conveyors. A stack-up system using a cyclic storage conveyor is, for example,
located at Bertelsmann Distribution GmbH in Gütersloh, Germany. On certain
days, several thousands of bins are stacked-up using a cyclic storage conveyor
with a capacity of approximately 60 bins and 24 stack-up places, while up to 32
bins are destined for a pallet. This palletizing system has originally initiated our
research.

If we ignore the task to distribute the bins from the main conveyor to the
k buffer conveyors, i.e., if the filled buffer conveyors are already given, and if
each arm can only pick-up the first bin of one of the buffer conveyors, then the
system is called a FIFO palletizing system. Such systems can be modeled by
several simple queues, see Fig. 3.

From a theoretical point of view, an instance of the FIFO Stack-Up problem
consists of k sequences q1, . . . , qk of bins and a number of available stack-up
places p. Each bin of q is destined for exactly one pallet. The stack-up problem
is to decide whether one can remove iteratively the bins from the sequences such
that in each step only one of the first bins of q1, . . . , qk is removed and after each
step at most p pallets are open. A pallet t is called open, if at least one bin for
pallet t has already been removed from the sequences, and if at least one bin for
pallet t is still contained in the remaining sequences. If a bin b is removed from
a sequence then all bins located behind b are moved-up one position to the front
(cf. Sect. 2 for the formal definition).

Directed Pathwidth and Palletizers 33

storage conveyor

conveyors
buffer

stack−up
places

Fig. 2. A multi-line stack-up system with a
pre-placed cyclic storage conveyor.

Fig. 3. The FIFO stack-up system
analyzed in this paper.

Every processing should absolutely avoid blocking situations. A system is
blocked, if all stack-up places are occupied by pallets, and non of the bins that
may be used in the next step are destined for an open pallet. To unblock the
system, bins have to be picked-up manually and moved to pallets by human
workers. Such a blocking situation is sketched in Fig. 3. The system is blocked
(cf. above for the definition), because the pallet for the bins which are striped
from bottom left to top right cannot be opened and the pallets for the other
three types of bins located on the stack-up places cannot be closed.

The single-line stack-up problem can be defined in the same way. An instance
for the single-line stack-up problem consists of one sequence q of bins, a storage
capacity s, and a number of available stack-up places p. In each step one of the
first s bins of q can be removed. Everything else is defined analogously.

Many facts are known about single-line stack-up systems [15–17]. In [15] it
is shown that the single-line stack-up decision problem is NP-complete, but can
be solved efficiently if the storage capacity s or the number of available stack-up
places p is fixed. The problem remains NP-complete as shown in [16], even if
the sequence contains at most 9 bins per pallet. In [16], a polynomial-time off-
line approximation algorithm for minimizing the storage capacity s is introduced.
This algorithm yields a solution that is optimal up to a factor bounded by log(p).
In [17] the performances of simple on-line stack-up algorithms are compared with
optimal off-line solutions by a competitive analysis [2,5].

The FIFO Stack-Up problem seems to be not investigated by other authors
up to now, although stack-up systems play an important role in delivery industry
and warehouses. In [6] we have shown a dynamic programming solution and in
[7] we have given several parameterized algorithms for the FIFO Stack-Up
problem. A breadth first search solution combined with some cutting technique
for the problem was presented in [8].

In this paper, we introduce a digraph model which leads to a close relation
between the FIFO Stack-Up problem and the directed pathwidth. The so-

34 F. Gurski et al.

called sequence graph GQ of a given list of sequences Q has a vertex for every
pallet and the arc set displays the order in which the pallets of Q can be opened.
We show that there is a processing of some list Q with at most p stack-up
places if and only if the sequence graph GQ of Q has directed pathwidth at
most p − 1 (cf. Sect. 3 for the formal definition). Our proofs are constructive,
i.e. we show how to define a solution for Q from a directed path-decomposition
of GQ, and vice versa. By the known time complexity for directed pathwidth
[18] this connection implies that the FIFO Stack-Up problem can also be
solved in polynomial time, if the number p of given stack-up places is assumed
to be fixed. Further this connection is used to show, that the FIFO Stack-Up
problem is NP-complete in general, even if all sequences together contain at most
6 bins destined for the same pallet. Due to the approximation result of directed
pathwidth in [11] the optimization version of the FIFO Stack-Up problem can
be approximated up to a factor of O(log1.5 m), where m represents the number
of pallets in all sequences. Our result extends the previously known areas of
applications for directed pathwidth in graph databases and boolean networks,
which have been shown in [4].

2 Preliminaries

Unless otherwise stated, k and p are some positive integers throughout the paper.
We consider sequences q1 = (b1, . . . , bn1), . . . , qk = (bnk−1+1, . . . , bnk

) of pairwise
distinct bins. These sequences represent the buffer queues (handled by the buffer
conveyors) in real stack-up systems. Each bin b is labeled with a pallet symbol
plt(b). We say bin b is destined for pallet plt(b). We use in our examples characters
for pallet symbols. The set of all pallets of the bins in some sequence qi is denoted
by

plts(qi) = {plt(b) | b ∈ qi}.

For a list of sequences Q = (q1, . . . , qk) we denote

plts(Q) = plts(q1) ∪ · · · ∪ plts(qk).

For some sequence q = (b1, . . . , bn), we say bin bi is on the left of bin bj

in sequence q if i < j. A sequence q′ = (bj , bj+1, . . . , bn), j ≥ 1, is called a
subsequence of sequence q = (b1, . . . , bn). We define q − q′ = (b1, . . . , bj−1).

Let Q = (q1, . . . , qk) and Q′ = (q′
1, . . . , q

′
k) be two lists of sequences of bins

such that each sequence q′
j , 1 ≤ j ≤ k, is a subsequence of sequence qj . Each

such pair (Q,Q′) is called a configuration. In every configuration (Q,Q′) the first
entry Q is the initial list of sequences of bins and the second entry Q′ is the list of
sequences that remain to be processed. A pallet t is called open in configuration
(Q,Q′), if a bin of pallet t is contained in some q′

i ∈ Q′ and if another bin of
pallet t is contained in some qj − q′

j for qj ∈ Q, q′
j ∈ Q′. The set of open pallets

in configuration (Q,Q′) is denoted by open(Q,Q′). A pallet t ∈ plts(Q) is called
closed in configuration (Q,Q′), if t �∈ plts(Q′), i.e. no sequence of Q′ contains a
bin for pallet t. Initially all pallets are unprocessed. After the first bin of a pallet
t has been removed from one of the sequences, pallet t is either open or closed.

Directed Pathwidth and Palletizers 35

In view of the practical background, we only consider lists of sequences that
together contain at least two bins for each pallet. Throughout the paper Q always
denotes a list of some sequences of bins.

The FIFO Stack-Up Problem. Consider a configuration (Q,Q′). The removal
of the first bin from one subsequence q′ ∈ Q′ is called a transformation step. A
sequence of transformation steps that transforms the list Q of k sequences into
k empty subsequences is called a processing of Q.

Name: FIFO Stack-Up
Instance: A list Q = (q1, . . . , qk) of k sequences and a positive integer p.
Question: Is there a processing of Q, such that in each configuration (Q,Q′)

during the processing at most p pallets are open?

We use the following variables: k denotes the number of sequences, and p
stands for the number of stack-up places. Furthermore, m represents the number
of pallets in plts(Q), and n denotes the number of bins in all sequences, i.e.
n = nk. Finally, N = max{|q1|, . . . , |qk|} is the maximum sequence length. In
view of the practical background, it holds p < m, k < m, m < n, and N < n.

It is often convenient to use pallet identifications instead of bin identifications
to represent a sequence q. For n not necessarily distinct pallets t1, . . . , tn let
[t1, . . . , tn] denote some sequence of n pairwise distinct bins (b1, . . . , bn), such
that plt(bi) = ti for i = 1, . . . , n. We use this notion for lists of sequences as
well. For the sequences q1 = [t1, . . . , tn1], . . . , qk = [tnk−1+1, . . . , tnk

] of pallets
we define q1 = (b1, . . . , bn1), . . . , qk = (bnk−1+1, . . . , bnk

) to be sequences of bins
such that plt(bi) = ti for i = 1, . . . , nk, and all bins are pairwise distinct.

For some list of subsequences Q′ we define front(Q′) to be the set of pallets
of the first bins of the queues of Q′.

Example 1. Consider list Q = (q1, q2) of sequences q1 = (b1, . . . , b4) = [a, a, b, b]
and q2 = (b5, . . . , b12) = [c, d, e, c, a, d, b, e]. Table 1 shows a processing of Q with
3 stack-up places. The underlined bin is always the bin that will be removed in
the next transformation step. We denote Qi = (qi

1, q
i
2), thus each row represents

a configuration (Q,Qi).

Consider a processing of a list Q of sequences. Let B = (bπ(1), . . . , bπ(n))
be the order in which the bins are removed during the processing of Q, and
let T = (t1, . . . , tm) be the order in which the pallets are opened during the
processing of Q. Then B is called a bin solution of Q, and T is called a pallet
solution of Q. The transformation in Table 1 defines the bin solution

B = (b5, b6, b7, b8, b1, b2, b9, b10, b11, b3, b4, b12),

and the pallet solution T = (c, d, e, a, b).
During a processing of a list Q of sequences there are often configurations

(Q,Q′) for which it is easy to find a bin b that can be removed from Q′ such that
a further processing with p stack-up places is still possible. This is the case, if

36 F. Gurski et al.

Table 1. A processing of Q = (q1, q2) from Example 1 with 3 stack-up places. There
is no processing of Q that needs less than 3 stack-up places.

i qi1 qi2 front(Qi) remove open(Q,Qi)

0 [a, a, b, b] [c, d, e, c, a, d, b, e] {a, c} b5 ∅
1 [a, a, b, b] [d, e, c, a, d, b, e] {a, d} b6 {c}
2 [a, a, b, b] [e, c, a, d, b, e] {a, e} b7 {c, d}
3 [a, a, b, b] [c, a, d, b, e] {a, c} b8 {c, d, e}
4 [a, a, b, b] [a, d, b, e] {a} b1 {d, e}
5 [a, b, b] [a, d, b, e] {a} b2 {a, d, e}
6 [b, b] [a, d, b, e] {a, b} b9 {a, d, e}
7 [b, b] [d, b, e] {b, d} b10 {d, e}
8 [b, b] [b, e] {b} b11 {e}
9 [b, b] [e] {b, e} b3 {b, e}
10 [b] [e] {b, e} b4 {b, e}
11 [] [e] {e} b12 {e}
12 [] [] ∅ - ∅

bin b is destined for an already open pallet, see configuration (Q,Q3), (Q,Q5),
(Q,Q6), (Q,Q7), (Q,Q9), (Q,Q10), or (Q,Q11) in Table 1. In the following we
show:

– If one of the first bins of the sequences is destined for an already open pallet
then this bin can be removed without increasing the number of stack-up places
necessary to further process the sequences.

– If there is more than one bin at choice for already open pallets then the order,
in which those bins are removed is arbitrary.

To show the rules, consider a processing of some list Q of sequences with p
stack-up places. Let

(bπ(1), . . . , bπ(i−1), bπ(i), . . . , bπ(�−1), bπ(�), bπ(�+1), . . . , bπ(n))

be the order in which the bins are removed from the sequences during the process-
ing, and let (Q,Qj), 1 ≤ j ≤ n denote the configuration such that bin bπ(j) is
removed in the next transformation step. Suppose bin bπ(i) will be removed in
some transformation step although bin bπ(�), � > i, for some already open pallet
plt(bπ(�)) ∈ open(Q,Qi) could be removed next. We define a modified processing

(bπ(1), . . . , bπ(i−1), bπ(�), bπ(i), . . . , bπ(�−1), bπ(�+1), . . . , bπ(n))

by first removing bin bπ(�), and afterwards the bins bπ(i), . . . , bπ(�−1) in the given
order. Obviously, in each configuration during the modified processing there are
at most p pallets open. To remove first some bin of an already open pallet is a
kind of priority rule.

Directed Pathwidth and Palletizers 37

A configuration (Q,Q′) is called a decision configuration, if the first bin
of each sequence q′ ∈ Q′ is destined for a non-open pallet, see configura-
tions (Q,Q0), (Q,Q1), (Q,Q2), (Q,Q4), and (Q,Q8) in Table 1, i.e. front(Q′) ∩
open(Q,Q′) = ∅. We can restrict FIFO stack-up algorithms to deal with such
decision configurations, in all other configurations the algorithms automatically
remove a bin for some already open pallet.

If we have a pallet solution computed by some FIFO stack-up algorithm,
we can convert the pallet solution into a sequence of transformation steps, i.e.
a processing of Q. This is done by algorithm Transform shown in Fig. 4.
Given a list of sequences Q = (q1, . . . , qk) and a pallet solution T = (t1, . . . , tm)
algorithm Transform gives us in time O(n · k) ⊆ O(n2) a bin solution of Q,
i.e. a processing of Q.

Algorithm Transform

q1 := q1, . . . , qk := qk
j := 1
T := {t1}
repeat the following steps until q1 = ∅, . . . , qk = ∅:
1. if there is a sequence qi such that the first bin b of qi is destined for a pallet in T ,

i.e. plt(b) ∈ T , then remove bin b from sequence qi, and output b
Comment: Bins for already open pallets are removed automatically.

2. otherwise set j := j + 1 and T := T ∪ {tj}
Comment: If the first bin of each subsequence qi is destined for a non-open pallet,
the next pallet of the pallet solution has to be opened.

Fig. 4. Algorithm for transforming a pallet solution into a bin solution.

Obviously, there is no other processing of Q that also defines pallet solution
T but takes less stack-up places.

3 Main Result

Next we show a correlation between the used number of stack-up places for a
processing of an instance Q and the directed pathwidth of a digraph GQ defined
by Q. The notion of directed pathwidth (directed treewidth) was introduced by
Johnson, Robertson, Seymour, and Thomas in [9].

This correlation implies that (1) the decision version of the FIFO Stack-Up
problem is NP-complete, (2) a pallet solution can be computed in polynomial
time if there are only a fixed number of stack-up places, and (3) the optimization
version of the FIFO Stack-Up problem can be approximated up to a factor of
O(log1.5 m).

A directed path-decomposition of some digraph G = (V,E) is a sequence
(X1, . . . , Xr) of subsets of V , called bags, that satisfy the following three
properties.

38 F. Gurski et al.

(dpw-1) X1 ∪ . . . ∪ Xr = V
(dpw-2) for each arc (u, v) ∈ E there are indices i, j with i ≤ j such

that u ∈ Xi and v ∈ Xj

(dpw-3) if u ∈ Xi and u ∈ Xj for some vertex u and two indices i, j
with i ≤ j, then u ∈ X� for all indices � with i ≤ � ≤ j

The width of a directed path-decomposition (X1, . . . , Xr) is max1≤i≤r |Xi|−1.
The directed pathwidth of G, d-pw(G) for short, is the smallest integer w such
that there is a directed path-decomposition for G of width w. For symmetric
digraphs, the directed pathwidth is equivalent to the undirected pathwidth of
the corresponding undirected graph [12]. For each fixed integer w, it is decidable
in polynomial time whether a given digraph has directed pathwidth at most w,
see Tamaki [18].

The sequence graph GQ = (V,E) for an instance Q = (q1, . . . , qk) of the
FIFO Stack-Up problem is defined by vertex set V = plts(Q) and the following
set of arcs. There is an arc (u, v) ∈ E if and only if there is a sequence qi =
(bni−1+1, . . . , bni

) with two bins bj1 , bj2 such that (1) j1 < j2, (2) plt(bj1) = u
(3) plt(bj2) = v, and (4) u �= v.

If GQ = (V,E) has an arc (u, v) ∈ E then u �= v and for every processing
of Q, pallet u is opened before pallet v is closed. Digraph GQ = (V,E) can be
computed in time O(n + k · |E|) ⊆ O(n + k · m2).

Example 2. Figure 5 shows the sequence graph GQ for Q = (q1, q2, q3) with
sequences q1 = [a, a, d, e, d], q2 = [b, b, d], and q3 = [c, c, d, e, d].

a

b

c

d e

Fig. 5. Sequence graph GQ of
Example 2.

Before we give our main Theorems we want
to emphasize that not every directed path-
decomposition of a sequence graph GQ imme-
diately leads to a pallet solution. In Exam-
ple 2 the sequence ({e, a}, {e, b}, {e, c}, {e, d}) is
a directed path-decomposition of optimal width
1 for the sequence graph GQ. But opening
the pallets one after another leads (e, a, b, c, d),
which is no pallet solution since pallet e can-
not be opened at first and must be put on hold.
Within the proof of Theorem 2 we show how to

transform a directed path-decomposition of GQ into a pallet solution for Q.
Example 3 and Table 2 illustrate this process.

Theorem 1. A processing (Q,Q0), (Q,Q1), . . . , (Q,Qn) of Q with Q0 = Q,
Qn = (∅, . . . , ∅), and p stack-up places defines a directed path-decomposition
X = (open(Q,Q0), . . . , open(Q,Qn)) for GQ of width p − 1.

Proof. We show that X = (open(Q,Q0), . . . , open(Q,Qn)) satisfies all properties
of a directed path-decomposition.

(dpw-1) open(Q,Q0) ∪ · · · ∪ open(Q,Qn) = plts(Q), because every pallet is
opened at least once.

Directed Pathwidth and Palletizers 39

(dpw-2) If (u, v) ∈ E then there are indices i, j with i ≤ j such that u ∈
open(Q,Qi) and v ∈ open(Q,Qj), because v can not be closed before u is
opened.

(dpw-3) If u ∈ open(Q,Qi) and u ∈ open(Q,Qj) for some pallet u and two
indices i, j with i ≤ j, then u ∈ open(Q,Q�) for all indices � with i ≤ � ≤ j,
because every pallet is opened at most once.

Since Q is processed with p stack-up places, we have |open(Q,Qi)| ≤ p for
0 ≤ i ≤ n, and therefore X has width at most p − 1.
�
Theorem 2. If there is a path-decomposition X = (X1, . . . , Xr) for GQ of width
p − 1 then there is a processing of Q with p stack-up places.

Proof. For a pallet t let α(X , t) be the smallest i such that t ∈ Xi and β(X , t)
be the largest i such that t ∈ Xi, see Example 3. Then t ∈ Xi if and only if
α(X , t) ≤ i ≤ β(X , t). If (t1, t2) is an arc of GQ, then α(X , t1) ≤ β(X , t2). This
follows by (dpw-2) of the definition of a directed path-decomposition.

Instance Q can be processed as follows. If it is necessary to open in a con-
figuration (Q,Q′) a new pallet, then we open a pallet t of front(Q′) for which
α(X , t) is minimal.

We next show that for every configuration (Q,Q′) of the processing above
there is a bag Xi in the directed path-decomposition X = (X1, . . . , Xr), such
that open(Q,Q′) ⊆ Xi. This implies that the processing uses at most p stack-up
places.

First, let (Q,Q′) be a decision configuration, let t ∈ front(Q′) such that
α(X , t) is minimal, and let t′ ∈ open(Q,Q′) be an already open pallet. We
show that the intervals [α(X , t), β(X , t)] and [α(X , t′), β(X , t′)] overlap, because
α(X , t) ≤ β(X , t′) and α(X , t′) ≤ β(X , t).

(1) To show α(X , t) ≤ β(X , t′) we observe the following:
Since t′ �∈ front(Q′), there has to be a pallet t′′ ∈ front(Q′) such that (t′′, t′)
is an arc of GQ. This implies that α(X , t′′) ≤ β(X , t′). Since t is a pallet of
front(Q′) for which α(X , t) is minimal, we have α(X , t) ≤ α(X , t′′) and thus
α(X , t) ≤ β(X , t′).

(2) To show α(X , t′) ≤ β(X , t) we observe the following:
Let (Q,Q′′) be the configuration in that t′ has been opened.
(a) t ∈ front(Q′′). Since t′ is a pallet of front(Q′′) for which α(X , t′) is

minimal, we have α(X , t′) ≤ α(X , t) and thus α(X , t′) ≤ β(X , t).
(b) t �∈ front(Q′′). Then there is a pallet t′′ ∈ front(Q′′) such that (t′′, t) is

an arc of GQ. This implies that α(X , t′′) ≤ β(X , t). Since t′ is a pallet of
front(Q′′) for which α(X , t′) is minimal, we have α(X , t′) ≤ α(X , t′′) ≤
β(X , t).

Finally, let (Q, Q̂) be an arbitrary configuration during the processing of Q. By
the discussion above, we can conclude that for every pair ti, tj ∈ open(Q, Q̂) the
intervals [α(X , ti), β(X , ti)] and [α(X , tj), β(X , tj)] overlap, because ti is opened
before tj or vice versa. Since all intervals [α(X , ti), β(X , ti)], ti ∈ open(Q, Q̂)
mutually overlap, the cut of all these intervals is not empty, and so there is a bag
Xj in the directed path-decomposition X such that open(Q, Q̂) ⊆ Xj .
�

40 F. Gurski et al.

Example 3. We consider the digraph GQ for Q = (q1, q2, q3) with sequences
q1 = [a, a, d, e, d], q2 = [b, b, d], and q3 = [c, c, d, e, d] from Example 2. Sequence
X = ({a, e}, {b, e}, {c, e}, {d, e}) is a directed path-decomposition of width 1,
which implies the following values for α and β used in the proof of Theorem 2.

pallet t a b c d e

α(X , t) 1 2 3 4 1
β(X , t) 1 2 3 4 4

Table 2 shows a processing of Q with 2 stack-up places and pallet solution
S = (a, b, c, d, e). The underlined bin is always the bin that will be removed in the
next transformation step. We denote Qi = (qi

1, q
i
2, q

i
3), thus each row represents

a configuration (Q,Qi).

Table 2. A processing of Q with respect to a given directed path-decomposition for
GQ of Example 3.

i qi1 qi2 qi3 front(Qi) open(Q,Qi)

0 [a, a, d, e, d] [b, b, d] [c, c, d, e, d] {a, b, c} ∅
1 [a, d, e, d] [b, b, d] [c, c, d, e, d] {a, b, c} {a}
2 [d, e, d] [b, b, d] [c, c, d, e, d] {b, c, d} ∅
3 [d, e, d] [b, d] [c, c, d, e, d] {b, c, d} {b}
4 [d, e, d] [d] [c, c, d, e, d] {c, d} ∅
5 [d, e, d] [d] [c, d, e, d] {c, d} {c}
6 [d, e, d] [d] [d, e, d] {d} ∅
7 [e, d] [d] [d, e, d] {d, e} {d}
8 [e, d] [] [d, e, d] {d, e} {d}
9 [e, d] [] [e, d] {e} {d}
10 [d] [] [e, d] {d, e} {d, e}
11 [] [] [e, d] {e} {d, e}
12 [] [] [d] {d} {d}
13 [] [] [] ∅ ∅

4 Applications

4.1 Hardness Result

Next we will show the hardness of the FIFO Stack-Up problem. In contrast to
Sect. 3 we will transform an instance of a graph problem into an instance of the
FIFO Stack-Up problem.

Directed Pathwidth and Palletizers 41

Let G = (V,E) be a digraph. We will assume that G = (V,E) does not
contain any vertex with only outgoing arcs and not contain any vertex with
only incoming arcs. This is only for technical reasons and the removal of such
vertices will not change the directed pathwidth of G, because a vertex u with
only outgoing arcs can be placed in a singleton Xi = {u} at the beginning of
the directed path-decomposition and a vertex u with only incoming arcs can be
placed in a singleton Xi = {u} at the end of the directed path-decomposition,
without to change its width.

Let G = (V,E) be some digraph and E = {e1, . . . , e�} its arc set. The queue
system QG = (q1, . . . , q�) for G is defined as follows.

(1) There are 2� bins b1, . . . , b2�.
(2) Queue qi = (b2i−1, b2i) for 1 ≤ i ≤ �.
(3) The pallet symbol of bin b2i−1 is the first vertex of arc ei and the pallet

symbol of b2i is the second vertex of arc ei for 1 ≤ i ≤ �. Thus plts(QG) = V .

The definition of queue system QG and sequence graph GQ, defined in Sect. 3,
now imply the following proposition.

Proposition 1. For every digraph G it holds G = GQG
.

Lemma 1. There is a directed path-decomposition for G of width p − 1 if and
only if there is a processing of QG with at most p stack-up places.

Proof. By Proposition 1 we know that G = GQG
. If there is a directed path-

decomposition for G = GQG
of width p − 1 then by Theorem 2 there is a

processing of QG with at most p stack-up places. If there is a processing of QG

with at most p stack-up places then by Theorem 1 there is a directed path-
decomposition for G of width p − 1.
�
Theorem 3. The FIFO Stack-Up problem is NP-complete.

Proof. The given problem is obviously in NP. Determining whether the path-
width of some given (undirected) graph is at most some given value w is NP-
complete [10] and for symmetric digraphs a special case of the problem on
directed graphs (cf. Introduction of [12]). Thus the NP-hardness follows from
Lemma 1, because QG can be constructed from G in linear time.
�

According to [1] it is shown in [13] that determining whether the pathwidth
of some given (undirected) graph G is at most some given value w remains
NP-complete even for planar graphs with maximum vertex degree 3. Thus the
problem to decide, whether the directed pathwidth of some given symmetric
digraph G is at most some given value w remains NP-complete even for planar
digraphs with maximum vertex in-degree 3 and maximum vertex out-degree 3.
Therefore by our transformation of graph G into QG we get sequences that
contain together at most 6 bins per pallet. Hence the FIFO Stack-Up problem
is NP-complete even if the number of bins per pallet is bounded. Thus we have
proved the following statement.

Corollary 1. The FIFO Stack-Up problem is NP-complete, even if the
sequences of Q contain together at most 6 bins per pallet.

42 F. Gurski et al.

4.2 Bounded FIFO Stack-Up Systems

In this section we show that the FIFO Stack-Up problem can be solved in
polynomial time, if the number p of stack-up places or the number k of sequences
is assumed to be fixed.

Fixed Number of Stack-Up Places. In [18] it is shown that the problem of
determining the bounded directed pathwidth of a digraph is solvable in poly-
nomial time. By Theorems 1 and 2 the FIFO Stack-Up problem with fixed
number p of stack-up places is also solvable in polynomial time.

Theorem 4. The FIFO Stack-Up problem can be solved in polynomial time,
if the number p of stack-up places is fixed.

Fixed Number of Sequences. Next we assume that the number k of sequences
is fixed. In [8] we have shown that the FIFO Stack-Up problem can be solved
by dynamic programming in time O(k · (N + 1)k).

Theorem 5 ([8]). The FIFO Stack-Up problem can be solved in polynomial
time, if the number k of sequences in Q is fixed.

Next we improve this result. Therefore we need two additional definitions.
The position of the first bin in some sequence qi destined for some pallet t is
denoted by first(qi, t), similarly the position of the last bin for pallet t in sequence
qi is denoted by last(qi, t).

Theorem 6. The FIFO Stack-Up problem is non-deterministically decidable
using logarithmic work-space, if the number k of sequences in Q is fixed.

Proof. We need k + 1 variables, namely pos1, . . . , posk and open. Each vari-
able posi is used to store the position of the bin which has been removed
last from sequence qi. Variable open is used to store the number of open pal-
lets. These variables take (k + 1) · �log(n) bits. The simulation starts with
pos1 := 0, . . . , posk := 0 and open := 0.

(i) Choose non-deterministically any index i and increment variable posi. Let
b be the bin on position posi in sequence qi, and let t := plt(b) be the pallet
symbol of bin b.
Comment: The next bin b from some sequence qi will be removed.

(ii) If first(qj , t) > posj or t �∈ plts(qj) for each j �= i, 1 ≤ j ≤ k, and
first(qi, t) = posi, then increment variable open.
Comment: If the removed bin b was the first bin of pallet t that ever has
been removed from any sequence, then pallet t has just been opened.

(iii) If last(qj , t) ≤ posj or t �∈ plts(qj) for each j, 1 ≤ j ≤ k, then decrement
variable open.
Comment: If bin b was the last one of pallet t, then pallet t has just been
closed.

Directed Pathwidth and Palletizers 43

If open is set to a value greater than p in step (ii) of the algorithm then the
execution is stopped in a non-accepting state. To execute steps (ii) and (iii) we
need a fixed number of additional variables. Thus, all steps can be executed
non-deterministically using logarithmic work-space.
�

Theorem 6 implies that the FIFO Stack-Up problem with a fixed number of
given sequences can be solved in polynomial time since NL is a subset of P. The
class NL is the set of problems decidable non-deterministically on logarithmic
work-space. Even more, it can be solved in parallel in polylogarithmic time with
polynomial amount of total work, since NL is a subset of NC2. The class NC2 is
the set of problems decidable in time O(log2(n)) on a parallel computer with a
polynomial number of processors, see [14].

4.3 Approximation

In [11] it is shown that the directed pathwidth of a digraph G = (V,E) can be
approximated up to a factor of O(log1.5 |V |). By Theorems 1 and 2 the opti-
mization version of the FIFO Stack-Up problem can be approximated up to a
factor of O(log1.5 m).

5 Conclusion

In this paper, we have shown that the minimum number of stack-up places
needed to solve the FIFO Stack-Up problem for some instance Q is equivalent
to the directed pathwidth of the sequence graph GQ of Q.

In our future work, we want to find online algorithms for instances where we
only know the first c bins of every sequence instead of the complete sequences.
Especially, we are interested in the answer to the following question: Is there a
d-competitive online algorithm? Such an algorithm must compute a processing
of some Q with at most p ·d stack-up places, if Q can be processed with at most
p stack-up places.

In real life the bins arrive at the stack-up system on the main conveyor of
a pick-to-belt orderpicking system. That means, the distribution of bins to the
sequences has to be computed. Up to now we consider the distribution as given.
We intend to consider how to compute an optimal distribution of the bins from
the main conveyor onto the sequences such that a minimum number of stack-up
places is necessary to stack-up all bins from the sequences.

References

1. Bodlaender, H.L.: A tourist guide through treewidth. Acta Cybern. 11, 1–23 (1993)
2. Borodin, A.: On-line Computation and Competitive Analysis. Cambridge Univer-

sity Press, Cambridge (1998)
3. de Koster, R.: Performance approximation of pick-to-belt orderpicking systems.

Eur. J. Oper. Res. 92, 558–573 (1994)

44 F. Gurski et al.

4. Dehmer, M., Emmert-Streib, F. (eds.): Quantitative Graph Theory: Mathematical
Foundations and Applications. CRC Press Inc., New York (2014)

5. Fiat, A., Woeginger, G.J. (eds.): Online Algorithms: The State of the Art. LNCS,
vol. 1442. Springer, Heidelberg (1998)

6. Gurski, F., Rethmann, J., Wanke, E.: Moving bins from conveyor belts onto pal-
lets using FIFO queues. In: Huisman, D., Louwerse, I. (eds.) Operations Research
Proceedings 2013, pp. 185–191. Springer, Heidelberg (2014)

7. Gurski, F., Rethmann, J., Wanke, E.: Algorithms for controlling palletizers. In:
Proceedings of the International Conference on Operations Research (OR 2014),
Selected Papers. Springer-Verlag (2015, to appear)

8. Gurski, F., Rethmann, J., Wanke, E.: A practical approach for the FIFO stack-up
problem. In: An Le Thi, H., Dinh, T.P., Nguyen, N.T. (eds.) Modelling, Computa-
tion and Optimization in Information Systems and Management Sciences. AISC,
vol. 360. Springer, Heidelberg (2015)

9. Johnson, T., Robertson, N., Seymour, P.D., Thomas, R.: Directed tree-width. J.
Comb. Theory, Ser. B 82, 138–155 (2001)

10. Kashiwabara, T., Fujisawa, T.: NP-completeness of the problem of finding a
minimum-clique-number interval graph containing a given graph as a subgraph. In:
Proceedings of the International Symposium on Circuits and Systems, pp. 657–660
(1979)

11. Kintali, S., Kothari, N., Kumar, A.: Approximation algorithms for digraph width
parameters. Theor. Comput. Sci. 562, 365–376 (2015)

12. Kitsunai, K., Kobayashi, Y., Komuro, K., Tamaki, H., Tano, T.: Computing
directed pathwidth in O(1.89n) time. In: Thilikos, D.M., Woeginger, G.J. (eds.)
IPEC 2012. LNCS, vol. 7535, pp. 182–193. Springer, Heidelberg (2012)

13. Monien, B., Sudborough, I.H.: Min cut is NP-complete for edge weighted trees.
Theor. Comput. Sci. 58, 209–229 (1988)

14. Papadimitriou, C.H.: Computational Complexity. Addison-Wesley Publishing
Company, New York (1994)

15. Rethmann, J., Wanke, E.: Storage controlled pile-up systems, theoretical founda-
tions. Eur. J. Oper. Res. 103(3), 515–530 (1997)

16. Rethmann, J., Wanke, E.: On approximation algorithms for the stack-up problem.
Math. Methods Oper. Res. 51, 203–233 (2000)

17. Rethmann, J., Wanke, E.: Stack-up algorithms for palletizing at delivery industry.
Eur. J. Oper. Res. 128(1), 74–97 (2001)

18. Tamaki, H.: A polynomial time algorithm for bounded directed pathwidth. In:
Kolman, P., Kratochv́ıl, J. (eds.) WG 2011. LNCS, vol. 6986, pp. 331–342. Springer,
Heidelberg (2011)

Black and White Bin Packing Revisited

Jing Chen1, Xin Han2, Wolfgang Bein3(B), and Hing-Fung Ting4

1 Graduate School of Informatics, Kyoto University, Kyoto, Japan
chen@algo.cce.i.kyoto-u.ac.jp

2 Software School, Dalian University of Technology, Dalian, China
hanxin@dlut.edu.cn

3 Department of Computer Science, University of Nevada, Las Vegas, USA
wolfgang.bein@unlv.edu

4 Department of Computer Science, The University of Hong Kong,
Hong Kong, China
hfting@cs.hku.hk

Abstract. The black and white bin packing problem is a variant of the
classical bin packing problem, where in addition to a size, each item also
has a color (black or white), and in each bin the colors of items must
alternate. The problem has been studied extensively, but the best com-
petitive online algorithm has competitiveness of 3. The competitiveness
of 3 can be forced even when the sizes of items are ‘halved’, i.e. the sizes
are restricted to be in (0, 1/2]. We give the first ‘better than 3’ compet-
itive algorithm for the problem for the case that item sizes are in the
range (0, 1/2]; our algorithm has competitiveness 8

3
.

1 Introduction

We consider the Black and White Bin Packing Problem (B&W , for short)
recently introduced by Bálogh et al. [1,2]. The input is a set of items with sizes in
(0, 1], furthermore each item is categorized as “black” or “white”. The object is
to pack the items into the minimum number of bins under the additional stipula-
tion that no two items of the same color can be packed into a bin consecutively. In
this paper we are interested in the online version of the problem, i.e. items arrive
one by one according to a list L, and no information is given in advance. Thus the
next item can be packed only into a bin where it fits and the last item already
packed into that bin has the opposite color; if there is no such bin, the item must
be packed into a new bin. This problem is a variant of the classical bin packing
(Refer to e.g. [5,10–13]) which is a well known NP-hard problem [9].

As pointed out in Bálogh et al. [1] no algorithm can be competitive against
an offline algorithm which can reorder items. Thus B&W is instead analyzed
against the restricted offline algorithm, where items as before are given by a list
L and packing has to be according to L, but in contrast to the online situation
the order of the items, and the sizes and colors are known in advance. The
absolute competitive ratio of algorithm A is then defined as

CA = sup
L

{A(L)/OPTR(L)},

c© Springer International Publishing Switzerland 2015
Z. Lu et al. (Eds.): COCOA 2015, LNCS 9486, pp. 45–59, 2015.
DOI: 10.1007/978-3-319-26626-8 4

46 J. Chen et al.

where A(L) and OPTR denote the number of bins required by online algorithm
A and the restricted offline algorithm for list L.

Though in this paper we analyze competitiveness in terms of the absolute
competitive ratio, we mention that online bin packing algorithms are sometimes
analyzed in term of the asymptotic competitive ration defined by:

C∞
A = lim

n→∞ sup
L

{A(L)/OPTR(L) | OPTR = n}.

We review a number results relevant to our contribution; for a more complete
exposition of the history of B&W we refer the reader to Bálogh et al. [1]. They
proved that first fit (FF) is 3-competitive in the asymptotic sense and it was
also shown that this is tight (for FF see [4,6,15]). Bálogh et al. [1] introduced
algorithm Pseudo, which is 3 competitive in the absolute sense.

Furthermore Bálogh et al. [1,3] give a lower bound of 1.7213. This bound
was improved to 2 by Dósa et al. [7], and it was shown that there is no online
algorithm for B&W with asymptotic competitive ratio smaller than 2. However
a large gap remains between the tight competitiveness of Pseudo and the lower
bound of 2. Dósa et al. [7], have introduced the colorful bin packing problem,
where items have a size from (0, 1], and a color from color set C. This problem
generalizes the black and white bin packing problem (where |C| = 2). They
showed the method applied for |C| = 2 does not work for |C| ≥ 3 and con-
structed an algorithm for |C| ≥ 3 with absolute competitive ratio of 4. Veselý
et al. [3], gave an absolutely 3.5-competitive algorithm for the colorful bin pack-
ing problem, and a lower bound of 2.5.

As mentioned Pseudo [1] is 3-competitive in the absolute sense; in fact it is
the first such algorithm. For the parametric case, if items sizes are at most 1/d
(for d ≥ 1, d is an integer), the performance ratio of pseudo is 1 + d

d−1 . The
3 competitive ratio of Pseudo algorithm is tight, even items have size at most
1/2, as shown in [1]. Vesely [8,14], proved that the competitive ratio of the first
fit algorithm for the B&W problem is at most 3. Furthermore Bálogh et al. [1],
proved that in any parametric case, if items sizes are at most 1/d (for d ≥ 1, d
is an integer), the performance ratio of FF is at least 3.

Our Contribution. It has been conjectured that there be a “better than 3”
competitive algorithm for B&W . In this paper we settle this conjecture in the
affirmative for the case when sizes are in (0, 1/2].

2 Algorithm “Balance Between Stacks”

We recall the algorithm Pseudo given in [1]. Pseudo depends on a lower bound
LB1: For an input list L of n items, let ci = 1 if the ith item is black and ci = −1
if it is white, then LB1 is:

LB1 = max
1≤i<j≤n

|
j∑

k=i

ck| (1)

Black and White Bin Packing Revisited 47

Remark 1. ([1]) For any problem instance, LB1 is a lower bound on the optimum,
both in the online and restricted offline cases.

Algorithm Pseudo is as follows

Step 1: Render all items as “pseudo items” with size 0 but retained color, and
pack these pseudo items using algorithm Any Fit, which will uses exactly
LB1 bins (also called stacks).

Step 2: Consider the original size of the pseudo items, and divide the contents
of each such stack into subsequent bins of unit sizes, as soon as a bin would
exceed 1, open a new bin.

The competitiveness of Pseudo is tight even when sizes are restricted to
(0, 1/2] (see [1]). The worst case for algorithm Pseudo occurs in the following
situation: one Stack has many bins, but all the remaining Stacks only have one
bin with little contents in the bin.

In our algorithm we use data structures, namely Stacks, Buffers and a Set C
to avoid such unbalances. Our aim is to construct an algorithm for B&W with
competitive ratio better than 3. The algorithm is called BAL.

2.1 Description of Algorithm BAL

We now give a description of our algorithm, while referring to Fig. 1 below. As
shown in the Figure, we make use of data structures: Stacks and Buffers. Stacks
contain bins which in turn contain the items. We define the color of a Stack as
the color of the last item packed into this Stack. When an item x arrives, first
find a Stack with the opposite color of x. Then pack x into the open bin in this
Stack. Each Stack also has a Buffer which can contain at most two bins. The
invariant for a Stack is that it carries at most three bins. When a bin is opened
it is affiliated with the Stack where it was opened. Each bin is only affiliated
with one Stack, but its affiliation may change during packing.

Given a Stack, let k be the number of bins in this Stack for k ≤ 3; we call
this an Sk Stack. The expression Buff(S) is the Buffer of Stack S. An L0 Stack
is a special S1 Stack, where one bin (dashed lines in Fig. 1) is not opened here
but moved from another Stack. L1 Stack is S1 Stack throughout the algorithm
and the one bin is opened in this Stack.

Furthermore we define set C to be a set of pairs of bins. There are two types
of pairs, couple and fat. A couple pair is a pair of bins with different top colors,
total contents of these two bins larger than 1, and each individual bin total
contents at least 1

5 . A fat pair is a pair of bins which has a total contents of at
least 6

5 . A fat pair may have the same top color. In the algorithm, whenever a
new Stack is about to be opened, the set of C is checked first to create better
balance. Unless C is empty, a pair of bins will be used for the opening of a new
Stack.

In our algorithm, an S1 Stack where Buff(S1) = 0, and the one bin inside
the S1 Stack has contents less than 1/5, is called a low S1 Stack. S1 Stacks that

48 J. Chen et al.

have Buff(S1) = 0 are called unsaturated S1 Stacks. An S2 Stack where the
second bin is not size collision with the first bin, and the contents of the second
bin is less than 3/10 (Stacks marked by ∗ in our algorithm) is called an isolated
Stack. Both S1 Stacks with Buff(S1) = 0 and marked S2 Stacks are called
unsaturated Stacks.

At any moment of the algorithm: if there is at most one unsaturated Stack,
we record this state by a variable State = 0; if there are at least two unsaturated
Stacks, and all the unsaturated Stacks have the same top color, we record this
state by State = 1; if there are more than one unsaturated Stack, and at least two
unsaturated Stacks have different top colors, we record this state by State = 2.
In our algorithm, if there are at least two unsaturated Stacks, we try to keep
State = 2 if possible. With these data structures, our algorithm runs as follows:

0

0

1

1

1

}

}

1

}

}

1

0

}

}

0

1

}

}

∅ ∅

∅∅ ∅

S1S2S1S

C:

3Stack:

Unsaturated Stacks

Set

Buffer: Buff(S3) Buff(S1) Buff(S2) Buff(S1)

B1 B1C2

1

C1

0

1

}

}

S1

Buff(S1)

BL
0

BL

B2 B2

B3

{(C1, C2), ...}

⇓

⇓
∗

≥ 3
10< 3

10x

< 3
10x

x

Fig. 1. Data structures of algorithm BAL

For an input item x, we first choose an existing Stack for x.
Step I: Choose a Stack for x.

We will choose Stack with opposite color for x. If x ≥ 3/10 we will choose an
S1 Stack with Buff(S1) = 0, or an isolated Stack (marked by ∗) first. If x < 3/10
we will first to insure that at least two unsaturated Stacks (Buff(S1) = 0 Stacks
and marked Stacks) have different top colors. If at least two unsaturated Stacks
have different top colors, or at most one unsaturated Stack exists, we will choose
Stack with the largest number of affiliated bins first. The details are as follows:

Black and White Bin Packing Revisited 49

State = 0. In this case we choose Stack as follows:
If x ≥ 3/10
If an unsaturated Stack with opposite color of x exists, choose it (S1 Stack

prior to marked Stack).
Else choose a Stack S with opposite color of x and the largest number of

affiliated bins.
If x < 3/10, from all the Stacks that are not unsaturated, choose a Stack S

with opposite color of x and the largest number of affiliated bins.
If an S1 Stack with Buff(S1) = 1 is chosen, and the bin in S1 and
bin in Buff(S1) have different colors then proceed as follows: If there
is a marked S2 Stack with opposite color of x, choose the S2 for x, else
choose S1.
If the only Stack with opposite color of x is an unsaturated Stack, choose
it.

State = 1. If all the unsaturated Stacks have different color with x, choose one
as S (choose S1 Stack with Buff(S1) = 0 prior to marked Stack), update
the value of State. Otherwise all unsaturated Stacks have same color with
x. Choose a Stack S with opposite color of x and the largest number of
affiliated bins.

State = 2. In this case at least two unsaturated Stacks have different colors.
Therefore there must be one unsaturated Stack with opposite color of x.
If x ≥ 3/10, choose one unsaturated Stack with opposite of x. Update the
value of State.
If x < 3/10, from all the existing Stacks, choose an Stack S with opposite
color of x and the largest number of affiliated bins (In this case S3 or S2

Stack with opposite color of x will be chosen prior to S1 Stack). Update the
value of State.

Step II: Pack x into Stack.

(1) If no existing Stack is available for x.
A new Stack will be opened.
If set C is empty: open a new Stack.
If S1 Stack with |Buff(S1)| = 2 exists, and the contents of the bin in S1

has contents at least 1/5. Then move the two bins in Buff(S1) to the
Buffer of the new Stack. If x can be packed into one bin move this bin to
new Stack as open bin. Otherwise open a new bin in the new Stack for x.
(As Stack S1 of Fig. 1.)

Else directly open a new bin in the new Stack for x.
If set C is not empty:
(a) If x can be packed into one bin of a pair in set C, pack x into it.

Assume this bin is C2, the other bin of the pair is C1. After packing x,
if C2 has same top color with C1, and C1 has less contents, then move
C1 to the new Stack as open bin. Otherwise move C2 to the new Stack
as open bin. In both case, move the other bin to the Buffer of the new
Stack.

(b) In this case x can not be packed into any bin of a pair in set C.

50 J. Chen et al.

If x < 1/5, move a pair to the Buffer of the new Stack, and open
a new bin in new Stack for x (Refer to Fig. 1). For such Stack with
Buff(S1) = 2, we can prove that the three bins have a total contents
of at least 1 + 1/5 (Refer to the analysis of Eqs. (10) and (12)).

If x ≥ 1/5, then directly open a new Stack and open a new bin for x.

(2) Assume Stack S is chosen for packing x.
S is an S1 Stack. Assume the bin in the Stack is B1.

(i) |Buff(S)| �= 2. If possible, pack x into the open bin B1 in the Stack.
If x can not be packed into B1, just open a new bin B2 to pack x. If
Buff(S) = 1 move B1 to Buff(S).
(ii) |Buff(S)| = 2.
If the contents of bin B1 is at least 2/5, and a bin in the Buff(S)

has the same color of B1 but contents smaller than B1. In this case,
assume the bin in Buff(S) to be Bf bin, exchange B1 with Bf , use
Bf as open bin.

Pack x into the open bin in the Stack as possible. If x can not be
packed into the open bin, open a new bin B2 to pack x. If the pair in
Buff(S) is a fat pair and S1 Stack with Buff(S1) = 0 exists, move
the pair to the Buffer of a S1 Stack (low S1 is preferable). Otherwise
move the fat pair to set C.

S is an S2 Stack. Assume the bins in the Stack are B1 and B2.
If x can be packed into B2 bin.

Pack x into the open bin B2 in the Stack. If the contents of the
second bin is larger than 3/10, remove the mark ∗ of S if exists.

If x can not be packed into B2.
Remove the mark ∗ of the Stack if the mark exists.
Then check if x can be packed in to B1, if so pack x into B1 bin, and
exchange B1 and B2, use B1 as open bin. Otherwise open a new bin
for x.

S is an S3 Stack. As in Fig. 1 assume the three bins are B1, B2 and B3.
Case: |Buff(S)| = 0. Pack x into B3 bin if possible. If x can not be

packed into B3, then open a new bin for x, and move B1 and B2 to
Buff(S), S becomes an S2 Stack.

Case: |Buff(S)| = 1. (Impossible for S3 Stack.)
Case: |Buff(S)| = 2
(2.1) If there are at least two unsaturated Stacks, pack x into B3 if

possible. If x can not be packed into B3, open a new bin for x. In
this case B2 and B3 must be a fat pair (Lemma 1). Move B2 and B3

to the Buffer of a low S1 Stack. If no low S1 Stack exists, move the
fat pair to set C.

(2.2) There is at most one unsaturated Stack.
If there is an S1 Stack with Buff(S1) = 0 then

(2.2.1) We change the S3 Stack and the S1 Stack with empty
Buffer into a marked S2 Stack and an S1 Stack with Buff(S1) =
1. (As the S1 in Fig. 2.) Assume BL represents the bin in the
S1 Stack.

Black and White Bin Packing Revisited 51

Let min{B1, B2} be the bin of minimum contents between B1

and B2. Move min{B1, B2} bin to the Buffer of S1 Stack.
If B3 and BL have the same top color, exchange B3 and BL
bin. Change the affiliation of BL to S, while B3 and B2 still
affiliate to the S Stack. If BL has contents less than 3/10,
mark Stack S by mark ∗. Pack x into the new open bin BL
in S. S Stack becomes an S2 Stack.

If B3 and BL have different top colors, pack x into B3 bin
first then exchange B3 and BL, do the same operations as
above.

Else check bins B2 and B3 (Fig. 3).
(2.2.2) B2 and B3 have different top colors, and the contents

of B3 is at least 1
5 . By definition B2 and B3 is a couple pair.

Then in this case we will check B1 and B2 bin first:
(a) B1 and B2 have different top colors. Pack x into B3; if x
can not be packed into B3, then open a new bin for x, and
move B1 and B2 to set C as a couple pair; S becomes a S2

Stack.
(b) B1 and B2 have the same color. Let min{B1, B2} be
the bin of minimum contents between B1 and B2. Move
min{B1, B2} and B3 as a couple pair (Lemma 3) to set C.
Then open a new bin in S for x, and mark the Stack S by
mark ∗ since the new bin is not size collision with B1. Now
S becomes a S2 Stack.

(2.2.3) If B2 and B3 is not a couple pair.
The algorithm will pack x into bin B3, if possible. If x can not
be packed into bin B3, then open a new bin for x, and move
B1 and B2 to set C (B1 and B2 must be a pair by Lemma 4),
S becomes an S2 Stack.

We have the following lemmas.

Lemma 1. Assume Bi is the open bin of an unsaturated Stack. Bin Bi has
contents at least 7/10, if at least two unsaturated Stacks exist when it is closed.

Proof. Let Bi be the open bin of a Stack S, where S is not an unsaturated Stack.
Assume item x is chosen to be packed into Stack S, and x is too large for Bi.
We must prove that it is not possible for x ≥ 3/10. Assume that x is larger than
3/10, then in this case the algorithm chooses Stack S, only in the case that all
the unsaturated Stacks have the same color with x. Let y be the top item of Bi

bin, and z be the top item of any unsaturated Stack. If z comes after y then, z
chosen the unsaturated Stack only when z ≥ 3/10, contradicting the definition
of an unsaturated Stack. Therefore z comes before y. Then by our algorithm
y should choose an unsaturated Stack. At least two unsaturated Stacks have
different top colors. Again a contradiction. Therefore if at least two unsaturated
Stacks exist, it is impossible for the present item x to be larger than 3/10, when
Bi is about to close. �	

52 J. Chen et al.

Lemma 2. Assume S2 is a marked Stack with two bins, B1, B2, and B2 is an
isolated bin (B2 is not size collision with B1). Let C1 and C2 be the last pair
moved out from S2 Stack, then C1 and C2 can only be in an L0 or L1 Stack or
in Set C.

The proof of the lemma will be in the journal version.

Lemma 3. Bins min{B1, B2} and B3 in step (b) of (2.2.2) form a couple pair.

Proof. In step (b) of (2.2.2), we know that B2 and B3 form a couple pair, and
B1 and B2 have the same top color, we only need to prove that B1 and B3

form a couple pair. Since B1 and B2 have the same top color, therefore when
the first item of the B3 bin comes, the Stack is a S2 Stack. According to our
algorithm (step (2)) the algorithm will attempt to put the item into B1 bin also,
and only the case that the item is size collision with both bins then a new bin
will be opened. Therefore we have B1 and B3 have total size large than 1. B1

has contents at least 1/2 and B3 has contents at least 1/5, they are a couple
pair. �	
Lemma 4. In step (2.2.3), B1 and B2 is a couple pair or a fat pair.

Proof. If the first item of B3 is smaller than 1/5, then B2 has contents at least
4
5 . Since bin B1 has contents at least 1/2, B1 and B2 form a fat pair.

Now for the case that the first item x of bin B3 is larger than 1/5. When
the next item of x in B3 appears, B2 and B3 is a couple pair at the time. If B1

and B2 have same top color then by (b) of (2.2.2), min{B1, B2} and B3 will be
moved out as a couple pair. Therefore if x ≥ 1/5, for the next items of x in the
same Stack, algorithm can go to step (2.2.3) only under the condition that B1

and B2 have different top colors. B1 and B2 form a couple pair. Therefore in
step (2.2.3), if B1 and B2 is not a fat pair, B1 and B2 must be a couple pair. �	

Finally, we observe that an S3 Stack cannot transition into an S4 Stack, and
an S3 Stack can only transition into an S2 Stack after generating a pair. And
each pair in set C is generated when no low S1 Stack exists.

3 Competitive Analysis of Algorithm BAL

We now analyze the performance of our algorithm. Let M be the total number
of bins used by the algorithm at the end. Then we divide M into disjoint subsets;
and analyze the total size of the bins in each subset. For example a pair of bins
in set C has total size at least 1, while a fat pair by definition have total size at
least 1 + 1/5. If a couple pair is used to open a Stack and the Stack opened a
new bin, then these three bins have a total size of at least 1+1/5, since the new
opened bin must has size collision with one bin of the pair, and the contents of
the left bin is at least 1/5. Using these properties we can calculate the contents
of the disjoint subsets; if we can assure that there are at least total size of c ·M ,
c > 0 then the competitive ratio of our algorithm is at most 1/c.

Black and White Bin Packing Revisited 53

BL

x =1

0 0

BL

x

0
1

1

0

S1 :S3 :

S1 :S2 :

1 }}
Buff(S1):

B3B2

B3B2

∗

Fig. 2. Buff(S1) = 1.

x =1

0

x1

1

0

1

C :

≥

}}

open new bin

1
5

B3 B4B2

B3B4 B2

S3 :

S2 :

∗

Fig. 3. Couple pair.

In the following sections we first we define a number of useful terms for the
analysis of the algorithm, and introduce a case analysis. Then we develop a
methodology of calculating contents for various kinds configurations. Finally we
give the proofs of our performance ratio.

3.1 Terminology and Case Analysis

As defined before an Sk Stack has k bins (k ≤ 3), an S4 Stack has at least 4 bins
but does not exist in our algorithm. We define S̄k as the number of Sk Stacks
at the end of the algorithm.

Let k be the number of bins affiliated to a Stack at the end of the algorithm,
if k ≤ 3 we call the stack an Lk Stack, else if k ≥ 4 we call it an L4+ Stack (L4+

Stacks exist in the algorithm. Because when a Stack generated pairs, the pairs
are moved out of the Stack but are still affiliated with this Stack). An L1 Stack
is a Stack that has only one affiliated bin at the end of the algorithm, it must
be an S1 Stack. But an S1 Stack at the end of the algorithm is not necessarily
an L1 Stack. There may be one bin in the Stack and another bin in the Buffer,
the two bins are bins of a pair that moved in from other Stack. This Stack is an
L0 Stack.

Lemma 5. An S1 Stack at the end of the algorithm can not be an L4+Stack.

Proof. Assume an S1 Stack at the end of the algorithm is an L4+ Stack. Since
there is only one bin left in the Stack at the end of the algorithm, the other bins
affiliated with this Stack are moved out of the Stack. If the last bin moved out
is only one bin, then this S1 Stack is once an S2 Stack. But in our algorithm no
bin will be moved out from an S2 Stack. Therefore it is impossible to move only
one bin from the Stack at a time. Suppose the last bins moved are two bins,
then this S1 Stack is once an S3 Stack. Where by our algorithm each operation
on an S3 Stack is insured to make the Stack to be an S2 Stack when moving a
pair of bins outside the Stack. Again a contradiction. �	

54 J. Chen et al.

In our algorithm an S1 Stack might change to an S2 Stack by opening a new
bin inside the Stack. An S2 Stack might increase to an S3 Stack too. But an S3

Stack can only be changed to an S2 Stack by any operation in our algorithm.
There are L0 stacks (Fig. 1), it must be one bin (call this bin C2 bin) of a pair

placed in the L0 stack (another bin of the pair is moved into the Buff(L0)).
This pair of bins are not affiliated with this stack, but affiliated with some L3

or L+
4 Stack where they are opened. All the items packed in the L0 Stack can

be packed into this C2 bin and no new bin is opened. At each step no Stack has
more than three bins, therefore at the end of the algorithm, an L4+ Stack will be
either an S2 Stack or an S3 Stack. An L3 Stack will be an S3 Stack. An L2 Stack
will be an S2 Stack. An S1 Stack at the end of the algorithm is either an L0 or
an L1 Stack. An S1 Stack that have no new bin opened is an L0 Stack, otherwise
it is an L1 Stack. An L1 Stack can only be an S1 Stack at any moment. If the
Stack is start with a C2 bin, it will be moved to the Buffer of the Stack when a
new bin is opened. As mentioned S̄k is the number of Sk Stacks at the end of
the algorithm, then we have

S̄1 = L0 + L1.

As defined S̄2 is the number of S2 Stacks at the end of the algorithm, and S̄3 is
the number of S3 Stacks. Then we have:

LB1 = S̄1 + S̄2 + S̄3 = L0 + L1 + S̄2 + S̄3, (2)

As defined M is the total number of bins used by the algorithm, then we have

M = L1 + 2S̄2 + 3S̄3 + T,

where T is the total number of bins in set C, bins in Buff(S) and bins in Stack
L0 (C2 bin as in Fig. 1). T can also be calculated as the total bins in dashed
lines in Fig. 1 plus the bins in set C. Therefore we have T = 2x, where x is the
number of pairs generated by the algorithm. Each pair can used to fill the Buffer
of a Stack.

T = M − L1 − 2S̄2 − 3S̄3. (3)

Each Buffer of a Stack has a capacity of at most 2. Therefore at least the
number of x = min{T/2, LB1} Stacks can be filled by T , these Stacks include
Lk Stacks, k ≥ 2. Therefore we can only assure that the number of S1 Stack
with |Buff(S1)| �= 0 is at most x − S̄2 − S̄3.

The first case is that T is large enough that can insure all S1 Stacks
(S̄1 = L0 + L1) will have Buff(S1) �= 0. That is

Case 1© : x ≥ S̄1 + S̄2 + S̄3.

Consider the more general case: only part of S1 can be insured to have
Buff(S1) �= 0.

Case 2© : S̄2 + S̄3 < x < S̄1 + S̄2 + S̄3.

Black and White Bin Packing Revisited 55

The third case is that

Case 3© : x ≤ S̄2 + S̄3.

Thus in the third case no S1 stack can be insured have no empty Buffer, but in
this case we can find the total number of bins is bounded.

3.2 A Function Calculating the Total Size of Bins

For a set S = {B1, B2, ...}, function w(S) calculates the lower bound of the total
size of the bins in S. Let V be the set of all M bins at the end of our algorithm,
We divide V into disjoint subsets of V1, V2, ..., then the function w(Vi) has the
property:

OPT ≥ total size of items in V ≥
∑

i

w(Vi). (4)

The values of w(x) for different set of bins are defined as follows:
If Vi = {B1, B2}, where B1 and B2 are two consecutive opened bins in the

same Stack, or both bins have contents at least 1/2, then we have

w({B1, B2}) = 1. (5)

If Vi = {B1, B2}, where B2 is not size collision with B1 (B2 is an isolated
bin). Refer to step (2.2.1) or step (a) of (2.2.2) in our algorithm, that a pair of
bins are moved out, and the next bin is not size collision with B1 bin in the S2

Stack. We have the following lemmas.

Lemma 6. For an S2 = {B1, B2} Stack with an isolated bin B2(B2 is not size
collision with B1). Let C1 and C2 be the pair moved out, if C1 and C2 is moved
out by step (b) of (2.2.2), B1 and C1 have same top color.

Proof. As in our algorithm, if the isolated bin is generated in step (b) of (2.2.2),
that B1 and B2 must have same color. �	
Lemma 7. For an S2 = {B1, B2} Stack with an isolated bin B2, and S2 is not
marked (B2 has contents larger than 3/10), let Bf1, Bf2 be the two bins in the
Buff(S2), we have:

w({Bf1, Bf2} ∪ {B1, B2}) = 3/2 + 3/10 = 9/5. (6)

Lemma 8. For an S2 = {B1, B2} Stack with an isolated bin B2, let C1 and C2

be the last pair moved out. If S2 is still marked, and C1 and C2 are in set C or
in an L0 Stack at the end of the algorithm, then we have:

w({Bf1, Bf2} ∪ {B1, C1, C2, B
*
2 }) = 2.5. (7)

Proof. C1 and C2 have total size 1, B1 is closed bin have size at least 1/2.
Bf1, Bf2 are a pair of bins and have total size 1. �	

56 J. Chen et al.

Lemma 9. For an S2 = {B1, B2} Stack with an isolated bin B2, let C1 and C2

be the last pair moved out. If S2 is still marked, and C1 and C2 are in an L1

Stack at the end of the algorithm. Let BL be the bin in L1 Stack, then we have:

w({Bf1, Bf2} ∪ {B1, C1, C2, B
*
2 } ∪ {BL}) = 3. (8)

Proof. BL bin must be opened later than C1 and C2 in Stack L1. The size of (8)
is calculated as follows: if BL is size collision with C2 (have total size 1), then
the total size of B1 and C1 is 1, therefore the total is 3. If C1 and C2 are moved
into L1 Stack by operation (2.2.1) then BL must be size collision with C2.

If BL has size collision with C1, then B1 and C1 must have the same color
(otherwise B1 and B2 would have moved out as couple pair), and size of C1 is
no more than B1. (We move the smaller bin with C2 as couple in step (b) of
(2.2.2)). Therefore BL and B1 have total size at least 1, and also C1 and C2

have total size 1, therefore we have the above size equation. �	
Lemma 10. If Vi = {B1, B2, B3}, where B2 and B3 are two consecutively
opened bins in the same Stack, then we have

w({B1, B2, B3}) = 1.5. (9)

Proof. where B3 is opened to pack an item which is size collision with B2.
Therefore the contents in the two bins is at least 1, B1 is a closed bin and has
contents at least 1/2.

Lemma 11. If Vi = {C1, C2, BL}, where C1, C2 form a couple pair and BL is
the bin of a L1 Stack. The total size of the three bins is at least:

w(couple ∪ {BL}) = 1 +
1
5
. (10)

Proof. BL is opened by size collision with one bin of the couple bins, by definition
the top colors of the couple are different and each bin of a couple pair has contents
at least 1/5. �	

Regarding fat pairs we have following lemmas about the total size inside the
bins:

Lemma 12. If Vi = fat = {B1, B2}, where B1, B2 is a fat pair, we have

w(fat) ≥ 6
5
. (11)

Proof. If a fat pair is generated by operation (2.2.3) from an S3 stack, then the
first item of the third bin B3 of S3 has a size < 1

5 . Refer to Fig. 3. Therefore the
contents of B2 has contents larger than 4

5 , while B1 have contents larger than 1
2

as a closed bin. If the fat pair is generated in operation (ii) of (2) in a S2 Stack,
then by Lemma 2, they have total size at least 6/5. �	

We can assign one low L1 bin with a fat pair. And we have

w(fat ∪ {BL}) ≥ 6
5
. (12)

where BL is the bin of an L1 Stack.

Black and White Bin Packing Revisited 57

3.3 Case by Case Analysis of the Competitive Ratio of BAL

Lemma 13. Case 1© : if x ≥ S̄1 + S̄2 + S̄3, then the competitive ratio of
algorithm BAL is at most 5

2 .

Proof. The number of pairs is larger than the number of Stacks. If set C is
empty, then there is a number of LB1 pairs in LB1 Stacks. If the set C is not
empty, then there is no low L1 Stack. But there are potentially L1 Stacks that
have Buff(L1) = 0, and contents at least 1/5. By operation of (2.2.1), the pairs
in set C can not be generated later than any L1 Stack that has Buff(L1) = 0.
These L1 Stacks opened the Stack when the pairs in C are existing. Then it can
only be the case of operation (b) of (1), the first item of the Stack is larger than
1/5 and can not be packed into any bin of the pairs. We can move a pair in
set C to the Buff(L1), then the total size of the three bin is at least 6/5 and
the bin in L1 Stack is size collision with one bin in the Buff(L1). This kind
of L1 Stack just has the same property as the L1 Stack with Buff(L1) = 2
that are generated by our algorithm. Therefore at the end of the algorithm, if
set C is not empty, and there are L1 Stacks with Buff(L1) = 0, we can simply
move the pairs from set C to the Buffers of the L1 Stacks. This new L1 with
Buff(L1) = 2 still has the property for (8) and for the proof of Lemma2.

Since the number of pairs is larger than the number of Stacks, if C is not
empty we can move pairs to the empty Buffers of L1 Stacks. Therefore we can
assume that all L1 Stacks have Buff(L1) �= 0 in Case 1©.

We consider the contents of S2 Stacks first. The size of an S̄2 Stack
(B1 and B2 bin) is either by (5) that has total contents of at least 1, or B2

is not size collision with B1 (B2 is an isolated bin). But B1 B2 can combine size
by (7) or (8). We define y2 to be the number of S̄2 Stacks that have the following
properties: S2 Stack has an isolated bin, the last moved out pair is either in set
C or used by an L0 Stack. The total size of these y2 Stacks can be calculated
by (7). We define y′

2 to be the number of S̄2 Stacks that have the following
properties: S2 Stack has an isolated bin, the last moved out pair is used by an
L1 Stack. Then the total size of y2 Stacks can be calculated by (8). We define
y′′
2 to be the number of S̄2 Stacks, that have an isolated bin but not marked at

the end of the algorithm (isolated bin have contents 3/10), then these Stacks are
calculating size by (6). All of these types of Stacks have Buff(S2) = 2.

Let x1 = L1 − y′
2, then by Eqs. (10) and (12). These bins will have total

contents at least:

x1 · w({C1, C2, } ∪ {BL}) ≥ 6x1

5
, (13)

where BL is the bin of an L1 Stack, and C1, C2 are a pair of bins from T . If the
bins C1 and C2 are moved into the L1 Stack by operation (2.2.1), the three bins
will have total size of at least 1.5.

M bins are divided into subsets as follows:

M = L1 + 2S̄2 + 3S̄3 + T,

= x1 + y′
2 + 2x1 + 3S̄3 + T − 2x1 + 2S̄2.

58 J. Chen et al.

By Eqs. (5) and (9), we have

w(T − 2x1) =
T − 2x1

2
.

Let S̄′
2 = S̄2 − y2 − y′

2 − y′′
2 , by (6), (7) and (8), we have

w(2S̄2 + 2y2 + 2y′
2 + y′

2 + 2y′′
2) = S̄′

2 + 2.5y2 + 3y′
2 + 9y′′

2/5.

Let T ′ = T − 2x1 − 2y2 − 2y′
2 − 2y′′

2 , then we have:

w(M) = w(x1 + 2x1) + w(3S̄3) + w(T ′) + w(2S̄2)

≥ 6x1

5
+

3S̄3

2
+

T ′

2
+ S̄′

2 + 2.5y2 + 3y′
2 + 9y′′

2/5.

We have OPT ≥ w(M), therefore the competitive ratio is:

M

OPT
≤ x1 + 2x′

1 + 3S̄3 + T ′ + 2S̄2

6x1/5 + (3S̄3)/2 + (T ′)/2 + S̄2

≤ 3x1 + 3S̄3 + T ′ + 2S̄′
2 + 6y2 + 7y′

2 + 4y′′
2

6x1/5 + 3S̄3/2 + (T ′)/2 + S̄′
2 + 2.5y2 + 3y′

2 + 9y′′
2/5

≤ 5
2
.

�	
Lemma 14. Case 2© : If S̄2+ S̄3 < x < S̄1+ S̄2+ S̄3, then the competitive ratio
of algorithm BAL is at most 8

3 .

Lemma 15. Case 3© : if x ≤ S̄2 + S̄3, then the competitive ratio of algorithm
BAL is at most 8

3 .

Proofs of the Lemmas 14 and 15 will be in the journal version. Combine the
results of Lemmas 13, 14 and 15, we have the following theorem:

Theorem 1. For the instance that all items have sizes in (0, 1/2], the compet-
itive ratio of algorithm BAL is at most 8

3 .

4 Concluding Remarks

We conjecture and have obtained partial results to show that our scheme can
be used for the problem where items sizes are in (0, α], with α < 1, to obtain
a competitive ratio smaller than 3 − ω(1

α). We note that the analysis, though
similar to the analysis of BAL presented in the previous chapter, is more involved
when item sizes are in (0, α]. We also conjecture that there is a better than 3
competitive algorithm for B&W , and it is conceivable that further refinement
of the ideas for BAL will yield such a desirable result.

Acknowledgment. Author Wolfgang Bein conducted this research while on sabbati-
cal at Kyoto University, Japan. A sabbatical from the University of Nevada, Las Vegas
and support from National Science Foundation grant IIA 1427584 is acknowledged.

Black and White Bin Packing Revisited 59

References

1. Bálogh, J., Békési, J., Dósa, G., Epstein, L., Kellerer, H., Tuza, Z.: Online results
for black and white bin packing. Theory Comput. Syst. 56, 137–155 (2015)

2. Balogh, J., Békési, J., Dosa, G., Kellerer, H., Tuza, Z.: Black and white bin packing.
In: Erlebach, T., Persiano, G. (eds.) WAOA 2012. LNCS, vol. 7846, pp. 131–144.
Springer, Heidelberg (2013)

3. Bálogh, J., Békési, J., Galambos, G.: New lower bounds for certain classes of bin
packing algorithms. Theor. Comput. Sci. 440–441, 1–13 (2012)

4. Boyar, J., Dósa, G., Epstein, L.: On the absolute approximation ratio for First Fit
and related Results. Discrete Appl. Math. 160(13–14), 1914–1923 (2012)

5. Coffman, E.G., Garey, M.R., Johnson, D.S.: Approximation algorithms for bin
packing: a survey. In: Hochbaum, D. (ed.) Approximation Algorithms. PWS
Publishing Company (1997)

6. Dósa, G., Sgall, J.: First fit bin packing: a tight analysis. In: Proceedings of STACS
2013, LIPICS, vol. 20, pp. 538–549 (2013)

7. Dósa, G., Epstein, L.: Colorful bin packing. In: Ravi, R., Gørtz, I.L. (eds.) SWAT
2014. LNCS, vol. 8503, pp. 170–181. Springer, Heidelberg (2014)

8. Böhm, M., Sgall, J., Veselý, P.: Online colored bin packing. In: Bampis, E.,
Svensson, O. (eds.) WAOA 2014. LNCS, vol. 8952, pp. 35–46. Springer, Heidelberg
(2015)

9. Garey, M.R., Johnson, D.S.: “Strong” NP-completeness results: motivation, exam-
ples, and implications. J. ACM 25(3), 499–508 (1978)

10. Karmarkar, N., Karp, R.M.: An efficient approximation scheme for the one-
dimensional bin-packing problem. In: Proceedings of the 23rd Annual Symposium
on Foundations of Computer Science (FOCS 1982), pp. 312–320 (1982)

11. Lee, C.C., Lee, D.T.: A simple on-line bin packing algorithm. J. ACM 32, 562–572
(1985)

12. Seiden, S.: On the online bin packing problem. J. ACM 49(5), 640–671 (2002)
13. Ullman, J.D.: The performance of a memory allocation algorithm. Technical report

100, Princeton University, Princeton 695 (1971)
14. Veselý, P.: Competitiveness of fit algorithms for black and white bin packing. In:

Middle-European Conference on Applied Theoretical Computer Science (2013)
15. Xia, B.Z., Tan, Z.Y.: Tighter bound of the First Fit algorithm for the bin-packing

problem. Discrete Appl. Math. 158(15), 1668–1675 (2010)

Local Search Algorithms for k-Median
and k-Facility Location Problems

with Linear Penalties

Yishui Wang1, Dachuan Xu1(B), Donglei Du2, and Chenchen Wu3

1 Department of Information and Operations Research,
College of Applied Sciences, Beijing University of Technology, 100 Pingleyuan,

Chaoyang District, Beijing 100124, People’s Republic of China
wangys@emails.bjut.edu.cn, xudc@bjut.edu.cn

2 Faculty of Business Administration,
University of New Brunswick, Fredericton, NB E3B 5A3, Canada

ddu@unb.ca
3 College of Science, Tianjin University of Technology,

Tianjin 300384, People’s Republic of China
wu chenchen tjut@163.com

Abstract. We present two local search algorithms for the k-median and
k-facility location problems with linear penalties (k-MLP and k-FLPLP),
two extensions of the classical k-median and k-facility location problems
respectively. We show that the approximation ratios of these two algo-
rithms are 3+2/p+ ε for the k-MLP, and 2+1/p+

√
3 + 2/p + 1/p2 + ε

for the k-FLPLP, respectively, where p ∈ Z+ is a parameter of the algo-
rithms and ε > 0 is a positive number. In particular, the (3 + 2/p + ε)-
approximation improves the best known 4-approximation for the k-MLP
for any p > 2.

Keywords: Local search · Approximation algorithm · k-median · k-
facility location · Penalty

1 Introduction

Facility location problem is one of the most important problems in the area of
combinatorial optimization, and it has numerous applications in computer sci-
ence, industrial engineering, and operations management etc. The uncapacitated
facility location problem (UFLP) is a classical location problem, in which we are
given a set of facilities F with |F| = n, a set of clients D with |D| = m, con-
nection costs cij for all i ∈ F and j ∈ D, and facility costs fi for all i ∈ F .
The objective is to open some facilities S ⊆ F and connect each client to an
opened facility, such that the total connection and facility cost is minimized. In
the metric case, the connection costs c are in a given metric space (F ⋃D, c),
satisfying nonnegativity, symmetry, and triangle inequalities. From now on we
only consider metric connection costs.
c© Springer International Publishing Switzerland 2015
Z. Lu et al. (Eds.): COCOA 2015, LNCS 9486, pp. 60–71, 2015.
DOI: 10.1007/978-3-319-26626-8 5

Local Search Algorithms for k-MLP and k-FLPLP 61

There are two important variants of the classical UFLP. The first is the
k-median problem. In contrast to the UFLP, the k-median problem incurs no
facility costs (fi = 0 for all i ∈ F), and opens no more than k facilities. The
second is the k-facility location problem (k-FLP), which is similar to the k-
median problem except that opening facilities may incur non-zero costs.

Both the k-median problem and the k-FLP are NP-hard. Therefore there
have been many studies focusing on the design of approximation algorithms for
these two problems. For the k-median problem, Charikar et al. [6] apply the
LP-rounding technique to give a 62

3 -approximation algorithm, the first constant
approximation for this problem. Subsequently, several approximation algorithms
are presented based on LP-rounding [5,9], primal-dual [10,11], and local search
[2]. The currently best known approximation ratio of 2.611 + ε is due to Byrka
et al. [5] based on LP-rounding and primal-dual techniques. Jain et al. [10] prove
that no algorithm can achieve approximation ratio better than 1 + 2/e ≈ 1.735
unless P = NP for the k-median problem.

For the k-FLP, the first approximation algorithm with ratio 6 is given by
Jain and Vazirani [11], based on the primal-dual scheme. Jain et al. [10] further
combine the greedy process and the factor-revealing LP technique to improve
the approximation ratio to 4. Zhang [14] offers the currently best known approx-
imation ratio 2 +

√
3 + ε based on local search technique. Since the k-FLP is an

extension of k-median problem, 1+2/e ≈ 1.735 is also a lower bound for k-FLP.
This work incorporates penalty cost to consider the k-median problem with

linear penalties (k-MPLP) and the k-FLP with linear penalties (k-FLPLP).
Penalty cost pj ∈ D is incurred whenever client j is denied service and this
cost is linear, namely for any subset T ⊆ D, p(T) =

∑
j∈T pj . The objective is

to minimize the total connection and penalty cost in the former problem and
the total connection, facility and penalty cost in the latter. These two problems
are evidently extensions of the k-median and the k-FLP where pj = +∞ for
all j ∈ D, and hence also NP-hard. The only extant result for these two prob-
lems is a primal-dual based approximation algorithm with ratio 4 for the metric
k-MPLP due to Charikar et al. [7].

Combinatorial optimization problems with penalty cost have been widely
investigated in the literature, including the facility location problem with penal-
ties [7,8,12], the scheduling problem with rejection [4,13], and the price-collecting
Steiner tree problem [1,3], among others.

In this paper, we offer a (3+2/p+ ε)-approximation algorithm for the metric
k-MPLP and a (2+1/p+

√
3 + 2/p + 1/p2 +ε)-approximation algorithm for the

metric k-FLPLP, where p ∈ Z+ is a parameter of the algorithms and ε > 0 is
a positive number, utilizing the local search techniques from Arya et al. [2] and
Zhang [14], respectively.

The rest of this paper is organized as follows. In Sect. 2, we introduce the
general local search algorithm. In Sects. 3 and 4, we present the local search
algorithms for the k-MPLP and k-FLPLP respectively. In Sect. 5, we improve
the algorithms in Sects. 3 and 4 to polynomial-time. All the proofs are deferred
to the journal version of this paper.

62 Y. Wang et al.

2 General Local Search Algorithm

The main idea of local search algorithm is to move from solution to its neighbour-
ing solution iteratively with improved cost. Formally, for any feasible solution X,
define its neighborhood N(X) and its cost cost(X). Then a local search algorithm
can be described as the following pseudo-code.

Local search algorithm A1
1. Give an initial feasible solution X0.
2. X ← X0.
3. While ∃X ⊆ N(X) such that cost(X) < cost(X)

X ← X .
Endwhile

4. Return X.

For any problem instance I, the final solution produced by a local search
algorithm is called a local optimal solution along with its local optimal value.
Denote local(I,X) and global(I) as the local optimal value produced by a local
search algorithm from the initial solution X and the global optimal value of the
instance I respectively. The local gap of the local search algorithm is defined as

sup
I,X

local(I,X)
global(I)

.

In Sects. 3 and 4, we will present two local search algorithms for the met-
ric k-MPLP and k-FLPLP with local gaps at most 3 + 2/p and 2 + 1/p +√

3 + 2/p + 1/p2 respectively.

3 Local Search for k-MPLP

For the location problems considered in this work, any subset of opened facili-
ties X ⊆ F represents a solution because the assignment of clients to facilities
afterwards can be easily achieved with the minimum connection cost once the
opened facilities are fixed.

For the the k-median problem, Arya et al. [2] define the neighborhood of any
feasible solution X as

N(X) := {(X\A) ∪ B : A ⊆ X,B ⊆ F , and 1 ≤ |A| = |B| ≤ p} (1)

where p ≤ k is a given positive integer. The local search operation (X\A) ∪ B
therein is called the swap of A and B, denoted as swap(A,B). Arya et al. [2]
consider two types of swap, namely, single-swap (p = 1) and multi-swap (p > 1),
with local gaps of 5 and 3 + 2/p respectively.

Note that there must exist an optimal solution O such that |O| = k in the k-
median problem as we can add facilities in absence of any opening cost. Thus, it is

Local Search Algorithms for k-MLP and k-FLPLP 63

reasonable to start from a feasible solution with |X| = k and apply the operation
swap(A,B) with |A| = |B| in every step of the local search procedure.

We now apply the local search algorithm A1 to k-MPLP using the same
neigborhood N(X) defined in (1) with the penalized total cost:

cost(X) := costs(X) + costp(X),

where costs(X) and costp(X) are the connection and penalty costs respectively.

3.1 Analysis

The main idea to establish the local gap α between the local optimal solution X
and the global optimal solution O, namely cost(X) ≤ αcost(O), is to focus on
some specific swaps between X and O. Each of these swaps satisfies an inequality
due to the local optimality of X, and the sum of these inequalities leads to the
desired local gap.

We follow similar analysis in Arya et al. [2] with the further complication of
penalty cost. For our purpose, we view the penalty cost of each client j as the
connection cost between j and a dummy facility d with cdj := pj . However these
new connection costs may violate the triangle inequality, a crucial property in the
analysis of [2] for the k-median problem. To overcome this hurdle, we divide D
into four subsets according to whether a client is penalized in X or O. Only those
clients that are not penalized in both X and O require the triangle inequality
property to carry through the analysis.

From now on, we use d and d∗ to represent the dummy facility in the solution
X and O respectively. We need the following notations.

– σ(j) and σ∗(j): the facilities (including the dummy facility) serving the client
j in the local optimal solution X and the global optimal solution O respec-
tively.

– Dσ(A) := {j ∈ D : σ(j) ∈ A} for A ⊆ X ∪ {d}, and Dσ∗(B) := {j ∈ D :
σ∗(j) ∈ B} for B ⊆ O ∪ {d∗}.

– DA
B := Dσ(A) ∩ Dσ∗(B).

– Ds := Dσ(X), Dp := Dσ({d}), D∗
s := Dσ∗(O), and D∗

p := Dσ∗({d∗}).
– Xj and Oj : the connection cost of the client j in X and O respectively for

any unpenalized client j.
– C(A) :=

{
y ∈ O : |Dσ(A) ∩ Dσ∗(y)| > 1

2 |Dσ∗(y)\Dp|
}
. We say that A cap-

tures facility y if y ∈ C(A), and A captures B if B ⊆ C(A).

For convenience, we abbreviate the notation of a single-element set {i} to i
whenever there is no confusion.

We call a facility i ∈ X good If i does not capture any facility, i.e. C(i) = ∅;
otherwise we call it bad. Let X ′ = {b1, b2, · · · , br−1} be the set of all bad facilities.
We partition X = ∪̇r

t=1At and O = ∪̇r
t=1Bt based on a similar procedure in Arya

et al. [2]:

64 Y. Wang et al.

Procedure of partitioning X and O for k-MPLP
For t = 1 to r − 1

Let At = {bt}.
While |At| < |C(At)|

Add a facility i ∈ X\(A1 ∪ · · · ∪ At ∪ X) to At.
End while
Let Bt = C(At).

End for
Let Ar = X\(A1 ∪ · · · ∪ Ar−1), Br = O\(B1 ∪ · · · ∪ Br−1).

It is easy to see that each of A1, · · · , Ar−1 contains exactly one bad facility; Ar

contains only good facilities; and |At| = |Bt| for t = 1, · · · , r.
Now we consider some specific swaps between At and Bt for t = 1, · · · , r.

There are two cases depending on the number of facilities in At and Bt:

1. If |At| = |Bt| ≤ p, we consider swap(At, Bt).
1.1 Dσ(At) ∩ D∗

p = ∅. In this case the clients in Dσ(Ai) ∩ D∗
p are penalized

after the swap operation.
1.2 Dσ(At) ∩ D∗

p = ∅. In this case no client in Dσ(At) is penalized after the
swap operation.

2. If |At| = |Bt| = q > p, we consider the single-swaps swap(i, o) for each good
facility i ∈ At and each facility o ∈ Bt. Note that there are q−1 good facilities
in At and q facilities in Bt, implying that there are q(q − 1) swaps in total.
Similar to the case 1, some clients in Dσ(i) may be penalized after the swap
operation.

A local operation swap(A,B) may reassign a client in Dσ(A) ∪ Dσ∗(B) to
another facility. We therefore need to bound the new connection cost by using
the bijection π : Dσ∗(o)\Dp �→ Dσ∗(o)\Dp for each o ∈ O. With a given partition
of X = ∪r

t=1At, the bijection π is constructed via the following process.
We partition Dσ∗(o)\Dp = ∪r

t=1Do
At

. Renumber the clients in Dσ∗(o)\Dp as
{j1, · · · , jl}, such that clients in Do

i for all i ∈ X are numbered consecutively,
and clients in Do

At
for all t ∈ {1, · · · , r} are numbered consecutively. If o is

not captured by any facility, let π(js) = js′ for every js ∈ {j1, · · · , jl}, where
s′ = 1 + (s + �l/2� − 1) modulo l. Otherwise, o must be captured by only
one facility by definition; we denote this facility as i1, and assume that Do

i1
=

{j1, · · · , jl1} without loss of generality. Since l1 > 1
2 l, we can construct |l − l1|

mutual mappings between js and js+l1 for s = 1, · · · , l − l1. For the remaining
|2l1 − l| clients {jl−l1+1, · · · , jl1}, let π(js) = js′ where s′ = 1 + (s + �(2l1 −
l)/2� − 1) modulo (2l1 − l). It is easy to prove that bijection π has the following
properties.

1. σ∗(π(j)) = σ∗(j).
2. If σ(π(j)) = σ(j), then σ(j) captures σ∗(j).
3. If σ(j) ∈ At, σ(π(j)) ∈ At for some t ∈ {1, 2, · · · , r}, then At captures σ∗(j).
4. π is a bijection on Ds ∩ D∗

s , and also on {j ∈ Ds ∩ D∗
s : π(j) /∈ Ds(σ(j))}.

From the above properties we have the following two lemmas.

Local Search Algorithms for k-MLP and k-FLPLP 65

Lemma 1. Given a facility o ∈ O, let At (t ∈ {1, 2, · · · , r}) be a set such
that Do

At
= ∅ and does not capture o. The removal of At from X results in

a new connection (or penalty) cost of each client j ∈ Do
At

being bounded by
Oj + Oπ(j) + Xπ(j).

Lemma 2. Given a facility o ∈ O, let facility i (i ∈ X) be a set such that Do
i = ∅

and does not capture o. The removal of At from X results in a new connection
(or penalty) cost of each client j ∈ Do

i being bounded by Oj + Oπ(j) + Xπ(j).

To analyze the new cost after swap(A,B), we only need to focus on the
clients in Dσ(A) ∪ Dσ∗(B). We consider four cases.

Case 1. σ∗(j) ∈ B and σ(j) = d. Let i∗(j) be the closest facility to j in the
new solution. Then we have ci∗(j),j ≤ Oj from σ∗(j) ∈ B. So we can use
Oj to bound the new connection cost. In this case, the upper bound of the
increased cost is Oj − Xj .

Case 2. σ∗(j) ∈ B and σ(j) = d. In this case, σ∗(j) must be the closest facility
to j because cij ≥ pj for all i ∈ X and pj ≥ Oj . So the increased cost is
Oj − pj .

Case 3. σ∗(j) /∈ B ∪ {d∗} and σ(j) ∈ A. We do not know which facility is
closest to j in the new solution, and we can not use Oj or pj to bound
the cost because σ∗(j) is not in the new solution. However, we know that
Dσ∗(j)

A = ∅ and C(A) = B if |A| > 1, or A = {i} such that i does not
capture any facility. We use Lemmas 1 and 2 for these two cases respectively
to obtain an upper bound of the increased cost: Oj + Oπ(j) + Xπ(j) − Xj .

Case 4. σ∗(j) = d∗ and σ(j) ∈ A. It is clear that j is penalized or connected to
a facility i with cij ≤ pj . So pj − Xj is an upper bound of the increased cost
in this case.

Combining the above four cases, we have the following theorem.

Theorem 1. For the k-MPLP, the local gap of algorithm A1 with N(X) defined
in (1) is at most 3 + 2/p.

4 Local Search for k-FLPLP

For the k-FLP, adding or dropping facilities is not costless. For this reason,
Zhang et al. [14] provide a local search algorithm for the k-FLP with a local gap
of 2 +

√
3, by introducing the new operations swap, add, and drop:

– swap(A,B): for a solution X, swap the subset A ⊆ X and B ⊆ F\X, i.e.
X ← (X\A) ∪ B.

– add(i): add the facility i ∈ F\X to X, i.e. X ← X ∪ {i}.
– drop(i): drop the facility i ∈ X, i.e. X ← X\{i}.

66 Y. Wang et al.

Consequently, the neighborhood N(X) with |X| ≤ k is defined as

N(X) := {(X\A) ∪ B : A ⊆ X,B ⊆ F , and 1 ≤ |A| = |B| ≤ p} ∪
{X ∪ {i} : i ∈ F\X, |X ∪ {i}| ≤ k} ∪ (2)
{X\{i} : i ∈ X} .

In our work, we apply the local search algorithm A1 to the k-FLPLP, using
N(X) defined above and cost(X) := costf (X) + costs(X) + costp(X) where
costf (X), costs(X) and costp(X) are the facility, connection and penalty costs
respectively.

4.1 Analysis

Similar to the analysis for the k-MPLP in Sect. 3, we need to construct some
local operations to establish the relationship between the local optimal solution
and the global optimal solution. Our analysis is similar to that in Zhang [14]
with the complication of penalty cost.

We first cite the following lemma from [14], modified to include penalty cost.

Lemma 3. For a given i ∈ X, let o ∈ O be the closest facility captured by i
and o′ another facility captured by i. For each client j ∈ Do′

i such that π(j) =
Dσ(i), the new connection (or penalty) cost of j is no more than 2Xj + Oj after
swap(i, o).

To bound the facility cost, let X ′ = {b1, · · · , b|X′|} be the set of all bad
facilities and partition X and O using the following procedure similar to that
in [14]. The bijection π : D �→ D with this partition can be constructed using
the same method in Sect. 3 earlier. Let X = ∪̇r

t=1At be this partition. Then
Lemmas 1 and 2 also hold for this partition.

Procedure of partitioning X and O for the analysis of
facility cost for k-FLPLP

For t = 1 to |X |
Let At = {bt} and Bt = C(At).
While |At| < |Bt|

Add a facility i ∈ X\(A1 ∪ · · · ∪ At ∪ X) (if it exists) to At.
End while

End for
Let B|X |+1 = O\(B1 ∪ · · · ∪ B|X |).
If |X\(A1 ∪ · · · ∪ A|X |)| ≥ |B|X |+1|

A|X |+1 = the set of arbitrary |B|X |+1| facilities in X\(A1 ∪ · · · ∪ A|X |);
A|X |+2 = X\(A1 ∪ · · · ∪ A|X |+1) =: R.

Else if
A|X |+1 = X\(A1 ∪ · · · ∪ A|X |).

End if

Local Search Algorithms for k-MLP and k-FLPLP 67

Fig. 1. Partition for the analysis of facility cost, case 1: lO ≤ lX .

Let lO = |O| and lX = |X|. The partition involves two cases: lO ≤ lX and
lO > lX .

For lO ≤ lX (Fig. 1), let X := A1∪̇ · · · ∪̇Ar−1∪̇R and O := B1∪̇ · · · ∪̇Br−1.
According to the partition procedure, each At (t ∈ {1, · · · , r − 2}) contains one
bad facility denoted by bt, while none of each Bt = C(bt) and Ar−1 contains
bad facility. Moreover, |At| = |Bt| for t ∈ {1, · · · , r − 1}, and R is the remaining
set such that |R| = |X| − |O|. Without loss of generality, assume that Ar−1,
Br−1, and R are non-empty. Denote et as the closest facility to bt in Bt, and
then consider the following local operations.

1. Consider drop(i) for facility i ∈ R.
2. Consider swap(bt, et) for (At, Bt), t ∈ {1, · · · , r − 2} and consider swap(i, o)

for the remaining |A\{bt}| pairs in which every facility is swapped only once.
3. Consider |Ar−1| single-swaps swap(i, o) for i ∈ Ar−1 and o ∈ Br−1 where

every facility is only swapped once.

For lO > lX , let X := A1∪̇ · · · ∪̇Ar and O := B1∪̇ · · · ∪̇Br. Each At (t ∈
{1, · · · , r − 1}) contains one bad facility; each Bt is the corresponding captured
set; Ar contains no bad facility; and Br is the uncaptured facility set. Let P be
the union of the sets formed by any |Bt|− |At| facilities in Bt\{e1, · · · , er−1} for
t ∈ {1, · · · , r}. Note that there are two subcases: Ar = ∅ and Ar = ∅ (Fig. 2(a)
and (b) respectively). For the facilities not in P , we apply swap operations similar
to that of lO ≤ lX , while for each facility o ∈ P , we apply the add(o) operation.

Fig. 2. Partition for the analysis of facility cost, case 2: lO > lX .

Combining the local operations specified earlier for these two cases (namely
lO ≤ lX and lO > lX), the following lemma bounds the facility cost of X.

68 Y. Wang et al.

Lemma 4. For the k-FLPLP, the global optimal solution O and the local opti-
mal solution X produced by the algorithm A1 with N(X) defined in 2 satisfies
that costf (X) ≤ costf (O) + 2costs(O) + costp(O).

Next we analyze the upper bound of the connection and penalty cost of X.
We partition X and O by using the following procedure from [14] for the case
of lO ≤ lX (Fig. 3). Note that except for the set R, this partition is the same
as that for k-MPLP in Sect. 3. So similar properties apply and Lemmas 1 and 2
also hold for this partition.

Procedure of partitioning X and O for the analysis of
connection and penalty cost for k-FLPLP

For t = 1 to |X |
Let At = {it}.
While |At| < |C(At)|

Add a facility i ∈ X\(A1 ∪ · · · ∪ At ∪ X) to At.
End while
Let Bt = C(At).

End for
Let B|X |+1 = O\(B1 ∪ · · · ∪ B|X |);

A|X |+1 = the set of arbitrary |B|X |+1| facilities in X\(A1 ∪ · · · ∪ A|X |).
Let A|X |+2 = X\(A1 ∪ · · · ∪ A|X |+1) =: R.

Fig. 3. Partition for the analysis of connection and penalty cost, case 1: lO ≤ lX .

For the case of lX > lO, we apply operation add(o) for each o ∈ O. For the
case of lX ≤ lO, we consider the swap operations similar to that for k-MPLP
in Sect. 3 for each pair (At, Bt), t ∈ {1, · · · , r − 1}, and operation drop(i) for
each i ∈ R. Using these local operations for the two cases, we have the following
lemma, showing the upper bound of connection and penalty cost.

Lemma 5. For the k-FLPLP, the global optimal solution O and the local opti-
mal solution X produced by the algorithm A1 with N(X) defined in 2 satisfies
that costs(X) + costp(X) ≤ costf (O) + (3 + 2/p)costs(O) + (1 + 1/p)costp(O).

Summing up the upper bound of the facility cost in Lemma 4 and the upper
bound of the connection and penalty cost in Lemma 5, we get

cost(X) ≤ 2costf (O) +
(

5 +
2
p

)
costs(O) +

(
2 +

1
p

)
costp(O).

Finally, we get the following theorem.

Local Search Algorithms for k-MLP and k-FLPLP 69

Theorem 2. For the metric k-FLPLP, the local gap of the algorithm A1 with
N(X) defined in 2 is at most 5 + 2/p.

4.2 Improve the Local Gap Using Scaling Technique

In Sect. 4.1, the local gap of the algorithm A1 is given by max(2, 5 + 2/p, 2 +
1/p), where the three numbers therein are the factors of facility, connection, and
penalty costs of O respectively for bounding the cost of X. These three factors
are different, implying that there are room to improve the local gap by scaling the
input of the instance. We construct a new instance I ′ by scaling the facility costs
in the original instance I, namely, in the instance I ′, f ′

i = δfi, c
′
ij = cij , p

′
j = pj

for i ∈ F , j ∈ D, where δ > 0 is a constant to be determined later.
Define costf (I,X), costs(I,X), costp(I,X), and cost(I,X) as the facility,

connection, penalty, and total costs of the solution X for instance I respectively.
From the analysis in Sect. 4.1, we know that after replacing the optimal solution
O with any feasible solution S, Lemmas 4 and 5 still hold; that is, for any instance
I with the local optimal solution X and any feasible solution S, we have

costf (I, X) ≤ costf (I, S) + 2costs(I, S) + costp(I, S);

costs(I, X) + costp(I, X) ≤ costf (I, S) +

(
3 +

2

p

)
costs(I, S) +

(
1 +

1

p

)
costp(S).

Now we have the following theorem.

Theorem 3. For the k-FLPLP, the local gap of Algorithm A1 with N(X)
defined in 2 to the scaled instance is at most 2 + 1

p +
√

3 + 2
p + 1

p2 .

5 Polynomial-Time Algorithm for k-MPLP and k-FLPLP

The local search approach A1 is not a polynomial-time algorithm because it
may not reduce sufficient cost at each local search step, resulting in exponential
number of iterations. To solve the problem in polynomial-time, we modify the
local search condition cost(X ′) < cost(X) to cost(X ′) < (1−ε/Q)cost(X) where
ε > 0 is a constant and Q is the number of local operations for the analysis of
local gap. We call this modified algorithm A2. The following lemma is from [2].

Lemma 6 (Arya et al. [2]). The number of local search steps in algorithm A2
is at most log(cost(X0)/cost(O))/ log 1

1−ε/Q ≤ log(cost(X0)/cost(O)) · 1
ε log eQ.

If the local gap of algorithm A1 is α, then the local gap of algorithm A2 is at
most α

1−ε = α + ε′, where ε′ = αε
1−ε ∼ ε.

It is easy to see that the number Q is at most n2 + n for both k-MLP
and k-FLPLP. Moreover, at each local search step, A2 searches for at most
|N(X)| = O(np) solutions, and the time for calculating the cost is O(mn). So
by Lemma 6 we have the following theorem.

70 Y. Wang et al.

Theorem 4. The time complexity of algorithmA2 isO(1ε log(cost(X0)/cost(O))·
m · n3) for both k-MLP and k-FLPLP. The approximation ratio of algorithm A2
is 3 + 2/p + ε′ for k-MLP, and 2 + 1/p +

√
3 + 2/p + 1/p2 + ε′ for k-FLPLP. In

particular, when the parameter p is large enough, the approximation ratios for the
two problems are 3 + ε′ and 2 +

√
3 + ε′ respectively.

Acknowledgements. The research of the first author is supported by Collabora-
tive Innovation Center on Beijing Society-Buliding and Social Governance. The sec-
ond author’s research is supported by NSFC (Nos. 11371001 and 11531014). The third
author’s research is supported by the Natural Sciences and Engineering Research Coun-
cil of Canada (NSERC) grant 283106. The fourth author’s research is supported by
NSFC (No. 11501412).

References

1. Archer, A., Bateni, M., Hajiaghayi, M., Karloff, H.: Improved approximation algo-
rithms for prize-collecting Steiner tree and TSP. SIAM J. Comput. 40, 309–332
(2011)

2. Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local
search heuristics for k-median and facility location problems. SIAM J. Comput.
33, 544–562 (2004)

3. Bienstock, D., Goemans, M.X., Simchi-Levi, D., Williamson, D.: A note on the
prize collecting traveling salesman problem. Math. Program. 59, 413–420 (1993)

4. Bartal, Y., Leonardi, S., Marchetti-Spaccamela, A., Sgall, J., Stougie, L.: Multi-
processor scheduling with rejection. SIAM J. Discrete Math. 13, 64–78 (2000)

5. Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approx-
imation for k-median, and positive correlation in budgeted optimization. In: Pro-
ceedings of the 26th Annual ACM-SIAM Symposium on Discrete Algorithms, pp.
737–756 (2015)

6. Charikar, M., Guha, S., Tardos, É., Shmoys D.B.: A constant-factor approximation
algorithm for the k-median problem. In: Proceedings of the 31st Annual ACM
Symposium on Theory of Computing, pp. 1–10 (1999)

7. Charikar, M., Khuller, S., Mount, D.M., Narasimhan, G.: Algorithms for facility
location problems with outliers. In: Proceedings of the 20th Annual ACM-SIAM
Symposium on Discrete Algorithms, pp. 642–651 (2001)

8. Gupta, N., Gupta, S.: Approximation algorithms for capacitated facility location
problem with penalties (2014). ArXiv: 1408.4944

9. Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R.: A dependent LP-rounding
approach for the k-median problem. In: Charikar, M., Li, S. (eds.) ICALP 2012.
LNCS, vol. 7391, pp. 194–205. Springer, Heidelberg (2012)

10. Jain, K., Mahdian, M., Markakis, E., Saberi, A., Vazirani, V.V.: Greedy facility
location algorithms analyzed using dual fitting with factor-revealing LP. J. ACM.
50, 795–824 (2003)

11. Jain, K., Vazirani, V.V.: Approximation algorithms for metric facility location and
k-median problems using the primal-dual schema and Lagrangian relaxation. J.
ACM. 48, 274–296 (2001)

12. Li, Y., Du, D., Xiu, N., Xu, D.: Improved approximation algorithms for the facility
location problems with linear/submodular penalties. Algorithmica 73, 460–482
(2015)

http://arxiv.org/abs/1408.4944

Local Search Algorithms for k-MLP and k-FLPLP 71

13. Shabtay, D., Gaspar, N., Kaspi, M.: A survey on offline scheduling with rejection.
J. Sched. 16, 3–28 (2013)

14. Zhang, P.: A new approximation algorithm for the k-facility location problem.
Theor. Comput. Sci. 384, 126–135 (2007)

A (5.83 + ε)-Approximation Algorithm
for Universal Facility Location Problem

with Linear Penalties

Yicheng Xu1, Dachuan Xu1(B), Donglei Du2, and Chenchen Wu3

1 Department of Information and Operations Research, College of Applied Sciences,
Beijing University of Technology, 100 Pingleyuan, Chaoyang District,

Beijing 100124, People’s Republic of China
ycxu@emails.bjut.edu.cn, xudc@bjut.edu.cn

2 Faculty of Business Administration, University of New Brunswick,
Fredericton, NB E3B 5A3, Canada

ddu@unb.ca
3 College of Science, Tianjin University of Technology,

Tianjin 300384, People’s Republic of China
wu chenchen tjut@163.com

Abstract. In the universal facility location problem, we are given a set
of clients and facilities. Our goal is to find an assignment such that the
total connection and facility cost is minimized. The connection cost is
proportional to the distance between each client and its assigned facil-
ity, whereas the facility cost is a nondecreasing function with respect to
the total number of clients assigned to the facility. The universal facility
location problem generalizes several classical facility location problems,
including the uncapacitated facility location problem and the capacitated
facility location problem (both hard and soft capacities). This work con-
siders the universal facility location problem with linear penalties, where
each client can be rejected for service with a penalty. The objective is
to minimize the total connection, facility and penalty cost. We present
a (5.83 + ε)-approximation local search algorithm for this problem.

Keywords: Local search · Approximation algorithm · Universal facility
location · Penalty

1 Introduction

Facility location is one of the most classical and active research topics of combi-
natorial optimization. In the universal facility location problem, we are given a
set of clients D and a set of facilities F . Each client j served by facility i pays a
connection cost cij , which is assumed to be metric (i.e., nonnegative, symmetric,
and satisfying triangle inequalities). Let fi(ui) denote the facility cost which is a
nondecreasing left-continuous function with respect to its allocated capacity ui

and fi(0) = 0 where ui depends on the total amount of clients served by facility

c© Springer International Publishing Switzerland 2015
Z. Lu et al. (Eds.): COCOA 2015, LNCS 9486, pp. 72–81, 2015.
DOI: 10.1007/978-3-319-26626-8 6

Approximation Algorithm for Universal FLP with Linear Penalties 73

i. The objective is to assign every client to a facility such that the total facility
and connection cost is minimized subject to the facility capacity constraint.

This problem generalizes several classical facility location problems such as
the uncapacitated facility location problem and capacitated facility location
problem (both hard and soft capacities). In the uncapacitated problems we pay
a fixed cost for opening each facility, which can serve any number of clients. In
the hard-capacitated problems each facility has an upper bound on the amount
of demand it can serve. In the soft-capacitated problems each facility has a
capacity, but we are allowed to open multiple copies of each facility.

As special cases of universal facility location problems, uncapacitated and
soft-capacitated facility location problems have been investigated intensively
in the literature based on linear programming relaxation technique. However,
this technique has been ineffective in dealing with hard-capacitated or univer-
sal cases, mainly because no linear programming formulation of bounded inte-
grality gap was known for hard-capacitated case, until An et al. [2] propose a
new multi-commodity-flow relaxation for the capacitated facility location prob-
lems, resulting in the first constant approximation ratio of 288 via semi-rounding
technique.

On the other hand, local search technique has been effective in handling these
problems. Under the assumption of uniform capacities, Korupolu et al. [7] and
Chudak et al. [5] give an approximation algorithm with constant approximation
guarantee based on local search. The currently best approximation ratio for the
hard capacitated facility location problem with uniform capacities is 3, achieved
by Aggarwal et al. [1].

For nonuniform hard capacities, Pal et al. [10] give a local search algorithm
that achieves a constant approximation ratio of (9 + ε). They propose such
operations as add, close and open in their algorithm. Zhang et al. [15] extend
their close/open operation to a more general multi-exchange operation, achieving
(5.83 + ε) approximation ratio. It is the first local search algorithm in which the
analysis is proved to be tight.

For the universal facility location problem, Mahadian and Pal [9] give the first
constant approximation ratio of (7.88+ ε) based on local search algorithm. They
employ add and pivot operations in their work. Vygen [12] improves this result
to (6.702 + ε)-approximation by extending the pivot operation. The currently
best approximation ratio is (5.83 + ε) by Angel et al. [3].

Facility location problems with penalties is another extension of the basic facil-
ity location problems and have been studied for many years (e.g. [4,13,14]). Both
linear and submodular penalties problems have been investigated by Li et al. [8]
with approximation ratios 2 and 1.5148, respectively. Gupta and Gupta’s work [6]
on capacitated facility location problem with linear penalties achieves an approx-
imation ratio of (5.83 + ε) for uniform case and (8.532 + ε) for nonuniform case.

In this paper, we consider the universal facility location problem with linear
penalties which generalizes the universal facility location problem and the (capaci-
tated) facility locationproblemwith linearpenalties.Wedesigna local searchbased
(5.83+ε)-approximation algorithm which maintains the same approximation ratio
for the universal facility location problem. Comparing with the universal facility

74 Y. Xu et al.

location problem, we explore the penalty structure in the so-called flow decompo-
sition and exchange graph (cf. Sect. 3).

The rest of this paper is organized as follows. In Sect. 2, we present the local
search algorithm for the universal facility location problem with linear penalties.
In Sect. 3, we analyze the algorithm and obtain the 6 + ε approximation ratio.
We further improve the ratio to 5.83 + ε in Sect. 4. All the proofs are deferred
to the journal version of this paper.

2 Local Search Algorithm

The universal facility location problem with linear penalties can be formulated
as the following program.

min
∑
i∈F

fi(ui) +
∑

i∈F,j∈D
cijxij +

∑
j∈D

pjzj

s.t.
∑
i∈F

xij + zj = 1, ∀j ∈ D, (1)

∑
j∈D

xij ≤ ui, ∀i ∈ F ,

xij , zj ∈ {0, 1}, ∀i ∈ F , j ∈ D.

Here fi(ui) denotes the facility cost function with respect to its allocation
ui and cij denotes the connection cost from client j to facility i. The set of
facility is F and the set of clients is D. pj is the penalty cost of client j. The
decision variables are x, u, z, where x represents the assignment, u represents
the allocation and zj denotes whether client j is served. Under the assumption
that fi(·) is nondecreasing, the optimal solution S∗ := (x∗, u∗, z∗) must satisfy
u∗

i =
∑

j∈D x∗
ij for each facility i. Therefore, it suffices to denote any solution of

the above program by (x, z).

2.1 Operations

The set of operations that will be used in our algorithm are defined as follows.

– add(s,δ): Given any solution S := (x, z), add capacity us of facility s by δ,
and assign clients optimally by solving a linear program. Note that when given
allocation u, the program (1) above is a transportation problem with integer
parameters, and hence equivalent to its linear relaxation. This operation is
widely used in both universal and hard-capacitated facility location problems
to bound the service cost. In our work, this “add” operation will be used to
bound the total service and penalty cost (Lemma 4).

– open(s,δ): Given any solution S := (x, z), increase the capacity us by δ from
some unserved clients or some other facilities i1,i2, . . . to s via the shortest
path. In other words, capacities of i1,i2, . . . will decrease.

Approximation Algorithm for Universal FLP with Linear Penalties 75

– close(t,δ): Given any solution S := (x, z), decrease the capacity ut from t
to some other facilities i1,i2, . . . via the shortest path or penalize. In other
words, capacities of i1,i2, . . . will increase.

– open-close(s,t,δs,δt): Given any solution S := (x, z), increase the capacity
us by δs from some unserved clients or some other facilities i1,i2, . . . (may
include t) to s via the shortest path. Decrease the capacity ut from t to some
other facilities i1,i2, . . . (may include s) via the shortest path or penalize.

2.2 Polynomial-Time Proof

In this subsection, we will show how to compute the minimum cost of the oper-
ations in polynomial time. Note the operation open-close(s,t,δs,δt) generalizes
the open(s,δ) and close(t,δ) operation. Thus it suffices to prove the open-
close(s,t,δs,δt) and add(s,δ) operations run in polynomial time.

For add(s,δ), let S be the current solution and Y the solution after the
add(s,δ) operation. We define our estimated cost as

cS(s, δ) := cs(Y) + cp(Y) − cs(S) − cp(S) + fs

⎛
⎝∑

j∈D
xsj + δ

⎞
⎠ − fs

⎛
⎝∑

j∈D
xsj

⎞
⎠ ,

where cs(Y) denotes the service cost and cp(Y) denotes the penalty cost of Y . One
can obtain minimum cs(Y)+cp(Y) by solving a transportation problem, i.e.,

min cs(Y) + cp(Y) :=
∑

i∈F,j∈D
cijyij +

∑
j∈D

pjzj

s.t.
∑
i∈F

yij + zj = 1, ∀j ∈ D,

∑
j∈D

yij ≤
∑
j∈D

xij , ∀i ∈ F \ {s},

∑
j∈D

ysj ≤
∑
j∈D

xsj + δ,

0 ≤ yij , zj ≤ 1, ∀i ∈ F , j ∈ D.

Lemma 1. Given ε > 0 and t ∈ F , let x be a feasible solution to a given instance
of the problem. We can find a δ ∈ R+ with cS(t, δ) ≤ −εc(x) or decide that no
δ ∈ R+ exists for which cS(t, δ) ≤ −2εc(x) in polynomial time.

To guarantee the polynomial running time of open-close operation, we
have the following lemma.

Lemma 2. Given the current solution S := (x, z), we can, in polynomial time,
find s, t, δs, and δt such that the cost of open-close(s,t,δs,δt) is minimized
and the minimum cost can be computed in polynomial time in terms of n and
m, where s, t ∈ F , 0 ≤ δs, δt ≤ n, | F |:= m, and | D |:= n.

76 Y. Xu et al.

2.3 Algorithm

Let ε > 0 be any fixed small constant. Starting with any feasible solution, apply
add, open, close and open-close operations iteratively until the cost of iter-
ated solution can no longer decrease. Then the following lemma implies that we
can in polynomial time find an approximate local optimal solution. Note the
approximate local optimal solution is only (1 + ε) worse than local optimal one.

Lemma 3. If we can find add, open, close and open-close operation with
estimated cost at most −c(S)/p(n, ε), where p(n, ε) is a suitably chosen polynomial
in n and 1/ε, then the algorithm terminates after at mostO

(
p(n, ε) log c(S)

c(S∗)

)
oper-

ations, where S denotes the initial solution and S∗ denotes the optimal solution.

3 Analysis

To bound the connection and penalty cost of the approximate local optimal
solution, we utilize the add operation.

Lemma 4. For all ε > 0, let S and S∗ be a feasible solution and the optimal
solution respectively to a given instance. Let cS(t, δ) ≥ − ε

nc(S) for all t ∈ F
and δ ∈ R+, where n denotes the number of facilities. Then cs(S) + cp(S) ≤
cs(S∗) + cp(S∗) + cf (S∗) + εc(S).

For bounding facility cost, we recall the concepts of flow decomposition and
exchange graph. For a network graph, flows can be represented either on arc or
on path and cycle. Flow decomposition technique is to transform a flow from arc
representation to path and cycle representation. This can be done in polynomial
time respect to the number of nodes and edges (e.g., [11]).

Let S and S∗ be the approximate local optimal solution and optimal solu-
tion, respectively. We view them as flows in a bipartite graph with vertices
corresponding to facilities and clients. For S, the arc direction is from the facil-
ities to the clients, and for S∗ the arc direction is opposite. Each edge (i, j)
carries x(i, j) − x∗(i, j) units of flow. Negative flow indicates the reverse direc-
tion. Applying flow decomposition on this bipartite graph we obtain paths and
cycles. A path can only start at a facility and end at a facility, since every client
has the same outdegree and indegree. If we are only concerned about the origin
and destination, we obtain the so-called exchange graph with only facility ver-
tices. This technique also provides a feasible way to reassign demands from an
origin to a destination along the path.

We introduce a dummy facility N for S to denote the penalty facility with
zero facility cost and pj service cost for client j. The corresponding dummy
facility for S∗ is N∗. We want to replace all capacities in S with capacities in
S∗ via the exchange graph. We call a path starting at i ∈ F and ending at
N∗ a penalty path. Consider one such path P starting at s ∈ F . Let s′ be the
facility just before N∗ on this path and j be a client of s′. Define Penj(s, s′) as
the set of all such paths. Let w(Penj(s, s′)) be the total flow along these paths.

Approximation Algorithm for Universal FLP with Linear Penalties 77

To distinguish paths in different sets, let N∗
s′,j be the destination of a penalty

path corresponding to s′ and j. In other words, we introduce at most |F||D|
dummy copies of facilities instead of one.

The following transportation problem describes the transferring from the
approximate local optimal solution S := (x, z) to the optimal solution S∗ :=
(x∗, z∗).

min
∑

s∈U+,t∈U−
csty(s, t) +

∑
s∈U+,s′∈F,j∈D

(css′ + pj)y(s,N∗
s′,j)

s.t.
∑

t∈U−
y(s, t) +

∑
s′∈F,j∈D

y(s,N∗
s′,j) = us − u∗

s, ∀s ∈ U+,

∑
s∈U+

y(s, t) = u∗
t − ut, ∀t ∈ U−, (2)

y(s, t) ≥ 0, ∀s ∈ U+, t ∈ U−,

0 ≤ y(s,N∗
s′,j) ≤ w(Penj(s, s′)), ∀j ∈ D, s ∈ U+, s′ ∈ F ,

where U+ := {i ∈ F : ui > u∗
i }, U− := {i ∈ F : ui < u∗

i }.

Lemma 5. Let opttp be the optimal value of the transportation problem. We
have opttp ≤ cs(S) + cp(S) + cs(S∗) + cp(S∗).

Now we know that a local optimal with respect to add operation always
reduces the service and penalty cost. We argue that whenever S has a large
facility cost, there will exist an open-close operation that can improve the
cost of S.

Consider the optimal solution y to the transportation problem. Without loss
of generality we assume the set of edges with nonzero flow of y forms a forest.
Since we can make the cost of a cycle (if exists) zero by taking augmenting
techniques afterwards, we are able to remove all cycles one by one.

So we are only concerned about replacing the capacity u of every facility
with u∗. We say the open-close operations that decreases the capacity of some
facilities from ui to u∗

i is closed, and that increases some facilities from ui to
at most u∗

i is opened. Note that only facilities in U− can be opened and only
facilities in U+ can be closed. We root each tree at an arbitrary facility in U−.
Now we search for open-close operations that close facilities in U+ exactly
once and open facilities in U− as few times as possible.

For a vertex t ∈ U−, let Tt be the subtree of depth at most 2 rooted at t
in the forest. Define K(t) as the set of children of t. Note that the odd level
(i.e. U−) in the tree may contain a penalty facility N∗

s′,j for some s′ ∈ U+ and
j ∈ D. So let K(s) denote the children of s excluding the penalty facilities. We
will analyze every such Tt.

For t ∈ U− that is not the penalty facility, i.e., ∀s′ ∈ U+, j ∈ D, t �= N∗
s′,j ,

we consider the following cases.

78 Y. Xu et al.

1. For each s ∈ NDom(t), define Rem(s) := (y(s, t) − y(s, w(s)))+. Order
the facilities in nondecreasing sequence of Rem(s), say 1, 2, . . . , l. For i =
1, 2, . . . , l − 1, Close si and open K(si) ∪ S(si+1); that is, apply operation
close(si,y(si, ·)). Note that this operation will increase the capacities of
facilities in K(si) ∪ S(si+1).

2. For the rest of facilities in K(t), i.e. sl and Dom(t):
when t is strong. Open {t}∪K(sl) and close Dom(t)∪{sl}; that is, apply

operation open-close(t,sl,y(sl, t) +
∑

s∈Dom(t) y(s, ·),y(sl, ·)).
when t is weak but there exists h ∈ Dom(t) such that y(h, t) ≥ 1

2y(·, t).]
Close h and open K(h) ∪ {t}; then close {sl} ∪ Dom(t)\{h} and open
K(sl)∪{t}. That is, apply operations close(h,y(h, ·)) and open-close(t,
sl, y(sl, t) +

∑
s∈Dom(t)\{h} y(s, ·), y(sl, ·)).

when t is weak and no h ∈ Dom(t) exists such that y(h, t) ≥ 1
2y(·, t). If

Dom(t) �= ∅, we will prove that there exists a facility s ∈ Dom(t) such
that the rest of Dom(t) can be partitioned into two parts D1 and D2, sat-
isfying y(s, t)+

∑
s∈D1

y(s, ·) ≤ y(·, t) and y(sl, t)+
∑

s∈D2
y(s, ·) ≤ y(·, t).

In other words, operations open-close(t,s,y(s, t)+
∑

s∈D1
y(s, ·),y(s, ·))

and open-close (t,sl,y(sl, t) +
∑

s∈D2
y(s, ·),y(sl, ·)) are feasible.

These operations are illustrated in Figs. 1, 2, 3 and 4. If there exist s′ ∈ U+

and j ∈ D such that t = N∗
s′,j , then consider operation open(t,y(·, t)).

Fig. 1. close(si,y(si, ·))

Lemma 6. The operations used in the transferring are all feasible, and we close
each facility in U+ exactly once, open each facility in U− at most 3 times and
the transportation cost of the transfer is bounded by twice the optimal flow y of
the transportation problem.

Therefore the following lemma holds.

Lemma 7. cf (S)≤4cs(S∗) + 4cp(S∗) + 5cf (S∗).

Combining Lemma 7 with the upper bound for cs(S), we have

Theorem 1. c(S)≤5cs(S∗) + 5cp(S∗) + 6cf (S∗).

The last theorem yields an approximation ratio of (6 + ε).

Approximation Algorithm for Universal FLP with Linear Penalties 79

Fig. 2. open-close(t,sl,y(sl, t) +
∑

s∈Dom(t) y(s, ·),y(sl, ·))

Fig. 3. close(h,y(h, ·)) and open-close(t,sl,y(sl, t) +
∑

s∈Dom(t)\{h} y(s, ·),y(sl, ·))

Fig. 4. open-close(t,s,y(s, t) +
∑

s∈D1
y(s, ·),y(s, ·)) and open-close (t,sl,y(sl, t)

+
∑

s∈D2
y(s, ·),y(sl, ·))

80 Y. Xu et al.

4 Discussions

We can slightly improve this result by employing the standard scaling technique.
Consider a universal facility location instance. We scale the facility cost (or unit
service and penalty cost) by a factor of β, and run the local search algorithm on
the modified instance. Let S denote the local optimal solution. We have

cs(S) + cp(S) ≤ βcf (S∗) + cs(S∗) + cp(S∗),

and
βcf (S) ≤ 4cs(S∗) + 4cp(S∗) + 5βcf (S∗).

Summation yields

c(S) ≤
(

4
β

+ 1
)

cs(S∗) +
(

4
β

+ 1
)

cp(S∗) + (5 + β)cf (S∗).

Selecting β = 2
√

2 − 2, we get an approximation ratio of 3 + 2
√

2 ≈ 5.83.

Acknowledgements. The research of the first author is supported by Collaborative
Innovation Center on Beijing Society-Building and Soccial Governance. The second
author’s research is supported by NSFC (Nos. 11371001 and 11531014). The third
author’s research is supported by the Natural Sciences and Engineering Research Coun-
cil of Canada (NSERC) grant 283106. The fourth author’s research is supported by
NSFC (No. 11501412).

References

1. Aggarwal, A., Anand, L., Bansal, M., Garg, N., Gupta, N., Gupta, S., Jain, S.:
A 3-approximation for facility location with uniform capacities. In: Eisenbrand,
F., Shepherd, F.B. (eds.) IPCO 2010. LNCS, vol. 6080, pp. 149–162. Springer,
Heidelberg (2010)

2. An, H.C., Singh, M., Svensson, O.: LP-based algorithms for capacitated facility
location. In: Proceedings of the 55th Annual Symposium on Foundations of Com-
puter Science, pp. 256–265 (2014)

3. Angel, E., Thang, N.K., Regnault, D.: Improved local search for universal facility
location. J. Comb. Optim. 29, 237–246 (2015)

4. Charikar, M., Khuller, S., Mount, D.M., Narasimhan, G.: Algorithms for facility
location problems with outliers. In: Proceedings of the 12th Annual ACM-SIAM
Symposium on Discrete Algorithms, pp. 642–651 (2001)

5. Chudak, F.A., Williamson, D.P.: Improved approximation algorithms for capaci-
tated facility location problems. In: Cornuéjols, G., Burkard, R.E., Woeginger, G.J.
(eds.) IPCO 1999. LNCS, vol. 1610, pp. 99–113. Springer, Heidelberg (1999)

6. Gupta, N., Gupta, S.: Approximation algorithms for capacitated facility location
problem with penalties. arXiv:1408.4944 (2014)

7. Korupolu, M.R., Plaxton, C.G., Rajaraman, R.: Analysis of a local search heuristic
for facility location problems. J. Algorithms 37, 146–188 (2000)

http://arxiv.org/abs/1408.4944

Approximation Algorithm for Universal FLP with Linear Penalties 81

8. Li, Y., Du, D., Xiu, N., Xu, D.: Improved approximation algorithms for the facility
location problems with linear/submodular penalties. Algorithmica 73, 460–482
(2015)

9. Mahdian, M., Pál, M.: Universal facility location. In: Di Battista, G., Zwick, U.
(eds.) ESA 2003. lncs, vol. 2832, pp. 409–421. Springer, Heidelberg (2003)

10. Pal, M., Tardos, E., Wexler, T.: Facility location with nonuniform hard capaci-
ties. In: Proceedings of the 42nd Annual Symposium on Foundations of Computer
Science, pp. 329–338 (2001)

11. Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows: Theory, Algorithms, and
Applications. Prentice Hall, Englewood Cliffs (1993)

12. Vygen, J.: From stars to comets: improved local search for universal facility loca-
tion. Oper. Res. Lett. 35, 427–433 (2007)

13. Xu, G., Xu, J.: An LP rounding algorithm for approximating uncapacitated facility
location problem with penalties. Inf. Process. Lett. 94, 119–123 (2005)

14. Xu, G., Xu, J.: An improved approximation algorithm for uncapacitated facility
location problem with penalties. J. Comb. Optim. 17, 424–436 (2009)

15. Zhang, J., Chen, B., Ye, Y.: A multiexchange local search algorithm for the capac-
itated facility location problem. Math. Oper. Res. 30, 389–403 (2005)

Variants of Multi-resource Scheduling Problems
with Equal Processing Times

Hamed Fahimi and Claude-Guy Quimper(B)

Université Laval, Quebec City, Canada
hamed.fahimi.1@ulaval.ca, claude-guy.quimper@ift.ulaval.ca

Abstract. We tackle the problem of non-preemptive scheduling of a set
of tasks of duration p over m machines with given release and deadline
times. We present a polynomial time algorithm as a generalization to
this problem, when the number of machines fluctuates over time. Fur-
ther, we consider different objective functions for this problem. We show
that if an arbitrary function cost ci(t) is associated to task i for each
time t, minimizing

∑n
i=1 ci(si) is NP-Hard. Further, we specialize this

objective function to the case that it is merely contingent on the time
and show that although this case is pseudo-polynomial in time, one can
derive polynomial algorithms for the problem, provided the cost func-
tion is monotonic or periodic. Finally, as an observation, we mention
how polynomial time algorithms can be adapted with the objective of
minimizing maximum lateness.

1 Introduction

We explore several variants of the problem of scheduling, without preemption,
tasks with equal processing times on multiple machines while respecting release
times and deadlines. More formally, we consider n tasks and m identical machines.
Task i has a release time ri and deadline d̄i. All tasks have a processing time
p. Without loss of generality, all parameters ri, d̄i and p are positive integers.
Moreover, we consider the time point ui = d̄i −p+1, by starting at which a task
i oversteps its deadline. We denote rmin = mini ri the earliest release time and
umax = maxi ui the latest value ui. A solution to the problem is an assignment
of the starting times si which satisfies the following constraints

ri ≤ si < ui ∀ i ∈ {1, . . . , n} (1)
|{i : t ≤ si < t + p}| ≤ m ∀ t ∈ [rmin, umax) (2)

The completion time of a task Ci is equal to si + p. From 1, we obtain Ci ≤ d̄i.
Following the notations of [9], this problem is denoted Pm | rj ; pj = p; d̄j | γ

where γ is an objective function. The problem is sometimes reformulated by
dividing all time points by p, resulting in tasks with unit processing times [13,
14]. However, this formulation does not make the problem easier to solve, as
release times and deadlines lose their integrality. Without this integrality, greedy
c© Springer International Publishing Switzerland 2015
Z. Lu et al. (Eds.): COCOA 2015, LNCS 9486, pp. 82–97, 2015.
DOI: 10.1007/978-3-319-26626-8 7

Variants of Multi-resource Scheduling Problems 83

algorithms, commonly used to solve the problem when p = 1, become incorrect.
Indeed, when the greedy scheduling algorithms choose to start a task i, they
assume that no other tasks arrive until i is completed. This assumption does not
hold if release times can take any rational value.

We explore several variations of this scheduling problem. Firstly, we solve
the problem when the number of machines fluctuates over time. This models
situations where there are fewer operating machines during night shifts or when
fewer employees can execute tasks during vacation time or holidays. Then, we
consider the problem with different objective functions. For an arbitrary func-
tion ci(t) associated to task i that maps a time point to a cost, we prove that
minimizing

∑n
i=1 ci(si) is NP-Hard. This function is actually very general and

can encode multiple well known objective functions. We study the case where
all tasks share the same function c(t). This models the situation where the cost
of using the resource fluctuates with time. This is the case, for instance, with
the price of electricity. Executing any task during peak hours is more expensive
than executing the same task during a period when the demand is low. We show
that minimizing

∑n
i=1 c(t) can be done in pseudo-polynomial time and propose

improvements when c(t) is monotonic or periodic. The periodicity of the cost
function is a realistic assumption as high and low demand periods for electricity
have a predictable periodic behavior. Finally, we point out how the problem is
solved in polynomial time with the objective of minimizing maximum lateness.

The paper is divided as follows. Section 2 presents a brief survey on exist-
ing algorithms related to the scheduling problem, the basic terminology and
notations used in this paper, and the objective functions of interest. Section 3
solves the case where the number of machines fluctuates over time and shows
how to adapt an existing algorithm for this case, while preserving polynomiality.
Section 4 shows that minimizing

∑n
i=1 ci(si) is NP-Hard. Sections 5 and 6 con-

sider a unique cost function c(t) that is either monotonic or periodic and present
polynomial time algorithms for these cases. Finally, as an additional remark,
we show how to adapt a polynomial time algorithms for minimizing maximum
lateness.

2 Literature Review, Framework and Notations

2.1 Related Work

Simons [13] presented an algorithm with time complexity O(n3 log log(n)) that
solves the scheduling problem. It is reported [9] that it minimizes both the sum
of the completion times

∑
j Cj , and the latest completion time Cmax (also called

the makespan). Simons and Warmth [14] further improved the algorithm com-
plexity to O(mn2). Dürr and Hurand [4] reduced the problem to a shortest path
in a digraph and designed an algorithm in O(n4). This led López-Ortiz and
Quimper [11] to introduce the idea of the scheduling graph. By computing the
shortest path in this graph, one obtains a schedule that minimizes both

∑
j Cj

and Cmax. Their algorithm runs in O(n2 min(1, p/m)).

84 H. Fahimi and C.-G. Quimper

There exist more efficient algorithms for special cases. For instance, when
there is only one machine (m = 1) and unit processing times (p = 1), the
problem is equivalent to finding a matching in a convex bipartite graph. Lipski
and Preparata [10] present an algorithm running in O(nα(n)) where α is the
inverse of Ackermann’s function. Gabow and Tarjan [5] reduce this complexity
to O(n) by using a restricted version of the union-find data structure.

Baptiste proves that in general, if the objective function can be expressed as
the sum of n functions fi of the completion time Ci of each task i, where fi’s are
non-decreasing and for any pair of jobs (i, j) the function fi − fj is monotonous,
the problem can be solved in polynomial time. Note that the assumption holds
for several objectives, such as the weight sum of completion times

∑
wiCi. A

variant of the problem exists when the tasks are allowed to miss their deadlines
at the cost of a penalty. Let Lj = Cj − dj be the lateness of a task j. The
problem of minimizing the maximum lateness Lmax = maxj Lj (denoted P |
ri, pi = p | Lmax) is polynomial [15] and the special case for one machine and
unit processing times (denoted 1 | rj , pj = p | Lmax) is solvable in O(n log n) [8].

Möhring et al. [12] study the case where no release times or deadlines are
provided and the processing times are not all equal. For the case that their prob-
lem is not resource-constrained, they consider the objective of minimizing costs
per task and per time, as it is considered in this paper. They establish a con-
nection between a minimum-cut in an appropriately defined directed graph and
propose a mathematical programming approach to compute both lower bounds
and feasible solutions. The minimum-cut problem is the dual of the maximum
flow problem that will be used in this paper.

Bansal and Pruhs [3] consider preemptive tasks, a single machine, no dead-
lines, and distinct processing times. Tasks incur a cost depending on their com-
pletion time. They introduce an approximation for the general case and an
improved approximation algorithm for the case that all release times are
identical.

2.2 Objective Functions

Numerous objective functions can be optimized in a scheduling problem. We
consider minimizing costs per task and per time, in which case executing a task
i at time t costs c(i, t) and we aim to minimize the sum of costs, i.e.

∑
i,t c(i, si).

Such an objective function depends on the release time of the task. In the indus-
try, that can be used to model a cost that increases as the execution of a task is
delayed. For instance, c(i, t) = t − ri. Then, we consider minimizing task costs
per time, in which case executing any task at time t costs c(t) and we want to
minimize

∑
i c(si). An alternative common objective function is to minimize the

sum of the completion times. In the context where the tasks have equal process-
ing times, a solution that minimizes the sum of the completion times necessarily
minimizes the sum of the starting time. We consider these two objectives equiv-
alent. Finally, we consider minimizing the maximum lateness Lmax = maxi Li.

Variants of Multi-resource Scheduling Problems 85

2.3 Network Flows

Consider a digraph
−→
N = (V,E) where each arc (i, j) ∈ E has a flow capacity

uij and a flow cost cij . There is one node s ∈ V called the source and one node
t ∈ V called the sink. A flow is a vector that maps each edge (i, j) ∈ E to a
value xij such that the following constraints are satisfied.

0 ≤ xij ≤ uij (3)∑
j∈V

xji −
∑
j∈V

xij = 0 ∀i ∈ V \ {s, t} (4)

The min-cost flow satisfies the constraints while minimizing
∑

(i,j)∈E cijxij .
A matrix with entries in {−1, 0, 1} which has precisely one 1 and one −1 per

column is called a network matrix. If A is a network matrix, the following linear
program identifies a flow.

Maximize cTx, subject to
{

Ax = b
x ≥ 0 (5)

There is one node for each row of the matrix in addition to a source node s and a
sink node t. Each column in the matrix corresponds to an edge (i, j) ∈ E where
i is the node whose row is set to 1 and j is the node whose column is set to -1.
If bi > 0 we add the edge (i, t) of capacity bi and if bi < 0 we add the edge (s, i)
of capacity −bi [16].

The residual network with respect to a given flow x is formed with the same
nodes V as the original network. However, for each edge (i, j) such that xij < uij ,
there is an edge (i, j) in the residual network of cost cij and residual capacity
uij − xij . For each edge (i, j) such that xij > 0, there is an edge (j, i) in the
residual network of cost −cij and residual capacity xij .

To our knowledge, the successive shortest path algorithm is the state of the
art, for this particular structure of the network, to solve the min-cost flow prob-
lem. This algorithm successively augments the flow values yij of the edges along
the shortest path connecting the source to the sink in the residual graph. Let
N = max(i,j)∈E |cij | be the greatest absolute cost and U = maxi∈V bi be the
largest value in the vector b. To compute the shortest path, one can use Gold-
berg’s algorithm [6] with a time complexity of O(|E|√|V | log N). Since at most
|V |U shortest path computations are required, this leads to a time complexity
of O(|V |1.5|E| log(N)U).

2.4 Scheduling Graph

López-Ortiz and Quimper [11] introduced the scheduling graph which holds
important properties. For instance, it allows to decide whether an instance is
feasible, i.e. whether there exists at least one solution. The graph is based on
the assumption that it is sufficient to determine how many tasks start at a given
time. If one knows that there are ht tasks starting at time t, it is possible to

86 H. Fahimi and C.-G. Quimper

determine which tasks start at time t by computing a matching in a convex
bipartite graph (see [11]).

The scheduling problem can be written as a satisfaction problem where the
constraints are uniquely posted on the variables ht. As a first constraint, we
force the number of tasks starting at time t to be non-negative.

∀ rmin ≤ t ≤ umax − 1 ht ≥ 0 (6)

At most m tasks (n tasks) can start within any window of size p (size umax−rmin).

∀ rmin ≤ t ≤ umax − p

t+p−1∑
j=t

hj ≤ m,

umax−1∑
j=rmin

hj ≤ n (7)

Given two arbitrary (possibly identical) tasks i and j, the set Kij = {k : ri ≤
rk ∧ uk ≤ uj} denotes the jobs that must start in the interval [ri, uj). Hence,

∀ i, j ∈ {1, . . . , n}
uj−1∑
t=ri

ht ≥ |Kij | (8)

Some objective functions, such as minimizing the sum of the starting times, can
also be written with the variables ht.

min
umax−1∑
t=rmin

t · ht (9)

To simplify the inequalities (6)–(8), we proceed to a change of variables. Let
xt =

∑t−1
i=rmin

hi, for rmin ≤ t ≤ umax, be the number of tasks starting to execute
before time t. Therefore, the problem can be rewritten as follows.

∀ rmin ≤ t ≤ umax − p xt+p − xt ≤ m, xumax − xrmin ≤ n (10)
∀ rmin ≤ t ≤ umax − 1 xt − xt+1 ≤ 0 (11)

∀ ri + 1 ≤ uj xri − xuj
≤ − |Kij | (12)

These inequalities form a system of difference constraints which can be solved
by computing shortest paths in what is call the scheduling graph [11]. In this
graph, there is a node for each time point t, rmin ≤ t ≤ umax and an edge of
weight kpq, connecting the node q to the node p for each inequality of the form
xp − xq ≤ kpq.

The scheduling graph has for vertices the nodes V = {rmin, . . . , umax} and
for edges E = Ef ∪ Eb ∪ En where Ef = {(t, t + p) : rmin ≤ t ≤ umax −
p} ∪ {(rmin, umax)} is the set of forward edges (from inequalities (10)), Eb =
{(uj , ri) : ri < uj} is the set of backward edges (from inequality (12)), and

Variants of Multi-resource Scheduling Problems 87

En = {(t+1, t) : rmin ≤ t < umax} is the set of null edges (from inequality (11)).
The following weight function maps every edge (a, b) ∈ E to a weight:

w(a, b) =

⎧⎨
⎩

m if a + p = b
n if a = rmin ∧ b = umax

− |{k : b ≤ rk ∧ uk ≤ a}| if a > b
(13)

Theorem 1 shows how to compute a feasible schedule.

Theorem 1 (López-Ortiz and Quimper [11]). Let δ(a, b) be the shortest
distance between node a and node b in the scheduling graph. The assignment
xt = n+ δ(umax, t) is a solution to the inequalities (10)–(12) that minimizes the
sum of the completion times.

The scheduling problem has a solution if and only if the scheduling graph
has no negative cycles. An adaptation [11] of the Bellman-Ford algorithm finds
a schedule with time complexity O(min(1, p

m)n2), which is sub-quadratic when
p < m and quadratic otherwise.

In the next sections, we adapt the scheduling graph to solve variations of the
problem.

3 Variety of Machines

Consider the problem where the number of machines fluctuates over time. Let
T = [(t0,m0), . . . , (t|T |−1,m|T |−1)] be a sequence where ti’s are the time points
at which the fluctuations occur and they are sorted in chronological order and
mi machines are available within the time interval [ti, ti+1). This time interval
is the union of a (possibly empty) interval and an open-interval: [ti, ti+1) =
[ti, ti+1−p]∪(ti+1−p, ti+1). A task starting in [ti, ti+1−p] is guaranteed to have
access to mi machines throughout its execution, whereas a task starting in (ti+1−
p, ti+1) encounters the fluctuation of the number of machines before completion.
Therefore, no more than min(mi,mi+1) tasks can start in the interval (ti+1 −
p, ti+1). In general, a task can encounter multiple fluctuations of the number of
machines throughout its execution. Let α(t) = max{tj ∈ T | tj ≤ t} be the last
time the number of machines fluctuates before time t. At most M(t) tasks can
start at time t.

M(t) = min{mi | ti ∈ [α(t), t + p)}. (14)

From 14, we conclude that no more than maxt′∈[t,t+p) M(t′) tasks can start
in the interval [t, t + p). Accordingly, one can rewrite the first inequality of the
constraints (10)

xt+p − xt ≤ max
t≤t′<t+p

M(t′) (15)

88 H. Fahimi and C.-G. Quimper

and update the weight function of the scheduling graph.

w(a, b) =

⎧⎨
⎩

maxa≤t′<a+p M(t′) if a + p = b
n if a = rmin ∧ b = umax

− |{k : b ≤ rk ∧ uk ≤ a}| if a ≥ b
(16)

It remains to show how the algorithm presented in [11] can be adapted to
take into account the fluctuating number of machines. This algorithm maintains
a vector d−1[0..n] such that d−1[i] is the latest time point reachable at distance
−i from the node umax. In other words, all nodes whose label is a time point in
the semi-open interval (d−1[i+1], d−1[i]] are reachable at distance −i from node
umax. Let a be a node in (d−1[i + 1], d−1[i]] and consider the edge (a, a + p) of
weight w(a, a + p). Upon processing this edge, the algorithm updates the vector
by setting d−1[i − w(a, b)] ← max(d−1[i − w(a, b)], b), i.e. the rightmost node
accessible at distance −i + w(a, b) is either the one already found, or the node
a+p that is reachable through the path to a of distance −i followed by the edge
(a, a + p) of distance w(a, a + p).

To efficiently perform this update, the algorithm evaluates w(a, a+p) in two
steps. The first step transforms T in a sequence T ′ = [(t′0,m

′
0), (t

′
1,m

′
1), . . .] such

that M(t) = m′
i for every t ∈ [t′i, t

′
i+1). The second step transforms the sequence

T ′ into a sequence T ′′ = [(t′′0 ,m′′
0), (t′′1 ,m′′

1), . . .] such that w(t, t + p) = m′′
i for

all t ∈ [t′′i , t′′i+1). Interestingly, both steps execute the same algorithm.
To build the sequence T ′, one needs to iterate over the sequence T and

find out, for every time window [t, t + p), the minimum number of available
machines inside that time window. If a sequence of consecutive windows such as
[t, t+ p), [t+1, t+ p+1), [t+2, t+ p+2), . . . have the same minimum number of
available machines, then only the result of the first window is reported. This is
a variation of the minimum on a sliding window problem [7] where an instance
is given by an array of numbers A[1..n] and a window length p. The output is a
vector B[1..n− p+1] such that Bi = min{Ai, Ai+1, . . . , Ai+p−1}. The algorithm
that solves the minimum on a sliding window problem can be slightly adapted.
Rather than taking as input the vector A that contains, in our case, many
repetitions of values, it can simply take as input a list of pairs like the vector T
and T ′ which indicate the value in the vector and until which index this value is
repeated. The same compression technique applies for the output vector. This
adaptation can be done while preserving the linear running time complexity of
the algorithm.

Once computed, the sequence T ′ can be used as input to the maximum
on a sliding window problem to produce the final sequence T ′′. Finally, the
Algorithm 1 simultaneously iterates over the sequence T ′′ and the vector d−1

to relax the edges in O(|T | + n) time. Since relaxing forward edges occurs at
most O(min(1, p

m)n) times [11], the overall complexity to schedule the tasks is
O(min(1, p

m)(|T | + n)n).

Variants of Multi-resource Scheduling Problems 89

Algorithm 1. RelaxForwardEdges([(t′′1 ,m′′
1), . . . , (t′′|T ′′|,m

′′
|T ′′|)], d

−1[0..n], p)

t ← rmin, i ← n, j ← 0
while i > 0 ∨ j < |T ′′| do

if i − m′′
j > 0 then d−1[i − m′′

j] ← max(d−1[i − m′′
j], t + p)

if j = |T ′′| ∨ i ≥ 0 ∧ d−1[i − 1] < m′′
j+1 then

i ← i + 1
t ← d−1[i]

else
j ← j + 1
t ← t′′j

4 General Objective Function

We prove that minimizing costs per task and per time, i.e.
∑

i,t ci(si) for arbi-
trary functions ci(t) is NP-Hard. We proceed with a reduction from the Inter-
Distance constraint [2]. The predicate InterDistance([X1, . . . , Xn], p) is true
if and only if |Xi−Xj | ≥ p holds whenever i
= j. Let S1, . . . , Sn be n sets of inte-
gers. Deciding whether there exists an assignment for the variables X1, . . . , Xn

such that Xi ∈ Si and InterDistance([X1, . . . , Xn], p) hold is NP-Complete [2].
We create one task per variable Xi with release time ri = min(Si), latest starting
time ui = max(Si), processing time p, and a cost function ci(t) equal to 0 if t ∈ Si

and 1 otherwise. There exists a schedule with objective value
∑

i,t ci(si) = 0 iff
there exists an assignment with Xi ∈ Si that satisfies the predicate InterDis-
tance, hence minimizing

∑
i,t ci(si) is NP-Hard.

The NP-hardness of this problem motivates the idea of studying specializa-
tions of this objective function in order to seek polynomial time algorithms.

5 Monotonic Objective Function

Let c(t) : Z → Z be an increasing function, i.e. c(t) + 1 ≤ c(t + 1) for any t. We
prove that a schedule that minimizes

∑
i si also minimizes

∑
i c(si). Theorem 1

shows how to obtain a solution that minimizes
∑

i si. Lemma 1 shows that this
solution also minimizes other objective functions. Recall that ht is the number
of tasks starting at time t.

Lemma 1. The schedule obtained with Theorem1 minimizes
∑umax−1

a=t ha for
any time t.

Proof. Let (a1, a2), (a2, a3), . . . , (ak−1, ak), with a1 = umax and ak = t, be the
edges on the shortest path from umax to t in the scheduling graph. By sub-
stituting the inequalities (10)–(12), we obtain δ(umax, t) =

∑k−1
i=1 w(ai, ai+1) ≥∑k−1

i=1 (xai+1 − xai
) = xt − xumax . This shows that the difference xt − xumax is at

most δ(umax, t) for any schedule. It turns out that by setting xt = n+δ(umax, t),

90 H. Fahimi and C.-G. Quimper

the difference xt − xumax = δ(umax, t) − δ(umax, umax) = δ(umax, t) reaches its
maximum and therefore, xumax − xt =

∑umax−1
a=t ha is maximized. ��

Theorem 2. The schedule of Theorem1 minimizes
∑n

i=1 c(si) for any increas-
ing function c(t).

Proof. Consider the following functions that differ by their parameter a.

ca(t) =

{
c(t) if t < a

c(a) + t − a otherwise
(17)

The function ca(t) is identical to c(t) up to point a and then increases with a
slope of one. As a base case of an induction, the schedule described in Theorem 1
minimizes

∑n
i=1 si and therefore minimizes

∑n
i=1 crmin(si). Suppose that the

algorithm minimizes
∑n

i=1 ca(si), we prove that it also minimizes
∑n

i=1 ca+1(si).
Consider the function

Δa(t) =

{
0 if t ≤ a

c(a + 1) − c(a) − 1 otherwise
(18)

and note that ca(t)+Δa(t) = ca+1(t). For all t, since c(t+1)− c(t) ≥ 1, we have
Δa(t) ≥ 0.

If c(a + 1) − c(a) = 1 then Δa(t) = 0 for all t and therefore ca(t) = ca+1(t).
Since the algorithm returns a solution that minimizes

∑n
i=1 ca(si), it also mini-

mizes
∑n

i=1 ca+1(si).
If c(a + 1) − c(a) > 1, a schedule minimizes the function

∑n
i=1 Δa(si) if and

only if it minimizes the number of tasks starting after time a. From Lemma 1,
the schedule described in Theorem 1 achieves this. Consequently, the algorithm
minimizes

∑n
i=1 ca(si), it minimizes

∑n
i=1 Δa(si), and therefore, it minimizes∑n

i=1 ca(si) +
∑n

i=1 Δa(si) =
∑n

i=1 ca+1(si).
By induction, the algorithm minimizes

∑n
i=1 c∞(si) =

∑n
i=1 c(si). ��

If the cost c(t) function is decreasing, i.e. c(t) − 1 ≥ c(t + 1), it is possible
to minimize

∑n
i=1 c(t) by solving a transformed instance. For each task i in the

original problem, one creates a task i with release time r′
i = −ui and latest

starting time u′
i = −ri. The objective function is set to c′(t) = −c(t) which is an

increasing function. From a solution s′
i that minimizes

∑n
i=1 c′(s′

i), one retrieves
the original solution by letting si = −s′

i.

6 Periodic Objective Function

6.1 Scheduling Problem as a Network Flow

Theorem 1 shows that computing the shortest paths in the scheduling graph can
minimize the sum of the completion times. We show that computing, in pseudo-
polynomial time, a flow in the scheduling graph can minimize

∑n
i=1 c(si) for an

arbitrary function c(t).

Variants of Multi-resource Scheduling Problems 91

The objective function (9) can be modified to take into account the function
c. We therefore minimize

∑umax−1
t=rmin

c(t)ht. After proceeding to the change of
variables xt =

∑t−1
i=rmin

hi, we obtain
∑umax−1

t=rmin
c(t)(xt+1−xt) which is equivalent

to

maximize c(rmin)xrmin −
umax−1∑
t=rmin+1

(c(t) − c(t − 1))) xt − c(umax − 1)xumax

We use this new objective function with the original constraints of the problem
given by Eqs. (10)–(12). This results in a linear program of the form max{cTx |
Ax ≤ b,x ≶ 0} which has for dual min{bT y | ATy = c, y ≥ 0}. Every row of
matrix A has exactly one occurrence of value 1, one occurrence of the value −1,
and all other values are null. Consequently, AT is a network matrix and the dual
problem min{bT y | ATy = c, y ≥ 0} is a min-cost flow problem.

Following Sect. 2.3, we reconstruct the graph associated to this network flow
which yields the scheduling graph augmented with a source node and a sink
node. An edge of capacity c(rmin) connects the node rmin to the sink. An edge of
capacity c(umax −1) connects the source node to the node umax. For the nodes t
such that rmin < t < umax, an edge of capacity c(t−1)−c(t) connects the source
node to node t whenever c(t − 1) > c(t) and an edge of capacity c(t) − c(t − 1)
connects the node t to the sink node whenever c(t− 1) < c(t). All other edges in
the graph (forward, backward, and null edges) have an infinite capacity. Figure 1
illustrates an example of such a graph.

i ri ui

1 4 8
2 1 4
3 1 6
4 1 9
5 1 6

m = 2
p = 2
c(t) = t mod 3

Fig. 1. A network flow with 5 tasks. The cost on the forward, backward, and null edges
are written in black. These edges have unlimited capacities. The capacities of the nodes
from the source and to the sinks are written in blue. These edges have a null cost.

The computation of a min-cost flow gives rise to a solution for the dual
problem. To convert the solution of the dual to a solution for the primal (i.e.
an assignment of the variables xt), one needs to apply a well known principle in
network flow theory [1]. Let δ(a, b) be the shortest distance from node a to node
b in the residual graph. The assignment xt = δ(umax, t) is an optimal solution of
the primal. The variable xt is often called node potential in network theory.

92 H. Fahimi and C.-G. Quimper

Consider a network flow of |V | nodes, |E| edges, a maximal capacity of U , and
a maximum absolute cost of N . The successive shortest path algorithm computes
a min-cost flow with O(|V |U) computations of a shortest path that each executes
in O(|E|√|V | log N) time using Goldberg’s algorithm [6]. Let Δc = maxt |c(t)−
c(t − 1)| be the maximum cost function fluctuation and H = umax − rmin be
the horizon. In the scheduling graph, we have |V | ∈ O(H), |E| ∈ O(H + n2),
N ∈ O(n), and U = Δc. Therefore, the overall running time complexity to find
a schedule is O((H − p + n2)(H)3/2Δc log n).

6.2 Periodic Objective Function Formulated as a Network Flow

In many occasions, one encounters the problem of minimizing
∑n

i=1 c(si) where
c(si) is a periodic function, i.e. a function where c(t) = c(t + W) for a period
W . Moreover, within a period, the function is increasing. An example of such a
function is the function c(t) = t mod 7. If all time points correspond to a day,
the objective function ensures that all tasks are executed at their earliest time
in a week. In other words, it is better to wait for Monday to start a task rather
than executing this task over the weekend. In such a situation, it is possible
to obtain a more efficient time complexity than the algorithm presented in the
previous section.

Without loss of generality, we assume that the periods start on times kW for
k ∈ N which implies that the function c(t) is only decreasing between c(kW −1)
and c(kW) for some k ∈ N. In the network flow from Sect. 6.1, only the time
nodes kW have an incoming edge from the source. We use the algorithm from [11]
to compute the shortest distance from every node kW to all other nodes. Thanks
to the null edges, distances can only increase in time, i.e. δ(kW, t) ≤ δ(kW, t+1),
and because of the edge (rmin, umax) of cost n and the nonexistence of negative
cycles, all distances lie between −n and n. Therefore, the algorithm outputs a list
of (possibly empty) time intervals [ak

−n, bk−n), [ak
−n+1, b

k
−n+1), . . . , [a

k
n, bkn) where

for any time t ∈ [ak
d, b

k
d), δ(kW, t) = d. The min-cost flow necessarily pushes the

flow along these shortest paths. We simply need to identify which shortest paths
the flow follows.

There are c(kW − 1) − c(kW) units of flow that must circulate from node
kW and c(t) − c(t − 1) units of flows that must arrive to node t, for any t
that is not a multiple of W . In order to create a smaller graph with fewer
nodes, we aggregate time intervals where time points share common properties.
We consider the sorted set S of time points ak

i and bki . Let t1 and t2 be two
consecutive time points in this set. All time points in the interval [t1, t2) are at
equal distance from the node kW , for any k ∈ N. The amount of units of flow
that must reach the sink from the nodes in [t1, t2) is given by

t2−1∑

j=t1

max(c(j)−c(j−1), 0) = c(t2−1)−c(t1−1)+

(⌊
t2 − 1

W

⌋

−
⌈
t1

W

⌉

+ 1

)

(c(W − 1) − c(0)) (19)

Consequently, we create a graph, called the compressed graph, with one source
and one sink node. There is one node for each time point kW for rmin

W ≤ k ≤ umax
W .

Variants of Multi-resource Scheduling Problems 93

There is an edge between the source node and a node kW with capacity c(kW −
1) − c(kW). For any two consecutive time points t1, t2 in S there is a time interval
node [t1, t2). An edge whose capacity is given by Eq. (19) connects the interval node
[t1, t2) to the sink. Finally, a node kW is connected to an interval node [t1, t2) with
an edge of infinite capacity and a cost of δ(kW, t1). Figure 2 shows the compressed
version of the graph on Fig. 1.

Fig. 2. The compressed version of the graph on Fig. 1.

Computing a min-cost flow in this network simulates the flow in the schedul-
ing graph. Indeed, a flow going through an edge (kW, [t1, t2)) in the compressed
graph is equivalent, in the scheduling graph, to a flow leaving the source node,
going to the node kW , going along the shortest path from node kW to a time
node t ∈ [t1, t2), and reaching the sink.

Theorem 3. To every min-cost flow in the compressed graph corresponds a min-
cost flow in the scheduling graph.

Proof. Let G be the scheduling graph and G′ be the compressed graph. Let Y ′

denote a min-cost flow in G′. We show how to obtain a min-cost flow Y in G
whose cost is the same as the cost of Y ′.

Consider an edge ej = (kW, [t1, t2)) in G′ which conveys a positive amount of
flow, say f . In the scheduling graph G, it is possible to push f units of flow along
the shortest paths from kW to the nodes within the interval [t1, t2). It suffices
to see how one can retrieve Y from Y ′, presuming it is initially null. This is done
by considering all incoming flows to [t1, t2) and manage to spread them over the
edges of G. We start with the node t1 and consider the shortest path P from
kW to t1 in G. The amount of flow that can be incremented is the minimum
between f and the amount of flow that t1 can receive. Then, we increment the

94 H. Fahimi and C.-G. Quimper

amount of flow on the extended path in G, which connects the source to P and
connects P to the sink.

If the capacity of t1 is reached, we decrement f by the amount of flow which
was consumed and we move to the next node in the interval. Now, there remains
f units of flow for the nodes within the interval [t1 + 1, t2). By repeating the
same instruction for the rest of the nodes in [t1, t2) and for every edge in G′ that
carries a positive amount of flow, we obtain the flow Y . It is guaranteed that all
the flow can be pushed to the nodes in [t1, t2) as the sum of the capacities of the
edges that connect a node in [t1, t2) to the sink in G is equal to the capacity of
the edges between [t1, t2) and the sink in the G′.

Furthermore, the flow Y satisfies the capacities since the capacities on the
edges adjacent to the source in G are the same as those in G′. Moreover, the
capacities were respected for the nodes adjacent to the sink. The cost of Y is
the same as Y ′ since the paths on which the flow is pushed in Y have the same
cost as the edges in the compressed graph.

We prove that Y is optimal, i.e. it is a min-cost flow. Each unit of flow in a
min-cost flow in G leaves from the source to a node kW and necessarily traverses
along the shortest path going to a node t and then reaches the sink. Note that the
edges on the shortest path have unlimited capacities. The question is therefore
on which shortest path does each unit of flow travel? This is exactly the question
that the flow in the compressed graph answers. ��
In what follows, RG and RG′, stand for the residual graph of the scheduling
graph G and the residual compressed graph G′.

Lemma 2. Let t be a node in the residual scheduling graph RG and [ti, ti+1),
such that ti ≤ t < ti+1, be a node in the residual compressed scheduling graph.
The distance between node kW and t in RG is equal to the distance between kW
and [ti, ti+1) in RG′.

Proof. We show that for any path P ′ in the residual compressed graph RG′, there
is a path P in the residual graph RG that has the same cost. From Lemma 3, we
know that for a flow in the compressed graph G′, there is an equivalent flow in
the original graph G. Consider a path P ′ from a node kW to an interval node
[ti, ti+1). By construction of the compressed graph, for each edge of this path
corresponds a path of equal cost in the residual graph RG′. Consequently, there
is a path in G′ that goes from node kW to any node t ∈ [ti, ti+1) with the same
cost as the path going from kW to [ti, ti+1) in G.

Consider a path P in the residual graph RG going from a node k1W to a
node t. Suppose that this path contains exactly one edge in RG that is not in
G. We denote this edge (a, b) and the path P can be decomposed as follows:
k1W � a → b � t. The edge (a, b) appears in the residual graph RG because
there is a positive amount of flow circulating on a shortest path S : k2W � b →
a � u to which the reversed edge (b, a) belongs. Let Q be the following path in
the residual graph RG: k1W � u � a → b � k2W � t. Let l be the function
that evaluates the cost of a path. We prove that Q has a cost that is no more
than P and that it has an equivalent in the residual compressed graph RG′.

Variants of Multi-resource Scheduling Problems 95

l(Q) = l(k1W � u � a → b � k2W � t)
≤ l(k1W � a � u � a → b � k2W � t)

In the residual graph, the paths a � u and u � a have opposite costs, hence
l(a � u � a) = 0.

= l(k1W � a → b � k2W � t)
≤ l(k1W � a → b � k2W � b � t)

In the residual graph, the paths b � k2W and k2W � b have opposite costs,
hence l(b � k2W � b).

= l(k1W � a → b � t) = l(P)

The path Q has an equivalent in the residual compressed graph RG′. Indeed,
the sub-paths k1W � u and k2W � t are edges in RG′ whose cost is given by
the shortest paths in G. The path u � a → b � k2W is the reverse of path
S. Since S is an edge in G′ and there is a flow circulating on S, the reverse of
S also appears in RG′. Consequently, the path P can be transformed into path
Q that has an equivalent in the compressed residual graph. If P contains more
than one edge that belongs to RG but not G, then the transformation can be
applied multiple times.

Since a path in RG has an equivalent path whose cost is not greater in RG′

and vice-versa, we conclude that a node kW is at equal distance from all the
other nodes in either graph. ��

Notice that the above lemma implies that after computing the min-cost flow
in the compressed graph, one sets the value for xt to the shortest distance
between an arbitrary but fixed node kW to the interval node that contains t.

Let H = umax − rmin be the horizon, we need Θ(H
W) calls to the algorithm

in [11] to build the compressed graph in O(H
W n2 min(1, p

m)) time. As in Sect. 6.1,
the successive shortest paths technique, with Goldberg’s algorithm [6], com-
putes the maximum flow. The compressed graph has |V | ∈ O(H

W + n2) nodes,
|E| ∈ O(H

W n2) edges, a maximum absolute cost of N ∈ O(n), and a maximum
capacity of U = Δc = C(W − 1) − c(0). Computing the values for xt requires
an additional execution of Goldberg’s algorithm on the compressed graph. The
final running time complexity is O

(((
H
W

)2.5
+ n5

)
Δc log(n)

)
which is faster

than the algorithm presented in the previous sections when the number of peri-
ods is small, i.e. when H

W is bounded. In practice, there are fewer periods than
tasks: H

W < n.

7 Additional Remark

Consider the case where tasks have due dates di and deadlines d̄i. One wants to
minimize the maximum lateness Lmax = maxi max(Ci−di, 0) while ensuring that

96 H. Fahimi and C.-G. Quimper

tasks complete before their deadlines. To test whether there exists a schedule
with maximum lateness L, one changes the deadline of all task i for min(d̄i, di +
L). If there exists a valid schedule with this modification, then there exists a
schedule with maximum lateness at most L in the original problem. Since the
maximum lateness is bounded by 0 ≤ L ≤ ⌈

np
m

⌉
, a well known technique consists

of using the binary search that calls at most log(
⌈
np
m

⌉
) times the algorithm in [11]

and achieves a running time complexity of O(log(npm)n2 min(1, p
m)).

8 Conclusion

We studied variants of the problem of non-preemptive scheduling of tasks with
equal processing times on multiple machines. We presented polynomial time
algorithms for different objective functions. We generalized the problem to the
case that the number of machines fluctuate through time.

References

1. Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows: Theory, Algorithms, and
Applications. Prentice Hall, Upper Saddle River (1993)

2. Artiouchine, K., Baptiste, P.: Inter-distance constraint: an extension of the all-
different constraint for scheduling equal length jobs. In: van Beek, P. (ed.) CP
2005. LNCS, vol. 3709, pp. 62–76. Springer, Heidelberg (2005)

3. Bansal, N., Pruhs, K.: The geometry of scheduling. SIAM J. Comput. 43(5),
1684–1698 (2014)

4. Dürr, C., Hurand, M.: Finding total unimodularity in optimization problems solved
by linear programs. Algorithmica (2009). doi:10.1007/s00453-009-9310-7

5. Gabow, H.N., Tarjan, R.E.: A linear-time algorithm for a special case of disjoint
set union. In: Proceedings of the 15th annual ACM symposium on Theory of Com-
puting, pp. 246–251 (1983)

6. Goldberg, A.V.: Scaling algorithms for the shortest paths problem. SIAM J. Com-
put. 24(3), 494–504 (1995)

7. Harter, R.: The minimum on a sliding window algorithm. Usenet article (2001).
http://richardhartersworld.com/cri/2001/slidingmin.html

8. Horn, W.A.: Some simple scheduling algorithms. Naval Res. Logistics Q. 21(1),
177–185 (1974)

9. Leung, J.Y.-T.: Handbook of Scheduling: Algorithms, Models, and Performance
Analysis. CRC Press, Boca Raton (2004)

10. Lipski Jr, W., Preparata, F.P.: Efficient algorithms for finding maximum matchings
in convex bipartite graphs and related problems. Acta Informatica 15(4), 329–346
(1981)

11. López-Ortiz, A., Quimper, C.-G.: A fast algorithm for multi-machine scheduling
problems with jobs of equal processing times. In: Proceedings of the 28th Inter-
national Symposium on Theoretical Aspects of Computer Science (STACS 2011),
pp. 380–391 (2011)

12. Möhring, R.H., Schulz, A.S., Stork, F., Uetz, M.: Solving project scheduling prob-
lems by minimum cut computations. Manage. Sci. 49(3), 330–350 (2003)

http://dx.doi.org/10.1007/s00453-009-9310-7
http://richardhartersworld.com/cri/2001/slidingmin.html

Variants of Multi-resource Scheduling Problems 97

13. Simons, B.: Multiprocessor scheduling of unit-time jobs with arbitrary release times
and deadlines. SIAM J. Comput. 12(2), 294–299 (1983)

14. Simons, B.B., Warmuth, M.K.: A fast algorithm for multiprocessor scheduling of
unit-length jobs. SIAM J. Comput. 18(4), 690–710 (1989)

15. Simons, B.: A fast algorithm for single processor scheduling. In: 2013 IEEE 54th
Annual Symposium on Foundations of Computer Science, pp. 246–252. IEEE
(1978)

16. Wolsey, L.A., Nemhauser, G.L.: Integer and Combinatorial Optimization. Wiley,
New York (2014)

Geometric Optimization

The Discrete and Mixed
Minimax 2-Center Problem

Yi Xu1(B), Jigen Peng1,2, Yinfeng Xu3,4, and Binhai Zhu5

1 School of Mathematics and Statistics,
Xi’an Jiaotong University, Xi’an 710049, People’s Republic of China

xy.clark@stu.xjtu.edu.cn
2 Beijing Center for Mathematics and Information Interdisciplinary Sciences,

Beijing 100048, People’s Republic of China
3 School of Management, Xi’an Jiaotong University,

Xi’an 710049, People’s Republic of China
4 The State Key Lab for Manufacturing Systems Engineering,

Xi’an 710049, People’s Republic of China
5 Department of Computer Science, Montana State University,

Bozeman, MT 59717, USA

Abstract. Let P be a set of n points in the plane, the discrete min-
imax 2-center problem (DMM2CP) is that of finding two disks cen-
tered at {p1, p2} ∈ P that minimize the maximum of two terms, namely,
the Euclidean distance between two centers and the distance of any
other point to the closer center. The mixed minimax 2-center problem
(MMM2CP) is when one of the two centers is not in P . We present algo-
rithms for solving the DMM2CP and MMM2CP . The time complexity
of solving DMM2CP and MMM2CP are O(n2 logn) and O(n2 log2 n)
respectively.

Keywords: 2-center problem · Farthest point Voronoi diagram ·
Computational geometry

1 Introduction

Facility location problems can be seen as the model for applications in a diverse
set of fields including public policy, locating fire stations in a city, locating base
stations in wireless networks, clustering of documents and so on. It has been
extensively studied over the past years. The facility location problem is to choose
the location of facilities to minimize the cost of satisfying the demand for cer-
tain commodity. Sometimes the location problem is associated with the costs
for locating the facilities, as well as the transportation costs for distributing
the commodities. This paper considers two new facility location problems: the
discrete and mixed minimax 2-center problem.

The 2-center problem for a planar point set P , i.e., finding two congru-
ent closed disks whose union covers the point set and the radius is as small

c© Springer International Publishing Switzerland 2015
Z. Lu et al. (Eds.): COCOA 2015, LNCS 9486, pp. 101–109, 2015.
DOI: 10.1007/978-3-319-26626-8 8

102 Y. Xu et al.

as possible, has also been extensively studied. It is a special case of the gen-
eral k-center problem, where we need to find k congruent closed disks whose
union covers P and the radius is as small as possible. When k is part of the
input, the problem is known to be NP-complete [12]. For the 2-center problem,
Jaromczyk and Kowaluk first gave a deterministic algorithm with running time
O(n2 log n) [7]. Eppstein gave an improvement with a randomized algorithm run-
ning in O(n log2 n) expected time [8]. In a major breakthrough, Sharir showed
that the planar 2-center problem can actually be solved in near-linear time. The
time bound of their algorithm is O(n log9 n) time [3] and finally the algorithm
was further improved by Chan in O(n log2 n log2 log n) time [4]. Yet another ver-
sion of the 2-center problem is under the so-called streaming model, i.e., the
points in P appear in sequence and we need to maintain the two centers right
after a point arrives. A factor-5.611 approximation was designed in [14].

The discrete 2-center problem (D2CP) is defined as follows: covering P by
the union of two congruent closed disks whose radius is as small as possible, and
whose centers are two points in P . It has also been considered. The first near-
quadratic algorithm was proposed in [9] and finally improved to O(n

4
3 log5 n)

time in [2].
While much has been done on this classical problem, little has been done in

some practical variations. Some interesting results were provided by Ho et al. [1]
and Gudmundsson et al. [6]. Ho et al. studied the geometric minimum-diameter
spanning tree (MDST) of P that is a tree which spans P and minimizes the
Euclidean distance of the longest path. They showed that there always exists
an MDST which is either a monopolar or a dipolar. The more difficult dipo-
lar case can be computed in O(n3) time in [1]. The cubic time algorithm has
been improved to O(n

17
6) time by Chan [10]. Gudmundsson et al. [6] studied

the minimum sum dipolar spanning tree (MSST), which mediates between the
minimum-diameter dipolar spanning tree and the discrete 2-center problem in
the following sense: find two centers p1 and p2 in P that minimize the sum of
their distance plus the maximum distance of any other point to the closer center.
They showed that the MSST can be solved in O(n2 log n) time.

Note that in the dipolar case, the MDST is to find two centers {p1, p2} ∈
P such that r1 + r2 + d(p1, p2) is minimized, where d(p1, p2) is the Euclidean
distance between p1 and p2, r1 and r2 are the radii of two disks centered at p1
and p2 whose union covers P . Using the notation above, the discrete 2-center
problem consists of finding two centers {p1, p2} ∈ P such that max{r1, r2} is
minimized; the MSST consists of finding two centers {p1, p2} ∈ P such that
d(p1, p2) + max{r1, r2} is minimized.

In this paper we study two generalizations of the 2-center problem: the dis-
crete minimax 2-center problem (DMM2CP) and mixed minimax 2-center prob-
lem (MMM2CP). The minimax 2-center problem is that of finding two centers
{p1, p2} with radius r1, r2 respectively such that max{r1, r2, d(p1, p2)} is mini-
mized. If the two centers are not in P , we call the problem the standard min-
imax 2-center problem (SMM2CP); if one of the two centers is in P , we call
the problem the mixed minimax 2-center problem (MMM2CP) and if both the

The Discrete and Mixed Minimax 2-Center Problem 103

two centers are in P , we call the problem the discrete minimax 2-center problem
(DMM2CP). DMM2CP is similar to the MSST because both of them are
interested in when the two centers do not only serve their customers, but also
frequently exchange goods or personnel between themselves. We show that the
way solving the MSST can also be applied to the DMM2CP . Furthermore, we
consider the mixed minimax 2-center problem that one of two centers is not in
P . This is of importance, e.g., considering the construction cost of the facility
location, the minimax 2-center location problem with cost constraint is that,
suppose building a new facility costs M1, rebuilding (changing one facility into a
new one) a facility costs M2 and the budget is M , under the budget constraint,
how to choose two centers is necessary (Note that M1 is greater than M2). Here
we consider the minimax two center location problem as following:⎧⎨

⎩
if M ≥ 2M1, correspoding to theSMM2CP
if M1 + M2 ≤ M < 2M1, correspoding to theMMM2CP
if M < M1 + M2, correspoding to theDMM2CP

In Sect. 2, we discuss the DMM2CP which can be solved by using the data
structure in [6]. In Sect. 3, we show some properties and consider the minimum
enclosing disk with constraint that the center must be lying on a given circle
or arc, which can be solved in O(n log n) time. Finally the MMM2CP can be
solved in O(n2 log2 n) time using O(n) space. In Sect. 4, we give a conclusion.

2 The Discrete Minimax 2-Center Problem

For a planar point set P , the discrete minimax 2-center problem (DMM2CP),
as a variation of the discrete 2-center problem, is defined as follows: finding
two disks centered at {p1, p2} ∈ P that minimize the maximum of two terms,
namely, the Euclidean distance between two centers and the distance of any
other point to the closer center. It is simple to give an O(n3) time algorithm.
Just go through all O(n2) pairs {p, q} of input points and compute ∀mi ∈ P \
{p, q},min{max{d(p, q),min{d(mi, p), d(mi, q)}}}. Note that d(mi, p) < d(mi,
q) means mi is in the closed halfplane hpq that contains p and is delimited by the
perpendicular bisector bpq of p and q. Let Pp (resp. Pq) be the point set with all
the points in it are closer to p (resp. q) (Points on bpq can be assigned to either
p or q). Clearly min{max{d(p′, p), d(q′, q), d(p, q)}} where p′ ∈ Pp and q′ ∈ Pq

is the solution of DMM2CP for P . It is clear that we only need to compute the
farthest point fp (resp. fq) to p (resp. q) in Pp (resp. Pq).

From [6], Gudmundsson et al. considered the minimum sum dipolar spanning
tree, which can be seen as finding two centers p, q in P that minimize the sum
of d(p, q) plus the maximum distance of any other point to the closer center.
They presented a solution by using a new data structure, built upon a balanced
red-black search tree that solves fp for each ordered pair {p, q} in a batch. For
fixed p as one center, computing fp for every q ∈ P\{p} takes O(n log n) time
by using their data structure. It can be implied that the data structure can also
be applied to the DMM2CP : for each fixed center p, compute the fp for each q

104 Y. Xu et al.

in P \{p}. After that, for each ordered pair {p, q}, compute max{fp, fq, d(p, q)}.
Then DMM2CP can also be solved in O(n2 log n) time.

Algorithm 1. The Algorithm of Discrete Minimax 2-Center Problem
1: Phase I: Compute all fp
2: for each p ∈ P do: Compute all the farthest points fp
3: end for {p}
4: Phase II: Search for DMM2CP
5: for each {p, q} ∈ P do: dpq ← max{d(p, fp), d(p, q), d(q, fq)}
6: end for {p, q}
7: Return dpq minimum with p and q.

Theorem 1. Let P be a planar point set of n points, the DMM2CP can be
found in O(n2 log n) time using quadratic space.

3 The Mixed Minimax 2-Center Problem

In this section, we consider the minimax 2-center problem in the mixed case
where only one center is in P . First we give some notations: for a fixed point p
and fixed radius r, let D(p, r) denote the disk with center p and radius r, C(p, r)
denote the circle bounding D(p, r). Let set Pp,r consist of the points in D(p, r)
and PT

p,r be the complementary set. The points located on C(p, r) are also in
Pp,r. The center and the radius of the minimum enclosing disk of PT

p,r are osp
and rsp respectively. We call the 2-center problem with one center in p the mixed
2-center problem (M2CP). For fixed p and r, let the other disk of the solution
of MMM2CP be D(omp , rmp). For each fixed center p, we first go through the
points pi ∈ P \{p} (i = 1, 2, ..., n−1) in order of non-decreasing distance from p.
For a trivial O(n2 log n) time implement of this procedure, for each p and d(p, pi)
as the fixed center and radius, we compute the optimal solution for MMM2CP .
We show some geometry properties of the optimal solution of MMM2CP for
fixed center and radius.

3.1 The Structure of the Optimal Solution

First we show two properties between MMM2CP and M2CP .

Lemma 1. For a fixed center p and radius r, max{r, rmp , d(p, omp)}≥ max{r, rsp}.
Lemma 2. For a fixed center p and radius r, if p and osp are in one of D(p, r)
or D(osp, r

s
p), then MMM2CP and M2CP have the same optimal solution.

Proof. The optimal radius of M2CP is max{r, rsp}, and max{r, rsp} ≥ d(p, osp).
As rsp is the radius of the minimum enclosing disk of set PT

p,r, from Lemma 1, we
have rsp ≤ rmp . Then we choose osp and rsp as the center and radius of the other
disk of MMM2CP respectively. The MMM2CP and M2CP have the same
optimal solution. ��

The Discrete and Mixed Minimax 2-Center Problem 105

From Lemma 2, we have

Lemma 3. For a fixed center p and radius r, the optimal solution of
MMM2CP is either when p and omp are in one of D(p, r) or D(omp , rmp) which
is same to M2CP , or when one center lies on the boundary of another disk.

Proof. From Lemma 2, if p and osp are in one of D(p, r) or D(osp, r
s
p), the optimal

solution equals to the solution of M2CP . We choose osp and rsp as the center and
radius of omp and rmp .

Otherwise, we show that if p and osp are not in one of D(p, r) or D(osp, r
s
p),

then p or omp must lie on the boundary of the other disk. We can enlarge the
radius rsp into rsp + δ where δ is a positive number so that PT

p,r is still located in
D(osp, r

s
p + δ). We move osp towards p until C(osp, r

s
p + δ) hits at least one point

q1 ∈ PT
p,r which satisfies d(osp, p) = rsp + δ or d(osp, p) = r. We denote the new

center osp as p∗
1. During the move, the distance between p and p∗

1 is decreasing.
There exists a δ such that max{rsp + δ, d(p, p∗

1), r} is minimized.
At this time, either p∗

1 lies on C(p, r) which means d(p, p∗
1) = r, or p lies on

C(p∗
1, r

s
p+δ) which means d(p, p∗

1) = rsp+δ. Because for δ,max{rsp+δ, d(p, p∗
1), r}

is minimized, ∀γ > δ, max{r, d(p, p∗
1), r

s
p + γ} > max{r, d(p, p∗

1), r
s
p + δ}. Finally

we choose p∗
1 as the center omp and rsp + δ as the radius rmp . Figure 1 shows these

cases. The blue bold circle is the boundary of the fixed disk D(p, r); the green
thin circle is the boundary of the other disk of the solution of M2CP ; the red
dash circle is the boundary of the other disk of the solution of MMM2CP . ��

(i) (ii) (iii)

Fig. 1. (i) p and omp are in one disk (ii) p is on C(omp , rmp) (iii) omp is on C(p, r)

3.2 Solving MMM2CP for a Fixed p and r

We first show that how to find the other center and radius of MMM2CP for a
fixed center p and radius r. From Lemma 2, we know that if p and osp are both
in D(p, r) or D(osp, r

s
p), then M2CP and MMM2CP have the same solution.

We turn to solve the case where one center lies on the boundary of the other
disk. We have the following theorem which is similar to the Lemma1 in [13].

106 Y. Xu et al.

Theorem 2. For a planar point set P and a fixed circle or arc whose center
is o and radius is r, the minimum enclosing disk D(o∗, r∗) covering set P with
center on the given circle or arc, satisfies that either when at least two points are
on C(o∗, r∗), or when one point p is on C(o∗, r∗), o, o∗ and p must be collinear
and p is the farthest point of o in P .

Proof. If the minimum enclosing disk D(o∗, r∗) covering set P with center on
the given circle or arc is defined by at least two points a, b on C(o∗, r∗), then a, b
are the farthest points to o∗. Otherwise there is only one point p on C(o∗, r∗).

Suppose o, o∗ and p are not on a line. As p is the only one point on C(o∗, r∗),
we move the center o∗ along C(o, r) in order that ∠oo∗p < ∠oo′∗p, where o′∗ is
also on C(o, r) so that P is still located in D(o′∗, r∗). With center o′∗ and radius
r∗, all the distance between the points in P and o′∗ is smaller than r∗, which
implies that we can reduce the radius of the disk to maintain that the disk can
still cover P . With center o′∗, the radius of the minimum enclosing disk covering
P is smaller than r∗. This contradicts to that D(o∗, r∗) is the minimum enclosing
disk covering P with center on C(o, r). Figure 2(i) shows that if o, o∗ and p are
not on a line, then there exists a disk that covers P with center on C(o, r) but
the radius is smaller than r∗. The disk with the dash circle can also cover P .
Figure 2(ii) shows that o, o∗ and p are on a line, then D(o∗, r∗) is the minimum
enclosing disk with center on C(o, r) and the disk with dash circle can’t cover P .

Suppose p is not the farthest point to o in set P , let fo be the farthest point
to o, then d(o, fo) > d(o, p). As d(o∗, p) > d(o∗, fo), by the triangle inequality,
d(o, p) = d(o∗, p) + d(o, o∗) > d(o∗, fo) + d(o, o∗) = d(o, fo). This contradicts to
the assumption. ��

(i) (ii)

Fig. 2. (i) o, o∗, p is not on a line (ii) o, o∗, p is on a line

From Lemma 3, for a fixed center p and radius r, D(omp , rmp) is the minimum
enclosing disk covering set PT

p,r with the constraint that either p lies on C(omp , rmp)
or omp lies on C(p, r). If p lies on C(omp , rmp), we know that D(omp , rmp) is the
minimum disk covering p ∪ PT

p,r. Otherwise omp lies on C(p, r).

The Discrete and Mixed Minimax 2-Center Problem 107

For the first case, we can compute the farthest point Voronoi diagram of
p ∪ PT

p,r and compute the minimum enclosing disk with p on its boundary. This
can be done in O(n log n) time [11]; for the second case, from Theorem 2, if there
are more than one point in PT

p,r on C(omp , rmp), we can compute the intersection
points of C(p, r) and farthest point Voronoi diagram of PT

p,r. We can then find
the minimum distance between the intersection points and their farthest points.
Otherwise there is only one point which is the farthest point of p in PT

p,r on
C(omp , rmp). We compute the farthest point fp to p, then find the intersection
point w of C(p, r) and lpfp which is the line crossing p and fp. Let Rfp denote
the region in which all the points have the same farthest point fp. If w lies in the
region Rfp , then we find the optimal center. Otherwise there must be at least
two points on C(omp , rmp). As there are at most O(n) lines of the farthest point
Voronoi diagram of PT

p,r and O(n) intersection points, then this can be done in
O(n log n) time. These two cases can be solved in O(n log n).

Lemma 4. For a fixed p and r, the MMM2CP can be solved in O(n log n)
time.

Algorithm 2. The Algorithm of Mixed Minimax 2-Center Problem for a Fixed
p and r

1: For a fixed p and r, by using linear programming in [5], compute the center osp
and radius rsp of the minimum enclosing circle of PT

p,r := P \ {p, p1, ..., pi} where
d(p, pi) ≤ r.

2: if d(osp, p) ≤ max{rsp, r}, then
3: The MMM2CP and M2CP have the same solution. Return rmp = max{rsp, r}.
4: end if
5: (1) Compute the minimum enclosing disk PT

p,r ∪ {p} with p on its boundary. Let
the radius be r1.

6: (2) Compute the farthest point fp to p in set PT
p,r, and the intersection point w of

C(p, r) and lpfp . If w is in the region of Rfp , then w is omp . Let r2 = d(p, fp) − r.
Otherwise go to next step.

7: (3) Compute the intersection point of the farthest point Voronoi diagram of PT
p,r

and C(p, r). Compute the distance between the intersection points and their far-
thest points, choose the minimum distance, denoted as r3.

8: (4) Return rmp = min{r1, r2, r3}.

3.3 The Monotone Property

In the preprocessing, we have d(p, p1) ≤ d(p, p2) ≤ ... ≤ d(p, pn−1). Suppose
that D(p, ri) is the fixed disk where ri = d(p, pi), let D(omi , rmi) denote the other
disk of the MMM2CP whose center is omi and radius is rmi . We discuss the
monotone property under two cases.
Case 1. ri ≥ rmi . In this case, we have:

Lemma 5. If ri ≥ rmi , then ∀k > i, ri < max{rk, r
m
k , d(p, omk)}.

108 Y. Xu et al.

Proof. If ri ≥ rmi , from Lemma 3, the optimal solution of MMM2CP is either
when the two centers are in D(p, ri) or when omi is on C(p, ri). ∀k > i, rk ≤
max{rk, d(p, omk), rmk }. Thus, ri < max{rk, r

m
k , d(p, omk)}. ��

Case 2. ri < rmi . We handle this case with the following two lemmas.

Lemma 6. ∀k < i, rk < rmk .

Proof. Suppose that there exists a point pk with k < i, such that rk ≥ rmk .
Then the union of the two disks D(p, rk) ∪ D(omk , rmk) can cover the set P . So,
D(p, ri) ∪ D(omk , rmk) can also cover the set P . Then, ri ≥ rmk . The optimal
solution of MMM2CP for a fixed point p and radius ri is less than or equal to
ri. It contradicts to the optimal solution rmi . ��
Lemma 7. If ri < rmi , then ∀k < i, rmi ≤ rmk .

Proof. Suppose that there exists a point pk with k < i such that rmk < rmi .
Then we can enlarge the radius rk into ri, the union of D(p, ri) and D(omk , rmk)
can cover the set P . In this case, the solution of optimal radius of MMM2CP
with a fixed center p and radius ri is max{ri, r

m
k , d(p, omk)}. From Lemma 6, we

have rk < rmk , so d(p, omk) ≤ rmk . With a fixed center p and radius ri, D(p, ri) ∪
D(omk , rmk) covers the set P and the solution of MMM2CP is max{ri, r

m
k }. As

rmk < rmi , ri < rmi , again, it contradicts to the optimal solution ri < rmi . ��
From Lemma 4, for a fixed p and radius r, the MMM2CP can be found

in O(n log n) time. From Lemmas 5 and 7, by using binary search, in O(log n)
time, the MMM2CP can be solved in O(n log2 n) time for a fixed p. Then going
through all the points in P , the total complexity for solving the MMM2CP is
O(n2 log2 n).

Theorem 3. Let P be a planar point set of n points, the MMM2CP can be
solved in O(n2 log2 n) time using O(n) space.

4 Conclusion

We consider two facility location problems called the discrete minimax 2-center
problem (DMM2CP) and the mixed minimax 2-center problem (MMM2CP).
We show that the DMM2CP can be solved in O(n2 log n) time using quadratic
space and the MMM2CP can be solved in O(n2 log2 n) time using O(n) space.
So far, we have not been able to find any algorithm for the SMM2CP . This is
an interesting problem for further research.

Acknowledgment. This work is supported by NSF of China under Grants 61221063
and Program for Changjiang Scholars and Innovative Research Team in University
under Grant IRT1173.

The Discrete and Mixed Minimax 2-Center Problem 109

References

1. Ho, J.M., Lee, D.T., Chang, C.H., Wong, C.K.: Minimum diameter spanning trees
and related problems. SIAM J. Comput. 20(5), 987–997 (1991)

2. Agarwal, P.K., Sharir, M., Welzl, E.: The discrete 2-center problem. Discrete Com-
put. Geom. 20, 287–305 (2000)

3. Sharir, M.: A near-linear algorithm for the planar 2-center problem. Discrete Com-
put. Geom. 18, 125–134 (1997)

4. Chan, T.M.: More planar two-center algorithms. Comput. Geom. Theory Appl.
13, 189–198 (1999)

5. Megiddo, N.: Linear-time algorithms for the linear programming in R3 and related
problems. SIAM J. Comput. 12, 759–776 (1983)

6. Gudmundsson, J., Haverkort, H., Park, S.M., Shin, C.S., Wolff, A.: Facility location
and the geometric minimum-diameter spanning tree. Comput. Geom. 27, 87–106
(2004)

7. Jaromczyk, J., Kowaluk, M.: An efficient algorithm for the Euclidean two-center
problem. In: Proceedings 10th ACM Symposium on Computational Geometry, pp.
303–311 (1994)

8. Eppstein, D.: Faster construction of planar two-centers. In: Proceedings of the 8th
ACMCSIAM Symposium Discrete Algorithms, pp. 131–138 (1997)

9. Hershberger, J., Suri, S.: Finding tailored partitions. J. Algorithms 12, 431–463
(1991)

10. Chan, T.M.: Semi-online maintenance of geometric optima and measures. SIAM
J. Comput. 32(3), 700–716 (2003)

11. Shamos, M., Michael, I., Hoey, D.: Closest-point problems. In: 16th Annual Sym-
posium on IEEE Foundations of Computer Science, pp. 151–162 (1975)

12. Megiddo, N., Supowit, K.: On the complexity of some common geometric location
problems. SIAM J. Comput. 13, 1182–1196 (1984)

13. Roy, S., Bardhan, D., Das, S.: Base station placement on boundary of a convex
polygon. J. Parallel Distrib. Comput. 68, 265–273 (2008)

14. Poon, C.K., Zhu, B.: Streaming with minimum space: an algorithm for covering
by two congruent balls. Theor. Comput. Sci. 507, 72–82 (2013)

Approximation Algorithms for Generalized MST
and TSP in Grid Clusters

Binay Bhattacharya1, Ante Ćustić1, Akbar Rafiey1(B), Arash Rafiey1,2,
and Vladyslav Sokol1

1 Simon Fraser University, Burnaby, Canada
{binay,acustic,arafiey,arashr,vsokol}@sfu.ca
2 Indiana State University, Terre Haute, IN, USA

arash.rafiey@indstate.edu

Abstract. We consider a special case of the generalized minimum span-
ning tree problem (GMST) and the generalized travelling salesman prob-
lem (GTSP) where we are given a set of points inside the integer grid
(in Euclidean plane) where each grid cell is 1 × 1. In the MST version
of the problem, the goal is to find a minimum tree that contains exactly
one point from each non-empty grid cell (cluster). Similarly, in the TSP
version of the problem, the goal is to find a minimum weight cycle con-
taining one point from each non-empty grid cell. We give a (1+4

√
2+ ε)

and (1.5 + 8
√

2 + ε)-approximation algorithm for these two problems in
the described setting, respectively.

Our motivation is based on the problem posed in [6] for a constant
approximation algorithm. The authors designed a PTAS for the more
special case of the GMST where non-empty cells are connected end
dense enough. However, their algorithm heavily relies on this connectiv-
ity restriction and is unpractical. Our results develop the topic further.

Keywords: Generalized minimum spanning tree · Generalized travel-
ling salesman · Grid clusters · Approximation algorithm

1 Introduction

The generalized minimum spanning tree problem (GMST) is a generalization
of the well known minimum spanning tree problem (MST). An instance of the
GMST is given by an undirected graph G = (V,E) where the vertex set is
partitioned into k clusters Vi, i = 1, . . . , k, and a weight w(e) ∈ R

+ is assigned
to every edge e ∈ E. The goal is to find a tree with minimum weight containing
one vertex from each cluster.

The GMST occurs in telecommunications network planning, where a net-
work of node clusters need to be connected via a tree architecture using exactly
one node per cluster [9]. More precisely, local subnetworks must be intercon-
nected by a global network containing a gateway from each subnetwork. For this

Supported by NSERC Canada.

c© Springer International Publishing Switzerland 2015
Z. Lu et al. (Eds.): COCOA 2015, LNCS 9486, pp. 110–125, 2015.
DOI: 10.1007/978-3-319-26626-8 9

Approximation Algorithms for Generalized MST and TSP in Grid Clusters 111

inter-networking, a point has to be chosen in each local network as a hub and the
hub point must be connected via transmission links such as optical fiber, see [14].
Furthermore, the GMST has some applications in design of backbones in large
communication networks, energy distribution, and agricultural irrigation [10].

The GMST was first introduced by Myung, Lee and Tcha in 1995 [14].
Although MST is polynomially solvable [7], it was shown in [14] that the GMST
is strongly NP-hard and there is no constant factor approximation algorithm,
unless P=NP. However, several heuristic algorithms have been suggested for
the GMST, see [9,10,16,17]. Furthermore, Pop, Still and Kern [18] used an LP-
relaxation to develop a 2ρ−approximation algorithm for the GMST where the
size of every cluster is bounded by ρ.

In [6], Feremans, Grigoriev and Sitters consider the geometric generalized
minimum spanning tree problem in grid clusters, GGMST for short. In this spe-
cial case of the GMST, a complete graph G = (V,E) is given where the set of
vertices V correspond to a set of points in the planar integer grid. Every non-
empty 1× 1 cell of the grid forms a cluster. The weight of the edge between two
vertices is given by their Euclidean distance. Figure 1 depicts one instance of the
GGMST.

i

i + 1

j j + 1 j + 2j − 1j − 2

i − 1

Fig. 1. An GGMST instance with n = 21 points and N +1 = 8 non-empty cells, which
are connected and fit into a 3 × 5 sub-grid

We say that two grid cells are connected if they share a side or a corner. Fur-
thermore, we say that a set of grid cells is connected if they form one connected
component. The authors in [6] show that the GGMST is strongly NP-hard, even
if we restrict to instances in which non-empty grid cells are connected and each
grid cell contains at most two points. Furthermore, they designed a dynamic pro-
gramming algorithm that solves in O(lρ6k234k2

k2) time the GGMST for which
the set of non-empty grid cells is connected and fits into k×l sub-grid. (Note that
the algorithm is polynomial if k is bounded.) Moreover, the authors used this
algorithm to develop a polynomial time approximation scheme (PTAS) for the
GGMST for which non-empty cells are connected and the number of non-empty
cells is superlinear in k and l. The GGMST instances are often used to test
heuristics for the GMST which, in light of the results in [6], is not adequate. The
objective of this paper is to develop this topic further and to design a simple

112 B. Bhattacharya et al.

approximation algorithms for the GGMST and of its variants without restricting
only to connected and dense instances.

Analogously as the GMST and the GGMST, the generalized travelling sales-
man problem (GTSP) and the geometric generalized travelling salesman prob-
lem in grid clusters (GGTSP) can be defined. The GTSP was introduced by
Henry-Labordere [11] and is also known in the literature as set TSP, group TSP
or One-of-a-Set TSP. This problem has many applications, including airplane
routing, computer file sequencing, and postal delivery, see [2,12,13]. Elbassioni,
Fishkin, Mustafa and Sitters [5] considered the GTSP in which non-empty clus-
ters (i.e. regions) are disjoint α-fat objects with possibly varying size. In this
setting they obtained a (9.1α + 1)-approximation algorithm. They also give the
first O(1)-approximation algorithm for the problem with intersecting clusters
(regions). Note that in the GGTSP, fatness of each cluster is 4 (each cluster is
a square).

As a special case of the GTSP we can look at each geometric region as an
infinite set of points. This problem, called the TSP with neighbourhood, was
introduced by Arkin and Hassin [1]. In the same paper they present constant
factor approximation algorithm for two cases in which the regions are translates
of disjoint convex polygons, and for disjoint unit disks. For the general prob-
lem Mata and Mitchell [15] and later on Gudmundsson and Levcopoulos [8],
gave an O(log n)-approximation algorithm. For intersecting unit disks an O(1)-
approximation algorithm is given in [4]. Safra and Schwartz [19] show that it
is NP-hard to approximate the TSP with neighbourhood within (2 − ε). In this
context, it is natural to consider the GTSP in which points are sitting inside
geometric objects such as the integer grid.

Notation. We will usually refer to vertices as points. Throughout this paper,
the number of points (|V |) will be denoted by n. Furthermore, N denotes the
number of edges in every feasible solution (tree) of the GGMST, i.e. N is the
number of non-empty cells minus 1. The edge between two points u and v will
be denoted by eu,v. We naturally extend the notation for the weight to sets of
edges and graphs, i.g. the weight of a tree T is denoted by w(T) =

∑
e∈T w(e),

where e ∈ T means that e is an edge of T . We assume that every point is in just
one cell, i.e. points on the cell borders are assigned to only one neighbouring
cell by any rule. An optimal solution of the GGMST will be denoted by Topt

throughout this paper.

Our results and organization of the paper. The main result of this paper
is a (1 + 4

√
2+ ε)-approximation algorithm for the GGMST. We do not assume

any restrictions on connectivity, density or cardinality of non-empty cells. The
algorithm is presented and analyzed in Sect. 2. A lower bound for the weight of
an optimal solution in terms of N is used to prove the approximation quality of
the algorithm. Section 3 is devoted to proving this lower bound. Lastly, in Sect. 4
we use our GGMST algorithm to develop an approximation algorithms for the
GGTSP.

Approximation Algorithms for Generalized MST and TSP in Grid Clusters 113

2 The GGMST Approximation Algorithm

In this section we present a (1+4
√
2+ε)-approximation algorithm (Algorithm3)

for the GGMST. Main part of the algorithm is Algorithm1 which we describe
next.

Algorithm 1.
(
1 + 4

√
2 + 2

√
2

w(Topt)

)
-approximation alg. for the GGMST

1 T ← solution of the MST problem on non-empty cells (where the distance
2 between a pair of cells is the length of the shortest edge between them);
3 G ← the graph consisting of the set of edges (and points) that correspond to the
4 edges in T ;
5 for all cells C that contain more than one point from G do
6 CG ← the set of points from G that are in C;
7 p ← point from C that is a median for CG;
8 Replace CG by p, i.e. reconnect to p all edges of G that enter C;

9 end
10 return G;

Algorithm1 is divided into two parts; in the first part we solve an MST
instance defined as follows: non-empty cells play the role of vertices, and the
weight of the edge between two cells C1, C2 is the smallest weight edge ep1,p2

where p1 ∈ C1 and p2 ∈ C2. Let T be an optimal tree of such MST instance,
and let graph G be the set of edges (with its endpoints) of the original GGMST
instance that correspond to the edges of T . Note that G has N edges and spans
all non-empty cells but it can have multiple points in some cells. In the second
part of the Algorithm1 (i.e. the for loop), we modify G to obtain the GGMST
feasibility, by iteratively replacing multiple cell points by a single point p. We
choose point p to be the one that has the minimum sum of distances to other
points of G that are in the corresponding cell.

Next we present an upper bound for solutions obtained by Algorithm1 in
terms of the number of edges N .

Theorem 1. Algorithm1 produces a feasible solution TA of the GGMST such
that w(TA) ≤ w(Topt) +

√
2N − √

2, where N is the number of edges of TA.

Proof. Denote by G0 the non-feasible graph obtained in the first part of the
algorithm, i.e. the first version of graph G. Then the weight of the solution TA

obtained by the algorithm is equal to w(G0) + ext, where ext is the amount by
which we increase (extend) the weight of G0 in the second part of the algorithm.
Note that w(G0) ≤ w(Topt), as G0 is an optimal solution of the problem for
which Topt is a feasible solution (find a minimum weight set of edges that spans
all non-empty cells, with all GGMST edges being allowed). In the rest of the
proof we will bound the value of ext.

In every run of the for loop we replace the set of points CG with p. In doing so,
every edge eq,c, c ∈ CG from G, is replaced by eq,p. From the triangle inequality

114 B. Bhattacharya et al.

we get that w(eq,p) − w(eq,c) ≤ w(ec,p). Hence, the increase (extension) of the
weight of G in every run of the for loop is less or equal than

∑
c∈CG

w(ec,p).
Instead of bounding such absolute values, we will bound its average per edge
adjacent to the corresponding cell. More precisely, we will calculate an average
extension per half-edge assigned to the corresponding cell. Namely, every edge
will be extended at most two times, once on each endpoint, so we can look
at each extension as an extension of a half-edge. Furthermore, note that edges
that contain leafs will be extended only on one side. We will use this fact to
assign half-edges that contain leafs to other cells to lower their average half-edge
extension. To every cell C, we will assign |CG|− 2 leaf half-edges. Intuitively, we
can do this because every node v of a tree generates deg(v) − 2 leafs. Formally,
it follows from the following well know equality:

|V1| = 2 +
∑
i≥2

|Vi|(i − 2), (1)

where Vi = {v ∈ V : deg(v) = i}, and V is the set of vertices of a graph.
Then for a cell C the average extension per assigned half-edges is bounded

above by ∑
c∈CG

w(ec,p)
|CG| + (|CG| − 2)

. (2)

Note that the maximum distance between two cell points is
√
2. Since points

from CG are candidates for p, it follows that
∑

c∈CG
w(ec,p) ≤ √

2(|CG| − 1).
Hence, (2) is bounded above by

√
2(|CG| − 1)
2|CG| − 2

=
√
2
2

.

Hence, in average, every half-edge (except 2 leaf half-edges, see (1)) is extended
by at most

√
2/2. Note that this average bound is a constant, i.e. does not depend

on C. Now ext can be bounded by

ext ≤
√
2
2

(2N − 2) =
√
2N −

√
2. (3)

Finally, we can bound the solution TA of the algorithm by

w(TA) ≤ w(G0) + ext ≤ w(Topt) +
√
2N −

√
2. ��

The following theorem gives a lower bound for the optimal solution in terms
of the number of edges N . Section 3 is dedicated to proving the theorem.

Theorem 2. If Topt is an optimal solution of the GGMST on N +1 non-empty
cells, then N ≤ 4w(Topt) + 3.

Now from Theorems 1 and 2 the following approximation bound for
Algorithm1 follows.

Approximation Algorithms for Generalized MST and TSP in Grid Clusters 115

Corollary 1. Algorithm1 produces a feasible solution TA of the GGMST such
that w(TA) ≤ (1 + 4

√
2)w(Topt) + 2

√
2.

Note that, due to the constant 2
√
2, Corollary 1 does not gives us a constant

approximation ratio for Algorithm1. Namely, the approximation ratio that we
get is equal to 1 + 4

√
2 + 2

√
2

w(Topt)
. Next we focus on improving Algorithm1 so

that 2
√
2

w(Topt)
is replaced by arbitrary small ε > 0. Note that the optimal solution

weight does not necessarily increase with the increase of the number of points
n, namely all points can be in the same cells. Hence we cannot use the standard
approach. However, the following two facts will do the trick. First, note that the
weight of the GGMST optimal solution increases as the number of non-empty
cells increases. Second, given a spanning tree structure of non-empty cells T , we
can in polynomial time find the minimum weight GGMST feasible solution T ′

with the same tree structure as T (i.e. there is an edge in T ′ between two cells if
and only if these two cells are adjacent in T). Next we design one such dynamic
programming algorithm (see Algorithm2).

Given an GGMST instance, let T be a spanning tree of the complete graph
where the set of vertices correspond to the set of non-empty cells. Denote by Xi

the set of points inside cell Ci. We observe T as a rooted tree with Cr as its
root. If Ci is a leaf of T then the weight W (z) of each point z in set Xi is set to
zero. If Ci is not a leaf then T has some children Ci1 , . . . , Cik and the weight for
points inside sets Xi1 , . . . , Xik has already been computed. Then for each point
p in cell Ci (set Xi) we compute:

W (p) =
k∑

j=1

min
q∈Xij

{W (q) + w(ep,q)}

Algorithm2 computes W (p) for all p ∈ Cr. Note that it is easy to adapt
Algorithm2 to store selected points at each step.

Now we have all ingredients to design a (1 + 4
√
2 + ε)-approximation algo-

rithm, see Algorithm3. Note that 1 + 4
√
2 is approximately equal to 6.66.

Theorem 3. For any ε > 0, Algorithm3 is a (1 + 4
√
2 + ε)-approximation

algorithm for the GGMST.

Proof. If N ≤ 15 or N ≤ 10
√
2/ε, then we can enumerate all spanning trees on

N + 1 non-empty cells, and apply Algorithm2 on each of them. That will give
us an optimal solution in polynomial time.

Assume N > 15 and N > 10
√
2/ε. By Corollary 1 it follows that Algorithm1

will produce a solution TA such that

w(TA) ≤
(
1 + 4

√
2
)

w(Topt) + 2
√
2. (4)

116 B. Bhattacharya et al.

Algorithm 2. Optimal GGMST solution for a given spanning tree of cells
Data: A spanning tree T of non-empty cells
Result: An optimal weight of the GGMST tree with the same structure as T

1 Choose an arbitrary cell Cr as the root of T ;
2 for each leaf Ci of T do
3 for each p ∈ Xi do
4 W (p) = 0;
5 end

6 end
7 CurrentLevel = height of T ;
8 while CurrentLevel ≥ root level do
9 for each node Ci of CurrentLevel do

10 Let Ci1 , . . . , Cik be children of Ci in T ;
11 for each p ∈ Xi do

12 W (p) =
∑k

j=1 minq∈Xij
{W (q) + w(ep,q)};

13 end

14 end
15 CurrentLevel = CurrentLevel − 1;

16 end
17 return minp∈Xr W (p);

Algorithm 3. (1 + 4
√
2 + ε)-approximation algorithm for the GGMST

1 if N ≤ 15 or N ≤ 10
√

2/ε then
2 Output minimum weight solution obtained by Algorithm 2 on all spanning

trees of non-empty cells;

3 else
4 Run Algorithm 1;
5 end

From Theorem2 and N > 15 it follows that 1 ≤ 5w(Topt)/N . Applying that on
the rightmost element of inequality (4) we get

w(TA) ≤
(
1 + 4

√
2
)

w(Topt) +
10

√
2

N
w(Topt),

≤
(
1 + 4

√
2 +

10
√
2

N

)
w(Topt).

Now from N > 10
√
2/ε it follows that

w(TA) ≤
(
1 + 4

√
2 + ε

)
w(Topt),

which proves the theorem. ��

Approximation Algorithms for Generalized MST and TSP in Grid Clusters 117

3 The Lower Bound Proof

This section is entirely devoted to proving Theorem2 which gives us a lower
bound on the weight of an optimal solution. The lower bound is expressed in
terms of the number of edges N .

Throughout this section we identify 1× 1 grid cell with its coordinates (i, j),
where i, j ∈ Z is the row and the column of the cell inside the infinite integer
grid. For example, in Fig. 1, cell (i, j + 1) contains one point which is near its
upper right corner.

We start by proving lower bounds for trees of small size.

Lemma 1. The weight of any subtree of Topt with four edges is at least 1.

Proof. Consider a subtree T ′ of Topt with four edges. Let H denote the set of
the five cells that contain vertices of T ′. Note that there will be two cells in H
with coordinates (i, j) and (i′, j′) such that |i − i′| ≥ 2 or |j − j′| ≥ 2. Hence,
Euclidean distance between a vertex from the cell (i, j) and a vertex from the
cell (i′, j′) is a least 1. This implies w(T ′) ≥ 1. See Fig. 2 for an example. ��

i

i + 1

j j + 1 j + 2

Fig. 2. An example of a tree T ′ with four edges

Lemma 2. The weight of any subtree of Topt with seven edges is at least 1
3 (2

√
6+√

6 − 3
√
3) (which is greater than 1.93).

Proof. Let T ′ be a subtree of Topt with seven edges. If T ′ does not fit in any
3×3 sub-grid of the original grid, then there are two vertices u, v of T ′ which are
from cells with coordinates (i, j) and (i′, j′) such that |i − i′| ≥ 3 or |j − j′| ≥ 3.
In that case w(eu,v) ≥ 2 and therefore w(T ′) ≥ 2.

Next we consider the case when T ′ fits into 3 × 3 grid. Since T ′ has eight
vertices, at least three of them are in the corner cells of a 3 × 3 grid. Without
loss of generality we assume that these three vertices are vertex v in cell (i, j),
vertex u in cell (i+ 2, j) and vertex y in cell (j + 2, i). Let P be a shortest path
in T ′ from v to u and let Q be the shortest path in T ′ from v to y. Note that
w(ev,u) ≥ 1 and w(ev,y) ≥ 1. If P and Q do not have a common vertex apart
from v, then w(T ′) ≥ 2. Thus we are left with the case when P and Q have a
common vertex other than v, which we denote by x.

First we assume that P and Q do not go through the point in cell (i+1, j+1).
In this case, up to symmetry, one of the configurations depicted in Fig. 3(a,b)

118 B. Bhattacharya et al.

i

i + 1

j j + 1 j + 2

i + 2

jj j + 1 j + 1j + 2 j + 2

v v
v

u u
u

y y
y

x

x

x

(a) (b) (c)

Fig. 3. Layouts of P and Q

occurs. However, it is clear that w(ev,x) + w(ex,y) + w(ex,u) ≥ 2 and hence
w(T ′) ≥ 2.

Lastly, we observe the case when vertex x is in cell (i + 1, j + 1). Then
w(P ∪Q) is at least w(ex,v)+w(ex,u)+w(ex,y), which is minimized when x is the
Fermat point for the three corners of cell (i + 1, j + 1) and T ′ has the structure
depicted in Fig. 3(c). Therefore it can be computed that w(T ′) ≥ 1

3 (2
√
6 +√

6 − 3
√
3) > 1.93. ��

Lemma 3. The weight of any subtree of Topt with eight edges is at least 2.

Proof. Let T ′ be a subtree of Topt with eight edges. If T ′ does not fit in any 3×3
sub-grid then by the same simple argument as in the proof of Lemma2 we get
w(T ′) ≥ 2. If T ′ fits in a 3 × 3 grid, then there is one vertex of T ′ in any cell
of such 3 × 3 grid. More specifically, there are vertices in cells (i, j), (i + 2, j),
(i, j + 2) and (i + 2, j + 2) from which easily follows that w(T ′) > 2. �

Lemma 4. The weight of any subtree of Topt with nine edges is at least 1+
√
3.

Proof. Let T ′ be a subtree of Topt with nine edges. If T ′ does not fit in any 4×4
sub-grid of the original grid, then there are two vertices u, v of T ′ which are in
cells with coordinates (i, j) and (i′, j′) such that |i − i′| ≥ 4 or |j − j′| ≥ 4. In
that case w(eu,v) ≥ 3 and therefore w(T ′) ≥ 3 > 1 +

√
3.

Next we consider the case when the smallest rectangular sub-grid that con-
tains T ′ is of the size 4 × 4, and let (i, j) be the bottom left corner cell of
such 4 × 4 grid. In that case there are four (not necessarily distinct) vertices
u, v, x, y of T ′ that for some i ≤ i′, i′′ ≤ i + 3 and j ≤ j′, j′′ ≤ j + 3 lie in cells
(i′, j), (i, j′), (i′′, j +3), (i+3, j′′), respectively. Let P be the shortest path in T ′

from u to x and let Q be the shortest path in T ′ from v to y. Let us observe
the union of paths P and Q. This union is a set of k edges we denote by e�,
� = 1, . . . , k. Let us denote by x� and y� the lengths of projections of e� on x-axis
and y-axis, respectively. Then

w(P ∪ Q) =
k∑

�=1

√
x2

� + y2
� . (5)

Approximation Algorithms for Generalized MST and TSP in Grid Clusters 119

Since distance between projections of u and x on x-axis is at least 2 and distance
between projections of v and y on y-axis is at least 2, it follows that

∑k
�=1 x� ≥ 2

and
∑k

�=1 y� ≥ 2. Hence, (5) is minimized when k = 1 and x1 = y1 = 2 with
minimal value being 2

√
2. Therefore we get w(T ′) ≥ 2

√
2 > 1 +

√
3.

Lastly, we consider the case when T ′ fits into a rectangular sub-grid R of
dimensions smaller than 4 × 4. Without loss of generality we can assume that
R is of the size 4 × 3, and let (i, j) be the bottom left corner cell of R. Note
that there are at least two vertices of T ′ that are in corner cells of R. Without
loss of generality we assume that vertex v is in cell (i, j). Next we distinguish
remaining cases with respect to the position of the second corner point which
we denote by u.

Case 1. Vertex u is in cell (i, j + 2). As there are ten vertices in T ′, one of
them must be in cell (i + 3, j′) for some j ≤ j′ ≤ j + 3. Denote such vertex by
y. By calculating the Fermat point x it can be seen that weight of the Steiner
tree containing u, v and y is at least 2 +

√
3/2 which is greater than 1+

√
3, see

Fig. 4(a).

i

i + 1

j j + 1 j + 2

i + 2

jj j + 1 j + 1j + 2 j + 2

v vu

uy

x

(a) (b) (c)

i + 3

y

y

Fig. 4. T ′ configurations cases

Case 2. Vertex u is in cell (i + 3, j). We can assume that there are no vertices
of T ′ in cells (i, j + 2) or (i+ 3, j + 2) as then Case 1 applies. Then there must
be vertices y′, y′′ in T ′ in cells (i+1, j +2) and (i+2, j +2). Hence, w(T ′) must
be at least as the weight of the Steiner tree that contains right upper corner
of cell (i, j), right bottom corner of cell (i + 3, j) and left bottom corner of cell
(i + 2, j + 2). By calculating the Fermat point, one can see that such Steiner
tree has weight 1 +

√
3, hence w(T ′) ≥ 1 +

√
3. In Fig. 4(b) subtree T ′ has the

configuration that mimics such Steiner tree.

Case 3. Vertex u is in cell (i+3, j+2). We can assume that there are no vertices
of T ′ in cells (i, j +2) or (i+3, j) as then Case 1 or Case 2 apply. In this case
minimal weight T ′ mimics the Steiner tree that contains right upper corner of
cell (i, j), left bottom corner of cell (i + 3, j + 2), right bottom corner of cell
(i + 2, j) and left upper corner of the cell (i + 1, j + 2), see Fig. 4(c). It is easy

120 B. Bhattacharya et al.

to calculate that the weight of such Steiner tree is
√

5 + 2
√
3 which is greater

than 1 +
√
3. ��

Now we are ready to prove Theorem2.

Proof (of Theorem 2). We will proof the theorem by induction on N . Recall that
N is the number of edges in Topt.

By Lemmas 1, 3 and 4, theorem holds for N ≤ 13. Next we assume that
theorem holds for all trees with number of edges strictly less than N .

We will perform the induction step as follows: through exhaustive case study
we will show that there always exist a subtree T ′ of Topt for which w(T ′) is
greater or equal to number of edges of T ′ divided by 4, and if we remove from
Topt the edges of T ′, it remains connected. In that case, by induction hypothesis
the bound for Topt holds.

We observe Topt as a rooted tree, and given a vertex v of Topt, we denote by
Tv the maximal subtree of Topt rooted at v.

Let u be a non-leaf vertex of Topt with maximum number of edges in its path
to the root.

Assumption 1: We may assume u has at most two children. Namely, in the
case when u has four children u1, u2, u3, u4 let T ′ be a subtree of Tu induced
by {u, u1, u2, u3, u4}. In the case when u has exactly three children u1, u2, u3

set T ′ to be Tv where v is the parent of u. Note that in both cases T ′ has
four edges. Let T ′′ = Topt \ E(T ′) where E(T) denotes the set of edges of a
tree T . Since T ′′ is a tree, by induction hypothesis it follows that |E(T ′′)| =
N −4 ≤ 4w(T ′′)+3. Furthermore, by Lemma1 we have that 4 ≤ 4w(T ′). Hence,
N ≤ 4w(T ′′) + 4w(T ′) + 3 = 4w(Topt) + 3.

Assumption 2: If u has exactly two children u1, u2, we may assume that the
parent of u (denoted by v) has degree strictly greater than two. Namely, if this
is not the case, we set T ′ = Tv ∪ {ev,w} where w is the parent of v, and we
set T ′′ = Topt \ E(Tw). Since T ′ has four edges and T ′′ is a tree, by induction
hypothesis for T ′′ and Lemma 1 we obtain the bound.

Case 1: Vertex u has exactly two children u1, u2. Then by Assumption 2 v has
at least two children. By the choice of u, the number of edges in any path from
v to a leaf in Tv is at most 2. Let w′ be another child of v. By Assumption 1
w′ has at most two children. Also note that we can assume that w′ has at least
one child. Otherwise the subtree T ′ induced by {w′, v, u, u1, u2} has four edges,
hence by removing the edges of T ′ from T we can apply the induction hypothesis
and obtain the bound.

Case 1.1: Vertex v has another child w′′. In this case using the same arguments
as above it can be shown that w′′ must have exactly one or two children. Note
that subtree T ′ induced by v, u, u1, u2 together with Tw′ , Tw′′ has at least seven
edges and at most nine edges. Therefore, Lemmas 2, 3 or 4 can be applied for each
of the cases. Furthermore, for the remaining subtree Topt \ E(T ′) the induction
hypothesis can be applied to obtain the bound.

Approximation Algorithms for Generalized MST and TSP in Grid Clusters 121

Case 1.2: Vertex v has only two children w′, u. Let w be the parent of v. We can
assume that w′ has exactly one child, otherwise the subtree T ′ induced by the
vertices of Tv and vertex w has exactly seven edges, hence we could use Lemma 2.
If the degree of w is two, then let T ′ be the subtree induced by Tw together with
the edge ew,y, where y is the parent of w. T ′ has seven edges and therefore, the
result follows. Now, we may assume that w has another child v′. Let T1 = Tv

and observe that T1 has 5 edges. Let T2 = Tv′ . By the same argument used for
Tv, we conclude that T2 has at most five edges. Let T ′ = T1 ∪ T2 ∪ {ew,v′ , ew,v}.
If T2 has zero, one or two edges, then T ′ has at least seven and at most nine
edges, and hence the bound follows. If T2 has four edges then by induction
hypothesis on Topt \ E(T2) and by applying the Lemma1 on T2, we obtain the
bound. It remains to consider the cases when T2 has three or five edges. If T2

has three edges, then we add edge ew,v′ to T2 and now the new tree has four
edges, hence we can apply the same arguments as before. We are left only with
the case when T2 has five edges. In this case w(T2) ≥ 1, according to Lemma1,
and also T3 = T1 ∪ {ew,v′ , ev,w} has seven edges. By Lemma 2, either w(T3) is
at least 2, or it has the structure depicted in Fig. 3(c), and it is clear that every
edge incident to the tree in Fig. 3(c) is grater than, say 0.5. Hence, in either
case w(T ′) ≥ 3. Since T ′ has twelve edges the bound is obtained by induction
hypothesis on Topt \ E(T ′).

Case 2: Vertex u has exactly one child u1.

Case 2.1 Vertex v has another child w′. In this case Tw′ has depth at most 1. If
w′ has more than one child, then from Case 1 (w′ instead of u) we are done. If
w′ has one child (denoted by w1), then the subtree induced by {u1, u, v, w′, w1}
has four edges and we are done.

We continue by assuming that w′ has no child. If v has another child w′′ /∈
{u,w′}, then as we argued for w′, we can assume that w′′ has no child. However,
in this case subtree induced by {u1, u, v, w′, w′′} has four edges and we are done.
Therefore we can assume that v has exactly two children w′ and u. Let w be the
parent of v. Then the subtree induced by u1, u, v, w′, w has four edges and we
are done.

Case 2.2: Vertex v has only child u. Let w be the parent of v. W can assume
that v has a sibling node v′, as otherwise we can remove the four edge subtree
induced by {u1, u, v, w, z}, where z is the parent of w. Furthermore, we can
assume that v′ has a child u′, as otherwise we can remove the four edge subtree
induced by {u1, u, v, w, v′}.
Case 2.2.1: Vertex u′ has no child but has a sibling u′′. We can assume that no
child of v′ has a child, as we can observe such case as an instance of Case 2.2.3.
Furthermore, we can assume that u′ and u′′ are only children of v′. Otherwise,
in the case when v′ has more than three children, there would exist a subtree of
Tv′ with four edges that we could remove. Furthermore, in the case when v′ has
exactly three children, we can remove T ′ = Tv′ ∪ {ew,v′}.

Hence we are left with the case when u′′ is the only sibling of u′. In the
case v and v′ are only children of w, we can remove seven edge subtree T ′ =

122 B. Bhattacharya et al.

Tw ∪ {ew,z}, where z denotes the parent of w. Lastly, we consider the case when
there exist third child of w denoted by v′′. From the assumptions and solved
cases above, we can assume that Tv′′ has at most two edges, hence subtree
T ′ = Tv ∪Tv′ ∪Tv′′ ∪{ew,v, ew,v′ , ew,v′′} has seven, eight or nine edges, therefore
we can remove it.

Case 2.2.2: Vertex u′ has no child nor sibling. In the case there exists a third
child of w, from the assumptions and solved cases above if would follow that we
can assume that it has only one child which has no child. In that case thee would
exist a subtree of Tw with four edges that we can remove. Hence, we can assume
that w has no other children besides v and v′. Then Tw is a path with five edges.
If w(Tw) is grater than 5/4, we can remove it and we are done. Otherwise it must
be similar to the structure depicted in Fig. 5, i.e. with a path of approximate
size 1 alongside a border of a cell, and with remaining vertices grouped at the
endpoints of such path. Note that in that case, edge ew,z must be big enough so
that w(Tw ∪ {ew,z}) is greater than 6/4. Hence we can remove Tw ∪ {ew,z} and
by induction hypothesis obtain the bound.

Fig. 5. A short path with five edges

Case 2.2.3: Vertex u′ has a child u′
1. Note that from the assumption on maxi-

mality of depth of u, u′
1 has no children. As we solved Case 2.1, we can assume

that u′
1 has no siblings. Furthermore, we can assume that there is no sibling of u′

that has a child, as in that case there would exist subtree of Tv′ with four edges
that we could remove. Now in the case that u′ has more than one sibling, again,
there would exist subtree of Tv′ with four edges that we could remove. In the
case that u′ has exactly one sibling, subtree T ′ = Tv′ ∪ {ew,v′} can be removed.
We are left with the case when both Tv and Tv′ are paths with two edges. In
the case there is a third child of w, denoted by v′′, from the solved cases above
if follows that we can assume that Tv′′ is also a path with two edges. In that
case there is a subtree of Tw with nine edges that can be removed. In the case
there is no third child of w, the seven edges subtree T ′ = Tw ∪ {ew,z} (with z
being the parent of w), can be removed and the bound obtained. We considered
all the cases, therefore proving the theorem. ��

4 Approximation of the GGTSP

Our approximation algorithms for the GGMST can be used to obtain approxi-
mation algorithms for the geometric generalized travelling salesman problem on
grid clusters (GGTSP) using standard methods.

Approximation Algorithms for Generalized MST and TSP in Grid Clusters 123

Algorithm 4. (2 + 8
√
2 + 2ε)-approximation algorithm for the GGTSP

Data: Instance I of the GGTSP
Result: Generalized travelling salesman tour

1 TA ← output of Algorithm 3 on I;
2 GE ← Eulerian graph obtained by doubling all edges in TA;
3 ET ← an Euler tour of GE ;
4 C ← a GGTSP tour obtained by going along ET and skipping repeated vertices;
5 return C;

We start with the approach of shortcutting a double MST, presented in
Algorithm4 and analyzed next.

By removing one edge from a GGTSP tour, one obtains a GGMST tree, hence
w(TA) is less than (1 + 4

√
2 + ε)OPT , where OPT is the weight of an optimal

solution of the GGTSP. Therefore, w(GE) is less than 2(1+ 4
√
2+ ε)OPT . Due

to triangle inequality, shorcutting the Euler tour in line 4 of the algorithm does
not increase the weight. Hence, Algorithm4 is a (2 + 8

√
2 + 2ε)-approximation

algorithm for the GGTSP. Note that 2 + 8
√
2 is approximately equal to 13.31.

Next we use the approach from the famous Christofides 3
2 -approximation

algorithm for the metric TSP, see [3]. This approach will give us 0.5 decrease
of the approximation ratio. We give a sketch of the algorithm and the analysis,
and leave details to the reader.

We start by running Algorithm1 on the GGTSP instance. Let TG be the
resulting tree. Note that w(TG) is less or equal than (1 + 4

√
2)OPT + 2

√
2,

where OPT is the weight of an optimal solution of the GGTSP. Let S be a set
of non-empty cells that contain a vertex of TG with an odd degree. Note that
|S| is even. Let M be a minimum perfect matching among cells in S, where the
distance between two cells C1, C2 ∈ S is the smallest distance between two points
p1, p2 among all p1 ∈ C1, p2 ∈ C2. It is not hard to show that w(M) ≤ 1

2OPT .
Let MG be the set of edges et1,t2 for which t1, t2 are vertices of TG and there exist
an edge ep1,p2 ∈ M such that p1 and t1 are in the same cell and p2 and t2 are
in the same cell. Note that w(MG) ≤ 1

2OPT + N
√
2, and hence by Theorem2

we get that w(MG) ≤ 1
2OPT + 4

√
2OPT + 3

√
2. By merging MG and TG we

obtain an Eulerian graph, and by shortcutting one of its Euler tours we obtain
a GGTSP tour with weight at most (32 +8

√
2)OPT +5

√
2. By similar approach

as in Algorithm3 and Theorem3, we can get rid of 5
√
2 error, and obtain a

(32 + 8
√
2 + ε)-approximation algorithm for every ε > 0.

5 Conclusions

We presented a simple (1+4
√
2+ ε)-approximation algorithm for the geometric

generalized minimum spanning tree problem on grid clusters (GGMST) and
(1.5+8

√
2+ ε)-approximation algorithm for the geometric generalized travelling

salesman problem on grid clusters (GGTSP).

124 B. Bhattacharya et al.

To obtain guarantied approximation ratios for our algorithms, we used the
following lower bound on the optimal solution: Every tree with N edges that
contains at most one point from any 1 × 1 grid cell is of size at least N−3

4 .
Obtaining a tight lower bound in terms of the number of edges would decrees
guaranteed approximation ratios of our (and other similar) algorithms. Moreover,
it would be an interesting result on its own.

Acknowledgment. We would like to thank Geoffrey Exoo for many usefull discus-
sions.

References

1. Arkin, E.M., Hassin, R.: Approximation algorithms for the geometric covering
salesman problem. Discrete Appl. Math. 55(3), 197–218 (1994)

2. Bovet, J.: The selective traveling salesman problem. Papers Presented at the EURO
VI Conference, Vienna (1983)

3. Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman
problem. In: Traub, J.F. (ed.) Symposium on New Directions and Recent Results
in Algorithms and Complexity, p. 441. Academic Press, Orlando, Florida (1976)

4. Dumitrescu, A., Mitchell, J.S.B.: Approximation algorithms for TSP with neigh-
borhoods in the plane. In: Symposium on Discrete Algorithms, pp. 38–46 (2001)

5. Elbassioni, K.M., Fishkin, A.V., Mustafa, N.H., Sitters, R.A.: Approximation algo-
rithms for Euclidean group TSP. In: Caires, L., Italiano, G.F., Monteiro, L.,
Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 1115–1126.
Springer, Heidelberg (2005)

6. Feremans, C., Grigoriev, A., Sitters, R.: The geometric generalized minimum span-
ning tree problem with grid clustering. 4OR 4, 319–329 (2006)

7. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H Freeman, New York (1979)

8. Gudmundsson, J., Levcopoulos, C.: Hardness result for TSP with neighborhoods.
Technical report LU-CS-TR:2000–216, Department of Computer Science, Lund
Unversity, Sweden (2000)

9. Golden, B.L., Raghavan, S., Stanojevic, D.: Heuristic search for the generalized
minimum spanning tree problem. INFORMS J. Comput. 17(3), 290–304 (2005)

10. Jiang, H., Chen, Y.: An efficient algorithm for generalized minimum spanning tree
problem. In: Proceedings of Genetic and Evolutionary Computation Conference,
pp. 217–224 (2010)

11. Henry-Labordere, A.L.: The record balancing problem: a dynamic programming
solution of a generalized traveling salesman problem. RIBO B–2, 736–743 (1969)

12. Laporte, G.: The traveling salesman problem: an overview of exact and approxi-
mate algorithms. Eur. J. Oper. Res. 59, 231–247 (1992)

13. Laporte, G., Asef-Vaziri, A., Srikandarajah, C.: Some applications of the general-
ized traveling salesman problem. J. Oper. Res. Soc. 47, 1461–1467 (1996)

14. Myung, Y.-S., Lee, C.-H., Tcha, D.-W.: On the generalized minimum spanning
tree problem. Networks 26(4), 231–241 (1995)

Approximation Algorithms for Generalized MST and TSP in Grid Clusters 125

15. Mata, C.S., Mitchell, J.S.B.: Approximation algorithms for geometric tour and
network design problems. In: Proceedings of the 11th Annual Symposium on Com-
putational Geometry, pp. 360–369. ACM (1995)

16. Oncan, T., Corseau, J.F., Laporte, G.: A tabu search heuristic for the generalized
minimum spanning tree problem. Eur. J. Oper. Res. 191, 306–319 (2008)

17. Pop, P.C.: The generalized minimum spanning tree problem. Ph.D. Thesis, Uni-
versity of Twente (2002)

18. Pop, P.C., Still, G., Kern, W.: An approximation algorithm for the generalized
minimum spanning tree problem with bounded cluster size. In: Proceedings of the
First ACiD Workshop. Texts Algorithms vol. 4, pp. 115–121 (2005)

19. Safra, S., Schwartz, O.: On the complexity of approximating TSP with neighbor-
hoods and related problems. In: Di Battista, G., Zwick, U. (eds.) ESA 2003. LNCS,
vol. 2832, pp. 446–458. Springer, Heidelberg (2003)

Covering, Hitting, Piercing and Packing
Rectangles Intersecting an Inclined Line

Apurva Mudgal and Supantha Pandit(B)

Department of Computer Science and Engineering,
Indian Institute of Technology Ropar, Nangal Road,

Rupnagar 140001, Punjab, India
{apurva,supanthap}@iitrpr.ac.in

Abstract. We consider special cases of set cover , hitting set , piercing
set , and independent set problems for axis-parallel squares and axis-
parallel rectangles in the plane, where the objects are intersecting an
inclined line, or equivalently a diagonal line. We prove that for axis-
parallel unit squares the hitting set and set cover problems are NP-
complete, whereas the piercing set and independent set problems are in
P. For axis-parallel rectangles, we prove that the piercing set problem is
NP-complete, which solves an open question from Correa et al. [Discrete
& Computational Geometry (2015) [3]]. Further, we give a nO(� log c�+1)

time exact algorithm for the independent set problem with axis-parallel
squares, where n is the number of squares and side lengths of the squares
vary from 1 to c. We also prove that when the given objects are unit-
height rectangles, both the hitting set and set cover problems are NP-
complete. For the same set of objects, we prove that the independent set
problem can be solved in polynomial time.

Keywords: Covering · Hitting · Piercing · Packing · Inclined line ·
Diagonal line · NP-complete · Exact algorithm · Unit-height · Rectan-
gles · Squares

1 Introduction

The four problems - set cover, hitting set, piercing set, and independent set -
are NP-hard even for simple geometric objects like disks, squares, rectangles
and many more. For the reason that it is computationally hard to get efficient
algorithms, researchers have explored special cases of these problems. One of the
special cases is when all the given geometric objects intersect a given diagonal
line. In this paper, we consider this special case of the above four problems
where the geometric objects are axis-parallel unit squares, squares, unit-height
rectangles, and rectangles in the plane.

Partially supported by grant No. SB/FTP/ETA-434/2012 under DST-SERB Fast
Track Scheme for Young Scientist.

c© Springer International Publishing Switzerland 2015
Z. Lu et al. (Eds.): COCOA 2015, LNCS 9486, pp. 126–137, 2015.
DOI: 10.1007/978-3-319-26626-8 10

Covering, Hitting, Piercing and Packing Rectangles 127

We are given a set P of points, a set O of objects, and a diagonal D such
that all the objects in O are intersecting the diagonal D. The Set Cover Problem
(SCP) is to find a subset O′ ⊆ O of objects with minimum cardinality that covers
all the points in P . In the Hitting Set Problem (HSP), the goal is to find a subset
P ′ ⊆ P of points with minimum cardinality that hits all the objects in O. When
the point set is not given as a part of the input for HSP, the resulting problem
is known as the Piercing Set Problem (PSP). In the Independent Set Problem
(ISP), a set O of objects is given, the goal is to find a subset O′ ⊆ O of objects
with maximum cardinality such that any pair of objects in O′ do not intersect.

Assume that O is a set of axis-parallel rectangles and the diagonal D makes
an angle 180◦ − θ, 0 < θ < 90◦ with the x-axis. We can apply a rotation such
that the diagonal D is parallel to the x-axis and all the rectangles are tilted at
the same angle θ with respect to the x-axis.

Previous Work: Chepoi and Felsner [2] first consider PSP and MIS where
given geometric objects are axis-parallel rectangles intersecting an axis-monotone
curve. They give a factor 6 approximation algorithm for both these problems.
Recently, Correa et al. [3] consider PSP and ISP on axis-parallel rectangles.
They show that ISP for axis-parallel rectangles is NP-complete even when each
of the rectangles is touching the diagonal line at a corner. Further, they give
factor 2 and factor 4 approximation algorithms for ISP and PSP respectively.
They optimally solve ISP in quadratic time by improving a cubic time algorithm
of Lubiw [10] when the axis-parallel rectangles are on one side of the diagonal
and touch the diagonal at a single point.

By the result of Chan and Grant [1], it follows that HSP and SCP with axis-
parallel rectangles touching a diagonal are APX-hard. Erlebach and van Leeuwen
[5] show that SCP with axis-parallel unit squares (and hence HSP, since for unit
squares SCP and HSP are dual to each other) can be solved in polynomial time
when the unit squares intersect a fixed number of horizontal lines.

Fraser et al. [6] prove that the minimum hitting set and minimum set cover
problems on unit disks are NP-complete, when the set of points and the set of
disk centers lie inside a strip of any non-zero height. Recently, Das et al. [4] give
a cubic time algorithm for the maximum independent set problem on disks with
diameter 1 such that the disk centers lie inside a unit height strip.

Our Contributions: We summarize our contributions in Table 1.

2 Set Cover and Hitting Set Problems

2.1 Unit Squares Intersecting a Diagonal Line

In this section, we prove that SCP and HSP with axis-parallel unit squares
are NP-complete, when the diagonal D makes an angle 135◦ with x-axis. We
give a reduction from a NP-complete problem: vertex cover in planar graphs
with maximum degree 3 (PVC(3)) [7]. In this reduction we assume that D is
horizontal and squares are tilted.

128 A. Mudgal and S. Pandit

Table 1. Our contributions are shown in bold colored text. (∗n is the number of squares
with side lengths in [1, c].)

Geometric Objects SCP HSP PSP ISP

Axis-Parallel
Unit Squares

NP-complete
Theorem 1

NP-complete
Theorem 1

P
Theorem 5

P
Corollary 2

Axis-Parallel
Squares

NP-complete
Theorem 1

NP-complete
Theorem 1

Open
question

nO(�log c�+1)∗

time exact
algorithm

Theorem 6

Axis-Parallel
Unit-Height Rectangles

NP-complete
Theorem 2

NP-complete
Theorem 2

Open
question

P
Theorem 7

Axis-Parallel
Rectangles

APX-hard
Chan et al. [1]

APX-hard
Chan et al. [1]

NP-complete
Theorem 4

NP-complete
Correa et al. [3]

The reduction is similar to the reduction of Fraser et al. [6] for the hitting
set problem on unit disks and point inside a strip. The construction can be
done in two phases. Phase I is identical to Fraser et al. [6]. In this phase, we
are given an instance G (Fig. 1(a)) of PVC(3) with different x-coordinates of
vertices. We reduce G into another instance G′′ (Fig. 1(b)) of PVC(3) through
an intermediate instance G′ of PVC(3) (Fig. 1(b) without pink colored vertices)
by adding dummy vertices to the edges of G. The graph G′ satisfies the following
properties: (i) G′ is embedded inside a horizontal strip, (ii) there is no degree
three vertex in G′ whose all incident edges connect to it either from left or from

(a) (b)

(c)

Fig. 1. (a) An instance of vertex cover problem on planar graph of degree at most 3.
(b) After adding dummy vertices in Phase I. (c) The SCP instance created with unit
squares and points in Phase II from the planar graph in (b). (Color figure online)

Covering, Hitting, Piercing and Packing Rectangles 129

right side, (iii) vertical line passing through any vertex of G′ does not intersect
an edge of G′ in the middle, and (iv) the difference between the number of
vertices on two vertical lines passing through vertices of G′ with consecutive x-
coordinates is at most 1. Finally, G′′ is constructed from G′ by adding one extra
dummy vertex to each edge of G containing an odd number of dummy vertices.
Note that edges of G′′ may have a single dummy vertex (pink colored vertex in
(Fig. 1(b)) which does not lie on any vertical line.

In Phase II, we incorporate our ideas. Here we first reduce graph G′ to H
(Fig. 1(c)), an instance of SCP with unit squares, as follows. For each vertex in
G′ we take a unit square and for each edge we take a point in H . The different
types of arrangements of the squares and points in H for the vertices in two
consecutive vertical lines and edges between these two lines in G′ are shown in
Fig. 2. The centers of the squares for the vertices of G′ on a vertical line are on a
vertical line in H and two consecutive centers are h =

√
2

κn distance apart, where
n is the number of vertices in G′′ and κ is a suitable constant. This ensures that
all squares will intersect D. Two consecutive vertical lines containing the centers
of the squares are

√
2 − h distance apart. The reduction from G′′ to H is as

follows. Let (a, b) be an edge of G′. Suppose a dummy vertex d is added inside
(a, b) in G′′. We take one unit square s (see pink colored squares in (Fig. 1(c))
for d. Next we remove the point for edge (a, b) and add two points, one for edge
(a, d) and other for edge (d, b), such that these two points are covered by s.

(a) (b) (c) (d)

Fig. 2. (a) One configuration in G′, (b) gadget of (a) in H , (c) another configuration
in G′, and (d) gadget of (c) in H . The other types of gadgets can be made by either
modifying or extending the gadgets (b) and (d). (Color figure online)

The proof of correctness is straightforward. Finding a vertex cover in G′′ is
equivalent to finding a set cover in H . Further, since hitting set and set cover
for unit squares are self-dual, we have the following theorem.

Theorem 1. The minimum set cover and the minimum hitting set problems
with unit squares intersecting a diagonal line are NP-complete.

2.2 Unit-Height Rectangles Intersecting a Diagonal Line

We prove that SCP and HSP for axis-parallel unit-height rectangles are NP-
complete. The reduction is similar to the reduction described in Sect. 2.1. Apply-
ing transformations x′ = x and y′ = δy, where δ is chosen appropriately, to

130 A. Mudgal and S. Pandit

Fig. 3. An instance of SCP with unit-height rectangles generated for the graph in
(Fig. 1(b)). (Color figure online)

the reduction in Sect. 2.1 gives NP-completeness for diagonal making any angle
between 90◦ and 180◦ with the x-axis. We depict the NP-completeness construc-
tion in Fig. 3 for the PVC(3) instance G in Fig. 1(a) where the diagonal makes
an angle 150◦ with the x-axis.

Theorem 2. The minimum set cover and the minimum hitting set problems
with unit-height rectangles intersecting a diagonal line are NP-complete.

2.3 Unit Squares Touching a Diagonal Line

Let P be a set of points and S be a set of axis-parallel unit squares such that
squares in S intersect a diagonal at a single point from the right side. We consider
the hitting set problem. we shift D to its right to a position D′ such that D′ will
pass through the centers of all the squares. For each square s ∈ S, take a point
ps at its center. For each point p ∈ P , take a unit square sp with p as its center
and take an interval isp

= sp ∩ D′. The following claim can be proved easily.

Claim 1. A point p ∈ P hits a square s ∈ S if and only if the interval isp

corresponding to p covers the point ps.

Hence, HSP with unit squares is equivalent to the problem of covering points
on a real line by intervals. Similarly, we can reduce SCP to the problem of
hitting intervals by point on a real line. Since both the problems can be solved
in polynomial time using standard algorithms, we have the following theorem.

Theorem 3. The minimum set cover and the minimum hitting set problems
with unit squares touching a diagonal line can be solved in polynomial time.

3 Piercing Set Problem

3.1 Rectangles Intersecting a Diagonal Line

In this section, we prove that PSP with axis-parallel rectangles is NP-complete.
We give a reduction from the NP-complete problem Rectilinear-Planar-3-SAT [8]
which is another form of Planar-3-SAT [9] problem. The reduction involves ideas
from Correa et al. [3]. We slightly modify the Rectilinear-Planar-3-SAT problem

Covering, Hitting, Piercing and Packing Rectangles 131

as follows. Let φ be a 3-SAT formula with every clause containing exactly 3
literals. The variables are placed on a diagonal line. The clauses shaped “ ” or
“ ” connect to the variables either from the left or from the right side of the
diagonal such that the shapes do not intersect with each other (see Fig. 4(a)).
The goal is to find a satisfying assignment for the formula φ. We take α to be
the maximum number of clauses which connect to a variable of φ either from
left or from right. Take t = 2α + 1.

(a) (b)

Fig. 4. (a) Representation of a modified Rectilinear-Planar-3-SAT formula φ = C1 ∧
C2∧C3∧C4∧C5∧C6, where C1 = (x1∨x2∨x3), C2 = (x1∨x3∨x5), C3 = (x3∨x4∨x5),
C4 = (x2 ∨ x3 ∨ x4), C5 = (x1 ∨ x2 ∨ x4), and C6 = (x1 ∨ x4 ∨ x5). (b) Structure of
gadget for a variable xi. (Color figure online)

For each variable xi, we take 2t squares with t squares each on the left and
right side of the diagonal D (see Fig. 4(b)). Two consecutive squares intersect at
a point except for pairs ri

t−1, r
i
t and ri

2t−1, r
i
2t which intersect on a portion of their

boundaries. We choose a single point from each intersection and call these points
as representative points. Let P i

V = {pi
1, p

i
2, . . . , p

i
2t} be the 2k representative

points for variable xi. Now to pierce the variable squares we can select points
from the set P i

V . Since the representative points form a cycle of length 2t, there
are two optimal piercing sets of points {pi

1, p
i
3, . . . , pi

2t−1} and {pi
2, p

i
4, . . . , p

i
2t}

for each variable gadget.
Now consider a clause C which connects to the variables xi, xj , and xk from

the right side of D. Define three binary variables bi, bj , and bk as follows: bl = 0,
if xl occurs as a negative literal in C, otherwise bl = 1, for l ∈ {i, j, k}. We take
a rectangle rc for clause C. Let clause C be the n1-, n2-, and n3-th clause for
xi, xj , and xk respectively, when the clauses from the right side of D connecting
to these variables are ordered from left to right. We place the rectangle rc such
that it satisfies the following conditions (see Fig. 5(a)): (i) it covers only the
representative point pi

2n1+bi−1 from variable xi, (ii) we extend the two squares

132 A. Mudgal and S. Pandit

(a) (b)

Fig. 5. (a) Interconnection between variable gadgets for xi, xj , and xk and the rectangle
for clause C. (b) Complete construction for the formula π in Fig. 4(a). (Color figure
online)

rj
2n2+bj−1 and rj

2n2+bj
from variable xj vertically upward such that they only

intersect rc at a point qj
c and move the point pj

2n2+bj−1 to qj
c , and (iii) we extend

the two squares rk
2n3+bk−1 and rk

2n3+bk
from variable xk vertically upward such

that they only intersect rc at a point qk
c and move the point pk

2n3+bk−1 to qk
c .

Note that after extension some of the variable squares become rectangles. From
now on we call all the variable squares as rectangles. Similarly, we make the
construction for the clauses that connect to the variables from left.

In Fig. 5(b) we demonstrate the above construction for the formula shown in
Fig. 4(a). Therefore, from formula φ with n variables and m clauses we construct
an instance R of piercing set with 2tn+m rectangles intersecting a diagonal line.
We can observe that any point p in the plane can be replaced by a representative
point which hits at least all the rectangles hit by p. Therefore, any optimal
piercing set can pick points from the representative points. Now we prove the
correctness of the construction.

Theorem 4. The minimum piercing set problem with rectangles intersecting a
diagonal line is NP-complete.

Proof. We shall prove that φ is satisfiable iff R has a piercing set of at most
tn points. First, a satisfying assignment of φ is considered. From the gadget
of xi, select odd-numbered representative points if xi is false, otherwise select
even-numbered representative points. Clearly, these tn selected points hit all
the variable as well as clause rectangles. Next, the rectangles for one variable
are disjoint from those for any other variable. Then, any tn size solution must
select t alternate representative points from each variable. Hence, we can set
binary values to each variable based on which of the two optimal solutions of
t representative points is selected for that variable. Finally, a clause rectangle

Covering, Hitting, Piercing and Packing Rectangles 133

is hit iff the alternate representative points selected for some variable make the
binary value of a literal present in the clause 1. �

3.2 Unit Squares Intersecting a Diagonal Line

In this section, we give an exact algorithm for PSP, where the objects are axis-
parallel unit squares. Let S be a set of n unit squares intersecting a diagonal
line D. Assume D is horizontal by a rotation. Let H be a horizontal strip of
height 2

√
2 such that the diagonal D divides it into two equal parts. We further

partition strip H into rectangular regions of length
√

2 and height 2
√

2. Now
we remove all regions which are not intersected by one of the given squares. Let
R1, R2, . . . , Rr be the remaining regions sorted according to x-coordinate. Note
that r is at most 2n, since a unit square can intersect at most two regions. We
now take a dummy region R0 before R1 and a dummy region Rr+1 after Rr. Let
Si be the subset of squares that intersect region Ri. Also let Sin

i be the set of
squares in Si whose centers are inside Ri and let Sout

i = Si \ Sin
i be the set of

squares in Si whose centers are outside Ri.

Lemma 1. The maximum number of points required to pierce the squares in
Sin

i for any region Ri is at most 8.

Proof. Note that the dimension of region Ri is
√

2 × 2
√

2. Take 8 squares
D1,D2, . . . , D8 of length 1√

2
, four in a column and two in a row, such that

together they completely cover Ri. Since the diagonal lengths of the squares are
exactly 1, the center ci of square Di is at distance less than or equal to 1

2 from
any other point of Di. Thus, ci pierces all squares in Sin

i whose centers lie in Di.
Hence, the 8 points c1, c2, . . . , c8 form a piercing set of size 8 for Sin

i . �

Lemma 2. Any optimal piercing set contains at most 24 points from region Ri.

Proof. Observe that Sout
i ⊆ Sin

i−1 ∪ Sin
i+1. Therefore, by Lemma 1 the squares

in Si can be hit by 24 points, 8 points each from regions Ri−1, Ri, and Ri+1.
Since points inside Ri can only hit squares in Si, if an optimal solution OPT
contains more than 24 points from region Ri, we can replace them by 24 points
in regions Ri−1, Ri, Ri+1 without leaving any square to be hit. This contradicts
the assumption that OPT was an optimal piercing set. �

Let the squares in Si divide Ri into mi subregions. Since any two squares
can intersect in at most 2 points, mi = O(|Si|2) = O(n2). Let Pi be a set of mi

points, with one point picked from each of the mi subregions. We can assume
that optimal piercing set is a subset of

⋃r+1
i=0 Pi.

For 0 ≤ i ≤ r, let T (i, U1, U2) where U1 ⊆ Pi and U2 ⊆ Pi+1 denote the
cost of an optimal piercing set H for the squares which lie completely inside⋃r+1

j=i Rj such that H
⋂

Pi = U1 and H
⋂

Pi+1 = U2. Note that by Lemma 2, we
can assume that both U1 and U2 have at most 24 points. T (i, U1, U2) satisfies
the following recurrence:

134 A. Mudgal and S. Pandit

1. If U1

⋃
U2 does not pierce all squares which lie completely inside Ri

⋃
Ri+1,

then T (i, U1, U2) = ∞.
2. Otherwise,

T (i, U1, U2) = min
U3⊆Pi+2, |U3|≤24

T (i + 1, U2, U3) + |U3|

The optimal piercing set is now given by minU1⊆P0,U2⊆P1 T (0, U1, U2) and
can be obtained from the above recurrences by dynamic programming.

We now analyze the time required to find the optimal piercing set. As each
Pi has O(n2) points, the number of 24 element subsets of Pi is O(n48). There-
fore, the number of subproblems T (i, U1, U2) defined above are at most O(n97).
Each subproblem depends on O(n48) smaller subproblems. By allowing an extra
bookkeeping cost the total time taken to compute the optimal piercing set is
nO(1). This leads to the following theorem.

Theorem 5. The minimum piercing set problem with unit squares intersecting
a diagonal line can be solved in polynomial time.

4 Independent Set Problem

4.1 Squares Intersecting a Diagonal Line

In this section, an exact algorithm for ISP with axis-parallel squares is proposed.
We are given a set S of n axis-parallel squares with integer side lengths in [1, c].
The squares are intersecting a diagonal D. We make the diagonal parallel to
x-axis by performing a rotation on the given input. The idea of the algorithm
is similar to the algorithm of Das et al. [4] for the maximum independent set
problem on unit disks such that disks do not overlap and hit a horizontal line. In
their algorithm, they show that at most 4 pairwise independent unit disks can
intersect a vertical line. However, in this case we partition the squares in S into
k = 	log c
 + 1 groups g1, g2, . . . , gk, where the i-th group gi contains squares
with side lengths in the semi-open interval [2i−1, 2i) and show that at most 16k
pairwise independent squares can intersect a given vertical line.

Lemma 3. There are at most 16 pairwise independent squares whose side
lengths are in [1, 2) such that they intersect both D and a vertical line L.

Proof. Let R be a square of length 2
√

2 with D and L as middle horizontal and
vertical lines. Observe that the centers of the squares that intersect both L and
D should be inside R. Now we partition the region R into 16 congruent squares
D1,D2, . . . , D16 arranged in a grid such that there are exactly 4 squares in each
row and each column respectively. The center cj of Dj is at most 1

2 unit far from
any other point inside Dj and hence at most one square with center inside Dj

is in the independent set. Thus, any independent set has size at most 16. �

The following corollary directly follows from the above lemma.

Covering, Hitting, Piercing and Packing Rectangles 135

Corollary 1. There are at most 16k pairwise independent squares, a maximum
of 16 squares from each group gi, which intersect D and a vertical line.

Now consider vertical lines through every corner point of the squares. Let
L1, L2, . . . Lr be these vertical lines sorted from left to right. Add two extra
vertical lines, L0 to the left of L1 and Lr+1 to the right of Lr, such that no square
in S can intersect them. Let Sqi be the set of squares from S that intersect the
vertical line Li for i = 1, 2, . . . , r. For 0 ≤ i ≤ r + 1, the subproblem T (i, Sq′

i)
denotes the size of the optimal independent set S∗ of squares such that: (i)
squares in S∗ intersect the closed region bounded by L0 and Li, (ii) Sq′

i ⊆ Sqi

is the set of squares in S∗ that intersect Li. Note that from Corollary 1 we have
|Sq′

i| ≤ 16k. Now the following recurrence is satisfied by the above subproblem:

1. If any two squares in Sq′
i intersect, then T (i, Sq′

i) = −∞.
2. Otherwise, let Sq′

i−1 be a subset of squares from Sqi−1 such that the squares
in Sq′

i which intersect Li−1 are in Sq′
i−1 and squares in Sq′

i do not intersect
with the squares in Sq′

i−1. Then,

T (i, Sq′
i) = max

Sq′
i−1⊆Sqi−1,|Sq′

i−1|≤16k
{T (i − 1, Sq′

i−1)} + |Sq′
i \ Sq′

i−1|

The optimal independent set can be calculated by solving T (r + 1, ∅).

Running Time: There are 4n corner points and hence r is O(n). By Lemma 3,
at most 16k squares from S can intersect a vertical line Li. Observe that there
are at most O(n16k+1) subproblems. Further, at most O(n16k) subproblems are
considered in the right hand side of the above recurrence. Therefore, to compute
an optimal independent set nO(k) i.e., nO(log c
+1) total time is required. Hence,
we have the following theorem.

Theorem 6. The maximum independent set problem with squares intersecting
a diagonal line can be solved in nO(log c
+1) time, where n is the number of
squares and the side lengths of the squares are in [1, c].

For unit squares we can take c as 1 and hence we have the following result.

Corollary 2. The maximum independent set problem with unit squares inter-
secting a diagonal line can be solved in polynomial time.

4.2 Unit-Height Rectangles Intersecting a Diagonal Line

In this section, we prove that ISP, where the given objects are axis-parallel unit-
height rectangles can be solved in polynomial time using a dynamic programming
algorithm similar to that described in Sect. 4.1. However, a large number of unit-
height rectangles from any optimal solution may now intersect a vertical line.
To address this problem we do the following.

Let M be a real number. We now perform the following transformation to
every point (x, y) in the plane: y′ = y and x′ = Mx. We choose M such that

136 A. Mudgal and S. Pandit

after the above transformation the width of each unit-height rectangle becomes
at least 1. Note that after this transformation the angle made by D with x-axis
will increase and D becomes almost parallel to x-axis for large M .

Lemma 4. Let D be a diagonal line and D1, D2 be two parallel lines on either
side of D at unit vertical distance from D. Let r1, r2 be two axis-parallel unit-
height rectangles that intersect D. Then r1, r2 intersect each other iff they have
an intersection point in the area bounded by D1 and D2.

Proof. Let q be a point to the right of D1 such that r1 and r2 contain q. Further,
assume that r1 and r2 do not have any intersection point inside the region
bounded by D1 and D2. Clearly the vertical distance from D to q is greater
than 1. Now take a horizontal line Lq through q and let it intersect D1 at a
point, say q′ (see Fig. 6(a)). The vertical distance between D and q′ is exactly
1. So no unit-height rectangle with left boundary to the right of the vertical line
through q′ and intersecting D can cover q. Since r1 and r2 intersect at q, the
left boundaries of both r1 and r2 should start before or at q′. Hence both have
q′ also as an intersection point. This gives a contradiction. �

Now by Lemma 4, for computing optimal independent set we need to consider
only the portions of the unit-height rectangles inside the strip formed by D1 and
D2. Next, we apply a rotation such that D becomes parallel to x-axis.

Lemma 5. Let L be a vertical line segment of length 2 such that D partitions L
in two equal parts. Then at most 18 pairwise independent unit-height rectangles,
each having width at least 1, can intersect both D and L.

Proof. Let R be a rectangle of size
√

5×(2+
√

5) with D as the middle horizontal
line. Place the vertical line L such that D splits L into two equal segments and
the distances from left and right boundaries of R to L are equal. Let r be a
unit-height rectangle which intersects L and D. Let p be a point on L∩r. Take a
line L′ through p with the same slope as the left boundary of r. Further, take two
rectangles r1 and r2 each of size 1

2 × 1 such that the left boundary of r1 and the
right boundary of r2 coincide with the unit segment L′ ∩ r (see Fig. 6(b)). Since
the width of r is at least 1, at least one of r1 or r2 is fully contained inside r.
Let r fully contain r1. Since r1 covers p, r1 is fully contained inside R. The area
of R is 5 + 2

√
5 and that of r1 is 1

2 . Since each unit-height rectangle intersecting
both D and L has at least 1

2 unit of area inside R, at most �10 + 4
√

5 i.e., 18
independent unit-height rectangles can intersect L and D. �

We apply the same dynamic programming algorithm described in Sect. 4.1
with Li’s as the vertical line segments of length 2 bisected by D and passing
through every corner of the portions of unit-height rectangles inside the region
bounded by D1 and D2. As each portion has at most 6 corner points, the num-
ber of Li’s is O(n). By Lemma 5, each Li intersects at most 18 portions in an
independent set and hence by an analysis similar to that in Sect. 4.1, we can say
that the total time taken to compute the optimal independent set is nO(1).

Covering, Hitting, Piercing and Packing Rectangles 137

(a) (b)

Fig. 6. (a) Proof of Lemma4. (b) Proof of Lemma 5. (Color figure online)

Theorem 7. The maximum independent set problem with unit-height rectangles
intersecting a diagonal line can be solved in polynomial time.

Note that M can be very large. Therefore, we will not calculate the actual
value of M . Instead, we will take M as a variable and execute the above algorithm
symbolically on a computer.

Acknowledgements. The second author would like to thank Subhas C. Nandy and
Aniket Basu Roy for helpful discussions. We express our gratitude to the anonymous
reviewers for reviewing our manuscript.

References

1. Chan, T.M., Grant, E.: Exact algorithms and APX-hardness results for geometric
packing and covering problems. Comput. Geom. Part A 47(2), 112–124 (2014)

2. Chepoi, V., Felsner, S.: Approximating hitting sets of axis-parallel rectangles inter-
secting a monotone curve. Comput. Geom. 46(9), 1036–1041 (2013)

3. Correa, J., Feuilloley, L., Pérez-Lantero, P., Soto, J.A.: Independent and hitting
sets of rectangles intersecting a diagonal line: algorithms and complexity. Discrete
Comput. Geom. 53(2), 344–365 (2015)

4. Das, G.K., De, M., Kolay, S., Nandy, S.C., Sur-Kolay, S.: Approximation algorithms
for maximum independent set of a unit disk graph. Inf. Process. Lett. 115(3),
439–446 (2015)

5. Erlebach, T., Jan Van Leeuwen, E.: PTAS for weighted set cover on unit squares.
In: Serna, M., Shaltiel, R., Jansen, K., Rolim, J. (eds.) APPROX 2010. LNCS,
vol. 6302. Springer, Heidelberg (2010)

6. Fraser, R., Lopez-Ortiz, A.: The within-strip discrete unit disk cover problem. In:
CCCG 2012, pp. 53–58, Charlottetown, Canada, August 8–10, 2012 (2012)

7. Garey, M.R., Johnson, D.S.: The rectilinear steiner tree problem is NP-complete.
SIAM J. Appl. Math. 32(4), 826–834 (1977)

8. Knuth, D.E., Raghunathan, A.: The problem of compatible representatives. SIAM
J. Discrete Math. 5(3), 422–427 (1992)

9. Lichtenstein, D.: Planar formulae and their uses. SIAM J. Comput. 11(2), 329–343
(1982)

10. Lubiw, A.: A weighted min-max relation for intervals. J. Combinatorial Theor. Ser.
B 53(2), 151–172 (1991)

Optimal Self-assembly of Finite Shapes
at Temperature 1 in 3D

David Furcy and Scott M. Summers(B)

Department of Computer Science, University of Wisconsin–Oshkosh,
Oshkosh, WI 54901, USA

{furcyd,summerss}@uwosh.edu

Abstract. Working in a three-dimensional variant of Winfree’s abstract
Tile Assembly Model, we show that, for an arbitrary finite, connected
shape X ⊂ Z

2, there is a tile set that uniquely self-assembles into a 3D
representation of X at temperature 1 with optimal program-size com-
plexity (the program-size complexity, also known as tile complexity, of
a shape is the minimum number of tile types required to uniquely self-
assemble it). Moreover, our construction is “just barely” 3D in the sense
that it only places tiles in the z = 0 and z = 1 planes. Our result is
essentially a just-barely 3D temperature 1 simulation of a similar 2D
temperature 2 result by Soloveichik and Winfree (SICOMP 2007).

1 Introduction

Self-assembly is intuitively defined as the process through which simple, unorga-
nized components spontaneously combine, according to local interaction rules,
to form some kind of organized final structure. While examples of self-assembly
in nature are abundant, Seeman [21] was the first to demonstrate the feasibil-
ity of self-assembling man-made DNA tile molecules. Since then, self-assembly
researchers have used principles from DNA tile self-assembly to self-assemble a
wide variety of nanoscale structures, such as regular arrays [25], fractal struc-
tures [8,19], smiling faces [18], DNA tweezers [26], logic circuits [15], neural
networks [16], and molecular robots [11]. What is more, over roughly the past
decade, researchers have dramatically reducing the tile placement error rate (the
percentage of incorrect tile placements) for DNA tile self-assembly from 10 % to
0.05 % [2,7,8,19].

In 1998, Winfree [24] introduced the abstract Tile Assembly Model (aTAM)
as an over-simplified, combinatorial, error-free model of experimental DNA tile
self-assembly. The aTAM is a constructive version of mathematical Wang tiling
[23] in that the former bestows upon the latter a mechanism for sequential
“growth” of a tile assembly starting from an initial seed. Very briefly, in the
aTAM, the fundamental components are un-rotatable, translatable square “tile

S.M. Summers—This author’s research was supported in part by UWO Faculty
Development Research grant FDR881.

c© Springer International Publishing Switzerland 2015
Z. Lu et al. (Eds.): COCOA 2015, LNCS 9486, pp. 138–151, 2015.
DOI: 10.1007/978-3-319-26626-8 11

Optimal Self-assembly of Finite Shapes at Temperature 1 in 3D 139

types” whose sides are labeled with (alpha-numeric) glue “colors” and (inte-
ger) “strengths”. Two tiles that are placed next to each other bind if both the
glue colors and the strengths on their abutting sides match and the sum of
their matching strengths sum to at least a certain (integer) “temperature”. Self-
assembly starts from a “seed” tile type, typically assumed to be placed at the
origin, and proceeds nondeterministically and asynchronously as tiles bind to
the seed-containing assembly one at a time. In this paper, we work in a three-
dimensional variant of the aTAM in which tile types are unit cubes and tiles are
placed in a non-cooperative manner.

Tile self-assembly in which tiles may bind to an existing assembly in a non-
cooperative fashion is often referred to as “temperature 1 self-assembly” or sim-
ply “non-cooperative self-assembly”. In this type of self-assembly, a tile may
non-cooperatively bind to an assembly via (at least) one of its sides, unlike
in cooperative self-assembly, in which some tiles may be required to bind on
two or more sides. It is worth noting that cooperative self-assembly leads to
highly non-trivial theoretical behavior, e.g., Turing universality [24] and the effi-
cient self-assembly of N × N squares [1,17] and other algorithmically specified
shapes [22].

Despite its theoretical algorithmic capabilities, when cooperative self-assembly
is implemented using DNA tiles in the laboratory [2,13,19,20,25], tiles may (and
do) erroneously bind in a non-cooperative fashion, which usually results in the pro-
duction of undesired final structures. In order to completely avoid the erroneous
effects of tiles unexpectedly binding in a non-cooperative fashion, the experimenter
should only build nanoscale structures using constructions that are guaranteed to
work correctly in non-cooperative self-assembly. Thus, characterizing the theoret-
ical power of non-cooperative self-assembly has significant practical implications.

Although no characterization of the power of non-cooperative self-assembly
exists at the time of this writing, Doty et al. conjecture [6] that 2D non-cooperative
self-assembly is weaker than 2D cooperative self-assembly because a certain tech-
nical condition, known as “pumpability”, is true for any 2D non-cooperative tile
set. If the pumpability conjecture is true, then non-cooperative 2D self-assembly
can only produce simple, highly-regular shapes and patterns, which are too simple
and regular to be the result of complex computation.

In addition to the pumpability conjecture, there are a number of results that
study the suspected weakness of non-cooperative self-assembly. For example,
Rothemund and Winfree [17] proved that, if the final assembly must be fully con-
nected, then the minimum number of unique tile types required to self-assemble
an N × N square (i.e., its tile complexity) is exactly 2N − 1. Manuch et al. [12]
showed that the previous tile complexity is also true when the final assembly
cannot contain even any glue mismatches. Moreover, at the time of this writ-
ing, the only way in which non-cooperative self-assembly has been shown to be
unconditionally weaker than cooperative self-assembly is in the sense of intrinsic
universality [4,5]. First, Doty et al. [4] proved the existence of a universal cooper-
ative tile set that can be programmed to simulate the behavior of any tile set (i.e.,
the aTAM is intrinsically universal for itself). Then, Meunier et al. [14] showed,

140 D. Furcy and S.M. Summers

via a combinatorial argument, that there is no universal non-cooperative tile set
that can be programmed to simulate the behavior of an arbitrary (cooperative)
tile set. Thus, in the sense of intrinsic universality, non-cooperative self-assembly
is strictly weaker than cooperative self-assembly.

While non-cooperative self-assembly is suspected of being strictly weaker
than cooperative self-assembly, in general, it is interesting to note that 3D non-
cooperative self-assembly (where the tile types are unit cubes) and 2D coopera-
tive self-assembly share similar capabilities. For instance, Cook et al. [3] proved
that it is possible to deterministically simulate an arbitrary Turing machine
using non-cooperative self-assembly, even if tiles are only allowed to be placed
in the z = 0 and z = 1 planes (Winfree [24] proved this for the 2D aTAM).
Cook et al. [3] also proved that it is possible to deterministically self-assemble
an N × N 3D “square” shape SN ⊆ {0, . . . , N − 1} × {0, . . . , N − 1} × {0, 1}
using non-cooperative self-assembly with O(log N) tile complexity (Rothemund
and Winfree [17] proved this for the 2D aTAM). Furcy et al. [9] reduced the
tile complexity of deterministically assembling an N × N square in 3D non-
cooperative self-assembly to O

(
log N

log log N

)
(Adleman et al. [1] proved this for the

2D aTAM), which is optimal for all algorithmically random values of N . Given
that it is possible to optimally self-assemble an N × N square in 3D using non-
cooperative self-assembly, the following is a natural question: Is it possible to
self-assemble an arbitrary finite shape in 3D using non-cooperative self-assembly
with optimal tile complexity?

Note that the previous question was answered affirmatively by Soloveichik
and Winfree [22] for the 2D aTAM, assuming the shape of the final assembly
can be a scaled-up version of the input shape (i.e., each point in the input
shape is replaced by a c × c block of points, where c is the scaling factor).
Specifically, Soloveichik and Winfree gave a construction that takes as input
an algorithmic description of an arbitrary finite, connected shape X ⊂ Z

2 and
outputs a cooperative (temperature 2) tile set TX that deterministically self-
assembles into a scaled-up version of X and |TX | = O

(
|M |

log |M |
)
, where |M |

is the size of (i.e., number of bits needed to describe) the Turing machine M ,
which outputs the list of points in X. In the main result of this paper, using
a combination of 3D, temperature 1 self-assembly techniques from Furcy et al.
[9] and Cook et al. [3], we show how the optimal construction of Soloveichik
and Winfree can be simulated in 3D using non-cooperative self-assembly with
optimal tile complexity. Thus, our main result represents a Turing-universal way
of guiding the self-assembly of a scaled-up, just-barely 3D version of an arbitrary
finite shape X at temperature 1 with optimal tile complexity.

2 Definitions

In this section, we give a brief sketch of a 3-dimensional version of the aTAM
along with some definitions of scaled finite shapes and the complexities thereof.

Optimal Self-assembly of Finite Shapes at Temperature 1 in 3D 141

2.1 3D Abstract Tile Assembly Model

Let Σ be an alphabet. A 3-dimensional tile type is a tuple t ∈ (Σ∗ ×N)6, e.g., a
unit cube with six sides listed in some standardized order, each side having a glue
g ∈ Σ∗ ×N consisting of a finite string label and a non-negative integer strength.
In this paper, all glues have strength 1. There is a finite set T of 3-dimensional
tile types but an infinite number of copies of each tile type, with each copy being
referred to as a tile.

A 3-dimensional assembly is a positioning of tiles on the integer lattice Z
3

and is described formally as a partial function α : Z3 ��� T . Two adjacent tiles
in an assembly bind if the glue labels on their abutting sides are equal and have
positive strength. Each assembly induces a binding graph, i.e., a “grid graph”
(sometimes called the adjacency graph) whose vertices are (positions of) tiles
and whose edges connect any two vertices whose corresponding tiles bind. If τ is
an integer, we say that an assembly is τ -stable if every cut of its binding graph
has strength at least τ , where the strength of a cut is the sum of all of the
individual glue strengths in the cut.

A 3-dimensional tile assembly system (TAS) is a triple T = (T, σ, τ), where
T is a finite set of tile types, σ : Z3 ��� T is a finite, τ -stable seed assembly,
and τ is the temperature. In this paper, we assume that |dom σ| = 1 and τ = 1.
An assembly α is producible if either α = σ or if β is a producible assembly and
α can be obtained from β by the stable binding of a single tile. In this case we
write β →T

1 α (to mean α is producible from β by the binding of one tile), and
we write β →T α if β →T ∗

1 α (to mean α is producible from β by the binding
of zero or more tiles). When T is clear from context, we may write →1 and →
instead. We let A [T] denote the set of producible assemblies of T . An assembly
is terminal if no tile can be τ -stably bound to it. We let A� [T] ⊆ A [T] denote
the set of producible, terminal assemblies of T .

A TAS T is directed if |A� [T]| = 1. Hence, although a directed system may
be nondeterministic in terms of the order of tile placements, it is deterministic in
the sense that exactly one terminal assembly is producible. For a set X ⊆ Z

3, we
say that X is uniquely produced if there is a directed TAS T , with A� [T] = {α},
and dom α = X.

2.2 Complexities of (Scaled) Finite Shapes

The following definitions are based on the definitions found in [22]. We include
these definitions for the sake of completeness.

A coordinated shape is a finite set X ⊂ Z
2 such that X is connected, i.e., the

grid graph induced by X is connected. For some c ∈ Z
+, we say that a c-scaling

of X, denoted as Xc, is the set Xc = {(a, b) | (�a/c�, �b/c�) ∈ X}. Intuitively,
Xc is the coordinated shape obtained by taking X and replacing each point in X
with a c× c block of points. Here, the constant c is known as the scale factor (or
resolution loss). Note that a c-scaling of an actual shape is itself a coordinated
shape.

142 D. Furcy and S.M. Summers

Let X1 and X2 be two coordinated shapes. We say that X1 and X2 are
scale-equivalent if Xa

1 = Xb
2, for some a, b ∈ Z

+. We say that X1 and X2 are
translation-equivalent if they are equal up to translation. We write Xa

1
∼= Xb

2

if Xa
1 is translation-equivalent to Xb

2, for some a, b ∈ Z
+. Note that the three

previously defined relations are all equivalence relations (see the appendix of
[22]). We will use the notation X̃ to denote the equivalence class containing X

under the equivalence relation ∼=. We say that X̃ is the shape of X. While X̃ is
technically a set of coordinate shapes, we will abuse the notation

∣∣∣X̃∣∣∣ and say

that it represents the size of coordinate shape X ∈ X̃, i.e.,
∣∣X1

∣∣.
We will now define the tile complexity of a 3D shape. However, we will first

briefly define Kolmogorov complexity of a binary string x, relative to a universal
Turing machine U . We say that the Kolmogorov complexity of x relative to U is
KU (x) = min {|p| | U(p) = x}, where, for any Turing machine M , |M | denotes
the number of bits used to describe M , with respect to some fixed encoding
scheme. In other words, KU (x) is the smallest program that outputs x (see [10]
for a comprehensive discussion of Kolmogorov complexity).

Relative to a fixed universal Turing machine U , we say that the Kolmogorov
complexity of a shape X̃ is the size of the smallest program that outputs some X ∈
X̃ as a list of locations, i.e., KU

(
X̃

)
= min

{
|p|

∣∣∣ U(p) = 〈X〉 for some X ∈ X̃
}

.
Beyond this point, we will assume U is a fixed universal Turing machine and there-
fore will be omitted from our notation.

The 3D tile complexity at temperature τ (often referred to as program-size
complexity) of a shape X̃ at temperature τ is

Kτ
3DSA

(
X̃

)
= min

⎧⎨
⎩n

∣∣∣∣∣∣
T = (T, σ, τ), |T | = n and there exists
X ∈ X̃ such that T uniquely produces α
such that X × {0} ⊆ dom α ⊆ X × {0, 1}

⎫⎬
⎭ .

3 Main Theorem

The main theorem of this paper describes the relationship between the quanti-
ties K

(
X̃

)
and K1

3DSA

(
X̃

)
. This relationship is formally stated in Theorem1.

Note that the main result of [22] describes the relationship between K
(
X̃

)
and

K2
SA

(
X̃

)
, where K2

SA

(
X̃

)
(see [22]) is the tile complexity of the 2D shape X̃

at temperature 2. In this section, assume that X̃ is an arbitrary finite shape.

Theorem 1. The following hold: K
(
X̃

)
= O

(
K1

3DSA

(
X̃

)
log K1

3DSA

(
X̃

))
and K1

3DSA

(
X̃

)
log K1

3DSA

(
X̃

)
= O

(
K

(
X̃

))
.

We will prove Theorem 1 in Lemmas 1 and 2.

Optimal Self-assembly of Finite Shapes at Temperature 1 in 3D 143

Lemma 1. K
(
X̃

)
= O

(
K1

3DSA

(
X̃

)
log Kτ

3DSA

(
X̃

))
.

Proof. Soloveichik and Winfree [22] showed that K
(
X̃

)
= O

(
Kτ

SA

(
X̃

)
log Kτ

SA(
X̃

))
, which still holds when Kτ

SA is replaced with Kτ
3DSA, for any τ ∈ Z

+.

The main contribution of this paper is the following lemma, the proof of
which mimics the proof of K2

SA

(
X̃

)
log K2

SA

(
X̃

)
= O

(
K

(
X̃

))
from [22]. We

give the details of the proof here for the sake of completeness.

Lemma 2. K1
3DSA

(
X̃

)
log K1

3DSA

(
X̃

)
= O

(
K

(
X̃

))
.

Proof. Let s be a program (Turing machine) that outputs a list of points con-
tained in some coordinated shape X ∈ X̃. We develop a temperature 1 3D
construction that takes s as input and outputs a TAS TX̃ =

(
TX̃ , σ, 1

)
such that

TX̃ uniquely produces an assembly whose domain is some shape X ∈ X̃ and∣∣TX̃

∣∣ = O
(

|s|
log|s|

)
. This construction is discussed in Sect. 4.

Now suppose that s is the smallest Turing machine that outputs the list
of points in some coordinated shape X ∈ X̃. In other words, s is such that
K

(
X̃

)
= |s|. Let T ∗

X̃
=

(
T ∗

X̃
, σ, 1

)
be the TAS produced by our construction,

when given s as input. Observe that, for any TAS T = (T, σ, 1) in which the
shape X̃ uniquely self-assembles, we have K1

3DSA

(
X̃

)
≤ |T |. Then, for some

constant c ∈ Z
+, the following is true:

K1
3DSA

(
X̃

)
log K1

3DSA

(
X̃

)
≤

∣∣∣T ∗
X̃

∣∣∣ log
∣∣∣T ∗

X̃

∣∣∣ ≤ c
|s|

log |s| log
|s|

log |s|
= c

|s|
log |s| (log |s| − log log |s|) ≤ c |s| .

Thus, K1
3DSA

(
X̃

)
log K1

3DSA

(
X̃

)
= O

(
K

(
X̃

))
.

4 Main Construction

In this section, we give an overview of our main construction.

4.1 Setup

Our construction represents a Turing-universal way of guiding the self-assembly
of a scaled-up, just-barely 3D version of an arbitrary input shape X at temper-
ature 1 with optimal tile complexity. Therefore, we let U be a fixed universal
Turing machine over a binary alphabet, with a one-way infinite tape (to the
right), such that, upon termination, U contains the output – and only the out-
put – of the Turing machine being simulated on its tape, perhaps padded to the

144 D. Furcy and S.M. Summers

left and right with 0 bits (the tape alphabet symbol 0) and the tape head is
reading the last bit of its output. We also assume that, to the left of the leftmost
tape cell, there is a special left marker symbol #, which can be read by U but
can neither be overwritten nor written elsewhere on the tape. In general, if M
is a Turing machine and w is an input string such that M(w) = y, then, upon
termination, U(〈M,w〉) leaves exactly a string of the form #0∗y0∗ on its tape
with its tape head reading the last bit of y (# is eventually converted to a 0
bit). Our construction is programmed by specifying the program to be executed
by U .

(a) The
input
shape
X.

(b) X2 (c) Put a
wicket in
each 2 × 2
block.

(d) Connect
the wickets
to get a
spanning tree
of X2.

(e) Do a modified
depth-first search
to get a Hamil-
tonian cycle of
X4 that contains
three consecutive,
collinear points.

Fig. 1. An overview of the algorithm for plotting out a Hamiltonian cycle of an input
shape (scaled up by a factor of 4), such that the cycle has three consecutive, collinear
points. Although a Hamiltonian cycle is hard to compute, in general, it is clear that,
for an arbitrary finite shape X, a Hamiltonian cycle, as described above, of X4, can be
computed in polynomial time.

The input to U is a program p, appropriately encoded as 〈p〉, using some
fixed encoding scheme. The output of p is used to guide the self-assembly of our
construction. We assume p is actually the concatenation of two programs s and
phc, where s, the input to our construction, is a program that outputs the list of
points in X and phc is a fixed program (independent of X) that uses the output
of s as its input and builds a special Hamiltonian cycle H of X4, along which
there are three consecutive, collinear points. The seed block, which is described in
the next subsection, is defined as the middle point of an arbitrarily chosen triplet
of consecutive, collinear points of H (by the way we construct H, there is always
at least one such triplet of points). We further assume that p outputs H – and
only H – as a sequence of pairs of bits, such that, 00, 10, 01 and 11 correspond
to “no-move”, “left”, “right” and “straight”, respectively and possibly padded
to the left with at least two no-moves and to the right with an even number of
no-moves (see Fig. 1 for an overview of how H is constructed). Thus, p satisfies
|p| = |s| + |phc|.

Optimal Self-assembly of Finite Shapes at Temperature 1 in 3D 145

4.2 Seed Block

The (upper portion of what will eventually become the) seed block of our con-
struction grows from a single seed tile and carries out the following three logical
phases: decoding, simulation and output. These three phases are depicted in
Fig. 2 with vertical, zig-zag and diagonal patterns, respectively.

Fig. 2. Self-assembly of the upper portion of the seed block consists of three logical
phases. In the first phase (the region filled with vertical lines), the bits of p are decoded
using the 3D, temperature 1 optimal encoding scheme of Furcy et al. [9] (the encoded
bits of p are depicted as the shorter binary string). The decoded bits of p (the longer
binary string) are input to a fixed universal Turing machine U . Then, in the second
phase, the simulation of p on U is carried out (in the region with the zig-zag pattern).
We require that U(〈p〉) evaluates precisely to the sequence of moves in the Hamiltonian
cycle of X4, padded to the left and right with an even number of 0 bits (the boxes
that are not encircled in this figure). In other words, we require that U(〈p〉) evaluates
to a string of the form (00)∗(00|10|01|11)∗(00)∗, with the tape head of U reading the
second bit in the last move of the Hamiltonian cycle. Finally, in the third phase (in the
region with the diagonal line pattern), the moves in the Hamiltonian cycle are shifted
to the right. Self-assembly of the first growth block begins from the upward-pointing
arrow. Note that the moves in the Hamiltonian cycle are listed in the grey boxes and
we use the characters ‘N’, ‘L’, ‘R’ and ‘S’ to represent “no-move”, “left”, “right” and
“straight”, respectively.

Decoding. The first phase is the decoding phase. In the decoding phase, the bits
of 〈p〉 are decoded from a O(log |〈p〉|)-bits-per-tile representation to a 1-bit-per-
tile representation (actually, we end up with a 1-bit-per-gadget representation,

146 D. Furcy and S.M. Summers

which is sufficient to maintain the optimality of our construction). To accomplish
this, we use the 3D, temperature 1 optimal encoding scheme of Furcy et al. [9].
When the decoding phase completes, the decoded bits of 〈p〉 are advertised in a
one-bit-per-gadget representation along the top of the optimal encoding region
(the rectangle with the vertical lines in Fig. 2).

Simulation. Once the bits of 〈p〉 are decoded, the simulation phase begins. In
this phase, p is simulated on U using a specialized temperature 1, just-barely
3D Turing machine simulation (the region with the zig-zag pattern in Fig. 2).
Our specialized Turing machine simulation assumes an input Turing machine
M with (1) a binary alphabet, (2) a one-way infinite tape (to the right), the
leftmost tape cell of which contains a special left marker symbol #, which can
be read by M but can neither be overwritten nor written elsewhere on the tape.
We simulate M in a zig-zag fashion, similar to the temperature 1, just-barely
3D Turing machine simulation by Cook et al. [3]. However, unlike that of Cook
et al., our simulation represents the contents of each tape cell of M using a
six-tile-wide gadget. This gives a more compact geometric representation of the
output of M and, as a result, simplifies the construction of the growth blocks
(see Sect. 4.3).

By the definition of U and p and because of the compact geometry of our
simulation of p on U , the output of the simulation phase, i.e., U(〈p〉), is an even
number of geometrically-encoded bits (each bit is represented by a six-tile-wide
bit-bump gadget), possibly padded to the left and right with an even number
of 0 bits, such that each pair of bits corresponds to a move in the Hamiltonian
cycle H (not counting occurrences of the pair 00, which represents a no-move).

Output. In order to satisfy certain geometric constraints, which are required by
the growth blocks, after the simulation phase of p on U is complete, the (final)
output phase begins. In the output phase, we use a special, constant-size tile
set to shift the geometrically-encoded bits of H to the right, so that the bits of
H are in a right-justified position along the top of the seed block (the region
with diagonal lines in Fig. 2). For each right-shift, we add a pair of 0 bits to the
left, which ensures that the upper portion of the seed block will be wider than
it is taller. After the output phase of the seed block, self-assembly of the first
growth block, which is always to the north in our construction, as guaranteed
by p, begins from the left side of the top of the upper portion of the seed block
(see the upward-pointing arrow in Fig. 2).

Scale factor. Let Wdecode and Hdecode be the maximum horizontal and vertical
extent, respectively, of the seed block after the decoding phase (the rectangle
with vertical lines pattern in Fig. 2) completes. From [9], we know that Wdecode >
Hdecode. Next, in the simulation phase, the tape grows to the right by two tape
cells for each transition. Each transition is comprised of two rows of gadgets,
which are wider than they are tall (six tiles versus four tiles). Also, we may
assume that, during the simulation phase, p is programmed to initially scan the
input from left-to-right and then from right-to-left before beginning. Let Wsim

and Hsim be the maximum horizontal and vertical extent, respectively, of the

Optimal Self-assembly of Finite Shapes at Temperature 1 in 3D 147

seed block after the simulation phase (the zig-zag pattern in Fig. 2) completes.
Then we have Wsim > Hsim. Finally, in the output phase, as the output bits
of the simulation phase are shifted to the right, two tape cells are added to the
left for each shift. Each shift is comprised of two rows of gadgets, which, like the
simulation gadgets, are wider than they are tall (six versus four). Therefore, let
Wsb and Hsb be the maximum horizontal and vertical extent, respectively, of the
seed block after the simulation phase (the diagonal pattern in Fig. 2) completes.
Then we have Wsb > Hsb. From this we may conclude that the seed block, once
completely filled in by the last growth block (see Fig. 5a) will be a square. The
scale factor of our construction is Wsb.

4.3 Growth Blocks

Each growth block has a single input side, which reads the remaining moves
in the Hamiltonian cycle and a single output side, which advertises the same
remaining path but with its first move erased. This first move determines the
position of the output side in relation to the input side. In this section, we assume
that the input side of the growth block is its south side (the construction simply
needs to be rotated for the three other possible positions of the input side). So,
if the first (erased) move in the remaining path is a right turn, then the output
side of the growth block is its east side. We describe the construction for this
case here (see Fig. 4). The overview figure for the growth blocks uses gadgets
whose structure is explained in Fig. 3.

The growth block starts assembling in its southwest corner and progresses
in a zig-zag pattern. The first row of gadgets, moving from left to right, starts
by copying all of the leading no-moves, of which there are exactly two in Fig. 4
but generally many more. Once the first actual move is found, a set of gadgets
specific to its type is activated. In the case of a right turn, all of the moves
are shifted by one position to the right (and the first move is replaced by a no-
move). The last move in the remaining path is advertised at the bottom of the
output (or east) side of the block. Then the construction switches direction and
moves from right to left, simply copying the shifted path, which completes the
first iteration. In each subsequent iteration, the left-to-right pass shifts the whole

Fig. 3. Key to the representation of our gadgets

148 D. Furcy and S.M. Summers

Fig. 4. Overall construction of a growth block whose input path starts with a right turn

path to the right by one position and advertises one more move on the output (or
east) side. In addition to the right shift, each zig-zag iteration moves a diagonal
marker by one position to the right, starting from the southwest corner. Once
this diagonal marker reaches the east side of the block, the top row, moving
from right to left, can complete the block. Note that in this case, the remaining
path is not advertised on the west nor the north sides. If the first move in the
remaining path were a straight move, the remaining moves would not be shifted
but simply copied at each iteration and eventually advertised on the north side
of the block. If the first move in the remaining path were a left turn, then the
remaining moves would be shifted to the left and advertised on the west side
instead. In other words, for a straight move, Fig. 4 would have smooth east and
west sides, with bit-bumps along its north side and for a left move, Fig. 4 would
have smooth east and north sides, with bit-bumps along its west side.

Optimal Self-assembly of Finite Shapes at Temperature 1 in 3D 149

Fig. 5. Putting it all together. In this figure, we depict the moves in the Hamiltonian
cycle of X4 as ‘-’, ‘L’, ‘R’ and ‘S’ for “no-move”, “left”, “right” and “straight”, respec-
tively. In our construction, these moves are represented using the pairs of bits 00, 10,
01 and 11, for “no-move”, “left”, “right” and “straight”, respectively.

150 D. Furcy and S.M. Summers

4.4 Putting It All Together

After the final growth block completes, the remaining portion of the seed block,
i.e., its lower portion, is assembled. Note that, up until this point, the seed block
is not a c × c square. However, the horizontal extent of the upper portion of
the seed block defines the scale factor c of our construction. This scale factor is
dominated by running time of p on U , which is the sum of the running times
of s and phc. The final growth block fills in the remaining portion of the seed
block by initiating the assembly of a sequence of c single-tile-wide, vertically
and uncontrollably assembling paths that are inhibited only by existing portions
of the seed block (see the explosion icons in Fig. 5a). Thus, the final, uniquely-
produced terminal assembly of our construction is an assembly made up of c× c
blocks of tiles, where each block is mapped to some point in X. Figure 5 gives a
high-level overview of how all of the major components of our construction work
together.

5 Conclusion

In this paper, we develop a Turing-universal way of guiding the self-assembly of
a scaled-up, just-barely 3D version of an arbitrary input shape X at tempera-
ture 1 with optimal tile complexity. This result is essentially a just-barely 3D
temperature 1 simulation of a similar 2D temperature 2 result by Soloveichik
and Winfree [22]. One possibility for future research is to resolve the tile com-
plexity of an arbitrary shape X̃ at temperature 1 in 2D, i.e., what is the quantity
K1

SA

(
X̃

)
?

Acknowledgement. We thank Matthew Patitz for offering helpful suggestions, which
improved the presentation of our main construction.

References

1. Adleman, L.M., Cheng, Q., Goel, A., Huang, M.-D.A.: Running time and program
size for self-assembled squares, STOC, pp. 740–748 (2001)

2. Barish, R.D., Schulman, R., Rothemund, P.W., Winfree, E.: Aninformation-
bearing seed for nucleating algorithmic self-assembly. Proc. Natl. Acad. Sci.
106(15), 6054–6059 (2009)

3. Cook, M., Fu, Y., Schweller, R.: Temperature 1 self-assembly: deterministic assem-
bly in 3D and probabilistic assembly in 2D. In: Proceedings of the 22nd Annual
ACM-SIAM Symposium on Discrete Algorithms (2011)

4. Doty, D., Lutz, J.H., Patitz, M.J., Schweller, R.T., Summers, S.M., Woods, D.: The
tile assembly model is intrinsically universal. In: Proceedings of the 53rd Annual
IEEE Symposium on Foundations of Computer Science, FOCS 2012, pp. 302–310
(2012)

5. Doty, D., Lutz, J.H., Patitz, M.J., Summers, S.M., Woods, D.: Intrinsic univer-
sality in self-assembly. In: Proceedings of the 27th International Symposium on
Theoretical Aspects of Computer Science, pp. 275–286 (2009)

Optimal Self-assembly of Finite Shapes at Temperature 1 in 3D 151

6. Doty, D., Patitz, M.J., Summers, S.M.: Limitations of self-assembly at temperature
1. Theor. Comput. Sci. 412, 145–158 (2011)

7. Evans, C.: Crystals that count! physical principles and experimental investigations
of DNA tile self-assembly, Ph.D. thesis, California Institute of Technology (2014)

8. Fujibayashi, K., Hariadi, R., Park, S.H., Winfree, E., Murata, S.: Toward reliable
algorithmic self-assembly of DNA tiles: a fixed-width cellular automaton pattern.
Nano Lett. 8(7), 1791–1797 (2007)

9. Furcy, D., Micka, S., Summers, S.M.: Optimal program-size complexity for self-
assembly at temperature 1 in 3D. In: Phillips, A., Yin, P. (eds.) DNA 2015. LNCS,
vol. 9211, pp. 71–86. Springer, Heidelberg (2015)

10. Li, M., Vitányi, P.: An Introduction to Kolmogorov Complexity and Its Applica-
tions, 3rd edn. Springer, New York (2008)

11. Lund, K., Manzo, A.T., Dabby, N., Micholotti, N., Johnson-Buck, A., Nangreave,
J., Taylor, S., Pei, R., Stojanovic, M.N., Walter, N.G., Winfree, E., Yan, H.: Mole-
cular robots guided by prescriptive landscapes. Nature 465, 206–210 (2010)

12. Manuch, J., Stacho, L., Stoll, C.: Two lower bounds for self-assemblies at temper-
ature 1. J. Comput. Biol. 17(6), 841–852 (2010)

13. Mao, C., LaBean, T.H., Relf, J.H., Seeman, N.C.: Logical computation using algo-
rithmic self-assembly of DNA triple-crossover molecules. Nature 407(6803), 493–
496 (2000)

14. Meunier, P.-E., Patitz, M.J., Summers, S.M., Theyssier, G., Winslow, A., Woods,
D.: Intrinsic universality in tile self-assembly requires cooperation. In: Proceed-
ings of the 25th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pp. 752–771 (2014)

15. Qian, L., Winfree, E.: Scaling up digital circuit computation with DNA strand
displacement cascades. Science 332(6034), 1196 (2011)

16. Qian, L., Winfree, E., Bruck, J.: Neural network computation with DNA strand
displacement cascades. Nature 475(7356), 368–372 (2011)

17. Rothemund, P.W.K., Winfree, E.: The program-size complexity of self-assembled
squares (extended abstract). In: STOC 2000: Proceedings of the Thirty-Second
Annual ACM Symposium on Theory of Computing, pp. 459–468 (2000)

18. Rothemund, P.W.K.: Folding DNA to create nanoscale shapes and patterns. Nature
440(7082), 297–302 (2006)

19. Rothemund, P.W.K., Papadakis, N., Winfree, E.: Algorithmic self-assembly of
DNA Sierpinski triangles. PLoS Biol. 2(12), 2041–2053 (2004)

20. Schulman, R., Winfree, E.: Synthesis of crystals with a programmable kinetic bar-
rier to nucleation. Proc. Natl. Acad. Sci. 104(39), 15236–15241 (2007)

21. Seeman, N.C.: Nucleic-acid junctions and lattices. J. Theor. Biol. 99, 237–247
(1982)

22. Soloveichik, D., Winfree, E.: Complexity of self-assembled shapes. SIAM J. Com-
put. 36(6), 1544–1569 (2007)

23. Wang, H.: Proving theorems by pattern recognition - II. Bell Syst. Tech. J. XL(1),
1–41 (1961)

24. Winfree, E.: Algorithmic self-assembly of DNA, Ph.D. thesis, California Institute
of Technology, June 1998

25. Winfree, E., Liu, F., Wenzler, L.A., Seeman, N.C.: Design and self-assembly of
two-dimensional DNA crystals. Nature 394(6693), 539–44 (1998)

26. Yurke, B., Turberfield, A.J., Mills, A.P., Simmel, F.C., Neumann, J.L.: A DNA-
fuelled molecular machine made of DNA. Nature 406(6796), 605–608 (2000)

Line Segment Covering of Cells in Arrangements

Matias Korman1, Sheung-Hung Poon2, and Marcel Roeloffzen3,4(B)

1 Tohoku University, Sendai, Japan
mati@dais.is.tohoku.ac.jp

2 School of Computing and Informatics, Institut Teknologi Brunei,
Brunei, Brunei Darussalam

sheung.hung.poon@gmail.com
3 National Institute of Informatics (NII), Tokyo, Japan

marcel@nii.ac.jp
4 JST, ERATO, Kawarabayashi Large Graph Project, Tokyo, Japan

Abstract. Given a collection L of line segments, we consider its arrange-
ment and study the problem of covering all cells with line segments
of L. That is, we want to find a minimum-size set L′ of line segments
such that every cell in the arrangement has a line from L′ defining its
boundary. We show that the problem is NP-hard, even when all segments
are axis-aligned. In fact, the problem is still NP-hard when we only need
to cover rectangular cells of the arrangement. For the latter problem
we also show that it is fixed parameter tractable with respect to the
size of the optimal solution. Finally we provide a linear time algorithm
for the case where cells of the arrangement are created by recursively
subdividing a rectangle using horizontal and vertical cutting segments.

1 Introduction

Set cover [3] is one of the most fundamental problems of computer science.
This problem is usually formulated in terms of hypergraphs: the input of the
problem is a hypergraph H = (X,F) where F ⊆ 2X is a collection of sub-
sets of X, and we aim for a subset F ′ ⊆ F of smallest cardinality that covers
X (i.e., ∪F∈F ′F = X). This problem is known to be NP-hard and even hard to
approximate [3,6,8].

Given its importance, it is not surprising that this problem has been studied
extensively. In most cases, the set F is given implicitly (this is specially true
when considering geometric variants of the problem). For example, in the well-
known k-center problem [5] we want to cover a set S of n points with unit disks.
In the hypergraph definition, this is equivalent to X = S and F is the collection
of subsets of S that can be covered with a single unit disk.

Sometimes the relationship between X and F is much more involved. For
example, in the discrete center problem, we only consider the disks whose center
is a point of S. Akin to the discrete variant of the k-center problem, in this paper

M. Korman—Partially supported by the ELC project (MEXT KAKENHI No.
24106008).

c© Springer International Publishing Switzerland 2015
Z. Lu et al. (Eds.): COCOA 2015, LNCS 9486, pp. 152–162, 2015.
DOI: 10.1007/978-3-319-26626-8 12

Line Segment Covering of Cells in Arrangements 153

we study a geometric setting where the elements X and sets F are defined by
the same geometric primitives. Specifically, we study the problem of covering
the cells of an arrangement of line segments L with segments of L. Given a
set L of line segments in the plane a cell in the arrangement of L is defined
as a maximally connected region that is not intersected by any segments of L.
Essentially the cells are the ‘empty’—not intersected by segments of L—regions
in the arrangement defined by L. Now let C denote the set of all cells in the
arrangement of L. We say that a cell c ∈ C is covered by a line segment � ∈ L if
and only if � is part of the boundary of c. Similarly c is covered by a set L′ of
line segments if and only if there is a segment � ∈ L′ that covers c. The goal is
then to find a minimum-size set L′ ⊂ L that covers all cells of C. We call this
the line-segment covering problem.

The problem can also be viewed as a guarding problem. In the traditional art
gallery problem, the goal is to place guards so that the guards together see the
whole gallery (often a simple polygon). Many variants of this have been studied.
Bose et al. [2] study guarding and coloring problems between lines. They provide
results for several types of guards and objects to guard, such as guarding the cells
of the arrangement with the lines, or guarding the lines by selecting cells. Their
results however do not extend to line segments as they use properties of the lines
that do not hold for line segments. To the best of our knowledge covering cells in
an arrangement of line segments with the segments has not been studied before.

We study three different variants of this problem. First, in Sect. 2 we show
that the line-segment covering problem is NP-hard, even when all segments of L
are axis-aligned. In Sect. 3 we consider a slightly different variant, where we are
required to cover only rectangular cells, those defined by four line segments. For
this variant we show that the NP-hardness reduction still works. However, we
show that this variant is fixed parameter tractable with respect to the size of the
optimal solution. In Sect. 4, inspired by subdivisions induced by KD-trees, we
study a variant where the line segments define a type of rectangular subdivision.
That is, an axis aligned rectangle that is recursively subdivided with horizontal
or vertical line segments, similar to the subdivision defined by a KD-tree [1]. For
this case we show that an optimal cover can be computed in linear time, assuming
that the partitioning is given as a tree-structure defined by the splitting lines.

2 NP-hardness for Rectilinear Line Segments

In this section we show that the line-segment covering problem is NP-hard, even
if the input consists of only horizontal and vertical line segments. We reduce
the problem from planar 3SAT [7]. An input instance for the 3SAT problem
is a set {x1, x2, . . . , xn} of n variables and a Boolean expression in conjunctive
normal form. That is, the expression is a conjunction of clauses Φ = c1 ∧ . . .∧ cm
such that each clause ci is a disjunction of three literals (a variable or negation of
a variable). The problem is then to decide if there is a truth assignment for the
variables so that Φ is true. In planar 3SAT we impose further restrictions by
looking at the representation of Φ as a bipartite graph with variables and clauses

154 M. Korman et al.

x1 x2 x3 x4 x5

(x1 ∧ x2 ∧ x3)

(x1 ∧ x3 ∧ x5)

(x2 ∧ x3 ∧ x4)

(x1 ∧ x2 ∧ x5)

(x2 ∧ x4 ∧ x5)

(x3 ∧ x4 ∧ x5)

Fig. 1. planar 3SAT problem instance along with a planar embedding.

2m + 4
lines2m lines 2m lines

} }

}}
}

}

Fig. 2. Gadget for a variable with a true (left) and false (right) assignment. Red (thick)
edges show the two possible covers with m+ 1 segments (Color figure online).

as vertices. A variable-node v is connected to a clause-node c if and only if v
occurs in c. In planar 3SAT we assume that this graph is planar. Specifically
we assume that a planar embedding is given that places all variable-nodes on
a horizontal line and all clause-nodes above or below this line (see Fig. 1). We
also assume that no variable appears more than once in any clause (that is, the
above described bipartite graph is a proper graph and not a multigraph).

It is well-known that the planar 3SAT problem is NP-hard [7]. Also note
that it is easy to see that the line-segment covering problem is in NP. Indeed,
given a possible covering, we can construct the arrangement of line segments and
verify in polynomial time that indeed all cells are covered. In the remainder of
this section we provide a polynomial time reduction and prove its correctness.

2.1 Reduction

For each variable in Φ we create a gadget consisting of 4m+8 horizontal segments
and 4m + 2 vertical segments. The leftmost and rightmost vertical line stab all

Line Segment Covering of Cells in Arrangements 155

Fig. 3. A clause gadget used in showing NP-hardness in Sect. 2, parts are variable
gadgets that connect to the edges of a clause gadget (marked with thicker line
segments).

horizontal lines of the gadget, whereas 2m of the other lines stab the top 2m+4
horizontal lines and 2m stab the lower 2m + 4 horizontal lines as illustrated in
Fig. 2. As we describe later, some of the vertical line segments may be further
extended (above or below) to connect to the clause gadgets, but the horizontal
segments will not cross any segments of other gadgets.

Intuitively speaking, we will show that any covering of the variable gad-
gets must choose one every other vertical segment, including either the right or
leftmost segment. The choice of using either the rightmost or leftmost vertical
segment is equivalent to assigning the variable to be true or false. The clause
gadget will create additional cells that will be covered for free (without selecting
additional line segments) provided that at least one variable satisfies the clause.

Let s
(i)
1 , . . . , s

(i)
2m be the vertical segments created in the gadget for variable

xi (numbered from left to right). We would like to sort the clauses c1, . . . , cj
in which xi occurs in the order in which they appear on the embedding of
the planar 3SAT instance. However, this is not well-defined (since it is not
always clear when a segment goes before another), so we proceed as follows: let
c1, . . . , cj′ be the clauses that contain variable xi and are embedded above the
line containing all variable nodes, sorted in clockwise order of their connections
to xi. Similarly, let cj′+1, . . . , cj be the clauses that are embedded below the
line (this time in counter-clockwise order). We define the ordering of the clauses
around xi as the concatenation of both orderings. Since we have 2m vertical
line segments for each clause and m clauses we ensure that any vertical segment
of a variable gadget is extended only towards a single clause, and any clause is
associated to exactly three segments.

We now detail the gadget associated to clause c = �i ∧ �j ∧ �k (for i < j < k),
where �i is a literal of variable xi (similarly, �j and �k are literals of variables
xj and xk, respectively). First, we extend the three segments associated to clause
c (above or below depending on where c is placed in the embedding). We extend
the segments associated to variables xi and xk slightly further than the segment
of xj . We complete our transformation by adding two horizontal segments that
create a rectangle with the three extended segments, see Fig. 3.

156 M. Korman et al.

This concludes the construction of a line-segment-covering instance L from a
planar 3SAT input Φ. Next we show that there is a satisfying assignment for
Φ if and only if there is a subset L′ of L of size at most n(2m + 1) that covers
all cells in the arrangement.

2.2 Correctness

Lemma 1. A planar 3SAT expression Φ is satisfiable if and only if there is
a cover of size at most n(2m + 1) for its corresponding line-segment-covering
instance L.

Proof. First we prove that given a satisfying assignment for Φ we can cover L
with n(2m + 1) segments. If a variable is true, then we select the rightmost
vertical segment, and for each set of 2m segments that only intersect the top or
bottom we select the odd ones counting from the leftmost segment starting at
one, see also Fig. 2. If the variable is false we select the leftmost longer segment
and the even ones from the sets of shorter segments.

Next we show that all cells are covered. We consider three types of cells: cells
in the interior of the grids created of the variable gadgets are called variable cells,
the single rectangular cell associated to a clause gadget is called clause cell; any
other cell (included the unbounded one) that is created with our construction is
simply called an other cell.

Since we have selected one every other segment, clearly all variable cells are
covered. The fact that the variable assignment satisfies all clauses implies that at
least one of the three vertical segments defining a clause cell has been selected, so
the clause cell is covered. Hence, all clause cells are also covered. Finally, for the
remaining cells it suffices to see that each such cell always has two consecutive
vertical segments of a variable gadget in its boundary. Indeed, Such cells are only
created when connecting clauses and variables and in particular, their left and
right boundaries are created by those extensions. Thus, when walking along the
boundary of any such cell, we will find the next vertical segment of the variable
gadget (or the predecessor in case the segment was the last one). One of the
segments must have been selected, so also these cells are covered.

The reverse statement is similar. Assume that we have a cover L′ for L of size
n(2m+1). First observe that each variable gadget needs at least 2m+1 selected
line segments to cover its interior cells. To achieve this we must select either the
left or rightmost segment, after which there is a unique cover for the remaining
cells that uses only 2m segments. Covering the cells within the variable gadgets
with fewer than 2m + 1 segments is not possible, so any cover consist of exactly
2m + 1 segments per variable gadget. Furthermore, none of these segments can
be reused between different variable gadgets. Thus, we conclude that each clause
gadget must be covered by the lines selected from the variable gadgets. We create
a variable assignment for each variable as before, depending if the leftmost or
rightmost segments has been selected.

Since L′ covers all cells, it must also cover the clause cells, which implies that
at least one of the three vertical segments has been selected. Equivalently, this

Line Segment Covering of Cells in Arrangements 157

implies that in each clause the choice of assignment of the variables makes at
least one of its literals true and the formula Φ is satisfiable.

Since the reduction is easily computed in polynomial time we conclude the
following result.

Theorem 1. Given a set L of axis-aligned line segments, it is NP-hard to find
a minimum-size set L′ ⊆ L so that for each cell of the arrangement at least one
of its defining segments is in L′.

3 Covering Only Rectangular Cells

From the above reduction we can see that the main difficulty of the problem
lies in covering the rectangular cells. Thus, in this section we turn our attention
to a variant of the problem in which segments are axis-aligned and we are not
required to cover all cells, but only those that are rectangles. That is, cells whose
boundary is formed by exactly four line segments. First we briefly argue that
this variant is also NP-hard by adapting the NP-hardness proof in the previous
section. Then we show that the problem is fixed parameter tractable (FPT) with
respect to k, the number of segments in the optimal solution.

3.1 NP-hardness

The hardness almost follows from the construction of Sect. 2. Indeed, clause cells
are the only critical part of the reduction that need to be modified. Instead, we
create the clause gadget with 6 segments as shown in Fig. 4. This modified gadget
contains three rectangular cells. Note that incoming segments from variables can
cover at most two of these cells, but at least one segment must be added so as to
cover the intermediate rectangular cell. This additional edge can cover two cells,
either the left and middle cells, or the middle and right cells. Thus, it follows
that we can find a covering of all rectangular cells of this modified instance with
n(2m + 1) + m segments if and only if the associated planar 3SAT instance is
satisfiable, and thus this variation is also NP-hard.

Theorem 2. Given a set L of axis-aligned line segments, it is NP-hard to find
a minimum-size set L′ ⊆ L so that for each rectangular cell of the arrangement
at least one of its defining segments is in L′.

3.2 FPT on the Size of the Optimal Solution

Next we show that the problem is fixed parameter tractable (FPT) with respect
to k, the size of the optimal solution. Our aim is to compute a kernel of small
size (or conclude that there is no solution of size at most k).

Since we want to cover only rectangular cells we can represent each cell by an
associated subset (or subset for short) C = {�1, �2, �3, �4} with the four bounding
line segments as its elements. This reduces the line segment covering problem to

158 M. Korman et al.

Fig. 4. Modified clause gadget. The three dashed vertical segments connect to the
corresponding variable gadgets. This new gadget creates three rectangular cells that
can be guarded with one additional segment if and only if the variable assignment
satisfies the clause.

a hitting set problem for a collection C of subsets of size four. Our approach is to
reduce the number of subsets to consider; first to a set C1 where for any two line
segments there are at most 2k subsets that contain both these line segments;
then to a set C2 where for any single line segment there are at most 2k2 subsets
containing it. First we prove the following lemma.

Lemma 2. Let �, �′ and �′′ be any three line segments in L. There are at most
two subsets in C containing all three line segments, �, �′ and �′′.

Proof. Since the arrangement is rectilinear, two lines, say � and �′ are parallel
and the other is orthogonal to these. This means that any cell having all three
line segments �, �′ and �′′ on its boundary must span the strip between � and �′.
However at most two such cells can also be adjacent to the third line segments �′′.

We start reducing our problem instance by looking at pairs of line segments.
Specifically we count for every pair of line segments how many subsets contain
both. Then for any pair �, �′ shared in more than 2k subsets we add the subset
{�, �′} and remove all subsets containing both � and �′. Let C1 denote this reduced
subset.

Lemma 3. A set L′ ⊂ L of line segments, with |L′| ≤ k is a minimum-size
cover of C1 if and only if it is a minimum-size cover of C.
Proof. Clearly the claim holds if C = C1. Thus, from now on we assume that
C+ = C1\C and C− = C\C1 are two nonempty sets that contain all elements that
were added and removed from C, respectively.

Now assume that L′ with |L′| ≤ k is a minimum size cover for C1. Observe
that all subsets of C− must also be covered, since for every subset C ∈ C− there
is a subset {�, �′} such that both � and �′ occur in C (and {�, �′} ∈ C+). It follows
that L′ is a also a cover for C. To show that L′ is of minimum size assume for a
contradiction that a smaller set L′′ is also a cover for C. Clearly, L′′ covers C∩C1.
Now take any set {�, �′} in C+, if neither � nor �′ is part of L′′, then we claim that
|L′′| > k. Indeed, we introduced {�, �′} into C1 only when more than 2k subsets in

Line Segment Covering of Cells in Arrangements 159

C contain both � and �′. If neither � nor �′ are part of L′′, then Lemma 2 implies
that every other line can cover at most two of these subsets. In particular, the
cardinality of L′′ will be larger than k, contradicting with the fact that L′′ is
smaller than L′. A similar argumentation shows that any minimum-size cover of
C is also a minimum-size cover of C1, which concludes the proof.

Now we further reduce our problem instance to a set C2 as follows. We count
for each line how many subsets of C1 contain it. Then for each line � that has
more than 2k2 subsets containing it we replace all these subsets by subset {�}.

Lemma 4. A set L′, with |L′| ≤ k is a minimum-size cover for C1 if and only
if it is a minimum-size cover of C2.

Proof. As before, it suffices to consider the case in which C1 	= C2. Let C+
1 = C2\C1

and C−
1 = C1\C2 denote the sets that were added and removed from C1 to create

C2. Since all sets in C−
1 contain a line of one of the singleton sets of C+

1 , a set L′,
with |L′| ≤ k that is a minimum size cover of C2 is also a cover of C1. To show
that L′ is also a minimum-size cover for C1, assume for a contradiction that there
is a smaller cover L′′ for C1. The lines of L′′ also cover C2\C+

1 . Therefore, if L′′

is not a cover of C2, then there must be a subset {�} ∈ C+
1 that is not covered

by L′′. Recall that {�} was added to C2 because there were more than 2k2 sets
in C1 that contain �. By construction of C1, no line �′ 	= � can cover more than
2k of these sets (otherwise, the pair {�, �′} would have been added to C1). Thus,
we conclude that L′′ has more than k segments, a contradiction.

In a similar way we can prove that a subset L′, with |L′| ≤ k, that is a
minimum-size cover for C1 is also a minimum size cover for C2, thus, concluding
the proof.

Lemma 5. If |C2| > 2k3, then there is no cover of size at most k for C.
Proof. Proof of this claim follows from Lemmas 3 and 4 and the fact that each
segment can only cover at most 2k2 sets of C2.

Now we look at the computational aspect of generating C2. Both reduction
steps from C to C1 and from C1 to C2 require counting subsets. Here we use the
fact that the subsets are of size at most 4 to show that this can be done in linear
time using hash tables. Note that linear time here is in the size of C, the size
of the arrangement, which may be quadratic with respect to the number of line
segments.

Lemma 6. The set C2 can be constructed in time O(n log n + C), where n is
the number of segments in L and C is the number of cells in the arrangement
induced by L.

Proof. To reduce C to C1 we count for every pair of line segments �, �′ the number
of subsets of C that contain both. We do this by making a single pass over all
subsets of C and maintaining for each pair �, �′ how many subsets contain them
thus far. To avoid having to initialize counts for all pairs �, �′, which may be
more than linear in the size of C we use a hash table and create a new count
whenever we encounter a new pair of line segments. Each subset contains at

160 M. Korman et al.

most 4 segments and at most 6 pairs of segments, so we can process it in O(1)
time. After counting we can go through all pairs of line segments with non-zero
count and for each pair �, �′ that is contained in more than 2k subsets we remove
the sets (which is easily done by storing which sets contain the pair) and add a
new subset {�, �′}. To compute C2 from C1 we can use a similar construction.

Theorem 3. For the problem of finding a minimum-size cover for all rectangu-
lar cells in an arrangement of n axis-parallel line segments L we can either find
a kernel of size O(k3) or conclude that no solution of at most size k is possible.
Moreover, the algorithm runs in O(n log n + C) time, where C is the number of
cells in the arrangement induced by L.

Since we now have a kernel of size O(k3) it follows that the problem is fixed
parameter tractable [4].

Corollary 1. Given a set L of line segments the problem of finding a minimum
size set L′ ⊆ L that covers the rectangular cells of the arrangement of L is fixed
parameter tractable with respect to the size k of the optimal solution.

4 Rectangular Subdivisions

Although the problem of finding a minimum set of covering segments is NP-hard,
there are special cases where the problem can be solved in polynomial time. One
such case is that the input line segments form a special type of rectangular
subdivision. The rectangular subdivisions we consider are those defined by a
KD-tree [1]. That is, a recursive subdivision of a rectangle using horizontal or
vertical splitting segments (see Fig. 5). Note that the segments that have only
an endpoint on the boundary of a cell are not considered part of the boundary
of that cell. From now on we refer to such a subdivision simply as a rectangular
subdivision.

A rectangular subdivision provides a clear tree-structure which we can use
to compute an optimal covering in a bottom up fashion. Each node in the tree
is associated to some rectangle. For a leaf-node this rectangle is a cell of the
arrangement, whereas for an interior node its associated rectangle r is formed
by the union of the rectangles associated to its children. We also associate an
interior node of the tree with a horizontal or vertical segment that splits its
associated rectangle into two rectangles associated to its children.

Although the above FPT approach works we show there is a much faster exact
algorithm for rectangular subdivision. Without loss of generality we assume that
the subdivision is given as a binary tree (the KD-tree structure)1. We show that
an optimal covering can then be computed in linear time. Note that in this
definition the outer face is covered if and only if at least one of the edges of the
bounding rectangle is in the cover, and any other cell is covered if one of the
segments defining its boundary is chosen as a covering segment.
1 If the structure is not given as a binary tree, but a more general subdivision structure
such as a double-connected edge list, we can construct the tree in linear time.

Line Segment Covering of Cells in Arrangements 161

r1

r1

r2

r2

r3

r3

r4

r4

r5 r6

r7 r8 r9 r10

r11

r12

r13

r14 r15

r5 r6

r7 r8
r9 r10

r11

r12 r13

r14 r15

a) b)

Fig. 5. (a) A rectilinear binary space partition within a rectangle. (b) A possible tree
representing the partition.

Theorem 4. Given the tree structure of a rectangular subdivision, where each
node stores the rectangle it represents and its splitting segment, we can compute
in linear time a segment-cover of the cells with a minimum size.

Proof. Starting at the leaves, we compute an optimal covering in a bottom up
fashion. For each node v of the tree we compute the solution to sixteen different
subproblems and store these solutions in the corresponding nodes. Let R be the
rectangle associated to a given node, and let {s1, . . . , s4} be the four segments
that define its boundary. For any subset S′ ⊆ {s1, . . . , s4}, we consider the
subproblem of finding the smallest covering of all the cells within R that contains
the segments of S′. For each such subproblem its cardinality as well as how
it is constructed from solutions of its children (this second part is needed to
reconstruct the optimal solution).

Clearly, if v is a leaf the optimal cover is simply S′ (unless S′ = ∅ in which
case there is no solution). For an interior node we proceed as follows: let v be
an interior node of the tree and R the rectangle stored at v. Without loss of
generality assume that R is split by a vertical line �. The children of v are vleft
and vright with corresponding rectangles Rleft and Rright. We must compute a
minimum-size cover for each possible choice of the top, left, bottom and right
edges of R. Note that a fixed choice of boundary edges for r already forces a
choice of three edges for Rleft and Rright. Only their shared edge � is not fixed by
the choice of boundary edges of r. However, we can simply try both options and
see which results in the overall better cover of R. That is, we first assume � is
not part of the cover and retrieve our already computed solutions for Rleft and
Rright for the current selection of boundary edges. Then we do the same when
we do pick � and choose the solution with the smallest number of edges. This
results in an optimal solution since the only edges shared by Rleft and Rright are
� and the top and bottom edge of R. We consider all possible selections of these
edges. For each selection the two subproblems of finding an optimal cover for
the Rleft and Rright are independent, so we can reuse our previously computed
solutions.

162 M. Korman et al.

We now show that the algorithm indeed runs in linear time. Observe that
only a constant number of subproblems are considered at each node of the tree.
Moreover, each of these subproblems is solved in constant time by accessing the
solution to a constant number of subproblems. Thus, overall we spent a constant
amount of time per node of the tree, giving the desired bound.

5 Conclusions and Open Problems

Our results show that covering cells in an arrangement, similar to the original
set-cover problem, may be NP-hard or polynomial-time solvable depending on
various restrictions. It may be interesting to investigate further variants of the
problem to see which restriction makes the problem polynomial-time solvable—
this may be due to the lack of intersections between line segments or due to
the tree-structure of the subdivision. It would also be interesting to see if good
approximations are possible for the more general case or even the case with line
segments of arbitrary orientations.

References

1. de Berg, M., Cheong, O., van Kreveld, M., Overmars, M.: Computational Geometry:
Algorithms and Applications, 3rd edn. Springer, Heidelberg (2008)

2. Bose, P., Cardinal, J., Collette, S., Hurtado, F., Korman, M., Langerman, S.,
Taslakian, P.: Coloring and guarding line arrangements. Discrete Math. Theoret.
Comput. Sci. 15(3), 139–154 (2013)

3. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
2nd edn. McGraw-Hill Science/Engineering/Math, New York (2001)

4. Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity, 1st edn.
Springer, London (2013)

5. Feder, T., Greene, D.: Optimal algorithms for approximate clustering. In: Proceed-
ings of the Twentieth Annual ACM Symposium on Theory of Computing (STOC
1988), pp. 434–444 (1988)

6. Feige, U.: A threshold of ln n for approximating set cover. J. ACM 45(4), 634–652
(1998)

7. Lichtenstein, D.: Planar formulae and their uses. SIAM J. Comput. 11, 329–343
(1982)

8. Raz, R., Safra, S.: A sub-constant error-probability low-degree test, and a sub-
constant error-probability PCP characterization of NP. In: Proceedings of the
Twenty-ninth Annual ACM Symposium on Theory of Computing (STOC 1997),
pp. 475–484 (1997)

An Improved On-line Strategy for Exploring
Unknown Polygons

Xuehou Tan1,2(B) and Qi Wei1

1 Dalian Maritime University, Linghai Road 1, Dalian, China
2 Tokai University, 4-1-1 Kitakaname, Hiratsuka 259-1292, Japan

tan@wing.ncc.u-tokai.ac.jp

Abstract. We present a new, on-line strategy for a mobile robot to
explore an unknown simple polygon P , so as to output a so-called watch-
man route such that every interior point of P is visible from at least one
point along the route. The length of the robot’s route is guaranteed to
be at most 6.7 times that of the shortest watchman route that could be
computed off-line. This significantly improves upon the previously known
26.5-competitive strategy. A novelty of our strategy is an on-line imple-
mentation of a previously known off-line algorithm that approximates
the optimum watchman route to a factor of

√
2. The other is in the way

the polygon exploration problem is decomposed into two different types
of the subproblems and a new method for analyzing its cost performance.

1 Introduction

Visibility-based problems of guarding or searching have received much attention
in the communities of computational geometry, robotics and on-line algorithms.
Finding stationary positions of guarding a polygonal region P of n vertices is the
well-known art gallery problem. The watchman route problem asks for a shortest
route along which a mobile robot can see the whole polygon P [1,5–7].

When a point s on the boundary of P is given, the shortest watchman
route through s can be computed in O(n4) time [6,7]. It was later improved to
O(n3 log n) [3]. A linear-time approximation algorithm for the watchman route
problem has also been proposed [5], which reports a watchman route guaranteed
to be at most

√
2 times longer than the shortest watchman route through s.

In the polygon exploration problem, a starting point s on the boundary of the
(unknown) polygon P is given. A robot with a vision system that continuously
provides the visibility of its current position walks to see (or explore) the whole
region of P , starting from s. When each point of P has been seen at least once,
the robot returns to s. We are interested in a competitive exploration strategy
that guarantees that the route of the robot will never exceed in length a constant
times the length of the shortest watchman route through s. For the problem of
exploring unknown simple polygons, Deng et al. were the first to claim that
a competitive strategy does exist, but the constant is estimated to be in the

This work was supported by JSPS KAKENHI Grant Number 15K00023.

c© Springer International Publishing Switzerland 2015
Z. Lu et al. (Eds.): COCOA 2015, LNCS 9486, pp. 163–177, 2015.
DOI: 10.1007/978-3-319-26626-8 13

164 X. Tan and Q. Wei

thousands [2]. A factor of 133 was later given by Hoffmann et al., and further
improved to 18

√
2 + 1 ≤ 26.5 [4]. Since the known lower bound is smaller than

1.207 [2], it is conjectured that the competitive factor is far below 10 [4].
In this paper, we present a new, on-line strategy for a mobile robot to explore

an unknown simple polygon. An important observation is that the known off-
line

√
2-approximation algorithm can be used to build blocks of the on-line

strategy. Next, we reduce the polygon exploration problem to the subproblems
of exploring two different types of reflex vertices. Although the reduction is done
in a way similar to that of [4], we show that the exploration of the same type
of reflex vertices can be evaluated together. More specifically, a subproblem is
solved by resembling the

√
2-approximation algorithm for that watchman route

subproblem. For this purpose, we present a paradigm for implementing on-line
the off-line approximating techniques. Furthermore, we present a new method
to evaluate the total cost of the solutions to the subproblems of exploring the
same type of reflex vertices. With these new ideas, we are able to prove that an
unknown polygon can be explored by a route of length at most 4

√
2 + 1 < 6.7

times that of the shortest watchman route through s. This gives a significant
improvement upon the previously known 26.5-competitive strategy [4].

2 Preliminaries

A polygon is simple if it has neither holes nor self-intersections. Let P be a simple
polygon with a point s on its boundary. A point p ∈ P sees the other point q ∈ P
if P contains the line segment pq that has p and q as its two endpoints.

A vertex of P is reflex if its internal angle is strictly larger than π; otherwise,
it is convex. The polygon P can be partitioned into two parts by a “cut” C that
starts at a reflex vertex v and extends an edge incident to v until it first hits the
polygon boundary. The part of P containing s and including C itself is called
the essential part of C. We denote by P (C) the essential part of the cut C. The
cut C is said to be a visibility cut if it produces a convex angle at v in P (C).
Also, we call v the defining vertex of C.

We say a visibility cut Cj dominates the other cut Ci if P (Cj) contains
P (Ci). If Cj dominates Ci, any route that visits Cj will automatically visit Ci.
We also say a point p dominates cut C if p is not contained in P (C) (i.e., p lies
in P − P (C)). A visibility cut is called an essential cut if it is not dominated by
any other cuts. The watchman route problem is then reduced to that of finding
the shortest route intersecting or visiting all essential cuts [1,5].

For two arbitrary points a and b inside the polygon P , we denote by π(a, b)
the shortest path between a and b, which does not cross the boundary of P . The
shortest path tree of s, denoted by SPT (s), consists of all shortest paths from
s to the vertices of P . The vertices touching a shortest path from the right are
called the right reflex vertices, or shortly, right vertices. The left reflex vertices
or left vertices can be defined accordingly [4].

A region D inside P is said to be a relatively convex polygon if the shortest
path between any two points of D is contained in D [4]. Also, a polygonal chain

An Improved On-line Strategy for Exploring Unknown Polygons 165

H inside P is relatively convex if the region bounded by H and the shortest
path between two endpoints of H is a relative convex polygon in P . The relative
convex hull of a set of points inside P is defined as the boundary of the smallest,
relative convex polygon containing the set of the given points.

For a route R, we denote by |R| the length of the route R. In this paper,
we denote by Wopt the shortest watchman route, and Wapp the watchman route
that is computed by the off-line approximation algorithm [5].

Let S denote an on-line exploration strategy. A vertex is said to be discovered
if it has ever been visible once from the robot, when the robot follows S to
explore the polygon P . A left or right vertex is unexplored as long as its cut
has not been reached, and fully explored thereafter. Denote by Wrob the robot’s
route produced by the strategy S. The competitive factor of the strategy S is
then defined as the upper bound of |Wrob|

|Wopt| .

2.1 An Overview of the
√
2-approximation Algorithm

Let a and b denote two points in the same side of a line L. The shortest path
visiting a, L and b in this order, denoted by S(a, L, b), follows the reflection
principle. That is, the incoming angle of S(a, L, b) with L is equal to the outgoing
angle of S(a, L, b) with L. Denote by L(a) the point of L closest to a, and b′

the point obtained by reflecting b across L. See Fig. 1(a). The path consisting
of the line segments a L(a) and L(a) b, denoted by S′(a, L, b), then gives a

√
2-

approximation of the path S(a, L, b) [5]. Generally, for a line segment l, denote
by l(a) the point of l closest to a. The path consisting of a l(a) and l(a) b is also
a

√
2-approximation of the shortest path from a to b that visits l (Fig. 1(b)).

Fig. 1. The reflection principle and its approximation.

Let m be the number of essential cuts, and C1, C2, · · · , Cm the sequence of
essential cuts indexed in clockwise order of their left endpoints, as viewed from s.
Let s = s0 = sm+1. Also, let the edge containing s be the cuts C0 and Cm+1,
whose essential parts P (C0) and P (Cm+1) are defined as the polygon P itself.
Given a point p in the polygon P (C), we define the image of p on the cut C as
the point of C that is closest to p inside P (C) (in the geodesic distance).

Beginning with the point s, the approximation algorithm repeatedly com-
putes the point of the cut C to visit next, which is closest to the endpoint e

166 X. Tan and Q. Wei

of the currently found path and contained in the essential part of the cut on
which e is [5]. Specifically, we first compute the images of s0 on the cuts in the
polygon P (C0). Let s1 denote the image of s0 on C1, s2 the image of s0 on C2,
and so on. The computation of s0’s images is terminated when the image si+1

does not dominate all the cuts C1, C2, . . . , Ci before it. See Fig. 2(a). Then, we
choose a critical image sh (1 ≤ h ≤ i) from s1, s2, . . . , si as the first image (of
the smallest index) such that the image of sh on Ci+1, which is computed (and
thus contained) in P (Ch), dominates Ch+1, . . . , Ci. For the polygon shown in
Fig. 2(a), we have i = 4 and h = 2 (i.e., s2 is critical in Fig. 2(a)).

Fig. 2. Critical images and the routes Wopt,Wapp and T ′
i .

From the definition of the critical image sh(1 ≤ h ≤ i), Ch intersects all the
cut(s) before it. Hence, the following observations can be made.

Observation 1. If Ci does not intersect Ci+1, then the image si is critical.

Observation 2. Assume that sh is the critical image computed above, and h <
i. Then, the intersection point of Ci with Ch is closer to si than that of Ci with
any other Ck, h + 1 ≤ k ≤ i − 1.

Next, we compute the images of sh on the following cuts in the polygon P (Ch).
When the image sj+1 of sh on Cj+1, which does not dominate Ch+1, . . . , Cj , is
found, we can determine a new critical image from sh+1, . . . , sj . This procedure
is repeatedly performed until the image sm on Cm is computed. The route Wapp

is the concatenation of the shortest paths between every pair of adjacent critical
images. (We also consider s0 and sm+1 as two critical images.)

The following results on Wapp then hold.

Lemma 1 (See [5]). Suppose that the image si on Ci is critical. If the route
Wopt reflects on Ci, then si is to the left of the reflection point of Wopt on Ci.

Lemma 2 (See [5]). For any instance of the watchman route problem with a
given starting point s, |Wapp| ≤ √

2|Wopt| holds.

Lemma 3. Let Ti be the portion of Wopt from s to the point of Wopt on Ci,
which visits all the cuts C1, C2, . . . , Ci (1 ≤ i ≤ m). If the (computed) image si
on Ci is critical, then |π(s, si)| ≤ |Ti|.
Proof. Omitted in this extended abstract. ��

An Improved On-line Strategy for Exploring Unknown Polygons 167

2.2 An Overview of the 26.5-Competitive Strategy

In an unknown polygon, exploring a reflex vertex v requires a little care. Since
the equation of the cut of v is not known, the point of the cut closest to the
current position of the robot, say, a, cannot simply be computed. This difficulty
can be overcome by using the circle spanned by v and by a. The intersection
point of the circular arc with the cut is then the required point (see Fig. 1(b)).

Let D denote a convex region in the plane. Suppose that a photographer
follows a path to take a picture of D that shows as large a portion of D as
possible, but no white space or other objects. The photographer uses a fixed
angle lens, say, of 90◦. While the right angle is touching two vertices, u and v,
of D, its apex follows the circular arc spanned by u and v. All points enclosed
by the photographer’s path, and no other, can see two points of D at the right
angle; we call this point set the angle hull of D, and denote it by AH(D) [4].

Consider now the setting where D is contained in a simple polygon whose
edges are considered as obstacles. In this case, the region D is defined as a
relatively convex polygon in P . The photographer does not want any edges of
P to appear in pictures; thus, the photographer’s path may touch a vertex of P
or overlap with a portion of the polygon edge. Again, call the set of all points
enclosed by the photographer’s path the angle hull of D, and denote it by AH(D).

Lemma 4 (See [4]). Suppose that P is a simple polygon, and D is a relatively
convex polygon inside P . The length of the perimeter of the angle hull AH(D),
with respect to P , is less than 2 times the length of D’s boundary. Moreover, the
bound of 2 holds if D is a relative convex chain that is contained in P .

The strategy of Hoffmann et al. [4] recursively reduces the polygon explo-
ration problem to two different types of subproblems: one for exploring a group of
right vertices and the other for exploring a group of left vertices. Only such right
(resp. left) vertices are gathered into a group that the shortest paths from the
local starting point to them (called the stage point in [4]) make only right (resp.
left) turns. The competitive factor for a subproblem of exploring right (resp.
left) vertices is then proved to be 6

√
2, by employing the structure of angle

hulls. Next, groups of reflex vertices that are on sufficiently different recursive
levels are classified into three categories [4]. Any two local routes for the sub-
problems of the same category are mutually invisible, except for their starting
points. Hence, the total length of the robot’s routes for all subproblems of a sin-
gle category is at most 6

√
2|Wopt|. Since the connection among all subproblems

in three categories makes up to an additional path of length at most |Wopt|,
putting all results together gives a competitive factor of 18

√
2 + 1 ≤ 26.5 [4].

In the rest of this paper, a polygon P is termed a right polygon (left polygon)
if the shortest paths from s to all reflex vertices of P turn only right (left).

3 Exploring a Right Polygon

Assume that the robot can measure the distance to a point in its view. Denote by
CP the current position of the robot. The following observation can be made [4].

168 X. Tan and Q. Wei

Observation 3. For a point p that had ever been seen, the robot knows the
shortest path between p and CP , even when p is currently invisible from the
robot.

The robot in our strategy always selects the smallest discovered vertex to
explore. Denote by RightTarget the list of the right vertices in clockwise order,
which have already been discovered but not yet explored. Denote by r the head
of RightTarget, which is the target vertex that the robot is going to explore. So,
the value of r is updated as soon as a smaller right vertex becomes visible.

The on-line computation of the critical images is crucial to our strategy. To
simplify the discussion, we first consider a simple situation in which no smaller
vertex is found in the procedure of exploring r, and the vertex r is always visible
from CP . Then, we complete the exploration strategy and give the performance
analysis of our strategy.

3.1 How to Reach the Cut of a Right Vertex at the Wanted Point

Assume that CI is the critical image that has just been found. (The initial value
of CI is s.) Let C be the visibility cut of a vertex v, which is currently reached
by the robot (say, by a walk on the semicircle spanned by CI and by v). Denote
by TI the image of CI on the cut C. So, CI �= TI.

Starting from the point CP (= TI), the robot walks to explore the target ver-
tex r. Assume that no smaller right vertex is found in the procedure of exploring
r, and the vertex r is visible from CP . In exploring r, the variable C as well as
TI is dynamically changed, as soon as a previously visited cut is reached again.
For ease of presentation, we may also use C ′ to represent such a previously vis-
ited cut and TI ′ the image of CI on C ′. Except for the cut of r, all other cuts
mentioned in this section had been visited by the robot’s path from CI to TI
(on the cut C). Assume also that TI (resp. TI ′) dominates the cuts having been
explored along the path from CI to TI (resp. TI ′).

In our algorithm, we make use of the following two angle hulls. Denote by
AH(TI, r) the angle hull of the shortest path between TI and r. Although the
cut of r has not been reached, the robot can walk on the known portion of
AH(TI, r). (Note that the unknown portion of AH(TI, r) is only the semicircle
spanned by TI and by r.) In particular, we denote by Ah(TI, r) the portion
of AH(TI, r), which is contained in Q(C). So, Ah(TI, r) is completely known
to the robot, and a part of the cut C appears on the boundary of Ah(TI, r).
Analogously, we denote by AH(CI, r) the angle hull of the shortest path between
CI and r, and aH(CI, r) the portion of AH(CI, r) that lies in Q − Q(C).

To explore the vertex r, starting from TI (= CP) on C, the robot initially
walks on the boundary of Ah(TI, r). Since r is larger than the defining vertex v
of C, the left (right) point of aH(CI, r) on C, is to the right (left) of TI (Fig. 3).
The robot then walks to explore r by the following rules.

Rule 1. When the robot reaches the left point of aH(CI, r) on the current cut C
(which is a part of Ah(TI, r)), it changes to move on aH(CI, r). Afterwards,

An Improved On-line Strategy for Exploring Unknown Polygons 169

if the robot ever reaches the right point of aH(CI, r) along C, then it changes
to move on the present hull Ah(TI, r).

Rule 2. While the robot walks on aH(CI, r), it may encounter a previously
reached cut. In this case, the variable C is changed to that cut, and TI and
Ah(TI, r) are updated accordingly. Afterwards, the robot moves along the
boundary of the new hull Ah(TI, r).

Rule 3. While the robot walks on the cut C (a part of Ah(TI, r)), it may
encounter an intersection point i of C with a previously reached cut C ′. If
i is on the hull Ah(TI ′, r) (it is known to the robot), then the variables C
and TI are set to C ′ and TI ′ respectively, and the robot walks along the
boundary of the new hull Ah(TI, r). Otherwise, nothing happens.

Fig. 3. Basic motions for exploring the target vertex r.

Lemma 5. Assume that TI(TI ′) dominates the cuts having been explored along
the path from CI to TI(TI ′). By Rules 1 ∼ 3, the robot can reach the cut of r
at the same point as that is found by the approximation algorithm [5].

Proof. Starting from the point TI on C, the robot first walks on Ah(TI, r). If
the robot reaches the left point of aH(CI, r), it changes to move on aH(CI, r)
(Rule 1). If the cut of r is ever reached along aH(CI, r), the (stopping) position
of the robot gives the image of CI on the cut of r and we are done (Fig. 3(a)). If
the robot moves back to the cut C (from aH(CI, r)), it then walks on Ah(TI, r)
again. In this case, the exploration of the vertex r may finish when the robot
moves to the image of TI on the cut of r (Fig. 3(b)–(c)).

While walking on aH(CI, r), the robot may encounter a previously visited
cut C ′. In this case, we let C ← C ′ and TI ← TI ′, and then, the robot walks on
the new hull Ah(TI, r) (Rule 2). This makes it possible to move to the image
of TI ′ on the cut of r, as that image may dominate C (see Fig. 3(d)–(e)). While
walking on Ah(TI, r), the robot may reach an intersection point i of C with
a previously visited cut C ′ (Observation 2). If i is on the hull Ah(TI ′, r), then
let C ← C ′ and TI ← TI ′, and the hull Ah(TI, r) is thus updated (Rule 3).

170 X. Tan and Q. Wei

In this case, the robot moves on the new hull Ah(TI, r) and probably finishes
the exploration of r at the image of TI ′ on the cut of r. See Fig. 3(e). Otherwise,
the robot continues to walk on Ah(TI, r), because it knows that the image of TI ′

on the cut of r doesn’t dominate C and thus needn’t be computed (Fig. 3(f)).
From Rules 1 ∼ 3, the cut of r is reached along either aH(CI, r) or

Ah(TI, r). In the former case, the stopping position CP of the robot, which
dominates all the cuts visited by the robot’s path from CI to CP , is the image
of CI on the cut of r (Fig. 3(a)). In the latter case, the image of the current
point TI on the cut of r does not dominate all the cuts visited by the path
from CI to CP , but it dominates the cuts between its cut and the cut of r (see
Figs. 3(b)–(f)). From Rules 2 ∼ 3 as well as Observation 2, we are sure that the
image TI is a critical one. (One can see it in Fig. 2(a) by exploring the cut C5,
starting from s4. Rule 3 is then applied at the intersection point of C4 and C2,
and s2 is finally reported as a critical image.) Hence, the lemma follows. ��

From the proof of Lemma 5, if the robot reaches the cut of r along Ah(TI, r),
then the current point TI is a critical image. The other situation for reporting
a critical image occurs when the target vertex r is invisible from the point CP ,
which will be discussed in the subsequent section.

3.2 The Exploration Strategy

The robot always selects the smallest discovered right vertex to explore. At the
very first step, we let CI, TI ← s and set the target vertex r to be the smallest
right vertex, which is visible to s. Then, the robot can start exploring towards
the cut of r by walking on Ah(TI, r). Note that TI is identical to CI only in
the case that no cut has been reached by the robot’s path from CI to CP .

In approaching the target vertex r, all newly discovered right vertices are
added to RightTarget. The robot may also go across the cuts of some right ver-
tices, which are larger than r. All of these vertices are removed from RightTarget.
After r is fully explored, we update the variable C to the cut of r and the image
TI accordingly, and delete the vertex r from RightTarget.

Let us now describe how to explore the target vertex r, if the value of
r is allowed to be changed. Since it has been discussed in the procedure
ExploreRightVertex of [4], we first give a brief review of ExploreRightVertex. It
starts at a point, called the base point, and always selects the smallest of all dis-
covered right vertices to explore. The target vertex r is explored by repeatedly
performing the following motions: (i) the robot follows the clockwise oriented
circle spanned by r and by the last vertex before CP on the shortest path from
the base point to CP , and (ii) when the view to the current target vertex r
gets blocked, the robot walks straight towards the blocking vertex (or follow the
polygon boundary) until the motion (i) becomes possible again. It is also shown
in [4] that if the robot reaches the cut of the target vertex at point c, the robot’s
path is part of the boundary of the angle hull of the shortest path from the base
point to c, except for the segments leading to the blocking vertices.

For our strategy given in Sect. 3.1, each point CI can be considered as a base
point. Rules 1 ∼ 3 ask the robot to move on the boundary of aH(CI, r) or

An Improved On-line Strategy for Exploring Unknown Polygons 171

Q

s

s1
app

r1

s2

s3

W

r8

r7
r6

r5
r4

r2

d

b
a

c

e

robW

appWrobW Wopt introduced edges

s5

Q

s

s1
app

s5

r1

s2

W

r8

r7
r6

r5
r4

r2

d

b
a

c

e

robW

T

optW
s4

f f

s4
r3

Q

s3

r3

Fig. 4. Exploring a right-like polygon

Ah(TI, r). By allowing the value of r in aH(CI, r) and Ah(TI, r) to dynamically
change, motion (i) is already implied by Rules 1 ∼ 3. In the case that the robot
loses sight of the new target vertex r, except for letting the robot walk straight
towards the blocking vertex (motion (ii)), we report the current point TI(= CP)
as a critical image becasue the cut on which CP is cannot intersect its following
the cuts (Observation 2). The following results can then be concluded.

Lemma 6. Let r denote the smallest of the right vertices discovered by the
mobile robot. Rules 1 ∼ 3 together with the two motions described above can
be used to explore the target vertex r.

By exploring the target vertex r repeatedly till the list RightTarget becomes
empty, the polygon Q can then be explored. Let us now give our procedure
RightPolygonExp for exploring Q. The point s and the list RightTarget of the
right vertices, which are visible from s, are input of RightPolygonExp.

Procedure. RightPolygonExp (in RightTarget, in s)

1. Set CI, TI, C ← s. Assume that s is a special cut, with Q(s) = Q.
2. While RightTarget is not empty do

(a) Set the target vertex r to the head of RightTarget. As soon as a smaller
right vertex is discovered, the value of r changes to it. Moreover, a right
vertex is removed from RightTarget when it is fully explored, or added to
RightTarget when it becomes visible to the robot for the first time.

(b) The robot walks on the boundaries of the current hull Ah(TI, r) or
aH(CI, r) (by Rules 1 ∼ 3) to explore the target vertex r, and per-
forms the following operations as soon as possible.
i. If no right vertex is visible from CP , the robot walks clockwise on

the shortest path with the turning points at polygon vertices until the
target vertex r becomes visible again. In this case, the current point
TI is reported as a critical image, and we let CI ← TI.

ii. If the cut of r is reached along the boundary of Ah(TI, r), the point
TI is reported as a critical image and we let CI ← TI.

3. The robot walks on the shortest path back to the starting point s.

172 X. Tan and Q. Wei

Lemma 7. The procedure RightPolygtonExp computes the same set of critical
images on the cuts, which are defined by the right vertices, as the off-line approx-
imation algorithm.

Proof. Omitted in this extended abstract. ��

3.3 The Performance Analysis

Let Wopt(Q) denote the shortest watchman route in Q. We then have the fol-
lowing result.

Theorem 1. A call of the procedure RightPolygonExp explores the polygon Q
by outputting a watchman route of length at most 2

√
2|Wopt(Q)|.

Proof. It follows from Lemma 7 that a call of RightPolygonExp (RightTarget, s)
simulates on-line the off-line approximation algorithm [5]. Denote by Wapp the
route consisting of the shortest paths in Q′, which connect every pair of con-
secutive critical images. Let Wrob(Q) denote the robot’s route produced by our
strategy for exploring Q. To apply Lemma 4, we then construct an artificial poly-
gon from Q. For each essential cut C, we cut off the portion Q − Q(C) from Q,
in the order of essential cuts. See Fig. 4(b). For every point at which the robot’s
route changes between two different circular arcs, we insert into Q two isometric
edges between it and a boundary point such that the added edges are outside
of Wrob(Q) and on the line through two vertices of Q, which are on the shortest
paths from s to some right vertices. The resulting polygon, denoted by Q′, is
simple. Both Wrob(Q) and Wapp are the relatively convex polygons in Q′.

We prove below |Wrob(Q)| ≤ 2|Wapp|. To this end, we claim that each part
of Wrob(Q) between two consecutive critical images, say, p and q, is no longer
than twice the length of the shortest path between p and q in Q′. For any two
consecutive points at which the artificial edges are added, we connect them using
the shortest path. This gives a path between p and q inside Q′, and we denote
it by T . It is easy to see that T is a relatively convex chain in Q′, and the
portion of Wrob(Q) between p and q is contained in the angle hull of the path
T inside Q′. Thus, the portion of Wrob(Q) between p and q cannot exceed in
length 2|T |. Since the path T is longer than the shortest path between p and
q, our claim is proved. Hence, we can conclude that |Wrob| ≤ 2|Wapp|. Since
|Wapp| ≤ √

2|Wopt(Q)| holds, the theorem follows. ��
A polygon Q is said to be right-like if (i) some right vertices in the initial list

RightTargeT may not be visible from s but to them the robot knows in advance
the shortest paths, (ii) if a reflex vertex x happens to be encountered by the
robot’s route, then the right vertices that are visible from x are also added to
the list RightTarget, and (iii) a call of RightPolygonExp(RightTarget, s) explores
the polygon Q. The left-like polygons are defined analogously. For instance, the
polygon shown in Fig. 4 is right-like, as vertex r3 is visible from vertex f that
happens to be encountered by the robot’s route, and thus, r3 is also explored.
Also, we have the following result.

An Improved On-line Strategy for Exploring Unknown Polygons 173

Theorem 2. A call of RightPolygonExp(RightTarget, s) can explore the right-
like polygon Q by outputting a watchman route of length at most 2

√
2|Wopt(Q)|.

Obviously, there is a symmetric procedure LeftPloygonExp that is identi-
cal to RightPolygonExp, except that left/right, clockwise/counterclockwise and
small/large are exchanged.

4 Exploring a Simple Polygon

Our strategy for exploring a simple polygon P is mainly a recursive procedure
that reduces the polygon exploration problem to the subproblems of exploring
the groups of right vertices and the groups of left vertices. It differs from the
strategy of Hoffmann et al. [4] in the following two sides. First, the explorations
for the left vertices and for the right vertices are exchanged as soon as possible.
This helps to save an additional path of length at most |Wopt|, which is used to
connect the local starting points in the strategy of Hoffmann et al. [4]. Second,
we give a new method to analyze the total cost of the solutions for exploring the
right (left) vertices. This makes it possible to classify the subproblems into two
categories, instead of three ones required in [4]. Excluding some special paths, the
solutions for the subproblems of the same category together have a competitive
factor 2

√
2. Moreover, all the special paths together cannot exceed in length

|Wopt|. Hence, the competitive factor of our strategy is 4
√

2 + 1.

4.1 The 6.7-Competitive Strategy

Denote by RightExplorationRec(LeftExplorationRec) the recursive procedure for
exploring a group of right (left) vertices. Suppose that the robot makes the very
first clockwise tour from s to explore the discovered right vertices, which satisfy
the definition of a right-like polygon. For those right vertices whose parents in
the known portion of SPT (s) are left vertices, they may be discovered by this
tour but are not explored, because they do not belong to the right-like polygon
starting from s. On the other hand, some left vertices may happen to be fully
explored in this clockwise tour. Among those fully explored left vertices, we mark
the ones that have the right vertices as their sons in SPT (s).

The procedure RightExplorationRec can be given by modifying RightPoly-
gonExp as follows. First, the essential cuts and critical images are now defined
with respect to the set of explored right vertices. Second, we maintain during the
clockwise tour a list LeftList of the discovered left vertices, which either have not
been fully explored or have a right-vertex son in the known portion of SPT (s).
The list LiftList is kept as a local data structure in RightExplorationRec.

A new idea of our strategy here is to change to explore the discovered left
vertices, as soon as it is possible. We say the switching condition is satisfied in
performing RightExplorationRec if CP is on the cut of a right vertex, say, v, and
at least one vertex of LeftList is the son of v in the known portion of SPT (s).
(The condition for switching to explore the right vertices is defined analogously.)

174 X. Tan and Q. Wei

Whenever the switching condition is satisfied, the robot moves to v (if needed)
and then makes a call of LeftExplorationRec with the initial list LeftTarget, whose
elements are v’s descendants (in SPT (s)) contained in LeftList.

Since LeftExplorationRec is a recursive procedure, all elements of LeftTar-
get, and everything behind, get explored by a call of LeftExplorationRec. After
LeftExplorationExp terminates, the robot continues its clockwise tour, from the
break point, so as to explore the remaining elements of RightTarget.

By symmetry, we will give only the detail of RightExplorationRec. Let sr
denote the point at which RightExplorationRec is invoked, and RightTarget the
initial list of right vertices in clockwise order, to which the robot knows the
shortest paths. The initial list RightTarget may contain some right vertices, which
had been fully explored but have a left-vertex son in SPT (s). So, if the target
vertex was already explored, the robot walks along the shortest path to it. Also,
we consider sr as the largest element of RightTarget and an already explored
vertex.

Procedure. RightExplorationRec (in RightTarget, in sr)

1. Set CI, TI, C ← sr. Assume that sr is a special cut, with P (sr) = P .
2. While RightTarget is not empty do

(a) If the target vertex r was already explored, walk along the shortest path
to it (at which the switching condition is always satisfied).

(b) If r has not yet been explored, perform Step 2 of RightPolygonExp with
the following modifications: (i) the essential cuts and critical images are
defined with respect to the set of explored right vertices, and (ii) save in
LeftList in counterclockwise order the discovered left vertices, which have
not been fully explored or have a right-vertex son in SPT (s).

(c) Whenever the switching condition is satisfied in Step 2(a) or 2(b), do the
followings:
i. Walk along the current cut to its defining vertex (if needed).
ii. Select (and delete) from LeftList the elements, which are the descen-

dants of CP in SPT (s), and put them in LeftTarget.
iii. Call LeftExplorationRec(LeftTarget, sl) by setting sl ← CP .
iv. Restart Step 2(a) or 2(b) from the breaking point.

By considering the point s as an already explored left/right vertex, the pro-
cedure for exploring the polygon P can be given as follows.

Procedure. PolygonExploration (in P , in s)

1. Set RightTarget (LeftTarget) to the list of the right (left) vertices, which are
visible from s and ordered in clockwise (counterclockwise) order.

2. If RightTarget is not empty Call RightExplorationRec(RightTarget, s)
else Call LeftExplorationRec(LeftTarget, s).

The robot’s walk caused by Step 2 of a procedure RightExplorationRec or
LeftExplorationRec, without considering further calls within it, clearly forms a
closed curve. In Fig. 5(a), the route R1 is the very first tour for exploring right

An Improved On-line Strategy for Exploring Unknown Polygons 175

s
(a)

r1

r2

l4

r4

r5
l2

r6

l5

l1

l3

R1

R5

r7

l6

s
(b)

r1

r2

l4

r4

r5l2

r6

l5

l1

l3

L6

r7

l6

R3

r3
r3

x

L4

l7l7

y

wL

L2

Fig. 5. Exploring an unknown polygon.

vertices. The switching condition is satisfied at the point s, as l1 belongs to
LeftList and is the son of the right vertex s. So, the robot moves to explore
l1 along the route L2, see Fig. 5(b). When the robot reaches the point l1, the
switching condition is satisfied again. The robot walks to explore r1 along R3,
and then moves back to l1 (along R3) and finally to s (along L2). Next, the
robot moves to explore r7, r4, r5 and r6 along R1. When the robot reaches r7,
it changes to explore the left vertices along L4, and so on.

Lemma 8. A call of the procedure PolygonExploration outputs a watchman
route.

Proof. Omitted in this extended abstract. ��
Lemma 9. All local starting points, at which RightExplorationRec and Left-
ExplorationRec are called, have to be visited at least once by Wopt.

Proof. Omitted in this extended abstract (see also [4]). ��
By now, we can give the main result of this paper.

Theorem 3. For a polygon P and a starting point s on its boundary, a call of
PolygonExploration(P, s) explores P , which outputs a watchman route of length
at most 6.7 times the length of the shortest watchman route through s.

Proof. Denote by WRrob(WLrob) the union of the routes R of the robot, which
are outputted in Step 2 of RightExplorationRec (RightExplorationRec). Also,
denote by WRopt(WLopt) the optimal watchman route that visits the union of
the cuts of right (left) vertices and starting points, which are visited by all routes
in WRrob(WLrob). Then, |WRopt| ≤ |Wopt| and |WLopt| ≤ |Wopt| (Lemma 9).

Denote by R and R′ two routes of WRrob. Assume that the starting point a
of R is immediately before the starting point b of R′ on the boundary of P . We
first give a method to evaluate the total length of R and R′.

Case 1. R and R′ are mutually invisible, except for their local starting points.
Suppose that a “clever” robot knows the shortest paths to the right vertices

176 X. Tan and Q. Wei

explored by R′, when it starts the exploration at a. Denote by RR′ the route
of this clever robot, which explores the vertices that are explored by R and R′.
Then, we have |R| + |R′| ≤ |RR′| [4].

Fig. 6. Illustrating the proof of Theorem 3.

Case 2. R and R′ are not mutually invisible. From the definition of the right-like
polygons, R cannot touch the starting point b of R′ (see Fig. 6). Let C be the
last cut explored by R′, and c the point of C, at which R′ reaches C. Since R
and R′ are not mutually invisible, we denote by d and e the two points on R
such that d (e) is visible from b and closest to (furthest from) the point a along
R. See Fig. 6. So, if the point d (e) is not a vertex of P , then the line through
b and d (e) is tangent to R. This implies that the extension of the last segment
of π(c, b) intersects R. The angle formed by π(b, e) and π(b, c) at point b is then
larger than π/2 and smaller than π. Since π(b, d) is just the line segment bd, we
have |π(b, d)| < |π(c, d)|. Since the portion of R from d to e is relatively convex,
it cannot exceed in length the route that consists of π(d, b) and π(b, e).

As in Case 1, denote by RR′ the clever robot’s route, which explores the
vertices that are explored by R and R′, starting from a. Denote by AA′ the
route that is computed by the off-line approximation algorithm, with respect to
the cuts visited by RR′. See Fig. 6. The route consisting of the portion of R from
a to d, the path π(d, b), the portion of R′ from b to c, the path π(c, e) and the
portion of R from e back to a is then relatively convex. Clearly, the length of this
route cannot exceed |RCH(AA′)|. See Fig. 6. By noticing the fact that π(d, b)
does not belong to R nor R′, we are sure that |R|+|R′|−|π(b, c)| ≤ |RCH(AA′)|.

The above analysis can repeatedly be made to any two consecutive routes of
WRrob. So, except for the paths π(b, c) used in Case 2, the total length of the
routes in WRrob cannot exceed the clever robot’s route that visits the union of
the cuts of right vertices and starting points, which are visited by all routes of
WRrob. Since the length of this clever robot’s route cannot exceed 2|WRopt|, the
total length of the routes outputted by all calls of RightPolygonRec is at most
2
√

2|Wopt|. Analogously, except for the special paths π(b, c), the total length of
the routes outputted by all calls of LeftPolygonRec is at most 2

√
2|Wopt|.

It remains to evaluate the total length of all the paths π(b, c) used in Case 2.
First, the starting points b as well as the cuts C are all different, no matter
whether the paths π(b, c) are introduced for the routes of WRrob or WLrob.

An Improved On-line Strategy for Exploring Unknown Polygons 177

Second, Wopt passes through these points b (Lemma 9). Finally, c is a critical
image, with respect to the cuts visited by R′. The total length of these paths
π(b, c) is then less than |Wopt| (Lemma 3). Hence, we obtain the competitive
factor 4

√
2 + 1 < 6.7. ��

References

1. Chin, W.P., Ntafos, S.: Optimum watchman routes. IPL 28, 39–44 (1988)
2. Deng, X., Kameda, T., Papadimitriou, C.: How to learn an unknown environment.

In: Proceedings of the 32nd Annual Symposium on Foundations of Computer Sci-
ence, pp. 298–303 (1991)

3. Dror, M., Efrat, A., Lubiw, A., Mitchell, J.S.B.: Touring a sequence of simple poly-
gons. In: Proceedings of the 35th Annual ACM Symposium Theory of Computing,
pp. 473–482 (2003)

4. Hoffmann, F., Icking, C., Klein, R., Kriegel, K.: The polygon exploration problem.
SIAM J. Comput. 31(2), 577–600 (2001)

5. Tan, X.: Approximation algorithms for the watchman and zookeeper’s problems.
Discrete Appl. Math. 136, 363–376 (2004)

6. Tan, X., Hirata, T., Inagaki, Y.: An incremental algorithm for constructing shortest
watchman routes. Int. J. Comput. Geom. Appl. 3, 351–365 (1993)

7. Tan, X., Hirata, T., Inagaki, Y.: Corrigendum to an incremental algorithm for con-
structing shortest watchman routes. IJCGA 9, 319–323 (1999)

Polynomial Time Approximation Scheme
for Single-Depot Euclidean Capacitated

Vehicle Routing Problem

Michael Khachay1,2(B) and Helen Zaytseva2

1 Krasovsky Institute of Mathematics and Mechanics, Ekaterinburg, Russia
mkhachay@imm.uran.ru

2 Ural Federal University, Ekaterinburg, Russia
zaytsevy vse@mail.ru

Abstract. We consider the classic setting of Capacitated Vehicle
Routing Problem (CVRP): single product, single depot, demands of all
customers are identical. It is known that this problem remains strongly
NP-hard even being formulated in Euclidean spaces of fixed dimension.
Although the problem is intractable, it can be approximated well in such
a special case. For instance, in the Euclidean plane, the problem (and
it’s several modifications) have polynomial time approximation schemes
(PTAS). We propose polynomial time approximation scheme for the case
of R

3.

Keywords: Capacitated vehicle routing problem · Polynomial time
approximation scheme · Iterated tour partition

1 Introduction

The Capacitated Vehicle Routing Problem is the well known special case of
Vehicle Routing Problem, which belongs to the class of combinatorial optimiza-
tion models widely adopted in operations research. The problem under con-
sideration is closely related to Traveling Salesman Problem (TSP) [2,5,9,19]
and, especially to its modification, the Multiple Traveling Salesmen Problem
[12,13,16,17], which is of finding the minimum cost set of tours for a team of
collaborating visitors. It is convenient, to give the substantial statement of the
problem in terms of operations research. We are given by a set X of n points
(customers), a distinguished point O outside X, called the depot as well as a
distance function. The objective is to find a set of tours, each including the
depot and at most q points in X, which covers all points in X and achieves the
minimum total length.

For the first time, VRP was introduced by Dantzig and Ramser in [6]. They
considered routing of a fleet of gasoline delivery trucks between a bulk terminal
and a number of service stations supplied by the terminal. The distance between
any two locations was given and a demand for a given product was specified for
the service stations.
c© Springer International Publishing Switzerland 2015
Z. Lu et al. (Eds.): COCOA 2015, LNCS 9486, pp. 178–190, 2015.
DOI: 10.1007/978-3-319-26626-8 14

Polynomial Time Approximation Scheme 179

In its simplest setting, the VRP can be defined as the combinatorial opti-
mization problem of designing the least cost collection of delivery routes from
the dedicated point (depot) to a set of geographically dispersed locations
(customers or clients) subject to a set of constraints. In recent decades, this
problem has been studied very extensively in papers on combinatorial optimiza-
tion and operations research (see, e.g. [4,10,20]).

The CVRP problem contains the TSP problem as a special case arising when
depot is among the customers and q = n. TSP problem is known to be NP hard,
even in Euclidean space of fixed dimension [18]. Almost all known modifications
of the Vehicle Routing Problem are NP-hard [14,15] as well1, even being formu-
lated in fixed-dimensional Euclidean space.

For this reason, the research on CVRP has focused on heuristic algorithms
and approximation algorithms. The general metric case of CVRP for q ≥ 3 has
been shown to be APX-complete [3], that is there exists ε > 0 such that no 1+ε
approximation algorithm exists unless P = NP .

The existence of a PTAS for the 2d-Euclidean version remains an active area
of research. One of the first studies of two-dimensional Euclidean CVRP has
been due to Haimovich and Rinnooy Kan [11], who presented several heuristics
for the Euclidean CVRP, including a PTAS for the two-dimensional Euclidean
CVRP with q ≤ c log log n, for some constant c. Asano et al. [3] substantially
improved this result by designing a PTAS for q = O(log n/ log log n). They also
observed that Arora’s [2] PTAS for the two-dimensional Euclidean TSP implies a
PTAS for the corresponding CVRP where q = Ω(n). Recently Das and Mathieu
[7,8] proposed a quasi-polynomial time approximation scheme (QPTAS) for the
two-dimensional2 Euclidean CVRP for every q. Their algorithm combines the
approach developed by Arora [2] for Euclidean TSP with some new ideas to deal
with CVRP and gives a (1+ε)-approximation for the two-dimensional Euclidean
CVRP in time n(log n)O(1/ε)

(for any value of q). In the work [1] a new PTAS for
all values of q ≤ 2log

δ n, where δ = δ(ε) was presented. To the best of our
knowledge, there is no PTAS for CVRP in d-dimensional Euclidean space for
any fixed d > 2.

New polynomial time approximation scheme for the case of d = 3 extending
the approach developed by Haimovich and Rinnooy Kan for the Euclidean plane
is the main contribution of this paper.

The rest of the paper is organized as follows. In Sect. 2, we recall the general
statement of CVRP along with its metric and Euclidean special cases. In Sect. 3,
we give a short overview of the Iterated Tour Partition (ITP) heuristic for the
metric CVRP, which is introduced in [11] and extensively used in our subsequent
constructions. Although, all of these results are well known, we provide them with
proofs to emphasize the most general case of CVRP, for which they remain valid.
Further, in Sect. 4, we propose a new upper bound for an optimal value for the
corresponding TSP-instance in three-dimensional Euclidean space. This result

1 Although, for q = 1 or q = 2, CVRP can be solved to optimality in polynomial time.
2 Using Arora’s technique, this result can be extended onto d-dimensional Euclidean

space for any fixed d.

180 M. Khachay and H. Zaytseva

helps us to propose a PTAS for the Euclidean CVRP in R
3, which is presented

in Sect. 5. Finally, in Sect. 6 we summarize the results obtained and discuss some
open questions.

2 Problem Statement

We start with some necessary definitions and notation.

1. X = {x1, . . . , xn} is a set of customers, x0 is a dedicated point (depot).
G0 = (X ∪ {x0}, E,w) is a complete weighted undirected graph for w : E →
R+. Along with the graph G0, we consider its subgraph G = G(X) induced
by the set X.

2. For each customer, denote transition cost from the depot x0 to xi by
ri = w(x0, xi). Also, we denote the maximum cost by rmax = maxi{ri}
and the average one by r̄ = (

∑n
i=1 ri)/n.

3. W.l.o.g., we can assume that there is only one vehicle visiting all the customers
in some number of tours. Each tour starts and finishes in the depot and visits
at most q customers due to the capacity constraint.

4. Denote by Xj ⊆ X the set of customers visited in the j-th tour, |Xj | ≤ q,
and X0

j = Xj ∪ {x0}. By condition, each customer has to be visited once,
therefore Xj1 ∩ Xj2 = ∅ for any j1 �= j2.

5. For any tour x0, xi1 , xi2 , . . . , xik
, x0, the cost of this tour is equal to the sum

ri1 + w(xi1 , xi2) + . . . + rik
.

The problem is, for a given graph G0 = (X ∪ {x0}, E,w), to find a cheapest
set of tours visiting all the customers.

Further, we consider two important special cases of the problem: metric and
Euclidean.

Metric CVRP. In this case, the weight function w meets the triangle inequality.
For any vertices xi1 , xi2 and xi3 , w(xi1 , xi2) ≤ w(xi1 , xi3) + w(xi2 , xi3).

Euclidean CVRP. In this case, the depot and all the customers locations are
points in d-dimensional Euclidean space X ∪ {x0} ⊂ R

d and

w(xi, xj) = ‖xi − xj‖2.
For these cases, for any points xi1 and xi2 , the weight (cost) w(xi1 , xi2) is

a distance between them, and the cost of any tour can be naturally referred as
a length of this tour.

3 Iterated Tour Partition Heuristic

To construct our polynomial time approximation scheme, we use Iterated Tour
Partition (ITP) heuristic proposed in [11] for the Euclidean plane. We extend
this result for the more general cases of CVRP.

Polynomial Time Approximation Scheme 181

The ITP heuristic relates the initial CVRP problem with TSP problem for
the graph G. Consider an arbitrary Hamiltonian cycle H in the graph G. Starting
from x1, break this tour into l = �n/q� disjoint segments such that each of them
contains at most q customers. Then, connect the endpoints of any segment with
the depot to provide a feasible solution for the initial CVRP. Performing the
same procedure iteratively for any starting point xi, we construct n feasible
solutions V1, . . . , Vn of the initial instance of CVRP; output the best (cheapest)
among them (see Fig. 1).

Fig. 1. Example of the ITP for q = 3

Let T (X) be a cost of H, and RH(X) be a cost of the resulting set of vehicle
routes.

Lemma 1 ([11]). The following equation

RH(X) ≤ 2
⌈

n

q

⌉
r̄ +

(
1 − �n/q�

n

)
T (X) (1)

is valid.

Proof. Indeed, each edge {xi1 , xi2} of the tour H is included n − l times to
the solutions V1, . . . , Vn and l times is replaced with ‘radial’ edges {x0, xi1} and
{x0, xi2} of costs ri1 and ri2 , respectively. Therefore, the cumulative cost C of
all solutions V1, . . . , Vn is defined by the following equation

C = 2l
n∑

i=1

ri + (n − l)T (X).

Finally, since RH(X) is less or equal to the average cost of the solutions
V1, . . . , Vn, we have

RH(X) ≤ C

n
= 2lr̄ + (1 − l/n)T (X)

providing (1) by substitution l = �n/q�. Lemma 1 is proved.

182 M. Khachay and H. Zaytseva

Remark 1. The claim of Lemma 1 is valid for the most general statement of
CVRP.

In the metric case, the lower bound of the cost of any solution of CVRP
also can be obtained in terms of the corresponding TSP route. Indeed, as above,
suppose that R(X) denotes a length of an arbitrary solution V of metric CVRP.
Taking its tours in any order, we can connect the last and the first customers
visited by successive routes directly (excluding the depot) and construct a Hamil-
tonian cycle of length TV (X) in the graph G.

Lemma 2 ([11]). The following bound is valid.

R(X) ≥ max
{

2
n

q
r̄, TV (X)

}
. (2)

Proof. Indeed, the bound
R(X) ≥ TV (X)

is a simple consequence of the triangle inequality.
Consider the subsets X1, . . . , Xl of customers visited by different routes

(tours) of the solution in question. Again, due to the triangle inequality, we
have

R(X) ≥
l∑

j=1

2 max
xi∈Xj

ri ≥ 2
l∑

j=1

∑
xi∈Xj

ri

|Xj | ≥ 2
l∑

j=1

∑
xi∈Xj

ri

q
= 2

n

q
r̄.

Lemma 2 is proved.

For a given instance of the metric CVRP, denote by R∗(X) the optimum
value (of this instance) and by T ∗(X) the length of an optimal Hamiltonian
cycle in the graph G.

Theorem 1 ([11])

max
{

2
n

q
r̄, T ∗(X)

}
≤ R∗(X) ≤ 2

⌈
n

q

⌉
r̄ +

(
1 − 1

q

)
T ∗(X).

Proof. The upper bound can be obtained as a straight-forward consequence of
Lemma 1. Indeed, let H∗ be an arbitrary cheapest Hamiltonian cycle (of length
T ∗(X)) in the graph G. Then, using the claim of Lemma 1 and the evident
inequality �n/q� ≥ n/q, we have the following equation

2
⌈

n

q

⌉
r̄ +

(
1 − 1

q

)
T ∗(X) ≥ 2

⌈
n

q

⌉
r̄ +

(
1 − �n/q�

n

)
T ∗(X) ≥ RH∗(X),

which implies the required bound, since RH∗(X) ≥ R∗(X).
On the other hand, let V ∗ be an optimal solution (of cost R∗(X)) of the

given instance of the CVRP. Then, by Lemma 2, we have

R∗(X) ≥ max
{

2
n

q
r̄, TV ∗(X)

}
≥ max

{
2
n

q
r̄, T ∗(X)

}
,

since T ∗(X) is an optimal value of the corresponding TSP. Theorem1 is proved.

Polynomial Time Approximation Scheme 183

Further, we recall some basic definitions describing the performance of
approximation algorithms for combinatorial optimization (minimization in the
case under consideration) problems. Let OPT be an optimal value of a problem
and APP be its approximate value obtained by some algorithm A. Then relative
error of the algorithm and its approximation ratio are defined by the equations

εA =
APP − OPT

OPT
and ρA =

APP

OPT
,

respectively.
Theorem 1 gives us an ability to represent a performance of ITP-based

approximation algorithms for metric CVRP by means of relative errors of heuris-
tics used in approximation of the inner TSP problem. Indeed, suppose, we obtain
a Hamiltonian cycle H, whose cost is at most (1+ ε)T ∗(X). Then, by Lemma 1,
for the cost RH(X) of ITP-based approximate solution of the CVRP, we obtain

RH(X) ≤ 2
⌈

n

q

⌉
r̄ + (1 − 1/q)(1 + ε)T ∗(X).

Lets analyze the approximation ratio of the resulting heuristic. If ρT - the
approximation ratio of the algorithm for solving TSP, then

RH(X)
R∗(X)

≤
2�n

q �r̄ + (1 − l/n)ρT T ∗(X)

max
{

2n
q r̄, T ∗(X)

}

≤ q

n
+ 1 +

(
1 − �n/q�

n

)
ρT ≤ q

n
+ 1 +

(
1 − 1

q

)
ρT , (3)

since n
q ≤ �n

q � ≤ n+q
q .

If q = o(n) then the right-hand side of equation (3) tends to 1 + ρH as
n → ∞. Therefore, in this case, any ρ-approximation algorithm for the met-
ric TSP induces asymptotically (1 + ρ)-approximation algorithm for the metric
CVRP. For instance, the well-knonw 3/2-approximation Christofides algorithm
accompanied by the ITP heuristic provides 5/2-approximation for CVRP.

Since the running time of the ITP is at most O(n2), the overall complexity
of any ITP-based approximation algorithm is defined by the running time of
the underline approximation algorithm for TSP. In particular, for Christofides
algorithm, we get O(n3).

For the problem on the Euclidean plane there are polynomial-time approx-
imation scheme, proposed by Arora [2]. Using this PTAS, one obtain, for any
c > 1, a polynomial time approximation algorithm for 2d-Euclidean CVRP with
asymptotic approximation ratio of 2 + 1

c .

4 Approximation of TSP in R
3

In the paper [11], some upper bounds for an optimum of the TSP induced by the
considered CVRP based on geometry of the plane were given. In our work, we

184 M. Khachay and H. Zaytseva

Fig. 2. Construction of TSP-tour

extend the technique proposed in [11] to the case of R
3 and obtain the following

result.

Theorem 2. For some constant C > 0, the following bound

T ∗(X) ≤ C 3
√

rmax(nr̄)2

is valid.

Proof. By condition, for any δ > 0, all the customers lie in the sphere with
radius r = rmax(1+ δ) and center in depot. Than we construct the triangulation
of sphere with 4h near equal equilateral triangles. Further we construct the cycle
as follows: starting from the depot we go to the center of triangle, than go to
the arbitrary chosen vertex of the triangle, walk round the triangle and return
to the depot through the center of triangle (Fig. 2). On the next stage we have
to add all the customers to our cycle with the double connection to the closest
radius (Fig. 3).

Now we have to analyze the length of resulting path. The area of each of 4h
triangle is equal to

A� ≤ Asphere

4h
=

4πr2

4h
=

πr2

h

On the other hand A� =
√
3a2

4 , where a is the side of triangle. So, a ≤ 2
√

πr√
h

√
3

=

c1
r√
h

= c1
rmax(1+δ)√

h
, for some constant c1 > 0. Then, the perimeter of any such

a triangle is at most c2
rmax√

h
(again, for some independent constant c2). Length

of the path from the center of triangle to its vertex is also proportional to rmax√
h

.
Hence the length of the tour through each such a pyramid is at most

c3
rmax√

h
+ 2rmax.

Polynomial Time Approximation Scheme 185

Fig. 3. Distance between the customer and the constructed tour

Distance (see Fig. 3) between each customer and the path constructed is at most

ri sin θi ≤ ri sin θ = ri
a√

3(1 + δ)rmax

.

Therefore, this distance can be bounded from above by c4
ri√
h
, for some constant

c4 > 0.
Total length of our tour is comprised of tour through all pyramids and links

to all customers. Therefore, for optimal value T ∗(X) of TSP, we obtain

T ∗(X) ≤ 4h(c3
rmax√

h
+ 2rmax) +

n∑
i=1

2
ri√
h

c4 = c5rmax

√
h + 8rmaxh +

nr̄c4√
h

.

Hence,

T ∗(X) ≤ c6rmaxh +
nr̄c4√

h
, (4)

since
√

h ≤ h for any h ≥ 1.
By taking h = 3

√
(c4nr̄
2c6rmax

)2 in order to minimize the right-hand side of (4)
we obtain the desired result. Theorem 2 is proved.

5 Polynomial Time Approximation Scheme
for Capacitated Vehicle Routing Problem in
3-Dimensional Space

Using the technical result provided by Theorem2, we construct a polyno-
mial time approximation scheme for Capacitated Vehicle Routing Problem in
3-dimensional Euclidean space.

186 M. Khachay and H. Zaytseva

Definition 1. Polynomial Time Approximation Scheme (PTAS) is a family of
algorithms containing, for any ε > 0, an algorithm with an approximation ratio
1 + ε and a running time bounded by a polynomial3 in n.

For construction of PTAS, we will use the ITP heuristic described above
(denote the approximation algorithm obtained as H). For this algorithm and for
any (1 + τ)-approximation algorithm for TSP, Lemma2 and Theorem 2 implies
that

RH(X) ≤ 2r̄(n+q)/q+(1−1/q)(1+τ)T ∗(X) ≤ 2r̄(n+q)/q+(1+τ)C 3
√

rmax(nr̄)2.

Denoting cH = (1 + τ)C we obtain

RH(X) ≤ 2
n + q

q
r̄ + cHr

1
3
max(nr̄)

2
3 (5)

Under Lemma 2,
R∗(X) ≥ 2

∑
ri/q (6)

Consider the following heuristic A(H):

(i). Enumerate customers by decreasing their distance from the depot

r1 ≥ r2 ≥ . . . ≥ rn.

(ii). Take the set X(k) = {x1, . . . , xk−1} of outside customers and find the
optimal solution (for CVRP defined for this subset and the same depot
x0).

(iii). Apply H to the set of inside customers X \ X(k).

Theorem 3. The proposed heuristic A(H) is a polynomial time approximation
scheme for 3d-Euclidean CVRP.

Proof. We need to show that, for any ε > 0, the relative error eA(H)(X) of A(H)
satisfies the inequality eA(H)(X) ≤ ε.

To prove this equation, we obtain an upper bound for eA(H)(X) by the
technique proposed in [11]. Indeed, consider any optimal solution of the given
instance of CVRP and the sphere with radius rk centered at the depot. For any
i-th tour of this solution, by connecting endpoints of any outside sectors to each
other and with the origin we obtain li separate outside subroutes and a single
inside subroute (see Fig. 4), such that

∑
i li ≤ k − 1.

Therefore,

R∗(X(k)) + R∗(X \ X(k)) ≤ R∗(X) + 4(k − 1)rk, (7)

since the length of any chord is at most 2rk.

3 The degree of such a polynomial along with its coefficients can depend on 1/ε.

Polynomial Time Approximation Scheme 187

Fig. 4. Transformation of an optimal solution of CVRP

By construction, for any A(H)-based approximation algorithm,

RA(H)(X) = R∗(X(K)) + RH(X \ X(k)).

Since R∗(X \ X(k)) ≥ 2
∑n

i=k
ri

q , we get

RA(H)(X) ≤ R∗(X(k)) + R∗(X \ X(k)) +
(

RH(X \ X(k)) − 2
∑n

i=k ri

q

)
.

Combining this with (6) and (7) we obtain

eA(H)(X) =
RA(H)(X) − R∗(X)

R∗(X)

≤ 2q(k − 1)
rk∑n
i=1 ri

+
q

2
RH(X \ X(k)) − 2(

∑n
i=k ri)/q∑n

i=1 ri
(8)

Further, since

RH(X \ X(k)) ≤ 2
q

n∑
i=k

ri + 2rk + cHr
1
3
k (nr̄)

2
3 ,

due to (5), we obtain

eA(H)(X) ≤ 2q(k − 1/2)
rk∑n
i=k ri

+
q

2
cH

(
rk∑n
i=k ri

) 1
3

≤ 2qk
rk∑n
i=k ri

+
q

2
cH

(
rk∑n
i=k ri

) 1
3

. (9)

If we choose k so that (9) is less than ε we will have approximation scheme.
All we have to do is to obtain the upper bound on k independent of n. Put
sh = 3

√
rh/

∑
ri, A = 2q, 2B = cHq/2 and investigate the lower bound of

inequality solutions.

Ahs3h + 2Bsh − ε ≥ 0 (h = 1, . . . , k − 1). (10)

Indeed, take any constant D > 0, such that 1 − 2B/D > 0.

188 M. Khachay and H. Zaytseva

Case 1. Suppose, for every h the smallest root sh satisfies the inequality

s3h ≥
(ε

D

)3

.

Therefore,

1 ≥
k−1∑
h=1

s3h = (k − 1)
(ε

D

)3

.

Hence we obtain the requested upper bound

k ≤
(

D

ε

)3

+ 1. (11)

Case 2. If there is h0, such that s3h0
<

(
ε
D

)3. The bound of inequality solu-
tions is decreasing while h is rising, hence for every h > h0 the same inequality
s3h <

(
ε
D

)3 is valid as well. Since B > 0, for every solution of (10), the rougher
inequality takes place:

Ahs3h + 2B
ε

D
− ε ≥ 0

that is why

Ahs3h ≥ ε

(
1 − 2B

D

)
,

and

s3h ≥ ε

(
1 − 2B

D

)(
1

Ah

)
.

Hence,

1 ≥
k−1∑
h=1

s3h ≥ ε

A

(
1 − 2B

D

) k−1∑
h=1

1
h

,

and, since
k−1∑
h=1

1
h

>

∫ k−1

1

1
z

dz = ln(k − 1),

we obtain

1 ≥ ε

A

(
1 − 2B

D

)
ln(k − 1)

and
k ≤ e

A
ε(1−2B/D) + 1. (12)

So, we obtained the upper bound on k, that means that running time of
finding optimal set of routes for outside customers doesn’t depend on n. Since,
other steps of heuristic we can do in polynomial time, we prove that A(H) is
polynomial time approximation scheme. Its running time depends on algorithm
for solving TSP. Theorem3 is proved.

Polynomial Time Approximation Scheme 189

Remark 2. All the arguments give above, carried out with the implicit assump-
tion that right-hand sides of Equations (11) and (12) are at most n. Taking into
account that, for any fixed τ > 0, all of A,B and D are Θ(q), we conclude that
the proposed algorithm based on (1 + τ)-approximation for TSP is a PTAS for
CVRP for q = o(ln n).

6 Conclusion

Extending the approach to construction approximation algorithms for CVRP
on the basis of well-known Iterated Tour Partition (ITP) heuristic, we propose
new polynomial-time approximation scheme for 3d-Euclidean case of the prob-
lem. The proposed approach seem to be expendable to the case of an arbitrary
dimension d ≥ 3, which will be done in forthcoming paper. Also, the future work
can be concerned with extending the result obtained onto the case of Euclidean
multi-depot CVRP of an arbitrary fixed dimension.

Acknowledgements. This research was supported by Russian Foundation for Basic
Research, grants no. 13-01-00210 and 13-07-00181, Center of Excellence in Quantum
and Video Information Technologies at Ural Federal University, and the Complex
Program of Ural Branch of RAS, grant no. 15-7-1-23.

References

1. Adamaszek, C., Czumaj, A., Lingas, A.: PTAS for k-tour cover problem on the
plane for moderately large values of k. Manuscript 1 (2009)

2. Arora, S.: Polynomial time approximation schemes for Euclidean traveling sales-
man and other geometric problems. J. ACM 45(5), 753–782 (1998)

3. Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by
k-tours: a polynomial time approximation scheme for fixed k. IBM Tokyo Research
(1996)

4. Caric, T., Gold, H.: Vehicle Routing Problem. InTech (2008)
5. Christofides, N.: Worst-case analysis of a new heuristic for the traveling salesman

problem. In: Symposium on New Directions and Recent Results in Algorithms and
Complexity, p. 441 (1975)

6. Dantzig, G., Ramser, J.: The truck dispatching problem. Manage. Sci. 6, 80–91
(1959)

7. Das, A., Mathieu, C.: A quasi-polynomial time approximation scheme for Euclid-
ean capacitated vehicle routing. In: Proceedings of the Twenty-first Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA 2010, pp. 390–403. Society
for Industrial and Applied Mathematics, Philadelphia (2010). http://dl.acm.org/
citation.cfm?id=1873601.1873634

8. Das, A., Mathieu, C.: A quasipolynomial time approximation scheme for Euclidean
capacitated vehicle routing. Algorithmica 73, 115–142 (2014)

9. Deineko, V.G., Klinz, B., Tiskin, A., Woeginger, G.J.: Four-point conditions for the
TSP: the complete complexity classification. Discrete Optim. 14, 147–159 (2014)

http://dl.acm.org/citation.cfm?id=1873601.1873634
http://dl.acm.org/citation.cfm?id=1873601.1873634

190 M. Khachay and H. Zaytseva

10. Golden, B., Raghavan, S., Wasil, E. (eds.): The Vehicle Routing Problem: Latest
Advances and New Challenges. perations Research/Computer Science Interfaces,
1st edn. Springer, US (2008)

11. Haimovich, M., Rinnooy Kan, A.H.G.: Bounds and heuristics for capacitated rout-
ing problems. Math. Oper. Res. 10(4), 527–542 (1985)

12. Khachai, M., Neznakhina, E.: Approximability of the problem about a
minimum-weight cycle cover of a graph. Doklady Math. 91(2), 240–245 (2015).
http://dx.doi.org/10.1134/S1064562415020313

13. Khachai, M., Neznakhina, E.: A polynomial-time approximation scheme for the
Euclidean problem on a cycle cover of a graph. Proc. Steklov Inst. Math. 289(1),
111–125 (2015). http://dx.doi.org/10.1134/S0081543815050107

14. Kumar, S., Panneerselvam, R.: A survey on the vehicle routing problem and its
variants. Intell. Inf. Manage. 4, 66–74 (2012)

15. Lenstra, J., Rinnooy Kan, A.: Complexity of vehicle routing and scheduling prob-
lems. Networks 11, 221–227 (1981)

16. Manthey, B.: On approximating restricted cycle covers. SIAM J. Comput. 38,
181–206 (2008)

17. Manthey, B.: Minimum-weight cycle covers and their approximability. Discrete
Appl. Math. 157, 1470–1480 (2009)

18. Papadimitriou, C.: Euclidean TSP is NP-complete. Theoret. Comput. Sci. 4(3),
237–244 (1997)

19. Sahni, S., Gonzales, T.: P-complete approximation problems. J. ACM 23, 555–565
(1976)

20. Toth, P., Vigo, D.: The Vehicle Routing Problem. Monographs on Discrete Math-
ematics and Applications, SIAM (2001)

http://dx.doi.org/10.1134/S1064562415020313
http://dx.doi.org/10.1134/S0081543815050107

Network Optimization

A Fast and Effective Heuristic for Discovering
Small Target Sets in Social Networks

Gennaro Cordasco2, Luisa Gargano1, Marco Mecchia1, Adele A. Rescigno1,
and Ugo Vaccaro1(B)

1 Department of Informatics, University of Salerno, Fisciano, Italy
uvaccaro@unisa.it

2 Department of Psychology, Second University of Naples, Caserta, Italy

Abstract. Given a network represented by a graph G = (V, E), we
consider a dynamical process of influence diffusion in G that evolves as
follows: Initially only the nodes of a given S ⊆ V are influenced; subse-
quently, at each round, the set of influenced nodes is augmented by all
the nodes in the network that have a sufficiently large number of already
influenced neighbors. The question is to determine a small subset of nodes
S (a target set) that can influence the whole network. This is a widely
studied problem that abstracts many phenomena in the social, economic,
biological, and physical sciences. It is known [6] that the above optimiza-

tion problem is hard to approximate within a factor of 2log1−ε |V |, for any
ε > 0. In this paper, we present a fast and surprisingly simple algorithm
that exhibits the following features: (1) when applied to trees, cycles, or
complete graphs, it always produces an optimal solution (i.e., a mini-
mum size target set); (2) when applied to arbitrary networks, it always
produces a solution of cardinality matching the upper bound given in
[1], and proved therein by means of the probabilistic method; (3) when
applied to real-life networks, it always produces solutions that substan-
tially outperform the ones obtained by previously published algorithms
(for which no proof of optimality or performance guarantee is known in
any class of graphs).

1 Introduction

Social networks have been extensively investigated by student of the social sci-
ence for decades (see, e.g., [32]). Modern large scale online social networks, like
Facebook and LinkedIn, have made available huge amount of data, thus lead-
ing to many applications of online social networks, and also to the articulation
and exploration of many interesting research questions. A large part of such
studies regards the analysis of social influence diffusion in networks of people.
Social influence is the process by which individuals adjust their opinions, revise
their beliefs, or change their behaviors as a result of interactions with other
people [11]. It has not escaped the attention of advertisers1 that the process of
social influence can be exploited in viral marketing [26]. Viral marketing refers
1 and politicians too [4,24,29,31].

c© Springer International Publishing Switzerland 2015
Z. Lu et al. (Eds.): COCOA 2015, LNCS 9486, pp. 193–208, 2015.
DOI: 10.1007/978-3-319-26626-8 15

194 G. Cordasco et al.

to the spread of information about products and behaviors, and their adop-
tion by people. According to Lately [23], “the traditional broadcast model of
advertising-one-way, one-to-many, read-only is increasingly being superseded by
a vision of marketing that wants, and expects, consumers to spread the word
themselves”. For what interests us, the intent of maximizing the spread of viral
information across a network naturally suggests many interesting optimization
problems. Some of them were first articulated in the seminal papers [21,22]. The
recent monograph [7] contains an excellent description of the area. In the next
section, we will explain and motivate our model of information diffusion, state the
problem we are investigating, describe our results, and discuss how they relate
to the existing literature.

2 The Model, the Context, and Our Results

Let G = (V,E) be a graph modeling the network. We denote by ΓG(v) and by
dG(v) = |ΓG(v)|, respectively, the neighborhood and the degree of the vertex v in
G. Let t : V → N0 = {0, 1, . . .} be a function assigning thresholds to the vertices
of G. For each node v ∈ V , the value t(v) quantifies how hard it is to influence
node v, in the sense that easy-to-influence elements of the network have “low”
t(·) values, and hard-to-influence elements have “high” t(·) values [20].

Definition 1. Let G = (V,E) be a graph with threshold function t : V → N0

and S ⊆ V . An activation process in G starting at S is a sequence of vertex
subsets2 ActiveG[S, 0] ⊆ ActiveG[S, 1] ⊆ . . . ⊆ ActiveG[S, �] ⊆ . . . ⊆ V of vertex
subsets, with ActiveG[S, 0] = S and

ActiveG[S, �] = ActiveG[S, � − 1] ∪
{

u :
∣∣ΓG(u) ∩ ActiveG[S, � − 1]

∣∣ ≥ t(u)
}

, for � ≥ 1.

A target set for G is set S ⊆ V such that ActiveG[S, λ] = V for some λ ≥ 0

In words, at each round � the set of active nodes is augmented by the set of
nodes u that have a number of already activated neighbors greater or equal
to u’s threshold t(u). The vertex v is said to be activated at round � > 0 if
v ∈ Active[S, �] \ Active[S, � − 1]. The problem we study in this paper is defined
as follows:
Target Set Selection (TSS).
Instance: A network G = (V,E), thresholds t : V → N0.
Problem: Find a target set S ⊆ V of minimum size for G.

2.1 Related Work

The Target Set Selection Problem has roots in the general study of the spread
of influence in Social Networks (see [7,18] and references quoted therein). For
2 In the rest of the paper we will omit the subscript G whenever the graph G is clear

from the context.

A Fast and Effective Heuristic for Discovering Small Target Sets 195

instance, in the area of viral marketing [17], companies wanting to promote
products or behaviors might initially try to target and convince a few individuals
who, by word-of-mouth, can trigger a cascade of influence in the network leading
to an adoption of the products by a much larger number of individuals.

The first authors to study problems of spread of influence in networks from an
algorithmic point of view were Kempe et al. [21,22]. However, they were mostly
interested in networks with randomly chosen thresholds. Chen [6] studied the
following minimization problem: Given a graph G and fixed arbitrary thresholds
t(v), ∀v ∈ V , find a target set of minimum size that eventually activates all
(or a fixed fraction of) nodes of G. He proved a strong inapproximability result
that makes unlikely the existence of an algorithm with approximation factor
better than O(2log

1−ε |V |). Chen’s result stimulated a series of papers [1–3,5,
8–10,12–14,19,27,28,34] that isolated interesting cases in which the problem
(and variants thereof) become tractable. A notable absence from the literature
on the topic (with the exception of [16,30]) are heuristics for the Target Set
Selection Problem that work for general graphs. This is probably due to the
previously quoted strong inapproximability result of Chen [6], that seems to
suggest that the problem is hopeless. Providing such an algorithm for general
graphs, evaluating its performances and experimentally validating it on real-life
networks, is the main objective of this paper.

2.2 Our Results

We present a fast and simple algorithm that exhibits the following features: (1)
It always produces an optimal solution (i.e., a minimum size subset of nodes that
influence the whole network) in case G is either a tree, a cycle, or a complete
graph. These results were previously obtained in [6,27] by means of different
ad-hoc algorithms. (2) For general networks, it always produces a solution S

of cardinality |S| ≤ ∑
v∈V min

(
1, t(v)

d(v)+1

)
, matching the upper bound given

in [1], and proved therein by means of the probabilistic method. (3) In real-life
networks it produces solutions that outperform the ones obtained using the algo-
rithms presented in the papers [16,30], for which, however, no proof of optimality
or performance guarantee is known in any class of graphs. The data sets we use,
to experimentally validate our algorithm, include those considered in [16,30].

It is worthwhile to remark that our algorithm, when executed on a graph G
for which the thresholds t(v) have been set equal to the nodes degree d(v), for
each v ∈ V , it outputs a vertex cover of G, (since in that particular case a target
set of G is, indeed, a vertex cover of G). Therefore, our algorithm appears to
be a new algorithm, to the best of our knowledge, to compute the vertex cover
of graphs (notice that our algorithm differs from the classical algorithm that
computes a vertex cover by iteratively deleting a vertex of maximum degree in
the graph). We plan to investigate elsewhere the theoretical performances of our
algorithm (i.e., its approximation factor); computational experiments suggest
that it performs surprisingly well in practice.

196 G. Cordasco et al.

3 The TSS Algorithm

In this section we present our algorithm for the TSS problem The algorithm,
given in Fig. 1, works by iteratively deleting vertices from the input graph G.
At each iteration, the vertex to be deleted is chosen as to maximize a certain
function. During the deletion process, some vertex v in the surviving graph
may remain with less neighbors than its threshold; in such a case v is added
to the target set and deleted from the graph while its neighbors’ thresholds are
decreased by 1 (since they receive v’s influence). It can also happen that the
surviving graph contains a vertex v whose threshold has been decreased down to
0 (which means that the deleted nodes are able to activate v); in such a case v

Algorithm TSS(G)
Input: A graph G = (V,E) with thresholds t(v) for v ∈ V .
1. S = ∅
2. U = V
3. for each v ∈ V do
4. δ(v) = d(v)
5. k(v) = t(v)
6. N(v) = Γ (v)
7. while U = ∅ do
8. [Select one vertex and eliminate it from the graph as specified in

the following cases]

9. if there exists v ∈ U s.t. k(v) = 0 then
10. [Case 1: The vertex v is activated by the influence of its neighbors

11. in V − U only; it can then influence its neighbors in U]

12. for each u ∈ N(v) do k(u) = max(k(u) − 1, 0)
13. else
14. if there exists v ∈ U s.t. δ(v) < k(v) then
15. [Case 2: The vertex v is added to S, since no sufficient neighbors

16. remain in U to activate it; v can then influence its neighbors in U]

17. S = S ∪ {v}
18. for each u ∈ N(v) do k(u) = k(u) − 1
19. else
20. [Case 3: The vertex v will be influenced by some of

its neighbors in U]

21. v = argmaxu∈U
k(u)

δ(u)(δ(u)+1)

22. [Remove the selected vertex v from the graph]

23. for each u ∈ N(v) do
24. δ(u) = δ(u) − 1
25. N(u) = N(u) − {v}
26. U = U − {v}

Fig. 1. Pseudocode of the TSS algorithm.

A Fast and Effective Heuristic for Discovering Small Target Sets 197

is deleted from the graph and its neighbors’ thresholds are decreased by 1 (since
once v activates, they will receive v’s influence).

In the rest of the paper, we use the following notation. We denote by n the
number of nodes in G, that is, n = |V |. Moreover we denote:

– By vi the vertex that is selected during the n − i + 1-th iteration of the while
loop in TSS(G), for i = n, . . . , 1;

– by G(i) the graph induced by Vi = {vi, . . . , v1}
– by δi(v) the value of δ(v) as updated at the beginning of the (n − i + 1) − th

iteration of the while loop in TSS(G).
– by Ni(v) the set N(v) as updated at the beginning of the (n − i + 1) − th

iteration of the while loop in TSS(G), and
– by ki(v) the value of k(v) as updated at the beginning of the (n − i + 1) − th

iteration of the while loop in TSS(G).

For the initial value i = n, the above values are those of the input graph G, that
is: G(n) = G, δn(v) = d(v), Nn(v) = Γ (v), kn(v) = t(v), for each vertex v of G.

We start with the following two technical Lemmata.

Lemma 1. Consider a graph G. For any i = n, . . . , 1 and u ∈ Vi, it holds that

ΓG(i)(u) = Ni(u) and dG(i)(u) = δi(u). (1)

Proof. For i = n we have dG(n)(u) = dG(u) = δn(u) and ΓG(n)(u) = ΓG(u) =
Nn(u) for any u ∈ Vn = V .
Suppose now that the equalities hold for some i ≤ n. The graph G(i − 1) corre-
sponds to the subgraph of G(i) induced by Vi−1 = Vi − {vi}. Hence

ΓG(i−1)(u) = ΓG(i)(u) − {vi}, dG(i−1)(u) =

{
dG(i)(u) − 1 if u ∈ ΓG(i)(vi),
dG(i)(u) otherwise.

We deduce that the desired equalities hold for i−1 by noticing that the algorithm
uses the same rules to get

Ni−1(u) = Ni(u) − {vi}, δi−1(u) =

{
δi(u) − 1 if u ∈ Ni(vi) = ΓG(i)(vi),
δi(u) otherwise.
�

Lemma 2. For any i > 1, if S(i−1) is a target set for G(i − 1) with thresholds
ki−1(u), for u ∈ Vi−1, then

S(i) =

{
S(i−1) ∪ {vi} if ki(vi) > δi(vi)
S(i−1) otherwise

(2)

is a target set for G(i) with thresholds ki(u), for u ∈ Vi.

Proof. Let us first notice that, according to the algorithm TSS, for each u ∈ Vi−1

we have

ki−1(u) =

{
max(ki(u)−1, 0) if u ∈ Ni(vi) and (ki(vi) = 0 or ki(vi) > δi(vi))
ki(u) otherwise.

(3)

198 G. Cordasco et al.

(1) If ki(vi) = 0, then vi ∈ ActiveG(i)[S(i), 1] whatever S(i) ⊆ Vi − {vi}. Hence,
by the (3) any target set S(i−1) for G(i − 1) is also a target set for G(i).

(2) If ki(vi) > δi(vi) then S(i) = S(i−1) ∪ {vi} and ki−1(u) = ki(u) − 1 for each
u ∈ Ni(vi). It follows that for any � ≥ 0,

ActiveG(i)[S(i−1) ∪ {vi}, �] − {vi} = ActiveG(i−1)[S(i−1), �].

Hence, ActiveG(i)[S(i), �] = ActiveG(i−1)[S(i−1), �] ∪ {vi}.
(3) Let now 1 ≤ ki(vi) ≤ δi(vi). We have that ki−1(u) = ki(u) for each u ∈ Vi−1.

If S(i−1) is a target set for G(i−1), by definition there exists an integer λ such
that ActiveG(i−1)[S(i−1), λ] = Vi−1. We then have Vi−1 ⊆ ActiveG(i)[S(i−1), λ]
which implies ActiveG(i)[S(i−1), λ + 1] = Vi.
�
We can now prove the main result of this section.

Theorem 1. For any graph G and threshold function t, the algorithm TSS(G)
outputs a target set for G.

Proof. Let S be the output of the algorithm TSS(G). We show that for each
i = 1, . . . , n the set S ∩ {vi, . . . , v1} is a target set for the graph G(i), assuming
that each vertex u in G(i) has threshold ki(u). The proof is by induction on the
number i of nodes of G(i).
If i = 1 then the unique vertex v1 in G(1) either has threshold k1(v1) = 0 and
S ∩ {v1} = ∅ or the vertex has positive threshold k1(v1) > δ1(v1) = 0 and
S ∩ {v1} = {v1}.

Consider now i > 1 and suppose the algorithm be correct on G(i − 1), that
is, S ∩{vi−1, . . . , v1} is a target set for G(i−1) with threshold function ki−1. We
notice that in each among Cases 1, 2 and 3, the algorithm updates the thresholds
and the target set according to Lemma 2. Hence, the algorithm is correct on G(i)
with threshold function ki. The theorem follows since G(n) = G.
�
It is possible to see that the TSS algorithm can be implemented so to run in
O(|E| log |V |) time. Indeed we need to process the nodes v ∈ V according to the
metric t(v)/(d(v)(d(v) + 1)), and the updates that follow each processed node
v ∈ V involve at most d(v) neighbors v.

4 Estimating the Size of the Solution

In this section we prove an upper bound on the size of the target set obtained by
the algorithm TSS(G) for any input graph G. Our bound, given in Theorem 2,
matches the bound given in [1]. However, the result in [1] is based on the prob-
abilistic method and an effective algorithm results only by applying suitable
derandomization steps.

Theorem 2. For any G, the algorithm TSS(G) outputs a target set S of size

|S| ≤
∑
v∈V

min
(

1,
t(v)

d(v) + 1

)
. (4)

A Fast and Effective Heuristic for Discovering Small Target Sets 199

Proof. Let W (G(i)) =
∑i

j=1 min
(
1,

ki(vj)
δi(vj)+1

)
. We prove by induction on i that

|S ∩ {vi, . . . , v1}| ≤ W (G(i)). (5)

The bound (4) on S follows recalling that G(n) = G. If i = 1 we have |S∩{v1}| =
min

(
1, k1(v1)

δ1(v1)+1

)
= W (G(1)). Assume now (5) holds for i − 1 ≥ 1, and consider

G(i) and the node vi. We have

|S ∩ {vi, . . . , v1}| = |S ∩ {vi}| + |S ∩ {vi−1, . . . , v1}| ≤ |S ∩ {vi}| + W (G(i − 1)).

We show that W (G(i)) ≥ W (G(i−1))+ |S∩{vi}|. Recalling that Ni(vi) denotes
the neighborhood of vi in G(i), we have

W (G(i)) − W (G(i − 1))

=
i∑

j=1

min

(
1,

ki(vj)

δi(vj) + 1

)
−

i−1∑

j=1

min

(
1,

ki−1(vj)

δi−1(vj) + 1

)

= min

(
1,

ki(vi)

δi(vi) + 1

)
+
∑

v∈Ni(vi)

[
min

(
1,

ki(v)

δi(v) + 1

)
− min

(
1,

ki−1(v)

δi−1(v) + 1

)]

Therefore, we get

W (G(i)) − W (G(i − 1))

= min
(

1,
ki(vi)

δi(vi) + 1

)
+

∑
v∈Ni(vi)

ki(v)≤δi(v)

[
ki(v)

δi(v) + 1
− ki−1(v)

δi−1(v) + 1

]
(6)

We distinguish three cases according to the cases in the algorithm TSS(G).

– Suppose that Case 1 of the Algorithm TSS holds; i.e. ki(vi) = 0. By (6),

W (G(i)) − W (G(i − 1)) =
∑

v∈Ni(vi)
ki(v)≤δi(v)

[
ki(v)

δi(v) + 1
− ki(v) − 1

δi(v)

]

≥ 0 = |S ∩ {vi}|.

– Suppose that Case 2 of the algorithm holds; i.e. ki(vi) ≥ δi(vi)+1. By (6),

W (G(i)) − W (G(i − 1)) = 1 +
∑

v∈Ni(vi)
ki(v)≤δi(v)

[
ki(v)

δi(v) + 1
− ki(v) − 1

δi(v)

]

≥ 1 = |S ∩ {vi}|.

– Suppose that Case 3 holds; i.e. ki(vi) ≤ δi(vi). In such a case we know that

ki(v)
δi(v)(δi(v) + 1)

≤ ki(vi)
δi(vi)(δi(vi) + 1)

200 G. Cordasco et al.

for each v ∈ {vi, . . . , v1} and S ∩ {vi} = ∅. By this and (6) we get

W (G(i)) − W (G(i − 1)) =
ki(vi)

δi(vi) + 1
+

∑
v∈Ni(vi)

ki(v)≤δi(v)

[
ki(v)

δi(v) + 1
− ki(v)

δi(v)

]

=
ki(vi)

δi(vi) + 1
−

∑
v∈Ni(vi)

ki(v)≤δi(v)

ki(v)
δi(v)(δi(v) + 1)

≥ ki(vi)
δi(vi) + 1

− ki(vi)
δi(vi) + 1

= 0 = |S ∩ {vi}|.
�

5 Proofs of Optimality

In this section, we prove that our algorithm TSS provides a unified setting for
several results, obtained in the literature by means of different ad hoc algorithms.
Trees, cycles and cliques are among the few cases known to admit optimal poly-
nomial time algorithms for the TSS problem [6,27]. In the following, we prove
that our algorithm TSS provides the first unifying setting for all these cases.

Theorem 3. The algorithm TSS(T) returns an optimal solution for any tree T .

Proof. Let T = (V,E) and n = |V |. We recall that for i = 1, . . . , n: vi denotes
the node selected during the n− i+1-th iteration of the while loop in TSS, T (i)
is the forest induced by the set Vi = {vi, . . . , v1}, and δi(v) and ki(v) are the
degree and threshold of v, for v ∈ Vi. Let S be the target set produced by the
algorithm TSS(T). We prove by induction on i that

|S ∩ {vi, . . . , v1}| = |S∗
i |, (7)

where S∗
i represents an optimal target set for the forest T (i) with threshold

function ki. For i = 1, it is immediate that for the only node v1 in F (1) one has

S ∩ {v1} = S∗
1 =

{
∅ if k1(v1) = 0
{v1} otherwise.

Suppose now (7) true for i − 1 and consider T (i) and the selected node vi.

1. Assume ki(vi) = 0. We get |S ∩{vi, . . . , v1}| = |S ∩{vi−1, . . . , v1}| = |S∗
i−1| ≤

|S∗
i | and the equality (7) holds for i.

2. Assume ki(vi) ≥ δi(vi) + 1. Clearly, any solution for T (i) must include node
vi, otherwise it cannot be activated. This implies that

|S∗
i | = 1 + |S∗

i−1| = 1 + |S ∩ {vi−1, . . . , v1}| = |S ∩ {vi, . . . , v1}|

and (7) holds for i.

A Fast and Effective Heuristic for Discovering Small Target Sets 201

3. Suppose now that vi = argmaxi≥j≥1 {ki(vj)/(δi(vj)(δi(vj) + 1))}. In this case
each leaf vj in T (i) has

ki(v�)
δi(v�)(δi(v�) + 1)

=
1
2

while each internal node v� has

ki(v�)
δi(v�)(δi(v�) + 1)

≤ 1
δi(v�) + 1

≤ 1
3
.

Hence the selected node is a leaf in T (i) and has ki(vi) = δi(vi) = 1. Hence
|S ∩ {vi, . . . , v1}| = |S ∩ {vi−1, . . . , v1}| = |S∗

i−1| ≤ |S∗
i |.
�

Theorem 4. The algorithm TSS(C) outputs an optimal solution if C is a cycle.

Proof. If the first selected node vn has threshold 0 then clearly vn ∈ S∗ for any
optimal solution S∗.
If the threshold of vn is larger than its degree then clearly vn ∈ S∗ for any
optimal solution S∗. In both cases vn ∈ Active[S∗, 1] and its neighbors can use
vn’s influence; that is, the algorithm correctly sets kn−1 = max(kn − 1, 0) for
these two nodes.

If threshold of each node v ∈ V is 1 ≤ t(v) ≤ d(v), we get that during the first
iteration of the algorithm TSS(C), the selected node vn satisfies Case 3 and has
t(vn) = 2 if at least one of the nodes in C has threshold 2, otherwise t(vn) = 1.
Moreover, it is not difficult to see that there exists an optimal solution S∗ for C
such that S∗ ∩ {vn} = ∅.

In each case, the result follows by Theorem 3, since the remaining graph is a
path on nodes vn−1, . . . , v1.
�
Theorem 5. Let K = (V,E) be a clique with V = {u1, . . . , un} and t(u1) ≤
. . . ≤ t(un−m) < n ≤ t(un−m+1) ≤ . . . ≤ t(un). The algorithm TSS(K) outputs
an optimal target set of size

m + max
1≤j≤n−m

max(t(uj) − m − j + 1, 0). (8)

Proof. It is well known that there exists an optimal target set S∗ consisting of
the |S∗| nodes of higher threshold [27]. Being S∗ a target set, each node uj must
activate, that is, uj ∈ Active[S, i] for some i ≥ 0. Assume V = {u1, . . . , un} and
t(u1) ≤ . . . ≤ t(un−m) < n ≤ t(un−m+1) ≤ . . . ≤ t(un). Since the thresholds are
non decreasing with the node index, it follows that:

– for each of the m nodes s.t. t(uj) ≥ n, it must hold uj ∈ S∗, hence |S∗| ≥ m;
– for each j ≤ n − |S∗|, the node uj activates if it gets, in addition to the

influence of its m neighbors with threshold larger than n − 1, the influence of
t(uj) − m other neighbors, hence we have that t(uj) − m ≤ j − 1 + (|S∗| − m)
must hold;

– if n − |S∗| + 1 ≤ j ≤ n − m, then

202 G. Cordasco et al.

t(uj) − m − j + 1 ≤ (n − 1) − m − (n − |S∗| + 1) + 1 = |S∗| − m + 1.

Summarizing, we get,

|S∗| ≥ m + max
1≤j≤n−m

max (t(uj) − m − j + 1, 0) .

We show now that the algorithm TSS outputs a target set S whose size is upper
bounded by the value in (8). In general, the output S does not consist of the
nodes having the highest thresholds.
Consider the residual graph K(i) = (Vi, Ei), for some 1 ≤ i ≤ n. It is easy to
see that for any uj , us ∈ Vi it holds

(1) δi(uj) = i;
(2) if j < s then ki(uj) ≤ ki(us);
(3) if t(uj) ≥ n then ki(uj) ≥ i,
(4) if t(uj) < n then ki(uj) ≤ i.

W.l.o.g. we assume that at any iteration of algorithm TSS if the node to be
selected is not unique then the tie is broken as follows (cfr. point (2) above):

(i) If Case 1 holds then the selected node is the one with the lowest index,
(ii) otherwise the selected node is the one with the largest index.

Clearly, this implies that K(i) contains i nodes with consecutive indices among
u1, . . . , un, that is,

Vi = {u�i
, u�i+1, . . . , uri

} (9)

for some �i ≥ 1 and ri = �i + i − 1.
Let h = n − m. We shall prove by induction on i that, for each i = n, . . . , 1,

at the beginning of the n − i + 1-th iteration of the while loop in TSS(K), it
holds

|S ∩ Vi| ≤
{

(ri − h) + max�i≤j≤h max(ki(uj) − (ri − h) − j + �i, 0) if ri > h,
max�i≤j≤ri

max(ki(uj) − j + �i, 0) if ri ≤ h.
(10)

The upper bound (8) follows when i = n; indeed K(n) = K and |S| = |S∩V (n)|.
For i = 1, K(1) is induced by only one node, let say u, and

|S ∩ {u}| =

{
1 if k1(u) ≥ 1,
0 if k1(u) = 0.

proving that the bound holds in this case.
Suppose now (10) true for some i−1 ≥ 1 and consider the n−i+1-th iteration of
the algorithm TSS. Let v be the node selected by algorithm TSS at the n− i+1-
th iteration. We distinguish three cases according to the cases of the algorithm
TSS(G).

A Fast and Effective Heuristic for Discovering Small Target Sets 203

Case 1: ki(v) = 0. By (i) and (9), one has v = u�i
, �i−1 = �i + 1 and ri−1 = ri.

Moreover, ki(uj) = ki−1(uj) + 1 for each uj ∈ Vi−1. Hence,

|S ∩ Vi| = |S ∩ Vi−1|

≤
{

(ri−h) + max�i+1≤j≤h max(ki−1(uj) − (ri−h) − j + �i + 1, 0) if ri > h,
max�+1≤j≤r max(ki−1(uj) − j + � + 1, 0) if ri ≤ h,

=

{
(ri − h) + max�i≤j≤h max(ki(uj) − (ri − h) − j + �i, 0) if ri > h,
max�≤j≤r max(ki(uj) − j + �, 0) if r ≤ h.

Case 2: ki(v) > δi(v). By (ii) and (9) we have v = uri
, �i = �i−1, ri−1 = ri − 1.

Moreover, ki(uj) = ki−1(uj) + 1 for each uj ∈ Vi−1. Recalling relations (3) and
(4), we have

|S ∩ Vi| = 1 + |S ∩ Vi−1|

≤ 1 +

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(ri−1−h) + max�i−1≤j≤h max(ki−1(uj) − (ri−1 − h) − j + �i−1, 0)
if ri−1 > h,

max�i−1≤j≤ri−1 max(ki−1(uj) − j + �i−1, 0)
if ri−1 ≤ h,

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(ri − h) + max�i≤j≤h max(ki−1(uj) + 1 − (ri − h) − j + �i, 0)
if ri − 1 > h,

max�≤j≤ri−1 max(ki−1(uj) + 1 − j + �i, 1)
if ri − 1 ≤ h.

=

{
(ri − h) + max{0,max�i≤j≤h ki(uj) − (ri − h) − j + �i} if ri > h,
max{0,max�i≤j≤ri

ki(uj) − j + �i} if ri ≤ h.

Case 3: 0 < ki(v) ≤ δi(v). By (ii) and (9) we have v = uri
, �i = �i−1, ri−1 =

ri −1. Moreover, ki(uj) = ki−1(uj) for each uj ∈ Vi−1. Recalling that by (3) and
(4) we have t(ur) < n, which implies ri ≤ h, we have

|S ∩ Vi| = |S ∩ Vi−1| ≤ max
�i−1≤j≤ri−1

max(ki−1(uj) − j + �i−1, 0)

≤ max
�i≤j≤ri−1

max(ki(uj) − j + �i, 0)

≤ max
�i≤j≤ri

max(ki(uj) − j + �i, 0).
�

6 Computational Experiments

We have extensively tested our algorithm TSS(G) both on random graphs and
on real-world data sets, and we found that our algorithm performs surprisingly
well in practice. This seems to suggest that the otherwise important inapprox-
imability result of Chen [6] refers to rare or artificial cases.

204 G. Cordasco et al.

6.1 Random Graphs

The first set of tests was done in order to compare the results of our algorithm to
the exact solutions, found by formulating the problem as an 0–1 Integer Linear
Programming (ILP) problem. Although the ILP approach provides the optimal
solution, it fails to return the solution in a reasonable time (i.e., days) already for
moderate size networks. We applied both our algorithm and the ILP algorithm to
random graphs with up to 50 nodes. Our algorithm produced target sets of size
close to the optimal; for several instances it found an optimal solution (Fig. 2).

Fig. 2. Experiments for random graphs G(n, p) on n nodes (any possible edge occurs
independently with probability 0 < p < 1). (a) n = 30, (b) n = 50 with p ∈
{10/100, 20/100, . . . , 90/100}. For each node the threshold was fixed to a random value
between 1 and the node degree.

6.2 Large Real-Life Networks

We performed experiments on several real social networks of various sizes from
the Stanford Large Network Data set Collection (SNAP) [25] and the Social
Computing Data Repository at Arizona State University [33]. The data sets we
considered include both networks for which small target sets exist and
networks needing larger target sets (due to the existence of communities, i.e.,
tightly connected disjoint groups of nodes that appear to delay the diffusion
process). We compare the performance of our algorithm TSS toward that of
the best, to our knowledge, computationally feasible algorithms in the litera-
ture. Namely, we compare to Algorithm TIP DECOMP recently presented in
[30], in which nodes minimizing the difference between degree and threshold are
pruned from the graph until a “core” set is produced. We also compare our
algorithm to the VirAds algorithm presented in [16]. Finally, we compare to an
(enhanced) Greedy strategy, in which nodes of maximum degree are iteratively
inserted in the target set and pruned from the graph. Nodes that remains with
zero threshold are simply eliminated from the graph, until no node remains All
test results consistently show that the TSS algorithm we introduce in this paper

A Fast and Effective Heuristic for Discovering Small Target Sets 205

Fig. 3. Target set size in function of node thresholds. Following the scenario considered
in [30], the threshold are kept constant among all nodes and set to an integer in the
interval [1,10]; hence, comparisons are reported for this scenario. The datasets are (a)
BlogCatalog2, (b) CA-HepPh, (c) Delicious, (d) Ca-CondMat.

presents the best performances on all the considered data sets, while none among
TIP DECOMP, VirAds, and Greedy is always better than the other two (Fig. 3).

The following data set were used in our testing. Additional experimental data
will be given in the journal version of the paper.

– BlogCatalog2 [33]: a friendship network crawled from BlogCatalog. a social
blog directory website which manages the bloggers and their blogs. It has
97,884 nodes and 2,043,701 edges. Each node represents a blogger and the
network contains an edge (u, v) if blogger u is friend of blogger v.

206 G. Cordasco et al.

– CA-HepPh [25]: A collaboration network of Arxiv HEP-PH (High Energy
Physics - Phenomenology), it covers scientific collaborations between authors
papers submitted to this category, from January 1993 to April 2003. It has
12008 nodes and 118521 edges. Each node represents an author and the net-
work contains an edge (u, v) if an author u co-authored a paper with author v.

– Delicious [33]: A friendship network crawled on Delicious, a social bookmark-
ing web service for storing, sharing, and discovering web bookmarks. It has
103144 nodes and 1419519 edges.

– Ca-CondMat [25]: A collaboration network of Arxiv COND-MAT (Condense
Matter Physics). It has 5242 nodes and 14496 edges.

7 Concluding Remarks

We presented a simple algorithm to find small sets of nodes that influence a
whole network, where the dynamic that governs the spread of influence in the
network is given in Definition 1. In spite of its simplicity, our algorithm is optimal
for several classes of graphs, it matches the general upper bound given in [1]
on the cardinality of a minimal influencing set, and outperforms, on real life
networks, the performances of known heuristics for the same problem. There are
many possible ways of extending our work. We would be especially interested
in discovering additional interesting classes of graphs for which our algorithm is
optimal (we conjecture that this is indeed the case). It would be also interesting
to apply our techniques to extensions of the basic model of information diffusion
considered here, e.g., to the scenario considered in [15].

References

1. Ackerman, E., Ben-Zwi, O., Wolfovitz, G.: Combinatorial model and bounds for
target set selection. Theor. Comput. Sci. 411, 4017–4022 (2010)

2. Bazgan, C., Chopin, M., Nichterlein, A., Sikora, F.: Parameterized approximability
of maximizing the spread of influence in networks. In: Du, D.-Z., Zhang, G. (eds.)
COCOON 2013. LNCS, vol. 7936, pp. 543–554. Springer, Heidelberg (2013)

3. Ben-Zwi, O., Hermelin, D., Lokshtanov, D., Newman, I.: Treewidth governs the
complexity of target set selection. Discrete Optim. 8, 87–96 (2011)

4. Bond, R.M., et al.: A 61-million-person experiment in social influence and political
mobilization. Nature 489, 295–298 (2012)

5. Centeno, C.C., et al.: Irreversible conversion of graphs. Theor. Comput. Sci.
412(29), 3693–3700 (2011)

6. Chen, N.: On the approximability of influence in social networks. SIAM J. Discrete
Math. 23, 1400–1415 (2009)

7. Chen, W., Lakshmanan, L.V.S., Castillo, C.: Information and Influence Propaga-
tion in Social Networks. Morgan & Claypool, San Francisco (2013)

8. Chopin, M., Nichterlein, A., Niedermeier, R., Weller, M.: Constant thresholds can
make target set selection tractable. In: Even, G., Rawitz, D. (eds.) MedAlg 2012.
LNCS, vol. 7659, pp. 120–133. Springer, Heidelberg (2012)

9. Chiang, C.-Y., Huang, L.-H., Yeh, H.-G.: Target set selection problem for honey-
comb networks. SIAM J. Discrete Math. 27(1), 310–328 (2013)

A Fast and Effective Heuristic for Discovering Small Target Sets 207

10. Chiang, C.-Y., Huang, L.-H., Li, B.-J., Wu, J., Yeh, H.-G.: Some results on the
target set selection problem. J. Comb. Opt. 25(4), 702–715 (2013)

11. Christakis, N.A., Fowler, J.H.: Connected: The surprising Power of our Social Net-
works and how they Shape our Lives. Little, Brown (2011)

12. Cicalese, F., Cordasco, G., Gargano, L., Milanic, M., Vaccaro, U.: Latency-bounded
target set selection in social networks. Theoret. Comput. Sci. 535, 1–15 (2014)

13. Cicalese, F., Cordasco, G., Gargano, L., Milanič, M., Peters, J.G., Vaccaro, U.:
Spread of influence in weighted networks under time and budget constraints. Theor.
Comput. Sci. 586, 40–58 (2015)

14. Coja-Oghlan, A., Feige, U., Krivelevich, M., Reichman, D.: Contagious sets in
expanders. In: Proceedings of SODA 2015, pp. 1953–1987 (2015)

15. Demaine, E.D., et al.: How to influence people with partial incentives. In: Proceed-
ings of WWW 2014, pp. 937–948 (2014)

16. Dinh, T.N., Zhang, H., Nguyen, D.T., Thai, M.T.: Cost-effective viral marketing
for time-critical campaigns in large-scale social networks. IEEE/ACM ToN 22(6),
2001–2011 (2014)

17. Domingos, P., Richardson, M.: Mining the network value of customers. In: ACM
International Conference on Knowledge Discovery and Data Mining, pp. 57–66
(2001)

18. Easley, D., Kleinberg, J.: Networks, Crowds, and Markets: Reasoning About a
Highly Connected World. Cambridge University Press, Cambridge (2010)

19. Gargano, L., Hell, P., Peters, J., Vaccaro, U.: Influence diffusion in social networks
under time window constraints. Theor. Comput. Sci. 584, 53–66 (2015)

20. Granovetter, M.: Threshold models of collective behavior. Am. J. Sociol. 83, 1420–
1443 (1978)

21. Kempe, D., Kleinberg, J.M., Tardos, E.: Maximizing the spread of influence
through a social network. In: Proceedings of the Ninth ACM SIGKDD, pp. 137–146
(2003)

22. Kempe, D., Kleinberg, J.M., Tardos, É.: Influential nodes in a diffusion model
for social networks. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C.,
Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 1127–1138. Springer, Heidelberg
(2005)

23. Lately, D.: An army of eyeballs: the rise of the advertisee. The Baffler, 12 Septmeber
2014

24. Leppaniemi, M., et al.: Targeting young voters in apolitical campaign: empirical
insights into an interactive digitalmarketing campaign in the 2007 Finnish general
election. J. Nonprofit Public Sect. Mark. 22, 14–37 (2010)

25. Leskovec, J., Sosič, R.: SNAP: a general purpose network analysis and graph mining
library in C++ (2014). http://snap.stanford.edu/snap

26. Leskovic, H., Adamic, L.A., Huberman, B.A.: The dynamic of viral marketing. J.
ACM Trans. Web (TWEB) 1(1), 1–39 (2007). Article No 5

27. Nichterlein, A., Niedermeier, R., Uhlmann, J., Weller, M.: On tractable cases of
target set selection. Soc. Netw. Anal. Min. 3, 233–256 (2012)

28. Reddy, T.V.T., Rangan, C.P.: Variants of spreading messages. J. Graph Algorithms
Appl. 15(5), 683–699 (2011)

29. Rival, J.-B., Walach, J.: The use of viral marketing in politics: a case study of the
2007 French presidential election. Master Thesis, Jönköping University

30. Shakarian, P., Eyre, S., Paulo, D.: A scalable heuristic for viral marketing under
the tipping model. Soc. Netw. Anal. Min. 3, 1225–1248 (2013)

31. Tumulty, K.: Obama’s viral marketing campaign. TIME Mag. (2007). http://
content.time.com/time/magazine/article/0,9171,1640402,00.html

http://snap.stanford.edu/snap
http://content.time.com/time/magazine/article/0,9171,1640402,00.html
http://content.time.com/time/magazine/article/0,9171,1640402,00.html

208 G. Cordasco et al.

32. Wasserman, S., Faust, K.: Social Network Analysis: Methods and Applications.
Cambridge University Press, Cambridge (1994)

33. Zafarani, R., Liu, H.: Social Computing Data Repository at ASU (2009). http://
socialcomputing.asu.edu

34. Zaker, M.: On dynamic monopolies of graphs with general thresholds. Discrete
Math. 312(6), 1136–1143 (2012)

35. Zhang, H., Mishra, S., Thai, M.T.: Recent advances in information diffusion and
influence maximization of complex social networks. In: Wu, J., Wang, Y. (eds.)
Opportunistic Mobile Social Networks. CRC Press, Taylor & Francis Group (2014,
to appear)

http://socialcomputing.asu.edu
http://socialcomputing.asu.edu

An Efficient Shortest-Path Routing Algorithm
in the Data Centre Network DPillar

Alejandro Erickson1(B), Abbas Eslami Kiasari2,
Javier Navaridas2, and Iain A. Stewart1

1 School of Engineering and Computing Sciences, Durham University,
Science Labs, South Road, Durham DH1 3LE, UK
{alejandro.erickson,i.a.stewart}@durham.ac.uk

2 School of Computer Science, University of Manchester,
Oxford Road, Manchester M13 9PL, UK

{abbas.kiasari,javier.navaridas}@manchester.ac.uk

Abstract. DPillar has recently been proposed as a server-centric data
centre network and is combinatorially related to the well-known wrapped
butterfly network. We explain the relationship between DPillar and the
wrapped butterfly network before proving a symmetry property of DPil-
lar. We use this symmetry property to establish a single-path routing
algorithm for DPillar that computes a shortest path and has time com-
plexity O(k log(n)), where k parameterizes the dimension of DPillar and
n the number of ports in its switches. Moreover, our algorithm is triv-
ial to implement, being essentially a conditional clause of numeric tests,
and improves significantly upon a routing algorithm earlier employed for
DPillar. A secondary and important effect of our work is that it empha-
sises that data centre networks are amenable to a closer combinatorial
scrutiny that can significantly improve their computational efficiency and
performance.

Keywords: Data centre networks · Routing algorithms · Shortest paths

1 Introduction

A data centre network (DCN) is the topology by which the servers, switches and
other components of a data centre are interconnected and the choice of DCN
strongly influences the data centre’s practical performance (see, e.g., [13]). DCNs
have traditionally been tree-like and switch-centric; that is, so that the servers
are located at the ‘leaves’ of a tree-like structure that is composed entirely of
switches and where the interconnection intelligence resides within the switches.
Typical examples of such switch-centric DCNs are ElasticTree [9], Fat-Tree [4],
VL2 [5], HyperX [3], Portland [14] and Flattened Butterfly [1]. However, it is gen-
erally acknowledged that tree-like, switch-centric DCNs have deficiencies when
it comes to, for example, scalability with the core switches (at the ‘roots’ of the
tree-like structure) quickly becoming bottlenecks.

c© Springer International Publishing Switzerland 2015
Z. Lu et al. (Eds.): COCOA 2015, LNCS 9486, pp. 209–220, 2015.
DOI: 10.1007/978-3-319-26626-8 16

210 A. Erickson et al.

Alternative architectures have recently emerged and server-centric DCNs
have been proposed whereby the interconnection intelligence resides within the
servers as opposed to the switches. Now, switches only operate as dumb crossbars
(and so the need for high-end switches is diminished as are the infrastructure
costs). This paradigm shift means that more scalable topologies can be designed
and the fact that routing resides within servers means that more effective routing
algorithms can be adopted. However, packet latency can increase in server-centric
DCNs, with the need to handle routing providing a computational overhead on
the server. Nevertheless, server-centric data centres are now becoming commer-
cially available. Typical examples of server-centric DCNs are DCell [7], BCube
[8], FiConn [10], CamCube [2], MCube [15], DPillar [12], HCN and BCN [6] and
SWKautz, SWCube and SWdBruijn [11]. An additional positive aspect of some
server-centric DCNs is that not only can commodity switches be used to build
the data centres but commodity servers can too: the DCNs FiConn, MCube,
DPillar, HCN, BCN, SWKautz, SWCube and SWdBruijn are all such that any
server only needs two NIC ports (the norm in commodity servers) in order to
incorporate it into the DCN.

It is with the DCN DPillar that we are concerned here. In [12], basic prop-
erties of DPillar are demonstrated and single-path and multi-path routing algo-
rithms are developed (along with a forwarding methodology for the latter). Our
focus here is on single-path routing. The algorithm in [12] is appealing in its
simplicity but for most source-destination pairs it does not produce a path of
shortest length. We remedy this situation and develop a single-path routing algo-
rithm that always outputs a shortest path and does so in linear time complexity.
What is more, although the proof of correctness of our algorithm is non-trivial,
the actual algorithm itself is a very simple sequence of numeric tests and conse-
quently yields no implementation difficulties.

A pervasive theme within our work is that the design and performance of
modern data centres can benefit significantly from additional combinatorial and
mathematical analysis. Often, when new DCNs are proposed they are done so
within a broader context so that the topology is considered as part of a wider
and more practically-driven network environment. As such, the analysis is often
empirical with a key aim being to demonstrate the practical viability of the DCN
taking into account issues relating to, for example, infrastructure costs, traffic
patterns, fault tolerance, network protocols and so on. Such presentations are
often impressive in holistic terms but unavoidably basic in terms of combinatorial
sophistication: the driver of practical viability means that there is a lessened
inclination to optimize the various intrinsic components. It is once practical
viability has been established that a closer combinatorial scrutiny can lead to
improved performance (as we demonstrate here).

2 The DCN DPillar

We abstract the DCN DPillar as an undirected graph whose nodes represent the
servers of the DCN DPillar and whose edges represent pairs of servers that are

Shortest-Path Routing in DPillar 211

Fig. 1. Visualizing DPillar6,3.

connected to the same switch. Representing a sever-switch-server connection of
the DCN DPillar by one edge of the graph serves to reflect the negligible latency
overheads encountered in a crossbar switch as compared to the overheads of
routing through a server. We call this graph DPillarn,k when the DCN has
dimension k and each switch has n-ports, where 2|n. A node in column c with
row-index vk−1vk−2 · · · v0 is labelled (c, vk−1vk−2 · · · v0) with 0 ≤ c < k and
0 ≤ vi < n

2 for 0 ≤ i < k. DPillarn,k has 4 types of edges, called clockwise
edges (c-edges), anti-clockwise edges (a-edges), basic static edges (b-edges), and
decremented static edges (d-edges), which are of the following form:

(c): ((c, vk−1 . . . vc+1vcvc−1 . . . v0), (c + 1, vk−1 . . . vc+1 ∗ vc−1 . . . v0))
(a): ((c, vk−1 . . . vcvc−1vc−2 . . . v0), (c − 1, vk−1 . . . vc ∗ vc−2 . . . v0))
(b): ((c, vk−1 . . . vc+1vcvc−1 . . . v0), (c, vk−1 . . . vc+1 ∗ vc−1 . . . v0))
(d): ((c, vk−1 . . . vcvc−1vc−2 . . . v0), (c, vk−1 . . . vc ∗ vc−2 . . . v0)).

The c and b edges characterise the servers connected to the same column-c
switch as the server represented by (c, vk−1vk−2 · · · v0), whilst the a and d edges
characterise the servers connected to the same column-(c − 1) switch as the
server represented by (c, vk−1vk−2 · · · v0). The DCN DPillar6,3 can be visualized
as in Fig. 1, where switches are shown and the left-most and right-most columns
are actually the same columns, represented twice for clarity, with the graph
DPillar6,3 obtained by replacing each switch by a clique of edges on 6 nodes.

We shall rely on symmetry within DPillarn,k; the term is used but not defined
in [12], and the literature on DCN design tends to use ‘symmetry’ somewhat
loosely. We omit the (straightforward) proof of the following result due to space
constraints. Our notion of symmetry is node-symmetry (i.e., vertex-transitivity).

Lemma 1. The graph DPillarn,k is node-symmetric.

As a result of Lemma 1, the problem of routing from a node src to a node dst,
is equivalent to the problem of routing from node φ(src) to the node φ(dst) =
(0, 00 · · · 0), where φ is an automorphism of DPillarn,k (such automorphisms may

212 A. Erickson et al.

be constructed explicitly to prove Lemma 1). Suppose a (φ(src), φ(dst))-path
p0, p1, . . . , p�−1 is found. The desired (src, dst)-path is φ−1(p0), φ−1(p1), . . . ,
φ−1(p�−1).

3 Abstracting Routing in DPillar

In this section we describe the single-path routing algorithms from [12] in order
to motivate an abstraction that serves to describe a broad class of useful single-
path routing algorithms.

Let 0 denote the node (0, 00 · · · 0). Consider the problem of routing from
src = (c, vk−1vk−2 · · · v0) to dst = 0 where each step is made using an edge of
type c, a, b, or d. The nodes reachable from src via c-, a-, b-, and d-edges, given in
Sect. 2, differ from src in at most one of coordinates c − 1 and c of the row-index
(and no others), and lie in one of columns c−1, c, or c+1. Any non-zero symbols
vi of the row-index of src must be ‘fixed’ in one of these steps in order to reach
dst, which has row index 00 · · · 0; vi can only be fixed by visiting a column of
the graph where coordinate i can be changed by one of the edges of type c, a, b,
or d. Recall that edges of type c and b outgoing from src, in column c, enable
us to change symbol vc to whichever element of {0, 1, . . . , n/2 − 1} is desired; as
such, we say that c- and b-edges cover the column they originate in. Edges of
type a and d cover column c − 1; as such, we say that a- and d-edges cover the
anti-clockwise neighbouring column. In addition to fixing bits by covering the
appropriate columns, the route may need to travel from column to column, via
c- and a- edges, possibly without changing the row-index.

One of the routing algorithms detailed in [12] is to travel from src only along
c-edges whilst changing a symbol vi to 0, if necessary, at each step until dst is
reached. After at most k steps, every column i with a non-zero coordinate vi has
been covered and fixed and the node (j, 00 · · · 0) is reached, for some j. We then
continue to travel along c-edges to increase j until 0 is reached and the route
is complete. The other single-path routing algorithm of [12] is the anticlockwise
analogue, where only a-edges are used. It is very easy to see (by looking at some
typical source-destination examples) that this routing algorithm is by no means
optimal and that more often than not much shorter paths exist (an upper bound
of 2k−1 on the lengths of paths produced was stated in [12]). For example, if one
chooses to route with only c-edges (in a clockwise fashion) in DPillarn,k and the
source is 0 and the destination is (1, 10 . . . 0) then the routing algorithm in [12]
yields a path of length k+1 because the (k−1)st column must be visited in order
to change the (k − 1)st coordinate; the a-edge algorithm in [12] yields a path of
length k − 1. Neither of these algorithms are optimal (when k > 3), however,
since the shortest path is of length 2 and can only be achieved by following a
d-edge and then a c-edge to yield the path 0, (0, 10 . . . 0), (1, 10 . . . 0).

3.1 Another Abstraction: The Marked Cycle

Observe in the above discussion that the need to cover column c and fix the
cth coordinate of the row-index arises if, and only if, vc �= 0, but it does not

Shortest-Path Routing in DPillar 213

matter here what other value vc may take on. Consequently, for arbitrary nodes
src and dst, we instead consider a walk on a cycle on k-nodes, Gn,k(src, dst),
with a node corresponding to each column of DPillarn,k in which we mark the
ith node whenever the ith column must be covered in DPillarn,k; that is, where
the coordinates of the row-indices of src and dst differ. Let src′ and dst′ be the
columns of src and dst. We abstract a path from src to dst in DPillarn,k by a
sequence of moves in Gn,k(src, dst) starting with node src′ and ending at node
dst′, where each move is analogous to a c-, a-, b-, or d-edge. From node c: (i) a
c-move covers node c and moves to node c+1, (ii) an a-move covers and moves
to node c−1, (iii) a b-move covers and stays at node c; and, (iv) a d-move covers
node c − 1 and stays at node c. We call Gn,k(src, dst) a marked cycle.

It should be clear as to how moves in the marked cycle Gn,k(src, dst) corre-
spond to edges of type c, a, b, and d in DPillarn,k (and so to server-switch-server
link-pairs in the DCN DPillarn,k) with the coverage of a node in Gn,k(src, dst)
and a node of DPillarn,k being in direct correspondence. A path in Gn,k(src, dst)
is a sequence of moves leading from src′ to dst′ and corresponds to a path of
the same length in DPillarn,k from node src to node dst (and vice versa). Con-
sequently, in order to find a shortest (src, dst)-path in the DCN DPillarn,k, it
suffices to find a shortest (src′, dst′)-path in the marked cycle Gn,k(src, dst) so
that every marked node is covered by a move.

4 Routing in a Marked Cycle

We make some initial observations about shortest paths in a marked cycle, and
then prove a structural result on shortest paths. Let src and dst be nodes of
DPillarn,k, in columns src′ and dst′, respectively. Henceforth, ρ is a shortest
path from src′ to dst′ in Gn,k(src, dst); therefore, ρ is a sequence of moves. We
denote a sequence of moves by strings of the (corresponding) letters c, a, b, and
d so that, for example, ccbaaa represents two c-moves, followed by a b-move,
followed by three a-moves. In addition i repeated symbols, say, cc · · · c can be
written ci so that ccbaaa = c2ba3.

We can often rule out certain consecutive pairs of moves in ρ. For example,
if we have a subsequence bd then this has the same effect as db, and so we may
suppose that a subsequence db within ρ is forbidden. We can achieve much more
by arguing on the optimality (as regards length) of ρ; for example, suppose
the subsequence of moves ca occurs in ρ. We can replace ca by a b-move so
as to obtain a shorter path with identical coverage to ρ. This contradicts the
optimality of ρ, so we may assume that ca does not occur in ρ. Similarly, ac can
be replaced by a d-move, so we may assume ac does not occur in ρ. Continuing
in this manner, we obtain two tables of move-pair replacements, given below,
whose (i, j)th entries represent the following: the move in the i-th position of
the first column followed by the move in the j-th position of the first row must
be replaced by the move given in the (i, j)th entry of the table.

214 A. Erickson et al.

b c
a a d
b b c

a d
c b c
d a d

We describe the structure of paths resulting from similar arguments.

Lemma 2. If ρ has length at least 3 then it must be of one of two forms:

dεci1baj1dci2 . . . cimbδ or dεci1baj1dci2 . . . ajmdδ, (1)

for some m ≥ 1, where i1, i2, . . . , im, j1, j2, . . . , jm > 1 and where ε, δ ∈ {0, 1};
bεai1dcj1bai2 . . . aimdδ or bεai1dcj1bai2 . . . cjmbδ, (2)

for some m ≥ 1, where i1, i2, . . . , im, j1, j2, . . . , jm > 1 and where ε, δ ∈ {0, 1}.
Proof. Omitted due to space constraints (it is a simple case analysis).

4.1 A Shortest Path has at Most Two Turns

If we have a c-move followed by a b-move followed by an a-move in ρ then we say
that an anti-clockwise turn, or simply an a-turn, occurs at the b-move; similarly,
if we have an a-move followed by a d-move followed by a c-move then we say
that a clockwise turn, or simply a c-turn, occurs at the d-move. Note that if we
have an a-turn in ρ then the node at which this turn occurs, i.e., the node that is
covered by the d-move, must be marked in Gn,k(src, dst) as otherwise we could
delete the corresponding d-move from ρ and still have a sequence from src′ to
dst′ covering all the marked nodes, which would yield a contradiction. Similarly,
if we have a c-turn then the node at which this c-turn occurs, i.e., the node that
is covered by the b-move, must be marked. We will use these observations later;
but now we prove that any shortest path ρ must contain at most 2 turns.

Suppose that ρ is a shortest path and has at least 3 turns.

Case (a): Suppose that ρ is of Form (1) and has a prefix ρ′ of the form cibajdclba,
where i, j, l ≥ 1. By this we mean that ρ begins with i c-moves followed by a b-
move followed by j a-moves followed by a d-move followed by l c-moves followed
by a b-move followed by an a-move.

If j < i then we can replace the prefix cibajdc in ρ′ with cibaj−1 and still
obtain the same coverage; this contradicts that ρ is a shortest path (note that
we have actually only assumed so far that ρ has 2 turns). If j = i then we can
replace the prefix cibaidc in ρ′ with dcibai−1 so as to obtain a contradiction (we
have still actually only assumed that ρ has 2 turns). Hence, we must have that
j > i. Suppose that j ≥ l > j − i. We can replace the prefix cibajdcl in ρ′ with
aj−idcjbaj−l so as to obtain a contradiction (we have still actually only assumed
that ρ has 2 turns). Hence, j > i and either l ≤ j − i or l > j.

Suppose that l > j. We can replace the prefix cibajdcl in ρ′ with aj−idcl so
as to obtain a contradiction (we have still actually only assumed that ρ has 2
turns). Hence, we must have that j > i and l ≤ j − i. However, if we replace ρ′

Shortest-Path Routing in DPillar 215

Fig. 2. Visualizing paths with 2 turns.

with cibajdcl−1 then we obtain a contradiction (here we do use the fact that ρ
has at least 3 turns). So, ρ has at most 2 turns and if it has 2 turns then ρ is of
the form cibajdcl where j > i and l ≤ j − i.

We can say more if ρ has 2 turns. Suppose that j ≥ k − 1. The b-move can
be deleted from ρ′ and we obtain a contradiction. Hence, if ρ has 2 turns then
ρ is of the form cibajdcl where k − 1 > j > i ≥ 1 and 1 ≤ l ≤ j − i. We can
visualize ρ as in Fig. 2(i). The marked cycle Gn,k(src, dst) is shown as a cycle
where a black node denotes a node of B; that is, a node that needs to be covered
by some path in Gn,k(src, dst) (with 0 = src′ �= dst′ = x in this illustration).
The path ρ is depicted as a dotted line partitioned into composite moves.

Case (b): Suppose that ρ is of Form (1) and has a prefix ρ′ of the form dcibajdclba,
where i, j, l ≥ 1. If j ≤ i then we can replace the prefix dcibajdc in ρ′ with dcibajc
so as to obtain a contradiction, and if j > i then we can delete the first d-move
from ρ to obtain a contradiction. Hence, if ρ starts with a d-move then it has at
most 1 turn.

Case (c): Suppose that ρ is of Form (2) and has a prefix ρ′ of the form aidcjbaldc,
where i, j, l ≥ 1. If j < i then we can replace the prefix aidcjba in ρ′ with aidcj−1

so as to obtain a contradiction. If i = j then we can replace the prefix aidciba
in ρ′ with baidci−1 so as to obtain a contradiction. Hence, j > i.

Suppose that j ≥ l > j − i. We can replace the prefix aidcjbal in ρ with
cj−ibajdcj−l so as to obtain a contradiction. Suppose that l > j. We can delete
the first occurrence of a d-move in ρ so as to obtain a contradiction. Hence,
l ≤ j − i. Note that if ρ has 2 turns then ρ is of the form aidcjbal where j > i
and l ≤ j − i. Alternatively, suppose that ρ has at least 3 turns. We can replace
the prefix aidcjbaldc in ρ with aidcjbcl−1 so as to obtain a contradiction. Hence,
ρ has at most 2 turns.

We can say more if ρ has 2 turns. Suppose that j ≥ k − 1. The d-move can
be deleted from ρ′ and we obtain a contradiction. Hence, if ρ has 2 turns then
ρ is of the form aidcjbdl where k − 1 > j > i ≥ 1 and 1 ≤ l ≤ j − i. We can
visualize ρ as in Fig. 2(ii).

216 A. Erickson et al.

Case (d): Suppose that ρ is of Form (2) and has a prefix ρ′ of the form baidcjbaldc,
where i, j, l ≥ 1. If j ≤ i then we can replace the prefix baidcjba with baidcja
so as to obtain a contradiction, and if j > i then we can delete the first b-move
from ρ to obtain a contradiction. Hence, if ρ starts with a b-move then it has at
most 1 turn.

So, we have proven the following lemma.

Lemma 3. If ρ is a shortest path (from src′ to dst′) in Gn,k(src, dst) then ρ
has at most 2 turns, and if ρ has 2 turns then it must be of the form cibajdcl or
aidcjbal, where k − 1 > j > i ≥ 1 and 1 ≤ l ≤ j − i.

With reference to Fig. 2, the numerical constraints in Lemma 3 mean that
there is no interaction or overlap involving the 2 turns in ρ.

5 An Optimal Routing Algorithm for DPillar

We now develop an optimal single-path routing algorithm for DPillar. We do
this by finding a small set Π of paths (from src′ to dst′) in Gn,k(src, dst) so
that at least one of these paths is a shortest path. By Lemma 1, we may assume
that src = 0 and dst = (x, vk−1vk−2 . . . v0), and by Lemma 2, we may assume
that any shortest path has at most 2 turns.

5.1 Building Our Set of Paths When x �= 0

We first suppose that 0 �= x. Let B = {i : 0 ≤ i ≤ k − 1, vi �= 0} (that is, the
bit-positions that need to be ‘fixed’). Suppose that B \ {0, x} = {il : 1 ≤ l ≤
r} ∪ {jl : 1 ≤ l ≤ s} so that we have 0 < js < js−1 < . . . < j1 < C < i1 <
i2 < . . . < ir < k (we might have that either r or s is 0 when the corresponding
set is empty). If r ≥ 2 then define δl = il+1 − il, for l = 1, 2, . . . , r − 1, with
δ = max{δl : l = 1, 2, . . . , r − 1}; and if s ≥ 2 then define εl = jl − jl+1, for
l = 1, 2, . . . , s − 1, with ε = max{εl : l = 1, 2, . . . , s − 1}. Also: define Δ0 = 1
(resp. 0), if 0 ∈ B (resp. 0 �∈ B); and Δx = 1 (resp. 0), if x ∈ B (resp. x �∈ B).
We can visualize the resulting marked cycle Gn,k(0, x) as in Fig. 3(i). Note that
in this particular illustration 0 �∈ B and x ∈ B; so, Δ0 = 0 and Δx = 1. Of
course, what we are looking for is a sequence of (a-, b-, c- and d-)moves that
will take us from 0 to x in Gn,k(0, x) so that all nodes of B have been covered.

In what follows, we examine different scenarios involving the number of
marked nodes, r, and also the number of marked nodes, s. Each scenario for
r contributes certain paths to Π as does each scenario for s. Note that perhaps
the most obvious paths to consider as potential members of Π are the paths
ck+x and a2k−x which have lengths k + x and 2k − x, respectively. So, we begin
by setting Π = {ck+x, a2k−x}.

From Lemma 3, any shortest path ρ from 0 to x having 2 turns requires that
r ≥ 2 or s ≥ 2 and that both nodes at which these turns occur are different from
0 and x and lie on the anti-clockwise path from 0 to x or on the clockwise path

Shortest-Path Routing in DPillar 217

Fig. 3. Visualizing our notation.

from 0 to x, accordingly. Also, the node at which any turn occurs on a shortest
path ρ is necessarily a marked node (irrespective of the number of turns in ρ).

Case (a): Suppose that r = 0. In this scenario, we contribute either the path cxb
to Π, if x ∈ B, or the path cx to Π, if x �∈ B; either way, the length of the path
contributed is x + Δx.

Case (b): Suppose that s = 0. In this scenario, we contribute either the path
bak−x to Π, if 0 ∈ B, or the path ak−x to Π, if 0 �∈ B; either way, the length of
the path contributed is k − x + Δ0.

Case (c): Suppose that r = 1. In this scenario, we contribute 2 paths to Π. If
x ∈ B then we contribute the path ak−i1−1dck−i1−1+xb to Π, or if x �∈ B then
we contribute the path ak−i1−1dck−i1−1+x to Π; either way, the length of the
resulting path is 2k − 2i1 + x − 1 + Δx. We also contribute the path ci1bai1−x

to Π of length 2i1 − x + 1. There is potentially another path when i1 = x + 1
and x ∈ B, namely ak−x−1dck−1, but the length of this path is 2k −x− 1 which
is greater than 2k − x − 3 + Δx which is 2k − 2i1 + x − 1 + Δx evaluated with
i1 = x + 1.

Case (d): Suppose that s = 1. In this scenario, we contribute 2 paths to Π. If
0 ∈ B then we contribute the path bak−j1−1dcx−j1−1 to Π, or if 0 �∈ B then we
contribute the path ak−j1−1dcx−j1−1 to Π; either way, the length of the resulting
path is k − 2j1 + x − 1 + Δ0. We also contribute the path cj1bak+j1−x to Π of
length k +2j1 −x+1. There is potentially another path when j1 = 1 and 0 ∈ B,
namely ak−1dcx−1, but the length of this path is k +x− 1 which is greater than
k + x − 3 + Δ0 which is k − 2j1 + x − 1 + Δ0 evaluated with j1 = 1.

Case (e): Suppose that r ≥ 2. In this scenario, we contribute r+1 paths to Π. For
each l ∈ {1, 2, . . . , r−1}, we contribute the path ak−il+1−1dck−il+1−1+ilbail−x to
Π of length 2k−2δl−x. If x ∈ B then we contribute the path ak−i1−1dck−i1−1+xb
to Π, or if x �∈ B then we contribute the path ak−i1−1dck−i1−1+x to Π; either
way, the length of the path is 2k − 2i1 +x− 1+Δx. We also contribute the path
cirbair−x to Π of length 2ir −x+1. (These last 2 paths mirror those constructed
in Case (c).)

218 A. Erickson et al.

Case (f): Suppose that s ≥ 2. In this scenario, we contribute s + 1 paths to Π.
For each l ∈ {1, 2, . . . , s − 1}, we contribute the path cjl+1bajl+1+k−jl−1dax−jl−1

to Π of length k−2εl+x. If 0 ∈ B then we contribute the path bak−js−1dcx−js−1

to Π, or if 0 �∈ B then we contribute the path ak−js−1dcx−js−1 to Π; either way,
the length of the path is k − 2js + x − 1 + Δ0. We also contribute the path
cj1baj1+k−x to Π of length k + 2j1 − x + 1. (These last 2 paths mirror those
constructed in Case (c).)

Thus, our set Π of potential shortest paths contains r + s + 2 paths (from
which at least one is a shortest path).

5.2 Building Our Set of Paths When x = 0

Now we suppose that x = 0. We proceed as we did above and build a set Π
of potential shortest paths. Let B = {i : 0 ≤ i ≤ k − 1, vi �= 0}. Suppose that
B \ {0} = {il : 1 ≤ l ≤ r} so that we have 0 < i1 < i2 < . . . < ir < k (we
might have that r is 0 when the corresponding set is empty). If r ≥ 2 then define
δl = il+1 − il, for l = 1, 2, . . . , r − 1, with δ = max{δl : l = 1, 2, . . . , r − 1}. We
define Δ0 = 1, if 0 ∈ B, and Δ0 = 0, if 0 �∈ B. We can visualize the resulting
marked cycle Gn,k(0, 0) as in Fig. 3(ii). Again, the most obvious path to consider
is ck (or ak) which has length k. We begin by setting Π = {ck}.

Case(a): Suppose that r = 0. In this scenario, we contribute the path b of
length 1 (note that in this case the node 0 is necessarily marked as we originally
assumed that we started with distinct source and destination servers in the DCN
DPillarn,k).

Case(b): Suppose that r = 1. If i1 = k − 1 then we contribute the path bd, if
0 ∈ B, and the path d, if 0 �∈ B; either way, the path has length 1 + Δ0. If
1 = i1 �= k−1 then we contribute the path cba of length 3. If 1 �= i1 �= k−1 then
we contribute 2 paths. The first of these paths is the path bak−i1−1dck−i1−1, if
0 ∈ B, and the path ak−i1−1dck−i1−1, if 0 �∈ B; either way, this path has length
2k −2i1 −1+Δ0. The second of these paths is the path ci1bai1 of length 2i1 +1.

Case(c): Suppose that r ≥ 2. In this scenario, we contribute r + 1 paths to Π.
For each l ∈ {1, 2, . . . , r − 1}, we contribute the path ak−il+1−1dck−il+1−1+ilbail

to Π of length 2k − 2δl. If 0 ∈ B then we contribute the path bak−i1−1dck−i1−1

to Π, or if 0 �∈ B then we contribute the path ak−i1−1dck−i1−1 to Π; either way,
this path has length 2k − 2i1 − 1 + Δ0. We also contribute the path cirbair to
Π of length 2ir + 1. (These last 2 paths mirror those constructed in Case (b).)

Thus, our set Π of potential shortest paths contains at most r + 1 paths
(from which at least one is a shortest path).

5.3 Our Algorithm

We now use our set Π of potential shortest paths so as to find a shortest path
or the length of a shortest path. Our algorithm for Gn,k(0, x) is as follows.

Shortest-Path Routing in DPillar 219

calculate B
if 0 �= x then

L = min{k + x, 2k − x}
calculate r, s, δ, ε, Δ0 and Δx

if r = 0 then L = min{L, x + Δx}
if s = 0 then L = min{L, k − x + Δ0}
if r = 1 then L = min{L, 2k − 2i1 + x − 1 + Δx, 2i1 − x + 1}
if s = 1 then L = min{L, k − 2j1 + x − 1 + Δ0, k + 2j1 − x + 1}
if r ≥ 2 then

calculate δ % we need only consider the maximal δl

L = min{L, 2k − 2δ − x, 2k − 2i1 + x − 1 + Δx, 2ir − x + 1}
if s ≥ 2 then

calculate ε % we need only consider the maximal εl

L = min{L, k − 2ε + x, k − 2js + x − 1 + Δ0, k + 2j1 − x + 1}
else

calculate r and δ
if r = 0 then L = 1
if r = 1 then

if i1 = k − 1 then L = 1 + Δ0

if 1 = i1 �= k − 1 then L = 3
if 1 �= i1 �= k − 1 then L = min{2k − 2i1 − 1 + Δ0, 2i1 + 1}

if r ≥ 2 then L = min{k, 2k − 2δ, 2k − 2i1 − 1 + Δ0, 2ir + 1}
output L

If we wish to output a shortest path then all we do is apply the above
algorithm but remember which shortest path corresponds to the final value of L
and output this shortest path (note that there may be more than one shortest
path; exactly which path one obtains depends upon how one implements checking
the paths of Π). The time complexity of both algorithms is clearly O(k log(n))
(that is, linear in the length of the input).

It should be clear (using Lemma 2) that the different considerations for r and
s exhaust all possibilities and that consequently the set of paths Π considered by
the above algorithm is such as to contain a shortest path. Hence, our algorithm
outputs the length of a shortest path from some source node to some destination
node in DPillarn,k. The validity of our algorithm was verified with a breadth-first
search and we also found that it yields a 20–30% improvement in the average
length of a path over the algorithms given in [12], for various small parameters n
and k; for example, DPillar16,5, which has 163840 server-nodes, has an average
shortest path length of 4.77, but employing the clockwise algorithm from [12]
yields an average path length of 6.86.

6 Conclusions

In this paper we have developed an optimal and efficient single-path routing
algorithm for the DCN DPillar and have shown that DPillar is node-symmetric.
We feel that there are other areas where efficiency gains might be made; in
particular, we intend to focus on multi-path routing in forthcoming research.

220 A. Erickson et al.

Acknowledgement. This work has been funded by the Engineering and Physical Sci-
ences Research Council (EPSRC) through grants EP/K015680/1 and EP/K015699/1.

References

1. Abts, D., Marty, M.R., Wells, P.M., Klausler, P., Liu, H.: Energy proportional
datacenter networks. In: Proceedings of the 37th Annual International Symposium
on Computer Architecture, pp. 338–347 (2010)

2. Abu-Libdeh, H., Costa, P., Rowstron, A., OShea, G., Donnelly, A.: Symbiotic rout-
ing in future data centers. SIGCOMM Comput. Comm. Rev. 40(4), 51–62 (2010)

3. Ahn, J.H., Binkert, N., Davis, A., McLaren, M., Schreiber, R.S.: HyperX: topology,
routing, and packaging of efficient large-scale networks. In: Proceedings of the
Conference on High Performance Computer Networking, Storage and Analysis,
Article 41 (2009)

4. Al-Fares, M., Loukissas, A., Vahdat, A.: A scalable, commodity data center network
architecture. SIGCOMM Comput. Comm. Rev. 38(4), 63–74 (2008)

5. Greenberg, A., Hamilton, J.R., Jain, N., Kandula, S., Kim, C., Lahiri, P., Maltz,
D.A., Patel, P., Sengupta, S.: VL2: a scalable and flexible data center network.
SIGCOMM Comput. Comm. Rev. 39(4), 51–62 (2009)

6. Guo, D., Chen, T., Li, D., Li, M., Liu, Y., Chen, G.: Expandible and cost-effective
network structures for data centers using dual-port servers. IEEE Trans. Comput.
62(7), 1303–1317 (2013)

7. Guo, C., Wu, H., Tan, K., Shi, L., Zhang, Y., Lu, S.: DCell: a scalable and fault-
tolerant network structure for data centers. SIGCOMM Comput. Comm. Rev.
38(4), 75–86 (2008)

8. Guo, C., Lu, G., Li, D., Wu, H., Zhang, X., Shi, Y., Tian, C., Zhang, Y., Lu, S.:
BCube: a high performance, server-centric network architecture for modular data
centers. SIGCOMM Comput. Comm. Rev. 39(4), 63–74 (2009)

9. Heller, B., Seetharaman, S., Mahadevan, P., Yiakoumis, Y., Sharma, P., Banerjee,
S., McKeown, N.: ElasticTree: saving energy in data center networks. In: Proceed-
ings of the 7th USENIX Conference on Networked Systems Design and Implemen-
tation, pp. 249–264 (2006)

10. Li, C., Guo, D., Wu, H., Tan, K., Zhang, K., Lu, S.: FiConn: using backup port for
server interconnection in data centers. In: Proceedings of INFOCOM, pp. 2276–
2285 (2009)

11. Li, D., Wu, J.: On data center network architectures for interconnecting dual-port
servers. IEEE Trans. Comput. 64(11), 3210–3222 (2015)

12. Liao, Y., Yin, J., Yin, D., Gao, L.: DPillar: dual-port server interconnection net-
work for large scale data centers. Comput. Netw. 56(8), 2132–2147 (2012)

13. Liu, Y., Muppala, J.K., Veeraraghavan, M., Lin, D., Katz, J.: Data Centre Net-
works: Topologies, Architectures and Fault-Tolerance Characteristics. Springer,
New York (2013)

14. Mysore, R.N., Pamboris, A., Farrington, N., Huang, N., Miri, P., Radhakrishnan,
S., Subramanya, V., Vahdat, A.: Portland: a scalable fault-tolerant layer 2 data
center network fabric. SIGCOMM Comput. Comm. Rev. 39(4), 39–50 (2009)

15. Wang, C., Wang, C., Yuan, Y., Wei, Y.: MCube: a high performance and fault-
tolerant network architecture for data centers. In: Proceedings of the International
Conference on Computer Design and Applications, vol. 5, pp. V5-423-V5–427
(2010)

A Sensor Deployment Strategy
in Bus-Based Hybrid Ad-Hoc Networks

Hongwei Du1, Rongrong Zhu1(B), Xiaohua Jia2, and Chuang Liu1

1 Department of Computer Science and Technology,
Harbin Institute of Technology Shenzhen Graduate School,

Shenzhen Key Laboratory of Internet Information Collaboration, Shenzhen, China
hwdu@hitsz.edu.cn, {hitzrr13,chuangliuhit}@gmail.com

2 Department of Computer Science,
City University of Hong Kong, Hong Kong, China

csjia@cityu.edu.hk

Abstract. Sensor deployment is one of the challenging issues in Wireless
Sensor Networks (WSNs). Traditionally, sensors are deployed for sensing
and transmitting data to Base Station (BS) for further data processing
in cities. However, instead of sensor independently allocated, we apply
the existing transportation infrastructure - Bus-based Ad hoc Network
(BANETs) to assist the sensing and transmission of the WSNs. A novel
hybrid scheme is derived to this hybrid network. Then we utilize the
practical simulator ONE [1] to analyse our scheme and simulation indi-
cates that the scheme can significantly reduce the number of sensors to
be deployed, and the information collected from the city could reach the
BS within a fixed time.

Keywords: Sensor deployment · Hybrid network · Bus-based Ad hoc
Networks

1 Introduction

WSNs are composed of a large number of tiny, low-cost sensor nodes, which can
communicate over short distances [2–4]. The sensor nodes of WSNs are spatially
distributed for monitoring environmental conditions or events of concern, and
cooperatively delivery the data to the BS in a multi-hop way [5]. BANETs con-
sist of buses equipped with wireless communication devices, GPS, digital maps.
Buses exchange information with other buses as well as with access points within
their communication radius. In this paper, we utilize the hybrid network which
consists of WSNs and BANETs to monitor the entire city, as shown in Fig. 1,
urban information such as pollution, temperature, pressure or traffic conditions,
can be captured by statically deployed sensor nodes and sensors carried by the
bus. These data can then be forwarded to buses passing by and subsequently
delivered to the BS periodically. The BS can be connected to a designated Web
Server that makes it possible for authorized users to remotely access and config-
ure the hybrid networks anytime, anywhere via traditional computers and mobile
c© Springer International Publishing Switzerland 2015
Z. Lu et al. (Eds.): COCOA 2015, LNCS 9486, pp. 221–235, 2015.
DOI: 10.1007/978-3-319-26626-8 17

222 H. Du et al.

devices such as iPhone, iPad and so on. The problem considering in the hybrid
network is to minimize the number of sensors for the sensing interest area. And
indeed, it has become a challenging issue.

Fig. 1. Illustration of a brief hybrid network structure

Most literatures mainly consider using only WSNs to monitor the entire
city. In WSNs, the sensor nodes cooperatively monitor the city information and
delivery the data to the BS in a multi-hop way. However, a large amount of
sensors needed to be deployed in the city to ensure coverage and connectivity
in such environment. And most deployment methods assume that the sensing
field is an open space and the ratio of the sensing radius to communication
radius is fixed. In this paper we utilize the existing transportation infrastructure
BANETs to help to monitor and deliver the data to the BS. Thus, compared
with the method already exist, our scheme in this paper can save a lot of sensors
needed to be deployed in the area of the city. In BANETs, the buses move
regularly, and they have a fixed route for traveling. Our simulations show that
the data collected from the entire city can be delivered to the BS within a certain
amount of time.

In this paper, we study the problem of the efficient sensor deployment under a
hybrid network structure. Then we analyze the average delivery delay to ensure
the data collected by the BS is useful and valuable. Sensor deployment is a
critical issue since it reflects the cost and detection capability of a WSN. The
asymptotic optimality of strip-based deployment pattern to achieve one and
two connectivity and full coverage was proved in [9]. Our method is based on
the strip-based deployment pattern and it can adapt to the area with different
shapes. The contributions of our research are summarized as follows:

A Sensor Deployment Strategy in Bus-Based Hybrid Ad-Hoc Networks 223

1. A hybrid network structure is proposed that the WSNs and BANETs can
monitor the city and route the application-specific information cooperatively
to the BS within an effective time period.

2. An effective algorithm is proposed to deploy sensors in the sub-regions parti-
tioned by the roads in the city. The shape of the sub-regions can be irregular
and the relationship between the communication radius and sensing radius
can be arbitrary. The simulations show that our method considerably reduces
the total number of sensors in comparison with three conventional sensor
deployment methods.

3. The ONE [1] is utilized to analyze the average delivery delay during which
the BS collected the data from the all the sensors deployed in the city. And
simulation indicates that the data collected can reach to the BS within a fixed
time, which means that the data received is effective and valuable.

The remaining part of the paper is organized as follows: Sect. 2 presents
the related work. In Sect. 3, we introduce the network model. Section 4 gives the
definition of the problem and the assumptions. In Sect. 5, we present the schemes
for sensor deployment. Section 6 presents our simulation results. Finally, Sect. 7
concludes the paper.

2 Related Work

Sensor deployment has been well studied over the past decades. According to the
roles that the deployment nodes play, sensor deployment can be classified into
two categories: deployment of ordinary nodes and deployment of relay nodes.

In the deployment of ordinary nodes, sensors can be placed exactly on care-
fully engineered positions, or thrown in bulk on random positions. Most work on
deterministic deployment seeks to determine the optimal deployment pattern.
According to the applications and goals of the WSNs, different optimality crite-
ria are used. A common objective is to minimise the number of required sensors
needed, subject to the coverage and connectivity constraints. It is well known
that the triangle pattern is asymptotically optimal in terms of the number of
discs needed to achieve full coverage [6]. This result has also been reproved in
[7] using a different approach. This result naturally provides six connectivity
only when Rc ≥ √

3Rs. However, values of Rc/Rs in practice can be an arbi-
trary positive number. Iyengar et al. [8] proved that the strip-based deployment
pattern is asymptotically near optimal when Rc = Rs. The strip-based pattern,
nodes are arranged along many parallel horizontal strips, and nodes in differ-
ent horizontal strips can communicate via some nodes located as a vertical ribs.
Bai et al. [9] extended the work by proving that this strip-based pattern is the
asymptotic optimal pattern for an infinite network. The asymptotic optimality
of strip-based deployment pattern to achieve one and two connectivity and full
coverage was proved in [9]. Bai et al. [10] explored the asymptotically optimal
pattern to achieve four connectivity and full coverage. Bai et al. [11] published
new results, which proposed optimal sensor placement patterns to achieve cov-
erage and k-connectivity (k ≤ 6). Ishizuka and Aida [12] proposed three types

224 H. Du et al.

of random placement models. They suggested that the placement model which
assumes that sensors are uniformly distributed in terms of the network radius
and angular direction from the sensor field centre is the best candidate for ran-
dom node placement. Others (see [13] for an example) assume that all nodes
follow identical Gaussian distribution.

The problem of relay node placement can be categorized into single-tiered
and two-tiered, according to the data forwarding scheme adopted by the WSN. In
single-tiered relay node placement, both relay nodes and ordinary sensor nodes
participate in packet forwarding. In contrast, in a WSN with two-tiered relay
node placement, only relay nodes can forward packets. In the following discus-
sion, the transmission ranges for relays and ordinary sensors are denoted R and r,
respectively. Cheng et al. [14] developed algorithms to place the minimum num-
ber of relay nodes and maintain the connectivity of a single-tiered WSN, under
the assumption that R = r. The problem was modelled by the Steiner Mini-
mum Tree with Minimum Number of Steiner Points and Bounded Edge Length
(SMT-MSP) problem, which arose in the study of amplifier deployment in opti-
cal networks, and was proved to be NP-hard [15]. Based on a minimum spanning
tree, Lin and Xue [15] developed an algorithm to solve the SMT-MST problem.
They proved it to have an approximation ratio of 5, which Chen et al. [16]
tightened to 4. Based on Lin and Xue’s algorithm, Cheng et al. [14] proposed a
different 3-approximation algorithm and a randomized 2.5-approximation algo-
rithm. In order to provide fault-tolerance, Kashyap et al. [17] studied how to
place minimum number of relays such that the resulted WSN is 2-connected,
when relay nodes and ordinary sensor nodes have identical transmission range,
i.e., R = r. Zhang et al. [18] improved the results of Kashyap et al. [17] by
developing algorithms to compute the optimal node placement for networks to
achieve 2-connectivity, under the more general condition that R ≥ r. These
algorithms aimed to minimize the number of relay nodes while providing fault-
tolerance. Lloyd and Xue [19] developed algorithms to find optimal placement
of relay nodes for the more general relationship R ≥ r, under single-tiered and
two-tiered infrastructures.

However, the context of the above deployment methods mainly assume that
the sensing field is an open space and there is a special relationship between the
communication range and the sensing range of sensors. In our hybrid network
framework, the city area are divided by roads into many irregular subregions,
if we use the conventional methods, it may result in coverage hole along the
boundary. And in practical, the value of Rc/Rs can be an arbitrary positive
number. So how to find an effective deployment method in our hybrid networks
is a challenging research.

3 Network Model

In this section, we present the network model of the street map and the WSNs.
As shown in Fig. 2, the entire city of the street map is abstracted as a directed

graph G(V,E), V denote the set of intersections, for any two intersections a and

A Sensor Deployment Strategy in Bus-Based Hybrid Ad-Hoc Networks 225

b, (a,b)∈ G if and only if there is a road segment connecting a and b and buses
can travel from a towards b on that segment. The width of the road is d, and
the city area is divided into many subregions.

As shown is Fig. 3, consider n sensors having the same sensing radius rs

and communication radius rc are deployed in the entire city. We assume that
the sensing range of a sensor is a disk with radius rs, centered at a node. Let
the undirected communication graph G’= (V’,E’(rc)) donate the entire sensor
network topology, where the sensors act as vertices and an edge exists between
any two sensors if the Euclidean distance between them is less than rc. A path of
sensors between a and b in the communication graph is called a communication
path between the sensors a and b.

Fig. 2. Bus can travel from cross-
roads a to crossroads b, the dotted line
denotes the region boundary

Fig. 3. Sensor a, b, c are connected, each
of them can find a communication path
to road

4 Problem Definition and Assumptions

In this section, we give the definition of our problem and the assumptions.

Assumptions. We assume that the bus are equipped with a sensor and run on
the road at a speed of v, the sensing radius of the sensor is Rs, and communi-
cation radius is Rc. The city has N buses, each bus starts from the bus station
and has its own bus routes and fixed departure time. The bus can accept data
from the sensors deployed on the roadside. When two buses encounter, they can
communicate with each other, here the encounter denotes that the Euclidean
distance between the two bus is less than Rc. The BS is set in the bus station,
and the bus can delivery the collected data to the BS only if the bus return to
the BS.

Problem Definition. The problem of the effective sensor deployment under
the hybrid network environment: Given the street map of a city, the problem is

226 H. Du et al.

to deploy the minimum number of sensor nodes, such that: (1) the entire area
Ω of the city can be totally covered by n+N sensors, where N is the number
of sensors carried by the bus mentioned above, and (2) each of the deployed n
sensors can find a communication path between itself and the bus on the road
such that the data collected by the sensor can be forwarded to the bus.

After we solve the sensor deployment problem, we need to calculate the time
period during which the BS received data from all the N+n sensors at least
once. Since different applications have different demand for data timeliness, we
should analyze the average delivery delay to ensure the data collected by the BS
is useful and valuable.

5 Sensor Deployment Scheme

In this part, we propose an effective scheme to solve the deployment problem.
Firstly, we consider a simple large region without boundaries, then we extend
our result to an environment with boundaries.

5.1 Simple Large Regions Without Boundaries

The basic idea is to deploy sensors row by row. The sensors in a row is connected
and adjacent rows should guarantee continuous coverage of the area. Then we will
add some sensors between adjacent rows, if necessary, to maintain connectivity.
Based on the relationship between rs and rc, we separate the discuss into two
cases.

Fig. 4. rc ≤ √
3rs. Here, a = rc, and

b = rs+

√
r2s − r2c

4
. The dots denote the

sensor locations that form the horizon-
tal strip, the dash line means the sen-
sors it connected are connected.

Fig. 5. rc >
√

3rs. Here, a =
√

3rs, and
b = 3rs

2
. The red dots denote the sensor

locations that form the triangular pat-
tern, the dash line means the sensors
it connected are connected (Color figure
online).

Case 1: rc ≤ √
3rs. As shown in Fig. 4, sensors on each row are separated by a

distance of rc, so the connectivity of sensors in each row is already guaranteed.
Since rc <

√
3rs, each row of sensors can cover a belt-like area with a width of

2 ×
√

r2s − r2
c

4 . Adjacent rows will be separated by a distance of rs +
√

r2s − r2
c

4

and shifted by a distance of rc

2 in an alternate way. With such an arrangement,

A Sensor Deployment Strategy in Bus-Based Hybrid Ad-Hoc Networks 227

the coverage of the whole area is guaranteed. Note that in the case of rc <
√

3rs,
the distance between two adjacent rows is larger than rc, so we need to place
additional sensors between two adjacent rows, each separated by a distance no
larger than rc, to connect them. The optimality of this strip-based deployment
pattern has been proved in [9].

Case 2: rc >
√

3rs. In this case, the triangular lattice [6] is the optimal deploy-
ment pattern to achieve both coverage and connectivity. As shown in Fig. 5,
adjacent sensors are regularly separated by a distance of

√
3rs, and both cover-

age and connectivity properties are satisfied.

5.2 Large Regions with Boundaries

In this paper, we consider the sensor deployment under the hybrid network
structure, the city region are partitioned by the roads into may irregular convex
and concave polygon region. In this section, we propose a method to deploy
sensors in a region of arbitrary shapes.

Table 1. Coordinates of the six neighbors of a sensor in location (x,y)

Neighbor rc ≤ √
3rs rc >

√
3rs

N1 (x + rc, y) (x +
√

3rs, y)

N2 (x + rc
2
, y −

√
r2s − r2c

4
− rs) (x +

√
3rs
2

, y − 3rs
2

)

N3 (x − rc
2
, y −

√
r2s − r2c

4
− rs) (x −

√
3rs
2

, y − 3rs
2

)

N4 (x − rc, y) (x − √
3rs, y)

N5 (x − rc
2
, y +

√
r2s − r2c

4
+ rs) (x −

√
3rs
2

, y + 3rs
2

)

N6 (x + rc
2
, y +

√
r2s − r2c

4
+ rs) (x +

√
3rs
2

, y + 3rs
2

)

Now, we modify the above solution for deploying sensors in a region with
boundaries. Observe that in our solution, sensors are deployed in regular pat-
terns. Table 1 summarize the coordinates of a sensor’s six neighbours. The mod-
ified strip-based sensor deployment with boundaries (MSSDB) are described as
follows:

In MSSDB, the input is the sensing radius rs, the communication radius rc,
the boundary information of the irregular regions partitioned by the roads in
the city, the output is the number of sensors we need to deploy. We first place a
sensor in any location of the region, then the six locations that can potentially
be deployed with sensors are determined according to Table 1. These locations
are inserted into a queue Q. For each location (x,y) in Q, if (x,y) is outside the
region, we delete the (x,y) from Q, otherwise we place a sensor node at (x,y),
then calculate the six locations of the six neighbours of (x,y) and insert them into
Q if they have not been deployed with sensors. While Q is empty, the process is
terminated.

228 H. Du et al.

Algorithm 1. MSSDB
1: Initialize: Q=NULL, N=NULL;
2: Place a sensor in any location of the region;
3: Calculate the coordinates of the six neighbours of the first deployed sensor node;
4: Insert the six locations into Q.
5: while Q �= NULL do
6: for each (x,y)∈ Q do
7: if (x,y) is inside the region then
8: Place a sensor node at (x,y);
9: Delete (x,y) from Q ;

10: Calculate the coordinates N {n1, n2, . . . , n6) of the six neighbours of (x,y)};
11: for each n ∈ N do
12: if location n has not been deployed with sensors then
13: Insert n intoQ ;
14: else
15: Discard n;
16: end if
17: end for
18: else
19: Delete (x,y) from Q ;
20: end if
21: end for
22: end while

Here is the time complexity analysis of the algorithm MSSDB, MSSDB is a
simple greedy algorithm. A stack is used in the algorithm and the time complex-
ity is related to the number of locations in the region. The number of locations
in the region is related to the size of the target area Ω and the sensing radius
rs and communication radius rc, so the complexity is O(Ω

Min(rc,rs)2
). The time

complexity of MSSDB is linear.
The above approach may leave two problems unsolved. First, as mentioned

before, when rc <
√

3rs, we need to add extra sensors between adjacent rows
to maintain connectivity. Second, some areas near the boundaries uncovered,
as shown in Fig. 6. For the first problem, we don’t need to add extra sensors
between adjacent rows to maintain connectivity, because in our scheme, if each
sensor can find a communication path between itself and the bus, then the data
can be delivered to the BS by the bus. For the second problem, we separate the
discuss into two cases.

Case 1: If the boundary of the region is the road, then the coverage hole can
be healed by the bus, for the sensing range of the bus is large enough.

Case 2: If the boundary of the region is not the road, we need to place extra
nodes to coverage the coverage hole. From the observation below, we can know
that the largest diameter of the coverage hole is rs, so we expand the boundary
by the length of rs, then we use the algorithm of MSSDB to deploy sensors

A Sensor Deployment Strategy in Bus-Based Hybrid Ad-Hoc Networks 229

Fig. 6. Uncovered area around the boundary

within the expanded target area. Then the original target area can be totally
covered by the sensors deployed in the expanded target area. This can be proved
in the following way. The largest diameter of the coverage hole in the expanded
target area is rs, so the original target area must be covered totally.

Fig. 7. The coverage hole generated
along the horizontal direction

Fig. 8. The coverage hole generated
along the vertical direction

Observation. The largest diameter of the coverage hole is rs.
The above result can be easily derived in the following way. The generation

of the coverage hole can be divided into two cases:

Case 1: As shown in Fig. 7, the solid circle donates the sensor that already
deployed, the dashed circle donates the sensors that have not been deployed.
The target region is composed of line1, line2, line3 and line4. If line4 is located
at location1, then the sensors deployed can coverage the target region without
any coverage hole. But when line4 moves down, then the coverage hole appears.
When line4 moves to location2, the size of the coverage hole is the largest, and
if line4 continues to move down, then the center of the dashed circle is inside the
target region, so these locations will be chosen by algorithm MSSDB to deploy
sensors, then the target area can be totally covered without any coverage hole.
So the largest diameter of the coverage hole is rs.

230 H. Du et al.

Case 2: As shown in Fig. 8, the solid circle donates the sensor that already
deployed, the dashed circle donates the sensors that have not been deployed.
The target region is composed of line1, line2, line3 and line4. If line4 is located
at location1, then the sensors deployed can coverage the target region without
any coverage hole. But when line4 moves to the left, then the coverage hole
appears. When line4 moves to location2, the size of the coverage hole is the
largest, and if line4 continues to move to the left, then the center of the dashed
circle is inside the target region, so these locations will be chosen by algorithm
MSSDB to deploy sensors, then the target area can be totally covered without
any coverage hole. So the largest diameter of the coverage hole is d, is given by:

d =

{
rc if rc <

√
3rs√

3rs

2 if rc >
√

3rs

Combining Case 1 and Case 2, we can figure out that the largest diameter
of the coverage hole is rs.

6 Simulations

In this section, firstly, we do extensive simulations by Matlab to evaluate the
performance of the sensor deployment designed by the proposed scheme, the
proposed scheme is compared with the conventional strip-based sensor deploy-
ment method [9] which is proved the optimal deployment pattern to achieve
both full coverage and connectivity for all values of rc/rs, the square-based sen-
sor deployment pattern [10], and the hexagon-based sensor deployment pattern
[11]. Secondly, we analyse the average time delay with the ONE simulator using
the representative algorithm Epidemic Routing [20].

Fig. 9. Map: A 3700 m by 4000 m area of Helsinki in Finland (map data provided by
OpenStreetMap)

A Sensor Deployment Strategy in Bus-Based Hybrid Ad-Hoc Networks 231

6.1 Simulation Scenarios

The simulation area is based on real map about 3700 m by 4000 m area of
Helsinki, Finland, as shown in Fig. 9. There are 50 to 100 buses traveling on
the roads, the location of the BS is set to (2397,3147) which is converted from
the KKJ (Finnish National Coordinate System) [21]. The simulation is simulated
for 12 h and the locations of 14 stationary nodes are selected. The bus which is
within the communication range of the stationary nodes can collect the data
from the subregion which is connected by the stationary nodes. The message is
created by the stationary nodes every 25 to 35 s and the TTL of message is set
to be 300 min.

The simulation parameters are set in Table 2. We assume that the buses
are powerful and can support communication devices with a large transmission
range.

Table 2. Table of simulation parameters

Environmental parameters Used values

Experimental area 3700 × 4000 m

Sensing radius of ordinary sensors 15, 15, 15, 15 (m)

Communication radius of ordinary sensors 10, 15, 20, 30 (m)

Sensing radius of vehicle-mounted sensors 50 m

Communication radius of vehicle-mounted sensors 100, 150 (m)

Velocity of bus 7∼15 m/s

Number of bus line 8

Number of bus on each line 4, 6, 8, 10, 12

Size of messages 500 kb∼1 M

Size of buffer space on the bus 50 M

Width of the road 50 m

6.2 Simulation Analysis for Sensor Deployment

In this section, we present the performance evaluation of the sensor deployment
designed by the proposed scheme. As shown in Fig. 8, the shape of the sensing
field is irregular, we consider four cases: (rs,rc) = (15,10), (15,15), (15,20) and
(15,30) to reflect the relationships of rs>rc, rs = rc, rs<rc≤rs, and rc >

√
3rs,

respectively. For each case, we run the simulation for 5 times and report the
average.

Figure 10 presents the performance of the conventional strip-based sensor
deployment algorithm and the modified strip-based sensor deployment with
boundaries MSSDB, the square-based sensor deployment algorithm and the
hexagon-based sensor deployment in terms of the number of deployed sensors

232 H. Du et al.

10 15 20 30
0

20000

40000

60000

80000

100000

120000

Communication radius of ordinary sensor

N
um

be
r

of
 D

ep
lo

ye
d

S
en

so
rs

Hexagon−based
Square−based
Strip−based
MSSDB

Fig. 10. Number of sensors needed by different deployment patterns. rs is 15 m.

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
5

0

200

400

600

800

1000

1200

1400

1600

1800

2000

Area of sensing fields

N
um

be
r

of
 s

en
so

rs
 n

ee
d

MSSDB
Hexagon−based
Square−based
Triangular−based

Fig. 11. Comparison of the growing rate of sensor numbers when the area of sensing
field increases

versus the relationship of the sensing radius and communication radius. We
can see that MSSDB outperforms the other three sensor deployment methods
on the whole. With the value of rc/rs increasing, the number of deployed sen-
sors decrease in all the four algorithms. Our scheme needs less sensors than the
conventional strip-based method about 2000 in average without considering the
relationship of the sensing radius and communication radius. The other two con-
ventional deployment method need more sensors, when rc is 10 m, square-based
deployment method need less sensors than hexagon-based deployment method,
but when rc is increasing, square-based deployment method need more sensors
than hexagon-based deployment method. Our scheme saves about 20 thousand
in average compared with square-based and hexagon-based sensor deployment
method.

A Sensor Deployment Strategy in Bus-Based Hybrid Ad-Hoc Networks 233

Figure 11 illustrates that, when the sensing field expands from approximate
40000 m2 to 360000 m2, the number of sensors required in MSSDB, hexagon-
based, square-based and triangular-based increases by about 800, 1100, 1400
and 1600 respectively. The lowest growing rate of node numbers required by
MSSDB proves a better adaptability to the changing of network scale.

6.3 Simulation Analysis for Average Delay

This section analyse the average delivery delay between the ordinary nodes and
the BS. Due to that the data transmission speed in WSNs is far greater than the
data propagation speed in BANETs, which mean that they are not on an order
of magnitude, we only consider the delivery delay in BANETs in this paper.

4 5 6 7 8 9 10 11 12
1200

1300

1400

1500

1600

1700

1800

Number of Bus on each Line

A
ve

ra
ge

 d
el

ay

Rc=100
Rc=150

Fig. 12. Average delay for different
number of bus on each line and differ-
ent Rc.

4 5 6 7 8 9 10 11 12
1000

1100

1200

1300

1400

1500

1600

1700

Number of Bus on each Line

A
ve

ra
ge

 d
el

ay

speed of bus =9
speed of bus =15

Fig. 13. Average delay for different
number of bus on each line and different
speed of bus.

Figure 12 presents the average delay versus number of bus on each line when
the speed of the bus is set to be 7 to 10. We can see that with the number of
bus on each line increasing, the average delay decreased at the same time. At
the beginning, the delivery latency is high, it means that buses running on the
road are not enough to encounter with each other, so maybe only when certain
bus reaches to the BS, the BS can obtain all the data. But with the number
of bus increasing, the chance that two buses encounter with each other is high,
then the messages can be delivered through multi-hop rather than carried by
the bus all the time, so the delivery latency becomes less. Figure 12 also show
that transmission range have an important influence on the average delay, when
the transmission range is high, the average delay is less.

Figure 13 presents the average delay versus the number of bus on each line
when the communication radius is set to be 150. We can see that the speed of
the buses running on the road also influence the average delay, when the speed
is high, the delay is less.

In summary, the average delay is influenced by three important factors: the
number of bus, the communication radius of the bus, and the speed of the bus

234 H. Du et al.

running on the road. The delay can be less to a great extent with more buses,
higher communications and higher speed. Generally speaking, The average delay
can be controlled in about 25 min.

7 Conclusion and Future Works

In this paper, we introduce how to utilize WSNs and BANETs to monitor the
city area cooperatively and analyse that using the hybrid network framework can
reduces the sensors deployed considerably. We propose an effective algorithm to
deploy sensors in irregular sensing fields. Simulations show that our method out-
performs the conventional strip-based sensor deployment algorithm, the square-
based sensor deployment pattern and the hexagon-based sensor deployment pat-
tern. And the messages can be delivered to the BS in time, which is valuable
and meaningful. For the future work, we will study how to adjust the sensor
deployment to satisfy different delivery delay and study how to further optimize
the number of sensors needed to coverage the boundaries.

Acknowledgment. This work was financially supported by National Natural Sci-
ence Foundation of China with Grants No. 61370216 and No. 61100191, and Shenzhen
Strategic Emerging Industries Program with Grants No. ZDSY20120613125016389, No.
JCYJ20120613151201451 and No. JCYJ20130329153215152.

References

1. Keränen, A., Ott, J., Kärkkäinen, T.: The ONE simulator for DTN protocol eval-
uation. In: Proceedings of the 2nd International Conference on Simulation Tools
and Techniques, Brussels, Article No. 55 (2009)

2. Wu, L., Du, H., Wu, W., Li, D., Lv, J., Lee, W.: Approximations for minimum
connected sensor cover. In: IEEE INFOCOM (2013)

3. Bai, X., Yun, Z., Xuan, D., Jia, W., Zhao, W.: Pattern mutation in wireless sensor
deployment. In: IEEE INFOCOM, pp. 1–9 (2010)

4. Luo, H., Du, H., Kim, D., Ye, Q., Zhu, R., Zhang, J.: Imperfection better than
perfection: beyond optimal lifetime barrier coverage in wireless sensor networks.
In: 10th International Conference on Mobile Ad-hoc and Sensor Networks (MSN),
December 2014

5. Chong, C.Y., Kumar, S.: Sensor networks: evolutions, opportunities, challenges.
Proc. IEEE 91(8), 1247–1256 (2003)

6. Kershiner, R.: The number of circles covering a set. Am. J. Math. 61, 665–671
(1939)

7. Zhang, H., Hou, J.: Maintaining sensing coverage and connectivity in large sensor
networks. In: NSF International Workshop on Theoretical and Algorithmic Aspects
of Sensor, Ad Hoc Wireless, and Peer-to-Peer Networks (2004)

8. Iyengar, R., Kar, K., Banerjee, S.: Low-coordination topologies for redundancy
in sensor networks. In: Proceedings of the 6th ACM International Symposium on
Mobile Ad Hoc Networking and Computing (Mobihoc) (2005)

A Sensor Deployment Strategy in Bus-Based Hybrid Ad-Hoc Networks 235

9. Bai, X., Kumar, S., Xuan, D., Yun, Z., Lai, T.H.: Deploying wireless sensors to
achieve both coverage and connectivity. In: Proceedings of the 7th ACM Inter-
national Symposium on Mobile Ad Hoc Networking and Computing (Mobihoc)
(2006)

10. Bai, X., Yun, Z., Xuan, D., Lai, T.H., Jia, W.: Deploying four-connectivity and
full-coverage wireless sensor networks. In: Proceedings 27th IEEE International
Conference on Computer Communications, IEEE INFOCOM (2008)

11. Bai, X., Xuan, D., Yun, Z., Lai, T.H., Jia, W.: Complete optimal deployment pat-
terns for full-coverage and k-connectivity (k ≤ 6) wireless sensor networks. In:
Proceedings of the 9th ACM International Symposium on Mobile Ad Hoc Net-
working and Computing (Mobihoc), pp. 401–410 (2008)

12. Ishizuka, M., Aida, M.: Performance study of node placement in sensor networks.
In: Proceedings of 24th International Conference on Distributed Computing Sys-
tems Workshops, pp. 598–603 (2004)

13. Miller, L.E.: Distribution of link distances in a wireless network. J. Res. Nat. Inst.
Stand. Technol. 106, 401–412 (2001)

14. Cheng, X., Du, D., Wang, L., Xu, B.: Relay sensor placement in wireless sensor
networks. Wireless Netw. 14, 347–355 (2008)

15. Lin, G., Xue, G.: Steiner ree problem with minimum number of Steiner points and
bounded edge-length. J. Inf. Process. Lett. 69, 53–57 (1999)

16. Chen, D., Du, D.Z., Hu, X.D., Lin, G., Wang, L., Xue, G.: Approximations for
Steiner trees with minimum number of Steiner points. J. Global Optim. 18, 17–33
(2000)

17. Kashyap, A., Khuller, S., Shayman, M.: Relay placement for higher order con-
nectivity in wireless sensor networks. In: Proceedings 25th IEEE International
Conference on Computer Communications (INFOCOM), pp. 1–12 (2006)

18. Zhang, W., Xue, G., Misra, S.: Fault-tolerant relay node placement in wireless
sensor networks: problems and algorithms. In: Proceedings of 26th IEEE Inter-
national Conference on Computer Communications (INFOCOM 2007), pp. 1649–
1657 (2007)

19. Lloyd, E.L., Xue, G.: Relay node placement in wireless sensor networks. IEEE
Trans. Comput. 56, 134–138 (2007)

20. Vahdat, A., Becker, D.: Epidemic routing for partially connected ad hoc networks.
Technical report CS-200006, Duke University, April 2000

21. http://www.kolumbus.fi/eino.uikkanen/geodocsgb/ficoords.html

http://www.kolumbus.fi/eino.uikkanen/geodocsgb/ficoords.html

New Insight into 2-Community Structures
in Graphs with Applications in Social Networks

Cristina Bazgan1,2, Janka Chleb́ıková3, and Thomas Pontoizeau1(B)

1 PSL, Université Paris-Dauphine, LAMSADE UMR CNRS 7243, Paris, France
{bazgan,thomas.pontoizeau}@lamsade.dauphine.fr

2 Institut Universitaire de France, Paris, France
3 School of Computing, University of Portsmouth, Portsmouth, UK

janka.chlebikova@port.ac.uk

Abstract. We investigate the structural and algorithmic properties of 2-
community structure in graphs introduced by Olsen [13]. A 2-community
structure is a partition of vertex set into two parts such that for each
vertex of the graph number of neighbours in/outside own part is in cor-
relation with sizes of parts. We show that every 3-regular graph has a 2-
community structure which can be found in polynomial time, even if the
subgraphs induced by each partition must be connected. We introduce
a concept of a 2-weak community and prove that it is NP-complete to
find a balanced 2-weak community structure in general graphs even with
additional request of connectivity for both parts. On the other hand, the
problem can be solved in polynomial time in graphs of degree at most 3.

Keywords: Graph theory · Complexity · Graph partitioning · Commu-
nity structure · Clustering · Social networks

1 Introduction

The problematic around community structures is closely related to the well
established research areas of clustering and graph partitioning where similar
problems have been studied from different aspects. A good introduction and
overview of clustering and partitioning results can be found in [6,11,12,14]. The
problems associated with communities are well motivated by current research
in social networks such as Facebook, Linkedin, see also Sect. 2 in [5] for more
details about various applications. A standard abstract model for such networks
are graphs, in which a community in a graph intuitively corresponds to a dense
subgraph. More formally, a community structure is a partition of vertices with
some additional constrains such as number of edges between parts or general
constrains as connectivity for each part. Therefore the new results for com-
munities may find applications in the areas similar to a graph partition such
as parallel-computing, VLSI-circuit design, route planning [8] and divide-and-
conquer algorithms [15].

There are several definitions proposed for a community structure in the liter-
ature together with some structural and complexity results [3,4,9,13]. The results
c© Springer International Publishing Switzerland 2015
Z. Lu et al. (Eds.): COCOA 2015, LNCS 9486, pp. 236–250, 2015.
DOI: 10.1007/978-3-319-26626-8 18

New Insight into 2-Community Structures in Graphs 237

in this paper are based on the definition of community structure introduced
recently by Olsen [13] which seems to be a natural model for a community in undi-
rected connected graphs. We introduce the concept of a weak community structure
in which every member of a community considers itself as a part of the commu-
nity. We investigate the structural properties of the members of communities for
fixed number of two communities in the graphs of maximum degree 3 and present
some algorithmic results. The results are further extended for a weak community
together with additional constrains such as connectivity or the same size for both
parts (balanced partition).

The partition of graphs are intensively studied in the literature with various
measures to evaluate their optimality, see for example [1,6]. In the balanced
partition problem, which can be seen as a generalisation of the bisection problem
to any given number of parts, the goal is to minimise the number of edges between
partitions. It is known that the problem cannot be approximated within any
finite factor in polynomial time in general graphs and it remains APX-hard even
if the maximum degree of the tree is constant [10]. It demonstrates that some
graph partitions problems which are related to e.g. balanced communities are
hard to solve even for restricted graph classes. This indicates hardness of different
problems related to a community structure too, hence any positive results in
community structure problems are important to get better understanding of
differences between community and partition problems.

The paper is structured as follows. In Sect. 2 we introduce formally some
notation and definitions of problems we study. In Sect. 3 we show that every
3-regular graph has a 2-community structure which can be found in polynomial
time, even if the subgraphs induced by each partition must be connected. In
Sect. 4 we prove that every graph of maximum degree 3 has a balanced weak 2-
community structure that can be found in polynomial time, while the problem is
NP-complete in general graphs even when both parts should remain connected.
Conclusions and open questions are provided in Sect. 5. Due to the space con-
straints, some proofs are deferred to a full version.

2 Preliminaries

In the paper, all considered graphs are undirected and connected. For any sub-
graph C of the graph G = (V,E) and a vertex v ∈ V let NC(v) (resp. NC [v])
be the set of the neighbours (resp. closed neighbours) of v in C, d(v) be the
degree of the vertex v in G. For a partition of V into two parts and v ∈ V let
din(v) (resp. dout(v)) be the number of neighbours in its own part (resp. out of
its part). A partition {C1, C2} of V is connected if the subgraphs induced by C1

and C2 are connected. A partition {C1, C2} of V is balanced if the sizes C1, C2

differ by at most 1. A graph is k-regular if every vertex is of degree k, k ≥ 2.
A pendant vertex of G is any vertex of degree 1. A star is a complete bipartite
graph K1,� for any � ≥ 1.

Now we introduce Olsen’s definition of a k-community structure from [13].

238 C. Bazgan et al.

Definition 1. A k-community structure for a connected graph G = (V,E) is a
partition Π = {C1, . . . , Ck} of V , k ≥ 2, such that ∀i ∈ {1, . . . , k}, |Ci| ≥ 2, and
∀v ∈ Ci,∀Cj ∈ Π, j �= i, the following holds

|NCi
(v)|

|Ci| − 1
≥ |NCj

(v)|
|Cj | (1)

For a weak k-community structure, (1) is replaced by a “weaker” condition

|NCi
[v]|

|Ci| ≥ |NCj
(v)|

|Cj | . (2)

Notice that a k-community structure is obviously a weak k-community struc-
ture since |NCi

[v]|
|Ci| = |NCi

(v)|+1

|Ci|−1+1 ≥ |NCi
(v)|

|Ci|−1 , but the opposite is not true (see
Fig. 1).

Fig. 1. A 2-weak-community structure of a graph in which the blank vertex does not
satisfy condition (1) but satisfies condition (2).

If we remove the restriction k on the number of communities from Defini-
tion 1, but (1) is still true for each vertex, we obtain a concept of a community
structure introduced by Olsen [13]. Olsen proved that a community structure
without any restriction on the number of communities can be found in polyno-
mial time for any graphs (with at least 4 vertices) except the star graphs. He
also proved that it was NP-complete to find a community structure in a graph
in which a given set of vertices is included in a part [13].

In this paper we investigate the problems of a community structure for fixed
number of two communities:
2-Community

Input: A graph G.
Question: Does G have a 2-community structure?

Obviously, if G has a 2-community structure, it must have at least 4 vertices
and not be isomorphic to a star which we assume in the paper.

In the Weak 2-Community problem we are looking for a weak 2-community
structure in a graph. Adding the balanced condition to the 2-Community
problem (for graphs with even number of vertices), we obtain the Balanced
2-Community problem introduced by Estivill-Castro et al. [9]. Similarly we can
define the Balanced Weak 2-community problem.

The additional constrain which asks for subgraphs induced by each part of
the partition to be connected is a natural constrain useful for the problems

New Insight into 2-Community Structures in Graphs 239

related to the connectedness. The Connected 2-Community problem is to
decide if a graph has a connected 2-community structure, i.e. a 2-community
structure {C1, C2} such that the subgraphs induced by C1, C2 are connected.
We can define analogous problems for weak and balanced versions.

Thefollowingoverviewsummarises theclassesofgraphs inwhicha2-community
structure (hence also weak 2-community) always exists. Depending on the case the
results can be extended to connected or balanced communities. All these results are
either easy observations or contained as the main results in this paper.

In this way, there always exists a 2-community structure which can be found
in polynomial time in (considering graphs with at least 4 vertices):

• 3-regular graphs, even a connected 2-community structure (Sect. 3).
• graphs of bounded tree-width (except stars), even a balanced 2-community

structure. (The results follow from [2], see Sect. 4 for more details.)
• graphs with minimum degree � (c−1).|V |

c � where c is the size of an inclusion-wise
maximal clique in G. Denote by C such a clique in G and consider the partition
{C, V \ C}. Then the condition (1) is satisfied for all vertices in C (the left
part of the inequality is 1). The condition (1) is also satisfied for all neighbours

x ∈ V \ C of vertices in C since din(x)
|V |−c−1 ≥

(c−1).|V |
c −(c−1)

|V |−c−1 ≥ c−1
c ≥ dout(x)

c .
Finally, the other vertices in V \ C trivially satisfy condition (1) since the
right part of the inequality is 0.

• graphs of maximum degree 2 (hence either a cycle or a path). Indeed, any
balanced connected partition is a connected 2-community structure (an easy
exercise).

• complete graphs, since any partition in which each part has at least 2 vertices
is an example of a connected 2-community structure (an easy exercise).

Moreover, there always exists a balanced weak 2-community structure in
graphs of maximum degree 3, but this is not true for 2-community structure, see
Sect. 4.

Estivill-Castro et al. [9] proved that the problem of finding a balanced 2-
community structure is NP-complete. In Sect. 4 we show that the same result
also holds for a weak community, even with additional constrain of connectivity
for both parts. We also present a shorter proof of the known NP-complete result
for a balanced 2-community in general graphs based on an alternative definition
of community structure [3], which also implies NP-completeness for a connected
balanced 2-community. On the other hand, we prove that every graph of degree
at most 3 has a weak balanced 2-community structure which can be found in a
polynomial time.

3 2-Community Structure in 3-Regular Graphs

In this section we show that any 3-regular graph has a 2-community structure
(even connected) computable in polynomial time.

First, the restrictions on the size of partitions are discussed to ensure the
vertices fulfil the condition (1) in case of a 2-community structure.

240 C. Bazgan et al.

Lemma 1. Let G be a 3-regular graph of size n. Let {C1, C2} be a partition of
G such that �n−1

3 � ≤ |C1| ≤ n − �n−1
3 �. Then each vertex of G which has at

most one neighbour out of its own part fulfils the condition (1) of a 2-community
structure.

Lemma 2. Let G be a 3-regular graph of size n. Let {C1, C2} be a 2-partition
of G such that |C1| = �n

3 � or |C1| = 	n
3
. Then each vertex of degree 3 from C1

which has two neighbours in C2 fulfils the condition (1).

Theorem 1. Every 3-regular graph has a 2-community structure. Moreover it
can be found in polynomial time.

Proof. Let G = (V,E) be a 3-regular graph of size n. The algorithm runs in two
stages.

Stage 1: The algorithm finds a partition {C1, C2} of V such that |C1| = �n−1
3 �

and at most two vertices from C1 have more than one neighbour in C2.
Stage 2: The algorithm moves some vertices between C1 and C2 until �n−1

3 � ≤
|C1| ≤ n−�n−1

3 � and each vertex of G has a restricted number of neighbours
out of its own part in a such way that Lemmas 1 or 2 can be applied.

Stage 1: Let u, v ∈ V be such that (u, v) ∈ E and put C1 = {u, v}. Now repeat
the following steps (S1) and (S2) until |C1| = �n−1

3 �:

(S1) Let w be a neighbour of u (or v) which is not in C1, put C1 := C1 ∪ {w},
u := w (or v := w).

(S2) If there is no such vertex w, the degree of each vertex in the subgraph
induced by C1 is 2 or 3. In such a case let u be any vertex of degree 2 in
the subgraph induced by C1.

It is clear that at the end of the first stage the algorithm finishes with a
set C1 such that |C1| = �n−1

3 �. If it is not possible to apply (S1) and (S2) and
|C1| < �n−1

3 � then all vertices in C1 must have all neighbours in C1 which means
that G is not connected.

Furthermore at most two vertices (u and v) from C1 may have more than
one neighbour outside C1 and the subgraph induced by C1 is connected. Define
C2 = V \ C1.

Stage 2: We distinguish two major cases:

Case 1: If ∀w ∈ C2, dout(w) ≤ 1 then all vertices in G except u and v have
at most one neighbour out of its part. Using Lemma1, these vertices fulfil the
condition (1). Moreover, �n−1

3 � equals 	n
3
 or �n

3 � and according to Lemma 2, (1)
is also true if u, v have two vertices out of C1. Hence, {C1, C2} is a 2-community
structure.

Case 2: There exists a vertex w ∈ C2, such that dout(w) ≥ 2.
Now we distinguish several subcases:

New Insight into 2-Community Structures in Graphs 241

(A) ∀x ∈ C1, dout(x) ≤ 1
(B) All vertices from C1 which have more than one neighbor outside C1 are

adjacent to w (only u, v ∈ C1 are possible candidates).
(C) No vertex from C1 which has more than one neighbor outside C1 is adjacent

to w (only u, v ∈ C1 are possible candidates).
(D) Both vertices u, v ∈ C1 have more than one neighbor outside C1, but only

one of them is adjacent to w.

Case 2(A): Repeat the update step until it is possible:
if ∃z ∈ C2, dout(z) ≥ 2, update C1 and C2 as follows: C1 := C1 ∪ {z}, C2 :=
C2 \ {z}.
If no update step is possible, then return {C1, C2}.

After each update step, two neighbours of z in C1 have degree three. After
repeating the update step k times, C1 has �n−1

3 � + k vertices and at least 2k
vertices in C1 have degree three in the subgraph induced by C1. Hence, we can
repeat the update step at most �n−1

3 � − 1 times. Otherwise the degree of each
vertex in C1 is three which implies G is not connected. Thus |C1| ≤ 2�n−1

3 �−1 ≤
n − �n−1

3 �. Note that now every vertex in G has at most one neighbour out of
its part and thus applying Lemma1, {C1, C2} is a 2-community structure.

Case 2(B): Wlog we suppose that dout(u) = 2 and u is adjacent to w. Further-
more, if dout(v) = 2 then also v is adjacent to w.

Now using C1, C2 we define a 2-community partition. After the initial update:
C1 := C1 ∪ {w}, C2 := C2 \ {w}, all vertices in C1 have at most one neighbor in
C2 and |C1| = �n−1

3 � + 1. Then repeat the update step:

– if ∃z ∈ C2, dout(z) ≥ 2, define C1 := C1 ∪ {z}, C2 := C2 \ {z}, until |C1| =
2�n−1

3 � − 1 or if there is no such a vertex z to update C1.

There are two possible scenarios:

(i) if |C1| ≤ 2�n−1
3 � − 1 and there is no such vertex z ∈ C2 such that dout(z) ≥

2, then each vertex in G has at most one neighbour out of its own part.
Obviously, |C1| ≤ n−�n−1

3 � and due to Lemma 1, {C1, C2} is a 2-community
structure.

(ii) |C1| = 2�n−1
3 � − 1 and ∃z ∈ C2 such that dout(z) ≥ 2: the update step

has been repeated �n−1
3 � − 2 times and in each step the number of vertices

x ∈ C1 with dout(x) = 1 is decreased by at least 2 (the neighbours of z in
C1). It means every vertices in V has all neighbours in its own part, except
at most three vertices, each having one neighbour out of its part.

– If n ≡ 2 mod 3, then the size of |C2| = n − (2�n−1
3 � − 1) = �n

3 �. Because
|C1| ≤ n−�n−1

3 �, due to Lemma 1, all vertices with at most one neighbor out
of its own part fulfil the condition (1). If a vertex of C2 is adjacent to exactly
two vertices from C1 then the condition (1) is true according to Lemma 2.
A vertex of C2 cannot be adjacent to all three vertices in C1, otherwise C1∪{w}
is a disconnected part of G. Hence, {C1, C2} is a 2-community partition.

242 C. Bazgan et al.

– If n ≡ 0 mod 3 or n ≡ 1 mod 3, then define the last update: C1 := C1 ∪
{z}, C2 := C2 \ {z}. Now only one vertex of C1 has one neighbour in C2.
Because |C1| = 2�n−1

3 � ≤ n − �n−1
3 �, the condition (1) is true for all ver-

tices of G because of Lemma 1. Hence the updated partition {C1, C2} is a
2-community structure.

Case 2(C): Wlog we suppose that dout(u) = 2. Update C1 := C1 ∪ {w} \
{u}, C2 := V \ C1.

Notice that after the update, |C1| = �n−1
3 � and there may be at most two

vertices in C1 which have two neighbours in C2. Hence we are again in one of
the cases (A)-(D) of second stage, but each time we apply this update the size of
the cut between C1 and C2 is decreases by two. Therefore the process is finite.

Case 2(D): Wlog suppose that u is adjacent to w and dout(u) = 2. Update
C1 := C1 ∪ {w} \ {v}, C2 := V \ C1.

Notice that after the update, |C1| = �n−1
3 �. Moreover, u has two neighbours

inside C1 since u is obviously not adjacent to v. Hence we are in one of the
previous cases of stage 2, since there is at most one vertex in C1 (the neighbour
of v) which could have two neighbours in C2. ��

Now we investigate the problem of finding a 2-community structure with
additional condition of connectivity for each part. Using the algorithm from
Theorem 1 as a tool we extend the result for a connected 2-community structure
in 3-regular graphs, but with many fine details in the proof.

Lemma 3. Let G be a 3-regular graph and {C1, C2} a connected 2-partition of
G with �n−1

3 � ≤ |C1| ≤ n − �n−1
3 � such that each part has at most one vertex

with two neighbours out of its own part. Then G has a connected 2-community
structure which can be found in polynomial time.

Proof. The main idea is to move selected vertices between two parts in such a
way that it preserves connectivity and offers the options to use Lemmas 1 or 2.

We discuss four cases depending on which vertices have two neighbours out
of its own part. Notice that transferring a vertex which has two neighbours out
of its part does not compromise the connectivity of the partition.

(a) If there is no vertex in C1 and C2 with two neighbours out of its own
part, then using Lemma 1 the partition {C1, C2} is already a connected 2-
community structure.

(b) If the only vertex with two neighbours out of its own part is in C2, then
update C1, C2 using the following loop:

while |C1| < n − �n−1
3 � and there exists a vertex z in C2 which has two

neighbours in C1, update C2 := C2 \ {z}, C1 := C1 ∪ {z}.
Obviously after each run of the while loop both parts of the partition remains
connected. At the end of the while loop
– if |C1| < n−�n−1

3 �, then all vertices in G have at most one neighbour out
of their parts and satisfy the properties of 2-community structure due to
Lemma 1,

New Insight into 2-Community Structures in Graphs 243

– if |C1| = n − �n−1
3 � then |C2| = �n−1

3 � and hence all vertices in C2 with
two neighbours out of the own part satisfy the properties of 2-community
structure due to Lemma 2, the rest of vertices satisfy Lemma 1.

(c) The only vertex with two neighbours out of its own part is in C1. Then the
case is similar to (b) by symmetry swapping the roles between C1 and C2.

(d) There are two vertices:
– v1 ∈ C1 with two neighbours in C2 and let v0

1 be the neighbour of v1 ∈ C1;
– v2 ∈ C2 with two neighbours in C1 and let v0

2 be the neighbour of v2 ∈ C2.
Now we need to distinguish two cases:
(i) If (v1, v2) ∈ E, then we update the partition as follows. If |C1| < n −

�n−1
3 � then define a new partition C1 := C1 ∪ {v2}; C2 := C2 \ {v2},

otherwise C1 := C1 \ {v1}; C2 := C2 ∪ {v1}. Obviously, {C1, C2} is a
connected partition which fulfil initial conditions of lemma, so we can
apply case (a), (b), (c) or (d) again. Notice that the case (d) can be
repeated only finite number of times since the cut size between C1 and
C2 decreases each time the case is applied.

(ii) If (v1, v2) /∈ E we define the following update C1 := C1 ∪ {v2} \ {v1},
C2 := C2 ∪ {v1} \ {v2}. The new partition is a connected partition with
no change in sizes and the following options are possible:
– If dout(v0

1) = 0 or dout(v0
2) = 0 before the update, then update removes

at least one of the vertices with two outgoing edges. Now we can
again apply one of cases (a), (b) or (c) which leads to a connected
2-community structure.

– If dout(v0
1) > 0 and dout(v0

2) > 0 then we can apply case (d) again.
This process is finite because each time the size of the cut size between
C1 and C2 is decreased by 2.

Obviously, the whole procedure can be run in polynomial time. ��
Theorem 2. Every 3-regular graph has a connected 2-community structure.
Moreover it can be found in polynomial time.

Proof. The algorithm runs in two stages similarly to the algorithm in Theorem1.

Stage 1: The algorithm finds either a connected partition {C1, C2} such that
|C1| = �n−1

3 � and at most two vertices from C1 have two neighbours in C2

or ends up with a connected 2-community structure.
Stage 1: Apply directly Stage 2 from Theorem1.

The difference to the approach from Theorem 1 is that C2 remains connected
until the end of the first stage, where C1 is connected in both approaches.

Then we apply the second stage of the algorithm from Theorem1. Since
moving a vertex which has 2 neighbours in the other part never disconnect
any part and all transfers only affect such vertices, the final partition {C1, C2}
remains connected at the end of the second stage.

244 C. Bazgan et al.

Stage 1: (for a connected partition)
Choose any vertices u, v ∈ V such that {u, v} ∈ E and the subgraph induced
by V \{u, v} is connected. Label the vertices u, v and define C1 := {u, v}, C2 :=
V \{u, v}.

The initial construction: While |C1| < �n−1
3 � and one of the updates (S1), (S2)

(in this order) can be applied do:

(S1) If there exists a vertex x ∈ C2 such that dout(x) = 2, then update C1 :=
C1∪{x}, C2 := C2\{x}. If all labelled vertices have three neighbours in C1,
then removes all labels and label one vertex in C1 which has one neighbour
in C2.

(S2) If there exists a vertex x ∈ C2 such that x is a neighbour of a labelled
vertex w in C1 and C2\{x} remains connected then update C1 := C1∪{x},
C2 := C2\{x}, label the vertex x and remove label from w. If all labelled
vertices have three neighbours in C1, then removes all labels and label one
vertex in C1 which has one neighbour in C2.

Obviously after each update we can have at most two labelled vertices in C1.

Now there are two possibilities how the initial construction can finish:

(1) The algorithm finishes with |C1| = �n−1
3 �. Due to the properties of the

construction, the partition {C1, C2} is connected and at most two vertices
from C1 may have two neighbours in C2. In such a case we can move directly
to Stage 2.

(2) If none of the updates (S1), (S2) can be applied and |C1| < �n−1
3 � then

we redefine the partition {C1, C2} using the major update construction to
obtain a new partition which leads to a connected 2-community structure.

The major update construction:

Step A: Let N ⊆ C2 be the set of neighbours of all labelled vertices from
C1, hence 1 ≤ |N | ≤ 4. In the first part we define the subsets Q,Q′, Z of
C2 and the vertices q, q′ ∈ N (q, q′ are not necessarily distinct) such that
{Q,Q′, Z, {q}, {q′}} is a connected partition of the graph induced by C2 and
each vertex from Q ∪ Q′ has at most one neighbour in C1. Furthermore, the
entire set Q (resp. Q′) has exactly one neighbour outside Q (resp. Q′) in C2 and
this is the vertex q ∈ N (resp. q′ ∈ N).

We show that such Q, Q′, Z exist and are always connected. Consider a vertex
v1 ∈ N . The vertex v1 has necessarily two neighbours in C2 and the subgraph
induced by C2 \ {v1} is disconnected (otherwise (S1) or (S2) from Stage 1 could
be applied). Let C1

2 and C2
2 be the two connected components of C2 \ {v1}.

Define Q := C1
2 , Q′ := C2

2 and q = q′ = v1. Moreover, Z = ∅ is trivially
connected. Hence in case |N | = 1 we can now move directly to Step B.

If |N | > 1, select another vertex v2 ∈ N . Such vertex must be in Q or
Q′ defined above. Consider wlog that v2 ∈ Q. If {v1, v2} ∈ E, then update
Q := Q\{v2}, q := v2, q′ := v1 and Z := ∅. Notice that Q is still connected since
v2 has only one neighbour in Q. If {v1, v2} �∈ E, Q \ {v2} must be disconnected
into two part Q1 and Q2. Name Q2 the set which contains a neighbour of v1 (Q1

New Insight into 2-Community Structures in Graphs 245

ZQ Q

C1

q q

Fig. 2. Splitting C2 when |N | = 4 (vertices in N are blank)

obviously cannot have a neighbour of v1, since the other two neighbours are in
Q′ and C1, respectively). Update Q := Q1, q := v2 and Z := Q2. Hence in case
|N | = 2, the construction in Step A is over and we can continue directly with
Step B. Indeed, Q has only v2 ∈ N as a neighbour in C2 \ Q and similarly for
Q′ and v1 ∈ N .

Suppose now that |N | ≥ 3. Then select another vertex v3 ∈ N , the vertex v3
must be in Q, Q′ or Z defined above. If v3 ∈ Z, then Q, Q′, Z, q and q′ already
satisfy the properties. Otherwise, v3 ∈ Q ∪ Q′ and wlog we suppose v3 ∈ Q. If
{v3, v2} ∈ E, then update Q := Q \ {v3}, q := v3 and Z := Z ∪ {v2} which is
trivially connected. Otherwise, Q \ {v3} must be disconnected, let Q1 and Q2

be its connected parts. Denote Q2 the set which has a neighbour of v2 (then Q1

cannot have a neighbour of v2). Update Q := Q1, q := v3, Z := Z ∪ Q2 ∪ {v2}.
Again, if |N | = 3, the construction is over. Indeed, Q has only v3 ∈ N as a
neighbour in C2 \ Q and there are no changes for Q′. Moreover, Z is connected.
Hence in case |N | = 3 we can move to Step B. If |N | = 4, the construction is
similar to the discussion for |N | = 3 (see Fig. 2 as an example for |N | = 4).

It is also important to notice that if |N | > 2 then following the construction
N \ {q, q′} ⊆ Z.

Step B: Using the sets Q, Q′, Z and vertices q and q′ we define a new partition
of V . Then the step B only consists in looking at the size of the sets Z,Q,Q′, Z ∪
Q ∪ {q}, Z ∪ Q′ ∪ {q′} and update {C1, C2} depending on the size of those sets
which are known to be connected.

The detail of Step B is based on awkward discussion of several cases. ��

4 Balanced 2-Community Structure

In this section we first prove that every graph of maximum degree 3 has a bal-
anced weak 2-community structure that can be found in polynomial time. On the
other hand, we show that the Balanced Weak 2-community problem is NP-
complete in general graphs similarly to the Balanced 2-community problem.
The latter result was presented as the main result in [9] and here an alternative
shorter proof is given. Both NP-complete results are valid if connectivity of both
parts is required.

246 C. Bazgan et al.

Remark. As follows from Sect. 3, every 3-regular graph has a 2-community
structure. But if we look for a balanced partition there exists a 3-regular graph
which doesn’t have a balanced 2-community structure, see Fig. 3. The graph is
obtained by linking three “cross gadgets”. First notice that if a 2-community
exists for the graph, then all vertices of each cross gadget must be in the same
part. Indeed, each vertex of such community structure must have two neighbours
in its own part. But on the other hand, it is impossible to divide the graph into
two balanced parts without splitting a cross gadget.

Fig. 3. A cross gadget and a 3-regular graph with no balanced 2-community structure.

Nevertheless, if we focus on a weak community, we can prove that Balanced
Weak 2-community has always a solution in graphs of maximum degree 3.
Moreover, a balanced weak 2-community can be found in polynomial time in
such graphs.

Theorem 3. Any graph of maximum degree 3 with at least 4 vertices has a
balanced weak 2-community structure. Moreover, such a community structure
can be found in polynomial time.

Proof. Let G = (V,E) be a connected graph of maximum degree 3. First notice
that in any balanced partition, any vertex of degree 1 fulfils condition (2), even
if its neighbour is not in its own part. Then, the only vertices which may not
satisfy this condition are vertices of degree 2 or 3 which have no neighbour in
their own part.

Moreover, for any balanced partition of G, every vertex of degree 2 or 3,
which has at least one neighbour in its own part, satisfies condition (2).

Choose any balanced partition {C1, C2} of G. Then repeat the following steps
until the partition is a weak 2-community structure:

1. If every vertex of degree 2 or 3 has at least one neighbour in its own part,
then return {C1, C2} as a weak 2-community structure.

2. If there exists one vertex of degree 2 or 3 in both parts which has no neighbour
in its own part, then swap these two vertices.

3. If there is only one partition that contains a vertex v of degree 2 or 3 which
has no neighbour in its own part (wlog suppose v ∈ C1), then choose a
vertex w ∈ C2 such that w has at least one neighbor in C1 and update:
C1 := C1 ∪ {w}\{v}, C2 := C2 ∪ {v}\{w}.

New Insight into 2-Community Structures in Graphs 247

First notice that if case 3 occurs, such vertex w always exists since the graph is
connected. Moreover, in cases 2 and 3, notice that the partition is still balanced.
Besides, the size of the cut between partitions C1, C2 always decreases (by at
least 4 in case 2, by at least 2 in case 3) so after finite numbers of iteration
(bounded trivially by O(|V |2), only case 1 remains. Hence at the end of the
loop, the algorithm returns a balanced weak 2-community structure. ��

It can be observed that the Balanced 2-community problem (hence also
Balanced Weak 2-community) is polynomially solvable for graphs with
bounded tree-width. Such result follows directly from [2] where problems closely
related to communities where studied. Indeed, Balanced 2-community corre-
sponds to a t-Decomposition defined in [2] where the function t = n/2, the func-
tions a, b are equal and for each vertex v in G let a(v) = b(v) = n/2−1

n−1 d(v), where
n is the order of the graph. Since this problem was proved to be polynomial-time
solvable for bounded tree-width in [2], we can conclude the same result for the
Balanced 2-community problem.

Now we focus on the problem of 2-communities in general graphs. In [7] it
has been proved that to find a connected balanced partition without any addi-
tional constrains is an NP-complete problem in general graphs. We prove simi-
lar results for Balanced Weak 2-community and Balanced 2-community
and their connected variants. To show that Balanced Weak 2-community
is NP-complete, we use the Balanced Co-Satisfactory Partition problem
which was proved NP-complete by Bazgan et al. [4]. The problems is defined as
follow:

Balanced Co-Satisfactory Partition

Input: A graph G = (V,E) on an even number of vertices.

Question: Is there a balanced partition {C1, C2} of V such that for every v ∈ V ,
din(v) ≤ dout(v)?

Theorem 4. Balanced Weak 2-community is NP-complete.

Proof. Clearly this problem is in NP. We reduce Balanced Co-Satisfactory
Partition to Balanced Weak 2-community. Let G be a graph on 2n vertices
as an instance of Balanced Co-Satisfactory Partition, and let G′, the
complement of G, be an instance of Balanced Weak 2-community. If G
admits a balanced co-satisfactory partition {C1, C2} then {C1, C2} is also a
weak 2-community. Indeed, for every vertex v ∈ V , then din(v) ≤ dout(v) in G.
Thus, in G′ we have dG′

in (v) = 2n − 1 − din(v) ≥ 2n − 1 − dout(v) = dG′
out(v).

Conversely, any balanced weak 2-community in G′ is a balanced co-satisfactory
partition in G. ��

Due to the construction of G′ in Theorem 4 and the reduction from [4] we
can conclude the following:

Theorem 5. Connected Balanced Weak 2-community is NP-complete.

248 C. Bazgan et al.

Fig. 4. A graph in which all 2-community structures are balanced

Estivill-Castro et al. [9] have shown that Balanced 2-community is NP-
complete by constructing a reduction from a variant of the Clique problem. We
propose a shorter alternative proof which is also valid for the Connected Bal-
anced 2-community problem. The proof is based on the NP-complete problem
Balanced Satisfactory Partition which was introduced by Bazgan et al.
[3] as follows:

Balanced Satisfactory Partition

Input: A graph G = (V,E) on an even number of vertices.

Question: Is there a balanced partition {C1, C2} of V such that for every v ∈ V ,
din(v) ≥ d(v)

2 ?
It can be proved that these two problems are in fact equivalent when the

number of vertices is even.

Lemma 4. Let G = (V,E) be a graph with n vertices. Consider a partition
{C1, C2} of V and v ∈ C1. Then the following assertions are equivalent:

1. din(v)
|C1|−1 ≥ d(v)

n−1

2. dout(v)
|C2| ≤ d(v)

n−1

3. din(v)
|C1|−1 ≥ dout(v)

|C2|

Remark. Notice that the third assertion in Lemma 4 is the condition (1) of a
2-community structure.

Lemma 5. Let G = (V,E) be a graph with an even number n of vertices. Con-
sider a balanced partition {C1, C2} of V. Then for any vertex v ∈ V , din(v) =
|C1|−1

n−1 d(v) if and only if d(v) = n − 1.

Remark. Let {C1, C2} be a balanced partition of G and v ∈ C1 be a vertex
of degree n − 1. Since v has n

2 − 1 neighbors in its own part and n
2 in other

part, v does not satisfy the condition of Balanced Satisfactory Partition.
However, v satisfies the Balanced 2-Community condition since din(v)

|C1|−1 = 1.

Proposition 1. Let G = (V,E) be a graph with n vertices without vertices of
degree n − 1. Then Balanced Satisfactory Partition and Balanced 2-
Community are equivalent on G.

New Insight into 2-Community Structures in Graphs 249

Proof. Suppose that G is a yes-instance of Balanced Satisfactory Parti-
tion, that is there exists a balanced partition {C1, C2} of V such that any ver-
tex v ∈ V satisfies the condition din(v) ≥ 1

2d(v), which implies that din(v) ≥
|C1|−1
2|C1|−1d(v) = |C1|−1

n−1 d(v). Thus, G is a yes-instance of Balanced 2-Community.
Suppose now that G is a yes-instance of Balanced 2-Community, that

is there exists a balanced partition {C1, C2} of V such that any vertex v ∈ V

satisfies the condition din(v) ≥ |C1|−1
|C2| dout(v) that is equivalent to din(v) ≥

|C1|−1
n−1 d(v) using Lemma 4. According to Lemma 5, there is no vertex v such

that din(v) = |C1|−1
n−1 d(v).

We have to show that for every vertex v ∈ V, din(v) ≥ 1
2d(v). Suppose by

contradiction that there exists a vertex v ∈ V that does not satisfy the inequality
that is |C1| − 1

n − 1
d(v) < din(v) <

1
2
d(v)

First, notice that 1
2d(v) − |C1|−1

n−1 d(v) = 1
2(n−1)d(v) < 1, which means that

there is at most one whole number between |C1|−1
n−1 d(v) and 1

2d(v).
Moreover, d(v) cannot be even, since otherwise d(v)/2 would be a whole

number and thus din(v) could not be a whole number. Then d(v) is odd and
let d(v) = 2p + 1, p ∈ N. We will arrive to a contradiction by showing that
p < din(v) < p + 1/2. Notice that d(v) < n − 1 ⇒ d(v)−1

2 < |C1|−1
n−1 d(v) that

implies p < |C1|−1
n−1 d(v) < din(v). Then, we have necessarily din(v) ≥ 1

2d(v) for
every vertex v ∈ V , that is G is a yes-instance of Balanced Satisfactory
Partition. ��
Balanced Satisfactory Partition has already been proved NP-complete
in [3], even if both parts are required to be connected. Moreover, the reduction
which is used to prove it does not construct a graph with vertices of degree n−1.
Thus we obtain a similar result as in [9] (the authors mentioned along the lines
that the proof also works in connected case).

Theorem 6. Connected Balanced 2-Community is NP-complete.

On the other hand, it is interesting to notice that there exist graphs in which
all 2-community structures are balanced (see Fig. 4).

5 Conclusion and Open Problems

We studied the problems of existence and determination of a 2-community struc-
ture and its variants in graphs. We showed that every 3-regular graph has a
2-community structure and such a structure can be found in polynomial time.
This remains true even if connectivity of the partitions is required. The interest-
ing open question is to determine if a graph of order at least 4 (except stars) has
always a 2-community structure, even connected one. Balanced 2-Community
is NP-complete in general graphs, but the complexity of determining a balanced

250 C. Bazgan et al.

2-community structure in 3-regular graphs remains open. This last problem is
equivalent to finding a cut whose edges forms a matching in 3-regular graphs.

For the weak version the situation is slightly different since any graph of
maximum degree 3 has even a balanced weak 2-community structure that can
be found in polynomial time. Furthermore, we proved that Balanced weak
2-Community is NP-complete on general graphs, even for connected commu-
nities. It remains open if any graph of order at least 4 has a weak 2-community
structure, even connected one (except stars).

References

1. Andreev, K., Racke, H.: Balanced graph partitioning. Theory Comput. Syst. 39(6),
929–939 (2006)

2. Bazgan, C., Tuza, Z., Vanderpooten, D.: Degree-constrained decompositions of
graphs: bounded treewidth and planarity. Theoret. Comput. Sci. 355(3), 389–395
(2006)

3. Bazgan, C., Tuza, Z., Vanderpooten, D.: The satisfactory partition problem. Dis-
crete Appl. Math. 154(8), 1236–1245 (2006)

4. Bazgan, C., Tuza, Z., Vanderpooten, D.: Approximation of satisfactory bisection
problems. J. Comput. Syst. Sci. 74(5), 875–883 (2008)

5. Bazgan, C., Tuza, Z., Vanderpooten, D.: Satisfactory graph partition, variants, and
generalizations. Europ. J. Operat. Res. 206(2), 271–280 (2010)

6. Buluç, A., Meyerhenke, H., Safro, I., Sanders, P., Schulz, C.: Recent advances in
graph partitioning. arXiv:1311.3144

7. Chleb́ıková, J.: Approximating the maximally balanced connected partition prob-
lem in graphs. Inf. Process. Lett. 60(5), 223–230 (1996)

8. Delling, D., Goldberg, A.V., Pajor, T., Werneck, R.F.: Customizable route plan-
ning. In: Pardalos, P.M., Rebennack, S. (eds.) SEA 2011. LNCS, vol. 6630, pp.
376–387. Springer, Heidelberg (2011)

9. Estivill-Castro, V., Parsa, M.: On connected two communities. In Proceedings of
the 36th Australasian Computer Science Conference (ACSC), pp. 23–30 (2013)

10. Feldmann, A.E., Foschini, L.: Balanced partitions of trees and applications. Algo-
rithmica 71(2), 354–376 (2015)

11. Fortunato, S.: Community detection in graphs. Phys. Rep. 486, 75–174 (2010)
12. Newman, M.E.J.: Detecting community structure in networks. Europ. Phys. J.

B-Condens. Matter Complex Syst. 38(2), 321–330 (2004)
13. Olsen, M.: A general view on computing communities. Math. Soc. Sci. 66(3), 331–

336 (2013)
14. Schaeffer, S.E.: Graph clustering. Comput. Sci. Rev. 1, 27–64 (2007)
15. Shmoys, D.B.: Cut problems and their application to divide-and-conquer. In:

Approximation Algorithms for NP-Hard Problems, pp. 192–235. PWS Publishing
(1996)

http://arxiv.org/abs/1311.3144

WDCS: A Weight-Based Distributed
Coordinate System

Yaning Liu1, Hongwei Du1(B), and Qiang Ye2

1 Shenzhen Key Laboratory of Internet Information Collaboration
of Computer Science and Technology, Harbin Institute of Technology Shenzhen

Graduate School, Shenzhen, China
yn.liuhit@gmail.com, hwdu@hitsz.edu.cn

2 Department of Computer Science and Information Technology,
University of Prince Edward Island, Charlottetown, Canada

qye@upei.ca

Abstract. Many Internet-based applications, such as Content Distri-
bution Networks (CDNs), BitTorrent and Network Game Accelerator,
require the knowledge of the distance between each pair of network hosts.
Due to the large number of hosts in these applications, measuring all of
the pairwise distances is too time-consuming and traffic-inefficient. Net-
work Coordinate System (NCS) is an innovative approach to obtain the
pairwise distances by measuring only part of the distances and thereafter
utilizing the collected information to predict the remaining pairwise dis-
tances. However, due to Triangle Inequality Violation (TIV) and mea-
surement errors, the accuracy of the existing NCS schemes is low. In this
paper, we propose a novel distributed NCS scheme, WDCS, that uses
a well-designed algorithm to select an appropriate set of landmarks and
employs the W RUN PACE method to eliminate the impact of mea-
surement errors or outliers. Through extensive experiments, we found
that WDCS outperforms the state-of-the-art NCS schemes in terms of
prediction accuracy and convergence speed.

Keywords: Network Coordinate System · Distributed system · Land-
mark · High accuracy

1 Introduction

In the past, Internet applications tended to use the client-server model, in which
a client communicates with a single fixed server. With the development of net-
working technologies and low-cost hardware, most Internet applications are using
multiple servers to serve clients. For example, in a Content Distribution Network
(CDN) [1], a client desire to download web objects from a particular mirror site
which has the highest bandwidth. We refer to latency and bandwidth as dis-
tance. These distributed applications such as BitTorrent [2], Content Distribu-
tion Network (CDN) and Multi-player Online Games [3] provide better service
by knowing the distance between each pair of network nodes. For small-scale
c© Springer International Publishing Switzerland 2015
Z. Lu et al. (Eds.): COCOA 2015, LNCS 9486, pp. 251–260, 2015.
DOI: 10.1007/978-3-319-26626-8 19

252 Y. Liu et al.

network, we can use the direct measurement method to get distances among
all nodes. For example, in a network contains N nodes, the direct measurement
method needs N ∗ (N − 1) explicit measurements. The problem is, this method
is not scaled well with the increase of network nodes. The measurement time
complexity is O(N2). In addition, direct measurement increases the burden of
clients. To solve this problem, Network coordinate system is proposed to pre-
dict the distance between each pair of network nodes through measurements.
The measurement time complexity of NCS is O(N). Moreover, NCS depletes
the burden of clients.

Existing NCS models can be divided into two types: Euclidean Distance
Model [4] and Matrix Factorization Model [5,6]. With Euclidean Distance Model,
the pairwise distance is the euclidean distance between two hosts which are cal-
culated through their coordinates. This model has two disadvantages. Firstly, the
distance between each pair nodes is symmetrical. But in fact, the distances are
asymmetric. Secondly, in Euclidean space, the distance between arbitrary three
nodes must satisfy triangle inequality. While in a real network, Triangle Inequal-
ity Vilation (TIV) [7] is existed extensively. With Matrix Factorization Model, a
large distance matrix can be approximately factorized into two small matrices.
The distance between each pair of nodes is the dot product of two predefined
vectors. The existing factorization algorithms have Singular Value Decomposi-
tion (SVD) and Non-negative Matrix Factorization (NMF) [10]. Since Matrix
Factorization Model does not suffer from the problems that are associated with
Euclidean Distance Model, it has been widely adopted in varied NCS schemes.
The proposed method, Weighted Distributed Coordinate System (WDCS), is
also based on Matrix Factorization Model.

Despite the advantages of Matrix Factorization Model, there is still a problem
with many existing NCS schemes based on Matrix Factorization Model. In a
variety of different real-life applications, the distance matrix D is not completely
low-rank due to outliers and measurement errors. But these algorithms attempt
to use a completely low-rank matrix to approximate D, which will lead to low
accuracy. Different than these algorithms, RNC [9] takes outliers and errors into
consideration to arrive at high precision. Technically, RNC first splits distance
matrix D into two sub-matrix L and S. Note that L is a completely low-rank
matrix and it consistent with the non-negativity characteristic; S is the matrix
which corresponds to outliers and measurement errors.

The proposed NCS scheme, WDCS, is based on RNC. But WDCS attempts
to improve the precision of RNC from the following two aspects. First of all,
RNC is a landmark-based approach, which randomly selects 32 nodes as land-
marks. Random selection is a low-complexity approach, which contributes to
the fast computation of RNC. However, random selection could lead to non-
optimal landmarks, which could degrade the precision performance of RNC.
WDCS uses a clustering-based technique, K SEL, to choose the appropriate
landmark nodes in order to avoid the problem with the random approach. With
K SEL, each landmark node is also assigned a weight. Secondly, the specific
algorithm used by RNC to split D into L and S is called RUN PACE [9].

WDCS: A Weight-Based Distributed Coordinate System 253

With the weights obtained during the landmark selection process, WDCS uses
a weighted algorithm, W RUN PACE, to distinguish the distances associated
with different landmarks, ultimately arriving at high prediction precision. The
detailed contributions of this paper are summarized as follows:

1. We propose a novel NCS scheme, WDCS, that uses an innovative landmark
selection method based on k-means clustering, K SEL. K SEL is capable of
selecting appropriate landmarks in a large-scale distributed system.

2. With WDCS, a weighted algorithm, W RUN PACE is used to split the dis-
tance matrix D into two components. Since the distances associated with
different landmarks are associated with different weights, WDCS leads to
high prediction precision.

3. WDCS is a distributed NCS scheme, which leads to outstanding scalability
performance.

The rest of this paper is organized as follows. Section 2 presents the problem
formulation and Sect. 3 describes the details of WDCS. Our experimental results
are discussed in Sect. 4. Finally, we conclude the paper in Sect. 5.

2 Problem Formulation

In a network which contains N hosts. Every host is assigned a global ID in the
range of 1 to N. The distance between these hosts constitute an N × N matrix
D. With Matrix Factorization Model, the distance between host i and host j can
be calculated using Eq. (1):

D(i, j) = Xi · Y T
j (1)

Where D(i, j) represents the distance from i to j. Xi is the outgoing vector of
host i and Y T

j is the incoming vector of host j. Outgoing vectors and incoming
vectors of all nodes form two matrixes U and V. U, V can be called the outgoing
matrix and the incoming matrix. The distance matrix D is obtained via UV T .
Mathematically, we have:

D = U · V T (2)

In many real-life applications, due to outliers and measurement errors, D is
not completely low-rank. But a variety of different existing NCS schemes tend
to use a low-rank matrix D̂ to approximate D, which results in low prediction
accuracy. WDCS adopts a weighted algorithm, W RUN PACE, to solve this
problem. Technically, W RUN PACE decomposes D into two matrices of the
same dimension L and S. Note that D = L + S. L is the low-rank component
and nonnegative. S corresponds to outliers and measurement errors. Once the
decomposition is completed, only L is used to predict distances. Namely, the
estimated coordinates of hosts only need to match the low-rank component L
according to Eq. (3):

L(i, j) = Xi · Y T
j (3)

Similarly, L can be calculated with U and V according to Eq. (4):

L = U · V T (4)

254 Y. Liu et al.

3 WDCS: A High-Precision Scheme

In this section, we present the details of WDCS. Technically, WDCS maps each
host to a pair of r -dimensional vectors, namely the incoming vector and the out-
going vector. In our research, these two vectors are referred to as the coordinates
of a host. The predicted distance from host i to host j is simply the dot product
of i ’s outgoing vector and j ’s incoming vector.

With WDCS, the process of distance prediction is composed of two phases. In
the first phase, an appropriate set of landmark nodes are selected with K SEL.
K SEL also leads to a set of weights for the selected landmarks. With the dis-
tances between landmarks, the RUN PACE method used in RNC and the Non-
negative Matrix Factorization (NMF) [10] method are utilized to determine the
coordinates of landmarks. In the second phase, each node in the distributed sys-
tem uses W RUN PACE and the Non-Negative Least Squares (NNLS) method
to calculate its own coordinates in a distributed manner. Once the coordinates
are available, the distance between any pair of nodes can be predicted.

3.1 Overview Of WDCS

As mentioned previously, WDCS is composed of two phases. The details of the
first phase are presented as follows:

Step 1 In a distributed system, 128 hosts are randomly selected as landmark
candidates. The distance between each pair of these hosts is measured.

Step 2 K SEL, a landmark selection algorithm based on the k-means method
[11], is used to choose 32 landmarks among the 128 candidates. Techni-
cally, the k-means method is a widely-used clustering technique to divide
a set of nodes into multiple clusters. To use the k-means method, we need
to map each host to a point in a vector space. In our research, we used
the Lipschitz embedding method. Namely, each host i is represented as
a 127-dimensional vector whose elements are the distances from host i
to the other landmark candidates. With the k-means method, the 128
candidates are divided into 32 clusters. The host that is closest to the
centroid of each cluster is selected as a landmark.

Step 3 A weight is assigned to a landmark according to the size of the corre-
sponding cluster.

Step 4 Based on the distances between landmarks, RUN PACE is used to deter-
mine the low-rank component.

Step 5 Based on the low-rank component, NMF is utilized to determine the
coordinates of landmarks.

During the second phase, each host whose coordinates are not available uses
W RUN PACE and NNLS to determine its own coordinates in a distributed
manner. The details of the second phase are described as follows:

Step 1 Each host i measures its distances to the landmarks.

WDCS: A Weight-Based Distributed Coordinate System 255

Step 2 With the distances to the landmarks, each host i uses W RUN PACE
to calculate the low-rank component.

Step 3 With the low-rank component, each host i utilizes NNLS to determine
its own coordinates.

Step 4 With the coordinates of all nodes in the distributed system, the distance
between any pair of nodes can be easily predicted.

3.2 Details of WDCS

In this section, we present the details of the two phases of WDCS. During the
first phase, the distances between the 128 landmark candidates are stored in a
distance matrix Dlc. With the K SEL method that is based on k-means cluster-
ing, 32 clusters are obtained and thereafter 32 landmark nodes are selected. In
our research, we use Sc and Sl to denote the set of clusters and the set of land-
marks respectively. The elements in Sc (i.e. the clusters) are represented as c1,
c2, ..., c32. The size of these clusters are denoted as s1, s2, ..., s32. The maximum
size is represented as max s. The elements in Sl (i.e. the selected landmarks) are
denoted as l1, l2, ..., l32. Once Sl is available, the distance matrix corresponding
to the landmarks, Dl, can be easily acquired by retrieving the relevant entries
from Dlc using the EXTRACT DL method.

With Sc and Sl, a weight calculation algorithm, CAL WEI, counts the num-
ber of hosts in each cluster and assigns a weight wi to the landmark li using
Eq. (5):

wi = si/maxs (5)

In our research, we use Wl to store the weights assigned to the landmarks.
Once the distance matrix for landmark hosts, Dl, is available, RUN PACE

is used to calculate the low-rank component of Dl, Ll. Mathematically, Ll can
be determined using Eq. (6):

min
Ll,Sl

||Ll||∗ + λ||Sl||1,
subject to Dl = Ll + Sl,

Ll ≥ 0

(6)

where || · ||∗ denotes the nuclear norm of a matrix, || · ||1 represents the sum of
the absolute value of the matrix entries, and λ is a tuning parameter.

With the low-rank component Ll, WDCS uses NMF to calculate the coordi-
nates of landmark hosts. In our research, we use Ul and Vl to store the outgoing
and incoming vectors of landmark hosts. Mathematically, Ul and Vl can be deter-
mined by solving the following minimization problem:

min
Ul,Vl

‖Dl − Ul · V T
l ‖2F

subject to Ul ≥ 0, Vl ≥ 0
(7)

where ‖ · ‖F denotes the Frobenius norm of a matrix; Ul ≥ 0 and Vl ≥ 0 are
the constraints that ensure that each element of Ul and Vl is greater than or

256 Y. Liu et al.

Algorithm 1. Phase 1 of WDCS
Input: Dlc

1: (Sc, Sl) = K SEL(Dlc)
2: Dl = EXTRACT DL(Dlc, Sl)
3: Wl = CAL WEI(Sc, Sl)
4: Ll = RUN PACE(Dl)
5: (Ul, Vl) = NMF (Ll)
Output: Ul, Vl, Sl,Wl

equal to 0. Once the minimization problem is solved, the coordinates of land-
mark hosts are available. The steps involved in the first phase of WDCS are
summarized in Algorithm 1.

During the second phase of WDCS, each host i measures the distances
between itself and the landmarks. The measured distances and the distances
between landmarks are stored in a 33 × 33 matrix Di (note that there are 32
landmarks). Furthermore, WDCS assigns a weight Wi(m,n) to each entry of Di,
Di(m,n), using the WEI-ASSIGN method. Obviously, Di(m,n) corresponds to
one of three types of distances: a distance between two landmarks, a distance
between host i and a landmark, and a distance from i to i. As mentioned pre-
viously, each landmark is assigned a weight. If Di(m,n) corresponds to the first
type of distance, WDCS checks the weights of the involved landmarks and assigns
the higher weight to Di(m,n). If Di(m,n) corresponds to the second type of
distance, WDCS assigns the weight of the relevant landmark to Di(m,n). If
Di(m,n) corresponds to the third type of distance, a zero weight is assigned to
Di(m,n).

With Di and Wi, WDCS uses W RUN PACE to extract the low-rank com-
ponent Li by solving the following minimization problem:

min
Li,Si

||Li||∗ + λ||Wi · Si||1,
subject to Di = Li + Si, (8)

Li ≥ 0

Because Wi is incorporated into the minimization problem, WDCS prefers to
match the distance involving a landmark with a higher weight over that involving
a landmark with a lower weight. As a result, the distances associated with large
clusters are matched better, ultimately leading to high prediction precision.

After Li is acquired, WDCS uses NNLS to calculate i’s coordinates (Xi, Yi).
Once the coordinates of all hosts are available, the distance between any pair of
hosts can be easily predicted. Formally, the steps in the second phase of WDCS
are summarized using Algorithm 2.

4 Experimental Results

In this section, we present the performance of WDCS and two state-of-the-art
NCS schemes, Phoenix [12] and Vivaldi [13]. To illustrate the impact of the

WDCS: A Weight-Based Distributed Coordinate System 257

Algorithm 2. Phase 2 of WDCS
Input: Di, Ul, Vl,Wl

1: Wi = WEI ASSIGN(Di,Wl, Ul, Vl)
2: Li = W RUN PACE(Di,Wi)
3: (Xi, Yi) = NNLS(Li)
Output: Xi, Yi

weights acquired during the landmark selection process, we devised a variant
of WDCS, Non-Weighted Distributed Coordinate System (NWDCS). NWDCS
uses the same landmark selection process as WDCS. However, the second phase
of NWDCS is similar to that of RNC (i.e. it does not utilize the weights). In
our experiments, we implemented these schemes using Matlab. Our experiments
were carried out with a 64-bit windows 7 machine with Intel Core i7 CPU and
8 GB memory.

Phoenix is a popular NCS scheme based on Matrix Factorization Model. Its
prediction accuracy is relative high and its computing time is small. In addition,
Phoenix first uses edge-weight thought. Vivaldi is an NCS scheme based on
Euclidean Distance Model which first adopts the physical mass-spring system.
Therefore, we chose these two schemes in our experiments. For Pheonix and
Vivaldi, each host selects K = 32 1-hop reference hosts. For WDCS and NWDCS,
32 landmark hosts are selected. The dimension of coordinates r was set to 8.

In our experiments, we use two real world data sets PL and P2PSim. The dis-
tance in these two matrix is RTTs between pairwise network nodes. PL [14] data
set contain RTTs of 169 PlanetLab hosts deployed all over the world. P2PSim
[15] data set contains latencies among 1740 DNS servers measured using King
method [16].

4.1 Evaluation Metrics

The evaluation focuses on two main aspects of network coordinate system. The
first aspect is accuracy which is the main metric in evaluation. The second aspect
is convergence which represents the speed of coordinate convergence process.
There are many metrics that could be used to evaluate network coordinate sys-
tem. In this paper, the following metrics are used:

Relative Error: Relative error is the main metrics in evaluation. It is used
to compare the performance of different network coordinate systems. Suppose
a network contain N hosts, distances among these hosts compose a N × N
matrix D. D is the real distance matrix. D̂ represent the prediction matrix. The
definition of relative error is presented using Eq. (9):

RE =
||D − D̂||

D
(9)

Median Relative Error: Median relative error, for short MRE, is median value
of relative error.

258 Y. Liu et al.

Cumulative Distribution Function: For short CDF, is the cumulative dis-
tribution function of relative error.

The Ninetieth Percentile Relative Error(NPRE): It is the ninetieth error
of relative error.

4.2 Accuracy

We use PL data and King data to evaluate the prediction accuracy of different
schemes. Figure 1 includes the CDF of relative error of WDCS, NWDCS, Phoenix
and Vivaldi. In Fig. 1, We can see WDCS and NWDCS outperform Phoenix and
Vivaldi in all data sets. Due the use of the weights, WDCS outperforms NWDCS.

In Fig. 1, the prediction accuracy of all the schemes in King data is better
than that in the case of PL data. The reason is that the distances in the PL
data are not symmetric, which is more difficult to reconstruct the matrix. In
these two data sets, WDCS and NWDCS are the more accurate schemes. The
reason is that when there are some abnormal points, WDCS and NWDCS can
well eliminate their influence. In addition, WDCS outperforms NWDCS.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Relative Error

C
um

ul
at

iv
e

D
is

tr
ib

ut
io

n
F

un
ct

io
n

Phoenix
WDCS
NWDCS
Vivaldi

(a) PL data

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Relative Error

C
um

ul
at

iv
e

D
is

tr
ib

ut
io

n
F

un
ct

io
n

Phoenix
WDCS
NWDCS
Vivaldi

(b) King data

Fig. 1. CDF of relative error.

4.3 Convergence Behaviour

In this section, We evaluate the convergence performance of WDCS, NWDCS,
Phoenix and Vivaldi. The number of iterations is set to 30. We compare their
performances using NPRE and MRE. Figure 2 shows that WDCS and NWDCS
converge at the fastest speed in terms of NPRE. For all of the data sets, the
convergence process of WDCS and NWDCS can be completed within 1 time
slot. Figure 3 shows the convergence performance in terms of MRE. Similarly,
WDCS and NWDCS lead to the fastest convergence speed and use 1 time slot
to finish the convergence process.

WDCS: A Weight-Based Distributed Coordinate System 259

5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iteration

N
P

R
E

Phoenix
WDCS
NWDCS
Vivaldi

(a) PL data

5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iteration

N
P

R
E

Phoenix
WDCS
NWDCS
Vivaldi

(b) King data

Fig. 2. NPRE comparison of Phoenix, Vivaldi and WDCS

5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iteration

M
ed

ia
n

Phoenix
WDCS
NWDCS
Vivaldi

(a) PL data

5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iteration

M
ed

ia
n

Phoenix
WDCS
NWDCS
Vivaldi

(b) King data

Fig. 3. MRE comparison of Phoenix, Vivaldi and WDCS

5 Conclusion

In this paper, we propose WDCS, a weight-based distributed NCS scheme. Tech-
nically, WDCS completes distance prediction using two phases. In the first phase,
32 landmark hosts are selected and thereafter associated with different weights.
With the pairwise distances between these landmark hosts, the coordinates of
these hosts are determined. In the second phase, each non-landmark host measures
the distances between itself and the landmark hosts. The measured distances, the
coordinates and the weights of landmark hosts are utilized to calculate the coordi-
nates of the non-landmark host. Once the coordinates of every host are available,
the distance between any pair of hosts can be easily predicted using the dot prod-
uct of the outgoing vector of one host and the incoming vector of the other host.
Our experimental results indicate that WDCS outperforms the state-of-the-art
NCS schemes in terms of prediction accuracy and convergence speed.

Acknowledgement. This work was financially supported by National Natural Sci-
ence Foundation of China with Grants No. 61370216 and No. 61100191, and Shenzhen
Strategic Emerging Industries Program with Grants No. ZDSY20120613125016389, No.
JCYJ20120613151201451 and No. JCYJ20130329153215152.

260 Y. Liu et al.

References

1. Krishnan, R., Madhyastha, H.V., Srinivasan, S., Jain, S., Krishnamurthy, A.,
Anderson, T., Gao, J.: Moving beyond end-to-end path information to optimize
CDN performance. In: Proceedings of ACM SIGCOMM Internet Measurement
Conference, pp. 190–201. ACM (2009)

2. Azureus bittorrent. http://sourceforge.net/projects/azureus/
3. Agarwal, S., Lorch, J.R.: Matchmaking for online games and other latency-sensitive

P2P systems. In: ACM SIGCOMM Computer Communication Review, vol. 39,
pp. 315–326. ACM (2009)

4. Eugene Ng, T.S., Zhang, H.: Predicting internet network distance with coordinates-
based approaches. In: Proceedings of IEEE INFOCOM, vol. 1, pp. 170–179. IEEE,
April 2002

5. Mao, Y., Saul, L.K.: Modeling distances in large-scale networks by matrix factor-
ization. In: Proceedings of the ACM SIGCOMM Conference on Internet Measure-
ment, pp. 278–287. ACM, October 2004

6. Mao, Y., Saul, L.K., Smith, J.M.: Ides: an internet distance estimation service for
large networks. IEEE J. Sel. Areas Commun. 24(12), 2273–2284 (2006)

7. Lee, S., Zhang, Z., et al.: On suitability of Euclidean embedding of Internet hosts.
In: Proceedings of the 2006 ACM SIGMetrics/Performance (2006)

8. Lee, D.D., Seung, H.S.: Learning the parts of objects by nonnegative matrix
factorization. Nature 401(6755), 788–791 (1999)

9. Cheng, J., Guan, X., Qiang, Y., Jiang, H., Dong, Y.: RNC: a high-precision network
coordinate system. In: The 22nd International Symposium of Quality of Service
(IWQoS), pp. 228–237, May 2014

10. Lee, D.D., Sebastian Seung, H.: Algorithms for non-negative matrix factorization
11. Bishop, C.M.: Neural Networks for Pattern Recognition. Oxford University Press,

Oxford (1995)
12. Chen, Y., Wang, X., Shi, C., Lua, E.K., Fu, X., Deng, B., Li, X.: Phoenix: a weight-

based network coordinate system using matrix factorization. IEEE Trans. Netw.
Serv. Manage. 8(4), 334–347 (2011)

13. Dabek, F., Cox, R., Kaashoek, F., Morris, R.: Vivaldi: a decentralized network
coordinate system. In: Proceedings of the ACM SIGCOMM, pp. 15–26. ACM Press,
New York (2004)

14. Stribling, J.: All pairs of ping data for planetlab. http://www.pdos.lcs.mit.edu/
∼strib/pl app

15. The P2PSim project. http://pdos.csail.mit.edu/p2psim/
16. Gummadi, K.P., Saroiu, S., Gribble, S.D.: King: estimating latency between arbi-

trary internet end hosts. In: Proceedings of ACM SIGCOMM Internet Measure-
ment Workshop, pp. 5–18. ACM, November 2002

http://sourceforge.net/projects/azureus/
http://www.pdos.lcs.mit.edu/~strib/pl_app
http://www.pdos.lcs.mit.edu/~strib/pl_app
http://pdos.csail.mit.edu/p2psim/

Adaptive Scheduling Over a Wireless Channel
Under Constrained Jamming

Antonio Fernández Anta1, Chryssis Georgiou2, and Elli Zavou1,3(B)

1 IMDEA Networks Institute, Madrid, Spain
2 University of Cyprus, Nicosia, Cyprus

3 Universidad Carlos III de Madrid, Madrid, Spain
elli.zavou@imdea.org

Abstract. We consider a wireless channel between a single pair of sta-
tions (sender and receiver) that is being “watched” and disrupted by a
malicious, adversarial jammer. The sender’s objective is to transmit as
much useful data as possible, over the channel, despite the jams that are
caused by the adversary. The data is transmitted as the payload of pack-
ets, and becomes useless if the packet is jammed. In this work, we develop
deterministic scheduling algorithms that decide the lengths of the packets
to be sent, in order to maximize the total payload successfully transmitted
over period T in the presence of up to f packet jams, useful payload.

We first consider the case where all packets must be of the same length
and compute the optimal packet length that leads to the best possible use-
ful payload. Then, we consider adaptive algorithms; ones that change the
packet length based on the feedback on jammed packets received. We pro-
pose an optimal scheduling algorithm that is essentially a recursive algo-
rithm that calculates the length of the next packet to transmit based on
the packet errors that have occurred up to that point. We make a thor-
ough non trivial analysis for the algorithm and discuss how our solutions
could be used to solve a more general problem than the one we consider.

Keywords: Packet scheduling · Wireless channel · Unreliable commu-
nication · Adversarial jamming

1 Introduction

Motivation and Prior Work. Transmitting data over wireless media is becoming
increasingly popular, especially with the dramatic increase of the use of mobile
devices (e.g., smart phones). A major challenge that needs to be addressed
is to cope with disruptions of the communication over such media, especially
when these disruptions are caused intentionally, e.g., by jamming devices. Sev-
eral research efforts have been made in addressing this challenge under different
assumptions and constraints (e.g., [1–6,9–12]).

This research was supported in part by Ministerio de Economı́a y Competi-
tividad grant TEC2014-55713-R, Regional Government of Madrid (CM) grant
Cloud4BigData (S2013/ICE-2894, cofunded by FSE &FEDER), and grant
FPU12/00505 from MECD.

c© Springer International Publishing Switzerland 2015
Z. Lu et al. (Eds.): COCOA 2015, LNCS 9486, pp. 261–278, 2015.
DOI: 10.1007/978-3-319-26626-8 20

262 A. Fernández Anta et al.

In a recent work [2], we have initiated the investigation of the following prob-
lem: We consider a wireless channel between a single pair of stations (sender and
receiver) that is being “watched” and disrupted by a malicious, adversarial jam-
mer. The sender’s objective is to transmit as much useful data as possible, over
the channel, despite the jams that are caused by the adversary. The data is trans-
mitted as the payload of packets, and becomes useless if the packet is jammed.
The adversary has complete knowledge of the packet scheduling algorithm and
it decides on how to jam the channel dynamically. However, the jamming power
of the adversary is constrained by two parameters, ρ and σ, whose values depend
on technological aspects. The parameter σ represents the maximum number of
“error tokens” available for the adversary to use at any point in time, and ρ rep-
resents the rate at which new error tokens become available (one at a time). Each
error token models the ability of the adversary to jam one packet. This adversar-
ial model could represent a jamming entity with limited resource of rechargeable
energy, e.g., malicious mobile devices or battery-operated military drones. In
these cases, σ represents the capacity of the battery (in packets that can be
jammed) and ρ the rate at which the battery can be recharged (for instance,
with solar cells). To evaluate scheduling algorithms, two efficiency measures are
used: the transmission time, to completely send a fixed pre-defined amount of
data, and the goodput ratio (successful transmission rate) achieved to do so,
which intuitively are reversely proportional.

Under this model, we first showed in [2] upper and lower bounds on the
transmission time and goodput when the sender sends packets of the same length
throughout the execution (uniform case); in this case the scheduling policy does
not take into account the history of jams. Then, considering the case σ = 1,
we proposed an adaptive scheduling algorithm that changes the packet length
based on the feedback on jammed packets received, and showed that it can
achieve better goodput and transmission time with respect to the uniform case,
for most values of ρ. However, the analysis technique used for the case σ = 1
turned out not to be easily generalized for cases where σ > 1.

In order to better understand the above problem and lay the groundwork
for obtaining its optimal solutions, in this work we consider a simpler, more
“static” version of the problem. In particular, we focus on a specific time interval
of length T , and instead of assuming that new error tokens are continuously
arriving we assume a fixed number of error tokens f . As before, the sender’s
objective is to correctly transmit the maximum amount of data, in the form of
packets, under the jamming of the adversary. Now, the adversary is constrained
only by parameter f , which is the maximum number of errors (packet jams) it
can introduce in the corresponding interval T and are available from the very
beginning of the interval. Therefore, given T and f as input, we would like to
maximize the total useful payload transmitted within the interval of interest.1

(Our modeling assumptions are detailed in Sect. 2.)

1 As we assume that the transmission time of each packet is equal to its length, it
follows that T is an absolute upper bound on the useful payload transmitted..

Adaptive Scheduling Over a Wireless Channel Under Constrained Jamming 263

We plan to use the results obtained for this problem to derive solutions of the
continuous version of [2], but we believe that this static problem is a fundamental
and challenging problem and hence of interest by itself.
Contributions. We provide a comprehensive solution to the abovementioned
problem (static version). Specifically:

– We first consider the case where the scheduling algorithm is restricted in send-
ing packets of the same length (uniform case); this could be due to limitations
in the communication protocol or the sender’s specification (Sect. 3). Given a
period of length T and up to f packet jams, we show that the optimal packet
length is p∗ ≈ √

T/f that leads to optimal useful payload T + f − 2
√

T/f . In
the case the adversary does not cause any packet error in the interval of time
T , we show that the useful payload achieved by uniform packets of length p∗

is T − √
T/f .

– Then, we devise adaptive scheduling algorithms, that is, algorithms that
change the packet length based on the feedback on jammed packets received.
We start by first considering the case of f = 1 (Sect. 4). We devise algorithm
ADP(T, 1) and prove its optimality. We show that the algorithm achieves
optimal useful payload of i−1

i T − i+1
2 + 1

i , where i is the integer such that

T ∈
[
(i−1)i

2 + 1, i(i+1)
2 + 1

)
.

Algorithm ADP(T, 1) chooses the length p of the first packet to be transmitted
as a function of T . If the packet is jammed then it transmits a second packet
of length T −p which is now guaranteed not to be jammed. If the first packet
goes through, then the algorithm is invoked recursively as ADP(T − p, 1).

– Next, we generalize algorithm ADP(T, 1) into algorithm ADP(T, f) and show
that it obtains optimal useful payload for any f (Sect. 5). Algorithm ADP(T, f)
is essentially a recursive algorithm that also begins by choosing length p of
the first packet to be transmitted as a function of T (a different function
from that of ADP(T, 1)). If the packet is jammed, the adversary (unlike in
the case of f = 1) still has error tokens that it can use. Therefore, instead
of sending a packet that spans the rest of the interval, ADP(T, f) makes the
recursive call ADP(T − p, f − 1). If the packet is not jammed, then it makes
a recursive call to ADP(T − p, f).

Although the above algorithmic approach is natural, the choice of the length
p of the packet to be sent as well as the algorithm’s analysis of optimality,
are nontrivial.

– Finally, we discuss and compare the version of the problem considered in this
work (static) with the one of [2] (continuous) and draw interesting conclusions
(Sect. 6).

Related Work. Several studies have investigated the effect of jamming in wire-
less channels. For example, Thuente et al. [12] studied the effects of different
jamming techniques in wireless networks and the trade-off with their energy
efficiency. Their study includes from trivial/continuous to periodic and intelli-
gent jamming (taking into consideration the size of packets being transmitted).

264 A. Fernández Anta et al.

Pelechrinis et al. [6] present a detailed survey of the Denial of Service attacks in
wireless networks. They present the various techniques used to achieve malicious
behaviors and describe methodologies for their detection as well as for the net-
work’s protection from the jamming attacks. Dolev et al. [4] present a survey of
several existing results in adversarial interference environments in the unlicensed
bands of the radio spectrum, discussing their vulnerability.

Awerbuch et al. [3] designed a medium access (MAC) protocol for single-
hop wireless networks that is robust against adaptive adversarial jamming (the
adversary knows the protocol and its history and decides to jam the channel at
any time) and requires only limited knowledge about the adversary (an estimate
of the number of nodes, n, and an approximation of a time threshold T). One
of the differences with our work is that the adversary they consider is allowed
to jam (1 − ε)-fraction of the time steps. On a later work [10], Richa et al.
explored the design of a robust MAC protocol that takes into consideration the
signal to interference plus noise ratio (SINR) at the receiver end. In [11] they
extended their work to the case of multiple co-existing networks; they proposed
a randomized MAC protocol which guarantees fairness between the different
networks and efficient use of the bandwidth. In [9], Richa et al. considered an
adaptive adversarial jammer that is also reactive: it is allowed to make a jamming
decision based on the actions of the nodes at the current step; this is similar to the
adversary we consider in this work. However, they consider a different constrain
on jamming, following the previously mentioned works: given a time period of
length T , the adversary can jam at most (1−ε)T of the time steps in that period.
In our case, the adversary, within a time period T, can cause f channel jams,
where f does not correspond to a fraction of time, but on the number of packets
it can corrupt. Other differences is that they consider n nodes transmitting over
the channel (hence, they deal with transmission collisions) and their objective is
to optimize throughput over the non-jammed time periods.

Finally, Gilbert et al. [5] investigated the impact on the communication delay
between two honest nodes that a third malicious, energy-constraint node can
have. In particular, the three nodes share a time-slotted single-hop wireless radio
channel and the two honest nodes begin with a value to communicate. The
malicious node wishes to prevent them from communicating for as long as it
can, by broadcasting messages. However, it is allowed to broadcast up to β
messages. This is similar to the restriction we impose in our work, by allowing
the adversary to cause up to f packet errors. The setting and objectives of the
work [5], though, are different. First they show a tight bound on the number of
rounds that the malicious node can delay the communication between the two
honest entities: 2β + Θ(log |V |) rounds, where V is the set of possible values the
two honest nodes may communicate. Then, they study the implication of this
bound on more general n-node problems, such as reliable broadcast and leader
election.

Adaptive Scheduling Over a Wireless Channel Under Constrained Jamming 265

2 Model

We now present in detail the model considered in this paper.

Network Setting. We consider an unreliable wireless channel that connects two
end stations: a sender and a receiver. The sender has data to be transmitted
to the receiver over a fixed time interval T , which is sent as the payload of the
packets scheduled.2 However, the channel is prone to instantaneous jams, that
cause any packet in transit to be corrupted/destroyed. Hence, the sender needs
to decide the length of the packets to be sent in the time interval, taking or not
into consideration the history of transmissions and jams that already occurred.
This is done by using an online scheduling algorithm [7,8]. The objective of the
sender is to provide the receiver with as much data as possible over the period
of time T , despite the channel jams.

As in [2], each packet sent across the channel consists of a header of a fixed
predefined size h and a payload of length l chosen by the algorithm; the total
length of the packet is p = h + l. For simplicity we assume that h = 1, i.e.,
p = l + 1 (we assume l to be a real number). Recall that the payload corre-
sponds to the useful data sent across the channel. In addition, we assume that
the transmission time of each packet is equal to its length; the channel has a
constant transmission rate. (Therefore, T is an absolute upper bound on the
useful payload transmitted.)

Packet Jamming. We assume that the jams occurring in the channel are orches-
trated by an omniscient and adaptive adversary. That is, the adversary has com-
plete knowledge of the packet scheduling and transmission algorithm it decides
to cause the jams during the course of the computation. However, it has a con-
strained number of jams it can cause in a given period. Specifically, we consider
adversary (T, f)-A, that for a time interval of length T , T ≥ 1, it can cause
up to f packet jams. As in [2], for a worst case analysis, we assume that the
adversary jams some bit in the header of the packets in order to ensure their
destruction. So given T , the adversary defines the error pattern E as a set of
up to f jamming events on the channel over that period, each given by a time
instant in the period. We will sometimes use the special error pattern E = ∅
that corresponds to the case in which the adversary causes no jamming. For a
given T , we assume that f is known to the scheduling algorithm.

Efficiency Measures. As in [2], we consider two efficiency measures, useful pay-
load and goodput rate. The useful payload, is the sum of payloads of the success-
fully transmitted packets within a time interval of length T , under any f -size
error pattern E. The goodput rate, is the corresponding ratio of the useful pay-
load sent during the interval and is of interest mostly for the continuous version
of the model presented in [2].

More formally, we denote by UPA(T, f , E) the useful payload (payload cor-
rectly received) when using scheduling algorithm A in an interval of length T

2 We assume that the sender has data with total payload greater than T .

266 A. Fernández Anta et al.

against an adversary of power f that uses error pattern E. For a fixed algorithm
A, its useful payload is then simply UPA(T, f) = minE∈E(f) UPA(T, f , E), where
E(f) is the set of all possible error patterns with at most f jams. From this, we
define the optimal useful payload as UP∗(T, f) = maxA UPA(T, f).

The goodput metric is defined similarly, by simply dividing the useful payload
by the length of the interval. More precisely, when using scheduling algorithm
A in an interval of length T against an adversary of power f that uses error
pattern E, the goodput rate is GA(T, f , E) = UPA(T, f , E)/T , the goodput of
algorithm A is GA(T, f) = UPA(T, f)/T , and the optimal goodput is G∗(T, f) =
UP∗(T, f)/T .

Feedback Mechanism. Following [1,2], we consider instantaneous feedback. In
particular, at the time a packet is successfully received by the receiver, a notifi-
cation/acknowledgement message is immediately received by the sender. If such a
message is not received by the sender, then it considers the packet to be jammed.
We assume that the notification packets cannot be jammed by the errors in the
channel because of their relatively small size.
Remark: Observe that if T ≤ f , then the adversary can jam all packets sent
in the interval and no useful data will be received. Therefore, from this point
onward we focus only in time periods that are initially of length T > f .

3 Uniform Packets

We first consider the case in which all the packets scheduled are of the same length.
Having to use uniform packets may be a requirement due to limitations in the com-
munication protocol, or the sender’s specifications. In this case, the following result
gives the uniform packet length that has to be used in order to maximize the min-
imum useful payload. (Note that the approximations below are due to floors and
ceilings; these approximations get closer to equality as T f grows.)

Theorem 1. Let U(p) denote the algorithm that only uses uniform packets of
length p. In an interval of length T and maximum number of errors f , the optimal
packet length for these algorithms is p∗ ≈ √

T/f that achieves useful payload
UPU(p∗)(T, f) ≈ T + f − 2

√
T f . When the adversary causes no jamming, the

useful payload achieved by U(p∗) is UP∗
U(p∗)(T, f , ∅) ≈ T − √

T f .

Proof. Let us denote by n the number of uniform packets of length p = T
n sent in

an interval of length T when the adversary has f error tokens available. Hence,
we will be using U(n) and U(p) to denote the same algorithm. In the worst case,
the adversary will use its error tokens to jam f packets in the interval, and hence
there will be at least n − f successfully received packets by the receiver by the
end of the interval. The useful payload of the uniform algorithm using n (and
hence p) will thus be UPU(n)(T, f) = (n − f) (T

n − 1) (recall that each packet
consists of the payload and a unit-size header).

Adaptive Scheduling Over a Wireless Channel Under Constrained Jamming 267

Deriving this expression with respect to n, we get

∂UPU(n)(T, f)
∂n

=
fT

n2
− 1,

which implies that UPU(n)(T, f) is maximized for n =
√

T f . Moreover, the deriv-
ative is positive for n <

√
T f and negative for n >

√
T f , which implies that the

useful payload is strictly increasing on the left of n =
√

T f and strictly decreas-
ing on the right. From this, we get that (1) there is no other n that maximizes the
useful payload, and (2) since the number of packets has to be an integer value,
the only two candidates for the optimal number of packets n∗ are �√T f 	 and

√T f �. Hence the value of these two that maximizes the useful payload is the
optimal number n∗. From this, and the fact that p = T

n , we get that p∗ ≈ √
T/f ,

as claimed.
Then, the optimal number of packets n∗ gives optimal useful payload

UPU(n∗)(T, f) = (n∗ − f)(T
n∗ − 1) ≈ T + f − 2

√
T f , as claimed. Finally, when n∗

packets are used, and no packet is jammed by the adversary, the useful payload
is maximized reaching UPU(n∗)(T, f , ∅) = n∗(T

n∗ − 1) ≈ T − √
T f , as desired. �

Corollary 1. The optimal achievable goodput rate is GU(p∗)(T, f) ≈(
1 − √

f /T
)2

.

4 Optimal Algorithm for f = 1

In this section, we turn our focus on the case of a single error token available to
the adversary for an interval of length T . We give an adaptive algorithm, named
ADP(T, 1), and prove its optimality. By doing so, we hope to give an intuition
to the reader for how the general optimal algorithm, for any number of error
tokens, works.

Algorithm 1. ADP(T, 1)

If T ∈ [1, 2) then
Send packet with length p = T

else

Let i be the integer such that T ∈
[
(i−1)i

2
+ 1, i(i+1)

2
+ 1
)

Let α = i − 2, and β = (i−1)i
2

− 1

Send packet π with length p = T+β
α+2

= T−1
i

+ i−1
2

If packet π is jammed then
Send packet with length p′ = T − p

else
Call ADP(T − p, 1)

268 A. Fernández Anta et al.

Algorithm ADP(T, 1) is used in a time recursive fashion, with respect to the
length of the interval of interest, T . Its scheduling policy is as follows: It chooses
the length p of the first packet to be transmitted as a function of T . If the packet
is jammed then it transmits a second packet of length T −p which is guaranteed
not to be jammed. If the first packet goes through, then the algorithm is invoked
recursively as ADP(T − p, 1).

The detailed description of the algorithm is given as Algorithm1. Let
us fix the interval length T ≥ 1, and let i be the integer such that T ∈[
(i−1)i

2 + 1, i(i+1)
2 + 1

)
, as described in the above pseudocode. Let us also define

parameters α = i − 2 and β = (i−1)i
2 − 1, packet length p = T+β

α+2 , and interval
length T ′ = T − p. We first present the following two lemmas that are used to
show the optimality of Algorithm ADP(T, 1).

Lemma 1. Interval length T ′ = T −p is such that T ′ ∈
[
(j−1)j

2 + 1, j(j+1)
2 + 1

)
for j = i − 1, where i is an integer such that i ≥ 1.

Proof. Replacing the values of α and β in the calculation of T ′ = T − p,

T ′ =
(α + 1)T − β

α + 2
=

(i − 2 + 1)T −
(

(i−1)i
2 − 1

)
i − 2 + 2

=
(i − 1)T − (i−1)i

2 + 1
i

.

Now, using the fact that T ≥ (i−1)i
2 + 1, we have

T ′ ≥
(i − 1)

(
1 + (i−1)i

2

)
− (i−1)i

2 + 1

i
= · · · =

(i − 1)(i − 2)
2

+ 1.

Similarly, using the fact that T < i(i+1)
2 + 1, we have

T ′ <
(i − 1)

(
1 + i(i+1)

2

)
− (i−1)i

2 + 1

i
= · · · =

(i − 1)i
2

+ 1.

Setting j = i−1 in both cases, we have T ′ ∈
[
(j−1)j

2 + 1, j(j+1)
2 + 1

)
as claimed.

�
Lemma 2. Let T ≥ 2 and assume that UPADP(T ′, 1) = αT ′−β

α+1 , where T ′ =
T − p. Then, Algorithm ADP(T, 1) achieves useful payload UPADP(T, 1) =
(α+1)T−(β+α+2)

α+2 .

Proof. Since T ≥ 2, that Algorithm ADP(T, 1) schedules first a packet π with
length p = T+β

α+2 . If π is jammed, then a packet of length equal to the rest of the
interval, i.e., T ′ = T − p, can be sent successfully, and hence the useful payload
will be UPADP(T, 1) = T − T+β

α+2 − 1 = (α+1)T−(β+α+2)
α+2 .

Otherwise, if π is not jammed, the useful payload is obtained as UPADP(T, 1)
= p−1+UPADP(T ′, 1) = p−1+ αT ′−β

α+1 = p−1+ α(T−p)−β
α+1 = (α+1)T−(β+α+2)

α+2 .
In both cases, the useful payload is as claimed, which completes the proof. �

Adaptive Scheduling Over a Wireless Channel Under Constrained Jamming 269

Theorem 2. Given an interval of length T ≥ 1, Algorithm ADP(T, 1) achieves
optimal useful payload UP∗(T, 1) = i−1

i T − i+1
2 + 1

i , where i is the integer such

that T ∈
[
(i−1)i

2 + 1, i(i+1)
2 + 1

)
.

Proof. The proof is by induction on T . The base case is when T ∈ [1, 2), which
implies that i = 1. In this case only one packet is sent by ADP(T, 1), which
spans the whole interval and can be jammed by the adversary. Observe that in
this case at most one packet can in fact be sent in the interval. This matches
the claim that ADP(T, 1) achieves optimal useful payload UP∗(T, 1) = 0 in this
case.

Let us now consider any interval length T ≥ 2, which implies i ≥ 2. Then,
from Lemma 1, interval length T ′ = T −p ∈

[
(j−1)j

2 + 1, j(j+1)
2 + 1

)
for j = i−1.

By induction hypothesis, UPADP(T ′, 1) = UP∗(T ′, 1) = j−1
j T − j+1

2 + 1
j =

αT ′−β
α+1 , and from Lemma 2 we have that UPADP(T, 1) = (α+1)T−(β+α+2)

α+2 =
i−1

i T − i+1
2 + 1

i .
To show that the useful payload achieved by ADP is optimal for this case

T ≥ 2, consider an algorithm A that follows one of the following approaches:

(a) First sends a packet π′ of length p′ > T+β
α+2 . We assume then that the adver-

sary jams π′. The length of the rest of the interval is T − p′ < T − T+β
α+2 .

Hence the useful payload will be

UPA(T, 1) < T − T + β

α + 2
− 1 =

(α + 1)T − (β + α + 2)
α + 2

= UPADP(T, 1).

(b) First sends a packet π′ of length p′ < T+β
α+2 , p′ ≥ 1. Then the adversary does

not jam π′. The rest of the interval has length T − p′ = T ′ + (p − p′) > T ′.
We consider two cases (from Lemma 1 no other case is possible):

Case (b).1: T − p′ = T ′ + (p − p′) ∈
[
(j−1)j

2 + 1, j(j+1)
2 + 1

)
for j = i − 1. Then,

by induction hypothesis, UP∗(T ′ +(p−p′), 1) = j−1
j (T ′ +(p−p′))−

j+1
2 + 1

j < j−1
j T ′ − j+1

2 + 1
j +(p−p′) = UP∗(T ′, 1)+(p−p′). Hence,

UPA(T, 1) ≤ p′ − 1 + UP∗(T ′ + (p − p′), 1) < p′ − 1 + UP∗(T ′, 1) + (p − p′)

= p − 1 + UP∗(T ′, 1) = UPADP(T, 1).

Case (b).2: T − p′ = T ′ + (p − p′) ∈
[
(i−1)i

2 + 1, i(i+1)
2 + 1

)
. In this case,

UPA(T, 1) ≤ p′ − 1 + UP∗(T − p′, 1) = p′ − 1 +
i − 1

i
(T − p′) − i + 1

2
+

1

i

<
i − 1

i
T − i + 1

2
+

1

i
= UPADP(T, 1),

where the first equality follows from induction hypothesis, and the second
inequality follows from the fact that p′ < i (derived from p′ < T+β

α+2 , the def-

inition of α and β, and the fact that T < i(i+1)
2 + 1).

270 A. Fernández Anta et al.

Hence, in none of the two cases, neither (a) nor (b), Algorithm A was able to
achieve a higher useful payload than ADP, which implies that the latter achieves
optimality. �

5 Optimal Algorithm for ANY f > 1

We now turn our focus on the case of any number of error tokens f > 1 available
to the adversary for an interval of length T . We present the general adaptive
algorithm ADP(T, f) for f > 1 as Algorithm 2, and prove its optimality in the
rest of the section. The pseudocode of ADP(T, f) for f > 1 is similar to that of
ADP(T, 1), with a couple of differences. First, in this case it is not possible to
explicitly give the length p of the first packet π sent (values of α, β, and γ) when
T ≥ f + 1 (see Theorem 3). Second, if π is jammed, the adversary still has some
error tokens that it can use. Hence, instead of sending a packet that spans the
rest of the interval, ADP(T, f) makes the call ADP(T −p, f −1), which could be
recursive if f > 2, or a call to the algorithm ADP(T − p, 1) (see Algorithm 1), if
f = 2. It will not be surprising then that the proof of optimality of the algorithm
ADP(T, f) will use induction on f .

Algorithm 2. ADP(T, f), for f > 1

If T < f + 1 then
Send packet with length p = T

else

Send packet π with length p = αT+β
γ

// α, β and γ depend on
T ; see Theorem 3

If packet π is jammed then
Call ADP(T − p, f − 1)

else
Call ADP(T − p, f)

Let us first prove some observations that hold for any optimal algorithm
OPT, to be used later in the analysis of Algorithm ADP(T, f).

Observation 1. The useful payload of an optimal algorithm OPT, follows a
non-decreasing function with respect to the length of the interval of interest, T ,
when there are f ≥ 0 available errors, i.e., UP∗(T, f) ≤ UP∗(T +δ, f), for δ > 0.

Proof. Let us consider an optimal algorithm OPT that achieves optimal useful
payload UP∗(T, f) = α, for an interval of length T and f error tokens available
within the interval. Now let us construct an algorithm A, that for interval length
T + δ initially uses the exact same approach as OPT for T ; choosing the same
packet lengths OPT does during the initial T time of the interval. This means
that it has at least the same useful payload as OPT for T , i.e., UPA(T +δ, f) ≥ α.

Adaptive Scheduling Over a Wireless Channel Under Constrained Jamming 271

Since OPT is the optimal algorithm, it must achieve at least the same useful
payload as A for the interval of length T +δ, i.e., UP∗(T +δ, f) ≥ UPA(T +δ, f).
Hence, UP∗(T, f) ≤ UP∗(T + δ, f) as claimed. �
Observation 2. The useful payload of an optimal algorithm OPT, follows a
non-increasing function with respect to the number of available errors in an
interval of length T , i.e., UP∗(T, f) ≤ UP∗(T, f − 1), where f ≥ 1.

Proof. Let us consider an optimal algorithm OPT, with a useful payload
UP∗(T, f) = β for an interval length T with f errors available. Then, let us
construct an algorithm A, that for f − 1 error tokens during the same interval
length T , uses the exact approach as OPT for f errors; choosing the same packet
lengths until f −1 error tokens are used by the adversary. Then, it schedules one
packet equal to the size of the remaining interval. This means that it has at least
the same useful payload as OPT does for f errors, UPA(T, f −1) ≥ β. And since
OPT is the optimal algorithm, it must achieve at least the same useful payload
for the same interval and f −1 errors, i.e., UP∗(T, f −1) ≥ UPA(T, f −1). Hence,
UP∗(T, f) ≤ UP∗(T, f − 1) as claimed. �
Lemma 3. There is an optimal algorithm OPT that is work-conserving, i.e.,
for each T and for each f , there is an optimal work-conserving strategy deciding
the packet lengths.

Proof. Assume by contradiction that there is some combination of interval and
number of error tokens (T, f), for which no work-conserving scheduling strategy
is optimal. We choose the smallest such T and consider the following:

(1) There is an optimal strategy for this pair of T and f that does not send
any packet during the interval. Hence the optimal useful payload is zero,
UP∗(T, f) = 0. In this case, sending one packet that spans the whole interval
will lead to the same payload.

(2) There is a strategy that waits for Δ time at the beginning of the interval
before sending a packet of length p. This packet can be jammed. Therefore,

UP∗(T, f) = min{UP∗(T − Δ − p, f − 1), p − 1 + UP∗(T − Δ − p, f)}
≤ min{UP∗(T − p, f − 1), p − 1 + UP∗(T − p, f)}.

where the inequality follows from Observation 1. The right side of the inequal-
ity is the useful payload obtained by the strategy that does not wait the Δ
period, but instead schedules the packet of length p at the beginning of the
interval (which is work-conserving). Since both cases lead to a contradiction,
the claim follows. �

Lemma 4. The optimal useful payload is a continuous function with respect to
the length of the interval, T , when there are f ≥ 1 errors available.

Proof. Assume by contradiction that the optimal useful payload is not a con-
tinuous function. This means that there is an interval length T for which the

272 A. Fernández Anta et al.

following holds: lim
ε→0

UP∗(T − ε, f) < UP∗(T, f). Let us fix parameter ε > 0, and
observe the behavior of a work-conserving optimal algorithm OPT for interval
lengths T and T − ε (such an algorithm exists by Lemma 3). Let us then denote
by pO and pε the lengths of the first packet scheduled by OPT in each case
respectively. These packets can be jammed or not. We observe:

UP∗(T − ε, f) = min{UP∗(T − ε − pε, f − 1), pε − 1 + UP∗(T − ε − pε, f)}(1)
UP∗(T, f) = min{UP∗(T − pO, f − 1), pO − 1 + UP∗(T − pO, f)} (2)

However, if we construct an alternative algorithm A that chooses a packet of
length p′′ = pO − ε in the case of interval of length T − ε, and works as OPT for
smaller intervals, then

UPA(T −ε, f) = min{UP∗(T −pO, f −1), pO −ε−1+UP∗(T −pO, f)} ≥ UP∗(T, f)−ε.

Since UP∗(T −ε, f) ≥ UPA(T −ε, f), it is then trivial to conclude that lim
ε→0

UP∗(T

− ε, f) = UP∗(T, f), which is a contradiction. Hence the optimal useful payload
is a continuous function with respect to the length of the interval, as claimed. �

We will now show how Algorithm ADP(T, f) computes the packet length
p of the packet π sent when T ≥ f + 1. The computation assumes that it is
possible to recursively call ADP(T ′, j) for any T ′ < T and j ≤ f , and that the
useful payload of each of these recursive calls is the optimal value UP∗(T ′, j).
Then, ADP(T, f) chooses as length of packet π the smallest value p ∈ [1, T] that
satisfies the equality UP∗(T − p, f − 1) = p − 1 + UP∗(T − p, f). Table 1 shows
the values of p chosen for some interval lengths T when f = 2. It also shows the
useful payload achieved by the algorithm using these values of p.

Table 1. Values of packet length p and optimal useful payload UP∗(T, 2) achieved
with Algorithm ADP(T, 2).

T [1, 3) [3, 9/2) [9/2, 17/3) [17/3, 19/3) [19/3, 70/9) [70/9, 308/36)

p T T
3

T+6
7

3T+3
12

5T+16
26

6T+42
42

UP∗(T, 2) 0 T−3
3

3T−10
7

6T−22
12

14T−54
26

24T−98
42

We now prove that the described process to make the choice leads to opti-
mality.

Theorem 3. Given an interval of length T ≥ f + 1, Algorithm ADP(T, f)
achieves optimal useful payload by choosing the smallest value p ∈ [1, T] that
satisfies the equality

UP∗(T − p, f − 1) = p − 1 + UP∗(T − p, f).

Adaptive Scheduling Over a Wireless Channel Under Constrained Jamming 273

Moreover, there are constants αl, βl, γl, αk, βk, and γk such that UP∗(T −p, f) =
αl(T−p)−βl

γl
and UP∗(T − p, f − 1) = αk(T−p)−βk

γk
, and hence

p =
(αkγl − γkαl)T + γkγl + γkβl − βkγl

γkγl + αkγl − γkαl
.

(Observe that the parameters used in Algorithm2 are hence α = αkγl − γkαl,
β = γkγl +γkβl −βkγl, and γ = γkγl +αkγl −γkαl.) The optimal useful payload
obtained is then

UP∗(T, f) =
αkγlT − (αkγl + αkβl + βkγl − βkαl)

γkγl + αkγl − γkαl
.

Proof. We prove by a double induction on the number of error tokens f and the
length of the interval T , that the approach followed by Algorithm ADP(T, f)
gives the optimal useful payload.
Base Cases. We have as base case of the induction on the number of error tokens
the fact that (1) when f = 0 the optimal strategy is to send a single packet of
length T that spans the whole interval, leading to UP∗(T, 0) = T − 1, and (2)
that the algorithm ADP(T, 1) presented in Sect. 4 is optimal for any T , which
covers the case f = 1.

For a given f > 1, we also use induction in the length of the interval T . In this
case the base case is when T < f +1, which has optimal payload UP∗(T, f) = 0,
since the adversary can jam each of the up to f packets that can be sent.
Induction Hypotheses. We first inductively assume that ADP(T, j) is optimal for
any number of tokens j < f available to the adversary at the beginning of the
interval and any interval length T > j. In particular, for any j < f and any T > j,
there is a known range of lengths Rij = [aij , bij) such that T ∈ Rij , bij = a(i+1)j

and the optimal useful payload is known to be UP∗(T, j) = αijT−βij

γij
. Parameters

αij , βij and γij are known positive integers, such that βij > γij > αij .
We inductively also assume that for f error tokens, there are m known ranges

of lengths Rif = [cif , dif) for i = 1, 2, . . . ,m, such that
⋃m

i=1 Rif = [1, dmf),
c1f = 1, and dif = c(i+1)f ,∀1 ≤ i < m. Also, for any interval length T such that
T < dmf and T ∈ Rif = [cif , dif), the optimal useful payload is known to be
UP∗(T, f) = αif T−βif

γif
. Parameters αif , βif and γif are known positive integers

such that (1) βif > γif > αif , and for any R�f , Rrf where 1 ≤ � ≤ r ≤ m, it
holds that (2) βrf

γrf
≥ β�f

γ�f
and (3) αrf

γrf
≥ α�f

γ�f
.

Inductive Step. For interval length T ∈ [dmf , dmf + 1), the algorithm ADP(T, f)
chooses the smallest packet length p ∈ [1, T] that satisfies the following condition

UP∗(T − p, f − 1) = p − 1 + UP∗(T − p, f). (3)

Claim. There is at least one packet length p ∈ [1, T] that satisfies Eq. 3.

Proof of Claim. Observe that, when p = 1, from Observation 2 we have that
UP∗(T − p, f − 1) ≥ p − 1 + UP∗(T − p, f). On the other hand, when p = T , we

274 A. Fernández Anta et al.

have that UP∗(T − p, f − 1) = 0 ≤ p − 1 + UP∗(T − p, f) = T − 1. Hence, taking
into consideration the continuity of the useful payload function of both f −1 and
f error tokens (Lemma 4) and the Mean Value Theorem, there always exists a
packet size p ∈ [1, T] such that UP∗(T −p, f −1) = p−1+UP∗(T −p, f). �Claim

Now, let p be the packet length chosen, and let T − p ∈ Rkj = [akj , bkj) and
T − p ∈ Rlf = [clf , dlf). Note that Rkj and Rlf are among the known ranges
from the induction hypothesis. Then, by induction hypothesis UP∗(T − p, f) =
αlf (T−p)−βlf

γlf
and UP∗(T − p, f − 1) = αkj(T−p)−βkj

γkj
. Then, solving Eq. 3 for p,

the packet length is

p =
(αkjγlf − γkjαlf)T + γkjγlf + γkjβlf − βkjγlf

γkjγlf + αkjγlf − γkjαlf
,

and the useful payload obtained is

UPADP(T, f) = UP∗(T − p, f − 1) = p − 1 + UP∗(T − p, f) =
αkj(T − p) − βkj

γkj

=
αkjγlf T − (αkjγlf + αkjβlf + βkjγlf − βkjαlf)

γkjγlf + αkjγlf − γkjαlf
,

as claimed. To complete the induction step, we define α = αkjγlf , β = αkjγlf +
αkjβlf + βkjγlf − βkjαlf and γ = γkjγlf + αkjγlf − γkjαlf . Then, we show the
following three properties (1) β > γ > α, (2) β

γ ≥ βlf

γlf
, and (3) α

γ ≥ αlf

γlf
as follows.

Property 1. For the new parameters α = αkjγlf , β = αkjγlf + αkjβlf + βkjγlf −
βkjαlf and γ = γkjγlf + αkjγlf − γkjαlf , it holds that β > γ > α.

Proof of Property 1. First, from the induction hypotheses, recall the definition of
parameters αij , βij and γij , being known positive integers such that βij > γij >
αij . Looking now at the current parameters α, β and γ individually, we have the
following:

(a) α = αkjγlf .
(b) β = αkjγlf + αkjβlf + βkjγlf − βkjαlf = αkj(γlf + βlf) + βkj(γlf − αlf).
(c) γ = γkjγlf + αkjγlf − γkjαlf = γkj(γlf − αlf) + αkjγlf .

Observe that γkj(γlf −αlf)+αkjγlf > αkjγlf , since γkj > 0 and γlf −αlf > 0
by induction hypothesis. Hence, from (a) and (c) γ > α. Also, αkj(γlf + βlf) +
βkj(γlf −αlf) > γkj(γlf −αlf)+αkjγlf , since by induction hypothesis βkj > γkj ,
γlf − αlf > 0, and all parameters are positive. Hence, from (b) and (c) β > γ
holds as well. This completes the proof of the claim. �Property1

Property 2. For the new parameters β = αkjγlf + αkjβlf + βkjγlf − βkjαlf and
γ = γkjγlf + αkjγlf − γkjαlf , it holds that β

γ >
βlf

γlf
.

Proof of Property 2. For this proof observe first, that since β > γ (as shown in
Property 1), we can safely use the fact that β

γ > β−c
γ−c , where c is positive. Also by

induction hypothesis we have that γlf −αlf > 0 and βkj −γkj > 0. We therefore
use some fraction inequality properties as follows:

Adaptive Scheduling Over a Wireless Channel Under Constrained Jamming 275

β

γ
=

αkjγlf + αkjβlf + βkjγlf − βkjαlf

γkjγlf + αkjγlf − γkjαlf
=

αkj(γlf + βlf) + βkj(γlf − αlf)

γkj(γlf − αlf) + αkjγlf

>
αkj(γlf + βlf) + (βkj − γkj)(γlf − αlf)

αkjγlf
>

αkjγlf + αkjβlf

αkjγlf
= 1 +

βlf

γlf
>

βlf

γlf
,

which completes the proof. �Property2

Property 3. For the new parameters α = αkjγlf and γ = γkjγlf +αkjγlf −γkjαlf ,
it holds that α

γ >
αlf

γlf
.

Proof of Property 3. For this proof observe first, that since γ > α (as shown in
Property 1), we can safely use the fact that α

γ > β+c
γ+c , where c is positive. Also by

induction hypothesis we have that γlf − αlf > 0. We therefore use some fraction
inequality properties as follows:

α

γ
=

αkjγlf

γkjγlf + αkjγlf − γkjαlf
=

αkjγlf + γkjαlf

αkjγlf + γkjγlf

=
αkjαlf + αkj(γlf − αlf) + γkjαlf

γlf (αkj + γkj)
=

αlf (αkj + γkj)
γlf (αkj + γkj)

+
αkj(γlf − αlf)
γlf (αkj + γkj)

>
αlf

γlf
,

which completes the proof. �Property 3

Observe that the above proof holds for all T s in the interval [dmf , dmf +1); for
each one of these, the algorithm would compute the smaller p that satisfies Eq. 3
and the computation of the parameters α, β, γ is done analogously. Therefore,
the known ranges of lengths are extended in this interval.

We must now show that the useful payload is in fact optimal. Let us assume
by contradiction that an algorithm A is able to achieve a larger useful payload
for the pair (T, f) by sending first a different packet length p′ �= p. We consider
the following cases.

(a) Algorithm A chooses a packet π′ of length p′ > p. Then, we assume that
the adversary will jam the packet π′. Hence, the useful payload achieved
by A will be upper bounded as UPA(T, f) ≤ UP∗(T − p′, f − 1) which by
Observation 1 is smaller than UP∗(T − p, f − 1) = UPADP(T, f), since
T − p′ < T − p.

(b) Algorithm A chooses a packet π′ of length p′ < p. Observe that p′ does not
satisfy Eq. 3, since p is the smallest length that does. Then the adversary
does not jam π′. Then, UPA(T, f) ≤ p′ − 1 + UP∗(T − p′, f). We show now
that this value is no larger than p − 1 + UP∗(T − p, f) = UPADP(T, f).
Let us assume that T − p′ ∈ Rrf , where r ≥ l. Then, UP∗(T − p′, f) =
αrf (T−p′)−βrf

γrf
≤ αrf

γrf
(T − p′) − βlf

γlf
, since βrf

γrf
≥ βlf

γlf
as shown by Property 2.

Similarly, UP∗(T − p, f) = αlf (T−p)−βlf

γlf
≥ αrf

γrf
(T − p) − βlf

γlf
, since αrf

γrf
≥ αlf

γlf

as shown by Property 3. Finally, combining these bounds and the fact that

276 A. Fernández Anta et al.

αrf

γrf
< 1 (see Property 1), we get that

UPA(T, f) ≤ p′ − 1 + UP∗(T − p′, f) ≤ p′ − 1 +
αrf

γrf
(T − p′) − βlf

γlf

≤ p′ − 1 +
αrf

γrf
(T − p′) − βlf

γlf
+ (p − p′) − αrf

γrf
(p − p′)

= p − 1 +
αrf

γrf
(T − p) − βlf

γlf
≤ UPADP(T, f).

In all cases the resulting useful payload is smaller than the one achieved by
choosing the smallest packet size p such that UP∗(T − p, f − 1) = p − 1 + UP∗

(T − p, f). Hence the packet size calculated by ADP(T, f) is optimal. �

6 Discussion

Recall that the problem we considered up to this point in the paper is a “static”
version of the problem we considered in [2] (continuous version). In this section
we discuss the use of our proposed algorithms when applied to the continuous
version of the problem. (Recall from Sect. 1 the definitions of ρ and σ.)

We begin with the following observation: If we divide the time interval of
the continuous version of the problem into successive intervals of length 1/ρ,
and σ error tokens are available at the beginning of each interval, then each of
these intervals can be considered an instance of the static version of the problem,
where T = 1/ρ and f = σ.

Fig. 1. The goodput rate of algorithms ADP-1 [2] and ADP(T, 1) (Sect. 4) for T =
1 . . . 22

Therefore, by running algorithm ADP(1/ρ, σ) in each of these intervals we
obtain a solution to the continuous version of the problem. However, this solution
is possibly not the best possible, as we make the pessimistic assumption that
at the beginning of each interval, the adversary has all σ error tokens available
to use; this is true for the first interval, but in successive intervals this might

Adaptive Scheduling Over a Wireless Channel Under Constrained Jamming 277

not be the case (with the exception of the case σ = 1, which we discuss below).
Based on the model defined in [2], a new error token will be arriving at the
beginning of each interval. If there are already σ tokens, then a token is lost
(σ represents, for example, the capacity of the battery of a jamming device –
this cannot be exceeded). If in this interval, the adversary performs, say, three
packet jams, then at the beginning of the next interval it will have σ−2 available
tokens. If the scheduling algorithm keeps track of this, then in this interval it
should use ADP(1/ρ, σ − 2) instead of ADP(1/ρ, σ). So, in order to produce
more efficient solutions, the scheduling algorithm needs to keep track (using the
feedback mechanism) how many jams took place in the previous interval, and
using its knowledge of 1/ρ, run the appropriate version of ADP(). Although there
are other subtle issues that also need to be considered, the proposed approach
can be used as the basis for obtaining an optimal solution to the continuous
version of the problem. We plan to pursue this direction in future research.

Regarding the case of f = σ = 1, as demonstrated in Fig. 1, algorithm
ADP(1/ρ, 1) obtains better results than the solution developed in [2] (called
Algorithm ADP-1). In [2], for σ = 1 it was shown that the goodput rate of
Algorithm ADP-1 is 1− ρ

2

(
1 +

√
1 + 8

ρ

)
. Figure 1 depicts this goodput rate and

the goodput rate of algorithm ADP(1/ρ, 1) as obtained from our analysis in
Sect. 4, for T = 1 . . . 22. Since in the case of σ = 1 it is best for the adversary to
use the error token (otherwise it will lose it), our improved goodput demonstrates
the promise of the abovementioned approach.

References

1. Fernández Anta, A., Georgiou, C., Kowalski, D.R., Widmer, J., Zavou, E.: Measur-
ing the impact of adversarial errors on packet scheduling strategies. In: Moscibroda,
T., Rescigno, A.A. (eds.) SIROCCO 2013. LNCS, vol. 8179, pp. 261–273. Springer,
Heidelberg (2013)

2. Fernández Anta, A., Georgiou, C., Zavou, E.: Packet scheduling over a wireless
channel: AQT-based constrained jamming. In: Proceedings of NETYS (2015)

3. Awerbuch, B., Richa, A., Scheideler, C.: A jamming-resistant mac protocol for
single-hop wireless networks. In: Proceedings of PODC, pp. 45–54 (2008)

4. Dolev, S., Gilbert, S., Guerraoui, R., Kowalski, D., Newport, C., Kohn, F., Lynch,
N.: Reliable distributed computing on unreliable radio channels. In: Proceedings
of MobiHoc S3 workshop, pp. 1–4 (2009)

5. Gilbert, S., Guerraoui, R., Newport, C.: Of malicious motes and suspicious sensors:
on the efficiency of malicious interference in wireless networks. Theor. Comput. Sci.
410(6), 546–569 (2009)

6. Pelechrinis, K., Iliofotou, M., Krishnamurthy, S.V.: Denial of service attacks in
wireless networks: the case of jammers. IEEE Commun. Surv. Tutor. 13(2), 245–
257 (2011)

7. Pruhs, K.: Competitive online scheduling for server systems. ACM SIGMETRICS
Perform. Eval. Rev. 34(4), 52–58 (2007)

8. Pruhs, K., Sgall, J., Torng, E.: Online scheduling. In: Handbook of Scheduling:
Algorithms, Models, and Performance Analysis, pp. 15-1–15-41 (2004)

278 A. Fernández Anta et al.

9. Richa, A., Scheideler, C., Schmid, S., Zhang, J.: Competitive and fair medium
access despite reactive jamming. In: Proceedings of ICDCS, pp. 507–516 (2011)

10. Richa, A., Scheideler, C., Schmid, S., Zhang, J.: Towards jamming-resistant and
competitive medium access in the sinr model. In: Proceedings of the 3rd ACM
Workshop on Wireless of the Students, by the Students, for the Students, pp.
33–36 (2011)

11. Richa, A., Scheideler, C., Schmid, S., Zhang, J.: Competitive and fair throughput
for co-existing networks under adversarial interference. In: Proceedings of PODC,
pp. 291–300 (2012)

12. Thuente, D., Acharya, M.: Intelligent jamming in wireless networks with applica-
tions to 802.11 b and other networks. In: Proceedings of MILCOM, vol. 6 (2006)

Metric and Distributed On-Line Algorithm
for Minimizing Routing Interference

in Wireless Sensor Networks

Kejia Zhang1, Qilong Han1, Zhipeng Cai1,2(B), Guisheng Yin1, and Junyu Lin1

1 College of Computer Science and Technology,
Harbin Engineering University, Harbin, China

2 Department of Computer Science, Georgia State University, Atlanta, USA
zcai@gsu.edu

Abstract. First, this paper gives a metric to quantify interference level
among multiple routing paths in wireless sensor networks. Unlike the
existing metrics, the proposed one can precisely measure interference
level among any set of paths, even though these paths have some nodes
or links in common. Based on the proposed metric, the Minimizing-
Interference-for-Multiple-Paths (MIMP) problem is considered: Given k
routing requests {s1, t1}, . . . , {sk, tk}, find k paths connecting these rout-
ing requests with minimum interference. The MIMP problem is NP-hard
even for k = 2. This paper proposes heuristic distributed on-line algo-
rithm for the MIMP problem. The efficiency of the proposed algorithm
is verified by simulation results.

1 Introduction

A typical wireless sensor network (WSN) consists of hundreds or thousands of
sensor nodes deployed in the monitoring area. Usually, these sensor nodes are
battery-powered devices with simple communication components, which makes
their communication distance relatively short. If two sensor nodes want to
exchange their data, the data usually needs to be forwarded by many relay-
ing nodes, so routing in WSNs is a crucial problem. Let s and t denote a routing
request, i.e., two sensor nodes who want to communicate with each other. The
main objective of routing is to optimally find paths connecting s and t (i.e., s ∼ t
paths).

Because of the large scale and frequent data exchange of WSNs, there are
usually more than one routing requests need to be met at the same time. Even if
there is only one routing request in the network, sometimes the users may want
to use multiple paths, say k paths, for routing to increase throughput or load
balance. In this case, we can see the multi-path routing request as k individual
routing requests with the same s and t. To get a better routing performance like
throughput or energy efficiency, network designers always want to use indepen-
dent paths to satisfy all the routing requests. Here, “independent” means that
these routing paths do not interfere with each other.
c© Springer International Publishing Switzerland 2015
Z. Lu et al. (Eds.): COCOA 2015, LNCS 9486, pp. 279–292, 2015.
DOI: 10.1007/978-3-319-26626-8 21

280 K. Zhang et al.

There are many works [1–13,15–23] study how to construct multiple inde-
pendent paths in WSNs and other wireless ad hoc networks. Some works [7,9,23]
borrow the thoughts in wired networks and use node-disjoint paths as indepen-
dent paths. A set of paths are node-disjoint if these paths do not have any nodes
in common. Since sensor nodes share the same communication channel in most
of WSNs, when node v is transmitting data to node u, the transmission will
block all v’s neighbors except u from receiving data. This feature of WSNs is
called wireless interference. Node-disjoint paths are not independent enough for
routing since wireless interference. It has been shown in [22] that the wireless
interference among multiple paths will dramatically decrease the throughput of
routing even though the routing paths are node-disjoint. And [21] claims that
for two node-disjoint paths, the more wireless interference between them, the
larger the average end-to-end delay for both paths. Therefore, the concept of
non-interference paths is proposed by [19]. A set of paths are non-interference if
the nodes in one path do not interfered by (are not neighbors of) any node in
the other paths.

Although using non-interference paths can greatly improve the performance
of routing, sometimes, especially when there are many routing requests have to
be satisfied at the same time, it is impossible to find non-interference paths to
satisfy all the routing requests. In these cases, the best of way to meet all the
routing requests is relaxing the requirement for non-interference and using a set
of paths with the lowest level of interference. Therefore, we need a metric to
quantify interference level among multiple routing paths and a method to build
routing paths with minimum interference. There already exist some works [1,11,
13,17,18,21] to quantify interference level, but they all have apparent drawbacks.
Some of them can only quantify the interference level between two paths. Some
of them require all the routing paths are node-disjoint, which is impossible in
some cases.

In this paper, we consider the Minimizing-Interference-for-Multiple-Paths
(MIMP) problem, which is defined as: Given k routing requests {s1, t1}, . . . , {sk,
tk}, find k paths connecting these routing requests with minimum interference.
We deeply study how the transmission in different routing paths will interfere one
another, especially when some of these paths share common nodes. We give a met-
ric to measure the interference level of multiple paths. Compared with the exist-
ing interference metrics, our metric can more precisely measure the interference
level and deal with the situation that some of the paths share common nodes or
links. Base on the proposed metric, we design a distributed on-line algorithm to
find multiple paths with minimum interference. Therefore, the main contributions
of this paper are: (i) Giving a metric that can precisely measure the interference
level among any set of routing paths and (ii) Designing an distributed on-line algo-
rithm for the MIMP problem based on the given metric.

2 Related Works

[17] proposes an interference-aware multi-path routing protocol IM2PR for event
reporting. Upon the detection of an interesting event, the source node uses mul-

Metric and Distributed On-Line Algorithm 281

tiple node-disjoint paths to report data to the sink. These paths are constructed
one by one. During the path construction, each node chooses the next hop with
higher delivery probability, lower interference level and more remaining energy.
The interference level of node v is measured by how many neighbors of v are
in the other active paths. Unfortunately, this paper does not give a clear metric
to measure the interference level among multiple paths. Furthermore, IM2PR
requires these multiple paths connecting the source node and the sink are node-
disjoint, which is a too strong requirement for many cases.

[18] assumes that the interference range of each node is twice the transmis-
sion range and uses the conflict graph proposed by [13] to measure the inter-
ference level of multiple paths. It proposes protocol I2MR to construct three
non-interference paths (two for data transmission and one for backup) connect-
ing the given source and destination. I2MR builds the shortest path from source
to destination at first, then marks all the one-hop and two-hop neighbors of the
first path as in the interference zone so that they can not participate in other
paths. Next, I2MR finds two paths along each side of the interference zone. I2MR
is only suitable for constructing interference-free paths. In many cases, it impos-
sible to find interference-free paths to meet all the routing requests. Besides,
I2MR has an assumption which may be not true in practice, i.e., two nodes are
in the twice of the transmission range from each other have at least one common
neighbor.

[13] proposes the idea of using conflict graph to measure interference of mul-
tiple paths. The conflict graph does not consider the situation that two or more
routing paths have some links in common, which is inevitable if we try to route
some certain node pairs simultaneously. [21] uses the criteria called correlation
factor to measure the interference level of multiple routing paths. The corre-
lation factor of two node-disjoint paths is defined as the number of the links
connecting the two paths. The total correlation factor of a set of multiple paths
is defined as the sum of the correlation factor of each pair of the paths. This cor-
relation factor criteria does not consider the situation that some routing paths
have nodes or links in common either.

[8] studies the problem of finding multiple non-interference or interference-
minimized paths from a set of sources to a receiver. It proposes a metric to
measure the interference level of a set of routing paths. The metric is not precise
enough since it cannot distinguish the situation that one path is interfered by
another path once and the situation that one path is interfered by another path
many times. [16] gives the metric to measure the interference level between two
paths. However, the proposed metric is not symmetrical, i.e., for two paths P1

and P2, the interference for P1 w.r.t. P2 is not equal to the interference for P2

w.r.t. P1. [1,11] also propose criteria to measure how badly one routing path is
interfered by other concurrent routing paths. These works do not consider the
situation that some of the routing paths share common nodes or links either.

[19,20] defines that two node-disjoint paths are collision-free (non-interference)
if there is no link between any two nodes on different paths. They gives algorithms
to find two collision-free paths connecting a given source and destination node

282 K. Zhang et al.

pair. [15] states that even though some paths are not non-interference, we can still
overcome these interference by appropriate schedule.

So far, all the existing metrics to measure interference level among multiple
paths can not deal with the situation that some paths have nodes or links in
common. When there are many routing requests have to be satisfied at the same
time or for some certain routing requests, it is inevitable that we meet these
routing requests with paths having common nodes or links. Moreover, even if we
can use a set of node-disjoint paths to satisfy all the routing request, wireless
interference may make the routing performance of these paths very poor. In such
case, routing with certain set of paths sharing common nodes may be a much
better solution.

3 Interference Metric

In this section, we give our metric to measure the interference level among a
set of routing paths. This metric can deal with the situation that some paths
have common nodes or links very well. We assume that only the nodes who
have wireless links to v will be interfered by v’s transmission. Hereinafter, if not
otherwise specified, “neighbor” means one-hop neighbor.

3.1 Network Model

We model the given network as an undirected graph G = (V,E), where V = {v | v
is a sensor node} and E = {(u, v) | there is a wireless link between u ∈ V and
v ∈ V }. n = |V | is the number of nodes and m = |E| is the number of wireless
links in the given network. Here, we assume that all the links are bidirectional,
i.e., if v can receive the signal from u then u can receive the signal from v. N(v)
is the set including all v’s neighbors. Hereinafter, we do not distinguish the terms
“network” and “graph” and the terms “edge” and “wireless link”.

A path P in G is a subgraph which can be expressed as a sequence of distinct
nodes (v1, . . . , vm), where each vi ∈ V and each (vi, vi+1) ∈ E. Path P =
(v1, . . . , vm) can be called a v1 ∼ vm path. We say a path P is the acyclic path
if there is no edge connecting two non-adjacent nodes in P . Since the paths we
construct are all the shortest paths w.r.t. some criteria, “path” means acyclic
path in the rest of this paper.

Suppose that k routing paths P1, . . . , Pk are being used in the given network.
Next, we discuss how to measure the interference level among these paths. We
say a edge is a cross-path edge if its two end nodes belong to different paths of
P1, . . . , Pk. We use the function C : V → N

0 to define how many paths each
node is in.

3.2 Quantifying Interference Level

By our assumption of the nodes’ interference scope, if P1, . . . , Pk are node-
disjoint, it is reasonable to use the number of cross-path edges to measure their

Metric and Distributed On-Line Algorithm 283

interference level as was done in [21]. In Example 1 with two node-disjoint paths
as shown in Fig. 1, the cross-path edge (b, e) corresponds to the interference
between node b in P1 and node e in P2. When b is sending messages for P1,
e cannot receive messages in P2. When e is sending messages for P2, b cannot
receive messages in P1. Therefore, for a set of node-disjoint paths, each cross-
path edge corresponds to such a two-way send-and-receive interference between
two nodes in different paths.

P1

P2

a

b

c

d

e

f

Fig. 1. Example 1 with two node-disjoint paths (single lines denote edges in P1, double
lines denote edges in P2, dashed lines denote cross-path edges)

As we mentioned before, in many cases, it is impossible to find a set of node-
disjoint path to meet all the routing requests. Sometimes, because of wireless
interference, routing with paths sharing common nodes may be a better solu-
tion than routing with node-disjoint paths. Therefore, the proposed interference
metric must be able to deal with the situation that the given routing paths
P1, . . . , Pk have some nodes or edges in common.

In Example 2 with two paths sharing a common node as shown in Fig. 2(a),
let us consider how interference will happen. P1 and P2 have a common node
b. The edge (b, d) can be seen as a cross-path edge which corresponds to the
two-way send-and-receive interference between b in P1 and d in P2. Similarly,
the edges (b, f), (b, a) and (b, c) can be seen as cross-path edges too. When b is
sending messages for P1, it cannot receive messages in P2. When b is sending
messages for P2, it cannot receive messages in P1 either. Thus, there is a two-way
send-and-receive interference between b in P1 and b in P2. To get a equivalent
case with two node-disjoint paths, we can split b into two nodes b1 and b2 as
shown in Fig. 2(b). b1 is the b in P1 and b2 is the b in P2. Since there is a two-way
send-and-receive interference between b in P1 and b in P2, we add a cross-path
edge (b1, b2). From this equivalent case, we can easily see that the interference
level between P1 and P2 (the number of cross-path edges) is 5.

We extend the above analysis to measure the interference level of k paths
P1, . . . , Pk. Suppose u and v are neighbors of each other, C(u) > 1 and C(v) > 1.
To get the node-disjoint equivalent case of P1, . . . , Pk, we split u into C(u) new
nodes u1, . . . , uC(u) and split v into C(v) new nodes v1, . . . , vC(v). There is an
edge connecting each ui (i = 1, . . . , C(u)) and each vj (j = 1, . . . , C(v)). And
all these u1, . . . , uC(u) form a clique, so do v1, . . . , vC(v). Therefore, in the node-
disjoint equivalent case, if we only count the edges connecting the nodes in

284 K. Zhang et al.

P1

P2

a (1)

b (2)

c (1)

d (1) f (1)

(a) Example 2 (two paths shar-
ing a common node)

P1

P2

a b1 c

 f d b2

(b) The node-disjoint equivalent
case of Example 2

Fig. 2. Example 2 and its node-disjoint equivalent case (single lines denote edges in
P1, double lines denote edges in P2, dashed lines denote cross-path edges, numbers in
the brackets denote nodes’ C(v))

P1, . . . , Pk, the number of edges at each vj will be C(v) − 1 +
∑

u∈N(v) C(u).
In those edges, except the edges connecting vj to its previous hop and next
hop in the same path, all the other edges are cross-path edges. Therefore, the
number of cross-path edges at each vj is W (v)− 3 where W : V → N

0 is defined
as W (v) = C(v) +

∑
u∈N(v) C(u). The total number of cross-path edges at all

these v1, . . . , vC(v) is C(v)
(
W (v) − 3

)
. The total number of cross-path edges in

the node-disjoint equivalent case of P1, . . . , Pk, i.e., the interference level among
these paths can be given by Definition 1.

Definition 1. For a set of paths P1, . . . , Pk, their interference level is defined
as

IN(P1, . . . , Pk) =
∑

v∈V C(v)
(
W (v) − 3

)
2

where C(v) is the number of paths v is in and W (v) = C(v) +
∑

u∈N(v) C(u).

In Example 2. We have W (b) = 6,W (a) = W (c) = W (e) = W (f) = 4
(Although the other neighbor of a is not shown in the figure, we suppose that
its C(v) is 1). The number of cross-path edges at b1 / b2 in the node-disjoint
equivalent case is W (b) − 3 = 3. The number of cross-path edges at a/b/e/f is
4 − 3 = 1. The total number of cross-path edges in the node-disjoint equivalent
case is (2 ∗ 3 + 1 + 1 + 1 + 1)/2 = 5.

3.3 Analysis of Interference Metric

Suppose that P1, . . . , Pk are constructed one by one in the order of their suf-
fixes. Define Ci(v) (i = 1, . . . , k) as the number of paths v is in after deploy-
ing P1, . . . , Pi and C0(v) = 0 for each v ∈ V . Accordingly, Wi(v) = Ci(v) +∑

u∈N(v) Ci(u). Since P1, . . . , Pk are acyclic paths, we have the following Propo-
sition.

Metric and Distributed On-Line Algorithm 285

Proposition 1. For each intermediate node v in Pi+1, Wi+1(v) = Wi(v) + 3.
And ∑

v∈Pj+1

Wj(v) =
∑

v∈Pj+1

(
Wj+1(v) − 3

)
.

Now, let us consider the change of interference level before and after deploying
path Pi+1. For simplicity, we use INi to denote IN(P1, . . . , Pi), and use Ci and
Wi to denote Ci(v) and Wi(v) respectively. By the definition of interference level
we have

2(INi+1 − INi) =
∑
v∈V

(
Ci+1(Wi+1 − 3) − Ci(Wi − 3)

)
(1)

=
∑

v∈Pi+1

(
Ci+1(Wi+1 − 3) − Ci(Wi − 3)

)
+

∑
v∈V −Pi+1

(
Ci+1(Wi+1 − 3) − Ci(Wi − 3)

)
(2)

=
∑

v∈Pi+1

(
(Ci + 1)(Wi+1 − 3) − Ci(Wi − 3)

)
+

∑
v∈V −Pi+1

(
Ci(Wi+1 − 3) − Ci(Wi − 3)

)
(3)

=
∑

v∈Pi+1

(Wi+1 − 3) +
∑

v∈Pi+1

Ci(Wi+1 − Wi) +
∑

v∈V −Pi+1

Ci(Wi+1 − Wi) (4)

=
∑

v∈Pi+1

Wi +
∑
v∈V

Ci(Wi+1 − Wi) (5)

Equation 3 can be get from Eq. 2 because Ci+1(v) = Ci(v) + 1 for each v ∈ Pi+1

and Ci+1(v) = Ci(v) for each v ∈ V − Pj+1. By Proposition 1, we can get Eq. 5
from Eq. 4.

By the definition of function W , we have∑
v∈Pi+1

Wi(v) =
∑

v∈Pi+1

Ci(v) +
∑

v∈Pi+1

∑
u∈N(v)

Ci(u) (6)

=
∑

v∈Pi+1

Ci(v) +
∑

v∈Pi+1
(u,v)∈E

Ci(u) (7)

and∑
v∈V

Ci

(
Wi+1(v) − Wi(v)

)
=

∑
v∈V

Ci(v)
(
Ci+1(v) − Ci(v)

)
+

∑
v∈V

(
Ci(v)

∑
u∈N(v)

(
Ci+1(u) − Ci(u)

))
(8)

=
∑

v∈Pj+1

Ci(v) +
∑

u∈Pj+1
(u,v)∈E

Ci(v) (9)

286 K. Zhang et al.

We can get Eq. 9 from Eq. 8 because Ci+1(v) − Ci(v) = 1 for v ∈ Pj+1 and
Ci+1(v) − Ci(v) = 0 for v ∈ V − Pj+1.

Combining Eqs. 5, 7 and 9, we have Lemma 1 and Corollary 1.

Lemma 1. For i = 0, 1, . . . k − 1, the interference level among paths satisfies

IN(P1, . . . , Pi+1) − IN(P1, . . . , Pi) =
∑

v∈Pi+1

Wi(v)

Corollary 1. The interference level among paths {P1, . . . , Pk} can be also com-
puted by

IN(P1, . . . , Pk) =
∑
v∈P1

W0(v) +
∑
v∈P2

W1(v) + · · · +
∑
v∈Pk

Wk−1(v)

Corollary 1 gives us the idea of designing on-line algorithm for MIMP. We
satisfy the given routing requests {s1, t1}, . . . , {sk, tk} in order. For each {si, ti},
we find the shortest si ∼ ti path w.r.t. function Wi−1. Here, the length of path
Pi w.r.t. Wi−1 is defined as

∑
v∈Pi

Wi−1(v).

4 Distributed On-Line Algorithm

In this paper, we consider the MIMP problem, which is defined as: Given k
routing requests {s1, t1}, . . . , {sk, tk}, finding k paths P1, . . . , Pk satisfying these
routing requests, i.e., Pi is a si ∼ ti path for i = 1, . . . , k. The optimizing goal is
to minimize interference among these paths, i.e., IN(P1, . . . , Pk).

According to [14], given two node pairs {s1, t1} and {s2, t2} in a graph, it is
NP-complete to determine whether there exist a pair of non-interference (there
is no cross-path edge) s1 ∼ t1 path and s2 ∼ t2 path. Therefore, we have
Theorem 1.

Theorem 1. MIMP is NP-hard even for k = 2.

MIMP is very hard to solve or to approximate. In this paper, we design
a heuristic on-line algorithm named DOAMI (short for Distributed On-line-
Algorithm for Minimizing Interference) for the MIMP problem. DOAMI is exe-
cuted in a totally distributed way, i.e., each node participates by only exchanging
short messages with its neighbors and the exchange of messages does not rely
on any pre-defined structure. DOAMI is also an on-line algorithm, which means
that DOAMI deploys paths to satisfy the given routing requests one by one.
After DOAMI receives a routing request {si, ti}, it immediately finds a si ∼ ti
path to satisfy it without waiting for the coming of the next routing request.

4.1 Description of DOAMI

The design DOAMI is motivated by Corollary 1. DOAMI uses two phases to find
path for each routing request {si, ti}. In Phase 1, starting from si, by exchang-
ing FIND-SWP messages, each node v finds the shortest path from si to itself

Metric and Distributed On-Line Algorithm 287

w.r.t. function Wi−1. In Phase 2, starting from ti, the shortest path from si
to ti w.r.t. Wi−1 is traced and confirmed. Meanwhile, each node computes its
Wi(v). DOAMI is given by Algorithm 1. We assume that the ID of the sender
of each message is contained in the message’s header, so the receiver can always
know who is the sender of the received message. In the following, “SWP” means
shortest path w.r.t. function Wi−1.

Algorithm 1. Distributed On-line Algorithm for Minimizing Interference
(DOAMI)
Input: k routing requests {s1, t1}, . . . , {sk, tk}
Output: k paths P1, . . . , Pk that Pi is a si ∼ ti path for i = 1, . . . , k
/*codes to deal with each {si, ti} */
//Phase 1:
si sets W len(si) = W (si) and broadcasts a FIND-SWP message1

{ti,W len(si)};
while v �= si receives a FIND-SWP message {ti,W len(u)} from u do2

if W len(v) > W len(u) + W (v) then3

W len(v) ← W len(u) + W (v);4

SWP LP (v) ← u;5

if v = ti then6

Go to Phase 2;7

else8

Broadcast a FIND-SWP message {ti,W len(v)};9

//Phase 2:
ti waits for the end of FIND-SWP message exchanging then sends a10

TRACE-SWP message to SWP LP (ti);
while v receives a TRACE-SWP message from u do11

SWP NP (v) ← u;12

W (v) ← W (v) + 1;13

Broadcast a PATH-CONF message;14

Send a TRACE-SWP message to SWP LP (v);15

while v receives a PATH-CONF message do16

W (v) ← W (v) + 1;17

Each node v maintains four variables W (v),W len(v), SWP LP (v),
SWP NP (v). While executing routing request {si, ti}, W (v) records Wi−1(v)
in Phase 1 and is updated to Wi(v) in Phase 2. W len(v) records the length of
the SWP from si to v found by now. Let Pi be the SWP from si to ti found by
DOAMI at the end of Phase 1. If v is a node in Pi, variables SWP LP (v) and
SWP NP (v) record v’s last and next hop in Pi respectively.

In Phase 1, by exchanging FIND-SWP messages, each node v finds the SWP
from si to itself. The data field of each FIND-SWP message (let the sender be u)
contains two variables: the destination node’s ID ti and the length of the SWP

288 K. Zhang et al.

from si to u, i.e., W len(u). At first, the source node si broadcasts a FIND-
SWP message {ti,W len(si)} to start Phase 1 (Line 1 in Algorithm1). While
a node v �= si receives a FIND-SWP message {ti,W len(u)} from u, it finds a
new path from si to u then to itself, whose Wi−1-length is W len(u) + W (v).
If the new path is shorter (w.r.t. Wi−1) than the current SWP from si to v,
it should be the new SWP from si to v. In this case, v updates W len(v) to
W len(u)+W (v) and updates SWP LP (v) to u, then broadcasts a FIND-SWP
message {ti,W len(v)} (Line 2-5, 8, 9 in Algorithm1). From receiving the first
FIND-SWP message, ti waits for the end of Phase 1 then broadcasts a TRACE-
SWP message to start Phase 2 (Line 6, 7, 10 in Algorithm 1).

Let Pi be the SWP from si to ti found by DOAMI in Phase 1. In Phase
2, starting from ti, each node in Pi sends a TRACE-SWAP message to its last
hop in Pi. In this way, Pi is confirmed and established. Each TRACE-SWP
message has an empty data field. In the process of confirming Pi, each node in
the network should update their W (v). In Phase 1, W (v) records Wi−1(v). At
the end of Phase 2, W (v) should be updated to Wi(v). While node v receives
a TRACE-SWP message from u, it sets u as its next hop in Pi (Line 12 in
Algorithm 1). Since v joins into Pi, C(v) should be increased by one and all the
neighbors of v should add one to their W variable. Therefore, we let v add 1
to W (v) (Line 13 in Algorithm1) and broadcast a PATH-CONF message with
empty data field to inform its neighbors. Receiving a PATH-CONF message,
each node adds one to their W variable (Line 16, 17 in Algorithm 1).

We refer the execution time for each routing request {si, ti} as a “round”. We
assume that for each node v, W len(v) is positive infinity at the beginning of each
round. This can be implemented by involving a round number i in each FIND-
SWP message. While v receives a FIND-SWP message {ti,W len(u)} with a
larger round number, no matter what value W len(v) is, it updates W len(v)
to W len(u) + W (v).

5 Simulation Results

We use a simulator written in C++ to evaluate the proposed algorithm. We set
the simulation environment as follows: 2500 sensor nodes are randomly deployed
in a 1500m × 1500m area. The effective transmitting range R of each sensor
node is set to 50 m. Let v be the sender of any data packet. There are two kinds
of interference caused by v’s transmission: one-hop interference and two-hop
interference. The nodes (besides the receiver) whose distance to v is less than
or equal to 50 m will detect v’s signal and be interfered by the transmission for
sure. On the other hand, the nodes whose distance to v is in (50 m, 100 m) has
a certain probability to be interfered by v’s signal. We call this probability the
Interference Probability (IP). Two-hop interference cannot be detected by the
interfered node.

To simulate routing, we randomly generate different number of routing
requests, i.e., {s, t} pairs. Given {s1, t1}, . . . , {sk, tk}, we use routing algorithm
to built paths to satisfy all the routing requests. Next, simultaneously, for each

Metric and Distributed On-Line Algorithm 289

{si, ti}, we let si generate a new data packet in every 3 time slots and send
the packets to ti along the built path. Each routing request has to transmit 100
data packets. The data field of each packet contains 50 bytes. The efficiency of
routing is measured at four aspects: (1) Transmission Delay. It is the number of
time slots we use to complete the transmission of data packets for all the routing
requests. This figure indicates the throughput of routing. (2) Routing Energy. It
is the energy we use to transmit the data packets for all the routing request.

We compare the proposed algorithm DOAMI with three other algorithms:
(1) IM2PR proposed by [17]. IM2PR requires the built paths are node-disjoint.
(2) I2MR proposed by [18]. Any two nodes in different paths built by I2MR are
more than two hops away from each other. (3) Naive. It is the algorithm without
considering interference. For each routing request {si, ti}, Naive simply finds the
shortest paths (with smallest number of hops) from si to ti.

Table 1. The largest number of satisfied routing requests

DOAMI IM2PR I2MR Naive

∞ 13 5 ∞

At first, we compare the largest number of routing requests each algorithm
can satisfy. From Table 1, we can see that DOAMI and Naive can satisfy all the
given k routing requests no matter what value k is. In contrast, IM2PR can
build paths for at most 13 routing requests. Since IM2PR requires that all the
built paths are node-disjoint, when k becomes larger, it is hard to find a path
for the latter routing request to get through the “barrier” formed by the former
built paths. I2MR gives the worst performance in this aspect because it has the
strictest requirement of the built paths. The paths built by I2MR have to be
more than two hops away from each other. In the following, we only compare
the algorithms when they build the same number of routing paths.

In the first group of simulation, we set the number of routing requests as
k = 5 and compare all the four algorithms. The comparison is done at three
different values of IP, i.e., in what probability the nodes in (R, 2R] from sender
will be interfered by the transmission.

As shown in Fig. 3(a), I2MR has the best performance in the aspect of Trans-
mission Delay. Since I2MR has the strictest requirement of the routing paths,
the transmissions in different paths barely interfere with each other. DOAMI
outperforms IM2PR a little in this aspect when IP becomes larger. The differ-
ence among I2MR, DOAMI and IM2PR is very limited. Since Naive does not
consider the interference while building routing paths, it performs worst in this
aspect.

As shown in Fig. 3(d), I2MR also has the best performance in the aspect of
Routing Energy. Since I2MR almost avoids all one-hop and two-hop interference
among different paths, when IP become larger, the advantage of I2MR gets more
and more apparent. However, when k > 5, I2MR cannot satisfy all the routing

290 K. Zhang et al.

(a) Transmission Delay for
k = 5

(b) Transmission Delay for
k = 10

(c) Transmission Delay for
k = 20

(d) Routing Energy for
k = 5

(e) Routing Energy for
k = 10

(f) Routing Energy for k =
20

Fig. 3. Simulation Results

requests. In this aspect, DOAMI and IM2PR almost have the same performance
and DOAMI outperforms IM2PR a little. Naive still gives the worst performance.

In the second group of simulation, we set k = 10 to compare DAOMI, IM2PR
and Naive. As shown in Fig. 3(b) and (e), DOAMI has the best performance in
both aspects of Transmission Delay and Routing Energy. When IP gets larger,
DOAMI outperforms the other two algorithms more and more apparently. Naive
always gives the worst performance since it does not consider interference.

In the third group of simulation, we set k = 20 to compare DAOMI and
Naive. As shown in Fig. 3(c) and (f), DOAMI apparently outperforms Naive in
both aspects.

Let us summary the simulation results. For both routing throughput and
energy efficiency, I2MR is a little better than DOAMI when k is small. However,
I2MR cannot deal with the cases with a relative large k. DOAMI is a little better
than IM2PR and much better than Naive in both aspects of routing throughput
and energy efficiency. Compared with IM2PR, DOAMI has the ability to deal
with larger k whereas IM2PR cannot.

6 Conclusion

In this paper, we give a metric to measure the interference level among multi-
ple routing paths in wireless sensor networks. Unlike the existing metrics, the
proposed metric can deal with the situation that the routing paths have some

Metric and Distributed On-Line Algorithm 291

nodes or links in common. Based on the metric, we propose a distributed on-line
algorithm DOAMI to build paths with minimum interference for multiple rout-
ing requests. The efficiency of DOAMI is confirmed by our simulation results.
For the future works, maybe we will consider how to design an algorithm for the
same problem with guaranteed bound.

Acknowledgement. This work is supported by National Natural Science Foundation
of China (Grant No. 61300207, Grant No. 61272186, Grant No. 61370084),
Fundamental Research Funds for the Central Universities (Grant No. HEUCF100610,
Grant No. HEUCF100609).

References

1. Bidai, Z., Maimour, M.: Interference-aware multipath routing protocol for video
transmission over zigbee wireless sensor networks. In: International Conference on
Multimedia Computing and Systems (ICMCS), pp. 837–842 (2014)

2. Cai, Z., Chen, Z.Z., Lin, G.: A 3.4713-approximation algorithm for the capacitated
multicast tree routing problem. Theoret. Comput. Sci. 410(52), 5415–5424 (2008)

3. Cai, Z., Chen, Z.-Z., Lin, G., Wang, L.: An improved approximation algorithm for
the capacitated multicast tree routing problem. In: Yang, B., Du, D.-Z., Wang,
C.A. (eds.) COCOA 2008. LNCS, vol. 5165, pp. 286–295. Springer, Heidelberg
(2008)

4. Cai, Z., Goebel, R., Lin, G.: Size-constrained tree partitioning: approximating the
multicast k-tree routing problem. Theoret. Comput. Sci. 412(3), 240–245 (2011)

5. Cai, Z., Lin, G., Xue, G.: Improved approximation algorithms for the capacitated
multicast routing problem. In: Wang, L. (ed.) COCOON 2005. LNCS, vol. 3595,
pp. 136–145. Springer, Heidelberg (2005)

6. Cheng, S., Cai, Z., Li, J.: Curve query processing in wireless sensor networks. IEEE
Trans. Veh. Technol. PP(99), 1 (2015). doi:10.1109/TVT.2014.2375330

7. Deb, B., Bhatnagar, S., Nath, B.: Reinform: reliable information forwarding using
multiple paths in sensor networks. In: Proceedings of the 28th Annual IEEE Inter-
national Conference on Local Computer Networks (2003)

8. Ding, Y., Yang, Y., Xiao, L.: Multi-path routing and rate allocation for multi-
source video on-demand streaming in wireless mesh networks. In: Proceedings of
IEEE INFOCOM, pp. 2051–2059 (2011)

9. Ganesan, D., Govindan, R., Shenker, S., Estrin, D.: Highly-resilient, energy-
efficient multipath routing in wireless sensor networks. In: Proceedings of the
2nd ACM International Symposium on Mobile Ad Hoc Networking & Comput-
ing (MobiHoc) (2001)

10. Guo, L., Li, Y., Cai, Z.: Minimum-latency aggregation scheduling in wireless sensor
network. J. Comb. Optim. 1–32 (2014). doi:10.1007/s10878-014-9748-7

11. Guoqiang, Y., Weijun, D., Chao, M., Liang, H.: Minimize interference while using
multipath transportation in wireless multimedia sensor networks. In: Qian, Z., Cao,
L., Su, W., Wang, T., Yang, H. (eds.) Recent Advances in CSIE 2011. LNEE, vol.
127, pp. 239–244. Springer, Heidelberg (2012)

12. He, Z., Cai, Z., Cheng, S., Wang, X.: Approximate aggregation for tracking quan-
tiles in wireless sensor networks. In: Zhang, Z., Wu, L., Xu, W., Du, D.-Z. (eds.)
COCOA 2014. LNCS, vol. 8881, pp. 161–172. Springer, Heidelberg (2014). doi:10.
1007/978-3-319-12691-3 13

http://dx.doi.org/10.1109/TVT.2014.2375330
http://dx.doi.org/10.1007/s10878-014-9748-7
http://dx.doi.org/10.1007/978-3-319-12691-3_13
http://dx.doi.org/10.1007/978-3-319-12691-3_13

292 K. Zhang et al.

13. Jain, K., Padhye, J., Padmanabhan, V.N., Qiu, L.: Impact of interference on multi-
hop wireless network performance. In: Proceedings of the 9th Annual International
Conference on Mobile Computing and Networking, MobiCom 2003, pp. 66–80
(2003)

14. Kobayashi, Y.: Induced disjoint paths problem in a planar digraph. Discrete Appl.
Math. 157(15), 3231–3238 (2009)

15. Mohanoor, A., Radhakrishnan, S., Sarangan, V.: Interference aware multi-path
routing in wireless networks. In: 5th IEEE International Conference on Mobile Ad
Hoc and Sensor Systems (MASS), pp. 516–518, September 2008

16. Pearlman, M., Haas, Z., Sholander, P., Tabrizi, S.: On the impact of alternate path
routing for load balancing in mobile ad hoc networks. In: First Annual Workshop
on Mobile and Ad Hoc Networking and Computing (MobiHOC), pp. 3–10 (2000)

17. Radi, M., Dezfouli, B., Bakar, K., Razak, S., Hwee-Pink, T.: IM2PR: interference-
minimized multipath routing protocol for wireless sensor networks. Wirel. Netw.
20(7), 1807–1823 (2014)

18. Teo, J.Y., Ha, Y., Tham, C.K.: Interference-minimized multipath routing with
congestion control in wireless sensor network for high-rate streaming. IEEE Trans.
Mob. Comput. 7(9), 1124–1137 (2008)

19. Voigt, T., Dunkels, A., Braun, T.: On-demand construction of non-interfering mul-
tiple paths in wireless sensor networks. In: Proceedings of the 2nd Workshop on
Sensor Networks at Informatik (2005)

20. Wang, Z., Bulut, E., Szymanski, B.: Energy efficient collision aware multipath
routing for wireless sensor networks. In: IEEE International Conference on Com-
munications (ICC), pp. 1–5, June 2009

21. Wu, K., Harms, J.: Performance study of a multipath routing method for wireless
mobile ad hoc networks. In: Proceedings of the 9th International Symposium on
Modeling, Analysis and Simulation of Computer and Telecommunication Systems,
pp. 99–107 (2001)

22. Zhang, J., Jeong, C.K., Lee, G.Y., Kim, H.J.: Cluster-based multi-path routing
algorithm for multi-hop wireless network. Future Gener. Commun. Network. 1,
67–75 (2007)

23. Zhang, K., Han, Q., Yin, G., Pan, H.: OFDP: a distributed algorithm for finding
disjoint paths with minimum total length in wireless sensor networks. J. Comb.
Optim., 1–19 (2015)

Distributed Algorithm for Mending Barrier
Gaps via Sensor Rotation

in Wireless Sensor Networks

Yueshi Wu and Mihaela Cardei(B)

Department of Computer and Electrical Engineering and Computer Science,
Florida Atlantic University, Boca Raton, FL 33431, USA

{wuy2013,mcardei}@fau.edu

Abstract. When deploying sensors to monitor boundaries of battlefields
or country borders, sensors are usually dispersed from an aircraft follow-
ing a predetermined path. In such scenarios sensing gaps are usually
unavoidable. We consider a wireless sensor network consisting of direc-
tional sensors deployed using the line-based sensor deployment model.
In this paper we proposed a distributed algorithm for weak barrier cov-
erage that allows sensors to determine their orientation such that the
total number of gaps and the total gap length are minimized. We use
simulations to analyze the performance of our algorithm and to compare
it with two related work algorithms.

Keywords: Wireless sensor networks · Weak barrier coverage · Direc-
tional sensors · Distributed algorithm

1 Introduction and Related Works

A major application of Wireless Sensor Networks (WSNs) is area monitoring.
Examples of area monitoring are intrusion detection and border surveillance.
Unlike full area coverage problem where every point of a region has to be covered,
these applications aim to detect an intruder attempting to enter or exit the
border of a certain region.

Deploying a set of sensor nodes on a region of interest where sensors form
barriers for intruders is often referred to as the barrier coverage [6]. When deploy-
ing sensors to monitor boundaries of battlefields or country borders, sensors are
usually dispersed from an aircraft following a predetermined path [9]. Therefore
sensing gaps are usually unavoidable. In this paper, we aim to address the bar-
rier coverage problem by mending gaps via a distributed manner as well as to
minimize the total length of non-mendable gaps.

Many studies on WSNs barrier coverage consider constructing barriers with
stationary sensors. [10] studies the scenario where sensors are airdropped along a
straight line. They investigate how different sensor deployment strategies impact
the barrier coverage of a WSN and provide a tight lower bound on the existence

c© Springer International Publishing Switzerland 2015
Z. Lu et al. (Eds.): COCOA 2015, LNCS 9486, pp. 293–304, 2015.
DOI: 10.1007/978-3-319-26626-8 22

294 Y. Wu and M. Cardei

of barrier coverage under the assumption that the offset of each sensor’s actual
landing point follows a normal distribution.

However, [10] does not address the issue of mending the barrier gaps formed
after the initial deployment. When deploying sensors to monitor boundaries of
battlefields or country borders, sensors are usually dispersed from an aircraft
following a predetermined path. Therefore sensing gaps may occur.

In [3], the authors proposed a measure of the goodness of sensors called
path exposure, which measures the likelihood of detecting a target traversing the
region using a given path. They determine the number of sensors that have to be
deployed for target detection under the assumption that sensors are randomly
deployed in the region of interest. When using stationary sensors, the full barrier
coverage is difficult to achieve when sensors are randomly deployed [7].

There are also works investigating the use of mobile sensors to mend barrier
gaps, for example [4,5]. A chain reaction algorithm is proposed by [5] to move
sensors automatically and cooperatively such that to form a barrier coverage. [4]
considers a hybrid network which consists of both stationary and mobile sensors.
Mobile sensors can be moved in order to mend gaps. They provide a scheme to
minimize the maximal energy consumed by moving sensors and another scheme
to maximize the lifetime of barrier coverage after mending all the gaps.

All of the related works mentioned above are based on the isotropic sensing
model of the sensors. However, in many practical applications using infrared
sensors, radar sensors, audio sensors, or camera sensors, they often have a direc-
tional sensing model [1]. Barrier coverage using directional sensors is an impor-
tant research topic. One application is providing surveillance of country borders
using barrier coverage with sensors equipped with cameras.

[2] proposes two algorithms for weak barrier coverage: the Simple Rota-
tion Algorithm(SRA) and the Chain Reaction-based rotation Algorithm(CRA).
These algorithms aim to mend barrier gaps via sensor rotation for a line-based
sensor deployment. SRA uses two critical sensors: the right most sensor P in the
jth sub-barrier Bj and the left most sensor Q in the (j + 1)th sub-barrier Bj+1

in order to mend the gap between Bj and Bj+1.
SRA first rotates P clockwise to cover the gap while maintaining the coverage

connection with its left neighbor. If the gap cannot be mended by rotating only
P , then SRA rotates Q anti-clockwise to cover the gap while maintaining the
coverage connectivity with the right neighbor. If rotating P cannot mend the
barrier, SRA rotates P to cover the maximum on the right without creating new
gaps, and then rotates Q to cover the gap. SRA fails if rotating both P and Q
cannot mend the gap.

CRA first rotates the sensor nodes in Bj in a chain reaction manner. Node
P is first rotated until the gap is mended. If a new gap is created by rotating
P , then the node P − 1 is rotated in the same manner. The first step of CRA
fails when a new barrier gap always exists even after all sensors in Bj have been
rotated. Step 2 of CRA rotates Q anti-clockwise only to see if the gap can be
mended, and if not, then step 3 is performed. In step 3 CRA rotates P only

COCOA 2015 295

to reduce the gap length without creating new gaps, then rotates sensors in Bj

similar to the step 1.
The algorithms proposed in [2] are centralized. Centralized approaches are

not suitable since they require a central coordinator and have large delays for
a large WSN. In this paper we consider a line-based sensor deployment model
with directional sensors, similar to [2]. Our objective is to design a distributed
mechanism to mend gaps and to minimize the total length of non-mendable
gaps. The performance of our distributed algorithm is compared with SRA and
CRA.

2 Network Model and Problem Definition

In this section we start by specifying the network model, notations, and termi-
nologies used in this paper. When sensors are remotely deployed, e.g. sprayed
from an aircraft, a larger amount of sensors have to deployed to ensure the bar-
rier coverage. Besides the uniform deployment, the line-based sensor deployment
model has been used recently for barrier coverage.

We assume a line-based stationary sensor deployment similar to [2,11]. A
total of n sensor nodes {s1, s2, ..., sn} are deployed in a rectangular field of length
L and width H, see Fig. 1. In the line-based sensor deployment, sensors are evenly
deployed on a horizontal-line (e.g. y = 0). Such an example is illustrated in Fig. 1a
by the “target” positions, where the coordinate of the ith node is computed as
(2i − 1)L/2N . This is hard to achieve in practice for remotely deployed sensors,
and their “actual” positions have random offsets. We follow the model in [2]
where the random offset distances have a Gaussian distribution. We assume that
each sensor node knows its location using GPS or other localization mechanisms.
A sensor node si’s location is denoted by (xi, yi).

(a) (b)

Fig. 1. (a) Sensor deployment; (b) Sensor coverage model.

In a WSN designed for barrier coverage, sensors have the ability to exchange
messages with each other during initialization, to exchange information, or in
response to an intruder detection. We assume an omnidirectional communication
model, where the transmission range of each sensor is Rt. In addition, we assume
directional sensor nodes which have a finite view angle. Different from isotropic
sensors, they cannot sense the whole circular area.

296 Y. Wu and M. Cardei

Fig. 2. An example of initial sensor deployment for weak barrier coverage with sub-
barriers (SB) and gaps (G)

Directional sensing can be modeled as 2D sector-shaped sensing [8]. We
describe a sensor si using the five tuple < (xi, yi), θ, ϕi, Rs, Rt >, see Fig. 1b,
where (xi, yi) are the Cartesian coordinates of si, θ is the view angle, ϕi is the
orientation angle, Rs is the sensing range, and Rt is the communication range.
We assume that all sensors in the network have the same view angle, sensing
range, and communication range.

We assume that intruders move north-south. In the barrier coverage problem,
the objective is to construct a barrier such that any north-south path falls into
the coverage area of at least one sensor. For the weak barrier coverage, the barrier
of sensors has to provide coverage when intruders move along vertical traversing
paths.

Due to the random sensor deployment, a full weak barrier coverage may
be impossible to attain, and in this case the target region is divided into sub-
barriers (where coverage is provided) and gaps. Figure 2 shows an initial sensor
deployment scenario with sub-barriers (SB) and gaps (G). Intruders crossing
through a SB region are detected, while those crossing though a G region are
not detected.

In this paper we seek to design a distributed algorithm where each sensor
decides its orientation such that the total number of gaps and the total gap
length are minimized.

Problem Definition: Given a connected WSN with n sensors {s1, s2, ..., sn}
deployed using the line-based sensor deployment model, design an efficient dis-
tributed algorithm for weak barrier coverage that allows sensors to determine
their orientation such that (i) the total number of gaps is minimized, and (ii)
the total gap length is minimized.

3 Distributed Algorithm for Weak Barrier Coverage

In this section, we present our distributed algorithm to mend barrier gaps and
minimize the total length of non-mendable gaps. Our algorithm has three phases.
In phase 1, sensor nodes perform neighbor discovery and exchange location infor-
mation with neighboring sensors.

COCOA 2015 297

(a) (b) (c)

Fig. 3. Cases for orientation decision when θ > 90◦.

We propose an optimal orientation algorithm in phase 2. Starting from the
left boundary node, each node decides its own orientation angle such that the
total number of sensing gaps throughout the network is minimized. In phase 3,
we minimize the total gap length by maximizing the total sensing coverage.

3.1 Phase 1: Neighbor Discovery

During the phase 1, each sensor node broadcasts a HELLO message including
its ID and location. A sensor node si receiving a HELLO(sj , (xj , yj)) message
stores sj in its inSensingRangeNeighbor list if

√
(xi − xj)2 + (yi − yj)2 ≤ Rs.

For the weak barrier coverage problem, we work with sensor projections on the
x-axis. In this case si stores sj in its inSensingRangeNeighbor list if |xi−xj | ≤ Rs.
Each sensor node si computes its closest right neighbor Nr

i and its closest left
neighbor N l

i from the nodes in the inSensingRangeNeighbor list. For example,
in Fig. 2, sensor s6 sets Nr

6 = s7 and N l
6 = s5.

3.2 Phase 2: Optimal Orientation

We assume that sensors have random rotations when they are deployed initially.
Phase 2 is started by the left boundary sensor, e.g. s1 in Fig. 2, which computes
ϕ1 = π − θ − arccos(x1−xl

Rs
), where xl is the x coordinate of the left boundary of

the target region. s1 then broadcasts the message POS(s1, pos1), where posi =<
si, xi, yi, ϕi >

A sensor node si waits to receive a POS message from its closest left neighbor
N l

i , then computes its orientation angle ϕi, and broadcasts a message POS(si,
pos1, pos2, ..., posi). The first field is the sender ID, and the other fields are the
positioning information for all prior sensors in the same sub-barrier. si appends
posi at the end of the list received from si−1. For example in Fig. 2, node s2
receives the POS message from s1, computes ϕ2 accordingly, then broadcasts
POS(s2, pos1, pos2).

Next we describe the mechanism used by a sensor si+1 to set up its orientation
angle ϕi+1 after it has received a POS message from its closest left neighbor,
denoted si. We distinguish two main cases to be addressed individually: θ > 90◦

and θ ≤ 90◦.
Since we are concerned with the weak barrier coverage, we work with sensor

projections on the x-axis. Let d be the horizontal distance between si and si+1.

298 Y. Wu and M. Cardei

(a) (b)

(c) (d)

Fig. 4. Cases for orientation decision when θ ≤ 90◦ and ϕi < 90◦.

(a) (b)

Fig. 5. Cases for orientation decision when θ ≤ 90◦ and ϕi ≥ 90◦.

For a view angle θ > 90◦, we distinguish three cases, see Fig. 3. Let us assume
that si+1 receives a POS message from its closest left neighbor si and let d be
the horizontal distance between si and si+1.

Case 1: d ≤ Rscosϕi + Rscos(π − θ)
In this case the node si+1 sets ϕi+1 = 0. This provides sensing overlapping
with si on the left and maximum coverage on the right. Note that rotating si+1

anticlockwise (e.g. ϕi+1 > 0) does not increase the coverage on the left of si+1,
but it decreases the coverage on the right. Such an example is illustrated in
Fig. 3a.

Case 2: Rscosϕi + Rscos(π − θ) < d ≤ Rs + Rscosϕi

In this case si+1 calculates its orientation angle ϕi+1 such that to maintain the
sensing coverage connection with si and to maximize the coverage on the right.
si+1 computes ϕi+1 = π − θ − arccos(d−Rscosϕi

Rs
). An example is illustrated in

Fig. 3b.

COCOA 2015 299

Case 3: d > Rs + Rscosϕi

In this case si+1 is not able to mend the gap between si and si+1. The node si+1

sets ϕi+1 = 0 to give maximum coverage on the right. An example is illustrated
in Fig. 3c.

When θ ≤ 90◦, the orientation angle ϕi of the node si is set up either as
0 ≤ ϕi < 90◦ or ϕi = π − θ. Note that ϕi ≥ 90◦ provides no coverage on si’s
right side and setting ϕi = π − θ maximizes the coverage on si’s left side. We
first discuss the case when 0 ≤ ϕi < 90◦, see Fig. 4.

Case 1: 0 ≤ d ≤ Rscosϕi

The node si+1 sets ϕi+1 = 0, see Fig. 4a.

Case 2: Rscosϕi < d ≤ Rscosϕi + Rscos(π
2 − θ)

The node si+1 calculates its orientation angle ϕi+1 such that to maintain sensing
connection with si and to maximize the coverage on the right. ϕi+1 is computed
as ϕi+1 = π − θ − arccos(d−Rscosϕi

Rs
), see Fig. 4b.

Case 3: Rscosϕi + Rscos(π
2 − θ) < d ≤ Rscosϕi + Rs

Node si+1 sets ϕi+1 = π − θ, see Fig. 4c.

Case 4: d > Rscosϕi + Rs

In this case there will be a gap between si and si+1. The node si+1 sets ϕi+1 = 0
to maximize the coverage on the right, see Fig. 4d.

Fig. 6. Nodes positioning after phase 2.

For ϕi ≥ 90◦ (e.g. ϕi = π − θ), if 0 ≤ d ≤ Rscos(π
2 − θ), then si+1 sets

ϕi+1 = π − θ −arccos(d
Rs

), see Fig. 5a, otherwise si+1 sets ϕi+1 = 0, see Fig. 5b.
Note that there is a gap between si and si+1 when d > Rs.

Figure 2 shows the initial sensors deployment and Fig. 6 shows nodes orien-
tation at the end of phase 2. A sensor node identifies itself as a left boundary
node of a sub-barrier if it is in the case 3 for θ > 90◦ (e.g. Figure 3c) or in
the case 4 for θ ≤ 90◦ (e.g. Figure 4d). A left-boundary node of a sub-barrier
will reset the pos list in the POS message. For example, in Fig. 6, s3 broadcasts
POS(s3, pos1, pos2, pos3). s4 is the left-boundary node of SB2 and it broadcasts
POS(s4, pos4). s3 overhears the POS message from its closest right neighbor
and since the pos list was reset, it concludes that it is the right-boundary node
of its sub-barrier SB1.

300 Y. Wu and M. Cardei

Note that the right boundary of a sub-barrier will have positioning infor-
mation of all the nodes in the same sub-barrier. In Fig. 6, s3 has positioning
information of all the nodes in SB1, s10 has positioning information of all the
nodes in SB2, so on.

3.3 Phase 3: Minimizing the Gap Length

We distinguish 2 types of sub-barriers: to be optimized and optimized. If the
right boundary node of a sub-barrier has the orientation angle π − θ, then the
sub-barrier is optimized. An example is shown in Fig. 7.

If the orientation angle of the right boundary node of SBj is different than
π−θ and is between 0 and 90◦, then SBj is a “to be optimized” sub-barrier. Phase
3 has the objective to optimize sensor orientation in SBj such that to minimize
the gap length. An example of optimizing a sub-barrier SBj is illustrated in
Fig. 8. By sequentially rotating sensors anti-clockwise, the gap Gj−1 is decreased
by Δx−

Gj−1
, while the gap Gj is increased by Δx+

Gj
.

Fig. 7. Optimized sub-barrier.

Fig. 8. Optimizing a sub-barrier SBj .

In Fig. 8 the solid sectors indicate the original sensor positioning after phase
2. By rotating sensors anti-clockwise, see the dashed line sectors, the decreased

COCOA 2015 301

Fig. 9. Nodes positioning after phase 3.

length of the gap Gj−1 is larger than the increased length of the gap Gj , thus
the total gap length is reduced.

Consider a sub-barrier SBj with sensors sj1 , sj2 , ..., sjn in order from left to
right. The sensor sj1 is the left most node and sjn is the right most node. Let
us assume that sjn ’s orientation angle ϕjn �= π − θ and 0 ≤ ϕjn ≤ 90◦, that is
SBj is a “to be optimized” sub-barrier.

The objective of phase 3 is to minimize
∑

j≥1 length(Gj) while maintain the
coverage connectivity, e.g. no new gaps are formed. This gap length minimization
problem is equivalent to maximizing the coverage of each sub-barrier at the left-
most and right-most nodes. sjn computes the orientation of all the sensors in
SBj by formulating a nonlinear optimization problem:

Maximize:

max{0, Rscos(π − θ − ϕj1)} + Rscos(ϕjn)

Subject to:

max{0, Rscos(ϕji)} + max{0, Rscos(π − θ − ϕji+1)} ≥ dist(sji , sji+1) for
i = 1, 2, 3, ..., n − 1

0 ≤ ϕji ≤ π − θ for i = 1, 2, ..., n

The objective function maximizes the coverage of the left most and right
most sensors of the sub-barrier SBj . The first constraint makes sure that no
new gap is formed between consecutive sensors in SBj . The variable constraint
specifies the range of the orientation angle for each sensor in SBj .

The nonlinear optimization of the sub-barrier SBj is computed by sjn . Let us
denote Φ∗ = (ϕ∗

j1
, ϕ∗

j2
...ϕ∗

jn
) the orientation angles of all nodes in SBj when the

global maximum of the objective function is achieved. The node sjn then sends
the Φ∗ values to all other nodes in SBj using a message SetOrientation(sjn , Φ∗).
When a node receives the Φ∗ values from its closest right neighbor, it switches
to its optimal orientation accordingly. Then it waits a random delay and re-
transmits the SetOrientation message by replacing the first field with its own ID.

Figure 2 shows the initial line-based sensor deployment, Fig. 6 shows sensor
orientations after phase 2, and Fig. 9 shows sensor orientation after phase 3.

302 Y. Wu and M. Cardei

After the phase 2, the number of gaps decreased from 6 to 2. After the phase
3 the total gap length is reduced, since the total coverage provided by SB2 is
maximized.

4 Simulation Results

In this section, we conduct simulations using Matlab to evaluate the performance
of our proposed distributed algorithm for mending barrier gaps. The sensor field
is a belt region of length L = 500m and width H = 100m. The initial sensor
orientation angle follows a uniform distribution in the range [0, 2π]. The sensing
range is Rs = 15m.

As explained in Sect. 2, the actual sensor positions have random offsets fol-
lowing a Gaussian distribution with mean 0 and variance σ. If we denote σx

i and
σy

i the offset distance of the sensor node si in the horizontal and vertical direc-
tions, then we have σx

i , σy
i ∼ N(0, σ2). In our simulations we set σx = σy = 5.

We generate 100 different sensor deployments. Each data point in our simu-
lation results is an average of 100 experiments. We compare the performance of
our distributed gap mending algorithm with SRA and CRA algorithms proposed
in [2]. SRA and CRA [2] are briefly described in Sect. 1.

In the first experiment in Fig. 10a, we measure the number of unmended gaps
before and after running gap mending algorithms. The total number of sensors
deployed in the field varies between 20 and 150 with a step size of 5. Each sensor
has a view angle of θ = 60◦.

Figure 10a shows that deploying a larger number of sensors leads to a smaller
number of unmended gaps. The CRA algorithm mends more gaps than the
SRA algorithm, while our distributed algorithm mends the most number of gaps
among the three algorithms.

Figure 10b compares the total gap length of unmended gaps. Our distributed
gap mending algorithm has a smallest total gap length. We can also observe the
impact of phase 3 of our algorithm in reducing the total gap length.

n
20 40 60 80 100 120 140 160

A
ve

ra
ge

 n
um

be
r

of
 u

nm
en

de
d

ga
ps

0

2

4

6

8

10

12

14

16

18

No Gap Mending
SRA Gap Mending
CRA Gap Mending
Distributed Gap Mending

(a)

n
20 40 60 80 100 120 140 160

A
ve

ra
ge

 to
ta

l g
ap

 le
ng

th

0

50

100

150

200

250

No Gap Mending
SRA Gap Mending
CRA Gap Mending
Distributed Gap Mending
Distributed Gap Mending with Gap Length Optimization

(b)

Fig. 10. (a)Average number of unmended gaps when θ = 60◦; (b)Average total gap
length when θ = 60◦.

COCOA 2015 303

n
20 40 60 80 100 120 140 160

A
ve

ra
ge

 n
um

be
r

of
 u

nm
en

de
d

ga
ps

0

2

4

6

8

10

12

14

No Gap Mending
SRA Gap Mending
CRA Gap Mending
Distributed Gap Mending

(a)

n
20 40 60 80 100 120 140 160

A
ve

ra
ge

 to
ta

l g
ap

 le
ng

th

0

20

40

60

80

100

120

140

160

No Gap Mending
SRA Gap Mending
CRA Gap Mending
Distributed Gap Mending
Distributed Gap Mending with Gap Length Optimization

(b)

Fig. 11. (a)Average number of unmended gaps when θ = 120◦; (b)Average total gap
length when θ = 120◦.

0 20 40 60 80 100 120 140 160 180

A
ve

ra
ge

 n
um

be
r

of
 u

nm
en

de
d

ga
ps

5

10

15

20

No Gap Mending
SRA Gap Mending
CRA Gap Mending
Distributed Gap Mending

(a)

0 20 40 60 80 100 120 140 160 180

A
ve

ra
ge

 to
ta

l g
ap

 le
ng

th

0

50

100

150

200

250

300

No Gap Mending
SRA Gap Mending
CRA Gap Mending
Distributed Gap Mending
Distributed Gap Mending with Gap Length Optimization

(b)

Fig. 12. (a)Average number of unmended gaps when we vary the view angle;
(b)Average total gap length when we vary the view angle.

In the second experiment, we measure the number of unmended gaps and
total gap length when each sensor has a view angle of θ = 120◦. The results are
shown in Fig. 11. Our algorithm mend more gaps then SRA and CRA. We also
provide a smaller total gap length.

In the third experiment in Fig. 12, we fix the total number of sensors to 20
and we vary the view angle between 15◦ and 180◦ with a step size of 15◦. The
picture shows that a larger view angle leads to a lower number of unmended
gaps, since each sensor provider a larger coverage. Our distributed algorithm
achieves the least number of unmended gaps for all view angles. In addition,
our algorithm with gap length optimization phase provides a smaller total gap
length compared to SRA and CRA.

304 Y. Wu and M. Cardei

5 Conclusions

In this paper we studied weak barrier coverage for directional sensor networks
with a line-based senor deployment. We aim to mend the maximum number of
gaps as well as to minimize the total length of unmended gaps. We propose a
distributed algorithm for mending gaps. A nonlinear optimization problem is for-
mulated in order to minimize the total gap length. Simulation results show that
our algorithm can greatly reduce the number of unmended gaps and the total
gap length. In addition, simulation results show that our distributed algorithm
outperforms the existing algorithms SRA and CRA.

References

1. Akyildiz, I.F., Melodia, T., Chowdhury, K.R.: A survey on wireless multimedia
sensor networks. Int. J. Comput. Telecommun. Netw. 51(4), 921–960 (2007)

2. Chen, J., Wang, B., Liu, W., Deng, X., Yang, L.T.: Mend barrier gaps via sen-
sor rotation for a line-based deployed directional sensor network. In: High Perfor-
mance Computing and Communications and 2013 IEEE International Conference
on Embedded and Ubiquitous Computing, pp. 2074–2079, November 2013

3. Clouqueur, T., Phipatanasuphorn, V., Ramanathan, P., Saluja, K.K.: Sensor
deployment strategy for detection of targets traversing a region. ACMMobile Netw.
Appl. 8(3), 453–461 (2003)

4. Deng, X., Wang, B., Wang, C., Xu, H., Liu, W.: Mending barrier gaps via mobile
sensor nodes with adjustable sensing ranges. In: IEEE Wireless Communications
and Networking Conference (WCNC), pp. 1493–1497, April 2013

5. Kong, L., Liu, X., Li, Z., Wu, M. Y.: Automatic barrier coverage formation with
mobile sensor networks. In: IEEE International Conference on Communications
(ICC), pp. 1–5, May 2010

6. Kumar, S., Lai, T. H., Arora, A.: Barrier coverage with wireless sensors. In: Pro-
ceedings ACM MobiCom, pp. 284–298, 2005

7. Liu, B., Dousse, O., Wang, J., Saipulla, A.: Strong barrier coverage of wireless
sensor networks. In: Proceedings of The ACM International Symposium on Mobile
Ad Hoc Networking and Computing (MobiHoc), pp. 411–420 (2008)

8. Ma, H., Liu, Y.: On coverage problems of directional sensor networks. In: Jia,
X., Wu, J., He, Y. (eds.) MSN 2005. LNCS, vol. 3794, pp. 721–731. Springer,
Heidelberg (2005)

9. Saipulla, A., Liu, B., Wang, J.: Barrier coverage with airdropped sensors. In:
Proceedings of IEEE International Conference for Military Communications (Mil-
Com), pp. 1–7, November 2008

10. Saipulla, A., Westphal, C., Liu, B., Wang, J.: Barrier coverage of line-based
deployed wireless sensor networks. In Proceedings of IEEE Conference on Com-
puter Communications (InfoCom), pp. 127–135, April 2009

11. Shih, K.P., Chou, C.M., Liu, I.H., Li, C.C.: On barrier coverage in wireless camera
sensor networks. In: 24th IEEE International Conference on Advanced Information
Networking and Applications (AINA), pp. 873–879, April 2010

Applied Optimization

A Hybrid Large Neighborhood Search
for Dynamic Vehicle Routing Problem

with Time Deadline

Dan Yang1,2, Xiaohan He1,2, Liang Song1,2, Hejiao Huang1,2(B),
and Hongwei Du1,2

1 Harbin Institute of Technology Shenzhen Graduate School, Shenzhen, China
{yangdanhsc,hexiaohan818}@gmail.com

2 Shenzhen Key Laboratory of Internet Information Collaboration, Shenzhen, China
{songliang,hjhuang,hwdu}@hitsz.edu.cn

http://carc.hitsz.edu.cn/MICCRC/index.html

Abstract. In order to consider the customer’s real-time requests and
service time deadline, this paper studies the dynamic vehicle routing
problem with time deadline (DVRPTD), and proposes a hybrid large
neighborhood search (HLNS) algorithm. This strategy divides the work-
ing interval into multiple equal time slices, so DVRPTD is decomposed
into a sequence of static problems. We use an insert heuristic to incor-
porate new requests into the current solution and a large neighborhood
search algorithm (LNS) with various remove and re-insert strategies to
optimize at the end of each time slice. The computational results of 22
benchmarks ranging from 50 up to 385 customers prove the superiority
of our algorithm comparing with those existing ones .

Keywords: Time deadline · DVRPTD · Insert heuristic · LNS

1 Introduction

Vehicle routing problem (VRP) mentioned in [1] is a combinatorial optimiza-
tion problem, and it plays an important role in the transportation and logistics
fields. There are some dispatching systems that used heuristic algorithms to
plan routes, but most of them developed as static ones so they cannot satisfy
the real-time request. It is meaningful to focus on the dynamic vehicle routing
problems (DVRP).

The earliest research on DVRP was in [2], it solved a Dial-and-Ride prob-
lem with only one vehicle. Then Psaraftis introduced the concept of “immediate
request” in [3] and defined the DVRP as planning routes to meet the requests of
the real-time customers in [4]. So far, DVRP mostly relies on heuristic algorithms

H. Huang—This work was financially supported by National Natural Science Foun-
dation of China with Grant No. 11371004 and Shenzhen Strategic Emerging Indus-
tries Program with Grant No. ZDSY20120613125016389.

c© Springer International Publishing Switzerland 2015
Z. Lu et al. (Eds.): COCOA 2015, LNCS 9486, pp. 307–318, 2015.
DOI: 10.1007/978-3-319-26626-8 23

308 D. Yang et al.

as they can quickly find the optimal solution for the current state. Khoadjia et
al. [5] used the Particle Swarm Algorithm; Gendreau et al. mentioned a Neigh-
borhood Search for dynamic Pickup and Delivery Problems [6]; Beaudry et al.
gave an Insertion Method and Tabu Search for the dynamic patients’ trans-
portation problem in hospital [7]; Francesco et al. adopted Tabu Search and a
real-time control approach for urgent delivery of goods [8]. Moreover, the exten-
sional version of DVRP, for example, DVRP with time windows (DVRPTW) has
been studied, Alvarenga et al. proposed a Genetic and Set Partitioning approach
[9]; Meidan et al. studied an Insertion Heuristic and GIS buffer analysis [10];
Lianxi [11] introduced an improved LNS which performs very well.

In real life, it is unpractical to provide all customers with service within the
driver’s working interval. In this paper, the DVRPTD is taken into consideration,
which refers that the available service time equals working interval, all vehicles
start from depot to serve yesterday’s left customers after opening time and must
return to the depot by the deadline. The similar problem was first introduced
in [12]. A cut-off time Tco was put forward to show that new requests received
before Tco will be committed to vehicles, and these who appears after Tco will
be postponed to the next day to be served as a-priori. Then Montemanni et al.
proposed an Ant Colony System (ACS) and an events manager [13]; Messaoud
et al. studied a Genetic Algorithm (GA) [14] and an ACOLNS algorithm [15].
In this paper, we presented an HLNS heuristic to solve the DVRPTD which is
better than algorithms above in some ways.

The remaining sections of this paper are organized as follows. Section 2 gives
a formulation of DVRPTD and Sect. 3 proposes our HLNS algorithm. Section 4
shows the computational results and analysis on benchmarks. Finally, Sect. 5
gives a summary.

2 Problem Formulation

The DVRPTD is described as an undirected graph G = (V,E), V = {0} ∪ M
is the set of vertices including depot node (denoted as 0) and customer nodes
(denoted as M), E is a set of edges between vertices. The customer nodes M
include static nodes (denoted as N) which indicate the rest requests of yes-
terday and dynamic nodes (denoted as M \ N) which appear with time. The
homogeneous vehicles are denoted as K, each with a same capacity Q. For each
customer i ∈ M , it has a demand qi(qi < Q), an appearance moment ai and
a service duration si. At the same time, dij and tij represent the Euclidean
distance and travel time of edge (i, j) ∈ E, respectively. Therefore, for each cus-
tomer i ∈ M , the vehicle’s arriving time which is denoted as bi should satisfy
bi = bi−1 + t(i−1)i + si−1.

The driver’s working interval denoted as [W1,W2] is divided into multiple
slices {T1, T2, . . . , Tn} with equal length td, we serve the static customers N
in T1, and dynamic ones M \ N in {T2, T3, . . . , Tn}. Some of the other useful
variables are defined as follows:

Qkl indicates the total demand of vehicle k at the end of Tl−1; ckl indicates
the last request of vehicle k during Tl−1; t′kl indicates the end moment of serving

A hybrid LNS for DVRPTD: HITSZ 309

the last request by vehicle k during Tl−1; Cl indicates the non-served requests
at the beginning of Tl; Dl indicates the already served requests during Tl. It is
assumed that Qkl = 0, t′kl = 0, Cl = N when l = 1. Finally two decision variables
xijk and yki are defined as follows:

xijk = 1 if node j is visited after node i by vehicle k and 0 otherwise.
yki = 1 if node i is visited by vehicle k and 0 otherwise.
The general mathematical model for DVRPTD is described as follows:

min
∑

i,j∈N∪{0}

∑
k∈K

dijxijk (1)

s.t. ∑
i∈N

qiyki ≤ Q, ∀k ∈ K (2)

W1 +
∑

i,j∈N∪{0}
xijktij +

∑
i∈N

siyki ≤ W2, ∀k ∈ K (3)

The dynamic model for each time slice is described as follows:

min
∑

i,j∈Cl∪{0,ckl}

∑
k∈K

dijxijk (4)

s.t. ∑
j∈Cl

xijk ≤ 1, ∀k ∈ K, i ∈ {0, ckl} (5)

∑
i∈Cl

xi0k ≤ 1, ∀k ∈ K (6)

Qkl +
∑
i∈Cl

qiyki ≤ Q, ∀k ∈ K (7)

t′kl +
∑

i,j∈Cl∪{0,ckl}
xijktij +

∑
i∈Cl

siyki ≤ W2, ∀k ∈ K (8)

Dl = {i | bi + si ≤ l ∗ td, ∀i ∈ Cl} (9)

Any other constraints are:∑
k∈K

yki = 1, ∀i ∈ M (10)

∑
i∈M

xijk =
∑
i∈M

xjik ≤ 1, ∀j ∈ M, ∀k ∈ K (11)

∑
i∈M

∑
k∈K

x0ik =
∑
i∈M

∑
k∈K

xi0k ≤| K | (12)

W1 ≤ si ≤ W2, ∀i ∈ M (13)

M \ N = {i | W1 ≤ ai < Tco} ∀i ∈ M (14)

310 D. Yang et al.

The objective function (1) aims at minimizing the total travel distance for
all customers in a static environment, and the expressions (2) and (3) are the
initial capacity and deadline constraints for static customers, respectively. The
objective function (4) seeks the optimization solution for the current state at
the end of each time slice. The expressions (5) and (6) show the requirement
for the start position, namely, the vehicles can start from the depot or the last
customer and finally must return to the depot, and the expressions (7) and (8)
are the capacity and time deadline constraints for adding new customers, respec-
tively. The expression (9) defines the served requests within each time slice. The
expressions (10)–(12) aim at all customers, while the expressions (10) and (11)
ensure that each customer is served only once by only one vehicle, and the
expression (12) ensures that all vehicles start from depot during initialization
and finally return to the depot, meanwhile the number of vehicles put in use
cannot exceed the total quantity at depot. The expression (13) ensures that the
time of service should be within work interval, and the expression (14) ensures
the served customers’ arrival time.

3 Hybrid Large Neighborhood Search

The DVRPTD is a dynamic deterministic problem according to [16], and we
deal with it by using the division idea in [13] which belongs to the periodic
optimization strategy. Based on the ideas of the periodic optimization, we can
convert the DVRPTD into a series of static snapshots, at each static snapshot,
vehicles start from their current position or depot to serve all non-served requests
including the unfinished and the new ones (denoted as Cnew). If there are no
working vehicles suitable for new customers, we need to choose another one
from depot.

This paper proposes an HLNS algorithm to solve the DVRPTD which
includes two important parts. One is an insert heuristic for incorporating new
requests into the current solution at the end of each time slice; the other is a LNS
algorithm for statically optimizing the solution. Since LNS has a high require-
ment on the initial solutions, so we adopt the famous saving algorithm [17] which
can provide a relatively good initial solution. At the same time, our HLNS algo-
rithm studies the population thought of genetic algorithm which means that a
group of the current feasible solutions is saved, and at each iteration we randomly
select one feasible solution to run LNS optimization respectively, then we can
improve the overall quality of the whole group. From what has been discussed
above, the overall framework of our HLNS is shown in Fig. 1.

Let the symbol S be denoted as the current complete solution, PS be denoted
as the set of the current complete solutions, Sbest be denoted as the best current
complete solution, Sworst be denoted as the worst current complete solution, Φ
be denoted as the removing node set, SΦ be denoted as the residual solution by
deleting Φ from S, S′ be denoted as the solution after reinserting Φ into SΦ,
Snew be denoted as the new solution by incorporating Cnew, Sx be denoted as
the residual solution by deleting node x and connecting x− 1 to x+1 of S, f(S)
be denoted as the objective function value of the solution S.

A hybrid LNS for DVRPTD: HITSZ 311

Fig. 1. The framework of HLNS.

3.1 Insert Heuristic

New requests appear constantly with the time passing, then how to re-plan the
current solution by taking new requests into consideration is the core problem.
To find the appropriate solution as soon as possible, this paper adopts an insert
heuristic at the end of each time slice. It is described in Algorithm 1.

1. Sort all the new requests in ascending order of their appearance moment,
and select an earliest request to insert in turn until all requests have been
inserted;

2. For each inserting request, use neighborhood analysis to select the suitable
candidate vehicles. One’s neighborhood area πi is defined as a circle with the
inserting request as center and the distance between depot and it as radius,
thus vehicles in this circle are saved as the candidate set V1;

3. Select such vehicles from V1 which have enough capacity for the serving
request and save as V2;

4. Find the best position in V2 for this inserting request by greedy selection.

This strategy is desirable, because the vehicles within neighborhood area
are closer to the inserting request than these who are not within. Inserting it
into neighborhood area will obviously shorten the distance increment so that

312 D. Yang et al.

Algorithm 1. Insert Heuristic
Input: Cnew, S
Output: Snew

1: Sort all requests in Cnew in ascending order of their appearing time ai;
2: Snew = S;
3: while Cnew is not empty do
4: i ← the top request from the sorted list;
5: πi ← the circle with i as center and di0 as radius;
6: V1 ← routes within πi;
7: V2 ← V1\ routes violate capacity;
8: get i ’s best insert position in V2;
9: Cnew = Cnew \ i, Snew = Snew ∪ i;
10: end while
11: Return Snew.

the total travel distance is minimum; Using the neighborhood analysis to insert
requests into the candidate vehicles rather than the whole working fleet, can
greatly reduce the calculated amount and time complexity of the algorithm.

3.2 Large Neighborhood Search

LNS proposed in [18] has a very strong searching skill under the complicated con-
straints. It optimizes the solution continuously by removing part of nodes of ini-
tial solution and re-inserting them to obtain some better solutions. The improve-
ment of LNS in this paper is the multiple remove strategies which take more
elements into consideration to remove nodes. This section will give a detailed
description on remove and re-insert strategies of LNS, and first we give a process
of LNS in Algorithm2.

Algorithm 2. LNS Algorithm
Input: PS

Output: better PS and Sbest

1: while not satisfy the max iteration I1 do
2: Randomly select a solution S in PS ;
3: Let S1 = S;
4: SΦ ← Remove Algorithm on S1;
5: S′ ← Reinsert Algorithm on SΦ;
6: if f(S′) < f(Sworst) then
7: PS = PS \ Sworst ∪ S′;
8: if f(S′) < f(Sbest) then
9: Sbest = S′;
10: end if
11: end if
12: end while
13: Return PS and its Sbest.

A hybrid LNS for DVRPTD: HITSZ 313

Remove Algorithm. Remove algorithm is an important part of LNS, which
removes some nodes from the current solution to obtain new results. To improve
the effectiveness, we use three strategies, that is, shaw-relatedness remove, saving
remove and mean remove strategies, respectively. They are chosen randomly in
each iteration. Many different remove strategies instead of only one strategy can
improve robustness of our heuristic and avoid the local optimum. In addition,
a tabu list L is put in use to save the deleting nodes in case we remove same
nodes repeatedly.

(1) Shaw-Relatedness Remove
This strategy mentioned in [18,19] is based on the relatedness among all
nodes, namely, Φ is made up of related nodes. In the first step, Φ incorporates
a node from S randomly; then adds the node i which has the max relatedness
R(i, Φ). R(i, Φ) is the relatedness of node i and set Φ which equals the total
relatedness between the node i and all nodes in Φ. It is defined as follows:

R(i, Φ) =
∑
j∈Φ

r(i, j) i ∈ SΦ (15)

Where r(i, j) is the relatedness of nodes i and j, it includes 3 terms: the
distance between nodes, the demand between nodes and nodes are whether
in a same car. It is defined as follow:

r(i, j) =
1

λ1dij + λ2 | ai − aj | +λ3(1 − xijk)
∀k ∈ K, i ∈ SΦ, j ∈ Φ (16)

λ1, λ2, λ3 are the controlled parameters.
(2) Saving Remove

There are some relatively far nodes which may greatly increase the travel
distance, so it is necessary to remove these far nodes to effectively reduce
the total distance, another saving value RSA is proposed, and the node with
maximum RSA is added to Φ in each iteration.

RSAx = f(S) − f(Sx) ∀x ∈ S (17)

Where RSAx is the saving value of node x, which means the possible saving
cost in distance when deleting node x in S. It is described in the following
equation:

RSAx = d(x−1)x + dx(x+1) − d(x−1)(x+1) ∀x ∈ S (18)

(3) Mean Remove
In consideration of some routes with little nodes but long distances, a mean
distance is proposed. It equals the total distance divided by nodes’ quantity.
In order to shorten the average distance, we should remove the fewest routes
with long distance. This strategy tries to shorten the mean distance so that
the total distance is shortened. First select the route with maximal mean
distance. If this route has little nodes, delete this whole route, otherwise
randomly delete one or two nodes of this route, then recalculate the mean
distance and repeat the process above until there are a certain number of
nodes in Φ.

314 D. Yang et al.

Re-insert Algorithm. Re-insert algorithm aims to re-insert Φ into the solution
to generate a more optimal solution. To make the re-insertion more feasible, this
paper adopts the greedy re-insert strategy. This strategy inserts only one node
at minimum cost in each iteration, so how to choose the inserting node becomes
important. Because each node i in Φ has many cost values (same as objective
function differentials, denoted as Δfloci1 ,Δfloci2 ,Δfloci3 . . .) by inserting into
all positions in S, where the position with the minimum cost value of node i is
denoted as besti, its corresponding cost value is denoted as Δfbesti . So in each
iteration, we select the node i with the minimum Δfbesti (denoted as ibest) from
Φ and re-insert it into its best position bestibest , till Φ is empty.

4 Computational Results

This section shows the computational results on 22 benchmarks under a static
and a dynamic circumstance, respectively. In order to prove the effectiveness of
our approach, a comparison of HLNS and other algorithms is also provided.

Table 1. Static results and comparisons

Instances NC BR BTD RE Distribution

c50 50 524.61 538.74 2.69% Uniform

c75 75 835.26 859.43 2.89% Uniform

c100 100 826.14 861.09 4.23% Uniform

c150 150 1028.42 1085.28 5.53% Uniform

c199 199 1291.45 1371.13 6.17% Uniform

t100d 100 1581.25 1643.47 3.93% Uniform

c100b 100 819.56 837.80 2.23% Clustered

c120 120 1042.11 1069.96 2.67% Clustered

f71 71 241.97 242.63 0.27% Clustered

t75b 75 1344.64 1355.93 0.84% Clustered

t75d 75 1365.42 1374.35 0.65% Clustered

t100c 100 1407.44 1435.17 1.97% Clustered

t150a 150 3055.23 3117.63 2.04% Clustered

t150b 150 2727.99 2787.83 2.19% Clustered

t150c 150 2362.79 2418.21 2.35% Clustered

t150d 150 2655.67 2709.23 2.01% Clustered

t385 385 24435.50 25500.10 4.36% Clustered

f134 134 1162.96 1204.74 3.59% Mixed

t75a 75 1618.36 1659.53 2.54% Mixed

t75c 75 1291.01 1317.91 2.08% Mixed

t100a 100 2047.90 2109.81 3.02% Mixed

t100b 100 1940.61 2007.45 3.44% Mixed

A hybrid LNS for DVRPTD: HITSZ 315

Table 2. Best dynamic results and comparisons

Instances Best results

GRASP ACS ACOLNS GA HLNS

c50 696.92 631.30 601.78 602.75 598.93

c75 1066.59 1009.38 1003.20 962.79 1011.07

c100 1080.33 973.26 987.65 1000.98 1018.40

c100b 978.39 944.23 932.35 899.05 891.79

c120 1546.50 1416.45 1272.65 1328.54 1292.66

c150 1468.36 1345.73 1370.33 1412.03 1386.37

c199 1774.33 1771.04 1717.31 1778.56 1782.45

f71 359.16 311.18 311.33 304.52 300.49

f134 15433.84 15135.51 15557.82 16063.65 15934.22

t75a 1911.48 1843.08 1832.84 1822.38 1835.13

t75b 1582.24 1535.43 1456.97 1433.98 1458.24

t75c 1596.17 1574.98 1612.10 1505.06 1573.29

t75d 1545.21 1472.35 1470.52 1434.18 1456.51

t100a 2427.07 2375.92 2257.05 2223.04 2251.65

t100b 2302.95 2283.97 2203.63 2221.58 2210.36

t100c 1599.19 1562.30 1660.48 1518.08 1532.43

t100d 1973.03 2008.13 1952.15 1870.50 1957.80

t150a 3787.53 3644.78 3436.40 3508.09 3504.83

t150b 3313.03 3166.88 3060.02 3019.90 3013.74

t150c 3110.10 2811.48 2735.39 2959.58 2721.50

t150d 3159.21 3058.87 3138.70 3008.30 3049.23

t385 - - 33062.06 40238 38325.17

The experiments are coded in Pathon and execute on a MacBook Inter (R)
Core (TM) i5-3337U CPU @1.80 GHz, 4 GB RAM Memory and Window 7 oper-
ation system.

4.1 Static Results and Analysis

In this subsection, we test our LNS algorithm on the 22 famous static benchmarks
which are proposed in [20–22] and include ranging from 50 up to 385 customers.
There are three iterative parameters for LNS, which indicate the max iterative
times I for the whole experiment, the max iterative times I1 for LNS and the
max non-improving iterative times I2 to avoid the invalid loops, respectively.
Through many experiments on different parameters, we find that the results
fluctuate at a relatively stable state when I = 50, I1 = 1000, I2 = 50.

316 D. Yang et al.

Table 3. Average dynamic results and comparisons

Instances Average results

GRASP ACS ACOLNS GA HLNS

c50 719.56 681.86 623.09 618.86 647.22

c75 1079.16 1042.39 1013.47 1027.08 1043.86

c100 1119.06 1066.16 1012.30 1013.03 1071.13

c100b 1022.12 1023.60 943.05 931.35 928.25

c120 1643.15 1525.15 1451.60 1418.13 1409.48

c150 1501.35 1455.50 1394.77 1461.55 1452.21

c199 1898.20 1844.82 1757.02 1843.06 1859.13

f71 376.66 348.69 320.00 323.91 318.56

f134 16458.47 16083.56 16030.53 16671.17 16547.28

t75a 2005.44 1945.20 1880.87 1871.46 1938.36

t75b 1758.88 1704.06 1477.15 1533.63 1527.69

t75c 1674.37 1653.58 1692.00 1558.70 1631.10

t75d 1588.73 1529.00 1491.84 1458.93 1486.53

t100a 2510.29 2428.38 2331.28 2290.05 2347.20

t100b 2512.27 2347.90 2317.30 2263.46 2360.47

t100c 1704.40 1655.91 1717.61 1541.25 1592.69

t100d 2087.55 2060.72 2087.96 2004.78 2089.45

t150a 3899.16 3840.18 3595.40 3570.51 3633.04

t150b 3485.79 3327.47 3095.61 3120.57 3116.64

t150c 3219.27 3016.14 2840.69 3065.73 2984.07

t150d 3298.76 3203.75 3233.39 3175.37 3226.40

t385 - - 35188.99 41319.39 40550.81

The computational results with above parameters are shown in Table 1 accord-
ing to the customer’s distribution.

There are six items, namely, the instances, the number of customers (NC),
the best known results (BR), the best total travel distance (BTD) by using our
approach on 100 runs, the relative error (RE) (i.e. RE = (BTD − BR)/BR ∗
100%) and the distribution of customers(Distribution).

From Table 1 we can see that our best results are acceptable, because the
relative errors are less than 7 % for all instances, especially less than 5 % for all
most instances. Combined with the customer’s distribution, the results imply
that our algorithm may do better in the aspect of clustered and mixed areas.
A conclusion is that, the effective LNS algorithm we proposed can quickly get
optimal results, it lays a foundation for the dynamic tests.

A hybrid LNS for DVRPTD: HITSZ 317

4.2 Dynamic Results and Analysis

The dynamic data sets are derived from above benchmarks by Kilby [12]. Accord-
ing to the simulation in [13], the length of the working interval is set 1500 s, Tco

is set to 1500/2, the suitable number of time slices is 25. Tables 2 and 3 show
the best computational results by our HLNS algorithm and the average results
over 20 runs, respectively.

There are other best and average results in Tables 2 and 3 provided by some
heuristic algorithms, in which GRASP and ACS by [13], ACOLNS by [15], GA
by [14].

From Table 2, we can see that our best results win GRASP out in 19 instances,
win ACS out in 16 instances, win ACOLNS out in 10 instances and wins GA
out in 11 instances. From Table 3, our average results win GRASP out in almost
all instances, win ACS out in 14 instances, win ACOLNS out in 7 instances and
win GA out in 9 instances. All the results and comparisons show our approach
is competitive, and it is effective for the DVRPTD in some ways, especially for
clustered customers. The reasons for better optimization of our approach are
that, the saving algorithm in the first step can provide a good initial solution,
and the insert heuristic is used to select the relatively legal positions.

5 Conclusion

This paper studies the DVRPTD, which refers that part or all of the requests
appear dynamically so that it requires a combination of the vehicles’ current
state and the requests’ current information to re-plan routes. The time deadline
is also taken into account. In this paper, we adopt the time-division strategy
and present an HLNS algorithm containing two parts, the insert heuristic for
incorporating new requests and the LNS algorithm for improving the quality of
the solution at the end of each time slice. In addition, we use the saving algorithm
to get an initial solution of all requests known a-priori at the first time slice. The
computational results show that the HLNS can do well and find satisfactory
solutions under the dynamic circumstance, that prove the effectiveness of the
algorithm.

References

1. Dantzig, G.B., Ramser, J.H.: The truck dispatching problem. Manag. Sci. 6(1),
80–91 (1959)

2. Wilson, N.H.M., Colvin, N.J.: Computer control of the Rochester dial-a-ride sys-
tem. Massachusetts Institute of Technology. Center for Transportation Studies
(1977)

3. Psaraftis, H.N.: A dynamic programming solution to the single vehicle many-to-
many immediate request dial-a-ride problem. Transp. Sci. 14(2), 130–154 (1980)

4. Psaraftis, H.N.: Dynamic vehicle routing: status and prospects. Ann. Oper. Res.
61(1), 143–164 (1995)

318 D. Yang et al.

5. Khouadjia, M.R., Alba, E., Jourdan, L., Talbi, E.-G.: Multi-swarm optimization
for dynamic combinatorial problems: a case study on dynamic vehicle routing prob-
lem. In: Dorigo, M., Birattari, M., Di Caro, G.A., Doursat, R., Engelbrecht, A.P.,
Floreano, D., Gambardella, L.M., Groß, R., Şahin, E., Sayama, H., Stützle, T.
(eds.) ANTS 2010. LNCS, vol. 6234, pp. 227–238. Springer, Heidelberg (2010)

6. Gendreau, M., Guertin, F., Potvin, J.Y., et al.: Neighborhood search heuristics for
a dynamic vehicle dispatching problem with pick-ups and deliveries. Transp. Res.
Part C, Emerg. Technol. 14(3), 157–174 (2006)

7. Beaudry, A., Laporte, G., Melo, T., et al.: Dynamic transportation of patients in
hospitals. OR Spectrum 32(1), 77–107 (2010)

8. Ferrucci, F., Bock, S., Gendreau, M.: A pro-active real-time control approach for
dynamic vehicle routing problems dealing with the delivery of urgent goods. Eur.
J. Oper. Res. 225(1), 130–141 (2013)

9. Alvarenga, G.B., De Abreu, Silva, R.M., Mateus, G.R.: A hybrid approach for
the dynamic vehicle routing problem with time windows. In: Fifth International
Conference on Hybrid Intelligent Systems, HIS 2005, 7 p. IEEE (2005)

10. Meidan, L., Yehua, S., Jing, W., et al.: Insertion heuristic algorithm for dynamic
vehicle routing problem with time window. In: 2010 2nd International Conference
on Information Science and Engineering (ICISE), pp. 3789–3792. IEEE (2010)

11. Hong, L.: An improved LNS algorithm for real-time vehicle routing problem with
time windows. Comp. Oper. Res. 39(2), 151–163 (2012)

12. Kilby, P., Prosser, P., Shaw, P.: Dynamic VRPs: a study of scenarios. University
of Strathclyde Technical report, pp. 1–11 (1998)

13. Montemanni, R., Gambardella, L.M., Rizzoli, A.E., et al.: Ant colony system for
a dynamic vehicle routing problem. Comb. Optim. 10(4), 327–343 (2005)

14. Elhassania, M., Jaouad, B., Ahmed, E.A.: Solving the dynamic vehicle routing
problem using genetic algorithms. In: 2014 International Conference on Logistics
and Operations Management (GOL), pp. 62–69. IEEE (2014)

15. Elhassania, M.J., Jaouad, B., Ahmed, E.A.: A new hybrid algorithm to solve the
vehicle routing problem in the dynamic environment. Int. J. Soft Comput. 8(5),
327–334 (2013)

16. Pillac, V., Gendreau, M., Guret, C., et al.: A review of dynamic vehicle routing
problems. Eur. J. Oper. Res. 225(1), 1–11 (2013)

17. Clarke, G., Wright, J.W.: Scheduling of vehicles from a central depot to a number
of delivery points. Oper. Res. 12(4), 568–581 (1964)

18. Shaw, P.: Using constraint programming and local search methods to solve vehicle
routing problems. In: Maher, M.J., Puget, J.-F. (eds.) CP 1998. LNCS, vol. 1520,
pp. 417–431. Springer, Heidelberg (1998)

19. Ropke, S., Pisinger, D.: An adaptive large neighborhood search heuristic for the
pickup and delivery problem with time windows. Transp. Sci. 40(4), 455–472 (2006)

20. Fisher, M.L., Jaikumar, R.: A generalized assignment heuristic for vehicle routing.
Netw. 11(2), 109–124 (1981)

21. Christofides, N., Beasley, J.E.: The period routing problem. Netw. 14(2), 237–256
(1984)

22. Taillard, É.: Parallel iterative search methods for vehicle routing problems. Netw.
23(8), 661–673 (1993)

Indoor Localization via Candidate Fingerprints
and Genetic Algorithm

Zeqi Song, Hongwei Du(B), Hejiao Huang, and Chuang Liu

Shenzhen Key Laboratory of Internet Information Collaboration,
Department of Computer Science and Technology,

Harbin Institute of Technology Shenzhen Graduate School, Shenzhen, China
{zeqisong1990,chuangliuhit}@gmail.com, {hwdu,hjhuang}@hitsz.edu.cn

Abstract. WiFi-based indoor localization was proposed to be a
practical method to locate WiFi-enabled devices due to the popularity
of WiFi networks. However, it suffers from large localization errors (6 ∼
10 m). In this paper, we propose a novel localization scheme: indoor local-
ization using candidate fingerprints (CFs) and genetic algorithm (GA).
We come up with candidate fingerprints (CFs) selection to increase the
probability of obtaining the best location estimations of indoor devices.
Furthermore the GA are used to search for the optimal combination of
CFs of each device using the relative distance constraint information. In
addition, we provide an analytical model for selecting CFs to predict the
probability of CFs could cover their true location of target device. The
experimental results on realistic data set indicate that our method can
reduce the 50 % and 80 % errors to 1.6 m and 2.4 m respectively. And
typical running times for our simulations are only within a few seconds
(less than 5 s).

Keywords: Indoor localization · Candidate fingerprints · Genetic algo-
rithm · Analytical model

1 Introduction

WiFi-based indoor localization approach [1,13] have attracted much attention,
due to their low deployment costs and potential for reasonable accuracy. WiFi-
based localization [1,3,13] leverage prevalent wireless access points, thus being
easily applied to mobile devices. In addition, acoustic ranging-based techniques
[7,12] that relies on range measurement between proximate devices has been
motivated in recent years. Mobile localization schemes [17,18] utilize the traces
of mobile devices to get estimate their location. While these methods have been
shown to achieve promising localization accuracy (below 3 m at 80% tile), sig-
nificant errors (6 ∼ 10m) always exist. Those achieving high accuracy usually
require special hardware [5,11] not readily available on most mobile devices.
There has also been work on combining WiFi and acoustic localization [4]. While
hybrid schemes have greatly improved the positioning accuracy, the systems seem

c© Springer International Publishing Switzerland 2015
Z. Lu et al. (Eds.): COCOA 2015, LNCS 9486, pp. 319–333, 2015.
DOI: 10.1007/978-3-319-26626-8 24

320 Z. Song et al.

to be much more complex. For PLWLS [4], the system needs to detect the pres-
ence of large errors, only devices with small initial location errors can serve
as peers. Centaur [19] takes much time on Bayesian inference as the number of
devices growing larger. Therefore, accurate indoor localization on mobile devices
is still an open problem.

For WiFi-based localization, the closest matching WiFi signature may not
be the best location estimation, which has been reported by Hongbo Liu’s [4]:
the root cause is the existence of distinct locations with similar signatures. On
the other hand, we observed that the modern devices are equipped with both
WiFi interfaces and speakers/microphones, which are amenable to WiFi mea-
surements and acoustic ranging [6]. Our idea is leveraging all the information
available to achieve accurate localization. For one thing, WiFi signal measure-
ments performed by mobile devices provide an initial probability distribution of
possible location of them. For another, the relative distances of pairwise devices
could be used as physical constrains on their possible locations. Our considera-
tion is producing highly accurate location estimation by fusing initial WiFi RSS
probability distributions and geometric constrains.

In summary, we make the following major contributions:

1. We propose a novel localization scheme: indoor localization using candidate
fingerprints (CFs) and genetic algorithm (GA). Using initial WiFi fingerprints
incorporate relative distance constrains, our method has greatly improved the
localization accuracy.

2. We come up with candidate fingerprints (CFs) which are more likely to
include a closer position to the real position of indoor devices. We design
a genetic algorithm to search for the optimal combination of CFs of each
device. In addition, we provide an analytical model for selecting CFs to pre-
dict the probability of candidate fingerprints could cover the true location of
target device.

3. We carried out our method on realistic data set collected from an office build-
ing. The experimental results indicate that our method outperforms state-of-
the-art localization scheme in terms of localization errors. And typical running
times for our simulations are within a few seconds.

The rest of this paper is organized as follows. In Sect. 2, we review the related
works. In Sect. 3, we formulate the problem of indoor localization mathemati-
cally. Sections 4 and 5 described the details of our method of selecting candidate
fingerprints and searching closest fingerprints using GA. In Sect. 6, we evalu-
ate our approach using both analytical model and simulations. Finally, Sect. 7
concludes this paper.

2 Related Work

Indoor localization has been an active area of research for the past two decades.
Here we provide a brief overview of some key researchs focusing on the WiFi
and acoustic ranging techniques most closely related to ours.

Indoor Localization via Candidate Fingerprints and Genetic Algorithm 321

WiFi-Based Localization: WiFi-based localization can be categorized into
fingerprint based and model based. Fingerprint based techniques work in two
phases. The off-line phase is to fingerprint each location in the space of inter-
est with a vector of received signal strength (RSSI) measurement from various
access points (APs), where the fingerprint could either be expressed in a deter-
ministic form (e.g., RADAR [1]) or in probabilistic form (e.g., Horus [13]). In
on-line phase, the measured RSSI values are compared with the fingerprints
recorded previously to find the closest match. Model based techniques use a RF
propagation model to derive RSS at various location. The log distance path loss
(LDPL) model is a widely used model. EZ [3] and EZ-Perfect [19] use existing
WiFi infrastructure to localize mobile devices without collecting prior knowl-
edge about WiFi APs. While WiFi based techniques have been used to many
applications, they sometimes suffer from the lack of localization accuracy.

Acoustic Ranging-Based Localization: The earliest kind of this scheme usu-
ally relied on deploying specialized infrastructure. For example, Active Bat [12]
measures the times-of-flight of the ultrasound pulse to the mounted receivers on
the ceiling. The speed of sound in air is used to calculate the distances from the
Bat to each receiver. The Cricket location support system [7] uses a combination
of RF and ultrasound technologies to provide a location-support service to users
and applications. In addition, BeepBeep [6] introduced a novel way to do acoustic
ranging, without requiring the device to be synchronized. Acoustic ranging-based
techniques may suffer from a couple of problems: the direct acoustic signal is
strong while the line-of-sight acoustic could be blocked by obstructions within
indoor environment; it is assumed that the devices includes special purpose ultra-
sound hardware or speakers and microphones.

Hybrid Indoor Localization Scheme: There has also been work on combin-
ing WiFi and acoustic localization. PLWLS [4] proposed a peer assisted localiza-
tion approach to eliminate such large errors. It obtains accurate acoustic ranging
estimates among peer phones, then maps their locations jointly against WiFi sig-
nature map subjecting to ranging constraints. Centaur [19] draws inspirations
from Bayesian graphical model for indoor localization, but the specific Bayesian
graphical models it employs incorporate the geometric constraints arising from
acoustic range measurements, in addition to WiFi constrains. While these hybrid
schemes have greatly improved the positioning accuracy, the systems seem to be
very complex. For PLWLS, the system needs to detect the presence of large
errors, only devices with small initial can serve as peers. Centaur takes much
time on Bayesian inference as the number of devices growing larger.

3 Problem Formulation

Consider the indoor environments such as office buildings or shopping malls
which are overlaid on a WLAN. There are M mobile devices, each of them is
assigned a global ID in the range of 1 to M . We assume that there are N access
points (APs) in the area and they are all visible to all devices throughout the

322 Z. Song et al.

area. In addition, these devices are equipped with speakers/microphones, thus
are able to implement acoustic ranging. Our problem is locating these mobile
devices using the received signal strength from APs as well as the relative dis-
tances between devices obtained by acoustic ranging.

Construct Indoor Radio Map. We use Horus [13] method to construct radio
map in this paper. Horus captures the RSS characteristics of the indoor apace
through a probability distribution, P (r = rj |xi), which is the probability of
seeing an RSS value of r from access point j at location xi. Since the signal
strength values received from different access points are independent, the joint
probability of observing R = {r1, r2, . . . , rn} at location xi is computed as:

P (R|xi) =
∏
j

P (r = rj |xi) (1)

Acoustic Ranging. BeepBeep [6] method is used in this paper to measured the
relative distances between mobile devices. BeepBeep work as follows: devices A
and B transmit sound pulses to each other and then using the sampling rate of
the sound-card to keep the measure of the time. Given the sampling frequency F
of the sound card, BeepBeep computes the propagation delay ΔtAB in seconds as:

ΔtAB =
ΔN

F
=

1
2F

[(NA
B − NA

A) − (NB
B − NB

A)] (2)

where NY
X represents the sample number at which device y′s microphone detected

the chirp emitted by device X ′s speaker.

4 Pick the CFs

For WiFi-based localization, the closest matching WiFi signature may not be the
best location estimation. In this paper, we come up with the concept of candidate
fingerprints (CFs) which will be used throughout this paper. Instead of selecting
one closest fingerprint as the exactly location estimation, we select several CFs
as the alternative positions, which are more likely to include a closer position to
the real position of indoor devices. To select the CFs, we should get the initial
WiFi location estimations of devices firstly. As previously expressed, there are
many WiFi fingerprints based indoor position models, which can further divided
into deterministic techniques and probabilistic techniques. Moustafa [8] have
proved that deterministic technique are not optimal as this method does not store
any information about the signal strength distribution. According to Moustafa’s
theory, the Horus system outperforms the Radar system since the expected error
for the former is less than the later. In this paper, we choose k closest location
as CFs.

During training phase, the radio-map stores a Gaussian distribution that fits
the signal strength received from an access point for every training point. Given
a signal strength vector Rj = {rj

1, r
j
2, . . . , r

j
N} of device j, we want to find the

Indoor Localization via Candidate Fingerprints and Genetic Algorithm 323

probability P (li|Rj), which represent the probability that the device j is located
in training points li. This probability is given by [13]. Then we select the front
k location as CFs from P (li|Rj), i = 1, 2, . . . , s, which are sorted in descending
order. The algorithm is detailed in Algorithm1.

Algorithm 1. CF = CF Selecting(R, l, RM)
Input:

{Rj}: measured signal strength vector, j = 1, 2, . . . ,M , where Rj =
{rj1, rj2, . . . , rjN};
{li}: the training points, i = 1, 2, . . . , s;
RM : radio-map, where RM [a][li](q) represents the pdf of signal strength from
access point a at location li ∈ X.

Output:
{CFj}: the CFs of device j, j = 1, 2, . . . ,M , where CFj = {cf j

1 , cf
j
2 , . . . , cf

j
k}.

1: for j = 1 to M do
2: for i = 1 to s and li ∈ X do

3: P (li|Rj) ←∏N
n=1

∫ rj
n+0.5

r
j
n−0.5

RM [n][li](q)dq

4: end for
5: Sort {P (li|Rj)} in descending order;
6: Chose the front k locations from the sorted set: {P (li1 |Rj), P (li2 |Rj), . . . ,

P (lis |Rj)}, where P (li1 |Rj) � P (li2 |Rj) � . . . � P (lis |Rj) ;
7: CFj ← {cf j

1 , cf
j
2 , . . . , cf

j
k}, where cf j

m corresponding to a location lim .
8: end for

By introducing the CFs, we increase the probability of obtaining the true
locations of indoor devices. Another problem is how to choose a value k, for
the number of CFs so as to cover the true location as well as small enough.
Note that if the value of k being very large, much time will be taken to make
further computation and the method will become inefficient. Further discussion
about the parameter k will be given in Sect. 4. Table 1 shows that each devices
corresponding to a set of fingerprints.

Table 1. CFs for each devices

Devices CFs

dev1 = (x1, y1) CF1 = {cf1
1 , cf

1
2 , . . . , cf

1
k}

dev2 = (x2, y2) CF2 = {cf2
1 , cf

2
2 , . . . , cf

2
k}

...
...

devM = (xM , yM) CFM = {cfM
1 , cfM

2 , . . . , cfM
k }

324 Z. Song et al.

5 Search Closest Fingerprint Using GA

After selecting CFs, each device is assigned to a location set in which an entry is
the closest position to its real location. The next step is to get the new location
estimation: searching for the optimal combination of CFs of each device using
other constraint information. By exploiting acoustic ranging, a device can use
peer devices as reference points and obtain its relative position to them. This
imposes unique physical constraints on the possible location of the devices, thus
reducing the uncertainty and improving the accuracy.

5.1 Example Scenario

Before providing a physical intuition to the working of our algorithm, we start
with the example depicted in Fig. 1. Device A and B are located within audible
distance of each other at unknown location xA and xB . Using its WiFi fingerprint
measurements, device A computes CFA = {CFA1, CFA2, CFA3} - the CFs of
device A. For case of exposition in this example, we shall set the number of
CF as k = 3. But more formally, the value of k may be greater according
your realities of situation. Similarly, based WiFi fingerprint localization, device
B’s CFs is denoted as CFB = {CFB1, CFB2, CFB3}. By performing acoustic
ranging, the devices learn that the distance between them dAB = 5m. This
distance constraint further limit the choosing of the closer location from their
CFs. Through calculation, the distance between device A and B’s CFs are shown
in Table 2. As is shown in Table 2, the distance between CFA2 and CFB2 is
d22 = 5.2m, which is the nearest distance value to the distance measured by
acoustic ranging. Where ‖d22 − dAB‖ � ‖dij − dAB‖, i, j ∈ {1, 2, 3} (‖dij − d′

ij‖
represent the Euclidean distance of dij and d′

ij). Then the locations of device A
and B are more likely to be CFA2 and CFB2 rather than other combinations.

The basic idea of above example can be easily extend to several devices on a
large floor as depicted in Fig. 2. Initially, each device has a location estimation
(vertices in the dash-line graph) from WiFi fingerprint localization. Compared

Fig. 1. A sample of distance constrain
between two devices

Fig. 2. A sample of using CFs and
physical constrains to perform localiza-
tion

Indoor Localization via Candidate Fingerprints and Genetic Algorithm 325

Table 2. Calculated distances between CFs

Distances(m) CFB1 CFB2 CFB3

CFA1 4.2 5.8 6.5

CFA2 3.8 5.2 5.5

CFA3 5.4 6.8 7.2

with WiFi signal strength within complex indoor environment, the relative dis-
tance between devices, which are measured by acoustic ranging, is much more
reliable. The relative distances of vertices in the solid-line is another combina-
tion of CFs, which is more conform to the ground truth (the dotted-line graph).
Apparently, the new combination of CFs is a better choice compared with the
initial estimation. Such additional relative distance constraints “force” the new
CFs combination more closer to their real locations, thus refining the location
estimation obtained from initial WiFi localization.

The intuition of our algorithm is searching a combination of CFs among
all the CFs to find a optimal one which is most satisfied with the distance
constraints. In the algorithm, the objective function are designed as follow:

J(G) = argmin
i,j∈{1,2,...,M}

1
n2

∑
i,j

√
(dij − d′

ij)2 (3)

where G is a set of location estimations of devices, n denotes the number of
pair distances measured by acoustic ranging. In ideal condition, the number of
pair distances is n = M2, where M is the number of device within the area.
Generally, due to communication distance, non-line-of-sight in acoustic ranging,
we may miss some pairwise distances with a large probability. The number of
pair distances, in some cases, is less than M2 which will be discussed in Sect. 5.
Equation 3 produces a set of locations G = {li}, i = 1, 2, . . . ,M from the CF
database li ∈ X, so as to minimize the distance differences between our location
estimation dij and distances from acoustic ranging d′

ij .
It should be noted that the distances between some pairs of devices may not

determine the shape of a graph. For example, a square is flexible since its vertices
can rotate against each other and form a family of rhombi while preserving the
edge lengths, whereas the shape of a triangle is “rigid” given the lengths of the
three edges. The graph rigidity theory [14] describes under what conditions a
graph is rigid: A graph is called generically rigid (or called rigid) if one cannot
continuously deform the graph embedding in the plane while preserving the
distance constraints. A graph is generically globally rigid (or called globally
rigid) if there is a unique realization in the plane. Jackson et al. [15] prove that
a graph is globally rigid if and only if it is 3-connected and redundantly rigid. A
graph is redundantly rigid if the removal of any edge results in a graph that is
still rigid. PLWLS [4] proposed a acoustic signal design, detection and scheduling
techniques that satisfy the requirements of concurrent multi-peer ranging, which
is robust to noise and having minimum impact on user’s regular activities. So we

326 Z. Song et al.

can believe that the concurrent ranging among multiple devices and the resulting
pairwise distances give a complete, thus rigid graph.

5.2 The Genetic Algorithm

An alternative is exhaustion method: searching over all possible combinations of
the CFs. Assume that the number of device is M with k CFs for each device.
The complexity of the problem is O(kM), which would be very time-consuming.
While genetic algorithm (GA) can search the solution space efficiently, it can
miss local minima that might provide a reasonably good solution.

Table 3. Chromosome encoding and initial generation

Chromosome encoding Combination of CFs

chro1 = (c11, c
1
2, . . . , c

1
M) CCF1 = {cf1

c11
, cf2

c12
, . . . , cfM

c1
M

}
chro2 = (c21, c

2
2, . . . , c

2
M) CCF2 = {cf1

c21
, cf2

c22
, . . . , cfM

c2
M

}
...

...

chroL = (cL1 , c
L
2 , . . . , c

L
M) CCFL = {cf1

cL
1
, cf2

cL
2
, . . . , cfM

cL
M

}

The GA start by selecting an initial set of solutions(initial generation) ran-
domly. As is shown in Table 3, the initial chromosome generation consists of a
vector of values chroi, which correspond a combination of CFs CCFi. While L
represent the number of chromosome individuals included in the initial gener-
ation; M , with the above meaning, denotes the number of devices within the
area. ci

j ∈ {1, 2, . . . , k}, where k denote the number of CFs. Algorithm2 gives
the details of the genetic algorithm. During each iteration, each chromosome is
evaluated by a fitness function (line 2). According to the optimal function J , the
fitness function is designed as:

f(chro∗) =
1
n2

∑
i,j

√
(d∗

ij − d′
ij)2 (4)

where d∗
ij is the distance between estimate location of device i and j. For a

chromosome individual chro∗ = {c∗
1, c

∗
2, . . . , c

∗
M}, we can get a feasible solution

of CFs CCF ∗ = {cf∗
1 , cf∗

2 , . . . , cf∗
M} by chromosome decoding. As every CFs

combination is corresponding a set of location G∗ = {l∗i , l∗2, . . . , l
∗
M}, then d∗

ij

represent the distance between l∗i and l∗j , which comes from:

d∗
ij =

√
(x∗

i − x∗
j)2 + (y∗

i − y∗
j)2,

l∗i = (x∗
i , y

∗
i), l∗j = (x∗

j , y
∗
j)

(5)

P (t+1) is from previous generation Pc(t) and crossover it while Pm(t) is the
chromosome population after mutating. For the “select” operation, consecutive
generation of chromosomes are generated in the following manner:

Indoor Localization via Candidate Fingerprints and Genetic Algorithm 327

Algorithm 2. G∗ = GA Searching(CF,MG,L)
Input:

CF = {CF1, CF2, . . . , CFM}: The CFs of each target device;
MG: Maximum number of generations;
L: The size of population.

Output:
G∗ = {l∗1 , l∗2 , . . . , l∗M}: The new location estimations of all the target devices.

1: Random generate CF combinations: CCF ← {CCF1, CCF2, . . . , CCFL}
2: Chromosome encoding: chro ← {chro1, chro2, . . . , chroL}
3: t ← 0
4: Initialize P (t): P (t) ← {chro1(t), chro2(t), . . . , chroL(t)}
5: Evaluate P (t): J(P (t)) ← {J(chro1(t)), J(chro2(t)), . . . , J(chroL(t))}
6: while t � MG do
7: Pc(t) ← crossover{P (t)}
8: Pm(t) ← mutation{P (t)};
9: Evaluate Pc(t) and Pm(t)

10: P (t + 1) ← select(Pc(t) ∪ Pm(t))
11: t ← t + 1
12: end while
13: Select the fittest chromosome individual: chro∗ ← best(P (t))
14: Chromosome decoding: CCF ∗ ← chro∗

15: Location mapping: G∗ ← CCF ∗

1. 20 % of the solutions with the highest fitness are retained.
2. 20 % of the solutions are randomly generated for every generation.
3. 60 % of the solution are generated by picking two solutions Pc(t) and Pm(t)

from the previous generation and mix them using a random convex liner
combination.

P (t + 1) = a • Pc(t) + (1 − a) • Pm(t) (6)

where a is a random vector with each element independently randomly draw
from (0, 1) and • represents a vector dot product. Pc(t) is from previous gen-
eration P (t) and crossover it while Pm(t) is the chromosome population after
mutating. a is a random vector with each element independently randomly
draw from (0, 1) and • represents a vector dot product.

As generations evolve, solutions with higher fitness are discovered. The GA
terminates when solutions do not improve for 3 consecutive generations or it
comes to the max iteration steps.

6 Performance Evaluation

Our experiments use the dataset of received signal strength indication (RSSI)
collected from within an indoor office building Contributed by Kevin Bauer
etc. [2]. The office building environment is a single storey building measuring
roughly 50 × 70 m. The interior consists of small offices, cubicles, long hall-
ways, and large warehouse-like rooms. A floor plan of this environment with

328 Z. Song et al.

measurement points and the passive monitors’ locations labeled is provided in
Fig. 3. This data captures RSSI behavior when 802.11 frames are transmitted
using:a stock omnidirectional antenna. Omnidirectional RSSI measurements are
collected from roughly 180 distinct physical locations throughout a large office
building. To quantify how the transmitter’s received signal strength varies with
their physical location in the building, the experiment transmit 500 packets from
each of the 180 physical positions.

Fig. 3. Floor plan of the office space where the RSSI were collected

6.1 Analytical Model for Selecting CFs

Consider a grid system with two grid points xi and xj shown in Fig. 4, and a
device is at the location of xi with the signal strength R̃i (for the convenience of
the analysis, the device’s location is limited to the point on the grid). Assume
that the distribution of signal strength at location xi is Ri ∼ N(μi, σi) (the red
curve), and the distribution at xj is Rj ∼ N(μj , σj) (the blue curve). We can
get the pairwise error probability(PEP) [10] that we have an incorrect estimate
of the device as follows:

PEP (xi, xj) = P (P (xi|R̃i) < P (xj |R̃i))

=
∫ x=∞

p=rij

1√
2πσ2

i

e
−(p−μi)

2

2σ2
i dp

= Φ(
rij − ui

2σi
)

(7)

where rij represent the signal strength where the probability of locating device at
xi equals to the probability of locating the target device at xj . That is the inter-
section of signal strength distribution of xi and xj . For a given signal strength,
the system select the location that has maximum probability. When the target

Indoor Localization via Candidate Fingerprints and Genetic Algorithm 329

device’ signal strength R̃i is larger than rij , the system will choose xj as the
location estimation rather than xi. In Fig. 4, red area represent the probabil-
ity of having a wrong location estimation. When considering only two location
fingerprints, the probability of return the correct location or pairwise correct
probability (PCP) can be computed: PCP (xi, xj) = 1 − PEP (xi, xj).

Fig. 4. Pairwise error probabil-
ity(PEP) from a set of two (Color
figure online).

Fig. 5. Pairwise error probabil-
ity(PEP) of CFs missing its correct
position (Color figure online).

For our method, the radio-map contains several entries and fingerprints.
As shown in Fig. 5, {x1, x2, x3, x4, x5} is a set of training points. We have fit
a set of distribution for their RSS: Ri ∼ N(μi, σi), i = {1, 2, 3, 4, 5}. R1 and
{R2, R3, R4, R5} intersect at {r12, r13, r14, r15} respectively. Assume the target
device is located at x1, so its RSS obey the distribution R̃1 ∼ N(μ1, σ1). If R̃1 >
r12, we can get P (x1|R̃1) > P (x2|R̃1) > P (x3|R̃1) > P (x4|R̃1) > P (x5|R̃1).
If we choose the top 4 (k = 4) as the CFs and R̃1 > r15, so we can get the
CFs CF1 = {R1, R2, R3, R4} where its true location is included in the CFs. On
the other hand, if R̃1 < r15, we can get P (x3|R̃1) > P (x2|R̃1) > P (x3|R̃1) >
P (x5|R̃1) > P (x1|R̃1). In this case, x1 will not be selected and the CFs is
CFA = {R2, R3, R4, R5}. According to this model, we can get the probability of
missing its correct location from PEP (R1, R5) = Φ(r15−u1

2σ1
) (red area in Fig. 5).

Given a RSS from device A within the area, Fig. 6 shows the probability of
A’s CFs covering its true position for different value of k calculated using Eq. 7.
From the figure we see that when k = 6 the probability comes to as high as
90 %, which will lead to increased accuracy.

6.2 The Effect of CFs Selecting

To investigate the performance of our method, we carry out intensive simulation
based on the test bed described in this Section. In particular, we select 10 target
devices locations within the area. The RSSI of each device is randomly selected
from the training RSS dataset. The device’s location are random distributed in this

330 Z. Song et al.

Fig. 6. The probability of A’s CFs cov-
ering its true position for different value
of k.

Fig. 7. Localization Error for Different
Number of CFs.

area. Our algorithm are used to locate the locations of devices and then we repeat
this process for 10 times to measure the location accuracy and time consumption.
In total we have 100 location estimation of target devices for our simulation.

Firstly, we carry out the simulation introduced above for different value of k
(k = {3, 4, 5, 6}). Figure 7 shows the effect of the parameter k on the performance
of our method. The cumulation distribution function of localization errors are
obtained for the four schemes. As is shown in the figure, k = 6 performs the best
with 50th and 80th percentile error of 1.1m and 2.3m respectively. Followed by
k = 5 with the 50th and 80th percentile error of 2.2m and 3.8m respectively.
As the value k (number of CFs) increases, the accuracy of our method should
increase correspondingly.

Table 4. Running time for various experiments

No of Cfs No of Devices

M = 5 M = 10 M = 15

k = 3 0.6 s 1.3 s 1.9 s

k = 4 0.6 s 1.5 s 2.2 s

k = 5 1.3 s 2.4 s 3.0 s

k = 6 1.5 s 3.6 s 7.2 s

Note that if the value of k being very large, much time will be taken to make
further computation and the method will become inefficient. Table 4 provide
the time consumption by our program in running these four schemes. We can
see from the table that the time consumption increfases as the number of CFs
increase. Typical running times for our simulations are within a few seconds (less
than 5 s when the number of devices is less than 10). These are reasonable times
to locate devices in an indoor environment.

Indoor Localization via Candidate Fingerprints and Genetic Algorithm 331

6.3 The Effect of Communication Distance

As mentioned in Sect. 4, due to non-line-of-sight, communication distance and
outliers in acoustic ranging, we may miss some pairwise distances with a large
probability. Figure 8 shows the effect of different communication distances for
the number of pairwise distances measured. As shown in the graph, The longer
the communication distance, the more measured distances we can get. In Fig. 8,
we select 10 (M = 10) indoor devices to measure their distances and repeat this
process for 10 times. Without missing, we will get 10 ∗ 10 ∗ 10 pairwise distances
altogether, but we get at most about 780 pairwise distances in practice when
the communication distance is equal to 10. Our method is robust to missing
pairwise distances of devices. In the graph, we experiment communication dis-
tance c = {4, 6, 8, 10} to investigated the influence of communication distances
on localization error. As shown in Fig. 9, The longer the communication distance,
the more measured distances we can get, thus provide more distance constrains,
our method will perform better.

2 3 4 5 6 7 8 9 10
100

200

300

400

500

600

700

800

communication distance (m)

n
u

m
b

e
r

o
f

d
is

ta
n

ce
s

Fig. 8. Number of measured distances
for different communication radius

0 1 2 3 4 5 6 7 8 9 10
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Localization Error(m)

C
D

F

communication distance = 4
communication distance = 6
communication distance = 8
communication distance = 10

Fig. 9. Localization error for different
communication distances.

6.4 Localization Errors

We compare the performance of our method with the following existing local-
ization schemes: Radar, Horus and PLWLS. Figure 10 shows the cumulation
distribution function of localization errors for the three schemes. Figure 11 sum-
marizes the comparison results. From Fig. 10, we observe that WiFi only local-
ization (Radar and Horus) can result in significant error (6 ∼ 10m). Adding
distance constrains, whether PLWLS and our method helps regin in these out-
liers (5 ∼ 7m). Comparing the our method to the PLWLS system shows that the
average error is decreased by 0.3m. These results show the effectiveness of the
proposed techniques. Figure 11 shows that the mean error is decreased by more
than 48% for Horus and 14% for PLWLS. The 50% error is decreased by more
than 38% for the Horus system and 30% for PLWLS. The 80% error is decreased
by more than 36% for the Horus system and 12% for PLWLS respectively.

332 Z. Song et al.

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Localization Error(m)

C
D

F

Radar localization
Horus localization
PLWLS localization
CF + GA localization

Fig. 10. Localization error of different
localization schemes.

50% Error Mean Error 80% Error
0

1

2

3

4

5

6

L
o
c
a
liz

a
ti
o
n
 E

rr
o
r(

m
)

Radar localization
Horus localization

PLWLS localization
CF + GA localization

Fig. 11. Comparison of different local-
ization schemes.

7 Conclusion

In this paper, we propose a novel localization scheme: indoor localization using
candidate fingerprints (CFs) and genetic algorithm (GA). We come up with
candidate fingerprints (CFs) - instead of selecting one closest fingerprint as the
exact location estimation, we select several CFs as the alternative positions.
Then the GA are used to search for the optimal combination of CFs of each
device using the relative distance constraint information. In addition, we provide
an analytical model for selecting CFs to predict the probability of CFs could
cover the true location of target device. The experimental results indicate that
our method outperforms the-state-of-the-art localization schemes in terms of
localization errors, and typical running times for our simulations are within a few
seconds. These are reasonable times to locate devices in an indoor environment.

Acknowledgments. This work was financially supported by National Natural
Science Foundation of China with Grants No. 61370216 and No. 61100191, and Shenzhen
Strategic Emerging Industries Program with Grants No. ZDSY20120613125016389,
No. JCYJ20120613151201451 and No. JCYJ20130329153215152.

References

1. Bahl, P., Padmanabhan, V.: Radar: an in-building RF-based user location and
tracking system. In: Proceedings of the IEEE Nineteenth Annual Joint Conference
of the IEEE Computer and Communications Societies, INFOCOM 2000, vol. 2,
pp. 775–784 (2000)

2. Bauer, K., McCoy, D., Grunwald, D., Sicker, D.C.: CRAWDAD data set cu/rssi
(v. 2009–05-28), May 2009. http://crawdad.org/cu/rssi/

3. Chintalapudi, K.K., Iyer, A.P., Padmanabhan, V.: Indoor localization without the
pain. In: Mobicom. Association for Computing Machinery Inc., September 2010

4. Liu, H., Gan, Y., Yang, J., Sidhom, S., Wang, Y., Chen, Y., Ye, F.: Push the limit
of wifi based localization for smartphones. In: Proceedings of the 18th Annual
International Conference on Mobile Computing and Networking, Mobicom 2012,
pp. 305–316. ACM, New York (2012)

http://crawdad.org/cu/rssi/

Indoor Localization via Candidate Fingerprints and Genetic Algorithm 333

5. Ni, L., Liu, Y., Lau, Y.C., Patil, A.: Landmarc: indoor location sensing using active
RFID. In: Proceedings of the First IEEE International Conference on Pervasive
Computing and Communications (PerCom 2003), pp. 407–415, March 2003

6. Peng, C., Shen, G., Han, Z., Zhang, Y., Li, Y., Tan, K.: Demo abstract: a beepbeep
ranging system on mobile phones, November 2007

7. Priyantha, N.B., Chakraborty, A., Balakrishnan, H.: The cricket location-support
system. In: Proceedings of the 6th Annual International Conference on Mobile
Computing and Networking, MobiCom 2000, pp. 32–43. ACM, New York (2000)

8. Rehim, Y.A.: HORUS: A WLAN-based Indoor Location Determination System-
date. Chapter 4, pp. 44–46 (2004)

9. Roos, T., Myllymäki, P., Tirri, H., Misikangas, P., Sievänen, J.: A probabilistic
approach to wlan user location estimation. Int. J. Wirel. Inf. Netw. 9(3), 155–164
(2002)

10. Swangmuang, N., Krishnamurthy, P.: An effective location fingerprint model for
wireless indoor localization. Pervasive Mob. Comput. 4(6), 836–850 (2008). Per-
Com 2008

11. Want, R., Hopper, A., Falcao, V., Gibbons, J.: The active badge location system.
ACM Trans. Inf. Syst. 10(1), 91–102 (1992)

12. Ward, A., Jones, A., Hopper, A.: A new location technique for the active office.
IEEE Pers. Commun. 4(5), 42–47 (1997)

13. Youssef, M., Agrawala, A.: The horus WLAN location determination system. In:
Proceedings of the 3rd International Conference on Mobile Systems, Applications,
and Services, MobiSys 2005, pp. 205–218. ACM, New York (2005)

14. Jack Graver, B.S., Servatius, H.: Combinatorial Rigidity. American Mathematical
Society (1993)

15. Jackson, B., Jordán, T.: Connected rigidity matroids and unique realizations of
graphs. J. Combin. Theor. Ser. B 94(1), 1–29 (2005)

16. Wang, X., Qiu, J., Ye, S., Dai, G.: An advanced fingerprint-based
indoor localization scheme for WSNs. In: 2014 IEEE 9th Conference on
Industrial Electronics and Applications (ICIEA), pp. 2164–2169, 9–11 June 2014.
doi:10.1109/ICIEA.2014.6931530

17. Cheng, J., Ye, Q., Du, H., Liu, C.: DISCO: a distributed localization scheme
for mobile networks. In: 2015 IEEE 35th International Conference on Distributed
Computing Systems (ICDCS), pp. 527–536 (2015). doi:10.1109/ICDCS.2015.60

18. Ye, Q., Cheng, J., Du, H., Jia, X., Zhang, J.: A matrix-completion approach
to mobile network localization. In: Proceedings of the 15th ACM International
Symposium on Mobile Ad Hoc Networking and Computing, pp. 327–336. ACM
(2014)

19. Nandakumar, R., Chintalapudi, K.K., Padmanabhan, V.: Centaur: Locating
devices in an office environment. In: Mobicom (August 2012)

On Clustering Without Replication
in Combinatorial Circuits

Zola Donovan1(B), Vahan Mkrtchyan2, and K. Subramani2

1 Department of Mathematics, West Virginia University, Morgantown, WV, USA
zdonovan@mix.wvu.edu

2 LDCSEE, West Virginia University, Morgantown, WV, USA
vahanmkrtchyan2002@ysu.am, ksmani@csee.wvu.edu

Abstract. In this paper, we consider the problem of clustering com-
binatorial circuits for delay minimization, when logic replication is not
allowed (CN). The problem of delay minimization when logic replication
is allowed (CA) has been well studied, and is known to be solvable in
polynomial-time [8]. However, unbounded logic replication can be quite
expensive. Thus, CN is an important problem. We show that selected
variants of CN are NP-hard. We also obtain approximability and inap-
proximability results for these problems.

Keywords: Clustering without replication ·Computational complexity ·
NP-completeness · Approximation · Inapproximability

1 Introduction

In this paper, we consider the problem of clustering combinatorial circuits for
delay minimization when logic replication is not allowed (CN). Combinator-
ial circuits implement Boolean functions, and produce a unique output for every
combination of input signals [14]. The gates and their interconnections in the cir-
cuit represent implementations of one or more Boolean function(s). The Boolean
functions are realized by the assignment of the gates to chips.

Due to manufacturing process and capacity constraints, it is generally not
possible to place all of the circuit elements in one chip. Consequently, the cir-
cuit must be partitioned into clusters, where each cluster represents a chip in
the overall circuit design. The circuit elements are assigned to clusters, while
satisfying certain design constraints (e.g., area capacity) [8].

Gates and their interconnections usually have delays. The delays of the inter-
connections are determined by the way the circuit is clustered. Intra-cluster
delays are associated with the interconnections between gates in the same clus-
ter. Inter-cluster delays are associated with the interconnections between gates

V. Mkrtchyan and K. Subramani—The author is supported, in part, by the Air Force
of Scientific Research through Award FA9550-12-1-0199.
K. Subramani—The author is supported by the National Science Foundation through
Award CCF-1305054.

c© Springer International Publishing Switzerland 2015
Z. Lu et al. (Eds.): COCOA 2015, LNCS 9486, pp. 334–347, 2015.
DOI: 10.1007/978-3-319-26626-8 25

On Clustering Without Replication 335

in different clusters. The delay along a path from an input to an output is the
sum of the delays of the gates and interconnections on the respective paths. The
delay of the overall circuit, with respect to its clustering, is the maximum delay
among all paths that connect an input to any output in the circuit.

Fig. 1. A DAG representing a com-
binatorial network with two sources
and two sinks.

The problem of clustering combinatorial
circuits for delay minimization, when logic
replication is allowed (CA), is well studied.
It arises frequently in VLSI design. In CA,
the goal is to find a clustering of a circuit for
which the delay of the overall circuit is min-
imized. CA has been shown to be solvable
in polynomial-time [8]. However, unbounded
replication can be quite expensive. As sys-
tems become increasingly more complex, the
need for clustering without logic replication
is crucial. It follows that CN is an important
problem in VLSI design.

In this paper, we consider several variants of CN. We prove NP-hardness
results for these variants. We design an approximation algorithm for one of them.
We also obtain an inapproximability result.

The rest of this paper is organized as follows: We give the necessary graph-
theoretic definitions in Sect. 2. The problem is formally described in Sect. 3. We
then examine related work in Sect. 4. In Sect. 5, we give some hardness results
for the clustering problem. We also show that one of the hardness results implies
that the problem is inapproximable. In Sect. 6, we propose an approximation
algorithm for solving the clustering problem, when the gates are unweighted and
the cluster capacity, M , is 2. We conclude the paper with Sect. 7 by summarizing
our main results, and identifying avenues for future work.

2 Graph Preliminaries

In this section, we define the main graph-theoretic concepts that are used in the
paper.

Graphs considered in this paper do not contain loops or parallel edges. The
degree of a vertex v of a graph G is the number of edges of G incident with v.

A path of G is a sequence P = v0, e1, v1, ..., el, vl, where v0, v1, ..., vl are
vertices of G, e1, ..., el are edges of G, and ej = (vj−1, vj), 1 ≤ j ≤ l. l is called
the length of the path P , and sometimes we say that P is an l-path of G. The
edge e� l

2 � is called a central edge of P . G is connected if any two vertices of G

are joined by a path of G. P is said to be a cycle, if v0 = vl.
A directed path of a directed graph D is a sequence Q = v0, e1, v1, ..., el, vl,

where v0, v1, ..., vl are vertices of D, e1, ..., el are edges of D, and ej = (vj−1, vj),
1 ≤ j ≤ l. l is called the length of the path Q, and sometimes we say that Q is
a directed l-path of D. If v0 = vl, then Q is called a directed cycle. D is said to
be a directed acyclic graph (DAG), if it contains no directed cycles.

336 Z. Donovan et al.

A cluster is defined as a subset of the vertices of a graph. If C is a cluster in
a graph, then an edge is said to be a cut-edge if it connects a vertex of C to a
vertex from V \C. The degree of C is the number of cut-edges incident with a
vertex in C.

The fanin and fanout of a vertex are the number of arcs belonging to E that
enter and leave the vertex, respectively. A source represents a vertex with fanin
equal to 0, and a sink represents a vertex with fanout equal to 0. As the example
from Fig. 1 shows, a DAG may have more than one source and more than one sink.

Let I and O be the set of sources and sinks of G, respectively. Notice that
I = {a, b} and O = {e, f} in the DAG in Fig. 1; C1 = {a, c, g} and C2 = {b, e, f}
represent a pair of disjoint clusters.

3 Statement of Problems

In this section, we formally describe the problem studied in this paper. We
start with formulating the problem using the language of combinatorial circuits.
Then, we represent such circuits as directed acyclic graphs and formulate the
main problem using graph-theoretic terminology.

In general, each gate in a circuit has an associated delay [7]. In the model
that we consider in this paper, each interconnection has one of the following
types of delays: (1) an intra-cluster delay, d, when there is an interconnection
between two gates in the same cluster, or (2) an inter-cluster delay, D, when
there is an interconnection between two gates in different clusters.

Note that D >> d, so inter-cluster delays typically dominate in all delay
calculations.

The delay along a path from an input to an output is the sum of the delays
of the gates and interconnections that lie on the path. The delay of the overall
circuit is the maximum delay among all source to sink paths in the circuit.

Technology and design paradigms impose a number of constraints on the
clustering of a circuit. So, a clustering is feasible if all clusters obey the imposed
constraints. Constraints can be either monotone or non-monotone. In [5], the
following definition is given:

Definition 1. A constraint is said to be monotone if and only if any connected
subset of gates in a feasible cluster is also feasible.

Typical constraints include: capacity (a monotone constraint), which is a
fixed constant M , denoting an upper-bound on the number of gates allowed
in a cluster; and, pin-limitations (a non-monotone constraint), which is a fixed
constant P , denoting an upper-bound on the total degree of a cluster.

In CN, a clustering partitions the circuits into disjoint subsets.
A clustering algorithm tries to achieve one or both of the following goals,

subject to one or more constraints:

(1) Delay minimization through the circuit [1,5,7,8].
(2) Minimize the total number of cut-edges [2–4,6,9,10].

On Clustering Without Replication 337

In this paper, we study CN under the delay model described as follows:

1. Associated with every gate v of the circuit, there is a delay δ(v) and a
size w(v).

2. The delay of an interconnection between two gates within a single cluster is d.
3. The delay of an interconnection between two gates in different clusters is D,

where D >> d.

The size of a cluster is the sum of the sizes of the gates in the cluster.
The precise formulation of the problem is as follows:

CN: Given a combinatorial circuit, with each gate having a size and a delay,
intra- and inter-cluster delays d and D, respectively, and a positive integer M
called cluster capacity, the goal is to partition the circuit into clusters such that

1. The size of each cluster is bounded by M ,
2. The delay of the circuit is minimized.

A combinatorial circuit can be represented as a directed graph G = (V,E),
with vertex-set V and edge-set E, such that G has no directed cycles. In G,
each vertex v ∈ V represents a gate, and each edge (u, v) ∈ E represents an
interconnection between gates u and v.

Given a clustering of the combinatorial circuit, the delays on the intercon-
nections between gates induce an edge-length function l : E(G) → {d,D} of G.
The weight of a cluster is the sum of the weights of the vertices in the cluster.

In the rest of the paper, we focus on a graph-theoretic formulation of CN.
We employ the following notations and concepts: The length of a path P in G is
calculated as the sum of all delays of vertices and edge-lengths of edges of P . X
can be either W , which means that the vertices are weighted, or N , which means
that the vertices are unweighted. M is the cluster capacity. Δ is the maximum
number of arcs entering or leaving any vertex of the DAG.

CN is formulated (graph-theoretically) as follows:

CN〈X,M,Δ〉: Given a DAG G = (V,E), with vertex-weight function w : V → N,
delay function δ : V → N, constants d and D, and a cluster capacity M , the goal
is to partition V into clusters such that

1. The weight of each cluster is bounded by M ,
2. The maximum length of any path from a source to a sink of G is minimized.

A clustering of G, such that the weight of each cluster is bounded by M , is
called feasible. Given a feasible clustering of G, one can consider the correspond-
ing edge-length function l : E(G) → {d,D} of G. A maximum length path (with
respect to l) from a source to a sink of G is called an optimal path. A clustering
of G is optimal, if the length of an optimal path is the smallest. An optimal path
with respect to an optimal clustering is called a critical path.

In Fig. 2, we consider a simple example of a clustering of a combinatorial
circuit represented by a DAG, where logic replication is not allowed. In this

338 Z. Donovan et al.

example, the weights and delays of all vertices are equal to 1 (i.e., δ(v) = 1 and
w(v) = 1 for all vertices v in the DAG); the upper bound for the weight of the
cluster is M = 2; the intra-cluster delay is d = 1; and, the inter-cluster delay is
D = 2. It can be easily seen that the partition Σ = {{s, a}, {b, e}, {c, t}} forms
a feasible clustering such that the length of the optimal path is 9. Moreover, it
can be checked that this clustering is optimal.

s

a

b

c

e

t s

a

b

c

e

t

Fig. 2. An example of a DAG and its clustering.

In this paper, we focus on a restriction of CN〈X,M,Δ〉, when δ(v) = 0 for
any vertex v of G.

The main contributions of this paper are as follows:

1. We show that CN〈W,M,Δ〉 and several of its variants are NP-hard (Sect. 5).
2. For CN〈N, 2,Δ〉, we present a 2-approximation algorithm (Sect. 6).
3. We prove that CN〈W,M,Δ〉 does not admit a (2 − ε)-approximation algo-

rithm for every ε > 0, unless P=NP (Sect. 5).

4 Related Work

In this section, we describe some related work in the literature.
In [5], the authors present an exact polynomial-time algorithm for CA. The

problem is solved under the so-called unit delay model [5].
A more general delay model is presented in [7]. The problem of disjoint

clustering for minimum delay under the area or pin constraint is shown to be
intractable in [7]. To minimize the delay, the authors propose an algorithm which
constructs a clustering. This algorithm achieves the optimal delay under specific
conditions.

In [8], CA is considered under the more general delay model proposed in
[7]. However, [8] presents a different polynomial-time algorithm. Their heuristic
is shown to always find an optimal clustering under any monotone clustering
constraint.

Similar to [7], the problem of disjoint clustering for minimum delay under
the area or pin constraint is also shown in [11] to be intractable. However, an
improved heuristic is proposed in [11]. The authors also share comparative exper-
imental results which show that a decrease in clusters generally leads to an
increase in maximum delay.

On Clustering Without Replication 339

In [10], the authors propose an efficient network-flow based algorithm which
determines an optimal partitioning of the circuit. Using the least amount of
replication, the optimal partitioning separates the nodes of the circuit into two
subsets with the smallest cut size. The algorithm presented in [10] is also applica-
ble to size-constrained partitioning.

[12,13] explore the advantage of evolutionary algorithms aimed at reducing
the delay and area in partitioning and floorplanning. In turn, this would reduce
the wirelength. A hybrid of the evolutionary algorithms are used to find optimal
solutions to VLSI physical design problems.

5 Computational Complexity of CN

In this section, we obtain the main results that deal with the computational
complexity of CN. We prove two theorems that establish the NP-completeness
of some variants of CN. One of our reductions implies that CN is inapproximable
within a certain factor.

In order to formulate the results, we consider CNWD, which is formulated
as follows:

CNWD: Given a DAG G = (V,E), with vertex-weight function w : V → N,
delay function δ : V → N, constants d and D, cluster capacity M and a positive
integer k, partition V into clusters such that

1. The weight of each cluster is bounded by M ,
2. The length of an optimal path of G is at most k.

It is not hard to see that CNWD is the decision version of CN〈W,M,Δ〉. We
make this correspondence explicit by writing CNWD as CNWD〈W,M,Δ〉.
We use the same notation for restrictions of CN〈W,M,Δ〉.

Note that CNWD〈W,M,Δ〉 is in NP. This follows from the well-known
fact that a maximum weighted path in an edge-weighted DAG can be found in
polynomial time.

If A is a subset of positive integers, then we denote by CNWD〈A,M,Δ〉,
the restriction of CNWD〈W,M,Δ〉, when the weights of verticies of the input
DAG are from A.

We recall the partition problem:

Partition: Given a set S = {a1, a2, . . . , an}, the goal is to check whether there
is a set S1 ⊂ S, such that

∑
x∈S1

x =
∑

x∈S−S1
x.

Without loss of generality, we assume that B =
∑

i∈S ai is even, otherwise
the problem is trivial.

340 Z. Donovan et al.

s

. .
. . . .

v1 v2 · · · vn

.
.

t

Fig. 3. Reduction from the partition
problem to CNWD〈W,M, 3〉.

The following theorem establishes the
NP-completeness of CNWD〈W,M,
Δ〉. Clearly, this means that CN〈W,M,Δ〉
is NP-hard.

Theorem 1. CNWD〈W,M, 3〉 is NP-
complete.

Proof. In order to prove that CNWD〈W,
M, 3〉 is NP-complete, we present a
reduction from Partition.

We construct a new instance I ′ of
CNWD〈W,M, 3〉 as shown in Fig. 3.

For each i ∈ {1, . . . , n}, there is a
path connecting the source s to the sink
t, through a vertex vi. Let V denote the
set of all vi vertices. Let S denote the set
of all vertices that are predecessors to the
vertices in V , and let T denote the set of
all vertices that are successors to the ver-
tices in V . Since |S| = |T |, let m denote the size of S and T . No pair of vertices
in V are connected. Each vertex vi ∈ V has a weight of ai. Every vertex in S
and T has weight 1. So, the sum of the weights of all vertices in S is equal to
m, and the sum of the weights of all vertices in T is equal to m. We set D = 1
and d = 0. Every vertex is given a delay of 0. The cluster capacity M is set to(
B
2 + m

)
, and we take k = 1. The description of I ′ is complete.

Observe that I ′ can be constructed from I in polynomial time. In order
to complete the proof of the theorem, we show that I is a “yes” instance of
Partition, if and only if I ′ is a “yes” instance of CNWD〈W,M, 3〉.

Assume that I is a “yes” instance of Partition. This means that there exists
a partition of A into A1 and A2, such that

∑
x∈A1

x =
∑

x∈A2
x = B

2 . Group the
vertices corresponding to the elements in A1 with S, and the remaining vertices
with T . Observe that the cluster capacity constraint is met. Moreover, the length
of the optimal path from a source to a sink is 1. This means that I ′ is a “yes”
instance of CNWD〈W,M, 3〉.

Conversely, assume that I ′ is a “yes” instance of CNWD〈W,M, 3〉. This
means that there is a way of packing the vertices of the DAG in Fig. 3 into
clusters, such that the cluster capacity is not exceeded, and the length of the
optimal path from s to t is 1.

Observe that if there are two vertices of S which belong to different clusters,
then the s− t path(s) going though one of them will have length at least 2. This
means that any two vertices of S must be in the same cluster. The same is true
for T .

If there is a vertex vi ∈ V which is not packed with either S or T , then the
s − t path going through that vertex will have length at least 2. Therefore, V
cannot be partitioned into more than two sets.

On Clustering Without Replication 341

Let VS and VT denote the subset of vertices vi ∈ V that are packed with
S and T , respectively. Observe that VS ∪ VT = V . Moreover, the length of the
path from s to any vertex in VS must be 0, and the length of the path from any
vertex in VT to t must also be 0.

Let w(S) denote the sum of the weights of all vertices in S, and w(T) denote
the sum of the weights of all vertices in T . Notice that w(S) = w(T) = m. Let
w(VS) and w(VT) denote the sum of the weights of all vertices in VS and VT ,
respectively.

Notice that,

w(S) + w(VS) + w(T) + w(VT) = B + 2 · m.

Since

w(S) + w(VS) ≤
(

B

2
+ m

)
and

w(T) + w(VT) ≤
(

B

2
+ m

)
,

then
w(VS) ≤ B

2
and w(VT) ≤ B

2
.

This implies that

w(VS) =
B

2
and w(VT) =

B

2
.

Thus, we have obtained the desired partition of A. Hence, I is a “yes” instance
of Partition.

The proof of the theorem is complete. �

The proof of Theorem 1 implies an inapproximability result for CN〈W,M, 3〉.
Corollary 1. CN〈W,M, 3〉 does not admit a (2 − ε)-approximation algorithm
for each ε > 0, unless P=NP.

Proof. Consider the reduction from Partition described in the proof of
Theorem 1. Observe that in any approximate solution of the clustering problem,
there must exist at least one vertex which is not packed with either s or t. This
means that s and t do not belong to the same cluster. Hence, the approximation
algorithm can be used to solve the partition problem exactly.

The proof of the corollary is complete. �

In the proof of the following theorem, we use a 3SAT reduction modeled after
the one presented in [11]. For that purpose, we recall the definition of 3SAT:

3SAT: Given a 3-CNF formula φ with n variables x1, . . . , xn and m clauses
C1, . . . , Cm, the goal is to check whether φ has a satisfying assignment.

Without loss of generality, for all i ∈ {1, . . . , n} we assume that each variable
xi in φ appears at most 3 times and each literal at most twice. (Any 3SAT
instance can be transformed to satisfy these properties in polynomial time [15].)

342 Z. Donovan et al.

Theorem 2. CNWD〈{1, 2, 3}, 3, 3〉 is NP-complete.

Proof. In order to prove the completeness of CNWD〈{1, 2, 3}, 3, 3〉 for NP, we
present a reduction from 3SAT.

Let each variable xi (1 ≤ i ≤ n), be represented by a variable gadget as
shown in Fig. 4(a). Let each clause Cj (1 ≤ j ≤ m), be represented by a clause
gadget as shown in Fig. 4(b). If a variable xi or its complement x̄i is the 1st,
2nd, or 3rd literal of a clause Cj , then the corresponding vertex labeled xi (or
x̄i) is connected to a sink labeled Cj through a pair of vertices labeled yj1 and
zj1, yj2 and zj2, or yj3 and zj2, respectively.

Ti

xi x̄i

(a) Variable

Cj

yj1 yj2 yj3

zj1 zj2 zj3

(b) Clause

Fig. 4. Gadgets used to represent variables and clauses.

We now construct an instance I ′ of CNWD〈{1, 2, 3}, 3, 3〉 as shown in Fig. 5.
The resulting DAG G represents a combinatorial circuit. Let V denote the

set of all vertices labeled xi or x̄i (1 ≤ i ≤ n). There are n sources Ti (1 ≤ i ≤ n)
connected to m sinks Cj (1 ≤ j ≤ m) through some vertices in V and 3m pairs
of vertices labeled yjp and zjp (1 ≤ j ≤ m, 1 ≤ p ≤ 3). Each yjp is connected
to exactly one vertex gadget, and for fixed j, no two vertices in {yj1, yj2, yj3}
are adjacent to the vertices xi and x̄i belonging to the same vertex gadget. In
other words, both xi and x̄i cannot both be connected to the same clause gadget.
Every Ti, zjp, and Cj has a weight of 1, every xi, x̄i ∈ V has a weight of 2, and
every yjp has a weight of 3. We set D = 1 and d = 0. All vertices are given a
delay of 0. The cluster capacity M is set to 3, and we take k = 3. The description
of I ′ is complete.

Observe that I ′ can be constructed from I in polynomial time. In order to
complete the proof of the theorem, we show that I is a “yes” instance of 3SAT,
if and only if I ′ is a “yes” instance of CNWD〈{1, 2, 3}, 3, 3〉.

Suppose that I is a “yes” instance of 3SAT. This means that there exists an
assignment of φ such that every clause has at least one true literal. If a literal is
set to true, then the corresponding vertex xi (or x̄i) should be clustered with
Ti, but if it is set to false, then the corresponding vertex is clustered alone.
Notice that every yjp must be clustered alone. Since each clause Cj has at least
one true literal, the vertex zjp corresponding to that literal should be clustered
alone. This means that the source to sink path going through vertices yjp and

On Clustering Without Replication 343

T1

1

x1

2
x̄1

2

T2

1

x2

2
x̄2

2

· · · Tn

1

xn

2
x̄n

2

...
...

...
...

...
...

C1

1

y11

3
y12

3
y13

3

z11

1
z12

1
z13

1

· · ·

Cm

1

ym1

3

ym2

3

ym3

3

zm1

1

zm2

1

zm3

1

Fig. 5. Reduction from the 3SAT problem to CNWD〈{1, 2, 3}, 3, 3〉.

zjp corresponding to true literals have length 3. If either of the other two zjp
vertices belonging to the respective clause gadget corresponds to literals which
are set to false, they should be clustered with Cj . Otherwise, they may also
be clustered alone. Note that clustering two zjp vertices with Cj , even if they
both correspond to true literals, leads to paths of length 2 < 3 = k. Observe
that the cluster capacity constraint is met, and the length of the optimal path
from any source Ti to any sink Cj is 3. This means that I ′ is a “yes” instance of
CNWD〈{1, 2, 3}, 3, 3〉.

Conversely, suppose that I ′ is a “yes” instance of CNWD〈{1, 2, 3}, 3, 3〉. This
means that there is a way of packing the vertices in G into clusters of capacity
M = 3, such that the length of the optimal path from source to sink is 3.

Since M = 3, again notice that every yjp must be clustered alone. Each
vertex Cj may be clustered with at most 2 of the zjp vertices. So, at least
one zjp is clustered alone. However, notice that any source to sink path with a
vertex zjp clustered alone, has length at least 3. In order to satisfy the optimal
path constraint, each Ti must be clustered with the vertex xi (or x̄i) which
corresponds to a vertex zjp clustered alone. Otherwise, the length of the path
would be 4 > k = 3. To avoid exceeding the cluster capacity, either xi or x̄i (but
not both) may be clustered with Ti. Finally, notice that zjp vertices along paths
where their corresponding literals are considered false, must be clustered with
their respective sinks Cj . Otherwise, the length of such a path with all internal
vertices belonging to single vertex clusters would have length 4 > 3 = k. Take
the variable which corresponds to the vertex clustered with Ti, and set its value

344 Z. Donovan et al.

to true. Take the variable which corresponds to the vertex not clustered with
Ti, and set its value to false.

By setting to true all literals with corresponding vertices xi (or x̄i) clustered
with Ti, and by setting to false all literals with corresponding vertices not clus-
tered with Ti, means that at least one true literal appears in every clause. Thus,
a satisfying clustering for G yields a satisfying assignment for φ. Hence, I is a
“yes” instance of 3SAT.

The proof of the theorem is complete. �

6 A 2-Approximation Algorithm for CN〈N, 2, Δ〉
In this section, we present a 2-approximation algorithm for CN〈N, 2,Δ〉. Our
algorithm makes use of the fact that there is a polynomial-time algorithm for
finding a path with a maximum number of edges in DAGs. In each iteration, the
algorithm picks a path P with a maximum number of edges. Then it considers
the central edge e = (u, v) of P , and puts u and v in the same cluster. After that
u and v are removed from G. The algorithm iterates until all edges of the input
DAG are exhausted.

Theorem 3. Algorithm 1 is a 2-approximation algorithm for CN〈N, 2,Δ〉.

Algorithm 1. A 2-approximation algorithm for the clustering problem.
1: Input: a DAG G;
2: Output: a clustering of vertices of G;
3: Take a longest path P in the DAG G;
4: Declare the central edge e� l

2 � of P as a d-edge, where l denotes the length of P ,

and e1, · · · , el are the edges of P .
5: The edges adjacent to e� l

2 � should be declared as D-edges.

6: Remove edge e� l
2 � together with its adjacent edges.

7: Continue this process until all edges of G are exhausted.

Proof. For a path P , let l(P) be the length of P (i.e., the number of edges of
P). Moreover, let

l = max
P

l(P).

So, l denotes the length of a longest path of G.
The following shows a lower bound for OPT , where OPT is the delay of the

optimal clustering of G when M = 2.

OPT ≥
 l(P)
2

� · d + � l(P)
2

 · D.

On Clustering Without Replication 345

Since P represents any path, then the above inequality must also be true for the
longest path. Thus,

OPT ≥
 l

2
� · d + � l

2
 · D.

Now, let us estimate ALG, where ALG is the delay of the clustering found
by the algorithm. Let Q be an optimal path with respect to this clustering. We
consider three cases.

Case 1: When l(Q) < l, then the following chain of inequalities holds:

ALG ≤ (l − 1) · D

≤ 2 · (
 l

2
� · d + � l

2
 · D)

≤ 2 · OPT.

Case 2: When l(Q) = l and Q contains at least one d-edge, then the following
chain of inequalities holds:

ALG ≤ d + (l − 1) · D

≤ 2 · (
 l

2
� · d + � l

2
 · D)

≤ 2 · OPT.

Case 3: When l(Q) = l and all edges of Q are D-edges, we consider two
sub-cases of this case.

Sub-case (3a): When l is even, then the following chain of inequalities holds:

ALG = l · D

≤ 2 · (
 l

2
� · d + � l

2
 · D)

≤ 2 · OPT.

Sub-case (3b): When l is odd, assume that l = 2 ·k +1. In this case, we show
that:

OPT ≥ � l

2
 · d +
 l

2
� · D.

Clearly, we must rule out the case when

OPT =
 l

2
� · d + � l

2
 · D

= (k + 1) · d + k · D,

which is equivalent to saying that in any optimal path of odd length l, the edges
with odd numbered indices, are d-edges. In particular, this means that all paths
of length l in G are vertex disjoint.

346 Z. Donovan et al.

Since we are in case 3, all edges of Q are D-edges, specifically the central,
(k +1)-edge e = (u, v) of Q. Now, since this edge is also a D-edge, it means that
there is an edge e′ adjacent to e, such that the algorithm has declared e′ as a
d-edge. Clearly, this means that e′ is a central edge of some other path Q′ of
length l, contradicting our conclusion as stated above.

Finally, observe that the following chain of inequalities holds:

ALG = l · D

≤ 2 · (� l

2
 · d +
 l

2
� · D)

≤ 2 · OPT.

The proof of the theorem is complete. �
Figure 6 shows an example of a DAG for which the algorithm achieves an

approximation factor of 2.

Fig. 6. A DAG which obtains a factor 2 approximation.

Observe that in this example, OPT = 2 · d + D. However, the algorithm
picks up the central edge first, then the delay of the resulting clustering would
be ALG = 2 · D + d, which shows that the bound of at most 2 · OPT cannot be
improved for this algorithm. Finally observe that one can construct an infinite
sequence of DAGs, such that the algorithm achieves a bound of at most 2 ·OPT
(simply take vertex disjoint copies of 3-paths).

7 Conclusion

In this paper, we studied the problem of clustering combinatorial networks for
delay minimization when logic replication is not allowed (CN〈X,M,Δ〉). We
showed that several versions of CN〈W,M,Δ〉 are NP-hard. The strategy devel-
oped for the proofs allowed us to prove that the problem does not admit a (2−ε)-
approximation algorithm for any ε > 0, unless P=NP. On the positive side,
there exists a 2-approximation algorithm for CN〈N, 2,Δ〉.

We are interested in the following open problems:

1. Finding an approximation algorithm for CN〈N, 2,Δ〉 whose performance
ratio is smaller than 2. There may exist a combinatorial approximation algo-
rithm for CN〈N, 2,Δ〉 with smaller performance ratio. The following idea
may be helpful in the design of such an algorithm. Take a longest path in
the input DAG. Put the first two vertices in one cluster, the second two in
another cluster, and so on. Remove all the vertices that are clustered with
some other vertex. Iterate until all edges of the DAG are exhausted.

2. Finding inapproximabilility results for CN〈N,M,Δ〉. It might be the case
that CN〈N,M,Δ〉 is NP-hard. Moreover, it may not admit an FPTAS.

On Clustering Without Replication 347

References

1. Cong, J., Ding, Y.: FlowMap: an optimal technology mapping algorithm for delay
optimization in lookup-table based FPGA designs. IEEE Trans. Comput. Aided
Des. Integr. Circuits Syst. 13(1), 1–12 (1994)

2. Barke, E., Behrens, D., Hebrich, K.: Heirarchical partitioning. In: Proceedings of
the IEEE International Conference on CAD, pp. 470–477 (1997)

3. Hwang, L.J., Gamal, A.E.: Min-cut replication in partitioned networks. IEEE
Trans. Comput. Aided Des. Integr. Circuits Syst. 14, 96–106 (1995)

4. Cheng, C.-K., Liu, L.T., Kuo, M.-T.: A replication cut for two-way partitioning.
IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 14, 623–630 (1995)

5. Lawler, E.L., Levitt, K.N., Turner, J.: Module clustering to minimize delay in
digital networks. IEEE Trans. Comput. C–18(1), 47–57 (1966)

6. Kuh, E.S., Shih, M.: Circuit partitioning under capacity and I/O constraints. In:
IEEE Custom Integrated Circuits Conference, vol. 28 (1994)

7. Brayton, R.K., Murgai, R., Sangiovanni-Vincentelli, A.: On clustering for min-
imum delay/area. In: International Conference on Computer Aided Design, pp.
6–9, November 1991

8. Rajaraman, R., Wong, D.F.: Optimal clustering for delay minimization. In: Pro-
ceedings of the 30th ACM/IEEE Design Automation Conference, pp. 309–314.
IEEE Computer Society, Washington, DC, June 1993

9. Deng, W., Dutt, S.: VLSI circuit partitioning by cluster-removal using iterative
improvement techniques. In: Proceedings of the IEEE International Conference on
CAD, pp. 194–200 (1996)

10. Wong, D.F., Mak, W.-K.: Minimum replication min-cut partitioning. In: Proceed-
ings of the IEEE International Conference on CAD, pp. 205–210 (1996)

11. Kagaris, D.: On minimum delay clustering without replication. Integr. VLSI J. 36,
27–39 (2003)

12. Shanavas, I.H., Gnanamurthy, R.K.: Wirelength minimization in partitioning and
floorplanning using evolutionary algorithms. VLSI Design 2011, Article ID 896241,
9 (2011). doi:10.1155/2011/896241

13. Shanavas, I.H., Gnanamurthy, R.K.: Optimal solution for VLSI physical design
automation using hybrid genetic algorithm. Math. Probl. Eng. 2014, Article ID
809642, 15 (2014). doi:10.1155/2014/809642

14. Koshy, T.: Boolean Algebra and Combinatorial Circuits, Discrete Mathematics
with Applications, pp. 803–865. Elsevier Academic Press (2004)

15. Papadimitriou, C.M.: Computational Complexity. Addison-Wesley, Redaing (1994)

http://dx.doi.org/10.1155/2011/896241
http://dx.doi.org/10.1155/2014/809642

On Replica Placement in High-Availability
Storage Under Correlated Failure

K. Alex Mills(B), R. Chandrasekaran, and Neeraj Mittal

Department of Computer Science,
The University of Texas at Dallas, Richardson, TX, USA

{k.alex.mills,chandra,neerajm}@utdallas.edu

Abstract. A new model describing dependencies among system compo-
nents as a directed graph is presented and used to solve a novel replica
placement problem in data centers. A criterion for optimizing replica
placements is formalized and explained. In this work, the optimization
goal is to choose placements in which correlated failure events disable
as few replicas as possible. A fast optimization algorithm is given for
dependency models represented by trees. The main contribution of the
paper is an O(n + ρ log ρ) dynamic programming algorithm for placing
ρ replicas on a tree with n vertices.

1 Introduction

With the surge towards the cloud, our websites, services and data are increas-
ingly being hosted by third-party data centers. These data centers are often con-
tractually obligated to ensure that data is rarely, if ever unavailable. One cause
of unavailability is co-occurring component failures, which can result in outages
that can affect millions of websites, and can cost millions of dollars in profits. An
extensive one-year study of availability in Google’s cloud storage infrastructure
showed that such failures are relatively harmful. Their study emphasizes that
“correlation among node failure dwarfs all other contributions to unavailability
in our production environment” [4].

We believe that the correlation found among failure events arises due to
dependencies among system components. Much effort has been made in the
literature to produce quality statistical models of this correlation. But in using
such models researchers do not make use of the fact that these dependencies can
be explicitly modeled, since they are known to the system designers. In contrast,
we propose a model wherein such dependencies are included, and demonstrate
how an algorithm may make use of this information to optimize placement of
data replicas within a data center.

To achieve high availability, data centers typically store multiple replicas of
data to tolerate the potential failure of system components. This gives rise to a

This work was supported, in part, by the National Science Foundation (NSF) under
grant number CNS-1115733.
The original version of this chapter was revised: Contents were corrected throughout
the chapter. The erratum to this chapter is available at 10.1007/978-3-319-26626-8 60

c© Springer International Publishing Switzerland 2015
Z. Lu et al. (Eds.): COCOA 2015, LNCS 9486, pp. 348–363, 2015.
DOI: 10.1007/978-3-319-26626-8 26

On Replica Placement in High-Availability Storage Under Correlated Failure 349

v

u

Switches

Racks

Servers

(a) Scenario I

v

u

(b) Scenario II

Fig. 1. Two scenarios represented by directed trees.

replica placement problem, which, broadly speaking, involves determining which
subset of nodes in the system should store a copy of a given file so as to maximize
a given objective function (e.g., reliability, communication cost, response time,
or access time). While our focus is on replica placements, our model could also
be used to place replicas of other entities that require high-availability, such as
virtual machines or mission-critical tasks.

In this work, we present a new model for causal dependencies among failures,
and a novel algorithm for optimal replica placement in our model. See Fig. 1 for
an example model, in which three identical replicas of the same block of data are
distributed on servers in a data center. As can be seen from in Fig. 1(a), a failure
in the power supply unit (PSU) on a single rack could result in a situation where
every replica of a data block is completely unavailable, whereas in Fig. 1(b) three
PSUs would need to fail in order to achieve the same result. Best practices can
avoid Scenario I by ensuring that each replica is housed on a separate rack.
However, this simple heuristic can be suboptimal in some cases. For instance,
failures that occur higher in the tree can impact the availability of every data
replica stored on adjacent racks.

While many approaches for replica placement have been proposed, our app-
roach of modeling causal dependencies among failure events appears to be new.
Other work on reliability in storage area networks has focused on objectives
such as mean time to data loss [1,3,4,8,10,12]. These exemplify an approach
towards correlated failure which we term “measure-and-conquer”. In measure-
and-conquer approaches, a measured degree of correlation is given as a parame-
ter to the model. In contrast, we model explicit causal relations among failure
events which we believe give rise to the correlation seen in practice. More recently,
Pezoa and Hayat [6] have presented a model in which spatially correlated failures
are explicitly modeled. However, they consider the problem of task allocation,
whereas we are focused on replica placement. In the databases community, work
on replica placement primarily focuses on finding optimal placements in storage-
area networks with regard to a particular distributed access model or mutual
exclusion protocol [5,11,13]. In general, much of the work from this community
focuses on system models and goals which are substantially different from our
own. Recently, there has been a surge of interest in computer science concerning
cascading failure in networks. While our model is conceptually related to this
work, it does not appear to directly follow from any published model. Moreover,
current work in this area is focused on fault-tolerant network design [2] modeling

350 K.A. Mills et al.

cascading failure [7], and developing techniques for adversarial analysis [14]. To
our knowledge, no one has yet considered the problem of replica placement in
such models.

2 Model

We model dependencies among failure events as a directed graph, where nodes
represent failure events, and a directed edge from u to v indicates that the
occurrence of failure event u could trigger the occurrence of failure event v. We
refer to this graph as the failure model.

Given such a graph as input, we consider the problem of selecting nodes
on which to store data replicas. Roughly, we define a placement problem as
the problem of selecting a subset of these vertices, hereafter referred to as a
placement, from the failure model so as to satisfy some safety criterion. In our
application, only those vertices which represent storage servers are candidates to
be part of a placement. We refer to such vertices as placement candidates. Note
that the graph also contains vertices representing other types of failure events,
which may correspond to real-world hardware unsuitable for storage (such as
a ToR switch), or even to abstract events which have no associated physical
component. In most applications, the set of placement candidates forms a subset
of the set of vertices.

More formally, let E denote the set of failure events, and C denote the set of
placement candidates. We are interested in finding a placement of size ρ, which
is defined to be a set P ⊆ C, with |P | = ρ. Throughout this paper we will use P
to denote a placement, and ρ to denote its size. We consistently use C to denote
the set of placement candidates, and E to denote the set of failure events.

Let G = (V,A) be a directed graph with vertices in V and edges in A. The
vertices represent both events in E and candidates in C, so let V = E ∪ C. A
directed edge from event e1 to event e2 indicates that the occurrence of failure
event e1 can trigger the occurrence of failure event e2. A directed edge from
event e to candidate c indicates that the occurrence of event e could compromise
candidate c. We will assume failure to act transitively. That is, if a failure event
occurs, all failure events reachable from it in G also occur. This a pessimistic
assumption which leads to a conservative model.

We now define the notions of failure number and failure aggregate.

Definition 1 (failure number). Given an event e ∈ E and a placement P ,
the failure number of e with respect to P , denoted f(e, P) is defined as the number
of candidates in P whose correct operation could be compromised by occurrence
of event e. In particular,

f(e, P) = |{p ∈ P | p is reachable from e in G}|.
As an example, node u in Fig. 1 has failure number 3 in Scenario I, and failure
number 1 in Scenario II. The following property is an easy consequence of the
above definition.

On Replica Placement in High-Availability Storage Under Correlated Failure 351

Property 1. For any placement P of replicas in tree T , if node u has descendant
v, then f(v, P) ≤ f(u, P).

The failure number captures a conservative criterion for a safe placement.
Intuitively, we consider the worst case scenario, in which every candidate which
could fail due to an occurring event does fail. Our goal is to find a placement
which does not induce large failure numbers in any event. To aggregate this idea
across all events, we define the failure aggregate, a measure that accounts for the
failure number of every event in the model.

Definition 2 (failure aggregate). The failure aggregate of a placement P is
a vector in N

ρ+1, denoted f(P), where f(P) := 〈pρ, . . . , p1, p0〉, and each pi :=∣∣{e ∈ E | f(e, P) = i
}∣∣.

Note that nodes in C are not counted as part of the failure aggregate. In Fig. 1,
Scenario I has failure aggregate of 〈2, 0, 0, 4〉 and Scenario II has failure aggregate
of 〈0, 1, 4, 1〉 in Scenario II.

In all of the problems considered in this paper, we are interested in opti-
mizing f (P). When optimizing a vector quantity, we must choose a meaningful
way to totally order the vectors. In the context of our problem, we find that
ordering the vectors with regard to the lexicographic order is both meaningful
and convenient. The lexicographic order ≤L between f (P) = 〈pρ, . . . , p1, p0〉 and
f (P ′) = 〈p′

ρ, . . . , p
′
1, p

′
0〉 is defined via the following formula:

f (P) ≤L f (P ′) ⇐⇒ ∃ m > 0,
[∀ i > m : pi = p′

i

] ∧ pm ≤ p′
m.

To see why this is desirable, consider a placement P which lexico-minimizes
f (P) among all possible placements. Such a placement is guaranteed to mini-
mize pρ, i.e. the number of nodes which compromise all of the entities in our
placement. Further, among all solutions minimizing pρ, P also minimizes pρ−1,
the number of nodes compromising all but one of the entities in P , and so on for
pρ−2, pρ−3, . . . , p0. Clearly, the lexicographic order nicely prioritizes minimizing
the entries of the vector in an appealing manner.

Throughout the paper, any time a vector quantity is maximized or minimized,
we are referring to the maximum or minimum value in the lexicographic order.
We will also use f (P) to denote the failure aggregate, and pi to refer to the
ith component of f (P), where P can be inferred from context. Variables i, j
are reserved to index sequences, and u, v, w are reserved to refer to vertices in a
graph. Their intended meaning is context-dependent. We will also use the phrase
“place a replica on node u” to mean, “set P ← P ∪ {u}”.

In the most general case, we could consider the following problem.

Problem 1 (Replica Placement). Given graph G = (V,A) with V = C ∪ E, and
positive integer ρ with ρ < |C|, find a placement P ⊆ C with |P | = ρ such that
f (P) is lexico-minimum.

The replica placement problem, as defined above, is NP-hard to solve, even
in the case where G is a bipartite graph. In particular, we can reduce an instance

352 K.A. Mills et al.

of the independent set problem to an instance of the replica placement problem.
The reduction can be found in the full paper [9]. The problem is, however,
tractable for special classes of graphs, one of which is the case wherein the graph
forms a directed, rooted tree with leaf set L and C = L. Our main contribution
in this paper is a fast algorithm for solving the replica placement problem in such
a case. We briefly mention a näıve greedy algorithm which solves the problem
in O(n2ρ) time, where n = |V |. However, since n � ρ in practice our result of
an O(n + ρ log ρ) algorithm is much preferred.

3 An O(n2ρ) Greedy Algorithm

The greedy solution to this problem forms a partial placement P ′, to which new
replicas are added one at a time, until ρ replicas have been placed overall. P ′

starts out empty, and at each step, the leaf u which lexico-minimizes f (P ′ ∪
{u}) is added to P ′. That this näıve greedy algorithm works correctly is not
immediately obvious. It can be shown via an exchange argument that each partial
placement found by the greedy algorithm is a subset of some optimal placement.
The proof of correctness of can be found in the full version of the paper [9].

The running time of the above greedy algorithm is O(n2ρ) for a tree in
general. This running time comes about since each iteration requires visiting
O(|L|) leaves for inclusion. For each leaf q which is checked, every node on a
path from q to the root must have its failure number computed. Both the length
of a leaf-root path and the number of leaves can be bounded by O(n) in the
worst case, yielding the result.

4 Balanced Placements

Consider a round-robin placement in which the set of replicas placed at each
node is distributed among its children, one replica per child, until all replicas
have been placed. This process is then continued recursively at the children.
Throughout the process, no child is given more replicas than its subtree has leaf
nodes. This method has intuitive appeal, but it does not compute an optimal
placement exactly as can be seen from Fig. 2. Let placements P1 and P2 consist of
the nodes labeled by 1 and 2 in Fig. 2 respectively. Note that both outcomes are
round-robin placements. A quick computation reveals that f (P1) = 〈1, 1, 2, 1〉 �=
〈1, 1, 3, 0〉 = f (P2). Since the placements have different failure aggregates, round-
robin placement alone cannot guarantee optimality.

For any node u, let �u refer to the number of leaves on node u. When a
sequence of nodes is indexed, (i.e. c1, ..., ci, ...) we will use �i to refer to the
number of leaves on the ith node. Similarly, ru refers to the number of replicas
in placement P which can be reached from node u, and ri is defined analogously
to �i.

Key to our algorithm is the observation that any placement which lexico-
minimizes f (P) must be balanced. If we imagine each child ci of u as a bin of

On Replica Placement in High-Availability Storage Under Correlated Failure 353

1 1,2

1,2 2

Fig. 2. Two round-robin placements
with different objective function values.

u

v w

sv sw

qv qwswap

Fig. 3. Illustration of swap to reduce
imbalance.

capacity �i, balanced nodes are those in which all unfilled children are approx-
imately “level”, and no child is filled while children of smaller capacity remain
unfilled. These ideas are formalized in the following definitions.

Definition 3. Let node u have children c1, ..., ci, ..., ck. A node for which �i −
ri = 0 is said to be filled. A node for which �i − ri > 0 is said to be unfilled.

Definition 4 (balanced placement). Node u is said to be balanced in place-
ment P iff:

�i − ri > 0 =⇒ ∀ j ∈ {1, . . . , k} (ri ≥ rj − 1).

Placement P is said to be balanced if all nodes v ∈ V are balanced.

Consider Fig. 4. In the figure, Fig. 4(a) shows a hierarchical failure mode,
Fig. 4(b) and (c) show two different placements P1 and P2 of three replicas on
leaf nodes. Upon computing f (P1) and f (P2), we find that f (P1) = 〈2, 1, 0, 2〉 ≥L

〈1, 1, 1, 2〉 = f (P2). Note that for placement P1, the root of the tree is unbalanced,
therefore P1 is unbalanced. Note also, that P2 is balanced, since each of its nodes
are balanced. We invite the reader to verify that P2 is an optimal solution for
this tree.

(a) Failure model.

3

3 0

2 0

(b) Failure numbers for
placement P1.

3

1 2

0 0

(c) Failure numbers for
placement P2.

Fig. 4. Two different placements. Shaded leaf nodes denote nodes with replicas.

354 K.A. Mills et al.

Our main result is that it is necessary for an optimal placement to be bal-
anced. However, the balanced property alone is not sufficient to guarantee opti-
mality. To see this, consider the two placements in Fig. 2. By definition, both
placements are balanced, yet they have different failure aggregates. Therefore,
balancing alone is insufficient to guarantee optimality. Despite this, we can use
Theorem 1 to justify discarding unbalanced solutions as suboptimal. We exploit
this property of optimal placements in our algorithm.

Theorem 1. Any placement P in which f(P) is lexico-minimum among all
placements for a given tree must be balanced.

Proof. Suppose P is not balanced, yet f (P) is lexico-minimum among all place-
ments P . We proceed to a contradiction, as follows.

Let u be an unbalanced node in T . Let v be an unfilled child of u, and let w
be a child of u with at least one replica such that rv < rw −1. Since v is unfilled,
we can take one of the replicas placed on w and place it on v. Let qw be the leaf
node from which this replica is taken, and let qv be the leaf node on which this
replica is placed (see Fig. 3). Let P ∗ := (P − {qw}) ∪ {qv}. We aim to show that
P ∗ is more optimal than P , contradicting P as a lexico-minimum.

Let f (P) := 〈pρ, . . . , p0〉, and f (P ∗) := 〈p∗
ρ, . . . , p

∗
0〉. For convenience, we let

f(w,P) = α. To show that f (P ∗) <L f (P), we aim to prove that p∗
α < pα, and

that for any i with ρ ≥ i > α, that p∗
i = pi. We will concentrate on proving the

former, and afterwards show that the latter follows easily.
To prove p∗

α < pα, observe that as a result of the swap, some nodes change
failure number. These nodes all lie on the paths v � qv and w � qw. Let S−

(resp. S+) be the set of nodes whose failure numbers change from α (resp. change
to α), as a result of the swap. Formally, we define

S− := {x ∈ V | f(x, P) = α, f(x, P ∗) �= α},

S+ := {x ∈ V | f(x, P) �= α, f(x, P ∗) = α}.

By definition, p∗
α = pα − |S−| + |S+|. We claim that |S−| ≥ 1 and |S+| = 0,

which yields p∗
α < pα. To show |S−| ≥ 1, note that f(w,P) = α by definition,

and after the swap, the failure number of w changes. Therefore, |S−| ≥ 1.
To show |S+| = 0, we must prove that no node whose failure number is

affected by the swap has failure number α after the swap has occurred. We
choose to show a stronger result, that all such node’s failure number must be
strictly less than α. Let sv be an arbitrary node on the path v � qv, and consider
the failure number of sv. As a result of the swap, one more replica is counted
as failed in each node on this path, therefore f(sv, P ∗) = f(sv, P) + 1. Likewise,
let sw be an arbitrary node on path w � qw. One less replica is counted as
failed in each node on this path, so f(sw, P ∗) = f(sw, P)− 1. We will show that
f(sw, P ∗) < α, and f(sv, P ∗) < α.

First, note that for any sw, by Property 1, f(sw, P ∗) ≤ f(w,P ∗) = α−1 < α.
Therefore, f(sw, P ∗) < α, as desired.

On Replica Placement in High-Availability Storage Under Correlated Failure 355

To show f(sv, P ∗) < α, note that by supposition rw − 1 > rv, and from this
we immediately obtain f(w,P)−1 > f(v, P) by the definition of failure number.
Now consider the nodes sv, for which

f(sv, P) ≤ f(v, P) < f(w,P) − 1 = α − 1 =⇒ f(sv, P ∗) − 1 < α − 1,

Where the first inequality is an application of Property 1, and the implication
follows by substitution. Therefore f(sv, P ∗) < α as desired.

Therefore, among all nodes in P ∗ whose failure numbers change as a result
of the swap, no node has failure number α, so |S+| = 0 as claimed. Moreover,
since f(s, P ∗) < α for any node s whose failure number changes as a result of
the swap, we also have proven that pi = p∗

i for all i where ρ ≥ i > α. This
completes the proof. ��

5 An O(n + ρ log ρ) Algorithm

Our algorithm executes in three consecutive phases, each named divide, trans-
form and combine respectively. Each phase consists of a post-order traversal of
the nodes of the tree starting from the root. Before the divide phase begins, a
preprocessing step gathers the following information about each node u: values of
the leaf capacity of u, denoted �u, and the least-depth leaf which is a descendant
of u. It is easy to see that this information can be gathered by a post-order traver-
sal in O(n) time. During the divide phase, values of r(u) are computed for each
node u, where r(u) is the maximum number of replicas which can be placed on u
in any balanced placement. This phase also computes the set of unfilled children
of u. Since u itself must be balanced, each unfilled child c will have either r(c)
or r(c) − 1 replicas placed upon it. The value r(c) is computed for each unfilled
child of u during the divide phase. The transform phase is performed between
the divide and combine phases to remove degenerate chains from the tree. These
chains result in wasted processing during the combine phase. Removing them
allows us to obtain our running time of O(n + ρ log ρ). More details are given
in Sect. 5.3. The combine phase recursively computes two optimal placements of
size r(u) and r(u) − 1 at each unfilled node u. To do so optimal placements of
size r(c) and r(c)−1 are computed for each unfilled child of u. An optimal com-
bination of these child placements is then made. We show that at each node, an
optimal combination of child placements can be made which yields an optimal
placement for u. By an easy structural induction on the tree, it can be shown
that the placement of size ρ returned at the root is optimal.

We present the divide and combine phases first, then the transform phase.

5.1 Divide Phase

The divide phase computes the value of r(u) for each node u, along with the
set of unfilled children of node u. At the root, r(u) = ρ. Given a value r(u) for
node u, we describe how to compute r(ci) for each of u’s k children, ci, where

356 K.A. Mills et al.

Algorithm 1. Determine filled and unfilled nodes
1 Function Label-Children({c1, c2, . . . , ck}, r)begin
2 F ← ∅; U ← ∅ ; // F := filled children U := unfilled children
3 M ← {c1, c2, . . . , ck} ; // M := unassigned children
4 s ← r ; // s := number of replicas not yet assigned to filled children
5 while M �= ∅ do
6 �med ← median capacity of children in M ;
7 M� ← {ci ∈ M | �i < �med};
8 Me ← {ci ∈ M | �i = �med};
9 Mg ← {ci ∈ M | �i > �med};

10 x ← s −∑ci∈M�
�i ;

11 if x ≤ (�med − 1) · (|U | + |Me| + |Mg|) then // Me ∪ Mg guaranteed unfilled
12 U ← U ∪ Me ∪ Mg;
13 M ← M − (Me ∪ Mg);

14 else if x > (�med) · (|U | + |Me| + |Mg|) then // M� ∪ Me guaranteed filled
15 F ← F ∪ M� ∪ Me;
16 M ← M − (M� ∪ Me);
17 s ← x −∑ci∈Me

�i;

18 else // M� filled, Me ∪ Mg unfilled
19 U ← U ∪ Me ∪ Mg ;
20 F ← F ∪ M�;
21 M ← ∅;

22 return (F , U) ; // return filled and unfilled children

1 ≤ i ≤ k. Let child ci have capacity �i. We first determine which children are
filled, and which are unfilled.

The set of unfilled children can be determined (without sorting) in an iter-
ative manner using an O(k) time algorithm similar to that for the Fractional
Knapsack problem. The main idea of the algorithm is as follows: in each iter-
ation, at least one-half of the children whose status is currently unknown are
assigned a filled/unfilled status. To determine which half, the median capacity
child (with capacity �med) is found using the selection algorithm. Based upon
the number of replicas that have not been assigned to the filled nodes, either (a)
the set of children ci with �i ≥ �med are labeled as “unfilled” or (b) the set of
children ci with �i ≤ �med are labeled as “filled”. The algorithm recurses on the
remaining unlabeled children. Pseudocode can be found in Algorithm1. Algo-
rithm 1 is only invoked if the sum of the capacities of all the children is strictly
greater than r implying that at least one child will be labeled as unfilled. The
proof of correctness of the labeling algorithm can be found in the full paper [9].

Suppose we know that we only need to find placements of size r(u) and
r(u) − 1 for node u. Moreover, we know that in an optimal placement of size
r(u), each child ci only needs to accommodate either r(ci) or r(ci) − 1 replicas.
We also have optimal placements of size r(ci) and r(ci) − 1 available for each
child ci. Theorem 2 shows that optimal child placements having these two sizes
are all that is required to compute optimal placements of size r(u) and r(u)− 1.
Let U and F be the sets of filled and unfilled children of node u as found by
Algorithm 1. Let R denote the number of replicas to be distributed among the
unfilled children, (i.e. R = r(u) − ∑

ci∈F �i).

On Replica Placement in High-Availability Storage Under Correlated Failure 357

Theorem 2. In any case where r(u) or r(u) − 1 replicas must be balanced
among |U | unfilled children, it suffices to consider placing either �R/|U |� or
�(R − 1)/|U |� children at each unfilled child.

Proof. Suppose R mod |U | = 0. If r(u) replicas are placed at u, then all unfilled
children receive exactly R/|U | (= �R/|U |�) replicas. If r(u) − 1 replicas are
placed at u, one child gets (R/|U |) − 1 = �(R − 1)/|U |� replicas. If instead
R mod |U | > 0, then the average number of replicas on each unfilled child is
R/|U | /∈ Z. To attain this average using integer values, values both above and
below R/|U | are needed. However, since the unfilled children must be balanced,
whatever values selected must have absolute difference at most 1. The only
two integer values satisfying these requirements are �R/|U |� and �R/|U |�. But
�R/|U |� = �(R − 1)/|U |� when R mod |U | > 0. ��

5.2 Combine Phase

The combine phase selects R mod |U | of the unfilled children on which to place
�R/|U |� replicas, and places �(R − 1)/|U |� replicas on the remaining unfilled
children. This selection must be made so as to yield two optimal placements at
node u, one with r(u) replicas, and another with only r(u) − 1. We show how to
obtain a solution in the r(u)− 1 case, the r(u) case is easily obtained thereafter.

Let a i (respectively bi) represent the lexico-minimum value of f (P) where
P is any placement of �(R − 1)/|U |� (respectively �R/|U |�) replicas on child i.
Recall that a i, bi ∈ N

ρ+1, and are available as the result of the recursive call.
We formulate an optimization problem by encoding the decision to take bi over
a i as a decision variable xi ∈ {0, 1}, for which either xi = 0 if a i is selected,
or xi = 1 if bi is selected. The problem can then be described as an assignment
of values to xi according to the following system of constraints, in which all
arithmetic operations are performed component-wise.

min
∑

i

a i + (bi − a i)xi, subj. to:
∑

i

xi = R mod |U |. (1)

An assignment of xi which satisfies the requirements in (1) can be found
by computing bi − a i for all i, and greedily assigning xi = 1 to those i which
have the R mod |U | smallest values of bi −a i. That this assignment is correct is
not immediately obvious, see Theorem 3 below for a proof. The required greedy
solution can be quickly made by finding the unfilled child having the (R mod
|U |)th largest value of bi − a i using linear-time selection, and the partition
procedure from quicksort can be used to find those children having values below
the selected child. For ease of exposition, we assume that the unfilled children
ci are assigned indices in increasing order of bi − a i even though the algorithm
performs no such sorting.

At the end of the combine phase, we compute and return the sum∑
i < R mod |U |

bi +
∑

i ≥ R mod |U |
a i +

∑
j : filled

f (Pj) + 1r(u), (2)

358 K.A. Mills et al.

where Pj is the placement of �j replicas on child j and 1r(u) is a vector of length
ρ + 1 having a one in entry r(u) and zeroes everywhere else. The term 1r(u)

accounts for the failure number of u. This sum gives the value of an optimal
placement of size r(u) − 1.

It remains to show that the greedy assignment of values xi to system (1) is
optimal. This is the content of Theorem 3.

Theorem 3. Let π = (π1, π2, . . . , πk) be a permutation of {1, 2, . . . , k} such
that:

bπ1 − aπ1 ≤L bπ2 − aπ2 ≤L . . . ≤L bπk
− aπk

.

If vector x = 〈x1, . . . , xk〉 is defined according to the following rules: set xπi
= 1

iff i < R mod |U |, else xπi
= 0, then x is an optimal solution to (1).

The proof of Theorem 3 is greatly simplified through use of an algebraic
property of addition on Z

n under lexicographic order. Recall that a group is a
pair 〈S, ·〉, where S is a set, and · is a binary operation which is, closed for S,
is associative, and has both an identity and inverses. A linearly-ordered group
is a group 〈S, ·〉, along with a linear-order ≤ on S in which for all x, y, z ∈ S,
x ≤ y =⇒ x · z ≤ y · z, i.e. the linear-order on 〈S, ·〉 is translation-invariant.

Lemma 1. 〈Zn,+〉 forms a linearly-ordered group under ≤L. In particular, for
any x,y, z ∈ Z

n,x ≤L y =⇒ x + z ≤L y + z.

A proof of the above lemma can be found in the full paper [9].

Proof. (Proof of Theorem 3). First, notice that a solution to (1) which mini-
mizes the quantity

∑
i(bi−a i)xi also minimizes the quantity

∑
i a i+(bi−a i)xi.

It suffices to minimize the former quantity, which can be done by considering
only those values of (bi − a i) for which xi = 1. For convenience, we consider x
to be the characteristic vector of a set S ⊆ {1, . . . , k}. We show that no other set
S′ can yield a characteristic vector x ′ which is strictly better than x as follows.

Let β = R mod |U |, and let S = {π1, . . . , πβ−1} be the first β − 1 entries
of π taken as a set. Suppose that there is some S′ which represents a feasible
assignment of variables to x ′ for which x ′ is a strictly better solution than x .
S′ ⊆ {1, . . . , k}, such that |S′| = β − 1, and S′ �= S. Since S′ �= S, and |S′| = |S|
we have that S − S′ �= ∅ and S′ − S �= ∅. Let i ∈ S − S′ and j ∈ S′ − S. We
claim that we can form a better placement, S∗ = (S′ − {j}) ∪ {i}. Specifically,∑

�∈S∗
(b� − a�) ≤L

∑
m∈S′

(bm − am) . (3)

which implies that replacing a single element in S′ with one from S does not
cause the quantity minimized in (1) to increase.

To prove (3) note that j /∈ S and i ∈ S =⇒ (bi −a i) ≤L (bj −aj). We now
apply Lemma 1, setting x = (bi −a i), y = (bj −aj), and z =

∑
�∈(S∗−{i})(b� −

a�). This yields∑
�∈(S∗−{i})

(b� − a�) + (bi − a i) ≤L

∑
�∈(S∗−{i})

(b� − a�) + (bj − aj) .

On Replica Placement in High-Availability Storage Under Correlated Failure 359

But since S∗ − {i} = S′ − {j}, we have that∑
�∈(S∗−{i})

(b� − a�) + (bi − a i) ≤L

∑
m∈(S′−{j})

(bm − am) + (bj − aj) . (4)

Clearly, (4) =⇒ (3), thereby proving (3). This shows that any solution which is
not S can be modified to swap in one extra member of S without increasing the
quantity minimized in (1). By induction, it is possible to include every element
from S, until S itself is reached. Therefore, x is an optimal solution to (1). ��

Näıve implementation of the combine phase yields a O(nρ) algorithm. But
observe that the maximum failure number returned from child ci is r(ci). This
along with Property 1 implies that the vector returned from ci will have a zero in
indices ρ, ρ−1, . . . , r(ci)+1. To avoid wasting time, we modify the algorithm to
return the non-zero suffix of this vector, which has length at most r(ci). At each
node, we then compute (2) by summing the vectors in increasing order of their
component index. Specifically, to compute v1 +v2 + . . .+vk, where each vector
v i has length r(ci), we first allocate an empty vector w , of size r(u), to store the
result of the sum. Then, for each vector v i, we set w [j] ← w [j]+v i[j] for indices
j from 0 up to r(ci). After all vectors have been processed, w = v1+. . .+vk. This
algorithm takes r(c1) + . . . + r(ck) = O(r(u)) time. Using smaller vectors also
implies that the (R mod |U |)th best child is found in O(r(u)) time, since each
unfilled child returns a vector of size at most O(r(u)/|U |), and there are only
|U | unfilled children to compare. With these modifications the entire combine
phase takes only O(r(u)) time at node u.

5.3 Transform Phase

Note that in any placement, nodes at the same depth have ρ replicas placed on
them in total. We can therefore achieve an O(ρ log ρ) combine phase overall by
ensuring the combine phase only needs to occur in at most O(log ρ) levels of the
tree. To do this, we observe that when r(u) = 1, any leaf with minimum depth
forms an optimal placement. The combine phase can therefore be stopped once
r(u) = 1. To ensure that there are only O(log ρ) levels, we transform the tree to
guarantee that as the conquer phase proceeds down the tree, r(u) decreases by
at least a factor of two at each level. Balancing ensures this will automatically
occur when there are two or more unfilled children at each node. Problems can
therefore only occur when a tree has a degenerate chain, a path of nodes each of
which have a single unfilled child. By removing degenerate chains we can achieve
an O(ρ log ρ) combine phase.

Figure 5(a) illustrates a degenerate chain. In this figure, each Ti with 1 ≤ i ≤
t − 1 is the set of all descendant nodes of vi which are filled. Thus, v1, . . . , vt−1

each have only a single unfilled child (since each vi has vi+1 as an child). In
contrast, node vt has at least two unfilled children. It is easy to see that if the
number of leaves in each Ti is O(1) then the length of the chain can be as large
as O(ρ). This would imply that there can be O(ρ) levels in the tree where the

360 K.A. Mills et al.

. .
.

len
gt

h
O(ρ

)

Tt

vt

T3

v3

v2

T2

T1

v1

O(1) leaves

O(1) leaves

O(1) leaves

(a) A degenerate chain.

Tt

vt

w

(b) Contracted pseudonode.

Fig. 5. Illustration of a degenerate chain.

entire conquer phase is required. To remove degenerate chains, we contract nodes
v1, . . . , vt−1 into a single pseudonode w, as in Fig. 5(b). However, we must take
care to ensure that the values which pseudonode w returns take into account
contributions from the entire contracted structure. We will continue to use vi

and Ti throughout the rest of this section to refer to nodes in a degenerate chain.
Let (aw, bw) be the pair of values which will be returned by pseudonode w at

the end of the conquer phase. In order for the transformation to be correct, the
vectors (aw, bw) must be the same as those which would have been returned at
node v1 had no transformation occurred. To ensure this, we must consider and
include the contribution of each node in the set T1 ∪ . . . ∪ Tt−1 ∪ {v1, . . . , vt−1}.
It is easy to see that the failure numbers of nodes in {v1, . . . , vt−1} depend only
upon whether r(vt) or r(vt) − 1 replicas are placed on node vt, while the filled
nodes in sets T1, . . . , Tt−1 have no such dependency. Since values of r(vi) are
available at each node after the divide phase, enough information is present to
contract the degenerate chain.

Pseudocode for the transform phase is given in Algorithm2. Let Sw := T1 ∪
. . .∪Tt−1 ∪{v1, . . . , vt−1}, and let the contribution of nodes in Sw to aw and bw

be given by vectors a and b respectively. The transform phase is started at the
root of the tree by invoking Transform(root, false, ρ). Transform is a modified
recursive breadth-first search, which returns a 4-tuple (a , b, f , x), where x is the
node vt which ends the degenerate chain. As the recursion proceeds down the
tree, each node is tested to see if it is part of a degenerate chain (lines 2 and
8). If a node is not part of a degenerate chain, the call continues on all unfilled
children (line 3). The first node (v1) in a degenerate chain is marked (by passing
down chain ← true at lines 10 and 11). Once the bottom of the chain (node vt)
has been reached, the algorithm allocates memory for three vectors, a , b and
f , each of size s + 1 (line 7). The value of r(v1) is passed down to the bottom
of the chain at lines 7 and 16. These vectors are then passed up through the
entire degenerate chain (cf. lines 7 and 16), along with node u (at line 7), whose

On Replica Placement in High-Availability Storage Under Correlated Failure 361

Algorithm 2. Transform phase
1 Function Transform(u, chain, s)begin
2 if u has two or more unfilled children then // not chain node
3 foreach child ci unfilled do
4 (−, −, −, x) ←Transform(ci, false, ⊥) ;
5 if ci �= x then ci ← x ; // replace ci with pseudonode

6 if chain = false then return (⊥, ⊥, ⊥, u) ;
7 else return (0s+1, 0s+1, 0s+1, u) ; // last node of chain

8 if u has one unfilled child, v then // chain node
9 if chain = false then // first node of chain

10 (a, b, f , x) ← Transform(v, true, r(v)) ; // pass down r(v)
11 else (a, b, f , x) ← Transform(v, true, r) ;
12 foreach filled child ci do Filled(ci, f) ; // O(ni) time
13 k ←∑

i:i filled �i + r(v) − 1 ; // k is min failure number of u
14 a[k + 1] ← a[k + 1] + 1; b[k] ← b[k] + 1 ; // update a and b
15 if chain = false then x ← Make-Pseudonode(a, b, f, x) ;
16 return (a, b, f, x);

17 Function Filled(u, f)begin
18 if u is a leaf then
19 f [0] ← f [0] + 1;
20 return ;

21 foreach child ci do
22 Filled(ci, f)

23 a ←∑
i �i ;

24 f [a] ← f [a] + 1;
25 return ;

26 Function Make-Pseudonode(a, b, f, x)begin
27 allocate a new node node;
28 node.a ← a + f ;
29 node.b ← b + f ;
30 node.child ← x;
31 return node;

use will be explained later. When a node u in a degenerate chain receives a , b,
and f , u adds its contribution to each vector (lines 12–14). The contribution of
node u consists of two parts. First, the contribution of the filled nodes is added
to f by invoking a special Filled subroutine which computes the sum of the
failure aggregates of each filled child of u (line 12). Note that Filled uses pass-
by-reference semantics when passing in the value of f . Then, the contribution
of node u itself is added, by summing the number of leaves in all of the filled
children, and the number of replicas on the single unfilled child, v (lines 13–14).
By the time that the recursion reaches the start of the chain on the way back
up, all nodes have added their contribution, and the pseudonode is created and
returned (line 15).

Make-Pseudonode runs in O(1) time. It is easy to see that Filled runs in
O(nj) time, where nj is the number of nodes in the subtree rooted at child
cj . Transform therefore takes O(|Ti|) time to process a single node vi. The
time needed for Transform to process an entire degenerate chain is therefore
O(|Sw|)+3 ·O(r(v1)), where the 3 ·O(r(v1)) term arises from allocating memory
for vectors a , b and f at the last node of the chain.

362 K.A. Mills et al.

When we sum this time over all degenerate chains, we obtain a running time
of O(n + ρ log ρ) for the transform phase. To reach this result, we examine the
sum of r(v1) for all pseudonodes having the same depth. Since there are at
most ρ replicas among such pseudonodes, this sum can be at most O(ρ) at any
depth. After degenerate chains have been contracted, there are only O(log ρ)
levels where r(u) > 1, thus, pseudonodes can be only be present in the first
O(log ρ) levels of the final tree. Therefore the 3·O(r(v1)) term sums to O(ρ log ρ)
overall. Since |Sw| clearly sums to O(n) overall, the transform phase takes at
most O(n + ρ log ρ) time.

Including the transform phase implies that there are only O(log ρ) levels
where the conquer phase needs to be run in its entirety. Therefore, the conquer
phase takes O(ρ log ρ) time overall. When combined with the O(n) divide phase
and the O(n + ρ log ρ) transform phase, this yields an O(n + ρ log ρ) algorithm
for solving replica placement in a tree.

6 Conclusion and Future Work

In this paper, we formulate the replica placement problem and show that it can
be solved by a greedy algorithm in O(n2ρ) time. In search of a faster algorithm,
we prove that any optimal placement in a tree must be balanced. We then exploit
this property to derive a near-optimal O(n + ρ log ρ) algorithm. In future work
we plan to consider replica placement on additional classes of graphs, such as
special cases of bipartite graphs, and also design good approximation algorithms
for general graphs.

Acknowledgments. We would like to acknowledge insightful comments from S.
Venkatesan and Balaji Raghavachari during meetings about results contained in this
paper, as well as comments from Conner Davis on a draft version of this paper.

References

1. Bakkaloglu, M., Wylie, J.J., Wang, C., et. al: On correlated failures in survivable
storage systems. Technical report CMU-CS-02-129, Carnegie Mellon University
(2002)

2. Blume, L., Easley, D., Kleinberg, J., Kleinberg, R., Tardos, E.: Which networks
are least susceptible to cascading failures? In: Proceedings of the 52nd Annual
Symposium on Foundations of Computer Science (FOCS) (2011)

3. Chen, M., Chen, W., Liu, L., Zheng, Z.: An analytical framework and its applica-
tions for studying brick storage reliability. In: Proceedings of the 26th International
Symposium on Reliable Distributed Systems (SRDS) (2007)

4. Ford, D., Labelle, F., Popovici, F., et al.: Availability in globally distributed storage
systems. In: Proceedings of the 9th USENIX Symposium on Operating Systems
Design and Implementation (OSDI) (2010)

5. Hu, X.D., Jia, X.H., Du, D.Z., et al.: Placement of data replicas for optimal data
availability in ring networks. J. Parallel Distrib. Comput. (JPDC) 61(10), 1412–
1424 (2001)

http://arxiv.org/abs/1503.02654

On Replica Placement in High-Availability Storage Under Correlated Failure 363

6. Pezoa, J.E., Hayat, M.M.: Reliability of heterogeneous distributed computing sys-
tems in the presence of correlated failures. IEEE Trans. Parallel Distrib. Comput.
25(4), 1034–1043 (2014)

7. Kim, J., Dobson, I.: Approximating a loading-dependent cascading failure model
with a branching process. IEEE Trans. Reliab. 59(4), 691–699 (2010)

8. Lian, Q., Chen, W., Zhang, Z.: On the impact of replica placement to the reli-
ability of distributed brick storage systems. In: Proceedings of the International
Conference on Distributed Computing Systems (ICDCS) (2005)

9. Mills, K.A., Chandrasekaran, R., Mittal, N.: Algorithms for replica placement in
high-availability storage (2015). arxiv:1503.02654

10. Nath, S., Yu, H., Gibbons, P.B., Seshan, S.: Subtleties in tolerating correlated fail-
ures in wide-area storage systems. In: Proceedings of the 3rd USENIX Symposium
on Networked Systems Design and Implementation (NSDI) (2006)

11. Shekhar, S., Wu, W.: Optimal placement of data replicas in distributed database
with majority voting protocol. Theoret. Comput. Sci. 258(1), 555–571 (2001)

12. Weatherspoon, H., Moscovitz, T., Kubiatowicz, J.: Introspective failure analysis:
avoiding correlated failures in peer-to-peer systems. In: Proceedings of the 21st
Symposium on Reliable Distributed Systems (SRDS) (2002)

13. Zhang, Z., Wu, W., Shekhar, S.: Optimal placements of replicas in a ring network
with majority voting protocol. J. Parallel Distrib. Comput. (JPDC) 69(5), 461–469
(2009)

14. Zhu, Y., Yan, J., Sun, Y., et al.: Revealing cascading failure vulnerability in power
grids using risk-graph. IEEE Trans. Parallel Distrib. Syst. (TPDS) 25(12), 3274–
3284 (2014)

Observing the State of a Smart Grid
Using Bilevel Programming

Sonia Toubaline(B), Pierre-Louis Poirion, Claudia D’Ambrosio, and Leo Liberti

CNRS LIX, Ecole Polytechnique, 91128 Palaiseau, France
{toubaline,poirion,dambrosio,liberti}@lix.polytechnique.fr

Abstract. Monitoring an electrical network is an important and chal-
lenging task. Phasor measurement units are measurement devices that
can be used for a state estimation of this network. In this paper we
consider a PMU placement problem without conventional measurements
and with zero injection nodes for a full observability of the network.
We propose two new approaches to model this problem, which take into
account a propagation rule based on Ohm’s and Kirchoff’s law. The nat-
ural binary linear programming description models an iterative observ-
ability process. We remove the iteration by reformulating its fixed point
conditions to a bilevel program, which we then further reformulate to a
single-level mixed-integer linear program. We also present a bilevel algo-
rithm to solve directly the proposed bilevel model. We implemented and
tested our models and algorithm: the results show that the bilevel algo-
rithm is better in terms of running time and size of instances which can
be solved.

Keywords: Bilevel program · Mixed integer linear program · Monitor-
ing electrical network · PMU placement problem

1 Introduction

One of the properties making a grid smart is that its state is continuously moni-
tored. The term state is an abstract concept which may be represented in many
ways. We consider that a state of a grid is the set of values of all the branch
currents and node voltages. Monitoring the state of a grid can be achieved using
tools of measurement and control. A piece of equipment which can be used is
Phasor Measurement Unit (PMU). PMUs are monitoring devices that provide
time synchronized phasor measurement (a phasor is a complex number that
represents both the magnitude and phase angle of the sine waves found in elec-
tricity). A PMU placed at a (sub)station measures the voltage and phase angle
of this (sub)station and branch current phasor of all transmission line emerging
from it [11]. PMUs are synchronized via global positioning systems (GPS) and
send large bursts of data to a system monitoring centre. Due to the relatively
high cost of PMUs, their optimal placement constitutes an important challenge.

Modelling the network by a graph where nodes correspond to (sub)stations
and edges to transmission lines, the optimal location problem of PMUs, called
c© Springer International Publishing Switzerland 2015
Z. Lu et al. (Eds.): COCOA 2015, LNCS 9486, pp. 364–376, 2015.
DOI: 10.1007/978-3-319-26626-8 27

Observing the State of a Smart Grid Using Bilevel Programming 365

PMU placement problem, consists of determining the minimum number of
PMUs to place on the nodes, in order to ensure a full observability of the graph.
A graph is said fully observed if the voltage is known at each node, and the
current known on each edge. In [2], the observability of a graph is defined by
two rules: (i) if a node has a PMU then this node and all its neighbours are
observed; (ii) if an observed node has all its neighbours observed, except one,
then this latter is observed. The PMU placement problem is also known
as power dominating set (PDS) problem [8]. This problem has been largely
studied in literature. The PDS is shown to be NP -complete even for bipartite,
chordal graphs [8] and planar bipartite graphs [2], and polynomial for trees and
grids [4]. Some approximation results are presented in [1]. Different solution
methods have been proposed to solve the PMU placement problem [11,12].
In all these approaches, the propagation rule has been considered for the zero
injection nodes with a limited depth.

The PMU placement problem has also been studied for PMUs with lim-
ited channels � where only a limited number of incident transmission lines can
be observed [9,10]. Korkali and Abur propose a binary linear program consid-
ering for each node of the graph all the possible combinations of � edges among
incident edges of that node [9]. The number of combinations can be exponential.
Kumar and Rao propose a new method to solve PMU placement problem
based on node connectivity and edge selectivity matrices where the number of
channels are less than the minimum degree of the graph [10]. For PMUs with
one channel, only one incident line can be observed. The placement of PMUs is
then no more on nodes but on edges. The first rule of observability is then: if an
edge has a PMU then its extremity nodes are observed. Emami et al. propose
a binary linear program for this variant of the problem [5,6], which turns out
to be equivalent to the minimum edge cover problem. They consider the second
rule of observability defined in [2] for zero injection nodes with only one depth.

We propose in this paper a new approach to model the optimal location of
PMUs with one channel. We place PMUs on edges (next to one of the adjacent
nodes) and take into account both rules of observability. We call this particular
variant the Power Edge Set (PES) problem. More specifically, we consider
the case without conventional measurements (measures provided by non syn-
chronized sensors) and all nodes are zero injection nodes (no current is injected
in the network at those nodes). We present two mathematical formulations for
this problem: iterative and bilevel models; the latter can be formally inferred
from the former by means of a fixed-point argument. The former is a Binary
Linear Program. We show that the latter can be reformulated exactly to a
Mixed-Integer Linear Program (MILP) with binary variables, and also propose
a cutting-plane algorithm to solve it in its native bilevel formulation. We bench-
marked our solution methods on standard IEEE bus-systems [14] and randomly
generated graphs.

366 S. Toubaline et al.

2 Problem Statement

Let G = (V,E) be a graph modelling the electrical network where V = {1, . . . , n}
is the set of nodes representing the (sub)stations and E the set of edges corre-
sponding to transmission lines. For i ∈ V , Γ (i) = {j : {i, j} ∈ E} is the set of
neighbours (adjacent nodes) of i. For graph-theoretical notions, see [7,13].

In this paper, we are interested in the optimal placement of PMUs with
one channel, so as to ensure a full observability of G. We consider that no
conventional measures exist, which would reduce the number of PMUs to install.

A PMU is placed on an edge {i, j} close to node i, for i ∈ V and {i, j} ∈ E.
We remark that the fact that PMU placement occurs closer to an adja-

cent node than the other is relevant for physical reasons, but irrelevant for our
abstract modelling purposes. Henceforth, we shall simply assume that placement
occurs on an edge {i, j} ∈ E. A graph is said to be observable if all node volt-
ages and current edges are known either measured by a PMU or estimated using
electrical laws. The problem is defined as follows:

Power Edge Set (PES) problem
Input: A graph G = (V,E).
Output: A PMU placement Π ⊂ E of minimum cardinality such that G is fully
observable.

2.1 Observability of a Graph

Let Π be a given PMU placement on G and Ω the set of observed nodes. The
observability of G is defined by the two following rules based on electrical laws
explained below.

R1: If a PMU is placed on an edge {i, j}, then nodes i and j are observed

{i, j} ∈ Π ⇒ i, j ∈ Ω

R2: If an observed node i has all its neighbors observed, save one, then this node
is observed

i ∈ Ω and |Γ (i) \ Ω| ≤ 1 ⇒ Γ (i) ⊆ Ω

By rule R1, the PMU placed at {i, j} measures the voltage at i and the
current on {i, j}. Using Ohm’s law, we can deduce the voltage on j. Then i and
j are observed. By rule R2, if a node i and all its neighbors k ∈ Γ (i) are observed,
except a single node j, then using Ohm’s law we can determine the current on
{i, k} for k ∈ Γ (i) \ {j}; knowing the currents on all {i, k} (for k �= j) we can
deduce the current on {i, j} using Kirchoff’s law. Then, knowing the voltage at i
and the current on {i, j}, we determine the voltage on j using Ohm’s law. Hence,
j is observed.

Observing the State of a Smart Grid Using Bilevel Programming 367

3 Mathematical Modelling

We present two Mathematical Programming (MP) models for PES problem: an
iterative based model, and a bilevel one.

3.1 Iterative Model

The model is based on the iterative process of observability given by rules R1
and R2. Assuming the problem instance to be a feasible one, the set of observed
nodes can be found in at most n − 2 steps: this is because, in the worst case,
only one PMU is placed on an edge (this observes the adjacent nodes), and one
more node is observed at each iteration. Let T = n−2 be the maximum number
of steps. The iterative model (PIT) is as follows.

Variables. We define the following set of variables:

∀i ∈ V, j ∈ Γ (i), sij =
{

1 if a PMU is installed on {i, j}
0 otherwise

∀i ∈ V, t = 0, . . . , T, ωit =
{

1 if the node i is observed at step t
0 otherwise

and ∀i ∈ V, j ∈ Γ (i), t = 0, . . . , T − 1,

yijt =
{

1 if R2 is used to observe j using the observed node i at step t
0 otherwise.

Constraints. The set of constraints is the following:

– All nodes must be observed at step T

∀i ∈ V, ωiT = 1

– If a node i is observed at step 0 then at least one PMU is placed at {i, j} or
{j, i} for a given neighbour j of i

∀i ∈ V, ωi0 ≤
∑

j∈Γ (i)

(sij + sji)

– The set of constraints corresponding to rule R2 is the following:
• If i not observed at step t is observed at step t + 1 then at least one

neighbour observed node has been used to observe i

∀i ∈ V, t = 0, . . . , T − 1, ωi(t+1) ≤ ωit +
∑

�:i∈Γ (�)

y�it

• If an observed node i is used at step t to observe a neighbour node j and
j is observed at step t + 1 then j is not observed at step t

∀i ∈ V, j ∈ Γ (i), t = 0, . . . , T − 1, ωj(t+1) + yijt ≤ ωjt + ωit + 1

368 S. Toubaline et al.

• If an observed node i is used at step t to observe a neighbour node j and j
is observed at step t + 1 then j is not observed at step t and all the other
neighbour nodes k of i are observed at step t

∀i ∈ V, j, k ∈ Γ (i), k �= j, t = 0, . . . , T − 1, ωj(t+1) + yijt ≤ ωjt +ωkt +1

– If a node i is observed at step t then i is observed from step t to step T

∀i ∈ V, t = 0, . . . , T − 1, ωit ≤ ωi(t+1).

Objective Function. The aim of PES problem is to minimize the number of
PMUs to install and that allow a full observability of G. Hence the objective
function is given by

min
∑
i∈V

∑
j∈Γ (i)

sij .

3.2 From Iterative to Bilevel Model

We show in this subsection how to deduce a bilevel model from the iterative one
using a fixed-point method.

Let ωt = (ωit | i ∈ V) be the characteristic vector describing the observ-
ability of nodes at step t. The iterative model computes the vector values for
t ∈ {1, . . . , T}. Let ω = (ωi | i ∈ V) be the characteristic vector of Ω:

∀i ∈ V, ωi =
{

1 if node i is observed
0 otherwise.

We have that ω = ωT . We show now how to obtain a non iterative model where
ω are the only variables that model the observability of the graph.

Let t ≤ T and i a node in V . The recursive relation that allows to express
ωi(t+1) in function of ωt is:

ωi(t+1) = max

⎛
⎝ωit, max

j∈Γ (i)

⎛
⎝1 − |Γ (j)| + ωjt +

∑
k∈Γ (j),k �=i

ωkt

⎞
⎠

⎞
⎠

meaning that a node i is observed at step t+1 if it was already observed at step
t or if there exists a neighbour j of i such that all the other neighbours k �= i of
j are observed.

Let θ : {0, 1}n 	→ {0, 1}n be a function where

∀i ∈ V, θi(x) = max

⎛
⎝xi, max

j∈Γ (i)

⎛
⎝1 − |Γ (j)| + xj +

∑
k∈Γ (j),k �=i

xk

⎞
⎠

⎞
⎠ .

with x = (xi | i ∈ V) and (θ(x))i = θi(x).

Observing the State of a Smart Grid Using Bilevel Programming 369

By definition we have that:

∀t ∈ {1, . . . , T − 1} ω(t+1) = θ(ωt).

Recursive Computation of ω: The vector ω is determined recursively as
follows:

– Based on R1, for t = 0 we have:

∀i ∈ V, ωi0 = max(max
j∈Γ (i)

sij , max
j∈Γ (i)

sji)

– Knowing ωt, we can compute ω(t+1) by looking for an optimal solution of the
linear program:

(∗)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

min
ωt+1∈{0,1}n

n∑
i=1

ωi(t+1)

∀i ∈ V ωi(t+1) ≥ ωit

∀i ∈ V, j ∈ Γ (i) ωi(t+1) ≥ 1 − |Γ (j)| + ωjt +
∑

k∈Γ (j)
k �=i

ωkt.

Theorem 1. We have that ω is the smallest fixed point of θ.

Proof. By the definition of the function θ, we have that θi(ω) ≥ ωi,∀i ∈ V.
Suppose that ∃i ∈ V, θi(ω) > ωi i.e. ωi = 0 and θi(ω) = 1. Then i ∈ Ω by an
application of R2 which implies ωi = 1 > 0 = ωi, contradiction. Hence θ(ω) = ω.

Assume now that ∃ω′ < ω : ω′ = θ(ω′). This means that R2 cannot be used
to observed more nodes. Hence the number of nodes observed in ω′ is less then
the one in ω, i.e.

∑
i∈V

ω′
i <

∑
i∈V

ωi which contradict the optimality of (∗).

Therefore, ω is the smallest fixed point of θ and correspond to the optimal
solution of the following linear program:⎧⎪⎪⎨

⎪⎪⎩
min

ω∈{0,1}n

∑n
i=1ωi

ωi ≥ sij + sji ∀i ∈ V, j ∈ Γ (i)
ωi − ωj − ∑

k∈Γ (j),k �=i

ωk ≥ 1 − |Γ (j)| ∀i ∈ V, j ∈ Γ (i)

��

3.3 Bilevel Model

We describe in this subsection the bilevel program proposed to model the PES
problem. We also show how it can be reformulated to a MILP.

370 S. Toubaline et al.

The formulation

(†)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
s

∑
i∈V

∑
j∈Γ (i)

sij

sij ∈ {0, 1} ∀i ∈ V, j ∈ Γ (i)
f(s) ≥ n

f(s) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

min
ω

∑
i∈V

ωi

ωi ≥ sij + sji ∀i ∈ V, j ∈ Γ (i)
ωi − ωj − ∑

k∈Γ (j),k �=i

ωk ≥ 1 − |Γ (j)| ∀i ∈ V, j ∈ Γ (i)

ωi ∈ {0, 1} ∀i ∈ V

In the upper level problem, the objective is to minimize the number of PMUs
to install such that the number of observed nodes given fy the function f(s) is
at least n. The function f corresponds to the optimal value of the lower level
problem described below and s is the vector representing sij .

In the lower level problem, the objective is to minimize the number of nodes
observed. The first set of constraints says that if a PMU is placed at {i, j} or
{j, i} then i and j are observed. The second expresses the propagation rule R2:
if a non observed node i has an observed neighbour j that has all its others node
neighbours k(k �= i) observed then i is observed.

MILP Reformulation. The integrality of variables ωi can be relaxed in the
lower level problem.

Lemma 1. For each i ∈ V, the constraint ωi ∈ {0, 1} can be replaced by ωi ≥ 0.

Proof. Let ω̄ be an optimal solution of the slave problem and consider a certain
configuration of installed PMUs in the graph.

By the first constraint

ωi ≥ sij + sji, ∀i ∈ V, j ∈ Γ (i) (1)

we have that ∃S ⊆ V,∀i ∈ S, ω̄i = 1. If we rewrite the second constraint of the
slave problem as

∀i ∈ V, j ∈ Γ (i), ωi ≥ ωj +
∑

k∈Γ (j),k �=i

ωk − |Γ (j)| + 1

we have that the right hand side r(ω̄) ∈ [1 − |Γ (j)|, 1].
If r(ω̄) ∈]0, 1[then ∃z ∈ Γ (j) ∪ {j} : ω̄z ∈]0, 1[. Hence, ∃Z ⊆ V, ∀z ∈ Z :

ω̄z ∈]0, 1[. Also, ∀z ∈ Z, z is not constrained by (1) otherwise ω̄z = 1. By the
objective function direction, ∀z ∈ Z we can set ω̄z = 0 and still be feasible,
which contradict the optimality of ω̄. Therefore, we can relax the integrity of
variables ω to [0, 1]n.

Similarly, we can prove that ∀i ∈ V, ωi ≥ 0. ��

Observing the State of a Smart Grid Using Bilevel Programming 371

Hence, by replacing the lower-level problem by its KarushKuhnTucker (KKT)
conditions [3], we obtain the following MILP:

(P)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
s

∑
i∈V

∑
j∈Γ (i)

sij

sij ∈ {0, 1} ∀i ∈ V, j ∈ Γ (i)

∑
i∈V

∑
j∈Γ (i)

sijμij + sjiμij + (1 − |Γ (j)|)λij ≥ n

∑
j∈Γ (i)

(μij + λij − λji − ∑
k∈Γ (j),k �=i

λkj) ≤ 1 ∀i ∈ V

λij , μij ≥ 0 ∀i ∈ V, j ∈ Γ (i)

We now prove that the dual variables μij are bounded, ∀i ∈ V, j ∈ Γ (i).

Proposition 1. ∀i ∈ V, j ∈ Γ (i), ∃M > 0 : μij ≤ M .

Proof. Let (s∗, μ∗, λ∗) be an optimal solution of (P) and (s∗, ω∗) be the corre-
sponding optimal solution of the bilevel formulation. In particular, we consider
(s∗, μ∗, λ∗) such that (μ∗, λ∗) is a basis solution of the dual program of the linear
program that defines f :⎧⎪⎪⎪⎨

⎪⎪⎪⎩
max

s

∑
i∈V

∑
j∈Γ (i)

sijμij + sjiμij + (1 − |Γ (j)|)λij∑
j∈Γ (i)

(μij + λij − λji − ∑
k∈Γ (j),k �=i

λkj) ≤ 1 ∀i ∈ V

λij , μij ≥ 0 ∀i ∈ V, j ∈ Γ (i)

Necessarily at most n dual variables are non-zero. Let I = {(i, j) | μij �= 0}
and J = {(i, j) | λij �= 0}. We have |I| + |J | ≤ n.

Let i ∈ {1, ..., n} such that ω∗
i = 1. By complementary slackness conditions

we have ∑
j∈Γ (i)

(μ∗
ij + λ∗

ij − λ∗
ji −

∑
k∈Γ (j),k �=i

λ∗
kj) = 1 (2)

Let AB ∈ R
n×n be the basis matrix corresponding to the optimal solution

(μ∗, λ∗). By Eq. (2), v = (μ∗, λ∗, β∗) is a solution of the system AB v = e, where
β∗ denotes the slack variables used to write the above dual program in standard
form, e is a vector in R

n where each component is one, and all elements of AB

are in {−1, 0, 1}.

SinceA−1
B = adj(AB)

det(AB) , where adj(AB) is the adjugatematrix ofAB and det(AB)
is the determinant of AB , using Hadamard inequality for determinant, we obtain
that the dual variables μij are all bounded by M = n

n
2 , ∀i ∈ V, j ∈ Γ (i). ��

372 S. Toubaline et al.

By Proposition 1, we can linearize the program (P) by replacing the variable
products by ∀i ∈ V, j ∈ Γ (i), pij = sijμij and qij = sjiμij . Therefore, we obtain
the MILP (PMILP).

(PMILP)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
∑
i∈V

∑
j∈Γ (i)

sij

si,j ∈ {0, 1} ∀i ∈ V, j ∈ Γ (i)∑
i∈V

∑
j∈Γ (i)

pij + qij + (1 − |Γ (j)|)λij ≥ n∑
j∈Γ (i)

(μij + λij − λji − ∑
k∈Γ (j),k �=i

λkj) ≤ 1 ∀i ∈ V

pij ≤ M sij ∀i ∈ V, j ∈ Γ (i)
pij ≤ μij ∀i ∈ V, j ∈ Γ (i)
pij ≥ μij − M(1 − sij) ∀i ∈ V, j ∈ Γ (i)
qij ≤ M sji ∀i ∈ V, j ∈ Γ (i)
qij ≤ μij ∀i ∈ V, j ∈ Γ (i)
qij ≥ μij − M(1 − sji) ∀i ∈ V, j ∈ Γ (i)
λij , μij ≥ 0 ∀i ∈ V, j ∈ Γ (i)

4 An Algorithm for the Bilevel Problem

We propose a cutting plane algorithm BiLevelSolve to solve the bilevel pro-
gram (†) directly. BiLevelSolve iteratively solves a modified version of the
upper level problem as a master MILP, adding a new cut at each iteration. The
cuts are generated by means of the combinatorial procedure GenerateCut on
the lower level slave problem.

Consider the following MILP P k:

[P k]

{
min

s∈{0,1}|E|

∑
i∈V

∑
j∈Γ (i)

sij

∀h ≤ k αhs ≥ 1,
(3)

where αh ∈ {0, 1}|E| for each h ≤ k, and k is the main algorithm iteration
counter: at iteration k, P k has k linear covering constraint, starting with α1 =
(1, . . . , 1).

Although BiLevelSolve needs exponentially many cuts in the worst case,
we found it to perform very well empirically.

5 Computational Results

All the experimentations presented here were performed on a 2.70 GHz computer
with 8.0 GB RAM. The models (PIT), (PMILP) and the bilevel algorithm were
implemented using IBM ILOG CPLEX 12.6. We considered as instances a 5-bus
system and standard IEEE n-bus systems, with n ∈ {7, 14, 30, 57, 118} [14]. We
also generate randomly graphs with n nodes and m = 1.4 × n for n = {5 × i, i =
1, . . . , 10} where 1.4 is the average rate of edges over nodes in standard IEEE

Observing the State of a Smart Grid Using Bilevel Programming 373

Algorithm 1. BiLevelSolve

1: k = 1
2: termination ← 0
3: while termination = 0 do
4: s ← MILPSolve(P k)
5: k ← k + 1
6: αk = GenerateCut(s, termination)
7: P k ← [P k−1 s.t. αks ≥ 1]
8: end while

Algorithm 2. GenerateCut(s, termination)
1: termination ← 0
2: // observe nodes according to PMUs in s
3: place PMUs in G in all edges in the support of s
4: apply rules R1 and R2 to G, to obtain Ω ⊆ V (observed nodes)
5: if Ω = V then
6: // if PMUs in s suffice to observe all nodes, terminate
7: termination ← 1
8: α ← (0, . . . , 0)
9: else

10: // otherwise, apply more PMUs and aim to observe all nodes
11: Θ ← Ω
12: while Ω � V do
13: choose v ∈ V setminusΩ and {u, v} ∈ E
14: place PMU in {u, v} and apply R1, R2 to update Ω
15: if Ω �= V then
16: Θ ← Ω
17: end if
18: end while
19: // generate cut on edges not induced by nodes observed
20: // at R2 application step before full observability
21: let F be the set of edges induced by Θ
22: let α be the support of E \ F
23: end if
24: return (α, termination)

bus systems. The instances can be forests and no node is isolated. For each value
of n, 10 different instances were generated and tested. The results obtained are
reported in Table 1 where each given value for the randomly generated graphs
is the average over 10 instances. We limited the running time to 2 h. For any
instance which is not solved optimally within the time limit, the running time
is set to this limit. We reported: (i) the Gap, expressed as a percentage, that
is the average over ratios UB − BS

UB computed on all instances returning at least
one feasible solution, where UB is the final best upper bound and BS is the best

374 S. Toubaline et al.

solution value found; and (ii) the number of instances #opt solved optimally,
and the number of instances that run out of memory (mof, for memory overflow).

Table 1. Computational results

Networks/graphs n m Iterative MILP Bilevel algo.

Time Gap #opt Time Gap #opt Time Gap #opt

(s) (%) (mof) (s) (%) (mof) (s) (%) (mof)

IEEE bus system 5 6 1.30 0 1 1.29 0 1 2.01 0 1

7 8 6.22 0 1 1.33 0 1 2.14 0 1

14 20 19.30 0 1 1.38 0 1 2.17 0 1

30 41 7200 100 0 40.93 0 1 2.37 0 1

57 80 7200 100 0 7200 63.51 0 4.26 0 1

118 176 7200 100 0 7200 100 0 247.41 0 1

Rand. gen. graphs 5 7 1.30 0 10 6.42 0 10 2.09 0 10

10 14 2.20 0 10 1.37 0 10 2.16 0 10

15 21 297.60 0 10 1.48 0 10 2.18 0 10

20 28 7200 69.89 0 2.34 0 10 2.26 0 10

25 35 7200 96.33 0 29.16 0 10 2.64 0 10

30 42 7200 95.71 0 1820.58 5.31 8 4.86 0 10

35 49 7200 98.14 0(1) 3789.77 16.81 6 15.26 0 10

40 56 7200 93.11 0 6316.36 33.56 1(5) 24.34 0 10

45 62 7200 98.57 0 7200 47.14 0 148.58 0 9

50 70 7200 93.16 0 7200 50.36 0(4) 414.24 0 7

italics: average over instances that did not run out of memory

We note that the iterative model cannot be used to solve medium and larger
size instances. The MILP model can solve instances with more larger size than
the iterative one but cannot solve large size instances. The bilevel algorithm can
solve almost all the instances considered in few seconds. It did not solve only 4
instances of the random generated graphs considered within the time limit. For
small instances, MILP performs a little better than the bilevel. This is due to
the choice of the solution selected at each iteration to generate the cutting plane
in the bilevel algorithm. Hence some iterations may be needed to converge to the
optimal solution in the bilevel algorithm while in the MILP model, having a small
number of variables and constraints for those instances, the model converges in
few seconds.

Therefore the bilevel algorithm is better in terms of running time and size of
instances that can be solved.

Remark 1. We assumed here that the installation cost is the same for every PMU
location at a node along an edge. If not, the problem consists then in finding the
placement of PMUs that ensures a full observability of the graph and minimize
the total installation cost. Let, ∀i ∈ V, j ∈ Γ (i), cij be the cost of installing a
PMU on {i, j} at i. The new objective function is then given by:

min
∑
i∈V

∑
j∈Γ (i)

cij sij

Observing the State of a Smart Grid Using Bilevel Programming 375

Remark 2. The models proposed for PMU placement problem, where PMUs
are with unlimited number of channels and hence the placement is done on nodes,
do not consider the propagation rule too. Our proposed models can easily be
adapted to this node version.

6 Conclusions

We presented a new approach to model PES problem using a propagation rule
based on Ohm’s and Kirchoff’s laws to reduce the number of PMUs to place. We
proposed two mathematical models: an iterative model and a bilevel one. The
iterative model is based on the observability propagation process and is given
by a binary linear program. The bilevel model is deduced from the iterative
one using fixed point method. We showed that we can transform the bilevel
model to a MILP. We proposed also an algorithm to solve the bilevel model.
We implemented these models and algorithm for the bilevel program and we
performed tests on different IEEE bus systems and randomly generated graphs.
The results showed that: the iterative model cannot be used for medium and
large instances; the MILP model can solve instances with more large size than
the iterative one but cannot solve large size instances; and the bilevel algorithm
can solve instances with large sizes. Therefore, the bilevel algorithm is better in
terms of running time and size of instances that can be solved. Further future
work could be to model the case of conventional measures. We can also consider
the case of line outage and single contingency of PMUs. Another further future
work would be to generalize our models for the case of PMUs with limited
channels �. Also, due to maintenance or repairing works the electrical network
topology is not fixed. Hence, another interesting perspective is to study the PMU
placement problem under these conditions by proposing a robust model and
a solution method to solve it.

Acknowledgments. This work was carried out as part of the SOGRID project
(www.so-grid.com), co-funded by the French agency for Environment and Energy Man-
agement (ADEME) and developed in collaboration between participating academic and
industrial partners.

References

1. Aazami, A., Stilp, M.D.: Approximation algorithms and hardness for domina-
tion with propagation. In: Charikar, M., Jansen, K., Reingold, O., Rolim, J.D.P.
(eds.) RANDOM 2007 and APPROX 2007. LNCS, vol. 4627, pp. 1–15. Springer,
Heidelberg (2007)

2. Brueni, D.J., Heath, L.: The PMU placement problem. SIAM J. Discrete Math.
19(3), 744–761 (2005)

3. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press,
Cambridge (2004)

4. Dorfling, M., Henning, M.A.: A note on power domination in grid graphs. Discrete
Appl. Math. 154, 1023–1027 (2006)

www.so-grid.com

376 S. Toubaline et al.

5. Emami, R., Abur, A.: Robust measurement design by placing synchronized phasor
measurements on network branches. IEEE Trans. Power Syst. 25(1), 38–43 (2010)

6. Emami, R., Abur, A., Galvan, F.: Optimal placement of phasor measurements for
enhanced state estimate: a case study. In: Proceedings of the 16th Power Systems
Computation Conference, Glasgow, Scotland, pp. 1–6, 14–18 July 2008

7. Gross, J.L., Yellen, J.: Handbook of Graph Theory. Discrete Mathematics and Its
Applications, vol. 25. CRC Press, Boca Raton (2003)

8. Haynes, T.W., Hedetniemi, S.M., Hedetniemi, S.T., Henning, M.A.: Domination in
graphs applied to electric power networks. SIAM J. Discrete Math. 15(4), 519–529
(2002)

9. Korkali, M., Abur, A.: Placement of PMUs with channel limits. In: IEEE Power
and Energy Society General Meeting (2009)

10. Kumar, R., Rao, V.S.: Optimal placement of PMUs with limited number of chan-
nels. In: Proceedings of North American Power Symposium (NAPS), Boston, MA,
pp. 1–7, 4–6 August 2011

11. Manousakis, N.M., Korres, G.N., Georgilakis, P.S.: Optimal placement of phasor
measurement units: a literature review. In: Proceedings of the 16th International
Conference on Intelligent System Application to Power Systems, ISAP 2011, Her-
sonissos, Greece, pp. 1–6, 25–28 September 2011

12. Manousakis, N.M., Korres, G.N., Georgilakis, P.S.: Taxonomy of PMU placement
methodologies. IEEE Trans. Power Syst. 27(2), 1070–1077 (2012)

13. West, D.B.: Introduction to Graph Theory, 2nd edn. Prentice Hall, Englewood
Cliffs (2000)

14. Zimmerman, R.D., Murillo-Sánchez, C.E.: MATPOWER. http://www.pserc.
cornell.edu/matpower/

http://www.pserc.cornell.edu/matpower/
http://www.pserc.cornell.edu/matpower/

Optimizing Static and Adaptive Probing
Schedules for Rapid Event Detection

Ahmad Mahmoody(B), Evgenios M. Kornaropoulos, and Eli Upfal

Department of Computer Science, Brown University, Providence, USA
{ahmad,evgenios,eli}@cs.brown.edu

Abstract. We formulate and study a fundamental search and detection
problem, Schedule Optimization, motivated by a variety of real-world
applications, ranging from monitoring content changes on the web, social
networks, and user activities to detecting failure on large systems with
many individual machines.

We consider a large system consists of many nodes, where each node
has its own rate of generating new events, or items. A monitoring appli-
cation can probe a small number of nodes at each step, and our goal is
to compute a probing schedule that minimizes the expected number of
undiscovered items at the system, or equivalently, minimizes the expected
time to discover a new item in the system.

We study the Schedule Optimization problem both for deterministic
and randomized memoryless algorithms. We provide lower bounds on the
cost of an optimal schedule and construct close to optimal schedules with
rigorous mathematical guarantees. Finally, we present an adaptive algo-
rithm that starts with no prior information on the system and converges
to the optimal memoryless algorithms by adapting to observed data.

1 Introduction

We introduce and study a fundamental stochastic search and detection problem,
Schedule Optimization, that captures a variety of practical applications, ranging
from monitoring content changes on the web, social networks, and user activities
to detecting failure on large systems with many individual machines.

Our optimization problem consists of a large set of units, or nodes, that
generate events, or items, according to a random process with known or unknown
parameters. A detection algorithm can discover new items in the system by
probing a small number of nodes in each step. This setting defines a discrete,
infinite time process, and the goal of the stochastic optimization problem is to
construct a probing schedule that minimizes the long term expected number of
undiscovered items in the system, or equivalently, minimizes the expected time
to discover a new item in the system.

We outline several important applications of this schedule optimization
problem:

NSF grants IIS-1016648 and IIS-1247581

c© Springer International Publishing Switzerland 2015
Z. Lu et al. (Eds.): COCOA 2015, LNCS 9486, pp. 377–391, 2015.
DOI: 10.1007/978-3-319-26626-8 28

378 A. Mahmoody et al.

News and Feed Aggregators. To provide up to date summary of the news, news
aggregator sites need to constantly browse the Web, and often also the
blogosphere and social networks, for new items. Scanning a site for new items
requires significant communication and computation resources, thus the news
aggregator can scan only a few sites simultaneously. The frequency of visiting a
site has to depend on the likelihood of finding new items in that site. [1,9,21]

Algorithmic Trading on Data. An emerging trend in algorithmic stock trading is
the use of automatic search through the Web, the blogosphere, and social networks
for relevant information that can be used in fast trading, before it appears in the
more popular news sites [4,5,8,11,14,16,17]. The critical issue in this application
is the speed of discovering new events, but again there is a resource limit on the
number of sites that the search algorithm can scan simultaneously.

Detecting Anomaly and Machine Malfunction. In large server farm or any other
large collection of semi-autonomous machines a central controller needs to iden-
tify and contain anomalies and malefactions as soon as possible, before they
spread in the system. To minimize interference with the system’s operation the
controller must probe only a small number of machines in each step.

1.1 Our Contribution

We consider an infinite, discrete time process in which n nodes generate new
items according to a stochastic process which is governed by a generating vector
π (see Sect. 3 for details). An algorithm can probe up to c nodes per step to
discover all new items in these nodes. The goal is to minimize the cost of the
algorithm (or the probing schedule), which we define as the long term (steady
state) expected number of undiscovered items in the system.

We first show that the obvious approach of probing at each step the nodes
with maximum expected number of undiscovered items at that step is not
optimal. In fact, the cost of such a schedule can be arbitrary far from the optimal.

Our first result toward the study of efficient schedules is a lower bound on
the cost of any deterministic or random schedule as a function of the generating
vector π.

Next we assume that the generating vector π is known and study explicit con-
structions of deterministic and random schedules. We construct a deterministic
schedule whose cost is within a factor of (3 + (c − 1)/c) of the optimal cost, and
a very simple, memoryless random schedule with cost that is within a factor of
(2 + (c − 1)/c) from optimal, where c is the maximum number of probes at each
step.

Finally, we address the more realistic scenario in which the generating vector,
π, is not known to the algorithm and may change in time. We construct an
adaptive scheduling algorithm that learns from probing the nodes and converges
to the optimal memoryless random schedule.

2 Related Work

The News and Feed Aggregation problem is a very well-studied topic, in which
the general goal is to obtain the updates of news websites (e.g. by RSS feeds).

Optimizing Static and Adaptive Probing Schedules 379

Among many introduced objectives [1,9,19] in studying this problem, the most
similar one to our cost function is the delay function presented by [21]. In [21] it
is assumed that the rates of the news publication does not change, where in our
setting these rates may change and our algorithm (Adaptive) can adapt itself
to the new setting. Also, we assume at any given time the number of probes is
fixed (or bounded) regarding the limited computational power for simultaneous
probes, but [21] uses a relaxed assumption by fixing the number of probes over
a time window of a fixed length which may result in high number of probes at a
single time step. Finally, [21] introduces a deterministic algorithm in which the
number of probes to each feed is obtained by applying the Lagrange multipliers
method (very similar result to Theorem 3), but they loose the guarantee on
optimality of their solution, by rounding the estimated number of probes to
integers. In contrast, our solution provides theoretical guarantee on optimality
of our output schedule.

Web-crawling is another related topic, where a web-crawler aims to obtain
the most recent snapshots of the web. However, it differs from our model substan-
tially: in web-crawling algorithm data get updated, so missing some intermediate
snapshot would not affect the quality of the algorithm, where in our model data
are generated and they all need to be processed [3,22].

There has been an extensive work on Outbreak Detection (motivated in part
by the “Battle of Water Sensors Network” challenge [20]) using statistic or mobile
sensor in physical domains, and regarding a variety of objectives [7,10,13]. Our
model deviates from the Outbreak Detection problem as it is geared to detection
in virtual networks such as the Web or social networks embedded in the Internet,
where a monitor can reach (almost) any node at about the same cost.

Another related problem is the Emerging Topic Detection problem, where the
goal is to identify emergent topics in a social network, assuming full access to
the stream of all postings. Besides having different objectives, our model differs
mainly in this accessibility assumption: the social network providers have an
immediate access to all tweets or postings as they are submitted to their servers,
whereas in our model we consider an outside observer who needs an efficient
mechanism to monitor changes, without having such full access privilege [2,15].

In the next section, we formally define our model and the Schedule
Optimization problem.

3 Model and Problem Definition

We study an infinite, discrete time process in which a set of n nodes, indexed
by 1, . . . , n, generate new items according to a random generating process. The
generating process at a given time step is characterized by a generating vector
π = (π1, . . . , πn), where πi is the expected number of new items generated at
node i at that step (by either a Bernoulli or a Poisson process). The generation
processes in different nodes are independent.

We focus first on a static generating process in which the generating vector
does not change in time. We then extend our results to adapt to generating
vectors that change in time.

380 A. Mahmoody et al.

Our goal is to detect new events as fast as possible by probing in each step
a small number of nodes. In particular, we consider probing schedules that can
probe up to c nodes per step.

Definition 1 (Schedule). A c-schedule is a function S : N → {1, . . . , n}c

specifying a set of c nodes to be probed at any time t ∈ N. A deterministic
function S defines a deterministic schedule, otherwise the schedule is random.

Definition 2 (Memoryless Schedule). A random schedule is memoryless if
it is defined by a vector p = (p1, . . . , pn) such that at any step the schedule probes
a set C of c items with probability

∏
j∈C pi independent of any other event. In

that case we use the notation S = p.

Definition 3 (Cyclic Schedule). A schedule, S, is �-cyclic if there is a finite
time t0 such that from time t0 on, the schedule repeats itself every period of �
steps. A schedule is cyclic if it is �-cyclic for some positive integer �.

The quality of a probing schedule is measured by the speed in which it
discovers new items in the system. When a schedule probes a node i at a time t,
all items that were generated at that node by time t − 1 are discovered (thus,
each item is not discovered in at least one step). We define the cost of a probing
schedule as the long term expected number of undiscovered items in the system.

Definition 4 (Cost). The cost of schedule S in a system of n nodes with
generating vector π is

cost(S, π) = lim
t→∞

1
t

t∑
t′=1

E
[
QS(t′)

]
= lim

t→∞
1
t

t∑
t′=1

n∑
i=1

E
[
QS

i (t′)
]
,

where QS
i (t′) is the number of undiscovered items at node i and at time t′, and

QS(t′) =
∑n

i=1 QS
i (t′). The expectation is taken over the distribution of the

generating system and the probing schedule.

While the cost can be unbounded for some schedules, the cost of the optimal
schedule is always bounded. To see that, consider a round-robin schedule, S, that
probes each node every n steps. Clearly no item is undiscovered in this schedule
for more than n steps, and the expected number of items generated in an interval
of n steps is n

∑n
i=1 πi. Thus, QS(t) ≤ n

∑n
i=1 πi, which implies cost (S, π) ≤

n
∑n

i=1 πi. Therefore, without loss of generality we can restrict our discussion
to bounded cost schedules. Also, note that when the sequence

{
E
[
QS(t)

]}
t∈N

converges we have cost (S, π) = lim
t→∞E

[
QS(t)

]
(Cesaro Means [6]).

One can equivalently define the cost of a schedule in terms of the expected
time that an item is in the system until it is discovered.

Lemma 1. Let ωS
i be the expected waiting time of an item generated at node i

until node i is probed by schedule S. Then

cost(S, π) =
n∑

i=1

πiω
S
i .

Optimizing Static and Adaptive Probing Schedules 381

Proof. Following the definition of the cost function we have

cost (S, π) = lim
t→∞

1
t

t∑
t′=1

n∑
i=1

E
[
QS

i (t′)
]

=
n∑

i=1

[
lim

t→∞

∑t
t′=1 E

[
QS

i (t′)
]

t

]

=
n∑

i=1

πiω
S
i ,

where the last eqaulity is obtained by applying Little’s Law [12]. ��
Corollary 1. A schedule that minimizes the expected number of undiscovered
items in the system simultaneously minimizes the expected time that an item is
undiscovered.

Corollary 2. For any schedule S, cost(S, π) ≥ ∑n
i=1 πi.

Proof. As mentioned above, when we probe a node i at time t we discover only
the items that have been generated by time t − 1. Therefore, ωS

i ≥ 1, and by
Lemma 1 the proof is complete. ��

Now, our main problem is defined as the following:
Definition 5 (Schedule Optimization). Given a generating vector π and a
positive integer c, find a c-schedule with minimum cost.

When the generating vector is not known a priori to the algorithm the goal
is to design a schedule that converges to an optimal one. For that we need the
following definition:
Definition 6 (Convergence). We say schedule S converges to schedule S ′, if
for any generating vector π, lim

t→∞

∣∣∣E [QS(t)
]− E

[
QS′

(t)
]∣∣∣ = 0.

4 Results

We start this section by, first, showing that the obvious approach of maximiz-
ing the expected number of detections at each step is far from optimal. We
then prove a lower bound on the cost of any schedule, and provide determinis-
tic and memoryless c-schedules that are within a factor of (3 + (c − 1)/c) and
(2 + (c − 1)/c), respectively, from the optimal. Finally, we introduce an algo-
rithm, Adaptive , which outputs a schedule A that converges to the optimal
memoryless 1-schedule when the generating vector π is not known in advance.
We also show that Adaptive can be used to obtain a c-schedule Ac whose cost
is within (2 + (c − 1)/c) factor of any optimal c-schedule.

Throughout this section, by τS
i (t) we mean the number of steps from the last

time that node i was probed until time t, while executing schedule S; if i has not
been probed so far, we let τS

i (t) = t. Using the definition, it is easy to see that

E
[
QS

i (t)
]

= πiE
[
τS
i (t)

]
, (1)

when the expectations are over the randomness of both S and π. Therefore, if
the expectation is over only the randomness of π we have

E
[
QS

i (t)
]

= πiτ
S
i (t). (2)

382 A. Mahmoody et al.

4.1 On Maximizing Immediate Gain

Let S be a 1-schedule that at each step, probes the node with the maximum
expected number of undetected items. By (2), the expected number of undetected
items at node i and at time t is πiτ

S
i (t), and thus, S(t) = arg maxi πiτ

S
i (t).

Now, suppose πi = 2−i, for 1 ≤ i ≤ n. Since the probability that node 1 has
an undetected item in each step is at least 1/2, node i is probed no more than
once in each 2i−1 steps. Thus, the expected number of time steps that an item at
node i will stay undetected is at least 1

2i−1 (1+ . . .+2i−1) = 2i−1+1
2 > 2i−2. Using

Lemma 1, the cost of this schedule is at least
∑n

i=1 πiωi >
∑n

i=1 2−i2i−2 = Ω(n).
Now, consider an alternative schedule that probes node i in each step with
probability 2−i/2/Z, where Z =

∑n
j=1 2−j/2. The expected number of steps

between two probes of i is Z/2−i/2, and the cost of this schedule is

n∑
i=1

2−i

(
2−i/2∑n

j=1 2−j/2

)−1

=

⎛
⎝ n∑

j=1

2−j/2

⎞
⎠

2

= O(1).

Thus, optimizing immediate gain is not optimal in this problem.

4.2 Lower Bound on Optimal Cost

In this section we provide a lower bound on the optimal cost, i.e., the cost of an
optimal schedule.

Theorem 1. For any c-schedule O with finite cost we have

cost(O, π) ≥ max

⎧⎨
⎩

n∑
i=1

πi,
1
2c

(
n∑

i=1

√
πi

)2
⎫⎬
⎭ .

Proof. First, by Corollary 2, cost (O, π) ≥ ∑n
i=1 πi. Now we show cost (O, π) ≥

1
2c

(∑n
i=1

√
πi

)2. Fix a positive integer t > 0, and suppose during the time inter-
val [0, t], O probes node i at steps t1, t2, . . . , tni

. Let t0 = 0 and tni+1 = t.
So, the sequence t0, . . . , tni+1 partition the interval [0, t] into ni + 1 intervals
Ii(j) = [tj + 1, tj+1], for 0 ≤ j ≤ ni, and the length of Ii(j) is �i(j) = tj+1 − tj .
Applying the Cauchy-Schwartz inequality we have:

ni∑
j=0

�i(j)2
ni∑

j=0

1 ≥
⎛
⎝ ni∑

j=0

�i(j)

⎞
⎠

2

=⇒
ni∑

j=0

�i(j)2 ≥ 1
ni + 1

⎛
⎝ ni∑

j=0

�i(j)

⎞
⎠

2

=
t2

ni + 1
=

t2

ni

(
1 − 1

ni + 1

)
.

Optimizing Static and Adaptive Probing Schedules 383

For t′ ∈ Ii(j), QO
i (t′) is a Poisson random variable with parameter πi(t′ − tj).

Therefore,

t∑
t=1

E
[
QO

i (t′)
]

=
ni∑

j=0

∑
t′∈Ii(j)

E
[
QO

i (t′)
]

= πi

ni∑
j=0

(1 + . . . + �i(j))

= πi

ni∑
j=0

�i(j)(�i(j) + 1)
2

≥ πi

2

ni∑
j=0

�i(j)2 ≥ πi

2
t2

ni

(
1 − 1

ni + 1

)
.

By summing over all nodes and averaging over t, we have

n∑
i=1

t∑
t′=1

1
t
E
[
QO

i (t′)
] ≥

n∑
i=1

1
t

πi

2
t2

ni

(
1 − 1

ni + 1

)

=
n∑

i=1

πi

2
t

ni

(
1 − 1

ni + 1

)
(3)

≥ 1
c

(
n∑

i=1

ni

t

)(
n∑

i=1

πi

2
t

ni

(
1 − 1

ni + 1

))

≥ 1
2c

(
n∑

i=1

√
πi

√(
1 − 1

ni + 1

))2

, (4)

where in the second line we use the fact that if the schedule executed c probes
in each step then

∑n
i=1

ni

t ≤ c, and the third line is obtained by applying the
Cauchy-Schwartz inequality.

It remains to show that for any schedule with finite cost, and any i such that
πi > 0, lim

t→∞ ni = ∞. For sake of contradiction assume that there is a time s such

that the node i is never probed by O at time t > s. So, E
[
QO

i (t)
]

= π(t−s) and
we have cost (O, π) ≥ 1

t

∑t
t′=s E

[
QO

i

]
(t) = πi

t
(t−s)(t−s−1)

2 which converges to
∞ as t → ∞, which is a contradiction. Hence, for all i, lim

t→∞ ni = ∞, and using

(4.2) we obtain

cost (O, π) ≥ lim
t→∞

1
2c

(
n∑

i=1

√
πi

√(
1 − 1

ni + 1

))2

=
1
2c

(
n∑

i=1

√
πi

)2

,

which completes the proof. ��

4.3 Deterministic (3 + (c − 1)/c)-Approximation Schedule

We construct a deterministic 1-schedule in which each node i is probed approx-
imately every ni =

∑n
j=1

√
πj√

πi
steps, and using that, present our (3 + (c − 1)/c)-

approximation schedule. For each i let ri be a nonnegative integer such that
2ri ≥ ni > 2ri−1, and let ρ = maxi ri.

384 A. Mahmoody et al.

Lemma 2. There is a 2ρ-cyclic 1-schedule D such that node i is probed exactly
every 2ri steps.

Proof. Without loss of generality assume
∑n

i=1 2−ri = 1, otherwise we can add
auxiliary nodes to complete the sum to 1, with the powers (ri’s) associated with
the auxiliary nodes all bounded by ρ.

We prove the lemma by induction on ρ. If ρ = 0, then there is only one node,
and the schedule is 1-cyclic. Now, assume the statement holds for all ρ′ < ρ.
Since the smallest frequency is 2−ρ, and the sum of the frequencies is 1, there
must be two nodes, v and u, with same frequency 2−ρ. Join the two nodes to
a new node w with frequency 2−ρ+1. Repeat this process for all nodes with
frequency 2−ρ. We are left with a collection of nodes all with frequencies > 2−ρ.
By the inductive hypothesis there is a

(
2ρ−1

)
-cyclic schedule D′ such that each

node i is probed exactly each 2ri steps. In particular a node w that replaced u
and v is probed exactly each 2−ρ+1 steps.

Now, we create an 2ρ-schedule, D, whose cycle is obtained by repeating the
cycle of D′ two times. For each probe to w that replaced a pair u, v, in the first
cycle we probe u and in the second cycle we probe v. Thus, u and v are probed
exactly every 2ρ steps, and the new schedule does not change the frequency of
probing nodes with frequency larger than 2−ρ. ��
Theorem 2. The cost of the deterministic 1-schedule D is no more than 3 times
of the optimal cost.

Proof. By Lemma 2 each node i is probed exactly every 2ri steps. Using 2ri−1 <∑n
j=1

√
πj√

πi
we have 2ri + 1 ≤ 2·∑n

j=1
√

πj√
πi

+ 1, and therefore

lim
t→∞

1
t

t∑
t′=1

E
[
QD

i (t′)
]

= lim
t→∞

1
t

t

2ri

2ri∑
t′=1

E
[
QD

i (t′)
]

=
1

2ri

2ri∑
t′=1

πit
′

=
πi

2ri

2ri(2ri + 1)
2

≤ πi

2

(
2
∑n

j=1

√
πj√

πi
+ 1

)

=
√

πi ·
n∑

j=1

√
πj +

πi

2
.

Thus by Theorem 1, we have

cost (D, π) = lim
t→∞

1
t

n∑
i=1

t∑
t′=1

E
[
QD

i (t′)
] ≤

n∑
i=1

⎛
⎝√

πi ·
n∑

j=1

√
πj

⎞
⎠+

1
2

n∑
i=1

πi

=

⎛
⎝ n∑

j=1

√
πj

⎞
⎠

2

+
1
2

n∑
j=1

πj ≤ 3 · cost (O, π) ,

where cost (O, π) is the optimal cost. ��

Optimizing Static and Adaptive Probing Schedules 385

Using the previous deterministic 1-schedule, the following corollary provides
a c-schedule whose cost is within (3 + (c − 1)/c) factor of the optimal cost.

Corollary 3. There is a deterministic c-schedule Dc whose cost is at most
(3 + (c − 1)/c) times of the optimal cost.

Proof. Consider the execution of the deterministic 1-schedule D constructed
in Theorem 2 on generating vector 1

cπ. Let Dc be a deterministic c-schedule
obtained by grouping c consecutive probes of D into one step. Suppose O is an
optimal c-schedule. Applying the equation in Lemma 1,

cost (Dc, π) =
n∑

i=1

πiω
Dc

i =
n∑

i=1

πi

c
cωDc

i ≤
n∑

i=1

πi

c
(ωD

i + c − 1)

= cost (D, π) +
n∑

i=1

(c − 1)πi

c
≤ 3

(
n∑

i=1

√
πi

c

)2

+
n∑

i=1

(c − 1)πi

c

=
3
2c

(
n∑

i=1

√
πi

)2

+
n∑

i=1

(c − 1)πi

c
≤
(

3 +
c − 1

c

)
cost (O, π) ,

where the first inequality holds because some items could be detected in less
than c steps in the 1-schedule but are counted in one full step of the c-schedule.
The last inequality is obtained by applying Theorem 1. ��

4.4 On Optimal Memoryless Schedule

Here, we consider memoryless schedules, and show that the memoryless 1-
schedule with minimum cost can be easily computed. We call a memoryless
schedule with minimum cost among memoryless schedules, an optimal mem-
oryless schedule. We also provide an upper bound on the minimum cost of a
memoryless c-schedule.

Theorem 3. Let R = (p1, . . . , pn) be a memoryless 1-schedule. Then we have
cost(R, π) ≥ (∑n

i=1

√
πi

)2, and the equality holds if and only if pi =
√

πi∑n
j=1

√
πj
,

for all i.

Proof. Since probing each node i is a geometric distribution with parameter pi,
the expected time until an item generated in node i is discovered, is
ωR

i = 1/pi. Therefore, by Lemma 1, we have cost (R, π) =
∑n

i=1
πi

pi
. We find

p∗ = argminS=pcost (R, π), using the Lagrange multipliers:

∂

∂pj

(
n∑

i=1

πi

pi
+ λ

n∑
i=1

pi

)
= 0 =⇒ pj ∝ √

πj .

386 A. Mahmoody et al.

Therefore, cost (R, π) is minimized if pi =
√

πi∑n
j=1

√
πj

, and in this case the (mini-
mized) cost will be

cost (R, π) =
n∑

i=1

⎛
⎝√

πi ·
n∑

j=1

√
πj

⎞
⎠ =

(
n∑

i=1

√
πi

)2

.

��
Corollary 4. The cost of the optimal memoryless 1-schedule is within a factor
of 2 of the cost of any optimal 1-schedule.

Proof. The cost of the schedule R in Theorem 3 is
(∑n

i=1

√
πi

)2, which is
bounded by 2. cost (O, π) for an optimal 1-schedule O using Theorem 1. ��
Corollary 5. There is memoryless c-schedule, Rc, whose cost is within a factor
of (2 + (c − 1)/c) of any optimal c-schedule.

Proof. Suppose Rc is a memoryless c-schedule obtained by choosing c probes
in each step, each chosen according to the optimal memoryless 1-schedule, R,
computed in Theorem 3. Using the same argument as in the proof of Corollary 3
we have

cost (Rc, π) ≤ 1
c

(
n∑

i=1

√
πi

)2

+
c − 1

c

n∑
i=1

πi ≤
(

2 +
c − 1

c

)
cost (O, π) ,

for an optimal c-schedule O. ��

4.5 On Adaptive Algorithm for Memoryless Schedules

Assume now that the scheduling algorithm starts with no information on the
generating vector π (or that the vector has changed). We design and analyze
an adaptive algorithm, Adaptive, that outputs a schedule A convergent to the
optimal memoryless algorithm R (see Sect. 4.4) by gradually learning the vector
π by observing the system. To simplify the presentation we present and analyze
a 1-schedule algorithm. The results easily scale up to any integer c > 1, where
the adaptive algorithm outputs a c-schedule convergent to Rc (as in Sect. 4.4).

Each iteration of the algorithm Adaptive starts with π̃ = (π̃1, . . . , π̃n) as
an estimate of the unknown generating vector π = (π1, . . . , πn). Based on this
estimate the algorithm chooses to probe node i with probability pi(t) =

√
π̃i∑n

j=1

√
π̃j

(which is the optimal memoryless schedule if tπ was the correct estimate). If
nodes i is probed at time t, the estimate of πi is updated to π̃i0 ← max(1,ci0)

t ,
where ci0 is the total number of new items discovered in that node since time 0.

Optimizing Static and Adaptive Probing Schedules 387

Algorithm 1: Adaptive

Outputs: A(t), for t = 1, 2,
begin

(c1, . . . , cn) ← (0, . . . , 0);
(π̃1, . . . , π̃n) ← (1, . . . , 1);
for t = 1, 2, . . . do

for i ∈ {1, . . . , n} do
pi(t) ←

√
π̃i∑n

j=1

√
π̃j

;

A(t) ∼ p(t);
output A(t);
c′ ← number of new items caught at i0;
ci0 ← ci0 + c′;
π̃i0 ← max(1,ci0)

t ;

end

We denote the output of Adaptive schedule by A and the optimal memory-
less 1-schedule by R = p∗ = (p∗

1, . . . , p
∗
n); see Sect. 4.4. Our main result of this

section is the following theorem.

Theorem 4. The schedule A converges to R, and thus, cost(A, π) = cost(R, π).

To prove Theorem 4 we need the following lemmas.

Lemma 3. For any time t and i ∈ [n] we have pi(t) ≥ 1
n

√
t
.

Proof. It is easy to see that pi(t) will reach its lowest value at time t only if for
j �= i we have π̃j = 1 and π̃i = 1

t−1 (which requires i to be probed at time t−1).

Therefore, pi(t) ≥ 1/
√

t−1

1/
√

t−1+n−1
= 1

1+(n−1)
√

t−1
≥ 1

n
√

t
. ��

Define δ(t) = 4n exp
(
−π∗t1/3

6

)
and let N0 be the smallest integer t such that

exp
(
−

√
t

2n

)
≤ 2 exp

(
−π∗t1/3

6

)
. Note that one can choose δ(t) = 4ne− π∗t1/2−ε

6 for
any ε ∈ (0, 1/2), and for convenience we chose ε = 1/6.

Lemma 4. For any time t ≥ N0, with probability ≥ 1 − δ(t)/2, all the nodes
are probed during the time interval [t/2, t) .

Proof. By Lemma 3, the probability of not probing i during the time interval
[t/2, t) is at most

t−1∏
t′=t/2

(1 − pi(t′)) ≤
(

1 − 1
n
√

t

)t/2

≤ e
− t

2n
√

t ≤ 2 exp
(

−π∗t1/3

6

)
=

δ(t)
2n

.

A union bound over all the nodes completes the proof. ��

388 A. Mahmoody et al.

Lemma 5. Suppose node i is probed at a time t′ > t/2. Then,

Pr
[
|π̃i(t′) − πi| > t−

1
3 πi

]
<

δ(t)
2n

.

Proof. We estimate π from t′ > t/2 steps, each with πi expected number of new
items. Applying a Chernoff bound [18] for the sum of t′ independent random
variables with either Bernulli or Poisson distribution we have

Pr
[
|π̃i(t′) − πi| > t−

1
3 πi

]
< 2 exp

(
− t−

2
3 πit

′

3

)
≤ 2 exp

(
− t−

2
3 π∗t
6

)
=

δ(t)
2n

.

��
Note that by union bound, Lemma 5 holds, with probability at least 1 − δ(t)/2,
for all the nodes that are probed after t/2.

Lemma 6. Suppose t ≥ N0. With probability at least 1 − δ(t) we have for all
i ∈ [n],

(
1 − 1

t1/3 + 1

)
p∗
i ≤
√

1 − t−1/3

1 + t−1/3
p∗
i ≤ pi(t) ≤

√
1 + t−1/3

1 − t−1/3
p∗
i ≤
(

1 +
1

t1/3 − 1

)
p∗
i

Proof. Applying Lemmas 4, 5 and a union bound, with probability 1 − δ(t) all
the nodes are probed during the time [t/2, t) and |π̃i(t) − πi| ≤ t−1/3πi for all

i ∈ [n]. Since pi(t) =
√

π̃i(t)
∑

j

√
π̃j(t)

, we obtain

pi(t) ≥
√

(1 − t−1/3)πi
∑

j

√
(1 + t−1/3)πj

=

√
1 − t−1/3

1 + t−1/3

√
πi∑

j

√
πj

=

√
1 − t−1/3

1 + t−1/3
p∗
i ≥ (1− 1

t1/3 + 1
)p∗

i

where the last inequality uses the Taylor series of
√

1 + x. The upper bound is
obtained by a similar argument. ��
Corollary 6. The variation distance between the distribution used by algorithm
Adaptive at time t ≥ N0, p(t) = (p1(t), . . . , pn(t)), and the distribution
p∗ = (p∗

i , . . . , p
∗
n) used by the optimal memoryless algorithm satisfy

‖ p(t) − p∗ ‖=
1
2

n∑
i=1

|pi(t) − p∗
i | ≤ n

t1/3 − 1
+ δ(t) t→∞−→ 0.

Finally, we present our proof for Theorem 4.

Proof of Theorem 4. Recall that we defined τS
i (t) as the number of steps from

the last time that node i was probed until time t in an execution of an schedule
S, and E

[
QS

i

]
= πiE

[
τS
i (t)

]
.

Optimizing Static and Adaptive Probing Schedules 389

Let F (t) indicate the event that the inequalities in Lemma 6 are held for
∀t′ ∈ [t/2, t). Therefore, Pr [F (t)] < 1 − δ(t/2)·t

2 by applying union bound over
all t′ ∈ [t/2, t), and using the fact that δ(t′) ≤ δ(t/2). Therefore,

|E [QA(t)
]− E

[
QR(t)

] | =

∣∣∣∣∣
n∑

i=1

πiE
[
τA
i (t)

]−
n∑

i=1

πiE
[
τR
i (t)

]∣∣∣∣∣
≤

n∑
i=1

πi

∣∣E [τA
i (t)

]− E
[
τR
i (t)

]∣∣
≤

n∑
i=1

πi

∣∣E [τA
i (t)

]− E
[
τA
i (t) | F (t)

]∣∣
+

n∑
i=1

πi

∣∣E [τA
i (t) | F (t)

]− E
[
τR
i (t)

]∣∣ ,
where we used the triangle inequality for both inequalities. So, it suffices to show
that for every i,

lim
t→∞

∣∣E [τA
i (t)

]− E
[
τA
i (t) | F (t)

]∣∣ = lim
t→∞

∣∣E [τA
i (t) | F (t)

]− E
[
τR
i (t)

]∣∣ = 0.

Obviously, τA
i (t) ≤ t. Now by letting t ≥ 2N0 we have,

E
[
τA
i (t)

]
= Pr [F (t)]E

[
τA
i (t) | F (t)

]
+ Pr [¬F (t)]E

[
τA
i (t) | ¬F (t)

]
≤ E

[
τA
i (t) | F (t)

]
+

δ(t/2)t
2

t = E
[
τA
i (t) | F (t)

]
+

δ(t/2)t2

2
. (5)

We also get

E
[
τA
i (t)

] ≥
(

1 − δ(t/2)t
2

)
E
[
τA
i (t) | F (t)

]
(6)

= E
[
τA
i (t) | F (t)

]− δ(t/2)t
2

E
[
τA
i (t) | F (t)

] ≥ E
[
τA
i (t) | X

]− δ(t)t2

2
.

Note that lim
t→∞

δ(t/2)t2

2 = lim
t→∞ 4ne

− π∗t1/3

6 3√2 t2 = 0, and thus by (5) and (6) we have

lim
t→∞E

[
τA
i (t)

]− E
[
τA
i (t) | F (t)

]
= 0 ⇒ lim

t→∞
∣∣E [τA

i (t)
]− E

[
τA
i (i) | F (t)

]∣∣ = 0.

(7)

Now, we show that lim
t→∞

∣∣E [τA
i (t) | F (t)

]− E
[
τR
i (t)

]∣∣ = 0. So here, we

assume F (t) holds. So for every i ∈ [n], node i is probed in [t/2, t), and for
all t′ ∈ [t/2, t) we have

(i) pi(t′) ≥
(
1 − 1

t′1/3+1

)
p∗

i ≥
(
1 − 1

(t/2)1/3+1

)
p∗

i . So,

E
[
τA
i (t) | F (t)

] ≤
(

1 − 1
(t/2)1/3 + 1

)−1 1
p∗

i

=
(
1 + (t/2)−1/3

) 1
p∗

i

.

390 A. Mahmoody et al.

(ii) pi(t′) ≤
(
1 + 1

t′1/3−1

)
p∗

i ≤
(
1 + 1

(t/2)1/3−1

)
p∗

i . Hence,

E
[
τA
i (t) | F (t)

] ≥
(

1 +
1

(t/2)1/3 − 1

)−1 1
p∗

i

=
(
1 − (t/2)−1/3

) 1
p∗

i

.

Obviously E
[
τR
i (t)

]
= 1

p∗
i
, since probing node i by R can be viewed as a geo-

metric distribution with parameter p∗
i , and since δ(t) → 0 as t → ∞ we have

E
[
τR
i (t)

]
=

1
p∗

i

= lim
t→∞

(
1 − (t/2)−1/3

) 1
p∗

i

≤ lim
t→∞E

[
τA
i (t) | F (t)

]
≤ lim

t→∞

(
1 + (t/2)−1/3

) 1
p∗

i

=
1
p∗

i

= E
[
τR
i (t)

]
.

Therefore,

lim
t→∞ |E [τA

i (t) | F (t)
]− E

[
τR
i (t)

] | = 0. (8)

Thus, by (7) and (8) we have lim
t→∞ |E [QA(t)

]−E
[
QR(t)

] | = 0, and A converges

to S, and since lim
t→∞E

[
QS(t)

]
=
(∑n

i=1

√
πi

)2, it implies that lim
t→∞E

[
QA(t)

]
=(∑n

i=1

√
πi

)2 = cost (A, π) (by Cesaro Mean [6]). ��

Note that one can obtain an adaptive schedule Ac by choosing c probes in each
step, at each round of Adaptive, and using similar argument as in Sect. 4.4 (and
similar to Corollary 3), it is easy to see that Ac converges to Rc.

Finally, if π changes, the Adaptive algorithm converges to the new optimal
memoryless algorithm, as the change in the rate of generating new items is
observed by Adaptive.

References

1. Bright, L., Gal, A., Raschid, L.: Adaptive pull-based policies for wide area data
delivery. ACM Trans. Database Syst. (TODS) 31(2), 631–671 (2006)

2. Cataldi, M., Di Caro, L., Schifanella, C.: Emerging topic detection on twitter based
on temporal and social terms evaluation. In: Proceedings of the Tenth International
Workshop on Multimedia Data Mining, MDMKDD 2010, pp. 4:1–4:10. ACM, New
York (2010)

3. Dasgupta, A., Ghosh, A., Kumar, R., Olston, C., Pandey, S., Tomkins, A.: The
discoverability of the web. In: Proceedings of the 16th international conference on
World Wide Web, pp. 421–430. ACM (2007)

4. Delaney, A.: The growing role of news in trading automation, Octo-
ber 2009., http://www.machinereadablenews.com/images/dl/Machine Readable
News and Algorithmic Trading.pdf

5. Group, D.B.: Alphaflash trader automated trading based on economic events
(2015). http://www.alphaflash.com/product-info/alphaflash-trader

http://www.machinereadablenews.com/images/dl/Machine_Readable_News_and_Algorithmic_Trading.pdf
http://www.machinereadablenews.com/images/dl/Machine_Readable_News_and_Algorithmic_Trading.pdf
http://www.alphaflash.com/product-info/alphaflash-trader

Optimizing Static and Adaptive Probing Schedules 391

6. Hardy, G.H.: Divergent series. American Mathematical Soc. 334 (1991)
7. Hart, W., Murray, R.: Review of sensor placement strategies for contamination

warning systems in drinking water distribution systems. J. Water Resour. Plan.
Manage. 136(6), 611–619 (2010)

8. Hope, B.: How computers trawl a sea of data for stock picks. The Wall Street
Journal, April 2015. http://www.wsj.com/articles/how-computers-trawl-a-sea-of-
data-for-stock-picks-1427941801?KEYWORDS=computers+trawl+sea

9. Horincar, R., Amann, B., Artières, T.: Online refresh strategies for content based
feed aggregation. World Wide Web 18(4), 1–35 (2014)

10. Krause, A., Leskovec, J., Guestrin, C., Van Briesen, J., Faloutsos, C.: Efficient
sensor placement optimization for securing large water distribution networks. J.
Water Resour. Plan. Manage. 134(6), 516–526 (2008)

11. Latar, N.L.: The robot journalist in the age of social physics: the end of human
journalism? In: Einav, G. (ed.) The New World of Transitioned Media, pp. 65–80.
Springer, Switzerland (2015)

12. Leon-Garcia, A.: Probability, Statistics, and Random Processes for Electrical Engi-
neering, 3rd edn. Prentice Hall, Upper Saddle River (2008)

13. Leskovec, J., Krause, A., Guestrin, C., Faloutsos, C., VanBriesen, J.M., Glance,
N.S.: Cost-effective outbreak detection in networks. In: Berkhin, P., Caruana, R.,
Wu, X. (eds.) KDD, pp. 420–429. ACM (2007)

14. Eagle Alpha Ltd.: Discovering the web’s hidden alpha, June 2014. http://www.
eaglealpha.com/whitepaper pdf

15. Mathioudakis, M., Koudas, N.: Twittermonitor: Trend detection over the twitter
stream. In: Proceedings of the ACM SIGMOD International Conference on Man-
agement of Data, SIGMOD 2010, pp. 1155–1158. ACM, New York (2010)

16. McKinney, W.: Structured Data Challenges in Finance and Statistics (November
2011), http://www.slideshare.net/wesm/structured-data-challenges-in-finance-
and-statistics

17. Mitra, G., Mitra, L.: The handbook of news analytics in finance, vol. 596. John
Wiley & Sons (2011)

18. Mitzenmacher, M., Upfal, E.: Probability and computing: Randomized algorithms
and probabilistic analysis. Cambridge University Press (2005)

19. Oita, M., Senellart, P.: Deriving dynamics of web pages: A survey. In: TWAW
(Temporal Workshop on Web Archiving) (2011)

20. Ostfeld, A., et al.: The battle of the water sensor networks (BWSN): a design
challenge for engineers and algorithms. J. Water Resour. Plan. Manage. 134(6),
556–568 (2008)

21. Sia, K.C., Cho, J., Cho, H.K.: Efficient monitoring algorithm for fast news alerts.
IEEE Trans. Knowl. Data Eng. 19(7), 950–961 (2007)

22. Wolf, J.L., Squillante, M.S., Yu, P., Sethuraman, J., Ozsen, L.: Optimal crawl-
ing strategies for web search engines. In: Proceedings of the 11th international
conference on World Wide Web, pp. 136–147. ACM (2002)

http://www.wsj.com/articles/how-computers-trawl-a-sea-of-data-for-stock-picks-1427941801?KEYWORDS=computers+trawl+sea
http://www.wsj.com/articles/how-computers-trawl-a-sea-of-data-for-stock-picks-1427941801?KEYWORDS=computers+trawl+sea
http://www.eaglealpha.com/whitepaper_pdf
http://www.eaglealpha.com/whitepaper_pdf
http://www.slideshare.net/wesm/structured-data-challenges-in-finance-and-statistics
http://www.slideshare.net/wesm/structured-data-challenges-in-finance-and-statistics

Complexity and Game

Vertex Cover in Conflict Graphs:
Complexity and a Near Optimal Approximation

Dongjing Miao(B), Jianzhong Li, Xianmin Liu, and Hong Gao

Harbin Institute of Technology, Harbin 150001, Heilongjiang, China
{miaodongjing,lijzh,liuxianmin,honggao}@hit.edu.cn

Abstract. Given finite number of forests of complete multipartite graph,
conflict graph is a sum graph of them. Graph of this class can model
many natural problems, such as in database application and others. We
show that this property is non-trivial if limiting the number of forests of
complete multipartite graph, then study the problem of vertex cover on
conflict graph in this paper. The complexity results list as follow,
– If the number of forests of complete multipartite graph is fixed, conflict

graph is non-trivial property, but finding 1.36-approximation algo-
rithms is NP-hard .

– Given 2 forests of complete multipartite graph and maximum degree
less than 7, vertex cover problem of conflict graph is NP-complete.
Without the degree restriction, it is shown to be NP-hard to find an
algorithm for vertex cover of conflict graph within 17

16
− ε, for any

ε > 0.
Given conflict graph consists of r forests of complete multipartite graph,
we design an approximation algorithm and show that the approximation
ratio can be bounded by 2 − 1

2r
. Furthermore, under the assumption

of UGC, the approximation algorithm is shown to be near optimal by
proving that, it is hard to improve the ratio with a factor independent
of the size (number of vertex) of conflict graph.

Keywords: Approximation algorithm · Vertex cover · Complete multi-
partite graph

1 Introduction

Vetex Cover is one of the classical problems in graph theory: given a graph
G (V,E), find a vertex set of vertices in V , say V ′, such that for each edge (u, v)
of E, at least one of u and v belongs to V ′, and V ′ has the minimize size.

We focus on the vertex cover problem in conflict graph which is a restricted
class of graph in this paper.

This work was supported in part by the National Grand Fundamental Research 973
Program of China under grant 2012CB316200, the Major Program of National Nat-
ural Science Foundation of China under grant 61190115, Project 61502121 supported
by National Natural Science Foundation of China.

c© Springer International Publishing Switzerland 2015
Z. Lu et al. (Eds.): COCOA 2015, LNCS 9486, pp. 395–408, 2015.
DOI: 10.1007/978-3-319-26626-8 29

396 D. Miao et al.

Definition 1. Conflict Graph. Given an vertex set V and r forests of complete
multipartite graph, namely F1, ..., Fr defined on V , such that each connected
component is a multipartite graph in each Fi. The conflict graph G (V,E) is an
undirected graph where edge (u, v) ∈ E if there is an Fi such that edge (u, v) ∈ Fi.

1.1 Database Application

Managing inconsistent data is a core problem in the area of data quality man-
agement. Inconsistent data indicates that there is conflicted information in the
data, which can be formalized as the violations of given semantic constraints. For
relational data, usually, dependencies are utilized to capture the inconsistencies
of data. There are many kinds of dependencies in database theory. Given a rela-
tional database schema R = {R1, . . . , Rc}, a formal form of general dependency
can be specified as a first-order logic sentence as follows.

∀x1 . . . ∀xn[ϕ(x1, . . . , xn) → ∃z1 . . . ∃zkψ(y1, . . . , ym)]

Here, the variables in ψ are taken from {xi} and {zj}, both ϕ and ψ are con-
junctions of relation atoms of the form Rl(w1, . . . , wh) and equality atoms of
the form w = w′, where Rl is a relation in R and each of the w, w′, w1, . . . ,
wh is a variable appearing in the sentence. Furthermore, the dependencies can
be classified from following aspects. (i) Full versus embedded. A full dependency
is a dependency that has no existential quantifiers. (ii) Tuple generating ver-
sus equality generating. A tuple generating dependency (tgd) is a dependency in
which no equality atoms occur, while an equality generating dependency (egd)
is a dependency for which the right-hand formula is a single equality atom. (iii)
Typed versus untyped. A dependency is typed if there is an assignment of vari-
ables to column positions such that variables in relation atoms occur only in their
assigned position, and each equality atom involves a pair of variables assigned
to the same position. (iv) k-ary. A k-ary dependency contains k relation atoms
in ϕ.1 Several kinds of dependencies have been successfully applied in the area of
inconsistent data management, especially 2-ary dependencies, such as functional
dependency (FD for short) [1] and so on. 2-ary dependencies is a typical example
of such depdencies utilized in capturing inconsistencies, and the reason is easy
to understand after observing that the “inconsistency” is usually explained to
be the conflict between 2 tuples when some conditions are satisfied.

Example. An FD constraint AB → C defined over relation R says, “for two
tuples in relation R, if their have equal values on attributes A and B, they must
have equal values on attribute C also”. Given the above FD constraint, it is
expected that the constraint is valid on all possible data instances. Then, if two
tuples t1 = {A : x,B : abc, C : m} and t2 = {A : x,B : abc, C : n} are found in
the real instance, it is easy to verify that t1 and t2 violate the given constraint.
That is, inconsistent data are found according to the given semantic constraints.
1 A more strict definition is based on the assumption that ϕ is a conjunction of relation

atoms, and the assumption will not affect the expressability of dependencies.

Vertex Cover in Conflict Graphs 397

An important task focusing on managing inconsistent data is to evaluate
how inconsistent the data is. A natural model is using the vertex cover size to
show this value based on the input dependencies. Concretely, for an inconsistent
database instance with respect to several given FDs, we model each tuple as
a vertex in graph, and each tuple pair has an edge between them if they are
conflict with each other. Then we can see that each FD will generate a forest
of complete multipartite graph, because if a tuple has the same value on the
left attributes with some other tuples, it must be conflict with other tuples with
different right attributes’ values, i.e., it has edges with all of them. Finally, if we
want to remove the minimum tuples to make it satisfying all the given FDs, we
must compute the vertex cover of the sum graph of those generated by single
FD, here the sum graph is just a conflict graph.

Therefore, in this scenario, vertex cover problem in conflict graph is the basis
of evaluating data inconsistency and provide several theoretical analysis results.
Since inconsistent data is defined under the help of dependencies, a specific
kind of dependency FD is choosed when introducing our results in the following
parts. In fact, all results in this paper can be extended to model the full, equality-
generating, typed and 2-ary dependencies [1].

1.2 Literature Review of the Vertex Cover Problem

The related work is vast, however, we only mention those very related. For any
ε > 0, minimum vertex cover might be hard to be approximated within 2−ε [8],
this is its UGC-hardness. For any ε > 0, 7/6− ε inapproximability for minimum
vertex cover has been proved by Hastad et al. [6], and this factor was improved by
Dinur and Safra [4] to 1.36, this is its NP-hardness. A practical 2-approximation
algorithm of minimum vertex cover was provided by Gavril et al. [5], it is to find
a maximal matching of a graph and output all vertices in the matching, since
the size of any maximal matching of a graph is always a 2-approximation of its
minimum vertex cover. For complete multipartite graph, there are few works
about computing its vertex cover or maximal matching. A formula of computing
maximum matching size has been developed in [12].

On the other side, the vertex cover problem on general graph is approximable
within 2 − log log |V |

2 log |V | [10] and 2 − ln ln |V |
2 ln |V | (1 − o (1)) [3]. Karakostas reduce the

approximation factor to 2−Θ

(
1√

log |V |

)
[7] instead of the previous 2− log log |V |

2 log |V | .

We mention that several simple 2-approximation algorithms are known. Half-
integral solution [11] is a well-known approach to obtain a better approxima-
tion. The algorithm uses a k-coloring of the subgraph induced by the half
value vertices as input to reduce approximation ratio into 2 − k

2 . For graphs
with degree bounded by d, based on Brook’s theorem, this directly leads to a(
2 − 2

d

)
-approximation. As referred above, the basic approach has been improved

to 2 − Θ

(
1√

log |V |

)
[7] by replacing the LP relaxation to SDP relaxation. We

also mentioned the recent work on local biclique coloring given by F. Kuhn [9].

398 D. Miao et al.

They generalize the result on bounded degree obtained by SDP relaxation to
bounded local chromatic number. It can be guaranteed that any valid coloring
with k colors also is a local k-coloring. They proved the following theorem [9],

Theorem 1. Assuming the UGC, it is NP-hard to approximate the vertex cover
problem in graphs for which a (Δ + 1)-local coloring is given as input, within any
constant factor better than 2 − 2

Δ+1 . If the given coloring is also a biclique col-
oring, there will be a randomized polynomial-time algorithm with approximation
ratio 2 − Ω (1) ln lnΔ

lnΔ .

In this paper, based on the above theorem, we show that it is hard to give
a bounded local (biclique) coloring with size independent of |V | to improve the
ratio with use of the approach they gave and our approach seems good enough
to solve vertex cover problem on conflict graph.

1.3 Our Contribution

We first prove that conflict graph is a non-trivial property when the number of
forests of complete multipartite graph is fixed, i.e., if we fix the number r, it is
always possible to find a graph can not be represented by sum of r forests of
complete multipartite graph. However, we proved that (i) If the number of forests
of complete multipartite graph is fixed, finding 1.36-approximation is also NP-
hard . (ii) Given 2 forests of complete multipartite graph and maximum degree
less than 7, vertex cover problem of conflict graph is NP-complete. Without the
degree restriction, it is shown to be still NP-hard to find an algorithm for vertex
cover of conflict graph within 17

16 − ε, for any ε > 0. By directly using previous
results on vertex cover problem, it is shown that it is NP-hard to obtain a (2−ε)-
approximation for any ε > 0 unless the UGC(unique gaming conjecture) does
not hold.

Given conflict graph consists of r forests of complete multipartite graph, we
design an deterministic approximation algorithm and show that the approxima-
tion ratio can be bounded by 2 − 1

2r which is a bound does not depend on |V |
but only r usually a small constant in real applications. Also, this bound is not a
expected ratio of a random algorithm, but it cannot be improved by applying the
related SDP approach [9]. Furthermore, the approximation algorithm is shown
to be near optimal by proving that it is impossible to improve the ratio with any
constant factor under the assumption of UGC. Actually, it is an approximation
algorithm for vertex cover on a special graph class, namely conflict graph. Com-
paring with the previous results, the results in this paper are obtained based on
the characteristic of conflict graph.

2 Complexity and Inapproximation

In the following, we study the complexity of vertex cover problem on conflict
graph. First, a trivial case is the vertex cover on only one forest of complete
multipartite graph.

Vertex Cover in Conflict Graphs 399

Proposition 1. Minimum vertex cover in a forest of complete multipartite graph
can be found polynomially.

Proof. Due to the definition of conflict graph, each two connected component
are disjoint and there is no edge between them. Given a conflict graph G, for
each connected component (a complete multipartite graph), take all vertices of
it into cover C excepting those of the largest part. At last, C is a minimum
vertex cover of G.

Lemma 1. Given any graph G, it’s not always possible to find a collection of
subgraphs such that

(a) each subgraph is a complete k-partite graph for some k,
(b) each edge in occurs in at least one of the subgraphs, and
(c) each vertex in occurs in at most a constant number of the subgraphs.

Moreover, the probability is close to 1.

Proof. Given n, let’s take a random bipartite graph G = ([n] , [n] , E) where
Pr [(vi, vj) ∈ E] = 1

2 for each pair (vi, vj). (The answer is no with probability
close to 1.)

Since G is bipartite, any complete k-partite subgraph has to be bipartite.
First, we claim that with probability 1−o (1), every complete bipartite subgraph
in G has at most 4n edges. For any pair of subsets L ⊆ [n] and R ⊆ [n] with
|L × R| ≥ 4n, the probability that “the complete bipartite subgraph with edge
set L × R is in G” is 2−|L×R|, and it is no more than 2−4n. There are fewer
than 2n × 2n = 4n such pairs L and R, thus, by the naive union bound, the
probability that any of the corresponding subgraphs is present in G is at most
4n2−4n, and it is no more than 2−2n.

Also, with probability 1 − o (1), the graph G has at least n2

4 edges.
Thus, with probability 1 − o (1), every complete bipartite subgraph in G has

at most 4n edges, and G has at least n2

4 edges. Assume this happens.
Now suppose for contradiction that a collection of subgraphs with the desired

properties exists. Each of the subgraphs has edge set L × R for some pair of
subsets L and R. In G, direct all the edges in L × R from the larger side to
the smaller side (to the left if |L| ≤ |R|, and to the right otherwise). Since
|L × R| ≤ 4n, the smaller of L or R must have size at most 2

√
n.

Since each vertex is in O (1) of the subgraphs, each vertex now has O (
√

n)
edges directed out of it. But all edges are directed one way or the other, so the
number of edges in G is at most the number of vertices times the maximum
out-degree of any vertex, that is, at most O (n

√
n). This contradicts the graph

having at least n2

4 edges.

Lemma 1 shows that conflict graph is a non-trivial graph class under the
constant number restriction. Inspired by this, we next have the following theorem
on the complexity for a more restricted condition.

400 D. Miao et al.

Theorem 2. Given 2 forests of complete multipartite graph and maximum degree
no more than 6, decision version of vertex cover problem on conflict graph is NP-
complete.

Proof. Thus the problem is in NP obviously. We give the proof of the lower
bound as follow.

NP-hardness. The lower bound is established by a reduction from 3-SAT prob-
lem. An instance of 3-SAT problem includes a set U of n variables x1, ..., xn and
a collection S of m clauses s1, ..., sm, while in each clause si = αi1 + αi2 + αi3,
each αij (1 ≤ j ≤ 3) is the j-th literal of si. Given an instance of 3-SAT problem,
it is to decide whether there is a satisfying truth assignment for S. The 3-SAT
problem is NP-complete, and it remains NP-complete even if for each xi ∈ U ,
there are at most 5 clauses in S that contain either xi or xi.
A polynomial reduction from 3-SAT can be constructed as follows.

Given an instance of 3-SAT with n variables and m clauses, let conflict graph
G = F1+F2 and k = n+2m. Then we introduce 2 forests of complete multipartite
graph F1 and F2 share a vertex set with 2n + 3m vertices,

F1: Set edge (2i−1, 2i) for each i ∈ [n], and edges (3i−2, 3i−1), (3i−2, 3i), (3i−
2, 3i−1) (i.e., a triangle for each clause) for each i ∈ [m]. That is, F1 consists
of n complete bipartite subgraphs and m complete tripartite subgraphs;

F2: For each variable xi of 3-SAT instance, build a complete bipartite subgraph
Li × Ri, let Li includes vertex 2i − 1 and all vertices corresponding to the
positive literals of xi, and Ri includes vertex 2i and all vertices corresponding
to the negative literals of xi;

Note that, each vertex has a degree at most 7 assuming each variable occurs at
most 5 clauses.

Suppose the 3-SAT instance is satisfiable, i.e., there is an satisfying truth
assignment ρ : U → {0, 1}n for S, then there is a vertex cover V C of G such
that its size is at most n + 2m. Concretely, it can be computed as follows, for
each variable xi, (1) if ρ (xi) = 1, delete vertex 2i from G. And for each clause
sj , if αjq is a positive literal of xi and vertices 2n + 3j − 2, 2n + 3j − 1, 2n + 3j
is currently in G, delete vertex 2n + 3(j − 1) + q from G; (2) if ρ (xi) = 0, delete
vertex 2i + 1 from G. And for each clause sj , if αjq is a negative literal of xi

and vertices 2n + 3j − 2, 2n + 3j − 1, 2n + 3j is currently in G, delete vertex
2n + 3(j − 1) + q from G. We have that for each i, either 2i or 2i + 1 is deleted
from G, and for each j, either of {2n + 3j − 2, 2n + 3j − 1, 2n + 3j} is deleted
from G for each j. This is because in each clause, there is at least one literal that
is made true by assignment ρ. Therefore, there is a set V C of the rest tuples
such that it is a cover and has a size no more than n + 2m = k.

To see the converse, let V C is the cover such that |V C| ≤ k = n + 2m.
To cover F1, either 2i − 1 or 2i should be included in V C for each i ∈ [n],
and at least two of 2n + 3j − 2, 2n + 3j − 1, 2n + 3j should be included in V C.
That is, the size of V C is at least n+2m. Thus, |V C| = n+2m. After covering F2,

Vertex Cover in Conflict Graphs 401

at most one literal of each variable rests in G − V C. Then, there is a satisfying
truth assignment τ for S such that, for each i ∈ [n],

τ (xi) =
{

0, if 2i − 1 ∈ V (G) − V C,
1, if otherwise

(1)

It is sure that τ will make all clauses true. Therefore, it is NP-complete, even
if given only 2 forest of complete multipartite graph and vertex with at most 7
degree.

We next prove that vertex cover problem on conflict graph is Max-SNP -hard
if without the degree restriction. To analyze the lower bound of approximation
of vertex cover, we next use the same reduction in Theorem 2 above, but from
MAX-E3SAT [6] to this problem if given 2 forest of complete multipartite graph.
We know that unless P
=NP, there is no polynomial-time algorithm approximates
MAX-E3SAT with 7

8 + ε [6] (we use the ratio notion less than 1 for maximizing
problem)for any ε > 0. That is, there is no guarantee that “more clause satisfied,
more vertex preserved”. This is really because three free tuples are built for each
clause in the reduction. Concretely, in that reduction, there may exist two an
assignments τp and τq (p > q)where they makes p and q clauses true. However,
in its corresponding instance, there may be p′ and q′ tuples can be preserved
respectively where p′ < q′.

Therefore, we give a linear reduction carefully designed by modifying the one
used in Theorem 2.

Theorem 3. Vertex cover problem on conflict graph can not be approximated
in 17

16 if given 2 forest of complete multipartite graph.

Proof. This lower bound is established by a reduction from MAX-E3SAT whose
instance includes a set U of n variables and a collection S of m disjunctive clauses
of exactly 3 literals. Given an instance of MAX-E3SAT problem, it is to find a
satisfying truth assignment maximizing the number of clauses satisfied by it.
We build the reduction the same in Theorem 2 and also use the assignment
function τ such that

τ (xi) =
{

0 if 2i − 1 ∈ V (G) − V C,
1 if otherwise

(2)

Let #τ is the number of clauses satisfied by any assignment τ , let #τmax

refer to the optimal assignment τmaxwhich maximizing the number of clauses
satisfied in the MAX-E3SAT instance. Let |V (G)| is the number of vertex in G.

We first consider V Cmin the minimum vertex cover of G. We claim that any
pair of variable vertices cannot occurs in V Cmin, because if not, there must be
a smaller V C ′

min obtained by returning redundant variable vertices from V Cmin

into V (G) − V Cmin without any edge left. Based on this, given the optimal
assignment τmax maximizing the number of clauses satisfied in the MAX-E3SAT
instance, we have

#τmax = |V (G)| − |V Cmin| − n (3)

402 D. Miao et al.

And for any solution V C of V (G), we have

#τvc ≥ |V (G)| − |V C| − n (4)

Additionally, we have the fact that

|V (G)| = 2n + 3m,m > 0 (5)

Now, let ˆV C is an r-approximation (r > 1) of minimum culprit V Cmin such
that | ˆV C| ≤ r · |V Cmin|. We have

#τv̂c

#τmax
>

|V (G)| − | ˆV C| − n

|V (G)| − |V Cmin| − n
> 1 +

(1 − r) · |V Cmin|
|V (G)| − |V Cmin| − n

(6)

Since each clause has exactly 3 literals, we have

|V Cmin| ≥ n + 2 · |V (G)| − 2n

3
(7)

Apply this fact in the right hand of inequality 6, it is

|V Cmin|
|V (G)| − |V Cmin| − n

≥ 2|V (G)| − n

|V (G)| − 2n
= 2 +

3
|V (G)|

n − 2
(8)

Since |V (G)| > 2n, therefore we get

|V Cmin|
|V (G)| − |V Cmin| − n

> 2 (9)

Then, apply this into inequality 6, then

#τv̂c

#τmax
> 3 − 2r (10)

That is, if minimum culprit can be approximated within ration r, then MAX-
E3SAT can be approximated within 3−2r. However, if the former can be approx-
imated within 17

16 , then the later will be approximated better than 7
8 , and this

contraries to the result of [6].

We next show that for the fixed number of subgraph, minimum vertex cover
has a global inapproximability bound. The observation is that sum of fixed num-
ber of subgraphs is able to represent any bounded degree graph.

Theorem 4. For sufficiently large fixed number of forests of complete multipar-
tite graph, it is NP-hard to approximate vertex cover on conflict graph within
1.3606.

Proof. Consider any input instance is a graph G 〈V,E〉 and each vertex has a
degree constraint d (d > 0), where each vertex in V has a degree no more than
d. It is easy to build d forests of complete multipartite graph to represent G.

Vertex Cover in Conflict Graphs 403

For each vertex i, we can easily distribute its each edge into d forests of complete
multipartite graph one by one. For sufficiently large bounded degree d, Dinur
and Safra [4] has proved that it is NP-hard to approximate minimum vertex
cover within any constant factor smaller than 1.3606. The number of forests of
complete multipartite graph are O (d) in the reduction herein, this concludes the
theorem.

The theorem gives an approximation lower bound for the case with fixed
number of forest of complete multipartite graph. For the non-fixed case, it is
able to encode arbitrary graphs with unbounded degree, just set |E| subgraphs.
B!eyond the NP-hardnessof 1.3606, Khot et. al [8] had proved that, for any
ε > 0, there is no (2 − ε)-polynomial approximation, unless the unique games
conjecture is false. For the sake of clarity, we summary the hardness results of
vertex cover problem as follows.

Cases Complexity/Inapproximation

1 subgraph PTime

2 subgraphs (with degree ≤ 7) 17
16

(NP-complete)

Fixed number 1.3606

Non-fixed number 1.3606(NP-hardness), 2 − ε(UGC-hardness [8])

3 A Near Optimal
(
2 − 1

2r

)
-approximation

In this section, we use the a linear based
(
2 − 1

2C

)
-approximation for our input

graph where C is the number of connected components in the input graph, then
improve the approximation.

We start by the following observations on the chromatic number of the input
graph G, given r forests of complete multipartite graph, namely F1, ..., Fr. We
have the following useful observation of a forest of complete multipartite graph.

Property 1. If a graph G is a sum of C complete multipartite graphs, ki-partite
graph respectively, then it has a chromatic number

∏
ki. Moreover, this chro-

matic number is tight.

Proof. The graph G is
∏

ki-colorable. We can do this in linear time by assigning a
distinct color for each partite of each complete ki-partite graph. A k-partite graph
(assuming non-empty parts) is k-colorable (color all of the vertices in one part with
the same color). A complete k-partite graph has chromatic number k (clearly two
vertices in two different parts require different colors). In fact, it has a maximal set
of edges such that the graph has chromatic number (adding an edge within a part
will force another color). If the graphs g1 and g2 are k1 and k2 colorable respectively,
the sum G = g1 + g2 is k1k2 colorable by the product coloring. It follows that each
gi is ki colorable, and that the sum, G is

∏
ki-colorable.

404 D. Miao et al.

This property is tight if we know nothing more about the graphs. For arbi-
trary n, let p1p2 · · · pk be the prime factorization of n (where repeated primes
are listed repeatedly). If G is the sum of k correctly-chosen complete pi-partite
graphs, G = Kn. To choose G1, let the parts be the residues modulo p1. For
G2, let i be in a part according to the residue of 1

p1
� modulo p2. Continuing

this for each k makes the right subgraphs. The best way to imagine this is to
express i has a number where the 1 s place goes up to p1, the p1s place (the next
digit over) goes up to p2, etc. Then G is complete because if i
= j then The
representations of i and j are different.

3.1 A Basic Approximation Algorithm

We next combine this property and linear program relaxation to give a better
approximation. Recall the classical linear program of vertex cover.

minimize
∑
i∈V

xi (11)

subject to:
xi + xj ≥ 1,∀ (i, j) ∈ E, (12)

xi ≥ 0, i ∈ V (13)

We can relax it with condition: xi ∈ {
0, 1

2 , 1
}
, and we have that OPT relax ≤

OPT . Then, we use a coloring on the input graph which can be found trivially
based on Property 1 to improve the approximation. We use a solution similar
with [11] to improve the approximation as follow.

Algorithm 1

1: Solve the linear programming relaxation to obtain a solution x′ such
that x′ ∈ {

0, 1
2 , 1

}
for all i ∈ V .

2: Let Pj is the set of vertices of color j

3: j ← arg maxj

∣∣{x′
i| i ∈ Pj ∧ x′

i = 1
2

}∣∣
4: for each i ∈ V do
5: if x′

i = 1 or (x′
i = 1

2 and i /∈ Pj) then
6: add vi into ˜V C
7: return ˜V C

First, OPT relax can be returned in polynomial time as shown in [13], and it
is easy to see that ˜V C is a cover. Actually, if an x′

i = 1
2 and it is not chosen into

˜V C, then its neighbor must be added into ˜V C since its neighbor is not in Pj ,
and the sum of two adjacent variables is at least 1.

Second, we claim that the approximation ratio is 2
(
1 − 1∏

ki

)
.

Vertex Cover in Conflict Graphs 405

Lemma 2. Algorithm 1 returns a 2
(
1 − 1∏

ki

)
-approximation.

Proof. Let S1 be the set {x′
i|i ∈ V, x′

i = 1}, S 1
2

be the set
{
x′

i| i ∈ V, x′
i = 1

2

}
,

and SPj
be the set

{
x′

i| i ∈ Pj , x
′
i = 1

2

}
. Obviously, OPT relax =

∑
i∈S1∪S 1

2

x′
i ≤

OPT . We have, ∣∣∣ ˜V C
∣∣∣ ≤ |S1| +

∣∣∣S 1
2

∣∣∣ − ∣∣SPj

∣∣ (14)

=
∑
i∈S1

x′
i + 2

∑
i∈S 1

2

x′
i − 2

∑
i∈SPj

x′
i (15)

≤
∑
i∈S1

x′
i + 2

∑
i∈S 1

2

x′
i − 2 · 1∏

ki

∑
i∈S 1

2

x′
i (16)

≤
∑
i∈S1

x′
i + (2 − 2∏

ki
)

∑
i∈S 1

2

x′
i (17)

≤ (2 − 2∏
ki

)
∑

i∈S1∪S 1
2

x′
i (18)

≤ (2 − 2∏
ki

)OPT (19)

3.2 Improve the Approximation by Triangle Eliminating

To improve the approximation, it is necessary to decrease the chromatic number
of the input graph. We next use triangle eliminating technique to decrease the
chromatic number. An improved algorithm is shown as follow.

Algorithm 2

1: for each forest of complete multipartite graph Fi do
2: while there is a triangle do
3: include the three vertices of a triangle into ˜V C1

4: remove them and their adjacent edges in G
5: run Algorithm 1 on the residual graph to get a cover ˜V C2

6: return ˜V C1 ∪ ˜V C2

We formally state that the algorithm above will return a
(
2 − 1

2C

)
-

approximation as the following theorem.

Theorem 5. Algorithm 2 returns a
(
2 − 1

2C

)
-approximation.

Proof. First, Algorithm 2 does find a cover, because the edges connected trian-
gles removed and the residual graph are covered by ˜V C1, meanwhile, Algorithm 1
guarantees ˜V C2 is a cover of the residual graph.

406 D. Miao et al.

Second, as it known [2], in a graph G, if v, u and w form a triangle, then
we can include all three vertices in a vertex cover for a 3

2 -approximation. This is
because at least two vertices of a triangle is needed in order to cover it. Therefore,
˜V C1 is a 3

2 -approximation for the subgraph induced by all the triangles removed.
Third, for each connected component, if all the triangles are removed, it is at

most a complete bipartite graph, therefore it has a chromatic number at most 2.
Then the residual graph has a chromatic number at most 2C . Due to Lemma 2,
C̃2 is an

(
2 − 1

2C

)
-approximation on the residual graph. Then combine the two

covers will obtain a max
{

3
2 , 2 − 1

2C

}
-approximation. Without loss of generality,

we have C ≥ 1, then Algorithm 2 returns a
(
2 − 1

2C

)
-approximation.

Remark. In fact, after removing all the triangles, the residual graph has a
chromatic number 2r which is far less than C. Moreover, there is also a simple
polynomial coloring algorithm as follow.

Algorithm Coloring

1: Removing all the triangles from each forest of complete multipartite
graph

2: for each forest of complete multipartite graph Fi do
3: color each connected component in Fi with colors col2i−1 and clo2i,

such that this subgraph is colored with only two colors.
4: for each vertex in G do
5: color it with col (colj1 , colj2 , ..., coljr), where graph colji is its color in

Fi

Using the coloring algorithm after triangles elimination, we can reduce the
approximation ratio to 2− 1

2r . Theoretically, this ration does not depend on size
of input graph. Practically, when the number of forest of complete multipartite
graph is a fixed small constant, it is a good approximation ratio.

Corollary 1. Algorithm 2 returns a
(
2 − 1

2r

)
-approximation.

3.3 Near Optimality

In the following, we show that Algorithm 2 is a near optimal approximation
based on the following two definitions in [9].

Local Coloring. Let Δ be a positive integer. A Δ-local coloring of a graph is
a valid vertex coloring such that for every vertex u ∈ V , all the neighbors of u
are colored by at most Δ − 1 colors.

Biclique Coloring. A coloring of a graph is called a biclique coloring if for any
two colors i and j, the subgraph induced by “ the vertices with color j that have
a neighbor with color i” and “the vertices with color i that have a neighbor with
color j” is either empty or a complete bipartite graph.

Vertex Cover in Conflict Graphs 407

Remark. On one side, the best approximation for vertex cover of general graph

is 2−Θ

(
1√

log |V |

)
[7]. More strictly, it is a randomized algorithm and the ratio

is parameterized by size of vertex set |V |. While Algorithm 2 is deterministic
and returns an approximation independent with |V | but only depends on |Σ|
always small.

On the other side, as proven in [9] that it is UGC-hard to improve the approx-
imation ratio of 2− 2

Δ+1 by any constant factor if a (Δ + 1)-local coloring is given
as input and it is not a biclique coloring. In general, computing a local biclique
coloring is a hard problem for general graphs. Actually, due to the reduction in
the proof of 4, the instance of our problem can simulate arbitrary graph, that is,
finding a local biclique coloring for the input conflict graph is also hard. However,
Algorithm Coloring provides a 2r-local coloring, this is to say that if assume
UGC, then it is hard to improve any constant factor better than

(
2 − 1

2r

)
.

Moreover, we also claim that Algorithm Coloring will return a 2r-local
coloring and it is tight but not a biclique coloring. Actually, This property is
tight if we know nothing more about the graphs. For arbitrary n, let p1p2 · · · pk

be the prime factorization of n (where repeated primes are listed repeatedly).
If G′ is the sum of k correctly-chosen complete pi-partite graphs, G′ = Kn. To
choose G1, let the parts be the residues modulo p1. For G2, let i be in a part
according to the residue of 1

p1
� modulo p2. Continuing this for each k makes

the right subgraphs. The best way to imagine this is to express i has a number
where the 1 s place goes up to p1, the p1s place (the next digit over) goes up to
p2, etc. Then G′ is complete because if i
= j then The representations of i and
j are different.

Proposition 2. The biclique local coloring of conflict graph depends on the
number of vertices, even if the number of forest of complete multipartite graph
is fixed (r ≥ 2).

Proof. We can build a valid conflict graph with 4n vertices and its biclique
coloring of size Ω (

√
n). We show the conflict graph as the summation of two

simple subgraphs which can be easily expressed as a database instance and two
FDs by the reduction in the proof of Theorem 4.

Construct two subgraphs, a completebipartite graphF1 (V
⋃

U,E1)whereV =
{v1, · · · , v2n} , U = {u1, · · · , u2n} and E1 = V × U , and a bipartite graph F2

(V
⋃

U,E2) where E2 = {v1v2, v3v4, · · · , v2n−1v2n, u1u2, u3u4, · · · , u2n−1u2n}.
Let the conflict graph G is F1 + F2 as follow example (dash edges from E2,
others from E1),

…

For each odd i, we see that vi (ui) is not adjacent with other vertices of V
(U) except vi+1(ui+1), therefore, in order to keep “biclique coloring” property,
we have the following conditions,

408 D. Miao et al.

(a) vi(ui) should be colored different from vi+1(ui+1);
(b) the color pair of vi and vi+1 (ui and ui+1) can not be the same as any other

color pair of vj and vj+1 (uj and uj+1) for any other odd j.
(c) all the colors of vertices in V should be different from those in U .

Based on this, if a biclique local coloring has a size f , then it must satisfy
that (

2
f
2

)
≥ n

2
(20)

Therefore, the biclique local coloring depends on the number of vertices.

Corollary 2. Algorithm 2 is near optimal.

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley,
Boston (1995)

2. Ásgeirsson, E.I., Stein, C.: Divide-and-conquer approximation algorithm for vertex
cover. SIAM J. Discret. Math. 23(3), 1261–1280 (2009)

3. Bar-Yehuda, R., Even, S.: A local-ratio theorem for approximating the weighted
vertex cover problem. Ann. Discrete Math. 25, 27–46 (1985)

4. Dinur, I., Safra, S.: On the hardness of approximating minimum vertex cover. Ann.
Math. 162, 439–485 (2005)

5. Gavril, F.: Algorithms for minimum coloring, maximum clique, minimum covering
by cliques, and maximum independent set of a chordal graph. SIAM J. Comput.
1(2), 180–187 (1972)

6. H̊astad, J.: Some optimal inapproximability results. J. ACM (JACM) 48(4), 798–
859 (2001)

7. Karakostas, G.: A better approximation ratio for the vertex cover problem. ACM
Trans. Algorithms 5(4), 41:1–41:8 (2009)

8. Khot, S., Regev, O.: Vertex cover might be hard to approximate to within 2 - ε. J.
Comput. Syst. Sci. 74(3), 335–349 (2008)

9. Kuhn, F., Mastrolilli, M.: Vertex cover in graphs with locally few colors. In: Aceto,
L., Henzinger, M., Sgall, J. (eds.) ICALP 2011, Part I. LNCS, vol. 6755, pp. 498–
509. Springer, Heidelberg (2011)

10. Monien, B., Speckenmeyer, E.: Ramsey numbers and an approximation algorithm
for the vertex cover problem. Acta Inform. 22(1), 115–123 (1985)

11. Nemhauser, G.L., Trotter Jr, L.E.: Vertex packings: structural properties and algo-
rithms. Math. Program. 8(1), 232–248 (1975)

12. Sitton, D.: Maximum matchings in complete multipartite graphs. Furman Univ.
Electron. J. Undergraduate Math. 2, 6–16 (1996)

13. Williamson, D.P., Shmoys, D.B.: The design of approximation algorithms. Cam-
bridge University Press, New York (2011)

On the Complexity of Scaffolding Problems:
From Cliques to Sparse Graphs

Mathias Weller1,2, Annie Chateau1,2(B), and Rodolphe Giroudeau1

1 LIRMM - CNRS UMR 5506, Montpellier, France
{mathias.weller,annie.chateau,rodolphe.giroudeau}@lirmm.fr

2 IBC, Montpellier, France

Abstract. This paper is devoted to new results about the scaffolding
problem, an integral problem of genome inference in bioinformatics. The
problem consists of finding a collection of disjoint cycles and paths cover-
ing a particular graph called the “scaffold graph”. We examine the diffi-
culty and the approximability of the scaffolding problem in special classes
of graphs, either close to trees, or very dense. We propose negative and
positive results, exploring the frontier between difficulty and tractability
of computing and/or approximating a solution to the problem.

1 Introduction

The scaffolding of genomes is one of the operations performed when producing
a genomic sequence from the real molecule. After sequencing and assembly, we
end up with a certain amount of sequences (words of various length over the
alphabet {A, T,G,C}) called contigs. To complete the whole genome sequence,
those contigs must be relatively ordered and oriented. In previous work on scaf-
folding, this problem has been modeled as a combinatorial problem on graphs
which is, unfortunately, computationally hard [4]. Some methods use heuristic
ways to simplify the graph [9], others use a decomposition of the problem into
two separate steps (orienting and ordering), whose difficulty could be bypassed
under certain restrictions [7]. A good presentation of the mainly used recent
methods can be found in [12].

The following work is based on a simple formulation of the problem. We con-
sider a scaffold graph, that is, an undirected graph for which a perfect matching
is given. Edges in the matching represent the contigs, whereas other edges rep-
resent witnesses for the relative locations of the contigs. These latter edges are
weighted by a flexible confidence measure that can be read from the sequencing
data or mixed with, for example, ancestral support in a phylogenetic context.
Then, the scaffolding problem consists in finding at most a number of σp paths
and σc cycles that, together, cover all matching edges (contigs). We formally
describe this problem in Sect. 2.

In previous works, we stated that the problem is NP-complete, even in
bipartite and planar graphs, and initiated the quest to the frontier between
polynomial-time solvability and NP-completeness [3,4]. Exploring the struc-
ture of the scaffold graphs on real instances, we noted that many vertices of
c© Springer International Publishing Switzerland 2015
Z. Lu et al. (Eds.): COCOA 2015, LNCS 9486, pp. 409–423, 2015.
DOI: 10.1007/978-3-319-26626-8 30

410 M. Weller et al.

Table 1. Complexity results for Scaffolding on various graph classes depending
on ωmax, σp, and σc.

Table 2. Complexity to approximate Scaffolding.

the scaffold graph have small degrees, leading to overall sparsity [15,16]. We
aim to exploit this property to design algorithms tuned to instances occur-
ring in practice, by exploring different classes of graphs, described in Sect. 2.
Indeed, we focus on two types of graphs: First, in Sect. 3, we consider dense
graphs who we know are susceptible to polynomial-time approximation algo-
rithms [3,4]. We focus on dense graphs which are not entirely complete, yet allow
encoding some structure, namely co-bipartite and split graphs. On co-bipartite
graphs, the unweighted version of the scaffolding problem becomes polynomial-
time solvable, which is a first step towards designing algorithms for the general
problem on these graphs. We consider a slightly relaxed version of the problem
to improve the known approximation algorithm on complete graphs [4] to a ratio
of two.

Second, in Sect. 4, we focus on classes of graphs that resemble real instances.
Since Scaffolding can be solved in polynomial time on graphs that are close to
trees by measure of “treewidth” [15], we are interested in other distance measures
to trees. To this end, we consider the class of graphs that can be turned into
a (linear) forest by removing the edges of the given perfect matching M∗ from
it (“quasi forest”). In Sect. 4, we consider Scaffolding on graphs G such that
G − M∗ is a linear forest, a forest, a tree, or a path and show that the problem
remains NP-hard even for very restricted inputs. We reduce the NP-complete
Weighted 2-SAT problem to it, allowing the inheritance of various hardness
results of this problem.

The complexity and approximation results are respectively summarized in
Tables 1 and 2. Next section is devoted to formal description of problems.

On the Complexity of Scaffolding Problems: From Cliques to Sparse Graphs 411

2 Notation and Problem Description

Let G = (V,E) be a graph. For a vertex set V ′ ⊆ V , let G[V ′] denote the
subgraph of G induced by V ′ and let G−V ′ := G[V \V ′]. Further, for any S ⊆ E,
we define Gr(S) := (

⋃
e∈S e, S) and G − S := (V,E \ S). An edge-set M∗ of a

graph is called matching if no two of its edges intersect, that is, e1 ∩ e2 = ∅ for
all distinct e1, e2 ∈ M∗. A pair (G,M∗) where M∗ is a perfect matching on G is
called a scaffold graph. For a matching M∗ and a vertex u, we define M∗(u) as
the unique vertex v with uv ∈ M∗ if such a v exists, and M∗(u) = ⊥, otherwise.
We abbreviate X −{x} =: X −x for any set X of elements of the same type as x.
Slightly abusing notation, we identify a path with the set of its edges. A path p is
alternating with respect to a matching M∗ if, for all vertices u of p, also M∗(u) is
a vertex of p. Thus, alternating paths have an even number of vertices. If M∗ is
clear from context, we do not mention it explicitly. For a function ω : E → N and
a set S ⊆ E, we abbreviate

∑
e∈S ω(e) =: ω(S) and we let ωmax := maxe∈E ω(e).

Thus, ωmax = 1 (resp. = 0) means that the weights can take only two values
(resp. one value). The center of this work is the following problem.

Scaffolding (SCA)
Input: G = (V,E), ω : E → N, perfect matching M∗ in G, σp, σc, k ∈ N

Question: Is there an S ⊆ E \M∗ such that Gr(S ∪M∗) is a collection
of ≤ σp paths and ≤ σc cycles and ω(S) ≥ k?

If ω is uniform, that is, all edges have the same weight, then we call the problem
unweighted Scaffolding. The variant of the problem that asks for exactly σp

paths and exactly σc cycles is called Strict Scaffolding (SSCA). If we are
looking for paths and cycles of fixed lengths �p and �c, we replace σp and σc by
pairs (σp, �p) and (σc, �c) (length means the number of edges). We refer to the
optimization variants of Scaffolding that ask to minimize or maximize ω(S)
as Min Scaffolding and Max Scaffolding, respectively.

Classes of Graphs. A graph is bipartite if it does not contain an odd cycle or,
equivalently, if it admits a proper vertex two-coloring. A graph is co-bipartite if
its complement is bipartite. Thus, a co-bipartite graph can also be considered as
a pair of disjoint cliques, with some edges between them. For disjoint I and C, a
graph G = (I ∪ C,E) such that I is an independent set, and C induces a clique
in G, is called split graph. A scaffold graph (G,M∗) is called quasi-forest (resp.
quasi-tree or quasi-path) if G − M∗ is a forest (resp. tree or path).

3 Dense Graphs

3.1 Good News

We start by showing that Scaffolding can be solved in polynomial time on
some co-bipartite graphs, so let G = (V1 � V2, E) be co-bipartite. We suppose
that G1 := G[V1] and G2 := G[V2] are cliques, both G1 and G2 contain at

412 M. Weller et al.

least one matching edge, and that n1, n2 ≥ 2σp + 4σc, where n1 := |V1| and
n2 := |V2|. We call big co-bipartite graphs the co-bipartite graphs fulfilling the
above conditions. Let B ⊆ E denote the set of edges with one endpoint in V1

and one endpoint in V2.
A bridge between G1 and G2 is either an edge of B ∩ M∗, or a set of three

edges of the form uv ∈ M∗ ∩ G1, vw ∈ B \ M∗, wx ∈ M∗ ∩ G2. A round-trip
between G1 and G2 is a set of three edges of the form uv ∈ B∩M∗, vw ∈ B \M∗

and wz ∈ G1 ∩M∗ or G2 ∩M∗. We define necessary and sufficient conditions to
guarantee a feasible solution to Scaffolding in big co-bipartite graphs.

Lemma 1. Unweighted Strict Scaffolding admits a feasible solution in big
co-bipartite graphs if and only if the following properties hold:

(σp, σc) = (1, 0) : B �= ∅ (1)
(σp, σc) = (0, 1) : ∃B′ ⊆ B : B′ �= ∅, B∩M∗ ⊆ B′ and B′ contains

an even number of edges of disjoint bridges, and
eventually round-trips.

(2)

(σp, σc) = (0,≥ 2) : ∃B′ ⊆ B : B∩M∗ ⊆ B′ and B′ contains an even
number of edges of disjoint bridges, and eventu-
ally round-trips.

(3)

Other cases : A feasible solution always exists. (4)

The proof is omitted, due to lack of place1.
Since every condition appearing in Lemma 1 is checkable in polynomial time,

we conclude the following.

Theorem 1. Unweighted Strict Scaffolding can be solved in polynomial
time in big co-bipartite graphs.

Unfortunately, Theorem 1 holds only for unweighted instances. As we will see
in Sect. 3.2, Scaffolding is NP-hard if we allow weights to be 0 or 1. However,
we can still show a simple factor-2 approximation2 for Max Scaffolding in
case G is a complete graph or a complete bipartite graph.

Algorithm 1 starts with a maximal-cardinality maximum-weight matching S
of G − M∗, implying that Gr(S ∪ M∗) is a collection of cycles. Then, it merges
cycles, two at a time. Finally, it turns cycles into paths until the correct numbers
of paths and cycles are reached.

Lemma 2. If G is a complete graph, Algorithm 1 produces a solution whose
weight is at least half the optimum.

Proof. Let Sorg denote the set S as computed in line 1 and let S̃ denote the
set S returned in line 14. First, we show that S̃ is a solution. To this end, note

1 available on http://www.lirmm.fr/∼chateau/proof cocoa 2015.pdf.
2 That is, Algorithm 1 produces a solution of weight at least half the optimum weight.

http://www.lirmm.fr/~chateau/proof_cocoa_2015.pdf

On the Complexity of Scaffolding Problems: From Cliques to Sparse Graphs 413

Algorithm 1. A 2-approximation for Max Scaffolding on complete
bipartite graphs.

S ← a maximal-cardinality maximum-weight matching in G − M∗;1

C ← the set of cycles in Gr(S ∪ M∗);2

X ← ⋃C∈C argmin{ω(uv) | uv ∈ C \ M∗};3

while |X| > σc + σp do4

e, e′ ← argmin{ω(e), ω(e′) | e, e′ ∈ X ∧ e �= e′};5

Y ← a maximum-weight 4-cycle containing e and e′ in G;6

S ← SΔY ;7

e∗ ← argmin{ω(e∗) | e∗ ∈ S ∩ Y };8

X ← (X \ {e, e′}) + e∗;9

while |X| > σc do10

e ← argmin{ω(e) | e ∈ X};11

S ← S − e;12

X ← X − e;13

return S;14

e e

Fig. 1. An example with σc = 1 for which Algorithm 1 gives a solution of half optimal
weight. Drawn edges (solid and dashed) have weight 1, all other edges have weight
0. The solid edges are a maximal-cardinality maximum-weight matching. Left: Algo-
rithm 1 replaces e and e′ to form the highlighted solution of weight 2. Right: an optimal
solution of weight 4.

that Sorg is a matching in G − M∗ and Gr(Sorg ∪ M∗) is a collection of cycles
since Sorg is maximal-cardinality (and, thus, perfect). Since the only times S
changes is when its symmetric difference with a 4-cycles is formed (line 7) or
when edges are removed from S (line 12), the set S̃ is a matching in G − M∗.
Thus, Gr(S̃ ∪ M∗) has maximum degree two.

Further, note that “X ⊆ S” and “Gr(S ∪ M∗) is a collection of cycles” are
invariants of the first while loop. Since, in line 9, we know that Gr(S ∪ M∗)
has at most σp + σc connected components, all of which are cycles, we conclude
that Gr(S̃ ∪ M∗) is a collection of at most σp paths and at most σc cycles.

Next, we show that the weight of the set S returned in line 14 is at least
half the weight of a maximum matching in G − M∗, which is an upper bound
on the solution weight and which is equal to ω(Sorg). To this end, note that
for all cycles C of Gr(Sorg ∪ M∗), we selected a minimum-weight edge eC of C
into X in line 3. Thus, ω(C) ≥ |C|/2 · ω(eC) for each cycle C in Gr(Sorg ∪ M∗).

414 M. Weller et al.

v0

v1

v2

v3

v1
0

v2
0

v3
0

v4
0

v1
1

v2
1 v3

1

v4
1

v1
2

v2
2

v3
2

v4
2

v1
3

v2
3v3

3

v4
3

Fig. 2. Example of Construction 1, transforming the left instance of Directed Hamil-
tonian Cycle to the right graph with edges of M∗ in bold and edges of the form v4

i v1
j

dashed. A corresponding solution for both instances is highlighted.

Finally, let Xorg denote the set X as computed in line 3. Then, since |C| ≥ 4 for
each C,

ω(Xorg) = ω(
⋃
C

eC) ≤
∑
C

ω(eC) ≤
∑
C

2ω(C)/|C| ≤
∑
C

ω(C)/2 ≤ 1
2
ω(Sorg).

Since Algorithm 1 never touches any edge of Sorg except edges in Xorg, we know
that Sorg ⊆ S̃ ∪ Xorg and, thus, ω(S̃) ≥ ω(Sorg) − ω(Xorg) ≥ ω(Sorg)/2. ��
Note that all arguments remain valid for complete bipartite graphs. Furthermore,
Fig. 1 gives an example of a configuration in which Algorithm 1 gives a solution
of weight half the optimum, implying that the bound of two is tight.

Theorem 2. If G is a complete bipartite graph or a clique, then Max Scaf-
folding can be approximated to within a factor 2 in asymptotically the same
time as it takes to compute a bipartite matching in G (currently O(|V |3)). This
factor is tight.

3.2 Bad News

In the following, we show that Scaffolding is NP-hard on unweighted bipar-
tite graphs and weighted co-bipartite and split graphs by reducing the NP-
complete Directed Hamiltonian Cycle problem [10] to Scaffolding.

Directed Hamiltonian Cycle (DHC)
Input: A directed graph G
Question: Does G contain a simple cycle visiting all vertices?

On the Complexity of Scaffolding Problems: From Cliques to Sparse Graphs 415

Construction 1. Let G = (V = {v1, v2, . . . , vn}, A) be an instance of DHC.
We construct G′ = (V1 � V2, E) as follows (see Fig. 2).

V1 := {v1
i , v3

i | vi ∈ V } V2 := {v2
i , v4

i | vi ∈ V }

E := {v1
i v2

i , v2
i v3

i , v3
i v4

i | vi ∈ V } ∪ {v4
i v1

j | vivj ∈ A}.

Finally, let M∗ := {v1
i v2

i , v3
i v4

i | vi ∈ V }, let ω : E → {0}, and let k := 0.

Theorem 3. Unweighted Scaffolding is NP-complete on bipartite graphs,
even if σp = 0 and σc = 1.

Proof. The problem is clearly in NP. We show that it is also NP-hard by
proving that G has a Hamiltonian cycle if and only if G′ has an alternating
Hamiltonian cycle with respect to M∗.

“⇒”: Let C be a Hamiltonian cycle in G. Then, S := {v2
i v3

i | vi ∈ V }∪{v4
i v1

j |
vivj ∈ C} is a feasible solution, and Gr(S ∪ M∗) is an alternating Hamiltonian
cycle with respect to M∗.

“⇐”: Let S′ be a matching in G′ − M∗ such that C′ := Gr(S ∪ M∗) is an
alternating Hamiltonian cycle in G′ with respect to M∗. Since C′ contains v3

i v4
i

for each vi ∈ V (because they are all in M∗) and C′ is a cycle, we know that S′

contains n edges of the form v4
i v1

j for vivj ∈ A. Since S′ is a matching in G−M∗,
no two of these edges are adjacent. Now, C := {vivj | v4

i v1
j ∈ S′} is a collection

of cycles covering all vertices of V in G. However, if C induces more than one
cycle in G, then so does S′ ∪ M∗ in G′. Therefore, C is a Hamiltonian cycle
in G. ��
Note that we can change the construction such that ω : E → {1} and k := 4n.
This further enables us to add any number of edges of weight 0 to Construction 1
without affecting the correctness argument. This implies that Scaffolding is
NP-complete on, for example, split graphs and co-bipartite graphs.

Corollary 1. Let G be a class of graphs such that, for each bipartite graph G
there is a supergraph of G in G. Scaffolding is NP-complete on G, even
if σp = 0 and σc = 1 and ωmax = 1.

Construction 1 also implies subexponential lower bounds for our problems based
on the widely believed complexity-theoretic hypothesis known as the
“Exponential-Time Hypothesis”3 (ETH, see [13,17]). In fact, the lower bound
is established directly from the fact that (planar) Directed Hamiltonian
Cycle does not admit a O(2o(|E(G)|))-time algorithm [14, Theorem 3.5] and
that Construction 1 only linearly blows up the instance size.

Corollary 2. Let G be a class of graphs such that, for each bipartite graph G
there is a supergraph of G in G. Assuming ETH, there is no 2o(|E(G)|)-time
algorithm for Scaffolding on G, even if σp = 0 and σc = 1 and ωmax = 1.
3 The ETH states: there is a constant c > 1 such that no O(cn)-time algorithm for

n-variable 3-SAT exists.

416 M. Weller et al.

Furthermore, we derive inapproximability of Scaffolding from Construction 1.

Corollary 3. Let G be a class of graphs such that, for each bipartite graph G
there is a supergraph of G in G. For all ρ ∈ N, Min Scaffolding on G is
NP-hard to approximate to within a factor of ρ, even if σp = 0 and σc = 1
and ωmax = 1.

Proof. Suppose that there is a polynomial-time approximation algorithm A for
this problem with approximation ratio ρ > 1. Let G = (V,E) be an instance
of Directed Hamiltonian Cycle with |V | = n. We use Construction 1 to
construct a bipartite graph G′ with matching M∗. Then, we let ω : E′ → N such
that ω(E1) = 0 and set k := 0. Then, we can add any number of edges of weight 1
and no solution computed by A can contain any of these edges. Then, replacing
4n by 0 in the proof of Theorem 1 yields a proof for Corollary 3. Indeed, if G has
a Hamiltonian cycle, then A finds a solution of weight ρ · 0 = 0. Conversely, if G
does not have a Hamiltonian cycle, then at least one edge of weight 1 must be
taken in a solution produced by A. Thus, A decides the NP-complete Directed
Hamiltonian Cycle problem in polynomial time. ��

While there is little hope of finding a constant-factor polynomial-time approx-
imation algorithm for Min Scaffolding, there is a linear-time algorithm with
approximation ratio ωmax

wmin
(where ωmax and ωmin denote the respective maxi-

mum and minimum edge weights) on complete bipartite graphs with σp = 0
and σc = 1. This algorithm repeatedly chooses the lowest weighted edge that
does not close the cycle.

4 Sparse Graphs

4.1 Bad News

The hardness of Scaffolding for dense graphs proved by Theorem 3 motivates
the search for tractable cases among classes of sparse graphs. It is known that
Scaffolding is polynomial-time solvable on graphs that are close to being a
forest (constant treewidth) [15], so we consider a different sparsity measure here.
We investigate whether Scaffolding becomes polynomial-time solvable if the
result of removing the given perfect matching M∗ from G forms a forest. We
call this class of graphs “quasi forests”. Remark that scaffold graphs originating
from real data are not always quasi-forest, however this is a first step towards
their structure. We start off by modifying Construction 1 to make the resulting
graph a quasi tree. Unfortunately, this requires fixing the length of the sought
Hamiltonian cycle. To circumvent this, we present another construction, reducing
the NP-complete Weighted 2-SAT to Scaffolding, that does not require
fixing the lengths.

Construction 2. Let G = (V,A) be an instance of DHC, with V =
{v1, v2, . . . , vn}. We construct G′ = (V ′, E) from G as follows:

On the Complexity of Scaffolding Problems: From Cliques to Sparse Graphs 417

• For each u ∈ V , we construct a “vertex-path” P4,u = (u1, u2, u3, u4), and
we call {u2, u3} an inner edge. The set of all such paths is denoted by P4 =⋃

u∈V P4,u

• For each (u, v) ∈ A, we construct an “edge-path” PE4,uv = (uv1, uv2, uv3,
uv4) and the two edges {u4, uv1}, {uv4, v}.

• We add a path Z = (z1, z2, z3, z4) plus the edges {z1, z3} and {z2, z4}.
• For each vertex u ∈ V , we add the edges {u1, z1}, {u2, z1}, {u4, z1}. For each

(u, v) ∈ A, we add the edge {uv2, z1}.
• We let the perfect matching

M∗ :={{u1, u2}, {u3, u4} | u ∈ V } ∪ {{uv1, uv2}, {uv3, uv4} | (u, v) ∈ A}∪
{{z1, z2}, {z3, z4}}.

Lemma 3. G′ − M∗ is a tree.

Proof. First, G′ − M∗ is a connected graph since all vertices, except z1 are
connected to z1.

To show that G′ − M∗ has no cycles, we count the number of edges in
G′ − M∗. For each v ∈ V , we have the edges {z1, v1}, {v2, v3}, {z1, v2}, and
{z1, v4}, and for each (u, v) ∈ A we have the edges {u4, uv1}, {z1, uv2}, {z1, uv3},
{uv4, v1}. Finally, we have the edges {z1, z3}, {z2, z4}, {z2, z3}. Therefore, |E| =
4n + 4|A| + 3 = |V ′| − 1. So G′ − M∗ is a tree. ��
Theorem 4. Scaffolding with (σp, �p) = (|E|−n+1, 3) and (σc, �c) = (1, 8n)
is NP-complete on quasi-trees.

Proof. Clearly, the problem is in NP. We show that Construction 2 is correct,
that is, G has a Hamiltonian cycle if and only if (G′,M∗) can be covered by |E|−
n + 1 paths of length 3 and 1 cycle of length 8n.

“⇒”: Let C = (v1, v2, . . . , vn) be a directed Hamiltonian cycle in G. We
construct a solution for the Scaffolding-instance as follows: The alternating
cycle of length 8n consists of the vertex-paths P4,vi

for all i ≤ n and the edge-
paths PE4,uv with (u, v) ∈ C. A path of length 3 is given by Z, the remaining
paths are given by the paths-edges PE4,uv such that (u, v) /∈ C.

“⇐”: Suppose there is a set of one alternating cycle C of length 8n and
|E| − n + 1 alternating paths of length 3. Clearly, the vertices of Z are not in C
and therefore, they are included in a path of length 3. Thus, the edges {z1, x}
for each x ∈ V ′ \ {z2, z3, z4} cannot be used in the covering. By construction,
vertex-paths (resp. edge-paths) cannot appear consequently in C. Since each
vertex- and edge- path contains exactly four vertices and C has 8n vertices, C
alternately contains n vertex-paths and n edge-paths. Then, a Hamiltonian cycle
in G is given by the order of the vertex-paths in C. ��

Note that we had to fix the lengths of the paths and cycles we are looking for
in the Scaffolding-instance. To show that Scaffolding is also hard on quasi-
forests without restricting the lengths, we give another reduction. We reduce the
NP-complete Weighted 2-SAT problem (see [1]) to Scaffolding.

418 M. Weller et al.

x1

x5

u3
1
v3
1

u3
1 v3

1v2
1 u4

1

v2
1 u4

1ε31

ε31e31

C3

a3
1

d3
1

b31 c31
b35 c35

a3
5 d3

5

x1 ∨ x5 x1 = 1

x1

x5

C3

x1 ∨ x5 x1 = 1 x5 = 0

Fig. 3. Example of Construction 3 for the clause x1 ∨ x5. Bold edges are in M∗. Gray
paths are solution paths corresponding to the respective assignments.

Weighted 2-SAT
Input: n variables xi with weights wi ≥ 0, m size-two clauses, k ∈ N

Question: Is there a truth assignment β s.t.,
∑

i | β(xi)=1

wi ≥ k?

The optimization variants of Weighted 2-SAT that ask to find a satisfy-
ing assignment β that minimizes or maximizes

∑
i | β(xi)=1 wi are called Min

W2SAT and Max W2SAT, respectively.

Construction 3. Let (ϕ, k) be an instance of Weighted 2-SAT with n vari-
ables x0, x1, . . . , xn−1 and m clauses C0, C1, . . . , Cm−1. We produce the following
instance (G,ω,M∗, n, 0, k) of Scaffolding (see Fig. 3). For each variable xi

and for each 0 ≤ j ≤ m, introduce

– vertices uj
i , uj

i , vj−1
i ,vj−1

i ,
– edges uj

iu
j
i ,v

j−1
i vj−1

i that are also added to M∗,
– edges εj−1

i := vj−1
i uj

i , and εj−1
i := vj−1

i uj
i .

– for j < m, if Cj contains xi, the edge ej
i := uj

iv
j
i , otherwise, ej

i := uj
iv

j
i .

For each clause Cj on the variables x�0 and x�1 , introduce

– for each i ∈ {�0, �1},

On the Complexity of Scaffolding Problems: From Cliques to Sparse Graphs 419

• vertices aj
i , bj

i , cj
i , dj

i

• edges aj
i b

j
i and cj

id
j
i that are added to M∗ and bj

i c
j
i ,

• if Cj contains xi, edges uj
ia

j
i , vj

id
j
i , otherwise, uj

ia
j
i , vj

i d
j
i ,

– edges aj
�0

cj
�1

, cj
�0

aj
�1

, bj
�0

dj
�1

, and dj
�0

bj
�0

.

Finally, set ω(εm−1
i) := 1 for each variable xi and set the weights of all other

edges to 0.

Lemma 4. Construction 3 is correct, that is, ϕ has a satisfying assignment of
weight k if and only if (G,ω,M∗, n, 0, k) is a yes-instance of Scaffolding.

Proof. “⇒”: Let β denote a solution for (ϕ, k). Then, we construct a solution S
for (G,ω,M∗, n, 0, k) as follows. For each variable xi and each 0 ≤ j ≤ m, if
β(xi) = 1 then include {ej

i , ε
j
i} ∩ E(G) in S, otherwise include {ej

i , ε
j
i} ∩ E(G)

in S.
For all clauses Cj , if exactly one of its literals is true, include edges according

to Fig. 3a, if both its literals are true, include edges according to Fig. 3b in S.
Then, S∪M∗ contains exactly 1 alternating path for each of the n variables and,
since εm−1

i ∈ S for each xi with β(xi) = 1, the weight of S equals the weight
of β, which is at least k.

“⇐”: Let S be a solution for (G,ω,M∗, n, 0, k) and note that S∪M∗ contains
at most n paths and no cycles. Since Gr(S ∪ M∗) does not contain cycles, for
each i < n and each j ≤ m we have εj

i /∈ S or εj
i /∈ S. This directly implies that,

for each i < n there is a path ending at um
i or um

i and there is a path ending at
v−1

i or v−1
i . Since there are at most n paths in Gr(S ∪ M∗), the “or” above are

exclusive and all other vertices have degree exactly two in Gr(S ∪M∗), implying
that

all other vertices are incident to exactly one edge in S. (5)

Next, we show for all i < n and j < m that

uj
ia

j
i ∈ S ⇐⇒ vj

i d
j
i ∈ S. (6)

To show uj
ia

j
i ∈ S ⇒ vj

i d
j
i ∈ S, assume uj

ia
j
i ∈ S and vj

i d
j
i /∈ S. Then,

either bj
i c

j
i ∈ S or bj

id
j
� ∈ S for some � �= i. In the first case, we have dj

i b
j
� ∈ S

and, thus, cj
� cannot have an incident edge in S without violating (5). In the

second case, note that the only edges incident to cj
i and dj

i that could be in S

without violating (5) are cj
ia

j
� and dj

i b
j
� , respectively. However, if both are in S,

then Gr(S ∪M∗) contains a forbidden cycle. The direction vj
i d

j
i ∈ S ⇒ uj

ia
j
i ∈ S

can be shown analogously.
Next, we show for each i < n and j ≤ m, that εj

i ∈ S or εj
i ∈ S, implying

εj
i ∈ S ⇐⇒ εj

i /∈ S. (7)

This is easy to see for j = m since one of um
i and um

i has degree 2 in Gr(S∪M∗).
So let the claim hold for j+1 but not for j, that is, εj

i , ε
j
i /∈ S. If xi is not contained

in Cj , this means that both ej+1
i and ej+1

i are in S, forming a forbidden cycle.

420 M. Weller et al.

Thus, by symmetry, let Cj contain xi non-negated. Then, S contains both ej+1
i

and uj+1
i aj+1

i and, by (6), also vj+1
i dj+1

i . Then, by (5), none of εj+1
i and εj+1

i are
in S, contradicting that the claim holds for j + 1. Thus, (7) holds by induction.

Next, we show for each i < n and j < m that

εj
i ∈ S ⇐⇒ εj−1

i ∈ S. (8)

Note that, by (7) it is sufficient to prove εj
i ∈ S ⇒ εj−1

i ∈ S and εj
i ∈ S ⇒

εj−1
i ∈ S. Consider some i < n and j < m such that εj

i ∈ S. Then, by (5), we
have vj

id
j
i /∈ S and ej

i /∈ S. By (6), it follows that uj
ia

j
i /∈ S and, thus, by (5),

εj−1
i ∈ S. Note that εj

i ∈ S ⇒ εj−1
i ∈ S can be shown analogously.

Finally, we define the assignment β for ϕ as β(xi) = 1 ⇐⇒ εm−1
i ∈ S. Then,

since ω(εm−1
i) = 1 for all i < n, we know that β assigns 1 to at most k variables.

It remains to show that β satisfies ϕ. To this end, assume that a clause Cj is not
satisfied and let xi and x� denote the variables occuring in Cj . Note that at least
one of the edges uj

ia
j
i , uj

i , uj
�a

j
� , and uj

�a
j
� is in S since, otherwise, none of the n

paths ending in the variable gadgets can visit the clause gadget of Cj . Since the
prove is symmetric in all four cases, let us assume uj

ia
j
i ∈ S. Then, Cj contains xi

non-negated. By (5), we have εj−1
i /∈ S, which, by (7) implies εj−1

i ∈ S and, by
(8), we arrive at εm−1

i ∈ S. Thus, β(xi) = 1 and, thus, Cj is satisfied by β. ��
Since Weighted 2-SAT is known to be W[1]-hard with respect to k (that is,

an algorithm that is exponential only in k is unlikely to exist [8]), by Lemma 4,
so is Scaffolding.

Theorem 5. Scaffolding is NP-hard and W[1]-hard with respect to k, even
on bipartite graphs G with G − M∗ being a linear forest, ωmax = 1 and σc = 0.

Construction 3 can be modified to restrict the problem even further: consider
two paths p = (v0, v1, . . .) and q := (u0, u1, . . .) in G − M∗. We can add new
vertices αj , βj , γj with j ∈ {u, v} with matching edges αuαv, βuγu, βvγv and
non-matching edges γuγv, v0αv, u0αu of weight 0 and non-matching edges αuβu,
αvβv of weight n + 1. Finally, we ask for a solution of weight 2n(n + 1) + k
containing σp := 2n paths. Then, since all solutions have to contain the heavy
edges αuβu and αvβv, no solution can contain either u0αu or v0αv and, thus,
any solution contains a solution for the original instance.

Corollary 4. Scaffolding is NP-hard and W[1]-hard with respect to k, even
on bipartite graphs G with G − M∗ being a path, ω being tristate, and σc = 0.

In analogy with Corollary 2, Construction 3 implies subexponential-time lower
bounds for exact algorithms.

Corollary 5. – Assuming ETH, there is no 2o(|E(G)|)-time algorithm for
Scaffolding, and,

– assuming W[1] �= FPT , there is no no(k)-time algorithm for Scaffolding,
even if σc = 0, ωmax = 1, and G − M∗ is a linear forest.

On the Complexity of Scaffolding Problems: From Cliques to Sparse Graphs 421

Proof. We modify Construction 3 slightly such that the gadget for each variable
xi contains a “module” (subgraph induced by uj

i , uj
i , vj

i , and vj
i) only for the

clauses it is actually contained in. Thus, the number of vertices and edges in
the produced instance can be bounded linearly in the number of clauses of the
Weighted 2-SAT instance. Then, since Independent Set does not have a
2o(m)-time algorithm [13] (with m denoting the number of edges), Scaffolding
does not have a 2o(m)-time algorithm (unless the ETH fails).

Furthermore, note that k-Independent Set ≡ k-Weighted 2-SAT and k-
Weighted 2-SAT reduces to k-Scaffolding by Construction 3. Thus, since
Independent Set does not have an no(k)-time algorithm [5], Scaffolding
does not have an no(k)-time algorithm (unless W[1] = FT P).

Since Max W2SAT is NP-hard to approximate to within a factor of n1−ε

for any ε > 0 [1,11] and the number of vertices in the instance produced by
Construction 3 is bounded in the number of variables, we conclude that, in
contrast to the factor-3 approximation for Scaffolding in complete graphs [4]
(and the factor-2 approximation presented in Sect. 3), the problem is hard to
approximate in the restricted class described above.

Corollary 6. Max Scaffolding is NP-hard to approximate to within a factor
of n

1
2−ε for any ε > 0, even on bipartite graphs G with G − M∗ being a linear

forest, ωmax = 1 and σc = 0.

For the minimization version, Min Scaffolding, we derive approximation
hardness as well. To see this, note that Construction 3 is an S-reduction (see
[6]) and Min W2SAT is APX -complete [1]. Thus, Min Scaffolding is APX -
hard.

Corollary 7. Min Scaffolding is APX -hard even on bipartite graphs G with
G − M∗ being a linear forest, ωmax = 1 and σc = 0.

Curiously, the approximation hardness result for Min Scaffolding is weaker
than that for Max Scaffolding, which contrasts earlier observations on general
graphs [4]. Thus, we suspect that Corollary 7 can be strengthened to at least the
same hardness-level as we have for Max Scaffolding (Corollary 6). To this
end, we conjecture existence of a gap-preserving reduction from an NP-complete
problem Π to Min Scaffolding with a non-constant gap.

Note that all results in this section hold for any numbers σp ≥ n and σc ≥ 0
since we can add more paths artificially by adding isolated matching edges and
we can add more cycles by adding new 4-cycles. Clearly, the isolated matching
edges must constitute isolated paths. Further, if any isolated 4-cycle is covered
by two paths, there are only (n − 2) paths and a cycle to cover all of the um

i ,
um

i , v−1
i , v−1

i , which can be seen to be impossible.

4.2 Good News

We show that, if G is a quasi forest and σp = 0, then Scaffolding, and even
Strict Scaffolding, can be solved in linear time. To this end, we employ the
following reduction rule.

422 M. Weller et al.

Rule 1. Let u be a leaf in G−M∗ such that the parent v of u in G−M∗ is not
a leaf. Then, delete all edges incident with v in G − M∗ that are not uv.

Proof (Correctness of Rule 1). The proof is based on the argument that any
solution S for G is a perfect matching (that is, Gr(S ∪ M∗) has no degree-1
vertices). Since uv is the only edge of G − M∗ incident with u, it is apparent
that uv ∈ S and, thus, no other edge incident with v is in S. ��

If we maintain a list of leaves on each edge-deletion, we can apply Rule 1
exhaustively in linear time. Moreover, if it is no longer applicable to G − M∗,
then G − M∗ is a matching and checking whether G has the correct number
of cycles can be done in linear time. Finally, we can extend this idea to work
for any σp and σc by guessing all 2σp end points of paths in the solution and
deleting the non-matching edges incident with them. Clearly, the result of this
operation remains a quasi-forest and all vertices having a parent in G−M∗ have
degree two in the solution, so the correctness of Rule 1 remains valid.

Corollary 8. Strict Scaffolding can be solved in O(n2σp+1) time on quasi
forests.

Corollary 8 raises the interesting question of whether (Strict) Scaffolding
on quasi forests is fixed-parameter tractable with respect to σp, that is, whether
it has an algorithm that is exponential only in σp.

5 Conclusion

In this article, we focus on the Scaffolding problem and its minimization and
maximization versions in the framework of complexity and approximation with
performance guarantee. In such context, we consider several types of scaffold
graphs, some being dense, some being sparse (can be turned into a tree, path,
or forests by removing the edges of the perfect matching). We prove several neg-
ative results for these classes of graphs according to complexity hypotheses (see
Tables 1 and 2 for a summary). On the positive side, we design a polynomial-time
approximation algorithm with a ratio at most two (resp. ωmax

ωmin
), for a variant of

Max Scaffolding (resp. Min Scaffolding). These algorithms could be use-
ful for the genome scaffolding problem in bioinformatics — an implementation
would have to be tested and included in the available scaffolding tools. A further
interesting task would be to design an FPT -algorithm with respect to σp, or a
polynomial-time algorithm for the unweighted case, under the assumption that
G−M∗ is a forest. We may also consider extensions of this case to G−M∗ being
of bounded tree-width. Finally, on the side of approximation theory, some more
questions remain towards the goal of understanding the Scaffolding prob-
lem. For instance, can the 2-approximation for Max Scaffolding on dense
graphs be improved to a PTAS? Moreover, it would be interesting to extend our
polynomial-time algorithms for unweighted graphs to approximation or para-
meterized algorithms for the weighted case. Finally, we are still interested in

On the Complexity of Scaffolding Problems: From Cliques to Sparse Graphs 423

extending our results to other classes of graphs generalizing cliques, split and
co-bipartite graphs, for instance (r, l)-graphs, which are graphs which are decom-
poseable into r independent sets and l cliques [2].

References

1. Alimonti, P., Ausiello, G., Giovaniello, L., Protasi, M.: On the complexity of
approximating weighted satisfiability problems. Technical report, Università degli
Studi di Roma La Sapienza. Rapporto Tecnico RAP 38.97 (1997)

2. Brandstädt, A.: Partitions of graphs into one or two independent sets and cliques.
Discrete Math. 152(1–3), 47–54 (1996)

3. Chateau, A., Giroudeau, R.: Complexity and polynomial-time approximation algo-
rithms around the scaffolding problem. In: Dediu, A.-H., Mart́ın-Vide, C., Truthe,
B. (eds.) AlCoB 2014. LNCS, vol. 8542, pp. 47–58. Springer, Heidelberg (2014)

4. Chateau, A., Giroudeau, R.: A complexity and approximation framework for the
maximization scaffolding problem. Theor. Comput. Sci. 595, 92–106 (2015)

5. Chen, J., Chor, B., Fellows, M., Huang, X., Juedes, D.W., Kanj, I.A., Xia, G.:
Tight lower bounds for certain parameterized NP-hard problems. Inf. Comput.
201(2), 216–231 (2005)

6. Crescenzi, P.: A short guide to approximation preserving reductions. In: Proceed-
ings of the Twelfth Annual IEEE Conference on Computational Complexity, Ulm,
Germany, June 24–27, 1997, pp. 262–273 (1997)

7. Dayarian, A., Michael, T., Sengupta, A.: SOPRA: scaffolding algorithm for paired
reads via statistical optimization. BMC Bioinform. 11, 345 (2010)

8. Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity. Texts
in Computer Science. Springer, London (2013)

9. Gao, S., Sung, W.-K., Nagarajan, N.: Opera: reconstructing optimal genomic scaf-
folds with high-throughput paired-end sequences. J. Comput. Biol. 18(11), 1681–
1691 (2011)

10. Garey, M.R., Johnson, D.S.: Computers and intractability: a guide to the theory
of NP-completeness (1979)

11. H̊astad, J.: Clique is hard to approximate within n1−ε. Electron. Colloquium Com-
put. Complex. (ECCC) 4(38) (1997)

12. Hunt, M., Newbold, C., Berriman, M., Otto, T.: A comprehensive evaluation of
assembly scaffolding tools. Genome Biol. 15(3), R42 (2014)

13. Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponential
complexity? J. Comput. Syst. Sci. 63(4), 512–530 (2001)

14. Lokshtanov, D., Marx, D., Saurabh, S.: Lower bounds based on the exponential
time hypothesis. Bull. EATCS 105, 41–72 (2011)

15. Weller, M., Chateau, A., Giroudeau, R.: Exact approaches for scaffolding. Accepted
in RECOMBCG 2015, to appear in BMC Bioinformatics 2015a

16. Weller, M., Chateau, A., Giroudeau, R.: On the implementation of polynomial-time
approximation algorithms for scaffold problems. Technical report (2015)

17. Woeginger, G.: Exact algorithms for NP-hard problems: a survey. In: Jünger, M.,
Reinelt, G., Rinaldi, G. (eds.) Combinatorial Optimization — Eureka, You Shrink!.
LNCS, vol. 2570, pp. 185–207. Springer, Heidelberg (2003)

Parameterized Lower Bound
and NP-Completeness of Some H-Free

Edge Deletion Problems

N.R. Aravind1, R.B. Sandeep1(B), and Naveen Sivadasan2

1 Department of Computer Science & Engineering,
Indian Institute of Technology Hyderabad, Hyderabad, India

{aravind,cs12p0001}@iith.ac.in
2 TCS Innovation Labs, Hyderabad, India

naveen@atc.tcs.com

Abstract. For a graph H, the H-free Edge Deletion problem asks
whether there exist at most k edges whose deletion from the input graph
G results in a graph without any induced copy of H. We prove that H-
free Edge Deletion is NP-complete if H is a graph with at least two
edges and H has a component with maximum number of vertices which is
a tree or a regular graph. Furthermore, we obtain that these NP-complete
problems cannot be solved in parameterized subexponential time, i.e., in
time 2o(k) · |G|O(1), unless Exponential Time Hypothesis fails.

1 Introduction

Graph modification problems ask whether we can obtain a graph G′ from an
input graph G by at most k number of modifications on G such that G′ satisfies
some properties. Modifications could be any kind of operations on vertices or
edges. For a graph property Π, the Π Edge Deletion problem is to check
whether there exist at most k edges whose deletion from the input graph results
in a graph with property Π. Π Edge Completion and Π Edge Editing are
defined similarly, where Completion allows only adding (completing) edges
and Editing allows both completion and deletion. Another graph modification
problem is Π Vertex Deletion, where at most k vertex deletions are allowed.
The focus of this paper is on H-free Edge Deletion. It asks whether there
exist at most k edges whose removal from the input graph G results in a graph
G′ without any induced copy of H. The corresponding Completion problem
H-free Edge Completion is equivalent to H-free Edge Deletion where
H is the complement graph of H. Hence the results we obtain on H-free Edge
Deletion translate to that of H-free Edge Completion.

Graph modifications problems have been studied rigorously from 1970s
onward. Initially, the studies were focused on proving that a modification prob-
lem is NP-complete or solvable in polynomial time. These studies resulted a good

R.B. Sandeep — Supported by TCS Research Scholarship.

c© Springer International Publishing Switzerland 2015
Z. Lu et al. (Eds.): COCOA 2015, LNCS 9486, pp. 424–438, 2015.
DOI: 10.1007/978-3-319-26626-8 31

Parameterized Lower Bound and NP-Completeness 425

yield for vertex deletion problems: Lewis and Yannakakis proved [13] that Π
Vertex Deletion is NP-complete if Π is non-trivial and hereditary on induced
subgraphs. In other words, Π Vertex Deletion is NP-complete if Π is defined
by a finite set of forbidden induced subgraphs. Interestingly, researchers could
not find a dichotomy result for Π Edge Deletion similar to that of Π Vertex
Deletion. The scarcity of hardness results for Π Edge Deletion is mentioned
in many papers in the last four decades. For examples, see [7,16]. It is a folklore
result that H-free Edge Deletion can be solved in polynomial time if H is
a graph with at most one edge. Only these H-free Edge Deletion problems
are known to have polynomial time algorithms. Cai and Cai proved that H-free
Edge Deletion is incompressible if H is 3-connected but not complete, and
H-free Edge Completion is incompressible if H is 3-connected and has at
least two non-edges, unless NP⊆coNP/poly [3]. Further, under the same assump-
tion, it is proved that H-free Edge Deletion and H-free Edge Comple-
tion are incompressible if H is a tree on at least 7 vertices, which is not a star
graph and H-free Edge Deletion is incompressible if H is the star graph
K1,s, where s ≥ 10 [4]. They use polynomial parameter transformations for
the reductions. This implies that these problems are NP-complete. The H-free
Edge Deletion problems are NP-complete where H is C� for any fixed � ≥ 3,
claw (K1,3) [16], P� for any fixed � ≥ 3 [8], 2K2 [6] and diamond (K4 − e) [9]. In
this paper, we prove that H-free Edge Deletion is NP-complete if H has at
least two edges and has a component with maximum number of vertices which
is a tree or a regular graph. For every such graph H, to obtain that H-free
Edge Deletion is NP-complete, we compose a series of polynomial time reduc-
tions starting from the reductions from one of the four base problems: P3-free
Edge Deletion, P4-free Edge Deletion, K3-free Edge Deletion and
2K2-free Edge Deletion (see Fig. 1). We believe that this technique can be
extended to obtain a dichotomy result - H-free Edge Deletion is NP-complete
if and only if H has at least two edges. The evidence for this belief is discussed
in the concluding section.

Another active area of research is to give parameterized lower bounds for
graph modification problems. For example, to prove that a problem cannot be
solved in parameterized subexponential time, i.e., in time 2o(k) · |G|O(1), under
some complexity theoretic assumption, where the parameter k is the size of
the solution being sought. For this, the technique used is a linear parameter-
ized reduction - a polynomial time reduction where the parameter blow up is
only linear - from a problem which is already known to have no parameterized
subexponential time algorithm under the Exponential Time Hypothesis (ETH).
ETH is a widely believed complexity theoretic assumption that 3-SAT cannot
be solved in subexponential time, i.e., in time 2o(n), where n is the number of
variables in the 3-SAT instance. Sparsification Lemma [11] implies that, under
ETH, there exist no algorithm to solve 3-SAT in time 2o(n+m) · (n + m)O(1),
where m is the number of clauses in the 3-SAT instance. Sparsification Lemma
considerably helps to obtain linear parameterized reductions from 3-SAT as it
is allowed to have a parameter k such that k = O(m+n) in the reduced problem

426 N.R. Aravind et al.

instance. It is known that the base problems mentioned in the last paragraph
cannot be solved in parameterized subexponential time, unless ETH fails. Since
all the reductions we introduce here are compositions of linear parameterized
reductions from the base problems, we obtain that H-free Edge Deletion
cannot be solved in parameterized subexponential time, unless ETH fails, if H
is a graph with at least two edges and has a component with maximum number
of vertices which is a tree or a regular graph.

(a) P3 (b) P4 (c) K3 (d) 2K2

Fig. 1. The four base problems are P3-free Edge Deletion, P4-free Edge Dele-
tion, K3-free Edge Deletion and 2K2-free Edge Deletion.

Graph modification problems have applications in DNA physical mapping
[2,10], numerical algebra [14], circuit design [8] and machine learning [1].

Outline of the Paper: Section 2 gives the notations and terminology used in the
paper. It also introduces two constructions which are used for the reductions.
Section 3 proves that for any tree T with at least two edges, T -free Edge Dele-
tion is NP-complete and cannot be solved in parameterized subexponential time,
unless ETH fails. Section 4 proves that for any connected regular graph R with at
least two edges, R-free Edge Deletion is NP-complete and cannot be solved
in parameterized subexponential time, unless ETH fails. Section 5 combines the
results from Sects. 3 and 4 to prove that for any graph H with at least two edges
such that H has a component with maximum number of vertices which is a tree or
a regular graph, H-free Edge Deletion is NP-complete and cannot be solved
in parameterized subexponential time, unless ETH fails. As a consequence of the
equivalence between H-free EdgeDeletion and H-free Edge Completion,
we obtain the same results for H-free Edge Completion.

2 Preliminaries and Basic Tools

Graphs: We consider simple, finite and undirected graphs. The vertex set and
the edge set of a graph G is denoted by V (G) and E(G) respectively. G is
represented by the tuple (V (G), E(G)). A simple path on � vertices is denoted
by P�. For a vertex set V ′ ⊆ V (G), G[V ′] denotes the graph induced by V ′ in
G. G − V ′ denotes the graph obtained by deleting all the vertices in V ′ and the
edges incident to them from G. For an edge set E′ ⊆ E(G), G − E′ denotes
the graph (V (G), E(G) \ E′). The diameter of a graph G, denoted by diam(G),
is the number of edges in the longest induced path in G. An r-regular graph
is a graph in which every vertex has degree r. A regular graph is an r-regular

Parameterized Lower Bound and NP-Completeness 427

graph for some non-negative integer r. A dominating set of a graph G is a set
of vertices V ′ ⊆ V (G) such that every vertex in G is either in V ′ or adjacent to
at least one vertex in V ′. For a graph G, the disjoint union of t copies of G is
denoted by tG. A component of a graph G is a maximal connected subgraph of
G. A largest component of a graph is a component with maximum number of
vertices. We denote |V (G)| + |E(G)| by |G|. We follow [15] for further notations
and terminology.

Technique for Proving Parameterized Lower Bounds: Exponential Time
Hypothesis (ETH) is the assumption that 3-SAT cannot be solved in time
2o(n), where n is the number of variables in the 3-SAT instance. Sparsifica-
tion Lemma [11] implies that there exists no algorithm for 3-SAT running in
time 2o(n+m) · (n + m)O(1), unless ETH fails, where n and m are the number of
variables and the number of clauses respectively of the 3-SAT instance. A linear
parameterized reduction is a polynomial time reduction from a parameterized
problem A to a parameterized problem A′ such that for every instance (G, k) of
A, the reduction gives an instance (G′, k′) of B such that k′ = O(k).

Proposition 2.1 ([5]). If there is a linear parameterized reduction from a para-
meterized problem A to a parameterized problem B and if A does not admit a
parameterized subexponential time algorithm, then B does not admit a parame-
terized subexponential time algorithm.

We refer the book [5] for an excellent exposition on this and other aspects of
parameterized algorithms and complexity.

Proposition 2.2. The following problems are NP-complete. Furthermore, they
cannot be solved in time 2o(k) · |G|O(1), unless ETH fails.

(i) P3-free Edge Deletion [12]
(ii) P4-free Edge Deletion [6]
(iii) C�-free Edge Deletion for any fixed � ≥ 3 [16]1

(iv) 2K2-free Edge Deletion [6]

For any fixed graph H, the H-free Edge Deletion problem trivially
belongs to NP. Hence, we may state that an H-free Edge Deletion problem
is NP-complete by proving that it is NP-hard.
1 Yannakakis gives a polynomial time reduction from Vertex Cover to C�-free
Edge Deletion, for any fixed � ≥ 3 [16]. If � �= 3, the reduction he gives is a
linear parameterized reduction. When � = 3, the reduction is not a linear para-
meterized reduction as it gives an instance with a parameter k′ = O(|E(G)| + k),
where (G, k) is the input Vertex Cover instance. But, it is straight-forward to
verify that composing the standard 3-SAT to Vertex Cover reduction (which is
a linear parameterized reduction and gives a graph with O(n + m) edges) with this
reduction gives a linear parameterized reduction from 3-SAT to K3(C3)-free Edge
Deletion.

428 N.R. Aravind et al.

2.1 Basic Tools

We introduce two constructions which will be used for the polynomial time
reductions in the upcoming sections.

Construction 1. Let (G′, k,H, V ′) be an input to the construction, where G′

and H are graphs, k is a positive integer and V ′ is a subset of vertices of H.
Label the vertices of H such that every vertex get a unique label. Let the labelling
be �H . For every subgraph (not necessarily induced) C with a vertex set V (C)
and an edge set E(C) in G′ such that C is isomorphic to H[V ′], do the following:

– Give a labelling �C for the vertices in C such that there is an isomorphism f
between C and H[V ′] which maps every vertex v in C to a vertex v′ in H[V ′]
such that �C(v) = �H(v′), i.e., f(v) = v′ if and only if �C(v) = �H(v′).

– Introduce k + 1 sets of vertices V1, V2, . . . , Vk+1, each of size |V (H) \ V ′|.
– For each set Vi, introduce an edge set Ei of size |E(H) \ E(H[V ′])| among

Vi ∪ V (C) such that there is an isomorphism h between H and (V (C) ∪
Vi, E(C)∪Ei) which preserves f , i.e., for every vertex v ∈ V (C), h(v) = f(v).

This completes the construction. Let the constructed graph be G.

An example of the construction is shown in Fig. 2. Let C be a copy of H[V ′]
in G′. Then, C is called a base in G′. Let {Vi} be the k + 1 sets of vertices
introduced in the construction for the base C. Then, each Vi is called a branch
of C and the vertices in Vi are called the branch vertices of C. C is called the
base of Vi for 1 ≤ i ≤ k + 1. The vertex set of G′ in G is denoted by VG′ .

Since H is a fixed graph, the construction runs in polynomial time. In the
construction, for every base C in G′, we introduce new vertices and edges such
that there exist k + 1 copies of H in G and C is the common intersection of
every pair of them. This enforces that every solution of an instance (G, k) of
H-free Edge Deletion is a solution of an instance (G′, k) of H ′-free Edge
Deletion, where H ′ is H[V ′]. This is proved in the following lemma.

Lemma 2.3. Let G be obtained by Construction 1 on the input (G′, k,H, V ′),
where G′ and H are graphs, k is a positive integer and V ′ ⊆ V (H). Then,
if (G, k) is a yes-instance of H-free Edge Deletion, then (G′, k) is a yes-
instance of H ′-free Edge Deletion, where H ′ is H[V ′].

Proof. Let F be a solution of size at most k of (G, k). For a contradiction, assume
that G′ − F has an induced H ′ with a vertex set U . Hence there is a base C in
G′ isomorphic to H ′ with the vertex set V (C) = U . Since there are k + 1 copies
of H in G, where each pair of copies of H has the intersection C, and |F | ≤ k,
deleting F cannot kill all the copies of H associated with C. Therefore, since U
induces an H ′ in G′ − F , there exists a branch Vi of C such that U ∪ Vi induces
H in G − F , which is a contradiction. ��

Now we introduce a simple construction, which is used in the next section.
This construction attaches a clique of k + 1 vertices to each vertex in the input
graph of the construction.

Parameterized Lower Bound and NP-Completeness 429

(a) G (b) H. The
vertices
in V are
blackened.

(c) Output of Con-
struction 1 with an in-
put (G , k = 2, H, V).

(d) Output of Con-
struction 2 with an in-
put (G , k = 2).

Fig. 2. Examples showing Constructions 1 and 2.

Construction 2. Let (G′, k) be an input to the construction, where G′ is a
graph and k is a positive integer. For every vertex vi in G′, introduce a set of
k + 1 vertices Vi and make every pair of vertices in Vi ∪ {vi} adjacent. This
completes the construction. Let the resultant graph be G.

An example of the construction is shown in Fig. 2. Here, we call all the newly
introduced vertices as branch vertices.

3 T -free Edge Deletion

Let T be any tree with at least two edges. We use induction on the diameter of T
to prove that T -free Edge Deletion is NP-complete. The base cases are when
diam(T) = 2 or 3. To prove the base cases, we use polynomial time reductions
from P3-free Edge Deletion and P4-free Edge Deletion. For any T with
diam(T) > 3, we give polynomial time reduction from T ′-free Edge Deletion
to T -free Edge Deletion, where T ′ is a subtree of T such that diam(T ′) =
diam(T)−2. To prove each of the base cases, we apply induction on the number
of leaf vertices. All our reductions are linear parameterized reductions and hence
from the non-existence of parameterized subexponential algorithms for P3-free
Edge Deletion and P4-free Edge Deletion, we obtain that there exists
no parameterized subexponential time algorithm for T -free Edge Deletion,
unless ETH fails.

3.1 Base Cases

As mentioned above, the base cases are when diam(T) = 2 or 3. By �(T), we
denote the number of leaf vertices of T . We call the vertices in T with degree one
as leaf vertices and the vertices with degree more than one as internal vertices.

430 N.R. Aravind et al.

If diam(T) = 2 and �(T) = � ≥ 2, we denote T by S�, the star graph on � + 1
vertices.

For every pair of non-negative integers �1 and �2 such that �1 + �2 ≥ 1, we
define a tree denoted by S�1,�2 as follows: the vertex set V of S�1,�2 has �1+�2+2
vertices with two designated adjacent vertices r1 and r2 such that r1 is adjacent
to �1 number of leaf vertices in V \ {r2} and r2 is adjacent to �2 number of leaf
vertices in V \ {r1}. We call such a tree as a twin-star graph (see Fig. 3). We
note that S�1,0 is the star graph S�1+1 and that S�1,�2 and S�2,�1 are isomorphic.

(a) S6 (b) S5,2

Fig. 3. A star graph and a twin-star graph

Lemma 3.1. Let � > 2. Then, there is a linear parameterized reduction from
S�−1-free Edge Deletion to S�-free Edge Deletion.

Proof. Let (G′, k) be an instance of S�−1-free Edge Deletion. Apply Con-
struction 2 on (G′, k) to obtain G. We claim that (G′, k) is a yes-instance of
S�−1-free Edge Deletion if and only if (G, k) is a yes-instance of S�-free
Edge Deletion.

Let (G′, k) be a yes-instance of S�−1-free Edge Deletion. Let F ′ be a
solution of size at most k of (G′, k). For a contradiction, assume that G − F ′

has an induced S� with a vertex set U . Let r be the internal vertex of the S�

induced by U in G−F ′. Now there are two cases and in both the cases we obtain
contradictions.

– r is a branch vertex: Since the neighborhood of any branch vertex in G − F ′

is a clique, r cannot be the internal vertex, which is a contradiction.
– r is a vertex in VG′ : Since the branch vertices in the neighborhood of r in

G − F ′ induce a clique, at most one branch neighbor u of r is present in U
(as a leaf vertex). Hence, the remaining leaf vertices of the S� induced by U
in G − F ′ belong to VG′ . This implies that U \ {u} induces S�−1 in G′ − F ′,
which is a contradiction.

Conversely, let (G, k) be a yes-instance of S�-free Edge Deletion. Let F
be a solution of size at most k of (G, k). For a contradiction, assume that G′ −F
has an induced S�−1 with a vertex set U . Let r be the internal vertex of S�−1

induced by U in G′ − F . Since |F | ≤ k and k + 1 branch vertices are adjacent
to r in G, there is at least one branch vertex u adjacent to r in G − F . Hence,
U ∪ {u} induces an S� in G − F , which is a contradiction. ��

Parameterized Lower Bound and NP-Completeness 431

Theorem 3.2. For every integer � ≥ 2, S�-free Edge Deletion is NP-
complete. Furthermore, S�-free Edge Deletion is not solvable in time 2o(k) ·
|G|O(1), unless ETH fails.

Proof. The proof is by induction on �. When � = 2, S� is the graph P3. Hence,
Proposition 2.2(i) proves this case. Assume that the statements are true for
S�−1-free Edge Deletion, if � − 1 ≥ 2. Now the statements follow from
Lemma 3.1. ��

We apply a similar technique to prove the NP-completeness and parameter-
ized lower bound for T -free Edge Deletion when diam(T) = 3. As described
before, we denote these graphs by S�1,�2 , the twin-star graph having �1 ≥ 1 leaf
vertices adjacent to an internal vertex r1 and �2 ≥ 1 leaf vertices adjacent to
another internal vertex r2.

Lemma 3.3. For any pair of integers �1 and �2 such that �1, �2 ≥ 1 and �1 +
�2 ≥ 3, there is a linear parameterized reduction from S�1−1,�2−1-free Edge
Deletion to S�1,�2-free Edge Deletion.

Proof. Let (G′, k) be an instance of S�1−1,�2−1-free Edge Deletion. Apply
Construction 2 on (G′, k) to obtain G. We claim that (G′, k) is a yes-instance
of S�1−1,�2−1-free Edge Deletion if and only if (G, k) is a yes-instance of
S�1,�2-free Edge Deletion.

Let (G′, k) be a yes-instance of S�1−1,�2−1-free Edge Deletion. Let F ′ be
a solution of size at most k of (G′, k). For a contradiction, assume that G−F ′ has
an induced copy of S�1,�2 with a vertex set U . Let r1 and r2 be the two internal
vertices of the S�1,�2 induced by U in G − F ′. Now, there are the following cases
and in each case, we obtain a contradiction.

– Either r1 or r2 is a branch vertex: This is not possible as the neighborhood of
every branch vertex induces a clique in G − F ′.

– Both r1 and r2 are in VG′ : Since the branch vertices adjacent to r1 forms a
clique in G − F ′, at most one branch vertex u1 can be a leaf vertex adjacent
to r1 in the S�1,�2 induced by U in G − F ′. Similarly, at most one branch
vertex u2 can be a leaf vertex adjacent to r2 in the S�1,�2 induced by U in
G−F ′. The remaining vertices of U belong to VG′ . Hence U \{u1, u2} induces
S�1−1,�2−1 in G′ − F ′, which is a contradiction.

Conversely, let (G, k) be a yes-instance of S�1,�2-free Edge Deletion. Let
F be a solution of size at most k of (G, k). For a contradiction, assume that
G′ − F has an induced S�1−1,�2−1 with a vertex set U . Since �1 + �2 ≥ 3, there
exists at least one internal vertex, say r1, in the S�1−1,�2−1 induced by U in
G′ − F . If there is no other internal vertex r2 in the S�1−1,�2−1, then let r2 be
any leaf vertex of the S�1−1,�2−1. Let V1 and V2 be the set of branch vertices
introduced in the construction such that every vertex in V1 is adjacent to r1
and every vertex in V2 is adjacent to r2. Since |F | ≤ k and |V1|, |V2| = k + 1,
there exist a vertex v1 ∈ V1 adjacent to r1 and a vertex v2 ∈ V2 adjacent
to r2 in G − F . Hence, U ∪ {v1, v2} induces an S�1,�2 in G − F , which is a
contradiction. ��

432 N.R. Aravind et al.

Theorem 3.4. For every pair of integers �1 and �2 such that �1, �2 ≥ 0 and
�1+�2 ≥ 1, S�1,�2-free Edge Deletion is NP-complete and S�1,�2-free Edge
Deletion is not solvable in time 2o(k) · |G|O(1), unless ETH fails.

Proof. The proof is by induction on �1 + �2. The base cases are:

– �1 = 0 (�2 = 0): This is the case when the tree is S�2+1 (S�1+1), the case
handled by Theorem 3.2.

– �1 = �2 = 1: Here the tree is a P4 and hence the statements follow from
Proposition 2.2(ii).

Assume that the statements holds true for the integers �1 − 1, �2 − 1 such that
�1 − 1, �2 − 1 ≥ 0 and (�1 − 1) + (�2 − 1) ≥ 1. Now, the statements follow from
Lemma 3.3. ��

3.2 Induction

In the previous subsection, we proved the base cases of the inductive proof for the
NP-completeness and parameterized lower bound of T -free Edge Deletion.
The base cases were diam(T) = 2 (star graph) and diam(T) = 3 (twin-star
graph). Before concluding the proof, we give a lemma which is stronger than
what we require and the further implications of this lemma will be discussed in
the concluding section.

Lemma 3.5. Let H be any graph and d be any integer. Let V ′ be the set of
all vertices in H with degree more than d. Let H ′ be H[V ′]. Then, there is
a linear parameterized reduction from H ′-free Edge Deletion to H-free
Edge Deletion.

Proof. Let (G′, k) be an instance of H ′-free Edge Deletion. Obtain G by
applying Construction 1 on (G′, k,H, V ′). We claim that (G′, k) is a yes-instance
of H ′-free Edge Deletion if and only if (G, k) is a yes-instance of H-free
Edge Deletion.

Let (G′, k) be a yes-instance of H ′-free Edge Deletion. Let F ′ be a
solution of size at most k of (G′, k). For a contradiction, assume that G − F ′

has an induced H with a vertex set U . Let U ′ be the set of all vertices in U
such that every vertex in U ′ has degree more than d in (G − F ′)[U]. Since every
branch vertex in G has degree at most d, every vertex in U ′ must be in VG′ .
Hence U ′ induces an H ′ in G′ − F ′, which is a contradiction. Lemma 2.3 proves
the converse. ��

Corollary 3.6 is obtained by invoking Lemma 3.5 with H = T and d = 1.

Corollary 3.6. Let T be any tree with diam(T) > 3. Let T ′ be obtained from T
by deleting all leaf vertices. Then, there exists a linear parameterized reduction
from T ′-free Edge Deletion to T -free Edge Deletion.

Parameterized Lower Bound and NP-Completeness 433

Theorem 3.7. Let T be any tree with at least two edges. Then, T -free Edge
Deletion is NP-complete. Furthermore, T -free Edge Deletion is not solv-
able in time 2o(k) · |G|O(1), unless ETH fails.

Proof. We apply induction on the diameter of T . Theorems 3.2 and 3.4 prove the
statements when diam(T) = 2 and diam(T) = 3 respectively. Let the statements
be true when diam(T) = t′ for all t′ such that 2 ≤ t′ ≤ t for some t ≥ 3. Assume
that T has diameter t+1. Deleting all leaf vertices from T gives a graph T ′ with
diameter t + 1 − 2 = t − 1 ≥ 2. Now the statements follow from Corollary 3.6. ��

4 R-free Edge Deletion

In this section, for any connected r-regular graph R, where r > 2, we give a
direct reduction either from P3-free Edge Deletion or from K3-free Edge
Deletion to R-free Edge Deletion. The following three observations are
used to prove the reduction which is given in Lemma 4.4.

Observation 4.1. Let R be an r-regular graph for some r > 2. Let V ′ ⊆ V (R)
be such that |V ′| = 3. Then, V \ V ′ is a dominating set in R.

Proof. To prove that V \ V ′ is a dominating set of R, we need to prove that for
every vertex v ∈ V (R), either v is in V \V ′ or v is adjacent to a vertex in V \V ′.
If v /∈ V \ V ′, then v ∈ V ′. Since |V ′| = 3 and v has degree r ≥ 3, v must have
at least one edge to a vertex in V \ V ′. ��
Observation 4.2. Let G be a graph and r > 0 be an integer. Let W ⊆ V (G)
be such that every vertex in W has degree r in G and G[W] is connected. Let
R be any r-regular graph and G has an induced copy of R on a vertex set W ′

containing at least one vertex in W . Then W ⊆ W ′.

Proof. Let W ′′ be W \ W ′. For a contradiction, assume that W ′′ is non-empty.
It is given that W ∩ W ′ is non-empty, i.e., W \ W ′′ is non-empty. Therefore,
since G[W] is connected, there exists a vertex v ∈ W ′′ such that v is adjacent to
a vertex u ∈ W \ W ′′. Since u ∈ W ′ and G[W ′] induces an r-regular graph and
u has degree r in G, we obtain that every neighbor of u must be in W ′. This is
a contradiction as v is a neighbor of u and is not in W ′. Hence W ⊆ W ′. ��
Observation 4.3. Let G and G′ be two graphs such that |V (G)| = |V (G′)| = 3
and |E(G)| = |E(G′)|. Then G and G′ are isomorphic.

Proof. If a graph has exactly three vertices, the graph is completely defined by
its number of edges e: If e = 0, the graph is a null graph, if e = 1, the graph is
K1 ∪ K2, if e = 2, the graph is a P3 and if e = 3, the graph is a K3. ��
Lemma 4.4. Let R be any connected r-regular graph for any r > 2. Assume
that there exists a set of vertices V ′ ⊆ V (R) such that R[V ′] is a P3 or a K3

and R − V ′ is connected. Let R[V ′] be H ′. Then, there is a linear parameterized
reduction from H ′-free Edge Deletion to R-free Edge Deletion.

434 N.R. Aravind et al.

Proof. Let (G′, k) be an instance of H ′-free Edge Deletion. We apply Con-
struction 1 on (G′, k,H = R, V ′) to obtain G. We claim that (G′, k) is a yes-
instance of H ′-free Edge Deletion if and only if (G, k) is a yes-instance of
R-free Edge Deletion.

Let F ′ be a solution of size at most k of (G′, k). We claim that F ′ is a
solution of (G, k). Let G′′ be G − F ′. Assume that the claim is false. Then,
there is a set of vertices U ⊆ V (G′′) which induces R in G′′. Since R \ V ′

is connected, there is a set of vertices U ′ ⊆ U which induces H ′ in G′′ such
that G′′[U \ U ′] is a connected graph. Since G′ − F ′ is H ′-free, at least one
vertex v ∈ U ′ must be from a branch Vj . Since R \ V ′ is connected, by the
construction, Vj induces a connected graph in G and hence in G′′. Furthermore,
every vertex in Vj has degree r in G′′. Now, by Observation 4.2 (invoked with
G = G′′, W = Vj and W ′ = U), every vertex in Vj is in U . Since |V ′| = 3,
by the construction, |Vj | = |U | − 3. Hence, by Observation 4.1 (invoked with
V ′ = U \ Vj), Vj is a dominating set in G′′[U]. Therefore, U = Vj ∪ Bj where
Bj is the set of base vertices of Vj in G. Since every vertex in Vj has degree
r and G′′[U] induces an r-regular graph, every edge incident to the vertices in
Vj is in G′′[U], i.e., Ej ⊆ E(G′′[U]), where Ej is the edge set introduced along
with Vj in Construction 1. Now, by an edge counting argument, E(G′′[Bj])
must have |E(H ′)| number of edges. Therefore, since |Bj | = 3, by Observa-
tion 4.3, Bj induces H ′ in G′−F ′, which is a contradiction. Lemma 2.3 proves the
converse. ��
Observation 4.5. Let G be a connected graph with at least d ≥ 1 vertices. Then,
there is a set of vertices V ′ ⊆ V (G) such that |V ′| = d and G[V ′] is connected.

Proof. Let v be any vertex in G. Do a breadth first search starting from v until
d number of vertices are visited. Let V ′ be the set of visited vertices. Clearly,
G[V ′] is connected. ��

The following lemma may be of independent interest. The assumption in
Lemma 4.4 comes as a special case of it.

Lemma 4.6. Let H be any connected graph with minimum degree d for any
d > 2. Then, there exists V ′ ⊆ V (H) such that |V ′| = d, H[V ′] is connected and
H \ V ′ is connected.

Proof. Let H be the set of all connected graphs with d number of vertices.
Since the minimum degree of H is d, H has at least d + 1 vertices. Hence, by
Observation 4.5, there exists at least one H ′ ∈ H as an induced subgraph of H.
For a contradiction, assume that for every V ′ ⊆ V (H) which induces any H ′ ∈ H
in H, H \ V ′ is disconnected. Among all such sets of vertices, consider a set of
vertices V ′ ⊆ V (H) which induces any H ′ ∈ H in H such that H − V ′ leaves
a component with maximum number of vertices. Let the t > 1 components of
H \ V ′ be composed of sets of vertices V1, V2, . . . , Vt. Without loss of generality,
assume that H[V1] is a component with maximum number of vertices. Every
other component has at most d − 1 vertices. Otherwise, by Observation 4.5,

Parameterized Lower Bound and NP-Completeness 435

there will be a connected induced subgraph of d vertices in that component
deleting which we get a larger component composed of V1 ∪ V ′. Consider Vj for
any j such that 2 ≤ j ≤ t. We obtained that |Vj | ≤ d − 1. Hence, the degree
of any vertex v ∈ Vj is at most d − 2 in H[Vj]. Since the minimum degree of
H is d, there is at least 2 edges from v to V ′. Let the neighbourhood of v in
V ′ be V ′′. If none of the vertices in V ′′ is adjacent to V1, then v and any of
its d − 1 neighbours induces a connected graph deleting which gives a larger
component. If one of the vertices in V ′′ is adjacent to V1, excluding that we
get d − 1 neighbours of v which along with v induce a connected subgraph and
deleting which gives a larger component. This is a contradiction. ��
Corollary 4.7. Let H be a connected graph with minimum degree 3. Then there
exists an induced P3 or K3 with a vertex set V ′ in H such that H\V ′ is connected.

Theorem 4.8. Let R be a connected regular graph with at least two edges. Then,
R-free Edge Deletion is NP-complete. Furthermore, R-free Edge Dele-
tion is not solvable in time 2o(k) · |G|O(1), unless ETH fails.

Proof. Let R be an r-regular graph. Since R is connected and has at least 2
edges, r > 1. If r = 2 then R is a cycle and the statements follow from Proposi-
tion 2.2(iii). Assume that r ≥ 3. By Corollary 4.7, there exists an induced P3 or
K3 with a vertex set V ′ in R such that R−V ′ is connected. Now the statements
follow from Lemma 4.4, Proposition 2.2(i) and (iii). ��

The complement graph of a regular graph with at least two non-edges is a
regular graph with at least two edges. Thus, we obtain the following corollary.

Corollary 4.9. Let R be a regular graph with at least two non-edges. Then, R-
free Edge Completion is NP-complete. Furthermore, R-free Edge Com-
pletion is not solvable in time 2o(k) · |G|O(1), unless ETH fails.

5 Handling Disconnected Graphs

We have seen in Sects. 3 and 4 that for any tree or connected regular graph H
with at least two edges, H-free Edge Deletion is NP-complete and does not
admit parameterized subexponential time algorithm unless ETH fails. In this
section, we extend these results to any H with at least two edges such that H
has a largest component which is a tree or a regular graph.

Lemma 5.1. Let H be a graph with t ≥ 1 components. Let H1 be a component
of H with maximum number of vertices. Let H ′ be the disjoint union of all com-
ponents of H isomorphic to H1. Then, there is a linear parameterized reduction
from H ′-free Edge Deletion to H-free Edge Deletion.

Proof. Let V ′ ⊆ V (H) be the vertex set which induces H ′ in H. Let (G′, k) be an
instance of H ′-free Edge Deletion. We apply Construction 1 on (G′, k,H, V ′)
to obtain G. We claim that (G′, k) is a yes-instance of H ′-free Edge Deletion
if and only if (G, k) is a yes-instance of H-free Edge Deletion.

436 N.R. Aravind et al.

Let F ′ be a solution of size at most k of (G′, k). For a contradiction, assume
that G − F ′ has an induced H with a vertex set U . Hence there is a vertex set
U ′ ⊆ U such that U ′ induces H ′ in G − F ′. It is straightforward to verify that
a branch vertex can never be part of an induced H ′ in G − F ′. Hence U ′ does
not contain a branch vertex and hence U ′ induces an H ′ in G′ − F ′, which is a
contradiction. Lemma 2.3 proves the converse. ��

Lemma 5.2 handles the case of disjoint union of isomorphic connected graphs.

Lemma 5.2. Let H be any connected graph. For every pair of integers t, s such
that t ≥ s ≥ 1, there is a linear parameterized reduction from sH-free Edge
Deletion to tH-free Edge Deletion.

Proof. The proof is by induction on t. The base case when t = s is trivial.
Assume that the statement is true for t − 1, if t − 1 ≥ s. Now, we give a linear
parameterized reduction from (t−1)H-free Edge Deletion to tH-free Edge
Deletion.

Let (G′, k) be an instance of (t − 1)H-free Edge Deletion. Let G′′ be a
disjoint union of k + 1 copies of H. Make every pair of vertices (vi, vj) adjacent
in G′′ such that vi ∈ V (Hi) and vj ∈ V (Hj) where Hi and Hj are two different
copies of H in G′′. Let the resultant graph be Ĝ. Let G be the disjoint union of
G′ and Ĝ. We need to prove that (G′, k) is a yes-instance of (t−1)H-free Edge
Deletion if and only if (G, k) is a yes-instance of tH-free Edge Deletion.

Let F ′ be a solution of size at most k of (G′, k). It is straightforward to
verify that Ĝ is 2H-free. Hence, if G − F ′ has an induced tH then G′ − F ′ has
an induced (t − 1)H, which is a contradiction. Conversely, let (G, k) be a yes-
instance of tH-free Edge Deletion. Let F be a solution of size at most k of
(G, k). For a contradiction, assume that G′ − F has an induced (t − 1)H with a
vertex set U . Since |F | ≤ k, F cannot kill all the induced Hs in Ĝ. Hence, let
U ′ ⊆ V (Ĝ) induces an H in G − F . Therefore, U ∪ U ′ induces tH in G − F ,
which is a contradiction. ��

Corollary 5.3 is obtained by invoking Lemma 5.2 with s = 1. Lemma 5.4
follows from Lemma 5.1 and Corollary 5.3.

Corollary 5.3. Let H be any connected graph. For every integer t ≥ 1, there
is a linear parameterized reduction from H-free Edge Deletion to tH-free
Edge Deletion.

Lemma 5.4. Let H be a graph such that H has a component with at least two
edges. Let H1 be a component of H with maximum number of vertices. Then
there is a linear parameterized reduction from H1-free Edge Deletion to
H-free Edge Deletion.

Proof. Let H ′ be the disjoint union of the components of H which are isomor-
phic to H1. By Lemma 5.1, there is a linear parameterized reduction from H ′-
freeEdgeDeletion to H-freeEdgeDeletion. Then, by Corollary 5.3, there
is a linear parameterized reduction from H1-free Edge Deletion to H ′-free
EdgeDeletion. Composing these two reductions will give a linear parameterized
reduction from H1-free Edge Deletion to H-free Edge Deletion. ��

Parameterized Lower Bound and NP-Completeness 437

Theorem 5.5. For every t > 1, tK2-free Edge Deletion is NP-complete.
Furthermore, tK2-free Edge Deletion is not solvable in time 2o(k) · |G|O(1),
unless ETH fails.

Proof. Follows from Proposition 2.2(iv) and Lemma 5.2 (invoked with s = 2). ��
Theorem 5.6. Let H be any graph with at least two edges such that a largest
component of H is a tree or a regular graph. Then H-free Edge Deletion
is NP-complete. Furthermore, H-free Edge Deletion is not solvable in time
2o(k) · |G|O(1), unless ETH fails.

Proof. Let H be tK2

⋃
t′K1, for some t′ ≥ 0. Since H has at least two edges,

t > 1. Then the statements follow from Theorem 5.5 and Lemma 5.1. If H is not
tK2

⋃
t′K1, let H1 be a largest component which is a tree or a regular graph.

Clearly, H1 has at least two edges. Then, Lemma 5.4 gives a linear parameterized
reduction from H1-free Edge Deletion to H-free Edge Deletion. Now,
the theorem follows from Theorems 3.7 and 4.8. ��

Since H-free Edge Deletion is equivalent to H-free Edge Comple-
tion, we obtain the following corollary.

Corollary 5.7. Let H be the set of all graphs H with at least two edges such
that H has a largest component which is either a tree or a regular graph. Let
H be the set of graphs such that a graph is in H if and only if its complement
is in H. Then, for every H ∈ H, H-free Edge Completion is NP-complete.
Furthermore, H-free Edge Completion is not solvable in time 2o(k) · |G|O(1),
unless ETH fails.

6 Concluding Remarks

We proved that H-free Edge Deletion is NP-complete if H is a graph with at
least two edges and a largest component of H is a tree or a regular graph. We also
proved that, for these graphs H, H-free Edge Deletion cannot be solved in
parameterized subexponential time, unless Exponential Time Hypothesis fails.
The same results apply for H-free Edge Completion.

Assume that we obtain a graph H ′ from H by deleting every vertex with
degree δ(H), the minimum degree of H. Also assume that H ′-free Edge Dele-
tion is NP-complete. Then by Lemma 3.5, we obtain that H-free Edge Dele-
tion is NP-complete. The reduction in Lemma 3.5 is not useful if H ′ is a graph
with at most one edge, as for this H ′-free Edge Deletion is polynomial time
solvable. Hence we believe that, if we can prove the NP-completeness of H ′-
free Edge Deletion where H ′ is a graph in which the set of vertices with
degree more than δ(G) induces a graph with at most one edge, we can prove
that H-free Edge Deletion is NP-complete if and only if H has at least two
edges.

438 N.R. Aravind et al.

References

1. Bansal, N., Blum, A., Chawla, S.: Correlation clustering. Mach. Learn. 56(1–3),
89–113 (2004)

2. Bodlaender, H.L., de Fluiter, B.: On intervalizing k-colored graphs for DNA phys-
ical mapping. Discrete Appl. Math. 71(1), 55–77 (1996)

3. Cai, L., Cai, Y.: Incompressibility of H-free edge modification problems. Algorith-
mica 71(3), 731–757 (2015)

4. Cai, Y.: Polynomial kernelisation of H-free edge modification problems. M.Phil.
thesis, Department of Computer Science and Engineering, The Chinese University
of Hong Kong, Hong Kong SAR, China (2012)

5. Cygan, M., Fomin, F.V., Kowalik, �L., Lokshtanov, D., Marx, D., Pilipczuk, M.,
Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer International Pub-
lishing, Heidelberg (2016)

6. Drange, P.G., Fomin, F.V., Pilipczuk, M., Villanger, Y.: Exploring subexponential
parameterized complexity of completion problems. In: STACS (2014)

7. Drange, P.G., Pilipczuk, M.: A polynomial kernel for trivially perfect editing. In:
Bansal, N., Finocchi, I. (eds.) ESA 2015. LNCS, vol. 9294, pp. 424–436. Springer,
Heidelberg (2015)

8. El-Mallah, E.S., Colbourn, C.J.: The complexity of some edge deletion problems.
IEEE Trans. Circuits Syst. 35(3), 354–362 (1988)

9. Fellows, M.R., Guo, J., Komusiewicz, C., Niedermeier, R., Uhlmann, J.: Graph-
based data clustering with overlaps. Discrete Optim. 8(1), 2–17 (2011)

10. Goldberg, P.W., Golumbic, M.C., Kaplan, H., Shamir, R.: Four strikes against
physical mapping of DNA. J. Comput. Biol. 2(1), 139–152 (1995)

11. Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponential
complexity? In: Proceedings of the 39th Annual Symposium on Foundations of
Computer Science, pp. 653–662. IEEE (1998)

12. Komusiewicz, C., Uhlmann, J.: Cluster editing with locally bounded modifications.
Discrete App. Math. 160(15), 2259–2270 (2012)

13. Lewis, J.M., Yannakakis, M.: The node-deletion problem for hereditary properties
is NP-complete. J. Comput. Syst. Sci. 20(2), 219–230 (1980)

14. Rose, D.J.: A graph-theoretic study of the numerical solution of sparse positive
definite systems of linear equations. Graph Theor. Comput., 183–217 (1972)

15. West, D.B.: Introduction to Graph Theory, 2nd edn. Prentice Hall Inc., Upper
Saddle River (2001)

16. Yannakakis, M.: Edge-deletion problems. SIAM J. Comput. 10(2), 297–309 (1981)

Multicast Network Design Game on a Ring

Akaki Mamageishvili1(B) and Matúš Mihalák2

1 Department of Computer Science, ETH Zurich, Zurich, Switzerland
akaki@inf.ethz.ch

2 Department of Knowledge Engineering,
Maastricht University, Maastricht,

The Netherlands

Abstract. In this paper we study quality measures of different solution
concepts for the multicast network design game on a ring topology. We
recall from the literature a lower bound of 4

3
and prove a matching upper

bound for the price of stability, which is the ratio of the social costs of a
best Nash equilibrium and of a general optimum. Therefore, we answer
an open question posed by Fanelli et al. in [12]. We prove an upper
bound of 2 for the ratio of the costs of a potential optimizer and of an
optimum, provide a construction of a lower bound, and give a computer-
assisted argument that it reaches 2 for any precision. We then turn our
attention to players arriving one by one and playing myopically their
best response. We provide matching lower and upper bounds of 2 for the
myopic sequential price of anarchy (achieved for a worst-case order of the
arrival of the players). We then initiate the study of myopic sequential
price of stability and for the multicast game on the ring we construct a
lower bound of 4

3
, and provide an upper bound of 26

19
. To the end, we

conjecture and argue that the right answer is 4
3
.

Keywords: Network design game · Nash equilibrium · Price of stabil-
ity/anarchy ·Ring topology ·Myopic sequential price of stability/anarchy ·
Potential-optimum price of stability/anarchy

1 Introduction

Network design game is played by n players on an edge-weighted graph. Each
player i, i = 0, . . . , n − 1, connects her terminal vertices si and ti by selecting
an si-ti path Pi. Using an edge e costs ce and all players using it share the cost
equally. In total, player i’s cost for using path Pi is the sum of all shares towards
the edges of Pi.

Network design game belongs to the broader class of congestion games.
It is a special congestion game in that increasing the congestion on a resource
makes it cheaper to use (in contrast to the more established and studied games
with monotone increasing cost functions). Finite congestion games are exact
potential games, i.e., games for which a potential function exists, i.e., a func-
tion Φ(P0, . . . , Pn−1) → R that exactly reflects the difference in any player’s
c© Springer International Publishing Switzerland 2015
Z. Lu et al. (Eds.): COCOA 2015, LNCS 9486, pp. 439–451, 2015.
DOI: 10.1007/978-3-319-26626-8 32

440 A. Mamageishvili and M. Mihalák

cost, if this unilaterally changes her path from Pi to P ′
i . It is well-known that

exact potential games always possess a pure Nash equilibrium, for example
the vector (P0, . . . , Pn−1) minimizing the potential function Φ. The price of
anarchy is the ratio of the worst Nash equilibrium cost and the general opti-
mum cost, and can be as large as n. The price of stability, which is the ratio
of the best Nash equilibrium cost and the general optimum cost, of network
design games is well understood for directed graphs – it is at most Hn [3],
where Hn = 1 + 1/2 + 1/3 + · · · + 1/n is the n-th harmonic number (equal
asymptotically to log n) and the matching lower bound example has also been
constructed. The price of stability of the game is much less understood for undi-
rected graphs. While it is known to be strictly smaller than Hn [11,19], namely,
at most Hn/2 [19], the largest known example has price of stability equal to
roughly 2.245 [6]. Closing this gap is a major open problem in the field of con-
gestion games and in the computational game theory in general.

For the special type of the game where all players have the same target vertex
t, better bound on the price of stability has been proven [15]. If additionally each
vertex of a graph is a source vertex of some player, a series of papers improved
the upper bound [8,13,17], where the latest result of Bilò et al. [8] shows that
price of stability is O(1) in this class of games. In many results, the potential
function, and the equilibria minimizing it, play an important role. Actually,
equilibria minimizing potential function are regarded as stable (against noise)
by Asadpour and Saberi [4], and accordingly, some authors studied the price
of stability restricted to these kind of equilibria [16,19], the so-called potential-
optimum price of stability.

One of the motivations to study best Nash equilibria is that they can be
regarded as outcomes of the game if a little coordination is present – an author-
ity that suggests the players the strategies Pi. Then, players have no incentive
to unilaterally deviate from the suggested strategy profile. It is questionable
whether such an authority exists – it would need to be very strong, both com-
putationally and imperatively. To address this applicability issue of equilibrium
concepts, sequential versions of the game were studied: the players arrive one by
one, and upon arrival, player i chooses myopically the best path Pi as if this was
the end of the game (i.e., no further players would arrive). Chekuri et al. [10]
show that the total cost achieved by a worst-case permutation of the arriving
players is at most O(

√
n log n) times the optimum cost. Subsequently, Charikar

et al. [9] improved this bound to O(log2 n) (the original version [9] is erroneous,
but the authors provide corrected arguments upon request). The worst-case app-
roach to the order in which the players arrive naturally models the complete lack
of coordination. In this paper, we suggest to study also the best-case order in
which players arrive. This is motivated by the presence of an authority that can
control the access to the resources over time (and thus decide an order of the
arriving players). Such an authority is arguably weaker than the one mentioned
above, as it does not impose any decision upon the players, and it leaves them
to decide their strategies freely upon arriving. Biló et al. [7] studied a version of
a cost sharing scheme for multicast network design game, in which each player
only knows strategies of some other players, and pays fair share of edge costs

Multicast Network Design Game on a Ring 441

that she uses based only on her information. Sequential versions described above
can be modeled with this cost sharing scheme.

In this paper, we focus on one specific network topology: the ring. This is a
fundamental topology in networking and communications. It is the edge-minimal
topology that is resistant against a single link fault. From the decentralized
point of view, call control comes close in spirit to network design games, in that
the connecting si-ti paths needs to be chosen to obey given capacities on the
links [1]. The study of approximation algorithms is the counterpart to bounding
the prices of anarchy and stability. Rings have also been intensively studied
in the distributed setting, e.g., among plenty of others, in the context of the
fundamental leader election problem [5].

Network design games on rings has previously been studied by Fanelli et al. [12],
which show a tight bound of 3/2 on the price of stability for the general setting. In
this paper we restrict ourselves to the multicast version in which all players share
the same target vertex t = ti, i = 0, . . . , n− 1 and answer the open question asked
by Fanelli et al. [12] about tight bounds of the price of stability for multicast game
on a ring. We study various solutions concepts and analyze their quality compared
to an optimum network (with respect to the social cost). In most cases, we are able
to provide tight bounds. Furthermore, we also study the myopic sequential price
of stability in general multicast network design games, and give a simpler proof of
an upper bound of 4 for this class of games compared to a more general proof in [7]
(cf. this with the upper bound of log2 n on the myopic sequential price of anarchy
for multicast games).

2 Preliminaries

Network design game is a strategic game of n players played on an edge-weighted
graph G = (V,E) with non-negative edge costs ce, e ∈ E. Each player i,
i = 0, . . . , n − 1, has a dedicated source node si and a target node ti. In the
multicast game all ti’s are the same and we denote it by t throughout a paper.
All si-ti paths form the set Pi of the strategies of player i. Each player i chooses
one path pi ∈ Pi, the union of which creates a network in which all si-ti pairs
are connected. The cost for player i is

∑
e∈pi

ce

n(e)
where n(e) is the number of

players that use the edge e in their chosen paths. A strategy profile p is a vector
of strategies for all players, p = (p0, . . . , pn−1). A strategy profile is Nash equi-
librium if no player can unilaterally change her strategy pi to p′

i and improve her
cost. The (social) cost of a strategy profile p is the cost of the created network,
i.e., the sum of the costs of all edges in the created network, which is, in turn, the
sum of all players’ costs. An optimum network is a network of minimum social
cost in which all si-ti pairs are connected. An optimum network can be equiva-
lently described by a strategy profile p∗, and then we refer to p∗ as an optimum
strategy profile. Note that an optimum strategy profile is not, in general, a Nash
equilibrium. Observe also that in a multicast game an optimum network forms
a Steiner tree on the terminals si and t for i = 0, . . . , n − 1. If an underlying
graph G is a ring, then there are only 2 possible strategies for each player.

442 A. Mamageishvili and M. Mihalák

In this paper, we focus on the multicast game on rings. We can assume, with-
out loss of generality, that every node but the target t is a source of exactly one
player. Otherwise, we can modify the topology by the following two operations.
If there are l > 1 players sharing the same node x of the ring as a source vertex,
we make l copies of this vertex, add l − 1 consecutive edges of cost 0 between
them to make a path of length l − 1, replace x in the ring with this path in a
natural way, and associate each vertex with a unique source (copy of x). If there
is a node x in the ring which is not a target nor a source of any player, we delete
x from the ring, and connect its two neighbors by an edge of cost ce + ce′ , where
e, e′ are the two adjacent edges of x. A repetitive application of these two oper-
ations preserve the cost of optimum and Nash equilibrium strategy profiles, and
also preserves the equilibrium properties of strategy profiles (if the strategies are
expressed in the form “go clockwise/counterclockwise to si”).

t

0

1

n-1

n-2

i

i+1i-1

a0

a1

ai ai+1

an

an−1

left path right path

Fig. 1. Multicast game on rings.

We label the sources (players) and the edges connecting them in a counter-
clockwise order as in Fig. 1, where ai denotes the cost of the i-th edge. Player i has
exactly 2 strategies, one is to go left, i.e., clockwise, taking edges i, i−1, . . . 0, or to
go right, i.e., counterclockwise, taking edges i+1, . . . n. Observe that the optimum
strategy profile is the one which uses all edges except the most expensive edge.
Let o denote the most expensive edge. Then the (social) cost of an optimum
network is

∑
i�=o ai.

Price of anarchy of a network design game is the ratio of the costs of a worst
Nash equilibrium and of an optimum strategy profile. Price of stability is the
ratio of the costs of a best Nash equilibrium and of an optimum strategy profile.
Potential optimum is a strategy profile p that minimizes the potential function
Φ =

∑
e

∑n(e)
i=1

ce
i . Potential-optimum price of anarchy/stability is the ratio of the

costs of the worst/best potential-optimum profile and of an optimum strategy
profile. Myopic sequential price of anarchy/stability is the worst-case/best-case
ratio of the costs of a strategy profile that can be obtained by ordering the
players as in a permutation π and letting player π(i) choose the best-response

Multicast Network Design Game on a Ring 443

pπ(i) in the game induced by the first i players π(1), π(2), . . . , π(i) and of an
optimum profile.

Note on related concepts. The term sequential price of anarchy has been used
[2,18] to express a different, yet still closely related, concept compared to the
notion of the myopic sequential price of anarchy/stability. In the sequential price
of anarchy, players also come one by one, and decide their strategy upon arrival,
but the stability of the outcome is measured in terms of Nash equilibria again.
In some sense, the game resembles extensive games. Observe that profiles p that
get compared to optima in the myopic sequential price of anarchy/stability are
in general no Nash equilibria.

3 Price of Anarchy/Stability for Multicast on Rings

It is known that the price of anarchy on general graphs is at most n, and that
this bound is tight. The tight example actually is a multicast game on a ring,
and the general analysis of the price of anarchy thus carries over to our multicast
game on rings. For completeness, we show the example in Fig. 2.

Theorem 1 ([3]). Price of anarchy for mutlicast games on rings is at most n.
This is tight.

We now turn our attention to the price of stability. The example from Fig. 3,
due to Anshelevich et al. [3], shows that the price of stability can be as high
as 4/3 (observe that the game possesses a unique Nash equilibrium where both
players use the direct edge to get connected to t). We now show that the price of
stability cannot get larger than that for multicast games on rings, and therefore
answer the open question asked by Fanelli et al. [12].

Theorem 2. Price of stability in the multicast game on rings is at most 4
3 .

In the proof of the theorem we will use the following lemma.

Lemma 1. If a strategy profile p in which an edge i is not used is not Nash
equilibrium, then either player i or player i−1 can improve her cost by changing
her strategy.

n1

t

si

Fig. 2. In the worst equilibrium, all
players use the edge of cost n.

t

0 1

2/3 2/3

1
3 +

Fig. 3. Example of a lower bound 4/3.

444 A. Mamageishvili and M. Mihalák

Proof. Since the strategy profile p is not a Nash equilibrium, there exists a player
k that can change her strategy and improve the cost. Assume, without loss of
generality, that k < i − 1. Since edge i is not used in p, it follows that player k

uses the left path to get to t. The cost of k in p is thus
k∑

l=0

al

i − l
, which is, by

our assumption, bigger than the cost of k if she switches to the right path, i.e.,

bigger than
i−1∑

l=k+1

al

i − l + 1
+

n∑
l=i

al

l − i + 1
. It follows that player i − 1 also uses

the left path in p, and thus her cost is at least the cost of player k, whereas the
alternative cost of i−1 if she switches to the right path is at most the alternative
cost of player k. Hence, the alternative cost of player i − 1 is smaller than her
cost in p, and player i − 1 thus improves her cost as well. ��
Proof (of Theorem 2). Consider an optimum strategy profile and let o be the
edge that is not used in it. If optimum is also Nash equilibrium, then price of
stability is 1 and the claim follows. Otherwise, optimum is not a Nash equilibrium
and, by Lemma 1, one of the endpoints of the edge o can improve its cost. Assume,
without loss of generality, that player o − 1 can improve. We now consider the
following best-response dynamics: let o−1 improve; then, edge o−1 is not used,
and in case we have not reached Nash equilibrium, let player o − 2 improve (the
player o − 2 must be able to improve by Lemma 1), and so on, until some player
o − k cannot improve anymore (this happens at the latest for player 0), and we
reach a Nash equilibrium.

We will show that the social cost of a Nash equilibrium that is reached by
this best response dynamics is maximized for k = 1, i.e., for the strategy profile
reached after one step of the dynamics. We then show that the cost of such a
profile is at most 4/3 times the cost of the optimum, which proves the theorem.

Let us first show the second part. Assume therefore that player o−1 switches
to improve her cost, and the resulting profile is an equilibrium. In particular,
we have that player o − 2 does not want to switch. This can be expressed by

the following two inequalities:
l=n∑
l=o

al

l − o + 1
≤

l=o−1∑
l=0

al

o − l
, and

l=o−2∑
l=0

al

o − 1 − l
≤

l=n∑
l=o−1

al

l − o + 2
. We further introduce a normalization of the edge costs so that

the edges in the optimum sum up to 1. Thus, we obtain the normalization

equation
n∑

i=0,i �=o

ai = 1. Now, taking the first inequality with weight 5, the second

with weight 1, and the normalization equality with weight 6, we obtain that the

cost of the Nash equilibrium where edge o − 1 is not used has cost
i=n∑

i=0,i �=o−1

ai

at most 4
3 .

Multicast Network Design Game on a Ring 445

We can proceed in the same way for every other value of k = 2, 3, . . . for
which the reached Nash equilibrium does not use edge o−k. For every k, we get
for each of the players o − k − 1, o − k, . . . , o − 1 an inequality stating that the
player did not want, respectively wanted to swap her strategy. For all values of
k = 1, 2, 3, 4, 5, 6, 7, we provide in the appendix the coefficients with which we
need to take the inequalities and to obtain the upper bound of at most 4/3 on
the cost of the Nash equilibrium.

If the length of the best-response dynamics is 8 or more, it follows that we
do not need to add further inequalities, and the 7 inequalities obtained for the
first 7 deviating players are enough to show the upper bound of 4/3 on the cost
of the reached Nash equilibrium. ��

4 Potential-Optimum Price of Anarchy for Multicast on
Rings

The potential-optimum price of anarchy/stability has been first studied, in the
context of the network design games, by Kawase and Makino [16]. Besides other
results, they proved that for multicast network design games, the two values
collide. Therefore, in the following, we only study the potential-optimum price
of anarchy (POPoA for short), and we show that it is at most two for rings,
and provide an infinite family of examples with increasing POPoA, which we
conjecture converges to two, but leave the formal analysis as an open problem.
We have analyzed one such game from the family which shows that POPoA can
be as large as 1.99992.

Theorem 3. POPoA is at most 2 in the multicast game on rings.

Proof. Consider an optimal strategy profile O and let o be the edge that is not
used in it. Consider a potential optimum strategy profile P and let p be the edge
in it that is not used by any player. Assume, without loss of generality, that
p < o.

By the definition of P , we have, for any strategy profile Q, Φ(P) ≤ Φ(Q),
and in particular Φ(P) ≤ Φ(O), i.e.,

p−1∑
i=0

ai · Hp−i +
n∑

i=p+1

ai · Hi−p ≤
o−1∑
i=0

ai · Ho−i +
n∑

i=o+1

ai · Hi−o. (1)

We now concentrate on ao and show that ao is at most the cost of optimum, i.e.,
at most

∑
i�=o

ai. This then shows that any strategy profile (and, in particular, P) has

cost at most twice the cost of optimum.
Isolate in the second sum of the left hand side (LHS for short) of Eq. (1)

the term with ao and put the rest of the sum to the right hand side (RHS).
This rest will dominate the second sum on the RHS, and by neglecting the

resulting negative number, we get that
p−1∑
i=0

ai · Hp−i + ao · Ho−p ≤
o−1∑
i=0

ai · Ho−i,

446 A. Mamageishvili and M. Mihalák

or, equivalently, that ao ≤
∑o−1

i=0 ai·Ho−i−
∑p−1

i=0 ai·Hp−i

Ho−p
. Analyzing the influence

of p on the RHS, one can show that the RHS is maximized for p = 1. Thus,
we obtain that ao ≤

∑o−1
i=0 ai·Ho−i−a0

Ho−1
. Then, since Ho − 1 ≤ Ho−1 we get that

ao ≤ ∑o−1
i=0 ai ≤ ∑

i�=o ai, which proves the claim and thus the theorem. ��
We now provide a construction of a game which shows that POPoA is at least

1.99992. We conjecture that the construction can be used to prove an asymptotic
lower bound of 2 on POPoA.

Consider non-zero numbers a0, . . . , a2·l that sum up to 1, and where l is
constant, o = n, p = l − 1 and where an is equal to Hn−a

Hn
, for some constant

a. Compare the potentials of the strategy profiles which do not use edge i for
i = 0, . . . , i = 2 · l to the potential of P (the strategy profile minimizing Φ)
that does not include the p-th edge. Note that after canceling the coefficients
on both sides, the coefficient in front of an is a sum of a constant number of
terms converging to 0 for n tending to infinity, so these terms can be neglected.
The potential of the strategy profiles which do not use edge i for n

2 > i > 2 · l is
increasing when i is increasing and decreasing towards n. We solved the resulting
system of linear equations and obtained a lower bound for POPoA converging
to 1.99992 for l = 1000 and n tending to infinity. Thus, we have the following
proposition.

Proposition 1. There are games that have POPoA 1.99992.

We leave it as an open problem to analyze the convergence of the POPoA of
the above construction, and conjecture that it converges to two.

Conjecture 1. There are games that have POPoA arbitrarily close to 2.

5 Myopic Sequential Prices of Anarchy/Stability

In this section we study the myopic sequential price of anarchy and the myopic
sequential price of stability.

5.1 Sequential Price of Anarchy in Multicast Game on Rings

Lemma 2. The myopic sequential price of anarchy is at most 2 in the multicast
games on rings.

Proof. Consider an optimal strategy profile and let o be the edge that is not
used. Consider any permutation (order) π of the players. If any player π(i),
i < o, decides to take a path containing edge o for the first time then it means

that ao ≤
l=i∑
l=0

al which is bounded by the cost of optimum. Therefore, the whole

cost of the ring is bounded by 2 times the cost of optimum. ��
The presented upper bounds is tight, as shows the example in Fig. 4, where

π = {0, 1, 3, 2} results in myopic sequential price of anarchy equal to 2.

Multicast Network Design Game on a Ring 447

Fig. 4. Lower bound example for the sequential price of anarchy

5.2 Myopic Sequential Price of Stability in Multicast Game

In the myopic sequential price of stability we consider the best permutation of
players, with respect to the resulting network cost. In [7] authors prove that
when the social knowledge network graph is directed acyclic then the price of
anarchy is bounded by 4 (Theorem 8). If we consider that in the social knowledge
graph each incoming player knows all the previous players then the result can
be directly translated into our setting, but we give a different (simpler than the
proof of general result in [7]) proof for our setting:

Theorem 4. The myopic sequential price of stability in multicast games on
arbitrary graphs is at most 4.

Proof. Since there is a common target vertex t, any optimum strategy profile
forms a Steiner tree T on terminals si, i = 0, . . . , n − 1 and t. Consider a per-
mutation of the vertices that corresponds to a depth-first search of the tree
T , and make it the identity permutation (0, 1, . . . n − 1). Let the players enter
the game in this order, and make the myopic best responses. Denote by Bi the
cost of the edges that player i uses alone in her strategy at the moment she
enters the game, and let Si be the overall cost of player i when she enters.

Then the cost of the resulting network is
i=n−1∑

i=0

Bi. Since every player optimizes

her cost when she enters the game, we have the following chain of inequalities:
Si ≤ dT (si, si−1) + Si−1 − 1

2Bi−1, for i = 1, . . . , n − 1, where dT (u, v) is the
distance between nodes u and v using only the edges of the tree T . Each player
i has the following alternative strategy: first travel to the source (vertex) si−1

using the edges of T , and then follow the strategy of player i − 1. Note that
in this alternative strategy, player i saves at least half of the cost of the edges
that player i − 1 takes alone when she enters the game. For the first player,
we have the following inequality S0 ≤ dT (s0, t), because when she enters the
game, one of the possible strategies is to take a direct path from s0 to t using
only the edges of T . By summing up all inequalities given above, we get that

448 A. Mamageishvili and M. Mihalák

1
2

i=n−2∑
i=0

Bi + Sn−1 ≤ 2 · cost(T). Note that Sn−1 ≥ 1
2Bn−1, which results into

the upper bound of 4. ��
This upper bound is tight, as the example (Theorem5) from [7] shows, ratio

in the lower bound example is arbitrarily close to 4.

Proposition 2. There is a multicast game with the myopic sequential price of
anarchy arbitrarily close to 4.

5.3 Myopic Sequential Price of Stability on Rings

In this section we consider the myopic sequential price of stability of the multicast
games on rings. The example from Fig. 3 shows that it can be as high as 4

3 . We
prove the following upper bound.

Theorem 5. The myopic sequential price of stability in the multicast games on
rings is at most 26

19 .

Proof. Assume that the optimum strategy profile does not include the edge of

cost ao, and without loss of generality
i=o−1∑

i=0

ai ≥
i=n∑

i=o+1

ai. Consider the permu-

tation π = {n−1, . . . , o, 0, 1, . . . , o−1}. First n− o players clearly take the right
path, by our assumption. Consider the remaining players. If there is no player
which, upon arrival, prefers the right path over the left path, then only edges
of an optimum strategy profile are included into the resulting network which
means that the myopic sequential price of stability is 1. If the very first player
0 prefers the right path, then all other players necessarily prefer the right path
as well, and the resulting network consists of all edges except for that of weight
a0. But then a0 is at least as large as ao, resulting again the myopic sequential
price of stability equal to 1. Suppose that there exists i such that every player
l ≤ i prefers to take the left path, and only the player (vertex) i + 1 prefers to
take the right path. This implies the following inequalities:

k=i∑
k=0

ak

i − k + 1
≤

k=n∑
k=i+1

ak, and (2)

k=o∑
k=i+2

ak ≤
k=i+1∑
k=0

ak

i + 2 − k
, (3)

where the first inequality (2) indicates that the i-th player prefers the left path,
and the second inequality (3) indicates that the i+1-th player prefers the right.
Our goal is to investigate the maximum possible cost c of the resulting network,
where c = a0 + · · ·+ai +ai+2 + · · ·+an. Take the first inequality (2) with weight
2
19 , the second inequality (3) with weight 24

19 , and the normalization equation
a0 + · · ·+ ao−1 + ao+1 + · · ·+ an = 1 with weight 26

19 . We obtain that the sum on
the left hand side s satisfies c ≤ s ≤ 26

19 , which gives that c ≤ 26
19 ≈ 1.368. ��

Multicast Network Design Game on a Ring 449

The permutation from the proof of Theorem5 cannot be used to provide
a better bound, as there exists an example of a game, where the permutation
results in a network of cost 26

19 times larger than the cost of optimum. The
example consists of 3 players and edges have weights 6

19 , 10
19 , 3

19 and 10
19 in the

counter-clockwise order. Players who come in the game according to the permu-
tation {0, 1, 2, 3} take all edges except for the 3-rd edge of weight 3

19 , resulting
into a network of cost 26

19 , while the optimum network cost is 1. Note that if
players come according to the “opposite” permutation (n − 1, . . . , 0), then the
resulting network has the same cost as the optimum network. We have experi-
mentally played with these two permutations, and for all inputs we tried, one of
the two permutations resulted in networks of cost no more than the 4/3 of the
optimum cost. Actually, we have checked that there is no instance of at most
1000 players where the better of the two permutations fails in that respect.

Conjecture 2. The myopic sequential price of stability in the multicast game on
rings is at most 4

3 .

6 Conclusions

We have analyzed several solution concepts for the multicast network design
games on rings, and demonstrated that they differ in terms of quality. Some of
the derived bounds are not shown to be tight, and we leave it for future work to
make them tight.

We have also initiated the study of the myopic sequential price of stability,
and analyzed it for the multicast network design game on a ring. It is certainly
an interesting challenge to provide better bounds on this concept for general
(not multicast) network design games.

Acknowledgements. This work has been supported by the Swiss National Science
Foundation (SNF) under the grant number 200021 143323/1. We used the CGAL linear
and quadratic programming solver [14] for solving all linear programs described in
this article. We thank anonymous reviewer for insightful comments and especially for
pointing out the relation between myopic sequential price of stability and graphical
multicast cost sharing games.

A Weights for Inequalities from the Proof of Theorem2

In this appendix we provide the multiplicative weights of the inequalities using a
dual to a linear program that was solved to upper bound the price of stability in
the multicast game on rings. The first inequality is the normalization inequality,
therefore its weight is the upper bound on the price of stability. The next k
inequalities indicate that the first k ≤ 7 players left of edge e prefer to deviate,
i.e., prefer to choose the right path instead of the left path, and the last inequality
indicates that we have a Nash equilibrium, i.e., the last player considered in
the best-response dynamics prefers to stick with the left path than to switch to

450 A. Mamageishvili and M. Mihalák

the right path. The objective of the linear program is to minimize the sum of the
edge costs without the edge that is not used by the Nash equilibrium achieved
via the best response dynamics. The coefficients (weights) are as follows:

– k = 1 (0: 4/3; 1: 10/9; 2: 2/9)
– k = 2 (0: 22/17; 1: 252/323; 2: 202/323; 3: 90/323)
– k = 3 (0: 29/23; 1: 2976/4025; 2: 1206/4025; 3: 2256/4025; 4: 1224/4025)
– k = 4 (0: 1.243533565; 1: 0.722076586; 2: 446160/1659763; 3: 0.268809463; 4:

0.528169383; 5: 0.329251827)
– k = 5 (0: 1.229596836; 1: 0.711037768; 2: 0.257115234; 3: 0.201170436; 4:

0.199302216; 5: 0.50797093; 6: 0.348431623)
– k = 6 (0: 1.217310111; 1: 0.702648246; 2: 0.250967669; 3: 0.189905238; 4:

0.168566505; 5: 0.179311025; 6: 0.494134279; 7: 0.362553601)
– k = 7 (0: 1.206536915; 1: 0.69586637; 2: 0.247111078; 3: 0.184286036; 4:

0.157438535; 5: 0.148587957; 6: 0.165607593; 7: 0.484007846; 8: 0.373384452)

For k > 7, we take only the first 7 inequalities indicating that the first 7 players
prefer to take the right path than to stick to the left path. This is enough to prove an
upper bound of 1.33081 for the price of stability. In the following, we list the weights
of the inequalities of the dual to our linear program (index k : denotes the weight
of the inequality to player k): (0: 1.330802428; 1: 0.750587484; 2: 0.246845878; 3:
0.168106752; 4: 0.12615003; 5: 0.096800836; 6: 0.072578056; 7: 0.048719834).

References

1. Adamy, U., Ambühl, C., Anand, R.S., Erlebach, T.: Call control in rings. Algo-
rithmica 47(3), 217–238 (2007)

2. Angelucci, A., Bilo, V., Flammini, M., Moscardelli, L.: On the sequential price of
anarchy of isolation games. J. Comb. Optim. 29(1), 165–181 (2015)

3. Anshelevich, E., Dasgupta, A., Kleinberg, J.M., Tardos, É., Wexler, T.,
Roughgarden, T.: The price of stability for network design with fair cost
allocation. In: FOCS, pp. 295–304 (2004)

4. Asadpour, A., Saberi, A.: On the inefficiency ratio of stable equilibria in conges-
tion games. In: Leonardi, S. (ed.) WINE 2009. LNCS, vol. 5929, pp. 545–552.
Springer, Heidelberg (2009)

5. Attiya, H., Snir, M., Warmuth, M.K.: Computing on an anonymous ring. J. ACM
35(4), 845–875 (1988)

6. Bilò, V., Caragiannis, I., Fanelli, A., Monaco, G.: Improved lower bounds on
the price of stability of undirected network design games. Theory Comput. Syst.
52(4), 668–686 (2013)

7. Bilò, V., Fanelli, A., Flammini, M., Moscardelli, L.: When ignorance helps: graph-
ical multicast cost sharing games. Theor. Comput. Sci. 411(3), 660–671 (2010).
http://dx.doi.org/10.1016/j.tcs.2009.10.007

8. Bilò, V., Flammini, M., Moscardelli, L.: The price of stability for undirected
broadcast network design with fair cost allocation is constant. In: FOCS,
pp. 638–647 (2013)

http://dx.doi.org/10.1016/j.tcs.2009.10.007

Multicast Network Design Game on a Ring 451

9. Charikar, M., Karloff, H.J., Mathieu, C., Naor, J., Saks, M.E.: Online multicast
with egalitarian cost sharing. In: SPAA 2008: Proceedings of the 20th Annual
ACM Symposium on Parallelism in Algorithms and Architectures, Munich,
Germany, 14–16 June 2008, pp. 70–76 (2008)

10. Chekuri, C., Chuzhoy, J., Lewin-Eytan, L., Naor, J., Orda, A.: Non-cooperative
multicast and facility location games. In: Proceedings of the 7th ACM Conference
on Electronic Commerce (EC 2006), Ann Arbor, Michigan, USA, 11–15 June 2006,
pp. 72–81 (2006)

11. Disser, Y., Feldmann, A.E., Klimm, M., Mihalák, M.: Improving the Hk-bound
on the price of stability in undirected shapley network design games. In:
Spirakis, P.G., Serna, M. (eds.) CIAC 2013. LNCS, vol. 7878, pp. 158–169.
Springer, Heidelberg (2013)

12. Fanelli, A., Leniowski, D., Monaco, G., Sankowski, P.: The ring design
game with fair cost allocation. Theor. Comput. Sci. 562, 90–100 (2015).
http://dx.doi.org/10.1016/j.tcs.2014.09.035

13. Fiat, A., Kaplan, H., Levy, M., Olonetsky, S., Shabo, R.: On the price of sta-
bility for designing undirected networks with fair cost allocations. In: Bugliesi,
M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4051,
pp. 608–618. Springer, Heidelberg (2006)

14. Fischer, K., Gärtner, B., Schönherr, S., Wessendorp, F.: Linear and
quadratic programming solver. In: CGAL User and Reference Manual, 4.6
edn. CGAL Editorial Board (2015). http://doc.cgal.org/4.6/Manual/packages.
htmlPkgQPSolverSummary

15. Jian, L.: An upper bound on the price of stability for undirected shapley network
design games. Inf. Process. Lett. 109, 876–878 (2009)

16. Kawase, Y., Makino, K.: Nash equilibria with minimum potential in undirected
broadcast games. Theor. Comput. Sci. 482, 33–47 (2013)

17. Lee, E., Ligett, K.: Improved bounds on the price of stability in network cost
sharing games. In: EC, pp. 607–620 (2013)

18. Leme, R.P., Syrgkanis, V., Tardos, É.: The curse of simultaneity. In: Innovations
in Theoretical Computer Science 2012, Cambridge, MA, USA, 8–10 January 2012,
pp. 60–67 (2012)

19. Mamageishvili, A., Mihalák, M., Montemezzani, S.: An H n/2 upper bound on
the price of stability of undirected network design games. In: Csuhaj-Varjú, E.,
Dietzfelbinger, M., Ésik, Z. (eds.) MFCS 2014, Part II. LNCS, vol. 8635, pp.
541–552. Springer, Heidelberg (2014)

http://dx.doi.org/10.1016/j.tcs.2014.09.035
http://doc.cgal.org/4.6/Manual/packages.htmlPkgQPSolverSummary
http://doc.cgal.org/4.6/Manual/packages.htmlPkgQPSolverSummary

Extreme Witnesses and Their Applications

Andrzej Lingas1(B) and Mia Persson2

1 Department of Computer Science, Lund University, Lund, Sweden
Andrzej.Lingas@cs.lth.se

2 Department of Computer Science, Malmö University, Malmö, Sweden
mia.persson@mah.se

Abstract. We study the problem of computing the so called minimum
and maximum witnesses for Boolean vector convolution. We also consider
a generalization of the problem which is to determine for each positive
coordinate of the convolution vector, q smallest (or, largest) witnesses,
where q is the minimum of a parameter k and the number of witnesses
for this coordinate. We term this problem the smallest k-witness problem
or the largest k-witness problem, respectively. We also study the corre-
sponding smallest and largest k-witness problems for Boolean matrix
product. In both cases, we provide algorithmic solutions and applica-
tions to the aforementioned witness problems, among other things in
string matching and computing the (min,+) vector convolution.

Keywords: Boolean vector convolution · Boolean matrix product ·
String matching · Witnesses · Minimum and maximum witnesses · Time
complexity · Lightest triangles

1 Introduction

For a potential alignment of a pattern string with a text string over the same
alphabet, a position in the alignment where the pattern symbol is different from
the text symbol is a witness to the symbol mismatch while a position where the
pattern and text symbol are equal is a witness to the symbol match.

Similarly, if A and B are two n × n Boolean matrices and C is their Boolean
matrix product then for any entry C[i, j] = 1 of C, a witness is an index m such
that A[i,m] ∧ B[m, j] = 1. The smallest (or, largest) possible witness is called
the minimum witness (or, maximum witness, respectively).

The problems of finding “witnesses” have been extensively studied for several
decades, at the beginning independently within stringology and graph algorithms
relying on matrix computations. In string matching, witnesses for symbol mis-
matches or matches in potential alignments of two strings are sought [3,9,17]
while in graph algorithms, witnesses for the Boolean matrix product are typi-
cally sought, originally in order to solve shortest path problems in graphs [2,4]. In
both cases, highly non-trivial efficient algorithmic solutions have been presented
[2–4,17].

c© Springer International Publishing Switzerland 2015
Z. Lu et al. (Eds.): COCOA 2015, LNCS 9486, pp. 452–466, 2015.
DOI: 10.1007/978-3-319-26626-8 33

Extreme Witnesses and Their Applications 453

Also in both areas, useful generalizations and/or specializations of the prob-
lems of finding witnesses have been studied. A natural generalization introduced
for string matching in [17] is to request up to k witnesses instead of a single
one. It has been efficiently solved by using concepts from group testing in [3]
and conveyed to Boolean matrix product in [3,16]. A natural specialization is
to request minimum or maximum witnesses. This specialization has been intro-
duced and efficiently solved in [10] in the context of finding lowest common
ancestors in directed acyclic graphs and it found many other applications since
then (cf. [8,18,20]).

In analogy to witnesses for Boolean matrix product, if a and b are two
n-dimensional Boolean vectors and c is their Boolean convolution then for any
coordinate ci = 1 of c, a witness is an index l such that al ∧ bi−l = 1. In contrast
to string matching and Boolean matrix product, the problem of computing the
witnesses of Boolean vector convolution does not seem to be explicitly studied
in the literature. On the other hand, Boolean vector convolution is very much
related to string matching [12], and hence the algorithms for reporting witness
or more generally up to k witnesses can be easily conveyed from stringology to
Boolean vector convolution (see Propositions 1, 2 in Sect. 3).

In this paper, we study the problem of computing minimum and maximum
witnesses for Boolean vector convolution. We also consider a generalization of
the problem which is to determine for each positive coordinate of the convolution
vector, q smallest (or, largest) witnesses, where q is the minimum of a parame-
ter k and the number of witnesses for this coordinate. We term this problem
the smallest k-witness problem or the largest k-witness problem, respectively.
We also study the corresponding generalization for Boolean matrix product.

Let ω(1, r, 1) denote the exponent of fast arithmetic multiplication of an n×nr

matrix by an nr × n matrix. In particular, ω(1, 1, 1) denoted by ω is known to
not exceed 2.373 [14,21]. Next, let the notation Õ() suppress polylogarithmic
in n factors. Our main contributions are as follows:

– an Õ(n1.5)-time algorithm for reporting minimum and maximum witnesses
for the Boolean convolution of two n-dimensional vectors, and more generally,
an Õ(n1.5k0.5)-time algorithm for the smallest or largest k-witness problem
for the convolution;

– as corollaries, Õ(n1.5k0.5) time bounds for the smallest or largest k-witness
problems in string matching;

– in part as corollaries, several upper time bounds on computing the (min,+)
integer vector convolution in restricted cases, summarized in Table 1;

– an O(n2+λk)-time algorithm for the smallest or largest k-witness problem
for the Boolean matrix product of two n × n Boolean matrices, where λ is a
solution to the equation ω(1, λ, 1) = 1 + 2λ + logn k;

– as a corollary, an O(n2+λk) time bound for the problem of reporting for each
edge of a vertex-weighted graph k lightest (or, heaviest) triangles contain-
ing it, where λ satisfies the aforementioned equation; also, an O(min{nωk +
n2+o(1)k, n2+λk}) time bound for the problem of reporting k lightest (or,
heaviest) triangles in the input vertex-weighted graph.

454 A. Lingas and M. Persson

Table 1. Our upper time bounds for computing the convolution of two n-dimensional
integer vectors either with coordinates having a bounded number of different values,
or decomposable into a number of non-decreasing or non-increasing subsequences, or
just monotone subsequences.

vector a/vector b cb dif. values mb non-decr. subs. mb non-incr. subs. mb mon. subs.

ca different values Õ(cacbn) Õ(cambn
1.5) Õ(cambn

1.5) Õ(cambn
1.5)

ma non-decr. subs. Õ(macbn
1.5) Õ(mambn

1.5) ? ?

ma non-incr. subs. Õ(macbn
1.5) ? Õ(mambn

1.5) ?

ma mon. subs. Õ(macbn
1.5) ? ? ?

Arbitrary Õ(cbn1.844) ? ? ?

2 Preliminaries

For two n-dimensional vectors a = (a0, ..., an−1) and b = (b0, ..., bn−1) over a
semi-ring (U,⊕,�), their convolution over the semi-ring is a vector
c = (c0, ..., c2n−2), where ci =

⊕min{i,n−1}
l=max{i−n+1,0} al � bi−l for i = 0, ..., 2n − 2.

Similarly, for a p×q matrix A and a q×r matrix B over the semi-ring, their matrix
product over the semi-ring is a p×r matrix C such that C[i, j] =

⊕q
m=1 A[i,m]�

B[m, j] for 1 ≤ i ≤ p and 1 ≤ j ≤ r. In particular, for the semi-rings (Z,+,×),
(Z,min,+), (Z,max,+), and ({0, 1},∨,∧), we obtain the arithmetic, (min,+),
(max,+), and the Boolean convolutions or matrix products, respectively.

We shall use the unit-cost RAM computational model [1] with computer word
of length logarithmic in the maximum of the size of the input and the value of
the largest input integer.

The following fact is well known (cf. [12]).

Fact 1. Let p and q be two n-dimensional integer vectors. The arithmetic con-
volution of p and q can be computed in Õ(n) time. Hence, also the Boolean
convolution of two n-dimensional vectors can be computed in Õ(n) time.

Fact 2 [13,19]. A sequence of n integers can be decomposed into a number of
monotone subsequences within O(log n) of the minimum in O(n1.5 log n) time.

Fact 3 [5]. The problem of computing the convolution of two n-dimensional
vectors over a semi-ring can be reduced to computing O(

√
n) products of two

O(
√

n) × O(
√

n) matrices over the semi-ring. Importantly, the matrices can be
constructed in O(n1.5) time in total and their entries are appropriately filled with
the coordinates of the vectors.

Fact 4 (see Theorem 3.2 in [7]). Let A and B be two n × n integer matrices
where the entries of A range over at most c different integers. The (min,+)
matrix product of A and B can be computed in O(cn2.688) time.

Fact 5 [11]. A lightest (or, heaviest) triangle in an undirected vertex weighted
graph on n vertices can be found in O(nω + n2+o(1)) time.

Extreme Witnesses and Their Applications 455

3 Extreme Witnesses for Boolean Convolution

Let c = (c0, ..., c2n−2) be the Boolean convolution of two n-dimensional Boolean
vectors a and b. A witness of ci = 1 is any l ∈ [max{i − n + 1, 0},min{i, n − 1}]
for which al ∧ bi−l = 1. A minimum witness (or maximum witness) of ci = 1 is
the smallest (or, the largest, respectively) witness of ci. The witnesses problem
(or minimum witness problem, or maximum witness problem) for the Boolean
convolution of two n-dimensional Boolean vectors is to determine witnesses
(or, the minimum witnesses or the maximum witnesses, respectively) for all
non-zero coordinates of the Boolean convolution of the vectors. The k-witness
problem (or, the smallest k-witness problem or the largest k-witness problem) for
the Boolean convolution of two n-dimensional Boolean vectors is to determine
for each non-zero coordinate of the convolution q witnesses (or, q smallest wit-
nesses or q largest witnesses, respectively), where q is the minimum of k and the
number of witnesses for this coordinate.

The Boolean vector convolution is very much related to string matching
problems [12]. The corresponding problems of reporting a symbol mismatch or
match, or up to k such mismatches or matches for each potential alignments
of the pattern with the text have been studied in the so called non-standard
stringology [3,17]. Also, the focus of this paper is on extreme witnesses. For
these reasons and on the other hand, for the completeness sake, we just state two
propositions on standard witnesses for Boolean vector convolution that can be
obtained analogously as the well known corresponding facts on string matching
or Boolean matrix product.

Proposition 1 (Analogous to [4]). The witnesses problem for Boolean convolu-
tion of two n-dimensional vectors can be solved in Õ(n) time.

Proof. Sketch. The witnesses for the Boolean convolution c of two n-dimensional
vectors a and b can be computed analogously as the witnesses for the Boolean
matrix product [4]. The first observation is that for all coordinates of c that have
a single witness, their witnesses can be obtained by computing the arithmetic
convolution of a with the vector b′ resulting from replacing each 1 in b with the
number of the respective coordinate. The next idea is to dilute the other vector b
gradually so the number of witnesses for each positive coordinate of c decreases
finally to zero but in most cases passing through 1 first. For instance, if ci has l
witnesses and in each phase each coordinate of b is set to 0 with probability 1

2
then after a logarithmic number of such phases there is a positive probability that
exactly one witness will remain. By iterating the process a logarithmic number
of times witnesses for all positive coordinates of c can be determined with high
probability.

In order to remove the randomness, we can use small c-wise ε-bias sam-
ple spaces analogously as Alon and Naor in their deterministic algorithm for
witnesses of Boolean matrix product [4].

The algorithm, its analysis and derandomization are totally analogous to those
of the algorithm of Alon and Naor for witnesses of Boolean matrix product [4].

456 A. Lingas and M. Persson

We refer the reader for the technical details to their paper, it is sufficient to replace
matrices with vectors, entries with coordinates and Boolean matrix product with
Boolean vector convolution in their proof. 	

Proposition 2 (Analogous to [3] and [16]). The k-witness problem for Boolean
convolution of two n-dimensional vectors can be solved in Õ(nk) time.

With a moderate technical effort, the minimum or maximum witness problem
for Boolean convolution could be solved by combining the known O(n2.575)-time
algorithm for the corresponding problem of minimum or maximum witnesses
of Boolean matrix product [10] with the known reduction of vector convolution
over an arbitrary semi-ring to matrix product over the semi-ring described in
Fact 3 [5]. The combination results in an O(n1.787)-time solution to the wit-
ness problem for Boolean convolution. We shall show that a substantially more
efficient solution can be obtained directly.

Theorem 6. The minimum witness problem (maximum witness problem, respec-
tively) for Boolean convolution of two n-dimensional vectors can be solved in
Õ(n1.5) time.

Proof. Let a and b be two n-dimensional vectors. Let r be an integer parameter
between 1 and n. For p = 1, ..., �n/r�, let ap be the Boolean n-dimensional vector
resulting from setting to zero all coordinates of a with indices not exceeding
(p − 1)r and those with indices greater that pr. We compute, for each p =
1, ..., �n/r�, the Boolean convolution cp of ap and b. Next, for each i = 0, ..., 2n−2,
we determine the smallest p such that cp

i = 1. Then, if such a p exists, we
determine the interval of the implicants al ∧ bi−l of cp

i that potentially can have
a non-zero value, i.e., where l ∈ ((p − 1)r, pr], and return the smallest l in the
interval for which al ∧bi−l = 1. The �n/r� computations of Boolean convolutions
cp takes Õ(n2/r) time. The total time taken by the determination of the smallest
p is O(n×n/r). To determine the smallest l for a given i and p requires examining
the value of O(r) implicants and hence it takes O(nr) time in total. By setting
r = �√n�, we obtain the claimed time complexity. 	

The method of Theorem 6 can be generalized to include the smallest k-witness
problem and the largest k-witness problem.

Theorem 7. The smallest k-witness problem as well as the largest k-witness
problem for Boolean convolution of two n-dimensional vectors can be solved in
Õ(n1.5k0.5) time.

Proof. Let a and b be two input n-dimensional vectors. Let r be an integer
parameter between 1 and n. Analogously as in the proof of Theorem6, for p =
1, ..., �n/r�, we let al to denote the Boolean n-dimensional vector resulting from
setting to zero all coordinates of a with indices not exceeding (p− 1)r and those
with indices greater that pr. Next, we compute for each p = 1, ..., �n/r�, the
arithmetic convolution wp of al and b by interpreting these vectors as {0, 1}
ones. The arithmetic convolutions provide us with the number of witnesses in

Extreme Witnesses and Their Applications 457

Fig. 1. An algorithm for the smallest k-witness problem for the Boolean convolution
of two n-dimensional vectors a and b.

each interval ((p−1)r, pr] for each coordinate ci of the Boolean convolution c of a
and b. Their coordinate-wise sum provides us with the total number of witnesses
for each coordinate of c. In order to solve the smallest k-witness problem, for
p = 1, ..., �n/r�, and for i = 0, ..., 2n − 2, whenever wp

i > 0 and the number
of witnesses for ci found so far is less than the minimum of k and the number
of witnesses of ci, we search through the interval ((p − 1)r, pr] from the left to
the right for further witnesses. For details see the algorithm depicted in Fig. 1.
In the worst case, for each i = 0, ..., 2n − 2, we need to search through k of
such intervals. The total cost of the searches becomes O(n × n

r + n × k × r),
see lines 15-19 in the algorithm depicted in Fig. 1. On the other hand, the �n/r�
computations of the arithmetic convolutions wp takes Õ(n2/r) time. By setting
r = �√n

k �, we obtain the claimed time complexity for the smallest k-witness
problem.

458 A. Lingas and M. Persson

The largest k-witness problem can be solved analogously in the same asymp-
totic time by considering the intervals in the opposite order and searching them
from the right to the left instead. 	

3.1 String Matching

Fisher and Patterson showed already in 1974 [12] that several string matching
problems can be efficiently reduced to Boolean vector convolution.

Suppose we are given two strings τ = τm−1τm−2...τ0 and ρ = ρ0ρ1...ρn−1,
where m < n, over a finite alphabet Σ. Following [12], for γ ∈ Σ, let Hγ() be
a predicate defined on Σ which is true only for γ. If i + m ≤ n, the question of
whether τm−1τm−2...τ0 matches ρiρi+1...ρi+m−1 is equivalent to a conjunction
of the negations of terms

∨m−1
l=0 Hα(ρi+l) ∧ Hβ(τm−1−l), where α, β ∈ Σ and

α = β. Note that whenever such a term is true, the matching cannot take
place as at some position α clashes with β. In this way, the standard string
matching problem for τ and ρ easily reduces to O(|Σ|2) Boolean convolutions of
two Boolean vectors of length at most n.

Observe now that witnesses for the aforementioned Boolean convolutions
yield positions of the clashes, in other words, symbol mismatches. If we modify
the terms to

∨m−1
l=0 Hα(ρi+l) ∧ Hα(τm−1−l), for α ∈ Σ, the witnesses for the

O(|Σ|) Boolean convolutions yield positions of two sided matches with α ∈ Σ.
Hence, we obtain the following theorem as a corollary from Theorem 7.

Theorem 8. Consider the string matching problem for a text string of length
n and a pattern string of length m < n, both over a finite alphabet. For each
potential alignment of the pattern with the text, we can provide locations of the
k earliest symbol mismatches and/or the k earliest symbol matches as well as
locations of the k latest symbol mismatches and the k latest symbol matches in
the alignments in Õ(n1.5k0.5) time in total. In particular, we can also provide
positions of the earliest and/or latest two-side symbol matches with a given alpha-
bet symbol (cf. ones problem in [17]) in the potential alignments in Õ(n1.5k0.5)
time in total.

3.2 (min,+) Convolution

Our original motivation has been an extension of the O(n1.859)-time algorithm
due to Chan and Levenstein for the (min,+) convolution of two n-dimensional
vectors with integer coordinates of size O(n) forming monotone sequences [6] to
include the case where the vectors are decomposable into relatively few monotone
subsequences. The major difficulty here is that a completion of the subsequences
to full monotone sequences can affect the result. We can avoid this difficulty when
the coordinates of one of the vectors range over relatively few different values
(see Fig. 2) or all the subsequences are simultaneously either non-decreasing or
non-increasing. The idea is to use our algorithm for minimum and maximum
witnesses of Boolean convolution.

The correctness of the algorithm depicted in Fig. 2 relies on the following
straightforward lemma.

Extreme Witnesses and Their Applications 459

Fig. 2. An algorithm for computing the convolution c of two n-dimensional integer vec-
tors a and b, where the coordinates of a range over ca different values and the sequence
of consecutive coordinates of b is decomposable into mb monotone subsequences.

Lemma 1. In the algorithm depicted in Fig. 2, the following equivalence holds:
dk = 0 in line 13 if and only if c′

k = min{al + bm|l + m = k ∧ al ∈ ai ∧ bm ∈ bj}.
Theorem 9. Let a and b be two n-dimensional integer vectors such that the
coordinates of a range over at most ca different values while the sequence of
the consecutive coordinates of b can be decomposed into mb monotone subse-
quences. The algorithm depicted in Fig. 2 computes their (min,+) convolution
in Õ(cambn

1.5) steps.

Proof. By Lemma 1 and line 13 in the algorithm, none of the coordinates of
the output vector has a lower value than the corresponding coordinate of the
(min,+) convolution of a and b. Conversely, if the k-th coordinate of the (min,+)
convolution of a and b equals al + bm, where l + m = k, then there exist i, j
such that al ∈ ai and bm ∈ bj . Hence again by Lemma 1 and line 13 in the

460 A. Lingas and M. Persson

algorithm, the k-th coordinate in the output vector has value not larger than
the k-th coordinate of the (min,+) convolution of a and b.

The decomposition of the vector a into ca constant subsequences in line 1
trivially takes O(n) time. Next, the decomposition of the vector b into Õ(ma)
monotone subsequences in line 5 takes O(n1.5 log n) time by Fact 2. The forming
of the vectors char(ai) in lines 2-3 and char(bj) in lines 6-7 take Õ(can + mbn)
time in total. The Õ(camb) computations of the minimum and maximum wit-
nesses of the Boolean convolution d in lines 9-11 take Õ(cambn

1.5) time in total
by Theorem 6. Finally, the line 13 is executed Õ(cambn) times. The bound
Õ(cambn

1.5) follows. 	

If we are given decompositions of the two input n-dimensional vectors a

and b into monotone subsequences that are either all non-decreasing or all non-
increasing then we can use an algorithm analogous to that depicted in Fig. 2.
in order to compute the (min,+) convolution of a and b. Thus, first for each
subsequence ai of a and each subsequence bj of b, we compute the Boolean
vectors char(ai) and char(bj) indicating with ones the coordinates of a or b
covered by ai or bj , respectively. Next, depending if the subsequences are non-
decreasing or non-increasing, for each pair of such subsequences ai and bj , we
compute the minimum witnesses of the Boolean convolution of char(ai) and
char(bj) or the maximum witnesses of this convolution, respectively. We use the
extreme witnesses to update the current coordinates of the computed (min,+)
convolution analogously as in the algorithm depicted in Fig. 2. Hence, we obtain
the following theorem.

Theorem 10. Let a and b be two n-dimensional integer vectors given with the
decompositions of the sequences of their consecutive coordinates into ma and
mb monotone subsequences respectively such that all the subsequences are either
non-decreasing or non-increasing. The (min,+) convolution of a and b can be
computed in Õ(mambn

1.5) time.

Proof. The proof of the correctness of the algorithm proposed in the discussion
preceding the theorem is analogous to that of the algorithm depicted in Fig. 2.
The time complexity analysis of the algorithm is also similar to that of the
previous algorithm. The main difference is that the decompositions of a and b
into subsequences are given and that the O(n1.5)-time algorithm for minimum or
maximum witnesses of Boolean convolution is run mamb times instead of camb

times. 	

By combining Fact 3 with Fact 4, we obtain also the following bound.

Theorem 11. Let a and b be two n-dimensional integer vectors such that the
coordinates of a range over at most ca different values. The (min,+) convolution
of a and b can be computed in Õ(can1.844) time.

We can also consider the problem of computing the (min,+) integer vector
convolution of the input vectors a and b, when their coordinates range over ca

and cb different integers, respectively. Again, we can use an algorithm analogous

Extreme Witnesses and Their Applications 461

to that depicted in Fig. 2. The first difference is that the subsequences bj on
the side of b are also constant. It follows that for any pair of such constant
subsequences ai and bj , the value sum(i, j) of the sum of any element from ai

with any element from bj is constant and it can be trivially computed a priori.
For this reason, it is sufficient to compute the Boolean convolution d of char(ai)
and char(bj) for any such pair ai and bj . Then, for any non-zero coordinate of
d, we need to update the corresponding coordinate of the computed (min,+)
convolution of a and b by taking the minimum of the coordinate and sum(i, j).
By Fact 1, we obtain the following theorem.

Theorem 12. Let a and b be two n-dimensional integer vectors such that their
coordinates range over at most ca or cb different values, respectively. Their
(min,+) convolution can be computed in Õ(cacbn) time.

Proof. The discussed algorithm can be easily implemented in Õ(cacbn) time by
running cacb times the known Õ(n)-time algorithm for Boolean convolution of
two n-dimensional Boolean vectors, see Fact 1. 	

4 Extreme Witnesses for Boolean Matrix Product

For two n × n Boolean matrices A and B, a witness of a C[i, j] entry of the
Boolean matrix product of A and B is any index m such that A[i,m]∧B[m, j] =
1. Next, the minimum witness and maximum witness for an entry of C as well
as the witness problem, the minimum and maximum witness problems, the
k-witness problem, and the smallest k-witness and largest k-witness problems
for Boolean matrix product of A and B are defined analogously as those for
Boolean vector convolution.

In this section, we shall present a generalization of the algorithm for minimum
and maximum witnesses for Boolean matrix product from [10] to include the
smallest and largest k-witness problems.

Let � be a positive integer smaller than n. We may assume w.l.o.g that n is
divisible by �. Partition the matrix A into n× � sub-matrices Ap and the matrix
B into � × n sub-matrices Bp, such that 1 ≤ p ≤ n/�, and the sub-matrix Ap

covers the columns (p − 1) � + 1 through p � of A whereas the sub-matrix Bp

covers the rows (p − 1) � + 1 through p � of B.
For p = 1, . . . , n/�, let Wp be the arithmetic product of Ap and Bp treated

as {0, 1} matrices. On the other hand, let C denote the Boolean matrix product
of A and B. Then, Wp[i, j] = q iff there are exactly q witnesses of C[i, j] in the
interval ((p − 1) �, p �]. Consequently, the total number of witnesses of C[i, j] is
given by

∑n/�
p=1 Wp[i, j]. Therefore, the following lemma follows.

Lemma 2. Suppose that a C[i, j] entry of the Boolean product C of A and B is
positive. Let q be the minimum of k and the total number of witnesses of C[i, j].
Next, let p′ be the minimum value of p such that

∑p
u=1 Wu[i, j] is not less than q.

The smallest q witnesses of C[i, j] belong to the interval [1, p′ �].

462 A. Lingas and M. Persson

Fig. 3. An algorithm for the smallest k-witness problem for the Boolean matrix product
of two n× n Boolean matrices A and B.

By this lemma, after computing all the matrix products Wp = Ap · Bp,
1 ≤ p ≤ n/�, we need O(n/� + k�) time per positive entry of C to find up to k
smallest witnesses: O(n/�) time to determine p′ and then O(k�) time to locate

Extreme Witnesses and Their Applications 463

the up to k smallest witnesses. See Fig. 3 for our algorithm for the smallest
k-witness problem.

Recall that ω(1, r, 1) denotes the exponent of the multiplication of an n × nr

matrix by an nr ×n matrix. It follows that the total time taken by our algorithm
for the smallest k-witness problem is

O((n/�) · nω(1,logn �,1) + n3/� + n2 k�) .

By setting r to logn � and z to logn k, our upper bound transforms to
O(n1−r+ω(1,r,1) + n3−r + n2+r+z). Note that by assuming r ≥ 1

2 − z
2 , we can

get rid of the additive n3−r term. See Fig. 5 in [22] for the graph of the function
1 − r + ω(1, r, 1). By solving the equation 1 − λ + ω(1, λ, 1) = 2 + z + λ implying
λ ≥ 1

2 − z
2 by ω(1, λ, 1) ≥ 2, we obtain our main result.

Theorem 13. Let λ be such that ω(1, λ, 1) = 1 + 2λ + logn k. The smallest
k-witness problem as well as the largest k-witness problem for the Boolean matrix
product of two n × n Boolean matrices can be solved in O(n2+λk) time.

Le Gall has recently substantially improved upper time bounds on rectan-
gular matrix multiplication in [15]. In consequence, he could show that for the
equation ω(1, μ, 1) = 1 + 2μ, μ < 0.5302. This in particular improves the upper
time bound for the minimum and maximum witness problems from O(n2.575) to
O(n2.5302). It follows that for k >> 1, λ in Theorem 13 is substantially smaller
than 0.5302.

4.1 Lightest Triangles

By generalizing the reduction of the problem of reporting for each edge of a
vertex-weighted graph a heaviest triangle containing it to the maximum witness
problem for Boolean matrix product from [20] to include reporting k heaviest
triangles and the largest k-witness problem, we obtain the following theorem as
a corollary from Theorem13.

Theorem 14. Let G be an undirected vertex weighted graph on n vertices and
let k be a natural number not exceeding n. Next, let λ be such that ω(1, λ, 1) =
1 + 2λ + logn k. We can list for each edge {u, v} of G, qe lightest (or, heaviest)
triangles {u, v, w} in G, where qe is the minimum of k and the number of trian-
gles {u, v, w} in G, in O(n2+λk) time.

Proof. Number the vertices of G in non-decreasing vertex-weight order. Next,
solve the smallest (or, largest) k-witness problem for the Boolean matrix product
C of the adjacency matrix of G with itself. For each edge e = {i, j} of G, the
up to k smallest (or, largest) witnesses of C[i, j] yield the qe lightest (or, heaviest,
respectively) triangles in G including e. Theorem 13 yields the claimed upper
bound. 	

464 A. Lingas and M. Persson

As for the problem of finding k lightest (or, heaviest) triangles in a vertex-
weighted graph, iterating the O(nω +n2+o(1))-time algorithm for finding a light-
est or heaviest triangle described in Fact 5 seems to be a better choice for up to
moderate values of k. Before each next iteration, we remove the three vertices
of the lastly reported triangle. After k iterations, we stop and find among the
reported triangles and no more than 3(k − 1)n2 other triangles incident to the
removed vertices, the k lightest (or, heaviest) triangles if possible. The method
takes O(nωk + n2+o(1)k + n2k), i.e., O(nωk + n2+o(1)k) time.

Theorem 15. Let G be an undirected vertex weighted graph on n vertices and
let k be a natural number ≤ n. Next, let λ be such that ω(1, λ, 1) = 1+2λ+logn k.
We can list q lightest (or, heaviest) triangles in G, where q is the minimum of
k and the number of triangles in G, in O(min{nωk + n2+o(1)k, n2+λk}) time.

5 Final Remarks

It is an interesting open problem if any of our upper time bounds on mini-
mum and maximum witnesses for Boolean vector convolution and the extreme
k-witness problems both for Boolean vector convolution and Boolean matrix
product can be substantially improved? Note here that so far the O(n2+λ) time
bound on minimum and maximum witnesses of Boolean matrix product estab-
lished about one decade ago [10] couldn’t be improved (see also [8]).

The problems of Boolean vector convolution and Boolean matrix product
seem to be similar but there are some substantial differences between them. The
former problem admits almost a linear in the input size algorithm while for the
latter problem the current upper time bound is substantially non-linear [14,21].
There is a moderately efficient reduction of vector convolution to matrix product
described in Fact 3 while such a reverse reduction is not known. Our upper time
bounds for minimum and maximum witnesses of Boolean vector convolution
show that a direct approach to Boolean vector convolution can yield better
upper time bounds than those obtained by conveying known upper time bounds
for Boolean matrix product via Fact 3 to Boolean vector convolution.

The extreme k-witness problems for Boolean matrix product presumably
admit several other applications often corresponding to generalizations of the
applications for minimum and maximum witnesses of Boolean matrix product
[18,20] and/or the applications of the k-witness problem for Boolean matrix
product [3], e.g., the all-pairs k-bottleneck paths.

Acknowledgments. We thank Miros�law Kowaluk for valuable comments.

References

1. Aho, A. V., Hopcroft, J. E., Ullman, J.: The Design and Analysis of Computer
Algorithms. Addison-Wesley Publishing Company, Reading (1974)

Extreme Witnesses and Their Applications 465

2. Alon, N., Galil, Z., Margalit, O., Naor, M.: Witnesses for Boolean matrix multi-
plication and for shortest paths. In: Proceedings 33rd Symposium on Foundations
of Computer Science (FOCS), pp. 417–426 (1992)

3. Aumann, Y., Lewenstein, M., Lewenstein, N., Tsur, D.: Finding witnesses by peel-
ing. In: Ma, B., Zhang, K. (eds.) CPM 2007. LNCS, vol. 4580, pp. 28–39. Springer,
Heidelberg (2007)

4. Alon, N., Naor, M.: Derandomization, witnesses for Boolean matrix multiplication
and construction of perfect hash functions. Algorithmica 16, 434–449 (1996)

5. Bremner, D., Chan, T.M., Demaine, E.D., Erickson, J., Hurtado, F., Iacono, J.,
Langerman, S., Taslakian, P.: Necklaces, convolutions, and X + Y. In: Azar, Y.,
Erlebach, T. (eds.) ESA 2006. LNCS, vol. 4168, pp. 160–171. Springer, Heidelberg
(2006)

6. Chan, T. M., Lewenstein, M.: Clustered integer 3SUM vis additive combinatorics.
In: Proceedings 47th ACM Symposium on Theory of Computing (STOC 2015)

7. Chan, T.M.: More algorithms for all-pairs shortest paths in weighted graphs. SIAM
J. Comput. 39(5), 2025–2089 (2010)

8. Cohen, K., Yuster, R.: On minimum witnesses for Boolean matrix multiplication.
Algorithmica 69(2), 431–442 (2014)

9. Crochemore, M., Rytter, W.: Text Algorithms. Oxford University Press, New York
(1994)

10. Czumaj, A., Kowaluk, M., Lingas, A.: Faster algorithms for finding lowest common
ancestors in directed acyclic graphs. Theor. Comput. Sci. 380(1–2), 37–46 (2007).
The special ICALP 2005 issue

11. Czumaj, A., Lingas, A.: Finding a heaviest vertex-weighted triangle is not harder
than matrix multiplication. SIAM J. Comput. 39(2), 431–444 (2009)

12. Fisher, M. J., Paterson, M. S.: String-matching and other products. In: Proceedings
7th SIAM-AMS Complexity of Computation, pp. 113–125 (1974)

13. Fomin, F.V., Kratsch, D., Novelli, J.: Approximating minimum cocolorings. Inf. P.
Lett. 84(5), 285–290 (2002)

14. Le Gall, F.: Powers of tensors and fast matrix multiplication. In: Proceedings 39th
International Symposium on Symbolic and Algebraic Computation, pp. 296–303
(2014)

15. Le Gall, F.: Faster algorithms for rectangular matrix multiplication. In: Proceed-
ings 53rd Symposium on Foundations of Computer Science (FOCS), pp. 514–523
(2012)

16. Gasieniec, L., Kowaluk, M., Lingas, A.: Faster multi-witnesses for Boolean matrix
product. Inf. Process. Lett. 109, 242–247 (2009)

17. Muthukrishnan, S.: New results and open problems related to non-standard
stringology. In: Galil, Z., Ukkonen, E. (eds.) CPM 1995. LNCS, vol. 937, pp.
298–317. Springer, Heidelberg (1995)

18. Shapira, A., Yuster, R., Zwick, U.: All-pairs bottleneck paths in vertex weighted
graphs. Algorithmica 59(4), 621–633 (2011)

19. Yang, B., Chen, J., Lu, E., Zheng, S.Q.: A comparative study of efficient algorithms
for partitioning a sequence into monotone subsequences. In: Cai, J.-Y., Cooper,
S.B., Zhu, H. (eds.) TAMC 2007. LNCS, vol. 4484, pp. 46–57. Springer, Heidelberg
(2007)

466 A. Lingas and M. Persson

20. Vassilevska, V., Williams, R., Yuster, R.: Finding heaviest H-subgraphs in real
weighted graphs, with applications. ACM Trans. Algorithms 6(3), 44:1–44:23
(2010)

21. Williams, V. V.: Multiplying matrices faster than Coppersmith-Winograd. In:
Proceedings 44th Annual ACM Symposium on Theory of Computing (STOC),
pp. 887–898 (2012)

22. Zwick, U.: All pairs shortest paths using bridging sets and rectangular matrix
multiplication. J. ACM 49(3), 289–317 (2002)

Orbital Independence in Symmetric
Mathematical Programs

Gustavo Dias(B) and Leo Liberti

CNRS LIX, Ecole Polytechnique, 91128 Palaiseau, France
{dias,liberti}@lix.polytechnique.fr

Abstract. It is well known that symmetric mathematical programs are
harder to solve to global optimality using Branch-and-Bound type algo-
rithms, since the solution symmetry is reflected in the size of the Branch-
and-Bound tree. It is also well known that some of the solution sym-
metries are usually evident in the formulation, making it possible to
attempt to deal with symmetries as a preprocessing step. One of the eas-
iest approaches is to “break” symmetries by adjoining some symmetry-
breaking constraints to the formulation, thereby removing some sym-
metric global optima, then solve the reformulation with a generic solver.
Sets of such constraints can be generated from each orbit of the action of
the symmetries on the variable index set. It is unclear, however, whether
and how it is possible to choose two or more separate orbits to gener-
ate symmetry-breaking constraints which are compatible with each other
(in the sense that they do not make all global optima infeasible). In this
paper we discuss a new concept of orbit independence which clarifies this
issue.

1 Introduction

In this paper we address an important issue which arises when breaking symme-
tries of Mathematical Programs (MP) in view of solving them using Branch-and-
Bound (BB) type algorithms. Symmetry-breaking devices are usually derived
from orbits of the action of the formulation group on the decision variables.
However, one cannot simply use such devices for all orbits: some orbits depend
on each other, in a very precise mathematical sense, and hence it may be impos-
sible to use more than one orbit for symmetry-breaking purposes. Below, we
discuss a notion of orbit independence which permits to break symmetries from
different orbits concurrently.

2 Previous Work and Notation

2.1 Mathematical Programming

An MP is a formulation which formally describes an optimization problem in
terms of known parameters (input), decision variables (output), an objective

c© Springer International Publishing Switzerland 2015
Z. Lu et al. (Eds.): COCOA 2015, LNCS 9486, pp. 467–480, 2015.
DOI: 10.1007/978-3-319-26626-8 34

468 G. Dias and L. Liberti

function, and some constraints. We consider MPs of the following general form:

minx f(x)
∀i ≤ m gi(x) ≤ 0

x ∈ D.

⎫⎪⎬
⎪⎭ (1)

In Eq. (1), f, gi : R
n → R are functions for which we have closed form expres-

sions f, gi for each i ≤ m. The expressions are written in terms of a formal
language L based on an alphabet A consisting of a finite number of operators
(e.g. sum, difference, product, fractions, powers, square roots, basic transcenden-
tal functions such as logarithm and exponentials, and possibly more complicated
operators depending on the application at hand), a countable supply of variable
symbols x1, . . . , xn representing the decision variables x1, . . . , xn, and the ratio-
nal numbers. The set D might contain non-functional constraints such as ranges
[xL, xU] for the decision variables, and/or integrality constraints, encoded as an
index set Z ⊆ X = {1, . . . , n} such that xj ∈ Z for each j ∈ Z. This modelling
paradigm contains Linear Programming (LP), Nonlinear Programming (NLP),
Mixed-Integer Linear Programming (MILP), Mixed-Integer Nonlinear Program-
ming (MINLP) and Semidefinite Programming (SDP) if x1, . . . , xn are matrices.

2.2 Symmetry Detection

We emphasize that Eq. (1) subsumes the description of two mathematical enti-
ties: the MP itself, denoted by P , and its formal description P in the language
L, which we obtain when replacing x, f, g by their representing symbols x, f, g.
It is well known that P can be parsed into a Directed Acyclic Graph (DAG)
data structure T (an elementary graph contraction of the well-known parsing
tree) using a fairly simple context-free grammar [2]. The leaf nodes of T are
labelled by constants or decision variable symbols, whereas the other nodes of
T are labelled by operator symbols. The incidence structure of T encodes the
parent-child relationships between operators, variables and constants. In prac-
tice, we can write P using a modelling language such as AMPL [3] and use an
unpublished but effective AMPL API to derive T [4]. Since T is a labelled graph,
we know how to compute the group G of its label-invariant isomorphisms (which
must also respect a few other properties, such as non-commutativity of certain
operators) [15,16]. In practice, we can use the software codes Nauty or Traces
[16] to obtain G and the set Θ of the orbits of its action on the nodes V (T) of
the DAG.

2.3 Formulation and Solution Groups

It was shown in [8] that: (a) the action of G can be projected to the leaf nodes
of V (T), which represent decision variables; (b) this projection induces a group
homomorphism φ mapping G to a certain group image GP ; (c) GP is a group of
permutations of the indices of the variable symbols x1, . . . , xn; (d) GP is precisely
the group of variable permutations of P which keeps f(x) and {gi(x) | i ≤ m}

Orbital Independence in Symmetric Mathematical Programs 469

invariant. In other words, [8] provides a practical methodology for computing the
formulation group of a MP given as in Eq. (1). Since it is not hard to show that
GP is a subgroup of the solution group of P , meant as the group of permutations
which keeps the set G (P) of global optima of P invariant, this methodology can
be used to extract symmetries from P prior to solving it.

2.4 Symmetry Breaking Constraints

So much for detecting (some) symmetries. Once these are known, their most
efficient exploitation appears to be their usage within the BB algorithm itself
[12,13,17,18]. Such approaches are, unfortunately, difficult to implement, as each
solver code must be addressed separately. Their simplest exploitation is static
symmetry breaking [14, Sect. 8.2] which, simply put, consists in adjoining some
Symmetry-Breaking Constraints (SBCs) to the original formulation Eq. (1) in
the hope of making all but one of the symmetric global optima infeasible. Fol-
lowing the usual trade-off between efficiency and generality, approaches which
offer provable guarantees of removing symmetric optima are limited to special
structures [6], whereas approaches which hold for any MP in the large class
Eq. (1) are mostly common-sense constraints designed to work in general [9].
The consensus seems to be that sets of SBCs are derived from each orbit of the
action of GP on X (though this is not the only possibility: SBCs can also be
derived from cyclic subgroups of GP or single permutations).

2.5 Orbits

We recall that an orbit is an equivalence class of the quotient set X/∼, where
i ∼ j if there is g ∈ GP such that g(i) = j. This way, GP partitions X into
a set ΩGP

of orbits ω1, . . . , ωp, each of which can be used to generate SBCs.
The projection homomorphism φ defined above for G and the leaf nodes of the
parsing tree can be restricted to act on GP and generalized to project its action
to any subset Y ⊆ X as follows: for each π ∈ GP let φ(π) be the product of the
cycles of π having all components in Y . We denote by φY this generalized action
projection homomorphism. The image of φY , when Y is some orbit ω ∈ ΩGP

, is
a group GP [ω] called the transitive constituent of ω (a group action is transitive
on a set S if s ∼ t for each s, t ∈ S).

2.6 Strong and Weak SBCs

We borrow the square bracket notation to localize vectors: if x∗ ∈ G (P) is a
global optimum of P , then x∗[ω] is a projection of x∗ on the coordinates indexed
by ω. If GP [ω] is the full symmetric group Sym(ω) on the orbit, it means that
G (P) contains vectors which, when projected onto ω, yield every possible order
of x∗[ω]. This implies that we can arbitrarily choose one order, e.g.:

∀� < |ω| xω(�) ≤ xω(�+1), (2)

470 G. Dias and L. Liberti

where ω(�) is the �-th element of ω (stored as a list), enforce this order by
means of SBCs, and still be sure that at least one global optimum remains
feasible. The SBCs in Eq. (2) are called strong SBCs. If GP [ω] has any other
structure, we observe that, by transitivity of the transitive constituents, at least
one permutation in GP [ω] will map the component having minimum value in
x∗[ω] to the first component (the choice if minimum value and first components
are arbitrary — alternative SBC sets can occur by choosing maximum and/or
any other component). This yields the weak SBCs:

∀� ∈ ω � {ω(1)} xω(1) ≤ xω(�). (3)

Strong SBCs select one order out of |ω|! many, and hence are able to break all
symmetries in GP [ω]. Weak SBCs are unlikely to be able to achieve that. We let
g(x[B]) ≤ 0 denote SBCs involving only variables xj with j in a given set B.

2.7 Stabilizers

Let Y ⊆ X. We recall that the pointwise stabilizer of Y w.r.t. GP (or any
group G) is defined as the subgroup of elements of GP fixing each element
of Y , i.e., GY = {g ∈ GP | ∀y ∈ Y (gy = y)}. The setwise stabilizer of Y
w.r.t. GP is the subgroup of those elements of GP under which Y is invariant,
i.e., stab(Y,GP) = {g ∈ GP | ∀y ∈ Y (gy ∈ Y)}. By definition, if Y is an orbit
of GP , then GY is the kernel of φY and stab(Y,GP) = GP .

3 Orbital Independence Notions

In this section we introduce our main results regarding orbit independence (OI).
First we illustrate how SBCs built from different orbits may cut global optima
from a MP; then we recall the conditions of OI originally introduced in [8], and
finally we present a new concept of OI based on pointwise stabilizers.

3.1 Incompatible SBCs

In general, one may only adjoin to P the SBCs from one orbit. Adjoining SBCs
from two or more orbits chosen arbitrarily may result in all global optima being
infeasible, as Example 1 shows.

Example 1. Let P be the following MILP:

min
x∈{0,1}4

x1 + x2 + 2x3 + 2x4⎛
⎜⎜⎝

1 1 0 0
0 0 1 1

−1 0 −1 0
0 −1 0 −1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

x1

x2

x3

x4

⎞
⎟⎟⎠ ≤

⎛
⎜⎜⎝

1
1

−1
−1

⎞
⎟⎟⎠ .

Orbital Independence in Symmetric Mathematical Programs 471

It has formulation group GP = 〈(1 2)(3 4)〉, optima G(P) = {(0, 1, 1, 0), (1, 0, 0, 1)}
and orbits ΩGP

= {ω1, ω2} = {{1, 2}, {3, 4}}. Valid SBCs for ω1 (resp. ω2) are
x1 ≤ x2 (resp. x3 ≤ x4). Whereas adjoining either of the two SBCs yields a valid
narrowing, adjoining both simultaneously leads to an infeasible problem.

Yet, breaking symmetries from only one orbit does not generally make a
strong computational impact in MPs of the form Eq. (1). In what follows, we
explore the concept of “orbital independence” meant as sufficient conditions to
guarantee that SBCs from many orbits preserve at least one global optimum of
P feasible.

3.2 Some Existing OI Conditions

In order to concurrently combine sets of SBCs generated by two orbits ω, θ ∈
ΩGP

into a valid narrowing (i.e. a reformulation guaranteed to keep at least one
global optimum [7]) of a MINLP, two sufficient conditions were provided in [8]:

– there is a subgroup H ≤ GP [ω ∪ θ] such that H[ω] ∼= C|ω| and H[θ] ∼= C|θ|;
– gcd(|ω|, |θ|) = 1.

Two orbits with these properties are called coprime. Coprime orbits occur rela-
tively rarely in practice [8].

Another set of conditions for OI was hinted at in [11], by means of the
following iterative procedure. Initially, one sets G ← GP and picks an orbit
ω ∈ ΩGP

; then adjoins SBCs for ω to P , and then replaces G by Gω. Termination
occurs when G is the trivial group. At each iteration, the SBCs from different
orbits can be concurrently adjoined to P . On the other hand, the orbits refer to
the action of different groups: GP initially, then the groups in a normal chain of
pointwise stabilizers. In the following, we expand on this idea.

3.3 New Conditions for OI

Our goal now is to introduce the concept of independent set of orbits and provide
conditions that will help us to identify such sets. These new necessary conditions
for OI will be established based on pointwise stabilizers.

First, let ω, θ ∈ ΩGP
. We look at what happens to θ when ω is pointwise

stabilized: either Gω fixes θ, or a subset of θ, or it does not fix any element of θ
at all. So three cases follow:

(a) for any subset σ ⊆ θ, σ �∈ ΩGω ;
(b) there is a subset σ � θ such that σ ∈ ΩGω ;
(c) θ ∈ ΩGω .

We can thus state the following binary dependence relations on the set ΩGP
.

Definition 1. The orbit θ is dependent of ω, denoted by θ → ω, if θ is stabilized
when ω is stabilized (case (a) above).

472 G. Dias and L. Liberti

Definition 2. The orbit θ is semi-dependent of ω, denoted by θ � ω, if θ splits
when ω is stabilized (case (b) above).

Definition 3. The orbit θ is independent of ω, denoted by θ

�

ω, if θ is not
stabilized when ω is stabilized (case (c) above).

Next, let Γω be the set of permutations of GP which move elements of the
orbit ω nontrivially. By definition, Γω does not contain the identity permutation
e of GP and thus it is not itself a group. Moreover, the following properties hold:
Gω ∩ Γω = ∅, stab(ω,GP) = Gω ∪ Γω = GP and φω(Γω) = GP [ω] � e.

Theorem 1 establishes the dependence relation between two orbits ω, θ ∈ ΩGP

by comparing the sets Γω and Γ θ.

Theorem 1. The following statements are true:

(1) If Γ θ = Γω then θ → ω and ω → θ;
(2) If Γ θ ⊂ Γω then θ → ω and either ω

�

θ or ω � θ;
(3) If Γ θ ∩ Γω �= ∅ then (θ

�

ω or θ � ω) and (ω

�

θ or ω � θ);
(4) If Γ θ ∩ Γω = ∅ then θ

�

ω and ω

�

θ.

Proof. (1) Assume Γ θ = Γω and consider ω. Then Gω = GP �Γω ⇒ Gω ∩Γ θ =
∅ ⇒ θ /∈ ΩGω and θ → ω. Since the same argument holds if we consider θ,
we also have ω → θ.

(2) Assume Γ θ ⊂ Γω and consider ω. Then Gω = GP � Γω ⇒ Gω ∩ Γ θ =
∅ ⇒ θ /∈ ΩGω and θ → ω. Considering θ, we have that Gθ = GP � Γ θ ⇒
Gθ ∩Γω �= ∅. If the action of Gθ is transitive on ω, we have ω

�

θ. Otherwise,
we have ω � θ.

(3) Assume Γ θ ∩ Γω �= ∅ but neither set is wholly contained in the other, and
consider ω. Then Gω = GP � Γω ⇒ Gω ∩ Γ θ �= ∅. If the action of Gω

is transitive on θ, we have θ

�

ω. Otherwise, we have θ � ω. The same
argument holds if we consider θ.

(4) Assume Γ θ ∩ Γω = ∅ and consider ω. Then Gω = GP � Γω ⇒ Gω ⊃ Γ θ ⇒
θ ∈ ΩGω and θ

�

ω. The argument is similar if we consider θ, thus ω

�

θ.
��

Lemma 1. The premise Γ θ ∩ Γω = ∅ to condition (4) in Theorem 1 never
holds.

Proof. Let Δ be the set of generators of GP . If there is g ∈ Δ such that g[ω] and
g[θ] are nontrivial, then g ∈ Γ θ ∩Γω. Otherwise, let Δθ = {g ∈ Δ | g[ω] = e} and
Δω = {g ∈ Δ | g[θ] = e}. Because every element of GP can be expressed as the
combination (under the group operation) of finitely many elements of Δ, there
is g ∈ GP such that g = gωgθ where gω ∈ Δω and gθ ∈ Δθ. Thus g ∈ Γ θ ∩Γω. ��

Based on the above definitions and results, the following lemmata hold.

Lemma 2. The relation → is reflexive and the relations � and

�

are
irreflexive.

Orbital Independence in Symmetric Mathematical Programs 473

Lemma 3. The relation → is symmetric iff Γ θ = Γω and asymmetric iff
Γ θ ⊂ Γω.

Lemma 4. The relation → is transitive.

Proof. Let θ, ω, τ ∈ ΩGP
be distinct orbits satisfying θ → ω and ω → τ . From

Theorem 1, θ → ω implies that either Γ θ = Γω or Γ θ ⊂ Γω. Similarly, ω → τ
implies that either Γω = Γ τ or Γω ⊂ Γ τ . Then:

(i) Γ θ = Γω ∧ Γω = Γ τ ⇒ Γ θ = Γ τ ⇒ θ → τ ;
(ii) Γ θ = Γω ∧ Γω ⊂ Γ τ ⇒ Γ θ ⊂ Γ τ ⇒ θ → τ ;
(iii) Γ θ ⊂ Γω ∧ Γω = Γ τ ⇒ Γ θ ⊂ Γ τ ⇒ θ → τ ;
(iv) Γ θ ⊂ Γω ∧ Γω ⊂ Γ τ ⇒ Γ θ ⊂ Γ τ ⇒ θ → τ . ��

Whenever the dependence relations are symmetric, we write ω ↔ θ or ω � θ
or ω

��

θ. Using this notation, we set forth that:

Definition 4. Two orbits ω, θ ∈ ΩGP
are dependent if ω ↔ θ, semi-dependent

if ω � θ and independent if ω

��

θ.

Following, we extend the dependence relations presented above to sets of
orbits. In this sense, consider a set Ω ⊆ ΩGP

and let Ωω = Ω �ω for ω ∈ Ω. We
look at what happens to ω when the set Ωω is pointwise stabilized, i.e., when
all of the orbits in Ωω are (simultaneously) pointwise stabilized. Similar cases to
(a)–(c) may occur and suitable definitions can be stated.

Definition 5. The orbit ω is dependent of Ωω, denoted by ω ↪→ Ωω, if ω is
stabilized when all orbits of Ωω are stabilized.

Definition 6. The orbit ω is semi-dependent of Ωω, denoted by ω � Ωω, if ω
splits when all orbits of Ωω are stabilized.

Definition 7. The orbit ω is independent of Ωω, denoted by ω

�

Ωω, if ω is
not stabilized when all orbits of Ωω are stabilized.

Lemma 5 establishes necessary conditions to have ω

�

Ωω. The pointwise
stabilizer of a set Ω of orbits is denoted as GΩ hereafter.

Lemma 5. If ω

�

Ωω, then ω

�

θ for all θ ∈ Ωω.

Proof. By definition, ω

�

Ωω implies that the action of GΩω

on ω is transitive.
Since GΩω

is a subgroup of Gθ for every θ ∈ Ωω, Gθ also acts transitively on ω
and thus ω

�

θ. ��
Finally we can define an independent set of orbits. We remark that, although

we do not state them explicitly, corresponding definitions can be laid down
concerning the concepts of dependent and semi-dependent sets of orbits.

Definition 8. A set Ω is said to be independent if ω

�

Ωω for all ω ∈ Ω.

Corollary 1 provides necessary conditions so as to a set Ω be independent.

Corollary 1. If the set Ω is independent, then ω

��

θ for all ω, θ ∈ Ω.

Proof. By Definition 8 and Lemma 5. ��

474 G. Dias and L. Liberti

3.4 SBCs from Independent Sets

Let ΩI denote an independent set of orbits. Similarly to the results presented
in [8], the following propositions set appropriate conditions to build weak and
strong SBCs, respectively, from independent sets of orbtis.

Proposition 1. The constraints (3) are SBCs for P and GΩω
I with respect to

ω ∈ ΩI .

Proof. Let y ∈ G (P). Since GΩω
I acts transitively on ω, there exists π ∈ GΩω

I

mapping min y[ω] to yω(1). ��
Proposition 2. Provided that GΩω

I [ω] = Sym(ω), the constraints (2) are SBCs
for P and GΩω

I with respect to ω ∈ ΩI .

Proof. Let y ∈ G (P). Since GΩω
I [ω] = Sym(ω), there exists π ∈ GΩω

I such that
(πy)[ω] is ordered by ≤. Therefore πy is feasible w.r.t. the contraints (2). ��

4 Orbital Independence Algorithm

In this section we describe the methodology used to find an independent set
of orbits of a mathematical program. We present how to model and solve the
problem of finding such a set by means of a classical combinatorial optimization
problem. Moreover, we describe in details the algorithm proposed to build SBCs
from all orbits contained in an independent set.

4.1 Independence Graph

Our interest relies in finding the largest ΩI ⊆ ΩGP
. Nevertheless, so far we do

not have theoretical results providing sufficient conditions to find such a set.
Yet we can use the necessary conditions provided by Corollary 1 and search for
the largest set ΩK ⊆ ΩGp

whose elements are pairwise independent. Having
obtained ΩK , we can then search for the largest ΩI ⊆ ΩK .

Hence we propose to find ΩK by encoding the independence relation between
orbits of GP as an undirected graph GI = (V,E), as of now called the indepen-
dence graph of P , where V = ΩGP

and E is the set of pairs of independent orbits
in ΩGP

. In this manner we reduce the problem of finding ΩK to the problem of
finding the maximum clique in GI .

4.2 Orbital Independence Reformulations

We expect that the larger the number of SBCs adjoined to the original for-
mulation, the stronger their computational impact. Particularly, the larger the
number of strong SBCs, the better. We thus propose two different reformulations
based on the concept of OI: the first prioritizing the total number of SBCs gen-
erated and the second prioritizing the total number of strong SBCs generated.
In this sense, we look for cliques in GI that either involve large orbits or involve
mostly orbits which may satisfy the conditions to build strong SBCs.

Orbital Independence in Symmetric Mathematical Programs 475

In order to find such cliques, we associate a weight function d : V → W
to GI = (V,E, d) and solve the Maximum Weight Clique problem (MWCP)
for GI using the MP formulation described in [1]. In the first reformulation,
which we call orbital independence narrowing, we have W = {|ω1|, . . . , |ω|V ||}
and d(ωi) = |ωi| for all ωi ∈ V . In the second, which we call strong orbital
independence narrowing, W = {d1, d2}. It is worth pointing out that the strong
orbital independence narrowing prioritizes cliques having mostly orbits which
satisfy GP [ω] = Sym(ω); this is a necessary condition to have GΩω

I [ω] = Sym(ω)
since GΩω

I [ω] is a subgroup of GP [ω] for every ω ∈ ΩI .

4.3 Algorithm Description

Algorithm 1. Orbital Independence SBC generator
Require: nontrivial GP and reformulation strategy ς
1. Let C = ∅ and ΩI = ∅

2. Let ΩGP = computeOrbits(GP)
3. if |ΩGP | > 1 then
4. for ω ∈ ΩGP do
5. Let Gω = computePointStab(ω)
6. for θ ∈ ΩGP such that pos(θ) > pos(ω) do
7. Let Gθ = computePointStab(θ)
8. if isTransitiveAction(Gω, θ) ∧ isTransitiveAction(Gθ, ω) then
9. Let E = E ∪ {{ω, θ}, {θ, ω}}

10. end if
11. end for
12. end for
13. if |E| ≥ 2 then
14. Let GI = buildGraph(ΩGP , E, ς)
15. Let ΩK = ΩI = solveMWCP(GI)
16. for ω ∈ ΩK do
17. if not isTransitiveAction(GΩω

I , ω) then
18. Let ΩI = ΩI � ω
19. end if
20. end for
21. for ω ∈ ΩI do
22. Let g(x[ω]) ≤ 0 be some SBCs for P and GΩω

I w.r.t. ω
23. Let C = C ∪ {g(x[ω]) ≤ 0}
24. end for
25. end if
26. end if
27. return C

The Algorithm 1 generates a set C containing SBCs derived from the largest
independent set of orbits of P . It takes as inputs a nontrivial formulation group
(parameter GP) and a reformulation strategy (parameter ς). Some functions
simplify the pseudocode of Algorithm1: computeOrbits(GP) returns the orbits

476 G. Dias and L. Liberti

of the group GP ; computePointStab(ω) returns the pointwise stabilizer of ω;
pos(ω) returns the position of orbit ω in the list ΩGP

; isTransitiveAction(G,ω)
returns true if the action of the group G is transitive on the orbit ω and false oth-
erwise; buildGraph(V,E, ς) returns a graph with vertices V , edges E and weights
appropriate to the strategy ς; solveMWCP(GI) returns a solution of the MWCP
for the graph GI .

If GP has more than one orbit (|ΩGP
| > 1), the algorithm first iteratively

looks for all pairs of independent orbits in order to build the set E. Because
the Condition (3) in Theorem 1 is not sufficient to ascertain whether two orbits
ω, θ ∈ ΩGP

satisfy ω

��

θ, ultimately we must check if the action of the stabilizers
Gω and Gθ is transitive on θ and ω, respectively. Thus the algorithm does not
compare the sets Γω and Γ θ but rather directly checks whether the actions are
transitive. Following the first loop, if at least one pair of independent orbits
is found (|E| ≥ 2), the algorithm builds the independence graph GI according
to the reformulation strategy ς and calls a third party MILP solver to solve
the MWCP for GI . Once ΩK is known, the algorithm converges to a set ΩI

by iteratively removing (from a copy of ΩK stored as ΩI) the orbits that do
not satisfy ω

�

Ωω
I . We remark that our approach here is not optimal in the

sense that the resulting ΩI may not be the largest one; evaluating all possible
ΩI ⊆ Ωk would most likely require a large computational effort due to many
stabilizer computations. Then, for each orbit in the set ΩI , the algorithm builds
and adds SBCs to the set C. We remark that if |ΩGP

| = 1 (unique orbit) or
|E| = 0 (no pair of independent orbits in ΩGP

), no reformulation is carried out.

Theorem 2. The constraint set CΩI
= {g(x[ωk]) ≤ 0 | ωk ∈ ΩI} is an SBC

system for P .

Proof. If P is infeasible then adjoining the constraints in CΩI
to P does not

change its infeasibility, so assume P is feasible. Since g(x[ωk]) ≤ 0 are SBCs for
P and GΩ

ωk
I w.r.t. ωk, there exist y ∈ G (P) and πωk

∈ GΩ
ωk
I such that πωk

y
satisfies g((πωk

y)[ωk]) ≤ 0. But πωk
∈ GP for all ωk ∈ ΩI and, due to the closure

of the group operation, there exists π ∈ GP such that π =
∏

πωk
. So πy ∈ G (P).

But π[ωk] = πωk
[ωk] since πωk′ stabilizes ωk pointwise for every k′ �= k and thus

(πy)[ωk] = (πωk
y)[ωk]. Therefore πy satisfies g((πy)[ωk]) ≤ 0 for all ωk ∈ ΩI . ��

5 Computational Experiments

In this section we show the computational impact on the resolution of MILPs
when adjoining SBCs arising from different orbits simultaneously. We describe
the computational environment involved (machinery, solvers, instances) and ana-
lyze the results obtained from the conducted experiments.

5.1 Environment

Our test set consists of symmetric MPs taken from the library MIPLIB2010.
The reformulations were obtained on a quad-CPU Intel Xeon at 2.66 GHz with

Orbital Independence in Symmetric Mathematical Programs 477

24 Gb RAM. Automatic group detection is carried out using the ROSE refor-
mulator [10] and the Traces software [16]. Other group computations are car-
ried out using GAP v. 4.7.4 [19]. The MP results were obtained on a 24-CPU
Intel Xeon at 2.53 GHz with 48 Gb RAM. All problems were solved under the
AMPL [3] environment using CPLEX 12.6 [5]. The execution time was lim-
ited to 1800 s of user cpu time. In order to try and provide a fair assessment
of our methodology, we disabled the symmetry handling methods built into
CPLEX. We also ran CPLEX in single thread mode to impose its sequential
(and deterministic) behaviour and increase the chances of measuring perfor-
mance differences.

5.2 Results

We first comment the results regarding the reformulation process. Table 1 reports,
per instance, the number of variables (n) and orbits (|ΩGP

|) of the original for-
mulation, and the total number of variables indexed by the orbits ΩGP

(#svar);
for each OI narrowing type, the table reports the size of the maximum clique
(|ΩK |), the size of the largest independent set (|ΩI |), the total number of vari-
ables indexed by all of the orbits in ΩI (#var), and the number of weak (#wea)
and strong (#str) SBCs generated.

We would like to remark that both reformulation strategies yielded the same
narrowings for the most part of the instances. In these cases, we do not present
results regarding the strong orbital independence reformulation. Additionally,
we also point out that the size of the maximum cliques is equal to the size of
the largest independent sets for all instances.

Apart from the structure of the group GP , intuitively, the ratio ν =(#svar/n)
may also indicate how symmetric a formulation P is. Similarly, the ratios ρ =
(|ΩI |/|ΩGP

|) and υ =(#var/#svar) may indicate how extensively we have
exploited the symmetries of P . All together, we expect SBCs to make a strong
computational impact whenever the triplet (ν, ρ, υ) tends to (1, 1, 1). Table 1
shows that the symmetric instances tested so far have, in general, two low ratios,
which suggests that the impact of the SBCs may not be too significative.

Table 2 reports the optimization results. Per instance and for each formula-
tion, the table exhibits the best solution found, the user cpu time (in seconds),
the gap (%) and the solver status at termination (opt = optimum found, lim
= time limit reached, inf = infeasible instance). Best values are emphasized
in boldface. Some instances from Table 1 do not appear in Table 2 because no
method performed better than the other.

As expected, we do not observe cases of infeasible narrowings due to the usage
of SBCs derived from different orbits simultaneously. Moreover, we also observe
consistent improvements in favor of the orbital independence narrowings. In 22
out of 48 instances, the SBCs slightly helped to improve the performance of the
solver. On the other hand, in 14 cases the SBCs were harmful and, in 12 other
instances, they made no difference at all. Although they provided good results,
the few soi-narrowings did not achieve outstanding performances. Interestingly,

478 G. Dias and L. Liberti

Table 1. OI narrowings of symmetric instances from MIPLIB2010.

the SBCs were harmful to all instances of the family map#. We shall investigate
why this happens in order to get more insights on the impact of SBCs.

Overall, we understand that the results are few and at most reasonable,
but they support our motivation and encourage a more extensive experimental
evaluation against a larger set of instances that exhibit nontrivial symmetries.

Orbital Independence in Symmetric Mathematical Programs 479

Table 2. MIPLIB2010 results obtained with CPLEX 12.6.

6 Conclusions

In this paper we discussed the notion of orbital independence by presenting
theoretical results that establish sufficient conditions to break symmetries from
different orbits of MPs concurrently. These conditions allowed us to design an
algorithm that efficiently generates SBCs to the largest independent set of orbits
of MPs. We evaluated the impact of our methodology by conducting experiments
with symmetric instances taken from MIPLIB2010. The results were at most
reasonable but encouraging; we aim to extend our computational tests to a larger
set of symmetric instances, either taken from public libraries such as MINLPLIB2
or generated so as to contain formulation groups with specific structures.

Acknowledgments. The first author (GD) is financially supported by a CNPq Ph.D.
thesis award.

References

1. Bomze, I., Budinich, M., Pardalos, P., Pelillo, M.: The maximum clique problem.
In: Du, D.Z., Pardalos, P. (eds.) Handbook of Combinatorial Optimization, pp.
1–74. Kluwer Academic Publishers, Dordrecht (1998)

480 G. Dias and L. Liberti

2. Costa, A., Hansen, P., Liberti, L.: Formulation symmetries in circle packing. In:
Mahjoub, R. (ed.) Proceedings of the International Symposium on Combinatorial
Optimization. Electronic Notes in Discrete Mathematics, vol. 36, pp. 1303–1310.
Elsevier, Amsterdam (2010)

3. Fourer, R., Gay, D.: The AMPL Book. Duxbury Press, Pacific Grove (2002)
4. Galli, S.: Parsing AMPL internal format for linear and non-linear expressions

(2004), B.Sc. dissertation, DEI, Politecnico di Milano, Italy
5. IBM: ILOG CPLEX 12.6 User’s Manual. IBM (2014)
6. Kaibel, V., Pfetsch, M.: Packing and partitioning orbitopes. Math. Program.

114(1), 1–36 (2008)
7. Liberti, L.: Reformulations in mathematical programming: definitions and system-

atics. RAIRO-RO 43(1), 55–86 (2009)
8. Liberti, L.: Reformulations in mathematical programming: automatic symmetry

detection and exploitation. Math. Program. A 131, 273–304 (2012)
9. Liberti, L.: Symmetry in mathematical programming. In: Lee, J., Leyffer, S. (eds.)

Mixed Integer Nonlinear Programming, IMA, vol. 154, pp. 263–286. Springer, New
York (2012)

10. Liberti, L., Cafieri, S., Savourey, D.: The reformulation-optimization software
engine. In: Fukuda, K., Hoeven, J., Joswig, M., Takayama, N. (eds.) ICMS 2010.
LNCS, vol. 6327, pp. 303–314. Springer, Heidelberg (2010)

11. Liberti, L., Ostrowski, J.: Stabilizer-based symmetry breaking constraints for math-
ematical programs. J. Global Optim. 60, 183–194 (2014)

12. Margot, F.: Pruning by isomorphism in branch-and-cut. Math. Program. 94, 71–90
(2002)

13. Margot, F.: Exploiting orbits in symmetric ILP. Math. Program. B 98, 3–21 (2003)
14. Margot, F.: Symmetry in integer linear programming. In: Jünger, M., Liebling, T.,

Naddef, D., Nemhauser, G., Pulleyblank, W., Reinelt, G., Rinaldi, G., Wolsey, L.
(eds.) 50 Years of Integer Programming, pp. 647–681. Springer, Berlin (2010)

15. McKay, B.: Practical graph isomorphism. Congressus Numerantium 30, 45–87
(1981)

16. McKay, B., Piperno, A.: Practical graph isomorphism. II. Journal of Symbolic
Computation 60, 94–112 (2014)

17. Ostrowski, J.P., Linderoth, J., Rossi, F., Smriglio, S.: Constraint Orbital Branch-
ing. In: Lodi, A., Panconesi, A., Rinaldi, G. (eds.) IPCO 2008. LNCS, vol. 5035,
pp. 225–239. Springer, Heidelberg (2008)

18. Ostrowski, J., Linderoth, J., Rossi, F., Smriglio, S.: Orbital branching. Math. Pro-
gram. 126, 147–178 (2011)

19. The GAP Group: GAP - Groups, Algorithms and Programming. Version 4.7.4
(2014)

Symbolic Model Checking for Alternating
Projection Temporal Logic

Haiyang Wang, Zhenhua Duan(B), and Cong Tian(B)

ICTT and ISN Laboratory, Xidian University,
Xi’an 710071, People’s Republic of China
{zhhduan,ctian}@mail.xidian.edu.cn

Abstract. This paper presents a symbolic model checking approach for
Alternating Projection Temporal Logic (APTL). In our approach, the
model of a system to be verified is specified by an Interpreted System
IS, and a property of the system is expressed by an APTL formula
φ. To check whether φ is valid on IS or not: first, the system IS is
symbolically represented and ¬φ is transformed into its normal form.
Then, the set Sat(¬φ), containing all the states from which there exists at
least one computation such that ¬φ holds, is computed. Finally, whether
the property is valid on the system is equivalently evaluated by checking
the emptiness of the intersection of the set of initial states in the system
and Sat(¬φ). Supporting tool is also developed to show how the proposed
approach works in practice.

Keywords: Alternating projection temporal logic · Interpreted system ·
Symbolic model checking · OBDD · Verification

1 Introduction

In the past three decades, model checking [1–3] approach has been intensively
developed. At the very time of its introduction in the early 1980’s, the prevailing
paradigm for verification was a manual theoretic proof or reasoning, using formal
axioms and inference rules towards sequential programs. With the development
of computer programs and systems, model checking has pervaded into concurrent
programs. Model checking is now widely used in many areas such as control sys-
tems, resource schedulers, security protocols, auctions and election mechanisms,
etc. With model checking, the system is modeled as a state-transition structure
and the desired properties are specified in temporal logic formulas [4,5]. Tempo-
ral logics provide key inspiration for model checking. In 1977, Pnueli introduced
Linear Temporal Logic (LTL) [2] which is a linear logic to specify and verify
reactive systems. The universal quantification over all computations is implicit
in the LTL semantics. In 1980, Clarke and Emerson introduced Computation
Tree Logic (CTL) [2], which is a branching temporal logic and allows the expres-
sion of properties of some or all computations of a system. Interval Temporal

This research is supported by the NSFC Grant Nos. 61133001, 61272117, 61322202,
61420106004, and 91418201.

c© Springer International Publishing Switzerland 2015
Z. Lu et al. (Eds.): COCOA 2015, LNCS 9486, pp. 481–495, 2015.
DOI: 10.1007/978-3-319-26626-8 35

482 H. Wang et al.

Logic (ITL) [6] is also a useful formalism for specifying and verifying concurrent
systems. Projection Temporal Logic (PTL) [7] is an extention of ITL. Within
ITL, (P ;Q) holds over an interval if and only if either the interval can be splitted
into two parts, P holds on the first part, Q holds on the second part (the interval
can be finite or infinite), or P holds over the interval and the interval is infinite;
while, within PTL (P ;Q) is true only for the first case. In Propositional PTL
(PPTL), chop and projection constructs are useful for specifying properties of
sequential and iterative behaviors, respectively.

Recently, alternative approaches have been involved and extended to logics
such as Multi-agent system (MAS) logics which make them possible to ver-
ify a range of MAS against temporal logics and modalities. For example, Alur
et al. introduces Alternating-time Temporal Logic (ATL) [8], which offers selec-
tive quantification over those paths that are possible out-comes of games. Alter-
nating Interval Temporal Logic (AITL) [9–11] and Alternating Projection Tem-
poral Logic (APTL) [9,12,13] are the extensions of Propositional ITL and PPTL,
respectively. AITL and APTL are also logics indispensable for the specification
and verification of MAS.

Model checkers for MAS based on OBDD have also been implemented, such
as Mocha [14] on CTL and ATL, MCMAS [15] on CTL, ATL and epistemic logics.
Model checking can easily lead to state space explosion when the number of
agents is large. Symbolic model checking [16,17] can some what conquer the state
space explosion problem. Therefore, we investigate a symbolic model checking
approach for APTL. In our approach, the system to be verified is modeled as
an interpreted system [18,19] IS = <(Li, Acti, Pi, ti)i∈Σ∪{E}, S0, h>, while
a property of the system is specified by an APTL formula φ. Firstly, ¬φ is
transformed to its normal form, and then the sets of states in IS satisfying
the sub-formulas of ¬φ can be recursively computed according to the evolution
function of the IS. Thus, whether φ is satisfied on the interpreted system IS
equals to whether the intersection of Sat(¬φ) and S0 is empty. Since the model
IS is represented symbolically by boolean functions, the checking procedure is
implemented as an efficient graph algorithm operated on OBDDs [20]. We have
develop an APTL model checker named MCMAS APTL and show how it works
with a case study.

The rest of the paper is organized as follows. The next section introduces the
syntax, semantics and normal forms of APTL formulas. The definition and the
symbolic representation of interpreted systems are given in Sect. 3. In Sect. 4, the
symbolic model checking algorithms for APTL are studied and the supporting
tool is presented with a case study to show how it works. Finally, conclusions
are drawn in Sect. 5.

2 Alternating Projection Temporal Logic

In this section, the syntax and semantics of APTL are presented. The normal
forms of APTL are defined and an example to illustrate how an APTL formula
is translated to its normal form is given.

Symbolic Model Checking for Alternating Projection Temporal Logic 483

2.1 APTL Syntax

Let P be a finite set of atomic propositions and A a finite set of agents. The
formulas of APTL are given as follows:

P ::= p | ¬P | P ∨ Q | ©�A� P | (P1, · · · , Pm)prj�A�Q

where p ∈ P, A ⊆ A, P1, · · · , Pm, P and Q are well-formed APTL formulas.
©�A� (next) and prj�A� (projection) are basic temporal operators. An APTL
formula is called a state formula if it contains no temporal operators, otherwise
a temporal formula. The abbreviations true, false, ∨, → and ↔ are defined as
usual. Moreover, we have the following derived formulas:

ε
def= ¬ ©�∅� true more

def= ©�∅�true

©0
�A�P

def= P ©n
�A�P

def= ©�A�(©n−1
�A�P)

len(n) def= ©n
�∅�ε skip

def= len(1)

♦�A�P
def= true;�A� P ��A�P

def= ε ∨ ©�A�P

fin(P) def= ��∅�(ε → P) keep(P) def= ��∅�(¬ε → P)

halt(P) def= ��∅�(ε ↔ P) P ;�A� Q
def= (P,Q)prj�A�ε

where ��A� (weak next), ��A� (always), ;�A� (chop), ♦�A� (sometimes)
are derived temporal operators; ε (empty) denotes an interval with zero length,
more represents that the current state is not the final one over a finite compu-
tation, halt(p) holds over a finite computation if and only if p is true at the final
state, fin(p) holds as long as p is true at the final state, and keep(p) holds over
a finite computation as long as p holds at all states ignoring the last one.

2.2 APTL Semantics

Traditionally, the sematics of APTL formulas are given in terms of Concurrent
Game Structures (CGSs) [8,9]. A CGS is a tuple C = <P,A, S, S0, l,Δ, τ>
where

– P is a finite nonempty set of atomic propositions;
– A is a finite set of agents;
– S is a finite nonempty set of states;
– S0 is a finite nonempty set of initial states;
– l : S → 2P is a labeling function that decorates each state with a subset of

the atomic propositions;
– Δa(s) is a nonempty set of possible decisions for an agent a ∈ A at state s;

ΔA(s) = Δa1(s)× . . .×Δak(s) is a nonempty set of decision vectors for the set
of agents A = {a1, . . . , ak} ∈ 2A at state s; accordingly, ΔA(s) is simplified as
Δ(s) and denotes the decisions of all agents in A; and for a decision d ∈ Δ(s),
da denotes the decision of agent a within d, and dA denotes the decision of
the set of agents A ⊆ A within d;

484 H. Wang et al.

– For each state s ∈ S, d ∈ Δ(s), τ(s, d) maps s and a decision d of the agents
in A to a new state in S. Note that in a CGS, for a state s , each transition
is made by a decision d ∈ Δ(s) of all agents in A. In some cases, if we just
concern with the decisions of A ⊆ A without caring about the ones of other
agents, notation dA is used. Particularly, if A is a singleton, da is adopted.

A computation λ = s0, s1, . . . is a nonempty sequence of states, which can
be finite or infinite. The length |λ| of λ is ω if λ is infinite, and the number
of states minus 1 if λ is finite. To have a uniform notation for both finite and
infinite intervals, we use extended integers as indices. That is, we consider the
set N0 of non-negative integers and ω , Nω = N0 ∪ω, and extend the comparison
operators, =, <, ≤, to Nω by considering ω = ω, and for arbitrary i ∈ N0, i < ω.
Moreover, we define � as ≤ −{(ω, ω)}. Let Γ denote the set of all computations.
For any computation λ ∈ Γ and 0 ≤ i ≤ j � |λ|, we use λ[i], λ[0, i], λ[i, |λ|]
and λ[i, j] to denote the i-th state in λ, the finite prefix s0, s1, . . . , si of λ, the
suffix si, si+1, . . . of λ, and an interval si, . . . , sj of λ respectively. A strategy for
an agent a ∈ A is a function fa that maps a nonempty finite state sequence
λ ∈ S+ to a state in S by fa(λ) = τ(s, da) if the last state s in λ is not a dead
state. Similarly, given a set A ⊆ A of agents, a strategy for the agents in A is a
function fA that maps a nonempty finite state sequence λ ∈ S+ to a state in S
by fA(λ) = τ(s, dA) if the last state s in λ is not a dead state.

Following the definition of CGS, we define a state s over P to be a mapping
from P to B = {true, false}, s : P → B. A computation λ(s) starting from a
state s in a CGS satisfies the APTL formula P , denoted by λ(s) |= P . A CGS
C satisfies an APTL formula P iff all of the computations starting from initial
states of the CGS satisfy the APTL formula P , denoted by C |= P .

Let λ = s0, s1, . . . be a computation, and r1, . . . , rk be integers (h ≥ 1)
such that 0 = r1 ≤ . . . ≤ rh � |λ|. The projection of λ onto r1, . . . , rh is
the computation, λ ↓ (r1, . . . , rh) = st1 , st2 , . . . , stl where t1, . . . , tl are obtained
from r1, . . . , rh by deleting all duplicates. t1, . . . , tl is the longest strictly increas-
ing subsequence of r1, . . . , rh. For example, s0, s1, s2, s3, s4 ↓ (0, 0, 2, 2, 2, 3) =
s0, s2, s3.

The relation |= is inductively defined as follows:

– λ(s) |= p for propositions p ∈ P, iff p ∈ l(s).
– λ(s) |= ¬P , iff λ(s) � P .
– λ(s) |= P ∨ Q, iff λ(s) |= P or λ(s) |= Q.
– λ(s) |= ©�A�P iff |λ(s)| ≥ 2, and there exists a strategy fA for the agents

in A, such that λ(s) ∈ out(s, fA), and λ(s)[1, |λ|] |= P .
– λ(s) |= (P1, . . . , Pm)prj�A�Q iff there exists a strategy fA for the agents in

A, and λ(s) ∈ out(s, fA), and integers 0 = r0 ≤ r1 ≤ . . . ≤ rm ≤ |λ(s)| such
that λ(s)[ri−1, ri] |= Pi, 0 < i ≤ m and λ |= Q for one of the following λ:
(a) rm < |λ(s)| and λ = λ(s) ↓ (r0, . . . , rm) · λ(s)[rm + 1, . . . , |λ(s)|] or
(b) rm = |λ(s)| and λ = λ(s) ↓ (r0, . . . , rm) for some 0 ≤ h ≤ m.

Symbolic Model Checking for Alternating Projection Temporal Logic 485

2.3 Normal Form of APTL

Normal forms are requisite in model checking of APTL formulas and illustrated
in the following.

Definition 1 (Normal Form, NF). Let QP be the set of atomic propositions
appearing in the APTL formula Q. Normal form of Q can be defined as Q ≡
Qe ∧ ε ∨

n∨
i=0

(Qci ∧ Qi) where Qi ≡ ∧r
j=1 ©�Aij�Qij, Qe is a state formula,

Qci ≡ ∧l
k=1q̇k, qk ∈ Qp, q̇k denotes qk or ¬qk, and Qci �= Qcj if i �= j; each Qij

is an arbitrary APTL formula.

The normal form of an APTL formula contains two parts: the present part
Qe ∧ ε indicates that Qe is satisfied over a computation with a single state s0,
and the future part Qci ∧ Qi where Qi ≡ ∧r

j=1 ©�Aij� Qij means that Qci

is satisfied by the current state s′
0 of a computation λ (|λ| > 1) and Qij are

satisfied over the sub-computation λ[1, |λ|].
Definition 2 (Complete Normal Form, CNF). Let QP be the set of atomic
propositions appearing in an APTL formula Q. The complete normal form of Q

is defined as Q ≡ Qe ∧ ε ∨
n∨

i=0

(mi ∧ Mi) where Mi ≡ ∧r
j=1 ©�Aij�Mij, Qe is

a state formula, mi ≡ ∧l
k=1q̇k, qk ∈ Qp, q̇k denotes qk or ¬qk, ∨n

i=0mi ≡ true
and

∨
i	=j(mi ∧ mj) ≡ false, mi is the min-products of the atomic propositions,

and if there are n atomic propositions then we have 2n min-products, m0, m1,
. . ., m2n−1; Mij is the max-sums of the atomic propositions, and we also have
2n max-sums.

If we have transformed a formula Q to its normal form, then we can further
transform it to its complete normal form. If Q is transformed into complete

normal form Q ≡ Qe ∧ ε ∨
n∨

i=0

(mi ∧ Mi) then ¬Q can be transformed into its

normal form as ¬Q ≡ ¬Qe ∧ ε ∨
n∨

i=0

(mi ∧ ¬Mi).

When we rewrite an APTL formula P into its normal form, we first make
preprocesses to eliminate all implications, equivalence, double negations, skip,
len(n), ♦ in P by replacing all sub-formulas of the form P1 → P2 by ¬P1 ∨ P2,
P1 ↔ P2 by ¬P1 ∧ ¬P2 ∨ P1 ∧ P2, ¬¬P1 by P1, skip by ©�∅�ε, len(n) by
©n

�∅�ε and ♦�A�P by true;�A� P .
We propose the algorithms for transforming APTL formulas into normal

forms and implement them. The following example is used to illustrate how an
APTL formula can be transformed to its normal form.

Example 1. Transform formula ��A1�p ∧ ♦�A2�q;�A3� ��A4�r to its nor-
mal form.

Nf(��A1�p ∧ ♦�A2�q;�A3� ��A4�r)
≡ ��A1�p ∧ (true;�A2� q);�A3� ��A4�r

486 H. Wang et al.

≡ (p ∧ ε ∨ p ∧ ©�A1���A1�p) ∧ (true;�A2� q);�A3� ��A4�r
≡ (p ∧ ε ∨ p ∧ ©�A1���A1�p) ∧ (ε ∨ ©�∅�true;�A2� q);

�A3���A4�r
≡ (p ∧ ε ∨ p ∧ ©�A1���A1�p) ∧ ((ε;�A2� q)

∨ (©�∅�true;�A2� q));�A3� ��A4�r
≡ (p ∧ ε ∨ p ∧ ©�A1���A1�p) ∧ (q ∧ ε ∨ q ∧ ©�∅�true∨

©�∅� (true;�A2� q));�A3� ��A4�r
≡ p ∧ q ∧ ε ∨ p ∧ q ∧ ©�A1���A1�p ∧ ©�∅�true ∨ p

∧ ©�∅�(true;�A2� q);�A3� ��A4�r
≡ p ∧ q ∧ ε ∨ p ∧ q ∧ ©�A1���A1�p ∨ p ∧ ©�A1���A1�p

∧ ©�∅�(true;�A2� q);�A3� ��A4�r
≡ (p ∧ q ∧ ε;�A3� ��A4�r) ∨ (p ∧ q ∧ ©�A1���A1�p;�A3�

��A4�r) ∨ (p ∧ ©�A1���A1�p ∧ ©�∅�(true;�A2� q);
�A3���A4�r

≡ p ∧ q ∧ ��A4�r ∨ p ∧ q ∧ (©�A1���A1�p;�A3� ��A4�r)
∨ p ∧ (©�A1���A1�p ∧ ©�∅�(true;�A2� q);�A3� ��A4�r)

≡ p ∧ q ∧ (r ∧ ε ∨ r ∧ ©�A4���A4�r) ∨ p ∧ q ∧ ©�A1�(��A1�p;
�A3���A4�r) ∨ p ∧ (©�A1���A1�p;�A3� ��A4�r)∧
(©�∅�(true;�A2� q);�A3� ��A4�r)

≡ p ∧ q ∧ r ∧ ε ∨ p ∧ q ∧ r ∧ ©�A4���A4�r ∨ p ∧ q ∧ ©�A1�
(��A1�p;�A3� ��A4�r) ∨ p ∧ ©�A1�(��A1�p;
�A3���A4�r) ∧ ©�∅�((true;�A2� q);�A3� ��A4�r)

3 Interpreted Systems and Symbolization

In this section, we describe the formalism of interpreted systems to model multi-
agent systems, and compare the semantics of interpreted systems with CGSs.
The symbolic representation of interpreted systems is also presented in this
section.

3.1 Interpreted Systems

Formally, an interpreted system IS is a tuple IS = <(Li, Acti, Pi, ti)i∈Σ∪{E},
S0, h> where

– Each agent i(i ∈ {1, ..., n}) in the system is characterised by a finite set of
local states Li and a finite set of actions Acti;

– Actions are performed in compliance with a protocol Pi : Li → 2Acti , speci-
fying which actions may be performed at a given state;

– The environment is modelled by means of a special agent E, a set of local
states LE , a set of actions ActE , and a protocol PE associated with E;

– A tuple g = (l1, ..., ln, lE) ∈ L1 × ... × Ln × LE , where li ∈ Li for each i and
lE ∈ LE , is called a global state which gives a description of the system at a
particular instant of time;

Symbolic Model Checking for Alternating Projection Temporal Logic 487

– The evolution of the agents’ local states is described by a function ti : Li×LE×
Act1× ... × Actn×ActE → Li. It means that a local state for agent i is returned
for a “current” local state of agent i, a “current” local state of the environment,
and all the agents’ actions. For the environment agent E, the evolution of its
local states is described by a function tE : LE ×Act1×...×Actn×ActE → LE ;

– It is assumed that, at every state, all agents evolve simultaneously. The evo-
lution of the global states of the system may be described by a function
t : G×Act → G, where G ⊆ (L1 ×· · ·×Ln ×LE) denotes the set of reachable
global states, and Act = Act1 × ... × Actn × ActE denotes the set of “joint”
actions. Function t is the composition of all the functions ti, and it is defined
by t(g, a) = g′ iff ∀i, ti(li(g), lE(g), a) = li(g′). Here li(g) denotes the local
state of agent i in global state g and a ∈ Act;

– S0 ⊆ G: a set of initial global states;
– To complete the description of an interpreted system, a set of atomic propo-

sitions AP is introduced together with a valuation relation h ⊆ AP × S.

Interpreted systems and CGSs are closely related. Considering an inter-
preted system IS = <(Li, Acti, Pi, ti)i∈Σ∪{E}, S0, h> and a CGS C =
<P,A, S, S0, l, Δ, τ>:

– both structures comprise a set of agents Σ and A respectively, and a set of
states, called global states in IS;

– the function Δ, which returns the number of decisions available to a player in
a state of a C, intuitively corresponds to the protocols Pi in IS;

– the evolution function τ of C is an “accessibility” relation between states,
while the evolution function t of IS is defined in terms of the evolution func-
tions ti;

– both the valuation functions l of C and h of IS label states with propositions.

Indeed, C assumes that every player has perfect information, i.e., every player
is fully aware of the state s ∈ S at every time. Conversely, in interpreted systems
an agent is aware of its private local state only.

Difference between interpreted systems and CGSs lies in their own definitions
of strategies. In CGSs, a strategy is defined as a function from sequences of
states to an action. In interpreted systems, instead, a strategy for agent i is a
function from a local state to an action of agent i. Strategies and protocols in
interpreted systems are closely relative because they associate actions to states.
Particularly, in deterministic interpreted systems, strategies and protocols are
the same mathematical object.

Interpreted systems have been proven a suitable formalism for reasoning
about temporal properties of agents.

3.2 Symbolic Representation of System Models

The key idea about symbolic model checking is expressing a problem in a form,
where all the objects are represented as boolean functions which can then be
efficiently manipulated by ROBDDs. In the following, we review ROBDDs and
present the method for the symbolic representation of interpreted systems.

488 H. Wang et al.

Reduced Ordered Binary Decision Diagrams. A Binary Decision Diagram
(BDD) represents a boolean function as a rooted, directed acyclic graph, where
internal vertices corresponding to the variables over which the function is defined
and terminal vertices being labeled by 0 and 1. For example, Fig. 1 represents
the BDD of the boolean function f(a, b, c) = a ∨ (b ∧ c̄).

Fig. 1. The BDD of boolean function f(a, b, c) = a ∨ (b ∧ c̄)

A boolean function can be represented by many different BDDs. To ensure
that each boolean function has a unique representation, two restrictions must
be placed on the form of BDDs: (1) A total ordering is given for the variables in
the boolean function. For instance, the variable ordering in Fig. 1 is a < b < c.
(2) There should be no isomorphic subtrees or redundant vertices in the BDD.
This can be achieved by repeatedly applying three transformation rules in [20].

Symbolic Representation of Interpreted Systems. We express how to rep-
resent an interpreted system by boolean functions in detail. Given an interpreted
system IS = <(Li, Acti, Pi, ti)i∈Σ∪{E}, S0, h>:

– The number of boolean variables nv(i)(i ∈ N) required to encode the local
states of an agent i is nv(i) = �log2|Li|�. A global state g can be encoded as
a boolean vector v̄ = (v1, ..., vN), where N =

∑
i nv(i);

– To encode an agent’s action, the number na(i) of boolean variables wi required
is na(i) = �log2|Acti|�. A joint action a can be encoded as a boolean vector
w̄ = (w1, ..., wM), where M =

∑
i na(i).

– Protocols can be encoded by implications between boolean formulas represent-
ing local states and actions. We use P (v̄, w̄) to denote the boolean formula
obtained by taking the conjunction of the boolean formulas encoding the pro-
tocols for all the agents.

– The evolution functions can be translated into boolean formulas, and we
denote t(v̄, w̄, v̄′) as a boolean function by taking the conjunction of all the
boolean formulas encoding the evolution functions for the agents.

– The set of initial states is easily translated into a boolean function S0v̄. So as
the evaluation function h.

Symbolic Model Checking for Alternating Projection Temporal Logic 489

Boolean function Rt(g, g′) represents the temporal transitions. It can be
obtained from the evolution functions ti by quantifying over actions. This quan-
tification can be translated into a propositional formula using a disjunction:
Rt(v̄,v̄′) =

∨
w̄∈Act(t(v̄, w̄, v̄′)∧P (v̄, w̄)). The formula provides a boolean relation

between global states that can be used in the evaluation of temporal operators.
The set of reachable states is also needed in the algorithm: the set G of reachable
global states can be expressed symbolically by a boolean formula, and it can be
computed as the fix-point of the operator τ(Q) = (S0v̄ ∨ ∃(v̄′)(Rt(v̄′,v̄) ∧ Qv̄′)),
where Q is the set of states of the system. Intuitively, τ(Q) computes the sets
of states that are reachable from Q in a single step. The fix-point of τ can be
computed by iterating from τ(∅) as usual (see [1]).

4 Symbolic Model Checking for APTL

In this section, symbolic model checking algorithms for APTL are presented and
a model checker named MCMAS APTL is introduced with a case study.

4.1 Symbolic Model Checking Algorithm for APTL

Our approach employs interpreted system IS = <(Li, Acti, Pi, ti)i∈Σ∪{E},
S0, h> to model a system and an APTL formula φ to specify the property.
The notation IS, λ |= φ means that φ holds along a computation λ in IS. We
simply write λ |= φ when IS is unambiguous in the context. IS |= φ iff all of
the computations which departing from the initial states in the system satisfy
φ. Accordingly, we give the definition of Sat(φ) in the following.

Definition 3. Let φ be an APTL formula, IS = <(Li, Acti, Pi, ti)i∈Σ∪{E},
S0, h> an interpreted system. A computation λ is a nonempty sequence of states
of the system IS, which can be finite or infinite. The set Sat(φ) ⊆ G includes all
the states departing from which there exists at least one computation satisfying φ:

Sat(φ) = {g ∈ G|∃λ ∈ Computations(G) |= φ and λ[0] = g}.

Theorem 1. Let IS = <(Li, Acti, Pi, ti)i∈Σ∪{E}, S0, h> be an interpreted sys-
tem and φ be a property formula in APTL. IS |= φ iff Sat(¬φ) ∩ S0 is empty.

Proof. ⇒: If IS |= φ, then Sat(¬φ) ∩ S0 is empty.
If IS |= φ, then φ is true over all computations in Computations(S0).

Therefore, there exists no computation over which ¬φ is true. In order to deter-
mine the emptiness of the intersection of Sat(¬φ) and the set of the initial states
S0, we take two cases about SubComputations(G) into account:

1. Suppose that for each subcomputation λ′ ∈ SubComputations(G), λ′
� ¬φ.

By Definition 3, it is easy to see that Sat(¬φ) = ∅. The consequence Sat(¬φ)∩
S0 = ∅ is straightforward.

490 H. Wang et al.

2. Suppose that there exists a subcomputation λ′ ∈ SubComputations(G) such
that λ′ |= ¬φ. By Definition 3, it follows that for the starting global state
of λ′, g′ ∈ Sat(¬φ). If g′ ∈ S0 then λ′ ∈ Computation(S0) and λ′ |= ¬φ.
This leads to a conflict with our hypothesis. Consequently, we can infer that
Sat(¬φ) ∩ S0 = ∅.

⇐: If Sat(¬φ) ∩ S0 is empty, then IS |= φ.
By Definition 3, if Sat(¬φ)∩S0 = ∅, then Sat(¬φ) can be either be an empty

set or a nonempty set involving some state g′ ∈ G starting a subcomputation
λ′ ∈ SubComputations(g′) such that λ′ |= ¬φ.

1. If Sat(¬φ) = ∅, then there exists no subcomputation λ′ ∈ ¬φ. In other
words, φ holds along all the subcomputations in SubComputations(G). For all
Computations(S0) ⊆ SubComputations(G), we can conclude that IS |= φ.

2. If Sat(¬φ) is a nonempty set, then for each global state g′ ∈ Sat(¬φ), g′ /∈ S0.
Thus, there exists no computation λ ∈ Computations(S0) such that λ |= ¬φ.
This means that φ holds along all computations in IS.

Let IS = <(Li, Acti, Pi, ti)i∈Σ∪{E}, S0, h> be an interpreted system. Given
a set A ⊆ Σ∪{E} of agents, a set G1 ⊆ G and a set t′ ⊆ t, function Pre returns
a set of states. Here G is the global states and t is the evolution function of the
global states. The function Pre is defined below:

Pre(A,G1, t
′) = {g ∈ G1|∃g′ ∈ G1.t

′(g, PA) = g′}.

We present algorithm CharFun for checking whether an APTL formula φ
is satisfied on an interpreted system IS = <(Li, Acti, Pi, ti)i∈Σ∪{E}, S0, h>
or not: Firstly, we invoke CharFun to calculate the characteristic function
Satv̄(¬φ) for Sat(¬φ). Secondly, if Satv̄(¬φ) · S0v̄ equals to 0, it follows that
the intersection of Sat(¬φ) and S0 is empty and there exists no computation
λ ∈ Computations(g0)(g0 ∈ S0) such that λ |= ¬φ. Conversely, φ is true over
all computations in IS. Further, if Satv̄(¬φ) · S0v̄ �= 0, then we can always find
a computation λce in IS starting from some state g ∈ Sat(¬φ) ∩ S0 such that
λce |= ¬φ. The counterexample λce is returned when a bug is found.

The pseudo code of algorithm CharFun is demonstrated in Table 1.
Note that, “+” and “·” are logic operators “OR” and “AND” respectively.
Satv̄(φ) is the boolean function of Sat(φ). NF (φ) is the procedure for con-
structing the normal form of φ. Pre(A,Satv̄(ϕ), Rt(v̄,v̄′)) is used to compute
the preimage of Satv̄(ϕ) based on the transition function Rt(v̄,v̄′) and the
agents set A. FixPoint(c(Satv̄(φire

), Rt(v̄,v̄′))) calculates the fixed point of
c(Satv̄(φire

), Rt(v̄,v̄′)) by invoking the algorithm shown in Table 2.
We develop the algorithm CharFun by first rewriting φ into normal form

NFφ, and then considering each disjunct ψi of NFφ:

1. If ψi ≡ φe∧ε, according to the definition of normal form, φe is a state formula
and those states are final states in finite computations.

Symbolic Model Checking for Alternating Projection Temporal Logic 491

Table 1. Algorithm for computing the boolean function of Sat(φ)

2. If ψi ≡ φi ∧ ∧m
j=1 ©�Aij�φij , we first compute Satv̄(φi) with CharFun.

Then for the sub-formulas φik(1 ≤ k ≤ m) which never appear during the
transformation of φ, we calculate Pre(Aik,CharFun(φik, Rt(v̄,v̄′)), Rt(v̄,v̄′)).
Moreover, for the sub-formulas φir(1 ≤ r ≤ m) which have been encoun-
tered during transforming φ into its normal form, the procedure of computing
Satv̄(φir) becomes more complicated since the involvement of infinite com-
putation. This property can easily be characterized by fixpoint theory. We
can obtain Satv̄(φir) by FixPoint(c(Satv̄(φire

), Rt(v̄,v̄′))), and then calculate
preimage by Pre(Air,FixPoint(c(Satv̄(φire

), Rt(v̄,v̄′))), Rt(v̄,v̄′)). Satv̄(ψi)
can be obtained by exerting logic “AND” operation on these boolean func-
tions calculated above.

The algorithm FixPoint shown in Table 2 consists of a main loop which
converges when the value of intermediate variable Satv̄(old) coincides on
two successive visits. Initially, we set Satv̄(old) with Satv̄(φe) and assign
c(Satv̄(old), Rt(v̄,v̄′)) to Satv̄(new) where c(Satv̄(old), Rt(v̄,v̄′)) is computed with
the update value of Satv̄(old). This iterating procedure will not terminate
until Satv̄(old) = c(Satv̄(old), Rt(v̄,v̄′)). Actually, Satv̄(φe) is the final value of
Satv̄(old) with Satv̄(old) = Satv̄(new) holds.

Finally, we can obtain the boolean function Satv̄(φ) by exerting logic “OR”
operation on all the Satv̄(φ), Satv̄(φ) = Satv̄(ψ1) + Satv̄(ψ2) + . . . + Satv̄(ψn).

492 H. Wang et al.

Table 2. Algorithm for computing fixed point

Table 3. Algorithm for checking whether system IS satisfies APTL formula φ or not

In the following, we present algorithm CheckAptl in Table 3 for check-
ing whether an interpreted system satisfies an APTL formula φ. Firstly, we
invoke algorithm CharFun to calculate the characteristic function Satv̄(¬φ)
for Sat(¬φ). Secondly, if Satv̄(¬φ) · S0v̄ = 0, it means that the intersection of
Sat(¬φ) and S0 is empty and there exists no computation that satisfies ¬φ, i.e.
φ is true over all computations in IS. Further, if Satv̄(¬φ) · S0v̄ �= 0, then we
can find a computation λce in IS starting from state g ∈ Sat(¬φ)∩S0 such that
λce |= ¬φ. The counterexample λce is shown when a bug is found.

4.2 Model Checker MCMAS APTL

We have developed a model checker named MCMAS APTL based on the pro-
posed algorithms in C++. The structure of the tool is shown in Fig. 2. The tool
mainly contains three parts: representing interpreted systems by boolean func-
tions; translating APTL formulas to normal forms; and checking whether APTL
formulas hold on the interpreted systems or not. The first part symbolically rep-
resent interpreted systems by employing the corresponding part of MCMAS. In
the second part, we translate APTL formulas to normal forms since all of the
well-formed APTL formulas can be translated into normal forms. In the last
part, we check whether an APTL formula is satisfied on an interpreted system
based on the algorithms introduced in Sect. 4.1.

Symbolic Model Checking for Alternating Projection Temporal Logic 493

Fig. 2. The structure of MCMAS APTL.

Fig. 3. The result of checking ♦�g1�Awin and fin(Awin|Bwin).

4.3 A Case Study

We present a match game where two players take out matches from a pile of
matches. We assume that there are five matches and both of the players take at
least one match in each step. The player who takes the last one loses and the other
one wins. We encode the game rule in the formalism of the interpreted systems
and impose that only one agent makes a move at each step. The interpreted
system has three agents, i.e. Environment, A and B. The agent Environment
contains two variables i and childA respectively representing the number of the
remanent matches and the number of matches taken by A in each step. The agent
A(B) contains one local variable state representing state of agent A(B), and the
agent B is similar. The set of atomic properties is AP = {Awin,Bwin}. Awin
represents that A wins and Bwin means B wins. We assume that the system
has a group g1 = {Environment,A}. We give two APTL formulas ♦�g1�Awin
and fin(Awin|Bwin) to verify whether they are satisfied on the system or not.
♦�g1�Awin means that there exists a strategy fg1 for the agents in group g1,

494 H. Wang et al.

such that λ(g) ∈ out(s, fg1), and there exists 0 ≤ i ≤ |λ(g)|, and λ(g)[i, |λ|] |=
Awin. fin(Awin|Bwin) means that Awin or Bwin holds at the final state. The
corresponding results are shown in Fig. 3.

We could verify formula ♦�g1�Awin in 0.711 s and fin(Awin|Bwin) in
1.88 s on a 2.93 GHZ Intel Core i7, 4 Gb of RAM. As the results show, the
system satisfies the formula fin(Awin|Bwin) but not ♦�g1�Awin.

5 Conclusions

To specify and verify Multi-agent Systems, we present the symbolic model check-
ing for APTL formulas in this paper. The procedure and algorithms of the
symbolic model checking approach are illustrated explicitly. The model checker
MCMAS APTL is developed and introduced. A case study is also presented
to demonstrate how our approach works. In the future, we will further investi-
gate how the proposed approach can be utilized in the verification of real-world
multi-agent systems.

References

1. Clarke, E.M., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cambridge
(1999)

2. Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press, Cambridge
(2008)

3. Katoen, J.P.: Concepts, Algorithms, and Tools for Model Checking. IMMD,
Erlangen (1999)

4. Pnueli, A.: The temporal logic of programs. In: Proceedings of 18th IEEE Sympo-
sium Foundation of Computer Science, pp. 46–57 (1977)

5. Wang, H., Xu, Q.: Temporal logics over infinite intervals. Technical report 158,
UNU/IIST, Macau (1999)

6. Cau, A., Moszkowski, B., Zedan, H.: Interval Temporal Logic (2006). http://www.
cms.dmu.ac.uk/∼cau/itlhomepage/itlhomepage.html

7. Duan, Z.: Temporal Logic and Temporal Logic Programming. Science Press,
Beijing (2005)

8. Alur, R., Henzinger, T.A., Kupferman, O.: Alternating-time temporal logic. J.
ACM 49, 672–713 (2002)

9. Tian, C., Duan, Z.: Alternating interval based temporal logics. In: Dong, J.S., Zhu,
H. (eds.) ICFEM 2010. LNCS, vol. 6447, pp. 694–709. Springer, Heidelberg (2010)

10. Moszkowski, B., Manna, Z., Kozen, D.: Reasoning in interval temporal logic. In:
Clarke, E., Kozen, D. (eds.) Logics of Programs. LNCS, vol. 164, pp. 371–382.
Springer, Heidelberg (1984)

11. Moszkowski, B.: A complete axiom system for propositional interval temporal logic
with infinite time. ArXiv Prepr (2012). ArXiv1207.3816

12. Duan, Z., Tian, C., Zhang, L.: A decision procedure for propositional projection
temporal logic with infinite models. Acta Inform. 45, 43–78 (2008)

13. Duan, Z., Koutny, M., Holt, C.: Projection in temporal logic programming. In:
Pfenning, F. (ed.) LPAR 1994. LNCS, vol. 822, pp. 333–344. Springer, Heidelberg
(1994)

http://www.cms.dmu.ac.uk/~cau/itlhomepage/itlhomepage.html
http://www.cms.dmu.ac.uk/~cau/itlhomepage/itlhomepage.html
http://arxiv.org/abs/1207.3816

Symbolic Model Checking for Alternating Projection Temporal Logic 495

14. Alur, R., Henzinger, T.A., Mang, F.Y.C., Qadeer, S., Rajamani, R.K., Tasiran,
S.: MOCHA: modularity in model checking. In: Hu, A.J., Vardi, M.Y. (eds.) CAV
1998. LNCS, vol. 1427, pp. 521–525. Springer, Heidelberg (1998)

15. Lomuscio, A., Qu, H., Raimondi, F.: MCMAS: a model checker for the verification
of multi-agent systems. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol.
5643, pp. 682–688. Springer, Heidelberg (2009)

16. Burch, J.R., Clarke, E.M., McMillan, K.L., et al.: Symbolic model checking: 1020

states and beyond. In: Proceedings of Fifth Annual IEEE Symposium on Logic in
Computer Science, LICS 1990, pp. 428–439. IEEE (1990)

17. Pang, T., Duan, Z., Tian, C.: Symbolic model checking for propositional projec-
tion temporal logic. In: Sixth International Symposium on Theoretical Aspects of
Software Engineering (TASE 2012). IEEE, pp. 9–16 (2012)

18. Lomuscio, A., Raimondi, F.: Model checking knowledge, strategies, and games in
multi-agent systems. In: Proceedings of the Fifth International Joint Conference
on Autonomous Agents and Multiagent Systems, pp. 161–168. ACM (2006)

19. Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning About Knowledge. MIT Press,
Cambridge (1995)

20. Bryant, R.E.: Graph-based algorithms for boolean function manipulation. IEEE
Trans. Comput. 100(8), 677–691 (1986)

Optimization in Graphs

An I/O Efficient Algorithm for Minimum
Spanning Trees

Alka Bhushan1,2 and Gopalan Sajith1(B)

1 Department of Computer Science and Engineering,
Indian Institute of Technology Guwahati, Guwahati 781039, India

sajith@iitg.ac.in
2 GISE Lab, Department of Computer Science and Engineering,
Indian Institute of Technology Bombay, Mumbai 400076, India

abhushan@iitb.ac.in

Abstract. An O(Sort(E) · log logE/V B) I/Os algorithm for computing
a minimum spanning tree of a graph G = (V, E) is presented, where
Sort(E) = (E/B) logM/B(E/B), M is the main memory size, and B
is the block size. This improves on the previous bound of O(Sort(E) ·
log log(V B/E)) I/Os by Arge et al. for all values of V , E and B, for
which I/O optimality is still open. In particular, our algorithm matches
the lowerbound Ω(E/V ·Sort(V)), when E/V ≥ Bε for a constant ε > 0,
an O(log log B) factor improvement over the algorithm of Arge et al.
Our algorithm can compute the connected components too, for the same
number of I/Os, which is an improvement on the best known upper
bound.

Keywords: External memory algorithms · Minimum spanning trees ·
Graph algorithms

1 Introduction

The minimum spanning tree (MST) problem on an input undirected graph G =
(V,E), where each edge is assigned a real-valued weight, is to compute a spanning
forest (a spanning tree for each connected component) of G so that the total
weight of the edges in the spanning forest is a minimum. In this paper we consider
the problem on the I/O model of Aggarwal and Vitter [3]. This model has been
used to design algorithms intended to work on large data sets that do not fit in
the main memory.

In the I/O model, M is the size of the main memory and B is the size of a
disk block. It is assumed that 2B < M < V,E. In an I/O operation one block of
data is transferred between the disk and the internal memory. The measure of
performance of an algorithm on this model is the number of I/Os it performs.
The number of I/Os needed to read (write) N contiguous items from (to) the
disk is Scan(N) = Θ(N/B). The number of I/Os required to sort N items is
Sort(N) = Θ((N/B) · logM/B(N/B)) [3]. For all realistic values of N , B, and
M , Scan(N) < Sort(N) � N .
c© Springer International Publishing Switzerland 2015
Z. Lu et al. (Eds.): COCOA 2015, LNCS 9486, pp. 499–509, 2015.
DOI: 10.1007/978-3-319-26626-8 36

500 A. Bhushan and G. Sajith

I/O-efficient graph algorithms have been studied for a host of problems; for
a review see [15,17]. For the MST problem, a lower bound of Ω(E/V · Sort(V))
on the number of I/Os is known [16].

Most I/O efficient MST algorithms are based on Bor̊uvka phases [6]. Each
phase selects the lightest edge incident to each vertex v, and outputs as part of
the MST. At the end of the phase, the selected edges are contracted; that is,
each set of vertices connected by the selected edges is fused into a supervertex.
Proofs of the correctness of this approach can be found in [6–8,10,14,16].

(We use set theoretic notations for supervertices. Every vertex of the input
graph G is a singleton supervertex. The size |v| of a supervertex v is the number
of vertices it contains. For supervertices u and v, we say that u participates in v,
if u ⊆ v. An edge (u, v) is an internal edge of supervertex w, if u, v ⊆ w. Edges
(u′, v′) and (u′′, v′′) are multiple edges, if there are supervertices u and v such
that u′, u′′ ⊆ u and v′, v′′ ⊆ v.)

At the end of a Bor̊uvka phase, algorithms typically remove the internal
edges, and for each set of multiple edges retain only the lightest among them.
After the i-th phase, the size of every supervertex is at least 2i. After O(log(V/M))
phases, O(M) supervertices remain, and these fit in the main memory. The MST
can be now computed in one scan of the sorted edge set using the disjoint set data
structure and Kruskal’s algorithm [11]. As a Bor̊uvka phase takes O(Sort(E))
I/Os [4,7,14,16], this results in an O(Sort(E) log(V/M)) algorithm. Kumar and
Schwabe [14] observe that after Θ(log B) phases, with the number of vertices
reduced to O(V/B), a contraction phase can be performed more efficiently. They
obtain an O(Sort(E) log B + Scan(E) log V) I/Os algorithm.

Arge et al. [4] present an improved O(Sort(E) log log(V B/E)) I/Os algo-
rithm. This is the best known algorithm for MST, and is optimal when E =
Ω(V B). Arge et al. use the fact that after Θ(log(V B/E)) phases, with num-
ber of vertices reduced to E/B, a modified version [4] of Prim’s algorithm [11]
can be used to construct an MST in the remaining graph. They divide the
Θ(log(V B/E)) phases into Θ(log log(V B/E)) superphases requiring O(Sort(E))
I/Os each. The i-th superphase consists of �log

√
N i� phases, where Ni = 2(3/2)i .

The phases in superphase i work only on a subset Ei of edges. This sub-
set contains the �√N i� lightest edges incident to each vertex v. These edges
are sufficient to perform �log

√
N i� phases as proved in [4,9,16]. Using this

subset of edges, each superphase is performed in O(Sort(Ei)) = O(Sort(E))
I/Os.

The modified Prim’s algorithm [4] works as follows: Initialize an external
memory priority queue (EMPQ) with the edges of a particular vertex. In each
step, add the lightest border edge (which connects a vertex that is in the MST to
one that is not) to the MST, and add all the edges incident to the newly captured
vertex to the EMPQ, except for the edge through which it is captured. The
EMPQ stores all the current border edges and some internal edges (i.e., edges
between vertices in the MST). A deletemin operation on the EMPQ produces
the lightest edge in it; it is an internal edge iff there are two copies of it in the
EMPQ; discard it if it is an internal edge. The algorithm performs Θ(E) EMPQ
operations, which take O(Sort(E)) I/Os [1,5,12,14]; it also needs one I/O per

An I/O Efficient Algorithm for Minimum Spanning Trees 501

vertex. Thus, its I/O complexity is O(V + Sort(E)). When V = E/B, this is
O(Sort(E)).

If E = O(V) in the input graph G = (V,E), presented as an edgelist, an
adjacency list representation of G on its non-isolated vertices can be obtained in
O(Sort(E)) I/Os. Then we run Bor̊uvka phases until, for the resultant graph
G′ = (V ′, E′), E′ = ∅, or E′ = ω(V ′). The latter is possible, if isolated
supervertices are removed from the graph as soon as they form. The first of
those phases would run in O(Sort(E)) I/Os [4]. The I/O cost of the subsequent
phases will fall geometrically. Thus, the total I/O cost too will be O(Sort(E)) =
O(E/V · Sort(V)).

Therefore, without loss of generality, we assume that E = ω(V). Let α denote
E/V . Then V B/E = B/α.

Thus, the problem is open only on sparse graphs with E = o(V B), and
E = ω(V). Computing of connected components (CC) and MSTs are related.
The best known upper bound for CC is also O(Sort(E) · log log(V B/E)) [16].
However, an optimal randomized algorithm is known for both CC and MST [2,7].

We propose a new MST algorithm that has an I/O complexity of O(Sort(E) ·
log logE/V B). Our algorithm can compute the connected components too, for
the same number of I/Os, which is an improvement on the best known the upper
bound [16].

For α = E/V , logα B > log B
α iff either log α > (log

√
B)(1+(1−4/ log B)0.5),

or log α < (log
√

B)(1−(1−4/ log B)0.5). In the former case, for B > 16, log α >
log

√
B, and therefore, our algorithm matches the lowerbound. In the latter case,

since (log
√

B)(1 − (1 − 4/ log B)0.5) has a maximum of 2 at B = 16, log α < 2,
and therefore E = O(V). Hence, our algorithm uses asymptotically fewer I/Os
than that of Arge et al. [4] for all values of V , E and B for which I/O optimality
is still open. In particular, when α = Bε, for a constant ε > 0, our algorithm has
an I/O complexity of O(Sort(E)), an O(log log B) factor improvement over the
algorithm of Arge et al.

The rest of the paper is organized as follows. The high level description of
the algorithm is presented in Sect. 2. Section 3 describes a stage. The correctness
and I/O complexity of the algorithm are discussed in Sects. 4 and 5.

2 The Stages

The structure of our algorithm is similar to that of Arge et al. [4]: reduce the
number of vertices from V to E/B using log(V B/E) Bor̊uvka phases, and then
apply the modified Prim’s algorithm to the resultant graph. Our algorithm differs
from that of Arge et al. [4] in how we schedule the phases.

Let α denote E/V . Then V B/E = B/α.
Our algorithm schedules its log(B/α) Bor̊uvka phases in a number of stages.

The j-th stage, j ≥ 0, executes 2j log α phases. The number of supervertices at
the start of the j-th stage is at most V/2(2

j−1) log α = E/α2j . Thus, log logα B
stages are required to reduce the number of vertices to E/B. We implement each
stage in O(Sort(E)) I/Os, for a total of O(Sort(E) log logα B) I/Os.

502 A. Bhushan and G. Sajith

For j > 0, let Gj = (Vj , Ej) denote the output of the (j−1)-st stage; Gj is also
the input to the j-th stage. The input to the 0-th stage, G0 = (V0, E0), is G. Let
g(j) = j+log log α. For v ∈ Vj , let degj(v) denote the degree of v in Gj . From Ej

we construct g(j)+2 buckets: B0, . . . , Bg(j)+1. Each bucket is a set of edges, and
is maintained as a sorted array with the composite 〈source vertex, edge-weight〉
as the sort key. In bucket Bk, 0 ≤ k ≤ g(j), we store, for each vertex v ∈ Vj ,
the min{degj(v), 22

k − 1} lightest edges incident to v. Clearly, Bk ⊆ Bk+1. Set
Bg(j)+1 = Ej .

For 0 ≤ k ≤ g(j), bucket Bk is of size at most Vj(22
k−1). The total space used

by all the buckets of the j-th stage is, therefore, at most O(Ej)+
∑g(j)

k=0 Vj(22
k −

1) = O(Ej) + O(Vjα
2j) = O(E).

In the j-th stage, first we form bucket Bg(j)+1 by sorting Ej on the composite
key 〈source vertex, edgeweight〉. Next we form buckets Bg(j), . . . , B0 in that
order. For g(j) ≥ k ≥ 0, bucket Bk can be formed by scanning Bk+1 and
choosing for each vertex v ∈ Vj , the min{degj(v), 22

k −1} lightest edges incident
to v. Clearly, this involves scanning each bucket twice, once for write and once
for read. We do not attempt to align bucket and block boundaries. As soon as
the last record of bucket Bk+1 is written, we start the writing of Bk; but this
requires us to start reading from the beginning of Bk+1; if we retain a copy of the
block that contains the beginning of Bk+1 in the main memory, we can do this
without performing an additional I/O. The total I/O cost of buckets formation
is O(Sort(Ej)).

We now define a threshold value hk(v) for every v ∈ Vj and bucket Bk as
follows: if degj(v) ≥ 22

k

, then let hk(v) be the weight of the 22
k

-th lightest edge
incident to v; otherwise, let hk(v) be ∞. Note that when hk(v) is finite, it is the
weight of the lightest edge of v not in Bk; hk(v) = ∞ implies that every edge of
v is in Bk. We store hk(v) at the end of v’s edgelist in Bk.

After constructing the buckets from Ej , the algorithm performs 2j log α
Bor̊uvka phases. These phases are described in the next section. A phase includes,
in addition to the hook and contract operations, the clean up of an appropriate
bucket and some bookkeeping.

3 A Phase

In this section, we describe the i-th phase of the j-th stage; 1 ≤ i ≤ 2j log α.
For i > 1, let Gj,i = (Vj,i, Ej,i) be the graph output by the (i − 1)-st phase;
Gj,i is also the input to the i-th phase. The input to the first phase is Gj,1 =
(Vj,1, Ej,1) = Gj . For i ≥ 1, every v ∈ Vj,i+1 is an i-supervertex. Every v ∈ Vj is
a 0-supervertex.

For each (i − 1)-supervertex v, if v is not overgrown for phase i of stage j

(i.e., |v| < α2j−1 · 2i+1), then B0 contains the lightest external edge of v. (See
Sect. 4.) There can be at most one edge of v in B0, because 22

0 − 1 = 1.
Let z(i) denote the number of trailing 0’s in the binary representation of i.

An I/O Efficient Algorithm for Minimum Spanning Trees 503

At the start of the i-th phase, buckets Bz(i), . . . , B1 are “empty”, in that
they contain star graphs that represent supervertices formed in some of the past
phases. But bucket Bz(i)+1 is “full”, in that it contains the edges of Gj placed
in it earlier. (See Sect. 4.)

First we describe the three steps of a phase numbered i < 2j log α = 2g(j).
The last phase of a stage is special, and will be described later.

Step 1: (Hook & Contract) Let Hi be the graph induced by the edges in
Bz(i) ∪ . . . ∪ B1 ∪ B0. Compute the connected components in Hi and select
one representative vertex for each component. These representatives form the
set Vj,i+1. Construct a star graph for each component, with the representative
as the root, and the other vertices of the component pointing to it. Let Fi denote
the union of these star graphs.

Details of Step 1: Each component of Hi = (Vh, Eh) is a pseudo tree, a
connected directed graph with exactly one cycle. Moreover, each cycle of Hi has
a size of two.

For each edge (u, v) of Hi, we call v the parent p(u) of u. Concurrently read
Eh (which is sorted on source) and a copy C of Eh that is sorted on destination,
and for each (v, w) ∈ Eh and each (u, v) ∈ C, add (u,w) into C ′. For each u
such that (u, u) ∈ C ′ and u < p(u), delete (u, p(u)) from Hi and mark u as a
root in Hi. Now Hi is a forest. Let H ′

i be the underlying undirected tree of Hi.
Form an adjacency list representation of H ′

i with twin pointers.
Find an Euler tour U of H ′

i by simulating the O(1) time Exclusive Read
Exclusive Write (EREW) Parallel Random Access Machine (PRAM) algorithm
[13] on the external memory model [7]. For each root node r of Hi, delete from
U the first edge with r as the source. Now U is a collection of disjoint linked
lists. For each element (u, r) without a successor in U , set rank(u, r) = r, and
for every other element (u, v), set rank(u, v) = 0. Now invoke list ranking on U .
The result gives us the connected components of U , and therefore of H ′

i. Each
edge and therefore each vertex of H ′

i now holds a pointer to the root of the tree
to which it belongs.

Each connected component of H ′
i forms a supervertex. Its root shall be its

representative. Thus, we have a star graph for each supervertex. Therefore, Fi is
a list of edges (u, ur), where ur is the representative of the supervertex in which
u participates.

Remark: Every edge of Bz(i)+1 is between two vertices of Hi. (See Sect. 4.)

Step 2: (Clean-up) For each i-supervertex v, let ri(v) denote min{hz(i)+1(x) |
x ∈ Vh and v represents the component of Fi that contains x}. Clean the edgelists
of bucket Bz(i)+1 of internal and multiple edges. Initialize Xi = φ. For each i-
supervertex v, copy from Bz(i)+1 into Xi all the edges of v with weight less than
ri(v). Store the edges of Fi in Bz(i)+1.

Details of Step 2: A scan of Bz(i)+1, and a sort-and-scan of the edges of Fi

are enough to find ri(v) for each i-supervertex v.
Rename the edges of Bz(i)+1 as follows: sort Fi and Bz(i)+1 on source, and

then read them concurrently; replace each (u, v) ∈ Bz(i)+1 with (ur, v); sort

504 A. Bhushan and G. Sajith

Bz(i)+1 on destination; read Fi and Bz(i)+1 concurrently; replace each (u, v) ∈
Bz(i)+1 with (u, vr); sort Bz(i)+1 on the composite 〈source, destination, weight〉.

Remove the internal edges, which are of the form (u, u), from Bz(i)+1. For
each (u, v) ∈ Bz(i)+1, delete all copies of (u, v), except the lightest, from Bz(i)+1.

Step 3: (Prepare the buckets) For k = z(i) to 0, and for each i-supervertex v, if
Xi has at least 22

k

edges with v as the source, then copy into Bk the (22
k − 1)

lightest of them, and set hk(v) to the weight of the 22
k

-th lightest of them; else
copy into Bk all the edges in Xi with v as the source, and set hk(v) to ri(v).

Remark: Now the buckets are ready for the next phase. In particular, for each
i-supervertex u, if |u| < α2j−1 · 2i+2, then B0 contains the lightest external edge
of u.

The Last Phase. In the 2g(j)-th phase, execute Step 1 as in a regular phase.
Clean the edgelists of bucket Bg(j)+1 of internal and multiple edges, as in Step 2.
This leaves us with a clean graph Gj+1 = (Vj+1, Ej+1) with which to begin the
next stage.

4 A Proof of Correctness

In any stage, the buckets are repeatedly filled and emptied over the phases. We
call a bucket “full” when it contains edges, and “empty” when it contains star
graphs. The i-th phase (i) uses up the edges in B0 for hooking, thereby emptying
B0, (ii) fills Bk, for all k < z(i)+1, from Bz(i)+1, and finally (iii) empties Bz(i)+1.
A simple induction, therefore, proves:

Lemma 1. For i ≥ 1 and k ≥ 1, bucket Bk is full at the end of the i-th phase,
if and only if the k-th bit (with the least significant bit counted as the first) in
the binary representation of i is 0.

The emptying of Bz(i)+1 and filling of Bz(i), . . . , B1 is analogous to summing
1 and (i − 1) using binary representations. Bz(i)+1 is filled in the (i − 2z(i))-th
phase, emptied in the i-th phase and filled again in the (i + 2z(i))-th phase, and
is never accessed in the phases in between. For 1 ≤ k ≤ g(j), Bk is alternately
filled and emptied at intervals of 2k−1 phases. In particular, B1 is filled and
emptied in alternate phases. B0 fulfills the role of a buffer that holds the lightest
edge incident to every vertex that is not overgrown. It is filled in every step.

The clean up of Bz(i)+1 that is done in phase i needs the star graphs formed
since the last filling of Bz(i)+1, which was in phase (i − 2z(i)). The following
proposition is helpful:

Proposition 1. For 1 ≤ i < 2g(j), and i < l ≤ i + 2z(i), the star graphs formed
in phases numbered i − 2z(i) + 1, . . . , i are present in bucket Bz(i)+1 at the start
of the l-th phase.

An I/O Efficient Algorithm for Minimum Spanning Trees 505

Proof: This can be proved by induction as follows. The case for i = 1 forms the
basis: the first phase uses up B0, fills it from B1, empties B1 and then stores
the newly found star graphs in B1. Now consider i > 1. Inductively hypothesize
that the lemma is true for all smaller values of i.

If z(i) = 0, then l = i+1. The i-th phase uses up B0, fills it from B1, empties
B1 and then stores the newly found star graphs in B1.

Suppose z(i) > 0. For 0 ≤ q < z(i), let r = i − 2q; then z(r) = q and
r ≤ i − 1 < r + 2z(r); therefore, by the hypothesis, the star graphs formed in
phases numbered i − 2q+1 + 1, . . . , i − 2q are present in bucket Bq+1 at the start
of the i-th phase. That is, the star graphs formed since the last time Bz(i)+1 was
filled (which was in the (i − 2z(i))-th phase) till the start of the i-th phase are
available in buckets Bz(i) through B1. These, along with the MST edges found
in the i-th phase, form graph Hi (Step 1, Sect. 3), and summarise all the hooks
done in phases (i − 2z(i) + 1) through i. At the end of the i-th phase, Fi (the
set of star graphs obtained from Hi) is stored in Bz(i)+1, which is not accessed
again till the (i + 2z(i))-th phase. Hence the induction holds. �

Corollary 1. For 1 < i ≤ 2g(j), at the start of the i-th phase, (i) for 0 ≤ q <
z(i), the star graphs formed in phases numbered i−2q+1+1, . . . , i−2q are present
in bucket Bq+1, (ii) Bz(i) ∪ . . . ∪ B1 ∪ S summarises all the hooks performed in
phases i − 2z(i) + 1, . . . , i, and (iii) every edge of Bz(i)+1 is between two vertices
of Hi, which is a graph on (i − 2z(i))-supervertices.

Definition: We say that a set P of edges is a minset of supervertex v, if for any
two external edges e1 and e2 of v in Gj with wt(e1) < wt(e2), e2 ∈ P implies
that e1 ∈ P .

Lemma 2. For 0 ≤ i < 2g(j), 1 ≤ k ≤ z(i), and for every i-supervertex v, at
the start of the (i + 1)-st phase, Bk is a minset of v, and hk(v) is a lower bound
on the weight of the lightest external edge of v not in Bk.

Proof: The proof is by induction. The case of i = 0 forms the basis. Hypothesize
that for every (i−2z(i))-supervertex x, at the start of the (i−2z(i) +1)-st phase,
Bz(i)+1 is a minset of x, and hz(i)+1(x) is a lower bound on the weight of the
lightest external edge of x not in Bz(i)+1.

We claim that for each i-supervertex v, Xi forms a minset of v. Suppose it
does not. Then, among the edges of Gj there must exist an external edge e of v
such that wt(e) < ri(v) and e �∈ Xi. Then e is an external edge of some (i−2z(i))-
supervertex y that participates in v. Clearly, wt(e) < ri(v) ≤ hz(i)+1(y). Of
the external edges of y in Bz(i)+1, exactly those of weight less than ri(v) are
copied into Xi. Therefore, e �∈ Bz(i)+1. That is, Bz(i)+1 is not a minset of y.
Contradiction. Hence the claim.

For each i-supervertex v, since Xi is a minset of v, each Bk constructed out
of Xi in Step 3 is a minset of v too. Also, hk(v) is a lower bound on the weight
of the lightest external edge of v not in Bk. �

506 A. Bhushan and G. Sajith

Definition: For a t-supervertex v and an (i − 2z(i))-supervertex x, where t ∈
[i − 2z(i), i + 2z(i)], x is an (i − 2z(i))-seed of v if x has the smallest hz(i)+1

threshold among all the (i − 2z(i))-supervertices that participate in v.
Note that ri(v) = hz(i)+1(x), where x is an (i − 2z(i))-seed of v.
Next we want to show that an i-supervertex v that does not have an external

edge in Bk at the start of the (i + 1)-st phase has grown to a size of at least
α2j−1 · 2f(k,i), where f(k, i) = i+2k. First we prove this for buckets filled at the
beginning of the stage.

For s ≥ 0, let ts denote � t
2s �2s. We defined z(i) as the number of trailing

0’s in the binary representation of i, for i ≥ 1. Let z(0) be defined as g(j). A
supervertex v is fully grown, if it has no external edge in Gj .

Lemma 3. For 0 ≤ k ≤ z(0) = g(j), 0 ≤ t < 2k, for every t-supervertex v, if v
is not fully grown and does not have an external edge in Bk at the start of the
(t + 1)-st phase, then |v| ≥ α2j−1 · 2f(k,0).

Proof. By Lemma 2, every 0-supervertex has an external edge in Bk, for 0 ≤
k ≤ g(j). Hence the case of t = 0 is vacuously true. When 0 < t < 2k, tk = 0;
Bk was filled before the first phase, and, by Lemma1, will be filled again in the
2k-th phase. Let x be a 0-seed of v; as Bk does not contain an external edge of
v, by Lemma 2, the weight of the lightest external edge of v is at least hk(x).
But hk(x) �= ∞, because otherwise, for every 0-supervertex x′ ⊆ v, hk(x′) = ∞,
implying that v is fully grown. Hence 22

k − 1 edges of x were included in Bk

before the first phase. All those edges are internal to v. So |v| ≥ α2j−1 · 22
k

=
α2j−1 · 2f(k,0).

Lemma 4. For 0 ≤ i < 2g(j), 0 ≤ k ≤ z(i), i ≤ t < i + 2k, for every t-
supervertex v, if v is not fully grown and does not have an external edge in Bk

at the start of the (t + 1)-st phase, then |v| ≥ α2j−1 · 2f(k,i).

Proof. The proof is by induction on i. The case of i = 0, proved in Lemma 3
forms the basis. Consider i > 0. Hypothesize that the lemma is true for all
smaller values of i. In particular, for all p < i, for every p-supervertex v, if v
is not fully grown and does not have an external edge in B0 at the start of the
(p + 1)-st phase, then |v| ≥ α2j−1 · 2p+1. It follows that for all p ≤ i, for every
p-supervertex v, |v| ≥ α2j−1 · 2p.

For t ∈ [i, i + 2k), let v be a t-supervertex that is not fully grown and does
not have an external edge in Bk at the start of the (t + 1)-st phase. Let x be
an i-seed of v, and y an (i − 2z(i))-seed of x; recall, the edges filled into Bk in
the i-th phase have all come from Bz(i)+1, which (by Lemma 1) was last filled in
phase (i − 2z(i)), and (i − 2z(i)) < i ≤ t < i + 2k < (i + 2z(i)).

If in the i-th phase, 22
k − 1 edges of x were included in Bk, when it was

filled from Bz(i)+1, then all those edges are internal to v. Therefore, at least 22
k

i-supervertices participate in v. That is, |v| ≥ α2j−1 · 2i · 22
k

= α2j−1 · 2f(k,i).
Otherwise, hk(x) = hz(i)+1(y). By Lemma 2, the weight of the lightest exter-

nal edge of v is at least hk(x) = hz(i)+1(y). So, y is an (i − 2z(i))-seed of v. That

An I/O Efficient Algorithm for Minimum Spanning Trees 507

is, v does not have an external edge in Bz(i)+1 either. Thus, v qualifies for an
application of the hypothesis with i ← i − 2z(i) and k ← z(i) + 1. Therefore,
|v| ≥ α2j−1 · 2f(z(i)+1,i−2z(i)) ≥ α2j−1 · 2f(k,i).

Corollary 2. For 0 ≤ i < 2g(j), for every i-supervertex v, if v is not fully grown
and |v| < α2j−1 · 2i+1, then the lightest external edge of v is present in B0 at the
start of the (i + 1)-st phase.

There can be at most one edge of v in B0, because 22
0 −1 = 1. That together

with Corollary 2, completes the correctness proof.

5 The I/O Complexity

We discuss below the number of I/Os taken by each step of phase i in stage j:

Step 1: One step of a PRAM that uses N processors and O(N) space can be
simulated on the external memory model in O(Sort(N)) I/Os [7]. The Euler tour
of a tree of N vertices given in adjacency list representation with twin pointers
can be formed in O(1) time with O(N) processors on an EREW PRAM [13].

If Y is a permutation of an array X of n elements, and if each element in
X knows its position in Y , then any O(1) amount of information that each
element of X holds can be copied into the corresponding element of Y and vice
versa in O(1) time using n processors on an EREW PRAM. Therefore, if each
element of X holds a pointer to another element of X, then these pointers can
be replicated in Y in O(1) time using n processors on an EREW PRAM, and
hence in O(Sort(N)) I/Os on the external memory model.

The list ranking algorithm of [7] when invoked on a list of size n takes
O(Sort(n)) I/Os.

Let bj(k, i) = Vj,i · 22
k

; this an upper bound on the size of bucket Bk in
phase i of stage j. Clearly, for any k, bj(k, i) ≥ Σk−1

l=0 bj(l, i). Also, bj(l, i) =
2bj(l, i + 1). Thus, H has a size of at most bj(z(i) + 1, i − 2z(i)). Bz(i)+1 has a
size of at most bj(z(i) + 1, i). Therefore, the total I/O requirement of Step 2 is
Sort(bj(z(i) + 1, i − 2z(i))).

Step 2: The cost of this step is clearly dominated by that of Step 1. See the
Details of Step 2 in Sect. 3.

Step 3: Once Bz(i)+1 has been cleaned up, for z(i) ≥ k ≥ 0, bucket Bk can be
formed by scanning Bk+1 and choosing for each vertex v ∈ Vj,i, the (22

k − 1)
lightest edges incident to v. Clearly, this involves scanning each bucket twice,
once for write and once for read, and can be done in O(Scan(bj(z(i) + 1, i)))
I/Os.

The total number of I/Os executed by the i-th phase of the j-th stage is
therefore O(Sort(bj(z(i) + 1, i − 2z(i)))). Therefore, the total I/O cost of phases
1, . . . , 2g(j) − 1 is

2g(j)−1∑
i=1

Sort(bj(z(i) + 1, i − 2z(i))) ≤
g(j)∑
k=1

∞∑
r=0

O(Sort(bj(k, r.2k)))

508 A. Bhushan and G. Sajith

which is
∑g(j)

k=1 O(Sort(bj(k, 0)) =
∑g(j)

k=1 O(Sort(Vj(22
k −1))) = O(Sort(E)). The

total I/O cost of the bucket formation at the start of the stage, as well as the
2g(j)-th phase is only O(Sort(Ej)) I/Os. Therefore, the total I/O cost of the j-th
stage is O(Sort(E)).

Thus, we reduce the minimum spanning tree problem of an undirected graph
G = (V,E) to the same problem on a graph with O(E/B) vertices and O(E)
edges. On this new graph, the external memory version of Prim’s algorithm can
compute a minimum spanning tree in O(E/B + Sort(E)) I/Os. From the MST
of the reduced graph, an MST of the original graph can be constructed; the I/O
complexity of this will be dominated by the one of the reduction.

Putting everything together, therefore,

Theorem 3. The minimum spanning forest of an undirected graph G = (V,E)
can be computed in O(Sort(E) log logE/V B) I/Os.

Acknowledgements. We wish to thank anonymous reviewers for their comments on
an earlier version of this paper.

References

1. Arge, L.: The buffer tree: a technique for designing batched external data struc-
tures. Algorithmica 37(1), 1–24 (2003)

2. Abello, J., Buchsbaum, A.L., Westbrook, J.R.: A functional approach to external
graph algorithms. Algorithmica 32, 437–458 (2002)

3. Aggarwal, A., Vitter, J.S.: Complexity of sorting and related problems. Commun.
ACM 31(9), 1116–1127 (1988)

4. Arge, L., Brodal, G.S., Toma, L.: On external-memory MST, SSSP, and muti-way
planar graph separation. J. Algorithms 53, 186–206 (2004)

5. Bhushan, A., Gopalan, S.: External memory soft heap, and hard heap, a meldable
priority queue. In: Gudmundsson, J., Mestre, J., Viglas, T. (eds.) COCOON 2012.
LNCS, vol. 7434, pp. 360–371. Springer, Heidelberg (2012)

6. Bor̊uvka, O.: O jistém problému minimálńım. Práca Moravské Př́ırodovědecké
Společnpsti 3, 37–58 (1926)

7. Chiang, Y.J., Goodrich, M.T., Grove, E.F., Tamassia, R., Vengroff, D.E., Vitter,
J.S.: External-memory graph algorithms. In: Proceedings of the ACM-SIAM Sym-
posium on Discrete Algorithms, pp. 139–149 (1995)

8. Chin, F., Lam, J., Chen, I.: Efficient parallel algorithms for some graph problems.
Commun. ACM 25, 659–665 (1982)

9. Chong, K.W., Han, Y., Igarashi, Y., Lam, T.W.: Improving the efficiency of parallel
minimum spanning tree algorithms. Discrete Appl. Math. 126, 33–54 (2003)

10. Cole, R., Vishkin, U.: Approximate parallel scheduling, II. Applications to
logarithmic-time optimal parallel algorithms. Inf. Comput. 92(1), 1–47 (1991)

11. Cormen, T.H., Leiserson, C.E., Rivest, R.L.: Introduction to Algorithms. MIT
Press, Cambridge (1990)

12. Fadel, R., Jakobsen, K.V., Katajainen, J., Teuhola, J.: Heaps and heapsort on
secondary storage. Theoret. Comput. Sci. 220, 345–362 (1999)

13. JáJá, J.F.: Introduction to Parallel Algorithms. Addison-Wesley, Reading (1992)

An I/O Efficient Algorithm for Minimum Spanning Trees 509

14. Kumar, V., Schwabe, E.: Improved algorithms and data structures for solving
graph problems in external memory. In: Proceedings of the IEEE Symposium on
Parallel and Distributed Processing, pp. 169–177 (1996)

15. Meyer, U., Sanders, P., Sibeyn, J.F. (eds.): Algorithms for Memory Hierarchies.
LNCS, vol. 2625. Springer, Heidelberg (2003)

16. Mungala, K., Ranade, A.: I/O-complexity of graph algorithms. In: Proceedings of
the ACM-SIAM Symposium on Discrete Algorithms, pp. 687–694 (1999)

17. Vitter, J.S.: Algorithms and Data Structures for External Memory, Series on Foun-
dations and Trends in Theoretical Computer Science. Now Publishers, Hanover
(2008)

The Connected p-Centdian Problem on Block
Graphs

Liying Kang1, Jianjie Zhou1, and Erfang Shan1,2(B)

1 Department of Mathematics, Shanghai University, Shanghai 200444,
People’s Republic of China

lykang@shu.edu.cn, 15565791770@126.com, efshan@i.shu.edu.cn
2 School of Management, Shanghai University, Shanghai 200444,

People’s Republic of China

Abstract. In this paper, we consider the problems of locating p-vertex
Xp on block graphs such that the induced subgraph of the selected p
vertices is connected. Two problems are proposed: one problem is to
minimizes the sum of its weighted distances from all vertices to Xp,
another problem is to minimize the maximum distance from each vertex
in V −Xp to Xp and at the same time to minimize the sum of its distances
from all vertices. We prove that the first problem is linearly solvable on
block graphs with unit edge length. For the second problem, it is shown
that the set of Pareto-optimal solutions of the two criteria has cardinality
not greater than n, and can be obtained in O(n2) time, where n is the
number of vertices of the block graph.

Keywords: Connected p-center · Median · Centdian · Block graphs

1 Introduction

In network location theory, two main criteria that are often used on a network
for locating a facility are: the maximal distance between the facility and a cus-
tomer and the average distance between the facility and the customers. However,
neither of the two above criteria alone capture all essential elements of a location
problem. The sum of the distances criterion alone may result in solutions which
are unacceptable from the point of view of the service level for the clients who
are located far away from the facilities. On the other hand, the criterion of the
minimization of the maximum distance, if used alone, may lead to very costly
service systems. To capture more real-word problems and provide good ways to
trade-off minisum and minimax approaches, Halpern [5] introduce the centdian
criteria which combine the minimax and minisum objective functions.

Problems of locating a facility at a point of a network with combinations of
the two criteria are investigated and efficient algorithms for them are developed

Research was partially supported by the National Nature Science Foundation of
China (Nos. 11471210, 11571222).

c© Springer International Publishing Switzerland 2015
Z. Lu et al. (Eds.): COCOA 2015, LNCS 9486, pp. 510–520, 2015.
DOI: 10.1007/978-3-319-26626-8 37

The Connected p-Centdian Problem on Block Graphs 511

in [6–8]. Averbakh and Berman [1] considered problems of finding the optimal
location of a path (of unrestricted length) on a tree, using different combinations
of the minisum and minimax criteria. Becker et al. [2] considered the first two
problems introduced in [1] with an additional constraint, namely that the two
optimal paths must have length (or cost) bounded by a fixed constant. Tamir
et al. [9] studied the problem finding the optimal location of a tree shaped facility
of a specified size in a tree network, using the centdian criterion, and developed
an O(nlogn) algorithm.

Yen [11] studied the connected p-center problem on block graphs. In this
paper, we consider problems of finding the optimal location of connected p-
median and connected p-centdian on a block graph. Shan et al. [10] consid-
ered the connected p-center and connected p-median problems on interval and
circular-arc graphs and shown that all the problems can by solved in polynomial
time.

The paper is organized as follows. In the next section we formally introduce
the notation and the problems that we study in this paper. In Sect. 3, we study
the connected p-median problem on block graphs, we prove that the connected
p-median problem is linearly solvable on block graphs with unit edge length.
Section 4 studies the connected p-centdian problem on unweighted block graphs.
We prove some properties of the Pareto-optimal solutions and shown that there
are at most n Pareto-optimal solutions. Then two algorithms are proposed to
obtain all the Pareto-optimal solutions. In the last section, we describe an exam-
ple to illustrate the whole process.

2 Problem Formulation

Let G = (V,E,w, l) be a finite, connected, undirected graph with n-vertex-set
V and m-edge-set E, where each vertex v ∈ V is associated with a nonnegative
weight w(v) and each edge (vi, vj) ∈ E is associated with a certain cost or length
l(vi, vj). For convenience, we denote G = (V,E) as the unweighted graph that
w(v) = 1 for all vertices and l(e) = 1 for all edges. Given a graph G, a vertex
u is called a cut vertex of G if κ(G − {u}) > κ(G), where κ(G) denotes the
number of components of G. A connected subgraph H of G is called a block of
G if H is maximal and it contains no cut vertices. A graph G is a block graph if
all blocks of G are cliques and any two distinct blocks B1 and B2 have at most
one common vertex [3]. In this paper, we study the location problems on block
graph, we denote G as the block graph in the following.

For any two vertices of u, v ∈ G, let P (u, v) denote the shortest path between
u and v. For any p-vertex set Xp = {x1, · · · , xp} of G, let 〈Xp〉 denote the
subgraph induced by Xp and d(v,Xp) = min1≤j≤p{d(v, xi)} denote the distance
between vertex v and vertex set Xp where d(v, xi) is the length of a shortest path
in G between v and xi. A p-vertex set Xp is called connected p-vertex if 〈Xp〉
is a connected subgraph of G. Let Φ be the set of all connected p-vertex of the
graph G.

512 L. Kang et al.

The minimax objective seeks a connected p-vertex Xp on the graph G that
minimize the maximum weighted distances from each vertices to Xp:

minXp∈ΦF1(Xp) = maxv∈V {w(v)d(v,Xp)}.

This problem is known as connected p-center (CpC) problem and studied in
[11]. Yen [11] shown that the CpC problem is NP -hard on block graphs G when
w(v) = 1 for all vertices v and l(e) = {1, 2} for all edges e. We consider the
following problems on block graph G.

Problem 1: Find a connected p-vertex Xp on the graph G that minimize the
sum of its distances from all vertices: minXp∈ΦF2(Xp) =

∑
v∈V w(v)d(v,Xp).

This problem is known as connected p-median (CpM) problem.

Problem 2: Find the set of all Pareto-optimal solutions Π, Xp ∈ Φ of the
bi-objective problem:

{min
Xp∈Φ

F1(Xp) = max
v∈V

{w(v)d(v,Xp)}, min
Xp∈Φ

F2(Xp) =
∑
v∈V

w(v)d(v,Xp)},

where a connected p-vertex Xp ∈ Φ is called Pareto-optimal, if there is no con-
nected p-vertex X ′

p ∈ Φ such that F1(X ′
p) ≤ F1(Xp) and F2(X ′

p) ≤ F2(Xp) and
at least one is satisfied as strict inequality. This problem is known as connected
p-centdian problem.

Given a block graph G = (V,E), let r be a vertex of G, we consider the rooted
block graph G(r). Each vertex v of G(r) is associated with a label L(v), called the
level of v which can computed by the BFS traversal in O(n) time. The parent of v,
denoted by par(v), is the vertex u such that (v, u) ∈ E and L(v) = L(u)+1. Note
that par(v) = NULL if v = r. The children set of v, denoted by chi(v), is defined
as chi(v) = {u|(v, u) ∈ E and L(v) = L(u)−1}. The descendent set of v, denoted
by des(v), is defined as des(v) = {u|L(v) < L(u) and v ∈ P (u, r)}. G(v) denotes
the subgraph of G(r) induced by {v} ∪ des(v). We define W (v) =

∑
u∈G(v) w(u)

which can computed bottom-up by the following formula:

W (v) = w(v) +
∑

u∈chi(v)

W (u). (1)

When we consider unweighted block graph, W (v) is the number of vertices in
subgraph G(v). For each vertex v of G(r), let cs(v) = {u|(u, v) ∈ E and L(u) =
L(v)}. Note that cs(v) may be empty under this definition.

For a vertex v of the rooted block graph G(r), let f(v), g(v) be the sum of
the weighted distance from vertices of G(v) to v and vertices of G(r) − G(v) to
v, respectively. Then

f(v) =
∑

u∈G(v)

w(u)d(u, v)

=
∑

z∈chi(v)

f(z) +
∑

z∈chi(v)

W (z)

=
∑

u∈G(v)−v

W (u), (2)

The Connected p-Centdian Problem on Block Graphs 513

and

g(v) =
∑

u∈G(r)−G(v)

w(u)d(u, v)

=
∑

u∈G(r)−G(par(v))

w(u)d(u, v) +
∑

u∈G(par(v))−G(v)

w(u)d(u, v)

= g(par(v)) + W (r) − W (par(v)) + f(par(v)) − (f(v) + W (v))

+(W (par(v)) − W (v) −
∑

z∈cs(v)

W (z))

= g(par(v)) + f(par(v)) − f(v) + W (r) − 2W (v) −
∑

z∈cs(v)

W (z). (3)

Note that g(r) = 0 and F2(v) = f(v) + g(v) for each vertex v of G.

3 The CpM Problem on Block Graph with Unit
Edge Length

Suppose that m is the 1-median of G and m belongs to a block Bj = {v1 =
m, · · · , vt} of G. When we delete all the edges in Bj , we obtain a collection
of connected components G1, · · · , Gt with vi ∈ Gi, 1 ≤ i ≤ t. Let W (Gi) =∑

v∈Gi
w(v). For each vertex v ∈ Gi, d(v,m) = d(v, vi) + d(vi,m). Then, we

have

F2(m) =
∑
v∈G

w(v)d(v,m)

=
t∑

i=1

∑
v∈Gi

w(v)d(v, vi) +
t∑

i=1

(∑
v∈Gi

w(v)
)
d(vi,m)

=
t∑

i=1

∑
v∈Gi

w(v)d(v, vi) +
t∑

i=1

W (Gi) − W (G1).

Thus we have the following lemma

Lemma 1. If the 1-median vertex m of G belongs to a block Bj, then m is the
vertex of Bj with maximum value W (Gi).

Chen et al. [4] introduce an extension version of Goldman’s algorithm which
(in linear time) either finds the 1-median of G or finds the single block of G
which contains the 1-median of G. An immediate consequence is

Lemma 2. We can find the 1-median of G in linear time.

Lemma 3. Let m be the 1-median of a block graph G = (V,E,w). There exist
a connected p-median X∗

p of G containing the vertex m.

514 L. Kang et al.

Proof. By contradiction, suppose that X∗
p is a connected p-median of G such

that d(m,X∗
p) is minimized and m /∈ X∗

p . Assume x is a vertex in X∗
p such

that d(m,x) = d(m,X∗
p) and x′ is a vertex in path P (m,x) which is adjacent to

vertex x. We assume that the 1-median vertex m of G belongs to a block Bj of G.
Delete all the edges in Bj , we obtain connected components of G−E(Bj). Assume
Gm is the component of G−E(Bj) containing m. Since G is a block graph, then
there exists a vertex y ∈ Xp such that y �= x and 〈Xp − y〉 is connected. Let
Vx = {v|d(v, x) = d(v,Xp), v ∈ V }, Vy = {v|d(v, y) = d(v,Xp), v ∈ V − Vx}. Set
X ′

p = X∗
p − {y} + {x′}. Obviously, 〈X ′

p〉 is connected and d(m,X ′
p) < d(m,X∗

p).
If X∗

p ⊆ G − Gm. Then, we have

F2(X ′
p) − F2(X∗

p) ≤
∑
v∈Vy

w(v) −
∑

v∈Gm

w(v).

Since m is a 1-median vertex of G, Vy belongs to a component of G − E(Bj) −
Gm. By Lemma 1,

∑
v∈Vy

w(v) ≤ ∑
v∈Gm

w(v). Thus F2(X ′
p) ≤ F2(X∗

p). This
contradicts the assumption.

If X∗
p ⊆ Gm. Then, we have

F2(X ′
p) − F2(X∗

p) ≤
∑
v∈Vy

w(v) −
∑

v∈G−Gm+m

w(v).

Since Xp ⊆ Gm, there exists another block Bk �= Bj such that m ∈ Bk and y
is contained in a component of G − E(Bk). Denote the component contains y
as Gy. Since 〈Xp〉 is connected, in view of the choices of x and y, Vy ⊆ V (Gy).
By Lemma 1,

∑
v∈Vy

w(v) ≤ ∑
v∈G−Gm+m w(v). Thus F2(X ′

p) ≤ F2(X∗
p). We

get a contradiction. The result follows. 	

Lemma 4. Let m be the 1-median of a block graph G = (V,E,w). For the
rooted graph G(m), let X∗

p = {v1, · · · , vp} be a p-vertex set of G such that
W (v1), · · · ,W (vp) are the first p largest numbers among {W (v)|v ∈ G(m)} and
L(v1), · · · , L(vp) as small as possible. Then, X∗

p is a connected p-median of G.

Proof. Obviously, for each non-root vertex v, W (v) ≤ W (par(v)). This implies
that m ∈ X∗

p . Next we show that X∗
p is connected. We will prove this statement

by induction on p. Without loss of a generality, assume that W (v1) ≥ W (v2) ≥
· · · ≥ W (vn), and X∗

i = {v1, · · · , vi}, 1 ≤ i ≤ p.
It is trivial that 〈X∗

1 〉 is connected. Assume that 〈X∗
k〉 is connected for 1 ≤

k < p. The choice of vk+1 implies that vk+1 ∈ {y|y ∈ chi(X∗
k) − X∗

k}. Then
〈X∗

k+1〉 is connected.
It is easily seen that

F2(X∗
p) = F2(X∗

p−1) − W (xp)

= F2(m) −
∑

v∈X∗
p−m

W (v).

The Connected p-Centdian Problem on Block Graphs 515

By Lemma 3 and the assumption of the lemma, for any connected p-vertex set
X ′

p �= X∗
p of G, we have

∑
v∈X∗

p

W (v) ≥
∑

v∈X′
p

W (v).

Thus F2(X∗
p) ≤ F2(X ′

p), X∗
p is an optimal solution. 	

Theorem 1. For a given block graph G = (V,E,w) with n vertices, the CpM
problem can be solved in O(n) time.

4 The Connected p-Centdian Problem on Unweighted
Block Graphs

In [11], Yen gave an algorithm to find a diameter path PS(u∗, v∗) of an
unweighted block graph G in O(n + m) time. Obviously, the 1-center vertex
c is the middle vertex of diameter path PS(u∗, v∗) and F1(c) =

⌈
L(PS(u∗,v∗))

2

⌉
.

Hence, we can find the 1-center vertex of an unweighted block graph in O(n+m)
time. As shown in Sect. 3, we can find the 1-median of G in linear time.

Lemma 5. Let c be the 1-center vertex and m be the 1-median vertex of a block
graph G = (V,E). For any connected p-vertex Xp ∈ Π, we have Xp∩P (c,m) �= ∅.
Proof. By contradiction, we suppose that Xp ∈ Π, Xp ∩ P (c,m) = ∅ and
d(P (c,m),Xp) is minimized. Let x be a vertex in Xp such that d(P (c,m), x) =
d(P (c,m),Xp). Assume x′ is adjacent to x and x′ is a vertex of the shortest path
from x to P (c,m). Since G is a block graph, then there exists a vertex y ∈ Xp

such that y �= x and 〈Xp − y〉 is connected. Let Vx = {v|d(v, x) = d(v,Xp), v ∈
V }, Vy = {v|d(v, y) = d(v,Xp), v ∈ V − Vx}. Set X ′

p = Xp − {y} + {x′}. Obvi-
ously, 〈X ′

p〉 is connected, d(P (c,m),X ′
p) = d(P (c,m),Xp) − 1 and d(c,X ′

p) =
d(c,Xp) − 1.

Since c lies on the diameter path PS(u∗.v∗), c is a cut vertex. Let Gu∗ and
Gv∗ be the subgraphs of G−{c} containing u∗ and v∗, respectively. Since c /∈ Xp

and 〈Xp〉 is connected, Xp cannot lie within two distinct subgraphs Gu∗ and Gv∗ .
We have

F1(Xp) = max{d(u∗,Xp), d(v∗,Xp)}

=
⌈L(PS(u∗, v∗))

2

⌉
+ d(c,Xp) or

⌊L(PS(u∗, v∗))
2

⌋
+ d(c,Xp).

Similarly, F1(X ′
p) =

⌈
L(PS(u∗,v∗))

2

⌉
+d(c,X ′

p) or
⌊

L(PS(u∗,v∗))
2

⌋
+d(c,X ′

p). Obvi-
ously, Xp and X ′

p lies in the same component of G−{c}. The first part of F1(Xp)
and F1(X ′

p) are the same. Then F1(X ′
p) < F1(Xp).

516 L. Kang et al.

We assume that the 1-median vertex m of G belongs to a block Bj of G.
Deleting all the edges in Bj , we obtain a collection of connected components.
Suppose Gm is the component containing m. If Xp ⊆ G − Gm, we have

F2(X ′
p) − F2(Xp) ≤

∑
v∈Vy

w(v) −
∑

v∈Gm

w(v).

Since 〈Xp〉 is connected, in view of the choices of x and y, Vy belongs to a
component of G−E(Bj)−Gm. By Lemma 1,

∑
v∈Vy

w(v) ≤ ∑
v∈Gm

w(v). Thus
F2(X ′

p) ≤ F2(Xp). If Xp ⊆ Gm, we have

F2(X ′
p) − F2(Xp) ≤

∑
v∈Vy

w(v) −
∑

v∈G−Gm+m

w(v).

Since Xp ⊆ Gm, there exists another block Bk �= Bj such that m ∈ Bk and
y is contained in a component of G − E(Bk). Denote the component containing
y as Gy. Since 〈Xp〉 is connected, in view of the choices of x and y, Vy ⊆ V (Gy).
By Lemma 1,

∑
v∈Vy

w(v) ≤ ∑
v∈G−Gm+m w(v). Thus F2(X ′

p) ≤ F2(Xp). This
contradicts the assumption that Xp is Pareto-optimal. 	

Lemma 6. Suppose Xp ∈ Π, the 1-center vertex c /∈ Xp and x is a vertex of
Xp such that d(x, c) is minimum. Consider the rooted graph G(c). Let x2, · · · , xp

be the vertices such that W (x2), · · · ,W (xp) are the first p − 1 largest numbers
among {W (v)|v ∈ G(x) ∪z∈cs(x) G(z) − {x}} and L(x2), · · · , L(xp) as small as
possible, then Xp = {x, x2, · · · , xp}.
Proof. Using the similar method as in Lemma 4, we can shown that Xp ∈ Φ.
Since x is a vertex of Xp such that d(x, c) is minimum, Xp only contain vertices
of G(x) ∪z∈cs(x) G(z). Then we have

F1(Xp) = maxv∈V {d(v,Xp)}

=
⌈L(PS(u∗, v∗))

2

⌉
+ d(x, c) or

⌊L(PS(u∗, v∗))
2

⌋
+ d(x, c),

and

F2(Xp) =
∑

v∈G(c)

d(v,Xp)

=
∑

v∈G(c)−G(x)

d(v,Xp) +
∑

v∈G(x)

d(v,Xp)

= g(x) −
∑

x′∈Xp∩(∪z∈cs(x)G(z))

W (x′) + f(x) −
∑

x′∈Xp∩G(x)−{x}
W (x′)

= F2(x) −
∑

x′∈Xp−x

W (x′).

So for any X ′
p ∈ Φ satisfying the conditions of the lemma, we have

∑
v∈Xp

W (v) ≥∑
v∈X′

p
W (v). Thus F2(Xp) ≤ F2(X ′

p), Xp is Pareto-optimal. 	

The Connected p-Centdian Problem on Block Graphs 517

We choose 1-center vertex c as the root of G and compute W (v) for v ∈ G(c)
by formula (1). Find the optimal solution Q of G by the algorithm in [11] and
set β1 = F1(Q). For each vertex v of G(c), define μ(v) = max{d(y, v)|y ∈ G(v)}.
Then we have:

μ(v) =
{

0 if chi(v) = ∅,
max{μ(u)|u ∈ chi(v)} + 1 if chi(v) �= ∅. (4)

For integer k with β1 ≤ k ≤ F1(c)), let Yk = {x|x ∈ G(c), μ(v) ≥ k}. Then Yk is
the minimum set of connected vertices of G such that F1(Yk) = k and |Yk| ≤ p.
It is easy to check that Yk can be found in O(n) time.

The definition of Yk implies that Yk ⊆ Xp. Using the similar method as in
Lemma 6, we can prove the following lemma.

Lemma 7. Suppose Xp ∈ Π, c ∈ Xp and F1(Xp) ≤ k, where β1 ≤ k ≤ F1(c).
Then Xp = Yk ∪ {x1, · · · , xp−|Yk|}, where W (x1), · · · ,W (xp−|Yk|) are the first
p−|Yk| largest numbers among {W (v)|v ∈ G(c)−Yk} and L(x1), · · · , L(xp−|Yk|)
as small as possible.

We give the following algorithm to find a set containing all Pareto-optimal
solutions

Algorithm 1.

1: Set Ψ = ∅, F1(c) =
⌈

L(PS(u∗,v∗))
2

⌉
, P (m, c) = {y1 = m, y2, · · · , yt = c};

2: for i = 1 to t do
3: Compute F2(yi) = f(yi) + g(yi) by formula (2) and (3),
4: end for
5: for i = 1 to t − 1 do
6: Find x2, · · · , xp such that W (x2), · · · , W (xp) are the first p − 1 largest numbers

among {W (v)|v ∈ G(yi) ∪u∈cs(yi) G(u) − {yi}} and L(x2), · · · , L(xp) as small as
possible,

7: set Xyi
p = {yi, x2, · · · , xp} and Ψ = Ψ ∪ Xyi

p ,
8: compute F1(X

yi
p) and F2(X

yi
p) = F2(yi) −∑x′∈X

yi
p −yi

W (x′),
9: end for

10: for k = F1(c) to β1 do
11: Find minimum set connected vertices Yk that F1(Yk) = k,
12: find x1, · · · , xp−|Yk| such that W (x1), · · · , W (xp−|Yk|) are the first p−|Yk| largest

numbers among {W (v)|v ∈ G(c) − Yk} and L(x1), · · · , L(xp−|Yk|) as small as
possible,

13: set Xk
p = Yk ∪ {x1, · · · , xp−|Yk|} and Ψ = Ψ ∪ Xk

p ,
14: compute F1(X

k
p) and F2(X

k
p) = F2(c) −∑x∈Xp−c W (x),

15: end for

Lemma 8. Algorithm 1 obtains a set Ψ such that Π ⊆ Ψ ⊆ Φ in O(n2) time,
furthermore we get |Π| ≤ n.

518 L. Kang et al.

Proof. Obviously, all Xyi
p and Xk

p are connected p-vertex, i.e. Ψ ⊆ Φ. By
Lemma 5, for any connected p-vertex Xp ∈ Π, we have Xp ∩ P (c,m) �= ∅.
By Lemma 6, Steps 5–9 in Algorithm 1 find all Xp ∈ Π with c /∈ Xp. By
Lemma 7, Steps 10–15 in Algorithm 1 find all Xp ∈ Π with c ∈ Xp. Note that
some Xp ∈ Ψ may not be Pareto-optimal. Thus Π ⊆ Ψ . We have:

|Π| ≤ |Ψ | ≤ L(P (m, c)) + F1(c) − β1 ≤ n

2
+

n

2
= n.

In Steps 2–4, the values F2(yi) (1 ≤ i ≤ t) can be computed in O(n) time.
The for loop Steps 5–9 take t − 1 times and each loop takes O(n) time. The
Steps 10–15 take F1(c) − β1 times and each loop takes O(n) time. Thus, the
total computational complexity is O(n2). 	

Based on Algorithm 1, we give the following algorithm to find all Pareto-optimal
solutions.

Algorithm 2.
1: for each Xp ∈ Ψ do
2: Two functions h1, h2 : Ψ → {1, 2, · · · , |Ψ |} are given such that for any different

connected p-vertex Xp, X
′
p ∈ Ψ :

3: h1(Xp) < h1(X
′
p) iff F1(Xp) < F1(X

′
p) or F1(Xp) = F1(X

′
p) and F2(Xp) <

F2(X
′
p),

4: h2(Xp) < h2(X
′
p) iff F2(Xp) < F2(X

′
p) or F2(Xp) = F2(X

′
p) and F1(Xp) <

F1(X
′
p),

5: end for
6: for all X ′

p ∈ Ψ do
7: if there exists Xp such that h1(Xp) < h1(X

′
p) and h2(Xp) < h2(X

′
p) then

8: set Ψ = Ψ − X ′
p,

9: end if
10: end for
11: Set Π = Ψ .

Given Ψ , Algorithm 2 obtains the Pareto-optimal set Π of the connected
p-centdian problem in O(nlogn) time. Thus we have:

Theorem 2. The Pareto-optimal set Π of the connected p-centdian problem can
be obtained in O(n2) time.

5 An Example for the Connected p-Centdian Problem

Suppose the block graph shown in Fig. 1 is unweighted and p = 5. Applying
Algorithm 1, we get:

1. The diameter path PS(u∗, v∗) and the middle vertex c;
2. W (v) for all v ∈ G is presented in Table 1;

The Connected p-Centdian Problem on Block Graphs 519

c = y3

y2

m = y1

v∗ v1 v2 v3 u∗

v4 v5 v6 v7 v8 v9 v10

v11 v12
v13

v14
v15 v16 v17

v18 v19

v20 v21 v22

5

4

3

2

1

0
Level

Fig. 1. Illustration for the example.

Table 1. W (v) for all v ∈ G

v∗ v1 v2 v3 u∗ v4 v5 v6 v7 v8 v9 v10 v11 v12 v13 v14 v15 v16 v17 y1 v18 v19 y2

W (·) 1 1 1 1 1 2 1 3 1 2 1 2 4 5 3 2 1 1 3 15 3 4 16

v20 v21 v22 y3

W (·) 1 4 5 27

3. The connected 5-center Q = {y1, y2, y3, v22, v19}, and β1 = F1(Q) = 3;
4. The 1-median m;
5. F1(c) = 5 and P (m, c) = {y1, y2, y3};
6. F2(y1) = 76, F2(y2) = 79, F2(y3) = 84;
7. Xy1

5 = {y1, v11, v12, v13, v6}, F1(X
y1
5) = 7, F2(X

y1
5) = 61,

Xy2
5 = {y2, y1, v11, v12, v13}, F1(X

y2
5) = 6, F2(X

y2
5) = 52;

8. Y5 = {y3}, X5
5 = {y3, y2, y1, v12, v22}, F1(X5

5) = 4, F2(X5
5) = 43,

Y4 = {y2, y3, v22}, X4
5 = {y3, y2, y1, v12, v22}, F1(X4

5) = 4, F2(X4
5) = 43,

Y3 = {y1, y2, y3, v19, v22}, X3
5 = {y3, y2, y1, v19, v22}, F1(X3

5) = 3,
F2(X4

5) = 44;
9. Ψ = {Xy1

5 ,Xy2
5 ,X4

5 ,X3
5}.

Applying Algorithm 2, we get:

1. a(X3
5) = 1, a(X4

5) = 2, a(Xy2
5) = 3, a(Xy1

5) = 4,
b(X4

5) = 1, b(X3
5) = 2, b(Xy2

5) = 3, b(Xy1
5) = 4;

2. Π = {X4
5 ,X3

5}.

520 L. Kang et al.

References

1. Averbakh, I., Berman, O.: Algorithms for path medi-centers of a tree. Comput.
Oper. Res. 26, 1395–1409 (1999)

2. Becker, R.I., Lari, I., Scozzari, A.: Algorithms for central-median paths with
bounded length on trees. Eur. J. Oper. Res. 179, 1208–1220 (2007)

3. Behtoei, A., Jannesari, M., Tseri, B.: A characterization of block graphs. Discrete
Appl. Math. 158, 219–221 (2010)

4. Chen, M.L., Francis, R.L., Lawrence, J.F., Lowe, T.J., Tufekci, S.: Block-vertex
duality and the one-median problem. Networks 15, 395–412 (1985)

5. Halpern, J.: The location of a cent-dian convex combination on an undirected tree.
J. Reg. Sci. 16, 237–245 (1976)

6. Halpern, J.: Finding minimal center-median combination (Cent-Dian) of a graph.
Manage. Sci. 24, 535–544 (1978)

7. Handler, G.Y.: Medi-centers of a tree. Transp. Sci. 19, 246–260 (1985)
8. Hansen, P., LabbeH, M., Thisse, J.-F.: From the median to the generalized center.

Oper. Res. 25, 73–86 (1991)
9. Tamir, A., Puerto, J., Pérez-Brito, D.: The centdian subtree on tree networks.

Discrete Appl. Math. 118, 263–278 (2002)
10. Shan, E., Zhou, J., Kang, L.: The connected p-center and p-median problems on

interval and circular-arc graphs. Acta Mathematicae Applicatae Sinica (Accepted)
11. Yen, W.C.-K.: The connected p-center problem on block graphs with forbidden

vertices. Theor. Comput. Sci. 426, 13–24 (2012)

Searching for (near) Optimal Codes

Xueliang Li1(B), Yaping Mao2, Meiqin Wei1, and Ruihu Li3

1 Center for Combinatorics and LPMC-TJKLC, Nankai University,
Tianjin 300071, China

lxl@nankai.edu.cn, weimeiqin8912@163.com
2 Department of Mathematics,

Qinghai Normal University, Xining 810008, Qinghai, China
maoyaping@ymail.com

3 Institute of Science, The Air Force Engineering University, Xi’an 710051, China
liruihu@aliyun.com

Abstract. Formally self-dual (FSD) codes are interesting codes and
have received an enormous research effort due to their importance in
mathematics and computer science. Danielsen and Parker proved that
every self-dual additive code over GF (4) is equivalent to a graph codes
in 2006, and hence graph is an important tool for searching (near) opti-
mal codes. In this paper, we introduce a new method of searching (near)
optimal binary (formally self-dual) linear codes and additive codes from
circulant graphs.

Keywords: Graph code · FSD code · Additive code · Optimal code ·
Circulant graph

1 Introduction

Let F2 be the binary field, and let Fn
2 denote the n-dimensional binary vector

space. A k-dimensional linear subspace C of Fn
2 is called an [n, k] linear code

and vectors in C are called codewords. Define GF (4) = {0, 1, ω, ω2}, where ω2 =
1 + ω. An additive code C over GF (4) of length n is an additive subgroup
of GF (4). It is clear that C contains codewords for some 0 ≤ k ≤ 2n, and
can be defined by a k × n generator matrix, with entries from GF (4), whose
rows span C additively. We call C an (n, 2k) additive code. The Hamming weight
of a vector x = (x1, · · · , xn), denoted by wt(x), is the number of its nonzero
coordinates, the Hamming distance between two vectors x, y is equal to the
Hamming weight wt(x − y). The minimum distance d of a code is defined as
the smallest possible distance between pairs of distinct codewords. An [n, k]
linear code with minimum distance d is denoted as an [n, k, d] code and an
(n, 2k) additive code with minimum distance d is denoted as an (n, 2k, d) code.
The weight distribution of a code C is the sequence (A0, A1, · · · , An), where Ai

is the number of codewords of weight i in C. The weight enumerator of the

Supported by “973” program No. 2013CB834204.

c© Springer International Publishing Switzerland 2015
Z. Lu et al. (Eds.): COCOA 2015, LNCS 9486, pp. 521–536, 2015.
DOI: 10.1007/978-3-319-26626-8 38

522 X. Li et al.

code is the polynomial W (z) =
∑n

i=0 Aiz
i. The inner product of two vectors

x, y ∈ Fn
2 is defined as (x, y) =

∑n
i=1 xiyi. The dual code of an [n, k, d] code C

is defined as C⊥ = {x ∈ Fn
2 | (x, y) = 0, for all y ∈ C}. A binary code with the

same weight distribution as its dual code is called formally self-dual (FSD). The
conjugation of x ∈ GF (4) is defined by x̄ = x2, and the trace map is defined
by Tr(x) = x + x̄. The Hermitian trace inner product of u = (u1, · · · , un)
and v = (v1, · · · , vn). where u, v ∈ GF (4), is defined as u ∗ v = Tr(u · v̄) =∑n

i=1 Tr(uiv̄i) =
∑n

i=1(uiv
2
i + u2

i vi). We define the dual of the additive code C
with respect to the Hermitian trace inner product as C⊥ = {u ∈ GF (4) | u ∗ c =
0 for all c ∈ C}. Then C is self-orthogonal if C ⊆ C⊥, and C is self-dual if C = C⊥.

In 2002, Tonchev [20] set up a relationship between an undirected graph and
a binary linear code. Given a graph Γn on n vertices with adjacency matrix An,
one can define a binary linear code with generator matrix G = (I;An), where
I is the identity matrix. Such a code is called the linear graph code of Γn, and
a linear graph code is a [2n, n] FSD code. In 2006, Danielsen and Parker [10]
proved that every self-dual additive code over GF (4) is equivalent to a graph
code. Among additive codes over GF (4), a graph code is an additive code over
GF (4) that has a generator matrix of form C = Γ +ωI, where Γ is the adjacency
matrix of a simple undirected graph. An [n, k, d] (or (n, 2k, d)) code is optimal
if there is no [n, k, d + 1] (or (n, 2k, d + 1)) code, and near optimal if there is no
[n, k, d + 2] (or (n, 2k, d + 2)) code. An [n, k, d] (or (n, 2k, d)) code is known best
if d attains the highest known minimum distance for [n, k] (or (n, 2k)) codes. For
parameters of optimal codes, or lower and upper bounds on minimum distances
of optimal codes, see [12].

Formally self-dual codes are important class of codes, they have connections
to other mathematical structures such as block designs, lattices, modular forms,
and sphere packing. Many works have been done on the FSD codes, and opti-
mal FSD codes of length n ≤ 28 have been classified, see [1,2,13,14]. In 2002,
Tonchev [20] set up a relationship between an FSD code and the adjacency
matrix of an undirected graph, and showed that some interesting codes can be
obtained from graphs with high degree of symmetry, such as strongly regular
graphs. In 2006, Danielsen and Parker [10] proved that every self-dual additive
code over GF (4) is equivalent to a graph code. In 2012, Danielsen [6] focused
his attention on additive codes over GF (9) and transformed the problem of code
equivalence into a problem of graph isomorphism. By an extension technique,
they classified all optimal codes of lengths 11 and 12. In fact, computer search-
ing reveals that circulant graph codes usually contain many strong codes, and
some of these codes have highly regular graph representations, see [21]. In [6],
Danielsen obtained some optimal additive codes from circulant graphs in 2005.
Later, Varbanov investigated additive circulant graph codes over GF (4), see
[21]. Recently, finding optimal codes from graphs has received a wide attention
of many researchers, see [6–11,15,20,21]. Inspired by these works, we discuss the
construction of (near) optimal FSD codes and additive codes from undirected
circulant graphs in this paper.

The paper is organized as follows. Section 2 recalls some concepts in graph
theory. In Sect. 3, we propose a new method to find (near) optimal binary linear

Searching for (near) Optimal Codes 523

codes from circulant graphs, and construct some (near) optimal or known best
binary linear codes by using this method. In Sect. 4, we propose a new method
to find additive optimal codes from circulant graphs.

2 Preliminaries

We introduce some concepts of graph theory for latter use in this paper, for
more details please see [5]. An undirected graph Γ = (V,E) is a set V (Γ) =
{v1, v2, · · · , vn} of vertices together with a collection E(Γ) of edges, where each
edge is an unordered pair of vertices. The vertices vi and vj are adjacent if
{vi, vj} is an edge. Then vj is a neighbour of vi. All the neighbours of a vertex
vi in Γ form the neighbourhood of vi, and it is denoted by NΓ (vi). The degree of
a vertex v is the number of vertices adjacent to v. A graph is regular of degree k
if all vertices have the same degree k. For a graph Γ = (V,E), suppose that V ′

is a nonempty subset of V . The subgraph of Γ whose vertex set is V ′ and whose
edge set is the set of those edges of Γ that have both ends in V ′ is called the
subgraph of Γ induced by V ′, denoted by Γ [V ′]. We say that Γ [V ′] is an induced
subgraph of Γ . The adjacency matrix A = (aij) of Γ = (V,E) is a symmetric
(0, 1)-matrix defined as follows: ai,j = 1 if the i-th and j-th vertices are adjacent,
and ai,j = 0 otherwise.

Circulant graphs and their various applications are the objects of intensive
study in computer science and discrete mathematics, see [3,4,16,18]. Recently,
Monakhova published a survey paper on this subject, see [17]. Let S =
{a1, a2, · · · , ak} be a set of integers such that 0 < a1 < · · · < ak < n+1

2 , and
let the vertices of an n-vertex graph be labelled as 0, 1, 2, · · · , n − 1. Then the
circulant graph C(n, S) has i ± a1, i ± a2, · · · , i ± ak (mod n) adjacent to each
vertex i. A circulant matrix is obtained by taking an arbitrary first row, and
shifting it cyclically one position to the right in order to obtain successive rows.
We say that a circulant matrix is generated by its first row. Formally, if the first
row of an n-by-n circulant matrix is a0, a1, · · · , an−1, then the (i, j)th element
is aj−i, where subscripts are taken modulo n. The term circulant graph arises
from the fact that the adjacency matrix for such a graph is a circulant matrix.

u7

u13

u10

u1

u8

u2

u3

u5

u6

u9
u11

u12

(a)

u4

u17

u16

u15

u14

u7

u13

u10

u1

u8

u2

u3

u5

u6

u9
u11

u12

u4

u17

u16

u15

u14

(b)

Fig. 1. (a) The (4, 4)-Ramsey graph Γ ; (b) the edge-induced graph Γ (E1).

For example, the (4, 4)-Ramsey graph Γ (see Fig. 1) is a famous circulant
graph, which can be obtained by regarding the vertices as elements of the field

524 X. Li et al.

of integers modulo 17, and joining two vertices if their difference is a quadratic
residue of 17 (either 1, 2, 4, 8, 9, 13, 15 or 16). For the vertex u1, we have E1 =
{u1u2, u1u3, u1u5, u1u9, u1u10, u1u14, u1u16, u1u17} ⊆ E(Γ) and a vector α17 =
(0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1). It is clear that the adjacency matrix A17

of the (4, 4)-Ramsey graph is generated by α17, where

A17 =

⎛
⎜⎜⎝

01101000110001011

10110100011000101

11011010001100010

................

⎞
⎟⎟⎠ .

3 New Binary Linear Codes Searching from Circulant
Graphs

In this section, we discuss the construction of binary linear codes from circulant
graphs. Since a circulant graph Γn can be uniquely determined by its adjacency
matrix An, or by the vector αn corresponding to E1 (E1 ⊆ E(Γn)), whose
elements are incident with the vertex u1 ∈ V (Γn). We will make no difference of
αn, An or a circulant graph Γn, and simply say a circulant graph Γn with vector
αn or a vector αn of a circulant graph Γn. And in this section, we denote the
binary linear code with generator matrix G = (I,An) by Cn. According to the
relation between a graph code and the adjacency matrix of an undirected graph
introduced by [20], we can get a [34, 17, 8] optimal FSD code from the matrix
(I;A17), where A17 is the adjacency matrix of the (4, 4)-Ramsey graph.

In [6], Danielsen got some optimal additive codes. One of them is the optimal
additive code (30, 230, 12) obtained from the vector β30 = (ω, 0, 1, 1, 0, 0, 0, 0,
1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0), which corresponds to a circu-
lant graph of order 30 with vector α30 = (0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1,
1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0). The graph code C30 with generator matrix G =
(I;A30) is a [60, 30, 12] code, where A30 is the circulant matrix generated by α30.
The code C30 is a known best FSD code. The weight enumerator of C30 is

WC30(z) = 1 + 4060z12 + 24360z14 + 294930z16 + 1728400z18 + 7758400z20

+ 26336640z22 + 67403540z24 + 129936240z26 + 192974265z28

+ 220819632z30 + 192974265z32 + 129936240z34 + 67403540z36

+ 26336640z38 + 7758660z40 + 1728400z42 + 294930z44 + 24360z46

+ 4060z48 + z60.

However, using known circulant graphs in the literature, we only get a few
binary linear codes that are optimal, near optimal or known best. So, we need
to study a new method for designing good binary linear codes from circulant
graphs. To achieve this goal, we give some notations first.

Searching for (near) Optimal Codes 525

Denote by Ln the highest known minimum distance of all [2n, n] codes. For
a graph Γn with vector αn, we let Cn be its graph code and dn be the distance of
Cn. If dn ≥ Ln, then Cn is a good FSD code. If dn < Ln, then Cn is a “poor” code
and αn is a “poor” vector. For a graph Γn with “poor” vector αn, we manage to
find a new vector α′

n that gives a binary linear code C′
n = [2n, n, d′

n] such that
C′

n is better than the code Cn. The idea of finding a new vector α′
n from a “poor”

vector αn = (b1, b2, · · · , bn) is introduced as follows:

(1) Let An be the circulant matrix generated by αn and denote Gn = (I;An).
Then the j-th row of Gn is

gj = (ej | aj)
= (0, · · · , 0, 1, 0, · · · , 0 | aj,1, aj,2, · · · , aj,j−1, aj,j , aj,j+1, · · · , aj,n)
= (0, · · · , 0, 1, 0, · · · , 0 | bn−j+2, bn−j+3, · · · , bn, b1, b2, · · · , bn−j+1).

(2) We call codeword β ∈ Cn “bad” if wt(β) < Ln. Find “bad” codewords
β1, β2, · · · , βm (if exist) such that their weights are dn, dn +1, · · · , dn +(m−
1), where m = Ln − dn. If there is no codeword with weight dn + i (0 ≤ i ≤
m − 1), then βi−1 is not under consideration.

(3) Let βi = gj1 +gj2 + · · ·+gjr
= (ui | vi), where ui, vi ∈ Fn

2 and j1, j2, · · · , jr ∈
{1, 2, · · · , n}.

(4) From gjl
= (ejl

| ajl
), one can define a column vector set {Λi : i =

1, 2, · · · , n}, where Λi = (λi,j1 , λi,j2 , · · · , λi,jr
) and λi,j1 =

∑r
l=1 aj�,j1+(i−1),

λi,j2 =
∑r

l=1 aj�,j2+(i−1), · · · , λi,jr
=

∑r
l=1 aj�,jr+(i−1). Note that all the

additions are proceeding modular n.
(5) Using these Λi to set up a standard for adjusting a “poor” vector αn =

(b1, b2, · · · , bn) to α′
n.

The above method can be realized by the following Algorithm 1:

Step 1. Give a circulant graph Γn with vector αn = (b1, b2, · · · , bn), and generate
Gn = (I;An).

Step 2. Calculate the distance dn of binary linear code Cn (Algorithm 1-1). If
dn ≥ Ln, then Cn is a good binary linear code, and stop. Or else, go to
Step 3.

Step 3. Do adjustments of the elements of the “poor” vector αn as follows.
Step 3.1. Find “bad” codewords β1, β2, · · · , βm such that their weights are

dn, dn + 1, · · · , dn + (m − 1) by Algorithm 1-2, where m = Ln − dn. If there
is no codeword with weight dn + i (0 ≤ i ≤ m − 1), then βi−1 is not under
consideration.

Step 3.2. For each βi (0 ≤ i ≤ m − 1), we can find a combination of βi by
Algorithm 1-2. Suppose βi = gj1 +gj2 +· · ·+gjr

= (ui | vi), where ui, vi ∈ Fn
2

and j1, j2, · · · , jr ∈ {1, 2, · · · , n} and

gjk = (ejk | ajk)

= (0, · · · , 0, 1, 0, · · · , 0 | ajk,1, ajk,2, · · · , ajk,jk−1, ajk,jk , ajk,jk+1, · · · , ajk,n)

= (0, · · · , 0, 1, 0, · · · , 0 | bn−jk+2, bn−jk+3, · · · , bn, b1, b2, · · · , bn−jk+1).

526 X. Li et al.

Step 3.3. Determine whether each element 1 of the generator vertex αn is a
“bad” element in the following way (since b1 = 0, we begin with element b2).
If b2 = 1, then aj1,j1+1 = aj2,j2+1 = · · · = ajr,jr+1 = b2 = 1. We calculate
the exact value λ2,j1 =

∑r
�=1 aj�,j1+1, λ2,j2 =

∑r
�=1 aj�,j2+1, · · · , λ2,jr

=∑r
�=1 aj�,jr+1. Note that λ2,jk

= 0 or λ2,jk
= 1 (1 ≤ k ≤ r). Consider

the set Λ2 = {λ2,j1 , λ2,j2 , · · · , λ2,jr
}. If the number of elements with value

“0” in Λ2 is larger than the number of elements with value “1”, then the
element b2 is called a “bad” element of the generator vector αn. If b2 is a
“bad” element, then we change b2 = 1 into b′

2 = 0 and obtain a new vector
α′

n = (b1, b′
2, · · · , bn). Then we return to Step 1. If b2 is not a “bad” element

or b2 = 0, then we consider b3 and continue to determining whether b3 is a
“bad” element. The procedure terminates till bn has been considered.

Algorithm 1-1. Minimum distance of a binary linear code

Input: The value of n, the generator vector αn of a binary linear code Cn

Objective: The minimum distance of binary linear code Cn

1. Input the value of n, the generator vector αn = (b1, b2, · · · , bn);
2. Obtain the generator matrix G = (I;An) of the binary linear code Cn;
3. Get the minimum distance of the binary linear code Cn.

For example, let n = 19 and αn = (0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 1).
The algorithm details are stated as follows:
Program:

n = 19;
a = [0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 1]
m = matrix(GF (2), [[a[(i − k)%n] for i in [0..(n − 1)]] for k in [0..n − 1]]);
f = lambda s : sum(map(lambda x : m[x], s));
s = [];
for k in [1..8]:

t = min([list(i).count(1) for i in Subsets(range(n), k).map(f)]);
s+ = [t];
print k, t;

Output : si : 1 2 3 4 5 6 7 8
s′

i : 8 6 4 2 2 4 2 2

Result : The elements of the first row (s1, s2, · · · , s8) are the contribution of
the matrix I for the weight of a codeword. The elements of the second row
(s′

1, s
′
2, · · · , s′

8) are the contribution of the matrix A19 for the weight of a
codeword. The value of min{si + s′

i | 1 ≤ i ≤ 8} = 6 is the minimum weight of
the code C19 and then the minimum distance of the code C19 is also 6.

Searching for (near) Optimal Codes 527

Algorithm 1–2. “Bad” codewords and their combinations

Input: The value of n, the generator vector αn of a binary linear code Cn

Objective: “Bad” codewords and their combinations
1. Input the value of n, the generator vector αn = (b1, b2, · · · , bn);
2. Obtain the generator matrix G = (I; An) of the binary linear code Cn;
3. Get “bad” codewords β1, β2, · · · , βm and a combination of each βi (1 ≤ i ≤ m).

For example, let n = 19 and αn = (0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 1).
The algorithm details are stated as follows:

Program:
n = 19;
a = [0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 1]
m = matrix(GF (2), [[a[(i − k)%n] for i in [0..(n − 1)]] for k in [0..n − 1]]);
f = lambda s : sum(map(lambda x : m[x], s));

g = lambda s : str(sorted(map(lambda x : x + 1, s))).replace(′[′,′ ′).replace(′]′,′′);
s = [];
for k in [1..8]:

t = min([(i, list(f(i)).count(1)) for i in Subsets(range(n), k)],
key = lambda x : x[−1]);
s+ = [t];
print k, t[1], g(t[0]);

Output : si s′
i {j1, j2, · · · , jr} (as defined in Step 3.2)

1 8 {1}
2 6 {1, 9}
3 4 {1, 4, 12}
4 2 {1, 2, 6, 16}
5 2 {1, 2, 8, 11, 14}
6 4 {1, 2, 3, 4, 6, 13}
7 2 {1, 2, 4, 6, 7, 10, 17}
8 2 {1, 2, 3, 6, 7, 8, 12, 16}

Now we show how to use our Algorithm 1 for searching [38, 19, 8] codes.

Step 1. Among all graphs with 19 vertices, we consider the graph Γ19, which can
be generated by the edge set E1 = {u1u2, u1u3, u1u5, u1u10, u1u11, u1u16,
u1u18, u1u19}, and then α19 = (0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 1).
Obviously, b2 = b3 = b5 = b10 = b11 = b16 = b18 = b19 = 1.

Step 2. From the Code Tables, we know that the lower bound of the minimum
distance of linear code [38, 19] over GF (2) is 8, that is, L19 = 8. By Algo-
rithm 1-1, we obtain that the minimum distance d19 of the code (I;A19) is
just 6, that is, d19 = 6. Clearly, 6 = d19 < L19 = 8.

Step 3. Obviously, m = L19 − d19 = 2.

528 X. Li et al.

Step 3.1. From Algorithm 1–2, we find two “bad” codewords

β1 = (1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0
| 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0),

β2 = (1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0
| 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0).

such that their weights are 6 and 7, that is, wt(β1) = 6 and wt(β2) = 7.
Step 3.2. For β1, we can find a combination of β1 = α19,1+α19,2+α19,6+α19,16

by Algorithm 2-2, where

α19,1 = (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
| 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 1),

α19,2 = (0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
| 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1),

α19,6 = (0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
| 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0),

α19,16 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0
| 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0).

Note that r = 4, j1 = 1, j2 = 2, j3 = 6 and j4 = 16.
For β2, we can find a combination of β2 = α19,1 + α19,4 + α19,12 by Algo-
rithm 2-2, where

α19,1 = (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
| 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 1),

α19,4 = (0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
| 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1),

α19,12 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0
| 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 0).

Note that r = 3, j1 = 1, j2 = 4 and j3 = 12.
Step 3.3. Recall that α19 = (0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 1) and b2 =

b3 = b5 = b10 = b11 = b16 = b18 = b19 = 1. Since b2 = 1, we consider whether
b2 is a “bad” element in α19.

For β1, since r = 4, j1 = 1, j2 = 2, j3 = 6 and j4 = 16, we have a1,2 = a2,3 =
a6,7 = a16,17 = b2 = 1, and

λ2,j1 =
∑r

�=1 aj�,j1+1 = a1,2 + a2,2 + a6,2 + a16,2 = 0,
λ2,j2 =

∑r
�=1 aj�,j2+1 = a1,3 + a2,3 + a6,3 + a16,3 = 0,

λ2,j3 =
∑r

�=1 aj�,j3+1 = a1,7 + a2,7 + a6,7 + a16,7 = 0,
λ2,j4 =

∑r
�=1 aj�,j4+1 = a1,17 + a2,17 + a6,17 + a16,17 = 0.

Searching for (near) Optimal Codes 529

For β2, since r = 3, j1 = 1, j2 = 4 and j3 = 12, we have a1,2 = a4,5 =
a12,13 = b2 = 1. Then

λ2,j1 =
∑r

�=1 aj�,j1+1 = a1,2 + a4,2 + a12,2 = 1,
λ2,j2 =

∑r
�=1 aj�,j2+1 = a1,5 + a4,5 + a12,5 = 0,

λ2,j3 =
∑r

�=1 aj�,j3+1 = a1,13 + a4,13 + a12,13 = 0.

It is clear that the number of elements with value “0” in Λ2’s is larger than
the number of elements with value “1”, then the element b2 is called a “bad”
element of the generator vector αn. We change b2 = 1 into b′

2 = 0 and obtain a
new vector α′

19 = (0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 1). Then we return to
Step 1.

Let us now investigate the linear code C′
19 with generator matrix G = (I;A′

19).
By Algorithm 1-1, we get that the minimum distance d′

19 of the linear code C′
19

is 8. The code C′
19 is a near optimal and also known best binary linear code over

GF (2). The weight enumerator of the code C′
19 is

WC′
19

(z) = 1 + 133z8 + 2052z10 + 10108z12 + 36575z14 + 85595z16

+127680z18 + 127680z20 + 85595z22 + 36575z24 + 10108z26

+2052z28 + 133z30 + z38.

With the above approach and algorithms, we can also find three other near
optimal binary linear [38, 19, 8] codes by the generator matrices G = (I;A′′

19),
G = (I;A′′′

19) and G = (I;A′′′′
19). The circulant matrices A′′

19, A′′′
19 and A′′′′

19 are
separately generated by

α′′
19 = (0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1),

α′′′
19 = (0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1),

α′′′′
19 = (0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0).

The weight enumerator of the code C′′
19 is

WC′′
19

(z) = 1 + 190z8 + 1767z10 + 10507z12 + 36860z14 + 84341z16

+128478z18 + 128478z20 + 84341z22 + 36860z24 + 10507z26

+1767z28 + 190z30 + z38.

One can also check that the weight enumerators of the codes C′′′
19 and C′′′′

19 are
equal to the ones of C′′

19 and C′
19, respectively.

At the end of this section, we list some more binary linear codes constructed
from known circulant graphs by applying Algorithm 1.

1. In [6], Danielsen got a (15, 215) additive code from the vector (ω, 0, 1, 1, 1,
0, 0, 1, 1, 0, 0, 1, 1, 1, 0), which corresponds to a circulant graph of order 15
with vector α15 = (0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0). Its graph code C15 =
[30, 15, 6] is a poor code. Applying Algorithm 1, we obtain a new vector α′

15 =

530 X. Li et al.

(0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0). The code C′
15 = [30, 15, 8] generated by

α′
15 is an optimal binary linear code. The weight enumerator of this code C′

15

is

WC′
15

(z) = 1 + 450z8 + 1848z10 + 5040z12 + 9045z14 + 9045z16

+5040z18 + 1848z20 + 450z22 + z30.

2. Extending vector α17 = (0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1) of the (4, 4)-
Ramsey graph, one can obtain a vector of length 19. For example, let α19 =
(0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 1), which corresponds to a circulant
graph of order 19. It corresponds to the linear graph code C19 = [38, 19, 6],
which is a poor code. By Algorithm 1, we obtain four new vectors as follows:

α′
19 = (0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 1),

α′′
19 = (0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0),

α′′′
19 = (0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1),

α′′′′
19 = (0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1).

The codes C′
19 and C′′

19 are [38, 19, 8] codes with the same weight enumerators.
The weight enumerator of the code C′

19 is

WC′
19

(z) = 1 + 133z8 + 2052z10 + 10108z12 + 36575z14 + 85595z16

+127680z18 + 127680z20 + 85595z22 + 36575z24 + 10108z26

+2052z28 + 133z30 + z38.

The codes C′′′
19 and C′′′′

19 are [38, 19, 8] codes with the same weight enumerators.
The weight enumerator of the code C′′′

19 is

WC′′′
19

(z) = 1 + 190z8 + 1767z10 + 10507z12 + 36860z14 + 84341z16

+128478z18 + 128478z20 + 84341z22 + 36860z24 + 10507z26

+1767z28 + 190z30 + z38.

These four binary linear codes are all near optimal and known best.
3. In addition, we consider graphs with large number of vertices by sim-

ilar approach. Let C25,1 and C25,2 be the two codes generated by vec-
tors α1

25 = (0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1) and
α2
25 = (0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1), respectively.

These two codes are both poor codes. Then by Algorithm 1, we find
α′
25 = (0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1), and α′′

25 =
(0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1). Both α′

25 and α′′
25

give binary linear codes known best. Let C′
25 and C′′

25 be codes of α′
25 and

α′′
25, respectively. It is easy to check that C′

25 and C′′
25 are [50, 25, 10] codes,

and the weight enumerator of the code C′
25 and C′′

25 is

Searching for (near) Optimal Codes 531

WC′
25

(z) = 1 + 225z10 + 1250z11 + 3825z12 + 11525z13 + 28050z14 + 64005z15

+ 147075z16 + 294975z17 + 535075z18 + 9111100z19 + 1409205z20

+ 1999925z21 + 2642200z22 + 3219675z23 + 3623325z24 + 377243z25

+ 3621975z26 + 3216050z27 + 2643475z28 + 2009175z29 + 1408010z30

+ 904475z31 + 535400z32 + 292725z33 + 147525z34 + 68880z35

+ 27975z36 + 9775z37 + 3500z38 + 1125z39 + 375z40 + 125z41

= WC′′
25

(z).

7

410

1 1

9

8

6

7

5
4

3
2

22

17

16
15

14 13 12
11

10

18

19

21

24

20

232

3

5

6

8

9

11

12

(a) (b)

Fig. 2. (a) A 5-valent graph Γ12; (b) Circulant graph Γ24.

4 New Additive Codes Searching from Circulant Graphs

In fact, Glynn et al. [11] obtained an optimal code from a circulant graph, called
a 5-valent graph. Recall that Γ12 is a circulant graph of order 12; see Fig. 2(a).
Let V (Γ12) = {u1, u2, · · · , u12}. For the vertex u1, we let E1 = {v1v2, v1v4, v1v7,
v1v10, v1v12} ⊆ E(Γ12). For the vertex u2, we just rotate the above vertices and
edges, that is, we only permit the existence of the edge set E2 = {v2v3, v2v4, v2v6,
v2v10, v2u12} ⊆ E(G). For each vertex ui ∈ V (Γ) \ {u1, u2} = {u3, u4, · · · , u12},
we can also obtain an edge set Ei (3 ≤ i ≤ 17). Observe that E(Γ12) =

⋃12
i=1 Ei.

The adjacency matrix of the graph Γ12 is the following circulant matrix

A12 =

⎛
⎜⎜⎝

010100100101

101010010010

010101001001

................

⎞
⎟⎟⎠ .

The above matrix can also be obtained by vector α12 = (0, 1, 0, 1, 0, 0, 1, 0, 0,
1, 0, 1). Observe that this vector just corresponds to the set E1 of edges, which
is an expression of the adjacency relation for the vertex u1. We conclude that
a 5-valent graph can be determined by the edge set E1, and the adjacency
matrix of this graph is determined by the above vector α12. Furthermore, the
matrix A′

12 = A12 + ωI is also a circulant matrix, which can be obtained by
vector α′

12 = (ω, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1). From the matrix A12 + ωI, we can
get a graph code C12. From the Code Tables, we know that C12 is an optimal
(12, 212, 6) additive code over GF (4). The above statement suggests the following
method for finding (near) optimal additive codes.

532 X. Li et al.

Step 1. Given an even integer n. Denote by Ln the lower bound of the additive
code (n,2n) over GF (4). From the Code Tables, we find the exact value of
Ln for given n. We now construct a circulant graph Γn by a set E1 of edges
as follows.

Step 1.1. Arrange the vertices from V (Γn) = {u1, u2, · · · , un} in a circular
order.

Step 1.2. Determine the set E1 of edges satisfying |E1| = Ln−1 or |E1| = Ln+1,
where E1 = {uiu1 |ui ∈ NΓn

(u1)}. If |E1| = Ln + 1, then

E1 = {u1u2, u1u3} ∪ {u1u3+2·1, u1u3+2·2, · · · , u1u3+2· Ln−4
2

, } ∪ {u1un
2 +1}

∪{u1un−1−2· Ln−4
2

, · · · , u1un−1−2·2, u1un−1−2·1} ∪ {u1un, u1un−1}
= {u1u2, u1u3} ∪ {u1u5, u1u7, · · · , u1uLn−1} ∪ {u1un

2 +1}
∪{u1un−Ln+3, · · · , u1un−5, u1un−3} ∪ {u1un, u1un−1}.

If |E1| = Ln − 1, then

E1 = {u1u2, u1u3} ∪ {u1u3+2·1, u1u3+2·2, · · · , u1u3+2· Ln−6
2

, } ∪ {u1un
2 +1}

∪{u1un−1−2· Ln−6
2

, · · · , u1un−1−2·2, u1un−1−2·1} ∪ {u1un, u1un−1}
= {u1u2, u1u3} ∪ {u1u5, u1u7, · · · , u1uLn−3} ∪ {u1un

2 +1}
∪{u1un−Ln+5, · · · , u1un−5, u1un−3} ∪ {u1un, u1un−1}.

Step 2. By the edge set E1, we write the vector αn corresponding to E1. If
|E1| = Ln + 1, then

u2 u3 u5 uLn−1 un
2 +1 un−Ln+3 un−3 un−1 un

αn = (0 1 1 0 1 · · · 0 1 0 0 · · · 0 1 0 0 · · · 0 1 0 · · · 1 0 1 1).
If |E1| = Ln − 1, then

u2 u3 u5 uLn−3 un
2 +1 un−Ln+5 un−3 un−1 un

αn = (0 1 1 0 1 · · · 0 1 0 0 · · · 0 1 0 0 · · · 0 1 0 · · · 1 0 1 1).

Step 3.Change the first component of the vector αn into ω. Denote by α′
n the new

vector. We generate a circulant matrix A′
n from α′

n,
α′

n =(ω, 1, 1, 0, 1, 0, 1,· · · , 0, 1, 0, 0,· · · , 0, 1, 0, 0, · · · , 0, 1, 0, 1, 0, · · · , 1, 0, 1, 1).
Step 4. By Algorithm 2, we obtain the minimum distance dn of the additive

code Cn and determine whether dn = Ln. If so, the code Cn is a (near)
optimal or at least known best additive code.
Below is an algorithm (running in SAGE). For more details, we refer to [19].

Algorithm 2. Minimum distance of a circulant graph code

Input: The value of n, the generator vector αn of a circulant graph code Cn

Objective: The minimum distance of the circulant graph code Cn

Searching for (near) Optimal Codes 533

1. Input the value of n, the generator vector αn = (b1, b2, · · · , bn);
2. Obtain the generator matrix G of the circulant graph code Cn;
3. Get the minimum distance of the circulant graph code Cn.
For example, let n = 24 and αn = (ω, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0,
0, 0, 0, 1, 0, 1, 1). The algorithm details are stated as follows:
Program:

F. < x >= GF (4,′ x′)
n = 24;
a = [x, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1]
m = matrix(F, n, n, [[a[(i − k)%n] for i in [0..(n − 1)]] for k in [0..n − 1]]);
f = lambda s : sum(map(lambda x : m[x], s));
s = [];
for k in [1..8]:

t = min([n − list(i).count(0) for i in Subsets (range(n), k).map(f)]);
s+ = [t];
print s;

Output : [8]
[8, 8]
[8, 8, 10]
[8, 8, 10, 8]
[8, 8, 10, 8, 8]
[8, 8, 10, 8, 8, 8]
[8, 8, 10, 8, 8, 8, 8]
[8, 8, 10, 8, 8, 8, 8, 10]

Result : The minimum element of the last array is the minimum distance d24 of
the code C24, that is, d24 = 8.

Inspired by the graph code C12 which corresponds to the 5-valent graph, we
hope to find out some other optimal additive codes for n = 24.

Step 1. Recall that L24 is the lower bound of the additive code (24, 224) over
GF (4). From the Code Tables, we find that the exact value of L24 is 8, that
is, L24 = 8. We now construct a circulant graph Γ24 by a set E1 of edges as
follows.

Step 1.1. Arrange the vertices from V (Γn) = {u1, u2, · · · , u24} in a circular
order.

Step 1.2. Determine the set E1 of edges satisfying |E1| = L24 − 1 = 7 or |E1| =
L24+1 = 9, where E1 = {uiu1 |ui ∈ NΓn

(u1)}. If |E1| = 9, then E1 = {u1u2,
u1u3, u1u5, u1u7, u1u13, u1u19, u1u21, u1u23, u1u24}. If |E1| = 7, then E1 =
{u1u2, u1u3, u1u5, u1u13, u1u21, u1u23, u1u24}. In this case, the circulant
graph Γ24 can be found out; see Fig. 2(b).

Step 2. By the edge set E1, we write the vector α24 corresponding to E1. If
|E1| = 9, then α24 = (0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1).
If |E1| = 7, then α24 = (0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1).

Step 3. Change the first component of the vector α24 into ω. Denote by α′
24 the

new vector. We generate a circulant matrix A′
24 (A′′

24) from α′
24 (α′′

24):

534 X. Li et al.

α′
24 = (ω, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1),

α′′
24 = (ω, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1).

Step 4. By Algorithm 2, we obtain the minimum distance d′
24 = d′′

24 = 8.
Therefore, both C′

24 and C′′
24 are known best additive codes over GF (4). The

weight enumerators of the codes C′
24 and C′′

24 are

WC′
24

(z) = 1 + 528z8 + 13992z10 + 171276z12 + 1118040z14 + 3773517z16

+ 6218520z18 + 4413948z20 + 1034088z22 + 33306z24,

WC′′
24

(z) = 1 + 648z8 + 13032z10 + 174636z12 + 1111320z14 + 3781917z16

+ 6211800z18 + 4417308z20 + 1033128z22 + 33426z24.

Applying the above method, we can obtain (near) optimal additive codes
over GF (4) from the first two generator vectors.

n d Ln First row of generator matrix about the code

8 4 4 (ω, 1, 1, 0, 1, 0, 1, 1) optimal

8 4 4 (ω, 1, 0, 0, 1, 0, 0, 1) optimal

10 4 4 (ω, 1, 1, 0, 0, 1, 0, 0, 1, 1) optimal

10 4 4 (ω, 1, 0, 0, 0, 1, 0, 0, 0, 1) optimal

16 6 6 (ω, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1) optimal

22 8 8 (ω, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1) optimal

24 8 8 (ω, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1) known best

24 8 8 (ω, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1) known best

From the above analysis, we see that the circulant graphs under our con-
sideration are all relatively sparse. So one may think that only sparse circulant
graphs produce optimal graph codes. However, the following fact gives it a nega-
tive answer. Danielsen [6] obtained an optimal additive code (30, 230, 12) from the
vector α30 = (ω, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0),
which corresponds to a circulant graph of order 30 such that its adjacency matrix
A30 is generated by the first row α30 = (0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1,
1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0). It is clear that the circulant graph is 17-regular.
Since the order of this graph is 30, it follows that the degree of each vertex is rela-
tively large, i.e., it is a relatively dense graph. Let αn = (ω, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0,

n−21︷ ︸︸ ︷
1, 1, . . . , 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0). For n = 32 and n = 34, we have the follow-
ing vectors:
α32 = (ω, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0),

α34 = (ω, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0).

By Algorithm 2, we know that C32 and C34 are (32, 232, 10) and (34, 234, 10)
additive codes, respectively, and both are known best additive codes over GF (4).

Searching for (near) Optimal Codes 535

The weight enumerators of the codes C32 and C34 are

WC32(z) = 1 + 1325z10 + 41973z12 + 745155z14 + 8030541z16 + 53150370z18

+ 213875634z20 + 510617670z22 + 691665390z24

+ 491629473z26 + 159600905z28 + 17838471z30 + 286740z32,

WC34(z) = 1 + 492z10 + 14373z12 + 291849z14 + 3494061z16 + 26279603z18

+ 123536402z20 + 357928154z22 + 620714798z24 + 614055698z26

+ 319190777z28 + 75747789z30 + 6157556z32 + 72095z34.

5 Concluding Remarks

In recent years, graphs have been used to construct codes. But, usually they can-
not produce good codes. Proper graphs have to be chosen in order to construct
good codes. Because the structure of a circulant graph is very symmetric, the row
vectors of its adjacency matrix may span a subspace with the property that the
minimum Hamming distance among the vectors of the subspace is comparatively
large. Our paper uses this possibility to develop two algorithms for searching for
good binary linear codes and additive codes. Starting from a circulant graph,
the algorithms modify the generator vector of the circulant graph successively,
and get a good code at some step, or fail when all “1”’s of the generator vector
have been checked. Therefore, sometimes our algorithms can find good codes,
but sometimes they would fail to produce any good code. In general, the running
time of our algorithms is exponential in the order n of the circulant graph, since
we have to generate all the vectors of the subspace spanned by the row vectors
of an n × n or n × 2n generator matrix, and this complexity cannot be lower
down generally. However, as is seen in the above sections, the row vectors of a
circulant are generated by a single vector–its first row vector. This gives us some
reasonable hope to use the property to lower down the complexity of generating
the subspace spanned by the row vectors of a circulant, which will be left for us
to further study.

References

1. Betsumiya, K., Harada, M.: Binary optimal odd formally self-dual codes. Des.
Codes Cryptogr. 23, 11–21 (2001)

2. Betsumiya, K., Harada, M.: Classification of formally self-dual even codes of lengths
up to 16. Des. Codes Cryptogr. 23, 325–332 (2001)

3. Bermond, J.C., Comellas, F., Hsu, D.F.: Distributed loop computer networks: a
survey. J. Parallel Distribut. Comput. 24, 2–10 (1995)

4. Boesch, F.T., Wang, J.F.: Reliable circulant networks with minimum transmission
delay. IEEE Trans. Circuits Syst. 32, 1286–1291 (1985)

5. Bondy, J.A., Murty, U.S.R.: Graph Theory. Graduate Texts in Mathematics, vol.
244. Springer, London (2008)

536 X. Li et al.

6. Danielsen, L.E.: On Self-Dual Quantum Codes, Graphs and Boolean Functions.
University of Bergen, Norway (2005)

7. Danielsen, L.E.: Graph-based classification of self-dual additive codes over finite
field. Adv. Math. Commun. 3(4), 329–348 (2009)

8. Danielsen, L.E.: On the classification of Hermitian self-dual additive codes over
GF(9). IEEE Trans. Inform. Theory 58(8), 5500–5511 (2012)

9. Danielsen, L.E., Parker, M.G.: Directed graph representation of half-rate additive
codes over GF(4). Des. Codes Cryptogr. 59, 119–130 (2011)

10. Danielsen, L.E., Parker, M.G.: On the classification of all self-dual additive codes
over GF (4) of length up to 12. J. Combin. Theory Series 113, 1351–1367 (2006)

11. Glynn, D.G., Gulliver, T.A., Marks, J.G., Gupta, M.K.: The Geometry of Additive
Quantum Codes, Preface. Springer, Berlin (2006)

12. Grassl, M.: Bounds on the minimum distance of linear codes. http://www.
codetables.de. Accessed 31 October 2013

13. Gulliver, T.A., Österg̊ard, P.R.J.: Binary optimal linear rate 1/2 codesraphs. Dis-
crete Math. 283, 255–261 (2004)

14. Han, S., Lee, H., Lee, Y.: Binary formally self-dual odd codes. Des. Codes Cryptogr.
61, 141–150 (2011)

15. Huffman, W.C., Pless, V.: Fundamentals of Error-Correcting Codes. Cambridge
University, Cambridge (2003)

16. Mans, B., Pappalardi, F., Shparlinski, I.: On the spectral Adam property for cir-
culant graphs. Discrete Math. 254(1–3), 309–329 (2002)

17. Monakhova, E.A.: A survey on undirected circulant graphs. Discrete Math. Algor.
Appl. 4(1), 1250002 (2012)

18. Muzychuk, M.E., Tinhofer, G.: Recognizing circulant graphs of prime order in
polynomial time. Electron. J. Combin. 5(1), 501–528 (1998)

19. Stein, W.A., et al.: Sage Mathematics Software (Version 6.1.1), The Sage Devel-
opment Team (2014). http://www.sagemath.org

20. Tonchev, V.: Error-correcting codes from graphs. Discrete Math. 257, 549–557
(2002)

21. Varbanov, Z.: Additive circulant graph codes over GF(4). Math. Maced. 6, 73–79
(2008)

http://www.codetables.de
http://www.codetables.de
http://www.sagemath.org

Dynamic Single-Source Shortest Paths
in Erdös-Rényi Random Graphs

Wei Ding1(B) and Ke Qiu2

1 Zhejiang University of Water Resources and Electric Power, Hangzhou 310018,
Zhejiang, China

dingweicumt@163.com
2 Department of Computer Science, Brock University, St. Catharines, Canada

kqiu@brocku.ca

Abstract. This paper studies the dynamic single-source shortest paths
(SSSP) in Erdös-Rényi random graphs generated by G(n, p) model. In
2014, Ding and Lin (AAIM 2014, LNCS 8546, 197–207) first considered
the dynamic SSSP in general digraphs with arbitrary positive weights,
and devised a nontrivial local search algorithm named DSPI which takes
at most O(n·max{1, n log n/m}) expected update time to handle a single
weight increase, where n is the number of nodes and m is the number
of edges in the digraph. DSPI also works on undirected graphs. This
paper analyzes the expected update time of DSPI dealing with edge
weight increases or edge deletions in Erdös-Rényi (a.k.a., G(n, p)) ran-
dom graphs. For weighted G(n, p) random graphs with arbitrary positive
edge weights, DSPI takes at most O(h(Ts)) expected update time to deal
with a single edge weight increase as well as O(pn2h(Ts)) total update
time, where h(Ts) is the height of input SSSP tree Ts. For G(n, p) ran-
dom graphs, DSPI takes O(ln n) expected update time to handle a single
edge deletion as well as O(pn2 ln n) total update time when 20 ln n/n ≤
p <
√

2 ln n/n, and O(1) expected update time to handle a single edge

deletion as well as O(pn2) total update time when p >
√

2 ln n/n.
Specifically, DSPI takes the least total update time of O(n ln nh(Ts))
for weighted G(n, p) random graphs with p = c ln n/n, c > 1 as well as
O(n3/2(ln n)1/2) for G(n, p) random graphs with p = c

√
ln n/n, c >

√
2.

Keywords: Dynamic SSSP · Weight increase · Edge deletion · Random
graph

1 Introduction

Given a weighted digraph, a single-source shortest paths (SSSP) algorithm com-
putes the shortest paths from a given source node to all the other nodes. When
dynamic changes occur to the digraph, a dynamic SSSP algorithm maintains the
shortest paths. One could recompute the shortest paths using the static algo-
rithms [8,15], but a truly dynamic algorithm seeks for updating operations using
fundamental properties of the shortest paths, and is expected to run faster than
recomputation by the static algorithms.
c© Springer International Publishing Switzerland 2015
Z. Lu et al. (Eds.): COCOA 2015, LNCS 9486, pp. 537–550, 2015.
DOI: 10.1007/978-3-319-26626-8 39

538 W. Ding and K. Qiu

Dynamic edge changes of a digraph include weight update and topology update.
Weight update includes weight increase and decrease, and topology update
includes edge deletions and insertions. Topology update can be realized by weight
update. When dealing with only weight updates, an algorithm is said to be fully
dynamic if it can handle both weight increases and decreases, is incremental
if it only can handle weight increases but not decreases, and is decremental if
it only can handle weight decreases but not increases [1,7,13,23,27,28]. When
dealing with only topology updates, an algorithm is said to be fully dynamic if
it can handle both edge insertions and deletions, is incremental if it can handle
only edge insertions but not deletions, and is decremental if it can handle only
deletions but not insertions [2–4,12,18–21,24,25]. Incremental and decremental
algorithms are sometimes collectively called partially dynamic.

1.1 Previous Work

The dynamic SSSP problem with topology update (in particular, edge dele-
tions) has been studied extensively. For undirected unweighted graphs, Even
and Shiloach [12] presented an O(mn) total update time decremental algo-
rithm, which has been the fastest known algorithm for three decades. Roditty
and Zwick [25] proved that the decremental and incremental SSSP problems
on unweighted digraphs are at least as hard as the Boolean matrix multipli-
cation problem. This hardness result hints that it will be difficult to improve
Even and Shiloach’s algorithm. Recently, a number of papers have beaten the
barrier in approximation and/or probability sense. Bernstein and Roditty [4]
devised an O(n2+O(1/

√
logn)) total update time decremental algorithm to main-

tain (1 + ε)-approximate SSSP. This is the first algorithm that breaks the
long-standing O(mn) update time barrier on decremental SSSP problem, in
not-too-sparse graphs. Very recently, Henzinger et al. [18] presented a faster
(1 + ε)-approximation decremental SSSP algorithm which improves the total
update time to O(n1.8+O(1/

√
logn) + m1+O(1/

√
log n)), and further reduced the

expected total update time to O(m1+O(
√

log log n/ logn)) [20]. For undirected
weighted graphs where the edge weights are integers from 1 to W , Henzinger
et al. [20] proposed (1 + ε)-approximation decremental SSSP algorithm with
an O(m1+O(

√
log log n/ logn) log W) expected total update time. Henzinger and

King [17] discovered that Even and Shiloach’s algorithm can be easily adapted
to digraphs. For weighted digraphs where edge weights are integers from 1 to W ,
King [21] devised a decremental SSSP algorithm with O(mnW) total update
time. The combination of the techniques used in Bernstein’s random algo-
rithms [2,3] and Madry’s algorithm [22] yielded a (1+ε)-approximation random-
ized decremental SSSP algorithm with Õ(mn log W) total update time, where
the Õ(·) notation hides polylog n factors. More recently, Henzinger et al. [19]
first proposed an improved (1+ε)-approximation randomized decremental SSSP
algorithm with Õ(mn0.986) total update time for unweighted digraphs, and fur-
ther extended it to obtain an O(mn0.986 log2 W) total update time for weighted

Dynamic SSSP in ER Random Graphs 539

digraphs. This is the first algorithm that breaks the O(mn) total update time
barrier on decremental SSSP problem in digraphs.

Until now, few of literatures dealt with the dynamic SSSP problem with
weight updates. Fakcharoemphol and Rao [13] studied the fully dynamic variant
in planar digraphs, and devised an O(n

4
5 log

13
5 n) amortized time algorithm.

Demetrescu and Italiano [7] proposed the open problem on whether or not we can
solve efficiently (i.e., better than recomputation) fully dynamic SSSP problem
(with both weight increases and decreases) in general graphs. In [9], Ding and
Lin studied the incremental SSSP problem in weighted digraphs with arbitrary
positive arc weights. They examined some properties of the shortest paths and
presented a nontrivial local search algorithm named DSPI which can handle a
single arc weight increase in at most O(n · max{1, n log n/m}) expected time.
That is, the total update time is at most O(max{mn,n2 log n}). Specifically,
when m = Ω(n log n), DSPI is a linear-time incremental SSSP algorithm. To the
best of our knowledge, DSPI is the first incremental SSSP algorithm for handling
weight increases in weighted digraphs with arbitrary positive arc weights.

1.2 Our Results

We observe that Ding and Lin’s local search algorithm DSPI [9] can work on
undirected graphs. In this paper, we rewrite DSPI using pointer approach, and
analyze the expected update time of DSPI handling edge weight increases or edge
deletions in Erdös-Rényi (a.k.a. G(n, p)) random graphs [6,10,11]. This paper
also considers the weighted Erdös-Rényi random graphs, denoted by Gw(n, p),
generated by applying G(n, p) model to

(
n
2

)
possible weighted edges with arbi-

trary positive weights. Note that Erdös-Rényi is abbreviated to ER throughout
this paper, and all the results shown below are obtained in probability sense.

For Gw(n, p) random graphs with arbitrary positive edge weights, DSPI takes
at most O(h(Ts)) expected update time to handle a single edge weight increase
as well as O(pn2h(Ts)) total update time, where h(Ts) is the height of input
SSSP tree Ts. Specifically, when p = c ln n/n with a constant c > 1, DSPI takes
the least total update time of O(n ln nh(Ts)). For G(n, p) random graphs, DSPI
takes the same update time as that on Gw(n, p) random graphs when lnn/n <
p < 20 ln n/n, O(ln n) expected update time to handle a single edge deletion as
well as O(pn2 ln n) total update time when 20 lnn/n ≤ p <

√
2 ln n/n, and O(1)

expected update time to handle a single edge deletion as well as O(pn2) total
update time when p >

√
2 ln n/n. We observe ln n/n, 20 ln n/n and

√
2 ln n/n

are three threshold values of p, and DSPI takes less (resp. more) expected update
time in denser (resp. sparser) random graphs to deal with a single edge deletion
in general. Specifically, when p = c

√
ln n/n with a constant c >

√
2, DSPI takes

the least total update time of O(n3/2(ln n)1/2). Thus, DSPI is a best decremental
SSSP algorithm for G(n, p) random graphs with p >

√
2 ln n/n, that is, the best

for most of large-scale Erdös-Rényi random graphs.

540 W. Ding and K. Qiu

Organization. The rest of the paper is organized as follows. In Sect. 2, we recall
Ding and Lin’s local search algorithm named DSPI and rewrite it using pointer
approach. In Sect. 3, we analyze the expected update time of DSPI handling a
single edge weight increase as well as the total update time in weighted ER ran-
dom graphs with arbitrary positive weights. In Sect. 4, we analyze the expected
update time of DSPI handling a single edge deletion as well as the total update
time in ER random graphs. Finally, we offer concluding remarks in Sect. 5. Due
to page limit, most proofs are omitted in this paper.

2 Ding and Lin’s Local Search Algorithm

In this section, we recall Ding and Lin’s local search algorithm named DSPI and
rewrite it using pointer approach.

2.1 Preliminaries

Let D = (V,A,w, s) be a weighted digraph, where V is the node set, A is
the arc set, s is a designated node called source, and w(·) is a weight function
w : A → R

+. Suppose the weight of an arc a increases from w(a) up to w′(a)
while all the other arc weights remain unchanged, and w′(a) always remains
positive in this paper. The resulting digraph is denoted by D′ = (V,A,w′, s).
Let d∗

D(s, v) (resp. d∗
D′(s, v)) denote the shortest path distance from s to node v

in D (resp. D′), and Ts (resp. T ′
s) denote the single-source shortest paths tree in

D (resp. D′). The partially dynamic SSSP problem with a single weight
increase, abbreviated to the incremental SSSP problem, aims to update Ts

to T ′
s when a single arc weight increase occurs.
Obviously, Ts and T ′

s are both a rooted tree at s. Let Tu (resp. T ′
u) be the

subtree of Ts (resp. T ′
s) rooted at u ∈ V . We use πTs

(s, v) to denote the s-to-v
simple path in Ts, and use dTs

(s, v) to denote the length of πTs
(s, v) which is

equal to the sum of all arc weights on πTs
(s, v). Clearly, dTs

(s, v) = d∗
D(s, v) and

dT ′
s
(s, v) = d∗

D′(s, v) for all v ∈ V . Let V (·) and A(·) be the node set and arc set
of one digraph or subgraph, respectively. For any subset U ⊆ V , we use S(D,U)
to denote the subgraph of D induced by U .

Let a = (u, v) be the arc in D from u to v, and w(u, v) or w(a) denote its
weight. We call u the tail of a and denote u by ta, and call v the head of a
and denote v by ha. So, a = (ta, ha). We call a an outgoing arc from ta and an
incoming arc to ha. For any v ∈ V , we use I(v) and O(v) to denote the set of
tails of all the incoming arcs to v and the set of heads of all the outgoing arcs
from v, respectively.

When a weight increase occurs to a ∈ A, an auxiliary graph Da = (Va, Aa, wa)
is constructed from D based on a in the following way. Let

b(v′) = arg min
u∈I(v′)−V (Tha)

{dT (s, u) + w(u, v′)}, ∀v′ ∈ V (Tha
), (1)

and call b(v′) a bridge node of v′. Let b(v′) = null and (b(v′), v′) = null if
b(v′) does not exist in D′. In addition, we use an arc ε(v′) to represent the

Dynamic SSSP in ER Random Graphs 541

path comprising πTs
(s, b(v′)) and arc (b(v′), v′), for any v′ ∈ V (Tha

). Let Va =
V (Tha

) ∪ {s}, and

Aa = A(S(D,V (Tha
))) ∪ {ε(v) : v ∈ V (Tha

)}, (2)

and

wa(r) =
{

dTs
(s, b(v)) + w(b(v), v) if r = ε(v),

w(r) otherwise, ∀r ∈ Aa, (3)

where w(b(v), v) = ∞ if (b(v), v) = null.
Ding and Lin examine several fundamental properties of the shortest paths [9],

based on which the local search algorithm is devised.

Theorem 1 (see [9]). For any a /∈ Ts, it always holds that d∗
D′(s, v) = dTs

(s, v)
for all v ∈ V no matter how much w(a) increases by to w′(a).

Theorem 2 (see [9]). For any a ∈ Ts, regardless of how much w(a) increases
by to w′(a), it always holds that d∗

D′(s, v) = dTs
(s, v) for all v ∈ V − V (Tha

).

Theorem 3 (see [9]). For any a ∈ Ts, regardless of how much w(a) increases
by to w′(a), it always holds that d∗

D′(s, v) = d∗
Da

(s, v) for all v ∈ V (Tha
).

2.2 Local Search Algorithm

By Theorems 1, 2, 3, we need to discuss the situation of the arc a with its weight
increased, i.e., discuss whether a /∈ Ts or a ∈ Ts. When a /∈ Ts, we claim by
Theorem 1 that πTs

(s, v) is also an s-to-v shortest path in D′, for any v ∈ V . So,
Ts is also a single-source shortest paths tree in D′ with s as origin. When a ∈ Ts,
we conclude from Theorem 2 that πTs

(s, u) is also an s-to-u shortest path in D′

for any u ∈ V −V (Tha
), and from Theorem 3 that one is an s-to-v shortest path

in D′ iff it is an s-to-v shortest path in Da for any v ∈ V (Tha
). Therefore, our

main task is to update the s-to-v shortest path for all v ∈ V (Tha
).

Let f(v) be the head pointer of v which records the parent node of v, for any
node v of a rooted tree T . All the head pointers form a set

F = {f(v) : v ∈ V (T)}. (4)

Any rooted tree corresponds to a unique set of head pointers. We can easily
obtain all the children of each nonleaf node in T by traversing the head pointer
set of T , and thus can tour T in O(|V (T)|) time, i.e., a linear time, based on
its head pointer set.

Let Fs (resp. F ′
s) be the head pointer set of Ts (resp. T ′

s) as defined in Eq.
(4), which takes the place of Ts (resp. T ′

s). Let f(v) (resp. f ′(v)) denote the
head pointer of v in Ts (resp. T ′

s). Note that f(s) = null and f ′(s) = null. The
essence of updating Ts to T ′

s is to update Fs to F ′
s. Based on above analysis,

we claim that f(v) stays unchanged, for any v ∈ V when a /∈ Ts and for any
v ∈ V − V (Tha

) when a ∈ Ts. Therefore, our main task is actually to update
f(v) to f ′(v), for any v ∈ V (Tha

) when a ∈ Ts. As a fact that f ′(v), v ∈ V (Tha
),

542 W. Ding and K. Qiu

is either b(v) or one node in I(v) ∩ V (Tha
), both b(v) and all the nodes in

I(v) ∩ V (Tha
) are candidates of f ′(v).

By Eq. (1), we need to visit all the nodes in I(v) so as to find b(v) for any
v ∈ V (Tha

), judging whether or not they are in Tha
. For this purpose, we define

a 0-1 variable J(v). Specifically, J(v) = 0 means v is not in Tha
while J(v) = 1

means v is in Tha
. Initially, set J(u) = 0 for all u ∈ V . In addition, we use dist(v)

(resp. dist′(v)) to record the shortest path distance in D (resp. D′) from s to
any v ∈ V . Obviously, the value of dist(v) and dist′(v) is equal to dTs

(s, v) and
dT ′

s
(s, v), respectively.
Above discussions leads to a local search algorithm, named DSPI. In order to

facilitate implementing DSPI, we use appropriate linked lists to store digraphs
and SSSP trees. Initially, F ′

s is equal to Fs, and dist′(·) is equal to dist(·). In
Step 0, DSPI judges whether or not a ∈ Ts. DSPI goes to Step 1 if a ∈ Ts and
returns if a /∈ Ts. In Step 1, DSPI initializes J(v) to zero for all v ∈ V , builds a
linked list to store Fs, and then uses DFS to tour Tha

with ha as origin. During
the tour, a series of update works are done every time a new node is visited. For
example, when v ∈ V (Tha

) is visited, DFS updates J(v) to one, finds b(v) by
Eq. (1), replaces f(v) with b(v) and updates dist(v) to dist(b(v)) + w(b(v), v).
When DFS terminates, DSPI goes to Step 2. In this step, DSPI replaces O(s)
with V (Tha

) into D′, and then uses Dijkstra’s algorithm with s as origin in the
updated D′ to compute the single-source shortest paths from s to the nodes with
J(·) = 1. Finally, dist(·) and f(·) are updated accordingly.

Algorithm DSPI:
Input: D = (V,A,w, s), w′(a), Fs and dist(·) of D;
Output: F ′

s and dist′(·) of D′

Step 0: If a /∈ Ts, then return; if a ∈ Ts, then goto Step 1;
Step 1: J(v) ← 0,∀v ∈ V ; build a linked list to store Ts based on Fs;

use DFS to tour Tha
with ha as origin, and in the meanwhile

visit I(v) and do the following works for all v ∈ V (Tha
):

(1) J(v) ← 1;
(2) find b(v) using Eq. (1);
(3) f(v) ← b(v); dist(v) ← dist(b(v)) + w(b(v), v);

Step 2: Take O(s) ← V (Tha
) into D′; use Dijkstra’s algorithm with s

as origin in updated D′ to compute the single-source shortest
paths from s to the nodes with J(·) = 1; accordingly update
dist(·) and f(·);

Suppose that a single arc weight increase in D = (V,A,w, s) occurs at random
from the uniform distribution on A. Theorems 4 and 5 show the expected update
time of DSPI handling a single arc weight increase in a weighted digraph with
arbitrary positive weights.

Dynamic SSSP in ER Random Graphs 543

Theorem 4 (see [9]). Given any D = (V,A,w, s), the expected update time of
DSPI dealing with a single arc weight increase is

O(
1

|A|
∑
u∈V

∑
v∈V (Tu)

|I(v)| +
1

|A|
∑
u∈V

|V (Tu)| log |V (Tu)| +
1

|A|
∑
u∈V

|I(u)|). (5)

Theorem 5 (see [9]). Given any D = (V,A,w, s) with n nodes and m arcs,
the expected update time of DSPI dealing with a single arc weight increase is at
most O(n · max{1, n log n/m}).

Since the topology of D stays unchanged when a series of arc weight increases
occur to D, the total update time of DSPI is actually equal to the sum of time
costs required by applying DSPI to all m arcs of D. Therefore, the corollary
below follows directly from Theorem 5.

Corollary 1. The total update time of DSPI in any D = (V,A,w, s) with n
nodes and m arcs is at most O(max{mn,n2 log n}).

We observe that DSPI can be applied to undirected graphs. Each undirected
weighted edge is associated with two arcs with a same weight as the edge. So,
each weighted undirected graph can be transformed into a bi-directed weight-
symmetric digraph. The occurrence of a single edge weight increase in an undi-
rected graph means a same weight increase occurs to two arcs associated with
this edge in the bi-directed weight-symmetric digraph. So, we can apply DSPI
to handle a single edge weight increase in an undirected graph by using DSPI
twice to handle two arc weight increases in the corresponding bi-directed weight-
symmetric digraph. As a fact that at least one arc is not in Ts, the time cost of
applying DSPI to an undirected graph is almost the same as on a digraph.

3 Weight Increase in Weighted ER Random Graphs

In this section, we first present several properties of ER random graphs, and
then analyze the expected update time of DSPI dealing with a single edge weight
increase in weighted ER random graphs.

3.1 ER and Weighted ER Random Graphs

The Erdös-Rényi random graph, denoted by the G(n, p) random graph, is referred
to as the random graph generated by the G(n, p) model, which was first intro-
duced by Erdös-Rényi [10,11] in 1959 and also independently proposed by
Solomonoff and Rapoport [26] and Gilbert [16]. See [6] for more details. Erdös-
Rényi random graphs have been applied in a wide range of theoretical
studies [6,14].

The G(n, p) model can be formally stated as follows: given a set N of n nodes,
the edge between each pair of nodes is selected with a uniform probability p,
independent of all other edges. There are

(
n
2

)
possible edges in total. One G(n, p)

544 W. Ding and K. Qiu

random graph contains a subset of edges, and thus the G(n, p) model can produce
2(n2) random graph [6,16]. This paper also considers the weighted ER random
graph, denoted by the Gw(n, p) random graph, which is generated by applying
the G(n, p) model to

(
n
2

)
possible edges with arbitrary positive weights. It is easy

to verify that G(n, p) and Gw(n, p) random graphs have the same properties in
terms of random topologies.

The node set of G(n, p) random graph is N and its edge set is denoted by
E(G(n, p)). For any v ∈ N , we use in(v) to denote the set of adjacent edges to
v in G(n, p). Clearly, |in(v)| and |E(G(n, p))| are both a random variable. Let
N = 1

2n(n− 1). We know that |E(G(n, p))| subjects to the binomial distribution
B(N, p) [6]. Obviously, |in(v)|

|E(G(n,p))| is also a random variable, and its possible
values are

|in(v)|
|E(G(n, p))| =

x

y
, 1 ≤ y ≤ N, 0 ≤ x ≤ min{y, n − 1}. (6)

Note that the fraction is not simplified in the paper. For instance, we differentiate
2
4 with 1

2 . Lemma 2 shows the distribution law of |in(v)|
|E(G(n,p))| .

The issue studied in this section can be stated as follows: given an original
Gw(n, p) random graph, a designated source node s and an SSSP tree Ts of the
original graph, we are asked to update Ts to T ′

s when one edge weight of the
original graph is increased. Obviously, DSPI can be applied to solve this problem.
The rough analysis on its expected update time for this problem is shown in
Theorem 6. First of all, we need to consider whether or not the random graphs
generated by G(n, p) model is connected. Lemma 1 shows a property of G(n, p)
random graphs.

Lemma 1 (see Theorem 4.6 in [5]). Given p = c ln n/n, G(n, p) has no
isolated node if c > 1 and has at least one isolated node if c < 1.

Lemma 1 means the random G(n, p) graph is connected when p > ln n/n. In
the rest of this paper, we focus on the case of p > ln n/n.

Theorem 6. Given p > ln n/n, DSPI takes at most O(n) expected update time
to deal with a single edge weight increase in Gw(n, p), and at most O(pn3) total
update time.

Proof. The theorem follows by taking m =
(
n
2

)
p > 1

2 (n − 1) log n into Theorem
5 and Corollary 1. �

3.2 Fundamental Lemmas

In this section, we show several properties of G(n, p) random graphs, which will
play an important role in the detailed analysis on the expected update time of
DSPI handling a single edge weight increase in Gw(n, p) random graphs.

Dynamic SSSP in ER Random Graphs 545

Lemma 2. The G(n, p) random graph satisfies, for any v ∈ N ,

Pr[
|in(v)|

|E(G(n, p))| =
x

y
] =

(
n − 1

x

)(
N − (n − 1)

y − x

)
py(1 − p)N−y,

∀1 ≤ y ≤ N, 0 ≤ x ≤ min{y, n − 1}.

(7)

Lemma 3. E[|in(v)|
|E(G(n,p))|] ≤ O(1

n),∀v ∈ N .

Similarly, 1
|E(G(n,p))| is also a random variable since |E(G(n, p))| is a random

variable which subjects to B(N, p). Lemma 4 estimates the upper bound on the
expectation of 1

|E(G(n,p))| .

Lemma 4. E[1
|E(G(n,p))|] ≤ 4

p(n2−n+2) .

3.3 Expected Update Time in Weighted ER Random Graphs

Given any Gw(n, p) random graph and any designated source s, we also use Ts to
denote the SSSP tree in Gw(n, p) with s as origin, Tu to denote its subtree rooted
at u, and h(Ts) to denote the height of Ts. Let TIME denote the expected time
of DSPI dealing with a single edge weight increase in Gw(n, p). By Theorem 4,
we replace m with |E(Gw(n, p))| into Eq. (5) to obtain

TIME = O(
1

|E(Gw(n, p))| (
∑
u∈V

∑
v∈V (Tu)

|in(v)|

+
∑
u∈V

|V (Tu)| log |V (Tu)| +
∑
u∈V

|in(u)|)).
(8)

From the fact that |E(Gw(n, p))| as well as all of |in(u)|, |V (Tu)|,∀u ∈ V ,
are random variables, we know TIME is also a random variable. The theorem
below shows the upper bound on the expected update time of DSPI dealing with
a single edge weight increase in Gw(n, p).

Theorem 7. Given any Gw(n, p) random graph with p > ln n/n, the expected
update time of DSPI handling a single edge weight increase in Gw(n, p) is

E[TIME] = O(max{ 1
n

,
4 log n

p(n2 − n + 2)
}

∑
u∈V

|V (Tu)|). (9)

Given any Gw(n, p) random graph, Theorem 7 implies that the upper bound
on the expected update time of DSPI handling a single edge weight increase in
graph depends on the value of

∑
u∈V |V (Tu)|. It is easy to see that this sum

depends on the topology of the SSSP tree Ts in graph, and the tree topology is
determined by the topology and edge weights of graph. As a consequence, we
consider the worst-case SSSP tree topology and analyze the upper bound on this
sum. Lemma 5 shows the both upper bound and lower bound on the value of∑

u∈V |V (Tu)|.

546 W. Ding and K. Qiu

Lemma 5. Given any edge-weighted connected graph G = (V,E,w) with n
nodes and any designated source s, the SSSP tree Ts in G satisfies

2n +
1
2
h2(Ts) − 3

2
h(Ts) ≤

∑
u∈V

|V (Tu)| ≤ nh(Ts) − 1
2
h2(Ts) +

1
2
h(Ts). (10)

Theorem 8. The expected update time of DSPI handling a single edge weight
increase in Gw(n, p) with p > lnn

n is O(h(Ts)max{1, 4n log n
p(n2−n+2)}).

Proof. From Theorem 7 and Lemma 5, it follows directly that

E[TIME] ≤ O(max{ 1
n

,
4 log n

p(n2 − n + 2)
}[nh(Ts) − 1

2
h2(Ts) +

1
2
h(Ts)])

≤ O(max{ 1
n

,
4 log n

p(n2 − n + 2)
}nh(Ts))

= O(h(Ts)max{1,
4n log n

p(n2 − n + 2)
}). �

Corollary 2. Given p > ln n/n, DSPI takes at most O(h(Ts)) expected update
time to deal with a single edge weight increase in Gw(n, p), as well as at most
O(pn2h(Ts)) total update time. Specifically, when p = c ln n/n where c is a con-
stant larger than 1, the total update time of DSPI is O(n ln nh(Ts)).

4 Edge Deletion in ER Random Graphs

An unweighted graph can be viewed as a weighted graph with a uniform edge
weight. As mentioned in Sect. 1, to delete one edge can be realized by replacing
the weight of this edge with positive infinity. So, DSPI also can be applied to
handle a single edge deletion on G(n, p) random graphs. The scenario can be
stated as follows: given an original G(n, p) random graph, a designated source
s and an SSSP tree Ts of the original graph, we are asked to update Ts to T ′

s

when one edge of the original graph is deleted. In this section, we analyze the
expected update time of DSPI in the scenario.

For any pair of nodes u and v of G(n, p) random graphs, the u-to-v short-
est path, also named the minimum hop path, is also referred to as a simple
path on graph with the least number of edges. The longest one among all-pairs
shortest paths is called the diameter of G(n, p) random graphs and denoted by
diam(G(n, p)) [6]. Obviously, the height of SSSP tree with any node as its origin
is no more than diam(G(n, p)). So,

h(Ts) ≤ diam(G(n, p)), ∀s ∈ N . (11)

According to Theorem 4.17 in [5] and its proof therein, we present an impor-
tant property of diam(G(n, p)) in Lemma 6.

Dynamic SSSP in ER Random Graphs 547

Lemma 6 (see Theorem 4.17 in [5]). Given p = c ln n/n, c ≥ 20, the diame-
ter of G(n, p) random graph is O(ln n).

The combination of Corollary 2 and Lemma 6 yields Theorem 9.

Theorem 9. The expected update time of DSPI handling a single edge deletion
in G(n, p) is O(ln n) when p ≥ 20 ln n/n, and is O(h(Ts)) when ln n/n < p <
20 ln n/n.

Lemma 7 shows another important property of diam(G(n, p)).

Lemma 7 (see Theorem 4.5 in [5]). Given p = c
√

ln n/
√

n, if c >
√

2 then
diam(G(n, p)) is at most two and if c <

√
2 then diam(G(n, p)) is greater than

two.

Theorem 10. Given p >
√

2 ln n/n, the expected update time of DSPI dealing
with a single edge deletion in G(n, p) is O(1).

In fact, a series of edge deletions can be taken as a series of edge weight
replacements from their original values to positive infinity. Therefore, the topol-
ogy of the given G(n, p) random graph remains unchanged when DSPI deals with
a series of edge deletions. By combining |E(G(n, p))| =

(
n
2

)
p with Theorems 9

and 10, respectively, we directly obtain the corollary below. Specifically, when
p = c

√
ln n/n with a constant c larger than

√
2, we conclude from Theorem 10

that the total update time is

p

(
n

2

)
O(1) = O(pn2) = O(cn2

√
lnn/n) = O(n3/2(ln n)1/2).

Corollary 3. The total update time of DSPI in G(n, p) is O(pn2h(Ts)) when
ln n/n < p < 20 ln n/n, is O(pn2 ln n) when 20 ln n/n ≤ p <

√
2 ln n/n, is

O(n2p) when p >
√

2 ln n/n, and is O(n3/2(ln n)1/2) when p = c
√

ln n/n where
c is a constant larger than

√
2.

Fig. 1. Expected update time of DSPI varies with the value of p.

We know from Lemma 1 that the G(n, p) random graph is disconnected
when p < ln n/n, and from Theorems 9, 10 and Corollary 3 that DSPI takes

548 W. Ding and K. Qiu

at most O(h(Ts)) expected update time to handle a single edge deletion as
well as O(pn2h(Ts)) total update time when lnn/n < p < 20 ln n/n, O(ln n)
expected update time to handle a single edge deletion as well as O(pn2 ln n)
total update time when 20 ln n/n ≤ p <

√
2 ln n/n, and O(1) expected update

time to handle a single edge deletion as well as O(n2p) total update time when
p >

√
2 ln n/n. See Fig. 1. Specifically, DSPI takes the least total update time,

O(n3/2(ln n)1/2), when p = c
√

ln n/n with a constant c >
√

2. In general, DSPI
has less expected updated time for denser random graphs while more expected
update time for sparser random graphs. Clearly, lnn/n, 20 ln n/n and

√
2 ln n/n

are three threshold values of p. Since
√

2 ln n/n converges to zero when n tends
to infinity, DSPI takes only O(1) expected update time as well as O(pn2) total
update time in large-scale Erdös-Rényi random graphs generated by G(n, p)
model even using a very small positive number p.

5 Concluding Remarks

In this paper, we have analyzed the expected update time of Ding and Lin’s
algorithm named DSPI [9] handling edge weight increases or edge deletions in
Erdös-Rényi random graphs. For Gw(n, p) random graphs with arbitrary positive
edge weights, DSPI takes at most O(h(Ts)) expected update time to handle a
single edge weight increase as well as O(pn2h(Ts)) total update time, where
h(Ts) is the height of input SSSP tree Ts. Specifically, when p = c ln n/n with a
constant c > 1, DSPI takes the least total update time of O(n ln nh(Ts)).

For G(n, p) random graphs, DSPI takes at most the same updated time as
that on Gw(n, p) random graphs when lnn/n < p < 20 ln n/n, O(ln n) expected
update time to handle a single edge deletion as well as O(pn2 ln n) total update
time when 20 ln n/n ≤ p <

√
2 ln n/n, and O(1) expected update time to handle

a single edge deletion as well as O(pn2) total update time when p >
√

2 ln n/n.
Specifically, when p = c

√
ln n/n with a constant c >

√
2, DSPI takes the least

total update time of O(n3/2(ln n)1/2). We think that DSPI is a best decremental
SSSP algorithm for G(n, p) random graphs with p >

√
2 ln n/n, that is, the best

for most of large-scale Erdös-Rényi random graphs.
It is of interest to tighten the value of c in Lemma 6 and further analyze the

expected update time of DSPI handling edge deletions in G(n, p) random graphs
with lnn/n < p < c ln n/n, 1 < c < 20. Moreover, how much expected update
time DSPI takes to deal with a single edge weight update or topology update in
the other kinds of random graphs remains as future research topics.

Acknowledgement. We thank the reviewers for their valuable comments and sug-
gestions.

References

1. Ausiello, G., Italiano, G.F., Marchetti-Spaccamela, A., Nanni, U.: Incremental
algorithms for minimal length paths. J. Algorithms 12, 615–638 (1991)

Dynamic SSSP in ER Random Graphs 549

2. Bernstein, A.: Fully dynamic (2 + ε) approximate all-pairs shortest paths with
fast query and close to linear update time. In: Proceedings of the 50th FOCS, pp.
693–702 (2009)

3. Bernstein, A.: Maintaining shortest paths under deletions in weighted directed
graphs. In: Proceedings of the 45th STOC, pp. 725–734 (2013)

4. Bernstein, A., Roditty, L.: Improved dynamic algorithms for maintaining approxi-
mate shortest paths under deletions. In: Proceedings of the 22th SODA, pp. 1355–
1365 (2011)

5. Blum, A., Hopcroft, J., Kannan, R.: Foundation of Data Science, Manuscript (14
May 2015). http://www.cs.cornell.edu/jeh/bookMay2015.pdf

6. Bollobás, B.: Random Graphs. Cambridge University Press, Cambridge (2001)
7. Demetrescu, C., Italiano, G.F.: A new approach to dynamic all pairs shortest paths.

J. ACM 51, 968–992 (2004)
8. Dijkstra, E.W.: A note on two problems in connection with graphs. Numer. Math.

1, 269–271 (1959)
9. Ding, W., Lin, G.: Partially dynamic single-source shortest paths on digraphs with

positive weights. In: Gu, Q., Hell, P., Yang, B. (eds.) AAIM 2014. LNCS, vol. 8546,
pp. 197–207. Springer, Heidelberg (2014)

10. Erdös, P., Rényi, A.: On random graphs-I. Publicationes Mathematicae (Debrecen)
6, 290–297 (1959)

11. Erdös, P., Rényi, A.: On the Evolution of Random Graphs. Akad. Kiado, Budapest
(1960)

12. Even, S., Shiloach, Y.: An on-line edge-deletion problem. J. ACM 28, 1–4 (1981)
13. Fakcharoemphol, J., Rao, S.: Planar graphs, negative weight edges, shortest paths,

and near linear time. In: Proceedings of the 42nd FOCS, pp. 232–241 (2001)
14. Feller, W.: An Introduction to Probability Theory and Its Applications. Wiley,

New York (1968)
15. Fredman, M.L., Tarjan, R.E.: Fibonacci heaps and their uses in improved network

optimization algorithms. J. ACM 34(3), 596–615 (1987)
16. Gilbert, E.N.: Random graphs. Ann. Math. Stat. 30(4), 1141–1144 (1959)
17. Henzinger, M., King, V.: Fully dynamic biconnectivity and transitive closure. In:

Proceedings of the 36th FOCS, pp, 664–672 (1995)
18. Henzinger, M., Krinninger, S., Nanongkai, D.: A subquadratic-time algorithm for

dynamic single-source shortest paths. In: Proceedings of the 25th SODA, pp, 1053–
1072 (2014)

19. Henzinger, M., Krinninger, S., Nanongkai, D.: Sublinear-time decremental algo-
rithms for single-source reachability and shortest paths on directed graphs. In:
Proceedings of the 46th STOC, pp. 674–683 (2014)

20. Henzinger, M., Krinninger, S., Nanongkai, D.: Decremental single-source shortest
paths on undirected graphs in near-linear total update time. In: Proceedings of the
55th FOCS, pp. 146–155 (2014)

21. King, V.: Fully dynamic algorithms for maintaining all-pairs shortest paths and
transitive closure in digraphs. In: Proceedings of the 40th FOCS, pp. 81–99 (1999)

22. Madry, A.: Faster approximation schemes for fractional multicommodity flow prob-
lems via dynamic graph algorithms. In: Proceedings of the 42th STOC, pp. 121–130
(2010)

23. Peres, Y., Sotnikov, D., Sudakov, B., Zwick, U.: All-pairs shortest paths in O(n2)
time with high probability. In: Proceedings of the 51th FOCS, pp. 663–672 (2010)

24. Roditty, L., Zwick, U.: Dynamic approximate all-pairs shortest paths in undirected
graphs. In: Proceedings of the 45th FOCS, pp. 499–508 (2004)

http://www.cs.cornell.edu/jeh/bookMay2015.pdf

550 W. Ding and K. Qiu

25. Roditty, L., Zwick, U.: On dynamic shortest paths problems. In: Albers, S., Radzik,
T. (eds.) ESA 2004. LNCS, vol. 3221, pp. 580–591. Springer, Heidelberg (2004)

26. Solomonoff, R., Rapoport, A.: Connectivity of random nets. Bull. Math. Biol.
13(2), 107–117 (1951)

27. Thorup, M.: Fully-dynamic all-pairs shortest paths: faster and allowing negative
cycles. In: Hagerup, T., Katajainen, J. (eds.) SWAT 2004. LNCS, vol. 3111, pp.
384–396. Springer, Heidelberg (2004)

28. Thorup, M.: Worst-case update times for fully-dynamic all-pairs shortest paths.
In: Proceedings of the 37th STOC, pp. 112–119 (2005)

Trees, Paths, Stars, Caterpillars and Spiders

Minghui Jiang(B)

Department of Computer Science, Utah State University, Logan, UT 84322, USA
mjiang@cc.usu.edu

Abstract. For any k ≥ 2, deciding whether the linear arboricity, star
arboricity, caterpillar arboricity, and spider arboricity, respectively, of a
bipartite graph are at most k are all NP-complete.

Keywords: Arboricity · Edge partition · NP-hardness

1 Introduction

The arboricity of a graph is the minimum number of parts in an edge partition
of the graph such that each part induces a forest. The trees in the forests may
be restricted to various subclasses of trees, leading to several related concepts
of arboricity. For example, the linear arboricity (respectively, star arboricity,
caterpillar arboricity, and spider arboricity) of a graph is the minimum number
of parts in an edge partition of the graph such that each part induces a disjoint
union of paths (respectively, stars, caterpillars, and spiders).

Recall that a path is a tree with maximum degree at most two. A star is a
tree with diameter at most two, or, equivalently, a tree with at most one vertex
of degree more than one. A caterpillar is a tree whose internal vertices induce
a path. A spider is a tree with at most one vertex of degree more than two.
Intuitively, a caterpillar is a path of stars, and a spider is a star of paths.

The concept of arboricity and its several variants such as star/caterpillar/
spider arboricities are closely related to thickness, another classic concept in
graph theory and particularly in graph drawing. Recall that the thickness of a
graph is the minimum number of planar graphs into which the edges of the graph
can be partitioned. Since any planar graph with n vertices has at most 3n − 6
edges, the formula of Nash-Williams [14] implies that its arboricity is at most
3. It is also known that the star arboricity (hence the spider arboricity too) of
any planar graph is at most 5 [9], and the caterpillar arboricity of any planar
graph is at most 4 [7]. On the other hand, any forest is clearly planar. Thus for
any graph, these arboricities differ from thickness by at most a constant factor.
Also, linear arboricity and caterpillar arboricity are important for characterizing
certain variants of rectangle visibility graphs that naturally arise in two-layer
routing problems in VLSI design and are useful for labeled graph layouts [16].

While the arboricity of any graph can be computed in polynomial time [5], the
arboricities with restrictions on the trees often turn out to be hard to compute
[9,16]. In this paper, we show that for any k ≥ 2, deciding whether a graph
c© Springer International Publishing Switzerland 2015
Z. Lu et al. (Eds.): COCOA 2015, LNCS 9486, pp. 551–565, 2015.
DOI: 10.1007/978-3-319-26626-8 40

552 M. Jiang

has linear arboricity, star arboricity, caterpillar arboricity, and spider arboricity,
respectively, at most k are all hard, even if the graph is bipartite.

Peroche [15] first proved that deciding whether a multigraph (which may
contain multiple parallel edges) has linear arboricity at most 2 is NP-complete.
This result was later strengthened by Shermer [16], who proved that deciding
whether a graph has linear arboricity at most 2 is NP-complete too. Our first
theorem extends the NP-completeness of linear arboricity k to all k ≥ 2 even for
the restricted class of bipartite graphs.

Theorem 1. For any k ≥ 2, deciding whether a bipartite graph has linear
arboricity at most k is NP-complete.

Denote by la(G) and Δ(G), respectively, the linear arboricity and the max-
imum degree of a graph G. Our proof of Theorem1 implies that for any k ≥ 2,
deciding whether la(G) = k for a bipartite graph G with Δ(G) = 2k and
k ≤ la(G) ≤ k + 1 is NP-complete. Note that for any graph G, la(G) would
be exactly (Δ(G)+1)/2 when Δ is odd, and either Δ(G)/2 or Δ(G)/2+1 when
Δ is even, if the linear arboricity conjecture of Akiyama, Exoo, and Harary [1]
is true; see also [2].

Hakimi et al. [9] proved that deciding whether a graph has star arboricity
at most 2 is NP-complete. Gonçalves and Ochem [8] strengthened this result by
showing that the problem remains NP-complete even for a very restricted graph
class. More precisely, they proved [8, Theorem 2] that for any g ≥ 3, deciding
whether a bipartite planar graph with girth at least g and maximum degree 3
has star arboricity at most 2 is NP-complete. They also proved [8, Theorem 5]
that deciding whether a 2-degenerate bipartite planar graph has star arboricity
at most 3 is NP-complete. Our next theorem extends the NP-completeness of
star arboricity k to all k ≥ 2 for bipartite graphs.

Theorem 2. For any k ≥ 2, deciding whether a bipartite graph has star arboric-
ity at most k is NP-complete.

Shermer [16] also proved that deciding whether a graph has caterpillar
arboricity at most 2 is NP-complete. Gonçalves and Ochem [8, Theorem 6]
extended this result and proved that deciding whether a 2-degenerate bipar-
tite planar graph has caterpillar arboricity at most 2 and respectively at most
3 are both NP-complete. Our next theorem extends the NP-completeness of
caterpillar arboricity k to all k ≥ 2 for bipartite graphs.

Theorem 3. For any k ≥ 2, deciding whether a bipartite graph has caterpillar
arboricity at most k is NP-complete.

To our best knowledge, the complexity of determining the spider arboricity
of a graph was open, although spiders play an important role in algorithms
for certain network design problems [11]. Our last theorem fills this gap in the
literature.

Theorem 4. For any k ≥ 2, deciding whether a bipartite graph has spider
arboricity at most k is NP-complete.

Trees, Paths, Stars, Caterpillars and Spiders 553

All these arboricity problems are clearly in NP. In Sects. 2–5, we prove their
NP-hardness. Due to space constraints, we defer the proofs of some lemmas for
Theorems 2 and 3 to the full version of this paper.

2 Linear Arboricity of Bipartite Graphs

In this section we prove Theorem 1. We show that for any k ≥ 2, deciding
whether a bipartite graph has linear arboricity at most k is NP-hard. Our proof
consists of two parts: k = 2 and k ≥ 3.

The first part of our proof shows that deciding whether a bipartite graph has
linear arboricity at most 2 is NP-hard. This strengthens two previous results
[15,16]. Peroche [15] proved, by a reduction from 3-SAT, that deciding whether
a multigraph has linear arboricity at most 2 is NP-hard. Shermer [16] extended
this result and proved that deciding whether a graph has linear arboricity at most
2 is NP-hard. The core element in Shermer’s proof is a local transformation that
replaces each doubled edge uv in a multigraph G′ by four edges ua, ub, vc, vd
between u, v and the four vertices a, b, c, d from a distinct copy of K4, which
results in a graph G with linear arboricity at most 2 if and only if G′ has linear
arboricity at most 2. This graph is not triangle-free, however, and hence not
bipartite either. Indeed to obtain a bipartite graph with the desired property
seems difficult using only local transformations.

Since any graph can be turned into a bipartite graph simplyby subdividing
all edges, one may speculate that this would yield a straightforward reduction
from the linear arboricity problem for general graphs to the linear arboricity
problem for bipartite graphs. But this approach does not work because the linear
arboricity of a graph may change after its edges are subdivided.

Take the complete graph K5 for example. Clearly, la(K5) > 2: in any partition
of the edges of K5 into two linear forests, each linear forest must include exactly
two edges incident to each vertex, and hence must be a cycle and not a forest
at all. Let K ′

5 be the graph obtained from K5 by subdividing each edge, and
let K ′′

5 be the graph obtained from K ′
5 by subdividing each edge. Then K ′

5

has
(

5
2

)
· 4 edges, with each pair of degree-4 vertices connected by a path of

length 4. We next show that la(K ′′
5) = 2. For each degree-4 vertex, color the

four incident edges arbitrarily using two colors, with two edges of each color.
Then in the path of length 4 between any pair of degree-4 vertices, the two outer
edges are colored, and the two inner edges remain to be colored. If the two outer
edges have the same color, then color both inner edges with the other color;
otherwise, color the two inner edges with different colors such that the colors
of the four edges alternate along the path. Then the edges of each color form a
linear forest in which every path has length at most two. We have shown that
la(K5) > 2 = la(K ′′

5). It follows that either la(K5) �= la(K ′
5) or la(K ′

5) �= la(K ′′
5).

554 M. Jiang

2.1 K2k−1,2k and Tc

The central component of our construction, for both k = 2 and k ≥ 3, is the
complete bipartite graph K2k−1,2k.

Lemma 1. For any k ≥ 2, K2k−1,2k has linear arboricity k. Moreover, for any
edge partition of K2k−1,2k into k forests, the k forests must be k spanning trees.
In particular, for any edge partition of K2k−1,2k into k linear forests, the k forests
must be k spanning paths.

Proof. It is well-known that for any k ≥ 2, K2k−1,2k has linear arboricity at
most k; see for example [10, Fig. 4]. For any edge partition of K2k−1,2k into k
forests, each forest must be a spanning tree because the average number of edges
of the k forests is (2k −1)2k/k = 4k −2, while the maximum number of edges of
any forest is (2k − 1 + 2k) − 1 = 4k − 2, which is attained only when the forest
is a spanning tree. For linear forests, the spanning trees are spanning paths. ��

Fig. 1. Left: The graph Tc, enclosed in the oval, consists of a vertex c connected to k of
the 2k vertices of degree 2k− 1 in K2k−1,2k. The edges crossing the oval connect c and
free vertices of Tc to outside vertices. Right: A schematic representation of Tc, where
K2k−1,2k is represented by a large circle around a black dot (Color figure online).

Let Tc be the graph consisting of a vertex c connected to any k of the 2k
vertices of degree 2k−1 in K2k−1,2k (the degrees of these k vertices are 2k−1 in
K2k−1,2k and 2k in Tc). We call the other k vertices of degree 2k −1 in K2k−1,2k

that are not connected to c the free vertices of Tc. Refer to Fig. 1 for the k = 2
case.

Lemma 2. For any graph that contains Tc as a vertex-induced subgraph, and
for any k-color assignment to the edges of this graph that partitions it into k
linear forests, the following three properties hold:

(i) all edges connecting c to vertices outside Tc must have different colors;
(ii) all edges connecting a free vertex of Tc to a vertex outside Tc must have

different colors.

Trees, Paths, Stars, Caterpillars and Spiders 555

(iii) any two edges of the same color that connect c and a free vertex of Tc

respectively to two vertices outside Tc must extend the two opposite ends of
a monochromatic spanning path in Tc of this color.

Proof. Consider any k-color assignment to the edges of K2k−1,2k that partitions
it into k linear forests. By Lemma 1, these k linear forests must be k spanning
paths: each of the 2k − 1 vertices of degree 2k is incident to exactly two edges of
each color, and each of the 2k vertices of degree 2k − 1 is one of the 2k ends of
k monochromatic paths. Any edge connecting one of these 2k ends to a vertex
outside K2k−1,2k must have the same color as the corresponding monochromatic
path in K2k−1,2k, because this end is already incident to two edges of any other
color in K2k−1,2k. If both ends of a monochromatic path were connected to the
same outside vertex, then this path would close into a monochromatic cycle,
a contradiction. Thus the k edges incident to c in Tc must extend k different
monochromatic paths in K2k−1,2k and hence have k different colors. Then the
three properties easily follow. ��

2.2 Linear Arboricity 2

Our proof for k = 2 is based on a reduction from the NP-complete problem
2-Colorability of 3-Uniform Hypergraphs [12]. Recall that a q-uniform hypergraph
consists of a set V of vertices and a set E of hyperedges, where each hyperedge
in E is a size-q subset of the vertices in V , and that a hypergraph is k-colorable
if the vertices can be colored with k colors such that in each hyperedge, not
all of its vertices have the same color. Given a 3-uniform hypergraph G, we
will construct a bipartite graph G2 with maximum degree 4 such that G has a
2-coloring if and only if G2 admits an edge partition into two linear forests.

Fig. 2. Left: A duplicator forks an edge u to two edges u′ and u′′ via three copies of
the graph Tc inside a vertex gadget. Right: Three leaf edges from three vertex gadgets
join at a vertex e to form a hyperedge gadget (Color figure online).

For each vertex v of degree deg(v) in G, we construct a vertex gadget in G2 as
follows. If deg(v) = 1, then the vertex gadget is just a single edge. Now suppose
that deg(v) ≥ 2. Take an arbitrary binary tree with deg(v) leaves and deg(v)−1
internal nodes, then connect its root to an additional vertex which becomes the

556 M. Jiang

new root of the tree, so that every internal node of this rooted tree except the
new root has degree exactly 3. We call the deg(v) edges incident to the deg(v)
leaves of this rooted tree the leaf edges, and call the single edge incident to the
root the root edge. Replace each internal node of degree 3 in this rooted tree,
which is connected to its parent by some edge u and to its two children by two
edges u′ and u′′, by a duplicator consisting of three disjoint copies of the graph
Tc connected by three additional edges r, s, and t, as illustrated in Fig. 2 left.

For each hyperedge e in G, we construct a hyperedge gadget in G2 which
consists of a single vertex e joining three distinct leaf edges from three vertex
gadgets, respectively, corresponding to the three vertices of the hyperedge. Refer
to Fig. 2 right for an illustration. This completes the construction of G2.

Lemma 3. The 3-uniform hypergraph G is 2-colorable if and only if the graph
G2 admits an edge partition into two linear forests.

Proof. We first prove the direct implication. Suppose that G is 2-colorable. We
obtain an edge partition of G2 into two linear forests as follows. Refer to Fig. 1.
For the internal edges of all copies of Tc in G2, we can clearly find a 2-color
assignment, by Lemma 1, that partitions these edges into two linear forests. Refer
to Fig. 2. For the other edges in G2, we simply assign the root edge of each vertex
gadget in G2 the same color as the corresponding vertex in G, then propagate
the colors along the duplicators as illustrated, such that all leaf edges have the
same color as the root edge. In each hyperedge e in G, not all three vertices
have the same color, by our assumption that G is 2-colorable. Correspondingly,
in each hyperedge gadget in G2, not all three leaf edges incident to the vertex e
have the same color. It is straightforward to verify that the edges of each color
in G2 form a linear forest.

We next prove the reverse implication. Suppose that G2 admits a 2-color
assignment to its edges that partitions it into two linear forests. Then we can
obtain a 2-color assignment to the vertices of G by assigning each vertex in G
the same color as the root edge in the corresponding vertex gadget in G2. Refer
to Fig. 2. By Lemma 2 (i), the two edges in each of the two pairs {u, r} and
{s, t} have different colors. By Lemma 2 (ii), the two edges in each of the two
pairs {r, u′} and {t, u′′} have different colors. By Lemma 2 (iii), the two edges r
and s have different colors too, to avoid a monochromatic cycle through the two
adjacent copies of Tc. Therefore, the two edges u′ and u′′ have the same color
as the edge u. It follows that in each vertex gadget, all leaf edges have the same
color as the root edge. Moreover, since the two forests in the edge partition of
G2 are both linear, not all three edges have the same color in each hyperedge
gadget in G2. Correspondingly, not all three vertices have the same color in each
hyperedge in G. ��

The graph G2 is bipartite as indicated by the black and white dots that
represent its vertices. The reduction is clearly polynomial. We have proved that
deciding whether a bipartite graph has linear arboricity at most 2 is NP-hard.

Trees, Paths, Stars, Caterpillars and Spiders 557

2.3 Linear Arboricity k for k ≥ 3

Our proof for k ≥ 3 is based on a reduction from the problem k-Colorability,
which asks whether a given graph G admits a vertex coloring with k colors. Maf-
fray and Preissmann [13] proved that for any k ≥ 3, the problem k-Colorability
is NP-hard even for triangle-free graphs. Note that k-Colorability for k = 2 is
just bipartite testing which is well-known to be solvable in polynomial time.
Thus we had to prove the k = 2 case by reduction from a different problem.

Given a graph G, we will construct a bipartite graph Gk with maximum
degree 2k such that G admits a vertex coloring with k colors if and only if Gk

admits an edge partition into k linear forests.

Fig. 3. Left: A duplicator forks an edge u to two edges u′ and u′′ via three copies of
the graph Tc inside a vertex gadget. Right: Two leaf edges from two vertex gadgets
join at the vertex e of Te to form an edge gadget (Color figure online).

The vertex gadget for k ≥ 3 is a straightforward generalization of the vertex
gadget for k = 2. Refer to Fig. 3 left for an illustration of duplicator for the k = 3
case. Note that each of the two labels r and t now corresponds to k − 1 edges
between two adjacent copies of Tc.

For each edge e in G, we construct an edge gadget in Gk which consists of a
copy Te of the graph Tc, with the vertex e in Te joining two distinct leaf edges
from two vertex gadgets, respectively, corresponding to the two vertices of the
edge. Refer to Fig. 3 right for an illustration.

Following a similar argument as in proof of Lemma3, it is easy to verify
that G admits a vertex coloring with k colors if and only if Gk admits an edge
partition into k linear forests. Again, the graph Gk is bipartite as indicated by the
black and white dots, and the reduction is clearly polynomial. We have proved
that for any k ≥ 3, deciding whether a bipartite graph has linear arboricity at
most k is NP-hard. This completes the proof of Theorem1.

Remark. Note that the graph G2 in our reduction for k = 2 has maximum
degree 4, and that the graph Gk in our reduction for k ≥ 3 has maximum
degree 2k. So Δ(Gk) = 2k and hence la(Gk) ≥ �Δ(Gk)/2	 = k for k ≥ 2. On the
other hand, from the proof of the direct implication of Lemma3 for k = 2 and
its analog for k ≥ 3, the linear arboricities of Gk excluding an arbitrary leaf edge

558 M. Jiang

from each hyperedge gadget (Fig. 2 right) and each edge gadget (Fig. 3 right),
respectively, are at most k, and hence it is easy to show that la(Gk) ≤ k + 1 for
k ≥ 2. Thus our proof of Theorem1 implies that for any k ≥ 2, deciding whether
la(Gk) = k for a bipartite graph Gk with Δ(Gk) = 2k and k ≤ la(Gk) ≤ k + 1
is NP-complete.

3 Star Arboricity of Bipartite Graphs

In this section we prove Theorem 2. The two cases k = 2 and k = 3 of the theorem
have been proved by Gonçalves and Ochem [8]. We show that for any k ≥ 3,
deciding whether a bipartite graph has star arboricity at most k is NP-hard.

Consider any graph with star arboricity k. Then there is a k-color assignment
to the edges of this graph that partitions it into k star forests. Orient each edge
so that it is directed away from the center of the star that contains it. Then the
resulting directed graph with colored edges satisfies the following star property :

(�) Each vertex has at most one incoming edge of each color, and does not have
both incoming and outgoing edges of the same color.

Conversely, if a graph has an edge orientation and a k-color assignment satisfying
this star property, which we call a k-color star orientation, then the graph admits
an edge partition into k star forests, with stars centered at the vertices with
outgoing edges. Therefore, a graph has star arboricity k if and only if it has a
k-color star orientation.

Our proof is based on a reduction from k-Colorability [13]. Given a graph
G, we will construct a bipartite graph GX such that G admits a vertex coloring
with k colors if and only if GX has a k-color star orientation.

Fig. 4. The graph X for k = 3 (Color figure online).

Refer to Fig. 4. The central component of our construction is a bipartite
graph X with vertices A ∪ B ∪ C ∪ D, where |A| = |B| = |C| = |D| = k. Write
A = {a1, . . . , ak}, B = {b1, . . . , bk}, C = {c1, . . . , ck}, and D = {d1, . . . , dk}.

Trees, Paths, Stars, Caterpillars and Spiders 559

The edges of X include all possible edges aicj , aidj , bicj , bidj between A ∪ B
and C ∪D except the edges aici, aidi, bici, bidi between vertices of equal indices.
There are 4k vertices and 4k2 − 4k edges in X.

Lemma 4. X has a k-color star orientation.

Lemma 5. For any graph that contains X as a vertex-induced subgraph, and
for any k-color star orientation of this graph, each edge between a vertex v in
X and a vertex outside X must be outgoing from v, and moreover all outgoing
edges from v have the same color.

To obtain GX from G, we simply identify each vertex v in G with an arbitrary
vertex in a distinct copy of X, then subdivide each edge e = uv in G into two
edges ue and ve with an intermediate vertex e.

Lemma 6. G admits a vertex coloring with k colors if and only if GX admits
a k-color star orientation.

Clearly, the graph GX is bipartite, and the reduction is polynomial. We have
proved that for any k ≥ 3, deciding whether a bipartite graph has star arboricity
at most k is NP-hard. This completes the proof of Theorem2.

4 Caterpillar Arboricity of Bipartite Graphs

In this section we prove Theorem 3. The two cases k = 2 and k = 3 of the
theorem have been proved by Gonçalves and Ochem [8]. We show that for any
k ≥ 3, deciding whether a bipartite graph has caterpillar arboricity at most k is
NP-hard.

Let Sn be the tree obtained by subdividing each edge of an n-star K1,n into
two edges. We call Sn an n-superstar although it is just a spider with n legs of
length two. Gonçalves and Ochem [8] observed that a tree is a caterpillar if and
only if it is S3-free, and consequently the caterpillar arboricity of a graph is just
the n = 3 case of the more general concept of Sn-free arboricity, where every
forest in the edge partition must not contain Sn as a vertex-induced subgraph.
Following their framework, we prove a more general result than Theorem3:

Theorem 5. For any n ≥ 2 and any k ≥ 3, deciding whether a bipartite graph
has Sn-free arboricity at most k is NP-complete.

This problem is clearly in NP. We next prove its NP-hardness by a reduction
from k-Colorability [13]. Given a graph G, we will construct a bipartite graph
GY such that G admits a vertex coloring with k colors if and only if GY has
Sn-free arboricity k.

Refer to Fig. 5. The central component of our construction is a bipartite
graph Y with vertices A ∪ B ∪ C, where |A| = |B| = k2(n − 1) and |C| = k.
Write A = {ai : 0 ≤ i < k2(n − 1)}, B = {bi : 0 ≤ i < k2(n − 1)}, and
C = {cj : 0 ≤ j < k}. The edges of Y include all edges aibi between vertices of
equal indices in A and B, and all possible edges bicj between B and C. There
are 2k2(n − 1) + k vertices and k2(n − 1) + k3(n − 1) edges in Y .

560 M. Jiang

Fig. 5. The graph Y for k = 3 (Color figure online).

Lemma 7. Y has Sn-free arboricity at most k.

Lemma 8. For any graph that contains Y as a vertex-induced subgraph and
contains another vertex v outside Y that is adjacent to k − 1 distinct vertices of
C in Y , and for any k-color assignment to the edges of this graph that partitions
it into k Sn-free forests, the k−1 edges between Y and v must have k−1 distinct
colors, and all other edges incident to v must have the only remaining color.

To obtain GY from G, we simply connect each vertex v in G to k −1 distinct
vertices of C in a distinct copy of Y , then replace each edge uv in G by a cycle
of four edges uū, ūv, vv̄, v̄u.

Lemma 9. G admits a vertex coloring with k colors if and only if GY admits
an edge partition into k Sn-free forests.

Clearly, the graph GY is bipartite, and the reduction is polynomial. We have
proved that for any n ≥ 2 and any k ≥ 3, deciding whether a bipartite graph has
Sn-free arboricity at most k is NP-hard. This completes the proof of Theorem3.

5 Spider Arboricity of Bipartite Graphs

In this section we prove Theorem 4. We show that for any k ≥ 2, deciding
whether a bipartite graph has spider arboricity at most k is NP-hard. Our proof

Trees, Paths, Stars, Caterpillars and Spiders 561

consists of two parts: k = 2 and k ≥ 3. For k ≥ 3, the reduction is from k-
Colorability [13]. For k = 2, the reduction is from 2-Subcolorability of triangle-
free graphs. A subcoloring of a graph is a partition of its vertices such that each
part induces a disjoint union of cliques. For a triangle-free graph, a 2-subcoloring
corresponds to a vertex partition into two forests with maximum degree one. The
problem 2-Subcolorability is NP-complete even for triangle-free planar graphs
with maximum degree 4 [4,6].

Fig. 6. The graph Z for k = 2 (Color figure online).

Refer to Fig. 6. The central component of our construction, for both k = 2
and k ≥ 3, is a bipartite graph Z with vertices A ∪ B ∪ C, where |A| = 2k − 1,
|B| = 2k, and |C| = k. Let D be a subset of k vertices in B. The edges of Z
include all possible edges between A and B and between C and D. There are
5k − 1 vertices and (2k − 1)(2k) + k2 edges in Z.

Lemma 10. Z has spider arboricity at most k.

Proof. We obtain a k-color assignment to the edges of Z that partitions it into k
spider forests (indeed k spiders) as follows. First color the edges between A and B
to partition this complete bipartite graph K2k−1,2k into k monochromatic paths
such that the 2k ends of the k paths are the 2k vertices in B (recall Lemmas 1
and 2) and moreover each path has one end at a vertex in D and the other end
at a vertex in B \D, next color each edge between C and D with the same color
as the incident monochromatic path. Then the edges of Z are partitioned into k
spiders centered at the vertices in D. ��
Lemma 11. For any graph that contains Z as a vertex-induced subgraph and
contains another vertex v outside Z that is adjacent to k − 1 distinct vertices of
C in Z, and for any k-color assignment to the edges of this graph that partitions
it into k spider forests, the k −1 edges between Z and v must have k −1 distinct
colors. Moreover, among all the other edges incident to v, there can be at most
one edge of each of these k−1 colors. Except these edges, all other edges incident
to v must have the only remaining color.

Proof. By Lemma 1, the spider forest of each color in Z, when restricted to the
(2k − 1)2k edges between A and B, must be a spanning tree of A and B. Thus
the k spider forests in Z must indeed be k spiders. Morever, the k edges incident

562 M. Jiang

to each vertex in C must have k distinct colors, because any two edges of the
same color would create a cycle together with the spanning tree of A and B of
that color. Also, since each vertex in D has degree 2k −1+k ≥ 2k +1 for k ≥ 2,
and hence has degree at least 3 in one of the k spiders, the k vertices in D must
be the centers of the k spiders in Z.

These two properties, (i) that the k edges incident to each vertex in C have
k distinct colors, and (ii) that the k vertices in D are the centers of the k spiders
in Z, together have the following implications. If any vertex in C is connected
to a vertex v outside Z by an edge, then no matter what color this edge has, it
must extend one leg of the spider in Z of that color, and this leg must not fork
as v is connected to other vertices. Suppose that k − 1 distinct vertices in C are
connected to a vertex v outside Z by k − 1 edges. Then these k − 1 edges must
have k − 1 distinct colors, and each of them extends a spider leg of a distinct
color. Moreover, among the other edges incident to v, there can be at most one
edge of each of the k − 1 colors, which further extends a spider leg of that color.
Except these edges, all other edges incident to v must have the only remaining
color. ��

To obtain GZ from G, we first connect each vertex v in G to k − 1 distinct
vertices of C in a distinct copy of Z. Then we proceed differently for the two
cases: if k ≥ 3, replace each edge e = uv in G by 2k − 1 pairs of edges {uei, vei}
for 1 ≤ i ≤ 2k − 1; if k = 2, first connect each vertex v in G to two distinct
dummy vertices, then replace each edge e = uv in G by two pairs of edges
{ueu, veu} and {uev, vev}.

Lemma 12. For k ≥ 3, G admits a vertex coloring with k colors if and only if
GZ admits an edge partition into k spider forests.

Proof. We first prove the direct implication. Suppose that G admits a vertex
coloring with k colors. We obtain a k-color assignment to the edges of GZ that
partitions it into k spider forests as follows. For each vertex v of color κv in G,
first color the edges in the corresponding copy of Z as in the proof of Lemma 10,
next color the k − 1 edges between v and C with k − 1 distinct colors except κv,
and finally color all other edges incident to v with the same color κv.

We next prove the reverse implication. Suppose there is a k-color assignment
to the edges of GZ that partitions it into k spider forests. It follows by Lemma 11
that for each vertex v in G, the k−1 edges in GZ between v and the corresponding
copy of Z must have k − 1 distinct colors. Let the remaining color be the color
κv of v. We claim that this yields a vertex coloring with k colors in G.

We prove this claim by contradiction. Suppose that for some edge e = uv in
G, the two vertices u and v received the same color κu = κv = κ. By Lemma 11,
among the edges incident to u, except those between u and the corresponding
copy of Z, there are at most k − 1 edges not colored κ. In particular, among
the 2k − 1 edges uei, there are at most k − 1 edges not colored κ. Similarly,
among the 2k − 1 edges vei, there are at most k − 1 edges not colored κ. Thus
at least (2k − 1) − 2(k − 1) = 1 pair of edges uei and vei have the same color κ.
Also, among the 2k − 1 edges uei (respectively, vei), u (respectively, v) must be

Trees, Paths, Stars, Caterpillars and Spiders 563

incident to at least (2k − 1) − (k − 1) = k ≥ 3 edges of color κ. Thus we have a
monochromatic connected subgraph containing at least two vertices with degree
at least three, which is not a spider. This contradicts the assumption that the
k-color assignment to the edges of GZ partitions it into k spider forests. ��
Lemma 13. For k = 2, G admits a vertex subcoloring with two colors if and
only if GZ admits an edge partition into two spider forests.

Proof. We first prove the direct implication. Suppose that G admits a vertex
subcoloring with two colors. We obtain a two-color assignment to the edges of
GZ that partitions it into two spider forests as follows. For each vertex v of color
κv in G, first color the edges in the corresponding copy of Z as in Lemma 10,
such that the k − 1 = 1 edge between v and C is not colored κv. Then proceed
to color the two edges between v and the corresponding dummy vertices, and
the two edges vev and veu for each edge e = uv in G. If v has no neighbor of the
same color κv by the subcoloring in G, color all these edges with κv. Otherwise
if v has one neighbor u of the same color by the subcoloring, where uv = e, color
all these edges with κv, except the edge veu with the other color.

We next prove the reverse implication. Suppose there is a two-color assign-
ment to the edges of GZ that partitions it into two spider forests. Then for each
vertex v in G, the k − 1 = 1 edge in GZ between v and the corresponding copy
of Z takes one color. Let the other color be the color κv of v. We claim that this
yields a vertex subcoloring with two colors in G.

We prove this claim by contradiction. Suppose that for two edges e = uv and
f = uw in G, the three vertices u, v, w received the same color κu = κv = κw = κ.
By Lemma 11, among the edges incident to u, except the one between u and
the corresponding copy of Z, there is at most k − 1 = 1 edge not colored κ. In
particular, at most 1 of the 4 edges ueu, uev, ufu, ufw incident to u is not colored
κ. Similarly, at most 1 of the 2 edges vev, veu (respectively, wfw, wfu) incident to
v (respectively, w) is not colored κ. Thus at least 4− 1− 1− 1 = 1 of the 4 pairs
of edges {ueu, veu}, {uev, vev}, {ufu, wfu}, {ufw, wfw} have the same color κ.
Also, among the 2 edges to the dummy vertices and the 4 edges to eu, ev, fu, fw,
u must be incident to at least 2+4−1 = 5 > 3 edges of color κ, and, among the
2 edges to the dummy vertices and the 2 edges to eu, ev (respectively, fu, fw),
v (respectively, w) must be incident to at least 2 + 2 − 1 = 3 edges of color
κ. Thus we have a monochromatic connected subgraph containing at least two
vertices with degree at least three, which is not a spider. This contradicts the
assumption that the two-color assignment to the edges of GZ partitions it into
two spider forests. ��

Clearly, for both k ≥ 3 and k = 2, the graph GZ is bipartite, and the
reduction is polynomial. We have proved that for any k ≥ 2, deciding whether a
bipartite graph has spider arboricity at most k is NP-hard. This completes the
proof of Theorem4.

564 M. Jiang

6 Concluding Remarks

The track number of a graph is the minimum number of parts in an edge partition
of the graph such that each part induces an interval graph. For a triangle-free
graph, the track number is equal to the caterpillar arboricity. Because of this
connection, the aforementioned result of Gonçalves and Ochem [8, Theorem 6]
on caterpillar arboricity actually implies that deciding whether a triangle-free
graph has track number at most 2 is NP-complete. Similarly, our theorem on
caterpillar arboricity implies the following corollary.

Corollary 1. For any k ≥ 2, deciding whether a bipartite (hence also triangle-
free) graph has track number at most k is NP-complete.

The unit track number of a graph is the minimum number of parts in an
edge partition of the graph such that each part induces a unit interval graph.
For a triangle-free graph, the unit track number is equal to the linear arboricity.
The author proved in [10] that for any k ≥ 2, deciding whether a graph has unit
track number at most k (equivalently, recognizing unit k-track interval graphs)
is NP-complete. Our theorem on linear arboricity implies that this holds even
for bipartite graphs.

Corollary 2. For any k ≥ 2, deciding whether a bipartite (hence also triangle-
free) graph has unit track number at most k is NP-complete.

Recall that our result on linear arboricity holds for bipartite graphs with max-
imum degree 2k. Indeed our other results for star/caterpillar/spider arboricities
also hold for bipartite graphs with maximum degree bounded by some function
of k (note that in our reductions for k ≥ 3, the maximum degree of the graph G
for k-Colorability [13] is bounded by some function of k).

In light of the previous NP-hardness results [8,9,16] for small values of k,
some of our results for all k ≥ 2 may not seem surprising, but still we cannot
take them for granted. Indeed for certain graph classes, these restricted arboricity
problems may be hard for k = 2 but not for all k ≥ 2. For example, besides bipar-
tite graphs, planar graphs are another interesting class of graphs whose arboric-
ities are often studied. Gonçalves and Ochem [8] proved that deciding whether
a bipartite planar graph has star/caterpillar arboricity at most k = 2, 3 are
all NP-hard. Analogous results showing the NP-hardness of deciding whether a
bipartite planar (or just planar) graph has linear/star/caterpillar/spider arboric-
ity at most k for all k ≥ 2 are not possible, however, unless P = NP. This is
because the linear arboricity of any planar graph with maximum degree Δ is
known to be exactly �Δ/2	 for Δ ≥ 9 [3] and is at most Δ + 1 ≤ 9 for Δ < 9
by Vizing’s theorem, the star arboricity (hence the spider arboricity too) of any
planar graph is at most 5 [9], and the caterpillar arboricity of any planar graph is
at most 4 [7]. Hence it is trivial to decide whether the various restricted arboric-
ities of a planar graph are at most k when k exceeds certain constant thresholds.
Note in particular the sharp dichotomy implied by the results in [7,8]: deciding
whether a planar (or bipartite planar) graph has caterpillar arboricity at most
k is NP-hard for k = 2, 3 but is in P for any k ≥ 4.

Trees, Paths, Stars, Caterpillars and Spiders 565

Question 1. For what constant values of k is it NP-hard to decide whether a
planar (or bipartite planar) graph has linear/star/spider arboricity at most k?

Question 2. Rather than constructing ad hoc proofs for all values of k, can we
establish a meta-theorem for all graph-partitioning problems, such that the NP-
hardness of a problem with k equal to some constant c implies its NP-hardness
for all k ≥ c, as long as the source and target graph classes of the partition
satisfy certain properties?

References

1. Akiyama, J., Exoo, G., Harary, F.: Covering and packing in graphs III: cyclic and
acyclic invariants. Math. Slovoca 30, 405–417 (1980)

2. Alon, N.: The linear arboricity of graphs. Israel J. Math. 62, 311–325 (1988)
3. Cygan, M., Hou, J., Kowalik, �L., Lužar, B., Wu, J.: A planar linear arboricity

conjecture. J. Graph Theor. 69, 403–425 (2012)
4. Fiala, J., Jansen, K., Le, V.B., Seidel, E.: Graph subcolorings: complexity and

algorithms. SIAM J. Discrete Math. 16, 635–650 (2003)
5. Gabow, H.N., Westermann, H.H.: Forests, frames, and games: algorithms for

matroid sums and applications. Algorithmica 7, 465–497 (1992)
6. Gimbel, J., Hartman, C.: Subcolorings and the subchromatic number of a graph.

Discrete Math. 272, 139–154 (2003)
7. Gonçalves, D.: Caterpillar arboricity of planar graphs. Discrete Math. 307, 2112–

2121 (2007)
8. Gonçalves, D., Ochem, P.: On star and caterpillar arboricity. Discrete Math. 309,

3694–3702 (2009)
9. Hakimi, S.L., Mitchem, J., Schmeichel, E.: Star arboricity of graphs. Discrete Math.

149, 93–98 (1996)
10. Jiang, M.: Recognizing d-interval graphs and d-track interval graphs. Algorithmica

66, 541–563 (2013)
11. Klein, P., Ravi, R.: A nearly best-possible approximation algorithm for node-

weighted Steiner trees. J. Algorithms 19, 104–115 (1995)
12. Lovász, L.: Coverings and colorings of hypergraphs. In: Proceedings of the 4th

Southeastern Conference on Combinatorics, Graph Theory and Computing, pp.
3–12. Utilitas Mathematica Publishing, Winnipeg (1973)

13. Maffray, F., Preissmann, M.: On the NP-completeness of the k-colorability problem
for triangle-free graphs. Discrete Math. 162, 313–317 (1996)

14. Nash-Williams, C.S.J.A.: Decomposition of finite graphs into forests. J. Lond.
Math. Soc. 39, 12 (1964)

15. Peroche, B.: Complexité de l’arboricité linéaire d’un graphe. RAIRO Recherche
Operationelle 16, 125–129 (1982)

16. Shermer, T.C.: On rectangle visibility graphs III: external visibility and complex-
ity. In: Proceedings of the 8th Canadian Conference on Computational Geometry
(CCCG 1996), pp. 234–239 (1996)

Algorithms for the Densest Subgraph
with at Least k Vertices and with a Specified

Subset

Wenbin Chen(B), Lingxi Peng, Jianxiong Wang, Fufang Li, and Maobin Tang

Department of Computer Science, Guangzhou University, Guangzhou,
People’s Republic of China

cwb2011@gzhu.edu.cn

Abstract. The density of a subgraph in an undirected graph is the sum
of the subgraph’s edge weights divided by the number of the subgraph’s
vertices. Finding an induced subgraph of maximum density among all
subgraphs with at least k vertices is called as the densest at-least-k-
subgraph problem (DalkS).

In this paper, we first present a polynomial time algorithms for DalkS
when k is bounded by some constant c. For a graph of n vertices and m
edges, our algorithm is of time complexity O(nc+3 logn), which improve
previous best time complexity O(nc(n + m)4.5).

Second, we give a greedy approximation algorithm for the Densest
Subgraph with a Specified Subset Problem. We show that the greedy
algorithm is of approximation ratio 2 · (1 + k

3
), where k is the element

number of the specified subset.

1 Introduction

In many graphs, such as graphs arising from search auctions, from links of blogs,
or from protein-protein interactions, it is often required to find the densest sub-
graph with the large or small size. Based on these requirement, the densest
at-least-k-subgraph problem (DalkS) and the densest at-most-k-subgraph prob-
lem (DamkS) are introduced by Andersen in [1].

These problems are closely related to the densest subgraph problem [2] and
the dense k-subgraph problem [5]. Based on the maximum flow problem, the
densest subgraph of a given graph can be found in a polynomial time [6,7].
Charikar gave a 2-approximation algorithm with linear time in [2]. The dense
k-subgraph problem is to find the densest induced subgraph of exactly k vertices.
It is shown that the dense k-subgraph problem is NP -hard [4]. There are several
approximation algorithms for it [4,5,9,11,14].

For DamkS, Andersen showed that DamkS is NP -complete, but no approx-
imation algorithms for DamkS were provided. Recently, an approximation algo-
rithm for DamkS is given in [3].

For DalkS, Andersen a 2-approximation algorithm based on the parametric
flow algorithm [1,6]. In [10], Samir Khuller and Barna Saha proved that DalkS is
c© Springer International Publishing Switzerland 2015
Z. Lu et al. (Eds.): COCOA 2015, LNCS 9486, pp. 566–573, 2015.
DOI: 10.1007/978-3-319-26626-8 41

Algorithms for the Densest Subgraph with at Least k Vertices 567

NP-hard and also proposed 2-approximation algorithms based on the max-flow
algorithm and linear programming. They also studied the densest subgraph prob-
lem for directed graphs. For the densest subgraph problem of directed graphs,
Khuller and Saha proposed a polynomial time algorithm based on max-flow
technology, as well as a greedy 2-approximation algorithm.

Though DalkS is NP-hard, it is shown in [3] that DalkS is still polynomial
time solvable when k is bounded by some constant c. In [3], when k is bounded
by some constant c, an algorithm of time complexity O(nc(n + m)4.5) for the
DalkS problem is proposed based on Linear Programming method.

In some cases, it is required to find the densest subgraph with a specified sub-
set, such as gene annotation graphs [8]. To meet this requirement, Saha et al. intro-
duced the densest subgraph with a specified subset problem [13].

In [13], Saha et al. give an O(n4 log n)-time algorithm for the densest sub-
graph with a specified subset problem based on the maximum flow (min-cut)
problem. Later, Wenbin et al. propose a LP-based polynomial time algorithm
for this problem with less time O(n3.5) [3].

It is an open problem whether there exist any less time exact algorithms
or approximation algorithms for the densest subgraph with a specified subset
problem.

In this paper, firstly, we propose a polynomial time algorithm for DalkS when
k is bounded by some constant c based on the algorithm for the minimum cut
with at least k vertices. Our algorithm is of time complexity O(nc+3 log n), which
improve previous best time complexity O(nc(n + m)4.5).

Second, we propose an approximation algorithm for finding the densest sub-
graph with a specified subset problem in time O(n2). We show that the greedy
algorithm is of approximation ratio 2 · (1 + k

3), where k is the element number
of the specified subset.

The remainder of the paper is organized as follows. Section 2 reviews some
basic definitions. In Sect. 3, we give an algorithm for solving DalkS based on a
minimum s-t cut with at least k vertices problem. In Sect. 4, we design a greedy
approximation algorithm for finding the densest subgraph with a specified subset.
Finally, Sect. 5 give some open problems.

2 Definitions

In this section, we give some basic definitions. Let G = (V,E) be an undirected
graph in which every edge is assigned a positive weight by a weight function
w : E → R

+. Also, define the weighted degree of a vertex v in G, w(v,G), to be
the sum of the weights of the edges incident with v, and let the total weight of
G, W (G), be the sum of the weights of all of the edges in G.

Definition 1. For any induced subgraph H of G, we define the density of H to
be d(H) = W (H)

|H| .

Definition 2. For an undirected graph G, we define the quantity dal(G, k) =
the maximum density of an induced subgraph on at least k vertices.

568 W. Chen et al.

Definition 3. The densest at-least-k-subgraph problem (DalkS) is the problem
of finding an induced subgraph of at least k vertices with density dal(G, k).

In order to design our algorithm, we still need the following definition of a
minimum cut with at least k vertices and some facts about it in [3].

Definition 4. Given a graph G = (V,E), a cut is a partition of the vertex set
V into two sets V1 and V2. A cut edge set C = {(v1, v2) ∈ E : v1 ∈ V1, v2 ∈ V2}
is associated with every cut. The capacity of a cut is the sum of the capacities
(i.e. weights) of the cut edges.

Definition 5. Given vertices s, t ∈ V , an s-t cut is a cut (V1, V2) such that
s ∈ V1 and t ∈ V2. An s-t cut with at least k vertices is an s-t cut (V1, V2) such
that |V1 \ {s}| ≥ k.

In [3], it is shown that finding a minimum cut with at least k vertices is
polynomial time solvable when k is bounded by some constant c.

Lemma 1. When k is bounded by a constant value c, finding a minimum cut
with at least k vertices is solvable in time O(n(c+3)).

Definition 6. Given an undirected graph G and a vertices subset vF =
{vf1 , . . . vfk}, we define the following quantity
mdv(G, vF) := the maximum density of an induced subgraph containing vF .

Definition 7. The densest subgraph with a specified subset problem (DSS) is
the problem of finding an induced subgraph containing this specified subset vF
with density mdv(G, vF).

Now, we give a formal definition for an approximation algorithm.

Definition 8. An algorithm A(G, k) is a γ-approximation algorithm for the
densest subgraph with a specified subset problem if for any graph G and a specified
subset vF , it returns an induced subgraph H containing vF that mdv(G,vF)

d(H) ≤ γ.

3 An Algorithm for DalkS Based on the Minimum s-t
Cut with at Least k Vertices

In [7], Goldberg proposes a polynomial time algorithm for the densest subgraph
problem based on the minimum s-t cut problem. In this section, we generalize
Goldberg’s algorithm to find the densest subgraph with at least k vertices based
on the algorithm of finding a minimum s-t cut with at least k vertices.

The basic idea of the algorithm is as follows. At each stage, we guess a value
g for dal(G, k). Then, we construct a new graph and compute a minimum s-t
cut with at least k vertices that enables us to decide whether g ≤ dal(G, k) or
g > dal(G, k). Thus, we search for dal(G, k) in a binary search fashion.

Algorithms for the Densest Subgraph with at Least k Vertices 569

As in [7], we first consider the simplest case, in which G is an unweighted,
undirected graph—this is equivalent to a weighted graph in which all weights
are either 1 or 0.

Let G = (V,E) be an unweighted, undirected graph, and let n = |V | and
m = |E|. Let di be the degree of vertex i of G. Given a “guess” g, we construct
another graph N = (VN , EN) as follows [7].

We add source s and sink t to the set of vertices of G; connect source s to
every node i of G by an edge of capacity m; and connect every node i of G
to the sink t by an edge of capacity (m + 2g − di). Each edge of G is assigned
capacity 1. Since di ≤ m for all i, all capacities are positive. Whereas Goldberg
constructs a directed graph, we construct an undirected graph. This change
makes no difference, though.

Let (S, T) be an s-t cut in N , and let V1 = S \ {s} and V2 = T \ {t}. In [7],
Goldberg proved the following result:

Lemma 2. The capacity of the cut (S, T) = m|V | + 2|V1|(g − D1), where D1 is
the density of the subgraph of G generated by V1.

In order to decide whether g ≤ dal(G, k) or g > dal(G, k), we need the
following result, which is implicit in the Theorem 4.1 of [3].

Lemma 3. Let R be the value of a minimum s-t cut (S, T) with at least k
vertices. If R ≤ m|V |, then g ≤ dal(G, k). If R > m|V |, then g > dal(G, k).

As shown in [7], the smallest distance between two different possible subgraph
densities for undirected graphs is 1

n(n−1) . For completeness, we explain the reason
as follows. Since any density of one subgraph can be denoted as p

q , where 0 ≤
p ≤ m, 1 ≤ q ≤ n. So the difference Δd between two subgraphs’ density can be
denoted as p1

q1
− p2

q2
= p1q2−p2q1

q1q2
. When q1 �= q2, q1q2 ≤ n(n − 1), |Δd| ≥ 1

n(n−1) .
When q1 = q2, |Δd| ≥ 1/n ≥ 1

n(n−1) . Thus, we have the following theorem.

Theorem 1. If H is a subgraph of G with at least k vertices, and there exists
no subgraph H ′ with at least k vertices such that d(H ′) ≥ d(H) + 1

n(n−1) , then
d(H) = dal(G, k).

In the following, we design an algorithm for dal(G, k):
In the following, we show that below algorithm is correct and is of time

complexity O(nc+3 log n).

Theorem 2. Algorithm1 is correct and is of time complexity O(nc+3 log n)
when k is bounded by a constant c.

Proof. In the process of the algorithm, the value of u or � changes in each
loop and the value of u − � decreases gradually. Thus, at the beginning of each
loop, the value of g also changes, which influence the capacities of edges in the
graph N . In particular, V1 doesn’t influence the construction of N .

In above algorithm, when R ≤ m|V |, the value of � is changed and V1 is set
S \ {s}. Thus, by the step 7 in the algorithm, V1 contains at least k vertices of a

570 W. Chen et al.

Input: A unweighted graph G = (V, E) with n vertices, m edges and an
integer k

Output: An induced subgraph with at least k vertices
� = 0;1

u = m;2

V1 = V ;3

while u − � ≥ 1
n(n−1)

do4

g = u+�
2

;5

Construct N = (VN , EN);6

Find a minimum s-t cut (S, T) with at least k vertices and compute its cut7

value R;
if R > m|V | then8

u = g;9

else10

� = g;11

V1 = S \ {s};12

end13

end14

return the subgraph of G induced by V115

Algorithm 1. The algorithm for dal(G, k)

subgraph of G. By the Lemma 3, V1 has density at least �. When the algorithm
stops, we know that there is no subgraph of at least k vertices with density
� + 1

n(n−1) or greater, so the subgraph returned is a maximum density subgraph
with at least k vertices by the result of Theorem 1 So, above algorithm is correct.

If T (n) be the time of finding a minimum s-t cut with at least k vertices
in a graph of n vertices and m edges, the time of Algorithm 1 is O(T (n) log n).
Thus, we get above algorithm is of time complexity conclusion O(nc+3 log n) by
Lemma 1. Hence, we get the theorem.

Using Megiddo’s technique [12], Goldberg generalizes his algorithm to
weighted graphs. Similarly, our algorithm can be generalized to weighted graphs.
Details can be found [7], we omit them here.

4 A Greedy Approximation Algorithm for DSS

Given G = (V,E) and vF = {vf1 , . . . vfk} ⊆ V , a greedy approximation algo-
rithm is designed as follows: we repeatedly remove the vertex of V \ vF with
the minimum weighted degree in all non-vF vertices until the subgraph has only
those vF vertices. Let Gi denote each subgraph of i vertices formed in the process,
where i ∈ {n, . . . , k}. We then output the subgraph with the maximum density
from {Gn, . . . , Gk}.

Assume that |V | = n and |E| = m. It is not difficult to know that the greedy
algorithm can be implemented in time O(n2).

Algorithms for the Densest Subgraph with at Least k Vertices 571

In the following, we show that the greedy approximation algorithm for DSS
has approximation ratio 2 · (1 + k

3). First, we prove two lemmas.

Lemma 4. Suppose H is a subgraph of G and v ∈ H. Let w(H, v) denote the
sum of the weights of the edges incident with v in H. Let H ′ = H \ {v}. Then
d(H ′) = d(H) + d(H)−w(H,v)

|H|−1 .

Proof. Note that W (H ′) + w(H, v) = W (H). So (|H| − 1)d(H ′) + deg(H, v) =
|H|d(H). Hence, d(H ′) = d(H) + d(H)−w(H,v)

|H|−1 .

Lemma 5. If H is an optimum solution of DSS and v ∈ H, then w(G, v) ≥
mdv(G, vF).

Proof. Let H ′ = H \ {v}. Since d(H) ≥ d(H ′), d(H) ≥ d(H) + d(H)−w(H,v)
h−1

by Lemma 4. Thus, we get w(H, v) ≥ d(H). So w(H, v) ≥ mdv(G, vF). Thus,
w(G, v) ≥ w(H, v) ≥ mdv(G, vF).

Theorem 3. The greedy approximation algorithm for DSS is of approximation
ratio 2 · (1 + k

3).

Proof. We prove the claim by induction on the vertex number n of G. Basis:
when n = k + 1, k + 2, it is easy to verify the conclusion.

Inductive Hypothesis: We suppose the conclusion holds when n = s − 1, for
some s such that s − k ≥ 3.

We will show that the conclusion also holds for n = s.
Let v1 be the first vertex that is removed; i.e., v1 is the vertex of the minimum

weighted degree out of all non-vF vertices. So, Gs−1 = G \ {v1}. There are two
cases for v1: either v1 does not appear in the vertex set of the optimum solution
of DSS or v1 does appear in the optimum solution of DSS.

When v1 does not appear in the vertex set of the optimum solution of DSS,
we get mdv(Gs−1, vF) = mdv(G, vF). Let A(G) be the output solution of greedy
approximation algorithm for G. Let A(Gs−1) be the solution produced by the
greedy approximation algorithm for Gs−1.

By the induction hypothesis, mdv(Gs−1, vF)/A(Gs−1) ≤ 2 · (1 + k
3). Since

A(G) = max{d(G), A(Gs−1)}, we get mdv(G, vF)/A(G) ≤ mdv(Gs−1, vF)/
A(Gs−1) ≤ 2 · (1 + k

3).
Suppose v1 does appear in the vertex set of the optimum solution of DS(G, vF).

Then w(G, v) ≥ mdv(G, vF) by Lemma 5. Since v1 has the minimum weighted
degree in all non-vF vertices in G and there are s − k non-vF vertices in G, the
sum of all w(G, v) (v �∈ vF) is at least (s − k)w(G, v1). Thus, the sum of edges
weights in G is at least (s−k)w(G,v1)

2 ; i.e., W (G) ≥ (s−k)w(G,v1)
2 .

Hence, d(G) = W (G)
s ≥ (s−k)w(G,v1)

2s ≥ mdv(G,vF)
2 · s−k

s . Since s − k ≥ 3,
s−k
s ≥ 3

k+3 . Thus, d(G) ≥ mdv(G,vF)
2 · 3

k+3 . Hence, mdv(G,vF)
d(G) ≤ 2(k+3)

3 . So

mdv(G, vF)/A(G) ≤ mdv(G, vF)/d(G) ≤ 2(k+3)
3 = 2 · (1 + k

3).
Hence, the conclusion holds for n = s. By induction, the conclusion holds for

all n ≥ k. Thus, the greedy approximation algorithm for DSS is of approxima-
tion ratio 2 · (1 + k

3).

572 W. Chen et al.

5 Conclusion

In this paper, we have presented a O(nc+3 log n) time algorithm for the densest
at-least-k-subgraph problem (DalkS) when k is bounded by a constant c. Second,
we design an approximation algorithm with time O(n2) for finding the densest
subgraph with a specified subset problem. We prove that the approximation ratio
of the approximation algorithm is 2 · (1 + k

3), where k is the element number of
the specified subset.

One open problem is whether DalkS is still solvable in polynomial time when
k is not bounded by a constant (particularly as k approaches n

2). Another open
problem is to propose approximation algorithms with better approximation bet-
ter or exact algorithms with less time.

Acknowledgments. We would like to thank the anonymous referees for their careful
readings of the manuscripts and many useful suggestions.

Wenbin Chen’s research has been supported by the National Science Founda-
tion of China (NSFC) under Grant No. 11271097. Lingxi Peng’s research has been
partly supported by the Funding Program for Research Development in Institutions
of Higher Learning Under the Jurisdiction of Guangzhou Municipality under Grant
No. 2012A077. Jianxiong Wang’s research was partially supported under Foundation
for Distinguished Young Talents in Higher Education of Guangdong (2012WYM0105
and 2012LYM0105) and Funding Program for Research Development in Institutions
of Higher Learning Under the Jurisdiction of Guangzhou Municipality (2012A143).
FuFang Li’s work had been co-financed by: Natural Science Foundation of China under
Grant No. 61472092; Guangdong Provincial Science and Technology Plan Project
under Grant No. 2013B010401037; and GuangZhou Municipal High School Science
Research Fund under grant No. 1201421317. Maobin Tang’s research has been sup-
ported under Guangdong Province’s Science and Technology Projects under Grant
No. 2012A020602065 and the research project of Guangzhou education bureau under
Grant No. 2012A075.

References

1. Andersen, R., Chellapilla, K.: Finding dense subgraphs with size bounds. In:
Avrachenkov, K., Donato, D., Litvak, N. (eds.) WAW 2009. LNCS, vol. 5427, pp.
25–37. Springer, Heidelberg (2009)

2. Charikar, M.: Greedy approximation algorithms for finding dense components in
a graph. In: Jansen, K., Khuller, S. (eds.) APPROX 2000. LNCS, vol. 1913, pp.
84–95. Springer, Heidelberg (2000)

3. Chen, W., Samatova, N.F., Stallmann, M.F., Hendrix, W.: On size-constrained
minimum s-t cut problems and size-constrained dense subgraph problems, submit-
ted to Theoretical Computer Science, under review

4. Feige, U., Seltser, M.: On the densest k-subgraph problems. Technical report: CS97-
16, Department of Applied Mathematics and Computer Science (1997)

5. Feige, U., Kortsarz, G., Peleg, D.: The dense k-subgraph problem. Algorithmica
29, 410–421 (2001)

6. Gallo, G., Grigoriadis, M., Tarjan, R.: A fast parametric maximum flow algorithm
and applications. SIAM J. Comput. 18(1), 30–55 (1989)

Algorithms for the Densest Subgraph with at Least k Vertices 573

7. Goldberg, A.: Finding a maximum density subgraph, Technical report UCB/CSB
84/171, Department of Electrical Engineering and Computer Science, University
of California, Berkeley (1984)

8. Hu, H., Yan, X., Huang, Y., et al.: Mining coherent dense subgraphs across massive
biological networks for functional discovery. Bioinformatics 21, 213–221 (2005)

9. Han, Q.M., Ye, Y.Y., Zhang, J.W.: Approximation of Dense-k subgraph, http://
citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.41.1899

10. Khuller, S., Saha, B.: On finding dense subgraphs. In: Albers, S., Marchetti-
Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009, Part
I. LNCS, vol. 5555, pp. 597–608. Springer, Heidelberg (2009)

11. Kortsarz, G., Peleg, D.: On choosing a dense subgraph. In: Proceedings of the
34th Annual IEEE Symposium on Foundations of Computer Science, pp. 692–701
(1993)

12. Megiddo, N.: Combinatorial optimization with rational objective function. Math.
Operat. Res. 4(4), 414–424 (1979)

13. Saha, B., Hoch, A., Khuller, S., Raschid, L., Zhang, X.-N.: Dense subgraphs
with restrictions and applications to gene annotation graphs. In: Berger, B. (ed.)
RECOMB 2010. LNCS, vol. 6044, pp. 456–472. Springer, Heidelberg (2010)

14. Srivastav, A., Wolf, K.: Finding dense subgraphs with semidefinite programming.
In: Jansen, K., Rolim, J.D.P. (eds.) APPROX 1998. LNCS, vol. 1444, pp. 181–191.
Springer, Heidelberg (1998)

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.41.1899
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.41.1899

Deleting Edges to Restrict the Size
of an Epidemic: A New Application for

Treewidth

Jessica Enright1(B) and Kitty Meeks2

1 Computing Science and Mathematics, University of Stirling, Stirling, UK
jae@cs.stir.ac.uk

2 School of Mathematics and Statistics, University of Glasgow, Glasgow, UK
kitty.meeks@glasgow.ac.uk

Abstract. Motivated by applications in network epidemiology, we con-
sider the problem of determining whether it is possible to delete at most k
edges from a given input graph (of small treewidth) so that the maximum
component size in the resulting graph is at most h. While this problem
is NP-complete in general, we provide evidence that many of the real-
world networks of interest are likely to have small treewidth, and we
describe an algorithm which solves the problem in time O((wh)2wn) on
an input graph having n vertices and whose treewidth is bounded by a
fixed constant w.

1 Introduction

Network epidemiology seeks to understand the dynamics of disease spreading
over a network or graph, and is an increasingly popular method of modelling real-
world disease. The rise of network epidemiology corresponds to a rapid increase
in the availability of contact network datasets that can be encoded as networks or
graphs: typically, the vertices of the graph represent agents that can be infected
and infectious, such as individual humans or animals, or appropriate groupings
of these, such as cities, households, or farms. The edges are then the potentially
infectious contacts between those agents. Considering the contacts within a pop-
ulation as the edges of a graph can give a large improvement in disease modelling
accuracy over mass action models, which assume that a population is homoge-
neously mixing. For example, if we consider a sexual contact network in which
the vertices are people and the edges are sexual contacts, the heterogeneity in
contacts is very important for explaining the pattern and magnitude of an AIDS
epidemic [1].

Our work has been especially motivated by the idea of controlling diseases of
livestock by preventing disease spread over livestock trading networks.
As required by European law, individual cattle movements between agricultural
holdings in Great Britain are recorded by the British Cattle Movement Service
(BCMS) [20]; in early 2014, this dataset contained just under 300 million trades
and just over 133,000 agricultural holdings. For modelling disease spread across
c© Springer International Publishing Switzerland 2015
Z. Lu et al. (Eds.): COCOA 2015, LNCS 9486, pp. 574–585, 2015.
DOI: 10.1007/978-3-319-26626-8 42

Deleting Edges to Restrict the Size of an Epidemic 575

the British cattle industry, it is common to create vertices from farms, and edges
from trades of cattle between those farms: a disease incursion starting at a sin-
gle farm could spread across this graph through animal trades, as is thought to
have happened during the economically-damaging 2001 British foot-and-mouth
disease crisis [15].

We are interested in controlling or limiting the spread of disease on this sort
of network, and so have focussed our attention on edge deletion, which might
correspond to forbidden trade patterns or, more reasonably, extra vaccination
or disease surveillance along certain trade routes. Introducing extra controls of
this kind is costly, so it is important to ensure that this is done as effectively as
possible. Our target graph class is also informed by our disease motivation: when
a contagion spreads over the edges of a graph, the maximum component size is an
upper bound on the maximum number of vertices infected from a single initially
infected vertex. To this end, we consider the problem of determining whether a
given graph can be modified, using only up to k edge-deletion operations, so that
the resulting graph has maximum component size at most h. We also discuss a
number of relevant extensions:

– assigning different weights to different vertices (e.g. corresponding to the num-
ber of animals in a particular animal holding), and seeking to bound the total
weight of each connected component;

– associating different costs with the deletion of different edges;
– imposing different limits on the size of components containing individual ver-

tices (for example, we might want to enforce a smaller size limit for compo-
nents containing certain vertices considered to be particularly high risk).

This problem is intractable in general, so in order to develop useful algorithms
for real-world applications we need to exploit structural properties of the input
network. In Sect. 2 we provide evidence that many animal trade networks of
interest are likely to have small treewidth. In Sect. 3 we then go on to describe
an algorithm to solve the problem whose running time on an n-vertex graph
of treewidth w is bounded by O((wh)2wn); this algorithm is easily adapted to
output an optimal solution. Many problems that are thought to be intractable
in general are known to admit polynomial-time algorithms when restricted to
graphs of bounded treewidth, often by means of a dynamic programming strategy
similar to that used to attack the problem considered here; however, to the best
of the authors’ knowledge, the usefulness of such algorithms for solving real-world
network problems has yet to be investigated thoroughly.

In reality, policy decisions about where to introduce controls are likely to
be influenced by a range of factors, which cannot all be captured adequately
in a network model. Thus, the main application of our algorithm will be in
comparing any proposed strategy with the theoretical optimum: a policy-maker
can determine whether there is a solution with the same total cost that results
in a smaller maximum component size; extensive experiments on real animal
movement data are left as a task for future work.

In the remainder of this section, we begin by reviewing previous related
work in Sect. 1.1 before introducing some important notation in Sect. 1.2 and

576 J. Enright and K. Meeks

reviewing the key features of tree decompositions in Sect. 1.3. A discussion of
the treewidth of real-world networks is given in Sect. 2, and our algorithm is
described in Sect. 3.

1.1 Review of Previous Work

The problem of modifying a graph to bound the maximum component size has
previously been studied both in the setting of epidemiology [18] and in the study
of network vulnerability [7,13]. The edge-modification version we consider here
appears in the literature under various names, including the component order edge
connectivity problem [13] and the minimum worst contamination problem [18].
Li and Tang [18] show that it is NP-hard to approximate the minimisation version
of the problem to within 2 − ε, while Gross et al. [13] describe a polynomial-time
algorithm to solve the problem when the input graph is a tree.

From a combinatorial perspective, this problem belongs to the more general
family of edge-deletion problems. An edge-deletion problem asks if there is a set
of at most k edges that can be deleted from an input graph to produce a graph
in some target class. In contrast to the related well-characterised vertex-deletion
problems [17], there is not yet a complete characterisation of the hardness of
edge-deletion problems by target graph class.

Yannakakis [24] gave early results in edge-deletion problems, showing that
edge-deletion to planar graphs, outer-planar graphs, line graphs, and transi-
tive digraphs is NP-complete. Subsequently, Watanabe et al. [23] showed that
edge-deletion problems are NP-complete if the target graph class can be finitely
characterised by 3-connected graphs. There are a number of further hardness
results known for edge-deletion to well-studied graph classes, including for inter-
val and unit interval graphs [11], cographs [8], and threshold graphs [19] and,
as noted in [21], hardness of edge-deletion to bipartite graphs follows from
the hardness of a MAX-CUT problem. Natanzon et al. [21] further showed
NP-completeness of edge-deletion to disjoint unions of cliques, and perfect, chain,
chordal, split, and asteroidal-triple-tree graphs, but also give polynomial-time
algorithms, in the special case of the input graph having bounded degree, for
edge-deletion to chain, split, and threshold graphs.

Given the large number of hardness results in the literature, it is natural
to consider the parameterised complexity of these problems. Cai [5] initiated
this investigation, showing that edge-deletion to a graph class characterisable
by a finite set of forbidden induced subgraphs is fixed-parameter tractable when
parameterised by k (the number of edges to delete): he gave an algorithm to
solve the problem in time O(d2k ·nd+1), where n is the number of vertices in the
input graph and d is the maximum number of vertices in a forbidden induced
subgraph. Further fpt-algorithms have been obtained for edge-deletion to split
graphs [10] and to chain, split, threshold, and co-trivially perfect graphs [14].

Considering the problem of deleting edges to obtain a graph with restricted
maximum componet size, restricted to graphs of small treewidth, the algorithm
we describe in this paper represents a significant improvement on Cai’s result [5]
above, which implies the existence of an algorithm running in time O(h2k · nh)

Deleting Edges to Restrict the Size of an Epidemic 577

(on arbitrary input graphs). While the fixed parameter tractability of this prob-
lem (parameterised by the maximum component size h) restricted to graphs of
bounded treewidth does follow from the optimization version of Courcelle’s
Theorem [3,6], this does not lead to a practical algorithm for addressing real-world
problems.

1.2 Notation and Problem Definition

Unless otherwise stated, all graphs are simple, undirected, and loopless. For
graph G = (V,E), V = V (G) is the vertex set of G, and E = E(G) the edge set
of G. We denote the sizes of the edge and vertex sets of G as e(G) = |E(G)| and
v(G) = |V (G)|. For further general graph notation, we direct the reader to [12].

A partition P of a set X is a collection of disjoint, non-empty sets whose
union is X. We call each set in the partition a block of the partition, and every
partition corresponds to a unique equivalence relation on X where x ∼ y if and
only if x and y belong to the same block of X.

In this paper, we consider the following problem, were Ch is the set of all
connected graphs on h vertices.

Ch-Free Edge Deletion
Input: A Graph G = (V,E) and an integer k.
Question: Does there exist E′ ⊆ E with |E′| = k such that G \ E′ does not
contain any H ∈ Ch as an induced subgraph?

This problem is NP-complete even for h = 4: in [9] we outline an easy proof
of this result, by means of a reduction from Perfect Triangle Cover, which
relies on the observation that the maximum number of edges in a graph having
maximum component size h is obtained if the graph is a disjoint union of h-
cliques. In particular, this indicates that parameterisation by h alone will not be
sufficient to give an fpt-algorithm.

1.3 Tree Decompositions

In this section we review the concept of a tree decomposition (introduced by
Robertson and Seymour in [22]) and introduce some of the key notation we will
use throughout the rest of the paper.

Given any tree T , we will assume that it contains some distinguished vertex
r(T), which we will call the root of T . For any vertex v ∈ V (T)\r(T), the parent
of v is the neighbour of v on the unique path from v to r(T); the set of children
of v is the set of all vertices u ∈ V (T) such that v is the parent of u. The leaves
of T are the vertices of T whose set of children is empty. We say that a vertex u
is a descendant of the vertex v if v lies somewhere on the unique path from u to
r(T) (note therefore that every vertex is a descendant of the root). Additionally,
for any vertex v, we will denote by Tv the subtree induced by v together with
the descendants of v.

578 J. Enright and K. Meeks

We say that (T,D) is a tree decomposition of G if T is a tree and D = {D(t) :
t ∈ V (T)} is a collection of non-empty subsets of V (G) (or bags), indexed by
the nodes of T , satisfying:
1. V (G) =

⋃
t∈V (T) D(t),

2. for every e = uv ∈ E(G), there exists t ∈ V (T) such that u, v ∈ D(t),
3. for every v ∈ V (G), if T (v) is defined to be the subgraph of T induced by

nodes t with v ∈ D(t), then T (v) is connected.

The width of the tree decomposition (T,D) is defined to be maxt∈V (T) |D(t)|−1,
and the treewidth of G is the minimum width over all tree decompositions of G.

We will denote by Vt the set of vertices in G that occur in bags indexed by
the descendants of t in T . Thus, Vt =

⋃
t′∈V (Tt)

D(t′).
Although it is NP-hard to determine the treewidth of an arbitrary graph [2],

it is shown in [4] that the problem of determining whether a graph has treewidth
at most w, and if so computing a tree-decomposition of width at most w, can
be solved in linear time for any constant w.

Theorem 1 ([4]). For each w ∈ N , there exists a linear time algorithm, that
tests whether a given graph G = (V,E) has treewidth at most w, and if so,
outputs a tree decomposition of G with treewidth at most w.

A special kind of tree decomposition, known as a nice tree decomposition,
was introduced in [16]. The nodes in such a decomposition can be partitioned
into four types (examples in Fig. 1):
Leaf nodes: t is a leaf in T .
Introduce nodes: t has one child t′, such that D(t′) ⊂ D(t) and |D(t)| =

|D(t′)| + 1.
Forget nodes: t has one child t′, such that D(t′) ⊃ D(t) and |D(t)| = |D(t′)|−1.
Join nodes: t has two children, t1 and t2, with D(t1) = D(t2) = D(t).

Fig. 1. The four types of node in a nice tree decomposition. From left to right: a leaf,
an introduce node, a forget node, and a join node.

Any tree decomposition can be transformed into a nice tree decomposition
in linear time:

Lemma 1 ([16]). For constant k, given a tree decomposition of a graph G of
width w and O(n) nodes, where n is the number of vertices of G, one can find
a nice tree decomposition of G of width w and with at most 4n nodes in O(n)
time.

Deleting Edges to Restrict the Size of an Epidemic 579

2 Treewidth of Real Networks

While the overall graph of cattle trades in Great Britain from 2001 to 2014 is
fairly dense, many of the edges are repeated or parallel trades: that is, a farm
sending animals over time to the same place, or many individual animals being
moved at the same time; when we restrict our attention to a limited time frame,
and ignore movements that would generate multiple edges (that is, we require our
graph to be simple), the graph is quite sparse. When considering an epidemic, it
is much more relevant only to consider trades occurring within some restricted
time frame (whose precise duration depends on the disease under consideration).

Moreover, the networks that are obtained by considering shorter time frames
typically have an approximately hub-and-spoke or tree-like structure, which
results in small treewidth. This can be explained to some extent by consid-
ering the structure of the industry and the directionality of farm management
styles. For example, beef cattle are likely to flow through dealers or markets,
and lead quite short lives, which is likely to result in a hub-and-spoke network.
Additionally, farms can sometimes be characterised by “type”, with breeders
producing calves who then might be grown at one or two other farms before
eventual slaughter: this means that cycles are unlikely to occur frequently in the
network.

These anecdotal observations about the treewidth of livestock trade networks
have been supported by computational calculations on some examples of real
cattle trading graphs. First of all, for each year from 2009 to 2014, we generated
a graph from a type of persistent trade link recorded by BCMS in Scotland. The
largest of these is derived from the trades in 2013, and includes approximately
7,000 nodes and 6,000 edges (this lower density is typical when considering only
persistent trade links, or trades over a restricted time period). None of these six
graphs has treewidth more than four.

Secondly, in addition to these persistent trade links, we have computed an
upper bound of the treewidth of the largest component of an aggregated, undi-
rected version of the overall network of cattle trades in Scotland in 2009 over a
variety of time windows Fig. 2. The treewidths of these components remains low
even for large time windows: for an aggregation of all movements in a 200-day
window the treewidth is below 10, and for all movements over the year it is
below 18. It is unlikely to be necessary to include a full year of movements in
the analysis of any single epidemic, as the time scale of most exotic epidemics is
much shorter.

While we have by no means completed an exhaustive study of the structural
properties of real-world livestock trade networks, the evidence given here seems
sufficient to suggest that algorithms which achieve a good running time on graphs
of bounded treewidth will be useful for this application in practice.

3 The Algorithm

In this section, we describe an algorithm which, given a graph G together with a
nice tree decomposition (T,D) of G of width at most w, determines whether or

580 J. Enright and K. Meeks

Fig. 2. A plot of an upper bound treewidth of the largest component in an undirected
version of the cattle movement graph in Scotland in 2009 over a number of different
days included: all day sets start on January 1, 2009. Treewidths below eight are exact,
treewidths over eight are upper bounds of the true treewidth.

not it is possible to delete at most k edges from G so that the resulting graph has
no component on more than h vertices. Since there exist linear-time algorithms
both to compute a tree-decomposition of any graph G of fixed treewidth w, and
to transform an arbitrary tree-decomposition into a nice tree decomposition, this
in fact gives an algorithm which takes as input just a graph G of treewidth at
most w. Thus, we prove the following theorem.

Theorem 2. There exists an algorithm to solve Ch-Free Edge Deletion in
time O((wh)2wn) on an input graph with n vertices whose treewidth is at most w.

As with many algorithms that use tree decompositions, our algorithm works
by recursively carrying out computations for each node of the tree, using the
results of the same computation carried out on any children of the node in
question. In this case, we recursively compute the signature of each node: we
define the signature of a node in Sect. 3.1. It is then possible to determine whether
we have a yes- or no-instance to the problem by examining the signature of the
root of T .

The techniques used to calculate each node’s signature from those of its
children (which differ slightly depending on which of the four types of node
in the nice tree decomposition is being considered) are fairly standard in the
literature, and are omitted here due to space constraints. Full details of the
algorithm, together with a mathematical proof of its correctness, are given in [9].
The running time of the algorithm is justified in Sect. 3.2, and several extensions
are also discussed.

Deleting Edges to Restrict the Size of an Epidemic 581

3.1 The Signature of a Node

In this section, we describe the information we compute for each node, and define
the signature of a node.

Throughout the algorithm, we need to record the possible states correspond-
ing to a given bag. A valid state of a bag D(t) is a triple consisting of:

1. a partition P of D(t) into disjoint, non-empty subsets or blocks of size at most
h, and

2. a function c : P → [h] such that, for each X ∈ P, |X| ≤ c(X).

We will write u ∼P v to indicate that u and v belong to the same block of P.
Intuitively, P tells us which vertices are allowed to belong to the same com-

ponent of the graph we obtain after deleting edges and c tells us the maximum
number of vertices which are permitted in components corresponding to a given
block of the partition.

For any bag D(t), we denote by st(t) the set of possible states of D(t). Note
that there are at most Bw partitions of a set of size w (where Bw is the wth Bell
number) and at most hw functions from a set of size at most w to [h]; thus the
total number of valid states for D(t) is at most Bwhw < (wh)w (although not
all possible combinations of a partition and a function will give rise to a valid
state).

For any given state σ = (P, c) ∈ st(t), we set E(t, σ) to be the set of edge-sets
E′ ⊂ E(G[Vt]) such that G̃t = G[Vt] \ E′ has the following properties:

1. for each connected component C of G̃t:
(a) |V (C)| ≤ h, and
(b) if Ct = V (C)∩D(t)
= ∅, then Ct is contained in a single block XC of P,

2. for each block X in P, the total number of vertices in connected components
of G̃t that intersect X is at most c(X).

Note that, whenever σ is a valid state for t, the set E(t, σ) will be non-empty:
setting E′ = E(G[Vt]) will always satisfy both conditions. Since we are interested
in determining whether it is possible to delete at most k edges to obtain a graph
with maximum component size h, we will primarily be interested in a subset of
E(t, σ): for any node t and σ ∈ st(t) we define this subset as

Ek(t, σ) = {E′ ∈ E(t, σ) : |E′| ≤ k}.

We then define
delk(t, σ) = min

E′∈Ek(t,σ)
|E′|,

adopting the convention that the minimum, taken over an empty set, is equal to
infinity. To simplify notation, given any a, b ∈ N, we define [a]≤b to be equal to
a if a ≤ b, and equal to ∞ otherwise. Finally, we define the signature of a node
t to be the function sigt : st(t) → {0, 1, . . . , k,∞} such that sigt(σ) = delk(t, σ).

Observe that, with this definition, our input graph is a yes-instance to Ch-
Free Edge Deletion if and only if there exists some σ ∈ st(r) such that
sigr(σ) ≤ k, where r is the root of the tree indexing the decomposition.

582 J. Enright and K. Meeks

3.2 Running Time and Extensions

At each of the O(n) nodes of the nice tree decomposition, we will generate, and
then iterate over, fewer than (wh)w states for that node. For each of those states,
we will need to consider a collection of inherited states for the node’s children;
there are at most (wh)w such states (or pairs of states, in the case of a join node)
that need to be considered for each state of the parent node. In the algorithm,
we first generate each of the states for a given node, and the corresponding set
of inherited states for its children, then iterate over each relevant combination of
states, performing various constant-time operations. Thus, at each of O(n) nodes
we do O

(
(wh)2w

)
work, giving an overall time complexity of O((wh)2wn).

For simplicity, we have only described the most basic version of the
algorithm; however, it is straightforward to extend it to deal with more com-
plicated situations, involving any or all of the following.

Deleting edges so that the sum of weights of vertices in any component is at most
h, where a weight function w : V (G) → N is given: change condition 1(a) in the
definition of E(t, σ) to

∑
v∈V (C) w(v) ≤ h, and add to the definition of the set

of valid states for a node the condition that, for each block X of P, we have∑
v∈X w(X) ≤ c(X).

Determining if it is possible to delete a set of edges whose total cost is at
most k, where a cost function f : E(G) → N is given: define delk(t, σ) to be
minE′∈E(σ,t)

∑
e∈E′ f(e).

Deleting edges so that each vertex v belongs to a component containing at most
�(v) vertices, where a limit function � : V (G) → N is given: change condition
1(a) in the definition of E(t, σ) to |V (C)| ≤ minv∈V (C) �(v), and add to the def-
inition of the set of valid states for a node the condition that, for each block X
of P, we have c(X) ≤ minv∈X �(v).

None of these adaptations changes the asymptotic running time of the algorithm.
Additionally, if we wish to output an optimal set of edges to delete in any

of the variants (note that in general there may be many such optimal sets),
we can simply record, for each node t and each state σ ∈ st(t), a set of edges
E′ ∈ Ek(t, σ) such that |E′| = delk(t, σ); computing such a set from the relevant
sets for the node’s children requires only basic set operations. An element of
E(r, σ), where r is the root of the tree decomposition and delk(r, σ) = minσ∈st(r)

is then an optimal solution for the problem.

4 Conclusions and Open Problems

We have investigated the relevance of the well-studied graph parameter treewidth
to the structure of real-world animal trade networks, and have provided evidence
that this parameter is likely to be small for many networks of interest for epi-
demiological applications. Motivated by this observation, we have derived an

Deleting Edges to Restrict the Size of an Epidemic 583

algorithm to solve Ch-Free Edge Deletion on input graphs having n ver-
tices and treewidth bounded by some fixed constant w in time O((wh)2wn). It is
straightforward to adapt this algorithm to deal with more complicated situations
likely to arise in the application.

An implementation of our approach and its application to real livestock data
sets will be one of our next steps; this presents an unusual opportunity to apply
a treewidth-based optimisation algorithm to a real-life problem.

Many open questions remain concerning the complexity of this problem
more generally, as we are far from having a complete complexity classification.
We know that useful structure in the input graph is required to give an fpt-
algorithm: we demonstrated that it is not sufficient to parameterise by the max-
imum component size h alone (unless P=NP). However, it remains open whether
the problem might belong to FPT when parameterised only by the treewidth
w; we conjecture that treewidth alone is not enough, and that the problem is
W[1]-hard with respect to this parameterisation. Considering other potentially
useful structural properties of input graphs, one question of particular relevance
to epidemiology would be the complexity of the problem on planar graphs: this
would be relevant for considering the spread of a disease based on the geographic
location of animal holdings (in situations where a disease is likely to be trans-
mitted between animals in adjacent fields).

Furthermore, animal movement networks can capture more information on
real-world activity when considered as directed graphs, and the natural gener-
alisation of the problem to directed graphs in this context would be to consider
whether it is possible to delete at most k edges from a given directed graph so
that the maximum number of vertices reachable from any given starting vertex
is at most h. Exploiting information on the direction of movements might allow
more efficient algorithms for this problem when the underlying undirected graph
does not have very low treewidth; a natural first question would be to consider
whether there exists an efficient algorithm to solve this problem on directed
acyclic graphs.

Finally, based on our investigation of the treewidth of real-world animal
trade networks, it is natural to ask what other relevant problems can be solved
efficiently on graphs of bounded treewidth. For example, we might wish to delete
edges to achieve membership in a more complicated graph class (for example,
some class of graphs on which intervention strategies used in the event of a
disease outbreak are likely to be effective); alternatively, if deleting edges to
achieve a small component size is too costly to be practical in some situations,
we might wish to consider more relaxed criteria that nevertheless retain some
desirable properties.

Acknowledgements. We are very grateful to Ivaylo Valkov for his assistance in
implementing this algorithm as part of a summer research project, and to EPIC:
Scotland’s Centre of Expertise on Animal Disease Outbreaks, which supported JE
for part of her work on this project.

584 J. Enright and K. Meeks

References

1. Anderson, R.M., Gupta, S., Ng, W.: The significance of sexual partner contact
networks for the transmission dynamics of HIV. J. Acquir. Immune Defic. Syndr.
Hum. Retrovirology 3, 417–429 (1990)

2. Arnborg, S., Corneil, D.G., Proskurowski, A.: Complexity of finding embeddings
in a k-tree. SIAM J. Alg. Disc. Meth. 8, 277–284 (1987)

3. Arnborg, S., Lagergren, J., Sesse, D.: Easy problems for tree-decomposable graphs.
J. Algorithms 12, 308–340 (1991)

4. Bodlaender, H.L.: A linear time algorithm for finding tree-decompositions of small
treewidth. In: Proceedings of the Twenty-fifth Annual ACM Symposium on Theory
of Computing, STOC 1993, pp. 226–234. ACM, New York, NY, USA (1993)

5. Cai, L.: Fixed-parameter tractability of graph modification problems for hereditary
properties. Inf. Process. Lett. 58(4), 171–176 (1996)

6. Courcelle, B., Mosbah, M.: Monadic second-order evaluations on tree-
decomposable graphs. Theor. Comput. Sci. 109(1–2), 49–82 (1993)

7. Drange, P.G., Dregi, M.S., van’t Hof, P.: On the computational complexity of
vertex integrity and component order connectivity. In: Ahn, H.-K., Shin, C.-S.
(eds.) ISAAC 2014. LNCS, vol. 8889, pp. 285–297. Springer, Heidelberg (2014)

8. El-Mallah, E.S., Colbourn, C.J.: The complexity of some edge deletion problems.
IEEE Trans. Circ. Syst. 3, 354–362 (1988)

9. Enright, J., Meeks, K.: Deleting edges to restrict the size of an epidemic (2015).
arXiv:1504.05773 [cs.DS]

10. Ghosh, E., Kolay, S., Kumar, M., Misra, P., Panolan, F., Rai, A., Ramanujan,
M.S.: Faster parameterized algorithms for deletion to split graphs. In: Fomin, F.V.,
Kaski, P. (eds.) SWAT 2012. LNCS, vol. 7357, pp. 107–118. Springer, Heidelberg
(2012)

11. Goldberg, P.W., Golumbic, M.C., Kaplan, H., Shamir, R.: Four strikes against
physical mapping of DNA. J. Comput. Biol. 2, 139–152 (1993)

12. Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs, vol. 57. Elsevier,
Amsterdam (2004)

13. Gross, D., Heinig, M., Iswara, L., Kazmierczak, L.W., Luttrell, K., Saccoman, J.T.,
Suffel, C.: A survey of component order connectivity models of graph theoretic
networks. SWEAS Trans. Math. 12(9), 895–910 (2013)

14. Guo, J.: Problem Kernels for NP-complete edge deletion problems: split and
related graphs. In: Tokuyama, T. (ed.) ISAAC 2007. LNCS, vol. 4835, pp. 915–926.
Springer, Heidelberg (2007)

15. Kao, R.R., Green, D.M., Johnson, J., Kiss, I.Z.: Disease dynamics over very dif-
ferent time-scales: foot-and-mouth disease and scrapie on the network of livestock
movements in the UK. J. R. Soc. Interface 4(16), 907–916 (2007)

16. Kloks, T.: Treewidth: Computations and Approximations. LNCS, vol. 842.
Springer, Heidelberg (1994)

17. Lewis, J.M., Yannakakis, M.: The node-deletion problem for hereditary properties
is NP-complete. J. Comput. Syst. Sci. 20(2), 219–230 (1980)

18. Li, A., Tang, L.: The complexity and approximability of minimum contamination
problems. In: Ogihara, M., Tarui, J. (eds.) TAMC 2011. LNCS, vol. 6648, pp.
298–307. Springer, Heidelberg (2011)

19. Margot, F.: Some complexity results about threshold graphs. Discrete Appl. Math.
49(1:3), 299–308 (1994). (Special Volume Viewpoints on Optimization)

http://arxiv.org/abs/1504.05773

Deleting Edges to Restrict the Size of an Epidemic 585

20. Mitchell, A., Bourn, D., Mawdsley, J., Wint, W., Clifton-Hadley, R., Gilbert, M.:
Characteristics of cattle movements in britain: an analysis of records from the
cattle tracing system. Anim. Sci. 80, 265–273 (2005)

21. Natanzon, A., Shamir, R., Sharan, R.: Complexity classification of some edge mod-
ification problems. Discrete Appl. Math. 113(1), 109–128 (2001). (Selected Papers:
12th Workshop on Graph-Theoretic Concepts in Computer Science)

22. Robertson, N., Seymour, P.D.: Graph Minors. III. Planar Tree-Width. J. Comb.
Theory Ser. B 36(1), 49–64 (1984)

23. Watanabe, T., Ae, T., Nakamura, A.: On the NP-hardness of edge-deletion and
-contraction problems. Discrete Appl. Math. 6(1), 63–78 (1983)

24. Yannakakis, M.: Node-and edge-deletion NP-complete problems. In: Proceedings
of the Tenth Annual ACM Symposium on Theory of Computing, STOC 1978, pp.
253–264. ACM, New York, NY, USA (1978)

Optimal Approximation Algorithms
for Maximum Distance-Bounded

Subgraph Problems

Yuichi Asahiro1, Yuya Doi2, Eiji Miyano2(B), and Hirotaka Shimizu2

1 Department of Information Science, Kyushu Sangyo University,
Fukuoka 813-8503, Japan

asahiro@is.kyusan-u.ac.jp
2 Department of Systems Design and Informatics, Kyushu Institute of Technology,

Fukuoka 820-8502, Japan
miyano@ces.kyutech.ac.jp

Abstract. A d-clique in a graph G = (V, E) is a subset S ⊆ V of ver-
tices such that for pairs of vertices u, v ∈ S, the distance between u and
v is at most d in G. A d-club in a graph G = (V, E) is a subset S′ ⊆ V
of vertices that induces a subgraph of G of diameter at most d. Given a
graph G with n vertices, the goal of Max d-Clique (Max d-Club, resp.)
is to find a d-clique (d-club, resp.) of maximum cardinality in G. Max
1-Clique and Max 1-Club cannot be efficiently approximated within
a factor of n1−ε for any ε > 0 unless P = NP since they are identi-
cal to Max Clique [14,21]. Also, it is known [3] that it is NP-hard
to approximate Max d-Club to within a factor of n1/2−ε for any fixed
d ≥ 2 and for any ε > 0. As for approximability of Max d-Club, there
exists a polynomial-time algorithm which achieves an optimal approx-
imation ratio of O(n1/2) for any even d ≥ 2 [3]. For any odd d ≥ 3,
however, there still remains a gap between the O(n2/3)-approximability
and the Ω(n1/2−ε)-inapproximability for Max d-Club [3]. In this paper,
we first strengthen the approximability result for Max d-Club; we design
a polynomial-time algorithm which achieves an optimal approximation
ratio of O(n1/2) for Max d-Club for any odd d ≥ 3. Then, by using the
similar ideas, we show the O(n1/2)-approximation algorithm for Max
d-Clique on general graphs for any d ≥ 2. This is the best possible
in polynomial time unless P = NP, as we can prove the Ω(n1/2−ε)-
inapproximability. Furthermore, we study the tractability of Max d-
Clique and Max d-Club on subclasses of graphs.

1 Introduction

Let G = (V,E) be an unweighted graph, where V and E denote the set of vertices
and the set of edges, respectively. V (G) and E(G) also denote the vertex set and
the edge set of G, respectively. A clique in a graph G is a subset Q ⊆ V (G)
of pairwise adjacent vertices, i.e., the diameter of the subgraph induced by Q is
one. In graph theory and theoretical computer science, one of the most important

c© Springer International Publishing Switzerland 2015
Z. Lu et al. (Eds.): COCOA 2015, LNCS 9486, pp. 586–600, 2015.
DOI: 10.1007/978-3-319-26626-8 43

Maximum Distance-Bounded Subgraphs Problems 587

(b) (c)

u u

v
v

w w

(a)

G SG1 SG2

Fig. 1. (a) Graph G, (b) maximum 2-clique SG1, and (c) maximum 2-club SG2

and most investigated computational problems is the maximum clique problem
(Max Clique): Given a graph G, the goal of Max Clique is to find a clique
of maximum cardinality in G. There are a huge number of its applications in
diverse fields; many different problems have been modeled using cliques.

In this paper, we consider two types of generalizations of Max Clique,
the maximum distance-d clique problem (Max d-Clique) and the maximum
diameter-d club problem (Max d-Club) for a positive integer d [2,18]:
A distance-d clique (d-clique for short) in a graph G is a subset S ⊆ V (G)
of vertices such that for pairs of vertices u, v ∈ S, the distance between u and v
is at most d in G. A diameter-d club (d-club for short) in a graph G is a subset
S′ ⊆ V (G) of vertices that induces a subgraph of G of diameter at most d. Given
a graph G, the goal of Max d-Clique (Max d-Club, resp.) is to find a d-clique
(d-club, resp.) of maximum cardinality in G. For d = 1, Max 1-Club is the
same problem as Max 1-Clique, i.e., Max 1-Club is simply Max Clique.
For d ≥ 2, however, Max d-Club and Max d-Clique are quite different: Take
a look at a graph G having eight vertices illustrated in Fig. 1(a). The 2-clique of
maximum cardinality in G is SG1 induced by seven black vertices in Fig. 1(b),
and the 2-club of maximum cardinality is SG2 induced by only six black vertices
in Fig. 1(c). Note that the distance between u and v is only two in G since those
vertices are connected through the “outside” vertex w of SG1. Also, note that
the diameter of SG1 itself is three, but the diameter of SG2 is two.

In the following we assume that the input graph G = (V,E) has |V (G)| = n
vertices and |E(G)| = m edges. Since Max 1-Clique and Max 1-Club are
identical to Max Clique, they cannot be efficiently approximated within a
factor of n1−ε for any ε > 0 unless P = NP [14,21]. For any ε > 0 and a
fixed d ≥ 2 it can be shown that it is NP-hard to approximate Max d-Club
to within a factor of n1/3−ε by using the gap preserving reduction provided
by Marinc̆ek and Mohar [17] (although they assumed that NP �= ZPP in
their original proof). Then, Asahiro et al. [3] improve the inapproximability
from Ω(n1/3−ε) to Ω(n1/2−ε) for general graphs. As for the approximability,
they present a polynomial-time algorithm which achieves an optimal approxi-
mation ratio of O(n1/2) for any even d ≥ 2. For any odd d ≥ 3, however, there
still remains a gap between the O(n2/3)-approximability and the Ω(n1/2−ε)-
inapproximability for Max d-Club on general graphs [3]. In this paper, we
first strengthen the approximability result for Max d-Club; we design a sim-
ple polynomial-time algorithm which achieves an optimal approximation ratio

588 Y. Asahiro et al.

of O(n1/2) for Max d-Club on general graphs for any odd d ≥ 3. Then, by
using the similar ideas, we show the O(n1/2)-approximation algorithm for Max
d-Clique on general graphs for any d ≥ 2. This is the best possible in polynomial
time unless P = NP, as we can prove the Ω(n1/2−ε)-inapproximability.

Max d-Clique and Max d-Club on general graphs are very difficult even to
approximate as described above. Furthermore, unfortunately, even for bipartite
graphs (and thus perfect graphs), it remains NP-hard to approximate Max d-
Club to within a factor of n1/3−ε for any ε > 0 and for any fixed integer d ≥ 3.
For every fixed even integer d ≥ 2, it remains NP-hard to approximate Max
d-Club to within a factor of n1/3−ε for any ε > 0 if the input graph is chordal.
A graph G is chordal if every cycle of length at least four in G has at least one
chord, which is an edge joining non-consecutive vertices in the cycle.

To cope with such hard situations, we investigate a graph structure on the
length of cycles for Max d-Club, motivated by the fact that a bipartite graph
has only cycles of even length, and a chordal graph does not have long induced
cycles. More precisely, we show that if every cycle of length at least d + 3 in the
input graph G has at least one chord, i.e., G has no induced cycle of length at
least d + 3, then a simple algorithm exactly solves Max d-Club for G. As its
direct consequences with simple observations, it is shown that for every fixed
integer d ≥ 1, Max d-Clique and Max d-Club can be solved in polynomial
time for (i) interval graphs, (ii) trapezoid graphs, and (iii) strongly chordal graphs.
Furthermore, we show that for every fixed odd integer d ≥ 1, Max d-Clique and
Max d-Club can be solved in polynomial time for (iv) weakly chordal graphs
and thus (v) chordal graphs. The formal definitions of those graphs, and inclusion
relations among the graph classes are given in Sect. 4.1, however the graphs, (i),
(ii), and (v), are typical intersection graphs, and (i) through (v) do not include
any induced cycle of length at least five. Note that although the tractability
results (i) and (v) have been already stated in [3], their proofs contained errors
which are fixed in this paper. Also, note that Golovach et al. [13] have inde-
pendently shown the tractability of Max d-Club on (i) interval, (iii) strongly
chordal graphs for any d ≥ 2 and Max d-Club on (iv) weakly chordal and
(v) chordal graphs for any odd d ≥ 1 by proving the so-called d-clique-power
properties of graphs without induced cycle of length at least five.

Although this paper focuses on the polynomial-time solvability and the
approximability of the problems, here we would like to cite more theoretical
results: The decision version d-Club of Max d-Club asks whether there exists
a d-club of size at least k in a given graph. Schäfer et al. [20] develop fixed para-
meter algorithms for the problem, whose running times are O((k−2)k·k!·kn+nm)
and O(2n−k ·nm). Chang et al. [7] propose an O∗(1.62n) time algorithm for Max
d-Club.

2 Problems and Previous Results

2.1 Definitions

Let G = (V,E) be a connected undirected graph. We denote an edge with
endpoints u and v by (u, v). The maximum and the minimum degree among all

Maximum Distance-Bounded Subgraphs Problems 589

vertices in a graph G is denoted by Δ(G) and δ(G), respectively. For a vertex v,
the set of vertices adjacent to v in G, i.e., the open neighborhood of v is denoted
by NG(v), and N+

G (v) denotes the closed neighborhood of v, i.e., NG(v) ∪ {v}.
A graph S is a subgraph of a graph G = (V,E) if V (S) ⊆ V and E(S) ⊆ E.

For a subset of vertices U ⊆ V , let G[U] be the subgraph of G induced by U .
For a subgraph S of G, if E(S) = V (S) × V (S), then S (or G[V (S)]) and V (S)
are called a clique and a clique set, respectively.

A path Pv0,vi,v�
of length � from a vertex v0 to a vertex v�, which passes

through a vertex vi, is represented as a sequence of vertices such that Pv0,vi,v�
=

〈v0, v1, · · · , vi, · · · , v�〉. The length of a path P is denoted by |P |. A cycle C of
length � is similarly written as C = 〈v0, v1, · · · , v�−1, v0〉. In this paper, we deal
with simple paths and simple cycles only, that is, vi �= vj for any vi and vj

in the sequences of vertices. For a path P , P represents a path of the reverse
order. Consider two paths P1 = 〈v0, · · · , vi〉 and P2 = 〈vi, · · · , v�〉, where the end
vertex of P1 and the start vertex of P2 are identical. Then, a path Pv0,vi,v�

=
〈v0, · · · , vi, · · · , v�〉 constituted by P1 and P2 is denoted by P1 ⊕ P2. For a path
P passing through two vertices u and v, P (u, v) is the subpath of P from u to
v. For a pair of vertices u and v in G, the length of a shortest path from u to v,
i.e., the distance between u and v is denoted by distG(u, v), and the diameter of
G is defined as diam(G) = maxu,v∈V (G){distG(u, v)}.

For a positive integer d ≥ 1 and a graph G, the d-th power of G, denoted
by Gd = (V (G), (E(G))d), is the graph formed from V (G), where all pairs of
vertices u, v ∈ G such that distG(u, v) ≤ d are connected by an edge (u, v). Note
that E(G) ⊆ (E(G))d, i.e., the original edges in E(G) are retained.

Definition 1. A subgraph S (or a vertex set V (S)) of G is a d-clique (or a
d-clique set) if distG(u, v) ≤ d holds for every pair of u, v ∈ V (S).

The diameter of a d-clique may be greater than d. A d-clique with diameter
at most d is called d-club:

Definition 2. A subgraph S of G (or a vertex set V (S)) is a d-club (or a d-club
set) if distS(u, v) ≤ d holds for every pair of u, v ∈ V (S), i.e., diam(S) ≤ d.

Although in [18], a d-club (or a d-clique) is defined as a maximal subgraph,
i.e., no super set of vertices forms a d-club (or d-clique), we do not restrict our
attention to maximal ones in this paper; it is known to be NP-complete to
answer whether a given d-club is maximal or not [19]. Clearly, a d-club of G is
also a d-clique of G from their definitions. The sizes of the maximum clique, the
maximum d-clique, and the maximum d-club in G are denoted by #clique(G),
#clique(G, d), and #club(G, d), respectively.

For the maximization problems, an algorithm ALG is called a σ-approximation
algorithm and ALG’s approximation ratio is σ if OPT (G)/ALG(G) ≤ σ holds for
every input G, where ALG(G) and OPT (G) are the numbers of vertices of
obtained subgraphs by ALG and an optimal algorithm, respectively.

The maximum d-clique problem (Max d-Clique) and the maximum d-club
problem (Max d-Club) are formulated as follows: Given a connected undirected

590 Y. Asahiro et al.

graph G, the goal of Max d-Clique (Max d-Club, resp.) is to find a d-clique
(d-club, resp.) of maximum cardinality in G. In the case d = 1, the above two
problems are the same; the problems Max 1-Clique and Max 1-Club are
identical to Max Clique, and hence they are generalizations of Max Clique
in terms of the distance between vertices and the diameter of output subgraphs.
Here we observe that it holds that #clique(G) = #clique(G, 1) = #club(G, 1).
Since Erdös et al. [9] show that the diameter of a connected undirected graph G
having n vertices is at most 3n/(δ(G) + 1) + O(1), the above two problems are
defined for the range 1 ≤ d ≤ 3n/(δ(G) + 1) + O(1).

2.2 Optimal Approximation Algorithm for Max d-Club
with Even d in [3]

In this subsection, we give a brief explanation on the optimal approximation
algorithm for Max d-Club with even d, proposed in [3]; its basic idea is to
find a 2-clique in the �d/2�-th power of the original G: The algorithm FindStar
finds a vertex v having the maximum degree Δ(G) in the input graph G and
then outputs the subgraph G[N+

G (v)] induced by the vertex v and its adjacent
Δ(G) vertices. This output subgraph is clearly a 2-club and hence a d-club for
d ≥ 2 of size Δ(G) + 1. FindStar is rather simple and runs in linear time. Its
approximation ratio is given as follows:

Lemma 3. Given an n-vertex graph and a fixed integer d ≥ 2, FindStar

achieves an approximation ratio of O(n1−1/d) for Max d-Club.

By the above Lemma 3, one can see that the approximation ratio of FindStar
is O(n1/2) for Max 2-Club. This approximation ratio of FindStar is the best
possible for Max 2-Club in the sense that the lower bound of the approximation
ratio of the problem is Ω(n1/2−ε) for any ε > 0 as shown also in [3].

A simple polynomial time algorithm PowerOfGraph is designed to construct
the d-th power of a given connected undirected graph G = (V,E) and an inte-
ger d: PowerOfGraph first computes distG(u, v) for any pair of vertices u, v ∈ V ,
and then adds an edge (u, v) if distG(u, v) ≤ d. By combining PowerOfGraph and
FindStar, the following polynomial-time algorithm ByFindStard was proposed
for Max d-Club, in which the �d/2�-th power of the input graph is constructed.

Algorithm ByFindStard

Input: A connected undirected graph G = (V,E)
Output: A subgraph S of G
Step 1. Obtain the �d/2�-th power G�d/2� of the graph G by applying

PowerOfGraph(G, �d/2�).
Step 2. Apply FindStar to G�d/2�, and then obtain a largest star T .
Step 3. Output S = G[V (T)].

The following lemma states that the output of ByFindStard is a d-club.

Maximum Distance-Bounded Subgraphs Problems 591

(a) (b) (c)

(d) (e) (f)

Fig. 2. (a) Example graph G for d = 5; (b) G2; (c) an output of ByFindStar5 (in solid
line); (d) the graph H; (e) Hd; (f) an output by ByFindStar25 (in solid line)

Lemma 4. The output of ByFindStard is a 2 · �d/2�-club.
The approximation ratio of ByFindStard for even d is as follows.

Theorem 5. For an n-vertex graph and a fixed even integer d ≥ 2, ByFindStard

is a polynomial time O(n1/2)-approximation algorithm for Max d-Club.

Unfortunately, however, for odd d’s, the approximation ratio of ByFindStard

becomes worse, which is one of the motivations of this paper:

Theorem 6. For an n-vertex graph and a fixed odd integer d ≥ 3, ByFindStard

is a polynomial time O(n2/3)-approximation algorithm for Max d-Club.

3 Optimal Approximation Algorithm for Max d-Club
with Odd d

As described in Sect. 2.2 the performance of ByFindStard for odd d’s is worse
than that for even d’s. This reason can be seen in Lemma 4: In the worst case,
although the optimal solution is a subgraph of diameter exactly d (i.e., d-club),
ByFindStard outputs a subgraph of diameter 2 · �d/2�, which is d − 1 if d is
odd. For example, take a look at Fig. 2. Now suppose that d = 5. One bad
example for the previous algorithm ByFindStar5 is shown in Fig. 2(a), which is
a path of length five, i.e., it is a 5-club and thus the whole graph is the optimal
solution for Max 5-Club. Given the graph G as input, however, ByFindStar5
first constructs G2 in (b), and then finds a star depicted by solid lines in (c),
which has five vertices. That is, the output is a 4-club (path of length 4) in G.

The above observation leads us to a new algorithm ByFindStar2d below;
ByFindStar2d first inserts an extra vertex into each edge as in Fig. 2(d), and
then constructs its d-th power graph, while the previous ByFindStard constructs
the �d/2�-th power graph. By this modification, edges connected to a newly
inserted vertex can represent distance of d/2 for odd d, and the obtained star in
Fig. 2(f) corresponds to a d-club in G. Although the ideas are quite simple, they

592 Y. Asahiro et al.

can improve the approximation ratio from the previous O(n2/3) to O(n1/2) as
shown later in Theorem 10. The following is a description of ByFindStar2d for
Max d-Club.

Algorithm ByFindStar2d

Input: A connected undirected graph G = (V,E)
Output: A subgraph of G
Step 1. Insert one vertex wu,v to each edge (u, v). The newly inserted

vertices are called white vertices and the set of white vertices is
denoted by VW , while the original vertices in V are called black
vertices. The obtained graph is denoted by H = (V ∪VW , E′), where
E′ = {(u,wu,v), (v, wu,v) | (u, v) ∈ E}.

Step 2. Obtain the d-th power Hd of the graph H by applying
PowerOfGraph(H, d).

Step 3. For Hd, find a star T = (V ′, E′) having the maximum number
of black vertices. (We call this procedure FindStar2)

Step 4. Output G[V ′ ∩V], i.e., the subgraph of G induced by the black
vertices in V ′.

For a set B of black vertices in a graph H constructed in Step 1, let W (B) =
{wu,v | u, v ∈ B and (u, v) ∈ E(G)} in H, i.e., W (B) includes every white vertex
whose two neighbors (black vertices) both belong to B. The next lemma relates
the distance between (black) vertices in G to the distance between them in H.

Lemma 7. For any pair of two black vertices u, v in a d-club set S of G,
distG[S](u, v) ≤ d if and only if distH[S∪W (S)](u, v) ≤ 2d. As a result, G[S]
is a d-club of G if and only if H[S ∪ W (S)] is a 2d-club of H.

Proof. (⇒) Consider a shortest path P from u to v in G[S]. Its corresponding
path P ′ in H[S ∪W (S)] includes the set of black vertices, say, V (P) and the set
of white vertices W (V (P)) determined by V (P). Thus, the length |P ′| is twice
of |P |, namely, if distG[S](u, v) ≤ d, then distH[S∪W (S)](u, v) ≤ 2d.

(⇐) For simplicity, let H ′ = H[S ∪ W (S)]. For any pair of white vertices
w1 and w2 in H ′, w1 and w2 are not adjacent, based on the construction of
H. Similarly, any two black vertices b1 and b2 in H ′ are not adjacent either.
Let P ′ be a shortest path from u to v in H ′. The length of the path P in G
corresponding to P ′ in H ′ is half of |P ′|. Note that the black vertices in P ′ are
included in S and so P exists inside G[S]. Thus, if distH[S∪W (S)](u, v) ≤ 2d,
then distG[S](u, v) ≤ d. ��

Next we examine how short the d-th power operation makes the original
distance between any pair of two black vertices in a 2d-club set in H:

Lemma 8. If S is a 2d-club set in H, then for any two black vertices u, v ∈ S,
distHd[S](u, v) ≤ 2 holds, i.e., S is a 2-club set in Hd.

Maximum Distance-Bounded Subgraphs Problems 593

Proof. Consider a path P of length at most 2d from u to v in H[S]. Let x be
the center vertex of P . That is, distH(u, x) ≤ d and distH(x, v) ≤ d hold. These
imply that Hd[S] has two edges (u, x) and (x, v) which are incident with x ∈ S,
i.e., distHd[S](u, v) ≤ 2. ��

The next lemma guarantees the output of ByFindStar2d is a feasible solution
for Max d-Club.

Lemma 9. The output of ByFindStar2d is a d-club in the input G.

Proof. Let r be the root of the star T = (V ′, E′) in Hd, obtained in Step 3.
Consider a vertex v ∈ V ′ such that v �= r. Since (r, v) ∈ E′, there is a path
P of length at most d from r to v in H. Notice that the vertices in P are also
adjacent to r in Hd because the distance from r to each of them is also at most
d. This implies that these vertices are also included in V ′. Therefore, if both u
and v belong to V ′ such that r �∈ {u, v}, that is, there are two edges (r, u) and
(r, v) in T , then distH[V ′](u, v) ≤ 2d because H[V ′] includes two paths of length
at most d from r to u, and from r to v. The distance between r and the another
vertex w ∈ V (T) in H[V ′] is at most d. In summary, diam(H[V ′]) ≤ 2d, i.e.,
H[V ′] is a 2d-club. Here, V ′ ∩ V is a set of black vertices in V ′. From Lemma 7
and the fact that H[V ′] is a 2d-club, for any two black vertices u, v ∈ V ′ ∩ V ,
distG[V ′∩V] ≤ d, i.e., G[V ′ ∩ V] is a d-club. ��

Finally we can show the approximation ratio of ByFindStar2d for Max d-
Club with odd d’s.

Theorem 10. ByFindStar2d is a polynomial-time �n1/2�-approximation algo-
rithm for Max d-Club with odd d.

Proof. Since FindStar2 in Step 3 runs in linear time in the size of Hd, the total
running time of ByFindStar2d is polynomial.

From Lemmas 7 and 8, a d-club of G corresponds to a 2-club of Hd. What we
want to do here is to find a 2-club in Hd having the maximum number of “black”
vertices (original vertices in G), which may be different from the maximum 2-club
in Hd. So we consider a variant of the problem, finding a 2-club having maximum
“black” vertices in Hd, where the solution size is defined as the number of black
vertices. While the previous procedure FindStar finds a 2-club having maximum
vertices, the new FindStar2 finds a (possibly different) 2-club having maximum
“black” vertices. One can observe that an optimal solution (2-club) in Hd for
this new problem may not give any d-club in the input G, however, Lemma 9
guarantees that the output of ByFindStar2d surely forms a d-club in G. In this
proof, the blackdegree of a vertex is the number of black vertices adjacent to v.
Let Δb be the maximum blackdegree of the vertices in Hd.

Let S∗ be a 2-club having maximum black vertices in Hd. We show an upper
bound of the number of black vertices in S∗. If S∗ has only black vertices, then the
number of vertices in S∗ is bounded above by 1+Δb+(Δb−1)2 = (Δb)2−Δb+2,
which is an upper bound on the number of black vertices reachable from a black
vertex by a path of length two. As a next case, assume that S∗ contains a white

594 Y. Asahiro et al.

vertex w. Let B1 be the set of black vertices in N1(w). The size |B1| is at most
Δb, and at most (Δb)2 black vertices in N2(w) are adjacent to the vertices of B1.
Let B2 be the set of those black vertices in N2(w), where |B2| ≤ (Δb)2. There
may exist white vertices in N1(w) and they may be adjacent to black vertices
in N2(w). Here we observe that the black vertices in N2(w) adjacent to white
vertices in N1(w) are all included in B2: Let x be a white vertex in N1(w), and
let y be one of its adjacent black vertices in N2(w). In H, distH(w, x) ≤ d − 1
because the distance between two white vertices is even. Then, there is a black
vertex z which is adjacent to x and is on a path of length at most d from x to y in
H. Here, distH(w, z) ≤ d and distH(z, y) ≤ d−1 hold and so there are two edges
(w, z) and (z, y) in Hd. Since z is a black vertex in N1(w), the vertex y is already
enumerated as a member of B2. Namely, such a new black vertex in N2(w) does
not appear as a neighborhood of white vertices in N1(w). Thus we can bound
the number of black vertices in S∗ above by max{(Δb)2 −Δb +2, |B1|+ |B2|} =
max{(Δb)2 −Δb +2, (Δb)2 +Δb}. Since Δb ≥ 1, (Δb)2 +Δb is the upper bound.

The size FindStar2(Hd) of the output by FindStar2 for Hd is at least Δb,
the number of black leaves of the obtained star, where the root vertex may be
white. Then the size #clubb(Hd, 2) of the optimal solution for the new problem
is bounded by min{n, (Δb)2 + Δb} from the above discussion. Note that Hd has
n + m vertices in total, but since the number of black vertices is n, one upper
bound of the optimal size is n here. Hence, if Δb ≥ �n1/2�, then

#clubb(Hd, 2)
FindStar2(Hd)

≤ n

Δb
≤ n

�n1/2� ≤ n1/2.

Conversely, if Δb ≤ �n1/2� − 1 (note that Δb is an integer), then

#clubb(Hd, 2)
FindStar2(Hd)

≤ (Δb)2 + Δb

Δb
= Δb + 1 ≤

⌈
n1/2

⌉
.

It holds that #clubb(Hd, 2) ≥ #club(H, 2d) = #club(G, d) based on Lemmas 7
and 8. Finally, the fact FindStar2(Hd) = ByFindStar2(G) derives that

#club(G, d)
ByFindStar2(G)

≤ #clubb(Hd, 2)
FindStar2(Hd)

≤
⌈
n1/2

⌉
,

where ByFindStar2(G) is the output size of ByFindStar2d for the input G. ��
Remark 11. The above proof is done under the assumption that d is odd in its
third paragraph. However, the upper bound (Δb)2 + Δb of the number of black
vertices can be shown also for the case where d is even, by which we can show
ByFindStar2d is also an �n1/2�-approximation algorithm for even d’s.

4 Polynomial-Time Algorithms of Max d-Club
for Graph Classes

4.1 Graph Classes

Let S = {S1, S2, · · · , Sn} be any family of nonempty sets. The intersection graph
of S, denoted by GS is the graph having S as vertex set with Si adjacent to Sj

Maximum Distance-Bounded Subgraphs Problems 595

if and only if i �= j and Si ∩ Sj �= ∅. Here, S is called a set representation of GS .
When S is allowed to be an arbitrary family of sets, any graph can be represented
as an intersection graph, but typically, some important special classes of graphs
may be defined by the types of sets that are used to form a set representation
of them. We consider the following intersection graphs (see, e.g., [6] for details).

A graph G is chordal if every cycle in G of length at least four has at least
one chord. Interval graphs are one of the most important subclasses of chordal
graphs: A graph G = (V,E) is an interval graph if the following two conditions
are satisfied for a family I of intervals on the real line: (i) There is a one-to-one
correspondence between V and I, and (ii) for a pair of vertices u, v ∈ V and
their corresponding two intervals Iu, Iv ∈ I, Iu ∩ Iv �= ∅ if and only if (u, v) ∈ E.

Other related two classes to chordal graphs are weakly chordal and strongly
chordal graphs: A graph G is weakly chordal if every cycle of length at least five
in G and its complement G has at least one chord. A graph G is strongly chordal
if it is chordal, and every even cycle of length at least six has at least one odd
chord which is a chord connecting two vertices of odd distance on the cycle. The
following inclusion relations among the graph classes are known [6]:

Proposition 12. (i) Interval graphs are a subclass of strongly chordal graphs.
(ii) Strongly chordal graphs are a subclass of chordal graphs. (iii) Chordal graphs
are a subclass of weakly chordal graphs.

Another way to generalize interval graphs is to make the intervals higher
dimensional. Suppose I and J be two parallel lines of which I = {I1, · · · , In}
and J = {J1, · · · , Jn} are families of intervals. Then, each i ∈ {1, · · · , n} deter-
mines a trapezoid having parallel sides Ii and Ji, respectively (allowing degen-
erate trapezoids with either Ii or Ji a single point). Let T = {T1, T2, · · · , Tn}
be a family of such n trapezoids: A graph G = (V,E) is a trapezoid graph if the
following two conditions are satisfied for a family T of trapezoids between the
two parallel lines I and J : (i) There is a one-to-one correspondence between
V and T , and (ii) for a pair of vertices u, v ∈ V and their corresponding two
trapezoids Tu, Tv ∈ T , Tu ∩ Tv �= ∅ if and only if (u, v) ∈ E.

Proposition 13. (i) Trapezoid graphs are a subclass of weakly chordal graphs [8].
(ii) Interval graphs are a subclass of trapezoid graphs.

Note that interval, chordal, weakly chordal, strongly chordal, and trapezoids are
subclasses of perfect graphs [6].

4.2 Algorithms

Let FindClique be an algorithm which can obtain optimal solutions for Max
Clique (or, Max 1-Club). Here, the running time of FindClique might be
exponential. By using FindClique and PowerOfGraph described in Sect. 2.2, we
can design a simple algorithm called ByFindCliqued [3]. This algorithm out-
puts an optimal solution for Max d-Clique for d ≥ 2. On the other hand, for
Max d-Club, the output of this algorithm is not guaranteed to be optimal for

596 Y. Asahiro et al.

general graphs. However, we will show that for some special classes of graphs
this algorithm obtains an optimal solution. The following is a description of the
algorithm ByFindCliqued:

Algorithm ByFindCliqued

Input: A connected undirected graph G = (V,E)
Output: A subgraph S of G
Step 1. Obtain the d-th power Gd of G by PowerOfGraph(G, d).
Step 2. Apply FindClique to Gd, and then obtain a maximum clique

set Q in Gd.
Step 3. Output S = G[Q].

In the following, Lemma14 plays a key role to provide polynomial-time algo-
rithms. More precisely, it shows the optimality of the algorithm ByFindCliqued

for Max d-Club on the graph such that every cycle of length at least d + 3 has
at least one chord in the graph. We assume that d ≥ 2 in this section (since
Max 1-Club is equivalent to Max Clique).

Lemma 14. If every cycle of length at least d+3 in the input graph has at least
one chord, then the diameter of the graph induced by the maximum clique set in
the d-th power Gd of the input graph G must be at most d.

Proof. To prove the lemma by a contradiction, we assume that for a subset S ⊆
V (G) (= V (Gd)) of vertices, Gd[S] is a maximum clique and diam(G[S]) ≥ d+1.
From the assumption that diam(G[S]) ≥ d + 1, there exists a pair of vertices
�, r ∈ S such that distG[S](�, r) ≥ d + 1. Since Gd[S] is a clique, there exists an
edge (�, r) in Gd[S], which implies that distG(�, r) ≤ d in the original graph G.
Namely, there must be another vertex u such that 2 ≤ distG(�, u)+distG(u, r) ≤
d and u �∈ S. Without loss of generality, we assume u is on the shortest path
P�,u,r between � and r in G and among such shortest paths P�,u,r includes the
minimum number of vertices not in S. The fact u �∈ S and the maximality of the
clique Gd[S] derives the existence of a vertex w ∈ S such that distG(u,w) ≥ d+1.

Let the shortest paths from u to � and u to r in G be Pu,� = 〈u, · · · , �〉 and
Pu,r = 〈u, · · · , r〉, respectively. Similarly, two shortest paths from � to w and r to
w in G[S] are denoted by P�,w and Pr,w, respectively. Here, a subpath from w′ to
w for a vertex w′ may be shared among P�,w and Pr,w. Consider a path P ′

�,r from �

to r such that P ′
�,r = P�,w(�, w′)⊕Pr,w(w′, r), where w′ = w if such a w′ does not

exist. Let P ′
�,r = 〈�0(= �), �1, �2, · · · , �p−1, w

′(= �p = rq), rq−1, · · · , r1, r0(= r)〉,
i.e., the distance between � (or r) and w′ in this path is p (or q) for some integer
1 ≤ p ≤ d (or 1 ≤ q ≤ d). Since distG[S](�, r) ≥ d + 1, the length |P ′

�,r| = p + q
is also at least d + 1.

(Case 1) First, for simplicity, suppose that the length |P ′
�,r| = d + 1. This

implies that for v1, v2 ∈ V (P ′
�,r) such that (v1, v2) �∈ E(P ′

�,r), there is no edge
between v1 and v2, since otherwise distG[S](�, r) ≤ d which contradicts the
assumption distG[S](�, r) ≥ d + 1. We will refer this fact by writing “there is
no shortcut edge for P ′

�,r” in the below. In addition, there is no edge connecting

Maximum Distance-Bounded Subgraphs Problems 597

u and the vertices of P ′
�,r except for � and r, since if such an edge, e.g., (u, �i),

exists, the length of the path 〈u, �i〉⊕P�,w(�i, w) is at most d, i.e., distG(u,w) ≤ d,
which again contradicts the assumption distG(u,w) ≥ d + 1.

(Case 1-i) Assume that |Pu,�| = |Pu,r| = 1, i.e., (u, �) and (u, r) are in E(G).
Consider a cycle C1 = Pu,� ⊕ P ′

�,r ⊕ Pu,r. The length of this cycle C1 is d + 3.
Moreover, since there is no shortcut edge for P ′

�,r and u is not adjacent to any
vertex in P ′

�,r(�1, r1), we observe that C1 has no chord. This contradicts the
assumption that every cycle of length at least d + 3 has at least one chord.

(Case 1-ii) Without loss of generality, assume that |Pu,�| ≥ 2. Let Pu,� =
〈u(= x0), x1, x2, . . . , xs, �〉. The vertex xi can be connected only to �1, . . . , �i

and r1, . . . , ri in P ′
�,r, because if xi is adjacent to another vertex z in P ′

�,r,
distG(u,w) ≤ d holds, again contracting the assumption distG(u,w) ≥ d + 1: If
z = �j (or rj) for j > i, the length of the path 〈u, x1, . . . , xi, z(= �j)〉⊕Pl,w(�j , w)
(or 〈u, x1, . . . , xi, z(= rj)〉 ⊕ Pr,w(rj , w)) is at most |P�,w| ≤ d (or |Pr,w| ≤ d)
since j > i. In addition, if xi is adjacent to z ∈ {r1, . . . , ri}, it also contra-
dicts the assumption on P�,u,r that u is on a shortest path between � and
r in G which includes the minimum number of vertices not in S; the path
Pu,�(�, xi) ⊕ 〈xi, z〉 ⊕ P ′

�,r(z, r) must be a shortest path between � and r and its
number of vertices not in S is smaller than that of the path P�,u,r. Namely, xi is
connected only to �1, . . . , �i. For another path Pu,r = 〈u(= y0), y1, y2, . . . , yt, r〉,
a similar argument can be done; yi is connected only to r1, . . . , ri.

Let i = arg mink{(xk, z) ∈ E(G) | z ∈ V (P ′
�,r)}, and analogously j =

arg mink{(yk, z) ∈ E(G) | z ∈ V (P ′
�,r)}. Let zi (or zj) represents the ver-

tex in P ′
�,r such that the edge (xi, zi) (or (yj , zj)) exists and zi (or zj) is the

closest to w′ among such vertices. As discussed above, zi (or zj) is a vertex
belonging to {�1, . . . , �i} (or {r1, . . . , rj}). Consider a cycle C2 = Pu,�(u, xi) ⊕
〈xi, zi〉⊕P ′

�,r(zi, zj)⊕〈zj , yj〉⊕Pu,r(yj , u). Since |Pu,�(u, xi)| = i, |P ′
�,r(zi, zj)| ≥

|P ′
�,r|− i− j = d+1− i− j, and |Pu,r(yj , u)| = j, the length of the cycle C2 is at

least d+3. Furthermore, C2 has no chord based on the fact that u, x1, . . . , xi−1,
y1, . . . , yj−1 are not adjacent to any vertex in P ′

�,r, and there is no shortcut edge
for P ′

�,r. This contradicts the assumption that every cycle of length at least d+3
has at least one chord.

(Case 2) The remaining case we have to consider is that |P ′
�,r| ≥ d+2. In this

case, there may be edges connecting �i and rj for some i and j, where no edge
connects two �i’s or two rj ’s because P�,w and Pr,w are the shortest paths from �
to w and r to w, respectively. Let P ′′

�,r be the shortest path from � and r defined
on the vertices of P ′

�,r. Since distG[S](�, r) ≥ d + 1, |P ′′
�,r| ≥ d + 1 also holds.

As in the above Case 1-ii we set i = arg mink{(xk, z) ∈ E(G) | z ∈ V (P ′′
�,r)}

and j = arg mink{(yk, z) ∈ E(G) | z ∈ V (P ′′
�,r)}. Then, we consider a cycle

C3 = Pu,�(u, xi) ⊕ 〈xi, zi〉 ⊕ P ′′
�,r(zi, zj) ⊕ 〈zj , yj〉 ⊕ Pu,r(yj , u). We observe that

the length of this cycle C3 is at least d + 3 as well and it has no chord, which is
a contradiction. This completes the proof of the lemma. ��

From Lemma 14, if every cycle of length at least d+3 has at least one chord,
then an optimal solution of Max d-Club must be the maximum clique of Gd:

598 Y. Asahiro et al.

Theorem 15. For a fixed integer d, if every cycle of length at least d + 3 has
at least one chord in G, ByFindCliqued exactly solves Max d-Club for G.

Therefore, ByFindCliqued solves Max d-Club in polynomial time if we
restrict the input to graphs having such property and a maximum clique of
its d-th power can be found in polynomial time. In the following subsections, we
give several polynomial-time solvabilities of Max d-Club according to this fact.

4.3 Chordal and Weakly Chordal Graphs for Odd d

If the input is restricted to chordal graphs, then the next corollary holds from
Theorem 15:

Corollary 16. For chordal graphs, ByFindCliqued finds an optimal solution
for Max d-Club for d ≥ 1.

Proof. In chordal graphs, every cycle of length at least four always has a chord
by definition, which means that every cycle of length at least d + 3 always has a
chord for any d ≥ 1. Then, for chordal graphs, ByFindCliqued finds an optimal
solution for Max d-Club. ��

Furthermore, if d is odd, the next theorem can be shown:

Theorem 17. If the input is a chordal graph, then Max d-Club can be solved
in polynomial time by ByFindCliqued for odd d.

Proof. For chordal graphs, polynomial time algorithms to find a maximum clique
are known [12]. If d is odd and d ≥ 3, the d-th power Gd of a chordal graph G is
also chordal [1,4]. Thus, adopting one of the algorithms in [12] as the procedure
FindClique, the algorithm ByFindCliqued solves Max d-Club in polynomial
time for odd d if the input is a chordal graph. ��

From the definition, there exists no induced cycle of length at least five in
weakly chordal graphs. Similarly to the case of chordal graphs, polynomial time
algorithms to find a maximum clique in weakly chordal graphs are known [15]. In
addition, the d-th power Gd of a weakly chordal graph G is also weakly chordal
if d is odd [5]. Hence the following theorem holds:

Theorem 18. If the input is a weakly chordal graph, then Max d-Club can be
solved in polynomial time by ByFindCliqued for odd d.

4.4 Strongly Chordal, Trapezoid, and Interval Graphs

As stated in Proposition 12(ii), the class of strongly chordal graphs is a subclass
of chordal graphs. Since for every integer d ≥ 2 the d-th power Gd of a strongly
chordal graph G is also strongly chordal [16], we have:

Theorem 19. If the input is a strongly chordal graph, then Max d-Club can
be solved in polynomial time by ByFindCliqued.

Maximum Distance-Bounded Subgraphs Problems 599

Since the class of trapezoid graphs is a subclass of weakly chordal graphs from
Proposition 13(i), every cycle of length at least five always has a chord in trape-
zoid graphs. For trapezoid graphs, Max Clique can be solved in polynomial
time [10], and the d-th power Gd of a trapezoid graph G is also trapezoid [11].
As a result, the following theorem holds:

Theorem 20. If the input is a trapezoid graph, then Max d-Club can be solved
in polynomial time by ByFindCliqued.

Proposition 13(ii) and Theorem 20 derive the following theorem:

Theorem 21. If the input is an interval graph, then Max d-Club can be solved
in polynomial time by ByFindCliqued.

5 Max d-Clique

This section summarizes the obtained results for Max d-Clique. (Due to the
space limitation, all the proofs are omitted in this section.) The first result shows
the approximation ratio of ByFindStar2d for Max d-Clique.

Theorem 22. For an n-vertex graph and a fixed integer d, ByFindStar2d is a
polynomial-time n1/2-approximation algorithm for Max d-Clique.

As for inapproximability, we can obtain the following theorem:

Theorem 23. For any ε > 0, is NP-hard to approximate Max d-Clique to
within a factor of n1/2−ε.

We can show that Max d-Clique can be solved in polynomial time for the
following special graph classes based on similar discussions in Sect. 4:

Theorem 24. If the input graph is interval, trapezoid, or strongly chordal, then
Max d-Clique can be solved in polynomial time by ByFindCliqued. If the input
graph is chordal or weakly chordal, then Max d-Clique can be solved in poly-
nomial time by ByFindCliqued for odd d.

Acknowledgments. This work is partially supported by KAKENHI grant numbers
25330018 and 26330017.

References

1. Agnarsson, G., Greenlaw, R., Halldórsson, M.M.: On powers of chordal graphs and
their colorings. Congr. Numer. 144, 41–65 (2000)

2. Alba, R.: A graph-theoretic definition of a sociometric clique. J. Math. Sociol. 3,
113–126 (1973)

3. Asahiro, Y., Miyano, E., Samizo, K.: Approximating maximum diameter-bounded
subgraphs. In: López-Ortiz, A. (ed.) LATIN 2010. LNCS, vol. 6034, pp. 615–626.
Springer, Heidelberg (2010)

600 Y. Asahiro et al.

4. Balakrishnan, R., Paulraja, P.: Powers of chordal graphs. Aust. J. Math. Ser. A
35, 211–217 (1983)

5. Brandstädt, A., Dragan, F.F., Xiang, Y., Yan, C.: Generalized powers of graphs
and their algorithmic use. In: Arge, L., Freivalds, R. (eds.) SWAT 2006. LNCS,
vol. 4059, pp. 423–434. Springer, Heidelberg (2006)

6. Brandstädt, A., Le, V.B., Spinrad, J.P.: Graph classes: a survey. In: SIAM (1999)
7. Chang, M.-S., Hung, L.-J., Lin, C.-R., Su, P.-C.: Finding large k-clubs in undirected

graphs. Computing 95, 739–758 (2013)
8. Corneil, D.G., Kamula, P.A.: Extensions of permutation and interval graphs.

Congr. Number. 58, 267–275 (1987)
9. Erdös, P., Pach, J., Pollack, R., Tuza, Z.: Radius, diameter, and minimum degree.

J. Combin. Theor. Ser. B 47, 73–79 (1989)
10. Felsner, S., Müller, R., Wernisch, L.: Trapezoid graphs and generalization, geom-

etry and algorithms. Discrete Appl. Math. 74(1), 13–32 (1997)
11. Flotow, C.: On powers of m-trapezoid graphs. Discrete Appl. Math. 63(2), 187–192

(1995)
12. Gavril, F.: Algorithms for minimum coloring, maximum clique, minimum covering

by cliques, and maximum independent set of a chordal graph. SIAM J. Comput.
1(2), 180–187 (1972)

13. Golovach, P.A., Heggernes, P., Kratsch, D., Rafiey, A.: Finding clubs in graph
classes. Discrete Appl. Math. 174, 57–65 (2014)

14. H̊astad, J.: Clique is hard to approximate within n1−ε. Acta Math. 182(1), 105–142
(1999)

15. Hayward, R., Hoáng, C., Maffray, F.: Optimizing weakly triangulated graphs.
Graphs Comb. 5, 339–349 (1989)

16. Lubiw, A.: Γ -free matrices. Masters thesis, Department of Combinatorics and Opti-
mization, University of Waterloo, Canada (1982)

17. Marinček, J., Mohar, B.: On approximating the maximum diameter ratio of graphs.
Discrete Math. 244, 323–330 (2002)

18. Mokken, R.J.: Cliques, clubs and clans. Qual. Quant. 13, 161–173 (1979)
19. Pajouh, F.M., Balasundaram, B.: On inclusionwise maximal and maximum cardi-

nality k-clubs in graphs. Discrete Optim. 9, 84–97 (2012)
20. Schäfer, A., Komusiewicz, C., Moser, H., Niedermeier, R.: Parameterized computa-

tional complexity of finding small-diameter subgraphs. Optim. Lett. 6(5), 883–891
(2012)

21. Zuckerman, D.: Linear degree extractors and the inapproximability of max clique
and chromatic number. Theor. Comput. 3, 103–128 (2007)

The Influence of Preprocessing on Steiner Tree
Approximations

Stephan Beyer(B) and Markus Chimani

Institute of Computer Science, University of Osnabrück, Osnabrück, Germany
{stephan.beyer,markus.chimani}@uni-osnabrueck.de

Abstract. Given an edge-weighted graph G and a node subset R, the
Steiner tree problem asks for an R-spanning tree of minimum weight.
There are several strong approximation algorithms for this NP-hard prob-
lem, but research on their practicality is still in its early stages.

In this study, we investigate how the behavior of approximation algo-
rithms changes when applying preprocessing routines first. In particular,
the shrunken instances allow us to consider algorithm parameterizations
that have been impractical before, shedding new light on the algorithms’
respective drawbacks and benefits.

1 Introduction

Given a connected graph G = (V,E) with edge costs c : E → R≥0 and a subset
R ⊆ V of required nodes called terminals, the Minimum Steiner Tree Problem in
Graphs (STP) asks for a minimum-cost terminal-spanning subtree T = (VT , ET)
in G, that is, a tree with R ⊆ VT ⊆ V and minimum c(T) := c(ET) :=∑

e∈ET
c(e). The STP is long known to be NP-hard and even APX-hard [15].

While 2-approximations can be found easily, breaking this barrier has been a
theoretically challenging but fruitful field, resulting in a series of ever-decreasing
approximation ratios (see Sect. 2). The currently strongest known algorithms
guarantee a ratio of 1.39 + ε for general instances. All these below-2 approxi-
mation algorithms share a common trait that makes them usually worrisome in
practice: ε depends on a parameter k, assumed to be constant. The algorithm’s
running time, however, is exponentially dependent on this k, as we have to con-
sider all trees spanning any subset of up to k terminals (see below for details).
Hence, to achieve low ε, we have to live with increasingly high running times.

Research on the practicality of below-2 Steiner tree approximations started
only very recently. In a series of papers [1,2,4]1, it was shown that the algo-
rithms’ dependency on k seems to be an insurmountable stumbling block in
practice. Typically, only values of k = 3 and probably, for small graphs, k = 4

Funded by project CH 897/1-1 of the German Research Foundation (DFG).
1 Article [2] is an extended version of both [1,4], with several implementation improve-

ments; when referring to these studies in the following, we will only cite [2].

c© Springer International Publishing Switzerland 2015
Z. Lu et al. (Eds.): COCOA 2015, LNCS 9486, pp. 601–616, 2015.
DOI: 10.1007/978-3-319-26626-8 44

602 S. Beyer and M. Chimani

seemed worthwhile. These findings were validated in [5] in the context of a fur-
ther approximation algorithm not considered in [2].2

It is certainly beneficial to the field that the STP has garnered enough
interest (in particular also from the communities of exact and (meta)heuristic
approaches) that SteinLib [11], a wide collection of generated and real-world
instances, has been established. We use this well-established testbed as the basis
of our study. Some SteinLib instances have special properties (like being Euclid-
ean, planar, or quasi-bipartite), and various special-purpose algorithms have
been developed for such settings. We, however, refrain from explicitly exploit-
ing such properties since we are interested in the approximation algorithms for
general graphs.

Contribution. Preprocessing means to shrink a given input by simplifying parts
that are ‘easy’ to solve, favorably in theoretically and practically small time.
Our considered research questions can be summarized as follows:

– Interplay between preprocessing and approximations. Neither of the above
mentioned studies on approximation algorithms consider preprocessing. This
was in order to concentrate on the algorithmic behavior of the approximations
and to rule out any shadowing influences arising from preprocessed data. In
this study, we want to analyze the influence of preprocessing on the approxima-
tions. Clearly, the approximations become faster when run only on reduced
instances. But it is already unclear if preprocessed instances help the algo-
rithms to find significantly better solutions.

– Approximation behavior for larger k. As noted above, the approximation algo-
rithms are typically restricted to k = 3 when run on the original SteinLib
instances. As we will see, the preprocessing routines are strong enough to
obtain graphs so small that larger values of k become feasible. So now, for
the first time, we can investigate the approximation algorithms’ behavior for
such values. This is in particular interesting due to a central finding in [2]:
There, the oldest below-2 approximations (AC3 and RC3 in the description
below) typically outperform the newer, formally stronger approximations —
not only w.r.t. running time but also often w.r.t. solution quality. This can be
attributed to the fact that, for too small values of k, the actual approxima-
tion guarantees of the latter are still worse than AC3’s 11/6. Only for larger k,
their ratios become (at least formally) strictly better. The question is whether
these theoretical results carry over to practical benefits.

We are explicitly not arguing that our considered algorithms would be particu-
larly good in practice. In fact, we will see in the last section that state-of-the-art
heuristics and exact approaches still outperform all theoretically strong approxi-
mations. We are interested in learning more about practical stumbling blocks and
possible achievements for the class of strong approximation algorithms, in the
hope that such a deeper understanding will at some point help to find practically
relevant strong approximation algorithms, at least for certain circumstances.
2 In [5], an implementation of [3] is considered; in [2], the improved variant [9] is inves-

tigated instead, as it gives the same guarantee with a smaller runtime complexity.

The Influence of Preprocessing on Steiner Tree Approximations 603

Outline. The following two sections summarize the approximation algorithms
and preprocessing routines we use for our study, respectively. Section 4 contains
the actual experimental evaluation.

Preliminaries. For any graph H, we denote its nodes and edges by VH and
EH , respectively. When referring to the input graph G, we omit the subscript.
Considering edge costs, we use the terms cost (expensive, cheap) and length
(long, short) interchangeably. Let d(u, v) be the distance between nodes u, v ∈ V ,
i. e., the cost of the cheapest path between u, v. Let the neighborhood N (v)
of v ∈ V be the set of nodes adjacent to v, and the Voronoi region V(r) =
{r} ∪ {v ∈ V \ R | d(r, v) ≤ d(s, v) ∀s ∈ R} of a terminal r ∈ R be the set of
nodes that is nearer to r than to any other terminal. If d(r, v) = d(s, v) for
s �= r, the node v is arbitrarily assigned to either V(r) or V(s). Hence the set of
Voronoi regions of each terminal is a partition of V . We define base(v) := r for
all v ∈ V(r) and r ∈ R. By MST(H) we denote a minimum spanning tree in H.

2 Approximation Algorithms and Their Engineering

We briefly summarize the algorithms considered for our experimental evaluation.
They are identical to the ones considered in [2]. This allows direct comparisons
w.r.t. the additional influence of the preprocessing routines. The only additional
algorithmic modification for the approximations is the addition of a Dreyfus-
Wagner type generation of full components (see below).

Algorithm TM. One of the simplest and most efficient approximation algorithms
is the 2-approximation algorithm by Takahashi and Matsuyama [21]. We start
with a single terminal node as T0. In the i-th iteration, we construct Ti from Ti−1

by adding the shortest path between Ti−1 and t, where t ∈ R\VTi−1 is the nearest
terminal to Ti−1. The output of the algorithm is T|R|−1. Well-implemented, it
has proven to be the most efficient 2-approximation (among the algorithms by
Kou et al. [12] and Mehlhorn [14]) in terms of time and solution quality [2,16].

Full Components. Given a Steiner tree T , we can assume that all its leaves are
terminals. We can split all its non-leaf terminals to obtain connected compo-
nents whose leaves are exactly their terminals. Such components are called full
components of T . They are k-restricted if they contain at most k terminals.

Let k ≥ 3 be constant and Ck be the set of all possible k-restricted full
components. All below-2 approximation algorithms evaluate the elements of Ck

to find a good subset S ⊆ Ck, such that the components in S together yield a
feasible Steiner tree. The evaluation method differs per approximation algorithm.

In [2], several methods to construct Ck are evaluated. All methods are based
on shortest path algorithms, and the first beneficial idea is to use a variant of
shortest path algorithms that, in case of a tie, prefers a path over terminals.
Such paths can be discarded for construction of full components. For the special
case of k = 3, one can also choose between multiple calls to a single-source
shortest path algorithm (SSSP) in overall O(|R| · |V |2) time and a single call to

604 S. Beyer and M. Chimani

an all-pair shortest path algorithm (APSP) in time O(|V |3). When applied to
SteinLib, SSSP should be chosen if and only if the graph’s density |E|/(|V |

2

)
is

at most 0.25.
For k ≥ 4, we have to use a shortest-path matrix between all nodes, so

APSP is the only viable choice. However, the success rates of computing Ck

using the enumeration scheme given in [2] are rather bad. In [5], it is proposed
to compute Ck essentially by running the first k iterations of the Dreyfus-Wagner
algorithm [7]; we call this method DW . It is based on the simple observation that
in order to compute a minimum-cost tree spanning k terminals, the Dreyfus-
Wagner algorithm also computes all minimum-cost trees spanning at most k
terminals. Hence one call of DW yields all k-restricted full components.

Algorithms ACk and RCk. Zelikovsky [22] was the first one to exploit the idea of
k-restricted full components for a below-2 approximation algorithm. He summa-
rized the ideas as the greedy contraction framework [25]: we first compute a 2-
approximation T0. Given Ti−1, we seek the full component C ∈ Ck that promises
the maximum improvement over Ti−1 according to some given win function.
Ti is constructed by contracting C in Ti−1 and removing the most expensive
edge in each arising cycle, that is, Ti = MST(Ti−1/C). This is repeated until no
promising component is found. The contracted components and the remaining
edges in the last constructed tree together form the approximative solution to
the original Steiner tree problem.

In this setting, ACk is the algorithm that uses an absolute win function that
describes the actual cost reduction of Ti−1 when including a component C. It
provides an approximation ratio of 11/6 ≈ 1.83 [22–24] for k ≥ 3. RCk uses a
relative win function [25] that relates the saved cost by contracting C in Ti−1 to
the cost of C. For k = 3, it only achieves ratio 1.97; however, the ratio decreases
for higher k, down to 1.69 for k → ∞. We say the approximation ratio is 1.69+ε.

Generating C3 can be accelerated by using an on-demand generation [23] for
AC3, or a Voronoi-based approach [24] for RC3. The latter is also valid for k ≥ 4,
but the general enumeration approach (even without DW) is favorable [2].

We also use the beneficial implementation details mentioned in [2]: a strategy
that allows to discard non-promising components early (and hence reduces the
number of full components) and a data structure for lowest common ancestor
queries on static auxiliary trees to efficiently obtain values for the win functions.

Algorithms LCk. Robins and Zelikovsky [20] achieved a ratio 1.55 + ε by using
loss-contractions (instead of simple contractions) of C in the greedy contraction
framework. The loss of C is a sub-forest in C such that each nonterminal is
connected to exactly one terminal. A loss-contraction performs a contraction of
the loss edges only (instead of all edges). The used win function represents the
concept of a relative win function transfered to loss-contractions.

For the generation of full components, we have to use the general enumeration
approach for every k ≥ 3. It is beneficial to compute the loss on components
containing edges representing shortest paths instead of the original edges [2].

The Influence of Preprocessing on Steiner Tree Approximations 605

Algorithms LPk. The algorithm by Goemans et al. [9] is the most recent Steiner
tree approximation and achieves a ratio of 1.39 + ε, similar to the algorithm by
Byrka et al. [3]. Both algorithms are based on linear programming techniques.
The corresponding LP formulations have exponentially many constraints but
can be solved in polynomial time using a separation oracle that involves a linear
number of maximum flow computations. However, the approach by Goemans et
al. is favorable since the resulting LP formulation has less variables (by a factor
proportional to k) and the LP relaxation is solved only once.

Each variable in the formulation represents a full component in Ck. The algo-
rithm first solves the LP and then applies a sophisticated randomized rounding
scheme to obtain a provably good integral solution. There, the idea is to itera-
tively contract a (fractionally chosen) component, and make the solution feasible
for the contracted problem again (which involves removal and splitting of other
components). In order to minimize the cost of the resulting feasible solution, we
estimate w(C), the maximum cost of the edges that are to be removed in order to
re-establish feasibility after contracting C. Any component C with c(C) ≤ w(C)
can be chosen. (It is guaranteed that there always exists such a component.) We
note that finding such a maximum-cost set of edges to be removed reduces to a
minimum-cost flow computation in an auxiliary network.

For the generation of Ck, the general enumeration algorithm has to be used. It
is beneficial to augment the maximum-flow-based separation oracle with further
preconditional tests; to choose ‘leaf components’ before actually invoking the
approximation algorithm on the fractional solution; and to use edges representing
shortest paths (instead of original edges) in the auxiliary network [2].

Exact Algorithms BC and BCS. We compare the approximations to two exact
algorithms. Algorithm BC is a branch-and-cut approach based on the bidi-
rected cut LP formulation [13]; it is our own straight-forward, simple, and short
implementation using a standard branch-and-cut framework (ABACUS [10]),
and therefore arguably easier to implement than, e.g., the sophisticated strong
approximation algorithms. Furthermore, we consider the highly tuned, more
sophisticated version of BC that has been presented in [8]. It has been one
of the winners of the 11th DIMACS Implementation Challenge on Steiner tree
problems [6], and we denote it by BCS.

3 Preprocessing Techniques

We use reduction tests to preprocess STP instances. These tests check for con-
ditions that imply the inclusion or exclusion of nodes and edges in a Steiner
minimum tree (SMT)3. For our experimental evaluation, we only consider effi-
cient tests, i. e., with running time bounded by O(|V |2). Hence, when applied
iteratively, the total running time of the preprocessing process is O(|E| · |V |2).

We give a brief overview over the used reduction tests. A more detailed decrip-
tion (including proofs) is given, e.g., by Polzin and Vahdati-Daneshmand [18].
3 This word order and abbreviation is historically common, to avoid conflicts with the

established abbreviation ‘MST’ for minimum spanning tree.

606 S. Beyer and M. Chimani

Trivial Reductions. Test D1 deals with nodes of degree 1. Let v ∈ V with
deg(v) = 1 and e = {v, w}. If v ∈ R and |R| ≥ 2, edge e must be in every
SMT. We can hence contract e and let the resulting node be a terminal. If
v ∈ V \ R, remove v (and e) since it is not part of any SMT. Test NTD2 con-
siders nonterminals of degree 2 and replaces its two incident edges by a single
edge. Test S removes self-loops and parallel edges (keeping the edge of minimum
cost). Another trivial test is to remove connected components not containing
any terminals (NTC). We summarize the former tests as trivial test set T.

Consider the distance network on the terminals R, i. e., the complete graph
on R with edge costs resembling the length of the shortest paths in G between
the respective terminals. Here and in the remainder of this paper, let M denote
an MST in this distance network. It can be computed in time O(|E| + |V | log |V |)
using Voronoi regions [14]. The simple test CTD (cost vs. terminal distance) is
to remove every edge e with cost larger than the shortest path between two
terminals, that is, if c(e) > maxf∈EM

{c(f)}.

Classical Inclusion Tests Using Voronoi Regions. Let s ∈ R. Test NV (nearest
vertex) is as follows: Let {s, u} and {s, w} be the shortest and second shortest
edge incident to s, respectively. The edge {s, u} belongs to at least one SMT if

c({s, w}) ≥
{

rdistu(s) if u ∈ V(s),
c({s, u}) + d(u,base(u)) otherwise,

where rdistu(s) is the shortest distance between s and any t ∈ R, t �= s,
over {s, u}.

Test SL (short links) is as follows: Let e1 = {v1, w1} and e2 = {v2, w2}
with vi ∈ V(s), wi /∈ V(s), i = 1, 2, be the shortest and second shortest edge,
respectively, that leaves V(s). Then e1 belongs to at least one SMT if c(e2) ≥
d(s, v1) + c(e1) + d(w1,base(w1)).

Tests Based on the Steiner Bottleneck Distance. A path P in G can be decom-
posed into a sequence of full paths, i. e., full components with exactly two termi-
nals each. Let L(P) be the longest full path of P . The bottleneck Steiner distance
b(u, v) is the minimum c(L(P)) over all paths P between u and v. We use an
upper bound on b(u, v) as described in [18]: if u and v are terminals, we query
the largest cost on the unique u-v-path in M (which is a lowest common ancestor
query in a weight-tree); if u and/or v is not a terminal, we restrict ourselves to
paths over their respective κ nearest terminals, for some constant κ.

TestPT (pathswithmanyterminals) removes every edge{u, v}with c({u, v}) >
b(u, v). Here, PT should be followed by NTC to remove nonterminal components.

Let d ≥ 3 be constant. Test NTDd (nonterminals of degree d) checks for every
v ∈ V \ R with deg(v) ≤ d whether it satisfies∑

w∈N

c({v, w}) ≥ c(MST((N,N × N, b))) ∀N ⊆ N (v), |N | ≥ 3.

The Influence of Preprocessing on Steiner Tree Approximations 607

Here (N,N × N, b) is the complete graph over N where the costs are given
by (upper bounds on) the bottleneck Steiner distances. If the above universally
quantified property holds, v has degT (v) ≤ 2 in at least one SMT T . Conse-
quently, v can be removed, and edges {u,w} with cost c({u, v}) + c({v, w}) are
introduced for (all) u,w ∈ N (v).

After a pilot study, we chose κ = 5 and d = 10 as the best practical values.

Bound-Based Tests Using Voronoi Regions. Bound-based tests compute a lower
bound for the SMT under the assumption that a nonterminal or an edge is
included in the SMT. If that lower bound exceeds an upper bound U , the assump-
tion must be false and the nonterminal or edge can be removed.

We can use Voronoi regions to compute lower bounds. Let exit(s), s ∈ R,
be the shortest distance to any v ∈ V \ V(s). Let X be the sum of all these
values except the largest two, and let di(v) be the distance to the i-th nearest
terminal of v ∈ V . Test LBE (lower bound on edges) removes e = {u, v} if
c(e) + d1(u) + d1(v) + X > U . Let G′ := (R,E′, c′) with

E′ := {{s, t} | {u, v} ∈ E, u ∈ V(s), v ∈ V(t)} and
c′({s, t}) := min{c(e) + min{d1(u), d1(v)} | e = {u, v} ∈ E, u ∈ V(s), v ∈ V(t)}.

Test LBN (lower bound on nodes) removes v ∈ V \ R if d1(v) + d2(v) +
min{X, c′(MST(G′)) − maxe∈E′ c′(e)} > U .

4 Experimental Evaluation

In the following experimental evaluation, we use an Intel Xeon E5-2430 v2,
2.50 GHz running Debian 8. The binaries are compiled in 64bit with g++ 4.9.0
and -O3 optimization flag. All algorithms are implemented as part of the free
C++ Open Graph Drawing Framework (OGDF), the used LP solver is
CPLEX 12.6. We apply our algorithms on all 1200 connected instances from
SteinLib.

As in [2,8], we say that an algorithm fails for a specific instance if it exceeds
one hour of computation time or needs more than 16 GB of memory; otherwise
it succeeds. The success rate is the percentage of instances that succeed.

By χ we denote the ratio of edges remaining after the preprocessing.
We evaluate the solution quality of a solved instance by computing a gap as

c(T)
c(T∗) − 1, the relative discrepancy between the cost of the found tree T and the
cost of the optimal Steiner tree T ∗, usually given in thousandths (�). When
no optimal solution values are known, we use the currently best known upper
bounds from the 11th DIMACS Challenge [6].

Preliminaries. Before we go into the depth of our main research questions, we
first have two discuss two relevant preliminary issues.

Component Generation via DW. Fig. 1 illustrates the success rates of different
component enumeration methods: the ‘smart’ one from [2], and DW . The results

608 S. Beyer and M. Chimani

k = 3 k = 4 k = 5 k = 6
0

0.2
0.4
0.6
0.8

1

S
u
cc

es
s

ra
te smart DW

Fig. 1. Success rates of component
enumeration methods.

60 70 80 90

Prep.

Orig.

gap ()

Fig. 2. Average variation in solution
gaps due to different shufflings.

are clear and consistent with theory: While the former is better for k = 3, the
latter outperforms it for k ≥ 4. Hence, for k ≥ 4 we will from now on use DW .
For k = 3, we can still use the the best applicable approaches [2]: the direct
approach for AC3, the Voronoi-based approach for RC3, the ‘smart’ approach for
LC3 and LP3.

Preprocessing Sequence. The described reduction tests can be applied in various
permutations and repetition schemes. The application of one reduction may help
or hinder another reduction to be applicable. Since the used preprocessing is
always faster than the subsequent algorithms, we focus on the reduction quality.

Using only T already gives an average χ = 90.6%. We considered all 7! =
5040 possible permutations of the preprocessing steps that start with T. For
each sequence, we iterate until no further reduction is achieved. The sequence
〈T, CTD, LBE, PT, NTD, SL, LBN, NV〉 —using T in between whenever
necessary— gives the best average χ of 75.49%. However, all sequences resulted
in comparable reduction ratios and running times; the worst permutation gives
average χ = 75.57%. The percentage of instances solved purely via preprocessing
is 5.25%, and 9.75% of the instances are not susceptible to any of our considered
reductions.

The average runtime of our preprocessing is negligible for the subsequent
strong approximation algorithms (0.28 s on average). The only notable outliers
are alue7080 taking 15 s and es10000fst01 taking 35 s.

Effect of Preprocessing on Solution Quality. In this subsection we tem-
porarily disregard instances that are not susceptible to preprocessing at all. Our
first attempt to compare the solution quality with and without preprocessing
was surprisingly hazy. While the gaps slightly decreased on average, the situ-
ation was muddled on the instance level: for many instances the gap indeed
shrunk, but it also increased for many. The reason seems to be primarily that
all algorithms have to rely on some tie-breaking when choosing between multi-
ple equally long shortest paths, multiple components with the same win-value,
etc. This tie-breaking is implicitly done based on the internal order of the nodes
and edges in the graph data structure. To investigate the interplay between
these orders and the preprocessing, we shuffle all instances 50 times, i. e., we

The Influence of Preprocessing on Steiner Tree Approximations 609

0 0.5 1
0

20

40

60

80

100

χ (grouped in steps of 0.1)

%
si

g
n
ifi

ca
n
t

ch
a
n
g
es

Fig. 3. Preprocessing: percentage of
solution quality changes that are signif-
icant. Green squares are improvements,
red circles are degradations.

0

200

400

600

0 0.5 1
0

0.2

0.4

0.6

0.8

1

#
in

st
a
n
ce

s

coverage

av
er

a
g
e

χ

#inst.
avg χ

Fig. 4. Average χ (ratio of edges
remaining after preproc.) over all
graphs.

have 50 versions of the same instances differing only in internal storage order,
and report on TM without and with preprocessing. Our results for the other
algorithms, albeit only on a random sample of the instances, are analogous.

Probably despite one’s first intuition, for any given instance, the so-generated
50 solutions with (or without) preprocessing do not resemble a normal distribu-
tion; in fact they are very far away from doing so (see AppendixA for illustrative
examples). The central limit theorem does not apply since choices of edges (and
hence solution costs) are not independent. In other words, we cannot apply the
standard (parametric) significance tests in our statistical evaluation.

Figure 2 gives a comparison of the average distributions for the gaps obtained
by our original and preprocessed instances. We observe that the median gap
improves, and the whole range as well as the quartile ranges shrink and move
to the left. This indicates a favorable (though statistically insignificant) effect
of preprocessing on the gaps in general. Interestingly, for VLSI and Euclidean
instances we even see a slight increase of the gap, see Appendix B.

Our first hypothesis is that the (arbitrary) order of the elements in the graph
data structure has a larger influence on the solution quality than the preprocess-
ing. Consider some instance. We are interested in the probability p that its
solution will improve by preprocessing. If p = 0.5, any improvements are only
due to chance based on different shufflings; if p = 1, preprocessing will always
improve the solution independent of the shuffling. We compute these probabili-
ties based on our 50 shufflings, and obtain an average of only p = 0.58 over all
1083 instances, i.e., we accept the hypothesis.

Our second hypothesis is that, despite this overshadowing effect, preprocessing
does significantly improve (or at least does not significantly decrease) solutions.
Due to the lack of a normal distribution, we resort to the Wilcoxon-Mann-Whitney
test, and choose a significance level of 5% (cf. Fig. 3). We observe a significant
improvement for 35.5 % (55.7 %, 60.5 %) of the instances with χ < 1 (χ ≤ 0.9,
χ ≤ 0.8), and significant degradation only for 14.1 % (12.7 %, 12.8 %, resp.).

610 S. Beyer and M. Chimani

Table 1. Results of different algorithms. Per algorithm, we provide the success rates
in percent and the average times in sec among all succeeded instances, as well as the
percentage of optimally solved instances among all instances. PUW is discussed in the
paper’s conclusion.

Alg Succ avg gap� opt% avg time
⋂

VLSI
⋂

Complete

%
⋂ ⋂ ⋂

gap� time gap� time

TM 100.0 74.46 65.93 10.7 16.5 0.26 0.11 26.62 0.06 262.23 0.77

AC3 99.8 35.88 30.84 21.2 31.8 2.44 0.12 5.48 0.07 87.24 0.82

RC3 99.8 35.56 30.36 20.8 31.5 3.64 0.12 5.60 0.06 88.64 0.82

LC3 99.2 41.06 36.57 18.1 27.1 20.62 0.14 22.11 0.07 87.87 1.00

LP3 92.8 36.38 34.36 21.5 32.1 29.22 0.18 6.39 0.08 99.73 1.21

AC4 90.5 23.17 20.63 25.8 38.1 66.35 3.63 3.31 19.53 53.72 2.43

RC4 90.5 22.46 19.46 25.2 36.8 66.86 3.61 3.28 19.57 54.07 2.34

LC4 90.5 29.15 27.40 20.2 30.3 67.78 3.64 19.42 19.37 53.69 2.89

LP4 86.1 21.98 21.32 33.1 46.6 67.90 3.71 1.60 19.42 67.10 2.63

AC5 79.5 17.28 15.29 26.9 40.6 170.85 16.14 4.09 60.21 36.72 11.86

RC5 79.5 16.60 14.62 27.0 40.3 168.60 16.37 2.86 60.74 36.79 11.82

LC5 79.0 25.50 24.24 20.9 31.1 158.86 17.35 18.86 60.75 36.70 12.62

LP5 74.9 16.43 15.49 38.1 54.4 104.55 17.04 1.03 61.55 46.26 13.75

AC6 67.4 13.50 12.11 27.7 43.5 197.90 154.59 4.12 339.96 23.77 93.84

RC6 67.5 13.19 11.76 27.2 42.7 197.36 156.66 2.55 346.44 24.09 92.57

LC6 67.5 23.66 22.23 21.0 33.1 199.67 155.93 18.92 343.81 24.70 96.86

LP6 64.8 13.63 12.95 39.8 62.1 172.32 159.63 0.40 347.23 35.86 99.02

BCS 88.2 0.00 0.00 88.2 100.0 94.78 44.40 0.00 92.33 0.00 94.25

PUW0 100.0 16.04 15.04 23.3 35.3 (0.06) (0.03) 6.71 0.01 9.53 0.25

PUW2 100.0 6.27 4.61 41.3 59.7 (0.22) (0.09) 1.64 0.03 5.01 0.62

PUW8 100.0 0.54 0.07 84.7 98.0 (16.08) (5.57) 0.02 1.73 0.01 38.87

Overall, we have seen that the (rather unpredicable) effect of different storage
orders dominates the effect of preprocessing on the solution quality. Preprocess-
ing achieves (slight) improvements on average, but the evidence is not strong
enough to conclude that preprocessing improves the gaps significantly. We can,
however, accept the hypothesis that, overall, preprocessing does not significantly
degrade the expected solution quality. Hence, preprocessing can and should be
applied.

Higher k. We have run experiments on all SteinLib instances using all algo-
rithms described in Sect. 2 with k ≤ 6 and preprocessing enabled.

Table 1 summarizes the results. For a simpler comparison between differ-
ent algorithms and values for k, we also report the respective numbers on the
instance subset that was solved by every considered algorithm in the table. This
subset (‘

⋂
’) contains only 63.25 % of the SteinLib, with average χ = 70.22%.

The Influence of Preprocessing on Steiner Tree Approximations 611

Be aware that it contains, essentially, instances that are relatively ‘simple’ for
the approximation algorithms.

The overall success rate of the exact BCS is 88.2% and an average successful
run takes approximately 95 s. Note that the much simpler BC, obtains an overall
success rate of 79.1% with 90 s running time on average in the successful cases.

Almost all algorithms (except for LP5) could be considered practical for up to
k = 5 where they achieve a success rate comparable to BC, trading solution
quality for speed. For k = 6, however, the success rates drop harshly below
BC’s. Considering BCS, the approximation algorithms’ success rates are only
comparable up to k = 4. For any given k, success rates and times are comparable
among all algorithms. In other words, the time to generate the set of all k-
restricted full components dominates the running time.

We observe that higher k yield smaller gaps (as suggested in theory for RC,
LC and LP) in practice. There are interesting things that can be observed:

– RC is the best, and LC is, by far, the worst choice among all strong approxi-
mation algorithms. This is remarkable since, according to theoretical bounds,
RCk is the worst algorithm for k ≤ 18, and LCk is the best for 6 ≤ k ≤ 14.

– LP has the highest chances to find the optimum. Despite this, it has a worse
average gap and a much worse success rate than RC, i. e., if it fails to find the
optimum, its solution is either quite weak or non-existent at all.

– AC’s gaps decrease with increasing k and are comparable to those of RC and
LP. However, for AC we only know the approximation ratio 11/6 for k ≥ 3.
According to theoretical bounds, it should be the best one for k ≤ 5.

Dependency on Instance Classes. Most of our observations on general algo-
rithmic behavior is surprisingly consistent over the different instance groups of
SteinLib. There are a couple of notable exceptions and observations, however.

When an instance has high coverage |R|/|V |, the preprocessing is typically
much stronger, cf. Fig. 4. This consequently leads to better average gaps and
running times. Generally, the instance class and the obtained χ are very strongly
correlated. While SteinLib’s rectilinear instances have high coverage, the VLSI
and wire-routing instances, for example, have low.

Most interestingly, the density of an instance has a big influence on the
algorithms’ behaviors. On average, the LC algorithms give gaps 1.5–2 times larger
than those of the other strong approximations. For sparse instances (|E| ≤ 2·|V |)
this worsens to factors 2–3. On sparse instances and for larger k, LP’s gaps
become at least as strong as RC’s. VLSI instances are particularly extreme: LP’s
gaps are the by far strongest, while LC’s gaps are over 10-fold. For complete
instances, however, the picture changes drastically: we observe that LC becomes
comparable to RC and AC, while LP’s gaps deteriorate. Table 1 shows the average
gaps and running times of VLSI (χ = 89.81%) and complete (χ = 74.80%)
instances, restricted to the ‘

⋂
’-instances.

612 S. Beyer and M. Chimani

5 Conclusion

We showed that the efficient Steiner tree preprocessings do not degrade but also
not significantly improve the observable solution quality. Using preprocessing
—and the efficient Dreyfus-Wagner type enumeration due to [5]—allowed us
to raise the bar of considered values for k. We may now say that k ≤ 5 is
applicable in practice. The probably biggest surprises for the larger values of k
are that (a) the (comparably old) RCk continues to perform best in practice (this
was previously only established for the special case k = 3); (b) ACk’s solution
quality improves in lockstep with RCk and LPk, despite the fact that its proven
approximation ratio does not change for larger k; and (c) for identical k, LCk
gives consistently clearly weaker results than any of the other approximations.

Although not the focus of this research, it remains to briefly discuss the
overall practicality of the strong approximations. Therefore, we can compare
to the currently practically strongest algorithms as presented in the recent
DIMACS challenge [6]4. In Table 1 we also report on the strong and fast heuristic
PUWi [17], where the number of iterations is 2i. We see that the heuristic clearly
dominates all approximations by orders of magnitudes. For exact approaches, we
have considered a simple branch-and-cut approach BC, as well as its more sophis-
ticated variant BCS from [8]. We may also consider the exact results from [19].
For them, we only have detailed data over a subset of 434 SteinLib instances
that have been considered particularly interesting. Over those, BCS achieves
a success rate of 75.1 % and average running time of 122 s, while [19] achieve
89.4 % and 9.5 s, respectively. We can hence deduce that the current theoretically
strongest approximation algorithms are neither competitive to state-of-the-art
heuristics nor to exact approaches.

Acknowledgements. We thank Mihai Popa for implementations of reduction tests,
and Google for funding him through the Google Summer of Code 2014 program. We also
thank the authors of [8] for making their exact solver available, and Renato Werneck
for detailed logs of their experiments in [17].

A Distribution of Solution Values

For each of the three specific instances below, we generated 2000 shufflings. The
plots below show the distribution of the corresponding TM solution values.

4 Those results were obtained on different machines, with different preprocessing and
memory limits. The machines are compared via the DIMACS benchmark [6]; higher
is faster. We: 375, 16 GB limit. PUW [17]: 389, no (relevant) limit. [19]: 307, no limit.
All success rates are reported with respect to a 1-hour time limit.

The Influence of Preprocessing on Steiner Tree Approximations 613

4.54 4.56 4.58 4.6 4.62 4.64 4.66

·107

0

200

400

solution value

fr
eq

ue
nc

y
instance es40fst01

3,600 3,620 3,640 3,660 3,680 3,700
0

50

100

solution value

fr
eq

ue
nc

y

instance alue5345

5,900 6,000 6,100 6,200 6,300 6,400
0

200

400

solution value

fr
eq

ue
nc

y

instance i160-212

B More Detailed Table for Influence of Preprocessing

The table below shows detailed information (number of instances, average χ in %,
and statistical data on the gaps) averaged over the instance groupings proposed
in [2]. Statistical data is: the mean μ of the gaps (averaged and how often it was

614 S. Beyer and M. Chimani

better, not changed, or worse); the deviation σ, and the skewness (how often it
was negative, zero, or positive). All data is given for original and preprocessed
instances; for each instance we consider 50 different random shufflings.

G
ro

u
p

#
av

g
χ

av
g

μ
#

μ
av

g
σ

#
o
ri

g
sk

ew
#

p
re

p
sk

ew

o
ri

g
p
re

p
b

n
w

o
ri

g
p
re

p
<

0
=

0
>

0
<

0
=

0
>

0

E
u
cl

id
S
p
a
rs

e
1
5

7
3
.6

8
1
3
.0

6
1
3
.7

3
6

1
8

1
5
.4

3
1
7
.0

1
0

1
1
4

0
2

1
3

E
u
cl

id
C

o
m

p
le

te
1
4

2
1
.1

1
1
0
.8

4
1
0
.8

4
0

1
4

0
1
3
.0

6
1
3
.0

6
0

1
1
3

0
1

1
3

R
a
n
d
o
m

S
p
a
rs

e
9
6

3
0
.4

1
2
5
.5

2
2
2
.2

6
6
4

1
2

2
0

2
1
.5

8
1
9
.0

0
1

1
1

8
4

1
2
4

7
1

R
a
n
d
o
m

C
o
m

p
le

te
1
3

9
.7

5
3
1
.9

0
2
5
.1

4
7

2
4

2
8
.5

3
2
0
.8

6
0

2
1
1

0
6

7

In
ci

d
en

ce
S
p
a
rs

e
2
8
0

8
4
.4

4
1
3
3
.4

7
1
2
7
.3

6
1
5
4

5
0

7
6

5
3
.8

2
5
0
.6

8
2

2
2
7
6

3
2

2
7
5

In
ci

d
en

ce
C

o
m

p
le

te
7
3

9
7
.8

4
3
9
3
.6

1
3
9
3
.6

1
0

7
3

0
8
8
.5

1
8
8
.5

1
0

0
7
3

0
0

7
3

C
o
n
st

ru
ct

ed
S
p
a
rs

e
9

8
5
.5

7
1
4
3
.1

9
1
4
1
.8

6
5

1
3

5
0
.4

8
5
1
.5

4
0

1
8

0
1

8

S
im

p
le

R
ec

ti
li
n
ea

r
2
1
8

4
6
.4

5
1
6
.3

5
1
2
.5

3
1
5
8

1
7

4
3

1
6
.8

6
1
3
.9

0
1

2
2

1
9
5

0
3
7

1
8
1

H
a
rd

R
ec

ti
li
n
ea

r
5
4

6
4
.2

7
2
3
.0

4
1
9
.4

0
5
2

0
2

2
0
.8

8
1
9
.3

0
0

0
5
4

0
0

5
4

V
L
S
I

/
G

ri
d

2
0
6

9
2
.3

6
3
5
.4

9
3
5
.7

6
1
0
0

1
2

9
4

2
7
.3

6
2
7
.1

3
1

6
1
9
9

1
5

2
0
0

W
ir

eR
o
u
ti

n
g

1
1
5

9
8
.4

8
0
.0

1
0
.0

2
2
8

1
8
6

0
.4

4
0
.5

1
0

5
1
1
0

0
5

1
1
0

C
ov

er
a
g
e

1
0

5
3
1

8
6
.7

7
7
3
.0

9
7
1
.4

2
2
2
3

8
4

2
2
4

3
3
.6

9
3
2
.7

5
3

1
6

5
1
2

4
2
0

5
0
7

C
ov

er
a
g
e

2
0

1
3
0

7
8
.2

7
1
1
8
.3

5
1
1
5
.1

3
5
6

3
4

4
0

4
0
.1

6
3
8
.5

0
1

7
1
2
2

1
8

1
2
1

C
ov

er
a
g
e

3
0

1
2
7

7
8
.9

2
1
8
4
.8

6
1
7
9
.5

0
6
2

4
1

2
4

5
5
.9

0
5
2
.6

7
0

4
1
2
3

0
7

1
2
0

C
ov

er
a
g
e

4
0

9
1

7
1
.2

0
2
5
.4

6
2
1
.5

0
7
3

1
1
7

2
2
.7

9
2
0
.8

2
0

0
9
1

0
0

9
1

C
ov

er
a
g
e

5
0

1
1
9

4
5
.5

1
1
6
.1

5
1
2
.4

6
9
0

5
2
4

1
7
.1

7
1
4
.3

2
0

1
1
1
8

0
9

1
1
0

C
ov

er
a
g
e

6
0

4
1

3
2
.3

3
1
3
.6

1
9
.4

4
3
6

1
4

1
5
.0

9
1
0
.8

8
1

2
3
8

0
1
2

2
9

C
ov

er
a
g
e

7
0

1
8

1
4
.7

7
8
.0

1
3
.6

0
1
2

4
2

9
.6

2
6
.0

4
0

8
1
0

0
8

1
0

C
ov

er
a
g
e

8
0

1
1

9
.0

6
4
.8

9
3
.0

9
5

6
0

6
.5

6
4
.5

6
0

6
5

0
6

5

C
ov

er
a
g
e

9
0

1
4

5
.8

7
3
.4

7
1
.9

5
1
1

2
1

7
.3

2
5
.0

2
0

2
1
2

0
4

1
0

C
ov

er
a
g
e

1
0
0

1
1

0
.7

5
1
.1

1
0
.2

2
6

5
0

3
.3

1
0
.8

9
0

5
6

0
9

2

A
ll

1
0
9
3

7
3
.1

5
7
5
.6

9
7
2
.8

6
5
7
4

1
8
3

3
3
6

3
2
.3

2
3
0
.5

3
5

5
1

1
0
3
7

5
8
3

1
0
0
5

The Influence of Preprocessing on Steiner Tree Approximations 615

References

1. Beyer, S., Chimani, M.: Steiner tree 1.39-approximation in practice. In: Hliněný,
P., Dvořák, Z., Jaroš, J., Kofroň, J., Kořenek, J., Matula, P., Pala, K. (eds.)
MEMICS 2014. LNCS, vol. 8934, pp. 60–72. Springer, Heidelberg (2014)

2. Beyer, S., Chimani, M.: Strong Steiner Tree Approximations inPractice. Submit-
ted to Journal (2014). http://arxiv.org/abs/1409.8318

3. Byrka, J., Grandoni, F., Rothvoß, T., Sanità, L.: Steiner tree approximation via
iterative randomized rounding. J. ACM 60(1), 6:1–6:33 (2013)

4. Chimani, M., Woste, M.: Contraction-based Steiner tree approximations in prac-
tice. In: Asano, T., Nakano, S., Okamoto, Y., Watanabe, O. (eds.) ISAAC 2011.
LNCS, vol. 7074, pp. 40–49. Springer, Heidelberg (2011)

5. Ciebiera, K., Godlewski, P., Sankowski, P., Wygocki, P.: Approximation Algo-
rithms for Steiner Tree Problems Based on Universal Solution Frameworks. arXiv
abs/1410.7534 (2014). http://arxiv.org/abs/1410.7534

6. 11th DIMACS Challenge. http://dimacs11.cs.princeton.edu. Bounds 12 Septem-
ber 2014

7. Dreyfus, S.E., Wagner, R.A.: The Steiner problem in graphs. Networks 1(3), 195–
207 (1971)

8. Fischetti, M., Leitner, M., Ljubic, I., Luipersbeck, M., Monaci, M., Resch, M.,
Salvagnin, D., Sinnl, M.: Thinning out Steiner trees: a node-based model for
uniform edge costs. In: 11th DIMACS Challenge (2014)

9. Goemans, M.X., Olver, N., Rothvoß, T., Zenklusen, R.: Matroids and integrality
gaps for hypergraphic steiner tree relaxations. In: STOC 2012, pp. 1161–1176.
ACM (2012)

10. Junger, M., Thienel, S.: The ABACUS system for branch-and-cut-and-price algo-
rithms in integer programming and combinatorial optimization. Softw.: Pract.
Exp. 30, 1325–1352 (2000)

11. Koch, T., Martin, A., Voß, S.: SteinLib: An Updated Library on Steiner Tree
Problems in Graphs. ZIB-Report 00–37 (2000). http://steinlib.zib.de

12. Kou, L.T., Markowsky, G., Berman, L.: A fast algorithm for Steiner trees. Acta
Informatica 15, 141–145 (1981)

13. Ljubic, I., Weiskircher, R., Pferschy, U., Klau, G.W., Mutzel, P., Fischetti, M.:
An algorithmic framework for the exact solution of the prize-collecting Steiner
tree problem. Math. Program. 105(2–3), 427–449 (2006)

14. Mehlhorn, K.: A faster approximation algorithm for the steiner problem in graphs.
Inf. Process. Lett. 27(3), 125–128 (1988)

15. Papadimitriou, C.H., Yannakakis, M.: Optimization, approximation, and com-
plexity classes. In: STOC 1988, 229–234. ACM (1988)

16. Poggi de Aragão, M., Ribeiro, C.C., Uchoa, E., Werneck, R.F.: Hybrid local search
for the steiner problem in graphs. In: MIC 2001 (2001)

17. Pajor, T., Uchoa, E., Werneck, R.F.: A robust and scalable algorithm for the
Steiner problem in graphs. In: 11th DIMACS Challenge (2014)

18. Polzin, T., Vahdati Daneshmand, S.: Improved algorithms for the Steiner problem
in networks. Discrete Appl. Math. 112(1–3), 263–300 (2001)

19. Polzin, T., Vahdati Daneshmand, S.: The Steiner tree challenge: an updated study.
In: 11th DIMACS Challenge (2014)

20. Robins, G., Zelikovsky, A.: Tighter bounds for graph Steiner tree approximation.
SIAM J. Discrete Math. 19(1), 122–134 (2005)

http://arxiv.org/abs/1409.8318
http://arxiv.org/abs/1410.7534
http://dimacs11.cs.princeton.edu
http://steinlib.zib.de

616 S. Beyer and M. Chimani

21. Takahashi, H., Matsuyama, A.: An approximate solution for the Steiner problem
in graphs. Math. Jpn. 24, 573–577 (1980)

22. Zelikovsky, A.: An 11/6-approximation algorithm for the Steiner problem on
graphs. Ann. Discrete Math. 51, 351–354 (1992)

23. Zelikovsky, A.: A faster approximation algorithm for the Steiner tree problem in
graphs. Inf. Process. Lett. 46(2), 79–83 (1993)

24. Zelikovsky, A.: An 11/6-approximation algorithm for the network Steiner prob-
lem. Algorithmica 9(5), 463–470 (1993)

25. Zelikovsky, A.: Better Approximation Bounds for the Network and Euclidean
Steiner Tree Problems. Technical report. CS-96-06, University of Virginia (1995)

Legally (Δ + 2)-Coloring Bipartite Outerplanar
Graphs in Cubic Time

Danjun Huang1(B), Ko-Wei Lih2, and Weifan Wang1

1 Department of Mathematics, Zhejiang Normal University, Jinhua 321004, China
{hdanjun,wwf}@zjnu.cn

2 Institute of Mathematics, Academia Sinica, Taipei 10617, Taiwan
makwlih@sinica.edu.tw

Abstract. The 2-distance vertex-distinguishing index χ′
d2(G) of a graph

G is the least number of colors required for a proper edge coloring of G
such that any pair of vertices at distance 2 have distinct sets of colors
on their incident edges. Let G be a bipartite outerplanar graph of order
n with maximum degree Δ. We give an algorithm of time complexity
O(n3) to show that χ′

d2(G) ≤ Δ + 2.

Keywords: Algorithm · Edge coloring · 2-distance vertex-distinguishing
index · Outerplanar graph · Bipartite graph

1 Introduction

Only simple and finite graphs are considered in this paper. Let G be a graph with
vertex set V (G), edge set E(G), maximum degree Δ(G), and minimum degree
δ(G). For a vertex v, we use E(v) to denote the set of edges incident to v. Let
dG(v) = |E(v)| denote the degree of v in G. A vertex of degree d is also called
a d-vertex. The distance between two vertices u and v, denoted by dG(u, v),
is the length of a shortest path connecting them if there is any. Otherwise,
dG(u, v) = ∞ by convention. If dG(u, v) = r for u, v ∈ V (G), then u is called an
r-distance vertex or an r-neighbor of v, and vice versa. Moreover, we use Nr

G(v)
to denote the set of r-neighbors of v in the graph G. In particular, we simply call
a 1-neighbor of v a neighbor of v and abbreviate N1

G(v) to NG(v). If no ambiguity
arises, Δ(G), dG(u, v), Nr

G(v), and NG(v) are written as Δ, d(u, v), Nr(v), and
N(v), respectively. A graph G is called normal if it contains no isolated edges.

A proper edge k-coloring of a graph G is a mapping φ : E(G) → C =
{1, 2, . . . , k} such that φ(e) �= φ(e′) for any two adjacent edges e and e′. For
a vertex v ∈ V (G), let Cφ(v) denote the set of colors assigned to the edges in
E(v), i.e., Cφ(v) = {φ(uv) | uv ∈ E(G)}. Let r ≥ 1 be an integer. The r-strong
edge chromatic number χ′

s(G, r) of a graph G is the minimum number of colors

D. Huang—Research supported by NSFC (No.11301486) and ZJNSFC (No.LQ13A
010009).
W. Wang—Research supported by NSFC (No.11371328).

c© Springer International Publishing Switzerland 2015
Z. Lu et al. (Eds.): COCOA 2015, LNCS 9486, pp. 617–632, 2015.
DOI: 10.1007/978-3-319-26626-8 45

618 D. Huang et al.

required for a proper edge coloring of G such that any two vertices u and v with
d(u, v) ≤ r have Cφ(u) �= Cφ(v). Note that a graph G has an r-strong edge
coloring if and only if G is normal. The parameter χ′

s(G, r) was introduced by
Akbari et al. [1], and independently by Zhang et al. [15].

Let diam(G) denote the diameter of a connected graph G, i.e., the maximum
of distances between any pair of distinct vertices in G. Clearly, χ′

s(G, r) = χ′
s(G)

for r ≥ diam(G), where χ′
s(G) is the strong edge chromatic number of G and has

been extensively investigated ([3–5]).
The adjacent vertex distinguishing edge chromatic number χ′

a(G) is precisely
χ′

s(G, 1). Zhang, Liu and Wang [14] first introduced this concept (adjacent strong
edge coloring in their terminology). Among other things, they proposed the fol-
lowing challenging conjecture, in which C5 denotes the cycle on five vertices.

Conjecture 1. If G is a normal graph and G �= C5, then χ′
a(G) ≤ Δ + 2.

Conjecture 1 was confirmed for bipartite graphs and subcubic graphs [2].
Using probabilistic method, Hatami [9] showed that every graph G with Δ >
1020 satisfies χ′

a(G) ≤ Δ + 300. Wang et al. [13] showed that every graph G
satisfies χ′

a(G) ≤ 2.5Δ and every semi-regular graph G satisfies χ′
a(G) ≤ 5

3Δ +
13
3 . A graph G is said to be semi-regular if each edge of G is incident to at least
one Δ-vertex. If G is a planar graph, then it is shown in [10] that χ′

a(G) ≤ Δ+2
when Δ ≥ 12.

More recently, Wang et al. [11] defined the 2-distance vertex-distinguishing
edge coloring of graphs, which can be regarded as a relaxed form of the 2-strong
edge coloring. Given a proper edge coloring φ, we say that two vertices u and v
at distance 2 are in conflict with each other if Cφ(u) = Cφ(v). The coloring φ is
called 2-distance vertex-distinguishing (or 2-neighbor-distinguishing) if Cφ(u) �=
Cφ(v) for any pair of vertices u and v at distance 2. The 2-distance vertex-
distinguishing index (or 2-neighbor-distinguishing index) χ′

d2(G) of a graph G is
the smallest integer k such that G has a 2-distance vertex-distinguishing edge
k-coloring. Clearly, Δ ≤ χ′(G) ≤ χ′

d2(G) ≤ χ′
s(G, 2).

In [11], the authors obtained results on the 2-distance vertex-distinguishing
indices for cycles, paths, trees, complete graphs, complete bipartite graphs, uni-
cycle graphs, Halin graphs, etc. They proposed the following conjecture.

Conjecture 2. For any graph G, χ′
d2(G) ≤ Δ + 2.

In this paper, we are going to show that Conjecture 2 holds for bipartite
outerplanar graphs.

Before proving our main results, we need to introduce some notions and
preliminary results. Let Kn be the complete graph on n vertices. A graph is
called bipartite if its vertices can be partitioned into two subsets V1 and V2 such
that no edge has both endpoints in the same subset. A complete bipartite graph
is a special kind of bipartite graph where every vertex of V1 is connected to every
vertex of V2. A complete bipartite graph with partitions of size |V1| = m and
|V2| = n, is denoted by Km,n. A planar graph is a graph that can be embedded
in the Euclidean plane, i.e., it can be drawn on the plane in such a way that its

Legally (Δ + 2)-Coloring Bipartite Outerplanar Graphs in Cubic Time 619

edges intersect only at their endpoints. Such a drawing is called a plane graph
or planar embedding of the graph. A planar graph is called outerplanar if it
has an embedding in the Euclidean plane such that all vertices belong to the
unbounded face. An outerplane graph is a particular planar embedding of an
outerplanar graph. Given an outerplane graph G, we use F (G) to denote the set
of faces in G. For a face f ∈ F (G), let b(f) denote the boundary walk of f and
write f = [u1u2 · · · un] if u1, u2, . . . , un are the vertices of b(f) in a cyclic order.
A leaf is a 1-vertex. If a 3-vertex v is adjacent to a leaf v′, then we call v′ the
handle of v.

Suppose that G is an outerplane graph. Then the following properties (P1)-
(P3) hold. Note that (P3) follows from (P2) easily.

(P1) δ(G) ≤ 2.
(P2) G does not contain a subdivision of K4 or K2,3 as a subgraph ([7]).
(P3) G does not contain a separating cycle C (i.e., each of the interior and
the exterior of C contains at least one vertex.).

2 Bipartite Outerplanar Graphs with Δ = 3

This section is devoted to the study of the 2-distance vertex-distinguishing index
of bipartite outerplanar graphs of maximum degree at most 3. We first establish
a structural lemma that will be applied in the proof of Theorem1.

Lemma 1. Let G be a connected bipartite outerplane graph with maximum
degree Δ ≤ 3. Then G contains either (B1) or (B2) of the following configu-
rations.

(B1) A vertex v that is adjacent to at least dG(v) − 1 leaves.
(B2) A path x1x2x3x4 such that each of x2 and x3 is either a 2-vertex or a
3-vertex with a handle.

Proof. Assume to the contrary that G contains none of (B1) and (B2). Since G
has no (B1), no 2-vertex is adjacent to a leaf and every 3-vertex is adjacent to at
most one leaf. Let H be the graph obtained by removing all leaves of G. Then
H is a connected bipartite outerplane graph. It is easy to check that δ(H) = 2.
So H contains an end face f = [u1u2 · · · un], n ≥ 4, such that dH(u1) ≤ 3,
dH(un) ≤ 3, and dH(ui) = 2 for all i = 2, 3, . . . , n − 1. It is easy to see that G
contains (B2), a contradiction. �	

In the sequel, a 2-distance vertex-distinguishing edge k-coloring of a graph G
is called a 2DVDE k-coloring for short. An edge uv is said to be legally colored if
the color assigned to it differs from the colors of all adjacent edges and no pair
of 2-distance vertices that are in conflict with each other are produced. Let H
be a subgraph of G. A proper edge coloring φ of H is called a 2DVDE partial
coloring of G on H if Cφ(u) �= Cφ(v) for each pair of vertices u, v ∈ V (H)
satisfying dH(u) = dG(u), dH(v) = dG(v), and dH(u, v) = 2.

Theorem 1. If G is a bipartite outerplane graph with maximum degree Δ ≤ 3,
then χ′

d2(G) ≤ 5.

620 D. Huang et al.

Proof. The proof proceeds by induction on |T (G)| := |V (G)∪E(G)|. If |T (G)| ≤
5, the theorem holds trivially. Suppose that G is a bipartite outerplane graph
with Δ ≤ 3 and |T (G)| ≥ 6. We may assume that G is connected since χ′

d2(G) =
max{χ′

d2(H) | H is a component of G}. By the induction hypothesis, any bipar-
tite outerplane graph H with Δ(H) ≤ 3 and |T (H)| < |T (G)| has a 2DVDE
5-coloring. Let C = {1, 2, . . . , 5} be the set of five colors.

If G is a tree or an even cycle, then it has been shown in [11] that χ′
d2(G) ≤

Δ+1 ≤ 4. Now, assume that G is neither a tree nor an even cycle. By Lemma 1,
G contains configurations (B1) or (B2). Each case will be dealt with separately.

(B1) G contains a vertex v adjacent to at least dG(v) − 1 leaves.

Let v1, v2, . . . , vk, where k = dG(v), denote all the neighbors of v with
dG(v1) = · · · = dG(vk−1) = 1 and dG(vk) ≥ 1. Let H = G − {v1, v2, . . . , vk−1}.
By the induction hypothesis, H has a 2DVDE 5-coloring φ using the color set C.
It is easy to check that vv1, vv2, . . . , vvk−1 can be legally colored with different
colors in C \ Cφ(vk). The extended coloring is a 2DVDE 5-coloring of G.

(B2) G contains a path x1x2x3x4 such that each of x2 and x3 is either a 2-vertex
or a 3-vertex with a handle.

Clearly, x1 �= x4, for otherwise G contain a 3-cycle, making G non-bipartite.
In view of the proof of Case (B1), we may assume that dG(x1) ≥ 2 and dG(x4) ≥
2. Let y1 and y2 be the neighbors of x1 other than x2 if dG(x1) = 3; z1 and z2
be the neighbors of x4 other than x3 if dG(x4) = 3. For i ∈ {2, 3}, let x′

i be a
leaf adjacent to xi provided xi is a 3-vertex with a handle. Then the proof splits
into the following three cases by symmetry.

Case 1. dG (x2) = dG(x3) = 3.

Let H = G−x′
3. By the induction hypothesis, H admits a 2DVDE 5-coloring

φ using the color set C such that φ(x2x3) = 1 and φ(x3x4) = 2. If x3x
′
3 cannot

be legally colored, then it follows easily that dG(x1) = dG(x4) = 3. We may fur-
ther assume that Cφ(x1) = {1, 2, 3}, Cφ(z1) = {1, 2, 4}, and Cφ(z2) = {1, 2, 5}.
Since Cφ(x1) = {1, 2, 3} and φ(x1yi) /∈ {φ(x1x2), 4, 5}, it implies that Cφ(yi) �=
{φ(x1x2), 4, 5} for i = 1, 2. Then we need to handle the following two cases.

• φ(x1x2) = 3. Color or recolor x2x3, x2x
′
2, x3x

′
3 with 4, 5, 3, respectively, to

form a 2DVDE 5-coloring of G.
• φ(x1x2) = 2. If Cφ(x4) �= {2, 4, 5}, then we color or recolor x2x3, x2x

′
2, x3x

′
3

with 4, 5, 3, respectively. If Cφ(x4) = {2, 4, 5}, then φ(x4z1) = 4 and φ(x4z2) =
5. So the edges in (E(z1)∪E(z2))\{x4z1, x4z2} are colored with 1 or 2. We can
recolor x3x4 with 3 so that the resultant coloring is also a 2DVDE 5-coloring of
H. Then it suffices to color or recolor x2x3, x2x

′
2, x3x

′
3 with 4, 5, 2, respectively.

Case 2. dG(x2) = 2 and dG(x3) = 3.

Let H = G−x′
3. By the induction hypothesis, H admits a 2DVDE 5-coloring

φ using the color set C such that φ(x2x3) = 1 and φ(x3x4) = 2. If x3x
′
3 cannot

Legally (Δ + 2)-Coloring Bipartite Outerplanar Graphs in Cubic Time 621

be legally colored, then it follows easily that dG(x1) = dG(x4) = 3. We may fur-
ther assume that Cφ(x1) = {1, 2, 3} and {{1, 2, 4}, {1, 2, 5}} = {Cφ(z1), Cφ(z2)}.
Recolor x2x3 with 4 and color x3x

′
3 with 5 to form a 2DVDE 5-coloring of G.

Case 3. dG(x2) = dG(x3) = 2.

Let H = G − x2x3. By the induction hypothesis, H has a 2DVDE 5-coloring
φ using the color set C with φ(x1x2) = 1 and φ(x3x4) = α.

• α �= 1, say α = 2. If x2x3 cannot be legally colored, then it is easy to see that
at least one of x1 and x4, say x1, is a 3-vertex. Thus, we may further assume
that Cφ(y1) = {1, 3}, Cφ(y2) = {1, 4}, and {2, 5} ∈ Ω = {Cφ(z1), Cφ(z2)}.
This implies that φ(x1y1) = 3 and φ(x1y2) = 4. Since at least one of {2, 3}
and {2, 4}, say {2, 3}, is not in Ω, we recolor x1x2 with 5 and color x2x3 with
3. The resultant coloring is a 2DVDE 5-coloring of G.

• α = 1. If at least one of x1 and x4, say dG(x4) = 2, is of degree 2, then let
x5 be the second neighbor of x4. Without loss of generality, we may assume
that φ(x4x5) = 2. Delete the color of x3x4, and then recolor legally x2x3 with
some color in {3, 4, 5} to produce a 2DVDE 5-coloring of H ′ = G−x3x4. The
proof is reduced to the previous case. So suppose that dG(x1) = dG(x4) = 3.
If x2x3 cannot be legally colored, then we may assume that Cφ(y1) = {1, 2},
Cφ(y2) = {1, 3}, Cφ(z1) = {1, 4}, and Cφ(z2) = {1, 5}. This implies that
φ(x1y1) = 2 and φ(x1y2) = 3. We recolor x1x2 with 5 and color x2x3 with 3.
The resultant coloring is a 2DVDE 5-coloring of G. �	

3 Bipartite Outerplanar Graphs with Δ ≥ 4

In this section, we construct an algorithm of cubic time to legally color the edges
of a bipartite outerplanar graph with maximum degree Δ ≥ 4 using at most Δ+2
colors.

3.1 Ordered Breadth First Search

A rooted tree T is a tree with a particular vertex r designated as its root. The
vertices of a rooted tree can be arranged in layers, with vertices at distances i to
the root r forming layer i. Hence, layer 0 consists of the root only. For a vertex
v in layer i ≥ 1, the neighbor of v in layer i − 1 is called its parent and all the
neighbors of v in layer i+1 are called its children. Vertices in layer i are ordered
from left to right with labels vi

1, v
i
2, . . . , v

i
li

so that, for any j, either vi
j and vi

j+1

have the same parent, or the parent of vi
j is to the left side of the parent of vi

j+1.
Let G be a connected outerplane graph. Beginning with a chosen vertex

r, we order all vertices clockwise. Calamoneri and Petreschi [6] constructed an
algorithm OBFT for G. It is a breadth first search starting from r in such a way
that vertices coming first in the cyclic ordering are visited first. Using OBFT,
G can be edge-partitioned into a spanning tree T rooted at r and a subgraph H
with Δ(H) ≤ 4, i.e., E(G) = E(T)∪E(H) and E(T)∩E(H) = ∅. Edges in E(T)

622 D. Huang et al.

and E(H) are called tree-edges and non-tree-edges of G, respectively. This edge-
partition is called an OBFT partition. Calamoneri and Petreschi [6] used OBFT
to determined the L(h, 1)-labeling number of G. This edge-partition technique
was also successfully employed in [12] to study the surviving rate of outerplanar
graphs.

Lemma 2. [6] Every OBFT partition T ∪ H of a connected outerplane graph
G satisfies the following properties.

1. If vi
j is adjacent to vi

k with j < k, then vi
jv

i
k is a non-tree-edge and k = j +1.

2. If vi
jv

i−1
k ∈ E(H) and vi

j is a child of vi−1
r , then k = r + 1 and vi

j is the
rightmost child of vi−1

r .

To give an example of an OBFT partition, we consider the bipartite outer-
plane graph G∗ depicted in Fig. 1. In Fig. 2, vertex 1 is the root of the tree T
produced by OBFT and solid (broken) lines denote tree-edges (non-tree-edges).

Fig. 1. A bipartite outerplane graph G∗ on 18 vertices.

Fig. 2. (a) An OBFT partition of G∗; (b) the same edge-partition with vertices
renamed.

3.2 A Legal (Δ + 2)-coloring Algorithm

Let G be a connected bipartite outerplane graph. Let T ∪ H be the OBFT
partition of G such that the root r of T satisfies dG(r) = Δ and Δ(H) ≤ 4.
Recall that vi

l denotes the l-th vertex in layer i.

Legally (Δ + 2)-Coloring Bipartite Outerplanar Graphs in Cubic Time 623

Claim 1. vi
l has no neighbor in layer i.

Proof. Assume to the contrary that vi
l has a neighbor x in layer i. By Lemma 2,

we may assume that x = vi
l+1. Let Q1 be the path in T connecting r and vi

l

and Q2 be the path in T connecting r and vi
l+1. Then Q1 and Q2 have the same

length by the structure of T . It follows that Q1 ∪ Q2 ∪ {vi
lv

i
l+1} contains an odd

cycle, making G non-bipartite. �	
It follows from Lemma 2 and Claim 1 that Δ(H) ≤ 2 and every non-root

vertex vi
l has at most two neighbors in layer i−1, no neighbor in layer i, at most

dG(vi
l) − 1 neighbors in layer i + 1, and no 2-neighbor in layer i + 1 and i − 1.

Theorem 2. If G is a bipartite outerplane graph, then χ′
d2(G) ≤ Δ + 2.

Proof. We may assume that Δ ≥ 4 in view of Theorem 1. We will construct
an algorithm to find a 2DVDE (Δ + 2)-coloring of G using the color set C =
{1, 2, . . . ,Δ + 2}. Let uj , 1 ≤ j ≤ |V (G)|, be the j-th vertex visited in OBFT,
where u1 = r is the root. Let Ej = E(u1)∪E(u2)∪ · · · ∪E(uj) and Gj = G[Ej].

At Step 1, we color u1u2, u1u3, . . . , u1uΔ+1 with 1, 2, . . . ,Δ, respectively. By
Claim 1, uj has one parent u1 and dG(uj) − 1 children when 2 ≤ j ≤ Δ + 1.

At Step j, j = 2, 3, . . . ,Δ + 1, we properly color the edges in E(uj) \ {uju1}
from left to right in the following manner.

• If j is even, use the first dG(uj) − 1 colors in the set {Δ + 1, j, j + 1, . . . ,
Δ, 1, 2, . . . , j − 2}.

• If j is odd, use the first dG(uj) − 1 colors in the set {Δ + 2, j, j + 1, . . . , Δ,
1, 2, . . . , j − 2}.

Let j ≥ Δ + 2. Suppose that Ej−1 has been colored such that a 2DVDE partial
coloring φj−1 of G on Gj−1 was established. At Step j, we will color E(uj) to
form a 2DVDE partial coloring φj of G on Gj . When Step j is finished, we go
to Step j + 1. Once all E(uj)’s, 1 ≤ j ≤ |V (G)|, have been colored, we obtain a
2DVDE coloring of G using at most Δ + 2 colors.

A vertex z ∈ V (G) is called full if all the edges in E(z) have been colored
in the foregoing steps. We use F(z) to denote the set of full vertices that are in
conflict with z.

Let uj = vi
l . Then i ≥ 2. Let vi−1

k be the parent of vi
l and vi−2

h be the parent
of vi−1

k . Let dGj
(vi

l) = p, dGj−1(v
i
l) = q, and t = p − q. Then q ≤ 2 by Claim 1.

Claim 2. vi
l has at most two 2-neighbors in layer i − 2.

Proof. If vi
lv

i−1
k+1 /∈ E(G), then only vi−2

h and vi−2
h+1 may be 2-neighbors of vi

l ,
and hence the claim holds. Assume that vi

lv
i−1
k+1 ∈ E(G). By the outerplanarity

of G, the parent of vi−1
k+1 is vi−2

h or vi−2
h+1. For the former, at most vi−2

h and
vi−2

h+1 are 2-neighbors of vi
l in layer i − 2. For the latter, it is easy to derive that

vi−1
k+1v

i−2
h+2 /∈ E(G), for otherwise G will contain a separating cycle with vi−2

h+1 as
an internal vertex, contradicting (P3). Thus, in layer i − 2, only vi−2

h and vi−2
h+1

can be the 2-neighbors of vi
l . �	

624 D. Huang et al.

It suffices to discuss the following cases, depending on the size of t.

Case 1. t = 0.

Since all edges in E(vi
l) have been colored, we are done.

Case 2. t = 1.

Remark 1. No child z of vi−1
k+1 is in F(vi

l).

In fact, if z ∈ F(vi
l), then it is easy to derive that vi

lv
i+1
k+1 ∈ E(H) and hence

dGj
(vi

l) ≥ 3. However, z is a leaf or a 2-vertex in Gj .
Let x be the neighbor of vi

l not in Gj−1. By Claim 1, x is in layer i+1. There
are two subcases.

Case 2.1. xvi
l ∈ E(T).

Then xvi
l has exactly q forbidden colors. In Gj , the child of vi

l is a leaf. It
follows that each 2-neighbor of vi

l is adjacent to vi−1
k or vi−1

k+1. Therefore, by
Claim 2 and Remark 1, we have

|F(vi
l)| ≤ |(NG(vi−1

k) \ {vi
l}) ∪ {vi−2

h+1}| ≤ dG(vi−1
k). (1)

We need to consider certain subcases as follows.

• q = 1 or |F(vi
l)| ≤ Δ − 1. Since |C| − (|F(vi

l)| + q) ≥ |C| − (Δ + 1) ≥ 1, we
can legally color xvi

l with a color in C to establish a 2DVDE partial coloring
φj on Gj .

• q = 2 and |F(vi
l)| = Δ ≥ 4. Then vi

lv
i−1
k+1 ∈ E(H) and vi

l is the rightmost child
of vi−1

k . By inequality (1), we have dG(vi−1
k) = Δ and vi−2

h+1v
i−1
k /∈ E(G). It

follows that vi−1
k has Δ−1 neighbors in layer i by Claim 1. Let y1, y2, . . . , yΔ−1

be the neighbors of vi−1
k in layer i from left to right, where yΔ−1 = vi

l . Suppose
that xvi

l cannot be legally colored. Then we may, without loss of generality,
assume that φj−1(vi

lv
i−1
k) = 1, φj−1(vi

lv
i−1
k+1) = 2, Cφj−1(v

i−2
h+1) = {1, 2, 3},

Cφj−1(v
i−2
h) = {1, 2, 4}, and Cφj−1(ys) = {1, 2, s+4} for s ∈ {1, 2, . . . ,Δ−2}.

Notice that Δ ≥ 4, and yΔ−2 is the middle neighbor of vi−1
k in layer i. Hence,

every 2-neighbor of yΔ−2 in Gj is adjacent to vi−1
k . Let zyΔ−2 ∈ E(G) with

φj−1(zyΔ−2) = 1. If dGj
(z) = 1 or dG(z) > dGj

(z), then we recolor zyΔ−2

with 3 and color xvi
l with Δ+2. Otherwise, it follows that dG(z) = 2, zyΔ−2 ∈

E(H), zyΔ−3 ∈ E(T), and |F(z)| ≤ 1. Let F(z) = {z∗} when |F(z)| = 1.
Then dG(z∗) = dG(z) = 2 and z∗yΔ−3 ∈ E(H). Moreover φj−1(z∗yΔ−3) = 1
since Cφj−1(yΔ−3) = {1, 2,Δ + 1} and φj−1(zyΔ−2) = 1. Again, we recolor
zyΔ−2 with 3 and color xvi

l with Δ + 2. The induced coloring is a 2DVDE
partial coloring φj on Gj .

Case 2.2. xvi
l ∈ E(H).

By Lemma 2, vi
l−1 is the parent of x. Note that xvi

l has at most q+1 forbidden
colors, i.e., the colors of xvi

l−1, v
i
lv

i−1
k , and vi

lv
i−1
k+1 (if it exists).

Claim 3. If dG(x) = dGj
(x), then |F(x)| ≤ 2 and |F(x) \ {vi−1

k , vi−1
k+1}| ≤ 1.

Legally (Δ + 2)-Coloring Bipartite Outerplanar Graphs in Cubic Time 625

Proof. Each 2-neighbor of x is adjacent to vi
l or vi

l−1. Each child of vi
l−1 other

than x is a leaf in Gj . If vi
l−1 has a neighbor in layer i + 1 which is not a child,

let y∗ be such a vertex. Let z be the parent of vi
l−1. By Lemma 2, z = vi−1

k or
z = vi−1

k−1. For the former, we have F(x) ⊆ {vi−1
k+1, y

∗}. For the latter, we have
vi

lv
i−1
k+1 /∈ E(G), for otherwise G has a separating cycle with vi−1

k as an internal
vertex, contradicting (P3). So F(x) ⊆ {vi−1

k−1, v
i−1
k , y∗}. However, if y∗ exists,

then vi
l−2 is the parent of y∗ by Lemma 2. Further, vi−1

k−1 is the parent of vi
l−2,

for otherwise G has a separating cycle with vi−1
k−1 as an internal vertex. Hence

dG(vi−1
k−1) ≥ 3 that implies vi−1

k−1 /∈ F(x). Therefore, |F(x)| ≤ 2. �	
Case 2.2.1. vi

l is the unique child of vi−1
k .

Then the parent of vi
l−1 is vi−1

k−1 by Lemma 2. Thus vi
lv

i−1
k+1 /∈ E(G), or else

G contains a separating cycle with vi−1
k as an internal vertex. So q = 1. By

Claim 2, vi
l are in conflict with at most two full vertices in layer i−2. As vi

l−1 is a
2-neighbor of vi

l , we see |F(vi
l)| ≤ 3. If dG(x) > dGj

(x), then we can legally color
xvi

l since |C|−(|F(vi
l)|+q+1) ≥ 1. Next suppose that dG(x) = dGj

(x) = 2. Then
F(vi

l) ⊆ {vi−2
h , vi−2

h+1, v
i
l−1} and F(x) ⊆ {vi−1

k , vi−1
k−1, y

∗}, where y∗vi
l−1 ∈ E(H)

and y∗ is in layer i+1. Recall that at most one of y∗ and vi−1
k−1 belongs to F(x) by

the proof of Claim 3. Moreover, if F(vi
l) = {vi−2

h , vi−2
h+1, v

i
l−1}, then dG(vi−1

k) ≥ 3,
and so F(x) ⊆ {vi−1

k−1, y
∗}. Therefore, |F(x)| + |F(vi

l)| ≤ 4. If φj−1(xvi
l−1) =

φj−1(vi
lv

i−1
k), then |C|−(|F(x)|+|F(vi

l)|+q) ≥ 1. If φj−1(xvi
l−1) �= φj−1(vi

lv
i−1
k),

then vi
l and vi

l−1 will admit different color sets whenever xvi
l is properly colored.

Hence, |F(x)| + |F(vi
l)| ≤ 3, and then |C| − (|F(x)| + |F(vi

l)| + q + 1) ≥ 1. So
we always can legally color xvi

l with a color in C to establish a 2DVDE partial
coloring φj on Gj .

Case 2.2.2. dG(vi−1
k) ≥ 3 and vi

l is not the rightmost child of vi−1
k .

Then q = 1, dG(vi
l) = 2, and vi

lv
i−1
k+1 /∈ E(G). Moreover, |F(x)| ≤ 1 by Claim

3. Note that every vertex in F(vi
l) is vi

l−1 or is adjacent to vi−1
k . Let z∗ be the

rightmost child of vi−1
k . Then 1 ≤ dGj

(z∗) ≤ 2. Now the proof splits into the
following two cases.

Case 2.2.2.1. dGj
(z∗) = 1.

Then |F(vi
l)| ≤ |(NG(vi−1

k) \ {vi
l , z

∗}) ∪ {vi
l−1}| ≤ Δ − 1 since z∗ /∈ F(vi

l). If
φj−1(xvi

l−1) = φj−1(vi
lv

i−1
k), then |C|− (|F(x)|+ |F(vi

l)|+ q) ≥ 1. Otherwise, vi
l

and vi
l−1 have different color sets whenever xvi

l is properly colored. This implies
that |F(vi

l)| ≤ |NG(vi−1
k)\{vi

l , z
∗}| ≤ Δ−2, and hence |C|− (|F(x)|+ |F(vi

l)|+
q + 1) ≥ 1. So we can legally color xvi

l with a color in C.

Case 2.2.2.2. dGj
(z∗) = 2.

Then z∗vi−1
k+1 ∈ E(H). We have to consider two possibilities.

• Assume that vi−1
k vi−2

h+1 ∈ E(G). Clearly, vi−1
k vi−2

h+1 is a non-tree-edge. Then
vi−2

h+1 is the parent of vi−1
k+1 by the outerplanarity of G, and so dG(vi−2

h+1) ≥ 3.

626 D. Huang et al.

Then |F(vi
l)| ≤ |(NG(vi−1

k) \ {vi
l , v

i−2
h+1}) ∪ {vi

l−1}| ≤ Δ − 1. If φj−1(xvi
l−1) =

φj−1(vi
lv

i−1
k), then |C| − (|F(x)| + |F(vi

l)| + q) ≥ 1. Otherwise, vi
l and vi

l−1

have different color sets whenever xvi
l is properly colored. This implies that

|F(vi
l)| ≤ |NG(vi−1

k)\{vi
l , v

i−2
h+1}| ≤ Δ−2, and hence |C|− (|F(x)|+ |F(vi

l)|+
q + 1) ≥ 1. Hence we can legally color xvi

l with certain color in C.
• Assume that vi−1

k vi−2
h+1 /∈ E(G). If vi

l−1 ∈ NG(vi−1
k), then |F(vi

l)| ≤ |NG(vi−1
k)\

{vi
l}| ≤ Δ − 1. If vi

l−1 /∈ NG(vi−1
k) and dG(vi−1

k) ≤ Δ − 1, then |F(vi
l)| ≤

|(NG(vi−1
k) \ {vi

l})∪{vi
l−1}| ≤ dG(vi−1

k) ≤ Δ− 1. Otherwise, vi
l−1 /∈ NG(vi−1

k)
and dG(vi−1

k) = Δ ≥ 4, then vi−1
k has one child z′ with dGj

(z′) = 1 since vi−1
k

has Δ − 1 ≥ 3 children in layer i. Hence, we also have |F(vi
l)| ≤ |(NG(vi−1

k) \
{vi

l , z
′}) ∪ {vi

l−1}| ≤ Δ − 1. Arguing similarly as before, we can establish a
2DVDE partial coloring φj on Gj .

Case 2.2.3. dG(vi−1
k) ≥ 3 and vi

l is the rightmost child of vi−1
k .

Then vi−1
k is the parent of vi

l−1 by Case 2.2.1. The proof splits into the
following subcases, depending on the size of q.

Case 2.2.3.1. q = 1.

Then dG(vi
l) = 2, vi

lv
i−1
k+1 /∈ E(G), and each vertex in F(vi

l) is adjacent to
vi−1

k . So |F(vi
l)| ≤ |NG(vi−1

k) \ {vi
l}| ≤ Δ − 1. Moreover, |F(x)| ≤ 1 by Claim 3.

If φj−1(xvi
l−1) = φj−1(vi

lv
i−1
k), then |C| − (|F(x)| + |F(vi

l)| + q) ≥ 1. Otherwise,
whenever xvi

l is properly colored, vi
l and vi

l−1 have different color sets implying
|F(vi

l)| ≤ |NG(vi−1
k) \ {vi

l , v
i
l−1}| ≤ Δ − 2, and hence |C| − (|F(x)| + |F(vi

l)| +
q + 1) ≥ 1. Consequently, xvi

l can be legally colored with some color in C.

Case 2.2.3.2. q = 2.

Then vl
iv

i−1
k+1 ∈ E(H) and dG(vi

l) = 3. Let φj−1(vi
lv

i−1
k) = 1, φj−1(vi

lv
i−1
k+1) =

2, and φj−1(xvi
l−1) = α. Without loss of generality, we may assume that α ∈

{1, 2, 3}. By Claim 2 and Remark 1, we have

|F(vi
l)| ≤ |(NG(vi−1

k) \ {vi
l}) ∪ {vi−2

h+1}|. (2)

Moreover, if vi−1
k has m neighbors in layer i, then we use y1, y2, . . . , ym to denote

these neighbors ordered from left to right, where ym = vi
l . For w ∈ {x, vi

l}, we
define C(w) = {c ∈ C | if φj(xvi

l) = c, then there is v ∈ F(vi
l) such that

Cφj
(w) = Cφj

(v)}.
Obviously, |C(vi

l)| ≤ |F(vi
l)| and |C(x)| ≤ |F(x)|. It remains to consider the

following two cases.

Case 2.2.3.2.1. α ∈ {1, 2}.

Case 2.2.3.2.1(a). dG(x) > dGj
(x).

If |F(vi
l)| ≤ Δ−1, then |C|−(|F(vi

l)|+q) ≥ |C|−((Δ−1)+2) ≥ 1, xvi
l can be

legally colored. Thus assume that |F(vi
l)| ≥ Δ. By (2), dG(vi−1

k) = Δ and vi−2
h+1 /∈

NG(vi−1
k) that implies m = Δ − 1 by Claim 1. If xvi

l cannot be legally colored,

Legally (Δ + 2)-Coloring Bipartite Outerplanar Graphs in Cubic Time 627

then we may suppose that Cφj−1(v
i−2
h+1) = {1, 2, 3}, Cφj−1(v

i−2
h) = {1, 2, 4}, and

Cφj−1(ys) = {1, 2, s + 4} for s ∈ {1, 2, . . . ,Δ − 2}. Since Δ ≥ 4, all 2-neighbors
of yΔ−2 in Gj are adjacent to vi−1

k . It suffices to recolor xyΔ−2 with 3, and then
color xvi

l with Δ + 2.

Case 2.2.3.2.1(b). dG(x) = dGj
(x) = 2.

Let y∗ denote a possible vertex in layer i + 1 such that y∗vi
l−1 ∈ E(H). Note

that y∗ may not exist. Once y∗ exists, its parent must be vi
l−2 by Lemma 2. Our

argument splits into the following two cases.

(b1) dG(vi−1
k+1) ≥ 3.

By Claim 3, |F(x)| ≤ |{y∗}| = 1. There are two possibilities to consider.

(b1.1) |F(x)| = 0.

Equivalently, if y∗ exists, then Cφj−1(y
∗) �= {α, β} for any β ∈ {3, 4, . . . ,Δ +

2}. If |F(vi
l)| ≤ Δ − 1, then |C| − (|F(vi

l)| + q) ≥ |C| − ((Δ − 1) + 2) ≥ 1, we
can legally color xvi

l . So assume that |F(vi
l)| ≥ Δ. By (2), dG(vi−1

k) = Δ and
vi−2

h+1 /∈ NG(vi−1
k). It follows that m = Δ − 1 by Claim 1. Similar to the previous

argument, we can legally color xvi
l through a necessary recoloring for xyΔ−2.

(b1.2) |F(x)| = 1.

In this case, y∗ exists and Cφj−1(y
∗) = {α, β} for some β ∈ {3, 4, . . . ,Δ+2},

say β = 3. Then 3 ∈ Cφj−1(v
i
l−1). Note that if xvi

l is colored with any color in
{4, 5, . . . ,Δ + 2}, then vi

l and vi
l−1 will have different color sets. Hence, |F(vi

l) \
{vi

l−1}| ≤ |(NG(vi−1
k)\{vi

l , v
i
l−1})∪{vi−2

h+1}| ≤ dG(vi−1
k)−1. If |F(vi

l)\{vi
l−1}| ≤

Δ−2, then |{4, 5, . . . ,Δ+2}|−|F(vi
l)\{vi

l−1}| ≥ 1, we can legally color xvi
l with

any color in {4, 5, . . . ,Δ+2}. Otherwise, |F(vi
l)\{vi

l−1}| = Δ−1. It turns out that
dG(vi−1

k) = Δ and vi−2
h+1 /∈ NG(vi−1

k). It follows that m = Δ−1 by Claim 1. If xvi
l

cannot be legally colored, then Cφj−1(v
i−2
h+1) = {1, 2, 4}, Cφj−1(v

i−2
h) = {1, 2, 5},

and Cφj−1(ys) = {1, 2, s + 5} for s ∈ {1, 2, . . . ,Δ − 3}. Since Δ ≥ 4, all 2-
neighbors of yΔ−2 in Gj are adjacent to vi−1

k . We recolor xyΔ−2 with some color
in {α, 3, 4, 5, . . . ,Δ + 2} \ Cφj−1(yΔ−2) and color xvi

l with 3.

(b2) dG(vi−1
k+1) = 2.

Note that the parent of vi−1
k+1 is vi−2

h or vi−2
h+1 by Lemma 2 and |F(x)| ≤

|{y∗, vi−1
k+1}| = 2 by Claim 3. We need to consider the following two subcases.

(b2.1) vi−1
k+1 is the child of vi−2

h .

Then |F(vi
l)| ≤ Δ−1 by (2) since vi−2

h+1 /∈ F(vi
l). Note that if φj−1(vi−2

h vi−1
k+1) =

a ∈ {3, 4, . . . ,Δ + 2}, then we can color xvi
l with some color in {3, 4, . . . ,Δ +

2}\{a} such that vi
l and vi−2

h have different color sets; x and vi−1
k+1 have different

color sets. Hence, |C(x) ∪ C(vi
l)| ≤ |F(x)| + |F(vi

l)| − 1. Note that, if |F(x)| ≤ 1,
then |{3, 4, . . . ,Δ + 2}| − |C(x) ∪ C(vi

l)| ≥ Δ − (|F(x)| + |F(vi
l)| − 1) ≥ 1; or

if |F(x)| = 2 and Cφj−1(y
∗) �= {α, β} for any β ∈ {3, 4, . . . ,Δ + 2}, then

628 D. Huang et al.

|{3, 4, . . . ,Δ+2}|−|C(x)∪C(vi
l)| ≥ Δ−(|F(x)\{y∗}|+ |F(vi

l)|−1) ≥ 1. In these
two cases, we can legally color xvi

l . Otherwise, we may assume that |F(x)| = 2
and Cφj−1(y

∗) = {α, 3}. Then 3 ∈ Cφj−1(v
i
l−1). Note that |F(vi

l)\{vi
l−1}| ≤ Δ−2

by (2). Since |{4, 5, . . . ,Δ + 2}| − |C(x) ∪ C(vi
l)| ≥ (Δ − 1) − (|F(x) \ {y∗}| +

|F(vi
l) \ {vi

l−1}| − 1) ≥ (Δ − 1) − (1 + (Δ − 2) − 1) ≥ 1, we can legally color xvi
l

with a color in C to establish a 2DVDE partial coloring φj on Gj .

(b2.2) vi−1
k+1 is the child of vi−2

h+1.

Note that if φj−1(vi−2
h+1v

i−1
k+1) = a ∈ {3, 4, . . . ,Δ+2}, then xvi

l can be colored
with any color in {3, 4, . . . ,Δ+2}\{a} with vi

l and vi−2
h+1 have different color sets;

x and vi−1
k+1 have different color sets. Hence, |C(x)∪C(vi

l)| ≤ |F(x)|+ |F(vi
l)|−1.

First assume that either |F(x)| ≤ 1 or |F(x)| = 2 but Cφj−1(y
∗) �= {α, β} for

any β ∈ {3, 4, . . . ,Δ+2}. If xvi
l cannot be legally colored, then |C(x)∪C(vi

l)| = Δ.
Therefore, |F(vi

l)| = Δ. By (2), dG(vi−1
k) = Δ and vi−2

h+1 /∈ NG(vi−1
k). It follows

that m = Δ − 1 by Claim 1. Similar to the previous argument, we can legally
color xvi

l through a necessary recoloring.
Next assume that |F(x)| = 2 with Cφj−1(y

∗) = {α, 3}. Then 3 ∈ Cφj−1(v
i
l−1).

If xvi
l cannot be legally colored with a color in {4, 5, . . . ,Δ + 2}, then it follows

that Δ − 1 = |(C(x) ∪ C(vi
l)) \ {3}| ≤ |F(x) \ {y∗}| + |F(vi

l) \ {vi
l−1}| − 1, and

hence |F(vi
l) \ {vi

l−1}| ≥ Δ − 1. By (2), dG(vi−1
k) = Δ, vi−2

h+1 /∈ NG(vi−1
k), and

consequently m = Δ−1. Hence, Cφj−1(v
i−2
h+1) = {1, 2, 4} or Cφj−1(v

i−1
k+1) = {2, 4},

Cφj−1(v
i−2
h) = {1, 2, 5}, and Cφj−1(ys) = {1, 2, s + 5} for s ∈ {1, 2, . . . ,Δ − 3}.

Since Δ ≥ 4, all 2-neighbors of yΔ−2 in Gj are adjacent to vi−1
k . Recolor xyΔ−2

with some color in {α, 3, 4, . . . ,Δ + 2} \ {Cφj−1(v
i
l−1)}, and color xvi

l with 3.
A 2DVDE partial coloring φj on Gj is constructed.

Case 2.2.3.2.2. α = 3.

It is easy to observe that when xvi
l is colored with a color in {4, 5, . . . ,Δ+2},

we have Cφj
(x) �= Cφj

(vi−1
k+1) and Cφj

(vi
l) �= Cφj

(vi
l−1). Hence,

|F(vi
l)| ≤ |(NG(vi−1

k) \ {vi
l , v

i
l−1}) ∪ {vi−2

h+1}| ≤ dG(vi−1
k) − 1. (3)

By Claim 3, |F(x)| ≤ 1. In addition, if |F(x)| = 1, we set F(x) = {y∗}, where
y∗ lies in layer i + 1 such that y∗vi

l−1 ∈ E(H). By Lemma 2, vi
l−2 is the parent

of y∗. Hence, if y∗ exists, then vi−1
k is the parent of vi

l−2, for otherwise G will
contain a separating cycle with vi−1

k as internal vertex, contradicting (P3).

Case 2.2.3.2.2(a). dG(x) > dGj
(x).

If |F(vi
l)| ≤ Δ − 2, then |C| − (|F(vi

l)| + q + 1) ≥ |C| − ((Δ − 2) + 3) ≥ 1
and we can legally color xvi

l . So assume that |F(vi
l)| ≥ Δ − 1. By (3), we have

dG(vi−1
k) = Δ and vi−2

h+1 /∈ NG(vi−1
k), and hence m = Δ − 1. If xvi

l cannot be
legally colored, then we may assume that Cφj−1(v

i−2
h+1) = {1, 2, 4}, Cφj−1(v

i−2
h) =

{1, 2, 5}, and Cφj−1(ys) = {1, 2, s + 5} for s ∈ {1, 2, . . . ,Δ − 3}. Since Δ ≥ 4, all
2-neighbors of yΔ−2 in Gj are adjacent to vi−1

k . Recolor xyΔ−2 with some color

Legally (Δ + 2)-Coloring Bipartite Outerplanar Graphs in Cubic Time 629

γ ∈ C \ Cφj−1(yΔ−2). If γ ∈ {1, 2}, then it is reduced to Case 2.2.3.2.1(a). If
γ /∈ {1, 2}, then we color xvi

l with 3.

Case 2.2.3.2.2(b). dG(x) = dGj
(x) = 2.

If |F(x)| = 0 or y∗ exists such that Cφj−1(y
∗) �= {3, β} for any β ∈

{3, 4, . . . ,Δ + 2}, then we can legally color xvi
l analogously to the previ-

ous proof. Otherwise, |F(x)| = 1, we may assume that y∗ exists such that
Cφj−1(y

∗) = {3, 4}. Hence φj−1(y∗vi
l−1) = 4 and φj−1(y∗vi

l−2) = 3. Note that xvi
l

can be colored with any color in {5, 6, . . . ,Δ+2} such that Cφj
(vi

l) �= Cφj
(vi

l−1),
Cφj

(vi
l) �= Cφj

(vi
l−2), and Cφj

(x) �= Cφj
(y∗). By Claim 2 and the fact that

vi
l−2 ∈ NG(vi−1

k), we have |F(vi
l)| ≤ |(NG(vi−1

k) \ {vi
l , v

i
l−1, v

i
l−2}) ∪ {vi−2

h+1}| ≤
dG(vi−1

k)−2. If xvi
l cannot be legally colored with any color in {5, 6, . . . ,Δ+2},

then |F(vi
l)| = Δ − 2. Therefore, dG(vi−1

k) = Δ, vi−2
h+1 /∈ NG(vi−1

k), and hence
m = Δ − 1. Assume that Cφj−1(v

i−2
h+1) = {1, 2, 5}, Cφj−1(v

i−2
h) = {1, 2, 6}, and

Cφj−1(ys) = {1, 2, s + 6} for s ∈ {1, 2, . . . ,Δ − 4}. Since Δ ≥ 4, all 2-neighbors
of yΔ−2 in Gj are adjacent to vi−1

k . We recolor xyΔ−2 with some color γ in
{1, 3, 4, . . . ,Δ+2}\Cφj−1(yΔ−2). If γ = 1, then it is reduced to Case 2.2.3.2.1(b).
Otherwise, we color xvi

l with 4.

Case 3. t ≥ 2.

By Claim 1, all the neighbors of vi
l that are not in Gj−1, say x1, x2, . . . , xt,

lie in layer i + 1. Assume that x1, x2, . . . , xt are ordered from left to right. Note
that dGj

(xi) = 1 for all i = 2, 3, . . . , t and 1 ≤ dGj
(x1) ≤ 2.

Case 3.1. dGj
(x1) = 1.

By Claim 2 and Remark 1, |F(vi
l)| ≤ |(NG(vi−1

k) \ {vi
l}) ∪ {vi−2

h+1}| ≤ Δ. Note
that 2 ≤ t ≤ Δ − q and

(
Δ+2−q

t

) ≥ (
Δ+2−q

2

) ≥ (
Δ
2

)
> Δ. There exists a subset

C ′ of available colors in C with |C ′| = t such that x1, x2, . . . , xt can be legally
colored with C ′.

Case 3.2. dGj
(x1) = 2.

We see that x1v
i
l ∈ E(H) and the parent of x1 is vi

l−1 by Lemma 2. Let
φj−1(vi

lv
i−1
k) = c1, φj−1(x1v

i
l−1) = c2, and φj−1(vi

lv
i−1
k+1) = c3 if vi

lv
i−1
k+1 ∈ E(G).

Now the proof splits into the following three cases.

Case 3.2.1. dG(vi−1
k) = 2.

Note that the parent of vi
l−1 is vi−1

k−1. If q = 2, then G will contain a separating
cycle with vi−1

k as an internal vertex, contradicting (P3). Thus, q = 1, i.e.,
vi

lv
i−1
k+1 /∈ E(G). Furthermore, |F(vi

l)| ≤ |{vi−2
h , vi

l−1}| = 2 by Claim 2 and
|F(x1)| ≤ 2 by Claim 3. Since |C \ {c1, c2}| ≥ 6 − 2 = 4, we can properly color
x1v

i
l with some color c∗ ∈ C \ {c1, c2} such that x1 is not in conflict with its

2-neighbors. Since 2 ≤ t ≤ Δ − q and
(
Δ+2−q−1

t−1

)
=

(
Δ

t−1

) ≥ Δ > 2, we can
find a subset C ′ of available colors in C \ {c∗, c1} with |C ′| = t − 1 such that
x2v

i
l , x3v

i
l , . . . , xtv

i
l can be legally colored with C ′.

630 D. Huang et al.

Case 3.2.2. dG(vi−1
k) ≥ 3 and vi

l is not the rightmost child of vi−1
k .

It is easy to see that vi
lv

i−1
k+1 /∈ E(G), and henceforth q = 1. In this case, every

2-neighbor of vi
l is vi

l−1 or is adjacent to vi−1
k . Every child vi

s of vi−1
k with s > l is

of degree at most 2 in Gj and dGj
(vi

l) ≥ t+1 ≥ 3. These facts imply immediately
that |F(vi

l)| ≤ Δ−1. By Claim 3, |F(x1)| ≤ 1. Since |C\{c1, c2}| ≥ 6−2 = 4, we
can first color x1v

i
l with some color c∗ ∈ C\{c1, c2} such that x1 is not in conflict

with its 2-neighbor. Since 2 ≤ t ≤ Δ − q and
(
Δ+2−q−1

t−1

)
=

(
Δ

t−1

) ≥ Δ > Δ − 1,
we can find a subset C ′ of available colors in C \ {c∗, c1} with |C ′| = t − 1 such
that x2v

i
l , x3v

i
l , . . . , xtv

i
l can be legally colored with C ′.

Case 3.2.3. dG(vi−1
k) ≥ 3 and vi

l is the rightmost child of vi−1
k .

Then q ≤ 2, |F(vi
l)| ≤ |(NG(vi−1

k) \ {vi
l}) ∪ {vi−2

h+1}| ≤ Δ by Claim 2 and
Remark 1; |F(x1)| ≤ 2 by Claim 3. Since 2 ≤ t ≤ Δ − q and

(
Δ+2−q

t

) ≥(
Δ+2−q

2

) ≥ (
Δ
2

) ≥ Δ + 2, there exist two subsets C ′
1, C

′
2 ⊆ C \ {c1, c3} such that

(i) C ′
1 �= C ′

2; (ii) |C ′
1| = |C ′

2| = t; and (iii) for i = 1 and 2, x1v
i
l , x2v

i
l , . . . , xtv

i
l can

be properly colored with C ′
i such that vi

l is not in conflict with its 2-neighbors.
Since t ≥ 2, |C ′

1 ∪C ′
2| ≥ 3. Let us now construct a 2DVDE partial coloring φj on

Gj as follows. If c2 ∈ {c1, c3}, then we first color x1v
i
l with a color c∗ ∈ C ′

1 ∪ C ′
2,

say c∗ ∈ C ′
1, such that x1 is not in conflict with its 2-neighbors. Then we color

x2v
i
l , . . . , xtv

i
l with C ′

1\{c∗}. If c2 /∈ {c1, c3}, then x1 and vi−1
k+1 will have different

color sets if x1v
i
l is colored properly. Thus, |F(x1)| ≤ 1. We color x1v

i
l with a

color c∗ ∈ (C ′
1 ∪ C ′

2) \ {c2}, say c∗ ∈ C ′
1, such that x1 is not in conflict with its

2-neighbors. Then we color x2v
i
l , . . . , xtv

i
l with C ′

1 \ {c∗}. In view of the choices
of C ′

1 and C ′
2, the resultant coloring is a 2DVDE partial coloring φj on Gj . �	

Based on Theorem 2, we give the following algorithm for finding a 2DVDE
(Δ + 2)-coloring of a bipartite outerplanar graph G when Δ ≥ 4.

ALGORITHM: 2DVDE-Color Bipartite Outerplanar Graphs.
INPUT: A connected bipartite outerplanar graph G with Δ ≥ 4.
OUTPUT: A 2DVDE (Δ + 2)-coloring of G.

Begin

1. Choose a Δ-vertex u1 as the root to run the OBFT algorithm.
2. Coloring E(u1) with the colors in C = {1, 2, . . . ,Δ}.
3. Coloring E(uj) \ {uju1}, for j = 2, 3, . . . ,Δ + 1, from left to right as follows.

• If j is even, use the first dG(uj)− 1 colors in the set {Δ+1, j, j +1, . . . , Δ,
1, 2, . . . , j − 2},

• Else j is odd, use the first dG(uj) − 1 colors in the set {Δ + 2, j, j +
1, . . . , Δ, 1, 2, . . . , j − 2}.

4. From top to bottom and from left to right, for each vertex uj with j ≥
Δ + 2, color the edges in E(uj) \ (E(u1) ∪ E(u2) ∪ · · · ∪ E(uj−1)) according
to Theorem 2.

End

Legally (Δ + 2)-Coloring Bipartite Outerplanar Graphs in Cubic Time 631

Theorem 3. Let G be a connected bipartite outerplanar graph with n ≥ 2 ver-
tices. The algorithm 2DVDE-Color Bipartite Outerplanar Graphs runs in
O(n3) time.

Proof. First, it requires O(n) time to run OBFT to get a spanning tree T (cf. [8]).
Next, the algorithm performed in Theorem2 is iterated n times. At each itera-
tion, we legally color the edge subset E∗

j := E(uj) \ Ej−1. The time complexity
to consider in this part includes performing the following four tasks.

(i) Compute the total number τ1 of forbidden colors for the edges in E∗
j .

(ii) Compute the total number τ2 of full vertices that are in conflict with at
most two fixed vertices.

(iii) Select a subset C ′ of available colors from C.
(iv) Color E∗

j properly with color set C ′.

For (i), it follows from the proof of Theorem2 that τ1 ≤ 3|E(uj)| ≤ 3Δ. For
(ii), Claims 1 to 3 showed that each vertex x is in conflict with at most Δ full
vertices in Gj−1. Thus, τ2 ≤ 2Δ. For (iii), we need to eliminate at most Δ color
subsets from C, whereas every color subset consists of at most Δ elements. For
(iv), at most Δ edges are required for a legal coloring. The above analysis shows
that the total running time of our algorithm is at most n(3Δ + 2Δ + Δ2 + Δ) =
O(nΔ2). Since Δ ≤ n − 1, our algorithm runs in O(n3) time. �	

References

1. Akbari, S., Bidkhori, H., Nosrati, N.: r-Strong edge colorings of graphs. Discrete
Math. 306, 3005–3010 (2006)

2. Balister, P.N., Győri, E., Lehel, J., Schelp, R.H.: Adjacent vertex distinguishing
edge-colorings. SIAM J. Discrete Math. 21, 237–250 (2007)

3. Bazgan, C., Harkat-Benhamdine, A.H., Li, H., Woźniak, M.: On the vertex-
distinguishing proper edge-colorings of graphs. J. Combin. Theory Ser. B 75, 288–
301 (1999)

4. Burris A.C.: Vertex-distinguishing edge-colorings. Ph.D. Dissertation, Memphis
State University (1993)

5. Burris, A.C., Schelp, R.H.: Vertex-distinguishing proper edge-colorings. J. Graph
Theory 26, 73–82 (1997)

6. Calamoneri, T., Petreschi, R.: L(h, 1)-labeling subclasses of planar graphs. J. Par-
allel Distrib. Comput. 64, 414–426 (2004)

7. Chartrand, G., Harary, F.: Planar permutation graphs. Ann. Inst. H. Poincaré
Sect. B (N. S.) 3, 433–438 (1967)

8. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
3rd edn. The MIT Press, Cambridge (2009)

9. Hatami, H.: Δ+300 is a bound on the the adjacent vertex distinguishing edge
chromatic number. J. Combin. Theory Ser. B 95, 246–256 (2005)

10. Horňák, M., Huang, D., Wang, W.: On neighbor-distinguishing index of planar
graphs. J. Graph Theory 76, 262–278 (2014)

11. Wang, W., Wang, Y., Huang, D., Wang, Y.: 2-Distance vertex-distinguishing edge
coloring of graphs (submitted, 2015)

632 D. Huang et al.

12. Wang, W., Yue, X., Zhu, X.: The surviving rate of an outerplanar graph for the
firefighter problem. Theoret. Comput. Sci. 412, 913–921 (2011)

13. Wang, Y., Wang, W., Huo, J.: Some bounds on the neighbor-distinguishing index
of graphs. Discrete Math. 338, 2006–2013 (2015)

14. Zhang, Z., Liu, L., Wang, J.: Adjacent strong edge coloring of graphs. Appl. Math.
Lett. 15, 623–626 (2002)

15. Zhang, Z., Li, J., Chen, X., Cheng, H., Yao, B.: D(β)-vertex-distinguishing proper
edge-coloring of graphs. Acta Math. Sin. (Chin. Ser.) 49, 703–708 (2006)

Maximum Independent Set on B1-VPG Graphs

Abhiruk Lahiri1, Joydeep Mukherjee2(B), and C.R. Subramanian2

1 Department of Computer Science and Automation,
Indian Institute of Science, Bangalore, India

abhiruk.lahiri@csa.iisc.ernet.in
2 Theoretical Computer Science,

The Institute of Mathematical Sciences, Chennai, India
{joydeepm,crs}@imsc.res.in

Abstract. We present two approximation algorithms for the maximum
independent set (MIS) problem over the class of B1-VPG graphs and
also for the subclass, equilateral B1-VPG graphs. The first algorithm is
shown to have an approximation guarantee of O((log n)2) whereas the
second one is shown to have an approximation guarantee of O(log d)
where d denotes the ratio dmax/dmin and dmax and dmin denote respec-
tively the maximum and minimum length of of any arm in the input
L-representation of the graph. No approximation algorithms have been
known for the MIS problem for these graph classes before. Also, the NP-
completeness of the decision version restricted to unit length equilateral
B1-VPG graphs is established.

1 Introduction

The problem of computing a maximum independent set (MIS) in an arbitrary
graph is notoriously hard, even if we aim only for a good approximation to
an optimum solution. It is known that, for every fixed ε > 0, MIS cannot be
approximated within a multiplicative factor of n1−ε for a general graph, unless
NP = ZPP [H̊as97]. Throughout, n stands for the number of vertices in the
input graph. Naturally, there have been algorithmic studies of this problem
on special classes of graphs like: (i) efficient and exact algorithms for perfect
graphs, (ii) linear time exact algorithms for chordal graphs and interval graphs,
(iii) O(n2) time exact algorithms for comparability and co-comparability graphs,
(iv) PTAS’s (polynomial time approximation schemes) for planar graphs [Bak94]
and unit disk graphs [HMR+98], (v) efficient (k

2 + ε)-approximation algorithms
for (k + 1) claw-free graphs [Hal95].

MIS has also been studied on classes formed by intersection graphs of geo-
metric objects. These classes are interesting not only from an applications point
of view but also from a purely algorithmic point of view. One such graph class
is denoted by B1-VPG. Before describing the class B1-VPG, we give a brief
introduction to the class VPG of graphs.

Vertex intersection graphs of Paths on Grid (or, in short, VPG graphs) was
first introduced by Golumbic et al. [ACG+12]. For a member of this class of

c© Springer International Publishing Switzerland 2015
Z. Lu et al. (Eds.): COCOA 2015, LNCS 9486, pp. 633–646, 2015.
DOI: 10.1007/978-3-319-26626-8 46

634 A. Lahiri et al.

graphs, its vertices represent paths joining grid-points on a rectangular grid and
two such vertices are adjacent if and only if the corresponding paths intersect.
The study of MIS for this class of graphs is motivated by a corresponding problem
in VLSI circuit design. Since each path on a grid corresponds to wires in a VLSI
circuit and since intersection between wires is to be minimized, the MIS problem
represents a finding a large collection of mutually non-intersecting paths on the
grid. We embed paths in an independent set in one layer of the circuit.

We denote a VPG representation of a graph G = (V,E) by {Pv}v∈V (G),
where Pv is the path corresponding to vertex v. Also, let |V | = n. A bend is a
right-angle turn of a path at some grid point. The bend-number (b(G)) of a graph
G is the minimum integer k such that G has a VPG representation where none
of the paths has more than k bends. “Bk-VPG graphs” denotes the collection of
VPG graphs each of which has bend-number k. In particular, B1-VPG graphs
denotes the class of intersection graphs of paths on a grid where each path has
one of the following shapes: �, �, � and �. By an “arm” of a �, we mean either a
horizontal or a vertical line segment associated with �. We often refer to a B1-
VPG graph, representable with only paths of type � as an L-graph. An L-graph
in vertices are represented by �-paths each having equal length arms, is called
an equilateral L-graph. It is possible that two vertices correspond to paths of
different arm lengths. We often refer to a L-shape as a’l’ for the sake of brevity.

A number of mathematical results on VPG graphs have been obtained
recently [ACG+12,CU13,BD15,FKMU14,CGTW15,CKU13,CJKV12,CCS11].
Relationships between other known graph classes and VPG graphs have also
been studied in [ACG+12]. In [CU13], it has been shown that planar graphs
form a subset of B2-VPG graphs. Recently, this result has been further tight-
ened by Therese Biedl and Martin Derka. They have shown that planar graphs
form a subset of 1-string B2-VPG graphs [BD15] which is a subclass of B2-VPG
graphs. In [FKMU14], authors have shown that any full subdivision of any pla-
nar graph is an L-graph. By a full subdivision of a graph G, we mean a graph
H obtained by replacing every edge of G by a path of length two or more with
every newly added vertex being part of exactly one path. They have also shown
that every co-planar graph (complement of a planar graph) is a B19-VPG graph.
A relationship between poset dimension and VPG bend-number has also been
obtained in [CGTW15]. Contact representation of L-graphs has been studied in
[CKU13]. In this work, the authors have studied the problems of characteriz-
ing and recognizing contact L-graphs and have also shown that every contact
L-representation has an equivalent equilateral contact L-representation. By a
contact L-representation, we mean a more restricted intersection, namely, that
two vertices are adjacent if and only if they just touch. Recognizing VPG graphs
is shown to be NP-complete in [CJKV12]. In the same work, it is also shown that
recognizing if a given Bk+1-VPG graph is a Bk-VPG graph is NP-complete even
if we are given a Bk+1-VPG representation of the input. The recognition problem
has also been looked at for some subclasses of B0-VPG graphs in [CCS11].

VPG graphs are a special type of string graphs, which are intersection graphs
of curves in the plane [ACG+12]. The decision version of maximum independent

Maximum Independent Set on B1-VPG Graphs 635

set problem on string graphs is known to be NP-complete. It follows from the
fact that planar graph forms a subclass of string graphs [CGO10] and it is well
known that decision version of MIS is NP-complete over planar graphs [GJ77].
Also, PTAS (polynomial time approximation schemes) have been obtained for
planar graphs [Bak94]. The best known algorithm for MIS on string graphs has
an approximation factor nε, for some ε > 0 [FP11]. In this context, it would be
interesting to know if there are subclasses of string graphs (other than planar
graphs) where better approximation guarantees have been obtained.

Our Results: In this paper, we present new approximation algorithms for the
class of B1-VPG graphs which is a sub-class of string graphs. We also present
new approximation results over equivaleteral B1-VPG graphs. To the best of our
knowledge, no previous work on approximately solving MIS on B1-VPG graphs
has been published. Precisely, we obtain the following results.

Theorem 1. There exists an efficient O((log n)2)-approximation algorithm for
MIS restricted to B1-VPG graphs.

Theorem 2. There exists an efficient O(log d)-approximation algorithm for MIS
restricted to equilateral B1-VPG graphs. Here, d denotes the ratio dmax/dmin

where dmax and dmin denote respectively the maximum and minimum length of
any arm of any L-shape in the input instance.

As a consequence, we obtain an O(1)-approximation algorithm for those equi-
lateral B1-VPG graphs with a bounded value of d. We assume that the input
graph is presented as a set of ls each l is specified as a 4-tuple as described
in Sect. 2. We have used combinatorial techniques on the L-representation of
B1-VPG graphs to obtain the approximations. For B1-VPG graphs, we employ
the divide and conquer paradigm by splitting the given input instance into few
smaller sub-instances and recurse on them. The recursion stops when the input
is either a graph of constant size or if it forms a special type of graph. The
latter case corresponds to a co-comparability graph and hence can be solved
optimally in polynomial time. For equilateral B1-VPG graphs, we reduce the
given instance into solving the problem on few sub-instances and then compute
the MIS for each of those sub-instances and report the one with maximum size.
Here, we use a combinatorial characterization of the sub-instances which helps
us to solve MIS optimally for the sub-instances.

We introduce the notations in Sect. 2. In Sect. 3, we present the approxima-
tion algorithm for B1-VPG graphs. In Sect. 4, we present the approximation algo-
rithm for equilateral B1-VPG graphs and analyse it in Sect. 5. NP-Completeness
proof for the decision version of MIS over unit B1-VPG graphs is provided in
Sect. 6. Finally, we conclude with some remarks in Sect. 7.

2 Preliminaries

We work with geometric objects in the shape of “L” and the three shapes
obtained by rotating “L” by 90, 180 and 270 degrees in the clockwise direc-
tion around the common point on the two arms of L. Thus we get four distinct

636 A. Lahiri et al.

shapes. For ease of further discussion, we refer to them as follows. L1 refers to
the shape “L”, L2 refers to the shape when “L” is rotated by 90 degrees clock-
wise, L3 refers to the shape when “L” is rotated by 180 degrees clockwise and
L4 refers to the shape when “L” is rotated by 270 degrees clockwise. Henceforth,
we use l to denote a geometric object with one of the four shapes L1, L2, L3 and
L4. Initially, we confine our discussion only to ls of shape L1. The other shapes
can be treated similarly. The intersection point of the two sides of an l is defined
as the corner of the l and is denoted by cl, the tip of the horizontal arm is
denoted by hl and that of the vertical arm is denoted by vl. For an object l, we
use (cx, cy, hx, vy) to denote respectively the x- and y- coordinates of cl, the x-
coordinate of hl and the y- coordinate of vl. This 4-tuple completely describes l.
The set of points constituting l is denoted by Pl and is given by

Pl = {(x, cy) : cx ≤ x ≤ hx} ∪ {(cx, y) : cy ≤ y ≤ vy}.

We say that two distinct objects l1 and l2 intersect if Pl1 ∩ Pl2 �= ∅. l1 and l2 are
said to be independent if and only if they do not intersect. A set of l’s such that no
two of them forms an intersecting pair is said to be an independent set. Suppose
two objects l1 and l2 are such that l1.cx < l2.cx and l1.cy < l2.cy. Then we say
that cl1 < cl2 . When the length of vertical side of an l is equal to the horizontal
side of an l we say that it is equilateral. Since for equilateral l’s the length of the
horizontal side is equal to that of the vertical side, we simply use le(l) to denote
the length of the horizontal side as well as the vertical side. All logarithms used
below are with respect to base 2. We denote a set {1, 2, . . . , n} by [n].

3 Approximation for B1-VPG

Maximum Independent Set in B1- VPG
Input : A set S of l’s
Output : a set I ⊂ S such that I is independent and |I| is maximized.

The decision version of this problem is NP-complete (see Theorem 5). Below, we
present approximation algorithms for this problem.

Define SL1 = {l ∈ S | l is of type L1}. Similarly, we define SL2 , SL3 , SL4 . We
reduce approximately solving for S to approximately solving for each of SLi

,
i = 1, 2, 3, 4. By symmetry, solving for any of these sub-instances is similar to
solving for SL1 . Hence, we focus on approximately solving for inputs S where
each l is of type L1. Below, we present an approximation algorithm with this
assumption. Before proceeding further, we introduce an assumption which is
stated in the following claim and which can be justified easily.

Claim. Without loss of generality, we can assume that

(i) l1.cx �= l2.cx and l1.cy �= l2.cy for any pair of distinct l1, l2 ∈ S provided
l1, l2 are of same type;

(ii) the number n = |S| of objects is even.

Maximum Independent Set on B1-VPG Graphs 637

Our approach is broadly divide and conquer. We sort the objects in S in
increasing order of their cx values. Define xmed to be the middle point between
the cx values of the n/2-th object and the (n/2) + 1-th object in this order.
Then, we compute the sets S1, S2 and S12 defined as follows.

S1 := {l ∈ S : l.hx < xmed}.
S2 := {l ∈ S : l.cx > xmed}.
S12 := {l ∈ S : l.cx ≤ xmed ≤ l.hx}.

The sets S1, S2 and S12 form a partition of S. Also, any pair of l1 ∈ S1, l2 ∈ S2

are independent. The problem is solved by applying the recursive Algorithm
IndSet1. This algorithm (on input S) computes the partition S = S1 ∪S2 ∪S12.
Then, it recursively computes an approximately optimal solution for each of S1

and S2 and computes their disjoint union. This is one candidate approximate
solution. Then, it computes an approximate solution to the instance with S12 as
its input using Algorithm IndSet2, which is also a recursive procedure. This is
another candidate approximate solution. IndSet1 then compares the two candi-
date solutions and outputs the one of larger size.

Now we give an outline of how Algorithm IndSet2 works. This algorithm (on
input T satisfying the required assumption) computes a partition T = T1 ∪ T2 ∪
T12 defined as before for S1, S2, S12 except that we use the cy values of the l’s in
T for calculating the median and the sets and for partitioning it into T1, T2, T12

we use vy values. It is shown (in Lemma 1) that the intersection graph of T12 is a
co-comparability graph and hence a maximum independent set can be computed
efficiently. Approximate independent sets are computed recursively for each of
the two sub-instances specified by T1 and T2 and their disjoint union is also
computed. As before, we compare the two candidate solutions and output the
better one.

Algorithm 1. IndSet1
Require: A non-empty set S of l’s of type L1.
1: if |S| ≤ 3 then
2: return Compute and return a maximum independent set IS of S
3: else
4: Compute xmed and also the partition S = S1 ∪ S2 ∪ S12.
5: Compute IndSet1(S1) ∪ IndSet1(S2) and also IndSet2(S12).
6: Return IS defined as the larger of the two sets computed before.
7: end if

We state and prove the following lemma in terms of l’s of type L1. But it
holds for l’s of each of the other three types as well.

Lemma 1. Suppose S′ is a set of l’s, each being of type L1. Suppose there exist
a horizontal line y = b and a vertical line x = a such that each l ∈ S′ intersects
both y = b and x = a. Then, the intersection graph of members of S′ is a
co-comparability graph.

638 A. Lahiri et al.

Algorithm 2. IndSet2
Require: A non-empty set Y of l’s of type L1 satisfying: for some vertical line x = a,

each member of T intersects x = a.
1: if |Y | ≤ 3 then
2: return Compute and return a maximum independent set IY of Y .
3: else
4: Compute ymed and also the partition Y = Y1 ∪ Y2 ∪ Y12.
5: Compute Junion = IndSet2(Y1) ∪ IndSet2(Y2) and also
6: Compute a maximum independent set J∗

12 of Y12.
7: Return JY defined as the larger of the two sets computed before.
8: end if

Proof. We begin with the following claim.

Claim. A pair l1, l2 ∈ S′ is independent if and only if cl1 < cl2 or vice versa.

Proof. (of Claim) It is easy to see that if either cl1 < cl2 or cl2 < cl1 , then
l1 and l2 are independent. To prove the converse: Assume that l1 and l2 are
independent. We also know that l1.cx �= l2.cx and l1.cy �= l2.cy by Claim 3.
Suppose that neither cl1 < cl2 holds nor cl2 < cl1 holds. As a consequence, we
have one of the following two scenarios: (1) l1.cx < l2.cx and l1.cy > l2.cy or (2)
l1.cx > l2.cx and l1.cy < l2.cy. For Case (1), we have (l2.cx, l1.cy) ∈ Pl1 ∩ Pl2 .
For Case (2), we have (l1.cx, l2.cy) ∈ Pl1 ∩ Pl2 . In both cases, we have used our
assumption that both l1 and l2 intersect the lines y = b and x = a. In either
case, l1 and l2 intersect and hence are not independent, a contradiction to our
assumption. 	

Consider the complement of the intersection graph formed by members of S′.
Its vertices are members of S′ and there is an edge between two members if and
only if they do not intersect. We denote this graph by GC . We orient each edge
(l1, l2) as follows: it is oriented as l1 → l2 if cl1 < cl2 and as l2 → l1 otherwise. To
prove that GC is a co-comparability graph, it suffices to show that ∀li, lj , lk ∈ S′,
we have li → lj , lj → lk ⇒ li → lk. But by the above claim li → lj ⇒ cli < clj

and lj → lk ⇒ clj < clk . It then follows that cli < clk . This implies that (li, lk)
is oriented as li → lk by the above claim. This establishes the transitivity of the
orientation and hence G is a co-comparability graph. This completes the proof
of Lemma 1. 	

4 Analysis of IndSet1 and IndSet2

Denote by I∗ any maximum independent set of S. Similarly, denote by I∗
1 , I∗

2

and I∗
12 any maximum independent set of S1, S2 and S12 respectively. Denote by

I, I1, I2 and I12 the independent set produced by IndSet1 when provided with
S, S1, S2 and S12 as input respectively.

Lemma 2. |I12| ≥ |I∗
12|

log |S12| .

Maximum Independent Set on B1-VPG Graphs 639

Proof. We use Y to denote the set S12. Let |Y | = m. Let Y1, Y2, Y12 denote the
partition of Y computed in Step 4 of IndSet(S12). It follows that |Y1| ≤ m

2 ,
|Y2| ≤ m

2 and |Y12| ≤ m
2 by our assumption stated in (i) of Claim 3. We prove

the lemma by induction on m.
The base case is when |Y | ≤ 3 or when Y = Y12. For this case, we can

solve the instance optimally since |Y | is either small or its intersection graph is
a co-comparability graph. This takes care of the base case.

Let J∗
1 , J∗

2 and , J∗
12 denote respectively a maximum independent set of Y1, Y2

and Y12. Let J1, J2 and J12 denote respectively the solutions returned by IndSet2
when the input is Y1, Y2 and Y12. Since Y12 induces a co-comparability intersection
graph, we have |J12| = |J∗

12|. Recall that I∗
12 denote the maximum independent

set of S12. By induction, |J1| ≥ |J∗
1 |

log(m/2) ≥ |I∗
12∩Y1|

log m−1 , |J2| ≥ |I∗
12∩Y2|

log m−1 . Thus,

I12 = max{|J12|, |J1| + |J2||}

≥ max{|I∗
12 ∩ Y12|, |I∗

12 ∩ Y1| + |I∗
12 ∩ Y2|

log m − 1
}

≥ max{|I∗
12 ∩ Y12|, |I∗

12| − |I∗
12 ∩ Y12|

log m − 1
}

If |I∗
12 ∩ Y12| ≥ |I∗

12|
log |S12| we are done. Otherwise,

|I∗
12| − |I∗

12 ∩ Y12|
log m − 1

≥ |I∗
12| − |I∗

12|/ log m

log m − 1
=

|I∗
12|

log |S12| .

This establishes the induction step, thereby completing the inductive proof. 	

Recall that |S| = n.

Lemma 3. I ≥ |I∗|
log2 n

.

Proof. Due to our assumption stated in (i) of Claim 3, we have

|S1| ≤ n

2
, |S2| ≤ n

2
, |S12| ≤ n

2
.

Again the proof is based on induction on n. We have the following.

I1 ≥ |I∗
1 |

log2(n/2)
≥ |I∗ ∩ S1|

(log n − 1)2
(1)

I2 ≥ |I∗
2 |

log2(n/2)
≥ |I∗ ∩ S2|

(log n − 1)2
(2)

From Lemma 2, we have

I12 ≥ I∗
12

log |S12| ≥ |I∗ ∩ S12|
log |S12| (3)

640 A. Lahiri et al.

Also, |I| = max{|I12|, |I1| + |I2|} (4)

≥ max{ |I∗ ∩ S12|
log |S12| ,

|I∗| − |I∗ ∩ S12|
(log n − 1)2

}

The last inequality follows from applying Inequalities (1), (2) and (3).
The base case corresponding to n ≤ 3 follows, since we can find a maximum

independent set in constant time.
For an arbitrary n > 3, the inductive argument is as follows: If |I∗∩S12|

log |S12| ≥ |I∗|
log2 n

,

the the induction step is proved. Otherwise, we have |I∗∩S12| < |I∗| log |S12|
log2 n

. Thus,

|I∗| − |I∗ ∩ S12|
(log n − 1)2

≥
|I∗| − |I∗| log |S12|

log2 n

(log n − 1)2

≥
|I∗| − |I∗|

log n

(log n − 1)2

≥ |I∗|
log2 n

This proves the induction step for the case when |I∗∩S12|
log |S12| < |I∗|

log2 n
. Hence the

proof. 	

Lemma 3 obtains an upper bound of (log2 n) on the approximation factor of
IndSet1 assuming that each member of S is of type L1, where n denotes the size
of S. By symmetry, we get (log |SL2 |)2, (log |SL3 |)2, (log |SL4 |)2 approximation
for the sets SL2 , SL3 , SL4 . Thus given a set S we compute IL1 , IL2 , IL3 and
IL4 where the above sets denote the independent sets computed by the IndSet1
for sets SL1 , SL2 , SL3 , SL4 respectively. Then we return the one with maximum
cardinality among IL1 , IL2 , IL3 and IL4 . This leads us to the following theorem
on approximating a maximum independent set in S.

Theorem 3. There exists an efficient algorithm which, given a set of S of l′s
such that |S| = n, outputs an independent set of size at least 1

4(log2 n)
of that of

an optimum solution of S.

4.1 Analysis of Running Time

Let s(m) denote the running time of IndSet2(Y) on an input Y of size m.
We have s(m) = O(1) if m ≤ 3. If Y induces a co-comparability graph, then
s(m) = O(m2). Otherwise, s(m) ≤ 2s(m/2)+O(m2). Unravelling the recursion,
we deduce that s(m) = O(m2(log m)).

Let t(n) denote the running time of IndSet1(S) on an input S of size n. We
have t(n) = O(1) if n ≤ 3. Otherwise, t(n) ≤ 2t(n/2) + s(n/2) ≤ 2t(n/2) +
O(n2(log n)). Unravelling the recursion, we deduce that t(n) = O(n2(log n)2).
Thus, IndSet1(S) runs in time O(n2(log n)2) on an input of size n.

Maximum Independent Set on B1-VPG Graphs 641

5 Approximation for Equilateral B1-VPG:

Maximum Independent Set in Equilateral B1-VPG
Input : A set S of equilateral l’s such that le(l) ∈ [2, d] ∀l ∈ S.
Output : An independent set I ⊆ S such that |I| is maximized.

row

cell column

Fig. 1. The grid is for l’s of type 1 whose length varies within the range 2i to 2i+1

We call the above problem as MISL. We call an equilateral l a unit l if
le(l) = 1. In Theorem 5, we establish that the decision version of MISL restricted
to unit ls (and denoted by MIS1) is NP-Complete. As a consequence, it follows
that the decision version of MISL is also NP-complete. In rest of this section, we
present a new approximate algorithm for MISL. Before that, we present a claim
which can be justified easily.

Claim. Without loss of generality, assume that the input to MISL satisfies
dmin = 2.

Proof. (sketch:) Rescale the the coordinates of x-axis and y-axis by stretching
both of them by a multiplicative factor of 2/dmin. 	

The algorithm begins by dividing the input set S into disjoint sets S1, S2, . . . ,
S�log d� where Si = {l ∈ S | 2i ≤ le(l) < 2i+1}, ∀i ∈ [�log d�]. This split is to
exploit the fact that d ≤ 2 when the input is restricted to only members of Si,
for any i. For the ith set, we do the following. We place a sufficiently large but
finite grid structure on the plane covering all members of Si. The grid is chosen
in such a way so that grid-length in each of the x and y directions is 2i. What
we get is a rectangular array of square boxes of side length 2i each. We number
the rows of boxes from bottom and the columns of boxes from left.

We denote a box by (r′, c′) if it is in the intersection of r′th row and c′th

column. We say l is inside a box if its corner cl lies inside the box, but not on
its top horizontal edge or its right vertical edge. If l lies inside a box (r′, c′) we
denote it by l ∈ (r′, c′).

642 A. Lahiri et al.

For every m ∈ [4], kr, kc ∈ [3], define

Sm
i,kr,kc

= {l ∈ (r′, c′) | r′ = kr mod 3, c′ = kc mod 3, l is of type m}.

Here, for purposes of simplicity, we use 3 in place of 0 in (mod 3) arithmetic.
Thus, we partition input S into 36(�log d�) subsets Sm

i,kr,kc
. In Lemma 4,

we establish that the intersection graph G(S1
i,1,1) induced by S1

i,1,1 is a co-
comparability graph and hence, by symmetry, each of the 36 induced subgraphs
is a co-comparability graph. Thus, for each of the 36 induced subgraphs, MIS
can be solved exactly in polynomial time. We choose the largest of these 36 inde-
pendent sets and return it as the output. Assuming Lemma 4 (which we prove
below), we have the following Theorem 4.

Theorem 4. There is an efficient 36�log d�-approximation for MISL where d =
dmax/dmin is as defined before.

For proving Lemma 4 we introduce some notations. We consider the set S1
i,1,1

and the complement of the corresponding intersection graph. We draw an edge
between l1, l2 if l1 and l2 intersect. We denote this graph by G(S1

i,1,1). Below we
prove the following lemma.

Lemma 4. G(S1
i,1,1)

C is a comparability graph.

Proof. Note that all members of s1i,1,1 lie in boxes which are in the intersection
of rows and columns both numbered from {1, 4, 7, . . .}. We prove the claim by
showing that there exist a transitive orientation of the edges of this graph. We
describe the orientation in two steps. First, we orient those edges which connect
two l’s whose corner lie in the same box. In the second step, we orient those
edges which connect two l’s located in two different boxes. For the first step, we
employ the following claim which is an immediate consequence of Lemma 1.

Claim. 5 Suppose l1 and l2 are two members such that |l1.cx − l2.cx| ≤ 2i and
|l1.cy − l2.cy| ≤ 2i. Then, l1, l2 are independent if and only if cl1 < cl2 or vice
versa.

Orientation: Let l1 and l2 be two arbitrary members of S1
i,1,1 joined by an edge

in G(S1
i,1,1)

C .

(i) If l1 and l2 are lying in a common box, we employ Claim 5 and orient it
from l1 to l2 if cl1 < cl2 and from l2 to l1 otherwise.

(ii) Suppose l1 and l2 lie in different boxes in the same row and let l1.cx < l2.cx
without loss of generality. We orient the edge from l1 to l2.

(iii) Suppose l1 and l2 lie in different rows and let l1.cy < l2.cy without loss of
generality. We orient the edge from l1 to l2.

If the orientation of an edge (l1, l2) is from l1 to l2, we denote it by
−−−−→
(l1, l2).

We prove that this orientation is transitive. We prove it by performing a case
analysis. For an edge

−−−−→
(l1, l2), we call it h-oriented if vertices l1 and l2 lie in the

Maximum Independent Set on B1-VPG Graphs 643

same row and we call it v-oriented if l1 lies in a row which is below the row in
which l2 is present. We denote by “case h,v”, the case of 3 vertices l1, l2, l3 such
that (l1, l2) is h-oriented, (l2, l3) is v-oriented. Then we prove that there exist an
edge

−−−−→
(l1, l3). Similarly, the other cases “h,h”, “v,v” and “v,h” are defined and

handled.

Case h, h: In this case we have three sub-cases. They are (1) l1, l2, l3 are in the
same box, (2) Two of the three vertices are in the same box different from the
box of the other, (3) All three are in different boxes.

First, we handle the sub-case (1). l1, l2 are in the same box and they are
independent. In view of Claim 5, this implies that cl1 < cl2 . Similarly, we infer
that cl2 < cl3 . Hence, it follows that cl1 < cl3 and hence (l1, l3) is oriented from
l1 to l3. Thus it is transitive.

Now, for the sub-case (2): either l1, l2 will be in the same box or l2, l3 will be
in the same box. In both the cases l1, l3 will be in different boxes. Since any two
points in different boxes of the same row differ in their x-coordinates by at least
2i+1, the edge (l1, l3) exists and is directed l1 to l3, thereby proving the required
transitivity.

The sub-case (3): Since l’s lie in different boxes in the same row, l3.cx−l1.cx ≥
2i+2 and hence the edge (l1, l3) exists and is directed l1 to l3, thereby proving
the required transitivity. This completes the proof of Case h, h.

Case h, v: Since l1 and l3 are in different rows, we have l3.cy − l1.cy ≥ 2i+1,
the edge (l1, l3) exists and is directed l1 to l3, thereby proving the required
transitivity.

Case v, h: In this case l3 is in a box above that of l1 by our hypothesis. As
before, l3.cy − l1.cy ≥ 2i+1 and hence the edge (l1, l3) exists and is directed l1
to l3, thereby proving the required transitivity.

Case v, v: By our hypothesis l3 is in a box above that of l1. Hence, l3.cy−l1.cy ≥
2i+2 and transitivity is established. 	

6 Hardness of MIS on Unit L-Graphs

Theorem 5. The decision version of Maximum Independent Set on unit
L-graphs is NP-complete.

Proof. By MIS, we mean the decision version of the Maximum Independent Set
problem on a generic class graphs. It is known that MIS is NP-complete [GJ79]
on planar graphs with maximum degree four. We exhibit a polynomial time
reduction between this problem and the MIS problem on the class of unit L-
graphs. The reduction is as follows. Given a planar G = (V,E) (with maximum
degree four), we construct a unit L-graph G′ = (V ′, E′) (of polynomial size)
from G such that for any k, G has an independent set of size k if and only if G′

has an independent set of size k + f(G′) for some polynomial time computable
quantity f(G′). This establishes our claim. Our proof is motivated by [KN90].

644 A. Lahiri et al.

h

w

Fig. 2. Planar graph with maximum degree four and its unit L VPG representation.

It is known that every planar graph of degree at most four can be drawn
on a grid of linear size such that the vertices are mapped to points of the grid
and the edges to piecewise linear curves made up of horizontal and vertical line
segments whose endpoints are also points of the grid [Sch90]. It is reasonable
to assume that a path between two vertices of G, if exists, use horizontal and
vertical segments which has length more than one on the grid (otherwise it is
possible to consider fine enough grid such that this property holds). Let R(w, h)
be the rectangular grid where the graph G has been drawn. We denote the width
and height of the grid by w and h respectively. Let us consider δ = 1/2h. Now
for each vertex of the graph G, draw an unit length L whose corner point has
co-ordinates (x − δy, y), where in the grid R(w, h) the vertex is positioned at
(x, y). Let Pe be the path on the grid corresponding to edge e. Also let |Pe|
denote the number of intermediate grid vertices on the path Pe. Now for every
path Pe, where e = (u, v) ∈ E(G), if |Pe| is even then for every intermediate grid
vertex (x, y) on the path Pe draw a unit length L whose corner lie on (x− δy, y).
If |Pe| is odd then for every intermediate grid vertex (x, y) except last one on
the path Pe draw an unit length L whose corner lie on (x − δy, y). If the last
intermediate grid vertex (x, y) on the path is on a vertical segment of Pe then
draw two L’s as follows one L has corner point at (x − δy, y − ε) and other L
has corner at (x − δy, y) where ε > 0 is a small number. If the last intermediate
grid vertex (x, y) on the path is on a horizontal segment of Pe then draw two
L’s as follows one L has corner point at (x − δy, y) and other L has corner at
(x − δy − ε, y) where ε > 0 is a small number. We denote this graph as G′. From
the construction it is clear that it is an intersection graph of unit L’ s.

Clearly G′ is obtained from G by subdividing every edge e ∈ E with an
even number of new vertices. We refer to this fact by saying that G′ is an (even
subdivision) of G. Let us denote the set of new vertices introduced to subdivide
e by Ve. Clearly V ′ = V

⋃ ∪e∈E(G)Ve. The correctness of the reduction follows
from the following claim.

Claim. Let H denote a graph and H ′ be an even subdivision of H. Then, H
has an independent set of size k if and only if H ′ has an independent set of size
k +

∑
e∈E(H) |Ve|/2.

Proof. The only if part is easy to verify. We focus on proving the if part. Suppose
H ′ has an independent set I of size k +

∑
e∈E(H) |Ve|/2. Notice that |Ve| is even

Maximum Independent Set on B1-VPG Graphs 645

for each e ∈ E(H). Also, any independent set of H ′ contains at most half of
the vertices of Ve, for each e ∈ E(H). Hence |I − I ∩ V (H)| ≤ ∑

e∈E(H) |Ve|/2.
Removing all new vertices, we get an independent set of size at least k in H.
Hence the claim. 	

The above claim implies that α(G′) = α(G) +

∑
e∈E(G) |Ve|/2. This completes

the proof. 	

7 Conclusion and Remarks

We presented new approximation algorithms for Maximum Independent Set
problem on B1-VPG graphs and for equilateral B1-VPG graphs. This leads us to
the following interesting questions. A natural problem is to improve the approx-
imation guarantee ratio for both problems. Another interesting direction would
be to obtain some conditional in-approximability results for MIS by obtaining
lower bounds on the approximation ratios for these graph classes.

References

[ACG+12] Asinowski, A., Cohen, E., Golumbic, M.C., Limouzy, V., Lipshteyn, M.,
Stern, M.: Vertex intersection graphs of paths on a grid. J. Graph Algo-
rithms Appl. 16(2), 129–150 (2012)

[Bak94] Baker, B.S.: Approximation algorithms for NP-complete problems on pla-
nar graphs. J. ACM (JACM) 41(1), 153–180 (1994)

[BD15] Biedl, T.C., Derka, M.: 1-string b2-VPG representation of planar graphs.
In: 31st International Symposium on Computational Geometry, SoCG
2015, 22–25 June 2015, Eindhoven, The Netherlands, pp. 141–155 (2015)

[CCS11] Chaplick, S., Cohen, E., Stacho, J.: Recognizing some subclasses of vertex
intersection graphs of 0-bend paths in a grid. In: Kolman, P., Kratochv́ıl,
J. (eds.) WG 2011. LNCS, vol. 6986, pp. 319–330. Springer, Heidelberg
(2011)

[CGO10] Chalopin, J., Gonçalves, D., Ochem, P.: Planar graphs have 1-string rep-
resentations. Discrete Comput. Geom. 43(3), 626–647 (2010)

[CGTW15] Cohen, E., Golumbic, M.C., Trotter, W.T., Wang, R.: Posets and VPG
graphs. Order, pp. 1–11 (2015)

[CJKV12] Chaplick, S., Jeĺınek, V., Kratochv́ıl, J., Vyskočil, T.: Bend-bounded path
intersection graphs: sausages, noodles, and waffles on a grill. In: Golumbic,
M.C., Stern, M., Levy, A., Morgenstern, G. (eds.) WG 2012. LNCS, vol.
7551, pp. 274–285. Springer, Heidelberg (2012)

[CKU13] Chaplick, S., Kobourov, S.G., Ueckerdt, T.: Equilateral L-contact graphs.
In: Brandstädt, A., Jansen, K., Reischuk, R. (eds.) WG 2013. LNCS, vol.
8165, pp. 139–151. Springer, Heidelberg (2013)

[CU13] Chaplick, S., Ueckerdt, T.: Planar graphs as VPG-graphs. J. Graph Algo-
rithms Appl. 17(4), 475–494 (2013)

[FKMU14] Felsner, S., Knauer, K., Mertzios, G.B., Ueckerdt, T.: Intersection
graphs of L-shapes and segments in the plane. In: Csuhaj-Varjú, E.,
Dietzfelbinger, M., Ésik, Z. (eds.) MFCS 2014, Part II. LNCS, vol. 8635,
pp. 299–310. Springer, Heidelberg (2014)

646 A. Lahiri et al.

[FP11] Fox, J., Pach, J.: Computing the independence number of intersection
graphs. In: Proceedings of the Twenty-Second Annual ACM-SIAM Sym-
posium on Discrete Algorithms, SODA 2011, 23–25 January 2011, San
Francisco, California, USA, pp. 1161–1165 (2011)

[GJ77] Garey, M.R., Johnson, D.S.: The rectilinear steiner tree problem is NP-
complete. SIAM J. Appl. Math. 32(4), 826–834 (1977)

[GJ79] Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to
the Theory of NP-Completeness. A Series of Books in the Mathematical
Sciences. W. H Freeman and Company, San Francisco (1979)

[Hal95] Halldórsson, M.M.: Approximating discrete collections via local improve-
ments. In: SODA, vol. 95, pp. 160–169 (1995)

[H̊as97] H̊astad, J.: Clique is hard to approximate within n1−ε. Acta Mathematica
182, 105–142 (1997)

[HMR+98] Hunt, H.B., Marathe, M.V., Radhakrishnan, V., Ravi, S.S., Rosenkrantz,
D.J., Stearns, R.E.: NC-approximation schemes for NP-and PSPACE-hard
problems for geometric graphs. J. Algorithms 26(2), 238–274 (1998)

[KN90] Kratochv́ıl, J., Nesetril, J.: INDEPENDENT SET and CLIQUE problems
in intersection-defined classes of graphs. Commentationes Mathematicae
Universitatis Carolinae 031(1), 85–93 (1990)

[Sch90] Schnyder, W.: Embedding planar graphs on the grid. In: Proceedings of
the First Annual ACM-SIAM Symposium on Discrete Algorithms, 22–24
January 1990, San Francisco, California, pp. 138–148 (1990)

Approximating the Restricted 1-Center
in Graphs

Wei Ding1(B) and Ke Qiu2

1 Zhejiang University of Water Resources and Electric Power, Hangzhou 310018,
Zhejiang, China

dingweicumt@163.com
2 Department of Computer Science, Brock University, St. Catharines, Canada

kqiu@brocku.ca

Abstract. This paper studies the restricted vertex 1-center problem
(RV1CP) and restricted absolute 1-center problem (RA1CP) in general
undirected graphs with each edge having two weights, cost and delay.
First, we devise a simple FPTAS for RV1CP with O(mn3(1

ε
+log log n))

running time, based on FPTAS proposed by Lorenz and Raz (Oper.
Res. Lett. 28(1999), 213–219) for computing end-to-end restricted short-
est path (RSP). During the computation of the FPTAS for RV1CP, we
derive a RSP distance matrix. Next, we discuss RA1CP in such graphs
where the delay is a separable (e.g., linear) function of the cost on edge.
We investigate an important property that the FPTAS for RV1CP can
find a (1+ε)-approximation of RA1CP when the RSP distance matrix has
a saddle point. In addition, we show that it is harder to find an approx-
imation of RA1CP when the matrix has no saddle point. This paper
develops a scaling algorithm with at most O(mn3K(log K

η
+ log log n))

running time where K is a step-size parameter and η is a given positive
number, to find a (1 + η)-approximation of RA1CP.

Keywords: Restricted 1-center · Restricted shortest path · Saddle point ·
FPTAS

1 Introduction

Given an undirected graph G = (V,E,w) with n nodes, m edges and every edge
e ∈ E having a weight w(e) > 0, the vertex 1-center (V1C) of G is a node such
that the longest distance with the node as origin is minimized. The problem of
finding a V1C of G, called the vertex 1-center problem (V1CP), is tractable [2],
e.g., using the O(mn+n2 log n)-time algorithm proposed by Fredman et al. [4] or
the O(m∗n + n2 log n)-time algorithm proposed by Karger et al. [9] where m∗ is
the number of edges used by shortest paths or Pettie’s O(mn+n2 log log n)-time
algorithm [12] to find all-pairs shortest paths (APSP) and then determining V1C.

A point on an edge of G is called absolute 1-center (A1C) of G if it mini-
mizes the longest distance with the point as origin. Hakimi first proposed the
concept of A1C, and examined an important property that A1C must be at one
c© Springer International Publishing Switzerland 2015
Z. Lu et al. (Eds.): COCOA 2015, LNCS 9486, pp. 647–659, 2015.
DOI: 10.1007/978-3-319-26626-8 47

648 W. Ding and K. Qiu

of 1
2n(n − 1) break points or at one node of graph [6]. The problem of finding

A1C of G, called absolute 1-center problem (A1CP), is thus tractable. When
G is a vertex-weighted graph, Hakimi et al. [7] devised an O(mn2 log n)-time
algorithm to find an A1C of G based on Hakimi’s property, and later Kariv and
Hakimi [10] developed an O(mn3)-time basic algorithm and an O(mn log n)-time
improved algorithm. When G is a vertex-unweighted graph, A1CP admitted an
O(mn log n)-time algorithm [7] and an O(mn)-time improved algorithm [10].
Specifically, Kariv and Hakimi [10] also presented an O(n log n)-time algorithm
and an O(n)-time algorithm for finding a V1C or A1C of a vertex-weighted
tree and vertex-unweighted tree, respectively. We refer readers to [14] or [2] and
literatures listed therein for more results on A1CP.

The distance involved in V1CP and A1CP is referred to as the length of the
shortest path (SP) in G between two distinct nodes. However, given an undirected
graph G = (V,E, c, d) with two edge weights, we are frequently concerned with
the length of the restricted shortest path (RSP) between two distinct nodes in
many practical settings. For instance, one city intends to build an emergent
facility with an aim of getting to each of a group of important locations via a
shortest path within a uniform (or nonuniform) delay bound. This problem can
be modeled as the restricted absolute 1-center problem (RA1CP). Specifically, it
can be modeled as the restricted vertex 1-center problem (RV1CP) if the facility
is restricted to be located at one of a group of locations. Both RA1CP and
RV1CP are defined formally in Sect. 2.

Obviously, both RA1CP and RV1CP could involve the computation of RSP,
which is NP-hard [5]. So far, a number of fully polynomial time approximation
schemes (FPTAS) have been devised for computing end-to-end RSP [1,3,8,11,
13,15]. Let ε be an arbitrary small positive number. In [1], given an undirected
graph, Bernstein’s randomized algorithm can find a (1 + ε)-approximation of
RSP with delay at most 1+ ε times the given bound in nearly linear time. Since
we cannot ensure that the properties of RA1CP shown in Sect. 4 always hold for
RSP with 1 + ε times bound, we cannot employ Bernstein’s algorithm here. All
the other algorithms listed above can compute a (1 + ε)-approximation of RSP
with strict delay bound in different running times. Both Warburton’s FPTAS
[15] and its improved version obtained by Ergun et al. [3] only work in acyclic
graphs and thus cannot be generalized to undirected graphs. Therefore, this
paper employs the improved FPTAS with O(mn(log log n + 1

ε)) running time,
derived by Lorenz and Raz [11] from Hassin’s FPTAS [8], since they apply to
general digraphs and thus can be generalized to general undirected graphs.

This paper focuses on RA1CP in a general undirected graph G = (V,E, c, d)
where every edge has a separable (e.g., linear) delay function of its cost. We
first study RV1CP, in which two node subsets S ⊆ V and T ⊆ V are involved
and we aim to find a restricted vertex 1-center in T that minimizes the cost of
the most costly RSP from it to S. We devise a simple FPTAS for RV1CP with
O(mn3(1ε + log log n)) running time, based on the FPTAS for RSP designed by
Lorenz and Raz [11]. In RA1CP, a continuum set P of points on a collection of
edges in G and a node subset S ⊆ V are involved, and we are asked to find a
restricted absolute 1-center in P such that the cost of the most costly RSP from

Approximating the Restricted 1-Center in Graphs 649

it to S is minimized. If we let a subset T ′ ⊆ V be P, we have an instance J of
RA1CP which is an instance I ′ of RV1CP. We can derive a RSP distance matrix
by applying the FPTAS to I ′ for any given ε > 0. We examine an important
property that the FPTAS for RV1CP also can find a (1 + ε)-approximation of
RA1CP when the matrix has a saddle point. However, the solution produced by
this FPTAS may be arbitrarily bad in the worst case when the matrix has no
saddle point. For this case, we further design a scaling algorithm based on this
property, with at most O(mn3K(log K

η + log log n)) running time where K is a
size-step parameter, to find a (1 + η)-approximation of RA1CP, for any η > 0.

The rest of this paper is organized as follows. In Sect. 2, we define RV1CP
and RA1CP formally and discuss their NP-hardness. In Sect. 3, we propose a
simple FPTAS for RV1CP. In Sect. 4, we first discuss some important properties
and then present approximation algorithms for RA1CP. In Sect. 5, we conclude
this paper. Due to page limit, most proofs are omitted in this paper.

2 Problem Definitions and Intractability

Let G = (V,E, c, d) be an undirected graph where V is the node set and E is
the edge set. Every edge e ∈ E has two nonnegative integer weights, c(e) ≥ 0
representing the cost of e and d(e) ≥ 0 representing the delay of e. Without
otherwise specified, we always use G to denote such an undirected graph. Let π
be a simple path on G. The cost of π, denoted by c(π), is equal to the sum of
all the costs on its edges, i.e., c(π) =

∑
e∈π c(e). Let d(π) denote the delay of π.

Similarly, d(π) =
∑

e∈π d(e). In this paper, for any pair of nodes v and u of G,
a restricted shortest path (RSP) connecting v and u is referred to as a minimum
cost v-to-u path with delay bounded by a constant D ≥ 0, denoted by π∗[v, u;D]
and also called a v-to-u restricted cheapest path with delay bounded by D ≥ 0
(abbreviated to D-RCP).

This paper focuses on the restricted vertex 1-center problem defined in
Problem 1 and the restricted absolute 1-center problem defined in Problem2.

Problem 1. Given G = (V,E, c, d), two node subsets S ⊆ V and T ⊆ V , and a
constant D ≥ 0, the restricted vertex 1-center problem (RV1CP) aims to
find a node in T such that the cost of the most costly D-RCP from it to S is
minimized.

Let C(v, u;D) denote the cost of π∗[v, u;D]. Clearly, C(v, u;D) = c(π∗[v, u;D]).
For any node v ∈ T , we use f(v, S;D) to denote the cost of the most costly D-RCP
from v to S, i.e.,

f(v, S;D) = max
u∈S\{v}

C(v, u;D), ∀v ∈ T. (1)

Let v∗ be the optimal solution of Problem1. We have

f(v∗, S;D) = min
v∈T

f(v, S;D). (2)

650 W. Ding and K. Qiu

Let P(e) and P(G) denote the continuum set of points on e and those on all
the edges of G respectively. For any x ∈ P(G), we also use π∗[x, u;D] to denote
an x-to-u D-RCP. Note that, for any point x ∈ P(e), the computation of the
cost or delay from x to two endpoints of e is given in Sect. 4.

Problem 2. Given G = (V,E, c, d), a node subset S ⊆ V and a point subset
P ⊆ P(G), and a constant D ≥ 0, the restricted absolute 1-center problem
(RA1CP) asks to find a point in P such that the cost of the most costly D-RCP
from it to S is minimized.

Similarly, we also use C(x, u;D) to denote the cost of π∗[x, u;D] and have
C(x, u;D) = c(π∗[x, u;D]), and also use f(x, S;D) to denote the cost of the most
costly D-RCP from x to S, i.e.,

f(x, S;D) = max
u∈S\{x}

C(x, u;D), ∀x ∈ P. (3)

Let x∗ be the optimal solution of Problem2. We have

f(x∗, S;D) = min
x∈P

f(x, S;D). (4)

As we all know, V1CP and A1CP are both tractable in general graphs [2].
However, we find that the hardness of RV1CP (resp. RA1CP) is much higher
than that of V1CP (resp. A1CP). The proofs of the NP-hardness of RV1CP and
RA1CP are shown in Theorems 1 and 2, respectively.

The decision versions of RV1CP and RA1CP are defined as follows.

Problem 3. Given G = (V,E, c, d), two node subsets S ⊆ V and T ⊆ V , and
two constants D ≥ 0 and W ≥ 0, is there a node v̂ in T such that the cost of the
most costly D-RCP from v̂ to S does not exceed W ?

Problem 4. Given G = (V,E, c, d), a node subset S ⊆ V and a point subset
P ⊆ P(G), and two constants D ≥ 0 and W ≥ 0, is there a point x̂ in P such
that the cost of the most costly D-RCP from x̂ to S does not exceed W ?

Theorem 1. RV1CP is NP-hard.

Proof. We consider the special case of RV1CP where both S and T have a single
node. Suppose S = {u} and T = {v}. The decision version of the special case of
RV1CP over S = {u} and T = {v} can be described as: “Given G = (V,E, c, d),
two nodes u and v, and two constants D ≥ 0 and W ≥ 0, is there a v-to-u path
on G with delay bounded by D and cost bounded by W ?”, which is the decision
version of the restricted shortest path problem (RSPP). Since RSPP is NP-hard
[5], the decision version of RV1CP is also NP-hard. This completes the proof. ��

Similarly, we can extend Theorem 1 to Theorem 2 by letting S = {u} and
P = {v}.

Theorem 2. RA1CP is NP-hard.

Approximating the Restricted 1-Center in Graphs 651

3 An FPTAS for RV1CP

In this section, we study RV1CP on undirected graphs, and develop an FPTAS
named AlgRV1CP for RV1CP based on an FPTAS for RSP.

We use the FPTAS proposed by Lorenz and Raz [11], called RSP, to compute
a v-to-u D-RCP for any pair of nodes v ∈ T and u ∈ S. Given any ε > 0,
the solution path produced by RSP is a (1 + ε)-approximation of v-to-u D-RCP,
denoted by πε[v, u;D] and called a v-to-u (1+ε)-approximation restricted cheapest
path with delay bounded by D (abbreviated to (D, ε)-ARCP). Let Cε(v, u;D)
denote the cost of πε[v, u;D], i.e., Cε(v, u;D) = c(πε[v, u;D]). Since RSP is an
FPTAS, it follows that for any ε > 0

C(v, u;D) ≤ Cε(v, u;D) ≤ (1 + ε)C(v, u;D). (5)

Let I represent an input instance of RV1CP, including an undirected graph
G = (V,E, c, d), two node subsets S ⊆ V and T ⊆ V , and a constant D ≥ 0. Let
OPT(I) denote an optimal solution to I and A(I, ε) denote an algorithm solution
produced by AlgRV1CP with input ε > 0. For any v ∈ T , we let g(v, S;D, ε)
denote the cost of the most costly (D, ε)-ARCP from v to S, i.e.,

g(v, S;D, ε) = max
u∈S\{v}

Cε(v, u;D), ∀v ∈ T. (6)

Let vε be a node in T that minimizes g(v, S;D, ε). We have

g(vε, S;D, ε) = min
v∈T

g(v, S;D, ε). (7)

For any node v ∈ T , we use RSP to compute Cε(v, u;D) for each node u in
S other than v (specifically, Cε(v, v;D) = 0), and then determine g(v, S;D, ε)
by Eq. (6). We pick out the node such that g(v, S;D, ε) is minimized. This idea
forms a very simple algorithm for solving RV1CP, called AlgRV1CP. Theorem 3
shows that AlgRV1CP is an FPTAS and its time complexity.

Algorithm AlgRV1CP(I, ε):

Input: an instance I, and a real constant ε > 0;
Output: A(I, ε)

01: for each node v ∈ T do
02: for each node u ∈ S \ {v} do
03: Use RSP to compute Cε(v, u;D);
04: endfor
05: g(v, S;D, ε) := maxu∈S\{v} Cε(v, u;D);
06: endfor
07: A(I, ε) := arg minv∈T g(v, S;D, ε)

First of all, we give a property frequently used in the rest of this paper, whose
proof is straightforward and omitted here.

652 W. Ding and K. Qiu

Lemma 1. Given two q-dimensional (q is either a constant or ∞) arrays {Xj}q

and {Yj}q satisfying Xj ≤ Yj for all j, we have

min{X1,X2, . . . , Xq} ≤ min{Y1, Y2, . . . , Yq}. (8)

and
max{X1,X2, . . . , Xq} ≤ max{Y1, Y2, . . . , Yq}. (9)

Theorem 3. Given an input I in which G has n nodes and m edges, and a real
constant ε > 0, if there is a restricted vertex 1-center in G, then AlgRV1CP can
find a (1 + ε)-approximation of RV1CP in O(mn3(1ε + log log n)) time.

4 Approximation Algorithms for RA1CP

In this section, we study RA1CP on G = (V,E, c, d) with P over a collection of
selected edges in E, e.g., P = {P(e)|e ∈ E′ ⊆ E}, and show AlgRV1CP is not
only an FPTAS for RV1CP but also for RA1CP in some cases. Suppose G has
m edges and n nodes. All m edges are labelled by i = 1, 2, . . . ,m in order and
the edge with label i is denoted by ei. Let M be the set of indices of edges in
E′, and T ′ be the set of endpoints of edges in E′. For any i ∈ M , ei has cost ci

and delay di.
Given two points x′, x′′ ∈ P(ei), i ∈ M , the segment of ei between x′ and x′′

is denoted by [x′, x′′]i. For RA1CP we assume that the delay over [x′, x′′]i is a
separable function of the cost over it, denoted by d = λi(c), 0 ≤ c ≤ ci, which
satisfies

λi(c′ + c′′) = λi(c′) + λi(c′′), ∀c′, c′′ ≥ 0, c′ + c′′ ≤ ci. (10)

Obviously, λi is a monotonic increasing function. For example, for a linear func-
tion λi(c) = �i · c, �i > 0 defined on ei, the delay on [x′, x′′]i is �i · c0 when the
cost on [x′, x′′]i is c0.

4.1 Fundamental Properties

For each i ∈ M , we use t1i and t2i to denote the endpoints of ei. So, T ′ = {t1i , t
2
i |i ∈

M}. Let xi be a point in P(ei). Let ci(xi) denote the cost of [t1i , xi]i and then the
delay of [t1i , xi]i is equal to λi(ci(xi)), for any xi ∈ P(ei). We observe every xi-
to-u D-RCP must pass through t1i or t2i , for any u ∈ S\{xi}. The cheapest one in
all xi-to-u D-RCPs passing through t1i (resp. t2i) is denoted by π∗

1 [xi, u;D] (resp.
π∗
2 [xi, u;D]). Let C1(xi, u;D) and C2(xi, u;D) denote the cost of π∗

1 [xi, u;D] and
π∗
2 [xi, u;D], respectively.

Lemma 2. Given any i ∈ M and a point xi ∈ P(ei), it follows that

1. for any u ∈ S \ {xi} and a point x′ ∈ [t1i , xi]i, we have

C1(xi, u;D) = C1(x′, u;D − λi(ci(xi) − ci(x′))) + ci(xi) − ci(x′), (11)

Approximating the Restricted 1-Center in Graphs 653

Fig. 1. Illustration for Lemma 2.

2. for any u ∈ S \ {xi} and a point x′′ ∈ [t2i , xi]i, we have

C2(xi, u;D) = C2(x′′, u;D − λi(ci(x′′) − ci(xi))) + ci(x′′) − ci(xi). (12)

It is clear that t1i is a point satisfying Case 1 of Lemma 2 and t2i is a point
satisfying Case 2, for any xi ∈ P(ei), i ∈ M . Specifically, we substitute x′ = t1i
into Eq. (11) and x′′ = t2i into Eq. (12). From the fact that ci(t1i) = 0 and
ci(t2i) = ci, we obtain Eqs. (14) and (15), respectively. Since any xi-to-u D-RCP
must pass through either t1i or t2i , we obtain Eq. (13). As a result, we derive the
following corollary.

Corollary 1. Given any i ∈ M and a point xi ∈ P(ei), we infer that

C(xi, u;D) = min{C1(xi, u;D), C2(xi, u;D)}, ∀u ∈ S \ {xi}, (13)

where
C1(xi, u;D) = C(t1i , u;D − λi(ci(xi))) + ci(xi), (14)

and
C2(xi, u;D) = C(t2i , u;D − λi(ci − ci(xi))) + ci − ci(xi). (15)

��
Given any i ∈ M , we construct two new xi-to-u paths with delay bounded

by D, for any xi ∈ P(ei) and u ∈ S \ {xi}. The one composed of [xi, t
1
i]i and

πε[t1i , u;D − λi(ci(xi))] is denoted by Πε
1[xi, u;D], and the other composed of

[xi, t
2
i]i and πε[t2i , u;D−λi(ci−ci(xi))] is denoted by Πε

2[xi, u;D]. Let Πε[xi, u;D]
be the cheaper one between Πε

1[xi, u;D] and Πε
2[xi, u;D]. We use Cε

1(xi, u;D),
Cε

2(xi, u;D) and Cε(xi, u;D) to denote the cost of Πε
1[xi, u;D], Πε

2[xi, u;D] and
Πε[xi, u;D], respectively.

By Corollary 1, we can propose one method to compute Cε
1(xi, u;D),

Cε
2(xi, u;D) and Cε(xi, u;D), shown in Corollary 2.

654 W. Ding and K. Qiu

Corollary 2. Given any i ∈ M , a real constant ε > 0 and a point xi ∈ P(ei),
we have

Cε(xi, u;D) = min{Cε
1(xi, u;D), Cε

2(xi, u;D)}, (16)

where
Cε

1(xi, u;D) = Cε(t1i , u;D − λi(ci(xi))) + ci(xi), (17)

and
Cε

2(xi, u;D) = Cε(t2i , u;D − λi(ci − ci(xi))) + ci − ci(xi). (18)

Lemma 3. Given any 0 ≤ D1 ≤ D2 ≤ D, it follows thatC(x, u;D1) ≥ C(x, u;D2)
and Cε(x, u;D1) ≥ Cε(x, u;D2) for any x ∈ P and u ∈ S \ {x}.
Lemma 4. Given any i ∈ M , a real constant ε > 0 and two points x′

i, x
′′
i ∈

P(ei), provided that ci(x′
i) < ci(x′′

i), it follows that Cε
1(x

′
i, u;D) < Cε

1(x
′′
i , u;D)

and Cε
2(x

′
i, u;D) > Cε

2(x
′′
i , u;D) for any u ∈ S \ {xi}.

Obviously, π∗[xi, u;D] is a simple path on G. We note that Πε
1[xi, u;D] is not a

simple path when πε[t1i , u;D−λi(ci(xi))] contains ei. This is also for Πε
2[xi, u;D].

However, Theorem 4 shows Πε[xi, u;D] is surely a simple path.

Theorem 4. Given any i ∈ M and a real constant ε > 0, Πε[xi, u;D] must be
a simple path, for any xi ∈ P(ei) other than endpoints and any u ∈ S \ {xi}.

Theorem 4 shows Πε[xi, u;D] is a simple path. Moreover, we further conclude
that Cε(xi, u;D) ≤ (1 + ε)C(xi, u;D), as shown in Theorem 5.

Theorem 5. Given any i ∈ M and a real constant ε > 0, it follows that
Πε[xi, u;D] is an xi-to-u (D, ε)-ARCP, for any xi ∈ P(ei) and u ∈ S \ {xi}.
Theorem 6. Given any i ∈ M , a real constant ε > 0 and a point xi ∈ P(ei), it
follows that for any u ∈ S \ {xi} and two points Li,Ui ∈ P(ei) \ {u} satisfying
ci(Li) ≤ ci(xi) ≤ ci(Ui),

min
Li,Ui �=u

{Cε(Li, u;D), Cε(Ui, u;D)} ≤ (1 + ε)C(xi, u;D). (19)

Given any i ∈ M , it is evident that t1i and t2i are both a point on ei and
satisfy ci(t1i) ≤ ci(xi) ≤ ci(t2i) for any xi ∈ P(ei). Specifically, we substitute
Li = t1i and Ui = t2i into Theorem 6 to obtain the following corollary.

Corollary 3. Given any i ∈ M and a real constant ε > 0, it follows that for
any xi ∈ P(ei) and u ∈ S \ {xi}

min
t1i ,t2i �=u

{
Cε(t1i , u;D), Cε(t2i , u;D)

} ≤ (1 + ε)C(xi, u;D). (20)

Moreover, when we are given a node u ∈ S, we consider all x-to-u D-RCPs
with x ∈ P \ {u} and use F(u,P;D) to denote the cost of the cheapest x-to-u
D-RCP. Let u∗ be a node which maximizes F(u,P;D). We have

F(u,P;D) = min
x∈P\{u}

C(x, u;D), ∀u ∈ S, (21)

Approximating the Restricted 1-Center in Graphs 655

and
F(u∗,P;D) = max

u∈S
F(u,P;D). (22)

On the other hand, we consider all v-to-u (D, ε)-ARCP with v ∈ T ′. Let
G(u, T ′;D, ε) denote the cost of the cheapest v-to-u (D, ε)-ARCP. Let uε be a
node which maximizes G(u, T ′;D, ε). We have

G(u, T ′;D, ε) = min
v∈T ′\{u}

Cε(v, u;D), ∀u ∈ S, (23)

and
G(uε, T ′;D, ε) = max

u∈S
G(u, T ′;D, ε). (24)

Lemma 5. F(u∗,P;D) ≤ f(x∗, S;D).

Moreover, combining Eqs. (6), (7), (23) and (24), we use the similar way to
the proof of Lemma 5 to obtain the following corollary.

Corollary 4. G(uε, T ′;D, ε) ≤ g(vε, S;D, ε).

Obviously, Cε(v, v;D) = 0 for any node v ∈ T ′. All Cε(v, u;D)’s produced by
applying AlgRV1CP to RV1CP over S and T ′ form a |T ′| × |S| matrix. We call
(v�, u�) a saddle point of the matrix (also called a saddle point of Cε(v, u;D)),
if (v�, u�) satisfies that for any pair of nodes v ∈ T ′ and u ∈ S

Cε(v�, u;D) ≤ Cε(v�, u�;D) ≤ Cε(v, u�;D). (25)

Theorem 7. Given any ε > 0, G(uε, T ′;D, ε) = g(vε, S;D, ε) if and only if
Cε(v, u;D) has a saddle point.

In the following, we present Theorem 8 to show the relationship of F(u,P;D)
and G(u, T ′;D, ε) for any u ∈ S, which will play an important role in the subse-
quent approximation analysis.

Theorem 8. Given any constant ε > 0, for any u ∈ S

G(u, T ′;D, ε) ≤ (1 + ε)F(u,P;D). (26)

4.2 Approximation Algorithms

Let J represent an input instance of RA1CP, including an undirected graph
G = (V,E, c, d), a node subset S ⊆ V and a point subset P, and a constant
D ≥ 0. Let I ′ be the instance of RV1CP derived from replacing P with T ′ into
J . We use OPT(J) to denote an optimal solution to RA1CP, and use A(I ′, ε) to
denote the solution produced by applying AlgRV1CP to I ′ for a given ε > 0.

656 W. Ding and K. Qiu

Given any u ∈ S and x ∈ P, x
= u, the combination of Theorems 4 and 5
implies that Πε[x, u;D] is not only a simple path but also an x-to-u (D, ε)-ARCP.
We have

min
x∈P

max
u∈S\{x}

Cε(x, u;D)

≤ (1 + ε)min
x∈P

max
u∈S\{x}

C(x, u;D)

= (1 + ε)f(x∗, S;D).

Although we can compute Cε(x, u;D), it is impossible for us to traverse all
points x ∈ P to determine xε such that the cost of the most costly xε-to-u
(D, ε)-ARCP is minimized. Fortunately, A(I ′, ε) is also a (1 + ε)-approximation
of RA1CP when the output Cε(v, u;D) obtained by applying AlgRV1CP to I ′

and ε > 0 satisfies some property, see Theorem 9. This essentially provides us
with a shortcut to compute a (1 + ε)-approximation of RA1CP.

Theorem 9. Provided that Cε(v, u;D) produced by AlgRV1CP has a saddle point,
AlgRV1CP can find a (1 + ε)-approximation of RA1CP on G = (V,E, c, d).

Theorem 9 means that AlgRV1CP is an FPTAS for RA1CP when Cε(v, u;D)
produced by AlgRV1CP has a saddle point. However, it is unfortunate that
Theorem 7 implies that AlgRV1CP cannot find a (1+ε)-approximation of RA1CP
when Cε(v, u;D) has no saddle point. In fact, the solution produced by AlgRV1CP
may be arbitrarily bad in the worst case. A counterexample is shown below in
Fig. 2, where S = V and P = P(G), and the delay bound is D = 5 and γ is
a sufficiently small positive number. Every edge has a pair of weights (c′, d′),
where c′ is its cost and d′ is its delay. Clearly, for any ε > 0, there exists exactly
one or no (5, ε)-ARCP between any pair of nodes. Furthermore, v3 cannot reach
v4 and v5, v4 cannot reach v3 and v5, and v5 cannot reach v3 and v4, within
delay bound 5. We use a 5 × 5 matrix below to store all values of Cε(vi, vj ; 5),
whose row label is i and column label is j.

− 2γ 1 γ 3γ
2γ − 2γ 2 3γ
1 2γ − − −
γ 2 − − −
3γ 3γ − − −

We know this matrix has no saddle point by using TEST given subsequently.
Hence, we only need to consider two nodes v1 and v2. We verify that

f(v1, S; 5) = C(v1, v3; 5) = 1, and f(v2, S; 5) = C(v2, v4; 5) = 2.

Thus,
f(v∗, S; 5) = min{f(v1, S; 5), f(v2, S; 5)} = 1.

Approximating the Restricted 1-Center in Graphs 657

Next, we consider the points on edges. Obviously, the points on edges (v1, v5) and
(v1, v4) cannot reach v3, and (v2, v5) and (v2, v3) cannot reach v4, respectively
within delay bound 5. So, we only need to consider the points on (v1, v2), (v1, v3)
and (v2, v4). Let x1 be a point on (v1, v3) with delay 1.5 to v1, x2 be a point on
(v2, v4) with delay 1.5 to v2, and x3 be a point on (v1, v2) with delay 1.5 to v1.
Clearly, the cost of the section between x1 and v1 is 0.3, that between x2 and v2
is 0.6, and that between x3 and v1 is γ. We have

f(x1, S; 5) = C(x1, v3; 5) = 0.7,

f(x2, S; 5) = C(x2, v4; 5) = 1.4,

f(x3, S; 5) = C(x3, v5; 5) = γ + 3γ = 4γ.

Thus,

f(x∗, S; 5) = min{f(x1, S; 5), f(x2, S; 5), f(x3, S; 5)} = 4γ.

Hence, f(OPT(I ′), S; 5) = 1 and f(OPT(J), S; 5) = 4γ. Therefore,

f(A(I ′, ε), S; 5)
f(OPT(J), S; 5)

≥ f(OPT(I ′), S; 5)
f(OPT(J), S; 5)

=
1
4γ

→ ∞ (γ → 0).

Fig. 2. A counterexample.

We note that the values of Cε(v, u;D) relies on the value of ε. So, we can
design an algorithm to test whether Cε(v, u;D) has a saddle point for given ε > 0.
This testing algorithm is called TEST with parameter ε and described roughly
as follows. TEST(ε) traverses all nodes v ∈ T ′ one by one, finds u� such that
Cε(v, u;D) ≤ Cε(v, u�;D),∀u ∈ S \ {v} for every node v, and decides whether
Cε(v′, u�;D) ≥ Cε(v, u�;D),∀v′ ∈ T ′ \ {u�}. If Cε(v, u;D) has a saddle point,
then TEST(ε) outputs YES. Otherwise, TEST(ε) outputs NO. Clearly, TEST
takes O(n2) time.

658 W. Ding and K. Qiu

Given any η > 0 and an integer K > 0, we set a step-size parameter δ = η
K .

Based on above discussions, we can seek an approximation solution of RA1CP
by using at most K times TEST with εk = kδ, 1 ≤ k ≤ K as parameter. If
there exist some values of k so that TEST(εk) outputs YES, then we can find the
smallest one k̃ and use AlgRV1CP(I ′, εk̃) to determine a (1 + εk̃)-approximation
of RA1CP. Otherwise, we say that we cannot find a (1 + η)-approximation and
thus output NO. The idea can be described as algorithm AlgRA1CP.

Algorithm AlgRA1CP(J, η, K):

Input: an instance J , a real constant η > 0 and an integer K > 0;
Output: YES with εk and A(I ′, εk), or NO

01: δ := η
K

; T ′ := {t1i , t
2
i |i ∈ M};

02: Replace P with T ′ into J to obtain an instance I ′ of RV1CP;
03: for k := 1 to K do
04: εk := kδ;
05: Call AlgRV1CP(I ′, εk) to obtain Cεk(v, u;D) and A(I ′, εk);
06: if TEST(εk)=YES then
07: Stops; returns YES with εk and A(I ′, εk);
08: endif
09: endfor
10: Returns NO

Theorem 10. Given an input J in which G has n nodes and m edges, a real
constant η > 0 and an integer K > 0, AlgRA1CP outputs YES and a (1 + η)-
approximation of RA1CP or NO in at most O(mn3K(log K

η + log log n)) time.

5 Concluding Remarks

In this paper, two restricted 1-center problems in undirected graphs, RV1CP
and RA1CP, were considered. We first devised an FPTAS for RV1CP, and fur-
ther discovered it is also an FPTAS for RA1CP when the RCP distance matrix
between S and T ′ covered by P contains a saddle point. However, its output
solution may be arbitrarily bad in the worst case when the distance matrix con-
tains no saddle point. Considering that the distance matrix varies with the value
of ε, we developed a scaling algorithm to seek ε such that the FPTAS for RV1CP
becomes one for RA1CP.

The bound on delay considered in this paper is uniform for all nodes in S. In
fact, our approximation algorithms also can be applied to the scenarios where the
delay bounds of nodes in S are nonuniform. Moreover, our algorithm AlgRV1CP
can be easily extended to RV1CP on node-weighted undirected graphs.

Note that our scaling algorithm cannot guarantee to find such ε. Therefore,
we suggest to further consider whether we can find more properties which can
help to find such ε definitely. In addition, although we claim that AlgRV1CP can
apply to the case of RV1CP with S = T = V and AlgRA1CP can apply to the

Approximating the Restricted 1-Center in Graphs 659

case of RA1CP with S = V and P = P(G), the question whether or not they
are NP-hard remains open.

Acknowledgement. We thank the reviewers for their valuable comments and sug-
gestions.

References

1. Bernstein, A.: Near linear time (1 + ε)-approximation for restricted shortest paths
in undirected graphs. In: Proceedings of the 23th Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2012, pp. 189–201, Kyoto, Japan, January 2012

2. Eiselt, H.A., Marianov, V.: Foundations of Location Analysis. Springer, Heidelberg
(2011)

3. Ergun, F., Sinha, R., Zhang, L.: An improved FPTAS for restricted shortest path.
Inf. Proc. Lett. 83(5), 287–291 (2002)

4. Fredman, M.L., Tarjan, R.E.: Fibonacci heaps and their uses in improved network
optimization algorithms. J. ACM 34(3), 596–615 (1987)

5. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. Freeman, San Francisco (1979)

6. Hakimi, S.L.: Optimal locations of switching centers and medians of a graph. Oper.
Res. 12(3), 450–459 (1964)

7. Hakimi, S.L., Schmeichel, E.F., Pierce, J.G.: On p-centers in networks. Transport.
Sci. 12(1), 1–15 (1978)

8. Hassin, R.: Approximation schemes for the restricted shortest path problem. Math.
Oper. Res. 17, 36–42 (1992)

9. Karger, D.R., Koller, D., Phillips, S.J.: Finding the hidden path: time bounds for
all-pairs shortest paths. SIAM J. Comput. 22, 1199–1217 (1993)

10. Kariv, O., Hakimi, S.L.: An algorithmic approach to network location problems.
I: the p-centers. SIAM J. Appl. Math. 22, 1199–1217 (1993)

11. Lorenz, D., Raz, D.: A simple efficient approximation scheme for the restricted
shortest path problem. Oper. Res. Lett. 28, 213–219 (1999)

12. Pettie, S.: A new approach to all-pairs shortest paths on real-weighted graphs.
Theor. Comp. Sci. 312(1), 47–74 (2004)

13. Phillips, C.: The network inhibition problem. In: Proceedings of the 25th Annual
ACM Symposium on the Theory of Computing (STOC 1993), pp. 776–785, San
Diego, CA, May 1993

14. Tansel, B.C., Francis, R.L., Lowe, T.J.: Location on networks: a survey. part I: the
p-center and p-median problems. Manag. Sci. 29(4), 482–497 (1983)

15. Warburton, A.: Approximation of pareto optima in multiple-objective shortest
path problems. Oper. Res. 35, 70–79 (1987)

The Disjunctive Bondage Number and the
Disjunctive Total Bondage Number of Graphs

Eunjeong Yi(B)

Texas A&M University at Galveston, Galveston, TX 77553, USA
yie@tamug.edu

Abstract. Let G be a graph with vertex set V (G) and edge set E(G).
A set S ⊆ V (G) is a disjunctive dominating set of G if every vertex in
V (G) − S is adjacent to a vertex of S or has at least two vertices in S
at distance two from it. For G with no isolated vertex, a set S ⊆ V (G)
is a disjunctive total dominating set of G if every vertex in G is adja-
cent to a vertex of S or has at least two vertices of S at distance two
from it. The disjunctive domination number γd(G) of G is the minimum
cardinality over all disjunctive dominating sets of G, and the disjunctive
total domination number γd

t (G) of G is the minimum cardinality over
all disjunctive total dominating sets of G. We define disjunctive bondage
number of G to be the minimum cardinality among all subsets of edges
B ⊆ E(G) for which γd(G − B) > γd(G). For G with no isolated ver-
tex, we define disjunctive total bondage number, bdt (G), of G to be the
minimum cardinality among all subsets of edges B′ ⊆ E(G) satisfying
γd
t (G − B′) > γd

t (G) and that G − B′ contains no isolated vertex; if
no such subset B′ exists, we define bdt (G) = ∞. In this paper, we ini-
tiate the study of the disjunctive (total) bondage number of graphs.
We determine the disjunctive (total) bondage number of the Petersen
graph, cycles, paths, and some complete multipartite graphs. We also
obtain upper bounds of the disjunctive bondage number for trees and
some Cartesian product graphs, and we show the existence of a tree T
satisfying bdt (T) = k for each positive integer k.

Keywords: Disjunctive domination · Disjunctive total domination ·
Disjunctive bondage number · Disjunctive total bondage number · The
Petersen graph · Cycles · Paths · Complete multipartite graphs · Trees ·
Cartesian product graphs

1 Introduction

Let G = (V (G), E(G)) be a finite, simple, and undirected graph. An empty graph
is a graph consisting of isolated vertices. The Cartesian product of two graphs G
and H, denoted by G�H, is the graph with the vertex set V (G)×V (H) such that
(u, v) is adjacent to (u′, v′) if and only if (i) u = u′ and vv′ ∈ E(H) or (ii) v = v′

and uu′ ∈ E(G). The distance between two vertices x, y ∈ V (G), denoted by
dG(x, y), is the length of a shortest path between x and y in G. The diameter of
c© Springer International Publishing Switzerland 2015
Z. Lu et al. (Eds.): COCOA 2015, LNCS 9486, pp. 660–675, 2015.
DOI: 10.1007/978-3-319-26626-8 48

Disjunctive (Total) Bondage Number of Graphs 661

a graph G, denoted by diam(G), is max{dG(x, y) | x, y ∈ V (G)}. For v ∈ V (G),
let NG(v) = {u ∈ V (G) | dG(u, v) = 1} and NG[v] = {u ∈ V (G) | dG(u, v) ≤ 1};
similarly, for a positive integer k, let Nk

G(v) = {u ∈ V (G) | dG(u, v) = k} and
Nk

G[v] = {u ∈ V (G) | dG(u, v) ≤ k}. For a set S ⊆ V (G), its open neighborhood
is the set NG(S) = ∪v∈SNG(v) and its closed neighborhood is the set NG[S] =
NG(S)∪S. The degree of a vertex v ∈ V (G) is degG(v) = |NG(v)|. The maximum
degree among the vertices of G is denoted by �(G), and the minimum degree
among the vertices of G is denoted by δ(G). A leaf is a vertex of degree one,
and a support vertex is a vertex that is adjacent to a leaf. We denote by Cn, Pn,
Kn, respectively, the cycle, path, complete graph on n vertices.

Domination (total domination, respectively) is an extensively studied topic
that models a network on resource allocation (resource allocation with redun-
dancy being allowed in case of resource failure, respectively) at a particular node
(see [8]). A set S ⊆ V (G) is a dominating set of G if every vertex in V (G)−S is
adjacent to at least one vertex of S, and the domination number, γ(G), of G is
the minimum cardinality over all dominating sets of G. For G with no isolated
vertex, a set S ⊆ V (G) is a total dominating set of G if every vertex in G is
adjacent to at least one vertex of S, and the total domination number, γt(G), of
G is the minimum cardinality over all total dominating sets of G. It is known
that determining (total) domination number of a graph is NP-complete (see [3]).
For surveys on the topic of domination, we refer to [5,6].

Recently, Goddard et al. [4] introduced disjunctive domination, and Henning
and Naicker [8] introduced disjunctive total domination. The authors of [8] notes
that disjunctive (total) domination can be viewed as a relaxation of the concept
of (total) domination. Following [7], a set S ⊆ V (G) is a disjunctive dominating
set (DD-set) of G if every vertex in V (G) − S is adjacent to a vertex of S or
has at least two vertices of S at distance two from it; the disjunctive domination
number, γd(G), of G is the minimum cardinality over all DD-sets of G. Follow-
ing [8], a set S ⊆ V (G) is a disjunctive total dominating set (DTD-set) of G if
every vertex in G is adjacent to a vertex of S or has at least two vertices of S
at distance two from it; the disjunctive total domination number, γd

t (G), of G
is the minimum cardinality over all DTD-sets of G. We denote by γd(G)-set a
minimum DD-set of G, and by γd

t (G)-set a minimum DTD-set of G. We say that
a vertex v ∈ V (G) is disjunctively dominated by a vertex set S if v ∈ NG[S] or v
is at distance two from at least two vertices of S; similarly, we say that a vertex
v ∈ V (G) is disjunctively totally dominated by a vertex set S if v ∈ NG(S) or v
is at distance two from at least two vertices of S. It is shown in [4] that there is
a linear-time algorithm for computing γd(T) for a tree T , and that determining
γd(G) of a general graph G is NP-hard.

Bauer et al. [1] introduced the conceptofbondagenumber (calleda ‘domination-
line-stability’) as a measure of efficiency of domination in graphs. Fink et al. [2] offi-
cially introduced and studied bondage number as a graph parameter that measures
the vulnerability of interconnection network. Kulli and Patwari [10] introduced the
concept of total bondage number. The bondage number, b(G), of a nonempty graph
G is the minimum cardinality among all subsets of edges B ⊆ E(G) for which
γ(G − B) > γ(G). If G contains no isolated vertex, the total bondage number,

662 E. Yi

bt(G), of G is the minimum cardinality among all subsets B′ ⊆ E(G) such that
G − B′ has no isolated vertex and γt(G − B′) > γt(G). Hu and Xu [9] showed that
determining the (total) bondage number for general graphs is an NP-hard prob-
lem. Bondage number is a graph parameter that has been studied extensively. For
a survey article on the bondage number of graphs, we refer to [11].

In this paper, we initiate the study of disjunctive (total) bondage number of
a graph. For a non-empty graph G, we define disjunctive bondage number, bd(G),
of G to be the minimum cardinality among all subsets of edges B ⊆ E(G) for
which γd(G − B) > γd(G). For G with no isolated vertex, we define disjunctive
total bondage number, bd

t (G), of G to be the minimum cardinality among all
subsets of edges B′ ⊆ E(G) satisfying the following: (1) G − B′ has no isolated
vertex; (2) γd

t (G − B′) > γd
t (G). In the case that there is no such subset B′, we

define bd
t (G) = ∞. We obtain exact values and bounds of the disjunctive (total)

bondage number for some classes of graphs.
This paper is organized as follows. In Sect. 2, we recall some known results

that are used in Sects. 3 and 4. In Sect. 3, we determine exact values of the dis-
junctive bondage number for the Petersen graph, cycles, paths, and complete
k-partite graphs. We also obtain upper bounds of the disjunctive bondage num-
ber for trees and some Cartesian product of graphs. Further, we express the
upper bound of the disjunctive bondage number of a graph in terms of degree
sum of two vertices that are at distance at most two from each other. In Sect. 4,
we determine disjunctive total bondage number for the Petersen graph, cycles,
paths, and some complete k-partite graphs. We also show that, for a given pos-
itive integer k, there exists a tree T for which bd

t (T) = k. In Sect. 5, we give an
example showing that γ(G) − γd(G) and γt(G) − γd

t (G) can be arbitrarily large.
We conclude with an open problem.

2 Preliminaries

In this section, we recall some known results which will be used in Sects. 3 and 4.
First,we recall thedisjunctive (total) dominationnumber of somegraphs.Webegin
with a result on the effect of an edge deletion on the disjunctive domination number
of a graph.

Theorem 1. [4] For any graph G, γd(G−e) ≤ γd(G)+1 for any edge e ∈ E(G).

Theorem 2. [4]

(a) For the Petersen graph P, γd(P) = 2.
(b) For n ≥ 3,

γd(Cn) =

⎧⎨
⎩

2 if n = 4

	n
4
 otherwise.

(1)

(c) For n ≥ 2, γd(Pn) = 	n+1
4
.

(d) For n ≥ 1, γd(Pn�P2) = 	n+2
3
.

Disjunctive (Total) Bondage Number of Graphs 663

Theorem 3. [8] Let n ≥ 3.

(a)

γd
t (Cn) =

⎧⎪⎨
⎪⎩

2n
5 if n ≡ 0 (mod 5)

⌈
2(n+1)

5

⌉
otherwise.

(2)

(b)

γd
t (Pn) =

⎧⎪⎪⎨
⎪⎪⎩

⌈
2(n+1)

5

⌉
+ 1 if n ≡ 1 (mod 5)

⌈
2(n+1)

5

⌉
otherwise.

(3)

Next, we recall a couple of results on the bondage number.

Theorem 4. [2]

(a) For n ≥ 3,

b(Cn) =
{

3 if n ≡ 1 (mod 3),
2 otherwise. (4)

(b) If G = Ka1,a1,...,ak
is a complete k-partite graph (k ≥ 2) with ak = max{ai :

1 ≤ i ≤ k}, where s is the number of partite sets consisting of one element,
then

b(G) =

⎧⎨
⎩

	 s
2
 if s �= 0,

2k − 1 if ai = 2 for each i ∈ {1, 2, . . . , k},∑k−1
i=1 ai otherwise.

(5)

3 The Disjunctive Bondage Number of Graphs

3.1 Some Exact Values

In this section, we determine disjunctive bondage number for the Petersen graph,
cycles, paths, and complete k-partite graphs. We begin with some observations.

Observation 5. Let G be a nonempty graph. Then

(a) γd(G) = 1 if and only if �(G) = |V (G)| − 1;
(b) if �(G) = |V (G)| − 1, then bd(G) = b(G);
(c) if γ(G) = 2, then γd(G) = 2 and bd(G) ≥ b(G).

Proposition 1. For the Petersen graph P, bd(P) = 3.

Proof. Let the Petersen graph P be given by two 5-cycles u1u2 . . . u5u1, w1w2 . . .
w5w1, and five additional edges u1w1, u2w3, u3w5, u4w2, u5w4 (see Fig. 1). By
Theorem 2(a), γd(P) = 2. For B ⊆ E(P), let H = P − B.

First, let |B| = 1. Since P is edge-transitive, take B = {u1u2}; then γd(H) =
2 = γd(P) since S = {u3, u5} is a γd(H)-set. So, bd(P) ≥ 2.

664 E. Yi

w2

u1

u2

u3u4

w1u5

w5

w3w4

Fig. 1. The Petersen graph P and its labeling of vertices

Second, let |B| = 2. If two edges in B are adjacent, say B = {u1u2, u2u3},
then S = {w2, w4} is a γd(H)-set; thus γd(H) = 2 = γd(P). If two edges in B are
not adjacent but have a common edge, say B = {u1u2, u3u4}, then S = {w2, w5}
is a γd(H)-set; thus γd(H) = 2 = γd(P). If two edges in B are neither adjacent
nor have a common edge, say B = {u1u2, w4w5}, then S = {u3, u5} is a γd(H)-
set; thus γd(H) = 2 = γd(P). So, bd(P) ≥ 3.

Next, let |B| = 3. If B = {u1u2, u1u5, u1w1}, then H = P − B consists of
an isolated vertex and a connected graph H ′ with �(H ′) �= |V (H ′)| − 1; thus,
γd(H) ≥ 3 = 1 + γd(P). So, bd(P) ≤ 3. Therefore, bd(P) = 3. �

Proposition 2. For n ≥ 3,

bd(Cn) =

⎧⎨
⎩

3 if n = 4,
1 if n �= 4 and n ≡ 0 (mod 4),
2 if n ≡ 1, 2, 3 (mod 4).

(6)

Proof. Let Cn be the n-cycle given by v1v2 . . . vnv1, where n ≥ 3.

Case 1: n ≡ 0 (mod 4). We write n = 4k, where k ≥ 1. First, let k = 1;
then γ(C4) = 2 = γd(C4). Since b(C4) = 3 by Theorem 4(a), bd(C4) ≥ 3 by
Observation 5(c). Let H = C4−{v1v2, v2v3, v3v4}; then γd(H) = 3 > γd(C4), and
hence bd(C4) ≤ 3. Thus, bd(C4) = 3. Next, let k ≥ 2. Then γd(P4k) = 1+γd(C4k)
by Theorem 2(b)(c); thus, bd(Cn) = 1 for n �= 4 and n ≡ 0 (mod 4).

Case 2: n ≡ 1, 2, 3 (mod 4). Since γd(Cn) = γd(Pn) for n �≡ 0 (mod 4) by
Theorem 2(b)(c), bd(Cn) ≥ 2. Let H = Cn −{v1v2, v2v3}; then H consists of K1

and Pn−1. If n = 4k+1 (k ≥ 1), then γd(H) = γd(K1)+γd(P4k) = 1+(k+1) =
1+γd(C4k+1); thus bd(C4k+1) ≤ 2. If n = 4k+2 (k ≥ 1), then γd(H) = γd(K1)+
γd(P4k+1) = 1 + (k + 1) = 1 + γd(C4k+2); thus bd(C4k+2) ≤ 2. If n = 4k + 3
(k ≥ 0), then γd(H) = γd(K1) + γd(P4k+2) = 1 + (k + 1) = 1 + γd(C4k+3); thus
bd(C4k+3) ≤ 2. Therefore, bd(Cn) = 2 for n ≡ 1, 2, 3 (mod 4). �

Proposition 3. For n ≥ 2,

bd(Pn) =
{

2 if n = 4,
1 otherwise. (7)

Disjunctive (Total) Bondage Number of Graphs 665

Proof. Let Pn be the n-path given by v1v2 . . . vn, where n ≥ 2.

Case 1: n ≡ 0 (mod 4). First, we consider for n = 4. For B ⊆ E(P4), if |B| = 1,
then P4−B is isomorphic to either 2K2 or K1∪P3; in each case, γd(P4−B) = 2 =
γd(P4). So, bd(P4) ≥ 2. Since γd(P4 − {v1v2, v2v3}) = 3 > γd(P4), bd(P4) ≤ 2.
Thus, bd(P4) = 2. Next, let n = 4k for k ≥ 2. Let H = P4k − {v4v5}; then
H consists of P4 and P4k−4. Since γd(H) = γd(P4) + γd(P4k−4) = 2 + k =
1 + (k + 1) = 1 + γd(P4k) by Theorem 2(c), bd(Pn) = 1 for n �= 4 and n ≡ 0
(mod 4).

Case 2: n ≡ 1, 2, 3 (mod 4). Let H = Pn − {v1v2}; then H consists of K1 and
Pn−1. If n = 4k + 1 (k ≥ 1), then γd(H) = γd(K1) + γd(P4k) = 1 + (k + 1) =
1 + γd(P4k+1) by Theorem 2(c). If n = 4k + 2 (k ≥ 0), then γd(H) = γd(K1) +
γd(P4k+1) = 1+(k +1) = 1+γd(P4k+2) by Theorem 2(c). If n = 4k +3 (k ≥ 0),
then γd(H) = γd(K1)+γd(P4k+2) = 1+(k+1) = 1+γd(P4k+3) by Theorem 2(c).
In each case, bd(Pn) = 1 for n ≡ 1, 2, 3 (mod 4). �

Proposition 4. For k ≥ 2, let G = Ka1,a1,...,ak
be a complete k-partite graph

with ak = max{ai : 1 ≤ i ≤ k}, and let s be the number of partite sets consisting
of one element. Then

bd(G) =

⎧⎨
⎩

	 s
2
 if s �= 0

2k − 1 if ai = 2 for each i ∈ {1, 2, . . . , k}∑k−1
i=1 ai otherwise.

(8)

Proof. For k ≥ 2, let G = Ka1,a1,...,ak
be a complete k-partite graph, where

ak ≥ ak−1 ≥ . . . ≥ a1. Let V (G) be partitioned into k-partite sets V1, V2, . . . , Vk

such that |Vi| = ai for each i ∈ {1, 2, . . . , k}; further, let Vi = {ui1, ui2, . . . , uiai
}.

Let s be the number of partite sets consisting of one element.
If s �= 0, then �(G) = |V (G)| − 1. By Observation 5(b) and Theorem4(b),

bd(G) = 	 s
2
.

Next, let s = 0; then ai ≥ 2 for each i ∈ {1, 2, . . . , k} and γ(G) = 2 = γd(G).
If ai = 2 for each i ∈ {1, 2, . . . , k}, let B = {u11ui1, u11ui2 : 2 ≤ i ≤ k}∪{u12u21}
and let H = G−B; then |B| = 2k−1, and H consists of K1 and a connected graph
H ′, where �(H ′) �= |V (H ′)|−1. So, γd(H) ≥ 3 = 1+γd(G); thus, bd(G) ≤ 2k−1.
By Observation 5(c) and Theorem 4(b), bd(G) = 2k − 1. If ai ≥ 3 for some
i ∈ {1, 2, . . . , k}, let B′ = {uk1uij : 1 ≤ i ≤ k − 1, 1 ≤ j ≤ ai} and let H =
G − B′; then |B′| =

∑k−1
i=1 ai and H is isomorphic to K1 ∪ Ka1,a2,...,ak−1. Since

ak − 1 ≥ 2, γd(H) = 3 = 1 + γd(G); thus bd(G) ≤ ∑k−1
i=1 ai. By Observation 5(c)

and Theorem 4(b), bd(G) =
∑k−1

i=1 ai. �

3.2 Some Upper Bounds

In this section, we obtain upper bounds of the disjunctive bondage number of
some classes of graphs. We begin with the following useful lemma.

Lemma 1. Let T be a tree. If u is a support vertex of degree two in T , then
there exists a γd(T)-set containing u.

666 E. Yi

Proof. Let u be a support vertex of a tree T with degT (u) = 2. Let NT (u) = {�, w},
where � is a leaf neighbor of u. If w is a leaf, then T = P3 and {u} is a unique
γd(T)-set. So, let w be a non-leaf neighbor of u, and let S be a γd(T)-set. Then
S ∩ {�, u} �= ∅; otherwise, � �∈ NT (S) and � is at distance two from at most one
vertex in S, and hence � fails to be disjunctively dominated by S. If � ∈ S, then
(S − {�}) ∪ {u} is also a γd(T)-set. Thus, there exists γd(T)-set containing u. �

Theorem 6. If T is a nontrivial tree, then bd(T) ≤ 2.

Proof. Let T be a tree of order n ≥ 2. If n ∈ {2, 3}, then bd(T) = 1. So, let
n ≥ 4, and let S be a γd(T)-set.

Case 1: T has a support vertex that is adjacent to at least two leaves. Let u be
a support vertex in T and let Lu = {�1, �2, . . . , �k}, where k ≥ 2, be the set
of leaves that are adjacent to u in T . If �i ∈ S for some i ∈ {1, 2, . . . , k}, then
(S − {�i}) ∪ {u} is also a γd(T)-set. So, we may assume that S ∩ Lu = ∅. Let
H = T − {u�1} and let SH be a γd(H)-set. First, suppose that u ∈ S. If k ≥ 3,
then clearly u ∈ SH ; if k = 2, then u becomes a support vertex of degree two
in H, and thus u ∈ SH by Lemma 1. So, γd(H) = 1 + γd(T); thus, bd(T) = 1.
Second, suppose that u �∈ S. Since S ∩Lu = ∅, u must have two or more non-leaf
neighbors, say w1 and w2, such that {w1, w2} ⊆ S; then γd(H) = 1+γd(T), and
hence bd(T) = 1.

Case 2: Each support vertex of T is adjacent to exactly one leaf. Notice that
T has a degree-two support vertex. Let u be a support vertex of degree two
in T with NT (u) = {�, w}, where � is a leaf and w is a non-leaf neighbor of
u. By Lemma 1, we may assume that u ∈ S. Let H = T − {u�, uw} and let
T ′ = T − {�, u}; further, let S′ be a γd(T ′)-set. We will show that bd(T) ≤ 2.
Assume, to the contrary, that bd(T) > 2. Then γd(H) = γd(T) and γd(H) =
γd(T ′) + 2; thus |S| = |S′| + 2. Since S′ ∪ {u} is a disjunctive dominating set for
T , |S| ≤ |S′| + 1, a contradiction. So, bd(T) ≤ 2. �

Based on the proof of Theorem6, we have the following

Remark 1. Let T be a nontrivial tree.

(a) If T has a support vertex that is adjacent to at least two leaves, then bd(T) = 1.
(b) There exists T satisfying bd(T) = 2 when each support vertex of a tree T is

adjacent to exactly one leaf. For example, let T be a tree obtained from a
star K1,k, where k ≥ 3, by subdividing each edge exactly once (see Fig. 2).
Then S = {vi : 1 ≤ i ≤ k} is a γd(T)-set with |S| = k, where k ≥ 3. Let
T1 = T − {v1w1} and T2 = T − {uv1}. Then Si = {vj : 2 ≤ j ≤ k} ∪ {w1}
is a γd(Ti)-set with |Si| = |S|, where i ∈ {1, 2}. So, bd(T) ≥ 2. If we let
T ′ = T − {uv1, v1w1}, then S′ = {vj : 2 ≤ j ≤ k} ∪ {v1, w1} is a γd(T ′)-set
with |S′| = |S| + 1; thus, bd(T) ≤ 2. Therefore, bd(T) = 2.

Next, we examine the bondage number of Pn�P2, Cn�P2, and Kn�Kn,
respectively.

Disjunctive (Total) Bondage Number of Graphs 667

v3

wk
vku1

w4

w3

w2

w1

v4v

v

2

Fig. 2. A tree T with bd(T) = 2

Proposition 5. For n ≥ 3, bd(Pn�P2) ≤ 2. Moreover, if n ≡ 1 (mod 3) and
n ≥ 4, then bd(Pn�P2) = 1.

Proof. For n ≥ 3, let G = Pn�P2 be given by two n-paths u1u2 . . . un and
w1w2 . . . wn, together with n edges joining ui and wi, where i ∈ {1, 2, . . . , n}.
For B ⊆ E(G), let H = G − B.

Case 1: n = 3k, where k ≥ 1. By Theorem 2(d), γd(G) = k + 1. If B =
{u2u3, w2w3} with |B| = 2, then H = (P2�P2) ∪ (P3k−2�P2). Since γd(H) =
2 + k = 1 + (k + 1) = 1 + γd(G) by Theorem 2(d), bd(G) ≤ 2.

Case 2: n = 3k + 1, where k ≥ 1. By Theorem 2(d), γd(G) = k + 1. If B =
{u2u3, w2w3} with |B| = 2, then H = (P2�P2) ∪ (P3k−1�P2) and γd(H) =
2 + (k + 1) = 2 + γd(G). By Theorem 1, bd(G) ≤ 1; thus bd(G) = 1.

Case 3: n = 3k + 2, where k ≥ 1. By Theorem 2(d), γd(G) = k + 2. If B =
{u2u3, w2w3}, then H = (P2�P2) ∪ (P3k�P2). Since γd(H) = 2 + (k + 1) =
1 + (k + 2) = 1 + γd(G), bd(G) ≤ 2. �

Next, we determine γd(Cn�P2), which will be used in examining the bondage
number of Cn�P2.

Proposition 6. For n ≥ 3,

γd(Cn�P2) =

⎧⎨
⎩

n
3 + 1 if n ≡ 3 (mod 6),

	n
3
 otherwise.

(9)

Proof. For n ≥ 3, let G = Cn�P2 be given by two distinct n-cycles u1u2 . . . unu1

andw1w2 . . . wnw1, togetherwithn edges joiningui andwi,where i ∈ {1, 2, . . . , n}.
Let S be a γd(G)-set. Since each vertex in S can dominate up to 4 vertices and has
up to four vertices at distance two from it, |S| ≥ |V (G)|

6 . Without loss of generality,
we may assume that u1 ∈ S.

Case 1: n = 6k, where k ≥ 1. In this case, |S| ≥ 2k. Since S = {u6i+1 : 0 ≤ i ≤
k−1}∪{w6j+4 : 0 ≤ j ≤ k−1} forms a DD-set with cardinality 2k, γd(G) ≤ 2k.
Thus, γd(G) = 2k.

Case 2: n = 6k + 1 or n = 6k + 2, where k ≥ 1. In this case, |S| ≥ 2k + 1.
Since S = {u6i+1 : 0 ≤ i ≤ k} ∪ {w6j+4 : 0 ≤ j ≤ k − 1} forms a DD-set with
cardinality 2k + 1, γd(G) ≤ 2k + 1. Thus, γd(G) = 2k + 1.

668 E. Yi

Case 3: n = 6k+3, where k ≥ 0. Since S = {u6i+1 : 0 ≤ i ≤ k}∪{w6j+4 : 0 ≤ j ≤
k−1}∪{w6k+3} forms a DD-set with cardinality 2k+2, γd(G) ≤ 2k+2. We will
show that γd(G) ≥ 2k+2. If k = 0, then clearly γd(C3�P2) = 2. So, let k ≥ 1. In
this case, |S| ≥ 2k+1. Further, notice that γd(G) = 2k+1 only if each vertex of G
is either dominated by exactly one vertex in S or is at distance two from exactly
two vertices in S, but not both. Let A0 = C6k+3�P2. Since u1 ∈ S, by removing
all vertices in NG[u1] = {u1, u2, u6k+3, w1} and their incident edges from A0,
we obtain a derived graph A1 with vertices in N2

G(u2) = {u3, u6k+2, w2, w6k+3}
being half circles. This forces w4 and w6k+1 of A1 to be in S. From A1, by delet-
ing vertices in NG[{w4, w6k+1}] = {u4, w3, w4, w5, u6k+1, w6k, w6k+1, w6k+2} and
vertices in {u3, w2, u6k+2, w6k+3} (the set of vertices at distance two from u1

and, either w4 or w6k+1) together with their incident edges, we obtain a second
derived graph A2 with vertices in {u5, w6, u6k, w6k−1} being half circles. After
k iterations, we obtain Ak that is isomorphic to Fig. 3. Clearly, Ak requires
three vertices to disjunctively dominate V (Ak); thus γd(G) ≥ 2k +2. Therefore,
γd(G) = 2k + 2.

Case 4: n = 6k + 4 or n = 6k + 5, where k ≥ 0. In this case, |S| ≥ 2k + 2. Since
S = {u6i+1 : 0 ≤ i ≤ k} ∪ {w6j+4 : 0 ≤ j ≤ k} forms a DD-set with cardinality
2k + 2, γd(G) ≤ 2k + 2. Thus, γd(G) = 2k + 2. �

Fig. 3. Ak when G = C6k+3�P2

Proposition 7. For n ≥ 3, bd(Cn�P2) ∈ {2, 3, 4}. Furthermore, bd(Cn�P2) =
2 if n ≡ 0, 2, 5 (mod 6), and bd(Cn�P2) ≤ 3 if n ≡ 1, 4 (mod 6).

Proof. For n ≥ 3, let G = Cn�P2 be given by two distinct n-cycles u1u2 . . . unu1

and w1w2 . . . wnw1, together with n edges joining ui and wi, where i ∈ {1, . . . , n}.
For B ⊆ E(G), let H = G − B. If |B| = 1, then one can easily check that
γd(H) = γd(G); thus bd(G) ≥ 2.

Case 1: n ≡ 0, 2, 5 (mod 6). If B = {u1u2, w1w2} with |B| = 2, then H = Pn�P2

and γd(H) = 1 + γd(G) by Theorem 2(d) and Proposition 6; thus, bd(G) ≤ 2.
Therefore, bd(G) = 2.

Case 2: n ≡ 1 (mod 6). We write n = 6k + 1, where k ≥ 1; then γd(G) = 2k + 1
by Proposition 6. If B = {u1u2, w1w2, u3u4, w3w4} with |B| = 4, then H =
(P2�P2) ∪ (P6k−1�P2) and γd(H) = 2 + (2k + 1) = 2 + γd(G) by Theorem 2(d)
and Proposition 6; thus, bd(G) ≤ 3 by Theorem 1.

Case 3: n ≡ 3 (mod 6). We write n = 6k + 3, where k ≥ 0; then γd(G) = 2k + 2
by Proposition 6.

Subcase 3.1: k = 0. In this case, G = C3�P2 and γd(G) = 2. If B = {u1u2, u2u3,
u2w2} with |B| = 3, then H consists of an isolated vertex and a connected graph
H ′ with �(H ′) �= |V (H ′)| − 1; thus γd(H) ≥ 3 = 1 + γd(G). So, bd(G) ≤ 3.

Disjunctive (Total) Bondage Number of Graphs 669

Subcase 3.2: k ≥ 1. If B = {u1u2, w1w2, u3u4, w3w4} with |B| = 4, then H =
(P2�P2) ∪ (P6k+1�P2) and γd(H) = 2 + (2k + 1) = 1 + γd(G) by Theorem 2(d)
and Proposition 6; thus, bd(G) ≤ 4.

Case 4: n ≡ 4 (mod 6). We write n = 6k + 4, where k ≥ 0; then γd(G) = 2k + 2
by Proposition 6.

Subcase 4.1: k = 0. In this case, G = C4�P2 and γd(G) = 2. If B = {u1u2, u2u3,
u2w2} with |B| = 3, then H consists of an isolated vertex and a connected graph
H ′ with �(H ′) �= |V (H ′)| − 1; thus γd(H) ≥ 3 = 1 + γd(G). So, bd(G) ≤ 3.

Subcase 4.2: k ≥ 1. If B = {u1u2, w1w2, u6u7, w6w7} with |B| = 4, then H =
(P5�P2) ∪ (P6k−1�P2) and γd(H) = 3 + (2k + 1) = 2 + γd(G) by Theorem 2(d)
and Proposition 6; thus, bd(G) ≤ 3 by Theorem 1. �
Proposition 8. For n ≥ 3, bd(Kn�Kn) ≤ 2(n − 1).

Proof. For n ≥ 3, let G = Kn�Kn; then γd(G) = 2 since diam(G) = 2. Let Ev

be the set of edges that are incident to a vertex v in G. If we let H = G − Ev,
then γd(H) ≥ 3 = 1 + γd(G); thus bd(G) ≤ |Ev| = 2(n − 1). �

Next, we express the upper bound of the disjunctive bondage number of a
graph in terms of degree sum of two vertices that are at distance at most two
from each other. We begin with the following observation.

Observation 7. For a graph G, let B ⊆ E(G) be a set of edges of G with
|B| = k. If H = G − B with bd(H) = 1, then bd(G) ≤ k + 1.

Theorem 8. If G is a nonempty graph, then bd(G) ≤ min{degG(u)+degG(v)−
1 : dG(u, v) ≤ 2}.
Proof. Let � = min{degG(u) + degG(v) − 1 : dG(u, v) ≤ 2}, and let Ew be the
set of edges that are incident to a vertex w in G. Let x and y be two distinct
vertices in G with dG(x, y) ≤ 2 satisfying degG(x) + degG(y) − 1 = �.

Case 1: dG(x, y) = 1. Let H1 = G − (Ex ∪ Ey − {xy}); notice that |Ex ∪ Ey −
{xy}| = degG(x) + degG(y) − 2. Since γd(H1 − {xy}) = 1 + γd(H1), bd(H1) = 1.
By Observation 7, bd(G) ≤ �.

Case 2: dG(x, y) = 2. For some z ∈ NG(x) ∩ NG(y), let H2 = G − (Ex ∪ Ey −
{xz, yz}); notice that |Ex ∪ Ey − {xz, yz}| = degG(x) + degG(y) − 2. Since
γd(H2 − {xz, yz}) = 2 + γd(H2), bd(H2) = 1 by Theorem 1. By Observation 7,
bd(G) ≤ �. �
Theorem 8 implies bd(G) ≤ �(G) + δ(G) − 1, for a nonempty connected
graph G.

4 The Disjunctive Total Bondage Number of Some
Graphs

In this section, we determine disjunctive total bondage number for the Petersen
graph, cycles, paths, and some complete k-partite graphs. We also show that,
for a given positive integer k, there exists a tree T for which bd

t (T) = k.

670 E. Yi

Observation 9. Let G be a connected graph of order at least two. If diam(G) ∈
{1, 2}, then γd

t (G) = 2.

Proof. Let G be a connected graph of order at least two. If diam(G) = 1, then
G is a complete graph; thus γd

t (G) = 2. Next, suppose that diam(G) = 2. Let
S ⊆ V (G) be a set consisting of any two adjacent vertices. Then each vertex in
N(S) is adjacent to a vertex in S, and each vertex in V (G)−N(S) is at distance
two from both vertices in S by the condition that diam(G) = 2; thus, γd

t (G) ≤ 2.
Since γd

t (G) ≥ 2, we have γd
t (G) = 2. �

Proposition 9. For the Petersen graph P, bd
t (P) = 2.

Proof. Let P be the Petersen graph as in Fig. 1. Since diam(P) = 2, γd
t (P) = 2

by Observation 9. For B ⊆ E(P), let H = P − B. If |B| = 1, say B = {u1u2}
without loss of generality (by the edge-transitivity of P), then γd

t (H) = 2 =
γd

t (P) since S = {w4, w5} is a γd
t (H)-set; thus bd

t (P) ≥ 2.
Next, let B = {u1u2, u2u3} with |B| = 2. Let S be a γd

t (H)-set of cardinality
two. In order for u2 to be disjunctively totally dominated by S, NH(u2) =
{w3} ⊆ S or N2

H(u2) = {w2, w4} ⊆ S; here, {w2, w4} cannot be a γd
t (H)-set,

since w2w4 �∈ E(H). So, suppose that w3 ∈ S. If S = {u2, w3}, then u1 �∈ NH(S)
and u1 is at distance at least three from each vertex in S. If S = {w3, w4} or
S = {w3, w2}, say the former without loss of generality, then u1 �∈ NH(S) and
dH(w3, u1) = 3. So, in each case, S fails to be a γd

t (H)-set; thus γd
t (H) ≥ 3.

Since {w2, w3, w4} forms a DTD-set for H, γd
t (H) = 3 = 1 + γd

t (P). Therefore,
bd
t (P) = 2. �

Proposition 10. For n ≥ 4,

bd
t (Cn) =

{
1 if n ≡ 0, 1 (mod 5)
2 if n ≡ 2, 3, 4 (mod 5), (10)

and bd
t (C3) = ∞.

Proof. Let Cn be the n-cycle given by v1v2 . . . vnv1. One can easily cheek that
bd
t (C3) = ∞. So, let n ≥ 4.

Case 1: n ≡ 0, 1 (mod 5). Let H = Cn−{v1v2}; then H = Pn. If n ≡ 0 (mod 5),
then γd

t (H) = γd
t (Pn) = 	 2(n+1)

5
 = 2n
5 + 1 = γd

t (Cn) + 1 by Theorem 3. If n ≡ 1
(mod 5), then γd

t (H) = γd
t (Pn) = 	 2(n+1)

5
 + 1 = γd
t (Cn) + 1 by Theorem 3. So,

bd
t (Cn) = 1 for n ≡ 0, 1 (mod 5).

Case 2: n ≡ 2, 3, 4 (mod 5). By Theorem 3, γd
t (Cn) = γd

t (Pn) for n ≥ 4; thus
bd
t (Cn) ≥ 2. Let H = Cn − {v1v2, v3v4}; then H consists of two paths, P2 and

Pn−2. First, we consider n ≡ 2 (mod 5). Let n = 5k + 2 and n′ = n − 2 = 5k,
where k ≥ 1. Then γd

t (H) = γd
t (P2) + γd

t (Pn′) = 2 + 	 2(n′+1)
5
 = 2 + (2k + 1) =

1 + (2k + 2) = 1 + 	 2(n+1)
5
 = 1 + γd

t (Cn) by Theorem 3. Second, we consider
n ≡ 3 (mod 5). Let n = 5k + 3 and n′ = n − 2 = 5k + 1, where k ≥ 1. Then
γd

t (H) = γd
t (P2) + γd

t (Pn′) = 3 + 	 2(n′+1)
5
 = 3 + (2k + 1) = 2 + (2k + 2) =

Disjunctive (Total) Bondage Number of Graphs 671

2 + 	 2(n+1)
5
 = 2 + γd

t (Cn) by Theorem 3. Third, we consider n ≡ 4 (mod 5).
Let n = 5k + 4 and n′ = n − 2 = 5k + 2, where k ≥ 0. Then γd

t (H) = γd
t (P2) +

γd
t (Pn′) = 2+	 2(n′+1)

5
 = 2+(2k+2) = 2+	 2(n+1)
5
 = 2+γd

t (Cn) by Theorem 3.
So, bd

t (Cn) = 2 for n ≡ 2, 3, 4 (mod 5), where n ≥ 4. �

Proposition 11. For n ≥ 4,

bd
t (Pn) =

{
2 if n = 6
1 otherwise, (11)

and bd
t (P2) = bd

t (P3) = ∞.

Proof. Let Pn be the n-path given by v1v2 . . . vn. One can easily see that bd
t (P2) =

bd
t (P3) = ∞. So, let n ≥ 4.

Case 1: n ≡ 1 (mod 5). Notice that n ≥ 6 in this case. First, we consider
n = 6. Then, for any H = P6 − e satisfying e ∈ {v2v3, v3v4, v4v5}, we have
γd

t (H) = 4 = γd
t (P6) by Theorem 3(b). So, bd

t (P6) ≥ 2. If H ′ = P6 −{v2v3, v4v5},
then γd

t (H ′) = 3γd
t (P2) = 6 = 2 + γd

t (P6); thus, bd
t (P6) = 2. Next, let n �= 6

and let H = Pn − {v5v6}; then H consists of two paths, P5 and Pn−5. Let
n′ = n − 5 = 5k + 1 and n = 5(k + 1) + 1. Then γd

t (H) = γd
t (P5) + γd

t (Pn′) =
3+(2(n′+1)

5
+1) = 3+(2k+2) = 1+(2k+4) = 1+(2(n+1)
5
+1) = 1+γd

t (Pn)
by Theorem 3(b). So, bd

t (Pn) = 1 for n ≡ 1 (mod 5) and n �= 6.

Case 2: n ≡ 0, 2, 3, 4 (mod 5). Let H = Pn − {v2v3}; then H consists of two
paths, P2 and Pn−2. Let n′ = n−2. If n ≡ 0 (mod 5), i.e., n = 5k and n′ = 5k−2
for k ≥ 1, then γd

t (H) = γd
t (P2)+γd

t (Pn′) = 2+	 2(n′+1)
5
 = 2+2k = 1+(2k+1) =

1 + 	 2(n+1)
5
 = 1 + γd

t (Pn) by Theorem 3(b). If n ≡ 2 (mod 5), i.e., n = 5k + 2
and n′ = 5k for k ≥ 1, then γd

t (H) = γd
t (P2) + γd

t (Pn′) = 2 + 	 2(n′+1)
5
 =

2 + (2k + 1) = 1 + (2k + 2) = 1 + 	 2(n+1)
5
 = 1 + γd

t (Pn) by Theorem 3(b).
If n ≡ 3 (mod 5), i.e., n = 5k + 3 and n′ = 5k + 1 for k ≥ 1, then γd

t (H) =
γd

t (P2)+γd
t (Pn′) = 2+(2(n′+1)

5
+1) = 2+(2k+2) = 2+	 2(n+1)
5
 = 2+γd

t (Pn)
by Theorem 3(b). If n ≡ 4 (mod 5), i.e., n = 5k + 4 and n′ = 5k + 2 for k ≥ 0,
then γd

t (H) = γd
t (P2) + γd

t (Pn′) = 2 + 	 2(n′+1)
5
 = 2 + (2k + 2) = 2 + 	 2(n+1)

5
 =
2 + γd

t (Pn) by Theorem 3(b). So, bd
t (Pn) = 1 for n ≡ 0, 2, 3, 4 (mod 5), where

n ≥ 4. �

Next, we determine the disjunctive total bondage number of complete bi-
partite graphs.

Proposition 12. Let G = Ka,b be a complete bi-partite graph. Then

bd
t (G) =

{
min{a, b} if 1 �∈ {a, b}
∞ if 1 ∈ {a, b}.

(12)

Proof. Let G = Ka,b be a complete bi-partite graph; notice that γd
t (G) = 2 and

that every γd
t (G)-set consists of one vertex from each partite set. Let V (G) be

672 E. Yi

partitioned into V1 = {u11, u12, . . . , u1a} and V2 = {u21, u22, . . . , u2b}; we may
assume that b ≥ a by relabeling if necessary.

First, let a = 1; then G = K1,b is the star on b + 1 vertices, where b ≥ 1. For
any e ∈ E(G), G − e contains an isolated vertex. Thus, bd

t (G) = ∞.
Second, let a ≥ 2. For B ⊆ E(G), let H = G − B. If |B| < a, then there

exist a vertex, say v, in V1 with NH(v) = V2 and a vertex, say w, in V2 with
NH(w) = V1; thus {v, w} forms a DTD-set for H and hence bd

t (G) ≥ a. If
B = {u1iu2i : 1 ≤ i ≤ a}, then, for each i ∈ {1, 2 . . . , a}, NH(u1i) = V2 − {u2i}
and dH(u1i, u2i) ≥ 3; thus γd

t (H) ≥ 3 = 1 + γd
t (G), and hence bd

t (G) = a. �

We apply a method similar to the one used in proving Proposition 12 to
obtain the following result.

Lemma 2. For k ≥ 2, let G = Ka1,a2,...,ak
be a complete k-partite graph of

order
∑k

i=1 ai, where ai ≥ 2 for each i ∈ {1, 2, . . . , k} and ak = max{ai : 1 ≤
i ≤ k}. For B ⊆ E(G), let H = G − B. If S is a γt(H)-set with |S| �= 2, then
|B| ≥ ∑k−1

i=1 (k − i)ai.

Proof. Let G = Ka1,a2,...,ak
be a complete k-partite graph of order

∑k
i=1 ai,

where k ≥ 2; then γt(G) = 2. Let V (G) be partitioned into k-partite sets
V1, V2, . . . , Vk; let Vi = {ui,1, ui,2, . . . , ui,ai

} for each i ∈ {1, 2, . . . , k}, and let
ak ≥ ak−1 ≥ . . . ≥ a1 ≥ 2 by relabeling if necessary. For B ⊆ E(G), let
H = G − B. We note that if S is a total dominating set for G (or for H) with
cardinality two, then the two vertices of S must belong to different partite sets
in G. Let S be a γt(H)-set with |S| �= 2, i.e., |S| ≥ 3. Then, with a possible
exception of exactly one partite set, say Vt for some t ∈ {1, 2, . . . , k}, every ver-
tex of Vi (i �= t) must fail to be adjacent to at least one vertex of Vj , for each
j ∈ {1, 2, . . . , k}−{i}, in H, i.e., one should delete from G at least one edge that
is incident to both a vertex in Vi and a vertex in each Vj (j ∈ {1, 2, . . . , k}−{i});
so, one should delete (k − 1)ai edges, from G, that are incident to a vertex in
Vi. So, the minimum number of edges one needs to delete from G, to satisfy
|S| ≥ 3, is when each u ∈ Vi ⊆ V (G) − Vk satisfies NH(u) ∩ Vj �= Vj for each
j ∈ {1, 2, . . . , k−1}−{i}. Notice that (i) in order for NH(u1,j)∩Vp �= Vp for each
p ∈ {2, . . . , k}, one should delete (k−1)a1 edges from G that are incident to a ver-
tex in V1 and a vertex in Vp (p ∈ {2, . . . , k}); (ii) in order for NH(u2,j)∩Vq �= Vq

for each q ∈ {1, 2, . . . , k} − {2}, one should delete (k − 2)a2 edges from G that
are incident to a vertex in V2 and a vertex in Vq (q ∈ {3, . . . , k}), since a1

edges that are incident to both a vertex in V1 and a vertex in V2 are already
deleted in the step described in (i); (iii) by continuing the process, in order for
NH(uk−1,j) ∩ Vr �= Vr for each r ∈ {1, 2, . . . , k} − {k − 1}, one should delete
ak−1 edges from G that are incident to a vertex in Vk−1 and a vertex in Vk,
since the edges that are incident to both a vertex in Vk−1 and a vertex in each
Vi (i ∈ {1, 2 . . . , k − 2}) are already deleted in the previous steps. Thus, the
minimum number of edges one needs to delete from G, to satisfy |S| ≥ 3, is
(k −1)a1 +(k −2)a2 + . . .+ak−1 =

∑k−1
i=1 (k − i)ai; thus |B| ≥ ∑k−1

i=1 (k − i)ai. �

Disjunctive (Total) Bondage Number of Graphs 673

Theorem 10. For k ≥ 2, let G = Ka1,a2,...,ak
be a complete k-partite graph of

order
∑k

i=1 ai, where ai ≥ 2 for each i ∈ {1, 2, . . . , k} and ak = max{ai : 1 ≤
i ≤ k}. Then bt(G) =

∑k−1
i=1 (k − i)ai.

Proof. Let G be a complete k-partite graph as described in the current theorem,
wherek ≥ 2; thenγt(G) = 2.LetV (G) bepartitioned intok-partite setsV1, V2, . . . ,
Vk; let Vi = {ui,1, ui,2, . . . , ui,ai

} for each i ∈ {1, 2, . . . , k}, and let ak ≥ ak−1 ≥
. . . ≥ a1 ≥ 2by relabeling if necessary.ForB ⊆ E(G), letH = G−B. ByLemma 2,
bt(G) ≥ ∑k−1

i=1 (k − i)ai. Let B = ∪k−1
i=1 (∪k

j=i+1{ui,1uj,1, ui,2uj,2, . . . , ui,ai
uj,ai

});
notice that |B| =

∑k−1
i=1 (k − i)ai. We will show that γt(H) > γt(G). Assume, to

the contrary, that S is a γt(H)-set with |S| = 2; then the two vertices of S belong
to different partite sets in G. We may assume that ui,x ∈ Vi ∩ S for some i ∈
{1, 2, . . . , k − 1}. Then S ∩ Vα = ∅ for each α < i, since, for each vertex uα,y ∈ Vα,
uα,yui,y �∈ E(H) and ui,xui,y �∈ E(H). Also, notice that S ∩Vβ = ∅ for each β > i:
(i) for each j ∈ {1, 2, . . . , ai}, uβ,jui,j �∈ E(H) and ui,xui,j �∈ E(H); (ii) for each
p > ai, uβ,puβ,x �∈ E(H) and ui,xuβ,x �∈ E(H). So, any vertex set consisting of two
adjacent vertices in H fails to be a total dominating set of H; thus γt(H) > 2. So,
γt(H) ≥ 3 = 1 + γt(G), and hence bt(G) ≤ ∑k−1

i=1 (k − i)ai. Therefore, bt(G) =∑k−1
i=1 (k − i)ai. �

Proposition 13. For k ≥ 2, let G = Ka1,a2,...,ak
be a complete k-partite graph

of order
∑k

i=1 ai, where ai ≥ 2 for each i ∈ {1, 2, . . . , k} and ak = max{ai :
1 ≤ i ≤ k}. Then bd

t (G) ≥ ∑k−1
i=1 (k − i)ai. Moreover, if ai = 2 for each i ∈

{1, 2, . . . , k}, then bd
t (G) = k(k − 1).

Proof. Let G = Ka1,a2,...,ak
be a complete k-partite graph, where k ≥ 2; further,

assume that ak ≥ ak−1 ≥ . . . ≥ a1 ≥ 2 by relabeling if necessary. Then γd
t (G) = 2;

here, we note that bd
t (G) ≥ bt(G) when γd

t (G) = 2 = γt(G). By Lemma 2, bd
t (G) ≥∑k−1

i=1 (k − i)ai. Next, let ai = 2 for each i ∈ {1, 2, . . . , k}. Let V (G) be partitioned
into k-partite sets V1, V2, . . . , Vk; let Vi = {ui,1, ui,2} for each i ∈ {1, 2, . . . , k}. For
B ⊆ E(G), let H = G − B. Let B = ∪k−1

i=1 (∪k
j=i+1{ui,1uj,1, ui,2uj,2}); notice that

|B| =
∑k−1

i=1 2(k − i) =
∑k−1

i=1 2k −∑k−1
i=1 2i = 2k(k −1)− (k −1)k = k(k −1). By

Theorem 10, bd
t (G) ≥ bt(G) = k(k − 1). Let D be a γd

t (H)-set. Since H is regular
and vertex-transitive, we may assume that u1,1 ∈ D. Then NH(u1,1) = {uj,2 : 2 ≤
j ≤ k}. If k = 2, then H = 2K2, and hence γd

t (H) = 4 = 2 + γd
t (G). If k ≥ 3, then

dH(u1,1, u1,2) = 3 and dH(uj,2, u1,2) = 2 for each j ∈ {2, . . . , k}; thus, any vertex
set consisting of u1,1 and exactly one vertex in NH(u1,1) fails to be a DTD-set for
H, i.e., |D| ≥ 3. In each case, γd

t (H) ≥ 3 = 1+γd
t (G), and hence bd

t (G) ≤ k(k−1).
Therefore, bd

t (G) = k(k − 1) when ai = 2 for each i ∈ {1, 2, . . . , k}. �

Next, we give an example showing that, for a given positive integer k, there
exists a tree T for which bd

t (T) = k.

Remark 2. For a given positive integer k, there exists a tree T for which bd
t (T) =

k. For k ≥ 2, let T be a tree obtained from the star Sk+1 = K1,k+1 on k + 2
vertices by subdividing each edge exactly twice; let v0 be the central vertex of

674 E. Yi

v1,3

v2,1
v2,2

v2,3

vk+1,3vk+1,2vk+1,1v0v1,1v1,2

Fig. 4. A tree T with bdt (T) = k

degree k+1, and let each of the 4-path rooted at v0 be given by v0, vi,1, vi,2, vi,3,
where i ∈ {1, 2, . . . , k + 1} (see Fig. 4).

First, we show that γd
t (T) = 2k + 2. Let S be a γd

t (T)-set. For each i ∈
{1, 2, . . . , k + 1}, (i) in order for vi,3 to be disjunctively totally dominated by
S, vi,2 ∈ S; (ii) in order for vi,2 to be disjunctively totally dominated by S,
S ∩ {vi,1, vi,3} �= ∅. So, γd

t (T) ≥ 2(k + 1). Since {vi,1,vi,2 : 1 ≤ i ≤ k + 1} forms
a DTD-set for T , γd

t (T) ≤ 2(k + 1). Thus, γd
t (T) = 2k + 2.

Second, we show that bd
t (T) = k. For B ⊆ E(T), let H = T − B. If B =

{vi,1vi,2 : 1 ≤ i ≤ k} with |B| = k, then H = kP2 ∪ T ′, where T ′ is a tree
obtained from Sk+1 by subdividing exactly one edge exactly twice, and γd

t (H) =
kγd

t (P2) + γd
t (T ′) = 2k + 3 = 1 + γd

t (T); thus bd
t (T) ≤ k. So, suppose that

|B| = k−1. Then, for each i ∈ {1, 2, . . . , k+1}, (i) vi,2vi,3 �∈ B since bd
t (T) < ∞;

(ii) |B ∩ {v0vi,1, vi,1vi,2}| ≤ 1. We may assume that B = {v0vi,1 : 1 ≤ i ≤
s} ∪ {vi,1vi,2 : s + 1 ≤ i ≤ k − 1} by relabeling if necessary, where s = 0 (i.e.,
B = {vi,1vi,2 : 1 ≤ i ≤ k − 1}) or s = k − 1 (i.e., B = {v0vi,1 : 1 ≤ i ≤ k − 1})
are possibilities. Then H = sP3 ∪ (k − s − 1)P2 ∪ T ∗, where T ∗ can be viewed
as a tree obtained from Sk−s+1 by subdividing exactly two edges exactly twice.
Notice that γd

t (H) = sγd
t (P3)+(k−s−1)γd

t (P2)+γd
t (T ∗) = 2s+2(k−s−1)+4 =

2k+2 = γd
t (T); here, {vk,1, vk,2, vk+1,1, vk+1,2} forms a γd

t (T ∗)-set. So, bd
t (T) ≥ k.

Thus, bd
t (T) = k for k ≥ 2.

5 Closing Remark

It is known that γd(G) ≤ γ(G) for any graph (see [4]) and that γd
t (G) ≤ γt(G)

for any graph G containing no isolated vertex (see [8]). We note that both γ(G)−
γd(G) and γt(G)−γd

t (G) can be arbitrarily large: for example, if G = Kn�Kn for
n ≥ 3, then one can easily check that γ(G) = γt(G) = n and γd(G) = γd

t (G) = 2.
It would be an interesting problem to investigate the relation between b(G) and
bd(G), as well as the relation between bt(G) and bd

t (G), if any. Moreover, it would
be worth studying the computational complexity of determining the disjunctive
(total) bondage number of general graphs.

Acknowledgement. The author wishes to thank the anonymous referees for some
constructive and helpful comments and suggestions.

Disjunctive (Total) Bondage Number of Graphs 675

References

1. Bauer, D., Harary, F., Nieminen, J., Suffel, C.L.: Domination alteration sets in
graphs. Discrete Math. 47, 153–161 (1983)

2. Fink, J.F., Jacobson, M.S., Kinch, L.F., Roberts, J.: The bondage number of a
graph. Discrete Math. 86, 47–57 (1990)

3. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. Freeman, New York (1979)

4. Goddard, W., Henning, M.A., McPillan, C.A.: The disjunctive domination num-
ber of a graph. Quaest. Math. 37(4), 547–561 (2014)

5. Haynes, T.W., Hedetniemi, S.T., Slater, P.J.: Fundamentals of Domination in
Graphs. Marcel Dekker, New York (1998)

6. Henning, M.A.: A survey of selected recent results on total domination in graphs.
Discrete Math. 309, 32–63 (2009)

7. Henning, M.A., Marcon, S.A.: Domination versus disjunctive domination in trees.
Discrete Appl. Math. 184, 171–177 (2015)

8. Henning, M.A., Naicker, V.: Disjunctive total domination in graphs. J. Comb.
Optim. DOI: 10.1007/s10878-014-9811-4

9. Hu, F.T., Xu, J.M.: Complexity of bondage and reinforcement. J. Complex. 28(2),
192–201 (2012)

10. Kulli, V.R., Patwari, D.K.: The total bondage number of a graph. In: Kulli, V.R.
(ed.) Advances in Graph Theory, pp 227–235. Vishwa, Gulbarga (1991)

11. Xu, J.M.: On bondage numbers of graphs: a survey with some comments. Int. J.
Comb. 2013, 13 (2013). Article ID: 595210

Edge-Disjoint Packing of Stars and Cycles

Minghui Jiang1, Ge Xia2, and Yong Zhang3(B)

1 Department of Computer Science, Utah State University, Logan, UT 84322, USA
mjiang@cc.usu.edu

2 Department of Computer Science, Lafayette College, Easton, PA 18042, USA
xiag@lafayette.edu

3 Department of Computer Science and Information Technology, Kutztown
University, Kutztown, PA 19530, USA

zhang@kutztown.edu

Abstract. We study the parameterized complexity of two graph packing
problems, Edge-Disjoint k-Packing of s-Stars and Edge-Disjoint
k-Packing of s-Cycles. With respect to the choice of parameters, we
show that although the two problems are FPT with both k and s as
parameters, they are unlikely to be fixed-parameter tractable when para-
meterized by only k or only s. In terms of kernelization complexity, we
show that Edge-Disjoint k-Packing of s-Stars has a kernel with size
polynomial in both k and s, but in contrast, unless NP ⊆ coNP/poly,
Edge-Disjoint k-Packing of s-Cycles does not have a kernel with
size polynomial in both k and s, and moreover does not have a kernel
with size polynomial in s for any fixed k. Specifically, (1) from the neg-
ative direction, we show that Edge-Disjoint k-Packing of s-Stars is
W[1]-hard with parameter k in general graphs, and that Edge-Disjoint
k-Packing of s-Cycles is W[1]-hard with parameter k and NP-hard for
any even s ≥ 4 in bipartite graphs; (2) from the positive direction, we
show that Edge-Disjoint k-Packing of s-Stars admits a ks2 kernel,
and that Edge-Disjoint k-Packing of 4-Cycles admits a 96k2 kernel
in general graphs and a 96k kernel in planar graphs.

1 Introduction

Given two undirected input graphs G and H, the edge-disjoint graph packing
problem is to find in G the maximum number of edge-disjoint subgraphs isomor-
phic to H. Many combinatorial problems such as the chromatic index problem
and the independent set problem can be viewed as edge packing problems. The
reliability of a computer network can be efficiently bounded using techniques
based on edge packing [6,7].

We use s-star to denote the complete bipartite graph K1,s, and s-cycle to
denote the simple cycle graph Cs of length s. In this paper we study the edge-
disjoint packing of s-stars and s-cycles in the context of parameterized complex-
ity. A parameterized problem is a set of instances of the form (x, k), where x is the
input instance and k is a nonnegative integer called the parameter. A parameter-
ized problem is said to be fixed parameter tractable if there is an algorithm that
c© Springer International Publishing Switzerland 2015
Z. Lu et al. (Eds.): COCOA 2015, LNCS 9486, pp. 676–687, 2015.
DOI: 10.1007/978-3-319-26626-8 49

Edge-Disjoint Packing of Stars and Cycles 677

solves the problem in time f(k)|x|O(1), where f is a computable function solely
dependent on k, and |x| is the size of the input instance. When dealing with NP-
hard problems in practice, kernelization is a very useful preprocessing technique.
The idea of kernelization is to design data reduction rules to reduce the input
instance to an equivalent kernel of smaller size. Formally, the kernelization of a
parameterized problem is a reduction to a problem kernel, that is, to apply a
polynomial-time algorithm to transform any input instance (x, k) to an equiva-
lent reduced instance (x′, k′) such that k′ ≤ k and |x′| ≤ g(k) for some function
g solely dependent on k. It is known that a parameterized problem is fixed para-
meter tractable if and only if the problem is kernelizable. We refer interested
readers to [8,14] for more details. We define the parameterized version of these
two problems as follows. Given an undirected input graph G and two integers k
and s, Edge-Disjoint k-Packing of s-Stars is to determine whether G has
an edge-disjoint packing of s-stars of size at least k, Edge-Disjoint k-Packing
of s-Cycles is to determine whether G has an edge-disjoint packing of s-cycles
of size at least k.

Edge-Disjoint k-Packing of s-Stars is solvable in linear time when s =
2 [19] and NP-complete when s ≥ 3 [9]. Heath and Vergara [16] showed that
Edge-Disjoint k-Packing of s-Stars is polynomial time solvable in trees and
outerplanar graphs. On the other hand, they showed that when s ≥ 3, Edge-
Disjoint k-Packing of s-Stars is NP-complete in planar graphs. The vertex
disjoint version of s-star packing was first studied by Prieto and Sloper [22]. They
gave an O(k2) kernel for k-Vertex Disjoint s-star packing for the cases
when s ≥ 3 and a 15k kernel for the case when s = 2. The two kernelization
results were further improved to O(k) by Fellows et al. [11] and 7k by Wang
et al. [23].

The main application of Edge-Disjoint k-Packing of s-Cycles lies in
computational biology [2]. Holyer [17] showed that Edge-Disjoint k-Packing
of s-Cycles is NP-complete in general graphs. Heath and Vergara [16] showed
that it remains NP-complete in planar graphs. Mathieson, Prieto and Shaw [20]
gave a 4k problem kernel for Edge-Disjoint k-Packing of s-Cycles when s =
3. This kernel was recently improved to 3.5k by Yang [24]. Bodlaender, Thomassé
and Yeo [4] studied a similar problem k-Edge Disjoint Cycle Packing, in
which the cycle packing may contain cycles of different and arbitrary lengths.
They give an O(k log k) kernel for this version of the cycle packing problem. As
for the vertex-disjoint version of s-cycle packing, Fellows et al. [12] implies an
O(k3) kernel for vertex-disjoint triangle packing, which was improved to 45k2

by Moser [21]. Guo and Niedermeier [15] gave a 732k kernel for vertex-disjoint
triangle packing in planar graphs.

Prieto and Sloper [22] posed as an open problem whether problem kernels
and fixed-parameter algorithms can be obtained for the edge-disjoint version
of packing s-stars with s ≥ 3. Mathieson, Prieto and Shaw [20] posed as an
open problem whether problem kernels can be obtained for edge-disjoint s-cycle
packing with s ≥ 4.

678 M. Jiang et al.

In this paper we study the parameterized complexity as well as the classi-
cal computational complexity of Edge-Disjoint k-Packing of s-Stars and
Edge-Disjoint k-Packing of s-Cycles. Our results are grouped into the next
two sections, with the various hardness results in Sect. 2 and the polynomial ker-
nelization results in Sect. 3.

The two problems are both fixed-parameter tractable when parameterized
by both k and s, and admit 2O(ks)-time algorithms as implied by a k-FPT
algorithm1 for the general edge-disjoint graph packing problem [5]. On the other
hand, the NP-hardness of the two problems for any constant s ≥ 3 [9,17] implies
that unless P = NP, they are not FPT with only s as parameter. We show that
with only k as parameter, the two problems are both W[1]-hard and hence are
not FPT either, unless FPT = W[1]. Moreover, Edge-Disjoint k-Packing of
s-Cycles is W[1]-hard even in bipartite graphs when parameterized by k. We
also study the classical computational complexity of Edge-Disjoint k-Packing
of s-Cycles in specific graph classes, and show that it remains NP-complete
when restricted to bipartite graphs and balanced 2-interval graphs.

The 2O(ks)-time algorithms for the two problems imply that they have ker-
nels with size exponential in both k and s. It is natural to ask whether kernels
with size polynomial in k and s are possible. Fellows et al. gave an O(kr) ker-
nel for r-Set Packing [13, Lemma 6], which implies an O(ks) kernel2 for the
general graph packing problem of determining whether a graph G contains k
edge-disjoint copies of another graph H with s vertices, for any fixed s. Note
that the result of Fellows et al. [13] does not imply a size-O(ks) kernel for the
general graph packing problem with both k and s as parameters, because the
enumeration of all copies of H (s-stars or s-cycles in our setting) in graph pack-
ing into s-sets in set packing requires nO(s) preprocessing time. Also, the size of
the implied kernel is only polynomial in k when s is fixed.

We show that Edge-Disjoint k-Packing of s-Stars in fact has a kernel
with size polynomial in both k and s, but in contrast, unless NP ⊆ coNP/poly,
Edge-Disjoint k-Packing of s-Cycles does not have a kernel with size
polynomial in both k and s, and moreover does not have a kernel with size
polynomial in s for any fixed k. Our kernelization results include a ks2 kernel
for Edge-Disjoint k-Packing of s-Stars in general graphs, a 96k2 kernel for
1 For the general problem of deciding whether a graph G contains k edge-disjoint

copies of a graph H, the running time of this algorithm [5, Corollary 5.7] is

4rk+O(log3(rk))nr+1, where n and r are the numbers of vertices in G and H, respec-
tively. The nr+1 factor in the running time accounts for the time for solving the
subproblem of determining whether G contains H as a subgraph, by brute force.
The brute-force algorithm for this subproblem can be replaced by faster algorithms
in our setting, with polynomial running time when H is an s-star, or 2O(s)poly(n)
time when H is an s-cycle [1].

2 We remark that in our setting of Edge-Disjoint k-Packing of s-Cycles, since
any two different s-cycles share at most s − 2 edges, the base case of f(0, k) = 1 in
the analysis of [13, page 170] can be upgraded to f(1, k) = 1, which saves 1 in the
exponent and yields an O(ks−1) kernel.

Edge-Disjoint Packing of Stars and Cycles 679

Edge-Disjoint k-Packing of 4-Cycles in general graphs, and a 96k kernel
for Edge-Disjoint k-Packing of 4-Cycles in planar graphs.

2 Hardness Results

We first study the complexities of Edge-Disjoint k-Packing of s-Stars and
Edge-Disjoint k-Packing of s-Cycles with various choices of parameters.
The NP-hardness of both problems for any constant s ≥ 3 [9,17] implies that
they are not s-FPT unless P = NP. In the following two theorems we show that
the two problems are not k-FPT unless FPT = W[1].

Theorem 1. Edge-Disjoint k-Packing of s-Stars is W[1] [1]-hard with
parameter k.

Proof. By an FPT reduction from k-Independent Set. Given a graph G with
n ≥ 2 vertices, we construct a graph G′ by connecting each vertex of degree d
in G to n − d distinct dummy vertices. Then G has an independent set of size k
if and only if G′ has k edge-disjoint n-stars. ��
Theorem 2. Edge-Disjoint k-Packing of s-Stars3 is W[1]-hard with para-
meter k, even in bipartite graphs.

Proof. We first prove the W[1]-hardness of Edge-Disjoint k-Packing of
s-Cycles in general graphs, by an FPT reduction from Bin Packing. Given
a set of n̂ items of integer sizes ai, 1 ≤ i ≤ n̂, and κ̂ bins each of integer size
b, Bin Packing is the problem of deciding whether the set of n̂ items can be
partitioned into κ̂ subsets, such that the total size of the items in each subset is
at most b. Our reduction is from a restricted version of Bin Packing where all
integers ai and b are encoded in unary and moreover κ̂ · b =

∑n̂
i=1 ai. Note that

under this latter condition, the problem simply asks whether the set of n̂ items
can be partitioned into κ̂ subsets, such that the total size of the items in each
subset is exactly b. Jansen et al. [18] proved that Bin Packing is W[1]-hard
with parameter κ̂ even for this restricted version.

Put m̂ = n̂3(2n̂−1)(n̂+1)+1. We construct a graph G with κ̂ · b · m̂+ m̂−1
edges in n̂ + n̂3(2n̂ − 1) edge-disjoint paths:

– n̂ vertex-disjoint long paths pi → qi of length ai · m̂, 1 ≤ i ≤ n̂;
– n̂(2n̂ − 1) vertex-disjoint (except the two endpoints) short paths including n̂

paths of each length 2, 3 . . . , 2n̂ between qi and pj for each of the n̂2 pairs
(i, j) with 1 ≤ i, j ≤ n̂.

Note that the total length of the n̂3(2n̂ − 1) short paths is n̂3(2n̂ − 1) · (n̂ + 1) =
m̂ − 1. Set k = κ̂ and s = b · m̂ + 2n̂. We claim that the n̂ items of sizes ai

3 We remark that the construction in our proof of Theorem 2 can be easily adapted
to prove the hardness of all four variants of related problems on vertex/edge-disjoint
cycles/paths.

680 M. Jiang et al.

can be partitioned into κ̂ subsets each of total size b if and only if G contains k
edge-disjoint s-cycles.

We first prove the direct implication of the claim. Suppose that the n̂ items
of sizes ai can be partitioned into κ̂ subsets each of total size b. For each subset
of t items, a cycle of total length s = b · m̂ + 2n̂ in G can be composed of t
long paths and t short paths in an alternating pattern, where the t long paths
correspond to the t items, and the t short paths include t−1 paths of the length
2 and one path of length 2n̂ − 2(t − 1). Since there are n̂ ≥ t edge-disjoint short
paths of each length 2, 3 . . . , 2n̂ between each pair of endpoints of the long paths,
these k = κ̂ cycles can be easily made edge-disjoint.

We next prove the reverse implication of the claim. Suppose that G contains
k edge-disjoint s-cycles. Since the total length of all short paths is less than
m̂ and the length of each long path is a multiple of m̂, each cycle of length
s = b · m̂ + 2n̂ where 2n̂ < m̂ must include a certain number of long paths with
total length b · m̂, and the items corresponding to these long paths must have
total size b. Thus the k edge-disjoint s-cycles correspond to κ̂ disjoint subsets of
items each of total size b.

This proves the W[1]-hardness of Edge-Disjoint k-Packing of s-Cycles
in general graphs. We show that the problem remains W[1]-hard in bipartite
graphs by an FPT reduction from the same problem in general graphs. For any
graph G, let G2 be the bipartite graph obtained by subdividing each edge of
G into two edges. Then G has k edge-disjoint s-cycles if and only if G2 has k
edge-disjoint 2s-cycles. Note the parameter k remains the same. ��

Thus it is necessary that we use both k and s as parameters. Recall that a
result of Chen et al. [5, Corollary 5.7] implies a 2O(ks)-time algorithm for Edge-
Disjoint k-Packing of s-Cycles, which in turn implies a kernel exponential
in both k and s for this problem. It is natural to ask whether a polynomial kernel
is possible. In the next theorem we show that this is unlikely to be the case.

Theorem 3. Edge-Disjoint k-Packing of s-Cycles does not have a kernel
with size polynomial in both k and s unless NP ⊆ coNP/poly.

Proof. Suppose there is a kernelization algorithm that computes a kernel with
size polynomial in both k and s for Edge-Disjoint k-Packing of s-Cycles.
Then for k = 1, the same algorithm computes a kernel with size polynomial
in s only for the problem of finding a single s-cycle. Since deciding whether a
graph has a cycle of a certain length is well-known to have no polynomial kernel
with the cycle length as parameter unless NP ⊆ coNP/poly (see for example
Corollary 6 in [4]), the theorem follows. ��

Recall that for any fixed s, a result of Fellows et al. [13, Lemma 6] implies that
Edge-Disjoint k-Packing of s-Cycles has a kernel with size polynomial in k.
It is natural to ask whether this is also true for the symmetric case, i.e., whether
Edge-Disjoint k-Packing of s-Cycles has a kernel with size polynomial in
s for any fixed k. In the next theorem we show that this is again unlikely to be
the case.

Edge-Disjoint Packing of Stars and Cycles 681

Theorem 4. For any fixed k ≥ 1, Edge-Disjoint k-Packing of s-Cycles
does not have a kernel with size polynomial in s unless NP ⊆ coNP/poly.

Proof. We use the framework developed in Bodlaender, Jansen, and Kratsch [3].
Corollary 3.6 in [3] states that if an NP-hard problem L AND/OR-cross-
composes into a parameterized problem Q, then Q does not admit a polyno-
mial kernel unless NP ⊆ coNP/poly and the polynomial hierarchy collapses.
Let L be the NP-hard problem Hamiltonian Path. Let Q be Edge-Disjoint
k-Packing of s-Cycles parameterized by s. Let k ≤ 1 be a constant. We con-
struct an OR-cross-composition from L into Q as follows. Given t input graphs
G1, . . . , Gt of L with each graph Gi containing n vertices. Construct the input
graph H for Q as the disjoint union of Gis, 1 ≤ i ≤ t, and k − 1 copies of Cn.
Let s = n. Clearly H has a k-edge disjoint s-cycle packing if and only if one of
the Gis has a Hamiltonian path. ��

Next we study the complexities of Edge-Disjoint k-Packing of s-Cycles
in bipartite graphs and 2-interval graphs. Recall that a bipartite graph has no
odd cycles.

Theorem 5. Edge-Disjoint k-Packing of s-Cycles in bipartite graphs is
NP-hard for any even s ≥ 4.

Proof. It is known that this problem is NP-hard for any s ≥ 3 in general
graphs [17]. For any graph G, let G2 be the bipartite graph obtained by subdi-
viding each edge of G into two edges. Then G has k edge-disjoint s-cycles if and
only if G2 has k edge-disjoint 2s-cycles. It follows from [17] that this problem
is NP-hard for any even s ≥ 6 in bipartite graphs. The NP-hardness of this
problem for s = 4 in bipartite graphs can be proved in the following by a similar
reduction as in [10].

It is known that deciding whether a cubic graph G is edge-3-colorable is
NP-complete [17]. Equivalently, deciding whether a cubic graph G admits an
edge-partition into 3 perfect matchings is NP-complete. Given a cubic graph G
with n vertices, let G1 be the graph with three dummy vertices v1, v2, and v3
that are connected to every vertex in G. We claim that G is edge-3-colorable if
and only if G1 admits an edge-partition into 3n/2 edge-disjoint triangles.

For the direction implication of the claim, suppose that the cubic graph G
is edge-3-colorable and hence admits an edge-partition into 3 perfect matchings.
Then the n/2 edges in any one of the 3 perfect matchings and the n edges incident
to any one of the three dummy vertices form n/2 edge-disjoint triangles. In total
we have 3n/2 edge-disjoint triangles.

For the reverse implication of the claim, suppose that G1 admits an edge
partition into 3n/2 edge-disjoint triangles. Since the three dummy vertices are
disjoint and each of them has degree n, the 3n/2 edge-disjoint triangles must
consist of exactly n/2 triangles incident to each dummy vertex. For each dummy
vertex v, the n/2 triangles incident to v contain n/2 disjoint edges not incident
to v, which form a perfect matching in G. Thus G is edge-3-colorable.

682 M. Jiang et al.

Let G2 be the bipartite graph obtained from G1 by subdividing each edge uv
in G (which is in G1 too) into a path of two edges. We claim that G is edge-3-
colorable if and only if the edges of G2 can be partitioned into 3n/2 edge-disjoint
4-cycles.

The direct implication of this claim for G2 can be proved in a similar way
as the direct implication of the claim for G1. For the reverse implication of the
claim, suppose that G2 admits an edge partition into 3n/2 edge-disjoint 4-cycles.
Observe that each 4-cycle in G2 must contain exactly two vertices u and v from
G. Moreover, it must be one of two types: either (i) consisting of the four edges
from u and v to two dummy vertices, or (ii) consisting of the two-edge path
corresponding to the edge uv in G and the two edges from u and v to one
dummy vertex. Since there are exactly 3n/2 two-edge paths between vertices
from G, it follows that the 3n/2 edge-disjoint 4-cycles are all of the second type.
Then the same argument as before shows that G is edge-3-colorable. ��

Given a family of sets F = {S1, . . . , Sn}, the intersection graph Ω(F) of F
is the graph with F as the vertex set and with two different vertices Si and Sj

adjacent if and only if Si ∩ Sj 	= ∅. We call F a representation of the graph
Ω(F). Let t ≥ 2 be an integer. A t-interval is the union of t disjoint intervals in
the real line. A t-track interval is the union of t disjoint intervals on t disjoint
parallel lines called tracks, one interval on each track. A t-interval graph (resp.
t-track interval graph) is the intersection graph of a family of t-intervals (resp.
t-track intervals). Note that the t disjoint tracks for a t-track interval graph can
be viewed as t disjoint “host intervals” in the real line for a t-interval graph.
If a t-interval graph has a representation in which the t disjoint intervals of
each t-interval have the same length (although the intervals from different t-
intervals may have different lengths), then the graph is a balanced t-interval
graph. Similarly we define balanced t-track interval graphs.

Theorem 6. Edge-Disjoint k-Packing of s-Cycles is NP-hard in balanced
2-interval graphs for any s ≥ 3, and is NP-hard in balanced 2-track interval
graphs for any even s ≥ 4.

Proof. We adapt the NP-hardness proof of k-Edge Disjoint 3-Cycle Pack-
ing in split graphs [10]. The reduction is from Edge-Disjoint k-Packing of
s-Cycles in general graphs, which is known to be NP-complete [17]. We first
show the proof for the case s = 4. Given an input graph G = (V,E) with n
vertices and m edges, we construct a graph G′ = (V ′, E′) where

V ′ = V ∪ {w1
uv, w

2
uv | uv /∈ E}

E′ = E ∪ {uv, uw1
uv, w

1
uvw

2
uv, w

2
uvv | uv /∈ E}.

Basically we add to G′ a 4-cycle for each nonadjacent pair of vertices in G. It is
easy to show that G has a 4-cycle packing of size k if and only if G′ has a 4-cycle
packing of size k +

(
n
2

) − m.
Next we show that G′ is a balanced 2-track interval graph. Note that the n

vertices in G form a clique in G′ and the added vertices form chains of length 3

Edge-Disjoint Packing of Stars and Cycles 683

connecting pairs of vertices in the clique. We construct a family F of balanced
2-track intervals as shown in Fig. 1 to represent G′.

track 1
x yuv

track 2

u

u1 u2 un−a

v

v1 v2 vn−b

Fig. 1. An illustration of the construction of G′
F in Theorem 6.

On track 1 there are
(
n
2

)−m+1 disjoint intervals. The first interval, labeled
by x, has length n; the other intervals, labeled by yuv, have length 1. On track 2
there are two rows of intervals. The first row has n disjoint intervals of length n,
one for each vertex in V . For a vertex u ∈ V , if the degree of u in G is a, then
there are n − a disjoint intervals u1, u2, . . . , un−a of length 1 on the second row,
all intersecting with the interval for u in the first row.

For every vertex u ∈ V , add a 2-track interval (x, u) to F . For a vertex u ∈ V
with degree a, fix a one-to-one correspondence between vertices nonadjacent to
u in G and intervals ui with 1 ≤ i ≤ n−a. For each pair of nonadjacent vertices
u and v in G, let ui be the interval corresponding to v and vj be the interval
corresponding to u based on the one-to-one correspondence, we add two 2-track
intervals (yuv, ui) and (yuv, vj) to F . In total there are n + 2(

(
n
2

) − m) balanced
2-track intervals in F .

The proof technique and the interval construction naturally extend to other
values of s. More intervals can be added to track 1 and track 2 to represent larger
cycles. For odd s, however, only a balanced 2-interval graph can be constructed
since one of the 2-intervals has to be on the same track. In particular, for s = 3,
each pair of 2-track intervals (yuv, ui) and (yuv, vj) is contracted into a single
2-interval (ui, vj). ��

3 Kernelization Results

Fellows et al. [13] give an O(kr) kernel for general graph edge-disjoint packing
problems based on ideas developed for r-Set Packing. This implies an O(ks)
problem kernel for Edge-Disjoint k-Packing of s-Stars and Edge-Disjoint
k-Packing of s-Cycles for any fixed s. In this section we present improved
kernelization bounds.

3.1 Kernelization for Edge-Disjoint k-Packing of s-Stars

We show that Edge-Disjoint k-Packing of s-Stars has a ks2 kernel in gen-
eral graphs.

684 M. Jiang et al.

Reduction Rule 1. Remove any edge and vertex that do not belong to any
s-star.

Theorem 7. Edge-Disjoint k-Packing of s-Stars admits a kernel with at
most ks2 vertices and at most k(s2 − 1) edges in general graphs.

Proof. If the reduced graph G′ = (V,E) has an edge-disjoint s-star packing of
size k but no s-star packing of size k + 1, then G′ has at most ks2 vertices and
at most k(s2 + s − 1) edges. To see this, let W be the s-star packing of size k,
then W has at most (s+1)k vertices. Let Q := G′ −W be the rest of the graph.
First we claim that for any vertex u ∈ Q, there is a vertex v ∈ W such that
uv ∈ E. Next we claim that each s-star in W has at most s2 − s − 1 neighbors
in Q. To see this, note that every vertex in W has at most s − 1 neighbors in
Q, since otherwise it leads to another edge-disjoint s-star not in the packing.
The situation where an s-star has the maximum number of neighbors in Q is
where the center of the s-star has s − 1 neighbors in Q and each leaf node of
the s-star has s − 2 neighbors in Q. Therefore the total number of vertices is at
most k(s2 − s − 1) + k(s + 1) = ks2.

We use V [W] and E[W] to denote the vertex set and the edge set of the
packing W . There are exactly ks edges in E[W]. For a vertex u ∈ V [W], consider
those edges adjacent to u that are not in E[W]. By the same argument as in the
preceding paragraph, the total unused degree of the s+1 vertices of each s-star is
at most s−1+s(s−2) = s2 −s−1. Thus there are at most k(s2 −s−1) unused
edges incident to the vertices in W . This also includes the edges between W
and Q. Moreover, note that Q induces an independent set. To see this, suppose
there is an edge between two vertices in Q, then by Reduction Rule 1 this
edge must belong to some s-star. However, this s-star is not in the packing W ,
contradicting that W is maximum. Therefore the total number of edges is at
most ks + k(s2 − s − 1) = k(s2 − 1). ��

3.2 Kernelization for Edge-Disjoint k-Packing of 4-Cycles

We next study the kernelization of Edge-Disjoint k-Packing of s-Cycles
when s = 4. We first show that Edge-Disjoint k-Packing of 4-Cycles has
a quadratic kernel in general graphs.

Reduction Rule 1. Delete all vertices and edges that do not belong to any
4-cycle.

We enumerate all 4-cycles in G and use a greedy algorithm to compute a
maximal set of 4-cycles such that any pair of 4-cycles in the maximal set share
at most one edge. During the computation of this maximal set we keep track
of the number of 4-cycles that share the same edge and apply the following
reduction rule whenever applicable.

Reduction Rule 2. If the number of 4-cycles in the maximal set that share an
edge uv is greater than 4k − 4, then remove uv from G, and decrease k by 1.

Edge-Disjoint Packing of Stars and Cycles 685

Reduction Rule 1 is obviously correct. To see the correctness of Reduction
Rule 2, let G and G′ be the graphs before and after deleting uv. Then G has a
k-packing if and only if G′ has a (k − 1)-packing. The forward direction of this
claim is obvious. For the other direction, note that the 4-cycles in the maximal
set that share the edge uv have all distinct edges except uv. If G′ has a (k − 1)-
packing, then each 4-cycle in the packing uses edges in at most four different
4-cycles in G that share the edge uv. There is at least one 4-cycle left in the
maximal set that can be added to the packing, yielding a k-packing in G.

Restart the computation of the maximal set after each application of Reduc-
tion Rule 2. Let S be the final maximal set when Reduction Rule 2 is no
longer applicable and W be the subgraph of G′ induced by vertices of S. Let
Q := G′ − W be the rest of the graph. Then we have the following four claims.

Claim 1. If the number of 4-cycles in S is greater than 16k2, then at least k of
them are edge-disjoint.

Proof. By Reduction Rule 2, the number of 4-cycles in S that share an edge is
at most 4k − 4. So each 4-cycle in S shares edges with at most 4(4k − 4 − 1) =
16k − 20 other 4-cycles in S. If the number of 4-cycles in S is greater than
16k2 > (k − 1)(16k − 20+1)+1, then even a greedy algorithm can find a subset
of at least k 4-cycles in S that are edge-disjoint. ��
Claim 2. Q induces an independent set.

Proof. If there is an edge in the graph induced by Q, then this edge must belong
to a 4-cycle. This 4-cycle will share at most one edge with 4-cycles in S, and
therefore should be included in W due to maximality of S. ��

We call a vertex u in Q the cycle-mate of a 4-cycle C in S if u belongs to a
4-cycle C ′ that shares two consecutive edges with C.

Claim 3. Every vertex in Q is the cycle-mate of at least one 4-cycle in S.

Proof. By Reduction Rule 1, a vertex u in Q must belong to at least one 4-cycle
C ′. Since at least two edges of C ′ are between W and Q, the 4-cycle C ′ shares
at most two edges with any 4-cycle in S. If C ′ shares less than two edges with
each 4-cycle in S, then it should be included in S. Thus C ′ must share exactly
two consecutive edges with a 4-cycle C in S. ��
Claim 4. Every 4-cycle in S has at most two cycle-mates in Q, one for each
pair of diagonal vertices.

Proof. If a 4-cycle C in S has two cycle-mates in Q that share consecutive edges
with C between the same pair of diagonal vertices, then the two cycle-mates
together with four edges between W and Q will form a 4-cycle which should be
included in S. ��

By Claim 1, we can assume without loss of generality that the number of
4-cycles in S is at most 16k2 and hence the number of vertices in W is at most
64k2. Then by Claims 3 and 4, the number of vertices in Q is at most 32k2.
Combining the sizes of W and Q, we have the following theorem.

686 M. Jiang et al.

Theorem 8. Edge-Disjoint k-Packing of 4-Cycles admits a kernel with
at most 96k2 vertices in general graphs.

When restricted to planar graphs, the kernel size for Edge-Disjoint k-
Packing of 4-Cycles can be further improved to linear. Given a 4-cycle pack-
ing P , we call a 4-cycle C an uncovered 4-cycle if none of the edges in C is in
the edge sets of P . If P is a maximum 4-cycle packing, then there should not be
any uncovered 4-cycle. We call a 4-cycle dangling if only one edge in the 4-cycle
is shared with other 4-cycles.

Reduction Rule 1. Delete all vertices and edges that do not belong to any
4-cycle.

Reduction Rule 2. If there is a dangling 4-cycle, then add this 4-cycle in the
solution set, delete it from G, decrease k by 1.

Reduction Rule 1 is obviously correct. The correctness of Reduction Rule 2
follows by a simple replacement argument: Consider any edge-disjoint maximum
4-cycle packing and any dangling 4-cycle C. If this packing does not include C,
then it must contains exactly one 4-cycle C ′ that intersects C. By removing C ′

and adding C, we obtain another edge-disjoint maximum 4-cycle packing.

Theorem 9. Edge-Disjoint k-Packing of 4-Cycles admits a kernel with
at most 96k vertices in planar graphs.

References

1. Alon, N., Yuster, R., Zwick, U.: Color-coding. J. ACM 42(4), 844–856 (1995)
2. Bafna, V., Pevzner, P.A.: Genome rearrangements and sorting by reversals. SIAM

J. Comput. 25(2), 272–289 (1996)
3. Bodlaender, H.L., Jansen, B.M.P., Kratsch, S.: Kernelization lower bounds by

cross-composition. SIAM J. Discrete Math. 28(1), 277–305 (2014)
4. Bodlaender, H.L., Thomassé, S., Yeo, A.: Kernel bounds for disjoint cycles and

disjoint paths. Theor. Comput. Sci. 412(35), 4570–4578 (2011)
5. Chen, J., Kneis, J., Lu, S., Molle, D., Richter, S., Rossmanith, P., Sze, S., Zhang,

F.: Randomized divide-and-conquer: improved path, matching, and packing algo-
rithms. SIAM J. Comput. 38(6), 2526–2547 (2009)

6. Colbourn, C.J.: The Combinatorics of Network Reliability. Oxford University Press
Inc., New York (1987)

7. Colbourn, C.J.: Edge-packings of graphs and network reliability. Discrete Math.
72, 49–61 (1988)

8. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, New York
(1999)

9. Dyer, M.E., Frieze, A.M.: On the complexity of partitioning graphs into connected
subgraphs. Discrete Appl. Math. 10(2), 139–153 (1985)

10. Feder, T., Subi, C.S.: Packing edge-disjoint triangles in given graphs. Electron.
Colloquium Comput. Complex. (ECCC) 19, 13 (2012)

11. Fellows, M.R., Guo, J., Moser, H., Niedermeier, R.: A generalization of Nemhauser
and Trotter’s local optimization theorem. J. Comput. Syst. Sci. 77(6), 1141–1158
(2011)

Edge-Disjoint Packing of Stars and Cycles 687

12. Fellows, M.R., Heggernes, P., Rosamond, F.A., Sloper, C., Telle, J.A.: Finding k
disjoint triangles in an arbitrary graph. In: Proceedings of the 30th International
Workshop on Graph-Theoretic Concepts in Computer Science, pp. 235–244 (2004)

13. Fellows, M.R., Knauer, C., Nishimura, N., Ragde, P., Rosamond, F., Stege, U.,
Thilikos, D.M., Whitesides, S.: Faster fixed-parameter tractable algorithms for
matching and packing problems. Algorithmica 52(2), 167–176 (2008)

14. Guo, J., Niedermeier, R.: Invitation to data reduction and problem kernelization.
SIGACT News 38(1), 31–45 (2007)

15. Guo, J., Niedermeier, R.: Linear problem kernels for NP-hard problems on planar
graphs. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007.
LNCS, vol. 4596, pp. 375–386. Springer, Heidelberg (2007)

16. Heath, L.S., Vergara, J.P.C.: Edge-packing in planar graphs. Theor. Comput. Syst.
31, 629–662 (1998)

17. Holyer, I.: The NP-completeness of some edge-partition problems. SIAM J. Com-
put. 10(4), 713–717 (1981)

18. Jansen, K., Kratsch, S., Marx, D., Schlotter, I.: Bin packing with fixed number of
bins revisited. J. Comput. Syst. Sci. 79, 39–49 (2013)

19. Masuyama, S., Ibaraki, T.: Chain packing in graphs. Algorithmica 6, 826–839
(1991)

20. Mathieson, L., Prieto, E., Shaw, P.: Packing edge disjoint triangles: a parameterized
view. In: Downey, R.G., Fellows, M.R., Dehne, F. (eds.) IWPEC 2004. LNCS,
vol. 3162, pp. 127–137. Springer, Heidelberg (2004)

21. Moser, H.: A problem kernelization for graph packing. In 35th International Confer-
ence on Current Trends in Theory and Practice of Computer Science, pp. 401–412
(2009)

22. Prieto, E., Sloper, C.: Looking at the stars. Theor. Comput. Sci. 351(3), 437–445
(2006)

23. Wang, J., Ning, D., Feng, Q., Chen, J.: An improved parameterized algorithm for a
generalized matching problem. In: Agrawal, M., Du, D.-Z., Duan, Z., Li, A. (eds.)
TAMC 2008. LNCS, vol. 4978, pp. 212–222. Springer, Heidelberg (2008)

24. Yang, Y.: Towards optimal kernel for edge-disjoint triangle packing. Inf. Process.
Lett. 114(7), 344–348 (2014)

Dynamic Minimum Bichromatic
Separating Circle

Bogdan Armaselu(B) and Ovidiu Daescu

Department of Computer Science, The University of Texas at Dallas,
Richardson, TX, USA

{bxa120530,daescu}@utdallas.edu

Abstract. In the Minimum Bichromatic Separating Circle problem, we
are given a set of n red points R and a set of m blue points B, and
we want to find the smallest circle C that contains all red points and
the smallest possible number of blue points. In this paper we study
the Dynamic Minimum Bichromatic Separating Circle and present data
structures that allow to perform efficient dynamic operations on the input
points, specifically for adding and removing blue points. We first present
a unified data structure that allows both additions and deletions. Then,
we present data structures that allow to report an optimal circle in log-
arithmic time when only insertions are allowed, at the expense of an
increase in update time. Our results are the first known for the Dynamic
Minimum Bichromatic Separating Circle problem.

Keywords: Dynamic · Bichromatic · Separating circle

1 Introduction

In the Minimum Bichromatic Separating Circle (MBSC) problem, the input is
a set of n red points R and a set of m blue points B, and the goal is to find the
smallest circle C that contains all red points and the smallest possible number
of blue points. In general, the optimal solution is not unique. In this paper
we consider the Dynamic version of the MBSC problem, termed the Dynamic
Minimum Bichromatic Separating Circle (OMBSC) problem. In the OMBSC
problem the goal is to maintain the optimal solution under addition and deletion
of red and blue points. In this work address only the addition and removal of
blue points, while the set of red points is fixed at input.

According to Bitner, Daescu et al. [3], the motivation of studying the MBSC
problem comes form military missions (e.g. one is given a set of enemy targets
(red points) and wants to destroy all enemy targets while minimizing other
damage, marked as blue points). In practice, it is often possible that the data
is dynamically updated, which in turn rises the need for fast updates on the
optimal solution.

This research was partially supported by NSF award IIP1439718 and CPRIT award
RP150164.

c© Springer International Publishing Switzerland 2015
Z. Lu et al. (Eds.): COCOA 2015, LNCS 9486, pp. 688–697, 2015.
DOI: 10.1007/978-3-319-26626-8 50

Dynamic Minimum Bichromatic Separating Circle 689

1.1 Related Work

In 2010, Bitner, Daescu et al. [3] studied the (static) MBSC problem and pre-
sented two solutions for finding the optimal circle, based on the static Farthest
Point Voronoi Diagram of the red points (FV D(R)), one with O((m+n) logn+
m1.5 logO(1) m) time and O(m1.5 logO(1) m) space based on circular range queries,
and one with O(mn logm + n log n) time and O(m + n) space based on sweep-
ing FV D(R). In the same year, in a different paper, Daescu et al. [6] gave a
linear programming appraoch for the problem, with an expected running time
of O(N + k11/4N1/4 logO(1) N), where N = m + n and k is the number of blue
points in the MBSC. More recently, Cheung, Daescu et al. [7] solved the Kinetic
MSC problem, in which points can move along linear trajectories, and the goal
is to find the locus of the MBSC over time.

Barbay et al. [1] considered a related problem, where circles are replaced
by boxes and points have associated weights. Given a set P of n points in d-
dimensional space, where each point p in P is associated a real weight w(p),
the maximum-weight box problem is to find an axis-aligned box B maximizing∑

p∈(P∩B) w(p). In the plane, they describe an algorithm with O(n2) worst case
running time. They further show that the maximum-weight box problem can be
solved in O(nd) time for any constant d ≥ 2. If the points are partitioned in red
and blue based on their weight (positive or negative), with n red points and m
blue points, then they give an algorithm that runs in (nmin{n,m}) time. Very
recently, Bereg and Daescu [2] considered a similar problem for circles in the
plane. They study the problem of finding a circle of smallest radius such that
the total weight of the points covered by the circle is maximized and present an
algorithm with polynomial time depending on the number of points with positive
and negative weight. They also consider a restricted version of the problem where
the center of the circle should be on a given line and give an algorithm that runs
in O(n(m+n) log(m+n)) time using O(m+n) space. Moreover, for this version,
if all positively weighted points are required to be included within the circle, they
provide an algorithm that runs in O((n + m) log(n + m)) time.

Another related problem, the geometric version of the red-blue set cover for
unit squares, was very recently considered by Chan and Hu [4]. In this version,
given a red point set, a blue point set, and a set of objects (unit squares) the
goal is to chose a subset of objects that cover all red points while minimizing
the number of blue points covered. They prove that this problem is NP-hard
even when the objects are unit squares in the plane and give a polynomial-time
approximation scheme.

1.2 Our Results

In this paper we address only the insertion and deletion of blue points (that is,
the set of red points is known at the input) and present novel data structures
to handle these operations. Our first solution is a unified data structure that
allows both insertion and removal of blue points and can handle updates and
queries in O(n logm + m) time. Then we present data structures that allow to

690 B. Armaselu and O. Daescu

report an optimal circle in logarithmic time when only insertions are allowed,
at the expense of higher times for updating the data structures. Specifically, the
update time is O(nm log(mn)). This makes sense since the update can be done
as a “backstage” operation, assuming that queries arise at a reasonable rate in
practice. Our algorithms are the first reported for the OMBSC problem.

We assume that, having initially available n red points and m blue points,
the O(mn logm + n log n) time and O(m + n) space static algorithm of [3] has
been executed and the set M of O(n) minimum separating circles is available.

Let FV D(R) be the FVD of the set of red points.

Definition 1. Let e be an edge of FV D(R). For any q ∈ e, we denote by
C(q) the separating circle centered in q and passing through the two red points
defining e.

Definition 2. [3] Let e be an edge of FV D(R). A point q ∈ e is an enter (resp.
exit) event point if its corresponding blue point is included (resp. excluded) from
the circle centered at q and passing through the two red points defining e, as we
sweep along e in increasing order of circle radius.

Definition 3. Let ei,j be an edge of FV D(R) defined by two red points pi and
pj . For any q, r ∈ ei,j , we say that q is to the left of r, and we write q < r, if
the circle centered at q and defined by pi and pj has a smaller radius than the
one centered in r and defined by pi and pj .

2 A Unified Approach for Insertion/Deletion of Blue
Points

In this section we present an unified approach that allows for efficient insertion
and deletion of blue points.

Let mk be the number of blue points in an MBSC of M when m blue points
are present. Let m(C) be the number of blue points in a circle C. For every edge
e of the FV D(R), and for each exit event point q ∈ e, assume we have stored a
number mq, denoting the number of blue points included in C(q). Let qe be the
leftmost exit event point such that mqe is minimum for all q ∈ e. If one of the
current circles in the MBSC set M is centered on e then obviously mq = mk,
otherwise mq ≥ mk.

Insertion (Algorithm 1a). Suppose we want to add a new blue point p. For
every edge e of FV D(R), let Me be the circle with minimum radius and number
of blue points among all circles centered on e and passing through the two red
points defining e. We compute a possible new candidate circle M ′

e after the
insertion of p. To do that, we first compute the event point s ∈ e corresponding
to p. Then, based on the location of s, there are only five possible cases to
consider.

(1) s /∈ e (see Fig. 1 for an illustration). In this case, Me remains the same. We
set M ′

e = Me.

Dynamic Minimum Bichromatic Separating Circle 691

Fig. 1. Case 1: s /∈ e

Fig. 2. Case 2: s < q and s is an exit event point

(2) s < q and s is an exit event point (see Fig. 2). In this case, only the event
points t < s will have their mt increased. We set M ′

e = Me.
(3) q < s and s is an enter event point (see Fig. 3). In this case, only the event

points s < t will have their mt increased. We set M ′
e = Me.

(4) s < q and s is an enter event point (see Fig. 4). In this case, we find the
leftmost exit event point t < s such that mt = mq +1. If such a point exists,
then we set M ′

e = C(t). Otherwise we set M ′
e = Me.

(5) q < s and s is an exit event point (see Fig. 5). In this case, we need to find
the leftmost exit event point t ≥ s such that mt = mq. If such point exists,
then we set M ′

e = C(t), otherwise we set M ′
e = Me.

After all edges e are treated, we keep only the candidate circles M ′’s for
which m(M ′) is minimum.

Deletion (Algorithm 1b). Suppose we want to remove a blue point p. Similarly
as for addition of a blue point, there are only 5 possible cases to consider.

(1) s /∈ e (see Fig. 1 for an illustration). In this case, Me remains the same. We
set M ′

e = Me.
(2) q < s and s is an exit event point (see Fig. 6). In this case, the event points

t < s will have their mt decreased, including q. We set M ′
e = Me.

(3) s < q and s is an enter event point (see Fig. 7). In this case, the event points
s < t will have their mt decreased, including q. We set M ′

e = Me.

692 B. Armaselu and O. Daescu

Fig. 3. Case 3: q < s and s is an enter event point

Fig. 4. Case 4: s < q and s is an enter event point

Fig. 5. Case 5: q < s and s is an exit event point

(4) q < s and s is an enter event point (see Fig. 8). In this case, we need to find
the leftmost exit event point t ≥ s such that mt = mq. If such point exists,
then we set M ′

e = C(t), otherwise we set M ′
e = Me.

(5) s < q and s is an exit event point (see Fig. 9). In this case, we need to find
the leftmost exit event point t < s such that mt = mq + 1. If such point
exists, then we set M ′

e = M(t), otherwise we set M ′
e = Me.

Theorem 1. Insertion (resp., deletion) of a blue point can be performed in
O(n logm + m) time each, using Algorithm 1a (resp., Algorithm 1b).

Proof. For each edge e of the FV D(R), we store the following:

Dynamic Minimum Bichromatic Separating Circle 693

Fig. 6. Case 2: q < s and s is an exit event point

Fig. 7. Case 3: s < q and s is an enter event point

1. the leftmost exit event point q such that C(q) is minimum for all q ∈ e
2. for each exit event point q, store mq

3. for each exit event point corresponding to a MBSC, store the following:
3.1. the leftmost exit event point l(q) < q such that ml(q) = mq + 1
3.2. the leftmost exit event point r(q) ≥ q such that mr(q) = mq.

The event points on e are stored in a binary search tree, and hence, simply
inserting an event point s can be done in O(logm) time. After inserting s, we
treat cases (1) and (3) in O(1) time. Cases (2) and (5) require O(m) time each,
as we need to find l(s) and r(s), and we do that by sweeping along the edge.
We also need to increment (decrement) mq for each exit event point q between
l(s) and s. Also, if l(q) or (r(q)) is null, we may need to set l(q) (or r(q)) = s.
However, as stated in [3], every blue point has an exit event point on at most one
edge of the FV D(R). Hence, cases (2) and (5) occur only once. Case (4) occurs
O(n) times, but is treated in O(1) time for each occurrence, as we already know
l(q) and r(q) for each edge e. In order to update the data structure, we need
O(m + n) time to compute ms for the edge where s is an exit event point. We
require another O(m) time to update all other mq’s, as there are O(m) of them.
We also spend O(m + n) time updating l(q) and r(q) and computing l(s) and
r(s), over all edges of FV D(R). Hence, the insertion (deletion) of a blue point
takes O(n logm + m) time. ��

Notice that our update solution is polynomially better than recomputing the
optimal solution from scratch, using the algorithms in [3].

694 B. Armaselu and O. Daescu

Fig. 8. Case 4: q < s and s is an enter event point

Fig. 9. Case 5: s < q and s is an exit event point

3 Logarithmic Query for Insertions

In this section we present data structures that allow to report an optimal circle in
logarithmic time when only insertions are allowed, at the expense O(nm log(mn))
time for updating the data structures. This makes sense in practice since the
update can be done as a “backstage” operation, assuming that queries arise at
a reasonable rate.

Algorithm 2. We maintain all enclosing circles defined by event points on the
edges of FV D(R) in a balanced binary search tree like data structure, T , with
O(m) nodes. The keys of T are the number of blue points i, and the values are
lists T i of enclosing circles with i blue points. Each T i is stored in a balanced
binary search tree like data structure that is an extension of the Offline Ball
Exclusion Search Data Structure (OLBES) introduced in [5]. Specifically, the
circles are stored at the leaves of T i, in sorted order by radius, along with the
edge of FV D(R) that they are centered on. Each T i contains O(n) circles. The
inner nodes store intersections of circles, that are leaf descendants of that node.
See Fig. 10 for an illustration. Given a blue point p to insert, we do the following.

1. Let k be the smallest key in T .
2. Perform an off-line ball exclusion search (OLBES) on T k with query point p,

to obtain the smallest circle in T k not containing p.

Dynamic Minimum Bichromatic Separating Circle 695

Fig. 10. Balanced binary search tree T stores the enclosing circles, sorted by number
of blue points. Each node i points to another balanced binary search tree T i containing
circles with i blue points, sorted by radius. The circles are maintained along with the
corresponding edge on FV D(R) (Color figure online).

3. If the OLBES query successfully returns a circle Ck∗, report it as MBSC.
(Note: we can also report all circles in T k of equal radii, in postorder following
Ck∗, if all optimal solutions are needed.)

4. Otherwise (i.e. all circles in T k contain p, so they would have k+1 blue points
after the insertion):

4.1. We perform an OLBES on T k+1 with query point p

696 B. Armaselu and O. Daescu

4.2. If the query successfully returns a circle Ck+1, then we compare its radius
with the radius of the smallest circle in T k, Ck, and return the one with
the smaller radius (along with other circles in T k of equal radii)

4.3. Otherwise, return the circle(s) in T k of smallest radius.

To update the data structure, we do the following.

1. Let l be the largest number of blue points of any circle in T
2. For each i from l downto k, for all circles C ∈ T i such that p ∈ C, move C

from T i to T i+1.

Theorem 2. Insertion of a blue point can be performed with O(log(mn)) query
time and O(nm log(nm)) update time using Algorithm 2.

Proof. An OLBES query on a set of O(c) circles can be done in O(log c) time
with O(c log c) pre-processing time [5]. In our case, each T i may have O(mn)
circles, so c = mn. Hence, reporting an MBSC takes O(log(mn)) time. As for
updating the data structure, there may be O(nm) circles containing p in T . For
each i, suppose there are ni circles in T i containing p, with

∑l
i=k ni = O(nm).

For each of them, we spend O(log ni+1) time to re-insert it in T i+1 in proper
order. Finally, we spend O(mn log(mn)) to recompute the OLBES structures
for each T i. Hence, the update time is O(

∑l
i=k ni log ni+1) + O(mn log(mn) =

O(nm log(nm)). ��

4 Conclusions and Future Work

We presented a unified data structures for efficient insertions and deletions of
blue points. We also presented data structures that allow logarithmic query time
for insertions of blue points. We leave open a few problems: (1) data structures
with logarithmic query time for deletion of blue points. (2) efficient data struc-
tures for insertion and deletion of red points. Note that since virtually all known
algorithms for finding the MBSC (static, kinetic, and dynamic versions) rely on
the FV D(R) it seems that solutions for insertion/deletion of red points would
rely on the dynamic FVD, which is known to have Ω(n)) worst case update time.
(3) unified data structures for insertion and deletion of both blue and red points.

References

1. Barbay, J., Chan, T.M., Navarro, G., Pérez-Lantero, P.: Maximum-weight planar
boxes in O(n2) time (and better). Inf. Process. Lett. 114(8), 437–445 (2014)

2. Bereg, S., Daescu, O., Zivanic, M., Rozario, T.: Smallest maximum-weight circle for
weighted points in the plane. In: Gervasi, O., Murgante, B., Misra, S., Gavrilova,
M.L., Rocha, A.M.A.C., Torre, C., Taniar, D., Apduhan, B.O. (eds.) ICCSA 2015.
LNCS, vol. 9156, pp. 244–253. Springer, Heidelberg (2015)

3. Bitner, S., Cheung, Y. K., Daescu, O.: Minimum separating circle for bichromatic
points in the plane, International Symposium on Voronoi Diagrams in Science and
Engineering (2010)

Dynamic Minimum Bichromatic Separating Circle 697

4. Chan, T.M., Hu, N.: Geometric red-blue set cover for unit squares and related
problems. Comput. Geom. 48(5), 380–385 (2015)

5. Chen, D.Z., Daescu, O., Hershberger, J., Kogge, P.M., Mi, N., Snoeyink, J.: Polyg-
onal path simplification with angle constraints. In: Proceedings Computational
Geometry: Theory and Applications (2004)

6. Cheung, Y.K., Daescu, O.: Minimum separating circle for bichromatic points by
linear programming. In: 20th Annual Fall Workshop on Computational Geometry
(2010)

7. Cheung, Y.K., Daescu, O., Zivanic, M.: Kinetic red-blue minimum separating cir-
cle. In: Wang, W., Zhu, X., Du, D.-Z. (eds.) COCOA 2011. LNCS, vol. 6831, pp.
448–463. Springer, Heidelberg (2011)

Miscellaneous

Searching Graph Communities by Modularity
Maximization via Convex Optimization

Yuqing Zhu1(B), Chengyu Sun1, Deying Li2, Cong Chen3, and Yinfeng Xu3

1 Department of Computer Science, California State University, Los Angeles,
CA 90032, USA

{yuqing.zhu,csun}@calstatela.edu
2 School of Information, Renmin University of China, Beijing 100872,

People’s Republic of China
deyingli@ruc.edu.cn

3 School of Management, Xi’an Jiaotong University, Xi’an 710049, Shaanxi,
People’s Republic of China

{chencong2779,yfxu}@stu.xjtu.edu.cn

Abstract. Communities in networks are the densely knit groups of indi-
viduals. Newman suggested modularity - a natural measure of the quality
of community partition, and several community detection strategies aim-
ing on maximizing the modularity have been proposed. In this paper, we
give a new combinatorial model for modularity maximization problem,
and introduce a convex optimization based rounding algorithm. Impor-
tantly, even given the maximum number of wanted communities, our
solution is still capable of maximizing the modularity and obtaining the
upper bound on the best possible solution.

1 Introduction

Many systems of mutual interacting entities can be expressed as networks, which
consist of nodes or vertices and edges between them. For example, wireless sensor
networks are spatially distributed sensors to monitor physical or environmental
conditions, and to cooperatively pass their data through the network to a main
location. social networks represent the individuals and their social connections,
such as friendships, colleagueship, etc. Metabolic networks is the sets of metabolic
and physical processes which determining cells’ physiological and biochemical
properties. They model enzymes and metabolites and their chemical reactions.

The study of networks has experienced a enormous surge of interest in the
last decades. In recent, the boom of “big data” pushes the network study to a
new era, since unlike the traditional data, the network data is unstructured and
correlated. More and more people join, aiming to understand network data more
deeply and design scalable algorithms for large scale networks.

In networks (graphs), communities are subsets of nodes within which the
connections are dense, but between which the connections are sparser. Many
complex networks have community or modular structure, and the detection and
characterization of communities in networks has interested people immensely,
c© Springer International Publishing Switzerland 2015
Z. Lu et al. (Eds.): COCOA 2015, LNCS 9486, pp. 701–708, 2015.
DOI: 10.1007/978-3-319-26626-8 51

702 Y. Zhu et al.

for community identification is extreme useful for analyzing and understanding
networks. For instance, communities within world wide web are possibly cor-
responding to sets of web pages focusing on related topic, communities within
biological networks may refer to same functions, and communities within social
networks may share common interests are locations. Far another instance, people
can use community to compress the networks when they are of large-scale, since
individuals in same communities share common properties. In addition, commu-
nities can be used to optimize system performance. Nowadays data handled by
on-line social networking sites (Facebook, Twitter etc.) is extremely large, and
multiple machines are employed for storing data and handling online communi-
cations. The communication cost between machines affects system performance
a lot. Processing individuals in a same community on a same machine can reduce
community cost among machines, and thus accelerate the system response.

Due to the huge importance of determining community structure in graphs,
people have been witnessing the bloom of community research in computer
science, biology, physics, sociology and economics, the bloom lasts for more than
a decade and is still thriving. Agarwal and Kempe in [1] studied community par-
titioning as a modularity optimization problem, and proposed two algorithms
basing on linear programing and vector programming techniques. Zhang et al.
focused on how to partition a network into as many qualified communities as pos-
sible while maintaining simple community identification in [6], they formulated
their model as a linear integer programming problem and designed a qualified
min-cut based bisecting algorithm. In [2], Bi et al. studied a new problem: com-
munity expansion caused by influence propagation. Their model is inspired by
the charged system in the physic, and two objective functions are proposed for
choosing proper candidates to enlarge a community. Linear programming app-
roach is designed to maximize those two objective functions. Lu et al. in [4]
aimed at partitioning a social network into K disjoint communities such that
the sum of influence propagation within these communities is maximized. They
developed an optimal algorithm for the case where K = 2, and proved that the
problem is NP-hard for general K. Zhu et al. in [7] defined the mutual close-
ness and strangeness between each node pair in a social network, and formulate
community partition problem into a semidefinite program, considering both the
tightness of the same community and the looseness across different communities.
The mathematical models and the objective functions are given, as well as the
performance bounds of the proposed algorithms.

In this paper, we focus the most common used community detection criterion:
modularity. We devise a new combinatorial model for modularity maximization
problem, and introduce a convex optimization based rounding algorithm. Given
an integer K, our solution can give qualified community partitioning such that
the number of communities obtained not exceeding K. What is more, ours is
the first technique that can track the upper bound of best modularity when
partitioning the graph into at most K communities.

Searching Graph Communities by Modularity Maximization 703

2 Preliminaries

We represent the network as an undirected graph G = (V,E) with |V | = n, |E| =
m, and denote A = [au,v] as the adjacency matrix of G. According to the defi-
nition of adjacency matrix, for undirected graph au,v = av,u = 1 if and only if
there exists an edge between u and v, and au,v = av,u = 1 otherwise. The degree
of a node v is represented by dv.

The problem is to partition V into several disjoint communities, denote the
aimed number of communities as K, and use C = {C1, ..., CK} = {(V1, E1), ...,
(VK , EK)} to represent thepartition.Modularity [5] of apartitionC = {C1, ..., CK}
is the total number of edges within the communities, minus the expected number
of such edges in a randomized network with the same size and the same degree
sequence. If we use V k to denote V \ Vk, the complementary node set of Vk, and
Θ(Vk, Vk) = 1

2

∑
u∈Vk

∑
v∈Vk

auv, and Θ(Vi, V i) =
∑

u∈Vi

∑
v∈V i

auv, then the
modularity Q is defined as

Q =
K∑

k=1

[
Θ(Vk, Vk)

m
−

(
Θ(Vk, Vk) + Θ(Vk, V k)

m

)2
]

=
K∑

k=1

Qi.

A large number of community detection methods have been proposed by optimiz-
ing Q. It is still so far the best indicator to measure the quality of obtained com-
munity partition. Q is a number from the interval [−1, 1], and usually higher Q
indicates better community partition.

In mathematical optimization, convex optimization is a subfield of maximiz-
ing convex functions based on convex constraint functions. A convex function f
satisfies the condition that f(αx+βy) ≤ αf(x)+βf(y) for all vectors x, y ∈ Rn

and all α, β ∈ R with α + β = 1, α ≥ 0, β ≥ 0. A convex optimization problem
is of the form

min f0(x)
s. t. fi(x) ≤ bi, i = 1, ...,m, (1)

where the functions f0, ..., fm : Rn → R are convex.

3 Problem Definition

Given a network and a integer K, our problem is to partition network into K
non-overlapping communities such that the modularity Q is maximized. Note
that for our problem K is not a necessary input, if K cannot be decided yet, our
solution finds the best value of K such that Q is maximized.

3.1 The Convex Optimization Problem

As we introduced before, n and m are respectively the numbers of nodes and edges
in the network. Note that if K is provided then it must be no greater than n. We

704 Y. Zhu et al.

use variable zlk to denote whether edge el belongs to the k-th community, and
1 ≤ l ≤ m, 1 ≤ k ≤ K. Denote the two ends of edge el as vi and vj , let xik be a
binary variable indicating whether node vi is in community k. It is in common sense
that if an edge is in community k then its two ends must be also in this community,
therefore we have the following constraints:

zlk ≤ xik and zlk ≤ xjk,

also if one edge is not in community k then at least one of its two edges is not in
community k, and we use constraint

zlk ≥ xik + xjk − 1

to consider this.
Let us then check Θ(Vk, Vk) and Θ(Vk, Vk) + Θ(Vk, V k) to compute modu-

larity Q. The former is the number of edges in community k, and it is easy to
find out that Θ(Vk, Vk) =

∑m
l=1 zlk. The latter is the total number of edges that

are adjacent to some nodes in community k, and
∑n

j=1

∑n
i=1 xikaij (∗) seems to

be a good answer. However, since adjacency matrix is symmetric for an undi-
rected graph, in expression (∗) the edges within community k are counted twice,
therefore, Θ(Vk, Vk) + Θ(Vk, V k) =

∑n
i=1 xikaij − ∑m

l=1 zlk.
Therefore, our community searching problem to maximize the modularity

can be formulated as following programming:

max
K∑

k=1

⎡
⎣∑m

l=1 zlk

m
−

(∑n
j=1

∑n
i=1 xikaij − ∑m

l=1 zlk

m

)2
⎤
⎦

s. t.
K∑

k=1

xik = 1 for all i,

zlk ≤ xik

zlk ≤ xjk

xik + yjk − 1 ≤ zlk

for every edge el and its two ends i, j,
n∑

i=1

xik ≥ 1 for all k

xik ∈ {0, 1}, zlk ∈ {0, 1} for all i, l, k. (2)

In [3] it has been proved even if K = 2, to find out the best partition into
2 communities is strongly NP-hard, this means directly solving problem (2) is
difficult. However, it doesn’t mean we can only use simple heuristics. Note that in
(2), all variables are a binary value being 0 or 1, and we can relax this condition
to allow variables be any value in interval [0, 1]. Employing this relaxation and
doing some equivalent transformation, following programming is obtained:

Searching Graph Communities by Modularity Maximization 705

min
K∑

k=1

⎡
⎢⎣

⎛
⎝ n∑

j=1

n∑
i=1

xikaij −
m∑

l=1

zlk

⎞
⎠

2

− m

m∑
l=1

zlk

⎤
⎥⎦

s. t.
K∑

k=1

xik = 1 for all i,

zlk − xik ≤ 0
zlk − xjk ≤ 0
xik + yjk − zlk ≤ 1

for every l and its two ends i, j,

−
n∑

i=1

xik ≤ −1 for all k

xik ∈ [0, 1], zlk ∈ [0, 1] for all i, l, k. (3)

For Problem (3), though it looks not exactly of the form of (1) at the first
glance, it is a convex optimization.

Theorem 1. Problem (3) is a convex optimization problem.

Proof. Note that totally there are (m + n)k variables (m · k variables of x and
n · k variables of z) in (3), we first create a column vector Y ∈ R(m+n)k×1 that
contains all variables.

Y =

[x11, x21, ..., xn1, z11, z21, ..., zm1,
x12, x22, ..., xn2, z12, z22, ..., zm2,

...
x1k, x2k, ..., xnk, z1k, z2k, ..., zmk]�

First we prove that the objective function of problem (3) is a convex function
w.r.t. Y . We create K row vectors Ak in R1×(m+n)k, where

Ak =

[0, 0, ... , 0︸ ︷︷ ︸
(n+m)(k−1)

,

∑n
j=1 a1j ,

∑n
j=1 a2j , ... ,

∑n
j=1 anj , −1, −1, ... , −1︸ ︷︷ ︸

m

,

0, 0, ... , 0︸ ︷︷ ︸
(n+m)(K−k)

],

and K row vectors Bk in R1×(m+n)k, where

Bk = [0, 0, ... , 0︸ ︷︷ ︸
(n+m)(k−1)

, 0, 0, ... , 0︸ ︷︷ ︸
n

,−m,−m, ... ,−m︸ ︷︷ ︸
m

, 0, 0, ... , 0︸ ︷︷ ︸
(n+m)(K−k)

],

then the objective function of (3) can be represented as

K∑
k=1

[(AkY)2 − BkY], (4)

706 Y. Zhu et al.

since obviously for any single 1 ≤ k ≤ K, (AkY)2 − BkY is a convex function
w.r.t. Y , and (4) which is a positive weighted sum of them is also a convex
function w.r.t. Y .

For the constraints of (3), all the left sides of them are linear functions which
are convex, therefore (3) is a convex optimization problem.

3.2 CAR - Convex Optimization Based Accurate Rounding
Algorithm

Problem (3) can be solved in polynomial time with an error. However, the solu-
tion of (3) is not directly applicable of Problem (2), since the variables may be
fractional. Therefore, some rounding techniques are needed for rounding frac-
tional values into binary values.

The following is our solution which is called Convex optimization Accurate
Rounding (CAR), which is based on rounding up the edges. The algorithm
heuristically solves Problem (3) and finds out the highest edge variable zl0k0

and make it 1. This is to assign edge el0 to community k0, as well as i0, j0, the
two ends of el0 . This procedure means: first, zl0k0 , xi0k0 , xj0k0 will all be changed
to 1, second, we assume that the communities are not overlap, therefore el0 can-
not be in any other communities, and for all k ≤ K, k �= k0, zl0k, xi0k, and xj0k

must be set to 0. Steps 5–9 in Algorithm 1 correspond to the treatment of assign-
ing el0 to community k0. Note that in step 1 when we put lr to community 1,
similar treatment has to be done, but for the sake of simplicity we omit it in the
algorithm’s pseudocode.

Like many rounding techniques, we put randomization into the algorithm,
which is the first step of Algorithm1 that randomly choose an edge and put it
into community 1, this improves the algorithm’s performance.

We assume that the input graph of CAR contains no isolated nodes, since
each isolated node is just a community itself, and before applying CAR to any
graph, the isolated nodes can be identified and removed easily and quickly. Note
that CAR takes K, the maximum number of target communities as the input.
People may argue how to decide K will be a problem, however, K is considered
to ease the use of CAR. When people have their limitation of K, they can assign
K some integer between 1 and n, if they don’t, CAR can automatically decide
the best value K.

Convex problem can be solved in polynomial time with an error ε. Let us use
fε() to denote the function of time needed, then for Problem (3), whose input size
is K(n + m), the time needed is fε(K(n + m)). Each round we pick the greatest
value among zlk, and at most min{n,m} rounds is needed. Therefore the over-
all time complexity of Algorithm 1 is mfε(K(n + m)), usually fε(K(n + m)) is
more than (K(n + m))2, therefore, Algorithm 1 takes Ω(min{n,m}K2(n + m)2)
polynomial time, which we admit, is not a very quick method. However, CAR
can be further improved by designing quicker rounding techniques, and CAR
provides better partition than past algorithms. An important benefit of CAR, is

Searching Graph Communities by Modularity Maximization 707

Algorithm 1. CAR Algorithm
Input: A graph G = (V,E) with no isolated vertices, and an integer K ∈ [1, n] and

n = |V |.
Output: A partition of G containing at most K non-overlapping communities.
1: Randomly choose an edge lr and assign it into community 1;
2: Solve updated convex minimization problem (3);
3: However, in most cases, the variables x and z are not 1 or 0. Therefore, we choose

the maximum zl0k0 satisfying that: Let vi0 and vj0 be the two ends of l0, none of
the two nodes has been assigned to any community;

4: if such zl0k0 exists then
5: zl0k0 ← 1, xi0k0 ← 1, xj0k0 ← 1; //i0 and j0 are the two ends of l0
6: for k := 1; k �= k0, k ≤ K; k := k + 1 do
7: zl0k ← 0;
8: xi0k ← 0, xj0k ← 0;
9: end for
10: Start over from step 1 with the decided variables;
11: else
12: For all remaining nodes vi that have not been assigned to any community, assign

vi to community b, where b = arg1≤k≤K max{xik}.
13: end if

that it provides an upper bound on the best solution of partitioning into K com-
munities. This bound is stronger than that provided by LP rounding algorithm
in [1], for our bound is specified for partitions given the maximum number of
communities, as well as the global upper bound for all possible partitions, but
the bound in [1] is only the global upper bound.

4 Conclusion

Though people argue that modularity is not accurate enough to judge if a com-
munity partitioning is good, without a doubt, it is still the most widely used and
precise criterion for testing the community partitioning quality. In this paper,
we study community partitioning under a constraint: number of communities
does not exceed a given number K. Our aim is to maximize the modularity. We
devise a new combinatorial model, and use a convex optimization based rounding
algorithm to solve it. Our solution not only gives qualified community partition-
ing result, it is the first one that tracks the upper bound of best modularity for
community partitioning into at most K communities.

References

1. Agarwal, G., Kempe, D.: Modularity-maximizing graph communities via mathemat-
ical programming. Eur. Phys. J. B 66(3), 409–418 (2008)

2. Bi, Y., Weili, W., Zhu, Y., Fan, L., Wang, A.: A nature-inspired influence propaga-
tion model for the community expansion problem. J. Comb. Optim. 28(3), 513–528
(2014)

708 Y. Zhu et al.

3. Brandes, U., Delling, D., Gaertler, M., Gorke, R., Hoefer, M., Nikoloski, Z., Wagner,
D.: On modularity clustering. IEEE Trans. Knowl. Data Eng. 20(2), 172–188 (2008)

4. Lu, Z., Zhu, Y., Li, W., Wu, W., Cheng, X.: Influence-based community partition
for social networks. Comput. Soc. Netw. 1(1) (2014)

5. Newman, M.E.J., Girvan, M.: Finding and evaluating community structure in net-
works. Phys. Rev. E 69, 026113 (2004)

6. Zhang, X.-S., Li, Z., Wang, R.-S., Wang, Y.: A combinatorial model and algorithm
for globally searching community structure in complex networks. J. Comb. Optim.
23(4), 425–442 (2012)

7. Zhu, Y., Li, D., Wen, X., Weili, W., Fan, L., Willson, J.: Mutual-relationship-based
community partitioning for social networks. IEEE Trans. Emerg. Top. Comput.
2(4), 436–447 (2014)

A New Tractable Case of the QAP
with a Robinson Matrix

Eranda Çela1, Vladimir G. Deineko2(B), and Gerhard J. Woeginger3

1 TU Graz, Graz, Austria
2 Warwick Business School, Coventry, UK

V.Deineko@warwick.ac.uk
3 TU Eindhoven, Eindhoven, The Netherlands

Abstract. We consider a new polynomially solvable case of the well-
known Quadratic Assignment Problem (QAP). One of the two matri-
ces involved is a Robinsonian dissimilarity with an additional structural
property: this matrix can be represented as a conic combination of cut
matrices in a certain normal form. The other matrix is a monotone anti-
Monge matrix.

Keywords: Combinatorial optimization ·Quadratic assignment ·Robin-
sonian · Cut matrix · Monge matrix · Kalmanson matrix

1 Introduction

In this paper we investigate the Quadratic Assignment Problem (QAP), which
is a well-known problem in combinatorial optimization; we refer the reader to
the book [7] by Çela and the book [4] by Burkard, Dell’Amico and Martello for
comprehensive surveys on the QAP. The QAP in Koopmans-Beckmann form
[20] takes as input two n × n square matrices A = (aij) and B = (bij) with
real entries. The goal is to find a permutation π that minimizes the objective
function

Zπ(A,B) :=
n∑

i=1

n∑
j=1

aπ(i)π(j) bij . (1)

Here π ranges over the set Sn of all permutations of {1, 2, . . . , n}. In general,
the QAP is extremely difficult to solve and hard to approximate. One branch of
research on the QAP concentrates on the algorithmic behavior of strongly struc-
tured special cases; see for instance Burkard et al. [3], Deineko and Woeginger
[15], Çela et al. [10], or Çela, Deineko and Woeginger [8] for typical results in
this direction. In our short paper we follow recent developments and represent
several new results in this exciting area of research.

Recently, Laurent and Seminaroti [21] have introduced a new tractable special
case of the QAP, where matrix A is a Robinsonian dissimilarity and B is a special
Toeplitz matrix.

c© Springer International Publishing Switzerland 2015
Z. Lu et al. (Eds.): COCOA 2015, LNCS 9486, pp. 709–720, 2015.
DOI: 10.1007/978-3-319-26626-8 52

710 E. Çela et al.

– A symmetric matrix A = (aij) is a Robinsonian dissimilarity, if for all i <
j < k it satisfies the conditions aik ≥ max{aij , ajk}; in words, the entries in
the matrix are placed in non-decreasing order in each row and column when
moving away from the main diagonal.

– A symmetric matrix A = (aij) is a Robinsonian similarity, if for all i < j < k
it satisfies the conditions aik ≤ max{aij , ajk}.

In what follows we also assume that the diagonal elements are not important
and set aii = 0, for all i. Since 1951, when these specially structured matrices
were first introduced by Robinson [26] for an analysis of archaeological data, they
have been widely used in combinatorial data analysis; see the books [16,17,22,23]
and the surveys [2,6] for examples of various applications of Robinsonian struc-
tures in quantitative psychology, analysis of DNA sequences, cluster analysis, etc.
In what follows, we will deal with Robinsonian dissimilarities and we will simply
call them Robinson matrices.

– A matrix B = (bij) is called a Toeplitz matrix if it has constant entries
along each of its diagonals; in other words, there exist 2n − 1 real numbers
t1−n, . . . , t0, . . . , tn−1 such that bij = ti−j . A symmetric Toeplitz matrix with
t0 = 0 and t1 ≥ t2 ≥ . . . ≥ tn−1 will be called simple Toeplitz matrix.

Laurent and Seminaroti [21] considered the QAP with a simple Toeplitz matrix
B and Robinson matrix A, and proved that the optimal value of QAP (A,B) is
attained on the identity permutation.

Cela, Deineko and Woeginger [9] considered recently another well-solvable
case of the QAP with a special Robinson matrix. We now need some further
definitions to proceed.

– For a q × q matrix P = (pij), we say that an n × n matrix B = (bij) is a block
matrix with block pattern P if the following holds: (i) there exists a partition of
the row and column set {1, . . . , n} into q (possibly empty) sets I1, . . . , Iq such
that for 1 ≤ k ≤ q − 1 all elements of set Ik are smaller than all elements of
set Ik+1; (ii) for all indices i and j with 1 ≤ i, j ≤ n and i ∈ Ik and j ∈ I�, we
have bij = pk�. The sets I1, . . . , Iq form the so-called row and column blocks
of matrix B. If it is clear from context we will sometimes refer to the sets as
the blocks of matrix B.

– A cut matrix B is a block matrix whose pattern matrix has 0’s along the main
diagonal and 1’s everywhere else. A cut matrix is in CDW normal form, if its
block sizes are in non-decreasing order with |I1| ≤ |I2| ≤ · · · ≤ |Iq|.

It is easy to see that any cut matrix is a Robinson matrix. So it follows from
[21] that if A is a cut matrix, and B is a simple Toeplitz matrix (as defined
above), then the QAP is solved by the identity permutation. Cela, Deineko and
Woeginger [9] on the other hand have shown that in case matrix A is a cut
matrix in CDW normal form and matrix B is a monotone anti-Monge matrix,
then the QAP is again solved by the identity permutation.

– An n × n matrix B = (bij) is monotone, if bij ≤ bi,j+1 and bij ≤ bi+1,j

holds for all i, j, that is, if the entries in every row and every column are in
non-decreasing order.

A New Tractable Case of the QAP with a Robinson Matrix 711

– Matrix B is an anti-Monge matrix, if its entries are non-negative and satisfy
the anti-Monge inequalities

bij + brs ≥ bis + brj for 1 ≤ i < r ≤ n and 1 ≤ j < s ≤ n. (2)

In other words, in every 2 × 2 submatrix the sum of the entries on the main
diagonal dominates the sum of the entries on the other diagonal.

This Monge property essentially dates back to the work of Gaspard Monge [24] in
the 18th century. Much research has been done on the effects of Monge structures
in combinatorial optimization, and we refer the reader to the survey [5] by Burkard,
Klinz and Rudolf for more information on Monge and anti-Monge structures.

A straightforward generalisation of the results of [9] is to consider the QAP
with matrix A being a Robinson matrix which is obtained as a conic combi-
nation of cut matrices in CDW normal form, that is, as a linear combination
of such matrices with non-negative weight coefficients. The QAP with a such
obtained matrix A and a monotone anti-Monge matrix B is obviously solved
by the identity. For this observation to be meaningful, one need to know how
to recognize this special subclass of Robinson matrices, in other words to know
how to resolve the following problem:

Given an n × n Robinson matrix, can it be represented as a conic com-
bination of cut matrices in CDW normal form?

As an illustrative example we consider the following Robinson matrix:

C =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1 2 3 3 3
1 0 2 3 3 3
2 2 0 2 3 3
3 3 2 0 2 2
3 3 3 2 0 1
3 3 3 2 1 0

⎞
⎟⎟⎟⎟⎟⎟⎠

which is obtained as a sum of three cut-matrices C = C1 +C2 +C3; here matrix
C1 has the three blocks {1, 2, 3}, {4}, {5, 6}, matrix C2 has three blocks {1, 2},
{3}, {4, 5, 6}, and matrix C3 has five blocks {1}, {2}, {3, 4}, {5}, and {6}.
As none of these matrices above is a cut matrix in CDW normal form, there are
no reasons to assume that the QAP with C and a monotone anti-Monge matrix
B is solved by the identity permutation. Later we will show that C can indeed
be represented as a conic combination of cut matrices in CDW normal form, and
hence the corresponding QAP is solved by the identity permutation.

To further investigate the structure behind the considered special subclass of
Robinson matrices we refer to another well-known class of specially structured
matrices.
– A symmetric matrix (cij) is called a Kalmanson matrix, if it satisfies the

conditions

cij + ckl ≤ cik + cjl (3)
cik + cjl ≥ cil + cjk (4)

for all i,j,k and l with 1 ≤ i < j < k < l ≤ n.

712 E. Çela et al.

In 1975 Kenneth Kalmanson [18] proved that if the distance matrix in the travel-
ling salesman problem satisfies these conditions, then it is solved by the identity
permutation. Later Kalmanson matrices appeared in polynomially solvable cases
of such problems as the prize-collecting TSP [11], the master tour problem [14],
the Steiner tree problem [19], the three-dimensional matching problem [25], and
the quadratic assignment problem [7,15] (to be also discussed in the final section
of this paper).

Lemma 1. Any cut matrix C satisfies conditions (3)–(4) and hence is a
Kalmanson matrix.

Proof. As was mentioned above, any cut matrix is a Robinson matrix. Therefore
inequality (3) rearranged as (cik − cij)+(cjl − ckl) ≥ 0 follows immediately from
the monotonicity of rows and columns when moving from the main diagonal.

Since C is a binary matrix, it is easy to enumerate all possible values of
items when condition (4) is violated. All of these cases but one are eliminated
by analogous monotonicity arguments. The only case that is different is the case
with cik = 0, cjl = 0, cjk = 0, and cil = 1. This case is also impossible because
of the block structure of cut matrix C. This completes the proof of the lemma.��

Further Useful Definitions. An n × n matrix A = (aij) is a sum matrix, if there
exist real numbers α1, . . . , αn and β1, . . . , βn such that

aij = αi + βj for 1 ≤ i, j ≤ n. (5)

Matrix A is a constant matrix, if all elements in the matrix are the same. It can
easily be seen that a constant matrix is just a special case of a sum matrix. It was
mentioned above that all items on the main diagonal in a Robinson matrix are
zeros. In some cases though it would be useful to redefine the diagonal elements.
Hence the following definitions. Matrix A is a weak sum matrix, if A can be
turned into a sum matrix by appropriately changing the entries on its main
diagonal. Matrix A is a weak constant matrix, if A can be turned into a constant
matrix by appropriately changing the entries on its main diagonal.

2 Conic Representation of Specially Structured Matrices

2.1 Cut Weights and Specially Structured Matrices

In this section, we investigate the structure of matrices which are both Kalman-
son matrices and Robinson dissimilarities. We show that any matrix in this class
can be represented as a sum of a constant matrix and a conic combination of
cut matrices.

Lemma 2. ([13,14]) A symmetric n × n matrix C is a Kalmanson matrix if
and only if

ci,j+1 + ci+1,j ≤ cij + ci+1,j+1 ∀i, j : 1 ≤ i ≤ n − 3, i + 2 ≤ j ≤ n − 1, (6)
ci,1 + ci+1,n ≤ cin + ci+1,1 ∀i, j : 2 ≤ i ≤ n − 2. (7)

A New Tractable Case of the QAP with a Robinson Matrix 713

The statement above will be used for further structural characterisations of
Kalmason matrices. For the characterisation we will make use of special cut
matrices. A cut matrix Akl = (aij), k < l, contains one block of size (k − l + 1)
with aij = 0 for k ≤ i, j ≤ l, and all other n − k + l − 1 blocks of size 1.

Note that for an n×n cut matrix Akl, 2 ≤ k < l < n, there is only one strict
inequality in (6):

ak−1,l + ak,l+1 > akl + ak−1,l+1,

and there is only one strict inequality in (7) for A1,k−1 and Akn, 3 ≤ k < n:

ak−1,1 + akn < ak1 + ak−1,n.

Lemma 3. A symmetric n × n matrix C is a Kalmanson matrix if and only if
it can be represented as a linear combination of a weak sum matrix S and cut
matrices Akl:

C = S +
n−3∑
i=1

n−1∑
j=i+2

δi+1,jA
i+1,j +

n−2∑
i=2

(αiA
1,i + βiA

i+1,n) (8)

where δi+1,j = (−ci,j+1−ci+1,j+cij+ci+1,j+1), αi = ci+1,1−ci,1, βi = cin−ci+1,n

and δi+1,j ≥ 0, αi + βi ≥ 0.

We will refer to coefficients α, β, and δ as cut-weights. Similar structural
properties of Kalmanson matrices in terms of cuts and cut-weights have also
been studied in [1,12]. In both papers though the authors suggested algorithms
for calculating the cut-weights while we provide simple analytical expressions for
the weights.

Proof. It can easily be checked that any sum matrix, a cut matrix Akl, and a
linear combination αiA

1,i + βiA
i+1,n with αi + βi ≥ 0 are Kalmanson matrices,

and therefore any matrix defined as (8) is a Kalmanson matrix.
Assume now that C is a Kalmanson matrix. Let i and j, 1 ≤ i < j < n be

two indices from a strict inequality in (6): ci,j+1 + ci+1,j < cij + ci+1,j+1 (for
equalities in (6)–(7) the corresponding coefficients in (8) are zeros and have no
influence). In the illustration below the corresponding four items in the matrix
are highlighted bold (note that all elements shown are above the main diagonal):

C =

⎛
⎜⎜⎜⎜⎜⎜⎝

. . .
. . . ci,p . . . ci,j−1 ci,j ci,j+1 . . .
. . . ci+1,p . . . ci+1,j−1 ci+1,j ci+1,j+1 . . .

. . .
. . . cq,p . . . cq,j−1 cq,j cq,j+1 . . .

. . .

⎞
⎟⎟⎟⎟⎟⎟⎠

714 E. Çela et al.

Consider now matrix C ′ = C − δi+1,jA
i+1,j . To simplify the illustration we use

notation Δ := δi+1,j :

C ′ =

⎛
⎜⎜⎜⎜⎜⎜⎝

. . .
. . . ci,p − Δ . . . ci,j−1 − Δ ci,j − Δ ci,j+1 − Δ . . .
. . . ci+1,p . . . ci+1,j−1 ci+1,j ci+1,j+1 − Δ . . .

. . .
. . . cq,p . . . cq,j−1 cq,j cq,j+1 − Δ . . .

. . .

⎞
⎟⎟⎟⎟⎟⎟⎠

Simple algebraic transformations show that in matrix C ′ = (c′
jj) we have c′

i,j+1+
c′
i+1,j = c′

ij + c′
i+1,j+1 and none of the other inequalities in (6) is influenced.

Assume now that system (7) contains some strict inequalities. We pick up an
index i, 2 ≤ i ≤ n − 2, such that ci1 + ci+1,n < ci+1,1 + cin:

C =

⎛
⎜⎜⎝

. . .
ci1 ci2 . . . 0 . . . ci,n−1 cin

ci+1,1 ci+1,2 . . . 0 . . . ci+1,n−1 ci+1,n

. . .

⎞
⎟⎟⎠

Consider matrix C ′ = C − α × A1i − β × Ai+1,n (for simplicity we omit index i
for α and β here):

C ′ =

⎛
⎜⎜⎝

. . .
ci1 − β ci2 − β . . . ci,n−1 − β − α cin − β − α

ci+1,1 − β − α ci+1,2 − β − α . . . ci+1,n−1 − α ci+1,n − α
. . .

⎞
⎟⎟⎠

It can be easily checked that c′
i1 + c′

i+1,n = c′
i+1,1 + c′

in.
So eventually we get a transformed matrix without strict inequalities in the

system (6)–(7). It can be shown that such a matrix is a weak sum matrix. The
lemma is proved. ��
Lemma 4. A symmetric n×n Kalmanson matrix C is a Robinson dissimilarity
if and only if it can be represented as a linear combination of a constant matrix
Z and cut matrices Akl:

C = Z +
n−3∑
i=1

n−1∑
j=i+2

δi+1,jA
i+1,j +

n−1∑
i=2

αiA
1,i +

n−2∑
i=1

βiA
i+1,n (9)

where δi+1,j = (−ci,j+1−ci+1,j+cij+ci+1,j+1), αi = ci+1,1−ci,1, βi = cin−ci+1,n

and δi+1,j ≥ 0, αi ≥ 0, βi ≥ 0.

Proof. As the proof of the (if)-part of the lemma is straightforward, we will
concentrate now on the (only if)-part. In the proof we will use the previous
lemma and the fact that C is a Robinson dissimilarity. In particular, by the
definition of the dissimilarity we have αi ≥ 0 and βi ≥ 0. We will show that

A New Tractable Case of the QAP with a Robinson Matrix 715

each step of eliminating strict inequalities in (6)–(7) keeps the matrix in the set
of Robinson dissimilarities.

Consider first the transformation C ′ = C − ΔAi+1,j , where Δ = δi+1,j . We
claim that cip − Δ ≥ ci+1,p for all p = i + 2, . . . , j. Let Λp = cip − ci+1,p,
p = i + 2, . . . , j + 1. Since C is a Robinson dissimilarity, we have Λp ≥ 0. Since
C is a Kalmanson matrix, we have cip + ci+1,j+1 − ci+1,p − ci,j+1 = Λp − Λj ≥ 0
and Λp ≥ Λj . It is easy to see that cip − Δ − ci+1,p = Λp − Λj + Λj+1 ≥ 0. The
claim is proved.

The claim that cq,j+1 − Δ ≥ cqj for all q = i + 1, . . . , j − 1 is proved in a
similar way. So the new matrix C ′ is a Robinson dissimilarity.

If we consider transformations C ′ = C − αiA
1,i or C ′ = C − βiA

i+1,n, the
Kalmanson inequalities (6) ensure that C ′ is a Robinson dissimilarity.

What is left to prove is that Z = S − αn−1A
1,n−1 − β1A

2,n is a constant
matrix, where S is a sum matrix from presentation (8) (note the difference in
summations in (8) and (9)).

By construction, S is a weak sum matrix which is also a Robinson dissim-
ilarity. It can be shown that a weak symmetric sum matrix is a Robinson dis-
similarity if and only if u1 ≥ u2 = u3 = . . . = un−1 ≤ un. It is easy to see that
S − (un − un−1) × A1,n−1 − (u1 − u2) × A2,n = S − αn−1A

1,n−1 − β1A
2,n is a

constant matrix. This completes the proof of the lemma. ��
Corollary 1. Given a cut matrix C with m blocks; k of these blocks (k ≤ m)
contain more than one element: I1, I2, . . . , Ik, |Ij | > 1, ∀j, and I1 = {i1 =
1, . . . , j1}, I2 = {i2, . . . , j2}, . . . , Ik = {ik, . . . , jk}, ik ≥ jk−1 + 1 and ik < jk, it
can be represented as C = Z +

∑l=k
l=1 Ailjl , where Z = (zij) with zij = −(k − 1)

for i �= j.

2.2 Recognizing Conic Combinations of Cut Matrices in CDW
Normal Form

Given a matrix C which is both Kalmanson matrix and Robinson matrix, it is a
question of interest whether the matrix can be represented as a conic combination
of cut matrices in CDW normal form. Note that a constant matrix is a special
cut matrix in CDW normal form with all blocks of length one. To formulate a
simple rule of recognising this special subclass of Kalmanson (and Robinson)
matrices, we will define an n × n symmetric cut-weight matrix D(C) = (dij)
with dij = δij = ci−1,j + ci,j+1 − cij − ci−1,j+1 for 2 ≤ i < j ≤ n − 1, and
d1,i = αi = ci+1,1−ci1, i = 2, . . . , n−1, din = βi−1 = ci−1,n−cin, i = 2, . . . , n−1.
The elements which are not defined are irrelevant to further considerations, and
set to be zeros.

Assume that matrix C is a conic combination of cut matrices in CDW normal
form. For each of these cut matrices the representation as described in Corollary 1
has the following properties: 2 ≤ |I1| ≤ |I2| ≤ . . . ≤ |Ik|, ∪l=k

l=1Il = {i1, i1 +
1, . . . , n} and Il = {jl−1, . . . , jl}. Note that we pick up here only the blocks
with more than one elements. The cut-weight matrix for each of such matrices
contains only k non-zero elements with di1,j1 = 1 for each block.

716 E. Çela et al.

We illustrate a n×n cut matrix in CDW normal form on a graph with n+1
nodes on a line, with the numbers of nodes increasing from left to right; see
Fig. 1 for an illustration. For non-zero cut weights with di1,j1 = 1 we introduce
an edge that connects nodes i1 and j1 + 1. For each node the length of an edge
(defined as the number of nodes covered) entering the node from left can not be
greater than the length of the edge going from this node to a node on the right.

1 2 3 4 5 6 7 8 9 10 11 12 13

Fig. 1. Illustration for a block representation of a 12× 12 cut matrix in CDW normal
form with the blocks {2, 3}, {4, 5}, {6, 7, 8}, and {9, 10, 11, 12}.

Theorem 1. Given a symmetric n × n Kalmanson matrix C which is also a
Robinson dissimilarity with the cut-weight matrix D(C), it can be represented
as a conic combination of cut matrices in CDW normal form if and only if the
following inequalities hold

l∑
i=1

dik ≤
n∑

j=2k+1−l

dk+1,j (10)

for k = 2, . . . , n − 1 and l = 1, . . . , k − 1.

The right hand sum in (10) is zero if 2k + 1 − l > n. This is particular means
that dik = 0 for k =
n/2�, . . . , n − 1 and i = 1, . . . , 2k − n.

Proof. For simplicity (and without loss of generality) we assume that weight
coefficients in the conic combination mentioned below are integers. It yields
immediately that the entries in corresponding cut-weight matrix are also inte-
gers. Let C be a matrix which is a conic combination of cut matrices in CDW
normal form, and D(C) = (dij) is the corresponding cut weight matrix. Inequal-
ity (10) can be rearranged as

dlk ≤
n∑

j=2k+1−l

dk+1,j −
l−1∑
i=1

dik. (11)

The value dlk can be viewed as the number of edges connecting nodes l and k+1
and this number can not be greater than the number of edges going out of node
k + 1 and having the length of at least (k + 1 − l), which is calculated as the
right hand side in (10). If there are non-zero weights dik with i < l, i.e. there are
edges entering k + 1 with the lengths greater than (k + 1 − l), then dlk has to
be compared with the number of edges calculated as shown in right hand side
of (11).

A New Tractable Case of the QAP with a Robinson Matrix 717

Assume now that the entries in a cut matrix D for a matrix C satisfies the
inequalities (10). We build an auxiliary multi-graph which we refer as the cut
weight graph with n + 1 nodes and dij edges connecting nodes i and j + 1 for
each dij > 0.

We build a conic representation of C as follows. We start with node n + 1
in the cut weight graph, and build the path from right to left choosing on each
step an edge with the largest length. Let it be the path on nodes i1 < i2 <
. . . < ik = n + 1. It follows from (10) that cut weight di1,i2−1 corresponding
to edge (i1, i2) is the smallest among all cut weights for the edges in the path.
The path found describes a cut matrix in CDW normal form with the blocks
{i1, i1 + 1, . . . , i2 − 1}, . . . , {ik−1 + 1, . . . , ik = n + 1}. We add this matrix
multiplied by the weight coefficient di1,i2−1 to the conic representation of C. We
delete all di1,i2−1 copies of the found path from the cut weight graph and repeat
the steps until the graph is empty. ��

An Illustrative Example. Consider matrix C which is in the class of Kalmanson
and Robinson matrices:

C =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1 2 3 3 3
1 0 2 3 3 3
2 2 0 2 3 3
3 3 2 0 2 2
3 3 3 2 0 1
3 3 3 2 1 0

⎞
⎟⎟⎟⎟⎟⎟⎠

We first illustrate the proofs of Lemmas 3 and 4 and show how to represent C
as a conic representation of cut matrices Akl.

Note that for matrix C there is only one strict inequality in system (6)
c25 + c34 < c24 + c35, and three strict inequalities in system (7): ci1 + ci+1,6 <
ci6 + ci+1,1 with i = 2, 3, 4.

We first eliminate the strict inequality from (6) by subtracting from C a
cut matrix from the conic representation of C. If in the initial matrix C we
have c24 + c35 − c25 − c34 = d24 = 1 > 0, then in the new transformed matrix
C ′ = C − A34 we will have c′

24 + c′
35 − c′

25 − c′
34 = 0:

C ′ = C − A34 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 1 2 2 2
0 0 1 2 2 2
1 1 0 2 2 2
2 2 2 0 1 1
2 2 2 1 0 0
2 2 2 1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

We have now α2 = c′
32 − c′

21 = 1, β2 = c′
26 − c′

36 = 0, therefore the next step of
transformation gives a new matrix with only two strict inequalities in (7):

718 E. Çela et al.

1 2 3 4 5 6 7

Fig. 2. Cut weight graph for the illustrative example

C − A34 − A12 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 1 1 1
0 0 0 1 1 1
0 0 0 1 1 1
1 1 1 0 0 0
1 1 1 0 0 −1
1 1 1 0 −1 0

⎞
⎟⎟⎟⎟⎟⎟⎠

In the next step α3 = 1, β3 = 1,

C − A34 − A12 − A13 − A46 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 −1 −1 −1 −1 −1
−1 0 −1 −1 −1 −1
−1 −1 0 −1 −1 −1
−1 −1 −1 0 −1 −1
−1 −1 −1 −1 0 −2
−1 −1 −1 −1 −2 0

⎞
⎟⎟⎟⎟⎟⎟⎠

And eventually we get

C − A34 − A12 − A13 − A46 − A56 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 −2 −2 −2 −2 −2
−2 0 −2 −2 −2 −2
−2 −2 0 −2 −2 −2
−2 −2 −2 0 −2 −2
−2 −2 −2 −2 0 −2
−2 −2 −2 −2 −2 0

⎞
⎟⎟⎟⎟⎟⎟⎠

The cut weight matrix D contains five non-zero entries

D =

⎛
⎜⎜⎜⎜⎝

0 1 1 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1
0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎠

which correspond to the five edges in the cut weight graph shown on Fig. 2. It
is clear now that matrix C can be represented as a sum of a weak constant matrix
Z = (zij) and two cut matrices in CDW normal form, one matrix has two blocks
{1, 2, 3} and {4, 5, 6}, and the other matrix has tree blocks {1, 2}, {3, 4}, and {5, 6}.

3 Conclusions

In this paper we have introduced a new class of specially structured matrices. A
matrix belongs to this special class if it can be represented as a conic combination

A New Tractable Case of the QAP with a Robinson Matrix 719

of cutmatrices inCDWnormal form.Weconsideredanewsolvable case of theQAP,
where one of the underlying matrices is in the introduced special class of matrices,
and the other matrix is a monotone anti-Monge matrix. It follows from [9] that
an optimal solution to this special case of the QAP is attained on the identity
permutation.

Our algorithmic main contribution is a recognition algorithm for the new
class of matrices, which is in fact a subclass of Robinsonian dissimilarities and
a subclass of Kalmanson matrices. Laurent and Seminaroti have recently shown
in [21] that the QAP with one matrix being a Robinson matrix, and the other
matrix being a special class of Toeplitz matrices (see Sect. 1) is solved to opti-
mality by the identity permutation.

Deineko and Woeginger [15] have shown that the QAP with one matrix being
a Kalmanson matrix, and the other matrix being from a special sub-class of
Toeplitz matrices is again solved to optimality by the identity permutation. An
n×n symmetic Toepliz matrix B considered in [15] is defined as bji = bij = tj−i,
i < j, with ti = tn−i for i = 1, 2, . . . , �n/2 and ti−1 ≥ ti for i = 2, . . . , �n/2.

Our results allow us now to combine the three solvable QAP cases into a single
new one: if one matrix in the QAP is a conic representation of cut matrices in
CDW normal form and the other matrix is a conic combination of (i) an anti-
Monge monotone matrix [9], (ii) a Toeplitz matrix of Laurent and Seminaroti
[21], and (iii) a Toeplitz matrix of Deineko and Woeginger [15], then the QAP is
still polynomially solvable and the identity is an optimal permutation. A simple
linear programming technique can be used to recognize whether a symmetric
matrix can be represented/approximated as a weighted sum of matrices from
the three special classes mentioned above.

Acknowledgements. Vladimir Deineko acknowledges support by Warwick
University’s Centre for Discrete Mathematics and Its Applications (DIMAP). Gerhard
Woeginger acknowledges support by the Zwaartekracht NETWORKS grant of NWO,
and by the Alexander von Humboldt Foundation, Bonn, Germany.

References

1. Bandelt, H.J., Dress, A.W.M.: A canonical decomposition theory for metrics of a
finite set. Adv. Math. 92, 47–105 (1992)

2. Barthèlemy, J.P., Brucker, F., Osswald, C.: Combinatorial optimization and hier-
archical classifications. 4OR 2, 179–219 (2004)

3. Burkard, R.E., Çela, E., Rote, G., Woeginger, G.J.: The quadratic assignment
problem with a monotone anti-Monge and a symmetric Toeplitz matrix: easy and
hard cases. Math. Program. B82, 125–158 (1998)

4. Burkard, R.E., Dell’Amico, M., Martello, S.: Assignment Problems. SIAM,
Philadelphia (2009)

5. Burkard, R.E., Klinz, B., Rudolf, R.: Perspectives of Monge properties in opti-
mization. Discrete Appl. Math. 70, 95–161 (1996)

6. Brucker, F.: Subdominant theory in numerical taxonomy. Discrete Appl. Math.
154, 1085–1099 (2006)

720 E. Çela et al.

7. Çela, E.: The Quadratic Assignment Problem: Theory and Algorithms. Kluwer
Academic Publishers, Dordrecht (1998)

8. Çela, E., Deineko, V.G., Woeginger, G.J.: Another well-solvable case of the QAP:
maximizing the job completion time variance. Oper. Res. Lett. 40, 356–359 (2012)

9. Çela, E., Deineko, V.G., Woeginger, G.J.: Well-solvable cases of the QAP with
block-structured matrices. Discrete Appl. Math. 186, 56–65 (2015)

10. Çela, E., Schmuck, N., Wimer, S., Woeginger, G.J.: The Wiener maximum
quadratic assignment problem. Discrete Optim. 8, 411–416 (2011)

11. Coene, S., Filippi, C., Spieksma, F.C.R., Stevanato, E.: Balancing profits and costs
on trees. Networks 61, 200–211 (2013)

12. Christopher, G., Farach, M., Trick, M.: The structure of circular decomposable
metrics. In: Dı́az, J. (ed.) ESA 1996. LNCS, vol. 1136, pp. 406–418. Springer,
Heidelberg (1996)

13. Deineko, V.G., Rudolf, R., Van der Veen, J.A.A., Woeginger, G.J.: Three easy
special cases of the Euclidean travelling salesman problem. RAIRO Oper. Res. 31,
343–362 (1997)

14. Deineko, V.G., Rudolf, R., Woeginger, G.J.: Sometimes travelling is easy: the mas-
ter tour problem. SIAM J. Discrete Math. 11, 81–93 (1998)

15. Deineko, V.G., Woeginger, G.J.: A solvable case of the quadratic assignment prob-
lem. Oper. Res. Lett. 22, 13–17 (1998)

16. Hubert, L.J.: Assignment Methods in Combinatorial Data Analysis. Marcel
Dekker, New York (1987)

17. Hubert, L., Arabie, P., Meulman, J.: Combinatorial Data Analysis: Optimization
by Dynamic Programming. SIAM, Philadelphia (2001)

18. Kalmanson, K.: Edgeconvex circuits and the traveling salesman problem. Can. J.
Math. 27, 1000–1010 (1975)

19. Klinz, B., Woeginger, G.J.: The Steiner tree problem in Kalmanson matrices and
in Circulant matrices. J. Comb. Optim. 3, 51–58 (1999)

20. Koopmans, T.C., Beckmann, M.J.: Assignment problems and the location of eco-
nomic activities. Econometrica 25, 53–76 (1957)

21. Laurent, M., Seminaroti, M.: The quadratic assignment problem is easy for Robin-
sonian matrices with Touplitz structure. Oper. Res. Lett. 43, 103–109 (2015)

22. Mirkin, B., Rodin, S.: Graphs and Genes. Springer, Berlin (1984)
23. Mirkin, B.: Mathematical Classification and Clustering. Kluwer, Dordrecht (1996)
24. Monge, G.: Mémoires sur la théorie des déblais et des remblais. In: Histoire de

l’Academie Royale des Sciences, Année M. DCCLXXXI, avec les Mémoires de
Mathématique et de Physique, pour la même Année, Tirés des Registres de cette
Académie, Paris, pp. 666–704 (1781)

25. Polyakovskiy, S., Spieksma, F.C.R., Woeginger, G.J.: The three-dimensional
matching problem in Kalmanson matrices. J. Comb. Optim. 26, 1–9 (2013)

26. Robinson, W.S.: A method for chronological ordering archaeological deposits. Am.
Antiq. 16, 293–301 (1951)

An Online Model of Berth and Quay Crane
Integrated Allocation in Container Terminals

Feifeng Zheng1(B), Longliang Qiao1, and Ming Liu2

1 Glorious Sun School of Business and Management, Donghua University,
Shanghai 200051, People’s Republic of China

ffzheng@dhu.edu.cn
2 School of Economics and Management, Tongji University, Shanghai 200092,

People’s Republic of China

Abstract. Due to the frequent arrivals of real-time vessels beyond those
being well planned in many container terminals, this paper studies an
online over-list model of integrated allocation of berths and quay cranes
in a container terminal. We consider a hybrid berth which consists of
three adjacent small berths together with five quay cranes. The objec-
tive is to minimize the makespan or the maximum completion time of
container vessels. Our focus is the case with two types of vessels in size
which require different numbers of berths and QCs in service, and our
main contribution is an optimal 4/3-competitive online algorithm.

Keywords: Online scheduling · Container terminal · Competitive
algorithm

1 Introduction

In rapid development of Chinese container ports, one of the key problems in
improving service efficiency of terminal resources is to make and fulfill a flexible
and reliable service schedule for arrival vessels. To reduce the idle rate of terminal
resources and increase service revenue, some ports such as Shanghai Yangshan
deepwater port and Shenzhen Shekou Mawan terminal accept lots of daily real-
time vessels beyond those preplanned vessels. Thus the assignment of resource
as well as the schedule of loading and unloading containers are much affected
by the dynamic arrivals of these vessels. It needs to make daily replanning or
adjustment on assigning berths, quay cranes (abbr. QC) and other resources.

Recently, there is a growing interest in berth and quay crane allocation
(see Vis and de Koster [1]; Stahlbock and Vob, [2], Bierwirth and Meise [3]).
The issue of assigning berth and service time to container vessels for loading
and unloading containers is referred to as the Berth Allocation Problem (abbr.
BAP). The transhipment of containers between a vessel and the quay is generally
performed by QCs which are mounted on rail tracks alongside the berths, and
the service time of the vessel is inversely proportional to the number of assigned
QCs. The assignment of QCs to some berths for serving the vessels is called
c© Springer International Publishing Switzerland 2015
Z. Lu et al. (Eds.): COCOA 2015, LNCS 9486, pp. 721–730, 2015.
DOI: 10.1007/978-3-319-26626-8 53

722 F. Zheng et al.

the Quay Crane Assignment Problem (abbr. QCAP). Since BAP and QCAP
are much interrelated in practice, it is observed a trend towards an integrated
solution of berth and QCs, i.e., the BAP-QCAP problem (see Carlo et al. [4]).

There are discrete, continuous and hybrid berths as classified in Imai et al.
[5]. In hybrid berth layout, the quay is partitioned into berths such that a small
vessel occupies a single berth while a large vessel occupies two or more berths.
Due to geographic condition limitations, the hybrid berth layout is common in
China such as in Shenzhen Shekou Mawan Terminal. By our field survey at the
terminal, the confirmed information of real-time vessels is generally received a
few days or even half a day before their arrivals. A service schedule is quickly
produced based on FCFS (first-come-first-serve) rule and executed soon. In this
paper we model the above FCFS-based resource assignment for serving vessels as
the online over-list BAP-QCAP problem and focus on the hybrid berth layout.

1.1 Related Work

Most literature investigated the offline version of the BAP-QCAP problem such
that the full information of all the vessels is known at the beginning. Bierwirth
and Meisel [3] made a classification on the release time of a vessel. In a static
model all the vessels are available at the beginning, while in a dynamic model ves-
sels are of different release times. Lokuge and Alahakoon [6] studied the dynamic
BAP-QCAP problem in hybrid berth layout where the time to serve a vessel is
related to the number of assigned QCs and berthing position. They proposed a
multi-agent system which constitutes a feedback loop integration of BAP and
QCAP for minimizing total waiting times and total tardiness. Park and Kim [7]
and Theofanis et al. [8] considered the static BAP-QCAP problem in contin-
uous berth layout, giving optimization models of berth and QCs assignment.
Giallombardo et al. [9] presented a mixed integer programming and a tabu search
algorithm for the dynamic BAP-QCAP problem with discrete berths. Blazewicz
et al. [10], Zhen et al. [11] and Chen et al. [12] furthered the study by considering
various objectives including the makespan.

Zhang et al. [13] introduced the online theory into the area of container vessel
scheduling. They studied both over-list and over-time versions of online QC
assignment. For the objective of the makespan, they presented an asymptotically
optimal m/�log2(m + 1)�-competitive algorithm for the over-list model and a
3-competitive algorithm for the over-time model where m is the number of QCs.

This paper studies the online over-list BAP-QCAP problem in hybrid berth
layout with three berths and five QCs. The contributions of this work are twofold:
(a) consider the impact of real-time vessels in seaside operations. (b) propose
an implementable method for berth and QC assignment. The remainder of the
paper is as follows. Section 2 describes the problem and gives some notations.
In Sect. 3 we present an online algorithm together with its basic properties.
Section 4 gives the proof on the competitiveness of the algorithm. In Sect. 5 we
prove a matching lower bound, and finally Sect. 6 concludes this work.

An Online Model of Berth and Quay Crane Integrated Allocation 723

2 Problem Description and Basic Notations

We are given three berths b1, b2, b3 in a line and accordingly five identical QCs
q1, q2, . . . , q5 from left to right. Assume that there are exactly two types of vessels
in size each of which corresponds to a service request with uniform processing
load. More precisely, a small request with a load of one requires a single berth,
while a large request with a load of Δ(≥ 2) occupies two neighbouring berths. For
QC assignment, it is assumed that a small (or large) request is served by up to
two (or four) QCs simultaneously. Similar to the assumption on the processing
time of a vessel in Lokuge and Alahakoon [6], we roughly assume that the actual
processing time of a small (or large) request ri is equal to 1/mi (or Δ/mi) units
of time where mi is the number of QCs assigned to the request.

A sequence of requests I = (r1, r2, . . . , rn) (n ≥ 1) are to be released over
list, i.e., to be released one by one at time zero. On the release of each request
ri, a scheduler has to decide immediately its service resource combination, i.e.,
the specific berth(s) and QC(s), as well as the processing time interval for the
request. The objective is to minimize the makespan or the completion time of the
last completed request. Similar to the quadruple notation scheme in Bierwirth
and Meisel [3], we denote the considered problem as hybr, 3B, 5QC|online −
over − list|BAP − QCAP |Cmax where the term hybr means it is in the hybrid
berth layout, terms 3B and 5QC denote the scenario with 3 small berths and 5
QCs, online − over − list means the requests are released in over-list, BAP −
QCAP represents the integrated allocation of berths and QCs, and the last term
Cmax denotes the objective function, i.e., makespan.

Below we give some notations related to requests in a schedule produced by an
online algorithm. On the release of any request ri (i ≥ 1), let ti,1 be the earliest
time by which at least one berth has completed all of its currently assigned
requests, ti,2 (or ti,3) the earliest time by which two (or three) consecutive berths
have completed all of their currently assigned requests, and let Ci,j (1 ≤ j ≤ 3)
be the earliest time by which berth bj has completed all of its currently assigned
requests. Let si, ei be the start and end time of request ri respectively. For
notational convenience, we sometimes denote by ri = 1 and ri = Δ for the case
where ri is a small request respectively, a large one.

As to be revealed later on, the assignment of a large request ri (≥ 2) may
induce a forced idle time segment on berth b1 or b2, i.e., an idle time segment
[ek, si) for some 1 ≤ k < i. If 0 < si − ek < 1/2, then any small request released
later cannot be satisfied in [ek, si) and we say it is a waste time segment, denoted
by Tw; otherwise if si−ek ≥ 1/2, then it is an available idle time segment, denoted
by Ta. Set Ta = [t1, t2) where t1 = ek and t2 = si. Initially, Tw = Ta = [0, 0).

The performance of an online algorithm A is often evaluated by parameter
competitive ratio as defined below (see Borodin [14]). For any request input
instance I, let Cσ(I), C∗(I) be the makespan of schedule σ produced by A and
that of an optimal schedule respectively. Then we say A has a competitive ratio
of ρ or A is ρ-competitive where

ρ = inf
r

{
r|Cσ(I)

C∗(I)
≤ r

}
.

724 F. Zheng et al.

3 The Online Algorithm and Its Basic Properties

In this section we present an online algorithm named GLR (Greedy for Large
Request) and some properties in any schedule it produces. GLR predetermines
the locations of the QCs which provides service without moving between berths
so that it only needs to decide berth assignment for each request. Its basic idea
is to greedily assign each large request to two berths with four QCs except two
cases where r1 = Δ and where r1 = 1 and r2 = Δ. In the algorithm, the leftmost
two QCs q1, q2 are dedicated to the leftmost berth b1, and q3, q4 are dedicated
to the middle berth b2, while the rightmost QC q5 processes requests assigned
to b3. So, a large request assigned to the leftmost (or rightmost) two berths is
processed by four (or three) QCs simultaneously and consumes Δ/4 (or Δ/3)
units of time. Define id as the index of berth with a Ta segment.

3.1 Algorithm Description

Below is the detailed description of the online algorithm.

Algorithm GLR:

On the release of request ri (i ≥ 1), GLR behaves in two cases.
Case 1. ri = Δ. Divide this case into three subcases in each of which ri

is assigned to the leftmost two berths b1, b2 unless it is specified.
– Case 1.1. ti,1 = ti,2 ≤ ti,3. If ti,2 = 0, set si = 0 and assign ri

to berths b2, b3. Otherwise set si = ti,3 (or si = ti,1) if Ci,1 = ti,3
(or Ci,3 = ti,3 > ti,1). Set Ta = [ti,1, ti,3) and id = 2 provided that
Ci,1 = ti,3 = ti,1 + 1/2.

– Case 1.2. ti,1 < ti,2 = ti,3. Set si = ti,3. If ti,3 − Ci,1 ≥ 1/2, set
Ta = [Ci,1, ti,3) and id = 1.

– Case 1.3. ti,1 < ti,2 < ti,3. If Ci,3 = ti,3, set si = ti,2; otherwise
set si = Ci,1 = ti,3, and set Ta = [ti,2, ti,3) and id = 2 given that
ti,3 − ti,2 = 1/2.

Case 2. ri = 1. If Ta = [t1, t2) �= [0, 0), set si = t1, assign ri to berth bid,
and reset Ta = [0, 0) (or Ta = [t1 +1/2, t2)) provided that t2 − t1 < 1 (or
1 ≤ t2−t1). Otherwise if Ta = [0, 0), consider the following five subcases.
– Case 2.1. ti,1 = ti,2 = ti,3. Set si = ti,1 and assign ri to berth b1.
– Case 2.2. ti,1 = ti,2 < ti,3. Set si = ti,1, and assign ri to berth b2.
– Case 2.3. Ci,1 = ti,1 < ti,2 = ti,3. It is the same as in Case 2.1.
– Case 2.4. Ci,3 = ti,1 < ti,2 = ti,3. If ti,2 − ti,1 ≥ 1/2, set si = ti,1 and

assign ri to berth b3; otherwise set si = ti,3 and assign ri to b1.
– Case 2.5. ti,1 < ti,2 < ti,3. Set si = ti,2, and assign ri to berth b2.

Figure 1 is an illustration of the algorithm where each rectangle represents
a large (or small) request if it occupies two berths (or a single berth) in the
horizontal axis, and its height denotes the actual processing time of the request.
We observe that in Cases 1.1, 1.2 and 1.3 of the algorithm, the assignment of a
large request ri may induce a Ta or Tw. By Case 2 of the algorithm, there is at

An Online Model of Berth and Quay Crane Integrated Allocation 725

b1 b2 b3

Ji

 b1 b2 b3

Ji-1

Ji

 b1 b2 b3 b1 b2 b3

 b1 b2 b3

 b1 b2 b3

Ji-1

Ji

Ji-2

Ji

 b1 b2 b3

Ji

 b1 b2 b3 b1 b2 b3

Ji-1
Ji

 b1 b2 b3

Ji-2

Ji

 b1 b2 b3

 Ji-1

Ji

Ji-1

a

Ji-2

Ji-1 a

b1 b2 b3

Ji-1

Ji

Ji

Ji

Ji-1

Ji

Ji-1

Fig. 1. An illustration of algorithm GLR

most one Ta on the release of any request. For Tw, Case 1.1 implies that if exactly
three QCs are idle at time ti,1 and 0 < ti,3−ti,1 < 1/2, then Tw = [ti,1, ti,3) occurs
on berth b2. Similarly, Case 1.2 (or Case 1.3) tells that if 0 < ti,3 − Ci,1 < 1/2
(or Ci,3 = ti,3), then Tw = [Ci,1, ti,3) (or [ti,1, ti,2)) occurs on b1.

3.2 Basic Properties

For any request input sequence I = {r1, r2, . . . , rn}, let σ be the schedule
produced by GLR.

Property 1. There is at most one waste time segment Tw �= [0, 0) in schedule
σ, and it is due to assigning the first and the second large requests in I to the
rightmost and leftmost two berths, respectively.

Proof. By Case 1 of the algorithm and previous analysis on Tw, a nonempty Tw

segment, if exists, is due to assigning the first large request rj to the rightmost
two berths and later on the second large request ri to the leftmost two berths.
Note that Tw may occur on either b1 or b2.

726 F. Zheng et al.

The rest is to prove the uniqueness of such Tw. Consider any two consecutive
large requests ru, rv with i ≤ u < v. Notice that both requests are assigned to
the leftmost two berths. Remember that b1 and b2 are respectively associated
with two QCs, implying that both berths process any small request with half a
time unit. Now consider the number of small requests processed on berths b1, b2
between ru and rv, i.e., in time interval [eu, sv). If it is even, then there is no
idle time segment at all within the interval on the two berths; otherwise if it is
odd, then there is a Ta but not Tw segment. Hence, a nonempty Tw only occurs
during the assignment of the first large request. The property follows. ��
Property 2. If there exists a Tw �= [0, 0) segment in schedule σ, then either
r1 = Δ or r2 = Δ in I, and Δ �= 3k/2 for any natural number k ≥ 2.

Proof. First, if r1 = r2 = 1 in I, then the two requests are assigned to b1 and
b2 respectively by Cases 2.1 and 2.2. Consequently the first large request ri, if
exists, is assigned to the leftmost two berths. We conclude that the assignment
of ri can only produce a Ta but not Tw segment since |Ci,1 − Ci,2| equals either
1/2 or 0. By Property 1, there is no Tw in σ in this case.

Assume otherwise r1 = Δ (or r2 = Δ) and Δ = 3k/2 in I. By Case 1.1 of the
algorithm, r1 is assigned to berths b2, b3 and is processed in [0,Δ/3) = [0, k/2), in
which the leftmost berth b1 with two QCs can satisfy exactly k small requests. It
implies the next large request produces only Ta segment. The property follows. ��

Notice that a nonempty Tw segment on either b1 or b2 is of length strictly
less than 1/2, and there are exactly two QCs being idle in the time segment. It
implies the waste of QC utility in such Tw is less than (1/2) ∗ 2 = 1. After GLR
assigns the last request in I, we denote by Tj �= [0, 0) (or Tj = [0, 0)) the case
with the existence (or nonexistence) of Tj (j = w, a) in the schedule σ.

4 Competitive Analysis of Algorithm GLR

Denote by Cσ(I) the makespan of σ produced by GLR in sequence I, and C∗(I)
that of a schedule produced by an optimal offline algorithm OPT. In the following
we first present two lemmas on the ratio of Cσ(I)/C∗(I) for two specific cases
of I, and then prove GLR’s competitiveness.

Lemma 1. If r1 = r2 = 1 and n ≥ 4 in sequence I, then Cσ(I)/C∗(I) ≤ 4/3.

Proof. By the lemma condition r1 = r2 = 1 and Property 2, we have Tw = [0, 0)
in σ. For the last request rn in I, we have rn = Δ (or rn = 1) if it is assigned
by Case 1 (or Case 2) of algorithm GLR. There are five cases below.

Case 1. rn = Δ and it is assigned to berths b1, b2 by Case 1 of the algorithm.
Assume that the last k (1 ≤ k ≤ n − 2) requests in I are large, while rn−k is
a small request. If Ta = [0, 0) and thus the left four QCs on berths b1, b2 are
kept busy during [0, Cσ(I)), then the total workload in I is at least 4Cσ(I) and
C∗(I) ≥ 4Cσ(I)/5. Otherwise if Ta = [t1, t2) �= [0, 0), then t2 − t1 = 1/2 by

An Online Model of Berth and Quay Crane Integrated Allocation 727

the proof of Property 2 and Cn,3 = Cn−k+1,3 ≥ 1 by Case 2.4 of the algorithm.
Moreover, we claim by the lemma condition r1 = r2 = 1 that Case 1.3 of the
algorithm is not true for request rn−k+1, implying sn−k+1 = tn−k+1,3. Cσ(I) =
tn−k+1,3 + kΔ/4 and C∗(I) ≥ (4Cσ(I) − 1 + Cn,3)/5 ≥ 4Cσ(I)/5.

Case 2. rn = 1 and it is assigned by Cases 2, 2.3 or 2.5 of the algorithm. We
claim by the lemma condition r1 = r2 = 1 that the left four QCs on berths b1, b2
are kept busy during [0, Cσ(I)), and again Cσ(I)/C∗(I) ≤ 5/4.

Case 3. rn(= 1) is assigned by Case 2.1 of the algorithm. Then tn,1 = tn,3 ≥ 1,
Cσ(I) = tn,1 + 1/2 and C∗(I) ≥ tn,1 + 1/5. So, Cσ(I)/C∗(I) ≤ 5/4.

Case 4. rn(= 1) is assigned by Case 2.2 of the algorithm, implying Ta = [0, 0).
If there is no large request in I, then C∗(I) = Cσ(I); otherwise if I contains
at least one large request, then tn,2 ≥ 1/2 + Δ/4 ≥ 1, Cσ(I) = tn,2 + 1/2 and
C∗(I) > tn,2 + 1/5, implying a ratio less than 5/4.

Case 5. rn(= 1) is assigned by Case 2.4 of the algorithm. By the lemma
condition r1 = r2 = 1, we have Cn,1 = Cn,2 = tn,2 and Cn,3 = tn,1 in this case.

Case 5.1. tn,2 − tn,1 ≥ 1/2 and then rn is assigned to berth b3. If I contains
no large requests, then C∗(I) = Cσ(I). Otherwise if I contains at least one
large request, then tn,1 ≥ 1. If Cσ(I) = tn,2, then C∗(I) > 4Cσ(I)/5; otherwise
if Cσ(I) = tn,1+1, then C∗(I) ≥ tn,2 ≥ tn,1+1/2 and thus Cσ(I)/C∗(I) ≤ 4/3.

Case 5.2. tn,2 − tn,1 < 1/2 and then rn is assigned to berth b1. By the case
condition tn,2 − tn,1 < 1/2, we claim that I contains at least one large request
and tn,1 ≥ 1. Cσ(I) = tn,2 + 1/2, and C∗(I) ≥ (4tn,2 + 1 + tn,1)/5 ≥ 4Cσ(I)/5.

The lemma follows. ��
Lemma 2. If r1 = Δ or r2 = Δ and n ≥ 4 in sequence I where Δ �= 3k/2 for
any natural number k ≥ 2, then Cσ(I)/C∗(I) ≤ 4/3.

Proof. By the lemma condition r1 (or r2)= Δ with Δ �= 3k/2, if there is a
single large request in I, then Tw = Ta = [0, 0) and it is straightforward that
Cσ(I)/C∗(I) ≤ 4/3 no matter Cσ(I) = Δ/3 or not. In the following we focus
on the scenario where there are at least two large requests in I, and we consider
three cases by whether Tw = [0, 0) or Ta = [0, 0) in schedule σ. Remember that
a Tw segment induces waste of QC utility strictly less than one.

Case 1. Tw �= [0, 0) and Ta = [t1, t2) �= [0, 0). The case condition implies
that there are at least three large requests in I and Cσ(I) is determined by the
completion time of the last large request. Let ri and rj (j < i ≤ n) be the large
requests whose assignments induce the Ta and Tw segment, respectively. tn,1 =
Cn,3 ≥ Δ/3+1 ≥ 5/3 and Cσ(I) ≥ Δ/3+Δ/4+1/2+Δ/4 = 5Δ/6+1/2 ≥ 13/6
due to the existence of Tw and Ta. Notice that t2 − t1 = 1/2, and the Ta and Tw

segments waste less than two units of QC utility. C∗(I) > (4Cσ(I)−2+tn,1)/5 ≥
(4Cσ(I) − 1/3)/5, and Cσ(I)/C∗(I) < 5Cσ(I)/(4Cσ(I) − 1/3) ≤ 13/10.

Case 2. Tw = [0, 0) and Ta = [t1, t2) �= [0, 0). In this case we claim that Ta

is on berth b1 and within the time interval of processing the first large request
on the rightmost two berths, i.e., t2 = Δ/3 and t1 ≥ 0. Moreover, all the small
requests in I are assigned to berth b1 and processed in [0, t1). Assume that

728 F. Zheng et al.

there are k ≥ 2 large requests in I. Then Cσ(I) = (k − 1)Δ/4 + Δ/3 while
C∗(I) ≥ kΔ/4, and thus Cσ(I)/C∗(I) < 4/3 due to k ≥ 2.

Case 3. Tw �= [0, 0) and Ta = [0, 0).
Case 3.1. rn = Δ. Note that the first large request in I is completed at time

Δ/3 on berths b2, b3. If rn starts at time sn = Δ/3, then Cσ(I) = sn + Δ/4 =
7Δ/12 while C∗(I) ≥ Δ/4 + Δ/4 = 6Cσ(I)/7. Otherwise if sn > Δ/3 ≥ 2/3,
then before rn the leftmost berth b1 either processes another large request not
earlier than Δ/3 or serves at least two small requests from time 0. In both cases
sn ≥ 1. Cσ(I) = en ≥ 1 + Δ/4 ≥ 3/2, and C∗(I) > (4Cσ(I) − 1 + Cn,3))/5 ≥
4Cσ(I)/5 − 1/15 due to Cn,3 ≥ Δ/3 ≥ 2/3. Thus Cσ(I)/C∗(I) < 45/34 < 4/3.

Case 3.2. rn = 1. If rn is assigned to some Ta segment, inducing a Tw for the
remaining idle time of the Ta, then we claim that Cσ(I) = Δ/3 + (k − 1)Δ/4
where k ≥ 2 is the number of large requests in I. C∗(I) ≥ kΔ/4, and the ratio
is at most 7/6. Below we consider the rest five subcases on the assignment of rn.

Case 3.2.1. rn is assigned by Case 2.1 of the algorithm, implying tn,1 = tn,3.
In this case tn,3 ≥ Δ/3 + 1 ≥ 5/3 due to assigning the first large request to
berths b2, b3. Cσ(I) = tn,3 + 1/2, and C∗(I) > tn,3 since rn cannot be satisfied
in the Tw, implying a ratio less than 4/3.

Case 3.2.2. rn is assigned by Case 2.2 of the algorithm, implying Cσ(I) =
tn,2 + 1/2. For the case where tn,3 = Cn,3, if tn,2 = Δ/4 + Δ/3, then C∗(I) ≥
max{(Δ+Δ)/4+1/2, 2Δ/3}; otherwise berth b1 has served at least two small (or
two large) requests before rn with Cn,1 = tn,2 ≥ 1+Δ/4 while C∗(I) > tn,2 with
the same argument as in Case 3.2.1. With Δ ≥ 2 the ratio in the above both cases
is less than 4/3. For the other case where tn,3 = Cn,1, we have tn,3 = tn,2 + 1/2,
tn,2 = Cn,3 ≥ Δ/3 + 1, and thus C∗(I) > (5tn,2 + 1)/5 > 3Cσ(I)/4.

Case 3.2.3. rn is assigned by Case 2.3 of the algorithm. In this case Cσ(I) =
tn,2 = tn,1+1/2 ≥ Δ/3+Δ/4+1/2. Notice that Case 2.3 of the algorithm implies
Cn,1 = tn,1 < Cn,3 and thus tn,2 − Cn,3 < 1/2. C∗(I) > (4tn,2 − 1 + Cn,3)/5 >
(5tn,2 − 3/2)/5, and Cσ(I)/C∗(I) < 5tn,2/(5tn,2 − 3/2) < 50/41 < 4/3.

Case 3.2.4. rn is assigned by Case 2.4 of the algorithm. Since Tw �= [0, 0),
Cn,1 = Cn,2 = tn,2 and there are at least two small and two large requests in
I. We first consider the case where tn,2 − tn,1 < 1/2 and then rn is assigned
to berth b1. In this case tn,2 > tn,1 ≥ Δ/3 + 1 ≥ 5/3 and Cσ(I) = tn,2 + 1/2.
C∗(I) > (4tn,2 + tn,1)/5 ≥ 4tn,2/5 + 1/3, implying a ratio less than 13/10.

Consider the other case where tn,2 − tn,1 ≥ 1/2 and rn is assigned to berth
b3. If Cσ(I) = tn,2, then C∗(I) > 4Cσ(I)/5 since the total workload in σ is more
than 4Cσ(I). Otherwise if Cσ(I) = tn,1 + 1, then C∗(I) > (4tn,2 + tn,1)/5 (or
C∗(I) ≥ min{2Δ/3, 2}) provided that tn,1 ≥ Δ/3 + 1 (or tn,1 = Δ/3). Together
with tn,2 − tn,1 ≥ 1/2 and Δ ≥ 2, the ratio Cσ(I)/C∗(I) ≤ 25/19 < 4/3.

Case 3.2.5. rn is assigned by Case 2.5 of the algorithm. Since Tw �= [0, 0),
tn,1 = Cn,3 and Cσ(I) = tn,3 = tn,2 + 1/2 < tn,1 + 1 in this case. So, C∗(I) >
(4tn,3 + tn,1 − 1)/5 > tn,3 − 2/5, and Cσ(I)/C∗(I) < 4/3 due to tn,3 ≥ Δ/3 +
Δ/4 + 1/2 ≥ 5/3.

The lemma follows. ��

An Online Model of Berth and Quay Crane Integrated Allocation 729

Based on the above lemmas, we prove the competitiveness of algorithm GLR
in the following.

Theorem 1. For problem hybr, 3B, 5QC|online − over − list|BAP −
QCAP |Cmax, GLR is 4/3-competitive.

Proof. Given any request input sequence I = {r1, r2, . . . , rn} and the schedule
σ produced by GLR. If 1 ≤ n ≤ 3, it is trivial to verify that Cσ(I)/C∗(I) ≤ 4/3
for any combination of small and large requests.

In the remaining we focus on the scenario where n ≥ 4 . For the cases
where r1 = r2 = 1 and where r1 (or r2) = Δ with Δ �= 3k/2 for k ≥ 2,
Cσ(I)/C∗(I) ≤ 4/3 is straightforward by Lemmas 1 and 2. For the other case
where r1 (or r2)= Δ with Δ = 3k/2, we have Tw = [0, 0) in σ by Property 2. no
matter whether one of the first two requests is a large one. No matter Ta = [0, 0)
or not, the reasoning is similar to that in the proof of Lemma2 and the same
bound of 4/3 holds. The theorem follows. ��

5 A Matching Lower Bound

Below we present a matching lowing bound for the considered problem.

Theorem 2. For problem hybr, 3B, 5QC|online − over − list|BAP −
QCAP |Cmax, any deterministic online algorithm cannot be better than
4/3-competitive.

Proof. To prove the theorem, it suffices to construct a request input sequence
I with at most two requests to make any deterministic online algorithm A be
at best 4/3-competitive. Let CA(I) and C∗(I) be the makespan of the schedule
produced by A and by an optimal offline algorithm OPT in I, respectively.

The first request r1 = 1. It is then processed by either one or two QCs since
it is a small request. If A processes the request with a single QC from some
time t ≥ 0, then no more requests arrive and I=(r1). In this case CA(I) ≥ 1,
while OPT processes r1 with two QCs from time 0, resulting in C∗(I) = 1/2 and
CA(I)/C∗(I) ≥ 2. Otherwise if A processes r1 with two QCs, then there releases
the next and last request r2 = Δ and I=(r1, r2). A processes r2 with either three
or four QCs, CA(I) ≥ min{Δ/3, 1/2+Δ/4}. OPT processes respectively r1 and
r2 by one QC and four QCs simultaneously from time 0, and thus C∗(I) =
max{1,Δ/4}. Setting Δ = 6, we have CA(I) ≥ 2 and C∗(I) = 3/2. Hence,
CA(I)/C∗(I) ≥ 4/3. The theorem is established. ��

6 Conclusion

This paper studies an online integrated allocation of berths and quay cranes in
a container terminal. We consider the hybrid layout of quay and focus on the

730 F. Zheng et al.

scenario with a small number of berths and cranes. To meet the requirement
of quick response to real-time vessels, we present an online over-list model, and
mainly present an online deterministic algorithm, which is proved optimally 4/3-
competitive. One of the interesting problems in further research is to consider
the problem in the continuous berth layout scenario or to consider the case with
nonuniform load for the same type of request.

Acknowledgements. This work was partially supported by the National Natural
Science Foundation of China under Grants 71172189, 71071123 and 61221063, Program
for New Century Excellent Talents in University (NCET-12-0824), DHU Distinguished
Young Professor Program (A201305), and the Fundamental Research Funds for the
Central Universities (2232013D3-46).

References

1. Vis, I.F.A., de Koster, R.: Transshipment of containers at a container terminal:
an overview. Eur. J. Oper. Res. 147(1), 1–16 (2003)

2. Stahlbock, R., VoB, S.: Operations research at container terminals: a literature
update. OR Spectrum 30(1), 1–52 (2008)

3. Bierwirth, C., Meisel, F.: A survey of berth allocation and quay crane scheduling
problems in container terminals. Eur. J. Oper. Res. 202(3), 615–627 (2010)

4. Carlo, H.J., Vis, I.F.A., Roodbergen, K.J.: Seaside operations in container ter-
minals: literature overview, trends, and research directions. Flex. Serv. Manuf. J.
27(2–3), 224–262 (2015)

5. Imai, A., Sun, X., Nishimura, E., Papadimitriou, S.: Berth allocation in a con-
tainer port: using a continuous location space approach. Transp. Res. Part B
39(3), 199–221 (2005)

6. Lokuge, P., Alahakoon, D.: Improving the adaptability in automated vessel
scheduling in container ports using intelligent software agents. Eur. J. Oper. Res.
177(3), 1985–2015 (2007)

7. Park, Y.M., Kim, K.H.: A scheduling method for berth and quay cranes. OR
Spectrum 25(1), 1–23 (2003)

8. Theofanis, S., Golias, M., Boile, M.: Berth and quay crane scheduling: a formu-
lation reflecting service deadlines and productivity agreements. In: TRANSTEC
2007, pp. 124–140. Czech Technical University, Prague (2007)

9. Giallombardo, G., Moccia, L., Salani, M., Vacca, I.: Modeling and solving the
tactical berth allocation problem. Transp. Res. Part B 44(2), 232–245 (2010)

10. Blazewicz, J., Cheng, T.C.E., Machowiak, M., Oguz, C.: Berth and quay crane
allocation: a moldable task scheduling model. J. Oper. Res. Soc. 62, 1189–1197
(2011)

11. Zhen, L., Chew, E.P., Lee, L.H.: An integrated model for berth template and yard
template planning in transshipment hubs. Transp. Sci. 45(4), 483–504 (2011)

12. Chen, J.H., Lee, D.H., Cao, J.X.: A combinatorial benders’ cuts algorithm for the
quayside operation problem at container terminals. Transp. Res. Part E 48(1),
266–275 (2012)

13. Zhang, L.L., Khammuang, K., Wirth, A.: On-line scheduling with non-crossing
constraints. Oper. Res. Lett. 36(5), 579–583 (2008)

14. Borodin, A., El-Yaniv, R.: Online Computation and Competitive Analysis.
Cambridge University Press, New York (1998)

On the Minimal Constraint Satisfaction
Problem: Complexity and Generation

Guillaume Escamocher(B) and Barry O’Sullivan

Department of Computer Science, Insight Centre for Data Analytics,
University College Cork, Cork, Ireland

{guillaume.escamocher,barry.osullivan}@insight-centre.org

Abstract. The Minimal Constraint Satisfaction Problem, or Minimal
CSP for short, arises in a number of real-world applications, most notably
in constraint-based product configuration. Despite its very permissive
structure, it is NP-hard, even when bounding the size of the domains
by d ≥ 9. Yet very little is known about the Minimal CSP beyond that.
Our contribution through this paper is twofold. Firstly, we generalize
the complexity result to any value of d. We prove that the Minimal CSP
remains NP-hard for d ≥ 3, as well as for d = 2 if the arity k of the
instances is strictly greater than 2. Our complexity result can be seen as
providing a dichotomy theorem for the Minimal CSP. Secondly, we build
a generator that can create Minimal CSP instances of any size, using
the constrainedness as a parameter. Our generator can be used to study
behaviors that are typical of NP-hard problems, such as the presence of
a phase transition, in the case of the Minimal CSP.

1 Introduction

An instance of the Minimal Constraint Satisfaction Problem, or Minimal CSP
for short, is a CSP instance where all allowed k-tuples are part of at least one
solution, with k being the arity of the instance, that is the size of the scope of
the constraints. Since all Minimal CSP instances are satisfiable, solving such an
instance does not refer to the decision problem of determining whether it has a
solution, but to the exemplification of a solution.

Minimal CSP is often found ‘naturally’ in configuration problems [8]. A seller
might want to offer its customers a large degree of customization. If, for example,
the product sold is a car, some possible options might be the color of the vehicle
and whether it is automatic or manual. If after choosing “automatic”, “red”
remains a valid option for the color parameter, then it is preferable that at
least one red automatic car can be configured. The Minimal CSP can answer a
number of queries relevant to product configuration in polynomial time [6], such
as whether a solution exists that satisfies a given unary constraint, or whether an
assignment to k variables is consistent in a Minimal CSP where all constraints are
defined over k-tuples of the variables. These queries can be answered simply by
inspecting the constraints of the problem instance. However, answering queries
over arbitrary assignments to the variables remains hard, which has given rise
c© Springer International Publishing Switzerland 2015
Z. Lu et al. (Eds.): COCOA 2015, LNCS 9486, pp. 731–745, 2015.
DOI: 10.1007/978-3-319-26626-8 54

732 G. Escamocher and B. O’Sullivan

to many studies of the use of automata and decision diagrams to reason about
the solution sets of complex configuration problems [2].

Gottlob has shown that computing a solution to a binary Minimal CSP is
NP-Hard [6]. While considerable work has been done on the study of problem
hardness and instance generation for many classes of CSPs [1,10,11], nothing has
been done in the case of Minimal CSPs, which are an interesting class of problem
in practice. In this paper, we show that when bounding the size of the domains
by a constant d and the arity of the constraints by a constant k, Minimal CSP
and the general CSP are NP-hard for the exact same values of d and k. We also
present an algorithm that can be used to generate Minimal CSP instances of
any size, while retaining control over some parameters like the tightness of the
constraints. Since tightness often reveals many statistical properties of CSPs,
like for example phase transition behaviors, many empirical analysis of such
problems use it as a parameter [3,5]. We tested our generator to determine if it
was refined enough to detect the diverse properties held by the Minimal CSP,
and found that it could indeed expose how the Minimal CSP behaves: like most
other NP-hard problems [7], Minimal CSP exhibits an easy-hard-easy pattern
as constraint tightness is varied.

The remainder of the paper is organized as follows. In the next Section, we
formally define the Minimal CSP and present our complexity results, and in
particular a dichotomy theorem, that generalizes Gottlob’s complexity result [6]
to instances with very small domain sizes. In Sect. 3.1 we provide some prelim-
inary definitions needed for the description of our generator. Then in Sect. 3.2,
we present the algorithm itself, which is able to generate in an efficient way
Minimal CSP instances of a given size; tightness, that is the average number of
incompatibilities in a constraint, is used as a parameter. In Sect. 3.3, we show
some empirical results that we obtained when solving Minimal CSP instances
generated with this method, revealing the presence of a peak of difficulty. Finally,
we conclude by summarizing our contributions and outlining some future work
in this area.

2 The Minimal CSP: Definitions and Complexity

2.1 Definitions

We recall the definition of the Constraint Satisfaction Problem, or CSP.

Definition 1 (CSP). A CSP instance I comprises:

1. A set V = {v1, . . . , vn} of n variables.
2. A set A = {Av1 , . . . , Avn

} of n domains. For all i ∈ [1, n], Avi
= {a1, . . . , adi

}
contains the di possible values for the variable vi.

3. A set C = {C1, . . . , Cm} of m constraints. To each constraint Ci is associated
a scope Wi = {w1, . . . , wki

} ⊆ V and a set Ui of ki-tuples from [Aw1]×[Aw2]×
· · ·×[Awki

]. We say that these tuples are allowed, or compatible, for the scope
Wi, that the tuples from [Aw1] × [Aw2] × · · · × [Awki

] that are not in Ui are

On the Minimal Constraint Satisfaction Problem 733

forbidden, or incompatible, for the scope Wi and that ki is the arity of the
constraint Ci. Let Cj ∈ C be the constraint with the highest arity. We say
that the arity of Cj is the arity of the instance.

A partial solution to I on W = {w1, . . . , wr} ⊆ V is a r-tuple b = {b1, . . . , br}
such that ∀i ∈ [1, r], bi ∈ Awi

and ∀j ∈ [1,m], such that kj is the arity of Cj,
there is no kj-tuple u ⊆ b that is incompatible on Sj. A solution to I is a partial
solution on V .

We now formally define the Minimal Constraint Satisfaction Problem, or
Minimal CSP.

Definition 2 (Minimal CSP). A CSP instance I = {V,A,C} is a Minimal
CSP instance if and only if: ∀Ci ∈ C, ∀u such that u is a compatible tuple on
the scope of Ci, there is at least one solution S to I such that S contains u.

In this paper, we only consider Minimal CSP instances with non-empty
domains and such that each value in each domain belongs to at least one com-
patible tuple.

2.2 Complexity

Not only are Minimal CSP instances always satisfiable, but they typically contain
many solutions. A Minimal CSP instance will contain as least as many solutions
as there are allowed k-tuples in its least constrained constraint. For this reason,
Minimal CSP instances will often be very trivial to solve. Yet, computing a
solution to a Minimal CSP instance is NP-hard [6].1 The proof given in [6] is a
reduction from 3-SAT to a set of CSP instances M9 such that for each instance
I ∈ M9:

– I is either a Minimal CSP instance or unsatisfiable.
– I contains at most 9 values in each domain.

This is stronger than just NP-hardness, the actual result in [6] is that computing
a solution to a Minimal CSP instance is NP-hard, even when bounding the size
of the domains by a fixed integer d ≥ 9. We now further generalize this result to
any d ≥ 3:

Proposition 1. Computing a solution to a Minimal CSP instance is NP-hard,
even when bounding the size of the domains by a fixed integer d ≥ 3.

Proof. Suppose that we have a k-ary Minimal CSP instance I. Let v be a variable
in I such that the domain of v is of size dv > 3. We replace v by two new variables
v1 and v2 to obtain a new instance I ′ defined as follow:
1 We are aware that finding a solution to a Minimal CSP is both a search problem

(find a solution) and a promise problem (the input CSP is satisfiable because it is
minimal), rather that a decision problem. However, we use this terminology in the
same manner as Gottlob [6], where a thorough discussion of the matter can be found.

734 G. Escamocher and B. O’Sullivan

1. With {a1, a2, . . . , adv
} being the domain of v, we set the domain of v1 to

{a1, a2, x} and the domain of v2 to {x, a3, . . . , adv
}.

2. Let B = {b1, b2, b3, . . . , bk} be a k-tuple such that b1 is in the domain of v1 and
b2 is in the domain of v2. Then B is compatible if and only if (b1 = x, b2 �= x
and there exists some value b′ such that the k-tuple B′ = {b′, b2, b3, . . . , bk} is
compatible in I) or (b1 �= x, b2 = x and there exists some value b′ such that
the k-tuple B′ = {b1, b′, b3, . . . , bk} is compatible in I).

3. Let b be a value not in the domain of v1 or v2. Let B = {b, b′, b3, . . . , bk} be a
k-tuple such that b′ is in the domain of v1 and B does not contain any value
from the domain of v2. If b′ = ai for 1 ≤ i ≤ 2, then B is compatible in I ′

if and only if B was compatible in I. If b′ = x, let Bi = {b, ai, b3, . . . , bk} for
3 ≤ i ≤ dv. B is compatible in I ′ if and only if one of the Bi was compatible
in I.

4. Let b be a value not in the domain of v1 or v2. Let B = {b, b′, b3, . . . , bk} be a
k-tuple such that b′ is in the domain of v2 and B does not contain any value
from the domain of v1. If b′ = ai for 3 ≤ i ≤ dv, then B is compatible in I ′

if and only if B was compatible in I. If b′ = x, let Bi = {b, ai, b3, . . . , bk} for
1 ≤ i ≤ 2. B is compatible in I ′ if and only if one of the Bi was compatible
in I.

5. All other k-tuples in I ′ remain as they were in I.

Figure 1 illustrates an example of the transformation for k = 2 and dv = 4. Av,
Av1 and Av2 denote the domains of v, v1 and v2 respectively. The continuous lines
represent compatibility edges, while the dashed lines represent incompatibility
edges.

a1 a2 a3 a4

b1 b2 b3

Av

becomes

a1

a2

x

x

a3

a4

b1 b2 b3

Av1 Av2

Fig. 1. Transforming a variable v into two variables v1 and v2 with smaller domains.

In order to obtain the desired result, we have to prove that I ′ is a Minimal
CSP instance and that finding a solution for I ′ allows us to find in polynomial
time a solution for I.

On the Minimal Constraint Satisfaction Problem 735

1. I ′ is a Minimal CSP instance:
We have to prove that each compatible k-tuple in I ′ is in a solution for I ′.
Let B = {b1, b2, b3, . . . , bk} be a compatible k-tuple in I ′ such that:

– Either b1 is in the domain Av1 of v1, or B does not contain any value
from Av1 .

– Either b2 is in the domain Av2 of v2, or B does not contain any value
from Av2 .

We necessarily have one of the following seven cases:
(a) b1 = x and b2 = ai for some i ∈ [3, . . . , dv]: from the second point

in the definition of I ′, we know that there is some compatible k-tuple
B′ = {b′, ai, b3, . . . , bk} in I. Since I is a Minimal CSP instance, there is
some solution S for I such that B′ belongs to S. Let S′ = S ∪ {x}. By
construction, S′ is a solution for I ′ containing B.

(b) b1 = ai for some i ∈ [1, 2] and b2 = x: same argument as for (a).
(c) b1 = x and b2 /∈ Av2 : from the third point in the definition of I ′, we know

that there is some compatible k-tuple Bi = {ai, b2, b3, . . . , bk} in I, with
i ∈ [3, . . . , dv]. Since I is a Minimal CSP instance, there is some solution
S for I such that Bi belongs to S. Let S′ = S ∪ {x}. By construction,
S′ is a solution for I ′ containing B.

(d) b1 /∈ Av1 and b2 = x: same argument as for (c), using the fourth point
in the definition of I ′ instead of the third.

(e) b1 ∈ Av1 , b1 �= x and b2 /∈ Av2 : from the third point in the definition
of I ′, we know that B is compatible in I too. Since I is a Minimal CSP
instance, there is some solution S for I such that B belongs to S. Let
S′ = S ∪ {x}. By construction, S′ is a solution for I ′ containing B.

(f) b1 /∈ Av1 , b2 ∈ Av2 and b2 �= x: same argument as for (e), using the
fourth point in the definition of I ′ instead of the third.

(g) b1 /∈ Av1 and b2 /∈ Av2 : from the fifth point in the definition of I ′, we
know that B is compatible in I too. Since I is a Minimal CSP instance,
there is some solution S for I such that B belongs to S. Let a be the
point of S in Av. If a = a1 or a = a2, then let S′ = S ∪ {x}. Otherwise,
let S′ = S ∪ {x}. By construction, S′ is a solution for I ′ containing B.

So if B is a compatible k-tuple of I ′, then B is in a solution for I ′.
2. Finding a solution for I from a solution for I ′:

Suppose that we have a solution S′ for I ′. From the second point in the
definition of I ′, we know that there is no compatible k-tuple containing both
x and x. Therefore, S′ must contain one of the ai. Let S = S′\{x} (or
S = S′\{x} if x ∈ S′). By construction, S is a solution for I.

The domain size of v1 is 3 < dv, and the domain size of v2 is dv − 1 < dv.
Therefore, if we have a variable with a domain of size strictly greater than 3,
then we can replace it by two variables with strictly smaller domain size. By
iteratively applying this operation until all domains have a size of 3 or less, we
can reduce I to a Minimal CSP instance where the size of all domains is bounded
by 3. Since computing a solution to a Minimal CSP instance is NP-hard [6], we
have the result. 	

736 G. Escamocher and B. O’Sullivan

In the case of Boolean domains, we also have NP-hardness if the arity of the
instances is k ≥ 3.

Proposition 2. For all k > 2, k-ary Minimal CSP is NP-hard, even when
bounding the size of the domains by 2.

The proof is based on the transformation from a domain A = {a1, a2, a3} of
size 3 to three domains A1 = {a1, a1}, A2 = {a2, a2}, A3 = {a3, a3}, each of
size 2.

Proof. Let k > 2. From Proposition 1, we know that computing a solution to
a k-ary Minimal CSP instance is NP-hard, even when bounding the size of the
domains by 3. Therefore, we just need to reduce the k-ary Minimal CSP with
domain size bounded by 3 to the k-ary Minimal CSP with domain size bounded
by 2. Let I be a k-ary Minimal CSP instance such that the size of each domain
in I is bounded by 3. Let v be a variable in I such that the domain of v is of
size 3. We replace v by three new variables v1, v2 and v3 to obtain a new instance
I ′ defined as follows:

1. With {a1, a2, a3} being the domain of v, we set the domain of vi to be Avi
=

{ai, ai} for 1 ≤ i ≤ 3.
2. All k-tuples in I ′ containing both ai and aj for some 1 ≤ i �= j ≤ 3 are

incompatible.
3. Let B = {ai, aj , b1, b2, . . . , bk−2} be a k-tuple for some 1 ≤ i �= j ≤ 3. Let h

be the integer between 1 and 3 such that h �= i and h �= j. B is compatible if
and only if there is some compatible k-tuple in I containing ah and all the bg
for 1 ≤ g ≤ k − 2. Note that this covers the particular cases when ah is one
of the bg (in which case B is compatible if and only if there is a compatible
k-tuple in I containing all the bg) and when ah is one of the bg (in which case
B is incompatible because ah does not appear in I).

4. Let B = {ai, b1, b2, . . . , bk−1} be a k-tuple such that 1 ≤ i ≤ 3 and no bj is in
the domain of v1, v2 or v3. B is compatible in I ′ if and only if B is compatible
in I.

5. Let B = {ai, b1, b2, . . . , bk−1} be a k-tuple such that 1 ≤ i ≤ 3 and no bj is in
the domain of v1, v2 or v3. B is compatible if and only if there is some j �= i,
with 1 ≤ j ≤ 3, such that {aj , b1, b2, . . . , bk−1} is compatible in I.

6. Let B = {ai, aj , b1, b2, . . . , bk−2} be a k-tuple such that 1 ≤ i �= j ≤ 3 and
no bh is in the domain of v1, v2, or v3. B is compatible if and only if there is
some bk−1 such that {ai, bk−1, b1, b2, . . . , bk−2} is compatible in I.

7. All other k-tuples in I ′ remain as they were in I.

In order to obtain the desired result, we have to prove that I ′ is a Minimal
CSP instance and that finding a solution for I ′ allows us to find in polynomial
time a solution for I.

1. I ′ is a Minimal CSP instance:
We have to prove that each compatible k-tuple in I ′ is in a solution for I ′. Let
B be a compatible k-tuple in I ′. We necesarily have one of the six following
cases:

On the Minimal Constraint Satisfaction Problem 737

(a) B = {ai, b1, b2, . . . , bk−1} with 1 ≤ i ≤ 3 and neither bj in the domain of
v1, v2 or v3. Without loss of generality, we assume that i = 1. From the
fourth point in the definition of I ′, we know that B is also compatible
in I. Since I is a Minimal CSP instance, there is some solution S for I
such that B belongs to S. Let S′ = S ∪ {a2, a3}. By construction, S′ is
a solution for I ′ containing B.

(b) B = {ai, aj , b1, b2, . . . , bk−2} with 1 ≤ i �= j ≤ 3 and no bh in the domain
of v1, v2 or v3. Without loss of generality, we assume that i = 1. From
the sixth point in the definition of I ′, we know that there is a compatible
triple in I containing a1 and all bh for 1 ≤ h ≤ k−1. Since I is a Minimal
CSP instance, there is some solution S for I such that both a1 and all the
bh belong to S. Let S′ = S ∪ {a2, a3}. By construction, S′ is a solution
for I ′ containing B.

(c) B = {ai, aj , ah, b1, b2, . . . , bk−3} with 1 ≤ i, j, h ≤ 3 and i, j, h all dis-
tinct. Without loss of generality, we assume that i = 1. From the third
point in the definition of I ′, we know that there is a compatible k-tuple
in I containing a1 and all the bg for 1 ≤ g ≤ k − 3. Since I is a Minimal
CSP instance, there is a solution S for I such that ai and all the bg
belong to S. Let S′ = S ∪ {a2, a3}. By construction, S′ is a solution for
I ′ containing B.

(d) B = {ai, b1, b2, . . . , bk−1} with 1 ≤ i ≤ 3 and no bj in the domain
of v1, v2 or v3. Without loss of generality, we assume that i = 1.
From the fifth point in the definition of I ′, either {a2, b1, b2, . . . , bk−1}
or {a3, b1, b2, . . . , bk−1} is compatible in I. Without loss of generality,
we assume the former. Since I is a Minimal CSP instance, there is
some solution S for I such that {a2, b1, b2, dots, bk−1} belongs to S. Let
S′ = S ∪ {a1, a3}. By construction, S′ is a solution for I ′ containing B.

(e) B = {ai, aj , b1, b2, . . . , bk−2} with 1 ≤ i �= j ≤ 3 and no bh not in
the domain of v1, v2 or v3. Without loss of generality, we assume that
i = 1 and j = 2. From the third point in the definition of I ′, there is a
compatible triple in I containing a3 and all the bh for 1 ≤ h ≤ k − 2.
Since I is a Minimal CSP instance, there is some solution S for I such
that a3 and all the bh belong to S. Let S′ = S∪{a1, a2}. By construction,
S′ is a solution for I ′ containing B.

(f) B = {b1, b2, . . . , bk} with no bi being in the domain of vj , for any 1 ≤
i, j ≤ 3. From the seventh point in the definition of I ′, we know that B
is compatible in I too. Since I is a Minimal CSP instance, there is some
solution S for I such that B belongs to S. Let ai be the point of S in
the domain of v. Without loss of generality, we assume that i = 1. Let
S′ = S ∪ {a2, a3}. By construction, S′ is a solution for I ′ containing B.

So if B is a compatible k-tuple of I ′, then B is in a solution for I ′.
2. Finding a solution for I from a solution for I ′:

Suppose that we have a solution S′ for I ′. From the second and third points
in the definition of I ′, we know that S′ must contain ai, aj and ah, for some
distinct i, j and h between 1 and 3. Without loss of generality, we assume
that i = 1. Let S = S′\{a2, a3}. By construction, S is a solution for I.

738 G. Escamocher and B. O’Sullivan

Therefore, if we have a variable with a domain of size 3, then we can replace it
by three variables with domains of size 2. By iteratively applying this operation
until all domains have a size of 2 or less, we can reduce I to a Minimal CSP
instance where the size of all domains is bounded by 2. So we have the result. 	

The binary Boolean Minimal CSP is polynomial, since the more general
binary Boolean CSP can be trivially reduced to 2-SAT, which is polynomial [9].
Combined with Propositions 1 and 2, and with the triviality of CSP instances
consisting entirely of single-valued variables, we have the main Theorem:

Theorem 1 (The Minimal CSP Dichotomy Theorem). k-ary Minimal
CSP when the size of the domains is bounded by d is NP-hard if and only if
(d ≥ 3 or (d = 2 and k ≥ 3)).

The result is summarized in Table 1.

Table 1. Complexity of the k-ary Minimal CSP with domains of size bounded by d.

Corollary 1. When bounding the size of the domains by a constant d and the
arity of the constraints by a constant k, Minimal CSP and the general CSP are
NP-hard for the exact same values of d and k.

3 Generating Minimal CSP Instances

3.1 Preliminary Notions

The unique properties defining Minimal CSP instances are strongly global. Ran-
dom general CSP instances can be generated constraint after constraint. Even
random satisfiable CSP instances, which are also defined by a global property,
still have considerable leeway for local modifications [1]. In contrast, a slight
change of one given constraint in a Minimal CSP instance can jeopardize its
minimality. Therefore, it is not as straightforward to generate Minimal CSP
instances, compared to many other kinds of CSP instances.

Since the NP-hardness proofs for the Minimal CSP are all constructive, what
would appear to be a method of creating Minimal CSP instances is to reduce
general CSP instances to Minimal CSP instances. Unfortunately, this results in
instances that are far too large. For example, the reduction used in [6] transforms
satisfiable 3-SAT instances with n clauses into Minimal CSP instances with

On the Minimal Constraint Satisfaction Problem 739

1000n variables of domain size 9. Therefore, it is not practical to look for hard
Minimal CSP instances this way.

Another intuitive idea would be to minimalize random satisfiable CSP
instances, that is to only keep the compatibilities of a given satisfiable CSP
that are in a solution. Indeed, every satisfiable CSP instance contains a unique
minimalized version of itself. However, this approach is neither practical nor
efficient. While it avoids too large instances, it does not allow for an effective
control of the size of the instances. In particular, if the original satisfiable CSP
instance has only very few solutions, then the resulting Minimal CSP instance
will be very small, and its resolution trivial. Furthermore, minimalizing an arbi-
trary CSP instance is NP-hard [6]. Since the output of minimalization is not
certain and the effort required to minimalize an instance is too high, another
generation method is needed.

Since in a Minimal CSP instance every single compatibility is part of a solu-
tion, any Minimal CSP instance I’s compatibilities can be defined by a set S
of solutions, such that each solution from S is a solution to I, and any compat-
ibility of I belongs to one of the solutions in S. The solutions from S can be
intersecting, and for a given Minimal CSP instance I, the set S is in general not
unique. The general intuition behind our algorithm is to start with a Minimal
CSP instance with the fewest possible number of solutions in the set S, then add
solutions to the set until we reach the desired constrainedness. We now define
some notions that we will be using when describing our generator.

Definition 3 (CSP size when domains are equal). Let I be a k-ary CSP
instance with n variables, such that the domain of each variable contains exactly
d values. Then we say that I is of size (d, n, k).

When the domains of the variables do not all have the same size, we have
the following definition:

Definition 4 (CSP size when domains are different). Let I be a k-ary
CSP instance with n variables, such that the domain of each variable contains
at most d values. Then we say that I is of size (d−, n, k).

Consider Minimal CSP instances of size (d, n, k) for some given d, n and
k. Without loss of generality, we can assume that the domain of each variable
contains the integers 1 through d. The Minimal CSP instance I of this size with
the fewest compatibilities will be the one defined by a set S = {s1, . . . , sd} of d
solutions, such that for each i, si is the solution where all variables take the value
i. In this particular case, the set S defining I is unique, and the total number of
solutions to I is the same as the number of solutions in S, d. The tightness of I
is dk−d

dk = 1− 1
dk−1 , because there are dk −d incompatibilities in each constraint.

Definition 5 (Bare Minimal CSP when domains are equal). Let I be a
CSP instance of size (d, n, k). We say that I is a bare Minimal CSP instance
if for all k-tuple of variables C = {vi1 , . . . , vik}, for all k-tuple of assignments
A = {(vi1 , ai1), . . . , (vik , aik)}, A is compatible if and only if aij = aij′ for all
1 ≤ j < j′ ≤ n.

740 G. Escamocher and B. O’Sullivan

3

2

1

1

2

3

1

2

3

Av0

Av1 Av2

(a)Size (3, 3, 2)

3

2

1

1

2
1

Av0

Av1

Av2

(b)Size (3−, 3, 2)

Fig. 2. Two examples of bare Minimal CSP instances.

An example of a bare binary Minimal CSP instance with three variables v0,
v1 and v2 and with all domains Av0 , Av1 and Av2 of same size d = 3 is given in
Fig. 2(a). In this figure, continuous lines represent compatibilities, and if there
is no straight line between two values then the values are incompatible.

The notion of bare Minimal CSP instance can be generalized to CSP instances
where the domains of the variables have different sizes.

Definition 6 (Bare Minimal CSP when domains are different). Let I be
a CSP instance of size (d−, n, k). We say that I is a bare Minimal CSP instance
if for all k-tuple of variables C = {vi1 , . . . , vik}, for all k-tuple of assignments
A = {(vi1 , ai1), . . . , (vik , aik)}, A is compatible if and only if for all 1 ≤ j < j′ ≤
n at least one of the following is true:

– aij = aij′
– aij ≤ aij′ and the domain of vij is of size aij
– aij ≥ aij′ and the domain of vij′ is of size aij′

By noticing that in such a Minimal CSP instance the number of compatibil-
ities in each constraint is equal to the size of the largest domain, it is easy to
verify that a bare Minimal CSP instance of size (d−, n, k) has the fewest possible
compatibilities for a Minimal CSP instance of this size.

An example of bare binary Minimal CSP instance with three variables v0,
v1 and v2 and with the associated domains Av0 , Av1 and Av2 of different sizes
is given in Fig. 2(b). Like in Fig. 2(a), continuous lines represent compatibil-
ities, and if there is no straight line between two values then the values are
incompatible.

3.2 The Generator

Suppose that we want a Minimal CSP instance of size (d, n, k), such that the
average tightness of each constraint is t, for some given t. What we do is generate
a bare Minimal CSP instance I of this size, then we add solutions to I until we
have the desired tightness. This is illustrated by Algorithm 1.

On the Minimal Constraint Satisfaction Problem 741

Data: d, n, k integers, t ∈ [0, 1]
Result: A Minimal CSP instance of size (d, n, k), and with a tightness equal to

t′ ∈ [t − 1
dk

, t].

Generate a bare Minimal CSP instance I;
ti ← tightness of I;
while ti > t do

Add solution to I;
ti ← tightness of I;

end
return I

Algorithm 1. Minimal CSP Instance Generator

Data: d, n, k integers, t ∈ [0, 1]
Result: A Minimal CSP instance of size (d, n, k), and with a tightness equal to

t′ ∈ [t − 1
dk

, t].

Generate a bare Minimal CSP instance I;
for i ← 1 to n do

randomize the ordering of the values in the domain of vi;
end
tI ← tightness of I;
while tI > t do

C = {vi1 , . . . , vik} ← most constrained constraint in I;
A = {vi1 : ai1 , . . . , vik : aik} ← random incompatibility k-tuple in C;
Add solution containing A to I;
tI ← tightness of I;

end
return I

Algorithm 2. Improved Minimal CSP Instance Generator

A few adjustments must be made to the algorithm in order to obtain the
optimal result. Specificically, we must randomize the order of the values in each
domain after generating the bare Minimal CSP instance, so that looking at
the first instantiation in the lexicographical order does not yield a trivial solu-
tion. Also, the solution that is added at each iteration of the algorithm must
be built around one of the incompatibilities in the most constrained constraint.
This serves two purposes. Firstly, building a solution around an incompatibility
ensures that the number of compatibilities strictly increases at each iteration,
so that no iteration is wasted and the algorithm always terminates. Secondly,
choosing the most constrained constraint ensures that the tightness of each con-
straint is as balanced as possible. Algorithm 2 illustrates the improvements made
to the original algorithm.

Adding one solution to an instance can, and will in the first iterations, add
several compatibilities at once. Therefore, the tightness of the resulting instance
will not always be exactly equal to the desired value t. However, adding one
solution only adds at most one compatibility per constraint. Therefore, in the
worst case, the tightness of the resulting instance will deviate from t by 1

dk . The

742 G. Escamocher and B. O’Sullivan

number of compatibilities added at each iteration will decrease along with the
tightness. During the first iterations, adding one solution will add one compati-
bility in most constraints. If the desired tightness t is low, then during the last
iterations adding one solution will only add the one compatibility obtained from
picking the most constrained constraint. In the general case, adding one solution
to a CSP instance I will add in average tI compatibilities in each constraint, with
tI being the tightness of I. Therefore, the tightness of the resulting instance will,
on average, deviate from the desired tightness t by t

dk .

3.3 Behavior of the Minimal CSP

An important question is whether our generator is refined enough to observe any
interesting property held by the Minimal CSP. To this end, we used our algorithm
to generate Minimal CSP instances with varying numbers of compatibilities, then
solved them with two state of the art solvers. We found that we could observe the
same behavior found in most other NP-hard problems, that is an easy-hard-easy
pattern in the difficulty of the instances when varying the constrainedness.

We, therefore, looked for the phase transition behind this phenomenon. The
classical notion of phase transition relies on satisfiability: loosely constrained
CSP instances are usually satisfiable and easy to solve, while highly constrained
CSP instances are rarely satisfiable, albeit also easy to solve. The transition from
the former set of instances to the latter is very sharp, and includes what appears
to be the hardest to solve CSP instances.

However, because of the nature of the Minimal CSP, we cannot rely directly
on satisfiability to find an adequate phase transition. Other approaches, like for
example counting the number of backbone variables [1], also fail to adapt to the
Minimal CSP. In order to avoid this problem, we introduced the notion of p-step
instance, specifically tailored to be able to be used in the case of the Minimal
CSP.

What we call a p-step instance of a minimal instance I of size (d, n, k),
formally defined in Definition 7, is the sub-instance of size (d−, n − p, k)
obtained from I after making p random assignments while propagating (1, k−1)-
consistency [4] after each assignment.

Definition 7 (p-Step Instance). Let I and I ′ be two CSP instances. Let Icons
be the instance obtained from I by propagating (1, k − 1)-consistency [4]. For all
p, we say that I ′ is a p-step instance of I if any of the following is true:

– p = 0 and I ′ = Icons.
– p = 1, all the domains of Icons contain at most one value, and I ′ = Icons.
– p = 1 and I ′ is the instance obtained from Icons by assigning some value

to some variable v in Icons such that the domain of v contains at least two
values, then propagating (1, k − 1)-consistency.

– p > 1 and there is a CSP instance I ′′ such that I ′′ is a (p − 1)-step instance
of I and I ′ is a 1-step instance of I ′′.

On the Minimal Constraint Satisfaction Problem 743

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000

 0 50000 100000 150000 200000 250000 300000
 0

 20

 40

 60

 80

 100

A
ve

ra
ge

 s
ea

rc
h

ef
fo

rt
 (

no
de

s)

P
er

ce
nt

ag
e

of
 s

at
is

fia
bl

e
(k

+
1)

-s
te

p
in

st
an

ce
s

Number of compatibilities

effort
completability

(a) Size (10, 76, k = 2)

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

 0 50000 100000 150000 200000 250000 300000
 0

 20

 40

 60

 80

 100

A
ve

ra
ge

 s
ea

rc
h

ef
fo

rt
 (

no
de

s)

P
er

ce
nt

ag
e

of
 s

at
is

fia
bl

e
(k

+
1)

-s
te

p
in

st
an

ce
s

Number of compatibilities

effort
completability

(b) Size (15, 50, k = 2)

 0

 500

 1000

 1500

 2000

 2500

 0 50000 100000 150000 200000 250000 300000
 0

 20

 40

 60

 80

 100

A
ve

ra
ge

 s
ea

rc
h

ef
fo

rt
 (

no
de

s)

P
er

ce
nt

ag
e

of
 s

at
is

fia
bl

e
(k

+
1)

-s
te

p
in

st
an

ce
s

Number of compatibilities

effort
completability

(c) Size (27, 28, k = 2)

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 50000 100000 150000 200000 250000 300000 350000 400000 450000
 0

 20

 40

 60

 80

 100

A
ve

ra
ge

 s
ea

rc
h

ef
fo

rt
 (

no
de

s)

P
er

ce
nt

ag
e

of
 s

at
is

fia
bl

e
(k

+
1)

-s
te

p
in

st
an

ce
s

Number of compatibilities

effort
completability

(d) Size (6, 24, k = 3)

Fig. 3. Comparison between the difficulty of a given Minimal CSP instance and the
percentage of its (k + 1)-step instances that are satisfiable, for various problem sizes.

744 G. Escamocher and B. O’Sullivan

We looked at the satisfiablity of p-step instances. From the definition of
minimality, we know that if I is a Minimal CSP instance of arity k, and if I ′ is
a k-step instance of I, then I ′ is satisfiable. Therefore, in order to not get trivial
results, we chose p = k+ 1 in all our experiments. We noticed what appeared to
be a stong correlation between the percentage of satisfiable (k+1)-step instances
of a given Minimal CSP instance I and the effort required to solve I.

We present the results of our experiments in Fig. 3.2 Because of lack of space,
we only show four instance sizes: (10,76,2), (15,50,2), (27,28,2) and (6,24,3). We
used two state of the art solvers: Mistral and MiniSat. We found that when
solving binary instances Mistral was faster, while on the other hand MiniSat
was more efficient for instances of arity greater or equal than 3. Also because of
lack of space, we only show for each size the results from the faster solver, that
is Mistral for the binary cases and MiniSat for the last, ternary, case.

In all four figures, for both continuous and dashed subplots, the horizontal
axis represents the number of compatibilities of the instance. In the case of
the continuous subplot (effort), the vertical axis represents in all four figures
the number of nodes the solver requires to find a solution, taken across 100
instances by point. In the case of the dashed subplot (completability), the vertical
axis represents in all four figures the percentage of p-step instances that have
a solution, with p = 3 for all binary instances and p = 4 for ternary instances.
Therefore, if there is a point at the position (x, y) of the dashed subplot in the
figure representing our experiments for size (d, n, k), it means that y% of the k+1-
step instances of Minimal CSP instances of size (d, n, k) with x compatibilities
are satisfiable.

All our experiments run over the full range of possible values of compatibili-
ties for Minimal CSP instances, i.e. for a given size (d, n, k) from bare instances
with d× n!

(n−k)!k! compatibilities to complete instances with dk× n!
(n−k)!k! compat-

ibilities. Since the number of compatibilities in a given CSP instance is directly
related to the average tightness of its constraints, plotting against the number
of compatibilities, from low to high, is equivalent to plotting against the con-
strainedness, from high to low.

4 Conclusion

While the Minimal Constraint Satisfaction Problem has been tackled before, we
presented in this paper new results and tools which will be extremely useful in
any future work on the Minimal CSP. We have shown that even when bounding
the size d of the domains and the arity k of the constraints, the Minimal CSP is
NP-hard exactly when the general CSP is, that is for d ≥ 3 or (d = 2 and k ≥ 3).
We also have provided a generation algorithm which can be used to create and
parameterize Minimal CSP instances of any size. We ran our generator in order
to verify that it is refined enough to be able to expose any interesting property

2 Our experiments are run under CentOS 6.6, on two Intel processors (1.33 Ghz each),
and with 12 GB of DDR2 FB-DIMM RAM.

On the Minimal Constraint Satisfaction Problem 745

held by the Minimal CSP. This led us to the empirical discovery of an apparent
correlation between the effort required to solve a given Minimal CSP instance
and the percentage of its (k + 1)-step instances that are satisfiable, with p-step
instances being a new notion that we introduced.

The work we have done in this paper opens up a number of future avenues of
research. In particular, one could look at the relation between the completability
of (k + 1)-step instances and the effort required to find a solution to Minimal
CSP instances, and find out how the former influences the latter. Alternatively,
one could further study this new notion of p-step instance, by using for example
higher values for p or by applying the concept to other kinds of CSP instances.
Indeed, one major asset of p-step instances is that their definition is not restricted
to the Minimal CSP, nor any specific subclass of the CSP.

Acknowledgments. This publication has emanated from research conducted with
the financial support of Science Foundation Ireland (SFI) under Grant Number
SFI/12/RC/2289.

References

1. Achlioptas, D., Gomes, C., Kautz, H., Selman, B.: Generating satisfiable problem
instances. In: Kautz, H.A., Porter, B.W. (eds.) Proceedings of AAAI, pp. 256–261.
AAAI Press/The MIT Press (2000)

2. Amilhastre, J., Fargier, H., Marquis, P.: Consistency restoration and explana-
tions in dynamic csps application to configuration. Artif. Intell. 135(1–2), 199–234
(2002)

3. Clark, D.A., Frank, J., Gent, I.P., MacIntyre, E., Tomov, N., Walsh, T.: Local
search and the number of solutions. In: Freuder, Eugene C. (ed.) CP 1996. LNCS,
vol. 1118. Springer, Heidelberg (1996)

4. Freuder, E.C.: A sufficient condition for backtrack-bounded search. J. ACM 32(4),
755–761 (1985)

5. Gent, I.P., MacIntyre, E., Prosser, P., Walsh, T.: The constrainedness of search.
In: Clancey, W.J., Weld, D.S. (eds.) Proceedings of AAAI, pp. 246–252. AAAI
Press/The MIT Press (1996)

6. Gottlob, G.: On minimal constraint networks. Artif. Intell. 191–192, 42–60 (2012)
7. Hogg, T., Huberman, B.A., Williams, C.P.: Phase transitions and the search prob-

lem. Artif. Intell. 81(1–2), 1–15 (1996)
8. Junker, U.: Configuration. In: Handbook of Constraint Programming. Foundations

of Artificial Intelligence, pp. 837–873. Elsevier (2006)
9. Schaefer, T.J.: The complexity of satisfiability problems. In: Lipton, R.J.,

Burkhard, W.A., Savitch, W.J., Friedman, E.P., Aho, A.V. (eds.) Proceedings of
the 10th Annual ACM Symposium on Theory of Computing, 1–3 May 1978, San
Diego, pp. 216–226. ACM (1978)

10. Xu, K., Li, W.: Exact phase transitions in random constraint satisfaction problems.
J. Artif. Intell. Res. (JAIR) 12, 93–103 (2000)

11. Xu, K., Li, W.: Many hard examples in exact phase transitions. Theor. Comput.
Sci. 355(3), 291–302 (2006)

Algebraic Theory on Shortest Paths
for All Flows

Tadao Takaoka(B)

Department of Computer Science, University of Canterbury,
Christchurch, New Zealand
tad@cosc.canterbury.ac.nz

Abstract. As a mathematical model for the passenger routing problem
for ticketing in a railway network, we consider a shortest path problem
for a directed graph with edges labeled with a cost and a capacity. The
problem is to push flow f from a specified source to all other vertices
with the minimum cost for all f values. If there are t different capacity
values, we can solve the single source shortest path problem for all f t
times in O(tm + tn logn) = O(m2) time when t = m. We improve this
time to O(cmn) if edge costs are non-negative integers bounded by c.

Keywords: Information sharing · Shortest path problem for all flows ·
Priority queue · Limited edge cost

1 Introduction

As the routing problem for passengers buying tickets in a railway network, we
consider a network optimization problem such that each edge has two quantities
associated; cost and capacity. We want to maximize a flow from a specified
source vertex s to a destination vertex v with the minimum cost. Here we have
two objectives; flow amount and path cost. Both cannot be optimized at the same
time. Let us call the minimum cost path the shortest path. We need to compute
the shortest path for the given flow value f for all possible f . For the routing
problem in a train network, suppose f passengers want to travel together in a
group from a station specified as the source vertex s to the destination station
expressed by vertex v. On the way they may need to change trains at several
stations. The capacity of an edge corresponds to the remaining number of seats
on the train and the cost corresponds to the fare. Let d be the cost of a path
from s to v and f be the flow (unsplittable) from s to v. The pair (d, f) is called
a df -pair.

Another example is a computer network. Here vertices correspond to hub
computers and edges correspond to the links. Capacities are band-widths and
flows are packet sizes to be sent. It is regarded as better if packets are transmitted
together to prevent packet loss and recovery.

If d ≤ d′ and f ≥ f ′, (d, f) is better than (d′, f ′), the latter being represented
by the former. Otherwise they are incomparable. We only need to compute
incomparable df -pairs.
c© Springer International Publishing Switzerland 2015
Z. Lu et al. (Eds.): COCOA 2015, LNCS 9486, pp. 746–757, 2015.
DOI: 10.1007/978-3-319-26626-8 55

Algebraic Theory on Shortest Paths for All Flows 747

Similar problems in the literature are the multi (bi)-objective shortest path
problem [11] and the minimum cost flow problem [1]. In the former, the two objec-
tives are similar; additive costs over paths. In our problem, they are cost and
capacity. In the latter, the flow can be split over several paths to minimize the
cost. In our model, a flow cannot be divided. Unsplittable flow is studied in a few
papers such as [4,9], in which flow amounts are considered and costs are not.

The network optimization model in this paper is simple enough to be used by
network practitioners, but to the author’s knowledge there is no algorithmic or
theoretical analysis on this model in the literature apart from the recent [16–18].
There are many papers on train routing such as [3,20]. They are more practical
with many constraints such as shunting, coupling/decoupling, safety margin and
connection with other trains in addition to cost and capacity. Their problems are
mostly NP-hard, requiring some sort of meta-heuristic or human intervention.
Our problem is much simpler; cost and capacity. Our efficient algorithm should
be used as a subroutine in a complicated system.

The algorithmic technique is viewed as information sharing described in [14],
which solves the all pairs shortest path problem efficiently. More specifically,
for a graph with n vertices, the single source shortest path problem is solved
n times by changing the source n times, where they share common resources
obtained in advance as preprocessing or during the course of computation. In our
problem, we solve the single source shortest path problem for all flow amounts
at simultaneously utilizing some common data structures.

To prepare for the later development, we describe the single source shortest
path problem for all flows (SSSP-AF) in the following. Let G = (V,E) be a
directed graph where V = {v1, · · · , vn} and E ⊆ V × V . Let |E| = m. The cost
and capacity of edge (u, v) is a non-negative real number denoted by cost(u, v)
and a positive real number cap(u, v) respectively. We specify a vertex, s, as
the source. A shortest path from s to vertex v is a path such that the sum
of edge costs of this path is the minimum among all paths from s to v. The
minimum cost is also called the shortest distance. The single source shortest
path problem (SSSP) is to compute shortest paths from s to all other vertices.
The bottleneck (value) of a path is the minimum capacity of all edges on the
path. The bottleneck of the pair of vertices (u, v) is the maximum bottleneck of
all paths from u to v. Such a path is called the bottleneck path from u to v.
The single source bottleneck path (SSBP) problem is to compute the bottleneck
path from s to all vertices v. The bottleneck from s to v is the maximum flow
value of a simple path from s to v. Those two problems are well studied. For the
bottleneck path problem the readers are referred to [13] for single source and
[10] for all pairs.

If we flow a smaller amount from s to v, there may be a shorter path from
s to v. Thus it makes sense to compute the shortest path from s to v for all
possible flows for all vertices v. We compute a tuple of pairs (d, f) for each v
where d is the shortest distance of a path that can push f to v.

748 T. Takaoka

The problem can be solved by removing edges one by one. Suppose there are
t capacity values cap1, ..., capt in this order. The simplest algorithm looks like:

for i = 1 to t do begin
Remove edges whose capacity is less than capi,
for the flow f such that capi ≤ f < capi+1.
Solve the single source shortest path problem for the resultant graph.

end

If we use a Fibonacci heap [12] for the priority queue for the frontier set, the
complexity of this algorithm becomes O(tm + tn log n), including the time for
sorting capacities. This trivial upper bound is our starting point. The above
algorithm works for edge costs of non-negative real numbers. In this paper, we
improve the complexity when edge costs are non-negative integers bounded by a
small positive constant c, achieving O(min{t, cn}m+cn2) ≤ O(cmn). The trivial
complexity above is strongly polynomial, while our complexity looks pseudo
polynomial. The point here is that we have a speed-up when c is small. When
t = O(m) and m = O(n2), the trivial complexity hits O(n4), called quartic, while
our complexity O(cn3) can stay sub-quartic when c = o(n). Similar studies are
done on the all pairs shortest path problem (APSP) with integer edge costs such
as [2,15,21], who investigated up to what value of c we can stay in sub-cubic
for the APSP complexity. The best bound for such c is O(n0.624) if we use the
Coppersmith-Winograd matrix multiplication algorithm. Recent studies improve
this bound slightly.

The rest of the paper is as follows: In Sects. 2 and 3, SSSP and SSBP are
described in a pedagogical way so that we can see how they can be combined
to solve the SSSP-AF problem. In Sect. 4, SSSP-AF is solved with the data
structure of one dimensional bucket system. The complexity in this section is
already known. In Sect. 5, we improve the complexity in Sect. 4 by introducing
another data structure and enhancing the one-dimensional bucket system. This
section is the major contribution of the paper. In Sect. 6, we define the single
source bottleneck path for all costs (SSBP-AC) problem. Although we can design
an algorithm for this problem on its own, we show the problem can be solved as
a by-product of the algorithm in Sect. 5. Section 7 concludes the paper. We use
up-right fonts for some long names of variable and functions for readability.

2 Single Source Shortest Path Problem

We describe Dijkstra’s algorithm [8] below in our style. The set S, called the
solution set, is the set of vertices to which the shortest distances have been
finalized by the algorithm. The set F , called the frontier set, is the set of vertices
which is outside S and can be reached from S by a single edge. We note that
the distances to vertices in F can be limited in a small band when edge costs
are bounded by a small integer.

Let OUT (v) = {w|(v, w) ∈ E}. The solution (the shortest distances from s)
is in the array d at the end of the computation. To simplify presentation, only

Algebraic Theory on Shortest Paths for All Flows 749

the shortest path distances are calculated, not the shortest paths. We assume all
vertices are reachable from the source. Paths are given by a sequence of vertices
such that for two successive vertices u and v, there is an edge (u, v). We list two
invariants maintained by Algorithm 1 below.

(1) S is the set of vertices v to which shortest distances are worked out in d[v].
(2) If v is in F , d]v] is the distance of the shortest path that lies in S except for

the end point v itself.

Lemma 1. The invariants (1) and (2) are kept through Algorithm1.

Proof. Lemma is true before while. Suppose (1) is true immediately after line
4. If there is a shorter path to v after line 5 via another vertex, say u, in F ,
which must exist to reach v, then dist[u] is shorter than dist[v], which is a
contradiction. After v is included in S, all w in F or in V − S − F are updated
with the smallest possible dist[w]. Thus (2) is preserved.

Throughout the paper, comments are given in the pseudo codes of the algo-
rithms by the double slash for readability.

Algorithm 1
1. S = ∅
2. dist[s] = 0; dist[v] = ∞ for all v �= s
3. F = {s}
4. while F is not empty do begin
5. v =delete-min(F) // with key dist[v]
6. S = S ∪ {v}
7. for w ∈ OUT (v) do
8. if w /∈ S then
9. if w ∈ F then dist[w] = min{dist[w], dist[v] + cost(v, w)} //decrease-
key
10. else begin dist[w] = dist[v] + cost(v, w);F = F ∪ {w} end // insert
11. end

At the end of computation F becomes empty and S becomes V , giving the
solution in dist. We use a simple data structure of one-dimensional bucket system
with array Q. Q[i] is a list of items whose key value is i. Items in our case are
vertices. We observe delete-min or delete-max operations can be done in O(cn)
time in total where cn is the size of Q, and decrease-key or increase-key, and
insert can be done in O(1) time per operation.

Theorem 1. Algorithm1 solves the SSSP in O(m + cn) time [7].

Proof. We use a one-dimensional bucket system for the priority queue follow-
ing Dial’s idea [7], where total delete-min takes O(cn) time and each insertion
and decrease-key takes O(1) time. Suppose there are mi edges from vertex vi.
Summation of miO(1) gives the result, where m = m1 + ... + mn.

750 T. Takaoka

3 Single Source Bottleneck Path Problem

We modify Algorithm 1 slightly for the single source bottleneck path problem.
Note that we can push flow f from s to v through a path whose bottleneck
value is f . The bottleneck path is sometimes called the widest path, where the
capacity of an edge is viewed as the width. The solution set S and frontier set
F are similarly defined.

(1) S is the set of vertices v to which maximum flows are worked out in f [v].
(2) If v is in F , flow]v] is the flow of the path with the maximum flow to v that

lies in S except for the end point v itself.

We use array “flow” instead of “dist” in the following. Capacities, which are
non-negative real numbers, are sorted and normalized to integers 1, .., t, t + 1,
where there are t different capacity values in the graph. Note that t ≤ m.

Algorithm 2
1. S = ∅
2. flow[s] = t + 1; flow[v] = 0 for all v �= s
3. F = {s}
4. while F is not empty do begin
5. v =delete-max(F) // with key flow[v]
6. S = S ∪ {v}
7. for w in OUT (v) do
8. if w /∈ S then
9. if w ∈ F then flow[w] = max{flow[w],min{flow[v], cap(v, w)}} //

increase-key
10. else begin flow[w] = min{flow[v], cap(v, w)};F = F ∪ {w} end //

insert
11. end

Lemma 2. Invariants (1) and (2) are kept through the iteration in the while
loop. Proof omitted.

Theorem 2. After normalization of capacities, Algorithm2 solves the SSBP in
O(m + t) = O(m) time. Proof omitted.

4 Single Source Shortest Paths for All Flows

We parameterize Dijkstra’s algorithm with the flow value f . Array dist[v] is
extended to dist[v, f] whose intuitive meaning is the distance of the shortest path
that can push f to v. The solution set S is extended to S(f), meaning the solu-
tion set for the SSSP for the flow value f . Data structure Q is used for F such that
items (v, f) are kept in the list at Q[dist[v, f]], that is, dist[v, f] is the key. The
idea is to solve t + 1 SSSP’s in parallel with the shared data structure Q.

Algebraic Theory on Shortest Paths for All Flows 751

Algorithm 3
Main data structures
dist[v, f] : currently shortest distance of path from source s to vertex v that can
push flow f .
Q : a one-dimensional array of lists of items (v, f). If Q[d] includes (v, f),
dist[v, f] is d. In each list the same vertex may appear more than once with
different f . This part is improved in Algorithm 4.
Pointer array indexed by (v, f) : pointer[v, f] points to item (v, f) in Q. Capac-
ities are normalized to 1, ..., t, t + 1. 1. S[f] = ∅ for f = 1, ..., t, t + 1 // t+1 is
for infinity
2. dist[s, f] = 0 for f = 1, ..., t, t + 1; Other dist are initialized to ∞
3. Q[0] = {(s, t + 1)}
4. while Q is not empty do begin
5. (v, f) =delete-min(Q) // with key dist[v, f]
6. S[f] = S[f] ∪ {v}
7. for w in OUT (v) do begin
8. d∗ = dist[v, f] + cost(v, w) // candidate distance for w
9. f∗ = min{f, cap(v, w)} // candidate flow for w
10. if w is not in S[f∗] then
11. if (w, f∗) ∈ Q then dist[w, f∗] = min{dist[w, f∗], d∗} //decrease-key
12. else begin dist[w, f∗] = d∗;Q = Q ∪ {(w, f∗)} end // insert
13. end
14. end.

The following lemma is obvious.

Lemma 3. In Algorithm3, we have f ≤ f ′ ⇒ S(f) ⊇ S(f ′)

We establish two assertions similar to those in the previous sections.

(1) For all v in S[f], dist[v, f] is the distance of the shortest path from s to v
that can push flow f .

(2) For all (v, f) in Q, dist[v, f] is the distance of the shortest path from s to v
that can push flow f whose vertices are in S[f] except for the end point v.

Lemma 4. The above invariants (1) and (2) are kept through iterations by the
while-loop.

Proof. Proof is based on induction through the while-loop. Before the while-loop
(1) and (2) are obviously true. Suppose there is a shorter path to v via u in
Q that can push flow f at line 5. This means dist[u, f] < dist[v, f], which is a
contradiction to line 5 that chose dist[v, f] as minimum. To push flow f∗ via
v after v is included in S[f], we update all (w, f∗) in Q with possible shorter
distances via v, or include (w, f∗) if it was outside Q with the new distance via v.
Note that S(f∗) ⊇ S(f) from Lemma 3, meaning the path in S(f) for (w, f∗) is
included in S(f∗) except for w. Thus at the end of one iteration (2) is preserved.

Theorem 3. Algorithm3 solves SSSP-AF in O(tm + cn) time [16].

752 T. Takaoka

Proof. The correctness is seen from the fact that at the end of the algorithm
the set S(f) includes all v to which flow f can be pushed. The time is analysed
from delete-min and decrease-key/insert. The former takes O(cn). The latter
takes O(tm), because each vertex vi joins S(f)’s at most t times and decrease-
key/insert takes O(tmi) for each vi, where |OUT (vi)| = mi, resulting in O(tm)
over summation on i. Note that all (v, f) in Q are distinct so that we have at
most t such (v, f)’s in Q for each v.

The following monotone property is obvious and can be used for printing.

Lemma 5. It holds for finalized distances that f ≤ f ′ ⇒ dist[v, f] ≤ dist[v, f ′].

From this lemma, we can list up incomparable df -pairs in non-decreasing order
for each v

for each v do
for f = 1 to t do

if dist[v, f] < ∞ and dist[v, f] �= dist[v, f − 1] then Print (v, dist[v, f], f)

In [5,6], the simple one-dimensional bucket system is generalized to the k-
level cascading bucket system for SSSP. The following is a very brief sketch of
the data structure. Now the initial key value d[v] = cost(s, v) is given like a
radix-p number, where only xk−1 may exceed p

d[v] = xk−1p
k−1 + ... + x1p + x0 (0 ≤ x0, x1, ..., xk−2 ≤ p − 1, (1)

0 ≤ xk−1 ≤ �c/pk−1 − 1) for some k.

The data structure has k levels of buckets. At the i-th level for each i, there
are p buckets. Let i be the largest index of non-zero xi. Item v is inserted into
the xi-th bucket at level i for all v in the frontier. During the computation, we
maintain the items in the appropriate buckets based on the current value of d[v].
Let ai, called the active pointer, be the smallest index of a non-empty bucket
in level i. The role of ai is to skip many empty buckets at level i. The base for
level i, Bi, and the range for the j-th bucket at level i, Rj , are defined by

Bi = ak−1p
k−1 + ... + ai+1p

i+1, Rj = [Bi + jpi, Bi + (j + 1)pi − 1]

If item v is in level i for d[v] = xk−1p
k−1 + ... + x1p + x0, i is the largest index

such that ak−1 = xk−1, ..., ai+1 = xi+1 and ai �= xi. Items move from a higher
level to a lower level and from a higher bucket to a lower bucket in the same
level. The minimum can be found by scanning for a non-empty level and then
the first non-empty bucket. Decrease-key can be done by moving the item in
the data structure. Insert can be done by putting the item at the largest level
and follow decrease-key. Suppose we solve t SSSP’s. In [14], it is shown that t
SSSP’s can be solved in O(tm+tn log(c/t)) time with this data structure. In [14],
the data structure is used for the all pairs shortest path problem, where t = n,
achieving the complexity of O(mn+n2 log(c/n)). We can use the data structure

Algebraic Theory on Shortest Paths for All Flows 753

for the SSSP-AF problem where t SSSP’s are solved in O(tm+ tn log(c/t)) time.
This complexity is good when c is large with a better second term, but when t
is large, the first term of O(tm) is outstanding. The same thing can be said of
Thorup’s data structure [19] that spends O(tm+ tn log log c) time when applied
to our problem. We try to improve the first term in the next section.

We note at this stage that in the list Q[d] for some d, there might be items
(v, f) and (v, f ′) such that f �= f ′ for some v. The following section is to prevent
this duplication of items for the same v with more formalism.

5 A Faster Algorithm for SSSP-AF

Definition 1. Natural order ≤n is defined on df-pairs, (d, f) and (d′, f ′), by

(d, f) ≤n (d′, f ′) ⇒ d ≤ d′ ∧ f ≤ f ′

Merit order ≤m is defined on (d, f) and (d′, f ′) by

(d, f) ≤m (d′, f ′) ⇒ d′ ≤ d ∧ f ≤ f ′

The natural order represents a numerical order while the merit order specifies
which is better for our objective.

Definition 2. For v in S[f], pair (dist[v, f], f) is said to be Pareto optimal at v
if there is no pair (dist[v, f ′], f ′) such that v is in S(f ′) and (dist[v, f ′], f ′) >m

(dist[v, f], f). In other words, (dist[v, f], f) is Pareto optimal if there is no better
df-pair so far at v.

The priority queue Q is augmented by array flow, which is initialized to
all 0. flow[v, d] is the maximum flow so far from s to v with cost d. We main-
tain each list Q[d] such that each v appears at most once in the list. If (v, f)
is to be inserted to list Q[d], where d = dist[v, f], flow[v, d] is consulted. If
f ≤ flow[v, d], this insertion is ignored. If not, (v, flow[v, d]) is deleted from Q,
(v, f) is inserted and flow[v, d] is updated with f . Decrease-key(v, f) is to per-
form delete(v, f) and insert(v, f) with the new distance. We maintain pointers
for each pair (v, f) to locate (v, f) in Q in O(1) time. Delete-min takes O(cn)
time in total.

Algorithm 4
Main data structures
dist[v, f] : same as Algorithm 3
Q : a one-dimensional array of lists (buckets) of items (v, f). If Q[d] includes
(v, f), dist[v, f] is d. In each list every vertex appears at most once.
flow : flow[v, d] gives the maximum flow that can be pushed from s to v through
a path in S(f) except v with cost d. The size of flow is O(cn2).
Pointer array indexed by (v, f) : same as Algorithm 3
0. dist[v, f] are initialized to ∞ for all v �= s and f
1. S[f] = ∅ for f = 1, ..., t, t + 1; // t + 1 is for infinity

754 T. Takaoka

2. dist[s, f] = 0 for f = 1, ..., t, t + 1; flow[s, d] = 0 for all d
3. Q[0] = {(s, t + 1)}
4. while Q is not empty do begin
5. (v, f) =delete-min(Q) // with key dist[v, f]
6. S[f] = S[f] ∪ {v}
7. for w in OUT (v) do begin
8. d∗ = dist[v, f] + cost(v, w) // candidate distance for w
9. f∗ = min{f, cap(v, w)} // candidate flow for w
10. if w is not in S[f∗] then
11. if (w, f∗) is in Q then begin
12. dist[w, f∗] = min{dist[w, f∗], d∗}
13. decrease-key(w, f∗)
14. flow[w, d∗] = max{flow[w, d∗], f∗}
15. end
16. else begin
17. dist[w, f∗] = d∗

18. insert(w, f∗)
19. flow[w, d∗] = f∗

20. end // if-else
21. end // for
22. end // while
23. procedure insert(w, f∗)
24. begin
25. if f∗ > flow[w, d∗] then begin
26. delete(w, flow[w, d∗])
27. Q = Q ∪ (w, f∗) // insert with key dist[w, f∗]
28. end
29. end
30. procedure decrease-key(w, f∗)
31. begin delete(w, f∗); insert(w, f∗) end

The loop invariants (1) and (2) in the previous section holds for Algorithm 4
as well. In addition we have the following lemma, which is similar to (2).

Lemma 6. For all v and d, let f = flow[v, d]. If (v, f) is in Q, f is the maxi-
mum flow of the path with cost d that can push f from s to v whose vertices are
in S[f] except for the end point v.

Proof. Suppose this invariant holds at the beginning of the while loop. After v
is included in S[f], flow[w, d∗] is updated at lines 14 and 19. Note that we have
f∗ ≤ f and thus S[f∗] ⊇ S[f] from Lemma 3. Thus the path is in S(f∗) except
for the end point and the lemma holds for f∗ = flow[w, d∗] as well.

Lemma 7. At each iteration of while loop, pair (dist[v, f], f) is Pareto optimal
for any (v, f) ∈ S[f] at line 5.

Proof. Suppose the statement is true at the beginning of each iteration. We
perform one more iteration. Suppose (dist[v, f], f) is not Pareto optimal for

Algebraic Theory on Shortest Paths for All Flows 755

some v and f at the end of the iteration. Then for some (dist[v, f ′], f ′) we have
(dist[v, f ′], f ′) >m (dist[v, f], f), which means

(dist[v, f ′] < dist[v, f] ∧ f ′ ≥ f) ∨ (dist[v, f ′] ≤ dist[v, f] ∧ f ′ > f).

By a simple calculation, this is equivalent to

(dist[v, f ′] < dist[v, f] ∧ f ′ ≥ f) ∨ (dist[v, f ′] = dist[v, f] ∧ f ′ > f).

This contradicts the fact that dist[v, f] is the distance of the shortest path that
can push f to v, or the fact that (v, f) is updated (in the form of (w, f∗)) with
the maximum possible f by consulting flow[v, dist[v, f]]. Lemma 6 guarantees
f is the maximum flow to v with cost dist[v, f].

In the following lemma we abbreviate (dist[v, f], f) as (d, f).

Lemma 8. All Pareto optimal df-pairs at any v can be sorted in increasing
natural order. Furthermore if (d, f) ≤n (d′, f ′), we have d < d′ and f < f ′.

Proof. If not sorted in natural order, there must be (d, f) and (d′, f ′) at v such
that d > d′ and f ≤ f ′ or d ≤ d′ and f > f ′. Then (d, f) <m (d′, f ′) or
(d, f) >m (d′, f ′), a contradiction to Pareto optimal. The latter half can be seen
as follows: Suppose there are (d, f) and (d′, f ′) at v such that d = d′ or f = f ′,
which is a contradiction to Pareto optimal.

Theorem 4. Algorithm4 solves SSSP-AF in O(min{t, cn}m + cn2) time.

Proof. Correctness is similar to that of Theorem 3. We measure the complexity
by the number of accesses to major data structures. If a one-dimensional bucket
system is used for Q, the total time for scanning the array for delete-min is
O(cn). For edge inspection at line 7, we observe pair (v, f) at line 5 brings
Pareto optimal (dist[v, f], f) at v. The size of the Pareto optimal solution at each
v is bounded by min{t, cn} from the previous lemma. Thus the number of edge
inspections for decrease-key and insert at line 7 is bounded by min{t, cn}mi for
vertex vi. Summation over i can give us the time for decrease-key and insert being
O(min{t, cn}m). The initialization for array dist, array flow and Boolean arrays
for membership of S[f∗] and Q used at lines 10 and 11 takes O(cn2 + tn). Thus
the total time is given by O(min{t, cn}m + cn + (cn + t)n) = O(min{t, cn}m +
(cn + t)n) = O(min{t, cn}m + cn2).

Corollary. The SSSP-AF problem with edge costs bounded by c can be solved
in O(cmn) time. If the cost is a unit, it can be solved in O(mn) time.

Note. We could use the cascading bucket system to improve delete-min opera-
tions with O(tn log(c/t)), but cannot improve the complexity of O(cn2) for the
initialization of flow. It is open whether we can improve this time for initializa-
tion. In a way we improved the complexity of the first term at the higher cost
of the second term, resulting in a better overall complexity.

756 T. Takaoka

6 Single Source Bottleneck Paths for All Costs Problem
(SSBP-AC)

For every given cost d, we work out maximum flow flow[v, d] that can be pushed
from s to v for all v and d. Although we can design an algorithm for this problem
by swapping the roles of distance and flow in Algorithm 4, Algorithm 4 already
solves this problem in array flow. Following the monotone property of flow
similar to Lemma 5, the solution can be printed by
for each v do

for d = 1 to cn do if flow[v, d] > 0 then
if flow[v, d] �= flow[v, d − 1] then Print (v, d, flow[v, d])

7 Concluding Remarks

We improved time complexities of the SSSP-AF problem for special types of
graphs using the idea of information sharing. When c = O(n) or costs are real
numbers, the complexity is standing at O(n4) with only n as variable. It is open
whether sub-quartic is possible.

There are some possibilities to extend our idea to improve time complexi-
ties for the all pairs shortest paths for all flows (APSP-AF) problem. Another
direction may be to seek some possibility of using our algorithm as a subroutine
for the flow augmenting path for the minimum cost flow problem, where flow
splitting is allowed.

Our network model is simple enough to be incorporated into a larger networks
such as any transportation network and a local area communication network as
our algorithm is quite efficient. Our algorithm will be useful when used as a
subroutine of a larger system.

References

1. Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows: Theory, Algorithms, and
Applications. Prentice-Hall, Englewood Cliffs (1993)

2. Alon, N., Galil, Z., Margalit, O.: On the exponent of the all pairs shortest path
problem. In: Proceedings of 32th IEEE FOCS, pp. 569–575 (1991). Also JCSS 54,
255–262 (1997)

3. Anderegg, L., Eidenbenz, S., Gentenbein, M., Stamm, C., Taylor, D.S., Weber, B.,
Widmeyer, P.: Routing algorithms: concepts. design choices, and practical consid-
erations. In: ALENEX 2003, pp. 106–118 (2003)

4. Chakrabarti, A., Chekuri, C., Gupta, A., Kumar, A.: Approximation algorithms
for the unsplittable flow problem. Algorithmica 47(1), 53–78 (2007)

5. Cherkassky, B.V., Goldberg, A.V., Radzik, T.: Shortest paths algorithms: theory
and experimental evaluation. Math. Prog. 73, 129–174 (1996)

6. Denardo, E.V., Fox, B.L.: Shortest-route methods: I. Reaching, pruning, and buck-
ets. Oper. Res. 27, 161–186 (1979)

Algebraic Theory on Shortest Paths for All Flows 757

7. Dial, R.B.: Algorithm 360: shortest path forest with topological ordering. Commun.
ACM 12, 632–633 (1969)

8. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numer. Math.
1(269–271), 1343–1345 (1959)

9. Dinits, Y., Garg, N., Goemans, N.: On the single-source unsplittable flow problem.
Combinatorica 19(1), 17–41 (1999). Springer

10. Duan, R., Pettie, S.: Fast algorithms for (max, min)-matrix multiplication and bot-
tleneck shortest paths. In: Proceedings of the 20th Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA 2009), pp. 384–391 (2009)

11. Ehrgott, M.: Multicriteria Optimization. Springer, Berlin (2005)
12. Fredman, M.L., Tarjan, R.E.: Fibonacci heaps and their uses in improved network

optimization algorithms. J. ACM 34, 596–615 (1987)
13. Gabow, H.N., Tarjan, R.E.: Algorithms for two bottleneck optimization problems.

J. Algorithms 9(3), 411–417 (1988)
14. Takaoka, T.: Sharing information for the all pairs shortest path problem. Theor.

Comput. Sci. 520, 43–50 (2014)
15. Takaoka, T.: Subcubic cost algorithms for the all pairs shortest path problem.

Algorithmica 20(3), 309–318 (1998)
16. Shinn, T.-W., Takaoka, T.: Combining the shortest paths and the bottleneck paths

problems. In: ACSC, pp. 13–18 (2014)
17. Shinn, T.-W., Takaoka, T.: Some extensions of the bottleneck paths problem. In:

Pal, S.P., Sadakane, K. (eds.) WALCOM 2014. LNCS, vol. 8344, pp. 176–187.
Springer, Heidelberg (2014)

18. Shinn, T.-W., Takaoka, T.: Combining all pairs shortest paths and all pairs bot-
tleneck paths problems. In: Pardo, A., Viola, A. (eds.) LATIN 2014. LNCS, vol.
8392, pp. 226–237. Springer, Heidelberg (2014)

19. Thorup, M.: Integer priority queues with decrease key in constant time and the
single source shortest paths problem. In: STOC 2003, pp. 149–158 (2003)

20. Zwanevelt, P.J., Kroon, L.G., Romeijn, H.E., Salomon, M., Dauzere-Peres, S., Van
Hoesel, S.P.M., Ambergen, H.W.: Routing trains through railway stations: model
formulation and algorithms. Transp. Sci. 30(3), 181–194 (1996)

21. Zwick, U.: All pairs shortest paths using bridging sets and rectangular matrix
multiplication. J. ACM 49(3), 289–317 (2002)

The Minimum Acceptable Violation Ranking
of Alternatives from Voters’ Ordinal Rankings

Kelin Luo1,2(B) and Yinfeng Xu1,2

1 School of Management, Xi’an Jiaotong University, Xi’an, China
luokelin@stu.xjtu.edu.cn

2 State Key Lab for Manufacturing System Engineering, Xi’an 710049, China

Abstract. Motived by applications of ordinal ranking and adjustment
consensus in group decision making, we study the problem of aggregating
all voters’ ordinal ranking on a set of alternatives into an adjusted “con-
sensus” ranking. In this problem, every voter ranks a set of alternatives
respectively, and we know the adjustment acceptability. The problem is
to find an optimal ordinal ranking which minimizes the sum of voter’s
acceptable violation. We analyse this problem by utilizing both pairwise
preference and order-based ranking, and develop a branch-and-bound
algorithm to solve this problem. The effectiveness and efficiency of this
algorithm are verified with a small example and numerical experiments.

Keywords: Group decisions · Ordinal ranking · Acceptability index ·
Branch-and-bound algorithm

1 Introduction

Group decisions are widely used in many areas: the president election, the Oscar
film review, rank projects, and so on. In the group decision setting, every voter
ranks a subset of alternatives based on his or her own preference, and the chair-
man has to combine all the individual rankings together in order to get a “con-
sensus” ranking.

The traditional group decision problem based on ordinal ranking has been
studied for over 200 years. Borda [1] firstly proposed this concept by using the
average ranks assigned by voters. We know that there are many paradoxes.
Kendall [2] represented a pairwise preference model to describe group decision
problem, and Wei [3] tried to solve it by using algebraic method. Then Blin
[4] and other scholars [5–8] extended the initial violation distance among the
rankings of all candidates or alternatives through variety approaches.

One of the most famous and widely used models for representing preference
own to Kemeny and Snell (KS) [5]. Their model aggregated the individual pref-
erence difference by pairwise comparisons of the form “alternative a is preferred
to alternative b, alternative a is preferred to alternative c, etc”. The objective
function is to minimize the total violations (or differences) between every vot-
ers preference and “consensus” ranking preference. They named this problem
c© Springer International Publishing Switzerland 2015
Z. Lu et al. (Eds.): COCOA 2015, LNCS 9486, pp. 758–770, 2015.
DOI: 10.1007/978-3-319-26626-8 56

The MAVR of Alternatives from Voters’ Ordinal Rankings 759

as Minimum Violation Ranking (MVR) problem. Cook and Saipe [9] used a
median ranking method to solve this MVR problem. Jonathan et al. [10] used
an equivalent positive KS (PKS) form and expressed this problem as a network
for solving it more efficiently. Cook et al. [11] used heuristics to find the order
ranking with a minimum violation. Furthermore, Cook and Kress [12] gave us
some transformed models based on the Date Envelopment Model (DEA) frame-
work. Rademaker and De Baets [13] formulated a new ranking procedure for the
initial MVR problem and gave some great properties of this ranking procedure.
In addition, there are many transformed MVR problem, such as Cook et al. [14]
came up with a partial MVR and solved it with a branch and bound algorithm.

We will study this problem from a new aspect. We know that people proba-
bly have violation (or difference) acceptability when they are involved in a group
decision environment. It means that people will probably ignore the violation (or
difference) if the violation is not significant. This concept has been used in group
adjustment consensus decisions for ten years [15–17]. Considering voters’ accept-
ability could make people accept the final order easily. However, few researchers
apply it to traditional discrete group decision problem. We attempt to model a
new MVR problem with an acceptability index and give a procedure to solve it.

This problemcanbe titled asMinimumAcceptableViolationRanking (MAVR)
problem. We present the acceptable violation based on pairwise preference deci-
sion matrix and ranking decision matrix. We also permit every voter to adjust their
preferences less than or equal to a constant step before we calculate the violation.
The unique objective is to find a ranking C for which the total violation between
C and the set of all voters adjusted rankings is minimized.

While the MVR problem is NP-hard for it is equivalent either to a minimum
feedback edge set problem [18], or a problem of which the group preference
matrix has the property of being an upper and lower triangular [19]. Both of
them are NP-complete or NP-hard. The MAVR problem is more difficult because
we have to identify whether voters violate the acceptability index or not. Thus,
branch-and-bound algorithm is a reasonable method to solve this problem.

The rest of the paper is organized as follows. In Sect. 2, we define the MAVR
model and give some equivalent formulations based on different distance forms.
In Sect. 3, we present a branch-and-bound ranking procedure and give an exam-
ple to illustrate the algorithm. In Sect. 4, we report a set of numerical experiments
to evaluate the proposed procedure. We conclude the main results in Sect. 5.

2 Formulation

In this section, we propose a formulation of MAVR problem which is based on
presenting a set of definitions and two transformations.

2.1 Preliminaries

We start by presenting some basic concepts and network formations of MAVR
problem. Let X = {x1, x2, ..., xm} be a discrete set of alternatives. Let E =

760 K. Luo and Y. Xu

{e1, e2, ..., em} be the set of voters that participate in the group decision making.
Let Rl = (rl

ij)m∗m(l = 1, 2, ..., n) be the ranking decision matrix given by voter
el ∈ E, where (rl

ij) presents that the ranking order of alternative xi ∈ X is jth
(j ∈ {1, 2, ...,m}), and

rl
ij =

{
1 if voter el deems that alternative xi is jth,

0 otherwise,

s.t.
∑m

i=1 rl
ij = 1 l = 1, ..., n, j = 1, ...,m,∑m

j=1 rl
ij = 1 l = 1, ..., n, i = 1, ...,m.

Let Al = (al
ij)m∗m(l = 1, 2, ..., n) be the preference decision matrix which

we assume that the pairwise preference are given by the voter el, where al
ij

represents the preference between xi ∈ X and xj ∈ X [5,10], and

al
ij =

{
1 if voter el deems that alternative xi is preferred to alternative xj ,

0 otherwise.

Al can be derived from Rl. For example, suppose voter el’ ranking decision
matrix is Rl. It means that alternative x1 is first, x2 is second, and x3 is third,
thus we have

Rl =

⎛
⎝ 1 0 0

0 1 0
0 0 1

⎞
⎠ =⇒ Al =

⎛
⎝ 0 1 1

0 0 1
0 0 0

⎞
⎠ .

Generally, Positive Kemeny and Snell (PKS) distance [10] is used for repre-
senting the difference (or violation) of two preference decision matrixes Al = (al

ij)
and C = (cij) [11–17]:

dPKS(Al, C) =
∑

i

∑
j

∣∣al
ij − cij

∣∣ .

Definition 2.1 (Ranking Violation). Given two ranking decision matrix Rl =
(rl

ij) and C̃ = (c̃ij), the ranking violation (or difference) of this two ranking
decision matrix is given by:

dRD(Rl, C̃) =
∑

i

∑
j

vij

s.t. vij =

{
1 (
∑

i1
i1 ∗ rli,i1 −∑j1

j1 ∗ rlj,j1) ∗ (
∑

i1
i1 ∗ c̃i,i1 −∑j1

j1 ∗ c̃j,j1) < 0,

0 otherwise.

If Al = (al
ij) is derived from Rl = (rl

ij), and C = (cij) is derived from
C̃ = (c̃ij), we have dRD(Rl, C̃) = dPKS(Al, C).

The MAVR of Alternatives from Voters’ Ordinal Rankings 761

2.2 Minimum Acceptable Violation Ranking Model

Definition 2.2 (Acceptable Violation). Given a set of preference decision rank-
ings {A1, A2, ..., An}, the acceptable violation of a ranking C(in matrix repre-
sentation) is given by

V (C) =
n∑

l=1

m∑
i=1

m∑
j=1

∣∣bl
ij − cij

∣∣
s.t.

∑m
i

∑m
j

∣∣al
ij − bl

ij

∣∣ ≤ α l = 1, ..., n,

cij satisfies transitivity property i = 1, ...,m, j = 1, ...,m.

The above definition can also be presented as below. It’s similar to the linear
adjustment consensus group decision linear model [16].

V (C) =
n∑

l=1

m∑
i=1

m∑
j=1

∣∣bl
ij − al

ij

∣∣
s.t.

∑m
i

∑m
j

∣∣cij − bl
ij

∣∣ ≤ α l = 1, ..., n,

cij satisfies transitivity property i = 1, ...,m, j = 1, ...,m.

where Al = (al
ij) is the initial preference matrix of voter el, Bl = (bl

ij) is the
adjusted preference matrix of voter el after kl adjustments (kl � α), C = (cij) is
a consensus preference decision matrix, and α is the violation acceptability index
which denotes the established adjustment threshold. α must be even because for
each pair of violation, we have |0 − 1| + |1 − 0| = 2.

Definition 2.3 (Minimum Acceptable Violation Ranking-PKS (MAVR-PKS)).
A preference decision matrix C∗ is an optimal matrix if it minimizes the accept-
able violation V (C) over all possible C. The problem is given by

min V (C) (2.1)

s.t.
∑m

i

∑m
j

∣∣al
ij − bl

ij

∣∣ ≤ α l = 1, ..., n,

cij satisfies transitivity property i = 1, ...,m, j = 1, ...,m.

Definition 2.4 (Violating Voters and No-violating Voters). Given a set of pref-
erence decision rankings {A1, A2, ..., An}, and a consensus ranking C. If voter
el’s violation (PKS distance between Al and C) is not less than α, el is a violating
voter ; otherwise, el is a no-violating voter.

In Lemma 2.1, we will simplify objective notation by removing the adjusted
preference decision matrix Bl = (bl

ij).

Lemma 2.1. Problem (2.1) is equivalent to

min
cij

n∑
l=1

max{
m∑

i=1

m∑
j=1

∣∣al
ij − cij

∣∣ , α}. (2.2)

762 K. Luo and Y. Xu

Proof. We firstly prove that Problem (2.1) is equivalent to

min
cij

n∑
l=1

[max{
m∑

i=1

m∑
j=1

∣∣al
ij − cij

∣∣ , α} − α]. (2.3)

The MAVR model allows all voters to adjust their preferences before cal-
culating the violation distance. It means that if voter el is a violating voter,
minimizing objective requires the adjusted violation do equals α; otherwise, the
adjusted violation equals to dPKS(Al, C).

(i) For a violating voter, we have
∑m

i=1

∑m
j=1

∣∣al
ij − cij

∣∣ ≥ α. To minimize
the violation between Bl and C, we know that

m∑
i=1

m∑
j=1

∣∣al
ij − bl

ij

∣∣ = α.

So we have
m∑

i=1

m∑
j=1

∣∣bl
ij − cij

∣∣ =
m∑

i=1

m∑
j=1

∣∣al
ij − cij

∣∣ − α = max{
m∑

i=1

m∑
j=1

∣∣al
ij − cij

∣∣ , α} − α.

(ii) For a no-violating voter, we have
∑m

i=1

∑m
j=1

∣∣al
ij − cij

∣∣ < α. To minimize
the violation between Bl and C, we know that

m∑
i=1

m∑
j=1

∣∣al
ij − bl

ij

∣∣ =
m∑

i=1

m∑
j=1

∣∣al
ij − cij

∣∣ .

So we have
m∑

i=1

m∑
j=1

∣∣bl
ij − cij

∣∣ = 0 = max{
m∑

i=1

m∑
j=1

∣∣al
ij − cij

∣∣ , α} − α.

Obviously, adding a constant to or removing a constant from the objective
function will not affect the result. Hence, we add n ∗ α to transfer problem (2.3)
to problem (2.2).

This proves that Problem (2.1) and Problem (2.2) are equivalent. ��
The greatest difficulty in solving this problem is to deal with the requirement

that the elements cij in matrix C must satisfy transitivity property [18,19]. The
optimal MAVR also need to satisfy this property.

Definition 2.5 (Acceptable Ranking Distance(ARD)). The acceptable ranking
distance between ranking decision matrix Rl and C̃ is

dARD(Rl, C̃) =
∑

i

∑
j

wl
ij

The MAVR of Alternatives from Voters’ Ordinal Rankings 763

s.t. wl
ij =

⎧⎪⎨
⎪⎩

1 vl
ij = 1, dRD(Rl, C̃) ≥ α,

α
dRD(Rl,C̃)

vl
ij = 1, 0 < dRD(Rl, C̃) < α,

0 otherwise,
which is presented by ranking decision matrix, where dRD(Rl, C̃) =

∑
i

∑
j vl

ij ,

and vlij =

{
1 (
∑

i1
i1 ∗ rli,i1 −∑j1

j1 ∗ rlj,j1) ∗ (
∑

i1
i1 ∗ c̃i,i1 −∑j1

j1 ∗ c̃j,j1) < 0,

0 otherwise.

Definition 2.6 (Minimum Acceptable Violation Ranking-Acceptable Ranking
Distance (MAVR-ARD)). Given a set of rankings {R1, R2, ..., Rn}, the mini-
mum acceptable violation ranking C̃∗ is given by minc̃ij

∑
l dARD(Rl, C̃).

The elements c̃ij in the ranking matrix C̃ do not need to satisfy transitivity
property.

Lemma 2.2. Problem (2.2) is equivalent to

min
c̃ij

∑
l

dARD(Rl, C̃) (2.4)

s.t.
∑m

i=1 c̃l
ij = 1, l = 1, ..., n, j = 1, ...,m,∑m

j=1 c̃l
ij = 1, l = 1, ..., n, i = 1, ...,m.

Proof. According to Definition (2.5), we have the following.
(i) For an arbitrary voter el, if dARD(Rl, C̃) ≥ α holds,
For any pair of alternatives (xi, xj), xi is preferred to xj both in Rl and C̃,

we have wl
ij =

∣∣al
ij − cij

∣∣ = 0.

For any pair of alternatives (xi, xj), xi is preferred to xj in Rl but not in C̃;
or xi is preferred to xj in C̃ but not in Rl, we have wl

ij =
∣∣al

ij − cij

∣∣ = 1.

Therefore, dARD(Rl, C̃) =
∑

i

∑
j wl

ij = max{∑i

∑
j

∣∣al
ij − cij

∣∣ , α} holds.
(ii) For an arbitrary voter el, if dARD(Rl, C̃) < α holds,
For any pair of alternatives (xi, xj), xi is preferred to xj both in Rl and C̃,

we have wij =
∣∣al

ij − cij

∣∣ = 0.

For any pair of alternatives (xi, xj), xi is preferred to xj in Rl but not in C̃;
otherwise xi is preferred to xj in C̃ but not in Rl, we have wl

ij = α
dRD(Rl,C̃)

.

Therefore, dARD(Rl, C̃) = α = max{∑i

∑
j

∣∣al
ij − cij

∣∣ , α} holds.
For all of voters el ∈ E,

∑
l dARD(Rl, C̃) =

∑
l max{∑m

i=1

∑m
j=1

∣∣al
ij − cij

∣∣ ,
α} holds.

Thus, Problem (2.2) and Problem (2.4) are equivalent. ��

3 Ranking Procedure

In this section, we will examine some properties of MAVR and apply branch-
and-bound ranking algorithm to derive the best solution of the MAVR problem.
Note that the optimal consensus ranking may be found out before the algorithm
“walks through” all possible rankings. Additionally, we’ll show a simple example.

764 K. Luo and Y. Xu

3.1 Branch-and-Bound Ranking Procedure

We start by presenting some definitions and propositions that are derived from
Sect. 2.2.

Definition 3.1. Given a set of rankings {R1, R2, ..., Rn}, if ∃xi ∈ X = {x1,
x2, ..., xm} and ∀el ∈ E = {e1, e2, ..., en}, ãl

i1 = 1 or ãl
im = 1, define xi as the

absolutely first or last alternative.

Proposition 3.1 (Separate property). For any given set of rankings, removing
the absolutely first or last alternatives initially and add them back finally will not
change the optimal ranking.

For absolutely first or last alternative is easy to identify, we do not consider
such a condition.

Before introducing the branch-and-bound algorithm, we give the following
definitions.

Definition 3.2. Given a set of ranking {A1, A2, ..., An} which comes from rank-
ing decision matrix set {R1, R2, .., Rn}, denote sij =

∑
l al

ij as the aggregated
preference between xi and xj .

Definition 3.3. For a ranking C̃ = {x1 � x2... � xm}, if C̃ ′ = {x1 � x2... �
xi}(i < m), C̃ ′ is a prefix ranking of C̃.

Given a set of ranking {R1, R2, ..., Rn}, acceptability index α, and C̃ ′, we
divide alternative set X into two parts: X1 is the set of alternatives ranked by
C̃ ′, and X2 is the set of left alternatives. According to Definition 2.4, the voter
set E can be separated into two sets: set E1 includes violating voters, while set
E2 includes no-violating voters.

Definition 3.4. A lower bound with the prefix ranking C̃ ′ is given by

M = M0 + M1 (3.1)

and an upper bound can be represented by

M = M0 + M2, (3.2)

where

M0 =
∑

el∈E1

∑
i

∑
j

wl
ij + ‖E2‖ ∗ α xi, xj ∈ X; one of xi, xj ∈ X1,

M1 =
∑

i

∑
j

min{sij , sji} xi, xj ∈ X2, el ∈ E1,

M2 =
∑

i

∑
j

max{sij , sji} − 2 ∗ (max1{sij} + max2{sij})

+2 ∗ (min1{sij} + min2{sij}) xi, xj ∈ X2, el ∈ E,

The MAVR of Alternatives from Voters’ Ordinal Rankings 765

where min1{sij} and min2{sij} represent the first and second lowest collected
preference sij(xi, xj ∈ X2); max1{sij} and max2{sij} represent the first and
second greatest collected preference sij(xi, xj ∈ X2).

We give a brief illustration about M as follows.
If el ∈ E1, when at least one of xi, xj ∈ X1,

∑
l

∑
i

∑
j wl

ij =
∑

l

∑
i

∑
j wl

ij ;
when xi, xj ∈ X2, xi, xj ∈ X1,

∑
i

∑
j min{sij , sji} ≤ ∑

l

∑
i

∑
j wl

ij .
If el ∈ E2, we assume that all voters in E2 are no-violating voters. So we

have ‖E2‖ ∗ α ≤ ∑
l max{∑m

i=1

∑m
j=1 wl

ij , α}(xi, xj ∈ X);
Hence, M0 + M1 is a lower bound.
Similarly, We give a brief illustration about M as follows.
If at least one of xi, xj ∈ X1 and el ∈ E, we have

∑
el∈E1

∑
i

∑
j wl

ij +‖E2‖∗
α >

∑
el∈E

∑
i

∑
j wl

ij .
If xi, xj ∈ X2 and el ∈ E, we have

∑
i

∑
j max{sij , sji} − 2 ∗ (max1{sij} +

max2{sij}) + 2 ∗ (min1{sij} + min2{sij}) ≥ ∑
l

∑
i

∑
j wl

ij .
Hence, M0 + M1 is a upper bound.

Proposition 3.2 (Uninterchangeability Property). For an adjacent pair of the
prefix order I (say, xi � xj) and I ′ (say, xj � xi), if both sij < sji and
M0(I) > M0(I ′) hold, I must not be a prefix order of C̃∗.

Proof. Assume that I is a prefix order of the minimum acceptance violation
ranking C̃I , we have V (C̃I) � V (C̃I′

), I ′ ⊆ C̃I′
and the other rankings of C̃I′

are the same with C̃I .

Denote W l(I) = dRD(Rl, I) and W (I) =
∑

l W l(I), at least one of xi, xj ∈
X1, where dRD(Rl, I) has been denoted by Definition 2.1.

We know that M0(I) > M0(I ′) and W l(I ′) = W l(I)−2 (or W l(I ′) = W l(I)+
2) because the only difference is the prefix order itself. At the same time, the
number of W l(I ′) = W l(I)−2 is not less than the number of W l(I ′) = W l(I)+2
because of sji > sij .

For giving α, there are three cases because violation W l(I) is even.

Case 1: If W l(I) � α + 2, we know that V (C̃I/I) = V (C̃I′
/I ′) because these

voters have been listed in E1. Due to M0(I) > M0(I ′), we have V (C̃I) > V (C̃I′
).

Case 2: If W l(I) = α, we know that the violations of I and I ′ will not change
when there is no additional violation. If there are some additional violations,
when W l(I ′) = W l(I) − 2, we have V (C̃I/I) = V (C̃I′

/I ′) + 2; when W l(I ′) =
W l(I) + 2, we have V (C̃I/I) = V (C̃I′

/I ′). As we know that the number of
W l(I ′) = W l(I) − 2 is not less than the number of W l(I ′) = W l(I) + 2, so
V (C̃I/I) > V (C̃I′

/I ′). Due to M0(I) > M0(I ′), we have V (C̃I) > V (C̃I′
).

Case 3: If W l(I) ≤ α−2, we know that the violations of I and I ′ will not change
when there is no additional violation. If there are some additional violation,
when W l(I ′) = W l(I) − 2, we have V (C̃I/I) = V (C̃I′

/I ′) + 2; when W l(I ′) =
W l(I) + 2, we have V (C̃I/I) = V (C̃I′

/I ′) + 2. As we know that the number
of W l(I ′) = W l(I) − 2 is not less than the number of W l(I ′) = W l(I) + 2, so
V (C̃I/I) > V (C̃I′

/I ′). Due to M0(I) > M0(I ′), we have V (C̃I) > V (C̃I′
).

766 K. Luo and Y. Xu

Summing up all voters’ violation, we have V (C̃I) > V (C̃I′
). It contradicts

with the assumption.
Thus order I will not be a prefix order of C̃∗, this proves the proposition. ��
In the algorithm below, we start with an empty ranking. Then adding each

alternative to the first node one by one, and calculate the lower bound and upper
bound for later, and then cut off some branches based on branching principle
or Proposition 3.2. Note that we start from the branches with the lowest bound
and check all other branches’ upper bounds when we add a new alternative.

We present an algorithm to generate MAVR as follows.

Algorithm—Branch-and-bound ranking algorithm

Input: Set of alternatives X = {x1, x2, ..., xm} and voters’ ranking decision
matrix {R1, R2, ..., Rn}.

Step 0 (Initialization): C̃ ′ = φ(j = 0). Calculate its lower bound M(C̃ ′) and
upper bound M(C̃ ′), and store them as the branch-and-bound tree root node.
If the lower bound equals to the upper bound, go to Step 3; Otherwise, define
this node as an active node and go to Step 1.

Step 1 (Selecting the node to branch form): Select the one with the lowest lower
bound from the set of nodes of the branch and bound tree. If its upper bound
is less than the current best known lower bound, go to Step 3.

Step 2: For all eligible branches one by one.

Step 2a (Branching): Construct node c̃ij = 1(i ∈ X2, j = j +1) to selected node
C̃ ′. C̃ ′ includes the alternatives which have been ranked already.

Step 2b (Bounding 1): Calculate these new nodes’ lower bounds and upper
bounds. If one’ lower bound is greater than currently best known minimum
upper bound or solution, cut off this branch.

Step 2c (Create a new node): Add these cij to C̃ ′ as active nodes to the tree and
store M(C̃ ′) with nodes.

Step 2d (Bounding 2) (Uninterchangeability property): Use the Proposition 3.2
to cut off some branches which have both smaller sij and larger M0 than its pair
branch.

Step 3 (Termination): If there are still some active nodes or the number of the
left alternatives is greater than 2, returen to Step 1; otherwise, select the smaller
sij of the left two alternatives, and add this order ranking behind the termination
ranking.

3.2 A Numerical Example

We consider an example with acceptability index α = 4, n = 10 voters, and
m = 4 alternatives:

The MAVR of Alternatives from Voters’ Ordinal Rankings 767

Voters’ frequency Alternatives Ranking

4 {1, 2, 3, 4} 3 � 4 � 2 � 1
3 {1, 2, 3, 4} 4 � 3 � 2 � 1
2 {1, 2, 3, 4} 2 � 1 � 3 � 4
1 {1, 2, 3, 4} 2 � 3 � 1 � 4

The table below represented the summarized pairwise preference:

sij =

⎛
⎜⎜⎝

0 0 2 3
10 0 3 3
8 7 0 7
7 7 3 0

⎞
⎟⎟⎠.

Initialization: C̃ ′ = φ. Calculate M0 = 4 ∗ 10 = 40, M1 = 0, and M2 = 2 ∗ (0 +
2 + 7 + 7 + 7 + 7) = 60. We obtain a lower bound M = M0 + M1 = 40, and an
upper bound M = M0 + M2 = 40 + 60 = 100.

Branching: We process the root node with the empty ranking one by one as
shown in Fig. 1, we check them all:

Fig. 1. First iteration of minimum
acceptable violation ranking

Fig. 2. Second iteration of minimum
acceptable violation ranking

• Adding alternative 1:
Let c̃11 = 1, we have C̃ ′ = {1}. Calculate M0 = 4 ∗ 6 + 3 ∗ 6 + 2 ∗ α = 52,
M1 = 2 ∗ (1 + 1 + 3) = 10, and M2 = 2 ∗ (3 + 3 + 7) = 26. We obtain a lower
bound M = 62, and an upper bound M = 78.

• Adding alternative 2:
Let c̃21 = 1, we have C̃ ′ = {2}, Calculate M0 = 40, M1 = 6, and M2 = 24.
We obtain a lower bound M = 46, and an upper bound M = 64.

• Adding alternative 3:
Let c̃31 = 1, we have C̃ ′ = {3}, Calculate M0 = 40, M1 = 0, and M2 = 20.
We obtain a lower bound M = 40, and an upper bound M = 60.

• Adding alternative 4:
Let c̃41 = 1, we have C̃ ′ = {4}, Calculate M0 = 46, M1 = 2, and M2 = 16.
We obtain a lower bound M = 48, and an upper bound M = 62.
We could not bound any point via the rule max{M} < min{M}.

768 K. Luo and Y. Xu

Branching: Ranking all the nodes by their M , we process the root node one by
one again as shown in Fig. 2. We check them all:

• Adding alternative 2 to C̃ ′ = {3}, for now we have C̃ ′ = {3, 2}:
Calculate M0 = 4 ∗α +3 ∗α +2 ∗ 4+1 ∗α = 40, M1 = 0, and M2 = 2 ∗ 3 = 6.
We obtain a lower bound M = 40, and an upper bound M = 46.

• Adding alternative 4 to C̃ ′ = {3},for now we have C̃ ′ = {3, 4}:
We obtain a lower bound M = 50. We do not need to calculate upper bound
and add it to the branch-and-bound tree because the lower bound is greater
than present min{M} = 46.

• Adding alternative 1 to C̃ ′ = {3}, for now we have C̃ ′ = {3, 1}:
We obtain a lower bound M = 52. We do not need to calculate upper bound
and add it to the branch-and-bound tree because the lower bound is greater
than present min{M} = 46.

Bounding 1: For M(C̃ ′ = {1}) = 62, M(C̃ ′ = {2}) = 46, and M(C̃ ′ = {4}) = 48
is not less than M(C̃ ′ = {3, 2}) = 46, we cut off these branches from the branch-
and-bound tree.

Bounding 2 (Uninterchangeability property): For s41 = 7 > s14 = 3 and M0(C̃ ′ =
{3, 2, 4, 1}) = 44 < M0(C̃ ′ = {3, 2, 1, 4}) = 46, we cut off C̃ ′ = {3, 2, 1, 4}.

Hence, we know that the MAVR is 3 � 2 � 4 � 1.

4 Numerical Experiments

We implement some computational tests to evaluate the branch-and-bound algo-
rithm. Our testing platform is a AMD Athlon(tm) II X4 640 Processor 3.00 GHz
with 4.00 GB than run under Windows 7. We coded the algorithm in Matlab
and compiled it with Matlab 7.11.0. We construct six classes, each with 25 test
instances, and different number of alternatives or voters as shown in Table 1.
For each of the 150 instances in Table 1, we created 3 different sets of voters
decision matrixes which have different normally distributed noise N(0, σ2), with
σ2 = 1, 4 or 9. In Table 2 we present the average and worst case running time
(in seconds) for each of the six classes and three levels of noises. It’s apparent in
Table 2 that we are able to obtain the optimal ranking for every instance within
5 seconds. Although the number of alternatives is not high(m ≤ 5), it matches
with most of practical scenarios.

Additionally, we have three conclusions. Firstly, the fact that every class with
different level of noise take a similar amount of time to process implies that our
algorithm is insensitive to the level of noise. Secondly, as the size of alternatives
increases (Class C, D and E), the processing time increases quickly because the
pairwise preference comparisons increase with factorial growth. Thirdly, Classes
A, B, and C take a similar amount of processing time, which implies that our
algorithm is insensitive to the amount of number of voters. Our method do have
a good performance.

The MAVR of Alternatives from Voters’ Ordinal Rankings 769

Table 1. Six classes of the test problems

Class No. of alternatives No. of pairwise comparisons No. of voters

A 3 6 60

B 3 6 120

C 3 6 240

D 4 24 240

E 5 120 240

F 5 120 2400

Table 2. Running time (s) of the algorithm and percentage of the problems solved

class σ2 = 1 σ2 = 4 σ2 = 9

Avg.(max)

running time

% solved to

optimality

Avg.(max)

running time

% solved to

optimality

Avg. (max)

running time

% solved to

optimality

A < 0.01(< 0.01) 100 < 0.01(< 0.01) 100 < 0.01(< 0.01) 100

B < 0.01(< 0.01) 100 < 0.01(< 0.01) 100 < 0.01(< 0.01) 100

C < 0.01(< 0.01) 100 < 0.01(< 0.01) 100 < 0.01(< 0.01) 100

D < 0.02(< 0.04) 100 < 0.02(< 0.04) 100 < 0.02(< 0.04) 100

E < 0.2(< 0.3) 100 < 0.2(< 0.3) 100 < 0.2(< 0.3) 100

F < 3(< 6) 100 < 3(< 6) 100 < 3(< 6) 100

5 Conclusions

In this paper, we considered that voters are more willing to accept the final
ranking because, on one hand, most of voters’ violation will not exceed the
acceptability index, and on the other, the total extra violation is minimized.
Additionally, the numerical results shown that the processing time will be shorter
than MVR problem because the acceptability index is helpful to bound branches.

We proposed the Minimum Acceptable Violation “Consensus” Ranking prob-
lem in group decision making. To simplify the MAVR problem, we came up with
two transformations. On one hand, we removed the adjusted preference matrixes
{B1, B1, ..., Bm} from the model, and on the other hand, we using acceptable
ranking violation instead of PKS to represent the model so that the matrix of
the final ranking do not need to be transitive. Based on Problem 2.4 and the
uninterchangeability property, we presented a branch-and-bound algorithm for
obtaining an optimal ranking and demonstrated the algorithm is effective and
efficiency. For all experiments, the processing time is less than 5 s. This paper
helps users attain an “acceptable consensus ranking” in practical group decision
problems with a clear procedure.

Acknowledgments. This paper was supported by the National Natural Science
Foundation of China (No. 61221063), the Program for Changjiang Scholars and Inno-
vative Research Team in University (IRT1173).

770 K. Luo and Y. Xu

References

1. De Borda J.C.: Mmoire sur les lections au scrutin (1781)
2. Kendall, M.G.: Rank correlation methods, Biometrika (1990)
3. Wei, T.-H.: The algebraic foundations of ranking theory, University of Cambridge

(1952)
4. Blin, J.M.: A linear assignment formulation of the multiattribute decision problem.

RAIRO - Oper. Res. - Recherche Opérationnelle 10(V2), 21–32 (1976)
5. Kemeny, J.G., Snell, L.J.: Preference ranking: an axiomatic approach. In: Mathe-

matical Models in the Social Sciences, pp. 9–23 (1962)
6. Cook, W.D., Seiford, L.M.: Priority ranking and consensus formation. Manage.

Sci. 24(16), 1721–1732 (1978)
7. Cook, W.D., Seiford, L.M.: On the Borda-Kendall consensus method for priority

ranking problems. Manage. Sci. 28(6), 621–637 (1982)
8. Ali, I., Cook, W.D., Kress, M.: On the minimum violations ranking of a tourna-

ment. Manage. Sci. 32(6), 660–672 (1986)
9. Cook, W.D., Saipe, A.L.: Committee approach to priority planning: the median

ranking. Cahiers du Centre dtudes de Recherche Oprationnelle 18(3), 337–351
(1976)

10. Barzilai, J., Cook, W.D., Kress, M.: A generalized network formulation of the pair-
wise comparison consensus ranking model. Manage. Sci. 32(8), 1007–1014 (1986)

11. Cook, W.D., Golan, I., Kress, M.: Heuristics for ranking players in a round robin
tournament. Comput. Oper. Res. 15(2), 135–144 (1988)

12. Cook, W.D., Kress, M.: A data envelopment model for aggregating preference
rankings. Manage. Sci. 36(11), 1302–1310 (1990)

13. Rademaker, M., De Baets, B.: A ranking procedure based on a natural monotonic-
ity constraint. Inf. Fusion 17, 74–82 (2014)

14. Cook, W.D., Golany, B., Penn, M., et al.: Creating a consensus ranking of proposals
from reviewers partial ordinal rankings. Comput. Oper. Res. 34(4), 954–965 (2007)

15. Ben-Arieh, D., Chen, Z.: Linguistic labels aggregation and consensus measure for
autocratic decision-making using group recommendations. IEEE Trans. Syst. Man
Cybern. Part A Syst. Hum. 36(3), 558–568 (2006)

16. Ben-Arieh, D., Easton, T.: Multi-criteria group consensus under linear cost opinion
elasticity. Decis. Supp. Syst. 43(3), 713–721 (2007)

17. Ben-Arieh, D., Easton, T., Evans, B.: Minimum cost consensus with quadratic
cost functions. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 39(1), 210–217
(2009)

18. Isaak, G., Narayan, D.A.: Complete classification of all tournaments having a dis-
joint union of directed paths as a minimum feedback arc set. J. Graph Theor.
45(1), 2847 (2004)

19. Bader, D., Cong, G.: Graph algorithms. Encycl. Parallel Comput. 11(5), 467–492
(2011)

Listing Center Strings
Under the Edit Distance Metric

Hiromitsu Maji(B) and Taisuke Izumi

Graduate School of Engineering, Nagoya Institute of Technology,
Nagoya 466-8555, Japan

cke17607@stn.nitech.ac.jp, t-izumi@nitech.ac.jp

Abstract. Given a set W of k strings of length n over an alphabet Σ,
the center string of W is defined as the string w such that the maximum
distance to w of all strings in W is minimized under some specified met-
ric. We present a new algorithm for the decision version of this problem
under the edit distance metric. Given a threshold parameter d, the algo-
rithm lists all the strings such that the distance from any input string
is bounded by d in O((3d(d + 2))kdk|Σ|n + Mn) time, where M is the
number of the output strings. To the best of our knowledge, this is the
first FPT algorithm for the center string under the edit distance metric
(even as a finding algorithm). By a slight modification, we also obtain
an algorithm listing length-l common subsequences of W , which runs in
O((n − l)k+1k|Σ|l + Ml) time.

1 Introduction

Finding a common structure from a given set of strings is recognized as one of the
important problems in computational biology. A center string (or equivalently,
closest string) is the one that minimizes the maximum distance of all strings
in a input set W under some specific metric. The decision version of the center
string problem under metric δ, which is the primary problem considered in this
paper, is formalized as follows:

Input: A set W of k strings of length n over an alphabet Σ, and a
threshold value d ∈ N.
Output: A string w such that δ(w,w′) ≤ d holds for any w′ ∈ W if it
exists. Otherwise the value of “FALSE”.

In the definition above, the distance metric is not concretely defined. Usually
it is chosen according to applications. Popular metrics useful in many applica-
tions are Hamming distance and edit distance. Unfortunately, for both metrics,
the center string problem is NP-complete [4], and thus we need some sort of
relaxation for attacking this problem. In this paper, we consider fixed-parameter
algorithms for the center string problem under the edit distance metric. However,
unfortunately again, that problem is W[1]-hard with respect to the number of

This work is supported in part by KAKENHI No. 15H00852 and 25289227.

c© Springer International Publishing Switzerland 2015
Z. Lu et al. (Eds.): COCOA 2015, LNCS 9486, pp. 771–782, 2015.
DOI: 10.1007/978-3-319-26626-8 57

772 H. Maji and T. Izumi

input strings k [16], which implies that the problem is unlikely to have an algo-
rithm with a running time such as O(f(k)·poly(n)). The currently best algorithm
is the one by Nicolas et al. [16], which achieves O(|Σ|nk) time bound.

To circumvent the hardness results above, we focus on the fixed-parameter
tractability for parameters both d and k. That is, we explore the algorithms hav-
ing a running time with the form of O(f(d, k)·poly(n)). The primary contribution
of this paper is that such an algorithm actually exists. Our new algorithm finds a
center string in O((3d(d+2))kdk|Σ|n) time . To the best of our knowledge, this is
the first FPT algorithm for finding center string problem under the edit distance
metric. By a simple extension of this finding algorithm , we propose an algorithm
to list all the solutions in the output-sensitive manner: The algorithm lists all
the center strings for the edit distance metric in O((3d(d + 2))kdk|Σ|n + Mn)
time, where M is the number of the output strings. Since in typical scenarios the
center string problem is considered with a small d, our algorithms are practically
more useful than the previous one.

The algorithms are constructed with a new dynamic-programming strat-
egy, where the DP table records the distance information around diagonal ver-
tices in alignment graphs. Interestingly, we can utilize the same strategy to
solve another problem. Our second result is an algorithm listing length-l com-
mon subsequences of all input strings. The time complexity of this algorithm
is O((n − l)k+1|Σ|l + Ml). Note that the longest common subsequence (LCS)
problem, which is the optimization version of the length-l common subsequence
problem, is known to be NP-complete [14], and W[1]-hard for parameter k [17].
On the other hand, finding length-l common subsequences trivially allows an
O(|Σ|lpoly(n, k))-time algorithm by checking all strings of length l. That is, it
is fixed-parameter tractable for parameter l in the case of constant-size alpha-
bets. Furthermore, Irving and Fraser shows two algorithms of finding a LCS of
length at least l in O((n − l)k−1kn) and O((n − l)k−1kl + k|Σ|n) times respec-
tively [9]. That is, finding a common subsequence with length near to n is also
fixed-parameter tractable (for n − l). Our algorithm can be seen as a listing
version of the two algorithms by Irving and Fraser.

The paper is organized as follows: In Sect. 2, we present the prior work related
to the topics of this paper. Section 4 provides our algorithm for the center string
problem. Its extension to the LCS problem is considered in Sect. 5 Finally, we
conclude this paper with a future direction in Sect. 6.

2 Related Work

The center string problem for the Hamming distance metric (often called closest
string problem) is extensively studied. In general, that problem is NP-complete
[6,11], but allows a fixed-parameter algorithm with respect to d. Following the
first FPT-algorithm by Gramm et al. [7], a number of papers improved the time
complexity [3,13,18]. The closest substring problem, which is a generalized ver-
sion of the closest string problem, is also well studied. Interestingly the closest

Listing Center Strings Under the Edit Distance Metric 773

substring problem is W[1]-hard with respect to both d and k even if the alpha-
bet is binary [15]. Marx shows an efficient algorithm for computing the closest
substring for small d and/or k (but it is not an FPT algorithm) [15].

Compared to the Hamming distance metric, the center string problem under
the edit distance metric is less studied. As we stated in the introduction, the
paper by Nicolas and Rivals is only the one explicitly considering that set-
ting [16]. The case of other metrics is considered in [5].

The longest common subsequence (LCS) problem for multiple strings is
regarded as a special case of the center string for the edit distance metrics.
It is equivalent to the center string problem for the edit distance metric with
substitution cost two. About exact solutions for the LCS problem, a few papers
propose several algorithms with different characteristics [8,9]. The LCS problem
for some restricted instances is considered in [1,2].

Another variant of the center string problem is the median string problem,
which requires to find the string minimizing the sum of the distance to each
input string. While the median string under the Hamming distance metric is
easily solvable in polynomial time, the case for edit distance is known to be
NP-complete [4], and W[1]-hard for parameter k [16].

Approximated solutions for the problems introduced above are also investi-
gated [11,12]. PTASs are allowed for the closest (sub)string problem [12], but
the longest common subsequence problem has no polynomial-time algorithm
with any approximation ratio better than nc for some constant c > 0 unless
P = NP [10]. No polynomial-time approximated solution for the center string
problem under the edit distance metric is known so far.

3 Preliminaries

3.1 Edit Distance

We denote the alphabet by Σ. An element in Σ∗ is called string. The length of
a string w is denoted by |w|, and the i-th character of w is denoted by w[i] (1 ≤
i ≤ |w|). The operator ◦ means the concatenation of two strings (or characters).
For w ∈ Σ∗, let ta(w) be the string obtained by removing the first character
of w. That is, w = w[1]◦ ta(w). Letting W be a set of strings, we define W ◦x =
{w ◦ x|w ∈ W}.

The edit distance ED(w1, w2) between two strings w1 and w2 is defined as
follows:

ED(w1, w2) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

max{|w1|, |w2|}
(if |w1| = 0 ∨ |w2| = 0)

min {ED(ta(w2), ta(w1)) + c(w1[1], w2[1]),
ED(ta(w1), w2) + 1,ED(w1,w2) + 1}

(otherwise),

where c(a, b) is the function returning zero if a = b or one otherwise. Note that
while we assume that c(a, b) is uniform (i.e.,the substitution cost does not depend

774 H. Maji and T. Izumi

on target characters), our algorithm can be applied to the case of non-uniform
cost functions (as long as it returns an integer value).

It is well-known that the computation of the edit distance between two strings
w1 and w2 can be reduced to the shortest path problem for some directed acyclic
graph G(w1, w2) = (V,E, f), called alignment graph, which defined as follows
(Fig. 1):

– V = {vi,j |i, j ∈ [0, n]}.
– For any i, j ∈ [0, n], vi,j has a directed edge to each vertex vi+1,j , vi,j+1, and

vi+1,j+1 if it exists.

– f(e) =
{

0 if e = (vi,j , vi+1,j+1) for some i, j ∈ [0, n] and w1[i] = w2[j]
1 otherwise.

An edge e = (vi,j , vi′,j′) ∈ E is called a horizontal, vertical, or diagonal edge if
i = i′, j = j′, or (i �= i′ ∧ j �= j′) holds respectively. The set of vertices {vi,j |j ∈
[0, n]} and {vi,j |i ∈ [0, n]} are called i-th row and j-th column respectively. The
distance between two vertices u and v is denoted by dist(u, v). In particular, if
u = v0,0, we omit the first argument and describe dist(u) for short. The following
theorem is a classical fact.

Theorem 1. dist(vn,n) = ED(w1, w2).

Fig. 1. Alignment graph G(w1, w2)

The band of alignment graphs is defined as the set of vertices {vi,j ||i − j| ≤
d/2}1. We also define h(j) as the intersection size of the j-th column and the
band. That is, let h(j) = min{j + d/2, d, (n− j)+ d/2}. For ease of explanation,
we give aliases to each vertex in the band: The vertices of the j-th column in the
band are called u0,j , u1,j , . . . , uh(j),j from the upper side. The notations above
are illustrated in Fig. 2.
1 The definition of the band depends on the value of d. Hence it may be more pre-

cise to include that dependency in the notation (e.g., calling d-band). However, to
avoid the complication of notations, we treat the value of d as a certain kind of
“global constant.” Actually, in the following argument, we introduce several defini-
tions dependent on d with no explicit description of the dependency.

Listing Center Strings Under the Edit Distance Metric 775

Fig. 2. Band and vertex aliasing

We have the following lemma:

Lemma 1. Given w1, w2 ∈ Σn satisfying ED(w1, w2) ≤ d, all the vertices con-
stituting the shortest path from v0,0 to vn,n in G(w1, w2) are contained in the
band.

Proof. The shortest path from vi,j to vn,n must contain at least |i − j| non-
diagonal edges, all of which have weight one. Thus its length is more than or
equal to |i − j|. Similarly, the length of the shortest path from v0,0 to vi,j is also
more than or equal to |i − j|. If |i − j| > d/2 (i.e., vi,j is out of the band), the
length of any path from v0,0 to vn,n via vi,j is more than d. It follows that vi,j

cannot be contained in the shortest path because dist(vn,n) = ED(w1, w2) ≤ d.
�	

The lemma above implies that it suffices to consider the subgraph of G(w1, w2)
induced by the band because we only care about the paths from v0,0 to vn,n

of length at most d. We denote that induced subgraph by B(w1, w2). The ter-
minologies and notations introduced for G(w1, w2) are also used for B(w1, w2).
In the following argument, we sometimes treat B(w1, w2) for some string w2 of
length less than n. So we extend the definition of B(w1, w2): For strings w1 ∈ Σn

and w2 ∈ Σm such that m < n, we define B(w1, w2) as the one in which edge
e = (vi,j , vi′,j′) for j < m has the weight according to the original function f ,
and all other edges have weight one.

4 Listing Center Strings

In this section, we propose an algorithm for the center string problem, called
ListCenter(W). The core idea of ListCenter(W) is to compute the intersection of

776 H. Maji and T. Izumi

the k balls of radius d centered at each input string in W = {w1, w2, · · · , wk}.
Thus, before explaining the main algorithm, we first introduce a preliminary
algorithm called ListBall(w), which lists all the strings whose edit distance from w
is at most d. The main algorithm is obtained by a simple extension of ListBall(w).

4.1 Algorithm ListBall: Listing Strings within Distance d

Letting
x�d+1 = min{d + 1, x} for short, we define the (w1, j)-profile of string
w2 as the vector (
dist(u0,j)�d+1,
dist(u1,j)�d+1, . . . ,
dist(uh(j),j)�d+1), where
dist(ui,j) is the distance in B(w1, w2). Intuitively, the (w1, j)-profile of w2 is the
distance vector to the vertices of the j-th column in the band, but the information
about distances exceeding d are omitted. Without ambiguity, we often omit w1

and simply call j-profile.
It should be noted that any (h(j) + 1)-dimensional vector cannot become a

j-profile. we say that P ∈ [0, d + 1]h(j)+1 is possible if there exists w1, w2 ∈ Σn

such that P becomes the (w1, j)-profile of w2. We can show a necessary condition
for the possibility of P :

Lemma 2. If P = (p0, p1, . . . , ph(j)) ∈ [0, d + 1]h(j)+1 is a possible j-profile,
|pi − pi+1| ≤ 1 holds for any i ∈ [0, h(j) − 1].

Proof. Since dist(ui+1,j) − dist(ui,j) ≤ 1 obviously holds because edge
(ui,j , ui+1,j) has weight one, it suffices to show dist(ui,j) − dist(ui+1,j) ≤ 1. Let
u0,0 = x0, · · ·, xr = ui+1,j be the shortest path from u0,0 to ui+1,j in B(w1, w2), xc

be the last vertex contained in the i-th row, and dist(xc) = l (see Fig. 3). Since xc is
reachable to ui,j only traversing horizontal edges, dist(ui,j) ≤ l+(r−c) holds. The
shortest path from xc to ui+1,j can contain at most one diagonal edge, its length is
at least r − c − 1, and thus dist(ui+1,j) ≥ l + (r − c − 1) holds. Consequently, we
have dist(ui,j) − dist(ui+1,j) ≤ 1. �	

Let Pj be the set of the sequences in [0, d+1]h(j)+1 satisfying the condition of
Lemma 2. Clearly Pj contains all the possible profiles. From Lemma 2, we have
the following corollary:

length

weight
0 or 1

: shortest path
from to

Fig. 3. Proof of Lemma 2

Listing Center Strings Under the Edit Distance Metric 777

Corollary 1. For any j ∈ [0, n], |Pj | ≤ 3d(d + 2).

We also have the following corollary from the definition of profiles.

Corollary 2. Any string w has 0-profile Pinit = (0, 1, 2, . . . , h(0)).

For P = (p0, p1, . . . , ph(j)) ∈ Pj and w ∈ Σn, we define Sw
P,j as the set of

length-j strings having P as its (w, j)-profile. Let Pterm = {(p0, p1, . . . , ph(n)) ∈
[0, d+1]h(n)+1|ph(n) ≤ d}. Then the union ∪P∈Pterm

Sw
P,n is the set of the strings to

be listed as the computation result. The core idea of ListBall(w) is to compute
Sw

P,j for any P and j via dynamic programming. To lead the DP recurrence
formula, we introduce one more notation defined as follows: Let j ∈ [0, n − 1]
and w ∈ Σn. For two vectors P = (p0, p1, . . . , ph(j)) ∈ [0, d + 1]h(j)+1 and
Q = (q0, q1, . . . , qh(j+1)) ∈ [0, d + 1]h(j+1)+1, we say that P is connected to Q

with (x,w) ∈ Σ × Σ∗, denoted by P
w,x,j�−→ Q, if there exists a string w′ such that

w′[j+1] = x and P and Q are respectively the (w, j)-profile and (w, j+1)-profile
of w′. The key fact to obtain the recurrence formula is the next lemma:

Lemma 3. Fixing w ∈ Σn, the (j +1)-profile Q satisfying P
w,x,j�−→ Q is uniquely

determined from P and x in O(d) time.

Proof. The uniqueness of Q is obvious because any shortest path to a vertex in
the (j +1)-th column must pass a vertex in the j-th column in B(w, ∗). Thus we
prove that Q can be computed in O(d) time. In graph B(w, ∗), we can determine
the weights of all the edges between jth and (j + 1)-th columns by x. Thus we
can compute Q by calculating the distances up to d from v0,0 to the vertices
in the (j + 1)-th column, provided distances up to d to the vertices in the j-th
column. For any i′ ∈ [0, n], the predecessor of vi′,j+1 in the shortest path from
v0,0 to vi′,j+1 is either vi′−1,j , vi′,j , or vi′−1,j+1. So if the distances (up to d)
to those vertices are already known, the shortest path to vi′,j+1 (with length
up to d) can be computed in a constant time. This implies that the values of the
(j + 1)-profile can be fixed from the upper side sequentially (i.e., in the order of
uj+1,0, uj+1,1, . . . , uj+1,h(j+1)). Since h(j + 1) = O(d) holds, we can compute Q
in O(d) time. The lemma is proved. �	

This lemma implies that if we know the j-profile of a string w, we can know
the (j + 1)-profile of w ◦ x for any x ∈ Σ. Conversely, if we want to know some
(unknown) string w = w′ ◦ x having some (j + 1)-profile, it suffices to idenfity
w′ and its j-profile. This fact induces the following recurrence formula.

Sw
Q,j+1 =

⋃
x∈Σ

P :P
w,x,j�−→ Q

Sw
P,j ◦ x. (1)

Now we are ready to explain the algorithm, which consists of the following
two steps:

– The first step of the algorithm is to construct the edge-labeled DAG Γ =
(VΓ , EΓ , fΓ) defined as follows:

778 H. Maji and T. Izumi

• VΓ = (∪n
j=0{(P, j)|P ∈ Pj} ∪ {t}, where t is the special sink vertex. We

also give alias s to the vertex (Pinit , 0).
• A vertex (P, j) is connected to (Q, j + 1) by an edge with label x if

P
w,x,j�−→ Q. Note that if two or more characters x satisfy P

w,x,j�−→ Q, (P, j)
and (Q, j + 1) are connected by multiedges. Finally, we add edges from
all the vertices (P, n) satisfying P ∈ Pterm to t with the null-character
label.

– For any s-t path X = e0, e1, . . . en in Γ , we define γ(X) as the string formed
by traversing X (i.e., γ(X) = fΓ (e0) ◦ fΓ (e1) ◦ · · · ◦ fΓ (en)). The second step
of the algorithm is to output γ(X) for each s-t path X in Γ .

The correctness of this algorithm relies on the following lemma:

Lemma 4. For any (P, j) ∈ VΓ and a string w2 ∈ Σj, w2 ∈ Sw1
P,j holds if and

only if there exists a path X from s to (P, j) such that w2 = γ(X) holds.

Proof. The proof is done by induction on j. (Basis): It is obvious from Corol-
lary 2. (Induction step): Suppose as the induction hypothesis that the lemma
holds for j = j′ − 1 and consider the case of j = j′. We prove only the direction
of ⇒ because the opposite direction (⇐) is easily proved by following backward
the argument. Let w2 = w′

2 ◦ x. The recurrence formula (Eq. 1) implies that
if w2 ∈ Sw1

P,j′ , there exists a (j′ − 1)-profile P ′ such that w′
2 ∈ Sw1

P ′,j′−1 and

P ′ w,x,j′−1�−→ P hold. Then, by the induction hypothesis, there exists a path X ′

from s to (P ′, j′) and w′
2 = γ(X ′). So there exists a path X to (P, j′) from s

and γ(X) = w′
2 ◦ x. The lemma is proved. �	

We consider the running time of the algorithm. In the first step, for each
vertex (P, i), the algorithm needs to compute all the pairs (x,Q) such that

P
w,x,i�−→ Q holds. From Lemma 3, it can be computed in O(|Σ|d) time. From

Corollary 1, we also have |VΓ | = O(3ddn). Thus the total running time of the
first step is O(3d(d2|Σ|n). For the second step, all s-t paths can be enumerated
by the naive recursion after pruning the vertices from which t is unreachable. Its
running time is O(Mn + |EΓ |), where M is the number of paths enumerated.
Finally, we have the following theorem.

Theorem 2. Given w ∈ Σn, algorithm ListBall(w) lists all the strings whose
distance from w is less than or equal to d in O(3dd2|Σ|n + Mn) time.

4.2 Listing Center Strings

By extending algorithm ListBall(w), we construct the main algorithm ListCen-
ter(W). The primary idea is that given W = {w1, w2, . . . , w

k}, ListCenter(W)
concurrently runs ListBall(wi) for each input wi ∈ W . We give the detailed
explanation below:

A k-tuple of profiles P = (P1, P2, . . . , Pk) ∈ Pk
j is called the (W, j)-profile of

a string w if Pi is w’s (wi, j)-profile for any i ∈ [1, k]. The notation P
W,x,j�−→ Q

Listing Center Strings Under the Edit Distance Metric 779

for P = (P1, P2, . . . , Pk) ∈ Pk
j and Q = (Q1, Q2, . . . , Qk) ∈ Pk

j means that
there exists w ∈ Σn and j ∈ [0, n] such that P and Q are w’s (W, j)-profile and
(W, j + 1)-profile respectively and w[j] = x holds.

The remaining structure of ListCenter(W) is almost the same as ListBall(w),
but the definition of profiles and its connectivity relationship are replaced by
the ones above. More precisely, the algorithm utilizes the graph Γ k defined as
follows, instead of Γ :

– VΓ = (∪n
i=0{(P, i)|P ∈ Pk

i } ∪ {t}, where t is the special sink vertex. We also
give alias s to ((Pinit , Pinit , . . . , Pinit), 0).

– A vertex (P, i) is connected to (Q, i+1) by an edge with label x if P
W,x,i�−→ Q.

Note that if two or more characters x satisfy P
W,x,i�−→ Q, (P, i) and (Q, i + 1)

are connected by multiedges. Finally, we add the edges from all the vertices
(P, n) satisfying P ∈ Pk

term to t with the null-character label.

It is not difficult to prove that the string γ(X) corresponding to a s-t path
X in Γ k has a distance at most d to each string wi ∈ W . Thus by enumerating
all s-t paths we can list all center strings. We bound the running time of this
algorithm. The analysis of the second step completely follows that for ListBall(w).
For the first step, the size of Γ k is larger than Γ . The number of vertices in Γ k is
O((3d(d+2))kn). In addition, the computation of outgoing edges for each vertex
takes obviously k times of the case for ListBall(w), i.e., O(k|Σ|d) time. Hence
the total running time of the first step is O((3d(d + 2))kdk|Σ|n). Consequently
we have the following main theorem.

Theorem 3. Algorithm ListCenter(W) lists all center strings for W under the
edit distance metric in O((3d(d+2))kdk|Σ|n+Mn) time, where M is the number
of output strings.

5 Listing Common Subsequences

A subsequence of a string w ∈ Σn is any string obtained from w by deleting
several characters. We denote by Sub(w) the set of all subsequences of w. The
decision version of the longest common subsequence problem (LCS) is defined as
follows:

Input: A set W = {w1, w2, · · · , wk} of k strings over Σ of length n, and
a threshold value l ∈ N.
Output: A string w ∈ ∩k

i=1Sub(wi) such that |w| ≥ l if it exists. Other-
wise the value of “FALSE”.

Let l̄ = n−l for short. In this section we show an algorithm called ListLCSl(W),
which is an algorithm listing common subsequences of length l. This algorithm
is obtained by a refinement of ListCenter(W). For w1 ∈ Σn and w2 ∈ Σl, we
construct the LCS alignment graph GLCS (w1, w2) = (VLCS , ELCS) as follows:

780 H. Maji and T. Izumi

– VLCS = {vi,j |i ∈ [0, n], j ∈ [0, l]}.
– For any i ∈ [0, n − 1] and j ∈ [0, l], add e = (vi,j , vi,j+1). In addition, add

e = (vi,j , vi+1,j+1) if w1[i] = w2[j].

(a) reachable (b) unreachable

Fig. 4. Two examples of LCS alignment graphs.

Note that LCS alignment graphs are unweighted. It is not difficult to prove
the following lemma:

Lemma 5. A string w2 is a subsequence of a string w1 if and only if v0,0 is
reachable to vn,l in GLCS (w1, w2).

Two examples of LCS alignment graphs, which correspond to reachable and
unreachable cases respectively, are shown in Fig. 4. We define the band of LCS
alignment graphs as the set of vertices {vi,j |j ≤ i ≤ j + l̄, j ∈ [0, n]} (see Fig. 5).
The following lemma is analogous to Lemma 1 in the center-string case.

Lemma 6. Any vertex vi,j out of the band is either unreachable to v0,0 or vn,l.

Similarly as the center string case, let BLCS (w1, w2) be the subgraph of
GLCS (w1, w2) induced by the band. Now we introduce the refined definition of
profiles: The (w1, j)-profile of w2 is a binary (l̄+1)-dimensional vector represent-
ing the reachability from v0,0 to each vertex in the j-th column That is, a vertex
vi+j,j is reachable from v0,0 in BLCS (w1, w2) if and only if the (w1, j)-profile
P ∈ [0, 1]l̄+1 of w2 satisfies P [i] = 1. Since vi,j′ for j′ > j is reachable from
v0,0 when vi,j is reachable from v0,0, any possible j-profile can be represented as
the concatenation of an all-zero sequence followed by an all-one sequence. Fur-
thermore, we do not have to consider the all-zero vector as a profile. Therefore,
the total number of possible j-profiles is at most l̄. We set Pj to all possible
j-profiles.

The remaining part of algorithm ListLCSl(W) is almost the same as ListCen-
ter(W). Following the definition of profiles above, we construct the graph Γ k

Listing Center Strings Under the Edit Distance Metric 781

and enumerate all s-t paths in Γ k. Only the difference is the design of the source
and the edges incoming to the sink in Γ k. In the context of listing common sub-
sequences, the (l̄ + 1)-dimensional all-one vector is the unique possible 0-profile,
and thus s is set to it. The vertices in {(P, l)|P [l̄] = 1} is adjacent to t.

By the analysis similar with Sect. 4, we can bound the running time of this
algorithm as follows:

Theorem 4. For any set of k strings W = {w1, w2, . . . wk}, algorithm
ListLCSl(W) enumerates all length-l common sequences inO(l̄k+1k|Σ|l+Ml) time,
where M is the number of output strings.

Fig. 5. Band of LCS alignment graphs.

6 Concluding Remarks

In this paper, we presented two algorithms called ListCenter(W) and
ListLCSl(W). Algorithm ListCenter enumerates all the center strings for given k
strings and a threshold distance d in O((3d(d+2))kdk|Σ|n+Mn) time. In addi-
tion, this algorithm finds one solution in O((3d(d+2))kdk|Σ|n) time, which is the
first FPT algorithm for the center string problem under the edit distance met-
ric. Algorithm ListLCSl is designed with the same framework as ListCenter, which
enumerates length-l common subsequences for k strings in O(l̄k+1k|Σ|l + Ml)
time.

On the parameterized complexity of the center string problem under the
edit distance metric is surprisingly less studied. An important open problem is
to show the fixed-parameter (in)tractability with respect to d only. While the
authors conjecture W[1]-hardness of that setting, the proof is still missing. Even
if it is actually W[1]-hard, the exploration of faster algorithms (for example,
running in O(dk · poly(n) time) is also an interesting open problem).

782 H. Maji and T. Izumi

References

1. Blin, G., Bonizzoni, P., Dondi, R., Sikora, F.: On the parameterized complexity
of the repetition free longest common subsequence problem. Inf. Process. Lett.
112(7), 272–276 (2012)

2. Blin, G., Bulteau, L., Jiang, M., Tejada, P.J., Vialette, S.: Hardness of longest
common subsequence for sequences with bounded run-lengths. In: Kärkkäinen, J.,
Stoye, J. (eds.) CPM 2012. LNCS, vol. 7354, pp. 138–148. Springer, Heidelberg
(2012)

3. Chen, Z.-Z., Wang, L.: Fast exact algorithms for the closest string and substring
problems with application to the planted (l, d)-motif model. IEEE/ACM Trans.
Comput. Biol. Bioinf. 8(5), 1400–1410 (2011)

4. de la Higuera, C., Casacuberta, F.: Topology of strings: median string is NP-
complete. Theoret. Comput. Sci. 230(1–2), 39–48 (2000)

5. Dinu, L.P., Popa, A.: On the closest string via rank distance. In: Kärkkäinen, J.,
Stoye, J. (eds.) CPM 2012. LNCS, vol. 7354, pp. 413–426. Springer, Heidelberg
(2012)

6. Frances, M., Litman, A.: On covering problems of codes. Theor. Comput. Syst.
30(2), 113–119 (1997)

7. Gramm, J., Niedermeier, R., Rossmanith, P., et al.: Fixed-parameter algorithms
for closest string and related problems. Algorithmica 37(1), 25–42 (2003)

8. Hakata, K., Imai, H.: The longest common subsequence problem for small alphabet
size between many strings. In: Proceeding of the 3rd International Symposium on
Algorithms and Computation (ISAAC), pp. 469–478 (1992)

9. Irving, R.W., Fraser, C.B.: Two algorithms for the longest common subsequence of
three (or more) strings. In: Proceeding of 3rd Annual Symposium on Combinatorial
Pattern Matching, vol. 644, pp. 214–229 (1992)

10. Jiang, T., Li, M.: On the approximation of shortest common supersequencesand
longest common subsequences. SIAM J. Comput. 24(5), 1122–1139 (1995)

11. Lanctot, J.K., Li, M., Ma, B., Wang, S., Zhang, L.: Distinguishing string selection
problems. Inf. Comput. 185(1), 41–55 (2003)

12. Li, M., Ma, B., Wang, L.: On the closest string and substring problems. J. ACM
49(2), 157–171 (2002)

13. Ma, B., Sun, X.: More efficient algorithms for closest string and substring problems.
SIAM J. Comput. 39(4), 1432–1443 (2009)

14. Maier, D.: The complexity of some problems on subsequences and supersequences.
J. ACM 25(2), 322–336 (1978)

15. Marx, D.: Closest substring problems with small distances. SIAM J. Comput.
38(4), 1382–1410 (2008)

16. Nicolas, F., Rivals, E.: Hardness results for the center and median string problems
under the weighted and unweighted edit distances. J. Discrete Algorithms 3(2–4),
390–415 (2005)

17. Pietrzak, K.: On the parameterized complexity of the fixed alphabet shortest com-
mon supersequence and longest common subsequence problems. J. Comput. Syst.
Sci. 67(4), 757–771 (2003)

18. Wang, L., Zhu, B.: Efficient algorithms for the closest string and distinguishing
string selection problems. In: Deng, X., Hopcroft, J.E., Xue, J. (eds.) FAW 2009.
LNCS, vol. 5598, pp. 261–270. Springer, Heidelberg (2009)

Online Scheduling for Electricity Cost
in Smart Grid

Xin Feng1,2,3(B), Yinfeng Xu1,2,3, and Feifeng Zheng4

1 School of Management, Xi’an Jiaotong University, Xi’an 710049, Shaanxi, China
fengxin.xjtu@stu.xjtu.edu.cn

2 State Key Lab for Manufacturing Systems Engineering,
Xi’an 710049, Shaanxi, China

3 Ministry of Education Key Lab for Process Control and Efficiency Engineering,
Xi’an 710049, Shaanxi, China

4 Glorious Sun School of Business and Management, Donghua University,
Shanghai 200051, People’s Republic of China

Abstract. This paper studies an online scheduling problem in the smart
grid, which is arised in demand response management under the sce-
nario with real-time communication between the grid operator and con-
sumers. Consumers send the power requests online over-list. The request
is released with a limited set of timeslots. Only one of the timeslots in
the set can this request be served by the operator. In a timeslot, the
electricity cost consumed to serve the requests is a quadratic function of
the load in it. Our aim is to find a best possible online schedule which
generates the minimal total electricity cost. In this paper, we propose
a greedy algorithm of this problem which is 2-competitive. Besides, we
prove our algorithm is optimal.

Keywords: Online scheduling · Smart grid · Demand response · Greedy
algorithm

1 Introduction

The smart grid is one of the major challenges in the 21st century [4], which con-
centrates on harnessing information and communication technologies to improve
the electric grid flexibility and reliability. The information of power requests is
communicated between the consumers and the grid operator via IP addressable
components over the internet [11]. In the smart grid, the sudden augment of
voltage fluctuations increases the possibility of power outage, and thus reduce
the grid reliability. Besides, the demand in peak hours needs to be satisfied by
supplementary generated power, which are often more expensive than the regu-
lar generated power. In this way, smoothing the power demand profile, which is
called the demand response management, can improves its reliability and reduces
the cost of operating the grid. Thus the basic aim in demand response manage-
ment is to alleviate peak load by transferring non-emergency power demands at

c© Springer International Publishing Switzerland 2015
Z. Lu et al. (Eds.): COCOA 2015, LNCS 9486, pp. 783–793, 2015.
DOI: 10.1007/978-3-319-26626-8 58

784 X. Feng et al.

off-peak-load time intervals [8]. We refer the reader to Hamilton and Gulhar [6],
Ipakchi [7] and Lui et al. [11] for a comprehensive review on smart grid.

The scheduling in the smart grid is to assign the power requests in a sched-
ule where the power demand profile is as smooth as possible. Koutsopoulos and
Tassiulas [8] proved this problem is NP-hard when the requested is scheduled
non-preemptively. Logenthiran et al. [10] proposed heuristics to solve this prob-
lem for demand side management. Sousa et al. [14] considered a multi-objective
methodology with both minimization of the operation cost and the minimization
of the voltage magnitude difference.

In practice, demand response management is executed in real-time. The infor-
mation of power requests from consumers are sent to the operator one by one in
a sequence. Before the operator receives a power request, he has no information
about this request. The operator needs to execute the demand response manage-
ment without any knowledge of the future. As a traditional online load balancing
problem, Azar [1] proposed a parallel machine scheduling model to minimize the
maximum load of the machines. This problem is similar to this paper if we treat
the machines as timeslots. The difference is that the aim of online load balancing
problem is to minimize the maximum load of machines. Most of the researches
studied the stochastic model for online scheduling in smart grid, in which the
power requests are released to the grid operator according to a Poisson process
[8,9]. Narayanaswamy et al. [13] applied online convex optimization framework
in smart grid. Lu et al. [12] studied the competitive online algorithms for energy
generation in microgrids with intermittent energy sources and co-generation.
Georgiadis and Papatriantafilou [5] studied the deterministic online scheduling
model within a given time interval to minimize the maximum load on the times-
lots. They proposed a greedy algorithm which is (�log n� + 1)-competitive, where
n = 48.

In this paper, we assume the time is divided into integral timeslots. The
request is released to the operator online-over-list. Each request can be served
in serval determined timeslots. The operator needs to control the system in the
smart grid with the minimum electricity cost. Similar to Burcea et al. [3], we
assume that the power requirement and the duration of service requested are
both unit-size.

The rest of this paper is organized as follows. In Sect. 2, we describe the
problem. In Sect. 3, we present an online algorithm and propose the competitive
analysis. Finally, Sect. 4 concludes this paper.

2 Preliminaries

Consider an online scheduling problem in the smart grid. The time is divided
into integral timeslots T = {1, 2, · · ·}. The input is a set of power requests
R = {r1, r2, · · ·}, which are released online over-list. All the power requests have
the unit-size energy requirement and unit-size service duration. The information
of a given request ri is a set of timeslots Ii ⊆ T , which cannot be learned until
ri is released. ri can only be assigned in one of the timeslots in Ii. The load of

Online Scheduling for Electricity Cost in Smart Grid 785

a timeslot t is denoted as l (t), which is the total number of requests assigned
in it. The electricity cost consumed in a timeslot is a convex function of its
load. Inspired by Shahidehpour et al. [15], the electricity cost consumed in t is
expressed as

C (t) = a[l (t)]2 + bl (t) + c (1)

As for the total electricity cost,
∑

C (t) = a
∑

[l (t)]2 + b
∑

l (t) + c · m,
where m is the number of occupied timeslots. In this paper, the evaluation of
algorithms is to compare the value of the corresponding total electricity cost. We
ignore the monomial item b

∑
l (t) since the total loads

∑
l (t) counts for the

number of requests which is a determined value when we compare the value of
the total electricity cost of two schedules. For the constant item c·m, it restraints
operator to assign requests to more timeslots. Since there are huge amounts of
power requests sent to the operator rapidly in the smart grid in practice, it is
not common to achieve an idle timeslot which has no power load. We ignore
the constant item in this hypothesis. Thus the electricity cost consumed in t is
modified as

C (t) = [l (t)]2 (2)

The aim in this paper is to find an online schedule in the smart grid with
the minimal possible total electricity cost. The performance of an online sched-
ule is generally evaluated by the competitive ratio (see [2]). Translated into
our problem terminology, for any power requests input instance I, let C (I) be
the objective value of schedule produced by an online algorithm, and OPT (I)
that of schedule by an optimal off-line algorithm which has the information of
all requests at the beginning. Then the algorithm is ρ-competitive if C (I) ≤
ρOPT (I)+ ε holds for any I where ρ ≥ 1 is some constant and ε is an arbitrary
real number. ρ is also called the competitive ratio of the algorithm.

3 Algorithm and Competitive Analysis

In this section, we propose an online greedy algorithm to obtain a preferable
smart grid schedule. The principle of this algorithm is to reduce the peak load
by diffusing the power requests into as many timeslots as possible.

Algorithm 1. Greedy algorithm

When a power request ri is released with the set of available timeslots Ii,
assign it into the timeslot which has the minimal load

We use σg and Cg to denote the online schedule of power requests and the
corresponding electricity cost obtained by Greedy algorithm. Assume in σg, there
are n occupied timeslots, each of which is assigned at least one power request.
Besides these, the timeslot which has no request assigned is called an idle times-
lot. We present the competitive ratio of Greedy algorithm by deriving the worst
scenario of σg.

786 X. Feng et al.

Lemma 1. For each occupied timeslot in σg, there is at most one power request
which can be served in an idle timeslot.

Proof. Suppose in an arbitrary timeslot t1, there are two power requests ri and
rj , which can be served in another two idle timeslots t2 and t3 respectively, i.e.,
t2 ∈ Ii and t3 ∈ Ij . Without loss of generality, ri is assumed to be released
earlier than rj . Requests are always assigned to the available timeslot which has
the minimal load in σg. Since t3 ∈ Ij and l (t1) > l (t3) = 0, rj must be assigned
into t3 other than t1, which contradicts our assumption. The lemma follows. �	

Since there are totally n occupied timeslots in σg, there are at most n power
requests which can be moved into the idle timeslots. We call these requests as
dummy requests. For these dummy requests, the following lemma is helpful to
derive the worst scenario of σg.

Lemma 2. Under the worst scenario of σg, there must be n dummy requests,
which are assigned in n idle timeslots in the optimal schedule.

Proof. Figure 1(a) is an illustration of σg. The electricity cost of σg is

Cg =
n∑

i=1

[l (i)]2 (3)

The optimal schedule is shown in Fig. 1(b). In the optimal schedule, the load
in the timeslot t is denote as l∗ (t). Suppose there is a dummy request ri which is
not assigned into an idle timeslot in the optimal schedule. The optimal electricity
cost is

Copt =
2n−1∑
i=1

[l∗ (i)]2 (4)

In contrast, if Ii is assigned in the idle timeslot 2n as shown in Fig. 1(c), the
electricity cost then changes to be

C ′ =
t−1∑
i=1

[l∗ (i)]2 + [l∗ (t) − 1]2 +
2n−1∑
i=t+1

[l∗ (i)]2 + 1 (5)

Copt − C ′ = [l∗ (t)]2 − [l∗ (t) − 1]2 − 1 ≥ 0, which contradicts our assumption
that Copt is the minimum electricity cost. The lemma follows. �	

According to Lemma 2, we can derive the worst scenario of σg by generate
n dummy requests which are assigned in n idle timeslots in the optimal sched-
ule. However, there are still some other requests left, i.e., l (t) − 1 requests in
timeslot t, which can only be served in the n non-idle timeslots. We call these
requests as regular requests. To derive the worst scenario of the regular requests’
assignment, we regrade the loads l (1) , l (2) , · · · , l (n) in σg in descending orders
as l1, l2, · · · , ln. The corresponding timeslot of li is denoted as τi. Thus

Cg = l21 + l22 + · · · + l2n (6)

Online Scheduling for Electricity Cost in Smart Grid 787

timeslots

loads

1 2 t n timeslots1 2 t n

loads

n+1 2n-1

timeslots1 2 t n

loads

n+1 2n2n-1

a) b) the optimal schedule

c) the modified schedule

l(1)

l(2)

l(t)

l(n)
l*(1)

l*(2)

l*(t)

l*(n)

1 1

l*(1)
l*(2) l*(t) l*(n)

1 1 1

g

Fig. 1. Illustration of the proof of Lemma 2

If the regular requests can be assigned in a schedule where the load in each
timeslot from τ1 to τn are all the same, this schedule is called a balance schedule.
It can be easily concluded that the electricity cost has a minimum value when

the left
n∑

i=1

(li − 1) regular requests can form a balance schedule from τ1 to τn.

In other words, if there exists a balance schedule for the regular requests, this
balance schedule must be the optimal schedule.

Besides, we consider a special schedule σs where the requests can be split
arbitrarily to its available timeslots. For example, a unit-size requirement request
can be split into two timeslots, the one with 1/3 power requirement and the other
with 2/3. In this way, σs can get a balance schedule more easily than the optimal
schedule of our problem. Denote the electricity of this special schedule as Cs.
It can be concluded that Cs ≤ Copt. Thus, if we derive the maximum ratio
ρ of Cg and Cs, ρ is also the competitive ratio of the Greedy algorithm since
Cg

Copt
≤ Cg

Cs
≤ ρ.

To derive the worst scenario of σg, we divided it into two cases by whether

the left
n∑

i=1

(li − 1) regular requests can form a balance schedule in σs. We first

analyze the case where the regular requests can form a balance schedule, and
obtain the competitive ratio of the Greedy algorithm in this case.

If the left
n∑

i=1

(li − 1) requests can form a balance schedule in σs as shown in

Fig. 2(b),

788 X. Feng et al.

Cs = n

((
n∑

i=1

li − n

)/
n

)2

+ n · 12 = n

((
n∑

i=1

li

/
n

)
− 1

)2

+ n (7)

According to (6) and (7), the ratio of Cg and Cs when there exists a balance
schedule is

Cg

Cs
=

l21 + l22 + · · · + l2n

n

((
n∑

i=1

li

/
n

)
− 1

)2

+ n

(8)

Since
n∑

i=1

li is a determined numerical value, Cs also has a determined value.

Thus Cg/Cs has the maximum value when Cg is large enough. Since l1 ≥
l2 ≥ · · · ≥ ln, as shown in Fig. 2(a), Cg has the maximum value when l1 has the

maximum value according to the fundamental inequality, i.e., l1 =
n∑

i=1

li, l2 =

· · · = ln. Nevertheless, there is an upper bound for l1 to form a balance sched-
ule. For the same principle of Lemma 1, since the requests are scheduled by the
Greedy algorithm, there are at least l1 − l2 − 1 requests in τ1 in σg which can
only be assigned in τ1. Figure 2(a) is the illustration of the worst scenario of σg.
Let a1 = l1 − l2 − 1, a2 = l2 = l3 = · · · = ln. According Fig. 2(a) and (b),

a1 =
na2

n − 1
+

1
n − 1

(9)

timeslots

loads

a)

l1

l2 ln

timeslots

loads

b)

l*
1 l*

2 l*
n

g

a2

a1

a1

s

n21 n21 2n

Fig. 2. Illustration of the worst scenario of σg

Lemma 3. If there exists a balance schedule in σs, there are exactly two times-
lots occupied in σg under the worst scenario.

Proof. Assume there are n timeslots occupied in σg, n ≥ 2. We prove this lemma
by showing that adding a timeslot in σg reduces the ratio of Cg and Cs.

As shown in Fig. 3(a), a timeslot τn+1 is added with the load a2 + 1. a1 then
changes to be a′

1 = (n+1)a2
n + 1

n . Thus the electricity cost of σg changes to be

C ′
g = Cg + (a2 + 1)2 + (a′

1 + a2 + 1)2 − (a1 + a2 + 1)2 (10)

Online Scheduling for Electricity Cost in Smart Grid 789

For the electricity cost in σs,

C ′
s = Cs + 1 + (a′

1)
2 + n(a′

1)
2 − na2

1 (11)

Let Δ1 = (a2 + 1)2 + (a′
1 + a2 + 1)2 − (a1 + a2 + 1)2 and Δ2 = 1 + (a′

1)
2 +

n(a′
1)

2 − na2
1. Since Δ2 − Δ1 = 2a2 + (a2+1)2

n(n−1) > 0, C′
g

C′
s

= Cg+Δ1
Cs+Δ2

<
Cg

Cs
. It can

be concluded that adding a timeslot in σg reduces the ratio of Cg and Cs. Since
n ≥ 2, to obtain the maximum ratio of Cg and Cs, there is only two occupied
timeslots in σg under the worst scenario. �	

timeslots1 2 n

a)

timeslots

loads

1 2 n

b)

n+1 2n+2

g s

a2

a1

a1

n+1

loads

Fig. 3. Illustration of the proof of Lemma 3

Lemma 4. If there exists a balance schedule, the competitive ratio of the Greedy
algorithm is 2.

According to Lemma 3, there are two occupied time slots in σg under the
worst scenario. When n = 2, a1 = na2

n−1 + 1
n−1 = 2a2 + 1. We ignore the item 1

so that a1 = 2a2 to form the balance schedule.

ρ1 =
Cg

Cs
=

(3a2 + 1)2 + (a2 + 1)2

2(2a2)
2 + 2

≤ 5a2
2 + 4a2 + 1
4a2

2 + 1

When a2 = 1+
√
65

16 , ρ1 has the maximum value. However, since we have
assumed that the requirement of the power requests are all unit-size, a2 must be
an integer. Thus ρ1 ≤ 2. �	

We have proved that the competitive ratio of the Greedy algorithm is 2 when
there exists a balance schedule. In the case where there are some redundant
requests so that the regular requests cannot form a balance schedule. For these
redundant requests, we have the following lemma.

Lemma 5. If there are some redundant requests which cannot be assigned into
a balance schedule, only the requests which are assigned in τ1 can make σg worse.

Proof. Suppose there is a schedule in which the requests can form a balance
schedule. Thus the profile of worst scenario of σg is shown in Fig. 2(a). In
this case, we add some redundant requests, i.e. δi requests in τi as shown in
Fig. 4(a). For convenient calculation without disturbing our analysis, let δi = δ2

790 X. Feng et al.

timeslots

loads

timeslots

loads

a2

a1

a 1
+

1-
2

1

2

a) after adding the redundant requests'g b) after adding the redundant requests's

1 2 n 1 2 n 2n

Fig. 4. Illustration of the proof of Lemma 5

for i = 2, · · · , n. Thus there are at least a1 + δ1 − δ2 − 1 requests which can
only be assigned in τ1. Since there is no balance schedule in the special schedule
σs, τ1 must be the timeslot with the maximal load in σs, otherwise we can form

a balance schedule since
n∑

i=1

(li − 1) − (a1 + δ1 − δ2 − 1) requests can be split

arbitrarily to any timeslots to make σg worse. Thus

a1 + δ1 + δ2 ≥ na2 + nδ2 + 1
n − 1

(12)

Since a1 = na2+1
n−1 ,

δ1 ≥ 2n − 1
n − 1

δ2 (13)

For the electricity cost in σg,

C ′
g = Cg +

[
(l1 + δ1)

2 − l21

]
+ (n − 1)

[
(l2 + δ2)

2 − l22

]
(14)

For the electricity cost in σs,

C ′
s = Cs + n

[
(a1 + δ1 − δ2)

2 − a2
1

]
(15)

Let α1 = (l1+δ1)
2−l21

(a1+δ1−δ2)
2−a2

1
= 2l1δ1+δ2

1
(a1+δ1−δ2)

2−a2
1
, and α2 = (l2+δ2)

2−l22
(a1+δ1−δ2)

2−a2
1

=
2l2δ2+δ2

2
(a1+δ1−δ2)

2−a2
1
. Thus C′

g

C′
s

≤ max
{

Cg

Cs
, α1, α2

}
, in which α1 counts for the influ-

ence of the added requests in τ1 while α2 counts for that in τi, i = 2, · · · , n.
According to inequality (10), α1 ≥ α2. Thus only the requests which are

assigned in τ1 can make σg worse. �	
Lemma 6. If the regular requests cannot form a balance schedule, the competi-
tive ratio of the Greedy algorithm is 2.

Proof. Before the redundant requests are added, there exists a balance schedule.
The corresponding electricity cost obtained by the Greedy algorithm and the

Online Scheduling for Electricity Cost in Smart Grid 791

special schedule are denoted as C̃g and C̃s respectively. According to Lemma 5,
the redundant requests are assigned in τ1 in σg under the worst scenario. Thus,

ρ2 =
C̃g + (a1 + a2 + 1 + δ)2 − (a1 + a2 + 1)2

C̃opt + (a1 + δ)2 − a2
1

=
C̃g + δ2 + 2δa1 + 2 (a2 + 1) δ

C̃opt + δ2 + 2δa1

(16)

Since C̃g+δ2

C̃opt+δ2 <
C̃g

C̃opt
= 2 and 2δa1+2(a2+1)δ

2δa1
= 1 + n−a2−2

na2+1 ≤ 2, ρ2 ≤ 2. �	

According to Lemmas 4 and 6, we obtain Theorem 1 as follows.

Theorem 1. The Greedy algorithm for online scheduling problem for electricity
cost in smart grid is 2-competitive.

Theorem 2. Greedy algorithm is the optimal algorithm for online scheduling
problem for electricity cost in smart grid.

Proof. To prove the theorem, it suffices to construct a power requests instance
to make any online algorithm performs poorly which has no competitive ratio
less than 2.

The first two requests r1 and r2 are released with available timeslots I1 =
{1, 3} and I2 = {2, 4}. Without loss of generality, we assign r1 and r2 in timeslots
1 and 2 respectively. After that, r3 and r4 are released consecutively with I3 =
I4 = {1, 2}.

Case 1. r3 and r4 are assigned at the same timeslot, i.e. timeslot 1. In this
case, no more power requests are released. The electricity cost in this case is
C = 32 + 1 = 10. In the optimal schedule, r1, r2, r3 and r4 are assigned in
timeslots 3, 4, 1 and 2 respectively, Copt = 4. In this case,

C/Copt = 2.5 (17)

Case 2. r3 and r4 are assigned in different timeslots, i.e. r3 in timeslot 1 and
r4 in timeslot 2. In this case, r5 and r6 with I5 = I6 = {1} are released. The
electricity cost in this case is C = 42 + 22 = 20. In the optimal schedule, the
operator serves r5 and r6 in timeslot 1, r3 and r4 in timeslot 2. Besides, r1 and
r2 are assigned in timeslots 3 and 4. Copt = 22 + 22 + 2 = 10. In this case,

C/Copt = 2 (18)

From the two cases above, it can be concluded that there is no online algo-
rithm which can achieve a competitive ratio less than 2. Thus the Greedy algo-
rithm is the optimal algorithm for online scheduling problem for electricity cost
in smart grid. �	

792 X. Feng et al.

r

timeslots

loads

1 2

a) g

3 4

r

r

r

in case1

r

timeslots1 2

b)

3 4

r r r

the optimal schedule in case1

loads

r

timeslots

loads

1 2

c) g

3 4

r

r r

in case2

r

r

r

timeslots

loads

1 2

d)

3 4

rr

r

r

r

the optimal schedule in case2

Fig. 5. Illustration of the proof of Theorem 2

4 Conclusions and Remarks

In this paper we investigate an online scheduling problem in the smart grid to
minimize the total electricity cost, in which the power requirement and duration
of requests are both unit-size. The requests are released online-over-list which
can be assigned into serval integral timeslots. We propose a 2-competitive greedy
algorithm which the best possible algorithm for this problem. The competitive
analysis is performed by deriving the worst scenario of the schedule obtained by
our algorithm. As we assumed that the power requirement and service duration
of requests are both unit-size, an obvious research direction is to extend this
research when requests have arbitrary power requirement and service duration.
Besides, it is considerable to analyze how the scenario where the information is
partially predictable can help the operation in smart grid.

Acknowledgements. This work was partially supported by the National Natural
Science Foundation of China under Grants 71172189, 71071123 and 61221063, Program
for Changjiang Scholars and Innovative Research Team in University (No. IRT1173),
New Century Excellent Talents in University (NCET-12-0824), and the Fundamental
Research Funds for the Central Universities.

Online Scheduling for Electricity Cost in Smart Grid 793

References

1. Azar, Y.: On-line load balancing. In: Fiat, A. (ed.) Online Algorithms 1996. LNCS,
vol. 1442, pp. 178–195. Springer, Heidelberg (1998)

2. Borodin, A., El-Yaniv, R.: Online Computation and Competitive Analysis, ch. 1.
Cambridge University Press, Cambridge (1998)

3. Burcea, M., Hon, W.-K., Liu, H.-H., Wong, P.W.H., Yau, D.K.Y.: Scheduling for
electricity cost in smart grid. In: Widmayer, P., Xu, Y., Zhu, B. (eds.) COCOA
2013. LNCS, vol. 8287, pp. 306–317. Springer, Heidelberg (2013)

4. Europen Commission: Europen smart grids technology platform (2006)
5. Georgiadis, G., Papatriantafilou, M.: A greedy algorithm for the unforecasted

energy dispatch problemwith storage in smart grids. In: Proceedings of the Fourth
International Conference on Future Energy Systems, pp. 273–274. ACM (2013)

6. Hamilton, K., Gulhar, N.: Taking demand response to the next level. IEEE Power
Energ. Mag. 8(3), 60–65 (2010)

7. Ipakchi, A., Albuyeh, F.: Grid of the future. IEEE Power Energ. Mag. 7(2), 52–62
(2009)

8. Koutsopoulos, I., Tassiulas, L.: Control and optimization meet the smart power
grid: scheduling of power demands for optimal energy management. In: Proc. eEn-
ergy, pp. 41–50 (2011)

9. Koutsopoulos, I., Tassiulas, L.: Optimal control policies for power demand schedul-
ing in the smart grid. IEEE J. Sel. Areas Commun. 30(6), 1049–1060 (2012)

10. Logenthiran, T., Srinivasan, D., Shun, T.Z.: Demand side management in smart
grid using heuristic optimization. IEEE Trans. Smart Grid 3(3), 1244–1252 (2012)

11. Lui, T., Stirling, W., Marcy, H.: Get smart. IEEE Power Energ. Mag. 8(3), 66–78
(2010)

12. Lu, L., Tu, J., Chau, C.K., Chen, M., Lin, X.: Online energy generation scheduling
for microgrids with intermittent energy sources and co-generation, vol. 41, pp.
53–66. ACM (2013)

13. Narayanaswamy, B., Garg, V.K., Jayram, T.S.: Online optimization for the smart
(micro) grid. In: Proceedings of the 3rd International Conference on Future Energy
Systems: Where Energy, Computing and Communication Meet. ACM (2012)

14. Sousa, T., Morais, H., Vale, Z., Castro, R.: A multi-objective optimization of the
active and reactive resource scheduling at a distribution level in a smart grid con-
text. Energy 85, 236–250 (2015)

15. Shahidehpour, M., Yamin, H., Li, Z.: Market Operations in Electric Power Sys-
tems: Forecasting, Scheduling, and Risk Management, 1st edn. Wiley-IEEE Press,
New York (2002)

Proportional Cost Buyback Problem
with Weight Bounds

Yasushi Kawase1(B), Xin Han2, and Kazuhisa Makino3

1 Department of Social Engineering, Tokyo Institute of Technology, Tokyo, Japan
kawase.y.ab@m.titech.ac.jp

2 Software School, Dalian University of Technology, Dalian, China
hanxin@dlut.edu.cn

3 Research Institute for Mathematical Science, Kyoto University, Kyoto, Japan
makino@kurims.kyoto-u.ac.jp

Abstract. In this paper, we study the proportional cost buyback prob-
lem. The input is a sequence of elements e1, e2, . . . , en, each of which
has a weight w(ei). We assume that weights have an upper and a lower
bound, i.e., l ≤ w(ei) ≤ u for any i. Given the ith element ei, we either
accept ei or reject it with no cost, subject to some constraint on the
set of accepted elements. During the iterations, we could cancel some
previously accepted elements at a cost that is proportional to the total
weight of them. Our goal is to maximize the profit, i.e., the sum of the
weights of elements kept until the end minus the total cancellation cost
occurred. We consider the matroid and unweighted knapsack constraints.
For either case, we construct optimal online algorithms and prove that
they are the best possible.

1 Introduction

In this paper, we study proportional cost buyback problem. The buyback problem
was introduced in [3,7] as a model of selling advertisement online with a buy-
back option. The input for the problem is a sequence of elements (or bidders)
e1, e2, . . . , en, each of which has a weight (or bid) w(ei). Given the ith element
ei, we either accept ei or reject it with no cost, subject to some constraint on
the set of accepted elements. During the iterations, we could cancel some of the
previously accepted elements by paying cancellation fees. Our goal is to maxi-
mize the profit, i.e., the sum of the weights of elements kept until the end minus
the total cancellation cost occurred.

Examples of cancellation costs are compensatory payment, paperwork cost,
and shipping charge. Some are proportional to the total weight of canceled ele-
ments, and some depend only on the number of canceled elements. In this paper,
we consider the former case.

Related Work. Before studying the buyback problem, the removal online
problem, i.e., the buyback problem without cancellation cost, was investigated

c© Springer International Publishing Switzerland 2015
Z. Lu et al. (Eds.): COCOA 2015, LNCS 9486, pp. 794–808, 2015.
DOI: 10.1007/978-3-319-26626-8 59

Proportional Cost Buyback Problem with Weight Bounds 795

[6,8,10,11,15]. For example, Iwama and Taketomi [12] showed that the
unweighted knapsack problem is 1+

√
5

2 ≈ 1.618-competitive, where knapsack
problem is called unweighted if the value of each item is equal to its size. We
remark that the problem has unbounded competitive ratio, for weighted or unre-
movable cases [12,13].

The buyback problem with proportional cost was studied in [1–5,7,9]. In this
model, the cancellation cost of each element ei is proportional to its weight, i.e.,
it is f ·w(ei), where f > 0 is a fixed constant called buyback factor. Babaioff et al.
[3] and Constantin et al. [7] showed that the problem is (1 + 2f + 2

√
f(1 + f))-

competitive with the single-element constraint. Babaioff et al. [3] also showed
that the problem has the competitive ratio (1 + 2f + 2

√
f(1 + f)) with the

matroid constraint. Ashwinkumar and Kleinberg [2] showed that the buyback
problem for the matroid constraint is randomized −W (−1

e(1+f)) competitive
against an oblivious adversary. Here W denote Lambert’s W function, defined
as the inverse of the function g(z) = zez for z ≤ −1.

Ashwinkumar [1] extended their results to the intersection of k matroids and

showed that it is k(1 + f)
(
1 +

√
1 − 1

k(1+f)

)2

-competitive. Babaioff et al. [3,4]
also studied the buyback problem with the weighted knapsack constraint. They
showed that if the largest element is of size at most γ, where 0 < γ < 1, then
the competitive ratio is (1 + 2f + 2

√
f(1 + f)) with respect to the optimum

solution for the knapsack problem with capacity (1 − 2γ). Han et al. [9] studied
the buyback problem with the unweighted knapsack constraint. They proved

that the problem is max
{

2,
1+f+

√
f2+2f+5

2

}
-competitive.

Unit cost buyback problem, i.e., the buyback problem with fixed cancellation
cost for each canceled element, was introduced by Han et al. [9]. In their model,
the cancellation cost of each element is a fixed constant c > 0. They showed
a tight competitive ratio for the unweighted knapsack constraint case with the
assumption that every element has a weight at least c, since in many applications,
the cancellation cost is not higher than its bid. Kawase et al. [14] studied the
unit cost buyback problem with weight bounds. Let u > l > 0 be an upper
and a lower bound of element weights, i.e., l ≤ w(ei) ≤ u for any element ei.
They provide optimal competitive ratio for the single-element, the matroid, or
the unweighted knapsack constraint with parameters l and u.

Our Results. In this paper, we study the proportional cost buyback prob-
lem for the single-element constraint, the matroid constraint, or the unweighted
knapsack constraint with weight bounds. In this model, the cancellation cost of
each element ei is proportional to its weight, i.e., it is f · w(ei), where w(ei)
denotes the weight of ei and f > 0 is the buyback factor.

Let u > l > 0 be an upper and a lower bound of element weights, i.e.,
l ≤ w(ei) ≤ u for any element ei. We show that the proportional cost buyback
problem for the single-element or matroid constraint has the competitive ratio
ν(l, u, f) which is defined below.

796 Y. Kawase et al.

Let φρ(n) satisfy the following recurrence relation

φρ(n) =

{
l, (n = 1),
ρ(φρ(n − 1) − f · ∑n−2

i=1 φρ(i)) (n = 2, 3, . . .).

Thus, we have{
φρ(1) = l, φρ(2) = lρ,

φρ(n + 1) − (ρ + 1)φρ(n) + ρ(1 + f)φρ(n − 1) = 0 (n = 2, 3, . . .).

Define ν(l, u, f) the smallest value ρ (> 1) and satisfies that

φρ(nρ) = u where nρ = min{n ∈ Z++ | φρ(n) ≥ φρ(n + 1)}.

Due to the space limitation, the proof of the existence of nρ and ν(l, u, f) is
omitted. For example, the competitive ratio ν(l, u, f) for (l, u) = (0.5, 1.0) and
(u, f) = (1.0, 0.2) are given in Fig. 1.

Fig. 1. The competitive ratio ν(l, u, f) of the single-element or matroid constraint,
where the left and right figures represent the ratios for (l, u) = (0.5, 1.0) and (u, f) =
(1.0, 0.2), respectively. We can see that the ratio ν(l, u, f) is monotone increasing for f
and monotone decreasing for l.

We mention that the competitive ratio is independent of positive scaling for
l and u, i.e., we have ν(l, u, f) = ν(l/α, u/α, f) for any u > l > 0 and α > 0.
Moreover, we have limu/l→∞ ν(l, u, f) = 1+2f +2

√
f(1 + f), which corresponds

to the competitive ratio of the single-element case without upper and lower bounds
of weights provided by Babaioff et al. [3] and Constantin et al. [7].

For the unweighted knapsack constraint, let u = 1 and let ζ be a function
defined by

ζ(l, f) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ν(l, 1, f) (l > 1/2, f < (1 − l)/l),

2 (0≤l<1/2, 0<f≤max{1/2, 4l−1
2l }

or l=1/2, 1/4≤f≤1
),√

9f2+8f+8+3f

2 (l = 1/2, 0 < f ≤ 1/4),
1+f+

√
f2+2f+5

2 (0 ≤ l ≤ 1/3, 1/2 ≤ f ≤ l2−3l+1
l(1−l)),

fl+
√

f2l2+4l

2l (max{ l2−3l+1
l(1−l) , 4l−1

2l } ≤ f ≤ 1−l
l),

1/l (f ≥ (1 − l)/l)

Proportional Cost Buyback Problem with Weight Bounds 797

when l ∈ [0, 1] and f > 0. Then, we show that the problem is ζ(l, f)-competitive
when the size of the knapsack is one. For example, the competitive ratios ζ(l, f)
for l = 1/2 and f = 1/2 are given in Fig. 2. We note that the competitive ratio
ζ(l, f) consists of 6 parts, which depends on l and f (see Fig. 3). On the other
hand, the competitive ratio for the unit cost case consists of infinitely many
parts (Kawase et al. [14]).

Fig. 2. The competitive ratio ζ(l, f) of the unweighted knapsack constraint, where the
left and right figures represent the ratios for l = 1/2 and f = 1/2, respectively.

The rest of the paper is organized as follows. In Sect. 2 we formally define the
proportional cost buyback problem. In Sect. 3, we handle the matroid constraint,
and in Sect. 4, we discuss the knapsack constraint.

2 Preliminaries

In this section, we formally define the proportional cost buyback problem. Let
(E, I) be an independence system, i.e., E is a finite set and I is a family of subsets
of E, and J ⊆ I ∈ I ⇒ J ∈ I. Elements from E = {e1, . . . , en} are presented
to an algorithm in a sequential manner, and when an element ek is presented,
it must be accepted or rejected immediately. Each element ei is associated with
a weight w(ei). During the iterations, the algorithm could cancel some of the
previously accepted elements.

Let Bk be the set of selected elements at the end of kth round. Then Bk ⊆
Bk−1∪{ek} and Bk ∈ I. The algorithm must run based only on the weights w(ei)
(1 ≤ i ≤ k) and the feasibility of subsets T ⊆ {e1, . . . , ek}. The utility of the
algorithm is the total weight of the accepted elements minus the penalty paid to
the canceled elements. The cancellation cost for each element ei is proportional
to its weight, i.e., f · w(ei), where f is the buyback factor [3].

Let B = Bn be the final set held by the algorithm and R = (
⋃

i Bi) \ B
be the set of elements canceled. Then the utility of the algorithm is defined as∑

e∈B w(e) − f · ∑e∈R w(e).

798 Y. Kawase et al.

Fig. 3. The competitive ratio ζ(l, f) of the unweighted knapsack constraints, which
consists of 6 parts depending on l and f .

3 The Matroid Constraint

In this section, we consider the matroid case with upper and lower bound of
weights, where the constraint I is an arbitrary independence family of matroid
M = (E, I), and each element ei has weight w(ei) such that l ≤ w(ei) ≤ 1.

3.1 An Optimal Online Algorithm

We show that the competitive ratio for this problem is at most ν(l, u, f) by
proving that Algorithm 1 is ν(l, u, f)-competitive. We define φ(n) as

φ(n) := φν(l,u,f)(n)

and n∗ as

n∗ := nν(l,u,f) (= min{n ∈ Z++ | φ(n) ≥ φ(n + 1)})

where Z++ denotes the set of nonnegative integers. Here we note that l = φ(1) <
φ(2) < · · · < φ(n∗) = u. In the algorithm, let ei be the element given in the ith
round, and let Bi be the set of selected elements at the end of the ith round. We
denote by w(Bi) the total value of elements in Bi. If ei is accepted, (ki−1) means
how many elements the algorithm canceled to accept it, and if rejected ki = 0.
p(ei) denote the element canceled when the algorithm accepts ei, if exists. For
example, if the input sequence is {e1, e2, e3, e4, e5} and the algorithm runs as
B1 = {e1}, B2 = {e1, e2}, B3 = {e3, e2}, B4 = {e3, e2}, B5 = {e5, e2} then
k1 = 1, k2 = 1, k3 = 2, k4 = 0, k5 = 3 and p(e3) = e1, p(e5) = e3.

Proportional Cost Buyback Problem with Weight Bounds 799

Algorithm 1. Matroid Case
1: B0 ← ∅
2: for all elements ei, in order of arrival, do
3: if Bi−1 ∪ {ei} ∈ I then Bi ← Bi−1 ∪ {ei}, ki ← 1

4: else let ej be the element with smallest value
φ(kj+1)

φ(kj)
· w(ej) such that Bi−1 ∪

{ei} \ {ej} ∈ I
5: if w(ei) >

φ(kj+1)

φ(kj)
·w(ej) then Bi ← Bi−1∪{ei}\{ej}, ki ← kj+1, p(ei) ← ej

6: else Bi ← Bi−1 and ki ← 0
7: end for

Theorem 1. The online Algorithm 1 is ν(l, u, f)-competitive.

Proof. We first remark that we have ki < n∗ for each i since w(ei) > φ(ki) if
ki ≥ 2 and φ(n∗) = u ≥ w(ei). Let OPT denote an optimal solution for the offline
problem whose input sequence is e1, . . . , en, and let Bn = {eb1 , eb2 , . . . , ebh}. If
each element ei has a weight

w′(ei) =

{
φ(ki+1)

φ(ki)
· w(ei) (ki ≥ 1),

w(ei) (ki = 0)

then Bn is a maximum-weight base of the matroid M because Algorithm 1
can be seen as a matroid greedy algorithm for the weight w′. Thus, w(OPT) ≤∑h

i=1 w′(ebi) =
∑h

i=1

φ(kbi
+1)

φ(kbi
) w(ebi) since w′(ei) ≥ w(ei) for each element ei. For

each ei ∈ Bn, let Ri = {ri
1, r

i
2, . . . , r

i
ki−1} with ri

ki−1 = p(ei) and ri
j = p(ri

j+1)
for j = 1, 2, . . . , ki − 2, and let R =

⋃
ei∈Bn

Ri be the elements canceled by the
algorithm. Then w(ri

j+1) > φ(j+1)
φ(j) w(ri

j) for j = 1, 2, . . . , ki − 2, and w(ei) >
φ(ki)

φ(ki−1)w(ri
ki−1). Thus, for j = 1, 2, . . . , ki − 2, we obtain

w(ri
j) <

φ(j)
φ(j + 1)

· φ(j + 1)
φ(j + 2)

· · · · · φ(ki − 1)
φ(ki)

w(ei) =
φ(j)
φ(ki)

w(ei).

Therefore, the competitive ratio is at most

w(OPT)
w(Bn) − f · w(R)

≤
∑h

i=1

φ(kbi
+1)

φ(kbi
) · w(ebi)∑h

i=1

(
w(ebi) − f · ∑kbi

−1

j=1
φ(j)

φ(kbi
) · w(ebi)

)

≤ h
max
i=1

φ(kbi
+1)

φ(kbi
) · w(ebi)

w(ebi) − f · ∑kbi
−1

j=1
φ(j)

φ(kbi
) · w(ebi)

=
h

max
i=1

φ(kbi + 1)

φ(kbi) − f · ∑kbi
−1

j=1 φ(j)
= ν(l, u, f).

�

800 Y. Kawase et al.

3.2 Lower Bound

In this subsection, we show that ν(l, u, f) is also a lower bound for the compet-
itive ratio of the problem even if the constraint is the single-element one. We
note that the single-element constraint is a special case of matroid constraint,
i.e., the uniform matroid of rank 1.

Theorem 2. There exists no online algorithm with competitive ratio less than
ν(l, u, f) for the proportional cost buyback problem with the single-element con-
straint.

Proof. Let A denote an online algorithm chosen arbitrarily. Our adversary
requests the sequence of elements whose weights are

φ(1), φ(2), . . . , φ(n∗), (1)

until A rejects some element in (1).
If A rejects the element with weight φ(1), then the competitive ratio of A

becomes infinite. On the other hand, if A rejects the element with weight φ(k+1)
for some k > 1, A cancels k − 1 elements with weights φ(1), φ(2), . . . , φ(k − 1)
and the competitive ratio is at least

φ(k + 1)

φ(k) − f · ∑k−1
i=1 φ(i)

= ν(l, u, f). (2)

Finally, if A accepts all the elements in (1), then the competitive ratio is at least

φ(n∗)
φ(n∗) − f · ∑n∗−1

i=1 φ(i)
=

φ(n∗)
φ(n∗ + 1)

· ν(l, u, f) ≥ ν(l, u, f).
�

4 The Unweighted Knapsack Constraint

In this section, we consider the unweighted knapsack case with upper and lower
bound of weight, where the constraint I = {T ⊆ E | ∑

e∈T w(e) ≤ 1} is the set
of elements whose total weight is at most one, and each element ei has weight
w(ei) such that l ≤ w(ei) ≤ 1.

4.1 Optimal Online Algorithms

In this subsection, we show the upper bound on the competitive ratio for the
problem.

Theorem 3. There exists a ζ(l, f)-competitive algorithm for the proportional
cost buyback problem with the unweighted knapsack constraint.

We consider four cases: the case f ≥ 1−l
l or l = 1/2, f ≥ 1/4 in Theorem 4, the

case l > 1/2 in Theorem 5, the case l = 1/2 and 0 < f < 1 in Theorem 6, and
the remaining case l < 1/2 and f < 1−l

l in Theorem 7.

Proportional Cost Buyback Problem with Weight Bounds 801

Theorem 4. There exists a 1/l-competitive algorithm for the proportional cost
buyback problem with the unweighted knapsack constraint.

Proof. Consider an online algorithm that takes the first element e1 and rejects
the remaining elements. Since w(e1) ≥ l and the optimal offline value is at most
1, the competitive ratio is at most 1/l.
�
Theorem 5. There exists a ν(l, 1, f)-competitive algorithm for the proportional
cost buyback problem with the unweighted knapsack constraint if l > 1/2.

Proof. This follows from Theorem 1 since we can hold only one element in the
knapsack at the same time.
�

For l = 1/2 and 0 < f < 1/4, we use Algorithm 2. Let ei be the element
given in the ith round. Define by Bi the set of selected elements at the end of
ith round, and by w(Bi) the total weight in Bi. Note that, we can keep two
elements only when their sizes are 1/2.

Algorithm 2. Removal at most Twice
1: B0 ← ∅
2: for all elements ei, in order of arrival, do
3: if w(Bi−1) + w(ei) ≤ 1 then
4: Bi ← Bi−1 ∪ {ei}
5: if |Bi| = 2 then STOP

6: else if w(Bi) ≥
√

9f2+8f+8−3f

4(1+f)
then STOP

7: else if w(ei) ≥
√

9f2+8f+8−f

4
then Bi ← {ei} and STOP

8: else if w(ei) = 1/2 then Bi ← {ei}
9: else Bi ← Bi−1

10: end for

Here STOP denotes that the algorithm rejects the elements after this round.

Theorem 6. The online Algorithm 2 is
√

9f2+8f+8+3f

2 -competitive for the pro-
portional cost buyback problem with the unweighted knapsack constraint if l = 1/2
and 0 < f < 1/4.

Proof. If the algorithm stops at the fifth line, then the algorithm canceled noth-

ing or one element with size at most
√

9f2+8f+8−3f

4(1+f) . Thus, the competitive ratio
is at most

1

1 − f ·
√

9f2+8f+8−3f

4(1+f)

≤ 1√
9f2+8f+8−f

4 − f ·
(√

9f2+8f+8−3f

4(1+f) + 1
2

)

=

√
9f2 + 8f + 8 + 3f

2
.

802 Y. Kawase et al.

where the first inequality holds by
√

9f2 + 8f + 8 − f ≤ 4 for 0 < f < 1/4.
If the algorithm stops at the sixth line, then the competitive ratio is at most

1√
9f2+8f+8−3f

4(1+f)

=

√
9f2 + 8f + 8 + 3f

2

since the algorithm has never canceled elements.
If the algorithm stops at the seventh line, then the competitive ratio is at

most

1√
9f2+8f+8−f

4 − f ·
(√

9f2+8f+8−3f

4(1+f) + 1
2

) =

√
9f2 + 8f + 8 + 3f

2

since it cancels at most two elements with size 1/2 and smaller than
√

f2−2f+2−f

2 .
If the algorithm has never stopped (at the fifth, sixth, or seventh line), then

every element has size smaller than
√

9f2+8f+8−f

4 and there exists at most one
element with size 1/2. Thus, the competitive ratio is at most

√
9f2+8f+8−f

4

1
2 − f ·

(√
9f2+8f+8−3f

4(1+f)

) =

√
9f2 + 8f + 8 + 3f

2

since it cancels at most one element with size at most (
√

9f2 + 8f + 8 −
3f)/(4(1 + f)).
�

In the rest of this subsection, we would like to show that Algorithm 3 is
ζ(l, f)-competitive for f < 1−l

l and l < 1/2. The main ideas of the algorithm
are: (i) it rejects elements (with no cost) many times, but in at most one round,
it cancels some elements from the knapsack. (ii) some elements are canceled
from the knapsack, only when the total value in the resulting knapsack gets
high enough to guarantee the optimal competitive ratio. We mention that the
algorithm is the same as Algorithm 1 in [9] when f ≤ l2−3l+1

l(1−l) and l < 1/3, that

is ζ(l, f) = max{2,
1+f+

√
f2+2f+5

2l }.
Let ei be the element given in the ith round. Define by Bi−1 the set of

elements in the knapsack at the beginning of ith round, and by w(Bi−1) the
total weight in Bi−1.

Lemma 1. If w(Bi−1) + w(ei) > 1 and some B′
i−1 ⊆ Bi−1 satisfies ζ(l, f) ·

w(Bi−1) < w(B′
i−1) + w(ei) ≤ 1, then the sixth line of Algorithm 3 is executed

in the ith round.

Proof. We consider the following three cases.

Case 1: f ≤ l2−3l+1
l(1−l) and l ≤ 1/3. It holds by Han et al. [9], Lemma 2.

Proportional Cost Buyback Problem with Weight Bounds 803

Algorithm 3.
1: B0 = ∅
2: for all elements ei, in order of arrival, do
3: if w(Bi−1) + w(ei) ≤ 1 then
4: Bi ← Bi−1 ∪ {ei}
5: if w(Bi) ≥ 1/ζ(l, f) then STOP
6: else if ∃B′

i−1 ⊆ Bi−1 s.t. 1
ζ(l,f)

+f ·(w(Bi−1)−w(B′
i−1)) < w(B′

i−1)+w(ei) ≤ 1

then Bi ← B′
i−1 ∪ {ei} and STOP

7: else Bi ← Bi−1

8: end for

Here STOP denotes that the algorithm rejects the elements after this round.

Case 2: f ≤ 4l−1
2l and 1/3 ≤ l < 1/2. Since ζ(l, f) ·w(Bi−1) < w(B′

i−1)+w(ei),
w(Bi−1) ≥ l and ζ(l, f) = 2 we obtain

1
ζ(l, f)

+ f · (w(Bi−1) − w(B′
i−1))

=
1
2

+ f · (w(Bi−1) − w(B′
i−1))

≤ w(B′
i−1) + w(ei)

4l
+ f ·

(
w(B′

i−1) + w(ei)
2

− w(B′
i−1)

)

=
(

1
4l

− f

2

)
w(Bi−1′) +

(
1
4l

+
f

2

)
w(ei).

As f ≤ 4l−1
2l , we have 1

4l − f
2 ≤ 1

4l + f
2 ≤ 1.

Case 3: max{ l2−3l+1
l(1−l) , 4l−1

2l } ≤ f ≤ (1− l)/l. Since ζ(l, f) ·w(Bi−1) < w(B′
i−1)+

w(ei) and w(Bi−1) ≥ l, we obtain

1
ζ(l, f)

+ f · (w(Bi−1) − w(B′
i−1))

≤ w(B′
i−1) + w(ei)

l · ζ2(l, f)
+ f ·

(
w(B′

i−1) + w(ei)
ζ(l, f)

− w(B′
i−1)

)

=
(

1 + l · f · ζ(l, f)
l · ζ2(l, f)

− f

)
w(B′

i−1) +
(

1 + l · f · ζ(l, f)
l · ζ2(l, f)

)
w(ei).

As l · ζ2(l, f) = 1 + l · f · ζ(l, f) by the definition of ζ(l, f), we have

1 + l · f · ζ(l, f)
l · ζ2(l, f)

− f ≤ 1 + l · f · ζ(l, f)
l · ζ2(l, f)

= 1
�
Let OPT denote an optimal solution for the offline problem whose input

sequence is e1, . . . , ei.

Lemma 2. If w(Bi) < 1/ζ(l, f) then we have |OPT \ Bi| ≤ 1.

804 Y. Kawase et al.

Proof. Bi contains all the elements at most 1/2 seen so far, since w(Bi) <
1/ζ(l, f) ≤ 1/2. Thus, any element u ∈ OPT \ Bi has size greater than 1 −
1/ζ(l, f) ≥ 1/2. Therefore, |OPT \ Bi| ≤ 1 holds since the capacity of the
knapsack is 1.
�
Theorem 7. The online Algorithm 3 is ζ(l, f)-competitive.

Proof. Suppose that the condition in the sixth line is satisfied in round k. Then
it holds that 1

ζ(l,f) + f · (w(Bk−1) − w(B′
k−1)) < w(B′

k−1) + w(ek) = w(Bk).
Since w(Bj) = w(Bk) holds for all j ≥ k, we have

w(OPT)

w(Bi) − f · (w(Bk−1) − w(B′
k−1))

≤ 1

w(Bk) − f · (w(Bk−1) − w(B′
k−1))

< ζ(l, f).

We next assume that the condition in sixth line has never been satisfied. If
w(Bi) ≥ 1/ζ(l, f), we have the competitive ratio w(OPT)/w(Bi) ≤ 1/w(Bi) ≤
ζ(l, f). On the other hand, if w(Bi) < 1/ζ(l, f), |OPT \ Bi| = 0 or 1 holds
by Lemma 2. If |OPT \ Bi| = 0, we obtain the competitive ratio 1. Otherwise
(i.e., OPT \ Bi = {el} for some l), Lemma 1 implies that ζ(l, f) · w(Bl−1) ≥
w(B′

l−1) + w(el) for B′
l−1 = OPT ∩ Bl−1. Therefore, we obtain

w(OPT)
w(Bi)

≤ w(B′
l−1) + w(el) + w(Bi \ Bl−1)
w(Bl−1) + w(Bi \ Bl−1)

≤ max
{

w(B′
l−1) + w(el)
w(Bl−1)

,
w(Bi \ Bl−1)
w(Bi \ Bl−1)

}
≤ ζ(l, f).
�

Before concluding this subsection, we remark that the condition in the sixth
line can be checked efficiently.

Proposition 1. We can check the condition in the sixth line of Algorithm 3 in
O(|Bi−1| + 2ζ2(l,f)) time.

Proof. This proposition is almost the same as Proposition 5 in Han et al. [9].
Let x = 1

1+f

(
1

ζ(l,f) + fw(Bi−1) − w(ei)
)

and y = 1 − w(ei). Our goal is
to decide whether there exists B′

i−1 ⊆ Bi−1 such that x < w(B′
i−1) ≤ y in

O(|Bi−1| + 2ζ2(l,f)) time. As w(Bi−1) < 1/ζ(l, f), w(ei) ≤ 1, and ζ2(l, f) ≥
(1 + f)ζ(l, f) + 1 by the definition of ζ(l, f), we get

y − x = 1 − 1

ζ(l, f)(1 + f)
− f

1 + f
(w(ei) + w(Bi−1))

> 1 − 1

ζ(l, f)(1 + f)
− f

1 + f
(1 +

1

ζ(l, f)
)

=
ζ(l, f) − 1 − f

ζ(l, f)(1 + f)
≥ ζ(l, f)

ζ2(l, f) − 1
− 1

ζ(l, f)
=

1

ζ3(l, f) − ζ(l, f)
≥ 1

ζ3(l, f)
. (3)

Let Bi−1 = {b1, b2, . . . , bm} satisfy w(b1) ≥ · · · ≥ w(bk) ≥ y −x > w(bk+1) ≥
· · · ≥ w(bm). Then we claim the existence of B′

i−1 is equivalent to the existence

Proportional Cost Buyback Problem with Weight Bounds 805

of A ⊆ {b1, b2, . . . , bk} such that x − ∑m
i=k+1 w(bi) < w(A) ≤ y. If such an

A exists, then B′
i−1 = A ∪ {bk+1, . . . , bl} satisfies the conditions, where l =

min{l ≥ k | w(A) +
∑l

i=k+1 w(bi) > x}. On the other hand, if there exists
B′

i−1 such that x < w(B′
i−1) ≤ y, then A = B′

i−1 \ {bk+1, . . . , bm} satisfies
x − ∑m

i=k+1 w(bi) < w(A) ≤ y.
Therefore we need to check the condition x − ∑m

i=k+1 w(bi) < w(A) ≤ y for
at most 2k < 2ζ2(l,f) subsets, since k ≤ w(Bi−1)/(y − x) < ζ2(l, f) holds by
w(Bi−1) < 1/ζ(l, f) and y − x > 1/ζ3(l, f). Thus, we can check the condition in
the sixth line in O(|Bi−1| + 2ζ2(l,f)).
�

4.2 Lower Bound for the Knapsack Constraint Case

In this subsection, we show a lower bound of the competitive ratio ζ(f, l) for the
proportional cost buyback problem with knapsack constraint.

Theorem 8. There exists no online algorithm with a competitive ratio less than
ζ(l, f) for the proportional cost buyback problem with the unweighted knapsack
constraint.

Due to the space limitation, we prove only the case l < 1/2 and f < 1−l
l .

The proof of the other case is omitted due to space restriction. For the case
l < 1/2 and f < 1−l

l , we consider three subcases: the case f ≤ max{ 1
2 , 4l−1

2l } in
Theorem 9, the case max{ l2−3l+1

l(1−l) , 4l−1
2l } ≤ f ≤ 1−l

l in Theorem 10, and the case
1
2 ≤ f ≤ l2−3l+1

l(1−l) in Theorem 11.

Theorem 9. If l < 1/2, there exists no online algorithm with a competitive
ratio less than 2 for the proportional cost buyback problem with the unweighted
knapsack constraint.

Proof. We can obtain this theorem with the adversary in Han et al. [9]
Theorem 1, Case 1.

Let A denote an online algorithm chosen arbitrarily. For a sufficiently small
ε (> 0), our adversary requests the sequence of elements whose weights are

1
2

+ ε,
1
2

+
ε

2
, . . . ,

1
2

+
ε

1/f� + 1
, (4)

until A rejects some element in (4). If A rejects the element with weight 1
2 + ε,

then the adversary stops the input sequence. On the other hand, if it rejects
the element with weight 1

2 + ε
k for some k > 1, then the adversary requests an

element with weight 1
2 − ε

k and stops the input sequence.
We first note that algorithm A must take the first element, since otherwise

the competitive ratio of A becomes infinite. After the first round, A always
keeps exactly one element in the knapsack, since all the elements in (4) have
weight larger than 1

2 (i.e., a half of the knapsack capacity) and for any j < k we
have (12 + ε

j) + (12 − ε
k) > 1. This implies that A cancels the old element from

806 Y. Kawase et al.

the knapsack to accept a new element. If A rejects 1
2 + ε

k for some k > 1, the
competitive ratio is at least 1/

(
1
2 + ε

)
, which approaches 2 as ε → 0. Finally, if

A rejects no element in (4), then its profit is

1
2

+
ε

1/f� + 1
− f ·

1/f�∑
i=1

(
1
2

+
ε

i

)
≤ 1

2
+ ε − f · 1

f
· 1
2

= ε

while the optimal profit for the offline problem is 1
2 + ε, which completes the

proof.
�

Theorem 10. If max{ l2−3l+1
l(1−l) , 4l−1

2l } < f ≤ 1−l
l (0 ≤ l ≤ 1/2) there exists no

online algorithm with a competitive ratio less than

fl +
√

f2l2 + 4l

2l

for the proportional cost buyback problem with the unweighted knapsack con-
straint.

Proof. Let A denote an online algorithm chosen arbitrarily, and let

y =
fl +

√
f2l2 + 4l

2
.

As l2−3l+1
l(l−1) < f and 0 ≤ l ≤ 1/2, we have y + l > 1 and y ≥ √

l > l. Our
adversary requests the following sequence of elements

l, y, 1 (5)

until A rejects some element in (5), and if A rejects the element then the adver-
sary immediately stops the input sequence.

Note that A must accept the first element l, since otherwise, the competitive
ratio becomes infinite. If A rejects the second element, then the competitive ratio
is at least

y

l
=

fl +
√

f2l2 + 4l

2l

If A takes the second element y (and cancels the first element), the competitive
ratio is at least

1
y − f · l

=
fl +

√
f2l2 + 4l

2l

since y − f · l ≥ 1 − f · (l + y) by f > max{ l2−3l+1
l(1−l) , 4l−1

2l } ≥ −3l+
√

l2+8l
4l .
�

Proportional Cost Buyback Problem with Weight Bounds 807

Theorem 11. If 1/2 ≤ f ≤ l2−3l+1
l(1−l) and 0 ≤ l ≤ 1/3 there exists no online

algorithm with a competitive ratio less than

1 + f +
√

f2 + 2f + 5
2

for the proportional cost buyback problem with the unweighted knapsack con-
straint.

Proof. Let A denote an online algorithm chosen arbitrarily, and let

x =
3 + f −

√
f2 + 2f + 5

2(1 + f)
=

2

3 + f +
√

f2 + 2f + 5
.

As 1/2 ≤ f ≤ l2−3l+1
l(1−l) , it holds that l ≤ x ≤ 1/3. For a sufficiently small ε (> 0),

our adversary requests the following sequence of elements

x, 1 − x + ε, 1 − x, (6)

until A rejects some element in (6), and if A rejects the element then the adver-
sary immediately stops the input sequence.

Note that A must accept the first element x, since otherwise, the competitive
ratio becomes infinite. If A rejects the second element, then the competitive ratio
is at least

1 − x + ε

x
≥ 1 − x

x
=

1 + f +
√

f2 + 2f + 5
2

.

If A takes the second element 1 − x + ε (and cancels the first element), the
competitive ratio is at least

1
1 − x + ε − f · x

→ 1
1 − x − f · x

=
1 + f +

√
f2 + 2f + 5
2

as ε → 0.
�

Acknowledgments. The first author is supported by JSPS KAKENHI Grant Num-
ber 26887014 and JST, ERATO, Kawarabayashi Large Graph Project. The second
author is supported by NFSC(11571060), RGC (HKU716412E) and the Fundamental
Research Funds for the Central Universities (DUT15LK10). The last author is sup-
ported by JSPS KAKENHI Grant.

References

1. Ashwinkumar, B.V.: Buyback problem - approximate matroid intersection with
cancellation costs. In: Proceedings of the 38th International Colloquium on
Automata, Language and Programming (2011)

2. Ashwinkumar, B.V., Kleinberg, R.: Randomized online algorithms for the buyback
problem. In: Leonardi, S. (ed.) WINE 2009. LNCS, vol. 5929, pp. 529–536. Springer,
Heidelberg (2009)

808 Y. Kawase et al.

3. Babaioff, M., Hartline, J.D., Kleinberg, R.D.: Selling banner ads: online algorithms
with buyback. In: Proceedings of the 4th Workshop on Ad Auctions (2008)

4. Babaioff, M., Hartline, J.D., Kleinberg, R.D.: Selling ad campaigns: online algo-
rithms with cancellations. In: Proceedings of the 10th ACM Conference on Elec-
tronic Commerce, pp. 61–70 (2009)

5. Biyalogorsky, E., Carmon, Z., Fruchter, G.E., Gerstner, E.: Research note: over-
selling with opportunistic cancellations. Marketing Science 18(4), 605–610 (1999)

6. Buchbinder, N., Feldman, M., Schwartz, R.: Online submodular maximization with
preemption. In: Symposium on Discrete Algorithms, pp. 1202–1216 (2015)

7. Constantin, F., Feldman, J., Muthukrishnan, S., Pál, M.: An online mechanism
for ad slot reservations with cancellations. In: Proceedings of the twentieth Annual
ACM-SIAM Symposium on Discrete Algorithms, pp. 1265–1274 (2009)

8. Han, X., Kawase, Y., Makino, K.: Randomized algorithms for removable online
knapsack problems. In: Frontiers in Algorithmics and Algorithmic Aspects in Infor-
mation and Management (2013)

9. Han, X., Kawase, Y., Makino, K.: Online unweighted knapsack problem with
removal cost. Algorithmica 70, 76–91 (2014)

10. Han, X., Kawase, Y., Makino, K., Guo, H.: Online knapsack problem under convex
function. Theor. Comput. Sci. 540–5419, 62–69 (2014)

11. Han, X., Makino, K.: Online minimization knapsack problem. In: Bampis, E.,
Jansen, K. (eds.) WAOA 2009. LNCS, vol. 5893, pp. 182–193. Springer, Heidelberg
(2010)

12. Iwama, K., Taketomi, S.: Removable online knapsack problems. In: Widmayer, P.,
Triguero, F., Morales, R., Hennessy, M., Eidenbenz, S., Conejo, R. (eds.) ICALP
2002. LNCS, vol. 2380, p. 293. Springer, Heidelberg (2002)

13. Iwama, K., Zhang, G.: Optimal resource augmentations for online knapsack. In:
Charikar, M., Jansen, K., Reingold, O., Rolim, J.D.P. (eds.) RANDOM 2007 and
APPROX 2007. LNCS, vol. 4627, pp. 180–188. Springer, Heidelberg (2007)

14. Kawase, Y., Han, X., Makino, K.: Unit cost buyback problem. In: Cai, L., Cheng,
S.-W., Lam, T.-W. (eds.) Algorithms and Computation. LNCS, vol. 8283, pp. 435–
445. Springer, Heidelberg (2013)

15. Zhou, Y., Chakrabarty, D., Lukose, R.: Budget constrained bidding in keyword
auctions and online knapsack problems. In: Papadimitriou, C., Zhang, S. (eds.)
WINE 2008. LNCS, vol. 5385, pp. 566–576. Springer, Heidelberg (2008)

Erratum to: On Replica Placement
in High-Availability Storage
Under Correlated Failure

K. Alex Mills(&), R. Chandrasekaran, and Neeraj Mittal

Department of Computer Science, The University of Texas at Dallas,
Richardson, TX, USA

{k.alex.mills,chandra,neerajm}@utdallas.edu

Erratum to:
Chapter 26: Z. Lu et al. (Eds.)
Combinatorial Optimization and Applications
DOI: 10.1007/978-3-319-26626-8_26

On page 351 of the original version of the paper, there was a typo in the formula
defining the lexicographic order. Because the failure aggregate was indexed using
decreasing indices, the direction of one of the inequalities should be reversed. The
corrected formula is stated below:

f ðPÞ� L f ðP0Þ () 9 m[0;
�8 i[m : pi ¼ p0i

� ^ pm � p0m:

In the proof of Theorem 1 on page 354, the last sentence of paragraph 3 was modified
to read as follows: “Let S� (resp. Sþ) be the set of nodes whose failure numbers
change from a (resp. change to a), as a result of the swap.” The modified words have
been italicized for emphasis. This phrasing is consistent with the formal definitions of
Sþ and S� given immediately below, which are correct as stated in the original paper.

At the top of page 356, the function Label-Children should take as arguments the
set fc1; c2; :::; ckg, and a number r. The parentheses were suppressed during editing.

Starting from the statement of Theorem 2 on page 356, terms such as k; jUj
k ; jUj�1

k ,
and jUjmod k begin to appear in several formulas. With the usual meaning of jUj and k
the formulas do not read correctly. In the corrected paper, we have introduced a new
term, R, which denotes the number of replicas to be distributed among the unfilled
children. If F and U are the sets of filled and unfilled children of node u found by
Algorithm 1, then R is formally defined as R ¼ rðuÞ �P

ci2F ‘i. In each of the terms
mentioned, replace each instance of jUj by R and each instance of k by jUj. With these
changes, the paper reads correctly.

The updated original online version for this chapter can be found at 10.1007/978-3-319-26626-8_26

© Springer International Publishing Switzerland 2016
Z. Lu et al. (Eds.): COCOA 2015, LNCS 9486, p. E1, 2016.
DOI: 10.1007/978-3-319-26626-8_60

http://dx.doi.org/10.1007/978-3-319-26626-8_26
http://dx.doi.org/10.1007/978-3-319-26626-8_26

Author Index

Aravind, N.R. 424
Armaselu, Bogdan 688
Asahiro, Yuichi 586

Bazgan, Cristina 236
Bein, Wolfgang 45
Beyer, Stephan 601
Bhattacharya, Binay 110
Bhushan, Alka 499

Cai, Zhipeng 279
Cardei, Mihaela 293
Çela, Eranda 709
Chandrasekaran, R. 348
Chateau, Annie 409
Chen, Cong 701
Chen, Jianer 20
Chen, Jing 45
Chen, Wenbin 566
Chimani, Markus 601
Chlebíková, Janka 236
Cordasco, Gennaro 193
Ćustić, Ante 110

D’Ambrosio, Claudia 364
Daescu, Ovidiu 688
Deineko, Vladimir G. 709
Dias, Gustavo 467
Ding, Wei 537, 647
Doi, Yuya 586
Donovan, Zola 334
Du, Donglei 60, 72
Du, Hongwei 221, 251, 307, 319
Duan, Zhenhua 481

Enright, Jessica 574
Erickson, Alejandro 209
Escamocher, Guillaume 731

Fahimi, Hamed 82
Feng, Xin 783
Fernández Anta, Antonio 261
Furcy, David 138

Gao, Hong 395
Gargano, Luisa 193
Georgiou, Chryssis 261
Giroudeau, Rodolphe 409
Gurski, Frank 31

Han, Qilong 279
Han, Xin 45, 794
He, Xiaohan 307
Huang, Danjun 617
Huang, Hejiao 307, 319

Izumi, Taisuke 771

Jia, Xiaohua 221
Jiang, Minghui 551, 676

Kang, Liying 510
Kawase, Yasushi 794
Khachay, Michael 178
Kiasari, Abbas Eslami 209
Korman, Matias 152
Kornaropoulos, Evgenios M. 377

Lahiri, Abhiruk 633
Li, Deying 701
Li, Fufang 566
Li, Jianzhong 395
Li, Ruihu 521
Li, Xueliang 521
Liberti, Leo 364, 467
Lih, Ko-Wei 617
Lin, Junyu 279
Lingas, Andrzej 452
Liu, Chuang 221, 319
Liu, Ming 721
Liu, Xianmin 395
Liu, Yaning 251
Luo, Kelin 758

Mahmoody, Ahmad 377
Maji, Hiromitsu 771
Makino, Kazuhisa 794

Mamageishvili, Akaki 439
Mao, Yaping 521
Mazumdar, Subhra 3
Mecchia, Marco 193
Meeks, Kitty 574
Miao, Dongjing 395
Mihalák, Matúš 439
Mills, K. Alex 348
Mishra, Gopinath 3
Mittal, Neeraj 348
Miyano, Eiji 586
Mkrtchyan, Vahan 334
Mudgal, Apurva 126
Mukherjee, Joydeep 633

Navaridas, Javier 209

O’Sullivan, Barry 731

Pal, Arindam 3
Pandit, Supantha 126
Peng, Jigen 101
Peng, Lingxi 566
Persson, Mia 452
Poirion, Pierre-Louis 364
Pontoizeau, Thomas 236
Poon, Sheung-Hung 152

Qiao, Longliang 721
Qiu, Ke 537, 647
Quimper, Claude-Guy 82

Rafiey, Akbar 110
Rafiey, Arash 110
Rescigno, Adele A. 193
Rethmann, Jochen 31
Roeloffzen, Marcel 152

Sajith, Gopalan 499
Sandeep, R.B. 424
Shan, Erfang 510
Shimizu, Hirotaka 586
Sivadasan, Naveen 424
Sokol, Vladyslav 110
Song, Liang 307
Song, Zeqi 319
Stewart, Iain A. 209
Subramani, K. 334
Subramanian, C.R. 633

Summers, Scott M. 138
Sun, Chengyu 701

Takaoka, Tadao 746
Tan, Xuehou 163
Tang, Maobin 566
Tian, Cong 481
Ting, Hing-Fung 45
Toubaline, Sonia 364

Upfal, Eli 377

Vaccaro, Ugo 193

Wang, Haiyang 481
Wang, Jianxin 20
Wang, Jianxiong 566
Wang, Weifan 617
Wang, Yishui 60
Wanke, Egon 31
Wei, Meiqin 521
Wei, Qi 163
Weller, Mathias 409
Woeginger, Gerhard J. 709
Wu, Chenchen 60, 72
Wu, Yueshi 293

Xia, Ge 676
Xu, Chao 20
Xu, Dachuan 60, 72
Xu, Yi 101
Xu, Yicheng 72
Xu, Yinfeng 101, 701, 758, 783

Yang, Dan 307
Ye, Qiang 251
Yi, Eunjeong 660
Yin, Guisheng 279

Zavou, Elli 261
Zaytseva, Helen 178
Zhang, Kejia 279
Zhang, Yong 676
Zheng, Feifeng 721, 783
Zhou, Jianjie 510
Zhu, Binhai 101
Zhu, Rongrong 221
Zhu, Yuqing 701

810 Author Index

	Preface
	Organization
	Contents
	Classic Combinatorial Optimization
	Improved Algorithms for the Evacuation Route Planning Problem
	1 Introduction
	2 Related Work
	3 Problem Definition and Model
	4 The Single Source Single Sink Problem
	4.1 Limitation of QPER Algorithm for SSEP
	4.2 Modified Algorithm for SSEP When We Are Given k Edge-Disjoint Paths
	4.3 An Important Observation
	4.4 Our Algorithm for SSEP
	4.5 Running Time Analysis of SSEP
	4.6 CCRP Algorithm for SSEP and Some Observations
	4.7 Analysis of Algorithm [1]

	5 Randomized Behavior Model of People
	5.1 Lower Bound for Expected Evacuation Time
	5.2 Algorithm for Randomized Behavior of People

	6 Experimental Results
	6.1 Details of the Experiments
	6.2 Results

	7 Conclusion and Future Work
	References

	Improved MaxSAT Algorithms for Instances of Degree 3
	1 Introduction
	2 Reduction Rules
	3 An O*(1.194k)-time Parameterized Algorithm
	4 An O*(1.237n)-time Algorithm for (n,3)-MaxSAT
	5 Conclusion
	References

	Directed Pathwidth and Palletizers
	1 Introduction
	2 Preliminaries
	3 Main Result
	4 Applications
	4.1 Hardness Result
	4.2 Bounded FIFO Stack-Up Systems
	4.3 Approximation

	5 Conclusion
	References

	Black and White Bin Packing Revisited
	1 Introduction
	2 Algorithm ``Balance Between Stacks''
	2.1 Description of Algorithm BAL

	3 Competitive Analysis of Algorithm BAL
	3.1 Terminology and Case Analysis
	3.2 A Function Calculating the Total Size of Bins
	3.3 Case by Case Analysis of the Competitive Ratio of BAL

	4 Concluding Remarks
	References

	Local Search Algorithms for k-Median and k-Facility Location Problems with Linear Penalties
	1 Introduction
	2 General Local Search Algorithm
	3 Local Search for k-MPLP
	3.1 Analysis

	4 Local Search for k-FLPLP
	4.1 Analysis
	4.2 Improve the Local Gap Using Scaling Technique

	5 Polynomial-Time Algorithm for k-MPLP and k-FLPLP
	References

	A (5.83+)-Approximation Algorithm for Universal Facility Location Problem with Linear Penalties
	1 Introduction
	2 Local Search Algorithm
	2.1 Operations
	2.2 Polynomial-Time Proof
	2.3 Algorithm

	3 Analysis
	4 Discussions
	References

	Variants of Multi-resource Scheduling Problems with Equal Processing Times
	1 Introduction
	2 Literature Review, Framework and Notations
	2.1 Related Work
	2.2 Objective Functions
	2.3 Network Flows
	2.4 Scheduling Graph

	3 Variety of Machines
	4 General Objective Function
	5 Monotonic Objective Function
	6 Periodic Objective Function
	6.1 Scheduling Problem as a Network Flow
	6.2 Periodic Objective Function Formulated as a Network Flow

	7 Additional Remark
	8 Conclusion
	References

	Geometric Optimization
	The Discrete and Mixed Minimax 2-Center Problem
	1 Introduction
	2 The Discrete Minimax 2-Center Problem
	3 The Mixed Minimax 2-Center Problem
	3.1 The Structure of the Optimal Solution
	3.2 Solving MMM2CP for a Fixed p and r
	3.3 The Monotone Property

	4 Conclusion
	References

	Approximation Algorithms for Generalized MST and TSP in Grid Clusters
	1 Introduction
	2 The GGMST Approximation Algorithm
	3 The Lower Bound Proof
	4 Approximation of the GGTSP
	5 Conclusions
	References

	Covering, Hitting, Piercing and Packing Rectangles Intersecting an Inclined Line
	1 Introduction
	2 Set Cover and Hitting Set Problems
	2.1 Unit Squares Intersecting a Diagonal Line
	2.2 Unit-Height Rectangles Intersecting a Diagonal Line
	2.3 Unit Squares Touching a Diagonal Line

	3 Piercing Set Problem
	3.1 Rectangles Intersecting a Diagonal Line
	3.2 Unit Squares Intersecting a Diagonal Line

	4 Independent Set Problem
	4.1 Squares Intersecting a Diagonal Line
	4.2 Unit-Height Rectangles Intersecting a Diagonal Line

	References

	Optimal Self-assembly of Finite Shapes at Temperature 1 in 3D
	1 Introduction
	2 Definitions
	2.1 3D Abstract Tile Assembly Model
	2.2 Complexities of (Scaled) Finite Shapes

	3 Main Theorem
	4 Main Construction
	4.1 Setup
	4.2 Seed Block
	4.3 Growth Blocks
	4.4 Putting It All Together

	5 Conclusion
	References

	Line Segment Covering of Cells in Arrangements
	1 Introduction
	2 NP-hardness for Rectilinear Line Segments
	2.1 Reduction
	2.2 Correctness

	3 Covering Only Rectangular Cells
	3.1 NP-hardness
	3.2 FPT on the Size of the Optimal Solution

	4 Rectangular Subdivisions
	5 Conclusions and Open Problems
	References

	An Improved On-line Strategy for Exploring Unknown Polygons
	1 Introduction
	2 Preliminaries
	2.1 An Overview of the 2-approximation Algorithm
	2.2 An Overview of the 26.5-Competitive Strategy

	3 Exploring a Right Polygon
	3.1 How to Reach the Cut of a Right Vertex at the Wanted Point
	3.2 The Exploration Strategy
	3.3 The Performance Analysis

	4 Exploring a Simple Polygon
	4.1 The 6.7-Competitive Strategy

	References

	Polynomial Time Approximation Scheme for Single-Depot Euclidean Capacitated Vehicle Routing Problem
	1 Introduction
	2 Problem Statement
	3 Iterated Tour Partition Heuristic
	4 Approximation of TSP in R3
	5 Polynomial Time Approximation Scheme for Capacitated Vehicle Routing Problem in 3-Dimensional Space
	6 Conclusion
	References

	Network Optimization
	A Fast and Effective Heuristic for Discovering Small Target Sets in Social Networks
	1 Introduction
	2 The Model, the Context, and Our Results
	2.1 Related Work
	2.2 Our Results

	3 The TSS Algorithm
	4 Estimating the Size of the Solution
	5 Proofs of Optimality
	6 Computational Experiments
	6.1 Random Graphs
	6.2 Large Real-Life Networks

	7 Concluding Remarks
	References

	An Efficient Shortest-Path Routing Algorithm in the Data Centre Network DPillar
	1 Introduction
	2 The DCN DPillar
	3 Abstracting Routing in DPillar
	3.1 Another Abstraction: The Marked Cycle

	4 Routing in a Marked Cycle
	4.1 A Shortest Path has at Most Two Turns

	5 An Optimal Routing Algorithm for DPillar
	5.1 Building Our Set of Paths When x =0
	5.2 Building Our Set of Paths When x = 0
	5.3 Our Algorithm

	6 Conclusions
	References

	A Sensor Deployment Strategy in Bus-Based Hybrid Ad-Hoc Networks
	1 Introduction
	2 Related Work
	3 Network Model
	4 Problem Definition and Assumptions
	5 Sensor Deployment Scheme
	5.1 Simple Large Regions Without Boundaries
	5.2 Large Regions with Boundaries

	6 Simulations
	6.1 Simulation Scenarios
	6.2 Simulation Analysis for Sensor Deployment
	6.3 Simulation Analysis for Average Delay

	7 Conclusion and Future Works
	References

	New Insight into 2-Community Structures in Graphs with Applications in Social Networks
	1 Introduction
	2 Preliminaries
	3 2-Community Structure in 3-Regular Graphs
	4 Balanced 2-Community Structure
	5 Conclusion and Open Problems
	References

	WDCS: A Weight-Based Distributed Coordinate System
	1 Introduction
	2 Problem Formulation
	3 WDCS: A High-Precision Scheme
	3.1 Overview Of WDCS
	3.2 Details of WDCS

	4 Experimental Results
	4.1 Evaluation Metrics
	4.2 Accuracy
	4.3 Convergence Behaviour

	5 Conclusion
	References

	Adaptive Scheduling Over a Wireless Channel Under Constrained Jamming
	1 Introduction
	2 Model
	3 Uniform Packets
	4 Optimal Algorithm for f= 1
	5 Optimal Algorithm for ANY f> 1
	6 Discussion
	References

	Metric and Distributed On-Line Algorithm for Minimizing Routing Interference in Wireless Sensor Networks
	1 Introduction
	2 Related Works
	3 Interference Metric
	3.1 Network Model
	3.2 Quantifying Interference Level
	3.3 Analysis of Interference Metric

	4 Distributed On-Line Algorithm
	4.1 Description of DOAMI

	5 Simulation Results
	6 Conclusion
	References

	Distributed Algorithm for Mending Barrier Gaps via Sensor Rotation in Wireless Sensor Networks
	1 Introduction and Related Works
	2 Network Model and Problem Definition
	3 Distributed Algorithm for Weak Barrier Coverage
	3.1 Phase 1: Neighbor Discovery
	3.2 Phase 2: Optimal Orientation
	3.3 Phase 3: Minimizing the Gap Length

	4 Simulation Results
	5 Conclusions
	References

	Applied Optimization
	A Hybrid Large Neighborhood Search for Dynamic Vehicle Routing Problem with Time Deadline
	1 Introduction
	2 Problem Formulation
	3 Hybrid Large Neighborhood Search
	3.1 Insert Heuristic
	3.2 Large Neighborhood Search

	4 Computational Results
	4.1 Static Results and Analysis
	4.2 Dynamic Results and Analysis

	5 Conclusion
	References

	Indoor Localization via Candidate Fingerprints and Genetic Algorithm
	1 Introduction
	2 Related Work
	3 Problem Formulation
	4 Pick the CFs
	5 Search Closest Fingerprint Using GA
	5.1 Example Scenario
	5.2 The Genetic Algorithm

	6 Performance Evaluation
	6.1 Analytical Model for Selecting CFs
	6.2 The Effect of CFs Selecting
	6.3 The Effect of Communication Distance
	6.4 Localization Errors

	7 Conclusion
	References

	On Clustering Without Replication in Combinatorial Circuits
	1 Introduction
	2 Graph Preliminaries
	3 Statement of Problems
	4 Related Work
	5 Computational Complexity of CN
	6 A 2-Approximation Algorithm for CN"426830A N, 2, "526930B
	7 Conclusion
	References

	On Replica Placement in High-Availability Storage Under Correlated Failure
	1 Introduction
	2 Model
	3 An O(n2) Greedy Algorithm
	4 Balanced Placements
	5 An O(n + log) Algorithm
	5.1 Divide Phase
	5.2 Combine Phase
	5.3 Transform Phase

	6 Conclusion and Future Work
	References

	Observing the State of a Smart Grid Using Bilevel Programming
	1 Introduction
	2 Problem Statement
	2.1 Observability of a Graph

	3 Mathematical Modelling
	3.1 Iterative Model
	3.2 From Iterative to Bilevel Model
	3.3 Bilevel Model

	4 An Algorithm for the Bilevel Problem
	5 Computational Results
	6 Conclusions
	References

	Optimizing Static and Adaptive Probing Schedules for Rapid Event Detection
	1 Introduction
	1.1 Our Contribution

	2 Related Work
	3 Model and Problem Definition
	4 Results
	4.1 On Maximizing Immediate Gain
	4.2 Lower Bound on Optimal Cost
	4.3 Deterministic (3+(c-1)/c)-Approximation Schedule
	4.4 On Optimal Memoryless Schedule
	4.5 On Adaptive Algorithm for Memoryless Schedules

	References

	Complexity and Game
	Vertex Cover in Conflict Graphs: Complexity and a Near Optimal Approximation
	1 Introduction
	1.1 Database Application
	1.2 Literature Review of the Vertex Cover Problem
	1.3 Our Contribution

	2 Complexity and Inapproximation
	3 A Near Optimal (2-12r)-approximation
	3.1 A Basic Approximation Algorithm
	3.2 Improve the Approximation by Triangle Eliminating
	3.3 Near Optimality

	References

	On the Complexity of Scaffolding Problems: From Cliques to Sparse Graphs
	1 Introduction
	2 Notation and Problem Description
	3 Dense Graphs
	3.1 Good News
	3.2 Bad News

	4 Sparse Graphs
	4.1 Bad News
	4.2 Good News

	5 Conclusion
	References

	Parameterized Lower Bound and NP-Completeness of Some H-Free Edge Deletion Problems
	1 Introduction
	2 Preliminaries and Basic Tools
	2.1 Basic Tools

	3 T-free Edge Deletion
	3.1 Base Cases
	3.2 Induction

	4 R-free Edge Deletion
	5 Handling Disconnected Graphs
	6 Concluding Remarks
	References

	Multicast Network Design Game on a Ring
	1 Introduction
	2 Preliminaries
	3 Price of Anarchy/Stability for Multicast on Rings
	4 Potential-Optimum Price of Anarchy for Multicast on Rings
	5 Myopic Sequential Prices of Anarchy/Stability
	5.1 Sequential Price of Anarchy in Multicast Game on Rings
	5.2 Myopic Sequential Price of Stability in Multicast Game
	5.3 Myopic Sequential Price of Stability on Rings

	6 Conclusions
	A Weights for Inequalities from the Proof of Theorem??
	References

	Extreme Witnesses and Their Applications
	1 Introduction
	2 Preliminaries
	3 Extreme Witnesses for Boolean Convolution
	3.1 String Matching
	3.2 (min, +) Convolution

	4 Extreme Witnesses for Boolean Matrix Product
	4.1 Lightest Triangles

	5 Final Remarks
	References

	Orbital Independence in Symmetric Mathematical Programs
	1 Introduction
	2 Previous Work and Notation
	2.1 Mathematical Programming
	2.2 Symmetry Detection
	2.3 Formulation and Solution Groups
	2.4 Symmetry Breaking Constraints
	2.5 Orbits
	2.6 Strong and Weak SBCs
	2.7 Stabilizers

	3 Orbital Independence Notions
	3.1 Incompatible SBCs
	3.2 Some Existing OI Conditions
	3.3 New Conditions for OI
	3.4 SBCs from Independent Sets

	4 Orbital Independence Algorithm
	4.1 Independence Graph
	4.2 Orbital Independence Reformulations
	4.3 Algorithm Description

	5 Computational Experiments
	5.1 Environment
	5.2 Results

	6 Conclusions
	References

	Symbolic Model Checking for Alternating Projection Temporal Logic
	1 Introduction
	2 Alternating Projection Temporal Logic
	2.1 APTL Syntax
	2.2 APTL Semantics
	2.3 Normal Form of APTL

	3 Interpreted Systems and Symbolization
	3.1 Interpreted Systems
	3.2 Symbolic Representation of System Models

	4 Symbolic Model Checking for APTL
	4.1 Symbolic Model Checking Algorithm for APTL
	4.2 Model Checker MCMAS_APTL
	4.3 A Case Study

	5 Conclusions
	References

	Optimization in Graphs
	An I/O Efficient Algorithm for Minimum Spanning Trees
	1 Introduction
	2 The Stages
	3 A Phase
	4 A Proof of Correctness
	5 The I/O Complexity
	References

	The Connected p-Centdian Problem on Block Graphs
	1 Introduction
	2 Problem Formulation
	3 The CpM Problem on Block Graph with Unit Edge Length
	4 The Connected p-Centdian Problem on Unweighted Block Graphs
	5 An Example for the Connected p-Centdian Problem
	References

	Searching for (near) Optimal Codes
	1 Introduction
	2 Preliminaries
	3 New Binary Linear Codes Searching from Circulant Graphs
	4 New Additive Codes Searching from Circulant Graphs
	5 Concluding Remarks
	References

	Dynamic Single-Source Shortest Paths in Erdös-Rényi Random Graphs
	1 Introduction
	1.1 Previous Work
	1.2 Our Results

	2 Ding and Lin's Local Search Algorithm
	2.1 Preliminaries
	2.2 Local Search Algorithm

	3 Weight Increase in Weighted ER Random Graphs
	3.1 ER and Weighted ER Random Graphs
	3.2 Fundamental Lemmas
	3.3 Expected Update Time in Weighted ER Random Graphs

	4 Edge Deletion in ER Random Graphs
	5 Concluding Remarks
	References

	Trees, Paths, Stars, Caterpillars and Spiders
	1 Introduction
	2 Linear Arboricity of Bipartite Graphs
	2.1 K2k-1,2k and Tc
	2.2 Linear Arboricity 2
	2.3 Linear Arboricity k for k 3

	3 Star Arboricity of Bipartite Graphs
	4 Caterpillar Arboricity of Bipartite Graphs
	5 Spider Arboricity of Bipartite Graphs
	6 Concluding Remarks
	References

	Algorithms for the Densest Subgraph with at Least k Vertices and with a Specified Subset
	1 Introduction
	2 Definitions
	3 An Algorithm for DalkS Based on the Minimum s-t Cut with at Least k Vertices
	4 A Greedy Approximation Algorithm for DSS
	5 Conclusion
	References

	Deleting Edges to Restrict the Size of an Epidemic: A New Application for Treewidth
	1 Introduction
	1.1 Review of Previous Work
	1.2 Notation and Problem Definition
	1.3 Tree Decompositions

	2 Treewidth of Real Networks
	3 The Algorithm
	3.1 The Signature of a Node
	3.2 Running Time and Extensions

	4 Conclusions and Open Problems
	References

	Optimal Approximation Algorithms for Maximum Distance-Bounded Subgraph Problems
	1 Introduction
	2 Problems and Previous Results
	2.1 Definitions
	2.2 Optimal Approximation Algorithm for Max d-Club with Even d in [3]

	3 Optimal Approximation Algorithm for Max d-Club with Odd d
	4 Polynomial-Time Algorithms of Max d-Club for Graph Classes
	4.1 Graph Classes
	4.2 Algorithms
	4.3 Chordal and Weakly Chordal Graphs for Odd d
	4.4 Strongly Chordal, Trapezoid, and Interval Graphs

	5 Max d-Clique
	References

	The Influence of Preprocessing on Steiner Tree Approximations
	1 Introduction
	2 Approximation Algorithms and Their Engineering
	3 Preprocessing Techniques
	4 Experimental Evaluation
	5 Conclusion
	A Distribution of Solution Values
	B More Detailed Table for Influence of Preprocessing
	References

	Legally (+2)-Coloring Bipartite Outerplanar Graphs in Cubic Time
	1 Introduction
	2 Bipartite Outerplanar Graphs with =3
	3 Bipartite Outerplanar Graphs with 4
	3.1 Ordered Breadth First Search
	3.2 A Legal (+2)-coloring Algorithm

	References

	Maximum Independent Set on B1-VPG Graphs
	1 Introduction
	2 Preliminaries
	3 Approximation for B1-VPG
	4 Analysis of IndSet1 and IndSet2
	4.1 Analysis of Running Time

	5 Approximation for Equilateral B1-VPG:
	6 Hardness of MIS on Unit L-Graphs
	7 Conclusion and Remarks
	References

	Approximating the Restricted 1-Center in Graphs
	1 Introduction
	2 Problem Definitions and Intractability
	3 An FPTAS for RV1CP
	4 Approximation Algorithms for RA1CP
	4.1 Fundamental Properties
	4.2 Approximation Algorithms

	5 Concluding Remarks
	References

	The Disjunctive Bondage Number and the Disjunctive Total Bondage Number of Graphs
	1 Introduction
	2 Preliminaries
	3 The Disjunctive Bondage Number of Graphs
	3.1 Some Exact Values
	3.2 Some Upper Bounds

	4 The Disjunctive Total Bondage Number of Some Graphs
	5 Closing Remark
	References

	Edge-Disjoint Packing of Stars and Cycles
	1 Introduction
	2 Hardness Results
	3 Kernelization Results
	3.1 Kernelization for Edge-Disjoint k-Packing of s-Stars
	3.2 Kernelization for Edge-Disjoint k-Packing of 4-Cycles

	References

	Dynamic Minimum Bichromatic Separating Circle
	1 Introduction
	1.1 Related Work
	1.2 Our Results

	2 A Unified Approach for Insertion/Deletion of Blue Points
	3 Logarithmic Query for Insertions
	4 Conclusions and Future Work
	References

	Miscellaneous
	Searching Graph Communities by Modularity Maximization via Convex Optimization
	1 Introduction
	2 Preliminaries
	3 Problem Definition
	3.1 The Convex Optimization Problem
	3.2 CAR - Convex Optimization Based Accurate Rounding Algorithm

	4 Conclusion
	References

	A New Tractable Case of the QAP with a Robinson Matrix
	1 Introduction
	2 Conic Representation of Specially Structured Matrices
	2.1 Cut Weights and Specially Structured Matrices
	2.2 Recognizing Conic Combinations of Cut Matrices in CDW Normal Form

	3 Conclusions
	References

	An Online Model of Berth and Quay Crane Integrated Allocation in Container Terminals
	1 Introduction
	1.1 Related Work

	2 Problem Description and Basic Notations
	3 The Online Algorithm and Its Basic Properties
	3.1 Algorithm Description
	3.2 Basic Properties

	4 Competitive Analysis of Algorithm GLR
	5 A Matching Lower Bound
	6 Conclusion
	References

	On the Minimal Constraint Satisfaction Problem: Complexity and Generation
	1 Introduction
	2 The Minimal CSP: Definitions and Complexity
	2.1 Definitions
	2.2 Complexity

	3 Generating Minimal CSP Instances
	3.1 Preliminary Notions
	3.2 The Generator
	3.3 Behavior of the Minimal CSP

	4 Conclusion
	References

	Algebraic Theory on Shortest Paths for All Flows
	1 Introduction
	2 Single Source Shortest Path Problem
	3 Single Source Bottleneck Path Problem
	4 Single Source Shortest Paths for All Flows
	5 A Faster Algorithm for SSSP-AF
	6 Single Source Bottleneck Paths for All Costs Problem (SSBP-AC)
	7 Concluding Remarks
	References

	The Minimum Acceptable Violation Ranking of Alternatives from Voters' Ordinal Rankings
	1 Introduction
	2 Formulation
	2.1 Preliminaries
	2.2 Minimum Acceptable Violation Ranking Model

	3 Ranking Procedure
	3.1 Branch-and-Bound Ranking Procedure
	3.2 A Numerical Example

	4 Numerical Experiments
	5 Conclusions
	References

	Listing Center Strings Under the Edit Distance Metric
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Edit Distance

	4 Listing Center Strings
	4.1 Algorithm ListBall: Listing Strings within Distance d
	4.2 Listing Center Strings

	5 Listing Common Subsequences
	6 Concluding Remarks
	References

	Online Scheduling for Electricity Cost in Smart Grid
	1 Introduction
	2 Preliminaries
	3 Algorithm and Competitive Analysis
	4 Conclusions and Remarks
	References

	Proportional Cost Buyback Problem with Weight Bounds
	1 Introduction
	2 Preliminaries
	3 The Matroid Constraint
	3.1 An Optimal Online Algorithm
	3.2 Lower Bound

	4 The Unweighted Knapsack Constraint
	4.1 Optimal Online Algorithms
	4.2 Lower Bound for the Knapsack Constraint Case

	References

	Author Index
	393443_1_En_60_Chapter_OnlinePDF.pdf
	Erratum to: On Replica Placement in High-Availability Storage Under Correlated Failure
	Erratum to: Chapter 26: Z. Lu et al. (Eds.) Combinatorial Optimization and Applications DOI: 10.1007/978-3-319-26626-8_26

