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Abstract. In this paper we analyse two variants of SIMON family of
light-weight block ciphers against variants of linear cryptanalysis and
present the best linear cryptanalytic results on these variants of reduced-
round SIMON to date.

We propose a time-memory trade-off method that finds differential/
linear trails for any permutation allowing low Hamming weight differen-
tial/linear trails. Our method combines low Hamming weight trails found
by the correlation matrix representing the target permutation with heavy
Hamming weight trails found using a Mixed Integer Programming model
representing the target differential/linear trail. Our method enables us
to find a 17-round linear approximation for SIMON-48 which is the best
current linear approximation for SIMON-48. Using only the correlation
matrix method, we are able to find a 14-round linear approximation
for SIMON-32 which is also the current best linear approximation for
SIMON-32.

The presented linear approximations allow us to mount a 23-round
key recovery attack on SIMON-32 and a 24-round Key recovery attack
on SIMON-48/96 which are the current best results on SIMON-32 and
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SIMON-48. In addition we have an attack on 24 rounds of SIMON-32
with marginal complexity.

Keywords: SIMON · Linear cryptanalysis · Linear hull · Correlation
matrix · Mixed Integer Programming (MIP)

1 Introduction

Over the past few years, the necessity for limited cryptographic capabilities in
resource-constraint computing devices such as RFID tags has led to the design
of several lightweight cryptosystems [8,12,13,15,17–19,30]. In this direction,
Beaulieu et al. of the U.S. National Security Agency (NSA) designed SIMON
family of lightweight block ciphers that are targeted towards optimal hardware
performance [9]. Meeting hardware requirements of low-power and limited gate
devices is the main design criteria of SIMON.

SIMON has plaintext block sizes of 32, 48, 64, 96 and 128 bits, each with
up to three key sizes. SIMON-N/K denotes a variant of SIMON with block
and key sizes of N and K bits respectively. With the proposed block and key
lengths, SIMON is a family of ten lightweight block ciphers. Since the publication
of SIMON, each cipher in this family has undergone reduced round cryptanaly-
sis against linear [2–6,24], differential [3,4,11,28], impossible differential [14],
rectangular [3,4] and integral [29] attacks.

Contributions. In this paper, we analyse the security of SIMON-32 and SIMON-
48. First we analyze the security of reduced-round SIMON-32 and SIMON-48
against several variants of linear cryptanalysis and report the best results to date
with respect to any form of cryptanalysis in terms of the number of rounds attacked
on SIMON-32/64 and 48/96. Our attacks are described below and results are sum-
marised in Table 1.

– We propose a time-memory trade-off method that combines low Hamming
weight trails found by the correlation matrix (consumes huge memory) with
heavy Hamming weight trails found by the Mixed Integer Programming (MIP)
method [26] (consumes time depending on the specified number of trails to be
found). The method enables us to find a 17-round linear approximation for
SIMON-48 which is the best current approximation.

– We found a 14-round linear hull approximation for SIMON-32 using a squared
correlation matrix with input/output masks of Hamming weight ≤ 9.

– Using our approximations, we are able to break 23 and 24 rounds of SIMON-
32, 23 rounds of SIMON-48/72 and 24 rounds of SIMON-48/96 with a mar-
ginal time complexity 263.9.

Previous Results on SIMON Used in Our Paper. The work in [20] pro-
vides an explicit formula for computing the probability of a 1-round differential
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characteristic of the SIMON’s non-linear function. It also provides an efficient
algorithm for computing the squared correlation of a 1-round linear characteris-
tic of the SIMON nonlinear function which we used in our linear cryptanalysis
to SIMON-48.

The work in [24] defines a MIP linear model that finds linear trails for
SIMON. The solution of the MIP model sometimes yield a false linear trail but
most of the time it yields a valid linear trail. When a solution is found whether
valid or invalid, we add a new constraint to the MIP model that prevents the
current solution from occurring in the next iteration.

Related Work on SIMON. The most improved results in terms of the number
of rounds attacked, data and time complexity presented, up-to-date of this pub-
lication, are in the scope of differential, linear and integral attacks as reflected in
Table 1. Focusing on the different cryptanalysis results of SIMON-32, SIMON-
48/72 and SIMON-48/96, Abed et al. [3,4] have presented that classical dif-
ferential results yield attacks on 18 for the smallest variant and 19 rounds for
SIMON-48 with data and time stated in Table 1. This was improved to 21 rounds
for SIMON-32 and 22−24 rounds for SIMON-48/72 and SIMON-48/96 by Wang
et al. [27,28] using dynamic key guessing and automatic enumeration of differen-
tial characteristics through imposing conditions on differential paths to reduce
the intended key space searched.

Independent to our work, Ashur [7] described a method for finding linear
trails that work only against SIMON-like ciphers. This method finds a multivari-
ate polynomial in GF(2) representing the r-round linear approximation under
consideration. Each solution of the multivariate polynomial corresponds to a
valid trail that is part of the many linear trails that forms the linear approxima-
tion. This suggests that the probability that the r-round linear approximation is
satisfied is equivalent to the number of solutions for its corresponding multivari-
ate polynomial divided by the size of the solution space. For r = 2, the authors
mentioned that the space size is 210. For higher rounds the space gets bigger as
many bits will be involved in the corresponding multivariate polynomial. Find-
ing the number of solutions of a multivariate polynomial is a hard problem. To
overcome this, the author uses the above method to form what is called a “lin-
ear super-trail”which glues two short linear hulls (a short linear hull has a small
number of rounds that make it is feasible to find the number of solutions of the
corresponding multivariate polynomial) in order to form a super-trail.

In contrast, our time-memory trade-off method which basically combines two
different linear trails found using a squared correlation matrix (trails with light
Hamming weight) and a mixed integer programming model (trails with heavy
Hamming weight) is not SIMON specific, it is very generic and can be used
for any permutation allowing low Hamming weight linear/differential trails to
find linear/differential trails. As described in Sect. 5.3, we have better attacks
on both SIMON-32 (using squared correlation matrix) and SIMON-48 (using
time-memory trade-off) compared to the results of [7].
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Organization. The paper is structured as follows. In Sect. 2 we describe SIMON.
In Sect. 3 concepts and notation required for linear cryptanalysis of SIMON are
presented. In Sect. 4 the used Time-Memory Trade-off method is described. In
Sect. 5 we used squared correlation matrix to establish a linear hull of SIMON
and investigate the data and time complexity for the smallest variant of SIMON.
We conclude the paper in Sect. 6.

Table 1. State-of-the-art cryptanalysis of SIMON-(32/64, 48/72, 48/96).

Diff. Imp.Diff. Z-Corr. Integ. Multi.Lin. Lin. Lin. Hull
SIMON [4] [11] [28] [27] [25] [14] [29] [29] [7] [3] [5] [2] [24] [25] This work

32/64 #rounds 18 19 21 21 −− 19 20 21 24 11 13 17 21 −− 23
Time 246.0 232.0 246.0 255.25 −− 262.56 256.96 263.0 263.57 −− −− 252.5 −− −− 250

Data 231.2 231.0 231.0 231.0 −− 232.0 232.0 231.0 231.57 223.0 232.0 232.0 230.19 −− 230.59

48/72 #rounds 19 20 22 23 16 20 20 −− 23 14 16 19 −− −− 23
Time 252.0 252.0 263.0 263.25 −− 270.69 259.7 −− 268.4 −− −− 270 −− −− 262.10

Data 246.0 246.0 245.0 247 244.65 248 248 −− 244.4 247.0 246.0 246.0 −− −− 247.78

48/96 #rounds 19 20 22 24 16 21 21 −− 24 14 16 20 21 23 24
Time 276.0 275.0 271.0 287.25 −− 294.73 272.63 −− 292.4 −− −− 286.5 −− −− 283.10

Data 246.0 246.0 245.0 247 244.65 238.0 248.0 −− 244.4 247.0 246.0 246.0 242.28 244.92 247.78

2 Description of SIMON

SIMON has a classical Feistel structure with the round block size of N = 2n
bits where n is the word size representing the left or right branch of the Feistel
scheme at each round. The number of rounds is denoted by r and depends on
the variant of SIMON.

We denote the right and left halves of plaintext P and ciphertext C by
(PR, PL) and (CR, CL) respectively. The output of round r is denoted by Xr =
Xr

L‖Xr
R and the subkey used in a round r is denoted by Kr. Given a string

X, (X)i denotes the ith bit of X. Bitwise circular left-rotation of string a by b
positions to the left is denoted by a ≪ b. Further, ⊕ and &denote bitwise XOR
and AND operations respectively.

Each round of SIMON applies a non-linear, non-bijective (and hence non-
invertible) function F : Fn

2 → F
n
2 to the left half of the state. The output of F is

added using XOR to the right half along with a round key followed by swapping
of two halves. The function F is defined as

F (x) = ((x ≪ 8)&(x ≪ 1)) ⊕ (x ≪ 2)

The subkeys are derived from a master key. Depending on the size K of the
master key, the key schedule of SIMON operates on two, three or four n-bit word
registers. We refer to [9] for the detailed description of SIMON structure and
key scheduling.

3 Preliminaries

Correlation Matrix. Linear cryptanalysis finds a linear relation between some
plaintext bits, ciphertext bits and some secret key bits and then exploits the
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bias or correlation of this linear relation. In other words, the adversary finds
an input mask α and an output mask β which yields a higher absolute bias
εF (α, β) ∈ [− 1

2 , 1
2 ]. In other words

Pr[〈α,X〉 + 〈β, FK(X)〉 = 〈γ,K〉] =
1
2

+ εF (α, β)

deviates from 1
2 where 〈·, ·〉 denotes an inner product. Let a = (a1, . . . , an), b =

(b1, . . . , bn) ∈ F
n
2 . Then

a · b � a1b1 ⊕ · · · ⊕ anbn

denotes the inner product of a and b. The correlation of a linear approximation
is defined as

CF (α, β) := 2εF (α, β)

Another definition of the correlation which we will use later is

CF (α, β) := F̂ (α, β)/2n

where n is the block size of F in bits and F̂ (α, β) is the Walsh transform of F
which is defined as follows

F̂ (α, β) :=
∑

x∈{0,1}n

(−1)β·F (x)⊕α·x

For a given output mask β, the Fast Walsh Transform algorithm computes the
Walsh transforms of an n-bit block size function F for all possible input masks
α with output mask β using n2n arithmetic operations.

In order to find good linear approximations, one can construct a correlation
matrix (or a squared correlation matrix). In the following, we explain what is a
correlation matrix and show how the average squared correlation over all keys
is estimated.

Given a composite function F : F
n
2 → F

n
2 such that F = Fr ◦ · · · ◦ F2 ◦

F1,, we estimate the correlation of an r-round linear approximation (α0, αr) by
considering the correlation of each linear characteristic between α0 and αr. The
correlation of ith linear characteristic (α0 = α0i, α1i, · · · , α(r−1)i, αr = αri) is

Ci =
r∏

j=1

CFj
(α(j−1)i, αji)

It is well known [16] that the correlation of a linear approximation is the
sum of all correlations of linear trails starting with the same input mask α and
ending with the same output mask β, i.e. CF (α0, αr) =

∑Nl

i=1 Ci where Nl is the
number of all possible linear characteristics between (α0, αr).

When considering the round keys which affects the sign of the correlation of
a linear trail, the correlation of the linear hull (α, β) is

CF (α, β) =
Nl∑

i=1

(−1)diCi,
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where di ∈ F2 refers to the sign of the addition of the subkey bits on the ith linear
trail. In order to estimate the data complexity of a linear attack, one uses the
average squared correlation over all the keys which is equivalent to the sum of
the squares of the correlations of all trails,

∑
i C2

i , assuming independent round
keys [16].

Let C denotes the correlation matrix of an n-bit key-alternating cipher. C has
size 2n ×2n and Ci,j corresponds to the correlation of an input mask, say αi, and
output mask, say βj . Now the correlation matrix for the keyed round function is
obtained by changing the signs of each row in C according to the round subkey
bits or the round constant bits involved. Squaring each entry of the correlation
matrix gives us the squared correlation matrix M . Computing Mr gives us the
squared correlations after r number of rounds. This can not be used for real
block ciphers that have block sizes of at least 32 bits as in the case of SIMON-
32/64. Therefore, in order to find linear approximations one can construct a
submatrix of the correlation (or the squared correlation) matrix [1,12]. In Sect. 5,
we construct a squared correlation submatrix for SIMON in order to find good
linear approximations.

3.1 Mixed Integer Programming Method (MIP)

Mouha et al.’s [21] presented a mixed integer programming model that minimizes
the number of active Sboxes involved in a linear or differential trail. Their work
was mainly on byte oriented ciphers. Later, Mouha’s framework was extended
to accommodate bit oriented ciphers. More recently, at Asiacrypt 2014 [26],
the authors described a method for constructing a model that finds the actual
linear/differential trail with the specified number of active Sboxes. Of course,
there would be many solutions but whenever a solution is found the MIP model
is updated by adding a new constraint that discards the current found solution
from occurring in the next iteration for finding another solution.

For every input/ouput bit mask or bit difference at some round state, a
new binary variable xi is introduced such that xi = 1 iff the corresponding bit
mask or bit difference is non-zero. For every Sbox at each round, a new binary
variable aj is introduced such that aj = 1 if the input mask or difference of
the corresponding Sbox is nonzero. Thus, aj indicates the activity of an Sbox.
Now, the natural choice of the objective function f of our MIP model is to
minimize the number of active Sboxes, i.e., f =

∑
j aj . If our goal from the

above integer programming model is to only find the minimum number of active
Sboxes existing in a differential/linear trial of a given bit-oriented cipher, then
we are only concerned about the binary values which represent the activity of
the Sboxes involved in the differential/linear trail av. Thus, in order to speed
up solving the model, one might consider restricting the activity variables and
the dummy variables to be binary and allow the other variables to be any real
numbers. This will turn the integer programming model into a Mixed Integer
Programming model which is easier to solve than an Integer programming model.
However, since we want to find the differential/linear trails which means finding
the exact values of all the bit-level inputs and outputs, then all these state
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variables must be binary which give us an integer programming model rather
than a mixed integer programming model.

In order to find the differential/linear trails of a given input/output differ-
ential/linear approximation, we set the corresponding binary variables for each
input/output to 1 if it is an active bit in the input/output and to 0 otherwise.
In this paper, we follow the MIP model for linear cryptanalysis presented in [24]
(minimize the number of variables appearing in quadratic terms of the linear
approximation of SIMON’s non-linear function) and use the algorithm presented
in [20] for computing the squared correlation for the SIMON nonlinear function.

In Sect. 4, we propose a hybrid method that combines the matrix method and
the MIP method to amplify the differential probability or the squared correlation
of a specified input and output differences or masks. Using this method we are
able to find a 17-round linear approximation for SIMON-48.

4 Time-Memory Trade-Off Method

Since the matrix method consumes huge memory and the MIP method takes time
to enumerate a certain number of trails. It seems reasonable to trade-off the time
and memory by combining both methods to get better differential/correlation
estimations. Here we combine the correlation matrix method with the recent
technique for finding differentials and linear hulls in order to obtain a better
estimation for the correlations or differentials of a linear and differential approx-
imations respectively.

The idea is to find good disjoint approximations through the matrix and the
mixed integer programming model. Assume that our target is an r-round linear
hull (α, β), where α is the input mask and β is the output mask. The matrix
method is used to find the resulting correlation from trails that have Hamming
weight at most m for each round, from now on we will call them “light trails”.
The MIP method is used to find the resulting correlation from trails that have
Hamming weight at least m + 1 at one of their rounds, from now on we will call
them “heavy trails”.

Now if the target number of rounds is high, then the MIP method might
not be effective in finding good estimation for the heavy trails as it will take
time to collect all those trails. Therefore, in order to overcome this, we split the
cipher into two parts, the first part contains the first r1 rounds and the second
part contains the remaining r2 = r − r1 rounds. Assume r1 > r2, where r2 is
selected in such a way that the MIP solution is reachable within a reasonable
computation time. Now, we show how to find two disjoint classes that contains
heavy trails. The first class contains an r1-round linear hull (α, γi) consisting of
light trails found through the matrix method at the first r1 rounds glued together
with an r2-round linear hulls (γi, β) consisting of heavy trails found through the
MIP method. We call this class, the lower-round class. The second class basically
reverse the previous process, by having an r1-round linear hull of heavy weight
trails found through MIP method glued with an r2-round linear hull containing
light trails found through the matrix method. We call this class the upper-round
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class. Now, adding the estimations from these two classes (upper-round and
lower-round classes) gives us the estimation of the correlation of the heavy trails
which will be added to the r-round linear hull of the light trails found through the
matrix method. We can also include a middle-round class surrounded by upper
lightweight trails and lower lightweight trails found by the matrix method.

Next we describe how to find the heavy trails using MIP with the Big M
constraints which is a well known technique in optimization.

4.1 Big M Constraints

Suppose that only one of the following two constraints is to be active in a given
MIP model.

either
∑

i,j

fiXij ≥ c1 (1)

or
∑

i,k

giXik ≥ c2 (2)

The above situation can be formalized by adding a binary variable y as
follows:

∑

i,j

fiXij + My ≥ c1 (3)

∑

i,k

giXik + M(1 − y) ≥ c2 (4)

where M is a big positive integer and the value of y indicates which constraint is
active. So y can be seen as an indicator variable. One can see that when y = 0,
the first constraint is active while the second constraint is inactive due to the
positive big value of M . Conversely, when y = 1, the second constraint is active.

The above formulation can be generalized to the case where we have q con-
straints under the condition that only p out of q constraints are active. The
generalization can be represented as follows:

∑

i,j

fiXij + My1 ≥ c1

∑

i,k

giXik + My2 ≥ c2

...
∑

i,l

hiXil + Myq ≥ cq

l∑

i=1

yi = q − p



Improved Linear Cryptanalysis of Reduced-Round 161

where yi is binary for all i. Sometimes, we might be interested on the condition
where at least p out of the q constraints are active. This can be achieved by
simply changing the last equation in the constraints above,

∑l
i=1 yi = q − p to∑l

i=1 yi ≤ q − p. This turns out to be useful in our Hybrid method as it will
allow us to find r-round trails which have a heavy Hamming weight on at least
one of the r rounds.

5 Linear Hull Effect in SIMON-32 and SIMON-48

In this section we will investigate the linear hull effect on SIMON using the
correlation matrix method to compute the average squared correlation.

5.1 Correlation of the SIMON F Function

This section provides an analysis on some linear properties of the SIMON F
function regarding the squared correlation. This will assist in providing an intu-
ition around the design rationale when it comes to linear properties of SIMON
round Function F . A general linear analysis was applied on the F function of
SIMON, with regards to limits around the squared correlations for all possible
Hamming weights on input masks α and output masks β, for SIMON-32/64.

5.2 Constructing Correlation Submatrix for SIMON

To construct a correlation submatrix for SIMON, we make use of the following
proposition.

Proposition 1. Correlation of a one-round linear approximation [10]. Let α =
(αL, αR) and β = (βL, βR) be the input and output masks of a one-round linear
approximation of SIMON. Let αF and βF be the input and output masks of the
SIMON F function. Then the correlation of the linear approximation (α, β) is
C(α, β) = CF (αF , βF ) where αF = αL ⊕ βR and βF = βL = αR.

As our goal is to perform a linear attack on SIMON, we construct a squared
correlation matrix in order to compute the average squared correlation (the sum
of the squares of the correlations of all trails) in order to estimate the required
data complexity. Algorithm 1 constructs a squared correlation submatrix whose
input and output masks have Hamming weight less than a certain Hamming
weight m, where the correlation matrix is deduced from the algorithm proposed
in [20].

The size of the submatrix is
∑m

i=0

(
2n
i

)
×

∑m
i=0

(
2n
i

)
where n is the block

size of SIMON’s F function. One can see that the time complexity is in the
order of 2n

∑m
i=0

(
2n
i

)
arithmetic operations. The submatrix size is large when

m > 5, but most of its elements are zero and therefore it can easily fit in
memory using a sparse matrix storage format. The table below shows the number
of nonzero elements of the squared correlation submatrices of SIMON-32/K
when 1 ≤ m ≤ 9. These matrices are very sparse. For instance, based on our
experimental results when m ≤ 8, the density of the correlation matrix is very
low, namely 133253381

15033173×15033173 ≈ 2−20.7.
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Algorithm 1. Construction of SIMON’s Correlation Submatrix
Require: Hamming weight m, bit size of SIMON’s F function n and a map function.
Ensure: Squared Correlation Submatrix M
1: for all output masks β with Hamming weight ≤ m do
2: Extract from β the left/right output masks βL and βR.
3: αR ← βL.
4: Compute C(αF , βL) to SIMON’s F function for all possible αF using the

algorithm proposed in [20].
5: for all input masks αF to SIMON’s F function do
6: c ← C(αF , βL).
7: αL ← αF ⊕ βR.
8: α = αL||αR.
9: if c �= 0 and Hamming weight of α ≤ m then

10: i ← map(α). {map α to a row index i in the matrix M}
11: j ← map(β). {map α to a column index j in the matrix M}
12: M(i, j) = c × c.
13: end if
14: end for
15: end for

5.3 Improved Linear Approximations

One can see that Algorithm 1 is highly parallelizable. This means the dominating
factor is the memory complexity instead of time complexity. We constructed a
sparse squared correlation matrix of SIMON-32/K with input and output masks
that have Hamming weight ≤ 8. Using this matrix, we find a 14-round linear
approximations with an average squared correlation ≤ 2−32 for SIMON-32/K.
We also get better estimations for the previously found linear approximations
which were estimated before using only a single linear characteristic rather than
considering many linear characteristics with the same input and output masks.
For example, in [4], the squared correlation of the 9-round single linear char-
acteristic with input mask 0x01110004 and output mask 0x00040111 is 2−20.
Using our matrix, we find that this same approximation has a squared correlation
≈ 2−18.4 with 11455 ≈ 213.5 trails, which gives us an improvement by a factor
of 21.5. Note that this approximation can be found using a smaller correlation
matrix of Hamming weight ≤ 4 and we get an estimated squared correlation
equal to 2−18.83 and only 9 trails. Therefore, the large number of other trails
that cover Hamming weights ≥ 5 is insignificant as they only cause a factor of
20.5 improvement.

Also, the 10-round linear characteristic in [6] with input mask 0x01014404
and output mask 0x10004404 has squared correlation 2−26. Using our correla-
tion matrix, we find that this same approximation has an estimated squared
correlation 2−23.2 and the number of trails is 588173 ≈ 219.2. This gives an
improvement by a factor of 23. Note also that this approximation can be found
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using a smaller correlation matrix with Hamming weight ≤ 5 and we get an
estimated squared correlation equal to 2−23.66 and only 83 trails. So the large
number of other trails resulting covering Hamming weights ≥ 5 is insignificant as
they only cause a factor of 20.4 improvement. Both of these approximations give
us squared correlations less than 2−32 when considering more than 12 rounds.

In the following, we describe our 14-round linear hulls found using a squared
correlation matrix with Hamming weight ≤ 8.

Improved 14-round Linear Hulls on SIMON-32 (Squared Correlation
Matrix Only). Consider a squared correlation matrix M whose input and
output masks have Hamming weight m. When m ≥ 6, raising the matrix to the
rth power, in order to estimate the average squared correlation, will not work as
the resulting matrix will not be sparse even when r is small. For example, we are
able only to compute M6 where M is a squared correlation matrix whose masks
have Hamming weight ≤ 6. Therefore, we use matrix-vector multiplication or
row-vector matrix multiplications in order to estimate the squared correlations
for any number of rounds r.

It is obvious that input and output masks with low Hamming weight gives us
better estimations for the squared correlation. Hence, we performed row-vector
matrix multiplications using row vectors corresponding to Hamming weight one.
We found that when the left part of the input mask has Hamming weight one
and the right part of input mask is zero, we always get a 14-round squared
correlation ≈ 2−30.9 for four different output masks.Therefore, in total we get 64
linear approximations with an estimated 14-round squared correlation ≈ 2−30.9.

We also constructed a correlation matrix with masks of Hamming weight ≤ 9
but we have only got a slight improvement for these 14-round approximations
by a factor of 20.3. We have found no 15-round approximation with squared
correlation more than 2−32. Table 2 shows the 14-round approximations with
input and output masks written in hexadecimal notation.

Table 2. 14-round linear hulls for SIMON-32/K found, using Hamming weight ≤ 9

βα log2 c2 log2 Nt

0x80000000 0x00800020, 0x00800060, 0x00808020, 0x00808060 −30.5815 28.11
0x02000000 0x00028000, 0x00028001, 0x00028200, 0x00028201 −30.5815 28.10
0x00800000 0x80002000, 0x80002080, 0x80006000, 0x80006080 −30.5816 28.06
0x00400000 0x40001000, 0x40001040, 0x40003000, 0x40003040 −30.5815 28.11
0x00040000 0x04000100, 0x04000104, 0x04000300, 0x04000304 −30.5816 28.10
0x00010000 0x01000040, 0x01000041, 0x010000C0, 0x010000C1 −30.5814 28.11

Improved 17-Round Linear Hulls on SIMON-48 (Squared Correlation
Matrix +MIP). Using a squared correlation matrix of SIMON-48 having input
and output masks with Hamming weight ≤ 6 and size 83278000 × 83278000, we
found that a 17-round linear approximation with input mask 0x404044000001
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and output mask 0x000001414044 (0x404044000001 17−round−−−−−−→ 0x000001C04044)
has squared correlation 2−49.3611. Also the output masks 0x000001414044 and
0x000001414044 yield a similar squared correlation 2−49.3611. Unlike the case for
SIMON-32 where we can easily use brute force to compute the squared correlation
of a 1-round linear approximation, the squared correlation matrix for SIMON-48
was created using the algorithm proposed in [20]. Again the matrix is sparse and
it has 48295112 ≈ 225.53 nonzero elements.

However, it seems difficult to build matrices beyond Hamming weight 6 for
SIMON-48. Therefore we use our time-memory trade-off method to improve
the squared correlation of the linear approximation 0x404044000001 17−round−−−−−−→
0x000001414044.

To find the lower class where the heavy trails are on the bottom are glued
with the light trails on top. The light trails are found using the matrix method
for 11 rounds and the heavy trails are found using the MIP method for 6 rounds.
Combining them both we get the 17-round lower class trails. In more detail, we
fix the input mask to 0x404044000001 and we use the matrix method to find the
output masks after 11 rounds with the most significant squared correlation. The
best output masks are 0x001000004400, 0x001000004410 and 0x0010000044C0,
each give an 11-round linear hull with squared correlation 2−28.6806 coming from
268 light trails. We first create a 6-round MIP model with 0x001000004400 as
an input mask and with the target output mask 0x000001414044 as the output
mask for the 6-round MIP model 0x001000004400 6−round−−−−−−→ 0x000001414044. In
order to find heavy trails we added the big M constraints described in Sect. 4.1
and set M = 200 and all the ci’s to 7 from the end of round 1 to beginning of
round 5. So q = 5, setting p = 1 and using

∑l
i=1 yi ≤ q − p = 4, we guarantee

that the trails found will have Hamming weight at least 7 at one of the rounds.
The constraints should be set as follows:

47∑

i=0

s48+i + 200y1 ≥ 7

47∑

i=0

s96+i + 200y2 ≥ 7

47∑

i=0

s144+i + 200y3 ≥ 7

47∑

i=0

s192+i + 200y4 ≥ 7

47∑

i=0

s240+i + 200y5 ≥ 7

5∑

i=1

yi ≤ 4
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where yj is a binary variable and s48.j+i is a binary variable representing the
intermediate mask value in the jth round at the ith position.

Limiting our MIP program to find 512 trails for the specified approximation,
we find that the estimated squared correlation is 2−22.3426. Combining the light
trails with the heavy, we get a 17-round sub approximation whose squared correla-
tion is 2−28.6806×2−22.3426 = 2−51.0232. To get a better estimation,we repeated the
aboveprocedure for the other outputmasks 0x001000004410 and0x0010000044C0
and get an estimated squared correlation equivalent to 2−28.6806 × 2−24.33967 =
2−53.02027 and 2−28.6806 × 2−24.486272 = 2−53.166872 respectively. Adding all these
three sub linear approximations we get an estimated squared correlation equiva-
lent to 2−51.0232 + 2−53.02027 + 2−53.166872 ≈ 2−50.4607. Moreover, we repeat the
same procedure for the 27 next best 11-round linear approximations and we get
2−49.3729 as a total estimated squared correlation for our 17-round lower class trails
(0x404044000001 17−round−−−−−−→ 0x000001414044). All these computations took less
than 20 hrs on a standard laptop (See Table 11 in the Appendix).

Similarly to find the upper class where the heavy trails are on the top, are
glued with the light trails on bottom. The light trails are found using the matrix
method for 11 rounds and the heavy trails are found using the MIP method for 6
rounds under the same big M constraints described above. Combining them both
we get the 17-round upper class trails. In more detail, we fix the output mask to
0x000001414044 and we use the matrix method to find the input masks with the
most significant squared correlation after 11 rounds. The best input masks are
0x004400001000, 0x004410001000, 0x004C00001000 and 0x004C10001000, each
give an 11-round linear hull with squared correlation 2−28.6806 coming from 268
light trails. We first create a 6-round MIP model with 0x004400001000 as an out-
put mask and the target input mask 0x404044000001 as the input mask for the 6-
round MIP model 0x404044000001 6−round−−−−−−→ 0x004400001000. Limiting our MIP
program to find 512 trails for the specified approximation, we find that the esti-
mated squared correlation is 2−22.3426. Combining the light trails with the heavy,
we get a 17-round sub approximation whose squared correlation is 2−28.6806 ×
2−22.3426 = 2−51.0232. Repeating the above procedure for the other three input
masks 0x04410001000, 0x004C00001000 and 0x004C10001000, we get an esti-
mated squared correlation equivalent to 2−28.6806 × 2−24.33967 = 2−53.02027,
2−28.6806 × 2−24.486272 = 2−53.166872 and 2−28.6806 × 2−23.979259 = 2−52.659859

respectively. Adding all these four sub linear approximations we get an esti-
mated squared correlation equivalent to 2−51.0232 + 2−53.02027 + 2−53.166872 +
2−52.659859 ≈ 2−50.1765. Repeating the same procedure for the 26 next best
input masks and adding them up, we get a total squared correlation equiva-
lent to 2−49.3729 as a total estimated squared correlation for our 17-round upper
class trails (0x404044000001 17−round−−−−−−→ 0x000001414044). All these computa-
tions took less than 18 hrs on a standard laptop (See Table 12 in the Appendix).
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Adding the contributionsof the lowerandupper classes found through theabove
procedure to the contribution of the light trails found through the matrix method,
we get 2−49.3729 +2−49.3729 +2−49.3611 = 2−47.7840 ≈ 2−47.78 as a total estimation
for the squared correlation of the 17-round linear hull (0x404044000001 17−round−−−−−−→
0x000001414044).

5.4 Key Recovery Attack on 24 and 23 Rounds of SIMON-32/K
Using 14-Round Linear Hull

We extend the given linear hull for 14 rounds of SIMON-32/K (highlighted masks
in the last row of Table 2) by adding some rounds to the beginning and the end
of the cipher. The straight-forward approach is to start with the input mask of
the 14-round linear hull (e.g. (Γ0,−)) and go backwards to add some rounds to
the beginning. With respect to Fig. 1, we can append an additional round to the
beginning of the cipher. Since SIMON injects the subkey at the end of its round
function, this work does not have any computational complexity. More precisely,
for the current 14-round linear hull, we evaluate ((Xi

L)0 ⊕ (Xi+14
R )6 ⊕ (Xi+14

L )8)
to filter wrong guesses. On the other hand, we have (Xi

L)0 = (F (Xi−1
L ))0 ⊕

((Xi−1
R )0 ⊕ (Ki)0, where (F (Xi−1

L ))0 = (Xi−1
L )14 ⊕ ((Xi−1

L )15&(Xi−1
L )8). Hence,

if we add a round in the backwards direction, i.e. round i − 1, we know Xi−1
R

and Xi−1
L we can determine F (Xi−1

L ). Then it is possible to use the following
equation to filter wrong keys, instead of ((Xi

L)0 ⊕ (Xi+14
R )6 ⊕ (Xi+14

L )8), where
(Ki)0 is an unknown but a constant bit (in Fig. 1 such bits are marked in red):

(F (Xi−1
L ))0 ⊕ (Xi−1

R )0 ⊕ (Ki)0 ⊕ (Xi+14
R )6 ⊕ (Xi+14

L )8 = (Xi−1
L )14 ⊕ ((Xi−1

L )15
&(Xi−1

L )8) ⊕ (Xi−1
R )0 ⊕ (Ki)0 ⊕ (Xi+14

R )6 ⊕ (Xi+14
L )8.

We can continue our method to add five rounds to the beginning of linear
hull at the cost of guessing some bits of subkeys. To add more rounds in the
backwards direction, we must guess the bit

(F (Xi−1
L ))0 = (Xi−1

L )14 ⊕ ((Xi−1
L )15&(Xi−1

L )8).

On the other hand, to determine (F (Xi−1
L ))0 we guess (Xi−1

L )14 and (Xi−1
L )15

only if the guessed value for (Xi−1
L )8 is 1. Therefore, on average we need one bit

guess for (Xi−1
L )15 and (Xi−1

L )8 (in Fig. 1 such bits are indicated in blue).
The same approach can be used to add five rounds to the end of linear hull

at the cost of guessing some bits of subkeys. More details are depicted in Fig. 1.
On the other hand, in [29], Wang et al. presented a divide and conquer

approach to add extra rounds to their impossible differential trail. We note that
it is possible to adapt their approach to extend the key recovery using the exist
linear hull over more rounds. Hence, one can use the 14-round linear hull and
extend it by adding extra rounds to its beginning and its end. We add five rounds
to the beginning and five rounds to the end of the linear hull to attack 24-round
variant of SIMON-32/K. This key recovery attack processes as follows:
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1. Let Tmax and Tcur be counters (initialized by 0) and SKcan be a temporary
register to store the possible candidate of the subkey.

2. Collect 230.59 known plaintext and corresponding ciphertext pairs (pi, ci) for
24-round SIMON-32/64 and store them in a table T .

3. Guess a value for the subkeys involved in the first five rounds of reduced
SIMON-32/K, i.e. (Ki−4)[0, 2 . . . 4, 5, 6, 7, 9 . . . 13, 14]‖(Ki−3)[4, 5, 6, 8, 11, 12,
13, 14, 15]‖(Ki−2)[0, 6, 7, 13, 14]‖(Ki−1) [8, 15] and do as follows (note that
the red subkey bits involved in the rounds are the constant bits and do not
have to be guessed):
(a) For any pj ∈ T calculate the partial encryption of the first five rounds

of reduced SIMON-32/K and find Vj = (Xi
L)[0]⊕ (Ki)[0]⊕ (Ki−1)[14]⊕

(Ki−2)[12] ⊕ (Ki−3)[10] ⊕ (Ki−5)[8].
(b) Guess the bits of subkeys Ki+19[0 . . . 4, 5, 6, 7, 8 . . . 10, 11, 12, 13, 14, 15],

Ki+18[1, 2, 3, 4, 5, 6, 8, 10, 11, 12, 14, 15], Ki+17[0, 3, 4, 6, 7, 12, 13], and
Ki+16[5, 14], step by step.

(c) For any cj ∈ T :
i. calculate the partial decryption of the last five rounds of reduced

SIMON-32/K and find Wj = (Xi+14
L )[8]⊕ (Xi+14

R )[6]⊕ (Ki+15)[6]⊕
(Ki+16)[4, 8] ⊕ (Ki+17)[2] ⊕ (Ki+18)[0].

ii. If Vj = Wj then increase Tcur.
(d) If Tmax < Tcur (or resp. Tmax < (232 − Tcur)) update Tmax and SKcan

by Tcur (resp. 232 − Tcur) and the current guessed subkey respectively.
4. Return SKcan.

Following the approach presented in [29], guessing the bits of subkeysKi+19

[0 . . . 4, 5, 6, 7, 8 . . . 10, 11, 12, 13, 14, 15], Ki+18[1, 2, 3, 4, 5, 6, 8, 10, 11, 12, 14, 15],
Ki+17[0, 3, 4, 6, 7, 12, 13], and Ki+16[5, 14], step by step, to find the amount
of Wj = (Xi+14

L )[8] ⊕ (Xi+14
R )[6] ⊕ (Ki+15)[6] ⊕ (Ki+16)[4, 8] ⊕ (Ki+17)[2] ⊕

(Ki+18)[0], for any cj , are done as follows:

1. Let T2 be a vector of 232 counters which correspond to all possible val-
ues of Vj‖(Xi+19

L )[0 . . . 7, 10 . . . 14]‖(Xi+19
R )[0 . . . 6, 8 . . . 15]‖(Xi+18

R )[8, 9, 15]
(denoted as S1

2). Guess the subkey bit (Ki+19 )[8, 9, 15] decrypt partially
for each possible value of S1

1 (Vj‖(Xi+19
L )‖(Xi+19

R )) to obtain the value of
(Xi+18

R )[8, 9, 15] (and hence S1
2), then increase the corresponding counter

T2,S1
2
.

2. Guess the subkey bits (Ki+19)[5, 14], (Ki+19)[1, 10, 11], (Ki+19)[12], (Ki+19)
[13], and (Ki+19) [0, 2, 3, 4, 6, 7] step by step (see Table 3), do similarly to the
above and finally get the values of the counters corresponding to the state
Vj‖(Xi+18

L )[0 . . . 6, 8, 10 . . . 12, 14, 15]‖(Xi+18
R ) (denoted as S2

0).
3. Let X1 be a vector of 229 counters which correspond to all possible values

of Vj‖(Xi+18
L )[0 . . . 5, 8, 10 . . . 12, 14, 15]‖(Xi+18

R )[0 . . . 4, 6 . . . 15]‖(Xi+17
R )[6]

(denoted as S2
1). Guess the subkey bit (Ki+18)[6]. For each possible value

of S2
0 (Vj‖(Xi+18

L )[0 . . . 6, 8, 10 . . . 12, 14, 15]‖(Xi+18
R )), do partial decryption

to derive the value of (Xi+17
R )[6] and add T7,S1

7
to the corresponding counter

X1,S2
1

according to the value of S2
1 . After that, guess the subkey bits (Ki+18)



168 M.A. Abdelraheem et al.

[15], (Ki+18)[1], (Ki+18)[3, 12], (Ki+18)[2], (Ki+18)[11], (Ki+18)[10], (Ki+18)
[14], and (Ki+18)[4, 5, 8], step by step (see Table 4). Do similarly to the above
and eventually obtain the values of the counters corresponding to the state
Vj‖(Xi+17

L )[0′, 2 . . . 4, 6, 7, 12, 13]‖(Xi+17
R )[0 . . . 6, 8, 10 . . . 12, 14, 15] (denoted

as S3
0) where (Xi+17

R )[0′] = (Xi+17
R )[0] ⊕ (Ki+18)[0].

4. Let Y1 be a vector of 221 counters which correspond to all possible values of
Vj‖(Xi+17

L )[0, 2, 3, 6, 7, 12, 13]‖(Xi+17
R )[0 . . . 2, 4 . . . 6, 8, 10 . . . 12, 14, 15]‖

(Xi+16
R )[4] (denoted as S3

1). Guess the subkey bit (Ki+17)[4]. For each possible
value of S3

0 (Vj‖(Xi+17
L )[0, 2 . . . 4, 6, 7, 12, 13]‖(Xi+17

R ) [0 . . . 6, 8, 10 . . .
12, 14, 15]), do partial decryption to derive the value of (Xi+16

R )[4] and add
X9,S2

9
to the corresponding counter Y1,S3

1
according to the value of S3

1 . After
that, guess the subkey bits (Ki+17)[3], (Ki+17)[12], (Ki+17)[13], (Ki+17)[7],
and (Ki+17)[0, 6], step by step (see Table 5). Do similarly to the above and
eventually obtain the values of the counters corresponding to the state
Vj‖(Xi+16

L )[4, 5, 8, 14]‖(Xi+16
R )[0, 2′, 3, 4, 6, 7, 12, 13] (denoted as S4

0) where
‖(Xi+16

R )[2′] = (Xi+16
R )[2] ⊕ (Ki+17)[2].

5. Let Z1 be a vector of 26 counters which correspond to all possible values
of Vj‖(Xi+15

L )[6]‖ (Xi+15
R )[4, 5, 8, 14] (denoted as S4

1) where (Xi+15
R )[4′] =

(Xi+15
R )[4] ⊕ (Ki+16)[4] and (Xi+15

R )[8′] = (Xi+15
R )[8] ⊕ (Ki+16)[8]. Guess

the subkey bits (Ki+16)[5, 14] and for each possible value of S4
0 (Vj‖(Xi+16

L )
[4, 5, 8, 14]‖(Xi+16

R )[0, 2, 3, 4, 6, 7, 12, 13]) do partial decryption to derive the
value of (Xi+15

R )[5, 14] and add Y6,S3
6

to the corresponding counter Z1,S4
1

according to the value of S4
1 .

6. Let W1,S5
1

be a vector of 24 counters which correspond to all possible val-
ues of Vj‖(Xi+14

L )[4′, 8′]‖ (Xi+14
R )[6′] (denoted as S5

1) where (Xi+14
R )[6′] =

(Xi+14
R )[6]⊕ (Ki+15)[6], (Xi+14

L )[4′] = (Xi+14
L )[4]⊕ (Ki+16)[4]⊕ (Ki+17)[2]⊕

(Ki+18)[0], and (Xi+14
L )[8′] = (Xi+14

L )[8] ⊕ (Ki+16)[8]. This state are
extracted of S4

1 and add Z1,S4
1

to the corresponding counter W1,S5
1

according
to the value of S5

1 (See Table 7).
7. Let O be a vector of 22 counters which correspond to all possible values of

Vj‖Wj (Note that Wj = (Xi+14
L )[8]⊕(Xi+14

R )[6]⊕(Ki+15)[6]⊕(Ki+16)[4, 8]⊕
(Ki+17)[2] ⊕ (Ki+18)[0] and can be extracted from S5

1). Each possible value
of S5

1 is converted to Vj‖Wj and W1,S5
1

and is added to the relevant counter
in O according to the value of Vj‖Wj . Suppose that O0 means that Vj = 0
and Wj = 0 and O3 means that Vj = 1 and Wj = 1. If O0 + O3 ≥ Tmax

or 232 − (O0 + O3) ≥ Tmax keep the guessed bits of subkey information as a
possible subkey candidate, and discard it otherwise.

Attack Complexity. The time complexity of each sub-step was computed as
shown in the Tables 3, 4, 5, 6 and 7. The time complexity of the attack is about
263.9. It is clear that, the complexity of this attack is only slightly less than
exhaustive search. However, if we reduce the last round and attack 23 round of
SIMON-32/K then the attack complexity reduces to 250 which is yet the best
key-recovery attack on SIMON-32/K for such number of rounds.
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5.5 Key Recovery Attack on SIMON-48/K Using 17-Round Linear
Hull

Given the 17-round approximation for SIMON-48, introduced in Sect. 5.3, we
apply the approach presented in Sect. 5.4 to extend key recovery over more
number of rounds. Our key recovery for SIMON-48/72 and SIMON-48/96 covers
23 and 24 rounds respectively. The data complexity for these attacks is 2−47.78

and their time complexities are 262.10 and 283.10 respectively. Since the attack
procedure is similar to the approach presented in Sect. 5.4, we do not repeat
it. Related tables and complexity of each step of the attack for SIMON-48/96
has been presented in Appendix B (The time complexity of each sub-step was
computed as shown in the Tables 8, 9, and 10). To attack SIMON-48/72, we add
three rounds in forward direction instead of the current four rounds. Hence, the
adversary does not need to guess the average 21 bits of the key in the last round
of Fig. 2.

6 Conclusion

In this paper, we propose a time-memory tradeoff that finds better differen-
tial/linear approximation. The method benefits from the correlation matrix
method and the MIP method to improve the estimated squared correlation
or differential probability. Using MIP we can find the trails that are missed
by the matrix method. This method enables us to find a 17-round linear hull
for SIMON-48. Moreover, we have analyzed the security of some variants of
SIMON against different variants of linear cryptanalysis, i.e. classic and linear
hull attacks. We have investigated the linear hull effect on SIMON-32/64 and
SIMON-48/96 using the correlation matrix of the average squared correlations
and presented best linear attack on this variant.

Regarding SIMON-64, the squared correlation matrix which we are able to
build and process holds masks with Hamming weight ≤ 6. Using only the matrix
and going for more than 20 rounds, the best squared correlation we found has
very low squared correlation < 2−70 and this is because we are missing good
trails with heavy Hamming weights. Applying our time-memory trade-off has
not been effective due to the large number of rounds. However, trying to find
good trails with heavy Hamming weight in the middle beside the upper and lower
classes might yield better results. We note here that we have been looking for
fast solutions. It could be that trying to add up many linear trails for some days
or weeks can yield better results. Our method seems to be slow due to the slow
processing of the huge squared correlation matrix. So it would be very interesting
to build a dedicated sparse squared correlation matrix for SIMON-64 in order to
speed up the selection of the intermediate masks in our time-memory trade-off
method. This will allow us to select many intermediate masks which might yield
better results. One interesting target would be also to apply this method to the
block cipher PRESENT which also allows low Hamming weight trails and see if
we can go beyond the current best 24-round linear approximations [1].
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A Steps of the Key Recovery Attack on SIMON-32/64

Table 3. Step 1 of key recovery attack on SIMON-32/64

i Input (S1
i ) Guessed subkey bit Output (S1

i+1) Counter of S1
i+1

0 (Xi−5
L )‖(Xi−5

R ) (Ki−4)[0, 2 . . . 4, 5, 6, 7, 9 . . . 13, 14]‖(Ki−3)[4, 5, 6, 8, 11, Vj = (Xi
L)[0] ⊕ (Ki)[0] ⊕ (Ki−1)[14] T1,S1

1

12, 13, 14, 15]‖(Ki−2)[0, 6, 7, 13, 14]‖(Ki−1)[8, 15] ⊕(Ki−2)[12] ⊕ (Ki−3)[10] ⊕ (Ki−5)[8]

1 Vj‖(Xi+19
L ) (Ki+19)[8, 9, 15] Vj‖(Xi+19

L )[0 . . . 7, 10 . . . 14] T2,S1
2

‖(Xi+19
R ) ‖(Xi+19

R )[0 . . . 6, 8 . . . 15]
‖(Xi+18

R )[8, 9, 15]

2 Vj‖(Xi+19
L )[0 . . . 7, 10 . . . 14] (Ki+19)[5, 14] Vj‖(Xi+19

L )[0 . . . 4, 6, 7, 10 . . . 13] T3,S1
3

‖(Xi+19
R )[0 . . . 6, 8 . . . 15] ‖(Xi+19

R )[0 . . . 6, 8 . . . 12, 14, 15]
‖(Xi+18

R )[8, 9, 15] ‖(Xi+18
R )[5, 8, 9, 14, 15]

3 Vj‖(Xi+19
L )[0 . . . 4, 6, 7, 10 . . . 13] (Ki+19)[1, 10, 11] Vj‖(Xi+19

L )[0, 2 . . . 4, 6, 7, 12, 13] T4,S1
4

‖(Xi+19
R )[0 . . . 6, 8 . . . 12, 14, 15] ‖(Xi+19

R )[0 . . . 6, 8, 10 . . . 12, 14, 15]
‖(Xi+18

R )[5, 8, 9, 14, 15] ‖(Xi+18
R )[1, 5, 8, 9, 10, 11, 14, 15]

4 Vj‖(Xi+19
L )[0, 2 . . . 4, 6, 7, 12, 13] (Ki+19)[12] Vj‖(Xi+19

L )[0, 2 . . . 4, 6, 7, 13] T5,S1
5

‖(Xi+19
R )[0 . . . 6, 8, 10 . . . 12, 14, 15] ‖(Xi+19

R )[0 . . . 6, 8, 10 . . . 12, 14, 15]
‖(Xi+18

R )[1, 5, 8, 9, 10, 11, 14, 15] ‖(Xi+18
R )[1, 5, 8, 9, 10, 11, 12, 14, 15]

5 Vj‖(Xi+19
L )[0, 2 . . . 4, 6, 7, 13] (Ki+19)[13] Vj‖(Xi+19

L )[0, 2 . . . 4, 6, 7] T6,S1
6

‖(Xi+19
R )[0 . . . 6, 8, 10 . . . 12, 14, 15] ‖(Xi+19

R )[0 . . . 6, 8, 10 . . . 12, 14, 15]
‖(Xi+18

R )[1, 5, 8, 9, 10, 11, 12, 14, 15] ‖(Xi+18
R )[1, 5, 8, 9, 10, 11, 12, 13, 14, 15]

6 Vj‖(Xi+19
L )[0, 2 . . . 4, 6, 7, 12, 13] (Ki+19)[0, 2, 3, 4, 6, 7] Vj‖(Xi+18

L )[0 . . . 6, 8, 10 . . . 12, 14, 15] T7,S1
7

‖(Xi+19
R )[0 . . . 6, 8, 10 . . . 12, 14, 15] ‖(Xi+18

R )
‖(Xi+18

R )[1, 5, 8, 9, 10, 11, 14, 15]

substep 0: 223 × 230.59 × 5/24 = 251.33

substep 1: 223 × 233 × 23 × 3 × 1/(16 × 24) = 252

substep 2: 223 × 232 × 24 × 2 × 1/(16 × 24) = 251.42

substep 3: 223 × 231 × 26.5 × 3 × 1/(16 × 24) = 253.5

substep 4: 223 × 230 × 27.5 × 1/(16 × 24) = 251.92

substep 5: 223 × 230 × 28.5 × 1/(16 × 24) = 252.92

substep 6: 223 × 230 × 214 × 6 × 1/(16 × 24) = 261
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Table 4. Step 2 of key recovery attack on SIMON-32/64

i Input (S2
i ) Guessed subkey bit Output (S2

i+1) Counter of S2
i+1

0 Vj‖(Xi+18
L )[0 . . . 6, 8, 10 . . . 12, 14, 15] (Ki+18)[6] Vj‖(Xi+18

L )[0 . . . 5, 8, 10 . . . 12, 14, 15] X1,S2
1

‖(Xi+18
R ) ‖(Xi+18

R )[0 . . . 4, 6 . . . 15]
‖(Xi+17

R )[6]

1 Vj‖(Xi+18
L )[0 . . . 5, 8, 10 . . . 12, 14, 15] (Ki+18)[15] Vj‖(Xi+18

L )[0 . . . 5, 8, 10 . . . 12, 14] X2,S2
2

‖(Xi+18
R )[0 . . . 4, 6 . . . 15] ‖(Xi+18

R )[0 . . . 4, 6 . . . 13, 15]
‖(Xi+17

R )[6] ‖(Xi+17
R )[6, 15]

2 Vj‖(Xi+18
L )[0 . . . 5, 8, 10 . . . 12, 14] (Ki+18)[1] Vj‖(Xi+18

L )[0, 2 . . . 5, 8, 10 . . . 12, 14] X3,S2
3

‖(Xi+18
R )[0 . . . 4, 6 . . . 13, 15] ‖(Xi+18

R )[0 . . . 4, 6 . . . 13]
‖(Xi+17

R )[6, 15] ‖(Xi+17
R )[1, 6, 15]

3 Vj‖(Xi+18
L )[0, 2 . . . 5, 8, 10 . . . 12, 14] (Ki+18)[3, 12] Vj‖(Xi+18

L )[0, 2, 4, 5, 8, 10, 11, 14] X4,S2
4

‖(Xi+18
R )[0 . . . 4, 6 . . . 13] ‖(Xi+18

R )[0 . . . 4, 6 . . . 10, 12, 13]
‖(Xi+17

R )[1, 6, 15] ‖(Xi+17
R )[1, 3, 6, 12, 15]

4 Vj‖(Xi+18
L )[0, 2, 4, 5, 8, 10, 11, 14] (Ki+18)[2] Vj‖(Xi+18

L )[0, 4, 5, 8, 10, 11, 14] X5,S2
5

‖(Xi+18
R )[0 . . . 4, 6 . . . 10, 12, 13] ‖(Xi+18

R )[0, 2 . . . 4, 6 . . . 10, 12, 13]
‖(Xi+17

R )[1, 3, 6, 12, 15] ‖(Xi+17
R )[1, 2, 3, 6, 12, 15]

5 Vj‖(Xi+18
L )[0, 4, 5, 8, 10, 11, 14] (Ki+18)[11] Vj‖(Xi+18

L )[0, 4, 5, 8, 10, 14] X6,S2
6

‖(Xi+18
R )[0, 2 . . . 4, 6 . . . 10, 12, 13] ‖(Xi+18

R )[0, 2 . . . 4, 6 . . . 9, 12, 13]
‖(Xi+17

R )[1, 2, 3, 6, 12, 15] ‖(Xi+17
R )[1, 2, 3, 6, 11, 12, 15]

6 Vj‖(Xi+18
L )[0, 4, 5, 8, 10, 14] (Ki+18)[10] Vj‖(Xi+18

L )[0, 4, 5, 8, 14] X7,S2
7

‖(Xi+18
R )[0, 2 . . . 4, 6 . . . 9, 12, 13] ‖(Xi+18

R )[0, 2 . . . 4, 6 . . . 8, 12, 13]
‖(Xi+17

R )[1, 2, 3, 6, 11, 12, 15] ‖(Xi+17
R )[1, 2, 3, 6, 10, 11, 12, 15]

7 Vj‖(Xi+18
L )[0, 4, 5, 8, 14] (Ki+18)[14] Vj‖(Xi+18

L )[0, 4, 5, 8] X8,S2
8

‖(Xi+18
R )[0, 2 . . . 4, 6 . . . 8, 12, 13] ‖(Xi+18

R )[0, 2 . . . 4, 6 . . . 8, 12, 13]
‖(Xi+17

R )[1, 2, 3, 6, 10, 11, 12, 15] ‖(Xi+17
R )[1, 2, 3, 6, 10, 11, 12, 14, 15]

8 Vj‖(Xi+18
L )[0, 4, 5, 8] (Ki+18)[4, 5, 8] Vj‖(Xi+17

L )[0, 2 . . . 4, 6, 7, 12, 13] X9,S2
9

‖(Xi+18
R )[0, 2 . . . 4, 6 . . . 8, 12, 13] ‖(Xi+17

R )[0′ . . . 6, 8, 10 . . . 12, 14, 15]
‖(Xi+17

R )[1, 2, 3, 6, 10, 11, 12, 14, 15] where (Xi+17
R )[0′] = (Xi+17

R )[0] ⊕ (Ki+18)[0]

substep 0: 223 × 214 × 230 × 20.5 × 1/16 × 24 = 258.92

substep 1: 223 × 214 × 229 × 2 × 1/16 × 24 = 258.42

substep 2: 223 × 214 × 228 × 22 × 1/16 × 24 = 258.42

substep 3: 223 × 214 × 227 × 23 × 2 × 1/16 × 24 = 258.42

substep 4: 223 × 214 × 226 × 24 × 1/16 × 24 = 258.42

substep 5: 223 × 214 × 225 × 25 × 1/16 × 24 = 258.42

substep 6: 223 × 214 × 224 × 26 × 1/16 × 24 = 258.42

substep 7: 223 × 214 × 223 × 27 × 1/16 × 24 = 258.42

substep 8: 223 × 214 × 223 × 29.5 × 3 × 1/16 × 24 = 262.5
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Fig. 1. Adding some rounds to the 14-round linear hull for SIMON-32/K (Color figure
online).

Table 5. Step 3 of key recovery attack on SIMON-32/64

i Input (S3
i ) Guessed subkey bit Output (S3

i+1) Counter of S3
i+1

0 Vj‖(Xi+17
L )[0, 2 . . . 4, 6, 7, 12, 13] (Ki+17)[4] Vj‖(Xi+17

L )[0, 2, 3, 6, 7, 12, 13] Y1,S3
1

‖(Xi+17
R )[0 . . . 6, 8, 10 . . . 12, 14, 15] ‖(Xi+17

R )[0 . . . 2, 4 . . . 6, 8, 10 . . . 12, 14, 15]
‖(Xi+17

R )[0 . . . 2, 4 . . . 6, 8, 10 . . . 12, 14, 15] ‖(Xi+16
R )[4]

1 Vj‖(Xi+17
L )[0, 2, 3, 6, 7, 12, 13] (Ki+17)[3] Vj‖(Xi+17

L )[0, 2, 6, 7, 12, 13] Y2,S3
2

‖(Xi+17
R )[0 . . . 2, 4 . . . 6, 8, 10 . . . 12, 14, 15] ‖(Xi+17

R )[0, 4 . . . 6, 8, 10 . . . 12, 14, 15]
‖(Xi+16

R )[4] ‖(Xi+16
R )[3, 4]

2 Vj‖(Xi+17
L )[0, 2, 6, 7, 12, 13] (Ki+17)[12] Vj‖(Xi+17

L )[0, 2, 6, 7, 13] Y3,S3
3

‖(Xi+17
R )[0, 4 . . . 6, 8, 10 . . . 12, 14, 15] ‖(Xi+17

R )[0, 4 . . . 6, 8, 11, 12, 14, 15]
‖(Xi+16

R )[3, 4] ‖(Xi+16
R )[3, 4, 12]

3 Vj‖(Xi+17
L )[0, 2, 6, 7, 13] (Ki+17)[13] Vj‖(Xi+17

L )[0, 2, 6, 7] Y4,S3
4

‖(Xi+17
R )[0, 4 . . . 6, 8, 11, 12, 14, 15] ‖(Xi+17

R )[0, 4 . . . 6, 8, 14, 15]
‖(Xi+16

R )[3, 4, 12] ‖(Xi+16
R )[3, 4, 12, 13]

4 Vj‖(Xi+17
L )[0, 2, 6, 7] (Ki+17)[7] Vj‖(Xi+17

L )[0, 2, 6] Y5,S3
5

‖(Xi+17
R )[0, 4 . . . 6, 8, 14, 15] ‖(Xi+17

R )[0, 4, 5, 8, 14, 15]
‖(Xi+16

R )[3, 4, 12, 13] ‖(Xi+16
R )[3, 4, 7, 12, 13]

5 Vj‖(Xi+17
L )[0, 2, 6] (Ki+17)[0, 6] Vj‖(Xi+16

L )[4, 5, 8, 14] Y6,S3
6

‖(Xi+17
R )[0, 4, 5, 8, 14, 15] ‖(Xi+16

R )[0, 2′, 3, 4, 6, 7, 12, 13]
‖(Xi+16

R )[3, 4, 7, 12, 13] where (Xi+16
R )[2′] = (Xi+16

R )[2] ⊕ (Ki+17)[2]

substep 0: 223 × 214 × 29.5 × 222 × 20.5 × 1/(16 × 24) = 260.42

substep 1: 223 × 214 × 29.5 × 221 × 21.5 × 1/(16 × 24) = 260.42

substep 2: 223 × 214 × 29.5 × 219 × 22.5 × 1/(16 × 24) = 259.42

substep 3: 223 × 214 × 29.5 × 218 × 23 × 1/(16 × 24) = 258.92

substep 4: 223 × 214 × 29.5 × 216 × 23.5 × 1/(16 × 24) = 257.42

substep 5: 223 × 214 × 29.5 × 215 × 24.5 × 2 × 1/(16 × 24) = 258.42
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Table 6. Step 4 of key recovery attack on SIMON-32/64

i Input (S4
i ) Guessed subkey bit Output (S4

i+1) Counter of S4
i+1

0 Vj‖(Xi+16
L )[4, 5, 8, 14]‖(Xi+16

R )[0, 2, 3, 4, 6, 7, 12, 13] (Ki+16)[5, 14] Vj‖(Xi+15
L )[6]‖(Xi+15

R )[4′, 5, 8′, 14] Z1,S4
1

where (Xi+15
R )[4′] = (Xi+15

R )[4] ⊕ (Ki+16)[4]
and (Xi+15

R )[8′] = (Xi+15
R )[8] ⊕ (Ki+16)[8]

substep 0: 223 × 214 × 29.5 × 24.5 × 213 × 2 × 2 × 1/(16 × 24) = 257.42

Table 7. Step 5 of key recovery attack on SIMON-32/64

i Input (S5
i ) Guessed subkey bit Output (S5

i+1) Counter of S5
i+1

0 Vj‖(Xi+15
L )[6]‖(Xi+15

R )[4, 5, 8, 14] Vj‖(Xi+14
L )[4′, 8′]‖(Xi+14

R )[6′] W1,S5
1

where (Xi+14
R )[6′] = (Xi+14

R )[6] ⊕ (Ki+15)[6],
(Xi+14

L )[4′] = (Xi+14
L )[4] ⊕ (Ki+16)[4] ⊕ (Ki+17)[2] ⊕ (Ki+18)[0], and

(Xi+14
L )[8′] = (Xi+14

L )[8] ⊕ (Ki+16)[8].

B Steps of the Key Recovery Attack on SIMON-48/96

Vj = (Xi
L)[2, 6, 14, 22]⊕(Xi

R)[0]⊕(Ki)[2, 6, 14, 22]⊕(Ki−1)[0, 4, 12, 20]⊕(Ki−2)[2, 18]

Wj = (Xi+18
L )[0] ⊕ (Xi+18

R )[2, 6, 14, 16, 22] ⊕ (Ki+19)[2, 6, 14, 16, 22]

⊕(Ki+20)[0, 4, 12, 20] ⊕ (Ki+21)[2, 18] ⊕ (Ki+22)[0]

Fig. 2. Adding some rounds to the 17-round linear hull for SIMON-48/96 (Color figure
online).
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Table 8. Step 1 of key recovery attack on SIMON-48/96

i Input (S1
i ) Guessed subkey bit Output (S1

i+1) Counter of S1
i+1

0 (Xi−3
L )[0 . . . 6, 8 . . . 23] (Ki−2)[0, 3, 4, 5, 6, 10, 11, 12, 13, 14, 16, 17, 19, Vj‖(Xi+22

L )[0 . . . 6, 8 . . . 23] T1,S1
1

‖(Xi−3
R )[0, 2 . . . 6, 10 . . . 14, 16 . . . 23] 20, 21, 22, 23]‖(Ki−1)[1, 5, 6, 13, 14, 18, 21, 22] ‖(Xi+22

R )

1 Vj‖(Xi+22
L )[0 . . . 6, 8 . . . 23] (Ki+22)[10, 11, 17] Vj‖(Xi+22

L )[0 . . . 6, 8, 9, 12 . . . 16, 18 . . . 23] T2,S1
2

‖(Xi+22
R ) ‖(Xi+22

R )[0 . . . 8, 10 . . . 23]
‖(Xi+21

R )[10, 11, 17]

2 Vj‖(Xi+22
L )[0 . . . 6, 8, 9, 12 . . . 16, 18 . . . 23] (Ki+22)[16, 23] Vj‖(Xi+22

L )[0 . . . 6, 8, 9, 12 . . . 15, 18 . . . 22] T3,S1
3

‖(Xi+22
R )[0 . . . 8, 10 . . . 23] ‖(Xi+22

R )[0 . . . 8, 10 . . . 14, 16 . . . 23]
‖(Xi+21

R )[10, 11, 17] ‖(Xi+21
R )[10, 11, 16, 17, 23]

3 Vj‖(Xi+22
L )[0 . . . 6, 8, 9, 12 . . . 15, 18 . . . 22] (Ki+22)[9] Vj‖(Xi+22

L )[0 . . . 6, 8, 12 . . . 15, 18 . . . 22] T4,S1
4

‖(Xi+22
R )[0 . . . 8, 10 . . . 14, 16 . . . 23] ‖(Xi+22

R )[0 . . . 7, 10 . . . 14, 16 . . . 23]
‖(Xi+21

R )[10, 11, 16, 17, 23] ‖(Xi+21
R )[8, 10, 11, 16, 17, 23]

4 Vj‖(Xi+22
L )[0 . . . 6, 8, 12 . . . 15, 18 . . . 22] (Ki+22)[2, 3] Vj‖(Xi+22

L )[0, 1, 4 . . . 6, 8, 12 . . . 15, 18 . . . 22] T5,S1
5

‖(Xi+22
R )[0 . . . 7, 10 . . . 14, 16 . . . 23] ‖(Xi+22

R )[0, 2 . . . 7, 10 . . . 14, 16 . . . 23]
‖(Xi+21

R )[8, 10, 11, 16, 17, 23] ‖(Xi+21
R )[2, 3, 8, 10, 11, 16, 17, 23]

5 Vj‖(Xi+22
L )[0, 1, 4 . . . 6, 8, 12 . . . 15, 18 . . . 22] (Ki+22)[1, 4 . . . 6, 8, 12 . . . 15, 18 . . . 22] Vj‖(Xi+21

L )[0, 2 . . . 7, 10 . . . 14, 16 . . . 23 T6,S1
6

‖(Xi+22
R )[0, 2 . . . 7, 10 . . . 14, 16 . . . 23] ‖(Xi+21

R )[0 . . . 6, 8 . . . 23]
‖(Xi+21

R )[2, 3, 8, 10, 11, 16, 17, 23]

substep 0: 217 × 247.78 × 3/24 = 261.78

substep 1: 217 × 248 × 23 × 3 × 1/(24 × 24) = 260.41

substep 2: 217 × 247 × 24 × 2 × 1/(24 × 24) = 259.83

substep 3: 217 × 246 × 25 × 1/(24 × 24) = 258.83

substep 4: 217 × 245 × 27 × 2 × 1/(24 × 24) = 260.83

substep 5: 217 × 244 × 221 × 14 × 1/(24 × 24) = 276.64

Table 9. Step 2 of key recovery attack on SIMON-48/96

i Input (S2
i ) Guessed subkey bit Output (S2

i+1) Counter of S2
i+1

0 Vj‖(Xi+21
L )[0, 2 . . . 7, 10 . . . 14, 16 . . . 23 (Ki+21)[19] Vj‖(Xi+21

L )[0, 2 . . . 7, 10 . . . 14, 16 . . . 18, 20 . . . 23 X1,S2
1

‖(Xi+21
R )[0 . . . 6, 8 . . . 23] ‖(Xi+21

R )[0 . . . 6, 8 . . . 16, 18 . . . 23]
‖(Xi+20

R )[19]

1 Vj‖(Xi+21
L )[0, 2 . . . 7, 10 . . . 14, 16 . . . 18, 20 . . . 23 (Ki+21)[12, 13] Vj‖(Xi+21

L )[0, 2 . . . 7, 10, 11, 14, 16 . . . 18, 20 . . . 23 X2,S2
2

‖(Xi+21
R )[0 . . . 6, 8 . . . 16, 18 . . . 23] ‖(Xi+21

R )[0 . . . 6, 8 . . . 10, 12 . . . 16, 18 . . . 23]
‖(Xi+20

R )[19] ‖(Xi+20
R )[12, 13, 19]

2 Vj‖(Xi+21
L )[0, 2 . . . 7, 10, 11, 14, 16 . . . 18, 20 . . . 23 (Ki+21)[11] Vj‖(Xi+21

L )[0, 2 . . . 7, 10, 14, 16 . . . 18, 20 . . . 23 X3,S2
3

‖(Xi+21
R )[0 . . . 6, 8 . . . 10, 12 . . . 16, 18 . . . 23] ‖(Xi+21

R )[0 . . . 6, 8, 9, 12 . . . 16, 18 . . . 23]
‖(Xi+20

R )[12, 13, 19] ‖(Xi+20
R )[11 . . . 13, 19]

3 Vj‖(Xi+21
L )[0, 2 . . . 7, 10, 14, 16 . . . 18, 20 . . . 23 (Ki+21)[0, 17] Vj‖(Xi+21

L )[2 . . . 7, 10, 14, 16, 18, 20 . . . 23 X4,S2
4

‖(Xi+21
R )[0 . . . 6, 8, 9, 12 . . . 16, 18 . . . 23] ‖(Xi+21

R )[0 . . . 6, 8, 9, 12 . . . 15, 18 . . . 23]
‖(Xi+20

R )[11 . . . 13, 19] ‖(Xi+20
R )[0, 11 . . . 13, 17, 19]

4 Vj‖(Xi+21
L )[2 . . . 7, 10, 14, 16, 18, 20 . . . 23 (Ki+21)[7] Vj‖(Xi+21

L )[2 . . . 6, 10, 14, 16, 18, 20 . . . 23 X5,S2
5

‖(Xi+21
R )[0 . . . 6, 8, 9, 12 . . . 15, 18 . . . 23] ‖(Xi+21

R )[0 . . . 6, 8, 9, 12 . . . 15, 18 . . . 22]
‖(Xi+20

R )[0, 11 . . . 13, 17, 19] ‖(Xi+20
R )[0, 7, 11 . . . 13, 17, 19]

5 Vj‖(Xi+21
L )[2 . . . 6, 10, 14, 16, 18, 20 . . . 23 (Ki+21)[10] Vj‖(Xi+21

L )[2 . . . 6, 14, 16, 18, 20 . . . 23 X6,S2
6

‖(Xi+21
R )[0 . . . 6, 8, 9, 12 . . . 15, 18 . . . 22] ‖(Xi+21

R )[0 . . . 6, 8, 12 . . . 15, 18 . . . 22]
‖(Xi+20

R )[0, 7, 11 . . . 13, 17, 19] ‖(Xi+20
R )[0, 7, 10, 11 . . . 13, 17, 19]

6 Vj‖(Xi+21
L )[2 . . . 6, 14, 16, 18, 20 . . . 23 (Ki+21)[4, 5] Vj‖(Xi+21

L )[2, 3, 6, 14, 16, 18, 20 . . . 23 X7,S2
7

‖(Xi+21
R )[0 . . . 6, 8, 12 . . . 15, 18 . . . 22] ‖(Xi+21

R )[0 . . . 2, 4 . . . 6, 8, 12 . . . 15, 18 . . . 22]
‖(Xi+20

R )[0, 7, 10, 11 . . . 13, 17, 19] ‖(Xi+20
R )[0, 4, 5, 7, 10, 11 . . . 13, 17, 19]

7 Vj‖(Xi+21
L )[2, 3, 6, 14, 16, 18, 20 . . . 23] (Ki+21)[3, 6, 14, 16, 20, 21, 22, 23] Vj‖(Xi+20

L )[0, 1, 4 . . . 6, 8, 12 . . . 15, 18, 20 . . . 22] X8,S2
8

‖(Xi+21
R )[0 . . . 2, 4 . . . 6, 8, 12 . . . 15, 18 . . . 22] ‖(Xi+20

R )[0, 2 . . . 7, 10 . . . 14, 16 . . . 23]
‖(Xi+20

R )[0, 4, 5, 7, 10, 11 . . . 13, 17, 19]

substep 0: 217 × 221 × 244 × 2 × 1/24.24 = 273.83

substep 1: 217 × 221 × 243 × 23 × 2 × 1/24.24 = 275.83

substep 2: 217 × 221 × 242 × 24 × 1/24.24 = 274.83

substep 3: 217 × 221 × 241 × 25 × 2 × 1/24.24 = 275.83

substep 4: 217 × 221 × 240 × 25.5 × 1/24.24 = 274.33

substep 5: 217 × 221 × 239 × 26 × 1/24.24 = 273.83

substep 6: 217 × 221 × 238 × 27.5 × 2 × 1/24.24 = 275.33

substep 7: 217 × 221 × 237 × 214 × 8 × 1/24.24 = 282.83



Improved Linear Cryptanalysis of Reduced-Round 175

Table 10. Step 3 of key recovery attack on SIMON-48/96

i Input (S3
i ) Guessed subkey bit Output (S3

i+1) Counter of S3
i+1

0 Vj‖(Xi+20
L )[0, 1, 4 . . . 6, 8, 12 . . . 15, 18, 20 . . . 22] (Ki+20)[1] Vj‖(Xi+20

L )[0, 4 . . . 6, 8, 12 . . . 15, 18, 20 . . . 22] Y1,S3
1

‖(Xi+20
R )[0, 2 . . . 7, 10 . . . 14, 16 . . . 23] ‖(Xi+20

R )[0, 2 . . . 7, 10 . . . 14, 16 . . . 22]
‖(Xi+19

R )[1]

1 Vj‖(Xi+20
L )[0, 4 . . . 6, 8, 12 . . . 15, 18, 20 . . . 22] (Ki+20)[5] Vj‖(Xi+20

L )[0, 4, 6, 8, 12 . . . 15, 18, 20 . . . 22] Y2,S3
2

‖(Xi+20
R )[0, 2 . . . 7, 10 . . . 14, 16 . . . 22] ‖(Xi+20

R )[0, 2, 4 . . . 7, 10 . . . 14, 16 . . . 22]
‖(Xi+19

R )[1] ‖(Xi+19
R )[1, 5]

2 Vj‖(Xi+20
L )[0, 4, 6, 8, 12 . . . 15, 18, 20 . . . 22] (Ki+20)[13] Vj‖(Xi+20

L )[0, 4, 6, 8, 12, 14, 15, 18, 20 . . . 22] Y3,S3
3

‖(Xi+20
R )[0, 2, 4 . . . 7, 10 . . . 14, 16 . . . 22] ‖(Xi+20

R )[0, 2, 4 . . . 7, 10, 12 . . . 14, 16 . . . 22]
‖(Xi+19

R )[1, 5] ‖(Xi+19
R )[1, 5, 13]

3 Vj‖(Xi+20
L )[0, 4, 6, 8, 12, 14, 15, 18, 20 . . . 22] (Ki+20)[14] Vj‖(Xi+20

L )[0, 4, 6, 8, 12, 15, 18, 20 . . . 22] Y4,S3
4

‖(Xi+20
R )[0, 2, 4 . . . 7, 10, 12 . . . 14, 16 . . . 22] ‖(Xi+20

R )[0, 2, 4 . . . 7, 10, 13, 14, 16 . . . 22]
‖(Xi+19

R )[1, 5, 13] ‖(Xi+19
R )[1, 5, 13, 14]

4 Vj‖(Xi+20
L )[0, 4, 6, 8, 12, 15, 18, 20 . . . 22] (Ki+20)[21] Vj‖(Xi+20

L )[0, 4, 6, 8, 12, 15, 18, 20, 22] Y5,S3
5

‖(Xi+20
R )[0, 2, 4 . . . 7, 10, 13, 14, 16 . . . 22] ‖(Xi+20

R )[0, 2, 4 . . . 7, 10, 13, 14, 16 . . . 18, 20 . . . 22]
‖(Xi+19

R )[1, 5, 13, 14] ‖(Xi+19
R )[1, 5, 13, 14, 21]

5 Vj‖(Xi+20
L )[0, 4, 6, 8, 12, 15, 18, 20, 22] (Ki+20)[22] Vj‖(Xi+20

L )[0, 4, 6, 8, 12, 15, 18, 20] Y6,S3
6

‖(Xi+20
R )[0, 2, 4 . . . 7, 10, 13, 14, 16 . . . 18, 20 . . . 22] ‖(Xi+20

R )[0, 2, 4 . . . 7, 10, 13, 14, 16 . . . 18, 20, 22]
‖(Xi+19

R )[1, 5, 13, 14, 21] ‖(Xi+19
R )[1, 5, 13, 14, 21, 22]

6 Vj‖(Xi+20
L )[0, 4, 6, 8, 12, 15, 18, 20] (Ki+20)[6, 8, 15, 18] Vj‖(Xi+19

L )[2, 6, 14, 16, 22] Y7,S3
7

‖(Xi+20
R )[0, 2, 4 . . . 7, 10, 13, 14, 16 . . . 18, 20, 22] ‖(Xi+19

R )[0, 1, 4 . . . 6, 8, 12 . . . 15, 18, 20 . . . 22]
‖(Xi+19

R )[1, 5, 13, 14, 21, 22]

7 Vj‖(Xi+19
L )[2, 6, 14, 16, 22] Vj‖(Xi+18

L )[0] Y7,S3
7

‖(Xi+19
R )[0, 1, 4 . . . 6, 8, 12 . . . 15, 18, 20 . . . 22] ‖(Xi+18

R )[2, 6, 14, 16, 22]

substep 0: 217 × 221 × 214 × 235 × 20.5 × 1/(24 × 24) = 278.33

substep 1: 217 × 221 × 214 × 234 × 21 × 1/(24 × 24) = 277.83

substep 2: 217 × 221 × 214 × 233 × 21.5 × 1/(24 × 24) = 277.33

substep 3: 217 × 221 × 214 × 232 × 22 × 1/(24 × 24) = 277.83

substep 4: 217 × 221 × 214 × 231 × 22.5 × 1/(24 × 24) = 276.33

substep 5: 217 × 221 × 214 × 230 × 23 × 1/(24 × 24) = 275.83

substep 6: 217 × 221 × 214 × 229 × 25 × 4 × 1/(24 × 24) = 276.83

C MIP Experiments

Table 11 shows the 30 sub approximations that have been used to estimate the
squared correlations of the lower class trails. The experiments where the MIP
solutions are limited to 512 trails per approximation took exactly 70125.382718
seconds which is less than 20 hrs using a standard laptop.

Table 12 shows the 30 sub approximations that have been used to estimate
the squared correlations of the upper class trails. The experiments where the MIP
solutions are limited to 512 trails per approximation took exactly 62520.033249
seconds which is less than 18 hrs using a standard laptop.
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Table 11. Lower Class Trails found through our time-memory trade-off method, c2i1 ≡
the squared correlation of the ith 11-round linear approximation with light trails found
through the correlation matrix, c2i2 ≡ the squared correlation of the ith 6-round linear
approximation with heavy trails found through the MIP method, c2i1c

2
i2 ≡ is the squared

correlation of the ith 17-round linear approximation and
∑

c2i1c
2
i2 is the total estimated

squared correlation of the lower class trails of our 17-round linear hull after including
i ≤ 30 linear approximations

i Matrix trails log2 c2i1 MIP trails log2 c2i2 log2

∑
c2i1c

2
i2

1 404044000001
11−round−−−−−−→001000004400 -28.6806 001000004400

6−round−−−−−−→000001414044), -22.342570 -51.023180

2 404044000001
11−round−−−−−−→001000004410 -28.6806 001000004410

6−round−−−−−−→000001414044 -24.339670 -50.700671

3 404044000001
11−round−−−−−−→001000004C00 -28.6806 001000004C00

6−round−−−−−−→000001414044 -24.486365 -50.460718

4 404044000001
11−round−−−−−−→001000004C10 -28.6806 001000004C10

6−round−−−−−−→000001414044 -23.979129 -50.176458

5 404044000001
11−round−−−−−−→003000004400 -30.6806 003000004400

6−round−−−−−−→000001414044 -22.342570 -49.988669

6 404044000001
11−round−−−−−−→003000004410 -30.6806 003000004410

6−round−−−−−−→000001414044 -24.339586 -49.945219

7 404044000001
11−round−−−−−−→003000004420 -30.6806 003000004420

6−round−−−−−−→000001414044 -27.953899 -49.941728

8 404044000001
11−round−−−−−−→003000004430 -30.6806 003000004430

6−round−−−−−−→000001414044 -26.956545 -49.934784

9 404044000001
11−round−−−−−−→003000004C00 -30.6806 003000004C00

6−round−−−−−−→000001414044 -24.486642 -49.896909

10 404044000001
11−round−−−−−−→003000004C10 -30.6806 003000004C00

6−round−−−−−−→000001414044 -24.486642 -49.844727

11 404044000001
11−round−−−−−−→003000004C20 -30.6806 003000004C20

6−round−−−−−−→000001414044 26.880410 -49.837883

12 404044000001
11−round−−−−−−→003000005400 -30.6806 003000005400

6−round−−−−−−→000001414044 -31.046525 -49.837503

13 404044000001
11−round−−−−−−→003000005410 -30.6806 003000005410

6−round−−−−−−→000001414044 -32.568502 -49.837371

14 404044000001
11−round−−−−−−→003000005420 -30.6806 003000005420

6−round−−−−−−→000001414044 -31.189830 -49.837026

15 404044000001
11−round−−−−−−→003000005C00 -30.6806 003000005C00

6−round−−−−−−→000001414044 -27.773381 -49.833356

16 404044000001
11−round−−−−−−→001040004400 -30.6806 001040004400

6−round−−−−−−→000001414044 -22.342570 -49.683331

17 404044000001
11−round−−−−−−→001040004410 -30.6806 001040004410

6−round−−−−−−→000001414044 -24.339586 -49.648069

18 404044000001
11−round−−−−−−→001040004420 -30.6806 001040004420

6−round−−−−−−→000001414044 -27.954667 -49.645229

19 404044000001
11−round−−−−−−→001040004430 -30.6806 001040004430

6−round−−−−−−→000001414044 -26.957186 -49.639576

20 404044000001
11−round−−−−−−→001040004C00 -30.6806 001040004C00

6−round−−−−−−→000001414044 -24.486272 -49.608628

21 404044000001
11−round−−−−−−→001040004C10 -30.6806 001040004C10

6−round−−−−−−→000001414044 -23.979129 -49.565757

22 404044000001
11−round−−−−−−→001040004C20 -30.6806 001040004C20

6−round−−−−−−→000001414044, -26.879560 -49.560110

23 404044000001
11−round−−−−−−→001040404400 -30.6806 001040404400

6−round−−−−−−→000001414044 -30.596588 -49.559682

24 404044000001
11−round−−−−−−→001040404410 -30.6806 001040404410

6−round−−−−−−→000001414044 -27.765884 -49.556637

25 404044000001
11−round−−−−−−→001040404420 -30.6806 001040404420

6−round−−−−−−→000001414044 -30.819304 -49.556271

26 404044000001
11−round−−−−−−→001040404C00 -30.6806 001040404C00

6−round−−−−−−→000001414044 -32.191224 -49.556130

27 404044000001
11−round−−−−−−→003040004400 -30.6806 003040004400

6−round−−−−−−→000001414044 -22.342570 -49.431232

28 404044000001
11−round−−−−−−→003040004410 -30.6806 003040004410

6−round−−−−−−→000001414044 -24.339753 -49.401570

29 404044000001
11−round−−−−−−→003040004420 -30.6806 003040004420

6−round−−−−−−→000001414044 -27.954411 -49.399175

30 404044000001
11−round−−−−−−→003040004C00 -30.6806 003040004C00

6−round−−−−−−→000001414044 -24.486457 -49.372938
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Table 12. Upper Class Trails found through our time-memory trade-off method, c2i1 ≡
the squared correlation of the ith 6-round linear approximation with heavy trails found
through the MIP method, c2i2 ≡ the squared correlation of the ith 6-round linear
approximation with light trails found through the correlation matrix, c2i1c

2
i2 ≡ is the

squared correlation of the ith 17-round linear approximation and
∑

c2i1c
2
i2 is the total

estimated squared correlation of the upper class trails of our 17-round linear hull after
including i ≤ 30 linear approximations

i MIP trails log2 c2i1 Matrix trails log2 c2i2 log2

∑
c2i1c

2
i2

1 404044000001
6−round−−−−−−→004400001000 -22.342570 004400001000

11−round−−−−−−→000001414044 -28.6806 -51.023180

2 404044000001
6−round−−−−−−→004410001000 -24.339670 004410001000

11−round−−−−−−→000001414044 28.6806 -50.700671

3 404044000001
6−round−−−−−−→004C00001000 -24.486272 004C00001000

11−round−−−−−−→000001414044 -28.6806 -50.460704

4 404044000001
6−round−−−−−−→004C10001000 -23.979129 004C10001000

11−round−−−−−−→000001414044 -28.6806 -50.176447

5 404044000001
6−round−−−−−−→004400003000 -22.342570 004400003000

11−round−−−−−−→000001414044 -30.6806 -49.988659

6 404044000001
6−round−−−−−−→004410003000 -24.339753 004410003000

11−round−−−−−−→000001414044 -30.6806 -49.945214

7 404044000001
6−round−−−−−−→004420003000 -27.955435 004420003000

11−round−−−−−−→000001414044 -30.6806 -49.941726

8 404044000001
6−round−−−−−−→004430003000 26.956674 004430003000

11−round−−−−−−→000001414044 -30.6806 -49.934783

9 404044000001
6−round−−−−−−→004C00003000 -24.486272 004C00003000

11−round−−−−−−→000001414044 -30.6806 -49.896899

10 404044000001
6−round−−−−−−→004C10003000 -23.979129 004C10003000

11−round−−−−−−→000001414044 -30.6806 -49.844713

11 404044000001
6−round−−−−−−→004C20003000 -26.879317 004C20003000

11−round−−−−−−→000001414044 -30.6806 -49.837864

12 404044000001
6−round−−−−−−→004C20003000 -31.046525 005400003000

11−round−−−−−−→000001414044 -30.6806 -49.837483

13 404044000001
6−round−−−−−−→005410003000 -32.568502 005410003000

11−round−−−−−−→000001414044 -30.6806 -49.837483

14 404044000001
6−round−−−−−−→005420003000 -31.189830 005420003000

11−round−−−−−−→000001414044 -30.6806 -49.837007

15 404044000001
6−round−−−−−−→005C00003000 -27.77338 005C00003000

11−round−−−−−−→000001414044 -30.6806 -49.833337

16 404044000001
6−round−−−−−−→004400001040 -22.342570 004400001040

11−round−−−−−−→ 000001414044 -30.6806 -49.683313

17 404044000001
6−round−−−−−−→004400003040 -22.342570 004400003040

11−round−−−−−−→ 000001414044 -30.6806 -49.547431

18 404044000001
6−round−−−−−−→004410001040 -24.339670 004410001040

11−round−−−−−−→000001414044 -30.6806 -49.515307

19 404044000001
6−round−−−−−−→004410003040 -24.339670 004410003040

11−round−−−−−−→000001414044 -30.6806 -49.483882

20 404044000001
6−round−−−−−−→004420001040 -27.955691 004420001040

11−round−−−−−−→000001414044 30.6806 -49.481349

21 404044000001
6−round−−−−−−→004420003040 -27.954155 004420003040

11−round−−−−−−→000001414044 -30.6806 -49.478817

22 404044000001
6−round−−−−−−→004430001040 -26.956417 004430001040

11−round−−−−−−→000001414044 -30.6806 -49.473776

23 404044000001
6−round−−−−−−→004C00001040 -24.486457 004C00001040

11−round−−−−−−→000001414044 -30.6806 -49.446160

24 404044000001
6−round−−−−−−→004C00003040 -24.486550 004C00003040

11−round−−−−−−→000001414044 -30.6806 -49.419065

25 404044000001
6−round−−−−−−→004C10001040 -23.979259 004C10001040

11−round−−−−−−→000001414044 -30.6806 -49.381407

26 404044000001
6−round−−−−−−→004C20001040 -26.879195 004C20001040

11−round−−−−−−→000001414044 -30.6806 49.376435

27 404044000001
6−round−−−−−−→404400001040 -30.596588 404400001040

11−round−−−−−−→000001414044 -30.6806 -49.376058

28 404044000001
6−round−−−−−−→404410001040 -27.765898 404410001040

11−round−−−−−−→000001414044 -30.6806 -49.373377

29 404044000001
6−round−−−−−−→404420001040 -30.819304 404420001040

11−round−−−−−−→000001414044 -30.6806 -49.373054

30 04044000001
6−round−−−−−−→404C00001040 -32.191224 404C00001040

11−round−−−−−−→000001414044 -30.6806 49.372930
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