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Abstract. In this paper, we analyze the security of two variants of the
RSA public key cryptosystem where multiple encryption and decryption
exponents are used with a common modulus. For the most well known
variant, CRT-RSA, assume that n encryption and decryption exponents
(el, dpl , dql), where l = 1, · · · , n, are used with a common CRT-RSA
modulus N . By utilizing a Minkowski sum based lattice construction
and combining several modular equations which share a common vari-

able, we prove that one can factor N when dpl , dql < N
2n−3
8n+2 for all

l = 1, · · · , n. We further improve this bound to dpl(or dql) < N
9n−14
24n+8

for all l = 1, · · · , n. Moreover, our experiments do better than previous
works by Jochemsz-May (Crypto 2007) and Herrmann-May (PKC 2010)
when multiple exponents are used. For Takagi’s variant of RSA, assume
that n key pairs (el, dl) for l = 1, · · · , n are available for a common mod-
ulus N = prq where r ≥ 2. By solving several simultaneous modular

univariate linear equations, we show that when dl < N ( r−1
r+1 )

n+1
n

, for all
l = 1, · · · , n, one can factor the common modulus N .

Keywords: RSA · Cryptanalysis · Lattice · Coppersmith’s method

1 Introduction

Since its invention [16], the RSA public key scheme has been widely used due to
its effective encryption and decryption. To obtain high efficiency, some vari-
ants of the original RSA were designed. Wiener [24] proposed an algorithm
to use the Chinese Remainder Theorem in the decryption phase to accelerate
the decryption operation by using smaller exponents dp and dq which satisfy
edp ≡ 1mod (p − 1) and edq ≡ 1mod (q − 1) for a modulus N = pq and an
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encryption exponent e. This decryption oriented alternative of RSA scheme is
usually called as CRT-RSA. Also for gaining a fast decryption implementation,
Takagi [21] proposed another variant of RSA with moduli of the form N = prq,
where r ≥ 2 is an integer. For Takagi’s variant, the encryption exponent e and
decryption exponent d satisfy ed ≡ 1 (mod pr−1(p − 1)(q − 1)).

In many applications of the RSA scheme and its variants, either d is chosen
to be small or dp and dq are chosen to be small for efficient modular exponen-
tiation in the decryption process. However, since Wiener [24] showed that the
original RSA scheme is insecure when d is small enough, along this direction
many researchers have paid much attention to factoring RSA moduli and its
variants under small decryption exponents.

Small Secret Exponent Attacks on RSA and Its Variants. For the orig-
inal RSA with a modulus N = pq, Wiener [24] proved that when d ≤ N0.25, one
can factor the modulus N in polynomial time by a Continued Fraction Method.
Later, by utilizing a lattice based method, which is usually called Coppersmith’s
technique [5] for finding small roots of a modular equation, Boneh and Durfee
[2] improved the bound to N0.292 under several acceptable assumptions. Then,
Herrmann and May [6] used a linearization technique to simplify the construc-
tion of the lattice involved and obtained the same bound N0.292. Until now,
N0.292 is still the best result for small secret exponent attacks on the original
RSA scheme with full size of e.

For CRT-RSA, Jochemsz and May [10] gave an attack for small dp and dq,
where p and q are balanced and the encryption exponent e is of full size, i.e. about
as large as the modulus N = pq. By solving an integer equation, they can factor
N provided that the small decryption CRT-exponents dp and dq are smaller
than N0.073. Similarly, Herrmann and May [6] used a linearization technique to
obtain the same theoretical bound but better results in experiments.

For Takagi’s variant of RSA with modulus N = prq, May [13] applied Cop-
persmith’s method to prove that one can factor the modulus provided that
d ≤ N ( r−1

r+1 )
2
. By modifying the collection of polynomials in the construction

of the lattice, Lu et al. [12] improved this bound to d ≤ N
r(r−1)
(r+1)2 . Recently, from

a new point of view of utilizing the algebraic property prq = N , Sarkar [17]
improved the bound when r ≤ 5. Especially for the most practical case of r = 2,
the bound has been significantly improved from N0.222 to N0.395. The follow-
ing table lists the existing small decryption exponent attacks on RSA and its
variants Table 1.

Multiple Small Secret Exponents RSA. In order to simplify RSA key man-
agement, one may be tempted to use a single RSA modulus N for several key
pairs (ei, di). Simmons [19] showed that if a massage m is sent to two partici-
pants whose public exponents are relatively prime, then m can easily be recov-
ered. However Simmons’s attack can not factor N . Hence Howgrave-Graham
and Seifert [8] analyzed the case that several available encryption exponents
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Table 1. Overview of existing works on small secret exponent attacks on RSA and its
variants. The conditions in the last column allow to efficiently factor the modulus N .

Author(s) Cryptosystem Bounds

Wiener: 1990 [24] RSA d < N0.25

Boneh and Durfee: 1999 [2] RSA d < N0.292

Jochemsz and May: 2007 [10] CRT-RSA dp, dq < N0.073

Herrmann and May: 2010 [6] CRT-RSA dp, dq < N0.073

May: 2004 [13] Takagi’s variant of RSA N = prq d ≤ N ( r−1
r+1 )2

Lu, Zhang, Peng and Lin: 2014 [12] Takagi’s variant of RSA N = prq d ≤ N
r(r−1)
(r+1)2

Sarkar: 2014 [17] Takagi’s variant of RSA N = p2q d ≤ N0.395

Table 2. Comparison of previous theoretical bounds with respect to the number of
decryption exponents.

n 1 2 5 10 20 ∞
Howgrave-Graham and Seifert’s bound [8] 0.2500 0.3125 0.4677 0.5397 0.6319 1.0000

Sarkar and Maitra’s bound [18] 0.2500 0.4167 0.5833 0.6591 0.7024 0.7500

Aono’s bound [1] 0.2500 0.4643 0.6250 0.6855 0.7172 0.7500

Takayasu and Kunihiro’s bound [23] 0.2929 0.4655 0.6464 0.7460 0.8189 1.0000

(e1, · · · , en) exist for a common modulus N and the corresponding decryption
exponents (d1, · · · , dn) are small. From their result, one can factor N when the
n decryption exponents satisfy that dl < N δ for all l = 1, · · · , n, where

δ <

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(2n + 1)2n − (2n + 1)
(

n
n
2

)

(2n − 1)2n + (4n + 2)
(

n
n
2

) , if n is even, and

(2n + 1)2n − 4n
(n−1

n−1
2

)

(2n − 2)2n + 8n
(n−1

n−1
2

) , if n is odd.

In [18], Sarkar and Maitra used the strategy of [9] to solve for small roots of
an integer equation and improved the bound to δ < 3n−1

4n+4 . Aono [1] proposed
a method to solve several simultaneous modular equations which share a com-
mon unknown variable. Aono combined several lattices into one lattice by a
Minkowski sum based lattice construction and obtained that when δ < 9n−5

12n+4 ,
N can be factored. Shortly afterwards, Takayasu and Kunihiro [23] modified
each lattice and collected more helpful polynomials to improve the bound to
1−

√
2

3n+1 . In conclusion, an explicit picture of the comparison of previous work
is illustrated in Table 2.
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Simultaneous Modular Univariate Linear Equations Modulo an
Unknown Divisor. In 2001, Howgrave-Graham first considered the problem
of solving an univariate linear equation modulo an unknown divisor of a known
composite integer,

f(x) = x + a (mod p),

where a is a given integer, and p � Nβ is an unknown factor of the known N .
The size of the root is bounded by |x| < Nδ. Howgrave-Graham proved that one
can solve for the root in polynomial time provided that δ < β2.

The generalization of this problem has been considered by Cohn and
Heninger [4],

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

f(x1) = x1 + a1 (mod p),
f(x2) = x2 + a2 (mod p),
· · ·
f(xn) = xn + an (mod p).

In the above simultaneous modular univariate linear equations, a1, · · · , an are
given integers, and p � Nβ is an unknown factor of N . Based on their result,
one can factor N if

γ1 + · · · + γn

n
< β

n+1
n and β � 1√

logN

where |x1| < Nγ1 , · · · , |xn| < Nγn . Then by considering the sizes of unknown
variables and collecting more helpful polynomials which are selected to construct
the lattice, Takayasu and Kunihiro [22] further improved the bound to

n
√

γ1 · · · γn < β
n+1
n and β � 1√

logN
.

Our Contributions. In this paper, we give an analysis of CRT-RSA and Tak-
agi’s variant of RSA with multiple small decryption exponents, respectively. For
CRT-RSA, (e1, · · · , en) are n encryption exponents and (dp1 , dq1), · · · , (dpn

, dqn)
are the corresponding decryption exponents for a common CRT-RSA modulus
N , where e1, · · · , en are of full size as N . Based on the Minkowski sum based
lattice construction proposed by Aono [1], we combine several modular equations
which share a common variable and obtain that one can factor N when

dpl
, dql < N

2n−3
8n+2

for all l = 1, · · · , n, where n is the number of decryption exponents.
In order to utilize the Minkowski sum based lattice construction to combine

the equations, the equations should share a common variable. Hence, we modified
each of the equations considered in [10], which results in a worse bound when
there is only one pair of encryption and decryption exponents.

However, note that the modular equations

kpl
(p − 1) + 1 ≡ 0 (mod el), for l = 1, · · · , n,
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share a common root p. Then we can directly combine these n equations by a
Minkowski sum based lattice construction, and moreover introduce a new vari-
able q to minimize the determinant of the combined lattice. We can obtain an
improved bound that one can factor N when

dpl
< N

9n−14
24n+8

for all l = 1, · · · , n.
Note that, for combining these equations we modified each of the equations

considered in [10]. When there are n = 2 decryption exponents, our bound is
N0.071 which is less than the bound N0.073 in [10]. Hence, we only improve the
previous bound when there are n ≥ 3 pairs of encryption and decryption expo-
nents for a common CRT-RSA modulus in theory and obtain N0.375 asymp-
totically in n. However, it is nice to see that we successfully factor N when
dpl

< N0.035 with 3 pairs of exponents in practice and the original bounds are
N0.015 in [10] and N0.029 in [6].

An explicit description of these bounds is illustrated in Fig. 1.

5 10 15 20 25 30
0.0

0.1

0.2

0.3

0.4

n

9 n 14

24 n 8

2 n 3

8 n 2

Fig. 1. The recoverable sizes of secret exponents of CRT-RSA. The solid line denotes
the range of dpl and dql with respect to n, the dashed line denotes the range of dpl

with respect to n

For Takagi’s variant of RSA, assume there exist n encryption and decryp-
tion exponents (el, dl), where l = 1, · · · , n with a common modulus N = prq,
which means there exist l simultaneous modular univariate linear equations.
So far, this kind of modular equations is what has been considered in [4,22].
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By an application of their results, we obtain that the modulus can be factored
when dl ≤ N δ for all l = 1, · · · , n, where

δ <
(r − 1

r + 1

)n+1
n

.

The rest of this paper is organized as follows. Section 2 is some preliminary
knowledge on lattices and the CRT-RSA variant. In Sect. 3, we analyze CRT-
RSA with multiple small decryption exponents. Section 4 presents an analysis on
Takagi’s variant RSA with multiple small decryption exponents. Finally, Sect. 5
is the conclusion.

2 Preliminaries

Let w1, w2, · · · , wk be k linearly independent vectors in R
n. A lattice L spanned

by {w1, · · · , wk} is the set of all integer linear combinations, c1w1 + · · · + ckwk,
of w1, · · · , wk, where c1, · · · , ck ∈ Z. The k-dimensional lattice L is a discrete
additive subgroup of Rn. The set of vectors w1, · · · , wk is called a basis of the
lattice L. The lattice bases are not unique, one can obtain another basis by mul-
tiplying any matrix with determinant ±1, it means that any lattice of dimension
larger than 1 has infinitely many bases [15]. Hence, how to find a lattice basis
with good properties has been an important problem.

Lenstra et al. [11] introduced the famous L3 lattice basis reduction algorithm
which can output a relatively short and nearly orthogonal lattice basis in poly-
nomial time. Instead of finding the shortest vectors in a lattice, the algorithm
finds the L3 reduced basis with the following useful properties.

Lemma 1 (L3, [11]). Let L be a lattice of dimension k. Applying the L3 algo-
rithm to L, the outputted reduced basis vectors v1, · · · , vk satisfy that

‖vi‖ ≤ 2
k(k−i)

4(k+1−i) det(L)
1

k+1−i , for any 1 ≤ i ≤ k.

Coppersmith [5] applied the L3 lattice basis reduction algorithm in order to
find small solutions of integer equations and modular equations. Later, Jochemsz
and May [9] extended this technique and gave general results to find roots of
multivariate polynomials.

For a given polynomial g(x1, · · · , xk) =
∑

(i1,··· ,ik)

ai1,··· ,ikxi1
1 · · · xik

k , we define

the norm of g as

‖g(x1, · · · , xk)‖ =
( ∑

(i1,··· ,ik)

a2
i1,··· ,ik

) 1
2
.

The following lemma due to Howgrave-Graham [7] gives a sufficient condition
under which a modular equation can be converted into an integer equation.
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Lemma 2 (Howgrave-Graham, [7]). Let g(x1, · · · , xk) ∈ Z[x1, · · · , xk] be an
integer polynomial with at most w monomials. Suppose that

g(y1, · · · , yk) ≡ 0 (mod pm) for |y1| ≤ X1, · · · , |yk| ≤ Xk, and

‖g(x1X1, · · · , xkXk)‖ <
pm

√
w

.

Then g(y1, · · · , yk) = 0 holds over the integers.

Supposewehavew(> k) polynomials b1, · · · , bw in the variablesx1, . . . , xk such
that b1(y1, . . . , yk) = · · · = bw(y1, . . . , yk) = 0modpm with |y1| ≤ X1, . . . , |yk| ≤
Xk.Nowweconstruct a latticeLwith the coefficientvectors of b1(x1X1, . . . , xkXk),
. . . , bw(x1X1, . . . , xkXk). After lattice reduction, we get k polynomials
v1(x1, . . . , xk), . . . , vk(x1, . . . , xk) such that

v1(y1, . . . , yk) = · · · = vk(y1, . . . , yk) = 0modpm

which correspond to the first k vectors of the reduced basis. Also by the property
of the L3 algorithm, we have

||v1(x1X1, . . . , xkXk)|| ≤ · · · ≤ ||vk(x1X1, . . . , xkXk)|| ≤ 2
w(w−1)

4(w+1−k) det(L)
1

w+1−k .

Hence by Lemma 2, if

2
w(w−1)

4(w+1−k) det(L)
1

w+1−k <
pm

√
w

,

then we have v1(y1, . . . , yk) = · · · = vk(y1, . . . , kk) = 0. Next we want to find
y1, . . . , yk from v1, . . . , vk.

Once we obtain several polynomial equations over the integers from the L3

lattice basis reduction algorithm, we can solve for the roots over the integers by
calculating the resultants or the Gröbner basis of the polynomials based on the
following heuristic assumption. In practical experiments, the following heuristic
assumption usually holds.

Assumption 1. Our lattice-based construction yields algebraically independent
polynomials. The common roots of these polynomials can be efficiently computed
by using techniques like calculation of the resultants or finding a Gröbner basis.

Similarly as other lattice reduction works [1,9,10,23], while we present exper-
imental results in support of our attacks, we also like to point out the theoretical
results are asymptotic, as we neglect constants in certain cases in the calculations
of our attacks.

Minkowski Sum Based Lattice Construction. In [1], Aono proposed a
method to construct a lattice for Coppersmith’s technique for simultaneous
modular equations. In order to make this clear, let us illustrate it by an exam-
ple. There are two modular equations f1 ≡ 0 (mod W1) and f2 ≡ 0 (mod W2).
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Based on Coppersmith’s technique, to solve for the solutions of f1 we first select
some polynomials g1, · · · , gn which share the same solutions modulo Wm

1 . Sim-
ilarly, we construct polynomials g′

1, · · · , g′
n which share same solutions modulo

Wm
2 . It is obvious that any polynomial gig

′
j where 1 ≤ i, j ≤ n has the desired

solutions modulo Wm
1 Wm

2 . Then we arrange these polynomials and construct a
new lattice with polynomials which have the desired solutions modulo Wm

1 Wm
2 .

By an integer linear combination, some of these polynomials which have the same
leading monomial can be written as

∑

i,j

ai,jgig
′
j . To keep the determinant of the

lattice small, the integers ai,j are chosen appropriately. This lattice is called a
combined lattice obtained from the two lattices, one of which is constructed by
the polynomials g1, · · · , gn and another one of which is constructed by the poly-
nomials g′

1, · · · , g′
n. Aono proved that the combined lattice is triangular, if each

lattice has a triangular basis matrix. The above conclusion could be extend to
an arbitrary number of modular equations.

CRT-RSA. Since the RSA public key cryptosystem has been invented [16],
this public key scheme has been widely used due to its succinct and effective
encryption and decryption. Wiener [24] proposed to use the Chinese Remainder
Theorem in the decryption phase. This scheme is usually called CRT-RSA. Based
on the work of Sun and Wu [20], one version of this variant can be described as
follows:

Algorithm 1. Key generation of CRT-RSA
Input:

(n, δ1, δ2), where n, δ1n and δ2n denote the bitlengths of N , dp and dq, respectively.
Output:

CRT-RSA-instance (N, p, q, e, dp, dq).
1: Randomly choose two n

2
-bit primes p = 2p1 + 1 and q = 2q1 + 1 such that

gcd(p1, q1) = 1.
2: Randomly generate (δ1n)-bit integer dp and (δ2n)-bit integer dq such that

gcd(dp, p − 1) = 1 and gcd(dq, q − 1) = 1.
3: Compute d̄ ≡ (dq − dp)(p

−1
1 (mod q1)).

4: Compute d = dp + p1 · d̄.
5: Compute the encryption exponent e satisfying ed ≡ (mod (p − 1)(q − 1)).
6: The RSA modulus is N = pq, the secret key is (dp, dq, p, q) and the public key is

(N, e).

As described in the key generation algorithm of CRT-RSA, the case that
more than one valid encryption and decryption exponents for the same CRT-
RSA modulus N = pq may exist, that is, when we are done with Step 1 for
choosing a pair (p, q), we generate several different dp and dq in the remaining
steps. Next, we analyze the weakness in the case that multiple encryption and
decryption exponents share a common CRT-RSA modulus.
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3 Multiple Encryption and Decryption Exponents Attack
of CRT-RSA

In this section, along the idea of [1,8,18,23] we give the following theorems
when multiple encryption and decryption exponents are used for a common
CRT-RSA modulus. By making a comparison between our results and Jochemsz
and May’s result [10], we improve the bound when there are 3 or more pairs of
encryption and decryption exponents for a common CRT-RSA modulus. And we
also improve the experimental results N0.015 in [10] and N0.029 in [6] to N0.035

with 3 pairs of exponents.

Theorem 1. Let (e1, e2, · · · , en) be n CRT-RSA encryption exponents with a
common modulus N = pq, where n ≥ 3 and e1, e2, · · · , en have roughly the
same bitlength as N . Consider that dpi

, dqi ≤ N δ for i = 1, 2, · · · , n are the
corresponding decryption exponents. Then under Assumption 1, one can factor
N in polynomial time when

δ <
2n − 3
8n + 2

.

Proof. For one pair of keys (el, dpl
, dql), we have

eldpl
− 1 = kpl

(p − 1),
eldql − 1 = kql(q − 1),

where kpl
and kql are some integers.

Moreover, by multiplying these two equations, we have that

e2l dpl
dql − el(dpl

+ dql) + 1 = kpl
kql(N − s),

where s = p + q − 1.
Then (kpl

kql , s, dpl
+ dql) is a solution of

fl(xl, y, zl) = xl(N − y) + elzl − 1 (mod e2l ).

Moreover, consider the n modular polynomials

fl(xl, y, zl) = xl(N − y) + elzl − 1 (mod e2l ), for l = 1, · · · , n. (1)

These polynomials have the common root (x1, · · · , xn, y, z1, · · · , zn) = (kp1kq1 ,
· · · , kpn

kqn , s, dp1 + dq1 , · · · , dpn
+ dqn), and the values of its coefficients can be

roughly bounded as kpl
kql � Xl = N1+2δ, s � Y = N

1
2 and dpl

+ dql � N δ = Z
for l = 1, · · · , n.

In order to solve for the desired solution of the modular equations fl(xl, y, zl) =
0 (mod e2l ), for l = 1, · · · , n, based on Aono’s idea [1], we first selected the following
set of polynomials to solve each single equation,

Sl={xil
l zjl

l fkl

l (xl, y, zl)(e2l )
m−kl |0 ≤ kl ≤ m, 0 ≤ il ≤ m−kl, 0 ≤ jl ≤ m−il−kl},

where l = 1, · · · , n and m is a positive integer.
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Each selection for the corresponding equation in (1) generates a triangular
basis matrix. Likewise, for each l = 1, 2, · · · , n, we can respectively construct
a triangular matrix. Based on the technique of Minkowski sum based lattice
construction, these n lattices corresponding to the n triangular matrices can
be combined as a new lattice L′ and the basis matrix with polynomials which
have the same root as the solutions of the modular equation modulo (e21 · · · e2n)m.
Since each basis matrix is triangular, the combined lattice is also triangular. The
combined basis matrix has diagonal entries

Xi1
1 · · · Xin

n Y kZj1
1 · · · Zjn

n (e21)
m−min(i1,k) · · · (e2n)m−min(in,k),

where

0 ≤ i1, · · · , in ≤ m, 0 ≤ k ≤ i1 + i2 + · · · + in, 0 ≤ j1 ≤ i1, · · · , 0 ≤ jn ≤ in.

Then the determinant of the lattice can be calculated as

det(L′) =
m∏

i1=0

· · ·
m∏

in=0

i1+···+in∏

k=0

m−i1∏

j1=0

· · ·
m−in∏

jn=0

(
Xi1

1 · · ·Xin
n Y kZj1

1 · · ·Zjn
n

(e21)
m−min(i1,k) · · · (e2n)m−min(in,k)

)

= X
Sx1
1 · · ·XSxn

n Y SyZ
Sz1
1 · · ·ZSzn

n (e21)
Se1 · · · (e2n)Sen ,

where

Sx1 + Sx2 + · · · + Sxn
= (

n2

18
+

n

36
)
m2n+2

2n−1
+ o(m2n+2),

Sy = (
n2

36
+

n

72
)
m2n+2

2n−1
+ o(m2n+2),

Sz1 + Sz2 + · · · + Szn
= (

n2

18
− n

72
)
m2n+2

2n−1
+ o(m2n+2),

Se1 + Se2 + · · · + Sen
= (

n2

9
− n

72
)
m2n+2

2n−1
+ o(m2n+2).

On the other hand, the dimension is

dim(L′) =
m∑

i1=0

· · ·
m∑

in=0

i1+···+in∑

k=0

m−i1∑

j1=0

· · ·
m−in∑

jn=0

1 =
n

6 · 2n−1
m2n+1 + o(m2n+1).

Please refer to the appendix to see the detailed calculations.
From Lemmas 1 and 2, we can obtain integer equations when

det(L′)
1

dim(L′) < (e21 · · · e2n)m. (2)

Neglecting the low order terms of m and putting Xl = N1+2δ, Y = N
1
2 , Zl =

N δ and e2l � N2 into the above inequality (2), the necessary condition can be
written as

(1 + 2δ)(
n2

18
+

n

36
) +

1
2
(
n2

36
+

n

72
) + δ(

n2

18
− n

72
) + 2(

n2

9
+

n

72
) ≤ n2

3
,
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namely,

δ <
2n − 3
8n + 2

.

Then we get 2n + 1 polynomials which share the root (x1, . . . , xn, y, z1, . . . , zn).
Under Assumption 1, we can find x1, . . . , xn, y, z1, . . . , zn from these polynomials.
This concludes the proof of Theorem 1. 
�

Moreover, as well as by using Minkowski sum based lattice construction to
combine the polynomials eldpl

= kpl
(p−1)+1, for l = 1, · · · , n, we also introduce

an additional variable q to reduce the determinant of our lattice and finally
improve our bound of Theorem 1.

More precisely, we firstly construct a lattice which combines the polynomials
fl(xl, y) = xl(y − 1) + 1 (mod el), for l = 1, · · · , n by utilizing Minkowski sum
lattice based construction. Then based on an observation of the monomials which
appear in the lattice, we found that the desired root p of variable y is a factor of
N . Thus, to reduce the determinant of our constructed lattice we can introduce
a new variable z which corresponds to q. Since pq = N , we can replace yz by
N and then by multiplying the inverse of N modulo e1 · · · en. Above all, we can
obtain the following theorem.

Theorem 2. Let (e1, e2, · · · , en) be n CRT-RSA encryption exponents with a
common modulus N = pq, where n ≥ 2 and e1, e2, · · · , en have the roughly same
bitlengths as N . Consider that dpl

, dql for l = 1, 2, · · · , n are the corresponding
decryption exponents. Assumed that dpl

< N δ for l = 1, 2, · · · , n, then under
Assumption 1, one can factor N in polynomial time when

δ <
9n − 14
24n + 8

.

Proof. For each of the key pairs (el, dpl
, dql), we have that

eldpl
= kpl

(p − 1) + 1,

where kpl
is an integer.

Then (kpl
, p) is a solution of

fl(xl, y) = xl(y − 1) + 1 (mod el).

Consider the n modular polynomials

fl(xl, y) = xl(y − 1) + 1 (mod el), for l = 1, · · · , n.

Obviously, these polynomials have the common root (x1, · · · , xn, y) = (kp1 , · · · ,
kpn

, p), and the sizes of its coefficients can be roughly determined as kpl
� Xl =

N
1
2+δ, for l = 1, · · · , n and p � Y = N

1
2 .

In order to solve for the desired solution, similarly we firstly selected the
following set of polynomials to solve each single modular equation,

Sl = {xil
l fkl

l (xl, y)(el)m−kl |0 ≤ kl ≤ m, 0 ≤ il ≤ m − kl},
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where l = 1, · · · , n and m is a positive integer.
Each selection generates a triangular basis matrix. Then, for l = 1, · · · , n we

construct a triangular matrix respectively. We constructed the basis matrix with
polynomials which have the same roots as the solutions of the modular equation
modulo (e1 · · · en)m. By combining these n lattices based on a Minkowski sum
based lattice construction, the matrix corresponding to the combined lattice L′

1

is triangular and has diagonal entries

Xi1
1 · · · Xin

n Y ke
m−min(i1,k)
1 · · · em−min(in,k)

n ,

where
0 ≤ i1, · · · , in ≤ m, 0 ≤ k ≤ i1 + i2 + · · · + in.

Moreover, note that the desired small solution contains the prime factor p,
which is a factor of the modulus N = pq. Then we introduce a new variable z for
another prime factor q, and multiply each polynomial corresponding to each row
vector in the L′

1 by a power zs for some s that will be optimized later. Then, we
replace every occurrence of the monomial yz by N because N = pq. Therefore,
compared to the unchanged polynomials, every monomial xi1

1 · · · xin
n ykzs and k ≥

s with coefficient ai1,··· ,in,k is transformed into a monomial xi1
1 · · · xin

n yk−s with
coefficient ai1,··· ,in,kNs. Similarly, when k < s, the monomial xi1

1 · · · xin
n ykzs with

coefficient ai1,··· ,in,k is transformed into monomial xi1
1 · · · xin

n zs−k with coefficient
ai1,··· ,in,kNk. Let Z = N

1
2 denote the upper bound of the unknown variable z.

To keep the determinant of the lattice as small as possible, we try to elim-
inate the factor of Ns and Nk in the coefficients of the diagonal entries. Since
(N, e1 · · · en) = 1, we only need to multiply the corresponding polynomial with
the inverse of Ns or Nk modulo (e1 · · · en)m.

Then the determinant of the lattice can be calculated as follows,

det(L′
1) = X

Sx1
1 · · ·XSxn

n Y SyZSze
Se1
1 · · · eSen

n ,

where

Sx1 + Sx2 + · · · + Sxn
=

m∑

i1=0

· · ·
m∑

in=0

i1+···+in∑

k=0

(i1 + · · · in),

Sy =
m∑

i1=0

· · ·
m∑

in=0

i1+···+in∑

k=s

(k − s),

Sz =
m∑

i1=0

· · ·
m∑

in=0

s−1∑

k=0

(s − k),

Se1 + Se2 + · · · + Sen
=

m∑

i1=0

· · ·
m∑

in=0

i1+···+in∑

k=0

(
nm −

min(i1, k) − · · · − min(in, k)
)
.
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Since the following formulas hold for any 0 ≤ a, b ≤ n,

m∑

i1=0

· · ·
m∑

in=0

iaib =

⎧
⎨

⎩

1
3mn+2 + o(mn+2), (a = b),

1
4mn+2 + o(mn+2), (a �= b),

we have that

Sx1 + Sx2 + · · · + Sxn
= (

n2

4
+

n

12
)mn+2 + o(mn+2),

Sy = (
σ2n2

2
− σn2

2
+

n2

8
+

n

24
)mn+2 + o(mn+2),

Sz = (
σ2n2

2
)mn+2 + o(mn+2),

Se1 + Se2 + · · · + Sen
= (

n2

4
+

n

12
)mn+2 + o(mn+2).

where s = σnm and 0 ≤ σ < 1.
On the other hand, the dimension of the lattice is

dim(L′
1) =

m∑

i1=0

· · ·
m∑

in=0

i1+···+in∑

k=0

1 =
n

2
mn+1 + o(mn+1).

From Lemmas 1 and 2, we can obtain integer equations when

det(L′
1)

1
dim(L′

1) < (e1 · · · en)m. (3)

Neglecting the low order terms of m and putting Xl = N
1
2+δ, Y = N

1
2 , Z = N

1
2

and el � N into the above inequality (3) for l = 1, · · · , n, the necessary condition
can be written as

(
1
2

+ δ)(
n2

4
+

n

12
) +

1
2
(
σ2n2

2
− σn2

2
+

n2

8
+

n

24
) +

1
2
(
σ2n2

2
) + (

n2

4
+

n

12
) ≤ n2

2
.

By optimizing σ = 1
4 , we finally obtain the following bound on δ

δ <
9n − 14
24n + 8

.

Then under Assumption 1, one can factor N in polynomial time. This concludes
the proof of Theorem 2. 
�

The reason that our result improves over previous work in the literature is
based on the following two observations. Firstly, we can combine n polynomials
by utilizing the Minkowski sum lattice based construction. Secondly, from the
knowledge of N = pq, we can optimize the determinant of the lattice by introduc-
ing some factor zs to every polynomials, where z is a new variable corresponding
to q and s is an integer which will be optimized during the calculations.



118 L. Peng et al.

Experimental Results. Note that in the calculations of Theorem 2, we assume
that m goes to infinity. Then our result is an asymptotic bound, as we neglect
lower order terms of m. If m and n are fixed, the maximum δ satisfying the
inequality of condition (3) is easily computed. In Table 3, for each fixed m and
n, we list the maximum δ satisfying (3) and the dimension of lattice. The column
limit denotes the asymptotic bound.

Table 3. Theoretical bound and lattice dimension for small δ with fixed m.

n = 2

m 5 6 7 8 9 10 ∞
s 2 3 3 4 4 5 ∞
δ 0.0081 0.0200 0.0244 0.0313 0.0340 0.0385 0.0714

dim(L′) 216 343 512 729 1000 1331 ∞
n = 3

m 2 3 4 5 6 7 ∞
s 1 2 3 4 4 5 ∞
δ 0.0357 0.0746 0.0938 0.1052 0.1127 0.1200 0.1625

dim(L′
1) 108 352 875 1836 3430 5888 ∞

We have implemented the experiment program in Magma 2.11 computer
algebra system [3] on a PC with Intel(R) Core(TM) Duo CPU (2.53 GHz, 1.9 GB
RAM Windows 7) and carried out the L3 algorithm [14]. Experimental results
are provided in Table 4.

Table 4. Experimental results.

N (bits) n theo. of δ expt. of δ parameters of lattice time (in sec.)

1000 3 0.0357 0.0350 m = 2, s = 1, dim(L′
1) = 108 3978.213

In the experiments we successfully factored the common modulus N in prac-
tice,when there are three decryption exponents and all of themare less thanN0.035.
For this given problem which factor N with small decryption exponent, Jochemsz
and May [10] successfully factored N with one small decryption exponent and the
bound is N0.015, later the bound has been improved to N0.029 by utilizing the
unraveled linearization technique introduced by Herrmann and May [6]. In other
words, we improve both the theoretical and the experimental bound by using more
decryption exponents with a common modulus.

Note that in the experiments, we always find many polynomial equations
which share the desired solutions over the integers. Moreover we have another
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equation yz = N . Then by calculating the Gröbner basis of these polynomials,
we can successfully solve for the desired solutions in less than two hours.

In all experiments we have done for verification of our proposed attack, we
indeed successfully collected the roots by using Gröbner basis technique and
there was no experimental result to contradict Assumption 1. On the other
hand, however, it seems very difficult to prove or demonstrate its validity.

4 Multiple Encryption and Decryption Exponents Attack
of Takagi’s Variant RSA

Theorem 3. Let (e1, e2, · · · , en) be n encryption exponents of Takagi’s variant
of RSA with common modulus N = prq. Consider that d1, d2, · · · , dn are the
corresponding decryption exponents. Then under Assumption 1, one can factor
N in polynomial time when

δ <
(r − 1

r + 1

)n+1
n

,

where dl ≤ N δ, for l = 1, · · · , n.

Proof. For one modulus N = prq, there exist n encryption and decryption expo-
nents (el, dl), thus, we have that

e1d1 = k1p
r−1(p − 1)(q − 1) + 1,

e2d2 = k2p
r−1(p − 1)(q − 1) + 1,

· · ·
endn = knpr−1(p − 1)(q − 1) + 1.

Hence, for the unknown (d1, · · · , dn) we have the following modular equations,

f(x1) = e1x1 − 1 (mod pr−1),

f(x2) = e2x2 − 1 (mod pr−1),
· · ·

f(xn) = enxn − 1 (mod pr−1).

As it is shown, (d1, d2, · · · , dn) is a root of simultaneous modular univariate linear
equations modulo an unknown divisor, and the size is bounded as dl ≤ N δ, for
l = 1, · · · , n.

Using the technique of [4,22], it can be shown that if

δ <
(r − 1

r + 1

)n+1
n

,

these simultaneous modular univariate linear equations can be solved under
Assumption 1, which means (d1, · · · , dn) can be recovered. Then one can easily
factor N by calculating the common factor. 
�
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Table 5. Factoring N with multiple decryption exponents.

r log2 N log2 p n = 2 n = 3

theo. expt. dim(L) time (in sec.) theo. expt. dim(L) time (in sec.)

2 1500 500 0.272 0.230 66 2022.834 0.291 0.240 84 1537.078

Experimental Results. We have implemented the experiment program in
Magma 2.11. In all experiments, we successfully solved for desired solutions
(d1, d2, · · · , dn). Similarly, there was no experimental result to contradict
Assumption 1 Table 5.

Notice that, the previous Theorem 3 can be applied for encryption exponents
(e1, · · · , en) of arbitrary sizes. However, if there exist two valid key pairs (e1, d1)
and (e2, d2), where e1 and e2 have roughly the same size as the modulus N or
some larger values as Nα. Assume that d1 � d2 � N δ, then we can give an
analysis as follows.

Given two equations e1d1 = k1p
r−1(p − 1)(q − 1) + 1 and e2d2 = k2p

r−1(p −
1)(q − 1) + 1, we eliminate pr−1(p − 1)(q − 1) and obtain the following equality,

k2(e1d1 − 1) = k1(e2d2 − 1)

which suggests that we look for small solutions of the polynomial

f(x, y) = e2x + y (mod e1). (4)

Since (d2k1, k2−k1) is a root of f(x, y)mod e1. The bound of k1 can be estimated
as Nα+δ−1, hence we define the bounds |d2k1| � X = Nα+2δ−1 and |k2 − k1| �
Y = Nα+δ−1. For this linear modular equation, we can recover (d2k1, k2 − k1)
for sufficiently large N provided that XY < e, or α + 2δ − 1 + α + δ − 1 < α.

Thus, to recover d2k1 and k2 − k1 from this lattice-based method, the size of
the encryption and decryption exponents should satisfy

α + 3δ < 2,

where α + δ > 1.

5 Conclusion

In this paper, we presented some applications of Minkowski sum based lattice
construction and gave analyses of the case that multiple pairs of encryption and
decryption exponents are used with the common CRT-RSA modulus N . We
showed that one can factor N when both dpi

, dqi ≤ N
2l−3
8l+2 or either dpi

or dqi

is less than N
9l−14
24l+8 , for i = 1, 2, · · · , l. Moreover, we also analyzed the situation

when more than one encryption and decryption exponents are used in Takagi’s
variant of RSA with modulus N = prq.
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Appendix

Here we present the detailed calculations of SX1 , SY , SZ1 , Se1 .

Let
∗∑

denotes
m∑

i1=0

· · ·
m∑

in=0

m−i1∑

j1=0

· · ·
m−in∑

jn=0

, for any 0 ≤ a, b ≤ n, we have that

∗∑
iaib =

⎧
⎨

⎩

1
12∗2n−1 ∗ m2n+2 + o(m2n+2), (a = b),

1
18∗2n−1 ∗ m2n+2 + o(m2n+2), (a �= b),

and
∗∑

iajb =

⎧
⎨

⎩

1
24∗2n−1 ∗ m2n+2 + o(m2n+2), (a = b),

1
18∗2n−1 ∗ m2n+2 + o(m2n+2), (a �= b).

Then we obtain that

∗∑ i1+···+in∑

k=0

i1 + · · · + in = (
n2

18
+

n

36
) ∗ m2n+2

2n−1
+ o(m2n+2),

∗∑ i1+···+in∑

k=0

j1 + · · · + jn = (
n2

18
− n

72
) ∗ m2n+2

2n−1
+ o(m2n+2),

∗∑ i1+···+in∑

k=0

k =
∗∑ (i1 + · · · + in)2

2
+

i1 + · · · + in
2

= (
n2

36
+

n

72
) ∗ m2n+2

2n−1
+ o(m2n+2).

Moreover,

∗∑ i1+···+in∑

k=0

min(i1, k) =
∗∑

(
i1∑

k=0

k +
i1+···+in∑

k=i1+1

i1)

=
∗∑

(
i1(i1 + 1)

2
+ i1(i2 + · · · + in))

= (
n

18
− 1

72
) ∗ m2n+2

2n−1
+ o(m2n+2).



122 L. Peng et al.

By symmetry, we have

∗∑ i1+···+in∑

k=0

min(i1, k) + · · · + min(in, k) = (
n2

18
− n

72
) ∗ m2n+2

2n−1
+ o(m2n+2).

The dimension of lattice L′ is

dim(L′) =
∗∑ i1+···+in∑

k=0

1 =
n

6 ∗ 2n−1
∗ m2n+1 + o(m2n+1).
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