
(De-)Constructing TLS 1.3

Markulf Kohlweiss1, Ueli Maurer2, Cristina Onete3, Björn Tackmann4(B),
and Daniele Venturi5

1 Microsoft Research, Cambridge, UK
markulf@microsoft.com

2 Department of Computer Science, ETH Zürich, Zurich, Switzerland
maurer@inf.ethz.ch

3 INSA/IRISA, Rennes, France
cristina.onete@gmail.com

4 Department of Computer Science and Engineering, UC San Diego, San Diego, USA
btackmann@eng.ucsd.edu

5 Sapienza University of Rome, Rome, Italy
venturi@di.uniroma1.it

Abstract. SSL/TLS is one of the most widely deployed cryptographic
protocols on the Internet. It is used to protect the confidentiality and
integrity of transmitted data in various client-server applications. The
currently specified version is TLS 1.2, and its security has been analyzed
extensively in the cryptographic literature. The IETF working group is
actively developing a new version, TLS 1.3, which is designed to address
several flaws inherent to previous versions.

In this paper, we analyze the security of a slightly modified version
of the current TLS 1.3 draft. (We do not encrypt the server’s certifi-
cate.) Our security analysis is performed in the constructive cryptogra-
phy framework. This ensures that the resulting security guarantees are
composable and can readily be used in subsequent protocol steps, such
as password-based user authentication over a TLS-based communication
channel in which only the server is authenticated. Most steps of our
proof hold in the standard model, with the sole exception that the key
derivation function HKDF is used in a way that has a proof only in
the random-oracle model. Beyond the technical results on TLS 1.3, this
work also exemplifies a novel approach towards proving the security of
complex protocols by a modular, step-by-step decomposition, in which
smaller sub-steps are proved in isolation and then the security of the
protocol follows by the composition theorem.

1 Introduction

SSL/TLS is arguably one of the most widely-used cryptographic protocols secur-
ing today’s Internet. It was introduced by Netscape [15] in the context of protect-
ing connections between web browsers and web servers, but nowadays the proto-
col is also used for many other Internet protocols including, e.g., SMTP or IMAP

c© Springer International Publishing Switzerland 2015
A. Biryukov and V. Goyal (Eds.): INDOCRYPT 2015, LNCS 9462, pp. 85–102, 2015.
DOI: 10.1007/978-3-319-26617-6 5

86 M. Kohlweiss et al.

(for e-mail transmissions) and LDAP (for accessing directories). Flaws and insecu-
rities in the original design required the protocol to be fixed repeatedly; the current
version is TLS 1.2 [12]. A preliminary version of TLS 1.3, which deviates from prior
versions considerably, is currently under development [13]. In this paper, we ana-
lyze the security of this latest (draft) version of TLS.

1.1 Our Contributions

We prove the security of (a slightly modified version of) the ephemeral
Diffie-Hellman handshake of TLS 1.3 with unilateral authentication, that is, where
only the server has a certificate. We expect that this mode will be used widely in
practice, although recently othermodes based onpre-shared keys orDiffie-Hellman
with a certified group element have been added to the draft.

More precisely, we prove that TLS 1.3 in ephemeral Diffie-Hellman mode1

constructs a unilaterally secure channel, that is, a channel where the client has
the guarantee that it securely communicates with the intended server while the
server has no comparable guarantee. The protocol assumes that an insecure
network and a public-key infrastructure (PKI) are available. Our results for TLS
1.3 are in the standard model, with the sole exception that the key derivation
function HKDF is used in a way for which security has so-far only been proved
in the random-oracle model.2

We stress that our result guarantees composability, both in the sense that
multiple sessions of the protocol can be used concurrently, and in the sense that
the constructed channel can safely be used in applications that assume such a
channel. In particular, adding password-based authentication for the client in
the unilaterally secure channel immediately yields a mutually secure channel.

Our proof follows a modular approach, in which we decompose the protocol
into thinner layers, with easier intermediary proofs. The security guarantee of
the entire protocol then follows by composition. In particular:

– Each individual proof consists of a reduction from only a small number of
assumptions,3 and can be updated individually if the corresponding step of
the protocol is altered.

– If a better proof is found for one of the smaller sub-steps, re-proving only
this sub-step immediately results in an improved security statement of the
complete protocol by virtue of the composition theorem.

Modification of the Protocol. While in the original draft [13] the server sends
its (PKI) certificate encrypted under preliminarily established keys, we analyze
a version of the protocol in which the certificate is sent in clear. Encrypting
the certificate complicates the security analysis: on the one hand, the symmetric
1 Subject to the modification described below.
2 HKDF is used to extract from a Diffie-Hellman group element without a salt. The

only proof of this that we know of relies on random oracles.
3 The ultimate goal in such a modularization is that the proof of each step consist of

only a single reduction, but TLS 1.3 does not allow for this.

(De-)Constructing TLS 1.3 87

keys are authenticated by the certificate (as the latter authenticates the server’s
key-exchange share); on the other hand, the certificate is protected with the
symmetric keys. Our proof can be modified along the lines of a similar analysis
of IPsec [16], but at the cost of a more complicated formalization.

Limitations of Our Analysis. Our proof does not cover the notion of (perfect)
forward secrecy; the main reason is that no formalization of this property cur-
rently exists in the constructive cryptography framework we work in. Note that
while our definitions do not model the adaptive corruption of parties, they do
guarantee that the keys can be used in arbitrary applications, which traditional
game-based notions model via so-called key-reveal oracle queries.

Our proof only applies to sessions with a fixed TLS 1.3 version and uses an
abstract formulation of a PKI corresponding to the guarantee that (a) a client
knows the identity of the server with which it communicates; and (b) only the
honest server can get a certificate for this identity [22,24]. This means that
some types of attacks are precluded from the model, such as version rollback
(by assuming a fixed version) and Triple Handshake [5] (by assuming that the
server be honest). This implies, in particular, that our results do not require the
collision resistance of the hash function for the security of the key derivation
(but only during the authentication); in other words, the additional security
achieved by including the session hash into the key derivation is neither defined
nor proven. Furthermore, our analysis does not cover session resumption.

Our analysis covers concurrent sessions, at the cost of some complexity in
our intermediary proof steps. Indeed, the specific design of TLS makes many of
these steps cumbersome by requiring us to model multiple sessions explicitly;
this is an effect of TLS breaking natural module boundaries between different
parts of the protocol, by explicitly using protocol data from lower levels (i.e., the
transmitted messages) in higher-level parts of the protocol (hashed transcripts
in the key derivation and the finished messages). Since some of the low-level
data used in these computations, such as the server certificate, are correlated
across multiple sessions of the same server, we cannot use generic composition
to prove them in isolation. In a protocol designed from scratch, one can ensure
that the separation of these sessions comes into full effect at a “lower” protocol
level, simplifying the proofs for the “higher” levels. Indeed, our difficulties in
the analysis encourages constructing protocols that are modular by design and
can be analyzed by combining simple modular steps. We stress that even for
TLS, we make heavy use of the composition theorem, not only to modularize
our analysis, but also to lift the security we obtain for one server and multiple
(anonymous) clients to the more standard multiple clients and servers setting,
and for composition with arbitrary other protocols.

As most cryptographic work on TLS, we focus on the cryptographic aspects
of TLS and many applied concerns are abstracted over. Moreover, as our work
is in the constructive cryptography model, with notation yet unfamiliar to our
audience, we focused in the body of our submission on the beauty (and elegance,
within the limits of TLS’ design characteristics), rather than the weight of our

88 M. Kohlweiss et al.

contribution. We invite the interested reader to find the technical details in the
full version [17].

1.2 Related Work

On Provable Security. One aspect that is important in modeling and proving
security especially of practical protocols is that of composability, as cryptographic
protocols are rarely designed to be used in isolation. Indeed, a security guarantee
in isolation does not necessarily imply security when a proven protocol is part of a
larger scheme. While one can generally prove the security of a composite scheme
by proving a reduction from breaking any of the component schemes to break-
ing the composite scheme, security frameworks that allow for general/universal
composition result in security definitions that relieve one from explicitly proving
such a reduction for each composite scheme. Such a reduction immediately fol-
lows from the security of the component schemes and the composition theorem.

For instance, suppose that one can prove that a given scheme (e.g. password-
based authentication) achieves mutual authentication, assuming that a unilat-
erally authenticated secure channel already exists. Suppose also that one has
several choices of how to construct this unilaterally secure channel, e.g., by RSA
or DH-based key-exchange, relying on the existence of a PKI and an insecure
network. In this case, the composition theorem implies that one only has to
prove that the two candidate schemes construct the unilaterally secure channel;
the security of the composition with the password-authentication scheme follows
immediately. Frameworks which allow for generic composition are the universal
composability framework (UC) due to Canetti [7], the reactive simulatability
(RSIM) framework of Pfitzmann and Waidner [23], and the constructive cryp-
tography framework (CC) of Maurer and Renner [20,21], which we use in this
work. In particular, one advantage we see in using constructive cryptography
is that it describes the way primitives are used within protocols with given
resources, and makes explicit the guarantees that they provide in an application
context. This provides an indication of how they can be used as part of more
complex protocols.

AuthenticatedKeyExchange. Authenticated key-exchange (AKE) protocols allow
two parties to agree on a session key that can be used to secure their communica-
tion. The “handshake” of the SSL/TLS protocol can be seen as an AKE. Beyond
secure Internet communication, AKE has many other applications, e.g., in card-
based identity and payment protocols. The security of AKE protocols was first
defined by Bellare and Rogaway [4] as the indistinguishability of real session keys
from random keys. However, neither the initial Bellare-Rogaway model, nor its
modifications [2,3,8,10] are inherently composable. One special composition of
AKE protocols with record-layer-type encryption was shown by Brzuska et al. [6];
however, AKE game-based security is not generally composable. Notions of key
exchange in composable frameworkshavebeendefinedbyCanetti andKrawczyk [9]
and by Maurer, Tackmann, and Coretti [22], respectively.

(De-)Constructing TLS 1.3 89

TLS 1.2 vs. 1.3. As the TLS handshake is at present the most prominent AKE
protocol, the analysis of its versions up to and including TLS 1.2 has been
the subject of numerous papers in the literature. We note, however, that TLS
1.3 has a fundamentally different design from TLS 1.2, which has only been
thoroughly analyzed in one publication so far [14]. While elegant and covering
all modes in which the TLS 1.3 key derivation is done, this approach follows
traditional game-based methods and is neither as modular as ours, nor generally
composable. Several parts of the current protocol draft are adapted from work
by Krawczyk and Wee [19], this includes the new key derivation scheme that we
also describe in Sect. 4 and analyze in [17].

2 Our Approach — Description and Rationale

In constructive cryptography, the (security) guarantees provided to parties in
a specific context are formalized in terms of resources available to the parties.
In our analysis of TLS, resources are typically communication channels or shared
secret keys with certain properties. Cryptographic protocols construct (desired)
resources from assumed resources, and the composition theorem of this frame-
work guarantees that the protocol (using the resources assumed by it) can be
used whenever the constructed resource is required (as an assumed resource) in
future constructions, i.e., several subsequent constructions can be combined into
a single construction.

We model resources as discrete systems that provide one interface to each
honest party, along with a specific interface that formalizes the capabilities of a
potential attacker. Interfaces are labeled, such as C for a client, S for a server, or
E for the attacker. Interfaces can have sub-interfaces (think of them as grouping
related capabilities at the same interface for the sake of modularity); we write
for instance S/sid for the server sub-interface for session sid . Protocols con-
sist of one protocol engine or converter for each honest party. Compared with
“traditional” game-based definitions, the adversary model corresponds to the
capabilities offered via the E-interface at the assumed resource and the honest
parties’ interfaces at the constructed resource. For instance, interaction with an
insecure network resource corresponds to an active attacker that is in full control
of the network (i.e., a chosen-ciphertext attack). The fact that in a constructed
channel the messages to be transmitted can be chosen by the distinguisher then
corresponds to a chosen-plaintext attack. The goal of the game is reflected in
the description of the constructed resource. The advantage of the adversary
in game-based definitions corresponds to the advantage of the distinguisher in
constructive definitions.

Notation. We use a term algebra to describe composite systems, where resources
and converters are symbols, and they are composed via specific operations.
We read a composed expression starting from the right-hand side resource,
extended by systems on the left-hand side. If resource R has an interface A
to which we “connect” a converter α, the resulting system αAR is the composi-
tion of the two systems, such that the converter connects to the A-interface of

90 M. Kohlweiss et al.

the resource R. For resources R and S, [R,S] denotes the parallel composition
of R and S. If we compose a family of resources (Ri)i∈{1,...,n} in parallel, we also
write this as a product, e.g.

⊗n
i=1 Ri. We introduce special notation for families

of interfaces L and converters αL = (α�)�∈L. To attach each π� to interface � of
a resource R, we write (αL)LR.

Constructions. The construction notion is defined based on the distinguishing
advantage between two resources U and V, which can be seen as a distance mea-
sure on the set of resources.4 A distinguisher is a discrete system that connects
to all the interfaces of a resource and outputs a single bit. The distinguishing
advantage of a distinguisher D on two systems U and V is defined as

ΔD (U,V) := |Pr(DU = 1) − Pr(DV = 1)|. (1)

The two main conditions defining a construction are: (1) availability (often
called correctness), stipulating that the protocol using the assumed resource
behaves as the constructed resource if no attacker is present at the E-interface;
and (2) security, requiring that there exists a simulator, which, if connected
at the E-interface of the constructed resource, achieves that the constructed
resource with the simulator behaves like the protocol with the assumed resource
(w.r.t. the distinguisher). For the availability condition, the “special converter”
⊥ signals the attacker’s absence; this is taken into account explicitly in the
description of the resources. Formally a construction is defined as follows:

Definition 1. Let ε1 and ε2 be two functions mapping each distinguisher D to
a real number in [0, 1]. Let L be the interfaces of protocol participants. A protocol
πL = (π�)�∈L constructs resource S from resource R with distance (ε1, ε2) and
with respect to the simulator σ, denoted

R
πL,σ,(ε1,ε2)

==⇒ S,

if, for all distinguishers D,
⎧
⎨

⎩

ΔD
(
(πL)L⊥ER,⊥ES

)
≤ ε1(D) (availability),

ΔD
(
(πL)LR, σES

)
≤ ε2(D) (security).

Games. Several of our construction steps are proved by reductions to the security
of underlying primitives, which are defined via game-based notions. A game can
be seen as a system that, when connected to an adversary, determines a single
bit W (denoting whether the game is won or lost). The success probability of an
adversary A with respect to a game G is

ΓA(G) := PrAG(W = 1).
4 The distinguishing advantage is in fact a pseudo-metric on the set of resources, that

is, it is symmetric, the triangle inequality holds, and d(x, x) = 0 for all x. However,
it may be that d(x, y) = 0 for x �= y.

(De-)Constructing TLS 1.3 91

Fig. 1. The TLS 1.3 handshake and the key derivation in the case that the ephemeral
and the static handshake secret coincide.

For games that are defined as distinguishing problems (such as IND-CPA secu-
rity for encryption schemes), we use the notation from Eq. (1), that is, if the
game is described by the pair (G0,G1), then we are interested in the advan-
tage ΔA (G0,G1). Both Γ (·)(G) and Δ(·)(G0,G1) define adversarial advan-
tage functions ε(·), such as εcr(A) = ΓA(Gcr) for the collision resistance of a
hash function, εuf-cma(A) = ΓA(Guf-cma) for the unforgeability of a signature,
or εddh(A) = ΔA

(
(gA, gB , gAB), (gA, gB , gC)

)
for the intractability of the DDH

assumption.

3 TLS 1.3 and Unilaterally Secure Channels

The general structure of TLS 1.3 in (EC)DHE mode is depicted in Fig. 1 on the left.
The client hello message includes a 32-byte nonce η; the client key share fixes an
(elliptic curve) group G of order q = |G| (with some generator g), and an element
gu for some u ←$ {1, . . . , q} in that group. The server verifies that the proposed
group is in the list of acceptable groups; if so, it chooses a 32-bit nonce ν (the server
hello message), and sends this, together with its key share gv for v ←$ {1, . . . , q},
its certificate (in the initial draft, encrypted with the handshake keys, but in our
case, without the encryption), and a certificate verify message, namely a signed
session hash, also encrypted in the original draft. As a final message, the server
sends an encryption (with its handshake transfer key htk) of the finished message.

92 M. Kohlweiss et al.

The finished message is computed by evaluating a PRF keyed with the finished
secret fsk on the session hash. If the signature and finishedmessage verify, the client
finished message is computed analogously and sent to the server, completing the
handshake.

The current version of key derivation in TLS 1.35 uses HKDF6 as a replacement
of the TLS PRF construction that was the backbone of previous versions. This
new key derivation, depicted in Fig. 1 on the right, follows a more stringent cryp-
tographic design and adapts easily to various TLS handshake modes, such as the
an as-yet underspecified zero round-trip time (0-RTT) mode, in which the client
uses a previously-saved configuration to connect to a pre-known server.

Whilewe leave amore technical, detailed description of the key-derivation steps
to Sect. 4, note that we focus in this paper on one particular case of the key deriva-
tion inwhich the client and server calculate only oneDiffie-Hellmanvalue, obtained
from the client and the server ephemeral key shares. The key derivation in the TLS
draft is also prepared for cases in which the two parties compute two Diffie-Hellman
values, one from the client share and the static server share, and another from the
same client share and the ephemeral server share. In the case we consider, those
two values are defined to be identical.

Unilaterally Secure Transmissions. The goal of TLS with server-only authentica-
tion is modeled by the following unilateral channel resource �� ��•n. This resource
is explicitly parametrized by the bound n on the number of sessions in which an
attacker uses a specific client nonce (this parameter appears in the security bound).
Parties input messages of length (at most) equal to TLS’s maximum fragment size.
We denote the set of all plaintexts as PT .

�� ��•n

No attacker present: Behave as a (multi-message) channel for messages in
PT between interfaces C and S/1.
Attacker present:

– Upon the first input (allow, e) with e ∈ [n] at the E-interface (if e was not
used before), provide a secure multiple-use (i.e., keep a buffer of undeliv-
ered messages) channel between C and S/e. In particular:

• On input a message m ∈ PT at the C-interface, output |m| at inter-
face E.

• On input (deliver, client) at the E-interface, deliver the next mes-
sage at S/e.

• On input a message m ∈ PT at the S/e-interface, output |m| at inter-
face E.

• On input (deliver, server) at the E-interface, deliver the next mes-
sage at C.

– After input (conquer, e) with e ∈ [n] at the E-interface (if e was not used
before), forward messages in PT between the S/e- and E/e-interfaces in
both directions.

5 https://tools.ietf.org/id/draft-ietf-tls-tls13-07.txt.
6 http://www.ietf.org/rfc/rfc5869.txt.

https://tools.ietf.org/id/draft-ietf-tls-tls13-07.txt
http://www.ietf.org/rfc/rfc5869.txt

(De-)Constructing TLS 1.3 93

Intuitively, if no attacker is present, then the resource behaves like a direct
channel between a client C and a server’s S/1 sub-interface. If the attacker is
present, then we have either a secure channel between the client and the server
(first input (allow, e)) or, if the attacker was the one performing the handshake
(input (conquer, e)), a channel between the attacker and the server.

The Assumed Resources. The resources we assume for the TLS protocol are: First,
an insecure network NET (obtained by using the TCP/IP protocol over the Inter-
net), where the attacker can also learn the contents of messages transmitted over
the network, stop them, or inject arbitrary messages of his choice into the network.
Second, a public-key infrastructure (PKI) resource, which we view as specific to
a single server (whose identity we assume the client knows). This PKI resource
allows the server to send one message (its signature verification key) authentically
to all clients, thus capturing the guarantee that only the honest server can register
a public key relative to its own identity, and the clients verify that the certificate
is issued with respect to the expected identity. For simplicity, we consider a model
where the PKI is local to the security statement; aspects of modeling a global PKI
in composable security frameworks are discussed by Canetti el al. [11].

The Security Achieved by TLS 1.3. We show that TLS 1.3 constructs �� ��•n from
PKI and NET by sequential decomposition of the protocol in the main steps (right
to left) shown in Fig. 2. At each step, the resources constructed in previous steps
are used as assumed resources in order to construct a “new” resource, until we
construct the unidirectional channel �� ��•n. We describe these steps in the rest
of this paper.

Our reductions use the pseudorandomness of HMAC, as used internally by
HKDF, the pseudorandomness of HKDF itself when seeded with seed 0, the
unforgeability of signatures, the collision resistance for the hash function, the
intractability of the DDH assumption, and the security of authenticated encryp-
tion. We write εhmac, εkdf , εuf-cma, εcr, εddh, εaead for their advantage functions.

Theorem 2. Let C be a set of clients. The TLS 1.3 protocol constructs, for each
client C ∈ C, one unilaterally secure channel �� ��•n from NET and PKI. Con-
cretely, for the simulator σ and the adversaries A1, . . . ,A11 obtained from D by
explicit reductions derived from those in the modular proof steps,

[NET,PKI]
(tls13c,tls13s),σ,(ε1,ε2)

==⇒
⊗

(I,J)∈P
��� ��•n�

(I,J),

with:

ε1(D) :=
(

|C|
2

)

· 2−256 + |C| (εddh(A1) + 2εprf(A2) + 2εkdf(A3) + εhmac(A4))

and

ε2(D) :=
((

n

2

)

+
(

|C|
2

))
· 2−256 + εuf-cma(A5) + εcr(A6) + n|C| · εddh(A7)

+ n|C| (2εprf(A8) + 2εkdf(A9) + εhmac(A10)) + 2|C| · εaead(A11).

94 M. Kohlweiss et al.

This statement holds for all distinguishers D, some injection ρ : C → N ,
and P := {(C,S/ρ(C)) : C ∈ C} ∪ {(E/η, S/η) : η ∈ N \ ρ(C)}.

In the theorem,we construct the parallel composition
⊗

(I,J)∈P��� ��•n�
(I,J) with

interfaces (I, J) taken from the set P. This models that the server can identify
clients only by some value used in the handshake — we chose the random nonce
ρ(C) ∈ N — and that the attacker can also interact with the server using “new”
nonces, picked by none of the clients.

As a corollary and following a result by Tackmann [24], we model the use of
password-based authentication to construct a bilaterally secure channel. We
assume a password distribution with maximum guessing probability ε as an addi-
tional resource Q. Then the constructive corollary we postulate and prove in
Sect. 5 is:

Lemma 3. Sending and checking a password constructs from �� ��•n the chan-
nel •�� ��•, for a distribution Q of passwords as described above. More formally,
there is a simulator σ such that,

[�� ��•n,Q]
pwd,σ,(0,ε)

==⇒ •�� ��•.

4 De-Constructing TLS 1.3

This section acts as a stage-by-stage proof for Theorem 2. Our strategy is to prove
that individual parts of the TLS protocol construct intermediate resources, which
can be used as assumed resources for the next modular construction step. At the
end, we use the composition theorem to show that the entire TLS 1.3 protocol
constructs the �� ��•n channel shown in the previous section.

The structure of our proof follows Fig. 2, read from right to left. We begin by
constructing a unique name resource, by choosing a random client nonce uniformly
at random from the set of 32-byte strings. The unique name resource is then used
to name client sessions on the insecure network NET; thus, from a constructive
point of view, the nonce exchange at the beginning of the TLS protocol constructs
from the resources NET and NAME the network-with-sessions resource SNET.

The subsequent two steps construct the handshake key resource DHKEY from
the assumed PKI resource and the newly-constructed SNET resource. We proceed
as follows: we first use these two resources to construct an authenticated network-
transmission resource � −• (the corresponding TLS step is signing the server’s first
message; its ephemeral share). From this � −• resource, we construct the hand-
shake key resource DHKEY by simply exchanging the client and server shares to
calculate a Diffie-Hellman secret.

The next step is then to use the key derivation described in Fig. 1 to extract
an (almost) uniformly random bit-string key from the Diffie-Hellman secret, and
expand this to obtain all application keys required by the subsequent protocol
steps.

(De-)Constructing TLS 1.3 95

The final step of the protocol is the actual payload protection, which begins by
exchanging the finished messages computed using derived keys, and subsequently
protecting plaintext messages using authenticated encryption.

Fig. 2. The decomposition of TLS 1.3.

Session Naming. We formalize unique client naming by means of a resource
NAMEρ, parametrized by an injection ρ from the set C of honest clients to the set
N of nonces; this resource returns to each client a unique nonce. NAMEρ can be
constructed from scratch: As a nonce contains 256 bits of randomness for TLS
1.3, choosing a nonce at random yields a unique nonce per client up to a loss of(|C|

2

)
2−256, where |C| is the total number of honest clients.

Naming Network Sessions. The client nonce η helps the server associate a session
with some client C. Honest clients use distinct nonces, obtained from the NAMEρ

resource; however, an attacker can start many sessions with the same nonce (possi-
bly generated by an honest client). Thus, we index sessions by pairs sid = (η, e) ∈
N ×N, where e differentiates sessions with the same η. The server’s nonce ν for that
session is chosen at random and sent to the client; this protocol constructs, from

Fig. 3. The network resource that additionally outputs nonces.

96 M. Kohlweiss et al.

the resources NAMEρ and the network resource NET, the resource SNET (the full
details and description of the client and server converters, denoted hec and hesn
are left to the full version).

The resource SNET, described in Fig. 3, has interfaces labeled C ∈ C for the
clients, a server interface S with one sub-interface for each pair (η, e), where η ∈ N
is a nonce, not necessarily from an honest client, and e ∈ [n] is a counter indicating
how many sessions are initiated with nonce η, and an attacker’s interface called E.
To simplify further construction steps, we rule out collisions for server nonces in
the SNET resource below, in sessions associated with the same nonce (i.e., sid =
(η, e) and sid ′ = (η, e′)). Since the server nonce has the same structure as the client
nonce, the security loss is analogous.

The following statement holds:

Lemma 4. Let C ⊆ A and let ρ : C → N be an injective mapping. The protocol
(hec, hesn) constructs the resource SNETρ,n from the resources NET and NAMEρ.
In more detail, for the simulator σ in the proof:

[NET,NAMEρ]
(hec,hesn),σ,(0,ε)

==⇒ SNETρ,n,

with ε(D) :=
(
n
2

)
· 2−256 for all distinguishers D.

The Shared Key Resource. The next step is to construct the Diffie-Hellman key
DHKEY; we decompose this step into two smaller steps, briefly described below
(we refer to [17] for full details). We represent the DHKEY resource as a particu-
lar parametrization of the generic shared key resource KEYρ,AUX ,n,K detailed in
Fig. 4, with a key space K that is the Diffie-Hellman group G.

Our first step is to construct from thePKI andSNET resources an authenticated
network resource � −•ρ,F,SIG,n,h using the certificate and the signature in the TLS
certificate verify message. This resource allows the server to transmit one message
in each session authentically; this is achieved by signing the message together with
a hash of the handshake messages in order to bind it to the session. The reduction
relies on the unforgeability of the signature scheme and the collision resistance in
the handshake hash.

From � −•ρ,F,SIG,n,h, we then construct, under the DDH assumption in G, the
resource DHKEY. Intuitively, the converters here are simply exchanging the
Diffie-Hellman elements and perform the corresponding computation, where
the transmission of the server’s message relies on the authentication guarantees
of the assumed resource. In particular, the signature computed and forwarded in
the authentication step allows a client to abort an execution if the signature veri-
fication on the handshake hash fails. This is reflected in the second bullet point of
the resource KEYρ,AUX ,n,K.

The composition theorem allows us to combine the two intermediary steps in
the following lemma, where we denote by hsc and hss the compositions of the two
converters (protocol steps) outlined above:

Lemma 5. The protocol (hsc, hss) constructs from the assumed resources PKI and
SNETρ,n the resourceDHKEY, given that: the signature scheme used in certification

(De-)Constructing TLS 1.3 97

Fig. 4. The shared key resource.

is unforgeable, the hash function is collision resistant, and the DDH assumption
holds. More formally, for the simulator σ and the reductions C1, . . .C4 described
in the proof,

[SNETρ,n,PKIF]
(hsc,hss),σ,(ε1,ε2)

==⇒ DHKEYρ,AUX ,n,

such that for all distinguishers D: ε1(D) := |C| · εddh(DC1), and
ε2(D) := εuf-cma(DC2) + εCR(DC3) + n · |C| · εddh(DC4).

Expanding the Key. The next step is to extract from the Diffie-Hellman secret and
then expand the keys (following the scheme shown in Fig. 1). Finally, the finished
messages used for key confirmation are computed. Interestingly, the only effect of
the finished messages in our case is that the client and server detect mismatching
keys before the first application data is accepted by the protocol. This does not

98 M. Kohlweiss et al.

exclude, however, that these messages serve a more crucial role in certain hand-
shake modes or for proving specific security properties we do not consider in this
paper.

The key derivation in the newest draft of TLS 1.3 differs considerably from that
of TLS 1.2. From the Diffie-Hellman secret, several sets of session keys are derived
for use in symmetric primitives: the application traffic keys atk for the protection
of the payload data, handshake traffic keys htk used to protect some data packets
in the handshake, the finished secret fsk used for the finished messages, and early-
data keys used in the 0-RTT mode (the latter do not appear in our analysis). All
computations are based on HKDF [18].

The key derivation can be described in several steps corresponding in our analy-
sis to separate, simple construction steps that are composed via the composition
theorem:

1. First, two keys xES and xSS are computed by calling HKDF.extract(0, pmk),
that is, evaluating the HKDF extraction with seed 0 on the Diffie-Hellman key
pmk computed in the key exchange. This step assumes the security of HKDF
as a computational extractor (therefore relying on a statement proven in the
random-oracle model).

2. Using the expansion of HKDF, several keys are computed:
(a) The finished secret fsk ← HKDF.expand(xSS , “finished”, h) for the con-

firmation messages, where h is the hash of the handshake messages,
(b) the “static” master secret value mSS ← HKDF.expand(xSS , “static”, h),
(c) the “ephemeral” value mES ← HKDF.expand(xES , “ephemeral”, h),
(d) the handshake traffic keys htk ← HKDF.expand(xES , “handshake”, h).
This step assumes the security of the HKDF expansion as a pseudo-random
function.

3. Then, compute the master secret key msk ← HKDF.extract(mSS ,mES) by
using HKDF to extract from mES using the seed mSS . This step relies only on
the fact that the HKDF extraction is a pseudo-random function, as mSS is a
good key — in fact a weak PRF is sufficient as mES is (pseudo) random.

4. Expand the application traffickeys atk by anHKDFexpansion as follows: atk ←
HKDF.expand(msk, “application”, h). This step again relies on the HKDF
expansion being a PRF.

In order to treat the expanded keys as separate resources for each client, we
also incorporate the generation of the finished messages into the construction of
those keys. Those messages are computed by evaluating HMAC with the key fsk
on the session hash h and static labels. This requires that HMAC is a PRF. Since
the expansion is the final step that explicitly relies on values that are consistent
across several sessions (such as the server’s certificate), the constructed expanded-
key resource = =•n can be described in a way that is single-client, as opposed to
the more complicated KEYρ,AUX ,n,K resource. The resource = =•n allows a single
client and server session to compute the same keys and finished messages if the
attacker did not establish that server session himself. Otherwise, the server and
attacker share keys, as depicted in the description of = =•n [17]. We describe the

(De-)Constructing TLS 1.3 99

resource we want to obtain at key expansion by:
⊗

C∈C�= =•n�
(C,S/ρ(C)), i.e. a

parallel composition of such channels with appropriate interface labels.
The key-expansion steps yield the following constructive statement:

Lemma 6. The protocol (expc13, exps13) constructs the parallel composition of
keys

⊗
(I,J)∈P�= =•ncphs,n�

(I,J) from the secret key resource DHKEY, for P :=
{(C,S/ρ(C)) : C ∈ C} ∪ {(E/η, S/η) : η /∈ ρ(C)}. The construction holds under
the assumptions that HKDF is a KDF with seed 0, and that HKDF expansion and
HMACare PRFs. Inmore detail, for the simulator σ and the reductionsC1, . . . ,C5

described in the proof,

DHKEYρ,AUX ,n
(expc13,exps13),σ,(ε,ε′)

==⇒
⊗

(I,J)∈P
�= =•n�

(I,J)

where, for all distinguishers D, ε′(D) = n · ε(D) and

ε(D) = |C| ·
(
εkdf(DC1) + εprf(DC2) + εkdf(DC3) + εprf(DC4) + εhmac(DC5)

)
.

The Record Layer. The authenticated key resource = =•n constructed in the pre-
vious step yields sets of keys (htk , atk , fsk) and the finished messages. The gap
between the resource= =•n andour goal resource, i.e., theunilaterally-secure chan-
nel �� ��•n, is bridged by a pair of converters essentially exchanging and verifying
the finished messages, then using authenticated encryption to protect messages.
The key property of our constructed resource, �� ��•n, is notably that it allows for
messages to be securely (confidentially and authentically) transmitted, either con-
sistently between the server and the honest client, or between the server and the
adversary (but never between the client and the adversary).

For TLS 1.3 the record-layer protocol is specified based on authenticated
encryption with associated data (AEAD). This mode has been analyzed by
Badertscher et al. [1] in recent work. Their result can be “imported” into our work.
Thus, for the final step of the proof, we rely on the security of AEAD encryption,
which is defined in terms of indistinguishability between two systems Gaead

0 and
Gaead

1 , formally detailed in the full version. In Gaead
0 , encryption and decryption

queries to the scheme are answered by encryption and decryption using the given
nonce and associated data. For Gaead

1 , encryption queries are answered with uni-
formly randomstrings of appropriate length,while decryption queries are answered
either with a corresponding plaintext (if they were output by a previous encryption
query) or by a special invalid symbol otherwise.

Lemma 7. The protocol (aeadc, aeads) constructs from the authenticated key
resource = =•n the unilaterally secure channel �� ��•n, under the assumption that
the underlying AEAD cipher is secure. More formally, for the simulator σ and the
reduction C described in the proof,

= =•n

(aeadc,aeads),σ,(0,ε)

==⇒ �� ��•n,

with ε(D) := 2 · εaead(C) for all distinguishers D.

100 M. Kohlweiss et al.

Re-constructing TLS. At this point, using the composition theorem completes the
proof of Theorem2. In the full version, we also explain in detail how the composi-
tion of all the converters from the modular-steps yields the TLS protocol.

5 Composition with Password-Based Authentication

In prior work, Maurer et al. [22,24] have discussed means of authenticating a uni-
laterally authenticated key by using password-based authentication. Thus, by
starting from a unilateral key resource (similar to our = =•n resource), one can
use a password — a key with relatively low entropy — shared between a client and
a server to obtain a key for which both client and server have authenticity guar-
antees, and which is sometimes denoted as •= =• (the bullet on the left hand side
indicates that the client is also authenticated). The resources = =•n and •= =• are
different in that in = =•n the attacker at the E-interface can also inject a key to
be shared with the server (no client authentication). For •= =• this is no longer
possible.

We use the same ideas here, but our goal is to construct the fully secure channel
•�� ��• described below from the unilaterally secure bidirectional �� ��•n and a
password.

•�� ��•
No attacker present: Behave as a (multi-message) channel between inter-
faces C and S.
Attacker present: Provide a secure multiple-use (i.e., keep a buffer of unde-
livered messages) channel between C and S. In particular:

– On input a message m ∈ PT at the C-interface, output |m| at interface E.
– On input (deliver, client) at the E-interface, deliver the next message

at S.
– On input a message m ∈ PT at the S-interface, output |m| at interface E.
– On input (deliver, server) at the E-interface, deliver the next message

at C.

The protocol consists of two simple converters: sending the password (client)
and verifying it (server), abbreviated as pwd = (pwd.send, pwd.check). After the
password exchange, the converters simply send and receive messages via the chan-
nel. For simplicity, we assume that the server accepts the same user password only
once; this can be generalized along the lines of [24, Theorem 4.17]. We model a pass-
word distribution with maximum guessing probability ε as an additional resource
Q. The constructive statement we postulate is:

Lemma 3. Sending and checking a password constructs from �� ��•n the chan-
nel •�� ��•, for a distribution Q of passwords as described above. More formally,
there is a simulator σ such that,

[�� ��•n,Q]
pwd,σ,(0,ε)

==⇒ •�� ��•.

(De-)Constructing TLS 1.3 101

Proof (Sketch). The availability condition follows since the client and the server
obtain the same password. The simulator works as follows:

– the session between the honest client and the server is handled by (essentially)
forwarding the communication between the E-interface of the constructed
resource and the distinguisher,

– for all other sessions, the simulator simply drops all messages provided at its
outside interface.

The only way for the distinguisher to be successful in distinguishing between the
two cases is by guessing the correct password, since otherwise the behavior is the
same in both cases. Since the server accepts a password only once, we can bound
the overall success probability of the distinguisher by ε.
�

Acknowledgments. Ueli Maurer was supported by the Swiss National Science Foun-
dation (SNF), project no. 200020-132794. Björn Tackmann was supported by the Swiss
National Science Foundation (SNF) via Fellowship no. P2EZP2 155566 and the NSF
grants CNS-1228890 and CNS-1116800. Daniele Venturi acknowledges support by the
European Commission (Directorate General Home Affairs) under the GAINS project
HOME/2013/CIPS/AG/4000005057, and by the European Union’s Horizon 2020
research and innovation programme under grant agreement No 644666.

References

1. Badertscher, C., Matt, C., Maurer, U., Rogaway, P., Tackmann, B.: Augmented
secure channels as the goal of the TLS record layer. In: Au, M.H., Miyaji, A. (eds.)
Provable Security. LNCS, vol. 9451. Springer, Heidelberg (2015)

2. Bellare, M., Kohno, T., Namprempre, C.: Authenticated encryption in SSH: prov-
ably fixing the SSH binary packet protocol. ACM Trans. Inf. Syst. Secur. (TISSEC)
7(2), 206–241 (2004)

3. Bellare, M., Pointcheval, D., Rogaway, P.: Authenticated key exchange secure
against dictionary attacks. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol.
1807, pp. 139–155. Springer, Heidelberg (2000)

4. Bellare, M., Rogaway, P.: Entity authentication and key distribution. In: Stinson,
D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 232–249. Springer, Heidelberg (1994)

5. Bhargavan, K., Delignat-Lavaud, A., Fournet, C., Pironti, A., Strub, P.Y.: Triple
handshakes and cookie cutters: breaking and fixing authentication over TLS. In:
IEEE Symposium on Security and Privacy (SP’14). IEEE (2014)

6. Brzuska, C., Fischlin, M., Smart, N., Warinschi, B., Williams, S.: Less is more:
relaxed yet composable security notions for key exchange. Int. J. Inf. Secur. 12(4),
267–297 (2013)

7. Canetti, R.: Universally composable security: A new paradigm for cryptographic
protocols. Cryptology ePrint Archive, Report 2000/067, July 2013

8. Canetti, R., Krawczyk, H.: Analysis of key-exchange protocols and their use for
building secure channels. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol.
2045, pp. 453–474. Springer, Heidelberg (2001)

9. Canetti, R., Krawczyk, H.: Universally composable notions of key exchange and
secure channels. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp.
337–351. Springer, Heidelberg (2002)

102 M. Kohlweiss et al.

10. Krawczyk, H.: HMQV: a high-performance secure Diffie-Hellman protocol. In:
Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 546–566. Springer, Heidelberg
(2005)

11. Canetti, R., Shahaf, D., Vald, M.: Universally composable authentication and key-
exchange with global PKI. Cryptology ePrint Archive Report 2014/432, October
2014

12. Dierks, T., Rescorla, E.: The transport layer security (TLS) protocol version 1.2.
RFC 5246, August 2008. http://www.ietf.org/rfc/rfc5246.txt

13. Dierks, T., Rescorla, E.: The transport layer security (TLS) protocol version 1.3.
RFC draft, April 2015. http://tlswg.github.io/tls13-spec/

14. Dowling, B., Fischlin, M., Günther, F., Stebila, D.: A cryptographic analysis of the
TLS 1.3 handshake protocol candidates. In: ACM Conference on Computer and
Communications Security 2015 (2015)

15. Hickman, K.: The SSL protocol, February 1995. https://tools.ietf.org/html/
draft-hickman-netscape-ssl-00 (internet draft)

16. Jost, D.: A Constructive Analysis of IPSec. Master’s thesis, ETH Zürich, April 2014
17. Kohlweiss, M., Maurer, U., Onete, C., Tackmann, B., Venturi, D.: (De-)constructing

TLS. Cryptology ePrint Archive, Report 020/2014 (2014)
18. Krawczyk, H.: Cryptographic extraction and key derivation: the HKDF scheme. In:

Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 631–648. Springer, Heidelberg
(2010)

19. Krawczyk, H., Wee, H.: The OPTLS protocol and TLS 1.3. Manuscript, September
2015

20. Maurer, U.: Constructive cryptography – a new paradigm for security definitions and
proofs. In: Mödersheim, S., Palamidessi, C. (eds.) TOSCA 2011. LNCS, vol. 6993,
pp. 33–56. Springer, Heidelberg (2012)

21. Maurer, U., Renner, R.: Abstract cryptography. In: Innovations in Computer Sci-
ence. Tsinghua University Press (2011)

22. Maurer, U., Tackmann, B., Coretti, S.: Key exchange with unilateral authentication:
Composable security definition and modular protocol design. Cryptology ePrint
Archive, Report 2013/555 (2013)

23. Pfitzmann, B., Waidner, M.: A model for asynchronous reactive systems and its
application to secure message transmission. In: Proceedings of the 2001 IEEE Sym-
posium on Security and Privacy, pp. 184–200. IEEE (2001)

24. Tackmann, B.: A Theory of Secure Communication. Ph.D. thesis, ETH Zürich
(2014)

http://www.ietf.org/rfc/rfc5246.txt
http://tlswg.github.io/tls13-spec/
https://tools.ietf.org/html/draft-hickman-netscape-ssl-00
https://tools.ietf.org/html/draft-hickman-netscape-ssl-00

	(De-)Constructing TLS 1.3
	1 Introduction
	1.1 Our Contributions
	1.2 Related Work

	2 Our Approach --- Description and Rationale
	3 TLS 1.3 and Unilaterally Secure Channels
	4 De-Constructing TLS 1.3
	5 Composition with Password-Based Authentication
	References

