
Dynamic Key-Aggregate Cryptosystem
on Elliptic Curves for Online Data Sharing

Sikhar Patranabis(B), Yash Shrivastava, and Debdeep Mukhopadhyay

Department of Computer Science and Engineering,
Indian Institute of Technology Kharagpur, Kharagpur, India

{sikhar.patranabis,yash.shrivastava,debdeep}@cse.iitkgp.ernet.in

Abstract. The recent advent of cloud computing and the IoT has made
it imperative to have efficient and secure cryptographic schemes for online
data sharing. Data owners would ideally want to store their data/files
online in an encrypted manner, and delegate decryption rights for some
of these to users with appropriate credentials. An efficient and recently
proposed solution in this regard is to use the concept of aggregation that
allows users to decrypt multiple classes of data using a single key of con-
stant size. In this paper, we propose a secure and dynamic key aggregate
encryption scheme for online data sharing that operates on elliptic curve
subgroups while allowing dynamic revocation of user access rights. We
augment this basic construction to a generalized two-level hierarchical
structure that achieves optimal space and time complexities, and also
efficiently accommodates extension of data classes. Finally, we propose
an extension to the generalized scheme that allows use of efficiently com-
putable bilinear pairings for encryption and decryption operations. Each
scheme is formally proven to be semantically secure. Practical experi-
ments have been conducted to validate all claims made in the paper.

Keywords: Key-aggregate cryptoystem · Online data sharing · Seman-
tic security · Dynamic access rights

1 Introduction

The advent of cloud computing and the Internet of Things (IoT) has led to a
massive rise in the demand for online data storage and data sharing services.
Two very important paradigms that any data sharing service provider must
ensure are privacy and flexibility. Since online data almost always resides in
shared environments (for instance, multiple virtual machines running on the
same physical device), ensuring privacy is a non trivial task. Current technology
for secure data sharing comes in two major flavors - trusting a third party auditor
[1] or using the user’s own key to encrypt her data [2]. Figure 1 describes a
realistic online data sharing set-up. Suppose a data owner stores multiple classes
of encrypted data online with the intention of providing users decryption keys
to one or more such ciphertext classes, based on their respective credentials.
She might also wish to dynamically update the delegated access rights based on
c© Springer International Publishing Switzerland 2015
A. Biryukov and V. Goyal (Eds.): INDOCRYPT 2015, LNCS 9462, pp. 25–44, 2015.
DOI: 10.1007/978-3-319-26617-6 2

26 S. Patranabis et al.

Fig. 1. Example of online data sharing

changes to the data/credibility issues. The challenge therefore is to provide her
with a secure and efficient online data sharing scheme that allows updates to
user access rights on the fly.

A näive (and extremely inefficient) solution is to have a different decryption
key for each ciphertext class, and share them accordingly with users via secured
channels. A more efficient proposition is the key-aggregate encryption (KAC)
scheme proposed in [3] that combines the power of individual decryption keys,
for ciphertext classes in a given subset, into a single key for that subset. This key
is specific to the designated subset, meaning that it cannot be used to decrypt
any ciphertext class outside that subset. KAC derives its roots from the seminal
work by Boneh et.al. [4] that allows broadcasting of data (encrypted by the same
public key) among multiple users, each of whom possess their own private keys for
decryption. Both these schemes make use of bilinear mappings on multiplicative
cyclic groups.
Contributions: In this paper, we propose a basic key-aggregate scheme on
additive elliptic subgroups that delegate decryption rights to multiple ciphertext
classes using a single constant sized key. The scheme is dynamic in nature, that is,
it allows the data owner to revoke access rights of users without having to change
the entire set-up, unlike in the existing KAC scheme. We then generalize this
scheme into a two-level construction that allows flexible public key extension
and maintains constant ciphertext size, while avoiding many of the pitfalls of
earlier hierarchical schemes. We provide a formal proof of semantic security
for the generalized scheme. We further extend the generalized scheme to allow
using popular and efficiently implementable elliptic curve pairing schemes. We
compare the time and space requirements of the proposed generalized scheme
under various operating configurations. We also compare the performance of our
proposed scheme, in terms of key size and resource utilization, with that of other
existing schemes in literature.

Organization: The rest of the paper is organized as follows. Section 2 provides
a brief overview of state of the art data sharing schemes. Section 3 introduces the
notion of key aggregate cryptosystem, and provides a description of the complex-
ity assumptions used to prove the semantic security of our proposed schemes.
Our basic dynamic key-aggregate scheme is presented in Sect. 4. We follow up

Dynamic Key-Aggregate Cryptosystem on Elliptic Curves 27

with a more generalized two-tiered construction of the scheme for efficient public
key extension in Sect. 5, and prove its semantic security. A further extension for
the generalized scheme that allows using efficiently implementable pairings is
introduced and proved semantically secure in Sect. 6. Experimental results using
Tate pairings based implementations of the extended scheme are presented in
Sect. 7. Finally Sect. 8 concludes the paper.

2 Related Work

In this section we present a brief overview of public and private key cryptographic
schemes in literature for secure online data sharing. While many of them focus
on key aggregation in some form or the other, very few have the ability to provide
constant size keys to decrypt an arbitrary number of encrypted entities. One of
the most popular techniques for access control in online data storage is to use a
pre-defined hierarchy of secret keys [5] in the form of a tree-like structure, where
access to the key corresponding to any node implicitly grants access to all the
keys in the subtree rooted at that node. A major disadvantage of hierarchical
encryption schemes is that granting access to only a selected set of branches
within a given subtree warrants an increase in the number of granted secret keys.
This in turn blows up the size of the key shared. Compact key encryption for
the symmetric key setting has been used in [6] to solve the problem of concisely
transmitting large number of keys in the broadcast scenario. However, symmetric
key sharing via a secured channel is costly and not always practically viable for
many applications on the cloud. Proxy re-encryption is another technique to
achieve fine-grained access control and scalable user revocation in unreliable
clouds [7]. However, proxy re-encryption essentially transfers the responsibility
for secure key storage from the delegatee to the proxy and is susceptible to
collusion attacks. It is also important to ensure that the transformation key
of the proxy is well protected, and every decryption would require a separate
interaction with the proxy, which is inconvenient for applications on the cloud.

The authors of [3] proposes an efficient scheme, namely KAC, that allows
secure and efficient sharing of data on the cloud. The scheme is a public-key
cryptosystem that uses constant size ciphertexts such that efficient delegation of
decryption rights for any set of ciphertexts are possible. When a user demands
for a particular subset of the available classes of data, the data owner computes
an aggregate key which integrates the power of the individual decryption keys
corresponding to each class of data. KAC as proposed in [3] suffers from three
major drawbacks, each of which we address in this paper. First of all, the security
assumption of KAC seems to be the Bilinear Diffie Hellman Exponent (BDHE)
assumption [8]; however no concrete proofs of semantic security are provided
by the authors in [3]. Secondly, with respect to user access rights, KAC is a
static scheme in the sense that once a user is in possession of the aggregate key
corresponding to a subset of files from data owner, the owner cannot dynamically
revoke the permission of the client for accessing one or more updated files. Since
dynamic changes in access rights is extremely common in online data storage, this

28 S. Patranabis et al.

scenario needs to be tackled. Finally, the public key extension of KAC proposed
in [3] is extremely cumbersome and resource consuming since registration of each
new public key-private key pair requires the number of classes to be extended
by the original number of classes.

3 Preliminaries

We begin by formally defining the Key Aggregate Cryptosystem (KAC), and
stating the complexity assumptions used to prove the security of the encryption
schemes proposed in this paper.

3.1 The Key Aggregate Cryptosystem (KAC)

A key aggregate cryptosystem is an ensemble of the following randomized algo-
rithms:

1. Setup(1λ, n): Takes as input the number of ciphertext classes n and the
group order parameter λ. Outputs the public parameter PK. Also computes
a secret parameter t used for encryption which is not made public. It is only
known to data owners with credentials to control client access rights.

2. Keygen(): Outputs the public and master-secret key pair:
(PK = γP,msk = γ).

3. Encrypt(PK, i,m): Takes as input the public key parameter PK, the cipher-
text class i and the message m. Outputs the ciphertext C corresponding to
the message m belonging to class i.

4. Extract(msk = γ,S): Takes as input the master secret key γ and a subset
S ⊂ {1, 2, · · · , n}. Computes the aggregate key KS and the dynamic access
control parameter U . The tuple (KS , U) is transmitted via a secure channel
to users that have access rights to S.

5. Decrypt(KS , U,S, i, C = {c1, c2, c3}): Takes as input the aggregate key KS
corresponding to a subset S ⊂ {1, 2, · · · , n}, the dynamic access parame-
ter U , the ciphertext class i and the ciphertext C. Outputs the decrypted
message m.

3.2 Semantic Security of KAC

We now define the semantic security of a key-aggregate encryption system
against an adversary using the following game between an attack algorithm A
and a challenger B. Both A and B are given n, the total number of ciphertext
classes, as input. The game proceeds through the following stages.

1. Init: Algorithm A begins by outputting a set S ⊂ {1, 2, · · · , n} of receivers
that it wishes to attack. For each ciphertext class i ∈ S, challenger B per-
forms the SetUp-i, Challenge-i and Guess-i steps. Note that the number
of iterations is polynomial in |S|.

Dynamic Key-Aggregate Cryptosystem on Elliptic Curves 29

2. SetUp-i: Challenger B generates the public param, public key PK, the access
parameter U , and provides them to A. In addition, B also generates and fur-
nishes A with the aggregate key KS that allows A to decrypt any ciphertext
class j /∈ S.

3. Challenge-i: Challenger B performs an encryption of the secret message mi

belonging to the ith class to obtain the ciphertext C. Next, B picks a random
b ∈ (0, 1). It sets Kb = mi and picks a random K1−b from the set of possible
plaintext messages. It then gives (C,K0,K1) to algorithm A as a challenge.

4. Guess-i: The adversary A outputs a guess b′ of b. If b′ = b, A wins and the
challenger B loses. Otherwise, the game moves on to the next ciphertext class
in S until all ciphertext classes in S are exhausted.

If the adversary A fails to predict correctly for all ciphertext classes in S, only
then A loses the game. Let AdvKACA,n denote the probability that A wins
the game when the challenger is given n as input. We say that a key-aggregate
encryption system is (τ, ε, n) semantically secure if for all τ -time algorithms A
we have that |AdvKACA,n − 1

2 | < ε where ε is a very small quantity. Note
that the adversary A is non-adaptive; it chooses S, and obtains the aggregate
decryption key for all ciphertext classes outside of S, before it even sees the
public parameters param or the public key PK.

3.3 The Complexity Assumptions

We now introduce the complexity assumptions used in this paper. In this section,
we make several references to bilinear non-degenerate mappings on elliptic curve
sub-groups, popularly known in literature as pairings. For a detailed descriptions
on pairings and their properties, refer [9].

The First Complexity Assumption: Our first complexity assumption is
the l-BDHE problem [4] in a bilinear elliptic curve subgroup G, defined as fol-
lows. Given a vector of 2l+1 elements (H,P, αP, α2P, · · · , αlP, αl+2P · · · , α2lP)
∈ G

2l+1 as input, and a bilinear pairing ê′ : G1 × G1 −→ GT output
ê′(P,H)αl+1 ∈ GT . Since αl+1P is not an input, the bilinear pairing is of no real
use in this regard. Using the shorthand Pi = αiP , an algorithm A is said to have
an advantage ε in solving l-BDHE if Pr[A(H,P, P1, P2, · · · , Pl, Pl+2 · · · , P2l) =
ê′(Pl+1,H)] ≥ ε, where the probability is over the random choice of H,P ∈ G,
random choice of α ∈ Zq and random bits used by A. The decisional version of
l-BDHE for elliptic curve subgroups may be analogously defined. Let Y(P,α,l) =
(P1, P2, · · · , Pl, Pl+2 · · · , P2l). An algorithm B that outputs b ∈ {0, 1} has advan-
tage ε in solving decisional l-BDHE in G if |Pr[B(P,H, Y(P,α,l), ê′(Pl+1,H)) = 0]-
Pr[B(P,H, Y(P,α,l), T) = 0]| ≥ ε, where the probability is over the random choice
of H,P ∈ G, random choice of α ∈ Zq, random choice of T ∈ GT and random bits
used by B. We refer to the left and right probability distributions as L-BDHE
and R-BDHE respectively. Thus, it can be said that the decision (τ, ε, l)-BDHE
assumption for elliptic curves holds in G if no τ -time algorithm has advantage ε
in solving the decisional l-BDHE problem over elliptic curve subgroup G.

30 S. Patranabis et al.

The Second Complexity Assumption: We next define the (l, l)-BDHE
problem over a pair of equi-prime order bilinear elliptic curve subgroups G1

with generator P and G2 with generator Q. Given a vector of 3l + 2 ele-
ments (H,P,Q, αP, α2P, · · · , αlP, αl+2P · · · , α2lP, αQ,α2Q, · · · , αlQ) as input,
where P and αiP ∈ G1 and H,Q,αiQ ∈ G2, along with a bilinear pairing
ê′′ : G1×G2 −→ GT , output ê′(P,H)αl+1 ∈ GT . Since αl+1P is not an input, the
bilinear pairing is of no real use in this regard. Using the shorthand Pi = αiP and
Qi = αiQ, an algorithm A is said to have an advantage ε in solving (l, l)-BDHE if
Pr[A(H,P,Q, P1, P2, · · · , Pl, Pl+2 · · · , P2l, Q1, · · · , Ql) = ê′(Pl+1,H)] ≥ ε where
the probability is over the random choice of P ∈ G1, H,Q ∈ G2, random
choice of α ∈ Zq and random bits used by A. We may also define the decisional
(l, l)-BDHE problem over elliptic curve subgroup pairs as follows. Let Y(P,α,l) =
(P1, P2, · · · , Pl, Pl+2 · · · , P2l) and Y ′

(Q,α,l) = (Q1, Q2, · · · , Ql). Also let H be a
random element in G2. An algorithm B that outputs b ∈ {0, 1} has advantage ε in
solving decisional (l, l)-BDHE if |Pr[B(P,Q,H, Y(P,α,l), Y

′
(Q,α,l), ê

′(Pl+1,H)) =
0]-Pr[B(P,Q,H, Y(P,α,l), Y

′
(Q,α,l), T) = 0]| ≥ ε, where the probability is over the

random choice of P ∈ G1, H,Q ∈ G2, random choice of α ∈ Zq, random choice
of T ∈ GT and random bits used by B. We refer to the left and right probability
distributions as L′-BDHE and R′-BDHE respectively. Thus, it can be said that
the decision (τ, ε, l, l)-BDHE assumption for elliptic curves holds in (G1,G2) if
no τ -time algorithm has advantage ε in solving the decisional (l, l)-BDHE prob-
lem over elliptic curve subgroups G1 and G2. To the best of our knowledge, the
(l, l)-BDHE problem has not been introduced in literature before.

Proving the Validity of the Second Complexity Assumption: We prove
here that the decision (τ, ε, l, l)-BDHE assumption for elliptic curves holds in
equi-prime order subgroups (G1,G2) if the decision (τ, ε, l)-BDHE assumption for
elliptic curves holds in G1. Let ê′ : G1 ×G1 −→ GT and ê′′ : G1 ×G2 −→ GT be
bilinear pairings. Also, let P and Q are the generators for G1 and G2 respectively.
We first make the following observation.

Observation 1: Since G1 and G2 have the same prime order (say q), there
exists a bijection ϕ : G1 −→ G2 such that ϕ(aP) = aQ for all a ∈ Zq. Similarly,
since GT also has order q, there also exists a mapping φ : GT −→ GT such that
φ(ê′(H1,H2)) = ê′′(H1, ϕ(H2)) for all H1,H2 ∈ G1.

Let A be a τ -time adversary that has advantage greater than ε in solving
the decision (l, l)-BDHE problem over equi-prime order subgroups (G1,G2). We
build an algorithm B that has advantage at least ε in solving the l-BDHE problem
in G1. Algorithm B takes as input a random l-BDHE challenge (P,H, Y(P,α,l), Z)
where Z is either ê′(Pl+1,H) or a random value in GT . B computes Y ′

Q,α,l by
setting Qi = ϕ(Pi) for i = 1, 2, · · · , l. B also computes H ′ = ϕ(H) ∈ G2

and Z ′ = φ(Z) ∈ Z. Then randomly chooses a bit b ∈ (0, 1) and sets Tb

as Z ′ and T1−b as a random element in GT . The challenge given to A is
((P,Q,H ′, Y(P,α,l), Y

′
Q,α,l), T0, T1). Quite evidently, when Z = ê′(Pl+1,H) (i.e.

the input to B is a l-BDHE tuple), then ((P,Q,H ′, Y(P,α,l), Y
′
Q,α,l), T0, T1) is

Dynamic Key-Aggregate Cryptosystem on Elliptic Curves 31

a valid challenge to A. This is because in such a case, Tb = Z ′ = φ(Z) =
φ(ê′(Pl+1,H)) = ê′′(Pl+1,H

′). On the other hand, if Z is a random element in
GT (i.e. the input to B is a random tuple), then T0 and T1 are just random
independent elements of GT .

Now, A outputs a guess b′ of b. If b′ = b, B outputs 0 (indicating that
Z = ê′(Pl+1,H)). Otherwise, it outputs 1 (indicating that Z is random in GT).
A simple analysis reveals that if (P,H, Y(P,α,l), Z) is sampled from R-BDHE,
Pr[B(G,H, Y(P,α,l), Z) = 0] = 1

2 , while if (P,H, Y(P,α,l), Z) is sampled from L-
BDHE, |Pr[B(G,H, Y(P,α,l), Z)] − 1

2 | ≥ ε. So, the probability that B outputs
correctly is at least ε, which in turn implies that B has advantage at least ε in
solving the l-BDHE problem. This concludes the proof.

4 The Proposed Dynamic Key-Aggregate Cryptosystem:
The Basic Case

In this section, we present the design of our proposed dynamic key-aggregate
storage scheme on additive elliptic curve subgroups assuming that there are n
ciphertext classes. Our scheme ensures that the ciphertext and aggregate key
are of constant size, while the public parameter size is linear in the number of
ciphertext classes. Unlike the scheme proposed in [3], the proposed scheme allows
dynamic revocation of user access rights without having to massively change the
system parameters. We also present a proof of security for the proposed scheme.

4.1 The Basic Construction of Dynamic KAC

Let G be an additive cyclic elliptic curve subgroup of prime order q, where
2λ ≤ q ≤ 2λ+1, such that the point P is a generator for G. Also, let GT be a
multiplicative group of order q with identity element 1. We assume that there
exists an efficiently computable bilinear pairing ê′ : G × G −→ GT . We now
present the basic construction of our proposed key-aggregate encryption scheme.

The scheme consists of the following five phases.

1. Setup(1λ, n): Randomly pick α ∈ Zq. Compute Pi = αiP ∈ G for i =
1, · · · , n, n + 2, · · · , 2n. Output the system parameter as
param = (P, P1, · · · , Pn, Pn+2, · · · , P2n). The system also randomly chooses
a secret parameter t ∈ Zq which is not made public. It is only known to data
owners with credentials to control client access rights.

2. Keygen(): Pick γ ∈ Zq, output the public and master-secret key pair: (PK =
γP,msk = γ).

3. Encrypt(PK, i,m): For a message m ∈ GT and an index i ∈ {1, 2, · · · , n},
randomly choose r ∈ Zq and let t′ = t + r ∈ Zq. Then the ciphertext is
computed as
C = (rP, t′(PK + Pi),m.ê′(Pn, t′P1)) = (c1, c2, c3)

32 S. Patranabis et al.

4. Extract(msk = γ,S): For the set S of indices j the aggregate key is
computed as
KS =

∑
j∈S γPn+1−j =

∑
j∈S αn+1−jPK

and the dynamic access control parameter U is computed as tP . Thus the net
aggregate key is (KS , U) which is transmitted via a secure channel to users
that have access rights to S.

5. Decrypt(KS , U,S, i, C = {c1, c2, c3}): If i /∈ S, output ⊥. Oth-
erwise return the message m̂ = c3ê′(KS +

∑
j∈S,j �=i Pn+1−j+i, U +

c1)/(ê′(
∑

j∈S Pn+1−j , c2)).

The proof of correctness of this scheme is presented below.

m̂ = c3
ê′(KS +

∑
j∈S,j �=i Pn+1−j+i, U + c1)

ê′(
∑

j∈S Pn+1−j , c2)

= c3
ê′(
∑

j∈S γPn+1−j , t′P)ê′(
∑

j∈S(Pn+1−j+i) − Pn+1, t′P)

ê′(
∑

j∈S Pn+1−j , t′PK)ê′(
∑

j∈S Pn+1−j , t′Pi))

= c3
ê′(
∑

j∈S Pn+1−j+i, t′P)

ê′(Pn+1, t′P)ê′(
∑

j∈S Pn+1−j+i, t′P))

= m

4.2 Dynamic Access Control

An important aspect of the proposed scheme is the fact that it allows the data
owner to dynamically update user access permissions. In KAC [3], once the data
owner issues an aggregate key corresponding to a set of ciphertext classes to a
user, revoking the user’s access permissions to the same is not possible without
changing the master secret key. However, changing the master secret key each
time an user’s access privileges to a ciphertext class need to be updated, is a very
expensive option and may not be practically feasible. Our scheme, on the other
hand, offers a solution to this problem by allowing the data owner to dynamically
update user access privileges.

We achieve this by making the parameter U = tP a part of the aggregate key
in our proposed scheme and not a part of the ciphertext. The user must have the
correct value of U in possession to be able to decrypt any encrypted ciphertext
class in the subset S. Now suppose the data owner wishes to alter the access
rights to the subset S. She can simply re-encrypt all ciphertexts in that class
using a different random element t̂ ∈ Zq, and then provide the updated dynamic
access parameter Û = t̂P to only those users who she wishes to delegate access
to. The decrypted value will give the correct message m only if the same t is
used for both encryption and decryption. This is a major difference between
our scheme and the scheme proposed in [3], where the knowledge of the random
parameter was only embedded as part of the ciphertext itself, and could not be
used to control access rights of users. Moreover, since U is of constant size and
needs to be transmitted only when changed (and not for every encryption), there
is no significant degradation in performance.

Dynamic Key-Aggregate Cryptosystem on Elliptic Curves 33

4.3 Performance and Efficiency

The decryption time for any subset of ciphertext classes S is essentially dom-
inated by the computation of WS =

∑
j∈S Pn+1−j+i. However, if a user has

already computed
∑

j∈S′ Pn+1−j+i for a subset S′ similar to S, then she can
easily compute the desired value by at most |S − S ′| operations. For similar
subsets S and S′, this value is expected to be fairly small. A suggested in [4],
for subsets of very large size(n − r, r � n), an advantageous approach could
be to pre-compute

∑j=n
j=1 Pn+1−j+i corresponding to i = 1 to n, which would

allow the user to decrypt using only r group operations, and would require only
r elements of param. Similar optimizations would also hold for the encryption
operation where pre-computation of

∑j=n
j=1 Pn+1−j is useful for large subsets.

It is important to note that our proposed scheme fixes the number of cipher-
text classes beforehand, thus limiting the scope for ciphertext class extension.
The only way to increase the number of classes is to change the public key para-
meters, which would therefore require some kind of administrative privileges,
and cannot be done by an user for her own purposes. However, in online data
sharing environments, users may wish to register their own public key-private
key pairs for new ciphertext classes according to their own requirements. Such
an extension to the scheme would make extremely convenient and attractive to
potential users. A proposal made in [3] recommends that the user be allowed
to register new public-private key pairs, at the cost of increasing the number
of ciphertext classes by n each time. This is both impractical and wasteful. In
the next section, we present a two-tier generalization of our scheme that tackles
this issue in a more economical fashion. We avoid a separate proof of semantic
security for the base case presented here, since the proof is a special case of the
proof for the generalized scheme presented in the next section.

5 A Generalized Version of Dynamic KAC

In this section, we focus on building an efficiently extensible version of our pro-
posed scheme that allows an user to economically increase the number of cipher-
text classes while registering a new public key-private key pair. We adopt the idea
presented in [4] to develop a hierarchical structure that has multiple instances
(say n1) of the original scheme running in parallel. Each such instance in turn
provides locally aggregate keys for n2 ciphertext sub-classes. Each ciphertext class
thus now has a double index (i1, i2) where 1 ≤ i1 ≤ n1 and 1 ≤ i2 ≤ n2. This
allows the overall setup to handle n = n1n2 classes. However, it is important to
note that all the instances can use the same public parameters. This interaction
among the instances helps to largely improve performance. We further point
out that while in [4], the generalized construction offers a trade-off between
the public parameter size and the ciphertext size, our generalized scheme actu-
ally reduces the public parameter size without compromising on the size of the
ciphertext. Further, addition of a single new key increases the number of classes
only by n2 and not by n. Setting n2 � n thus achieves significant improvement
in performance over the existing proposal.

34 S. Patranabis et al.

5.1 The Construction of the Generalized KAC

Let n2 be a fixed positive integer. Our proposed n2-generalized key-aggregate
encryption scheme over elliptic curve subgroups is as described below. It may be
noted that the bilinear additive elliptic curve sub-group G and the multiplicative
group GT , as well as the pairing ê′ are the same as in the basic scheme. The
algorithm sets up n1 = 	n/n2
 instances of the basic scheme, each of which
handles n2 ciphertext classes. The original scheme is thus a special case of the
extended scheme with n1 = 1 and n2 = n.

1. Setup(1λ, n2): Randomly pick α ∈ Zq. Compute Pi = αiP ∈ G for i = 1, · · · ,
n2, n2 + 2, · · · , 2n2. Output the system parameter as param =
(P, P1, · · · , Pn2 , Pn2+2, · · · , P2n2). The system randomly chooses a secret
parameter t ∈ Zq which is not made public. It is only known to data owners
with credentials to control client access rights.

2. Keygen(): Pick γ1, γ2, · · · , γn1 ∈ Zq, output the public and master-secret
key pair:
(PK=(pk1, pk2, · · · , pkn1) = (γ1P, γ2P, · · · , γn1P),msk=(γ1, γ2, · · · , γn1)).

3. Encrypt(pki1 , (i1, i2),m): For a message m ∈ GT and an index (i1, i2) ∈
{1, 2, · · · , n1} × {1, 2, · · · , n2}, randomly choose r ∈ Zq and let t′ = t +
r ∈ Zq. Then compute the ciphertext C=(rP, t′(pki1 + Pi2),m.ê′(Pn2 , t

′P1))
= (c1, c2, c3).

4. Extract(msk = γ,S): For the set S of indices (j1, j2) the aggregate key is
computed as KS = (k1

S , k2
S , · · · , kn1

S) =
(
∑

(1,j2)∈S γ1Pn2+1−j2 ,
∑

(2,j2)∈S γ2Pn2+1−j2 , · · · ,
∑

(n1,j2)∈S γn1Pn2+1−j2)
and the dynamic access control parameter U is computed as tP . Thus the
net aggregate key is (KS , U) which is transmitted via a secure channel to
users that have access rights to S. Note that kj1

S =
∑

(j1,j2)∈S αn+1−j2pkj1

for j1 = 1, 2, · · · , n1.
5. Decrypt(KS , U,S, (i1, i2), C = {c1, c2, c3}): If (i1, i2) /∈ S, output ⊥. Other-

wise return the message

m̂ = c3
ê′(ki1

S +
∑

(i1,j2)∈S,j2 �=i2
Pn2+1−j2+i2 ,U+c1)

ê′(
∑

(i1,j2)∈S Pn2+1−j2 ,c2)
.

The proof of correctness for the generalized scheme is very similar to that for
the basic scheme.

5.2 Semantic Security of the Generalized KAC

The Reduced Generalized Scheme: We define a reduced version of the gen-
eralized encryption scheme. We note that the ciphertext C = (c1, c2, c3) output
by the Encypt operation essentially embeds the value of m in c3 by multiply-
ing it with ê′(Pn2 , tP1). Consequently, the security of our proposed scheme is
equivalent to that of a reduced generalized key-aggregate encryption scheme
that simply uses the reduced ciphertext (c1, c2), the aggregate key KS and the
dynamic access parameter U to successfully transmit and decrypt the value of
ê′(Pn2 , t

′P1) = ê′(Pn2+1, t
′P). We prove the semantic security of this reduced

Dynamic Key-Aggregate Cryptosystem on Elliptic Curves 35

scheme parameterized with a given number of ciphertext classes n2 for each
instance, which also amounts to proving the semantic security of our original
encryption scheme for the same number of ciphertext classes. Note that the proof
of security is independent of the number of instances n1 that run in parallel.

The Adversarial Model: We make the following assumptions about the adver-
sary A:

1. The adversary has the aggregate key that allows her to access any ciphertext
class other than those in the target subset S, that is, she possesses KS .

2. The adversary has access to the public parameters param and PK, and also
possesses the dynamic access parameter U .

The Security Proof: The security proof presented here uses the first complex-
ity assumption stated in Sect. 3.3 (The First Complexity Assumption). Let G be
a bilinear elliptic curve subgroup of prime order q and GT be a multiplicative
group of order q. Let ê′ : G×G −→ GT be a bilinear non-degenerate pairing. For
any pair of positive integers n2, n

′(n′ > n2) our proposed n2-generalized reduced
key-aggregate encryption scheme over elliptic curve subgroups is (τ, ε, n′) seman-
tically secure if the decision (τ, ε, n2)-BDHE assumption holds in G. We now
prove this statement below.

Proof: Let for a given input n′, A be a τ -time adversary that has advantage
greater than ε for the reduced scheme parameterized with a given n2. We build
an algorithm B that has advantage at least ε in solving the n2-BDHE problem in
G. Algorithm B takes as input a random n2-BDHE challenge (P,H, Y(P,α,n2), Z)
where Z is either ê′(Pn2+1,H) or a random value in GT . Algorithm B proceeds
as follows.

1. Init: Algorithm B runs A and receives the set S of ciphertext classes that A
wishes to be challenged on. For each ciphertext class (i1, i2) ∈ S, B performs
the SetUp-(i1, i2), Challenge-(i1, i2) and Guess-(i1, i2) steps. Note that
the number of iterations is polynomial in |S|.

2. SetUp-(i1, i2): B should generate the public param, public key PK, the
access parameter U , and the aggregate key KS . For the iteration correspond-
ing to ciphertext class (i1, i2), they are generated as follows.

– param is set as (P, YP,α,n2).
– Randomly generate u1, u2, · · · , un1 ∈ Zq. Then, set PK=

(pk1, pk2, · · · , pkn1), with pkj1 = uj1P − Pi2 for j1 = 1, 2, · · · , n1.
– Set KS = (k1

S , k2
S , · · · , kn1

S), where kj1
S is set as

∑
(j1,j2)/∈S(uj1Pn2+1−j2 −

(Pn2+1−j2+i2)). Then, kj1
S =

∑
(j1,j2)/∈S αn2+1−j2pkj1 ,which is as per the

scheme specification. Note that B knows that (i1, i2) /∈ S, and hence has
all the resources to compute this aggregate key for S.

– U is set as some random element in G.
Note that since P , α, U and the uj1 values are chosen uniformly at random,
the public key has an identical distribution to that in the actual construction.

36 S. Patranabis et al.

3. Challenge-(i1, i2): To generate the challenge for the ciphertext class (i1, i2),
B computes (c1, c2) as (H−U, ui1H). It then randomly chooses a bit b ∈ (0, 1)
and sets Kb as Z and K1−b as a random element in GT . The challenge given
to A is ((c1, c2),K0,K1).
We claim that when Z = ê′(Pn2+1,H) (i.e. the input to B is a n2-BDHE
tuple), then ((c1, c2),K0,K1) is a valid challenge to A. We prove this claim
here. we point out that P is a generator of G and so H = t′P for some t′ ∈ Zq.
Putting H as t′P gives us the following:

– U = tP for some t ∈ Zq

– c1 = H − U = (t′ − t)P = rP for r = t′ − t
– c2 = ui1H = (ui1)t

′P = t′(ui1P) = t′(ui1P − Pi2 + Pi2) = t′(pki1 + Pi2)
– Kb = Z = ê′(Pn2+1,H) = ê′(Pn2+1, t

′P)
On the other hand, if Z is a random element in GT (i.e. the input to B is a
random tuple), then K0 and K1 are just random independent elements of GT .

4. Guess-(i1, i2): The adversary A outputs a guess b′ of b. If b′ = b, B outputs
0 (indicating that Z = ê′(Pn2+1,H)), and terminates. Otherwise, it goes for
the next ciphertext class in S.

If after |S| iterations, b′ �= b for each ciphertext class (i1, i2) ∈ S, the algorithm B
outputs 1 (indicating that Z is random in GT). We now analyze the probability
that B gives a correct output. If (P,H, Y(P,α,n2), Z) is sampled from R-BDHE,
Pr[B(G,H, Y(P,α,n2), Z) = 0] = 1

2 , while if (P,H, Y(P,α,n2), Z) is sampled from
L-BDHE, |Pr[B(G,H, Y(P,α,n2), Z)]− 1

2 | ≥ ε. So, the probability that B outputs
correctly is at least 1 − (12 − ε)|S| ≥ 1

2 + ε. Thus B has advantage at least ε in
solving the n2-BDHE problem. This concludes the proof. Note that the instance
of this proof with n1 = 1 and n2 = n serves as the proof of security for the basic
KAC scheme proposed in Sect. 4.

Performance Trade Off with the Basic Scheme: We compare the various
parameter sizes for the proposed original and extended schemes in Table 1. We
note that SetUp and KeyGen are both one-time operations, and for a given
subset S, the Extract operation is also performed once to generate the corre-
sponding aggregate key KS . The most important advantage that the general-
ized scheme provides is the user’s ability to efficiently extend the number of
ciphertext classes. As far as encryption and decryption are concerned, encryp-
tion should ideally take the same time for both schemes, while decryption is
actually expected to be faster for the generalized construction as n2 ≤ n.

5.3 A Flexible Extension Policy

If a user needs to classify her ciphertexts into more that n classes, she can register
for additional key pairs (pkn1+1,mskn1+1), · · · , (pkn1+l,mskn1+l) as per her
requirements. Each new key registration increases the number of classes by n2,

Dynamic Key-Aggregate Cryptosystem on Elliptic Curves 37

Table 1. Comparison between the basic and generalized schemes

Item Nature of computation Original scheme Generalized scheme

param(SetUp) One-time O(n) O(n2)

PK(KeyGen) One-time O(1) O(n1)

KS(Extract) One-time O(1) O(n1)

C One per message O(1) O(1)

Encrypt One per message O(1) O(1)

Decrypt One per message O(|S|) O(|S|)

where n2 ≤ n. The idea of under-utilization stems from the fact that registration
of each public-private key pair increases the number of classes by n2. However,
it is not necessary that all the existing classes are utilized at any given point of
time. For instance, a user may at any point of time want to register l new private-
public key pairs, however she will in all probability not use up all ln2 additional
classes of messages that could be encrypted using the newly registered keys. We
stress here is that, unlike in the public key extension scheme proposed in [3]
where the values of n1 and n2 are fixed to 1 and n respectively, our generalized
construction provides a choice of n1 and n2 so that the system administrator
could choose pair of values suited to their requirements.

We propose a metric to quantify the under-utilization of ciphertext classes
for a given configuration of the system. Let us assume that at some instance of
time, there are n1 + l private-public key pairs registered in the system, and ci

classes corresponding to each key are being utilized. We define the utilization
coefficient as 1

1+ξ , where ξ = − 1
n1

∑n1
i=1ci �=0 log(ci

n2
). An efficient scheme tries to

minimize the value of ξ to achieve good utilization of the existing set of classes.
The value is maximum when ci = n2∀i = 1, 2, · · · , n2. Note that ci = 0 implies
that no subclasses under the given key pki are being utilized, which is equivalent
to not registering the key at all.

To stress the importance of the flexible extension policy, we provide a sim-
plified example here. We consider two possible configurations of the extended
scheme. In the first configuration, n1 = 1 and n2 = n, which is essentially iden-
tical to the public key extension scheme proposed in [3]. The other configuration
has n1 > 1 and n2 < n. Now assume that before extension, both schemes uti-
lized c ciphertext classes out of the n possible classes, equally distributed across
all key pairs. Now suppose a situation arises where an user needs to register l
more key pairs, and utilizes z < n2 classes corresponding to each key. In the first
configuration, we have ξ1 = − 1

l+1 (l log(z
n)+log(c

n)), while for the second config-
uration, ξ2 = − 1

l+n1
(l(log(z

n2
)) + n1 log(c

n)). Now for l > (n1
log n1

− 1) log(z
c) − 1,

ξ2 < ξ1. Thus for any value of (n1, n2) other than (1, n), there exists a value of
l for which the scheme achieves better utilization coefficient. Since l is expected
to increase in a dynamic scenario, our public key extension scheme eventually
performs better than the scheme suggested in [3].

38 S. Patranabis et al.

Fig. 2. A practical request scenario in the hierarchical setting

5.4 Advantage over Hierarchical Encryption Based Schemes

Although the generalized scheme has a two level hierarchy (with each of the n1

parallely executing instances of the basic scheme representing a node in the top
level and the actual ciphertext classes representing nodes in the lower level), it
avoids the pitfalls of existing hierarchical encryption based schemes [5,10]. In
standard tree based hierarchical systems, granting access to the key correspond-
ing to any node implicitly grants access to all the keys in the subtree rooted at
that node. This means granting access to a selected set of nodes in a given sub-
tree would blow up the key-size to be the same as the number of nodes. This is
avoided in our generalized scheme, since any number of nodes (ciphertext classes)
that belong to the same instance may be aggregated into a single key. Figure 2
summarizes this phenomenon. In the situation depicted, a tree-based hierarchy
system would require 4 decryption keys, while our scheme would require only 2.
In this respect, our scheme has similar advantages to that of [3].

6 Extending the Generalized KAC for Efficient Pairings
on Elliptic Curve Subgroups

The encryption schemes proposed so far use the assumption that the ellip-
tic curve pairing bilinear pairing ê′ : G1 × G1 −→ GT satisfies the property
ê′(P, P) �= 1, where P is the generator for G1. In this section, we propose an
extension to the generalized n2-scheme that allows using pairings of the form
ê′′ : G1 × G2 −→ GT , where G1 and G2 are two elliptic curve subgroups of
the same prime order. The motivation behind this extension is that many pop-
ular pairing algorithms such as the Tate [11], Eta [12], and Ate [13] pairings
are defined over two distinct elliptic curve subgroups G1 and G2 of the same
order. Many efficient implementations of such pairings on sensor nodes such as
TinyTate [14] have been proposed in literature. This motivates us to modify our
scheme in a manner that allows using such well-known pairings. The modified
encryption scheme described below allows using a pairing ê′′ : G1 × G2 −→ GT

with P generator of G1 and Q generator of G2.

6.1 Construction of the Extended KAC

1. Setup(1λ, n2): Randomly pick α ∈ Zq. Compute Pi = αiP ∈ G1 for
i = 1, · · · , n2, n2 + 2, · · · , 2n2 and Qi = αiQ ∈ G2 for i = 1, · · · , n2.

Dynamic Key-Aggregate Cryptosystem on Elliptic Curves 39

Output the system parameter as param = (P, P1, · · · , Pn2 , Pn2+2, · · · , P2n2 ,
Q,Q1, · · · , Qn2). The system also randomly chooses secret parameters t ∈ Zq

which is not made public. It is only transferred through a secure channel to
data owners with credentials to control client access rights.

2. Keygen(): Pick γ1, γ2, · · · , γn1 ∈ Zq, output the public and master-secret
key tuple:
(PK1=(pk1

1, pk1
2, · · · , pk1

n1
) = (γ1P, γ2P, · · · , γn1P), PK2=

(pk2
1, pk2

2, · · · , pk2
n1

) = (γ1Q, γ2Q, · · · , γn1Q), msk=(γ1, γ2, · · · , γn1)).
3. Encrypt(pki1 , (i1, i2),m): For a message m ∈ GT and an index (i1, i2) ∈

{1, 2, · · · , n1}×{1, 2, · · · , n2}, randomly choose r ∈ Zq and let t′ = t+r ∈ Zq.
Then compute the ciphertext as
C=(rQ, t′(pk2

i1 + Qi2),m.ê′′(Pn2 , t
′Q1)) = (c1, c2, c3).

4. Extract(msk = γ,S): For the set S of indices (j1, j2) the aggregate key is
computed as KS = (k1

S , k2
S , · · · , kn1

S) =
(
∑

(1,j2)∈S γ1Pn2+1−j2 ,
∑

(2,j2)∈S γ2Pn2+1−j2 , · · · ,
∑

(n1,j2)∈S γn1Pn2+1−j2)
and the dynamic access control parameter U is computed as tQ. Thus the
net aggregate key is (KS , U) which is transmitted via a secure channel to
users that have access rights to S. Note that kj1

S =
∑

(j1,j2)∈S αn+1−j2pk1
j1

for j1 = 1, 2, · · · , n1.
5. Decrypt(KS , U,S, (i1, i2), C = {c1, c2, c3}): If (i1, i2) /∈ S, output ⊥. Other-

wise return the message

m̂ = c3
ê′′(ki1

S +
∑

(i1,j2)∈S,j2 �=i2
Pn2+1−j2+i2 ,U+c1)

ê′′(
∑

(i1,j2)∈S Pn2+1−j2 ,c2)
.

The proof of correctness of this scheme is presented below.

m̂ = c3
ê′′(ki1

S +
∑

(i1,j2)∈S,j2 �=i2
Pn2+1−j2+i2 , U + c1)

ê′′(
∑

(i1,j2)∈S Pn2+1−j2 , c2)

= c3
ê′′(
∑

(i1,j2)∈S γi1Pn2+1−j2 , t′Q)ê′′(
∑

(i1,j2)∈S(Pn2+1−j2+i2) − Pn2+1, t′Q)

ê′′(
∑

(i1,j2)∈S Pn2+1−j2 , γi1 (t
′Q))ê′′(

∑
(i1,j2)∈S Pn2+1−j2 , αi2 (t′Q))

= c3
ê′′(
∑

(i1,j2)∈S Pn2+1−j2+i2 , t′Q)

ê′′(Pn2+1, t′Q)ê′′(
∑

(i1,j2)∈S Pn2+1−j2+i2 , t′Q)

= m

6.2 Semantic Security of the Extended KAC

The proof of security uses a reduced version of the extended KAC scheme,
analogous to the reduced scheme used for proving the security of the gener-
alized KAC. The adversarial model is also the assumed to be the same as for
the generalized KAC. The proof uses the (l, l)-BDHE assumption proposed in
Sect. 3.3 (The Second Complexity Assumption). Let G1 and G2 be additive ellip-
tic curve subgroups of prime order q, and GT be a multiplicative group of order
q. Let ê′′ : G1 ×G2 −→ GT be a bilinear non-degenerate pairing. We claim that
for any pair of positive integers n2, n

′(n′ > n2) our proposed extension to the

40 S. Patranabis et al.

n2-generalized reduced key-aggregate encryption scheme over elliptic curve sub-
groups is (τ, ε, n′) semantically secure if the decision (τ, ε, n2, n2)-BDHE assump-
tion holds in (G1,G2). We prove the claim below.

Proof: Let for a given input n′, A be a τ -time adversary that has advantage
greater than ε for the reduced scheme parameterized with a given n2. We build
an algorithm B that has advantage at least ε in solving the (n2, n2)-BDHE
problem in G. Algorithm B takes as input a random (n2, n2)-BDHE challenge
(P,Q,H, Y(P,α,n2),Y ′

Q,α,n2
, Z) where Z is either ê′′(Pn2+1,H) or a random value

in GT . Algorithm B proceeds as follows.

1. Init: Algorithm B runs A and receives the set S of ciphertext classes that A
wishes to be challenged on. For each ciphertext class (i1, i2) ∈ S, B performs
the SetUp-(i1, i2), Challenge-(i1, i2) and Guess-(i1, i2) steps. Note that
the number of iterations is polynomial in |S|.

2. SetUp-(i1, i2): B should generate the public param, public keys PK1, PK2,
the access parameter U , and the aggregate key KS . For the iteration corre-
sponding to ciphertext class (i1, i2), they are generated as follows.

– param is set as (P,Q, YP,α,n2 , Y
′
Q,α,n2

).
– Randomly generate u1, u2, · · · , un1 ∈ Zq. Then, set

PK1=(pk1
1, pk1

2, · · · , pk1
n1

), where pk1
j1 is set as uj1P − Pi2 for j1 =

1, 2, · · · , n1, and set
PK2=(pk2

1, pk2
2, · · · , pk2

n1
), where pk2

j1 is set as uj1Q − Qi2 for j1 =
1, 2, · · · , n1

– KS is set as (k1
S , k2

S , · · · , kn1

S) where kj1
S

=
∑

(j1,j2)/∈S(uj1Pn2+1−j2 − (Pn2+1−j2+i2)) for j1 = 1, 2, · · · , n1. Note
that this implies kj1

S =
∑

(j1,j2)/∈S αn2+1−j2pk1
j1 , as is supposed to be as

per the scheme specification. Note that B knows that (i1, i2) /∈ S, and
hence has all the resources to compute this aggregate key for S.

– U is set as some random element in G2.
Note that since P , Q, α, U and the uj1 values are chosen uniformly at random,
the public key has an identical distribution to that in the actual construction.

3. Challenge-(i1, i2): To generate the challenge for the ciphertext class (i1, i2),
B computes (c1, c2) as (H−U, ui1H). It then randomly chooses a bit b ∈ (0, 1)
and sets Kb as Z and K1−b as a random element in GT . The challenge given
to A is ((c1, c2),K0,K1).
We claim that when Z = ê′′(Pn2+1,H) (i.e. the input to B is a n2-BDHE
tuple), then ((c1, c2),K0,K1) is a valid challenge to A. We prove this claim
here. we point out that Q is a generator of G2 and so H = t′P for some
t′ ∈ Zq. Putting H as t′Q gives us the following:
– U = tQ for some t ∈ Zq

– c1 = H − U = (t′ − t)Q = rQ where r = t′ − t
– c2 = ui1H = (ui1)t

′Q = t′(ui1Q) = t′(ui1Q − Qi2 + Qi2) = t′(pk2
i1 + Qi2)

– Kb = Z = ê′′(Pn2+1,H) = ê′′(Pn2+1, t
′Q)

Dynamic Key-Aggregate Cryptosystem on Elliptic Curves 41

On the other hand, if Z is a random element in GT (i.e. the input to B is
a random tuple), then K0 and K1 are just random independent elements
of GT .

4. Guess-(i1, i2): The adversary A outputs a guess b′ of b. If b′ = b, B outputs
0 (indicating that Z = ê′′(Pn+1,H)), and terminates. Otherwise, it goes for
the next ciphertext class in S.

If after |S| iterations, b′ �= b for each ciphertext class (i1, i2) ∈ S, the algorithm B
outputs 1 (indicating that Z is random in GT). We now analyze the probability
that B gives a correct output. If (P,H, Y(P,α,n2), Z) is sampled from R′-BDHE,
Pr[B(G,H, Y(P,α,n2), Z) = 0] = 1

2 , while if (P,H, Y(P,α,n2), Z) is sampled from
L′-BDHE, |Pr[B(G,H, Y(P,α,n2), Z)]− 1

2 | ≥ ε. So, the probability that B outputs
correctly is at least 1 − (12 − ε)|S| ≥ 1

2 + ε. Thus B has advantage at least ε in
solving the (n2, n2)-BDHE problem. This concludes the proof.

7 Experimental Results Using Tate Pairings

In this section we present experimental results from our implementations of the
extended generalized scheme using Tate pairings on BN-curves using 256 bit
primes [15]. All our experiments have been carried out on an AMD Opteron
(TM) Processor 6272 × 16 with a clock frequency 1.4 GHz.

7.1 Space and Time Complexities

Table 2 summarizes the space requirements for various parameters of the scheme
for different values of (n1, n2). The results have been averaged over 100 randomly
chosen subsets of the n = 100 ciphertext classes. Table 3 summarizes the time
complexity for various operations of the scheme for different values of (n1, n2).
The results have been averaged over 100 randomly chosen subsets of the n = 100
ciphertext classes. The encryption and decryption operation complexities are
further averaged over 10 message transmissions corresponding to each subset.
We point out that both the overall space and time requirements are minimum
for n1 = n2 = 10 =

√
n, which proves the usefulnesss of the generaalization.

7.2 Comparison with Hierarchy Based Schemes

Next, we compare specifically the key size required for the proposed extended
scheme, for different values of n1 and n2 (again corresponding to n = 100), with
that required for a hierarchical encryption construction [16]. Since our scheme
uses a hierarchy depth of 2, we use the same for the hierarchical construction as
well, with n1 nodes in level 0, and n2 level 1 nodes in the subtree rooted at each
level 0 node. Figure 3 summarizes the findings. Evidently, lower the value of n1,
better the key aggregation, hence lower the ratio.

42 S. Patranabis et al.

Table 2. Space complexities

n1 n2 param (in bytes) PK (in bytes) msk (in bytes) KS (in bytes) U (in bytes) Total (in KB)

1 100 16112 144 40 72 64 16.046875

2 50 8112 240 56 120 64 8.390625

4 25 4112 432 88 216 64 4.796875

5 20 3312 528 104 264 64 4.171875

10 10 1712 1008 184 504 64 3.390625

20 5 912 1968 344 984 64 4.171875

25 4 752 2448 424 1224 64 4.796875

50 2 432 4848 824 2424 64 8.390625

100 1 272 9648 1624 4824 64 16.046875

Table 3. Time complexities

n1 n2 SetUp KeyGen Encrypt Extract Decrypt Total

(in clock cycles) (in clock cycles) (in clock cycles) (in clock cycles) (in clock cycles) (in clock cycles)

1 100 2920000 10000 7932000 47000 16095000 27004100

2 50 1410000 30000 8065000 53000 16110000 25668000

4 25 690000 60000 8130000 81000 16284000 25245000

5 20 590000 70000 8091000 96000 16379000 25226000

10 10 280000 140000 7957000 170000 16049000 25136000

20 5 130000 270000 8070000 320000 16361000 25151000

25 4 120000 350000 8256000 370000 16239000 25836000

50 2 50000 680000 8265000 712000 16398000 26105000

100 1 30000 1360000 8201000 1315000 16142000 27048000

0.2 0.4 0.6 0.8

0

0.2

0.4

0.6

0.8

1

Subset Size (as a fraction of total classes)

R
a
ti

o
o
f
K

ey
S
iz

e
(A

g
g
re

g
a
te

/
H

ie
ra

rc
h
ic

a
l)

Fig. 3. Key size ratio - proposed aggregate scheme vs hierarchical scheme

7.3 Utilization Coefficient Comparison

Finally we compare the utilization-coefficient of the extended scheme for various
values of n1 and n2 (corresponding to n = 100) with increase in the number of
registered key pairs l, where each key pair increases the number of classes by
n2. We leave out the configuration n1 = n, n2 = 1 because that always leads to
an utilization coefficient of 1 but is impractical due to huge space requirements.
Figure 4 demonstrates that beyond a certain value of l, the combination (1, n)

Dynamic Key-Aggregate Cryptosystem on Elliptic Curves 43

Fig. 4. Utilization coefficient vs newly registered keys

proposed in [3] has a lower utilization coefficient that all other combinations of
(n1, n2) for a given n. This emphasizes the advantage of making the choice of
(n1, n2) flexible.

8 Conclusions and Future Work

In this paper, we have proposed a secure and dynamic key aggregate encryption
scheme for online data sharing. Our scheme allows data owners to delegate users
with access rights to multiple ciphertext classes using a single decryption key
that combines the decrypting power of individual keys corresponding to each
ciphertext class. Unlike existing key aggregate schemes that are static in their
access right delegation policies, our scheme allows data owners to dynamically
revoke one or more users’ access rights without having to change either the public
or the private parameters/keys. The use of bilinear pairings over additive ellip-
tic curve subgroups in our scheme helps achieve massive reductions in key and
ciphertext sizes over existing schemes that use multiplicative groups. We pointed
out that a possible criticism of this scheme is that the number of classes is pre-
defined to some fixed n. To deal with this issue, we next proposed a generalized
two-level construction of the basic scheme that runs n1 instances of the basic
scheme in parallel, with each instance handling key aggregation for n2 cipher-
text classes. This scheme provides two major advantages. First of all, it allows
dynamic extension of ciphertext classes by registering of new public key-private
key pairs without affecting other system parameters. Secondly, it provides a wide
range of choices for n1 and n2 that allows efficient utilization of ciphertext classes
while also achieving optimum space and time complexities. Finally, we extend
the generalized scheme to allow the use of popular and efficiently implementable
bilinear pairings in literature such as Tate Pairings that operate on multiple
elliptic curve subgroups instead of one. Each of the three proposed schemes have
been proven to be semantically secure. Experimental studies have demonstrated
the superiority of our proposed scheme over existing ones in terms of key size

44 S. Patranabis et al.

as well as efficient utilization of ciphertext classes. A possible future work is to
make the proposed schemes secure against chosen ciphertext attacks.

References

1. Wang, C., Chow, S.S.M., Wang, Q., Ren, K., Lou, W.: Privacy-preserving public
auditing for secure cloud storage. Cryptology ePrint Archive, Report 2009/579
(2009). http://eprint.iacr.org/

2. Chow, S.S.M., Chu, C.-K., Huang, X., Zhou, J., Deng, R.H.: Dynamic secure cloud
storage with provenance. In: Naccache, D. (ed.) Cryphtography and Security: From
Theory to Applications. LNCS, vol. 6805, pp. 442–464. Springer, Heidelberg (2012)

3. Chu, C.-K., Chow, S.S.M., Tzeng, W.-G., Zhou, J., Deng, R.H.: Key-aggregate
cryptosystem for scalable data sharing in cloud storage. IEEE Trans. Parallel Dis-
trib. Syst. 25(2), 468–477 (2014)

4. Boneh, D., Gentry, C., Waters, B.: Collusion resistant broadcast encryption with
short ciphertexts and private keys. In: Shoup, V. (ed.) CRYPTO 2005. LNCS,
vol. 3621, pp. 258–275. Springer, Heidelberg (2005)

5. Ateniese, G., De Santis, A., Ferrara, A.L., Masucci, B.: Provably-secure time-bound
hierarchical key assignment schemes. J. Cryptology 25(2), 243–270 (2012)

6. Benaloh, J., Chase, M., Horvitz, E., Lauter, K.: Patient controlled encryption:
ensuring privacy of electronic medical records. In: Proceedings of the 2009 ACM
Workshop on Cloud Computing Security, pp. 103–114. ACM (2009)

7. Ateniese, G., Kevin, F., Green, M., Hohenberger, S.: Improved proxy re-encryption
schemes with applications to secure distributed storage. ACM Trans. Inf. Syst.
Secur. (TISSEC) 9(1), 1–30 (2006)

8. Miller, V.S.: Use of elliptic curves in cryptography. In: Williams, H.C. (ed.)
CRYPTO 1985. LNCS, vol. 218, pp. 417–426. Springer, Heidelberg (1986)

9. Silverman, J.H.: Advanced Topics in the Arithmetic of Elliptic Curves, vol. 151.
Springer, New York (1994)

10. Akl, S.G., Taylor, P.D.: Cryptographic solution to a problem of access control in
a hierarchy. ACM Trans. Comput. Syst. (TOCS) 1(3), 239–248 (1983)

11. Frey, G., Rück, H.-G.: A remark concerning-divisibility and the discrete logarithm
in the divisor class group of curves. Math. Comput. 62(206), 865–874 (1994)

12. Hess, F., Smart, N.P., Vercauteren, F.: The eta pairing revisited. IEEE Trans. Inf.
Theor. 52(10), 4595–4602 (2006)

13. Zhao, C.-A., Zhang, F., Huang, J.: A note on the ate pairing. Int. J. Inf. Secur.
7(6), 379–382 (2008)

14. Oliveira, L.B., Aranha, D.F., Morais, E., Daguano, F., López, J., Dahab, R.: Tiny-
tate: computing the tate pairing in resource-constrained sensor nodes. In: 2007
Sixth IEEE International Symposium on Network Computing and Applications,
NCA 2007, pp. 318–323. IEEE (2007)

15. Ghosh, S., Mukhopadhyay, D., Roychowdhury, D.: Secure dual-core cryptoproces-
sor for pairings over barreto-naehrig curves on FPGA platform. IEEE Trans. Very
Large Scale Integr. (VLSI) Syst. 21(3), 434–442 (2013)

16. Sandhu, R.S.: Cryptographic implementation of a tree hierarchy for access control.
Inf. Process. Lett. 27(2), 95–98 (1988)

http://eprint.iacr.org/

	Dynamic Key-Aggregate Cryptosystem on Elliptic Curves for Online Data Sharing
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 The Key Aggregate Cryptosystem (KAC)
	3.2 Semantic Security of KAC
	3.3 The Complexity Assumptions

	4 The Proposed Dynamic Key-Aggregate Cryptosystem: The Basic Case
	4.1 The Basic Construction of Dynamic KAC
	4.2 Dynamic Access Control
	4.3 Performance and Efficiency

	5 A Generalized Version of Dynamic KAC
	5.1 The Construction of the Generalized KAC
	5.2 Semantic Security of the Generalized KAC
	5.3 A Flexible Extension Policy
	5.4 Advantage over Hierarchical Encryption Based Schemes

	6 Extending the Generalized KAC for Efficient Pairings on Elliptic Curve Subgroups
	6.1 Construction of the Extended KAC
	6.2 Semantic Security of the Extended KAC

	7 Experimental Results Using Tate Pairings
	7.1 Space and Time Complexities
	7.2 Comparison with Hierarchy Based Schemes
	7.3 Utilization Coefficient Comparison

	8 Conclusions and Future Work
	References

