
Non-malleable Extractors with Shorter Seeds
and Their Applications

Yanqing Yao1,2(B) and Zhoujun Li1,2

1 School of Computer Science and Engineering, Beihang University, Beijing, China
yaoyanqing1984@buaa.edu.cn

2 Beijing Key Laboratory of Network Technology, Beihang University, Beijing, China

Abstract. Motivated by the problem of how to communicate over a
public channel with an active adversary, Dodis and Wichs (STOC’09)
introduced the notion of a non-malleable extractor. A non-malleable
extractor nmExt : {0, 1}n ×{0, 1}d → {0, 1}m takes two inputs, a weakly-
random W and a uniformly random seed S, and outputs a string which
is nearly uniform, given S as well as nmExt(W, A(S)), for an arbitrary
function A with A(S) �= S.

In this paper, by developing the combination and permutation
techniques, we improve the error estimation of the extractor of Raz
(STOC’05), which plays an extremely important role in the constraints
of the non-malleable extractor parameters including seed length. Then
we present improved explicit construction of non-malleable extractors.
Though our construction is the same as that given by Cohen, Raz and
Segev (CCC’12), the parameters are improved. More precisely, we con-
struct an explicit (1016, 1

2
)-non-malleable extractor nmExt : {0, 1}n ×

{0, 1}d → {0, 1} with n = 210 and seed length d = 19, while Cohen
et al. showed that the seed length is no less than 46

63
+ 66. Therefore, our

method beats the condition “2.01 · log n ≤ d ≤ n” proposed by Cohen
et al., since d is just 1.9 · log n in our construction. We also improve
the parameters of the general explicit construction given by Cohen et al.
Finally, we give their applications to privacy amplification.

Keywords: Extractors ·Non-malleable extractors ·Seed length ·Privacy
amplification protocol

1 Introduction

Randomness extractors are functions that convert weakly random sources into
nearly uniform bits. Though the motivation of extractors is to simulate random-
ized algorithms with weak random sources as might arise in nature, randomness
extractors have been successfully applied to coding theory, cryptography, com-
plexity, etc. [12,14,22]. In this paper, we focus on the extractors that can be
applied to privacy amplification. In this scenario, two parties Alice and Bob share
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a weakly random secret W ∈ {0, 1}n. W may be a human-memorizable pass-
word, some biometric data, and physical sources, which are themselves weakly
random, or a uniform secret which may have been partially leaked to an adver-
sary Eve. Thus, only the min-entropy of W is guaranteed. Alice and Bob interact
over a public communication channel in order to securely agree on a nearly uni-
form secret key R ∈ {0, 1}m in the presence of the adversary, Eve, who can see
every message transmitted in the public channel. The public seed length and
min-entropy of W are two main measures of efficiency in this setting. If Eve
is passive, a (strong) randomness extractor yields the following solution: Alice
sends a uniformly random seed S to Bob, then they both compute R = Ext(W,S)
as the nearly uniform secret key [18]. If Eve is active (i.e., it may change the
messages in arbitrary ways), some protocols have been proposed to achieve this
goal [4,6–9,13–15,21,23].

As a major progress, Dodis and Wichs [9] introduced non-malleable extrac-
tors to study privacy amplification protocols, where the attacker is active and
computationally unbounded. If an attacker sees a random seed S and modifies it
into an arbitrarily related seed S′, then the relationship between R = Ext(W,S)
and R′ = Ext(W,S′) is bounded to avoid related key attacks. More formally, a
non-malleable extractor is a function nmExt : {0, 1}n × {0, 1}d → {0, 1}m that
takes two inputs, a weakly-random secret source1 W with min-entropy α and
uniformly random seed S, and outputs a string which is γ-close to uniform (see
Definition 1), given S as well as nmExt(W,A(S)), for an arbitrary function A
with A(S) �= S. They proved that (α, 2γ)-non-malleable extractors exist as long
as α > 2m + 3 log 1

γ + log d + 9 and d > log(n − α + 1) + 2 log 1
γ + 7. The

first explicit non-malleable extractor was constructed by Dodis, Li, Wooley and
Zuckerman [8]. It works for any weakly random input source with the min-
entropy α > n

2 and uniformly random seed of length d = n (It works even if the
seed has entropy only Θ(m + log n)). However, when outputting more than a
logarithmic number of bits, its efficiency relies on a longstanding conjecture on
the distribution of prime numbers.

Li [14] proposed that (α, 2γ)-non-malleable extractor nmExt : {0, 1}n ×
{0, 1}d → {0, 1}, where α = (12−δ)·n and d = O(log n+log(1/γ)) for any constant
δ > 0, can be constructed as follows: the seed S is encoded using the parity check
matrix of a BCH code, and then the output is the inner product function of the
encoded source and the encoded seed over F2. Dodis and Yu [11] observed that for
4-wise independent hash function family {hw : {0, 1}d → {0, 1}m | w ∈ {0, 1}n},
nmExt(w, s) = hw(s) is a (α, 2

√
2n−α−d)-non-malleable extractor. In 2012, an

alternative explicit construction based on the extractor of Raz [20] was given by
Cohen et al. [6]. Without using any conjecture, their construction works for any
weakly random source with the min-entropy α = (12 + δ) · n and uniformly ran-
dom seed of length d ≥ 23

δ ·m+2 log n (see Theorem 1 for details). However, their
result suffers from some drawbacks: The non-malleable extractor is constructed
based on the explicit seeded extractor of Raz [20], while the error2 estimation in

1 When we say a source in this paper, we mean a random variable.
2 The concept of the error of seeded extractor can be seen in Definition 1.
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that construction is too rough. Furthermore, though one main purpose of [6] is
to shorten the length of the seed, the lower bound on the seed length is still not
optimal.

Our Contributions and Techniques

• By developing the combination and permutation techniques, we improve the
error estimation of Raz’s extractor in STOC’05 [20], a special case of which was
used by Cohen et al. in CCC’12 [6]. For simplicity, denote γ1 as the error of
the extractor in [6], and γ2 as the counterpart in this paper. Recall that γ1 =

2
( 1
2 −δ)n

k ·(2ε)
1
k in [6] under the assumption that ε ≥ 2− dk

2 ·kk and 0 < δ ≤ 1
2 (see

Lemma 1). If ε ≥ 1

2(
1
2 −δ)n+1

, then γ1 = 2
( 1
2 −δ)n

k ·(2ε)
1
k ≥ 1. In this case, the error

estimation is meaningless. One main reason is that in those proofs, the partition
method about the sum [6,20] which bounds the error didn’t capture the essence
of the biased sequence for linear tests (see Definition 2). In this paper, we pro-
pose another partition method and give a better bound on the sum by employing
the combination and permutation formulas. In particular, the combination and
permutation techniques (see Proposition 1) may be useful in future works. Cor-

respondingly, the error is γ2 = 2
( 1
2 −δ)n

k · [2− dk
2 ·(k−1) ·(k−3) · · · · ·1 ·(1−ε)+ε]

1
k

(see Theorem 2). Since ε ≥ 2− dk
2 ·kk and 2− dk

2 ·kk > 2− dk
2 ·(k−1) ·(k−3) · · · · ·1

for any even integer k, we get γ1 > γ2. To simplify this bound, let k be a specific

value. For instance, let k = 4, then the error γ2 = 2
( 1
2 −δ)n

4 · [2−2d ·3 ·(1−ε)+ε]
1
4 .

• Note that the error estimation of the Raz’s extractor impacts greatly on the
constraints of the parameters including the seed length, the weak source’s min-
entropy and the error3 of the non-malleable extractor. Based on the above
improvement of the error estimation, we present an explicit construction of non-
malleable extractors, which is an improvement of the construction of Cohen et
al. in CCC’12 [6] in the sense that the seed length is shorter. More concretely,
we present an explicit (1016, 1

2 )-non-malleable extractor nmExt : {0, 1}n ×
{0, 1}d → {0, 1} with n = 1024 and d = 19, which beats the condition
“2.01 · log n ≤ d ≤ n” in [6], since seed length d is just 1.9 · log n in our con-
struction while it is no less than 46

63 +66 according to [6]. Moreover, we improve
the parameters of the general explicit construction given by Cohen et al.

• We show how our non-malleable extractors are applied to privacy amplifica-
tion.

Organization. The remainder of the paper is organized as follows. In Sect. 2,
we review some notations, concepts, and results. In Sect. 2, we show an exist-
ing central lemma about the error estimation of Raz’s Extractor and improve it
by proposing a new partition method. In Sect. 4, we propose the explicit con-
struction of non-malleable extractors with shorter seed length compared with
that in [6]. In Sect. 5, we show how the non-malleable extractors are applied to
privacy amplification. Section 6 concludes the paper.
3 The concept of the error of non-malleable extractor can be seen in Definition 3.
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2 Preliminaries

For any positive integer n, denote [n] = {1, 2, . . . , n}. Denote Um as the uni-
formly random distribution over {0, 1}m. We measure the distance between two
distributions by the L1 norm in order to be consistent with [6]. The statistical
distance of X and Y is defined as SD(X,Y ) = 1

2‖X−Y ‖1. It’s well known that for
any function f , SD(f(X), f(Y )) ≤ SD(X,Y ). Denote SD((X1,X2), (Y1, Y2) | Z)
as the abbreviation of SD((X1,X2, Z), (Y1, Y2, Z)).

The min-entropy of variable W is H∞(W ) = − log maxw Pr(W = w). W
over {0, 1}n is called an (n, α)it-source if H∞(W ) ≥ α. We say that a source
(i.e., a random variable) is a weak source if its distribution is not uniform. We
say W is a flat source if it is a uniform distribution over some subset S ⊆ {0, 1}n.
Chor and Goldreich [5] observed that the distribution of any (n, α)-source is a
convex combination of distributions of flat (n, b)-sources. Therefore, for general
weak sources, it will be enough to consider flat sources instead in most cases.

Definition 1. We say that the distribution X is ε-close to the distribution
Y if ‖X − Y ‖1 =

∑
s |Pr[X = s] − Pr[Y = s]| ≤ ε4. A function Ext :

{0, 1}n × {0, 1}d → {0, 1}m is an (α, γ)-seeded extractor if for every (n, α)-
source W and an independent uniformly random variable S (called seed) over
{0, 1}d, the distribution of Ext(W,S) is γ-close to Um. γ is called the error of
the seeded extractor. A seeded extractor is a strong (α, γ)-extractor if for W and
S as above, (Ext(W,S), S) is γ-close to (Um, Ud).

Definition 2. A random variable Z over {0, 1} is ε-biased if bias(Z) = |Pr[Z =
0] − Pr[Z = 1]| ≤ ε (i.e., Z is ε-close to uniform). A sequence of 0-1 random
variables Z1, Z2, . . . , ZN is ε-biased for linear tests of size k if for any nonempty
τ ⊆ [N ] with |τ | ≤ k, the random variable Zτ = ⊕i∈τZi is ε-biased. We also say
that the sequence Z1, Z2, . . . , ZN ε-fools linear tests of size k.

For every k′, N ≥ 2, variables Z1, · · · , ZN as above can be explicitly con-
structed using 2 · �log(1/ε) + log k′ + log log N� random bits [1].

The Extractor of Raz. Raz [20] constructed an extractor based on a sequence
of 0-1 random variables that have small bias for linear tests of a certain size.
Let Z1, · · · , Zm·2d be 0-1 random variables that are ε-biased for linear tests of
size k′ that are constructed using n random bits. The set of indices [m · 2d] can
be considered as the set {(i, s) : i ∈ [m], s ∈ {0, 1}d}. Define Ext : {0, 1}n ×
{0, 1}d → {0, 1}m by Ext(w, s) = Z(1,s)(w)||Z(2,s)(w) . . . ||Z(m,s)(w), where “||”
is the concatenation operator. Raz proposed that Ext is a seeded extractor with
good parameters [20].

Cohen et al. [6] proved that the above extractor is in fact non-malleable.
We’ll also construct non-malleable extractors based on it. The formal definition
of non-malleable extractors is as follows.

4 In other papers (e.g., [9,11,14,24]), X is ε-close to Y if 1
2
‖X −Y ‖1 = 1

2

∑
s | Pr[X =

s] − Pr[Y = s]| ≤ ε. To keep consistency, Definition 1 holds throughout this paper.
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Definition 3. (see [6]) We say that a function A : {0, 1}d → {0, 1}d is an
adversarial function, if for every s ∈ {0, 1}d, f(s) �= s holds. A function
nmExt : {0, 1}n × {0, 1}d → {0, 1}m is a (α, γ)-non-malleable extractor if for
every (n, α)-source W , independent uniformly random variable S, and every
adversarial function A,

‖(nmExt(W,S), nmExt(W,A(S)), S) − (Um, nmExt(W,A(S)), S)‖1 ≤ γ.

γ is called the error of the non-malleable extractor.

One-time message authentication code (MAC) is used to guarantee that the
received message is sent by a specified legitimate sender in an unauthenticated
channel. Formally,

Definition 4. A family of functions {MACr : {0, 1}v → {0, 1}τ}r∈{0,1}m is a
ε-secure (one-time) message authentication code (MAC) if for any μ and any
function f : {0, 1}τ → {0, 1}v × {0, 1}τ , it holds that,

Pr
r←Um

[MACr(μ′) = σ′ ∧ μ′ �= μ | (μ′, σ′) = f(MACr(μ))] ≤ ε.

Recall that the main theorem about the explicit construction of non-
malleable extractors proposed in [6] is as follows.

Theorem 1. (see [6]) For any integers n, d, and m, and for any 0 < δ ≤ 1
2 such

that d ≥ 23
δ ·m+2 log n, n ≥ 160

δ ·m, and δ ≥ 10 · log(nd)
n , there exists an explicit

((12 + δ) · n, 2−m)-non-malleable extractor nmExt : {0, 1}n × {0, 1}d → {0, 1}m.

3 Error Estimation of Raz’s Extractor and Its
Improvement

In this section, we first recall the central lemma used in [6], which is a special
case about the error estimation of Raz’s Extractor [20]. Then we point out the
flaw in the proof and improve its error estimation. Afterwards, we compare our
result with the original one and roughly show the role of the improvement.

3.1 A Special Case of Raz’s Extractor

The central lemma used in [6] is below, the proof of which is essentially the same
as that in [20]. It can be considered as a special case of Raz’s Extractor [20].

Lemma 1. Let D = 2d. Let Z1, . . . , ZD be 0-1 random variables that are ε-
biased for linear tests of size k′ that are constructed using n random bits. Define
Ext(1): {0, 1}n × {0, 1}d → {0, 1} by Ext(1)(w, s) = Zs(w), that is, Ext(1)(w, s) is
the random variable Zs, when using w as the value of the n bits needed to produce
Z1, . . . , ZD. Then, for any 0 < δ ≤ 1

2 and even integer k ≤ k′ s.t. k · ( 1ε )
1
k ≤ D

1
2 ,

Ext(1) is a ((12 + δ) · n, γ1)-seeded-extractor, with γ1 = (ε · 2(
1
2−δ)n+1)

1
k .
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Proof. Let W be a (n, (12 + δ) · n)-source. Let S be a random variable that is
uniformly distributed over {0, 1}d and is independent of W . We will show that
the distribution of Ext(1)(W,S) is γ1-close to uniform. As in [5], it is enough to
consider the case where W is uniformly distributed over a set W ′ ⊆ {0, 1}n of
size 2(1/2+δ)n. For every w ∈ {0, 1}n and s ∈ {0, 1}d denote e(w, s) = (−1)Zs(w).

Claim 1. For any r ∈ [k] and any different s1, . . . , sr ∈ {0, 1}d,

∑

w∈{0,1}n

r∏

j=1

e(w, sj) ≤ ε · 2n.

Proof.

∑

w∈{0,1}n

r∏

j=1

e(w, sj) =
∑

w∈{0,1}n

r∏

j=1

(−1)Zsj
(w) =

∑

w∈{0,1}n

(−1)Zs1 (w)⊕···⊕Zsr (w),

and since Zs1(w) ⊕ · · · ⊕ Zsr
(w) is ε-biased, the last sum is at most ε · 2n. ��

The L1 distance of Ext(1)(W,S) and U is

‖Ext(1)(W,S) − U‖1
= |Pr[Ext(1)(W,S) = 0] − Pr[Ext(1)(W,S) = 1]|
= | 1

2(
1
2+δ)n

· 1
2d

(
∑

w∈W ′

∑

s∈{0,1}d

e(w, s))|.

Denote γ(W,S) = 1

2(
1
2+δ)n

· 1
2d (

∑

w∈W ′

∑

s∈{0,1}d

e(w, s)).

Define f : [−1, 1] → [−1, 1] by f(z) = zk, then f is a convex function for any
even positive integer k.

Thus, by a convexity argument, we have

2(
1
2+δ)n · (2d · γ(W,S))k = 2(

1
2+δ)n · {

∑

w∈W ′
[

1
2(1/2+δ)n

∑

s∈{0,1}d

e(w, s)]}k

≤ 2(
1
2+δ)n · {

∑

w∈W ′

1
2(1/2+δ)n

[
∑

s∈{0,1}d

e(w, s)]k}

≤
∑

w∈{0,1}n

[
∑

s∈{0,1}d

e(w, s)]k

=
∑

w∈{0,1}n

∑

s1,...,sk∈{0,1}d

k∏

j=1

e(w, sj)

=
∑

s1,...,sk∈{0,1}d

∑

w∈{0,1}n

k∏

j=1

e(w, sj).
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The sum over s1, . . . , sk ∈ {0, 1}d is broken into two sums. The first sum is
over s1, . . . , sk ∈ {0, 1}d such that in each summand, at least one sj is different
than all other elements in the sequence s1, . . . , sk

5, and the second sum is over
s1, . . . , sk ∈ {0, 1}d such that in each summand every sj is identical to at least
one other element in the sequence s1, . . . , sk. The number of summands in the
first sum is trivially bounded by 2d·k, and by Claim 1 each summand is bounded
by 2n · ε. The number of summands in the second sum is bounded by 2d· k

2 · (k
2 )k,

and each summand is trivially bounded by 2n. Therefore,

2(
1
2+δ)n · 2d·k · γ(W,S)k ≤ 2n · ε · 2d·k + 2n · 2d· k

2 · (
k

2
)k ≤ 2 · 2n · ε · 2d·k,

where the last inequality follows by the assumption that k · (1/ε)1/k ≤ D
1
2 . That

is, γ(W,S) ≤ (ε · 2(
1
2−δ)n+1)

1
k . ��

The above partition method about the sum over s1, . . . , sk ∈ {0, 1}d is not
optimal, since it doesn’t capture the essence of random variable sequence that
is biased for linear tests (i.e., Z1, . . . , Z2d is called ε-biased for linear tests of size
k if for any nonempty τ ⊆ [2d] with |τ | ≤ k, the random variable Zτ = ⊕i∈τZi

is ε-biased). Moreover, the bounds on the number of summands in the two sums
are too large. The same problem exists in [20].

In fact, when every sj is identical to at least one other element in the
sequence s1, . . . , sk under the assumption that at least one sj appears odd

times in the sequence s1, . . . , sk, the summand
∑

w∈{0,1}n

k∏

j=1

e(w, sj) is still

upper bounded by 2n · ε, since
∑

w∈{0,1}n

k∏

j=1

e(w, sj) =
∑

w∈{0,1}n

k∏

j=1

(−1)Zsj
(w) =

∑

w∈{0,1}n

(−1)Zs1 (w)⊕···⊕Zsk
(w) and Z1, . . ., ZD are 0-1 random variables that are

ε-biased for linear tests of size k′. However, in this case the upper bound on the

summand
∑

w∈{0,1}n

k∏

j=1

e(w, sj) was considered to be 2n in [6,20].

3.2 Improvement for the Error Estimation of Raz’s Extractor

We improve the error estimation of Raz’s extractor as follows. Unlike [6,20],
we present another partition method of the sum in the following proof. The
combination and permutation formulas are exploited to show a tight bound on
the sum. Correspondingly, the error can be reduced.

Proposition 1. Consider fixed positive numbers k and d. Assume that a
sequence s1, . . . , sk satisfies the following two conditions: (1) for every i ∈ [k],
si ∈ {0, 1}d, and (2) for every j ∈ [k], sj appears even times in the sequence
s1, . . . , sk. Then the number of such sequences s1, . . . , sk is 2

dk
2 · (k − 1) · (k − 3) ·

· · · · 1.
5 In this paper, two elements si and sj in the sequence s1, . . . , sk, where i �= j, might

represent the same string.
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Proof. Denote Cl
r as the number of possible combinations of r objects from a

set of l objects. Then Cl
r = l!

r!(l−r)! = l(l−1)(l−2)···(l−r+1)
r! . Denote P l

r as the
number of possible permutations of r objects from a set of l objects. Then
P l

r = l!
(l−r)! = l(l−1)(l−2) · · · (l−r+1). Hence the number of the corresponding

sequences is

Ck
2 · Ck−2

2 · · · · · C2
2

P
k
2
k
2

·2 dk
2 =

k! · 1

2
k
2

(k
2 )!

·2 dk
2 =

k!

(k
2 )! · 2

k
2
·2 dk

2 = 2
dk
2 ·(k−1)·(k−3)·· · ··1.

Theorem 2. Let D = 2d. Let Z1, . . . , ZD be 0-1 random variables that are ε-
biased for linear tests of size k′ that are constructed using n random bits. Define
Ext(1): {0, 1}n × {0, 1}d → {0, 1} by Ext(1)(w, s) = Zs(w), that is, Ext(1)(w, s)
is the random variable Zs, when using w as the value of the n bits needed to
produce Z1, . . . , ZD. Then, for any 0 < δ ≤ 1

2 and any even integer k ≤ k′,

Ext(1) is a ((12 + δ) · n, γ2)-seeded-extractor, where γ2 = 2
( 1
2 −δ)·n

k · [2− dk
2 · (k − 1) ·

(k − 3) · · · · · 1 · (1 − ε) + ε]
1
k .

Proof. We improve the proof by proposing another method for partitioning

the sum
∑

s1,...,sk∈{0,1}d

∑

w∈{0,1}n

k∏

j=1

e(w, sj) into two sums. The first sum is over

s1, . . . , sk ∈ {0, 1}d such that in each summand, at least one sj appears odd
times in the sequence s1, . . . , sk, and the second sum is over s1, . . . , sk ∈ {0, 1}d

such that in each summand every sj appears even times in the sequence
s1, . . . , sk. By Proposition 1, the number of summands in the second sum is
2

dk
2 · (k − 1) · (k − 3) · · · · · 1, and each summand is 2n. Therefore, the number

of summands in the first sum is 2dk − 2
dk
2 · (k − 1) · (k − 3) · · · · · 1, and by

Claim 1 each summand is bounded by 2n · ε. Hence, 2(
1
2+δ)·n · 2d·k · γ(W,S)k ≤

2n · [2
dk
2 · (k − 1) · (k − 3) · · · · · 1] + 2n · ε · [2dk − 2

dk
2 · (k − 1) · (k − 3) · · · · · 1].

Correspondingly,

γ(W,S)k ≤ 2n · 2dk

2(
1
2+δ)·n · 2d·k · [2− dk

2 · (k − 1) · (k − 3) · · · · · 1 · (1 − ε) + ε]

= 2(
1
2−δ)·n · [2− dk

2 · (k − 1) · (k − 3) · · · · · 1 · (1 − ε) + ε]

That is, γ(W,S) ≤ 2
( 1
2 −δ)·n

k · [2− dk
2 · (k − 1) · (k − 3) · · · · · 1 · (1 − ε) + ε]

1
k . ��

3.3 Comparison

For simplicity, in the rest of the paper, denote γ1 as the error of the extractor
in Lemma 1, and γ2 as the counterpart in Theorem 2.

Proposition 2. (k − 1) · (k − 3) · · · · · 1 ≤ (k
2 )k for any positive even integer k,

and “=” holds iff k = 2. Furthermore, lim
k→∞

(k−1)·(k−3)·····1
2

1
2 ·( k

e )
k
2

= 1.
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Proof. When k = 2, it’s trivial that (k−1)·(k−3)·· · ··1 = (k
2 )k. In the following,

we only consider any positive even integer k with k > 2.
Since k!

( k
2 )!

< kk

2
k
2
, we have k!

( k
2 )!·2

k
2

< kk

2k . Hence,

(k − 1) · (k − 3) · · · · · 1 =
k!

(k
2 )! · 2

k
2

<
kk

2k
.

From the Stirling’s Formula, we have lim
k→∞

k!√
2πk( k

e )k
= 1. Therefore,

lim
k→∞

(k − 1) · (k − 3) · · · · · 1

2
1
2 · (k

e )
k
2

= lim
k→∞

[
k!√

2πk · (k
e )k

·
√

2π · k
2 · ( k

2e )
k
2

(k
2 )!

] = 1. ��

The error estimation of the extractor in Theorem 1 is better than that in
Lemma 1. Recall that in Theorem 1, we have

γ2 = 2
( 1
2 −δ)n

k · [2− dk
2 · (k − 1) · (k − 3) · · · · · 1 · (1 − ε) + ε]

1
k

= 2
( 1
2 −δ)n

k · {2− dk
2 · (k − 1) · (k − 3) · · · · · 1 + [1 − 2−

dk
2 · (k − 1) · (k − 3) · · · · · 1] · ε} 1

k ,

while in Lemma 1, we have γ1 = 2
( 1
2 −δ)n

k ·(2ε)
1
k in [6] under the assumption that

ε ≥ 2− dk
2 · kk and 0 < δ ≤ 1

2 .
In general, since ε ≥ 2− dk

2 · kk and 2− dk
2 · kk > 2− dk

2 · (k − 1) · (k − 3) · · · · · 1
for any even integer k, we get γ1 > γ2. In particular, when k is large enough,

from Proposition 2, we get that (k − 1) · (k − 3) · · · · · 1 ≈ 2
1
2 · (k

e )
k
2 . Therefore,

γ2 ≈ 2
( 1
2 −δ)n

k · {2− dk
2 · 2

1
2 · (

k

e
)

k
2

+ [1 − 2− dk
2 · 2

1
2 · (

k

e
)

k
2

] · ε} 1
k .

Correspondingly, ε ≥ 2− dk
2 · kk > 2− dk

2 · 2
1
2 · (k

e )
k
2 . Hence, γ1 > γ2.

Remark 1. To simplify γ2, let k be a specific value. For instance, let k = 4, then

the error γ1 = 2
( 1
2 −δ)n

4 · (2ε)
1
4 and γ2 = 2

( 1
2 −δ)n

4 · [2−2d · 3 · (1 − ε) + ε]
1
4 .

Remark 2. Noted that when k is large enough, (k
2 )k is much greater than

(k − 1) · (k − 3) · · · · · 1. For instance, when k = 6, we have (k
2 )k = 729 and

(k −1) · (k −3) · · · · ·1 = 15. Therefore, “The number of summands in the second
sum is 2

dk
2 · (k − 1) · (k − 3) · · · · · 1, and each summand is 2n.” in the proof of

Theorem 2 is a great improvement on “The number of summands in the second
sum is bounded by 2d· k

2 · (k
2 )k, and each summand is trivially bounded by 2n.”

in the proof of Lemma 1.

Remark 3. If ε ≥ 1

2(
1
2 −δ)n+1

, then γ1 = 2
( 1
2 −δ)n

k · (2ε)
1
k ≥ 1. In this case, the error

estimation is meaningless.
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3.4 Important Role in Improving the Seed Length of Non-malleable
Extractors

It should be noticed that the error of the non-malleable extractor in Theorem1
given by Cohen et al. [6] relies on some constrained parameters. The main idea
of the proof about Theorem1 given by Cohen et al. [6] is as follows. Assume for
contradiction that Ext is not a non-malleable extractor, then after some steps,
an inequality γ1 > A is deduced, where A denotes a certain formula. On the
other hand, from the assumption of Theorem1, γ1 < A should hold. Thus Ext
is a non-malleable extractor. Essentially, the constraints on the parameters in
Theorem 1 are chosen according to the inequality γ1 < A. From Proposition 2,
we have γ1 > γ2 for any positive even integer k ≥ 4. Therefore, we may relax
the constraints on the parameters in Theorem 1 according to γ2 < A. See the
proofs of Theorems 3 and 4 below for details. Correspondingly, the seed length
may be further shortened.

4 Explicit Construction of Non-malleable Extractors
with Shorter Seed Length

In this section, we improve the parameters of the explicit construction of non-
malleable extractors by Cohen et al. in [6]. The seed length here is shorter than
that in Theorem 1.

We first review two lemmas that will be used later.

Lemma 2. (see [6]) Let X be a random variable over {0, 1}m. Let Y , S be two
random variables. Then,

‖(X,Y, S) − (Um, Y, S)‖1 = Es∼S [‖(X,Y, S)|S=s − (Um, Y, S)|S=s‖1].

Lemma 3. (see [6]) Let X, Y be random variables over {0, 1}m and {0, 1}n

respectively. Then ‖(X,Y )− (Um, Y )‖1 ≤ ∑

∅�=σ⊆[m],τ⊆[n]

bias(Xσ ⊕Yτ ), where Xi

is the i-th bit of X, Yj is the jth bit of Y , Xσ = ⊕i∈σXi, and Yτ = ⊕j∈τYj.

In what follows, we show a specific explicit construction of a non-malleable
extractor such that it is an improvement of [6] in the sense that the seed length
is shorter.

Theorem 3. There exists an explicit (1016, 1
2 )-non-malleable extractor Ext :

{0, 1}1024 × {0, 1}19 → {0, 1}.
Proof Idea. We borrow the reductio ad absurdum approach in the proof of

Theorem1. The proof sketch is as follows. Assume by contradiction that Ext is
not non-malleable. Then

Phase 1: There must exist a weak source W with min-entropy at least
α and an adversarial function A such that the statistical distance between
(Ext(W,S),Ext(W,A(S)), S) and (U1,Ext(W,A(S)), S) has a certain lower
bound. Then there exists S ⊆ {0, 1}d s.t. for every s ∈ S, Ys = Ext(W, s) ⊕
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Ext(W,A(s)) is biased. Consider the directed graph G = (S ∪ A(s), E) with
E = {(s,A(s) : s ∈ S}, where G might contains cycles. By employing a lemma
about graph as shown in [6], we can find a subset S′ ⊆ S s.t. the induced graph
of G by S′ ∪ A(S′) is acyclic.

Phase 2: We prove that the set of variables {Ys}s∈S′ is ε-biased for linear
tests of size at most k/2. Consider the extractor of Raz built on the variables
{Ys}s∈S′ . It’s a good seeded-extractor, which yields a contradiction.

Phase 1 of the proof is almost the same as that in [6]. Phase 2 jumps out
of the idea in [6]. We exploit the error estimation of the extractor in Theorem2
instead of Lemma 1. We use a trick such that the even integer k is just 4 instead
of the largest even integer that is not larger than �128δ�

2 , where δ can be seen in
Theorem1. Therefore the extractor error can be simplified and we don’t need to
prove k · (1ε )

1
k ≤ (2d)

1
2 as shown in Lemma 1.

Proof. The explicit construction we present is the extractor constructed in [20].
Alon et al. [1] observed that for every k′, N ≥ 2, the sequence of 0-1 random
variables Z1, . . . , ZN that is ε-biased for linear tests of size k′ can be explicitly
constructed using 2 · �log(1/ε) + log k′ + log log N� random bits. Therefore, let
D = 219 and ε = 2− 1024

2 +r with r = 1 + log k′ + log 19, then we can construct a
sequence of 0-1 random variables Z1, . . . , Z219 that is ε-biased for linear tests of
size k′ using n random bits. Let k′ = 8. Define Ext : {0, 1}1024×{0, 1}19 → {0, 1}
by Ext(w, s) = Zs(w).

Let S be a random variable uniformly distributed over {0, 1}19.
Assume for contradiction that Ext is not a (1016, 1

2 )-non-malleable-extractor.
Then there exists a source W of length 1024 with min-entropy 1016, and an
adversarial function A : {0, 1}19 → {0, 1}19 such that

‖(Ext(W,S),Ext(W,A(S)), S) − (U1,Ext(W,A(S)), S)‖1 >
1
2
.

As in [5], suppose W is uniformly distributed over a set W ′ ⊆ {0, 1}1024 of size
21016.

For every s ∈ {0, 1}19, let Xs be the random variable Ext(W, s). By Lemmas 2
and 3, we have

∑

∅�=σ⊆[1],τ⊆[1]

Es∼S [bias((Xs)σ ⊕ (XA(s))τ )] >
1
2
.

Let σ∗, τ∗ ⊆ [1] be the indices of (one of) the largest summands in the above
sum. For every s ∈ {0, 1}19, let Ys = (Xs)σ∗ ⊕ (XA(s))τ∗ .

There is a set S′′ ⊆ {0, 1}19 satisfying that

|S′′| >
ξ · 219−2

2(1 + 1)2
= 213.

The S′′ here is the same as that in the proof of Theorem 1 by replacing t there
with 1 and the error 2−m there with 1

2 . Please see [6] for details.
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Define a random variable YS′′ over {0, 1} as follows: To sample a bit from YS′′ ,
uniformly sample a string s from S′′, and then independently sample a string
w uniformly from W ′. The sampled value is Ys(w). We have that bias(YS′′) >

1
2

21+1(2−1)(1+1) = 1
24 . For every s ∈ S′′, let Y ′

s = Z(1,s) ⊕ (⊕j∈τ∗Z(j,A(s))), where
Z(1,s) = Zs.

Let t = 1 and m = 1 in Claim 7.2 of [6], we get the following claim.
Claim 2. The set of random variables {Y ′

s}s∈S′′ ε-fools linear tests of size 4.
We apply Theorem 2 on the random variables {Y ′

s}s∈S′′ . For simplicity of pre-
sentation we assume |S′′| = 2d′

. By Theorem 2, the distribution of Ext(1)(W,S′′)
is γ2-biased for γ2 = 2

8
k · [2− d′k

2 · (k − 1) · (k − 3) · · · · · 1 · (1 − ε) + ε]
1
k . Let

k = k′
2 = 4, then γ2 = 2

8
4 · [2−2d′ · 3 · (1 − ε) + ε]

1
4 . We note that Ext(1)(W,S′′)

has the same distribution as YS′′ . In particular, both random variables have the
same bias. Therefore, we get

2
8
4 · [2−2d′ · 3 · (1 − ε) + ε]

1
4 ≥ bias(YS′′) >

1
24

,

Moreover, since 2d′
= |S′′| > 213, we have

22 · [4 · 2−28 · 3 · (1 − ε) + ε]
1
4 > 22 · [2−2d′ · 3 · (1 − ε) + ε]

1
4 >

1
24

.

That is,

2−38 >
2−4 · 2−20 − ε

3(1 − ε) · 212
, (a)

where ε = 2−516+r and r = 4 + log 19.
On the other hand, we have 2−38 < 2−4·2−20−ε

3(1−ε)·210·22 , which is in contradiction to
the inequality (a). ��
Comparison. In Theorem 1, the seed length d and the source length n should
satisfy d ≥ 23

δ m + 2 log n with 0 < δ ≤ 1
2 . However, in the above construction,

we have d = 1.9 log n. We compare them in detail as follows.
Let n = 210, m = 1, and δ = 63

128 in Theorem 1, then it can be easily
verified that n ≥ 160

δ ·m. To construct an explicit ((12 +δ) ·n, 2−m)-non-malleable
extractor nmExt : {0, 1}n × {0, 1}d → {0, 1}m (that is, an explicit (1016, 1

2 )-
non-malleable extractor nmExt), by Theorem 1, the seed length d should satisfy
d ≥ 23

δ · m + 2 log n = 46
63 + 66. Moreover, when d ≤ 241, the precondition

δ ≥ 10 · log(nd)
n in Theorem 1 is satisfied. Meanwhile, by Theorem 3, the seed

length d can just be 19. In this sense, our construction is much better than that
of [6].

Using the extractor with improved error estimation (see Theorem2), we can
also improve the parameters of the explicit non-malleable extractor nmExt :
{0, 1}n × {0, 1}d → {0, 1}m constructed by Cohen et al. [6] below.

Theorem 4. Assume that

0 < 2log 3−2θ+4m+8 − 2log 3− n
2 +4+log d−2θ+4m+8 ≤ 22d+4θ−8m−8−n+α − 22d− n

2 +4+log d.
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Then there exists an explicit (α, 2θ)-non-malleable extractor nmExt : {0, 1}n ×
{0, 1}d → {0, 1}m.

The proof is similar to that of Theorem3. Please see Appendix A for details.
Due to the analysis of Sect. 3.4, we conclude that the above theorem is really

an improvement in the sense that the seed length here is shorter. Though the
constrains on the parameters in Theorem 4 are complex, we show some sim-
plification in AppendixB. How to further simplify the constraints is an open
problem.

5 Application to Privacy Amplification

In this section, we show how the non-malleable extractor is applied to the pri-
vacy amplification protocol [8,9] (also known as an information-theoretic key
agreement protocol), the formal concept of which can be seen in AppendixC.

Roughly speaking, in this scenario, Alice and Bob share a shared weak
secret W , the min-entropy of which is only guaranteed. They communicate over
a public and unauthenticated channel to securely agree on a nearly uniform
secret key R, where the attacker Eve is active and computationally unbounded.
To achieve this goal, the protocol is designed as follows.

Table 1. The Dodis-Wichs privacy amplification protocol.

Alice: W Eve Bob: W

Sample random S.

S −→ S

Sample random S0.

R = nmExt(W,S ).

T0 = MACR (S0).

Reach KeyDerived state.

Output RB = Ext(W,S0).

(S0, T0) ←− (S0, T0)

R = nmExt(W,S).

If T0 = MACR(S0), output RA = ⊥.

Otherwise, reach KeyConfirmed state,

and output RA = Ext(W,S0).

Assume that we’ll authenticate the seed S0. Alice initiates the conversation
by transmitting a uniformly random seed S to Bob. During this transmission,
S may be modified by Eve into any value S′. Then Bob samples a uniform seed
S0, computes the authentication key R′ = nmExt(W,S′), and sends S0 together
with the authentication tag T0 = MACR′(S0) to Alice. At this point, Bob reaches
the KeyDerived state and outputs RB = Ext(W,S0). During this transmission,
(S0, T0) may be modified by Eve into any pair (S′

0, T
′
0). Alice computes the
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authentication key R = nmExt(W,S) and verifies that T ′
0 = MACR(S′

0). If the
verification fails then Alice rejects and outputs RA = ⊥. Otherwise, Alice reaches
the KeyConfirmed state and outputs RA = nmExt(W,S′

0).
The security can be analyzed in two cases [6,8]. Case 1: Eve does not modified

the seed S in the first round. Then Alice and Bob share the same authentication
key (i.e., R′ = R), which is statistically close to a uniform distribution. Therefore,
Eve has only a negligible probability of getting a valid authentication tag T ′

0 for
any seed S′

0 �= S0. Case 2: Eve does modify the seed S to a different seed S′.
Since T0 is a deterministic function of S0 and R′, Eve may guess R′. According to
the definition of non-malleable extractors, the authentication key R computed
by Alice is still statistically close to a uniform distribution. Thus, again, the
adversary has only a negligible probability of computing a valid authentication
T ′
0 for any seed S′

0 with respect to the authentication key R. Consequently, the
above protocol is secure.

Theorem 5. (see [6,9]) Assume nmExt : {0, 1}n × {0, 1}d1 → {0, 1}m1 is a
(α, γnmExt)-non-malleable extractor, Ext : {0, 1}n×{0, 1}d2 → {0, 1}m2 is a strong
(α−(d1+m1)− log 1

ε′ , γExt)-extractor, and {MACr : {0, 1}d2 → {0, 1}τ}r∈{0,1}m1

is a εMAC-secure message authentication code. Then for any integers n and α ≤
n, the protocol in Table 1 is a 2-round (n, α,m, η)-privacy amplification protocol,
with communication complexity d1+d2+τ and η = max{ε′+γExt, γnmExt+εMAC}.

The explicit non-malleable extractor in this paper can be applied to construct
the above privacy amplification protocol with low communication complexity.

6 Conclusion

Non-malleable extractor is a powerful theoretical tool to study privacy amplifi-
cation protocols, where the attacker is active and computationally unbounded.
In this paper, we improved the error estimation of Raz’s extractor using the
combination and permutation techniques. Based on the improvement, we pre-
sented an improved explicit construction of non-malleable extractors with shorter
seed length. Similar to [6], our construction is also based on biased vari-
able sequence for linear tests. However, our parameters are improved. More
precisely, we presented an explicit (1016, 1

2 )-non-malleable extractor nmExt :
{0, 1}1024 × {0, 1}d → {0, 1} with seed length 19, while it is no less than 46

63 + 66
according to Cohen et al. in CCC’12 [6]. We also improved the parameters of
the general explicit construction of non-malleable extractors proposed by Cohen
et al. and analyzed the simplification of the constraints on the parameters (see
AppendixB for details). How to further simplify the constraints is an open prob-
lem. Finally, we showed their applications to privacy amplification protocol (or
information-theoretic key agreement protocol).
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A Proof of Theorem4

Proof. The explicit construction we present is the extractor constructed in [20].
Alon et al. [1] observed that for every k′, N ≥ 2, the sequence of 0-1 random
variables Z1, . . . , ZN that is ε-biased for linear tests of size k′ can be explicitly
constructed using 2 · �log(1/ε) + log k′ + log log N� random bits. Therefore, let
D = m · 2d and ε = 2− n

2 +r with r = 1+ log k′ + log log D, then we can construct
a sequence of 0-1 random variables Z1, . . . , ZD that is ε-biased for linear tests of
size k′ using n random bits. Let k′ = 8m. We interpret the set of indices [D] as
the set {(i, s) : i ∈ [m], s ∈ {0, 1}d}. Define Ext : {0, 1}n × {0, 1}d → {0, 1}m by
Ext(w, s) = Z(1,s)(w) · · · ||Z(m,s)(w), where “||” is the concatenation operator.

Let S be a random variable uniformly distributed over {0, 1}d.
Assume for contradiction that Ext is not a (α, 2θ)-non-malleable-extractor.

Then there exists a source W of length n with min-entropy α, and an adversarial-
function A : {0, 1}d → {0, 1}d such that

‖(Ext(W,S),Ext(W,A(S)), S) − (Um,Ext(W,A(S)), S)‖1 > 2θ.

As in [5], suppose W is uniformly distributed over W ′ ⊆ {0, 1}n of size 2α.
For every s ∈ {0, 1}d, let Xs be the random variable Ext(W, s). By Lemmas 2

and 3, we have
∑

∅�=σ⊆[m],τ⊆[m]

Es∼S [bias((Xs)σ⊕(XA(s))τ )] > 2θ. Let σ∗, τ∗ ⊆ [m]

be the indices of (one of) the largest summands in the above sum. For every
s ∈ {0, 1}d, let Ys = (Xs)σ∗ ⊕ (XA(s))τ∗ . There is a set S′′ ⊆ {0, 1}d satisfying
that

|S′′| >
2θ · 2d−2

2mt(2m − 1)(t + 1)2
=

2θ · 2d−2

2m+2(2m − 1)
.

The S′′ here is the same as that in the proof of Theorem 1 by replacing t there
with 1 and the error 2−m there with 2θ. Please see [6] for details.

Define a random variable YS′′ over {0, 1} as follows: To sample a bit from
YS′′ , uniformly sample a string s from S′′, and then independently sample a
string w uniformly from W ′. The sampled value is Ys(w). We have that

bias(YS′′) >
2θ

2mt+1(2m − 1)(t + 1)
=

2θ

2m+2(2m − 1)
.

For every s ∈ S′′, let Y ′
s = ⊕i∈σ∗Z(i,s) ⊕ (⊕j∈τ∗Z(j,A(s))).

Let t = 1 in Claim 7.2 of [6], we get the following claim.
Claim 2’. The set {Y ′

s}s∈S′′ε-fools linear tests of size k′
(t+1)m = 4.

We apply Theorem 2 on the random variables {Y ′
s}s∈S′′ . For simplicity of pre-

sentation, we assume |S′′| = 2d′
. By Theorem 2, the distribution of Ext(1)(W,S′′)
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is γ2-biased for γ2 = 2
n−α

k · [2− d′k
2 · (k − 1) · (k − 3) · · · · · 1 · (1 − ε) + ε]

1
k . Let

k = 4, then γ2 = 2
n−α

4 · [2−2d′ · 3 · (1 − ε) + ε]
1
4 . We note that Ext(1)(W,S′′)

has the same distribution as YS′′ . In particular, both random variables have the
same bias. Therefore, we get

2
n−α

4 · [2−2d′ · 3 · (1 − ε) + ε]
1
4 ≥ bias(YS′′) >

2θ

2m+2(2m − 1)
.

Moreover, since 2d′
= |S′′| > 2θ·2d−2

2m+2(2m−1) , we have

2
n−α

4 · [(2θ)−2 · 2−2d+2m+8 · (2m − 1)2 · 3 · (1 − ε) + ε]
1
4 >

2θ

2m+2 · (2m − 1)
.

Hence, 2n−α · [2−2θ · 2−2d+4m+8 · 3 · (1 − ε) + ε] > 24θ

28m+8 . That is,

2−2d >
24θ−8m−8−n+α − ε

3(1 − ε)2−2θ+4m+8

with ε = 2− n
2 +4+log d, which is in contradiction to the assumption of the

theorem. ��

B Analysis of the Assumption in Theorem4

In order to construct an explicit non-malleable extractor, it’s enough to guaran-
tee that the parameters satisfies

0 < 2log 3·(1−2− n
2 +4+log d)·2−2θ+4m+8 ≤ 22d+4θ−8m−8−n+α−22d− n

2 +4+log d. (b)

For simplicity, denote

A′ = log 3 − 2θ + 4m + 8, B′ = log 3 − n

2
+ 4 + log d − 2θ + 4m + 8,

C ′ = 2d + 4θ − 8m − 8 − n + α, D′ = 2d − n

2
+ 4 + log d,

then (b) holds ⇔ 0 < 2A′ − 2B′ ≤ 2C′ − 2D′
. We discuss what happens under

the assumption (b) in three cases as follows.
Case 1. Assume that A′ ≥ C ′ and B′ ≥ D′. Since “B′ ≥ D′” implies

“A′ ≥ C ′”, we only need to consider B′ ≥ D′ (i.e., log 3 − 2θ + 4m + 8 ≥ 2d).
Let 1 − ε = 1 − 2− n

2 +4+log d = 2ρ′
.

From log 3 + 8 + 4m ≥ 2d + 2θ, α ≤ n, m ≥ 1, and θ < 0, we get

− 16 > −8m − 8 + 4θ − n + α

= (log 3 + 8 + 4m) + 4θ − 12m − 16 − log 3 − n + α

≥ 2d + 2θ + 4θ − 12m − 16 − log 3 − n + α.

Let ρ′ ≥ −16. Then we have ρ′ > 2d + 2θ + 4θ − 12m − 16 − log 3 − n + α.
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Therefore, log 3 + ρ′ − 2θ + 4m + 8 > 2d + 4θ − 8m − 8 − n + α, which is in
contradiction to the inequality (b).

Consequently, when ε ∈ (0, 1−2−16], A′ ≥ C ′, and B′ ≥ D′, (b) does not hold.
From Theorem 2, only if ε is small enough, the corresponding seeded extractor
is useful. Therefore, we assume that ε ∈ (0, 1 − 2−16].

Case 2. Assume that A′ ≥ C ′ and B′ < D′, then it’s in contradiction to the
inequality (b).

Case 3. Assume that A′ < C ′, then it’s trivial that B′ < D′. Thus, we
only need to consider A′ < C ′. Since A′ > B′, we have C ′ > D′, that is,
4θ − 8m − 12 − n

2 + α > log d.
Therefore, we obtain the following corollary.

Corollary. Assume that ε = 2− n
2 +4+log d ∈ (0, 1 − 2−16] and

2log 3 · (1 − 2− n
2 +4+log d) · 2−2θ+4m+8 ≤ 22d+4θ−8m−8−n+α − 22d− n

2 +4+log d.

Then there exists an explicit (α, 2θ)-non-malleable extractor nmExt : {0, 1}n ×
{0, 1}d → {0, 1}m.

In particular, the parameters of the non-malleable extractor can be chosen
according to the inequality system

⎧
⎨

⎩

log 3 − 6θ + 16 + 12m + n − α < 2d
4θ − 8m − 12 − n

2 + α > log d
2− n

2 +4+log d ≤ 1 − 2−16
(1)

then check whether they satisfy the inequality

2log 3−2θ+4m+8 − 2log 3− n
2 +4+log d−2θ+4m+8 ≤ 22d+4θ−8m−8−n+α − 22d− n

2 +4+log d.

Remark. α can’t be less than n
2 , since 4θ − 8m − 12 − n

2 + α > log d.

C The Concept of Privacy Amplification Protocol

Definition 5. (see [6,9]) In an (n, α,m, η)-privacy amplification protocol (or
information-theoretic key agreement protocol), Alice and Bob share a weak secret
W , and have two candidate keys rA, rB ∈ {0, 1}m ∪ ⊥, respectively. For any
adversarial strategy employed by Eve, denote two random variables RA, RB as
the values of the candidate keys rA, rB at the conclusion of the protocol execution,
and random variable TE as the transcript of the (entire) protocol execution as
seen by Eve. We require that for any weak secret W with min-entropy at least α
the protocol satisfies the following three properties:

• Correctness: If Eve is passive, then one party reaches the state, the other
party reaches the KeyConfirmed state, and RA = RB.
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• Privacy: Denote KeyDerivedA and KeyDerivedB as the indicators of the events
in which Alice and Bob reach the KeyDerived state, respectively. Then dur-
ing the protocol execution, for any adversarial strategy employed by Eve, if
Bob reaches the KeyDerivedB state then SD((RB , TE), (Um, TE)) ≤ η; if Alice
reaches the KeyDerivedA state, then SD((RA, TE), (Um, TE)) ≤ η.

• Authenticity: Denote KeyConfirmedA and KeyConfirmedB as the indicators
of the events in which Alice and Bob reach the KeyConfirmed state, respectively.
Then, for any adversarial strategy employed by Eve, it holds that

Pr[(KeyConfirmedA ∨ KeyConfirmedB) ∧ RA �= RB] ≤ η.

References

1. Alon, N., Goldreich, O., H̊astad, J., Peralta, R.: Simple construction of almost
k-wise independent random variables. Random Struct. Algorithms 3(3), 289–304
(1992)

2. Bourgain, J.: More on the sum-product phenomenon in prime fields and its appli-
cations. Int. J. Number Theory 1, 1–32 (2005)

3. Cheraghchi, M., Guruswami, V.: Non-malleable coding against bit-wise and split-
state tampering. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 440–464.
Springer, Heidelberg (2014)

4. Chandran, N., Kanukurthi, B., Ostrovsky, R., Reyzin, L.: Privacy amplification
with asymptotically optimal entropy loss. In: STOC 2010, pp. 785–794 (2010)

5. Chor, B., Goldreich, O.: Unbiased bits from sources of weak randomness and prob-
abilistic communication complexity. SIAM J. Comput. 17(2), 230–261 (1988)

6. Cohen, G., Raz, R., Segev, G.: Non-malleable extractors with short seeds and
applications to privacy amplification. In: CCC 2012, pp. 298–308 (2012)

7. Dodis, Y., Katz, J., Reyzin, L., Smith, A.: Robust fuzzy extractors and authenti-
cated key agreement from close secrets. In: Dwork, C. (ed.) CRYPTO 2006. LNCS,
vol. 4117, pp. 232–250. Springer, Heidelberg (2006)

8. Dodis, Y., Li, X., Wooley, T.D., Zuckerman, D.: Privacy amplification and non-
malleable extractors via character sums. In: FOCS 2011, pp. 668–677 (2011)

9. Dodis, Y., Wichs, D.: Non-malleable extractors and symmetric key cryptography
from weak secrets. In: STOC 2009, pp. 601–610 (2009)

10. Dziembowski, S., Pietrzak, K., Wichs, D.: Non-malleable codes. In: Proceedings of
Innovations in Computer Science (ICS 2010), pp. 434–452 (2010)

11. Dodis, Y., Yu, Y.: Overcoming weak expectations. In: Sahai, A. (ed.) TCC 2013.
LNCS, vol. 7785, pp. 1–22. Springer, Heidelberg (2013)

12. Fortnow, L., Shaltiel, R.: Recent developments in explicit constructions of extrac-
tors, 2002. Bull. EATCS 77, 67–95 (2002)

13. Kanukurthi, B., Reyzin, L.: Key agreement from close secrets over unsecured
channels. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 206–223.
Springer, Heidelberg (2009)

14. Li, X.: Non-malleable extractors, two-source extractors and privacy amplification.
In: FOCS 2012, pp. 688–697 (2012)

15. Maurer, U.M., Wolf, S.: Privacy amplification secure against active adversaries.
In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 307–321. Springer,
Heidelberg (1997)



Non-malleable Extractors with Shorter Seeds and Their Applications 311

16. Maurer, U.M., Wolf, S.: Secret-key agreement over unauthenticated public channels
III: privacy amplification. IEEE Trans. Inf. Theory 49(4), 839–851 (2003)

17. Naor, J., Naor, M.: Small-bias probability spaces: efficient constructions and appli-
cations. SIAM J. Comput. 22(4), 838–856 (1993)

18. Nisan, N., Zuckerman, D.: Randomness is linear in space. J. Comput. Syst. Sci.
52(1), 43–52 (1996)

19. Rao, A.: An exposition of Bourgain’s 2-source extractor. Technical report TR07-34,
ECCC (2007). http://eccc.hpi-web.de/eccc-reports/2007/TR07-034/index.html

20. Raz, R.: Extractors with weak random seeds. In: STOC 2005, pp. 11–20 (2005)
21. Renner, R.S., Wolf, S.: Unconditional authenticity and privacy from an arbitrarily

weak secret. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 78–95.
Springer, Heidelberg (2003)

22. Vadhan, S.: Randomness extractors and their many guises: invited tutorial. In:
FOCS 2002, p. 9 (2002)

23. Wolf, S.: Strong security against active attacks in information-theoretic secret-key
agreement. In: Ohta, K., Pei, D. (eds.) ASIACRYPT 1998. LNCS, vol. 1514, pp.
405–419. Springer, Heidelberg (1998)

24. Zuckerman, D.: Linear degree extractors and the inapproximability of max clique
and chromatic number. In: Theory of Computing 2007, pp. 103–128 (2007)

http://eccc.hpi-web.de/eccc-reports/2007/TR07-034/index.html

	Non-malleable Extractors with Shorter Seeds and Their Applications
	1 Introduction
	2 Preliminaries
	3 Error Estimation of Raz's Extractor and Its Improvement
	3.1 A Special Case of Raz's Extractor
	3.2 Improvement for the Error Estimation of Raz's Extractor
	3.3 Comparison
	3.4 Important Role in Improving the Seed Length of Non-malleable Extractors

	4 Explicit Construction of Non-malleable Extractors with Shorter Seed Length
	5 Application to Privacy Amplification
	6 Conclusion
	A Proof of Theorem4
	B Analysis of the Assumption in Theorem4
	C The Concept of Privacy Amplification Protocol
	References


