
Cryptanalysis of Two Fault
Countermeasure Schemes

Subhadeep Banik(B) and Andrey Bogdanov

DTU Compute, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
{subb,anbog}@dtu.dk

Abstract. In this paper, we look at two fault countermeasure schemes
proposed very recently in literature. The first proposed in ACISP 2015
constructs a transformation function using a cellular automata based lin-
ear diffusion, and a non-linear layer using a series of bent functions. This
countermeasure is meant for the protection of block ciphers like AES. The
second countermeasure was proposed in IEEE-HOST 2015 and protects
the Grain-128 stream cipher. The design divides the output function used
in Grain-128 into two components. The first called the masking function,
masks the input bits to the output function with some additional ran-
domness and computes the value of the function. The second called the
unmasking function, is computed securely using a different register and
undoes the effect of the masking with random bits. We will show that
there exists a weakness in the way in which both these schemes use the
internally generated random bits which make these designs vulnerable.
We will outline attacks that cryptanalyze the above schemes using 66
and 512 faults respectively.

Keywords: AES ·Fault analysis ·Grain-128 · Infective countermeasures

1 Introduction

There has been a lot of effort to design hardware based countermeasures to
prevent fault attacks on AES-128 circuits. Most of these countermeasures can
be classified into two broad categories: (a) Detection based and (b) Infection
based. As the name suggests, detection based measures aim to detect the injec-
tion of fault by performing various intermediate checks during the course of the
encryption operation [7,12,15]. The functionality is achieved by comparing two
or more data blocks output by the encryption circuit. Since the comparison oper-
ation is itself prone to faults, Infection based countermeasures have also become
popular [8,14,16]. In this approach, the circuit is designed in such a fashion that
even if an attacker is able to inject a fault in the circuit, he can not utilize the
corrupted output to find the secret key. Most of these countermeasures work
by introducing additional operations in between or after the encryption algo-
rithm that make it difficult for an adversary to deduce simple enough algebraic
relations to deduce the secret key.

c© Springer International Publishing Switzerland 2015
A. Biryukov and V. Goyal (Eds.): INDOCRYPT 2015, LNCS 9462, pp. 241–252, 2015.
DOI: 10.1007/978-3-319-26617-6 13

242 S. Banik and A. Bogdanov

As already mentioned, the main philosophy behind infective countermeasures
is to ensure that a faulty ciphertext produced by the system can not be exploited
by the attacker to obtain any non-trivial information about the secret key. There
have been several infective countermeasures proposed in literature but most of
them have a hardware overhead of over 100 %. In [8], a countermeasure using
redundant and dummy round functions was proposed. A countermeasure using
random masks was proposed in [16]. Both these fault protection schemes were
cryptanalyzed in [3]. In response, an improved countermeasure was proposed
in [19], that replaced the output of the cipher with a random 128 bit string
whenever the system detected a fault. This method was again cryptanalyzed in
[4]. In this paper, we will look at two different infective countermeasures that
have been proposed very recently. The first [9], was designed mainly to protect
block ciphers like AES [6]. The design includes two identical AES modules, the
outputs of which are xored and fed into a transformation function composed of
the following functions

1. A linear diffusion function based on the principles of cellular automata,
2. A non-linear mixing function that additionally utilizes some internally gen-

erated randomness.

The output of the transformation function is xored back to the outputs of one of
the AES modules, and produced as ciphertext. Assuming that the adversary does
not have the capability to reproduce the same fault in both the AES modules,
any difference introduced by a fault in one of the modules is transformed by
the non-linear function so that any simple algebraic relation can not be derived
between the faulty ciphertext and the roundkey. The second countermeasure
proposed in [10] has been designed protect the Grain-128 [11] stream cipher.
The work is significant because not many architectures have been proposed to
protect stream ciphers from fault attacks. The design decomposes the output
boolean function of Grain-128 into two component functions. The first called
the masking function, masks the inputs to the output function with certain
random bits generated internally. The second called the unmasking function,
(which is computed securely using a different register) undoes the effect of the
masking, so that the GF(2) sum of the masking and unmasking function equals
the output function of Grain-128. We will show that method of utilizing the
internal randomness in both these schemes has some weakness which can be
used to cryptanalyze them.

1.1 Organization of the Paper

In Sect. 2, we will first provide a complete architectural and mathematical descrip-
tion of the infective countermeasure proposed in ACISP 2015 [9]. In Sect. 3, we
will begin by outlining a fault attack on an unprotected AES implementation. We
will then go on to reveal a weakness in the non-linear mixing function used in this
scheme that makes this function easy to invert. Using this observation we will pro-
pose a method that allows the attacker to deduce the secret key using around 66

Cryptanalysis of Two Fault Countermeasure Schemes 243

faults on average. In Sect. 4, we will provide a preliminary mathematical descrip-
tion of Grain-128 and the countermeasure as proposed in [10]. Thereafter in Sect. 5
we will then point out two weaknesses in the scheme. First we show, that due to
a flaw in the masking function, any fault localized on a specific LFSR location
reveals non-trivial information about the internal state of the cipher. This can
be used to mount a state recovery attack, that reveals the entire internal state in
less than 512 faults. The second weakness comes from the fact that although the
design tries to protect the output function of the cipher, the NFSR update func-
tion is left completely unprotected. Using this result a fault attack using as less as
4 randomly applied faults can be mounted. Section 6 concludes the paper.

2 Countermeasure Proposed in ACISP 2015 [9]

The scheme proposed in [9] can be described as follows. The design takes the
xor of the outputs of two identical AES modules and passes it through a trans-
formation function T . This function is composed of a sequence of two functions.
The first is a cellular automata based linear diffusion function. The output of
the linear diffusion function is then input to a non-linear mixing function. The
mixing function additionally uses some random bits which are generated inter-
nally by a cellular automata based random number generator. The output of the
mixing function is then xored back with the output of one of the AES modules
and produced as ciphertext. The architecture is described pictorially in Fig. 1.

Fig. 1. Infective countermeasure of ACISP 2015 [9]

The architecture described above makes two assumptions. The first is that
the attacker does not have the capability to inject the same fault in both the
AES modules. Otherwise the output of both the AES modules is identical and
so the input to T is zero, and since T maps the zero input to zero, the attacker
gets back the original faulty ciphertext. The second assumption is that since

244 S. Banik and A. Bogdanov

the attacker does not know the random bits used to compute the output of the
mixing function, it is not possible for him to deduce algebraic relations between
the ciphertext and the roundkey.

2.1 Linear Diffusion Function

The linear diffusion function D : {0, 1}128 → {0, 1}128 is based on the principles
of a 3-neighborhood cellular automata. The state update operation in such a
system can be expressed equivalently as pre-multiplication with a 128 × 128
binary matrix. In this specific case, the function D is constructed as follows.
One iteration of the automata is first designed using the following primitive
polynomial over GF(2):

p(x) = x128 + x29 + x27 + x2 + 1

Thus, if Xt and Xt+1 denote the 128 bit vectors that are input and output
respectively of a single iteration of the automata, then these vectors are related
as Xt+1 = A · Xt, where A is a 128 × 128 binary tridiagonal matrix whose ijth

element aij is given as follows:

aij =

⎧
⎨

⎩

mi, if i = j,
1, if |i − j| = 1,
0, otherwise.

The element aii in the principal diagonal of the matrix A is taken as the ith

element mi of the vector M defined as follows:

M =[0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 0,

1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 1,

1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1,

1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0]

The vector M is constructed using the polynomial p(x) by following the meth-
ods outlined in [5]. The update function described by the single iteration of this
automata has a period of 2128 − 1, and achieves full diffusion of any bit differ-
ence in 127 iterations. The function D is constructed using 255 iterations of the
automata, i.e., D(X) = A255 · X. However, the matrix A is invertible and hence
the function D is efficiently invertible.

2.2 Non-linear Mixing Function

The non-linear mixing function N : {0, 1}128 × {0, 1}128 → {0, 1}128 is a con-
structed using a series of bent functions. The function uses a 128 bit random
string R which is generated using a cellular automata based random number

Cryptanalysis of Two Fault Countermeasure Schemes 245

generator Given X = [x0, x1, . . . , x127], R = [r0, r1, . . . , r127], N (X,R) = Y =
[y0, y1, . . . , y127] is defined as:

ci =
i⊕

j=0

xjrj ⊕ xi−1xi ⊕ ri−1ri

yi = xi ⊕ ri ⊕ ci−1

for 0 ≤ i ≤ 127, with x−1 = r−1 = 0 with c−1 = c127. Each yi is a bent
function of algebraic degree 2 and nonlinearity 22i+1 − 2i+2. Since the fault
protection mechanism must output the original ciphertext if no fault is injected,
the transformation function T must map the zero input to zero. For this reason,
the output of the nonlinear layer is taken as S(X) = N (X,R) ⊕ N (0,R).

3 Cryptanalysis of the Fault Countermeasure Scheme

3.1 Basic Fault Attack on Unprotected AES

We outline the basic fault attack on AES which finds the secret key by inject-
ing a random byte fault before the 9th round MixColumn (MC) operation [13,
Chap. 4.2]. Assuming that a random byte fault has been injected in the first
element of a column, the attacker computes a list L of possible differences at the
output column of the MixColumn operation. The list L thus contains 4 × 255
four-byte elements. This is a one time operation. As can be seen in Fig. 2, a
fault injected in the first byte of the AES state before the 9th round MixColumn
will result in a faulty ciphertext that differs with the original ciphertext in byte
positions 1, 8, 11, 14. So given a pair of fault-free and faulty ciphertexts C,Cf ,
the attacker guesses 4 bytes of the 10th roundkey K10 (i.e. the 1st, 8th, 11th and
14th bytes) and computes the four differences Δi (i = 1, 8, 11, 14) as follows:

Δi = SB−1 (C[i] ⊕ K10[i]) ⊕ SB−1 (Cf [i] ⊕ K10[i]) ,

(note that the ith byte of any block X is represented as X[i]). Each tuple
(Δ1,Δ8,Δ11,Δ14) is then compared with the elements contained in the list
L. The candidates (K10[1],K10[8], K10[11],K10[14]) for which a match is found
are gathered in another list E . With one pair (C,Cf), the list E contains 1,036
elements on average. By using another pair (C,Cf) with a fault injected into the
same column, the corresponding four bytes of the last round key are uniquely

Fig. 2. Basic Attack on unprotected AES

246 S. Banik and A. Bogdanov

determined with a 98 % probability. Similar analysis holds for faults injected into
the 2nd, 3rd and 4th columns. Therefore the last round key can be recovered by
using eight faulty ciphertexts with faults induced at chosen locations.

3.2 Cryptanalysis of the Scheme

The fault protection scheme as outlined in [9] can be outlined as follows. The
scheme first computes the difference Δ in the two ciphertexts, the first of which
is produced by a fault in one of the AES modules, and the second produced
by the other AES module which is fault-free. This difference Δ is then passed
through the transformation function T which is basically the composition of the
functions S◦D. The transformation function is probabilistic since it uses some
randomness generated internally by the system. Now instead of Cf = C ⊕ Δ,
the system outputs C ⊕ T (Δ). Now intuitively it is clear that T needs to be a
one way function, because if the attacker can obtain the value of Δ from the
value of T (Δ), he can compute the value of Cf = C ⊕Δ and perform the attack
described in Sect. 3.1. In this section we will prove that T is not a one way
function due to which the security of the scheme collapses. Note that we have
already established that D is efficiently invertible, and hence if we can show that
S is also invertible, we would have proven that T is not one way.

Lemma 1. S is not a one way function.

Proof. For any fixed input X = [x0, x1, . . . , x127], S(X) is queried a few times.
Since the function S uses internally generated randomness, it outputs a differ-
ent value every time. The task therefore would be to recover X from S(X) =
N (X,R) ⊕ N (0,R) for different values of R. From the description given in
Sect. 2.2, the algebraic relation between S(X) = [s0, s1, . . . , s127], X = [x0,
x1, . . . , x127], R = [r0, r1, . . . , r127] is given as:

s0 = x0 +
127⊕

j=0

rjxj + x126x127

s1 = x1 + r0x0

s2 = x2 + r0x0 + r1x1 + x0x1

s3 = x3 + r0x0 + r1x1 + r2x2 + x1x2

s4 = x4 + r0x0 + r1x1 + r2x2 + r3x3 + x2x3

...

si = xi +
i−1⊕

j=0

rjxj + xi−2xi−1

Define the sequence wi as follows:

wi =

⎧
⎨

⎩

s1, if i = 0,
si + si+1, if 0 < i < 127,
s127 + s0, if i = 127,

Cryptanalysis of Two Fault Countermeasure Schemes 247

It can be checked that w0 = x1 + r0x0, w1 = x1 + x2 + x0x1 + r1x1 and wi =
xi + xi+1 + xi−1xi + xi−2xi−1 + rixi, for all i > 1. Note that

w0 = x1 if x0 = 0, and w0 = x1 + r0 if x0 = 1.

Now, if we compute the value of w0 for different outputs of the function S(X)
(which are generated for different values of the internal random string R), then
the value of w0 will be a constant and equal to x1 if and only if x0 = 0.
If x0 = 1, then w0 = x1 + r0, and w0 will evaluate to a different bit value
each time, depending on the value of the random bit r0. This argument can be
extended to any i. If and only if xi = 0, wi = xi + xi+1 + xi−1xi + xi−2xi−1

and will thus evaluate to a constant for every query. If xi = 1, then the value
of wi has linear dependence on the random bit ri and is more or less uni-
formly randomly distributed over the set {0, 1}. So our algorithm to invert
S is as follows. Query the function S for a fixed X around N times. Then
compute the vector W = [w0, w1, . . . , w127] for each query S(X). If wi eval-
uates to the same value over all the queries, then we conclude that xi = 0,
otherwise we conclude that xi = 1. Computer simulations have confirmed that
N = 8.3 queries on average are required to fully determine the value of X.

Corollary 1. T is not a one way function.

Proof. Since T −1 = D−1 ◦ S−1, and we have established that S−1 and D−1 are
both efficiently calculable, we can conclude as such.

Fault Attack on the Scheme: We have just established that the function
T is invertible, if one ensure that the same input is fed to the non-linear function
around 8 times. So the attacker proceeds as follows:

1. He first obtains the fault-free ciphertext from the device.
2. He resets the device and applies a fault in the 1st column of the AES state

before the 9th round MixColumn and obtains the faulty ciphertext C +T (Δ).
3. He repeats the process 8 times, and each time he applies the same fault in the

device. This ensures that the input to the nonlinear function S is the same
each time. Note that this can be achieved by using optical fault [18] to flip
the logic at a particular register location during each fault injection process.

4. The attacker uses the procedure outlined in Lemma 1 and Corollary 1, to
obtain the value of Δ.

5. He then uses the attack outlined Sect. 3.1 to deduce 4 bytes of the 10th
roundkey. This requires another fault-free and faulty ciphertext pair with
fault in the same column and so the Steps 1–4 need to executed once more.

6. The process is repeated for the 2nd, 3rd and 4th columns of the AES state
to obtain the full roundkey.

Fault Complexity: Since finding 4 bytes of the 10th roundkey, requires around
2×8.3 = 16.6 faults on average, the entire roundkey can be deduced in 4×16.6 ≈
66 faults on average.

248 S. Banik and A. Bogdanov

4 Countermeasure Proposed in HOST 2015 [10]

Before we proceed to describe the infective countermeasure proposed in [10],
we will give a short mathematical description of the Grain-128 stream cipher.
Grain-128 consists of a 128 bit LFSR and a 128 bit NFSR. The state is initialized
with a 128 bit Key which is loaded on to the NFSR and a 96 bit IV and a 32
bit pad P = 0x ffff ffff which is loaded on to the LFSR. The LFSR state is
update according to the rule:

yt+128
Δ= f(Yt) = yt+96 + yt+81 + yt+70 + yt+38 + yt+7 + yt.

The NFSR state is updated as follows

xt+128 = yt + g(Xt), where

g(Xt) = xt + xt+26 + xt+56 + xt+91 + xt+96 + xt+3xt+67 + xt+11xt+13+
xt+17xt+18 + xt+27xt+59 + xt+40xt+48 + xt+61xt+65 + xt+68xt+84

The output keystream bit zt in some round t is produced as
∑

j∈A

xt+j + yt+93 + h(xt+12, yt+8, yt+13, yt+20, xt+95, yt+42, yt+60, yt+79, yt+95)

where A = {2, 15, 36, 45, 64, 73, 89} and h(s0, . . . , s8) = s0s1 + s2s3 + s4s5 +
s6s7 + s0s4s8. The cipher is executed for 256 rounds without producing any
output, during which the output bit zt is fed back to the update functions of the
LFSR and NFSR. Thereafter the feedback is discontinued and the cipher starts
producing output.

4.1 Fault Protection Scheme in [10]

The fault protection scheme of [10] can be described as follows. The output
function h used in Grain-128 is decomposed into two component functions: a
masking function hmasked and an unmasking function M. The function hmasked

is computed as follows: a nine bit random string ε0, ε1, . . . , ε8 is generated by an
internal mechanism and then the function is computed as follows:

hmasked = (s0 + ε0)(s1 + ε1) + (s2 + ε2)(s3 + ε3) + (s4 + ε4)(s5 + ε5)+
(s6 + ε6)(s7 + ε7) + s0s4(s8 + ε8) + (s0 + s4)s8ε8

The unmasking function M is computed so that h = hmasked +M. The function
M is computed securely via a different 128 bit register which stores the values of
M for 128 consecutive iterations. The process is described pictorially in Fig. 3.

Cryptanalysis of Two Fault Countermeasure Schemes 249

Fig. 3. Fault protection scheme in HOST 2015 [10]

5 Cryptanalysis of the Fault Countermeasure Scheme

5.1 Fault Attack on Unprotected Grain-128

There have been several fault attacks on Grain-128 reported in literature [1,2,17].
The basic philosophy in these attacks is the same. The attacker exploits the low
algebraic degree of the output function h. For example if the attacker applies an
optical fault which flips the logic at the bit denoted by the input variable s2, then
the difference between the fault-free keystream bit z and the faulty keystream
bit zf is given as

z + zf = h(s0, s1, s2, . . . , s8) + h(s0, s1, 1 + s2, . . . , s8) = s3

This therefore leaks the value of one state bit of the internal state of Grain-
128. By applying several faults an studying the faulty keystream patterns, the
attacker can easily determine the entire internal state of Grain-128.

However if one uses the fault protection scheme proposed in [10], then since
the value of the unmasking function is computed securely, the difference between
the faulty and fault-free keystream bit is given as:

z + zf = hmasked(s0, s1, s2, . . . , s8) + hmasked(s0, s1, 1 + s2, . . . , s8) = s3 + ε3

Since ε3 is an internally generated random bit which the attacker does not know,
this prevents the leakage of state information. However we will demonstrate that
there exists two weaknesses in this scheme which still allows the attacker to
determine the values of the internal state bits.

5.2 First Weakness

If the attacker faults the input bit s8 (which corresponds to the 95th bit of the
LFSR), then the difference between the faulty and fault-free keystream bit is
given as

250 S. Banik and A. Bogdanov

z + zf = hmasked(s0, s1, s2, . . . , s8) + hmasked(s0, s1, s2, . . . , 1 + s8)
= s0s4 + (s4 + s0)ε8

So the attacker proceeds as follows:

– He obtains the fault-free keystream bit zt in some round t.
– He resets the device and injects a fault in the 95th LFSR bit (s8) in the round

t, and obtains the faulty bit zf
t .

– He repeats the process N times so that he accumulates N different values of
the keystream difference zt + zf

t .

Now if and only if s4 + s0 = 0, the value of zt + zf
t = s0s4, and thus the above

process will yield the same value of zt + zf
t for each new fault injection. However

if s4 + s0 = 1, then the value of zt + zf
t is more or less uniformly randomly

distributed over the set {0, 1}. Thus a fault in the bit s8 leaks additional infor-
mation about the internal state. If the attacker is able to execute this process for
0 ≤ t < τ number of keystream rounds, then this leaks the following information
about the state

1. It reveals the value of s0 + s4 in every round t.
2. If s0 + s4 = 0 in some round, it additionally leaks the value of s0s4 in that

round.

Armed with this information the attacker can proceed with the fault attack as
follows. He creates an equation bank containing the following equations in the
internal state variables for every round 0 ≤ t ≤ τ :

A. He adds an equation for the fault-free keystream bit zt:

zt =
∑

j∈A

xt+j + yt+93 + h(xt+12, yt+8, yt+13, . . . , yt+95)

B. He adds an equation for the value of the bit s0 + s4 at each round t (denote
this bit value by the term at).

at = xt+12 + xt+95

C. If s0 +s4 = 0 at any round t (i.e. if at = 0), he additionally adds an equation
for s0s4 (denote this bit value by the term bt).

bt = xt+12 · xt+95

The above equation bank is fed to a suitable equation solver which tries to
determine the value of the internal state bits. In our experiments, we used the
Cryptominisat-2.8 SAT Solver, which determined the solution of the above sys-
tem in around 0.2 s on average on a system running on a 2.5 GHz processor and
16 GB internal memory for τ = 256.

Cryptanalysis of Two Fault Countermeasure Schemes 251

Fault Complexity: For each round t, we require around N = 2 faults on
average to determine the value of s0 + s4. Since a total of τ = 256 keystream
rounds are used, the total number of faults required is around τ × N = 512.

5.3 Second Weakness

The second weakness of the fault protection scheme arises from the fact that the
designers make no effort to protect either the NFSR update function g or the
seven additional bits from the NFSR that are xored to the function h to produce
the output keystream bit. Any random fault applied in the NFSR would therefore
propagate along the NFSR through the update function g and the since the seven
NFSR bits are unprotected, if the differential introduced by the fault appears
on one of these bits they may reveal non-trivial information about the internal
state bits. In fact in the work presented in [17], the attacker can apply random
faults in the NFSR and by constructing an equation bank for every faulty and
fault-free keystream bit, the attacker is able to find the entire internal state of
Grain-128 in 5–6 faults by using a SAT based solver within 6 min on average. It is
clear that the countermeasure scheme does not counteract the attack presented
in [17]. Hence, in order for the scheme in [10] to be secure, it not only must
design a better masking function hmasked, it must also take steps to protect (a)
the NFSR update function g and (b) the seven NFSR bits that are added to
the h function to produce the output keystream bit.

6 Conclusion

In this paper, we looked at the security of two fault countermeasure schemes
proposed very recently in literature and proposed attacks on them requiring 66
and 512 faults respectively. We conclude that in both the schemes, the manner
in which the designs use the internally generated random bits, make them vul-
nerable to attack. Additionally, the countermeasure used to protect Grain-128 is
simply inadequate since no effort is made to protect the NFSR update function
g or the seven additional bits that are xored to the output function h. From
the discussion it is evident that the transformation function used in the first
scheme needs to be a one way function, failing which the scheme would not pro-
vide any security. In the second scheme, not only must a better masking scheme
be designed, but some additional effort must be expended to protect the other
critical components of the circuit.

References

1. Banik, S., Maitra, S., Sarkar, S.: A differential fault attack on the grain family of
stream ciphers. In: Prouff, E., Schaumont, P. (eds.) CHES 2012. LNCS, vol. 7428,
pp. 122–139. Springer, Heidelberg (2012)

2. Banik, S., Maitra, S., Sarkar, S.: A differential fault attack on the grain family
under reasonable assumptions. In: Galbraith, S., Nandi, M. (eds.) INDOCRYPT
2012. LNCS, vol. 7668, pp. 191–208. Springer, Heidelberg (2012)

252 S. Banik and A. Bogdanov

3. Battistello, A., Giraud, C.: Fault analysis of infective AES computation. In: FDTC
2013, pp. 101–107. IEEE Computer Society (2013)

4. Battistello, A., Giraud, C.: Fault cryptanalysis of CHES 2014 symmetric infective
countermeasure. IACR Cryptology ePrint Archive. http://eprint.iacr.org/2015/
500.pdf

5. Catell, K., Muzio, J.C.: Synthesis of one-dimensional linear hybrid cellular
automata. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 15(3), 325–335
(1996)

6. Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption
Standard. Springer-Verlag, Berlin (2002)

7. Genelle, L., Giraud, C., Prouff, E.: Securing AES implementation against fault
attacks. In: FDTC 2009, pp. 51–62 (2009)

8. Gierlichs, B., Schmidt, J.-M., Tunstall, M.: Infective computation and dummy
rounds: fault protection for block ciphers without check-before-output. In: Hevia,
A., Neven, G. (eds.) LatinCrypt 2012. LNCS, vol. 7533, pp. 305–321. Springer,
Heidelberg (2012)

9. Ghosh, S., Saha, D., Sengupta, A., Roy Chowdhury, D.: Preventing fault attacks
using fault randomization with a case study on AES. In: Foo, E., Stebila, D. (eds.)
ACISP 2015. LNCS, vol. 9144, pp. 343–355. Springer, Heidelberg (2015)

10. Ghosh, S., Roy Chowdhury, D.: Preventing fault attack on stream cipher using
randomization. In: 2015 IEEE International Symposium on Hardware Oriented
Security and Trust (HOST), pp. 88–91 (2015)

11. Hell, M., Johansson, T., Meier, W.: A stream cipher proposal: Grain-128. In: IEEE
International Symposium on Information Theory (ISIT 2006) (2006)

12. Ishai, Y., Sahai, A., Wagner, D.: Private circuits: securing hardware against prob-
ing attacks. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 463–481.
Springer, Heidelberg (2003)

13. Joye, M., Tunstall, M. (eds.): Fault Analysis in Cryptography. Information Security
and Cryptography. Springer, Berlin (2012)

14. Joye, M., Manet, P., Rigaud, J.B.: Strengthening hardware AES implementations
against fault attacks. IET Inf. Secur. 1, 106–110 (2007)

15. Karpovsky, M., Kulikowski, K., Taubin, A.: Robust protection against fault-
injection attacks on smart cards implementing the advanced encryption standard.
In: International Conference on Dependable Systems and Networks (DSN 2004),
pp. 93–101. IEEE Computer Society (2004)

16. Lomné, V., Roche, T., Thillard, A.: On the need of randomness in fault attack
countermeasures - application to AES. In: FDTC 2012, pp. 85–95. IEEE Computer
Society (2012)

17. Sarkar, S., Banik, S., Maitra, S.: Differential fault attack against grain family with
very few faults and minimal assumptions. IEEE Trans. Comput. 64(6), 1647–1657
(2015)

18. Skorobogatov, S.P., Anderson, R.J.: Optical fault induction attacks. In: Kaliski Jr.,
B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523. Springer, Heidelberg
(2003)

19. Tupsamudre, H., Bisht, S., Mukhopadhyay, D.: Destroying fault invariant with
randomization. In: Batina, L., Robshaw, M. (eds.) CHES 2014. LNCS, vol. 8731,
pp. 93–111. Springer, Heidelberg (2014)

http://eprint.iacr.org/2015/500.pdf
http://eprint.iacr.org/2015/500.pdf

	Cryptanalysis of Two Fault Countermeasure Schemes
	1 Introduction
	1.1 Organization of the Paper

	2 Countermeasure Proposed in ACISP 2015
	2.1 Linear Diffusion Function
	2.2 Non-linear Mixing Function

	3 Cryptanalysis of the Fault Countermeasure Scheme
	3.1 Basic Fault Attack on Unprotected AES
	3.2 Cryptanalysis of the Scheme

	4 Countermeasure Proposed in HOST 2015
	4.1 Fault Protection Scheme in

	5 Cryptanalysis of the Fault Countermeasure Scheme
	5.1 Fault Attack on Unprotected Grain-128
	5.2 First Weakness
	5.3 Second Weakness

	6 Conclusion
	References

