
Structural Evaluation for Generalized Feistel
Structures and Applications

to LBlock and TWINE

Huiling Zhang1,2,3(B) and Wenling Wu1,2,3

1 TCA Laboratory, SKLCS, Institute of Software,
Chinese Academy of Sciences, Beijing, China

2 State Key Laboratory of Cryptology, P.O. Box 5159, Beijing 100878, China
3 University of Chinese Academy of Sciences, Beijing, China

{zhanghuiling,wwl}@tca.iscas.ac.cn

Abstract. The generalized Feistel structure (GFS) is the variant of Feis-
tel structure with m > 2 branches. While the GFS is widely used, the
security is not well studied. In this paper, we propose a generic algorithm
for searching integral distinguishers. By applying the algorithm, we prove
that the low bound for the length of integral distinguishers is m2 +m−1
and 2m+1 for Type-1 GFS and Type-2 GFS, respectively. Meanwhile, we
evaluate the security of the improved Type-1 and Type-2 GFSs when the
size of each branch and the algebraic degree of F -functions are specified.
Our results show that the distinguishers are affected by the parameters
to various levels, which will provide valuable reference for designing GFS
ciphers. Although our search algorithm is generic, it can improve inte-
gral distinguishers for specific ciphers. For instance, it constructs several
16-round integral distinguishers for LBlock and TWINE, which directly
extends the numbers of attacked rounds.

Keywords: Generalized Feistel structure · Integral distinguisher ·
Algebraic degree · Division property · LBlock · TWINE

1 Introduction

Feistel structure is a basic symmetric cryptographic primitive, which provides
many superior design features, for example, both the encryption and decryption
algorithms can be achieved with a single scheme and the round function can
be non-bijective. The generalized Feistel structure (GFS) introduced by Nyberg
[4] is the variant of Feistel structure with m > 2 branches. Many GFSs exist
in the literature so far. The most popular versions are Type-1 as in CAST-
256 [1] and Type-2 as in CLEFIA [6]. They inherit the superior features from
Feistel structure, moreover, have advantages of high parallelism, simple design
and suitability for low cost implementation. Recently, lightweight cryptography
has become a hot topic. Thus the GFS is an attractive structure for a lightweight
symmetric key primitive such as a block cipher or a hash function.
c© Springer International Publishing Switzerland 2015
A. Biryukov and V. Goyal (Eds.): INDOCRYPT 2015, LNCS 9462, pp. 218–237, 2015.
DOI: 10.1007/978-3-319-26617-6 12

Structural Evaluation for Generalized Feistel Structures and Applications 219

In 2010, Suzaki et al. introduced the improved Type-2 GFS by replacing the
cycle shift in Type-2 GFS with the optimal permutation [7]. More precisely, they
proposed the maximum diffusion round (DR) which is the minimum number of
rounds such that every output nibble depends on every input nibble. And then
they found that the cycle shift does not provide optimum DR when m ≥ 6.
Hence, they exhaustively searched all the optimum permutations for m ≤ 16,
and gave a generic construction whose DR is close to the lower bound when m
is a power of 2. In [12], Yanagihara and Iwata did the similar work for Type-
1 GFS. They showed that better DR can also be obtained if one uses other
permutations, moreover, an generic construction of optimum permutations for
arbitrary m was devised. As shown in [5,7,12], the improved GFS has more
secure than the standard GFS.

Integral attack was firstly proposed by Daemen et al. to evaluate the secu-
rity of Square cipher [2], and then it was unified by Knudsen and Wagner in
FSE 2002 [3]. The crucial part is the construction of the integral distinguisher,
i.e., choosing a set of plaintexts such that the states after several rounds have a
certain property, e.g., the XOR-sum of all states equals to 0 with probability 1.
This property is called balanced in the following. The integral attack tends to
be one of bottlenecks for the security of the GFS as shown in [5]. [7,12] evalu-
ated the security of Type-1, Type-2 and their improved versions against integral
attack. Their results show there exist m2- and 2m- round integral distinguishers
for Type-1 GFS and Type-2 GFS, respectively. 2DR- or (2DR−1)-round integral
distinguishers exist for the improved Type-2 GFS. However, the specific proper-
ties of the F -functions are not utilized in the evaluations, and F -functions are
restricted to be bijective.

In EUROCRYPT 2015 [10], Todo proposed a new notion, named division
property, which is a generalized integral property. Based on the division property,
he introduced a path search algorithm to derive the integral distinguishers for
Feistel or SPN ciphers. The algorithm has several desirable features, such as,
it can take advantage of the algebraic degree of the F -functions, and it can
effectively construct the integral distinguisher even though the F -functions are
non-bijective. Therefore, generalizing and applying the algorithm to the GFS
will be very meaningful.

Our Contributions. In this paper, we evaluate the security of the GFS against
integral attack. We first study the propagation characteristic of the division
property for the GFS. Due to the rapid expansion of the vectors in the divi-
sion property, it is difficult to directly trace the propagation when m ≥ 14
even if we perform it by computer. Therefore, a technique named early reduce
technique is devised to simplify the procedure, which works by detecting and dis-
carding “useless” vectors. Then we propose a generic algorithm of constructing
integral distinguishers. By using our algorithm, we prove that integral distin-
guishers for Type-1 GFS and Type-2 GFS with bijective F -functions can be
extended by m − 1 and 1 rounds, respectively. And we show (m2 + m − 2)- and
2m- round distinguishers exist even though the F -functions are non-bijective.

220 H. Zhang and W. Wu

For the improved GFS, our results indicate that distinguishers vary with several
parameters, such as the number of branches, size of each branch, algebraic degree
of F -functions, permutation layer and whether F -functions are bijective or not,
which is not reflected from previous analysis. Hence, our results can provide
valuable reference for designing GFS ciphers.

Although our search algorithm is generic, it can improve integral distinguish-
ers for specific ciphers. We construct for the first time several 16-round integral
distinguishers for LBlock and TWINE. The integral attacks can thus be applied
to 23-round LBlock, 23-round TWINE-80 and 24-round TWINE-128.

Paper Outline. Section 2 describes the GFS we focus in this paper and gives
a brief review on the division property. The path search algorithm and the
improved integral distinguishers for the GFS are shown in Sect. 3. In Sect. 4,
we apply the improvements to the integral attacks against LBlock and TWINE.
Finally, we conclude this paper in Sect. 5.

2 Preliminaries

In this section, we introduce the generalized Feistel structure and review the
definition of the division property.

2.1 Generalized Feistel Structure

A GFS divides its input into m > 2 branches of n bits each, where n is defined
as the branch size. The round function can be separated into two successive
layers, as done in [7], a F -function layer and a permutation layer. The F -function
layer is made of F -functions whose inputs are some of the branches and whose
outputs are added to the other branches. The permutation layer is a shuffle of
m branches. In this paper, we focus on the generalized Type-1 GFS and the
generalized Type-2 GFS as shown in Fig. 1. Note that they are Type-1 and
Type-2 GFS, respectively, when the permutation is the left cycle shift.

Fig. 1. Generalized Type-1 (left) and Type-2 (right) GFS

For convenience, we assume all F -functions are with algebraic degree d and
d < n, which is reasonable for applicable ciphers. Let P = {p0, p1, · · · , pm−1}
denote the permutation layer moving i-th branch of the input to pi-th branch

Structural Evaluation for Generalized Feistel Structures and Applications 221

(we number the branches from left to right, starting with 0 for the left-most
branch), for example P = {3, 0, 1, 2} for Type-1 GFS with 4 branches. Then, a
GFS with parameters n,m,d and P can be defined as [n,m, d, P]-GFS.

2.2 Division Property

Some notations are first described for clarity. We use ⊕ and + to distinct the
XOR of Fn

2 and the addition of Z, and accordingly,
⊕

and
∑

represents XOR
sum and addition sum, respectively. Denote the hamming weight of u ∈ F

n
2 by

w(u) which is calculated as

w(u) =
∑

0≤i≤n−1

u[i],

where u[i] is the i-th bit. Furthermore, denote the vectorial hamming weight
of U = (u0, · · · , um−1) ∈ (Fn

2)m, (w(u0), · · · , w(um−1)), by W (U). Let K =
(k0, · · · , km−1) and K ′ = (k′

0, · · · , k′
m−1) be the vectors in Z

m. We define K � K ′

if ki ≥ k′
i for 0 ≤ i ≤ m − 1, otherwise, K �� K ′.

Subset S
n,m
K . Let Sn,m

K be a subset of (Fn
2)m for any vector K = (k0, · · · , km−1),

where 0 ≤ ki ≤ n. The subset S
n,m
K is composed of all U ∈ (Fn

2)m satisfying
W (U) � K, i.e.,

S
n,m
K = {U ∈ (Fn

2)m|W (U) � K}.

Bit Product Functions πu and πU . Let πu : F
n
2 → F2 be a function for

u ∈ F
n
2 . For any x ∈ F

n
2 , πu(x) is the AND of x[i] for i satisfying u[i] = 1.

Namely, the bit product function πu is defined as

πu(x) =
∏

u[i]=1

x[i].

Let πU : (Fn
2)m → F2 be a function for U = (u0, u1, · · · , um−1) ∈ (Fn

2)m. For
any X = (x0, x1, · · · , xm−1) ∈ (Fn

2)m , πU (X) is calculated as

πU (X) =
m−1∏

i=0

πui
(xi).

Definition 1 (Division Property). [10] Let Λ be a multi-set whose elements
take values in (Fn

2)m, and K(j) (0 ≤ j ≤ q − 1) are m-dimensional vectors
whose elements take a value between 0 and n. When the multi-set Λ has the divi-
sion property Dn,m

K(0),K(1),··· ,K(q−1) , it fulfils the following conditions: the check-
sum,

⊕

X∈Λ

πU (X), equals to 0 if U ∈ {V ∈ (Fn
2)m|W (V) �� K(0), · · · ,W (V) ��

K(q−1)}. Moreover, the checksum becomes unknown if there exist i satisfying
W (U) � K(i).

222 H. Zhang and W. Wu

Fig. 2. Division Property D4,2
(0,3),(1,2),(2,3),(3,1)

We call U in the bit product function πU as the mask, then view the division
property from a vivid perspective as: it divides the set of all masks (i.e., (Fn

2)m)
into two subsets, Γ? and Γ0, where Γ? is the subset whose element results in an
unknown checksum and Γ0 is the subset whose element results in the zero-sum.
Specifically, it has Γ? = S

n,m
K(0) ∪ · · · ∪ S

n,m
K(q−1) and Γ0=(Fn

2)m\Γ?. Taking
D4,2

(0,3),(1,2),(2,3),(3,1) for an example, Γ? consists of all (u0, u1) located in the shadow

area of Fig. 2. Note that this division property equals to D4,2
(0,3),(1,2),(3,1), because

they lead to the same division.
The division property is useful to construct integral distinguishers. The basic

idea is that we choose a set of plaintexts satisfying certain division property and
trace its propagation through r+1 encryption rounds until it has Γ0\{(0m)n} =
φ. Since the cipher reduced to r rounds can be distinguished from a random
permutation according to the checksum, a r-round integral distinguisher is thus
constructed.

3 Improved Integral Distinguishers for GFS

In this section, we first study the propagation characteristic of the division prop-
erty and construct an algorithm of searching integral distinguishers for the GFS.
Meanwhile, a technique is proposed to optimize the program for wider applica-
tions. Finally, we apply the algorithm to evaluate the security of the GFS against
integral attack.

3.1 Propagation Characteristic of the Division Property

The F -function layer of Type-2 GFS can be divided into three successive oper-
ations: “Type-2 copy”, “Type-2 substitution” and “Type-2 compression” as
depicted on Fig. 3, that is similar to [10] done for Feistel structure. We describe
the propagation characteristics for these operations in Proposition 2–4 whose
proofs are shown in AppendixA.

Proposition 1 (Type-2 Copy). Let G : (Fn
2)m → (Fn

2)3m/2 be the Type-2
copy, which accepts (x0, · · · , xm−1) and produces (y0, · · · , y3m/2−1) as (x0, x0, x1,

Structural Evaluation for Generalized Feistel Structures and Applications 223

Fig. 3. Equivalent operations for GFS

· · · , xm−2, xm−2, xm−1). If a multi-set of the inputs has division property Dn,m
K ,

then the multi-set of the outputs has division property Dn,3m/2

K(0),··· ,K(q−1) , where
{K(0), · · · ,K(q−1)} is calculated as

{(i0, (k0−i0), k1, · · · , im/2−1, (km−2−im/2−1), km−1)|0 ≤ ij ≤ k2j , 0 ≤ j < m/2}.

Proposition 2 (Type-2 Substitution). Let G be the Type-2 substitution,
which accepts (y0, · · · , y3m/2−1) ∈ (Fn

2)m and produces (z0, · · · , z3m/2−1) ∈ (Fn
2)m

as (y0, F0(y1), y2, · · · , y3m/2−3, Fm/2−1(y3m/2−2), y3m/2−1). If a multi-set of the
inputs has division property Dn,3m/2

K(0),··· ,K(q−1) , then the multi-set of the outputs has

division property Dn,3m/2

K′(0),··· ,K′(q−1) , where

K ′(j) =
(
k
(j)
0 ,

⌈
k
(j)
1 /d

⌉
, k

(j)
2 , · · · , k

(j)
3m/2−3,

⌈
k
(j)
3m/2−2/d

⌉
, k

(j)
3m/2−1

)
.

Moreover, when the F -functions are bijective, we view 	n/d
 as n.

Proposition 3 (Type-2 Compression). Let G : (Fn
2)3m/2 → (Fn

2)m be
the Type-2 compression, which accepts (z0, · · · , z3m/2−1) and produces (x′

0, · · · ,
x′

m−1) as (z0, (z1 ⊕ z2), · · · , z3m/2−3, (z3m/2−2 ⊕ z3m/2−1)). If a multi-set of the
inputs has division property Dn,3m/2

K(0),··· ,K(q−1) , then the multi-set of the outputs has
division property Dn,m

K′(0),··· ,K′(q−1) , where

K ′(j) = (k(j)
0 , (k(j)

1 + k
(j)
2), · · · , k

(j)
3m/2−3, (k

(j)
3m/2−2 + k

(j)
3m/2−1)).

Following Proposition 2–4, the propagation characteristic for Type-2 GFS is
easily achieved. For simplicity, we write the division property Dn,m

K(0),··· ,K(q−1) as
a set of vectors, {K(0), · · · ,K(q−1)}.

224 H. Zhang and W. Wu

Theorem 1. For [n,m, d, P]-Type-2 GFS, if a multi-set of its inputs has division
property Dn,m

K , then the multi-set of the outputs from one encryption round has
division property {σ(i0, 	(k0 − i0)/d
 + k1, · · · , im/2−1,

⌈
(km−2 − im/2−1)/d

⌉
+

km−1)|0 ≤ ij ≤ k2j , 0 ≤ j < m/2}, where σ moves i-th component of the input to
pi-th component.

In the similar manner, we get the propagation characteristic for Type-1 GFS.

Theorem 2. For [n,m, d, P]-Type-1 GFS, if a multi-set of its inputs has divi-
sion property Dn,m

K , then the multi-set of the outputs from one encryption round
has division property {σ(i, 	(k0 − i)/d
 + k1, k2, k3, · · · , km−1) | 0 ≤ i ≤ k0},
where σ moves i-th component of the input to pi-th component.

3.2 Path Search Algorithm for GFS

The most troublesome problem for the propagation of division property is the
rapid expansion of the vectors, which makes the procedure time-consuming and
costing mass memory. Therefore, we devise a technique to discard “useless”
vectors early. After that, we propose the path search algorithm.

EarlyReduceTechnique. This technique is based on the following observation:

Observation 1. Let K and K ′ be two vectors which respectively propagates
to {K(0), · · · K(q−1)} and {K ′(0), · · · K ′(q′−1)} through the round function. If
there exists a vector, K ′(j) ∈ {K ′(0), · · · K ′(q′−1)}, such that K(i)�K ′(j) for each
K(i) ∈ {K(0), · · · K(q−1)}, Ω ∪ {K,K ′} and Ω ∪ {K ′} propagate to the same
division property for any vector set Ω.

Note that K � K ′ certainly satisfies with the condition, however, not limi-
tation to it. An example is K = (1,3), K ′ = (4,0) for [4,2,3,{1,0}]-Type-2 GFS
with the bijective F -function, which is actually Feistel structure. K propagates
to {(4,0),(3,1)}, while K ′ propagates to {(4,0),(1,1),(0,4)}. It has (4,0)�(4,0) and
(3,1)�(1,1), therefore, {(1,3),(0,4)} and {(0,4)} propagate to the same division
property as depicted on Fig. 4.

The early reduce technique discards vector K if there exist K ′ ∈ Ω satisfying
Observation 1. It can amazingly reduce the division property, meanwhile, it does
not change the division property achieved through one round function. To show
the effectiveness, we compare the numbers of vectors before and after applying
the technique to TWINE in Table 1.

Table 1. Comparison of the numbers of vectors

Round 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Num.
Before 1 2 3 5 11 31 184 1967 22731 113440 124827 42756 7072 952 164 44

After 1 2 3 5 10 30 110 841 3709 10560 8976 2139 415 71 36 8

Structural Evaluation for Generalized Feistel Structures and Applications 225

Fig. 4. An Example for early reduce technique

Path Search Algorithm. We then devise a generic algorithm of constructing
integral distinguishers for the GFS, which is described in Algorithm1. Round-
Prop propagates the division property through the round function by Theorem 1
(or 2). TermCondition judges whether the division property satisfies the terminal
condition: if

1 < max
0≤j≤q−1

{
∑

0≤i≤m−1

kj
i },

it returns true, otherwise, returns false. AddDivision adds vectors, Ki
0, · · · Ki

qi−1,
to the vector set, Ω, and updates p which denotes the number of vectors in Ω.
SizeReduce discards the vector K ∈ Ω if there exists vector K ′ ∈ Ω satisfying
K � K ′, meanwhile, updates the value of p. EarlyReduce further reduces Ω by
using the early reduce technique.

For Type-2 GFS, EarlyReduce is implemented as follows: we first create a list
saving all vectors K = (k0, k1) for each K ′ = (k′

0, k
′
1), which satisfies that there

exists a vector K ′(j′) ∈ {(i, 	(k′
0 − i)/d
+ k′

1)|0 ≤ i ≤ k′
0} such that K(j)�K ′(j′)

for each K(j) ∈ {(i, 	(k0 − i)/d
 + k1)|0 ≤ i ≤ k0}. Then, if (k2i, k2i+1) locals
in the list of (k′

2i, k
′
2i+1) for 0 ≤ i < m/2, we discard K = (k0 · · · km−1) when

K ′ = (k′
0 · · · k′

m−1) is in the vector set Ω. Notice that, the function may change
the result of TermCondition, therefore, we need to set a threshold to decide
whether it will be performed. We suggest the threshold to be 20000 for n =
4,m = 16.

3.3 Improved Integral Distinguishers for GFS

We evaluate the security of [n,m,d,P]-Type-2 GFS and [n,m,d,P]-Type-1 GFS
against integral attack by Algorithm1. A low bound of the length of distinguishers

226 H. Zhang and W. Wu

Algorithm 1. Path search algorithm for the GFS
Input: Parameters n, m, d, P of the GFS and division property of the plaintext set
K = (k0, k1, · · · , km−1).
Output: The number of rounds of the integral distinguisher.
0 ⇒ r
RoundProp(n, m, d, P, K) ⇒ {K0, K1, · · · Kq−1}
while TermCondition({K0, K1, · · · Kq−1}) do

r + 1 ⇒ r
∅ ⇒ Ω, 0 ⇒ p
for i = 0 to q − 1 do

RoundProp(n, m, d, P, Ki) ⇒ {Ki
0, K

i
1, · · · Ki

qi−1}
AddDivision({Ki

0, K
i
1, · · · Ki

qi−1}) ⇒ (Ω, p)
SizeReduce(Ω) ⇒ (Ω, p)
if threshold ≤ p then

EarlyReduce(Ω) ⇒ (Ω, p)
end if

end for
p ⇒ q, Ω ⇒ {K0, K1, · · · Kq−1}

end while
return r

for Type-2 (or Type-1) GFS is first given, and then the lengths of the distinguishers
for improved Type-2 (or Type-1) GFSs are specified.

Results on [n, m, d, P]-Type-2 GFS. We prove the following conclusion
for Type-2 GFS.

Theorem 3. For Type-2 GFS with m ≤ 16 branches of size n, there always
exist the integral distinguishers with at least 2m + 1 rounds when F -functions
are bijective, moreover, there exist the integral distinguishers with at least 2m
rounds when F -functions are non-bijective.

Proof. For simplicity, we prove the case when Type-2 GFS with m = 4 branches
and bijective F -functions. The general case follows by a similar manner. Firstly,
assume the degree of F -functions to be n−1 and n ≥ 4. We start with the division
property K = {(n−1, n, n, n)} and trace its propagation by Algorithm1, as shown
in Table 2. Since the division property after 10 rounds will be {(0,0,0,1),(0,0,1,0),
(0,1,0,0),(1,0,0,0)}, which reaches the terminal condition, integral distinguishers
with 9 rounds are proved to be existed. Then, in the same way, we can prove the
existence of 10-round distinguishers for n = 3. Due to the fact that the lower
degree of F -functions, the longer distinguishers achieved by our path search algo-
rithm, the results are actually low bounds.

For improved Type-2 GFSs, the shuffles do not show the regularity as the
cycle shift, which leads to the absence of a similar conclusion. However, we
search the integral distinguishers for each most common parameter. The results
are summarized in Table 3 (m ≤8) and Table 6 (8< m ≤16, in AppendixC).

Structural Evaluation for Generalized Feistel Structures and Applications 227

Table 2. Propagation of division property for Type-2 GFS.

Round Division property

0 {(n-1,n,n,n)}
1 {(n,n,n,n-1)}
2 {(n,1,n,n),(n,n,n-1,n)}
3 {(2,n,n,1),(1,n,n,n),(n,n-1,n,n)}
4 {(n,1,2,2),(n,n,1,2),(n,n,n,1),(n-1,n,n,n)}
5 {(2,0,3,1),(2,2,2,1),(1,0,3,n),(1,2,2,n),(n,1,2,n),(n,n,1,n)}
6 {(1,0,2,0),(1,3,1,0),(0,0,2,2),(0,3,1,2),(3,2,1,0),(2,2,1,2),(0,3,n,1)}
7 {(1,0,1,0),(1,2,0,0),(0,0,1,1),(0,2,0,1),(0,0,3,0),(0,2,2,0),(3,1,0,0),(2,1,0,3)}
8 {(1,1,0,0),(0,1,0,1),(0,0,1,0),(0,3,0,0),(2,0,0,0),(1,0,0,3)}
9 {(0,0,1,0),(0,1,0,0),(1,0,0,0),(0,0,0,2)}

Table 3. Integral distinguishers for improved type-2 GFS

m Type P DR

IND for [n,m,d,P]-Type-2 GFS
IND [7]

[n, d]=[4,3] [n, d]=[8,7] [n, d]=[16,3] [n, d]=[32,7]

bij bij nbij bij nbij bij nbij bij nbij

6 No. 1 {3, 0, 1, 4, 5, 2} 5 10 11 10 11 10 12 12 11 10

8 No. 1 {3, 0, 1, 4, 7, 2, 5, 6} 6 11 13 13 12 12 15 15 13 13

No. 2 {3, 0, 7, 4, 5, 6, 1, 2} 6 11 13 12 12 12 13 13 12 12

Compared with the integral distinguishers in [7], our results extend the length
of distinguishers by at least one round when the F -functions are bijective. More-
over, the distinguishers on Type-2 GFSs with non-bijective F -functions are con-
structed for the first time. Our results also indicate that the security of struc-
tures is sensitive to the parameters for different degrees. For example, No. 1 and
No. 2 structures with m = 8 have the same length of distinguishers when n=4,
d=3 and F -functions are bijective, however, No. 1 has longer distinguishers than
No. 2 when n=16, d=3 and F -functions are bijective. This difference may help
designers choosing the suitable structure to gain more security.

Results on [n, m, d, P]-Type-1 GFS. Similar to the proof of Theorem 3,
we get the conclusion for Type-1 GFS.

Theorem 4. For Type-1 GFS with m ≤ 16 branches of size n, there always exist
the integral distinguishers with at least m2 +m− 1 rounds when F -functions are
bijective, moreover, there exist the integral distinguishers with at least m2+m−2
rounds when F -functions are non-bijective.

We also search the integral distinguishers for improved Type-1 GFSs. The
results are summarized in Table 4 (m ≤ 8) and Table 5 (8 < m ≤ 16, in
AppendixB). An interesting observation is that our integral distinguishers have

228 H. Zhang and W. Wu

the same length with impossible differential distinguishers in [12] for all improved
Type-1 GFSs when [n, d] =[4, 3] or [8, 7]. Besides, the value of DR for the same
m does not affect the length of integral distinguishers when the F -function is
bijective.

Table 4. Integral distinguishers for improved Type-1 GFS

IND for [n,m,d,P]-Type-1 GFS

m P DR ID
IND [12]

[n, d]=[4,3] [n, d]=[8,7] [n, d]=[16,3]

bij bij nbij bij nbij bij nbij.

4 {2, 0, 3, 1} 10 19 16 19 18 19 18 23 23

5
{2, 0, 3, 4, 1} 17 29 25 29 28 29 28 34 34

{2, 3, 1, 4, 0} 14 29 21 29 27 29 27 32 32

6 {2, 0, 3, 4, 5, 1} 26 41 36 41 40 41 40 47 47

7
{2, 0, 3, 4, 5, 6, 1} 37 55 49 55 54 55 54 62 62

{2, 3, 4, 5, 1, 6, 0} 27 55 37 55 52 55 52 59 59

8
{2, 0, 3, 4, 5, 6, 7, 1} 50 71 64 71 70 71 70 79 79

{2, 3, 4, 5, 1, 6, 7, 0} 38 71 50 71 68 71 68 77 77

4 Applications to LBlock and TWINE

Although our search algorithm is generic, it can improve integral distinguishers
for specific ciphers. We construct several 16-round integral distinguishers for
LBlock and TWINE, which directly leads to the extension of the numbers of
attacked rounds for integral attack.

4.1 Integral Attack on LBlock

LBlock is a 32-round lightweight block cipher with 64-bit block and 80-bit master
key. It adopts a Feistel structure with a twist: an 8-bit rotation is performed
on the branch being XOR with the output of the Feistel function. The Feistel
function is made of a key addition, a S-box layer and a nibble permutation.
We denote Xi

L||Xi
R the internal state which is the input to the i-th round (or

the output from (i − 1)-th round), and further describe 8 nibbles inside of Xi
L

and Xi
R as Xi

L = Xi
L[0]||Xi

L[1] · · · ||Xi
L[7] and Xi

R = Xi
R[0]||Xi

R[1] · · · ||Xi
R[7],

respectively. A plaintext is load into the state X0
L||X0

R which is then processed
as Fig. 5 (left), and finally, X32

L ||X32
R is produced as the ciphertext.

Keyschedule. The keyschedule generates 32 round keys from the master key.
Firstly, the master key is loaded to a key register, denoted by K = k79k78 · · · k1k0.
After that, extract leftmost 32 bits of current content of the register as round
key K0. And then update the key register as follow:

Structural Evaluation for Generalized Feistel Structures and Applications 229

1. K <<< 29
2. [k79k78k77k76] = S9[k79k78k77k76], [k75k74k73k72] = S8[k75k74k73k72]
3. [k50k49k48k47k46] ⊕ [i]2
4. Output the left most 32 bits of the register as round key Ki

where S8 and S9 are 4-bit S-boxes, and [i]2 is the binary form of i for 1 ≤ i ≤ 31.

Fig. 5. LBlock (left) and the equivalent representation (right)

Improved Integral Distinguishers. As shown in Fig. 5, LBlock is equal to a
[4, 16, 3, {9, 4, 13, 0, 3, 6, 7, 2, 1, 12, 5, 8, 11, 14, 15, 10}]-Type-2 GFS cipher, except
a shuffle and its inverse is applied to the plaintext and the ciphertext, respec-
tively, where the shuffle Pin is {0, 2, 4, 6, 8, 10, 12, 14, 9, 13, 3, 7, 1, 5, 11, 15}. There-
fore, we construct several 16-round integral distinguishers for LBlock by
Algorithm 1, which improves the 15-round distinguisher proposed by designers
in [11]. For example, choosing a set of 263 plaintexts which are constant at one
bit and are active at other 63 bits, then the state X16

R is balanced.

Key Recovery. Appending 7 rounds to the integral distinguisher, we can attack
23-round LBlock with 276 encryption, 263 chosen plaintexts and 267 bytes mem-
ory, which improved the previous best integral attack by one more round. We
first give a high-level description of the key recovery.

1. Query 263 plaintexts which are constant at one bit and are active at other
bits.

2. Compute
⊕

(S(X16
L [0] ⊕ K16[0])) by guessing 60-bit key.

230 H. Zhang and W. Wu

3. Compute
⊕

(X17
L [2]) by guessing 40-bit key independently.

4. Find matches between two results, and get corresponding 74-bit key as key
candidates.

5. For 270 key candidates, we exhaustively search remaining 6-bit key to recover
the master key.

Details of Step 2 is given in AppendixD. We obtain a list with 260 entries
which contains 64-bit information:

⊕
(S(X16

L [0]⊕K16[0])) and corresponding 60-
bit guessed key. This procedure costs 269.8 23-round encryptions. Due to the Feis-
tel structure, Step 3 costs much less time to produce a list with 240 entries, which
contains 44-bit information:

⊕
X17

L [2] and corresponding 40-bit guessed key
K22[0, 1, 4, 5, 7]||K21[0, 2]||K20[4, 5]||K21[7](0)||K20[6](2,3)||K20[7](0). In total,
78 bits key are guessed in key recovery as shown in Fig. 8, however, there exist
only 74-bit significant key information, because 4-bit guessed in K18 can be
deduced from remaining 74-bit key. Therefore, we obtain 270 key candidates
after Step 4. For 6-bit key is remained unknown as shown in Fig. 6, we guess it
and exhaustively search the right master key combining with the key candidates.

Fig. 6. Key state after key recovery

The time complexity of the attack is determined by exhaustively searching,
that is 26 × 270 = 276 23-round encryptions. The data complexity is 263 chosen
plaintexts. Besides, we need 260 × 15 × 4 × 2−3 = 261 bytes of memory to save
15 nibbles of ciphertext involved in the computation of X16

L [0].

4.2 Integral Attack on TWINE

TWINE is a Type-2 GFS block cipher with 16 branches of 4 bits each. It sup-
ports two key lengths, 80-bit and 128-bit, which we write as TWINE-80 and
TWINE-128, respectively. They only differ by the key-schedule and both have
36 rounds. The i-round of TWINE is depicted in Fig. 7, where Xi is the input
which is also expressed by Xi = Xi[0]||Xi[1] · · · ||Xi[15] and the S-box S is a
4-bit permutation with algebraic degree 3. We denote the j-th nibble of i-th
round key Ki by Ki[j] for 0 ≤ j ≤ 7.

Keyschedule. The keyschedule produces 36 round keys from the master key.
Firstly, the key register is initialized to the master key, and then the key register
are updated by a sparse GFS using only 2 S-box per updating procedure for

Structural Evaluation for Generalized Feistel Structures and Applications 231

Fig. 7. Round function of TWINE

TWINE-80 and 3 for TWINE-128. Finally fixed 8 nibbles are extracted from
the key register as the round key. For more details, please refer to [8].

In [8], the designers gave several 15-round integral distinguishers for TWINE.
For example, considering a set of 260 plaintexts which are constant for the left-
most nibble (indexed by 0) and are active for other nibbles, the state after 15
rounds has 4 balanced nibbles indexed by 1, 3, 13, 15. Then, they launched
the integral attack on 22-round TWINE-80 with the time, data and memory
complexity being 277 encryption, 260 chosen plaintexts and 270 bytes. The time
complexity can be further reduced to 268.4 encryption with the data complexity
increased by a factor of 4. In a similar manner, 23-round TWINE-128 can be
attacked with 2106.14 encryptions, 262.81 chosen plaintexts and 2106 bytes mem-
ory. These results are both the best integral attacks up to now.

Improved Integral Distinguishers. We discover several 16-round integral
distinguishers for TWINE by applying our path search algorithm. If we choose
263 plaintexts which are constant at any one bit and are active at other 63 bits,
the state after 16 encryption rounds is balanced for any nibble with odd index.

Key Recovery. Due to the keyschedule, 1-th nibble is the optimal choice for
the attack considering the time complexity, therefore, we can attack 23-round
TWINE-80 by following the key recovery procedure in [8] directly. Note that a
structure for our distinguisher contains 263 plaintexts instead of 260. Using one
structure, the time, data and memory complexities of the attack are thus 277

encryption, 263 chosen plaintexts and 270 bytes, respectively. Similarly, we can
attack 24-round TWINE-128 with 2124 encryption, 263 chosen plaintexts and
2106 bytes.

5 Conclusion

In this paper, we first studied the propagation characteristic of the division
property for the GFS, and then proposed a generic algorithm of searching the
integral distinguishers. Meanwhile, we devised the early reduce technique, which
is useful to optimize the time and memory complexities. By using our algorithm,
we evaluated the security of the GFS. The results show that the length of integral
distinguishers can be extended by at least m − 1 and 1 rounds for Type-1 and

232 H. Zhang and W. Wu

Type-2 GFS with m branches, respectively. For improved Type-1 and Type-2
GFSs, distinguishers depend on the specific parameters of the structure, such as
m, branch size, algebraic degree of F -functions, permutation layer and whether
F -functions are bijective or not. Finally, the algorithm was applied to LBlock
and TWINE. We constructed several 16-round integral distinguishers, which lead
to the integral attacks on 23-round LBlock, 23-round TWINE-80 and 24-round
TWINE-128.

Acknowledgments. We would like to thank the anonymous reviewers for their useful
comments and suggestions. The research presented in this paper is supported by the
National Basic Research Program of China (No. 2013CB338002) and National Natural
Science Foundation of China (No. 61272476, No. 61232009 and No. 61202420).

A Proofs for Proposition 2-4

Proposition 2

Proof. We give the proof for the case of m = 4, which can then simply be
transferred to the general case. Denote Λ and Λ′ as the multi-set of inputs and
outputs, respectively. The checksum of Λ′ for U = (u0, · · · , u5) has

⊕

Y ∈Λ′
πU (Y)

=
⊕

X∈Λ

π(u0,...,u5)(x0, x0, x1, x2, x2, x3)

=
⊕

X∈Λ

πu0(x0) × πu1(x0) × πu2(x1) × πu3(x2) × πu4(x2) × πu5(x3)

=
⊕

X∈Λ

πu0∨u1(x0) × πu2(x1) × πu3∨u4(x2) × πu5(x3)

=
⊕

X∈Λ

π(u0∨u1,u2,u3∨u4,u5)(X)

where ∨ is OR. When (w(u0 ∨ u1), w(u2), w(u3 ∨ u4), w(u5))��K, the result is
always 0. Its sufficient condition is (w(u0)+w(u1), w(u2), w(u3)+w(u4), w(u5))
��K. Therefore, the division property of Λ′ is {(i0, k0 − i0, k1, i1, k2 − i1, k3)|0 ≤
i0 ≤ k0, 0 ≤ i1 ≤ k2}.

Proposition 3

Proof. The proposition describes a special case of Rule 1 in [9]. Readers can refer
to [9] for the details of the proof.

Proposition 4

Proof. We prove the case when m = 4. The general case follows by a similar
manner. Denote Λ and Λ′ as the multi-set of inputs and the multi-set of outputs,

Structural Evaluation for Generalized Feistel Structures and Applications 233

Table 5. Integral distinguishers for improved Type-1 GFS with 8 < m ≤ 16

Our IND

m P DR ID
IND [12]

[n, d]=[4, 3] [n, d]=[8, 7]

bij bij nbij bij nbij.

9
{2, 3, 1, 4, 5, 6, 7, 8, 0} 58 89 73 89 87 89 87

{2, 3, 4, 5, 6, 7, 1, 8, 0} 44 89 57 89 85 89 85

10 {2, 3, 4, 5, 1, 6, 7, 8, 9, 0} 66 109 82 109 106 109 106

11

{2, 3, 1, 4, 5, 6, 7, 8, 9, 10, 0} 92 131 111 131 129 131 129

{2, 3, 4, 5, 1, 6, 7, 8, 9, 10, 0} 83 131 101 131 128 131 128

{2, 3, 4, 5, 6, 7, 1, 8, 9, 10, 0} 74 131 91 131 127 131 127

{2, 3, 4, 5, 6, 7, 8, 9, 1, 10, 0} 65 131 81 131 126 131 126

12 {2, 3, 4, 5, 6, 7, 8, 9, 1, 10, 11, 0} 82 155 100 155 150 155 150

13

{2, 3, 1, 4, 5, 6, 7, 8, 9, 10, 11, 12, 0} 134 181 157 181 179 181 179

{2, 3, 4, 5, 1, 6, 7, 8, 9, 10, 11, 12, 0} 123 181 145 181 178 181 178

{2, 3, 4, 5, 6, 7, 1, 8, 9, 10, 11, 12, 0} 112 181 133 181 177 181 177

{2, 3, 4, 5, 6, 7, 8, 9, 1, 10, 11, 12, 0} 101 181 121 181 176 181 176

{2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 1, 12, 0} 90 181 109 181 175 181 175

14
{2, 3, 4, 5, 1, 6, 7, 8, 9, 10, 11, 12, 13, 0} 146 209 170 209 206 209 206

{2, 3, 4, 5, 6, 7, 8, 9, 1, 10, 11, 12, 13, 0} 122 209 144 209 204 209 204

15

{2, 3, 1, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 0} 184 239 211 239 236 239 236

{2, 3, 4, 5, 6, 7, 1, 8, 9, 10, 11, 12, 13, 14, 0} 158 239 183 239 234 239 234

{2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 1, 14, 0} 119 239 141 239 232 239 232

16

{2, 3, 4, 5, 1, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 0} 198 271 211 271 268 271 268

{2, 3, 4, 5, 6, 7, 8, 9, 1, 10, 11, 12, 13, 14, 15, 0} 170 271 183 271 266 271 266

{2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 1, 14, 15, 0} 142 271 141 271 264 271 264

respectively. The checksum of Λ′ for U = (u0, · · · , u3) has
⊕

X′∈Λ′
π(u0,u1,u2,u3)(X

′)

=
⊕

Z∈Λ

πU ((z0, z1 ⊕ z2, z3, z4 ⊕ z5))

=
⊕

Z∈Λ

πu0(z0)×πu1(z1 ⊕ z2)×πu2(z3)×πu3(z4 ⊕ z5)

=
⊕

Z∈Λ

(

πu0(z0)×(
⊕

c1≺u1

πu1(z1)×πu1⊕c1(z2)) ×πu2(z3)×(
⊕

c2≺u3

πu3(z4)×πu3⊕c2(z5))

)

=
⊕

Z∈Λ

⊕

c1≺u1

⊕

c2≺u3

(
π(u0,u1,u1⊕c1,u2,u3,u3⊕c2)(Z)

)

where c ≺ u denotes the elements of Fn
2 satisfying c AND u equals to c. Obvi-

ously, it has w(c) + w(u ⊕ c) = w(u) if c ≺ u. When (w(u0), w(u1), w(u1) −
w(c1), w(u2), w(u3), w(u3) − w(c2)) ��K for any c1 ≺ u1 and any c2 ≺ u3, the
result is always 0. Thereafter, the division property of Λ′ is {K ′(j) = (kj

0, (k
j
1 +

kj
2), k

j
3, (k

j
4 + kj

5))|0 ≤ j ≤ q − 1}.

234 H. Zhang and W. Wu

B Results on Improved Type-1 GFS for 8 < m ≤ 16

Table 5 shows integral distinguishers for improved Type-1 GFS when the number
of branches is more than 8.

C Results on Improved Type-2 GFS for 8 <m ≤ 16

Table 6 shows integral distinguishers for improved Type-2 GFS when the number
of branches is more than 8.

Table 6. Integral distinguishers for improved Type-2 GFS with 8 < m ≤ 16

Our IND

m Type P DR
IND [7]

[n, d]=[4,3] [n, d]=[8, 7]

bij bij nbij bij nbij.

10

No. 1 {5, 0, 7, 2, 9, 6, 3, 8, 1, 4} 7 13 14 14 14 13

No. 2 {3, 0, 1, 4, 7, 2, 5, 8, 9, 6} 7 13 15 14 14 14

No. 3 {3, 0, 7, 4, 1, 6, 5, 8, 9, 2} 7 13 14 13 13 13

12

No. 1 {3,0,7,2,9,4,11,8,5,10,1,6} 8 15 17 16 16 16

No. 2 {3,0,7,2,11,4,1,8,5,10,9,6} 8 16 17 17 17 16

No. 3 {7,0,9,2,11,4,1,8,5,10,3,6} 8 15 16 15 16 15

No. 4 {5,0,9,2,1,6,11,4,3,10,7,8} 8 15 17 17 16 16

14

No. 1 {1,2,9,4,3,6,13,8,7,10,11,12,5,0} 8 15 17 16 16 16

No. 2 {1,2,9,4,13,6,7,8,5,10,3,12,11,0} 8 15 16 15 16 15

No. 14 {1,2,11,4,13,6,7,8,5,12,9,10,3,0} 8 15 16 16 16 16

No. 16 {5,2,9,4,1,6,13,10,11,8,7,0,3,12} 8 15/16 17 17 17 16

No. 20 {7,2,1,4,9,6,5,10,3,12,13,0,11,8} 8 15 16 16 16 15

16

No. 1 {1,2,9,4,15,6,5,8,13,10,7,14,11,12,3,0} 8 16 17 16 17 16

No. 7 {1,2,11,4,3,6,7,8,15,12,5,14,9,0,13,10} 8 15 17 16 16 16

No. 10 {7,2,13,4,11,8,3,6,15,0,9,10,1,14,5,12} 8 15 16 15 16 15

D Details of the Attack on LBlock

We need to guess 60-bit key to compute the value of
⊕

(S(X16
L [0] ⊕ K16[0]))

according to the keyschedule. These guessed keys are marked by gray cubes in
Fig. 8, and the procedure is as follows:

1. Query 263 plaintexts which are constant at one bit and are active at other
bits.

2. Count whether each 15-nibble value X23
L [0, 1, 2, 3, 4, 6, 7]||X23

R [0, 1, 2, 3, 4, 5,
6, 7] appears even or odd times, and pick the values which appear odd times.

3. Guess K22[3], and then compute X22
R [3]. Compress the data into 256 texts

of the value of X23
L [0, 2, 3, 4, 6, 7]||X23

R [0, 1, 2, 4, 5, 6, 7]||X22
R [3] appearing odd

times.

Structural Evaluation for Generalized Feistel Structures and Applications 235

4. Guess K22[5], and then compute X22
R [6]. Compress the data into 252 texts

of the value of X23
L [0, 2, 3, 6, 7]||X23

R [0, 1, 2, 4, 6, 7]||X22
R [3, 6] appearing odd

times.
5. Guess K22[1], and then compute X22

R [2]. Compress the data into 248 texts of
the value of X23

L [2, 3, 6, 7]||X23
R [0, 2, 4, 6, 7]||X22

R [3, 6, 2] appearing odd times.
6. Guess K21[6], and then compute X21

R [1]. Compress the data into 244 texts
of the value of X23

L [2, 3, 6, 7]||X23
R [0, 2, 4, 6]||X22

R [3, 2]||X21
R [1] appearing odd

times.
7. Guess K22[4], and then compute X22

R [0]. Compress the data into 244 texts
of the value of X23

L [2, 3, 7]||X23
R [0, 2, 4, 6]||X22

R [0, 2, 3]||X21
R [1] appearing odd

times.
8. Guess K22[6], and then compute X22

R [1]. Compress the data into 244 texts
of the value of X23

L [2, 3]||X23
R [0, 2, 4, 6]||X22

R [0, 1, 2, 3]||X21
R [1] appearing odd

times.
9. Guess K22[0], and then compute X22

R [4]. Compress the data into 244 texts
of the value of X23

L [3]||X23
R [0, 2, 4, 6]||X22

R [0, 1, 2, 3, 4]||X21
R [1] appearing odd

times.
10. Guess K21[4], and then compute X21

R [0]. Compress the data into 240 texts
of the value of X23

L [3]||X23
R [0, 2, 4]||X22

R [0, 1, 2, 3]||X21
R [0, 1] appearing odd

times.
11. Due to the keyschedule, K20[0] is determined by rightmost two bits in K22[5]

and leftmost two bits in K22[6], which are all guessed. We can directly
compute X20

R [4] and compress the data into 236 texts of the value of X23
L [3]

||X23
R [0, 2, 4]||X22

R [0, 1, 3]||X21
R [1]||X20

R [4] appearing odd times.
12. Due to the keyschedule, K20[1] is determined by rightmost two bits in K22[6]

and leftmost two bits in K22[7]. We only need guess the leftmost two bits in
K22[7]. Compute X20

R [2] and compress the data into 236 texts of the value
of X23

L [3]||X23
R [0, 2, 4] ||X22

R [0, 1, 3]||X20
R [2, 4] appearing odd times.

13. Guess K21[1] and compute X21
R [2] and compress the data into 232 texts

of the value of X23
L [3]||X23

R [2, 4]||X22
R [0, 3]||X21

R [2]||X20
R [2, 4] appearing odd

times.
14. Guess K20[2] and compute X20

R [5] and compress the data into 228 texts of
the value of X23

L [3]||X23
R [2, 4]||X22

R [0]||X20
R [2, 4, 5] appearing odd times.

15. Guess K21[0] and compute X21
R [4] and compress the data into 228 texts of

the value of X23
L [3]||X23

R [2, 4]||X21
R [4]||X20

R [2, 4, 5] appearing odd times.
16. Due to the keyschedule, K19[5] is determined by K22[3] and K22[4]. Com-

pute X19
R [6] and compress the data into 224 texts of the value of X23

L [3]||X23
R

[2, 4]|| X20
R [2, 4] ||X19

R [6] appearing odd times.
17. Guess K22[2] and then compute X22

R [5] and compress the data into 220 texts
of the value of X22

R [5]||X23
R [4]||X20

R [2, 4]||X19
R [6] appearing odd times.

18. Guess K21[5] and then compute X21
R [6] and compress the data into 216 texts

of the value of X21
R [6]||X20

R [2, 4]||X19
R [6] appearing odd times.

19. Due to the keyschedule, K19[4] is determined by K22[2] and K22[3]. Com-
pute X19

R [0] and compress the data into 212 texts of the value of X20
R [2]||X19

R

[0, 6] appearing odd times.

236 H. Zhang and W. Wu

20. Guess K18[0] and compute X18
R [4] and compress the data into 28 texts of

the value of X19
R [6]||X18

R [4] appearing odd times.
21. Due to the keyschedule, K17[4] is determined by the rightmost three bits

of K20[2] and the leftmost bit of K20[3]. Guess the leftmost bit of K20[3],
compute X17

R [0] and compress the data into 24 texts of the value of X17
R [0]

appearing odd times.
22. Due to the keyschedule, K16[0] is determined by the rightmost bit of K21[3]

and the leftmost three bits of K21[4]. Guessing the rightmost bit of K21[3],
and then we compute the sum

⊕
(S(X16

L [0] ⊕ K16[0])).

Fig. 8. Key state for key recovery

Complexity for Computing
⊕

(S(X16
L [0]⊕K16[0])). The complexity for each

step is estimated as a product of the previous date size and the total number of
guessed bits. In total,

24 × 260 + 28 × 256 + 212 × 252 + 216 × 248 + 220 × 244

+224 × 244 + 228 × 244 + 232 × 244 + 232 × 240 + 234 × 236

+238 × 236 + 242 × 232 + 246 × 228 + 246 × 228 + 250 × 224

+254 × 220 + 254 × 216 + 258 × 212 + 259 × 28 + 240 × 24

= 277.3.

That is 277.3 × 1
8 × 1

23 ≈ 269.8 23-round encryptions. After step 22, we obtain a
list with 260 entries which contains 64-bit information:

⊕
(S(X16

L [0] ⊕ K16[0]))
and corresponding 60-bit guessed key.

References

1. Adams, C.: The CAST-256 encryption algorithm. In: AES proposal (1998)
2. Daemen, J., Knudsen, L.R., Rijmen, V.: The block cipher SQUARE. In: Biham,

E. (ed.) FSE 1997. LNCS, vol. 1267, pp. 149–165. Springer, Heidelberg (1997)

Structural Evaluation for Generalized Feistel Structures and Applications 237

3. Knudsen, L.R., Wagner, D.: Integral cryptanalysis. In: Daemen, J., Rijmen, V.
(eds.) FSE 2002. LNCS, vol. 2365, p. 112. Springer, Heidelberg (2002)

4. Nyberg, K.: Generalized Feistel networks. In: Kim, K., Matsumoto, T. (eds.) ASI-
ACRYPT 1996. LNCS, vol. 1163, pp. 91–104. Springer, Heidelberg (1996)

5. Shibutani, K.: On the diffusion of generalized Feistel structures regarding differen-
tial and linear cryptanalysis. In: Biryukov, A., Gong, G., Stinson, D.R. (eds.) SAC
2010. LNCS, vol. 6544, pp. 211–228. Springer, Heidelberg (2011)

6. Shirai, T., Shibutani, K., Akishita, T., Moriai, S., Iwata, T.: The 128-bit blockci-
pher CLEFIA (extended abstract). In: Biryukov, A. (ed.) FSE 2007. LNCS, vol.
4593, pp. 181–195. Springer, Heidelberg (2007)

7. Suzaki, T., Minematsu, K.: Improving the generalized Feistel. In: Hong, S., Iwata,
T. (eds.) FSE 2010. LNCS, vol. 6147, pp. 19–39. Springer, Heidelberg (2010)

8. Suzaki, T., Minematsu, K., Morioka, S., Kobayashi, E.: TWINE: a lightweight
block cipher for multiple platforms. In: Knudsen, L.R., Wu, H. (eds.) SAC 2012.
LNCS, vol. 7707, pp. 339–354. Springer, Heidelberg (2013)

9. Todo, Y.: Integral cryptanalysis on full MISTY1. In: Gennaro, R., Robshaw, M.
(eds.) CRYPTO 2015. LNCS, vol. 9215, pp. 413–432. Springer, Heidelberg (2015)

10. Todo, Y.: Structural evaluation by generalized integral property. In: Oswald, E.,
Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 287–314. Springer,
Heidelberg (2015)

11. Wu, W., Zhang, L.: LBlock: a lightweight block cipher. In: Lopez, J., Tsudik, G.
(eds.) ACNS 2011. LNCS, vol. 6715, pp. 327–344. Springer, Heidelberg (2011)

12. Yanagihara, S., Iwata, T.: On permutation layer of Type 1, Source-Heavy, and
Target-Heavy generalized Feistel structures. In: Lin, D., Tsudik, G., Wang, X.
(eds.) CANS 2011. LNCS, vol. 7092, pp. 98–117. Springer, Heidelberg (2011)

	Structural Evaluation for Generalized Feistel Structures and Applications to LBlock and TWINE
	1 Introduction
	2 Preliminaries
	2.1 Generalized Feistel Structure
	2.2 Division Property

	3 Improved Integral Distinguishers for GFS
	3.1 Propagation Characteristic of the Division Property
	3.2 Path Search Algorithm for GFS
	3.3 Improved Integral Distinguishers for GFS

	4 Applications to LBlock and TWINE
	4.1 Integral Attack on LBlock
	4.2 Integral Attack on TWINE

	5 Conclusion
	A Proofs for Proposition 2-4
	B Results on Improved Type-1 GFS for 8 <m 16
	C Results on Improved Type-2 GFS for 8 < m16
	D Details of the Attack on LBlock
	References

